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Abstract

Obesity prevalence continues to rise and can be partially attributed to the obesogenic
environment. However, there is increasing evidence that environmental exposures in early
development can influence later-life disease, known as the Developmental Origins of Health
and Disease hypothesis. Whilst some early life exposures have been associated with later-life
adiposity, the underlying mechanism is less understood. One hypothesised mechanism is

through epigenetic changes, such as DNA methylation.

Multiple longitudinal cohorts were used to investigate the hypothesis; DNA methylation is a
mediating mechanism between early life events and subsequent obesity. The Newcastle
Thousand Families (NTFS) and Gateshead Millennium (GMS) studies (established 1947 and
2000 respectively), were used to investigate the impact of early life exposures (i.e.
socioeconomic status, growth, adversity) on childhood (GMS) and adult (NTFS) obesity.
Using both cohorts provided an opportunity to investigate regional temporal changes on
childhood obesity, and the impact of obesogenic environments. The Avon Longitudinal study
of Parents and Children (ALSPAC), which has methylation data (lllumina 450K array), was
used to investigate associations between early life exposures and DNA methylation (in

childhood and late adolescence) at CpG loci.

Early life rapid weight gain (RWG) was consistently associated with childhood body
composition in both local cohorts over time. In ALSPAC, RWG was significantly associated
with a 1% increase in childhood methylation (age 7, n=116) at an individual CpG locus
(CG11531579). Furthermore, the highest levels of methylation (+2%) were in those with

RWG who were subsequently overweight/obese (OWOB, age 17).

The CG11531579 loci was investigated further in NTFS adults (age 50, n=134) to examine
whether the epigenetic marks persist. RWG was also associated with methylation changes in
adults, although this was a decrease in methylation (-2%, age 50). These findings suggest

that RWG in infancy is associated with small, dynamic variations in methylation at this locus.
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Chapter 1. Introduction

Overweight and obesity, particularly in children, have increased at alarming rates in recent
times. Whilst genetic factors contribute to overweight/obesity (OWOB), the recent surge in
incidence and younger age of onset suggest early life and environmental factors are key to

this phenomenon.

The developmental origins of health and disease (DOHaD) hypothesis proposes that
exposures in early life predispose an individual to diseases, such as obesity, in later life. The
literature suggests that early life factors related to birthweight, early growth, maternal body
composition and lifestyle factors, infant feeding, and adversity and sleep in infancy may be
linked to childhood body composition. It is unclear if each of these early life factors has an
independent influence on childhood overweight and obesity, beyond socioeconomic status
(SES) and obesogenic environments. Therefore, this thesis examines the relationship
between early life factors, lifestyle and SES and the development of obesity in children and
adults, and how these factors and their influence on obesity outcomes have changed over

time with the emergence of modern obesogenic environments.

The mechanisms behind the DOHaD hypothesis are largely unknown, but DNA methylation
(DNAm), an epigenetic mechanism with the capacity to regulate gene expression, has been
proposed to be involved. Accumulating evidence suggests that early life factors are
molecularly programmed. These epigenetic changes could reveal more about the underlying
biological mechanisms of how early life factors increase susceptibility to later obesity.
Epigenetic changes could also be used as predictive biomarkers of future risk, in order to

identify those who would benefit from early intervention.

Therefore, underlying epigenetic mechanisms of theoretically relevant early life exposures
on child and adult obesity were investigated. Differential methylation has been associated
with some early life exposures (such as birthweight), however this is the first study that
attempts to link to DNAm with both early life exposures and adiposity outcomes.
Furthermore, many of these changes have only been identified in cross-sectional studies,
however due to the latency between the exposure and outcome there is the need to

examine these relationships using longitudinal cohorts.



The thesis is organised as follows: chapter 1 provides the background literature and
rationale for this study and presents the aims of the study. Chapter 2 details the data and
the statistical methods used in analyses. Chapter 3 and chapter 4 investigate early life and
socioeconomic factors influencing obesity in adults and children, using data from two
longitudinal cohorts from the same region in the UK born 50 years apart. Chapter 5 uses
these same cohorts to examine the role of the changing socio-economic environment on
childhood obesity. The potential role of DNAmM in mediating obesity-associated exposures is
examined using data from a third UK longitudinal study in chapter 6. Validation of these
findings was carried out using samples from the original cohort of adults in chapter 7. Finally,
chapter 8 discusses the findings, summarises strengths and limitations of the study and

concludes with future research directions.

1.1 Obesity: An overview

1.1.1 Epidemiology of obesity

Obesity was first highlighted as a major global concern by the World health Organization
(WHO) in 1997 and since then has become an ever-increasing issue. The Health Survey for
England has been measuring the nation’s height and weight since the early 1990’s and has
determined that and has shown that the prevalence of OWOB has been increasing steadily:
over the last three decades adult obesity prevalence has increased from less than 10% to
almost 25% of the population in England (noo, 2015). Of particular concern is the 10 fold
increase in childhood obesity worldwide (Butland et al., 2007, Abarca-Gémez et al.), that
children are becoming obese at younger ages (Johnson et al., 2015), and the upwards trends
in prevalence of severe obesity (PHE Publishing, 2018). The government’s Foresight report
predicts that obesity will affect 60% of men, 50% of women and 25% of children by 2050
(Butland et al., 2007).

Routine measurement of children’s weight and height in England has been achieved via the
National Child Measurement Programme (NCMP) which commenced in 2006 (Ridler et al.,
2009). The programme successfully measures over 95% of eligible children, with measures
taken at both the start (reception, age 4/5) and the end (year 6, age 10-11) of primary
school. The 2016/17 NCMP data show that prevalence of obesity in reception was 9.6%, and
20% in year 6 children (NHS Digital, 2017). Prevalence was highest in the North East (10.7%
in reception, 22.5% in year 6) compared to other regions in England (NHS Digital, 2017).
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There are distinct social inequalities in childhood obesity; the prevalence of obesity is 2 fold

higher in the most deprived decile compared to the least (PHE Publishing, 2018).

1.1.2 The relationship between child and adult obesity

OWOB in childhood are of great concern due to the ‘tracking’ into adulthood, which is the
persistence and relative stability of overweight over time (Twisk, 2003). A systematic review
by Singh et al,. determined that all high-quality studies reported at least 2x increased risk of
OWOB in adults in those that were OWOB in childhood (Singh et al., 2008). However, most
of the studies were from cohort studies from 20 years prior to the year 2000, and all of the
studies were from high-income countries, therefore as prevalence of obesity has increased
over time these estimates may be conservative for current populations. Although there have
been few studies outside of North America and Europe, there is evidence that BMI tracking
is influenced by ethnicity (Bayer et al., 2011a), and that BMI increases with age may also be

higher in black children compared to white children (Freedman et al., 2005a).

The risk of the tracking of obesity is much higher than for OWOB, and multiple cohort
studies have demonstrated that obese children are around 5 times more likely to be obese
as adults (Simmonds et al., 2015b). In terms of when to intervene, obesity appears resistant
to change, as by age 5, most excess weight prior to puberty has been laid down (Gardner et
al., 2009) and children are more likely to remain obese (Mostazir et al., 2015, Buscot et al.,
2018). Childhood obesity is also related to adult morbidity (Llewellyn et al., 2016). Therefore,
understanding the key early life factors driving the upwards prevalence of childhood obesity

will be important for prevention and for designing effective interventions.

However, this tracking of obesity is a relatively recent phenomenon. Examining the trends
using several British birth cohorts with over 56,000 participants, found that cohorts born
more recently had greater probabilities of overweight or obesity at younger ages (Johnson et
al., 2015). However, even in the cohorts born between 1946 and 1970, tracking was
consistently stronger at the higher quantiles of the BMI distribution (Norris et al., 2019).
Bayer et al., (2011) conducted a meta-analysis using multiple cohorts from all ages and time
periods and found strong evidence of tracking of weight over time, and a low probability of
spontaneous weight changes (without intervention) (Bayer et al., 2011b). These findings
suggest that a high proportion of children obese today are likely maintain an obese body

weight throughout life, which poses a significant public health crisis.
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Regarding the mechanisms underlying the tracking of body composition, there is evidence of
the tracking of both physical activity and of diet behaviours between childhood and
adulthood, each to similar degrees (Craigie et al., 2011), whilst follow-up from adolescence

to adulthood seems to also support that physical activity is pertinent (Kvaavik et al., 2003).

However, an important feature of tracking is that those at high risk for diseases later in life
can be identified at an early age, and therefore this feature could be utilised and those at
‘high-risk’ could be the target for early risk reduction interventions (Twisk, 2003). Crucially,
the majority of obese adults (70%) were not obese in childhood (Simmonds et al., 2016),
suggesting factors impacting and accumulating over the life course. This also emphasises
that further understanding of the many factors and how they interact to influence obesity
across the life course is necessary. Furthermore, this highlights the need for biomarkers that
could identify those who are at risk of subsequent obesity, so that interventions can be

targeted.

1.1.3 The consequences of obesity

On average, obesity decreases life expectancy by three years, and severe obesity by up to 10
years (Prospective Studies, 2009). Obesity can cause ill health in childhood and premature
mortality and physical morbidity in later life (Reilly and Kelly, 2010), drastically impacting on
the individual’s physical and psychological health as well as socioeconomic effects (Reilly et
al., 2003). The clinical consequences can range from type 2 diabetes (T2DM), metabolic
complications, risk of some cancers, cardiovascular disease (CVD), asthma, sleep apnoea,
and menstrual cycle abnormalities (in females)(Reilly et al., 2003, Lee, 2009, Reilly and Kelly,
2010, Umer et al., 2017). Furthermore, life course body mass index (BMI) gains and earlier
obesity onset are associated with poorer physical functioning in middle age (age 50),

stressing the importance of prevention and delaying onset of obesity (Rogers et al., 2019).

Obesity also represents a global economic problem, as obesity-related diseases could cost
the National Health Service (NHS) an extra £2.51 billion by 2035 (The UK Health Forum and
Cancer Research UK, 2015).



1.1.4 Definition and measurement of body composition in adults

Obesity is defined by the WHO as “abnormal or excessive fat accumulation that may impair
health” (World Health Organization, 2019). Therefore, definitions of obesity in children or
adults should meet these two criteria of: diagnosing high body fat and increased risk of

health outcomes.

There is no accepted ‘gold standard’ of measuring obesity. There are many methods for

determining body composition, which each have acknowledged advantages and drawbacks (



Table 1.2). No single measure is error-free, and the choice of measurement is dependent on

cost, availability, the population under study and the outcomes of interest (i.e. disease risk).

BMI, a measure of weight related to height, is the measure most frequently used to
categorise individuals into weight categories (Table 1.1). Obesity is defined according to the
WHO criteria as a BMI greater than 30 kg/m?, with well-established risks of all-cause
mortality (Aune et al., 2016). Overall, BMI is a quick, easy, inexpensive measure to determine
weight status. Generally, BMl is practical on a population level, however it represents a
proxy, rather than a direct measure of body fat, and there is some disagreement as to
whether BMI is the best diagnostic measure (Adab et al., 2018). Furthermore, BMI does not
adjust for sex or age, or consider variation by pubertal status or ethnicity (although different
cut-offs do exist). BMI also does not provide information on fat distribution or proportions of

lean and fat mass (World Health Organization, 2011c).

Alternative measures to BMI that are viable in a clinical setting include measures of
abdominal fat (i.e. waist-to-hip ratio or waist circumference) or body fat (i.e. skinfold

measurements or bio-electrical impedance).

Waist circumference (WC) is an indicator of visceral fat (the fat stored around internal
organs). Cut-off points are used to identify individuals at increased risk of metabolic
complications (Table 1.1). Waist circumference-based measures have been shown to more
accurately reflect obesity prevalence than BMI (O'Neill, 2015), and are independently
associated with cardiovascular risk (Huxley et al., 2009) and all-cause mortality (Pischon et
al., 2008, Sahakyan et al., 2015). Whilst a WC greater than the cut-off is purported to
increase risk, it will not accurately capture all of those at risk due to differences in body
composition (small frame), however it does represent a quick method of identifying
individuals with central obesity. An additional measure including the hip circumference, the
waist-to-hip ratio (WHR), can reveal more about fat distribution. There is often not much
difference between the measures of central obesity, either WC or WHR (Seidell, 2009). WHR
is arguably a more informative measure as it describes fat distribution around the waist in
proportion to the hips, and is usually a strong predictor of cardiovascular risk (Dalton et al.,

2003, Myint et al., 2014, Egeland et al., 2016).



Table 1.1. Categorisation of body composition according to the proxy measures BMI, waist circumference and waist-hip
ratio

Measure Ranges Category
BMI <18.5 kg/m? Risk of underweight
18.5-24.9 kg/m? Normal weight
25-29.9 kg/m? Overweight
30-34.9 kg/m? Class | obesity
35.0-39.9 kg/m? Class Il (severe) obesity
>40.0 kg/m? Class lll (morbid) obesity
Waist circumference >94cm (M), >80cm (F) Increased risk of metabolic

complications
>102cm (M), >99cm (F) Substantially increased risk of

Waist-hip ratio >0.90cm (M), 20.85cm (F)  metabolic complications

M, Male; Female. WHO cut-off points and risk of metabolic complications for Caucasian populations (World Health
Organization, 2011c).

Alternatively, body fat can be measured directly. Estimates of lean and fat mass can be made
from routine measures such as skinfolds or bioelectrical impedance. Advanced imagining
techniques can provide more accurate measures of body composition (Lee and Gallagher,
2008), although these are costly and more difficult to perform in routine settings. Examples
of these are dual energy x-ray absorptiometry (DXA), developed to measure bone mineral
mass, or air displacement plethysmography, which measures the volume of air displaced by
the subject in a confined space (i.e. the BOD POD). Body fat determined by bioelectrical
impedance (BIA), estimates body composition based on the conductive properties of lean
and adipose tissue. However, BIA replies on the assumption that fat free mass is composed
of 73% water, and is therefore affected by hydration level through food and drink
consumption, medications, and stage of the menstrual cycle (Dehghan and Merchant, 2008).
BIA has the advantage of being fast, simple and low susceptibility to inconsistencies from
operator technique (Prentice and Jebb, 2001). The choice of prediction equation for BlA is a
great source of variability (Reilly et al., 1996), and needs to be appropriate for the ethnicity

of study participants (Dehghan and Merchant, 2008).

Frankenfield et al,. found that 30% of men and 46% of women with a non-obese BMI (below
30 kg/m?) had ‘obese levels’ of body fat (Frankenfield et al., 2001), indicating that BMI will

misclassify some of those at risk. BMI measures both lean and fat mass and does not



distinguish between the ratios, which can change over time. For example, the loss of lean
tissue and hormonal changes (i.e. growth hormone and Insulin-like growth factor (IGF)

decreases with age) are important considerations in middle age.

An advantage of using BF% over BMlI is in that two individuals could have the same height
and weight and therefore the same BMI whilst one has a higher proportion of body fat and
the other higher muscle mass. Similarly, the same could be said for individuals with the same
BMI but one apple-shaped, with a high central fat distribution and the other pear shaped
with less visceral fat. These two individuals would have different health risks associated with
their body composition and therefore it is important taking into account different measures

where data are available.



Table 1.2 Advantages and disadvantages of different methods of measuring body composition routinely used in cohort

studies
Measure Advantages Disadvantages
BMI = Simple, inexpensive = Questionable validity for non-
measure Caucasian populations
= Easy to obtain, therefore = Not an accurate measure in
useful screening tool and athletes as it does not
population measure differentiate fat from muscle
=  Well-characterised with mass
standard cut-off points = Does not account for age or
=  BMI categories are sex or age
associated with health risks =  Provides no information on
= Strongly correlated with fat distribution
sophisticated measures of
body fat
Percent body fat = Fast and simple = BIAis less accurate than
using BIA = Less prone to error from advanced imaging techniques
operator technique = Hard to calibrate
= Portable and convenient = Body water could be affected
by dehydration or illness
Waist = A measure of central fat =  Perhaps less accurate than a

circumference or
WHR

distribution and visceral fat
An independent risk factor
for disease, and specifically
a marker of CVD

Simple, straightforward and
inexpensive

Strongly correlated with
more sophisticated
measures of body fat

measure of waist and height
WHR could be prone to error,
as requires accuracy of two
measurements (waist and hip)

1.1.5 Measurement of body composition in children

When choosing a measure in children, there are similar considerations as in adults, based on

cost, acceptability, and ease of application (



Table 1.2). There is no ‘gold standard’ in body composition measurement in children,
however BMI is the most common means of categorising weight. The main difference in
children is that measurements need to take into account that they are still growing and
hence require growth charts. For example, growth references derived from an appropriate
reference population can be used to transform absolute BMI values (standard deviation z-
scores). Each growth curve has its own set of recommended thresholds to classify
overweight or obesity. The UK90 growth reference is most commonly used in UK
populations, and either centiles or standard deviation can be used as BMI cut-offs (Weng et
al., 2012, Bammann et al.,, 2014, Woo Baidal et al., 2016). BMI cut-offs in children have high
specificity and moderate sensitivity (Javed et al., 2015), meaning that some obese children
may be missed, but healthy weight children are not likely to be wrongly classified as OWOB
(Mast et al., 2002, Bedogni et al., 2003). In children, BMI has good acceptability as a
measure, compared to more intrusive measures, or those that require clothing to be
removed, which may not be appropriate in some settings or populations (Simmonds et al.,

2015a).

Similar to body composition measures in adults, growth charts have been developed for use
in children’s for measures: BMI (Lindgren et al., 1995, Wells et al., 2012, Weber et al., 2013),
BIA (Chumlea et al., 2002), skinfolds (Tanner and Whitehouse, 1975), DXA (Van der Sluis et
al., 2002) and more recently for 4-component models (divides body weight into fat, water,

mineral, and protein)(Wells et al., 2012).

Whilst waist measurements of obesity have been well characterised as risk factors in adults,
there is less evidence to suggest that WHtR is also associated with cardio-metabolic risk in
children (Kuba et al., 2013). Generally fat distribution patterns, either android (‘apple-
shaped’) or gynoid (‘pear-shaped’), generally start to emerge in puberty (Lobstein et al.,
2004), although some studies have found evidence of fat patterning in pre-pubertal children
(Mast et al., 1998). Waist-to-height ratio is a measure of whether the amount of upper body
fat is appropriate relative to height (McCarthy and Ashwell, 2006). It is calculated as the
waist measurement divided by height measurement in cm. A simple cut-off of a WHtR >0.5 is
the commonly accepted value (regardless of sex or age) determining ‘waist obesity’, which
translates to a weight that is over half height. In children WC sensitivity ranges from 35-
100% and specificity from 81-100%, however waist-to-height ratio (WhtR) has the best
diagnostic accuracy, although examined in fewer studies (Simmonds et al., 2015a).
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Whether it is a better indicator than BMIz is unclear, however increased waist obesity (using
WHTtR) has been found in children even when BMIz remains the same (Fredriksen et al.,

2018).

Direct measures of fat have advantages over proxy measures. Fat mass can be measured in
similar ways as in adults and carries the same limitations (section 1.1.4). Skinfold
measurements offer an alternative, however compliance is low and there are issues in
ensuring correct technique when measuring young children (Kehoe et al., 2011).
Alternatively, fat mass can be measured using BIA, and in systematic reviews has been found
to have good reliability (Talma et al., 2013), reproducibility (Chula de Castro et al., 2018), and
performs well in measuring change in body composition (Meredith-Jones et al., 2015) in
children. However, BIA may be prone to measurement error (Talma et al., 2013),
underestimate fat mass (Chula de Castro et al., 2018), and in terms of outcomes is not
superior to BMI in predicting cardiovascular risk factors in OWOB children (Bohn et al.,
2015). When examining fat mass in children it is important that measures take into account
height. Fat mass index (FMI) is calculated as fat mass (kg) divided by height (m) squared.
Findings from the Gateshead Millennium study determined that FMI was a more sensitive
measure than BMI (Basterfield et al., 2012a) and proxy measures of adiposity were inferior

(Basterfield et al., 2012b).

Whilst BMI is imperfect, there are a lack of validated reference values for alternative
measures of adiposity in children (Javed et al., 2015). BMl is the only measure recommended
for use of determining obesity in children in the UK (Simmonds et al., 2015a), and will
therefore likely remain the most frequently used measure for now. However, there is
support for using additional measures such as WHtR or FMI which may be able to detect

larger waist circumferences and higher fat mass in children.

1.2 Aetiology of obesity

1.2.1 Current concepts

The convincing factors that increase risk of obesity determined by WHO include; high intakes
of energy dense, nutrient poor foods and a sedentary lifestyle (World Health Organization,
2003). However, obesity aetiology extends beyond the archaic notion that weight gain
simply results from intake of more calories than required for whole-body metabolism

(energy expenditure). Energy expenditure is a combination of the basal metabolic rate, the
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thermic effect of food, and activity related expenditure (Levine, 2005). From a physical
perspective, the laws of thermodynamics regarding energy conservation in living organisms
are often applied as an explanation, namely calories in vs. calories out, or dietary intake vs.

physical activity.

This reductionist approach disregards the multitude of factors that influence food intake,
energy expenditure, and whole-body metabolism, which are regulated by complex feedback
mechanisms. Regulatory processes in the human body ensure that, for the most part, body
mass and energy intake/expenditure remain fairly stable (Jéquier and Tappy, 1999).
Therefore, excess weight gain must be driven by other factors. The environmental basis for
obesity was also addressed in the Governments Foresight report, which acknowledged the
multiple societal influences and the need for a multifaceted approach (Butland et al., 2007).
Addressing the underlying causes of obesity requires an understanding of the socio-
economic, psychological, behavioural, and socio-cultural factors, including the drivers of
food choices, eating patterns and participation in physical activity. However, environmental
factors are ubiquitous and not everyone has obesity, suggesting underlying factors that

increase susceptibility for some.

It is important to distinguish between risk factors and causes. Causality is the study of the
relationship between an event (the cause) and an outcome (the effect) which occurs
consequently. The presence (or absence) of a causal factor can lead to illness or disease,
therefore when a cause is removed the outcome should cease. Whereas a risk factor is
something that increases the statistical risk of a disease, but a risk factor is not necessarily a

cause and could be a surrogate for the underlying cause.

In terms of the genetics of human obesity, there is evidence for genetic mutations and
genetic variation. Specific gene mutations, such as those related to leptin, have been
implicated in development of monogenic obesity, these however are very rare (Montague et
al., 1997). Distinguished genetic mutations include those involved in food intake control
(Neuropeptide Y, leptin, Pro-opiomelanocortin), energy regulation (B2-adrenergic and B3-
receptors), thermogenesis (uncoupling proteins 1-3), adipogenesis, signalling (peroxisome
proliferator-activated receptor), and leptin and the leptin receptor (Farooqi and O'Rahilly,
2004). There is also the capacity for small genetic changes, such as single nucleotide
polymorphisms (SNPs), to influence susceptibility across the life course (Thorleifsson et al.,

2009, Willer et al., 2009). A genome-wide association study, which combined multiple
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polymorphisms into a risk score using 97 genetic loci, explained 2.7% of the variation in BMI
(Locke et al., 2015). Although important, genetic variants remain fairly stable over time and

cannot explain the extent of the rise in obesity (Yang et al., 2007).

Gene-environment interactions refer to phenotypic changes in response to environmental
cues, dependent on genotype. These dictate individual responses to environment and
downstream effects on weight. However, those genetically susceptible would be more likely
to gain weight in a weight-promoting environment, and hence genetic factors may exert
more of an effect when colluding with obesity risk factors. For example, in the case of the
FTO genotype, which is associated with an increased risk of obesity in children and adults
(Frayling et al., 2007), the risk can be attenuated by physical activity (Kilpeldinen et al.,
2011), or diet composition (Sonestedt et al., 2009).

In summary, probable aetiological factors in obesity are likely a mixture of genetics,

individual lifestyle factors, and perhaps more importantly, gene-environment interactions.

1.2.2 Obesogenic environments

Increases in childhood obesity in the last 20 years have been somewhat attributed to social
change and a changing environment. Over this time, there has been widening social
inequalities in childhood overweight (NHS Digital, 2016, Bann et al., 2018), and changes in
the social patterning of obesity (Knai et al., 2012). All of the environmental influences and
conditions of life that encourage overweight and obesity have been termed the ‘obesogenic

environment’ (Lake et al., 2011).

The ever-increasing ‘obesogenic’ macro and microenvironments have developed over the
last 30 to 40 years. Diets have changed; food is widely available and easily accessible, in
particular energy-dense convenience foods. Decreasing levels of physical activity and
increasingly sedentary lifestyles have been facilitated by labour-saving devices,
improvements in transport and shifts to more sedentary jobs, highlighting another
dimension to the problem. Additionally, marketing of food has become aggressive and

advertising ever-present.

Health behaviours are often targeted for interventions at the individual level. Social
characteristics are a more difficult avenue for intervention as they require large-scale
changes, but are important determinants of health (Tarlov, 1999). Minimising the exposure

to harmful environments may even-out the distribution of health, although there are
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obvious health inequalities between social groups that need to be considered in public

health interventions.

1.2.3 Obesity and inequalities

In the UK, socioeconomic status (SES) and obesity are related across all ages (PHE, 2013).
Current statistics from Public Health England show an increased risk of obesity with
increasing levels of deprivation across all indicators for women, whilst the relationship is less
clear for men (Marmot et al., 2010). Although trends in UK childhood obesity prevalence
have begun to stabilise in the past decade, this is not the case for children in the lower

socioeconomic groups (Stamatakis et al., 2009).

The relationship between SES and obesity is thought to be due to a number of factors, which
have been explored by Cutler et al. (2008). Generally, lower SES leads to greater exposure to
health-compromising issues. It also creates vulnerability (i.e. lower income— lower nutrient
intake—more vulnerable to infection—more time off work—lower earnings) thereby
facilitating the cycle of disadvantage. This is similar to Riley’s life course model, which
theorises the accumulation of risk, which is the idea that exposures accumulate throughout
life, for example from periods of illness, adverse conditions and detrimental health
behaviours (Riley, 1989). Lower SES can also contribute to psychosocial issues, for example,

uncertainty of future access to resources can lead to increased stress levels.

Research consistently shows that adverse early life socioeconomic conditions are associated
with poorer adult health (Smith et al., 1998, Power et al., 1999, Poulton et al., 2002).
Socioeconomic factors are considered important risk factors in childhood obesity, but also a
potential source of confounding. There is a cycle of obesity in families, and parental obesity
can be considered one of the greatest risk factors for childhood obesity (Parsons et al.,
1999). This is likely related to genetics and SES, but also further exacerbated by maternal
overweight as an in utero exposure. Obesity risk is lower in adoption studies but still
remains, suggesting the shared socioeconomic environment has an effect (Stunkard and

Sorensen, 1993).

Findings from a review of longitudinal studies support that SES precedes obesity risk (Ball
and Crawford, 2005). A systematic review determined that socioeconomic differences in BMI

emerge by age five, with the majority of studies demonstrating an inverse association, in
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particular for parental education (Shrewsbury and Wardle, 2008). Findings from the
Millennium Cohort Study indicate that education of the primary carer is more strongly
associated with obesity rates in in children age 5 than income (Brophy et al., 2009). In the
Avon Longitudinal study of Parents and Children (ALSPAC) cohort, trajectory modelling of
obesity on the basis of maternal education revealed differences emerging at age 4, which
then widened with age (Howe, 2012). Parental income and education will determine food
and lifestyle choices, access to health care services and housing conditions, all of which can

affect child health.

These shifts in obesity prevalence in the lower socioeconomic groups in developed countries
(McLaren, 2007b, Shrewsbury and Wardle, 2008), and more recently in low-mid income
countries (Popkin et al., 2012) is termed the nutrition transition. This occurred with the
accessibility of relatively cheap, low nutrient, high energy dense foods, leading to increased
caloric intake (Popkin, 2001). Generally, socioeconomic disadvantage is associated with
consumption of poorer diets which do not meet dietary recommendations: lower fruit and
vegetable intake and higher intake of sugar and fat (Hanson and Chen, 2007). Socioeconomic
disadvantage also affects infant feeding, and is associated with decreased duration or
initiation of breastfeeding (Thulier and Mercer, 2009, Wijndaele et al., 2009a). Features of
the built environment including neighbourhood safety, access to local facilities and food
outlets, and social facilitation of unhealthy behaviours are important factors (Papas et al.,
2007, Lovasi et al., 2009). Although parental SES often predicts obesity within the individual,
intergenerational upward social mobility can have a positive impact (Cavaco et al., 2014),

therefore SES represents an important target for interventions.

Overall, these findings demonstrate that obesogenic environments play an important role.
An issue that remains unresolved is to disentangle the relative importance of environment

factors and SES on later life obesity (Parsons et al., 1999).

1.2.4 The Developmental Origins of Health and Disease Hypothesis

1.2.4.1 Background of the theory

Hypotheses attributing early life factors in the development of subsequent disease later in
life are relatively contemporary, as is the field of life course epidemiology. The seminal work
by Barker and colleagues introduced the foetal origins of adult disease hypothesis (Barker,

1994). They noted a correlation between low birthweight and rates of coronary heart

15



disease in adulthood, leading to the theory that foetal undernutrition alters physiology and
metabolism, leading to increased risk of heart disease in later life (Barker et al., 1989). The
Barker hypothesis has since expanded into the Developmental Origins of Health and Disease
(DOHaD) hypothesis, which has a broader scope. The hypothesis proposes that exposures in
early life predispose an individual to many diseases in later life, including obesity
(Samuelsson et al., 2008, Schellong et al., 2012), CVD (Barker et al., 1989) and T2DM
(Whincup et al., 2008).

However, as early as 1962, James Neel noted that Human history was defined by periods of
feast or famine, and those who had had fat reserves would have better survival and fertility
(the ‘Thrifty gene’ hypothesis)(Neel, 1962). Neel’s adaptive hypothesis has since been
counteracted by the non-adaptive ‘Drifty gene’ hypothesis: that excess adiposity was not a
survival advantage, but that genetic drift in genes encoding the upper body weight limit
occurred when the risk of predation diminished (Speakman, 2008). The thrifty genotype has
been hailed as ‘too simplistic’ (Reddon et al., 2018), in that everyone would be predisposed
to obesity and therefore any high-risk SNPs would have appeared in the last 900,000 years
(Speakman and Westerterp, 2013), which appears not to be the case (Wang and Speakman,
2016).

Commonality across these hypotheses is that susceptibility to disease is determined in
developmentally critical periods, originating from prenatal and early life experience (Hales
and Barker, 1992, Barker, 1995). These theories have shaped the discipline that is life course
epidemiology as it stands today. Life course epidemiology examines how different aspects of
biological, social and physiological disease risk factors impact at different stages over the life
span, with potentially independent, cumulative or synergic effects (Ben-Shlomo et al., 2016).
A life course approach can examine the effects of exposures at one time point on

prospective outcomes, useful in the study of obesity due to its multi-dimensional aetiology.

Initially, this accumulation of risk was believed to have specific ‘critical’ or sensitive periods,
operating in early life (i.e. foetal origins). However, longitudinal cohorts, which have the
advantage of monitoring change over time, have also identified factors impacting at
different time points. For example, the prenatal period, early infancy, the period of adiposity
rebound and adolescence have been suggested to be critical time windows for early life
programming of adult disease (Dietz, 1994). However, the term ‘programming’ has been

criticised, as it implies disease is predetermined, and ‘conditioning’ has since been suggested
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as a term to encompass how an individual is primed to respond to environmental challenges
in a certain way, but it is not set in stone (Hanson and Gluckman, 2014). The DOHaD model
has three key avenues; i.) Immediate homeostatic response; ii.) Predictive adaptive
response; and iii.) Natural selection over many years (Ben-Shlomo et al., 2016). When there
is mismatch between in-utero and postnatal environments, disease can occur. The predictive
adaptive response, a phenotype with advantages in a predicted environment, could be
harmful when there is a mismatch between a nutrient deprived intrauterine environment

and a postnatal obesogenic environment.

1.2.4.2 Evidence from human studies on mismatched environments

One of the key examples of early life nutrient restriction in humans is the Dutch hunger
winter of 1944-45, a result of the German occupation of the Netherlands during the World
War Il (WWII). It provides a rare opportunity to study the long-term effects of in utero
nutrient restriction (<1000kcal/day) in humans previously well nourished. Pregnant women
exposed to famine in early and mid-gestation, followed later by an adequate diet, had
offspring who were more at risk of increased adiposity and impaired glucose tolerance as
adults (Ravelli et al., 1998, Ravelli et al., 1999, Stein et al., 2007). Furthermore, the offspring
of prenatally undernourished fathers (but not mothers) were more obese than offspring of
parents who had not been undernourished, independent of paternal BMI, and thereby

demonstrating potential transgenerational effects (Veenendaal et al., 2013).

In the Chinese famine of 1959-61, sex differences were also observed in that females born
during the famine had a higher prevalence of OWOB but not males (Yang et al., 2008). It is

interesting that these historical famines demonstrate sex differences in obesity outcomes.

Additionally, evidence of seasonal nutritional variation in The Gambia also supports the
theory that alterations in maternal nutrient intake can affect birthweight (Rayco-Solon et al.,
2005) and early mortality (Moore, 2016). The mechanisms have been examined using
various animal models, and findings support that nutrient restriction leads to metabolic
dysfunction in the offspring, both dependent (McKay et al., 2014) and independent of
subsequent maternal food intake (Bispham et al., 2003). These findings highlight the
detrimental effects of a mismatch between in utero insufficiency and postnatal nutrient

intake.
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1.3 Evidence for early life risk factors associated with obesity
With the earlier age of onset of childhood obesity, as well as the evidence supporting the
DOHaD hypothesis, there is increasing interest in the early life factors contributing to obesity

development.

Potential early life risk factors for obesity have been examined in multiple cohorts. A
comprehensive systematic review of 30 prospective studies identified risk factors for
childhood overweight to be; high birthweight, maternal smoking during pregnancy, early
rapid weight gain, maternal pre-pregnancy overweight, whilst breastfeeding was protective
(Weng et al., 2012). Another review determined maternal BMI, childhood growth and family
SES to be probable risk factors (Brisbois et al., 2012). Similar themes emerge from these
reviews surrounding maternal lifestyle influences, early life feeding and growth and

socioeconomic disadvantage (Table 1.3).

A large review of risk factors for childhood obesity in the first 1,000 days found consistent
associations for maternal pre-pregnancy BMI, prenatal tobacco exposure, maternal excess
gestational weight gain, high infant birthweight, and accelerated infant weight gain (Woo
Baidal et al., 2016). There was also some support for gestational diabetes, low SES, low
maternal-infant bonding, and in infants; child care attendance (as a proxy for infection),
antibiotic exposure, disturbed sleep, early introduction of solid food intake (Woo Baidal et
al., 2016). Birthweight is often used as a proxy measure of factors affecting growth and

development (Table 1.3).

Table 1.3 Summary table of the pre- and post-natal early life risk factors of OB, and proxy measures utilised in birth cohort
studies lacking prenatal data

Category Risk factor Proxy measure
Pre-natal
Smoking LBW/SGA
Stress LBW/SGA
Maternal factors  Maternal obesity HBW/LGA
Diabetes HBW/LGA
Maternal diet HBW/LGA

Maternal age
Paternal factors Nutrition & sperm quality
Smoking
Post-natal
Infant feeding
Early life growth
Early life stress Adverse childhood experiences
Childhood infection Antibiotic exposure
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Sleep issues Sleep disturbance, night-time waking
Socioeconomic status Maternal education

Parental socioeconomic status
LBW, low birthweight; HBW, high birthweight; SGA, small for gestational age; LGA, large for gestational age.

1.3.1.1 Birthweight

There is empirical evidence of a U-shaped curve between birthweight and adult obesity

(Curhan et al., 1996), implying risk for both low and high birthweight infants.

1.3.1.1.1 Low birthweight (LBW)

Intrauterine growth restriction (IUGR) is classified as a birthweight below the 10™" percentile,
adjusted for gestational age. It can occur as a result of pre-eclampsia, placental insufficiency
or maternal undernutrition (Villar et al., 2006, Salam et al., 2014), which can result from
nutrient restriction, maternal smoking and stress. The foetus prioritises brain development
at the expense of other body systems such as the renal or endocrine (Desai et al., 1996). In
the case of the latter, it can lead to impaired Beta cell development and hence altered
insulin secretion which predisposes the infant to glucose intolerance and diabetes (Portha et
al., 2011). Pre-eclampsia is also more likely in mothers with a high BMI, pre-gestational
diabetes, chronic hypertension, and in assisted reproductive technology pregnancies

(Bartsch et al., 2016).

A potential mechanism as to how foetal undernutrition results in increased offspring
adiposity could be through altered appetite regulation. In a rat model of undernourished
mothers, food intake was significantly elevated at an early postnatal age in offspring, and
continued to increase with age (Vickers et al., 2000). This hyperphagia when combined with
a high fat diet resulted in increased offspring weight, indicating that both intrauterine and
environmental factors are important. A rat model of IUGR demonstrated decreased plasma
leptin and increased ghrelin, with a postnatal period characterised by excess food intake,
catch-up growth and metabolic syndrome with comorbidities including obesity (Desai et al.,
2005). Appetite stimulatory factors in the growth-restricted animals were at levels
comparable to those of the fasting controls, demonstrating the potential for in utero

programming of orexigenic hormones.

Other exposures that could suppress in utero growth (i.e. maternal smoking, stress and

nutrient restriction) are examined in subsequent sections.
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1.3.1.1.2 High birthweight (HBW)

The associated risk factors for large for gestational age (LGA) infants include pre-pregnancy
obesity, excessive maternal weight gain, maternal or gestational diabetes mellitus (GDM),
increasing parity and prolonged gestation (Jolly et al., 2003). LGA is defined as birthweight
above the 90" percentile. LGA is related to childhood obesity, T2DM, CVD, and altered
appetite and energy regulation in the offspring (Heerwagen et al., 2010, Dabelea and Crume,

2011, Frias and Grove, 2012).

Findings from the Southampton Women's Survey found that parity was associated with
increased birthweight (Harvey et al., 2007), although this effect could be confounded by
maternal obesity or SES. However, Hinkle et al. (2014) determined that the effects of parity
were independent of factors related to maternal BMI or weight gain. The effects of parity

appear to persist and are evident in adult offspring (Reynolds et al., 2010).
1.3.1.2 Maternal factors

1.3.1.2.1 Maternal body composition

In a large meta-analysis including 39 cohorts (265,270 births), both high pre-pregnancy BMI
and gestational weight gain (GWG) were associated with risk of pregnancy complications,
including gestational hypertensive disorders, GDM, and LGA (Santos et al., 2019). Obese
mothers who had excessive GWG had the highest risk of pregnancy complications, and
strikingly, 24% of pregnancy complications were attributed to maternal OWOB. Maternal
body composition has also been associated with child overweight in many longitudinal birth
cohorts (Baker et al., 2004, Harvey et al., 2007, Wright et al., 2010a, Bammann et al., 2014,
Fairley et al., 2015b), yet Mendelian randomization analysis did not support a strong causal

intrauterine effect of higher maternal BMI on offspring adiposity (Richmond et al., 2017).

However, the effects may be indirect via birthweight, as evidence suggests the relationship

between maternal BMI and GDM on birthweight is casual (Tyrrell et al., 2016).

In England around half of women of childbearing age are OWOB (Craig et al., 2014). This has
accompanying short-term risks of increased birth complications, increases the likelihood of
GDM, and is associated with lower breastfeeding rates (Leddy et al., 2008). However, a
randomised controlled trial (RCT) of antenatal dietary and lifestyle interventions in OWOB

pregnant women (LIMIT study), was not successful in reducing the risk of adverse maternal
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pregnancy and birth outcomes (Dodd et al., 2014), and further research is required into the

mechanisms driving these associations.

1.3.1.2.2 Diabetes

Similar to the effects of maternal obesity, GDM is associated with HBW and increased risk of
obesity and T2DM later in life (Bartsch et al., 2016). There is the increased risk of obesity in
offspring of mothers who were diabetic before conception and those with GDM (Pettitt et
al., 1983, Pettitt et al., 1988, Silverman et al., 1998). The risk is not likely due to genetic
transmission, as siblings born when the mother was not diabetic do not have the same risk,

implying that the disease state alters offspring phenotype (Dabelea et al., 2000).

An Australian trial for pregnancy treatment of GDM reduced macrosomia and pregnancy
complications (Crowther et al., 2005), however there was no difference in offspring body
composition in childhood (age 4-5) (Gillman et al., 2010). Other trials have also not found

promising results, although long-term follow-up is needed (Guillemette et al., 2017).

1.3.1.2.3 Maternal age

Advanced maternal age, commonly considered as over 35 years of age, has been associated
with GDM, gestational hypertension, preeclampsia, small for gestational age infants,
spontaneous late preterm delivery, and caesarean section (Kahveci et al., 2018). Maternal
age at birth is increasing in England (Office for National Statistics, 2017), therefore there

could be important clinical implications.

Increasing maternal age could be synonymous with increases in parity, or to age-related
metabolic changes relating to glucose regulation (Chandler-Laney et al., 2013). When
controlling for all covariates, only maternal age below 25 and above 35 was associated with
adverse offspring health outcomes (Myrskyla and Fenelon, 2012). Evidence for parity is

mixed and warrants further investigation.

There are numerous biological and social theories surrounding this phenomenon of a U-
shaped relationship between maternal age and offspring health outcomes. Older mothers
are subject to physiological disturbances which occur with age, and a decline in reproductive
functionality. There is increased risk of adverse outcomes in pregnancy, such as LBW and
pre-term birth (Goisis et al., 2017, Sohn, 2017, Fuchs et al., 2018). In terms of metabolic
health, it has been shown that offspring of both younger and older mothers had higher adult

fasting glucose concentrations (Fall et al., 2015).
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However, it is not necessarily the age of the mother that is the underlying cause, but the
individual life circumstances, such as health behaviours in older mothers (Goisis et al., 2017),
or age-related increases in maternal BMI (Sutcliffe et al., 2012). A study in Swedish youths
(aged 19 in 2009), found that having an older mother was associated with lower self-rated
health, including lower likelihood of regular exercise, and increased likelihood of obesity in
adolescence (Barclay and Myrskyla, 2016).0n the other hand, older maternal age has been
shown to have many beneficial effects on child (up to age 5) health and development
(Sutcliffe et al., 2012). Furthermore, sibling analysis has shown that although children born
to older mothers are born smaller, as adults they are taller, more intelligent and are less

likely to smoke (Carslake et al., 2017).

Although less recognised, paternal effects can also impact. Advanced paternal age has also
been associated with adverse offspring health effects such as risk of stillbirth, some cancers,
autism, and neurodevelopmental disorders (Malaspina et al., 2015, Nybo Andersen and
Urhoj, 2017). Maternal and paternal age are likely to be similar, therefore there will be a

high risk of collinearity and residual confounding, leading to heterogeneity in findings.

1.3.1.2.4 Maternal smoking

It has long been known that smoking during pregnancy has adverse outcomes on foetal
development, in particular yielding LBW infants who are at increased risk of poor health
outcomes, in particular when exposed during the third trimester (Kleinman and Madans,
1985, Lieberman et al., 1994). Maternal smoking during pregnancy is associated with a dose-
dependent decrease in birthweight (Newnham, 1991), and is independently associated with

later catch-up growth and childhood overweight (Harvey et al., 2007, Fairley et al., 2015a).

Systematic reviews support that maternal prenatal smoking is consistently associated with
increased odds of childhood OWOB (Rayfield and Plugge, 2017). In a UK longitudinal birth
cohort, maternal smoking during pregnancy was associated with a higher offspring BMI-z
score and increased risk of child overweight as early as 3 years old (Fairley et al., 2015a).
Whilst a Swedish cohort found maternal overweight and maternal smoking to be the
greatest determinants of offspring overweight in young men (Koupil and Toivanen, 2007).
There is uncertainty regarding a causal link between maternal smoking and offspring BMlI in
humans, as paternal smoking also demonstrates similar outcomes, which suggests factors

operating within the shared environment (Howe et al., 2012). There is evidence for a causal
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influence of maternal smoking during pregnancy on birthweight as the link was stronger for
exposure for mothers than for fathers (Davey-Smith, 2008), which may suggest smoking has

indirect effects on offspring body composition.

Under stringent experimental conditions, prenatal exposure to nicotine in rats resulted no
differences in birthweight, but significant increases in weight were observed after 10 weeks
of age (Gao et al., 2005). Although causal mechanisms were not explored (Gao et al., 2005),
the increased adiposity could be a result the polycyclic aromatic hydrocarbons in tobacco
smoke, as exposure to high doses in pregnant rats dysregulates lipogenesis leading to weight
gain (Ortiz et al., 2013). However, doses examined in the rats were much higher than

assumed exposure in human pregnancy.

Second-hand smoke could also have detrimental effects, as rodents and pups exposed
during lactation also exhibit altered growth and metabolic complications (Santos-Silva et al.,
2013). Rat pups had a lower body weight and length at weaning, but a 50% increase in fat
mass and a 10% increase in food intake and a blood profile indicating metabolic disorder in
adulthood (Santos-Silva et al., 2013). This is important regarding information given to new
mothers, as even mothers who abstain from smoking during pregnancy but who restart

postpartum may still be putting their children at risk.

Smoking prevalence during pregnancy has been found to negatively correlate with the
socioeconomic variables such as maternal education (Cnattingius, 2004). Findings from the
National Child Development Study, suggest that low social class and smoking during
pregnancy influence the development of "high risk" adults, classified as those of a low
birthweight and with a high BMI at age 33 (Power et al., 2003). The growth trajectories of
the high-risk group showed that they gained weight steadily through life with a linear BMI
trajectory. This suggests that in utero factors are of precedence, as factors restricting foetal
growth were found to be associated with the high-risk phenotype, which could support

theories on detrimental catch-up growth or metabolic programming in LBW infants.

1.3.1.2.5 Maternal diet

Dietary intake of nutrients has been linked to subsequent obesity in numerous studies,
however due to difficulty in measuring this exposure in humans, the bulk of the evidence is
from animal research. There is evidence to suggest that maternal exposure to a high fat diet

(Venu et al., 2004, Bayol et al., 2007, Sun et al., 2012), polyunsaturated fatty acids
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(Muhlhausler et al., 2010), sugar (Frazier et al., 2008), a low protein diet (Desai and Ross,
2011), vitamin restriction (Venu et al., 2004) and vitamin D deficiency (Morales et al., 2015)
can impact on offspring adiposity. Furthermore, the timing of the nutritional exposure is
complex, with differential effects observed based on stage of pregnancy or lactation, and

therefore further discussion of specific nutrients is beyond the scope of this review.

1.3.1.3 Infant feeding

Infant feeding is another important factor that can affect early childhood growth and
subsequent risk of obesity (Ong et al., 2002c, Oken et al., 2008). Exclusive breastfeeding is
recommended for the first 6 months of life by the WHO (World Health Organization, 2011b),

however UK breastfeeding rates fall short (McAndrew et al., 2012).

Human milk has the perfect combination of nutrients, hormones and immune factors
required for infant development, and the beneficial effects of breastfeeding are well-
established (Ip et al., 2007) (Victora et al., 2016). However, studies have demonstrated
mixed results concerning offspring obesity (Koletzko et al., 2009, Beyerlein and von Kries,
2011, Marseglia et al., 2015). Systematic reviews and meta-analysis have found small,
protective effects of breastfeeding on obesity in later life, although effect sizes decrease
after adjustment for some confounding factors (parental obesity, maternal smoking and

social class)(Arenz et al., 2004, Owen et al., 2005b, Oken et al., 2008).

A dose-response effect has also been observed between duration of breastfeeding and
decreased risk of childhood obesity in a recent meta-analysis, particularly for durations over
7 months (Yan et al., 2014). Similarly breastfeeding was deemed protective, either long-term
(over 2 years) or exclusive for 6 months, however only long-term breastfeeding remained
significant in the multivariate analysis (Rathnayake et al., 2013). Long-duration breastfeeding
exerted a protective effect with an age-dependent decrease in body fat in males born to

overweight mothers (Buyken et al., 2008).

Findings should be interpreted with caution, as although most epidemiological studies
demonstrate a protective effect (Armstrong et al., 2002, Harder et al., 2005), the effect is
small and could signify publication bias (Dewey, 2003, Owen et al., 2005a) or residual
confounding (Brion et al., 2011). The Promotion of Breastfeeding Intervention Trial (PROBIT)

in Belarus, an intervention which successfully increased duration of exclusive breastfeeding,
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found no differences in childhood adiposity or metabolic markers, therefore not supporting

a protective role for breastfeeding on body composition (Martin et al., 2017).

Breast milk composition is determined by maternal diet and diabetes status and therefore in
some circumstances breastfeeding could have a detrimental effect. Breastmilk composition
can differ in obese and diabetic mothers with higher levels of fat, glucose and insulin (Young
et al., 2012). This may explain why breastfed infants of diabetic mothers had a greater risk of
overweight in childhood, with a dose-dependent relationship of breast milk ingested,
independent of total milk intake and post-natal diet (Plagemann et al., 2002). In a mouse
model of T2DM, cross-fostering pups from diabetic mothers to non-diabetic reduced body
weight, perhaps due to the high lipid content of obese dam’s breast milk (Reifsnyder et al.,
2000), supporting an influence of both breastmilk and intrauterine exposure. A recent study
also found that maternal obesity was associated with changes in the in human milk
metabolites, and infant body weight (Venditti et al., 2019). Similar to diabetic mothers,
obese women have higher levels of certain hormones and growth factors such as insulin,
leptin, TNF-a, and IL-6 (Fields and Demerath, 2012, Andreas et al., 2014), but the role these

factors has on infant growth is yet to be determined.

Many studies have found that formula-fed infants have different body composition
trajectories, which could be a result of the differing milk composition compared to breast
milk. As formula contains 1.5-2 times more protein than breastmilk this could accelerate
growth velocity (the IGF-1 theory) and hence adiposity (Koletzko et al., 2005). A Cochrane
review also reported that in LBW infants, high protein formula accelerates weight gain
(Fenton et al., 2014). Furthermore, interventions using lower protein formula have
demonstrated a positive effect on childhood body composition (reviewed by Redsell et al.

(2016)).

Discrepancies in findings could also be attributed to the populations under study, for
example due to genetic differences or differences in social attitudes towards breastfeeding,
where there is not support for a causal relationship (Brion et al., 2011). SES is associated
with likelihood of breastfeeding in the UK, with those in the more deprived groups less likely
to breastfeed (Oakley et al., 2013) and evidence that the protective effect on BMI could be

due to social patterning (Brion et al., 2011).
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1.3.1.4 Early life growth

Greater infant weight gain has been consistently associated with increased risk of
subsequent obesity in meta-analyses (Ong and Loos, 2006a, Druet et al., 2012, Zheng et al.,
2018).

A deprived intrauterine environment is associated with rapid postnatal weight gain, leading
to increased central adiposity at various life stages (Khandelwal et al., 2014). Although LBW
infants are more likely to have catch-up growth (Ong et al., 2000), it is not necessarily
detrimental and is essential for neurodevelopment, particularly in preterm or SGA infants
(Belfort et al., 2011). This advocates for a balance between adequate early life growth and a

need to differentiate ‘unhealthy’ catch-up growth.

Rapid growth occurs in all infants in the first year of life and is followed by a decline and a
plateau, until growth commences an upward trajectory again at the onset of puberty.
Adiposity rebound begins at the lowest BMI value, and if occurs early has been shown to be
predictive of later adiposity (Rolland-Cachera et al., 2006). Findings from the ALSPAC cohort
suggest various facets of early life growth are important risk factors for childhood obesity at
7 years, including birthweight, very early BMI or adiposity rebound, catch-up growth, weight

at 8 months and weight gain in the 1% year, (Reilly et al., 2005b).

Infant weight gain was found to have moderate predictive ability for childhood obesity in a
meta-analyses using 10 cohorts studies (area under receiving operating curve of 77%) (Druet
et al., 2012). A 1 standard deviation unit in weight in the first year was associated with twice
the odds of childhood obesity, and 23% increased odds of adult obesity. Recent systematic
reviews have also supported that rapid weight gain (RWG) during infancy is associated later
adiposity outcomes spanning from childhood to adulthood, but with higher odds in

childhood (Zheng et al., 2018).

Regarding the timing of the exposure, using a life course approach, weight gain as early as
the first week of life was a predictor of adult overweight status (for each 100-g increase OR
1.28, 95% Cl 1.08 -1.52) suggesting that this very early period of life could have a lifelong
impact (Stettler et al., 2005). RWG from birth to 1 year tends to be associated with higher
odds of childhood adiposity than the timespan between birth to 2 years (Zheng et al., 2018).

Infant fat mass at one year of age was significantly predicted by maternal age at delivery
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(Chandler-Laney et al., 2013). Other factors that can affect early life growth include

birthweight (section 1.3.1.1) and infant feeding (section 1.3.1.3).

1.3.1.5 Early life stress and childhood adversity

Early life stress is another proposed exposure in foetal programming of obesity. Stress is
purported to contribute to obesity through hormonal regulation of appetite and eating
behaviour (Torres and Nowson, 2007). A 2010 review by Entringer et al,. summarises
multiple mechanisms that could mediate the effects of prenatal stress, with targets including

metabolic, endocrine, or inflammatory systems (Entringer et al., 2010).

The stress response can be measured via corticotropin-releasing hormone (CRH) levels,
which when released stimulate the hypothalamic—pituitary—adrenal (HPA) axis. When
maternal CRH levels were measured in the late 2nd trimester of pregnancy there was an
negative association with offspring BMI z-score at age 3, but an increase in central adiposity
(Gillman et al., 2006). Studies using biochemical measures of stress are yet to yield results of
a long-term follow-up, however animal studies have provided more evidence. In dams
exposed to stress during the third week of gestation, as measured via corticosterone levels,
offspring had higher birthweights, greater postnatal body weights, and evidence of impaired
glucose tolerance (Tamashiro et al., 2009). Additionally, in mother-offspring bonnet
monkeys, a 4 month period of imposed variable foraging demand in early life, which acts as
a stressful exposure without food restriction, resulted in higher BMI and abdominal
circumference in the offspring (Kaufman et al., 2007). There are parallels with this study to
the current situation in the UK with increased reliance on food banks (Loopstra and Lalor,

2017), and uncertain food availability could be an important early life stressor.

In humans, stressful early life events are often defined as adverse childhood experience
(ACEs), and there is a growing body of evidence that suggests these can impact on multiple
health outcomes. The most frequent stressors examined are those which are direct, such as
maltreatment, abuse or neglect, or indirect acting at the household or environment level,
such as parental violence, parental separation or criminal behaviour (World Health
Organization, 2011a). Other less common ACEs examined are extrafamilial (such as bullying,
natural disasters)(Finkelhor et al., 2013, Mersky et al., 2017). For example, gestational
exposure to extreme weather such as an ice storm (Dancause et al., 2012) or flooding

(Dancause et al., 2015), have been shown to predict childhood BMI and adiposity.
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A systematic review, summarising results from eight studies, found that the direct
associations between ACEs and OWOB ranged 13-71% increased odds (Hughes et al., 2017).
Adolescents who reported an ACE were more likely to have a higher BMI, and there were
incremental increases in risk of overweight, obesity and severe obesity with increasing
numbers of ACEs (Davis et al., 2019). Whereas a large UK study found 4+ ACEs were
associated with 3x increased likelihood of morbid obesity, but not obesity (Bellis et al.,
2013). Considering family member death as a stressful exposure, antenatal bereavement has
also been associated with later life overweight (Li et al., 2010, Hohwii et al., 2014). These
results may suggest that more severe or more frequent exposure may be related to more

severe outcomes in terms of body composition.

In a longitudinal study examining childhood neglect and adolescent obesity, the potential
mediators were impulsivity, depression, and compulsive eating behaviour (Shin and Miller,
2012). Findings from the ALSPAC cohort, found that ACEs (birth-16 years) were associated
with lower risk of educational attainment and drug use and smoking, independent of SES
(Houtepen et al., 2019). This suggests that ACEs may influence the likelihood of risky or
compulsive behaviours, or more generally are associated with socioeconomic outcomes such

as lower education, unemployment and poverty (Hughes et al., 2017).

There is considerable heterogeneity in the literature regarding the definition and
measurement of ACEs, and many studies utilise questionnaire data or retrospective data.
Many studies examine early life the stressors across childhood (<18 years)(Hughes et al.,
2017), therefore further work examining very early life (as a critical period) stressful events

on later obesity could yield insight.

1.3.1.6 Factors affecting colonisation of the gut microbiota

There is growing interest in the role of the gut microbiota in disease. Maternal pre-
pregnancy BMI, antibiotics usage in the first 6 months and breastfeeding are factors that
have been associated with establishment of the gut microbiota (Ajslev et al., 2011).
Caesarean section is also an independent risk factor for childhood overweight, which may
perhaps be mediated by bacterial colonisation of the gut microbiota (Tun et al., 2018), and
the effects of caesarean section have been shown to be independent of maternal antibiotic

usage (Mueller et al., 2015a).
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Generally, observational studies suggest a link between antibiotic use and weight gain
(Million et al., 2013). As microbial populations are largely established in early life this could
link to disruptions in gut microbiota leading to altered physiology (Jernberg et al., 2010,
Robinson and Young, 2010, Martin and Sela, 2013). This could impact very early on in
development, as maternal antibiotic use in the 2" or 3™ trimester has also been associated
with higher childhood adiposity (Mueller et al., 2015b). However postnatal antibiotic use (1%
year) has been associated with increased likelihood of overweight or obese in childhood (age
9) (Azad et al., 2014), and a review found antibiotic exposure (first 6-12 months) or childcare
attendance (as a proxy), to be a risk factor for later child overweight in a small number of
studies (Woo Baidal et al., 2016), suggesting effects may not just be due to in utero

exposure.

Postnatal timing of the exposure may also be important, as a recent systematic review and
meta-analysis found that exposure to antibiotics in the first 6 months postnatal was
associated with OWOB (Rasmussen et al., 2018). Exposure between 6-24 months was not
associated, which may suggest the first 6 months reflect a critical period. Some studies only
find associations with >1 episode of antibiotics (Rasmussen et al., 2018), and evidence of a
dose-response effect with recurrent courses of antibiotics (Shao et al., 2017). In line with
this, antibiotic use throughout childhood was also associated with childhood weight gain
(Schwartz et al., 2016), and small associations for pre and post-natal infections with obesity
in early adulthood were uncovered in a large Danish cohort (Cocoros et al., 2013), suggesting

an effect beyond early life on outcomes in later life.

Furthermore, the type of antibiotics may also have an impact, as in ALSPAC post-natal
exposure to broad-spectrum antibiotics during the first 6 months of life was associated with

greater impact on body mass in infancy (Trasande et al., 2013, Bailey et al., 2014).

There is increasing interest in obesity as an infectious disease of viral origin, termed
‘Infectobesity’(Dhurandhar, 2011), likening the rapid spread of obesity to that of an
infectious disease (Atkinson, 2007). For example, SMAM-1 is an avian adenovirus that acts
on adipocytes and has been associated with human obesity (Dhurandhar et al., 1997). Ad-36
is another example of a adenovirus associated with human obesity (Esposito et al., 2012),
with some evidence of a causative role, as twin studies discordant for infection have shown
the infected twin to be heavier (Atkinson et al., 2005). Obese adults also take longer to shed

influenza virus, and therefore there is the possibility that obesity may play a role in viral
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transmission (Maier et al., 2018). There is however the risk of reverse causality, for example
Heras et al. (2019) found that short-term consumption of a high-fat diet could increase

susceptibility to listeria infection in mice.

These findings are interesting, but currently there is limited evidence for a causal

relationship between infection and obesity.

1.3.1.7 Sleep

The first few months of life are important for development of healthy sleep patterns and
circadian rhythm (Parmelee et al., 1964, Glotzbach et al., 1994). Short sleep duration in
infancy has been associated with OWOB (Bell and Zimmerman, 2010) and fat mass in
childhood (Reilly et al., 2005b, Bell and Zimmerman, 2010, Diethelm et al., 2011).
Associations were not evident for older children or for day-time sleeping (Bell and
Zimmerman, 2010). A systematic review examining risk factors for childhood obesity
operating in the first 1,000 days found some evidence for curtailed infant sleep, which
included quality and timing as well as duration (Woo Baidal et al., 2016). Most studies show
weak-moderate associations for short sleep duration and childhood body composition and
some evidence of a dose-response (Chen et al., 2008, Taveras et al., 2008). Obese children
(6-7 years old) slept half an hour less, but this could perhaps reflect reverse causality (Heppe

et al.,, 2012).

Many of the studies have been cross-sectional and findings from longitudinal cohorts are
less encouraging. There was no observed association between sleep duration and BMl in the
Longitudinal study of Australian Children (aged 0-7 years)(Hiscock et al., 2011), in the
GenerationR study in pre-school children (Heppe et al., 2012), or in the Born in Bradford
cohort (age 3)(Fairley et al., 2015a).

Differing results may be due to the definition of sleep problems, which is a great source of
heterogeneity. The studies outlined in Table 1.4 are not intended as an exhaustive review of
the literature but outline some of the differences in definitions of sleep disturbance or sleep
problems, and the associations with measures of body composition. The definitions most
frequently involve sleep duration, or alternatively, multiple occurrences of night-time waking
plus another factor. For example definitions have also included: parental report of
disturbance (Lozoff et al., 1985, Zuckerman et al., 1987), co-sleeping (Richman, 1981),

extended duration of a waking event (Richman, 1981, Zuckerman et al., 1987), or frequent
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waking and difficultly falling asleep. However there is no commonly accepted definition
(Gaylor et al., 2001), and there is still a need for a single definition of infant sleep problems

(Alamian et al., 2016).

Many children (20-30%) experience sleep problems in the early years (Sadeh et al., 2011).
Defining sleeping issues is further complicated by the subjectivity in parental perception of
sleep problems, and individual variation in infant sleeping patterns by developmental stage
(Thiedke, 2001, Sadeh et al., 2011). ActiGraph measures, which use a wearable device that
records body movement during sleep, can be translated to more reliable sleep—wake
measures (Sadeh et al., 1991). In a cross-sectional study using ActiGraph measures, there
was a positive correlation between short night time sleep at 6 months and greater weight-
for-length at age 6 months (Tikotzky et al., 2010b). However, a longitudinal study found no
association between ActiGraph infant sleep and adiposity later in infancy (36 months)

(Klingenberg et al., 2013).

Currently studies on sleep have demonstrated mixed results, which may be due to
differences in the definition, measurement, timing, severity of sleep problems, and age at
outcome. There is a need for longitudinal studies with more objective measures of early

sleep duration or disturbance.
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Table 1.4 Sleep assessment definitions used in studies examining both sleep and childhood body composition

Author (year)

Criteria for sleep disturbance

Associations with childhood
body composition

Zuckerman et al.
(1987)

Richman (1981)

Lozoff et al. (1985)

Taveras et al. (2014)

Heppe et al. (2012)

Reilly et al. (2005b)

Tikotzky et al. (2010a)

Chen et al. (2008)

Either waking 3+ per night, an event
lasting 1 hour, or parental report of
severe disturbance to the mother’s
sleep

Waking 5+ nights per week in addition
to; co-sleeping with parents, waking >3
times per night, or duration of a waking
event over 20 minutes

3+ waking occurrences per week and
parental report of disturbance

A score of ‘curtailed sleep’ (which
included quality, timing and duration),
from ages 6 months to 7 years

Infant sleep duration, at age 2 years was
dichotomised into “<11.5 h/night” and
“>11.5 h/night,” in accordance to the
mean sleep duration stated by the
American Academy of Paediatrics
Questionnaire data on sleep duration at
age 3 years

Various parameters from Actigraph
sleep analysis

Meta-analysis which used various
measures of sleep duration from
questionnaire data

Increased risk of overweight in
11-12 year olds (Alamian et al.,
2016)

Increased risk of overweight in
11-12 year olds (Alamian et al.,
2016)

No associations with
overweight in 11-12 year olds
(Alamian et al., 2016)

Sleep curtailment from infancy
to school age was associated
with higher odds of obesity in
mid-childhood

No association with preschool
overweight (around age 4
years)

Increased risk of obesity at age
7 years

Sleep duration was negatively
correlated with weight-to-
length ratio measures at age 6
months

Increased risk of OWOB
(throughout childhood).
There were reduced odds for
each hour increase in sleep,
and evidence of a linear dose-
response in younger children
(<10 years).

1.3.1.8 Cumulative risk factors

Whilst the exposures explored here could act in an independent manner, it is also plausible

that they could interact, or have a cumulative influence on obesity (graphically represented

in the Directed Acyclic Graph (DAG) in Appendix A).

The effect of multiple early life risk factors on childhood obesity has been investigated in a

handful of prospective birth cohorts. In the Southampton Women's Survey, the presence of

five risk factors (maternal obesity, excess GWG, smoking during pregnancy, low maternal

vitamin D status), was associated with a 3.99 relative risk of OWOB at age 4 years, which

increased to 4.65 at 6 years (Robinson et al., 2015).
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Similarly, Gillman et al. (2008a) examined four combined modifiable early life risk factors
(maternal smoking during pregnancy, excess GWG, short breastfeeding duration, and infant
sleep duration), which were associated increased the risk of overweight (age 3), with

sustained increased risk later in childhood (Gillman and Ludwig, 2013).

These studies demonstrate that clusters of socially patterned risk factors show evidence of

accumulation of risk over time, and therefore could be important targets for interventions.

1.4 Summary of early life risk factors and adiposity

The increases in obesity prevalence in children are of great concern due to the tracking of
weight from childhood to adulthood and will raise new issues for future generations. There
are acknowledged problems with primarily using BMI to determine obesity, and its use in

children due to differences in growth patterns and onset of puberty.

The majority of the literature on the developmental origins of obesity has focused on
maternal exposures, yet risk factors for obesity operate at different stages across the life
course (Parsons et al., 1999, Gillman et al., 2008a, Gillman et al., 2008b). Maternal risk
factors during pregnancy, such as smoking, excessive GWG or maternal obesity, are
important risk factors that can affect the likelihood of the offspring being overweight in
childhood (Robinson et al., 2015). Birthweight, often used as a proxy for an adverse
intrauterine environment, is well-studied factor that has demonstrated predisposition to

both childhood and adult obesity (Ravelli et al., 1999, Carolan-Olah et al., 2015).

There is evidence and plausible hypothesis for several early life risk factors (summarised in
Table 1.3). However there is uncertainty regarding a causal effects on BMI for exposures:
maternal smoking, infant feeding, maternal age, sleep and caesarean birth, which may be
due to confounding. Evidence from animal studies seems to support causal mechanisms for
stress and infection. However, in epidemiological studies, there is more support for early life
factors to indirectly impact on offspring BMI through birthweight and early life growth.
Therefore, aside from birthweight, which has been studied in detail, the evidence for other
early life modifiable risk factors is less robust, and factors have not been studied with

respect to adult obesity (Monasta et al., 2010).

It is also important to note that as well as being independent risk factors, these factors are

also likely to interact and influence one another (Appendix A). For example, early life
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factors may be strongly influenced by SES, and perhaps more so in recent times due to
widening social inequalities in childhood OWOB and changes in social patterning which may
lead to clustering of exposures (Knai et al., 2012). Considering the multifactorial aspects of
obesity, the interactions between pre-natal events, and post-natal behavioural and
environmental factors could increase susceptibility, and ideally should be investigated

collectively using longitudinal studies.
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Table 1.5 A summary of the risk factors investigated, supporting hypotheses, potential confounders, and evidence (from
studies listed in section 1.3).

Risk factor Hypotheses Potential Reference(s)
confounder(s)
Birthweight Causal effect due to programming of body  Parity, gestational (Boney et al., 2005)
composition (fat and lean mass). age, maternal (Parsons et al., 1999)
Intrauterine growth restriction canleadto  BMI, maternal
‘catch-up growth’. smoking,
maternal diabetes
Rapid weight A mismatch of intrauterine and post-natal  Parity, gestational (Ong and Loos,
gain conditions encourages rapid growth in age Birthweight, 2006b)

Breastfeeding
(vs formula
and duration)

Early
weaning

Parity

Maternal age

Adversity

Sleep issues

Infection

Caesarean

SES

early life.

Breastfeeding effects colonisation of gut
microbiota and self-regulation of appetite.
The nutritional composition of breastmilk
may be beneficial or detrimental based on
maternal characteristics.

Nutritional programming of metabolic
systems and child growth. Could be
dependent on diet quality and may have
more of an impact in formula fed infants.
First-born children have lower birthweights
and experience catch-up growth,
compared to second-born.

The mechanisms are unclear. Biological
mechanisms would suggest both young
and advanced maternal age are associated
with negative birth outcomes. However,
the role may not be causal as maternal age
is closely linked with maternal health and
SES.

Stress leading to altered HPA via
glucocorticoid pathways, leading to fat
deposition.

Shorter sleep duration may affect appetite
regulation and stress-related pathways

Antibiotics can lead to disruption of gut
microbiota, or early life infection could
alter growth trajectories.

Could affect the establishment of
microbiome

Socioeconomic inequalities affect many
dimensions; the effects are multifactorial
encompassing income, education,
environment, and diet quality.

Potential bidirectional relationship and
transgenerational influences.

infant feeding
SES, maternal BMI

SES, breastfeeding

Maternal age,
maternal BMI

Maternal BMI,
parity, SES

SES

SES

Breastfeeding

Breastfeeding,
maternal BMI,
birthweight (birth
complications)
Maternal BMI

(Armstrong and
Reilly, 2002)
(Yan et al., 2014)

(Thompson, 2012)
(Agostoni et al.,
2008)

(Ong et al., 2002b)

(Myrskyla and
Fenelon, 2012)
(Savage et al., 2013)

(Tamayo et al., 2010)
(Anda et al., 2006)

(Bell and
Zimmerman, 2010)
(Anda et al., 2006)
(Mueller et al.,
2015a)

(Lietal., 2012)

(Shrewsbury and
Wardle, 2012)
(Gibbs and Forste,
2014)

(Howe et al., 2011)
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1.5 Epigenetics as a mechanism linking early life factors and later disease

For the DOHAD theory to operate, there must be an underlying mechanism in which an
exposure affects and then ‘marks’ an individual, with a lasting impact on health outcomes
years later. The underlying mechanisms are hypothesised to be related to epigenetics.
Epigenetic patterns are established early on in development and events in utero could
possibly program the foetus to anticipate a specific environment postpartum, thereby acting
as cellular memory. An insult at a critical period of development could lead to lasting and
perhaps permanent effects (Ben-Shlomo and Kuh, 2002). It is plausible that epigenetic
mechanisms could act as a mediator between early life exposures and obesity outcomes

(such as for birthweight, section 1.5.3.1).

1.5.1 Introduction to epigenetics

Epigenetic modifications are heritable alterations to the genome, which do not change the
underlying genetic code but can affect gene activity and expression. Epigenetic modifications
can be grouped into broad categories of; chromatin remodelling and histone modifications,
DNAm, and small non-coding RNA mechanisms. Within the cell nucleus, genetic material is
tightly packaged into chromosomes made up of chromatin. Chromatin, the condensed form
of DNA, is wrapped around structural histone proteins known as nucleosomes, forming the
characteristic beads on a string appearance. Thereby, modifications which alter chromatin

structure and hence packaging (and accessibility) of DNA can influence gene expression.

DNAm is the most well-characterised and well-studied epigenetic mark. DNAm is a cellular
regulatory mechanism that involves the covalent addition of a methyl group (CHs) on
cytosine residues adjacent to guanine on DNA, and in mammals is catalysed by DNA
methyltransferase enzymes (DNMTs)(Suzuki and Bird, 2008). The ten eleven translocation
(TET) family of enzymes oxidise 5-methylcytosines and facilitate reversal of DNAm (Tahiliani
et al., 2009, Ito et al., 2010). Methylation plays an essential role in early development and
cell differentiation, but also in mediating gene expression thereby determining cell function
(Sardina et al., 2018). Clusters of methylated cytosines tend to occur in promoter regions
and are referred to as CpG islands (Suzuki and Bird, 2008). Generally, promoter methylation
is associated with low or no transcription or gene silencing (Suzuki and Bird, 2008), whilst
intragenic methylation is positively associated with gene expression (Jones, 1999). Gene
body methylation was originally thought to be a mechanism for silencing repetitive elements

(Yoder et al., 1997). However, whole-genome studies have indicated that due to exons being
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more highly methylated than introns, with the occurrence of along exon-intron boundaries,
it could play a role in alternative splicing (Laurent et al., 2010). DNAm may function in the
formation of open chromatin structure and maintenance of enhancer elements (Wiench et

al., 2011).

Epigenetic modifications occur during developmental processes and are particularly
important in early development and cell specialisation (Hochberg et al., 2011). These times
when the epigenome (the collective term for all the chemical modifications to DNA within
the genome) is sensitive to change are referred to as critical or sensitive periods. During
development, the epigenome is ‘reset’, and some epigenetic marks are re-established. There
is widespread demethylation, followed by specific re-methylation, which must occur for cells
to have specialised functions. Specific inherited epigenetics marks are generally at imprinted
genes. However, modifications can also occur in response to environmental factors such as
diet and lifestyle (Jaenisch and Bird, 2003). Patterns of methylation are now being
recognised are more dynamic than previously thought, and there is growing evidence that

DNAm can be influenced by environmental factors (section 1.5.3).

DNAm is a good candidate for the biological embedding of early life risk factors for obesity
as; it has the capacity to modulate gene expression, can be influenced by environmental
factors such as diet and lifestyle (Jaenisch and Bird, 2003), and has demonstrated

associations with adiposity.

1.5.2 Epigenetic mechanisms and obesity

The Agouti mice models demonstrated the importance of maternal diet on offspring
phenotype (Wolff et al., 1998). In mice, when the Agouti gene is unmethylated, the
phenotype is yellow coat colour and a predisposition to obesity, hyperinsulinemia, cancer,
and reduced lifespan. Whereas when the agouti gene is methylated (i.e. normal state), mice
have a brown coat, with low risk of obesity and are healthier than their yellow counterparts.
Other than the methylated allele, the mice are genetically identical. When pregnant female
yellow mice are fed a methyl-donor rich diet, the pups had a brown coat and a healthy
phenotype (Wolff et al., 1998) thereby demonstrating the importance of methyl-donor
availability. Animal studies have demonstrated the potential for environmental and dietary

influences on health and disease, and suggest a mediating role for DNAm linking early
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development and postnatal body composition (Drake et al., 2005, Burdge et al., 2007,
Godfrey et al., 2011).

There have been a number of human studies which have identified methylation patterns
associated with later life adiposity ((for reviews see (Reynolds et al., 2013b, Rohde et al.,

2018) and (van Dijk et al., 2015)).

Replication has been problematic in many candidate gene studies. There was a robust, large-
scale BMI EWAS that utilised data from across multiple cohorts, and successfully validated
187 loci in independent cohorts (Wahl et al., 2016). However, regarding the direction of the
effects, the majority of these loci were deemed a consequence rather than a cause of BMI.
Others have also found that changes in BMI may occur prior to methylation changes
(Richmond et al., 2016, Wahl et al., 2017), for example weight loss after bariatric surgery
influences DNAm (reviewed by (lzquierdo and Crujeiras, 2019)). Overall, these studies

provide evidence for epigenetic changes in relation to obesity or weight change.

There may also be a link between being biologically older and childhood body composition,
as positive epigenetic age acceleration (measured using Horvath’s epigenetic clock) at birth
was associated with developmental characteristics longitudinally across childhood, including
increased fat mass (Simpkin et al., 2017). DNAm has important roles in expression of
imprinted genes, which are expressed from the parent of origin and which may play a role in
the transgenerational development of obesity. Insulin-like growth factor 2 (IGF2), a key
human growth factor, is an example of an imprinted gene differentially methylated in those

periconceptionally exposed to famine (Heijmans et al., 2008a).

Overall, these studies establish a link between epigenetics and obesity. From candidate
studies there have been many promising epigenetic biomarkers, with accumulating evidence
linking DNAm changes and metabolic health outcomes. So far, for many of these genes the

functional consequences of methylation changes remain uncertain.

1.5.3 Evidence for DNA methylation markers of early life exposures

There is growing interest in the use of malleable epigenetic markers as potential molecular
mediators (i.e. intermediary), as biomarkers to identify those most at risk of subsequent
disease, or as potential targets in disease treatment as a means of personalised medicine.
There have been DNAm changes associated with some of the early life risk factors for

subsequent obesity. More specifically, these DNAm changes have been linked with foetal
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growth, birthweight, metabolism, and linked to maternal factors such as smoking and
nutrition (Reynolds et al., 2013b). This section will focus on validated markers or markers

from meta-analyses of human studies focusing on DNAm changes at individual CpG loci.

1.5.3.1 Birthweight

The Pregnancy and Childhood Epigenetics (PACE) Consortium, combines multiple cohorts
with methylation data from 450K or EPIC arrays on newborns and children. It includes many
large prospective studies such as ALSPAC and the Generation R study. Therefore, PACE can
be used to conduct meta-analyses due to large sample size with much greater statistical
power. In a large meta-analysis of 24 birth cohorts from the PACE consortium, birthweight
was associated with differential methylation at 914 loci in neonatal blood (Kipers et al.,
2019). Some of the loci demonstrated overlap with loci previously identified as associated
with maternal smoking (n=55) (Joubert et al., 2016), and a few loci also with maternal BMI
(n=3)(Sharp et al., 2017). There were a handful of CpG loci that were differentially
methylated across the life course (in childhood, adolescence and adulthood), which mapped

to genes; KCNC4, GLI2, HOXC4, ZNF274, MIR548F5.

The biological effects of glucocorticoids, steroid hormones hat play a role in foetal growth
and development, are relayed by glucocorticoid receptors (GR). It is established that
glucocorticoid exposure in utero is associated with low birthweight (Seckl, 2004). It has been
found that increased methylation in the GR promoter, which leads to reduced expression of
GR thereby reducing levels of glucocorticoid signalling, is associated with higher birthweights
(Filiberto et al., 2011). In mothers, increased methylation (leading to reduced transcription)
of the enzyme which inactivates glucocorticoid (11B-hydroxysteroid dehydrogenase type 2)
(Alikhani-Koopaei et al., 2004), leads to higher circulating glucocorticoids, and has also been

associated with low birthweight (Marsit et al., 2012).

Birthweight is often used as proxy for nutrient restriction. Those exposed to famine in the
peri-conceptional period exhibited hypomethylation of IGF2 differentially methylated region
compared to unexposed siblings (Heijmans et al., 2008b). Exposure late in gestation was not
associated with changes in IGF2 methylation, suggesting that very early development is a
critical period in the establishment of environmentally patterned epigenetic marks.

Mediation analysis also suggests that DNAm may be a mediator between early life famine
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and subsequent increased BMI, interesting near genes with metabolic roles including energy

metabolism (PIM3), glycolysis (PFKFB3), and adipogenesis (METTLS8) (Tobi et al., 2018).

1.5.3.2 Maternal factors

1.5.3.2.1 Maternal BMI

In a large meta-analysis, maternal BMI was robustly associated with cord blood methylation
at eight CpG loci within the PACE consortium (Sharp et al., 2017). Higher maternal BMI was
associated with lower methylation at two CpG loci located in the VIPR2 gene, a gene which
encodes vasoactive intestinal peptide receptor 2 (VIPR2). The VIP pathway has been strongly
associated with fat mass, and therefore may be important for obesity development (Liu et

al.,, 2010).

In ALSPAC, increased GWG was associated with increased methylation at several CpG sites in
offspring cord blood DNA (Morales et al., 2014). In addition, offspring DNAm differences
have been observed in those born to both overweight and underweight ALSPAC mothers
(Sharp et al., 2015a). In a small study, there was evidence of altered methylation in
differentially methylation regions (DMRs) of imprinted genes in cord blood in association
with parental obesity (Soubry et al., 2013). Thus far there has been inconsistency in the
associations found in various cohorts for maternal BMI, and many of the associations
between maternal BMI and offspring methylation at birth have not been replicated (Sharp et
al., 2017). Although there is some evidence that the detrimental effects of maternal obesity

are causally related to epigenetic alterations (Godfrey et al., 2017).

1.5.3.2.2 Maternal smoking

DNAmM measures are particularly useful for exposures such as smoking when self-report data
may be prone to bias (Dietz et al., 2010) and cotinine (metabolite of nicotine) measures are
not available. When data were combined across studies (PACE consortium), there were
many significant CpGs associated with maternal smoking, robust to different adjustment and
analytical methods (Joubert et al., 2016). Associations were stronger for sustained smoking
rather than smoking at any time during pregnancy (Joubert et al., 2016). PRDMS8 had the
most CpGs associated on the array, and belongs to the SET domain family

of histone methyltransferases (Fog et al., 2012), more specifically, this gene targets H3K9 of
histones to repress transcription (Eom et al., 2009). Gene expression was analysed further in

genes that had differential methylation, it was found that there was agreement for 6 genes.
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PASK (PAS domain containing serine/threonine kinase), was one of the genes, and is a
‘nutrient sensor’, involved in the regulation of glucose and lipid homeostasis, and therefore
may play a role in metabolic syndrome (DeMille and Grose, 2013, Zhang et al., 2015). Mice
lacking PASK who are fed a high fat diet do not develop obesity (Zhang et al., 2015),

therefore PASK deficiency can protect against diet-induced obesity.

Longitudinal analyses carried out in the ALSPAC cohort found that some CpGs that were
altered in cord blood demonstrated reversible methylation, whilst others had persistent
methylation (AHRR, MYO1G, CYP1A1 and CNTNAP2) across childhood and adolescence
(Richmond et al., 2014). Recent work has been in the development of a methylation score,
which could be used to predict previous smoking exposure. The score uses methylation
across 15 CpG sites in 11 genes in order to predict prenatal smoke exposure (Richmond et
al., 2018). This useful approach could be utilised to develop predictive models for other early

life exposures.

1.5.3.2.3 Maternal age

Offspring of older mothers are at risk of adverse birth outcomes, which can impact via a
number of mechanisms. As established by Horvath, age is associated with DNAm changes
(Horvath, 2013). Furthermore, gene expression in human oocytes changes with age, which

could affect biological function (Grondahl et al., 2010).

An EWAS (450K) in newborns from the Norway Facial Clefts Study identified
hypomethylation within the KLHL35 gene in offspring born to older mothers (Markunas et
al., 2016). The findings were replicated in the MoBa cohort and also in women in age 40-60

years, suggesting that methylation differences persisted across the life course.

Another smaller study examined methylation using the 27K array in a cohort of 168
newborns, and found a correlation between maternal age and methylation at genes related
to neurological regulation, embryo development, and glucose regulation and metabolism

(Adkins et al., 2011).

Increasing maternal age was associated with epigenetic differences in adult daughters,
including an inverse association with methylation in the promoter region of LHX8, a gene
related to female fertility (Moore et al., 2019). Furthermore LHX8 expression is a marker for
the activity of brown adipose tissue (Jespersen et al., 2013), with increased activity related

to lower BMI (Cypess et al., 2009). Researchers also identified a set of genes associated with
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maternal age that are important regulators of the development of various cancers and

neurodevelopmental disorders.

Although there is a biological in utero connection between mothers and offspring, it is likely
that maternal and paternal age will be highly correlated for most. Epigenetic changes that
occur within sperm DNA have also been associated with offspring disease risk, in particular

related to neuropsychiatric disorders (Jenkins et al., 2014).

1.5.3.3 Infant feeding

A systematic review examining breastfeeding and offspring DNAm found evidence of a
negative association with promoter methylation in the LEP (Leptin), CDKN2A (tumour
suppressor) and SLC2A4 (glucose transporter) genes, in a handful of studies (5 in
humans)(Hartwig et al., 2017). Breastfeeding was positively associated with NPY (encodes an
orexigenic neuropeptide). Duration of breastfeeding is negatively associated with LEP
methylation and with decreased infant growth (Obermann-Borst et al., 2013, Pauwels et al.,
2019), therefore leptin may be a mediator of the developmental programming effects

(Vickers and Sloboda, 2012).

Differential CpG methylation (buccal) in the RXRA gene was associated with duration of
breastfeeding and with infant growth (Pauwels et al., 2019), a gene which has been

previously associated with childhood fat mass (Godfrey et al., 2011).

Mischke and Plosch (2013), hypothesised that the effects of breast milk on DNA may be
mediated by the microbiome (Mischke and Plosch, 2013).

These results overall do provide some evidence of a relationship between breastfeeding,

infant growth and DNAm in some metabolic and appetite-related genes.

1.5.3.4 Early growth

There has not been an EWAS so far that has specifically examined RWG and childhood
methylation, however some early life methylation changes have been observed. RWG is
more likely in LBW infants; being SGA and weight gain in the first 3 months has been
associated with lower IGF2 DMR DNAm (Bouwland-Both et al., 2013). Specific DMRs of
imprinted genes in umbilical cord blood and infant body composition were investigated in
the Newborn Epigenetics Study (NEST) (Gonzalez-Nahm et al., 2018). Sex differences were

identified, whereby lower weight-for-length z score at 1 year was associated with higher
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methylation within mesoderm-specific transcript MEST in females, whilst in males higher

methylation was observed in the paternally expressed gene 10 (PEG10) and IGF2.

Postnatal growth was associated with differential methylation in the TACSTD2 gene

using gene-specific pyrosequencing (Groom et al., 2012). Both gene expression and DNAmM
within the gene were also associated with childhood fat mass, however subsequent causal
analyses demonstrated that the association was likely due to reverse causation or

confounding.

1.5.3.5 Stress

In the first few years of life the immune system is sensitive to environmental stimuli (Danese
and J Lewis, 2017). The pathways through which stress can impact on health could be
through disturbance of inflammatory processes or via the hypothalamic—pituitary—adrenal
axis (HPA). As a key pathway, many studies have focused on the components of the HPA axis
and the glucocorticoid system, and how epigenetic alterations may disrupt of normal

function in these pathways.

Early emotional experiences could lead to epigenetic alterations that impact on offspring
obesity. This was observed in rat pups; offspring groomed by their mother had reduced
anxiety in adulthood and associated epigenetic changes in the GR (Weaver et al., 2004a).
Whereas pups raised by less nurturing mothers had hypermethylation within the GR
receptor and increased stress response (Weaver et al., 2004b). In mice, early life stress
(separation of pups from dams) was associated with DNAm changes and accompanying
upregulated expression of the pituitary POMC gene, which mediates the adrenocortical
response to stress (Wu et al., 2014b). Although human studies are limited, lower parental
warmth has been associated with childhood overweight and therefore DNAm could mediate
this association (Fairley et al., 2015a). Furthermore, there is some evidence for a role of GR
methylation and stress in humans, determined using hippocampal tissue from the Quebec
Suicide Brain Bank (Labonté et al., 2012). In the suicide completers who experienced
childhood trauma, there was differential methylation in the promoter region of NR3C1

(encodes glucocorticoid receptor) when compared to controls (Labonté et al., 2012).

