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Abstract 

Obesity prevalence continues to rise and can be partially attributed to the obesogenic 

environment. However, there is increasing evidence that environmental exposures in early 

development can influence later-life disease, known as the Developmental Origins of Health 

and Disease hypothesis. Whilst some early life exposures have been associated with later-life 

adiposity, the underlying mechanism is less understood. One hypothesised mechanism is 

through epigenetic changes, such as DNA methylation.  

Multiple longitudinal cohorts were used to investigate the hypothesis; DNA methylation is a 

mediating mechanism between early life events and subsequent obesity. The Newcastle 

Thousand Families (NTFS) and Gateshead Millennium (GMS) studies (established 1947 and 

2000 respectively), were used to investigate the impact of early life exposures (i.e. 

socioeconomic status, growth, adversity) on childhood (GMS) and adult (NTFS) obesity. 

Using both cohorts provided an opportunity to investigate regional temporal changes on 

childhood obesity, and the impact of obesogenic environments. The Avon Longitudinal study 

of Parents and Children (ALSPAC), which has methylation data (Illumina 450K array), was 

used to investigate associations between early life exposures and DNA methylation (in 

childhood and late adolescence) at CpG loci.  

Early life rapid weight gain (RWG) was consistently associated with childhood body 

composition in both local cohorts over time. In ALSPAC, RWG was significantly associated 

with a 1% increase in childhood methylation (age 7, n=116) at an individual CpG locus 

(CG11531579). Furthermore, the highest levels of methylation (+2%) were in those with 

RWG who were subsequently overweight/obese (OWOB, age 17).  

The CG11531579 loci was investigated further in NTFS adults (age 50, n=134) to examine 

whether the epigenetic marks persist.  RWG was also associated with methylation changes in 

adults, although this was a decrease in methylation (-2%, age 50). These findings suggest 

that RWG in infancy is associated with small, dynamic variations in methylation at this locus.  
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Chapter 1. Introduction 

 

Overweight and obesity, particularly in children, have increased at alarming rates in recent 

times. Whilst genetic factors contribute to overweight/obesity (OWOB), the recent surge in 

incidence and younger age of onset suggest early life and environmental factors are key to 

this phenomenon.  

The developmental origins of health and disease (DOHaD) hypothesis proposes that 

exposures in early life predispose an individual to diseases, such as obesity, in later life. The 

literature suggests that early life factors related to birthweight, early growth, maternal body 

composition and lifestyle factors, infant feeding, and adversity and sleep in infancy may be 

linked to childhood body composition. It is unclear if each of these early life factors has an 

independent influence on childhood overweight and obesity, beyond socioeconomic status 

(SES) and obesogenic environments. Therefore, this thesis examines the relationship 

between early life factors, lifestyle and SES and the development of obesity in children and 

adults, and how these factors and their influence on obesity outcomes have changed over 

time with the emergence of modern obesogenic environments.  

The mechanisms behind the DOHaD hypothesis are largely unknown, but DNA methylation 

(DNAm), an epigenetic mechanism with the capacity to regulate gene expression, has been 

proposed to be involved. Accumulating evidence suggests that early life factors are 

molecularly programmed. These epigenetic changes could reveal more about the underlying 

biological mechanisms of how early life factors increase susceptibility to later obesity. 

Epigenetic changes could also be used as predictive biomarkers of future risk, in order to 

identify those who would benefit from early intervention.  

Therefore, underlying epigenetic mechanisms of theoretically relevant early life exposures 

on child and adult obesity were investigated. Differential methylation has been associated 

with some early life exposures (such as birthweight), however this is the first study that 

attempts to link to DNAm with both early life exposures and adiposity outcomes. 

Furthermore, many of these changes have only been identified in cross-sectional studies, 

however due to the latency between the exposure and outcome there is the need to 

examine these relationships using longitudinal cohorts. 
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The thesis is organised as follows: chapter 1 provides the background literature and 

rationale for this study and presents the aims of the study. Chapter 2 details the data and 

the statistical methods used in analyses. Chapter 3 and chapter 4 investigate early life and 

socioeconomic factors influencing obesity in adults and children, using data from two 

longitudinal cohorts from the same region in the UK born 50 years apart. Chapter 5 uses 

these same cohorts to examine the role of the changing socio-economic environment on 

childhood obesity. The potential role of DNAm in mediating obesity-associated exposures is 

examined using data from a third UK longitudinal study in chapter 6. Validation of these 

findings was carried out using samples from the original cohort of adults in chapter 7. Finally, 

chapter 8 discusses the findings, summarises strengths and limitations of the study and 

concludes with future research directions. 

1.1 Obesity: An overview 

1.1.1 Epidemiology of obesity 

Obesity was first highlighted as a major global concern by the World health Organization 

(WHO) in 1997 and since then has become an ever-increasing issue. The Health Survey for 

England has been measuring the nation’s height and weight since the early 1990’s and has 

determined that and has shown that the prevalence of OWOB has been increasing steadily: 

over the last three decades adult obesity prevalence has increased from less than 10% to 

almost 25% of the population in England (noo, 2015). Of particular concern is the 10 fold 

increase in childhood obesity worldwide (Butland et al., 2007, Abarca-Gómez et al.), that 

children are becoming obese at younger ages (Johnson et al., 2015), and the upwards trends 

in prevalence of severe obesity (PHE Publishing, 2018). The government’s Foresight report 

predicts that obesity will affect 60% of men, 50% of women and 25% of children by 2050 

(Butland et al., 2007). 

Routine measurement of children’s weight and height in England has been achieved via the 

National Child Measurement Programme (NCMP) which commenced in 2006 (Ridler et al., 

2009). The programme successfully measures over 95% of eligible children, with measures 

taken at both the start (reception, age 4/5) and the end (year 6, age 10-11) of primary 

school. The 2016/17 NCMP data show that prevalence of obesity in reception was 9.6%, and 

20% in year 6 children (NHS Digital, 2017). Prevalence was highest in the North East (10.7% 

in reception, 22.5% in year 6) compared to other regions in England (NHS Digital, 2017). 
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There are distinct social inequalities in childhood obesity; the prevalence of obesity is 2 fold 

higher in the most deprived decile compared to the least (PHE Publishing, 2018). 

1.1.2 The relationship between child and adult obesity 

OWOB in childhood are of great concern due to the ‘tracking’ into adulthood, which is the 

persistence and relative stability of overweight over time (Twisk, 2003). A systematic review 

by Singh et al,. determined that all high-quality studies reported at least 2x increased risk of 

OWOB in adults in those that were OWOB in childhood (Singh et al., 2008). However, most 

of the studies were from cohort studies from 20 years prior to the year 2000, and all of the 

studies were from high-income countries, therefore as prevalence of obesity has increased 

over time these estimates may be conservative for current populations. Although there have 

been few studies outside of North America and Europe, there is evidence that BMI tracking 

is influenced by ethnicity (Bayer et al., 2011a), and that BMI increases with age may also be 

higher in black children compared to white children (Freedman et al., 2005a). 

The risk of the tracking of obesity is much higher than for OWOB, and multiple cohort 

studies have demonstrated that obese children are around 5 times more likely to be obese 

as adults (Simmonds et al., 2015b). In terms of when to intervene, obesity appears resistant 

to change, as by age 5, most excess weight prior to puberty has been laid down  (Gardner et 

al., 2009) and children are more likely to remain obese (Mostazir et al., 2015, Buscot et al., 

2018). Childhood obesity is also related to adult morbidity (Llewellyn et al., 2016). Therefore, 

understanding the key early life factors driving the upwards prevalence of childhood obesity 

will be important for prevention and for designing effective interventions. 

However, this tracking of obesity is a relatively recent phenomenon. Examining the trends 

using several British birth cohorts with over 56,000 participants, found that cohorts born 

more recently had greater probabilities of overweight or obesity at younger ages (Johnson et 

al., 2015). However, even in the cohorts born between 1946 and 1970, tracking was 

consistently stronger at the higher quantiles of the BMI distribution (Norris et al., 2019). 

Bayer et al., (2011) conducted a meta-analysis using multiple cohorts from all ages and time 

periods and found strong evidence of tracking of weight over time, and a low probability of 

spontaneous weight changes (without intervention) (Bayer et al., 2011b). These findings 

suggest that a high proportion of children obese today are likely maintain an obese body 

weight throughout life, which poses a significant public health crisis.  
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Regarding the mechanisms underlying the tracking of body composition, there is evidence of 

the tracking of both physical activity and of diet behaviours between childhood and 

adulthood, each to similar degrees (Craigie et al., 2011), whilst follow-up from adolescence 

to adulthood seems to also support that physical activity is pertinent (Kvaavik et al., 2003).   

However, an important feature of tracking is that those at high risk for diseases later in life 

can be identified at an early age, and therefore this feature could be utilised and those at 

‘high-risk’ could be the target for early risk reduction interventions (Twisk, 2003). Crucially, 

the majority of obese adults (70%) were not obese in childhood (Simmonds et al., 2016), 

suggesting factors impacting and accumulating over the life course. This also emphasises 

that further understanding of the many factors and how they interact to influence obesity 

across the life course is necessary. Furthermore, this highlights the need for biomarkers that 

could identify those who are at risk of subsequent obesity, so that interventions can be 

targeted. 

 

1.1.3 The consequences of obesity  

On average, obesity decreases life expectancy by three years, and severe obesity by up to 10 

years (Prospective Studies, 2009). Obesity can cause ill health in childhood and premature 

mortality and physical morbidity in later life (Reilly and Kelly, 2010), drastically impacting on 

the individual’s physical and psychological health as well as socioeconomic effects (Reilly et 

al., 2003). The clinical consequences can range from type 2 diabetes (T2DM), metabolic 

complications, risk of some cancers, cardiovascular disease (CVD), asthma, sleep apnoea, 

and menstrual cycle abnormalities (in females)(Reilly et al., 2003, Lee, 2009, Reilly and Kelly, 

2010, Umer et al., 2017). Furthermore, life course body mass index (BMI) gains and earlier 

obesity onset are associated with poorer physical functioning in middle age (age 50), 

stressing the importance of prevention and delaying onset of obesity (Rogers et al., 2019).  

Obesity also represents a global economic problem, as obesity-related diseases could cost 

the National Health Service (NHS) an extra £2.51 billion by 2035 (The UK Health Forum and 

Cancer Research UK, 2015). 
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1.1.4 Definition and measurement of body composition in adults 

Obesity is defined by the WHO as “abnormal or excessive fat accumulation that may impair 

health” (World Health Organization, 2019). Therefore, definitions of obesity in children or 

adults should meet these two criteria of: diagnosing high body fat and increased risk of 

health outcomes.  

There is no accepted ‘gold standard’ of measuring obesity. There are many methods for 

determining body composition, which each have acknowledged advantages and drawbacks (  
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Table 1.2). No single measure is error-free, and the choice of measurement is dependent on 

cost, availability, the population under study and the outcomes of interest (i.e. disease risk). 

BMI, a measure of weight related to height, is the measure most frequently used to 

categorise individuals into weight categories (Table 1.1). Obesity is defined according to the 

WHO criteria as a BMI greater than 30 kg/m2, with well-established risks of all-cause 

mortality (Aune et al., 2016). Overall, BMI is a quick, easy, inexpensive measure to determine 

weight status. Generally, BMI is practical on a population level, however it represents a 

proxy, rather than a direct measure of body fat, and there is some disagreement as to 

whether BMI is the best diagnostic measure (Adab et al., 2018). Furthermore, BMI does not 

adjust for sex or age, or consider variation by pubertal status or ethnicity (although different 

cut-offs do exist). BMI also does not provide information on fat distribution or proportions of 

lean and fat mass (World Health Organization, 2011c).  

Alternative measures to BMI that are viable in a clinical setting include measures of 

abdominal fat (i.e. waist-to-hip ratio or waist circumference) or body fat (i.e. skinfold 

measurements or bio-electrical impedance). 

Waist circumference (WC) is an indicator of visceral fat (the fat stored around internal 

organs). Cut-off points are used to identify individuals at increased risk of metabolic 

complications (Table 1.1). Waist circumference-based measures have been shown to more 

accurately reflect obesity prevalence than BMI (O'Neill, 2015), and are independently 

associated with cardiovascular risk (Huxley et al., 2009) and all-cause mortality (Pischon et 

al., 2008, Sahakyan et al., 2015). Whilst a WC greater than the cut-off is purported to 

increase risk, it will not accurately capture all of those at risk due to differences in body 

composition (small frame), however it does represent a quick method of identifying 

individuals with central obesity. An additional measure including the hip circumference, the 

waist-to-hip ratio (WHR), can reveal more about fat distribution. There is often not much 

difference between the measures of central obesity, either WC or WHR (Seidell, 2009). WHR 

is arguably a more informative measure as it describes fat distribution around the waist in 

proportion to the hips, and is usually a strong predictor of cardiovascular risk (Dalton et al., 

2003, Myint et al., 2014, Egeland et al., 2016). 
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Table 1.1. Categorisation of body composition according to the proxy measures BMI, waist circumference and waist-hip 
ratio 

M, Male; Female. WHO cut-off points and risk of metabolic complications for Caucasian populations (World Health 
Organization, 2011c). 

Alternatively, body fat can be measured directly. Estimates of lean and fat mass can be made 

from routine measures such as skinfolds or bioelectrical impedance. Advanced imagining 

techniques can provide more accurate measures of body composition (Lee and Gallagher, 

2008), although these are costly and more difficult to perform in routine settings.  Examples 

of these are dual energy x-ray absorptiometry (DXA), developed to measure bone mineral 

mass, or air displacement plethysmography, which measures the volume of air displaced by 

the subject in a confined space (i.e. the BOD POD). Body fat determined by bioelectrical 

impedance (BIA), estimates body composition based on the conductive properties of lean 

and adipose tissue. However, BIA replies on the assumption that fat free mass is composed 

of 73% water, and is therefore affected by hydration level through food and drink 

consumption, medications, and stage of the menstrual cycle (Dehghan and Merchant, 2008). 

BIA has the advantage of being fast, simple and low susceptibility to inconsistencies from 

operator technique (Prentice and Jebb, 2001). The choice of prediction equation for BIA is a 

great source of variability (Reilly et al., 1996), and needs to be appropriate for the ethnicity 

of study participants (Dehghan and Merchant, 2008). 

Frankenfield et al,. found that 30% of men and 46% of women with a non-obese BMI (below 

30 kg/m2)  had ‘obese levels’ of body fat (Frankenfield et al., 2001), indicating that BMI will 

misclassify some of those at risk. BMI measures both lean and fat mass and does not 

Measure Ranges Category 

BMI <18.5 kg/m2 Risk of underweight 

 18.5-24.9 kg/m2 Normal weight 

 25-29.9 kg/m2 Overweight 

 30-34.9 kg/m2 Class I obesity 

 35.0–39.9 kg/m2 Class II (severe) obesity  

 ≥ 40.0 kg/m2 Class III (morbid) obesity  

Waist circumference >94cm (M), >80cm (F) Increased risk of metabolic 

complications 

 >102cm (M), >99cm (F) Substantially increased risk of 

metabolic complications Waist-hip ratio ≥0.90cm (M), ≥0.85cm (F) 
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distinguish between the ratios, which can change over time. For example, the loss of lean 

tissue and hormonal changes (i.e. growth hormone and Insulin-like growth factor (IGF) 

decreases with age) are important considerations in middle age.  

An advantage of using BF% over BMI is in that two individuals could have the same height 

and weight and therefore the same BMI whilst one has a higher proportion of body fat and 

the other higher muscle mass. Similarly, the same could be said for individuals with the same 

BMI but one apple-shaped, with a high central fat distribution and the other pear shaped 

with less visceral fat. These two individuals would have different health risks associated with 

their body composition and therefore it is important taking into account different measures 

where data are available.  
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Table 1.2 Advantages and disadvantages of different methods of measuring body composition routinely used in cohort 
studies 

Measure Advantages Disadvantages 

BMI  Simple, inexpensive 
measure 

 Easy to obtain, therefore 
useful screening tool and 
population measure 

 Well-characterised with 
standard cut-off points  

 BMI categories are 
associated with health risks  

 Strongly correlated with 
sophisticated measures of 
body fat 

 Questionable validity for non-
Caucasian populations  

 Not an accurate measure in 
athletes as it does not 
differentiate fat from muscle 
mass 

 Does not account for age or 
sex or age  

 Provides no information on 
fat distribution 

 

 

 

Percent body fat 
using BIA 

 Fast and simple 
 Less prone to error from 

operator technique  
 Portable and convenient  

 BIA is less accurate than 
advanced imaging techniques  

 Hard to calibrate 
 Body water could be affected 

by dehydration or illness 

 
 

Waist 
circumference or 
WHR  

 A measure of central fat 
distribution and visceral fat 

 An independent risk factor 
for disease, and specifically 
a marker of CVD 

 Simple, straightforward and 
inexpensive  

 Strongly correlated with 
more sophisticated 
measures of body fat 

 Perhaps less accurate than a 
measure of waist and height  

 WHR could be prone to error, 
as requires accuracy of two 
measurements (waist and hip) 

 

 
 

 

1.1.5 Measurement of body composition in children 

When choosing a measure in children, there are similar considerations as in adults, based on 

cost, acceptability, and ease of application (  
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Table 1.2). There is no ‘gold standard’ in body composition measurement in children, 

however BMI is the most common means of categorising weight. The main difference in 

children is that measurements need to take into account that they are still growing and 

hence require growth charts. For example, growth references derived from an appropriate 

reference population can be used to transform absolute BMI values (standard deviation z-

scores). Each growth curve has its own set of recommended thresholds to classify 

overweight or obesity. The UK90 growth reference is most commonly used in UK 

populations, and either centiles or standard deviation can be used as BMI cut-offs (Weng et 

al., 2012, Bammann et al., 2014, Woo Baidal et al., 2016). BMI cut-offs in children have high 

specificity and moderate sensitivity (Javed et al., 2015), meaning that some obese children 

may be missed, but healthy weight children are not likely to be wrongly classified as OWOB 

(Mast et al., 2002, Bedogni et al., 2003). In children, BMI has good acceptability as a 

measure, compared to more intrusive measures, or those that require clothing to be 

removed, which may not be appropriate in some settings or populations (Simmonds et al., 

2015a). 

Similar to body composition measures in adults, growth charts have been developed for use 

in children’s for measures: BMI (Lindgren et al., 1995, Wells et al., 2012, Weber et al., 2013), 

BIA (Chumlea et al., 2002), skinfolds (Tanner and Whitehouse, 1975), DXA (Van der Sluis et 

al., 2002) and more recently for 4-component models (divides body weight into fat, water, 

mineral, and protein)(Wells et al., 2012).  

Whilst waist measurements of obesity have been well characterised as risk factors in adults, 

there is less evidence to suggest that WHtR is also associated with cardio-metabolic risk in 

children (Kuba et al., 2013). Generally fat distribution patterns, either android (‘apple-

shaped’) or gynoid (‘pear-shaped’), generally start to emerge in puberty (Lobstein et al., 

2004), although some studies have found evidence of fat patterning in pre-pubertal children 

(Mast et al., 1998). Waist-to-height ratio is a measure of whether the amount of upper body 

fat is appropriate relative to height (McCarthy and Ashwell, 2006). It is calculated as the 

waist measurement divided by height measurement in cm. A simple cut-off of a WHtR >0.5 is 

the commonly accepted value (regardless of sex or age) determining ‘waist obesity’, which 

translates to a weight that is over half height. In children WC sensitivity ranges from 35-

100% and specificity from 81-100%, however waist-to-height ratio (WhtR) has the best 

diagnostic accuracy, although examined in fewer studies (Simmonds et al., 2015a).                    
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Whether it is a better indicator than BMIz is unclear, however increased waist obesity (using 

WHtR) has been found in children even when BMIz remains the same (Fredriksen et al., 

2018). 

Direct measures of fat have advantages over proxy measures. Fat mass can be measured in 

similar ways as in adults and carries the same limitations (section 1.1.4). Skinfold 

measurements offer an alternative, however compliance is low and there are issues in 

ensuring correct technique when measuring young children (Kehoe et al., 2011). 

Alternatively, fat mass can be measured using BIA, and in systematic reviews has been found 

to have good reliability (Talma et al., 2013), reproducibility (Chula de Castro et al., 2018), and 

performs well in measuring change in body composition (Meredith-Jones et al., 2015) in 

children. However, BIA may be prone to measurement error (Talma et al., 2013), 

underestimate fat mass (Chula de Castro et al., 2018), and in terms of outcomes is not 

superior to BMI in predicting cardiovascular risk factors in OWOB children (Bohn et al., 

2015). When examining fat mass in children it is important that measures take into account 

height. Fat mass index (FMI) is calculated as fat mass (kg) divided by height (m) squared. 

Findings from the Gateshead Millennium study determined that FMI was a more sensitive 

measure than BMI (Basterfield et al., 2012a) and proxy measures of adiposity were inferior 

(Basterfield et al., 2012b).  

Whilst BMI is imperfect, there are a lack of validated reference values for alternative 

measures of adiposity in children (Javed et al., 2015). BMI is the only measure recommended 

for use of determining obesity in children in the UK (Simmonds et al., 2015a), and will 

therefore likely remain the most frequently used measure for now. However, there is 

support for using additional measures such as WHtR or FMI which may be able to detect 

larger waist circumferences and higher fat mass in children.  

1.2 Aetiology of obesity  

1.2.1 Current concepts 

The convincing factors that increase risk of obesity determined by WHO include; high intakes 

of energy dense, nutrient poor foods and a sedentary lifestyle (World Health Organization, 

2003). However, obesity aetiology extends beyond the archaic notion that weight gain 

simply results from intake of more calories than required for whole-body metabolism 

(energy expenditure). Energy expenditure is a combination of the basal metabolic rate, the 
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thermic effect of food, and activity related expenditure (Levine, 2005). From a physical 

perspective, the laws of thermodynamics regarding energy conservation in living organisms 

are often applied as an explanation, namely calories in vs. calories out, or dietary intake vs. 

physical activity.  

This reductionist approach disregards the multitude of factors that influence food intake, 

energy expenditure, and whole-body metabolism, which are regulated by complex feedback 

mechanisms. Regulatory processes in the human body ensure that, for the most part, body 

mass and energy intake/expenditure remain fairly stable (Jéquier and Tappy, 1999). 

Therefore, excess weight gain must be driven by other factors. The environmental basis for 

obesity was also addressed in the Governments Foresight report, which acknowledged the 

multiple societal influences and the need for a multifaceted approach (Butland et al., 2007). 

Addressing the underlying causes of obesity requires an understanding of the socio-

economic, psychological, behavioural, and socio-cultural factors, including the drivers of 

food choices, eating patterns and participation in physical activity. However, environmental 

factors are ubiquitous and not everyone has obesity, suggesting underlying factors that 

increase susceptibility for some.  

It is important to distinguish between risk factors and causes. Causality is the study of the 

relationship between an event (the cause) and an outcome (the effect) which occurs 

consequently. The presence (or absence) of a causal factor can lead to illness or disease, 

therefore when a cause is removed the outcome should cease. Whereas a risk factor is 

something that increases the statistical risk of a disease, but a risk factor is not necessarily a 

cause and could be a surrogate for the underlying cause.  

In terms of the genetics of human obesity, there is evidence for genetic mutations and 

genetic variation. Specific gene mutations, such as those related to leptin, have been 

implicated in development of monogenic obesity, these however are very rare (Montague et 

al., 1997). Distinguished genetic mutations include those involved in food intake control 

(Neuropeptide Y, leptin, Pro-opiomelanocortin), energy regulation (β2-adrenergic and β3-

receptors), thermogenesis (uncoupling proteins 1–3), adipogenesis, signalling (peroxisome 

proliferator-activated receptor), and leptin and the leptin receptor (Farooqi and O'Rahilly, 

2004). There is also the capacity for small genetic changes, such as single nucleotide 

polymorphisms (SNPs), to influence susceptibility across the life course (Thorleifsson et al., 

2009, Willer et al., 2009). A genome-wide association study, which combined multiple 
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polymorphisms into a risk score using 97 genetic loci, explained 2.7% of the variation in BMI 

(Locke et al., 2015). Although important, genetic variants remain fairly stable over time and 

cannot explain the extent of the rise in obesity (Yang et al., 2007).  

Gene-environment interactions refer to phenotypic changes in response to environmental 

cues, dependent on genotype. These dictate individual responses to environment and 

downstream effects on weight. However, those genetically susceptible would be more likely 

to gain weight in a weight-promoting environment, and hence genetic factors may exert 

more of an effect when colluding with obesity risk factors. For example, in the case of the 

FTO genotype, which is associated with an increased risk of obesity in children and adults 

(Frayling et al., 2007), the risk can be attenuated by physical activity (Kilpeläinen et al., 

2011), or diet composition (Sonestedt et al., 2009).  

In summary, probable aetiological factors in obesity are likely a mixture of genetics, 

individual lifestyle factors, and perhaps more importantly, gene-environment interactions.  

1.2.2 Obesogenic environments 

Increases in childhood obesity in the last 20 years have been somewhat attributed to social 

change and a changing environment. Over this time, there has been widening social 

inequalities in childhood overweight (NHS Digital, 2016, Bann et al., 2018), and changes in 

the social patterning of obesity (Knai et al., 2012). All of the environmental influences and 

conditions of life that encourage overweight and obesity have been termed the ‘obesogenic 

environment’ (Lake et al., 2011).  

The ever-increasing ‘obesogenic’ macro and microenvironments have developed over the 

last 30 to 40 years. Diets have changed; food is widely available and easily accessible, in 

particular energy-dense convenience foods. Decreasing levels of physical activity and 

increasingly sedentary lifestyles have been facilitated by labour-saving devices, 

improvements in transport and shifts to more sedentary jobs, highlighting another 

dimension to the problem. Additionally, marketing of food has become aggressive and 

advertising ever-present.  

Health behaviours are often targeted for interventions at the individual level. Social 

characteristics are a more difficult avenue for intervention as they require large-scale 

changes, but are important determinants of health (Tarlov, 1999). Minimising the exposure 

to harmful environments may even-out the distribution of health, although there are 
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obvious health inequalities between social groups that need to be considered in public 

health interventions.  

1.2.3 Obesity and inequalities  

 

In the UK, socioeconomic status (SES) and obesity are related across all ages (PHE, 2013). 

Current statistics from Public Health England show an increased risk of obesity with 

increasing levels of deprivation across all indicators for women, whilst the relationship is less 

clear for men (Marmot et al., 2010). Although trends in UK childhood obesity prevalence 

have begun to stabilise in the past decade, this is not the case for children in the lower 

socioeconomic groups (Stamatakis et al., 2009).  

The relationship between SES and obesity is thought to be due to a number of factors, which 

have been explored by Cutler et al. (2008). Generally, lower SES leads to greater exposure to 

health-compromising issues. It also creates vulnerability (i.e. lower income→ lower nutrient 

intake→more vulnerable to infection→more time off work→lower earnings) thereby 

facilitating the cycle of disadvantage. This is similar to Riley’s life course model, which 

theorises the accumulation of risk, which is the idea that exposures accumulate throughout 

life, for example from periods of illness, adverse conditions and detrimental health 

behaviours (Riley, 1989). Lower SES can also contribute to psychosocial issues, for example, 

uncertainty of future access to resources can lead to increased stress levels.  

Research consistently shows that adverse early life socioeconomic conditions are associated 

with poorer adult health (Smith et al., 1998, Power et al., 1999, Poulton et al., 2002). 

Socioeconomic factors are considered important risk factors in childhood obesity, but also a 

potential source of confounding. There is a cycle of obesity in families, and parental obesity 

can be considered one of the greatest risk factors for childhood obesity (Parsons et al., 

1999). This is likely related to genetics and SES, but also further exacerbated by maternal 

overweight as an in utero exposure. Obesity risk is lower in adoption studies but still 

remains, suggesting the shared socioeconomic environment has an effect (Stunkard and 

Sorensen, 1993). 

Findings from a review of longitudinal studies support that SES precedes obesity risk (Ball 

and Crawford, 2005). A systematic review determined that socioeconomic differences in BMI 

emerge by age five, with the majority of studies demonstrating an inverse association, in 
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particular for parental education (Shrewsbury and Wardle, 2008). Findings from the 

Millennium Cohort Study indicate that education of the primary carer is more strongly 

associated with obesity rates in in children age 5 than income (Brophy et al., 2009). In the 

Avon Longitudinal study of Parents and Children (ALSPAC) cohort, trajectory modelling of 

obesity on the basis of maternal education revealed differences emerging at age 4, which 

then widened with age (Howe, 2012). Parental income and education will determine food 

and lifestyle choices, access to health care services and housing conditions, all of which can 

affect child health. 

These shifts in obesity prevalence in the lower socioeconomic groups in developed countries 

(McLaren, 2007b, Shrewsbury and Wardle, 2008), and more recently in low-mid income 

countries (Popkin et al., 2012) is termed the nutrition transition. This occurred with the 

accessibility of relatively cheap, low nutrient, high energy dense foods, leading to increased 

caloric intake (Popkin, 2001). Generally, socioeconomic disadvantage is associated with 

consumption of poorer diets which do not meet dietary recommendations: lower fruit and 

vegetable intake and higher intake of sugar and fat (Hanson and Chen, 2007). Socioeconomic 

disadvantage also affects infant feeding, and is associated with decreased duration or 

initiation of breastfeeding (Thulier and Mercer, 2009, Wijndaele et al., 2009a). Features of 

the built environment including neighbourhood safety, access to local facilities and food 

outlets, and social facilitation of unhealthy behaviours are important factors (Papas et al., 

2007, Lovasi et al., 2009). Although parental SES often predicts obesity within the individual, 

intergenerational upward social mobility can have a positive impact (Cavaco et al., 2014), 

therefore SES represents an important target for interventions.   

Overall, these findings demonstrate that obesogenic environments play an important role. 

An issue that remains unresolved is to disentangle the relative importance of environment 

factors and SES on later life obesity (Parsons et al., 1999). 

1.2.4 The Developmental Origins of Health and Disease Hypothesis  

 Background of the theory 

Hypotheses attributing early life factors in the development of subsequent disease later in 

life are relatively contemporary, as is the field of life course epidemiology. The seminal work 

by Barker and colleagues introduced the foetal origins of adult disease hypothesis (Barker, 

1994). They noted a correlation between low birthweight and rates of coronary heart 
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disease in adulthood, leading to the theory that foetal undernutrition alters physiology and 

metabolism, leading to increased risk of heart disease in later life (Barker et al., 1989). The 

Barker hypothesis has since expanded into the Developmental Origins of Health and Disease 

(DOHaD) hypothesis, which has a broader scope. The hypothesis proposes that exposures in 

early life predispose an individual to many diseases in later life, including obesity 

(Samuelsson et al., 2008, Schellong et al., 2012), CVD (Barker et al., 1989) and T2DM 

(Whincup et al., 2008).  

However, as early as 1962, James Neel noted that Human history was defined by periods of 

feast or famine, and those who had had fat reserves would have better survival and fertility  

(the ‘Thrifty gene’ hypothesis)(Neel, 1962). Neel’s adaptive hypothesis has since been 

counteracted by the non-adaptive ‘Drifty gene’ hypothesis: that excess adiposity was not a 

survival advantage, but that genetic drift in genes encoding the upper body weight limit 

occurred when the risk of predation diminished (Speakman, 2008). The thrifty genotype has 

been hailed as ‘too simplistic’ (Reddon et al., 2018), in that everyone would be predisposed 

to obesity and therefore any high-risk SNPs would have appeared in the last 900,000 years 

(Speakman and Westerterp, 2013), which appears not to be the case (Wang and Speakman, 

2016).  

Commonality across these hypotheses is that susceptibility to disease is determined in 

developmentally critical periods, originating from prenatal and early life experience (Hales 

and Barker, 1992, Barker, 1995). These theories have shaped the discipline that is life course 

epidemiology as it stands today. Life course epidemiology examines how different aspects of 

biological, social and physiological disease risk factors impact at different stages over the life 

span, with potentially independent, cumulative or synergic effects (Ben-Shlomo et al., 2016). 

A life course approach can examine the effects of exposures at one time point on 

prospective outcomes, useful in the study of obesity due to its multi-dimensional aetiology.  

Initially, this accumulation of risk was believed to have specific ‘critical’ or sensitive periods, 

operating in early life (i.e. foetal origins). However, longitudinal cohorts, which have the 

advantage of monitoring change over time, have also identified factors impacting at 

different time points. For example, the prenatal period, early infancy, the period of adiposity 

rebound and adolescence have been suggested to be critical time windows for early life 

programming of adult disease (Dietz, 1994). However, the term ‘programming’ has been 

criticised, as it implies disease is predetermined, and ‘conditioning’ has since been suggested 
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as a term to encompass how an individual is primed to respond to environmental challenges 

in a certain way, but it is not set in stone (Hanson and Gluckman, 2014). The DOHaD model 

has three key avenues; i.) Immediate homeostatic response; ii.) Predictive adaptive 

response; and iii.) Natural selection over many years (Ben-Shlomo et al., 2016). When there 

is mismatch between in-utero and postnatal environments, disease can occur. The predictive 

adaptive response, a phenotype with advantages in a predicted environment, could be 

harmful when there is a mismatch between a nutrient deprived intrauterine environment 

and a postnatal obesogenic environment. 

 Evidence from human studies on mismatched environments 

One of the key examples of early life nutrient restriction in humans is the Dutch hunger 

winter of 1944-45, a result of the German occupation of the Netherlands during the World 

War II (WWII). It provides a rare opportunity to study the long-term effects of in utero 

nutrient restriction (<1000kcal/day) in humans previously well nourished. Pregnant women 

exposed to famine in early and mid-gestation, followed later by an adequate diet, had 

offspring who were more at risk of increased adiposity and impaired glucose tolerance as 

adults (Ravelli et al., 1998, Ravelli et al., 1999, Stein et al., 2007). Furthermore, the offspring 

of prenatally undernourished fathers (but not mothers) were more obese than offspring of 

parents who had not been undernourished, independent of paternal BMI, and thereby 

demonstrating potential transgenerational effects (Veenendaal et al., 2013).  

In the Chinese famine of 1959-61, sex differences were also observed in that females born 

during the famine had a higher prevalence of OWOB but not males (Yang et al., 2008). It is 

interesting that these historical famines demonstrate sex differences in obesity outcomes. 

Additionally, evidence of seasonal nutritional variation in The Gambia also supports the 

theory that alterations in maternal nutrient intake can affect birthweight (Rayco-Solon et al., 

2005) and early mortality (Moore, 2016). The mechanisms have been examined using 

various animal models, and findings support that nutrient restriction leads to metabolic 

dysfunction in the offspring, both dependent (McKay et al., 2014) and independent of 

subsequent maternal food intake (Bispham et al., 2003). These findings highlight the 

detrimental effects of a mismatch between in utero insufficiency and postnatal nutrient 

intake. 
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1.3 Evidence for early life risk factors associated with obesity 

With the earlier age of onset of childhood obesity, as well as the evidence supporting the 

DOHaD hypothesis, there is increasing interest in the early life factors contributing to obesity 

development.  

Potential early life risk factors for obesity have been examined in multiple cohorts. A 

comprehensive systematic review of 30 prospective studies identified risk factors for 

childhood overweight to be; high birthweight, maternal smoking during pregnancy, early 

rapid weight gain, maternal pre-pregnancy overweight, whilst breastfeeding was protective 

(Weng et al., 2012). Another review determined maternal BMI, childhood growth and family 

SES to be probable risk factors (Brisbois et al., 2012). Similar themes emerge from these 

reviews surrounding maternal lifestyle influences, early life feeding and growth and 

socioeconomic disadvantage (Table 1.3).  

A large review of risk factors for childhood obesity in the first 1,000 days found consistent 

associations for maternal pre-pregnancy BMI, prenatal tobacco exposure, maternal excess 

gestational weight gain, high infant birthweight, and accelerated infant weight gain (Woo 

Baidal et al., 2016). There was also some support for gestational diabetes, low SES, low 

maternal–infant bonding, and in infants; child care attendance (as a proxy for infection), 

antibiotic exposure, disturbed sleep, early introduction of solid food intake (Woo Baidal et 

al., 2016). Birthweight is often used as a proxy measure of factors affecting growth and 

development (Table 1.3). 

Table 1.3 Summary table of the pre- and post-natal early life risk factors of OB, and proxy measures utilised in birth cohort 
studies lacking prenatal data 

Category Risk factor Proxy measure 

Pre-natal   

 Smoking LBW/SGA 

 Stress LBW/SGA 

Maternal factors Maternal obesity HBW/LGA 

Diabetes HBW/LGA 

Maternal diet HBW/LGA 

Maternal age  

Paternal factors Nutrition & sperm quality  

Smoking  

Post-natal   

 Infant feeding  

 Early life growth  

 Early life stress Adverse childhood experiences 

 Childhood infection Antibiotic exposure 
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 Sleep issues Sleep disturbance, night-time waking 

 Socioeconomic status Maternal education 
Parental socioeconomic status 

LBW, low birthweight; HBW, high birthweight; SGA, small for gestational age; LGA, large for gestational age.  

 Birthweight 

There is empirical evidence of a U-shaped curve between birthweight and adult obesity 

(Curhan et al., 1996), implying risk for both low and high birthweight infants. 

1.3.1.1.1 Low birthweight (LBW) 

Intrauterine growth restriction (IUGR) is classified as a birthweight below the 10th percentile, 

adjusted for gestational age. It can occur as a result of pre-eclampsia, placental insufficiency 

or maternal undernutrition (Villar et al., 2006, Salam et al., 2014), which can result from 

nutrient restriction, maternal smoking and stress. The foetus prioritises brain development 

at the expense of other body systems such as the renal or endocrine (Desai et al., 1996). In 

the case of the latter, it can lead to impaired Beta cell development and hence altered 

insulin secretion which predisposes the infant to glucose intolerance and diabetes (Portha et 

al., 2011). Pre-eclampsia is also more likely in mothers with a high BMI, pre-gestational 

diabetes, chronic hypertension, and in assisted reproductive technology pregnancies 

(Bartsch et al., 2016).  

A potential mechanism as to how foetal undernutrition results in increased offspring 

adiposity could be through altered appetite regulation. In a rat model of undernourished 

mothers, food intake was significantly elevated at an early postnatal age in offspring, and 

continued to increase with age (Vickers et al., 2000). This hyperphagia when combined with 

a high fat diet resulted in increased offspring weight, indicating that both intrauterine and 

environmental factors are important. A rat model of IUGR demonstrated decreased plasma 

leptin and increased ghrelin, with a postnatal period characterised by excess food intake, 

catch-up growth and metabolic syndrome with comorbidities including obesity (Desai et al., 

2005). Appetite stimulatory factors in the growth-restricted animals were at levels 

comparable to those of the fasting controls, demonstrating the potential for in utero 

programming of orexigenic hormones. 

Other exposures that could suppress in utero growth (i.e. maternal smoking, stress and 

nutrient restriction) are examined in subsequent sections. 
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1.3.1.1.2 High birthweight (HBW)  

The associated risk factors for large for gestational age (LGA) infants include pre-pregnancy 

obesity, excessive maternal weight gain, maternal or gestational diabetes mellitus (GDM), 

increasing parity and prolonged gestation (Jolly et al., 2003). LGA is defined as birthweight 

above the 90th percentile. LGA is related to childhood obesity, T2DM, CVD, and altered 

appetite and energy regulation in the offspring (Heerwagen et al., 2010, Dabelea and Crume, 

2011, Frias and Grove, 2012).  

 

Findings from the Southampton Women's Survey found that parity was associated with 

increased birthweight (Harvey et al., 2007), although this effect could be confounded by 

maternal obesity or SES. However, Hinkle et al. (2014) determined that the effects of parity 

were independent of factors related to maternal BMI or weight gain. The effects of parity 

appear to persist and are evident in adult offspring (Reynolds et al., 2010).   

 Maternal factors 

1.3.1.2.1 Maternal body composition  

In a large meta-analysis including 39 cohorts (265,270 births), both high pre-pregnancy BMI 

and gestational weight gain (GWG) were associated with risk of pregnancy complications, 

including gestational hypertensive disorders, GDM, and LGA (Santos et al., 2019). Obese 

mothers who had excessive GWG had the highest risk of pregnancy complications, and 

strikingly, 24% of pregnancy complications were attributed to maternal OWOB. Maternal 

body composition has also been associated with child overweight in many longitudinal birth 

cohorts (Baker et al., 2004, Harvey et al., 2007, Wright et al., 2010a, Bammann et al., 2014, 

Fairley et al., 2015b), yet Mendelian randomization analysis did not support a strong causal 

intrauterine effect of higher maternal BMI on offspring adiposity (Richmond et al., 2017).  

However, the effects may be indirect via birthweight, as evidence suggests the relationship 

between maternal BMI and GDM on birthweight is casual (Tyrrell et al., 2016).  

In England around half of women of childbearing age are OWOB (Craig et al., 2014). This has 

accompanying short-term risks of increased birth complications, increases the likelihood of 

GDM, and is associated with lower breastfeeding rates (Leddy et al., 2008). However, a 

randomised controlled trial (RCT) of antenatal dietary and lifestyle interventions in OWOB 

pregnant women (LIMIT study), was not successful in reducing the risk of adverse maternal 
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pregnancy and birth outcomes (Dodd et al., 2014), and further research is required into the 

mechanisms driving these associations.  

1.3.1.2.2 Diabetes 

Similar to the effects of maternal obesity, GDM is associated with HBW and increased risk of 

obesity and T2DM later in life (Bartsch et al., 2016). There is the increased risk of obesity in 

offspring of mothers who were diabetic before conception and those with GDM (Pettitt et 

al., 1983, Pettitt et al., 1988, Silverman et al., 1998). The risk is not likely due to genetic 

transmission, as siblings born when the mother was not diabetic do not have the same risk, 

implying that the disease state alters offspring phenotype (Dabelea et al., 2000). 

An Australian trial for pregnancy treatment of GDM reduced macrosomia and pregnancy 

complications (Crowther et al., 2005), however there was no difference in offspring body 

composition in childhood (age 4-5) (Gillman et al., 2010). Other trials have also not found 

promising results, although long-term follow-up is needed (Guillemette et al., 2017). 

1.3.1.2.3 Maternal age 

Advanced maternal age, commonly considered as over 35 years of age, has been associated 

with GDM, gestational hypertension, preeclampsia, small for gestational age infants, 

spontaneous late preterm delivery, and caesarean section (Kahveci et al., 2018). Maternal 

age at birth is increasing in England (Office for National Statistics, 2017), therefore there 

could be important clinical implications.  

Increasing maternal age could be synonymous with increases in parity, or to age-related 

metabolic changes relating to glucose regulation (Chandler-Laney et al., 2013). When 

controlling for all covariates, only maternal age below 25 and above 35 was associated with 

adverse offspring health outcomes (Myrskylä and Fenelon, 2012). Evidence for parity is 

mixed and warrants further investigation. 

There are numerous biological and social theories surrounding this phenomenon of a U-

shaped relationship between maternal age and offspring health outcomes. Older mothers 

are subject to physiological disturbances which occur with age, and a decline in reproductive 

functionality. There is increased risk of adverse outcomes in pregnancy, such as LBW and 

pre-term birth (Goisis et al., 2017, Sohn, 2017, Fuchs et al., 2018). In terms of metabolic 

health, it has been shown that offspring of both younger and older mothers had higher adult 

fasting glucose concentrations (Fall et al., 2015).  
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However, it is not necessarily the age of the mother that is the underlying cause, but the 

individual life circumstances, such as health behaviours in older mothers (Goisis et al., 2017), 

or age-related increases in maternal BMI (Sutcliffe et al., 2012). A study in Swedish youths 

(aged 19 in 2009), found that having an older mother was associated with lower self-rated 

health, including lower likelihood of regular exercise, and increased likelihood of obesity in 

adolescence (Barclay and Myrskylä, 2016).On the other hand, older maternal age has been 

shown to have many beneficial effects on child (up to age 5) health and development 

(Sutcliffe et al., 2012). Furthermore, sibling analysis has shown that although children born 

to older mothers are born smaller, as adults they are taller, more intelligent and are less 

likely to smoke (Carslake et al., 2017). 

Although less recognised, paternal effects can also impact. Advanced paternal age has also 

been associated with adverse offspring health effects such as risk of stillbirth, some cancers, 

autism, and neurodevelopmental disorders (Malaspina et al., 2015, Nybo Andersen and 

Urhoj, 2017). Maternal and paternal age are likely to be similar, therefore there will be a 

high risk of collinearity and residual confounding, leading to heterogeneity in findings.  

1.3.1.2.4 Maternal smoking 

It has long been known that smoking during pregnancy has adverse outcomes on foetal 

development, in particular yielding LBW infants who are at increased risk of poor health 

outcomes, in particular when exposed during the third trimester (Kleinman and Madans, 

1985, Lieberman et al., 1994). Maternal smoking during pregnancy is associated with a dose-

dependent decrease in birthweight (Newnham, 1991), and is independently associated with 

later catch-up growth and childhood overweight (Harvey et al., 2007, Fairley et al., 2015a). 

Systematic reviews support that maternal prenatal smoking is consistently associated with 

increased odds of childhood OWOB (Rayfield and Plugge, 2017). In a UK longitudinal birth 

cohort, maternal smoking during pregnancy was associated with a higher offspring BMI-z 

score and increased risk of child overweight as early as 3 years old (Fairley et al., 2015a). 

Whilst a Swedish cohort found maternal overweight and maternal smoking to be the 

greatest determinants of offspring overweight in young men (Koupil and Toivanen, 2007). 

There is uncertainty regarding a causal link between maternal smoking and offspring BMI in 

humans, as paternal smoking also demonstrates similar outcomes, which suggests factors 

operating within the shared environment (Howe et al., 2012). There is evidence for a causal 
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influence of maternal smoking during pregnancy on birthweight as the link was stronger for 

exposure for mothers than for fathers (Davey-Smith, 2008), which may suggest smoking has 

indirect effects on offspring body composition.  

Under stringent experimental conditions, prenatal exposure to nicotine in rats resulted no 

differences in birthweight, but significant increases in weight were observed after 10 weeks 

of age (Gao et al., 2005). Although causal mechanisms were not explored (Gao et al., 2005), 

the increased adiposity could be a result the polycyclic aromatic hydrocarbons in tobacco 

smoke, as exposure to high doses in pregnant rats dysregulates lipogenesis leading to weight 

gain (Ortiz et al., 2013). However, doses examined in the rats were much higher than 

assumed exposure in human pregnancy. 

Second-hand smoke could also have detrimental effects, as rodents and pups exposed 

during lactation also exhibit altered growth and metabolic complications (Santos-Silva et al., 

2013). Rat pups had a lower body weight and length at weaning, but a 50% increase in fat 

mass and a 10% increase in food intake and a blood profile indicating metabolic disorder in 

adulthood (Santos-Silva et al., 2013). This is important regarding information given to new 

mothers, as even mothers who abstain from smoking during pregnancy but who restart 

postpartum may still be putting their children at risk.  

Smoking prevalence during pregnancy has been found to negatively correlate with the 

socioeconomic variables such as maternal education (Cnattingius, 2004). Findings from the 

National Child Development Study, suggest that low social class and smoking during 

pregnancy influence the development of "high risk" adults, classified as those of a low 

birthweight and with a high BMI at age 33 (Power et al., 2003). The growth trajectories of 

the high-risk group showed that they gained weight steadily through life with a linear BMI 

trajectory. This suggests that in utero factors are of precedence, as factors restricting foetal 

growth were found to be associated with the high-risk phenotype, which could support 

theories on detrimental catch-up growth or metabolic programming in LBW infants.  

1.3.1.2.5 Maternal diet 

Dietary intake of nutrients has been linked to subsequent obesity in numerous studies, 

however due to difficulty in measuring this exposure in humans, the bulk of the evidence is 

from animal research.  There is evidence to suggest that maternal exposure to a high fat diet 

(Venu et al., 2004, Bayol et al., 2007, Sun et al., 2012), polyunsaturated fatty acids 
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(Muhlhausler et al., 2010), sugar (Frazier et al., 2008), a low protein diet (Desai and Ross, 

2011), vitamin restriction (Venu et al., 2004) and vitamin D deficiency (Morales et al., 2015) 

can impact on offspring adiposity. Furthermore, the timing of the nutritional exposure is 

complex, with differential effects observed based on stage of pregnancy or lactation, and 

therefore further discussion of specific nutrients is beyond the scope of this review. 

 Infant feeding 

Infant feeding is another important factor that can affect early childhood growth and 

subsequent risk of obesity (Ong et al., 2002c, Oken et al., 2008). Exclusive breastfeeding is 

recommended for the first 6 months of life by the WHO (World Health Organization, 2011b), 

however UK breastfeeding rates fall short (McAndrew et al., 2012). 

Human milk has the perfect combination of nutrients, hormones and immune factors 

required for infant development, and the beneficial effects of breastfeeding are well-

established (Ip et al., 2007) (Victora et al., 2016). However, studies have demonstrated 

mixed results concerning offspring obesity (Koletzko et al., 2009, Beyerlein and von Kries, 

2011, Marseglia et al., 2015). Systematic reviews and meta-analysis have found small, 

protective effects of breastfeeding on obesity in later life, although effect sizes decrease 

after adjustment for some confounding factors (parental obesity, maternal smoking and 

social class)(Arenz et al., 2004, Owen et al., 2005b, Oken et al., 2008). 

A dose-response effect has also been observed between duration of breastfeeding and 

decreased risk of childhood obesity in a recent meta-analysis, particularly for durations over 

7 months (Yan et al., 2014). Similarly breastfeeding was deemed protective, either long-term 

(over 2 years) or exclusive for 6 months, however only long-term breastfeeding remained 

significant in the multivariate analysis (Rathnayake et al., 2013). Long-duration breastfeeding 

exerted a protective effect with an age-dependent decrease in body fat in males born to 

overweight mothers (Buyken et al., 2008). 

Findings should be interpreted with caution, as although most epidemiological studies 

demonstrate a protective effect (Armstrong et al., 2002, Harder et al., 2005), the effect is 

small and could signify publication bias (Dewey, 2003, Owen et al., 2005a) or residual 

confounding (Brion et al., 2011). The Promotion of Breastfeeding Intervention Trial (PROBIT) 

in Belarus, an intervention which successfully increased duration of exclusive breastfeeding, 
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found no differences in childhood adiposity or metabolic markers, therefore not supporting 

a protective role for breastfeeding on body composition (Martin et al., 2017).  

Breast milk composition is determined by maternal diet and diabetes status and therefore in 

some circumstances breastfeeding could have a detrimental effect. Breastmilk composition 

can differ in obese and diabetic mothers with higher levels of fat, glucose and insulin (Young 

et al., 2012). This may explain why breastfed infants of diabetic mothers had a greater risk of 

overweight in childhood, with a dose-dependent relationship of breast milk ingested, 

independent of total milk intake and post-natal diet (Plagemann et al., 2002). In a mouse 

model of T2DM, cross-fostering pups from diabetic mothers to non-diabetic reduced body 

weight, perhaps due to the high lipid content of obese dam’s breast milk (Reifsnyder et al., 

2000), supporting an influence of both breastmilk and intrauterine exposure. A recent study 

also found that maternal obesity was associated with changes in the in human milk 

metabolites, and infant body weight (Venditti et al., 2019). Similar to diabetic mothers, 

obese women have higher levels of certain hormones and growth factors such as insulin, 

leptin, TNF-α, and IL-6 (Fields and Demerath, 2012, Andreas et al., 2014), but the role these 

factors has on infant growth is yet to be determined.  

Many studies have found that formula-fed infants have different body composition 

trajectories, which could be a result of the differing milk composition compared to breast 

milk. As formula contains 1.5-2 times more protein than breastmilk this could accelerate 

growth velocity (the IGF-1 theory) and hence adiposity (Koletzko et al., 2005). A Cochrane 

review also reported that in LBW infants, high protein formula accelerates weight gain 

(Fenton et al., 2014). Furthermore, interventions using lower protein formula have 

demonstrated a positive effect on childhood body composition (reviewed by Redsell et al. 

(2016)).  

Discrepancies in findings could also be attributed to the populations under study, for 

example due to genetic differences or differences in social attitudes towards breastfeeding, 

where there is not support for a causal relationship (Brion et al., 2011). SES is associated 

with likelihood of breastfeeding in the UK, with those in the more deprived groups less likely 

to breastfeed (Oakley et al., 2013) and evidence that the protective effect on BMI could be 

due to social patterning (Brion et al., 2011). 
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 Early life growth 

Greater infant weight gain has been consistently associated with increased risk of 

subsequent obesity in meta-analyses (Ong and Loos, 2006a, Druet et al., 2012, Zheng et al., 

2018).  

A deprived intrauterine environment is associated with rapid postnatal weight gain, leading 

to increased central adiposity at various life stages (Khandelwal et al., 2014). Although LBW 

infants are more likely to have catch-up growth (Ong et al., 2000), it is not necessarily 

detrimental and is essential for neurodevelopment, particularly in preterm or SGA infants 

(Belfort et al., 2011). This advocates for a balance between adequate early life growth and a 

need to differentiate ‘unhealthy’ catch-up growth. 

Rapid growth occurs in all infants in the first year of life and is followed by a decline and a 

plateau, until growth commences an upward trajectory again at the onset of puberty. 

Adiposity rebound begins at the lowest BMI value, and if occurs early has been shown to be 

predictive of later adiposity (Rolland-Cachera et al., 2006). Findings from the ALSPAC cohort 

suggest various facets of early life growth are important risk factors for childhood obesity at 

7 years, including birthweight, very early BMI or adiposity rebound, catch-up growth, weight 

at 8 months and weight gain in the 1st year, (Reilly et al., 2005b). 

Infant weight gain was found to have moderate predictive ability for childhood obesity in a 

meta-analyses using 10 cohorts studies (area under receiving operating curve of 77%) (Druet 

et al., 2012). A 1 standard deviation unit in weight in the first year was associated with twice 

the odds of childhood obesity, and 23% increased odds of adult obesity. Recent systematic 

reviews have also supported that rapid weight gain (RWG) during infancy is associated later 

adiposity outcomes spanning from childhood to adulthood, but with higher odds in 

childhood (Zheng et al., 2018).  

Regarding the timing of the exposure, using a life course approach, weight gain as early as 

the first week of life was a predictor of adult overweight status (for each 100-g increase OR 

1.28, 95% CI 1.08 -1.52) suggesting that this very early period of life could have a lifelong 

impact (Stettler et al., 2005). RWG from birth to 1 year tends to be associated with higher 

odds of childhood adiposity than the timespan between birth to 2 years (Zheng et al., 2018). 

Infant fat mass at one year of age was significantly predicted by maternal age at delivery 
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(Chandler-Laney et al., 2013). Other factors that can affect early life growth include 

birthweight (section 1.3.1.1) and infant feeding (section 1.3.1.3). 

 Early life stress and childhood adversity 

Early life stress is another proposed exposure in foetal programming of obesity. Stress is 

purported to contribute to obesity through hormonal regulation of appetite and eating 

behaviour (Torres and Nowson, 2007). A 2010 review by Entringer et al,. summarises 

multiple mechanisms that could mediate the effects of prenatal stress, with targets including 

metabolic, endocrine, or inflammatory systems (Entringer et al., 2010). 

The stress response can be measured via corticotropin-releasing hormone (CRH) levels, 

which when released stimulate the hypothalamic–pituitary–adrenal (HPA) axis. When 

maternal CRH levels were measured in the late 2nd trimester of pregnancy there was an 

negative association with offspring BMI z-score at age 3, but an increase in central adiposity 

(Gillman et al., 2006). Studies using biochemical measures of stress are yet to yield results of 

a long-term follow-up, however animal studies have provided more evidence. In dams 

exposed to stress during the third week of gestation, as measured via corticosterone levels, 

offspring had higher birthweights, greater postnatal body weights, and evidence of impaired 

glucose tolerance (Tamashiro et al., 2009). Additionally, in mother-offspring bonnet 

monkeys, a 4 month period of imposed variable foraging demand in early life, which acts as 

a stressful exposure without food restriction, resulted in higher BMI and abdominal 

circumference in the offspring (Kaufman et al., 2007). There are parallels with this study to 

the current situation in the UK with increased reliance on food banks (Loopstra and Lalor, 

2017), and uncertain food availability could be an important early life stressor.  

In humans, stressful early life events are often defined as adverse childhood experience 

(ACEs), and there is a growing body of evidence that suggests these can impact on multiple 

health outcomes. The most frequent stressors examined are those which are direct, such as 

maltreatment, abuse or neglect, or indirect acting at the household or environment level, 

such as parental violence, parental separation or criminal behaviour (World Health 

Organization, 2011a). Other less common ACEs examined are extrafamilial (such as bullying, 

natural disasters)(Finkelhor et al., 2013, Mersky et al., 2017). For example, gestational 

exposure to extreme weather such as an ice storm (Dancause et al., 2012) or flooding 

(Dancause et al., 2015), have been shown to predict childhood BMI and adiposity. 
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A systematic review, summarising results from eight studies, found that the direct 

associations between ACEs and OWOB ranged 13–71% increased odds (Hughes et al., 2017). 

Adolescents who reported an ACE were more likely to have a higher BMI, and there were 

incremental increases in risk of overweight, obesity and severe obesity with increasing 

numbers of ACEs (Davis et al., 2019). Whereas a large UK study found 4+ ACEs were 

associated with 3x increased likelihood of morbid obesity, but not obesity (Bellis et al., 

2013). Considering family member death as a stressful exposure, antenatal bereavement has 

also been associated with later life overweight (Li et al., 2010, Hohwü et al., 2014). These 

results may suggest that more severe or more frequent exposure may be related to more 

severe outcomes in terms of body composition.  

In a longitudinal study examining childhood neglect and adolescent obesity, the potential 

mediators were impulsivity, depression, and compulsive eating behaviour (Shin and Miller, 

2012). Findings from the ALSPAC cohort, found that ACEs (birth-16 years) were associated 

with lower risk of educational attainment and drug use and smoking, independent of SES 

(Houtepen et al., 2019). This suggests that ACEs may influence the likelihood of risky or 

compulsive behaviours, or more generally are associated with socioeconomic outcomes such 

as lower education, unemployment and poverty (Hughes et al., 2017). 

There is considerable heterogeneity in the literature regarding the definition and 

measurement of ACEs, and many studies utilise questionnaire data or retrospective data. 

Many studies examine early life the stressors across childhood (<18 years)(Hughes et al., 

2017), therefore further work examining very early life (as a critical period) stressful events 

on later obesity could yield insight. 

 Factors affecting colonisation of the gut microbiota 

There is growing interest in the role of the gut microbiota in disease. Maternal pre-

pregnancy BMI, antibiotics usage in the first 6 months and breastfeeding are factors that 

have been associated with establishment of the gut microbiota (Ajslev et al., 2011). 

Caesarean section is also an independent risk factor for childhood overweight, which may 

perhaps be mediated by bacterial colonisation of the gut microbiota (Tun et al., 2018), and 

the effects of caesarean section have been shown to be independent of maternal antibiotic 

usage (Mueller et al., 2015a). 
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Generally, observational studies suggest a link between antibiotic use and weight gain 

(Million et al., 2013). As microbial populations are largely established in early life this could 

link to disruptions in gut microbiota leading to altered physiology (Jernberg et al., 2010, 

Robinson and Young, 2010, Martin and Sela, 2013). This could impact very early on in 

development, as maternal antibiotic use in the 2nd or 3rd trimester has also been associated 

with higher childhood adiposity (Mueller et al., 2015b). However postnatal antibiotic use (1st 

year) has been associated with increased likelihood of overweight or obese in childhood (age 

9) (Azad et al., 2014), and a review found antibiotic exposure (first 6-12 months) or childcare 

attendance (as a proxy), to be a risk factor for later child overweight in a small number of 

studies (Woo Baidal et al., 2016), suggesting effects may not just be due to in utero 

exposure. 

Postnatal timing of the exposure may also be important, as a recent systematic review and 

meta-analysis found that exposure to antibiotics in the first 6 months postnatal was 

associated with OWOB (Rasmussen et al., 2018). Exposure between 6-24 months was not 

associated, which may suggest the first 6 months reflect a critical period. Some studies only 

find associations with >1 episode of antibiotics (Rasmussen et al., 2018), and evidence of a 

dose-response effect with recurrent courses of antibiotics (Shao et al., 2017). In line with 

this, antibiotic use throughout childhood was also associated with childhood weight gain 

(Schwartz et al., 2016), and small associations for pre and post-natal infections with obesity 

in early adulthood were uncovered in a large Danish cohort (Cocoros et al., 2013), suggesting 

an effect beyond early life on outcomes in later life. 

Furthermore, the type of antibiotics may also have an impact, as in ALSPAC post-natal 

exposure to broad-spectrum antibiotics during the first 6 months of life was associated with 

greater impact on body mass in infancy (Trasande et al., 2013, Bailey et al., 2014).  

There is increasing interest in obesity as an infectious disease of viral origin, termed 

‘Infectobesity’(Dhurandhar, 2011), likening the rapid spread of obesity to that of an 

infectious disease (Atkinson, 2007). For example, SMAM-1 is an avian adenovirus that acts 

on adipocytes and has been associated with human obesity (Dhurandhar et al., 1997). Ad-36 

is another example of a adenovirus associated with human obesity (Esposito et al., 2012), 

with some evidence of a causative role, as twin studies discordant for infection have shown 

the infected twin to be heavier (Atkinson et al., 2005). Obese adults also take longer to shed 

influenza virus, and therefore there is the possibility that obesity may play a role in viral 
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transmission (Maier et al., 2018). There is however the risk of reverse causality, for example 

Heras et al. (2019) found that short-term consumption of a high-fat diet could increase 

susceptibility to listeria infection in mice.  

These findings are interesting, but currently there is limited evidence for a causal 

relationship between infection and obesity.  

 Sleep 

The first few months of life are important for development of healthy sleep patterns and 

circadian rhythm (Parmelee et al., 1964, Glotzbach et al., 1994). Short sleep duration in 

infancy has been associated with OWOB (Bell and Zimmerman, 2010) and fat mass in 

childhood (Reilly et al., 2005b, Bell and Zimmerman, 2010, Diethelm et al., 2011). 

Associations were not evident for older children or for day-time sleeping (Bell and 

Zimmerman, 2010). A systematic review examining risk factors for childhood obesity 

operating in the first 1,000 days found some evidence for curtailed infant sleep, which 

included quality and timing as well as duration (Woo Baidal et al., 2016). Most studies show 

weak-moderate associations for short sleep duration and childhood body composition and 

some evidence of a dose-response (Chen et al., 2008, Taveras et al., 2008). Obese children  

(6-7 years old) slept half an hour less, but this could perhaps reflect reverse causality (Heppe 

et al., 2012). 

Many of the studies have been cross-sectional and findings from longitudinal cohorts are 

less encouraging. There was no observed association between sleep duration and BMI in the 

Longitudinal study of Australian Children (aged 0-7 years)(Hiscock et al., 2011), in the 

GenerationR study in pre-school children (Heppe et al., 2012), or in the Born in Bradford 

cohort (age 3)(Fairley et al., 2015a).  

Differing results may be due to the definition of sleep problems, which is a great source of 

heterogeneity. The studies outlined in Table 1.4 are not intended as an exhaustive review of 

the literature but outline some of the differences in definitions of sleep disturbance or sleep 

problems, and the associations with measures of body composition. The definitions most 

frequently involve sleep duration, or alternatively, multiple occurrences of night-time waking 

plus another factor. For example definitions have also included: parental report of 

disturbance (Lozoff et al., 1985, Zuckerman et al., 1987), co-sleeping (Richman, 1981), 

extended duration of a waking event (Richman, 1981, Zuckerman et al., 1987), or frequent 
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waking and difficultly falling asleep. However there is no commonly accepted definition 

(Gaylor et al., 2001), and there is still a need for a single definition of infant sleep problems 

(Alamian et al., 2016). 

Many children (20-30%) experience sleep problems in the early years (Sadeh et al., 2011). 

Defining sleeping issues is further complicated by the subjectivity in parental perception of 

sleep problems, and individual variation in infant sleeping patterns by developmental stage 

(Thiedke, 2001, Sadeh et al., 2011). ActiGraph measures, which use a wearable device that 

records body movement during sleep, can be translated to more reliable sleep–wake 

measures (Sadeh et al., 1991). In a cross-sectional study using ActiGraph measures, there 

was a positive correlation between short night time sleep at 6 months and greater weight-

for-length at age 6 months (Tikotzky et al., 2010b). However, a longitudinal study found no 

association between ActiGraph infant sleep and adiposity later in infancy (36 months) 

(Klingenberg et al., 2013).  

Currently studies on sleep have demonstrated mixed results, which may be due to 

differences in the definition, measurement, timing, severity of sleep problems, and age at 

outcome. There is a need for longitudinal studies with more objective measures of early 

sleep duration or disturbance.  
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Table 1.4 Sleep assessment definitions used in studies examining both sleep and childhood body composition  

Author (year) Criteria for sleep disturbance Associations with childhood 
body composition 

Zuckerman et al. 
(1987)  

Either waking 3+ per night, an event 
lasting 1 hour, or parental report of 
severe disturbance to the mother’s 
sleep 

Increased risk of overweight in 
11-12 year olds (Alamian et al., 
2016) 

Richman (1981) Waking 5+ nights per week in addition 
to; co-sleeping with parents, waking >3 
times per night, or duration of a waking 
event over 20 minutes 

Increased risk of overweight in 
11-12 year olds (Alamian et al., 
2016) 

Lozoff et al. (1985) 3+ waking occurrences per week and 
parental report of disturbance 

No associations with 
overweight in 11-12 year olds 
(Alamian et al., 2016) 

Taveras et al. (2014) A score of ‘curtailed sleep’ (which 
included quality, timing and duration), 
from ages 6 months to 7 years 

Sleep curtailment from infancy 
to school age was associated 
with higher odds of obesity in 
mid-childhood 

Heppe et al. (2012) Infant sleep duration, at age 2 years was 
dichotomised into “<11.5 h/night” and 
“≥11.5 h/night,” in accordance to the 
mean sleep duration stated by the 
American Academy of Paediatrics  

No association with preschool 
overweight (around age 4 
years) 

Reilly et al. (2005b) Questionnaire data on sleep duration at 
age 3 years 

Increased risk of obesity at age 
7 years 

Tikotzky et al. (2010a) Various parameters from Actigraph 
sleep analysis  

Sleep duration was negatively 
correlated with weight‐to‐
length ratio measures at age 6 
months 

Chen et al. (2008) Meta-analysis which used various 
measures of sleep duration from 
questionnaire data 

Increased risk of OWOB 
(throughout childhood).  
There were reduced odds for 
each hour increase in sleep, 
and evidence of a linear dose-
response in younger children 
(<10 years). 

 

 Cumulative risk factors  

Whilst the exposures explored here could act in an independent manner, it is also plausible 

that they could interact, or have a cumulative influence on obesity (graphically represented 

in the Directed Acyclic Graph (DAG) in Appendix A).  

The effect of multiple early life risk factors on childhood obesity has been investigated in a 

handful of prospective birth cohorts. In the Southampton Women's Survey, the presence of 

five risk factors (maternal obesity, excess GWG, smoking during pregnancy, low maternal 

vitamin D status), was associated with a 3.99 relative risk of OWOB at age 4 years, which 

increased to 4.65 at 6 years (Robinson et al., 2015).  
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Similarly, Gillman et al. (2008a) examined four combined modifiable early life risk factors 

(maternal smoking during pregnancy, excess GWG, short breastfeeding duration, and infant 

sleep duration), which were associated increased the risk of overweight (age 3), with 

sustained increased risk later in childhood (Gillman and Ludwig, 2013). 

These studies demonstrate that clusters of socially patterned risk factors show evidence of 

accumulation of risk over time, and therefore could be important targets for interventions.  

1.4 Summary of early life risk factors and adiposity  

The increases in obesity prevalence in children are of great concern due to the tracking of 

weight from childhood to adulthood and will raise new issues for future generations. There 

are acknowledged problems with primarily using BMI to determine obesity, and its use in 

children due to differences in growth patterns and onset of puberty.  

The majority of the literature on the developmental origins of obesity has focused on 

maternal exposures, yet risk factors for obesity operate at different stages across the life 

course (Parsons et al., 1999, Gillman et al., 2008a, Gillman et al., 2008b). Maternal risk 

factors during pregnancy, such as smoking, excessive GWG or maternal obesity, are 

important risk factors that can affect the likelihood of the offspring being overweight in 

childhood (Robinson et al., 2015). Birthweight, often used as a proxy for an adverse 

intrauterine environment, is well-studied factor that has demonstrated predisposition to 

both childhood and adult obesity (Ravelli et al., 1999, Carolan-Olah et al., 2015).  

There is evidence and plausible hypothesis for several early life risk factors (summarised in 

Table 1.3). However there is uncertainty regarding a causal effects on BMI for exposures: 

maternal smoking, infant feeding, maternal age, sleep and caesarean birth, which may be 

due to confounding. Evidence from animal studies seems to support causal mechanisms for 

stress and infection. However, in epidemiological studies, there is more support for early life 

factors to indirectly impact on offspring BMI through birthweight and early life growth. 

Therefore, aside from birthweight, which has been studied in detail, the evidence for other 

early life modifiable risk factors is less robust, and factors have not been studied with 

respect to adult obesity (Monasta et al., 2010).  

 

It is also important to note that as well as being independent risk factors, these factors are 

also likely to interact and influence one another (Appendix A). For example, early life 
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factors may be strongly influenced by SES, and perhaps more so in recent times due to 

widening social inequalities in childhood OWOB and changes in social patterning which may 

lead to clustering of exposures (Knai et al., 2012). Considering the multifactorial aspects of 

obesity, the interactions between pre-natal events, and post-natal behavioural and 

environmental factors could increase susceptibility, and ideally should be investigated 

collectively using longitudinal studies. 
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Table 1.5 A summary of the risk factors investigated, supporting hypotheses, potential confounders, and evidence (from 
studies listed in section 1.3). 

Risk factor Hypotheses Potential 
confounder(s) 

Reference(s) 

Birthweight Causal effect due to programming of body 
composition (fat and lean mass). 
Intrauterine growth restriction can lead to 
‘catch-up growth’. 

Parity, gestational 
age, maternal 
BMI, maternal 
smoking, 
maternal diabetes  

(Boney et al., 2005) 
(Parsons et al., 1999) 

Rapid weight 
gain 

A mismatch of intrauterine and post-natal 
conditions encourages rapid growth in 
early life.  

Parity, gestational 
age Birthweight, 
infant feeding 

(Ong and Loos, 
2006b) 

Breastfeeding 
(vs formula 
and duration) 

Breastfeeding effects colonisation of gut 
microbiota and self-regulation of appetite. 
The nutritional composition of breastmilk 
may be beneficial or detrimental based on 
maternal characteristics.  

SES, maternal BMI (Armstrong and 
Reilly, 2002)  
(Yan et al., 2014) 

Early 
weaning  

Nutritional programming of metabolic 
systems and child growth. Could be 
dependent on diet quality and may have 
more of an impact in formula fed infants. 

SES, breastfeeding (Thompson, 2012) 
(Agostoni et al., 
2008) 

Parity First-born children have lower birthweights 
and experience catch-up growth, 
compared to second-born.  

Maternal age, 
maternal BMI 

(Ong et al., 2002b) 

Maternal age The mechanisms are unclear. Biological 
mechanisms would suggest both young 
and advanced maternal age are associated 
with negative birth outcomes. However, 
the role may not be causal as maternal age 
is closely linked with maternal health and 
SES.  

Maternal BMI, 
parity, SES 

(Myrskyla and 
Fenelon, 2012) 
(Savage et al., 2013) 

Adversity Stress leading to altered HPA via 
glucocorticoid pathways, leading to fat 
deposition.  

SES (Tamayo et al., 2010) 
(Anda et al., 2006) 

Sleep issues Shorter sleep duration may affect appetite 
regulation and stress-related pathways 

SES (Bell and 
Zimmerman, 2010) 
(Anda et al., 2006) 

Infection  Antibiotics can lead to disruption of gut 
microbiota, or early life infection could 
alter growth trajectories.  

Breastfeeding (Mueller et al., 
2015a) 

Caesarean  Could affect the establishment of 
microbiome 

Breastfeeding, 
maternal BMI, 
birthweight (birth 
complications)  

(Li et al., 2012) 

SES Socioeconomic inequalities affect many 
dimensions; the effects are multifactorial 
encompassing income, education, 
environment, and diet quality. 
Potential bidirectional relationship and 
transgenerational influences. 

Maternal BMI (Shrewsbury and 
Wardle, 2012) 
(Gibbs and Forste, 
2014) 
(Howe et al., 2011) 
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1.5 Epigenetics as a mechanism linking early life factors and later disease 

For the DOHAD theory to operate, there must be an underlying mechanism in which an 

exposure affects and then ‘marks’ an individual, with a lasting impact on health outcomes 

years later. The underlying mechanisms are hypothesised to be related to epigenetics. 

Epigenetic patterns are established early on in development and events in utero could 

possibly program the foetus to anticipate a specific environment postpartum, thereby acting 

as cellular memory. An insult at a critical period of development could lead to lasting and 

perhaps permanent effects (Ben-Shlomo and Kuh, 2002). It is plausible that epigenetic 

mechanisms could act as a mediator between early life exposures and obesity outcomes 

(such as for birthweight, section 1.5.3.1).  