The effects of natural disasters and a periods of hardship during pregnancy demonstrate that
stress has the capacity to alter offspring methylation levels (Meaney and Szyf, 2005). Child

abuse and exposure to partner violence can also alter offspring methylation (McGowan et
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al., 2009, Radtke et al., 2011). In adolescents, adverse childhood experiences were
associated with DNAm in genes also related to risk of obesity (PCK2, CxCl10, BCAT1, HID1,
PRDM16, MADD, PXDN, GALE)(Kaufman et al., 2018). Findings for PCK2 were most robust
and were replicated across 2 cohorts, suggesting that PCK2 methylation may be a mediator
for intrafamilial childhood adversity (e.g., physical abuse, witnessing domestic violence) and

BMI.

In a study on internationally adopted adolescents from deprived backgrounds, appropriately
matched with non-adopted controls, differences in methylation patterns were investigated
in an EWAS (Esposito et al., 2016). There were marked differences in cell type composition in
adopted youths and differential methylation at 30 CpG loci, which mapped to enriched gene
clusters related to neural and developmental functions. The adopted children were selected
to model significant childhood adversity, although it is unclear specifically which forms of
adversity they experienced but could include abuse, neglect, malnutrition or infection each

with varying severity (Esposito et al., 2016).

A systematic review examining DNAm and childhood trauma summarised that numerous
studies have identified differential methylation in the genes: SLC6A4, BDNF,
OXTR and FKBP5, and most robustly in the GR NR3C1 gene (No6thling et al., 2019). For a

comprehensive review on trauma-induced changes in DNAm see (Vinkers et al., 2015).

There have now been several epigenome-wide association studies for childhood adversity
and DNAm, however as noted by (Houtepen et al., 2018a) many of these studies utilise a
candidate gene approach or use susceptible populations (Houtepen et al., 2018a). Currently
there are few studies that have examined very early life (rather than childhood) stress and

DNAmM in humans.

1.5.3.6 Infection
Epigenetic mechanisms are critical for normal development of the immune system, and the
early postnatal period (0-12 months) reflects a time when the epigenome is amenable to

environmental exposures affecting innate and adaptive immune responses (Martino et al.,

2014).

It is plausible that pathogens could affect epigenetic processes, in particular viruses that
reproduce undiscovered in host cells (reviewed by (Paschos and Allday, 2010)). There is

evidence of DNAm changes in responses to Epstein-Barr virus infection (Birdwell et al.,
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2014), human rhinovirus (McErlean et al., 2014), and HIV infection (Horvath and Levine,
2015, Nelson et al., 2017).

There is limited evidence on bacterial infections and DNAm in humans. Bacterial infections
have been associated with rapid and active demethylation, rarely occurring at promoter
regions, but localising to distal enhancer elements that regulate activation of key immune
transcription factors (Pacis et al., 2015). Mycobacterium tuberculosis has been shown to
alter the epigenome, but the mechanism is not fully understood (Kathirvel and Mahadevan,
2016). There is also evidence that some pathogens can disrupt histone modifications and

reprogram host gene expression (reviewed by (Strunk et al., 2013)).

DNAm changes and early life exposure to antibiotics have not been examined. Maternal
antibiotic use during pregnancy was examined in 397 pregnant women in DMRs of imprinted
genes using bisulfite pyrosequencing (Vidal et al., 2013) in the NEST cohort. Differences were
observed for IGF2, H19, MEG3, PEG3 and PLAG1, with the latter also associated with
birthweight. This could suggest that the association between prenatal exposure to
antibiotics and birthweight may be mediated by changes in regulatory regions of some
imprinted genes. DNAm at imprinted regions has also been investigated with respect to
intrauterine infections. In cord blood, DNAm was increased at the PLAGL1 DMR in pre-term
infants with chorioamnionitis (a bacterial infection that occurs before or during labour), and
for infants with funisitis (inflammation of the connective tissue of the umbilical cord), in the

NEST cohort (Liu et al., 2013b).

1.5.3.7 Sleep

Overall there have been few studies examining sleep deprivation and DNAm, and non in
children. In mice, sleep deprivation has a broad impact on DNAm in the cerebral cortex, in
gene pathways involved in neuritogenesis and synaptic plasticity, and can increase the
expression of DNA methyltransferases (Massart et al., 2014). In an EWAS in adults, even one
night of sleep deprivation altered DNAm, particularly in the Notch and Wnt signalling
pathways, which are important developmental pathways often dysregulated in cancer

(Nilsson et al., 2016).

1.5.3.8 Transgenerational influences
Data from animal studies has demonstrated that the impact of a high fat diet has lasting

effects for three successive generations in mice (Sarker et al., 2018). First generation
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offspring of those exposed to prenatal famine have a higher BMI (particularly women)
(Roseboom et al., 2000) and grandchildren exhibiting increased neonatal adiposity (Painter
et al., 2008). It is possible that these effects are transmitted through transgenerational

epigenetic inheritance but human data are sparse.

1.5.3.9 SES

There are a handful of studies examining the effects of early life SES on DNAm in peripheral
blood (Demetriou et al., 2015). In young children (17 months, n=120), low maternal
education was associated with a 1.3% increase (p=0.043) in INSIGF methylation; the

overlapping region of IGF2 and INS (insulin) (Obermann-Borst et al., 2012).

However, most studies examining SES have measured outcomes in adults. A genome-wide
methylation analysis examined childhood SES and methylation in middle-age adult males
(42-45 years) from the 1958 British Birth Cohort Study (Borghol et al., 2012). The study
examined methylation of around 22,000 gene promoters using methylated DNA
immunoprecipitation (MeDIP). Childhood SES was associated with differential methylation at
1252 sites, with enrichment in genes related to extra- and intracellular signalling and
metabolism. This was in contrast with adult SES for which there were fewer (n=545)

significant associations.

A genome-wide approach using the 27k array found 3 loci that had e small (less than a 5%)
changes in methylation when comparing low and high early life SES (by occupation) in adults

(mean age 33) (Lam et al., 2012), and no significant CpG loci were found for adult SES.

In a large sample (n=857) of healthy adults from the EPIC-Italy cohort, low life course SES
was associated with lower methylation in pro-inflammatory genes (Stringhini et al., 2015).
Lower life course SES has also been associated with epigenetic age acceleration (the
difference between DNAm age and chronological age), using data from 3 large prospective
cohorts (Fiorito et al., 2017). Furthermore, consistent results were found by Austin et al,
with the observation that low SES in early life predicts age acceleration, whilst no
associations found for later life SES (Austin et al., 2018). Both studies did not find
attenuation of the association with upward social mobility. In additional to changes at
individual CpG loci, global changes in methylation have been associated with SES

(Subramanyam et al., 2013, Tehranifar et al., 2013).
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These studies suggest that DNAm may provide a link between early life, or life course SES
and disease risk. However, heterogeneity in study designs including the measure of SES and

the measurement of DNAm make comparisons difficult.

1.6 Integrating the social determinants of health and epigenetic mechanisms with regards to
obesity

There have been a number of theories to explain the rise in obesity (see section 1.2). A

failure of previous frameworks is that they often fail to take into account the complexity of

the interaction of early life factors, lifestyle, socioeconomic status and gene-environment

interactions. There are a number of lifecourse models that more generally discuss lifecourse

factors with regards to health, but few have attempted to model lifecourse factors

specifically with regards to obesity.

There has been a life-course framework for obesity prevention proposed by Pérez-Escamilla
and Kac (2013). Their approach uses a social ecological model which has layers from the
individual, microsystem (home), mesosystem (neighbourhood), exosytem (larger
environment), and macrosystem (social and health policies), and focuses on the
consequences of maternal—child obesity. Hawkins et al, apply a similar approach, utilising
the same factors but term these ‘above water’ levels, with the addition of ‘below water’
levels as the biological factors (Hawkins et al., 2018). Additionally, whilst many studies have
examined many individual, independent factors (section 1.3), few studies have incorporated

empirical data into a lifecourse framework model.

It is well established that social inequalities and lifestyle factors are significant contributors
to health and are included in most theoretical models regarding the determinants of health.
However, as epigenetics is a relatively new area of research, where it fits within models of
the determinants of health has not yet been considered. Marmot and Wilkinson (2004)
acknowledge many important factors impacting in early life that can affect health and
wellbeing. Dahlgren and Whitehead’s determinants of health model acknowledges
hereditary factors and individual lifestyle factors (Dahlgren and Whitehead, 1992), however
epigenetic factors would fall between the two. Their model also encompasses the
socioeconomic, cultural, and environmental conditions, which collectively can have a great

impact on health, and are factors which may have accompanying epigenetic changes.
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In the Grossman model, health is treated as stock which depreciates over time without
adequate investment in health (Grossman, 1972). For instance, as education increases, an
individual is more efficient at taking care of their own health and therefore they increase
investment in health. The Grossman model assumes individuals are born with a given level
of health stock, however in terms of the DOHaD hypothesis, the level of health stock would
potentially be determined by maternal and transgenerational influences, and early life
exposures. Therefore, an individual with detrimental early life experiences embarks on life
with less health stock and therefore lower health. These individuals would need greater
investment in their health to simply maintain an equivalent level of health to that of an
individual born with neutral health stock without negative exposures in early life. Risk could
further be increased when combined with an obesogenic environment and underlying
genetic susceptibility. Therefore a new conceptual model is required in order to incorporate
these factors that can impact in utero via maternal exposures, on the individual level across
the life course, or that have transgenerational influences, and ultimately influence ‘health

stock’.

In light of this, | propose a new model of the social determinants of health, which
acknowledges the role of epigenetics and the interaction with behavioural-lifestyle, and
socioeconomic factors (Figure 1.1). In this model each of the risk factors presented (circles)
has the capacity to impact on DNAm, acting at the individual level, through maternal
influences or transgenerationally. By applying this framework, the integration of the various
sources of data, such as epigenetic, genetic and epidemiological data has the capacity to

improve prediction models.
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Figure 1.1 Conceptual framework of factors influencing obesity risk.

The framework encompasses the complex interactions of socio-economic, behavioural and lifestyle factors that contribute to
the development of obesity. It is an adaptation of Dalgren and Whitehead'’s determinants of health model (1991), which
incorporates the DOHaD hypothesis and the literature on early life risk factors of obesity.

In this model, the many determinants of obesity do not act in isolation, but are layered, interlinked (indicated by the arrows)
and influence other factors (circles). The socio-economic factors influence the behavioural-lifestyle factors and vice versa.
Each of these factors would have the capacity to impact on the individual level but also from maternal factors and
transgenerationally. For example, diet on the individual level would encompass eating patterns, nutrient intake and early life
feeding. On the maternal level, this refers to maternal diet during pregnancy and weaning. On the transgenerational level,
this would refer to the individual’s grandmother’s diet. Within this hypothesis, each of the circled factors in theory could
have associated epigenetic changes. The demographic factors (age, sex, ethnicity, genetics and biological factors including
metabolism, puberty status etc), are positioned on the outer edge indicating that they are non-modifiable but
acknowledging their effect on weight-related outcomes.
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1.7 Summary

In summary, themes emerging from epidemiological studies indicate that nutrition and early
feeding may be important, perhaps due to the relationship between to intrauterine
conditions, birthweight, and catch-up growth. Aside from nutrition, maternal factors are of
great importance as they represent a sustained in utero exposure. Very early postnatal life
also represents a critical period, with the potential risk factors of infant feeding, adversity,
sleep, and socioeconomic disadvantage. Additional research is required in order to
determine the relative contribution of early life, lifestyle, and environmental factors to later

life OWOB.

In studies examining early life risk factors, there are a lack of long-term follow-up data from
childhood to adulthood, and a limitation of current research is that much is cross-sectional in
nature or relies on retrospective data collection, which could be addressed by utilising
longitudinal data sets. The timing of the exposure can also lead to differing effects in the
offspring; therefore, further research is required in order to pinpoint critical periods in an
infant’s life. At present it is unclear if these early life factors of childhood obesity are risk
factors for adult obesity in populations with low levels of childhood obesity, or if the risk is
due to the tracking of obesity in childhood into adulthood (Freedman et al., 2001). Future
studies ideally would examine multiple indices of adiposity to determine if exposures are
related to overall body size, body fatness or the positioning of fat, each of which can carry

different risks.

It is not only plausible, but also likely that epigenetic mechanisms could be a mediator
between early life exposures and obesity outcomes. However, many of the earlier epigenetic
studies used basic techniques and did not state whether they have adjusted for confounders
(Obermann-Borst et al., 2012) or corrected for multiple testing in their analysis. Findings so
far are suggestive and further replication studies are required using longitudinal cohorts.
Investigation of the epigenetic changes associated with exposures may elucidate causal
pathways and underlying mechanisms, and hence identify therapeutic targets. Furthermore,
epigenetic markers could improve prediction models or highlight those ‘high-risk’ individuals
who would benefit from intervention or monitoring, thereby guiding personalised

interventions to improve public health.
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1.8 Hypothesis and aims
This study will investigate the hypothesis that DNAm may be a mediating mechanism

between early life exposures and subsequent obesity.
The aims of this thesis are:

1.) To investigate the impact of early life exposures and SES on childhood and adult
adiposity using multiple indicators

2.) To investigate regional temporal changes on obesity, allowing scrutiny of the impact
of modern environmental and socioeconomic factors

3.) i.) To identify gene-specific methylation differences in relation to those early life

exposures found to influence obesity in children and adults

ii.) To investigate the methylation differences in relation to the early life exposure(s)

found to influence obesity in an adult population.

This study will address the limitations and unanswered questions summarised in section 1.7.
Aim 1 examines the latency of effects; in particular, which early life exposures are associated
with adult obesity, as it unknown whether some exposures that are associated with
childhood obesity are also associated with adult obesity. Aim 1 also addresses whether

associations for exposures differ across outcome measures of adiposity.

Aim 2 addresses the unanswered questions around cohort-timing and environmental effects,
i.e. if exposures are associated with adult obesity in those without an early life obesogenic

environment.

The final aim attempts to uncover novel changes in methylation in early life exposures that
have demonstrated consistency from aims 1 and 2. This can be split into two parts; firstly to
identify DNA methylation changes in children and adolescents, and secondly to quantify

these methylation changes in adults, thereby examining the persistence of the effects.

1.9 Study design
Figure 1.2 outlines the study design and how data from each cohort was employed to

address the aims.

Firstly, a literature search was carried out to explore the early life exposures implicated in

obesity (section 1.3), to in order to determine exposures of interest. This study primarily
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utilised epidemiological data from two North East birth cohorts; the Newcastle Thousand
Families Study (NTFS) and the Gateshead Millennium Study (GMS). The objectives for aim 1
were to examine early life exposures with respect to adiposity outcomes in NTFS adults, and

GMS children.

Using two cohorts from the same geographical area allows examination of these
relationships over time and observation of the role of environment. To address aim 2, using
both NTFS and GMS outcomes in childhood, the associations between early life factors, SES,

and obesity were also investigated.

To fulfil aim 3, exposures of interest were investigated using DNAm data from the Avon
Longitudinal Study of Parents and children (ALSPAC) cohort (Alspac Study Team, 2001), to
examine exposures in relation to methylation and obesity. The basis of these findings guided

methylation targets to examine in the NTFS samples.

The findings of this analysis could further understanding of the biological, social and

economic factors which lead to health disparities over the life course.
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Figure 1.2 Overview of the study design, cohorts and aims
The years refer to the cohort year of birth. NTFS, Newcastle Thousand Families study, GMs, Gateshead millennium study; ALSPAC, Avon
Longitudinal Study of Parents and children (AKA children of the 90s); SES, socio-economic status.
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Chapter 2. Data and methods

The analysis undertaken in this thesis can be broadly arranged into two sections. First was
the epidemiological analysis to determine the focal early life exposures associated with
childhood and adult body composition in two North East cohorts (GMS and NTFS). The
second part was the epigenetic analysis, whereby the focal early life exposures were
investigated in a cohort with epigenetic data (ALSPAC). This also included a simplified version
of the epidemiological analysis using the key early life exposures to substantiate the
associations, and then investigated these exposures and DNAm in childhood and
adolescence. Finally, to determine if DNAm patterns persist, the significant CpG loci
identified in ALSPAC children were investigated in NTFS adults. This chapter details each of

the cohorts and the methods for all analyses.

2.1 Datasets used

2.1.1 The Newcastle Thousand Families study (NTFS)

The Newcastle Thousand Families study (NTFS) is a birth cohort based in the North East of
England. The study began in 1947, two years after the end of WWII. The study’s original
intent was to investigate the high infant mortality rate, which at the time was mostly
attributed to acute infections. This conclusion was made prior to WWII by Sir James Spence,
a paediatrician who undertook a review of the causes of death in children under 5. After the
war, the NTFS was set up to investigate risk factors for infection, with the original intent to

run the study for 1 year. However, the study continued and is now in its 8th decade.

Data were primarily prospectively recorded for the cohort. There are data available on a
variety of early life factors, along with physical outcome measures in early and late
adulthood, which makes it possible examine body composition in later life in relation to

exposures in early life.

The cohort originally included nearly all (1=1142) babies born in Newcastle upon Tyne
between May and June 1947 (Pearce et al., 2009). Data have been collected at numerous
time points over the participant’s life course (up until age 60 to date). The cohort have been
followed extensively by utilising general practitioners, health visitors and schools throughout

childhood (until they were 15 years old). Data collection was facilitated through the
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placement of red spots on the study member’s medical records to identify them, and hence
they were referred to as ‘red spots’. There were further intermittent follow-ups during
adulthood (ages 18, 22, 32) with data collected on employment, anthropometrics,

psychology, and crime.

At age 50 (49-51), the cohort were traced and took part in a physical assessment (n=412)
and questionnaire (n=574). The clinical assessment covered a range of health outcomes
through physical assessment including cardiovascular, metabolic, and musculoskeletal
measures. Biological samples (serum and urine) were also obtained. Another similar clinical
assessment took place at age 60. Comprehensive details on key findings and data collected

can be found in the cohort profile (Pearce et al., 2009).

May |June

n=7/34 n=412
(BMI)

n=1142

Figure 2.1 NTFS data collection to date.

There were multiple data collection sweeps throughout childhood to age 15, and then intermittent revisits at various time
points during participant’s lives, until the most recent age 60 follow-up.

2.1.1.1 Measurement of body composition outcomes

Measures of height and weight were taken throughout childhood at ages 3, 5, 9, 13, 14 and
15 years. At the age 50 and 60 clinical assessment, anthropometric measures (height,
weight, waist and hip circumferences and bioelectrical impedance) were taken, which were
performed in the morning after an overnight fast of at least 10 hours. An average of three
measurements of bioelectrical impedance (Holtain) were used to estimate percentage body

fat (BF%), using standard regression equations.

2.1.1.2 Measurement of exposure variables and covariates

In NTFS, maternal age, gestational age, and birthweight were recorded at the time of

delivery and taken from hospital records. All other factors were recorded by health visitors.
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Duration breastfed was the difference between the date of first and last time the participant
had breast milk (in days), recorded by health visitors. This was analysed as a continuous and
categorical variable. The duration of exclusive breastfeeding was the difference in days
between the date breastfeeding commenced and the date of introduction of bottle-feeding
with an alternative milk (dried, cow’s or mixed feed). The age at weaning was the age at the
introduction of solid foods. If date ranges were noted rather than a single date, the lowest
date was taken. If no date for first breast milk was noted (but there was a date of cessation),

date of birth was used.

Infections were reported throughout childhood by doctors, health visitors, or hospital
referrals. Infections in the first year of life were used in this study. Only infection data with
low risk of ascertainment bias were used. Bacterial infections included whooping cough,
Tuberculosis (TB), scarlet fever, and pneumonia. Viral infections included measles, mumps,
rubella, meningitis, bronchitis, and chicken pox. Infection in first year was defined as a
dichotomous variable if the study member experienced any of the aforementioned
infections (“had”, “did not have”). Viral and bacterial infections were grouped initially,
however as coefficients had opposite effects, viral and bacterial were then separated as

variables.

Socioeconomic indicators in early life included; father’s occupational social class, and
household deprivation. To increase group sizes, social class was re-categorised into least
advantaged (class IV and V), mid (class lll skilled and unskilled) and most advantaged (class |

and I1).

Household deprivation was determined through indicators of inadequate housing conditions
as assessed by Newcastle’s public health department around time of birth. These were the
presence of (0-4 factors) including; overcrowding, lack of hot water, shared toilet, and
dampness or poor repair. As low numbers were observed in some categories, this variable
was recoded to a binary variable representing either no housing issues (0) or evidence of

housing issues (>=1).

2.1.1.2.1 Later life and lifestyle factors

Later life socioeconomic variables were determined from the age 50 questionnaire and
included occupational social class, highest education level achieved and total household

income (after tax). Although these are often used interchangeably in studies examining
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health inequalities, they measure different components of SES and could have different

underlying aetiologies in obesity development.

Social mobility was determined using the change in occupational social class using the three
groups (least, mid and most advantaged) from birth to age 50. The highest level of achieved
education was categorised (including equivalent qualifications) as none, O-level, A-level, and
degree level and above. Previously, leaving school at an early age (<17 years) has been
associated with obesity (Wardle et al., 2002). Therefore, education was recoded to a binary
variable indicating achieved education past secondary school level (greater than GCSE level,
the main qualification undertaken by adults in the UK), indicating undertaking of higher

education beyond compulsory school age (age 16).

Household income was a choice between 17 categories on the questionnaire. Household
income was equivalised to account for household size. The Organisation for Economic
Cooperation and Development (OECD) equivalence scales are used by the Statistical Office of
the European Union and by the UK government to adjust household income according to
household composition, acknowledging that resources required are not directly proportional
to household size. To determine equivalised household income, the median value of the
guestionnaire income categories was divided by the square root of household size and then
log2 transformed for normality. The square root scale is a method utilised in recent OECD
publications, and denotes a household of four people requires twice as many resources than
a house composed of one person. This method was used as it does not rely on knowing the

ages of the household members (data were not available).

Data on lifestyle factors were taken from the self-report questionnaire at age 50. Study
members were deemed as current smokers if they were current but not ex-smokers. Pack
years (the number of packs of cigarettes smoked per day by the number of years the person
has smoked) and categorical (current, ex, never) were also analysed. Physical activity level
was derived from questionnaire responses based on frequency of various activities (based
on the Medical Research Council’s Physical Activity Questionnaire (Kuh and Cooper, 1992))
and was categorised to ‘inactive’, ‘light activity’, ‘moderate activity’ or ‘heavy activity’.
Whether a study member was single, married, widowed, divorced was also taken from the

questionnaire and transformed to currently married/unmarried.
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2.1.1.2.1.1 Energy intake

Dietary assessment was conducted at age 50 (using the EPIC food frequency questionnaire
(FFQ)) and the FFQ EPIC Tool for Analysis (FETA) was used to calculate nutrient and food
group data (Mulligan et al., 2014). These data were processed prior to use (for details see
(Mann, 2017)). In accordance with the FETA guide, if there were 10+ missing answers

nutrient data was defined as invalid.

The energy intake data were investigated prior to use, however due to some discrepancies

these data were deemed invalid and were not included in the analysis (Appendix A).

2.1.2 The Gateshead millennium study (GMS)

The Gateshead millennium study (GMS), is a prospective birth cohort that recruited 1029
infants born to mothers resident in Gateshead during pre-specified weeks from June 1999 to
May 2000. Gateshead is located on the southern bank of the River Tyne opposite the city of
Newcastle upon Tyne in the UK. The original aims of the study were to investigate infant
feeding behaviour and growth; however, it has since expanded to encompass multiple

aspects of child health, including nutrition, physical activity, and well-being.

The cohort have been followed up intermittently throughout their early life and childhood
with 15 phases of data collection so far. This has involved detailed questionnaires on growth,
feeding, behaviour, illness and social factors (Parkinson et al., 2011), typically completed by
the mother throughout study member’s early life. After birth and in the days following, data
were collected in the hospital or at home from mothers, midwives, and health visitors.
Questionnaires in early life were completed by parents at around ages 6 weeks, 3 months, 4
months, 8 months, 12 months, 13 months, and 30 months. Schools also facilitated data
collection throughout childhood and adolescence. Detailed information on the waves of data

collection can be found in the cohort profile (Parkinson et al., 2011).
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Figure 2.2 Data collection phases in GMS to date

2.1.2.1 Measurement of outcome variables

Measures of height and weight were taken throughout childhood. Height was determined
using a Leicester portable height measure (Chasmors, London, UK), measured to the nearest
0.1 cm. Weight (kg) and bio-impedance (BIA) were measured using a Tanita TBF300MA in
light clothing. Values for total body water, hydration, and lean mass were age and sex-

specific (Wright et al., 2008b).

2.1.2.2 Measurement of exposure variables and covariates

Birthweight, gestation, number of previous children, mode of delivery, maternal age and
postcode (for determination of Townsend deprivation score (Townsend et al., 1988)) were
requested at recruitment. Birth order was analysed as a binary (first-born) variable. Maternal
age was analysed as both a continuous measure and as categories of <25 years, 25-34 years
and over 35 years. Pre-term was determined as a gestation length less than 38 weeks,
normal was 38 to 41 and post-term was greater than 41 weeks. Weight was measured in a

clinic at the 13-month health check.

All other variables were collected via questionnaires administered at regular intervals
including adversity (4 month), sleeping (8 month) SES (birth and age 6-8) and infant feeding

(recurrent questionnaires).

Parents were asked about feeding shortly after birth and in the 6-week, 3, 4, 8, and 12
month questionnaires. Parents were asked about mode of milk feeding, the cessation of
breastfeeding and initiation of complimentary feeding. Duration breastfed (non-exclusive) in
GMS was categorised by the study team as ‘never’, ‘<6 weeks’, >6 weeks’ and >4 months’.
Breastfeeding was also categorised according to the time period of exclusivity (only breast

milk), as ‘>4 months’, >8 months’, >12 months’ or ‘not exclusive (i.e. <4 months)’. Due to
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the small group sizes in categories over 4 months upwards (average 2.8% prevalence) these
were combined, and exclusive breastfeeding was analysed as ‘not exclusive’ and ‘exclusive
for 4+ months’. Formula fed was those who were never breastfed. Introduction of solid

foods was in weeks.

Adversity in GMS was derived from the questionnaires at age 4 months that asked, ‘Have
you experienced any of the following in the last 12 months?’ which therefore included up to

8 months prenatal exposure.

Infection data available for the first year were taken at the age 4 and 12 month
guestionnaires. Infections included any mention of infections, receipt of antibiotics, measles,
mumps, influenza, rubella, chicken pox, whooping cough, bronchitis, gastroenteritis. These
questionnaires also asked whether the child had been admitted to hospital and the reason
for admittance. Responses that mentioned infection or a known infectious illness were
determined to be an infection. These included terms "VIRUS" "VIRAL" "INFECTION" "RSV"
"MENIN" "BRONC" "CHICKEN" "CROUP" "GASTRO" "PNEU" "MENEN" and "SEPTACEMIA".
Data were then screened individually to check for any further spelling errors. Colds,
influenza and ear infections were not included due to their high incidence in infants, with

acute and minor effects.

The literature examining early life sleep and childhood overweight for the most part only
examines sleep duration (Reilly et al., 2005a, Patel and Hu, 2008, Taveras et al., 2008),
however sleep duration was not measured in GMS. Alternatively, there are various

definitions of sleep problems in the literature (Table 1.4).

There were questions on sleep in the 8-month GMS questionnaire. Whilst there were no
guestions on sleep duration, parents were asked about disturbed sleep and issues falling
asleep, which could affect sleep duration. The two questions were on a scale of 1to 7
(ranging from always to never): ‘how often did the child show fussing falling asleep’; ‘how
often did the child have disturbed sleep’. Parents often reported sleep issues, and frequent
night-time waking and issues settling are common in infants (Armstrong et al., 1994).
Therefore, to summarise the extremes and to capture those with the worst sleep problems,
a dichotomous (two component) variable for sleep issues was determined as those who

always (in the top 1 of 7) reported issues for both falling asleep and for disturbed sleep.
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SES was assessed using an area-based indicator (Townsend score) and maternal education at
birth. Townsend deprivation score was transformed into quintiles with 1 being the least
advantaged and 5 the most advantaged. Maternal education was assessed at time of birth as
the highest qualification attained. Deprivation was measured through ownership (both car
and home ownership/mortgage) and employment (wage earner), at birth and in childhood.
In childhood, parental occupation data were available at age 7-8 and 8-10. Upward mobility
0-8 was determined as the change from being deprived at birth (no ownership and no wage

earner), to not deprived in childhood (ownership and wage earner).

Physical activity was measured over 7 days using Actigraph GT1M accelerometers (Actigraph
LLC, Pensacola, Florida, USA) when participants were around 7 years of age. The Actigraph is
an established, practical measurement of both activity (physical and sedentary) with high
reliability and validity (de Vries et al., 2006, Penpraze et al., 2006). This was continuously
worn on the right hip, attached with an elastic belt, but was permitted to be removed for
water-based activities. Parents also completed a time log stating when the accelerometer
was worn, however this was found to overestimate child physical activity (Basterfield et al.,
2008). Data were processed manually prior to use as described previously (Basterfield et al.,
2008, Basterfield et al., 2012a). Accelerometry measurement over 7 days is regarded as the
optimum amount of time for measuring habitual physical activity (Ward et al., 2005) and
shows good reliability in children (Penpraze et al., 2006). However in this cohort, 3 days of
wear for over 6 hours/day was shown to produce acceptable reliability (Basterfield et al.,
2011), therefore this was the criteria used to minimise loss due to missing data. Established,
validated cut-off points were used to convert accelerometry data to levels of moderate—
vigorous intensity physical activity (MVPA)(Puyau et al., 2002, Basterfield et al., 2008).
Physical activity was analysed as the mean daily percentage of time spent in MVPA

(%MVPA).

Seasonal differences in physical activity must also be considered in UK populations (Atkin et
al., 2016). Generally, GMS children have been shown to be less active in the winter (Pearce
et al., 2012a). Seasons were categorised as ‘spring’ (March to May, reference category,
23%), ‘summer’ (June-August, 21%), ‘autumn’ (September -November, 32%) and ‘winter’

(December-February, 23%).
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2.1.3 The Avon Longitudinal Study of Parents and Children (ALSPAC)

The Avon Longitudinal Study of Parents and Children (ALSPAC) is a birth cohort based in the
former county of Avon, in the Bristol area (South West England). The original aim of ALSPAC
was to further understand the ways in which physical and social environments interact, with
a focus on the influence of genetic factors on health, behaviour and development of children
over the life course (Alspac Study Team, 2001). The continuing aim has extended the study
into a transgenerational resource for life course epidemiology, with enrolment of the

original participant’s children, siblings, and grandparents (Boyd et al., 2013).

The study recruited 14,541 pregnant women between 1990-92 with an expected delivery
date between 1st April 1991 and 31st December 1992 (Boyd et al., 2013). There were 14,062
live births and 13,988 children alive at age 1 year. Through additional recruitment phases the

sample has increased to 15,247.

Data collection has been via self-completion questionnaires and data linkage to external
records. There has also been direct measurement of study members, through clinical
assessments and biological samples (Boyd et al., 2013). At the clinical assessments around
ages 7 and 17 years, blood samples were taken and DNA extracted. There were 68 data
collection assessments between ages 4 weeks to age 18 years. The vast data collected have
covered multiple dimensions of health, including social, genetic, physical, cognitive,
environmental, and developmental factors. The ALSPAC data has been comprehensively
coded and inspected by the ALSPAC study team. Complete details on recruitment and

follow-up can be found in the cohort profile (Boyd et al., 2013).

2.1.3.1 Measurement of outcome variables

Weight and height were measured at annual clinics and at multiple time points throughout
childhood (ages 9+, 10+, 11+, 13+, 15+). Anthropometric measures at (approximately) age 7
and 17 were used as outcomes in these analyses (when there were epigenetic data
available). At age 7, height was measured to the nearest millimetre without shoes or socks
using a Holtain stadiometer (Holtain Ltd, Crymych, Pembs, UK), whilst weight was measured
using Tanita THF 300GS body fat analyser and weighing scales (Tanita UK Ltd, Yewsley,
Middlesex, UK). At age 17, height was measured with a Harpenden stadiometer to the
nearest mm, and weight using the Tanita Body Fat Analyser (Model TBF 401A) to the nearest
50g.
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2.1.3.2 Measurement of exposure variables

Maternal age at delivery was originally categorised in ALSPAC as; <16 years, individual years
between the ages 16-43, or >43 years. As the actual ages for those coded as <16 years and
>43 years were unknown, this was categorised as done previously to "Less than 25" (young
maternal age), "25-34" and "35+" (advanced maternal age) and was not analysed as a

continuous variable.

Using medical records, gestational age was determined using the recorded date of the last
menstrual period and date of delivery. Birthweight was taken from obstetric records. At 12
months, infants were weighed using the Seca 724 (or Seca 835 for children who could only

be weighed with a parent).

Parity was determined from the 18-week questionnaire, and was defined as the number of
previous pregnancies resulting in either a livebirth or a stillbirth. First-born was binary

variable (‘yes’ if number of previous pregnancies was 0).

Occupational social class was determined as the highest category of parental social class
using the 1991 British Office of Population and Census Statistics (OPCS) classification.
Parental occupational social class was determined by the ALSPAC study team from
guestionnaire answers prior to use. Occupational social class was coded using the OPCS job
codes to create six categories (1, Il, lll non-manual, lll manual, IV and V). There was an
additional category for armed forces, however there were no data on specific occupations or
rank for those in the armed forces. Due to this, and also to harmonise with the occupational
social class groupings in the other cohorts, armed forces were recoded to missing (total

excluded, n=31, 0.2%).

There were no data on bacterial infection in ALSPAC; therefore, antibiotic exposure was used
as a proxy. In the 6-month questionnaire, parents were asked whether the child had
received antibiotics in the last 6 months (ages 0-6 months). This was coded to binary

variables if the response was one or more episodes.

In ALSPAC, questions on adversity featured on both pre and post-natal questionnaires,
therefore in order to harmonise with findings in GMS, three distinct adversity variables
(prenatal, postnatal, and pre and post-natal) were investigated in ALSPAC. As the question
on the GMS questionnaire specifically referred to child abuse of the study member, this will

obviously only be relevant for the post-natal period. Therefore, in ALSPAC, any reference to
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child abuse was only included in the post-natal period (8 month questionnaire), to reflect the
study member’s own exposure (rather than the mother’s). In ALSPAC this referred to if the
mother or partner were ‘emotionally or physically cruel to children,” which may reflect
events occurring within the household (other children), but that may not be directed
towards the study member. Neither NTFS nor GMS had detailed information on the
dimension(s) of the abuse. Questionnaire responses for adversity were only extracted up to
age 8 months, as the next questionnaire was administered at age 21 months and would

include responses out of the specified exposure period (parental to 12 months postnatal).

Maternal smoking was self-reported on the questionnaires at 18 and 32 weeks gestation and
8 weeks postnatal, and asked if cigarettes were smoked during pregnancy. Maternal smoking
during pregnancy was coded as ‘yes’ if the mother answered yes to smoking on any of the
three questionnaires. If there were any missing data at any of the time points, this was
coded to missing (as it cannot be assumed that the mother did not smoke at this time point),
i.e. mothers had to say they did not smoke at all time points to be counted as non-smokers
during pregnancy. However, if the answer was yes to smoking at any of the time points, this

was counted as a ‘yes’.

2.1.4 The Accessible Resource for integrated Epigenomic Studies (ARIES)

The Accessible Resource for integrated Epigenomic Studies (ARIES) is a subset of the ALSPAC
cohort. The ARIES project aims to find links between exposure, phenotype, genotype, and
methylation data. Genome-wide DNAm analysis was done for a subset of 1,018 mother and
child pairs at three time points in children and two in mothers, as well as profiling various
tissues for references. ARIES selection was based on availability of DNA samples at the three

time points (birth, childhood (age 7.5) and adolescence (age 17.1)).

In the offspring, DNAm was quantified from cord blood at birth, and peripheral blood in
childhood (mean age 7.5 years) and adolescence (mean age 17.1 years). This was done using
the lllumina Infinium HumanMethylation450 BeadChip. Pre-processing, quality control and
estimation of cell type proportions were carried out by the ALSPAC team prior to researcher

use (Relton et al., 2015).

The sub-sample was mostly representative of the main study population; however, ARIES
mothers were slightly older, less likely to have a manual occupation and were less likely to

smoke during pregnancy (Relton et al., 2015).
64



2.2 Definition and measurement of outcomes, exposures and covariates

2.2.1 Outcomes: Body composition measurements

Previous studies have found differing results when assessing BMI (continuously) to
categorical obesity with regards to maternal exposures and offspring adiposity (Sharp et al.,
2015b). Therefore, it is valuable to examine health risks associated with a higher BMI using
both BMI on a continuous scale and indicators for overweight and obesity. As BMlI is a proxy,
alternative measures were analysed in order to determine if risk factors vary by outcome
measure. To encompass each aspect of defining obesity this study will use BMI, BMI
categories, a measure of central obesity (WhtR or WHR), and a measure of body fat (%BF or
FMI). Comparing all three measures could uncover more about risk factors-specific

mechanisms. These methods are discussed in detail in sections 1.1.4 and 1.1.5.

Outcomes were BMI, BF% and WHR in adults, and BMIz, WHtR and FMI in children. Body
mass index (BMI) was calculated as weight (kg) divided by height (m) squared. In children,
BMI is confounded by age-related physiological variation, and so needs to be assessed with
respect to a growth reference. The UK90 reference was used as it is the most appropriate
reference, recommended for use in British children (Wright et al., 2002). The UK90 growth
reference was determined from a sample of 32,222 measurements taken from 12 surveys
between 1978 and 1994. It was sampled from a UK population with ages ranging from 0-23
years, and is used for population monitoring and published figures using Health Survey for
England and National Child Measurement Programme data. Childhood BMI was transformed
to z-scores (adjusted for age and sex) using the UK90 growth reference with the Zanthro
program in STATA (Vidmar et al., 2004). The program calculates standard deviation z-scores
using Cole’s LMS method. L, M, and S represent the skew, mean, and coefficient of variation

of the measurement as it changes with the x variable (age)(Cole, 1990).

In adults, BMI was classified into weight categories according to the World Health
Organisation guidelines (World Health Organization, 2000) (Table 1.1). In children, weight
categories were grouped as ‘normal weight’ or ‘overweight/obese’ using BMIz. In line with
previous analyses in this cohort (Parkinson et al., 2017), clinical cut-offs were used to
determine weight categories, whereby healthy weight is between the 2" and 91st centiles,

overweight greater than 915t centile and obese greater than the 98t centile (SACN, 2012).
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Clinical cut-offs are recommended by NICE in a clinical setting for individual children

(Dinsdale et al., 2011).

Measures of waist obesity and body fat were also considered as important adiposity
outcomes in NTFS and GMS (section 1.1.4). In adults, waist-hip ratio (WHR) was calculated as
waist circumference divided by hip circumference, measured by research nurses at the
clinical examination. A WHR >0.9 in men and >0.85 in women corresponds to increased risk
of metabolic complications (World Health Organization, 2011c). Waist-to-height ratio
(WHtR) was used in children and is calculated as the waist circumference (cm) divided by
height (m). This study utilised the acknowledged cut-off of WHtR >0.5 to signify waist obesity
(Ashwell et al., 2012). Body fat was determined by bioelectrical impedance (BIA) in both
cohorts. In adults, BF% was the proportion of fat mass relative to total body weight. In
children, fat mass index (FMI), a relative measure of body fat, was calculated as fat mass (kg)

divided by height (m) squared.

2.2.2 Definition of early life

Firstly, the definition of early life must be addressed. There are many definitions of early life
with emphasis on the first 1000 days, which covers conception to around 24 months. The
first 1000 days concept appears to have originated from the importance of ensuring
adequate nutrition in early life, most frequently in the developing world. The idea appears to
have been taken on by DOHaD researchers, with the first 1,000 days of an infant’s life having
a great impact on the child’s growth and development, including cognitive development and
immune function. However, this arbitrary figure relates to nutrition-related factors for
cognitive development, and therefore this definition may be less important for non-

nutritional factors.

A medical definition would determine infancy as the first year of life. For the purpose of this
study, and due to the loose definitions of critical and sensitive periods, exposures will focus
on conception to the first year of life. However, most of the data collected in the cohorts

was postnatal.

2.2.3 Defining early life exposures

This study hypothesised that a number of early life factors would be associated with

subsequent OWOB, based on the literature review presented in Chapter 1. Table 2.2
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summarises the definition of the early life factors and covariates, which were harmonised
across cohorts for consistency. Exposures were selected based on the availability of data

from the NTFS and GMS.

Birthweight was analysed as both a continuous (z-score) and categorical variable. Originally
birthweight was recoded into low (<2.5kg), normal (2.5kg - 4.5kg) and high birth (>4.5kg)
weight categories. However, due to the low frequency of low birthweight and high
birthweight (in NTFS, Table 3.5), these categories were not analysed further. Instead,
birthweight was converted to weight-for-gestational age z-scores (method outlined in
section 2.1.1.1) and was used to determine categories of small (SGA) and less than the 10th

or greater than the 90™ percentile respectively.

Similarly, weight at 12 months was transformed into a z-score (see section 2.2.1 for details).
RWG was analysed as a dichotomised variable, defined as greater than +0.67 change in
weight for age z-score from birth to 12 months. This change in is equivalent to crossing one
major growth centile band on a standard child growth chart between the two time

points(Ong and Loos, 2006b).

In addition, in the cohort comparison (chapter 5) due to the large difference in birthweight z-
scores between the cohorts, weight gain conditional on birthweight was also considered.
Conditional weight gain, or thrive index (Tl), accounts for normal catch-up growth from low
birthweight, as a linear measure of weight gain adjusted for regression to the mean (Wright
et al., 1994). Tl was calculated as weight for age z-score at around 12 months, minus the
birthweight z-score multiplied by the regression coefficient (r, between the two weight
measures) for the cohort (i.e. Tl birth to 12 months = z-scoreiam — r x z-scorepirth). Similar to

RWG, rapid thrive (RT) was defined as Tl >0.67.

Maternal age was categorised into 3 groups; less than 25, 25-34 and over 35. Advanced
maternal age, defined as over 35 years, is associated with adverse pregnancy outcomes such
as LBW, still birth and labour complications, preterm delivery and chromosomal defects

(Jacobsson et al., 2004, Cleary-Goldman et al., 2005).

The categories for duration breastfed determined in GMS were ‘never’, ‘<6 weeks’, ‘6 weeks
— 4 months’ and >4 months’. Equivalent categories formed using NTFS data to match when

comparing the cohorts.
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Adverse events in the first year of life were based around potentially stressful exposures of
social, monetary and care issues. These events included parental separation, police
involvement, child abuse, debt and illness or death of parent or sibling. Adversity was a
dichotomous variable defined as experiencing any of the following; parental separation,

police involvement, abuse, debt or death of a family member, in the first year of life.

To increase group sizes, occupational social class was recoded to most advantaged (I, Il), mid
(1) and least advantaged (IV, V) (Table 2.1). Household deprivation coding was cohort
specific and are explained in sections 2.1.1.2 (NTFS) and 2.1.2.2 (GMS).

Table 2.1 Occupational social class recoding

Occupational social class groupings Occupational social class recoded

| Professional occupations Most advantaged
Il Managerial and technical occupations

1I(N) Skilled occupations: non-manual Mid advantaged
111(M) Skilled occupations: manual

IV Partly skilled occupations Least advantaged

V Unskilled occupations

Table 2.2 Definitions of the early life exposures across the cohorts

Exposure Class Definition NTFS GMS ALSPAC
Maternal age  Continuous individual years Analysed
Harmonised only as ?
categorical
variable
Categorical <25, 25-34, 35+ .
Harmonised
years
Birthweight Continuous Bwt (kg) was
(Bwt) normalised to the
UK90 growth

standard and
transformed into z- Harmonised
scores,
standardised for
sex and gestational
age
SGA, LGA Categorical <10th percentile z-
score small for
gestational age
(SGA), and >90th Harmonised
percentile for large
for gestational age
(LGA) infants
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Caesarean

First-born

SES (birth)

Household
deprivation

Rapid weight
gain (RWG)

Rapid thrive
(RT)
Breastfeeding

Exclusive
breastfeeding

Weaning

Adversity

Categorical

Categorical

Categorical

Categorical

Categorical

Categorical

Continuous
and
categorical
Continuous
and
categorical
Continuous
and
categorical

Categorical

Mode of delivery
was caesarean
Birth order was
analysed as a
binary (first-born)
variable

Varied by cohort

Specific to the
time-period

>0.67 SD change
(birth to ~12
months) in weight
for age z-score

Tl >+0.67 SD

The duration of
any kind of breast
feeding

The duration of
only breastmilk

The age when solid
foods were
introduced into the
diet

Experiencing any of
the following;
parental
separation, police
involvement,
abuse, debt, death
orillness in the
family

Not measured

Data not
available?

Father's
occupational
social class
(S0C90)

No housing
issues, or
evidence of
housing issues
(overcrowding,
lack of hot
water, shared
toilet,
dampness or
poor repair)

Harmonised

Harmonised

Harmonised

Vaginal or
caesarean birth

Harmonised

Townsend score
(quartiles)

Deprived (no
ownership) or not
deprived indicated
by presence of
ownership (both
car and home
ownership/mortga
ge) and
employment
(wage earner)

(in the cohort comparison)

Harmonised

Harmonised

0-12 months

From 8 months
pre-natal to 4
months post-natal

Not analysed
in this cohort

Highest
category of
parental
social class
(OPCS)
classification
Not analysed
in this
cohort*

Not analysed
in this
cohort*

Not analysed
in this
cohort*

Not analysed
in this
cohort*

Three
separate
variables of:
Prenatal,
postnatal,
and both pre
and postnatal

*Not analysed in this cohort — only exposures that were important exposures in NTFS and GMS were analysed further in

ALSPAC

A Electronic data were not available

2.2.4 Definition of a confounder

A confounder is a variable associated with the exposure of interest and the outcome, which

when unaccounted for can lead to biased regression estimates. Kleinbaum et al,. define a
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confounder as that whose presence or absence from the full model changes the coefficient
of the primary explanatory variable by 10% or more (Kleinbaum et al., 1982). This definition
was kept in mind when adjusting models for potential confounders, and as confounders
were incorporated into the models their effects on the coefficients of other variables was
noted to assess their impact. Key confounders were however identified from the literature

and are listed in Table 1.5.

2.3 Methods for the epidemiological analysis

2.3.1 General analytical strategy

A systematic approach was taken to determine the early life exposures associated with
subsequent body composition in each of the cohorts. The primary focus of this work was on
the North East cohorts; NTFS and GMS, and the workflow for the statistical analysis of these

cohorts is presented in Figure 2.3. Additional analyses are detailed in section 2.3.7.

In order to compare results across cohorts the data were harmonised as coherently as
possible (see Table 2.2). Twins/non-singleton births (in the original cohorts: GMS, n=36;
NTFS, n=28; ALSPAC, n=264) were excluded to satisfy assumptions of independence within
the regression models, and due to differential intrauterine environments (affecting foetal
growth) compared to singleton pregnancies. All childhood weight-related variables were
transformed to z-scores using the same growth reference, and underweight participants (z-
score <-2 or BMI<18.5kg/m?) were excluded, as underweight shows inverse associations with
all-cause mortality (Prospective Studies Collaboration, 2009), and therefore should not be

combined with normal weight (the reference group).

The ALSPAC cohort was utilised primarily for the epigenetic data. However, prior to the
epigenetic analysis, the associations between exposures and body composition were
examined to determine the strength and magnitude of the associations. The analysis in the
ALSPAC cohort was a streamlined analysis utilising only BMIz and OWOB, in order to justify
the focal exposures for the epigenetic analysis. Although some exposures have been
analysed with regards to childhood body composition in ALSPAC (Reilly et al., 2005a) some
were not comparable in their definitions or adjusted for the same confounders, therefore it

was necessary to run the models for comparability.
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2.3.2 Descriptive characteristics, sample representativeness and sex differences

Summary statistics are provided for each exposure and outcome variable for all cohorts. All
data were checked for the presence of extreme/implausible values, and any invalid
measures were checked for coding errors (cross-referenced with original data where

possible), recoded or removed.

Early life exposures were analysed longitudinally with respect to body composition in later
life. Attrition is common in longitudinal cohorts and therefore body composition measures

were not available for the entire original sample at the later time point(s).

Missing data can reduce the statistical power, can lead to biased estimates and can reduce
the representativeness of the samples. There are three types of missing data: missing
completely at random (MCAR), missing at random (MAR), and missing not at random (Kang,
2013). Ideally a study will be well-planned in order to be representative of a population at
baseline and with systematic data collection at subsequent follow ups to minimise data loss.
However, attrition is inevitable in long-term studies. The most common approach to dealing
with missing data is to exclude those with data missing and performing a complete case
analysis. It is advised that researchers seek to understand the reasons for the missing data
(Kang, 2013). In large sample sizes and if the assumption of MCAR is satisfied, then list wise
deletion can produce unbiased estimates. However, if the sample size is small and MCAR is
not satisfied then results may be biased. A method of dealing with missing data is
imputation, which uses the other variables available in the dataset to estimate the missing
variable, which has the benefit of retaining the initial cohort sample size. However,
imputation assumes MAR and many imputation procedures assume data are normally
distributed, therefore when these conditions are not met this could lead to incorrect coding
of variables. In this study, as many variables were not normally distributed and were either

binary or categorical variables, a complete case analyses was done.

The impact of attrition and whether there were differences between those with and without
body composition measures (the sub-sample) was assessed. This was done using t-tests,
Mann-Whitney tests or chi-square tests for parametric, non-parametric or categorical
exposures respectively. The reasons for the missing data was partly due to retention of the

more advantaged groups, and therefore this was addressed using weighting in the cohort
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comparison (section 2.3.7.3). Sex differences (if anticipated), were also assessed using these

methods in the sub-samples (those with body composition measures).

2.3.3 Correlations between exposures and body composition measurements

To determine whether BMlI is an adequate proxy measurement, the strength of correlations
between weight outcome measures were assessed with Pearson correlation. Correlations
between exposure variables were also assessed. The correlation coefficient (r), can range
from +1 to -1, with r>0 indicating a positive association, and r<0 indicating a negative

association. Results are presented as scatter graphs with Pearson correlation coefficients (r).

2.3.4 Socioeconomic differences in infant feeding

In the case of infant feeding, which is often socially patterned in the UK, SES is an important
confounder. Therefore, differences in infant feeding by socioeconomic groups (birth) were
assessed. In NTFS, the data were continuous and therefore this was done using either
analysis of variance test (parametric data), or a Kruskal-Wallis equality-of-populations rank
test (non-parametric). In GMS, the breastfeeding data were categorical; therefore, a Chi®test

was used.

2.3.5 Examining the associations between early life factors and subsequent body composition

Linear regression modes were used to examine associations between exposures and
continuous outcome variables (i.e. BMI/BMIz). Linear regression, in its simplest form
(bivariate), can be used to establish the strength of the relationship between the dependent
variable (y, outcome) and independent variable (x, exposure), which can be viewed as the

equation:
y=a+ Bx+ €

Where a is the constant or y-axis intercept, and € is the residual model error. B is the

coefficient of x or the slope of the regression line, and x is the independent variable.

Linear regression uses the principle of least squares, whereby it aims to minimise the sum of
all squared deviations of the observed data points from the best fitting regression line, and is

sometimes referred to as ordinary least squares (OLS) regression.
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An extension of bivariate regression is multiple regression, which includes multiple
independent variables. In this model, the B coefficient is adjusted for the effect of any

additional covariates included in the model.

The assumptions of linear regression, and how these were addressed are in Box 2.1 and

Table 2.3 respectively.

Although linearity is assumed, performing a simple linear regression using a binary
independent variable is not invalid, it is equivalent to performing a two-sample t-test
(although addressing slightly different objectives) however with the capacity to adjust for

covariates.

Variable selection is an important step when estimating a linear model that explains the data
in the simplest way. When there are many covariates, stepwise regression is helpful method
for identifying key predictors. The goal is to produce a parsimonious and accurate model as
it excludes variables that do not explain the variation in the outcome, and aims to retain
independent variables that best predict the outcome. This approach is useful for explanatory
model building; however, it may exclude important explanatory variables and known
confounders, particularly in very large datasets where other methods may be more
appropriate (see (Smith, 2018)). Another approach could be to leave all variables in the
model (full model), however this may lead to many independent variables. This may
introduce issues with collinearity or insufficient sample sizes to accurately estimate a model
with many degrees of freedom. Alternatively, existing knowledge could guide variable
selection, which would thereby only include the key exposures. A disadvantage to this
approach is that relies on previous knowledge of the relationships, which might not apply in

different populations.

Therefore, a combined approach was taken here, utilising stepwise regression to identify the
key exposures explaining variation in the outcome, but then models were adjusted for key

confounders using a theory-driven approach (Table 1.5).
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Key assumptions of linear regression

= Alinear relationship between the exposure and outcome
= Homogeneity of residuals (homoscedasticity, residuals should have
constant variance)

= Independence of errors (residuals should not be correlated with y or x)

Other important considerations

= The residuals are normally distributed (necessary for hypothesis tests to
be valid rather than estimation of coefficients)

= Any potential issues with outliers or influential data points (high leverage
points, a measure of those which deviate from the mean)

= There should be little collinearity between predictor variables

= Model specification, the model should be appropriately specified with
relevant variables and no important missing (omitted) variables

= Predictor variables should be accurately measured

Box 2.1 Key assumptions and considerations of linear regression
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Table 2.3 Assumptions of linear regression and how these were investigated in STATA

Issue/assumption How the assumption was checked
Linear relationship Using a scatter plot of the x and y variable
Homoscedasticity Using a scatter plot of the standardised residuals against the

predicted values

Independence of This should not be an issue utilising cross-section data with

errors independent study members (twins excluded)

Normality of residuals  Can be examined using a kernel density plot of the residuals with
the normal density line overlaid, a standardised normal probability

(p-p) plot, or quantiles of a variable quantiles plot (q-q)

Influential data Examined using plots that shows the leverage by the residual
squared
Multi-collinearity Examined the variance inflation factor (variance inflation factors

below 10 accepted)

Model specification The STATA linktest command performs a model specification test
based on the Goodness of link test (Pregibon, 1980)
The regression specification error test (RESET) for omitted variables

implemented in STATA ovtest (Ramsey, 1969)

Firstly, to determine the relationship between exposures and outcomes of interest, separate
(bivariate) models were examined for each exposure and outcome. Next, adjusted
regression models were constructed. Stepwise forward regression models were constructed
using STATA stepwise modelling, with a p value of <0.1 for inclusion, informed by bivariate
analyses. Covariates were added manually to models, with model fit informed

by the Bayesian information criterion (BIC), whereby the model with the lowest BIC is
preferred (Schwarz, 1978). The BIC is a model selection criterion. Adding more variables to a
model can result in overfitting; the BIC applies a penalty accounting for the number of

parameters to identify the best model.

Logistic regression was performed to examine the relationships between each exposure and
binary outcome variables (i.e. obesity, or OWOB). Coefficients or odds ratios (OR) with

corresponding 95% confidence intervals and level of significant (p) are presented. Good
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model fit for the multivariable logistic models was determined by Hosmer and Lemeshow’s

test, no evidence of collinearity and no observations that deviate in an influential manner.

In addition, to determine the impact of SES on the relationship between early life factors and
body composition, bivariate models were adjusted for SES. Models were sequentially
adjusted for SES at birth, SES at age 9, and at both time points, to examine their relative
effects on regression coefficients. Similarly, the impact of lifestyle factors (at time of body
composition measurement) was examined in GMS children by adjusting regression models
for physical activity, and in NTFS adults by adjusting the path model (outlined in section

2.3.6) for lifestyle factors (smoking and physical activity).

2.3.6 Examining the pathways between early life factors and BMI

When examining the relationship between X (exposure) and Y (outcome), all multivariate
approaches (with more than two variables) involve the questions of moderation and
mediation. Moderation asks if a third variable interacts with X, whereas mediation asks
whether it intervenes on the X-Y relationship. Approaches involve statistical methods dealing
with correlation and partial correlation. For example, these include: multiple regression,
general linear models, linear mixed models, path analysis, or structural equation modelling

for continuous data (Garson, 2017).

Path analysis, which is a form of structural equation modelling, is one way to examine the
relationships between variables, and as a means of determining which assumptions best fit
the data at hand (Garson, 2017). Additional information is acquired using path analysis than
through addition of variables and product terms (interactions) to regression models (Garson,

2017).

Alternatively, in the econometrics literature, instrumental variable methods (Sobel, 2008),
such as two-stage least-square (2SLS) regression models are often used (Cameron and
Trivedi, 2010). In short, in a regression of x on y, when there is endogeneity, x may be
correlated with the error term of y which thereby incorporates the effect of unmeasured
variables (i.e. confounders) (Angrist and Imbens, 1995). The 2SLS models address this by
using an instrumental variable that predicts X but is uncorrelated with the y error term,
thereby resolving the issue of endogeneity (Antonakis et al., 2014). A key benefit of this

method is that it doesn’t require all confounders to be measured and incorporated.
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However, this approach has several assumptions and requires good instrumental variables,

which makes it difficult to apply appropriately (Podsakoff et al., 2011).

If causal inference is the aim, there are numerous other methods that can be employed
(Antonakis et al., 2014). However, if the aim is to model the relationships between variables
and depict the relationships graphically, then path analysis is well-equipped. Therefore, a
path analysis approach was used to investigate the life course impact of early life risk factors
(0-1 year), SES and lifestyle on subsequent BMI. Path models were used to uncover the
associations between variables, to disentangle the relative influence of each risk factor, and

the indirect pathways to BMI.

The initial baseline path model included the variables that demonstrated significant
associations in the multivariable linear regression model. Confounders and exposures not
included in the adjusted model were sequentially included, the model estimated and
assessed for model fit. The model was grown adding paths between variables with a priori
hypotheses (Table 1.5, hypothesised relationships presented in the DAG, Appendix A) and
modification indices (suggested paths to improve model fit, as a measure of change in the
likelihood ratio chi-square), then non-significant paths were removed until a good model fit

was achieved.

Good model fit was determined to be a non-significant x2, root mean square error of
approximation (RMSEA)<0.05 and non-significant PCLOSE, and also comparative fit index
(CFI) and goodness-of-fit index (GFI) both >0.95. All direct paths with p<0.05 were modelled
and standardised B coefficients are presented. Confidence intervals were determined using
bootstrapping (50,000 iterations for two rounds of thinning). Standardised [ coefficients are
presented, which represent partial regression coefficients between connected variables,

controlling for all prior variables (Garson, 2008).

The indirect effect is the product of each component path, the direct effects are
straightforward relationships (not going through any other variable) and the total effects are

the sum of direct and indirect effects.

A p value <0.05 was used to denote significance throughout. All statistical analyses were
done in STATA 14 and updated to version 15 in 2017 (StataCorp, College Station, TX) and

path diagrams were constructed using SPSS Amos (SPSS Inc, Chicago, IL).

77



Remove twins

v
( )
Determine sample representativeness

. + J
4 N\

Examine potential sex differences
. + J
4 N\

Descriptive statistics for each

explanatory and outcome variable
. + J
4 N\

Bivariate models: examining each

outcome against explanatory
variables
) ¥
-
Construct stepwise regression models
for each outcome
+ J
4 N\
Path model for BMI
. + J
4 N\
Sensitivity analyses
(Cohort specific)

. J

Figure 2.3 Workflow of the statistical analysis in the NTFS and GMS cohorts

2.3.7 Additional chapter-specific sensitivity analyses

2.3.7.1 Sensitivity analysis by ethnicity (chapter 4)

78

Whilst it is acknowledged that OWOB disproportionately affect minority groups, there was
no evidence that early life risk factors varied by ethnicity in the Born in Bradford cohort
(Fairley et al., 2015a), a cohort with a larger proportion of ethnic minorities. Due to the small
proportion of non-Caucasian children, the sample was not stratified by ethnicity. However,

results were checked for robustness by religion due to a notable proportion of ultra-



orthodox Jewish (UOJ) families in GMS. Sensitivity analysis was carried out to assess whether
differences in religion may affect estimates in GMS children, which could represent
socioeconomic differences or differences in feeding practices (as determined previously in

the GMS cohort (Wright et al., 2010b)).

2.3.7.2 Robust regression (chapter 4)

There were some outliers in FMI model, therefore a robust regression model was utilised. In
comparison to OLS, robust regression produces a model which is less affected by outliers or
influential observations (Rousseeuw and Leroy, 2005). It uses iteratively reweighted least
squares whereby each point is assigned a weight and then coefficients are estimated using
OLS. With further iterations, weights are reassigned, with points further from the model
predictions having smaller weights. The coefficients are then recomputed using the weights.

Estimation continues until convergence is achieved.

The workflow for the statistical analysis is specified in section 2.3.5 (Figure 2.3).

2.3.7.3 Inverse probability weighting (chapter 5)

Additional analyses were carried out in chapter 5 (cohort comparison), including testing for
interactions within models and inverse probability weighting (IPW). In the regression
models, interactions between explanatory variables and SES, were tested within the model

using likelihood ratio tests.

As cohorts were not representative of the original sample, inverse probability weighting

(IPW) was carried out as sensitivity analysis, using variables that were significantly different
between the cohorts (Appendix D, Table X). IPW applies weighting to the sample to

account for the imbalanced representation of exposures. However repeating analyses with

weighting minimally altered results, therefore unweighted results are presented.

2.3.7.4 Investigation of early life growth and BMI trajectories (chapter 5)

Utilising the longitudinal data available, rapid thrive was investigated further with regards to
BMIz over the life course. Height and weight data were available at various points in
childhood and adolescence for GMS (ages 0, 1, 3, 6-8, 8-10, 14-16) and NTFS (ages 0, 1, 9,
13), which were transformed into z-scores as described previous (section 2.2.1). BMlz
trajectories were plotted by to examine the average growth patterns based on early life

growth (rapid thrive).
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2.4  Methods for the epigenetic analysis

2.4.1 DNA methylation arrays and considerations

The Illumina Infinium® HumanMethylation450K BeadChip assay (450K array) is a popular,
cost-efficient method for large-scale profiling of DNAm. The array determines genome-wide
methylation status of over 485,000 CpG sites. Essentially, it utilises bisulfite treated DNA to
determine the relative proportions of methylated and unmethylated fragments (Pidsley et

al.,, 2013).

There are multiple platforms for measuring CpG methylation across the genome, with
perhaps the most popular being the 450K array (>450,000 CpG sites), or the newer EPIC
platform (>850,000 CpG sites). There is also the capacity to build a custom array, however

this limits comparability between studies.

The 450K array covers most known genes, with many probes focused in promoter regions,
however the array also covers non-CpG island loci including in the; gene body, 3’
untranslated region (UTR) and intergenic sequences. Whilst the array has good coverage of
known genes and previously identified methylated sites, it spans fewer than 2% of CpG sites

across the genome.

Prior to the DNAm analysis, DNA is bisulfite modified, which converts unmethylated cytosine
residues to uracil (and subsequently replaced by thymine), whilst methylated cytosines are
resistant to bisulfite conversion. The array determines methylation levels by quantifying the
proportion of cytosine and thymine bases. Estimated cytosine methylation levels are
expressed as beta values (B), which range from 0 (0% or no cytosine methylation) to 1 (100%

or complete cytosine methylation), at each CpG site.

B= Methylated signal

Methylated signal + unmethylated signal +100

Figure 2.4 The calculation of beta values in methylation arrays.

Beta values are calculated as the proportion of the signal due to methylated signal over the total signal. To ensure the
denominator is not zero, a constant (100) is added. Beta values range from 0-1, with higher values indicating higher
methylation and vice versa.

80



With this feature in mind, it is important to remember that, as a relative proportion across
all cells, a 50% methylation level could represent half of all cells fully (100%) methylated and
half of all cells completely unmethylated (0%), or alternatively that 50% the of alleles are
methylated (allele-specific methylation), or various combinations of these two factors.
Bisulfite sequencing techniques can provide more information about methylation patterns
(Song et al., 2013), with the caveats being that the region sequenced is relatively small, and
any allele-specific driven methylation patterns can be extrapolated only from the region
sequenced (Fang et al., 2012, Kuleshov et al., 2014). Therefore, if genotype data are not
available, the influence of other genomic loci nearby or elsewhere cannot be discerned (for

example the influence of single nucleotide polymorphism (SNPs)).

The 450K array uses two types of probes that quantify methylation in different ways. Type |
use a similar design to that exploited in the older 27K beadchip array, which use a single
colour but with two different probes to capture methylated and un-methylated. Whilst type
Il probes use one probe but two different colours for methylated (red) and un-methylated
(green). The design of the array creates some issues in analysis, for example; the distribution
of methylation values differ by probe; type Il probes show greater variability and are often
less reproducible (Dedeurwaerder et al., 2011). Furthermore, some probes exhibit cross-
reactivity or contain polymorphisms (Chen et al., 2013). Difference in colour channel
performance (related to chip lot and scanner) can affect calculation of beta values.

Normalisation methods can help to combat these issues.

At present, the 450K array is the most widely used platform, however with the advent of the
larger EPIC array it is likely that studies in the future will begin to transition to the newer

platform.

The key limitations of the 450K array (cell types, SNPs, batch effects) can be quelled using

appropriate statistical techniques, as described further in the following sub-sections.

2.4.1.1 Adjusting for cell type heterogeneity

Determining the proportion of cell types is an important factor in epigenetic analysis. Ideally,
DNAm would be measured in the tissue relating to the phenotype of interest, however
obtaining such tissues is often not feasible and considered invasive in human population

studies. DNAm is most frequently measured in blood, as it is an easily accessible tissue,
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therefore acting as a surrogate medium. Whole blood is composed of erythrocytes (red
blood cells), leukocytes (white blood cells) and platelets (Figure 2.5). Leukocytes comprise of
granulocytes (neutrophils, eosinophils, basophils) and agranulocytes (monocytes,
lymphocytes), whilst subtypes of lymphocytes include B cells, T cells and natural killer (NK)

cells. These cells are all nucleated and therefore contain genomic DNA.

However, this presents a challenge when analysing because DNAm is cell-type specific
(Hlingworth et al., 2008, Mill and Heijmans, 2013), and therefore variations in cell
proportions will give different methylation profiles. Factors influencing DNAm marks and
cell-type proportions can be related to; age, phenotype or disease (Mill and Heijmans, 2013).
Therefore, cell composition, being both associated with the methylation level and in some
cases also with the exposure/outcome of interest, can confound the relationship between

CpG methylation and the exposure/outcome.
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Figure 2.5 Lineage of blood cell development.
Stem cells differentiate to form different white blood cells, platelets or red blood cells.

Discrepancies arising as a result of not adjusting for cell type composition were first noted by
Liu et al,. in an epigenome-wide association study (EWAS) comparing rheumatoid arthritis
cases and controls (Liu et al., 2013a). They found that there were many false positive
associations due to the ratio of granulocytes to lymphocytes, but after correction these
associations were no longer significant. Re-analysis of previous studies found that much of
the observed variability in DNAm could be explained by cell composition (Jaffe and Irizarry,
2014a), highlighting the importance of adjusting for cell composition when using whole
blood (Adalsteinsson et al., 2012). In an ideal situation, individuals would have their blood

cellular subtypes sorted and profiled, to determine the proportion of each cell type.
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However, this often is not often carried out, therefore computation methods and algorithms

have been developed for estimation.

Cell proportions were calculated in ALSPAC using the Houseman reference-based algorithm
(Houseman et al., 2012). The Houseman algorithm is a popular method to estimate cell
proportions and has been independently validated (Houseman et al., 2012, Accomando et
al., 2014). Other reference-based methods exist (Newman et al., 2015), however the
Houseman reference-based method is often preferred (Kaushal et al., 2017). Alternatively,
methods not utilising cell references use unsupervised deconvolution methods instead, such
as surrogate variable analysis, which shows robust sensitivity and specificity (Leek and

Storey, 2007, Houseman et al., 2016).

Phenotypic variation in cell-type composition could confound analyses. On the other hand, it
could also represent an important physiological change in response to an exposure or
disease, which may be related to the phenotype of interest. When searching for biomarkers
(related to an exposure) that are associated with a disease outcome, to regress out variation
from cell counts could potential disregard important loci. Obesity is an acknowledged
chronic, inflammatory condition. It has been associated with inflammatory indicators
including C-reactive protein (Visser et al., 1999a) and white blood cell counts (Bastard et al.,
2006, Farhangi et al., 2013). A degree of inflammation is a component of the obesity
phenotype, therefore to find novel biomarkers associated with this phenotype, biomarkers
were investigated in models with and without adjustment for cell composition and findings

were compared.

2.4.1.2 Methods of adjusting for confounding

There are many potential sources of confounding in DNAm studies. Microarrays are run in
separate batches due to scale, therefore major sources of variation are row, slide or chip
effects, processing date or operator (Leek et al., 2010). Thoughtful experimental design and
randomisation can help mitigate these effects. Direct adjustment will only account for the
influence of known confounding variables (such as batch, age, or sex). The epigenome is
complex and influenced by the environment in a manner that is still not fully understood,
and even in the best-designed studies, there will be many unmeasured factors, which could

have an impact on DNAm and lead to spurious findings.
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Methods that account for unmeasured confounders are useful in longitudinal studies on
human populations where it would be impossible to; measure or to know all potential
confounding factors, or if they were known, to attempt to integrate them all into a statistical
model. Many methods have been proposed for dealing with the heterogeneity, either by
removing non-specific variation (not just from cell types) from unmeasured confounders
(such as those utilising surrogate variables) (Gagnon-Bartsch and Speed, 2012), or methods
that were designed specifically for methylation data, such as those developed by Houseman

et al, (Houseman et al.,, 2012, Houseman et al., 2014).

The aim of surrogate variable analysis (SVA) is to remove the unwanted variation, whilst
retaining differences due to primary variable of interest; thereby identifying consistent
differences between groups and removing latent variation. These methods are also capable
of dealing with variation from batch, slide or chip , which cannot always be adequately

corrected for (Teschendorff et al., 2009).

SVA finds sources of variation from the methylation data itself, and models these as singular
vectors (surrogate variables) derived from singular value decomposition, which will be
linearly uncorrelated. The surrogate variables are then included as covariates in the
regression model (Leek and Storey, 2007). Independent SVA (ISVA) is a modified version of
SVA whereby the surrogate variables are deemed independent. In support of ISVA, known
confounding factors such as age and batch are obviously statistically independent variables
and are linearly uncorrelated, and therefore it would be appropriate to model these as
independent variables. ISVA was shown to perform best at capturing a known specific
biological signature when compared to other adjustment methods (Teschendorff et al.,
2011). However that may not hold true for all datasets (Teschendorff et al., 2011), and the
best method will be dependent on the tissue type under investigation, and whether the
analysis is reference-based or reference-free (Teschendorff and Zheng, 2017). A thorough
study compared each of the common methods (Houseman’s reference-based method,
RefFreeEWAS, SVA, ISVA, EWASher and RUV) using extensive simulations. There was no
method that performed perfectly for all parameters measured, however the authors
concluded that SVA was the most robust (and ‘safest’) method (McGregor et al., 2016). In
summary, there is support for both SVA and ISVA as high-performing adjustment methods,

therefore both were utilised in these analyses.
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2.4.1.3 Exclusion criteria

The 450K array relies on the specific hybridisation of genomic DNA to probes on the chip,
and therefore alterations in the DNA such as SNPs, repetitive sequences or
insertions/deletions can interfere with accurate measurement of DNAm (Chen et al., 2013).

Known SNPs can be cross-referenced and removed prior to or post-analysis.

It is also recommended to exclude identified non-specific probes to reduce the risk of false
discovery, as these may not hybridise specifically. SNPs and non-specific probes (Chen et al.,

2013) were removed in epigenetic analyses.

2.4.2 Measurement of DNA methylation in ARIES
DNAm was quantified for the ARIES sub-sample using the 450K array (lllumina Inc., CA)

according to the standard protocol. Cord and peripheral blood samples were collected using
standard procedures and DNA was extracted. DNA was bisulfite-converted using the Zymo

EZ DNA Methylation kit (Zymo, Irvine, CA) prior to hybridising DNA to the BeadChip.

Sample handling, measurement of DNAm and quality control were carried out by the
ALSPAC team at the University of Bristol. A semi-random approach was used to distribute
samples across slides to ensure each time point was well represented, and to minimise
potential confounding by batch effects. Samples failing quality control thresholds (average

probe P-value 20.01) were repeated.

ALSPAC methylation data were pre-processed with background correction and subset
guantile normalisation in R (version 3.0.1), using the Touleimat and Tost pipeline (Touleimat
and Tost, 2012, Relton et al., 2015). The data are processed prior to researcher use, primarily
applying the following adjustments. Slide effects were regressed out on the raw betas before
normalisation. Functional normalisation implemented in the R package meffil was used to
normalise the data, which is a between-array normalization method and an extension to
guantile normalisation (Fortin et al., 2014). This removes unwanted technical variation by
regressing out the variation explained by control probes. Normalisation was applied
separately by gender for the sex chromosomes, and there was also a background correction
and a dye-bias correction applied. Many ARIES samples have been successfully genotyped,
and any samples that failed genotype quality control due to sample swaps, gender
mismatches, or relatedness issues between mothers and offspring were excluded. Gender

mismatches (n=411) for individuals were assessed by comparing genotype probes to SNP-chip
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data, or by assessing sex-chromosome methylation. Sample type, whether cells were from
white cells from buffy coat or peripheral blood lymphocytes from whole blood, did not
explain much variation in the child or adolescent samples. Any duplicates were removed
(age 7, n=10; age 17, n=10) with retention of the sample with the highest number of

detected probes.

The proportions of CD8 T cells, CD4 T cells, NK cells, B cells, monocytes and granulocytes in
the samples were estimated using the estimate CellCounts function (using the Houseman et
al. method (Houseman et al., 2012)), in the minfi Bioconductor package in R by the ALSPAC
team. Cell counts were corrected for in the linear adjusted models (see Figure 2.6).
Sensitivity analysis was run with models without correction for cell counts to see if

correction influenced results.

DNAm levels are presented as ‘beta’ values (B-value), which represents the proportion of

cells methylated at each individual locus, ranging from 0-1 (0-100% methylated).

2.4.3 Statistical analysis

There were three different analyses undertaken to examine the relationship between DNAm
data (outcome) and early life exposures, including analysis of differentially methylation
positions, differentially methylated regions, and differentially methylated positions in a

subset of candidate loci.

The significantly differentially methylated loci were analysed further with respect to
phenotype; to determine if the loci were related to subsequent obesity; and via annotation

of the gene region to highlight functional characteristics.

2.4.3.1 Differentially methylation positions

An epigenome wide association study (EWAS) examines genome-wide epigenetic marks
(DNA methylation) in order to determine differential sources of variation for a given
exposure or phenotype. For example, this could be to distinguish between cases or controls,
or between exposed and unexposed. It is also possible to conduct an EWAS on a continuous
variable, thereby assessing the linear relationship between the exposure/phenotype and
epigenetic marks. Using methylation data from the ARIES subset of the ALSPAC cohort,
methylation at individual CpG sites was investigated for each exposure in individual EWAS'’s.

All EWAS and bioinformatics analyses were done in Rstudio version 3.3.2.
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For the statistical analysis using the ALSPAC and ARIES data, the associations between
exposures of interest and DNAm at 7 and 17 years, at more than 450,000 CpG sites were
examined (for varying numbers of participants depending on exposure data availability (see

Table 6.9)).

The EWAS utilised a linear model, with DNAm as the outcome and the exposure of interest
as the independent variable, as the baseline model. Age and cell type composition are
important considerations in epigenetic analysis (although many of the DNAm changes that
have been associated with age are actually due to age-related changes in cell composition)
(Jaffe and Irizarry, 2014b). Therefore, models were adjusted for age, sex and cell
proportions. Four models were run in total; unadjusted, adjusted for covariates, surrogate
variable adjusted and independent surrogate variable adjusted (Figure 2.6). Cell counts
included; B cells, CDAT cells, CD8 T cells, granulocytes, monocytes and NK cells. Analyses for
each variable were done for complete cases. As sensitivity analysis, all models were also run

without cell counts included.
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Model 1 (no adjustment)

DNAm = exposure

Model 2 (adjusted for covariates)

DNAm = exposure + age + sex + cell counts

Model 3 (SVA)

DNAm = exposure + age + sex + cell counts + surrogate variables

Model 4 (ISVA)

DNAm = exposure + age + sex + cell counts

+ independent surrogate variables

Figure 2.6 EWAS adjustment models run using the Meffil R package

All analyses were done in R, with the package Meffil (Min et al., 2017). The package employs
SVA or ISVA methods which have been shown to successfully account for unmodelled or
unknown confounding factors (such as batch) (Leek and Storey, 2007, Teschendorff et al.,
2011). Meffil simultaneously computes unadjusted, adjusted, SVA and ISVA models, thereby
allowing results to be compared (Min et al., 2017) (Figure 2.6). Whilst all models are
computed by the software, only SVA and ISVA models were considered, as the ‘none’ and

‘all” models will not capture the residual variation associated with technical (batch) effects.

In order to minimise the influence of outliers in methylation data, beta values were
winsorised at the level of 5% (95™ percentile cut-off). Winsorising adjusts extreme values so

that they are transformed to match the next closest value.
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When computing multiple tests, there is the increased potential to find a significant result
through chance, which would lead to a false positive. Correction for multiple testing was
applied using a false discovery rate (FDR) threshold of p<0.05. The Benjamini-Hochberg
method (FDR) determines the threshold for the expected proportion of false positives (type |
errors) (Benjamini and Hochberg, 1995). In contrast to the more conservative Bonferroni
correction (specified p value (i.e. p=0.05) divided by number of comparisons), which treats
all p values as equal, the FDR assesses P values based on ranking. Bonferroni correction can
lead to false negatives and runs the risk of discarding significant observations, whilst FDR
adjustment aims to have the smallest number of false signals appearing as significant, but
with potentially more type | errors. In summary, the Bonferroni cannot control for type |l
and the FDR cannot for type |, therefore, both the FDR and Bonferroni p values were

assessed.

Results of EWAS models were analysed using Q-Q plots. These show how well the specified
distribution fit the results, and if the quantiles of theoretical and actual distributions agree,
the points will lie on the line y=x. Departures from linearity indicate issues with the data. The
Q-Q plots were visually inspected to determine the best fitting model. If the same loci
appeared in different models, and the Q-Q plots for that variable were equivalent, then

results from the SVA models were prioritised as it is more robust (McGregor et al., 2016).

2.4.3.2 Differentially methylated regions

Instead of looking for changes at individual CpG loci, another means of identifying
phenotypic differences in methylation is to analyse regions. DMRs, which are stretches of
CpG loci, may have more of a functional effect on gene expression than individual CpG loci
(Jones and Baylin, 2002). Additionally, if changes in DNAm are small but persistent across a
region, there is more statistical power to detect them collectively as DMRs (Robinson et al.,

2014).

DMRcate is an R package which uses Kernel smoothing (non-parametric estimation of the
underlying curve/structure) for the estimation of DMRs, and allows adjustment for
covariates (Peters et al., 2015). A study using simulated data found that DMRcate
outperformed the other methods studied in terms of precision, but with a slightly lower
sensitivity for change in betas (Martorell-Marugan et al., 2018). Its predictive performance

was better than Bumphunter and Probe Lasso (two common methods used in DMR analysis),
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and similar to that of comb-p, which often performs best but is implemented in python
programming language (Peters et al., 2015). As the intention was to implement analyses
using R in order to integrate the analysis with other Bioconductor tools, DMRs were analysed

using the Bioconductor R package DMRcate (Peters et al., 2016).

DMRcate utilises the limma R package to apply Bayesian linear model methods (Peters et al.,
2016). Similar to the models that were ran analysing single CpG loci, DNAm was the outcome
and the exposure was the independent variable. However, when using DMRcate it is
preferable to use M values (log logit transformed Beta values, M=log(beta/1-beta)), from a
statistical standpoint to deal with any homoscedasticity (Du et al., 2010). Firstly, the t-
statistic for the linear model is computed, and then kernel smoothing is applied with a
Gaussian kernel bandwidth for smoothed-function estimation (lambda), scaled by a scaling
factor C (for bandwidth). DMRcate applies correction for multiple testing using the
Benjamini-Hochberg method to determine the significant CpGs. DMRs are computed using
the specified lambda for CpGs within that distance from one another, and the p value for the
DMR is calculated using Stouffer’s method (Stouffer et al., 1949). For optimal prediction of
DMRs using 450K array data, the recommended settings are (lambda=1000 and C=2); as the
Gaussian kernel is calculated as lambda/C = sigma, this translates to one standard deviation
of Gaussian kernel equal to 500 base pairs. Power in DMRcate increases when lambda is

smaller or Cis larger (Odom et al., 2018).

DMRcate was executed using the recommended settings on the M-values, for each exposure
and time point, and the models were run with and without adjustment for cell counts.
Whilst ISVA and SVA have many benefits, unlike other methods such as ComBat (which
adjusts for batch effects using an empirical Bayes framework (Johnson et al., 2007)), they do
not directly adjust methylation data, meaning there are no adjusted data for downstream
analyses. Therefore, in order to keep analysis in line with the previous models, the surrogate
variables (that were calculated using meffil in the EWAS models) were included as covariates
in the DMR models. The surrogate variables from the SVA model were used as this is
deemed the ‘safest’ model (McGregor et al., 2016). Probes <2 nucleotides distance to a SNP
with a minor allele frequency > 0.05, or probes in the list of cross-reactive probes, were
filtered out (Chen et al., 2013, Pidsley et al., 2016). In this array, these steps filtered out
approximately 15,518 of 453,723 (~3.3%) loci. In short, the analysis involved running model
3 in Figure 2.6, both with cell counts and without.
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2.4.3.3 BMl-associated candidate loci approach

The previous methods have focused on determining new loci primarily concentrated on the
exposures. In order to narrow down loci to those suspected to be related to adiposity, a
candidate gene approach was taken using CpG loci found to be associated with BMI.
Therefore, instead of the 485,000 CpG loci (on the 450K), this BMI-associated, smaller subset
of CpG loci were instead analysed as outcomes (n=187). This aims to increase the likelihood
of finding a biomarker that is associated with adiposity, as well as the exposure. The
candidate loci were selected from a robust, large-scale EWAS that utilised data from across
multiple cohorts (Wabhl et al., 2016). Epigenetic loci were investigated with respect to BMl in
cohorts of European and Indian-Asian descent (Wahl et al., 2016), which were then validated
in other population-based studies, and some loci via other methods (e.g. pyrosequencing,

n=4). After validation, 187 genetic loci were identified as associated with BMI in adults

(Appendix E).

These loci were chosen as this was a powerful study that included multiple analytical
components to produce robust findings. The results were: replicated in separate samples,
robust to method of analysis, independent of cell heterogeneity and correlated with multiple
tissue levels, and demonstrated some clinical significance. The study had a large sample size
(EWAS n=5,387, replication n=4,874) with a diverse population. DNAm was primarily
investigated in blood; as this is useful for clinical purposes, but there were also moderate to
strong correlations between tissues (i.e. blood and adipose tissue). The candidate loci also
mapped to genes with roles such as in lipid metabolism, inflammation, and metabolic,

cardiovascular, respiratory and neoplastic diseases, suggesting functional roles in disease.

The early life exposures studied here have been associated with subsequent changes in BMI.
Therefore, it is plausible to hypothesise that if DNAm is a mediating mechanism between
exposure and outcome, these early life exposures may influence methylation of those loci

which are associated with BMI.

Using the 187 loci as candidate loci, EWAS were run for individual exposures, at both time
points using the Meffil R program (Min et al., 2017). This involved running the same models

outlined in Figure 2.6, but in this case DNAm refers to the 187 individual loci.
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2.4.3.4 Phenotypic differences in methylation

Methylation at specific, significant loci was examined graphically at the two time points (age
7 and 17) by phenotype. Within the same individual, the change in methylation over time
(from age 7 to 17), was also examined with respect to the exposure using the Student’s t-

test.

To assess whether methylation varied by body composition, differentially methylated loci
were also investigated with respect to both the exposure and outcome of interest (OWOB).
A statistical method to test for differences between two or more groups is using an analysis
of variance (ANOVA) test. A one-way ANOVA is appropriate when there is one independent
variable. The first assumption of the ANOVA is that residuals are normally distributed. This
can be determined by inspecting the residual plots. Homogeneity of variance is another
important assumption of the one-way ANOVA. The Bartlett's test for equal variances can
provide information as to whether this assumption holds true (the null hypothesis is that all
groups are equal), however this test is based on the assumption that the samples are
normally distributed. When there is violation of normality, a more robust test for
homogeneity of variances is Levene’s test, which is less influenced by departures from
normality. Similar to Bartlett’s test the null hypothesis is that the variance of all groups is
equal. Another assumption of the ANOVA is that groups are independent (i.e. study

members will belong to one group only).

The null hypothesis for an ANOVA is sometimes referred to as the omnibus null hypothesis,
as when it is rejected, the ANOVA test statistical indicates that group means are not equal,
i.e. there is a difference between groups, however it does not indicate which group is
different. Post-hoc analysis, can be used to identify where the differences lie, and can also
take into account correction for multiple comparisons (e.g. Bonferroni or Benjamini-
Hochberg), and adjusting the accepted p value threshold. A caveat being, that when the
estimates are conservative, adjusting for multiple testing increases the likelihood of type Il

errors (false negatives).

For data that are not normally distributed, there is a non-parametric version of this test
(Kruskal-Wallis, KW). Similarly, the KW test assumes that the groups have the same

distributions, but it does not make the same strict assumptions as the ANOVA and is instead
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rank-based. However, in substituting data to ranks, information is lost, which makes it a less

powerful test than a one-way ANOVA.

Hoi g =y = lig == [l

Figure 2.7 The ANOVA null hypothesis

Visual inspection (box plots) of the data aided interpretation, and histograms of residuals
were used to determine if the data fit the normality assumption. Bartlett’s test (Snedecor
and Cochran, 1983) was used to test if groups had equal variances, or Levene’s test in the
case of non-normality. If data fit the assumptions of normality and variance, a one-way
ANOVA was used with Bonferroni adjustment for multiple testing, or in the case of non-
normality, the KW test was used. For the KW test, Dunn's multiple comparisons test using
rank sums (Dunn, 1964) was applied using the user-written STATA program (Dinno, 2015).
The package applies correction for multiple comparisons, and results were Bonferroni
adjusted by multiplying the p-values in each pairwise test by the total number of pairwise
tests. These analyses were done in STATA version 15.1 (StataCorp, College Station, Texas,

USA) using standard commands aside from those specified.

2.4.3.5 Annotation of significant CpG loci

The human reference genome (GRCh37/hg19 assembly) accessible on the UCSC Genome
Browser was used for conceptualisation of the gene region (Kent et al., 2002). The genome
browser is accessible online and allows interactive visualisation of sequence data and gene
regions from many species, including all vertebrates and some invertebrates. The human
GRCh37/hg19 assembly was used, which is compatible and consistent with bioinformatics
tools for 450k analysis. Significant CpG loci were mapped to the genomic location (including
nearest gene and associated CpG island) using the Illumina ilmn12.hg19 annotation (Hansen,
2015). To examine if there was consistency in methylation within the CpG island,
correlations between significant CpG loci (with the other CpG loci in the island) were

investigated, including separately by exposure.

If the CpG loci identified from the EWAS were located in proximity to a gene or within an
island, any other CpG sites on the 450K which mapped to the gene and/or island were also

examined (individually as outcomes) with respect to the exposure using linear regression
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(adjusted for age, sex and white blood cells). Similarly, significant CpG loci were investigated
at the alternative time point (i.e. DNAm in adolescence was also examined at the specified

loci if in childhood DNAm changes were significant).

2.4.3.6 Examining associations for rapid thrive

Due to the similarities between RT and RWG, and in an attempt to distinguish effects which
may be partly due to birthweight, loci that were significant for RWG were analysed with
respect to RT. This was done using a linear model, adjusted for age, sex, and the SVAs (from

the RWG EWAS model), with separate models with or without cell counts.

2.5 Methods for Lab analysis

Loci of interest identified from EWAS’s in the ALSPAC cohort at age 7 (chapter 5) were
investigated further in NTFS adults. There were no pre-existing DNA methylation array data
for the NTFS samples, which is costly to obtain. Therefore, isolation and amplification of the
loci of interest was achieved using DNA primers. Firstly, the surrounding gene regions were
identified and checked for suitability. To differentiate the methylated positions, the samples
underwent bisulfite modification, and the genetic material was amplified. Finally, the
samples were sequenced to determine the proportion of methylated residues, and data

were analysed statistically to examine the relationships between DNAm and the phenotype.

2.5.1 Identification of epigenetic loci

There were significant (Prpr<0.05) associations (in adjusted models) identified for RWG at
two CpG loci. These loci were cg01379158 (NT5M) and cg11531579 (no associated gene) and
were both associated with a 1% increase in methylation (p=0.02) in those who had RWG.
Furthermore, at both CpG loci the highest methylation was in those with RWG and had
OWOB. On these criteria, these loci were deemed good candidates for further investigation

in line with selection criteria (Box 2.2).
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Gene loci selection criteria

e Asignificant change in methylation at a CpG site associated with an early
life exposure (False Discovery Rate (FDR) adjusted p< 0.05)
e Significant changes in the adjusted (surrogate variable analysis or

independent surrogate variable analysis adjusted) models (p<0.05)

Box 2.2 Gene loci selection criteria

2.5.2 Insilico bisulfite conversion and primer design

Firstly, the region of interest was identified using the UCSC genome browser (Hinrichs et al.,
2018). The CpG site was entered into the search box and the chromosomal location
confirmed. A region of 1000 base pairs (bp), i.e. 500 bp both upstream and downstream of
the target locus was used for primer design. The region also encompassed neighbouring CpG

sites that do not feature on the 450K array.

The region was inspected for SNPs and repeat elements, which could interfere with gene
amplification and sequencing. This was done using the drop-down menus to display repeat
elements and to display common SNPs (SNPs with >= 1% minor allele frequency (MAF) that
map only once to the assembly), flagged SNPs (SNPs < 1% MAF, or unknown meaning they
could be >1%) and multiple SNPs (SNPs that map to >1 place on the assembly).
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The sequence of the 1000bp region was annotated further in Microsoft Word, this included
denoting CpG sites, SNPs and primer placement (Box 2.3 and Figure 2.8). The primer
sequence is based on the bisulfite-converted sequence. Methylated cytosines (methylated
CpG sites) are resistant to bisulfite modification (overviewed in section 2.5.4). Therefore,
after bisulfite conversion, all non-methylated cytosines are converted to thymine
(represents the non-CpG sites and non-methylated CpG sites), and the only cytosine residues
that remain are methylated cytosines (Figure 2.8). Therefore in order to design primers, the
sequence must be transformed to the bisulfite sequence (replacing all potentially non-
methylated cytosine (C) with Thymine (T)) (i.e. the cytosine residues not adjacent to

Guanine), using the method outlined in Box 2.3.

1. The genomic sequence was extracted from the UCSC

2. Using find and replace (CTRL+H), all spaces were removed by finding ‘“*p’ and
leaving replace clear

3. Next, all CpG sites were found using the criteria: find ‘CG’, replace with ‘XG’

4. Next all non-CpG site C residues were replaced with T using: Find ‘C’, replace
with ‘T’

5. Finally, the Cytosines adjacent to Guanine were converted back to C’s using:

Find ‘X’, replace with ‘C’

Box 2.3 in silico bisulfite conversion

Genomic DNA PP Y
oG 1 ) CpG 2 CpG of
interest

GGGOG@OGGGOOP_@Q 000000000

— — )

Bisulfite conversion
and PCR amplification

Bisulfite DNA — —

-
CpG 1 CpG 2
SNP Sequencing primer P P
Lo 00000000000000000000

forward primer
\ J AN

CpG of
interest

- +80 bases
reverse primer

Figure 2.8 Bisulfite conversion and primer placement around the region of interest.

After bisulfite treatment of the genomic DNA strand and amplification, all non-methylated cytosines have been converted to
thymine. The sequencing primer is a few bases upstream of the CpG of interest. The forward primer is 63 bases upstream of
the sequencing primer, and the reverse primer is 80 bases after the last base. The region contains 3 CpG sites and a potential
SNP.

Primers were designed using Methprimer (Li and Dahiya, 2002), an online tool for designing
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bisulfite-conversion-based Methylation primers. Primers for bisulfite sequencing should be
non-specific regarding methylation status, i.e. the primers will bind whether the CpG is
methylated or unmethylated (Li and Dahiya, 2002). Therefore, when designing primers, it is

important to avoid CpG sites.

The original genomic DNA sequence was entered as the input sequence, with the target
specified as 500 base pairs (bp) along and 2 bp (CG) in length (e.g. 500,2) where the target
CpG was located. In the initial primer design (Table 1), all parameters were set to default,
including an optimum product size of 200 bases, a primer melting temperature (Tm) of 55°C
(range 50-60 °C) and primer size of 25bp (range 20-30bp). An ideal product size is 150-
200bp, as larger fragments can be more difficult to amplify due to DNA fragmentation during
bisulfite modification (Patterson et al., 2011). Similar annealing temperatures for the
forward and reverse primer were also considered when choosing primer sets to minimise
amplification bias (Shen et al., 2007). If no primers could be identified, then the ‘optimum

criteria’ were ‘relaxed’ (Table 2.4).

Primer sets from the Methprimer output were reviewed in turn with reference to the
annotated bisulfite sequence. If the forward or reverse primer set contained any SNPs or
repeat elements, then another primer set was selected and inspected. If no primers were

identified that did not contain SNPs, then the SNP allele frequency was inspected.

Table 2.4 The optimum and relaxed criteria utilised for primer design

Optimum criteria Relaxed criteria
Product size (bp) 200 100-300
Melting temperature 55 50-70
(°C)
Primer length (bp) 25 16-25
SNPs Does not contain SNPS  Can contain low frequency SNPs

Oligo nucleotides for the primers were obtained from IDT (Integrated DNA Technologies
(IDT), IA, USA). The reverse primers were labelled with biotin, which allows for sepharose

beads to bind when preparing the samples for pyrosequencing.
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2.5.3 Sample storage and quality

DNA was extracted from peripheral blood samples previously by Pearce et al. (2012c) using
the Nucleon BACC2 kit (Tepnel Life Sciences, UK). DNA samples were stored at -80 °C in
individual wells of four 96-well plates, in either Tris-EDTA (TE) buffer or water, with an
adhesive plate seal. The sample quality, condition, freeze-thaw cycles, and previous
treatment prior to retrieving samples was unknown. Therefore, the quality of all samples
was assessed using a NanoDrop 2000 (Thermo Fisher Scientific, MA, USA) prior to use. As the
samples had been stored for a long time, the seals had become brittle and did not appear
airtight, meaning that for some samples there was minimal material left. In an attempt to
salvage any remaining DNA, 10uL of warmed (37°C) nuclease free water was added to wells,
the solution was agitated using pipetting, and samples were left for ~1 hour before removal.

Although biological material can degrade over time, DNA is fairly robust.

2.5.4 Bisulfite modification of genomic DNA

First demonstrated by Frommer et al. (1992) and Clark et al. (1994), bisulfite modification
allows selective conversion of non-methylated cytosines in genomic DNA, for analysis of
DNAm. It is considered the gold standard method for DNAm studies requiring resolution of
single nucleotides (Clark et al., 2006). Bisulfite treatment deaminates (removal of the amine
group) unmethylated cytosines converting to uracil in single stranded DNA, whilst 5-
methylcytosine (5-mC) remains unchanged (as the methyl group prevents conversion).
Therefore, following gene amplification, the uracil residues will be amplified as thymine, and
the 5-mC as cytosine, allowing differentiation between methylated and unmethylated bases

upon sequencing (Clark et al., 2006).

Genomic DNA was bisulfite converted using the EZ DNA Methylation Gold™ kit (Zymo
Research, Cambridge Bioscience, UK) according to the manufacturers protocol. Using this kit,
bisulfite conversion is quick, as DNA is denatured and bisulfite converted in a single step in
individual reaction tubes. Using spin columns, the samples are desulphonated and cleaned
up ready for downstream use. The kit states a conversion efficiency (of non-methylated C
residues are converted to U) of >99%, and DNA recovery of 75% (Manufacturers handbook,
Zymo EZ DNA Methylation Gold™ kit, Zymo Research). Generally, this kit performs well in
terms of conversion (Holmes et al., 2014), and is one of the preferred options when high

DNA recovery is required (Kint et al., 2018). Samples that were below the threshold of 95%
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for bisulfite conversion efficiency (determined using the PyroMark software, see) were

repeated.

The manufacturer’s protocol recommends converting DNA in the range of 500 pg - 2ug. The
samples ranged in concentration from 0-100 ng/uL. Therefore, all samples were diluted with
water to contain either 50ng (or less in the low DNA samples, for which all material was

used) or 100ng of starting genomic DNA (gDNA) in a volume of 20uL.

To these samples, 130uL of prepared CT conversion reagent (containing sodium
metabisulfite) was added and tubes placed in a Bio-Rad thermocycler S1000 (Hercules, CA,
USA) using the following conditions: 98°C for 10 minutes, 64°C for 2.5 hours and a 4°C hold.
To bind the sample to the column, the samples were transferred into columns with the
addition of 600uL of M-Binding Buffer and centrifuged at full speed, and the flow through
was discarded. Next, samples were washed with 100uL of M-Wash Buffer, and
desulphonated using 200uL of Desulphonation Buffer for 20 minutes at room temperature,
and then spun. The samples were then washed twice using 200 pL of M-Wash Buffer. Finally,

the samples were eluted into a clean microcentrifuge tube using 12 uL of M-Elution buffer.

2.5.5 PCR optimisation

Polymerase chain reaction (PCR) is a molecular biology method used amplify stretches of
DNA. PCR optimisation is required to determine the most appropriate annealing
temperature (Ta) for the primer set that gives the best product. An optimised reaction was
deemed as that which produced a clear, single band when visualised on the gel, with no
secondary products (potential primer dimers). Optimisation was carried out using samples
that were 50ng or 100ng (prior to bisulfite conversion) to ensure that the PCR would work at
low DNA concentrations. PCR master mix was prepared in a PCR hood that had been treated
with ultra-violet light (minimum 20 minutes) prior to use to minimise the risk of
contamination. PCR master mix was prepared containing GoTaq® Hot Start Green Master
Mix (Promega), forward and reverse primers, and nuclease free water in the volumes
specified in Table 2.5. The volume of bisulfite DNA (bsDNA) was dependent on the sample
concentration: for samples containing 50ng of gDNA 2L of bsDNA was used, whilst 1uLof
bsDNA was used for 100ng reactions (plus 9 and 8uL of water respectively). All assay

validation steps used HEK293T (Human embryonic kidney) cell line DNA.
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Table 2.5 PCR master mix composition, volume and reagent supplier

Reagent Amount (uL)  Supplier

GoTaq® Hot Start Green Master Mix 12 Promega (WI, USA)
Forward primer (10pmol/uL) =10uM 1 IDT (IA, USA)

Reverse primer (10pmol/uL) 10uM 1 IDT (1A, USA)

Nuclease free water 8or9 Qiagen (Hilden, Germany)
bsDNA (100ng, 50ng) lor2 Cell line DNA or NTFS DNA
Total 23

A no template control was included in all PCR assays, which substituted bsDNA for water, to
detect the presence of any DNA contamination. Methylated controls were also included (0%
and 100% methylated), ensuring primers could bind irrespective of methylation level.
Sources of methylated and unmethylated bisulfite converted DNA were commercial

(unmethylated EpiTect control genomic DNA, Qiagen, Hilden, Germany).

All PCR reactions were carried out using the Bio-Rad thermocycler S1000 (Hercules, CA,
USA). The estimated annealing temperature (Ta) was determined using the most respected
theoretical primer Ta calculation by Rychlik et al. (1990) (Box 2.4). The average Ta (of the
forward and reverse primers) was used as a mid-point to base the temperature range for

gradient PCR.

A temperature gradient PCR was carried out for assays using human cell-line bisulfite
converted DNA (HEK 293T cell line) in order to determine the optimal Ta. For gradient PCR,
the 8 rows of the thermocycler each have a different temperature setting for the annealing
stage. The thermocycler determines the temperature settings based on the range inputted.

The PCR reactions were then run with the reaction conditions outlined in Box 2.5.

*  Ta=0.3*Tm PRIMER + 0.7*Tm PRODUCT - 14.9

* Forward =0.3*49.5 +0.7*68.4 -14.9 = 14.85+32.98=47.83
* Forward(edit)=0.3*49.4 + 0.7*%68.4 -14.9 =14.82+32.98=47.80
* Reverse=0.3*52.3 +0.7*68.4 -14.9 =15.69+32.98=48.67

Box 2.4 An example annealing temperature (Ta) calculation for the forward and reverse primers for cg11531579
Calculations are according to the empirical formula by Rychlik et al,. (Rychlik et al., 1990)
Ta, annealing temperature; Tm, melting temperature.
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1. 1 cycle of 95 °C for 10 minutes
2. 50 cycles of:

95 °C for 40 seconds,
Ta °C for 40 seconds,
72 °C for 40 seconds;

3. 1 cycle of 72 °C for 5 mins
4. 4°Coo

Box 2.5 PCR reaction conditions
Ta, annealing temperature.

2.5.6 Gel electrophoresis

PCR products were visualised on agarose gels. During the validation stage, this gave an
indication of the amount of DNA (strength of the band), the PCR product size, and whether

there was any contamination or secondary products.

Agarose gels contained 1.5% agarose powder dissolved in 1X Sodium boric acid (SB) buffer,
microwaved until dissolved. GelRed (Cambridge BioSciences, Cambridge, UK), a fluorescent
nucleic acid dye, was added (2L per 100ml gel) for staining, which fluoresces when exposed
to ultra-violet light allowing visualisation. Fragments less than 100bp were likely a result of

primer dimers.

For the gels, 2uL of PCR product from each reaction was run alongside a 100bp DNA ladder
(New England Biolabs, Ipswich, MA, USA), as a guide to fragment size. Gels were run at 90
Volts for 30 minutes and were visualised using the Odyssey Fc viewer (Li-cor Biosciences Ltd,

Lincoln, NE, USA).
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2.5.7 Pyrosequencing as a targeted approach for quantifying DNA methylation

Measuring methylation: Cytosines can be either
methylated or unmethylated and are therefore binary
states. Methylation reflects an average across a whole

sample.

Pyrosequencing is a high-throughput CpG methylation
analysis platform, which detects level of methylation
at multiple, individual CpG sites. It is an accurate,
reproducible method and considered the “gold
standard” in DNAm analysis (Kurdyukov and Bullock,

2016).

It involves the real-time, sequence-based detection
and quantification of DNAm. Using sequencing by
synthesis, the sequential incorporation of nucleotides
complementary to the template DNA leads to
detection of nucleotide in the form of a light signal

(Tost and Gut, 2007)(Figure 2.9).

Prior to pyrosequencing, template bisulfite DNA must
be amplified using a biotin-labelled primer. After
denaturation the biotin-labelled single strand is

isolated and hybridised to the pyrosequencing primer.

The hybridised PCR product is incubated with the
required enzymes (DNA polymerase, adenosine
triphosphate (ATP) sulfurylase, luciferase, and
apyrase) and substrates (adenosine 5' phosphosulfate
(APS) and luciferin). One of the four
deoxyribonucleotides (dATP, dCTP, dGTP and dTTP) is

added to the reaction according to the dispensation

——# Forward PCR primer

Biotinylated reverse PCR primer 4—0

Biotinylated single-stranded
template
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Figure 2.9 Overview of pyrosequencing theory, reactions
and measurement
Image from (Qiagen, 2010))
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order (determined by the pyrosequencing computer software). When complementary

nucleotides are introduced, catalysed by DNA polymerase, pyrophosphate is released. The

pyrophosphate along with APS, is enzymatically converted by ATP sulfurase to ATP. When
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ATP is present, Luciferase converts luciferin to oxyluciferin, which releases visible light in
proportion to the number of nucleotides incorporated. This light signal is detected by
sensors in the pyrosequencer, and is emitted as a peak, the height of which is proportional
to the number of nucleotides in the raw data output (pyrogram). Once unincorporated
nucleotides have been degraded by Apyrase, the next nucleotide is added and continues
until the DNA strand is elongated. The methylation level is quantified as the proportion of C

to T as indicated by the peaks and presented as percentage methylation (Figure 2.10).

2.5.8 Pyrosequencing assay design

Pyrosequencing assays require an additional ‘sequencing primer’. This primer ideally would
be ~10-15bp and start just before the CpG of interest, or a few bases upstream (<15bp). The
sequence of the sequencing primer needs to avoid CpG sites to ensure binding whether the
sequence is methylated or unmethylated. The sequencing becomes less reliable further
away from the sequencing primer, hence it is beneficial to have the sequencing primer
immediately before the CpG of interest. The sequencing entry (entered for the
pyrosequencing assay) was the sequence (<100bp) that immediately follows the sequencing
primer and includes the CpG of interest plus any additional CpGs in the region of interest (in
this case this included 2 additional CpGs) (Table 2.6). CpG 2 and 3 in the analysis sequence
are not featured on the 450K array. The sequencing entry also contained a low frequency
SNP (rs190517174, A: 99.641% (4990 / 5008); G: 0.359% (18 / 5008)). This was entered into

the PyroMark ID software as ‘R’ to denote either A or G.

Table 2.6 Dispensation order for the cg11531579 assay.

CpG Analysis sequence Dispensation order

cg11531579 RGTTTGTTAAATTC/TGTC/TGTTAC/TGAGT TAGTGCTGATCAGTCGTGATCGAG

C/T indicates the CpG sites in the sequence. Dispensation order (the sequence in which nucleotides are dispensed) is
determined by the PyroMark software to maximise efficiency.

2.5.9 Pyrosequencing protocol

Both the binding buffer and annealing buffer solutions were prepared according to the
protocol. The Binding Buffer Solution was prepared to a total of 70uL per sample (beads,
binding buffer and Milli-Q H,0) as per the measurements in Table 2.7. This was added along
with 10uL of PCR product to a 96 well plate. The plate was sealed and mixed (1400rpm) for
10 minutes. To a PyroMark Q96 Plate Low, 40uL of Annealing Buffer Solution was added,
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comprising of 38.4uL Annealing Buffer (20 mM Tris-Acetate - 2 mM MgAc;, Qiagen, Hilden,
Germany) and 1.6uL Sequencing Primer (10pM)(Table 2.7).

Table 2.7 Preparation of the binding buffer and annealing buffer solutions

Reagent Per well (uL) Source

Binding buffer solution

1x Binding Buffer 40 Qiagen (Hilden, Germany)
Streptavidin-sepharose beads 2 VWR International (Leicestershire, UK)
Milli-Q Water 28

Total per well 70

Annealing buffer solution
Annealing buffer

(20 mM Tris-Acetate — 2 mM MgAc,) 38.4 Qiagen (Hilden, Germany)
Sequencing primer (10pM) 1.6 IDT (IA, USA)
Total per well 40

After 10 minutes of mixing, the 96 well plate was transferred to the PyroMark® Q96 ID
Vacuum Workstation (Qiagen, Hilden, Germany). The sepharose beads in the binding buffer
solution bind to the biotin labelled primer (in the samples). The sepharose-bound samples
are then isolated and immobilised using the vacuum block tool. The bound-samples then
undergo denaturation (to single stranded DNA) and washing in the wells of the vacuum
workstation. Firstly, the samples were rinsed with 70% ethanol. Next, the samples were
denatured in the denaturing buffer (0.2 M NaOH), and then washed in the wash buffer well
(10X, pH 7.6 (10 mM Tris-Acetate)). Finally, the samples were released into the PyroMark
Q96 Plate containing annealing buffer solution. The plate was sealed, the samples heated for
2 minutes at 80°C, and then left to cool to room temperature for 10 minutes to allow
annealing of the sequencing primer to the single stranded biotin-labelled PCR product. The
reagent cartridge was loaded with nucleotides, enzyme and substrate according to the

volumes calculated by the PyroMark software.

Samples were run in duplicate from the same PCR reaction (section 2.5.10). Replicates that
were not within 5% methylation of one another were repeated. Methylated controls (0%
and 100%) were included in each plate and should be comparable between plates. To
indicate the presence of contamination, negative controls from PCR (no template control)
and pyrosequencing (binding buffer solution and no PCR product) were included on all
plates. Pyrosequencing reactions were carried out using the PyroMark Q96 ID system

(Qiagen, Hilden, Germany), in 96-well PyroMark Q96 plates (2 batches) on the same day.
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The PyroMark software output also includes a bisulfite modification quality check (pass
indicates conversion efficiency >95%), to check that all non-methylated cytosines have been
converted to thymine. Furthermore, the software also includes a peak height quality check
for all CpG sites. For any samples that did not pass the quality check, the pyrograms were
visually inspected and if there were no apparent issues in the bases specified or the peak
heights, were corrected to ‘passed’ status. Some samples had very low peak heights and
noisy traces and therefore failed (n=11). This was likely due to low DNA concentrations as all
the samples which failed due to low peak heights were those that had <50ng of starting
DNA, therefore these were repeated with 3uL of bsDNA. An example of a pyrogram output

from the PyroMark software is shown in Figure 2.10.

Well: C3

Assay: CG11531579 - SP
Sample ID: 100NG

Note:

Analysis version: 2.5.8

n.=. a5k 574 1z

1

?5_ .................................................... T T T
|
T IR

o J\—J&A .

| 1 1
]

Sequence to analyze:
RGTTTGTTAAATTCTGTCMTGTTACTGAGT

Figure 2.10 Example pyrogram of cg11531579 assay.

Peak height is presented on Y axis and dispensation order on the X-axis. The blue shaded areas show the CpG sites, with
corresponding % methylation above. The yellow shaded indicates the bisulfite modification quality check. The peaks
indicate that light was emitted when that nucleotide was added. CpG 1 is 45% methylated, CpG 2 is 67% methylated and
CpG is 42% methylated. The n.a. corresponds to the potential SNP which was not a feature of this analysis.

2.5.10 Pyrosequencing validation

Pyrosequencing assays were validated across a known range of DNAm concentrations to

ensure that DNAm is quantifiable across a range of values. Validation was done using DNA
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methylated control DNA (Epitect, Qiagen, Hilden, Germany) between 0% and 100%
methylation (Table 2.8). For each CpG, the expected vs observed methylation was plotted on
a scatter graph, and the linear equation of the line and the correlation between values were

determined.

Table 2.8 Composition of the standards for 10ul between 0-100 % methylation DNA using control DNA

% Methylation Methylated Unmethylated Methylated Unmethylated

of DNA DNA % DNA % DNA (uL) DNA (uL)
0 0 100 0 10
5 5 95 0.5 9.5
10 10 90 1 9
25 25 75 2.5 7.5
50 50 50 5 5
75 75 25 7.5 2.5
90 90 10 9 1
95 95 5 9.5 0.5
100 100 0 10 0

2.5.11 How to define outliers in DNA methylation analysis

There were some influential outliers in DNAm and therefore steps were taken to address
these. The influence of outliers can be large when the sample size is relatively small, which
can affect the mean and increase variability. In statistical models, many of which rely on
mean differences, this can influence results and model validity. Statistical inference will rely
on a standard deviation which measures normal spread of data, but extreme values at either
side of the distribution increases the standard deviation and decreases the likelihood of
finding a statistically significant difference, which increases likelihood of type Il error
(Cousineau and Chartier, 2010). There are various ways to define outliers and handle

outliers; however there is no unanimous consensus.

One route would be to determine if the values obtained are consistent with findings from
other published studies. There has not been another study which has analysed DNAm at this
locus using pyrosequencing, and it is acknowledged that alternative methods for quantifying

DNAm (such as arrays) may differ in the values obtained. However, blood methylation levels
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in adults have been investigated in a handful of cohorts with freely accessible 450K array
data. CpG methylation at this locus has been measured in similar populations (European
decent) in cohorts in Australia and in the Netherlands. In the Brisbane Systems Genetics
Study (BSGS), DNAm was measured in 614 individuals from 117 families of European descent
in Brisbane, Australia (Powell et al., 2012). Families consisted of adolescent monozygotic (n =
67 pairs) and dizygotic (n = 111 pairs) twins, their siblings (n = 119), and their parents (n =
139). The children were on average 14 years old (range 9-23), adults were 47 years old
(range 33-75) (Figure 2.12), and beta values at this CpG were between 0.05-0.12 (Figure
2.11). The authors state that any measurement greater than five interquartile ranges
(determined/decided by comparing estimates with and without outliers) from its nearest
quartile was set to missing in order to avoid the influence of outliers (Powell et al., 2012).
Therefore, the range of methylation values at this CpG could have differed prior to
adjustment. In the BSGS, methylation at this CpG (cg11531579) positively correlated with

age (Pearson correlation =0.34, p<0.0001) (Figure 2.12).

BSGS methylation at cg11531579
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Figure 2.11. Histogram of methylation (beta values) at cg11531579 in the Brisbane Systems Genetics Study
(BSGS).
N=614. Line represent Kernel density estimate. Methylation ranged from 0.05-0.12 (median 0.07).
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Figure 2.12 Plot of methylation (beta values) at cg11531579 by age in the Brisbane Systems Genetics Study (BSGS).
Line represents the linear fit with shaded 95% confidence intervals. Pearson correlation =0.34, p<0.0001. Age ranged from
10-75 years.

Another study examined methylation in elderly individuals. In the B-Vitamins for the
PRevention Of Osteoporotic Fractures (B-PROOF) study, a randomised controlled trial which
involved B12 and folic acid supplementation, methylation levels were quantified in 87

individuals aged 65-75 years from the Netherlands using the 450K array (Kok et al., 2015).

In the B-PROOF study, the range of methylation values was greater than those in the BSGS
cohort, with beta values ranging from 0.05 to 0.3 (Figure 2.13). The data presented from the
B-PROOF study are the filtered data, normalised using the Subset-quantile Within Array
Normalization (SWAN) procedure (Maksimovic et al., 2012) (available in the R package minfi
(Aryee et al., 2014)).
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Figure 2.13 Methylation (beta values) at cg11531579 in the B-PROOF study.

Betas were normalised betas using the SWAN normalisation procedure. Line represent Kernel density estimate.
Methylation values ranged from 0.05-0.30, median methylation was 0.10. Baseline age ranged from 65-75. Methylation did
not vary with age within this age range.

Another option for defining outliers would be to use the statistical formula that defines
outliers as greater than 1.5 x IQR. Using this formula on NTFS data would exclude data points
with methylation greater than 11.2% (n=16), which is in line with methylation levels from the
Brisbane study (max beta value was 0.12, aka 12%). However, this would exclude many
values that could be valid, as seen in the B-PROOF study, whereby the upper observed
methylation levels were 32% (beta value 0.32). The upper values in these two large studies
are very dissimilar (12% - 32%) (Table 2.9) and choosing one of these values as part of the

criteria would give notably different results.

In NTFS, DNAmM was centred around 3%, with a minority of samples that had very high
methylation (Figure 2.14). Therefore, using a percentile cut-off (90t percentile, >13.4%)
would exclude those with very high methylation, leaving observations that are more

representative of the sample generally.

Different cohorts adopt different methodological processes for dealing with outliers in their
data, and different normalisation pipelines. This makes comparing the statistical outliers
with values obtained in previous studies problematic, as the data presented are often
processed data (such as with B-PROOF and BSGS), with limited information provided on the

processing steps applied.
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However, as there is consistency in the values specified using the statistical formula, 90t
percentile and the Brisbane study, there is some agreement for an upper limit of 12% (Table
2.9). Therefore, the definition of ‘high methylation’ utilised here was methylation >12%,
which is reasonable considering the characteristics of the data. Methylation increases at this
locus with age (Figure 2.12), which could explain some differences observed, and the
Brisbane study included ages more similar to this cohort, whereas the B-PROOF study

included older participants.

Sensitivity analysis was done excluding the outliers. Outliers were defined as those with
>12% methylation, in line with findings from previous studies (Table 2.9). Statistical analyses

were repeated with outliers excluded to see how this influenced results.

It is worth noting that other factors such as disease or lifestyle can influence methylation
patterns (Robertson, 2005, Anderson et al., 2012). In NTFS, no variables (sex, smoking,
exercise, SES, RWG, birthweight, alcohol intake) predicted whether an individual had outlier
methylation. Sample sizes were too small to investigate whether high methylation levels

were associated with disease (i.e. cancer or infection).

Table 2.9 Threshold methylation values for the different approaches to defining outliers for cg11531579

Method Study Threshold methylation value
Statistical method (>1.5*IQR) NTFS 11.2
90" percentile NTFS 13.4
Comparison with other data sets Brisbane 12

B-PROOF 32

ALSPAC 12

Beta values are presented as % methylation for comparison. IQR, inter-quartile range.

2.5.12 Statistical analysis

Pyrosequencing results were analysed using STATA version 15 (STATA Corp., Texas, USA),
and methylation values are reported as percentages (0-100%). Average (mean) DNAmM was
calculated at each individual CpG locus from the duplicate pyrosequencing reactions. From
this, overall mean methylation (across the region spanning 3 CpG loci), was calculated as the
average of the 3 values at the 3 loci. The correlation between CpG loci was assessed using

Pearson’s correlation, and were also examined stratified by RWG.
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There were outliers in DNAm values (very high methylation), which positively skewed the
data, therefore the median was the preferred summary statistic. Outliers were detected
across all CpG loci, and those which had high methylation at 1 CpG site tended to also have
high methylation at the other loci. The impact of the outliers was addressed by using the
statistical methods for non-parametric, positively skewed data. Furthermore, sensitivity

analysis was carried out to assess the impact of the outliers.

Summary statistics are presented for DNAm by RWG and by body composition (OWOB, OB).
Phenotypic (RWG, OWOB, OB) differences in DNAm were compared using Wilcoxon signed-
rank test(s). DNAm between sub-phenotype groups (no RWG/RWG and OWOB/healthy
weight) were compared using the non-parametric Kruskal-Wallis test. This test is less
sensitive to outliers, or non-normal distributions, and therefore is a more appropriate test to
use than the ANOVA. A post-hoc Dunn’s test was used to adjust for multiple comparisons.
The association between DNAm and phenotype was assessed further in regression models
(detailed methods in section 2.5.12.1), with adjustments for sex. Batch (i.e. pyrosequencing
plate) was initially included as a factor variable in regression models, however inclusion did
not affect estimates (<10% change in coefficients) and therefore batch was not considered a
confounder in these analyses. Stratified analysis was carried out to examine methylation in

only those who had RWG in childhood (the exposed group), with regards to adult OWOB.

Analyses of the epigenetic datasets (to determine outliers) was done using R version 3.5.2,

and reports methylation (beta values, ranging from 0-1).

2.5.12.1 Statistical models

Both the relationship between the early life exposure (RWG) and later life DNAm, as well as
the relationship between DNAm and outcome (body composition) were of interest, and
were addressed using an adaptation of the ‘meet in the middle’ approach. This strategy has
been proposed as a means to identify intermediary biomarkers related to both exposure and
disease outcome (Vineis and Perera, 2007), and has been previously applied in the
metabolomics literature (Chadeau-Hyam et al., 2011, Assi et al., 2015). In short, this
approach evaluates the following relationship: exposure = intermediate biomarkers of
exposure €< disease. In this approach, omics data from prospective cohorts is used to
identify molecules that represent intermediate markers of early effect, which are used to

link exposures with disease endpoints (Vineis and Perera, 2007). The approach is flexible in
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that it can utilise data from a prospective study, or can crossover between exposure
biomarkers and disease risk markers from case-control studies. If searching for causal
associations, the causal nature of an association is reinforced if it is found in all three steps,

however causality is not justifiable without formal mediation analyses.

Statistical models were utilised to examine the associations between the
exposure(RWG)—>DNAm, and the DNAm—>outcome (body composition) associations to
gauge clues about DNAm as a possible intermediary. These models had to consider the
characteristics of the data and the model assumptions, therefore a variety of models were

utilised (Table 2.10).

The relationship between body composition outcomes (OWOB, OB) and DNAm (exposure)
were assessed using logistic regression. As sensitivity analysis, stratified analysis examined
associations in the exposed (those who had RWG) population (Appendix F, Table XXIV)

however associations did not differ.

There were indications from the scatter plots that the relationship between BMI and DNAm
was non-linear (outlined in section 2.5.12.1.1). Therefore, fractional polynomial models were
used in order to determine the appropriate power transformation for these data. Median
and Tobit regression models were used to examine the relationship between DNAm and

RWG, to account for the positive skew in the dependent variable (DNAm).

Table 2.10 Summary of the statistical models, exposures, outcomes and age at measurement

Statistical Reasoning Exposure Outcome Sensitivity
model (age) (age)

Linear 1. To model a perceived DNAm?(age BMI v
regression linear relationship 50) (ages 50 and 60)

2. Non-linear
relationship was
analysed with fractional
polynomial terms

Logistic Binary outcome variable DNAm? OWOB v
regression (age 50) (ages 50 and 60)
OB v
(ages 50 and 60)
Median Skewed outcome RWG DNAmM? v
regression variable (0-12 (age 50)
months)
Tobit Skewed outcome RWG DNAm? v
regression variable with many (0-12 (age 50)
zero's months)
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2 DNA methylation (DNAm) refers to separate models for the 3 individual CpG loci, and for average methylation.
b Sensitivity analysis was done for CpG3 only (as it was the CpG of interest).

2.5.12.1.1 Fractional polynomial terms

Fractional polynomial (FP) models can be used to compare fit in regression models using
non-linear functions (Royston and Altman, 1994). The combinations of powers (-2, -1, -0.5,
0, 0.5, 1, 2, 3) are each fitted to the model until the best fitting model (lowest deviance) is

achieved. The FP degree of the polynomial (the largest exponent) is termed m.

Linear regression using the derived fractional polynomial terms was utilised with BMI as the

outcome and DNAm as the predictor.

2.5.12.1.2 Median regression model

Standard linear regression uses the mean of the dependent variable (Y) to make inferences
about the data, whereas quantile regression makes predictions for a given quantile of Y,
such as the 50" (median). Median regression is a semi-parametric form of regression
analysis which is more robust to outliers than standard linear regression (Koenker and
Bassett Jr, 1978). It does not require the same assumptions as linear regression regarding a
parametric distribution of the residuals or constant variance. Median regression was utilised
to examine the relationship between methylation (age 50) with the exposure, RWG,
adjusted for confounders (sex, birthweight). Robust estimates of standard error are
reported, to account for heteroscedasticity (demonstrated using residual plots). These

results were compared with those from the Tobit models.

2.5.12.1.3 Tobit model

A Tobit model was also used to estimate the linear relationship between methylation and
RWG. The Tobit model is a censored regression model, which estimates linear relationships
between variables when there is censoring in the outcome variable from either above or
below (Tobin, 1958). Censored distributions are a mixture of both discrete and continuous
distributions. Values above or below a threshold are censored (i.e. unknown above the
upper or below lower limits), such that all values take on that specified value, even if the
true value may be higher or lower. For example, the Tobit model will regard observations

below the lower limit as lying somewhere between the limit and zero.

Censoring from below would apply in this case to accommodate the many methylation

values that equal 0 (Humphreys, 2013). The presence of many zeros in the dependent
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variable causes issues when using an ordinary least squares model, as the data are positively
skewed. However, it is assumed that these are true zeros in this case. Here the outcome
(methylation) has both a lower and upper limit of detection (as identified in the assay
validation), meaning methylation is frequently reported as 0% because the sensitivity of this
assay (the smallest value of methylation that was observed at 0% methylation in the
validation) was ~3% (Figure 2.14). In this case, a Tobit model would be appropriate, with
lower censoring at 3%, which would mean that any observation less than 3% is not known
exactly but then takes on that value. Upper censoring was also applied with the upper

detection limit from the assay validation.
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Figure 2.14 Observed distribution of methylation values at CpG3 (cg11531579).

If the lower limit of the assay is 3% (dashed line), then n=80 of these samples fall above the limit. Therefore, the
distributions for samples with over 3% methylation is known, but only know the number of observations below 3% is
known. Median regression and Tobit regression were utilised to address this issue.

2.5.13 Potential effects of single nucleotide polymorphisms

A potential explanation for the high methylation observed in some samples, is that SNPs
either upstream or downstream could also influence methylation (Gibbs et al., 2010, Chen et
al., 2013). In order to investigate if methylation patterns were being influenced by SNP
effects, the region nearby the CpG of interest was sequenced. Samples were selected with

high methylation (>12% methylation). There were 7 samples with high methylation, which
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had DNA remaining. These were randomly matched (sex, RWG, BMI (age 50)) with other ‘low
methylation’ (<5%) samples using the STATA program ccmatch (Cook, 2015).

Genomic DNA primers were designed using the region 800 bp either side of the CpG of
interest, forming a product size of 865 bp. PCR reactions were optimised as described
previously (section 2.5.5) using a temperature gradient at both high (100ng) and low (50ng)
amounts of DNA. Once optimised, PCR was carried out on the NTFS DNA samples, which for
many samples used the remaining DNA. An estimated 20ng of gDNA (where available) was
used for each PCR reaction in a total reaction volume of 24uL. Some samples failed (likely
due to very low DNA concentrations), with no visible bands when visualised using gel

electrophoresis, leaving 3 pairs (n=6) samples for sequencing.

PCR clean up and sequencing (of the left and right strands) was carried out by the University
of Sheffield Core Genomic Facility. After sequencing, the left and right reads need to be
aligned, however all the left reads failed sequencing, and therefore the reverse complement

of the right sequence was used for analysis.

The sequence traces were visually inspected for quality. Sequences were aligned to the
reference sequence using genescreen, a desktop program for alignment of multiple DNA
sequences that highlights SNPs (Carr et al., 2011). The SNPs were compared between
matched pairs. Linkage disequilibrium, when genetic variants are inherited in a non-random
manner, was examined using the web-based tool: LDlink (Machiela and Chanock, 2015).
Between two genetic variants, D prime (D') indicates the allelic segregation, and R squared
(R?) measures the correlation of alleles, with values ranging from 0 (weak correlation) to 1

(strong correlation).
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Chapter 3. Exploring the relationship between early and

later life exposures and obesity in middle-age

3.1 Introduction

This chapter addresses the first aim of the thesis and examines if early life factors and SES
are associated with body composition in NTFS adults (aged 49-51 years), in order to
determine which (if any) early life factors have a lasting effect into middle age, irrespective
of various lifestyle and socioeconomic influences. The investigation of early life factors for
obesity risk is a relatively recent concept, hence early life factors have been investigated in
few pre-obesogenic cohorts so far. Additionally, the majority of the literature concentrates
on childhood obesity, and there is limited data as to whether these are risk factors in adults,
due to a lack of long-term follow-up data in many studies (Parsons et al., 1999). Data from
NTFS, which commenced in 1947, provides the opportunity to investigate early life factors
for in a pre-obesogenic, post-war cohort of middle-age adults to address these

shortcomings.

These are important questions to ask as they might direct whether interventions or
resources should focus on addressing the early life exposures, or on modifying environment

and lifestyle, in order to reduce the burden of obesity.

3.2 Aims

The analysis in this chapter utilises data from a pre-obesogenic environment cohort to i.)
Determine if early life exposures were associated with adult body composition in the NTFS
cohort; ii.) Examine if risk factors vary for different outcomes i.e. using proxy measures or
direct measures of body composition and distribution; and iii.) Examine the relative
contribution of early life factors, SES and lifestyle to adult BMI, as well as the relationships

between these factors.
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3.3 Participants and Methods

3.3.1 Exposure and outcome data

The NTFS dataset is described in detail in chapter 2.1.1. A large proportion of the cohort
were traced at age 50 (n=866, 88%), with 113 lost to follow-up, which included those who

died (after age 1), moved abroad or were untraceable.

Early life exposures used in this analysis included birthweight (continuous and categorical),
occupational social class at birth, maternal age (continuous and categorical), infant feeding
(breastfeeding, exclusive breastfeeding and weaning age), bacterial infections, adverse

events, and housing problems. Sex and gestational age were additional covariates.

Data on lifestyle factors (smoking, physical activity) and socioeconomic position were
derived from the self-completed questionnaire, and nutrient intake from the food frequency
questionnaire, at age 50. Multiple dimensions of body composition were analysed as
outcomes including; BMI and obesity (OB), body fat percentage (BF%) and waist-hip ratio

(WHR). The coding of the early and late life factors is in section 2.1.1.2.

3.3.2 Statistical methods

Descriptive statistics are presented for each demographic, explanatory and outcome
variable. A potential issue with longitudinal data is attrition (loss of participants over time),
which reduces sample size and can leave a biased remaining sample. Apart from sex (fewer
males), the cohort followed up at age 50 were shown to be representative of the original
cohort for the early life factors examined in a previous study (Lamont et al., 2000). This was
reassessed for the study members who had BMI measures at age 50, with respect to the

early life variables of interest in this study (methods in section 2.3.2).

Relationships between BMI and obesity (BMI>30kg/m?) and each of the early life and later
life factors were examined using linear (BMI, WHR, %BF) and logistic (obese) regression

models, and path analysis. For details on statistical methods see 2.3.5.

118



3.4 Results

3.4.1 Sample representativeness

Questionnaires were returned by 574 members and 412 attended a full clinical assessment
between ages 49-51. There were some differences between the original cohort and those
who attended the clinic at age 50 (Table 3.1). There were a greater proportion of women
(p<0.01), and fewer from the lower occupational social class group. Therefore, sex and SES at

birth were included as covariates in adjusted models.

Table 3.1 Differences in early life variables between NTFS study members present at birth and at age 50

Mean/Median/(%)

Variable Did not attend  Attended P value
Birthweight (z-score) -0.2 -0.1 0.57
Maternal age (years) 28.3 28.7 0.28
Housing problems (%) 58 52 0.06
Duration Breastfed (days) 132.9 119.6 0.16
Female (%) 44.6 56.5 <0.01
Least advantaged 33 27
SES (birth, %) Mid 54 62 0.06
Most advantaged 13 11

P-values calculated from t-tests, chi-square tests or Mann-Whitney tests as appropriate

3.4.2 Sexdifferences

There were no a priori reasons to anticipate sex differences in early life exposures, however,
socioeconomic differences between men and women have been observed when examining
obesity (Wardle et al., 2002). Therefore, a Wald test was performed for each outcome for
the socioeconomic variables (occupational SES at birth and middle age, education and
income) to determine if there were significant differences between men and women. These
results indicated that the models for WHR and BF% (but not BMI) should be stratified by sex.
Furthermore, as there are sex-specific cut-offs for WHR (Table 1.1) and BF% (Table 3.2) for
men and women, it is appropriate to stratify. There were also biological differences in
support of stratifying by sex for these outcomes, whereby most men had an ‘at-risk” WHR
(82% men, only 21% women), and most men had obese levels of body fat (86%, compared to

just 56% of women).

119



Table 3.2 Percentage BF cut-offs by sex for adults (aged 40-59) using the Gallagher classification

Age (years) Category Sex
Men Women
40-59 Underweight <11.0% <23.0%
Healthy 11.0%-22.9% 23.0%-34.9%
Overweight 23.0%—28.9% 35.0%—-40.9%
Obese 229.0% 241.0%

3.4.3 Descriptive characteristics

3.4.3.1 Outcome measures

At age 50, the cohort had the same proportion of healthy weight (40%) and overweight
(40%), with the remainder obese (20%) (Figure 3.1). These figures are in line with UK 1997
averages (age 45-54) of 43.6% overweight and 22.1% obese (Health and Social Care
Information Centre, 2014). There were significant differences in BMI categories between

sexes; with 50% of NTFS men classed as overweight compared to 32% of women.

47
31
MALE FEMALE
B Normal Overweight B Obese

Healthy weight (n) (%) Overweight(n) (%) Obese(n) (%) Total P

Males 54 31.2 86 49.7 33 19.1 173 0.001
Females 103 46.2 73 32.7 47 21.1 223

Figure 3.1 Proportion (%) of NTFS study members in each weight category at age 50 stratified by sex.
Number of observations (n). Chi-square p value shown for differences in distributions between sexes

BMI values for males followed a normal distribution, whilst the female values were skewed
by some values greater than 40Kg/m? increasing the range of values (Appendix B, Figure VII).

According to the Gallagher classification for age 40-59, the mean BF% for both men (36.4%)
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and women (41.7%) (Figure 3.1) was in the category for greater risk of suffering from obesity
related health conditions (Gallagher et al., 2000). As to be expected, women had a higher
mean BF%, however males had a higher BMI and WHR (Table 3.3). Mean WHR in females

was within healthy limits, whilst the average value for men was in the ‘at-risk’ category.

Table 3.3 NTFS continuous outcome variables at age 50 stratified by sex

Outcome Male Female

variable n Mean SD Min Max n Mean SD Min Max P
BMI 173 26.92 3.60 19.39 38.74 225 26.48 5.28 15.81 48.09 0.02
Body fat 172 36.43 7.16 15.40 54.40 223 41.74 9.12 1440 61.80 <0.001
(%)

WHR 172 0.95 0.06 0.78 1.08 225 0.80 0.06 0.68 0.97 <0.001

When testing for differences in distributions, parametric t-tests (WHR) were conducted or Mann-Whitney tests (BMI, BF%)
were used for skewed distributions. Number of observations (n), standard deviation (SD), minimum (min) and maximum
(max) values and P values for differences between sexes.

3.4.3.2 Correlations between adiposity outcomes

Correlations between measures of adiposity were stronger for females than males (Figure
3.2). The strongest correlation for both sexes was between BMI and body fat, suggesting
that BMI is a good predictor of body fat in this population. There were also moderate
positive correlations between WHR and body fat (Figure 3.2). There was a weak correlation

between BF% and WHR, more so for males (r=0.34) than females (r=0.42).
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Figure 3.2 Correlations between NTFS outcome measures stratified by sex.
A.) BMI z-score and body fat percentage (BF%).

B.) waist-hip ratio (WHR) and BMI z-score.

C.) WHR and body fat percentage.

r, Pearson correlation coefficient. Explanatory variables
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3.4.3.3 Exposures

Descriptive data are presented for all explanatory variables Table 3.4 (continuous or ordinal)
and Table 3.5 (categorical variables). Aside from females having a higher birthweight z-score
(Table 3.4), there were no other significant differences between males and females for the

early life variables (Table 3.5).

Mean birthweight z-score for this population was lower (-0.18) than the growth reference,
which likely reflects the earlier date of birth (Cole et al., 1995). The average maternal age

was 28 years old, with the majority of mothers aged 25-34.

Most infants were in the normal birthweight category (Table 3.5). There were significant
differences in birthweight z-score between males and females with significantly more
females born LGA (12.5% compared to 4%). Around 42% of study members experienced a

period of rapid growth from birth to twelve months.

Around a third (30%) of study members who came to clinic at age 50 were breastfed for over
6 months, whilst 19% were never breastfed (Table 3.5). Infant feeding was not related to SES
(Appendix B, Figure VIII). Over half of the cohort experienced some form of housing
problem, a third experienced an adverse event before they were three years old and 18%

had a bacterial infection within the first year (Table 3.5).
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Table 3.4 Early life differences in continuous/ordinal variables between NTFS males and females

Variable All Male Female

n Mean Min Max n Mean n Mean P

(SD) (SD) (SD)

Birthweight 398 3.39 1.93 4.88 173 3.41 223 3.38 0.57
(kg) (0.49) (0.47) (0.51)
Birthweight 398 -0.12 -3.17 3.02 173 -0.28 223 0.01 0.01
(z-score) (1.04) (0.93) (1.12)
Gestational 395 39.89 33 44 171 39.94 222 39.86 0.39
age (weeks) (0.98) (0.81) (1.10)
Maternal age 398 28.72 17 45 173 28.44 223 28.87 0.47
(years) (5.89) (5.70) (6.02)
Breastfed 377 122.94 0 443 168 121.88 207 124.15 0.71
(days) (119.76) (118.68) (121.21)
Exclusively 387 69.41 0 291 170 65.70 215 72.28 0.46
breastfed (62.60) (61.81) (63.21)
(days)
Introduction 379 158.76 15 345 168 157.17 209 160.03 0.52
of solids (42.45) (43.95) (41.43)
(days)
No. infections 393 1.09 0 7 172 1.21 219 1.01 0.11
in first year (1.13) (1.20) (1.07)

Number of observations (n), standard deviation (SD), minimum (min), maximum (max) values, and P values (p) for t-tests or
Mann-Whitney tests for differences between sexes presented in columns.
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Table 3.5 Descriptive statistics of categorical early life variables stratified by sex, for the NTFS age 50 sub-sample

Categorical variables Male (%) Female (%) Total (%) p
Centile categories of birthweight (n=395)

SGA (n=44) 11.7 10.7 11.1 0.014
Normal (n=316) 84.2 76.8 80

LGA (n=35) 4.1 12.5 8.9

Weight categories of birthweight (n=398)

LBW (n=10) 1.7 3.1 2.5 0.598
Normal (n=382) 97.1 95.1 96

HBW (n=6) 1.2 1.8 1.5

RWG (n=163)

No (n=95) 59.7 57.3 58.3 0.759
Yes (n=68) 40.3 42.7 41.7

Maternal age at birth (n=398)

Less than 25 (n=109) 27.2 27.6 27.4 0.99
25-34 (n=217) 54.9 54.2 54.5

35+ (n=72) 17.9 18.2 18.1

Housing problems (n=396)

None (n=192) 48 48.9 48.5 0.85
Housing issues (n=204) 52 51.1 51.5
Breastfeeding (n=219)

None (n=42) 16.7 20.9 19.2 0.73
<4 weeks (n=29) 15.6 11.6 13.2

4 wks - 6 month (n=83) 36.7 38.8 37.9

6 months+ (n=65) 31.1 28.7 29.7
Occupational social class at birth (n=390)

Least advantaged (n=107) 29.8 26.7 27.4 0.29
Mid (n=240) 56.5 65.3 61.5

Most advantaged (n=43) 13.7 9.0 11.0

Bacterial infection in first year (n=301)

No (n=248) 78.9 85.0 82.4 0.17
Yes (n=53) 21.1 15.0 17.6

Viral infection in first year (n=307)

No (n=218) 42.2 57.8 71.0 0.80
Yes (n=89) 43.8 56.2 29.0

Any early life adverse event (first 12 months) (n=352)

No (n=303) 50.0 50.0 74.7 0.50
Yes (n= 49) 44.9 55.1 25.3

Row sample sizes (n), column percentages (%) shown and Chi-square p-value (p) presented

In terms of later life characteristics (Table 3.6), fewer women were educated, and 40% of
women had no qualifications, compared to 27% of men. The majority of the cohort
undertook light activity. At age 50, 27% of included NTFS participants smoked,
corresponding to 28% of women and 25% of men (Table 3.6). This is inconsistent with
national (PHE) figures which show higher proportions of male smokers (ONS, 2014), although
differences were not significant (Table 3.6). Over three quarters of the cohort were married.
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Table 3.6 Descriptive statistics of explanatory later life categorical variables related to growth stratified by sex, for the NTS
age 50 sub-sample.

Later life variables Male (%) Female (%) Total (%) p
Occupational social class at 50 (n=375)

Least advantaged (n=52) 11.6 15.6 13.9 0.295
Mid (n=132) 39 32.2 35.2

Most advantaged (n=191) 49.4 52.1 50.9

Education (n=382)

None (n=131) 26.8 39.9 34.3 0.004
O-level (n=131) 32.3 35.8 34.3

A level (n=71) 25 13.8 18.6

Degree (n=49) 15.9 10.6 12.8

Educated past secondary school (n=382)

No (n=262) 59.1 75.7 68.6 0.001
Yes (n=120) 40.9 24.3 31.4

Physical Activity (n=387)

Inactive (n=43) 7.7 13.7 11.1 0.156
Light Activity (n=191) 54.8 45.2 49.4

Moderate (n=90) 21.4 24.7 23.3

Heavy Activity (n=63) 16.1 16.4 16.3

Current smoker at age 50 (n=395)

No (n=288) 74.7 71.6 72.9 0.485
Yes (n=107) 25.3 28.4 27.1

Current marital status (n=393)

Not married (n=79) 17.8 21.9 20.1 0.313
Married (n=314) 82.2 78.1 79.9

Row sample sizes (n), column percentages (%) shown and Chi-square p-value (p) presented

3.4.4 Relationships between early life exposures and later life BMI and obesity

In order to determine which early and later life factors might be predictive of middle-age
BMI and obesity, each of these factors were examined individually (Table 3.7). In bivariate
(unadjusted) analyses, study members were over twice as likely to be obese if they had a
bacterial infection in the first year of life. However, there were no significant associations for
viral infections. Those who smoked and participated in heavy physical activity were also
significantly less likely to be obese. Current smokers had a significantly lower BMI. However,
there were no significant differences in BMI or obesity likelihood between ex-smokers and
non-smokers, or for number of pack years (Appendix B, Table VI). Those who did heavy

physical activity had a significantly lower BMI and were 90% less likely to be obese (
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Table 3.8).

A lower BMI was associated with having an older mother (aged over 35), whilst being
educated and married was associated with a higher BMI. Socioeconomic advantage was
associated with lower BMI. There were no associations for birthweight, adversity,

overcrowding, housing problems, or income with either BMI or obesity.
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Table 3.7 Bivariate (unadjusted) associations between exposures of interest and outcomes obesity (OB) (logistic
regression) and BMI (linear regression) in NTFS study members (age 50)

BMI OB
Coef Cl p OR Cl p
Sex Female -0.40 [-1.29,0.49] 0.38 1.12 [0.68,1.84] 0.66
Birth Birthweight (z-score) -0.08 [-0.49,0.33] 0.71 1.10 [0.87,1.40] 0.42
Gestation (weeks) 0.25 [-0.15,0.66] 0.22 1.18 [0.90,1.55] 0.23
Continuous -0.07 [-0.14,0.00] 0.06 0.99 [0.94,1.03] 0.50
<25 0.45 [-0.59,1.48] 0.40 1.37 [0.79,2.38] 0.26
Maternal age
25-34 Ref . Ref .
35+ -1.46  [-2.63,-0.29] 0.01 0.75 [0.36,1.55] 0.44
Never breastfed Ref . Ref .
<4 weeks 0.55 [-1.52,2.63] 0.60 2.29 [0.70,7.49] 0.17
4 wk — 6 months 0.26 [-1.46,1.97] 0.77 1.53 [0.53,4.40] 0.43
Infant feeding 6 Months + 0.68 [-0.94,2.31] 0.41 1.52 [0.55,4.20] 0.42
Breastfed (days) 0.00 [-0.00,0.01] 0.14 1.00 Ref 0.37
Exclusive (days) 0.01 [-0.00,0.02] 0.15 1.00 [1.00,1.01] 0.29
Weaning age (days) -0.01 [-0.02,0.01] 0.35 1.00 [0.99,1.00] 0.37
Rapid weight gain 0.76 [-0.44,1.97] 0.22 1.22 [0.51,2.91] 0.66
Any infection 1.22 [0.33,2.10] 0.01 2.03 [1.21,3.39] o0.01
Early life Number of infections 0.42 [0.02,0.82] 0.04 1.36 [1.11,1.67] <0.01
Bacterial infection 1.88 [0.53,3.23] 0.01 2.60 [1.34,5.02] 0.01
Viral infection 0.29 [-0.82,1.39] 0.61 1.51 [0.83,2.73] 0.18
Least advantaged Ref . Ref .
Mid -0.92 [-1.93,0.08] 0.07 0.55 [0.32,0.95] 0.03
SES (childhood) Most advantaged -1.40 [-2.98,0.18] 0.08 0.35 [0.13,0.99] 0.05
Housing score -0.02 [-0.43,0.38] 0.91 1.12 [0.89,1.39] 0.33
Overcrowding 0.33 [-0.66,1.31] 0.52 1.65 [0.98,2.78] 0.06
Adversity Any adverse event 0.16 [-2.02,2.33] 0.89 1.93 [0.66,5.61] 0.23
Social class Ref . Ref .
Mid -0.63 [-2.04,0.79] 0.39 0.53 [0.26,1.08] 0.08
Most advantaged -0.59 [-1.95,0.76] 0.39 0.40 [0.20,0.80] 0.01
Educated 0.51 [-0.46,1.48] 0.30 0.93 [0.53,1.62] 0.79
SES No qualifications Ref . Ref .
(later life) GCSE/O-level -1.11  [-2.20,-0.02] 0.05 0.58 [0.31,1.08] 0.09
Alevel 0.29 [-1.01,1.58] 0.67 0.86 [0.43,1.74] 0.68
Degree -0.50 [-1.96,0.95] 0.50 0.54 [0.22,1.32] 0.18
Income -0.31 [-0.75,0.13] 0.17 0.79 [0.62,1.01] 0.06
Married 1.01 [-0.11,2.12] 0.08 1.65 [0.82,3.29] 0.16
Inactive Ref . Ref .
Light activity -1.25 [-2.75,0.24] 0.10 0.73 [0.35,1.52] 0.40
Lifestyle Moderate activity -1.99  [-3.64,-0.35] 0.02 0.43 [0.18,1.01] 0.05
Heavy activity -2.90 [-4.65,-1.15] <0.001 0.16 [0.05,0.52] <0.001
Smoker -1.32  [-2.31,-0.34] 0.01 0.53 [0.28,0.99] 0.05

Coefficients (coef) and odds ratios (OR) are presented with 95% confidence intervals (Cl) and the corresponding level of
significance (p); Ref, reference group. Bold indicates significant at p<0.05.
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3.4.4.1 Socioeconomic factors

Those in the most advantaged socioeconomic group compared to the least at birth had a
lower BMI in the unadjusted analysis (coef=-0.43, p=0.06)(Appendix B, Table Ill). Being
educated to O-level was associated with a lower BMI compared to those with no
qualifications (coefficient=-1.11, p<0.05), however, there was no trend across increasing

educational attainment (Appendix B, Figure IX).

As this cohort experienced great upward social mobility (previously reported by (Forrest et
al., 2011)), this was investigated further regarding BMI. Social mobility was not associated
with BMI, but those consistently in the mid advantaged occupational social class group had
2.6 kg/m2 lower BMI (p=0.01) on average (Appendix, Table Ill). However, increasing social
advantage was associated with lower odds of obesity across multiple levels (Appendix, Table
[I1). Odds were lowest for those always in the most advantaged groups compared to always

in the least (OR=0.09, p=0.005).

There were no associations for other SES variables including experiencing adversity, housing
issues or overcrowding (a composite of housing issues) in the first year, and any adiposity-

related outcome measures.

3.45 Multivariable regression models for BMI and obesity

The adjusted model for BMI shows that the significant early life exposures were older
maternal age and bacterial infection in the first year, adjusted for sex, early and later life

SES, breastfeeding and lifestyle (smoking and physical activity) (
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Table 3.8). Physical activity level (PAL), smoking and social class (age 50) were also
independent significant predictors of BMI. These factors explained 17% of the variation in

BMI.

Adjusting for social class at birth attenuated the associations for sex, older maternal age,

illness, and duration breastfed (
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Table 3.8). The association between BMI and being married was attenuated by SES and was

not significant after adjusting for smoking.
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Table 3.8 Multivariable linear regression model for early and later life factors and BMI in NTFS study members age 50
(n=262).

BMI (age 50) Coef Cl p
Female -0.8 [-1.88,0.28] 0.147
Maternal age

<25 0.43 [-0.81,1.67] 0.498

25-34 Ref .
35+ -1.52 [-2.96,-0.08] 0.038

Social class (birth) Ref .
Mid -1 [-2.28,0.28] 0.125
Most advantaged  -0.78 [-2.88,1.32] 0.465
Bacterial infection 2.12 [0.70,3.53] 0.003
Duration breastfed (weeks) 0.03 [-0.00,0.06] 0.079

PAL Inactive Ref

Light activity  -2.30 [-4.17,-0.42] 0.017

Moderate activity  -3.09 [-5.14,-1.03] 0.003

Heavy activity  -3.89 [-6.18,-1.60] 0.001

Smoker -2.31 [-3.57,-1.06] <0.001
Social class (age 50) Ref .

Mid  -2.02  [-3.74,-0.29]  0.022

Most advantaged  -1.58 [-3.27,0.11] 0.067

Coefficients (coef) are presented with 95% confidence intervals (Cl) and the corresponding level of significance (p); Ref,
reference group. Bold indicates significant at p<0.05. All covariates are presented.

In multivariable analysis; infections, smoking and heavy PAL remained significant predictors
of obesity (Table 3.9). SES at birth was no longer significant, and instead later life SES was a

significant predictor of obesity.
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Table 3.9 Multivariable logistic regression model for early and later life factors and obesity in NTFS study
members age 50 (n=275)

Obese (age 50) OR Cl p
Female 1.22 [0.62,2.40] 0.57
Social class (birth) Ref

Mid 0.55 [0.26,1.18] 0.13

Most advantaged 0.52 [0.14,1.98] 0.34

Bacterial infection 2.75 [1.30,5.79] 0.01
PAL Inactive Ref .

Mild 0.62 [0.24,1.57] 0.31

Moderate 0.41 [0.13,1.24] 0.11

High 0.06 [0.01,0.53] 0.01

Smoker 0.35 [0.15,0.81] 0.01
Social class (age 50) Ref .

Mid 0.29 [0.11,0.75] 0.01

Most advantaged 0.36 [0.14,0.89] 0.03

Odds ratios (OR) are presented with 95% confidence intervals (Cl) and the corresponding level of significance (p). Ref,
reference group. Bold indicates significant at p<0.05. All covariates are presented.

In summary, bacterial infection was the only early life risk factor associated with both
increased BMI and obesity in adjusted models. Being more advantaged in later life, and the
lifestyle factors; smoking and heavy physical activity were associated with reduced odds of

obesity and a lower BMI.

3.4.6 Relationships between early life exposures and alternative measures of adiposity

The relationships between risk factors and BF% and WHR were also considered. These were

investigated separately by sex.

3.4.6.1 Body fat percentage analysis

There were differences in associations between risk factors and BF% in males and females
(Appendix B,Table IV). In bivariate models for men, social class at birth, income and smoking
were all significantly associated with decreased body fat, whilst high social class at 50, being

educated and being married were associated with higher body fat (Appendix B, Table IV).

In females, there were significant, positive associations for duration breastfed and bacterial
infection in the bivariate models, whilst moderate and heavy physical activity was associated

with decreased BF% (Table 3.10).
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In the multivariable model for males, social class at birth and smoking were significant
predictors of lower BF% (Table 3.10). Father’s social class (birth) remained a significant
predictor after adjustment for the study members own social class in middle age. The
coefficients and strengths of the associations increased for social class at 50 and smoking
after controlling for social class at birth. Income was no longer significant after controlling
for occupational social class (age 50). Whilst higher social class at birth was associated with
decreases in body fat, social class at time of measurement was associated with increased

body fat (p=0.06), although the effects of SES at birth were more significant (p<0.001).

In the multivariable model for females, bacterial infections were associated with increased
body fat and heavy physical activity with decreased body fat in women (Table 3.10). These
relationships were not influenced by social class and there was strong support for the model

without SES at birth.

Table 3.10 Multivariable linear regression model for associations between early and later life factors and BF% in NTFS males
and females (age 50).

BF% Males Coef Cl p BF% Females Coef Cl p
SES (birth) Ref : Bacterial 433  [0.36,830] 0.03
infection
. Breastfed
Mid -3.74 [-6.17,-1.31] <0.001 0.07 [-0.02,0.15] 0.13
(weeks)
Most 588 [9.39,-2.37]  <0.001 PAL
advantaged
SES (age 50) Ref . Inactive Ref
Mid 1.49 [-2.25,5.22] 0.43 Light activity -3.2 [-7.71,1.30] 0.16
M M
ost 360 [0.21,7.41] 0.06 oderate 349 [8.46,147]  0.17
advantaged activity
Smoker -4.02 [-6.54,-1.49] <0.001 Heavy activity -6.31 [-11.82,-0.79] 0.03
n 161 n 155
Adjusted R? 0.12 Adjusted R? 0.06

Reference category for SES was least advantaged. Coefficients (coef) are presented with 95% confidence intervals (Cl) and
the corresponding level of significance (p); Ref, reference group. Bold indicates significant at p<0.05.

3.4.6.2 Waist-to-hip ratio analysis

Associations between risk factors and WHR in males and females are presented in Table v

(Appendix B). There were differences in predictors of WHR by sex, with relatively few
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significant risk factors for women. Similar to BF%, many socioeconomic variables were

associated with WHR in males and some were also in females (Appendix B, Table V).

Increasing social advantage at birth was associated with a lower WHR in males (b
coefficient=-0.05, p=0.002). Birthweight was less significant after controlling for SES (age 50).
Later life socioeconomic variables including high occupational social class at 50, income and
university education were also associated with a decreased WHR. However, these factors
were no longer significant after adjusting for social class at birth. Similar to results for BF%,
father’s social class (birth) remained a significant predictor after adjustment for the study
members own SES. In the adjusted model, higher social class at birth was the only significant
predictor of decreased WHR in men and explained around 7% of the variation (adjusted

R2=0.07).

There were no early life and few later life exposures associated with WHR in women. In the
bivariate analysis, there was a significant association for a decreased WHR for those in the
mid social class group at 50 compared to low, and for household income (Table v). After
adjusting for smoking, household income was not significant. There was a small, positive
association between smoking and WHR. In the final model, the only significant predictor of
WHR in women was mid-social class at age 50, however this explained little of the variation

in WHR (adjusted R?=0.01) (Table 3.11).

Table 3.11 WHR multivariable regression models for NTFS males (n=162) and females (n=210)

WHR Males Coef Cl p WHR Coef al 0
Females

Social class Social class Ref

(birth) Ref . (birth)

Mid -0.02 [-0.04,0.00] 0.053 Mid -0.01 [-0.03,0.01] 0.36

Most Most

advantaged -0.05 [-0.07,-0.02] 0.002 advantaged 0.02 FOR R 0.30

Social class Social class

(age 50) Ref . (age 50) Ref .

Mid -0.01 [-0.04,0.02] 0.342 Mid -0.03 [-0.05,-0.00] 0.04

Most Most

advantaged -0.01 [-0.04,0.02] 0.374 advantaged -0.01 [-0.03,0.01] 0.45

Birthweight

(z-score) -0.01 [-0.02,0.00] 0.081

Reference category for SES was least advantaged. Coefficients (coef) are presented with 95% confidence intervals (Cl) and
the corresponding level of significance (p); Ref, reference group. Bold indicates significant at p<0.05. All covariates are
presented.

135



3.4.6.3 Summary of the associations across different outcome measures

For BMI and obesity associations in adjusted models were similar and were significant for
bacterial infection, later life SES, physical activity and smoking, with an additional association

for older maternal age for BMI (Table 3.12).

There were differences in the significant associations for BF% and WHR between men and
women (Table 3.12). There was similarity in that later life occupational social class was
associated with WHR in both sexes. Early life SES was associated with both WHR and BF% in

males.

Associations that were consistent across 3 or more outcome measures were: bacterial

infection, later life SES, physical activity and smoking.

Table 3.12 Summary of results across adiposity outcomes from adjusted regression models in NTFS study members

Outcome measures

Body fat

BMI Obesity %
0

WHR

Individual Sex - -

Maternal age  Older mother v - - -

Birth Birthweight - - - V(M)
Occupational social
class
Breastfeeding - - V(F) -
Housing - - -

Childhood Bacterial infection v v V(F) -
Adversity - - - -
Rapid weight gain - - - -

Adulthood Education - - - -
Occupational social
class
Income - - - -

Exposures

Married - - - -
Physical activity v v V(F) -
Smoking v v V(M) -

Tick denotes significant association in bivariate regression. M; males, F; females.

3.4.7 Pathways between early and later life factors and BMI

The path models (Figure 3.3) demonstrate the relationships between each of the risk factors

and BMI, as well as the relationships between the factors themselves.
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In the path model, breastfeeding was associated with increased BMI. The model also shows
that a longer duration breastfeeding was associated with reduced likelihood of bacterial
infections. Those who were educated and more advantaged were less likely to be smokers.
Occupational social class in middle age had a similar direct effect on BMI to father’s

occupational social class at birth.

Infection in the first year had the largest positive direct and total effect. The socioeconomic
variables, education and occupational social class at 50, had direct effects on BMI until the

lifestyle variables were considered.

Lifestyle factors explained around half of the variation in BMI; when included in the path
model the variation explained increases almost two-fold due to the indirect effects. Lifestyle
factors (including PAL and smoking) were endogenous and predicted by socioeconomic
variables. The effects of later life social class were mediated through lifestyle variables once
they were included in the model, rather than being a direct predictor. The model explained
13% of the variation in BMI, a lower value than the multivariable regression model, which

may be due the use of binary variables.

The path models indicate that early life and socioeconomic factors explain relatively small

differences in BMI (7%), but similar in proportion to the lifestyle factors.

In multivariable models, education was not directly associated with outcomes, although it

predicted other variables in the path model (see Figure 3.3).
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A. Baseline model of early life factors and SES
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Figure 3.3 Path models of the relationship between early and later life variables, and BMI (age 50).

Models are presented without (A) or with (B) adjustments for lifestyle. Arrows show the direction of the effect.
Standardised coefficients are shown. All direct effects are represented by solid lines and are significant at p<0.05. Total
effects are presented in brackets with associated p values.
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3.5 Discussion

In summary, exposures that were consistently associated across different outcome measures
were; bacterial infection, occupational social class (at birth and middle age), smoking and
physical activity. There was some evidence for maternal age, birthweight and breastfeeding,

although less consistent.

Although prevalence of obesity was similar between the sexes there were more men who
were overweight, therefore men on average had a higher BMI compared to females. This is
consistent with findings for this age group by PHE (Health and Social Care Information
Centre, 2014). Research suggests this could be due to the fact that men are less likely to
recognise themselves as overweight or be dissatisfied with their weight (Sullivan and Brown,
2013, Tsai et al., 2016). Alternatively, the value or awareness of the social ideals related to
thinness may explain the lower rates of overweight in women (McLaren and Kuh, 2004,

McLaren, 2007a).

BMI correlated moderately with body fat and WHR, however different exposures were
associated with different adiposity outcomes. BMI had the most significant explanatory
variables and similar associations were observed when examining obesity. There were
comparatively fewer exposures associated with measures of WHR and BF%, however SES
emerged a consistent factor. There was a socioeconomic impact on adiposity that spanned
across outcomes and varied by sex. SES at birth was not significantly associated with BMI or
obesity in middle age, but was an important predictor of other later life factors (such as
smoking, education and mid-life SES). Early life SES was an independent predictor of WHR in
males, whereas SES in later life was a predictor of WHR in females. Similar to WHR, SES at

birth also predicted body fat in males, as did SES in middle age.

Those who had a bacterial infection in the first year of life were more likely to be obese and
have a higher BMI or higher body fat (women only) at age 50. This association was
independent of SES, amongst other potential confounding factors. Taking into account the
era, infection in the first year could encompass some aspects of SES that occupational social

class does not, such as adverse living conditions that increase susceptibility to infection.

There was a weak association between birthweight and WHR in males. The standardised
birthweight is similar to that of the National survey of Health and Development (NSHD), a

larger UK birth cohort that commenced in 1946, thereby allowing comparisons to be made.
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Similar findings from the NSHD support a small inverse association between birthweight and
WC (Kuh et al., 2002) and higher lean mass (Bann et al., 2014). However, there was no
associations for birthweight categories and adiposity outcomes. In NTFS, only 3% of study
members were born LBW, which is dissimilar to current data from the office of national
statistics which shows rates of low birthweight at ~7% in 2015 (ONS, 2015). Similarly, whilst
figures for HBW were only 2% in NTFS, UK averages were around 11% in 2015. Therefore,
perhaps the relatively low proportion of high and low birthweight could explain the lack of
association. Furthermore, children born preterm or very low birthweight could possibly have

lower odds of survival therefore reducing the proportion of children born LBW.

In contrast to other studies, older maternal age was associated with a lower adult BMI and
breastfeeding with a slightly higher BMI, which may be a peculiarity of the historic cohort

(discussed further in section 5.5).

Similar to other studies (Reiner et al., 2013), there was an inverse relationship between
physical activity and obesity. Current smokers in NTFS had a lower BMI, which is in
agreement with the literature (Eisen et al., 1993), however some studies find that heavy
smoking is associated with increased weight (Chiolero et al., 2008). Additionally, NTFS men
who were current or ex-smokers had larger WHR. This has also been noted in other studies
(Canoy et al., 2005, Chiolero et al., 2008), and although similar findings are often observed
for women, a study of older Dutch women also observed similar sex differences (Visser et al.,
1999b). NTFS women had relatively healthy WHR compared to the men, which may explain

these differences.

Thus far, there are indications that some factors in the peri- and post-natal period could
affect obesity development. There were obvious differences in males and females in relation
to body composition and also by exposure, which could suggest that sex-specific strategies
are required for tackling overweight and obesity. The important exposures with respect to
adult body composition were SES at birth, older maternal age, and bacterial infection in the
first year, the latter of which requires further investigation. The early life exposures and
lifestyle factors explained relatively a low percent of the variation in adult body composition,

suggesting that other factors are contributing.
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Chapter 4. The influence of early life exposures on

childhood body composition

4.1 Introduction

This chapter will address the thesis aim of investigating the impact of early life exposures
and SES on multiple indicators of childhood adiposity. The analysis will use data from the
Gateshead Millennium study (GMS), a birth cohort from Gateshead that commenced in the
year 2000. This cohort contains a wealth of early life data, and anthropometric data
collected throughout childhood. There have already been a great deal of studies which
examine multiple risk factors for childhood obesity from multiple cohorts (Fairley et al.,
2015a)(reviewed in section 1.3). As of yet, the early life factors associated with childhood
OWOB in children in North East England have not been determined. The North East is the
region with the highest proportion of children starting school with obesity in the UK (NHS
Digital, 2017), and therefore it is important to understand the factors driving this early onset

of obesity, and potentially if these factors are different to other parts of the UK.

The previous chapter examined risk factors across different measures of adiposity (BMI,
overweight and obesity, central obesity and body fat) in NTFS adults. Therefore, in keeping
with previous analyses, this chapter will examine if early life risk factors are associated

across similar components of body composition in GMS children.

In the previous chapter, it was determined that lifestyle factors were important intermediate
factors between SES and body composition. Therefore, in line with the previous analysis, this
chapter will also examine whether lifestyle (physical activity) can modify the effect of an
exposure that occurs during a critical developmental period. Lifestyle may actin a

synergistic, antagonistic, clustered or independent manner (Jacob et al., 2015).

4.2 Aims

The aims of this chapter were to i.) Determine if early life exposures were associated with
childhood overweight or obesity in the GMS cohort; ii.) Examine if risk factors vary for
outcomes i.e. using proxy measures or direct measures of body composition and
distribution; and iii.) Examine the relationship between early life risk factors and childhood

body composition considering the impact of lifestyle (physical activity).

141



4.3 Participants and methods

This analysis uses early life data from birth to 13 months, and outcome data from the age 6-
8 follow-up. The current cohort consists of all traceable study members who did not
withdraw. At the follow-up between ages 6-8, anthropometric measures, physical activity,

and food intake were measured.

4.3.1 Anthropometric variables

BMIz, waist-to-height ratio (WHtR) and fat mass index (FMI) at age 6-8 were analysed as

outcomes, calculation of these is in section 2.2.

4.3.2 Early life exposure data

There were data on several early life risk factors in GMS including; birthweight, rapid weight
gain (RWG), first-born, maternal age, adversity, infection and SES, and the covariates sex,
gestation and physical activity (moderate—vigorous intensity physical activity (MVPA)). The

definitions and measurement of these factors is outlined in section 2.2.

Maternal education was chosen as the main SES indicator at birth as it represents economic
resources and social characteristics related to knowledge and health literacy (Galobardes et
al., 2006), and has been shown to have the strongest influence on pregnancy outcomes

(Mortensen et al., 2008) (Parker et al., 1994).

4.3.3 Statistical analysis

SES, sex, birthweight categories, maternal age, first-born, adverse events, sleep issues,
infection, RWG, and breastfeeding were categorical variables. All other variables were

analysed as continuous or binary variables.

It was not anticipated that there would be differences between genders in the relationships

between early life risk factors and obesity in children (no strong correlations between sex
and early life factors, Appendix B). However, to check this assumption, sex-exposure

interactions were examined for each outcome, as outlined in section 2.3.2. There were no

significant differences, and therefore the sample was not stratified by sex.

Additionally, the impact of childhood physical activity was investigated, by adding MVPA to

the multivariable models (adjusted for season) and evaluating the effects on the coefficients.
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4.4 Results

4.4.1 Sample representativeness

There were data for 619 study members included at the age 6 to 8 follow-up, representing
60% of the cohort. Study participants included in these analyses were comparable to the
original cohort for most early life exposures (Table 4.1 and Table 4.2). There were
differences in that the sample were more advantaged, in terms of Townsend score, higher
achieved maternal education and less material deprivation (Table 4.2), leading to more even
distribution across socioeconomic strata than the original sample (Parkinson et al., 2011).
Those measured at age 6-8 had a significant longer gestational age, had slight older mothers,
more experienced adversity, were breastfed for longer and were less likely to be formula fed
(Table 4.1 and Table 4.2). These factors were likely related to the socioeconomic differences

in the 6-8 sample (Appendix C, Table VII).

Table 4.1 Differences in continuous and ordinal early life variables for GMS children with and without body composition
data at age 6-8.

Variable Without data With data P value
n Mean SD min max n Mean SD min max

Bithweight 454 003 099 274 452 569 -002 104 -348 351  0.95°
(z-score)

Gestation

length 424 39.35 1.88 27 43 569 39.57 1.55 29 43 0.040°
(weeks)

Maternal 54 272 645 1527 4441 569 2846 579 1609 4575 <0.001°
age (years)

Age

weaned 269 1449 342 3 33 479 14.59 3.2 5 42.5 0.67°
(weeks)

P values derived from tests for differences in means (T test?), median values (Rank-sum®) n, sample size; SD, standard
deviation; min, minimum; max, maximum. Bold indicates significant at p<0.05.
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Table 4.2 Differences in categorical variables for GMS children with and without body composition data at age 6-8.

Early life variables All Without data With data P value
n % n col % n col %

Sex 993 424 569

Male 505 50.9 223 526 282 49.6 0.34

Female 488 49.1 201 47.4 287 50.4

First-born 991 423 568

No 528 53.3 227 53.7 301 53

Yes 463 46.7 196 46.3 267 47 0.83

Gestation categories 993 424 569

Pre-term 107 10.8 56 13.2 51 9

Normal 823 82.9 338 79.7 485 85.2 0.061

Post-term 63 6.3 30 7.1 33 5.8

Birthweight 993 424 569

SGA 89 9 36 8.5 53 9.3

Normal 810 81.6 351 82.8 459  80.7 0.69

LGA 94 9.4 37 8.7 57 10

Caesarean 993 424 569

No 844 85 365 86.1 479 84.2 0.41

Yes 149 15 59 13.9 90 15.8

Maternal age at birth 993 424 569

Less than 25 326 32.8 164  38.7 162  28.5

25-34 547 55.1 215 50.7 332 583 0.003

35+ 120 12.1 45 10.6 75 13.2

Breastfeeding 953 405 548

Never 468 49.1 232 57.3 236 431 <0.001

<6wk 237 24.9 101 24.9 136 24.8

>6wk 89 9.3 26 6.4 63 11.5

>4dm 159 16.7 46 114 113 20.6

Exclusively breastfed

(>4 months) 249 262 511

No 468 91.6 232 93.2 236  90.1 0.21

Yes 43 8.4 17 6.8 26 9.9

Formula fed only 953 405 548

No 485 50.9 173 42.7 312 569

Yes 468 49.1 232 57.3 236 43.1 <0.001

Rapid weight gain 813 282 531

No 567 69.7 205 727 362 68.2 0.18

Yes 246 30.3 77 27.3 169 31.8 )

Adversity 934 398 536

No 719 77 327 82.2 392 731 0.001

Yes 215 23 71 17.8 144 26.9

Sleep issues (8 months) 644 201 443

No 532 82.6 162 80.6 370 835 0.36

Yes 112 17.4 39 19.4 73 16.5 '

Infection (0-12 month) 994 425 569

No 895 90 394 927 501 88 0.015

Yes 99 10 31 7.3 68 12
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Socioeconomic

variables All Without data With data P

n % n col % n col %
Townsend quintile 987 424 563
1 Least advantaged 188 19.0 84 19.8 104 185
2 201 204 81 19.1 120 21.3
3 221 224 94 22.2 127 22.6 0.021
4 223 22.6 113 26.7 110 19.5
5 Most advantaged 154 15.6 52 123 102 18.1
;\Siﬁi;nal education 915 382 £33
None 142 15.5 78 20.4 64 12.0
GCSE 534 58.4 227 59.4 307 57.6
A level 111 12.1 41 10.7 70 13.1 <0.001
Degree 128 14.0 36 9.4 92 17.3
Deprived at birth 991 422 569
No 483 48.7 163 38.6 320 56.2 <0.001
Yes 508 51.3 259 61.4 249 43.8
Occupational social
class F()childhood) 373 13 el
Least advantaged 110 29.5 1 7.7 109 30.3
Middle 133 35.7 6 46.2 127 35.3 0.21
Most advantaged 130 34.9 6 46.2 124 344
(Lé)‘f;";;‘:rr:)"b'“ty 994 425 569
No 945 95.1 425 100 520 91.4 <0.001
Yes 49 4.9 0 0 49 8.6

Row sample sizes and column percentages (col %) shown. P value represents the Chi-square test statistic. Bold indicates
significant at p<0.05.

442 Exposures

Descriptive statistics for those measured at age 6-8, plus sex differences are presented in
Table 4.3, Table 4.4 and Table 4.5. The mean age of the cohort was around 7.5 years. There
was an even proportion of males and females. The majority had a normal birthweight, and
there were 9.3% SGA and 10% LGA. In terms length of gestation, 85% of children were born
normal term, 9% were pre-term and 5.8% post-term. In the sub-sample, 47% were first-born
children, and mean maternal age was 29 years old. A large proportion of children were never
breastfed (43.1%). Around a quarter of children experienced adversity in the first year and
16.5% of children had sleep issues in the first 8 months. There was a fairly even split
between parental socioeconomic groups at age 6-8, with 34.4% in the most advantaged

group, 35.3% mid and 30.3% in the least advantaged group.
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Males were weaned slightly earlier than females, on average spent more time doing MVPA
(Table 4.3), and were more likely to have an infection in the first year (Table 4.4). There were
no other significant differences between males and females, however there were some

differences in socioeconomic variables that were borderline significant (p<0.1) (Table 4.5).

Table 4.3 Summary statistics and differences in early life continuous variables stratified by sex for the GMS cohort (age 6-8)

Variable Male Female
n mean SD min max n mean SD min max p

Age (years) 282 7.44 046 6.42 842 287 7.46 045 6.42 858 0.53°
Bwt (z-score) 282 -0.02 104 -2.74 345 287 -0.02 104 -3.48 351 0.98°
Gestation (weeks) 282 3953 1.69 29 42 287 3961 14 34 43 0.41°
Maternal age (years) 282 2881 5.84 16.59 45.75 287 2812 5.72 16.09 43.46 0.08°
Weaned (weeks) 379 1431 3.12 3 32 369 1481 342 4 42.5 0.04°?
MVPA (%) 241 471 2.61 0.58 15.03 238 4.08 219 0.34 13.88 0.01°

Number of observations (N), mean, standard deviation (SD), minimum (min) and maximum (max) values and P values (p) for
t-tests or Wilcoxon rank-sum tests for differences presented. a T-test or b Ranksum tests for differences between males
and females. Bold indicates significantly different at p<0.05.
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Table 4.4 Summary statistics and differences in categorical early life variables stratified by sex, for the GMS cohort (age 6-8)

Binary variables All % Yes Male % Yes Female %Yes p
(n) (n) (n)
First-born 568 47 281 47 287 47 0.99
Caesarean 569 15.8 282 15.6 287 16 0.89
Exclusively breastfed 0.41
(>4 months) 262 11.6 12 8.5 26 9.9
Formula fed 548 43.1 270 39.6 278 46.4 0.11
RWG (0-12 months) 531 31.8 263 31.6 268 32.1 0.90
Adversity (0-12 months) 536 26.9 267 29.6 269 24.2 0.15
Sleep issues (8 months) 443 16.5 222 17.1 221 15.8 0.72
Infection (0-12 months) 569 12 282 15.6 287 8.4 0.008
Categorical variables All (n) % Male % Female % p
(n) (n)
Gestation 569 282 287 0.086
Pre-term 51 9 31 11 20 7
Normal 485 85.2 231 81.9 254 88.5
Post-term 33 5.8 20 7.1 13 4.5
Categories of birthweight 569 282 287 0.73
SGA 53 9.3 29 10.3 24 8.4
Normal 459 80.7 225 79.8 234 815
LGA 57 10 28 9.9 29 10.1
Maternal age 569 282 287 0.40
Less than 25 162 28.5 81 28.7 81 28.2
25-34 332 58.3 162 57.4 170 59.2
35+ 75 13.2 39 13.8 36 12.5
Breastfeeding 548 270 278 0.41
Never 236 43.1 107 39.6 129 46.4
<6wk 136 24.8 70 25.9 66 23.7
>6wk 63 11.5 35 13 28 10.1
>4m 113 20.6 58 215 55 19.8
Season accelerometry 241 238 479
Spring 56 23.2 56 23.5 112 23.4
Summer 53 22 48 20.2 101 21.1 0.41
Autumn 83 34.4 71 29.8 154 32.2
Winter 49 20.3 63 26.5 112 23.4

Sample sizes (n) and column percentages (col %), and Chi-square test statistic presented (p). Bold indicates significantly
different at p<0.05.
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Table 4.5 6 Summary statistics and differences in socioeconomic categorical variables stratified by sex, for the GMS cohort
(age 6-8)

All % Male (n) % Female (n) % p
(n)
Townsend score 278 285 563 0.079
1 Least advantaged 46 16.5 58 20.4 104 18.5
2 54 194 66 23.2 120 21.3
3 61 21.9 66 23.2 127 22.6
4 54 194 56 19.6 110 19.5
5 Most advantaged 63  22.7 39 13.7 102 18.1
Maternal education 269 264 533 0.44
None 27 10 37 14 64 12
GCSE 155 57.6 152 57.6 307 57.6
Alevel 36 134 34 129 70 13.1
Degree 51 19 41 155 92 17.3
Childhood SES 177 183 360 0.19
Least advantaged 46 26 63 34.4 109 30.3
Mid 64 36.2 63 34.4 127 35.3
Most advantaged 67 37.9 57 31.1 124 34.4
Upward mobility 282 287 569 0.060
(0-8 years)
No 264 93.6 256 89.2 520 914
Yes 18 6.4 31 108 49 8.6

Sample sizes (n) and column percentages (col %), and Chi-square test statistic presented (p).