1.5.1 Introduction to epigenetics 

Epigenetic modifications are heritable alterations to the genome, which do not change the 

underlying genetic code but can affect gene activity and expression. Epigenetic modifications 

can be grouped into broad categories of; chromatin remodelling and histone modifications, 

DNAm, and small non-coding RNA mechanisms. Within the cell nucleus, genetic material is 

tightly packaged into chromosomes made up of chromatin. Chromatin, the condensed form 

of DNA, is wrapped around structural histone proteins known as nucleosomes, forming the 

characteristic beads on a string appearance. Thereby, modifications which alter chromatin 

structure and hence packaging (and accessibility) of DNA can influence gene expression. 

DNAm is the most well-characterised and well-studied epigenetic mark. DNAm is a cellular 

regulatory mechanism that involves the covalent addition of a methyl group (CH3) on 

cytosine residues adjacent to guanine on DNA, and in mammals is catalysed by DNA 

methyltransferase enzymes (DNMTs)(Suzuki and Bird, 2008). The ten eleven translocation 

(TET) family of enzymes oxidise 5-methylcytosines and facilitate reversal of DNAm (Tahiliani 

et al., 2009, Ito et al., 2010). Methylation plays an essential role in early development and 

cell differentiation, but also in mediating gene expression thereby determining cell function 

(Sardina et al., 2018). Clusters of methylated cytosines tend to occur in promoter regions 

and are referred to as CpG islands (Suzuki and Bird, 2008). Generally, promoter methylation 

is associated with low or no transcription or gene silencing (Suzuki and Bird, 2008), whilst 

intragenic methylation is positively associated with gene expression (Jones, 1999). Gene 

body methylation was originally thought to be a mechanism for silencing repetitive elements 

(Yoder et al., 1997). However, whole-genome studies have indicated that due to exons being 
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more highly methylated than introns, with the occurrence of along exon-intron boundaries, 

it could play a role in alternative splicing (Laurent et al., 2010). DNAm may function in the 

formation of open chromatin structure and maintenance of enhancer elements (Wiench et 

al., 2011). 

Epigenetic modifications occur during developmental processes and are particularly 

important in early development and cell specialisation (Hochberg et al., 2011). These times 

when the epigenome (the collective term for all the chemical modifications to DNA within 

the genome) is sensitive to change are referred to as critical or sensitive periods. During 

development, the epigenome is ‘reset’, and some epigenetic marks are re-established. There 

is widespread demethylation, followed by specific re-methylation, which must occur for cells 

to have specialised functions. Specific inherited epigenetics marks are generally at imprinted 

genes. However, modifications can also occur in response to environmental factors such as 

diet and lifestyle (Jaenisch and Bird, 2003). Patterns of methylation are now being 

recognised are more dynamic than previously thought, and there is growing evidence that 

DNAm can be influenced by environmental factors (section 1.5.3).  

DNAm is a good candidate for the biological embedding of early life risk factors for obesity 

as; it has the capacity to modulate gene expression, can be influenced by environmental 

factors such as diet and lifestyle (Jaenisch and Bird, 2003), and has demonstrated 

associations with adiposity.  

1.5.2 Epigenetic mechanisms and obesity 

The Agouti mice models demonstrated the importance of maternal diet on offspring 

phenotype (Wolff et al., 1998). In mice, when the Agouti gene is unmethylated, the 

phenotype is yellow coat colour and a predisposition to obesity, hyperinsulinemia, cancer, 

and reduced lifespan. Whereas when the agouti gene is methylated (i.e. normal state), mice 

have a brown coat, with low risk of obesity and are healthier than their yellow counterparts. 

Other than the methylated allele, the mice are genetically identical. When pregnant female 

yellow mice are fed a methyl-donor rich diet, the pups had a brown coat and a healthy 

phenotype (Wolff et al., 1998) thereby demonstrating the importance of methyl-donor 

availability. Animal studies have demonstrated the potential for environmental and dietary 

influences on health and disease, and suggest a mediating role for DNAm linking early 
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development and postnatal body composition (Drake et al., 2005, Burdge et al., 2007, 

Godfrey et al., 2011). 

There have been a number of human studies which have identified methylation patterns 

associated with later life adiposity ((for reviews see (Reynolds et al., 2013b, Rohde et al., 

2018) and (van Dijk et al., 2015)).  

Replication has been problematic in many candidate gene studies. There was a robust, large-

scale BMI EWAS that utilised data from across multiple cohorts, and successfully validated 

187 loci in independent cohorts (Wahl et al., 2016). However, regarding the direction of the 

effects, the majority of these loci were deemed a consequence rather than a cause of BMI. 

Others have also found that changes in BMI may occur prior to methylation changes 

(Richmond et al., 2016, Wahl et al., 2017), for example weight loss after bariatric surgery 

influences DNAm (reviewed by (Izquierdo and Crujeiras, 2019)). Overall, these studies 

provide evidence for epigenetic changes in relation to obesity or weight change.  

There may also be a link between being biologically older and childhood body composition, 

as positive epigenetic age acceleration (measured using Horvath’s epigenetic clock) at birth 

was associated with developmental characteristics longitudinally across childhood, including 

increased fat mass (Simpkin et al., 2017). DNAm has important roles in expression of 

imprinted genes, which are expressed from the parent of origin and which may play a role in 

the transgenerational development of obesity. Insulin-like growth factor 2 (IGF2), a key 

human growth factor, is an example of an imprinted gene differentially methylated in those 

periconceptionally exposed to famine (Heijmans et al., 2008a).  

Overall, these studies establish a link between epigenetics and obesity. From candidate 

studies there have been many promising epigenetic biomarkers, with accumulating evidence 

linking DNAm changes and metabolic health outcomes. So far, for many of these genes the 

functional consequences of methylation changes remain uncertain.  

1.5.3 Evidence for DNA methylation markers of early life exposures 

There is growing interest in the use of malleable epigenetic markers as potential molecular 

mediators (i.e. intermediary), as biomarkers to identify those most at risk of subsequent 

disease, or as potential targets in disease treatment as a means of personalised medicine. 

There have been DNAm changes associated with some of the early life risk factors for 

subsequent obesity. More specifically, these DNAm changes have been linked with foetal 
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growth, birthweight, metabolism, and linked to maternal factors such as smoking and 

nutrition (Reynolds et al., 2013b). This section will focus on validated markers or markers 

from meta-analyses of human studies focusing on DNAm changes at individual CpG loci. 

 Birthweight 

The Pregnancy and Childhood Epigenetics (PACE) Consortium, combines multiple cohorts 

with methylation data from 450K or EPIC arrays on newborns and children. It includes many 

large prospective studies such as ALSPAC and the Generation R study. Therefore, PACE can 

be used to conduct meta-analyses due to large sample size with much greater statistical 

power. In a large meta-analysis of 24 birth cohorts from the PACE consortium, birthweight 

was associated with differential methylation at 914 loci in neonatal blood (Küpers et al., 

2019). Some of the loci demonstrated overlap with loci previously identified as associated 

with maternal smoking (n=55) (Joubert et al., 2016), and a few loci also with maternal BMI 

(n=3)(Sharp et al., 2017). There were a handful of CpG loci that were differentially 

methylated across the life course (in childhood, adolescence and adulthood), which mapped 

to genes; KCNC4, GLI2, HOXC4, ZNF274, MIR548F5.  

The biological effects of glucocorticoids, steroid hormones hat play a role in foetal growth 

and development, are relayed by glucocorticoid receptors (GR). It is established that 

glucocorticoid exposure in utero is associated with low birthweight (Seckl, 2004). It has been 

found that increased methylation in the GR promoter, which leads to reduced expression of 

GR thereby reducing levels of glucocorticoid signalling, is associated with higher birthweights 

(Filiberto et al., 2011). In mothers, increased methylation (leading to reduced transcription) 

of the enzyme which inactivates glucocorticoid (11β‐hydroxysteroid dehydrogenase type 2) 

(Alikhani-Koopaei et al., 2004), leads to higher circulating glucocorticoids, and has also been 

associated with low birthweight (Marsit et al., 2012).  

Birthweight is often used as proxy for nutrient restriction. Those exposed to famine in the 

peri-conceptional period exhibited hypomethylation of IGF2 differentially methylated region 

compared to unexposed siblings (Heijmans et al., 2008b). Exposure late in gestation was not 

associated with changes in IGF2 methylation, suggesting that very early development is a 

critical period in the establishment of environmentally patterned epigenetic marks. 

Mediation analysis also suggests that DNAm may be a mediator between early life famine 
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and subsequent increased BMI, interesting near genes with metabolic roles including energy 

metabolism (PIM3), glycolysis (PFKFB3), and adipogenesis (METTL8) (Tobi et al., 2018). 

 Maternal factors 

1.5.3.2.1 Maternal BMI 

In a large meta-analysis, maternal BMI was robustly associated with cord blood methylation 

at eight CpG loci within the PACE consortium (Sharp et al., 2017). Higher maternal BMI was 

associated with lower methylation at two CpG loci located in the VIPR2 gene, a gene which 

encodes vasoactive intestinal peptide receptor 2 (VIPR2). The VIP pathway has been strongly 

associated with fat mass, and therefore may be important for obesity development (Liu et 

al., 2010). 

In ALSPAC, increased GWG was associated with increased methylation at several CpG sites in 

offspring cord blood DNA (Morales et al., 2014). In addition, offspring DNAm differences 

have been observed in those born to both overweight and underweight ALSPAC mothers 

(Sharp et al., 2015a). In a small study,  there was evidence of altered methylation in 

differentially methylation regions (DMRs) of imprinted genes in cord blood in association 

with parental obesity (Soubry et al., 2013). Thus far there has been inconsistency in the 

associations found in various cohorts for maternal BMI, and many of the associations 

between maternal BMI and offspring methylation at birth have not been replicated (Sharp et 

al., 2017). Although there is some evidence that the detrimental effects of maternal obesity 

are causally related to epigenetic alterations (Godfrey et al., 2017). 

1.5.3.2.2 Maternal smoking 

DNAm measures are particularly useful for exposures such as smoking when self-report data 

may be prone to bias (Dietz et al., 2010) and cotinine (metabolite of nicotine) measures are 

not available. When data were combined across studies (PACE consortium), there were 

many significant CpGs associated with maternal smoking, robust to different adjustment and 

analytical methods (Joubert et al., 2016). Associations were stronger for sustained smoking 

rather than smoking at any time during pregnancy (Joubert et al., 2016). PRDM8 had the 

most CpGs associated on the array, and belongs to the SET domain family 

of histone methyltransferases (Fog et al., 2012), more specifically, this gene targets H3K9 of 

histones to repress transcription (Eom et al., 2009). Gene expression was analysed further in 

genes that had differential methylation, it was found that there was agreement for 6 genes. 



41 
 

PASK (PAS domain containing serine/threonine kinase), was one of the genes, and is a 

‘nutrient sensor’, involved in the regulation of glucose and lipid homeostasis, and therefore 

may play a role in metabolic syndrome (DeMille and Grose, 2013, Zhang et al., 2015). Mice 

lacking PASK who are fed a high fat diet do not develop obesity (Zhang et al., 2015), 

therefore PASK deficiency can protect against diet-induced obesity.  

Longitudinal analyses carried out in the ALSPAC cohort found that some CpGs that were 

altered in cord blood demonstrated reversible methylation, whilst others had persistent 

methylation (AHRR, MYO1G, CYP1A1 and CNTNAP2) across childhood and adolescence 

(Richmond et al., 2014). Recent work has been in the development of a methylation score, 

which could be used to predict previous smoking exposure. The score uses methylation 

across 15 CpG sites in 11 genes in order to predict prenatal smoke exposure (Richmond et 

al., 2018). This useful approach could be utilised to develop predictive models for other early 

life exposures.   

1.5.3.2.3 Maternal age 

Offspring of older mothers are at risk of adverse birth outcomes, which can impact via a 

number of mechanisms. As established by Horvath, age is associated with DNAm changes 

(Horvath, 2013). Furthermore, gene expression in human oocytes changes with age, which 

could affect biological function (Grondahl et al., 2010).  

An EWAS (450K) in newborns from the Norway Facial Clefts Study identified 

hypomethylation within the KLHL35 gene in offspring born to older mothers (Markunas et 

al., 2016). The findings were replicated in the MoBa cohort and also in women in age 40-60 

years, suggesting that methylation differences persisted across the life course.   

Another smaller study examined methylation using the 27K array in a cohort of 168 

newborns, and found a correlation between maternal age and methylation at genes related 

to neurological regulation, embryo development, and glucose regulation and metabolism 

(Adkins et al., 2011). 

Increasing maternal age was associated with epigenetic differences in adult daughters, 

including an inverse association with methylation in the promoter region of LHX8, a gene 

related to female fertility (Moore et al., 2019). Furthermore LHX8 expression is a marker for 

the activity of brown adipose tissue (Jespersen et al., 2013), with increased activity related 

to lower BMI (Cypess et al., 2009). Researchers also identified a set of genes associated with 
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maternal age that are important regulators of the development of various cancers and 

neurodevelopmental disorders. 

Although there is a biological in utero connection between mothers and offspring, it is likely 

that maternal and paternal age will be highly correlated for most. Epigenetic changes that 

occur within sperm DNA have also been associated with offspring disease risk, in particular 

related to neuropsychiatric disorders (Jenkins et al., 2014).  

 Infant feeding 

A systematic review examining breastfeeding and offspring DNAm found evidence of a 

negative association with promoter methylation in the LEP (Leptin), CDKN2A (tumour 

suppressor) and SLC2A4 (glucose transporter) genes, in a handful of studies (5 in 

humans)(Hartwig et al., 2017). Breastfeeding was positively associated with NPY (encodes an 

orexigenic neuropeptide). Duration of breastfeeding is negatively associated with LEP 

methylation and with decreased infant growth (Obermann-Borst et al., 2013, Pauwels et al., 

2019), therefore leptin may be a mediator of the developmental programming effects 

(Vickers and Sloboda, 2012).  

Differential CpG methylation (buccal) in the RXRA gene was associated with duration of 

breastfeeding and with infant growth (Pauwels et al., 2019), a gene which has been 

previously associated with childhood fat mass (Godfrey et al., 2011). 

Mischke and Plosch (2013), hypothesised that the effects of breast milk on DNA may be 

mediated by the microbiome (Mischke and Plosch, 2013). 

These results overall do provide some evidence of a relationship between breastfeeding, 

infant growth and DNAm in some metabolic and appetite-related genes. 

 Early growth 

There has not been an EWAS so far that has specifically examined RWG and childhood 

methylation, however some early life methylation changes have been observed. RWG is 

more likely in LBW infants; being SGA and weight gain in the first 3 months has been 

associated with lower IGF2 DMR DNAm (Bouwland-Both et al., 2013). Specific DMRs of 

imprinted genes in umbilical cord blood and infant body composition were investigated in 

the Newborn Epigenetics Study (NEST) (Gonzalez-Nahm et al., 2018). Sex differences were 

identified, whereby lower weight-for-length z score at 1 year was associated with higher 
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methylation within mesoderm-specific transcript MEST in females, whilst in males higher 

methylation was observed in the paternally expressed gene 10 (PEG10) and IGF2.  

Postnatal growth was associated with differential methylation in the TACSTD2 gene 

using gene-specific pyrosequencing (Groom et al., 2012). Both gene expression and DNAm 

within the gene were also associated with childhood fat mass, however subsequent causal 

analyses demonstrated that the association was likely due to reverse causation or 

confounding. 

 Stress 

In the first few years of life the immune system is sensitive to environmental stimuli (Danese 

and J Lewis, 2017). The pathways through which stress can impact on health could be 

through disturbance of inflammatory processes or via the hypothalamic–pituitary–adrenal 

axis (HPA). As a key pathway, many studies have focused on the components of the HPA axis 

and the glucocorticoid system, and how epigenetic alterations may disrupt of normal 

function in these pathways. 

Early emotional experiences could lead to epigenetic alterations that impact on offspring 

obesity. This was observed in rat pups; offspring groomed by their mother had reduced 

anxiety in adulthood and associated epigenetic changes in the GR (Weaver et al., 2004a). 

Whereas pups raised by less nurturing mothers had hypermethylation within the GR 

receptor and increased stress response (Weaver et al., 2004b). In mice, early life stress 

(separation of pups from dams) was associated with DNAm changes and accompanying 

upregulated expression of the pituitary POMC gene, which mediates the adrenocortical 

response to stress (Wu et al., 2014b). Although human studies are limited, lower parental 

warmth has been associated with childhood overweight and therefore DNAm could mediate 

this association (Fairley et al., 2015a). Furthermore, there is some evidence for a role of GR 

methylation and stress in humans, determined using hippocampal tissue from the Quebec 

Suicide Brain Bank (Labonté et al., 2012). In the suicide completers who experienced 

childhood trauma, there was differential methylation in the promoter region of NR3C1 

(encodes glucocorticoid receptor) when compared to controls (Labonté et al., 2012). 

The effects of natural disasters and a periods of hardship during pregnancy demonstrate that 

stress has the capacity to alter offspring methylation levels (Meaney and Szyf, 2005). Child 

abuse and exposure to partner violence can also alter offspring methylation (McGowan et 
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al., 2009, Radtke et al., 2011). In adolescents, adverse childhood experiences were 

associated with DNAm in genes also related to risk of obesity (PCK2, CxCl10, BCAT1, HID1, 

PRDM16, MADD, PXDN, GALE)(Kaufman et al., 2018). Findings for PCK2 were most robust 

and were replicated across 2 cohorts, suggesting that PCK2 methylation may be a mediator 

for intrafamilial childhood adversity (e.g., physical abuse, witnessing domestic violence) and 

BMI.  

In a study on internationally adopted adolescents from deprived backgrounds, appropriately 

matched with non-adopted controls, differences in methylation patterns were investigated 

in an EWAS (Esposito et al., 2016). There were marked differences in cell type composition in 

adopted youths and differential methylation at 30 CpG loci, which mapped to enriched gene 

clusters related to neural and developmental functions. The adopted children were selected 

to model significant childhood adversity, although it is unclear specifically which forms of 

adversity they experienced but could include abuse, neglect, malnutrition or infection each 

with varying severity (Esposito et al., 2016).   

A systematic review examining DNAm and childhood trauma summarised that numerous 

studies have identified differential methylation in the genes: SLC6A4, BDNF, 

OXTR and FKBP5, and most robustly in the GR NR3C1 gene (Nöthling et al., 2019). For a 

comprehensive review on trauma-induced changes in DNAm see (Vinkers et al., 2015). 

There have now been several epigenome-wide association studies for childhood adversity 

and DNAm, however as noted by (Houtepen et al., 2018a) many of these studies utilise a 

candidate gene approach or use susceptible populations (Houtepen et al., 2018a). Currently 

there are few studies that have examined very early life (rather than childhood) stress and 

DNAm in humans.  

 Infection 

Epigenetic mechanisms are critical for normal development of the immune system, and the 

early postnatal period (0-12 months) reflects a time when the epigenome is amenable to 

environmental exposures affecting innate and adaptive immune responses (Martino et al., 

2014).  

It is plausible that pathogens could affect epigenetic processes, in particular viruses that 

reproduce undiscovered in host cells (reviewed by (Paschos and Allday, 2010)). There is 

evidence of DNAm changes in responses to Epstein-Barr virus infection (Birdwell et al., 



45 
 

2014), human rhinovirus (McErlean et al., 2014), and HIV infection (Horvath and Levine, 

2015, Nelson et al., 2017). 

There is limited evidence on bacterial infections and DNAm in humans. Bacterial infections 

have been associated with rapid and active demethylation, rarely occurring at promoter 

regions, but localising to distal enhancer elements that regulate activation of key immune 

transcription factors (Pacis et al., 2015). Mycobacterium tuberculosis has been shown to 

alter the epigenome, but the mechanism is not fully understood (Kathirvel and Mahadevan, 

2016). There is also evidence that some pathogens can disrupt histone modifications and 

reprogram host gene expression (reviewed by (Strunk et al., 2013)).  

DNAm changes and early life exposure to antibiotics have not been examined. Maternal 

antibiotic use during pregnancy was examined in 397 pregnant women in DMRs of imprinted 

genes using bisulfite pyrosequencing (Vidal et al., 2013) in the NEST cohort. Differences were 

observed for IGF2, H19, MEG3, PEG3 and PLAG1, with the latter also associated with 

birthweight. This could suggest that the association between prenatal exposure to 

antibiotics and birthweight may be mediated by changes in regulatory regions of some 

imprinted genes. DNAm at imprinted regions has also been investigated with respect to 

intrauterine infections. In cord blood, DNAm was increased at the PLAGL1 DMR in pre-term 

infants with chorioamnionitis (a bacterial infection that occurs before or during labour), and 

for infants with funisitis (inflammation of the connective tissue of the umbilical cord), in the 

NEST cohort (Liu et al., 2013b). 

 Sleep 

Overall there have been few studies examining sleep deprivation and DNAm, and non in 

children. In mice, sleep deprivation has a broad impact on DNAm in the cerebral cortex, in 

gene pathways involved in neuritogenesis and synaptic plasticity, and can increase the 

expression of DNA methyltransferases (Massart et al., 2014). In an EWAS in adults, even one 

night of sleep deprivation altered DNAm, particularly in the Notch and Wnt signalling 

pathways, which are important developmental pathways often dysregulated in cancer 

(Nilsson et al., 2016).  

 Transgenerational influences  

Data from animal studies has demonstrated that the impact of a high fat diet has lasting 

effects for three successive generations in mice (Sarker et al., 2018). First generation 
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offspring of those exposed to prenatal famine have a higher BMI (particularly women) 

(Roseboom et al., 2000) and grandchildren exhibiting increased neonatal adiposity (Painter 

et al., 2008). It is possible that these effects are transmitted through transgenerational 

epigenetic inheritance but human data are sparse. 

 SES 

There are a handful of studies examining the effects of early life SES on DNAm in peripheral 

blood (Demetriou et al., 2015). In young children (17 months, n=120), low maternal 

education was associated with a 1.3% increase (p=0.043) in INSIGF methylation; the 

overlapping region of IGF2 and INS (insulin) (Obermann-Borst et al., 2012).  

However, most studies examining SES have measured outcomes in adults. A genome-wide 

methylation analysis examined childhood SES and methylation in middle-age adult males 

(42-45 years) from the 1958 British Birth Cohort Study (Borghol et al., 2012). The study 

examined methylation of around 22,000 gene promoters using methylated DNA 

immunoprecipitation (MeDIP). Childhood SES was associated with differential methylation at 

1252 sites, with enrichment in genes related to extra- and intracellular signalling and 

metabolism. This was in contrast with adult SES for which there were fewer (n=545) 

significant associations.  

A genome-wide approach using the 27k array found 3 loci that had e small (less than a 5%) 

changes in methylation when comparing low and high early life SES (by occupation) in adults 

(mean age 33) (Lam et al., 2012), and no significant CpG loci were found for adult SES.  

In a large sample (n=857) of healthy adults from the EPIC-Italy cohort, low life course SES 

was associated with lower methylation in pro-inflammatory genes (Stringhini et al., 2015). 

Lower life course SES has also been associated with epigenetic age acceleration (the 

difference between DNAm age and chronological age), using data from 3 large prospective 

cohorts (Fiorito et al., 2017). Furthermore, consistent results were found by Austin et al, 

with the observation that low SES in early life predicts age acceleration, whilst no 

associations found for later life SES (Austin et al., 2018). Both studies did not find 

attenuation of the association with upward social mobility. In additional to changes at 

individual CpG loci, global changes in methylation have been associated with SES 

(Subramanyam et al., 2013, Tehranifar et al., 2013).  
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These studies suggest that DNAm may provide a link between early life, or life course SES 

and disease risk. However, heterogeneity in study designs including the measure of SES and 

the measurement of DNAm make comparisons difficult. 

1.6 Integrating the social determinants of health and epigenetic mechanisms with regards to 

obesity  

There have been a number of theories to explain the rise in obesity (see section 1.2). A 

failure of previous frameworks is that they often fail to take into account the complexity of 

the interaction of early life factors, lifestyle, socioeconomic status and gene-environment 

interactions. There are a number of lifecourse models that more generally discuss lifecourse 

factors with regards to health, but few have attempted to model lifecourse factors 

specifically with regards to obesity.  

There has been a life-course framework for obesity prevention proposed by Pérez-Escamilla 

and Kac (2013). Their approach uses a social ecological model which has layers from the 

individual, microsystem (home), mesosystem (neighbourhood), exosytem (larger 

environment), and macrosystem (social and health policies), and focuses on the 

consequences of maternal–child obesity. Hawkins et al, apply a similar approach, utilising 

the same factors but term these ‘above water’ levels, with the addition of ‘below water’ 

levels as the biological factors (Hawkins et al., 2018). Additionally, whilst many studies have 

examined many individual, independent factors (section 1.3), few studies have incorporated 

empirical data into a lifecourse framework model. 

 

It is well established that social inequalities and lifestyle factors are significant contributors 

to health and are included in most theoretical models regarding the determinants of health. 

However, as epigenetics is a relatively new area of research, where it fits within models of 

the determinants of health has not yet been considered. Marmot and Wilkinson (2004) 

acknowledge many important factors impacting in early life that can affect health and 

wellbeing. Dahlgren and Whitehead’s determinants of health model acknowledges 

hereditary factors and individual lifestyle factors (Dahlgren and Whitehead, 1992), however 

epigenetic factors would fall between the two. Their model also encompasses the 

socioeconomic, cultural, and environmental conditions, which collectively can have a great 

impact on health, and are factors which may have accompanying epigenetic changes.  
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In the Grossman model, health is treated as stock which depreciates over time without 

adequate investment in health (Grossman, 1972). For instance, as education increases, an 

individual is more efficient at taking care of their own health and therefore they increase 

investment in health. The Grossman model assumes individuals are born with a given level 

of health stock, however in terms of the DOHaD hypothesis, the level of health stock would 

potentially be determined by maternal and transgenerational influences, and early life 

exposures. Therefore, an individual with detrimental early life experiences embarks on life 

with less health stock and therefore lower health. These individuals would need greater 

investment in their health to simply maintain an equivalent level of health to that of an 

individual born with neutral health stock without negative exposures in early life. Risk could 

further be increased when combined with an obesogenic environment and underlying 

genetic susceptibility. Therefore a new conceptual model is required in order to incorporate 

these factors that can impact in utero via maternal exposures, on the individual level across 

the life course, or that have transgenerational influences, and ultimately influence ‘health 

stock’. 

In light of this, I propose a new model of the social determinants of health, which 

acknowledges the role of epigenetics and the interaction with behavioural-lifestyle, and 

socioeconomic factors (Figure 1.1). In this model each of the risk factors presented (circles) 

has the capacity to impact on DNAm, acting at the individual level, through maternal 

influences or transgenerationally.  By applying this framework, the integration of the various 

sources of data, such as epigenetic, genetic and epidemiological data has the capacity to 

improve prediction models.  
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Figure 1.1 Conceptual framework of factors influencing obesity risk. 

The framework encompasses the complex interactions of socio-economic, behavioural and lifestyle factors that contribute to 
the development of obesity. It is an adaptation of Dalgren and Whitehead’s determinants of health model (1991), which 
incorporates the DOHaD hypothesis and the literature on early life risk factors of obesity.  

In this model, the many determinants of obesity do not act in isolation, but are layered, interlinked (indicated by the arrows) 
and influence other factors (circles). The socio-economic factors influence the behavioural-lifestyle factors and vice versa. 
Each of these factors would have the capacity to impact on the individual level but also from maternal factors and 
transgenerationally. For example, diet on the individual level would encompass eating patterns, nutrient intake and early life 
feeding. On the maternal level, this refers to maternal diet during pregnancy and weaning. On the transgenerational level, 
this would refer to the individual’s grandmother’s diet. Within this hypothesis, each of the circled factors in theory could 
have associated epigenetic changes. The demographic factors (age, sex, ethnicity, genetics and biological factors including 
metabolism, puberty status etc), are positioned on the outer edge indicating that they are non-modifiable but 
acknowledging their effect on weight-related outcomes.  
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1.7 Summary 

In summary, themes emerging from epidemiological studies indicate that nutrition and early 

feeding may be important, perhaps due to the relationship between to intrauterine 

conditions, birthweight, and catch-up growth. Aside from nutrition, maternal factors are of 

great importance as they represent a sustained in utero exposure. Very early postnatal life 

also represents a critical period, with the potential risk factors of infant feeding, adversity, 

sleep, and socioeconomic disadvantage. Additional research is required in order to 

determine the relative contribution of early life, lifestyle, and environmental factors to later 

life OWOB.  

In studies examining early life risk factors, there are a lack of long-term follow-up data from 

childhood to adulthood, and a limitation of current research is that much is cross-sectional in 

nature or relies on retrospective data collection, which could be addressed by utilising 

longitudinal data sets. The timing of the exposure can also lead to differing effects in the 

offspring; therefore, further research is required in order to pinpoint critical periods in an 

infant’s life. At present it is unclear if these early life factors of childhood obesity are risk 

factors for adult obesity in populations with low levels of childhood obesity, or if the risk is 

due to the tracking of obesity in childhood into adulthood (Freedman et al., 2001). Future 

studies ideally would examine multiple indices of adiposity to determine if exposures are 

related to overall body size, body fatness or the positioning of fat, each of which can carry 

different risks. 

It is not only plausible, but also likely that epigenetic mechanisms could be a mediator 

between early life exposures and obesity outcomes. However, many of the earlier epigenetic 

studies used basic techniques and did not state whether they have adjusted for confounders 

(Obermann-Borst et al., 2012) or corrected for multiple testing in their analysis. Findings so 

far are suggestive and further replication studies are required using longitudinal cohorts. 

Investigation of the epigenetic changes associated with exposures may elucidate causal 

pathways and underlying mechanisms, and hence identify therapeutic targets. Furthermore, 

epigenetic markers could improve prediction models or highlight those ‘high-risk’ individuals 

who would benefit from intervention or monitoring, thereby guiding personalised 

interventions to improve public health.  
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1.8 Hypothesis and aims   

This study will investigate the hypothesis that DNAm may be a mediating mechanism 

between early life exposures and subsequent obesity. 

The aims of this thesis are: 

1.) To investigate the impact of early life exposures and SES on childhood and adult 

adiposity using multiple indicators  

2.) To investigate regional temporal changes on obesity, allowing scrutiny of the impact 

of modern environmental and socioeconomic factors 

3.) i.) To identify gene-specific methylation differences in relation to those early life 

exposures found to influence obesity in children and adults 

ii.) To investigate the methylation differences in relation to the early life exposure(s) 

found to influence obesity in an adult population. 

This study will address the limitations and unanswered questions summarised in section 1.7. 

Aim 1 examines the latency of effects; in particular, which early life exposures are associated 

with adult obesity, as it unknown whether some exposures that are associated with 

childhood obesity are also associated with adult obesity. Aim 1 also addresses whether 

associations for exposures differ across outcome measures of adiposity. 

Aim 2 addresses the unanswered questions around cohort-timing and environmental effects, 

i.e. if exposures are associated with adult obesity in those without an early life obesogenic 

environment.  

The final aim attempts to uncover novel changes in methylation in early life exposures that 

have demonstrated consistency from aims 1 and 2. This can be split into two parts; firstly to 

identify DNA methylation changes in children and adolescents, and secondly to quantify 

these methylation changes in adults, thereby examining the persistence of the effects.  

1.9 Study design 

Figure 1.2 outlines the study design and how data from each cohort was employed to 

address the aims.  

Firstly, a literature search was carried out to explore the early life exposures implicated in 

obesity (section 1.3), to in order to determine exposures of interest. This study primarily 
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utilised epidemiological data from two North East birth cohorts; the Newcastle Thousand 

Families Study (NTFS) and the Gateshead Millennium Study (GMS). The objectives for aim 1 

were to examine early life exposures with respect to adiposity outcomes in NTFS adults, and 

GMS children.  

Using two cohorts from the same geographical area allows examination of these 

relationships over time and observation of the role of environment. To address aim 2, using 

both NTFS and GMS outcomes in childhood, the associations between early life factors, SES, 

and obesity were also investigated. 

To fulfil aim 3, exposures of interest were investigated using DNAm data from the Avon 

Longitudinal Study of Parents and children (ALSPAC) cohort (Alspac Study Team, 2001), to 

examine exposures in relation to methylation and obesity. The basis of these findings guided 

methylation targets to examine in the NTFS samples.  

The findings of this analysis could further understanding of the biological, social and 

economic factors which lead to health disparities over the life course.  
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 Investigate associations between exposures of interest in NTFS & GMS   
 Investigate the association between early life SES, later life SES and obesity 

1 

Investigate the associations between key 
exposures and methylation in ALSPAC, and 
between methylation loci of interest and 
obesity  

2 

 Measure methylation and investigate relationships 
between early life exposures, methylation of 
target genes and obesity in and NTFS 

3 

1991 

Figure 1.2 Overview of the study design, cohorts and aims  
The years refer to the cohort year of birth. NTFS, Newcastle Thousand Families study, GMs, Gateshead millennium study; ALSPAC, Avon 
Longitudinal Study of Parents and children (AKA children of the 90s); SES, socio-economic status. 
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Chapter 2. Data and methods 

The analysis undertaken in this thesis can be broadly arranged into two sections. First was 

the epidemiological analysis to determine the focal early life exposures associated with 

childhood and adult body composition in two North East cohorts (GMS and NTFS). The 

second part was the epigenetic analysis, whereby the focal early life exposures were 

investigated in a cohort with epigenetic data (ALSPAC). This also included a simplified version 

of the epidemiological analysis using the key early life exposures to substantiate the 

associations, and then investigated these exposures and DNAm in childhood and 

adolescence. Finally, to determine if DNAm patterns persist, the significant CpG loci 

identified in ALSPAC children were investigated in NTFS adults. This chapter details each of 

the cohorts and the methods for all analyses.  

2.1 Datasets used 

2.1.1 The Newcastle Thousand Families study (NTFS) 

The Newcastle Thousand Families study (NTFS) is a birth cohort based in the North East of 

England. The study began in 1947, two years after the end of WWII. The study’s original 

intent was to investigate the high infant mortality rate, which at the time was mostly 

attributed to acute infections. This conclusion was made prior to WWII by Sir James Spence, 

a paediatrician who undertook a review of the causes of death in children under 5. After the 

war, the NTFS was set up to investigate risk factors for infection, with the original intent to 

run the study for 1 year. However, the study continued and is now in its 8th decade.  

Data were primarily prospectively recorded for the cohort. There are data available on a 

variety of early life factors, along with physical outcome measures in early and late 

adulthood, which makes it possible examine body composition in later life in relation to 

exposures in early life. 

The cohort originally included nearly all (n=1142) babies born in Newcastle upon Tyne 

between May and June 1947 (Pearce et al., 2009). Data have been collected at numerous 

time points over the participant’s life course (up until age 60 to date). The cohort have been 

followed extensively by utilising general practitioners, health visitors and schools throughout 

childhood (until they were 15 years old). Data collection was facilitated through the 
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placement of red spots on the study member’s medical records to identify them, and hence 

they were referred to as ‘red spots’. There were further intermittent follow-ups during 

adulthood (ages 18, 22, 32) with data collected on employment, anthropometrics, 

psychology, and crime.  

At age 50 (49-51), the cohort were traced and took part in a physical assessment (n=412) 

and questionnaire (n=574). The clinical assessment covered a range of health outcomes 

through physical assessment including cardiovascular, metabolic, and musculoskeletal 

measures. Biological samples (serum and urine) were also obtained. Another similar clinical 

assessment took place at age 60. Comprehensive details on key findings and data collected 

can be found in the cohort profile (Pearce et al., 2009). 

 

 

Figure 2.1 NTFS data collection to date.  

There were multiple data collection sweeps throughout childhood to age 15, and then intermittent revisits at various time 
points during participant’s lives, until the most recent age 60 follow-up.  

 Measurement of body composition outcomes 

Measures of height and weight were taken throughout childhood at ages 3, 5, 9, 13, 14 and 

15 years. At the age 50 and 60 clinical assessment, anthropometric measures (height, 

weight, waist and hip circumferences and bioelectrical impedance) were taken, which were 

performed in the morning after an overnight fast of at least 10 hours. An average of three 

measurements of bioelectrical impedance (Holtain) were used to estimate percentage body 

fat (BF%), using standard regression equations.  

 Measurement of exposure variables and covariates  

In NTFS, maternal age, gestational age, and birthweight were recorded at the time of 

delivery and taken from hospital records. All other factors were recorded by health visitors.  
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Duration breastfed was the difference between the date of first and last time the participant 

had breast milk (in days), recorded by health visitors. This was analysed as a continuous and 

categorical variable. The duration of exclusive breastfeeding was the difference in days 

between the date breastfeeding commenced and the date of introduction of bottle-feeding 

with an alternative milk (dried, cow’s or mixed feed). The age at weaning was the age at the 

introduction of solid foods. If date ranges were noted rather than a single date, the lowest 

date was taken. If no date for first breast milk was noted (but there was a date of cessation), 

date of birth was used.   

Infections were reported throughout childhood by doctors, health visitors, or hospital 

referrals. Infections in the first year of life were used in this study. Only infection data with 

low risk of ascertainment bias were used. Bacterial infections included whooping cough, 

Tuberculosis (TB), scarlet fever, and pneumonia. Viral infections included measles, mumps, 

rubella, meningitis, bronchitis, and chicken pox. Infection in first year was defined as a 

dichotomous variable if the study member experienced any of the aforementioned 

infections (“had”, “did not have”). Viral and bacterial infections were grouped initially, 

however as coefficients had opposite effects, viral and bacterial were then separated as 

variables.  

Socioeconomic indicators in early life included; father’s occupational social class, and 

household deprivation. To increase group sizes, social class was re-categorised into least 

advantaged (class IV and V), mid (class III skilled and unskilled) and most advantaged (class I 

and II).  

Household deprivation was determined through indicators of inadequate housing conditions 

as assessed by Newcastle’s public health department around time of birth. These were the 

presence of (0-4 factors) including; overcrowding, lack of hot water, shared toilet, and 

dampness or poor repair. As low numbers were observed in some categories, this variable 

was recoded to a binary variable representing either no housing issues (0) or evidence of 

housing issues (>=1).  

2.1.1.2.1 Later life and lifestyle factors  

Later life socioeconomic variables were determined from the age 50 questionnaire and 

included occupational social class, highest education level achieved and total household 

income (after tax). Although these are often used interchangeably in studies examining 
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health inequalities, they measure different components of SES and could have different 

underlying aetiologies in obesity development.  

Social mobility was determined using the change in occupational social class using the three 

groups (least, mid and most advantaged) from birth to age 50.  The highest level of achieved 

education was categorised (including equivalent qualifications) as none, O-level, A-level, and 

degree level and above. Previously, leaving school at an early age (≤17 years) has been 

associated with obesity (Wardle et al., 2002). Therefore, education was recoded to a binary 

variable indicating achieved education past secondary school level (greater than GCSE level, 

the main qualification undertaken by adults in the UK), indicating undertaking of higher 

education beyond compulsory school age (age 16).  

Household income was a choice between 17 categories on the questionnaire. Household 

income was equivalised to account for household size. The Organisation for Economic 

Cooperation and Development (OECD) equivalence scales are used by the Statistical Office of 

the European Union and by the UK government to adjust household income according to 

household composition, acknowledging that resources required are not directly proportional 

to household size. To determine equivalised household income, the median value of the 

questionnaire income categories was divided by the square root of household size and then 

log2 transformed for normality. The square root scale is a method utilised in recent OECD 

publications, and denotes a household of four people requires twice as many resources than 

a house composed of one person. This method was used as it does not rely on knowing the 

ages of the household members (data were not available).  

Data on lifestyle factors were taken from the self-report questionnaire at age 50. Study 

members were deemed as current smokers if they were current but not ex-smokers. Pack 

years (the number of packs of cigarettes smoked per day by the number of years the person 

has smoked) and categorical (current, ex, never) were also analysed. Physical activity level 

was derived from questionnaire responses based on frequency of various activities (based 

on the Medical Research Council’s Physical Activity Questionnaire (Kuh and Cooper, 1992)) 

and was categorised to ‘inactive’, ‘light activity’, ‘moderate activity’ or ‘heavy activity’. 

Whether a study member was single, married, widowed, divorced was also taken from the 

questionnaire and transformed to currently married/unmarried.  
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2.1.1.2.1.1 Energy intake 

Dietary assessment was conducted at age 50 (using the EPIC food frequency questionnaire 

(FFQ)) and the FFQ EPIC Tool for Analysis (FETA) was used to calculate nutrient and food 

group data (Mulligan et al., 2014). These data were processed prior to use (for details see 

(Mann, 2017)). In accordance with the FETA guide, if there were 10+ missing answers 

nutrient data was defined as invalid.  

The energy intake data were investigated prior to use, however due to some discrepancies 

these data were deemed invalid and were not included in the analysis (Appendix A). 

2.1.2 The Gateshead millennium study (GMS) 

The Gateshead millennium study (GMS), is a prospective birth cohort that recruited 1029 

infants born to mothers resident in Gateshead during pre-specified weeks from June 1999 to 

May 2000. Gateshead is located on the southern bank of the River Tyne opposite the city of 

Newcastle upon Tyne in the UK. The original aims of the study were to investigate infant 

feeding behaviour and growth; however, it has since expanded to encompass multiple 

aspects of child health, including nutrition, physical activity, and well-being.  

The cohort have been followed up intermittently throughout their early life and childhood 

with 15 phases of data collection so far. This has involved detailed questionnaires on growth, 

feeding, behaviour, illness and social factors (Parkinson et al., 2011), typically completed by 

the mother throughout study member’s early life. After birth and in the days following, data 

were collected in the hospital or at home from mothers, midwives, and health visitors. 

Questionnaires in early life were completed by parents at around ages 6 weeks, 3 months, 4 

months, 8 months, 12 months, 13 months, and 30 months. Schools also facilitated data 

collection throughout childhood and adolescence. Detailed information on the waves of data 

collection can be found in the cohort profile (Parkinson et al., 2011).  
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Figure 2.2 Data collection phases in GMS to date  

 Measurement of outcome variables  

Measures of height and weight were taken throughout childhood. Height was determined 

using a Leicester portable height measure (Chasmors, London, UK), measured to the nearest 

0.1 cm. Weight (kg) and bio-impedance (BIA) were measured using a Tanita TBF300MA in 

light clothing. Values for total body water, hydration, and lean mass were age and sex-

specific (Wright et al., 2008b). 

 Measurement of exposure variables and covariates 

Birthweight, gestation, number of previous children, mode of delivery, maternal age and 

postcode (for determination of Townsend deprivation score (Townsend et al., 1988)) were 

requested at recruitment. Birth order was analysed as a binary (first-born) variable. Maternal 

age was analysed as both a continuous measure and as categories of <25 years, 25-34 years 

and over 35 years. Pre-term was determined as a gestation length less than 38 weeks, 

normal was 38 to 41 and post-term was greater than 41 weeks.  Weight was measured in a 

clinic at the 13-month health check. 

All other variables were collected via questionnaires administered at regular intervals 

including adversity (4 month), sleeping (8 month) SES (birth and age 6-8) and infant feeding 

(recurrent questionnaires). 

Parents were asked about feeding shortly after birth and in the 6-week, 3, 4, 8, and 12 

month questionnaires. Parents were asked about mode of milk feeding, the cessation of 

breastfeeding and initiation of complimentary feeding.  Duration breastfed (non-exclusive) in 

GMS was categorised by the study team as ‘never’, ‘<6 weeks’, ‘>6 weeks’ and ‘>4 months’. 

Breastfeeding was also categorised according to the time period of exclusivity (only breast 

milk), as ‘>4 months’, ‘>8 months’, ‘>12 months’ or ‘not exclusive (i.e. <4 months)’. Due to 
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the small group sizes in categories over 4 months upwards (average 2.8% prevalence) these 

were combined, and exclusive breastfeeding was analysed as ‘not exclusive’ and ‘exclusive 

for 4+ months’. Formula fed was those who were never breastfed. Introduction of solid 

foods was in weeks.  

Adversity in GMS was derived from the questionnaires at age 4 months that asked, ‘Have 

you experienced any of the following in the last 12 months?’ which therefore included up to 

8 months prenatal exposure.  

Infection data available for the first year were taken at the age 4 and 12 month 

questionnaires. Infections included any mention of infections, receipt of antibiotics, measles, 

mumps, influenza, rubella, chicken pox, whooping cough, bronchitis, gastroenteritis. These 

questionnaires also asked whether the child had been admitted to hospital and the reason 

for admittance. Responses that mentioned infection or a known infectious illness were 

determined to be an infection. These included terms "VIRUS" "VIRAL" "INFECTION" "RSV" 

"MENIN" "BRONC" "CHICKEN"  "CROUP" "GASTRO" "PNEU" "MENEN" and "SEPTACEMIA". 

Data were then screened individually to check for any further spelling errors. Colds, 

influenza and ear infections were not included due to their high incidence in infants, with 

acute and minor effects.  

The literature examining early life sleep and childhood overweight for the most part only 

examines sleep duration (Reilly et al., 2005a, Patel and Hu, 2008, Taveras et al., 2008), 

however sleep duration was not measured in GMS. Alternatively, there are various 

definitions of sleep problems in the literature (Table 1.4).  

There were questions on sleep in the 8-month GMS questionnaire. Whilst there were no 

questions on sleep duration, parents were asked about disturbed sleep and issues falling 

asleep, which could affect sleep duration. The two questions were on a scale of 1 to 7 

(ranging from always to never): ‘how often did the child show fussing falling asleep’; ‘how 

often did the child have disturbed sleep’. Parents often reported sleep issues, and frequent 

night-time waking and issues settling are common in infants (Armstrong et al., 1994). 

Therefore, to summarise the extremes and to capture those with the worst sleep problems, 

a dichotomous (two component) variable for sleep issues was determined as those who 

always (in the top 1 of 7) reported issues for both falling asleep and for disturbed sleep.  
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SES was assessed using an area-based indicator (Townsend score) and maternal education at 

birth. Townsend deprivation score was transformed into quintiles with 1 being the least 

advantaged and 5 the most advantaged. Maternal education was assessed at time of birth as 

the highest qualification attained. Deprivation was measured through ownership (both car 

and home ownership/mortgage) and employment (wage earner), at birth and in childhood. 

In childhood, parental occupation data were available at age 7-8 and 8-10. Upward mobility 

0-8 was determined as the change from being deprived at birth (no ownership and no wage 

earner), to not deprived in childhood (ownership and wage earner). 

Physical activity was measured over 7 days using Actigraph GT1M accelerometers (Actigraph 

LLC, Pensacola, Florida, USA) when participants were around 7 years of age. The Actigraph is 

an established, practical measurement of both activity (physical and sedentary) with high 

reliability and validity (de Vries et al., 2006, Penpraze et al., 2006). This was continuously 

worn on the right hip, attached with an elastic belt, but was permitted to be removed for 

water-based activities. Parents also completed a time log stating when the accelerometer 

was worn, however this was found to overestimate child physical activity (Basterfield et al., 

2008). Data were processed manually prior to use as described previously (Basterfield et al., 

2008, Basterfield et al., 2012a). Accelerometry measurement over 7 days is regarded as the 

optimum amount of time for measuring habitual physical activity (Ward et al., 2005) and 

shows good reliability in children (Penpraze et al., 2006). However in this cohort, 3 days of 

wear for over 6 hours/day was shown to produce acceptable reliability (Basterfield et al., 

2011), therefore this was the criteria used to minimise loss due to missing data. Established, 

validated cut-off points were used to convert accelerometry data to levels of moderate–

vigorous intensity physical activity (MVPA)(Puyau et al., 2002, Basterfield et al., 2008). 

Physical activity was analysed as the mean daily percentage of time spent in MVPA 

(%MVPA). 

Seasonal differences in physical activity must also be considered in UK populations (Atkin et 

al., 2016). Generally, GMS children have been shown to be less active in the winter (Pearce 

et al., 2012a). Seasons were categorised as ‘spring’ (March to May, reference category, 

23%), ‘summer’ (June-August, 21%), ‘autumn’ (September -November, 32%) and ‘winter’ 

(December-February, 23%). 
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2.1.3 The Avon Longitudinal Study of Parents and Children (ALSPAC) 

The Avon Longitudinal Study of Parents and Children (ALSPAC) is a birth cohort based in the 

former county of Avon, in the Bristol area (South West England). The original aim of ALSPAC 

was to further understand the ways in which physical and social environments interact, with 

a focus on the influence of genetic factors on health, behaviour and development of children 

over the life course (Alspac Study Team, 2001). The continuing aim has extended the study 

into a transgenerational resource for life course epidemiology, with enrolment of the 

original participant’s children, siblings, and grandparents (Boyd et al., 2013). 

The study recruited 14,541 pregnant women between 1990-92 with an expected delivery 

date between 1st April 1991 and 31st December 1992 (Boyd et al., 2013). There were 14,062 

live births and 13,988 children alive at age 1 year. Through additional recruitment phases the 

sample has increased to 15,247.  

Data collection has been via self-completion questionnaires and data linkage to external 

records. There has also been direct measurement of study members, through clinical 

assessments and biological samples (Boyd et al., 2013). At the clinical assessments around 

ages 7 and 17 years, blood samples were taken and DNA extracted. There were 68 data 

collection assessments between ages 4 weeks to age 18 years. The vast data collected have 

covered multiple dimensions of health, including social, genetic, physical, cognitive, 

environmental, and developmental factors. The ALSPAC data has been comprehensively 

coded and inspected by the ALSPAC study team. Complete details on recruitment and 

follow-up can be found in the cohort profile (Boyd et al., 2013).  

 Measurement of outcome variables 

Weight and height were measured at annual clinics and at multiple time points throughout 

childhood (ages 9+, 10+, 11+, 13+, 15+). Anthropometric measures at (approximately) age 7 

and 17 were used as outcomes in these analyses (when there were epigenetic data 

available). At age 7, height was measured to the nearest millimetre without shoes or socks 

using a Holtain stadiometer (Holtain Ltd, Crymych, Pembs, UK), whilst weight was measured 

using Tanita THF 300GS body fat analyser and weighing scales (Tanita UK Ltd, Yewsley, 

Middlesex, UK). At age 17, height was measured with a Harpenden stadiometer to the 

nearest mm, and weight using the Tanita Body Fat Analyser (Model TBF 401A) to the nearest 

50g. 
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 Measurement of exposure variables 

Maternal age at delivery was originally categorised in ALSPAC as; <16 years, individual years 

between the ages 16-43, or >43 years. As the actual ages for those coded as <16 years and 

>43 years were unknown, this was categorised as done previously to "Less than 25" (young 

maternal age), "25-34" and "35+" (advanced maternal age) and was not analysed as a 

continuous variable.  

Using medical records, gestational age was determined using the recorded date of the last 

menstrual period and date of delivery. Birthweight was taken from obstetric records. At 12 

months, infants were weighed using the Seca 724 (or Seca 835 for children who could only 

be weighed with a parent). 

Parity was determined from the 18-week questionnaire, and was defined as the number of 

previous pregnancies resulting in either a livebirth or a stillbirth. First-born was binary 

variable (‘yes’ if number of previous pregnancies was 0). 

Occupational social class was determined as the highest category of parental social class 

using the 1991 British Office of Population and Census Statistics (OPCS) classification. 

Parental occupational social class was determined by the ALSPAC study team from 

questionnaire answers prior to use. Occupational social class was coded using the OPCS job 

codes to create six categories (I, II, III non-manual, III manual, IV and V). There was an 

additional category for armed forces, however there were no data on specific occupations or 

rank for those in the armed forces. Due to this, and also to harmonise with the occupational 

social class groupings in the other cohorts, armed forces were recoded to missing (total 

excluded, n=31, 0.2%).  

There were no data on bacterial infection in ALSPAC; therefore, antibiotic exposure was used 

as a proxy. In the 6-month questionnaire, parents were asked whether the child had 

received antibiotics in the last 6 months (ages 0-6 months). This was coded to binary 

variables if the response was one or more episodes.  

In ALSPAC, questions on adversity featured on both pre and post-natal questionnaires, 

therefore in order to harmonise with findings in GMS, three distinct adversity variables 

(prenatal, postnatal, and pre and post-natal) were investigated in ALSPAC. As the question 

on the GMS questionnaire specifically referred to child abuse of the study member, this will 

obviously only be relevant for the post-natal period. Therefore, in ALSPAC, any reference to 



64 
 

child abuse was only included in the post-natal period (8 month questionnaire), to reflect the 

study member’s own exposure (rather than the mother’s). In ALSPAC this referred to if the 

mother or partner were ‘emotionally or physically cruel to children,’ which may reflect 

events occurring within the household (other children), but that may not be directed 

towards the study member. Neither NTFS nor GMS had detailed information on the 

dimension(s) of the abuse. Questionnaire responses for adversity were only extracted up to 

age 8 months, as the next questionnaire was administered at age 21 months and would 

include responses out of the specified exposure period (parental to 12 months postnatal).  

Maternal smoking was self-reported on the questionnaires at 18 and 32 weeks gestation and 

8 weeks postnatal, and asked if cigarettes were smoked during pregnancy. Maternal smoking 

during pregnancy was coded as ‘yes’ if the mother answered yes to smoking on any of the 

three questionnaires. If there were any missing data at any of the time points, this was 

coded to missing (as it cannot be assumed that the mother did not smoke at this time point), 

i.e. mothers had to say they did not smoke at all time points to be counted as non-smokers 

during pregnancy. However, if the answer was yes to smoking at any of the time points, this 

was counted as a ‘yes’. 

2.1.4 The Accessible Resource for integrated Epigenomic Studies (ARIES) 

The Accessible Resource for integrated Epigenomic Studies (ARIES) is a subset of the ALSPAC 

cohort. The ARIES project aims to find links between exposure, phenotype, genotype, and 

methylation data. Genome-wide DNAm analysis was done for a subset of 1,018 mother and 

child pairs at three time points in children and two in mothers, as well as profiling various 

tissues for references. ARIES selection was based on availability of DNA samples at the three 

time points (birth, childhood (age 7.5) and adolescence (age 17.1)).  

In the offspring, DNAm was quantified from cord blood at birth, and peripheral blood in 

childhood (mean age 7.5 years) and adolescence (mean age 17.1 years). This was done using 

the Illumina Infinium HumanMethylation450 BeadChip. Pre-processing, quality control and 

estimation of cell type proportions were carried out by the ALSPAC team prior to researcher 

use (Relton et al., 2015). 

The sub-sample was mostly representative of the main study population; however, ARIES 

mothers were slightly older, less likely to have a manual occupation and were less likely to 

smoke during pregnancy (Relton et al., 2015). 
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2.2 Definition and measurement of outcomes, exposures and covariates  

2.2.1 Outcomes: Body composition measurements  

Previous studies have found differing results when assessing BMI (continuously) to 

categorical obesity with regards to maternal exposures and offspring adiposity (Sharp et al., 

2015b). Therefore, it is valuable to examine health risks associated with a higher BMI using 

both BMI on a continuous scale and indicators for overweight and obesity. As BMI is a proxy, 

alternative measures were analysed in order to determine if risk factors vary by outcome 

measure. To encompass each aspect of defining obesity this study will use BMI, BMI 

categories, a measure of central obesity (WhtR or WHR), and a measure of body fat (%BF or 

FMI). Comparing all three measures could uncover more about risk factors-specific 

mechanisms. These methods are discussed in detail in sections 1.1.4 and 1.1.5. 

 

Outcomes were BMI, BF% and WHR in adults, and BMIz, WHtR and FMI in children. Body 

mass index (BMI) was calculated as weight (kg) divided by height (m) squared. In children, 

BMI is confounded by age-related physiological variation, and so needs to be assessed with 

respect to a growth reference. The UK90 reference was used as it is the most appropriate 

reference, recommended for use in British children (Wright et al., 2002). The UK90 growth 

reference was determined from a sample of 32,222 measurements taken from 12 surveys 

between 1978 and 1994. It was sampled from a UK population with ages ranging from 0-23 

years, and is used for population monitoring and published figures using Health Survey for 

England and National Child Measurement Programme data. Childhood BMI was transformed 

to z-scores (adjusted for age and sex) using the UK90 growth reference with the Zanthro 

program in STATA (Vidmar et al., 2004). The program calculates standard deviation z-scores 

using Cole’s LMS method. L, M, and S represent the skew, mean, and coefficient of variation 

of the measurement as it changes with the x variable (age)(Cole, 1990).  

In adults, BMI was classified into weight categories according to the World Health 

Organisation guidelines (World Health Organization, 2000) (Table 1.1). In children, weight 

categories were grouped as ‘normal weight’ or ‘overweight/obese’ using BMIz. In line with 

previous analyses in this cohort (Parkinson et al., 2017), clinical cut-offs were used to 

determine weight categories, whereby healthy weight is between the 2nd and 91st centiles, 

overweight greater than 91st centile and obese greater than the 98th centile (SACN, 2012). 
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Clinical cut-offs are recommended by NICE in a clinical setting for individual children 

(Dinsdale et al., 2011).  

Measures of waist obesity and body fat were also considered as important adiposity 

outcomes in NTFS and GMS (section 1.1.4). In adults, waist-hip ratio (WHR) was calculated as 

waist circumference divided by hip circumference, measured by research nurses at the 

clinical examination. A WHR >0.9 in men and >0.85 in women corresponds to increased risk 

of metabolic complications (World Health Organization, 2011c). Waist-to-height ratio 

(WHtR) was used in children and is calculated as the waist circumference (cm) divided by 

height (m). This study utilised the acknowledged cut-off of WHtR >0.5 to signify waist obesity 

(Ashwell et al., 2012). Body fat was determined by bioelectrical impedance (BIA) in both 

cohorts. In adults, BF% was the proportion of fat mass relative to total body weight. In 

children, fat mass index (FMI), a relative measure of body fat, was calculated as fat mass (kg) 

divided by height (m) squared. 

2.2.2 Definition of early life 

Firstly, the definition of early life must be addressed. There are many definitions of early life 

with emphasis on the first 1000 days, which covers conception to around 24 months. The 

first 1000 days concept appears to have originated from the importance of ensuring 

adequate nutrition in early life, most frequently in the developing world. The idea appears to 

have been taken on by DOHaD researchers, with the first 1,000 days of an infant’s life having 

a great impact on the child’s growth and development, including cognitive development and 

immune function. However, this arbitrary figure relates to nutrition-related factors for 

cognitive development, and therefore this definition may be less important for non-

nutritional factors.  

A medical definition would determine infancy as the first year of life. For the purpose of this 

study, and due to the loose definitions of critical and sensitive periods, exposures will focus 

on conception to the first year of life. However, most of the data collected in the cohorts 

was postnatal.  

2.2.3 Defining early life exposures 

This study hypothesised that a number of early life factors would be associated with 

subsequent OWOB, based on the literature review presented in Chapter 1. Table 2.2 
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summarises the definition of the early life factors and covariates, which were harmonised 

across cohorts for consistency. Exposures were selected based on the availability of data 

from the NTFS and GMS. 

Birthweight was analysed as both a continuous (z-score) and categorical variable. Originally 

birthweight was recoded into low (<2.5kg), normal (2.5kg - 4.5kg) and high birth (>4.5kg) 

weight categories. However, due to the low frequency of low birthweight and high 

birthweight (in NTFS, Table 3.5), these categories were not analysed further. Instead, 

birthweight was converted to weight-for-gestational age z-scores (method outlined in 

section 2.1.1.1) and was used to determine categories of small (SGA) and less than the 10th 

or greater than the 90th percentile respectively. 

Similarly, weight at 12 months was transformed into a z-score (see section 2.2.1 for details). 

RWG was analysed as a dichotomised variable, defined as greater than +0.67 change in 

weight for age z-score from birth to 12 months. This change in is equivalent to crossing one 

major growth centile band on a standard child growth chart between the two time 

points(Ong and Loos, 2006b). 

In addition, in the cohort comparison (chapter 5) due to the large difference in birthweight z-

scores between the cohorts, weight gain conditional on birthweight was also considered. 

Conditional weight gain, or thrive index (TI), accounts for normal catch-up growth from low 

birthweight, as a linear measure of weight gain adjusted for regression to the mean (Wright 

et al., 1994). TI was calculated as weight for age z-score at around 12 months, minus the 

birthweight z-score multiplied by the regression coefficient (r, between the two weight 

measures) for the cohort (i.e. TI birth to 12 months  =  z-score12m − r × z-scorebirth). Similar to 

RWG, rapid thrive (RT) was defined as TI >0.67. 

Maternal age was categorised into 3 groups; less than 25, 25-34 and over 35. Advanced 

maternal age, defined as over 35 years, is associated with adverse pregnancy outcomes such 

as LBW, still birth and labour complications, preterm delivery and chromosomal defects 

(Jacobsson et al., 2004, Cleary-Goldman et al., 2005).  

The categories for duration breastfed determined in GMS were ‘never’, ‘<6 weeks’, ‘6 weeks 

– 4 months’ and ‘>4 months’. Equivalent categories formed using NTFS data to match when 

comparing the cohorts.  
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Adverse events in the first year of life were based around potentially stressful exposures of 

social, monetary and care issues. These events included parental separation, police 

involvement, child abuse, debt and illness or death of parent or sibling. Adversity was a 

dichotomous variable defined as experiencing any of the following; parental separation, 

police involvement, abuse, debt or death of a family member, in the first year of life.  

To increase group sizes, occupational social class was recoded to most advantaged (I, II), mid 

(III) and least advantaged (IV, V) (Table 2.1). Household deprivation coding was cohort 

specific and are explained in sections 2.1.1.2 (NTFS) and 2.1.2.2 (GMS). 

 

Table 2.1 Occupational social class recoding 

Occupational social class groupings Occupational social class recoded 

I Professional occupations  

II Managerial and technical occupations  

Most advantaged 

III(N) Skilled occupations: non-manual  

III(M) Skilled occupations: manual 

Mid advantaged 

IV Partly skilled occupations  

V Unskilled occupations 

Least advantaged 

 

Table 2.2 Definitions of the early life exposures across the cohorts 

Exposure Class Definition NTFS GMS ALSPAC 

Maternal age Continuous individual years 

Harmonised 

Analysed 
only as a 
categorical 
variable  

Categorical <25, 25-34, 35+ 
years 

Harmonised 

Birthweight 
(Bwt) 

Continuous Bwt (kg) was 
normalised to the 
UK90 growth 
standard and 
transformed into z-
scores, 
standardised for 
sex and gestational 
age 

Harmonised 

SGA, LGA Categorical <10th percentile z-
score small for 
gestational age 
(SGA), and >90th 
percentile for large 
for gestational age 
(LGA) infants 

Harmonised 
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Caesarean Categorical Mode of delivery 
was caesarean  

Not measured Vaginal or 
caesarean birth 

Not analysed 
in this cohort 

First-born Categorical Birth order was 
analysed as a 
binary (first-born) 
variable 

Data not 
available^ 

Harmonised 

SES (birth) Categorical Varied by cohort Father's 
occupational 
social class  
(SOC90) 

Townsend score 
(quartiles) 

Highest 
category of 
parental 
social class 
(OPCS) 
classification 

Household 
deprivation 

Categorical Specific to the 
time-period 

No housing 
issues, or 
evidence of 
housing issues 
(overcrowding, 
lack of hot 
water, shared 
toilet, 
dampness or 
poor repair) 

Deprived (no 
ownership) or not 
deprived indicated 
by presence of 
ownership (both 
car and home 
ownership/mortga
ge) and 
employment 
(wage earner) 

Not analysed 
in this 
cohort* 

Rapid weight 
gain (RWG) 

Categorical >0.67 SD change 
(birth to ~12 
months) in weight 
for age z-score 

Harmonised 

Rapid thrive 
(RT) 

Categorical TI >+0.67 SD 
Harmonised 

Breastfeeding Continuous 
and 
categorical 

The duration of 
any kind of breast 
feeding 

Harmonised 
(in the cohort comparison) 

Not analysed 
in this 
cohort* 

Exclusive 
breastfeeding 

Continuous 
and 
categorical 

The duration of 
only breastmilk Harmonised 

Not analysed 
in this 
cohort* 

Weaning Continuous 
and 
categorical 

The age when solid 
foods were 
introduced into the 
diet 

Harmonised 

Not analysed 
in this 
cohort* 

Adversity Categorical Experiencing any of 
the following; 
parental 
separation, police 
involvement, 
abuse, debt, death 
or illness in the 
family 

0-12 months From 8 months 
pre-natal to 4 
months post-natal  

Three 
separate 
variables of: 
Prenatal, 
postnatal, 
and both pre 
and postnatal 

*Not analysed in this cohort – only exposures that were important exposures in NTFS and GMS were analysed further in 
ALSPAC 
^ Electronic data were not available  

 

2.2.4 Definition of a confounder 

A confounder is a variable associated with the exposure of interest and the outcome, which 

when unaccounted for can lead to biased regression estimates. Kleinbaum et al,. define a 
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confounder as that whose presence or absence from the full model changes the coefficient 

of the primary explanatory variable by 10% or more (Kleinbaum et al., 1982). This definition 

was kept in mind when adjusting models for potential confounders, and as confounders 

were incorporated into the models their effects on the coefficients of other variables was 

noted to assess their impact. Key confounders were however identified from the literature 

and are listed in Table 1.5.  

2.3 Methods for the epidemiological analysis 

2.3.1 General analytical strategy 

A systematic approach was taken to determine the early life exposures associated with 

subsequent body composition in each of the cohorts. The primary focus of this work was on 

the North East cohorts; NTFS and GMS, and the workflow for the statistical analysis of these 

cohorts is presented in Figure 2.3. Additional analyses are detailed in section 2.3.7. 

In order to compare results across cohorts the data were harmonised as coherently as 

possible (see Table 2.2). Twins/non-singleton births (in the original cohorts: GMS, n=36; 

NTFS, n=28; ALSPAC, n=264) were excluded to satisfy assumptions of independence within 

the regression models, and due to differential intrauterine environments (affecting foetal 

growth) compared to singleton pregnancies. All childhood weight-related variables were 

transformed to z-scores using the same growth reference, and underweight participants (z-

score <-2 or BMI<18.5kg/m2) were excluded, as underweight shows inverse associations with 

all-cause mortality (Prospective Studies Collaboration, 2009), and therefore should not be 

combined with normal weight (the reference group). 

The ALSPAC cohort was utilised primarily for the epigenetic data. However, prior to the 

epigenetic analysis, the associations between exposures and body composition were 

examined to determine the strength and magnitude of the associations. The analysis in the 

ALSPAC cohort was a streamlined analysis utilising only BMIz and OWOB, in order to justify 

the focal exposures for the epigenetic analysis. Although some exposures have been 

analysed with regards to childhood body composition in ALSPAC (Reilly et al., 2005a) some 

were not comparable in their definitions or adjusted for the same confounders, therefore it 

was necessary to run the models for comparability.  
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2.3.2 Descriptive characteristics, sample representativeness and sex differences 

Summary statistics are provided for each exposure and outcome variable for all cohorts. All 

data were checked for the presence of extreme/implausible values, and any invalid 

measures were checked for coding errors (cross-referenced with original data where 

possible), recoded or removed. 

Early life exposures were analysed longitudinally with respect to body composition in later 

life. Attrition is common in longitudinal cohorts and therefore body composition measures 

were not available for the entire original sample at the later time point(s).  

Missing data can reduce the statistical power, can lead to biased estimates and can reduce 

the representativeness of the samples. There are three types of missing data: missing 

completely at random (MCAR), missing at random (MAR), and missing not at random (Kang, 

2013). Ideally a study will be well-planned in order to be representative of a population at 

baseline and with systematic data collection at subsequent follow ups to minimise data loss. 

However, attrition is inevitable in long-term studies. The most common approach to dealing 

with missing data is to exclude those with data missing and performing a complete case 

analysis. It is advised that researchers seek to understand the reasons for the missing data 

(Kang, 2013). In large sample sizes and if the assumption of MCAR is satisfied, then list wise 

deletion can produce unbiased estimates. However, if the sample size is small and MCAR is 

not satisfied then results may be biased. A method of dealing with missing data is 

imputation, which uses the other variables available in the dataset to estimate the missing 

variable, which has the benefit of retaining the initial cohort sample size. However, 

imputation assumes MAR and many imputation procedures assume data are normally 

distributed, therefore when these conditions are not met this could lead to incorrect coding 

of variables. In this study, as many variables were not normally distributed and were either 

binary or categorical variables, a complete case analyses was done. 

The impact of attrition and whether there were differences between those with and without 

body composition measures (the sub-sample) was assessed. This was done using t-tests, 

Mann-Whitney tests or chi-square tests for parametric, non-parametric or categorical 

exposures respectively. The reasons for the missing data was partly due to retention of the 

more advantaged groups, and therefore this was addressed using weighting in the cohort 
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comparison (section 2.3.7.3). Sex differences (if anticipated), were also assessed using these 

methods in the sub-samples (those with body composition measures).  

 

2.3.3 Correlations between exposures and body composition measurements  

To determine whether BMI is an adequate proxy measurement, the strength of correlations 

between weight outcome measures were assessed with Pearson correlation. Correlations 

between exposure variables were also assessed. The correlation coefficient (r), can range 

from +1 to -1, with r>0 indicating a positive association, and r<0 indicating a negative 

association. Results are presented as scatter graphs with Pearson correlation coefficients (r). 

2.3.4 Socioeconomic differences in infant feeding 

In the case of infant feeding, which is often socially patterned in the UK, SES is an important 

confounder. Therefore, differences in infant feeding by socioeconomic groups (birth) were 

assessed. In NTFS, the data were continuous and therefore this was done using either 

analysis of variance test (parametric data), or a Kruskal-Wallis equality-of-populations rank 

test (non-parametric). In GMS, the breastfeeding data were categorical; therefore, a Chi2 test 

was used. 

2.3.5 Examining the associations between early life factors and subsequent body composition 

Linear regression modes were used to examine associations between exposures and 

continuous outcome variables (i.e. BMI/BMIz). Linear regression, in its simplest form 

(bivariate), can be used to establish the strength of the relationship between the dependent 

variable (y, outcome) and independent variable (x, exposure), which can be viewed as the 

equation: 

y = α +  βx +  ε 

Where α is the constant or y-axis intercept, and ε is the residual model error. β is the 

coefficient of x or the slope of the regression line, and x is the independent variable.  

 

Linear regression uses the principle of least squares, whereby it aims to minimise the sum of 

all squared deviations of the observed data points from the best fitting regression line, and is 

sometimes referred to as ordinary least squares (OLS) regression.  
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An extension of bivariate regression is multiple regression, which includes multiple 

independent variables. In this model, the β coefficient is adjusted for the effect of any 

additional covariates included in the model.  

The assumptions of linear regression, and how these were addressed are in Box 2.1 and 

Table 2.3 respectively. 

Although linearity is assumed, performing a simple linear regression using a binary 

independent variable is not invalid, it is equivalent to performing a two-sample t-test 

(although addressing slightly different objectives) however with the capacity to adjust for 

covariates. 

Variable selection is an important step when estimating a linear model that explains the data 

in the simplest way. When there are many covariates, stepwise regression is helpful method 

for identifying key predictors. The goal is to produce a parsimonious and accurate model as 

it excludes variables that do not explain the variation in the outcome, and aims to retain 

independent variables that best predict the outcome. This approach is useful for explanatory 

model building; however, it may exclude important explanatory variables and known 

confounders, particularly in very large datasets where other methods may be more 

appropriate (see (Smith, 2018)). Another approach could be to leave all variables in the 

model (full model), however this may lead to many independent variables. This may 

introduce issues with collinearity or insufficient sample sizes to accurately estimate a model 

with many degrees of freedom. Alternatively, existing knowledge could guide variable 

selection, which would thereby only include the key exposures. A disadvantage to this 

approach is that relies on previous knowledge of the relationships, which might not apply in 

different populations. 

Therefore, a combined approach was taken here, utilising stepwise regression to identify the 

key exposures explaining variation in the outcome, but then models were adjusted for key 

confounders using a theory-driven approach (Table 1.5). 
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Key assumptions of linear regression 

 A linear relationship between the exposure and outcome  

 Homogeneity of residuals (homoscedasticity, residuals should have 

constant variance) 

 Independence of errors (residuals should not be correlated with 𝑦 or 𝑥) 

Other important considerations 

 The residuals are normally distributed (necessary for hypothesis tests to 

be valid rather than estimation of coefficients) 

 Any potential issues with outliers or influential data points (high leverage 

points, a measure of those which deviate from the mean) 

 There should be little collinearity between predictor variables  

 Model specification, the model should be appropriately specified with 

relevant variables and no important missing (omitted) variables 

 Predictor variables should be accurately measured  

 

Box 2.1 Key assumptions and considerations of linear regression 
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Table 2.3 Assumptions of linear regression and how these were investigated in STATA 

Issue/assumption How the assumption was checked 

Linear relationship Using a scatter plot of the x and y variable  

Homoscedasticity  Using a scatter plot of the standardised residuals against the 

predicted values  

Independence of 

errors 

This should not be an issue utilising cross-section data with 

independent study members (twins excluded) 

Normality of residuals Can be examined using a kernel density plot of the residuals with 

the normal density line overlaid, a standardised normal probability 

(p-p) plot, or quantiles of a variable quantiles plot (q-q) 

Influential data Examined using plots that shows the leverage by the residual 

squared 

Multi-collinearity Examined the variance inflation factor (variance inflation factors 

below 10 accepted) 

Model specification The STATA linktest command performs a model specification test 

based on the Goodness of link test (Pregibon, 1980) 

 The regression specification error test (RESET) for omitted variables 

implemented in STATA ovtest (Ramsey, 1969) 

 

Firstly, to determine the relationship between exposures and outcomes of interest, separate 

(bivariate) models were examined for each exposure and outcome. Next, adjusted 

regression models were constructed. Stepwise forward regression models were constructed 

using STATA stepwise modelling, with a p value of <0.1 for inclusion, informed by bivariate 

analyses. Covariates were added manually to models, with model fit informed 

by the Bayesian information criterion (BIC), whereby the model with the lowest BIC is 

preferred (Schwarz, 1978). The BIC is a model selection criterion. Adding more variables to a 

model can result in overfitting; the BIC applies a penalty accounting for the number of 

parameters to identify the best model. 

Logistic regression was performed to examine the relationships between each exposure and 

binary outcome variables (i.e. obesity, or OWOB). Coefficients or odds ratios (OR) with 

corresponding 95% confidence intervals and level of significant (p) are presented. Good 
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model fit for the multivariable logistic models was determined by Hosmer and Lemeshow’s 

test, no evidence of collinearity and no observations that deviate in an influential manner. 

In addition, to determine the impact of SES on the relationship between early life factors and 

body composition, bivariate models were adjusted for SES. Models were sequentially 

adjusted for SES at birth, SES at age 9, and at both time points, to examine their relative 

effects on regression coefficients. Similarly, the impact of lifestyle factors (at time of body 

composition measurement) was examined in GMS children by adjusting regression models 

for physical activity, and in NTFS adults by adjusting the path model (outlined in section 

2.3.6) for lifestyle factors (smoking and physical activity).  

2.3.6 Examining the pathways between early life factors and BMI 

When examining the relationship between X (exposure) and Y (outcome), all multivariate 

approaches (with more than two variables) involve the questions of moderation and 

mediation. Moderation asks if a third variable interacts with X, whereas mediation asks 

whether it intervenes on the X-Y relationship. Approaches involve statistical methods dealing 

with correlation and partial correlation. For example, these include: multiple regression, 

general linear models, linear mixed models, path analysis, or structural equation modelling 

for continuous data (Garson, 2017). 

Path analysis, which is a form of structural equation modelling, is one way to examine the 

relationships between variables, and as a means of determining which assumptions best fit 

the data at hand (Garson, 2017). Additional information is acquired using path analysis than 

through addition of variables and product terms (interactions) to regression models (Garson, 

2017).  

Alternatively, in the econometrics literature, instrumental variable methods (Sobel, 2008), 

such as two-stage least-square (2SLS) regression models are often used (Cameron and 

Trivedi, 2010). In short, in a regression of x on y, when there is endogeneity, x may be 

correlated with the error term of y which thereby incorporates the effect of unmeasured 

variables (i.e. confounders) (Angrist and Imbens, 1995). The 2SLS models address this by 

using an instrumental variable that predicts X but is uncorrelated with the y error term, 

thereby resolving the issue of endogeneity (Antonakis et al., 2014). A key benefit of this 

method is that it doesn’t require all confounders to be measured and incorporated. 
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However, this approach has several assumptions and requires good instrumental variables, 

which makes it difficult to apply appropriately (Podsakoff et al., 2011).  

If causal inference is the aim, there are numerous other methods that can be employed 

(Antonakis et al., 2014). However, if the aim is to model the relationships between variables 

and depict the relationships graphically, then path analysis is well-equipped. Therefore, a 

path analysis approach was used to investigate the life course impact of early life risk factors 

(0-1 year), SES and lifestyle on subsequent BMI. Path models were used to uncover the 

associations between variables, to disentangle the relative influence of each risk factor, and 

the indirect pathways to BMI.  

The initial baseline path model included the variables that demonstrated significant 

associations in the multivariable linear regression model. Confounders and exposures not 

included in the adjusted model were sequentially included, the model estimated and 

assessed for model fit. The model was grown adding paths between variables with a priori 

hypotheses (Table 1.5, hypothesised relationships presented in the DAG, Appendix A) and 

modification indices (suggested paths to improve model fit, as a measure of change in the 

likelihood ratio chi-square), then non-significant paths were removed until a good model fit 

was achieved.  

Good model fit was determined to be a non-significant χ2, root mean square error of 

approximation (RMSEA)<0.05 and non-significant PCLOSE, and also comparative fit index 

(CFI) and goodness-of-fit index (GFI) both >0.95. All direct paths with p<0.05 were modelled 

and standardised β coefficients are presented. Confidence intervals were determined using 

bootstrapping (50,000 iterations for two rounds of thinning). Standardised β coefficients are 

presented, which represent partial regression coefficients between connected variables, 

controlling for all prior variables (Garson, 2008).  

The indirect effect is the product of each component path, the direct effects are 

straightforward relationships (not going through any other variable) and the total effects are 

the sum of direct and indirect effects.  

A p value <0.05 was used to denote significance throughout. All statistical analyses were 

done in STATA 14 and updated to version 15 in 2017 (StataCorp, College Station, TX) and 

path diagrams were constructed using SPSS Amos (SPSS Inc, Chicago, IL). 
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Figure 2.3 Workflow of the statistical analysis in the NTFS and GMS cohorts 

 

2.3.7 Additional chapter-specific sensitivity analyses  

 Sensitivity analysis by ethnicity (chapter 4) 

Whilst it is acknowledged that OWOB disproportionately affect minority groups, there was 

no evidence that early life risk factors varied by ethnicity in the Born in Bradford cohort 

(Fairley et al., 2015a), a cohort with a larger proportion of ethnic minorities. Due to the small 

proportion of non-Caucasian children, the sample was not stratified by ethnicity. However, 

results were checked for robustness by religion due to a notable proportion of ultra-
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orthodox Jewish (UOJ) families in GMS. Sensitivity analysis was carried out to assess whether 

differences in religion may affect estimates in GMS children, which could represent 

socioeconomic differences or differences in feeding practices (as determined previously in 

the GMS cohort (Wright et al., 2010b)).  

 Robust regression (chapter 4) 

There were some outliers in FMI model, therefore a robust regression model was utilised. In 

comparison to OLS, robust regression produces a model which is less affected by outliers or 

influential observations (Rousseeuw and Leroy, 2005). It uses iteratively reweighted least 

squares whereby each point is assigned a weight and then coefficients are estimated using 

OLS. With further iterations, weights are reassigned, with points further from the model 

predictions having smaller weights. The coefficients are then recomputed using the weights. 

Estimation continues until convergence is achieved.  

The workflow for the statistical analysis is specified in section 2.3.5 (Figure 2.3). 

 Inverse probability weighting (chapter 5) 

Additional analyses were carried out in chapter 5 (cohort comparison), including testing for 

interactions within models and inverse probability weighting (IPW). In the regression 

models, interactions between explanatory variables and SES, were tested within the model 

using likelihood ratio tests.  

As cohorts were not representative of the original sample, inverse probability weighting 

(IPW) was carried out as sensitivity analysis, using variables that were significantly different 

between the cohorts (Appendix D, Table X). IPW applies weighting to the sample to 

account for the imbalanced representation of exposures. However repeating analyses with 

weighting minimally altered results, therefore unweighted results are presented.   

 Investigation of early life growth and BMI trajectories (chapter 5) 

Utilising the longitudinal data available, rapid thrive was investigated further with regards to 

BMIz over the life course. Height and weight data were available at various points in 

childhood and adolescence for GMS (ages 0, 1, 3, 6-8, 8-10, 14-16) and NTFS (ages 0, 1, 9, 

13), which were transformed into z-scores as described previous (section 2.2.1). BMIz 

trajectories were plotted by to examine the average growth patterns based on early life 

growth (rapid thrive). 
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2.4  Methods for the epigenetic analysis 

2.4.1 DNA methylation arrays and considerations  

The Illumina Infinium® HumanMethylation450K BeadChip assay (450K array) is a popular, 

cost-efficient method for large-scale profiling of DNAm. The array determines genome-wide 

methylation status of over 485,000 CpG sites. Essentially, it utilises bisulfite treated DNA to 

determine the relative proportions of methylated and unmethylated fragments (Pidsley et 

al., 2013). 

There are multiple platforms for measuring CpG methylation across the genome, with 

perhaps the most popular being the 450K array (>450,000 CpG sites), or the newer EPIC 

platform (>850,000 CpG sites). There is also the capacity to build a custom array, however 

this limits comparability between studies.  

The 450K array covers most known genes, with many probes focused in promoter regions, 

however the array also covers non-CpG island loci including in the; gene body, 3’ 

untranslated region (UTR) and intergenic sequences. Whilst the array has good coverage of 

known genes and previously identified methylated sites, it spans fewer than 2% of CpG sites 

across the genome. 

Prior to the DNAm analysis, DNA is bisulfite modified, which converts unmethylated cytosine 

residues to uracil (and subsequently replaced by thymine), whilst methylated cytosines are 

resistant to bisulfite conversion. The array determines methylation levels by quantifying the 

proportion of cytosine and thymine bases. Estimated cytosine methylation levels are 

expressed as beta values (β), which range from 0 (0% or no cytosine methylation) to 1 (100% 

or complete cytosine methylation), at each CpG site.  

 

 

 

 

β =                                                            Methylated signal                                                        

Methylated signal + unmethylated signal +100 

Figure 2.4 The calculation of beta values in methylation arrays. 
Beta values are calculated as the proportion of the signal due to methylated signal over the total signal. To ensure the 
denominator is not zero, a constant (100) is added. Beta values range from 0-1, with higher values indicating higher 
methylation and vice versa. 
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With this feature in mind, it is important to remember that, as a relative proportion across 

all cells, a 50% methylation level could represent half of all cells fully (100%) methylated and 

half of all cells completely unmethylated (0%), or alternatively that 50% the of alleles are 

methylated (allele-specific methylation), or various combinations of these two factors. 

Bisulfite sequencing techniques can provide more information about methylation patterns 

(Song et al., 2013), with the caveats being that the region sequenced is relatively small, and 

any allele-specific driven methylation patterns can be extrapolated only from the region 

sequenced (Fang et al., 2012, Kuleshov et al., 2014). Therefore, if genotype data are not 

available, the influence of other genomic loci nearby or elsewhere cannot be discerned (for 

example the influence of single nucleotide polymorphism (SNPs)). 

The 450K array uses two types of probes that quantify methylation in different ways. Type I 

use a similar design to that exploited in the older 27K beadchip array, which use a single 

colour but with two different probes to capture methylated and un-methylated. Whilst type 

II probes use one probe but two different colours for methylated (red) and un-methylated 

(green). The design of the array creates some issues in analysis, for example; the distribution 

of methylation values differ by probe; type II probes show greater variability and are often 

less reproducible (Dedeurwaerder et al., 2011). Furthermore, some probes exhibit cross-

reactivity or contain polymorphisms (Chen et al., 2013). Difference in colour channel 

performance (related to chip lot and scanner) can affect calculation of beta values. 

Normalisation methods can help to combat these issues.  

At present, the 450K array is the most widely used platform, however with the advent of the 

larger EPIC array it is likely that studies in the future will begin to transition to the newer 

platform.  

The key limitations of the 450K array (cell types, SNPs, batch effects) can be quelled using 

appropriate statistical techniques, as described further in the following sub-sections.  

 Adjusting for cell type heterogeneity  

Determining the proportion of cell types is an important factor in epigenetic analysis. Ideally, 

DNAm would be measured in the tissue relating to the phenotype of interest, however 

obtaining such tissues is often not feasible and considered invasive in human population 

studies. DNAm is most frequently measured in blood, as it is an easily accessible tissue, 
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therefore acting as a surrogate medium. Whole blood is composed of erythrocytes (red 

blood cells), leukocytes (white blood cells) and platelets (Figure 2.5). Leukocytes comprise of 

granulocytes (neutrophils, eosinophils, basophils) and agranulocytes (monocytes, 

lymphocytes), whilst subtypes of lymphocytes include B cells, T cells and natural killer (NK) 

cells. These cells are all nucleated and therefore contain genomic DNA.  

However, this presents a challenge when analysing because DNAm is cell-type specific 

(Illingworth et al., 2008, Mill and Heijmans, 2013), and therefore variations in cell 

proportions will give different methylation profiles. Factors influencing DNAm marks and 

cell-type proportions can be related to; age, phenotype or disease (Mill and Heijmans, 2013). 

Therefore, cell composition, being both associated with the methylation level and in some 

cases also with the exposure/outcome of interest, can confound the relationship between 

CpG methylation and the exposure/outcome. 
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Figure 2.5 Lineage of blood cell development.  
Stem cells differentiate to form different white blood cells, platelets or red blood cells.  
 

Discrepancies arising as a result of not adjusting for cell type composition were first noted by 

Liu et al,. in an epigenome-wide association study (EWAS) comparing rheumatoid arthritis 

cases and controls (Liu et al., 2013a). They found that there were many false positive 

associations due to the ratio of granulocytes to lymphocytes, but after correction these 

associations were no longer significant. Re-analysis of previous studies found that much of 

the observed variability in DNAm could be explained by cell composition (Jaffe and Irizarry, 

2014a), highlighting the importance of adjusting for cell composition when using whole 

blood (Adalsteinsson et al., 2012). In an ideal situation, individuals would have their blood 

cellular subtypes sorted and profiled, to determine the proportion of each cell type. 

 

Image from NIH National Cancer Institute 

Image: NCI Dictionary of cancer terms, “Blood cell development”, National Cancer Institute, Available at 
https://www.cancer.gov/publications/dictionaries/cancer-terms/def/white-blood-cell. Accessed January 2019. 

 

https://www.cancer.gov/publications/dictionaries/cancer-terms/def/white-blood-cell
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However, this often is not often carried out, therefore computation methods and algorithms 

have been developed for estimation. 

Cell proportions were calculated in ALSPAC using the Houseman reference-based algorithm 

(Houseman et al., 2012). The Houseman algorithm is a popular method to estimate cell 

proportions and has been independently validated (Houseman et al., 2012, Accomando et 

al., 2014). Other reference-based methods exist (Newman et al., 2015), however the 

Houseman reference-based method is often preferred (Kaushal et al., 2017). Alternatively, 

methods not utilising cell references use unsupervised deconvolution methods instead, such 

as surrogate variable analysis, which shows robust sensitivity and specificity (Leek and 

Storey, 2007, Houseman et al., 2016).   

Phenotypic variation in cell-type composition could confound analyses. On the other hand, it 

could also represent an important physiological change in response to an exposure or 

disease, which may be related to the phenotype of interest. When searching for biomarkers 

(related to an exposure) that are associated with a disease outcome, to regress out variation 

from cell counts could potential disregard important loci. Obesity is an acknowledged 

chronic, inflammatory condition. It has been associated with inflammatory indicators 

including C-reactive protein (Visser et al., 1999a) and white blood cell counts (Bastard et al., 

2006, Farhangi et al., 2013). A degree of inflammation is a component of the obesity 

phenotype, therefore to find novel biomarkers associated with this phenotype, biomarkers 

were investigated in models with and without adjustment for cell composition and findings 

were compared.  

 Methods of adjusting for confounding  

There are many potential sources of confounding in DNAm studies. Microarrays are run in 

separate batches due to scale, therefore major sources of variation are row, slide or chip 

effects, processing date or operator (Leek et al., 2010). Thoughtful experimental design and 

randomisation can help mitigate these effects. Direct adjustment will only account for the 

influence of known confounding variables (such as batch, age, or sex). The epigenome is 

complex and influenced by the environment in a manner that is still not fully understood, 

and even in the best-designed studies, there will be many unmeasured factors, which could 

have an impact on DNAm and lead to spurious findings.  
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Methods that account for unmeasured confounders are useful in longitudinal studies on 

human populations where it would be impossible to; measure or to know all potential 

confounding factors, or if they were known, to attempt to integrate them all into a statistical 

model. Many methods have been proposed for dealing with the heterogeneity, either by 

removing non-specific variation (not just from cell types) from unmeasured confounders 

(such as those utilising surrogate variables) (Gagnon-Bartsch and Speed, 2012), or methods 

that were designed specifically for methylation data, such as those developed by Houseman 

et al, (Houseman et al., 2012, Houseman et al., 2014).   

The aim of surrogate variable analysis (SVA) is to remove the unwanted variation, whilst 

retaining differences due to primary variable of interest; thereby identifying consistent 

differences between groups and removing latent variation. These methods are also capable 

of dealing with variation from batch, slide or chip , which cannot always be adequately 

corrected for (Teschendorff et al., 2009). 

SVA finds sources of variation from the methylation data itself, and models these as singular 

vectors (surrogate variables) derived from singular value decomposition, which will be 

linearly uncorrelated. The surrogate variables are then included as covariates in the 

regression model (Leek and Storey, 2007). Independent SVA (ISVA) is a modified version of 

SVA whereby the surrogate variables are deemed independent. In support of ISVA, known 

confounding factors such as age and batch are obviously statistically independent variables 

and are linearly uncorrelated, and therefore it would be appropriate to model these as 

independent variables. ISVA was shown to perform best at capturing a known specific 

biological signature when compared to other adjustment methods (Teschendorff et al., 

2011). However that may not hold true for all datasets (Teschendorff et al., 2011), and the 

best method will be dependent on the tissue type under investigation, and whether the 

analysis is reference-based or reference-free (Teschendorff and Zheng, 2017). A thorough 

study compared each of the common methods (Houseman’s reference-based method, 

RefFreeEWAS, SVA, ISVA, EWASher and RUV) using extensive simulations. There was no 

method that performed perfectly for all parameters measured, however the authors 

concluded that SVA was the most robust (and ‘safest’) method (McGregor et al., 2016). In 

summary, there is support for both SVA and ISVA as high-performing adjustment methods, 

therefore both were utilised in these analyses.  
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 Exclusion criteria  

The 450K array relies on the specific hybridisation of genomic DNA to probes on the chip, 

and therefore alterations in the DNA such as SNPs, repetitive sequences or 

insertions/deletions can interfere with accurate measurement of DNAm (Chen et al., 2013). 

Known SNPs can be cross-referenced and removed prior to or post-analysis.  

It is also recommended to exclude identified non-specific probes to reduce the risk of false 

discovery, as these may not hybridise specifically. SNPs and non-specific probes (Chen et al., 

2013) were removed in epigenetic analyses.  

2.4.2 Measurement of DNA methylation in ARIES 

DNAm was quantified for the ARIES sub-sample using the 450K array (Illumina Inc., CA) 

according to the standard protocol. Cord and peripheral blood samples were collected using 

standard procedures and DNA was extracted. DNA was bisulfite-converted using the Zymo 

EZ DNA Methylation kit (Zymo, Irvine, CA) prior to hybridising DNA to the BeadChip. 

Sample handling, measurement of DNAm and quality control were carried out by the 

ALSPAC team at the University of Bristol. A semi-random approach was used to distribute 

samples across slides to ensure each time point was well represented, and to minimise 

potential confounding by batch effects. Samples failing quality control thresholds (average 

probe P-value ≥0.01) were repeated.  

ALSPAC methylation data were pre-processed with background correction and subset 

quantile normalisation in R (version 3.0.1), using the Touleimat and Tost pipeline (Touleimat 

and Tost, 2012, Relton et al., 2015). The data are processed prior to researcher use, primarily 

applying the following adjustments. Slide effects were regressed out on the raw betas before 

normalisation. Functional normalisation implemented in the R package meffil was used to 

normalise the data, which is a between-array normalization method and an extension to 

quantile normalisation (Fortin et al., 2014). This removes unwanted technical variation by 

regressing out the variation explained by control probes. Normalisation was applied 

separately by gender for the sex chromosomes, and there was also a background correction 

and a dye-bias correction applied. Many ARIES samples have been successfully genotyped, 

and any samples that failed genotype quality control due to sample swaps, gender 

mismatches, or relatedness issues between mothers and offspring were excluded. Gender 

mismatches (n=411) for individuals were assessed by comparing genotype probes to SNP-chip 
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data, or by assessing sex-chromosome methylation. Sample type, whether cells were from 

white cells from buffy coat or peripheral blood lymphocytes from whole blood, did not 

explain much variation in the child or adolescent samples. Any duplicates were removed 

(age 7, n=10; age 17, n=10) with retention of the sample with the highest number of 

detected probes. 

The proportions of CD8 T cells, CD4 T cells, NK cells, B cells, monocytes and granulocytes in 

the samples were estimated using the estimate CellCounts function (using the Houseman et 

al. method (Houseman et al., 2012)), in the minfi Bioconductor package in R by the ALSPAC 

team. Cell counts were corrected for in the linear adjusted models (see Figure 2.6). 

Sensitivity analysis was run with models without correction for cell counts to see if 

correction influenced results.  

DNAm levels are presented as ‘beta’ values (β-value), which represents the proportion of 

cells methylated at each individual locus, ranging from 0-1 (0-100% methylated).  

2.4.3 Statistical analysis  

There were three different analyses undertaken to examine the relationship between DNAm 

data (outcome) and early life exposures, including analysis of differentially methylation 

positions, differentially methylated regions, and differentially methylated positions in a 

subset of candidate loci. 

The significantly differentially methylated loci were analysed further with respect to 

phenotype; to determine if the loci were related to subsequent obesity; and via annotation 

of the gene region to highlight functional characteristics.  

 Differentially methylation positions  

An epigenome wide association study (EWAS) examines genome-wide epigenetic marks 

(DNA methylation) in order to determine differential sources of variation for a given 

exposure or phenotype. For example, this could be to distinguish between cases or controls, 

or between exposed and unexposed. It is also possible to conduct an EWAS on a continuous 

variable, thereby assessing the linear relationship between the exposure/phenotype and 

epigenetic marks. Using methylation data from the ARIES subset of the ALSPAC cohort, 

methylation at individual CpG sites was investigated for each exposure in individual EWAS’s. 

All EWAS and bioinformatics analyses were done in Rstudio version 3.3.2. 
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For the statistical analysis using the ALSPAC and ARIES data, the associations between 

exposures of interest and DNAm at 7 and 17 years, at more than 450,000 CpG sites were 

examined (for varying numbers of participants depending on exposure data availability (see 

Table 6.9)).  

The EWAS utilised a linear model, with DNAm as the outcome and the exposure of interest 

as the independent variable, as the baseline model. Age and cell type composition are 

important considerations in epigenetic analysis (although many of the DNAm changes that 

have been associated with age are actually due to age-related changes in cell composition) 

(Jaffe and Irizarry, 2014b). Therefore, models were adjusted for age, sex and cell 

proportions. Four models were run in total; unadjusted, adjusted for covariates, surrogate 

variable adjusted and independent surrogate variable adjusted (Figure 2.6). Cell counts 

included; B cells, CD4T cells, CD8 T cells, granulocytes, monocytes and NK cells. Analyses for 

each variable were done for complete cases. As sensitivity analysis, all models were also run 

without cell counts included. 
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Model 1 (no adjustment) 

DNAm = exposure 

 

Model 2 (adjusted for covariates) 

DNAm = exposure + age + sex + cell counts 

 

Model 3 (SVA) 

DNAm = exposure + age + sex + cell counts + surrogate variables 

 

Model 4 (ISVA) 

DNAm = exposure + age + sex + cell counts

+ independent surrogate variables 

Figure 2.6 EWAS adjustment models run using the Meffil R package  

 

All analyses were done in R, with the package Meffil (Min et al., 2017). The package employs 

SVA or ISVA methods which have been shown to successfully account for unmodelled or 

unknown confounding factors (such as batch) (Leek and Storey, 2007, Teschendorff et al., 

2011). Meffil simultaneously computes unadjusted, adjusted, SVA and ISVA models, thereby 

allowing results to be compared (Min et al., 2017) (Figure 2.6). Whilst all models are 

computed by the software, only SVA and ISVA models were considered, as the ‘none’ and 

‘all’ models will not capture the residual variation associated with technical (batch) effects.  

In order to minimise the influence of outliers in methylation data, beta values were 

winsorised at the level of 5% (95th percentile cut-off). Winsorising adjusts extreme values so 

that they are transformed to match the next closest value.  
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When computing multiple tests, there is the increased potential to find a significant result 

through chance, which would lead to a false positive. Correction for multiple testing was 

applied using a false discovery rate (FDR) threshold of p<0.05. The Benjamini-Hochberg 

method (FDR) determines the threshold for the expected proportion of false positives (type I 

errors) (Benjamini and Hochberg, 1995). In contrast to the more conservative Bonferroni 

correction (specified p value (i.e. p=0.05) divided by number of comparisons), which treats 

all p values as equal, the FDR assesses P values based on ranking. Bonferroni correction can 

lead to false negatives and runs the risk of discarding significant observations, whilst FDR 

adjustment aims to have the smallest number of false signals appearing as significant, but 

with potentially more type I errors. In summary, the Bonferroni cannot control for type II 

and the FDR cannot for type I, therefore, both the FDR and Bonferroni p values were 

assessed.  

Results of EWAS models were analysed using Q-Q plots. These show how well the specified 

distribution fit the results, and if the quantiles of theoretical and actual distributions agree, 

the points will lie on the line y=x. Departures from linearity indicate issues with the data. The 

Q-Q plots were visually inspected to determine the best fitting model. If the same loci 

appeared in different models, and the Q-Q plots for that variable were equivalent, then 

results from the SVA models were prioritised as it is more robust (McGregor et al., 2016). 

 Differentially methylated regions 

Instead of looking for changes at individual CpG loci, another means of identifying 

phenotypic differences in methylation is to analyse regions. DMRs, which are stretches of 

CpG loci, may have more of a functional effect on gene expression than individual CpG loci 

(Jones and Baylin, 2002). Additionally, if changes in DNAm are small but persistent across a 

region, there is more statistical power to detect them collectively as DMRs (Robinson et al., 

2014).  

DMRcate is an R package which uses Kernel smoothing (non-parametric estimation of the 

underlying curve/structure) for the estimation of DMRs, and allows adjustment for 

covariates (Peters et al., 2015). A study using simulated data found that DMRcate 

outperformed the other methods studied in terms of precision, but with a slightly lower 

sensitivity for change in betas (Martorell-Marugan et al., 2018). Its predictive performance 

was better than Bumphunter and Probe Lasso (two common methods used in DMR analysis), 
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and similar to that of comb-p, which often performs best but is implemented in python 

programming language (Peters et al., 2015). As the intention was to implement analyses 

using R in order to integrate the analysis with other Bioconductor tools, DMRs were analysed 

using the Bioconductor R package DMRcate (Peters et al., 2016).  

DMRcate utilises the limma R package to apply Bayesian linear model methods (Peters et al., 

2016). Similar to the models that were ran analysing single CpG loci, DNAm was the outcome 

and the exposure was the independent variable. However, when using DMRcate it is 

preferable to use M values (log logit transformed Beta values, M=log(beta/1−beta)), from a 

statistical standpoint to deal with any homoscedasticity (Du et al., 2010). Firstly, the t-

statistic for the linear model is computed, and then kernel smoothing is applied with a 

Gaussian kernel bandwidth for smoothed-function estimation (lambda), scaled by a scaling 

factor C (for bandwidth). DMRcate applies correction for multiple testing using the 

Benjamini-Hochberg method to determine the significant CpGs. DMRs are computed using 

the specified lambda for CpGs within that distance from one another, and the p value for the 

DMR is calculated using Stouffer’s method (Stouffer et al., 1949). For optimal prediction of 

DMRs using 450K array data, the recommended settings are (lambda=1000 and C=2); as the 

Gaussian kernel is calculated as lambda/C = sigma, this translates to one standard deviation 

of Gaussian kernel equal to 500 base pairs. Power in DMRcate increases when lambda is 

smaller or C is larger (Odom et al., 2018). 

DMRcate was executed using the recommended settings on the M-values, for each exposure 

and time point, and the models were run with and without adjustment for cell counts. 

Whilst ISVA and SVA have many benefits, unlike other methods such as ComBat (which 

adjusts for batch effects using an empirical Bayes framework (Johnson et al., 2007)), they do 

not directly adjust methylation data, meaning there are no adjusted data for downstream 

analyses. Therefore, in order to keep analysis in line with the previous models, the surrogate 

variables (that were calculated using meffil in the EWAS models) were included as covariates 

in the DMR models. The surrogate variables from the SVA model were used as this is 

deemed the ‘safest’ model (McGregor et al., 2016). Probes ≤2 nucleotides distance to a SNP 

with a minor allele frequency > 0.05, or probes in the list of cross-reactive probes, were 

filtered out (Chen et al., 2013, Pidsley et al., 2016). In this array, these steps filtered out 

approximately 15,518 of 453,723 (~3.3%) loci. In short, the analysis involved running model 

3 in Figure 2.6, both with cell counts and without.  
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 BMI-associated candidate loci approach 

The previous methods have focused on determining new loci primarily concentrated on the 

exposures. In order to narrow down loci to those suspected to be related to adiposity, a 

candidate gene approach was taken using CpG loci found to be associated with BMI. 

Therefore, instead of the 485,000 CpG loci (on the 450K), this BMI-associated, smaller subset 

of CpG loci were instead analysed as outcomes (n=187). This aims to increase the likelihood 

of finding a biomarker that is associated with adiposity, as well as the exposure. The 

candidate loci were selected from a robust, large-scale EWAS that utilised data from across 

multiple cohorts (Wahl et al., 2016). Epigenetic loci were investigated with respect to BMI in 

cohorts of European and Indian-Asian descent (Wahl et al., 2016), which were then validated 

in other population-based studies, and some loci via other methods (e.g. pyrosequencing, 

n=4). After validation, 187 genetic loci were identified as associated with BMI in adults 

(Appendix E).  

These loci were chosen as this was a powerful study that included multiple analytical 

components to produce robust findings. The results were: replicated in separate samples, 

robust to method of analysis, independent of cell heterogeneity and correlated with multiple 

tissue levels, and demonstrated some clinical significance. The study had a large sample size 

(EWAS n=5,387, replication n=4,874) with a diverse population. DNAm was primarily 

investigated in blood; as this is useful for clinical purposes, but there were also moderate to 

strong correlations between tissues (i.e. blood and adipose tissue). The candidate loci also 

mapped to genes with roles such as in lipid metabolism, inflammation, and metabolic, 

cardiovascular, respiratory and neoplastic diseases, suggesting functional roles in disease.  

The early life exposures studied here have been associated with subsequent changes in BMI. 

Therefore, it is plausible to hypothesise that if DNAm is a mediating mechanism between 

exposure and outcome, these early life exposures may influence methylation of those loci 

which are associated with BMI. 

Using the 187 loci as candidate loci, EWAS were run for individual exposures, at both time 

points using the Meffil R program (Min et al., 2017). This involved running the same models 

outlined in Figure 2.6, but in this case DNAm refers to the 187 individual loci.  
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 Phenotypic differences in methylation  

Methylation at specific, significant loci was examined graphically at the two time points (age 

7 and 17) by phenotype. Within the same individual, the change in methylation over time 

(from age 7 to 17), was also examined with respect to the exposure using the Student’s t-

test. 

To assess whether methylation varied by body composition, differentially methylated loci 

were also investigated with respect to both the exposure and outcome of interest (OWOB). 

A statistical method to test for differences between two or more groups is using an analysis 

of variance (ANOVA) test. A one-way ANOVA is appropriate when there is one independent 

variable. The first assumption of the ANOVA is that residuals are normally distributed. This 

can be determined by inspecting the residual plots. Homogeneity of variance is another 

important assumption of the one-way ANOVA. The Bartlett's test for equal variances can 

provide information as to whether this assumption holds true (the null hypothesis is that all 

groups are equal), however this test is based on the assumption that the samples are 

normally distributed. When there is violation of normality, a more robust test for 

homogeneity of variances is Levene’s test, which is less influenced by departures from 

normality. Similar to Bartlett’s test the null hypothesis is that the variance of all groups is 

equal. Another assumption of the ANOVA is that groups are independent (i.e. study 

members will belong to one group only).  

The null hypothesis for an ANOVA is sometimes referred to as the omnibus null hypothesis, 

as when it is rejected, the ANOVA test statistical indicates that group means are not equal, 

i.e. there is a difference between groups, however it does not indicate which group is 

different. Post-hoc analysis, can be used to identify where the differences lie, and can also 

take into account correction for multiple comparisons (e.g. Bonferroni or Benjamini-

Hochberg), and adjusting the accepted p value threshold. A caveat being, that when the 

estimates are conservative, adjusting for multiple testing increases the likelihood of type II 

errors (false negatives).  

For data that are not normally distributed, there is a non-parametric version of this test 

(Kruskal-Wallis, KW). Similarly, the KW test assumes that the groups have the same 

distributions, but it does not make the same strict assumptions as the ANOVA and is instead 
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rank-based. However, in substituting data to ranks, information is lost, which makes it a less 

powerful test than a one-way ANOVA. 

 

Figure 2.7 The ANOVA null hypothesis 

Visual inspection (box plots) of the data aided interpretation, and histograms of residuals 

were used to determine if the data fit the normality assumption. Bartlett’s test (Snedecor 

and Cochran, 1983) was used to test if groups had equal variances, or Levene’s test in the 

case of non-normality. If data fit the assumptions of normality and variance, a one-way 

ANOVA was used with Bonferroni adjustment for multiple testing, or in the case of non-

normality, the KW test was used. For the KW test, Dunn's multiple comparisons test using 

rank sums (Dunn, 1964) was applied using the user-written STATA program (Dinno, 2015). 

The package applies correction for multiple comparisons, and results were Bonferroni 

adjusted by multiplying the p-values in each pairwise test by the total number of pairwise 

tests. These analyses were done in STATA version 15.1 (StataCorp, College Station, Texas, 

USA) using standard commands aside from those specified. 

 

 Annotation of significant CpG loci 

The human reference genome (GRCh37/hg19 assembly) accessible on the UCSC Genome 

Browser was used for conceptualisation of the gene region (Kent et al., 2002). The genome 

browser is accessible online and allows interactive visualisation of sequence data and gene 

regions from many species, including all vertebrates and some invertebrates. The human 

GRCh37/hg19 assembly was used, which is compatible and consistent with bioinformatics 

tools for 450k analysis. Significant CpG loci were mapped to the genomic location (including 

nearest gene and associated CpG island) using the Illumina ilmn12.hg19 annotation (Hansen, 

2015). To examine if there was consistency in methylation within the CpG island, 

correlations between significant CpG loci (with the other CpG loci in the island) were 

investigated, including separately by exposure.  

If the CpG loci identified from the EWAS were located in proximity to a gene or within an 

island, any other CpG sites on the 450K which mapped to the gene and/or island were also 

examined (individually as outcomes) with respect to the exposure using linear regression 
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(adjusted for age, sex and white blood cells). Similarly, significant CpG loci were investigated 

at the alternative time point (i.e. DNAm in adolescence was also examined at the specified 

loci if in childhood DNAm changes were significant). 

 Examining associations for rapid thrive 

Due to the similarities between RT and RWG, and in an attempt to distinguish effects which 

may be partly due to birthweight, loci that were significant for RWG were analysed with 

respect to RT. This was done using a linear model, adjusted for age, sex, and the SVAs (from 

the RWG EWAS model), with separate models with or without cell counts. 

2.5 Methods for Lab analysis 

Loci of interest identified from EWAS’s in the ALSPAC cohort at age 7 (chapter 5) were 

investigated further in NTFS adults. There were no pre-existing DNA methylation array data 

for the NTFS samples, which is costly to obtain. Therefore, isolation and amplification of the 

loci of interest was achieved using DNA primers. Firstly, the surrounding gene regions were 

identified and checked for suitability. To differentiate the methylated positions, the samples 

underwent bisulfite modification, and the genetic material was amplified. Finally, the 

samples were sequenced to determine the proportion of methylated residues, and data 

were analysed statistically to examine the relationships between DNAm and the phenotype.    

2.5.1 Identification of epigenetic loci 

There were significant (PFDR<0.05) associations (in adjusted models) identified for RWG at 

two CpG loci. These loci were cg01379158 (NT5M) and cg11531579 (no associated gene) and 

were both associated with a 1% increase in methylation (p=0.02) in those who had RWG. 

Furthermore, at both CpG loci the highest methylation was in those with RWG and had 

OWOB. On these criteria, these loci were deemed good candidates for further investigation 

in line with selection criteria (Box 2.2).  
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Box 2.2 Gene loci selection criteria 

 

2.5.2 In silico bisulfite conversion and primer design  

Firstly, the region of interest was identified using the UCSC genome browser (Hinrichs et al., 

2018). The CpG site was entered into the search box and the chromosomal location 

confirmed. A region of 1000 base pairs (bp), i.e. 500 bp both upstream and downstream of 

the target locus was used for primer design. The region also encompassed neighbouring CpG 

sites that do not feature on the 450K array.  

The region was inspected for SNPs and repeat elements, which could interfere with gene 

amplification and sequencing. This was done using the drop-down menus to display repeat 

elements and to display common SNPs (SNPs with >= 1% minor allele frequency (MAF) that 

map only once to the assembly), flagged SNPs (SNPs < 1% MAF, or unknown meaning they 

could be >1%) and multiple SNPs (SNPs that map to >1 place on the assembly).  

Gene loci selection criteria 

 A significant change in methylation at a CpG site associated with an early 

life exposure (False Discovery Rate (FDR) adjusted p≤ 0.05) 

 Significant changes in the adjusted (surrogate variable analysis or 

independent surrogate variable analysis adjusted) models (p<0.05) 
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The sequence of the 1000bp region was annotated further in Microsoft Word, this included 

denoting CpG sites, SNPs and primer placement (Box 2.3 and Figure 2.8). The primer 

sequence is based on the bisulfite-converted sequence. Methylated cytosines (methylated 

CpG sites) are resistant to bisulfite modification (overviewed in section 2.5.4). Therefore, 

after bisulfite conversion, all non-methylated cytosines are converted to thymine 

(represents the non-CpG sites and non-methylated CpG sites), and the only cytosine residues 

that remain are methylated cytosines (Figure 2.8). Therefore in order to design primers, the 

sequence must be transformed to the bisulfite sequence (replacing all potentially non-

methylated cytosine (C) with Thymine (T)) (i.e. the cytosine residues not adjacent to 

Guanine), using the method outlined in Box 2.3. 

 

Figure 2.8 Bisulfite conversion and primer placement around the region of interest. 
After bisulfite treatment of the genomic DNA strand and amplification, all non-methylated cytosines have been converted to 
thymine. The sequencing primer is a few bases upstream of the CpG of interest. The forward primer is 63 bases upstream of 
the sequencing primer, and the reverse primer is 80 bases after the last base. The region contains 3 CpG sites and a potential 
SNP. 

 

Primers were designed using Methprimer (Li and Dahiya, 2002), an online tool for designing 

1. The genomic sequence was extracted from the UCSC  

2. Using find and replace (CTRL+H), all spaces were removed by finding ‘^p’ and 

leaving replace clear 

3. Next, all CpG sites were found using the criteria: find ‘CG’, replace with ‘XG’ 

4. Next all non-CpG site C residues were replaced with T using: Find ‘C’, replace 

with ‘T’ 

5. Finally, the Cytosines adjacent to Guanine were converted back to C’s using: 

Find ‘X’, replace with ‘C’ 

Box 2.3 in silico bisulfite conversion 
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bisulfite-conversion-based Methylation primers. Primers for bisulfite sequencing should be 

non-specific regarding methylation status, i.e. the primers will bind whether the CpG is 

methylated or unmethylated (Li and Dahiya, 2002). Therefore, when designing primers, it is 

important to avoid CpG sites.  

The original genomic DNA sequence was entered as the input sequence, with the target 

specified as 500 base pairs (bp) along and 2 bp (CG) in length (e.g. 500,2) where the target 

CpG was located. In the initial primer design (Table 1), all parameters were set to default, 

including an optimum product size of 200 bases, a primer melting temperature (Tm) of 55oC 

(range 50-60 oC) and primer size of 25bp (range 20-30bp). An ideal product size is 150-

200bp, as larger fragments can be more difficult to amplify due to DNA fragmentation during 

bisulfite modification (Patterson et al., 2011). Similar annealing temperatures for the 

forward and reverse primer were also considered when choosing primer sets to minimise 

amplification bias (Shen et al., 2007). If no primers could be identified, then the ‘optimum 

criteria’ were ‘relaxed’ (Table 2.4). 

Primer sets from the Methprimer output were reviewed in turn with reference to the 

annotated bisulfite sequence. If the forward or reverse primer set contained any SNPs or 

repeat elements, then another primer set was selected and inspected. If no primers were 

identified that did not contain SNPs, then the SNP allele frequency was inspected.  

Table 2.4 The optimum and relaxed criteria utilised for primer design 

 Optimum criteria Relaxed criteria  

Product size (bp) 200 100-300 

Melting temperature 

(oC) 

55 50-70 

Primer length (bp) 25 16-25 

SNPs Does not contain SNPS Can contain low frequency SNPs 

 

Oligo nucleotides for the primers were obtained from IDT (Integrated DNA Technologies 

(IDT), IA, USA). The reverse primers were labelled with biotin, which allows for sepharose 

beads to bind when preparing the samples for pyrosequencing. 
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2.5.3 Sample storage and quality 

DNA was extracted from peripheral blood samples previously by Pearce et al. (2012c) using 

the Nucleon BACC2 kit (Tepnel Life Sciences, UK). DNA samples were stored at -80 °C in 

individual wells of four 96-well plates, in either Tris-EDTA (TE) buffer or water, with an 

adhesive plate seal. The sample quality, condition, freeze-thaw cycles, and previous 

treatment prior to retrieving samples was unknown. Therefore, the quality of all samples 

was assessed using a NanoDrop 2000 (Thermo Fisher Scientific, MA, USA) prior to use. As the 

samples had been stored for a long time, the seals had become brittle and did not appear 

airtight, meaning that for some samples there was minimal material left. In an attempt to 

salvage any remaining DNA, 10μL of warmed (37°C) nuclease free water was added to wells, 

the solution was agitated using pipetting, and samples were left for ~1 hour before removal. 

Although biological material can degrade over time, DNA is fairly robust. 

2.5.4 Bisulfite modification of genomic DNA 

First demonstrated by Frommer et al. (1992) and  CIark et al. (1994), bisulfite modification 

allows selective conversion of non-methylated cytosines in genomic DNA, for analysis of 

DNAm. It is considered the gold standard method for DNAm studies requiring resolution of 

single nucleotides (Clark et al., 2006). Bisulfite treatment deaminates (removal of the amine 

group) unmethylated cytosines converting to uracil in single stranded DNA, whilst 5-

methylcytosine (5-mC) remains unchanged (as the methyl group prevents conversion). 

Therefore, following gene amplification, the uracil residues will be amplified as thymine, and 

the 5-mC as cytosine, allowing differentiation between methylated and unmethylated bases 

upon sequencing (Clark et al., 2006). 

Genomic DNA was bisulfite converted using the EZ DNA Methylation Gold™ kit (Zymo 

Research, Cambridge Bioscience, UK) according to the manufacturers protocol. Using this kit, 

bisulfite conversion is quick, as DNA is denatured and bisulfite converted in a single step in 

individual reaction tubes. Using spin columns, the samples are desulphonated and cleaned 

up ready for downstream use. The kit states a conversion efficiency (of non-methylated C 

residues are converted to U) of >99%, and DNA recovery of 75% (Manufacturers handbook, 

Zymo EZ DNA Methylation Gold™ kit, Zymo Research). Generally, this kit performs well in 

terms of conversion (Holmes et al., 2014), and is one of the preferred options when high 

DNA recovery is required (Kint et al., 2018). Samples that were below the threshold of 95% 



100 
 

for bisulfite conversion efficiency (determined using the PyroMark software, see) were 

repeated. 

The manufacturer’s protocol recommends converting DNA in the range of 500 pg - 2μg. The 

samples ranged in concentration from 0-100 ng/μL. Therefore, all samples were diluted with 

water to contain either 50ng (or less in the low DNA samples, for which all material was 

used) or 100ng of starting genomic DNA (gDNA) in a volume of 20μL. 

To these samples, 130μL of prepared CT conversion reagent (containing sodium 

metabisulfite) was added and tubes placed in a Bio-Rad thermocycler S1000 (Hercules, CA, 

USA) using the following conditions: 98°C for 10 minutes, 64°C for 2.5 hours and a 4°C hold. 

To bind the sample to the column, the samples were transferred into columns with the 

addition of 600μL of M-Binding Buffer and centrifuged at full speed, and the flow through 

was discarded. Next, samples were washed with 100μL of M-Wash Buffer, and 

desulphonated using 200μL of Desulphonation Buffer for 20 minutes at room temperature, 

and then spun. The samples were then washed twice using 200 μL of M-Wash Buffer. Finally, 

the samples were eluted into a clean microcentrifuge tube using 12 μL of M-Elution buffer. 

2.5.5 PCR optimisation 

Polymerase chain reaction (PCR) is a molecular biology method used amplify stretches of 

DNA. PCR optimisation is required to determine the most appropriate annealing 

temperature (Ta) for the primer set that gives the best product. An optimised reaction was 

deemed as that which produced a clear, single band when visualised on the gel, with no 

secondary products (potential primer dimers). Optimisation was carried out using samples 

that were 50ng or 100ng (prior to bisulfite conversion) to ensure that the PCR would work at 

low DNA concentrations. PCR master mix was prepared in a PCR hood that had been treated 

with ultra-violet light (minimum 20 minutes) prior to use to minimise the risk of 

contamination. PCR master mix was prepared containing GoTaq® Hot Start Green Master 

Mix (Promega), forward and reverse primers, and nuclease free water in the volumes 

specified in Table 2.5. The volume of bisulfite DNA (bsDNA) was dependent on the sample 

concentration: for samples containing 50ng of gDNA 2μL of bsDNA was used, whilst 1μLof 

bsDNA was used for 100ng reactions (plus 9 and 8μL of water respectively). All assay 

validation steps used HEK293T (Human embryonic kidney) cell line DNA.  
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Table 2.5 PCR master mix composition, volume and reagent supplier 

Reagent Amount (μL) Supplier 

GoTaq® Hot Start Green Master Mix 12 Promega (WI, USA) 

Forward primer (10pmol/μL) =10µM 1 IDT (IA, USA) 

Reverse primer (10pmol/μL) 10µM 1 IDT (IA, USA) 

Nuclease free water 8 or 9 Qiagen (Hilden, Germany) 

bsDNA (100ng, 50ng) 1 or 2 Cell line DNA or NTFS DNA 

Total 23  

 

A no template control was included in all PCR assays, which substituted bsDNA for water, to 

detect the presence of any DNA contamination. Methylated controls were also included (0% 

and 100% methylated), ensuring primers could bind irrespective of methylation level. 

Sources of methylated and unmethylated bisulfite converted DNA were commercial 

(unmethylated EpiTect control genomic DNA, Qiagen, Hilden, Germany). 

All PCR reactions were carried out using the Bio-Rad thermocycler S1000 (Hercules, CA, 

USA). The estimated annealing temperature (Ta) was determined using the most respected 

theoretical primer Ta calculation by Rychlik et al. (1990) (Box 2.4). The average Ta (of the 

forward and reverse primers) was used as a mid-point to base the temperature range for 

gradient PCR. 

A temperature gradient PCR was carried out for assays using human cell-line bisulfite 

converted DNA (HEK 293T cell line) in order to determine the optimal Ta. For gradient PCR, 

the 8 rows of the thermocycler each have a different temperature setting for the annealing 

stage. The thermocycler determines the temperature settings based on the range inputted. 

The PCR reactions were then run with the reaction conditions outlined in Box 2.5. 

• Ta=0.3*Tm PRIMER + 0.7*Tm PRODUCT - 14.9 

• Forward = 0.3*49.5 + 0.7*68.4 -14.9                  = 14.85+32.98= 47.83 

• Forward(edit)=0.3*49.4 + 0.7*68.4 -14.9          = 14.82+32.98= 47.80 

• Reverse=0.3*52.3 + 0.7*68.4 -14.9                    = 15.69+32.98= 48.67 

Box 2.4 An example annealing temperature (Ta) calculation for the forward and reverse primers for cg11531579  
Calculations are according to the empirical formula by Rychlik et al,. (Rychlik et al., 1990) 
Ta, annealing temperature; Tm, melting temperature.  
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2.5.6 Gel electrophoresis 

PCR products were visualised on agarose gels. During the validation stage, this gave an 

indication of the amount of DNA (strength of the band), the PCR product size, and whether 

there was any contamination or secondary products.  

Agarose gels contained 1.5% agarose powder dissolved in 1X Sodium boric acid (SB) buffer, 

microwaved until dissolved. GelRed (Cambridge BioSciences, Cambridge, UK), a fluorescent 

nucleic acid dye, was added (2μL per 100ml gel) for staining, which fluoresces when exposed 

to ultra-violet light allowing visualisation. Fragments less than 100bp were likely a result of 

primer dimers.  

For the gels, 2μL of PCR product from each reaction was run alongside a 100bp DNA ladder 

(New England Biolabs, Ipswich, MA, USA), as a guide to fragment size. Gels were run at 90 

Volts for 30 minutes and were visualised using the Odyssey Fc viewer (Li-cor Biosciences Ltd, 

Lincoln, NE, USA).  

1. 1 cycle of 95 °C for 10 minutes  

2. 50 cycles of: 

95 °C for 40 seconds,  

Ta °C for 40 seconds,  

72 °C for 40 seconds; 

3. 1 cycle of 72 °C for 5 mins 

4. 4°C ∞ 

Box 2.5 PCR reaction conditions  
Ta, annealing temperature. 
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2.5.7 Pyrosequencing as a targeted approach for quantifying DNA methylation 

Measuring methylation: Cytosines can be either 

methylated or unmethylated and are therefore binary 

states. Methylation reflects an average across a whole 

sample.  

Pyrosequencing is a high-throughput CpG methylation 

analysis platform, which detects level of methylation 

at multiple, individual CpG sites. It is an accurate, 

reproducible method and considered the “gold 

standard” in DNAm analysis (Kurdyukov and Bullock, 

2016). 

It involves the real-time, sequence-based detection 

and quantification of DNAm. Using sequencing by 

synthesis, the sequential incorporation of nucleotides 

complementary to the template DNA leads to 

detection of nucleotide in the form of a light signal 

(Tost and Gut, 2007)(Figure 2.9).  

Prior to pyrosequencing, template bisulfite DNA must 

be amplified using a biotin-labelled primer. After 

denaturation the biotin-labelled single strand is 

isolated and hybridised to the pyrosequencing primer.  

The hybridised PCR product is incubated with the 

required enzymes (DNA polymerase, adenosine 

triphosphate (ATP) sulfurylase, luciferase, and 

apyrase) and substrates (adenosine 5' phosphosulfate 

(APS) and luciferin). One of the four 

deoxyribonucleotides (dATP, dCTP, dGTP and dTTP) is 

added to the reaction according to the dispensation 

order (determined by the pyrosequencing computer software). When complementary 

nucleotides are introduced, catalysed by DNA polymerase, pyrophosphate is released. The 

pyrophosphate along with APS, is enzymatically converted by ATP sulfurase to ATP. When 

Figure 2.9 Overview of pyrosequencing theory, reactions 
and measurement   
Image from (Qiagen, 2010)) 
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ATP is present, Luciferase converts luciferin to oxyluciferin, which releases visible light in 

proportion to the number of nucleotides incorporated. This light signal is detected by 

sensors in the pyrosequencer, and is emitted as a peak, the height of which is proportional 

to the number of nucleotides in the raw data output (pyrogram). Once unincorporated 

nucleotides have been degraded by Apyrase, the next nucleotide is added and continues 

until the DNA strand is elongated. The methylation level is quantified as the proportion of C 

to T as indicated by the peaks and presented as percentage methylation (Figure 2.10).  

2.5.8 Pyrosequencing assay design 

Pyrosequencing assays require an additional ‘sequencing primer’. This primer ideally would 

be ~10-15bp and start just before the CpG of interest, or a few bases upstream (<15bp). The 

sequence of the sequencing primer needs to avoid CpG sites to ensure binding whether the 

sequence is methylated or unmethylated. The sequencing becomes less reliable further 

away from the sequencing primer, hence it is beneficial to have the sequencing primer 

immediately before the CpG of interest. The sequencing entry (entered for the 

pyrosequencing assay) was the sequence (<100bp) that immediately follows the sequencing 

primer and includes the CpG of interest plus any additional CpGs in the region of interest (in 

this case this included 2 additional CpGs) (Table 2.6). CpG 2 and 3 in the analysis sequence 

are not featured on the 450K array. The sequencing entry also contained a low frequency 

SNP (rs190517174, A: 99.641% (4990 / 5008); G: 0.359% (18 / 5008)). This was entered into 

the PyroMark ID software as ‘R’ to denote either A or G. 

Table 2.6 Dispensation order for the cg11531579 assay.  

CpG Analysis sequence Dispensation order 

cg11531579 RGTTTGTTAAATTC/TGTC/TGTTAC/TGAGT TAGTGCTGATCAGTCGTGATCGAG 

C/T indicates the CpG sites in the sequence. Dispensation order (the sequence in which nucleotides are dispensed) is 
determined by the PyroMark software to maximise efficiency. 

2.5.9 Pyrosequencing protocol 

Both the binding buffer and annealing buffer solutions were prepared according to the 

protocol. The Binding Buffer Solution was prepared to a total of 70μL per sample (beads, 

binding buffer and Milli-Q H2O) as per the measurements in Table 2.7. This was added along 

with 10μL of PCR product to a 96 well plate. The plate was sealed and mixed (1400rpm) for 

10 minutes. To a PyroMark Q96 Plate Low, 40μL of Annealing Buffer Solution was added, 
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comprising of 38.4μL Annealing Buffer (20 mM Tris-Acetate - 2 mM MgAc2, Qiagen, Hilden, 

Germany) and 1.6μL Sequencing Primer (10pM)(Table 2.7). 

Table 2.7 Preparation of the binding buffer and annealing buffer solutions 

 Reagent  Per well (μL) Source 

Binding buffer solution   
1x Binding Buffer 40 Qiagen (Hilden, Germany) 
Streptavidin-sepharose beads 2 VWR International (Leicestershire, UK) 
Milli-Q Water 28  
Total per well 70  
Annealing buffer solution    
Annealing buffer  
(20 mM Tris-Acetate – 2 mM MgAc2) 

38.4 Qiagen (Hilden, Germany) 

Sequencing primer (10pM) 1.6 IDT (IA, USA) 
Total per well 40  

 

After 10 minutes of mixing, the 96 well plate was transferred to the PyroMark® Q96 ID 

Vacuum Workstation (Qiagen, Hilden, Germany). The sepharose beads in the binding buffer 

solution bind to the biotin labelled primer (in the samples). The sepharose-bound samples 

are then isolated and immobilised using the vacuum block tool. The bound-samples then 

undergo denaturation (to single stranded DNA) and washing in the wells of the vacuum 

workstation. Firstly, the samples were rinsed with 70% ethanol. Next, the samples were 

denatured in the denaturing buffer (0.2 M NaOH), and then washed in the wash buffer well 

(10X, pH 7.6 (10 mM Tris-Acetate)). Finally, the samples were released into the PyroMark 

Q96 Plate containing annealing buffer solution. The plate was sealed, the samples heated for 

2 minutes at 80oC, and then left to cool to room temperature for 10 minutes to allow 

annealing of the sequencing primer to the single stranded biotin-labelled PCR product. The 

reagent cartridge was loaded with nucleotides, enzyme and substrate according to the 

volumes calculated by the PyroMark software. 

Samples were run in duplicate from the same PCR reaction (section 2.5.10). Replicates that 

were not within 5% methylation of one another were repeated. Methylated controls (0% 

and 100%) were included in each plate and should be comparable between plates. To 

indicate the presence of contamination, negative controls from PCR (no template control) 

and pyrosequencing (binding buffer solution and no PCR product) were included on all 

plates. Pyrosequencing reactions were carried out using the PyroMark Q96 ID system 

(Qiagen, Hilden, Germany), in 96-well PyroMark Q96 plates (2 batches) on the same day.  
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The PyroMark software output also includes a bisulfite modification quality check (pass 

indicates conversion efficiency >95%), to check that all non-methylated cytosines have been 

converted to thymine. Furthermore, the software also includes a peak height quality check 

for all CpG sites. For any samples that did not pass the quality check, the pyrograms were 

visually inspected and if there were no apparent issues in the bases specified or the peak 

heights, were corrected to ‘passed’ status. Some samples had very low peak heights and 

noisy traces and therefore failed (n=11). This was likely due to low DNA concentrations as all 

the samples which failed due to low peak heights were those that had <50ng of starting 

DNA, therefore these were repeated with 3μL of bsDNA. An example of a pyrogram output 

from the PyroMark software is shown in Figure 2.10. 

 

 

Figure 2.10 Example pyrogram of cg11531579 assay.  
Peak height is presented on Y axis and dispensation order on the X-axis. The blue shaded areas show the CpG sites, with 
corresponding % methylation above. The yellow shaded indicates the bisulfite modification quality check. The peaks 
indicate that light was emitted when that nucleotide was added. CpG 1 is 45% methylated, CpG 2 is 67% methylated and 
CpG is 42% methylated. The n.a. corresponds to the potential SNP which was not a feature of this analysis. 

2.5.10 Pyrosequencing validation 

Pyrosequencing assays were validated across a known range of DNAm concentrations to 

ensure that DNAm is quantifiable across a range of values. Validation was done using DNA 
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methylated control DNA (Epitect, Qiagen, Hilden, Germany) between 0% and 100% 

methylation (Table 2.8). For each CpG, the expected vs observed methylation was plotted on 

a scatter graph, and the linear equation of the line and the correlation between values were 

determined.  

Table 2.8 Composition of the standards for 10ul between 0-100 % methylation DNA using control DNA 

% Methylation 

of DNA 

Methylated 

DNA % 

Unmethylated 

DNA % 

Methylated 

DNA (μL) 

Unmethylated 

DNA (μL) 

0 0 100 0 10 

5 5 95 0.5 9.5 

10 10 90 1 9 

25 25 75 2.5 7.5 

50 50 50 5 5 

75 75 25 7.5 2.5 

90 90 10 9 1 

95 95 5 9.5 0.5 

100 100 0 10 0 

 

2.5.11 How to define outliers in DNA methylation analysis  

There were some influential outliers in DNAm and therefore steps were taken to address 

these. The influence of outliers can be large when the sample size is relatively small, which 

can affect the mean and increase variability. In statistical models, many of which rely on 

mean differences, this can influence results and model validity. Statistical inference will rely 

on a standard deviation which measures normal spread of data, but extreme values at either 

side of the distribution increases the standard deviation and decreases the likelihood of 

finding a statistically significant difference, which increases likelihood of type II error 

(Cousineau and Chartier, 2010). There are various ways to define outliers and handle 

outliers; however there is no unanimous consensus.  

One route would be to determine if the values obtained are consistent with findings from 

other published studies. There has not been another study which has analysed DNAm at this 

locus using pyrosequencing, and it is acknowledged that alternative methods for quantifying 

DNAm (such as arrays) may differ in the values obtained. However, blood methylation levels 
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in adults have been investigated in a handful of cohorts with freely accessible 450K array 

data. CpG methylation at this locus has been measured in similar populations (European 

decent) in cohorts in Australia and in the Netherlands. In the Brisbane Systems Genetics 

Study (BSGS), DNAm was measured in 614 individuals from 117 families of European descent 

in Brisbane, Australia (Powell et al., 2012). Families consisted of adolescent monozygotic (n = 

67 pairs) and dizygotic (n = 111 pairs) twins, their siblings (n = 119), and their parents (n = 

139). The children were on average 14 years old (range 9-23), adults were 47 years old 

(range 33-75) (Figure 2.12), and beta values at this CpG were between 0.05-0.12 (Figure 

2.11). The authors state that any measurement greater than five interquartile ranges 

(determined/decided by comparing estimates with and without outliers) from its nearest 

quartile was set to missing in order to avoid the influence of outliers (Powell et al., 2012). 

Therefore, the range of methylation values at this CpG could have differed prior to 

adjustment. In the BSGS, methylation at this CpG (cg11531579) positively correlated with 

age (Pearson correlation =0.34, p<0.0001) (Figure 2.12).  

 

 

Figure 2.11. Histogram of methylation (beta values) at cg11531579 in the Brisbane Systems Genetics Study 
(BSGS). 
N=614. Line represent Kernel density estimate. Methylation ranged from 0.05-0.12 (median 0.07).  
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Figure 2.12 Plot of methylation (beta values) at cg11531579 by age in the Brisbane Systems Genetics Study (BSGS).  
 Line represents the linear fit with shaded 95% confidence intervals. Pearson correlation =0.34, p<0.0001. Age ranged from 
10-75 years. 

 

Another study examined methylation in elderly individuals. In the B-Vitamins for the 

PRevention Of Osteoporotic Fractures (B-PROOF) study, a randomised controlled trial which 

involved B12 and folic acid supplementation, methylation levels were quantified in 87 

individuals aged 65-75 years from the Netherlands using the 450K array (Kok et al., 2015). 

In the B-PROOF study, the range of methylation values was greater than those in the BSGS 

cohort, with beta values ranging from 0.05 to 0.3 (Figure 2.13). The data presented from the 

B-PROOF study are the filtered data, normalised using the Subset-quantile Within Array 

Normalization (SWAN) procedure (Maksimovic et al., 2012) (available in the R package minfi 

(Aryee et al., 2014)).  
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Figure 2.13 Methylation (beta values) at cg11531579 in the B-PROOF study. 
Betas were normalised betas using the SWAN normalisation procedure. Line represent Kernel density estimate. 
Methylation values ranged from 0.05-0.30, median methylation was 0.10. Baseline age ranged from 65-75. Methylation did 
not vary with age within this age range.  

Another option for defining outliers would be to use the statistical formula that defines 

outliers as greater than 1.5 x IQR. Using this formula on NTFS data would exclude data points 

with methylation greater than 11.2% (n=16), which is in line with methylation levels from the 

Brisbane study (max beta value was 0.12, aka 12%). However, this would exclude many 

values that could be valid, as seen in the B-PROOF study, whereby the upper observed 

methylation levels were 32% (beta value 0.32). The upper values in these two large studies 

are very dissimilar (12% - 32%) (Table 2.9) and choosing one of these values as part of the 

criteria would give notably different results. 

In NTFS, DNAm was centred around 3%, with a minority of samples that had very high 

methylation (Figure 2.14). Therefore, using a percentile cut-off (90th percentile, >13.4%) 

would exclude those with very high methylation, leaving observations that are more 

representative of the sample generally.  

Different cohorts adopt different methodological processes for dealing with outliers in their 

data, and different normalisation pipelines. This makes comparing the statistical outliers 

with values obtained in previous studies problematic, as the data presented are often 

processed data (such as with B-PROOF and BSGS), with limited information provided on the 

processing steps applied. 
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However, as there is consistency in the values specified using the statistical formula, 90th 

percentile and the Brisbane study, there is some agreement for an upper limit of 12% (Table 

2.9). Therefore, the definition of ‘high methylation’ utilised here was methylation >12%, 

which is reasonable considering the characteristics of the data. Methylation increases at this 

locus with age (Figure 2.12), which could explain some differences observed, and the 

Brisbane study included ages more similar to this cohort, whereas the B-PROOF study 

included older participants.  

Sensitivity analysis was done excluding the outliers. Outliers were defined as those with 

>12% methylation, in line with findings from previous studies (Table 2.9). Statistical analyses 

were repeated with outliers excluded to see how this influenced results.  

It is worth noting that other factors such as disease or lifestyle can influence methylation 

patterns (Robertson, 2005, Anderson et al., 2012). In NTFS, no variables (sex, smoking, 

exercise, SES, RWG, birthweight, alcohol intake) predicted whether an individual had outlier 

methylation. Sample sizes were too small to investigate whether high methylation levels 

were associated with disease (i.e. cancer or infection). 

 
Table 2.9 Threshold methylation values for the different approaches to defining outliers for cg11531579 

Method Study Threshold methylation value 

Statistical method (>1.5*IQR) NTFS 11.2 

90th percentile  NTFS 13.4 

Comparison with other data sets Brisbane 12 

B-PROOF 32 

ALSPAC  12 

Beta values are presented as % methylation for comparison. IQR, inter-quartile range.  

2.5.12 Statistical analysis 

Pyrosequencing results were analysed using STATA version 15 (STATA Corp., Texas, USA), 

and methylation values are reported as percentages (0-100%). Average (mean) DNAm was 

calculated at each individual CpG locus from the duplicate pyrosequencing reactions. From 

this, overall mean methylation (across the region spanning 3 CpG loci), was calculated as the 

average of the 3 values at the 3 loci. The correlation between CpG loci was assessed using 

Pearson’s correlation, and were also examined stratified by RWG.  
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There were outliers in DNAm values (very high methylation), which positively skewed the 

data, therefore the median was the preferred summary statistic. Outliers were detected 

across all CpG loci, and those which had high methylation at 1 CpG site tended to also have 

high methylation at the other loci. The impact of the outliers was addressed by using the 

statistical methods for non-parametric, positively skewed data. Furthermore, sensitivity 

analysis was carried out to assess the impact of the outliers.  

Summary statistics are presented for DNAm by RWG and by body composition (OWOB, OB). 

Phenotypic (RWG, OWOB, OB) differences in DNAm were compared using Wilcoxon signed-

rank test(s). DNAm between sub-phenotype groups (no RWG/RWG and OWOB/healthy 

weight) were compared using the non-parametric Kruskal-Wallis test. This test is less 

sensitive to outliers, or non-normal distributions, and therefore is a more appropriate test to 

use than the ANOVA. A post-hoc Dunn’s test was used to adjust for multiple comparisons. 

The association between DNAm and phenotype was assessed further in regression models 

(detailed methods in section 2.5.12.1), with adjustments for sex. Batch (i.e. pyrosequencing 

plate) was initially included as a factor variable in regression models, however inclusion did 

not affect estimates (<10% change in coefficients) and therefore batch was not considered a 

confounder in these analyses. Stratified analysis was carried out to examine methylation in 

only those who had RWG in childhood (the exposed group), with regards to adult OWOB.  

Analyses of the epigenetic datasets (to determine outliers) was done using R version 3.5.2, 

and reports methylation (beta values, ranging from 0-1). 

 Statistical models 

Both the relationship between the early life exposure (RWG) and later life DNAm, as well as 

the relationship between DNAm and outcome (body composition) were of interest, and 

were addressed using an adaptation of the ‘meet in the middle’ approach. This strategy has 

been proposed as a means to identify intermediary biomarkers related to both exposure and 

disease outcome (Vineis and Perera, 2007), and has been previously applied in the 

metabolomics literature (Chadeau-Hyam et al., 2011, Assi et al., 2015). In short, this 

approach evaluates the following relationship: exposure  intermediate biomarkers of 

exposure  disease. In this approach, omics data from prospective cohorts is used to 

identify molecules that represent intermediate markers of early effect, which are used to 

link exposures with disease endpoints (Vineis and Perera, 2007). The approach is flexible in 



113 
 

that it can utilise data from a prospective study, or can crossover between exposure 

biomarkers and disease risk markers from case-control studies. If searching for causal 

associations, the causal nature of an association is reinforced if it is found in all three steps, 

however causality is not justifiable without formal mediation analyses. 

Statistical models were utilised to examine the associations between the 

exposure(RWG)DNAm, and the DNAmoutcome (body composition) associations to 

gauge clues about DNAm as a possible intermediary. These models had to consider the 

characteristics of the data and the model assumptions, therefore a variety of models were 

utilised (Table 2.10). 

The relationship between body composition outcomes (OWOB, OB) and DNAm (exposure) 

were assessed using logistic regression. As sensitivity analysis, stratified analysis examined 

associations in the exposed (those who had RWG) population (Appendix F, Table XXIV) 

however associations did not differ. 

There were indications from the scatter plots that the relationship between BMI and DNAm 

was non-linear (outlined in section 2.5.12.1.1). Therefore, fractional polynomial models were 

used in order to determine the appropriate power transformation for these data. Median 

and Tobit regression models were used to examine the relationship between DNAm and 

RWG, to account for the positive skew in the dependent variable (DNAm).  

Table 2.10 Summary of the statistical models, exposures, outcomes and age at measurement 

Statistical 

model 

Reasoning Exposure 

(age) 

Outcome 

(age) 

Sensitivity b 

Linear  
regression 

1. To model a perceived 
linear relationship  
2. Non-linear 
relationship was 
analysed with fractional 
polynomial terms 

DNAm a (age 
50)  

BMI  
(ages 50 and 60) 

✔ 

Logistic  
regression 

Binary outcome variable DNAm a 

(age 50) 
OWOB  
(ages 50 and 60) 

✔ 

   OB  
(ages 50 and 60) 

✔ 

Median  
regression 

Skewed outcome 
variable 

RWG  
(0-12 
months) 

DNAm a  
(age 50) 

✔ 

Tobit  
regression 

Skewed outcome 
variable with many 
zero’s 

RWG 
(0-12 
months) 

DNAma 

 (age 50)  
✔ 
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a DNA methylation (DNAm) refers to separate models for the 3 individual CpG loci, and for average methylation.  
b Sensitivity analysis was done for CpG3 only (as it was the CpG of interest).  

2.5.12.1.1 Fractional polynomial terms 

Fractional polynomial (FP) models can be used to compare fit in regression models using 

non-linear functions (Royston and Altman, 1994). The combinations of powers (−2, −1, −0.5, 

0, 0.5, 1, 2, 3) are each fitted to the model until the best fitting model (lowest deviance) is 

achieved. The FP degree of the polynomial (the largest exponent) is termed m.  

Linear regression using the derived fractional polynomial terms was utilised with BMI as the 

outcome and DNAm as the predictor.  

2.5.12.1.2 Median regression model 

Standard linear regression uses the mean of the dependent variable (Y) to make inferences 

about the data, whereas quantile regression makes predictions for a given quantile of Y, 

such as the 50th (median). Median regression is a semi-parametric form of regression 

analysis which is more robust to outliers than standard linear regression (Koenker and 

Bassett Jr, 1978). It does not require the same assumptions as linear regression regarding a 

parametric distribution of the residuals or constant variance. Median regression was utilised 

to examine the relationship between methylation (age 50) with the exposure, RWG, 

adjusted for confounders (sex, birthweight). Robust estimates of standard error are 

reported, to account for heteroscedasticity (demonstrated using residual plots). These 

results were compared with those from the Tobit models. 

2.5.12.1.3 Tobit model 

A Tobit model was also used to estimate the linear relationship between methylation and 

RWG. The Tobit model is a censored regression model, which estimates linear relationships 

between variables when there is censoring in the outcome variable from either above or 

below (Tobin, 1958). Censored distributions are a mixture of both discrete and continuous 

distributions. Values above or below a threshold are censored (i.e. unknown above the 

upper or below lower limits), such that all values take on that specified value, even if the 

true value may be higher or lower. For example, the Tobit model will regard observations 

below the lower limit as lying somewhere between the limit and zero. 

Censoring from below would apply in this case to accommodate the many methylation 

values that equal 0 (Humphreys, 2013). The presence of many zeros in the dependent 
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variable causes issues when using an ordinary least squares model, as the data are positively 

skewed. However, it is assumed that these are true zeros in this case. Here the outcome 

(methylation) has both a lower and upper limit of detection (as identified in the assay 

validation), meaning methylation is frequently reported as 0% because the sensitivity of this 

assay (the smallest value of methylation that was observed at 0% methylation in the 

validation) was ~3% (Figure 2.14). In this case, a Tobit model would be appropriate, with 

lower censoring at 3%, which would mean that any observation less than 3% is not known 

exactly but then takes on that value. Upper censoring was also applied with the upper 

detection limit from the assay validation.  

 

Figure 2.14 Observed distribution of methylation values at CpG3 (cg11531579).  
If the lower limit of the assay is 3% (dashed line), then n=80 of these samples fall above the limit. Therefore, the 
distributions for samples with over 3% methylation is known, but only know the number of observations below 3% is 
known. Median regression and Tobit regression were utilised to address this issue.  

2.5.13 Potential effects of single nucleotide polymorphisms 

A potential explanation for the high methylation observed in some samples, is that SNPs 

either upstream or downstream could also influence methylation (Gibbs et al., 2010, Chen et 

al., 2013). In order to investigate if methylation patterns were being influenced by SNP 

effects, the region nearby the CpG of interest was sequenced. Samples were selected with 

high methylation (>12% methylation). There were 7 samples with high methylation, which 
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had DNA remaining. These were randomly matched (sex, RWG, BMI (age 50)) with other ‘low 

methylation’ (<5%) samples using the STATA program ccmatch (Cook, 2015).  

Genomic DNA primers were designed using the region 800 bp either side of the CpG of 

interest, forming a product size of 865 bp. PCR reactions were optimised as described 

previously (section 2.5.5) using a temperature gradient at both high (100ng) and low (50ng) 

amounts of DNA. Once optimised, PCR was carried out on the NTFS DNA samples, which for 

many samples used the remaining DNA. An estimated 20ng of gDNA (where available) was 

used for each PCR reaction in a total reaction volume of 24uL. Some samples failed (likely 

due to very low DNA concentrations), with no visible bands when visualised using gel 

electrophoresis, leaving 3 pairs (n=6) samples for sequencing.  