4.4.3 Infant feeding and SES

There were significant differences between Townsend quintiles and the duration of
breastfeeding, in that the most advantaged breastfed for longer and were less likely to be
formula fed (Appendix C, Table VII). There was no statistically significant differences in

weaning age between the Townsend quintiles (Kruskal-Wallis p = 0.07).

4.4.4 Outcomes

According to BMIz, at age 6-8 there were 116 (21%) children who were OWOB, and of those
52 (9.3%) were obese (Table 4.7). Whilst for FMI, 5.2% of children had a fat mass index
>=91% centile, and 1.1% had a FMI>=98" centile. Fewer were classified as obese using WHtR
than using BMI (7%). There were no significant differences in outcomes between sexes.

Mean BMIz (0.45) and FMI (4.06) were similar in males and females (Table 4.7).
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Table 4.7 Descriptive characteristics of body composition outcomes stratified by sex in the GMS cohort (age 6-8)

Categorical All Male Female
outcomes
n col % n col % n col % P value
All 562 278 284 0.56
Healthy 116 794 218 784 228 80.3
weight
OWOB 116 20.6 60 21.6 56 19.7
Waist OB 505 488 993 0.98
No 470 93.1 454 93 924 93.1
Yes 35 6.9 34 7 69 6.9
Continuous All Male Female
outcomes
mean mean
n mean (SD) n (SD) n (SD) P value
0.44 0.46
BMIz 569 0.45 (1.11) 282 (1.15) 287 (1.08) 0.85
411 4.00
FMI 567 4.06 (1.92) 282 (1.84) 285 (2.00) 0.49

Proportion (%) of study members in each weight category with Chi? test statistic for differences between sexes. Mean and
standard deviation (SD) for BMIz and FMI, with p value for differences between sexes (T-test).

There were strong correlations (r>0.7) between FMI with both BMIz and OWOB (Table 4.8).
Whilst the weakest associations, although still moderate, were between FMI and BMIz and
categorical OWOB (r<0.55). Waist OB showed the weakest correlations with the other
measures, however again these were still modest (r>0.62). Overall, there was good

correlation between the alternative measures of obesity.

Table 4.8 Correlations between the body composition measures in the
GMS cohort (age 6-8)

BMiz FMI OWOB Waist OB

BMiIz 1

FMI 0.749 1

owoB 0.763 0.701 1

Waist OB 0.622 0.664 0.667 1

Pearson correlation coefficients between outcome measures.
All correlations p<0.0001.

44,5 Relationship between early life exposures and childhood body composition

In bivariate analyses, a higher birthweight and adversity were both associated with a higher

BMIz and FMI and increased likelihood of OWOB (Appendix C,
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Table xi1 ). RWG was associated with increased BMIz. MVPA was negatively associated with all

outcomes.

The exposures consistently significant across outcomes in bivariate analyses were

birthweight and adversity (

Figure 4.1). Weaning was the only feeding-related variable that demonstrated significant
associations in the bivariate models, albeit only for BMIz. Rapid weight gain also

demonstrated significant associations with BMlz.

The effects of these early life variables were investigated further in multivariable models
adjusted for known confounders, including early and later life SES, and other early life

exposures (Table 4.9).

Anticipated confounding variables (Table 1.5) of the relevant exposures were included in the
models. Including breastfeeding duration in the models made little difference to the
estimates, and there was strong support for the models without breastfeeding (indicated by
BIC), therefore it was not included. Using categorical maternal age rather than continuous
explained more of the variation in outcomes. The impact of physical activity on the early life

variables was also investigated in separate adjusted models (Table 4.10).
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Figure 4.1 Forest plot of bivariate models for each outcome (x-axis) and exposure (y-axis) in GMS (age 6-8).
Odds ratios presented for the outcomes OWOB and waist OB, and coefficients for BMIz and FMI,

with respective 95% confidence intervals and the corresponding level of significance

(* indicates p<0.05, ** p<0.01, ***p<0.001). Physical activity is adjusted for season.
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Table 4.9 Multivariable regression models for early and childhood factors and all adiposity outcomes in GMS (age 6-8).

Variable owoB BMiIz FMI Waist OB
OR Cl p Coef Cl p Coef Cl p OR Cl p
Female 0.85 [0.42,1.71] 0.65 -0.03 [-0.27,0.20] 0.78 -0.06 [-0.49,0.38] 0.80 1.07 [0.48,2.42] 0.87
Gestation length (wk) 1.30 [0.99,1.69] 0.055 0.04 [-0.04,0.11] 0.30 0.03 [-0.11,0.17] 0.66 0.92 [0.71,1.20] 0.54
First-born 1 [0.48,2.09] 0.99 -0.01 [-0.27,0.24] 0.94 0.01 [-0.46,0.48] 0.97 1.05 [0.45,2.42] 0.92
Maternal age
Less than 25 0.27 [0.09,0.85] 0.025 -0.35 [-0.69,-0.00] 0.047 -0.65 [-1.28,-0.02] 0.043 0.29 [0.07,1.16] 0.080
25-34 Ref . Ref . Ref . Ref .
35+ 0.63 [0.22,1.81] 0.39 -0.09 [-0.43,0.25] 0.60 -0.45 [-1.07,0.17] 0.16 1.18 [0.39,3.59] 0.77
Adversity 2.59 [1.25,5.35] 0.010 0.31 [0.04,0.57] 0.023 0.64 [0.15,1.13] 0.010 1.06 [0.44,2.55] 0.90
Birthweight z-score 2.61 [1.73,3.94] <0.0001 0.44 [0.31,0.57] <0.001 0.43 [0.19,0.68] 0.001 1.69 [1.09,2.64] 0.020
Rapid weight gain 3.86 [1.69,8.82] 0.001 0.81 [0.52,1.10] <0.001 0.71 [0.18,1.24] 0.009 2.07 [0.79,5.48] 0.14
Wean age 0.87 [0.75,1.03] 0.10 -0.06 [-0.11,-0.01] 0.012 -0.08 [-0.17,0.00] 0.061 0.82 [0.70,0.97] 0.023
Maternal education
None Ref . Ref . Ref . Ref .
GCSE 1.47 [0.27,8.03] 0.66 0.4 [-0.11,0.92] 0.13 0.89 [-0.06,1.84] 0.066 2.61 [0.30,22.46] 0.38
A level 13 [0.20,8.44] 0.78 0.42 [-0.16,1.00] 0.16 0.75 [-0.33,1.82] 0.17 1.11 [0.10,12.96] 0.93
Degree 1.87 [0.30,11.82] 0.51 0.33 [-0.26,0.93] 0.27 0.39 [-0.70,1.49] 0.48 1.08 [0.10,11.82] 0.95
SES (childhood)
Least advantaged Ref . Ref . Ref . Ref .
Mid 0.37 [0.14,0.97] 0.042 -0.23 [-0.54,0.09] 0.16 -0.65 [-1.24,-0.07] 0.028 0.54 [0.18,1.61] 0.27
Most advantaged 0.44 [0.17,1.20] 0.11 -0.09 [-0.43,0.26] 0.61 -0.53 [-1.16,0.11] 0.10 0.89 [0.30,2.63] 0.84
N 261 265 265 275
pseudo R?/adjusted R?  0.207 0.219 0.104 0.111

Coefficients (coef) or odds ratios (OR) are presented with 95% confidence intervals (Cl) and the corresponding level of significance (p). Ref indicates reference category for factor variables.
Bold indicates significant at p<0.05.
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4.4.6 Associations across different outcome measures

There was consistency across measures in bivariate analyses (Appendix C,Table VIII). In
bivariate analyses, birthweight z-score was positively associated with all outcome measures.
MVPA was negatively associated with all outcomes. Whilst younger maternal age was
associated with lower odds of OWOB, lower BMIz and FMI. Adversity was associated with
increased odds of OWOB, increased BMIz and increased FMI (but not waist OB). The effects
of adversity could be attributed to socioeconomic factors including debt and parental

separation (Appendix C, Table IX).

However, there were no associations for any other early socioeconomic factors (Appendix
C,Table VIII) for any of the weight outcomes. Although, being in the mid socioeconomic
advantaged group (compared to the least advantaged) in childhood was associated with
lower odds of OWOB and a lower BMIz. There was no association for breast or formula
feeding with any of the outcome measures, however weaning age was negatively associated
with BMIz and lower odds of waist OB. For BMIz only, there was a positive association
(p<0.1) between sleep issues in the bivariate model, however this was no longer present

after adjustment.

Overall, there was good agreement across OWOB, BMIz and FMI for the early life factors;
younger maternal age, adversity, birthweight and rapid weight gain (Table 4.9). There were
differences in associations for waist OB, whereby there were only significant associations for

birthweight (increased odds) and weaning (decreased odds).

4.4.6.1 The influence of physical activity

MVPA was negatively associated with all outcomes, with the most significant association
being for FMI (Table 4.10). For BMIz, adjusting for MVPA did not lead to great changes in
most significant coefficients. However, it removed the significant association for younger
maternal age. Adjusting for MVPA removed any significant associations for SES. After
adjustment, the coefficients for birthweight decreased across all outcomes, and birthweight
was no longer significant associated with waist OB (Table 4.10). The association between
weaning and lower odds of waist OB was no longer significant after controlling for MVPA.
After adjustment for MVPA, the odds ratio notably increased for RWG and OWOB (OR=3.8
in model without MVPA, compared to OR=4.8 in adjusted model).
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Table 4.10 Multivariable regression models with and without adjustment for MVPA for outcomes in GMS (age 6-8).

OowoB OWOB adjusted for MVPA BMiz BMIz adjusted for MVPA
Exposures OR cl p OR Cl p coef Cl p coef Cl p
Maternal age Lessthan 25 0.27 [0.09,0.85] 0.025 0.16 [0.04,0.66] 0.011 -0.35 [-0.69,-0.00] 0.047 -0.32 [-0.67,0.03] 0.07
35+ 0.63 [0.22,1.81] 0.39 0.45 [0.12,1.68] 0.24 -0.09 [-0.43,0.25] 0.60 -0.16 [-0.49,0.18] 0.35
Adversity 2.59 [1.25,5.35] 0.01 3.08 [1.32,7.18] 0.009 0.31 [0.04,0.57] 0.023 0.28 [0.02,0.54] 0.034
Birthweight z-score 2.61 [1.73,3.94] <0.001 2.19 [1.38,3.49] 0.001 0.44 [0.31,0.57] <0.001 0.36 [0.23,0.50] <0.001
Wean age 0.87 [0.75,1.03] 0.1 0.90 [0.76,1.07] 0.23 -0.06 [-0.11,-0.01] 0.012 -0.06 [-0.11,-0.02] 0.009
Rapid weight gain 3.86 [1.69,8.82] 0.001 4.82 [1.78,13.09] 0.002 0.81 [0.52,1.10] <0.001 0.82 [0.53,1.11] <0.001
Maternal education GCSE 1.47 [0.27,8.03] 0.66 1.21 [0.16,9.46] 0.85 0.4 [-0.11,0.92] 0.13 0.46 [-0.07,0.98] 0.09
Alevel 1.3 [0.20,8.44] 0.78 1.04 [0.11,9.50] 0.97 0.42 [-0.16,1.00] 0.16 0.52 [-0.06,1.11] 0.08
Degree 1.87 [0.30,11.82] 0.51 1.87 [0.22,15.53] 0.56 0.33 [-0.26,0.93] 0.27 0.44 [-0.16,1.04] 0.15
SES (childhood) Mid 0.37 [0.14,0.97] 0.042 0.46 [0.15,1.39] 0.17 -0.23 [-0.54,0.09] 0.16 -0.11 [-0.42,0.21] 0.50
Most advantaged 0.44 [0.17,1.20] 0.11 0.51 [0.16,1.66] 0.27 -0.09 [-0.43,0.26] 0.61 0.07 [-0.28,0.41] 0.71
MVPA - 0.72 [0.58,0.90] 0.003 - -0.07 [-0.12,-0.02] 0.007
N 261 240 0.219 0.247
R%/pseudo R? 0.207 0.293 0.260 0.303
FMI FMI adjusted for MVPA Waist OB Waist OB adjusted for MVPA
Exposures coef Cl p coef cl p OR cl p OR Cl p
Maternal age Lessthan 25 -0.65 [-1.28,-0.02] 0.043 -0.67 [-1.30,-0.04] 0.037 0.29 [0.07,1.16] 0.08 0.3 [0.06,1.61] 0.16
35+ -0.45 [-1.07,0.17] 0.16 -0.49 [-1.10,0.11] o0.11 1.18 [0.39,3.59] 0.77 1.37 [0.37,5.13] 0.64
Adversity 0.64 [0.15,1.13] 0.01 0.63 [0.16,1.10] 0.009 1.06 [0.44,2.55] 0.90 1.04 [0.38,2.89] 0.93
Birthweight z-score 0.43 [0.19,0.68] 0.001 0.26 [0.02,0.50] 0.033 1.69 [1.09,2.64] 0.020 1.39 [0.85,2.27] 0.20
Wean age -0.08 [-0.17,0.00] 0.061 -0.08 [-0.16,0.01] 0.077 0.82 [0.70,0.97] 0.023 0.86 [0.72,1.02] 0.084
Rapid weight gain 0.71 [0.18,1.24] 0.009 0.69 [0.17,1.21] 0.009 2.07 [0.79,5.48] 0.14 2.73 [0.89,8.35] 0.078
Maternal education GCSE 0.89 [-0.06,1.84] 0.066 0.95 [0.00,1.90] 0.049 2.61 [0.30,22.46] 0.38 1.42 [0.15,13.18] 0.76
Alevel 0.75 [-0.33,1.82] 0.17 0.94 [-0.11,2.00] 0.079 1.11 [0.10,12.96] 0.93 0.73 [0.06,9.68] 0.81
Degree 0.39 [-0.70,1.49] 0.48 0.55 [-0.53,1.63] 0.32 1.08 [0.10,11.82] 0.95 0.79 [0.07,8.99] 0.85
SES (childhood) Mid -0.65 [-1.24,-0.07] 0.028 -0.54 [-1.11,0.03] 0.062 0.54 [0.18,1.61] 0.27 0.51 [0.14,1.82] 0.30
Most advantaged -0.53 [-1.16,0.11] 0.10 -0.44  [-1.07,0.18] 0.17 0.89 [0.30,2.63] 0.84 0.81 [0.23,2.95] 0.76
MVPA - -0.23 [-0.32,-0.13] <0.001 - 0.70 [0.53,0.93] 0.013
N 265 243 275 246
R%/pseudo R? 0.104 0.189 0.111 0.167

Models were additionally adjusted for covariates; sex, gestation and first-born, and MVPA models also for season. Coefficients (coef) or odds ratios (OR) are presented with 95% confidence intervals (Cl) and the
corresponding level of significance (p). Reference categories for factor variables were; least advantaged for SES; no maternal qualifications for maternal education; and maternal age 25-34. Bold indicates significant at

p<0.05.
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4.4.7 Sensitivity analysis for childhood FMI

The model for FMI did not fit regression diagnostic criteria. There was a slightly positive
skew of the residuals and the normal probability plot demonstrated deviation from
normality towards the tails (Appendix C, Figure XI). The non-normal residuals suggested

that this model does not explain all trends in the dataset.

Model building was redone to find the best model for FMI (Table 4.11). Despite being
confounding variables, there was support (BIC) for the model to not include the
socioeconomic variables; maternal education, Townsend and occupation social class in

childhood, or the feeding variables (Table 4.11).

The skewed residuals could be due to the high values of FMI observed leading to positive
skew in the values. Taking the definition of an outlier as greater than the upper quartile plus
1.5 times the inter-quartile range (IQR) (>Q3 + 1.5*IQR), excluding outliers removed from
the sample those with a FMI greater than 8.19 (n=16 in adjusted model). This appeared to
correct the skewed residuals (Appendix C, Figure XI) which appeared more normally
distributed, although statistically were not (Shapiro-Wilk p<0.005). Further investigation into
which data points deviated from the mean (high leverage points using Cook’s distance),
found no obvious, identifiable pattern. Therefore, the variables (Table 4.11) are a better
model fit for those with a FMI within the middle of distribution for FMI, but not for those

with high FMI.
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Table 4.11 Multivariable models for the FMI model and the model excluding the outliers in GMS (age 6-8).

FMI FMI without outliers
Exposures coef Cl p coef Cl p
Female -0.14 [-0.46,0.19] 0.42 -0.15  [-0.41,0.10] 0.24
Gestation (weeks) 0.04 [-0.06,0.15] 0.44 0 [-0.08,0.08] 0.94
First-born 0.02 [-0.33,0.37] 0.90 0 [-0.28,0.27] 0.99
Maternal age (years)
Less than 25 -0.25 [-0.66,0.16] 0.23 -0.22 [-0.54,0.10] 0.18
25-34 Ref . Ref .
35+ -0.38 [-0.86,0.10] 0.12 -0.59 [-0.97,-0.20] 0.003
Adversity 0.67 [0.30,1.04] <0.001 0.51 [0.22,0.80] 0.001
Birthweight (z-score) 0.36 [0.19,0.53] <0.001 0.16 [0.03,0.30] 0.020
RWG 0.56 [0.19,0.94] 0.004 0.30 [-0.00,0.59] 0.051
N 499 473
Adjusted R? 0.058 0.048

Coefficients (coef) are presented with 95% confidence intervals (Cl) and the corresponding level of significance (p). Ref
indicates reference category for factor variables. Bold indicates significant at p<0.05. All covariates are presented.

The study members with the greatest fat mass also had very high BMI and waist OB,
therefore these data are probably valid measurements, and it would be incorrect to simply
exclude those with high FMI. The models fit other regression diagnostic criteria (i.e.
homoscedastic, no omitted variables, no collinearity) except for normality of residuals. This
was due to skewed residuals, which were prone to non-normality at the tails (Appendix C,

Figure XI). Therefore, to obtain reliable estimates without excluding data points, robust

regression was used.

The robust regression included the same variables as the basic model (model 1). The
coefficients for birthweight, RWG and adversity were smaller and less significant when using
robust regression compared to linear regression (Table 4.12). In addition, the coefficient for
older maternal age was significant in the robust regression model. Other coefficients
remained similar. Therefore, linear regression may lead to an overestimation of the

coefficients and significance (for birthweight, RWG and adversity).
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Table 4.12 Comparison of the FMI adjusted linear regression model and the robust regression model in GMS (age 6-8).

FMI Model 1 - Linear Model 1 - Robust
coef Cl p coef Cl p

Female -0.14  [-0.46,0.19] 0.42 -0.23  [-0.50,0.04] 0.10
Gestation length (wk) 004  [-0.060.15] 0.4 0.02 [0.10,007]  0.69
First-born 0.02 [-0.33,0.37] 0.90 0.0 [-0.29,0.29] 0.98
Adversity 0.67 [0.30,1.04] <0.001 0.50 [0.20,0.81] 0.001
Birthweight z-score 0.36 [0.19,0.53] <0.001 0.17 [0.02,0.31] 0.021
Rapid weight gain 056  [0.19,0.94]  0.004 034  [0.02,0.65] 0.037
Maternal age Lessthan25 575  [066,0.16]  0.23 020 [-0.54,0.14] 0.25

25-34  pef Ref

35+ 038 [-0.86,0.10] 0.12 -0.60  [-1.00,-0.20]  0.004

N 499 499
Adjusted R? 0.058 0.045

Coefficients (coef) are presented with 95% confidence intervals (Cl) and the corresponding level of significance (p). Ref
indicates reference category for factor variables. Bold indicates significant at p<0.05. All covariates are presented.

4.4.8 Sensitivity analysis for demographic factors

A small proportion of the age 6-8 sample with BMIz measures were ultra-Orthodox Jewish
(n=9, 1.6%). As there are established differences in feeding practices within this group, any
models that included feeding variables (BMIz, OWOB, waist OB) were re-run excluding ultra-
Orthodox Jewish (UQJ) study members. There were no significant differences in prevalence
of OWOB or waist OB, or differences in the mean BMIz or FMI between this group and the

remainder of the sample, however this may be due to the small sample size.

Despite the low proportion, repeating analyses without ultra-Orthodox Jewish study
members did have an impact on the regression coefficients and odds ratios. For the OWOB
model, the odds ratios for younger maternal age and mid childhood SES decreased after
excluding UOJ (Table 4.13). The model indicated that for OWOB, coefficients were
underestimated, and therefore for the majority of the cohort there were larger associations
for adversity, RWG and birthweight with childhood adiposity. Results remained similar for
BMIz and waist OB.
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Although sample sizes were too small to investigate the UOJ group separately, these results

could suggest that early life risk factors are not the same for this group or have a smaller

magnitude.

Table 4.13 Multivariable regression models for UOJ sensitivity analysis for all outcomes in GMS (age 6-8).

BMI without UOJ
Variable coef Cl p coef Cl p
Maternal age Lessthan25 -0.35 [-0.69,-0.00] 0.047 -0.40 [-0.76,-0.03] 0.032
25-34 Ref . Ref .
35+ -0.09 [-0.43,0.25] 0.60 -0.07 [-0.42,0.28] 0.69
Adversity 0.31 [0.04,0.57] 0.023 0.31 [0.04,0.58] 0.027
Birthweight z-score 0.44 [0.31,0.57] <0.001 0.45 [0.32,0.59] <0.001
Rapid weight gain 0.81 [0.52,1.10] <0.001 0.82 [0.51,1.12] <0.001
Wean age -0.06 [-0.11,-0.01] 0.012 -0.06 [-0.11,-0.00] 0.036
Maternal education Ref . Ref .
GCSE  0.40 [-0.11,0.92] 0.13 0.48 [-0.07,1.03] 0.088
Alevel 0.42  [-0.16,1.00] 0.16 0.49 [-0.12,1.11] 0.12
Degree  0.33 [-0.26,0.93] 0.2 0.39 [-0.24,1.01] 0.23
SES (childhood) Ref . Ref .
Mid -0.23 [-0.54,0.09] 0.16 -0.24 [-0.57,0.09] 0.15
Most advantaged -0.09 [-0.43,0.26] 0.61 -0.09 [-0.45,0.27] 0.63
n 265 254
R? 0.219 0.206
OwWOoB without UOJ
Variable OR Cl p OR Cl p
Maternal age Less than 25 0.27 [0.09,0.85] 0.025 0.25 [0.08,0.81] 0.021
25-34 Ref . Ref .
35+ 0.63 [0.22,1.81] 0.39 0.68 [0.23,1.98] 0.48
Adversity 2.59 [1.25,5.35] 0.01 2.87 [1.36,6.06] 0.006
Birthweight z-score 2.61 [1.73,3.94] <0.001 2.67 [1.75,4.07] <0.001
Rapid weight gain 3.86 [1.69,8.82] 0.001 4.32 [1.83,10.19] 0.001
Wean age 0.87 [0.75,1.03] 0.10 0.88 [0.74,1.04] 0.12
Maternal education Ref . Ref .
GCSE  1.47 [0.27,8.03] 0.66 1.59 [0.28,8.93] 0.60
Alevel 1.3 [0.20,8.44] 0.78 1.3 [0.20,8.63] 0.79
Degree 1.87 [0.30,11.82] 0.51 1.9 [0.29,12.28] 0.50
SES (childhood) Ref . Ref .
Mid  0.37 [0.14,0.97] 0.042 0.33 [0.13,0.89] 0.028
Most advantaged 0.44 [0.17,1.20] 0.11 0.39 [0.14,1.06] 0.066
n 261 250
Pseudo R? 0.207 0.205
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Waist OB without UOJ
Variable OR Cl p OR Cl P
Maternal age Lessthan25 0.29 [0.07,1.16] 0.080 0.32 [0.08,1.29] 0.11
25-34 Ref . Ref .
35+ 1.18 [0.39,3.59] 0.77 1.23 [0.40,3.76] 0.72
Adversity 1.06 [0.44,2.55] 0.90 1.02 [0.41,2.54] 0.96
Birthweight z-score 1.69 [1.09,2.64] 0.020 1.63 [1.04,2.55] 0.033
Rapid weight gain 2.07 [0.79,5.48] 0.14 1.9 [0.69,5.21] 0.21
Wean age 0.82 [0.70,0.97] 0.023 0.82 [0.69,0.97] 0.021
Maternal education Ref . Ref .
GCSE 2.61 [0.30,22.46] 0.38 2.59 [0.30,22.61] 0.39
Alevel 1.11 [0.10,12.96] 0.93 1.11 [0.09,12.97] 0.93
Degree 1.08 [0.10,11.82] 0.95 1.09 [0.10,12.13] 0.94
SES (childhood) Ref . Ref .
Mid  0.54 [0.18,1.61] 0.27 0.57 [0.19,1.75] 0.33
Most advantaged 0.89 [0.30,2.63] 0.84 0.93 [0.31,2.81] 0.89
n 275 263
Pseudo R? 0.111 0.102

Models included those with infant feeding variables, with and without ultra-orthodox Jewish (UOJ) study members for

outcomes BMI, OWOB and waist OB. Models were additionally adjusted for sex, gestation and first born (for which all had

non-significant p values) Coefficients (coef) or odds ratios (OR) are presented with confidence intervals (Cl) and the
corresponding level of significance (p). Ref indicates reference category for factor variables. No qualifications was the
reference category for maternal education, and least advantaged for SES. . Bold indicates significant at p<0.05.
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4.4.9 Path analysis

In the path model, birthweight, adversity, RWG and physical activity had direct paths to
BMiIz. All but MVPA had positive coefficients. The direct effects of birthweight and RWG
were similar in magnitude, however RWG had the largest total effect on BMIz of all the

exposures. Cumulatively, the exposures in the model explained 23% of the variation in BMIz.

Higher maternal education was associated with increased likelihood of being first-born and
increased birthweight, independent of maternal age. Maternal education was not a direct
predictor of BMIz, but had a small significant total effect, mediated through the early life
exposures. Lower birthweights were observed for first-born children. Older maternal age
was associated with lower likelihood of being first-born, as to be anticipated, however

neither of these factors had significant total effects on BMlz.

There was an interesting relationship between birthweight, RWG and BMIz. Whilst a higher
birthweight was associated with a higher BMIz (age 6-8), higher birthweights were
associated with decreased likelihood of RWG. However, the total effect of birthweight on
BMIz remained significant despite the attenuating effect via RWG, suggesting this remains
an important factor. As well as direct and total effects, birthweight also had a significant

indirect effect on BMlz.

Females spent less time doing MVPA compared to males. Removing MPVA and season from
the model decreased the R? by around 1% and minimally altered coefficients (less than 10%
change). Therefore, the effects of MPVA on predicting BMIz in this model are minimal. When
building the path model, including weaning age minimally altered coefficients and did not
increase R> and resulted in a direct path with BMIz (p<0.1) but no paths to other variables.
As it was not significant at p<0.05 it did not meet criteria for inclusion in the path model.

Breastfeeding and Townsend score were not predictors of any variables in the model.
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Figure 4.2 Path model showing the relationships between early life and childhood variables with BMIz at age 6-8.
Arrows show the direction of the effect. Standardised coefficients are shown. All direct effects are represented by solid
lines and are significant at p<0.05. Total effects (if significant) are presenting in brackets with associated p values. There

were significant indirect effects on BMIz for maternal education (0.05), female (0.01), season (0.03) and birthweight
(0.14).

4.5 Discussion

45.1 Summary

Early life risk factors for childhood adiposity were examined for the outcomes BMlz, OWOB,
waist OB and FMI in GMS children aged 6-8. For every outcome, there was an association for
birthweight, and associations for young maternal age, adversity, and RWG across most
outcomes (bar waist OB). These associations were evident even after adjusting for
confounding factors including SES and physical activity. Age at weaning did not demonstrate
consistent associations with body composition. Overall adversity, parental separation,
money issues were significant predictors of adiposity even after adjustment for parental SES
(Appendix C, Table IX). The low prevalence of specific adversity exposures (i.e. for death)

may have affected the likelihood of finding associations.

Further exploration of the pathways to BMIz demonstrated that RWG was an intermediate
factor between birthweight and BMIz. Maternal education was associated with birthweight,
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and parity, which were also both associated with RWG. Adversity and MVPA independently
predicted BMlz.

The associations noted for RWG were large, with 4 fold increased odds of OWOB and large
increases in BMIz and FMI, with estimates increasing after adjusting for PAL. However, when
excluding the FMI outliers and using robust regression, the estimates decreased suggesting

that this relationship is stronger in children with higher fat mass.

Decreases in adiposity were evident across all outcomes for physical activity. Adjusting for
activity removed any significant associations between SES and outcomes, and no early life
exposures predicted waist OB after adjusting for activity. When MVPA was included in the
multivariable models, the model explained a much larger proportion of the variation in the
outcome variables, more so for OWOB and FMI (R? increased by 9%). Although in the path
model, when activity was excluded it made little difference to estimates or overall variation
explained. This may suggest that although activity is an important factor for obesity and fat
mass, the early life and maternal factors and the pathways between them are the main

influences on childhood BMlz.

There were no associations for caesarean birth, which is in contrast to systematic reviews
and meta-analyses, which generally find a positive association (Darmasseelane et al., 2014,
Kuhle et al., 2015). Findings from the Pelotas study from Brazil (Barros et al., 2017), and a
matched sibling-pair design study (Rifas-Shiman et al., 2018) have attributed the association
to unmeasured confounding. Differences might also arise when distinguishing between
elective and emergency c-sections, for example considering underlying issues related to an
emergency c-section such as maternal pre-pregnancy BMI or macrosomic infants. The
underlying biological mechanism for caesarean birth is yet to be determined, but may be
related to the microbiome (Masukume et al., 2018), which demonstrates great
interindividual variation and could create heterogeneity in results (Kuhle and Woolcott,

2017).

There were null associations for sleep problems, which may be due to the definition of sleep
problems used. The majority of studies analysing sleep problems use sleep duration, which
was not measured in this cohort. There is also the possibility that higher BMI precedes sleep

problems (Wang et al., 2019).
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There were no associations for early life infection, however this was a rather crude measure
extrapolated from questionnaire data. More accurate infection data could come from data

linkage with NHS records.

4.5.2 Sensitivity analyses

Sensitivity analyses based on religion revealed some differences. Previous research in this
group in GMS has found differing growth patterns, including weight faltering in infancy
(Wright et al., 2010b). This was attributed to delayed introduction of solids and longer
duration breastfeeding (Wright et al., 2010b). Excluding this demographic also meant the
exposures; adversity, birthweight, and RWG corresponded to higher odds of OWOB and
increased FMI and BMIz. This suggests that the effect sizes were underestimated, and
perhaps implies that these risk factors may not be risk factors in different populations.
Despite previous findings that ultra-orthodox infants were lighter at age 13 months, the
prevalence of overweight or adiposity in childhood (age 6-8) was not different between
ultra-orthodox children and the rest of the cohort. It was not possible to discern if early life
risk factors differed between groups, and due to the small sample size results should be

interpreted with caution.

4.5.3 Choice of outcome measure

There were strong correlations between all outcome measures, more so between BMlz, FMI
and OWOB, whilst waist OB had slightly weaker correlations with the other outcomes

(however all Pearson r>0.6). Studies have found that correlations between body fat and BMI
in children can range vastly (from 0.22 to 0.9) and are stronger in those with higher fat mass

(Wells, 2000, Freedman et al., 2005b).

Despite the strong correlations, there were some differences between risk factors and
outcomes (Figure 4.3). In accordance with the work of Basterfield et al (2012), there were
differences in early life risk factors based on choice of outcome measure. However, contrary
to their work, in these analyses there was good consistency in associations for exposures for
BMIz, FMI and OWOB. The risk factors for increased BMIz (maternal age, birthweight,
adversity and RWG) also correspond to increased odds of OWOB, which is perhaps not

surprising as BMIz and OWOB are based on the same measures.

Height is a confounding factor when determining childhood adiposity. The outcome

measures accounted for height, however there still may be residual correlation. The use of
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FMI in addition to primary outcomes allows greater sensitivity to detect early life exposures
associated with adiposity. Although, in the study by Steiberger et al. (2005), the correlations
between BMIz and body fat quantified by DXA were stronger among children with a higher
percentage of body fat (r = 0.9) than among leaner children (r = 0.5) (Steinberger et al.,

2005). This suggests that BMI is more reflective of body fat in children with higher fat mass.

Ideally studies would use direct measures of body fat. Whilst BIA has its limitations, many of
the other sophisticated methods for determining body fat are less suitable for small children
as they require subjects to lie still for an amount of time. In this cohort the risk factors for
FMI were the same as those for OWOB, suggesting that BMI (for determining OWOB) may be

an adequate proxy measure.

Overall these results indicate that the risk factors; birthweight, RWG, adversity and maternal
age were consistently associated with adiposity in this cohort, with some support for early
weaning and low SES. Physical activity was associated with reduced adiposity across all

outcomes.

Wean
age
Maternal
age
BWT Adversity

RWG

Child SES

Figure 4.3 Venn diagram for significant associations (p<0.05) in multivariable models across outcomes.

Associations are from the multivariable models not adjusted for PAL and outliers not excluded for FMI. BWT, birthweight,
Child SES, childhood socioeconomic status; RWG, rapid weight gain.
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Chapter 5. The influence of early life factors and the
environment on childhood obesity over time in two regional

birth cohorts

5.1 Introduction

Increases in childhood obesity in the last 20 years have been somewhat attributed to social
change and a changing environment. All of the environmental influences and conditions of
life that encourage OWOB have been termed the obesogenic environment (Lake et al.,
2011). Over this time, there has also been widening social inequalities in childhood
overweight (NHS Digital, 2016, Bann et al., 2018), and changes in the social patterning of
obesity (Knai et al., 2012).

Early life risk factors for childhood obesity have mostly been examined in modern cohorts.
However, multiple early life risk factors have not previously been examined in children in a
historic (i.e. pre-obesity epidemic) cohort. Therefore, it is unknown whether these early life
risk factors are only risk factors in conjunction with an obesity-promoting environment or

are distinct, biologically embedded risk factors.

This chapter addresses the second aim of the thesis and investigates the regional temporal
changes on obesity, and the impact of modern environmental and socioeconomic factors.
The analysis uses data from both the 1947 Newcastle Thousand Families Study (NTFS) and
the 2000 Gateshead Millennium Study (GMS)), two cohorts from the same region- North
East of England born over 50 years apart. Using cohorts from the same region controls for
some baseline area-level differences. The cohorts had data collected on body composition at
various ages throughout childhood, and both cohorts had measures of body height and
weight at ages 9 and 13. The analysis in this chapter focused on body composition at age 9,
due to a lower level of missing data, and to minimise the bias of puberty on results (which
typically begins between around age 11 and 12 years for girls and boys respective (Marshall

and Tanner, 1969, Marshall and Tanner, 1970)).

The previous chapters determined that the early risk factors for childhood body composition
(in GMS) were birthweight, maternal age, adversity and rapid weight gain (RWG).

Breastfeeding was associated with BMI in NTFS adults. SES had indirect effects in both adults
and children. Therefore, these were the exposures investigated in this analysis. Whilst there
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were other associations found (bacterial infection (NTFS adults), physical activity (NTFS
adults and GMS children)), comparable data were not available for these exposures for both

cohorts.

This chapter will investigate and compare the relationship between early life and societal
factors on childhood body composition in the two cohorts. Using cohorts from the same
area but at different time points provides a unique opportunity to investigate if, and how the

escalating obesogenic environment may have transformed early life risk factors for obesity.

5.2 Aims

The first aim of this chapter was to determine if an increasingly obesogenic environment has
altered the impact of early life factors and societal factors on BMI and the likelihood of being
overweight/obese (OWOB) in childhood. The analysis will examine if risk factors have
changed over time, in two regional birth cohorts that were not subject to the same

confounding and environmental influences.

Secondly, this chapter aimed to assess the relative importance of each of the early life

factors and SES on childhood BMI by understanding the pathways between them.

5.3 Participants and methods

Details on the two cohorts utilised in this chapter are outlined in sections 2.1.1 (NTFS) and
2.1.2 (GMS). Anthropometric measures were taken at around age 9 for participants from
both cohorts and were used to calculate BMIz and OWOB (for details see methods section
2.2.1). There were several early life factors directly comparable across the two cohorts and
measured at similar time points (Table 5.1). These included; SES, maternal age, birthweight,
breastfeeding, adversity and RWG (in the first year). Due to the large difference in
birthweight z-scores between the cohorts, weight gain conditional on birthweight was also
considered (rapid thrive). Recoding of the variables was similar for both, except for SES and

adversity (Table 5.1).
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Table 5.1 Description of the earlexposures and any differences between the cohorts

Time Cohort
.. Variable Description Type of variable diff-
point
erences?
Maternal age Years and groups (<25, 25-34, 35+) Continuous and categorical No
. . Birthweight z-score, using the British 1990  Continuous No
Birthweight
growth reference
. Weeks (continuous) and categorised as; pre- Continuous and categorical No
. Gestation
Birth term, <38 wks; post-term >41 wks
Categorical, Yes
Socioeconomic  In NTFS Social class based on occupation 5 categories with 1 being
status (SES) In GMS Townsend score (quintiles) the most advantaged and 5
the least
Rapid weight If experienced a 0.67 SD change in weight Dichotomous No
gain (RWG) for age z-score
. . If experienced a 0.67 SD change in Dichotomous No
Rapid thrive o . .
(RT) conditional weight gain (z-scoreim — r x z-
SCOr€birth)
Predefined categories (GMS) of never, <4 Categorical No
First Breastfeedin weeks, 4 week-6 months and 6 months+
car & For NTFS, weeks were transformed into the
Y same categories to match GMS
Experiencing any of the following; Dichotomous Yes
parental separation, police involvement,
. abuse, debt, death or illness in the family;
Adversity

- In the first year in NTFS (0-12 months)
- From 8 months pre-natal to 4 months
post-natal in GMS

SD, standard deviation.

Statistical analysis

Sex, SES, adverse events, RWG, RT and breastfeeding were analysed as categorical variables.
Maternal age and birthweight were analysed as both categorical and continuous variables,

and gestation as a continuous variable. Outcomes were BMIz and OWOB at age 9.

The statistical analysis is outlined in section 2.4.3. Briefly, this included testing cohort
representativeness of sub-sample of participants at age 9 and examining baseline
differences in the cohorts, using t-test, chi-squared or Wilcoxon rank-sum tests as
appropriate. Variation between socioeconomic groups and body composition (OWOB, BMIz
and height), were analysed using Chi-square tests or one-way ANOVA. Logistic (OWOB) and
linear (BMIz) regression analyses were carried out as described in section 2.3.5. Associations
between exposures and outcomes were estimated, with separate analyses for each cohort,

and with adjustment for SES.

167



Although BMI assesses weight independent of height, it remains correlated with height in
children (Metcalf et al., 2011b)(residual correlation). In GMS, there was a moderate
correlation (r=0.4, p<0.0001) between height and BMIz (age 9), whereas there was no
correlation in NTFS (p=0.3). Furthermore, as there was a notable height difference between

the cohorts, height was included as a covariate in the multivariable models.

Odds ratios (OR) with corresponding 95% confidence intervals for OWOB and explanatory
variables were estimated using logistic regression. Multivariable analysis was possible only in

the GMS cohort due to few OWOB study members in NTFS.

5.4 Results

5.4.1 Sample differences in early life exposures

For the children in the original cohorts (NTFS n=1142, GMS n= 1029), measures of height and
weight were available for 734 members of NTFS and 481 of GMS at age 9. Study members
measured at age 9 differed significantly from the remainder of the original study members in
both cohorts (Table 5.2). In GMS those with BMI measures (age 9) had a higher mean
maternal age, were more advantaged at birth, had a longer duration of breastfeeding and a
greater proportion had experienced an adverse event, compared to the original sample. The
NTFS age 9 sample also had a higher mean maternal age, the sample was less advantaged
and had an overall shorter duration of breastfeeding, and a slightly longer length of

gestation.
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Table 5.2 Descriptive statistics and sample representativeness of those with BMI measures at age 9 in the NTFS and GMS
cohorts for all early life exposures and covariates

NTFS GMS

Continuous Measured Not measured Measured Not measured

" Mean n Mean n Mean " Mean

(SD) (SD) P (SD) sp) P

Birthweight -0.23 -0.11 -0.02 0.01

251 734 0.14 506 481 0.94
(z-score) (1.11) (1.04) (1.00) (1.03)
Maternal age 26.99 28.97 27.1 28.82

244 734 <0.001 506 481 <0.001
(years) (5.42) (5.84) (6.08) (5.72)
Gestation (weeks) 39.67 39.87 39.42 39.55

246 1.77) 727 (1.07) 0.032 506 (1.82) 481 (1.55) 0.22

NTFS GMS
Categorical Total Measured Not p Total Measured Not p
measured measured
N Col % Col % N Col % Col %

Sex 1,097 363 734 988 507 481
Male 561 54.5 49,5 011 501 51.7 49.7 053
Female 536 455 50.5 487 48.3 50.3
Birthweight 973 246 727 987 506 481
SGA 111 15 10.2 87 8.7 8.9
Normal 784 78 81.4 0.10 806 82.4 80.9 0.77
LGA 78 6.9 8.4 94 8.9 10.2
Gestation categories 983 250 733 987 506 481
Pre-term 34 7.2 2.2 105 11.9 9.4
Normal 907 87.2 94.0 <0.001 819 81.2 84.8 0.32
Post-term 42 5.6 3.8 63 6.9 5.8
RWG (0-12 months) 354 17 337 808 354 454
No 213 58.8 60.2 562 70.9 68.5
Yes 141 41.2 39.8 091 246 29.1 31.5 0.46
RT (0-12 months) 354 17 337 808 354 454
No 219 58.8 62 572 72.9 69.2
Yes 135 41.2 38 0.79 236 27.1 30.8 0.25
Maternal age at 978 244 734 987 506 481
birth
Less than 25 272 36.5 24.9 322 39.1 25.8
25-34 544 54.5 56 <0.001 545 50.6 60.1 <0.001
35+ 162 9 19.1 120 10.3 14.1
Breastfeeding 460 114 346 948 483 465
categories
None 65 8.8 15.9 465 56.1 41.7
<6 weeks 73 21.1 14.2 237 25.1 24.9
>6wk 143 21.9 34.1 0.004 89 6.8 12.0 <0.001
>4dm 179 48.2 35.8 157 12.0 21.3
Adversity 346 97 249 928 475 453
No 298 89.7 84.7 715 80.8 73.1
Yes 48 10.3 15.3 023 213 19.2 26.9 0.005
SES at birth 1021 310 711 981 506 475
Least advantaged 158 11.3 17.3 186 20.2 17.7
2" to least 162 15.8 15.9 200 18.2 22.7
Mid advantaged 577 52.6 58.2 <0.001 221 23.1 21.9 0.001
2" to most 92 14.5 6.6 222 26.5 18.5
Most advantaged 32 5.8 2.0 152 12.1 19.2

Number of study members in each category (n) and corresponding column percentage (Col %) or mean and
standard deviation (SD). P values shown for Chi-square test for significant differences between the those with
data (BMI measured) and those without for categorical variables, and t-tests for continuous variables. SGA, Small
for gestational age; LGA, Large-for-gestational age; RWG, rapid weight gain; RT, rapid thrive; SES, socioeconomic
status.
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5.4.2 Cohort differences in outcome measures

GMS children on average had a significantly (p<0.001) higher BMIz (+0.52 z-score) and were
taller (+8.4cm) than NTFS children (Table 5.3). Of the 734 study members, there were few
children with overweight (5%) or obesity (3%) in the NTFS in 1956, with the majority (93%)
having a healthy weight. Of the 481 in GMS sample, 33% were OWOB, of these 11% were
obese (Table 5.3).

5.4.3 Descriptive characteristics of socioeconomic groups and weight outcomes

In both cohorts, there were no significant differences in the prevalence of children with
OWOB by socioeconomic group (at each time point), and no trend for BMIz (ANOVA p>0.05)
(Table 5.3). Although there were no significant differences, in both cohorts the 2" to most

advantaged group (at birth) had the highest mean BMIz (age 9).

There were socioeconomic differences in height in NTFS, which were significant (after
Bonferroni correction) at birth between the least advantaged and both the mid (+3.0cm,
p<0.001), and the most advantaged (+5.9cm, p=0.04)(Table 5.3). There were no differences
for childhood SES. Whereas in GMS, height was associated with childhood SES with
significant differences between the least and most advantaged (+2.1, p=0.056). However,

there were no significant height and SES interactions on BMIz within the cohorts.

When examining SES groups in childhood, in GMS the least advantaged group (at age 9) had
a greater proportion of children with OWOB (32%), although this was not significant (p=0.07)
(Table 5.3). In contrast, in NTFS the most advantaged group (at age 9) had the highest

proportion of OWOB (8.5%); and this was comprised exclusively of children with obesity.
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Table 5.3 Body composition measures (age 9) by SES categories at birth and age 9 in the GMS and NTFS cohorts

NTFS GMS
OW- Mean Mean OW- Mean Mean
n :'(')/e)a'thy OB BMiz  height :'(';)althy OB BMIz height
’ (%) (SD)  (SD) ° (%) (SD)  (sD)
All 734 93.1 6.9 008 1274 481 765 235 060 1358
(-0.88) (7.40) (1.06) (6.34)
SES at birth
Least 007 1252 84 762 238 063 1357
123 91. 1
advantaged 3 919 8 (-0.90) (7.31) (1.04) (5.82)
nd |
2toleast i oo L 001 1266 108 78.7 213 058 1365
advantaged (-0.82) (7.26) (1.07) (6.03)
011 1282 104 76 24 061 1359
Mi 414 92
L ? 8 (-0.89) (7.31) (1.1)  (6.63)
nd
2tomost . oo o5 018  127.7 88 705 295 072 1350
advantaged (-0.98) (7.59) (1.05) (6.68)
Most 0.03 1311 91 802 198 05 135.4
e I 71 (087) (6.66) (1.02)  (6.53)
Total 711 475
P value 0.22° 0.66° 0.001° 0.59° 074> 0.52°
SESat9
Least N ] 004 1274 87 678 322 063 1349
advantaged (-0.92) (6.78) (1.23) (5.88)
008  127.9 110 80.9 191 053 1360
Mi 79 92. 7.1
id 379 929 (-0.85) (7.31) (1.01) (6.34)
Most 017 1286 105 79 21 070  137.0
advantaged 1 O1° 85 (085 (6.73) (0.99)  (6.32)
Total 676 302
P value 0.77° 0.63° 0.50° 0.07° 0.49° 0.06°

Category totals (N); corresponding row percentages (row %); Standard deviation (SD); Socioeconomic status at
birth (SES) was fathers occupational social class in NTFS or Townsend quintile in GMS. Bold indicates p<0.05.

a Chi-square test p value presented for differences between socioeconomic group and weight categories

b ANOVA p value for differences between socioeconomic groups

5.4.4 Cohort differences in early life exposures

Descriptive statistics for all variables are shown in Table 5.4, with tests for significant
differences between cohorts. Mean birthweight was higher in GMS children and length of
gestation was marginally longer in NTFS (Table 5.4). There were no differences in the
distribution of birthweight categories (SGA, LGA) between the cohorts. In GMS there were
more children who were never breastfed and there was overall shorter duration of
breastfeeding: just under half of GMS children were never breastfed (49%), whereas
breastfeeding for over 4 months was more commonplace in NTFS (39%). Rapid growth (RWG
and RT) was more common in NTFS than in GMS. In GMS there were fewer older mothers

(35+) and a greater proportion of younger mothers (<25 years).
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There were few in the most advantaged socioeconomic groups in NTFS at both birth and age
9 (Table 5.4). The composition of socioeconomic groups was notably different between the
cohorts at age 9 (occupational social class): only 6.8% of the NTFS cohort were in the highest

occupational group, compared to 34.9% in GMS (p<0.0001) (Table 5.4).
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Table 5.4 Descriptive statistics for early life exposures and covariates and baseline differences between the cohorts

Cohort
NTFS GMS
Continuous variables n Mean (SD) n Mean (SD) P value
Birthweight (z-score) 1,002 -0.15 (1.06) 993 -0.02 (1.02) 0.009
Maternal age (years) 995 28.48 (5.80) 993 27.92 (5.97) 0.035
Gestation (weeks) 990 39.82 (1.28) 993 39.48 (1.70) <0.0001
Categorical variables n Col % n Col % P value
Sex 1,114 994
Male 570 51.2 506 50.9 0.905
Female 544 48.8 488 49.1 )
Gestation categories 990 993
Pre-term 34 34 107 10.78
Normal 914 92.3 823 82.88 <0.0001
Post-term 42 4.2 63 6.34
Categories of birthweight 990 993
SGA 115 11.6 89 9.0
Normal 796 80.4 810 81.6 0.10
LGA 79 8.0 94 9.5
RWG 360 813
No 218 60.6 567 69.6
Yes 142 39.4 246 30.4 0.002
RT 360 813
No 227 63.1 577 71.0
Yes 133 36.9 236 29.0 0.007
Maternal age (years) 995 911
Less than 25 276 27.7 326 32.8
25-34 554 55.7 547 55.1 0.004
35+ 165 16.6 120 12.1
Breastfeeding categories 469 993
Never 68 14.5 468 49.1
<6 weeks 75 16.0 237 24.9 <0.0001
>6 weeks 143 30.5 89 9.3
>4 months 183 39.0 159 16.7
Adversity 352 934
No 303 86.1 719 77.0
Yes 49 13.9 215 23.0 <0.0001
SES at birth 1,036 987
Least advantaged 158 15.3 188 19.1
2" to least advantaged 165 15.9 201 20.4
Mid 589 56.9 221 224 <0.0001
2" to most advantaged 92 8.9 223 22.6
Most advantaged 32 3.1 154 15.6
SES at age 9 718 373
Least advantaged 265 36.9 110 29.5
Mid 404 56.3 133 35.7 <0.0001
Most advantaged 49 6.8 130 34.9

Number of study members in each category (n) and corresponding column percentage (Col %) or mean and
standard deviation (SD). P values shown for Chi-square test for significant differences between NTFS and GMS
for categorical variables, and t-tests for continuous variables. Bold indicates p<0.05. SGA, Small for gestational
age; LGA, Large-for-gestational age; RWG, rapid weight gain; RT, rapid thrive; SES, socioeconomic status.
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5.4.5 Relationship between childhood BMI, early life risk factors and SES

Similar to descriptive analyses, there were no significant direct linear associations between
early life or childhood SES and BMIz at age 9 in either cohort (Table 5.6, unadjusted model).
In NTFS unadjusted regression models, females had a significantly lower BMIz. RWG and RT
were associated with an increased BMIz, each to a similar degree. Higher maternal age was
associated with a small decrease in BMIz. These associations remained after adjustment for
SES at birth and at age 9. No other variables demonstrated significant (P<0.05) associations

with BMIz in NTFS.

In the GMS cohort, birthweight and adversity were associated with an increased BMIz, with
adjustment for SES at both time points attenuating these effects (Table 5.6). Both RWG and
RT were also associated with increased BMIz, however the coefficient for RT was much
larger (RWG b=0.32, p<0.05; RT b=0.70, p<0.001). After adjusting for SES, older maternal age

was significantly associated with a lower BMIz in GMS.

There was no evidence for interactions between explanatory variables and SES at birth for
pooled data from both cohorts (all p values >0.1). Interactions between SES at birth and
explanatory variables were also investigated separately by cohort. In NTFS, there was a
significant interaction between maternal age (continuous) and those in the 2nd to most
advantaged group at birth compared to the least advantaged (-0.07 reduction in BMlz,
p=0.02), which remained after adjustment for SES at age 9, however there was no overall
trend (Table 5.5). This indicates that the slopes of the best-fitting regression lines between
maternal age and childhood BMI are not parallel for every socioeconomic group. Group sizes
were too small to investigate adversity, categories of birthweight and maternal age in NTFS.

There were no significant interactions between SES and exposures in GMS.
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Table 5.5 The significant exposure-socioeconomic status interaction(s) from the unadjusted and adjusted for SES (age 9)
bivariate regression models in the NTFS cohort (age 9)

SES (at birth) & exposure interaction effects

NTFS Unadjusted Adjusted for SES (age 9)
Coef Cl p Coef Cl p

Maternal age

*Least advantaged Ref Ref

*2d to least advantaged -0.01 (-0.05,0.03) 0.60 -0.01 (-0.05,0.03) 0.48

*Mid 0.02 (-0.01,0.05) 0.15 0.02 (-0.01,0.05) 0.28

*2" to most advantaged -0.07 (-0.13,-0.01) 0.020 -0.06  (-0.12,-0.00) 0.036

*Most advantaged 0.08 (-0.05,0.21) 0.21 0.08 (-0.05,0.21) 0.22

n 711 657

* p<0.05, ** p<0.01, *** p<0.001. Coef, coefficient; Cl, 95% confidence interval; Ref, reference category.
SES, socioeconomic status. Bold indicates significant at p<0.05.
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Table 5.6 Linear regression associations for the early life exposures and BMIz at age 9 years with unadjusted, adjusted for SES (birth) and adjusted for SES (age 9) estimates presented for the

NTFS and GMS cohorts

NTFS
Unadjusted Adjusted for SES (birth) Adjusted for SES (age 9)
Exposure Coef Cl p Coef Cl p Coef Cl p
Female -0.23  (-0.36,-0.11)  <0.001 -0.24  (-0.37,-0.11)  <0.001 -0.25  (-0.38,-0.11)  <0.001
Birthweight z-score 0.05 (-0.01,0.11) 0.092 0.05 (-0.01,0.11) 0.134 0.04 (-0.02,0.11) 0.20
. . SGA -0.14  (-0.35,0.07) 0.20 -0.15  (-0.37,0.08) 0.20 -0.18  (-0.41,0.05) 0.13
S;:::‘:fileg:t Normal Ref . Ref . Ref
LGA 0.09 (-0.15,0.32) 0.46 0.08 (-0.15,0.32) 0.49 0.04 (-0.21,0.29) 0.75
Maternal age (years) -0.01 (-0.02,-0.00) 0.035 -0.01  (-0.02,-0.00) 0.023 -0.01  (-0.03,0.00) 0.022
<25 0.09 (-0.06,0.24) 0.26 0.11 (-0.05,0.27) 0.19 0.15 (-0.02,0.31) 0.079
'c\::::z::::ge 2534 Ref Ref . Ref
35+ -0.13 (-0.30,0.04) 0.14 -0.13 (-0.30,0.04) 0.13 -0.11 (-0.29,0.07) 0.22
Adverse events -0.09  (-0.39,0.21) 0.55 -0.03  (-0.35,0.30) 0.88 0.07 (-0.29,0.43) 0.71
RWG 0.29 (0.10,0.48) 0.002 0.27 (0.08,0.46) 0.006 0.27 (0.08,0.47) 0.005
RT 0.23 (0.04,0.42) 0.01 0.21 (0.01,0.40) 0.021 0.20 (-0.00,0.40) 0.031
Never Ref Ref Ref
Breastfeeding <6 weeks 0.19 (-0.17,0.54) 0.30 0.18 (-0.16,0.52) 0.30 0.18 (-0.16,0.52) 0.30
categories >6 weeks 0.12 (-0.17,0.42) 0.41 0.11 (-0.18,0.39) 0.47 0.11 (-0.18,0.39) 0.47
>4 months  0.08 (-0.22,0.38) 0.60 0.08 (-0.20,0.36) 0.58 0.08 (-0.20,0.36) 0.58
SES at birth
Least advantaged Ref Ref
2" to least advantaged -0.07 [-0.30,0.16] 0.53 -0.01 [-0.25,0.23] 0.92
Mid 0.04 [-0.14,0.22] 0.65 0.05 [-0.16,0.26] 0.61
2" to most advantaged 0.11 [-0.19,0.41] 0.48 -0.02 [-0.36,0.32] 0.90
Most advantaged -0.07 [-0.58,0.44] 0.78 -0.28 [-0.90,0.34] 0.38
SES age 9
Least advantaged Ref
Mid 0.02 [-0.14,0.18] 0.82
Most advantaged 0.25 [-0.11,0.61] 0.17
Height (age 9) 0 (-0.00,0.01) 0.29 0 (-0.01,0.01) 0.46 0.01 (-0.00,0.02) 0.12
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GMS

Exposure
Female

Birthweight z-score

SGA
Bi .
|rthwe.|ght Normal
categories
LGA
Maternal age (years)
<25
Matern.al age 2534
categories
35+
Adverse events
RWG
RT
Never
Breastfeeding <6 weeks
categories >6 weeks
>4 months
SES at birth

Least advantaged
2" to least advantaged
Mid
2" to most advantaged
Most advantaged
SES age 9

Least advantaged
Mid
Most advantaged

Height (age 9)

Unadjusted Adjusted for SES (birth) Adjusted for SES (age 9)
Coef Cl p Coef Cl p Coef Cl p
-0.03  (-0.22,0.16) 0.78 -0.05  (-0.24,0.15) 0.64 -0.15  (-0.39,0.09) 0.23
0.21 (0.12,0.30) <0.001 0.23 (0.13,0.32) <0.001 0.22 (0.10,0.33) <0.001
-0.2 (-0.53,0.13) 0.23 -0.19  (-0.53,0.15) 0.28 -0.15  (-0.61,0.30) 0.51
Ref . Ref . Ref .
0.22 (-0.09,0.53) 0.16 0.25 (-0.07,0.57) 0.12 0.25 (-0.14,0.64) 0.21
0 (-0.02,0.01) 0.72 0 (-0.02,0.02) 0.88 -0.02  (-0.04,0.01) 0.18
-0.12 (-0.34,0.10) 0.30 -0.14 (-0.37,0.10) 0.25 -0.11 (-0.41,0.20) 0.50
Ref . Ref . Ref .
-0.28  (-0.56,-0.00)  0.049 -0.27  (-0.55,0.01) 0.055 -0.44  (-0.77,-0.10) 0.011
0.42 (0.20,0.64) <0.001 0.43 (0.21,0.65) <0.001 0.34 (0.07,0.61) 0.014
0.36 (0.16,0.57) 0.001 0.37 (0.16,0.58) 0.001 0.32 (0.05,0.59) 0.019
0.63 (0.43,0.83) <0.001 0.65 (0.44,0.86) <0.001 0.70 (0.45,0.96) <0.001
Ref Ref Ref
-0.05 (-0.30,0.19) 0.67 -0.04  (-0.29,0.21) 0.75 -0.04  (-0.29,0.21) 0.75
-0.28  (-0.59,0.04) 0.085 -0.24  (-0.57,0.10) 0.17 -0.24  (-0.57,0.10) 0.17
-0.16  (-0.42,0.09) 0.21 -0.17  (-0.45,0.10) 0.22 -0.17  (-0.45,0.10) 0.22
Ref Ref
-0.09  (-0.39,0.22) 0.58 -0.21  (-0.61,0.18) 0.29
-0.06  (-0.36,0.25) 0.72 -0.29  (-0.69,0.10) 0.15
0.07 (-0.25,0.38) 0.68 -0.21  (-0.61,0.19) 0.30
-0.18  (-0.50,0.14) 0.27 -0.18  (-0.59,0.23) 0.38
Ref
-0.09  (-0.40,0.22) 0.57
0.05 (-0.27,0.37) 0.76
0.07 (0.05,0.08) <0.001 0.07 (0.05,0.08) <0.001 0.07 (0.05,0.08) <0.001

The unadjusted model is the relationship between the exposure and BMIz, with models further adjusted for SES at birth, and then SES age 9.
Coef, coefficient; Cl, 95% confidence interval; p, p value; Ref, reference category. SES, socioeconomic status; RWG, rapid weight gain; RT, rapid thrive.
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The multivariable analyses were stratified by cohort, and RT (rather than RWG) was used as

it controls for some of the differences in birthweight. In the stratified multivariable model

for NTFS, females had a lower BMIz (-0.22, Cl -0.41,-0.02) and those who experienced RT in

the first year had a higher BMIz (0.20, CI 0.01,0.40) (Table 5.7). Those from the most

advantaged group at birth had a significantly lower BMIz, however there was no overall

trend by SES. There was no significant interaction between maternal age and SES after

adjustment for the other covariates.

The significant predictors of BMIz in GMS were RT, birthweight and adversity, adjusted for

covariates; maternal age, gestation, SES and first-born (Table 5.7). RT was associated with

greater increases in BMIz in GMS. The early life factors explained a greater proportion of the

variation in BMIz in GMS (GMS R?=17%, NTFS R?=3%, Table 5.7). There were no significant

interactions between early life exposures and SES at birth in the adjusted model for either

cohort.

Adjusting for height attenuated the effects (by 10-30%) for all significant associations in

GMS. Whilst adjusting for height made little difference to estimates for early life variables in

NTFS. The variance inflation factors were low (<2.5) for all variables, therefore this is less

likely to be due to multi-collinearity. This may be because height is a mediator on the

pathway for early life factors and BMIz in GMS (Figure 5.1)

Table 5.7 Multivariable fully adjusted linear regression models for BMIz (age 9) by cohort

NTFS GMS
coef Cl p coef Cl p
Female -0.22  (-0.41,-0.02) 0.029 -0.16 (-0.39,0.06) 0.16
RT 0.22 (0.01,0.43) 0.038 0.50 (0.23,0.76) <0.001
Birthweight z-score 0.02 (-0.08,0.11) 0.72 0.17 (0.05,0.29) 0.006
SES at birth
Least advantaged Ref . Ref .
2"toleast 0.05 (-0.31,0.41) 0.79 -0.24 (-0.62,0.14) 0.22
Mid advantaged 0.1 (-0.21,0.41) 0.54 -0.34 (-0.73,0.05) 0.084
2" tomost  0.04 (-0.45,0.53) 0.88 -0.19 (-0.58,0.19) 0.33
Most advantaged -0.93 (-1.87,0.01) 0.052 -0.18 (-0.57,0.22) 0.39
Height (cm) 0 (-0.02,0.01) 0.59 0.04 (0.02,0.06) 0.019
Adversity 0.30 (0.05,0.55) <0.001
Adjusted R? 0.022 0.212
n 313 269

Models were additionally adjusted for height, maternal age, gestation and SES at age 9.
* p<0.05, ** p<0.01, *** p<0.001. Bold indicates p<0.05. Coef, coefficient; Cl, 95% confidence interval; Ref,
reference category.; n, number of observations. RT, rapid thrive; SES, socioeconomic status.
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5.4.6 Early life predictors of childhood overweight/obesity

In addition to BMlIz, early life exposures were examined as risk factors for childhood OWOB.
In terms of socioeconomic factors, in NTFS there were lower odds of OWOB between the
second to least advantaged group (compared to the least at birth) (p<0.05), but there was no
overall trend (Table 5.8). Whilst in GMS, mid-socioeconomic advantage (age 9) corresponded

to 50% lower odds of OWOB compared to the least advantaged.

Birthweight, adversity, RT and RWG were associated with higher odds of OWOB in GMS
children in unadjusted models (Table 5.8). In NTFS, the only early life exposure significantly

associated with OWOB was RT (unadjusted model, Table 5.8).
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Table 5.8 Bivariate (unadjusted) logistic regression models for overweight/obese (age 9) by cohort

NTFS GMS
Unadjusted Unadjusted
Variable OR Cl p OR cl p
SES at birth
Least advantaged Ref . Ref .
2" to least 0.20 (0.04,0.95) 0.043 0.87 (0.44,1.71) 0.68
Mid advantaged 0.98 (0.47,2.05) 0.95 1.01 (0.52,1.99) 0.97
2" to most 1.05 (0.31,3.53) 0.94 1.34  (0.68,2.65) 0.40
Most advantaged 0.87 (0.10,7.35) 0.90 0.79 (0.38,1.62) 0.52
SES at age 9
Least advantaged Ref . Ref .
Middle 1.2 (0.63,2.31) 0.58 0.50 (0.26,0.96) 0.036
Most advantaged 1.46 (0.46,4.60) 0.52 0.56 (0.29,1.07) 0.079
Female 1.02 (0.58,1.80) 0.95 0.96 (0.63,1.47) 0.86
Birthweight z-score 1.17 (0.90,1.53) 0.25 1.28 (1.04,1.57) 0.020
Birthweight categories
SGA 0.75 (0.26,2.15) 0.59 0.75 (0.34,1.67) 0.48
Normal Ref . . Ref . .
LGA 1.17 (0.44,3.08) 0.75 1.31 (0.68,2.54) 0.43
Maternal age (years) 0.97 (0.92,1.02) 0.23 0.98 (0.95,1.02) 0.37
Maternal age categories
<25 1.36 (0.72,2.60) 0.35 0.89  (0.54,1.45) 0.63
25-34 Ref . Ref .
>35 0.86 (0.38,1.94) 0.72 0.5 (0.24,1.03) 0.06
Adversity 0.85 (0.18,3.91) 0.83 1.78 (1.12,2.85) 0.015
RWG 1.71 (0.77,3.75) 0.19 1.65 (1.04,2.60) 0.033
RT 2.24 (1.01,4.96) 0.046 2.38 (1.51,3.75) <0.001
Breastfeeding categories
None Ref . Ref .
<6 weeks 2.36 (0.41,13.46) 0.19 0.93 (0.55,1.58) 0.80
6 weeks-4 months 2.72 (0.58,12.74) 0.12 0.47 (0.21,1.05) 0.067
>4 months 2.58 (0.55,12.05) 0.13 0.85 (0.48,1.49) 0.57

OR, Odds ratio; Cl, 95% confidence interval; Ref, reference category. * p<0.05, ** p<0.01, *** p<0.001. Bold
indicates p<0.05. SGA, Small for gestational age; LGA, Large-for-gestational age; RWG, rapid weight gain; RT,
rapid thrive; SES, socioeconomic status.

OWOB was examined further in GMS as group sizes were too small to sufficiently estimate a
multivariable model for NTFS. The associations of increased odds of OWOB with higher
birthweight and RWG, and reduced odds with increasing SES remained significant after
adjustment (Table 5.9). RWG had the greatest effect on OWOB at age 9. There were no
significant interactions between exposures and SES, with OWOB in GMS. Adjusting for height

increased the variation explained and removed significant associations for birthweight.
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Table 5.9 Multivariable fully adjusted logistic regression models for OWOB (age 9) in GMS

GMS (RWG) GMS (RT) RT, adjusted for height
OR Cl p OR Cl p OR <l p
Bwtz 2.12  (1.47,3.04) <0.001 1.72  (1.25,2.38) 0.001 1.35 (0.95,1.94) 0.098
RWG 3.65 (1.73,7.70) 0.001
RT 3.98 (2.06,7.68) <0.001  2.12 (1.02,4.40) 0.044
Adversity 1.84  (0.96,3.53) 0.066 1.84 (0.95,3.56) 0.071 1.63 (0.81,3.27) 0.17
SES
(age 9)
Mid 0.37 (0.16,0.88) 0.024 0.36 (0.15,0.86) 0.021 0.35 (0.14,0.87) 0.024
Most
advan- 0.41 (0.17,0.96) 0.041 0.39 (0.16,0.93) 0.035 0.33 (0.13,0.82) 0.017
taged
Ht 1.14 (1.07,1.22) <0.001
(age 9) '
n 269 269 269
Pseudo
R2 0.107 0.126 0.186
BIC 36.8 31.3 19.7

OR, Odds ratio; Cl, 95% confidence interval; Ref, reference category; N, number of observations.. * p<0.05, ** p<0.01, ***
p<0.001. Bold indicates p<0.05. Bwtz, birthweight z-score; RWG, rapid weight gain; RT, rapid thrive; SES, socioeconomic
status; ht, height. Models are additionally adjusted for sex, SES at birth, gestation, maternal age. SES reference category is
least advantaged. A difference of 5.5 in BIC' provided positive support for the model with rapid thrive rather than RWG.

5.4.7 Path analysis of the predictors of childhood BMI

Figure 5.1 illustrates the adjusted path models for BMIz. In both cohorts, rapid thrive was
directly associated with increased BMIz, but no variables were associated with RT. Sex was
associated with decreased BMIz in NTFS, however, similar to the multivariable regression
model (Table 5.7), there were no other exposures directly or indirectly associated with BMIz

in NTFS.

In GMS, there were direct relationships between birthweight, RT, adversity and height with
BMiIz. All exposures had significant total effects (the sum of direct and indirect effects) on
BMIz except SES at birth. Increasing SES was positively associated with birthweight z-score.
RT and birthweight z-score demonstrated positive associations with height. Adversity, RT
and birthweight z-score all had similar positive, direct effects on BMIz. Dissimilar to NTFS,
the largest total effect came from height in GMS. The GMS model explained 24% of the
variation in BMIz, whilst the NTFS model explained a very small proportion of the variation
(3%). For the GMS path model there was strong support for the model without SES at age 9
and without breastfeeding, neither of which altered estimates, improved model fit, or

increased overall variance explained.
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A—NTFS

Female
(-0.14)

-0.14

BMIz age 9
R?=0.03

B - GMS

Adversity
(0.16)

BMIz age 9
R?=0.24

Height
(age 9)
(0.30)

-0.09

Figure 5.1 The path models for early life factors and BMIz (age 9) for NTFS (A) and GMS (B) cohorts.

Arrows show the direction of the effect. Standardised coefficients are presented, which represent partial regression
coefficients between connected variables, controlling for all prior variables (Garson, 2008). All direct effects are represented
by solid lines and are significant at p<0.05. Total effects (if significant) are presenting in brackets with associated p values.
The NTFS model was additionally adjusted for height, birthweight, maternal age, gestation length, SES (birth) however these
had no significant paths that improved model fit (informed by modification indices). The GMS model was additionally

adjusted for sex and maternal age (no significant paths). There were significant (p<0.05) indirect paths to BMIz for gestation
(-0.04), RT (0.11), birthweight z-score (0.09). Gest, gestation length; SES, socioeconomic status (birth); RT, rapid thrive.

5.4.8 Investigating rapid thrive

RT was the risk factor associated with increased odds of OWOB and higher BMIz in both

cohorts. There were no variables that predicted RT (Figure 5.1) in the cohorts.

The effects of RT on mean BMI z-scores over time were examined further by cohort (Figure

5.2). By definition, those with RT show a sizeable increase in z-score from birth to 12

months. Within cohorts, those who had RT tended to have higher BMI z-scores throughout

childhood than those who did not. However, in NTFS, at age 13 (the last available time point

before adulthood) although the z-score was greater, there was no significant difference

between those who had RT and those who did not. Similar to NTFS, in GMS those who had
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RT had a large initial increase in z-score (0-12 months) (albeit to a lower average z-score),
however subsequently they have a higher BMIz throughout childhood and an overweight

BMIz (z-score>=1).

Those who did not have RT demonstrate a decrease in z-score after birth, which over time

stabilises around the average (z-score of 0) in NTFS, but in GMS gradually increases.

1.5

0.5

Z-score

-0.5

Age (years)
== No rapid growth NTFS Rapid growth NTFS
No rapid growth GMS Rapid growth GMS

Figure 5.2 The change in average z-score over by cohort and RT

Error bars represent 95% confidence intervals. Average values were used for the interval ages for GMS.

5.5 Discussion

These data provided an opportunity to analyse how early life factors influencing BMI have
changed over a long time period in one geographical area. There were more early life
exposures significantly associated with childhood body composition and they explained

more variation in BMIz in the modern (GMS) cohort.

Early life and childhood experiences of NTFS study members were vastly different to those of
GMS children and warrant further discussion to provide context for the results. Food was
heavily regulated due to state enforced rationing leading to reductions of sugar, meat and
fats and individuals were entitled to their fair share (Zweiniger-Bargielowska, 2000).
Rationing did not cease immediately after the war but continued until 1954. This reduced
disparities of the previous decade between the social classes regarding energy and nutrient
intakes, with calorie and protein intakes between working and middle classes stable
between 1944-1956 (Zweiniger-Bargielowska, 2000). This period of time also saw an

increase in activity levels due to longer working hours, more women in the workplace and
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reduced vehicle usage as a result of petrol rationing. These factors will have impacted both

the mother during pregnancy and also the offspring during the first few years of life.

A comparison between two of the British birth cohorts found those born in 1958 were not
heavier than those born in 1946 until adolescence, when the weight trajectories for the later
cohort had a faster rate of gain (Li et al., 2008). Further differences emerged by mid-
adulthood in measures of waist and hip circumferences, with higher rates of obesity in the
1958 cohort. Compared to modern day, this cohort experienced the obesity epidemic at a
later age (around mid-thirties) meaning a shorter exposure to an obesogenic environment.
This is consistent with results here, whereby obesity did not emerge until later life (chapter
3). This coincides with a time of technological change, whereby households and industry
were shifting toward labour-saving devices (Lakdawalla and Philipson, 2009), therefore
lifestyles became more sedentary. This additional time also meant more women could take
up employment, and with this came a change in what was deemed traditional home cooking

and diet.

Post-war was a time of rising affluence in Britain, which was seen here in the social mobility
of NTFS. The boom of the economy was associated with increased travel due to decreases in
transport costs and the accompanying introduction of new, cheaper foods. The food
environment shifted; with the focus was no longer solely on sustenance, and restaurant and
fast food chains began to emerge. These factors could partly explain the latency in obesity

onset.

Early life factors previously explained a relatively small proportion of the variation in BMI
(2% in NTFS compared to 22% in GMS), suggesting that early life factors in combination with
modern environments, have become more important over time in determining childhood

body composition.

5.5.1 Summary of results

At baseline, the two cohorts differed in birthweight, maternal age, gestation length, RWG,
duration breastfed, adversity, and SES. On average birthweight increased, there were fewer
older mothers and more young mothers, RT was less likely, breastfeeding duration was
shorter and more experienced adversity. Height has also increased vastly between the two

cohorts, and in the modern cohort was associated with increased BMI and odds of OWOB (in
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GMS). The social class differences in height seen in NTFS have diminished over time.

However, in the modern cohort socioeconomic differences in OWOB have emerged.

There were large differences in birthweight between the cohorts, and birthweight was
negatively associated with RWG (section 4.4.9), therefore RT was also analysed to further
understand the effects of conditional weight gain. RT corrected for some of the effects of
catch-up growth (from low birthweight), suggesting that RWG encompassed some of the
indirect, and potentially developmental programming effects of birthweight. RT was

associated with increased BMIz in both cohorts, however in GMS the effects were greater.

There were socioeconomic gradients in height in NTFS, in accordance with earlier
observations by Wright and Parker (2004). These differences were much smaller in GMS.
Indeed, socio-economic differences in height, which have decreased over, time (Bann et al
2018). Height modulated the effects of many exposures on BMIz (notably for NTFS), which
may suggest that some of these associations were related to lean mass rather than fat mass.
Other studies have suggested that the relationship between RWG and subsequent adiposity
is merely a marker of fast growth and later height (Wright et al., 2012). This analysis instead
suggests instead that the effects of rapid growth were previously unrelated to height (NTFS),

but are now somewhat mediated through height (GMS).

Both higher birthweights and RT were associated with increased height in GMS, which may
suggest they are important growth-related factors on the pathway to obesity, however it is
difficult to untangle the complex relationships between height, BMI and SES. Adjusting for
height could also introduce bias, if it lies on the causal pathway. There is a lack of
consistency as to whether other body composition measures (such as height) should be

further adjusted for (Tu et al., 2005).

Although anthropometric measures were utilised at age 9 to minimise the bias from puberty,
there are reports of children entering puberty as young as age 6 years (Herman-Giddens et
al., 1997), therefore some children may have been more developed. Early onset of puberty
may be more likely in children with a higher BMI (Freedman et al., 2002, Kaplowitz, 2008, Li
et al., 2017b), therefore it may not be appropriate to adjust for pubertal status if BMl is

causally related to early puberty (Mumby et al., 2011).

As there were few OWOB study members in NTFS it was not possible to analyse OWOB in a

multivariable model. However, this highlights that one of the main differences between the
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cohorts is the relatively low levels of OWOB in the historical cohort. In spite of this, the
bivariate analyses suggested that RT that was associated with OWOB in NTFS, which is in line
with findings for BMlz.

Rapid infancy growth was the prominent factor in these analyses, due to the positive
associations with BMlz, and also OWOB in the modern cohort, suggesting that despite the
changing environment, RT has remained a consistent risk factor over time. Whereas
adversity and birthweight may perhaps be risk factors exacerbated by modern-day

obesogenic environments.
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Chapter 6. The Avon Longitudinal study of parents and
children (ALSPAC)

6.1 Introduction

The previous chapters determined the risk factors for childhood and adult obesity in the
North East cohorts. The risk factors, which were consistently associated with adiposity across
both cohorts, were birthweight, RWG, maternal age, and SES. It was necessary to examine
RWG conditional on birthweight (rapid thrive), in the cohort comparison due to the large
differences in birthweight, although findings were similar. Adversity was associated with
multiple outcome measures in GMS. Recorded bacterial infection was associated with
increased odds of obesity in adults in NTFS, however the GMS questionnaire data on
infections was unreliable, therefore it remains uncertain whether the association was

present in GMS children.

A strength of the North East region cohorts is that despite the time differences between
them, there were similarities in the early life influences on childhood BMI (Chapter 5).
Although they include comprehensive data, a limitation of the North East cohorts is that
they are relatively small samples in comparison to the larger epidemiological cohorts.
Replication of the findings in a larger cohort, from another part of the UK, would reinforce
that these exposures are indeed early life risk factors for subsequent obesity. To address
these shortcomings, this chapter used data from the ALSPAC cohort, a large, longitudinal

birth cohort from the South West of England with vast exposure data (Boyd et al., 2013).

This chapter addresses the third aim of the thesis and focuses on the analysis of early life risk
factors in the ALSPAC cohort to identify gene-specific methylation differences in relation to
focal early life exposures. Firstly, the epidemiological associations between focal early life
exposures and body composition outcomes in childhood and late adolescence were
examined. For consistency in methods and exposures, the exposures studied in NTFS and
GMS were harmonised with ALSPAC data. The ALSPAC cohort also has epigenetic data,

thereby allowing early life exposures to be investigated with respect to changes in DNAm.

The second section of this chapter examines the hypothesis that epigenetics is a mechanism
linking early life factors and later life obesity. Whilst DNAmM biomarkers have been identified

for some exposures, others have either; not been investigated, have been measured
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differently, or not been validated (section 1.5.3). Less is known regarding whether these
early life exposures leave lasting, measurable effects on DNAm in later life. Thereby these
data provide the opportunity to determine the focal early life exposures, harmonised across
cohorts, and examine these with respect to methylation in childhood and adolescence. This
analysis could elucidate whether these risk factors are mediated through epigenetic

programming and if the epigenetic marks are stable over time.

6.2 Aims

The first aim of this chapter was to establish whether early life risk factors for subsequent
obesity in the North East cohorts are also risk factors in the ALSPAC cohort. To address this
aim, early life exposures were investigated with respect to body composition in childhood

and adolescence, using statistical regression methods.

The second aim addresses the overall thesis aim 3(i); to determine which of the focal early
life exposures (from the analyses in NTFS and GMS cohorts) demonstrate a relationship with
DNAm childhood or adolescence. This was addressed using epigenome-wide analyses at

individual CpG loci for each exposure.

6.3 Participants and methods

6.3.1 Data selection and recoding

The ALSPAC data dictionary was used to identify and match the exposures with the variables
from NTFS and GMS. For the early life variables, data from mother-focused questionnaires at
18 and 32 weeks prenatal, and 8 weeks postnatal were used, along with data from the child-
focused questionnaires at 4 weeks, 15 months and age 17. Partner questionnaire data were
used at age 8 for childhood SES. Clinic data from ages 7 and 17 were used for body

composition measures.

BMIz and OWOB were utilised as outcomes in these analyses, in line with the outcomes that
were comparable across all three cohorts and time points. These were coded as described in

section 2.2.1.

There were several early life risk factors with demonstrated consistent associations in GMS
and NTFS, and for which data were available in the ALSPAC cohort. These included;

birthweight, RWG, RT, infant feeding, parity, maternal age, adversity, antibiotics exposure
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(proxy for bacterial infection), and SES. The definitions and measurement of these factors is

outlined in 2.2.3.

Social class in childhood were based on partner’s self-reported data at age 8 using the 1991
British Office of Population and Census Statistics (OPCS) classification (see section 2.1.3 for

details), as there were no maternal data at this time point.

6.3.1.1 ARIES recoding

ALSPAC collected blood at multiple time points. DNA was extracted and DNAm was
measured for 1000 mother-child pairs for those who had DNA available at birth, age 7 and
ages 15 (TF3) or 17. The age 7 sample was used to represent childhood methylation levels.
The age 17 sample was used as this sample was more representative of adults, and study
members are likely to have finished the majority of their childhood growth (whereas the TF3

sample included those as young as 14.6 years).

EWAS were run using the meffil R program (detailed in the next section), which allows binary
or continuous variables as inputs in models, and therefore some categorical explanatory
variables were recoded. The variables: RWG, antibiotic exposure (0-6 months), prenatal

adversity and postnatal adversity remained coded as previously described (section 6.3.1).

Birthweight was associated with outcomes across the cohorts, however this exposure has
been studied previously in the ALSPAC cohort and no significant loci (for childhood
methylation) were identified (Simpkin et al., 2015). As birthweight was not examined as an
independent exposure, both RWG and RT were examined which may somewhat
differentiate birthweight effects. There was a lower risk of adiposity for mid and most
advantaged compared to the least, therefore SES was recoded to a binary variable for “least
advantaged” (increased risk of adiposity). Maternal age was examined as a separate binary
variables of either young (<25 years), or advanced (>45 years) maternal age (compared to

the reference category of 25-34 years).

6.3.2 Statistical analysis

The ALSPAC epidemiological data was analysed using the same statistical approach as in the
cohort comparison (of GMS and NTFS) (see section 2.3.1). Briefly, this firstly involved
examining bivariate relationships for all focal early life risk factors. The effects of SES on the
coefficients were examined sequentially. Then, the same multivariable models were run as

that for the cohort comparison (chapter 5) for means of comparison. However, this resulted
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in models that did not meet regression criteria. Therefore, to find the best predictive model
for the explanatory variables under investigation, regression models were re-estimated
using stepwise regression. The BIC was used as a decisive factor for model selection, with
lower model BIC preferred. The aim was to form a parsimonious model, i.e. a model that has

the greatest explanatory ability, using the least number of variables necessary.

6.4 Results

6.4.1 ALSPAC sample characteristics

6.4.1.1 Outcomes

There were a total of 7,868 (50.5% female) participants at the age 7 follow-up, and 4,858
(43.8% female) at age 17 with body composition measurements (Table 6.1). Using BMIz to
determine weight categories, 13% of study members had an OWOB BMIz at age 7, and 21%
at age 17 (Table 6.1). Accordingly, mean BMIz was also higher at age 17.

Table 6.1 Descriptive characteristics of body composition outcomes for ALSPAC participants age 7 and 17

Age 7 Age 17

n Mean (SD) n Mean (SD)
BMIz 7,868 0.19 (1.01) 4,858 0.47(1.13)

n % n %
Healthy weight 6,841 86.95 3,827 78.78
owo0oB 1,027 13.05 1,031 21.22
Total 7,868 4,858

Proportion (%) of study members in healthy weight or overweight/obese (OWOB) and mean BMIz and standard deviation
(SD). n, sample size; %, column percentage.

6.4.1.2 Exposures

Descriptive statistics for those with data available at each follow-up are shown in
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Table 6.2. Compared to the original cohort, at both ages 7 and 17; there were more females,
more first-born children, fewer younger mothers and more who experienced adversity.
There were also more SGA and fewer LGA, however overall mean birthweight z-score and
gestational length was greater. The sample was also more advantaged at both time points.
At age 17, there were fewer who had antibiotics compared to the original cohort. There

were no differences for RWG at either time point or antibiotics at age 7.
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Table 6.2 Summary characteristics of ALSPAC participants (all) and those with body composition measures (age 7 and 17)

All Age 7 Age 17

Mean Mean Mean  T-test
Continuous variable n (SD) n (SD) T-test p n (SD) p

0.09 0.15 0.15
Birthweight (z-score) 13457  (1.0) 7336 (0.97) <0001 aa86 (0.0g) <0001

38.39 39.5 39.5
Gestation (weeks) 14178 (5.56) 7228 (18 0001 4538 (175) <0001
Categorical variable All Age 7 Age 17

n col % n col% ChiZp n col% Chi?p

Sex 14409 7868 0.050 4858 <0.001
Male 7387 513 3975 50.5 2127 438
Female 7022 48.7 3893 495 2731 56.2
First-born 11356 6953 0.002 4262 <0.001
No 6277 55.3 3763 54.1 2211 519
Yes 5079 44.7 3190 459 2051 48.1
Birthweight categories 13457 7336 <0.001 0.004
SGA 1467 10.9 852 11.6 529 11.8
Normal 10913 81.1 6008 81.9 3637 81.1
LGA 1077 8 476 6.5 320 7.1
Gestation categories 14178 7428 <0.001 <0.001
Pre-term 2027 14.3 728 9.8 445 9.8
Normal 11116 78.4 6147 82.8 3770 83.1
Post-term 1035 7.3 553 7.4 323 7.1
RWG 1184 853 0.76 0.67
No 822 69.4 590 69.2 375 68.8
Yes 362 30.6 263 30.8 170 31.2
RT 1,184 853 0.51 545 0.69
No 813 68.7 581 68.1 371 68.1
Yes 371 31.3 272 31.9 174 31.9
Maternal age at birth 13641 7428 <0.001 4538 <0.001
Less than 25 3309 24.3 1180 15.9 706 15.6
25-34 8981 65.8 5341 71.9 3243 715
35+ 1351 9.9 907 12.2 589 13
Adversity pre-natal 14997 7868 <0.001 4858 <0.001
No 10347 69 5183 65.9 3232  66.5
Yes 4650 31 2685 34.1 1626 335
Adversity post-natal 14997 7868 <0.001 4858 <0.001
No 11415 76.1 5628 71.5 3553 731
Yes 3582 239 2240 28.5 1305 26.9
Pre and post-natal 14997 7868 <0.001 4858 0.001
No 12960 86.4 6645 84.5 4132 85.1
Yes 2037 13.6 1223 155 726 14.9
Antibiotics (0-6 months) 11016 6923 0.48 4243 0.031
No 7460 67.7 4705 68 2925 68.9
Yes 3556 32.3 2218 32 1318 31.1
SES at birth 10540 6678 <0.001 4115 <0.001
Least Advantaged 589 5.6 273 4.1 163 4
Mid 4058 38.5 2324 34.8 1323  32.2
Most advantaged 5893 55.9 4081 61.1 2629 63.9
SES in childhood 3553 3038 0.007 2069 <0.001
Least Advantaged 413 11.6 333 11 215 104
Mid 1079 304 920 30.3 595 28.8
Most advantaged 2061 58 1785 58.8 1259 60.9

Differences between the original sample (all), and either the age 7 and 17 samples, assessed using T-tests for continuous
variables, and Chi-square (Chi?) tests for differences between the whole sample and those measured at either age 7 or 17.
n, sample size; col %, column percentage; SD, standard deviation. Bold indicates significant at p<0.05.
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6.4.2 Associations between early life factors and adiposity outcomes

In bivariate analyses, birthweight z-score and LGA were associated with increased BMIz and

increased odds of OWOB at both time points (Appendix E,

Table xi). SGA was negatively associated, and gestation length positively associated with
BMiIz at age 7, but there were no associations for OWOB or outcomes at age 17. RWG was
positively associated with BMIz at age 7 and 17, and OWOB at age 7. Younger maternal age
(<25 years) was associated with higher BMIz (0.24, p<0.001) and 50% increased odds of
OWOB at age 17. Whilst older maternal age (35+) was associated with a lower BMIz at age
17.