PCR clean up and sequencing (of the left and right strands) was carried out by the University 

of Sheffield Core Genomic Facility. After sequencing, the left and right reads need to be 

aligned, however all the left reads failed sequencing, and therefore the reverse complement 

of the right sequence was used for analysis.   

The sequence traces were visually inspected for quality. Sequences were aligned to the 

reference sequence using genescreen, a desktop program for alignment of multiple DNA 

sequences that highlights SNPs (Carr et al., 2011). The SNPs were compared between 

matched pairs. Linkage disequilibrium, when genetic variants are inherited in a non-random 

manner, was examined using the web-based tool: LDlink (Machiela and Chanock, 2015). 

Between two genetic variants, D prime (D') indicates the allelic segregation, and R squared 

(R2) measures the correlation of alleles, with values ranging from 0 (weak correlation) to 1 

(strong correlation). 

  



117 
 

Chapter 3. Exploring the relationship between early and 

later life exposures and obesity in middle-age  

3.1 Introduction 

This chapter addresses the first aim of the thesis and examines if early life factors and SES 

are associated with body composition in NTFS adults (aged 49-51 years), in order to 

determine which (if any) early life factors have a lasting effect into middle age, irrespective 

of various lifestyle and socioeconomic influences. The investigation of early life factors for 

obesity risk is a relatively recent concept, hence early life factors have been investigated in 

few pre-obesogenic cohorts so far. Additionally, the majority of the literature concentrates 

on childhood obesity, and there is limited data as to whether these are risk factors in adults, 

due to a lack of long-term follow-up data in many studies (Parsons et al., 1999). Data from 

NTFS, which commenced in 1947, provides the opportunity to investigate early life factors 

for in a pre-obesogenic, post-war cohort of middle-age adults to address these 

shortcomings.  

These are important questions to ask as they might direct whether interventions or 

resources should focus on addressing the early life exposures, or on modifying environment 

and lifestyle, in order to reduce the burden of obesity.  

3.2 Aims 

The analysis in this chapter utilises data from a pre-obesogenic environment cohort to i.) 

Determine if early life exposures were associated with adult body composition in the NTFS 

cohort; ii.) Examine if risk factors vary for different outcomes i.e. using proxy measures or 

direct measures of body composition and distribution; and iii.) Examine the relative 

contribution of early life factors, SES and lifestyle to adult BMI, as well as the relationships 

between these factors. 
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3.3 Participants and Methods 

3.3.1 Exposure and outcome data  

The NTFS dataset is described in detail in chapter 2.1.1. A large proportion of the cohort 

were traced at age 50 (n=866, 88%), with 113 lost to follow-up, which included those who 

died (after age 1), moved abroad or were untraceable.  

Early life exposures used in this analysis included birthweight (continuous and categorical), 

occupational social class at birth, maternal age (continuous and categorical), infant feeding 

(breastfeeding, exclusive breastfeeding and weaning age), bacterial infections, adverse 

events, and housing problems. Sex and gestational age were additional covariates.  

Data on lifestyle factors (smoking, physical activity) and socioeconomic position were 

derived from the self-completed questionnaire, and nutrient intake from the food frequency 

questionnaire, at age 50. Multiple dimensions of body composition were analysed as 

outcomes including; BMI and obesity (OB), body fat percentage (BF%) and waist-hip ratio 

(WHR). The coding of the early and late life factors is in section 2.1.1.2. 

3.3.2 Statistical methods  

Descriptive statistics are presented for each demographic, explanatory and outcome 

variable. A potential issue with longitudinal data is attrition (loss of participants over time), 

which reduces sample size and can leave a biased remaining sample. Apart from sex (fewer 

males), the cohort followed up at age 50 were shown to be representative of the original 

cohort for the early life factors examined in a previous study (Lamont et al., 2000). This was 

reassessed for the study members who had BMI measures at age 50, with respect to the 

early life variables of interest in this study (methods in section 2.3.2).  

Relationships between BMI and obesity (BMI>30kg/m2) and each of the early life and later 

life factors were examined using linear (BMI, WHR, %BF) and logistic (obese) regression 

models, and path analysis. For details on statistical methods see 2.3.5. 
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3.4 Results 

3.4.1 Sample representativeness 

Questionnaires were returned by 574 members and 412 attended a full clinical assessment 

between ages 49-51. There were some differences between the original cohort and those 

who attended the clinic at age 50 (Table 3.1). There were a greater proportion of women 

(p<0.01), and fewer from the lower occupational social class group. Therefore, sex and SES at 

birth were included as covariates in adjusted models.  

Table 3.1 Differences in early life variables between NTFS study members present at birth and at age 50 

  
Variable 

Mean/Median/(%) 
P value 

Did not attend Attended 

Birthweight (z-score) -0.2 -0.1 0.57 

Maternal age (years) 28.3 28.7 0.28 

Housing problems (%) 58 52 0.06 

Duration Breastfed (days) 132.9 119.6 0.16 

Female (%) 44.6 56.5 <0.01 

 SES (birth, %) 

Least advantaged 33 27 

0.06 Mid 54 62 

Most advantaged 13 11 
P-values calculated from t-tests, chi-square tests or Mann-Whitney tests as appropriate 

3.4.2 Sex differences 

There were no a priori reasons to anticipate sex differences in early life exposures, however, 

socioeconomic differences between men and women have been observed when examining 

obesity (Wardle et al., 2002). Therefore, a Wald test was performed for each outcome for 

the socioeconomic variables (occupational SES at birth and middle age, education and 

income) to determine if there were significant differences between men and women. These 

results indicated that the models for WHR and BF% (but not BMI) should be stratified by sex. 

Furthermore, as there are sex-specific cut-offs for WHR (Table 1.1) and BF% (Table 3.2) for 

men and women, it is appropriate to stratify. There were also biological differences in 

support of stratifying by sex for these outcomes, whereby most men had an ‘at-risk’ WHR 

(82% men, only 21% women), and most men had obese levels of body fat (86%, compared to 

just 56% of women). 

  



120 
 

 
Table 3.2 Percentage BF cut-offs by sex for adults (aged 40-59) using the Gallagher classification 

Age (years) Category Sex   
Men Women 

40–59 Underweight <11.0% <23.0% 

Healthy 11.0%–22.9% 23.0%–34.9% 

Overweight 23.0%–28.9% 35.0%–40.9% 

Obese ≥29.0% ≥41.0% 

 

3.4.3 Descriptive characteristics 

 Outcome measures 

At age 50, the cohort had the same proportion of healthy weight (40%) and overweight 

(40%), with the remainder obese (20%) (Figure 3.1). These figures are in line with UK 1997 

averages (age 45-54) of 43.6% overweight and 22.1% obese (Health and Social Care 

Information Centre, 2014). There were significant differences in BMI categories between 

sexes; with 50% of NTFS men classed as overweight compared to 32% of women.  

 

 Healthy weight (n) (%) Overweight (n) (%) Obese (n) (%) Total P 

Males 54 31.2 86 49.7 33 19.1 173 0.001 

Females 103 46.2 73 32.7 47 21.1 223  
Figure 3.1 Proportion (%) of NTFS study members in each weight category at age 50 stratified by sex. 
Number of observations (n). Chi-square p value shown for differences in distributions between sexes 

 

BMI values for males followed a normal distribution, whilst the female values were skewed 

by some values greater than 40Kg/m2 increasing the range of values (Appendix B, Figure VII). 

According to the Gallagher classification for age 40-59, the mean BF% for both men (36.4%) 

31
47

50
32

19 21

MALE FEMALE

Normal Overweight Obese
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and women (41.7%) (Figure 3.1) was in the category for greater risk of suffering from obesity 

related health conditions (Gallagher et al., 2000). As to be expected, women had a higher 

mean BF%, however males had a higher BMI and WHR (Table 3.3). Mean WHR in females 

was within healthy limits, whilst the average value for men was in the ‘at-risk’ category.  

Table 3.3 NTFS continuous outcome variables at age 50 stratified by sex 

Outcome  
variable 

Male  Female  
n Mean SD Min Max  n Mean SD Min Max P  

BMI 173 26.92 3.60 19.39 38.74  225 26.48 5.28 15.81 48.09 0.02 
Body fat 
(%) 

172 36.43 7.16 15.40 54.40  223 41.74 9.12 14.40 61.80 <0.001 

WHR 172 0.95 0.06 0.78 1.08  225 0.80 0.06 0.68 0.97 <0.001 
When testing for differences in distributions, parametric t-tests (WHR) were conducted or Mann-Whitney tests (BMI, BF%) 
were used for skewed distributions. Number of observations (n), standard deviation (SD), minimum (min) and maximum 
(max) values and P values for differences between sexes. 
 

 Correlations between adiposity outcomes 

Correlations between measures of adiposity were stronger for females than males (Figure 

3.2). The strongest correlation for both sexes was between BMI and body fat, suggesting 

that BMI is a good predictor of body fat in this population. There were also moderate 

positive correlations between WHR and body fat (Figure 3.2). There was a weak correlation 

between BF% and WHR, more so for males (r=0.34) than females (r=0.42).  
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A. WHR and BMI  

B. BMI and BF%  

 

C. WHR and BF%  

 
Figure 3.2 Correlations between NTFS outcome measures stratified by sex. 
A.) BMI z-score and body fat percentage (BF%).  
B.) waist-hip ratio (WHR) and BMI z-score.  
C.) WHR and body fat percentage. 
 r, Pearson correlation coefficient. Explanatory variables 

  

r=0.50, p<0.001 

r=0.51, p<0.001 

r=0.64, p<0.001 r=0.72, p<0.001 

r=0.34, p<0.001 

r=0.42, p<0.001 
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 Exposures  

Descriptive data are presented for all explanatory variables Table 3.4 (continuous or ordinal) 

and Table 3.5 (categorical variables). Aside from females having a higher birthweight z-score 

(Table 3.4), there were no other significant differences between males and females for the 

early life variables (Table 3.5).  

Mean birthweight z-score for this population was lower (-0.18) than the growth reference, 

which likely reflects the earlier date of birth (Cole et al., 1995). The average maternal age 

was 28 years old, with the majority of mothers aged 25-34.  

Most infants were in the normal birthweight category (Table 3.5). There were significant 

differences in birthweight z-score between males and females with significantly more 

females born LGA (12.5% compared to 4%). Around 42% of study members experienced a 

period of rapid growth from birth to twelve months.  

Around a third (30%) of study members who came to clinic at age 50 were breastfed for over 

6 months, whilst 19% were never breastfed (Table 3.5). Infant feeding was not related to SES 

(Appendix B, Figure VIII). Over half of the cohort experienced some form of housing 

problem, a third experienced an adverse event before they were three years old and 18% 

had a bacterial infection within the first year (Table 3.5). 
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Table 3.4 Early life differences in continuous/ordinal variables between NTFS males and females 

Variable  All  Male  Female   
n Mean 

(SD) 
Min Max  n Mean 

(SD) 
 n Mean 

(SD) 
P 

Birthweight 
(kg) 

398 3.39 
(0.49) 

1.93 4.88  173 3.41 
(0.47) 

 223 3.38 
(0.51) 

0.57 

Birthweight 
(z-score) 

398 -0.12 
(1.04) 

-3.17 3.02  173 -0.28 
(0.93) 

 223 0.01 
(1.11) 

0.01 

Gestational 
age (weeks) 

395 39.89 
(0.98) 

33 44  171 39.94 
(0.81) 

 222 39.86 
(1.10) 

0.39 

Maternal age 
(years) 

398 28.72 
(5.89) 

17 45  173 28.44 
(5.70) 

 223 28.87 
(6.02) 

0.47 

Breastfed 
(days) 

377 122.94 
(119.76) 

0 443  168 121.88 
(118.68) 

 207 124.15 
(121.21) 

0.71 

Exclusively 
breastfed 
(days) 

387 69.41 
(62.60) 

0 291  170 65.70 
(61.81) 

 215 72.28 
(63.21) 

0.46 

Introduction 
of solids 
(days) 

379 158.76 
(42.45) 

15 345  168 157.17 
(43.95) 

 209 160.03 
(41.43) 

0.52 

No. infections 
in first year 

393 1.09 
(1.13) 

0 7  172 1.21 
(1.20) 

 219 1.01 
(1.07) 

0.11 

Number of observations (n), standard deviation (SD), minimum (min), maximum (max) values, and P values (p) for t-tests or 
Mann-Whitney tests for differences between sexes presented in columns. 
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Table 3.5 Descriptive statistics of categorical early life variables stratified by sex, for the NTFS age 50 sub-sample 

Maternal age at birth (n=398)  

Less than 25 (n=109) 27.2 27.6 27.4 0.99 
25-34 (n=217) 54.9 54.2 54.5  
35+ (n=72) 17.9 18.2 18.1  

Housing problems (n=396)  
None (n=192) 48 48.9 48.5 0.85 
Housing issues (n=204) 52 51.1 51.5  

Breastfeeding (n=219)  
None (n=42)      16.7 20.9 19.2 0.73 
<4 weeks (n=29)  15.6 11.6 13.2  
4 wks - 6 month (n=83) 36.7 38.8 37.9  
6 months+ (n=65) 31.1 28.7 29.7  

Occupational social class at birth (n=390)  
Least advantaged (n=107) 29.8 26.7 27.4 0.29 
Mid (n=240) 56.5 65.3 61.5  
Most advantaged (n=43) 13.7 9.0 11.0  

Bacterial infection in first year (n=301)  
No (n=248) 78.9 85.0 82.4 0.17 
Yes (n=53) 21.1 15.0 17.6  

Viral infection in first year (n=307)    
No (n=218)  42.2 57.8 71.0 0.80 
Yes (n=89) 43.8 56.2 29.0  

Any early life adverse event (first 12 months) (n=352)  
No (n= 303) 50.0 50.0 74.7 0.50 
Yes (n= 49) 44.9 55.1 25.3  

 Row sample sizes (n), column percentages (%) shown and Chi-square p-value (p) presented 

In terms of later life characteristics (Table 3.6), fewer women were educated, and 40% of 

women had no qualifications, compared to 27% of men. The majority of the cohort 

undertook light activity. At age 50, 27% of included NTFS participants smoked, 

corresponding to 28% of women and 25% of men (Table 3.6). This is inconsistent with 

national (PHE) figures which show higher proportions of male smokers (ONS, 2014), although 

differences were not significant (Table 3.6). Over three quarters of the cohort were married.   

Categorical variables Male (%) Female (%) Total (%) p 

Centile categories of birthweight (n=395)      
SGA (n=44) 11.7 10.7 11.1 0.014 
Normal (n=316) 84.2 76.8 80  
LGA (n=35) 4.1 12.5 8.9  

Weight categories of birthweight (n=398)      
LBW (n=10) 1.7 3.1 2.5 0.598 
Normal (n=382) 97.1 95.1 96  
HBW (n=6) 1.2 1.8 1.5  

RWG (n=163)      
No (n=95) 59.7 57.3 58.3 0.759 
Yes (n=68) 40.3 42.7 41.7  
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Table 3.6 Descriptive statistics of explanatory later life categorical variables related to growth stratified by sex, for the NTS 
age 50 sub-sample.  

 Later life variables Male (%) Female (%) Total (%) p 

Occupational social class at 50 (n=375)  
Least advantaged (n=52) 11.6 15.6 13.9 0.295 
Mid (n=132) 39 32.2 35.2  
Most advantaged (n=191) 49.4 52.1 50.9  

Education (n=382)  
None (n=131) 26.8 39.9 34.3 0.004 
O-level (n=131) 32.3 35.8 34.3  
A level (n=71) 25 13.8 18.6  
Degree (n=49) 15.9 10.6 12.8  

Educated past secondary school (n=382)  
No (n=262) 59.1 75.7 68.6 0.001 
Yes (n=120) 40.9 24.3 31.4  

Physical Activity (n=387)  
Inactive (n=43) 7.7 13.7 11.1 0.156 
Light Activity (n=191) 54.8 45.2 49.4  
Moderate (n=90) 21.4 24.7 23.3  
Heavy Activity (n=63) 16.1 16.4 16.3  

Current smoker at age 50 (n=395)  
No (n=288) 74.7 71.6 72.9  0.485 
Yes (n=107) 25.3 28.4 27.1  

Current marital status (n=393)  
Not married (n=79) 17.8 21.9 20.1 0.313 
Married (n=314) 82.2 78.1 79.9  

Row sample sizes (n), column percentages (%) shown and Chi-square p-value (p) presented 
 

3.4.4 Relationships between early life exposures and later life BMI and obesity 

In order to determine which early and later life factors might be predictive of middle-age 

BMI and obesity, each of these factors were examined individually (Table 3.7). In bivariate 

(unadjusted) analyses, study members were over twice as likely to be obese if they had a 

bacterial infection in the first year of life. However, there were no significant associations for 

viral infections. Those who smoked and participated in heavy physical activity were also 

significantly less likely to be obese. Current smokers had a significantly lower BMI. However, 

there were no significant differences in BMI or obesity likelihood between ex-smokers and 

non-smokers, or for number of pack years (Appendix B, Table VI). Those who did heavy 

physical activity had a significantly lower BMI and were 90% less likely to be obese ( 
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Table 3.8).  

A lower BMI was associated with having an older mother (aged over 35), whilst being 

educated and married was associated with a higher BMI. Socioeconomic advantage was 

associated with lower BMI. There were no associations for birthweight, adversity, 

overcrowding, housing problems, or income with either BMI or obesity.  
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  BMI  OB 

  Coef CI p  OR CI p 

Sex Female -0.40 [-1.29,0.49] 0.38  1.12 [0.68,1.84] 0.66 

Birth 
Birthweight (z-score) -0.08 [-0.49,0.33] 0.71  1.10 [0.87,1.40] 0.42 

Gestation (weeks) 0.25 [-0.15,0.66] 0.22  1.18 [0.90,1.55] 0.23 

Maternal age 

Continuous  -0.07 [-0.14,0.00] 0.06  0.99 [0.94,1.03] 0.50 

<25 0.45 [-0.59,1.48] 0.40  1.37 [0.79,2.38] 0.26 

25-34 Ref  .  Ref  . 

35+ -1.46 [-2.63,-0.29] 0.01  0.75 [0.36,1.55] 0.44 

Infant feeding 

Never breastfed Ref  .  Ref  . 

<4 weeks 0.55 [-1.52,2.63] 0.60  2.29 [0.70,7.49] 0.17 

4 wk – 6 months 0.26 [-1.46,1.97] 0.77  1.53 [0.53,4.40] 0.43 

6 Months + 0.68 [-0.94,2.31] 0.41  1.52 [0.55,4.20] 0.42 

Breastfed (days) 0.00 [-0.00,0.01] 0.14  1.00 Ref 0.37 

Exclusive (days) 0.01 [-0.00,0.02] 0.15  1.00 [1.00,1.01] 0.29 

Weaning age (days) -0.01 [-0.02,0.01] 0.35  1.00 [0.99,1.00] 0.37 

Early life 

Rapid weight gain 0.76 [-0.44,1.97] 0.22  1.22 [0.51,2.91] 0.66 

Any infection 1.22 [0.33,2.10] 0.01  2.03 [1.21,3.39] 0.01 

Number of infections 0.42 [0.02,0.82] 0.04  1.36 [1.11,1.67] <0.01 

Bacterial infection 1.88 [0.53,3.23] 0.01  2.60 [1.34,5.02] 0.01 

Viral infection 0.29 [-0.82,1.39] 0.61  1.51 [0.83,2.73] 0.18 

SES (childhood) 

Least advantaged Ref  .  Ref  . 

Mid -0.92 [-1.93,0.08] 0.07  0.55 [0.32,0.95] 0.03 

Most advantaged -1.40 [-2.98,0.18] 0.08  0.35 [0.13,0.99] 0.05 

Housing score -0.02 [-0.43,0.38] 0.91  1.12 [0.89,1.39] 0.33 

Overcrowding 0.33 [-0.66,1.31] 0.52  1.65 [0.98,2.78] 0.06 

Adversity Any adverse event 0.16 [-2.02,2.33] 0.89  1.93 [0.66,5.61] 0.23 

SES  
(later life) 

Social class  Ref  .  Ref  . 

Mid -0.63 [-2.04,0.79] 0.39  0.53 [0.26,1.08] 0.08 

Most advantaged -0.59 [-1.95,0.76] 0.39  0.40 [0.20,0.80] 0.01 

Educated 0.51 [-0.46,1.48] 0.30  0.93 [0.53,1.62] 0.79 

No qualifications Ref  .  Ref  . 

GCSE/O-level -1.11 [-2.20,-0.02] 0.05  0.58 [0.31,1.08] 0.09 

A level 0.29 [-1.01,1.58] 0.67  0.86 [0.43,1.74] 0.68 

Degree -0.50 [-1.96,0.95] 0.50  0.54 [0.22,1.32] 0.18 

Income   -0.31 [-0.75,0.13] 0.17  0.79 [0.62,1.01] 0.06 

Married 1.01 [-0.11,2.12] 0.08  1.65 [0.82,3.29] 0.16 

Lifestyle 

Inactive Ref  .  Ref  . 

Light activity -1.25 [-2.75,0.24] 0.10  0.73 [0.35,1.52] 0.40 

Moderate activity -1.99 [-3.64,-0.35] 0.02  0.43 [0.18,1.01] 0.05 

Heavy activity -2.90 [-4.65,-1.15] <0.001  0.16 [0.05,0.52] <0.001 

Smoker -1.32 [-2.31,-0.34] 0.01  0.53 [0.28,0.99] 0.05 
Coefficients (coef) and odds ratios (OR) are presented with 95% confidence intervals (CI) and the corresponding level of 
significance (p); Ref, reference group. Bold indicates significant at p<0.05. 

  

Table 3.7 Bivariate (unadjusted) associations between exposures of interest and outcomes obesity (OB) (logistic 
regression) and BMI (linear regression) in NTFS study members (age 50) 
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 Socioeconomic factors 

Those in the most advantaged socioeconomic group compared to the least at birth had a 

lower BMI in the unadjusted analysis (coef=-0.43, p=0.06)(Appendix B, Table III). Being 

educated to O-level was associated with a lower BMI compared to those with no 

qualifications (coefficient=-1.11, p<0.05), however, there was no trend across increasing 

educational attainment (Appendix B, Figure IX). 

As this cohort experienced great upward social mobility (previously reported by (Forrest et 

al., 2011)), this was investigated further regarding BMI. Social mobility was not associated 

with BMI, but those consistently in the mid advantaged occupational social class group had 

2.6 kg/m2 lower BMI (p=0.01) on average (Appendix, Table III). However, increasing social 

advantage was associated with lower odds of obesity across multiple levels (Appendix, Table 

III). Odds were lowest for those always in the most advantaged groups compared to always 

in the least (OR=0.09, p=0.005). 

There were no associations for other SES variables including experiencing adversity, housing 

issues or overcrowding (a composite of housing issues) in the first year, and any adiposity-

related outcome measures.  

3.4.5 Multivariable regression models for BMI and obesity 

The adjusted model for BMI shows that the significant early life exposures were older 

maternal age and bacterial infection in the first year, adjusted for sex, early and later life 

SES, breastfeeding and lifestyle (smoking and physical activity) ( 
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Table 3.8). Physical activity level (PAL), smoking and social class (age 50) were also 

independent significant predictors of BMI. These factors explained 17% of the variation in 

BMI. 

Adjusting for social class at birth attenuated the associations for sex, older maternal age, 

illness, and duration breastfed ( 
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Table 3.8). The association between BMI and being married was attenuated by SES and was 

not significant after adjusting for smoking.  
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Table 3.8 Multivariable linear regression model for early and later life factors and BMI in NTFS study members age 50 
(n=262).   

BMI (age 50) Coef CI p 

Female -0.8 [-1.88,0.28] 0.147 
Maternal age    

<25 0.43 [-0.81,1.67] 0.498 
25-34 Ref  . 

35+ -1.52 [-2.96,-0.08] 0.038 
Social class (birth) Ref  . 

Mid -1 [-2.28,0.28] 0.125 
Most advantaged -0.78 [-2.88,1.32] 0.465 

Bacterial infection 2.12 [0.70,3.53] 0.003 
Duration breastfed (weeks) 0.03 [-0.00,0.06] 0.079 
PAL  Inactive Ref  . 

Light activity -2.30 [-4.17,-0.42] 0.017 

Moderate activity -3.09 [-5.14,-1.03] 0.003 
Heavy activity -3.89 [-6.18,-1.60] 0.001 

Smoker -2.31 [-3.57,-1.06] <0.001 
Social class (age 50) Ref  . 

Mid -2.02 [-3.74,-0.29] 0.022 
Most advantaged -1.58 [-3.27,0.11] 0.067 

Coefficients (coef) are presented with 95% confidence intervals (CI) and the corresponding level of significance (p); Ref, 
reference group. Bold indicates significant at p<0.05. All covariates are presented.  

 

In multivariable analysis; infections, smoking and heavy PAL remained significant predictors 

of obesity (Table 3.9). SES at birth was no longer significant, and instead later life SES was a 

significant predictor of obesity.  
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Table 3.9 Multivariable logistic regression model for early and later life factors and obesity in NTFS study  
members age 50 (n=275) 

Obese (age 50) OR CI p 

Female 1.22 [0.62,2.40] 0.57 
Social class (birth) Ref  . 

Mid 0.55 [0.26,1.18] 0.13 
Most advantaged 0.52 [0.14,1.98] 0.34 

Bacterial infection 2.75 [1.30,5.79] 0.01 
PAL  Inactive Ref  . 

Mild 0.62 [0.24,1.57] 0.31 
Moderate 0.41 [0.13,1.24] 0.11 

High 0.06 [0.01,0.53] 0.01 
Smoker 0.35 [0.15,0.81] 0.01 
Social class (age 50) Ref  . 

Mid 0.29 [0.11,0.75] 0.01 
Most advantaged 0.36 [0.14,0.89] 0.03 

 Odds ratios (OR) are presented with 95% confidence intervals (CI) and the corresponding level of significance (p). Ref, 
reference group. Bold indicates significant at p<0.05. All covariates are presented. 
 

In summary, bacterial infection was the only early life risk factor associated with both 

increased BMI and obesity in adjusted models. Being more advantaged in later life, and the 

lifestyle factors; smoking and heavy physical activity were associated with reduced odds of 

obesity and a lower BMI. 

3.4.6 Relationships between early life exposures and alternative measures of adiposity 

The relationships between risk factors and BF% and WHR were also considered. These were 

investigated separately by sex.  

 Body fat percentage analysis 

There were differences in associations between risk factors and BF% in males and females 

(Appendix B,Table IV). In bivariate models for men, social class at birth, income and smoking 

were all significantly associated with decreased body fat, whilst high social class at 50, being 

educated and being married were associated with higher body fat (Appendix B, Table IV).  

In females, there were significant, positive associations for duration breastfed and bacterial 

infection in the bivariate models, whilst moderate and heavy physical activity was associated 

with decreased BF% (Table 3.10). 
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In the multivariable model for males, social class at birth and smoking were significant 

predictors of lower BF% (Table 3.10). Father’s social class (birth) remained a significant 

predictor after adjustment for the study members own social class in middle age. The 

coefficients and strengths of the associations increased for social class at 50 and smoking 

after controlling for social class at birth. Income was no longer significant after controlling 

for occupational social class (age 50). Whilst higher social class at birth was associated with 

decreases in body fat, social class at time of measurement was associated with increased 

body fat (p=0.06), although the effects of SES at birth were more significant (p<0.001).  

In the multivariable model for females, bacterial infections were associated with increased 

body fat and heavy physical activity with decreased body fat in women (Table 3.10). These 

relationships were not influenced by social class and there was strong support for the model 

without SES at birth.  

 
Table 3.10 Multivariable linear regression model for associations between early and later life factors and BF% in NTFS males 
and females (age 50).  

BF% Males Coef CI p  BF% Females Coef CI p 

SES (birth) Ref  .  Bacterial 
infection 

4.33 [0.36,8.30] 0.03 

Mid -3.74 [-6.17,-1.31] <0.001  Breastfed 
(weeks) 

0.07 [-0.02,0.15] 0.13 

Most 
advantaged 

-5.88 [-9.39,-2.37] <0.001  PAL    

SES (age 50) Ref  .  Inactive Ref  . 

Mid 1.49 [-2.25,5.22] 0.43  Light activity -3.2 [-7.71,1.30] 0.16 

Most 
advantaged 

3.60 [-0.21,7.41] 0.06  Moderate 
activity 

-3.49 [-8.46,1.47] 0.17 

Smoker -4.02 [-6.54,-1.49] <0.001  Heavy activity -6.31 [-11.82,-0.79] 0.03 

n 161    n 155   

Adjusted R2 0.12    Adjusted R2 0.06   

Reference category for SES was least advantaged. Coefficients (coef) are presented with 95% confidence intervals (CI) and 
the corresponding level of significance (p); Ref, reference group. Bold indicates significant at p<0.05. 

 
 

 Waist-to-hip ratio analysis 

Associations between risk factors and WHR in males and females are presented in Table V 

(Appendix B). There were differences in predictors of WHR by sex, with relatively few 



135 
 

significant risk factors for women. Similar to BF%, many socioeconomic variables were 

associated with WHR in males and some were also in females (Appendix B, Table V).  

Increasing social advantage at birth was associated with a lower WHR in males (b 

coefficient=-0.05, p=0.002). Birthweight was less significant after controlling for SES (age 50). 

Later life socioeconomic variables including high occupational social class at 50, income and 

university education were also associated with a decreased WHR. However, these factors 

were no longer significant after adjusting for social class at birth. Similar to results for BF%, 

father’s social class (birth) remained a significant predictor after adjustment for the study 

members own SES. In the adjusted model, higher social class at birth was the only significant 

predictor of decreased WHR in men and explained around 7% of the variation (adjusted 

R2=0.07). 

There were no early life and few later life exposures associated with WHR in women. In the 

bivariate analysis, there was a significant association for a decreased WHR for those in the 

mid social class group at 50 compared to low, and for household income (Table V). After 

adjusting for smoking, household income was not significant. There was a small, positive 

association between smoking and WHR. In the final model, the only significant predictor of 

WHR in women was mid-social class at age 50, however this explained little of the variation 

in WHR (adjusted R2=0.01) (Table 3.11).  

Table 3.11 WHR multivariable regression models for NTFS males (n=162) and females (n=210) 

WHR Males Coef CI p  WHR 
Females 

Coef CI p 

Social class 
(birth) Ref  . 

 Social class  
(birth) 

0 Ref . 

Mid -0.02 [-0.04,0.00] 0.053  Mid -0.01 [-0.03,0.01] 0.36 
Most 
advantaged -0.05 [-0.07,-0.02] 0.002 

 Most 
advantaged 

-0.02 [-0.05,0.02] 0.30 

Social class 
(age 50) Ref  . 

 Social class 
(age 50) Ref  . 

Mid -0.01 [-0.04,0.02] 0.342  Mid -0.03 [-0.05,-0.00] 0.04 
Most 
advantaged -0.01 [-0.04,0.02] 0.374 

 Most 
advantaged -0.01 [-0.03,0.01] 0.45 

Birthweight  
(z-score) -0.01 [-0.02,0.00] 0.081 

 
    

Reference category for SES was least advantaged. Coefficients (coef) are presented with 95% confidence intervals (CI) and 
the corresponding level of significance (p); Ref, reference group. Bold indicates significant at p<0.05. All covariates are 
presented.  
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 Summary of the associations across different outcome measures 

For BMI and obesity associations in adjusted models were similar and were significant for 

bacterial infection, later life SES, physical activity and smoking, with an additional association 

for older maternal age for BMI (Table 3.12). 

There were differences in the significant associations for BF% and WHR between men and 

women (Table 3.12). There was similarity in that later life occupational social class was 

associated with WHR in both sexes. Early life SES was associated with both WHR and BF% in 

males.  

Associations that were consistent across 3 or more outcome measures were: bacterial 

infection, later life SES, physical activity and smoking.  

Table 3.12 Summary of results across adiposity outcomes from adjusted regression models in NTFS study members  

 Outcome measures 

 
BMI Obesity 

Body fat 
% 

WHR 

Ex
p

o
su

re
s 

Individual  Sex - -   

Maternal age Older mother ✓ - - - 

Birth Birthweight  - - - ✓(M) 
 Occupational social 

class 
- - ✓(M) ✓(M) 

 Breastfeeding - - ✓(F) - 

 Housing - - - - 
Childhood Bacterial infection ✓ ✓ ✓(F) - 

 Adversity  - - - - 

 Rapid weight gain - - - - 
Adulthood Education - - - - 
 Occupational social 

class 
✓ ✓ ✓(M) ✓(M, F) 

 Income  - - - - 
 Married - - - - 

 Physical activity ✓ ✓ ✓(F) - 

 Smoking  ✓ ✓ ✓(M) - 
Tick denotes significant association in bivariate regression. M; males, F; females. 

3.4.7 Pathways between early and later life factors and BMI 

The path models (Figure 3.3) demonstrate the relationships between each of the risk factors 

and BMI, as well as the relationships between the factors themselves.  
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In the path model, breastfeeding was associated with increased BMI. The model also shows 

that a longer duration breastfeeding was associated with reduced likelihood of bacterial 

infections. Those who were educated and more advantaged were less likely to be smokers. 

Occupational social class in middle age had a similar direct effect on BMI to father’s 

occupational social class at birth. 

Infection in the first year had the largest positive direct and total effect. The socioeconomic 

variables, education and occupational social class at 50, had direct effects on BMI until the 

lifestyle variables were considered. 

Lifestyle factors explained around half of the variation in BMI; when included in the path 

model the variation explained increases almost two-fold due to the indirect effects. Lifestyle 

factors (including PAL and smoking) were endogenous and predicted by socioeconomic 

variables. The effects of later life social class were mediated through lifestyle variables once 

they were included in the model, rather than being a direct predictor. The model explained 

13% of the variation in BMI, a lower value than the multivariable regression model, which 

may be due the use of binary variables. 

The path models indicate that early life and socioeconomic factors explain relatively small 

differences in BMI (7%), but similar in proportion to the lifestyle factors.  

In multivariable models, education was not directly associated with outcomes, although it 

predicted other variables in the path model (see Figure 3.3). 
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A. Baseline model of early life factors and SES  

 

 

B. With lifestyle 

 

 

 

 

Figure 3.3 Path models of the relationship between early and later life variables, and BMI (age 50).  
Models are presented without (A) or with (B) adjustments for lifestyle. Arrows show the direction of the effect. 
Standardised coefficients are shown. All direct effects are represented by solid lines and are significant at p<0.05. Total 
effects are presented in brackets with associated p values.   
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3.5 Discussion  

In summary, exposures that were consistently associated across different outcome measures 

were; bacterial infection, occupational social class (at birth and middle age), smoking and 

physical activity. There was some evidence for maternal age, birthweight and breastfeeding, 

although less consistent.  

Although prevalence of obesity was similar between the sexes there were more men who 

were overweight, therefore men on average had a higher BMI compared to females. This is 

consistent with findings for this age group by PHE (Health and Social Care Information 

Centre, 2014). Research suggests this could be due to the fact that men are less likely to 

recognise themselves as overweight or be dissatisfied with their weight (Sullivan and Brown, 

2013, Tsai et al., 2016). Alternatively, the value or awareness of the social ideals related to 

thinness may explain the lower rates of overweight in women (McLaren and Kuh, 2004, 

McLaren, 2007a).   

BMI correlated moderately with body fat and WHR, however different exposures were 

associated with different adiposity outcomes. BMI had the most significant explanatory 

variables and similar associations were observed when examining obesity. There were 

comparatively fewer exposures associated with measures of WHR and BF%, however SES 

emerged a consistent factor. There was a socioeconomic impact on adiposity that spanned 

across outcomes and varied by sex. SES at birth was not significantly associated with BMI or 

obesity in middle age, but was an important predictor of other later life factors (such as 

smoking, education and mid-life SES). Early life SES was an independent predictor of WHR in 

males, whereas SES in later life was a predictor of WHR in females. Similar to WHR, SES at 

birth also predicted body fat in males, as did SES in middle age. 

Those who had a bacterial infection in the first year of life were more likely to be obese and 

have a higher BMI or higher body fat (women only) at age 50. This association was 

independent of SES, amongst other potential confounding factors. Taking into account the 

era, infection in the first year could encompass some aspects of SES that occupational social 

class does not, such as adverse living conditions that increase susceptibility to infection.  

There was a weak association between birthweight and WHR in males. The standardised 

birthweight is similar to that of the National survey of Health and Development (NSHD), a 

larger UK birth cohort that commenced in 1946, thereby allowing comparisons to be made. 
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Similar findings from the NSHD support a small inverse association between birthweight and 

WC (Kuh et al., 2002) and higher lean mass (Bann et al., 2014). However, there was no 

associations for birthweight categories and adiposity outcomes. In NTFS, only 3% of study 

members were born LBW, which is dissimilar to current data from the office of national 

statistics which shows rates of low birthweight at ~7% in 2015 (ONS, 2015). Similarly, whilst 

figures for HBW were only 2% in NTFS, UK averages were around 11% in 2015. Therefore, 

perhaps the relatively low proportion of high and low birthweight could explain the lack of 

association. Furthermore, children born preterm or very low birthweight could possibly have 

lower odds of survival therefore reducing the proportion of children born LBW. 

In contrast to other studies, older maternal age was associated with a lower adult BMI and 

breastfeeding with a slightly higher BMI, which may be a peculiarity of the historic cohort 

(discussed further in section 5.5).  

Similar to other studies (Reiner et al., 2013), there was an inverse relationship between 

physical activity and obesity. Current smokers in NTFS had a lower BMI, which is in 

agreement with the literature (Eisen et al., 1993), however some studies find that heavy 

smoking is associated with increased weight (Chiolero et al., 2008). Additionally, NTFS men 

who were current or ex-smokers had larger WHR. This has also been noted in other studies 

(Canoy et al., 2005, Chiolero et al., 2008), and although similar findings are often observed 

for women, a study of older Dutch women also observed similar sex differences (Visser et al., 

1999b). NTFS women had relatively healthy WHR compared to the men, which may explain 

these differences.  

Thus far, there are indications that some factors in the peri- and post-natal period could 

affect obesity development. There were obvious differences in males and females in relation 

to body composition and also by exposure, which could suggest that sex-specific strategies 

are required for tackling overweight and obesity. The important exposures with respect to 

adult body composition were SES at birth, older maternal age, and bacterial infection in the 

first year, the latter of which requires further investigation. The early life exposures and 

lifestyle factors explained relatively a low percent of the variation in adult body composition, 

suggesting that other factors are contributing.   
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Chapter 4. The influence of early life exposures on 

childhood body composition  

4.1 Introduction 

This chapter will address the thesis aim of investigating the impact of early life exposures 

and SES on multiple indicators of childhood adiposity. The analysis will use data from the 

Gateshead Millennium study (GMS), a birth cohort from Gateshead that commenced in the 

year 2000. This cohort contains a wealth of early life data, and anthropometric data 

collected throughout childhood. There have already been a great deal of studies which 

examine multiple risk factors for childhood obesity from multiple cohorts (Fairley et al., 

2015a)(reviewed in section 1.3). As of yet, the early life factors associated with childhood 

OWOB in children in North East England have not been determined. The North East is the 

region with the highest proportion of children starting school with obesity in the UK (NHS 

Digital, 2017), and therefore it is important to understand the factors driving this early onset 

of obesity, and potentially if these factors are different to other parts of the UK. 

The previous chapter examined risk factors across different measures of adiposity (BMI, 

overweight and obesity, central obesity and body fat) in NTFS adults. Therefore, in keeping 

with previous analyses, this chapter will examine if early life risk factors are associated 

across similar components of body composition in GMS children.  

In the previous chapter, it was determined that lifestyle factors were important intermediate 

factors between SES and body composition. Therefore, in line with the previous analysis, this 

chapter will also examine whether lifestyle (physical activity) can modify the effect of an 

exposure that occurs during a critical developmental period. Lifestyle may act in a 

synergistic, antagonistic, clustered or independent manner (Jacob et al., 2015).  

4.2 Aims 

The aims of this chapter were to i.) Determine if early life exposures were associated with 

childhood overweight or obesity in the GMS cohort; ii.) Examine if risk factors vary for 

outcomes i.e. using proxy measures or direct measures of body composition and 

distribution; and iii.) Examine the relationship between early life risk factors and childhood 

body composition considering the impact of lifestyle (physical activity). 
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4.3 Participants and methods 

This analysis uses early life data from birth to 13 months, and outcome data from the age 6-

8 follow-up. The current cohort consists of all traceable study members who did not 

withdraw. At the follow-up between ages 6-8, anthropometric measures, physical activity, 

and food intake were measured. 

4.3.1 Anthropometric variables  

BMIz, waist-to-height ratio (WHtR) and fat mass index (FMI) at age 6-8 were analysed as 

outcomes, calculation of these is in section 2.2. 

4.3.2 Early life exposure data 

There were data on several early life risk factors in GMS including; birthweight, rapid weight 

gain (RWG), first-born, maternal age, adversity, infection and SES, and the covariates sex, 

gestation and physical activity (moderate–vigorous intensity physical activity (MVPA)). The 

definitions and measurement of these factors is outlined in section 2.2. 

Maternal education was chosen as the main SES indicator at birth as it represents economic 

resources and social characteristics related to knowledge and health literacy (Galobardes et 

al., 2006), and has been shown to have the strongest influence on pregnancy outcomes 

(Mortensen et al., 2008) (Parker et al., 1994). 

4.3.3 Statistical analysis 

SES, sex, birthweight categories, maternal age, first-born, adverse events, sleep issues, 

infection, RWG, and breastfeeding were categorical variables. All other variables were 

analysed as continuous or binary variables.  

It was not anticipated that there would be differences between genders in the relationships 

between early life risk factors and obesity in children (no strong correlations between sex 

and early life factors, Appendix B). However, to check this assumption, sex-exposure 

interactions were examined for each outcome, as outlined in section 2.3.2. There were no 

significant differences, and therefore the sample was not stratified by sex. 

Additionally, the impact of childhood physical activity was investigated, by adding MVPA to 

the multivariable models (adjusted for season) and evaluating the effects on the coefficients.  
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4.4 Results 

4.4.1 Sample representativeness 

There were data for 619 study members included at the age 6 to 8 follow-up, representing 

60% of the cohort. Study participants included in these analyses were comparable to the 

original cohort for most early life exposures (Table 4.1 and Table 4.2). There were 

differences in that the sample were more advantaged, in terms of Townsend score, higher 

achieved maternal education and less material deprivation (Table 4.2), leading to more even 

distribution across socioeconomic strata than the original sample (Parkinson et al., 2011). 

Those measured at age 6-8 had a significant longer gestational age, had slight older mothers, 

more experienced adversity, were breastfed for longer and were less likely to be formula fed 

(Table 4.1 and Table 4.2). These factors were likely related to the socioeconomic differences 

in the 6-8 sample (Appendix C, Table VII). 

Table 4.1 Differences in continuous and ordinal early life variables for GMS children with and without body composition 
data at age 6-8. 

Variable Without data  With data P value 
 n Mean SD min max  n Mean SD min max  

Birthweight 
(z-score) 

424 -0.03 0.99 -2.74 4.52  569 -0.02 1.04 -3.48 3.51 0.95 a 

Gestation 
length 
(weeks) 

424 39.35 1.88 27 43  569 39.57 1.55 29 43 0.040 a 

Maternal 
age (years) 

424 27.2 6.15 15.27 44.41  569 28.46 5.79 16.09 45.75 <0.001 a 

Age 
weaned 
(weeks) 

269 14.49 3.42 3 33  479 14.59 3.2 5 42.5 0.67 a 

P values derived from tests for differences in means (T test a), median values (Rank-sum b)  n, sample size; SD, standard 
deviation; min, minimum; max, maximum. Bold indicates significant at p<0.05. 
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Table 4.2 Differences in categorical variables for GMS children with and without body composition data at age 6-8. 

 Early life variables All  Without data  With data P value 

  n %  n col %  n col %   

Sex 993   424   569   

Male 505 50.9  223 52.6  282 49.6 0.34 
Female 488 49.1  201 47.4  287 50.4  

First-born 991   423   568   

No 528 53.3  227 53.7  301 53  

Yes 463 46.7  196 46.3  267 47 0.83 
Gestation categories 993   424   569   

Pre-term 107 10.8  56 13.2  51 9  

Normal 823 82.9  338 79.7  485 85.2 0.061 
Post-term 63 6.3  30 7.1  33 5.8  

Birthweight 993   424   569   

SGA 89 9  36 8.5  53 9.3  

Normal 810 81.6  351 82.8  459 80.7 0.69 
LGA 94 9.4  37 8.7  57 10  

Caesarean 993   424   569   

No 844 85  365 86.1  479 84.2 0.41 
Yes 149 15  59 13.9  90 15.8  

Maternal age at birth 993   424   569   

Less than 25 326 32.8  164 38.7  162 28.5 
0.003 25-34 547 55.1  215 50.7  332 58.3 

35+  120 12.1  45 10.6  75 13.2 
Breastfeeding 953   405   548   

Never 468 49.1  232 57.3  236 43.1 <0.001 
<6wk 237 24.9  101 24.9  136 24.8  

>6wk  89 9.3  26 6.4  63 11.5  

>4m 159 16.7  46 11.4  113 20.6  

Exclusively breastfed  
(>4 months) 249   

 
262   

 
511   

 

No 468 91.6  232 93.2  236 90.1 0.21 
Yes 43 8.4  17 6.8  26 9.9  
Formula fed only 953   405   548   

No 485 50.9  173 42.7  312 56.9  

Yes 468 49.1  232 57.3  236 43.1 <0.001 
Rapid weight gain  813   282   531   

No 567 69.7  205 72.7  362 68.2 
0.18 

Yes 246 30.3  77 27.3  169 31.8 
Adversity 934   398   536   

No 719 77  327 82.2  392 73.1 
0.001 

Yes 215 23  71 17.8  144 26.9 
Sleep issues (8 months) 644   201   443   

No 532 82.6  162 80.6  370 83.5 
0.36 

Yes 112 17.4  39 19.4  73 16.5 

Infection (0-12 month) 994   425   569   

No 895 90  394 92.7  501 88 0.015 

Yes 99 10  31 7.3  68 12  
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 Socioeconomic  
variables 

All  Without data  With data  P 

  n %  n col %  n col %   

          

Townsend quintile 987   424   563   

1 Least advantaged 188 19.0  84 19.8  104 18.5 

0.021 

2 201 20.4  81 19.1  120 21.3 

3 221 22.4  94 22.2  127 22.6 

4 223 22.6  113 26.7  110 19.5 

5 Most advantaged 154 15.6  52 12.3  102 18.1 

Maternal education  
(birth) 

915   382   533   

None 142 15.5  78 20.4  64 12.0 

<0.001 
GCSE 534 58.4  227 59.4  307 57.6 

A level 111 12.1  41 10.7  70 13.1 

Degree 128 14.0  36 9.4  92 17.3 

Deprived at birth 991   422   569   

No 483 48.7  163 38.6  320 56.2 <0.001 

Yes 508 51.3  259 61.4  249 43.8  

Occupational social  
class (childhood) 

373   13   360   

Least advantaged 110 29.5  1 7.7  109 30.3 

0.21 Middle 133 35.7  6 46.2  127 35.3 

Most advantaged 130 34.9  6 46.2  124 34.4 

Upward mobility  
(0-8 years) 

994   425   569   

No 945 95.1  425 100  520 91.4 <0.001 

Yes 49 4.9  0 0  49 8.6  

Row sample sizes and column percentages (col %) shown.  P value represents the Chi-square test statistic. Bold indicates 
significant at p<0.05. 

 

4.4.2 Exposures 

Descriptive statistics for those measured at age 6-8, plus sex differences are presented in 

Table 4.3, Table 4.4 and Table 4.5. The mean age of the cohort was around 7.5 years. There 

was an even proportion of males and females. The majority had a normal birthweight, and 

there were 9.3% SGA and 10% LGA. In terms length of gestation, 85% of children were born 

normal term, 9% were pre-term and 5.8% post-term. In the sub-sample, 47% were first-born 

children, and mean maternal age was 29 years old. A large proportion of children were never 

breastfed (43.1%). Around a quarter of children experienced adversity in the first year and 

16.5% of children had sleep issues in the first 8 months. There was a fairly even split 

between parental socioeconomic groups at age 6-8, with 34.4% in the most advantaged 

group, 35.3% mid and 30.3% in the least advantaged group.  
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Males were weaned slightly earlier than females, on average spent more time doing MVPA 

(Table 4.3), and were more likely to have an infection in the first year (Table 4.4). There were 

no other significant differences between males and females, however there were some 

differences in socioeconomic variables that were borderline significant (p<0.1) (Table 4.5). 

 

Table 4.3 Summary statistics and differences in early life continuous variables stratified by sex for the GMS cohort (age 6-8) 

Variable Male  Female   
n mean SD min max  n mean SD min max p 

Age (years) 282 7.44 0.46 6.42 8.42  287 7.46 0.45 6.42 8.58 0.53 a 
Bwt (z-score) 282 -0.02 1.04 -2.74 3.45  287 -0.02 1.04 -3.48 3.51 0.98 a 
Gestation (weeks) 282 39.53 1.69 29 42  287 39.61 1.4 34 43 0.41 a 
Maternal age (years) 282 28.81 5.84 16.59 45.75  287 28.12 5.72 16.09 43.46 0.08 a 
Weaned (weeks) 379 14.31 3.12 3 32  369 14.81 3.42 4 42.5 0.04 a 
MVPA (%) 241 4.71 2.61 0.58 15.03  238 4.08 2.19 0.34 13.88 0.01 b 

Number of observations (N), mean, standard deviation (SD), minimum (min) and maximum (max) values and P values (p) for 
t-tests or Wilcoxon rank-sum tests for differences presented. a T-test or  b Ranksum tests for differences between males 
and females. Bold indicates significantly different at p<0.05.  
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Table 4.4 Summary statistics and differences in categorical early life variables stratified by sex, for the GMS cohort (age 6-8) 

Binary variables All  
(n) 

% Yes Male  
(n) 

% Yes Female  
(n) 

% Yes p 

First-born 568 47 281 47 287 47 0.99 

Caesarean 569 15.8 282 15.6 287 16 0.89 

Exclusively breastfed  
(>4 months) 262 11.6 12 8.5 26 9.9 

0.41 

Formula fed 548 43.1 270 39.6 278 46.4 0.11 

RWG (0-12 months) 531 31.8 263 31.6 268 32.1 0.90 

Adversity (0-12 months) 536 26.9 267 29.6 269 24.2 0.15 

Sleep issues (8 months) 443 16.5 222 17.1 221 15.8 0.72 

Infection (0-12 months) 569 12 282 15.6 287 8.4 0.008 

Categorical variables  All (n) % Male  
(n) 

% Female  
(n) 

% p 

Gestation  569 
 

282 
 

287 
 

0.086 

Pre-term 51 9 31 11 20 7 
 

Normal 485 85.2 231 81.9 254 88.5 
 

Post-term 33 5.8 20 7.1 13 4.5 
 

Categories of birthweight  569 
 

282 
 

287 
 

0.73 

SGA 53 9.3 29 10.3 24 8.4 
 

Normal 459 80.7 225 79.8 234 81.5 
 

LGA 57 10 28 9.9 29 10.1 
 

Maternal age 569 
 

282 
 

287 
 

0.40 

Less than 25 162 28.5 81 28.7 81 28.2 
 

25-34 332 58.3 162 57.4 170 59.2 
 

35+ 75 13.2 39 13.8 36 12.5 
 

Breastfeeding 548 
 

270 
 

278 
 

0.41 

Never 236 43.1 107 39.6 129 46.4 
 

<6wk 136 24.8 70 25.9 66 23.7 
 

>6wk 63 11.5 35 13 28 10.1 
 

>4m 113 20.6 58 21.5 55 19.8 
 

Season accelerometry 241   238   479    

Spring 56 23.2 56 23.5 112 23.4  

Summer 53 22 48 20.2 101 21.1 0.41 

Autumn 83 34.4 71 29.8 154 32.2  

Winter 49 20.3 63 26.5 112 23.4  
Sample sizes (n) and column percentages (col %), and Chi-square test statistic presented (p). Bold indicates significantly 
different at p<0.05.  
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Table 4.5 6 Summary statistics and differences in socioeconomic categorical variables stratified by sex, for the GMS cohort 
(age 6-8) 

 All 
(n) 

% Male (n) % Female (n) % p 

Townsend score 278 
 

285 
 

563 
 

0.079 

1 Least advantaged  46 16.5 58 20.4 104 18.5 
 

2 54 19.4 66 23.2 120 21.3 
 

3 61 21.9 66 23.2 127 22.6 
 

4 54 19.4 56 19.6 110 19.5 
 

5 Most advantaged  63 22.7 39 13.7 102 18.1 
 

Maternal education 269  264  533  0.44 

None  27 10 37 14 64 12 
 

GCSE 155 57.6 152 57.6 307 57.6 
 

A level 36 13.4 34 12.9 70 13.1 
 

Degree 51 19 41 15.5 92 17.3 
 

Childhood SES 177 
 

183 
 

360 
 

0.19 

Least advantaged 46 26 63 34.4 109 30.3 
 

Mid 64 36.2 63 34.4 127 35.3 
 

Most advantaged 67 37.9 57 31.1 124 34.4 
 

Upward mobility  
(0-8 years) 

282  287  569  0.060 

No 264 93.6 256 89.2 520 91.4 
 

Yes 18 6.4 31 10.8 49 8.6 
 

Sample sizes (n) and column percentages (col %), and Chi-square test statistic presented (p).  

4.4.3 Infant feeding and SES 

There were significant differences between Townsend quintiles and the duration of 

breastfeeding, in that the most advantaged breastfed for longer and were less likely to be 

formula fed (Appendix C, Table VII). There was no statistically significant differences in 

weaning age between the Townsend quintiles (Kruskal-Wallis p = 0.07).  

4.4.4 Outcomes 

According to BMIz, at age 6-8 there were 116 (21%) children who were OWOB, and of those 

52 (9.3%) were obese (Table 4.7). Whilst for FMI, 5.2% of children had a fat mass index 

>=91st centile, and 1.1% had a FMI>=98th centile. Fewer were classified as obese using WHtR 

than using BMI (7%). There were no significant differences in outcomes between sexes. 

Mean BMIz (0.45) and FMI (4.06) were similar in males and females (Table 4.7).  
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Table 4.7 Descriptive characteristics of body composition outcomes stratified by sex in the GMS cohort (age 6-8) 

Categorical 
outcomes 

All  Male  Female   

  n col %  n col %  n col %  P value 

All 562   278   284   0.56 

Healthy 
weight 

446 79.4  218 78.4  228 80.3   

OWOB 116 20.6  60 21.6  56 19.7   

Waist OB 505   488   993   0.98 

No 470 93.1  454 93  924 93.1   

Yes 35 6.9  34 7  69 6.9   

Continuous 
outcomes 

All  Male  Female   

  n mean (SD)  n 
mean  
(SD) 

 n 
mean  
(SD) 

 P value 

BMIz 569 0.45 (1.11)  282 
0.44 
(1.15) 

 287 
0.46 
(1.08) 

 0.85 

FMI 567 4.06 (1.92)  282 
4.11 
(1.84) 

 285 
4.00 
(2.00) 

 0.49 

Proportion (%) of study members in each weight category with Chi2 test statistic for differences between sexes. Mean and 
standard deviation (SD) for BMIz and FMI, with p value for differences between sexes (T-test).  

  

There were strong correlations (r>0.7) between FMI with both BMIz and OWOB (Table 4.8). 

Whilst the weakest associations, although still moderate, were between FMI and BMIz and 

categorical OWOB (r<0.55). Waist OB showed the weakest correlations with the other 

measures, however again these were still modest (r>0.62). Overall, there was good 

correlation between the alternative measures of obesity.  

 
Table 4.8 Correlations between the body composition measures in the 
GMS cohort (age 6-8) 

 
BMIz FMI OWOB Waist OB 

BMIz 1 
   

FMI 0.749 1 
  

OWOB 0.763 0.701 1 
 

Waist OB 0.622 0.664 0.667 1 
 

Pearson correlation coefficients between outcome measures.  
All correlations p<0.0001. 

4.4.5 Relationship between early life exposures and childhood body composition  

In bivariate analyses, a higher birthweight and adversity were both associated with a higher 

BMIz and FMI and increased likelihood of OWOB (Appendix C,  
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Table XI ). RWG was associated with increased BMIz. MVPA was negatively associated with all 

outcomes.  

The exposures consistently significant across outcomes in bivariate analyses were 

birthweight and adversity ( 

Figure 4.1). Weaning was the only feeding-related variable that demonstrated significant 

associations in the bivariate models, albeit only for BMIz. Rapid weight gain also 

demonstrated significant associations with BMIz.  

The effects of these early life variables were investigated further in multivariable models 

adjusted for known confounders, including early and later life SES, and other early life 

exposures (Table 4.9).  

Anticipated confounding variables (Table 1.5) of the relevant exposures were included in the 

models. Including breastfeeding duration in the models made little difference to the 

estimates, and there was strong support for the models without breastfeeding (indicated by 

BIC), therefore it was not included. Using categorical maternal age rather than continuous 

explained more of the variation in outcomes. The impact of physical activity on the early life 

variables was also investigated in separate adjusted models (Table 4.10). 
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Figure 4.1 Forest plot of bivariate models for each outcome (x-axis) and exposure (y-axis) in GMS (age 6-8). 
Odds ratios presented for the outcomes OWOB and waist OB, and coefficients for BMIz and FMI,  
with respective 95% confidence intervals and the corresponding level of significance  
(* indicates p<0.05, ** p<0.01, ***p<0.001). Physical activity is adjusted for season.

Coefficient Odds ratio 
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Table 4.9 Multivariable regression models for early and childhood factors and all adiposity outcomes in GMS (age 6-8).  

 Variable  OWOB    BMIz    FMI    Waist OB  

  OR CI p  Coef CI p  Coef CI p  OR CI p 

Female 0.85 [0.42,1.71] 0.65  -0.03 [-0.27,0.20] 0.78  -0.06 [-0.49,0.38] 0.80  1.07 [0.48,2.42] 0.87 
Gestation length (wk) 1.30 [0.99,1.69] 0.055  0.04 [-0.04,0.11] 0.30  0.03 [-0.11,0.17] 0.66  0.92 [0.71,1.20] 0.54 
First-born 1 [0.48,2.09] 0.99  -0.01 [-0.27,0.24] 0.94  0.01 [-0.46,0.48] 0.97  1.05 [0.45,2.42] 0.92 
Maternal age 

Less than 25 0.27 [0.09,0.85] 0.025  -0.35 [-0.69,-0.00] 0.047  -0.65 [-1.28,-0.02] 0.043  0.29 [0.07,1.16] 0.080 
25-34 Ref  .  Ref  .  Ref  .  Ref  . 

35+ 0.63 [0.22,1.81] 0.39  -0.09 [-0.43,0.25] 0.60  -0.45 [-1.07,0.17] 0.16  1.18 [0.39,3.59] 0.77 
Adversity 2.59 [1.25,5.35] 0.010  0.31 [0.04,0.57] 0.023  0.64 [0.15,1.13] 0.010  1.06 [0.44,2.55] 0.90 
Birthweight z-score 2.61 [1.73,3.94] <0.0001  0.44 [0.31,0.57] <0.001  0.43 [0.19,0.68] 0.001  1.69 [1.09,2.64] 0.020 
Rapid weight gain  3.86 [1.69,8.82] 0.001  0.81 [0.52,1.10] <0.001  0.71 [0.18,1.24] 0.009  2.07 [0.79,5.48] 0.14 
Wean age 0.87 [0.75,1.03] 0.10  -0.06 [-0.11,-0.01] 0.012  -0.08 [-0.17,0.00] 0.061  0.82 [0.70,0.97] 0.023 

Maternal education 
None  Ref  .  Ref  .  Ref  .  Ref  . 
GCSE 1.47 [0.27,8.03] 0.66  0.4 [-0.11,0.92] 0.13  0.89 [-0.06,1.84] 0.066  2.61 [0.30,22.46] 0.38 

A level 1.3 [0.20,8.44] 0.78  0.42 [-0.16,1.00] 0.16  0.75 [-0.33,1.82] 0.17  1.11 [0.10,12.96] 0.93 
Degree 1.87 [0.30,11.82] 0.51  0.33 [-0.26,0.93] 0.27  0.39 [-0.70,1.49] 0.48  1.08 [0.10,11.82] 0.95 

SES (childhood)  
 Least advantaged Ref  .  Ref  .  Ref  .  Ref  . 

Mid 0.37 [0.14,0.97] 0.042  -0.23 [-0.54,0.09] 0.16  -0.65 [-1.24,-0.07] 0.028  0.54 [0.18,1.61] 0.27 
Most advantaged 0.44 [0.17,1.20] 0.11  -0.09 [-0.43,0.26] 0.61  -0.53 [-1.16,0.11] 0.10  0.89 [0.30,2.63] 0.84 

N 261    265    265    275   
pseudo R2/adjusted R2 0.207    0.219    0.104    0.111   

Coefficients (coef) or odds ratios (OR) are presented with 95% confidence intervals (CI) and the corresponding level of significance (p). Ref indicates reference category for factor variables. 
Bold indicates significant at p<0.05.   
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4.4.6 Associations across different outcome measures 

There was consistency across measures in bivariate analyses (Appendix C,Table VIII). In 

bivariate analyses, birthweight z-score was positively associated with all outcome measures. 

MVPA was negatively associated with all outcomes. Whilst younger maternal age was 

associated with lower odds of OWOB, lower BMIz and FMI. Adversity was associated with 

increased odds of OWOB, increased BMIz and increased FMI (but not waist OB). The effects 

of adversity could be attributed to socioeconomic factors including debt and parental 

separation (Appendix C, Table IX). 

However, there were no associations for any other early socioeconomic factors (Appendix 

C,Table VIII) for any of the weight outcomes. Although, being in the mid socioeconomic 

advantaged group (compared to the least advantaged) in childhood was associated with 

lower odds of OWOB and a lower BMIz. There was no association for breast or formula 

feeding with any of the outcome measures, however weaning age was negatively associated 

with BMIz and lower odds of waist OB. For BMIz only, there was a positive association 

(p<0.1) between sleep issues in the bivariate model, however this was no longer present 

after adjustment.  

Overall, there was good agreement across OWOB, BMIz and FMI for the early life factors; 

younger maternal age, adversity, birthweight and rapid weight gain (Table 4.9). There were 

differences in associations for waist OB, whereby there were only significant associations for 

birthweight (increased odds) and weaning (decreased odds).  

 The influence of physical activity 

MVPA was negatively associated with all outcomes, with the most significant association 

being for FMI (Table 4.10). For BMIz, adjusting for MVPA did not lead to great changes in 

most significant coefficients. However, it removed the significant association for younger 

maternal age. Adjusting for MVPA removed any significant associations for SES. After 

adjustment, the coefficients for birthweight decreased across all outcomes, and birthweight 

was no longer significant associated with waist OB (Table 4.10). The association between 

weaning and lower odds of waist OB was no longer significant after controlling for MVPA. 

After adjustment for MVPA, the odds ratio notably increased for RWG and OWOB (OR=3.8 

in model without MVPA, compared to OR=4.8 in adjusted model).  
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Table 4.10 Multivariable regression models with and without adjustment for MVPA for outcomes in GMS (age 6-8). 

Models were additionally adjusted for covariates; sex, gestation and first-born, and MVPA models also for season. Coefficients (coef) or odds ratios (OR) are presented with 95% confidence intervals (CI) and the 
corresponding level of significance (p). Reference categories for factor variables were; least advantaged for SES; no maternal qualifications for maternal education; and maternal age 25-34.  Bold indicates significant at 
p<0.05. 

 

  OWOB  OWOB adjusted for MVPA   BMIz  BMIz  adjusted  for MVPA 
 Exposures OR CI p OR CI p  coef CI p coef CI p 

Maternal age                Less than 25 0.27 [0.09,0.85] 0.025 0.16 [0.04,0.66] 0.011  -0.35 [-0.69,-0.00] 0.047 -0.32 [-0.67,0.03] 0.07 
35+ 0.63 [0.22,1.81] 0.39 0.45 [0.12,1.68] 0.24  -0.09 [-0.43,0.25] 0.60 -0.16 [-0.49,0.18] 0.35 

Adversity 2.59 [1.25,5.35] 0.01 3.08 [1.32,7.18] 0.009  0.31 [0.04,0.57] 0.023 0.28 [0.02,0.54] 0.034 
Birthweight z-score 2.61 [1.73,3.94] <0.001 2.19 [1.38,3.49] 0.001  0.44 [0.31,0.57] <0.001 0.36 [0.23,0.50] <0.001 
Wean age 0.87 [0.75,1.03] 0.1 0.90 [0.76,1.07] 0.23  -0.06 [-0.11,-0.01] 0.012 -0.06 [-0.11,-0.02] 0.009 
Rapid weight gain  3.86 [1.69,8.82] 0.001 4.82 [1.78,13.09] 0.002  0.81 [0.52,1.10] <0.001 0.82 [0.53,1.11] <0.001 
Maternal education                 GCSE 1.47 [0.27,8.03] 0.66 1.21 [0.16,9.46] 0.85  0.4 [-0.11,0.92] 0.13 0.46 [-0.07,0.98] 0.09 

A level 1.3 [0.20,8.44] 0.78 1.04 [0.11,9.50] 0.97  0.42 [-0.16,1.00] 0.16 0.52 [-0.06,1.11] 0.08 
Degree 1.87 [0.30,11.82] 0.51 1.87 [0.22,15.53] 0.56  0.33 [-0.26,0.93] 0.27 0.44 [-0.16,1.04] 0.15 

SES (childhood)                        Mid 0.37 [0.14,0.97] 0.042 0.46 [0.15,1.39] 0.17  -0.23 [-0.54,0.09] 0.16 -0.11 [-0.42,0.21] 0.50 
Most advantaged 0.44 [0.17,1.20] 0.11 0.51 [0.16,1.66] 0.27  -0.09 [-0.43,0.26] 0.61 0.07 [-0.28,0.41] 0.71 

MVPA -   0.72 [0.58,0.90] 0.003  -   -0.07 [-0.12,-0.02] 0.007 

N 261   240                0.219   0.247              
R2/pseudo  R2 0.207   0.293                0.260   0.303              
  FMI  FMI  adjusted  for MVPA   Waist OB  Waist OB  adjusted  for MVPA 
  Exposures coef CI p coef CI p  OR CI p OR CI p 

Maternal age                Less than 25 -0.65 [-1.28,-0.02] 0.043 -0.67 [-1.30,-0.04] 0.037  0.29 [0.07,1.16] 0.08 0.3 [0.06,1.61] 0.16 
35+ -0.45 [-1.07,0.17] 0.16 -0.49 [-1.10,0.11] 0.11  1.18 [0.39,3.59] 0.77 1.37 [0.37,5.13] 0.64 

Adversity 0.64 [0.15,1.13] 0.01 0.63 [0.16,1.10] 0.009  1.06 [0.44,2.55] 0.90 1.04 [0.38,2.89] 0.93 
Birthweight z-score 0.43 [0.19,0.68] 0.001 0.26 [0.02,0.50] 0.033  1.69 [1.09,2.64] 0.020 1.39 [0.85,2.27] 0.20 
Wean age -0.08 [-0.17,0.00] 0.061 -0.08 [-0.16,0.01] 0.077  0.82 [0.70,0.97] 0.023 0.86 [0.72,1.02] 0.084 
Rapid weight gain  0.71 [0.18,1.24] 0.009 0.69 [0.17,1.21] 0.009  2.07 [0.79,5.48] 0.14 2.73 [0.89,8.35] 0.078 
Maternal education                  GCSE 0.89 [-0.06,1.84] 0.066 0.95 [0.00,1.90] 0.049  2.61 [0.30,22.46] 0.38 1.42 [0.15,13.18] 0.76 

A level 0.75 [-0.33,1.82] 0.17 0.94 [-0.11,2.00] 0.079  1.11 [0.10,12.96] 0.93 0.73 [0.06,9.68] 0.81 
Degree 0.39 [-0.70,1.49] 0.48 0.55 [-0.53,1.63] 0.32  1.08 [0.10,11.82] 0.95 0.79 [0.07,8.99] 0.85 

SES (childhood)                        Mid -0.65 [-1.24,-0.07] 0.028 -0.54 [-1.11,0.03] 0.062  0.54 [0.18,1.61] 0.27 0.51 [0.14,1.82] 0.30 
Most advantaged -0.53 [-1.16,0.11] 0.10 -0.44 [-1.07,0.18] 0.17  0.89 [0.30,2.63] 0.84 0.81 [0.23,2.95] 0.76 

MVPA -   -0.23 [-0.32,-0.13] <0.001  -   0.70 [0.53,0.93] 0.013 

N 265   243    275   246   
R2/pseudo R2 0.104   0.189    0.111   0.167   
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4.4.7 Sensitivity analysis for childhood FMI 

The model for FMI did not fit regression diagnostic criteria. There was a slightly positive 

skew of the residuals and the normal probability plot demonstrated deviation from 

normality towards the tails (Appendix C, Figure XI). The non-normal residuals suggested 

that this model does not explain all trends in the dataset.  

Model building was redone to find the best model for FMI (Table 4.11). Despite being 

confounding variables, there was support (BIC) for the model to not include the 

socioeconomic variables; maternal education, Townsend and occupation social class in 

childhood, or the feeding variables (Table 4.11).  

The skewed residuals could be due to the high values of FMI observed leading to positive 

skew in the values. Taking the definition of an outlier as greater than the upper quartile plus 

1.5 times the inter-quartile range (IQR) (>Q3 + 1.5*IQR), excluding outliers removed from 

the sample those with a FMI greater than 8.19 (n=16 in adjusted model). This appeared to 

correct the skewed residuals (Appendix C, Figure XI) which appeared more normally 

distributed, although statistically were not (Shapiro-Wilk p<0.005). Further investigation into 

which data points deviated from the mean (high leverage points using Cook’s distance), 

found no obvious, identifiable pattern. Therefore, the variables (Table 4.11) are a better 

model fit for those with a FMI within the middle of distribution for FMI, but not for those 

with high FMI.  
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Table 4.11 Multivariable models for the FMI model and the model excluding the outliers in GMS (age 6-8). 

 FMI  FMI without outliers 
Exposures  coef CI p  coef CI p 
        
Female -0.14 [-0.46,0.19] 0.42  -0.15 [-0.41,0.10] 0.24 
Gestation (weeks) 0.04 [-0.06,0.15] 0.44  0 [-0.08,0.08] 0.94 
First-born 0.02 [-0.33,0.37] 0.90  0 [-0.28,0.27] 0.99 
Maternal age (years) 

 Less than 25 -0.25 [-0.66,0.16] 0.23  -0.22 [-0.54,0.10] 0.18 
25-34 Ref  .  Ref  . 

35+ -0.38 [-0.86,0.10] 0.12  -0.59 [-0.97,-0.20] 0.003 
Adversity 0.67 [0.30,1.04] <0.001  0.51 [0.22,0.80] 0.001 
Birthweight (z-score) 0.36 [0.19,0.53] <0.001  0.16 [0.03,0.30] 0.020 
RWG 0.56 [0.19,0.94] 0.004  0.30 [-0.00,0.59] 0.051 

N 499    473                  
Adjusted R2                 0.058    0.048                  

Coefficients (coef) are presented with 95% confidence intervals (CI) and the corresponding level of significance (p). Ref 
indicates reference category for factor variables. Bold indicates significant at p<0.05. All covariates are presented.  
 

The study members with the greatest fat mass also had very high BMI and waist OB, 

therefore these data are probably valid measurements, and it would be incorrect to simply 

exclude those with high FMI. The models fit other regression diagnostic criteria (i.e. 

homoscedastic, no omitted variables, no collinearity) except for normality of residuals. This 

was due to skewed residuals, which were prone to non-normality at the tails (Appendix C, 

Figure XI). Therefore, to obtain reliable estimates without excluding data points, robust 

regression was used.  

The robust regression included the same variables as the basic model (model 1). The 

coefficients for birthweight, RWG and adversity were smaller and less significant when using 

robust regression compared to linear regression (Table 4.12). In addition, the coefficient for 

older maternal age was significant in the robust regression model. Other coefficients 

remained similar. Therefore, linear regression may lead to an overestimation of the 

coefficients and significance (for birthweight, RWG and adversity).  
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Table 4.12 Comparison of the FMI adjusted linear regression model and the robust regression model in GMS (age 6-8). 

FMI Model 1 - Linear 
 

Model 1 - Robust  
coef CI p  coef CI p 

        

Female -0.14 [-0.46,0.19] 0.42  -0.23 [-0.50,0.04] 0.10 
Gestation length (wk) 0.04 [-0.06,0.15] 0.44  -0.02 [-0.10,0.07] 0.69 
First-born 0.02 [-0.33,0.37] 0.90  0.0 [-0.29,0.29] 0.98 
Adversity 0.67 [0.30,1.04] <0.001  0.50 [0.20,0.81] 0.001 
Birthweight z-score 0.36 [0.19,0.53] <0.001  0.17 [0.02,0.31] 0.021 
Rapid weight gain  0.56 [0.19,0.94] 0.004  0.34 [0.02,0.65] 0.037 
Maternal age   Less than 25 -0.25 [-0.66,0.16] 0.23  -0.20 [-0.54,0.14] 0.25 

25-34 Ref   .  Ref   . 
35+ -0.38 [-0.86,0.10] 0.12  -0.60 [-1.00,-0.20] 0.004 

N 499    499 

  

Adjusted R2 
0.058    0.045 

 
              

Coefficients (coef) are presented with 95% confidence intervals (CI) and the corresponding level of significance (p). Ref 
indicates reference category for factor variables. Bold indicates significant at p<0.05. All covariates are presented. 

 

4.4.8 Sensitivity analysis for demographic factors 

A small proportion of the age 6-8 sample with BMIz measures were ultra-Orthodox Jewish 

(n=9, 1.6%). As there are established differences in feeding practices within this group, any 

models that included feeding variables (BMIz, OWOB, waist OB) were re-run excluding ultra-

Orthodox Jewish (UOJ) study members. There were no significant differences in prevalence 

of OWOB or waist OB, or differences in the mean BMIz or FMI between this group and the 

remainder of the sample, however this may be due to the small sample size.  

Despite the low proportion, repeating analyses without ultra-Orthodox Jewish study 

members did have an impact on the regression coefficients and odds ratios. For the OWOB 

model, the odds ratios for younger maternal age and mid childhood SES decreased after 

excluding UOJ (Table 4.13). The model indicated that for OWOB, coefficients were 

underestimated, and therefore for the majority of the cohort there were larger associations 

for adversity, RWG and birthweight with childhood adiposity. Results remained similar for 

BMIz and waist OB. 
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Although sample sizes were too small to investigate the UOJ group separately, these results 

could suggest that early life risk factors are not the same for this group or have a smaller 

magnitude. 

Table 4.13 Multivariable regression models for UOJ sensitivity analysis for all outcomes in GMS (age 6-8). 

 BMI  without UOJ 

 Variable coef CI p  coef CI p 

Maternal age       Less than 25 -0.35 [-0.69,-0.00] 0.047  -0.40 [-0.76,-0.03] 0.032 
25-34 Ref  .  Ref  . 

35+ -0.09 [-0.43,0.25] 0.60  -0.07 [-0.42,0.28] 0.69 
Adversity 0.31 [0.04,0.57] 0.023  0.31 [0.04,0.58] 0.027 
Birthweight z-score 0.44 [0.31,0.57] <0.001  0.45 [0.32,0.59] <0.001 
Rapid weight gain  0.81 [0.52,1.10] <0.001  0.82 [0.51,1.12] <0.001 
Wean age -0.06 [-0.11,-0.01] 0.012  -0.06 [-0.11,-0.00] 0.036 
Maternal education  Ref  .  Ref  . 

GCSE 0.40 [-0.11,0.92] 0.13  0.48 [-0.07,1.03] 0.088 
A level 0.42 [-0.16,1.00] 0.16  0.49 [-0.12,1.11] 0.12 
Degree 0.33 [-0.26,0.93] 0.2  0.39 [-0.24,1.01] 0.23 

SES (childhood)  Ref  .  Ref  . 
Mid -0.23 [-0.54,0.09] 0.16  -0.24 [-0.57,0.09] 0.15 

Most advantaged -0.09 [-0.43,0.26] 0.61  -0.09 [-0.45,0.27] 0.63 

n 265    254   
R2 0.219    0.206   

 

 OWOB   without UOJ 

 Variable OR CI p  OR CI p 

Maternal age   Less than 25 0.27 [0.09,0.85] 0.025  0.25 [0.08,0.81] 0.021 
25-34 Ref  .  Ref  . 

35+ 0.63 [0.22,1.81] 0.39  0.68 [0.23,1.98] 0.48 
Adversity 2.59 [1.25,5.35] 0.01  2.87 [1.36,6.06] 0.006 
Birthweight z-score 2.61 [1.73,3.94] <0.001  2.67 [1.75,4.07] <0.001 
Rapid weight gain  3.86 [1.69,8.82] 0.001  4.32 [1.83,10.19] 0.001 
Wean age 0.87 [0.75,1.03] 0.10  0.88 [0.74,1.04] 0.12 
Maternal education  Ref  .  Ref  . 

GCSE 1.47 [0.27,8.03] 0.66  1.59 [0.28,8.93] 0.60 
A level 1.3 [0.20,8.44] 0.78  1.3 [0.20,8.63] 0.79 
Degree 1.87 [0.30,11.82] 0.51  1.9 [0.29,12.28] 0.50 

SES (childhood)  Ref  .  Ref  . 
Mid 0.37 [0.14,0.97] 0.042  0.33 [0.13,0.89] 0.028 

Most advantaged 0.44 [0.17,1.20] 0.11  0.39 [0.14,1.06] 0.066 
         
n 261    250   
Pseudo R2 0.207    0.205   
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 Waist OB  without UOJ 

 Variable OR CI p  OR CI p 

Maternal age     Less than 25 0.29 [0.07,1.16] 0.080  0.32 [0.08,1.29] 0.11 
25-34 Ref  .  Ref  . 

35+ 1.18 [0.39,3.59] 0.77  1.23 [0.40,3.76] 0.72 
Adversity 1.06 [0.44,2.55] 0.90  1.02 [0.41,2.54] 0.96 
Birthweight z-score 1.69 [1.09,2.64] 0.020  1.63 [1.04,2.55] 0.033 
Rapid weight gain  2.07 [0.79,5.48] 0.14  1.9 [0.69,5.21] 0.21 
Wean age 0.82 [0.70,0.97] 0.023  0.82 [0.69,0.97] 0.021 
Maternal education  Ref  .  Ref  . 

GCSE 2.61 [0.30,22.46] 0.38  2.59 [0.30,22.61] 0.39 
A level 1.11 [0.10,12.96] 0.93  1.11 [0.09,12.97] 0.93 
Degree 1.08 [0.10,11.82] 0.95  1.09 [0.10,12.13] 0.94 

SES (childhood)  Ref  .  Ref  . 
Mid 0.54 [0.18,1.61] 0.27  0.57 [0.19,1.75] 0.33 

Most advantaged 0.89 [0.30,2.63] 0.84  0.93 [0.31,2.81] 0.89 
         
n 275    263   
Pseudo R2 0.111    0.102   

Models included those with infant feeding variables, with and without ultra-orthodox Jewish (UOJ) study members for 
outcomes BMI, OWOB and waist OB. Models were additionally adjusted for sex, gestation and first born (for which all had 
non-significant p values) Coefficients (coef) or odds ratios (OR) are presented with confidence intervals (CI) and the 
corresponding level of significance (p). Ref indicates reference category for factor variables. No qualifications was the 
reference category for maternal education, and least advantaged for SES. . Bold indicates significant at p<0.05.   
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4.4.9 Path analysis 

In the path model, birthweight, adversity, RWG and physical activity had direct paths to 

BMIz. All but MVPA had positive coefficients. The direct effects of birthweight and RWG 

were similar in magnitude, however RWG had the largest total effect on BMIz of all the 

exposures. Cumulatively, the exposures in the model explained 23% of the variation in BMIz. 

Higher maternal education was associated with increased likelihood of being first-born and 

increased birthweight, independent of maternal age. Maternal education was not a direct 

predictor of BMIz, but had a small significant total effect, mediated through the early life 

exposures. Lower birthweights were observed for first-born children. Older maternal age 

was associated with lower likelihood of being first-born, as to be anticipated, however 

neither of these factors had significant total effects on BMIz.  

There was an interesting relationship between birthweight, RWG and BMIz. Whilst a higher 

birthweight was associated with a higher BMIz (age 6-8), higher birthweights were 

associated with decreased likelihood of RWG. However, the total effect of birthweight on 

BMIz remained significant despite the attenuating effect via RWG, suggesting this remains 

an important factor. As well as direct and total effects, birthweight also had a significant 

indirect effect on BMIz.  

Females spent less time doing MVPA compared to males. Removing MPVA and season from 

the model decreased the R2 by around 1% and minimally altered coefficients (less than 10% 

change). Therefore, the effects of MPVA on predicting BMIz in this model are minimal. When 

building the path model, including weaning age minimally altered coefficients and did not 

increase R2, and resulted in a direct path with BMIz (p<0.1) but no paths to other variables. 

As it was not significant at p<0.05 it did not meet criteria for inclusion in the path model. 

Breastfeeding and Townsend score were not predictors of any variables in the model.  
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4.5 Discussion 

4.5.1 Summary  

Early life risk factors for childhood adiposity were examined for the outcomes BMIz, OWOB, 

waist OB and FMI in GMS children aged 6-8. For every outcome, there was an association for 

birthweight, and associations for young maternal age, adversity, and RWG across most 

outcomes (bar waist OB). These associations were evident even after adjusting for 

confounding factors including SES and physical activity. Age at weaning did not demonstrate 

consistent associations with body composition. Overall adversity, parental separation, 

money issues were significant predictors of adiposity even after adjustment for parental SES 

(Appendix C, Table IX). The low prevalence of specific adversity exposures (i.e. for death) 

may have affected the likelihood of finding associations.  

Further exploration of the pathways to BMIz demonstrated that RWG was an intermediate 

factor between birthweight and BMIz. Maternal education was associated with birthweight, 

Figure 4.2 Path model showing the relationships between early life and childhood variables with BMIz at age 6-8.  

Arrows show the direction of the effect. Standardised coefficients are shown. All direct effects are represented by solid 
lines and are significant at p<0.05. Total effects (if significant) are presenting in brackets with associated p values. There 
were significant indirect effects on BMIz for maternal education (0.05), female (0.01), season (0.03) and birthweight 
(0.14).   
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and parity, which were also both associated with RWG. Adversity and MVPA independently 

predicted BMIz.  

The associations noted for RWG were large, with 4 fold increased odds of OWOB and large 

increases in BMIz and FMI, with estimates increasing after adjusting for PAL. However, when 

excluding the FMI outliers and using robust regression, the estimates decreased suggesting 

that this relationship is stronger in children with higher fat mass.  

Decreases in adiposity were evident across all outcomes for physical activity. Adjusting for 

activity removed any significant associations between SES and outcomes, and no early life 

exposures predicted waist OB after adjusting for activity. When MVPA was included in the 

multivariable models, the model explained a much larger proportion of the variation in the 

outcome variables, more so for OWOB and FMI (R2 increased by 9%). Although in the path 

model, when activity was excluded it made little difference to estimates or overall variation 

explained. This may suggest that although activity is an important factor for obesity and fat 

mass, the early life and maternal factors and the pathways between them are the main 

influences on childhood BMIz.  

There were no associations for caesarean birth, which is in contrast to systematic reviews 

and meta-analyses, which generally find a positive association (Darmasseelane et al., 2014, 

Kuhle et al., 2015). Findings from the Pelotas study from Brazil (Barros et al., 2017), and a 

matched sibling-pair design study (Rifas-Shiman et al., 2018) have attributed the association 

to unmeasured confounding. Differences might also arise when distinguishing between 

elective and emergency c-sections, for example considering underlying issues related to an 

emergency c-section such as maternal pre-pregnancy BMI or macrosomic infants. The 

underlying biological mechanism for caesarean birth is yet to be determined, but may be 

related to the microbiome (Masukume et al., 2018), which demonstrates great 

interindividual variation and could create heterogeneity in results (Kuhle and Woolcott, 

2017).  

There were null associations for sleep problems, which may be due to the definition of sleep 

problems used. The majority of studies analysing sleep problems use sleep duration, which 

was not measured in this cohort. There is also the possibility that higher BMI precedes sleep 

problems (Wang et al., 2019).  
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There were no associations for early life infection, however this was a rather crude measure 

extrapolated from questionnaire data. More accurate infection data could come from data 

linkage with NHS records.  

4.5.2 Sensitivity analyses 

Sensitivity analyses based on religion revealed some differences. Previous research in this 

group in GMS has found differing growth patterns, including weight faltering in infancy 

(Wright et al., 2010b). This was attributed to delayed introduction of solids and longer 

duration breastfeeding (Wright et al., 2010b). Excluding this demographic also meant the 

exposures; adversity, birthweight, and RWG corresponded to higher odds of OWOB and 

increased FMI and BMIz. This suggests that the effect sizes were underestimated, and 

perhaps implies that these risk factors may not be risk factors in different populations. 

Despite previous findings that ultra-orthodox infants were lighter at age 13 months, the 

prevalence of overweight or adiposity in childhood (age 6-8) was not different between 

ultra-orthodox children and the rest of the cohort. It was not possible to discern if early life 

risk factors differed between groups, and due to the small sample size results should be 

interpreted with caution.  

4.5.3 Choice of outcome measure  

There were strong correlations between all outcome measures, more so between BMIz, FMI 

and OWOB, whilst waist OB had slightly weaker correlations with the other outcomes 

(however all Pearson r>0.6). Studies have found that correlations between body fat and BMI 

in children can range vastly (from 0.22 to 0.9) and are stronger in those with higher fat mass 

(Wells, 2000, Freedman et al., 2005b).  

Despite the strong correlations, there were some differences between risk factors and 

outcomes (Figure 4.3). In accordance with the work of Basterfield et al (2012), there were 

differences in early life risk factors based on choice of outcome measure. However, contrary 

to their work, in these analyses there was good consistency in associations for exposures for 

BMIz, FMI and OWOB. The risk factors for increased BMIz (maternal age, birthweight, 

adversity and RWG) also correspond to increased odds of OWOB, which is perhaps not 

surprising as BMIz and OWOB are based on the same measures. 

Height is a confounding factor when determining childhood adiposity. The outcome 

measures accounted for height, however there still may be residual correlation. The use of 
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FMI in addition to primary outcomes allows greater sensitivity to detect early life exposures 

associated with adiposity.  Although, in the study by Steiberger et al. (2005), the correlations 

between BMIz and body fat quantified by DXA were stronger among children with a higher 

percentage of body fat (r = 0.9) than among leaner children (r = 0.5) (Steinberger et al., 

2005). This suggests that BMI is more reflective of body fat in children with higher fat mass.   

Ideally studies would use direct measures of body fat. Whilst BIA has its limitations, many of 

the other sophisticated methods for determining body fat are less suitable for small children 

as they require subjects to lie still for an amount of time. In this cohort the risk factors for 

FMI were the same as those for OWOB, suggesting that BMI (for determining OWOB) may be 

an adequate proxy measure.  

Overall these results indicate that the risk factors; birthweight, RWG, adversity and maternal 

age were consistently associated with adiposity in this cohort, with some support for early 

weaning and low SES.  Physical activity was associated with reduced adiposity across all 

outcomes.  

 

Figure 4.3 Venn diagram for significant associations (p<0.05) in multivariable models across outcomes.  

Associations are from the multivariable models not adjusted for PAL and outliers not excluded for FMI. BWT, birthweight, 
Child SES, childhood socioeconomic status; RWG, rapid weight gain.  
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Chapter 5. The influence of early life factors and the 

environment on childhood obesity over time in two regional 

birth cohorts 

5.1 Introduction 

Increases in childhood obesity in the last 20 years have been somewhat attributed to social 

change and a changing environment. All of the environmental influences and conditions of 

life that encourage OWOB have been termed the obesogenic environment (Lake et al., 

2011). Over this time, there has also been widening social inequalities in childhood 

overweight (NHS Digital, 2016, Bann et al., 2018), and changes in the social patterning of 

obesity (Knai et al., 2012).   

Early life risk factors for childhood obesity have mostly been examined in modern cohorts. 

However, multiple early life risk factors have not previously been examined in children in a 

historic (i.e. pre-obesity epidemic) cohort. Therefore, it is unknown whether these early life 

risk factors are only risk factors in conjunction with an obesity-promoting environment or 

are distinct, biologically embedded risk factors.  

This chapter addresses the second aim of the thesis and investigates the regional temporal 

changes on obesity, and the impact of modern environmental and socioeconomic factors. 

The analysis uses data from both the 1947 Newcastle Thousand Families Study (NTFS) and 

the 2000 Gateshead Millennium Study (GMS)), two cohorts from the same region- North 

East of England born over 50 years apart. Using cohorts from the same region controls for 

some baseline area-level differences. The cohorts had data collected on body composition at 

various ages throughout childhood, and both cohorts had measures of body height and 

weight at ages 9 and 13. The analysis in this chapter focused on body composition at age 9, 

due to a lower level of missing data, and to minimise the bias of puberty on results (which 

typically begins between around age 11 and 12 years for girls and boys respective (Marshall 

and Tanner, 1969, Marshall and Tanner, 1970)).   

The previous chapters determined that the early risk factors for childhood body composition 

(in GMS) were birthweight, maternal age, adversity and rapid weight gain (RWG). 

Breastfeeding was associated with BMI in NTFS adults. SES had indirect effects in both adults 

and children. Therefore, these were the exposures investigated in this analysis. Whilst there 
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were other associations found (bacterial infection (NTFS adults), physical activity (NTFS 

adults and GMS children)), comparable data were not available for these exposures for both 

cohorts.  

This chapter will investigate and compare the relationship between early life and societal 

factors on childhood body composition in the two cohorts. Using cohorts from the same 

area but at different time points provides a unique opportunity to investigate if, and how the 

escalating obesogenic environment may have transformed early life risk factors for obesity.  

5.2 Aims 

The first aim of this chapter was to determine if an increasingly obesogenic environment has 

altered the impact of early life factors and societal factors on BMI and the likelihood of being 

overweight/obese (OWOB) in childhood. The analysis will examine if risk factors have 

changed over time, in two regional birth cohorts that were not subject to the same 

confounding and environmental influences. 

Secondly, this chapter aimed to assess the relative importance of each of the early life 

factors and SES on childhood BMI by understanding the pathways between them.  

5.3 Participants and methods 

Details on the two cohorts utilised in this chapter are outlined in sections 2.1.1 (NTFS) and 

2.1.2 (GMS). Anthropometric measures were taken at around age 9 for participants from 

both cohorts and were used to calculate BMIz and OWOB (for details see methods section 

2.2.1). There were several early life factors directly comparable across the two cohorts and 

measured at similar time points (Table 5.1). These included; SES, maternal age, birthweight, 

breastfeeding, adversity and RWG (in the first year). Due to the large difference in 

birthweight z-scores between the cohorts, weight gain conditional on birthweight was also 

considered (rapid thrive). Recoding of the variables was similar for both, except for SES and 

adversity (Table 5.1). 
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Table 5.1 Description of the earlexposures and any differences between the cohorts 

Time 
point 

Variable Description Type of variable 
Cohort 
diff-
erences? 

Birth 

Maternal age Years and groups (<25, 25-34, 35+) Continuous and categorical No 

Birthweight  
Birthweight z-score, using the British 1990 
growth reference  

Continuous  No 

Gestation  
Weeks (continuous) and categorised as; pre-
term, <38 wks; post-term >41 wks 

Continuous and categorical  No 

Socioeconomic 
status (SES) 

In NTFS Social class based on occupation  
In GMS Townsend score (quintiles) 

Categorical,  
5 categories with 1 being 
the most advantaged and 5 
the least 

Yes 

First 
year 

Rapid weight 
gain (RWG) 

If experienced a 0.67 SD change in weight 
for age z-score 

Dichotomous  No 

Rapid thrive 
(RT) 

If experienced a 0.67 SD change in 
conditional weight gain (z-score12m − r × z-
scorebirth) 

Dichotomous  No 

Breastfeeding 

Predefined categories (GMS) of never, <4 
weeks, 4 week-6 months and 6 months+ 
For NTFS, weeks were transformed into the 
same categories to match GMS 

Categorical  No  

Adversity 

Experiencing any of the following;  
parental separation, police involvement, 
abuse, debt, death or illness in the family; 
- In the first year in NTFS (0-12 months) 
- From 8 months pre-natal to 4 months 
post-natal in GMS 

Dichotomous  Yes 

SD, standard deviation.  

Statistical analysis 

Sex, SES, adverse events, RWG, RT and breastfeeding were analysed as categorical variables. 

Maternal age and birthweight were analysed as both categorical and continuous variables, 

and gestation as a continuous variable. Outcomes were BMIz and OWOB at age 9. 

The statistical analysis is outlined in section 2.4.3. Briefly, this included testing cohort 

representativeness of sub-sample of participants at age 9 and examining baseline 

differences in the cohorts, using t-test, chi-squared or Wilcoxon rank-sum tests as 

appropriate. Variation between socioeconomic groups and body composition (OWOB, BMIz 

and height), were analysed using Chi-square tests or one-way ANOVA. Logistic (OWOB) and 

linear (BMIz) regression analyses were carried out as described in section 2.3.5. Associations 

between exposures and outcomes were estimated, with separate analyses for each cohort, 

and with adjustment for SES.  
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Although BMI assesses weight independent of height, it remains correlated with height in 

children (Metcalf et al., 2011b)(residual correlation). In GMS, there was a moderate 

correlation (r=0.4, p<0.0001) between height and BMIz (age 9), whereas there was no 

correlation in NTFS (p=0.3). Furthermore, as there was a notable height difference between 

the cohorts, height was included as a covariate in the multivariable models.  

Odds ratios (OR) with corresponding 95% confidence intervals for OWOB and explanatory 

variables were estimated using logistic regression. Multivariable analysis was possible only in 

the GMS cohort due to few OWOB study members in NTFS. 

5.4 Results 

5.4.1 Sample differences in early life exposures 

For the children in the original cohorts (NTFS n=1142, GMS n= 1029), measures of height and 

weight were available for 734 members of NTFS and 481 of GMS at age 9. Study members 

measured at age 9 differed significantly from the remainder of the original study members in 

both cohorts (Table 5.2). In GMS those with BMI measures (age 9) had a higher mean 

maternal age, were more advantaged at birth, had a longer duration of breastfeeding and a 

greater proportion had experienced an adverse event, compared to the original sample. The 

NTFS age 9 sample also had a higher mean maternal age, the sample was less advantaged 

and had an overall shorter duration of breastfeeding, and a slightly longer length of 

gestation.  

  



169 

Table 5.2 Descriptive statistics and sample representativeness of those with BMI measures at age 9 in the NTFS and GMS 
cohorts for all early life exposures and covariates   

NTFS 
 

GMS 

Continuous  Measured Not measured   Measured Not measured  
 

n 
Mean 
(SD) 

n 
Mean 
(SD) 

p  n 
Mean 
(SD) 

n 
Mean 
(SD) 

p 

Birthweight  
(z-score) 

251 
-0.23 
(1.11) 

734 
-0.11 
(1.04) 

0.14  506 
-0.02 
(1.00) 

481 
0.01 
(1.03) 

0.94 

Maternal age 
(years) 

244 
26.99 
(5.42) 

734 
28.97 
(5.84) 

<0.001  506 
27.1 
(6.08) 

481 
28.82 
(5.72) 

<0.001 

Gestation (weeks) 
246 

39.67 
(1.77) 

727 
39.87 
(1.07) 

0.032  506 
39.42 
(1.82) 

481 
39.55 
(1.55) 

0.22 

  NTFS  GMS 

Categorical Total Measured 
Not 
measured 

p  Total Measured 
Not 
measured 

p 

  N Col % Col %   N Col % Col %  

Sex 1,097 363 734   988 507 481  

Male 561 54.5 49.5 
0.11 

 501 51.7 49.7 
0.53 

Female 536 45.5 50.5  487 48.3 50.3 
Birthweight 973 246 727   987 506 481  

SGA 111 15 10.2 
0.10 

 87 8.7 8.9 
0.77 Normal 784 78 81.4  806 82.4 80.9 

LGA 78 6.9 8.4  94 8.9 10.2 
Gestation categories 983 250 733   987 506 481  

Pre-term  34 7.2 2.2 
<0.001 

 105 11.9 9.4 
0.32 Normal 907 87.2 94.0  819 81.2 84.8 

Post-term  42 5.6 3.8  63 6.9 5.8 
RWG (0-12 months) 354 17 337   808 354 454  

No 213 58.8 60.2 
0.91 

 562 70.9 68.5 
0.46 

Yes 141 41.2 39.8  246 29.1 31.5 
RT (0-12 months) 354 17 337   808 354 454  

No 219 58.8 62 
0.79 

 572 72.9 69.2 
0.25 

Yes 135 41.2 38  236 27.1 30.8 
Maternal age at 
birth 

978 244 734   987 506 481  

Less than 25 272 36.5 24.9 
<0.001 

 322 39.1 25.8 
<0.001 25-34 544 54.5 56  545 50.6 60.1 

35+ 162 9 19.1  120 10.3 14.1 
Breastfeeding 
categories 

460 114 346   948 483 465  

None 65 8.8 15.9 

0.004 

 465 56.1 41.7 

<0.001 
<6 weeks 73 21.1 14.2  237 25.1 24.9 
>6wk 143 21.9 34.1  89 6.8 12.0 
>4m 179 48.2 35.8  157 12.0 21.3 
Adversity 346 97 249   928 475 453  

No 298 89.7 84.7 
0.23 

 715 80.8 73.1 
0.005 

Yes 48 10.3 15.3  213 19.2 26.9 
SES at birth 1021 310 711   981 506 475  

Least advantaged 158 11.3 17.3   186 20.2 17.7  

2nd to least 162 15.8 15.9   200 18.2 22.7  

Mid advantaged 577 52.6 58.2 <0.001  221 23.1 21.9 0.001 
2nd to most 92 14.5 6.6   222 26.5 18.5  

Most advantaged 32 5.8 2.0   152 12.1 19.2  

Number of study members in each category (n) and corresponding column percentage (Col %) or mean and 
standard deviation (SD). P values shown for Chi-square test for significant differences between the those with 
data (BMI measured) and those without for categorical variables, and t-tests for continuous variables. SGA, Small 
for gestational age; LGA, Large-for-gestational age; RWG, rapid weight gain; RT, rapid thrive; SES, socioeconomic 
status.  
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5.4.2 Cohort differences in outcome measures 

GMS children on average had a significantly (p<0.001) higher BMIz (+0.52 z-score) and were 

taller (+8.4cm) than NTFS children (Table 5.3). Of the 734 study members, there were few 

children with overweight (5%) or obesity (3%) in the NTFS in 1956, with the majority (93%) 

having a healthy weight. Of the 481 in GMS sample, 33% were OWOB, of these 11% were 

obese (Table 5.3).  

5.4.3 Descriptive characteristics of socioeconomic groups and weight outcomes 

In both cohorts, there were no significant differences in the prevalence of children with 

OWOB by socioeconomic group (at each time point), and no trend for BMIz (ANOVA p>0.05) 

(Table 5.3). Although there were no significant differences, in both cohorts the 2nd to most 

advantaged group (at birth) had the highest mean BMIz (age 9).   

There were socioeconomic differences in height in NTFS, which were significant (after 

Bonferroni correction) at birth between the least advantaged and both the mid (+3.0cm, 

p<0.001), and the most advantaged (+5.9cm, p=0.04)(Table 5.3). There were no differences 

for childhood SES. Whereas in GMS, height was associated with childhood SES with 

significant differences between the least and most advantaged (+2.1, p=0.056). However, 

there were no significant height and SES interactions on BMIz within the cohorts.  

When examining SES groups in childhood, in GMS the least advantaged group (at age 9) had 

a greater proportion of children with OWOB (32%), although this was not significant (p=0.07) 

(Table 5.3). In contrast, in NTFS the most advantaged group (at age 9) had the highest 

proportion of OWOB (8.5%); and this was comprised exclusively of children with obesity.  
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Table 5.3 Body composition measures (age 9) by SES categories at birth and age 9 in the GMS and NTFS cohorts 

  NTFS  GMS 

 n 
Healthy  
(%) 

OW-
OB  
(%) 

Mean 
BMIz  

Mean 
height 

 n Healthy 
(%) 

OW-
OB 
(%) 

Mean 
BMIz 

Mean 
height 

(SD) (SD)     (SD) (SD) 

All 
 

734 93.1 6.9 0.08 127.4   481 76.5 23.5 0.60 135.8 
      (-0.88) (7.40)         (1.06) (6.34) 

SES at birth                       

Least 
advantaged 

123 91.9 8.1 
0.07 125.2  84 76.2 23.8 0.63 135.7 
(-0.90) (7.31)  

   (1.04) (5.82) 
2nd to least 
advantaged 

113 98.2 1.8 
-0.01 126.6  108 78.7 21.3 0.58 136.5 
(-0.82) (7.26)  

   (1.07) (6.03) 

Mid 414 92 8 
0.11 128.2  104 76 24 0.61 135.9 
(-0.89) (7.31)  

   (1.1) (6.63) 
2nd to most 
advantaged 

47 91.5 8.5 
0.18 127.7  88 70.5 29.5 0.72 135.0 
(-0.98) (7.59)     (1.05) (6.68) 

Most 
advantaged 

14 92.9 7.1 
-0.03 131.1  91 80.2 19.8 0.5 135.4 
(-0.87) (6.66)  

   (1.02) (6.53) 
Total 711    

  475   
  

P value  0.22 a 0.66 b 0.001 b  
 0.59 a 0.74 b 0.52 b 

SES at 9                      

Least 
advantaged 

250 94 6 
0.04 127.4  87 67.8 32.2 0.63 134.9 
(-0.92) (6.78)     (1.13) (5.88) 

Mid 379 92.9 7.1 
0.08 127.9  110 80.9 19.1 0.53 136.0 
(-0.85) (7.31)     (1.01) (6.34) 

Most 
advantaged 

47 91.5 8.5 
0.17 128.6  105 79 21 0.70 137.0 
(-0.85) (6.73)     (0.99) (6.32) 

Total 676     
 302     

P value   0.77 a 0.63 b 0.50 b     0.07 a 0.49 b 0.06 b 

Category totals (N); corresponding row percentages (row %); Standard deviation (SD); Socioeconomic status at 
birth (SES) was fathers occupational social class in NTFS or Townsend quintile in GMS. Bold indicates p<0.05.  
a Chi-square test p value presented for differences between socioeconomic group and weight categories  
b ANOVA p value for differences between socioeconomic groups  
 

5.4.4 Cohort differences in early life exposures 

Descriptive statistics for all variables are shown in Table 5.4, with tests for significant 

differences between cohorts. Mean birthweight was higher in GMS children and length of 

gestation was marginally longer in NTFS (Table 5.4). There were no differences in the 

distribution of birthweight categories (SGA, LGA) between the cohorts. In GMS there were 

more children who were never breastfed and there was overall shorter duration of 

breastfeeding: just under half of GMS children were never breastfed (49%), whereas 

breastfeeding for over 4 months was more commonplace in NTFS (39%). Rapid growth (RWG 

and RT) was more common in NTFS than in GMS. In GMS there were fewer older mothers 

(35+) and a greater proportion of younger mothers (<25 years).  
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There were few in the most advantaged socioeconomic groups in NTFS at both birth and age 

9 (Table 5.4). The composition of socioeconomic groups was notably different between the 

cohorts at age 9 (occupational social class): only 6.8% of the NTFS cohort were in the highest 

occupational group, compared to 34.9% in GMS (p<0.0001) (Table 5.4).  
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Table 5.4 Descriptive statistics for early life exposures and covariates and baseline differences between the cohorts   
Cohort   

  NTFS  GMS   

Continuous variables n Mean (SD)  n Mean (SD) P value 

Birthweight (z-score) 1,002 -0.15 (1.06)  993 -0.02 (1.02) 0.009 
Maternal age (years) 995 28.48 (5.80)  993 27.92 (5.97) 0.035 
Gestation (weeks) 990 39.82 (1.28)  993 39.48 (1.70) <0.0001 

Categorical variables n Col %  n Col % P value 

Sex 1,114 
 

 994 
  

Male 570 51.2  506 50.9 
0.905 

Female 544 48.8  488 49.1 
Gestation categories 990   993   

Pre-term  34 3.4  107 10.78  
Normal 914 92.3  823 82.88 <0.0001 

Post-term  42 4.2  63 6.34  
Categories of birthweight 990 

 
 993 

 
 

SGA 115 11.6  89 9.0 
0.10 Normal 796 80.4  810 81.6 

LGA 79 8.0  94 9.5 
RWG 360 

 
 813 

 
 

No 218 60.6  567 69.6 
0.002 

Yes 142 39.4  246 30.4 
RT 360   813   

No 227 63.1  577 71.0 
0.007 

Yes 133 36.9  236 29.0 
Maternal age (years) 995 

 
 911 

 
 

Less than 25 276 27.7  326 32.8 
0.004 25-34 554 55.7  547 55.1 

35+ 165 16.6  120 12.1 
Breastfeeding categories  469 

 
 993   

Never 68 14.5  468 49.1 
<0.0001 
 

<6 weeks 75 16.0  237 24.9 
>6 weeks 143 30.5  89 9.3 

>4 months 183 39.0  159 16.7 
Adversity 352 

 
 934 

 
 

No 303 86.1  719 77.0 
<0.0001 

Yes 49 13.9  215 23.0 
SES at birth 1,036 

 
 987 

 
 

Least advantaged 158 15.3  188 19.1 

<0.0001 
 

2nd to least advantaged 165 15.9  201 20.4 
Mid 589 56.9  221 22.4 

2nd to most advantaged 92 8.9  223 22.6 
Most advantaged 32 3.1  154 15.6 

SES at age 9 718 
 

 373 
 

 

Least advantaged 265 36.9  110 29.5 
<0.0001 Mid 404 56.3  133 35.7 

Most advantaged 49 6.8  130 34.9 
Number of study members in each category (n) and corresponding column percentage (Col %) or mean and 
standard deviation (SD). P values shown for Chi-square test for significant differences between NTFS and GMS 
for categorical variables, and t-tests for continuous variables. Bold indicates p<0.05. SGA, Small for gestational 
age; LGA, Large-for-gestational age; RWG, rapid weight gain; RT, rapid thrive; SES, socioeconomic status.  
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5.4.5 Relationship between childhood BMI, early life risk factors and SES 

Similar to descriptive analyses, there were no significant direct linear associations between 

early life or childhood SES and BMIz at age 9 in either cohort (Table 5.6, unadjusted model). 

In NTFS unadjusted regression models, females had a significantly lower BMIz. RWG and RT 

were associated with an increased BMIz, each to a similar degree. Higher maternal age was 

associated with a small decrease in BMIz. These associations remained after adjustment for 

SES at birth and at age 9. No other variables demonstrated significant (P<0.05) associations 

with BMIz in NTFS.  

In the GMS cohort, birthweight and adversity were associated with an increased BMIz, with 

adjustment for SES at both time points attenuating these effects (Table 5.6). Both RWG and 

RT were also associated with increased BMIz, however the coefficient for RT was much 

larger (RWG b=0.32, p<0.05; RT b=0.70, p<0.001). After adjusting for SES, older maternal age 

was significantly associated with a lower BMIz in GMS.  

There was no evidence for interactions between explanatory variables and SES at birth for 

pooled data from both cohorts (all p values >0.1). Interactions between SES at birth and 

explanatory variables were also investigated separately by cohort. In NTFS, there was a 

significant interaction between maternal age (continuous) and those in the 2nd to most 

advantaged group at birth compared to the least advantaged (-0.07 reduction in BMIz, 

p=0.02), which remained after adjustment for SES at age 9, however there was no overall 

trend (Table 5.5). This indicates that the slopes of the best-fitting regression lines between 

maternal age and childhood BMI are not parallel for every socioeconomic group. Group sizes 

were too small to investigate adversity, categories of birthweight and maternal age in NTFS. 

There were no significant interactions between SES and exposures in GMS. 
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Table 5.5 The significant exposure-socioeconomic status interaction(s) from the unadjusted and adjusted for SES (age 9) 
bivariate regression models in the NTFS cohort (age 9) 

SES (at birth) & exposure interaction effects  
   

 

        
NTFS Unadjusted  Adjusted for SES (age 9) 

 Coef CI p  Coef CI p 

Maternal age        
*Least advantaged Ref    Ref   
*2nd to least advantaged -0.01 (-0.05,0.03) 0.60  -0.01 (-0.05,0.03) 0.48 
*Mid 0.02 (-0.01,0.05) 0.15  0.02 (-0.01,0.05) 0.28 
*2nd to most advantaged -0.07 (-0.13,-0.01) 0.020  -0.06 (-0.12,-0.00) 0.036 
*Most advantaged 0.08 (-0.05,0.21) 0.21  0.08 (-0.05,0.21) 0.22 

n 711    657   
* p<0.05, ** p<0.01, *** p<0.001. Coef, coefficient; CI, 95% confidence interval; Ref, reference category. 
SES, socioeconomic status. Bold indicates significant at p<0.05.  
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Table 5.6 Linear regression associations for the early life exposures and BMIz at age 9 years with unadjusted, adjusted for SES (birth) and adjusted for SES (age 9) estimates  presented for the 
NTFS and GMS cohorts 

NTFS            

 Unadjusted  Adjusted for SES (birth)  Adjusted for SES (age 9) 

Exposure Coef CI p  Coef CI p  Coef CI p 

Female -0.23 (-0.36,-0.11) <0.001  -0.24 (-0.37,-0.11) <0.001  -0.25 (-0.38,-0.11) <0.001 

Birthweight z-score 0.05 (-0.01,0.11) 0.092  0.05 (-0.01,0.11) 0.134  0.04 (-0.02,0.11) 0.20 

Birthweight 
categories 

SGA -0.14 (-0.35,0.07) 0.20  -0.15 (-0.37,0.08) 0.20  -0.18 (-0.41,0.05) 0.13 

Normal Ref  .  Ref  .  Ref  . 

LGA 0.09 (-0.15,0.32) 0.46  0.08 (-0.15,0.32) 0.49  0.04 (-0.21,0.29) 0.75 

Maternal age (years) -0.01 (-0.02,-0.00) 0.035  -0.01 (-0.02,-0.00) 0.023  -0.01 (-0.03,0.00) 0.022 

Maternal age 
categories 

< 25 0.09 (-0.06,0.24) 0.26  0.11 (-0.05,0.27) 0.19  0.15 (-0.02,0.31) 0.079 

25-34 Ref  .  Ref  .  Ref  . 

35+ -0.13 (-0.30,0.04) 0.14  -0.13 (-0.30,0.04) 0.13  -0.11 (-0.29,0.07) 0.22 

Adverse events -0.09 (-0.39,0.21) 0.55  -0.03 (-0.35,0.30) 0.88  0.07 (-0.29,0.43) 0.71 

RWG 0.29 (0.10,0.48) 0.002  0.27 (0.08,0.46) 0.006  0.27 (0.08,0.47) 0.005 

RT 0.23 (0.04,0.42) 0.01  0.21 (0.01,0.40) 0.021  0.20 (-0.00,0.40) 0.031 

Breastfeeding 
categories 

Never Ref    Ref    Ref   

<6 weeks 0.19 (-0.17,0.54) 0.30  0.18 (-0.16,0.52) 0.30  0.18 (-0.16,0.52) 0.30 

>6 weeks 0.12 (-0.17,0.42) 0.41  0.11 (-0.18,0.39) 0.47  0.11 (-0.18,0.39) 0.47 

>4 months 0.08 (-0.22,0.38) 0.60  0.08 (-0.20,0.36) 0.58  0.08 (-0.20,0.36) 0.58 

SES at birth            

Least advantaged     Ref    Ref   

2nd to least advantaged     -0.07 [-0.30,0.16] 0.53  -0.01 [-0.25,0.23] 0.92 

Mid     0.04 [-0.14,0.22] 0.65  0.05 [-0.16,0.26] 0.61 

2nd to most advantaged     0.11 [-0.19,0.41] 0.48  -0.02 [-0.36,0.32] 0.90 

Most advantaged     -0.07 [-0.58,0.44] 0.78  -0.28 [-0.90,0.34] 0.38 

SES age 9            

Least advantaged         Ref   

Mid         0.02 [-0.14,0.18] 0.82 

Most advantaged         0.25 [-0.11,0.61] 0.17 

Height (age 9) 0 (-0.00,0.01) 0.29  0 (-0.01,0.01) 0.46  0.01 (-0.00,0.02) 0.12 
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GMS            

 Unadjusted  Adjusted for SES (birth)  Adjusted for SES (age 9) 

Exposure Coef CI p  Coef CI p  Coef CI p 

Female -0.03 (-0.22,0.16) 0.78  -0.05 (-0.24,0.15) 0.64  -0.15 (-0.39,0.09) 0.23 

Birthweight z-score 0.21 (0.12,0.30) <0.001  0.23 (0.13,0.32) <0.001  0.22 (0.10,0.33) <0.001 

Birthweight 
categories 

SGA -0.2 (-0.53,0.13) 0.23  -0.19 (-0.53,0.15) 0.28  -0.15 (-0.61,0.30) 0.51 

Normal Ref  .  Ref  .  Ref  . 

LGA 0.22 (-0.09,0.53) 0.16  0.25 (-0.07,0.57) 0.12  0.25 (-0.14,0.64) 0.21 

Maternal age (years) 0 (-0.02,0.01) 0.72  0 (-0.02,0.02) 0.88  -0.02 (-0.04,0.01) 0.18 

Maternal age 
categories 

< 25 -0.12 (-0.34,0.10) 0.30  -0.14 (-0.37,0.10) 0.25  -0.11 (-0.41,0.20) 0.50 

25-34 Ref  .  Ref  .  Ref  . 

35+ -0.28 (-0.56,-0.00) 0.049  -0.27 (-0.55,0.01) 0.055  -0.44 (-0.77,-0.10) 0.011 

Adverse events 0.42 (0.20,0.64) <0.001  0.43 (0.21,0.65) <0.001  0.34 (0.07,0.61) 0.014 

RWG 0.36 (0.16,0.57) 0.001  0.37 (0.16,0.58) 0.001  0.32 (0.05,0.59) 0.019 

RT 0.63 (0.43,0.83) <0.001  0.65 (0.44,0.86) <0.001  0.70 (0.45,0.96) <0.001 

Breastfeeding 
categories 

Never Ref    Ref    Ref   

<6 weeks -0.05 (-0.30,0.19) 0.67  -0.04 (-0.29,0.21) 0.75  -0.04 (-0.29,0.21) 0.75 

>6 weeks -0.28 (-0.59,0.04) 0.085  -0.24 (-0.57,0.10) 0.17  -0.24 (-0.57,0.10) 0.17 

>4 months -0.16 (-0.42,0.09) 0.21  -0.17 (-0.45,0.10) 0.22  -0.17 (-0.45,0.10) 0.22 

SES at birth            

Least advantaged     Ref    Ref   

2nd to least advantaged     -0.09 (-0.39,0.22) 0.58  -0.21 (-0.61,0.18) 0.29 

Mid     -0.06 (-0.36,0.25) 0.72  -0.29 (-0.69,0.10) 0.15 

2nd to most advantaged     0.07 (-0.25,0.38) 0.68  -0.21 (-0.61,0.19) 0.30 

Most advantaged     -0.18 (-0.50,0.14) 0.27  -0.18 (-0.59,0.23) 0.38 

SES age 9            

Least advantaged         Ref   

Mid         -0.09 (-0.40,0.22) 0.57 

Most advantaged         0.05 (-0.27,0.37) 0.76 

Height (age 9) 0.07 (0.05,0.08) <0.001  0.07 (0.05,0.08) <0.001  0.07 (0.05,0.08) <0.001 

The unadjusted model is the relationship between the exposure and BMIz, with models further adjusted for SES at birth, and then SES age 9.  
Coef, coefficient; CI, 95% confidence interval; p, p value; Ref, reference category. SES, socioeconomic status; RWG, rapid weight gain; RT, rapid thrive. 
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The multivariable analyses were stratified by cohort, and RT (rather than RWG) was used as 

it controls for some of the differences in birthweight. In the stratified multivariable model 

for NTFS, females had a lower BMIz (-0.22, CI -0.41,-0.02) and those who experienced RT in 

the first year had a higher BMIz (0.20, CI 0.01,0.40) (Table 5.7). Those from the most 

advantaged group at birth had a significantly lower BMIz, however there was no overall 

trend by SES. There was no significant interaction between maternal age and SES after 

adjustment for the other covariates.  

The significant predictors of BMIz in GMS were RT, birthweight and adversity, adjusted for 

covariates; maternal age, gestation, SES and first-born (Table 5.7). RT was associated with 

greater increases in BMIz in GMS. The early life factors explained a greater proportion of the 

variation in BMIz in GMS (GMS R2=17%, NTFS R2=3%, Table 5.7). There were no significant 

interactions between early life exposures and SES at birth in the adjusted model for either 

cohort.  

Adjusting for height attenuated the effects (by 10-30%) for all significant associations in 

GMS. Whilst adjusting for height made little difference to estimates for early life variables in 

NTFS. The variance inflation factors were low (<2.5) for all variables, therefore this is less 

likely to be due to multi-collinearity. This may be because height is a mediator on the 

pathway for early life factors and BMIz in GMS (Figure 5.1) 

  

Table 5.7 Multivariable fully adjusted linear regression models for BMIz (age 9) by cohort 

 NTFS  GMS 
 coef CI p  coef CI p 

Female -0.22 (-0.41,-0.02) 0.029  -0.16 (-0.39,0.06) 0.16 

RT 0.22 (0.01,0.43) 0.038  0.50 (0.23,0.76) <0.001 

Birthweight z-score 0.02 (-0.08,0.11) 0.72  0.17 (0.05,0.29) 0.006 

SES at birth        

 Least advantaged Ref  .  Ref  . 

2nd to least 0.05 (-0.31,0.41) 0.79  -0.24 (-0.62,0.14) 0.22 

Mid advantaged 0.1 (-0.21,0.41) 0.54  -0.34 (-0.73,0.05) 0.084 

2nd to most 0.04 (-0.45,0.53) 0.88  -0.19 (-0.58,0.19) 0.33 

Most advantaged -0.93 (-1.87,0.01) 0.052  -0.18 (-0.57,0.22) 0.39 

Height (cm) 0 (-0.02,0.01) 0.59  0.04 (0.02,0.06) 0.019 

Adversity     0.30 (0.05,0.55) <0.001 

Adjusted R2 0.022    0.212   

n 313    269   

Models were additionally adjusted for height, maternal age, gestation and SES at age 9.  
* p<0.05, ** p<0.01, *** p<0.001. Bold indicates p<0.05. Coef, coefficient; CI, 95% confidence interval; Ref, 
reference category.; n, number of observations. RT, rapid thrive; SES, socioeconomic status. 
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5.4.6 Early life predictors of childhood overweight/obesity 

In addition to BMIz, early life exposures were examined as risk factors for childhood OWOB. 

In terms of socioeconomic factors, in NTFS there were lower odds of OWOB between the 

second to least advantaged group (compared to the least at birth) (p<0.05), but there was no 

overall trend (Table 5.8). Whilst in GMS, mid-socioeconomic advantage (age 9) corresponded 

to 50% lower odds of OWOB compared to the least advantaged.  

Birthweight, adversity, RT and RWG were associated with higher odds of OWOB in GMS 

children in unadjusted models (Table 5.8). In NTFS, the only early life exposure significantly 

associated with OWOB was RT (unadjusted model, Table 5.8).  
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Table 5.8 Bivariate (unadjusted) logistic regression models for overweight/obese (age 9) by cohort 

 NTFS  GMS 

 Unadjusted  Unadjusted 

Variable OR CI p  OR CI p 

SES at birth        
 Least advantaged Ref .   Ref .  

2nd to least 0.20 (0.04,0.95) 0.043  0.87 (0.44,1.71) 0.68 
Mid advantaged 0.98 (0.47,2.05) 0.95  1.01 (0.52,1.99) 0.97 

2nd to most 1.05 (0.31,3.53) 0.94  1.34 (0.68,2.65) 0.40 
Most advantaged 0.87 (0.10,7.35) 0.90  0.79 (0.38,1.62) 0.52 

SES at age 9        
Least advantaged Ref .   Ref .  

Middle 1.2 (0.63,2.31) 0.58  0.50 (0.26,0.96) 0.036 
Most advantaged 1.46 (0.46,4.60) 0.52  0.56 (0.29,1.07) 0.079 

Female 1.02 (0.58,1.80) 0.95  0.96 (0.63,1.47) 0.86 

Birthweight z-score  1.17 (0.90,1.53) 0.25  1.28 (1.04,1.57) 0.020 
Birthweight categories        

SGA 0.75 (0.26,2.15) 0.59  0.75 (0.34,1.67) 0.48 
Normal Ref . .  Ref . . 

LGA 1.17 (0.44,3.08) 0.75  1.31 (0.68,2.54) 0.43 

Maternal age (years) 0.97 (0.92,1.02) 0.23  0.98 (0.95,1.02) 0.37 
Maternal age categories        

<25 1.36 (0.72,2.60) 0.35  0.89 (0.54,1.45) 0.63 
25-34 Ref  .  Ref  . 

>35 0.86 (0.38,1.94) 0.72  0.5 (0.24,1.03) 0.06 

Adversity 0.85 (0.18,3.91) 0.83  1.78 (1.12,2.85) 0.015 

RWG 1.71 (0.77,3.75) 0.19  1.65 (1.04,2.60) 0.033 
RT 2.24 (1.01,4.96) 0.046  2.38 (1.51,3.75) <0.001 

Breastfeeding categories        
None Ref .   Ref .  

<6 weeks 2.36 (0.41,13.46) 0.19  0.93 (0.55,1.58) 0.80 
6 weeks-4 months 2.72 (0.58,12.74) 0.12  0.47 (0.21,1.05) 0.067 

>4 months 2.58 (0.55,12.05) 0.13  0.85 (0.48,1.49) 0.57 
OR, Odds ratio; CI, 95% confidence interval; Ref, reference category. * p<0.05, ** p<0.01, *** p<0.001.  Bold 
indicates p<0.05. SGA, Small for gestational age; LGA, Large-for-gestational age; RWG, rapid weight gain; RT, 
rapid thrive; SES, socioeconomic status. 

OWOB was examined further in GMS as group sizes were too small to sufficiently estimate a 

multivariable model for NTFS. The associations of increased odds of OWOB with higher 

birthweight and RWG, and reduced odds with increasing SES remained significant after 

adjustment (Table 5.9). RWG had the greatest effect on OWOB at age 9. There were no 

significant interactions between exposures and SES, with OWOB in GMS. Adjusting for height 

increased the variation explained and removed significant associations for birthweight.  
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Table 5.9 Multivariable fully adjusted logistic regression models for OWOB (age 9) in GMS 

 GMS (RWG)  GMS (RT)  RT, adjusted for height 

 OR CI p  OR CI p  OR CI p 

Bwtz 2.12 (1.47,3.04) <0.001  1.72 (1.25,2.38) 0.001  1.35 (0.95,1.94) 0.098 

RWG 3.65 (1.73,7.70) 0.001         

RT     3.98 (2.06,7.68) <0.001  2.12 (1.02,4.40) 0.044 

Adversity 1.84 (0.96,3.53) 0.066  1.84 (0.95,3.56) 0.071  1.63 (0.81,3.27) 0.17 

SES  
(age 9) 

           

Mid 0.37 (0.16,0.88) 0.024  0.36 (0.15,0.86) 0.021  0.35 (0.14,0.87) 0.024 

Most 
advan-

taged 
0.41 (0.17,0.96) 0.041  0.39 (0.16,0.93) 0.035  0.33 (0.13,0.82) 0.017 

Ht  
(age 9) 

 
       1.14 (1.07,1.22) <0.001 

n 269    269    269   
Pseudo 
R2 0.107 

   0.126    0.186   

BIC’ 36.8    31.3    19.7   
OR, Odds ratio; CI, 95% confidence interval; Ref, reference category; N, number of observations.. * p<0.05, ** p<0.01, ***, 
p<0.001. Bold indicates p<0.05. Bwtz, birthweight z-score; RWG, rapid weight gain; RT, rapid thrive; SES, socioeconomic 
status; ht, height.  Models are additionally adjusted for sex, SES at birth, gestation, maternal age. SES reference category is 
least advantaged. A difference of 5.5 in BIC' provided positive support for the model with rapid thrive rather than RWG.   

 

5.4.7 Path analysis of the predictors of childhood BMI  

Figure 5.1 illustrates the adjusted path models for BMIz. In both cohorts, rapid thrive was 

directly associated with increased BMIz, but no variables were associated with RT. Sex was 

associated with decreased BMIz in NTFS, however, similar to the multivariable regression 

model (Table 5.7), there were no other exposures directly or indirectly associated with BMIz 

in NTFS.  

In GMS, there were direct relationships between birthweight, RT, adversity and height with 

BMIz. All exposures had significant total effects (the sum of direct and indirect effects) on 

BMIz except SES at birth. Increasing SES was positively associated with birthweight z-score. 

RT and birthweight z-score demonstrated positive associations with height. Adversity, RT 

and birthweight z-score all had similar positive, direct effects on BMIz. Dissimilar to NTFS, 

the largest total effect came from height in GMS. The GMS model explained 24% of the 

variation in BMIz, whilst the NTFS model explained a very small proportion of the variation 

(3%). For the GMS path model there was strong support for the model without SES at age 9 

and without breastfeeding, neither of which altered estimates, improved model fit, or 

increased overall variance explained.  
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A – NTFS 

B - GMS 

 

Figure 5.1 The path models for early life factors and BMIz (age 9) for NTFS (A) and GMS (B) cohorts.  

Arrows show the direction of the effect. Standardised coefficients are presented, which represent partial regression 
coefficients between connected variables, controlling for all prior variables (Garson, 2008). All direct effects are represented 
by solid lines and are significant at p<0.05. Total effects (if significant) are presenting in brackets with associated p values. 
The NTFS model was additionally adjusted for height, birthweight, maternal age, gestation length, SES (birth) however these 
had no significant paths that improved model fit (informed by modification indices). The GMS model was additionally 
adjusted for sex and maternal age (no significant paths). There were significant (p<0.05) indirect paths to BMIz for gestation 
(-0.04), RT (0.11), birthweight z-score (0.09). Gest, gestation length; SES, socioeconomic status (birth); RT, rapid thrive.  

 

5.4.8 Investigating rapid thrive 

 

RT was the risk factor associated with increased odds of OWOB and higher BMIz in both 

cohorts. There were no variables that predicted RT (Figure 5.1) in the cohorts.  

The effects of RT on mean BMI z-scores over time were examined further by cohort (Figure 

5.2). By definition, those with RT show a sizeable increase in z-score from birth to 12 

months. Within cohorts, those who had RT tended to have higher BMI z-scores throughout 

childhood than those who did not. However, in NTFS, at age 13 (the last available time point 

before adulthood) although the z-score was greater, there was no significant difference 

between those who had RT and those who did not. Similar to NTFS, in GMS those who had 
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RT had a large initial increase in z-score (0-12 months) (albeit to a lower average z-score), 

however subsequently they have a higher BMIz throughout childhood and an overweight 

BMIz (z-score>=1).  

Those who did not have RT demonstrate a decrease in z-score after birth, which over time 

stabilises around the average (z-score of 0) in NTFS, but in GMS gradually increases. 

 
Figure 5.2 The change in average z-score over by cohort and RT 

Error bars represent 95% confidence intervals. Average values were used for the interval ages for GMS. 

5.5 Discussion 

These data provided an opportunity to analyse how early life factors influencing BMI have 

changed over a long time period in one geographical area. There were more early life 

exposures significantly associated with childhood body composition and they explained 

more variation in BMIz in the modern (GMS) cohort.  

Early life and childhood experiences of NTFS study members were vastly different to those of 

GMS children and warrant further discussion to provide context for the results. Food was 

heavily regulated due to state enforced rationing leading to reductions of sugar, meat and 

fats and individuals were entitled to their fair share (Zweiniger-Bargielowska, 2000). 

Rationing did not cease immediately after the war but continued until 1954. This reduced 

disparities of the previous decade between the social classes regarding energy and nutrient 

intakes, with calorie and protein intakes between working and middle classes stable 

between 1944-1956 (Zweiniger-Bargielowska, 2000). This period of time also saw an 

increase in activity levels due to longer working hours, more women in the workplace and 
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reduced vehicle usage as a result of petrol rationing. These factors will have impacted both 

the mother during pregnancy and also the offspring during the first few years of life. 

A comparison between two of the British birth cohorts found those born in 1958 were not 

heavier than those born in 1946 until adolescence, when the weight trajectories for the later 

cohort had a faster rate of gain (Li et al., 2008). Further differences emerged by mid-

adulthood in measures of waist and hip circumferences, with higher rates of obesity in the 

1958 cohort. Compared to modern day, this cohort experienced the obesity epidemic at a 

later age (around mid-thirties) meaning a shorter exposure to an obesogenic environment. 

This is consistent with results here, whereby obesity did not emerge until later life (chapter 

3). This coincides with a time of technological change, whereby households and industry 

were shifting toward labour-saving devices (Lakdawalla and Philipson, 2009), therefore 

lifestyles became more sedentary. This additional time also meant more women could take 

up employment, and with this came a change in what was deemed traditional home cooking 

and diet.  

Post-war was a time of rising affluence in Britain, which was seen here in the social mobility 

of NTFS. The boom of the economy was associated with increased travel due to decreases in 

transport costs and the accompanying introduction of new, cheaper foods. The food 

environment shifted; with the focus was no longer solely on sustenance, and restaurant and 

fast food chains began to emerge. These factors could partly explain the latency in obesity 

onset.   

Early life factors previously explained a relatively small proportion of the variation in BMI 

(2% in NTFS compared to 22% in GMS), suggesting that early life factors in combination with 

modern environments, have become more important over time in determining childhood 

body composition.  

5.5.1 Summary of results 

At baseline, the two cohorts differed in birthweight, maternal age, gestation length, RWG, 

duration breastfed, adversity, and SES. On average birthweight increased, there were fewer 

older mothers and more young mothers, RT was less likely, breastfeeding duration was 

shorter and more experienced adversity. Height has also increased vastly between the two 

cohorts, and in the modern cohort was associated with increased BMI and odds of OWOB (in 
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GMS). The social class differences in height seen in NTFS have diminished over time. 

However, in the modern cohort socioeconomic differences in OWOB have emerged. 

There were large differences in birthweight between the cohorts, and birthweight was 

negatively associated with RWG (section 4.4.9), therefore RT was also analysed to further 

understand the effects of conditional weight gain. RT corrected for some of the effects of 

catch-up growth (from low birthweight), suggesting that RWG encompassed some of the 

indirect, and potentially developmental programming effects of birthweight. RT was 

associated with increased BMIz in both cohorts, however in GMS the effects were greater. 

There were socioeconomic gradients in height in NTFS, in accordance with earlier 

observations by Wright and Parker (2004). These differences were much smaller in GMS.  

Indeed, socio-economic differences in height, which have decreased over, time (Bann et al 

2018). Height modulated the effects of many exposures on BMIz (notably for NTFS), which 

may suggest that some of these associations were related to lean mass rather than fat mass. 

Other studies have suggested that the relationship between RWG and subsequent adiposity 

is merely a marker of fast growth and later height (Wright et al., 2012). This analysis instead 

suggests instead that the effects of rapid growth were previously unrelated to height (NTFS), 

but are now somewhat mediated through height (GMS). 

Both higher birthweights and RT were associated with increased height in GMS, which may 

suggest they are important growth-related factors on the pathway to obesity, however it is 

difficult to untangle the complex relationships between height, BMI and SES. Adjusting for 

height could also introduce bias, if it lies on the causal pathway. There is a lack of 

consistency as to whether other body composition measures (such as height) should be 

further adjusted for (Tu et al., 2005).  

Although anthropometric measures were utilised at age 9 to minimise the bias from puberty, 

there are reports of children entering puberty as young as age 6 years (Herman-Giddens et 

al., 1997), therefore some children may have been more developed. Early onset of puberty 

may be more likely in children with a higher BMI (Freedman et al., 2002, Kaplowitz, 2008, Li 

et al., 2017b), therefore it may not be appropriate to adjust for pubertal status if BMI is 

causally related to early puberty (Mumby et al., 2011).  

As there were few OWOB study members in NTFS it was not possible to analyse OWOB in a 

multivariable model. However, this highlights that one of the main differences between the 
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cohorts is the relatively low levels of OWOB in the historical cohort. In spite of this, the 

bivariate analyses suggested that RT that was associated with OWOB in NTFS, which is in line 

with findings for BMIz.  

Rapid infancy growth was the prominent factor in these analyses, due to the positive 

associations with BMIz, and also OWOB in the modern cohort, suggesting that despite the 

changing environment, RT has remained a consistent risk factor over time. Whereas 

adversity and birthweight may perhaps be risk factors exacerbated by modern-day 

obesogenic environments.   



     191 

Chapter 6. The Avon Longitudinal study of parents and 

children (ALSPAC) 

6.1 Introduction  

The previous chapters determined the risk factors for childhood and adult obesity in the 

North East cohorts. The risk factors, which were consistently associated with adiposity across 

both cohorts, were birthweight, RWG, maternal age, and SES. It was necessary to examine 

RWG conditional on birthweight (rapid thrive), in the cohort comparison due to the large 

differences in birthweight, although findings were similar. Adversity was associated with 

multiple outcome measures in GMS. Recorded bacterial infection was associated with 

increased odds of obesity in adults in NTFS, however the GMS questionnaire data on 

infections was unreliable, therefore it remains uncertain whether the association was 

present in GMS children.  

A strength of the North East region cohorts is that despite the time differences between 

them, there were similarities in the early life influences on childhood BMI (Chapter 5). 

Although they include comprehensive data, a limitation of the North East cohorts is that 

they are relatively small samples in comparison to the larger epidemiological cohorts. 

Replication of the findings in a larger cohort, from another part of the UK, would reinforce 

that these exposures are indeed early life risk factors for subsequent obesity. To address 

these shortcomings, this chapter used data from the ALSPAC cohort, a large, longitudinal 

birth cohort from the South West of England with vast exposure data (Boyd et al., 2013). 

This chapter addresses the third aim of the thesis and focuses on the analysis of early life risk 

factors in the ALSPAC cohort to identify gene-specific methylation differences in relation to 

focal early life exposures. Firstly, the epidemiological associations between focal early life 

exposures and body composition outcomes in childhood and late adolescence were 

examined. For consistency in methods and exposures, the exposures studied in NTFS and 

GMS were harmonised with ALSPAC data. The ALSPAC cohort also has epigenetic data, 

thereby allowing early life exposures to be investigated with respect to changes in DNAm. 

The second section of this chapter examines the hypothesis that epigenetics is a mechanism 

linking early life factors and later life obesity. Whilst DNAm biomarkers have been identified 

for some exposures, others have either; not been investigated, have been measured 
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differently, or not been validated (section 1.5.3). Less is known regarding whether these 

early life exposures leave lasting, measurable effects on DNAm in later life. Thereby these 

data provide the opportunity to determine the focal early life exposures, harmonised across 

cohorts, and examine these with respect to methylation in childhood and adolescence. This 

analysis could elucidate whether these risk factors are mediated through epigenetic 

programming and if the epigenetic marks are stable over time.  

6.2 Aims  

The first aim of this chapter was to establish whether early life risk factors for subsequent 

obesity in the North East cohorts are also risk factors in the ALSPAC cohort. To address this 

aim, early life exposures were investigated with respect to body composition in childhood 

and adolescence, using statistical regression methods. 

The second aim addresses the overall thesis aim 3(i); to determine which of the focal early 

life exposures (from the analyses in NTFS and GMS cohorts) demonstrate a relationship with 

DNAm childhood or adolescence. This was addressed using epigenome-wide analyses at 

individual CpG loci for each exposure. 

6.3 Participants and methods  

6.3.1 Data selection and recoding  

The ALSPAC data dictionary was used to identify and match the exposures with the variables 

from NTFS and GMS. For the early life variables, data from mother-focused questionnaires at 

18 and 32 weeks prenatal, and 8 weeks postnatal were used, along with data from the child-

focused questionnaires at 4 weeks, 15 months and age 17. Partner questionnaire data were 

used at age 8 for childhood SES. Clinic data from ages 7 and 17 were used for body 

composition measures.  

BMIz and OWOB were utilised as outcomes in these analyses, in line with the outcomes that 

were comparable across all three cohorts and time points. These were coded as described in 

section 2.2.1.  

There were several early life risk factors with demonstrated consistent associations in GMS 

and NTFS, and for which data were available in the ALSPAC cohort. These included; 

birthweight, RWG, RT, infant feeding, parity, maternal age, adversity, antibiotics exposure 



     191 

(proxy for bacterial infection), and SES. The definitions and measurement of these factors is 

outlined in 2.2.3. 

Social class in childhood were based on partner’s self-reported data at age 8 using the 1991 

British Office of Population and Census Statistics (OPCS) classification (see section 2.1.3 for 

details), as there were no maternal data at this time point.  

 ARIES recoding  

ALSPAC collected blood at multiple time points. DNA was extracted and DNAm was 

measured for 1000 mother-child pairs for those who had DNA available at birth, age 7 and 

ages 15 (TF3) or 17. The age 7 sample was used to represent childhood methylation levels. 

The age 17 sample was used as this sample was more representative of adults, and study 

members are likely to have finished the majority of their childhood growth (whereas the TF3 

sample included those as young as 14.6 years).  

EWAS were run using the meffil R program (detailed in the next section), which allows binary 

or continuous variables as inputs in models, and therefore some categorical explanatory 

variables were recoded. The variables: RWG, antibiotic exposure (0-6 months), prenatal 

adversity and postnatal adversity remained coded as previously described (section 6.3.1). 

Birthweight was associated with outcomes across the cohorts, however this exposure has 

been studied previously in the ALSPAC cohort and no significant loci (for childhood 

methylation) were identified (Simpkin et al., 2015). As birthweight was not examined as an 

independent exposure, both RWG and RT were examined which may somewhat 

differentiate birthweight effects. There was a lower risk of adiposity for mid and most 

advantaged compared to the least, therefore SES was recoded to a binary variable for “least 

advantaged” (increased risk of adiposity). Maternal age was examined as a separate binary 

variables of either young (<25 years), or advanced (>45 years) maternal age (compared to 

the reference category of 25-34 years).  

6.3.2 Statistical analysis  

The ALSPAC epidemiological data was analysed using the same statistical approach as in the 

cohort comparison (of GMS and NTFS) (see section 2.3.1). Briefly, this firstly involved 

examining bivariate relationships for all focal early life risk factors. The effects of SES on the 

coefficients were examined sequentially. Then, the same multivariable models were run as 

that for the cohort comparison (chapter 5) for means of comparison. However, this resulted 
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in models that did not meet regression criteria. Therefore, to find the best predictive model 

for the explanatory variables under investigation, regression models were re-estimated 

using stepwise regression. The BIC was used as a decisive factor for model selection, with 

lower model BIC preferred. The aim was to form a parsimonious model, i.e. a model that has 

the greatest explanatory ability, using the least number of variables necessary.  

6.4 Results 

6.4.1 ALSPAC sample characteristics  

 Outcomes 

There were a total of 7,868 (50.5% female) participants at the age 7 follow-up, and 4,858 

(43.8% female) at age 17 with body composition measurements (Table 6.1). Using BMIz to 

determine weight categories, 13% of study members had an OWOB BMIz at age 7, and 21% 

at age 17 (Table 6.1). Accordingly, mean BMIz was also higher at age 17. 

Table 6.1 Descriptive characteristics of body composition outcomes for ALSPAC participants age 7 and 17 

Proportion (%) of study members in healthy weight or overweight/obese (OWOB) and mean BMIz and standard deviation 
(SD). n, sample size; %, column percentage. 
 

 Exposures 

Descriptive statistics for those with data available at each follow-up are shown in 

  Age 7   Age 17 

 n Mean (SD)  n Mean (SD) 

BMIz 7,868 0.19 (1.01)   4,858 0.47 (1.13) 

 n %  n % 

Healthy weight 6,841 86.95  3,827 78.78 

OWOB 1,027 13.05  1,031 21.22 

Total 7,868     4,858   
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Table 6.2. Compared to the original cohort, at both ages 7 and 17; there were more females, 

more first-born children, fewer younger mothers and more who experienced adversity. 

There were also more SGA and fewer LGA, however overall mean birthweight z-score and 

gestational length was greater. The sample was also more advantaged at both time points. 

At age 17, there were fewer who had antibiotics compared to the original cohort. There 

were no differences for RWG at either time point or antibiotics at age 7.  
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Table 6.2 Summary characteristics of ALSPAC participants (all) and those with body composition measures (age 7 and 17) 

 All   Age 7   Age 17 

Continuous variable n 
Mean  
(SD)   n 

Mean  
(SD) T-test p   n 

Mean  
(SD) 

T-test  
p 

Birthweight (z-score) 13457 
0.09   
(1.0)  7336 

0.15  
(0.97) 

<0.001 
 4486 

0.15  
(0.98) 

<0.001 

Gestation (weeks) 14178 
38.39  
(5.56)  7428 

39.5  
(1.8) 

<0.001 
 4538 

39.5  
(1.75) 

<0.001 

Categorical variable All    Age 7    Age 17   

 n col %  n col % Chi2 p  n col % Chi2 p  

Sex 14409     7868   0.050   4858   <0.001 
Male 7387 51.3  3975 50.5   2127 43.8  
Female 7022 48.7  3893 49.5   2731 56.2  
First-born 11356     6953   0.002   4262   <0.001 
No 6277 55.3  3763 54.1   2211 51.9  
Yes 5079 44.7  3190 45.9   2051 48.1  
Birthweight categories 13457     7336   <0.001       0.004 
SGA 1467 10.9  852 11.6   529 11.8  
Normal 10913 81.1  6008 81.9   3637 81.1  
LGA 1077 8  476 6.5   320 7.1  
Gestation categories 14178     7428   <0.001       <0.001 
Pre-term 2027 14.3  728 9.8   445 9.8  
Normal 11116 78.4  6147 82.8   3770 83.1  
Post-term 1035 7.3  553 7.4   323 7.1  
RWG 1184     853   0.76       0.67 
No 822 69.4  590 69.2   375 68.8  
Yes 362 30.6  263 30.8   170 31.2  
RT 1,184    853   0.51  545   0.69 
No 813 68.7  581 68.1   371 68.1  
Yes 371 31.3  272 31.9   174 31.9  
Maternal age at birth 13641     7428   <0.001   4538   <0.001 

Less than 25 3309 24.3  1180 15.9   706 15.6  
25-34 8981 65.8  5341 71.9   3243 71.5  
35+ 1351 9.9  907 12.2   589 13  
Adversity pre-natal 14997     7868   <0.001   4858   <0.001 
No 10347 69  5183 65.9   3232 66.5  
Yes 4650 31  2685 34.1   1626 33.5  
Adversity post-natal 14997     7868   <0.001   4858   <0.001 
No 11415 76.1  5628 71.5   3553 73.1  
Yes 3582 23.9  2240 28.5   1305 26.9  
Pre and post-natal 14997     7868   <0.001   4858   0.001 
No 12960 86.4  6645 84.5   4132 85.1  
Yes 2037 13.6  1223 15.5   726 14.9  
Antibiotics (0-6 months) 11016     6923   0.48   4243   0.031 
No 7460 67.7  4705 68   2925 68.9  
Yes 3556 32.3  2218 32   1318 31.1  
SES at birth 10540     6678   <0.001   4115   <0.001 
Least Advantaged 589 5.6  273 4.1   163 4  
Mid 4058 38.5  2324 34.8   1323 32.2  
Most advantaged 5893 55.9  4081 61.1   2629 63.9  
SES in childhood 3553     3038   0.007   2069   <0.001 
Least Advantaged 413 11.6  333 11   215 10.4  
Mid 1079 30.4  920 30.3   595 28.8  
Most advantaged 2061 58   1785 58.8     1259 60.9   

Differences between the original sample (all), and either the age 7 and 17 samples, assessed using T-tests for continuous 
variables, and Chi-square (Chi2) tests for differences between the whole sample and those measured at either age 7 or 17. 
n, sample size; col %, column percentage; SD, standard deviation. Bold indicates significant at p<0.05.
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6.4.2 Associations between early life factors and adiposity outcomes 

In bivariate analyses, birthweight z-score and LGA were associated with increased BMIz and 

increased odds of OWOB at both time points (Appendix E, 

Table XI). SGA was negatively associated, and gestation length positively associated with 

BMIz at age 7, but there were no associations for OWOB or outcomes at age 17. RWG was 

positively associated with BMIz at age 7 and 17, and OWOB at age 7. Younger maternal age 

(<25 years) was associated with higher BMIz (0.24, p<0.001) and 50% increased odds of 

OWOB at age 17. Whilst older maternal age (35+) was associated with a lower BMIz at age 

17.  

Interestingly, pre-natal and pre and post-natal adversity (collectively) were associated with 

BMIz at age 7 and 17, and OWOB at age 17, but not OWOB at age 7 (Appendix E, 

Table XI). At age 7, the coefficients were small, almost doubling by age 17. The effect sizes 

were greater for pre- and post-natal adversity combined. There were no associations for 

post-natal adversity alone.  

SES at birth and in childhood were not directly associated with BMIz (age 7), but the most 

advantaged group (both time points) was associated with lower BMIz and OWOB at age 17, 

with similar effect sizes. In addition, the association for childhood SES and OWOB was also 

seen at age 7.  