Interestingly, pre-natal and pre and post-natal adversity (collectively) were associated with

BMIz at age 7 and 17, and OWOB at age 17, but not OWOB at age 7 (Appendix E,

Table XI). At age 7, the coefficients were small, almost doubling by age 17. The effect sizes
were greater for pre- and post-natal adversity combined. There were no associations for

post-natal adversity alone.

SES at birth and in childhood were not directly associated with BMIz (age 7), but the most
advantaged group (both time points) was associated with lower BMIz and OWOB at age 17,
with similar effect sizes. In addition, the association for childhood SES and OWOB was also

seen at age 7.

Table 6.3 Summary of ALSPAC bivariate associations for early life exposures and outcomes (age 7 and 17)

Early life exposures Outcome measures
BMI OowoOB
Age7 Agel7 Age 7 Age 17
v v
Maternal  Age - (young & -
old) (young)
Birth Birthweight N4 N v v
Occupational social class - v - v
Early life  Antibiotics (0- 6 months) - - Vv v
Adversity Prenatal v - v
Postnatal - - - -
Pre and postnatal v N - N
Rapid weight gain v v N4 -
Rapid thrive v N v -
Childhood Occupational social class - v N4 N4

Tick represents a significant association between exposure and specified outcome measure in the (unadjusted) bivariate
model
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6.4.2.1 Multivariable cohort-comparative models

In order to compare models with those in GMS and NTFS cohort comparison, RT was used in
the multivariable models (for models with RWG see Appendix E). In the multivariable
analyses, the combined pre and post-natal adversity variable was used as it had the largest
coefficient and was most significant in the bivariate models. As a sensitivity test, additional
models were estimated with the other adversity variables as controls, however they were
not significantly associated and did not improve model fit. Similar to analyses in the cohort

comparison, the impact of childhood SES on the early life factors was investigated further.

At age 7 the associations for RT decreased but remained after adjustment for SES at both
time points. Associations for birthweight were similar but were not significant for OWOB
(age 7) after adjustment for childhood SES. After adjustment, RT was the only early life

factor associated with both outcomes in childhood.

The combined multivariable models including early life factors and SES explained more the
variation in adiposity outcomes in childhood. All age 7, BMI models fit regression criteria
(regression diagnostic plots in Appendix E). However, the model for BMIz (age 7) had

slightly positively skewed residuals, therefore ordinal regression (OWOB age 7 multivariable

model) results which do not assume normality of residuals may be more valid.

All models for OWOB (age 17) had non-significant p values and very low pseudo R? value
which indicates that the early life factors included were poor at predicting OWOB in

adolescence.

There was also very strong support for all models without adjustment for SES in childhood
(informed by BIC). There was also a large decrease in sample size, which may be also result
in poor model specification. Therefore, instead parsimonious models were estimated

(section 6.4.2.2).
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Table 6.4 Multivariable linear and logistic regression for BMIz and OWOB at ages 7 and 17, adjusted for SES

Age 7
BMiz Unadjusted Adjusted for SES (birth) Adjusted for SES (childhood)
Coef Cl p Coef Cl p Coef Cl p
Female -0.06 [-0.19,0.07] 0.37 -0.06 [-0.20,0.07] 0.34 -0.05 [-0.25,0.14] 0.61
Gestation 0.01 [-0.03,0.06] 0.56 0.01 [-0.03,0.06] 0.6 0.01 [-0.05,0.08] 0.69
Birthweight z-score 0.19 [0.12,0.26] <0.001 0.18 [0.11,0.26] <0.001 0.16 [0.06,0.27] 0.003
Maternal age Less than 25 -0.04 [-0.25,0.16] 0.68 0.06 [-0.17,0.29] 0.60 0.35 [-0.07,0.77] 0.10
35+  -0.13 [-0.32,0.06] 0.17 -0.13 [-0.33,0.07] 0.20 0.02 [-0.26,0.29] 0.90
First-born 0.07 [-0.07,0.21] 0.31 0.05 [-0.09,0.19] 0.48 0.12 [-0.09,0.34] 0.26
RT 0.77 [0.63,0.91] <0.001 0.77 [0.62,0.91] <0.001 0.67 [0.46,0.87] <0.001
Adversity 0.02 [-0.15,0.19] 0.83 -0.03 [-0.22,0.15] 0.72 0.04 [-0.25,0.32] 0.80
SES (birth) Mid 0.27 [-0.08,0.61] 0.13 -0.17 [-0.81,0.47] 0.60
Most advantaged 0.28 [-0.06,0.62] 0.11 -0.06 [-0.70,0.57] 0.85
. Mid 0.13 [-0.24,0.51] 0.49
SES childhood Most advantaged -0.01 [-0.38,0.35] 0.94
n 825 772 382
Adjusted R? 0.158 0.154 0.112
OWOB Unadjusted Adjusted for SES (birth) Adjusted for SES (childhood)
OR Cl p OR Cl p OR Cl p
Female 0.66 [0.42,1.02] 0.063 0.66 [0.42,1.04] 0.076 0.77 [0.38,1.54] 0.46
Gestation 1.01 [0.87,1.16] 0.92 1.02 [0.88,1.18] 0.82 1.01 [0.80,1.26] 0.95
Birthweight z-score 1.41 [1.11,1.80] 0.005 1.31 [1.02,1.68] 0.035 0.97 [0.66,1.41] 0.86
Maternal age Less than 25 0.85 [0.43,1.69] 0.65 1.14 [0.55,2.36] 0.72 1.77 [0.53,5.83] 0.35
35+ 0.62 [0.29,1.31] 0.21 0.56 [0.26,1.24] 0.15 0.29 [0.07,1.28] 0.10
First-born 1.15 [0.73,1.83] 0.55 1.09 [0.68,1.76] 0.71 1.11 [0.53,2.36] 0.78
RT 3.93 [2.54,6.08] <0.001 3.77 [2.41,5.89] <0.001 3.01 [1.54,5.88] 0.001
Adversity 0.99 [0.55,1.77] 0.97 0.93 [0.49,1.74] 0.81 1.61 [0.67,3.88] 0.29
SES (birth) Mid 1.33 [0.36,4.89] 0.66 0.38 [0.06,2.58] 0.32
Most advantaged 1.67 [0.46,6.07] 0.44 0.64 [0.10,4.32] 0.65
, Mid 1.08 [0.33,3.58] 0.90
SES childhood Most advantaged 0.6 [0.19,1.93] 0.40
n 825 772 382
Pseudo R? 0.091 0.086 0.085

195



Age 17

BMIz Unadjusted Adjusted for SES (birth) Adjusted for SES (childhood)
Coef Cl p Coef Cl p Coef Cl p
Female -0.08 [-0.27,0.12] 0.43 -0.1 [-0.30,0.10] 0.33 -0.08 [-0.35,0.20] 0.59
Gestation 0 [-0.06,0.07] 0.91 0 [-0.07,0.07] 0.98 0.01 [-0.09,0.10] 0.91
Birthweight z-score 0.06 [-0.05,0.17] 0.30 0.05 [-0.07,0.16] 0.42 0.09 [-0.07,0.24] 0.27
Maternal age Less than 25 0.2 [-0.12,0.51] 0.23 0.27 [-0.09,0.63] 0.14 0.45 [-0.24,1.15] 0.20
35+ -0.11 [-0.39,0.18] 0.47 -0.08 [-0.38,0.22] 0.59 0.04 [-0.35,0.44] 0.83
First-born 0.04 [-0.17,0.25] 0.72 0.01 [-0.21,0.24] 0.90 0.11 [-0.19,0.41] 0.48
RT 0.21 [0.00,0.43] 0.05 0.23 [0.00,0.45] 0.045 0.18 [-0.11,0.47] 0.22
Adversity - Pre and post-natal 0.31 [0.03,0.59] 0.03 0.26 [-0.04,0.56] 0.088 0.19 [-0.22,0.61] 0.36
SES (birth) Mid 0.42 [-0.14,0.98] 0.14 -0.15 [-1.13,0.83] 0.77
Most advantaged 0.29 [-0.26,0.84] 0.29 -0.46 [-1.43,0.52] 0.36
. Mid -0.22 [-0.79,0.35] 0.44
SES (childhood) Most advantaged 0.1  [0.64044] 071
n 527 498 270
Adjusted R? 0.011 0.009 0.001
OWOB Unadjusted Adjusted for SES (birth) Adjusted for SES (childhood)
OR Cl p OR cl p OR cl p
Female 0.98 [0.63,1.52] 0.93 0.94 [0.60,1.47] 0.79 0.94 [0.49,1.81] 0.86
Gestation 1.02 [0.88,1.19] 0.77 1.02  [0.88,1.19] 0.81 0.99 [0.80,1.24]  0.96
Birthweight z-score 1.18 [0.92,1.51] 0.19 1.16 [0.90,1.49] 0.25 1.15 [0.79,1.67] 0.47
Maternal age Less than 25 1.13 [0.56,2.27] 0.74 1.2 [0.56,2.59] 0.64 1.34 [0.30,5.94] 0.70
35+ 1.38 [0.75,2.53] 0.30 1.43  [0.77,2.66] 0.26 1.93 [0.83,4.54]  0.13
First-born 0.97 [0.60,1.57] 0.91 0.96 [0.59,1.58] 0.88 1.11 [0.54,2.28] 0.77
RT 1.54 [0.97,2.45]  0.066 1.6 [1.00,2.56] 0.05 1.34 [0.69,2.63]  0.39
Adversity - Pre and post-natal 1.79 [1.02,3.14] 0.044 1.61 [0.88,2.94] 0.12 1.38 [0.56,3.41] 0.48
SES (birth) Mid 1.64  [0.44,6.18] 0.46 1.41  [0.14,14.34] 0.77
Most advantaged 1.48 [0.40,5.47] 0.56 0.78 [0.08,8.05] 0.83
SES (childhood) Mid 1.05 [0.28,3.87] 0.94
Most advantaged 1.13 [0.32,3.94] 0.85
n 527 498 270
Pseudo R? 0.02 0.02 0.026

Coefficients (coef) and Odds ratios (OR) are presented with 95% confidence intervals (Cl) and the corresponding level of significance (p).Bold indicates p<Reference categories were; the least advantaged
group for SES; and age 25-34 for maternal age. n, sample size; Bwtz, birthweight z-score; SES, socioeconomic status; RT, rapid thrive. The overall model p value was no longer significant for BMIz (age 17)
and OWOW (age 7) after controlling for SES in childhood. There were indications that the models for OWOB at age 7 and 17 did not meet logistic regression criteria and were poorly specified models.
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6.4.2.2 Multivariable cohort-specific models

In the previous section, models were estimated to harmonise with those in chapter 4.
However, these models did not meet regression criteria, suggesting that using these
variables did not result in a good predictive model for the ALSPAC cohort. Models were
refitted using a stepwise procedure, informed by goodness of fit statistics (BIC) to create
parsimonious models (Table 6.5 and Table 6.6). Model BIC provided strong support for
models (BMIz7 and BMIz17) without SES at either time point. In the BMIz17 model, prenatal
adversity had better model fit than when using the pre- and post-natal adversity variable,

and postnatal adversity was not a significant predictor. For regression diagnostic plots for

these models see Appendix E, Figure XVI.

In the parsimonious adjusted models (Table 6.5 and Table 6.6), birthweight was positively
associated with outcomes at age 7. RT was associated with increased BMIz (at both ages),
and increased odds of OWOB at age 7. Pre-natal adversity was associated with BMIz at age

17, but not with outcomes at age 7 or OWOB at age 17.

There were few differences for the models using RWG, and similar to RT, RWG was the most

significant factor associated with body composition (for RWG models see Appendix E).

Early life factors explained greater variation in body composition in childhood, particularly

for BMIz at age 7 (R?=0.16).

Table 6.5 Multivariable parsimonious linear regression models for BMIz at ages 7 and 17 in ALSPAC participants

BMIz7 BMIz17
Coef cl p Coef cl p

Female -0.06 [-0.19,0.07] 0.36 -0.09 [-0.28,0.10] 0.36
Gestation length (weeks) 0.01 [-0.03,0.06] 0.57 0 [-0.07,0.07] 0.98
First-born 0.07 [-0.07,0.20] 0.32 0.03 [-0.18,0.24] 0.78
Maternal age (categories)

Less than 25 -0.04 [-0.24,0.16] 0.68 0.2 [-0.12,0.51] 0.22

35+ -0.13 [-0.32,0.06] 0.17 -0.1 [-0.38,0.19] 0.51

Birthweight z-score 0.19 [0.12,0.26] <0.001 0.05 [-0.06,0.16] 0.35
RT 0.77 [0.63,0.91] <0.001 0.23 [0.02,0.45] 0.03
Adversity - prenatal 0.33 [0.12,0.54] 0.002
n 825 527
Adjusted R? 0.159 0.021

Coefficients (coef) presented with 95% confidence intervals (Cl) and the corresponding level of significance (p). The
reference category was age 25-34 for maternal age. n, sample size; RT, rapid thrive. All variables included in the model are

presented. Bold indicates p<0.05.
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Table 6.6 Multivariable parsimonious logistic regression models for OWOB at ages 7 and 17 in ALSPAC study members

OwWO0B7 OowoB17
OR Cl p OR cl p
Female 0.66 [0.42,1.02] 0.063 0.95 [0.50,1.82] 0.88
Gestation length (weeks) 1.01 [0.88,1.16] 0.91 1 [0.80,1.24] 0.96
First-born 1.15 [0.73,1.83] 0.54 1.1 [0.54,2.27] 0.79
Maternal age (categories)
Less than 25 0.85 [0.43,1.69] 0.65 1.43 [0.33,6.30] 0.63
35+ 0.62 [0.29,1.31] 0.21 1.98 [0.85,4.63] 0.12
Birthweight z-score 141 [1.11,1.80] 0.005 1.14 [0.79,1.66] 0.48
RT 3.93 [2.54,6.08] <0.001 1.37 [0.70,2.67] 0.36
Adversity - prenatal 0.92 [0.46,1.87] 0.82
SES at birth
Mid 1.47 [0.14,15.25] 0.75
Most advantaged 0.79 [0.08,8.32] 0.85
SES in childhood
Mid 1.08 [0.29,3.98] 0.91
Most advantaged 1.14 [0.33,3.97] 0.83
n 825 270
Pseudo R? 0.091 0.024

Odds ratios (OR) are presented with 95% confidence intervals (Cl) and the corresponding level of significance (p). Bold
indicates p<0.05. Reference categories were; the least advantaged group for SES; and age 25-34 for maternal age.
n, sample size; SES, socioeconomic status; RT, rapid thrive. All variables included in the model are presented.

6.4.2.3 Sensitivity analysis

Maternal BMI and maternal smoking during pregnancy are two factors known to influence
offspring body composition and health. Data on these two important factors were not
available in NTFS or GMS, therefore the ALSPAC dataset provided an opportunity to assess
how these factors could influence the associations between early factors and BMI or OWOB

(Table 6.7 and Table 6.8).

Adjusting for smoking made little difference to most estimates. Adjusting for smoking
increased the OR for RT for OWOB (age 7), but the coefficient for BMI remained similar.

Therefore, without adjustment the effect was underestimated.

Although the literature suggests that maternal BMI and smoking can affect birthweight,
adjusting for these factors had no effect on the estimates for birthweight on the models at

age 7.

Models including maternal BMI and smoking explained 8% and 14% more of the variation in

BMIz, and 6% and 13% more variation in OWOB, at ages 7 and 17 respectively (Table 6.7).
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Table 6.7 Sensitivity analyses including maternal factors for the multivariable linear regression (parsimonious) models for
BMIz at ages 7 and 17 in ALSPAC study members

BMIz (age 7) BMlz (age 17)
coef Cl p coef Cl p

Female -0.06 [-0.19,0.06] 0.33 -0.06 [-0.25,0.13] 0.51
Gestation length (weeks) 0 [-0.04,0.05] 0.90 -0.03 [-0.09,0.03] 0.36
First-born 0.06 [-0.07,0.20] 0.35 0.08 [-0.13,0.28] 0.45
Maternal age (categories)

Lessthan 25 -0.09 [-0.30,0.12] 0.39 0.11 [-0.21,0.44] 0.49

35+ -0.12 [-0.31,0.07] 0.21 -0.09 [-0.37,0.19] 0.52

Birthweight z-score 0.18 [0.11,0.25] <0.001 0.02 [-0.09,0.13] 0.71
RT 0.76  [0.62,0.90] <0.001 0.22 [0.02,0.43] 0.033
Adversity - prenatal - - - 0.32 [0.12,0.52] 0.002
Pre-pregnancy BMI 0.06 [0.05,0.08] <0.001 0.10 [0.08,0.12] <0.001
Maternal smoking 0.07 [-0.11,0.24] 0.46 -0.23 [-0.51,0.06] 0.12
n 763 492
Adjusted R? 0.237 0.158

Coefficients (coef) presented with 95% confidence intervals (Cl) and the corresponding level of significance (p). The

reference category was age 25-34 for maternal age. n, sample size; SES, socioeconomic status; RT, rapid thrive.

Table 6.8 Sensitivity analyses including maternal factors for the multivariable logistic regression (parsimonious) models for
OWOB at ages 7 and 17 in ALSPAC study members

OWOB (age 7)

OWOB (age 17)

OR Cl p OR cl p
Female 0.60 [0.37,0.98] 0.039 1.12  [0.54,2.31] 0.76
Gestation length
(weeks) 0.95 [0.82,1.10] 0.47 0.91 [0.71,1.15] 0.43
First-born 1.18 [0.72,1.94] 0.51 1.01  [0.45,2.25] 0.98
Maternal age
(categories)
Lessthan25 0.66 [0.30,1.46] 0.31 1.31  [0.23,7.48] 0.76
35+ 0.65 [0.30,1.43] 0.29 1.35 [0.50,3.66] 0.55
Birthweight z-score 1.39 [1.07,1.80] 0.012 0.91 [0.60,1.39] 0.67
RT 453 [2.82,7.29] <0.001 1.40 [0.66,2.95] 0.38
Adversity - prenatal 0.98 [0.44,2.16] 0.96
SES at birth 296 [0.17,52.75] 0.46
Mid 2.2 [0.12,39.43] 0.59
Most advantaged
SES in childhood 1.13  [0.27,4.80] 0.86
Mid 0.9 [0.23,3.50] 0.88
Most advantaged
Pre-pregnancy BMI 1.14 [1.09,1.20] <0.001 1.27 [1.15,1.39] <0.001
Maternal smoking 1.12 [0.58,2.16] 0.74 0.27 [0.04,1.70] 0.16
n 763 257
pseudo R? 0.147 0.154

Odds ratios (OR) are presented with 95% confidence intervals (Cl) and the corresponding level of significance (p). Reference

categories were; the least advantaged group for SES; and age 25-34 for maternal age. n, sample size; SES, socioeconomic

status; RT, rapid thrive.
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6.4.3 ARIES sample characteristics

Demographic characteristics of the ARIES sample are shown for the total sample and for
each exposure. Sample sizes varied according to the exposure investigated (ranged from
n=116 to 873, at age 7 with cells counts included) and were smaller at age 17 due to

attrition.

Table 6.9 Descriptive statistics for all early life exposures in ARIES at ages 7 and 17, for models either
with or without cell counts.

Models adjusted for cell counts Models not adjusted for cell counts
Age \Variable Total No % Yes % Total No % Yes %
7 RWG 116 75 64.7 41 35.3 125 84 67.2 41 32.8
RT 116 65 56.0 51 44.0 125 73 58.4 52 41.6
Low SES (birth) 817 785 96.1 32 39 907 871 96.0 36 4.0
AB 836 581 69.5 255 30.5 927 639 68.9 288 31.1

Younger mother 860 634 73.7 105 12.2 822 707 86.0 115 14.0
Older mother 860 634 73.7 115 134 829 707 85.3 122 14.7

Prenatal
adversity 873 569 65.2 304 34.8 966 620 64.2 346 35.8
Postnatal
adversity 873 618 70.8 255 29.2 966 676 70.0 290 30.0

Pre and post-
natal adversity 873 736 84.3 137 15.7 966 810 83.9 156 16.1

17 RWG 89 54  60.7 35 393 96 61 63.5 35 36.5
RT 89 50 56.2 39 4338 96 56 58.3 40 41.7
Low SES (birth) 660 632 95.8 28 4.2 677 649 95.9 28 4.1
AB 617 591 95.8 26 4.2 688 474 68.9 214 311

Younger mother 592 506 85.5 86 145 540 458 84.8 82 15.2
Older mother 606 506 83.5 100 16.5 551 458 83.1 93 16.9

Prenatal
adversity 651 420 64.5 231 355 713 457 64.1 256 35.9
Postnatal
adversity 651 457 70.2 194 29.8 713 494 69.3 219 30.7

Pre and post-
natal adversity 651 546 83.9 105 16.1 713 594 83.3 119 16.7

Exposed (yes) or not exposed (No) and proportion (%).
SES, socioeconomic status; RWG, rapid weight gain; RT, rapid thrive; AB, Antibiotics.

6.4.4 EWAS results

There were significant (Prr<0.05) associations at individual CpG sites for the exposures; RWG
and pre-natal adversity (Table 6.10) at age 7. Across the various adjustment models there

were 4 significant hits for RWG (Prr<0.1) corresponding to 3 unique CpG sites.

In the model which did not include cells counts, two of the loci (cg01379158, cg11531579)
associated with RWG had p values that were also were also below the Bonferroni p value
threshold (1.04x1077). The two significant loci (cg01379158, cg11531579) were investigated
further. Methylation at these loci was also associated with RT, however the coefficient was

200



smaller and less significant than for RWG (Appendix E, Table XIX). The loci that was

significantly associated with adversity (cg00397179) was located in the vicinity (7bp

upstream) of a high frequency SNP (rs12811501) flagged in the Infinium HD Methylation SNP

list and was not significant at Prr<0.05, and was therefore not analysed further. There were

no other significant associations (Prpr <0.1), and no associations with DNAm at age 17.

Table 6.10 Significant (FDR p<0.1) associations between individual CpG sites (n=482,855) and the
early life exposures in models with or without cell counts.

Exposure CpG name Chr Nearest Gene CpG island name Coef Pror  Peont Model
gene region
With cell counts
chr17:17206527- .
RWG cg01379158 17 NT5M TSS200 17207306 0.011 0.02 2.91x107 ISVA
Without cell counts
chr17:17206527- 3
RWG cg01379158 17 NT5M TSS200 17207306 0.011 0.01 2.33x10° ISVA
chr12:133484658- 8
RWG cg11531579 12 CHFR Island 133485739 0.011 0.02 4.16x10° SVA
chr12:133484658- -
RWG cg11531579 12 CHFR Island 133485739 0.011 0.03 1.26x107 ISVA
Pre-natal
renatal 000397179 5 BTF3 3JUTR - 0.009 0.09 897x10% SVA
adversity

Bonferonni threshold= < 1.0355076 x 10-7. Chr, chromosome; Prpr, FDR p value; Pgonf, Bonferonni p value, Coef, coefficient;

TSS200, transcription start site; 3'UTR, 3’ untranslated region; RWG, rapid weight gain.
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Figure 6.1 Bidirectional Manhattan plots for the EWAS linear regression models.

Models are ISVA (top) and SVA (bottom) for methylation at age 7 with RWG as the independent variable, without cell
counts. The plots show the chromosomal location of significant CpG loci. The red line indicates the Bonferroni significance
threshold.
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6.4.4.1 Methylation changes at the cg01379158 locus

Those who experienced RWG on average had 1% greater methylation at cg01379158. RWG
was associated with a 1% increase in methylation at this locus (FDR adjusted p value=0.02) in
the ISVA model with cell counts, and also the ISVA model without cell counts (FDR adjusted p
value=0.01) (Table 6.10). Methylation at this loci at age 17 was not associated with RWG.

The significant CpG locus; cg01379158 was located upstream of the transcriptional start site
in a CpGisland (chr17:17206527-17207306). There were 10 CpG loci on the 450K also

located in this island (Figure 6.2).

Probes in the island were not necessarily concordantly correlated (Figure 6.2). In those who
had RWG, the CpG of interest (cg01379158) demonstrated stronger (moderate) correlations
with 3 CpG sites within the island (cg21614420, cg08693337, cg09810313), compared to
those who did not experience RWG (Figure 6.2).
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Figure 6.2 Correlations between CpG sites on the 450K array located within the CpG island (chr17:17,206,527-17,207,306).
The CpG of interest (cg01379158), associated with RWG is located on the horizontal bottom row. Red indicates strong
positive correlation, whilst purple indicates strong negative, proportionate to the colour intensity.

The nearest gene to cg01379158 is NT5M, also known as 5',3'-Nucleotidase, Mitochondrial.
This probe is a type Il probe with nearby SNPs. The other CpG loci which also mapped to the
NT5M gene (n=12) and to the chr17:17,206,527-17,207,306 island (n=12) on the 450k array
were also examined using linear regression (adjusted for age, sex and WBCs). There were 2

significant (p<0.05) CpG loci, however the beta coefficients were less than 0.01 and these
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loci would not have been significant after correction for multiple comparisons (Appendix E,

Table XVIIl).
“ Exon
|
CG01379158 . Intron
I 17,206,680 Untranslated
Tog 17208865 17,250,261 17.250.977 region
1 | | |
J1 J1 ]
TS5200 Transcribed region 3’ flanking region

Figure 6.3 Annotated region of the CpG (cg01379158).
Chromosomal (17) position, the nearest gene and the downstream region for CpG (cg01379158) annotated using the
(GRCh37/hg19) assembly.

6.4.4.1.1 Age-related changes in methylation

At the cg01379158 loci, within individuals who had RWG, methylation decreased from age 7
to 17. Whilst in those who did not have RWG, methylation increased (Figure 6.4).
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Figure 6.4 Change in methylation at the cg01379158 loci within individuals from age 7 to 17 by RWG.

Those who did not have RWG (n=60) demonstrated small mean increases (+0.63%) in methylation, whereas those who had
RWG (n=34) demonstrated small (-0.45%) decreases in methylation between ages 7 and 17 (p=0.09, using the students t-
test).

6.4.4.1.2 Relationship between methylation and adiposity outcomes

Methylation at this locus was not associated with BMIz at age 7 or 17. There were too few
OWOB to sufficiently execute a logistic regression model (n=19 OWOB at age 17 for those
with rapid weight gain data available), however phenotype group differences were

examined. Highest methylation was in those who experienced RWG and were OWOB both in

childhood (9.1% methylation) and adolescence (8.8% methylation) (Appendix E,

Table XXI and Figure XIX).

6.4.4.2 Methylation changes at the cg11531579 loci

The other significant CpG loci (cg11531579), was positively associated with RWG in both the
ISVA and SVA models (pror<0.05) (Table 6.10). The association p values were not below the

accepted Bonferroni threshold.
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At age 7, cg11531579 methylation ranged from 0 to 12%, with median value around 3%. This
CpG was also a significantly associated with RWG in the DMRcate analysis, however the fold
change was very small (max beta fold change=0.01) and the Stouffer p value was non-

significant (p=0.48).

This CpG (cg11531579) is located within a CpG island on chromosome 12 (Table 6.10).
Correlations between the CpG of interest and other CpG sites in the island were generally
positive and tended to be stronger in those who did not experience RWG (Figure 6.5). In
those who did experience RWG, this particular CpG site was an anomaly in the island in that
it demonstrated by very low correlation with the other CpG sites in the island, whereas
generally speaking the rest of the CpG sites were mostly positively correlated to various
degrees (Figure 6.5). Cg24459893 showed the greatest ‘disagreement’ with the rest of the
island, with strong negative correlations in both those who had RWG and those who did not.
Upon closer inspection, although this CpG maps to the island (using the 450K annotation file)
located at chr12:133,484,658-133,485,739, its actual location is much further downstream at

133,488,122, which may explain this discordance.

The other CpG loci which also mapped to the chr12:133484658-133485739 island (n=10) on
the 450k array were also examined using linear regression (adjusted for age, sex and WBCs).
There was 1 significant CpG site, however the beta coefficient was less than 0.01 (Appendix

E, Table XVIII).
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Figure 6.5 Correlations between CpG sites on the 450K array located within the CpG island (chr12:133484658-

133485739).
The CpG of interest (cg11531579), associated with RWG is located on the horizontal bottom row. Red indicates strong
positive correlation, whilst purple indicates strong negative, proportionate to the colour intensity.
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The CpG of interest (cg11531579) was not located near to any protein-coding genes.
Upstream 30,000+ bases is the protein coding gene; Checkpoint With Forkhead And Ring
Finger Domains (CHFR) (Figure 6.6). Whilst 558 base pairs downstream, is a small (2 exons)
non-coding region (AK055957), for which there is limited information.

CG11531579

5’ 45,775 bp | 3’

? 2,490 bp
A d

|
| | 133,484,658 133,485,739

133,418,140 133,463,914 133,485,301 133,487,790

Figure 6.6 Annotated region of the CpG (cg11531579).
Chromosomal (12) position, the region, and nearest genes region for CpG (cg11531579) annotated using the
(GRCh37/hg19) assembly.

6.4.4.2.1 Age-related phenotypic changes in methylation

Using methylation data at ages 7 and 17 shows that in those with RWG, on average
methylation decreases from age 7 to 17 (p<0.01) (Figure 6.7). Whereas in those who did not

experience RWG, on average methylation tends to increase between the time points.

5 p=0.001

Mean % change in methylation, age 7 to 17

No RWG RWG

Figure 6.7 Change in methylation from age 7 to 17 within individuals by RWG.

Those who did not have RWG (n=60) demonstrated small mean increases (+1.3%) in methylation, whereas those who had
RWG (n=34) demonstrated small (-0.58%) decreases in methylation between ages 7 and 17. This difference (1.8%) was
significant (p=0.001, determined using the student t- test).
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6.4.4.2.2 Relationship between methylation and adiposity outcomes

There were median differences in methylation level according to phenotype (Appendix E,

Table XXIl, rigure xx). There was some suggestion that methylation was higher in those who
had RWG and were OWOB at the time (age 7) or subsequently (age 17). However, the

sample size for these group were small and therefore these results are suggestive.

6.4.5 Candidate gene analysis results

As there were few significant probes found, which may have been due to the strict
correction for multiple tests, an alternative approach was taken utilising a smaller, candidate
set of epigenetic loci. The aim of the analyses was to isolate CpG loci already known to be
associated with the outcome phenotype of interest (body composition). The candidate gene
analysis utilised findings from a consortium, which integrated data from 4 discovery cohorts
and replicated findings in 9 cohorts, and found 187 validated methylation markers

associated with BMI (Wahl et al., 2017).

Using a smaller subset of loci as candidates has the advantage of reducing the stringent p
values threshold imposed by correcting for multiple testing. The associations between these
loci and the early life exposures were examined using the ALSPAC methylation childhood and
adolescent data, however there were no significant associations identified (Bonferroni p

value=3x10%).

6.4.6 Differentially methylated regions results

Whilst some significant individual probes were identified using DMRcate in unadjusted
models for some exposures at age 7 (adversity all (no cells), low SES (cells and no cells), RWG
(no cells) and younger mum (no cells)) and age 17 (low SES with and without cells), there
were no overall DMRs identified. All Stouffer corrected p values were non-significant, which

may be due to a lack of consistency in the direction of methylation in the region.

6.4.7 DNA methylation analysis

To investigate DNAm biomarkers of early life exposures, methylation changes in children and
adolescents in response to early life exposures were investigated. To do so, epigenome-wide
association studies (EWAS) were run for each exposure to determine methylation changes at
individual CpG sites in response to the exposure(s). To further investigate the hypothesis

that DNAm changes that are associated with adiposity are also associated with early life
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exposures, a subset of CpG loci with confirmed associations with BMI were investigated with
respect to each exposure. The EWAS methods and statistical methods are described in

section 2.4.

6.4.7.1 EWAS regression diagnostic plots

Meffil simultaneously computes estimates for all 4 models (Figure 2.6). Q-Q plots were
consulted, which allow graphical assessment of whether the data are derived from a normal

distribution. Q-Q plots demonstrated that ISVA adjustment was most effective in correcting
the data best so that it satisfies the assumptions of normality (Appendix E, Figure XVII).

These plots indicate loci which deviate from the expected distribution, i.e. those that are

above the p value threshold are significantly associated with the exposure.

All models were additionally run without adjustment for cell counts, for each exposure and
for both methylation outcome time points. The p value distributions display greater

deviation from normality than those from the adjusted models, however the SVA model

performed well (Appendix E, Figure XVIII).

6.5 Discussion

The exposures that were important factors for childhood OWOB in the North East cohorts
were investigated further in the larger, South West cohort; ALSPAC. The aim was to
investigate exposures using the same models as done in the previous chapter (the cohort
comparison) for consistency. However, in ALSPAC, this led to ill-fitting models that did not

meet regression criteria, and instead the parsimonious models were more informative.

Birthweight, RWG, RT, and adversity were all positively associated with adiposity outcomes.
Birthweight was consistently associated across all outcomes and time points. RT was

consistently associated with body composition measures in childhood.

The sensitivity analyses revealed that maternal BMI was an important factor which predicted
offspring body composition across all measures, similar to findings in many longitudinal birth
cohorts (Baker et al., 2004, Harvey et al., 2007, Wright et al., 2010a, Bammann et al., 2014,
Fairley et al., 2015b). Other analyses in the ALSPAC cohort found that children of obese
parents had a greater fat mass at 7 years and larger increases in fat mass up to 11 years
(Wright et al., 2010a), perhaps be due to a shared environment as well as genetic influences.

Maternal obesity can affect multiple aspects of offspring health, which is accompanied by
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changes in neuroendocrine, metabolic and immune system processes, increasing risk of
multiple diseases and all-cause mortality, and thereby has great public health implications

(Reynolds et al., 2013a, Godfrey et al., 2017).

Maternal smoking during pregnancy did not demonstrate direct associations with offspring
body composition, however adjusting for smoking removed significant associations for

birthweight for outcomes in adolescence, perhaps suggesting a latent indirect effect.

Factors that were associated with body composition across three cohorts; birthweight, RT,
RWG, SES (at birth), and adversity, were all good candidates for further investigation.
Birthweight was previously examined in this cohort with regards to DNAm, however no
significant associations were identified, and therefore birthweight was not explored here.
RWG was associated with BMIz in children in all three cohorts, and with OWOB in GMS and
ALSPAC, and was therefore a robust exposure. As there were also some weak associations
observed for maternal age and bivariate associations for antibiotic exposure (which were
both also seen in GMS and NTFS respectively), these were also investigated further in the

epigenetic analysis.

The exposures were examined with regards to DNAm in childhood and adolescence. Two
CpG sites (cg1379158 and cg11531579) were identified which exhibited differential
methylation in childhood, in association with RWG. No other early life factors were

significantly associated with changes in DNAm.

Cgl11531579 is located downstream of CHFR, an E3 ubiquitin-protein ligase that regulates
the cell cycle at the antephase checkpoint, by delaying progression into mitosis in response
to microtubule stress (Scolnick and Halazonetis, 2000). This achieved by preventing cyclin B1
access to the nucleus prior to chromosome condensation (Summers et al., 2005). Decreased
expression has been exhibited in certain cancers as a result of promoter hypermethylation
(Sanbhnani and Yeong, 2012, Derks et al., 2014), confirmed with treatment with the
methyltransferase inhibitor; 5-aza-2'-deoxycytidine (Sakai et al., 2005). Silencing may also be
a result of deacetylation of histones in the promoter region (Oh et al., 2009), however it is
unclear whether silencing is a consequence or cause of cancer. However, as cg11531579 is
located far (20,538 bases upstream) from the gene CHFR, it is perhaps speculative to discuss

a role methylation at this locus could have in relation to the CHFR gene.
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Upstream of ¢g11531579 is AKO55957, a small non-coding RNA regulatory sequence. Its
biological role is uncharacterised. Recently, this CpG (in combination with others) has been
identified as a potential DNAm biomarker for use in detection panels for hepatocellular
carcinoma (Kisiel et al., 2019) and pancreatic ductal adenocarcinoma (Majumder et al.,
2019). The CpG site, AKO55957, is located near a H3K27Ac histone mark, which is often
found near regulatory elements in many cell types. The H3K27Ac histone mark is the
acetylation of lysine 27 of the H3 histone protein and is thought to be a transcription
enhancer. It is located near a DNAse | hypersensitivity cluster, which may suggest a
transcription factor binding region. In a study in children diagnosed with acute myeloid
leukaemia, cg11531579 was found to be differentially methylated in marrow after
chemotherapy compared to baseline (-0.24 change in beta, p=0.004) (Gore et al., 2017). In
summary, this locus may have a role in carcinogenesis, and therefore exists a tenuous link

between RWG, DNAm and uncontrolled growth.

The cg01379158 locus is located in the TSS of the NT5M gene, which encodes a 5'
nucleotidase (a hydrolytic enzyme that catalyses the hydrolysis of a nucleotide to a
nucleoside and a phosphate) that is subcellularly located within the mitochondrion. This
enzyme (dNT-2) dephosphorylates the 5'- and 2'(3')-phosphates of uracil and thymine
deoxyribonucleotides, hence protecting mitochondrial DNA replication from excess dTTP
(Rampazzo et al., 2000). It has associated pathways of pyrimidine metabolism and
metabolism, and annotations relating to nucleotide binding and nucleotidase activity. The
gene is located on chromosome 17 in the Smith-Magenis syndrome-critical region, and
therefore could potentially play a role in this disease aetiology. Smith-Magenis syndrome is a
rare condition characterised by inverse circadian rhythm and disturbed sleep, factors which
have also been linked to obesity (Froy, 2010, Woo Baidal et al., 2016). Furthermore, an
EWAS on sleep found a cluster of differentially methylated positions in this Smith-Magenis
region of chromosome 17 (Lahtinen et al., 2019) suggesting methylation could play a role in

regulation of sleep and circadian rhythm.

In the epidemiological analysis, RWG was a mediator between birthweight and adiposity
outcomes, and therefore was closely linked with birthweight. DNAm differences related to
birthweight are frequently related to growth control (Turan et al., 2012). For example, a
panel of 23 genes explained 70-87% of the variation in birthweight in human or mouse

models, and 6 of these genes had roles closely related to growth (Turan et al., 2012).
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Therefore, as associations were stronger for DNAm and RWG (rather than RT), it is plausible

that methylation at these loci reflect a combination of birthweight and postnatal growth.

Whole blood represents a mixed cell population with varying proportions of white blood
cells. For cg01379158, the association remained with or without adjustment for cell
composition. In the adjusted analysis, cg11531579 did not emerge as a significant CpG locus.
Therefore, it is possible that RWG-linked differences in cell proportions could somewhat

account for this association.

Whilst the cg01379158 was associated with RWG in both adjusted models, it did not
demonstrate potential to be predictive of subsequent OWOB (age 17). However, the
cg11531579 locus showed more promise as a predictive marker, as the highest levels of

methylation were in those who had RWG and were subsequently OWOB.

Early life RWG was associated with changes in childhood methylation, however it is unclear
how methylation at these CpG loci may change over the life course. There was not
persistence of methylation differences through direct associations with RWG in adolescence,
which could have been partly due to a smaller sample size. Alternatively, these methylation
changes could exert effects throughout childhood, rather than persistence into adolescence.
This is consistent with the epidemiological findings, whereby RWG was associated with
changes in body composition in childhood, but not adolescence (OWOB in ALSPAC) or
adulthood (BMI in NTFS). Individuals who had infancy RWG had higher childhood
methylation (cg11531579), which decreased over time. The initial high methylation followed
by the decrease over time mirrors the growth pattern seen with rapid infancy growth
(Chapter 5, Figure 5.2), therefore the decrease over time may reflect the ‘recovery’ of DNAm

levels similar to the normalisation of BMIz.

There were null findings for many exposures in this analysis. Recently, Houtepen et al,. ran a
similar analyses looking at ACEs and maternal DNAm in ALSPAC and in a replication cohort,
and also did not identify any individual CpG sites which replicated across cohorts (Houtepen
et al., 2018a). However they did find some DMRs associated with parental health including
parental mental or physical illness, and death (Houtepen et al., 2018a), suggesting that
perhaps some of the more ‘severe’, hereditary or genetic factors could have persistent
DNAm changes. Another recent ALSPAC study deemed very early childhood (0-3 years) as a
critical period in establishment of DNAm patterns (Dunn et al., 2019), therefore perhaps the
time period examined here (0-1 year) was too narrow.
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In an ALSPAC EWAS, socioeconomic position during pregnancy was associated with DNAm
signatures at three stages across the life course, with maternal education level as the most
important socioeconomic variable (Alfano et al., 2018), whereas this study used occupational

social class.

When studying exposures with small effect sizes there is less power to detect changes that

span multiple CpG loci, which may explain why no significant DMRs were identified.

There were also no associations when using the consortium CpG loci as candidates, which
could be for various reasons. Firstly, that these specific exposures are not associated with
changes in DNAm (except for RWG). Secondly, the candidate loci mapped to genes with
specific roles, which could be different to the roles and pathways of the exposures
examined. The early life exposures studied here have been associated with subsequent
changes in BMI (chapters 2-5). Whereas, in the consortium paper, using Mendelian
Randomization it was determined that the majority of the significant CpGs were a
consequence (rather than a cause) of changes in BMI (Wahl et al., 2016). Thereby BMl is the
mediator in this hypothesis, and if any exposures were associated with DNA changes in this
subset of CpG loci, this in theory would have been a result of BMI. Finally, although some of
the associations have been replicated in pre-school children (Rzehak et al., 2017), primarily
the candidate loci were relevant to an adult population, whereas this cohort were much

younger.

The strengths and limitations of the Illumina 450K array should be considered. Whilst the
array gives highly reproducible measures of DNAm at many loci, it only allows investigation
of the predefined probes on the array. The CpG sites on the array cover 99% of RefSeq genes
and 96% of CpG islands, which were selected because they were of particular interest and
are not equally distributed across the genome (Bibikova et al., 2011). Whilst the array has
good overall coverage for protein coding genes, it only covers 1.7% of CpG sites on the
human genome, located mostly in promoter regions. This approach could neglect sites that

could be markers for the investigated exposures.

Batch effects are a source of heterogeneity when analysing arrays and were dealt with using
adjustment techniques. There are issues in probe design in that many of the probes cross
hybridise to regions that were not the intended target loci, however this was dealt with by
removing the probes known to cross-hybridise. The array does not encompass simultaneous
analyses of SNPs and CpG sites, and loci which contain SNPs affect quantification of DNAm
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levels. Furthermore, the relative contribution of genetics cannot be disregarded, for
example, it is possible that some study members were genetically predisposed to obesity,

and this could interact with epigenome.

The EWAS served as a starting point to identify potentially important candidate sites, which
could be the focus of further investigation. Validation (in another independent cohort)
would be required to determine if CpG loci are consistently, differentially methylated in

different populations, time points, ages and disease-states.
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Chapter 7. Investigating methylation in the Newcastle

Thousand Families Study

7.1 Introduction
This chapter further addresses the third aim of the thesis and examines the gene-specific
methylation differences identified (in children) in an adult population, many years after the

exposure and when obesity has occurred.

The EWAS outlined in chapter 5 identified two differentially methylated CpG loci at age
seven, in association with rapid weight gain (RWG) in the first year of life. RWG, was a focal
exposure, as it was strongly associated with childhood body composition in all the cohorts
(NTFS, GMS and ALSPAC). The Newcastle Thousand Families Study (NTFS) provided an
opportunity to investigate if early life RWG has a transient or enduring impact on DNAm, in

an older population.

This chapter describes the quantification of DNAm at these specific loci at age 50 in the NTFS
cohort, to investigate if DNAm at these loci are biomarkers of early life RWG and subsequent
adiposity in adults. If methylation at the RWG-associated locus is subsequently associated
with obesity in adulthood, it is plausible that methylation could be used as a biomarker to

predict those at higher risk of obesity in later life.

7.2  Aims
This chapter addresses the second part of the 3™ aim of the thesis; To investigate the
methylation differences in relation to the early life exposure(s) found to influence obesity in

an adult population.

The aims were addressed with the following objectives: i.) Develop locus-specific DNAmM
assays (Bisulfite polymerase chain reaction (PCR) and pyrosequencer-based) for the
detection and quantification of methylation at identified CpG loci, and ii.) Analyse
methylation at the CpG sites of interest in the NTFS cohort, and iii.) Determine if RWG in

infancy is associated with altered DNAm at specific loci in adults.
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7.3 Participants and methods

7.3.1 Study design and samples

DNAm (age 49-51) was investigated with respect to early life RWG, and both current (age 49-
51) and subsequent (age 60) body composition (BMI). Early life data were collected
prospectively for study members and participants of the NTFS were invited to the clinic to be
measured around age 49-51 (n=412, including measurements of body composition and
blood samples taken)(detailed in section 2.1.1.2). Participants had similar body composition
measures taken again in a clinical assessment at age 60 (n=354). DNA was previously
extracted (Pearce et al., 2012b) from the peripheral blood samples (age 49-51) and stored at
-80°C in the Newcastle University Biobank. Further details on the NTFS participants (at age
49-51) can be found in section 2.1.1.

Bisulfite-PCR and pyrosequencing assays were designed for the two epigenetic loci identified
from the ALSPAC EWAS (see chapter 5). Of the two assays designed only one was viable
(detailed in section 7.4.1), and therefore one target was analysed in peripheral blood DNA in

NTS adults (age 50) NTFS.

The loci of interest were investigated in the DNA extracted from NTFS blood samples, and

DNAm was quantified using pyrosequencing (section 2.5.9).

DNAm levels were analysed with respect to RWG in infancy, and weight-related outcomes
(BMIl and OWOB at ages 50 and 60) using statistical methods (detailed in section 2.5.12.1).
The approaches taken to address the impact of outliers and potential SNPs are outlined in

sections 2.5.11 and 2.5.13.

7.4 Results

7.4.1 Assay for cg01379158 (NTSM)

Primer design for the loci, cg01379158, was problematic. The region was CG rich and no
primers could be identified for the genomic DNA, even with relaxed criteria. Therefore, the
reverse complement sequence was trialled as the input sequence. This resulted in some
primer matches, however it was still not possible to design a forward primer without any

SNPs or of adequate length (the forward primer was 17bp). Multiple primer sets were

examined (Appendix F, rable xxi1); either matching the original sequence (including SNPs) or
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with degenerate primers using International Union of Pure and Applied Chemistry (IUPAC)
nucleotide pairing in the forward primer. This would allow ‘wobble’ base pairing, in this case
annealing whether the base was either Purine (A or G), by denoting an R nucleotide. No sets
of primers gave clear, consistent bands of the expected size when visualised by gel

electrophoresis, with either fragmentation or numerous primer dimers.

It was not possible to validate the assay for cg01379158 to a sufficient standard for
sequencing. The presence of secondary bands meant that pyrosequencing reactions failed
(due to low peak heights). Various PCR conditions were trialled in an attempt to increase the
band size and reduce secondary structures. Firstly, Dimethyl sulfoxide (DMSO), used in
reactions to inhibit formation of secondary products, at concentrations of 3% and 5%. Next,
the number of PCR cycles was increased from 50 to 55. Finally, a touchdown PCR protocol
(using a higher T,, and gradually decreasing the T, over successive cycles until ‘touchdown’
temperature is reached) was trialled. However, none of these methods were successful in
inhibiting secondary structures or improving bands sufficiently for pyrosequencing. Overall,
these results suggested that primer specificity was the issue. Primers were redesigned and
all avenues of exploration re-trialled, however these also failed, and no there were further

attempts to validate this assay.

There were also 3 SNPs within the vicinity of this CpG (cg01379158) (Table 7.1), which could

have potentially impacted methylation array results if present in the population under study.

All further results will be in reference to the assay designed for cg11531579.

Table 7.1 Known common SNPs near to cg01379158, distance to CpG and the minor allele frequency of the SNP

SNP Distance (bp) Minor allele
from CpG frequency
rs151107219 16 0.004600
rs8071972 18 0.020417
rs6502575 35 0.213047

7.4.2 Assay design for cg11531579

There were many SNPs in the region for the loci, cg11531579, which meant having to

compromise on primer design. All viable primers contained a SNP (Appendix F, rable xxin),
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with the selected primer set containing a SNP of unknown frequency (observed A/G,
rs867052755) in the forward primer. In order to ensure correct primer annealing, two
forward primers were trialled during assay validation, one set with the wild-type base (A),
and one set with IUPAC base pairing (R). The ‘R’ primer set produced the clearest, strongest
bands visualised with gel electrophoresis. Furthermore, a benefit of using this set is that
primer binding will occur whether the base is A or G (if the individual has the SNP), and thus

was used in analyses.

Clear bands were observed at all the temperatures in the range of Ta (42-520C) for the
gradient PCR for cg11531579. The band at 520C was marginally clearer (Appendix F, Figure

XXI1), therefore this was selected as the T..

7.4.3 Sample processing

Figure 7.1 shows a flow diagram for the samples included for methylation analysis in NTFS.
There were 366 DNA samples remaining for NTFS study members at age 50 (Figure 7.1). Due
to missing data, only 153 of these had early life RWG data. After quantifying DNA, six
samples contained no DNA and were excluded. There were two samples which failed
bisulfite conversion (incomplete conversion), and had no DNA remaining to repeat. Eleven
samples failed pyrosequencing due to low peak heights. Repeating these samples did not

lead to improvements and these samples were discarded. This left 134 samples for analysis.
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Figure 7.1 Flow diagram of sample processing and analysis for NTFS samples (age 50)

7.4.4 Pyrosequencing results

7.4.4.1 Validation of pyrosequencing assays

The validation results using the methylated controls are presented in Figure 7.3. Validation
was performed in duplicate for 9 different methylation percentages ranging from 0-100%.

The observed percentage methylation was plotted against the expected percentage
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methylation, and the trend line and R? value determined. R? values for all CpG loci were
close to 1, indicating that using this assay, observed values of methylation are in agreement
with the actual values, and that the assay is able to accurately detect the range of
methylation values. This provided confirmation that the assay was adequately detecting
methylation levels in this region. Validation at different concentrations provided an
opportunity to determine the optimum way in which perform duplicate experiments. Route
A utilised 1 PCR reaction (total volume of 24pL), split over two pyrosequencing reactions
(10uL in each). Whereas route B involved 2 PCR reactions, with 1 pyrosequencing reaction
from each individual PCR (Figure 7.2). The hypothesis was that route B, dividing the bisulfite
DNA across 2 PCRs, would lead to more variation in methylation due to the precision
required when pipetting small volumes prior to amplification. However, both replication
methods were comparable, with high R? values (for both methods the R? for mean
methylation and individual CpG methylation was >0.99) (Figure 11). Therefore, route A was

taken as it was faster and more cost effective.

BS mod
|

tt

Figure 7.2 Replication methods tested to determine most accurate measure of DNA methylation.
Route A used the same PCR products with duplicate pyrosequencing plates, whereas route B used
two PCR reactions and separate pyrosequencing reactions from these PCR products. BS mod,
bisulphite modification; Pyro, pyrosequencing run.
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Figure 7.3 Validation (route A) curves for overall average methylation and each of the CpG loci in the pyroassay.
The solid lines represent the linear relationship, with the equations of the line shown, along with the R2 values to demonstrate the degree of concordance between the observed and
expected values (an R? close to 1 signifies exact correlation). Error bars represent standard error.
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7.4.5 Distribution of DNAm data

DNAm was successfully quantified in 134 samples. The range of methylation detected in the

NTFS samples by pyrosequencing was wide, ranging from 0-99% (Table 7.2). Average

(median) methylation level across the 3 CpGs measured was 3.1%. From inspection of the

histograms, mean methylation was much higher because it was skewed by high values

(Figure 7.4). Most individuals had low methylation (<7%).

Table 7.2 Methylation levels at each CpG and the average methylation in the NTFS samples.

Mean methylation (%) N Mean p50 p25 p75 Min Max Range SD

Average 134 7.13 311 1 519 0 95.46 95.46 14.35
Cpgl 134 6.91 281 0 588 0 99.3 993 14.89
Cpg2 134 7.66 359 1.19 7.12 O 95.81 95.81 14.43
Cpg3 134 6.83 281 0 449 0 91.27 91.27 1441

Median (p50), lower quartile (p25), upper quartile (p75), standard deviation (SD) minimum (min) and maximum (max)

values shown for all CpG.
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7.4.6 The relationship between RWG and DNAm (age 50)

Of the 3 CpG sites present in the region examined, CpG3 was the original target
(cg11531579). Correlations between the CpG sites were examined with Pearson correlation
coefficients (Table 7.3), with all loci demonstrating strong, positive correlations (p<0.0001).
Correlations were also similar between those who had RWG compared to those who did not

(Table 7.3).

Table 7.3 Pearson correlation coefficients between the CpG loci examined in the NTFS samples stratified by RWG

All No RWG RWG

Cpgl Cpg2 Cpg3

Cpgl Cpg2 Cpg3 Cpgl Cpg2 Cpg3
Cpgl 1 1 1

Cpg2 097 1 0.98 097 1

Cpg3 092 097 1 092 097 1 094 097 1

Significance level for all p<0.0001

Overall, average (median) methylation was lower in those who had RWG (Figure 7.5). At

CpG3, this difference was statistically significant (Wilcoxon ranksum, p=0.03).
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Figure 7.5 DNA methylation (%) at the CpG loci by RWG.

Median (p50), lower quartile (p25),upper quartile (p75), minimum (min) and maximum (max) values shown for all CpG
stratified by RWG. Comparison between the two groups performed by Wilcoxon rank-sum test (p).

Median regression was used to examine the relationship between methylation (age 50) and
RWG, adjusted for confounders (sex and/or birthweight z-score) (Table 7.4). Methylation
was significantly lower (-1.6%, p=0.03) for the target loci (CpG3, Table 7.4). RWG remained

significantly associated after adjustment, with 1.9% lower methylation in the adjusted (age,

sex and birthweight) model.
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Table 7.4 Median regression models for RWG (exposure) and methylation (outcome) at loci adjusted for confounders in
NTFS

Exposure RWG Adjusted for sex Adjusted for
birthweight z-score
Coef Cl p Coef Cl p Coef Cl p
Average -0.66 [-2.32,1.00] 0.43 -0.88 [-2.56,0.80] 0.30 -0.83 [-2.62,0.97] 0.37
CpG1 0.33 [-1.78,2.43] 0.76 0.81 [-1.38,2.99] 0.47 -0.22 [-2.60,2.17] 0.86
CpG2 -0.81 [-3.04,1.42] 0.48 -1.0  [-2.93,0.93] 0.31 -1.13 [-3.09,0.84] 0.26
CpG3 -1.51 [-3.11,0.09] 0.065 -1.84 [-3.44,-0.24] 0.024 -1.89 [-3.65,-0.13] 0.035

Methylation at each individual CpG loci was the outcome and RWG the exposure (n=134). Models were unadjusted,
adjusted for sex, adjusted for sex & birthweight z-score (bwtz). Birthweight and sex were not-significant predictors of
methylation. Coefficients (coef) are presented with 95% confidence intervals (Cl) and the corresponding level of significance
(p).

The assay was not able detect methylation in the full range of 0-100%. The upper and lower
levels of detection of percent methylation observed from the assay validation are presented

in Table 7.5.

Table 7.5 Tobit upper and lower censoring cut-offs from the calibration curves for each CpG loci

CpG Lower level (%) Upper level (%)
1 4.2 86.7
2 3.6 83.0
3 3.4 77.2

A Tobit model was utilised to take into consideration the assay upper and lower detection
limits in the observed values. There were no significant associations between RWG and
DNAm in the Tobit models (Table 7.6). A large proportion of observations were left censored
on the basis of their methylation values (left censored <3-4%, n=80; uncensored, n=53; right
censored, n=1). The estimates were higher for the Tobit model (non-significant), which may
be due to the censoring at 3%, which is the lower detection level whereby DNAm is not

guantifiable. In this case, censoring should produce less biased estimates.

Table 7.6 Tobit regression models for RWG (exposure) and DNAm (outcome) at each CpG loci adjusted for confounders in
NTFS

RWG Adjusted for sex Adjusted for bwtz

coef Cl p Coef Cl p coef Cl p
CpG1 -338 [-15.44,7.83] 0.52 -3.61 [-15.20,7.98] 0.54 -4.96 [-17.52,7.59] 0.44
CpG2 -4.65 [-12.98,3.68] 0.27 -4.63 [-12.94,3.68] 0.28 -5.49 [-14.41,3.43] 0.23
CpG3 -5.85 [-15.91,4.22] 0.26 -5.85 [-15.93,4.22] 0.26 -5.90 [-16.75,4.96] 0.29

Upper and lower censoring values determined from calibration curves.
Coefficients for sex and birthweight z-score (bwtz) were not significant. N=134.
Coefficients (coef) are presented with 95% confidence intervals (Cl) and the corresponding level of significance (p).
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Methylation at CpG3 was significant associated with RWG in the median regression model
after adjustment (Table 7.4) but was not in the Tobit model (Table 7.6). As Tobit regression
predicts the mean, and median regression the median, results are not directly comparable.
Although estimates were in the same direction, median regression gave lower estimates,
with concise confidence intervals that were significant, whilst Tobit regression had higher

coefficients that did not reach statistical significance.

7.4.7 The relationship between DNAm and body composition (age 50)

Methylation levels were examined in participants with obesity, compared to those without
obesity (i.e. a healthy weight or overweight BMI), and in study members with OWOB
compared to healthy weight (Figure 7.6). Methylation levels at CpG1 and CpG3 were lower in
study members with OWOB and OB, compared to healthy weight, whilst median

methylation at CpG2 was similar across the body composition categories.
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Figure 7.6 Median % DNA methylation at each CpG loci and the average, by body composition (age 50).
There were no significant differences in methylation between body composition groups.

Although methylation levels were lower in participants with obesity compared to those not
obese, there were no significant differences between the groups (Table 7.7). This could have
been due to the small proportions with obesity in this sample. To include a larger sample,
methylation levels in those OWOB were also analysed. Again, methylation was lower in
OWOB participants, but these differences were not statistically significant. Likewise, there

were no significant differences for age 60 body composition outcomes.
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Table 7.7 Median % methylation levels at each CpG by body composition outcome (age 50) in NTFS

Not Obese Obese

Ranksum

N 50 i 25 75 50 i 25 75
p min  max p p n p min max p p Sl

Average 114 3.09 O 95.46 0.81 53 18 268 O 65.12 1.15 3.85 0.76
Cpgl 114 3.03 O 993 0 5.88 18 1.06 O 66.34 0 4.02 0.25
Cpg2 114 361 O 95.81 1.18 7.01 18 359 0 64.75 1.23 9.29 0.73
Cpg3 114 297 O 91.27 0 4.45 18 144 0 64.28 0 3.79 0.59
Healthy weight OWO0B
: . Ranksum
N p50 min max p25 p75 n p50 min max p25 p75 p value

Average 58 3.08 O 9546 1.08 4.8 74 3.08 O 65.12 0.95 6.05 0.71
Cpgl 58 301 O 93 0 4.58 74 259 0 66.34 0 7.37 0.82
Cpg2 58 352 0 95.81 0.94 5.24 74 366 O 64.75 1.23 7.54 0.39
Cpg3 58 311 O 91.27 O 4.36 74 172 0 64.28 0 4.67 0.53

Median (p50), lower quartile (p25), upper quartile (p75), minimum (min) and maximum (max) values shown for all CpG
stratified by body composition. Ranksum p value for differences in methylation between obese and not obese, or OWOB
and healthy weight.

In multivariable analyses, methylation at either loci was not associated with weight
outcomes: obesity, OWOB or BMI at age 50 (Table 7.8). Whilst methylation was lowest in
those who had RWG and were OWOB (age 50) in the sub-phenotype groups, however these

differences were not significant (Appendix F, rigure xxin).

Table 7.8 16 Logistic/linear regression models for weight outcomes (age 50) and % DNAm (age 50) in NTFS

OB OoOwWOoB BMI
OR cl p OR I p coef CI p
Average 1 [0.96,1.03] 0.86 1 [0.98,1.03] 0.89 0.01 [-0.04,0.06] 0.76
Cpgl 0.99 [0.96,1.03] 0.76 1 [0.98,1.03] 0.70 0.01 [-0.04,0.05] 0.78
Cpg2 1 [0.97,1.04] 0.99 1 [0.98,1.03] 0.79 0.01 [-0.04,0.06] 0.68
Cpg3 1 [0.96,1.03] 0.83 1 [0.97,1.02] o0.81 0.01 [-0.04,0.05] 0.83

Weight outcome was the dependent variable and DNAm the independent variable. Healthy weight was the reference
category for the OWOB and OB logistic regression models. Adjusted for sex. Odds ratios (OR) and coefficients (coef) are
presented with 95% confidence intervals (Cl) and the corresponding level of significance (p)

7.4.8 The relationship between DNA methylation and subsequent body composition (age

60)

There was a positive relationship between methylation (CpG3) at age 50 with BMI at age 60
(Pearson r=0.25, Figure 7.7). Additionally, there was a slightly stronger positive association

between methylation (age 50) and the change in BMI from age 50 to 60 (Pearson r=0.31).
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Figure 7.7 Scatter plot for DNAm (age 50) and BMI (age 60) and change in BMI (age 50-60).

Pearson correlation (r) and associated p value.

For outcomes at age 60, there were no significant differences in methylation between

phenotype groups (RWG and healthy weight/OWOB) (Appendix F). CpG methylation at this

locus explained an additional 3% of the variation in DNAm after controlling for current body

composition (Table 7.9).

Table 7.9 Linear associations between BMI (age 60) with % methylation (age 50) and BMI (age 50) in NTFS study members

?al\g/! 60) % methylation
coef CI

DNAmM 0.08 (0.156,0.14)

(%)

BMI

(age 50)

n 91

Adj R? 0.05

p

0.015

0.97 (0.83,1.12)

90
0.67

BMI (age 50)

coef CI p

<0.001

Adjusted model

coef Cl p
0.065 (0.02,0.09) 0.03
0.96 (0.81,1.10) <0.001
90

0.70

All models adjusted for sex (non-significant). Coefficients (coef) are presented with 95% confidence intervals (Cl) and the
corresponding level of significance (p) and adjusted R? of the model.

Whilst there appeared to be a relationship between DNAm and BMI (age 60), because of the

clustering of many values around 0% methylation and some high methylation values, the
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nature (linear or non-linear) of the association was uncertain. Therefore, a fractional
polynomial (FP) model was used to examine the relationship between methylation and
subsequent BMI. The initial model was skewed by a recognisable outlier with methylation
greater than 80% (circled, Figure 7.8). When fractional polynomial linear model was re-run
without the outlier, there was no relationship between methylation and BMI at methylation
levels <15%, but between 15-60% methylation there was a positive relationship between
methylation and BMI (age 60) (Figure 7.8). This suggests that this association could be driven
by high methylation outliers, with less certainty at higher values (wider confidence intervals,

Figure 7.8B).

Generally, for a FP model, the best model is that with the lowest deviance. The best-fitting
fractional polynomial had 1 exponent to the power 2 (squared term) and deviance 518.9,
forming a curved relationship. There was no FP model that fit these methylation data for

BMI at age 50.
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Figure 7.8 Fractional polynomial model plots for CpG3 methylation and BMI (age 60).

Models are adjusted for sex (not a -significant predictor), with all data points (A), and without the outlier (>80%
methylation, circled) (B). For model A; Coefficient for methylation=0.08, Cl 0.00-0.17; p=0.05, n=90. For model B;
Coefficient for methylation=0.24, Cl 0.09-0.38; p=0.001, n=90. Confidence intervals shown as shaded area around
the line of best fit. As there were few data points with methylation >20%, these results should be interpreted
cautiously.

7.4.9 Data validity

The range of methylation values obtained for the CpG loci of interest was unusual in that

genome-wide methylation has a bi-modal distribution, whereby methylation levels at a

232



single locus are usually either high or low. In this case, this raises the question as to whether

the high levels of methylation are valid.

Pyrosequencing assays were run in duplicate and replicates were within 5% methylation,
which would imply the pyrosequencing results are precise. This phenomenon was
investigated further to determine whether this represented measurement error or a SNP

effect, and the extent of the effect of the outliers.

7.4.9.1 Assay measurement error

The high methylation samples all had low DNA concentrations (n=12, shaded points on
Figure 7.9). It is likely that the low concentration samples had low total amounts of DNA.
However, many samples had low DNA concentrations and there were some samples which
had low methylation and a low DNA concentration (n=32). Therefore, it does not appear to
be likely that the assay preferentially amplified based on methylation in low DNA

concentration samples.
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Figure 7.9 Plot of methylation at CpG3 (%) and DNA concentration (ng/uL) of the sample.
Shaded are the high methylation samples, which have a DNA concentration <5ng/uL.
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7.4.9.2 Understanding any potential SNP effects on DNA methylation

The CpG loci of interest was located at the start of the 450K probe (Table 7.10). The region
up- and down-stream of this loci was sequenced in a matched experimental design to

highlight any nearby SNPs that could influence methylation.

Table 7.10 450K array probe characteristics for cg11531579

Probe details Chromosome
Probe ID Forward genomic sequence CpGs No. Start End site
position position
cgl11531579 CGAGTAGATGAACACATTTA 2 12 133,484,743 133,484,792 133,484,743
AAGTTTGTAGTTAAGAGGA
AAACAACGCCA

The CpG (cg11531579) is underlined in the probe sequence.

The right strand for each sequencing reaction was sequenced successfully, with some drop
off in quality towards the end. There were a handful of SNPs within the sequences, however
no clear pattern that distinguished high and low methylation samples, or paired samples.
The CpG loci of interest was at position 110 in the sequence. There were some differences
between high and low methylation samples at positions 90, 339 and 424 (Appendix F,
Figure XXV). Pair B showed consistent SNP patterns for the matched samples, but there were

differences in SNPs for the matched pairs A and C (Appendix F, Figure XXV).

There were nucleotide differences observed for the pairs (A and C) with characteristics of
RWG and a BMI>25kg/m? (overweight category), whereas there was no difference between
the pair (B) which had no RWG/healthy weight. This could suggest that genetic variation is
occurring in a phenotypic-dependent manner. However, with the small sample size this

cannot be said with great certainty.

Table 7.11 SNP differences in sequenced samples of matched pairs of high (>12%) and low methylation (<12%) in NTFS DNA
samples

Matched pairs A B C
Sample ID TFS55 TFS314 TFS59 TFS296 TFS270 TFS152
Sample RWG Yes No Yes
L. Sex Female Female Female
characteristics BMI 29 55 27
Methylation Low High Low High Low Very high
% methylation 2 13 3 13 4 45
Nucleotide at Position 90 G A* HZ HZ G HZ
specific Position 339 c* T c* c* c* Hz
position in Position 424 T* C C C T* C
aligned Pair differences v X v
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sequences

Diff, differences in matched pairs; Pos, position in sequence read; %, percent methylation; HZ, heterozygous; * indicates
major allele.

The SNPs at positions 90 and 424 were known SNPs, whereas position 339 was not a known
SNP (Table 7.12). The known SNPs (rs2873193, rs4758916) were examined for linkage
disequilibrium, however evidence suggested that these genetic variants occur independent

of one other (Appendix F, Figure XXVI).

Table 7.12 SNPs identified in the sequenced region in NTFS paired samples and SNP characteristics

SNP name Position in Genome position Allele Frequency Study
aligned (in European
sequence population)
rs2873193 90 chr12:133,484,722 A>G A=0.724 1000
G=0.276 Genomes
Unknown 339 chr12:133,484,970 C>T -
rs4758916 424 chr12:133,485,056  T>C T=0.048, 1000
C=0.952 Genomes

Allele frequencies were determined from (phase3 release V3+)(Sudmant et al., 2015).

7.4.9.3 Sensitivity analysis

Sensitivity analysis was done to examine if the extreme values (>12% methylation) affected
the results. This was done for CpG3 only, as this was the CpG loci of interest and the only loci
that demonstrated any significant associations with exposures and outcomes. With outliers
excluded, the mean was closer to median, and the standard deviation decreased (Table

7.13).

Table 7.13 Descriptive statistics for CpG3 methylation with (all) and without outliers, stratified by RWG

All N Mean p50 p25 p75 Min Max sD

Total 134 6.83 281 000 449 0.00 09127 1441
No RWG 78 810 3.17 091 533 0.00 9127 16.01
RWG 56 5.08 154 0.00 387 0.00 6601 11.75
Excluding outliers N Mean p50 p25 p75 Min Max sD

Total 118 240 1.88 0.00 3.82 0.00 1034 245
No RWG 67 279 265 0.00 436 000 9.87 2.52
RWG 51 190 1.19 0.00 3.77 0.00 1034 2.28

Outliers n=16. N, sample size; p50, median, p25, lower quartile; p75, upper quartile; min, minimum; max, maximum; SD,
standard deviation.

In the median regression model when outliers were excluded, the coefficient for RWG
increased and the p value was smaller (Table 7.14). Therefore, in the range of methylation

from 0-12%, there was a stronger association between DNAm and RWG, than in the original

235



(wider) range of values. Most individuals exhibited methylation in the range 0-10%,

suggesting that for the majority of the cohort, RWG was associated with -2% methylation.

Excluding the outliers did not result in any changes in significance in the Tobit model.

Table 7.14 Comparison between Tobit and median regression model results for the models with and without outliers
excluded.

Model Adjusted for sex and bwtz
Tobit regression coef Cl p
Original -5.85 [-15.91,4.22] 0.26
Outliers removed -2.41 [-24.57,19.74] 0.83
Median regression coef Cl p
Original -1.89 [-3.65,-0.13] 0.035
Outliers removed -1.95 [-3.36,-0.54] 0.007

Methylation at CpG3 was the outcome and RWG was the main explanatory variable. Models were additionally adjusted for
sex and birthweight z-score (bwtz). The original model included all the data points, whilst the outliers model excludes
methylation values >12%. Coefficients (coef) are presented with 95% confidence intervals (Cl) and the corresponding level
of significance

Methylation at CpG3 was not associated with body composition outcomes (at age 50) with

or without outliers, in linear or logistic models (Table 7.15).

Table 7.15 Outlier analysis with body composition outcomes (age 50) using logistic and linear regression models, for all and
stratified by RWG.

Outcome OB OWOB BMI

OR Cl p OR Cl p Coef Cl p
All study members, n=118
Original 1 [0.96,1.03] 0.83 1 [0.97,1.02] 0.81 001 [0.04,0.05] 0.82
Outliers = 04 [0.851.28] 071 098 [0.85,1.15] 0.84 001 [-0.04,0.05] 0.83
removed

Models are adjusted for sex. Sample sizes refer to the sample without the outliers. Odds ratios (OR) and coefficients (coef)
are presented with 95% confidence intervals (Cl) and the corresponding level of significance (p).

When outliers were excluded, there was an association between DNAm and subsequent
body composition measures (age 60), as determined using a fractional polynomial model
(Figure 7.10). The best fitting model was a with a cubic term (Coefficient = 5.5, Cl 0.05-10.9,

p=0.05). Both models had widening confidence intervals at higher values (Figure 7.10).
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Figure 7.10 Fractional polynomial model for BMI (age 60) and methylation at CpG3 (age 50), for models with and without
outliers.

The model with the original data is to power (2) whilst the model without outliers is to power (3).

The outlier model had coefficient = 5.5, Cl 0.05-10.9, p=0.05.

Furthermore, from the FP model it appeared that BMI was only associated with the outliers
(i.e. a change in slope at methylation >20%). To examine this, a linear regression model was
run with BMI age 60 as the outcome, and outliers (>12% methylation) as a binary
explanatory variable (study members with methylation >12% vs <12%) (Table 7.16). Having
DNAm levels greater than 12% was associated with a 3.11kg/m? increase in BMI at age 60.
High methylation remained associated with subsequent BMI after controlling for current
BMI, however current BMI explained much more of the variation in BMI (age 60) and was

therefore a better predictor.

Table 7.16 Linear associations between outlier DNAm (>12% methylated) and BMI (age 60)

BMI (age 60) Unadjusted Adjusted for BMI (age 50)
coef Cl p coef ClI p

Outliers (>12% methylation)  3.11 [0.30,5.91] 0.03 1.96 [0.27-3.64] 0.02

n 91 90

R? 0.06 0.69

Both models additionally adjusted for sex. Coefficients (coef) are presented with 95% confidence intervals (Cl) and the
corresponding level of significance (p)
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7.5 Discussion

An assay was successfully developed to measure DNAm at the CpG site associated with RWG
in the ALSPAC cohort (cg11531579). DNAm levels in the region of interest were quantified in
134 viable samples from the NTFS cohort. Median DNAm at the cg11531579 locus was 2.8%
and was lower on average in those who had RWG (3.2% vs 1.5%). Median regression
revealed that RWG was associated with 2% lower methylation after adjustment for
confounders. Whilst methylation tends to increase over time at this locus (BSGS, section

7.3.1), on average in NTFS adults those who had RWG had lower methylation.

There were differences when analysing the outliers, which suggested that RWG was more
significantly associated with reduced methylation in the lower range of methylation values.
There were also differences observed when utilising a censored regression model, which
guestions the accuracy of the results that lie outside the (lower) range of detection of the
assay, perhaps due to the uncertainty introduced from many censored values, or due to

reduced statistical power.

A wide range of methylation values were observed, including some very high values. It is
possible that outliers could come from technical artefacts, however this seems unlikely in
this as repeats were within 5% of each other, and some high methylation samples were re-
run and values were similar. White et al,. found that low concentrations of template DNA
(<10ng) can affect absolute quantification due to introduction of PCR bias (White et al.,
2006). Increasing the number of technical replicates, or bisulfite sequencing could have been
potential options to investigate further if there was abundant DNA remaining. Ideally if there
was more DNA available, then all samples would have had greater starting material, and

samples could have been run in PCR triplicate.

The DNAm changes identified here were small, particularly considering that technical
replicates can often have methylation differences up to 10% (Dedeurwaerder et al., 2014).
Here, replicates were only accepted if within 5% of one another. There is the possibility that
methylation could be due to random technical variations rather than true biological
differences (Dedeurwaerder et al., 2014). For individual CpG sites the pyrosequencer
detection limit is approximately 5% (Mikeska et al., 2011), therefore meaningful differences
may be too small to accurately quantify. Ideally differentially methylated loci should be
confirmed using an independent assay and technique (i.e. next generation sequencing which

is costly) in the same population.
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Statistical methods were used which are appropriate for the data (without excluding points),
as if this is a ‘true’ event, then removing the data points would generate a selection bias. On
the other hand, an argument to exclude outliers would be in that the utility of a biomarker is
that it applicable for most of the population, hence sensitivity analysis was done to examine
the impact of outliers. Outliers could be a result of a difference in measurement method,

genetic variation, cell composition, or disease state (discussed further in section 8.7).

The range of methylation values detected by pyrosequencing in the samples was higher than
those observed in the epitect control DNA samples for a given methylation level. A possible
explanation for this could be that the epitect control DNA, which uses whole-genome
amplification (0% methylated) and Sssl treatment (CpG Methyltransferase which methylates
all cytosine residues), does not result in 0 or 100% methylation at all CpG loci (Choi et al.,
2011). In another study which used the epitect control DNA, the values obtained for
supposed 0% methylation at various CpG loci ranged from 0-23% (Nishitani et al., 2018). The
methylation detection limit of the assay by the pyrosequencing machine also had a lower
and upper threshold, and therefore relying on the control DNA to determine will impact on

the specified detection ability of the assay and would invalidate the Tobit model results.

The high methylation levels were investigated further to determine if SNP patterns were
driving differences between high and low methylation. There is literature on the two
identified SNPs. Sequencing results were suggestive of a phenotypic (RWG and OWOB)
pattern of methylation related to SNPs. As there were few samples with sequencing data
and with very high methylation, these results could be spurious findings. If the results are
not by chance, then high levels of methylation could be driven by SNP effects or be
indicative of future body composition in those with high BMI. However, as there were few
samples with high methylation, and only 3 matched pairs were successfully sequenced,

these results are inconclusive, but this could be the focus of future research.

There was a wide range of methylation values could indicate a high degree of heterogeneity
at this locus. For example, this could occur if the majority of cells (blood is comprised of
numerous cell types) exhibit low levels of methylation but some exhibit very high levels.
Outliers could arise from abnormal methylation patterns from white blood cells (e.g. from
infection or cancer), or could be influenced by disease status or lifestyle (Alegria-Torres et

al., 2011).
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DNAm did not distinguish between healthy weight and OWOB (age 50), regardless of
previous RWG. However, there was a positive association between DNAm and subsequent
BMI (age 60), which on further inspection appeared to be non-linear. Those who had very
high methylation also happened to have a greater BMI at age 60. The CpG methylation at
loci improved prediction of subsequent BMI (age 60) over and above the use of current BMI
(age 50). A 1% increase in CpG methylation at this 1 locus was associated with a 0.07 Kg/m?
increase in subsequent BMI and explained around 3% of the variation in NTFS participants.
However, this may have limited use as a biomarker in this age group, as BMI at age 50 was
more predictive of BMI at age 60 than DNAm, but CpG methylation could be used to
improve predictive models alongside BMI. This could also suggest that similar to findings in

ALSPAC, relative increases in methylation are reflective of subsequent growth.
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Chapter 8. Discussion

This final chapter is a discussion of the main findings of results chapters, and how the
findings compare with the published literature. The chapter will also include the study

strengths and limitations, and the public health implications and future directions.

8.1 Summary of the main findings
Early life exposures were primarily investigated in North East populations of children and
adults, in two cohorts that commenced over 50 years apart. Over this time, the prevalence

of obesity has vastly increased, from what were very low numbers in 1947.

Despite the change over time to a more obesogenic environment, early life weight gain was
consistently associated with a higher BMIz in both NTFS and GMS cohorts, even when
accounting for birthweight. RWG is characterised by initial rapid growth, and generally BMI
z-scores decrease and ‘normalise’ over time. However, in the modern cohort those who had

RWG had a higher, sustained BMIz throughout childhood.

The exposures that were important factors for childhood OWOB in the North East cohorts
were investigated further in the larger, South West cohort; ALSPAC. Again, there were
consistent associations for early life weight gain, both dependent and independent of
birthweight. However, when examining long-term effects, the relationship between early life
weight gain and BMI in adolescents weakened over time in ALSPAC and was non-existent in
NTFS adults. Thereby questioning whether there are long-term effects, or if other factors

become more important predictors of body composition.

The programming effect of early life risk factors on childhood BMI may arise through
epigenetic marks laid down at an early developmental stage, which then elicit effects at a
later stage (Mathers and McKay, 2009). Like the epidemiological findings with RWG and
childhood BMI, there was a positive association between RWG and DNAm. DNAm changes
were associated with RWG, but less so with RT, which may suggest that this includes some of
the effects of birthweight. To examine if there were latent effects of RWG on DNAm,
methylation at the significant locus (cg11531579) was verified by pyrosequencing in NTS
adults. Interestingly, DNAm at this locus was negatively associated with RWG in NTFS (age
50), suggesting variability. In childhood, the highest levels of methylation were in those who

had RWG and were subsequent OWOB. At age 50, methylation was positively associated
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with subsequent BMI (age 60). Therefore, DNAm at this locus may reflect patterns of
growth; increased methylation associated with increased subsequent growth. However, due
to the differences in age, time period, and methods of measurement, direct comparisons are
inadvisable. Furthermore, the methylation differences observed were small and findings

need to be replicated.

There were other important early life risk factors identified in the epidemiological analyses,
including birthweight, adversity, infection, maternal age and SES. There were more early life
factors related to childhood body composition in the modern (GMS) cohort, which may
suggest these factors have become more important over time, or that there is now greater

variability in early life environments.

8.2 Discussion of the epidemiological findings

8.2.1 Birthweight

The positive associations between birthweight and adiposity outcomes in children in the
modern cohorts agrees with the literature (Reilly et al., 20053, Yu et al., 2011). In contrast,
there was no association in NTFS children, and a protective effect of higher birthweights in
adults, which could be due to time period effects. NTFS study members were in utero during
a time of rationing in Britain, whereby it is generally accepted that the nation’s health
improved, which could have reduced numbers of LBW infants. Particularly rationing will have
benefited less advantaged groups more and mothers were less likely to be undernourished.
Similarly, theories around a mismatched intrauterine and postnatal environment do not
apply to this cohort, as the period of rationing extended throughout early childhood,
meaning a consistency in nutrient intake throughout pregnancy and early life. Furthermore,
considering the time period there will have been fewer obese mothers due to lower
prevalence of obesity generally, therefore findings in the modern cohort could reflect the

cycle of higher birthweights and obesity across generations (Cnattingius et al., 2011).

8.2.2 Adversity

The components of adversity that were significantly associated with body composition in
GMS had socioeconomic implications (Appendix C, Table IX). Whilst in NTFS, neither
adversity nor early life SES were associated with any outcome measures in childhood or mid-

life, which could indicate that the effects of adversity on BMI impact via SES.
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An alternative explanation could be the timing, as in NTFS the adversity exposure was
postnatal, whereas significant associations in ALSPAC and GMS were identified for prenatal
adversity. This may support an intrauterine mechanism of altered stress responses, leading
to disturbances in metabolism (Entringer et al., 2012, Johnson et al., 2013). However, early
life stress could also impact on the development and calibration of the neuroendocrine-
immune network, and have downstream effects on various social, economic, academic and
behavioural aspects of a child’s life, which could also influence likelihood of obesity (Johnson

et al., 2013).

Another potential explanation could be that the effects of adversity do not persist to
adulthood, although this was the case in ALSPAC, whereby associations were stronger over
time (in adolescence). Furthermore, a large systematic review and meta-analysis found weak
to moderate associations for adverse childhood experience (ACEs) and obesity in adulthood
(OR 1:39 (95% Cl 1:13-1-71) when examining multiple ACES (>4), which may be indicative of
more severe childhood adversity (Hughes et al., 2017). A recent methodological approach
has exploited the high dimensionality of the ALSPAC data to derive ACE scores and
constructs from the numerous adversity questionnaires (Houtepen et al., 2018b). These
scores which utilise multiple measures can also deal with missing data, and could be used in

future analyses.

8.2.3 Infections

In NTFS bacterial infection was associated with OB and also with body fat in women. There
was a lack of robust infection data in GMS, however, there were some indications in ALSPAC
that antibiotic exposure in the first 6 months (as a proxy for bacterial infection) was
associated with OWOB until adjustment for early life growth (correlated with antibiotic
exposure). This could suggest a link between early life infection, antibiotics, and subsequent
growth. The antibiotic growth effect is observed in farm animals who are given antibiotics to
increase their weight, but has also been observed in humans (Haight and Pierce, 1955).
Research seems to suggest that the mechanism linking antibiotics and growth could be via

the microbiome (Cox and Blaser, 2014, Forrest et al., 2017).

A longitudinal study that compared infants with infections who either did or did not receive
antibiotics found no difference in obesity risk up to 18 years (Li et al., 2017a). However, the

number of infections was significantly associated with increased risk of obesity in those who
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did not have antibiotics. Thereby the authors concluded that the exposure to infection

rather than the antibiotics was the important factor.

The timing of antibiotic exposure could also be important, as early-life post-natal exposure
was associated with increased child BMI, but not pre-natal (Poulsen et al., 2017). In support
of this, in a large sample of mother-child pairs (n=53,320) also found that maternal antibiotic
exposure during pregnancy was not associated on childhood BMI-z at 5 years (Heerman et

al., 2019).

Furthermore, this study supports that bacterial, rather than viral infection is associated with
increased BMI, however this could be due to the types of viruses and bacterial infections

examined in NTFS, some of which are rare now.

8.2.4 Maternal age

Although maternal age has been related to detrimental birth outcomes, in these cohorts
maternal age was not directly associated with an unfavourable body composition or
birthweight. Instead, the association of older (NTFS) and younger (GMS) maternal age with
decreased offspring BMI is an interesting observation and is opposite to previous findings
(Myrskyla and Fenelon, 2012). However, maternal age may not be causally linked to body
composition but could have indirect route (for example via parity, Figure 4.2), or could be

confounded by SES.

This positive effect of older maternal age was not seen in ALSPAC, and therefore could be an
oddity of the North East cohorts, or a spurious finding due to smaller sample sizes. In other
studies, maternal age above 40 (Fuchs et al., 2018) or 45 (Myrskyla and Fenelon, 2012) has
been associated with adverse offspring health outcomes. As the maximum maternal age in
NTFS was 45, it is plausible that there were no any adverse associations, as the ‘older’
maternal age group were relatively young. Although, aside from for birthweight or length of
gestational, other adverse offspring outcomes have been shown to remain fairly stable after

a maternal age in the mid-30s (Carslake et al., 2017).

These results may suggest that in older mothers, whilst intrauterine conditions may be less
optimum, the life experiences and enhanced childhood environment may confer certain

advantages.
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8.2.5 Infant feeding

In these cohorts, there was no evidence of a protective effect of breastfeeding on obesity,
independently or after adjustment for socioeconomic factors. In contrast, breastfeeding was
associated with small increases in BMI in NTFS adults. Whilst studies have found long-term
benefits of breastfeeding (such as reductions in OWOB) in developed countries, studies in
low and middle income countries have not shown such great effects, which could suggest
differences in social and cultural structures, selection bias or confounding could in part

explain some of the association (Kramer et al., 2009, Brion et al., 2011).

Previous analyses in the GMS cohort have shown there is a clear relationship between SES
and breastfeeding duration (Wright et al 2005), with those in the most affluent quintile 3x
more likely to breast-feed initially and 5x more likely to continue breastfeeding past 4
months (Wright et al., 2006a). Wright et al,. also found greater rapid weight gain (0-13
months) in those who stopped breastfeeding earliest, although this is likely a result of
reverse causation; that starting solids and ceasing breastfeeding is a response to RWG
(Wright et al., 2006b). They conclude that babies genetically destined to be larger make
greater demands on their mother for breastmilk; and this greater demand increases

likelihood of earlier cessation.

A study which utilised structural equation modelling found that shorter breastfeeding
duration was associated with increased infant weight gain and subsequent higher childhood
BMIz, however these estimates were not adjusted for SES (Lamb et al., 2010). Similar
associations between weight gain and breastfeeding have been observed in other studies,
with suggestion that any beneficial effect is obtained by 12 months of age (Scholtens et al.,
2007). These analyses primarily examined the duration of breastmilk rather than the
composition, however formula and other milks have been associated with greater dose-

response in weight gain through infancy (first year) (Kramer et al., 2004).

There was a negative association between age at weaning and some outcomes in the GMS
cohort (waist OB, BMIz). This is consistent with the literature on early weaning and could be
related to the types of foods that are introduced (Pearce and Langley-Evans, 2013), and may
explain a lack of association in NTFS. This association for waist OB was no longer significant
after controlling for physical activity, which could suggest that this was operating through a
shared pathway. Perhaps the families which introduce weaning foods later are generally

healthier (more active) or with greater health literacy. Accordingly, a systematic review
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determined that low maternal education was an important factor in early weaning

(Wijndaele et al., 2009b), and is supported by findings in GMS (Wright et al., 2004).

8.2.6 Physical activity

In GMS and NTFS, there was a negative association between increased physical activity and
most adiposity outcomes. These results are similar to other studies in adults (Reiner et al.,
2013). Whereas studies on childhood obesity have found mixed results, with associations
perhaps influenced by biological or social gender differences (Prentice-Dunn and Prentice-
Dunn, 2012). In GMS, physical activity began to decline in both sexes from age 7 years
(Farooq et al., 2018), therefore the effect sizes exhibited here may change over time.
Females were also less likely to participate in activity and were more sedentary (King et al.,
2011). The results here are in agreement (Figure 4.2), suggesting that girls are less likely to

take part in MVPA, which could then impact on BMI.

There is also the possibility of bidirectionality between body composition and activity, which
is supported by recent findings from GMS suggesting that adiposity influences levels of

physical activity (Tanaka et al., 2018).

8.2.7 Socioeconomic status

As rationing reduced disparities in NTFS, we might expect more pronounced inequalities to
be in GMS. However, SES at birth was not associated with outcomes in the modern cohorts,
but higher social class at birth was negatively associated with BF% and WHR in NTFS males.
The fact that SES was not associated with factors in females could be partly attributable to
the fact that the UK Registrar General’s classification was developed for male workers and
may transfer poorly to females. Although in pooled analyses (both sexes), social mobility was
associated with drastically decreased odds of obesity in NTFS adults, and those who were

always in the most advantaged group had very low odds of obesity.

National level data find a relationship between childhood SES and childhood obesity (Health
and Social Care Information Centre, 2016). Similarly, GMS results suggested that SES in
childhood is more predictive of OWOB than SES at birth. There was no evidence for
increasing upward mobility, which may be because it was basic measure using ownership
and employment, rather than encompassing multiple aspects of social mobility.
Furthermore, deprivation measured using home ownership is perhaps less informative over

time with the resurgence of private renting (Kemp, 2015).
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There were no socioeconomic differences in OWOB in ALSPAC either, which is in contrast to
other studies. This could be due to the use of occupational social class or Townsend score,
rather than parental education, which is most frequently associated with lower odds of
obesity (Brophy et al., 2009, Shrewsbury and Wardle, 2012, Ruiz et al., 2016). However, the
effects of maternal education appeared to be indirect in GMS, via other factors such as
birthweight or parity or lifestyle (Figure 4.2). Similarly in NTFS, early life SES had indirect
effects on BMI via later life SES and lifestyle factors (Figure 3.3). Brophy et al,. suggest that
the relationship between maternal education and obesity could be a result of more
protective health behaviours and empowerment for people to modify their own health. In
pregnant women, this could influence health-related behaviours that affect birthweight,

which may explain the relationships exhibited.

A potential limitation when comparing results is the difference in the socioeconomic

variables available in each of the cohorts, which may limit interpretations.

8.2.8 Infant and childhood growth

This study is one of many to show a relationship between RWG and childhood adiposity
(Stettler et al., 2003, Ong and Loos, 2006b, Druet et al., 2012). In these analyses, this
association was observed across cohorts and time points, and therefore suggests this is a key
exposure regardless of the modern obesogenic environment. Similarly, a 2005 systematic
review investigating infant weight gain in populations born between 1945-94, found
consistent associations across various time periods and ages (5-20 years)(Baird et al., 2005).
Furthermore, findings from low and middle-income countries also support that early life
weight gain is associated with subsequent BMI (Joglekar et al., 2007, Fernandes et al., 2009).
Collectively these findings suggest that RWG is a consistent risk factor regardless of

environmental influences.

Genetic markers support that early infancy gains in weight and length are on the pathway to
adult obesity risk (Elks et al., 2010b). The path analyses attempted to disentangle the direct
and indirect pathways and determined that a direct path between RWG and BMI existed,
and that no factors predicted RWG, supporting a direct relationship. However, obesity is the
result of the interplay and balance between multiple contributing and intermediary factors.

Therefore, whilst this is a plausible risk factor, it is unlikely to be a sole determining factor.
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An important consideration is that infancy RWG per se may not be causal, but could reflect
an individual’s predestined growth trajectory, or an antecedent to childhood obesity.
However, previous systematic reviews have found weight gain in the first year (specifically,
rather than periods greater or less than 1 year) to be most predictive of childhood obesity
(Zheng et al., 2018). This does not rule out RWG as an antecedent, but suggests that the first

year is a critical period.

However, many children with rapid infancy weight gain do not go on to have increased
adiposity in childhood (Wright et al., 2012). Using data from three longitudinal growth
cohorts, excess weight in in infancy had a moderate positive predictive value for becoming
overweight in mid-childhood, but not necessarily for becoming obese (Wright et al., 2018).
This therefore highlights the need for a means to detect those most at-risk (i.e. a biomarker).
The entire childhood period, rather than the first year, could also be a critical period for

growth and development of obesity (Cole, 2004).

Previous studies which have used BMI are unable to determine whether this reflects changes
in fat mass. This study examined multiple outcomes and determined that RWG was also
related to FMI, and the relationship was stronger in those with very high fat mass. RWG in
infancy has been associated with higher concentrations of insulin-like growth factor | (Ong et
al., 2002a) which could increase growth and lean mass. This may explain the relationship
between RT and height (which contributes to lean mass), which was also noted in a Swedish
cohort of young adults (age 17 years) (Ekelund et al., 2006). They found that RWG in the first
6 months was associated with both fat and fat free mass (measured using air-displacement

plethysmography) and WC in adolescence (Ekelund et al., 2006).

In GMS, those with early RT had consistently higher weights throughout childhood; therefore
infancy may be a key time to intervene. Children with early increasing BMI diverge from
other growth trajectories as early as two years (Robinson et al., 2019), therefore rapid early
growth may set infants on a higher weight trajectory over the life course. This also suggests
that BMI measurements taken in the NCMP at school-age (age 4-5) will miss some high risk

children (Robinson et al., 2019).

Although RWG is associated with increased childhood BMIz, in the historic cohort BMIz
normalised over time and RWG was not associated with adult body composition. This could

be interpreted as either; factors determining early life fat mass manifest in childhood BMI
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and not adult BMI; the obesogenic environment is key; or that RWG is associated with adult
BMI through changes in lean mass. Regarding the latter, a Finnish study examined the
relationship between early life growth and body composition in adults aged 56-70, and
determined that rapid gains in BMI (from 0-1 or 1-2 years) were associated with lean rather

than fat mass (Ylihérsilé et al., 2008).

Similar to findings from ALSPAC (Ong, 2006), early postnatal growth rates were a
compensatory mechanism for lower birthweight or growth restriction. LBW infants are more
likely to have catch-up growth, which increases CVD risk (Kelishadi et al., 2015). This
supports the DOHaD and Barker hypotheses regarding the interaction between intrauterine
conditions, environmental factors, and increased risk of metabolic disorders. Interestingly,
although waist obesity has been specifically related to metabolic disorders (Hirschler et al.,

2005), RWG was not significantly associated with waist OB.

Although LBW makes catch-up growth more likely, Druet et al. (2012) found that the effects
of infant weight gain on childhood obesity were similar regardless of birthweight status. This
was reiterated when analysing rapid thrive, which accounts for catch-up growth due to LBW.
Factors which influence birthweight will impact on likelihood of RWG. For example, maternal
smoking during pregnancy has been shown to be associated with increased risk of RWG
(Mine et al., 2017). However, adjusting for maternal smoking in the ALSPAC analysis did not
notably affect associations. Whilst it was not possible to adjust for maternal BMIz in GMS
and NTFS, the associations for birthweight and rapid growth remained in the ALSPAC
analyses, and in another ALSPAC study on childhood obesity which adjusted for parental

obesity amongst other factors (Reilly et al., 2005a).

Aside from birthweight no factors predicted rapid weight gain in this study. Factors could be
related to appetite regulation, feeding behaviour or breastmilk composition. Traffic pollution
has also been considered a cause (Fleisch et al., 2015). In GMS, appetite at 6 weeks and 12
months was positively associated with weight gain at 12 months (Wright et al., 2006b).
Accelerated growth in infancy could be due to increased intake of nutrients, in particular
protein, which has been shown to increase levels of insulin-like growth factor 1 and
promotes growth in the first 6 months of life (Socha et al., 2011). RWG is less likely in
breastfed infants, which could also be related to the lower protein content of human breast

milk compared to formula (Koletzko et al., 2013).
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Overall, the findings in this thesis support previous findings that early life growth is an

independent, persistent factor related to subsequent body composition.

8.3 The potential causal impact of RWG and future work

Before we can address the question of causation, it is important to establish that a valid
association exists. Firstly, it must be determined that there is valid association between the
exposure and the outcome. If the association is valid and is not due to bias or confounding,
then causality can be addressed. The analysis undertaken here was not intended to
determine causal factors, and thus this research design is not able to ascertain causality
which is often only possible in randomised controlled trials. Although, in epidemiological
studies, the Bradford Hill criteria are often used to assess the strength of a causal
relationship and can be considered in this context. These criteria include plausibility,
consistency, temporality, strength, specificity, change in risk factor, coherence, analogy and

experiment.

Applying these criteria to the principle findings in this thesis, RWG would meet the criteria of
plausibility, consistency and temporality. The strength of the association was not
investigated here, however others have found that very rapid weight gain, equivalent to
crossing 2 growth centile bands was associated with even higher risk of childhood obesity
(Druet et al., 2012), which supports a dose-response relationship. There is plausibility in that
there is a reasonable pathway to link excess weight gain and obesity. Epigenetics is also a
plausible mechanism, however these findings would need to be replicated. There is
temporality in that the exposure precedes the outcome. No single study is sufficient to
determine causality, however this study is consistent with the previous literature and
aetiology. There was also consistency when RWG was analysed in several populations, and
across different outcome measures of obesity. Regarding specificity, thus far RWG has not
been linked to other diseases and therefore its effects may be specific to obesity. Whether
the mechanism is via epigenetic changes (specific), rather than another mechanism (non-

specific), remains to be determined.

8.4 Strengths and limitations of the epidemiological analysis
There are several strengths to this study. The three birth cohorts had reasonable sample
sizes and prospectively collected early life exposures and body composition measures. Data

and methods were harmonised as thoroughly as possible to allow comparison between
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studies. Trained professionals collected anthropometric data; therefore, there was no
reliance on self-reported measures of adiposity outcomes. Another strength is the
comprehensive analyses of multiple outcome measures allowing greater sensitivity to detect

early life exposures associated with adiposity.

Whilst a range of exposures and factors were measured routinely in the cohorts, inevitably,
the data collection for some variables was limited, and therefore there is potential for
unmeasured confounding. Data were not available for other risk factors or confounding
factors. For example, maternal smoking (Newnham, 1991) and maternal BMI (Harvey et al.,
2007, Wright et al., 2010a, Bammann et al., 2014, Fairley et al., 2015a) are known to
influence birthweight in opposing directions. Additionally, the associated risk factors for LGA
infants include pre-pregnancy obesity, excessive GWG, maternal or GDM (Jolly et al., 2003).
This was addressed partly in the sensitivity analyses in ALSPAC, which confirmed that the key

associations remained.

In NTFS, the questionnaire used to collect retrospective data is vulnerable to recall bias and
inaccurate responses. To reduce this bias, information was only taken on present habits in
the age 50 follow-up questionnaire. Additionally, data considered unreliable (such as those

on energy intake) were not utilised.

A main limitation of this study was the small sample sizes in the North East cohorts at follow-
up relative to larger birth cohort studies. There was insufficient power to detect small effect
sizes. However, a key strength of the project overall is through integrating results from
several different approaches (triangulation). Each approach may have specific sources of
bias, but by comparing cohorts from different times and geographical locations strengthens
confidence in the findings. It is also reassuring that the main findings for rapid growth in

infancy are in agreement with findings from large-scale meta-analyses.

8.4.1 Generalisability and attrition

Loss to follow-up is an important issue as it can result in biased estimates. As with most
longitudinal population studies there has been attrition related to SES. Attrition could lead to
underestimations, particularly of inequality when SES is the exposure of interest (Howe et
al., 2013). However, in GMS, as more affluent families were initially underrepresented, this

has led to a sample that is more now more representative of the region. There were missing
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data for some exposures, notably for RWG, however this supports the utility of a biomarker

when early life data are not available.

As cohorts situated in the North East of England, GMS and NTFS may not be representative
of the rest of the UK. However, key findings were replicated using ALSPAC data (South West
England). Furthermore, in NTFS the inclusion of study members who had moved away
increased representativeness of the original cohort (shown for all early life factors bar

gender (Lamont et al., 2000)).

Generalisability of these findings to other populations is limited by the predominantly white
ethnicity of study members, and risk factors for other ethnic minorities may differ. However,
research from the more diverse Born in Bradford birth cohort did not find strong evidence
that risk factors for childhood obesity varied by ethnicity (Fairley et al., 2015b), and an Asian
cohort also found similar risk for RWG (Aris et al., 2017). Other factors that may limit

generalisability are inter-individual variation, transgenerational effects and genetic factors.

Due to the long-term nature of the Thousand Families cohort, findings may not be entirely
generalisable to present-day populations. The influence of time-period effects cannot be
overlooked, as the early years of NTFS study members will have been very different (section
5.5), even to adults age 50 today. However, despite these differences and the lesser impact
of environmental factors, some early life exposures and lifestyle factors predicted adult body

composition.

Adiposity is a complex trait and may not adequately captured by a single measurement,
therefore multiple outcomes were analysed. Although a proxy measure, BMI was the only
measure consistent across all of the cohorts in childhood. While there is a strong correlation
between BMIz and fat mass, this alone is not enough to make inferences about individuals.
For example, exercise can lead to reductions in fat mass and increases in lean mass (Prentice
and Jebb, 2001), however if weight remains the same, BMIz will also stay the same. It could
be argued that estimates obtained when using BF%, a direct measure of adiposity that is
independent of bone mass, would more reliably depict adiposity. A study in GMS found that
FMI was a more sensitive measure than BMI (Basterfield et al., 2012a), and proxy measures
of adiposity were inferior (Basterfield et al., 2012b). In NTFS and GMS there was a high
correlation between BMI and BF%/FMI, suggesting that BMI is a good proxy measure of

body fat in these populations.
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Risk factors for BMI were also risk factors for measures of body fat and waist obesity, which
may imply that additional measures have little added value. Generally, there were more risk
factors associated with BMI, which may suggest some risk factors may be related to total
(both fat and lean) mass. However, due to the different cardiovascular consequences
associated with waist obesity, and the consistent associations for birthweight and waist
obesity (in both NTFS men and GMS children), there is definite value in this measure, and
findings were in agreement with the DOHaD hypothesis (Barker, 1995). Furthermore, only
analysing BMI misses those with normal weight but waist OB, who are at risk of higher

mortality (Cerhan et al., 2014, Sun et al., 2019)

The validity of the 0.5 threshold for WHtR to identify cardiometabolic risk in children has
been questioned (Hara et al., 2002, Yan et al., 2007). Although values vary by ethnicity,
generally estimates are around the 0.5 value for children from: South Africa (Matsha et al.,
2013), Australia (Nambiar et al., 2010) and the UK (McCarthy and Ashwell, 2006), and
therefore this probably was an appropriate cut-off in this study. Tybor et al. (2008) found
that there was a residual correlation between WHtR and height in children during periods of
growth; therefore, it is possible that WHtR does not completely control for the effect of
height and the effect sizes for WHtR here are underestimations. On the other hand,
adjusting indices to be independent of height does not appreciate that taller children are
fatter than their shorter peers (Metcalf et al., 2011), and that there is cross-over in genetic

variants related to weight and height (Elks et al., 2010a).

The UK90 reference was consistently used to normalise BMI in all the cohorts, as prevalence
of obesity should be relative to reference data at a fixed time point (Prentice, 1998).
Although NTFS children were born before the reference, it is the most appropriate growth
reference for these analyses. An alternative is the UK-WHO growth charts (Cole et al., 2011),
which have been found to classify more children as obese, and could lead to
misinterpretation of risk (Johnson et al., 2012). When growth in ALSPAC and GMS were
compared to the WHO standard, more were classified as overweight in the pre-school years,
and as it uses a breastfed child as a model for growth, may not be appropriate for a UK
population (Wright et al., 2008a). The GMS and ALSPAC cohorts have been shown to be
similar to the UK90 reference, with very similar weights and heights at times of overlap in

childhood (Wright et al., 2008a).
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Findings from this cohort support that when investigating early life risk factors of childhood
obesity, BMI or categorical OWOB are adequate measures, but studies might be enhanced

by the inclusion of a body fatness outcome measure (e.g. FMI) when examining SES.

8.5 Conclusion

In summary, this study provides evidence for early life weight gain as an important risk
factor for multiple measures of childhood body composition, consistent across all three
cohorts (time periods and regions). Some of these effects may be a consequence of lower
birthweight, which can be influenced by many factors. The associations for rapid growth did
not persist into adulthood and may represent a more important factor for childhood BMI

and on the pathway to adult BMI.

Since early life, lifestyle and socioeconomic factors have emerged as important factors in the
development of obesity, multi-component interventions have emerged (Lanigan, 2018). The
path models support that a multi-component intervention may be the best approach and

demonstrate the complexity and interrelated nature of risk factors (Figure 3.3, Figure 4.2).

8.6 Summary of the epigenetic findings

This study used a discovery cohort (ALSPAC) to determine loci associated with early life
exposures, and a validation cohort (NTFS) to verify methylation. Robust associations were
found for RWG and childhood and adult methylation, but for no other exposures. As
described in the literature review (section 1.5.3), so far, only a handful of differentially
methylated positions have been identified for early life risk factors of obesity. This study
used stringent criteria and adjustment methods to identify specific CpG sites meaning that

perhaps only the most robust associations were identified.

There were missing data for exposures, and smaller sample sizes reduce the likelihood of
finding a statistically significant result, especially when the changes in methylation exhibited
are small. Large differences in methylation are often found in cancer, but generally, small
effect sizes (2-10%) are common when examining environmental influences (Breton et al.,
2017). Both the sample size and effect sizes were small for RWG, which could support that
this CpG is robustly associated, although there is always the possibility that the finding was a

false positive.
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Replication by an independent technique and dataset were used to examine methylation in
adults. Although the direction of the association was different between the cohorts, the
association was still significant. The findings may suggest that methylation is dynamic, has

specific cohort or age effects, or that disparities are due to sample or phenotype differences.

8.6.1 Persistence of methylation over time

It is interesting that RWG was positively associated with DNA methylation in childhood at the
specific loci identified, but was negatively associated with methylation in adults®. A similar
phenomenon was seen in a paper by (Richmond et al., 2015) examining maternal smoking
and offspring methylation. This ‘recovery’ of methylation could represent the adaptability of
methylation to environmental cues. However, as there were no longitudinal data available
(in the same individuals) it is unsure whether DNAm was also negatively associated in NTFS

adults.

Simpkin et al. (2015) noted that lower birthweights and shorter gestational age were
associated with a phase of rapid ‘catch-up’ in methylation differences. As RWG includes
some of the impact of catch up growth from lower birthweights, this could be the case in
ALSPAC, where catch-up growth (RWG) is mirrored by a ‘catch-up’ in methylation. Whilst the
opposite, ‘catch-down methylation’, could be reflective of slowed growth and the
normalisation of BMI over time in NTFS adults. Taken together, one hypothesis could be that
methylation at this locus represents growth more generally; increases in methylation in

response to growth, but relative decreases later in order to return to ‘normal’ methylation.

In terms of changes in methylation over the life course, this study identified that in ALSPAC,
those who had RWG (ALSPAC) have higher levels of methylation in childhood (age 7), but
then methylation decreases slightly in adolescence (age 17). If considering age 17 as adults,

similar overall trends were observed in NTFS adults (age 50), in that those who had RWG

Lt is granted that beta (B) values from the Infinium, and percentage methylation from
pyrosequencing may not be interchangeable, therefore when comparing the two datasets
the descriptions were focused on the size (small/large) and direction (increases/decreases)

of change in methylation, in relation to the exposure.
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have lower methylation levels compared to those who did not have RWG (Figure 8.1). This
could suggest that the hypermethylation in those with RWG at age 7 may be ‘corrected’ over
time from childhood to adolescence to middle age. Again, one could speculate that this
could reflect growth patterns, as the majority of childhood growth will have happened by

age 17.

These specific epigenetic changes detected in childhood might have downstream effects
throughout childhood and adolescence rather than persistence across the life course,
however currently there are a limited number of studies examining the variation and
stability of methylation changes over the life course (Richmond et al., 2014, Simpkin et al.,
2015). As there were no longitudinal methylation measurements, the patterns of
methylation cannot be discerned in NTFS. There is also the possibility that other lifestyle

factors, or pleiotropy (where one gene affects multiple characteristics) could influence
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Figure 8.1 Summary of DNAm by RWG in ALSPAC AND NTFS.
Median DNAm (%) at ages 7 and 17 (ALSPAC) and age 50 (NTFS).
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8.7 Strengths and Limitations of the epigenetic analysis
There are a number of strengths and limitations of the epigenetic analysis. These relate to
sample representativeness, statistical power, cell heterogeneity, EWAS methodology, and

specific limitations of the technologies and comparing methylation values across studies.

8.7.1 Sample representativeness

The ARIES sub-sample are more affluent than those not included (Alspac Study Team, 2001,
Relton et al., 2015), and therefore there if mechanistic pathways in which SES impacts on
DNAm exist this could introduce bias. However, the NTFS validation cohort was also biased

in the same direction.

Some of the analyses will have been underpowered, it would be worth using other large
cohorts with larger sample sizes, such as the PACE consortium, although despite the small

sample size robust associations were still identified.

8.7.2 Cell types and tissue specificity

There is variability in methylation across cell types and the possibility for tissue specific
methylation effects. Many studies have utilised blood DNAm in relation to obesity (van Dijk
et al., 2015, Wahl et al., 2017), which is reflective of changes in other tissues (Dick et al.,
2014). As biopsies from relevant tissues (such as adipose tissue) are more difficult to obtain,
surrogate tissues (i.e. peripheral blood) are often used. However, for the determination of a
biomarker, a surrogate, accessible tissue such as blood is ideal for diagnostic purposes and

for use in a clinical setting.

Furthermore, blood may be a physiologically relevant tissue due to the close contact with all
cells, tissues and organs, and therefore reflects the interactions of changes at the molecular
level via internal (hormones) and external (such as nutrients or drug interactions) stimuli.
This idea was proposed by Liew et al. and is referred to as the “Sentinel Principle”, whereby
blood cells respond to changes occurring in the micro- and macro-environments in the

body’s systems, therefore are acting as “sentinels” (Liew et al., 2006).

8.7.3 EWAS methodology

The EWAS serves as a starting point to identify potentially important candidate sites which
can be the focus of further investigation, however this is essentially a ‘needle in a haystack’

approach. Methylation levels at time of measurement can only provide a snapshot, not how
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methylation changes over the life course (without multiple measurements). Generally
speaking, bar the limitations imposed by the technology (i.e. the CpG loci selected for the
array), the EWAS approach is an unbiased method to identify novel CpG loci associated with
exposures. An unbiased alternative is whole genome sequencing, however currently this
technology is costly. Another approach could have been to use candidate genes associated
with exposures from the literature, however there are no DNAm biomarkers associated with
RWG and hence this would not have been feasible for all exposures. A limitation of the
methodology employed here was using significance over effect size, i.e. using p values which
do not consider the magnitude of the CpG-trait association. However, this is a trade off, and
all associations with an FDR p value<0.1 were considered, and any less stringent criteria

could increase the likelihood of false positive findings.

8.7.4 Differences in methods of measuring DNA methylation

The range of methylation values observed were vastly different when comparing values from
pyrosequencing and the 450K array. Current methods to quantify DNAm are not always
directly comparable, and the results presented here reflect fundamental difficulties with
DNAm analyses. Even when comparing B values at the same CpG site and from the same
platform (450K) from different studies (B-PROOF, BSGS), a wide range of DNAm values were
observed (section 2.5.11), which may be due different normalisation methods. Others have
observed that even when data are normalised using the same methods, there is
disagreement in methylation values between the 450K and EPIC array platforms, and many
(55%) sites exhibit low correlation due to low variability in methylation (Logue et al., 2017).
They found that CpGs with a low range, had low correlation (r<0.2) across the arrays.
Examining their data, cg11531579 was a locus with a low range, which could be because the

ratio of the true variability relative to the measurement error is low.

The normalisation procedures utilised by these studies may in part explain some of the
different methylation levels obtained in this study. Different normalisation procedures are a
known source of heterogeneity in DNAm studies, particularly when changes observed are
small or less significant (Wu et al., 2014a). The ALSPAC methylation levels were much lower

than some of the NTFS samples. It is probable that if such high levels of methylation existed
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in the 450K data, those points may be filtered out and removed as noise prior to statistical

analysis (as per normalisation techniques), although they could be valid data points.

Differences could also arise from the technology utilised. Overall, there is good concordance
between 450K and pyrosequencing data (Roessler et al., 2012). However, several validation
studies show that B values are not equal to % methylation (e.g. 0.1 =10%) for the majority of
loci examined, and although there is a trend of high and low between those data sets,
differences between 450K assay values and sequencing values can vary wildly (Bibikova et
al., 2011, Roessler et al., 2012). Roessler et al. (2012) similarly noted that in a cross
validation study of the 450K array and whole-genome bisulfite sequencing (Bibikova et al.,
2011), many measurements differed by 30-40%. As an unprocessed method that directly
measures methylation, pyrosequencing may more closely reflect the true value.
Furthermore, the use of bisulfite pyrosequencing for region-specific DNAm analysis is

considered the gold standard.

Common SNPs could result in discrepancies between pyrosequencing and the 450k array,
and the ‘high methylation’ samples could have underlying genetic differences. SNPs can
account for 22-80% of the variability in DNAm between individuals (Birney et al., 2016).
Further investigation of the region of interest using Sanger sequencing (section 7.4.9.2),
indicated SNPs may be influencing methylation, perhaps in a phenotypic fashion (consistent
patterns observed for RWG and high BMI). However, the effects of proximal or distal SNPs
cannot be discerned using this small sample, but could be the focus of future work. There
may still be purpose in biomarkers that can capturing both genetic and environmental

influences on DNAm.

Additionally, for all methods, the influence of sampling, storage and processing on the
methylation measures must be considered, as the variation due to these measures may well

exceed the signal level.

8.7.5 The direction of the associations between DNAm and BMI

A recognised limitation is that many EWAS's are unable to distinguish causal or
consequential epigenetic changes in the disease process (Baylin and Bestor, 2002, Bell et al.,
2010). There is the potential for reverse causation, in that BMI alters methylation rather
than vice versa (Wahl et al., 2017). Although childhood methylation was higher in ALSPAC

participants who were OWOB in adolescence, these individuals could also have had a higher
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BMI at age 7. When examining childhood methylation by phenotype and age (Figure ), higher
methylation levels were evident in those who had RWG, and then were OWOB in either
childhood or adolescence, but also in those who were healthy weight in childhood and then
OWOB in adolescence. This does not rule out reverse causality entirely, but suggests that
regardless of childhood body size, if an individual had RWG and is then subsequently OWOB
in adolescence their methylation was higher in childhood than someone of normal weight,
supporting this locus as a predictive biomarker. The aim of the analysis was to determine
biomarkers rather than causal DNAm changes. However, there are genotype data available
for ALSPAC, and therefore causal inference methods such as Mendelian Randomization
could be used to determine if changes were causal, if valid instrumental variables for RWG

exist.

8.8 Remaining questions and future directions

These findings amongst others provide further evidence of the clinical importance of a fine
balance between adequate weight gain to support neurodevelopment and ensuring infants
with lower birthweights experience ‘healthy’ catch-up growth. Future developments could
be to have closer monitoring of infant weight gain and personalised advice by health care
professionals, to ensure weight gain is within accepted healthy limits for a given birthweight.
In epidemiological studies, if the disease risk decreases following an intervention or removal
of the exposure, this provides strong support for causal inference. There is limited capacity
to assess causality in studies of early life exposures through randomised controlled trials,
partly due to ethical issues of potentially causing harm. Instead, to further investigate
causality, an intervention study or natural experiment could be used. When analysing the
BMI trajectories in the two cohorts (chapter 4), it was the cohort exposed to an obesogenic
environment in combination with RWG that had the most detrimental phenotype.
Therefore, an intervention would need to alter the environment of those who had RWG
(potentially through a diet or physical activity intervention, or perhaps in a rural population

with reduced exposure to an obesogenic environment), or prevent the initial RWG.

There have been limited studies aimed at preventing RWG through interventions. Gungor et
al. (2010) found that 1/3 of at-risk (those who had RWG) infants go on to become
overweight children, whilst the 2/3 that do not: had parents that were more educated, had
lower weight gain between 18-24 months, were exclusively breastfed for longer and had a

later introduction of solid foods. Therefore interventions could focus on modifying these
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factors. An intervention focusing on feeding alone, which utilised a theory-based behavioural
intervention in formula milk-fed infants to promote responsive feeding, did not reduce the
prevalence of RWG (Moorcroft et al., 2011). However, a multi-component intervention by
Savage et al (2016) was more successful and therefore may be an effective strategy. The
intervention was implemented via posted educational materials on infant feeding, sleep
hygiene, active social play, emotional regulation and recording growth and involved
numerous visits by research nurses between 3 and 48 weeks (Savage et al., 2016). Fewer
than 6% of infants in the intervention group were overweight at age 1 year compared with
13% of control group infants, which is a relatively low prevalence (controls) compared to
other studies (Zheng et al., 2018) therefore it would be interesting to see if these results
extrapolate to populations with higher prevalence of RWG. If this critical period has passed
and infancy weight is not monitored then there is utility for a biomarker of RWG to identify

those at later risk.

An individual’s current BMI alone will always be very predictive of future BMI, however
DNAm could improve model prediction along with other known factors such as SNPs and
environmental factors. For example, in older individuals from two European cohorts,
methylation profiles explained 3.6 to 4.9% of the variation in BMI (Shah et al., 2015).
Genome-wide association studies have found over 30 SNPs associated with BMI, which
explain around 1.5% of the inter-individual variation in BMI when combined (Speliotes et al.,
2010). The minor allele of FTO which is associated with obesity-related traits is associated
with 1.2 fold risk of obesity and to 0-:39 kg/m2 increases in BMI (Loos and Yeo, 2014).
Therefore, as the effect sizes for individual CpG loci are much larger than effect sizes for
individual SNPs, even from relatively small studies, there may be scope in future for larger

studies to identify predictive changes in DNAm.

Our ability to identify methylation biomarkers will likely improve as the arrays increase in
size and as more sophisticated bioinformatics methods are developed. The methylation
differences identified were small, if biomarkers are to be useful then assays need to be able
to detect these small differences accurately, which will likely become more commonplace
with technological advancements. The investigation of methylation in this region was limited
to a short region for pyrosequencing, however as whole genome sequencing becomes less

expensive there will be future opportunities to examine larger regions.
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These results suggest that the relationship between RWG and DNAm may change over the
life course, or that it might be different in different cohorts or populations. Validation is
required to determine if CpG loci are consistently differentially methylated in different
populations, time points, ages and disease-states. The focus of future work could be to
analyse DNAm at the locus of interest using pyrosequencing in a younger population. This
was the original intent; however, the age 6-8 GMS DNA samples could not be traced. As
there have been no other EWAS on RWG to date it was not possible to replicate the DNAm
results. Additionally, if looking for causal epigenetic changes, gene expression and

functionality will also need to be assessed.

8.9 Overall conclusions

Using two regional birth cohorts born 50 years apart, factors influencing obesity and how
these have changed over time were investigated in the region with the highest rates of
obesity in England (Health and Social Care Information Centre, 2014). The important finding
from this study is that rapid infancy weight gain conditional on birthweight or not, was
associated with increased childhood BMI. There is the potential for development of a CpG
biomarker of RWG, which could be of use when early life data are not available in order to
identify high-risk individuals for preventative intervention. However, whether this biomarker
would be a useful predictor of future adiposity, or if methylation marks persist is unsure, and
needs to be investigated in a younger population where a predictive biomarker of

subsequent OWOB would be useful.

The life course path analysis approach allowed examination of the effects of exposures on
prospective outcomes, and the results provide important insights into the multi-dimensional
aetiology of obesity. Taken together, these results suggest that the combination of
environmental insults at a critical developmental periods, combined with a multi-faceted,
high-risk environment increases adiposity in childhood, which may track in adulthood.
Understanding of the interactions and pathways between exposures and socioeconomic

factors could be used to develop a risk-score for intervention purposes.

This work highlights the dynamic nature of methylation and contributes to the literature on
life course changes in methylation in relation to early life exposures. This study provides a
proof of concept and establishes a motive for further research to identify novel biomarkers

of early life rapid weight gain in longitudinal studies.

262



References

ABARCA-GOMEZ, L., ABDEEN, Z. A., HAMID, Z. A., ABU-RMEILEH, N. M., ACOSTA-CAZARES,
B., ACUIN, C., ADAMS, R. J., AEKPLAKORN, W., AFSANA, K., AGUILAR-SALINAS, C. A,,
AGYEMANG, C., AHMADVAND, A., AHRENS, W., AJLOUNI, K., AKHTAEVA, N., AL-
HAZZAA, H. M., AL-OTHMAN, A. R., AL-RADDADI, R., AL BUHAIRAN, F., AL DHUKAIR,
S., AL, M. M., ALI, O., ALKERWI, A. A., ALVAREZ-PEDREROL, M., ALY, E.,
AMARAPURKAR, D. N., AMOUYEL, P., AMUZU, A., ANDERSEN, L. B., ANDERSSEN, S. A.,
ANDRADE, D. S., ANGQUIST, L. H., ANJANA, R. M., AOUNALLAH-SKHIRI, H., ARAUJO,
J., ARIANSEN, I, ARIS, T., ARLAPPA, N., ARVEILER, D., ARYAL, K. K., ASPELUND, T.,
ASSAH, F. K., ASSUNCAO, M. C. F., AUNG, M. S., AVDICOVA, M., AZEVEDO, A., AZIZI,
F., BABU, B. V., BAHURI, S., BAKER, J. L., BALAKRISHNA, N., BAMOSHMOOSH, M.,
BANACH, M., BANDOSZ, P., BANEGAS, J. R., BARBAGALLO, C. M., BARCELO, A.,
BARKAT, A, BARROS, A. J. D., BARROS, M. V. G., BATA, |, BATIEHA, A. M., BATISTA, R.
L., BATYRBEK, A., BAUR, L. A., BEAGLEHOLE, R., ROMDHANE, H. B., BENEDICS, J.,
BENET, M., BENNETT, J. E., BERNABE-ORTIZ, A., BERNOTIENE, G., BETTIOL, H.,
BHAGYALAXMI, A., BHARADWAJ, S., BHARGAVA, S. K., BHATTI, Z., BHUTTA, Z. A, BI,
H., Bl, Y., BIEHL, A., BIKBOV, M., BISTA, B., BJELICA, D. J., BJERREGAARD, P.,
BJERTNESS, E., BJERTNESS, M. B., BJORKELUND, C., BLOKSTRA, A., BO, S., BOBAK, M.,
BODDY, L. M., BOEHM, B. O., BOEING, H., BOGGIA, J. G., BOISSONNET, C. P,
BONACCIO, M., BONGARD, V., BOVET, P., BRAECKEVELT, L., et al. 2017. Worldwide
trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016:
a pooled analysis of 2416 population-based measurement studies in 128.9 million
children, adolescents, and adults. The Lancet.

ACCOMANDO, W. P., WIENCKE, J. K., HOUSEMAN, E. A., NELSON, H. H. & KELSEY, K. T. 2014.
Quantitative reconstruction of leukocyte subsets using DNA methylation. Genome
biology, 15, R50.

ADAB, P., PALLAN, M. & WHINCUP, P. H. 2018. Is BMI the best measure of obesity? BMJ,
360, k1274.

ADALSTEINSSON, B. T., GUDNASON, H., ASPELUND, T., HARRIS, T. B., LAUNER, L. J,,
EIRIKSDOTTIR, G., SMITH, A. V. & GUDNASON, V. 2012. Heterogeneity in White Blood
Cells Has Potential to Confound DNA Methylation Measurements. PLOS ONE, 7,
e46705.

ADKINS, R. M., THOMAS, F., TYLAVSKY, F. A. & KRUSHKAL, J. 2011. Parental ages and levels of
DNA methylation in the newborn are correlated. BMC medical genetics, 12, 47-47.

AGOSTONI, C., DECSI, T., FEWTRELL, M., GOULET, O., KOLACEK, S., KOLETZKO, B.,
MICHAELSEN, K. F., MORENO, L., PUNTIS, J. & RIGO, J. 2008. Complementary feeding:
a commentary by the ESPGHAN Committee on Nutrition. Journal of pediatric
gastroenterology and nutrition, 46, 99-110.

AJSLEV, T. A., ANDERSEN, C. S., GAMBORG, M., SORENSEN, T. I. A. & JESS, T. 2011. Childhood
overweight after establishment of the gut microbiota: the role of delivery mode, pre-
pregnancy weight and early administration of antibiotics. International Journal of
Obesity, 35, 522-529.

ALAMIAN, A., WANG, L., HALL, A. M., PITTS, M. & IKEKWERE, J. 2016. Infant sleep problems
and childhood overweight: Effects of three definitions of sleep problems. Preventive
Medicine Reports, 4, 463-468.

ALEGRIA-TORRES, J. A., BACCARELLI, A. & BOLLATI, V. 2011. Epigenetics and lifestyle.
Epigenomics, 3, 267-277.

263



ALFANO, R., GUIDA, F., GALOBARDES, B., CHADEAU-HYAM, M., DELPIERRE, C., GHANTOUS,
A., HENDERSON, J., HERCEG, Z., JAIN, P., NAWROT, T. S., RELTON, C., VINEIS, P.,
CASTAGNE, R. & PLUSQUIN, M. 2018. Socioeconomic position during pregnancy and
DNA methylation signatures at three stages across early life: epigenome-wide
association studies in the ALSPAC birth cohort. International Journal of Epidemiology,
48, 30-44.

ALIKHANI-KOOPAEI, R., FOULADKOU, F., FREY, F. J. & FREY, B. M. 2004. Epigenetic regulation
of 11B-hydroxysteroid dehydrogenase type 2 expression. The Journal of clinical
investigation, 114, 1146-1157.

ALSPAC STUDY TEAM 2001. ALSPAC—the avon longitudinal study of parents and children.
Paediatric and perinatal epidemiology, 15, 74-87.

ANDA, R. F., FELITTI, V. J.,, BREMNER, J. D., WALKER, J. D., WHITFIELD, C., PERRY, B. D., DUBE,
S. R. & GILES, W. H. 2006. The enduring effects of abuse and related adverse
experiences in childhood. European archives of psychiatry and clinical neuroscience,
256, 174-186.

ANDERSON, 0. S., SANT, K. E. & DOLINQY, D. C. 2012. Nutrition and epigenetics: an interplay
of dietary methyl donors, one-carbon metabolism and DNA methylation. The Journal
of Nutritional Biochemistry, 23, 853-859.

ANDREAS, N. J., HYDE, M. J., GALE, C., PARKINSON, J. R., JEFFRIES, S., HOLMES, E. & MODI, N.
2014. Effect of maternal body mass index on hormones in breast milk: a systematic
review. PLoS One, 9, €115043.

ANGRIST, J. D. & IMBENS, G. W. 1995. Two-stage least squares estimation of average causal
effects in models with variable treatment intensity. Journal of the American
statistical Association, 90, 431-442.

ANTONAKIS, J., BENDAHAN, S., JACQUART, P. & LALIVE, R. 2014. Causality and Endogeneity:
Problems and Solutions. The Oxford handbook of leadership and organizations, 93.

ARENZ, S., RUCKERL, R., KOLETZKO, B. & VON KRIES, R. 2004. Breast-feeding and childhood
obesity—a systematic review. International journal of obesity, 28, 1247-1256.

ARIS, I. M., CHEN, L.-W., TINT, M. T., PANG, W. W., SOH, S. E., SAW, S.-M., SHEK, L. P.-C,,
TAN, K.-H., GLUCKMAN, P. D., CHONG, Y.-S., YAP, F., GODFREY, K. M., KRAMER, M. S.
& LEE, Y. S. 2017. Body mass index trajectories in the first two years and subsequent
childhood cardio-metabolic outcomes: a prospective multi-ethnic Asian cohort study.
Scientific Reports, 7, 8424.

ARMSTRONG, J. & REILLY, J. J. 2002. Breastfeeding and lowering the risk of childhood
obesity. Lancet, 359.

ARMSTRONG, J., REILLY, J. J. & CHILD HLTH INFORMATION, T. 2002. Breastfeeding and
lowering the risk of childhood obesity. Lancet, 359, 2003-2004.

ARMSTRONG, K. L., QUINN, R. A. & DADDS, M. R. 1994. The sleep patterns of normal
children. The Medical journal of Australia, 161, 202-206.

ARYEE, M. J., JAFFE, A. E., CORRADA-BRAVO, H., LADD-ACOSTA, C., FEINBERG, A. P., HANSEN,
K. D. & IRIZARRY, R. A. 2014. Minfi: a flexible and comprehensive Bioconductor
package for the analysis of Infinium DNA methylation microarrays. Bioinformatics, 30,
1363-1369.

ASHWELL, M., GUNN, P. & GIBSON, S. 2012. Waist-to-height ratio is a better screening tool
than waist circumference and BMI for adult cardiometabolic risk factors: systematic
review and meta-analysis. Obes Rev, 13, 275-86.

ASSI, N., FAGES, A, VINEIS, P., CHADEAU-HYAM, M., STEPIEN, M., DUARTE-SALLES, T.,
BYRNES, G., BOUMAZA, H., KNUPPEL, S., KUHN, T., PALLI, D., BAMIA, C., BOSHUIZEN,
H., BONET, C., OVERVAD, K., JOHANSSON, M., TRAVIS, R., GUNTER, M. J., LUND, E.,

264



DOSSUS, L., ELENA-HERRMANN, B., RIBOLI, E., JENAB, M., VIALLON, V. & FERRARI, P.
2015. A statistical framework to model the meeting-in-the-middle principle using
metabolomic data: application to hepatocellular carcinoma in the EPIC study.
Mutagenesis, 30, 743-753.

ATKIN, A. J., SHARP, S. J., HARRISON, F. L. O., BRAGE, S. & VAN SLUIJS, E. M. F. 2016. Seasonal
Variation in Children’s Physical Activity and Sedentary Time. Medicine and Science in
Sports and Exercise, 48, 449-456.

ATKINSON, R., DHURANDHAR, N., ALLISON, D., BOWEN, R., ISRAEL, B., ALBU, J. & AUGUSTUS,
A. 2005. Human adenovirus-36 is associated with increased body weight and
paradoxical reduction of serum lipids. International journal of obesity, 29, 281.

ATKINSON, R. L. Viruses as an etiology of obesity. Mayo Clinic Proceedings, 2007. Elsevier,
1192-1198.

AUNE, D., SEN, A., PRASAD, M., NORAT, T., JANSZKY, |., TONSTAD, S., ROMUNDSTAD, P. &
VATTEN, L. J. 2016. BMI and all cause mortality: systematic review and non-linear
dose-response meta-analysis of 230 cohort studies with 3.74 million deaths among
30.3 million participants. Bmj, 353, i2156.

AUSTIN, M. K., CHEN, E., ROSS, K. M., MCEWEN, L. M., MACLSAAC, J. L., KOBOR, M. S. &
MILLER, G. E. 2018. Early-life socioeconomic disadvantage, not current, predicts
accelerated epigenetic aging of monocytes. Psychoneuroendocrinology, 97, 131-134.

AZAD, M. B., BRIDGMAN, S. L., BECKER, A. B. & KOZYRSKY]J, A. L. 2014. Infant antibiotic
exposure and the development of childhood overweight and central adiposity.
International Journal of Obesity, 38, 1290-1298.

BAILEY, L., FORREST, C. B., ZHANG, P., RICHARDS, T. M., LIVSHITS, A. & DERUSSO, P. A. 2014.
Association of antibiotics in infancy with early childhood obesity. JAMA Pediatrics,
168, 1063-1069.

BAIRD, J., FISHER, D., LUCAS, P., KLEIJNEN, J., ROBERTS, H. & LAW, C. 2005. Being big or
growing fast: systematic review of size and growth in infancy and later obesity. Bmj,
331, 929.

BAKER, J. L., MICHAELSEN, K. F., RASMUSSEN, K. M. & SORENSEN, T. I. 2004. Maternal
prepregnant body mass index, duration of breastfeeding, and timing of
complementary food introduction are associated with infant weight gain. Am J Clin
Nutr, 80, 1579-88.

BALL, K. & CRAWFORD, D. 2005. Socioeconomic status and weight change in adults: a
review. Soc Sci Med, 60, 1987-2010.

BAMMANN, K., PEPLIES, J., DE HENAUW, S., HUNSBERGER, M., MOLNAR, D., MORENO, L. A,,
TORNARITIS, M., VEIDEBAUM, T., AHRENS, W. & SIANI, A. 2014. Early life course risk
factors for childhood obesity: the IDEFICS case-control study. PLoS One, 9, e86914.

BANN, D., JOHNSON, W, LI, L., KUH, D. & HARDY, R. 2018. Socioeconomic inequalities in
childhood and adolescent body-mass index, weight, and height from 1953 to 2015:
an analysis of four longitudinal, observational, British birth cohort studies. The Lancet
Public Health, 3, e194-e203.

BANN, D., WILLS, A., COOPER, R., HARDY, R., AIHIE SAYER, A., ADAMS, J. & KUH, D. 2014.
Birth weight and growth from infancy to late adolescence in relation to fat and lean
mass in early old age: findings from the MRC National Survey of Health and
Development. Int J Obes (Lond), 38, 69-75.

BARCLAY, K. & MYRSKYLA, M. 2016. Maternal age and offspring health and health
behaviours in late adolescence in Sweden. SSM - Population Health, 2, 68-76.

265



BARKER, D., OSMOND, C., GOLDING, J., KUH, D. & WADSWORTH, M. E. 1989. Growth in
utero, blood pressure in childhood and adult life, and mortality from cardiovascular
disease. Bmj, 298, 564-567.

BARKER, D. J. 1995. Fetal origins of coronary heart disease. Bmj, 311, 171-4.

BARKER, D. J. P. 1994. Mothers, babies, and disease in later life, BMJ Publishing Group
London.

BARROS, A. J. D., SANTOS, L. P., WEHRMEISTER, F., MOTTA, J. V. D. S., MATIJASEVICH, A,,
SANTOS, I. S., MENEZES, A. M. B., GONCALVES, H., ASSUNCAO, M. C. F., HORTA, B. L.
& BARROS, F. C. 2017. Caesarean section and adiposity at 6, 18 and 30 years of age:
results from three Pelotas (Brazil) birth cohorts. BMC Public Health, 17, 256.

BARTSCH, E., MEDCALF, K. E., PARK, A. L., RAY, J. G. & HIGH RISK, P.-E. 2016. Clinical risk
factors for pre-eclampsia determined in early pregnancy: systematic review and
meta-analysis of large cohort studies. Bmj-British Medical Journal, 353.

BASTARD, J.-P., MAACHI, M., LAGATHU, C., KIM, M. J., CARON, M., VIDAL, H., CAPEAU, J. &
FEVE, B. 2006. Recent advances in the relationship between obesity, inflammation,
and insulin resistance. European cytokine network, 17, 4-12.

BASTERFIELD, L., ADAMSON, A. J., PARKINSON, K. N., MAUTE, U., LI, P. X. & REILLY, J. J. 2008.
Surveillance of physical activity in the UK is flawed: validation of the Health Survey
for England Physical Activity Questionnaire. Archives of Disease in Childhood, 93,
1054.

BASTERFIELD, L., ADAMSON, A. J., PEARCE, M. S. & REILLY, J. J. 2011. Stability of habitual
physical activity and sedentary behavior monitoring by accelerometry in 6-to 8-year-
olds. Journal of Physical Activity and Health, 8, 543-547.

BASTERFIELD, L., PEARCE, M. S., ADAMSON, A. J., FRARY, J. K., PARKINSON, K. N., WRIGHT, C.
M. & REILLY, J. J. 2012a. Physical Activity, Sedentary Behavior, and Adiposity in
English Children. American Journal of Preventive Medicine, 42, 445-451.

BASTERFIELD, L., PEARCE, M. S., ADAMSON, A. J., REILLY, J. K., PARKINSON, K. N. & REILLY, J.
J. 2012b. Effect of choice of outcome measure on studies of the etiology of obesity in
children. Annals of Epidemiology, 22, 888-891.

BAYER, O., KRUGER, H., VON KRIES, R. & TOSCHKE, A. M. 2011a. Factors Associated With
Tracking of BMI: A Meta-Regression Analysis on BMI Tracking*. Obesity, 19, 1069-
1076.

BAYER, O., KRUGER, H., VON KRIES, R. & TOSCHKE, A. M. 2011b. Factors associated with
tracking of BMI: a meta-regression analysis on BMI tracking. Obesity, 19, 1069-1076.

BAYLIN, S. & BESTOR, T. H. 2002. Altered methylation patterns in cancer cell genomes: cause
or consequence? Cancer cell, 1, 299-305.

BAYOL, S. A., FARRINGTON, S. J. & STICKLAND, N. C. 2007. A maternal 'junk food' diet in
pregnancy and lactation promotes an exacerbated taste for 'junk food' and a greater
propensity for obesity in rat offspring. British Journal of Nutrition, 98, 843-851.

BEDOGNI, G., IUGHETTI, L., FERRARI, M., MALAVOLTI, M., POLI, M., BERNASCONI, S. &
BATTISTINI, N. 2003. Sensitivity and specificity of body mass index and skinfold
thicknesses in detecting excess adiposity in children aged 8-12 years. Annals of
human biology, 30, 132-139.

BELFORT, M. B., RIFAS-SHIMAN, S. L., SULLIVAN, T., COLLINS, C. T., MCPHEE, A. J,, RYAN, P.,
KLEINMAN, K. P., GILLMAN, M. W., GIBSON, R. A. & MAKRIDES, M. 2011. Infant
growth before and after term: effects on neurodevelopment in preterm infants.
Pediatrics, 128, e899-906.

266



BELL, C. G., TESCHENDORFF, A. E., RAKYAN, V. K., MAXWELL, A. P., BECK, S. & SAVAGE, D. A.
2010. Genome-wide DNA methylation analysis for diabetic nephropathy in type 1
diabetes mellitus. BMC medical genomics, 3, 33.

BELL, J. F. & ZIMMERMAN, F. J. 2010. SHortened nighttime sleep duration in early life and
subsequent childhood obesity. Archives of Pediatrics & Adolescent Medicine, 164,
840-845.

BELLIS, M. A., LOWEY, H., LECKENBY, N., HUGHES, K. & HARRISON, D. 2013. Adverse
childhood experiences: retrospective study to determine their impact on adult health
behaviours and health outcomes in a UK population. Journal of Public Health, 36, 81-
91.

BEN-SHLOMO, Y., COOPER, R. & KUH, D. 2016. The last two decades of life course
epidemiology, and its relevance for research on ageing. International Journal of
Epidemiology, 45, 973-988.

BEN-SHLOMO, Y. & KUH, D. 2002. A life course approach to chronic disease epidemiology:
conceptual models, empirical challenges and interdisciplinary perspectives.
International journal of epidemiology, 31, 285-293.

BENJAMINI, Y. & HOCHBERG, Y. 1995. Controlling the false discovery rate: a practical and
powerful approach to multiple testing. Journal of the Royal statistical society: series B
(Methodological), 57, 289-300.

BEYERLEIN, A. & VON KRIES, R. 2011. Breastfeeding and body composition in children: will
there ever be conclusive empirical evidence for a protective effect against
overweight? The American journal of clinical nutrition, 94, 1772S-1775S.

BIBIKOVA, M., BARNES, B., TSAN, C., HO, V., KLOTZLE, B., LE, J. M., DELANO, D., ZHANG, L.,
SCHROTH, G. P., GUNDERSON, K. L., FAN, J.-B. & SHEN, R. 2011. High density DNA
methylation array with single CpG site resolution. Genomics, 98, 288-295.

BIRNEY, E., SMITH, G. D. & GREALLY, J. M. 2016. Epigenome-wide Association Studies and
the Interpretation of Disease -Omics. PLoS genetics, 12, e1006105-e1006105.
BISPHAM, J., GOPALAKRISHNAN, G. S., DANDREA, J., WILSON, V., BUDGE, H., KEISLER, D. H.,
BROUGHTON PIPKIN, F., STEPHENSON, T. & SYMONDS, M. E. 2003. Maternal

endocrine adaptation throughout pregnancy to nutritional manipulation:
consequences for maternal plasma leptin and cortisol and the programming of fetal
adipose tissue development. Endocrinology, 144, 3575-85.

BOHN, B., MULLER, M. J., SIMIC-SCHLEICHER, G., KIESS, W., SIEGFRIED, W., OELERT, M.,
TUSCHY, S., BERGHEM, S., HOLL, R. W., FOR THE, A. P. V. |., THE GERMAN, B. C. N. O,,
A GERMAN/AUSTRIAN/SWISS MULTICENTER APV ANALYSIS OF, C. & ADOLESCENTS
2015. BMI or BIA: Is Body Mass Index or Body Fat Mass a Better Predictor of
Cardiovascular Risk in Overweight or Obese Children and Adolescents? Obesity Facts,
8, 156-165.

BONEY, C. M., VERMA, A., TUCKER, R. & VOHR, B. R. 2005. Metabolic Syndrome in
Childhood: Association With Birth Weight, Maternal Obesity, and Gestational
Diabetes Mellitus. Pediatrics, 115, e290.

BORGHOL, N., SUDERMAN, M., MCARDLE, W., RACINE, A., HALLETT, M., PEMBREY, M.,
HERTZMAN, C., POWER, C. & SZYF, M. 2012. Associations with early-life socio-
economic position in adult DNA methylation. International Journal of Epidemiology,
41, 62-74.

BOUWLAND-BOTH, M. I., VAN MIL, N. H., STOLK, L., EILERS, P. H., VERBIEST, M. M.,
HEIJMANS, B. T., TIEMEIER, H., HOFMAN, A., STEEGERS, E. A. & JADDOE, V. W. 2013.
DNA methylation of IGF2DMR and H19 is associated with fetal and infant growth: the
generation R study. PLoS One, 8, e81731.

267



BOYD, A., GOLDING, J., MACLEOD, J., LAWLOR, D. A., FRASER, A., HENDERSON, J., MOLLOY,
L., NESS, A., RING, S. & DAVEY SMITH, G. 2013. Cohort Profile: the 'children of the
90s'--the index offspring of the Avon Longitudinal Study of Parents and Children. Int J
Epidemiol, 42, 111-27.

BRETON, C. V., MARSIT, C. J., FAUSTMAN, E., NADEAU, K., GOODRICH, J. M., DOLINOY, D. C,,
HERBSTMAN, J., HOLLAND, N., LASALLE, J. M. & SCHMIDT, R. 2017. Small-magnitude
effect sizes in epigenetic end points are important in children’s environmental health
studies: the children’s environmental health and disease prevention research
center’s epigenetics working group. Environmental health perspectives, 125, 511-526.

BRION, M. J., LAWLOR, D. A., MATIJASEVICH, A., HORTA, B., ANSELMI, L., ARAUJO, C. L.,
MENEZES, A. M., VICTORA, C. G. & SMITH, G. D. 2011. What are the causal effects of
breastfeeding on 1Q, obesity and blood pressure? Evidence from comparing high-
income with middle-income cohorts. Int J Epidemiol, 40, 670-80.

BRISBOIS, T. D., FARMER, A. P. & MCCARGAR, L. J. 2012. Early markers of adult obesity: a
review. obesity reviews, 13, 347-367.

BROPHY, S., COOKSEY, R., GRAVENOR, M., MISTRY, R., THOMAS, N., LYONS, R. & WILLIAMS,
R. 2009. Risk factors for childhood obesity at age 5: Analysis of the Millennium Cohort
Study. BMC Public Health, 9, 467.

BURDGE, G. C., SLATER-JEFFERIES, J., TORRENS, C., PHILLIPS, E. S., HANSON, M. A. &
LILLYCROP, K. A. 2007. Dietary protein restriction of pregnant rats in the FO
generation induces altered methylation of hepatic gene promoters in the adult male
offspring in the F1 and F2 generations. British Journal of Nutrition, 97, 435-439.

BUSCOT, M.-J., THOMSON, R. J., JUONALA, M., SABIN, M. A., BURGNER, D. P., LEHTIMAKI, T.,
HUTRI-KAHONEN, N., VIIKARI, J. S., JOKINEN, E. & TOSSAVAINEN, P. 2018. BMI
trajectories associated with resolution of elevated youth BMI and incident adult
obesity. Pediatrics, 141, e20172003.

BUTLAND, B., JEBB, S., KOPELMAN, P., MCPHERSON, K., THOMAS, S., MARDELL, J. & PARRY,
V. 2007. Foresight. Tackling obesities: future choices. Project report. Foresight.
Tackling obesities: future choices. Project report.

BUYKEN, A. E., KARAOLIS-DANCKERT, N., REMER, T., BOLZENIUS, K., LANDSBERG, B. &
KROKE, A. 2008. Effects of breastfeeding on trajectories of body fat and BMI
throughout childhood. Obesity (Silver Spring), 16, 389-95.

CAMERON, A. C. & TRIVEDI, P. K. 2010. Microeconometrics using Stata (revised ed.). Number
musr in Stata Press books. StataCorp LP.

CANOY, D.,, WAREHAM, N., LUBEN, R., WELCH, A., BINGHAM, S., DAY, N. & KHAW, K. T. 2005.
Cigarette Smoking and Fat Distribution in 21, 828 British Men and Women: A
Population-based Study. Obesity research, 13, 1466-1475.

CAROLAN-OLAH, M., DUARTE-GARDEA, M. & LECHUGA, J. 2015. A critical review: early life
nutrition and prenatal programming for adult disease. Journal of Clinical Nursing, 24,
3716-3729.

CARR, I. M., CAMM, N., TAYLOR, G. R., CHARLTON, R., ELLARD, S., SHERIDAN, E. G.,
MARKHAM, A. F. & BONTHRON, D. T. 2011. GeneScreen: a program for high-
throughput mutation detection in DNA sequence electropherograms. J Med Genet,
48, 123-30.

CARSLAKE, D., TYNELIUS, P., VAN DEN BERG, G., DAVEY SMITH, G. & RASMUSSEN, F. 2017.
Associations of parental age with health and social factors in adult offspring.
Methodological pitfalls and possibilities. Scientific Reports, 7, 45278.

CAVACO, S., ERIKSSON, T. & SKALLI, A. 2014. Life cycle development of obesity and its
determinants in six European countries. Economics & Human Biology, 14, 62-78.

268



CERHAN, J. R., MOORE, S. C., JACOBS, E. J., KITAHARA, C. M., ROSENBERG, P. S., ADAMI, H.-
0., EBBERT, J. O., ENGLISH, D. R., GAPSTUR, S. M. & GILES, G. G. A pooled analysis of
waist circumference and mortality in 650,000 adults. Mayo Clinic Proceedings, 2014.
Elsevier, 335-345.

CHADEAU-HYAM, M., ATHERSUCH, T. J., KEUN, H. C., DE IORIO, M., EBBELS, T. M., JENAB, M.,
SACERDOTE, C., BRUCE, S. J., HOLMES, E. & VINEIS, P. 2011. Meeting-in-the-middle
using metabolic profiling—a strategy for the identification of intermediate biomarkers
in cohort studies. Biomarkers, 16, 83-88.

CHANDLER-LANEY, P. C., GOWER, B. A. & FIELDS, D. A. 2013. Gestational and early life
influences on infant body composition at 1 year. Obesity, 21, 144-148.

CHEN, X., BEYDOUN, M. A. & WANG, Y. 2008. Is Sleep Duration Associated With Childhood
Obesity? A Systematic Review and Meta-analysis. Obesity, 16, 265-274.

CHEN, Y.-A., LEMIRE, M., CHOUFANI, S., BUTCHER, D. T., GRAFODATSKAYA, D., ZANKE, B. W.,
GALLINGER, S., HUDSON, T. J. & WEKSBERG, R. 2013. Discovery of cross-reactive
probes and polymorphic CpGs in the Illlumina Infinium HumanMethylation450
microarray. Epigenetics, 8, 203-209.

CHIOLERO, A., FAEH, D., PACCAUD, F. & CORNU?Z, J. 2008. Consequences of smoking for body
weight, body fat distribution, and insulin resistance. The American Journal of Clinical
Nutrition, 87, 801-809.

CHOI, S. H., HEO, K., BYUN, H.-M., AN, W., LU, W. & YANG, A. S. 2011. Identification of
preferential target sites for human DNA methyltransferases. Nucleic acids research,
39, 104-118.

CHULA DE CASTRO, J. A., LIMA, T. R. & SILVA, D. A. S. 2018. Body composition estimation in
children and adolescents by bioelectrical impedance analysis: A systematic review. J
Bodyw Mov Ther, 22, 134-146.

CHUMLEA, W. C., GUO, S. S., KUCZMARSKI, R. J., FLEGAL, K. M., JOHNSON, C. L.,
HEYMSFIELD, S. B., LUKASKI, H. C., FRIEDL, K. & HUBBARD, V. S. 2002. Body
composition estimates from NHANES IIl bioelectrical impedance data. International
Journal of Obesity, 26, 1596-1609.

CIARK, S.,J, HARRISON, J., PAUL, C. L. & FROMMER, M. 1994. High sensitivity mapping of
methylated cytosines. Nucleic acids research, 22, 2990-2997.

CLARK, S. J., STATHAM, A,, STIRZAKER, C., MOLLOY, P. L. & FROMMER, M. 2006. DNA
methylation: bisulphite modification and analysis. Nature protocols, 1, 2353.

CLEARY-GOLDMAN, J., MALONE, F. D., VIDAVER, J., BALL, R. H., NYBERG, D. A., COMSTOCK,
C. H., SAADE, G. R., EDDLEMAN, K. A., KLUGMAN, S. & DUGOFF, L. 2005. Impact of
maternal age on obstetric outcome. Obstetrics & Gynecology, 105, 983-990.

CNATTINGIUS, S. 2004. The epidemiology of smoking during pregnancy: smoking prevalence,
maternal characteristics, and pregnancy outcomes. Nicotine & Tobacco Research, 6,
$125-5140.

CNATTINGIUS, S., VILLAMOR, E., LAGERROS, Y. T., WIKSTROM, A. K. & GRANATH, F. 2011.
High birth weight and obesity—a vicious circle across generations. International
Journal Of Obesity, 36, 1320.

COCOROS, N. M., LASH, T. L., NORGAARD, M., FARKAS, D. K., DEMARIA, A., JR. & SORENSEN,
H. T. 2013. Hospitalized prenatal and childhood infections and obesity in Danish male
conscripts. Ann Epidemiol, 23, 307-13.

COLE, T. 2004. Children grow and horses race: is the adiposity rebound a critical period for
later obesity? BMC pediatrics, 4, 6.

COLE, T. J. 1990. The LMS method for constructing normalized growth standards. Eur J Clin
Nutr, 44, 45-60.

269



COLE, T. J., FREEMAN, J. V. & PREECE, M. A. 1995. Body mass index reference curves for the
UK, 1990. Archives of Disease in Childhood, 73, 25.

COLE, T. J., WILLIAMS, A. F. & WRIGHT, C. M. 2011. Revised birth centiles for weight, length
and head circumference in the UK-WHO growth charts. Ann Hum Biol, 38.

COOK, D. 2015. CCMATCH: Stata module to match cases and controls using specified
variables.

COUSINEAU, D. & CHARTIER, S. 2010. Outliers detection and treatment: a review.
International Journal of Psychological Research, 3, 58-67.

COX, L. M. & BLASER, M. J. 2014. Antibiotics in early life and obesity. Nature Reviews
Endocrinology, 11, 182.

CRAIG, R., MINDELL, J. & BOODHNA, G. 2014. Health Survey for England, 2013.

CRAIGIE, A. M., LAKE, A. A, KELLY, S. A., ADAMSON, A.J. & MATHERS, J. C. 2011. Tracking of
obesity-related behaviours from childhood to adulthood: A systematic review.
Maturitas, 70, 266-284.

CROWTHER, C. A, HILLER, J. E., MOSS, J. R., MCPHEE, A. J., JEFFRIES, W. S. & ROBINSON, J. S.
2005. Effect of treatment of gestational diabetes mellitus on pregnancy outcomes.
New England Journal of Medicine, 352, 2477-2486.

CURHAN, G. C., CHERTOW, G. M., WILLETT, W. C., SPIEGELMAN, D., COLDITZ, G. A.,
MANSON, J. E., SPEIZER, F. E. & STAMPFER, M. J. 1996. Birth weight and adult
hypertension and obesity in women. Circulation, 94, 1310-5.

CUTLER, D. M., LLERAS-MUNEY, A. & VOGL, T. 2008. Socioeconomic status and health:
dimensions and mechanisms. National Bureau of Economic Research.

CYPESS, A. M., LEHMAN, S., WILLIAMS, G., TAL, |, RODMAN, D., GOLDFINE, A. B., KUO, F. C,,
PALMER, E. L., TSENG, Y.-H. & DORIA, A. 2009. Identification and importance of
brown adipose tissue in adult humans. New England Journal of Medicine, 360, 1509-
1517.

DABELEA, D. & CRUME, T. 2011. Maternal Environment and the Transgenerational Cycle of
Obesity and Diabetes. Diabetes, 60, 1849-1855.

DABELEA, D., HANSON, R. L., LINDSAY, R. S., PETTITT, D. J., IMPERATORE, G., GABIR, M. M.,
ROUMAIN, J., BENNETT, P. H. & KNOWLER, W. C. 2000. Intrauterine exposure to
diabetes conveys risks for type 2 diabetes and obesity: a study of discordant sibships.
Diabetes, 49, 2208-2211.

DALTON, M., CAMERON, A. J., ZIMMET, P. Z., SHAW, J. E., JOLLEY, D., DUNSTAN, D. W. &
WELBORN, T. A. 2003. Waist circumference, waist-hip ratio and body mass index and
their correlation with cardiovascular disease risk factors in Australian adults. J Intern
Med, 254, 555-63.

DANCAUSE, K. N., LAPLANTE, D. P., FRASER, S., BRUNET, A., CIAMPI, A., SCHMITZ, N. & KING,
S. 2012. Prenatal exposure to a natural disaster increases risk for obesity in 5
[frac12]-year-old children. Pediatric research, 71, 126-131.

DANCAUSE, K. N., LAPLANTE, D. P., HART, K. J., X, HARA, M. W., ELGBEILI, G., BRUNET, A. &
KING, S. 2015. Prenatal Stress due to a Natural Disaster Predicts Adiposity in
Childhood: The lowa Flood Study. Journal of Obesity, 2015, 10.

DANESE, A. & J LEWIS, S. 2017. Psychoneuroimmunology of Early-Life Stress: The Hidden
Wounds of Childhood Trauma? Neuropsychopharmacology : official publication of the
American College of Neuropsychopharmacology, 42, 99-114.

DARMASSEELANE, K., HYDE, M. J., SANTHAKUMARAN, S., GALE, C. & MODI, N. 2014. Mode
of Delivery and Offspring Body Mass Index, Overweight and Obesity in Adult Life: A
Systematic Review and Meta-Analysis. PLOS ONE, 9, e87896.

270



DAVEY-SMITH, G. 2008. Assessing Intrauterine Influences on Offspring Health Outcomes:
Can Epidemiological Studies Yield Robust Findings? Basic & Clinical Pharmacology &
Toxicology, 102, 245-256.

DAVIS, L., BARNES, A. J., GROSS, A. C., RYDER, J. R. & SHLAFER, R. J. 2019. Adverse Childhood
Experiences and Weight Status among Adolescents. The Journal of Pediatrics, 204,
71-76.el.

DE VRIES, S. I., BAKKER, I., HOPMAN-ROCK, M., HIRASING, R. A. & VAN MECHELEN, W. 2006.
Clinimetric review of motion sensors in children and adolescents. J Clin Epidemiol, 59,
670-80.

DEDEURWAERDER, S., DEFRANCE, M., BIZET, M., CALONNE, E., BONTEMPI, G. & FUKS, F.
2014. A comprehensive overview of Infinium HumanMethylation450 data processing.
Briefings in bioinformatics, 15, 929-941.

DEDEURWAERDER, S., DEFRANCE, M., CALONNE, E., DENIS, H., SOTIRIOU, C. & FUKS, F. 2011.
Evaluation of the Infinium Methylation 450K technology. Epigenomics, 3, 771-784.

DEHGHAN, M. & MERCHANT, A. T. 2008. Is bioelectrical impedance accurate for use in large
epidemiological studies? Nutrition Journal, 7, 26-26.

DEMETRIOU, C. A., VAN VELDHOVEN, K., RELTON, C., STRINGHINI, S., KYRIACOU, K. & VINEIS,
P. 2015. Biological embedding of early-life exposures and disease risk in humans: a
role for DNA methylation. European journal of clinical investigation, 45, 303-332.

DEMILLE, D. & GROSE, J. H. 2013. PAS kinase: a nutrient sensing regulator of glucose
homeostasis. IUBMB life, 65, 921-929.

DERKS, S., CLEVEN, A. H., MELOTTE, V., SMITS, K. M., BRANDES, J. C., AZAD, N., VAN
CRIEKINGE, W., DE BRUINE, A. P., HERMAN, J. G. & VAN ENGELAND, M. 2014,
Emerging evidence for CHFR as a cancer biomarker: from tumor biology to precision
medicine. Cancer and Metastasis Reviews, 33, 161-171.

DESAI, M., CROWTHER, N. J., LUCAS, A. & HALES, C. N. 1996. Organ-selective growth in the
offspring of protein-restricted mothers. BrJ Nutr, 76, 591-603.

DESAI, M., GAYLE, D., BABU, J. & ROSS, M. G. 2005. Programmed obesity in intrauterine
growth-restricted newborns: modulation by newborn nutrition. Am J Physiol Regul
Integr Comp Physiol, 288, R91-6.

DESAI, M. & ROSS, M. G. 2011. Fetal Programming of Adipose Tissue: Effects of IUGR and
Maternal Obesity/High Fat Diet. Seminars in reproductive medicine, 29, 237-245.

DEWEY, K. G. 2003. Is breastfeeding protective against child obesity? Journal of human
lactation : official journal of International Lactation Consultant Association, 19, 9-18.

DHURANDHAR, N. V. 2011. A framework for identification of infections that contribute to
human obesity. The Lancet Infectious Diseases, 11, 963-969.

DHURANDHAR, N. V., KULKARNI, P. R., AJINKYA, S. M., SHERIKAR, A. A. & ATKINSON, R. L.
1997. Association of adenovirus infection with human obesity. Obesity research, 5,
464-469.

DICK, K. J., NELSON, C. P., TSAPROUNI, L., SANDLING, J. K., AISSI, D., WAHL, S., MEDURI, E.,
MORANGE, P. E., GAGNON, F., GRALLERT, H., WALDENBERGER, M., PETERS, A.,
ERDMANN, J., HENGSTENBERG, C., CAMBIEN, F., GOODALL, A. H.,, OUWEHAND, W.
H., SCHUNKERT, H., THOMPSON, J. R., SPECTOR, T. D., GIEGER, C., TREGOUET, D. A,,
DELOUKAS, P. & SAMANI, N. J. 2014. DNA methylation and body-mass index: a
genome-wide analysis. Lancet, 383, 1990-8.

DIETHELM, K., BOLZENIUS, K., CHENG, G., REMER, T. & BUYKEN, A. E. 2011. Longitudinal
associations between reported sleep duration in early childhood and the
development of body mass index, fat mass index and fat free mass index until age 7.
Int J Pediatr Obes, 6, e114-23.

271



DIETZ, P. M., HOMA, D., ENGLAND, L. J., BURLEY, K., TONG, V. T., DUBE, S. R. & BERNERT, J. T.
2010. Estimates of nondisclosure of cigarette smoking among pregnant and
nonpregnant women of reproductive age in the United States. American journal of
epidemiology, 173, 355-359.

DIETZ, W. H. 1994. Critical periods in childhood for the development of obesity. The
American Journal of Clinical Nutrition, 59, 955-9.

DINNO, A. 2015. dunn. test: Dunn’s test of multiple comparisons using rank sums. R package
version, 1.

DINSDALE, H., RIDLER, C. & ELLS, L. 2011. A simple guide to classifying body mass index in
children. National Obesity Observatory: Oxford.

DODD, J. M., TURNBULL, D., MCPHEE, A. J., DEUSSEN, A. R., GRIVELL, R. M., YELLAND, L. N.,
CROWTHER, C. A., WITTERT, G., OWENS, J. A. & ROBINSON, J. S. 2014. Antenatal
lifestyle advice for women who are overweight or obese: LIMIT randomised trial. BMJ
: British Medical Journal, 348, g1285.

DRAKE, A. J., WALKER, B. R. & SECKL, J. R. 2005. Intergenerational consequences of fetal
programming by in utero exposure to glucocorticoids in rats. American Journal of
Physiology-Regulatory, Integrative and Comparative Physiology, 288, R34-R38.

DRUET, C., STETTLER, N., SHARP, S., SIMMONS, R. K., COOPER, C., DAVEY SMITH, G.,
EKELUND, U., LEVY-MARCHAL, C., JARVELIN, M.-R., KUH, D. & ONG, K. K. 2012.
Prediction of childhood obesity by infancy weight gain: an individual-level meta-
analysis. Paediatric and Perinatal Epidemiology, 26, 19-26.

DU, P., ZHANG, X., HUANG, C.-C., JAFARI, N., KIBBE, W. A., HOU, L. & LIN, S. M. 2010.
Comparison of Beta-value and M-value methods for quantifying methylation levels by
microarray analysis. BMC bioinformatics, 11, 587.

DUNN, E. C., SOARE, T. W., ZHU, Y., SIMPKIN, A. J., SUDERMAN, M. J., KLENGEL, T., SMITH, A.
D. A. C., RESSLER, K. J. & RELTON, C. L. 2019. Sensitive Periods for the Effect of
Childhood Adversity on DNA Methylation: Results From a Prospective, Longitudinal
Study. Biological Psychiatry, 85, 838-849.

DUNN, 0. J. 1964. Multiple comparisons using rank sums. Technometrics, 6, 241-252.

EGELAND, G. M., IGLAND, J., VOLLSET, S. E., SULO, G., EIDE, G. E. & TELL, G. S. 2016. High
population attributable fractions of myocardial infarction associated with waist—hip
ratio. Obesity, 24, 1162-1169.

EISEN, S. A., LYONS, M. J., GOLDBERG, J. & TRUE, W. R. 1993. The impact of cigarette and
alcohol consumption on weight and obesity: an analysis of 1911 monozygotic male
twin pairs. Archives of internal medicine, 153, 2457-2463.

EKELUND, U., ONG, K., LINNE, Y., NEOVIUS, M., BRAGE, S., DUNGER, D. B., WAREHAM, N. J. &
ROSSNER, S. 2006. Upward weight percentile crossing in infancy and early childhood
independently predicts fat mass in young adults: the Stockholm Weight Development
Study (SWEDES). The American Journal of Clinical Nutrition, 83, 324-330.

ELKS, C. E., LOOS, R. J., SHARP, S. J., LANGENBERG, C., RING, S. M., TIMPSON, N. J., NESS, A.
R., DAVEY SMITH, G., DUNGER, D. B., WAREHAM, N. J. & ONG, K. K. 2010a. Genetic
markers of adult obesity risk are associated with greater early infancy weight gain
and growth. PLoS Med, 7, e1000284.

ELKS, C. E., LOOS, R. J. F., SHARP, S. J., LANGENBERG, C., RING, S. M., TIMPSON, N. J., NESS, A.
R., DAVEY SMITH, G., DUNGER, D. B., WAREHAM, N. J. & ONG, K. K. 2010b. Genetic
Markers of Adult Obesity Risk Are Associated with Greater Early Infancy Weight Gain
and Growth. PLOS Medicine, 7, e1000284.

ENTRINGER, S., BUSS, C., SWANSON, J. M., COOPER, D. M., WING, D. A., WAFFARN, F. &
WADHWA, P. D. 2012. Fetal programming of body composition, obesity, and

272



metabolic function: the role of intrauterine stress and stress biology. Journal of
nutrition and metabolism, 2012.

ENTRINGER, S., BUSS, C. & WADHWA, P. D. 2010. Prenatal stress and developmental
programming of human health and disease risk: concepts and integration of empirical
findings. Current Opinion in Endocrinology Diabetes and Obesity, 17, 507-516.

EOM, G. H., KIM, K., KIM, S.-M., KEE, H. J., KIM, J.-Y., JIN, H. M., KIM, J.-R., KIM, J. H., CHOE,
N. & KIM, K.-B. 2009. Histone methyltransferase PRDMS8 regulates mouse testis
steroidogenesis. Biochemical and biophysical research communications, 388, 131-
136.

ESPOSITO, E. A., JONES, M. J., DOOM, J. R., MACISAAC, J. L., GUNNAR, M. R. & KOBOR, M. S.
2016. Differential DNA methylation in peripheral blood mononuclear cells in
adolescents exposed to significant early but not later childhood adversity.
Development and Psychopathology, 28, 1385-1399.

ESPOSITO, S., PRETI, V., CONSOLO, S., NAZZARI, E. & PRINCIPI, N. 2012. Adenovirus 36
infection and obesity. Journal of Clinical Virology, 55, 95-100.

FAIRLEY, L., SANTORELLI, G., LAWLOR, D., BRYANT, M., BHOPAL, R., PETHERICK, E., SAHOTA,
P., GREENWOOD, D., HILL, A., CAMERON, N., BALL, H., BARBER, S. & WRIGHT, J.
2015a. The relationship between early life modifiable risk factors for childhood
obesity, ethnicity and body mass index at age 3years: findings from the Born in
Bradford birth cohort study. BMC Obesity, 2, 9.

FAIRLEY, L., SANTORELLI, G., LAWLOR, D. A., BRYANT, M., BHOPAL, R., PETHERICK, E. S.,
SAHOTA, P., GREENWOOD, D. C,, HILL, A. J., CAMERON, N., BALL, H., BARBER, S. &
WRIGHT, J. 2015b. The relationship between early life modifiable risk factors for
childhood obesity, ethnicity and body mass index at age 3 years: findings from the
Born in Bradford birth cohort study. BMC obesity, 2, 9-9.

FALL, C. H. D., SACHDEV, H. S., OSMOND, C., RESTREPO-MENDEZ, M. C., VICTORA, C,,
MARTORELL, R., STEIN, A. D., SINHA, S., TANDON, N., ADAIR, L., BAS, I., NORRIS, S. &
RICHTER, L. M. 2015. Association between maternal age at childbirth and child and
adult outcomes in the offspring: a prospective study in five low-income and middle-
income countries (COHORTS collaboration). The Lancet Global Health, 3, e366-e377.

FANG, F., HODGES, E., MOLARO, A., DEAN, M., HANNON, G. J. & SMITH, A. D. 2012. Genomic
landscape of human allele-specific DNA methylation. Proc Nat/ Acad Sci U S A, 109,
7332-7.

FARHANGI, M. A., KESHAVARZ, S.-A., ESHRAGHIAN, M., OSTADRAHIMI, A. & SABOOR-
YARAGHI, A.-A. 2013. White Blood Cell Count in Women: Relation to Inflammatory
Biomarkers, Haematological Profiles, Visceral Adiposity, and Other Cardiovascular
Risk Factors. Journal of Health, Population, and Nutrition, 31, 58-64.

FAROOQ, M. A., PARKINSON, K. N., ADAMSON, A. J., PEARCE, M. S., REILLY, J. K., HUGHES, A.
R., JANSSEN, X., BASTERFIELD, L. & REILLY, J. J. 2018. Timing of the decline in physical
activity in childhood and adolescence: Gateshead Millennium Cohort Study. British
Journal of Sports Medicine, 52, 1002.

FAROOQ], I. S. & O'RAHILLY, S. 2004. Monogenic Obesity in Humans. Annual Review of
Medicine, 56, 443-458.

FENTON, T. R., PREMII, S. S., AL-WASSIA, H. & SAUVE, R. S. 2014. Higher versus lower protein
intake in formula-fed low birth weight infants. Cochrane Database Syst Rev, 4,
CD003959.

FERNANDES, M., FERRARO, A., BASSOTTO, A., SANTOS, E. & SCHWARTSMAN, C. 2009.
Association between catch-up in the first years of life and overweight/obesity at 10

273



years of age, in a low-income community in Sao Paulo, Brazil. J Dev Orig Health Dis, 1,
s201-s205.

FIELDS, D. A. & DEMERATH, E. W. 2012. Relationship of insulin, glucose, leptin, IL-6 and TNF-
o in human breast milk with infant growth and body composition. Pediatric obesity,
7,304-312.

FILIBERTO, A. C., MACCANI, M. A., KOESTLER, D., WILHELM-BENARTZI, C., AVISSAR-WHITING,
M., BANISTER, C. E., GAGNE, L. A. & MARSIT, C. J. 2011. Birthweight is associated with
DNA promoter methylation of the glucocorticoid receptor in human placenta.
Epigenetics, 6, 566-72.

FINKELHOR, D., SHATTUCK, A., TURNER, H. & HAMBY, S. 2013. Improving the adverse
childhood experiences study scale. JAMA pediatrics, 167, 70-75.

FIORITO, G., POLIDORO, S., DUGUE, P.-A., KIVIMAKI, M., PONZI, E., MATULLO, G.,
GUARRERA, S., ASSUMMA, M. B., GEORGIADIS, P., KYRTOPOULOS, S. A., KROGH, V.,
PALLI, D., PANICO, S., SACERDOTE, C., TUMINO, R., CHADEAU-HYAM, M., STRINGHINI,
S., SEVERI, G., HODGE, A. M., GILES, G. G., MARIONI, R., KARLSSON LINNER, R.,
O’HALLORAN, A. M., KENNY, R. A,, LAYTE, R., BAGLIETTO, L., ROBINSON, O.,
MCCRORY, C., MILNE, R. L. & VINEIS, P. 2017. Social adversity and epigenetic aging: a
multi-cohort study on socioeconomic differences in peripheral blood DNA
methylation. Scientific Reports, 7, 16266.

FLEISCH, A. F., RIFAS-SHIMAN, S. L., KOUTRAKIS, P., SCHWARTZ, J. D., KLOOG, I., MELLY, S.,
COULL, B. A., ZANOBETTI, A., GILLMAN, M. W., GOLD, D. R. & OKEN, E. 2015. Prenatal
exposure to traffic pollution: associations with reduced fetal growth and rapid infant
weight gain. Epidemiology (Cambridge, Mass.), 26, 43-50.

FOG, C. K., GALLI, G. G. & LUND, A. H. 2012. PRDM proteins: important players in
differentiation and disease. Bioessays, 34, 50-60.

FORREST, C. B., BLOCK, J. P. & BAILEY, L. C. 2017. Antibiotics, infections, and childhood
obesity. The Lancet Diabetes & Endocrinology, 5, 2-3.

FORREST, L. F., HODGSON, S., PARKER, L. & PEARCE, M. S. 2011. The influence of childhood
IQ and education on social mobility in the Newcastle Thousand Families birth cohort.
BMC Public Health, 11, 895.

FORTIN, J.-P., LABBE, A., LEMIRE, M., ZANKE, B. W., HUDSON, T. J., FERTIG, E. J.,
GREENWOOD, C. M. & HANSEN, K. D. 2014. Functional normalization of 450k
methylation array data improves replication in large cancer studies. Genome biology,
15, 503.

FRANKENFIELD, D. C., ROWE, W. A., COONEY, R. N., SMITH, J. S. & BECKER, D. 2001. Limits of
body mass index to detect obesity and predict body composition. Nutrition, 17, 26-
30.

FRAYLING, T. M., TIMPSON, N. J., WEEDON, M. N., ZEGGINI, E., FREATHY, R. M., LINDGREN,
C. M., PERRY, J. R. B., ELLIOTT, K. S., LANGO, H., RAYNER, N. W., SHIELDS, B., HARRIES,
L. W., BARRETT, J. C., ELLARD, S., GROVES, C. J., KNIGHT, B., PATCH, A.-M., NESS, A.
R., EBRAHIM, S., LAWLOR, D. A., RING, S. M., BEN-SHLOMO, Y., JARVELIN, M.-R.,
SOVIO, U., BENNETT, A. J., MELZER, D., FERRUCCI, L., LOOS, R. J. F., BARROSO, I.,
WAREHAM, N. J., KARPE, F., OWEN, K. R., CARDON, L. R., WALKER, M., HITMAN, G. A,,
PALMER, C. N. A., DONEY, A.S. F.,, MORRIS, A. D., SMITH, G. D., HATTERSLEY, A. T. &
MCCARTHY, M. I. 2007. A common variant in the FTO gene is associated with body
mass index and predisposes to childhood and adult obesity. Science (New York, N.Y.),
316, 889-894.

FRAZIER, C. R. M., MASON, P., ZHUANG, X. & BEELER, J. A. 2008. Sucrose Exposure in Early
Life Alters Adult Motivation and Weight Gain. PLoS ONE, 3, e3221.

274



FREEDMAN, D. S., KHAN, L. K., DIETZ, W. H., SRINIVASAN, S. R. & BERENSON, G. S. 2001.
Relationship of childhood obesity to coronary heart disease risk factors in adulthood:
the Bogalusa Heart Study. Pediatrics, 108, 712-718.

FREEDMAN, D.S., KHAN, L. K., SERDULA, M. K., DIETZ, W. H., SRINIVASAN, S. R. & BERENSON,
G. S. 2002. Relation of age at menarche to race, time period, and anthropometric
dimensions: the Bogalusa Heart Study. Pediatrics, 110, e43-e43.

FREEDMAN, D.S., KHAN, L. K., SERDULA, M. K., DIETZ, W. H., SRINIVASAN, S. R. & BERENSON,
G. S. 2005a. Racial Differences in the Tracking of Childhood BMI to Adulthood.
Obesity Research, 13, 928-935.