Table 6.3 Summary of ALSPAC bivariate associations for early life exposures and outcomes (age 7 and 17) 

Early life exposures  Outcome measures 

 BMI  OWOB 
 Age 7 Age 17  Age 7 Age 17 

Maternal  Age - 
✓ 
(young & 
old) 

 - ✓ 
(young) 

Birth Birthweight ✓ ✓  ✓ ✓ 

 Occupational social class - ✓  - ✓ 

Early life Antibiotics (0- 6 months) - -  ✓ ✓ 
 Adversity Prenatal ✓ ✓  - ✓ 
 Postnatal - -  - - 
 Pre and postnatal ✓ ✓  - ✓ 
 Rapid weight gain ✓ ✓  ✓ - 
 Rapid thrive ✓ ✓  ✓ - 

Childhood Occupational social class - ✓  ✓ ✓ 
Tick represents a significant association between exposure and specified outcome measure in the (unadjusted) bivariate 
model
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 Multivariable cohort-comparative models  

In order to compare models with those in GMS and NTFS cohort comparison, RT was used in 

the multivariable models (for models with RWG see Appendix E). In the multivariable 

analyses, the combined pre and post-natal adversity variable was used as it had the largest 

coefficient and was most significant in the bivariate models. As a sensitivity test, additional 

models were estimated with the other adversity variables as controls, however they were 

not significantly associated and did not improve model fit. Similar to analyses in the cohort 

comparison, the impact of childhood SES on the early life factors was investigated further.  

At age 7 the associations for RT decreased but remained after adjustment for SES at both 

time points. Associations for birthweight were similar but were not significant for OWOB 

(age 7) after adjustment for childhood SES. After adjustment, RT was the only early life 

factor associated with both outcomes in childhood. 

The combined multivariable models including early life factors and SES explained more the 

variation in adiposity outcomes in childhood. All age 7, BMI models fit regression criteria 

(regression diagnostic plots in Appendix E). However, the model for BMIz (age 7) had 

slightly positively skewed residuals, therefore ordinal regression (OWOB age 7 multivariable 

model) results which do not assume normality of residuals may be more valid. 

All models for OWOB (age 17) had non-significant p values and very low pseudo R2 value 

which indicates that the early life factors included were poor at predicting OWOB in 

adolescence.  

There was also very strong support for all models without adjustment for SES in childhood 

(informed by BIC). There was also a large decrease in sample size, which may be also result 

in poor model specification. Therefore, instead parsimonious models were estimated 

(section 6.4.2.2).
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Table 6.4 Multivariable linear and logistic regression for BMIz and OWOB at ages 7 and 17, adjusted for SES 

Age 7  

 BMIz 
Unadjusted  Adjusted for SES (birth)  Adjusted for SES (childhood) 

Coef CI p  Coef CI p  Coef CI p 

Female -0.06 [-0.19,0.07] 0.37  -0.06 [-0.20,0.07] 0.34  -0.05 [-0.25,0.14] 0.61 
Gestation  0.01 [-0.03,0.06] 0.56  0.01 [-0.03,0.06] 0.6  0.01 [-0.05,0.08] 0.69 
Birthweight z-score 0.19 [0.12,0.26] <0.001  0.18 [0.11,0.26] <0.001  0.16 [0.06,0.27] 0.003 

Maternal age 
Less than 25 -0.04 [-0.25,0.16] 0.68  0.06 [-0.17,0.29] 0.60  0.35 [-0.07,0.77] 0.10 

35+ -0.13 [-0.32,0.06] 0.17  -0.13 [-0.33,0.07] 0.20  0.02 [-0.26,0.29] 0.90 
First-born 0.07 [-0.07,0.21] 0.31  0.05 [-0.09,0.19] 0.48  0.12 [-0.09,0.34] 0.26 
RT 0.77 [0.63,0.91] <0.001  0.77 [0.62,0.91] <0.001  0.67 [0.46,0.87] <0.001 
Adversity  0.02 [-0.15,0.19] 0.83  -0.03 [-0.22,0.15] 0.72  0.04 [-0.25,0.32] 0.80 

SES (birth) 
Mid     0.27 [-0.08,0.61] 0.13  -0.17 [-0.81,0.47] 0.60 

Most advantaged     0.28 [-0.06,0.62] 0.11  -0.06 [-0.70,0.57] 0.85 

SES childhood 
Mid         0.13 [-0.24,0.51] 0.49 

Most advantaged         -0.01 [-0.38,0.35] 0.94 

n 825    772    382   

Adjusted R2 0.158    0.154    0.112   

            

  OWOB 
Unadjusted  Adjusted for SES (birth)  Adjusted for SES (childhood) 

OR CI p  OR CI p  OR CI p 

Female 0.66 [0.42,1.02] 0.063  0.66 [0.42,1.04] 0.076  0.77 [0.38,1.54] 0.46 
Gestation 1.01 [0.87,1.16] 0.92  1.02 [0.88,1.18] 0.82  1.01 [0.80,1.26] 0.95 
Birthweight z-score 1.41 [1.11,1.80] 0.005  1.31 [1.02,1.68] 0.035  0.97 [0.66,1.41] 0.86 

Maternal age 
Less than 25 0.85 [0.43,1.69] 0.65  1.14 [0.55,2.36] 0.72  1.77 [0.53,5.83] 0.35 
35+ 0.62 [0.29,1.31] 0.21  0.56 [0.26,1.24] 0.15  0.29 [0.07,1.28] 0.10 

First-born 1.15 [0.73,1.83] 0.55  1.09 [0.68,1.76] 0.71  1.11 [0.53,2.36] 0.78 
RT 3.93 [2.54,6.08] <0.001  3.77 [2.41,5.89] <0.001  3.01 [1.54,5.88] 0.001 
Adversity 0.99 [0.55,1.77] 0.97  0.93 [0.49,1.74] 0.81  1.61 [0.67,3.88] 0.29 

SES (birth) 
Mid     1.33 [0.36,4.89] 0.66  0.38 [0.06,2.58] 0.32 
Most advantaged     1.67 [0.46,6.07] 0.44  0.64 [0.10,4.32] 0.65 

SES childhood 
Mid         1.08 [0.33,3.58] 0.90 
Most advantaged         0.6 [0.19,1.93] 0.40 

n 825    772    382   

Pseudo R2 0.091    0.086    0.085   
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Age 17      
BMIz  Unadjusted  Adjusted for SES (birth)  Adjusted for SES (childhood) 

 Coef CI p   Coef CI p  Coef CI p 

Female -0.08 [-0.27,0.12] 0.43  -0.1 [-0.30,0.10] 0.33  -0.08 [-0.35,0.20] 0.59 
Gestation  0 [-0.06,0.07] 0.91  0 [-0.07,0.07] 0.98  0.01 [-0.09,0.10] 0.91 
Birthweight z-score 0.06 [-0.05,0.17] 0.30  0.05 [-0.07,0.16] 0.42  0.09 [-0.07,0.24] 0.27 

Maternal age 
Less than 25 0.2 [-0.12,0.51] 0.23  0.27 [-0.09,0.63] 0.14  0.45 [-0.24,1.15] 0.20 

35+ -0.11 [-0.39,0.18] 0.47  -0.08 [-0.38,0.22] 0.59  0.04 [-0.35,0.44] 0.83 
First-born 0.04 [-0.17,0.25] 0.72  0.01 [-0.21,0.24] 0.90  0.11 [-0.19,0.41] 0.48 
RT 0.21 [0.00,0.43] 0.05  0.23 [0.00,0.45] 0.045  0.18 [-0.11,0.47] 0.22 
Adversity - Pre and post-natal 0.31 [0.03,0.59] 0.03  0.26 [-0.04,0.56] 0.088  0.19 [-0.22,0.61] 0.36 
SES (birth) Mid     0.42 [-0.14,0.98] 0.14  -0.15 [-1.13,0.83] 0.77 
  Most advantaged     0.29 [-0.26,0.84] 0.29  -0.46 [-1.43,0.52] 0.36 

SES (childhood) 
Mid         -0.22 [-0.79,0.35] 0.44 

Most advantaged           -0.1 [-0.64,0.44] 0.71 

n 527      498     270     
Adjusted R2 0.011         0.009     0.001     
            

OWOB   Unadjusted   Adjusted for SES (birth)  Adjusted for SES (childhood) 

 OR CI p  OR CI p   OR CI p 

Female 0.98 [0.63,1.52] 0.93  0.94 [0.60,1.47] 0.79  0.94 [0.49,1.81] 0.86 
Gestation  1.02 [0.88,1.19] 0.77  1.02 [0.88,1.19] 0.81  0.99 [0.80,1.24] 0.96 
Birthweight z-score 1.18 [0.92,1.51] 0.19  1.16 [0.90,1.49] 0.25  1.15 [0.79,1.67] 0.47 

Maternal age Less than 25 1.13 [0.56,2.27] 0.74  1.2 [0.56,2.59] 0.64  1.34 [0.30,5.94] 0.70 
  35+ 1.38 [0.75,2.53] 0.30  1.43 [0.77,2.66] 0.26  1.93 [0.83,4.54] 0.13 
First-born 0.97 [0.60,1.57] 0.91  0.96 [0.59,1.58] 0.88  1.11 [0.54,2.28] 0.77 
RT 1.54 [0.97,2.45] 0.066  1.6 [1.00,2.56] 0.05  1.34 [0.69,2.63] 0.39 
Adversity - Pre and post-natal 1.79 [1.02,3.14] 0.044  1.61 [0.88,2.94] 0.12  1.38 [0.56,3.41] 0.48 
SES (birth) Mid     1.64 [0.44,6.18] 0.46  1.41 [0.14,14.34] 0.77 
  Most advantaged     1.48 [0.40,5.47] 0.56  0.78 [0.08,8.05] 0.83 
SES (childhood) Mid     

    1.05 [0.28,3.87] 0.94 
  Most advantaged          1.13 [0.32,3.94] 0.85 

n 527      498     270    

Pseudo R2 0.02       0.02       0.026     
Coefficients (coef) and Odds ratios (OR) are presented with 95% confidence intervals (CI) and the corresponding level of significance (p).Bold indicates p<Reference categories were; the least advantaged 
group for SES; and age 25-34 for maternal age. n, sample size; Bwtz, birthweight z-score; SES, socioeconomic status; RT, rapid thrive. The overall model p value was no longer significant for BMIz (age 17) 
and OWOW (age 7) after controlling for SES in childhood. There were indications that the models for OWOB at age 7 and 17 did not meet logistic regression criteria and were poorly specified models. 
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 Multivariable cohort-specific models 

In the previous section, models were estimated to harmonise with those in chapter 4. 

However, these models did not meet regression criteria, suggesting that using these 

variables did not result in a good predictive model for the ALSPAC cohort. Models were 

refitted using a stepwise procedure, informed by goodness of fit statistics (BIC) to create 

parsimonious models (Table 6.5 and Table 6.6). Model BIC provided strong support for 

models (BMIz7 and BMIz17) without SES at either time point. In the BMIz17 model, prenatal 

adversity had better model fit than when using the pre- and post-natal adversity variable, 

and postnatal adversity was not a significant predictor. For regression diagnostic plots for 

these models see Appendix E, Figure XVI. 

In the parsimonious adjusted models (Table 6.5 and Table 6.6), birthweight was positively 

associated with outcomes at age 7. RT was associated with increased BMIz (at both ages), 

and increased odds of OWOB at age 7. Pre-natal adversity was associated with BMIz at age 

17, but not with outcomes at age 7 or OWOB at age 17.  

There were few differences for the models using RWG, and similar to RT, RWG was the most 

significant factor associated with body composition (for RWG models see Appendix E).  

Early life factors explained greater variation in body composition in childhood, particularly 

for BMIz at age 7 (R2=0.16). 

Table 6.5 Multivariable parsimonious linear regression models for BMIz at ages 7 and 17 in ALSPAC participants 

        

   BMIz7      BMIz17   

  Coef CI p  Coef CI p 

        
Female -0.06 [-0.19,0.07] 0.36  -0.09 [-0.28,0.10] 0.36 
Gestation length (weeks) 0.01 [-0.03,0.06] 0.57  0 [-0.07,0.07] 0.98 
First-born 0.07 [-0.07,0.20] 0.32  0.03 [-0.18,0.24] 0.78 
Maternal age (categories)        

Less than 25 -0.04 [-0.24,0.16] 0.68  0.2 [-0.12,0.51] 0.22 
35+ -0.13 [-0.32,0.06] 0.17  -0.1 [-0.38,0.19] 0.51 

Birthweight z-score 0.19 [0.12,0.26] <0.001  0.05 [-0.06,0.16] 0.35 
RT 0.77 [0.63,0.91] <0.001  0.23 [0.02,0.45] 0.03 
Adversity - prenatal     0.33 [0.12,0.54] 0.002 
                

n 825    527   
Adjusted R2 0.159       0.021     

Coefficients (coef) presented with 95% confidence intervals (CI) and the corresponding level of significance (p). The 

reference category was age 25-34 for maternal age. n, sample size; RT, rapid thrive. All variables included in the model are 

presented. Bold indicates p<0.05. 
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Table 6.6 Multivariable parsimonious logistic regression models for OWOB at ages 7 and 17 in ALSPAC study members 

   OWOB7                 OWOB17   

  OR  CI p  OR CI p 

Female 0.66 [0.42,1.02] 0.063  0.95 [0.50,1.82] 0.88 

Gestation length (weeks) 1.01 [0.88,1.16] 0.91  1 [0.80,1.24] 0.96 

First-born 1.15 [0.73,1.83] 0.54  1.1 [0.54,2.27] 0.79 

Maternal age (categories)        

Less than 25 0.85 [0.43,1.69] 0.65  1.43 [0.33,6.30] 0.63 

35+ 0.62 [0.29,1.31] 0.21  1.98 [0.85,4.63] 0.12 

Birthweight z-score 1.41 [1.11,1.80] 0.005  1.14 [0.79,1.66] 0.48 

RT 3.93 [2.54,6.08] <0.001   1.37 [0.70,2.67] 0.36 

Adversity - prenatal     0.92 [0.46,1.87] 0.82 

SES at birth        

Mid     1.47 [0.14,15.25] 0.75 

Most advantaged     0.79 [0.08,8.32] 0.85 

SES in childhood        

Mid     1.08 [0.29,3.98] 0.91 

Most advantaged     1.14 [0.33,3.97] 0.83 

n 825     270   

Pseudo R2 0.091       0.024     

Odds ratios (OR) are presented with 95% confidence intervals (CI) and the corresponding level of significance (p). Bold 
indicates p<0.05. Reference categories were; the least advantaged group for SES; and age 25-34 for maternal age.  
n, sample size; SES, socioeconomic status; RT, rapid thrive. All variables included in the model are presented.  
 
 

 Sensitivity analysis 

Maternal BMI and maternal smoking during pregnancy are two factors known to influence 

offspring body composition and health. Data on these two important factors were not 

available in NTFS or GMS, therefore the ALSPAC dataset provided an opportunity to assess 

how these factors could influence the associations between early factors and BMI or OWOB 

(Table 6.7 and Table 6.8). 

Adjusting for smoking made little difference to most estimates. Adjusting for smoking 

increased the OR for RT for OWOB (age 7), but the coefficient for BMI remained similar. 

Therefore, without adjustment the effect was underestimated.   

Although the literature suggests that maternal BMI and smoking can affect birthweight, 

adjusting for these factors had no effect on the estimates for birthweight on the models at 

age 7.   

Models including maternal BMI and smoking explained 8% and 14% more of the variation in 

BMIz, and 6% and 13% more variation in OWOB, at ages 7 and 17 respectively (Table 6.7).  
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Table 6.7 Sensitivity analyses including maternal factors for the multivariable linear regression (parsimonious) models for 
BMIz at ages 7 and 17 in ALSPAC study members 

  BMIz (age 7)    BMIz (age 17) 

 coef     CI p  coef  CI p 

Female -0.06 [-0.19,0.06] 0.33  -0.06 [-0.25,0.13] 0.51 
Gestation length (weeks) 0 [-0.04,0.05] 0.90  -0.03 [-0.09,0.03] 0.36 
First-born 0.06 [-0.07,0.20] 0.35  0.08 [-0.13,0.28] 0.45 
Maternal age (categories)        

Less than 25 -0.09 [-0.30,0.12] 0.39  0.11 [-0.21,0.44] 0.49 
35+ -0.12 [-0.31,0.07] 0.21  -0.09 [-0.37,0.19] 0.52 

Birthweight z-score 0.18 [0.11,0.25] <0.001  0.02 [-0.09,0.13] 0.71 
RT 0.76 [0.62,0.90] <0.001  0.22 [0.02,0.43] 0.033 
Adversity - prenatal - - -  0.32 [0.12,0.52] 0.002 

        

Pre-pregnancy BMI 0.06 [0.05,0.08] <0.001  0.10 [0.08,0.12] <0.001 
Maternal smoking 0.07 [-0.11,0.24] 0.46   -0.23 [-0.51,0.06] 0.12 

n 763    492   
Adjusted R2 0.237    0.158   

Coefficients (coef) presented with 95% confidence intervals (CI) and the corresponding level of significance (p). The 

reference category was age 25-34 for maternal age. n, sample size; SES, socioeconomic status; RT, rapid thrive. 

Table 6.8 Sensitivity analyses including maternal factors for the multivariable logistic regression (parsimonious) models for 
OWOB at ages 7 and 17 in ALSPAC study members 

  OWOB (age 7)   OWOB (age 17) 

 OR     CI p  OR  CI p 

        

Female 0.60 [0.37,0.98] 0.039  1.12 [0.54,2.31] 0.76 
Gestation length 
(weeks) 0.95 [0.82,1.10] 0.47  0.91 [0.71,1.15] 0.43 

First-born 1.18 [0.72,1.94] 0.51  1.01 [0.45,2.25] 0.98 
Maternal age 
(categories)        

Less than 25 0.66 [0.30,1.46] 0.31  1.31 [0.23,7.48] 0.76 

35+ 0.65 [0.30,1.43] 0.29  1.35 [0.50,3.66] 0.55 

Birthweight z-score 1.39 [1.07,1.80] 0.012  0.91 [0.60,1.39] 0.67 

RT 4.53 [2.82,7.29] <0.001   1.40 [0.66,2.95] 0.38 

Adversity - prenatal     0.98 [0.44,2.16] 0.96 

SES at birth     2.96 [0.17,52.75] 0.46 

Mid     2.2 [0.12,39.43] 0.59 

Most advantaged        

SES in childhood     1.13 [0.27,4.80] 0.86 

Mid     0.9 [0.23,3.50] 0.88 

Most advantaged        

Pre-pregnancy BMI 1.14 [1.09,1.20] <0.001  1.27 [1.15,1.39] <0.001 

Maternal smoking 1.12 [0.58,2.16] 0.74  0.27 [0.04,1.70] 0.16 

n 763       257     

pseudo R2 0.147       0.154     
Odds ratios (OR) are presented with 95% confidence intervals (CI) and the corresponding level of significance (p). Reference 

categories were; the least advantaged group for SES; and age 25-34 for maternal age. n, sample size; SES, socioeconomic 

status; RT, rapid thrive. 
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6.4.3 ARIES sample characteristics  

Demographic characteristics of the ARIES sample are shown for the total sample and for 

each exposure. Sample sizes varied according to the exposure investigated (ranged from 

n=116 to 873, at age 7 with cells counts included) and were smaller at age 17 due to 

attrition. 

Table 6.9 Descriptive statistics for all early life exposures in ARIES at ages 7 and 17, for models either 
with or without cell counts. 

  
Models adjusted for cell counts 

 
Models not adjusted for cell counts 

Age Variable Total No % Yes % 
 

Total No % Yes % 

7 RWG 116 75 64.7 41 35.3  125 84 67.2 41 32.8 
 RT 116 65 56.0 51 44.0  125 73 58.4 52 41.6 
  Low SES (birth)  817 785 96.1 32 3.9  907 871 96.0 36 4.0 
  AB 836 581 69.5 255 30.5  927 639 68.9 288 31.1 
  Younger mother 860 634 73.7 105 12.2  822 707 86.0 115 14.0 
  Older mother 860 634 73.7 115 13.4  829 707 85.3 122 14.7 
  Prenatal 

adversity 873 569 65.2 304 34.8  966 620 64.2 346 35.8 
  Postnatal 

adversity 873 618 70.8 255 29.2  966 676 70.0 290 30.0 
  Pre and post-

natal adversity 873 736 84.3 137 15.7   966 810 83.9 156 16.1 

17 RWG 89 54 60.7 35 39.3  96 61 63.5 35 36.5 
 RT 89 50 56.2 39 43.8  96 56 58.3 40 41.7 
  Low SES (birth)  660 632 95.8 28 4.2  677 649 95.9 28 4.1 
  AB 617 591 95.8 26 4.2  688 474 68.9 214 31.1 
  Younger mother 592 506 85.5 86 14.5  540 458 84.8 82 15.2  

Older mother 606 506 83.5 100 16.5  551 458 83.1 93 16.9 
  Prenatal 

adversity 651 420 64.5 231 35.5  713 457 64.1 256 35.9 
  Postnatal 

adversity 651 457 70.2 194 29.8  713 494 69.3 219 30.7 
  Pre and post-

natal adversity 651 546 83.9 105 16.1  713 594 83.3 119 16.7 
Exposed (yes) or not exposed (No) and proportion (%).  
SES, socioeconomic status; RWG, rapid weight gain; RT, rapid thrive; AB, Antibiotics. 

6.4.4 EWAS results  

There were significant (PFDR<0.05) associations at individual CpG sites for the exposures; RWG 

and pre-natal adversity (Table 6.10) at age 7. Across the various adjustment models there 

were 4 significant hits for RWG (PFDR<0.1) corresponding to 3 unique CpG sites.  

In the model which did not include cells counts, two of the loci (cg01379158, cg11531579) 

associated with RWG had p values that were also were also below the Bonferroni p value 

threshold (1.04x10-7). The two significant loci (cg01379158, cg11531579) were investigated 

further. Methylation at these loci was also associated with RT, however the coefficient was 
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smaller and less significant than for RWG (Appendix E, Table XIX). The loci that was 

significantly associated with adversity (cg00397179) was located in the vicinity (7bp 

upstream) of a high frequency SNP (rs12811501) flagged in the Infinium HD Methylation SNP 

list and was not significant at PFDR<0.05, and was therefore not analysed further. There were 

no other significant associations (PFDR <0.1), and no associations with DNAm at age 17.  

 

Table 6.10 Significant (FDR p<0.1) associations between individual CpG sites (n=482,855) and the 
early life exposures in models with or without cell counts.  

Exposure CpG name Chr Nearest 
gene 

Gene 
region 

CpG island name Coef PFDR PBonf Model 

With cell counts         

RWG cg01379158 17 NT5M TSS200 
chr17:17206527-
17207306 

0.011 0.02 2.91x10-7 ISVA 

Without cell counts         

RWG cg01379158 17 NT5M TSS200 
chr17:17206527-
17207306 

0.011 0.01 2.33x10-8 ISVA 

RWG cg11531579 12 CHFR Island 
chr12:133484658-
133485739 

0.011 0.02 4.16x10-8 SVA 

RWG cg11531579 12 CHFR Island 
chr12:133484658-
133485739 

0.011 0.03 1.26 x10-7 ISVA 

Pre-natal 
adversity 

cg00397179 5 BTF3 3'UTR - 0.009 0.09 8.97x10-6 SVA 

Bonferonni threshold= < 1.0355076 × 10-7. Chr, chromosome; PFDR, FDR p value; PBonf, Bonferonni p value, Coef, coefficient; 
TSS200, transcription start site; 3'UTR, 3’ untranslated region; RWG, rapid weight gain. 
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Figure 6.1 Bidirectional Manhattan plots for the EWAS linear regression models.  
Models are ISVA (top) and SVA (bottom) for methylation at age 7 with RWG as the independent variable, without cell 
counts. The plots show the chromosomal location of significant CpG loci. The red line indicates the Bonferroni significance 
threshold. 
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 Methylation changes at the cg01379158 locus 

Those who experienced RWG on average had 1% greater methylation at cg01379158. RWG 

was associated with a 1% increase in methylation at this locus (FDR adjusted p value=0.02) in 

the ISVA model with cell counts, and also the ISVA model without cell counts (FDR adjusted p 

value=0.01) (Table 6.10). Methylation at this loci at age 17 was not associated with RWG.  

The significant CpG locus; cg01379158 was located upstream of the transcriptional start site 

in a CpG island (chr17:17206527-17207306). There were 10 CpG loci on the 450K also 

located in this island (Figure 6.2).   

Probes in the island were not necessarily concordantly correlated (Figure 6.2). In those who 

had RWG, the CpG of interest (cg01379158) demonstrated stronger (moderate) correlations 

with 3 CpG sites within the island (cg21614420, cg08693337, cg09810313), compared to 

those who did not experience RWG (Figure 6.2).  
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No RWG

 

Figure 6.2 Correlations between CpG sites on the 450K array located within the CpG island (chr17:17,206,527-17,207,306). 
The CpG of interest (cg01379158), associated with RWG is located on the horizontal bottom row. Red indicates strong 
positive correlation, whilst purple indicates strong negative, proportionate to the colour intensity.   

The nearest gene to cg01379158 is NT5M, also known as 5',3'-Nucleotidase, Mitochondrial. 

This probe is a type II probe with nearby SNPs. The other CpG loci which also mapped to the 

NT5M gene (n=12) and to the chr17:17,206,527-17,207,306 island (n=12) on the 450k array 

were also examined using linear regression (adjusted for age, sex and WBCs). There were 2 

significant (p<0.05) CpG loci, however the beta coefficients were less than 0.01 and these 
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loci would not have been significant after correction for multiple comparisons (Appendix E, 

Table XVIII).  

 

Figure 6.3 Annotated region of the CpG (cg01379158). 
Chromosomal (17) position, the nearest gene and the downstream region for CpG (cg01379158) annotated using the 
(GRCh37/hg19) assembly. 
 

6.4.4.1.1 Age-related changes in methylation 

At the cg01379158 loci, within individuals who had RWG, methylation decreased from age 7 

to 17. Whilst in those who did not have RWG, methylation increased (Figure 6.4).  
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Figure 6.4 Change in methylation at the cg01379158 loci within individuals from age 7 to 17 by RWG. 
Those who did not have RWG (n=60) demonstrated small mean increases (+0.63%) in methylation, whereas those who had 
RWG (n=34) demonstrated small (-0.45%) decreases in methylation between ages 7 and 17 (p=0.09, using the students t-
test). 

6.4.4.1.2 Relationship between methylation and adiposity outcomes 

Methylation at this locus was not associated with BMIz at age 7 or 17. There were too few 

OWOB to sufficiently execute a logistic regression model (n=19 OWOB at age 17 for those 

with rapid weight gain data available), however phenotype group differences were 

examined. Highest methylation was in those who experienced RWG and were OWOB both in 

childhood (9.1% methylation) and adolescence (8.8% methylation) (Appendix E,  

Table XXI and Figure XIX).  

 

 Methylation changes at the cg11531579 loci 

The other significant CpG loci (cg11531579), was positively associated with RWG in both the 

ISVA and SVA models (pFDR<0.05) (Table 6.10). The association p values were not below the 

accepted Bonferroni threshold.  

p=0.09 
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At age 7, cg11531579 methylation ranged from 0 to 12%, with median value around 3%. This 

CpG was also a significantly associated with RWG in the DMRcate analysis, however the fold 

change was very small (max beta fold change=0.01) and the Stouffer p value was non-

significant (p=0.48). 

This CpG (cg11531579) is located within a CpG island on chromosome 12 (Table 6.10). 

Correlations between the CpG of interest and other CpG sites in the island were generally 

positive and tended to be stronger in those who did not experience RWG (Figure 6.5). In 

those who did experience RWG, this particular CpG site was an anomaly in the island in that 

it demonstrated by very low correlation with the other CpG sites in the island, whereas 

generally speaking the rest of the CpG sites were mostly positively correlated to various 

degrees (Figure 6.5). Cg24459893 showed the greatest ‘disagreement’ with the rest of the 

island, with strong negative correlations in both those who had RWG and those who did not. 

Upon closer inspection, although this CpG maps to the island (using the 450K annotation file) 

located at chr12:133,484,658-133,485,739, its actual location is much further downstream at 

133,488,122, which may explain this discordance.   

The other CpG loci which also mapped to the chr12:133484658-133485739 island (n=10) on 

the 450k array were also examined using linear regression (adjusted for age, sex and WBCs). 

There was 1 significant CpG site, however the beta coefficient was less than 0.01 (Appendix 

E, Table XVIII).  
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Figure 6.5 Correlations between CpG sites on the 450K array located within the CpG island (chr12:133484658-
133485739).  

The CpG of interest (cg11531579), associated with RWG is located on the horizontal bottom row. Red indicates strong 
positive correlation, whilst purple indicates strong negative, proportionate to the colour intensity.  
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The CpG of interest (cg11531579) was not located near to any protein-coding genes. 

Upstream 30,000+ bases is the protein coding gene; Checkpoint With Forkhead And Ring 

Finger Domains (CHFR) (Figure 6.6). Whilst 558 base pairs downstream, is a small (2 exons) 

non-coding region (AK055957), for which there is limited information. 

 

Figure 6.6 Annotated region of the CpG (cg11531579). 
Chromosomal (12) position, the region, and nearest genes region for CpG (cg11531579) annotated using the 
(GRCh37/hg19) assembly. 

6.4.4.2.1 Age-related phenotypic changes in methylation 

Using methylation data at ages 7 and 17 shows that in those with RWG, on average 

methylation decreases from age 7 to 17 (p<0.01) (Figure 6.7). Whereas in those who did not 

experience RWG, on average methylation tends to increase between the time points.  

 

Figure 6.7 Change in methylation from age 7 to 17 within individuals by RWG. 
Those who did not have RWG (n=60) demonstrated small mean increases (+1.3%) in methylation, whereas those who had 
RWG (n=34) demonstrated small (-0.58%) decreases in methylation between ages 7 and 17. This difference (1.8%) was 
significant (p=0.001, determined using the student t- test).  
 

p=0.001 
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6.4.4.2.2 Relationship between methylation and adiposity outcomes 

There were median differences in methylation level according to phenotype (Appendix E, 

Table XXII, Figure XX). There was some suggestion that methylation was higher in those who 

had RWG and were OWOB at the time (age 7) or subsequently (age 17). However, the 

sample size for these group were small and therefore these results are suggestive. 

6.4.5 Candidate gene analysis results 

As there were few significant probes found, which may have been due to the strict 

correction for multiple tests, an alternative approach was taken utilising a smaller, candidate 

set of epigenetic loci. The aim of the analyses was to isolate CpG loci already known to be 

associated with the outcome phenotype of interest (body composition). The candidate gene 

analysis utilised findings from a consortium, which integrated data from 4 discovery cohorts 

and replicated findings in 9 cohorts, and found 187 validated methylation markers 

associated with BMI (Wahl et al., 2017).  

Using a smaller subset of loci as candidates has the advantage of reducing the stringent p 

values threshold imposed by correcting for multiple testing. The associations between these 

loci and the early life exposures were examined using the ALSPAC methylation childhood and 

adolescent data, however there were no significant associations identified (Bonferroni p 

value=3x10-4). 

6.4.6 Differentially methylated regions results 

Whilst some significant individual probes were identified using DMRcate in unadjusted 

models for some exposures at age 7 (adversity all (no cells), low SES (cells and no cells), RWG 

(no cells) and younger mum (no cells)) and age 17 (low SES with and without cells), there 

were no overall DMRs identified. All Stouffer corrected p values were non-significant, which 

may be due to a lack of consistency in the direction of methylation in the region.  

6.4.7 DNA methylation analysis 

To investigate DNAm biomarkers of early life exposures, methylation changes in children and 

adolescents in response to early life exposures were investigated. To do so, epigenome-wide 

association studies (EWAS) were run for each exposure to determine methylation changes at 

individual CpG sites in response to the exposure(s). To further investigate the hypothesis 

that DNAm changes that are associated with adiposity are also associated with early life 
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exposures, a subset of CpG loci with confirmed associations with BMI were investigated with 

respect to each exposure. The EWAS methods and statistical methods are described in 

section 2.4. 

 EWAS regression diagnostic plots 

Meffil simultaneously computes estimates for all 4 models (Figure 2.6). Q-Q plots were 

consulted, which allow graphical assessment of whether the data are derived from a normal 

distribution. Q-Q plots demonstrated that ISVA adjustment was most effective in correcting 

the data best so that it satisfies the assumptions of normality (Appendix E, Figure XVII). 

These plots indicate loci which deviate from the expected distribution, i.e. those that are 

above the p value threshold are significantly associated with the exposure.  

All models were additionally run without adjustment for cell counts, for each exposure and 

for both methylation outcome time points. The p value distributions display greater 

deviation from normality than those from the adjusted models, however the SVA model 

performed well (Appendix E, Figure XVIII).  

6.5 Discussion 

The exposures that were important factors for childhood OWOB in the North East cohorts 

were investigated further in the larger, South West cohort; ALSPAC. The aim was to 

investigate exposures using the same models as done in the previous chapter (the cohort 

comparison) for consistency. However, in ALSPAC, this led to ill-fitting models that did not 

meet regression criteria, and instead the parsimonious models were more informative.  

Birthweight, RWG, RT, and adversity were all positively associated with adiposity outcomes. 

Birthweight was consistently associated across all outcomes and time points. RT was 

consistently associated with body composition measures in childhood.  

The sensitivity analyses revealed that maternal BMI was an important factor which predicted 

offspring body composition across all measures, similar to findings in many longitudinal birth 

cohorts (Baker et al., 2004, Harvey et al., 2007, Wright et al., 2010a, Bammann et al., 2014, 

Fairley et al., 2015b). Other analyses in the ALSPAC cohort found that children of obese 

parents had a greater fat mass at 7 years and larger increases in fat mass up to 11 years 

(Wright et al., 2010a), perhaps be due to a shared environment as well as genetic influences. 

Maternal obesity can affect multiple aspects of offspring health, which is accompanied by 
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changes in neuroendocrine, metabolic and immune system processes, increasing risk of 

multiple diseases and all-cause mortality, and thereby has great public health implications 

(Reynolds et al., 2013a, Godfrey et al., 2017).  

Maternal smoking during pregnancy did not demonstrate direct associations with offspring 

body composition, however adjusting for smoking removed significant associations for 

birthweight for outcomes in adolescence, perhaps suggesting a latent indirect effect.  

Factors that were associated with body composition across three cohorts; birthweight, RT, 

RWG, SES (at birth), and adversity, were all good candidates for further investigation. 

Birthweight was previously examined in this cohort with regards to DNAm, however no 

significant associations were identified, and therefore birthweight was not explored here. 

RWG was associated with BMIz in children in all three cohorts, and with OWOB in GMS and 

ALSPAC, and was therefore a robust exposure. As there were also some weak associations 

observed for maternal age and bivariate associations for antibiotic exposure (which were 

both also seen in GMS and NTFS respectively), these were also investigated further in the 

epigenetic analysis.  

The exposures were examined with regards to DNAm in childhood and adolescence. Two 

CpG sites (cg1379158 and cg11531579) were identified which exhibited differential 

methylation in childhood, in association with RWG. No other early life factors were 

significantly associated with changes in DNAm.  

Cg11531579 is located downstream of CHFR, an E3 ubiquitin-protein ligase that regulates 

the cell cycle at the antephase checkpoint, by delaying progression into mitosis in response 

to microtubule stress (Scolnick and Halazonetis, 2000). This achieved by preventing cyclin B1 

access to the nucleus prior to chromosome condensation (Summers et al., 2005). Decreased 

expression has been exhibited in certain cancers as a result of promoter hypermethylation 

(Sanbhnani and Yeong, 2012, Derks et al., 2014), confirmed with treatment with the 

methyltransferase inhibitor; 5-aza-2'-deoxycytidine (Sakai et al., 2005). Silencing may also be 

a result of deacetylation of histones in the promoter region (Oh et al., 2009), however it is 

unclear whether silencing is a consequence or cause of cancer. However, as cg11531579 is 

located far (20,538 bases upstream) from the gene CHFR, it is perhaps speculative to discuss 

a role methylation at this locus could have in relation to the CHFR gene. 
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Upstream of cg11531579 is AK055957, a small non-coding RNA regulatory sequence. Its 

biological role is uncharacterised. Recently, this CpG (in combination with others) has been 

identified as a potential DNAm biomarker for use in detection panels for hepatocellular 

carcinoma (Kisiel et al., 2019) and pancreatic ductal adenocarcinoma (Majumder et al., 

2019). The CpG site, AK055957, is located near a H3K27Ac histone mark, which is often 

found near regulatory elements in many cell types. The H3K27Ac histone mark is the 

acetylation of lysine 27 of the H3 histone protein and is thought to be a transcription 

enhancer. It is located near a DNAse I hypersensitivity cluster, which may suggest a 

transcription factor binding region. In a study in children diagnosed with acute myeloid 

leukaemia, cg11531579 was found to be differentially methylated in marrow after 

chemotherapy compared to baseline (-0.24 change in beta, p=0.004) (Gore et al., 2017). In 

summary, this locus may have a role in carcinogenesis, and therefore exists a tenuous link 

between RWG, DNAm and uncontrolled growth. 

The cg01379158 locus is located in the TSS of the NT5M gene, which encodes a 5' 

nucleotidase (a hydrolytic enzyme that catalyses the hydrolysis of a nucleotide to a 

nucleoside and a phosphate) that is subcellularly located within the mitochondrion. This 

enzyme (dNT-2) dephosphorylates the 5'- and 2'(3')-phosphates of uracil and thymine 

deoxyribonucleotides, hence protecting mitochondrial DNA replication from excess dTTP 

(Rampazzo et al., 2000). It has associated pathways of pyrimidine metabolism and 

metabolism, and annotations relating to nucleotide binding and nucleotidase activity. The 

gene is located on chromosome 17 in the Smith-Magenis syndrome-critical region, and 

therefore could potentially play a role in this disease aetiology. Smith-Magenis syndrome is a 

rare condition characterised by inverse circadian rhythm and disturbed sleep, factors which 

have also been linked to obesity (Froy, 2010, Woo Baidal et al., 2016). Furthermore, an 

EWAS on sleep found a cluster of differentially methylated positions in this Smith-Magenis 

region of chromosome 17 (Lahtinen et al., 2019) suggesting methylation could play a role in 

regulation of sleep and circadian rhythm. 

In the epidemiological analysis, RWG was a mediator between birthweight and adiposity 

outcomes, and therefore was closely linked with birthweight. DNAm differences related to 

birthweight are frequently related to growth control (Turan et al., 2012). For example, a 

panel of 23 genes explained 70-87% of the variation in birthweight in human or mouse 

models, and 6 of these genes had roles closely related to growth (Turan et al., 2012). 
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Therefore, as associations were stronger for DNAm and RWG (rather than RT), it is plausible 

that methylation at these loci reflect a combination of birthweight and postnatal growth.  

Whole blood represents a mixed cell population with varying proportions of white blood 

cells. For cg01379158, the association remained with or without adjustment for cell 

composition. In the adjusted analysis, cg11531579 did not emerge as a significant CpG locus. 

Therefore, it is possible that RWG-linked differences in cell proportions could somewhat 

account for this association.  

Whilst the cg01379158 was associated with RWG in both adjusted models, it did not 

demonstrate potential to be predictive of subsequent OWOB (age 17). However, the 

cg11531579 locus showed more promise as a predictive marker, as the highest levels of 

methylation were in those who had RWG and were subsequently OWOB.  

Early life RWG was associated with changes in childhood methylation, however it is unclear 

how methylation at these CpG loci may change over the life course. There was not 

persistence of methylation differences through direct associations with RWG in adolescence, 

which could have been partly due to a smaller sample size. Alternatively, these methylation 

changes could exert effects throughout childhood, rather than persistence into adolescence. 

This is consistent with the epidemiological findings, whereby RWG was associated with 

changes in body composition in childhood, but not adolescence (OWOB in ALSPAC) or 

adulthood (BMI in NTFS). Individuals who had infancy RWG had higher childhood 

methylation (cg11531579), which decreased over time. The initial high methylation followed 

by the decrease over time mirrors the growth pattern seen with rapid infancy growth 

(Chapter 5, Figure 5.2), therefore the decrease over time may reflect the ‘recovery’ of DNAm 

levels similar to the normalisation of BMIz. 

There were null findings for many exposures in this analysis. Recently, Houtepen et al,. ran a 

similar analyses looking at ACEs and maternal DNAm in ALSPAC and in a replication cohort, 

and also did not identify any individual CpG sites which replicated across cohorts (Houtepen 

et al., 2018a). However they did find some DMRs associated with parental health including 

parental mental or physical illness, and death (Houtepen et al., 2018a), suggesting that 

perhaps some of the more ‘severe’, hereditary or genetic factors could have persistent 

DNAm changes. Another recent ALSPAC study deemed very early childhood (0-3 years) as a 

critical period in establishment of DNAm patterns (Dunn et al., 2019), therefore perhaps the 

time period examined here (0-1 year) was too narrow.    



     215 

In an ALSPAC EWAS, socioeconomic position during pregnancy was associated with DNAm 

signatures at three stages across the life course, with maternal education level as the most 

important socioeconomic variable (Alfano et al., 2018), whereas this study used occupational 

social class. 

When studying exposures with small effect sizes there is less power to detect changes that 

span multiple CpG loci, which may explain why no significant DMRs were identified.  

There were also no associations when using the consortium CpG loci as candidates, which 

could be for various reasons. Firstly, that these specific exposures are not associated with 

changes in DNAm (except for RWG). Secondly, the candidate loci mapped to genes with 

specific roles, which could be different to the roles and pathways of the exposures 

examined. The early life exposures studied here have been associated with subsequent 

changes in BMI (chapters 2-5). Whereas, in the consortium paper, using Mendelian 

Randomization it was determined that the majority of the significant CpGs were a 

consequence (rather than a cause) of changes in BMI (Wahl et al., 2016). Thereby BMI is the 

mediator in this hypothesis, and if any exposures were associated with DNA changes in this 

subset of CpG loci, this in theory would have been a result of BMI. Finally, although some of 

the associations have been replicated in pre-school children (Rzehak et al., 2017), primarily 

the candidate loci were relevant to an adult population, whereas this cohort were much 

younger. 

The strengths and limitations of the Illumina 450K array should be considered. Whilst the 

array gives highly reproducible measures of DNAm at many loci, it only allows investigation 

of the predefined probes on the array. The CpG sites on the array cover 99% of RefSeq genes 

and 96% of CpG islands, which were selected because they were of particular interest and 

are not equally distributed across the genome (Bibikova et al., 2011). Whilst the array has 

good overall coverage for protein coding genes, it only covers 1.7% of CpG sites on the 

human genome, located mostly in promoter regions. This approach could neglect sites that 

could be markers for the investigated exposures.  

Batch effects are a source of heterogeneity when analysing arrays and were dealt with using 

adjustment techniques. There are issues in probe design in that many of the probes cross 

hybridise to regions that were not the intended target loci, however this was dealt with by 

removing the probes known to cross-hybridise. The array does not encompass simultaneous 

analyses of SNPs and CpG sites, and loci which contain SNPs affect quantification of DNAm 
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levels. Furthermore, the relative contribution of genetics cannot be disregarded, for 

example, it is possible that some study members were genetically predisposed to obesity, 

and this could interact with epigenome.   

The EWAS served as a starting point to identify potentially important candidate sites, which 

could be the focus of further investigation. Validation (in another independent cohort) 

would be required to determine if CpG loci are consistently, differentially methylated in 

different populations, time points, ages and disease-states.
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Chapter 7. Investigating methylation in the Newcastle 

Thousand Families Study 

7.1 Introduction 

This chapter further addresses the third aim of the thesis and examines the gene-specific 

methylation differences identified (in children) in an adult population, many years after the 

exposure and when obesity has occurred.  

The EWAS outlined in chapter 5 identified two differentially methylated CpG loci at age 

seven, in association with rapid weight gain (RWG) in the first year of life. RWG, was a focal 

exposure, as it was strongly associated with childhood body composition in all the cohorts 

(NTFS, GMS and ALSPAC). The Newcastle Thousand Families Study (NTFS) provided an 

opportunity to investigate if early life RWG has a transient or enduring impact on DNAm, in 

an older population.  

This chapter describes the quantification of DNAm at these specific loci at age 50 in the NTFS 

cohort, to investigate if DNAm at these loci are biomarkers of early life RWG and subsequent 

adiposity in adults. If methylation at the RWG-associated locus is subsequently associated 

with obesity in adulthood, it is plausible that methylation could be used as a biomarker to 

predict those at higher risk of obesity in later life. 

7.2 Aims 

This chapter addresses the second part of the 3rd aim of the thesis; To investigate the 

methylation differences in relation to the early life exposure(s) found to influence obesity in 

an adult population. 

The aims were addressed with the following objectives: i.) Develop locus-specific DNAm 

assays (Bisulfite polymerase chain reaction (PCR) and pyrosequencer-based) for the 

detection and quantification of methylation at identified CpG loci, and ii.) Analyse 

methylation at the CpG sites of interest in the NTFS cohort, and iii.) Determine if RWG in 

infancy is associated with altered DNAm at specific loci in adults. 
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7.3 Participants and methods 

7.3.1 Study design and samples 

DNAm (age 49-51) was investigated with respect to early life RWG, and both current (age 49-

51) and subsequent (age 60) body composition (BMI). Early life data were collected 

prospectively for study members and participants of the NTFS were invited to the clinic to be 

measured around age 49-51 (n=412, including measurements of body composition and 

blood samples taken)(detailed in section 2.1.1.2). Participants had similar body composition 

measures taken again in a clinical assessment at age 60 (n=354). DNA was previously 

extracted (Pearce et al., 2012b) from the peripheral blood samples (age 49-51) and stored at 

-80oC in the Newcastle University Biobank. Further details on the NTFS participants (at age 

49-51) can be found in section 2.1.1. 

Bisulfite-PCR and pyrosequencing assays were designed for the two epigenetic loci identified 

from the ALSPAC EWAS (see chapter 5). Of the two assays designed only one was viable 

(detailed in section 7.4.1), and therefore one target was analysed in peripheral blood DNA in 

NTS adults (age 50) NTFS.  

The loci of interest were investigated in the DNA extracted from NTFS blood samples, and 

DNAm was quantified using pyrosequencing (section 2.5.9).  

DNAm levels were analysed with respect to RWG in infancy, and weight-related outcomes 

(BMI and OWOB at ages 50 and 60) using statistical methods (detailed in section 2.5.12.1). 

The approaches taken to address the impact of outliers and potential SNPs are outlined in 

sections 2.5.11 and 2.5.13. 

7.4 Results 

7.4.1 Assay for cg01379158 (NT5M) 

Primer design for the loci, cg01379158, was problematic. The region was CG rich and no 

primers could be identified for the genomic DNA, even with relaxed criteria. Therefore, the 

reverse complement sequence was trialled as the input sequence. This resulted in some 

primer matches, however it was still not possible to design a forward primer without any 

SNPs or of adequate length (the forward primer was 17bp). Multiple primer sets were 

examined (Appendix F, Table XXIII); either matching the original sequence (including SNPs) or 
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with degenerate primers using International Union of Pure and Applied Chemistry (IUPAC) 

nucleotide pairing in the forward primer. This would allow ‘wobble’ base pairing, in this case 

annealing whether the base was either Purine (A or G), by denoting an R nucleotide. No sets 

of primers gave clear, consistent bands of the expected size when visualised by gel 

electrophoresis, with either fragmentation or numerous primer dimers.  

It was not possible to validate the assay for cg01379158 to a sufficient standard for 

sequencing. The presence of secondary bands meant that pyrosequencing reactions failed 

(due to low peak heights). Various PCR conditions were trialled in an attempt to increase the 

band size and reduce secondary structures. Firstly, Dimethyl sulfoxide (DMSO), used in 

reactions to inhibit formation of secondary products, at concentrations of 3% and 5%. Next, 

the number of PCR cycles was increased from 50 to 55. Finally, a touchdown PCR protocol 

(using a higher Ta, and gradually decreasing the Ta over successive cycles until ‘touchdown’ 

temperature is reached) was trialled. However, none of these methods were successful in 

inhibiting secondary structures or improving bands sufficiently for pyrosequencing. Overall, 

these results suggested that primer specificity was the issue. Primers were redesigned and 

all avenues of exploration re-trialled, however these also failed, and no there were further 

attempts to validate this assay.  

There were also 3 SNPs within the vicinity of this CpG (cg01379158) (Table 7.1), which could 

have potentially impacted methylation array results if present in the population under study.  

All further results will be in reference to the assay designed for cg11531579. 

Table 7.1 Known common SNPs near to cg01379158, distance to CpG and the minor allele frequency of the SNP 

SNP Distance (bp) 

from CpG 

Minor allele  

frequency 

rs151107219 16 0.004600 

rs8071972 18 0.020417 

rs6502575 35 0.213047 

 

7.4.2 Assay design for cg11531579 

There were many SNPs in the region for the loci, cg11531579, which meant having to 

compromise on primer design. All viable primers contained a SNP (Appendix F, Table XXIII), 
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with the selected primer set containing a SNP of unknown frequency (observed A/G, 

rs867052755) in the forward primer. In order to ensure correct primer annealing, two 

forward primers were trialled during assay validation, one set with the wild-type base (A), 

and one set with IUPAC base pairing (R). The ‘R’ primer set produced the clearest, strongest 

bands visualised with gel electrophoresis. Furthermore, a benefit of using this set is that 

primer binding will occur whether the base is A or G (if the individual has the SNP), and thus 

was used in analyses. 

Clear bands were observed at all the temperatures in the range of Ta (42-52oC) for the 

gradient PCR for cg11531579. The band at 52oC was marginally clearer (Appendix F, Figure 

XXII), therefore this was selected as the Ta. 

7.4.3 Sample processing 

Figure 7.1 shows a flow diagram for the samples included for methylation analysis in NTFS. 

There were 366 DNA samples remaining for NTFS study members at age 50 (Figure 7.1). Due 

to missing data, only 153 of these had early life RWG data. After quantifying DNA, six 

samples contained no DNA and were excluded. There were two samples which failed 

bisulfite conversion (incomplete conversion), and had no DNA remaining to repeat. Eleven 

samples failed pyrosequencing due to low peak heights. Repeating these samples did not 

lead to improvements and these samples were discarded. This left 134 samples for analysis.  
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7.4.4 Pyrosequencing results 

 Validation of pyrosequencing assays 

The validation results using the methylated controls are presented in Figure 7.3. Validation 

was performed in duplicate for 9 different methylation percentages ranging from 0-100%. 

The observed percentage methylation was plotted against the expected percentage 
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Figure 7.1 Flow diagram of sample processing and analysis for NTFS samples (age 50) 
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methylation, and the trend line and R2 value determined. R2 values for all CpG loci were 

close to 1, indicating that using this assay, observed values of methylation are in agreement 

with the actual values, and that the assay is able to accurately detect the range of 

methylation values. This provided confirmation that the assay was adequately detecting 

methylation levels in this region. Validation at different concentrations provided an 

opportunity to determine the optimum way in which perform duplicate experiments. Route 

A utilised 1 PCR reaction (total volume of 24μL), split over two pyrosequencing reactions 

(10μL in each). Whereas route B involved 2 PCR reactions, with 1 pyrosequencing reaction 

from each individual PCR (Figure 7.2). The hypothesis was that route B, dividing the bisulfite 

DNA across 2 PCRs, would lead to more variation in methylation due to the precision 

required when pipetting small volumes prior to amplification. However, both replication 

methods were comparable, with high R2 values (for both methods the R2 for mean 

methylation and individual CpG methylation was >0.99) (Figure 11). Therefore, route A was 

taken as it was faster and more cost effective. 

 

 

 

 

 

 

 

 
Figure 7.2 Replication methods tested to determine most accurate measure of DNA methylation. 
Route A used the same PCR products with duplicate pyrosequencing plates, whereas route B used 
two PCR reactions and separate pyrosequencing reactions from these PCR products. BS mod, 
bisulphite modification; Pyro, pyrosequencing run. 
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Figure 7.3 Validation (route A) curves for overall average methylation and each of the CpG loci in the pyroassay.  
The solid lines represent the linear relationship, with the equations of the line shown, along with the R2 values to demonstrate the degree of concordance between the observed and 
expected values (an R2 close to 1 signifies exact correlation). Error bars represent standard error. 
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7.4.5 Distribution of DNAm data 

DNAm was successfully quantified in 134 samples. The range of methylation detected in the 

NTFS samples by pyrosequencing was wide, ranging from 0-99% (Table 7.2). Average 

(median) methylation level across the 3 CpGs measured was 3.1%. From inspection of the 

histograms, mean methylation was much higher because it was skewed by high values 

(Figure 7.4). Most individuals had low methylation (<7%).  

 

Table 7.2 Methylation levels at each CpG and the average methylation in the NTFS samples.  

Mean methylation (%) N Mean p50 p25 p75 Min Max Range SD 

Average 134 7.13 3.11 1 5.19 0 95.46 95.46 14.35 
Cpg1 134 6.91 2.81 0 5.88 0 99.3 99.3 14.89 
Cpg2 134 7.66 3.59 1.19 7.12 0 95.81 95.81 14.43 
Cpg3 134 6.83 2.81 0 4.49 0 91.27 91.27 14.41 

Median (p50), lower quartile (p25), upper quartile (p75), standard deviation (SD) minimum (min) and maximum (max) 
values shown for all CpG.  
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Figure 7.4 Distribution of average methylation (%) and methylation at each CpG loci determined by pyrosequencing
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7.4.6 The relationship between RWG and DNAm (age 50)  

Of the 3 CpG sites present in the region examined, CpG3 was the original target 

(cg11531579). Correlations between the CpG sites were examined with Pearson correlation 

coefficients (Table 7.3), with all loci demonstrating strong, positive correlations (p<0.0001). 

Correlations were also similar between those who had RWG compared to those who did not 

(Table 7.3). 

 

Table 7.3 Pearson correlation coefficients between the CpG loci examined in the NTFS samples stratified by RWG 

Significance level for all p<0.0001 
 

Overall, average (median) methylation was lower in those who had RWG (Figure 7.5). At 

CpG3, this difference was statistically significant (Wilcoxon ranksum, p=0.03). 

  

 All  No RWG  RWG 
 

Cpg1 Cpg2 Cpg3  Cpg1 Cpg2 Cpg3  Cpg1 Cpg2 Cpg3 
Cpg1 1 

  
 1   

 1   

Cpg2 0.97 1 
 

 0.98    0.97 1  
Cpg3 0.92 0.97 1  0.92 0.97 1  0.94 0.97 1 
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Cpg loci No RWG 
 

RWG 
 

 
n p50 Min max p25 p75 

 
n p50 min max p25 p75 p 

Average 78 3.12 0 95.46 1.22 6.05 
 

56 2.37 0 69.53 0 4.98 0.077 

Cpg1 78 2.81 0 99.3 0 5.86 
 

56 2.92 0 72 0 5.89 0.55 

Cpg2 78 3.72 0 95.81 1.5 7.49 
 

56 2.88 0 70.59 0 6.15 0.082 

Cpg3 78 3.17 0 91.27 0.91 5.33 
 

56 1.54 0 66.01 0 3.87 0.027 
Figure 7.5 DNA methylation (%) at the CpG loci by RWG.  
Median (p50), lower quartile (p25),upper quartile (p75), minimum (min) and maximum (max) values shown for all CpG 
stratified by RWG. Comparison between the two groups performed by Wilcoxon rank-sum test (p).  
 

Median regression was used to examine the relationship between methylation (age 50) and 

RWG, adjusted for confounders (sex and/or birthweight z-score) (Table 7.4). Methylation 

was significantly lower (-1.6%, p=0.03) for the target loci (CpG3, Table 7.4). RWG remained 

significantly associated after adjustment, with 1.9% lower methylation in the adjusted (age, 

sex and birthweight) model. 

 

P=0.03 
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Table 7.4 Median regression models for RWG (exposure) and methylation (outcome) at loci adjusted for confounders in 
NTFS  

Exposure RWG 
 

Adjusted for sex 
 

Adjusted for  
birthweight z-score  

Coef CI p 
 

Coef CI p 
 

Coef CI p             

Average -0.66 [-2.32,1.00] 0.43 
 

-0.88 [-2.56,0.80] 0.30 
 

-0.83 [-2.62,0.97] 0.37 

CpG1 0.33 [-1.78,2.43] 0.76 
 

0.81 [-1.38,2.99] 0.47 
 

-0.22 [-2.60,2.17] 0.86 

CpG2 -0.81 [-3.04,1.42] 0.48 
 

-1.0 [-2.93,0.93] 0.31 
 

-1.13 [-3.09,0.84] 0.26 

CpG3 -1.51 [-3.11,0.09] 0.065 
 

-1.84 [-3.44,-0.24] 0.024 
 

-1.89 [-3.65,-0.13] 0.035 

Methylation at each individual CpG loci was the outcome and RWG the exposure (n=134). Models were unadjusted, 
adjusted for sex, adjusted for sex & birthweight z-score (bwtz). Birthweight and sex were not-significant predictors of 
methylation. Coefficients (coef) are presented with 95% confidence intervals (CI) and the corresponding level of significance 
(p). 
 

The assay was not able detect methylation in the full range of 0-100%. The upper and lower 

levels of detection of percent methylation observed from the assay validation are presented 

in Table 7.5. 

 

Table 7.5 Tobit upper and lower censoring cut-offs from the calibration curves for each CpG loci 

CpG Lower level (%) Upper level (%) 

1 4.2 86.7 
2 3.6 83.0 
3 3.4 77.2 

 

A Tobit model was utilised to take into consideration the assay upper and lower detection 

limits in the observed values. There were no significant associations between RWG and 

DNAm in the Tobit models (Table 7.6). A large proportion of observations were left censored 

on the basis of their methylation values (left censored <3-4%, n=80; uncensored, n=53; right 

censored, n=1). The estimates were higher for the Tobit model (non-significant), which may 

be due to the censoring at 3%, which is the lower detection level whereby DNAm is not 

quantifiable. In this case, censoring should produce less biased estimates.  

Table 7.6 Tobit regression models for RWG (exposure) and DNAm (outcome) at each CpG loci adjusted for confounders in 
NTFS 

 
RWG 

 
Adjusted for sex 

 
Adjusted for bwtz  

coef CI p 
 

Coef CI p 
 

coef CI p             

CpG 1 -3.8 [-15.44,7.83] 0.52 
 

-3.61 [-15.20,7.98] 0.54 
 

-4.96 [-17.52,7.59] 0.44 
CpG 2 -4.65 [-12.98,3.68] 0.27 

 
-4.63 [-12.94,3.68] 0.28 

 
-5.49 [-14.41,3.43] 0.23 

CpG 3 -5.85 [-15.91,4.22] 0.26 
 

-5.85 [-15.93,4.22] 0.26 
 

-5.90 [-16.75,4.96] 0.29 
Upper and lower censoring values determined from calibration curves.  
Coefficients for sex and birthweight z-score (bwtz) were not significant. N=134. 
Coefficients (coef) are presented with 95% confidence intervals (CI) and the corresponding level of significance (p). 
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Methylation at CpG3 was significant associated with RWG in the median regression model 

after adjustment (Table 7.4) but was not in the Tobit model (Table 7.6). As Tobit regression 

predicts the mean, and median regression the median, results are not directly comparable. 

Although estimates were in the same direction, median regression gave lower estimates, 

with concise confidence intervals that were significant, whilst Tobit regression had higher 

coefficients that did not reach statistical significance.  

 

7.4.7 The relationship between DNAm and body composition (age 50) 

Methylation levels were examined in participants with obesity, compared to those without 

obesity (i.e. a healthy weight or overweight BMI), and in study members with OWOB 

compared to healthy weight (Figure 7.6). Methylation levels at CpG1 and CpG3 were lower in 

study members with OWOB and OB, compared to healthy weight, whilst median 

methylation at CpG2 was similar across the body composition categories.  

  

Although methylation levels were lower in participants with obesity compared to those not 

obese, there were no significant differences between the groups (Table 7.7). This could have 

been due to the small proportions with obesity in this sample. To include a larger sample, 

methylation levels in those OWOB were also analysed. Again, methylation was lower in 

OWOB participants, but these differences were not statistically significant. Likewise, there 

were no significant differences for age 60 body composition outcomes. 

 

Figure 7.6 Median % DNA methylation at each CpG loci and the average, by body composition (age 50).  
There were no significant differences in methylation between body composition groups.  
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 Table 7.7 Median % methylation levels at each CpG by body composition outcome (age 50) in NTFS 

 Not Obese  Obese   

 
N p50 min max p25 p75  n p50 min max p25 p75  Ranksum 

p value 

                

Average 114 3.09 0 95.46 0.81 5.3  18 2.68 0 65.12 1.15 3.85  0.76 

Cpg1 114 3.03 0 99.3 0 5.88  18 1.06 0 66.34 0 4.02  0.25 

Cpg2 114 3.61 0 95.81 1.18 7.01  18 3.59 0 64.75 1.23 9.29  0.73 

Cpg3 114 2.97 0 91.27 0 4.45  18 1.44 0 64.28 0 3.79  0.59 

 Healthy weight  OWOB   

 
N p50 min max p25 p75  n p50 min max p25 p75  Ranksum 

p value 

                

Average 58 3.08 0 95.46 1.08 4.8  74 3.08 0 65.12 0.95 6.05  0.71 

Cpg1 58 3.01 0 99.3 0 4.58  74 2.59 0 66.34 0 7.37  0.82 

Cpg2 58 3.52 0 95.81 0.94 5.24  74 3.66 0 64.75 1.23 7.54  0.39 

Cpg3 58 3.11 0 91.27 0 4.36  74 1.72 0 64.28 0 4.67  0.53 
Median (p50), lower quartile (p25), upper quartile (p75), minimum (min) and maximum (max) values shown for all CpG 
stratified by body composition. Ranksum p value for differences in methylation between obese and not obese, or OWOB 
and healthy weight. 

 

In multivariable analyses, methylation at either loci was not associated with weight 

outcomes: obesity, OWOB or BMI at age 50 (Table 7.8). Whilst methylation was lowest in 

those who had RWG and were OWOB (age 50) in the sub-phenotype groups, however these 

differences were not significant (Appendix F, Figure XXIII). 

 

Table 7.8 16 Logistic/linear regression models for weight outcomes (age 50) and % DNAm (age 50) in NTFS 

  
OB 

  
 OWOB 

   
BMI 

 

 
OR CI p 

 
OR CI p 

 
coef CI p             

Average 1 [0.96,1.03] 0.86 
 

1 [0.98,1.03] 0.89 
 

0.01 [-0.04,0.06] 0.76 

Cpg1 0.99 [0.96,1.03] 0.76 
 

1 [0.98,1.03] 0.70 
 

0.01 [-0.04,0.05] 0.78 

Cpg2 1 [0.97,1.04] 0.99 
 

1 [0.98,1.03] 0.79 
 

0.01 [-0.04,0.06] 0.68 

Cpg3 1 [0.96,1.03] 0.83 
 

1 [0.97,1.02] 0.81 
 

0.01 [-0.04,0.05] 0.83 

Weight outcome was the dependent variable and DNAm the independent variable. Healthy weight was the reference 
category for the OWOB and OB logistic regression models. Adjusted for sex. Odds ratios (OR) and coefficients (coef) are 
presented with 95% confidence intervals (CI) and the corresponding level of significance (p) 

7.4.8 The relationship between DNA methylation and subsequent body composition (age 

60)  

There was a positive relationship between methylation (CpG3) at age 50 with BMI at age 60 

(Pearson r=0.25, Figure 7.7). Additionally, there was a slightly stronger positive association 

between methylation (age 50) and the change in BMI from age 50 to 60 (Pearson r=0.31).  
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Figure 7.7 Scatter plot for DNAm (age 50) and BMI (age 60) and change in BMI (age 50-60).  
Pearson correlation (r) and associated p value.  

 

For outcomes at age 60, there were no significant differences in methylation between 

phenotype groups (RWG and healthy weight/OWOB) (Appendix F). CpG methylation at this 

locus explained an additional 3% of the variation in DNAm after controlling for current body 

composition (Table 7.9).  

 
Table 7.9 Linear associations between BMI (age 60) with % methylation (age 50) and BMI (age 50) in NTFS study members 

BMI  
(age 60) 

% methylation BMI (age 50) Adjusted model 
 

coef CI p coef CI p coef CI p 
DNAm 
(%) 

0.08 (0.156,0.14) 0.015    0.065 (0.02,0.09) 0.03 

BMI  
(age 50) 

   0.97 (0.83,1.12) <0.001 0.96 (0.81,1.10) <0.001 

n 91   90   90   
Adj R2 0.05   0.67   0.70   

 All models adjusted for sex (non-significant). Coefficients (coef) are presented with 95% confidence intervals (CI) and the 
corresponding level of significance (p) and adjusted R2 of the model. 

 

Whilst there appeared to be a relationship between DNAm and BMI (age 60), because of the 

clustering of many values around 0% methylation and some high methylation values, the 

r=0.25, p=0.02 

r=0.31, p=0.003 
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nature (linear or non-linear) of the association was uncertain. Therefore, a fractional 

polynomial (FP) model was used to examine the relationship between methylation and 

subsequent BMI. The initial model was skewed by a recognisable outlier with methylation 

greater than 80% (circled, Figure 7.8). When fractional polynomial linear model was re-run 

without the outlier, there was no relationship between methylation and BMI at methylation 

levels <15%, but between 15-60% methylation there was a positive relationship between 

methylation and BMI (age 60) (Figure 7.8). This suggests that this association could be driven 

by high methylation outliers, with less certainty at higher values (wider confidence intervals, 

Figure 7.8B). 

Generally, for a FP model, the best model is that with the lowest deviance. The best-fitting 

fractional polynomial had 1 exponent to the power 2 (squared term) and deviance 518.9, 

forming a curved relationship.  There was no FP model that fit these methylation data for 

BMI at age 50. 

A

 

 

B 

 

Figure 7.8 Fractional polynomial model plots for CpG3 methylation and BMI (age 60). 
Models are adjusted for sex (not a -significant predictor), with all data points (A), and without the outlier (>80% 
methylation, circled) (B). For model A; Coefficient for methylation=0.08, CI 0.00-0.17; p=0.05, n=90. For model B; 
Coefficient for methylation=0.24, CI 0.09-0.38; p=0.001, n=90. Confidence intervals shown as shaded area around 
the line of best fit. As there were few data points with methylation >20%, these results should be interpreted 
cautiously. 

 
 

7.4.9 Data validity 

The range of methylation values obtained for the CpG loci of interest was unusual in that 

genome-wide methylation has a bi-modal distribution, whereby methylation levels at a 
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single locus are usually either high or low. In this case, this raises the question as to whether 

the high levels of methylation are valid.  

Pyrosequencing assays were run in duplicate and replicates were within 5% methylation, 

which would imply the pyrosequencing results are precise. This phenomenon was 

investigated further to determine whether this represented measurement error or a SNP 

effect, and the extent of the effect of the outliers.  

 Assay measurement error 

The high methylation samples all had low DNA concentrations (n=12, shaded points on 

Figure 7.9). It is likely that the low concentration samples had low total amounts of DNA. 

However, many samples had low DNA concentrations and there were some samples which 

had low methylation and a low DNA concentration (n=32). Therefore, it does not appear to 

be likely that the assay preferentially amplified based on methylation in low DNA 

concentration samples.  

 

 

Figure 7.9 Plot of methylation at CpG3 (%) and DNA concentration (ng/μL) of the sample.  
Shaded are the high methylation samples, which have a DNA concentration <5ng/μL. 
 



234 

 Understanding any potential SNP effects on DNA methylation 

The CpG loci of interest was located at the start of the 450K probe (Table 7.10). The region 

up- and down-stream of this loci was sequenced in a matched experimental design to 

highlight any nearby SNPs that could influence methylation.   

 
Table 7.10 450K array probe characteristics for cg11531579 

Probe details  Chromosome 

Probe ID Forward genomic sequence CpGs   No. Start  
position        

End  
position    

site 

cg11531579 CGAGTAGATGAACACATTTA
AAGTTTGTAGTTAAGAGGA
AAACAACGCCA 

2  12 133,484,743 133,484,792 133,484,743 

The CpG (cg11531579) is underlined in the probe sequence. 
 

The right strand for each sequencing reaction was sequenced successfully, with some drop 

off in quality towards the end. There were a handful of SNPs within the sequences, however 

no clear pattern that distinguished high and low methylation samples, or paired samples. 

The CpG loci of interest was at position 110 in the sequence. There were some differences 

between high and low methylation samples at positions 90, 339 and 424 (Appendix F, 

Figure XXV). Pair B showed consistent SNP patterns for the matched samples, but there were 

differences in SNPs for the matched pairs A and C (Appendix F, Figure XXV).  

There were nucleotide differences observed for the pairs (A and C) with characteristics of 

RWG and a BMI>25kg/m2 (overweight category), whereas there was no difference between 

the pair (B) which had no RWG/healthy weight. This could suggest that genetic variation is 

occurring in a phenotypic-dependent manner. However, with the small sample size this 

cannot be said with great certainty.  

Table 7.11 SNP differences in sequenced samples of matched pairs of high (>12%) and low methylation (<12%) in NTFS DNA 
samples  

Sample  
characteristics 

Matched pairs A B C 

Sample ID TFS55 TFS314 TFS59 TFS296 TFS270 TFS152 

RWG Yes No Yes 

Sex Female Female Female 

BMI 29 25 27 

Methylation Low High Low High Low Very high 

% methylation 2 13 3 13 4 45 

Nucleotide at 
specific 

position in 
aligned  

Position 90 G A* HZ HZ G HZ 

Position 339 C * T C* C* C* HZ 

Position 424 T* C C C T* C 

Pair differences  ✓ X ✓ 
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sequences 
Diff, differences in matched pairs; Pos, position in sequence read; %, percent methylation; HZ, heterozygous; * indicates 
major allele. 
 

The SNPs at positions 90 and 424 were known SNPs, whereas position 339 was not a known 

SNP (Table 7.12). The known SNPs (rs2873193, rs4758916) were examined for linkage 

disequilibrium, however evidence suggested that these genetic variants occur independent 

of one other (Appendix F, Figure XXVI).  

Table 7.12 SNPs identified in the sequenced region in NTFS paired samples and SNP characteristics  

SNP name Position in 
aligned 
sequence 

Genome position Allele Frequency  
(in European 
population) 

Study 

rs2873193 90 chr12:133,484,722 A>G A=0.724 
G=0.276 

1000  
Genomes 

Unknown 339 chr12:133,484,970 C>T -  

rs4758916 424 chr12:133,485,056 T>C T=0.048, 
C=0.952 

1000 
Genomes 

Allele frequencies were determined from (phase3 release V3+)(Sudmant et al., 2015). 
 

 Sensitivity analysis  

Sensitivity analysis was done to examine if the extreme values (>12% methylation) affected 

the results. This was done for CpG3 only, as this was the CpG loci of interest and the only loci 

that demonstrated any significant associations with exposures and outcomes. With outliers 

excluded, the mean was closer to median, and the standard deviation decreased (Table 

7.13).  

Table 7.13 Descriptive statistics for CpG3 methylation with (all) and without outliers, stratified by RWG 

All N Mean p50 p25 p75 Min Max SD 

Total 134 6.83 2.81 0.00 4.49 0.00 91.27 14.41 
No RWG 78 8.10 3.17 0.91 5.33 0.00 91.27 16.01 
RWG 56 5.08 1.54 0.00 3.87 0.00 66.01 11.75 

Excluding outliers N Mean p50 p25 p75 Min Max SD 

Total 118 2.40 1.88 0.00 3.82 0.00 10.34 2.45 
No RWG 67 2.79 2.65 0.00 4.36 0.00 9.87 2.52 
RWG 51 1.90 1.19 0.00 3.77 0.00 10.34 2.28 

Outliers n=16. N, sample size; p50, median, p25, lower quartile; p75, upper quartile; min, minimum; max, maximum; SD, 
standard deviation.  
 

In the median regression model when outliers were excluded, the coefficient for RWG 

increased and the p value was smaller (Table 7.14). Therefore, in the range of methylation 

from 0-12%, there was a stronger association between DNAm and RWG, than in the original 
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(wider) range of values. Most individuals exhibited methylation in the range 0-10%, 

suggesting that for the majority of the cohort, RWG was associated with -2% methylation.  

Excluding the outliers did not result in any changes in significance in the Tobit model.  

Table 7.14 Comparison between Tobit and median regression model results for the models with and without outliers 
excluded.  

Model Adjusted for sex and bwtz 

Tobit regression coef CI p 

Original -5.85 [-15.91,4.22] 0.26 
Outliers removed -2.41 [-24.57,19.74] 0.83 

Median regression coef CI p 

Original -1.89 [-3.65,-0.13] 0.035 
Outliers removed -1.95 [-3.36,-0.54] 0.007 

Methylation at CpG3 was the outcome and RWG was the main explanatory variable. Models were additionally adjusted for 
sex and birthweight z-score (bwtz). The original model included all the data points, whilst the outliers model excludes 
methylation values >12%. Coefficients (coef) are presented with 95% confidence intervals (CI) and the corresponding level 
of significance 

Methylation at CpG3 was not associated with body composition outcomes (at age 50) with 

or without outliers, in linear or logistic models (Table 7.15).  

Table 7.15 Outlier analysis with body composition outcomes (age 50) using logistic and linear regression models, for all and 
stratified by RWG. 

Outcome  OB    OWOB    BMI  

 OR CI p  OR CI p  Coef CI p 
All study members, n=118                    

Original 1 [0.96,1.03] 0.83  1 [0.97,1.02] 0.81  0.01 [-0.04,0.05] 0.82 
Outliers 
removed 

1.04 [0.85,1.28] 0.71  0.98 [0.85,1.15] 0.84  0.01 [-0.04,0.05] 0.83 

Models are adjusted for sex. Sample sizes refer to the sample without the outliers. Odds ratios (OR) and coefficients (coef) 
are presented with 95% confidence intervals (CI) and the corresponding level of significance (p). 
 