FREEDMAN, D. S., WANG, J., MAYNARD, L. M., THORNTON, J. C., MEI, Z., PIERSON, R. N.,
DIETZ, W. H. & HORLICK, M. 2005b. Relation of BMI to fat and fat-free mass among
children and adolescents. International Journal of Obesity, 29, 1-8.

FRIAS, A. E. & GROVE, K. L. Obesity: a transgenerational problem linked to nutrition during
pregnancy. Seminars in reproductive medicine, 2012. NIH Public Access, 472.

FROMMER, M., MCDONALD, L. E., MILLAR, D.S., COLLIS, C. M., WATT, F., GRIGG, G. W,
MOLLOY, P. L. & PAUL, C. L. 1992. A genomic sequencing protocol that yields a
positive display of 5-methylcytosine residues in individual DNA strands. Proceedings
of the National Academy of Sciences, 89, 1827-1831.

FROY, 0. 2010. Metabolism and Circadian Rhythms—Implications for Obesity. Endocrine
Reviews, 31, 1-24.

FUCHS, F., MONET, B., DUCRUET, T., CHAILLET, N. & AUDIBERT, F. 2018. Effect of maternal
age on the risk of preterm birth: A large cohort study. PLOS ONE, 13, e0191002.

GAGNON-BARTSCH, J. A. & SPEED, T. P. 2012. Using control genes to correct for unwanted
variation in microarray data. Biostatistics, 13, 539-552.

GALLAGHER, D., HEYMSFIELD, S. B., HEO, M., JEBB, S. A.,, MURGATROQOYD, P. R. & SAKAMOTO,
Y. 2000. Healthy percentage body fat ranges: an approach for developing guidelines
based on body mass index. Am J Clin Nutr, 72, 694-701.

GALOBARDES, B., SHAW, M., LAWLOR, D. A., LYNCH, J. W. & SMITH, G. D. 2006. Indicators of
socioeconomic position (part 1). Journal of Epidemiology & Community Health, 60, 7-
12.

GAOQ, Y. J., HOLLOWAY, A. C,, ZENG, Z. H., LIM, G. E., PETRIK, J. J., FOSTER, W. G. & LEE, R. M.
2005. Prenatal exposure to nicotine causes postnatal obesity and altered perivascular
adipose tissue function. Obes Res, 13, 687-92.

GARDNER, D. S., HOSKING, J., METCALF, B. S., JEFFERY, A. N., VOSS, L. D. & WILKIN, T. J.
2009. Contribution of early weight gain to childhood overweight and metabolic
health: a longitudinal study (EarlyBird 36). Pediatrics, 123, e67-73.

GARSON, G. D. 2008. Path analysis. from Statnotes: Topics in Multivariate Analysis.
Retrieved, 9, 2009.

GARSON, G. D. 2017. Mediation & moderation: Partial correlation and regression
approaches. Asheboro, NC: Statistical Associates Publishers.

GAYLOR, E. E., GOODLIN-JONES, B. L. & ANDERS, T. F. 2001. Classification of young children's
sleep problems: a pilot study. J Am Acad Child Adolesc Psychiatry, 40, 61-7.

GIBBS, B. G. & FORSTE, R. 2014. Socioeconomic status, infant feeding practices and early
childhood obesity. Pediatr Obes, 9, 135-46.

GIBBS, J. R., VAN DER BRUG, M. P., HERNANDEZ, D. G., TRAYNOR, B. J., NALLS, M. A,, LAI, S.-
L., AREPALLI, S., DILLMAN, A., RAFFERTY, I. P., TRONCOSO, J., JOHNSON, R., ZIELKE, H.
R., FERRUCCI, L., LONGO, D. L., COOKSON, M. R. & SINGLETON, A. B. 2010. Abundant
Quantitative Trait Loci Exist for DNA Methylation and Gene Expression in Human
Brain. PLOS Genetics, 6, e1000952.

275



GILLMAN, M. W. & LUDWIG, D. S. 2013. How early should obesity prevention start? New
England Journal of Medicine, 369, 2173-2175.

GILLMAN, M. W., OAKEY, H., BAGHURST, P. A., VOLKMER, R. E., ROBINSON, J. S. &
CROWTHER, C. A. 2010. Effect of treatment of gestational diabetes mellitus on
obesity in the next generation. Diabetes Care, 33, 964-8.

GILLMAN, M. W., RICH-EDWARDS, J. W., HUH, S., MAJZOUSB, J. A., OKEN, E., TAVERAS, E. M.
& RIFAS-SHIMAN, S. L. 2006. Maternal Corticotropin-Releasing Hormone Levels
during Pregnancy and Offspring Adiposity. Obesity (Silver Spring, Md.), 14, 1647-
1653.

GILLMAN, M. W., RIFAS-SHIMAN, S. L., KLEINMAN, K., OKEN, E., RICH-EDWARDS, J. W. &
TAVERAS, E. M. 2008a. Developmental Origins of Childhood Overweight: Potential
Public Health Impact. Obesity, 16, 1651-1656.

GILLMAN, M. W., RIFAS-SHIMAN, S. L., KLEINMAN, K., OKEN, E., RICH-EDWARDS, J. W. &
TAVERAS, E. M. 2008b. Developmental origins of childhood overweight: potential
public health impact. Obesity, 16, 1651-1656.

GLOTZBACH, S. F., EDGAR, D. M., BOEDDIKER, M. & ARIAGNO, R. L. 1994. Biological
rhythmicity in normal infants during the first 3 months of life. Pediatrics, 94, 482-488.

GODFREY, K. M., REYNOLDS, R. M., PRESCOTT, S. L., NYIRENDA, M., JADDOE, V. W. V.,
ERIKSSON, J. G. & BROEKMAN, B. F. P. 2017. Influence of maternal obesity on the
long-term health of off spring. Lancet Diabetes & Endocrinology, 5, 53-64.

GODFREY, K. M., SHEPPARD, A., GLUCKMAN, P. D., LILLYCROP, K. A., BURDGE, G. C,,
MCLEAN, C., RODFORD, J., SLATER-JEFFERIES, J. L., GARRATT, E., CROZIER, S. R.,
EMERALD, B. S., GALE, C. R., INSKIP, H. M., COOPER, C. & HANSON, M. A. 2011.
Epigenetic gene promoter methylation at birth is associated with child's later
adiposity. Diabetes, 60, 1528-34.

GOISIS, A., REMES, H., BARCLAY, K., MARTIKAINEN, P. & MYRSKYLA, M. 2017. Advanced
Maternal Age and the Risk of Low Birth Weight and Preterm Delivery: a Within-
Family Analysis Using Finnish Population Registers. American Journal of
Epidemiology, 186, 1219-1226.

GONZALEZ-NAHM, S., MENDEZ, M. A., BENJAMIN-NEELON, S. E., MURPHY, S. K., HOGAN, V.
K., ROWLEY, D. L. & HOYO, C. 2018. DNA methylation of imprinted genes at birth is
associated with child weight status at birth, 1 year, and 3 years. Clinical Epigenetics,
10, 90.

GORE, L., TRICHE, T. J., FARRAR, J. E., WAI, D., LEGENDRE, C., GOODEN, G. C., LIANG, W. S,,
CARPTEN, J., LEE, D. & ALVARO, F. 2017. A multicenter, randomized study of
decitabine as epigenetic priming with induction chemotherapy in children with AML.
Clinical epigenetics, 9, 108.

GRONDAHL, M. L., YDING ANDERSEN, C., BOGSTAD, J., NIELSEN, F. C., MEINERTZ, H. &
BORUP, R. 2010. Gene expression profiles of single human mature oocytes in relation
to age. Hum Reprod, 25, 957-68.

GROOM, A,, POTTER, C., SWAN, D. C., FATEMIFAR, G., EVANS, D. M., RING, S. M., TURCOT,
V., PEARCE, M. S., EMBLETON, N. D., SMITH, G. D., MATHERS, J. C. & RELTON, C. L.
2012. Postnatal growth and DNA methylation are associated with differential gene
expression of the TACSTD2 gene and childhood fat mass. Diabetes, 61, 391-400.

GROSSMAN, M. 1972. The demand for health: a theoretical and empirical investigation.
NBER Books.

GUILLEMETTE, L., DURKSEN, A., RABBANI, R., ZARYCHANSKI, R., ABOU-SETTA, A. M.,
DUHAMEL, T. A., MCGAVOCK, J. M. & WICKLOW, B. 2017. Intensive gestational

276



glycemic management and childhood obesity: a systematic review and meta-analysis.
International Journal Of Obesity, 41, 999.

GUNGOR, D., PAUL, I., BIRCH, L. & BARTOK, C. 2010. Risky vs Rapid Growth in Infancy.
Archives of pediatrics & adolescent medicine, 164, 1091-7.

HAIGHT, T. H. & PIERCE, W. E. 1955. Effect of Prolonged Antibiotic Administration on the
Weight of Healthy Young Males: One Figure. The Journal of nutrition, 56, 151-161.

HALES, C. N. & BARKER, D. J. 1992. Type 2 (non-insulin-dependent) diabetes mellitus: the
thrifty phenotype hypothesis. Diabetologia, 35, 595-601.

HANSEN, K. 2015. llluminaHumanMethylation450kanno. ilmn12. hg19: annotation for
illumina’s 450k methylation arrays. R package, version 0.2, 1.

HANSON, M. A. & GLUCKMAN, P. 2014. Early developmental conditioning of later health and
disease: physiology or pathophysiology? Physiological reviews, 94, 1027-1076.
HANSON, M. D. & CHEN, E. 2007. Socioeconomic status and health behaviors in adolescence:

a review of the literature. Journal of behavioral medicine, 30, 263-285.

HARA, M., SAITOU, E., IWATA, F., OKADA, T. & HARADA, K. 2002. Waist-to-height ratio is the
best predictor of cardiovascular disease risk factors in Japanese schoolchildren.
Journal of atherosclerosis and thrombosis, 9, 127-132.

HARDER, T., BERGMANN, R., KALLISCHNIGG, G. & PLAGEMANN, A. 2005. Duration of
breastfeeding and risk of overweight: A meta-analysis. American Journal of
Epidemiology, 162, 397-403.

HARRIS, J. A. & BENEDICT, F. G. 1918. A Biometric Study of Human Basal Metabolism.
Proceedings of the National Academy of Sciences of the United States of America, 4,
370-373.

HARTWIG, F. P., DE MOLA, C. L., DAVIES, N. M., VICTORA, C. G. & RELTON, C. L. 2017.
Breastfeeding effects on DNA methylation in the offspring: A systematic literature
review. PloS one, 12, e0173070.

HARVEY, N. C., POOLE, J. R., JAVAID, M. K., DENNISON, E. M., ROBINSON, S., INSKIP, H. M.,
GODFREY, K. M., COOPER, C., AIHIE SAYER, A. & THE, S. W. S. S. G. 2007. PARENTAL
DETERMINANTS OF NEONATAL BODY COMPOSITION. The Journal of clinical
endocrinology and metabolism, 92, 523-526.

HAWKINS, S. S., OKEN, E. & GILLMAN, M. W. 2018. Early in the life course: Time for obesity
prevention. Handbook of Life Course Health Development. Springer, Cham.

HEALTH AND SOCIAL CARE INFORMATION CENTRE. 2014. Health Survey for England - 2013,
Trend tables. . Available: www.hscic.gov.uk/catalogue/PUB16077.

HEALTH AND SOCIAL CARE INFORMATION CENTRE. 2016. National Child Measurement
Programme - England, 2015-16. Available: http://digital.nhs.uk/catalogue/PUB22269.

HEERMAN, W. J., DALEY, M. F., BOONE-HEINONEN, J., RIFAS-SHIMAN, S. L., BAILEY, L. C,,
FORREST, C. B., YOUNG, J. G., GILLMAN, M. W., HORGAN, C. E., JANICKE, D. M.,
JENTER, C., KHARBANDA, E. O., LUNSFORD, D., MESSITO, M. J., TOH, S., BLOCK, J. P.,
ARTERBURN, D., CLEVELAND, L. P., FINKELSTEIN, J., FITZPATRICK, S. L., GOODMAN, A.,
HORBERG, M., INGBER, J., MURPHY, K., PEAY, H. L., RIVERA, P., REYNOLDS, J. S.,
STURTEVANT, J. L., TORRES, I|., ON BEHALF OF THE, P. A. & CHILDHOOD GROWTH
STUDY, G. 2019. Maternal antibiotic use during pregnancy and childhood obesity at
age 5 years. International Journal of Obesity, 43, 1202-1209.

HEERWAGEN, M. J. R., MILLER, M. R., BARBOUR, L. A. & FRIEDMAN, J. E. 2010. Maternal
obesity and fetal metabolic programming: a fertile epigenetic soil. American Journal
of Physiology-Regulatory, Integrative and Comparative Physiology, 299, R711-R722.

HEIJMANS, B. T., TOBI, E. W., STEIN, A. D., PUTTER, H., BLAUW, G. J., SUSSER, E. S.,
SLAGBOOM, P. E. & LUMEY, L. 2008a. Persistent epigenetic differences associated

277


file://///campus/home/home2014/b5057702/Thesis%20progress/www.hscic.gov.uk/catalogue/PUB16077
http://digital.nhs.uk/catalogue/PUB22269

with prenatal exposure to famine in humans. Proceedings of the National Academy of
Sciences, 105, 17046-17049.

HEIJMANS, B. T., TOBI, E. W., STEIN, A. D., PUTTER, H., BLAUW, G. J., SUSSER, E. S.,
SLAGBOOM, P. E. & LUMEY, L. H. 2008b. Persistent epigenetic differences associated
with prenatal exposure to famine in humans. Proceedings of the National Academy of
Sciences of the United States of America, 105, 17046-17049.

HEPPE, D. H. M., KIEFTE-DE JONG, J. C., DURMUS, B., MOLL, H. A., RAAT, H., HOFMAN, A. &
JADDOE, V. W. V. 2012. Parental, fetal, and infant risk factors for preschool
overweight: the Generation R Study. Pediatric Research, 73, 120.

HERAS, V. L., CLOONEY, A. G., RYAN, F. J., CABRERA-RUBIO, R., CASEY, P. G., HUESTON, C. M.,
PINHEIRO, J., RUDKIN, J. K., MELGAR, S., COTTER, P. D., HILL, C. & GAHAN, C. G. M.
2019. Short-term consumption of a high-fat diet increases host susceptibility to
Listeria monocytogenes infection. Microbiome, 7, 7.

HERMAN-GIDDENS, M. E., SLORA, E. J., WASSERMAN, R. C., BOURDONY, C. J., BHAPKAR, M.
V., KOCH, G. G. & HASEMEIER, C. M. 1997. Secondary sexual characteristics and
menses in young girls seen in office practice: a study from the Pediatric Research in
Office Settings network. Pediatrics, 99, 505-512.

HINKLE, S. N., ALBERT, P. S., MENDOLA, P., SJAARDA, L. A., YEUNG, E., BOGHOSSIAN, N. S. &
LAUGHON, S. K. 2014. The Association between Parity and Birthweight in a
Longitudinal Consecutive Pregnancy Cohort. Paediatric and Perinatal Epidemiology,
28,106-115.

HINRICHS, A. S., ZWEIG, A. S., RANEY, B. J., LEE, B. T., TYNER, C., LEE, C. M., GIBSON, D.,
BARBER, G. P., CLAWSON, H., GONZALEZ, J. N., CASPER, J., ROSENBLOOM, K. R.,
DIEKHANS, M., SPEIR, M. L., KUHN, R. M., KENT, W J., HAEUSSLER, M. & HAUSSLER, D.
2018. The UCSC Genome Browser database: 2019 update. Nucleic Acids Research, 47,
D853-D858.

HIRSCHLER, V., ARANDA, C., DE LUJAN CALCAGNO, M., MACCALINI, G. & JADZINSKY, M.
2005. Can waist circumference identify children with the metabolic syndrome?
Archives of pediatrics & adolescent medicine, 159, 740-744.

HISCOCK, H., SCALZO, K., CANTERFORD, L. & WAKE, M. 2011. Sleep duration and body mass
index in 0-7-year olds. Arch Dis Child, 96, 735-9.

HOCHBERG, Z., FEIL, R., CONSTANCIA, M., FRAGA, M., JUNIEN, C., CAREL, J. C., BOILEAU, P.,
LE BOUC, Y., DEAL, C. L., LILLYCROP, K., SCHARFMANN, R., SHEPPARD, A., SKINNER,
M., SZYF, M., WATERLAND, R. A., WAXMAN, D. J., WHITELAW, E., ONG, K. &
ALBERTSSON-WIKLAND, K. 2011. Child health, developmental plasticity, and
epigenetic programming. Endocrine reviews, 32, 159-224.

HOHWU, L., LI, J., OLSEN, J., SORENSEN, T. I. A. & OBEL, C. 2014. Severe Maternal Stress
Exposure Due to Bereavement before, during and after Pregnancy and Risk of
Overweight and Obesity in Young Adult Men: A Danish National Cohort Study. PLoS
ONE, 9, €97490.

HOLMES, E. E., JUNG, M., MELLER, S., LEISSE, A., SAILER, V., ZECH, J., MENGDEHL, M., GARBE,
L.-A., UHL, B., KRISTIANSEN, G. & DIETRICH, D. 2014. Performance evaluation of kits
for bisulfite-conversion of DNA from tissues, cell lines, FFPE tissues, aspirates,
lavages, effusions, plasma, serum, and urine. PloS one, 9, €93933-e93933.

HORVATH, S. 2013. DNA methylation age of human tissues and cell types. Genome Biol, 14,
R115.

HORVATH, S. & LEVINE, A. J. 2015. HIV-1 Infection Accelerates Age According to the
Epigenetic Clock. J Infect Dis, 212, 1563-73.

278



HOUSEMAN, E. A., ACCOMANDO, W. P., KOESTLER, D. C., CHRISTENSEN, B. C., MARSIT, C.J.,
NELSON, H. H., WIENCKE, J. K. & KELSEY, K. T. 2012. DNA methylation arrays as
surrogate measures of cell mixture distribution. BMC Bioinformatics, 13, 86.

HOUSEMAN, E. A., KILE, M. L., CHRISTIANI, D. C., INCE, T. A., KELSEY, K. T. & MARSIT, C. J.
2016. Reference-free deconvolution of DNA methylation data and mediation by cell
composition effects. BMC bioinformatics, 17, 259.

HOUSEMAN, E. A., MOLITOR, J. & MARSIT, C. J. 2014. Reference-free cell mixture
adjustments in analysis of DNA methylation data. Bioinformatics, 30, 1431-1439.

HOUTEPEN, L. C., HARDY, R., MADDOCK, J., KUH, D., ANDERSON, E. L., RELTON, C. L.,
SUDERMAN, M. J. & HOWE, L. D. 2018a. Childhood adversity and DNA methylation in
two population-based cohorts. Translational Psychiatry, 8, 266.

HOUTEPEN, L. C., HERON, J., SUDERMAN, M. J., FRASER, A., CHITTLEBOROUGH, C. R. &
HOWE, L. D. 2019. Adverse childhood experiences: associations with educational
attainment and adolescent health, and the role of family and socioeconomic factors.
Analysis of a prospective cohort study. bioRxiv, 612390.

HOUTEPEN, L. C., HERON, J., SUDERMAN, M. J., TILLING, K. & HOWE, L. D. 2018b. Adverse
childhood experiences in the children of the Avon Longitudinal Study of Parents and
Children (ALSPAC). Wellcome open research, 3, 106-106.

HOWE, L. D. 2012. Childhood obesity: socioeconomic inequalities and consequences for later
cardiovascular health. Longitudinal and Life Course Studies, 4, 4-16.

HOWE, L. D., MATIJASEVICH, A., TILLING, K., BRION, M.-J., LEARY, S. D., SMITH, G. D. &
LAWLOR, D. A. 2012. Maternal smoking during pregnancy and offspring trajectories
of height and adiposity: comparing maternal and paternal associations. International
Journal of Epidemiology, 41, 722-732.

HOWE, L. D., TILLING, K., GALOBARDES, B. & LAWLOR, D. A. 2013. Loss to Follow-up in
Cohort Studies Bias in Estimates of Socioeconomic Inequalities. Epidemiology, 24, 1-
9.

HOWE, L. D., TILLING, K., GALOBARDES, B., SMITH, G. D., NESS, A. R. & LAWLOR, D. A. 2011.
Socioeconomic disparities in trajectories of adiposity across childhood. Int J Pediatr
Obes, 6.

HUGHES, K., BELLIS, M. A., HARDCASTLE, K. A., SETHI, D., BUTCHART, A., MIKTON, C., JONES,
L. & DUNNE, M. P. 2017. The effect of multiple adverse childhood experiences on
health: a systematic review and meta-analysis. Lancet Public Health, 2, e356-e366.

HUMPHREYS, B. R. 2013. Dealing with zeros in economic data. University of Alberta,
Department of Economics, 1-27.

HUXLEY, R., MENDIS, S., ZHELEZNYAKOQV, E., REDDY, S. & CHAN, J. 2009. Body mass index,
waist circumference and waist:hip ratio as predictors of cardiovascular risk—a review
of the literature. European Journal Of Clinical Nutrition, 64, 16.

ILLINGWORTH, R., KERR, A., DESOUSA, D., JORGENSEN, H., ELLIS, P., STALKER, J., JACKSON,
D., CLEE, C., PLUMB, R., ROGERS, J., HUMPHRAY, S., COX, T., LANGFORD, C. & BIRD, A.
2008. A Novel CpG Island Set Identifies Tissue-Specific Methylation at Developmental
Gene Loci. PLOS Biology, 6, e22.

IP, S., CHUNG, M., RAMAN, G., CHEW, P., MAGULA, N., DEVINE, D., TRIKALINOS, T. & LAU, J.
2007. Breastfeeding and maternal and infant health outcomes in developed
countries. Evid Rep Technol Assess (Full Rep), 1-186.

ITO, S., D'ALESSIO, A. C., TARANOVA, 0. V., HONG, K., SOWERS, L. C. & ZHANG, Y. 2010. Role
of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass
specification. Nature, 466, 1129-U151.

279



IZQUIERDO, A. G. & CRUJEIRAS, A. B. 2019. Obesity-Related Epigenetic Changes After
Bariatric Surgery. Frontiers in endocrinology, 10, 232-232.

JACOB, C., BAIRD, J., BARKER, M., COOPER, C. & HANSON, M. 2015. The importance of a life
course approach to health: chronic disease risk from preconception through
adolescence and adulthood. Southampton: University of Southampton.

JACOBSSON, B., LADFORS, L. & MILSOM, I. 2004. Advanced maternal age and adverse
perinatal outcome. Obstetrics & Gynecology, 104, 727-733.

JAENISCH, R. & BIRD, A. 2003. Epigenetic regulation of gene expression: how the genome
integrates intrinsic and environmental signals. Nature genetics, 33, 245-254.

JAFFE, A. E. & IRIZARRY, R. A. 2014a. Accounting for cellular heterogeneity is critical in
epigenome-wide association studies. Genome Biology, 15, R31.

JAFFE, A. E. & IRIZARRY, R. A. 2014b. Accounting for cellular heterogeneity is critical in
epigenome-wide association studies. Genome Biol, 15, R31.

JAVED, A., JUMEAN, M., MURAD, M., OKORODUDU, D., KUMAR, S., SOMERS, V., SOCHOR, O.
& LOPEZ-JIMENEZ, F. 2015. Diagnostic performance of body mass index to identify
obesity as defined by body adiposity in children and adolescents: a systematic review
and meta-analysis. Pediatric obesity, 10, 234-244.

JENKINS, T. G., ASTON, K. I., PFLUEGER, C., CAIRNS, B. R. & CARRELL, D. T. 2014. Age-
Associated Sperm DNA Methylation Alterations: Possible Implications in Offspring
Disease Susceptibility. PLOS Genetics, 10, e1004458.

JEQUIER, E. & TAPPY, L. 1999. Regulation of body weight in humans. Physiological reviews,
79, 451-480.

JERNBERG, C., LOFMARK, S., EDLUND, C. & JANSSON, J. K. 2010. Long-term impacts of
antibiotic exposure on the human intestinal microbiota. Microbiology, 156, 3216-23.

JESPERSEN, N. Z., LARSEN, T. J., PEIJS, L., DAUGAARD, S., HOM@E, P., LOFT, A., DE JONG, J.,
MATHUR, N., CANNON, B. & NEDERGAARD, J. 2013. A classical brown adipose tissue
mRNA signature partly overlaps with brite in the supraclavicular region of adult
humans. Cell metabolism, 17, 798-805.

JOGLEKAR, C,, FALL, C., DESHPANDE, V., JOSHI, N., BHALERAO, A., SOLAT, V., DEOKAR, T.,
CHOUGULE, S., LEARY, S. & OSMOND, C. 2007. Newborn size, infant and childhood
growth, and body composition and cardiovascular disease risk factors at the age of 6
years: the Pune Maternal Nutrition Study. International journal of obesity, 31, 1534.

JOHANSSON, G., WIKMAN, A., AHREN, A.-M., HALLMANS, G. & JOHANSSON, I. 2007.
Underreporting of energy intake in repeated 24-hour recalls related to gender, age,
weight status, day of interview, educational level, reported food intake, smoking
habits and area of living. Public Health Nutrition, 4, 919-927.

JOHANSSON, G., WIKMAN, A., AHREN, A. M., HALLMANS, G. & JOHANSSON, I. 2001.
Underreporting of energy intake in repeated 24-hour recalls related to gender, age,
weight status, day of interview, educational level, reported food intake, smoking
habits and area of living. Public Health Nutrition, 4, 919-927.

JOHNSON, R. K., SOULTANAKIS, R. P. & MATTHEWS, D. E. 1998. Literacy and body fatness are
associated with underreporting of energy intake in US low-income women using the
multiple-pass 24-hour recall: a doubly labeled water study. J Am Diet Assoc, 98, 1136-
40.

JOHNSON, S. B., RILEY, A. W., GRANGER, D. A. & RIIS, J. 2013. The science of early life toxic
stress for pediatric practice and advocacy. Pediatrics, 131, 319-27.

JOHNSON, W,, LI, L., KUH, D. & HARDY, R. 2015. How Has the Age-Related Process of
Overweight or Obesity Development Changed over Time? Co-ordinated Analyses of

280



Individual Participant Data from Five United Kingdom Birth Cohorts. PLOS Medicine,
12,e1001828.

JOHNSON, W., WRIGHT, J. & CAMERON, N. 2012. The risk of obesity by assessing infant
growth against the UK-WHO charts compared to the UK90 reference: findings from
the Born in Bradford birth cohort study. BMC Pediatrics, 12, 1-9.

JOHNSON, W. E,, LI, C. & RABINOVIC, A. 2007. Adjusting batch effects in microarray
expression data using empirical Bayes methods. Biostatistics, 8, 118-127.

JOLLY, M. C., SEBIRE, N. J., HARRIS, J. P., REGAN, L. & ROBINSON, S. 2003. Risk factors for
macrosomia and its clinical consequences: a study of 350,311 pregnancies. European
Journal of Obstetrics & Gynecology and Reproductive Biology, 111, 9-14.

JONES, P. A. 1999. The DNA methylation paradox. Trends Genet, 15, 34-7.

JONES, P. A. & BAYLIN, S. B. 2002. The fundamental role of epigenetic events in cancer.
Nature reviews genetics, 3, 415.

JOUBERT, BONNIE R., FELIX, JANINE F., YOUSEFI, P., BAKULSKI, KELLY M., JUST, ALLAN C,,
BRETON, C., REESE, S. E., MARKUNAS, CHRISTINA A., RICHMOND, REBECCA C., XU, C.-
J., KUPERS, LEANNE K., OH, SAM S., HOYO, C., GRUZIEVA, O., SODERHALL, C., SALAS,
LUCAS A., BAIZ, N., ZHANG, H., LEPEULE, J., RUIZ, C., LIGTHART, S., WANG, T.,
TAYLOR, JACK A., DUUTS, L., SHARP, GEMMA C., JANKIPERSADSING, SOESMA A,,
NILSEN, ROY M., VAEZ, A., FALLIN, M. D., HU, D., LITONJUA, AUGUSTO A,,
FUEMMELER, BERNARD F., HUEN, K., KERE, J., KULL, I., MUNTHE-KAAS, MONICA C.,
GEHRING, U., BUSTAMANTE, M., SAUREL-COUBIZOLLES, MARIE J., QURAISHI,

BILAL M., REN, J., TOST, J., GONZALEZ, JUAN R., PETERS, MARJOLEIN J., HABERG,

SIRI E., XU, Z., VAN MEURS, JOYCE B., GAUNT, TOM R., KERKHOF, M., CORPELELJN, E.,
FEINBERG, ANDREW P., ENG, C., BACCARELLI, ANDREA A., BENJAMIN NEELON,

SARA E., BRADMAN, A., MERID, SIMON K., BERGSTROM, A., HERCEG, Z., HERNANDEZ-
VARGAS, H., BRUNEKREEF, B., PINART, M., HEUDE, B., EWART, S., YAQ, J,,
LEMONNIER, N., FRANCO, OSCAR H., WU, MICHAEL C., HOFMAN, A., MCARDLE, W,
VAN DER VLIES, P., FALAHI, F., GILLMAN, MATTHEW W., BARCELLOS, LISA F., KUMAR,
A., WICKMAN, M., GUERRA, S., CHARLES, M.-A., HOLLOWAY, J., AUFFRAY, C,,
TIEMEIER, HENNING W., SMITH, GEORGE D., POSTMA, D., HIVERT, M.-F., ESKENAZI,
B., VRUUHEID, M., ARSHAD, H., ANTO, JOSEP M., DEHGHAN, A., KARMAUS, W,
ANNESI-MAESANO, |., SUNYER, J., GHANTOUS, A., PERSHAGEN, G., HOLLAND, N.,
MURPHY, SUSAN K., DEMEO, DAWN L., BURCHARD, ESTEBAN G., LADD-ACOSTA, C,,
SNIEDER, H., NYSTAD, W., et al. 2016. DNA Methylation in Newborns and Maternal
Smoking in Pregnancy: Genome-wide Consortium Meta-analysis. The American
Journal of Human Genetics, 98, 680-696.

KAHVECI, B., MELEKOGLU, R., EVRUKE, I. C. & CETIN, C. 2018. The effect of advanced
maternal age on perinatal outcomes in nulliparous singleton pregnancies. BMC
Pregnancy and Childbirth, 18, 343.

KANG, H. 2013. The prevention and handling of the missing data. Korean journal of
anesthesiology, 64, 402-406.

KAPLOWITZ, P. B. 2008. Link between body fat and the timing of puberty. Pediatrics, 121,
S208-S217.

KATHIRVEL, M. & MAHADEVAN, S. 2016. The role of epigenetics in tuberculosis infection.
Epigenomics, 8, 537-549.

KAUFMAN, D., BANERIJI, M. A., SHORMAN, I., SMITH, E. L., COPLAN, J. D., ROSENBLUM, L. A.
& KRAL, J. G. 2007. Early-life stress and the development of obesity and insulin
resistance in juvenile bonnet macaques. Diabetes, 56, 1382-6.

281



KAUFMAN, J., MONTALVO-ORTIZ, J. L., HOLBROOK, H., O'LOUGHLIN, K., ORR, C., KEARNEY,
C., YANG, B.-Z.,, WANG, T., ZHAO, H., ALTHOFF, R., GARAVAN, H., GELERNTER, J. &
HUDZIAK, J. 2018. Adverse Childhood Experiences, Epigenetic Measures, and Obesity
in Youth. The Journal of Pediatrics, 202, 150-156.e3.

KAUSHAL, A., ZHANG, H., KARMAUS, W. J., RAY, M., TORRES, M. A,, SMITH, A. K. & WANG, S.-
L. 2017. Comparison of different cell type correction methods for genome-scale
epigenetics studies. BMC bioinformatics, 18, 216.

KEHOE, S. H., KRISHNAVENI, G. V., LUBREE, H. G., WILLS, A. K., GUNTUPALLI, A. M., VEENA, S.
R., BHAT, D. S., KISHORE, R., FALL, C. H. D., YAINIK, C. S. & KURPAD, A. 2011.
Prediction of body-fat percentage from skinfold and bio-impedance measurements in
Indian school children. European journal of clinical nutrition, 65, 1263-1270.

KELISHADI, R., HAGHDOOST, A. A., JAMSHIDI, F., ALIRAMEZANY, M. & MOQOSAZADEH, M.
2015. Low birthweight or rapid catch-up growth: which is more associated with
cardiovascular disease and its risk factors in later life? A systematic review and
cryptanalysis. Paediatrics and International Child Health, 35, 110-123.

KEMP, P. A. 2015. Private Renting After the Global Financial Crisis. Housing Studies, 30, 601-
620.

KENT, W. J., SUGNET, C. W., FUREY, T. S., ROSKIN, K. M., PRINGLE, T. H., ZAHLER, A. M. &
HAUSSLER, D. 2002. The human genome browser at UCSC. Genome research, 12,
996-1006.

KHANDELWAL, P., JAIN, V., GUPTA, A. K., KALAIVANI, M. & PAUL, V. K. 2014. Association of
early postnatal growth trajectory with body composition in term low birth weight
infants. Journal of developmental origins of health and disease, 5, 189-196.

KILPELAINEN, T. O., Ql, L., BRAGE, S., SHARP, S. J., SONESTEDT, E., DEMERATH, E., AHMAD,
T., MORA, S., KAAKINEN, M., SANDHOLT, C. H., HOLZAPFEL, C., AUTENRIETH, C. S,,
HYPPONEN, E., CAUCHI, S., HE, M., KUTALIK, Z., KUMARI, M., STANCAKOVA, A.,
MEIDTNER, K., BALKAU, B., TAN, J. T., MANGINO, M., TIMPSON, N. J., SONG, Y.,
ZILLIKENS, M. C., JABLONSKI, K. A., GARCIA, M. E., JOHANSSON, S., BRAGG-GRESHAM,
J.L, WU, Y., VAN VLIET-OSTAPTCHOUK, J. V., ONLAND-MORET, N. C., ZIMMERMANN,
E., RIVERA, N. V., TANAKA, T., STRINGHAM, H. M., SILBERNAGEL, G., KANONI, S.,
FEITOSA, M. F., SNITKER, S., RUIZ, J. R.,, METTER, J., LARRAD, M. T. M., ATALAY, M.,
HAKANEN, M., AMIN, N., CAVALCANTI-PROENCA, C., GR@NTVED, A., HALLMANS, G.,
JANSSON, J.-0., KUUSISTO, J., KAHONEN, M., LUTSEY, P. L., NOLAN, J. J., PALLA, L.,
PEDERSEN, O., PERUSSE, L., RENSTROM, F., SCOTT, R. A., SHUNGIN, D., SOVIO, U.,
TAMMELIN, T. H., RONNEMAA, T., LAKKA, T. A., UUSITUPA, M., RIOS, M. S.,
FERRUCCI, L., BOUCHARD, C., MEIRHAEGHE, A., FU, M., WALKER, M., BORECKI, I. B,,
DEDOUSSIS, G. V., FRITSCHE, A., OHLSSON, C., BOEHNKE, M., BANDINELLI, S., VAN
DUIIN, C. M., EBRAHIM, S., LAWLOR, D. A., GUDNASON, V., HARRIS, T. B., SORENSEN,
T. 1. A.,, MOHLKE, K. L., HOFMAN, A., UITTERLINDEN, A. G., TUOMILEHTO, J.,
LEHTIMAKI, T., RAITAKARI, O., ISOMAA, B., NJBLSTAD, P. R., FLOREZ, J. C., LIU, S.,
NESS, A., SPECTOR, T. D., TAI, E. S., FROGUEL, P., BOEING, H., LAAKSO, M., MARMOT,
M., et al. 2011. Physical Activity Attenuates the Influence of FTO Variants on Obesity
Risk: A Meta-Analysis of 218,166 Adults and 19,268 Children. PLOS Medicine, 8,
el001116.

KING, A. C., PARKINSON, K. N., ADAMSON, A. )., MURRAY, L., BESSON, H., REILLY, J. J.,
BASTERFIELD, L. & THE GATESHEAD MILLENNIUM STUDY CORE, T. 2011. Correlates of
objectively measured physical activity and sedentary behaviour in English children.
European Journal of Public Health, 21, 424-431.

282



KINT, S., DE SPIEGELAERE, W., DE KESEL, J., VANDEKERCKHOVE, L. & VAN CRIEKINGE, W.
2018. Evaluation of bisulfite kits for DNA methylation profiling in terms of DNA
fragmentation and DNA recovery using digital PCR. PloS one, 13, e0199091-
e0199091.

KISIEL, J. B., DUKEK, B. A., R, V. S. R. K., GHOZ, H. M., YAB, T. C., BERGER, C. K., TAYLOR, W. R,
FOOTE, P. H., GIAMA, N. H., ONYIRIOHA, K., ABDALLAH, M. A., BURGER, K. N.,
SLETTEDAHL, S. W., MAHONEY, D. W., SMYRK, T. C., LEWIS, J. T., GIAKOUMOPOULOS,
M., ALLAWI, H. T., LIDGARD, G. P., ROBERTS, L. R. & AHLQUIST, D. A. 2019.
Hepatocellular Carcinoma Detection by Plasma Methylated DNA: Discovery, Phase |
Pilot, and Phase Il Clinical Validation. Hepatology, 69, 1180-1192.

KLEINBAUM, D. G., KUPPER, L. L. & MORGENSTERN, H. 1982. Epidemiologic research:
principles and quantitative methods, John Wiley & Sons.

KLEINMAN, J. C. & MADANS, J. H. 1985. The effects of maternal smoking, physical stature,
and educational attainment on the incidence of low birth weight. Am J Epidemiol,
121, 843-55.

KLINGENBERG, L., CHRISTENSEN, L. B., HJIORTH, M. F., ZANGENBERG, S., CHAPUT, J. P.,
SIODIN, A., M@LGAARD, C. & MICHAELSEN, K. F. 2013. No relation between sleep
duration and adiposity indicators in 9—36 months old children: the SKOT cohort.
Pediatric obesity, 8, e14-e18.

KNAI, C., LOBSTEIN, T., DARMON, N., RUTTER, H. & MCKEE, M. 2012. Socioeconomic
Patterning of Childhood Overweight Status in Europe. International Journal of
Environmental Research and Public Health, 9, 1472.

KOENKER, R. & BASSETT JR, G. 1978. Regression quantiles. Econometrica: journal of the
Econometric Society, 33-50.

KOK, D. E. G., DHONUKSHE-RUTTEN, R. A. M., LUTE, C., HEIL, S. G., UITTERLINDEN, A. G., VAN
DER VELDE, N., VAN MEURS, J. B. J., VAN SCHOOR, N. M., HOOIVELD, G. J. E. J., DE
GROOT, L. C. P. G. M., KAMPMAN, E. & STEEGENGA, W. T. 2015. The effects of long-
term daily folic acid and vitamin B12 supplementation on genome-wide DNA
methylation in elderly subjects. Clinical Epigenetics, 7, 121.

KOLETZKO, B., BEYER, J., BRANDS, B., DEMMELMAIR, H., GROTE, V., HAILE, G., GRUSZFELD,
D., RZEHAK, P., SOCHA, P. & WEBER, M. 2013. Early influences of nutrition on
postnatal growth. Recent Advances in Growth Research: Nutritional, Molecular and
Endocrine Perspectives. Karger Publishers.

KOLETZKO, B., BROEKAERT, I., DEMMELMAIR, H., FRANKE, J., HANNIBAL, I., OBERLE, D.,
SCHIESS, S., BAUMANN, B. T. & VERWIED-JORKY, S. 2005. Protein intake in the first
year of life: a risk factor for later obesity? The E.U. childhood obesity project. Adv Exp
Med Biol, 569, 69-79.

KOLETZKO, B., VON KRIES, R., MONASTEROLO, R. C., SUBIAS, J. E., SCAGLIONI, S.,
GIOVANNINI, M., BEYER, J., DEMMELMAIR, H., ANTON, B. & GRUSZFELD, D. 2009.
Infant feeding and later obesity risk. Adv Exp Med Biol, 646.

KOUPIL, I. & TOIVANEN, P. 2007. Social and early-life determinants of overweight and
obesity in 18-year-old Swedish men. Int J Obes, 32, 73-81.

KRAMER, M. S., GUO, T., PLATT, R. W., VANILOVICH, I., SEVKOVSKAYA, Z., DZIKOVICH, I.,
MICHAELSEN, K. F. & DEWEY, K. 2004. Feeding effects on growth during infancy. J
Pediatr, 145, 600-5.

KRAMER, M. S., MATUSH, L., VANILOVICH, I., PLATT, R. W., BOGDANOVICH, N.,
SEVKOVSKAYA, Z., DZIKOVICH, I., SHISHKO, G., COLLET, J.-P., MARTIN, R. M., SMITH,
G. D., GILLMAN, M. W., CHALMERS, B., HODNETT, E. & SHAPIRO, S. 2009. A

283



Randomized Breast-feeding Promotion Intervention Did Not Reduce Child Obesity in
Belarus. The Journal of Nutrition, 139, 417S-421S.

KUH, D., HARDY, R., CHATURVEDI, N. & WADSWORTH, M. E. J. 2002. Birth weight, childhood
growth and abdominal obesity in adult life. International journal of obesity, 26, 40.

KUH, D. J. & COOPER, C. 1992. Physical activity at 36 years: patterns and childhood
predictors in a longitudinal study. J Epidemiol Community Health, 46, 114-9.

KUHLE, S., TONG, O. S. & WOOLCOTT, C. G. 2015. Association between caesarean section
and childhood obesity: a systematic review and meta-analysis. Obesity Reviews, 16,
295-303.

KUHLE, S. & WOOLCOTT, C. G. 2017. Caesarean section is associated with offspring obesity in
childhood and young adulthood. BMJ Evidence-Based Medicine, 22, 111-111.

KULESHOV, V., XIE, D., CHEN, R., PUSHKAREV, D., MA, Z., BLAUWKAMP, T., KERTESZ, M. &
SNYDER, M. 2014. Whole-genome haplotyping using long reads and statistical
methods. Nat Biotechnol, 32, 261-266.

KUPERS, L. K., MONNEREAU, C., SHARP, G. C., YOUSEFI, P., SALAS, L. A., GHANTOUS, A.,
PAGE, C. M., REESE, S. E., WILCOX, A. J., CZAMARA, D., STARLING, A. P.,, NOVOLOACA,
A., LENT, S., ROY, R., HOYO, C., BRETON, C. V., ALLARD, C., JUST, A. C., BAKULSKI, K.
M., HOLLOWAY, J. W., EVERSON, T. M., XU, C.-J.,, HUANG, R.-C., VAN DER PLAAT, D.
A., WIELSCHER, M., MERID, S. K., ULLEMAR, V., REZWAN, F. I., LAHTI, J., VAN
DONGEN, J., LANGIE, S. A. S., RICHARDSON, T. G., MAGNUS, M. C., NOHR, E. A., XU,
Z., DUUTS, L., ZHAO, S., ZHANG, W., PLUSQUIN, M., DEMEQ, D. L., SOLOMON, O.,
HEIMOVAARA, J. H,, JIMA, D. D., GAO, L., BUSTAMANTE, M., PERRON, P., WRIGHT, R.
0., HERTZ-PICCIOTTO, I., ZHANG, H., KARAGAS, M. R., GEHRING, U., MARSIT, C. J,,
BEILIN, L. J., VONK, J. M., JARVELIN, M.-R., BERGSTROM, A., ORTQVIST, A. K., EWART,
S., VILLA, P. M., MOORE, S. E., WILLEMSEN, G., STANDAERT, A.R. L,, HABERG, S.E,
S@RENSEN, T. I. A., TAYLOR, J. A., RAIKKONEN, K., YANG, I. V., KECHRIS, K., NAWROT,
T.S., SILVER, M. J., GONG, Y. Y., RICHIARDI, L., KOGEVINAS, M., LITONJUA, A. A,,
ESKENAZI, B., HUEN, K., MBAREK, H., MAGUIRE, R. L., DWYER, T., VRUHEID, M.,
BOUCHARD, L., BACCARELLI, A. A., CROEN, L. A.,, KARMAUS, W., ANDERSON, D., DE
VRIES, M., SEBERT, S., KERE, J., KARLSSON, R., ARSHAD, S. H., HAMALAINEN, E.,
ROUTLEDGE, M. N., BOOMSMA, D. I, FEINBERG, A. P., NEWSCHAFFER, C. J,,
GOVARTS, E., MOISSE, M., FALLIN, M. D., MELEN, E., PRENTICE, A. M., et al. 2019.
Meta-analysis of epigenome-wide association studies in neonates reveals widespread
differential DNA methylation associated with birthweight. Nature Communications,
10, 1893.

KURDYUKQV, S. & BULLOCK, M. 2016. DNA Methylation Analysis: Choosing the Right
Method. Biology, 5, 3.

KVAAVIK, E., TELL, G. S. & KLEPP, K.-1. 2003. Predictors and Tracking of Body Mass Index
From Adolescence Into Adulthood: Follow-up of 18 to 20 Years in the Oslo Youth
Study. Archives of Pediatrics & Adolescent Medicine, 157, 1212-1218.

LABONTE, B., SUDERMAN, M., MAUSSION, G., NAVARO, L., YERKO, V., MAHAR, I., BUREAU,
A., MECHAWAR, N., SZYF, M., MEANEY, M. J. & TURECKI, G. 2012. Genome-wide
Epigenetic Regulation by Early-Life TraumaGenome Epigenetic Regulation by Early-
Life Trauma. JAMA Psychiatry, 69, 722-731.

LAHTINEN, A., PUTTONEN, S., VANTTOLA, P., VIITASALO, K., SULKAVA, S., PERVJAKOVA, N,
JOENSUU, A., SALO, P., TOIVOLA, A., HARMA, M., MILANI, L., PEROLA, M. & PAUNIO,
T. 2019. A distinctive DNA methylation pattern in insufficient sleep. Scientific Reports,
9, 1193.

284



LAKDAWALLA, D. & PHILIPSON, T. 2009. The growth of obesity and technological change.
Economics and Human Biology, 7, 283-293.

LAKE, A., TOWNSHEND, T. G. & ALVANIDES, S. 2011. Obesogenic environments: complexities,
perceptions and objective measures, John Wiley & Sons.

LAM, L. L., EMBERLY, E., FRASER, H. B., NEUMANN, S. M., CHEN, E., MILLER, G. E. & KOBOR,
M. S. 2012. Factors underlying variable DNA methylation in a human community
cohort. Proceedings of the National Academy of Sciences, 109, 17253.

LAMB, M. M., DABELEA, D., YIN, X., OGDEN, L. G., KLINGENSMITH, G. J., REWERS, M. &
NORRIS, J. M. 2010. Early-life predictors of higher body mass index in healthy
children. Annals of Nutrition and Metabolism, 56, 16-22.

LAMONT, D., PARKER, L., WHITE, M., UNWIN, N., BENNETT, S. M. A., COHEN, M.,
RICHARDSON, D., DICKINSON, H. O., ADAMSON, A., ALBERTI, K. G. M. & CRAFT, A. W.
2000. Risk of cardiovascular disease measured by carotid intima-media thickness at
age 49-51: lifecourse study. BMJ, 320, 273-278.

LANIGAN, J. 2018. Prevention of overweight and obesity in early life. Proceedings of the
Nutrition Society, 77, 247-256.

LAURENT, L., WONG, E., LI, G., HUYNH, T., TSIRIGOS, A., ONG, C. T., LOW, H. M., SUNG, K. W.
K., RIGOUTSOS, I. & LORING, J. 2010. Dynamic changes in the human methylome
during differentiation. Genome research, 20, 320-331.

LEDDY, M. A., POWER, M. L. & SCHULKIN, J. 2008. The Impact of Maternal Obesity on
Maternal and Fetal Health. Reviews in Obstetrics and Gynecology, 1, 170-178.

LEE, S. Y. & GALLAGHER, D. 2008. Assessment methods in human body composition. Current
opinion in clinical nutrition and metabolic care, 11, 566.

LEE, Y. S. 2009. Consequences of childhood obesity. Ann Acad Med Singapore, 38, 75-7.

LEEK, J. T., SCHARPF, R. B., BRAVO, H. C., SIMCHA, D., LANGMEAD, B., JOHNSON, W. E.,
GEMAN, D., BAGGERLY, K. & IRIZARRY, R. A. 2010. Tackling the widespread and
critical impact of batch effects in high-throughput data. Nature Reviews Genetics, 11,
733.

LEEK, J. T. & STOREY, J. D. 2007. Capturing Heterogeneity in Gene Expression Studies by
Surrogate Variable Analysis. PLOS Genetics, 3, e161.

LEVINE, J. A. 2005. Measurement of energy expenditure. Public health nutrition, 8, 1123-
1132.

LI, D.-K., CHEN, H., FERBER, J. & ODOULI, R. 2017a. Infection and antibiotic use in infancy and
risk of childhood obesity: a longitudinal birth cohort study. The lancet Diabetes &
endocrinology, 5, 18-25.

LI, H. T., ZHOU, Y. B. & LIU, J. M. 2012. The impact of cesarean section on offspring
overweight and obesity: a systematic review and meta-analysis. International Journal
Of Obesity, 37, 893.

LI, J., OLSEN, J., VESTERGAARD, M., OBEL, C., BAKER, J. L. & S@®RENSEN, T. I. A. 2010. Prenatal
Stress Exposure Related to Maternal Bereavement and Risk of Childhood Overweight.
PLoS ONE, 5, e11896.

LI, L.-C. & DAHIYA, R. 2002. MethPrimer: designing primers for methylation PCRs.
Bioinformatics, 18, 1427-1431.

LI, L., HARDY, R., KUH, D., LO CONTE, R. & POWER, C. 2008. Child-to-adult body mass index
and height trajectories: a comparison of 2 British birth cohorts. Am J Epidemiol, 168,
1008-15.

LI, W., LIU, Q., DENG, X., CHEN, Y., LIU, S. & STORY, M. 2017b. Association between Obesity
and Puberty Timing: A Systematic Review and Meta-Analysis. International journal of
environmental research and public health, 14, 1266.

285



LIEBERMAN, E., GREMY, I., LANG, J. M. & COHEN, A. P. 1994. Low Birthweight at Term and
the Timing of Fetal Exposure to Maternal Smoking. American Journal of Public Health,
84,1127-1131.

LIEW, C.-C., MA, J., TANG, H.-C., ZHENG, R. & DEMPSEY, A. A. 2006. The peripheral blood
transcriptome dynamically reflects system wide biology: a potential diagnostic tool.
Journal of Laboratory and Clinical Medicine, 147, 126-132.

LINDGREN, G., STRANDELL, A., COLE, T., HEALY, M. & TANNER, J. 1995. Swedish population
reference standards for height, weight and body mass index attained at 6 to 16 years
(girls) or 19 years (boys). Acta Paediatrica, 84, 1019-1028.

LIU, Y., ARYEE, M. J., PADYUKOQV, L., FALLIN, M. D., HESSELBERG, E., RUNARSSON, A.,
REINIUS, L., ACEVEDO, N., TAUB, M., RONNINGER, M., SHCHETYNSKY, K., SCHEYNIUS,
A., KERE, J., ALFREDSSON, L., KLARESKOG, L., EKSTROM, T. J. & FEINBERG, A. P. 2013a.
Epigenome-wide association data implicate DNA methylation as an intermediary of
genetic risk in rheumatoid arthritis. Nature Biotechnology, 31, 142.

LIU, Y., HOYO, C., MURPHY, S., HUANG, Z., OVERCASH, F., THOMPSON, J., BROWN, H. &
MURTHA, A. P. 2013b. DNA methylation at imprint regulatory regions in preterm
birth and infection. American journal of obstetrics and gynecology, 208, 395.e1-
395.e3957.

LIU,Y.J.,, GUO, Y. F.,ZHANG, L. S., PEI, Y. F,, YU, N,, YU, P., PAPASIAN, C. J. & DENG, H. W.
2010. Biological pathway-based genome-wide association analysis identified the
vasoactive intestinal peptide (VIP) pathway important for obesity. Obesity, 18, 2339-
2346.

LLEWELLYN, A., SIMMONDS, M., OWEN, C. G. & WOOLACOTT, N. 2016. Childhood obesity as
a predictor of morbidity in adulthood: a systematic review and meta-analysis. Obesity
Reviews, 17, 56-67.

LOBSTEIN, T., BAUR, L. & UAUY, R. 2004. Obesity in children and young people: a crisis in
public health. Obes Rev, 5 Suppl 1, 4-104.

LOCKE, A. E., KAHALI, B., BERNDT, S. I., JUSTICE, A. E., PERS, T. H., DAY, F. R., POWELL, C.,
VEDANTAM, S., BUCHKOVICH, M. L. & YANG, J. 2015. Genetic studies of body mass
index yield new insights for obesity biology. Nature, 518, 197.

LOGUE, M. W., SMITH, A. K., WOLF, E. J., MANIATES, H., STONE, A., SCHICHMAN, S. A,,
MCGLINCHEY, R. E., MILBERG, W. & MILLER, M. W. 2017. The correlation of
methylation levels measured using lllumina 450K and EPIC BeadChips in blood
samples. Epigenomics, 9, 1363-1371.

LOOPSTRA, R. & LALOR, D. 2017. Financial insecurity, food insecurity, and disability: The
profile of people receiving emergency food assistance from The Trussell Trust
Foodbank Network in Britain. London: the Trussell trust.

LOOS, R. J. & YEQ, G. S. 2014. The bigger picture of FTO—the first GWAS-identified obesity
gene. Nature Reviews Endocrinology, 10, 51.

LOVASI, G. S., HUTSON, M. A., GUERRA, M. & NECKERMAN, K. M. 2009. Built Environments
and Obesity in Disadvantaged Populations. Epidemiologic Reviews, 31, 7-20.

LOZOFF, B., WOLF, A. W. & DAVIS, N. S. 1985. Sleep problems seen in pediatric practice.
Pediatrics, 75, 477-83.

MACHIELA, M. J. & CHANOCK, S. J. 2015. LDlink: a web-based application for exploring
population-specific haplotype structure and linking correlated alleles of possible
functional variants. Bioinformatics, 31, 3555-7.

MAIER, H. E., LOPEZ, R., SANCHEZ, N., NG, S., GRESH, L., OJEDA, S., BURGER-CALDERON, R.,
KUAN, G., HARRIS, E., BALMASEDA, A. & GORDON, A. 2018. Obesity Increases the

286



Duration of Influenza A Virus Shedding in Adults. The Journal of Infectious Diseases,
218, 1378-1382.

MAJUMDER, S., TAYLOR, W. R., FOOTE, P. H., BERGER, C. K., WU, C. W,, YAB, T. C,,
MAHONEY, D. W., BAMLET, W. R., BURGER, K. N., POSTIER, N., DOERING, K.,
LIDGARD, G. P., ALLAWI, H. T., KISIEL, J. B., PETERSEN, G. M., CHARI, S. T. &
AHLQUIST, D. A. 2019. Mo1370 - Pancreatic Cancer Detection by Plasma Assay of
Novel Methylated Dna Markers: A Case-Control Study. Gastroenterology, 156, S-754-
S-755.

MAKSIMOVIC, J., GORDON, L. & OSHLACK, A. 2012. SWAN: Subset-quantile within array
normalization for illumina infinium HumanMethylation450 BeadChips. Genome
biology, 13, R44.

MALASPINA, D., GILMAN, C. & KRANZ, T. M. 2015. Paternal age and mental health of
offspring. Fertility and sterility, 103, 1392-1396.

MANN, K. D. 2017. Whole grain intake, diet quality and cardio-metabolic health in two UK
cohorts. Newcastle University.

MARKUNAS, C. A., WILCOX, A. J., XU, Z., JOUBERT, B. R., HARLID, S., PANDURI, V., HABERG, S.
E., NYSTAD, W., LONDON, S. J., SANDLER, D. P., LIE, R. T., WADE, P. A. & TAYLOR, J. A.
2016. Maternal Age at Delivery Is Associated with an Epigenetic Signature in Both
Newborns and Adults. PloS one, 11, e0156361-e0156361.

MARMOT, M., ALLEN, J., GOLDBLATT, P., BOYCE, T., MCNEISH, D. & GRADY, M. 2010.
Strategic review of health inequalities in England post 2010 (Marmot review). Global
health equity group, UCL research department of epidemiology and public health
[Internet].

MARSEGLIA, L., MANTI, S., D’ANGELO, G., CUPPARI, C., SALPIETRO, V., FILIPPELLI, M.,
TROVATO, A., GITTO, E., SALPIETRO, C. & ARRIGO, T. 2015. Obesity and
breastfeeding: The strength of association. Women and Birth, 28, 81-86.

MARSHALL, W. A. & TANNER, J. M. 1969. Variations in pattern of pubertal changes in girls.
Archives of disease in childhood, 44, 291.

MARSHALL, W. A. & TANNER, J. M. 1970. Variations in the pattern of pubertal changes in
boys. Archives of disease in childhood, 45, 13-23.

MARSIT, C. J., MACCANI, M. A., PADBURY, J. F. & LESTER, B. M. 2012. Placental 11-beta
hydroxysteroid dehydrogenase methylation is associated with newborn growth and a
measure of neurobehavioral outcome. PloS one, 7, e33794.

MARTIN, M. A. & SELA, D. A. 2013. Infant gut microbiota: developmental influences and
health outcomes. Building babies. Springer.

MARTIN, R. M., KRAMER, M. S., PATEL, R., RIFAS-SHIMAN, S. L., THOMPSON, J., YANG, S,,
VILCHUCK, K., BOGDANOVICH, N., HAMEZA, M., TILLING, K. & OKEN, E. 2017. Effects
of Promoting Long-term, Exclusive Breastfeeding on Adolescent Adiposity, Blood
Pressure, and Growth Trajectories: A Secondary Analysis of a Randomized Clinical
Trial. JAMA Pediatr, 171, e170698.

MARTINO, D., KESPER, D. A., AMARASEKERA, M., HARB, H., RENZ, H. & PRESCOTT, S. 2014.
Epigenetics in immune development and in allergic and autoimmune diseases.
Journal of Reproductive Immunology, 104-105, 43-48.

MARTORELL-MARUGAN, J., GONZALEZ-RUMAYOR, V. & CARMONA-SAEZ, P. 2018. mCSEA:
Detecting subtle differentially methylated regions. bioRxiv, 293381.

MASSART, R., FREYBURGER, M., SUDERMAN, M., PAQUET, J., ELHELOU, J., BELANGER-
NELSON, E., RACHALSKI, A., KOUMAR, O. C., CARRIER, J., SZYF, M. & MONGRAIN, V.
2014. The genome-wide landscape of DNA methylation and hydroxymethylation in

287



response to sleep deprivation impacts on synaptic plasticity genes. Translational
Psychiatry, 4.

MAST, M., KORTZINGER, I., KONIG, E. & MULLER, M. J. 1998. Gender differences in fat mass
of 5-7-year old children. Int J Obes Relat Metab Disord, 22, 878-84.

MAST, M., LANGNASE, K., LABITZKE, K., BRUSE, U., PREUSS, U. & MULLER, M. 2002. Use of
BMI as a measure of overweight and obesity in a field study on 5-7 year old children.
European journal of nutrition, 41, 61-67.

MASUKUME, G., O'NEILL, S. M., BAKER, P. N., KENNY, L. C., MORTON, S. M. B. & KHASHAN, A.
S. 2018. The Impact of Caesarean Section on the Risk of Childhood Overweight and
Obesity: New Evidence from a Contemporary Cohort Study. Scientific reports, 8,
15113-15113.

MATHERS, J. C. & MCKAY, J. A. 2009. Epigenetics - potential contribution to fetal
programming. Advances in experimental medicine and biology, 646, 119-123.

MATSHA, T. E., KENGNE, A.-P., YAKO, Y. Y., HON, G. M., HASSAN, M. S. & ERASMUS, R. T.
2013. Optimal waist-to-height ratio values for cardiometabolic risk screening in an
ethnically diverse sample of South African urban and rural school boys and girls. PloS
one, 8,e71133-e71133.

MCANDREW, F., THOMPSON, J., FELLOWS, L., LARGE, A., SPEED, M. & RENFREW, M. J. 2012.
Infant feeding survey 2010. Leeds: Health and Social Care Information Centre.

MCCARTHY, H. D. & ASHWELL, M. 2006. A study of central fatness using waist-to-height
ratios in UK children and adolescents over two decades supports the simple message
— ‘keep your waist circumference to less than half your height’. International Journal
Of Obesity, 30, 988.

MCERLEAN, P., FAVORETO, S., COSTA, F. F., SHEN, J., QURAISHI, J., BIYASHEVA, A., COOPER,
J.J.,, SCHOLTENS, D. M., VANIN, E. F. & DE BONALDO, M. F. 2014. Human rhinovirus
infection causes different DNA methylation changes in nasal epithelial cells from
healthy and asthmatic subjects. BMC medical genomics, 7, 37.

MCGOWAN, P. O., SASAKI, A., D'ALESSIO, A. C., DYMOQV, S., LABONTE, B., SZYF, M., TURECKI,
G. & MEANEY, M. J. 2009. Epigenetic regulation of the glucocorticoid receptor in
human brain associates with childhood abuse. Nat Neurosci, 12, 342-8.

MCGREGOR, K., BERNATSKY, S., COLMEGNA, I., HUDSON, M., PASTINEN, T., LABBE, A. &
GREENWOOD, C. M. T. 2016. An evaluation of methods correcting for cell-type
heterogeneity in DNA methylation studies. Genome Biology, 17, 84.

MCKAY, J. A, XIE, L., MANUS, C., LANGIE, S. A., MAXWELL, R. J., FORD, D. & MATHERS, J. C.
2014. Metabolic effects of a high-fat diet post-weaning after low maternal dietary
folate during pregnancy and lactation. Mol Nutr Food Res, 58, 1087-97.

MCLAREN, L. 2007a. Socioeconomic Status and Obesity. Epidemiologic Reviews, 29, 29-48.

MCLAREN, L. 2007b. Socioeconomic status and obesity. Epidemiol Rev, 29, 29-48.

MCLAREN, L. & KUH, D. 2004. Women's body dissatisfaction, social class, and social mobility.
Social Science & Medicine, 58, 1575-1584.

MEANEY, M. J. & SZYF, M. 2005. Environmental programming of stress responses through
DNA methylation: life at the interface between a dynamic environment and a fixed
genome. Dialogues in clinical neuroscience, 7, 103-23.

MEREDITH-JONES, K. A., WILLIAMS, S. M. & TAYLOR, R. W. 2015. Bioelectrical impedance as
a measure of change in body composition in young children. Pediatr Obes, 10, 252-9.

MERSKY, J. P., JANCZEWSKI, C. E. & TOPITZES, J. 2017. Rethinking the measurement of
adversity: Moving toward second-generation research on adverse childhood
experiences. Child maltreatment, 22, 58-68.

288



METCALF, B. S., HOSKING, J., FREMEAUX, A. E., JEFFERY, A. N., VOSS, L. D. & WILKIN, T. J.
2011. BMI was right all along: taller children really are fatter (implications of making
childhood BMI independent of height) EarlyBird 48. Int J Obes (Lond), 35, 541-7.

MIFFLIN, M. D., ST JEOR, S. T., HILL, L. A., SCOTT, B. J., DAUGHERTY, S. A. & KOH, Y. 0. 1990.
A new predictive equation for resting energy expenditure in healthy individuals. The
American Journal of Clinical Nutrition, 51, 241-7.

MIKESKA, T., FELSBERG, J., HEWITT, C. A. & DOBROVIC, A. 2011. Analysing DNA methylation
using bisulphite pyrosequencing. Epigenetics Protocols. Springer.

MILL, J. & HEIJMANS, B. T. 2013. From promises to practical strategies in epigenetic
epidemiology. Nature Reviews Genetics, 14, 585.

MILLION, M., LAGIER, J. C., YAHAV, D. & PAUL, M. 2013. Gut bacterial microbiota and
obesity. Clin Microbiol Infect, 19, 305-13.

MIN, J., HEMANI, G., DAVEY SMITH, G., RELTON, C. L. & SUDERMAN, M. 2017. Meffil:
efficient normalisation and analysis of very large DNA methylation samples. bioRxiv.

MINE, T., TANAKA, T., NAKASONE, T., ITOKAZU, T., YAMAGATA, Z. & NISHIWAKI, Y. 2017.
Maternal smoking during pregnancy and rapid weight gain from birth to early
infancy. Journal of Epidemiology, 27, 112-116.

MISCHKE, M. & PLOSCH, T. 2013. More than just a gut instinct-the potential interplay
between a baby's nutrition, its gut microbiome, and the epigenome. Am J Physiol
Regul Integr Comp Physiol, 304, R1065-9.

MONASTA, L., BATTY, G. D., CATTANEO, A., LUTIJE, V., RONFANI, L., VAN LENTHE, F. J. &
BRUG, J. 2010. Early-life determinants of overweight and obesity: a review of
systematic reviews. Obes Rev, 11, 695-708.

MONTAGUE, C. T., FAROOQ|, I. S., WHITEHEAD, J. P., SOOS, M. A., RAU, H., WAREHAM, N. J.,
SEWTER, C. P., DIGBY, J. E., MOHAMMED, S. N., HURST, J. A., CHEETHAM, C. H.,
EARLEY, A. R., BARNETT, A. H., PRINS, J. B. & O'RAHILLY, S. 1997. Congenital leptin
deficiency is associated with severe early-onset obesity in humans. Nature, 387, 903-
908.

MOORCROFT, K. E., MARSHALL, J. L. & MCCORMICK, F. M. 2011. Association between timing
of introducing solid foods and obesity in infancy and childhood: A systematic review.
Maternal & Child Nutrition, 7, 3-26.

MOORE, A. M., XU, Z., KOLLI, R. T., WHITE, A. J., SANDLER, D. P. & TAYLOR, J. A. 2019.
Persistent epigenetic changes in adult daughters of older mothers. Epigenetics, 14,
467-476.

MOORE, S. E. 2016. Early life nutritional programming of health and disease in The Gambia.
Journal of Developmental Origins of Health and Disease, 7, 123-131.

MORALES, E., GROOM, A., LAWLOR, D. A. & RELTON, C. L. 2014. DNA methylation signatures
in cord blood associated with maternal gestational weight gain: results from the
ALSPAC cohort. BMC Res Notes, 7, 278.

MORALES, E., RODRIGUEZ, A., VALVI, D., INIGUEZ, C., ESPLUGUES, A., VIOQUE, J., MARINA, L.
S., JIMENEZ, A., ESPADA, M., DEHLI, C. R., FERNANDEZ-SOMOANO, A., VRIJHEID, M. &
SUNYER, J. 2015. Deficit of vitamin D in pregnancy and growth and overweight in the
offspring. Int J Obes, 39, 61-68.

MORTENSEN, L. H., DIDERICHSEN, F., ARNTZEN, A., GISSLER, M., CNATTINGIUS, S., SCHNOR,
0., DAVEY-SMITH, G. & ANDERSEN, A. N. 2008. Social inequality in fetal growth: a
comparative study of Denmark, Finland, Norway and Sweden in the period 1981—
2000. Journal of Epidemiology & Community Health, 62, 325-331.

289



MOSTAZIR, M., JEFFERY, A., VOSS, L. & WILKIN, T. 2015. Childhood obesity: evidence for
distinct early and late environmental determinants a 12-year longitudinal cohort
study (EarlyBird 62). Int J Obes, 39, 1057-1062.

MUELLER, N. T., WHYATT, R., HOEPNER, L., OBERFIELD, S., DOMINGUEZ-BELLO, M. G.,
WIDEN, E., HASSOUN, A., PERERA, F. & RUNDLE, A. 2015a. Prenatal exposure to
antibiotics, cesarean section and risk of childhood obesity. International journal of
obesity, 39, 665.

MUELLER, N. T., WHYATT, R., HOEPNER, L., OBERFIELD, S., DOMINGUEZ-BELLO, M. G.,
WIDEN, E. M., HASSOUN, A., PERERA, F. & RUNDLE, A. 2015b. Prenatal exposure to
antibiotics, cesarean section and risk of childhood obesity. International Journal of
Obesity, 39, 665-670.

MUHLHAUSLER, B. S., GIBSON, R. A. & MAKRIDES, M. 2010. Effect of long-chain
polyunsaturated fatty acid supplementation during pregnancy or lactation on infant
and child body composition: a systematic review. The American Journal of Clinical
Nutrition, 92, 857-863.

MULLIGAN, A. A, LUBEN, R. N., BHANIANI, A., PARRY-SMITH, D. J., O'CONNOR, L., KHAWAIJA,
A. P., FOROUHI, N. G., KHAW, K.-T., DICKINSON, A., WAREHAM, N. & NATOUR, J.
2014. A new tool for converting food frequency questionnaire data into nutrient and
food group values: FETA research methods and availability. BMJ Open, 4.

MUMBY, H. S, ELKS, C. E., LI, S., SHARP, S. J., KHAW, K.-T., LUBEN, R. N., WAREHAM, N. J.,
LOOS, R. J. F. & ONG, K. K. 2011. Mendelian Randomisation Study of Childhood BMI
and Early Menarche. Journal of obesity, 2011, 180729-180729.

MYINT, P. K., KWOK, C. S., LUBEN, R. N., WAREHAM, N. J. & KHAW, K.-T. 2014. Body fat
percentage, body mass index and waist-to-hip ratio as predictors of mortality and
cardiovascular disease. Heart, 100, 1613.

MYRSKYLA, M. & FENELON, A. 2012. Maternal Age and Offspring Adult Health: Evidence
From the Health and Retirement Study. Demography, 49, 1231-1257.

MYRSKYLA, M. & FENELON, A. 2012. Maternal Age and Offspring Adult Health: Evidence
From the Health and Retirement Study. Demography, 49, 10.1007/s13524-012-0132-
X.

NAMBIAR, S., HUGHES, I. & DAVIES, P. S. 2010. Developing waist-to-height ratio cut-offs to
define overweight and obesity in children and adolescents. Public Health Nutr, 13,
1566-74.

NEEL, J. V. 1962. Diabetes mellitus: a “thrifty” genotype rendered detrimental by “progress”?
American journal of human genetics, 14, 353.

NELSON, K. N., HUI, Q., RIMLAND, D., XU, K., FREIBERG, M. S., JUSTICE, A. C., MARCONI, V. C.
& SUN, Y. V. 2017. Identification of HIV infection-related DNA methylation sites and
advanced epigenetic aging in HIV-positive, treatment-naive U.S. veterans. AIDS
(London, England), 31, 571-575.

NEWMAN, A. M., LIU, C. L., GREEN, M. R., GENTLES, A. J., FENG, W., XU, Y., HOANG, C. D,,
DIEHN, M. & ALIZADEH, A. A. 2015. Robust enumeration of cell subsets from tissue
expression profiles. Nature methods, 12, 453.

NEWNHAM, J. P. 1991. Smoking in pregnancy. Fetal and Maternal Medicine Review, 3, 115-
132.

NHS DIGITAL 2016. National Child Measurement Programme, England, 2015/16 school year.

NHS DIGITAL 2017. National Child Measurement Programme England 2016/7 school year,.
19/10/2017 ed. https://files.digital.nhs.uk/publication/j/n/nati-chil-meas-prog-eng-
2016-2017-rep.pdf.

290


https://files.digital.nhs.uk/publication/j/n/nati-chil-meas-prog-eng-2016-2017-rep.pdf
https://files.digital.nhs.uk/publication/j/n/nati-chil-meas-prog-eng-2016-2017-rep.pdf

NILSSON, E. K., BOSTROM, A. E., MWINYI, J. & SCHIOTH, H. B. 2016. Epigenomics of Total
Acute Sleep Deprivation in Relation to Genome-Wide DNA Methylation Profiles and
RNA Expression. Omics-a Journal of Integrative Biology, 20, 334-342.

NISHITANI, S., PARETS, S. E., HAAS, B. W. & SMITH, A. K. 2018. DNA methylation analysis
from saliva samples for epidemiological studies. Epigenetics, 13, 352-362.

NOO. 2015. UK and Ireland prevalence and trends [Online]. Available:
http://www.noo.org.uk/NOO about obesity/inequalities#d6888 [Accessed
31/03/2016].

NORRIS, T., BANN, D., HARDY, R. & JOHNSON, W. 2019. Socioeconomic inequalities in
childhood-to-adulthood BMI tracking in three British birth cohorts. International
Journal of Obesity.

NOTHLING, J., MALAN-MULLER, S., ABRAHAMS, N., JOANNA HEMMINGS, S. M. & SEEDAT, S.
2019. Epigenetic alterations associated with childhood trauma and adult mental
health outcomes: A systematic review. World Journal of Biological Psychiatry.

NYBO ANDERSEN, A.-M. & URHOJ, S. K. 2017. Is advanced paternal age a health risk for the
offspring? Fertility and Sterility, 107, 312-318.

O'NEILL, D. 2015. Measuring obesity in the absence of a gold standard. Econ Hum Biol, 17,
116-28.

OAKLEY, L. L., RENFREW, M. J., KURINCZUK, J. J. & QUIGLEY, M. A. 2013. Factors associated
with breastfeeding in England: an analysis by primary care trust. BMJ Open, 3.

OBERMANN-BORST, S. A., EILERS, P. H. C., TOBI, E. W., DE JONG, F. H., SLAGBOOM, P. E.,
HEIJMANS, B. T. & STEEGERS-THEUNISSEN, R. P. M. 2013. Duration of breastfeeding
and gender are associated with methylation of the LEPTIN gene in very young
children. Pediatric Research, 74, 344.

OBERMANN-BORST, S. A., HEIJMANS, B. T., EILERS, P. H., TOBI, E. W., STEEGERS, E. A,,
SLAGBOOM, P. E. & STEEGERS-THEUNISSEN, R. P. 2012. Periconception maternal
smoking and low education are associated with methylation of INSIGF in children at
the age of 17 months. J Dev Orig Health Dis, 3, 315-20.

ODOM, G. J., MALLIK, S., CHEN, X., WANG, L., GAO, Z. & GOMEZ, L. 2018. An evaluation of
supervised methods for identifying differentially methylated regions in lllumina
methylation arrays.

OFFICE FOR NATIONAL STATISTICS 2017. Birth characteristics in England and Wales: 2016.
Office for National Statistics.

OH, Y. M., KWON, Y. E., KIM, J. M., BAE, S. J., LEE, B. K., YOO, S. J., CHUNG, C. H., DESHAIES,
R.J. & SEOL, J. H. 2009. Chfr is linked to tumour metastasis through the
downregulation of HDAC1. Nature Cell Biology, 11, 295.

OKEN, E., LEVITAN, E. B. & GILLMAN, M. W. 2008. Maternal smoking during pregnancy and
child overweight: systematic review and meta-analysis. International Journal of
Obesity, 32, 201-210.

ONG, K., KRATZSCH, J., KIESS, W., DUNGER, D. & TEAM, A. S. 2002a. Circulating IGF-I levels in
childhood are related to both current body composition and early postnatal growth
rate. The Journal of Clinical Endocrinology & Metabolism, 87, 1041-1044.

ONG, K. K. 2006. Size at birth, postnatal growth and risk of obesity. Hormone Research in
Paediatrics, 65, 65-69.

ONG, K. K. & LOOS, R. J. 2006a. Rapid infancy weight gain and subsequent obesity:
systematic reviews and hopeful suggestions. Acta Paediatr, 95.

ONG, K. K. & LOOS, R. J. F. 2006b. Rapid infancy weight gain and subsequent obesity:
Systematic reviews and hopeful suggestions. Acta Pzediatrica, 95, 904-908.

291


http://www.noo.org.uk/NOO_about_obesity/inequalities#d6888

ONG, K. K., PREECE, M. A., EMMETT, P. M., AHMED, M. L. & DUNGER, D. B. 2002b. Size at
birth and early childhood growth in relation to maternal smoking, parity and infant
breast-feeding: longitudinal birth cohort study and analysis. Pediatr Res, 52.

ONG, K. K. L., AHMED, M. L., EMMETT, P. M., PREECE, M. A. & DUNGER, D. B. 2000.
Association between postnatal catch-up growth and obesity in childhood:
prospective cohort study. BMJ, 320, 967-971.

ONG, K. K. L., PREECE, M. A., EMMETT, P. M., AHMED, M. L. & DUNGER, D. B. 2002c. Size at
Birth and Early Childhood Growth in Relation to Maternal Smoking, Parity and Infant
Breast-Feeding: Longitudinal Birth Cohort Study and Analysis. Pediatric Research, 52,
863.

ONS 2014. Adult smoking habits in Great Britain: 2014.
https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/healt
handlifeexpectancies/bulletins/adultsmokinghabitsingreatbritain/2014: Office for
National Statistics.

ONS 2015. Birth characteristics in England and Wales: 2015.
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages
/livebirths/bulletins/birthcharacteristicsinenglandandwales/2015: Office for National
Statistics.

ORTIZ, L., NAKAMURA, B., LI, X., BLUMBERG, B. & LUDERER, U. 2013. In Utero Exposure to
Benzo[a]pyrene Increases Adiposity and Causes Hepatic Steatosis in Female Mice,
and Glutathione Deficiency Is Protective. Toxicology letters, 223,
10.1016/j.toxlet.2013.09.017.

OWEN, C. G., MARTIN, R. M., WHINCUP, P. H., DAVEY-SMITH, G., GILLMAN, M. W. & COOK,
D. G. 2005a. The effect of breastfeeding on mean body mass index throughout life: a
quantitative review of published and unpublished observational evidence(1-3).
American Journal of Clinical Nutrition, 82, 1298-1307.

OWEN, C. G., MARTIN, R. M., WHINCUP, P. H., SMITH, G. D. & COOK, D. G. 2005b. Effect of
infant feeding on the risk of obesity across the life course: a quantitative review of
published evidence. Pediatrics, 115, 1367-77.

PAINTER, R. C., OSMOND, C., GLUCKMAN, P., HANSON, M., PHILLIPS, D. I. & ROSEBOOM, T. J.
2008. Transgenerational effects of prenatal exposure to the Dutch famine on
neonatal adiposity and health in later life. Bjog, 115, 1243-9.

PAPAS, M. A., ALBERG, A. J.,, EWING, R., HELZLSOUER, K. J., GARY, T. L. & KLASSEN, A. C.
2007. The built environment and obesity. Epidemiologic Reviews, 29, 129-143.

PARKER, J. D., SCHOENDOREF, K. C. & KIELY, J. L. 1994. Associations between measures of
socioeconomic status and low birth weight, small for gestational age, and premature
delivery in the United States. Annals of epidemiology, 4, 271-278.

PARKINSON, K. N., PEARCE, M. S., DALE, A., REILLY, J. J., DREWETT, R. F., WRIGHT, C. M,,
RELTON, C. L., MCARDLE, P., LE COUTEUR, A. S. & ADAMSON, A. J. 2011. Cohort
profile: the gateshead millennium study. International journal of epidemiology, 40,
308-317.

PARKINSON, K. N., REILLY, J. J., BASTERFIELD, L., REILLY, J. K., JANSSEN, X., JONES, A.R,,
CUTLER, L. R., LE COUTEUR, A. & ADAMSON, A. J. 2017. Mothers' perceptions of child
weight status and the subsequent weight gain of their children: a population-based
longitudinal study. Int J Obes (Lond), 41, 801-806.

PARMELEE, A. H., WENNER, W. H. & SCHULZ, H. R. 1964. Infant sleep patterns: from birth to
16 weeks of age. The Journal of pediatrics, 65, 576-582.

PARSONS, T. J., POWER, C., LOGAN, S. & SUMMERBELT, C. D. 1999. Childhood predictors of
adult obesity: a systematic review. International Journal of Obesity, 23.

292


https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/healthandlifeexpectancies/bulletins/adultsmokinghabitsingreatbritain/2014
https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/healthandlifeexpectancies/bulletins/adultsmokinghabitsingreatbritain/2014
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/livebirths/bulletins/birthcharacteristicsinenglandandwales/2015
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/livebirths/bulletins/birthcharacteristicsinenglandandwales/2015

PASCHOS, K. & ALLDAY, M. J. 2010. Epigenetic reprogramming of host genes in viral and
microbial pathogenesis. Trends in Microbiology, 18, 439-447.

PATEL, S. R. & HU, F. B. 2008. Short sleep duration and weight gain: a systematic review.
Obesity (Silver Spring), 16, 643-53.

PATTERSON, K., MOLLOY, L., QU, W. & CLARK, S. 2011. DNA methylation: bisulphite
modification and analysis. Journal of visualized experiments: JoVE.

PAUWELS, S., SYMONS, L., VANAUTGAERDEN, E.-L., GHOSH, M., DUCA, R. C., BEKAERT, B.,
FRESON, K., HUYBRECHTS, I., LANGIE, S. A. & KOPPEN, G. 2019. The Influence of the
Duration of Breastfeeding on the Infant’s Metabolic Epigenome. Nutrients, 11, 1408.

PEARCE, J. & LANGLEY-EVANS, S. C. 2013. The types of food introduced during
complementary feeding and risk of childhood obesity: a systematic review.
International Journal Of Obesity, 37, 477.

PEARCE, M. S., BASTERFIELD, L., MANN, K. D., PARKINSON, K. N., ADAMSON, A. J. & JOHN, J.
R.0.B.O.T.G. M. S. C.T. 2012a. Early Predictors of Objectively Measured Physical
Activity and Sedentary Behaviour in 8-10 Year Old Children: The Gateshead
Millennium Study. PLOS ONE, 7, e37975.

PEARCE, M. S., MANN, K. D., MARTIN-RUIZ, C., PARKER, L., WHITE, M., VON ZGLINICKI, T. &
ADAMS, J. 2012b. Childhood Growth, 1Q and Education as Predictors of White Blood
Cell Telomere Length at Age 49-51 Years: The Newcastle Thousand Families Study.
PLOS ONE, 7, e40116.

PEARCE, M. S., MCCONNELL, J. C,, POTTER, C., BARRETT, L. M., PARKER, L., MATHERS, J. C. &
RELTON, C. L. 2012c. Global LINE-1 DNA methylation is associated with blood
glycaemic and lipid profiles. International journal of epidemiology, 41, 210-217.

PEARCE, M. S., UNWIN, N. C., PARKER, L. & CRAFT, A. W. 2009. Cohort profile: the Newcastle
Thousand Families 1947 birth cohort. International journal of epidemiology, 38, 932-
937.

PENPRAZE, V., REILLY, J. J., MACLEAN, C. M., MONTGOMERY, C., KELLY, L. A., PATON, J. Y.,
AITCHISON, T. & GRANT, S. 2006. Monitoring of physical activity in young children:
how much is enough? Pediatric Exercise Science, 18, 483-491.

PEREZ-ESCAMILLA, R. & KAC, G. 2013. Childhood obesity prevention: a life-course
framework. International journal of obesity supplements, 3, S3-S5.

PETERS, T., PETERS, M. T., BIOCVIEWS DIFFERENTIALMETHYLATION, G.,
GENOMEANNOTATION, D., ONECHANNEL, T. & MULTIPLECOMPARISON, Q. 2016.
Package ‘DMRcate’.

PETERS, T. J., BUCKLEY, M. J., STATHAM, A. L., PIDSLEY, R., SAMARAS, K., V LORD, R., CLARK,
S.J. & MOLLOQY, P. L. 2015. De novo identification of differentially methylated regions
in the human genome. Epigenetics & Chromatin, 8, 6.

PETTITT, D. J., ALECK, K. A., BAIRD, H. R., CARRAHER, M. J., BENNETT, P. H. & KNOWLER, W.
C. 1988. Congenital susceptibility to NIDDM: role of intrauterine environment.
Diabetes, 37, 622-628.

PETTITT, D. J., BAIRD, H. R., ALECK, K. A., BENNETT, P. H. & KNOWLER, W. C. 1983. Excessive
obesity in offspring of Pima Indian women with diabetes during pregnancy. New
England Journal of Medicine, 308, 242-245.

PHE 2013. The Health Survey for England - 2012 trend tables. London: Health and Social Care
Information Centre.

PHE PUBLISHING. 2018. Trends in childhood BMI between 2006/07 and 2016/17 [Online].
Available:
https://app.box.com/s/og3q86agejc99okxe9xyvpfvo21xai21/file/306723044116
[Accessed].

293


https://app.box.com/s/og3q86aqejc99okxe9xyvpfvo21xai21/file/306723044116

PIDSLEY, R., Y WONG, C. C., VOLTA, M., LUNNON, K., MILL, J. & SCHALKWYK, L. C. 2013. A
data-driven approach to preprocessing Illumina 450K methylation array data. BMC
Genomics, 14, 293.

PIDSLEY, R., ZOTENKO, E., PETERS, T. J., LAWRENCE, M. G., RISBRIDGER, G. P., MOLLOY, P.,
VAN DJIK, S., MUHLHAUSLER, B., STIRZAKER, C. & CLARK, S. J. 2016. Critical evaluation
of the lllumina MethylationEPIC BeadChip microarray for whole-genome DNA
methylation profiling. Genome biology, 17, 208.

PIKHOLZ, C., SWINBURN, B. & METCALF, P. 2004. Under-reporting of energy intake in the
1997 National Nutrition Survey. N Z Med J, 117, U1079.

PISCHON, T., BOEING, H., HOFFMANN, K., BERGMANN, M., SCHULZE, M. B., OVERVAD, K.,
VAN DER SCHOUW, Y. T., SPENCER, E., MOONS, K. G., TJONNELAND, A., HALKJAER, J.,
JENSEN, M. K., STEGGER, J., CLAVEL-CHAPELON, F., BOUTRON-RUAULT, M. C.,
CHAIES, V., LINSEISEN, J., KAAKS, R., TRICHOPOULOU, A., TRICHOPOULOS, D., BAMIA,
C., SIERI, S., PALLI, D., TUMINO, R., VINEIS, P., PANICO, S., PEETERS, P. H., MAY, A. M.,
BUENO-DE-MESQUITA, H. B., VAN DUIJNHOVEN, F. J., HALLMANS, G., WEINEHALL, L.,
MANJER, J., HEDBLAD, B., LUND, E., AGUDO, A., ARRIOLA, L., BARRICARTE, A.,
NAVARRO, C., MARTINEZ, C., QUIROS, J. R., KEY, T., BINGHAM, S., KHAW, K. T.,
BOFFETTA, P., JENAB, M., FERRARI, P. & RIBOLI, E. 2008. General and abdominal
adiposity and risk of death in Europe. N Engl J Med, 359, 2105-20.

PLAGEMANN, A., HARDER, T., FRANKE, K. & KOHLHOFF, R. 2002. Long-Term Impact of
Neonatal Breast-Feeding on Body Weight and Glucose Tolerance in Children of
Diabetic Mothers. Diabetes Care, 25, 16-22.

PODSAKOFF, P. M., MACKENZIE, S. B. & PODSAKOFF, N. P. 2011. Sources of Method Bias in
Social Science Research and Recommendations on How to Control It. Annual Review
of Psychology, 63, 539-569.

POPKIN, B. M. 2001. The nutrition transition and obesity in the developing world. J Nutr,
131, 871s-873s.

POPKIN, B. M., ADAIR, L. S. & NG, S. W. 2012. Global nutrition transition and the pandemic of
obesity in developing countries. Nutr Rev, 70, 3-21.