When outliers were excluded, there was an association between DNAm and subsequent 

body composition measures (age 60), as determined using a fractional polynomial model 

(Figure 7.10). The best fitting model was a with a cubic term (Coefficient = 5.5, CI 0.05-10.9, 

p=0.05). Both models had widening confidence intervals at higher values (Figure 7.10).  
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Figure 7.10 Fractional polynomial model for BMI (age 60) and methylation at CpG3 (age 50), for models with and without 
outliers.  
The model with the original data is to power (2) whilst the model without outliers is to power (3).  
The outlier model had coefficient = 5.5, CI 0.05-10.9, p=0.05. 
 

Furthermore, from the FP model it appeared that BMI was only associated with the outliers 

(i.e. a change in slope at methylation >20%). To examine this, a linear regression model was 

run with BMI age 60 as the outcome, and outliers (>12% methylation) as a binary 

explanatory variable (study members with methylation >12% vs <12%) (Table 7.16). Having 

DNAm levels greater than 12% was associated with a 3.11kg/m2 increase in BMI at age 60. 

High methylation remained associated with subsequent BMI after controlling for current 

BMI, however current BMI explained much more of the variation in BMI (age 60) and was 

therefore a better predictor.  

 

Table 7.16 Linear associations between outlier DNAm (>12% methylated) and BMI (age 60) 

BMI (age 60) Unadjusted  Adjusted for BMI (age 50)  
coef CI p  coef CI p 

Outliers (>12% methylation) 3.11 [0.30,5.91] 0.03  1.96 [0.27-3.64] 0.02 

n 91 
  

 90   
R2 0.06 

  
 0.69   

Both models additionally adjusted for sex. Coefficients (coef) are presented with 95% confidence intervals (CI) and the 
corresponding level of significance (p) 
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7.5 Discussion 

An assay was successfully developed to measure DNAm at the CpG site associated with RWG 

in the ALSPAC cohort (cg11531579). DNAm levels in the region of interest were quantified in 

134 viable samples from the NTFS cohort. Median DNAm at the cg11531579 locus was 2.8% 

and was lower on average in those who had RWG (3.2% vs 1.5%). Median regression 

revealed that RWG was associated with 2% lower methylation after adjustment for 

confounders. Whilst methylation tends to increase over time at this locus (BSGS, section 

7.3.1), on average in NTFS adults those who had RWG had lower methylation.  

There were differences when analysing the outliers, which suggested that RWG was more 

significantly associated with reduced methylation in the lower range of methylation values. 

There were also differences observed when utilising a censored regression model, which 

questions the accuracy of the results that lie outside the (lower) range of detection of the 

assay, perhaps due to the uncertainty introduced from many censored values, or due to 

reduced statistical power. 

A wide range of methylation values were observed, including some very high values. It is 

possible that outliers could come from technical artefacts, however this seems unlikely in 

this as repeats were within 5% of each other, and some high methylation samples were re-

run and values were similar. White et al,. found that low concentrations of template DNA 

(<10ng) can affect absolute quantification due to introduction of PCR bias (White et al., 

2006). Increasing the number of technical replicates, or bisulfite sequencing could have been 

potential options to investigate further if there was abundant DNA remaining. Ideally if there 

was more DNA available, then all samples would have had greater starting material, and 

samples could have been run in PCR triplicate.  

The DNAm changes identified here were small, particularly considering that technical 

replicates can often have methylation differences up to 10% (Dedeurwaerder et al., 2014). 

Here, replicates were only accepted if within 5% of one another. There is the possibility that 

methylation could be due to random technical variations rather than true biological 

differences (Dedeurwaerder et al., 2014). For individual CpG sites the pyrosequencer 

detection limit is approximately 5% (Mikeska et al., 2011), therefore meaningful differences 

may be too small to accurately quantify. Ideally differentially methylated loci should be 

confirmed using an independent assay and technique (i.e. next generation sequencing which 

is costly) in the same population.   
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Statistical methods were used which are appropriate for the data (without excluding points), 

as if this is a ‘true’ event, then removing the data points would generate a selection bias. On 

the other hand, an argument to exclude outliers would be in that the utility of a biomarker is 

that it applicable for most of the population, hence sensitivity analysis was done to examine 

the impact of outliers. Outliers could be a result of a difference in measurement method, 

genetic variation, cell composition, or disease state (discussed further in section 8.7). 

The range of methylation values detected by pyrosequencing in the samples was higher than 

those observed in the epitect control DNA samples for a given methylation level. A possible 

explanation for this could be that the epitect control DNA, which uses whole-genome 

amplification (0% methylated) and SssI treatment (CpG Methyltransferase which methylates 

all cytosine residues), does not result in 0 or 100% methylation at all CpG loci (Choi et al., 

2011). In another study which used the epitect control DNA, the values obtained for 

supposed 0% methylation at various CpG loci ranged from 0-23% (Nishitani et al., 2018). The 

methylation detection limit of the assay by the pyrosequencing machine also had a lower 

and upper threshold, and therefore relying on the control DNA to determine will impact on 

the specified detection ability of the assay and would invalidate the Tobit model results.  

The high methylation levels were investigated further to determine if SNP patterns were 

driving differences between high and low methylation. There is literature on the two 

identified SNPs. Sequencing results were suggestive of a phenotypic (RWG and OWOB) 

pattern of methylation related to SNPs. As there were few samples with sequencing data 

and with very high methylation, these results could be spurious findings. If the results are 

not by chance, then high levels of methylation could be driven by SNP effects or be 

indicative of future body composition in those with high BMI. However, as there were few 

samples with high methylation, and only 3 matched pairs were successfully sequenced, 

these results are inconclusive, but this could be the focus of future research.  

There was a wide range of methylation values could indicate a high degree of heterogeneity 

at this locus. For example, this could occur if the majority of cells (blood is comprised of 

numerous cell types) exhibit low levels of methylation but some exhibit very high levels. 

Outliers could arise from abnormal methylation patterns from white blood cells (e.g. from 

infection or cancer), or could be influenced by disease status or lifestyle (Alegría-Torres et 

al., 2011).  
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DNAm did not distinguish between healthy weight and OWOB (age 50), regardless of 

previous RWG. However, there was a positive association between DNAm and subsequent 

BMI (age 60), which on further inspection appeared to be non-linear. Those who had very 

high methylation also happened to have a greater BMI at age 60. The CpG methylation at 

loci improved prediction of subsequent BMI (age 60) over and above the use of current BMI 

(age 50). A 1% increase in CpG methylation at this 1 locus was associated with a 0.07 Kg/m2 

increase in subsequent BMI and explained around 3% of the variation in NTFS participants. 

However, this may have limited use as a biomarker in this age group, as BMI at age 50 was 

more predictive of BMI at age 60 than DNAm, but CpG methylation could be used to 

improve predictive models alongside BMI. This could also suggest that similar to findings in 

ALSPAC, relative increases in methylation are reflective of subsequent growth.  
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Chapter 8. Discussion  

This final chapter is a discussion of the main findings of results chapters, and how the 

findings compare with the published literature. The chapter will also include the study 

strengths and limitations, and the public health implications and future directions. 

8.1 Summary of the main findings 

Early life exposures were primarily investigated in North East populations of children and 

adults, in two cohorts that commenced over 50 years apart. Over this time, the prevalence 

of obesity has vastly increased, from what were very low numbers in 1947.  

Despite the change over time to a more obesogenic environment, early life weight gain was 

consistently associated with a higher BMIz in both NTFS and GMS cohorts, even when 

accounting for birthweight. RWG is characterised by initial rapid growth, and generally BMI 

z-scores decrease and ‘normalise’ over time. However, in the modern cohort those who had 

RWG had a higher, sustained BMIz throughout childhood. 

The exposures that were important factors for childhood OWOB in the North East cohorts 

were investigated further in the larger, South West cohort; ALSPAC. Again, there were 

consistent associations for early life weight gain, both dependent and independent of 

birthweight. However, when examining long-term effects, the relationship between early life 

weight gain and BMI in adolescents weakened over time in ALSPAC and was non-existent in 

NTFS adults. Thereby questioning whether there are long-term effects, or if other factors 

become more important predictors of body composition.  

The programming effect of early life risk factors on childhood BMI may arise through 

epigenetic marks laid down at an early developmental stage, which then elicit effects at a 

later stage (Mathers and McKay, 2009). Like the epidemiological findings with RWG and 

childhood BMI, there was a positive association between RWG and DNAm. DNAm changes 

were associated with RWG, but less so with RT, which may suggest that this includes some of 

the effects of birthweight. To examine if there were latent effects of RWG on DNAm, 

methylation at the significant locus (cg11531579) was verified by pyrosequencing in NTS 

adults. Interestingly, DNAm at this locus was negatively associated with RWG in NTFS (age 

50), suggesting variability. In childhood, the highest levels of methylation were in those who 

had RWG and were subsequent OWOB. At age 50, methylation was positively associated 
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with subsequent BMI (age 60). Therefore, DNAm at this locus may reflect patterns of 

growth; increased methylation associated with increased subsequent growth. However, due 

to the differences in age, time period, and methods of measurement, direct comparisons are 

inadvisable. Furthermore, the methylation differences observed were small and findings 

need to be replicated. 

There were other important early life risk factors identified in the epidemiological analyses, 

including birthweight, adversity, infection, maternal age and SES. There were more early life 

factors related to childhood body composition in the modern (GMS) cohort, which may 

suggest these factors have become more important over time, or that there is now greater 

variability in early life environments.  

8.2 Discussion of the epidemiological findings 

8.2.1 Birthweight 

The positive associations between birthweight and adiposity outcomes in children in the 

modern cohorts agrees with the literature (Reilly et al., 2005a, Yu et al., 2011). In contrast, 

there was no association in NTFS children, and a protective effect of higher birthweights in 

adults, which could be due to time period effects. NTFS study members were in utero during 

a time of rationing in Britain, whereby it is generally accepted that the nation’s health 

improved, which could have reduced numbers of LBW infants. Particularly rationing will have 

benefited less advantaged groups more and mothers were less likely to be undernourished. 

Similarly, theories around a mismatched intrauterine and postnatal environment do not 

apply to this cohort, as the period of rationing extended throughout early childhood, 

meaning a consistency in nutrient intake throughout pregnancy and early life. Furthermore, 

considering the time period there will have been fewer obese mothers due to lower 

prevalence of obesity generally, therefore findings in the modern cohort could reflect the 

cycle of higher birthweights and obesity across generations (Cnattingius et al., 2011). 

8.2.2 Adversity 

The components of adversity that were significantly associated with body composition in 

GMS had socioeconomic implications (Appendix C, Table IX). Whilst in NTFS, neither 

adversity nor early life SES were associated with any outcome measures in childhood or mid-

life, which could indicate that the effects of adversity on BMI impact via SES. 
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An alternative explanation could be the timing, as in NTFS the adversity exposure was 

postnatal, whereas significant associations in ALSPAC and GMS were identified for prenatal 

adversity. This may support an intrauterine mechanism of altered stress responses, leading 

to disturbances in metabolism (Entringer et al., 2012, Johnson et al., 2013). However, early 

life stress could also impact on the development and calibration of the neuroendocrine-

immune network, and have downstream effects on various social, economic, academic and 

behavioural aspects of a child’s life, which could also influence likelihood of obesity (Johnson 

et al., 2013). 

Another potential explanation could be that the effects of adversity do not persist to 

adulthood, although this was the case in ALSPAC, whereby associations were stronger over 

time (in adolescence). Furthermore, a large systematic review and meta-analysis found weak 

to moderate associations for adverse childhood experience (ACEs) and obesity in adulthood 

(OR 1·39 (95% CI 1·13–1·71) when examining multiple ACES (>4), which may be indicative of 

more severe childhood adversity (Hughes et al., 2017). A recent methodological approach 

has exploited the high dimensionality of the ALSPAC data to derive ACE scores and 

constructs from the numerous adversity questionnaires (Houtepen et al., 2018b). These 

scores which utilise multiple measures can also deal with missing data, and could be used in 

future analyses. 

8.2.3 Infections 

In NTFS bacterial infection was associated with OB and also with body fat in women. There 

was a lack of robust infection data in GMS, however, there were some indications in ALSPAC 

that antibiotic exposure in the first 6 months (as a proxy for bacterial infection) was 

associated with OWOB until adjustment for early life growth (correlated with antibiotic 

exposure). This could suggest a link between early life infection, antibiotics, and subsequent 

growth. The antibiotic growth effect is observed in farm animals who are given antibiotics to 

increase their weight, but has also been observed in humans (Haight and Pierce, 1955). 

Research seems to suggest that the mechanism linking antibiotics and growth could be via 

the microbiome (Cox and Blaser, 2014, Forrest et al., 2017).  

A longitudinal study that compared infants with infections who either did or did not receive 

antibiotics found no difference in obesity risk up to 18 years (Li et al., 2017a). However, the 

number of infections was significantly associated with increased risk of obesity in those who 
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did not have antibiotics. Thereby the authors concluded that the exposure to infection 

rather than the antibiotics was the important factor.  

The timing of antibiotic exposure could also be important, as early‐life post-natal exposure 

was associated with increased child BMI, but not pre-natal (Poulsen et al., 2017). In support 

of this, in a large sample of mother-child pairs (n=53,320) also found that maternal antibiotic 

exposure during pregnancy was not associated on childhood BMI-z at 5 years (Heerman et 

al., 2019).  

Furthermore, this study supports that bacterial, rather than viral infection is associated with 

increased BMI, however this could be due to the types of viruses and bacterial infections 

examined in NTFS, some of which are rare now.  

8.2.4 Maternal age 

Although maternal age has been related to detrimental birth outcomes, in these cohorts 

maternal age was not directly associated with an unfavourable body composition or 

birthweight. Instead, the association of older (NTFS) and younger (GMS) maternal age with 

decreased offspring BMI is an interesting observation and is opposite to previous findings 

(Myrskyla and Fenelon, 2012). However, maternal age may not be causally linked to body 

composition but could have indirect route (for example via parity, Figure 4.2), or could be 

confounded by SES. 

This positive effect of older maternal age was not seen in ALSPAC, and therefore could be an 

oddity of the North East cohorts, or a spurious finding due to smaller sample sizes. In other 

studies, maternal age above 40 (Fuchs et al., 2018) or 45 (Myrskylä and Fenelon, 2012) has 

been associated with adverse offspring health outcomes. As the maximum maternal age in 

NTFS was 45, it is plausible that there were no any adverse associations, as the ‘older’ 

maternal age group were relatively young. Although, aside from for birthweight or length of 

gestational, other adverse offspring outcomes have been shown to remain fairly stable after 

a maternal age in the mid-30s (Carslake et al., 2017). 

These results may suggest that in older mothers, whilst intrauterine conditions may be less 

optimum, the life experiences and enhanced childhood environment may confer certain 

advantages. 
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8.2.5 Infant feeding 

In these cohorts, there was no evidence of a protective effect of breastfeeding on obesity, 

independently or after adjustment for socioeconomic factors. In contrast, breastfeeding was 

associated with small increases in BMI in NTFS adults. Whilst studies have found long-term 

benefits of breastfeeding (such as reductions in OWOB) in developed countries, studies in 

low and middle income countries have not shown such great effects, which could suggest 

differences in social and cultural structures, selection bias or confounding could in part 

explain some of the association (Kramer et al., 2009, Brion et al., 2011).  

Previous analyses in the GMS cohort have shown there is a clear relationship between SES 

and breastfeeding duration (Wright et al 2005), with those in the most affluent quintile 3x 

more likely to breast-feed initially and 5x more likely to continue breastfeeding past 4 

months (Wright et al., 2006a). Wright et al,. also found greater rapid weight gain (0-13 

months) in those who stopped breastfeeding earliest, although this is likely a result of 

reverse causation; that starting solids and ceasing breastfeeding is a response to RWG 

(Wright et al., 2006b). They conclude that babies genetically destined to be larger make 

greater demands on their mother for breastmilk; and this greater demand increases 

likelihood of earlier cessation. 

A study which utilised structural equation modelling found that shorter breastfeeding 

duration was associated with increased infant weight gain and subsequent higher childhood 

BMIz, however these estimates were not adjusted for SES (Lamb et al., 2010). Similar 

associations between weight gain and breastfeeding have been observed in other studies, 

with suggestion that any beneficial effect is obtained by 12 months of age (Scholtens et al., 

2007). These analyses primarily examined the duration of breastmilk rather than the 

composition, however formula and other milks have been associated with greater dose-

response in weight gain through infancy (first year) (Kramer et al., 2004).  

There was a negative association between age at weaning and some outcomes in the GMS 

cohort (waist OB, BMIz). This is consistent with the literature on early weaning and could be 

related to the types of foods that are introduced (Pearce and Langley-Evans, 2013), and may 

explain a lack of association in NTFS. This association for waist OB was no longer significant 

after controlling for physical activity, which could suggest that this was operating through a 

shared pathway. Perhaps the families which introduce weaning foods later are generally 

healthier (more active) or with greater health literacy. Accordingly, a systematic review 
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determined that low maternal education was an important factor in early weaning 

(Wijndaele et al., 2009b), and is supported by findings in GMS (Wright et al., 2004). 

8.2.6 Physical activity 

In GMS and NTFS, there was a negative association between increased physical activity and 

most adiposity outcomes. These results are similar to other studies in adults (Reiner et al., 

2013). Whereas studies on childhood obesity have found mixed results, with associations 

perhaps influenced by biological or social gender differences (Prentice-Dunn and Prentice-

Dunn, 2012). In GMS, physical activity began to decline in both sexes from age 7 years 

(Farooq et al., 2018), therefore the effect sizes exhibited here may change over time. 

Females were also less likely to participate in activity and were more sedentary (King et al., 

2011). The results here are in agreement (Figure 4.2), suggesting that girls are less likely to 

take part in MVPA, which could then impact on BMI.  

There is also the possibility of bidirectionality between body composition and activity, which 

is supported by recent findings from GMS suggesting that adiposity influences levels of 

physical activity (Tanaka et al., 2018). 

8.2.7 Socioeconomic status 

As rationing reduced disparities in NTFS, we might expect more pronounced inequalities to 

be in GMS. However, SES at birth was not associated with outcomes in the modern cohorts, 

but higher social class at birth was negatively associated with BF% and WHR in NTFS males. 

The fact that SES was not associated with factors in females could be partly attributable to 

the fact that the UK Registrar General’s classification was developed for male workers and 

may transfer poorly to females. Although in pooled analyses (both sexes), social mobility was 

associated with drastically decreased odds of obesity in NTFS adults, and those who were 

always in the most advantaged group had very low odds of obesity.  

National level data find a relationship between childhood SES and childhood obesity (Health 

and Social Care Information Centre, 2016). Similarly, GMS results suggested that SES in 

childhood is more predictive of OWOB than SES at birth. There was no evidence for 

increasing upward mobility, which may be because it was basic measure using ownership 

and employment, rather than encompassing multiple aspects of social mobility. 

Furthermore, deprivation measured using home ownership is perhaps less informative over 

time with the resurgence of private renting (Kemp, 2015).  
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There were no socioeconomic differences in OWOB in ALSPAC either, which is in contrast to 

other studies. This could be due to the use of occupational social class or Townsend score, 

rather than parental education, which is most frequently associated with lower odds of 

obesity (Brophy et al., 2009, Shrewsbury and Wardle, 2012, Ruiz et al., 2016). However, the 

effects of maternal education appeared to be indirect in GMS, via other factors such as 

birthweight or parity or lifestyle (Figure 4.2). Similarly in NTFS, early life SES had indirect 

effects on BMI via later life SES and lifestyle factors (Figure 3.3). Brophy et al,. suggest that 

the relationship between maternal education and obesity could be a result of more 

protective health behaviours and empowerment for people to modify their own health. In 

pregnant women, this could influence health-related behaviours that affect birthweight, 

which may explain the relationships exhibited.  

A potential limitation when comparing results is the difference in the socioeconomic 

variables available in each of the cohorts, which may limit interpretations.  

8.2.8 Infant and childhood growth  

This study is one of many to show a relationship between RWG and childhood adiposity 

(Stettler et al., 2003, Ong and Loos, 2006b, Druet et al., 2012). In these analyses, this 

association was observed across cohorts and time points, and therefore suggests this is a key 

exposure regardless of the modern obesogenic environment. Similarly, a 2005 systematic 

review investigating infant weight gain in populations born between 1945-94, found 

consistent associations across various time periods and ages (5-20 years)(Baird et al., 2005). 

Furthermore, findings from low and middle-income countries also support that early life 

weight gain is associated with subsequent BMI (Joglekar et al., 2007, Fernandes et al., 2009). 

Collectively these findings suggest that RWG is a consistent risk factor regardless of 

environmental influences.  

Genetic markers support that early infancy gains in weight and length are on the pathway to 

adult obesity risk (Elks et al., 2010b). The path analyses attempted to disentangle the direct 

and indirect pathways and determined that a direct path between RWG and BMI existed, 

and that no factors predicted RWG, supporting a direct relationship. However, obesity is the 

result of the interplay and balance between multiple contributing and intermediary factors. 

Therefore, whilst this is a plausible risk factor, it is unlikely to be a sole determining factor. 
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An important consideration is that infancy RWG per se may not be causal, but could reflect 

an individual’s predestined growth trajectory, or an antecedent to childhood obesity. 

However, previous systematic reviews have found weight gain in the first year (specifically, 

rather than periods greater or less than 1 year) to be most predictive of childhood obesity 

(Zheng et al., 2018). This does not rule out RWG as an antecedent, but suggests that the first 

year is a critical period.  

 

However, many children with rapid infancy weight gain do not go on to have increased 

adiposity in childhood (Wright et al., 2012). Using data from three longitudinal growth 

cohorts, excess weight in in infancy had a moderate positive predictive value for becoming 

overweight in mid‐childhood, but not necessarily for becoming obese (Wright et al., 2018). 

This therefore highlights the need for a means to detect those most at-risk (i.e. a biomarker). 

The entire childhood period, rather than the first year, could also be a critical period for 

growth and development of obesity (Cole, 2004).  

 

Previous studies which have used BMI are unable to determine whether this reflects changes 

in fat mass. This study examined multiple outcomes and determined that RWG was also 

related to FMI, and the relationship was stronger in those with very high fat mass. RWG in 

infancy has been associated with higher concentrations of insulin-like growth factor I (Ong et 

al., 2002a) which could increase growth and lean mass. This may explain the relationship 

between RT and height (which contributes to lean mass), which was also noted in a Swedish 

cohort of young adults (age 17 years) (Ekelund et al., 2006). They found that RWG in the first 

6 months was associated with both fat and fat free mass (measured using air-displacement 

plethysmography) and WC in adolescence (Ekelund et al., 2006).  

In GMS, those with early RT had consistently higher weights throughout childhood; therefore 

infancy may be a key time to intervene. Children with early increasing BMI diverge from 

other growth trajectories as early as two years (Robinson et al., 2019), therefore rapid early 

growth may set infants on a higher weight trajectory over the life course. This also suggests 

that BMI measurements taken in the NCMP at school-age (age 4-5) will miss some high risk 

children (Robinson et al., 2019).  

Although RWG is associated with increased childhood BMIz, in the historic cohort BMIz 

normalised over time and RWG was not associated with adult body composition. This could 

be interpreted as either; factors determining early life fat mass manifest in childhood BMI 



249 

and not adult BMI; the obesogenic environment is key; or that RWG is associated with adult 

BMI through changes in lean mass. Regarding the latter, a Finnish study examined the 

relationship between early life growth and body composition in adults aged 56-70, and 

determined that rapid gains in BMI (from 0-1 or 1-2 years) were associated with lean rather 

than fat mass (Ylihèrsilè et al., 2008).  

Similar to findings from ALSPAC (Ong, 2006), early postnatal growth rates were a 

compensatory mechanism for lower birthweight or growth restriction. LBW infants are more 

likely to have catch-up growth, which increases CVD risk (Kelishadi et al., 2015). This 

supports the DOHaD and Barker hypotheses regarding the interaction between intrauterine 

conditions, environmental factors, and increased risk of metabolic disorders. Interestingly, 

although waist obesity has been specifically related to metabolic disorders (Hirschler et al., 

2005), RWG was not significantly associated with waist OB.  

Although LBW makes catch-up growth more likely, Druet et al. (2012) found that the effects 

of infant weight gain on childhood obesity were similar regardless of birthweight status. This 

was reiterated when analysing rapid thrive, which accounts for catch-up growth due to LBW. 

Factors which influence birthweight will impact on likelihood of RWG. For example, maternal 

smoking during pregnancy has been shown to be associated with increased risk of RWG 

(Mine et al., 2017). However, adjusting for maternal smoking in the ALSPAC analysis did not 

notably affect associations. Whilst it was not possible to adjust for maternal BMIz in GMS 

and NTFS, the associations for birthweight and rapid growth remained in the ALSPAC 

analyses, and in another ALSPAC study on childhood obesity which adjusted for parental 

obesity amongst other factors (Reilly et al., 2005a).  

Aside from birthweight no factors predicted rapid weight gain in this study. Factors could be 

related to appetite regulation, feeding behaviour or breastmilk composition. Traffic pollution 

has also been considered a cause (Fleisch et al., 2015). In GMS, appetite at 6 weeks and 12 

months was positively associated with weight gain at 12 months (Wright et al., 2006b). 

Accelerated growth in infancy could be due to increased intake of nutrients, in particular 

protein, which has been shown to increase levels of insulin-like growth factor 1 and 

promotes growth in the first 6 months of life (Socha et al., 2011). RWG is less likely in 

breastfed infants, which could also be related to the lower protein content of human breast 

milk compared to formula (Koletzko et al., 2013).  
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Overall, the findings in this thesis support previous findings that early life growth is an 

independent, persistent factor related to subsequent body composition. 

8.3 The potential causal impact of RWG and future work 

Before we can address the question of causation, it is important to establish that a valid 

association exists. Firstly, it must be determined that there is valid association between the 

exposure and the outcome. If the association is valid and is not due to bias or confounding, 

then causality can be addressed. The analysis undertaken here was not intended to 

determine causal factors, and thus this research design is not able to ascertain causality 

which is often only possible in randomised controlled trials. Although, in epidemiological 

studies, the Bradford Hill criteria are often used to assess the strength of a causal 

relationship and can be considered in this context. These criteria include plausibility, 

consistency, temporality, strength, specificity, change in risk factor, coherence, analogy and 

experiment.  

Applying these criteria to the principle findings in this thesis, RWG would meet the criteria of 

plausibility, consistency and temporality. The strength of the association was not 

investigated here, however others have found that very rapid weight gain, equivalent to 

crossing 2 growth centile bands was associated with even higher risk of childhood obesity 

(Druet et al., 2012), which supports a dose-response relationship. There is plausibility in that 

there is a reasonable pathway to link excess weight gain and obesity. Epigenetics is also a 

plausible mechanism, however these findings would need to be replicated. There is 

temporality in that the exposure precedes the outcome. No single study is sufficient to 

determine causality, however this study is consistent with the previous literature and 

aetiology. There was also consistency when RWG was analysed in several populations, and 

across different outcome measures of obesity. Regarding specificity, thus far RWG has not 

been linked to other diseases and therefore its effects may be specific to obesity. Whether 

the mechanism is via epigenetic changes (specific), rather than another mechanism (non-

specific), remains to be determined. 

8.4 Strengths and limitations of the epidemiological analysis 

There are several strengths to this study. The three birth cohorts had reasonable sample 

sizes and prospectively collected early life exposures and body composition measures. Data 

and methods were harmonised as thoroughly as possible to allow comparison between 
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studies. Trained professionals collected anthropometric data; therefore, there was no 

reliance on self-reported measures of adiposity outcomes. Another strength is the 

comprehensive analyses of multiple outcome measures allowing greater sensitivity to detect 

early life exposures associated with adiposity.  

Whilst a range of exposures and factors were measured routinely in the cohorts, inevitably, 

the data collection for some variables was limited, and therefore there is potential for 

unmeasured confounding. Data were not available for other risk factors or confounding 

factors. For example, maternal smoking (Newnham, 1991) and maternal BMI (Harvey et al., 

2007, Wright et al., 2010a, Bammann et al., 2014, Fairley et al., 2015a) are known to 

influence birthweight in opposing directions. Additionally, the associated risk factors for LGA 

infants include pre-pregnancy obesity, excessive GWG, maternal or GDM (Jolly et al., 2003). 

This was addressed partly in the sensitivity analyses in ALSPAC, which confirmed that the key 

associations remained. 

In NTFS, the questionnaire used to collect retrospective data is vulnerable to recall bias and 

inaccurate responses. To reduce this bias, information was only taken on present habits in 

the age 50 follow-up questionnaire. Additionally, data considered unreliable (such as those 

on energy intake) were not utilised.  

A main limitation of this study was the small sample sizes in the North East cohorts at follow-

up relative to larger birth cohort studies. There was insufficient power to detect small effect 

sizes. However, a key strength of the project overall is through integrating results from 

several different approaches (triangulation). Each approach may have specific sources of 

bias, but by comparing cohorts from different times and geographical locations strengthens 

confidence in the findings. It is also reassuring that the main findings for rapid growth in 

infancy are in agreement with findings from large-scale meta-analyses.  

8.4.1 Generalisability and attrition  

Loss to follow-up is an important issue as it can result in biased estimates. As with most 

longitudinal population studies there has been attrition related to SES. Attrition could lead to 

underestimations, particularly of inequality when SES is the exposure of interest (Howe et 

al., 2013). However, in GMS, as more affluent families were initially underrepresented, this 

has led to a sample that is more now more representative of the region. There were missing 
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data for some exposures, notably for RWG, however this supports the utility of a biomarker 

when early life data are not available. 

As cohorts situated in the North East of England, GMS and NTFS may not be representative 

of the rest of the UK. However, key findings were replicated using ALSPAC data (South West 

England). Furthermore, in NTFS the inclusion of study members who had moved away 

increased representativeness of the original cohort (shown for all early life factors bar 

gender (Lamont et al., 2000)).  

Generalisability of these findings to other populations is limited by the predominantly white 

ethnicity of study members, and risk factors for other ethnic minorities may differ. However, 

research from the more diverse Born in Bradford birth cohort did not find strong evidence 

that risk factors for childhood obesity varied by ethnicity (Fairley et al., 2015b), and an Asian 

cohort also found similar risk for RWG (Aris et al., 2017). Other factors that may limit 

generalisability are inter-individual variation, transgenerational effects and genetic factors.  

Due to the long-term nature of the Thousand Families cohort, findings may not be entirely 

generalisable to present-day populations. The influence of time-period effects cannot be 

overlooked, as the early years of NTFS study members will have been very different (section 

5.5), even to adults age 50 today. However, despite these differences and the lesser impact 

of environmental factors, some early life exposures and lifestyle factors predicted adult body 

composition. 

Adiposity is a complex trait and may not adequately captured by a single measurement, 

therefore multiple outcomes were analysed. Although a proxy measure, BMI was the only 

measure consistent across all of the cohorts in childhood. While there is a strong correlation 

between BMIz and fat mass, this alone is not enough to make inferences about individuals. 

For example, exercise can lead to reductions in fat mass and increases in lean mass (Prentice 

and Jebb, 2001), however if weight remains the same, BMIz will also stay the same. It could 

be argued that estimates obtained when using BF%, a direct measure of adiposity that is 

independent of bone mass, would more reliably depict adiposity. A study in GMS found that 

FMI was a more sensitive measure than BMI (Basterfield et al., 2012a), and proxy measures 

of adiposity were inferior (Basterfield et al., 2012b). In NTFS and GMS there was a high 

correlation between BMI and BF%/FMI, suggesting that BMI is a good proxy measure of 

body fat in these populations.  
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Risk factors for BMI were also risk factors for measures of body fat and waist obesity, which 

may imply that additional measures have little added value. Generally, there were more risk 

factors associated with BMI, which may suggest some risk factors may be related to total 

(both fat and lean) mass. However, due to the different cardiovascular consequences 

associated with waist obesity, and the consistent associations for birthweight and waist 

obesity (in both NTFS men and GMS children), there is definite value in this measure, and 

findings were in agreement with the DOHaD hypothesis (Barker, 1995). Furthermore, only 

analysing BMI misses those with normal weight but waist OB, who are at risk of higher 

mortality (Cerhan et al., 2014, Sun et al., 2019) 

The validity of the 0.5 threshold for WHtR to identify cardiometabolic risk in children has 

been questioned (Hara et al., 2002, Yan et al., 2007). Although values vary by ethnicity, 

generally estimates are around the 0.5 value for children from: South Africa (Matsha et al., 

2013), Australia (Nambiar et al., 2010) and the UK (McCarthy and Ashwell, 2006), and 

therefore this probably was an appropriate cut-off in this study. Tybor et al. (2008) found 

that there was a residual correlation between WHtR and height in children during periods of 

growth; therefore, it is possible that WHtR does not completely control for the effect of 

height and the effect sizes for WHtR here are underestimations. On the other hand, 

adjusting indices to be independent of height does not appreciate that taller children are 

fatter than their shorter peers (Metcalf et al., 2011), and that there is cross-over in genetic 

variants related to weight and height (Elks et al., 2010a). 

The UK90 reference was consistently used to normalise BMI in all the cohorts, as prevalence 

of obesity should be relative to reference data at a fixed time point (Prentice, 1998). 

Although NTFS children were born before the reference, it is the most appropriate growth 

reference for these analyses. An alternative is the UK-WHO growth charts (Cole et al., 2011), 

which have been found to classify more children as obese, and could lead to 

misinterpretation of risk (Johnson et al., 2012). When growth in ALSPAC and GMS were 

compared to the WHO standard, more were classified as overweight in the pre-school years, 

and as it uses a breastfed child as a model for growth, may not be appropriate for a UK 

population (Wright et al., 2008a). The GMS and ALSPAC cohorts have been shown to be 

similar to the UK90 reference, with very similar weights and heights at times of overlap in 

childhood (Wright et al., 2008a).  
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Findings from this cohort support that when investigating early life risk factors of childhood 

obesity, BMI or categorical OWOB are adequate measures, but studies might be enhanced 

by the inclusion of a body fatness outcome measure (e.g. FMI) when examining SES.  

8.5 Conclusion 

In summary, this study provides evidence for early life weight gain as an important risk 

factor for multiple measures of childhood body composition, consistent across all three 

cohorts (time periods and regions). Some of these effects may be a consequence of lower 

birthweight, which can be influenced by many factors. The associations for rapid growth did 

not persist into adulthood and may represent a more important factor for childhood BMI 

and on the pathway to adult BMI.  

Since early life, lifestyle and socioeconomic factors have emerged as important factors in the 

development of obesity, multi-component interventions have emerged (Lanigan, 2018). The 

path models support that a multi-component intervention may be the best approach and 

demonstrate the complexity and interrelated nature of risk factors (Figure 3.3, Figure 4.2).  

8.6 Summary of the epigenetic findings 

This study used a discovery cohort (ALSPAC) to determine loci associated with early life 

exposures, and a validation cohort (NTFS) to verify methylation. Robust associations were 

found for RWG and childhood and adult methylation, but for no other exposures. As 

described in the literature review (section 1.5.3), so far, only a handful of differentially 

methylated positions have been identified for early life risk factors of obesity. This study 

used stringent criteria and adjustment methods to identify specific CpG sites meaning that 

perhaps only the most robust associations were identified.  

There were missing data for exposures, and smaller sample sizes reduce the likelihood of 

finding a statistically significant result, especially when the changes in methylation exhibited 

are small. Large differences in methylation are often found in cancer, but generally, small 

effect sizes (2-10%) are common when examining environmental influences (Breton et al., 

2017). Both the sample size and effect sizes were small for RWG, which could support that 

this CpG is robustly associated, although there is always the possibility that the finding was a 

false positive.   
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Replication by an independent technique and dataset were used to examine methylation in 

adults. Although the direction of the association was different between the cohorts, the 

association was still significant. The findings may suggest that methylation is dynamic, has 

specific cohort or age effects, or that disparities are due to sample or phenotype differences.  

8.6.1 Persistence of methylation over time 

It is interesting that RWG was positively associated with DNA methylation in childhood at the 

specific loci identified, but was negatively associated with methylation in adults1. A similar 

phenomenon was seen in a paper by (Richmond et al., 2015) examining maternal smoking 

and offspring methylation. This ‘recovery’ of methylation could represent the adaptability of 

methylation to environmental cues. However, as there were no longitudinal data available 

(in the same individuals) it is unsure whether DNAm was also negatively associated in NTFS 

adults. 

Simpkin et al. (2015) noted that lower birthweights and shorter gestational age were 

associated with a phase of rapid ‘catch-up’ in methylation differences. As RWG includes 

some of the impact of catch up growth from lower birthweights, this could be the case in 

ALSPAC, where catch-up growth (RWG) is mirrored by a ‘catch-up’ in methylation. Whilst the 

opposite, ‘catch-down methylation’, could be reflective of slowed growth and the 

normalisation of BMI over time in NTFS adults. Taken together, one hypothesis could be that 

methylation at this locus represents growth more generally; increases in methylation in 

response to growth, but relative decreases later in order to return to ‘normal’ methylation.  

In terms of changes in methylation over the life course, this study identified that in ALSPAC, 

those who had RWG (ALSPAC) have higher levels of methylation in childhood (age 7), but 

then methylation decreases slightly in adolescence (age 17). If considering age 17 as adults, 

similar overall trends were observed in NTFS adults (age 50), in that those who had RWG 

                                                      
 

1 It is granted that beta (β) values from the Infinium, and percentage methylation from 

pyrosequencing may not be interchangeable, therefore when comparing the two datasets 

the descriptions were focused on the size (small/large) and direction (increases/decreases) 

of change in methylation, in relation to the exposure.  
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have lower methylation levels compared to those who did not have RWG (Figure 8.1). This 

could suggest that the hypermethylation in those with RWG at age 7 may be ‘corrected’ over 

time from childhood to adolescence to middle age. Again, one could speculate that this 

could reflect growth patterns, as the majority of childhood growth will have happened by 

age 17.  

These specific epigenetic changes detected in childhood might have downstream effects 

throughout childhood and adolescence rather than persistence across the life course, 

however currently there are a limited number of studies examining the variation and 

stability of methylation changes over the life course (Richmond et al., 2014, Simpkin et al., 

2015). As there were no longitudinal methylation measurements, the patterns of 

methylation cannot be discerned in NTFS. There is also the possibility that other lifestyle 

factors, or pleiotropy (where one gene affects multiple characteristics) could influence 

DNAm at this locus. 

 

Figure 8.1 Summary of DNAm by RWG in ALSPAC AND NTFS. 
Median DNAm (%) at ages 7 and 17 (ALSPAC) and age 50 (NTFS). 
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8.7 Strengths and Limitations of the epigenetic analysis 

There are a number of strengths and limitations of the epigenetic analysis. These relate to 

sample representativeness, statistical power, cell heterogeneity, EWAS methodology, and 

specific limitations of the technologies and comparing methylation values across studies. 

8.7.1 Sample representativeness  

The ARIES sub-sample are more affluent than those not included (Alspac Study Team, 2001, 

Relton et al., 2015), and therefore there if mechanistic pathways in which SES impacts on 

DNAm exist this could introduce bias. However, the NTFS validation cohort was also biased 

in the same direction. 

Some of the analyses will have been underpowered, it would be worth using other large 

cohorts with larger sample sizes, such as the PACE consortium, although despite the small 

sample size robust associations were still identified.  

8.7.2 Cell types and tissue specificity 

There is variability in methylation across cell types and the possibility for tissue specific 

methylation effects. Many studies have utilised blood DNAm in relation to obesity (van Dijk 

et al., 2015, Wahl et al., 2017), which is reflective of changes in other tissues (Dick et al., 

2014). As biopsies from relevant tissues (such as adipose tissue) are more difficult to obtain, 

surrogate tissues (i.e. peripheral blood) are often used. However, for the determination of a 

biomarker, a surrogate, accessible tissue such as blood is ideal for diagnostic purposes and 

for use in a clinical setting.  

Furthermore, blood may be a physiologically relevant tissue due to the close contact with all 

cells, tissues and organs, and therefore reflects the interactions of changes at the molecular 

level via internal (hormones) and external (such as nutrients or drug interactions) stimuli. 

This idea was proposed by Liew et al. and is referred to as the “Sentinel Principle”, whereby 

blood cells respond to changes occurring in the micro- and macro-environments in the 

body’s systems, therefore are acting as “sentinels” (Liew et al., 2006).  

8.7.3 EWAS methodology 

The EWAS serves as a starting point to identify potentially important candidate sites which 

can be the focus of further investigation, however this is essentially a ‘needle in a haystack’ 

approach. Methylation levels at time of measurement can only provide a snapshot, not how 
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methylation changes over the life course (without multiple measurements). Generally 

speaking, bar the limitations imposed by the technology (i.e. the CpG loci selected for the 

array), the EWAS approach is an unbiased method to identify novel CpG loci associated with 

exposures. An unbiased alternative is whole genome sequencing, however currently this 

technology is costly. Another approach could have been to use candidate genes associated 

with exposures from the literature, however there are no DNAm biomarkers associated with 

RWG and hence this would not have been feasible for all exposures. A limitation of the 

methodology employed here was using significance over effect size, i.e. using p values which 

do not consider the magnitude of the CpG-trait association. However, this is a trade off, and 

all associations with an FDR p value<0.1 were considered, and any less stringent criteria 

could increase the likelihood of false positive findings.  

 

8.7.4 Differences in methods of measuring DNA methylation 

The range of methylation values observed were vastly different when comparing values from 

pyrosequencing and the 450K array. Current methods to quantify DNAm are not always 

directly comparable, and the results presented here reflect fundamental difficulties with 

DNAm analyses. Even when comparing β values at the same CpG site and from the same 

platform (450K) from different studies (B-PROOF, BSGS), a wide range of DNAm values were 

observed (section 2.5.11), which may be due different normalisation methods. Others have 

observed that even when data are normalised using the same methods, there is 

disagreement in methylation values between the 450K and EPIC array platforms, and many 

(55%) sites exhibit low correlation due to low variability in methylation (Logue et al., 2017). 

They found that CpGs with a low range, had low correlation (r<0.2) across the arrays. 

Examining their data, cg11531579 was a locus with a low range, which could be because the 

ratio of the true variability relative to the measurement error is low. 

The normalisation procedures utilised by these studies may in part explain some of the 

different methylation levels obtained in this study. Different normalisation procedures are a 

known source of heterogeneity in DNAm studies, particularly when changes observed are 

small or less significant (Wu et al., 2014a). The ALSPAC methylation levels were much lower 

than some of the NTFS samples. It is probable that if such high levels of methylation existed 
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in the 450K data, those points may be filtered out and removed as noise prior to statistical 

analysis (as per normalisation techniques), although they could be valid data points.  

Differences could also arise from the technology utilised. Overall, there is good concordance 

between 450K and pyrosequencing data (Roessler et al., 2012). However, several validation 

studies show that β values are not equal to % methylation (e.g. 0.1 =10%) for the majority of 

loci examined, and although there is a trend of high and low between those data sets, 

differences between 450K assay values and sequencing values can vary wildly (Bibikova et 

al., 2011, Roessler et al., 2012). Roessler et al. (2012) similarly noted that in a cross 

validation study of the 450K array and whole-genome bisulfite sequencing (Bibikova et al., 

2011), many measurements differed by 30-40%. As an unprocessed method that directly 

measures methylation, pyrosequencing may more closely reflect the true value. 

Furthermore, the use of bisulfite pyrosequencing for region-specific DNAm analysis is 

considered the gold standard. 

Common SNPs could result in discrepancies between pyrosequencing and the 450k array, 

and the ‘high methylation’ samples could have underlying genetic differences. SNPs can 

account for 22-80% of the variability in DNAm between individuals (Birney et al., 2016). 

Further investigation of the region of interest using Sanger sequencing (section 7.4.9.2), 

indicated SNPs may be influencing methylation, perhaps in a phenotypic fashion (consistent 

patterns observed for RWG and high BMI). However, the effects of proximal or distal SNPs 

cannot be discerned using this small sample, but could be the focus of future work. There 

may still be purpose in biomarkers that can capturing both genetic and environmental 

influences on DNAm. 

Additionally, for all methods, the influence of sampling, storage and processing on the 

methylation measures must be considered, as the variation due to these measures may well 

exceed the signal level. 

8.7.5 The direction of the associations between DNAm and BMI 

A recognised limitation is that many EWAS’s are unable to distinguish causal or 

consequential epigenetic changes in the disease process (Baylin and Bestor, 2002, Bell et al., 

2010). There is the potential for reverse causation, in that BMI alters methylation rather 

than vice versa (Wahl et al., 2017). Although childhood methylation was higher in ALSPAC 

participants who were OWOB in adolescence, these individuals could also have had a higher 
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BMI at age 7. When examining childhood methylation by phenotype and age (Figure ), higher 

methylation levels were evident in those who had RWG, and then were OWOB in either 

childhood or adolescence, but also in those who were healthy weight in childhood and then 

OWOB in adolescence. This does not rule out reverse causality entirely, but suggests that 

regardless of childhood body size, if an individual had RWG and is then subsequently OWOB 

in adolescence their methylation was higher in childhood than someone of normal weight, 

supporting this locus as a predictive biomarker. The aim of the analysis was to determine 

biomarkers rather than causal DNAm changes. However, there are genotype data available 

for ALSPAC, and therefore causal inference methods such as Mendelian Randomization 

could be used to determine if changes were causal, if valid instrumental variables for RWG 

exist.   

8.8 Remaining questions and future directions 

These findings amongst others provide further evidence of the clinical importance of a fine 

balance between adequate weight gain to support neurodevelopment and ensuring infants 

with lower birthweights experience ‘healthy’ catch-up growth. Future developments could 

be to have closer monitoring of infant weight gain and personalised advice by health care 

professionals, to ensure weight gain is within accepted healthy limits for a given birthweight. 

In epidemiological studies, if the disease risk decreases following an intervention or removal 

of the exposure, this provides strong support for causal inference. There is limited capacity 

to assess causality in studies of early life exposures through randomised controlled trials, 

partly due to ethical issues of potentially causing harm. Instead, to further investigate 

causality, an intervention study or natural experiment could be used. When analysing the 

BMI trajectories in the two cohorts (chapter 4), it was the cohort exposed to an obesogenic 

environment in combination with RWG that had the most detrimental phenotype. 

Therefore, an intervention would need to alter the environment of those who had RWG 

(potentially through a diet or physical activity intervention, or perhaps in a rural population 

with reduced exposure to an obesogenic environment), or prevent the initial RWG. 

There have been limited studies aimed at preventing RWG through interventions. Gungor et 

al. (2010) found that 1/3 of at-risk (those who had RWG) infants go on to become 

overweight children, whilst the 2/3 that do not: had parents that were more educated, had 

lower weight gain between 18-24 months, were exclusively breastfed for longer and had a 

later introduction of solid foods. Therefore interventions could focus on modifying these 
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factors. An intervention focusing on feeding alone, which utilised a theory-based behavioural 

intervention in formula milk-fed infants to promote responsive feeding, did not reduce the 

prevalence of RWG (Moorcroft et al., 2011). However, a multi-component intervention by 

Savage et al (2016) was more successful and therefore may be an effective strategy. The 

intervention was implemented via posted educational materials on infant feeding, sleep 

hygiene, active social play, emotional regulation and recording growth and involved 

numerous visits by research nurses between 3 and 48 weeks (Savage et al., 2016). Fewer 

than 6% of infants in the intervention group were overweight at age 1 year compared with 

13% of control group infants, which is a relatively low prevalence (controls) compared to 

other studies (Zheng et al., 2018) therefore it would be interesting to see if these results 

extrapolate to populations with higher prevalence of RWG. If this critical period has passed 

and infancy weight is not monitored then there is utility for a biomarker of RWG to identify 

those at later risk.  

 

An individual’s current BMI alone will always be very predictive of future BMI, however 

DNAm could improve model prediction along with other known factors such as SNPs and 

environmental factors. For example, in older individuals from two European cohorts, 

methylation profiles explained 3.6 to 4.9% of the variation in BMI (Shah et al., 2015). 

Genome-wide association studies have found over 30 SNPs associated with BMI, which 

explain around 1.5% of the inter-individual variation in BMI when combined (Speliotes et al., 

2010). The minor allele of FTO which is associated with obesity-related traits is associated 

with 1.2 fold risk of obesity and to 0·39 kg/m2 increases in BMI (Loos and Yeo, 2014). 

Therefore, as the effect sizes for individual CpG loci are much larger than effect sizes for 

individual SNPs, even from relatively small studies, there may be scope in future for larger 

studies to identify predictive changes in DNAm.  

 

Our ability to identify methylation biomarkers will likely improve as the arrays increase in 

size and as more sophisticated bioinformatics methods are developed. The methylation 

differences identified were small, if biomarkers are to be useful then assays need to be able 

to detect these small differences accurately, which will likely become more commonplace 

with technological advancements. The investigation of methylation in this region was limited 

to a short region for pyrosequencing, however as whole genome sequencing becomes less 

expensive there will be future opportunities to examine larger regions.  
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These results suggest that the relationship between RWG and DNAm may change over the 

life course, or that it might be different in different cohorts or populations. Validation is 

required to determine if CpG loci are consistently differentially methylated in different 

populations, time points, ages and disease-states. The focus of future work could be to 

analyse DNAm at the locus of interest using pyrosequencing in a younger population. This 

was the original intent; however, the age 6-8 GMS DNA samples could not be traced. As 

there have been no other EWAS on RWG to date it was not possible to replicate the DNAm 

results. Additionally, if looking for causal epigenetic changes, gene expression and 

functionality will also need to be assessed.  

8.9 Overall conclusions 

Using two regional birth cohorts born 50 years apart, factors influencing obesity and how 

these have changed over time were investigated in the region with the highest rates of 

obesity in England (Health and Social Care Information Centre, 2014). The important finding 

from this study is that rapid infancy weight gain conditional on birthweight or not, was 

associated with increased childhood BMI. There is the potential for development of a CpG 

biomarker of RWG, which could be of use when early life data are not available in order to 

identify high-risk individuals for preventative intervention. However, whether this biomarker 

would be a useful predictor of future adiposity, or if methylation marks persist is unsure, and 

needs to be investigated in a younger population where a predictive biomarker of 

subsequent OWOB would be useful.  

The life course path analysis approach allowed examination of the effects of exposures on 

prospective outcomes, and the results provide important insights into the multi-dimensional 

aetiology of obesity. Taken together, these results suggest that the combination of 

environmental insults at a critical developmental periods, combined with a multi-faceted, 

high-risk environment increases adiposity in childhood, which may track in adulthood. 

Understanding of the interactions and pathways between exposures and socioeconomic 

factors could be used to develop a risk-score for intervention purposes. 

This work highlights the dynamic nature of methylation and contributes to the literature on 

life course changes in methylation in relation to early life exposures. This study provides a 

proof of concept and establishes a motive for further research to identify novel biomarkers 

of early life rapid weight gain in longitudinal studies. 
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Appendices  

Appendix A 

Directed Acyclic Graph (DAG) of the hypothesised relationships from the literature review 

 

Figure I The hypothesised pathways between exposures, covariates and obesity outcomes across the lifecourse 
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Energy intake data for NTFS participants (age 50) 

Overall, there was a small negative correlation (r=~-0.1) between daily energy intake and 

BMI. When stratified by sex there was no relationship for males, and a negative correlation 

between energy intake and BMI in females (Figure II).  

 

Figure II Scatter plot showing the relationship between BMI and energy intake in males and females.  
Correlation in males, r=0.02, p=0.8; females, r=-0.18, p=0.01.  
 

In women, mean energy intake decreased as weight category progressed from healthy 

weight to overweight to obese. Mean energy intake in overweight men was lower compared 

to healthy weight men (Table I). These results state that those who are overweight or obese 

on average have a lower calorie intake according to FFQ data. This may be due to the cross-

sectional nature of the data, which could suggest that those with the highest BMI or BF% are 

on weight loss diets. Underreporting has also been noted in smokers (Johansson et al., 

2007), however in this cohort there was no correlation between energy intake and smoking 

(Appendix B). 
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Table I Energy intake (EI) by weight category stratified by sex in NTFS (age 50) 

Weight 
category 

Males Females 

N Mean EI SD N Mean EI SD 

Healthy 54 2319 801 103 1947 543 

Overweight 84 2100 626 68 1921 586 

Obese 31 2346 708 46 1789 563 

Standard deviation (SD) and group size (N) 
 

In order to investigate further, basal metabolic rate (BMR) was calculated using the Harris 

Benedict equation (Harris and Benedict, 1918) which takes into account height, weight, sex 

and age, revised by Mifflin (1990). 

 

Total daily energy expenditure (TDEE) was calculated using the physical activity data 

according to the calculation factors in Table II.  

Table II Calculation factor for varying levels of physical activity 

Little to no exercise Daily kilocalories needed = BMR x 1.2 
Light exercise  Daily kilocalories needed = BMR x 1.375 

Moderate exercise  Daily kilocalories needed = BMR x 1.55 

Heavy exercise  Daily kilocalories needed = BMR x 1.725 

 

Using these equations, TDEE was determined and the difference between this value and the 

value calculated from the food intake data was calculated. Negative values indicate a calorie 

deficit (i.e. more calories expended than ingested) and positive values an energy surplus 

(more energy ingested than expended). These results show that those with the highest BMI 

report an energy deficit (Figure III). Similar results were seen for BF% (Figure IV) and WHR 

 

𝐹𝑜𝑟 𝑚𝑒𝑛, 

𝐵𝑀𝑅 =  9.99  x  weight (kg) +  6.25 x height (cm) −  4.92 x age (years)  +  5 

 

𝐹𝑜𝑟 𝑤𝑜𝑚𝑒𝑛, 

𝐵𝑀𝑅 =   9.99  x  weight(kg)  +  6.25 x height (cm) −  4.92 x age (years)  −  161 

 

Equation I BMR equations for men and women revised by (Mifflin et al., 1990) 
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(Figure V). For each outcome there was a negative correlation in females, which is moderate 

and significant for BMI, with a weak negative correlation and borderline significant for BF% 

and WHR. Relationships between the difference in energy intake and anthropometric 

outcomes were less prominent for males.  

 

Figure III Scatter plot of the relationship between BMI and differences in energy intake. 
Scatter plot with linear fit showing the relationship between BMI and the differences in energy intake (reported calorie 
intake-TDEE) in males and females. Correlation in males, r=-0.14, p=0.07; females, r=-0.35, p<0.001. 

 

Figure IV Scatter plot of the relationship between BF% and difference in energy intake.  
Scatter plot with linear fit showing the relationship between BF% and the differences in energy intake (reported calorie 
intake-TDEE) in males and females. Correlation in males, r=-0.16, p=0.04; females, r=-0.13, p=0.06. 
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Figure V Scatter plot of the relationship between WHR and difference in energy intake.  
Scatter plot with linear fit showing the relationship between WHR and the differences in energy intake (reported calorie 
intake-TDEE) in males and females. Correlation in males, r=-0.01, p=0.8; females, r=-0.11, p=0.1. 
 

These differences could have been due to those with higher body weights endeavouring to 

reduce their calorie intake. Many studies report that that overweight and obesity are factors 

in underreporting of energy intake (Johnson et al., 1998, Johansson et al., 2001). Additionally 

there is evidence that underreporting is more likely in women (Pikholz et al., 2004). 

Reversing the calculations in Table II (using energy intake divided by BMR as an estimate of 

physical activity level) gives values ranging from 0.42 to 3.92 for study participants. Taking a 

physical activity level (PAL) value of 1.2 to indicate bed-bound and a value of 2.4 as 

strenuous activity, values that fall outside of this range would be outliers. Removing these 

observations would lead to the exclusion of 135 study members from analyses.  

On this basis of these issues with the data, the energy intake data were not used in these 

analyses. Firstly, it would give biased estimates if the variables were inaccurately measured, 

and secondly the direction of the association (between energy intake and body weight) 

cannot be discerned with these cross-sectional data and endogeneity bias. As energy intake 

was not analysed in NTFS, for coherence this was also not analysed in GMS.  
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Figure VI Correlations between explanatory variables in NTFS 

Appendix B 

Correlations between explanatory variables in NTFS
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-0.02 -0.05 0.00 -0.04 -0.01 0.06 0.04 0.00 -0.07 0.01 0.00 0.04 -0.09 -0.02 -0.03 0.09 -0.07 0.08 -0.06 -0.17 1.00

0.615 0.255 0.931 0.311 0.912 0.361 0.458 0.948 0.140 0.797 0.981 0.327 0.192 0.724 0.558 0.037 0.138 0.096 0.199 <0.001
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Distributions of outcome variables in NTFS (age 50) 

 

 

 

Figure VII Distribution of continuous outcome measures (from top: BMI, BF%, WHR) stratified by sex. 
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Social mobility (birth to age 50) and body composition (age 50) in NTFS 

Table III Linear (BMI) and logistic (OB) regression models for social mobility from birth to age 50 in NTFS 

    BMI    Obesity  
  n % Coef CI p  OR CI p 

Always  
least advantaged 24 7.0 Ref  .  Ref  . 
Least--> 
 mid 43 12.5 -0.15 [-2.34,2.04] 0.892  0.68 [0.24,1.90] 0.457 
Least-->   
most advantaged 40 11.6 -1.26 [-3.48,0.96] 0.265  0.20 [0.06,0.69] 0.011 
Always mid 77 22.4 -2.55 [-4.56,-0.54] 0.013  0.10 [0.05,0.48] 0.001 
Mid-->  
most advantaged  128 37.2 -1.19 [-3.10,0.72] 0.223  0.36 [0.14,0.89] 0.028 
Always 
most advantaged  32 9.3 -2.12 [-4.44,0.20] 0.073  0.09 [0.02,0.48] 0.005 

n 344   344    344   
Adjusted R2     0.021    0.063   

 Coefficients (coef) and odds ratios (OR) are presented with 95% confidence intervals (CI) and the 
corresponding level of significance (p)  
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Socioeconomic differences in breastfeeding in NTFS 

In the UK, socioeconomic differences in breastfeeding are often described. In NTFS, the most 

advantaged group had higher median values for duration breastfeeding, exclusive 

breastfeeding and introduction of solids compared to lower groups however these 

differences were not significant (Figure VIII).  

 

 Least advantaged  Middle  Most advantaged 

Statistics p25 p50 p75  p25 p50 p75  p25 p50 p75 

Duration breastfed 12.5 74 163  21 83 237  17.5 137 257 
Exclusively breastfed 20 42 126  16 42 120  15 91 140 
Solid foods 126 153 181  135 153 183  140 159 210 

Figure VIII Box plot of infant feeding by SES at birth in NTFS study members. 
Table of values (rounded) for lower quartile (p25), median (p50) and upper quartile (p75).  
There were no significant differences in infant feeding by occupational social class (Kruskal-Wallis equality-of-populations 
rank test (duration of exclusive/breastfeeding) and ANOVA (solid food introduction) p values>0.1). 
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Weight categories and qualifications in NTFS (age 50) 

 

 

Figure IX Proportion of weight categories by education level achieved at age 50 in NTFS study members. 
A large proportion of those without qualifications had obesity, whereas those educated to degree level had the lowest 
proportion with obesity. However around half of those with A level qualifications and degrees were overweight (Figure IX). 
Chi2 test for differences; Pearson chi2(6) =  11.4717   Pr = 0.075) 
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Models for bivariate associations in NTFS for weight outcomes (age 50) 

Table IV Bivariate linear associations between exposures and BF%, stratified by sex, in NTFS study members (age 50) 

  Males  Females 

  coef CI p  coef CI p 

Sex Female        

Early life 
Birthweight (z-
score) 

-0.52 [-1.67,0.63] 0.37  -0.23 [-1.31,0.86] 0.68 

Gestation (weeks) 0.48 [-0.84,1.80] 0.48  0.08 [-1.02,1.18] 0.89 

Maternal 
age 

Continuous  -0.09 [-0.28,0.10] 0.34  -0.12 [-0.32,0.07] 0.22 

<25 -0.88 [-3.39,1.63] 0.49  0.57 [-2.21,3.35] 0.69 

25-34 Ref  .  Ref  . 

35+ -2.23 [-5.12,0.66] 0.13  -2.83 [-6.08,0.42] 0.09 

Infant 
feeding 

Never breastfed Ref  .  Ref  . 

<4 weeks 0.88 [-4.03,5.78] 0.73  -1.39 [-6.77,4.00] 0.61 

4 wk – 6 months 1.05 [-3.25,5.36] 0.63  -0.09 [-4.30,4.12] 0.97 

6 Months + 0.38 [-3.69,4.45] 0.85  2.78 [-1.24,6.80] 0.18 

Breastfed (days) 0.01 [-0.00,0.02] 0.27  0.01 [0.00,0.03] 0.03 

Exclusive (days) 0.00 [-0.02,0.02] 0.96  0.03 [0.00,0.05] 0.02 

Weaning age 
(days) 

0.00 [-0.02,0.03] 0.78  0.00 [-0.03,0.03] 0.92 

Early life 

Rapid weight gain -0.34 [-3.99,3.31] 0.85  1.99 [1.90,5.88] 0.317 

Any infection 1.26 [-0.86,3.39] 0.24  1.84 [-0.59,4.27] 0.14 

Number of 
infections 

0.40 [-0.48,1.27] 0.37  0.22 [-0.93,1.36] 0.71 

Bacterial infection 0.29 [-2.67,3.26] 0.85  4.48 [0.70,8.27] 0.02 

Viral infection -1.53 [-4.10,1.03] 0.24  1.47 [-1.56,4.49] 0.34 

SES  
(childhood) 

Least advantaged Ref  .  Ref  . 

Mid -2.56 [-4.97,-0.14] 0.04  -1.09 [-3.89,1.71] 0.45 

Most advantaged -4.24 [-7.78,-0.70] 0.02  -1.61 [-6.26,3.04] 0.50 

Housing score 0.53 [-0.46,1.53] 0.30  0.43 [-0.68,1.54] 0.45 

Overcrowding 1.04 [-1.30,3.37] 0.39  2.25 [-0.40,4.91] 0.10 

Adversity Any adverse event 1.04 [-3.93,6.01] 0.68  -0.45 [-5.85,4.95] 0.87 

SES  
(later life) 

Social class  Ref  .  Ref  . 

Mid 1.78 [-1.80,5.36] 0.33  -0.61 [-4.47,3.26] 0.76 

Most advantaged 3.82 [0.33,7.31] 0.03  -2.28 [-5.88,1.31] 0.21 

Educated 3.25 [1.10,5.39] <0.001  -0.87 [-3.70,1.95] 0.55 

No qualifications Ref  .  Ref  . 

GCSE/O-level -0.78 [-3.55,1.98] 0.58  -1.93 [-4.72,0.86] 0.18 

A level 2.82 [-0.14,5.77] 0.06  -0.25 [-4.03,3.52] 0.90 

Degree 2.81 [-0.55,6.18] 0.10  -3.81 [-7.98,0.37] 0.07 

Income   1.17 [0.12,2.23] 0.03  -1.12 [-2.33,0.10] 0.07 

Married 3.60 [0.85,6.35] 0.01  1.78 [-1.10,4.66] 0.23 

Lifestyle 

Inactive Ref  .  Ref  . 

Light activity -0.91 [-5.00,3.18] 0.66  -3.13 [-6.82,0.57] 0.10 

Moderate activity -1.48 [-5.95,2.98] 0.52  -4.36 [-8.40,-0.31] 0.04 

Heavy activity -1.72 [-6.38,2.94] 0.47  -6.53 [-10.91,-2.15] <0.001 

Smoker -4.02 [-6.40,-1.65] <0.001  0.05 [-2.62,2.71] 0.97 
Coefficients (coef) are presented with 95% confidence intervals (CI) and the corresponding level of significance (p); Ref, 
reference group. Bold indicates significant at p<0.05. 
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Table V Bivariate linear associations between risk factors and WHR in NTFS males and females (age 50) 

  Males  Females 

  coef CI p  coef CI p 

Early life 
Birthweight (z-score) -0.01 [-0.02,-0.00] 0.045  0.00 [-0.01,0.01] 0.91 

Gestation (weeks) 0.00 [-0.01,0.01] 0.93   0.00 [-0.01,0.01] 0.93 

Maternal age 

Continuous  0.00 [-0.00,0.00] 0.14   0.00 [-0.00,0.00] 0.48 

<25 0.02 [-0.00,0.04] 0.12  0.01 [-0.01,0.02] 0.52 

25-34 Ref  .  Ref  . 

35+ 0.00 [-0.02,0.02] 0.99  0.00 [-0.02,0.02] 0.95 

Infant feeding 

Never breastfed Ref  .   Ref  . 

<4 weeks 0.01 [-0.03,0.04] 0.67   0.03 [-0.01,0.06] 0.14 

4 wk – 6 months 0.02 [-0.01,0.05] 0.26   -0.01 [-0.04,0.02] 0.61 

6 Months + 0.00 [-0.03,0.03] 0.87   0.00 [-0.02,0.03] 0.84 

Breastfed (days) 0.00 [-0.00,0.00] 0.96  0.00 [-0.00,0.00] 0.80 

Exclusive (days) 0.00 [-0.00,0.00] 0.11   0.00 [-0.00,0.00] 0.51 

Weaning age (days) 0.00 [-0.00,0.00] 0.22  -0.00 [-0.00,0.00] 0.09 

Early life 

Rapid weight gain -0.02 [-0.05,0.01] 0.14   0.00 [-0.02,0.02] 0.96 

Any infection 0.00 [-0.01,0.02] 0.73  0.01 [-0.00,0.03] 0.07 

Number of infections 0.00 [-0.01,0.01] 0.63   0.00 [-0.00,0.01] 0.20 

Bacterial infection 0.01 [-0.02,0.03] 0.53  0.02 [-0.01,0.04] 0.13 

Viral infection -0.02 [-0.04,0.00] 0.09   0.02 [-0.00,0.04] 0.06 

SES (childhood) 

Least advantaged Ref  .  Ref  . 

Mid -0.02 [-0.04,-0.00] 0.02  -0.01 [-0.03,0.01] 0.46 

Most advantaged -0.05 [-0.08,-0.02] <0.001  -0.01 [-0.05,0.02] 0.34 

Housing score 0.00 [-0.00,0.01] 0.25   0.00 [-0.01,0.01] 0.88 

Overcrowding 0.01 [-0.01,0.03] 0.22  0.01 [-0.01,0.03] 0.29 

Adversity Any adverse event 0.01 [-0.02,0.05] 0.50   0.00 [-0.04,0.04] 0.91 

SES  
(later life) 

Social class  Ref  .   Ref  . 

Mid -0.02 [-0.05,0.01] 0.15   -0.03 [-0.05,-0.00] 0.03 

Most advantaged -0.03 [-0.06,-0.00] 0.047   -0.01 [-0.04,0.01] 0.24 

Educated -0.01 [-0.03,0.00] 0.10  -0.01 [-0.02,0.01] 0.47 

No qualifications Ref  .   Ref  . 

GCSE/O-level -0.02 [-0.04,0.00] 0.06   -0.01 [-0.03,0.00] 0.14 

A level -0.02 [-0.04,0.01] 0.12   -0.02 [-0.04,0.01] 0.16 

Degree -0.04 [-0.07,-0.02] 0.002   -0.01 [-0.03,0.02] 0.60 

Income   -0.01 [-0.02,-0.00] 0.03  -0.01 [-0.02,-0.00] 0.02 

Married 0.00 [-0.02,0.02] 0.96   0.00 [-0.02,0.02] 0.71 

Lifestyle 

Inactive Ref  .  Ref  . 

Light activity 0.00 [-0.03,0.04] 0.79  0.00 [-0.03,0.02] 0.78 

Moderate activity -0.03 [-0.06,0.01] 0.14  0.00 [-0.03,0.02] 0.72 

Heavy activity -0.02 [-0.06,0.01] 0.19  -0.02 [-0.05,0.01] 0.14 

Smoker 0.00 [-0.02,0.02] 0.72   0.02 [0.00,0.04] 0.02 
Reference category for SES was least advantaged. Coefficients (coef) are presented with 95% confidence intervals (CI) and 
the corresponding level of significance (p); Ref, reference group. Bold indicates significant at p<0.05. 
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Smoking sensitivity analyses 

Table VI Regression sensitivity analyses for categories of smoking and pack years and body composition outcomes in NTFS 
study members (age 50) 

Unadjusted All Males Females 

 Smoking  
status 

Coef/ 
OR 

CI p 
Coef/ 
OR 

CI p 
Coef/ 
OR 

CI p 

BMI Never Ref  .       

 Ex 0.71 [-0.33,1.75] 0.18       

 Current -1.02 [-2.10,0.07] 0.066       

 Pack years 0 [-0.03,0.03] 0.90       

Obese Never Ref  .       

 Ex 1.02 [0.58,1.79] 0.94       

 Current 0.56 [0.29,1.09] 0.088       

 Pack years 1 [0.98,1.01] 0.76       

WHR Never Ref  . Ref  . Ref  . 

 Ex 0.05 [0.03,0.07] <0.001 0.03 [0.01,0.05] 0.003 0.01 [-0.01,0.03] 0.38 

 Current 0.03 [0.01,0.05] 0.012 0.02 [-0.00,0.04] 0.094 0.02 [0.01,0.04] 0.008 

 Pack years 0.00 [0.00,0.00] <0.001 0.00 [0.00,0.00] 0.006 0.00 [0.00,0.00] 0.004 
BF% Never Ref  . Ref  . Ref  . 

 Ex 0.43 [-1.58,2.43] 0.68 0.67 [-1.67,3.01] 0.58 1.98 [-0.97,4.93] 0.19 

 Current -1.25 [-3.35,0.84] 0.24 -3.89 [-6.53,-1.25] 0.004 0.89 [-1.92,3.70] 0.54 

 Pack years -0.04 [-0.09,0.01] 0.15 -0.04 [-0.09,0.02] 0.19 0.07 [-0.03,0.17] 0.17 

Adjusted model All Males Females 

 Smoking  
status 

Coef/ 
OR 

CI p 
Coef/ 
OR 

CI p 
Coef/ 
OR 

CI p 

BMI Never 0 Ref .       

 Ex 0.81 [-0.25,1.87] 0.14       

 Current -1.19 [-2.32,-0.05] 0.041       

 Pack years 0 [-0.03,0.03] 0.86       

Obese Never 1 [1.00,1.00] .       

 Ex 0.94 [0.53,1.69] 0.84       

 Current 0.49 [0.24,0.98] 0.042       

 Pack years 0.99 [0.98,1.01] 0.39       

WHR Never Ref  . Ref  . Ref  . 

 Ex 0.05 [0.03,0.07] <0.001 0.03 [0.01,0.05] 0.008 0.01 [-0.01,0.03] 0.28 

 Current 0.02 [-0.00,0.05] 0.052 0.01 [-0.01,0.04] 0.30 0.02 [-0.00,0.03] 0.086 

 Pack years 0.00 [0.00,0.00] <0.001 0.00 [0.00,0.00] 0.023 0.00 [0.00,0.00] 0.02 

BF% Never Ref  . Ref  . Ref  . 

 Ex 0.46 [-1.62,2.53] 0.67 0.76 [-1.63,3.15] 0.53 2.18 [-0.90,5.25] 0.17 

 Current -1.62 [-3.85,0.62] 0.16 -3.22 [-6.03,-0.40] 0.025 0.25 [-2.76,3.25] 0.87 

 Pack years -0.04 [-0.10,0.02] 0.17 0 [-0.07,0.06] 0.88 0.06 [-0.05,0.17] 0.28 
Unadjusted models (top) and adjusted (for adult SES, bottom) presented for each outcome. Coefficients (coef) for linear 
outcomes or odds ratios (OR) are presented with 95% confidence intervals (CI) and the corresponding level of significance 
(p). Bold indicates p<0.05. 
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Figure X Correlations between all explanatory variables in GMS and p values 

Appendix C 

Correlations between explanatory variables in GMS 
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Female 1.00

Maternal age -0.06 1.00

0.083

First-born 0.01 -0.36 1.00

0.659 <0.001

Caesarean 0.00 0.19 0.06 1.00

0.968 <0.001 0.053

Gestation 0.03 -0.04 0.08 -0.18 1.00

0.412 0.236 0.012 <0.001

Bwt-z 0.00 0.13 -0.12 0.08 -0.10 1.00

0.983 <0.001 <0.001 0.011 0.001

RWG -0.02 -0.07 0.15 -0.02 0.12 -0.38 1.00

0.664 0.040 <0.001 0.510 0.001 <0.001

RT 0.01 -0.01 0.14 0.03 0.07 -0.03 0.66 1.00

0.860 0.690 <0.001 0.465 0.053 0.333 <0.001

-0.03 0.31 0.03 0.04 0.05 0.10 -0.07 -0.02 1.00

0.351 <0.001 0.432 0.193 0.144 0.001 0.056 0.618

-0.01 0.21 -0.13 -0.01 0.05 0.10 -0.09 -0.09 1.00 1.00

0.821 <0.001 0.004 0.793 0.262 0.022 0.061 0.068 <0.001

Formula-fed 0.03 -0.26 -0.10 -0.04 -0.05 -0.08 0.02 -0.02 -0.82 -1.00 1.00

0.321 <0.001 0.002 0.247 0.114 0.015 0.586 0.601 <0.001 1.000

Wean age 0.08 0.13 -0.07 0.01 -0.04 -0.02 -0.06 -0.04 0.20 0.34 -0.14 1.00

0.036 <0.001 0.066 0.778 0.267 0.678 0.098 0.260 <0.001 <0.001 <0.001

Any infection -0.06 0.04 -0.08 0.02 -0.04 -0.01 0.07 0.05 0.05 0.00 0.00 -0.04 1.00

0.068 0.235 0.009 0.525 0.231 0.695 0.059 0.148 0.096 0.983 0.948 0.299

Adversity -0.03 0.02 0.07 0.05 0.03 0.00 0.04 0.03 0.03 -0.03 -0.04 -0.13 0.07 1.00

0.440 0.451 0.040 0.156 0.423 0.901 0.222 0.413 0.436 0.582 0.192 0.001 0.041

Sleep issues -0.01 -0.03 0.02 0.00 0.02 0.02 0.00 -0.03 -0.07 -0.10 0.04 -0.10 -0.01 -0.02 1.00

0.815 0.526 0.651 0.911 0.603 0.684 0.924 0.466 0.074 0.074 0.281 0.016 0.734 0.660

Townsend -0.06 0.18 -0.06 0.02 0.04 0.07 -0.06 -0.03 0.23 0.14 -0.20 0.08 -0.01 0.00 -0.07 1.00

0.078 <0.001 0.074 0.556 0.171 0.020 0.083 0.472 <0.001 0.001 <0.001 0.028 0.672 0.881 0.084

-0.04 0.29 0.09 0.10 0.08 0.16 -0.02 0.04 0.42 0.35 -0.36 0.05 0.01 0.13 0.01 0.22 1.00

0.218 <0.001 0.010 0.004 0.016 <0.001 0.642 0.332 <0.001 <0.001 <0.001 0.231 0.743 <0.001 0.901 <0.001

Deprived 0.05 -0.38 -0.08 -0.04 -0.05 -0.15 0.07 -0.01 -0.30 -0.13 0.30 -0.10 -0.01 -0.05 0.02 -0.23 -0.38 1.00

0.090 <0.001 0.008 0.257 0.118 <0.001 0.045 0.724 <0.001 0.003 <0.001 0.008 0.711 0.160 0.574 <0.001 <0.001

SES (age 8) -0.09 0.34 -0.03 0.08 -0.05 0.12 -0.02 0.05 0.27 0.12 -0.20 0.10 0.08 -0.02 -0.01 0.15 0.37 -0.42 1.00

0.088 <0.001 0.592 0.128 0.357 0.023 0.742 0.313 <0.001 0.124 <0.001 0.082 0.104 0.687 0.891 0.004 <0.001 <0.001

0.06 -0.04 -0.03 0.05 -0.01 -0.01 0.03 -0.01 0.01 0.00 -0.02 -0.06 0.03 0.00 -0.05 -0.04 -0.03 0.22 -0.04 1.00

0.042 0.236 0.396 0.135 0.643 0.745 0.427 0.720 0.687 0.961 0.534 0.084 0.300 0.883 0.250 0.203 0.308 <0.001 0.489

%MVPA -0.13 -0.07 0.10 -0.04 0.04 -0.10 0.12 0.11 -0.09 -0.11 0.08 0.05 0.00 0.03 0.01 -0.06 -0.04 0.05 0.00 0.02 1.00

0.003 0.113 0.031 0.418 0.353 0.024 0.013 0.014 0.059 0.103 0.070 0.350 0.967 0.501 0.903 0.160 0.348 0.229 0.948 0.616

Season 0.04 0.01 -0.04 -0.02 0.06 0.02 -0.06 -0.07 0.05 0.00 -0.01 -0.07 0.03 0.06 -0.06 0.11 0.03 -0.07 -0.01 0.05 -0.21 1.00

0.421 0.840 0.424 0.711 0.192 0.706 0.220 0.148 0.271 0.983 0.809 0.151 0.514 0.172 0.255 0.014 0.464 0.122 0.877 0.308 <0.001

Breastfeeding 

categories

Maternal 

education

Exclusive 

breastfeeding

Upward 

mobility
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SES and early life factors 

Table VII Categorical early life factors that differed by Townsend quintile in the age 6-8 sub-sample.  

    Townsend score quintile for North East region  

 
Total 

Least  
advantaged 

2 3 4 
Most  
advantaged 

p 

                    
 n % n % n % n % n % n %  
Maternal age 987  188  201  221  223  154  <0.001 
Less than 25 324 32.8 102 54.3 38 18.9 72 32.6 97 43.5 15 9.7  
25-34 543 55 77 41 133 66.2 124 56.1 101 45.3 108 70.1  
35+ 120 12.2 9 4.8 30 14.9 25 11.3 25 11.2 31 20.1  
Formula-fed 947  180  191  212  215  149  <0.001 
No 481 50.8 48 26.7 120 62.8 101 47.6 101 47 111 74.5  
Yes 466 49.2 132 73.3 71 37.2 111 52.4 114 53 38 25.5  
Total              
Breastfeeding 947  180  191  212  215  149  <0.001 
Never 466 49.2 132 73.3 71 37.2 111 52.4 114 53 38 25.5  
<6wk 235 24.8 34 18.9 58 30.4 54 25.5 56 26 33 22.1  
>6wk 88 9.3 3 1.7 25 13.1 18 8.5 16 7.4 26 17.4  
>4m 158 16.7 11 6.1 37 19.4 29 13.7 29 13.5 52 34.9  
Adversity 929  174  193  206  204  152  0.761 
No 715 77 135 77.6 151 78.2 152 73.8 161 78.9 116 76.3  
Yes 214 23 39 22.4 42 21.8 54 26.2 43 21.1 36 23.7  

Sample sizes (n), column percentages (%) and Chi-square test statistic presented (p) 
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Models for bivariate associations for outcomes (age 6-8) in GMS 

Table VIII Bivariate (unadjusted) associations between explanatory variables and all body composition outcomes in GMS (age 6-8) 

Early life factors OWOB BMIz FMI  Waist OB 

 OR CI p coef CI p coef CI p OR CI p 

Female 0.89 [0.59,1.34] 0.56 0.02 [-0.16,0.20] 0.85 -0.11 [-0.43,0.20] 0.47 1.01 [0.62,1.64] 0.98 
First-born 0.85 [0.57,1.29] 0.45 -0.08 [-0.26,0.11] 0.412 -0.07 [-0.38,0.25] 0.68 0.87 [0.53,1.42] 0.58 
Gestation (wk) 1.13 [0.98,1.30] 0.10 0.03 [-0.03,0.09] 0.31 0.02 [-0.08,0.12] 0.66 1.03 [0.89,1.19] 0.71 

Preterm 0.64 [0.28,1.47] 0.29 -0.12 [-0.44,0.20] 0.46 -0.14 [-0.69,0.42] 0.63 0.92 [0.41,2.08] 0.85 
Normal Ref   . Ref   . Ref   . Ref   . 

Post term 1.67 [0.77,3.63] 0.19 0.07 [-0.33,0.46] 0.74 0.32 [-0.36,1.00] 0.36 0.89 [0.31,2.55] 0.83 
Bwtz 1.53 [1.25,1.88] <0.001 0.26 [0.17,0.34] <0.001 0.22 [0.07,0.37] 0.004 1.37 [1.09,1.73] 0.007 
Categories of 
birthweight              

SGA 0.63 [0.27,1.44] 0.27 -0.30 [-0.62,0.01] 0.060 -0.06 [-0.62,0.49] 0.82 1.24 [0.55,2.83] 0.60 
Normal Ref   . Ref   . Ref   . Ref   . 

LGA 1.67 [0.91,3.08] 0.10 0.25 [-0.06,0.55] 0.11 0.2 [-0.33,0.73] 0.45 1.74 [0.85,3.54] 0.13 
Caesarean 1.07 [0.61,1.86] 0.81 0.03 [-0.22,0.28] 0.80 0.25 [-0.18,0.69] 0.26 1.64 [0.90,2.99] 0.11 
Maternal age 1.02 [0.98,1.06] 0.27 0 [-0.01,0.02] 0.63 0.01 [-0.02,0.03] 0.64 1.02 [0.98,1.06] 0.30 

Less than 25 0.59 [0.36,0.97] 0.038 -0.15 [-0.35,0.06] 0.16 -0.28 [-0.65,0.08] 0.13 0.63 [0.35,1.12] 0.16 
25-34 Ref   . Ref   . Ref   . Ref   . 

35+ 0.67 [0.35,1.28] 0.23 -0.23 [-0.50,0.04] 0.091 -0.39 [-0.87,0.10] 0.12 0.82 [0.37,1.78] 0.61 
Categories of breastfeeding            

Never Ref   . Ref   . Ref   . Ref   . 
<6wk 1.2 [0.72,2.00] 0.47 0.11 [-0.12,0.34] 0.35 0.33 [-0.08,0.74] 0.12 1.53 [0.85,2.75] 0.16 
>6wk 0.65 [0.30,1.40] 0.27 -0.19 [-0.49,0.12] 0.23 -0.22 [-0.76,0.31] 0.41 0.74 [0.25,2.16] 0.58 
>4m 1.19 [0.69,2.04] 0.54 -0.09 [-0.34,0.16] 0.48 -0.18 [-0.62,0.25] 0.41 1.52 [0.78,2.96] 0.22 

Exclusive  0.92 [0.33,2.57] 0.88 -0.18 [-0.59,0.23] 0.38 -0.24 [-0.92,0.44] 0.49 1.09 [0.31,3.92] 0.89 
Formula fed 0.93 [0.61,1.41] 0.74 0.02 [-0.16,0.21] 0.82 -0.03 [-0.36,0.30] 0.85 0.73 [0.44,1.20] 0.22 
Wean age 0.97 [0.91,1.05] 0.47 -0.03 [0.06,0.00] 0.086 -0.02 [0.07,0.04] 0.54 0.97 [0.90,1.06] 0.56 
RWG  1.52 [0.98,2.36] 0.060 0.47 [0.27,0.67] <0.001 0.23 [-0.12,0.58] 0.20 1.46 [0.86,2.49] 0.16 
Adversity 2.01 [1.28,3.13] 0.002 0.39 [0.18,0.61] <0.001 0.62 [0.25,0.98] 0.001 1.49 [0.85,2.61] 0.17 
Sleep issues  1.37 [0.77,2.46] 0.28 0.25 [-0.03,0.53] 0.076 0.22 [-0.25,0.69] 0.36 1.30 [0.65,2.62] 0.46 
Infection  1.3 [0.71,2.37] 0.40 0.06 [-0.22,0.34] 0.67 -0.05 [-0.53,0.44] 0.85 1.59 [0.79,3.22] 0.20 
MVPA (%) 0.82 [0.73,0.91] <0.001 -0.05 [-0.09,-0.01] 0.016 -0.19 [-0.25,-0.12] <0.001 0.82 [0.70,0.95] 0.008 
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Socioeconomic and lifestyle 
variables 

OWOB BMIz FMI Waist OB 

 OR CI p coef CI p coef CI p OR CI p 

T score quintile for N region             
Least advantaged  Ref   . Ref   . Ref   . Ref   . 

2nd to least advantaged 1.24 [0.62,2.47] 0.54 -0.02 [-0.31,0.27] 0.89 0.04 [-0.47,0.54] 0.88 0.7 [0.30,1.65] 0.42 
Mid  1.67 [0.86,3.23] 0.13 0.21 [-0.08,0.49] 0.16 0.33 [-0.17,0.83] 0.20 1.49 [0.73,3.04] 0.28 

2nd to most advantaged 1.46 [0.73,2.91] 0.28 0.22 [-0.08,0.52] 0.15 0.35 [-0.17,0.86] 0.19 1.04 [0.49,2.22] 0.92 
Most advantaged  1.28 [0.63,2.61] 0.50 -0.07 [-0.37,0.23] 0.65 -0.18 [-0.71,0.34] 0.49 0.74 [0.30,1.83] 0.51 

Maternal education (birth)             
None  Ref   . Ref   . Ref   . Ref   . 
GCSE 0.99 [0.51,1.94] 0.98 -0.01 [-0.31,0.29] 0.95 -0.13 [-0.64,0.38] 0.61 1.04 [0.51,2.14] 0.92 

A level 0.98 [0.42,2.28] 0.96 0.02 [-0.36,0.40] 0.93 -0.19 [-0.83,0.45] 0.56 1.03 [0.39,2.69] 0.96 
Degree 1.01 [0.46,2.24] 0.97 0.02 [-0.34,0.38] 0.91 -0.42 [-1.03,0.18] 0.17 0.76 [0.28,2.07] 0.60 

Parental occupational social class (childhood)           
Least advantaged Ref   . Ref   . Ref   . Ref   . 

Mid 0.83 [0.44,1.55] 0.56 -0.1 [-0.38,0.17] 0.46 -0.38 [-0.88,0.12] 0.14 1.02 [0.47,2.23] 0.96 
Most advantaged 0.76 [0.40,1.44] 0.41 -0.04 [-0.32,0.24] 0.78 -0.43 [-0.94,0.07] 0.093 0.83 [0.37,1.87] 0.65 

Upward mobility 0-8 1.01 [0.49,2.10] 0.97 0.11 [-0.22,0.43] 0.53 -0.1 [-0.66,0.47] 0.74 1.95 [0.80,4.76] 0.14 
For outcomes of overweight/obesity (OWOB) and waist obesity (OB) (logistic regression), BMIz, and FMI (linear regression). Coefficients (coef) and odds ratios (OR) are presented with 95% 
confidence intervals (CI) and the corresponding level of significance (p). Ref indicates reference category for factor variables. Bold indicates significant at p<0.05.  
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FMI regression model outlier analysis 

Before removing outliers 

 
Shapiro-Wilk test for normal data  
p value <0.0001 
 

 

 

After removal of outliers 

 
Shapiro-Wilk test for normal data  
p value=0.00003 
 

 

 

Figure XI Regression diagnostic plots for FMI outlier sensitivity analysis. 
Plots are for models before (a) and after (b) removal of outliers. The histogram represents the distribution of residuals, 
whilst the normal probability (pnorm) plot shows the distribution relative to the specified distribution (straight line). Using 
the Shapiro-Wilk W test for normal data, a p-value less than 0.05, means the null hypothesis that the data are normally 
distributed is rejected. 
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Investigating adversity 

In order to determine which factors could be driving the associations between adversity and 

adiposity outcomes, each of the components of adversity was investigated individually.  

Parental separation and debt were associated with increased odds of OWOB and increased 

BMI, and debt was also associated with increased FMI (Table IX). Adversity was not 

associated with waist OB in any capacity. There were relatively low numbers for some 

exposures, in particular for death in the family (n=12, 2.2%). 

 

Table IX The associations between individual components of adversity and adiposity outcomes (age 6-8). 

 
n % OWOB  BMI  
  OR CI p  coef CI p 

       
   

Adversity (all) 144 26.9 2.37 [1.29,4.33] 0.01  0.33 [0.06,0.61] 0.02 
Parental 
separation 

33 6.2 3.19 [1.16,8.79] 0.02 
 

0.55 [0.04,1.07] 0.04 

Police involvement 28 5.2 1.09 [0.34,3.50] 0.89  0.00 [-0.52,0.52] 0.99 
Debt 93 17.4 2.68 [1.37,5.25] <0.001  0.45 [0.13,0.78] 0.01 
Death in the 
family 

12 2.2 1.80 [0.15,21.28] 0.64 
 

0.35 [-0.79,1.50] 0.54 

          

 n % FMI  Waist OB 

   coef CI p  OR CI p 

          

Adversity (all)   0.68 [0.19,1.16] 0.01  1.23 [0.56,2.69] 0.61 
Parental 
separation 

  0.85 [-0.07,1.77] 0.07 
 

2.86 [0.88,9.25] 0.08 

Police involvement   0.25 [-0.67,1.18] 0.59  1.74 [0.46,6.59] 0.41 
Debt   0.75 [0.18,1.32] 0.01  1.20 [0.48,2.98] 0.70 
Death in the 
family 

  1.21 [-0.82,3.24] 0.24  2.20 [0.17,29.40] 0.55 

Models are adjusted for sex, gestation, maternal age, Townsend score and maternal education at birth, and parental 
occupational social class in childhood. Coefficients (coef) or odds ratios (OR) are presented with confidence intervals (CI) 
and the corresponding level of significance (p). Ref indicates reference category for factor variables. N, number of 
participants who experienced this adversity and corresponding % of the cohort.  
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Appendix D 

Inverse probability weighting (IPW) for the cohort comparison models 

Table X IPW weighing on adjusted models for BMIz for NTFS and GMS 

 
NTFS - original 

 
NTFS - IPW 

 
GMS - original 

 
GMS -IPW  

coef CI 
 

coef CI 
 

coef CI 
 

coef CI             

Female -0.22* [-0.42,-0.03]  -0.20* [-0.40,-0.01]  -0.16 [-0.39,0.06]  -0.18 [-0.40,0.05] 
Rapid 
thrive 

0.24* [0.04,0.45]  0.24* [0.04,0.44]  0.50*** [0.23,0.76]  0.49*** [0.23,0.75] 

Bwtz 0.02 [-0.07,0.12]  0.01 [-0.08,0.11]  0.17** [0.05,0.29]  0.17** [0.06,0.29] 
Height (cm) 0 [-0.02,0.01]  -0.01 [-0.02,0.01]  0.04*** [0.02,0.06]  0.04*** [0.02,0.06] 
SES (at 
birth) 

           

1 Least 
advantaged 

Ref .  Ref .  Ref .  Ref . 

2 0.04 [-0.32,0.39]  0.04 [-0.30,0.39]  -0.24 [-0.62,0.14]  -0.23 [-0.59,0.14] 
3 0.09 [-0.22,0.40]  0.1 [-0.23,0.42]  -0.34 [-0.73,0.05]  -0.37 [-0.77,0.03] 
4 0.03 [-0.46,0.52]  0.12 [-0.46,0.70]  -0.19 [-0.58,0.19]  -0.19 [-0.57,0.19] 

5 Most 
advantaged 

-0.93 [-1.87,0.00]  -0.91* [-1.62,-0.20]  -0.18 [-0.57,0.22]  -0.18 [-0.57,0.21] 

Adversity       0.30* [0.05,0.55]  0.30* [0.04,0.56] 

Adjusted R2 0.026   0.033   0.212   0.217  

n 313   313   269   269  

NTFS model was weighted using SES at birth and maternal age, whilst the GMS model was additionally weighted for 
adversity as well. Models were adjusted for gestation, maternal age and SES (age 9). Those in most advantaged group had a 
lower BMIz in NTFS after weighting was applied. However, this may be a spurious finding as this was a small group size (n=5, 
2% of the 313 in the sample). * indicates p<0.05, ** p<0.01 and *** p<0.001. 
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Appendix E 

Correlations between exposure variables in GMS 

 

 

Figure XII Pairwise correlations between exposure variables in GMS and corresponding significance  
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Sex 1.00

Gestastion length 0.04 1.00

<0.001

BWT-z 0.00 -0.16 1.00

0.593 <0.001

Firstborn 0.01 0.00 -0.17 1.00

0.203 0.651 <0.001

Antibiotics (6 months) -0.08 -0.04 0.04 -0.13 1.00

<0.001 <0.001 <0.001 <0.001

Maternal age -0.02 0.00 0.11 -0.27 0.00 1.00

0.007 0.606 <0.001 <0.001 0.737

Old maternal age -0.02 -0.02 0.02 -0.11 -0.01 0.72 1.00

0.020 0.026 0.051 0.000 0.220 <0.001

Smoked during pregnancy -0.02 -0.04 -0.16 -0.01 0.02 -0.24 -0.03 1.00

0.010 <0.001 <0.001 0.581 0.035 <0.001 0.001

Pre-pregnancy BMI -0.01 0.02 0.16 -0.06 0.03 0.02 0.03 -0.01 1.00

0.282 0.046 <0.001 <0.001 0.013 0.094 0.013 0.141

Breastfeeding categories 0.01 0.07 0.05 0.03 -0.04 0.27 0.08 -0.20 -0.10 1.00

0.112 <0.001 <0.001 0.004 <0.001 <0.001 <0.001 <0.001 <0.001

Adversity (pre) -0.01 0.14 0.01 -0.03 0.02 0.00 0.01 0.11 0.03 -0.03 1.00

0.530 <0.001 0.214 <0.001 0.055 0.981 0.416 <0.001 0.003 0.006

Adversity (post) 0.00 0.12 0.01 -0.02 0.02 0.03 0.01 0.06 0.02 0.00 0.31 1.00

0.912 <0.001 0.374 0.011 0.032 <0.001 0.167 <0.001 0.014 0.647 <0.001

Adversity (pre + post) -0.01 0.08 0.01 -0.03 0.02 0.02 0.01 0.09 0.03 0.00 0.59 0.71 1.00

0.334 <0.001 0.375 0.001 0.044 0.065 0.276 <0.001 0.005 0.621 <0.001 <0.001

RWG -0.03 0.15 -0.38 0.18 0.04 -0.05 -0.02 0.06 -0.04 -0.05 -0.04 -0.04 -0.04 1.00

0.238 <0.001 <0.001 <0.001 0.238 0.088 0.603 0.053 0.217 0.088 0.178 0.150 0.207

RT -0.0455 0.0322 -0.0198 0.138 0.0758 -0.0517 -0.0475 0.0333 0.0248 -0.0539 0.0057 0.0181 -0.0033 0.6623 1

0.118 0.268 0.496 <0.001 0.011 0.076 0.132 0.262 0.420 0.068 0.843 0.534 0.910 <0.001

SES (birth) 0.00 0.01 0.04 0.07 0.00 0.27 0.08 -0.19 -0.09 0.26 -0.07 -0.04 -0.04 0.02 -0.02 1.00

0.642 0.479 <0.001 <0.001 0.675 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.480 0.515

SES (age 8) 0.01 0.00 0.03 0.06 -0.01 0.19 0.07 -0.13 -0.11 0.20 -0.03 -0.02 -0.03 0.02 0.03 0.43 1.00

0.509 0.908 0.061 <0.001 0.769 <0.001 <0.001 <0.001 <0.001 <0.001 0.065 0.216 0.038 0.680 0.496 <0.001
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Models for bivariate associations in ALSPAC 

Table XI Bivariate associations between early life factors and adiposity outcomes (BMIz, OWOB) at ages 7 and 17 in ALSPAC study members  

  Age 7 
 

Age 17 

 Exposures  BMIz       OWOB       BMIz       OWOB    

 Coef CI p   OR CI p 
 

Coef CI p  OR CI p 

Female 0 [-0.05,0.04] 0.83 
 

0.95 [0.83,1.08] 0.42 
 

0.03 [-0.03,0.10] 0.31  0.98 [0.85,1.12] 0.75 
Gestation (weeks) 0.02 [0.01,0.03] 0.005 

 
1.02 [0.98,1.06] 0.37 

 
0 [-0.02,0.02] 0.86  1.01 [0.96,1.05] 0.80 

Pre-term -0.03 [-0.10,0.05] 0.489 
 

1.12 [0.89,1.40] 0.33 
 

0.08 [-0.03,0.19] 0.14  1.2 [0.95,1.51] 0.12 
Post-term 0.06 [-0.03,0.14] 0.21 

 
1.08 [0.84,1.40] 0.54 

 
-0.08 [-0.20,0.05] 0.25  0.91 [0.68,1.22] 0.53 

Bwt z-score 0.18 [0.16,0.21] <0.001 
 

1.30 [1.21,1.39] <0.001 
 

0.12 [0.08,0.15] <0.001  1.20 [1.12,1.30] <0.001 
Bwt categories       SGA -0.23 [-0.33,-0.14] <0.001 

 
0.86 [0.64,1.17] 0.35 

 
-0.04 [-0.17,0.09] 0.56  0.93 [0.69,1.24] 0.62 

LGA 0.35 [0.28,0.42] <0.001 
 

1.73 [1.43,2.09] <0.001 
 

0.30 [0.20,0.40] <0.001  1.64 [1.33,2.01] <0.001 
Maternal age                
Less than 25 0.04 [-0.03,0.10] 0.24 

 
1.09 [0.90,1.31] 0.39 

 
0.24 [0.15,0.33] <0.001  1.50 [1.24,1.80] <0.001 

35+ 0.01 [-0.06,0.08] 0.83 
 

1.04 [0.84,1.28] 0.72 
 

-0.11 [-0.21,-0.01] 0.033  0.83 [0.66,1.05] 0.12 
First-born 0.02 [-0.02,0.07] 0.31 

 
1.08 [0.94,1.25] 0.27 

 
0.01 [-0.06,0.08] 0.73  0.95 [0.82,1.10] 0.51 

RWG 0.52 [0.37,0.66] <0.001 
 

2.04 [1.36,3.06] 0.001 
 

0.25 [0.04,0.45] 0.020  1.25 [0.80,1.96] 0.32 
RT 0.77 [0.63,0.90] <0.001  3.82 [2.53,5.76] <0.001  0.26 [0.05,0.46] 0.014  1.55 [1.00,2.39] 0.051 

Adversity 

Pre-natal 0.05 [0.00,0.09] 0.045 
 

1.06 [0.92,1.21] 0.42 
 

0.12 [0.05,0.19] <0.001  1.28 [1.11,1.47] 0.001 
Post-natal 0.02 [-0.03,0.07] 0.34 

 
1.02 [0.88,1.18] 0.79 

 
0.03 [-0.04,0.10] 0.42  1.03 [0.88,1.20] 0.75 

Pre and 
post 0.08 [0.02,0.14] 0.012 

 
1.08 [0.91,1.29] 0.39 

 
0.14 [0.06,0.23] 0.001  1.38 [1.15,1.65] 0.001 

Antibiotics 0.02 [-0.03,0.07] 0.39  0.12 [0.05,0.19] 0.002  0.98 [0.84,1.14] 0.80  1.19 [1.02,1.40] 0.028 
SES at birth                
Mid 0.01 [-0.12,0.13] 0.90 

 
0.92 [0.64,1.32] 0.66 

 
-0.1 [-0.29,0.08] 0.26  0.76 [0.53,1.10] 0.14 

Most advantaged -0.03 [-0.15,0.10] 0.68 
 

0.78 [0.55,1.11] 0.17 
 

-0.25 [-0.43,-0.08] 0.005  0.52 [0.37,0.74] <0.001 
SES in childhood                
Mid -0.01 [-0.13,0.11] 0.85 

 
0.78 [0.54,1.11] 0.17 

 
-0.11 [-0.28,0.05] 0.18  0.71 [0.49,1.03] 0.070 

Most advantaged -0.05 [-0.16,0.07] 0.42   0.65 [0.46,0.91] 0.012   -0.20 [-0.36,-0.05] 0.010   0.58 [0.41,0.81] 0.001 
Coefficients (coef) or odds ratios (OR) are presented with 95% confidence intervals (CI) and the corresponding level of significance (p). Bold indicates significant at p<0.05. Reference categories were 
normal term for gestational age categories; the least advantaged group for SES; and age 25-34 for maternal age. SES, socioeconomic status; Bwt, birthweight; RWG, rapid weight gain.   
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Table XII Multivariable regression models for adiposity outcomes in ALSPAC using RWG and adjusted for SES  

Age 7           BMIz                       OWOB           

  Adjusted for early life  Adjusted for SES (birth)   Adjusted for SES (childhood)   Adjusted for early life  Adjusted for SES (birth)  Adjusted for SES (childhood) 

 Coef CI p  Coef CI p  Coef CI p  OR CI p  OR CI p  OR CI p 

 
                       

Female -0.07 [-0.20,0.06] 0.27  -0.07 [-0.21,0.06] 0.27  -0.08 [-0.28,0.12] 0.43  0.63 [0.41,0.98] 0.039  0.63 [0.40,0.99] 0.047  0.71 [0.36,1.40] 0.32 

Gestation (weeks) 0 [-0.04,0.05] 0.87  0 [-0.04,0.05] 0.97  0 [-0.07,0.07] 0.99  1 [0.87,1.15] 0.98  1.01 [0.87,1.17] 0.91  1.02 [0.81,1.28] 0.87 

Bwtz  0.35 [0.27,0.42] <0.001  0.35 [0.27,0.42] <0.001  0.30 [0.18,0.42] <0.001  1.86 [1.43,2.42] <0.001  1.72 [1.31,2.26] <0.001  1.09 [0.73,1.62] 0.67 

Maternal age  
                      

<25 -0.01 [-0.21,0.20] 0.94  0.09 [-0.14,0.32] 0.45  0.40 [-0.03,0.82] 0.066  0.9 [0.46,1.76] 0.76  1.18 [0.58,2.43] 0.64  2.06 [0.65,6.46] 0.22 

35+ -0.18 [-0.37,0.01] 0.065  -0.17 [-0.37,0.02] 0.086  -0.04 [-0.32,0.24] 0.77  0.56 [0.27,1.17] 0.13  0.51 [0.23,1.11] 0.089  0.26 [0.06,1.15] 0.076 

First-born 0.09 [-0.04,0.23] 0.19  0.06 [-0.08,0.21] 0.38  0.12 [-0.10,0.34] 0.28  1.24 [0.79,1.96] 0.35  1.15 [0.72,1.85] 0.55  1.13 [0.54,2.38] 0.74 

RWG 0.79 [0.63,0.94] <0.001  0.81 [0.65,0.96] <0.001  0.62 [0.38,0.86] <0.001  3.36 [2.05,5.52] <0.001  3.15 [1.90,5.23] <0.001  1.36 [0.63,2.96] 0.43 

Adversity                        

Pre and post-natal 0.09 [-0.09,0.26] 0.34  0.03 [-0.16,0.22] 0.76  0.1 [-0.19,0.39] 0.50 
 1.1 [0.62,1.96] 0.74  1.03 [0.55,1.92] 0.93  1.7 [0.71,4.04] 0.23 

SES at birth 
                       

Mid 
    0.23 [-0.11,0.58] 0.19  -0.23 [-0.88,0.42] 0.48      1.25 [0.34,4.53] 0.74  0.38 [0.06,2.40] 0.31 

Most  
advantaged 

    0.25 [-0.09,0.60] 0.15  -0.09 [-0.74,0.55] 0.77      1.57 [0.44,5.64] 0.49  0.71 [0.12,4.36] 0.71 

SES in childhood 
                       

Mid 
        0.11 [-0.27,0.50] 0.56          1.03 [0.32,3.30] 0.96 

Most advantaged 
        0.02 [-0.36,0.39] 0.93          0.62 [0.20,1.93] 0.41 

N   825       772       382       825       772       382   

Adjusted/ 
pseudo R-sq 

0.142 
  

    0.143 
  

    0.079 
  

  
  

0.066     
  

0.061     
  

0.049              
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Age 17           BMIz                       OWOB           

 Adjusted for early life  Adjusted for SES (birth)   Adjusted for SES (childhood)  Adjusted for early life  Adjusted for SES (birth)   Adjusted for SES (childhood) 

 Coef CI p  Coef CI p  Coef CI p  OR CI p  OR CI p  OR CI p 

 
                       

Female -0.08 [-0.27,0.11] 0.42  -0.1 [-0.31,0.10] 0.32  -0.09 [-0.36,0.18] 0.53  0.98 [0.63,1.51] 0.92  0.94 [0.60,1.46] 0.78  0.93 [0.49,1.77] 0.82 

Gestation (weeks) 0 [-0.07,0.06] 0.88  -0.01 [-0.08,0.06] 0.74  0 [-0.10,0.09] 0.92  1.01 [0.87,1.17] 0.88  1.01 [0.86,1.17] 0.94  0.99 [0.79,1.23] 0.93 

Bwtz  0.12 [0.01,0.24] 0.040  0.12 [-0.01,0.24] 0.063  0.15 [-0.02,0.31] 0.084  1.31 [1.00,1.71] 0.051  1.28 [0.98,1.69] 0.075  1.19 [0.80,1.78] 0.39 

Maternal age                        

<25 0.19 [-0.13,0.51] 0.24  0.26 [-0.10,0.62] 0.15  0.41 [-0.28,1.11] 0.24  1.12 [0.56,2.26] 0.75  1.19 [0.55,2.56] 0.66  1.33 [0.30,5.92] 0.71 

35+ -0.12 [-0.41,0.17] 0.41  -0.09 [-0.39,0.21] 0.54  0.03 [-0.37,0.42] 0.89  1.35 [0.73,2.47] 0.34  1.41 [0.75,2.62] 0.28  1.91 [0.81,4.48] 0.14 

First-born 0.04 [-0.18,0.25] 0.74  0.01 [-0.21,0.23] 0.93  0.11 [-0.19,0.41] 0.47  0.99 [0.62,1.60] 0.98  0.99 [0.61,1.62] 0.97  1.14 [0.56,2.33] 0.72 

RWG 0.34 [0.10,0.57] 0.006  0.36 [0.11,0.60] 0.005  0.31 [-0.03,0.65] 0.072  1.65 [0.97,2.81] 0.066  1.64 [0.95,2.81] 0.073  1.17 [0.53,2.61] 0.69 

Adversity                        

Pre and post-natal 0.33 [0.05,0.61] 0.021  0.28 [-0.02,0.58] 0.068  0.21 [-0.20,0.63] 0.31  1.84 [1.05,3.25] 0.034  1.66 [0.91,3.03] 0.10  1.43 [0.58,3.50] 0.44 

SES at birth                        

Mid     0.42 [-0.13,0.98] 0.16  -0.18 [-1.16,0.80] 0.72      1.59 [0.42,5.96] 0.49  1.42 [0.14,14.36] 0.77 

Most advantaged     0.28 [-0.26,0.83] 0.31  -0.51 [-1.48,0.47] 0.31      1.41 [0.38,5.21] 0.60  0.78 [0.08,8.05] 0.84 

SES in childhood                        

Mid         -0.22 [-0.78,0.35] 0.45          1.04 [0.28,3.83] 0.95 

Most advantaged         -0.06 [-0.60,0.47] 0.82          1.15 [0.33,3.99] 0.83 

N   527       498       270       527       498       270              

Adjusted/ 
pseudo R-sq 

0.018     
  

0.017     
  

0.008     
  

0.02     
  

0.018     
  

0.024              

Coefficients (coef) or odds ratios (OR) are presented with 95% confidence intervals (CI) and the corresponding level of significance (p). Reference categories were; normal term for gestational age 
categories; the least advantaged group for SES; and age 25-34 for maternal age. 
SES, socioeconomic status; RWG, rapid weight gain
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Multivariable parsimonious models in ALSPAC 

Table XIII  Multivariable linear regression parsimonious models for BMIz at ages 7 and 17 

   BMIz7      BMIz17   

  Coef CI p  Coef CI p 

        
Female -0.07 [-0.20,0.05] 0.26  -0.09 [-0.29,0.10] 0.35 
Gestation (weeks) 0 [-0.04,0.05] 0.90  -0.01 [-0.07,0.06] 0.80 
First-born 0.09 [-0.05,0.23] 0.20  0.03 [-0.18,0.24] 0.81 
Maternal age        

Less than 25 -0.01 [-0.21,0.20] 0.95  0.19 [-0.12,0.51] 0.23 
35+ -0.18 [-0.37,0.01] 0.066  -0.11 [-0.40,0.17] 0.44 

Birthweight z-score 0.35 [0.27,0.42] <0.001  0.12 [0.00,0.24] 0.043 
RWG 0.78 [0.63,0.94] <0.001  0.35 [0.12,0.59] 0.004 
Adversity - prenatal     0.34 [0.14,0.55] 0.001 
                

n 825    527               
Adjusted R2 0.142       0.028                

Coefficients (coef) presented with 95% confidence intervals (CI) and the corresponding level of significance (p). The reference category was age 25-34 for maternal age.  
n, sample size; SES, socioeconomic status; RWG, rapid weight gain. 
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Table XIV Multivariable logistic regression parsimonious models for OWOB at ages 7 and 17 

   OWOB7                 OWOB17   

  OR  CI p  OR CI p 

        
Female 0.63 [0.40,0.97] 0.037  0.81 [0.64,1.03] 0.081 
Gestation (weeks) 1.00 [0.87,1.15] 0.99  1.03 [0.95,1.11] 0.45 
First-born 1.24 [0.79,1.95] 0.36  1.04 [0.81,1.33] 0.75 
Maternal age         

Less than 25 0.90 [0.46,1.77] 0.76  1.42 [0.97,2.09] 0.073 
35+ 0.56 [0.27,1.17] 0.13  0.98 [0.70,1.38] 0.93 

Birthweight z-score 1.86 [1.43,2.42] <0.001  1.26 [1.10,1.43] 0.001 
RWG 3.35 [2.04,5.50] <0.001                 

Adversity - prenatal     1.43 [1.12,1.82] 0.004 
SES at birth        

Mid     0.50 [0.25,0.97] 0.041 
Most advantaged     0.39 [0.20,0.76] 0.006 

SES in childhood        
Mid     0.74 [0.50,1.09] 0.12 

Most advantaged     0.67 [0.45,0.98] 0.039 

n 825    1952   
pseudo R-sq 0.066     0.026     

Odds ratios (OR) are presented with 95% confidence intervals (CI) and the corresponding level of significance (p). Reference categories were; the least advantaged group for SES; and age 25-34 for 
maternal age. n, sample size; SES, socioeconomic status; RWG, rapid weight gain. 
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Table XV Multivariable regression models for adiposity outcomes in ALSPAC using RWG and adjusted for SES  

Age 7           BMIz                       OWOB           

  Adjusted for early life  Adjusted for SES (birth)   Adjusted for SES (childhood)   Adjusted for early life  Adjusted for SES (birth)  Adjusted for SES (childhood) 

 Coef CI p  Coef CI p  Coef CI p  OR CI p  OR CI p  OR CI p 
                        

Female -0.07 [-0.20,0.06] 0.27  -0.07 [-0.21,0.06] 0.27  -0.08 [-0.28,0.12] 0.43  0.63 [0.41,0.98] 0.039  0.63 [0.40,0.99] 0.047  0.71 [0.36,1.40] 0.32 
Gestation 
(weeks) 

0 [-0.04,0.05] 0.87  0 [-0.04,0.05] 0.97  0 [-0.07,0.07] 0.99  1 [0.87,1.15] 0.98  1.01 [0.87,1.17] 0.91  1.02 [0.81,1.28] 0.87 

Bwtz  0.35 [0.27,0.42] <0.001  0.35 [0.27,0.42] <0.001  0.30 [0.18,0.42] <0.001  1.86 [1.43,2.42] <0.001  1.72 [1.31,2.26] <0.001  1.09 [0.73,1.62] 0.67 
Maternal age                        

<25 -0.01 [-0.21,0.20] 0.94  0.09 [-0.14,0.32] 0.45  0.40 [-0.03,0.82] 0.066  0.9 [0.46,1.76] 0.76  1.18 [0.58,2.43] 0.64  2.06 [0.65,6.46] 0.22 
35+ -0.18 [-0.37,0.01] 0.065  -0.17 [-0.37,0.02] 0.086  -0.04 [-0.32,0.24] 0.77  0.56 [0.27,1.17] 0.13  0.51 [0.23,1.11] 0.089  0.26 [0.06,1.15] 0.076 
First-born 0.09 [-0.04,0.23] 0.19  0.06 [-0.08,0.21] 0.38  0.12 [-0.10,0.34] 0.28  1.24 [0.79,1.96] 0.35  1.15 [0.72,1.85] 0.55  1.13 [0.54,2.38] 0.74 
RWG 0.79 [0.63,0.94] <0.001  0.81 [0.65,0.96] <0.001  0.62 [0.38,0.86] <0.001  3.36 [2.05,5.52] <0.001  3.15 [1.90,5.23] <0.001  1.36 [0.63,2.96] 0.43 
Adversity                        

Pre and 
post-natal 0.09 [-0.09,0.26] 0.34  0.03 [-0.16,0.22] 0.76  0.1 [-0.19,0.39] 0.50 

 1.1 [0.62,1.96] 0.74  1.03 [0.55,1.92] 0.93  1.7 [0.71,4.04] 0.23 

SES at birth                        

Mid     0.23 [-0.11,0.58] 0.19  -0.23 [-0.88,0.42] 0.48      1.25 [0.34,4.53] 0.74  0.38 [0.06,2.40] 0.31 
Most  
advantaged 

    0.25 [-0.09,0.60] 0.15  -0.09 [-0.74,0.55] 0.77      1.57 [0.44,5.64] 0.49  0.71 [0.12,4.36] 0.71 

SES in 
childhood 

                       

Mid         0.11 [-0.27,0.50] 0.56          1.03 [0.32,3.30] 0.96 
Most 
advantaged 

        0.02 [-0.36,0.39] 0.93          0.62 [0.20,1.93] 0.41 

N   825       772       382       825       772       382   
Adjusted/ 
pseudo R-sq 

0.142 
  

    0.143 
  

    0.079 
  

  
  

0.066     
  

0.061     
  

0.049              
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Age 17           BMIz                       OWOB           

 Adjusted for early life  Adjusted for SES (birth)   Adjusted for SES (childhood)  Adjusted for early life  Adjusted for SES (birth)   Adjusted for SES (childhood) 

 Coef CI p  Coef CI p  Coef CI p  OR CI p  OR CI p  OR CI p 

 
                       

Female -0.08 [-0.27,0.11] 0.42  -0.1 [-0.31,0.10] 0.32  -0.09 [-0.36,0.18] 0.53  0.98 [0.63,1.51] 0.92  0.94 [0.60,1.46] 0.78  0.93 [0.49,1.77] 0.82 

Gestation (weeks) 0 [-0.07,0.06] 0.88  -0.01 [-0.08,0.06] 0.74  0 [-0.10,0.09] 0.92  1.01 [0.87,1.17] 0.88  1.01 [0.86,1.17] 0.94  0.99 [0.79,1.23] 0.93 

Bwtz  0.12 [0.01,0.24] 0.040  0.12 [-0.01,0.24] 0.063  0.15 [-0.02,0.31] 0.084  1.31 [1.00,1.71] 0.051  1.28 [0.98,1.69] 0.075  1.19 [0.80,1.78] 0.39 

Maternal age                        

<25 0.19 [-0.13,0.51] 0.24  0.26 [-0.10,0.62] 0.15  0.41 [-0.28,1.11] 0.24  1.12 [0.56,2.26] 0.75  1.19 [0.55,2.56] 0.66  1.33 [0.30,5.92] 0.71 

35+ -0.12 [-0.41,0.17] 0.41  -0.09 [-0.39,0.21] 0.54  0.03 [-0.37,0.42] 0.89  1.35 [0.73,2.47] 0.34  1.41 [0.75,2.62] 0.28  1.91 [0.81,4.48] 0.14 

First-born 0.04 [-0.18,0.25] 0.74  0.01 [-0.21,0.23] 0.93  0.11 [-0.19,0.41] 0.47  0.99 [0.62,1.60] 0.98  0.99 [0.61,1.62] 0.97  1.14 [0.56,2.33] 0.72 

RWG 0.34 [0.10,0.57] 0.006  0.36 [0.11,0.60] 0.005  0.31 [-0.03,0.65] 0.072  1.65 [0.97,2.81] 0.066  1.64 [0.95,2.81] 0.073  1.17 [0.53,2.61] 0.69 

Adversity                        

Pre and post-natal 0.33 [0.05,0.61] 0.021  0.28 [-0.02,0.58] 0.068  0.21 [-0.20,0.63] 0.31  1.84 [1.05,3.25] 0.034  1.66 [0.91,3.03] 0.10  1.43 [0.58,3.50] 0.44 

SES at birth                        

Mid     0.42 [-0.13,0.98] 0.16  -0.18 [-1.16,0.80] 0.72      1.59 [0.42,5.96] 0.49  1.42 [0.14,14.36] 0.77 

Most advantaged     0.28 [-0.26,0.83] 0.31  -0.51 [-1.48,0.47] 0.31      1.41 [0.38,5.21] 0.60  0.78 [0.08,8.05] 0.84 

SES in childhood                        

Mid         -0.22 [-0.78,0.35] 0.45          1.04 [0.28,3.83] 0.95 

Most advantaged         -0.06 [-0.60,0.47] 0.82          1.15 [0.33,3.99] 0.83 

N   527       498       270       527       498       270              

Adjusted/ 
pseudo R-sq 

0.018     
  

0.017     
  

0.008     
  

0.02     
  

0.018     
  

0.024              

Coefficients (coef) or odds ratios (OR) are presented with 95% confidence intervals (CI) and the corresponding level of significance (p). Reference categories were; normal term for gestational age 
categories; the least advantaged group for SES; and age 25-34 for maternal age. 
SES, socioeconomic status; RWG, rapid weight gai
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Table XVI  Multivariable linear regression parsimonious models for BMIz at ages 7 and 17 

   BMIz7      BMIz17   

  Coef CI p  Coef CI p 

        
Female -0.07 [-0.20,0.05] 0.26  -0.09 [-0.29,0.10] 0.35 
Gestation (weeks) 0 [-0.04,0.05] 0.90  -0.01 [-0.07,0.06] 0.80 
First-born 0.09 [-0.05,0.23] 0.20  0.03 [-0.18,0.24] 0.81 
Maternal age        

Less than 25 -0.01 [-0.21,0.20] 0.95  0.19 [-0.12,0.51] 0.23 
35+ -0.18 [-0.37,0.01] 0.066  -0.11 [-0.40,0.17] 0.44 

Birthweight z-score 0.35 [0.27,0.42] <0.001  0.12 [0.00,0.24] 0.043 
RWG 0.78 [0.63,0.94] <0.001  0.35 [0.12,0.59] 0.004 
Adversity - prenatal     0.34 [0.14,0.55] 0.001 
                

n 825    527               
Adjusted R2 0.142       0.028                

Coefficients (coef) presented with 95% confidence intervals (CI) and the corresponding level of significance (p). The reference 
category was age 25-34 for maternal age.  
n, sample size; SES, socioeconomic status; RWG, rapid weight gain. 

 

Table XVII Multivariable logistic regression parsimonious models for OWOB at ages 7 and 17 

   OWOB7                 OWOB17   

  OR  CI p  OR CI p 

        
Female 0.63 [0.40,0.97] 0.037  0.81 [0.64,1.03] 0.081 
Gestation (weeks) 1.00 [0.87,1.15] 0.99  1.03 [0.95,1.11] 0.45 
First-born 1.24 [0.79,1.95] 0.36  1.04 [0.81,1.33] 0.75 
Maternal age         

Less than 25 0.90 [0.46,1.77] 0.76  1.42 [0.97,2.09] 0.073 
35+ 0.56 [0.27,1.17] 0.13  0.98 [0.70,1.38] 0.93 

Birthweight z-score 1.86 [1.43,2.42] <0.001  1.26 [1.10,1.43] 0.001 
RWG 3.35 [2.04,5.50] <0.001                 

Adversity - prenatal     1.43 [1.12,1.82] 0.004 
SES at birth        

Mid     0.50 [0.25,0.97] 0.041 
Most advantaged     0.39 [0.20,0.76] 0.006 

SES in childhood        
Mid     0.74 [0.50,1.09] 0.12 

Most advantaged     0.67 [0.45,0.98] 0.039 

n 825    1952   
pseudo R-sq 0.066     0.026     

Odds ratios (OR) are presented with 95% confidence intervals (CI) and the corresponding level of significance (p). Reference 
categories were; the least advantaged group for SES; and age 25-34 for maternal age. n, sample size; SES, socioeconomic 
status; RWG, rapid weight gain. 
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RWG regression diagnostic plots 

 

Figure XIII  Regression diagnostic plots for the parsimonious model for RWG and BMIz7 in ALSPAC. 
From left-right and top-bottom: Leverage vs. squared residual plot; residuals vs. predicted values (Yhat) plot, Quintile-
normal plot and Standardize normal probability plot. 

 

Figure XIV Regression diagnostic plot for the parsimonious model for RWG and BMIz17 in ALSPAC.  
From left-right and top-bottom: Leverage vs. squared residual plot; residuals vs. predicted values (Yhat) plot, Quintile-
normal plot and Standardize normal probability plot. 
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A. BMIz7 – basic model 

 

B. BMIz7 – basic model + SES (birth) 
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C. BMIz7 – basic model + SES (birth) + SES (childhood) 

 

D. BMIz17 – basic model 
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E. BMIz17 – basic model + SES (birth) 

 

F. BMIz17 – basic model + SES (birth) + SES (childhood) 

 

Figure XV Regression diagnostic plots for linear regression models (basic, adjusted for SES (birth) and for SES (childhood)) for 
BMIz at age 7 and 17. 
From left-right and top-bottom: Leverage vs. squared residual plot; residuals vs. predicted values (Yhat) plot, Quintile-
normal plot and Standardize normal probability plot. 
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Rapid thrive regression diagnostic plots 

BMIz7 

 

BMIz17 

 

Figure XVI Regression diagnostic plots for the RT multivariable linear regression models for BMI at age 7 and age 17.  
From left-right and top-bottom: Leverage vs. squared residual plot; residuals vs. predicted values (Yhat) plot, Quintile-
normal plot and Standardized normal probability plot. 
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EWAS regression diagnostic plots 

1. Not adjusted for covariates 

 

2. Adjusted for covariates 

 

3. ISVA adjusted model 

 

4. SVA adjusted model 

 

Figure XVII EWAS regression diagnostic plots.  
An example of meffil q-q- plots for each adjustment model (none (1), all (2), ISVA (3) and SVA (4)). The Q-Q plots present 
the distribution of the p value for the association between CpG site methylation and RWG. The straight line is the expected 
distribution under the null hypothesis.  For example, in the ISVA model the locus highlighted in red deviated from the 
expected distribution and was significantly associated with the exposure (RWG at the Bonferonni cut-off (Figure XVII)). 
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1. Not adjusted for covariates 

 

2. Adjusted for covariates 

 

3. ISVA adjusted model 

 

4. SVA adjusted model 

 

Figure XVIII EWAS regression diagnostic plots for RWG cell count sensitivity analysis.  
Q-Q plots of cell counts sensitivity analysis EWAS (age 7) for RWG for each adjustment model (none, all, ISVA and SVA). The 
Q-Q plots present the distribution of the p value for the association between CpG site methylation and RWG. The straight 
line is the expected distribution under the null hypothesis.   
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CpG island and gene associations  

Table XVIII Linear associations between RWG and CpG loci in nearby genes and/or CpG islands in ALSPAC participants (age 
7) 

  RWG   
 CpG loci Coef p R2 

CpGs in island cg24802244 0.00 0.255 0.014 
chr17:17206527-17207306 cg07527330 0.00 0.075 0.004 

 cg21614420 0.00 0.021 0.062 
 cg01379158 0.01 0.001 0.247 
 cg04495270 0.01 0.329 0.035 
 cg08693337 -0.00 0.932 0.131 
 cg09810313 -0.00 0.578 -0.014 
 cg18850434 -0.00 0.777 0.263 
 cg19118161 -0.00 0.771 0.021 
 cg27410828 0.01 0.479 -0.004 

CpGs in island cg02012576 0.00 0.618 -0.012 
chr12:133484658-133485739 cg20307302 0.00 0.431 0.080 

 cg25928819 -0.01 0.235 0.142 
 cg24427504 -0.00 0.612 0.022 
 cg03279164 0.01 0.459 -0.001 
 cg07388347 0.00 0.102 0.170 
 cg08572734 0.00 0.418 0.082 
 cg09831026 0.00 0.192 0.042 
 cg11531579 0.01 <0.0001 0.110 
 cg15607538 0.00 0.182 0.130 
 cg16562275 -0.00 0.288 0.063 
 cg24459893 0.01 0.510 0.217 

CpGs in NT5M cg24802244 0.00 0.255 0.014 
NT5M cg07527330 0.00 0.075 0.004 

 cg21614420 0.00 0.021 0.062 
 cg01379158 0.01 0.001 0.247 
 cg01979266 -0.01 0.203 0.014 
 cg04495270 0.01 0.329 0.035 
 cg08693337 -0.00 0.932 0.131 
 cg09810313 -0.00 0.578 -0.014 
 cg15761954 0.01 0.193 0.128 
 cg18850434 -0.00 0.777 0.263 
 cg19118161 -0.00 0.771 0.021 
 cg27410828 0.01 0.479 -0.004 

Linear regression models with methylation age 7 as the outcome, and RWG as the main exposure. All models are adjusted 
for WBCs, age and sex. Underlined are the significant CpG loci from the EWAS. n=116. R2 is adjusted r-squared. 
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Table XIX EWAS linear associations between significant CpG loci (age 7) and RT in ALSPAC participants  

Exposure CpG name n Age  Model 
No. of 

surrogate 
variables 

Estimate SE P value 

With cell counts               

RT cg01379158 116 7 SVA 12 0.0078 0.0025 0.0022 

Without cell counts  
 

     

RT cg01379158 125 7 SVA 10 0.0065 0.0025 0.0107 

RT cg11531579 125 7 SVA 10 0.0056 0.0028 0.0493 
Models are adjusted for age, sex, SVAs and with or without adjustment for cell counts.  
Estimates represent beta coefficients. n, sample size; SE, standard error; SVA, surrogate variable analysis.   
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Consortium CpG loci featured in sub-analyses 

 

Table XX Consortium CpG loci and associated genes from (Wahl et al., 2016) featured in the candidate gene analysis 

1 cg00094412 GABBR1  95 cg11614585 ANGPT4 

2 cg00108715 NT5DC2 
 

96 cg11650298 
SMIM2-
AS1 

3 cg00138407 KLHL18  97 cg11832534 WRAP73 

4 cg00144180 HDAC4  98 cg11927233 NPM1 

5 cg00238353 PTPRE  99 cg11969813 P4HB 

6 cg00244001 FAM53B  100 cg12484113 AHDC1 

7 cg00431050 ELOVL3  101 cg12593793 LMNA 

8 cg00574958 CPT1A  102 cg12992827 ZPLD1 

9 cg00634542 SLC11A1  103 cg13097800 RPL10L 

10 cg00673344 LINC00880  104 cg13123009 LY6G6F 

11 cg00711896 ZNF48  105 cg13274938 RARA 

12 cg00863378 BBS2  106 cg13591783 ANXA1 

13 cg00973118 AXIN1  107 cg13781414 NACC2 

14 cg01101459 LINC00184  108 cg13922488 PKN1 

15 cg01243823 NOD2  109 cg14020176 SLC9A3R1 

16 cg01511901 UBE2L5P  110 cg14264316 PRRC2B 

17 cg01798813 ZZEF1  111 cg14476101 PHGDH 

18 cg02119938 ACSBG1  112 cg15323828 TMEM63A 

19 cg02286155 SLC34A1  113 cg15357118 UGGT1 

20 cg02560388 LPIN1  114 cg15681239 DLEC1 

21 cg02650017 PHOSPHO1  115 cg15721584 SOX2-OT 

22 cg02711608 SLC1A5  116 cg16163382 CDC42EP3 

23 cg02716826 AQP3  117 cg16578636 PCGF5 

24 cg03050965 S1PR1  118 cg16594806 PHBP3 

25 cg03159676 GSE1  119 cg16611584 AKAP10 

26 cg03318904 TAB1  120 cg16815882 KIAA0319L 

27 cg03327570 ZEB2  121 cg16846518 EEFSEC 

28 cg03433986 BSCL2  122 cg17178175 NFE2L2 

29 cg03523676 CPNE6  123 cg17260706 BCL9L 

30 cg03725309 SARS  124 cg17501210 RPS6KA2 

31 cg03885055 SPATA21  125 cg17901584 DHCR24 

32 cg03940776 SYNJ2  126 cg17971578 STK40 

33 cg03957124 COX6A1P2  127 cg18098839 GOLIM4 

34 cg04011474 RNA5SP89  128 cg18120259 C6orf223 

35 cg04126866 C10orf99  129 cg18181703 SOCS3 

36 cg04232128 TMEM173  130 cg18217136 PPIAP3 

37 cg04524040 CREB3L3  131 cg18219562 MEOX1 

38 cg04577162 RFC2  132 cg18513344 MUC4 

39 cg05063895 SLC9A3R2  133 cg18608055 SBNO2 

40 cg05095590 MAD1L1  134 cg19217955 ACADVL 
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41 cg05648472 PRDM11  135 cg19373099 CRYGFP 

42 cg05720226 ST7  136 cg19566658 TRIP6 

43 cg05845030 DCN  137 cg19589396 RPL5P24 

44 cg06012428 ARID1B  138 cg19695507 BEND7 

45 cg06164260 BCL6  139 cg19750657 UFM1 

46 cg06192883 MYO5C  140 cg19881557 RNASE10 

47 cg06500161 ABCG1  141 cg19998073 ZC3H14 

48 cg06559575 IGFBP6  142 cg21108085 CD82 

49 cg06603309 KCNQ1  143 cg21429551 GARS 

50 cg06690548 SLC7A11  144 cg21486834 RHBDF2 

51 cg06898549 CNTN1  145 cg22012981 ACOX2 

52 cg06946797 RMI2  146 cg22103219 SH2B2 

53 cg07021906 SLC7A5  147 cg22488164 PLBD1 

54 cg07037944 DAPK2  148 cg22534374 RPS10P7 

55 cg07136133 PRR5L  149 cg22590032 FLT4 

56 cg07202479 DARC  150 cg22695339 CHD3 

57 cg07471614 LINC00964  151 cg22700686 S100A2 

58 cg07504977 LINC00263  152 cg23032421 IL5RA 

59 cg07682160 UPF1  153 cg23232188 EAF2 

60 cg07728579 FSD2  154 cg24174557 VMP1 

61 cg07769588 ATG4D  155 cg24403644 TOX2 

62 cg08305942 MAF  156 cg24469729 HOXA-AS2 

63 cg08309687 LINC00649  157 cg24531955 LOXL2 

64 cg08443038 CBFA2T3  158 cg24679890 MYO9B 

65 cg08548559 PIK3IP1  159 cg25001190 NFIA 

66 cg08648047 C1orf127  160 cg25096107 IGHA2 

67 cg08726900 ANKRD11  161 cg25197194 EFCC1 

68 cg08813944 CPSF4L  162 cg25217710 BCAN 

69 cg08857797 VPS25  163 cg25435714 RN7SL142P 

70 cg09152259 MAP3K2  164 cg25570328 SULT1C2 

71 cg09222732 EXOC2  165 cg25649826 USP22 

72 cg09315878 SDF4  166 cg26033520 ANAPC16 

73 cg09349128 CRELD2  167 cg26253134 TGFA 

74 cg09554443 CD247  168 cg26357885 HSPA2 

75 cg09613192 FTH1P20  169 cg26361535 ZC3H3 

76 cg09664445 CLUH  170 cg26403843 RNF145 

77 cg09777883 BCO2  171 cg26542660 CEP135 

78 cg10179300 TRIO  172 cg26663590 NFATC2IP 

79 cg10438589 LINC00504  173 cg26687842 LINC00598 

80 cg10505902 PDE4DIP  174 cg26804423 ICA1 

81 cg10513161 ABCC5  175 cg26836479 DEDD2 

82 cg10549088 PRICKLE2  176 cg26878209 SMC3 

83 cg10717869 SLC41A1  177 cg26894079 CLMP 

84 cg10734665 ATP10A  178 cg26952928 SLC45A4 

85 cg10814005 GPR68  179 cg27050612 NFE2L1 
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86 cg10919522 ELMSAN1  180 cg27087650 BCL3 

87 cg10922280 DUS2L  181 cg27115863 CARD10 

88 cg10927968 CTSD  182 cg27117792 DRAM1 

89 cg10975897 JARID2  183 cg27184903 APBA2 

90 cg11024682 SREBF1  184 cg27269962 SND1 

91 cg11080651 ROPN1L  185 cg27547344 TIE1 

92 cg11183227 MAN2A2  186 cg27614723 SLCO3A1 

93 cg11202345 LGALS3BP  187 ch.2.30415474F LBH 

94 cg11376147 SLC43A1     
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Relationship between methylation and adiposity outcomes 

For cg01379158 methylation at age 7 and adiposity outcomes at age 7, there was evidence 

from the results of the ANOVA that at least one pair of means were not equal. There was a 

statistically significant difference between groups as determined by one-way ANOVA 

(F(3,121) = 3.35, p = .017). After all possible pairwise comparisons were performed, a 

Bonferroni post-hoc test revealed that DNAm was statistically significantly higher in those 

who had RWG and were OWOB (age 7) (2.2% increase, p = .049) compared to those who did 

not have RWG and were a healthy weight (age 7) (Figure XIX, left). There was no statistically 

significant difference between the other groups or for outcomes at age 17 (Figure XIX, right).   

As samples sizes for some categories were small, there is reduced likelihood of observing 

significant differences, and therefore whilst these results give an indication of methylation 

patterns, they are not conclusive. 

Table XXI Descriptive characteristics of CpG (cg01379158) methylation (age 7) by phenotype (at ages 7 and 17) in ALSPAC 
participants  

Groups  n Mean SD Median Min Max 

Age 7  
      

Healthy weight No RWG 74 0.069 0.017 0.068 0.033 0.125 
RWG 35 0.078 0.025 0.076 0.033 0.149 

OWOB No RWG 10 0.075 0.021 0.071 0.042 0.106 
RWG 6 0.091 0.019 0.090 0.064 0.114 

 Total 125 0.073 0.021 0.073 0.033 0.149 
Age 17  

      

Healthy weight No RWG 39 0.071 0.017 0.071 0.039 0.103 
RWG 26 0.078 0.026 0.077 0.033 0.149 

OWOB No RWG 13 0.067 0.016 0.062 0.042 0.106 
RWG 6 0.088 0.024 0.083 0.056 0.118 

 Total 84 0.074 0.021 0.073 0.033 0.149 
n, total in each group; SD, standard deviation; min, minimum; max, maximum.  
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Figure XIX Box plots of methylation level (age 7), RWG and OWOB (age 7 (left), age 17 (right)).  
* indicates PBonf<0.05. Differences between groups were non-significant at age 17.   

 

For cg11531579 methylation at age 7 and adiposity outcomes at age 7, there was evidence 

of a statistically significant difference between methylation and the phenotype groups (χ2  

(3)=14.556, p 0.002). Correcting for multiple comparisons revealed that the differences were 

between no RWG and healthy weight and a comparative small increase in methylation in 

those who had RWG and were healthy weight (p=0.04)(Figure XX, left). Also, compared to 

those with no RWG and healthy weight, those with RWG and OWOB had a notably higher 

methylation (+2%, p=0.003), however there were few in this group (n=6). 

 

Table XXII Descriptive characters of CpG (cg11531579) methylation (age 7) by phenotype (at ages 7 and 17) in the ALSPAC 
cohort 

Groups  n Mean SD Median Min Max 
Age 7              
Healthy 
weight 

No RWG 65 0.036 0.011 0.034 0.016 0.084 
RWG 35 0.045 0.020 0.039 0.020 0.118 

OWOB 
No RWG 10 0.039 0.011 0.041 0.024 0.054 
RWG 6 0.057 0.013 0.059 0.042 0.075 

  116 0.040 0.016 0.036 0.016 0.118 

Age 17        

Healthy 
weight 

No RWG 47 0.037 0.012 0.035 0.023 0.084 
RWG 28 0.041 0.014 0.037 0.020 0.086 

OWOB 
No RWG 18 0.036 0.010 0.035 0.016 0.054 
RWG 9 0.059 0.027 0.057 0.025 0.118 

 Total 102 0.040 0.015 0.036 0.016 0.118 
n, total in each group; SD, standard deviation; min, minimum; max, maximum. Testing the assumptions of the ANOVA 
indicated that there was a slight positive skew in the residuals. Furthermore, Levene’s test statistic (to test for homogeneity 
of variances) was significant; therefore, variances were not equal. This was true when analysing adiposity outcomes in both 
childhood and adolescence. Instead, the non-parametric KW test was used to assess group differences, plus Dunn’s test with 
Bonferroni adjustment for multiple testing.  

* 
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For methylation at age 7 and adiposity outcomes at age 17, there was evidence from the 

results from the KW test that there was a statistically significant difference between 

methylation and the phenotype groups (χ 2  (3)=8.735, p 0.033). Correcting for multiple 

testing revealed that there was a statistically significant difference between RWG and OWOB 

with both: no RWG and healthy weight (p=0.02) and no RWG and OWOB (p=0.04) (Figure XX, 

right). 

 

 

 

Levene’s test statistic; F(3, 112) =  3.55, p= 0.017 Levene’s test statistic; F(3, 98)=3.04, p= 0.033 

Figure XX Boxplots of childhood methylation and adiposity outcomes in childhood and adolescence.  
The tests for significance (p values) from the KW test with Bonferroni correction for multiple testing.  

 

Overall, methylation was consistently higher in those who were OWOB and experienced 

RWG, compared to those who did not experience RWG and were a healthy weight, at both 

time points. In those that had RWG, there is the potential that methylation at this CpG site 

may be able to act as a predictive biomarker of subsequent OWOB (Figure XXI); those who 

had RWG and were OWOB at age 7 or age 17, had higher methylation. Furthermore, those 

who were healthy weight at age 7, but then became OWOB at age 17 had higher 

methylation at age 7. Although this included few study members (n=6), methylation at age 7 

could have indicated future risk of OWOB in this group.  

Whereas, those who had RWG but were a healthy weight at age 7 and 17, had consistently 

lower levels of methylation. On average, methylation was lower in those who did not have 

P<0.01 

P=0.04 

P=0.02 

P=0.04 
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RWG regardless of weight status. Sample sizes are for those with complete data at that time 

point. Group sizes were small for some phenotypes. 

 

Figure XXI Pathways of mean methylation levels (%, age 7) and body composition (at ages 7 and 17).  
Sample sizes are for those with complete data at that time point. Group sizes were small for some phenotypes. 
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n=6

4.3%

n=1
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4.8%
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3.6%
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3.6%
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3.5%

n=11
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3.6%

n=8
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Appendix F 

Additional laboratory methods  

 
Table XXIII Primers designed for examination of the 2 Significant CpG loci in the NTFS samples 

CpG site Direction Size 
(bp) 

Tm Sequence 

cg11531579 Forward 25 49.5 AGTTTTTGTGGAAATTTAGAAGTAA  
Forward (IUPAC) 25 49.5 RGTTTTTGTGGAAATTTARAAGTAA   
Reverse (bio) 20 52.3 AACCAACCCCATCCTAAATC  
Sequencing 15 38.2 TTTTTTGGGAATGAA 

cg01379158 Forward  17 42.7 GGAGGAGAAGTTTTTAA  
Forward (IUPAC) 17 41.5 GRAGGAGAAGTTTTTAA  
Forward (IUPAC 3' edit) 17 41.9 GRAGGAGAAGTTTTTAR  
Reverse (bio) 27 46.7 CCATAATAATCRATACAATAAAAAAAA  
Sequencing 15 38.0 YGTTTTTAGAAGGTT 

All primers are in the 5’3’ direction. If the original primers failed, they were redesigned with IUPAC ‘wobble’ base pairing 
to account for potential SNPs (underlined). bp, base pairs; Tm, melting temperature. 

 
 
 
 

  

Figure XXII Gel electrophoresis image for the cg11531579 assay. 
Gel image for the temperature gradient PCR for cg11531579 performed using HEK cell-line bsDNA.  
NTC, no template control. 
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Examining the relationship between RWG, DNAm and body composition in NTFS 

Within either the OWOB or healthy weight categories, there were differences in CpG3 

methylation levels between those who had/did not have RWG (p<0.1) (Figure XXIII). There 

were no significant differences observed for CpG 1 or 2. 

 

No RWG RWG No RWG RWG No RWG RWG No RWG RWG 
Healthy weight OWOB Healthy weight OWOB 

Figure XXIII Box plots of DNA methylation by phenotype groups.  
Kruskal-Wallis p value shows differences across groups. There were no significant differences at p<0.05 between groups 
(Bonferroni adjusted using Dunn's Pairwise Comparison), however differences were observed at p<0.1.   

 

Similar to results for body composition at age 50, those who had RWG and were subsequent 

OWOB (age 60) had the lowest levels of methylation (Figure XXIV). However, overall there 

were no significant differences between groups (Kruskal-Wallis, χ2(3) = 5.507, p = 0.14). 

There were no significant differences for CpG 1 or 2.  

 

 Mean methylation  Cpg3 methylation 

 Healthy weight  OWOB   Healthy weight  OWOB  

 No  
RWG 

RWG  
No  
RWG 

RWG Total  No  
RWG 

RWG  
No 
RWG 

RWG Total 

N 39 19  38 36 132  39 19  38 36 132 

p50 3.05 3.4  3.46 2.19 3.08  3.24 2.98  3.16 1.22 2.53 

min 0 0  0 0 0  0 0  0 0 0 

max 95.46 69.53  
65.1
2 

50.09 95.46  91.27 66.01  64.28 45.28 91.27 

p25 1.22 0  1.18 0 0.97  0.85 0  0.91 0 0 

p75 5.81 4.28  7.96 5.1 5.18  4.5 4.02  7.25 3.78 4.42 

p  0.22  0.13 

P=0.07 P=0.07 
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Age 60 Cpg3 

 Healthy weight  OWOB  
 No RWG RWG  No RWG RWG Total 

N 16 10  38 27 91 
p50 2.81 1.80  3.16 1.41 2.42 
min 0 0  0 0 0 
max 5.32 4.02  91.27 45.28 91.27 
p25 1.47 0  0.98 0 0 
p75 4.36 3.53  7.64 4.01 4.45 

p value 0.14 
Figure XXIV Box plot for CpG3 methylation (age 50) by RWG and subsequent adiposity outcomes (age 60).  
The tests for significance (p values) from the Kruskal-Wallis test with Bonferonni correction for multiple testing. 
The Kruskal-Wallis test for differences between groups was non-significant overall, χ2(3) = 5.507, p = 0.14. 

 

  

No RWG RWG No RWG RWG 
Healthy weight OWOB 
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Examining the relationship between DNAm and body composition in those who had RWG  

Methylation was investigated further with respect to body composition only in those who 

experienced RWG in infancy, as this was the ‘exposed’ group in which differences in 

methylation were previously observed (in the ALSPAC cohort). There were no significant 

associations between DNAm and body composition in those who had RWG (Table XXIV). 

 
Table XXIV Logistic/linear regression models for weight outcomes (age 50) and DNAm (age 50), investigated only in those 
who had infancy RWG 

 
OB OWOB BMI 

  

 
coef CI p coef CI p coef CI p           

Mean methylation 0.97 [0.88,1.07] 0.57 0.99 [0.95,1.04] 0.72 0 [-0.10,0.10] 0.94 

Cpg1 0.93 [0.77,1.13] 0.48 0.99 [0.94,1.04] 0.63 -0.02 [-0.12,0.08] 0.72 

Cpg2 0.98 [0.92,1.06] 0.68 1 [0.95,1.04] 0.86 0 [-0.09,0.10] 0.96 

Cpg3 0.98 [0.90,1.07] 0.61 0.99 [0.94,1.04] 0.69 0.01 [-0.10,0.11] 0.92 

Weight outcome was the dependent variable and DNAm the independent variable. Healthy weight was the reference 
category for the OWOB and OB logistic regression models. Only in those who had infancy RWG. Adjusted for sex. n=55. 
Odds ratios (OR) and coefficients (coef) are presented with 95% confidence intervals (CI) and the corresponding level of 
significance (p) 
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NTFS samples (age 50) sequence traces 

 A B C 

pos90   

 TFS55, G TFS59   A/G TFS270   A>G 
Low 

   
 TFS314, A TFS296,  A/G TFS152, likely G 
High 

   
pos339   

 TFS55, C TFS59, C TFS270, C    
Low 

   
 TFS314 (C>T) TFS296 TFS152, C/T 
High 
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pos424    

 TFS55 TFS59 TFS270 
Low 

   
 TFS314 TFS296 TFS152 
High 

   
Figure XXV SNP patterns in sequenced matched samples. 
There were differences observed at positions (pos) 90, 339 and 424 for matched pairs of high and low methylation. In these 
samples, there were SNP differences between high and low methylation in matched pairs A and C. These pairs 
demonstrated similarities in that they had RWG and a higher BMI, contrary to pair B which did not exhibit differences 
between high and low methylation. 

 

 

 

  



362 

Linkage disequilibrium  

D prime (D') values for the query SNPs 

 

 

 

 

 

Query SNPs: 

rs2873193 (chr12:133484722) 

rs4758916 (chr12:133485056) 

 

GBR Haplotypes: 

               rs4758916 

               C       T 

             ----------------- 

           A | 123   | 2     | 125   (0.687) 

rs2873193    ----------------- 

           G | 54    | 3     | 57    (0.313) 

             ----------------- 

               177     5       182 

              (0.973) (0.027) 

 

          A_C: 123 (0.676) 

          G_C: 54 (0.297) 

          G_T: 3 (0.016) 

          A_T: 2 (0.011) 

 

          D': 0.4176 

          R2: 0.0108 

      Chi-sq: 1.9662 

     p-value: 0.1609 

 

rs2873193 and rs4758916 are in linkage equilibrium 

 

Figure XXVI LDlink output for the SNPs in the region of interest for cg11531579 for European populations.  
The image output shows the chromosomal location and proximity of the SNPs, and the text output indicates there is no 
correlation between them (R2=0.01). The Χ2 and p-value (=0.16) indicate that the haplotypes do not deviate from the 
expected values and therefore there was no evidence of linkage disequilibrium.  

 

RS_number rs2873193 rs4758916 

rs2873193 1.0 0.095 

rs4758916 0.095 1.0 
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