PORTHA, B., CHAVEY, A. & MOVASSAT, J. 2011. Early-Life Origins of Type 2 Diabetes: Fetal
Programming of the Beta-Cell Mass. Experimental Diabetes Research, 2011, 16.

POULSEN, M. N., POLLAK, J., BAILEY-DAVIS, L., HIRSCH, A. G., GLASS, T. A. & SCHWARTZ, B. S.
2017. Associations of prenatal and childhood antibiotic use with child body mass
index at age 3 years. Obesity, 25, 438-444,

POULTON, R., CASPI, A., MILNE, B. J., THOMSON, W. M., TAYLOR, A., SEARS, M. R. &
MOFFITT, T. E. 2002. Association between children's experience of socioeconomic
disadvantage and adult health: a life-course study. The lancet, 360, 1640-1645.

POWELL, J. E., HENDERS, A. K., MCRAE, A. F., CARACELLA, A., SMITH, S., WRIGHT, M. J,,
WHITFIELD, J. B., DERMITZAKIS, E. T., MARTIN, N. G. & VISSCHER, P. M. 2012. The
Brisbane Systems Genetics Study: genetical genomics meets complex trait genetics.
PLoS One, 7, e35430.

POWER, C,, LI, L., MANOR, O. & DAVEY SMITH, G. 2003. Combination of low birth weight and
high adult body mass index: at what age is it established and what are its
determinants? Journal of Epidemiology and Community Health, 57, 969-973.

POWER, C., MANOR, O. & MATTHEWS, S. 1999. The duration and timing of exposure: effects
of socioeconomic environment on adult health. American Journal of Public Health,
89, 1059-1065.

PREGIBON, D. J. 1980. Data analytic methods for generalized linear models.

294



PRENTICE-DUNN, H. & PRENTICE-DUNN, S. 2012. Physical activity, sedentary behavior, and
childhood obesity: A review of cross-sectional studies. Psychology, Health &
Medicine, 17, 255-273.

PRENTICE, A. M. 1998. Body mass index standards for children: Are useful for clinicians but
not yet for epidemiologists. British Medical Journal Publishing Group.

PRENTICE, A. M. & JEBB, S. A. 2001. Beyond body mass index. Obesity Reviews, 2, 141-147.

PROSPECTIVE STUDIES, C. 2009. Body-mass index and cause-specific mortality in 900 000
adults: collaborative analyses of 57 prospective studies. The Lancet, 373, 1083-1096.

PROSPECTIVE STUDIES COLLABORATION 2009. Body-mass index and cause-specific mortality
in 900&#x2008;000 adults: collaborative analyses of 57 prospective studies. The
Lancet, 373, 1083-1096.

PUYAU, M. R., ADOLPH, A. L., VOHRA, F. A. & BUTTE, N. F. 2002. Validation and calibration of
physical activity monitors in children. Obesity research, 10, 150-157.

QIAGEN 2010. Pyrosequencing — the synergy of sequencing and quantification.
https://www.giagen.com/gb/resources/.

RADTKE, K. M., RUF, M., GUNTER, H. M., DOHRMANN, K., SCHAUER, M., MEYER, A. &
ELBERT, T. 2011. Transgenerational impact of intimate partner violence on
methylation in the promoter of the glucocorticoid receptor. Transl Psychiatry, 1, e21.

RAMPAZZO, C., GALLINARO, L., MILANESI, E., FRIGIMELICA, E., REICHARD, P. & BIANCHI, V.
2000. A deoxyribonucleotidase in mitochondria: involvement in regulation of dNTP
pools and possible link to genetic disease. Proceedings of the National Academy of
Sciences, 97, 8239-8244.

RAMSEY, J. B. 1969. Tests for specification errors in classical linear least-squares regression
analysis. Journal of the Royal Statistical Society: Series B (Methodological), 31, 350-
371.

RASMUSSEN, S. H., SHRESTHA, S., BIERREGAARD, L. G., ANGQUIST, L. H., BAKER, J. L., JESS, T.
& ALLIN, K. H. 2018. Antibiotic exposure in early life and childhood overweight and
obesity: A systematic review and meta-analysis. Diabetes, Obesity and Metabolism,
20, 1508-1514.

RATHNAYAKE, K., SATCHITHANANTHAN, A., MAHAMITHAWA, S. & JAYAWARDENA, R. 2013.
Early life predictors of preschool overweight and obesity: a case-control study in Sri
Lanka. BMC Public Health, 13, 994.

RAVELLI, A. C. J., VAN DER MEULEN, J. H. P., MICHELS, R. P. J., OSMOND, C., BARKER, D. J. P.,
HALES, C. N. & BLEKER, O. P. 1998. Glucose tolerance in adults after prenatal
exposure to famine. Lancet, 351, 173-177.

RAVELLI, A. C. J., VAN DER MEULEN, J. H. P., OSMOND, C., BARKER, D. J. P. & BLEKER, O. P.
1999. Obesity at the age of 50 y in men and women exposed to famine prenatally.
American Journal of Clinical Nutrition, 70, 811-816.

RAYCO-SOLON, P., FULFORD, A. J. & PRENTICE, A. M. 2005. Differential effects of seasonality
on preterm birth and intrauterine growth restriction in rural Africans. Am J Clin Nutr,
81, 134-9.

RAYFIELD, S. & PLUGGE, E. 2017. Systematic review and meta-analysis of the association
between maternal smoking in pregnancy and childhood overweight and obesity. J
Epidemiol Community Health, 71, 162-173.

REDDON, H., PATEL, Y., TURCOTTE, M., PIGEYRE, M. & MEYRE, D. 2018. Revisiting the
evolutionary origins of obesity: lazy versus peppy-thrifty genotype hypothesis.
Obesity Reviews, 0.

REDSELL, S. A., EDMONDS, B., SWIFT, J. A., SIRIWARDENA, A. N., WENG, S., NATHAN, D. &
GLAZEBROOK, C. 2016. Systematic review of randomised controlled trials of

295


https://www.qiagen.com/gb/resources/

interventions that aim to reduce the risk, either directly or indirectly, of overweight
and obesity in infancy and early childhood. Maternal & child nutrition, 12, 24-38.

REIFSNYDER, P. C., CHURCHILL, G. & LEITER, E. H. 2000. Maternal Environment and Genotype
Interact to Establish Diabesity in Mice. Genome Research, 10, 1568-1578.

REILLY, J. J., ARMSTRONG, J., DOROSTY, A. R.,, EMMETT, P. M., NESS, A., ROGERS, I., STEER, C.
& SHERRIFF, A. 2005a. Early life risk factors for obesity in childhood: cohort study.
BMJ, 330.

REILLY, J. J., ARMSTRONG, J., DOROSTY, A. R.,, EMMETT, P. M., NESS, A., ROGERS, I., STEER, C.
& SHERRIFF, A. 2005b. Early life risk factors for obesity in childhood: cohort study.
BMJ, 330, 1357.

REILLY, J. J. & KELLY, J. 2010. Long-term impact of overweight and obesity in childhood and
adolescence on morbidity and premature mortality in adulthood: systematic review.
International Journal Of Obesity, 35, 891.

REILLY, J. J., METHVEN, E., MCDOWELL, Z. C., HACKING, B., ALEXANDER, D., STEWART, L. &
KELNAR, C. J. 2003. Health consequences of obesity. Archives of disease in childhood,
88, 748-752.

REILLY, J. J., WILSON, J., MCCOLL, J. H., CARMICHAEL, M. & DURNIN, J. V. G. A. 1996. Ability
of Biolectric Impedance to Predict Fat-Free Mass in Prepubertal Children. Pediatric
Research, 39, 176.

REINER, M., NIERMANN, C., JEKAUC, D. & WOLL, A. 2013. Long-term health benefits of
physical activity — a systematic review of longitudinal studies. BMC Public Health, 13,
813.

RELTON, C. L., GAUNT, T., MCARDLE, W., HO, K., DUGGIRALA, A., SHIHAB, H., WOODWARD,
G., LYTTLETON, O., EVANS, D. M., REIK, W., PAUL, Y.-L., FICZ, G., OZANNE, S. E.,
WIPAT, A., FLANAGAN, K., LISTER, A., HEIJMANS, B. T., RING, S. M. & DAVEY SMITH,
G. 2015. Data Resource Profile: Accessible Resource for Integrated Epigenomic
Studies (ARIES). International Journal of Epidemiology, 44, 1181-1190.

REYNOLDS, R. M., ALLAN, K. M., RAJA, E. A., BHATTACHARYA, S., MCNEILL, G., HANNAFORD,
P. C., SARWAR, N., LEE, A. J., BHATTACHARYA, S. & NORMAN, J. E. 2013a. Maternal
obesity during pregnancy and premature mortality from cardiovascular event in adult
offspring: follow-up of 1 323 275 person years. Bmj-British Medical Journal, 347.

REYNOLDS, R. M., JACOBSEN, G. H. & DRAKE, A. J. 2013b. What is the evidence in humans
that DNA methylation changes link events in utero and later life disease? Clinical
Endocrinology, 78, 814-822.

REYNOLDS, R. M., OSMOND, C., PHILLIPS, D. |. W. & GODFREY, K. M. 2010. Maternal BMI,
Parity, and Pregnancy Weight Gain: Influences on Offspring Adiposity in Young
Adulthood. Journal of Clinical Endocrinology & Metabolism, 95, 5365-5369.

RICHMAN, N. 1981. A community survey of characteristics of one- to two- year-olds with
sleep disruptions. J Am Acad Child Psychiatry, 20, 281-91.

RICHMOND, R. C., SHARP, G. C., WARD, M. E., FRASER, A., LYTTLETON, O., MCARDLE, W. L.,
RING, S. M., GAUNT, T. R., LAWLOR, D. A., DAVEY SMITH, G. & RELTON, C. L. 2016.
DNA Methylation and BMI: Investigating Identified Methylation Sites at
&lt;em&gt;HIF3A&It;/em&agt; in a Causal Framework. Diabetes, 65, 1231.

RICHMOND, R. C., SIMPKIN, A. J., WOODWARD, G., GAUNT, T. R, LYTTLETON, O., MCARDLE,
W. L, RING, S. M., SMITH, A. D. A. C., TIMPSON, N. J., TILLING, K., DAVEY SMITH, G. &
RELTON, C. L. 2014. Prenatal exposure to maternal smoking and offspring DNA
methylation across the lifecourse: findings from the Avon Longitudinal Study of
Parents and Children (ALSPAC). Human Molecular Genetics, 24, 2201-2217.

296



RICHMOND, R. C., SIMPKIN, A. J., WOODWARD, G., GAUNT, T. R., LYTTLETON, O., MCARDLE,
W. L., RING, S. M., SMITH, A. D. A. C., TIMPSON, N. J., TILLING, K., DAVEY SMITH, G. &
RELTON, C. L. 2015. Prenatal exposure to maternal smoking and offspring DNA
methylation across the lifecourse: findings from the Avon Longitudinal Study of
Parents and Children (ALSPAC). Human molecular genetics, 24, 2201-2217.

RICHMOND, R. C., SUDERMAN, M., LANGDON, R., RELTON, C. L. & DAVEY SMITH, G. 2018.
DNA methylation as a marker for prenatal smoke exposure in adults. International
Journal of Epidemiology, 47, 1120-1130.

RICHMOND, R. C., TIMPSON, N. J., FELIX, J. F., PALMER, T., GAILLARD, R., MCMAHON, G.,
DAVEY SMITH, G., JADDOE, V. W. & LAWLOR, D. A. 2017. Using Genetic Variation to
Explore the Causal Effect of Maternal Pregnancy Adiposity on Future Offspring
Adiposity: A Mendelian Randomisation Study. PLOS Medicine, 14, e1002221.

RIDLER, C., TOWNSEND, N., DINSDALE, H., MULHALL, C. & RUTTER, H. 2009. National child
measurement programme: detailed analysis of the 2007/08 national dataset.
National Obesity Observatory, London, 41.

RIFAS-SHIMAN, S. L., GILLMAN, M. W., HAWKINS, S. S., OKEN, E., TAVERAS, E. M. &
KLEINMAN, K. P. 2018. Association of Cesarean Delivery With Body Mass Index z
Score at Age 5 YearsWithin-Family Analysis of Cesarean Delivery and BMI z Score at
Age 5 YearslLetters. JAMA Pediatrics, 172, 777-779.

RILEY, J. C. 1989. Sickness, recovery, and death: A history and forecast of ill health, University
of lowa Press.

ROBERTSON, K. D. 2005. DNA methylation and human disease. Nature Reviews Genetics, 6,
597-610.

ROBINSON, C. J. & YOUNG, V. B. 2010. Antibiotic administration alters the community
structure of the gastrointestinal micobiota. Gut Microbes, 1, 279-284.

ROBINSON, H. A., DAM, R., HASSAN, L., JENKINS, D., BUCHAN, I. & SPERRIN, M. 2019. Post-
2000 growth trajectories in children aged 4—11 years: A review and quantitative
analysis. Preventive Medicine Reports, 14, 100834.

ROBINSON, M. D., KAHRAMAN, A., LAW, C. W., LINDSAY, H., NOWICKA, M., WEBER, L. M. &
ZHOU, X. 2014. Statistical methods for detecting differentially methylated loci and
regions. Frontiers in genetics, 5, 324.

ROBINSON, S. M., CROZIER, S. R., HARVEY, N. C., BARTON, B. D., LAW, C. M., GODFREY, K. M.,
COOPER, C. & INSKIP, H. M. 2015. Modifiable early-life risk factors for childhood
adiposity and overweight: an analysis of their combined impact and potential for
prevention. The American Journal of Clinical Nutrition.

ROESSLER, J., AMMERPOHL, O., GUTWEIN, J., HASEMEIER, B., ANWAR, S. L., KREIPE, H. &
LEHMANN, U. 2012. Quantitative cross-validation and content analysis of the 450k
DNA methylation array from lllumina, Inc. BMC research notes, 5, 210-210.

ROGERS, N. T., POWER, C. & PINTO PEREIRA, S. M. 2019. Birthweight, lifetime obesity and
physical functioning in mid-adulthood: a nationwide birth cohort study. International
Journal of Epidemiology.

ROHDE, K., KELLER, M., LA COUR POULSEN, L., BLUHER, M., KOVACS, P. & BOTTCHER, Y.
2018. Genetics and epigenetics in obesity. Metabolism.

ROLLAND-CACHERA, M. F., DEHEEGER, M., MAILLOT, M. & BELLISLE, F. 2006. Early adiposity
rebound: causes and consequences for obesity in children and adults. International
Journal of Obesity, 30, S11-S17.

ROSEBOOM, T. J., VAN DER MEULEN, J. H. P., OSMOND, C., BARKER, D. J. P., RAVELLI, A. C. J.
& BLEKER, O. P. 2000. Plasma lipid profiles in adults after prenatal exposure to the
Dutch famine. The American Journal of Clinical Nutrition, 72, 1101-1106.

297



ROUSSEEUW, P. J. & LERQY, A. M. 2005. Robust regression and outlier detection, John wiley
& sons.

ROYSTON, P. & ALTMAN, D. G. 1994. Regression using fractional polynomials of continuous
covariates: parsimonious parametric modelling. Journal of the Royal Statistical
Society: Series C (Applied Statistics), 43, 429-453.

RUIZ, M., GOLDBLATT, P., MORRISON, J., PORTA, D., FORASTIERE, F., HRYHORCZUK, D.,
ANTIPKIN, Y., SAUREL-CUBIZOLLES, M. J., LIORET, S., VRUUHEID, M., TORRENT, M.,
INIGUEZ, C., LARRANAGA, I., BAKOULA, C., VELTSISTA, A., VAN EIJSDEN, M.,
VRIJKOTTE, T. G., ANDRYSKOVA, L., DUSEK, L., BARROS, H., CORREIA, S., JARVELIN, M.
R., TAANILA, A., LUDVIGSSON, J., FARESJO, T., MARMOT, M. & PIKHART, H. 2016.
Impact of Low Maternal Education on Early Childhood Overweight and Obesity in
Europe. Paediatr Perinat Epidemiol, 30, 274-84.

RYCHLIK, W., SPENCER, W. J. & RHOADS, R. E. 1990. Optimization of the annealing
temperature for DNA amplification in vitro. Nucleic Acids Res, 18, 6409-12.

RZEHAK, P., COVIC, M., SAFFERY, R., REISCHL, E., WAHL, S., GROTE, V., WEBER, M.,
XHONNEUX, A., LANGHENDRIES, J.-P., FERRE, N., CLOSA-MONASTEROLO, R.,
ESCRIBANO, J., VERDUCI, E., RIVA, E., SOCHA, P., GRUSZFELD, D. & KOLETZKO, B.
2017. DNA-Methylation and Body Composition in Preschool Children: Epigenome-
Wide-Analysis in the European Childhood Obesity Project (CHOP)-Study. Scientific
Reports, 7, 14349.

SACN. 2012. Consideration of issues around the use of BMI centile thresholds for defining
underweight, overweight and obesity in children aged 2-18 years in the UK Available:
http://www.sacn.gov.uk/pdfs/sacnrcpch position statement bmi_thresholds.pdf

SADEH, A., LAVIE, P., SCHER, A., TIROSH, E. & EPSTEIN, R. 1991. Actigraphic home-monitoring
sleep-disturbed and control infants and young children: a new method for pediatric
assessment of sleep-wake patterns. Pediatrics, 87, 494-499.

SADEH, A., MINDELL, J. & RIVERA, L. 2011. "My child has a sleep problem": a cross-cultural
comparison of parental definitions. Sleep Med, 12, 478-82.

SAHAKYAN, K. R., SOMERS, V. K., RODRIGUEZ-ESCUDERO, J. P. & ET AL. 2015. Normal-weight
central obesity: Implications for total and cardiovascular mortality. Annals of Internal
Medicine, 163, 827-835.

SAKAI, M., HIBI, K., KANAZUMI, N., NOMOTO, S., INOUE, S., TAKEDA, S. & NAKAO, A. 2005.
Aberrant methylation of the CHFR gene in advanced hepatocellular carcinoma.
Hepatogastroenterology, 52, 1854-7.

SALAM, R. A., DAS, J. K. & BHUTTA, Z. A. 2014. Impact of intrauterine growth restriction on
long-term health. Curr Opin Clin Nutr Metab Care, 17, 249-54.

SAMUELSSON, A.-M., MATTHEWS, P. A., ARGENTON, M., CHRISTIE, M. R., MCCONNELL, J.
M., JANSEN, E. H. J. M., PIERSMA, A. H., OZANNE, S. E., TWINN, D. F., REMACLE, C.,
ROWLERSON, A., POSTON, L. & TAYLOR, P. D. 2008. Diet-induced obesity in female
mice leads to offspring hyperphagia, adiposity, hypertension, and insulin resistance -
A novel murine model of developmental programming. Hypertension, 51, 383-392.

SANBHNANI, S. & YEONG, F. M. 2012. CHFR: a key checkpoint component implicated in a
wide range of cancers. Cell Mol Life Sci, 69, 1669-87.

SANTOS-SILVA, A. P., OLIVEIRA, E., PINHEIRO, C. R., SANTANA, A. C., NASCIMENTO-SABA, C.
C., ABREU-VILLACA, Y., MOURA, E. G. & LISBOA, P. C. 2013. Endocrine effects of
tobacco smoke exposure during lactation in weaned and adult male offspring. Journal
of Endocrinology, 218, 13-24.

SANTOS, S., VOERMAN, E., AMIANO, P., BARROS, H., BEILIN, L. J., BERGSTROM, A., CHARLES,
M. A., CHATZI, L., CHEVRIER, C., CHROUSOS, G. P., CORPELEIN, E., COSTA, 0.,

298


http://www.sacn.gov.uk/pdfs/sacnrcpch_position_statement_bmi_thresholds.pdf

COSTET, N., CROZIER, S., DEVEREUX, G., DOYON, M., EGGESBO, M., FANTINI, M. P.,
FARCHI, S., FORASTIERE, F., GEORGIU, V., GODFREY, K. M., GORI, D., GROTE, V.,
HANKE, W., HERTZ-PICCIOTTO, I., HEUDE, B., HIVERT, M. F., HRYHORCZUK, D.,
HUANG, R. C., INSKIP, H., KARVONEN, A. M., KENNY, L. C., KOLETZKO, B., KUPERS, L.
K., LAGSTROM, H., LEHMANN, I., MAGNUS, P., MAJEWSKA, R., MAKELA, J., MANIOS,
Y., MCAULIFFE, F. M., MCDONALD, S. W., MEHEGAN, J., MELEN, E., MOMMERS, M.,
MORGEN, C. S., MOSCHONIS, G., MURRAY, D., NI CHAOIMH, C., NOHR, E. A., NYBO
ANDERSEN, A. M., OKEN, E., OOSTVOGELS, A., PAC, A., PAPADOPOULOU, E.,
PEKKANEN, J., PI1ZZI, C., POLANSKA, K., PORTA, D., RICHIARDI, L., RIFAS-SHIMAN, S. L.,
ROELEVELD, N., RONFANI, L., SANTOS, A. C., STANDL, M., STIGUM, H., STOLTENBERG,
C., THIERING, E., THUS, C., TORRENT, M., TOUGH, S. C., TRNOVEC, T., TURNER, S.,
VAN GELDER, M., VAN ROSSEM, L., VON BERG, A., VRIJHEID, M., VRIJKOTTE, T., WEST,
J., WIJGA, A. H., WRIGHT, J., ZVINCHUK, O., SORENSEN, T., LAWLOR, D. A., GAILLARD,
R. & JADDOE, V. 2019. Impact of maternal body mass index and gestational weight
gain on pregnancy complications: an individual participant data meta-analysis of
European, North American and Australian cohorts. Bjog, 126, 984-995.

SARDINA, J. L., COLLOMBET, S., TIAN, T. V., GOMEZ, A., DI STEFANO, B., BERENGUER, C.,
BRUMBAUGH, J., STADHOUDERS, R., SEGURA-MORALES, C. & GUT, M. 2018.
Transcription factors drive Tet2-mediated enhancer demethylation to reprogram cell
fate. Cell stem cell, 23, 727-741. e9.

SARKER, G., BERRENS, R., VON ARX, J., PELCZAR, P., REIK, W., WOLFRUM, C. & PELEG-
RAIBSTEIN, D. 2018. Transgenerational transmission of hedonic behaviors and
metabolic phenotypes induced by maternal overnutrition. Translational psychiatry, 8,
195.

SAVAGE, J. S., BIRCH, L. L., MARINI, M., ANZMAN-FRASCA, S. & PAUL, I. M. 2016. Effect of the
INSIGHT Responsive Parenting Intervention on Rapid Infant Weight Gain and
Overweight Status at Age 1 Year: A Randomized Clinical Trial. JAMA Pediatr, 170, 742-
9.

SAVAGE, T., DERRAIK, J. G. B., MILES, H. L., MOUAT, F., HOFMAN, P. L. & CUTFIELD, W. S.
2013. Increasing Maternal Age Is Associated with Taller Stature and Reduced
Abdominal Fat in Their Children. Plos One, 8, 7.

SCHELLONG, K., SCHULZ, S., HARDER, T. & PLAGEMANN, A. 2012. Birth weight and long-term
overweight risk: systematic review and a meta-analysis including 643,902 persons
from 66 studies and 26 countries globally.

SCHOLTENS, S., GEHRING, U., BRUNEKREEF, B., SMIT, H. A., DE JONGSTE, J. C., KERKHOF, M.,
GERRITSEN, J. & WIJGA, A. H. 2007. Breastfeeding, Weight Gain in Infancy, and
Overweight at Seven Years of AgeThe Prevention and Incidence of Asthma and Mite
Allergy Birth Cohort Study. American Journal of Epidemiology, 165, 919-926.

SCHWARTZ, B. S., POLLAK, J., BAILEY-DAVIS, L., HIRSCH, A. G., COSGROVE, S. E., NAU, C.,
KRESS, A. M., GLASS, T. A. & BANDEEN-ROCHE, K. 2016. Antibiotic use and childhood
body mass index trajectory. Int J Obes (Lond), 40, 615-21.

SCHWARZ, G. 1978. Estimating the dimension of a model. The annals of statistics, 6, 461-
464.

SCOLNICK, D. M. & HALAZONETIS, T. D. 2000. Chfr defines a mitotic stress checkpoint that
delays entry into metaphase. Nature, 406, 430.

SECKL, J. R. 2004. Prenatal glucocorticoids and long-term programming. European journal of
endocrinology, 151, U49.

SEIDELL, J. C. 2009. Waist circumference and waist/hip ratio in relation to all-cause mortality,
cancer and sleep apnea. European Journal Of Clinical Nutrition, 64, 35.

299



SHAH, S., BONDER, M. J., MARIONI, R. E., ZHU, Z., MCRAE, A. F., ZHERNAKOVA, A., HARRIS, S.
E., LIEWALD, D., HENDERS, A. K. & MENDELSON, M. M. 2015. Improving phenotypic
prediction by combining genetic and epigenetic associations. The American Journal of
Human Genetics, 97, 75-85.

SHAOQ, X., DING, X., WANG, B., LI, L., AN, X., YAO, Q., SONG, R. & ZHANG, J.-A. 2017.
Antibiotic Exposure in Early Life Increases Risk of Childhood Obesity: A Systematic
Review and Meta-Analysis. Frontiers in Endocrinology, 8.

SHARP, G. C., LAWLOR, D. A., RICHMOND, R. C., FRASER, A., SIMPKIN, A., SUDERMAN, M.,
SHIHAB, H. A., LYTTLETON, O., MCARDLE, W., RING, S. M., GAUNT, T. R., DAVEY
SMITH, G. & RELTON, C. L. 2015a. Maternal pre-pregnancy BMI and gestational
weight gain, offspring DNA methylation and later offspring adiposity: findings from
the Avon Longitudinal Study of Parents and Children. International Journal of
Epidemiology, 44, 1288-1304.

SHARP, G. C., LAWLOR, D. A, RICHMOND, R. C., FRASER, A., SIMPKIN, A., SUDERMAN, M.,
SHIHAB, H. A., LYTTLETON, O., MCARDLE, W., RING, S. M., GAUNT, T. R., DAVEY
SMITH, G. & RELTON, C. L. 2015b. Maternal pre-pregnancy BMI and gestational
weight gain, offspring DNA methylation and later offspring adiposity: findings from
the Avon Longitudinal Study of Parents and Children. International Journal of
Epidemiology.

SHARP, G. C., SALAS, L. A., MONNEREAU, C., ALLARD, C., YOUSEFI, P., EVERSON, T. M.,
BOHLIN, J., XU, Z., HUANG, R.-C., REESE, S. E., XU, C.-J., BAIZ, N., HOYO, C., AGHA, G.,
ROY, R., HOLLOWAY, J. W., GHANTOUS, A., MERID, S. K., BAKULSKI, K. M., KUPERS, L.
K., ZHANG, H., RICHMOND, R. C., PAGE, C. M., DUUTS, L., LIE, R. T., MELTON, P. E.,
VONK, J. M., NOHR, E. A., WILLIAMS-DEVANE, C., HUEN, K., RIFAS-SHIMAN, S. L.,
RUIZ-ARENAS, C., GONSETH, S., REZWAN, F. I., HERCEG, Z., EKSTROM, S., CROEN, L.,
FALAHI, F., PERRON, P., KARAGAS, M. R., QURAISHI, B. M., SUDERMAN, M., MAGNUS,
M. C., JADDOE, V. W. V., TAYLOR, J. A., ANDERSON, D., ZHAO, S., SMIT, H. A., JOSEY,
M. J., BRADMAN, A., BACCARELLI, A. A., BUSTAMANTE, M., HABERG, S. E.,
PERSHAGEN, G., HERTZ-PICCIOTTO, I., NEWSCHAFFER, C., CORPELEIN, E.,
BOUCHARD, L., LAWLOR, D. A., MAGUIRE, R. L., BARCELLOS, L. F., DAVEY SMITH, G.,
ESKENAZI, B., KARMAUS, W., MARSIT, C. J., HIVERT, M.-F., SNIEDER, H., FALLIN, M. D.,
MELEN, E., MUNTHE-KAAS, M. C., ARSHAD, H., WIEMELS, J. L., ANNESI-MAESANO, .,
VRIJHEID, M., OKEN, E., HOLLAND, N., MURPHY, S. K., SORENSEN, T. I. A.,
KOPPELMAN, G. H., NEWNHAM, J. P., WILCOX, A. J., NYSTAD, W., LONDON, S. J,,
FELIX, J. F. & RELTON, C. L. 2017. Maternal BMI at the start of pregnancy and
offspring epigenome-wide DNA methylation: findings from the pregnancy and
childhood epigenetics (PACE) consortium. Human Molecular Genetics, 26, 4067-4085.

SHEN, L., GUQ, Y., CHEN, X., AHMED, S. & ISSA, J.-P. J. 2007. Optimizing annealing
temperature overcomes bias in bisulfite PCR methylation analysis. Biotechniques, 42,
48-58.

SHIN, S. H. & MILLER, D. P. 2012. A longitudinal examination of childhood maltreatment and
adolescent obesity: Results from the National Longitudinal Study of Adolescent
Health (AddHealth) Study. Child Abuse & Neglect, 36, 84-94.

SHREWSBURY, V. & WARDLE, J. 2008. Socioeconomic status and adiposity in childhood: a
systematic review of cross-sectional studies 1990-2005. Obesity (Silver Spring), 16,
275-84.

SHREWSBURY, V. & WARDLE, J. 2012. Socioeconomic Status and Adiposity in Childhood: A
Systematic Review of Cross-sectional Studies 1990-2005. Obesity, 16, 275-284.

300



SILVERMAN, B. L., RIZZO, T. A., CHO, N. H. & METZGER, B. E. 1998. Long-term effect of the
intrauterine environment - The Northwestern University Diabetes in Pregnancy
Center. Diabetes Care, 21, B142-B149.

SIMMONDS, M., BURCH, J., LLEWELLYN, A., GRIFFITHS, C., YANG, H., OWEN, C., DUFFY, S. &
WOOLACOTT, N. 2015a. The use of measures of obesity in childhood for predicting
obesity and the development of obesity-related diseases in adulthood: a systematic
review and meta-analysis. Health Technology Assessment (Winchester, England), 19,
1-336.

SIMMONDS, M., LLEWELLYN, A., OWEN, C. G. & WOOLACOTT, N. 2015b. Predicting adult
obesity from childhood obesity: a systematic review and meta-analysis. Obesity
Reviews, 17, 95-107.

SIMMONDS, M., LLEWELLYN, A., OWEN, C. G. & WOOLACOTT, N. 2016. Predicting adult
obesity from childhood obesity: a systematic review and meta-analysis. Obesity
Reviews, 17, 95-107.

SIMPKIN, A. J., HOWE, L. D., TILLING, K., GAUNT, T. R., LYTTLETON, O., MCARDLE, W. L., RING,
S. M., HORVATH, S., SMITH, G. D. & RELTON, C. L. 2017. The epigenetic clock and
physical development during childhood and adolescence: longitudinal analysis from a
UK birth cohort. International journal of epidemiology, 46, 549-558.

SIMPKIN, A. J., SUDERMAN, M., GAUNT, T. R., LYTTLETON, O., MCARDLE, W. L., RING, S. M.,
TILLING, K., DAVEY SMITH, G. & RELTON, C. L. 2015. Longitudinal analysis of DNA
methylation associated with birth weight and gestational age. Human molecular
genetics, 24,3752-3763.

SINGH, A. S., MULDER, C., TWISK, J. W. R., VAN MECHELEN, W. & CHINAPAW, M. J. M. 2008.
Tracking of childhood overweight into adulthood: a systematic review of the
literature. Obesity Reviews, 9, 474-488.

SMITH, G. 2018. Step away from stepwise. Journal of Big Data, 5, 32.

SMITH, G. D., HART, C., BLANE, D. & HOLE, D. 1998. Adverse socioeconomic conditions in
childhood and cause specific adult mortality: prospective observational study. Bmj,
316, 1631-1635.

SOBEL, M. E. 2008. Identification of causal parameters in randomized studies with mediating
variables. Journal of Educational and Behavioral Statistics, 33, 230-251.

SOCHA, P., GROTE, V., GRUSZFELD, D., JANAS, R., DEMMELMAIR, H., CLOSA-MONASTEROLO,
R., SUBIAS, J. E., SCAGLIONI, S., VERDUCI, E., DAIN, E., LANGHENDRIES, J. P., PERRIN,
E. & KOLETZKO, B. 2011. Milk protein intake, the metabolic-endocrine response, and
growth in infancy: data from a randomized clinical trial. Am J Clin Nutr, 94, 1776s-
1784s.

SOHN, K. 2017. The trend in the relationship of advanced maternal age to preterm birth and
low birthweight. Eur J Contracept Reprod Health Care, 22, 363-368.

SONESTEDT, E., ROOS, C., GULLBERG, B., ERICSON, U., WIRFALT, E. & ORHO-MELANDER, M.
2009. Fat and carbohydrate intake modify the association between genetic variation
in the FTO genotype and obesity. The American Journal of Clinical Nutrition, 90, 1418-
1425.

SONG, Q., DECATO, B., HONG, E. E., ZHOU, M., FANG, F., QU, J., GARVIN, T., KESSLER, M.,
ZHOU, J. & SMITH, A. D. 2013. A reference methylome database and analysis pipeline
to facilitate integrative and comparative epigenomics. PLoS One, 8, e81148.

SOUBRY, A., MURPHY, S. K., WANG, F., HUANG, Z., VIDAL, A. C., FUEMMELER, B. F.,
KURTZBERG, J., MURTHA, A., JIRTLE, R. L., SCHILDKRAUT, J. M. & HOYO, C. 2013.
Newborns of obese parents have altered DNA methylation patterns at imprinted
genes. International Journal Of Obesity, 39, 650.

301



SPEAKMAN, J. R. 2008. Thrifty genes for obesity, an attractive but flawed idea, and an
alternative perspective: the 'drifty gene' hypothesis. Int J Obes (Lond), 32, 1611-7.

SPEAKMAN, J. R. & WESTERTERP, K. R. 2013. A mathematical model of weight loss under
total starvation: evidence against the thrifty-gene hypothesis. Disease models &
mechanisms, 6, 236-251.

SPELIOTES, E. K., WILLER, C. J., BERNDT, S. I., MONDA, K. L., THORLEIFSSON, G., JACKSON, A.
U., ALLEN, H. L., LINDGREN, C. M., MAGI, R. & RANDALL, J. C. 2010. Association
analyses of 249,796 individuals reveal 18 new loci associated with body mass index.
Nature genetics, 42, 937-948.

STAMATAKIS, E., WARDLE, J. & COLE, T. J. 2009. Childhood obesity and overweight
prevalence trends in England: evidence for growing socioeconomic disparities. Int J
Obes, 34, 41-47.

STEIN, A. D., KAHN, H. S., RUNDLE, A., ZYBERT, P. A., VAN DER PAL-DE BRUIN, K. & LUMEY, L.
H. 2007. Anthropometric measures in middle age after exposure to famine during
gestation: evidence from the Dutch famine. The American journal of clinical nutrition,
85, 869-876.

STEINBERGER, J., JACOBS, D. R., RAATZ, S., MORAN, A., HONG, C. P. & SINAIKO, A. R. 2005.
Comparison of body fatness measurements by BMI and skinfolds vs dual energy X-ray
absorptiometry and their relation to cardiovascular risk factors in adolescents. Int J
Obes (Lond), 29, 1346-52.

STETTLER, N., KUMANYIKA, S. K., KATZ, S. H., ZEMEL, B. S. & STALLINGS, V. A. 2003. Rapid
weight gain during infancy and obesity in young adulthood in a cohort of African
Americans. The American Journal of Clinical Nutrition, 77, 1374-1378.

STETTLER, N., STALLINGS, V. A., TROXEL, A. B., ZHAO, J., SCHINNAR, R., NELSON, S. E.,
ZIEGLER, E. E. & STROM, B. L. 2005. Weight gain in the first week of life and
overweight in adulthood: a cohort study of European American subjects fed infant
formula. Circulation, 111, 1897-903.

STOUFFER, S. A., LUMSDAINE, A. A., LUMSDAINE, M. H., WILLIAMS JR, R. M., SMITH, M. B.,
JANIS, I. L., STAR, S. A. & COTTRELL JR, L. S. 1949. The American soldier: Combat and
its aftermath.(Studies in social psychology in World War Il), Vol. 2.

STRINGHINI, S., POLIDORO, S., SACERDOTE, C., KELLY, R. S., VAN VELDHOVEN, K., AGNOLI, C.,
GRIONI, S., TUMINO, R., GIURDANELLA, M. C., PANICO, S., MATTIELLO, A., PALLI, D.,
MASALA, G., GALLO, V., CASTAGNE, R., PACCAUD, F., CAMPANELLA, G., CHADEAU-
HYAM, M. & VINEIS, P. 2015. Life-course socioeconomic status and DNA methylation
of genes regulating inflammation. International Journal of Epidemiology, 44, 1320-
1330.

STRUNK, T., JAMIESON, S. E. & BURGNER, D. 2013. Genetic and epigenetic susceptibility to
early life infection. Current opinion in infectious diseases, 26, 241-247.

STUNKARD, A. J. & SORENSEN, T. I. 1993. Obesity and socioeconomic status--a complex
relation. N Engl J Med, 329, 1036-7.

SUBRAMANYAM, M. A., DIEZ-ROUX, A. V., PILSNER, J. R., VILLAMOR, E., DONOHUE, K. M.,
LIU, Y. & JENNY, N. S. 2013. Social Factors and Leukocyte DNA Methylation of
Repetitive Sequences: The Multi-Ethnic Study of Atherosclerosis. PLoS ONE, 8,
e54018.

SUDMANT, P. H., RAUSCH, T., GARDNER, E. J., HANDSAKER, R. E., ABYZOV, A., HUDDLESTON,
J., ZHANG, Y., YE, K., JUN, G. & FRITZ, M. H.-Y. 2015. An integrated map of structural
variation in 2,504 human genomes. Nature, 526, 75.

302



SULLIVAN, A. & BROWN, M. 2013. Overweight and obesity in mid-life: Evidence from the
1970 birth cohort study at age 42. Centre for Longitudinal Studies, Institute of
Education, University of London.

SUMMERS, M. K., BOTHOS, J. & HALAZONETIS, T. D. 2005. The CHFR mitotic checkpoint
protein delays cell cycle progression by excluding Cyclin B1 from the nucleus.
Oncogene, 24, 2589.

SUN, B., PURCELL, R. H., TERRILLION, C. E., YAN, J., MORAN, T. H. & TAMASHIRO, K. L. K.
2012. Maternal High-Fat Diet During Gestation or Suckling Differentially Affects
Offspring Leptin Sensitivity and Obesity. Diabetes, 61, 2833-2841.

SUN, Y., LIU, B., SNETSELAAR, L. G., WALLACE, R. B., CAAN, B. J., ROHAN, T. E., NEUHOUSER,
M. L., SHADYAB, A. H., CHLEBOWSKI, R. T., MANSON, J. E. & BAO, W. 2019.
Association of Normal-Weight Central Obesity With All-Cause and Cause-Specific
Mortality Among Postmenopausal WomenAssociation of Normal-Weight Central
Obesity With Mortality Among Postmenopausal WomenAssociation of Normal-
Weight Central Obesity With Mortality Among Postmenopausal Women. JAMA
Network Open, 2, €197337-e197337.

SUTCLIFFE, A. G., BARNES, J., BELSKY, J., GARDINER, J. & MELHUISH, E. 2012. The health and
development of children born to older mothers in the United Kingdom: observational
study using longitudinal cohort data. BMJ : British Medical Journal, 345.

TAHILIANI, M., KOH, K. P, SHEN, Y., PASTOR, W. A,, BANDUKWALA, H., BRUDNO, Y.,
AGARWAL, S., IYER, L. M., LIU, D. R., ARAVIND, L. & RAO, A. 2009. Conversion of 5-
methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1.
Science, 324, 930-5.

TALMA, H., CHINAPAW, M. J., BAKKER, B., HIRASING, R. A., TERWEE, C. B. & ALTENBURG, T.
M. 2013. Bioelectrical impedance analysis to estimate body composition in children
and adolescents: a systematic review and evidence appraisal of validity,
responsiveness, reliability and measurement error. Obes Rev, 14, 895-905.

TAMASHIRO, K. L. K., TERRILLION, C. E., HYUN, J., KOENIG, J. I. & MORAN, T. H. 2009.
Prenatal Stress or High-Fat Diet Increases Susceptibility to Diet-Induced Obesity in
Rat Offspring. Diabetes, 58, 1116-1125.

TAMAYO, T., HERDER, C. & RATHMANN, W. 2010. Impact of early psychosocial factors
(childhood socioeconomic factors and adversities) on future risk of type 2 diabetes,
metabolic disturbances and obesity: a systematic review. BMC Public Health, 10, 525.

TANAKA, C., JANSSEN, X., PEARCE, M., PARKINSON, K., BASTERFIELD, L., ADAMSON, A. &
REILLY, J. J. 2018. Bidirectional Associations Between Adiposity, Sedentary Behavior,
and Physical Activity: A Longitudinal Study in Children. Journal of Physical Activity and
Health, 15, 918-926.

TANNER, J. M. & WHITEHOUSE, R. H. 1975. Revised standards for triceps and subscapular
skinfolds in British children. Archives of disease in childhood, 50, 142-145.

TARLOV, A. R. 1999. Public Policy Frameworks for Improving Population Health. Annals of the
New York Academy of Sciences, 896, 281-293.

TAVERAS, E. M., GILLMAN, M. W., PENA, M.-M., REDLINE, S. & RIFAS-SHIMAN, S. L. 2014.
Chronic Sleep Curtailment and Adiposity. Pediatrics, 133, 1013.

TAVERAS, E. M., RIFAS-SHIMAN, S. L., OKEN, E., GUNDERSON, E. P. & GILLMAN, M. W. 2008.
Short sleep duration in infancy and risk of childhood overweight. Arch Pediatr
Adolesc Med, 162, 305-11.

TEHRANIFAR, P., WU, H.-C,, FAN, X., FLOM, J. D., FERRIS, J. S., CHO, Y. H., GONZALEZ, K.,
SANTELLA, R. M. & TERRY, M. B. 2013. Early life socioeconomic factors and genomic
DNA methylation in mid-life. Epigenetics, 8, 23-27.

303



TESCHENDORFF, A. E., MENON, U., GENTRY-MAHARAJ, A., RAMUS, S. J., GAYTHER, S. A,,
APOSTOLIDOU, S., JONES, A., LECHNER, M., BECK, S., JACOBS, I. J. &
WIDSCHWENDTER, M. 2009. An Epigenetic Signature in Peripheral Blood Predicts
Active Ovarian Cancer. PLOS ONE, 4, e8274.

TESCHENDORFF, A. E. & ZHENG, S. C. 2017. Cell-type deconvolution in epigenome-wide
association studies: a review and recommendations. Epigenomics, 9, 757-768.

TESCHENDOREFF, A. E., ZHUANG, J. & WIDSCHWENDTER, M. 2011. Independent surrogate
variable analysis to deconvolve confounding factors in large-scale microarray
profiling studies. Bioinformatics, 27, 1496-505.

THE UK HEALTH FORUM AND CANCER RESEARCH UK 2015. Tipping the scales: Why
preventing obesity makes economic sense. Current Awareness Service for Health.

THIEDKE, C. C. 2001. Sleep disorders and sleep problems in childhood. American family
physician, 63, 277-287.

THOMPSON, A. L. 2012. Developmental origins of obesity: early feeding environments, infant
growth, and the intestinal microbiome. Am J Hum Biol, 24, 350-60.

THORLEIFSSON, G., WALTERS, G. B., GUDBJARTSSON, D. F., STEINTHORSDOTTIR, V., SULEM,
P., HELGADOTTIR, A., STYRKARSDOTTIR, U., GRETARSDOTTIR, S., THORLACIUS, S.,
JONSDOTTIR, I., JONSDOTTIR, T., OLAFSDOTTIR, E. J., OLAFSDOTTIR, G. H., JONSSON,
T., JONSSON, F., BORCH-JOHNSEN, K., HANSEN, T., ANDERSEN, G., JORGENSEN, T.,
LAURITZEN, T., ABEN, K. K., VERBEEK, A. L., ROELEVELD, N., KAMPMAN, E., YANEK, L.
R., BECKER, L. C., TRYGGVADOTTIR, L., RAFNAR, T., BECKER, D. M., GULCHER, J.,
KIEMENEY, L. A., PEDERSEN, O., KONG, A., THORSTEINSDOTTIR, U. & STEFANSSON, K.
2009. Genome-wide association yields new sequence variants at seven loci that
associate with measures of obesity. Nat Genet, 41, 18-24.

THULIER, D. & MERCER, J. 2009. Variables associated with breastfeeding duration. Journal of
Obstetric, Gynecologic, & Neonatal Nursing, 38, 259-268.

TIKOTZKY, L., DE MARCAS, G., HAR-TOOV, J., DOLLBERG, S., BAR-HAIM, Y. & SADEH, A. V. I.
2010a. Sleep and physical growth in infants during the first 6 months. Journal of
Sleep Research, 19, 103-110.

TIKOTZKY, L., DE MARCAS, G., HAR-TOQV, J., DOLLBERG, S., BAR-HAIM, Y. & SADEH, A.
2010b. Sleep and physical growth in infants during the first 6 months. Journal of sleep
research, 19, 103-110.

TOBI, E. W., SLIEKER, R. C., LUIJK, R., DEKKERS, K. F., STEIN, A. D., XU, K. M., SLAGBOOM, P.
E., VAN ZWET, E. W., LUMEY, L. & HEIJMANS, B. T. 2018. DNA methylation as a
mediator of the association between prenatal adversity and risk factors for metabolic
disease in adulthood. Science advances, 4, eaao4364.

TOBIN, J. 1958. Estimation of relationships for limited dependent variables. Econometrica:
journal of the Econometric Society, 24-36.

TORRES, S. J. & NOWSON, C. A. 2007. Relationship between stress, eating behavior, and
obesity. Nutrition, 23, 887-894.

TOST, J. & GUT, I. G. 2007. DNA methylation analysis by pyrosequencing. Nature Protocols, 2,
2265-2275.

TOULEIMAT, N. & TOST, J. 2012. Complete pipeline for Infinium® Human Methylation 450K
BeadChip data processing using subset quantile normalization for accurate DNA
methylation estimation. Epigenomics, 4, 325-341.

TOWNSEND, P., PHILLIMORE, P. & BEATTIE, A. 1988. Health and deprivation: inequality and
the North, Routledge.

TRASANDE, L., BLUSTEIN, J., LIU, M., CORWIN, E., COX, L. M. & BLASER, M. J. 2013. Infant
antibiotic exposures and early-life body mass. Int J Obes (Lond), 37, 16-23.

304



TSAI, S. A, LV, N, XIAO, L. & MA, J. 2016. Gender Differences in Weight-Related Attitudes
and Behaviors Among Overweight and Obese Adults in the United States. Am J Mens
Health, 10, 389-98.

TU, Y.-K., WEST, R., ELLISON, G. T. H. & GILTHORPE, M. S. 2005. Why Evidence for the Fetal
Origins of Adult Disease Might Be a Statistical Artifact: The “Reversal Paradox” for the
Relation between Birth Weight and Blood Pressure in Later Life. American Journal of
Epidemiology, 161, 27-32.

TUN, H. M., BRIDGMAN, S. L., CHARI, R,, FIELD, C. J.,, GUTTMAN, D. S., BECKER, A. B.,
MANDHANE, P. J., TURVEY, S. E., SUBBARAO, P., SEARS, M. R., SCOTT, J. A,,
KOZYRSKYJ, A. L. & CANADIAN HEALTHY INFANT LONGITUDINAL DEVELOPMENT
STUDY, I. 2018. Roles of Birth Mode and Infant Gut Microbiota in Intergenerational
Transmission of Overweight and Obesity From Mother to Offspring. JAMA pediatrics,
172, 368-377.

TURAN, N., GHALWASH, M. F., KATARI, S., COUTIFARIS, C., OBRADOVIC, Z. & SAPIENZA, C.
2012. DNA methylation differences at growth related genes correlate with birth
weight: a molecular signature linked to developmental origins of adult disease? Bmc
Medical Genomics, 5.

TWISK, J. W. 2003. The problem of evaluating the magnitude of tracking coefficients.
European journal of epidemiology, 18, 1025.

TYBOR, D. J., LICHTENSTEIN, A. H., DALLAL, G. E. & MUST, A. 2008. Waist-to-height ratio is
correlated with height in US children and adolescents aged 2-18 years. International
journal of pediatric obesity : 1JPO : an official journal of the International Association
for the Study of Obesity, 3, 148-151.

TYRRELL, J., RICHMOND, R. C., PALMER, T. M., FEENSTRA, B., RANGARAJAN, J., METRUSTRY,
S., CAVADINO, A., PATERNOSTER, L., ARMSTRONG, L. L., DE SILVA, N. M. G., WOOD,
A. R., HORIKOSHI, M., GELLER, F., MYHRE, R., BRADFIELD, J. P., KREINER-MOLLER, E.,
HUIKARI, V., PAINTER, J. N., HOTTENGA, J. J., ALLARD, C., BERRY, D. J., BOUCHARD, L.,
DAS, S., EVANS, D. M., HAKONARSON, H., HAYES, M. G., HEIKKINEN, J., HOFMAN, A.,
KNIGHT, B., LIND, P. A., MCCARTHY, M. |., MCMAHON, G., MEDLAND, S. E., MELBYE,
M., MORRIS, A. P., NODZENSKI, M., REICHETZEDER, C., RING, S. M., SEBERT, S.,
SENGPIEL, V., SORENSEN, T. I. A., WILLEMSEN, G., DE GEUS, E. J. C.,, MARTIN, N. G.,
SPECTOR, T. D., POWER, C., JARVELIN, M. R., BISGAARD, H., GRANT, S. F. A,, NOHR, E.
A., JADDOE, V. W., JACOBSSON, B., MURRAY, J. C., HOCHER, B., HATTERSLEY, A. T.,
SCHOLTENS, D. M., SMITH, G. D., HIVERT, M. F., FELIX, J. F., HYPPONEN, E., LOWE, W.
L., FRAYLING, T. M., LAWLOR, D. A., FREATHY, R. M. & CONSORTIUM, E. G. G. 2016.
Genetic Evidence for Causal Relationships Between Maternal Obesity-Related Traits
and Birth Weight. Jama-Journal of the American Medical Association, 315, 1129-
1140.

UMER, A., KELLEY, G. A., COTTRELL, L. E., GIACOBBI, P., INNES, K. E. & LILLY, C. L. 2017.
Childhood obesity and adult cardiovascular disease risk factors: a systematic review
with meta-analysis. BMC Public Health, 17, 683.

VAN DER SLUIS, I., DE RIDDER, M., BOOT, A., KRENNING, E. & DE MUINCK KEIZER-SCHRAMA,
S. 2002. Reference data for bone density and body composition measured with dual
energy x ray absorptiometry in white children and young adults. Archives of disease
in childhood, 87, 341-347.

VAN DUJK, S. J., TELLAM, R. L., MORRISON, J. L., MUHLHAUSLER, B. S. & MOLLOY, P. L. 2015.
Recent developments on the role of epigenetics in obesity and metabolic disease.
Clinical epigenetics, 7, 66-66.

305



VEENENDAAL, M. V., PAINTER, R. C., DE ROOlJ, S. R., BOSSUYT, P. M., VAN DER POST, J. A.,
GLUCKMAN, P. D., HANSON, M. A. & ROSEBOOM, T. J. 2013. Transgenerational
effects of prenatal exposure to the 1944-45 Dutch famine. BJOG: An International
Journal of Obstetrics & Gynaecology, 120, 548-554.

VENDITTI, S., MATTHEWS, T. J., ISGANAITIS, E., LERIN, C., DEMERATH, E. W. & FIELDS, D. A.
2019. Maternal obesity and the human milk metabolome: associations with infant
body composition and postnatal weight gain.

VENU, L., HARISHANKAR, N., PRASANNA KRISHNA, T. & RAGHUNATH, M. 2004. Maternal
dietary vitamin restriction increases body fat content but not insulin resistance in
WNIN rat offspring up to 6 months of age. Diabetologia, 47, 1493-501.

VICKERS, M. H., BREIER, B. H., CUTFIELD, W. S., HOFMAN, P. L. & GLUCKMAN, P. D. 2000.
Fetal origins of hyperphagia, obesity, and hypertension and postnatal amplification
by hypercaloric nutrition. American Journal of Physiology - Endocrinology and
Metabolism, 279, E83-E87.

VICKERS, M. H. & SLOBODA, D. M. 2012. Leptin as mediator of the effects of developmental
programming. Best Pract Res Clin Endocrinol Metab, 26, 677-87.

VICTORA, C. G., BAHL, R., BARROS, A.J. D., FRANCA, G. V. A,, HORTON, S., KRASEVEC, J.,
MURCH, S., SANKAR, M. J., WALKER, N. & ROLLINS, N. C. 2016. Breastfeeding in the
21st century: epidemiology, mechanisms, and lifelong effect. The Lancet, 387, 475-
490.

VIDAL, A. C., MURPHY, S. K., MURTHA, A. P., SCHILDKRAUT, J. M., SOUBRY, A., HUANG, Z.,
NEELON, S. E. B., FUEMMELER, B., IVERSEN, E., WANG, F., KURTZBERG, J., JIRTLE, R. L.
& HOYO, C. 2013. Associations between antibiotic exposure during pregnancy, birth
weight and aberrant methylation at imprinted genes among offspring. International
Journal Of Obesity, 37, 907.

VIDMAR, S., CARLIN, J., HESKETH, K. & COLE, T. 2004. Standardizing anthropometric
measures in children and adolescents with new functions for egen. Stata J, 4, 50-55.

VILLAR, J., CARROLI, G., WOIDYLA, D., ABALOS, E., GIORDANO, D., BA'AQEEL, H., FARNOT, U.,
BERGSJ®@, P., BAKKETEIG, L., LUMBIGANON, P., CAMPODONICO, L., AL-MAZROU, Y.,
LINDHEIMER, M. & KRAMER, M. 2006. Preeclampsia, gestational hypertension and
intrauterine growth restriction, related or independent conditions? American Journal
of Obstetrics and Gynecology, 194, 921-931.

VINEIS, P. & PERERA, F. 2007. Molecular epidemiology and biomarkers in etiologic cancer
research: the new in light of the old. Cancer Epidemiology and Prevention
Biomarkers, 16, 1954-1965.

VINKERS, C. H., KALAFATELI, A. L., RUTTEN, B. P., KAS, M. J., KAMINSKY, Z., TURNER, J. D. &
BOKS, M. P. 2015. Traumatic stress and human DNA methylation: a critical review.
Epigenomics, 7, 593-608.

VISSER, M., BOUTER, L. M., MCQUILLAN, G. M., WENER, M. H. & HARRIS, T. B. 1999a.
Elevated C-reactive protein levels in overweight and obese adults. Jama, 282, 2131-5.

VISSER, M., LAUNER, L. J., DEURENBERG, P. & DEEG, D. J. H. 1999b. Past and Current
Smoking in Relation to Body Fat Distribution in Older Men and Women. The Journals
of Gerontology: Series A, 54, M293-M298.

WAHL, S., DRONG, A., LEHNE, B., LOH, M., SCOTT, W. R., KUNZE, S., TSAI, P.-C., RIED, J. S,,
ZHANG, W., YANG, Y., TAN, S., FIORITO, G., FRANKE, L., GUARRERA, S., KASELA, S.,
KRIEBEL, J., RICHMOND, R. C., ADAMO, M., AFZAL, U., ALA-KORPELA, M., ALBETTI, B.,
AMMERPOHL, O., APPERLEY, J. F., BEEKMAN, M., BERTAZZI, P. A., BLACK, S. L.,
BLANCHER, C., BONDER, M.-J., BROSCH, M., CARSTENSEN-KIRBERG, M., DE CRAEN, A.
J. M., DE LUSIGNAN, S., DEHGHAN, A., ELKALAAWY, M., FISCHER, K., FRANCO, O. H.,

306



WAHL,

WANG,

WANG,

WARD,

GAUNT, T. R., HAMPE, J., HASHEMI, M., ISAACS, A., JENKINSON, A,, JHA, S., KATO, N.,
KROGH, V., LAFFAN, M., MEISINGER, C., MEITINGER, T., MOK, Z. Y., MOTTA, V., NG, H.
K., NIKOLAKOPOULQU, Z., NTELIOPOULQS, G., PANICO, S., PERVJAKOVA, N.,
PROKISCH, H., RATHMANN, W., RODEN, M., ROTA, F., ROZARIO, M. A., SANDLING, J.
K., SCHAFMAYER, C., SCHRAMM, K., SIEBERT, R., SLAGBOOM, P. E., SOININEN, P.,
STOLK, L., STRAUCH, K., TAI, E. S., TARANTINI, L., THORAND, B., TIGCHELAAR, E. F.,
TUMINO, R., UITTERLINDEN, A. G., VAN DUIJN, C., VAN MEURS, J. B. J., VINEIS, P.,
WICKREMASINGHE, A. R., WIJIMENGA, C., YANG, T.-P., YUAN, W., ZHERNAKOVA, A,,
BATTERHAM, R. L., SMITH, G. D., DELOUKAS, P., HEIJMANS, B. T., HERDER, C.,
HOFMAN, A., LINDGREN, C. M., MILANI, L., VAN DER HARST, P., PETERS, A, ILLIG, T.,
RELTON, C. L., WALDENBERGER, M., JARVELIN, M.-R., BOLLATI, V., SOONG, R.,
SPECTOR, T. D., SCOTT, J., MCCARTHY, M. |, et al. 2016. Epigenome-wide association
study of body mass index, and the adverse outcomes of adiposity. Nature, 541, 81.
S., DRONG, A,, LEHNE, B., LOH, M., SCOTT, W. R., KUNZE, S., TSAIl, P.-C., RIED, J. S.,
ZHANG, W., YANG, Y., TAN, S., FIORITO, G., FRANKE, L., GUARRERA, S., KASELA, S.,
KRIEBEL, J., RICHMOND, R. C., ADAMO, M., AFZAL, U., ALA-KORPELA, M., ALBETTI, B.,
AMMERPOHL, O., APPERLEY, J. F.,, BEEKMAN, M., BERTAZZI, P. A., BLACK, S. L.,
BLANCHER, C., BONDER, M.-J., BROSCH, M., CARSTENSEN-KIRBERG, M., DE CRAEN, A.
J. M., DE LUSIGNAN, S., DEHGHAN, A., ELKALAAWY, M., FISCHER, K., FRANCO, O. H,,
GAUNT, T. R., HAMPE, J., HASHEMI, M., ISAACS, A., JENKINSON, A., JHA, S., KATO, N,,
KROGH, V., LAFFAN, M., MEISINGER, C., MEITINGER, T., MOK, Z. Y., MOTTA, V., NG, H.
K., NIKOLAKOPOULOQOU, Z., NTELIOPOULQS, G., PANICO, S., PERVJAKOVA, N.,
PROKISCH, H., RATHMANN, W., RODEN, M., ROTA, F., ROZARIO, M. A., SANDLING, J.
K., SCHAFMAYER, C., SCHRAMM, K., SIEBERT, R., SLAGBOOM, P. E., SOININEN, P.,
STOLK, L., STRAUCH, K., TAI, E. S., TARANTINI, L., THORAND, B., TIGCHELAAR, E. F.,
TUMINO, R., UITTERLINDEN, A. G., VAN DUIIN, C., VAN MEURS, J. B. J., VINEIS, P.,
WICKREMASINGHE, A. R., WIJIMENGA, C,, YANG, T.-P., YUAN, W., ZHERNAKOVA, A,,
BATTERHAM, R. L., SMITH, G. D., DELOUKAS, P., HEJMANS, B. T., HERDER, C.,
HOFMAN, A., LINDGREN, C. M., MILANI, L., VAN DER HARST, P., PETERS, A,, ILLIG, T.,
RELTON, C. L., WALDENBERGER, M., JARVELIN, M.-R., BOLLATI, V., SOONG, R.,
SPECTOR, T. D., SCOTT, J., MCCARTHY, M. |, et al. 2017. Epigenome-wide association
study of body mass index, and the adverse outcomes of adiposity. Nature, 541, 81-
86.

G. & SPEAKMAN, JOHN R. 2016. Analysis of Positive Selection at Single Nucleotide
Polymorphisms Associated with Body Mass Index Does Not Support the “Thrifty
Gene” Hypothesis. Cell Metabolism, 24, 531-541.

L., JANSEN, W., BOERE-BOONEKAMP, M. M., VLASBLOM, E., L'HOIR, M. P., BELTMAN,
M., VAN GRIEKEN, A. & RAAT, H. 2019. Sleep and body mass index in infancy and
early childhood (6-36 mo): a longitudinal study. Pediatric obesity, 14, e12506-e12506.
D. S., EVENSON, K. R., VAUGHN, A., RODGERS, A. B. & TROIANO, R. P. 2005.
Accelerometer use in physical activity: best practices and research recommendations.
Medicine and science in sports and exercise, 37, S582-8.

WARDLE, J., WALLER, J. & JARVIS, M. J. 2002. Sex differences in the association of

socioeconomic status with obesity. American journal of public health, 92, 1299-1304.

WEAVER, I. C., CERVONI, N., CHAMPAGNE, F. A., D'ALESSIO, A. C., SHARMA, S., SECKL, J. R.,

DYMOV, S., SZYF, M. & MEANEY, M. J. 2004a. Epigenetic programming by maternal
behavior. Nat Neurosci, 7, 847-54.

307



WEAVER, I. C. G., CERVONI, N., CHAMPAGNE, F. A., D'ALESSIO, A. C., SHARMA, S., SECKL, J.
R., DYMOV, S., SZYF, M. & MEANEY, M. J. 2004b. Epigenetic programming by
maternal behavior. Nature Neuroscience, 7, 847.

WEBER, D. R., MOORE, R. H., LEONARD, M. B. & ZEMEL, B. S. 2013. Fat and lean BMI
reference curves in children and adolescents and their utility in identifying excess
adiposity compared with BMI and percentage body fat. The American journal of
clinical nutrition, 98, 49-56.

WELLS, J. C., WILLIAMS, J. E., CHOMTHO, S., DARCH, T., GRIJALVA-ETERNOD, C., KENNEDY, K.,
HAROUN, D., WILSON, C., COLE, T. J. & FEWTRELL, M. S. 2012. Body-composition
reference data for simple and reference techniques and a 4-component model: a
new UK reference child. The American Journal of Clinical Nutrition, 96, 1316-1326.

WELLS, J. C. K. 2000. A Hattori chart analysis of body mass index in infants and children.
International Journal of Obesity, 24, 325-329.

WENG, S. F., REDSELL, S. A., SWIFT, J. A., YANG, M. & GLAZEBROOK, C. P. 2012. Systematic
review and meta-analyses of risk factors for childhood overweight identifiable during
infancy. Archives of disease in childhood, 97, 1019-1026.

WHINCUP, P. H., KAYE, S. J.,, OWEN, C. G., HUXLEY, R., COOK, D. G., ANAZAWA, S., BARRETT-
CONNOR, E., BHARGAVA, S. K., BIRGISDOTTIR, B. E. & CARLSSON, S. 2008. Birth
weight and risk of type 2 diabetes: a systematic review. Jama, 300, 2886-2897.

WHITE, H. E., DURSTON, V. J., HARVEY, J. F. & CROSS, N. C. 2006. Quantitative analysis of
SRNPN gene methylation by Pyrosequencing as a diagnostic test for prader—willi
syndrome and angelman syndrome. Clinical chemistry, 52, 1005-1013.

WIENCH, M., JOHN, S., BAEK, S., JOHNSON, T. A., SUNG, M. H., ESCOBAR, T., SIMMONS, C. A.,
PEARCE, K. H., BIDDIE, S. C., SABO, P. J., THURMAN, R. E., STAMATOYANNOPOULOS,
J. A. & HAGER, G. L. 2011. DNA methylation status predicts cell type-specific
enhancer activity. Embo j, 30, 3028-39.

WIJNDAELE, K., LAKSHMAN, R., LANDSBAUGH, J. R., ONG, K. K. & OGILVIE, D. 2009a.
Determinants of early weaning and use of unmodified cow's milk in infants: a
systematic review. Journal of the American Dietetic Association, 109, 2017-2028.

WIINDAELE, K., LAKSHMAN, R., LANDSBAUGH, J. R., ONG, K. K. & OGILVIE, D. 2009b.
Determinants of early weaning and use of unmodified cow's milk in infants: a
systematic review. J Am Diet Assoc, 109, 2017-28.

WILLER, C. J., SPELIOTES, E. K., LOOS, R. J., LI, S., LINDGREN, C. M., HEID, I. M., BERNDT, S. I.,
ELLIOTT, A. L., JACKSON, A. U. & LAMINA, C. 2009. Six new loci associated with body
mass index highlight a neuronal influence on body weight regulation. Nature
genetics, 41, 25.

WOLFF, G. L., KODELL, R. L., MOORE, S. R. & COONEY, C. A. 1998. Maternal epigenetics and
methyl supplements affect agouti gene expression in A(vy)/a mice. Faseb Journal, 12,
949-957.

WOO BAIDAL, J. A., LOCKS, L. M., CHENG, E. R., BLAKE-LAMB, T. L., PERKINS, M. E. &
TAVERAS, E. M. 2016. Risk Factors for Childhood Obesity in the First 1,000 Days: A
Systematic Review. American Journal of Preventive Medicine, 50, 761-779.

WORLD HEALTH ORGANIZATION 2000. Obesity: preventing and managing the global
epidemic. Report of a WHO consultation. World Health Organ Tech Rep Ser, 894, i-xii,
1-253.

WORLD HEALTH ORGANIZATION 2003. Recommendations for preventing excess weight gain
and obesity. Diet, Nutrition and the Prevention of Chronic Diseases. Joint WHO/FAO
Expert Consultation. WHO Technical Report Series, 61-71.

308



WORLD HEALTH ORGANIZATION 2011a. Adverse childhood experiences international
questionnaire. Violence and Injury Prevention.

WORLD HEALTH ORGANIZATION 2011b. Exclusive breastfeeding for six months best for
babies everywhere. World Health Organization.

WORLD HEALTH ORGANIZATION 2011c. Waist circumference and waist-hip ratio: Report of a
WHO expert consultation, Geneva, 8-11 December 2008.

WORLD HEALTH ORGANIZATION. 2019. Obesity and overweight: World Health Organization
[Online]. Available: https://www.who.int/en/news-room/fact-sheets/detail/obesity-
and-overweight [Accessed 20/08/2019].

WRIGHT, C., LAKSHMAN, R., EMMETT, P. & ONG, K. K. 2008a. Implications of adopting the
WHO 2006 Child Growth Standard in the UK: two prospective cohort studies. Arch Dis
Child, 93.

WRIGHT, C., MATTHEWS, J., WATERSTON, A. & AYNSLEY-GREEN, A. 1994. What is a normal
rate of weight gain in infancy? Acta Paediatrica, 83, 351-356.

WRIGHT, C. M., BOOTH, I. W., BUCKLER, J. M. H., CAMERON, N., COLE, T. J., HEALY, M. J. R,,
HULSE, J. A., PREECE, M. A., REILLY, J. J. & WILLIAMS, A. F. 2002. Growth reference
charts for use in the United Kingdom. Archives of Disease in Childhood, 86, 11.

WRIGHT, C. M., COX, K. M., SHERRIFF, A., FRANCO-VILLORIA, M., PEARCE, M. S. &
ADAMSON, A. J. 2012. To what extent do weight gain and eating avidity during
infancy predict later adiposity? Public Health Nutrition, 15, 656-662.

WRIGHT, C. M., EMMETT, P. M., NESS, A. R,, REILLY, J. ). & SHERRIFF, A. 2010a. Tracking of
obesity and body fatness through mid-childhood. Archives of Disease in Childhood,
95, 612-617.

WRIGHT, C. M., MARRYAT, L., MCCOLL, J., HARJUNMAA, U. & COLE, T. J. 2018. Pathways into
and out of overweight and obesity from infancy to mid-childhood. Pediatric Obesity,
13, 621-627.

WRIGHT, C. M. & PARKER, L. 2004. Forty years on: the effect of deprivation on growth in two
Newcastle birth cohorts. International journal of epidemiology, 33, 147-152.

WRIGHT, C. M., PARKINSON, K. & SCOTT, J. 2006a. Breast-feeding in a UK urban context:
who breast-feeds, for how long and does it matter? Public Health Nutr, 9, 686-91.

WRIGHT, C. M., PARKINSON, K. N. & DREWETT, R. F. 2004. Why are babies weaned early?
Data from a prospective population based cohort study. Archives of Disease in
Childhood, 89, 813.

WRIGHT, C. M., PARKINSON, K. N. & DREWETT, R. F. 2006b. How does maternal and child
feeding behavior relate to weight gain and failure to thrive? Data from a prospective
birth cohort. Pediatrics, 117, 1262-1269.

WRIGHT, C. M., SHERRIFF, A., WARD, S. C., MCCOLL, J. H., REILLY, J. J. & NESS, A. R. 2008b.
Development of bioelectrical impedance-derived indices of fat and fat-free mass for
assessment of nutritional status in childhood. Eur J Clin Nutr, 62, 210-7.

WRIGHT, C. M., STONE, D. H. & PARKINSON, K. N. 2010b. Undernutrition in British Haredi
infants within the gateshead millennium cohort study. Archives of disease in
childhood, 95, 630-633.

WU, M. C., JOUBERT, B. R., KUAN, P.-F., HABERG, S. E., NYSTAD, W., PEDDADA, S. D. &
LONDON, S. J. 2014a. A systematic assessment of normalization approaches for the
Infinium 450K methylation platform. Epigenetics, 9, 318-329.

WU, Y., PATCHEV, A. V., DANIEL, G., ALMEIDA, O. F. X. & SPENGLER, D. 2014b. Early-Life
Stress Reduces DNA Methylation of the Pomc Gene in Male Mice. Endocrinology,
155, 1751-1762.

309


https://www.who.int/en/news-room/fact-sheets/detail/obesity-and-overweight
https://www.who.int/en/news-room/fact-sheets/detail/obesity-and-overweight

YAN, J., LIU, L., ZHU, Y., HUANG, G. & WANG, P. P. 2014. The association between
breastfeeding and childhood obesity: a meta-analysis. BMC Public Health, 14, 1.

YAN, W., BINGXIAN, H., HUA, Y., JIANGHONG, D., JUN, C., DONGLIANG, G., YUJIAN, Z., LING,
L., YANYING, G. & KAITI, X. 2007. Waist-to-height ratio is an accurate and easier index
for evaluating obesity in children and adolescents. Obesity, 15, 748-752.

YANG, W., KELLY, T. & HE, J. 2007. Genetic Epidemiology of Obesity. Epidemiologic Reviews,
29, 49-61.

YANG, Z., ZHAO, W., ZHANG, X., MU, R., ZHAI, Y., KONG, L. & CHEN, C. 2008. Impact of
famine during pregnancy and infancy on health in adulthood. Obesity Reviews, 9, 95-
99.

YLIHERSILE, H., KAJANTIE, E., OSMOND, C., FORSEN, T., BARKER, D. J. & ERIKSSON, J. G. 2008.
Body mass index during childhood and adult body composition in men and women
aged 56-70y. The American Journal of Clinical Nutrition, 87, 1769-1775.

YODER, J. A., WALSH, C. P. & BESTOR, T. H. 1997. Cytosine methylation and the ecology of
intragenomic parasites. Trends in genetics, 13, 335-340.

YOUNG, B. E., JOHNSON, S. L. & KREBS, N. F. 2012. Biological determinants linking infant
weight gain and child obesity: current knowledge and future directions. Advances in
Nutrition: An International Review Journal, 3, 675-686.

YU, Z. B, HAN, S. P, ZHU, G. Z., ZHU, C., WANG, X. J., CAQ, X. G. & GUOQ, X. R. 2011. Birth
weight and subsequent risk of obesity: a systematic review and meta-analysis.
Obesity Reviews, 12, 525-542.

ZHANG, D.-D., ZHANG, J.-G., WANG, Y.-Z., LIU, Y., LIU, G.-L. & LI, X.-Y. 2015. Per-Arnt-Sim
kinase (PASK): an emerging regulator of mammalian glucose and lipid metabolism.
Nutrients, 7, 7437-7450.

ZHENG, M., LAMB, K. E., GRIMES, C., LAWS, R., BOLTON, K., ONG, K. K. & CAMPBELL, K. 2018.
Rapid weight gain during infancy and subsequent adiposity: a systematic review and
meta-analysis of evidence. Obesity Reviews, 19, 321-332.

ZUCKERMAN, B., STEVENSON, J. & BAILEY, V. 1987. Sleep problems in early childhood:
continuities, predictive factors, and behavioral correlates. Pediatrics, 80, 664-71.

ZWEINIGER-BARGIELOWSKA, I. 2000. Austerity in Britain: rationing, controls, and
consumption, 1939-1955, OUP Oxford.

310



Appendices

Appendix A

Directed Acyclic Graph (DAG) of the hypothesised relationships from the literature review
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Energy intake data for NTFS participants (age 50)

Overall, there was a small negative correlation (r="-0.1) between daily energy intake and
BMI. When stratified by sex there was no relationship for males, and a negative correlation

between energy intake and BMI in females (Figure I1).
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Figure Il Scatter plot showing the relationship between BMI and energy intake in males and females.
Correlation in males, r=0.02, p=0.8; females, r=-0.18, p=0.01.

In women, mean energy intake decreased as weight category progressed from healthy
weight to overweight to obese. Mean energy intake in overweight men was lower compared
to healthy weight men (Table 1). These results state that those who are overweight or obese
on average have a lower calorie intake according to FFQ data. This may be due to the cross-
sectional nature of the data, which could suggest that those with the highest BMI or BF% are
on weight loss diets. Underreporting has also been noted in smokers (Johansson et al.,

2007), however in this cohort there was no correlation between energy intake and smoking

(Appendix B).
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Table | Energy intake (EI) by weight category stratified by sex in NTFS (age 50)

Weight Males Females
category N Mean El SD N Mean El SD
Healthy 54 2319 801 103 1947 543
Overweight 84 2100 626 68 1921 586
Obese 31 2346 708 46 1789 563

Standard deviation (SD) and group size (N)

In order to investigate further, basal metabolic rate (BMR) was calculated using the Harris
Benedict equation (Harris and Benedict, 1918) which takes into account height, weight, sex

and age, revised by Mifflin (1990).

For men,

BMR = 9.99 x weight (kg) + 6.25 x height (cm) — 4.92 x age (years) + 5

For women,

BMR = 9.99 x weight(kg) + 6.25x height (cm) — 4.92 x age (years) — 161

Equation | BMR equations for men and women revised by (Mifflin et al., 1990)

Total daily energy expenditure (TDEE) was calculated using the physical activity data

according to the calculation factors in Table Il

Table Il Calculation factor for varying levels of physical activity

Little to no exercise Daily kilocalories needed = BMR x 1.2
Light exercise Daily kilocalories needed = BMR x 1.375
Moderate exercise Daily kilocalories needed = BMR x 1.55
Heavy exercise Daily kilocalories needed = BMR x 1.725

Using these equations, TDEE was determined and the difference between this value and the
value calculated from the food intake data was calculated. Negative values indicate a calorie
deficit (i.e. more calories expended than ingested) and positive values an energy surplus
(more energy ingested than expended). These results show that those with the highest BMI

report an energy deficit (Figure IIl). Similar results were seen for BF% (Figure 1V) and WHR
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(Figure V). For each outcome there was a negative correlation in females, which is moderate
and significant for BMI, with a weak negative correlation and borderline significant for BF%
and WHR. Relationships between the difference in energy intake and anthropometric

outcomes were less prominent for males.
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Figure Ill Scatter plot of the relationship between BMI and differences in energy intake.
Scatter plot with linear fit showing the relationship between BMI and the differences in energy intake (reported calorie
intake-TDEE) in males and females. Correlation in males, r=-0.14, p=0.07; females, r=-0.35, p<0.001.
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Figure IV Scatter plot of the relationship between BF% and difference in energy intake.
Scatter plot with linear fit showing the relationship between BF% and the differences in energy intake (reported calorie
intake-TDEE) in males and females. Correlation in males, r=-0.16, p=0.04; females, r=-0.13, p=0.06.
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Figure V Scatter plot of the relationship between WHR and difference in energy intake.
Scatter plot with linear fit showing the relationship between WHR and the differences in energy intake (reported calorie
intake-TDEE) in males and females. Correlation in males, r=-0.01, p=0.8; females, r=-0.11, p=0.1.

These differences could have been due to those with higher body weights endeavouring to
reduce their calorie intake. Many studies report that that overweight and obesity are factors
in underreporting of energy intake (Johnson et al., 1998, Johansson et al., 2001). Additionally

there is evidence that underreporting is more likely in women (Pikholz et al., 2004).

Reversing the calculations in Table Il (using energy intake divided by BMR as an estimate of
physical activity level) gives values ranging from 0.42 to 3.92 for study participants. Taking a
physical activity level (PAL) value of 1.2 to indicate bed-bound and a value of 2.4 as
strenuous activity, values that fall outside of this range would be outliers. Removing these

observations would lead to the exclusion of 135 study members from analyses.

On this basis of these issues with the data, the energy intake data were not used in these
analyses. Firstly, it would give biased estimates if the variables were inaccurately measured,
and secondly the direction of the association (between energy intake and body weight)
cannot be discerned with these cross-sectional data and endogeneity bias. As energy intake

was not analysed in NTFS, for coherence this was also not analysed in GMS.

315



Appendix B

Correlations between explanatory variables in NTFS

Female
Maternal age 0'02-
0.555
Gestation -0.04 0.02-
0.158  0.605
Birthweight 008  0.08 -0.17/ 00
(z-score) 0.008 0.009 <0.001

RWG 000 -014 o110 =036NING0

0.969 0.010 0.031 <0.001

RT 007 -008 007 000 06700
0164 0127 0185 0.982<0.001

Breastfed 003 004 -003 0.1 -029 -0.24000

(days) 0528 0388 0603 0.022<0.001 0.002

Excusively 006 -005 -0.04 008 -020 -022  0.66/I00
breastfed 0214 0318 0418 0092 0.006 0.004 <0.001

Wean age 003 007 -009 -005 005 003 -005 01060
0588 0162 0076 0349 0550 0679 0336 0034
Bacterial 004 005 000 000 -001 -006 -012 -0.09 -0.02 G0
infection 0256 0166 0912 0926 0854 0342 0026 0103 0.665
Viral 002 004 000 -001 -007 -005 -008 -0.08 o001 002 G0
infection 0596 0306 0.891 0877 0271 0427 052 0151 0864 0.513
No. of 006 001 006 003 -012 -008 -0.12 -017 -003 029 0.23 G0
infections  0.077 0688 0057 0413 0023 0111 0013 0001 0551<0.001 <0.001
Adversity 004 -001 002 -009 -0.05 002 -001 -010 012 -001 008 o.10[ 0G0
0495 0839 0740 0076 0584 0807 0867 0223 0165 0926 0191 0.067
Housing 000 -008 004 -001 -011 -012 002 -001 -013 006 002 008 007 NE00

problems 0951 0015 0169 0690 0035 0028 0631 0909 0009 0117 0542 0012 0172
Socialclass  -002 008 004 002 003 006 007 004 009 -007 -0.03 -0.10 -0.14] -0.31#60

(birth) 0.605 0.009 0.280 0522 0.602 0268 0.188 0434 0.077 0.049 0.385 0.004 0.011 <0.001

Social class 0.00 -003 -0.02 006 -003 008 005 003 006 -004 005 -005 -0.06 -0.19 0.32-

(age 50) 0.938 0564 0.664 0.180 0.613 0218 0.351 0591 0.215 0.395 0.306 0.263 0.452 <0.001 <0.001

Education -021 -001 004 003 000 003 015 012 -0.02 -011 -0.08 -0.09 -0.16 -020 035 0.42-
level <0.001 0.823 0.347 0.427 098 0614 0.003 0017 0.744 0.026 0.115 0.053 0.028 <0.001 <0.001 <0.001

PAL(age50) -0.01 003 -0.02 001 -010 -0.04 000 -001 002 -010 003 -006 -015 -009 012 024 02000
0.846 0532 0.680 0889 0224 0642 0944 0810 0746 0080 058 0209 0078 0068 0.024<0.001 <0.001
Energy 018 006 003 001 008 -0.03 002 000 -009 000 001 000 -001 -0.02 001 -0.11 001 -0.02 G0
intake (age  <0.001 0140 0481 0810 0229 0615 0671 0967 0086 0963 0872 0919 0863 0.640 0738 0015 0782 0.769
Smoker(age  0.05 002 007 -003 010 004 -001 003 -006 -003 003 000 014 013 -019 -022 -025 -026 o060

50) 0206 0623 0104 0548 0124 0526 0858 0595 0274 0546 0513 0950 0053 0.003<0.001 <0.001 <0.001 <0.001 0731
Married (age  -0.02 -005 000 -004 -001 006 004 000 -007 001 000 004 -009 -002 -0.03 009 -007 008 -006 -017 00
50) 0615 0255 0931 0311 0912 0361 0458 0948 0140 0797 0981 0327 0192 0724 0558 0037 038 0096 0.199 <0.001
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Distributions of outcome variables in NTFS (age 50)
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Social mobility (birth to age 50) and body composition (age 50) in NTFS

Table Ill Linear (BMI) and logistic (OB) regression models for social mobility from birth to age 50 in NTFS

BMI Obesity
n % Coef ClI p OR Cl p

Always

least advantaged 24 7.0 Ref Ref

Least-->

mid 43 12.5 -0.15 [-2.34,2.04] 0.892 0.68 [0.24,1.90] 0.457
Least-->

most advantaged 40 11.6 -1.26 [-3.48,0.96] 0.265 0.20 [0.06,0.69] 0.011
Always mid 77 224 -255 [-4.56-0.54] 0.013  0.10 [0.05,0.48] 0.001
Mid-->

most advantaged 128 37.2 -1.19 [-3.10,0.72] 0.223 0.36 [0.14,0.89] 0.028
Always

most advantaged 32 9.3 -2.12 [-4.44,0.20] 0.073 0.09 [0.02,0.48] 0.005
n 344 344 344

Adjusted R? 0.021 0.063

Coefficients (coef) and odds ratios (OR) are presented with 95% confidence intervals (Cl) and the

corresponding level of significance (p)
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Socioeconomic differences in breastfeeding in NTFS

In the UK, socioeconomic differences in breastfeeding are often described. In NTFS, the most

advantaged group had higher median values for duration breastfeeding, exclusive

breastfeeding and introduction of solids compared to lower groups however these

differences were not significant (Figure viii).

400

300

Days

200

100

"

Least advantaged

s

Occupational social class

Middle

Most advantaged

Least advantaged Middle Most advantaged
Statistics p25 p50 p75 p25 p50 p75 p25 p50 p75
Duration breastfed 125 74 163 21 83 237 17.5 137 257
Exclusively breastfed 20 42 126 16 42 120 15 91 140
Solid foods 126 153 181 135 153 183 140 159 210

Figure VIII Box plot of infant feeding by SES at birth in NTFS study members.

Table of values (rounded) for lower quartile (p25), median (p50) and upper quartile (p75).
There were no significant differences in infant feeding by occupational social class (Kruskal-Wallis equality-of-populations

rank test (duration of exclusive/breastfeeding) and ANOVA (solid food introduction) p values>0.1).
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Weight categories and qualifications in NTFS (age 50)
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Figure IX Proportion of weight categories by education level achieved at age 50 in NTFS study members.

A large proportion of those without qualifications had obesity, whereas those educated to degree level had the lowest
proportion with obesity. However around half of those with A level qualifications and degrees were overweight (Figure IX).
Chi? test for differences; Pearson chi2(6) = 11.4717 Pr=0.075)
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Models for bivariate associations in NTFS for weight outcomes (age 50)

Table IV Bivariate linear associations between exposures and BF%, stratified by sex, in NTFS study members (age 50)

Males Females
coef Cl p coef Cl p
Sex Female
. Sithwelght (- 555 [-167,063] 037 023 [-131,086]  0.68
Early life score)
Gestation (weeks) 0.48 [-0.84,1.80] 0.48 0.08 [-1.02,1.18] 0.89
Continuous -0.09 [-0.28,0.10] 0.34 -0.12 [-0.32,0.07] 0.22
Maternal <25 -0.88 [-3.39,1.63] 0.49 0.57 [-2.21,3.35] 0.69
age 25-34 Ref . Ref .
35+ -2.23 [-5.12,0.66] 0.13 -2.83 [-6.08,0.42] 0.09
Never breastfed Ref . Ref .
<4 weeks 0.88 [-4.03,5.78] 0.73 -1.39 [-6.77,4.00] 0.61
4 wk — 6 months 1.05 [-3.25,5.36] 0.63 -0.09 [-4.30,4.12] 0.97
Infant 6 Months + 0.38 [-3.69,4.45] 0.85 2.78 [-1.24,6.80] 0.18
feeding Breastfed (days) 0.01 [-0.00,0.02] 0.27 0.01 [0.00,0.03] 0.03
Exclusive (days) 0.00 [-0.02,0.02] 0.96 0.03 [0.00,0.05] 0.02
Weaning age 0.00 [-0.02,0.03] 0.78 0.00  [0.03,0.03]  0.92
(days)
Rapid weight gain  -0.34 [-3.99,3.31] 0.85 1.99 [1.90,5.88] 0.317
Any infection 1.26 [-0.86,3.39] 0.24 1.84 [-0.59,4.27] 0.14
carlylfe L omper of 0.40 [0.481.27] 037 022 [-093136] 071
infections
Bacterial infection 0.29  [-2.67,3.26] 0.85 4.48 [0.70,8.27] 0.02
Viral infection -1.53 [-4.10,1.03] 0.24 1.47 [-1.56,4.49] 0.34
Least advantaged  Ref . Ref .
SES Mid -2.56 [-4.97,-0.14] 0.04 -1.09 [-3.89,1.71] 0.45
(childhood) Most advantaged -4.24 [-7.78,-0.70] 0.02 -1.61 [-6.26,3.04] 0.50
Housing score 0.53 [-0.46,1.53] 0.30 0.43 [-0.68,1.54] 0.45
Overcrowding 1.04 [-1.30,3.37] 0.39 2.25 [-0.40,4.91] 0.10
Adversity Any adverse event 1.04 [-3.93,6.01] 0.68 -0.45 [-5.85,4.95] 0.87
Social class Ref . Ref .
Mid 1.78 [-1.80,5.36] 0.33 -0.61 [-4.47,3.26] 0.76
Most advantaged 3.82 [0.33,7.31] 0.03 -2.28 [-5.88,1.31] 0.21
Educated 3.25 [1.10,5.39] <0.001 -0.87 [-3.70,1.95] 0.55
SES No qualifications Ref . Ref .
(later life) GCSE/O-level -0.78 [-3.55,1.98] 0.58 -1.93 [-4.72,0.86] 0.18
A level 2.82 [-0.14,5.77] 0.06 -0.25 [-4.03,3.52] 0.90
Degree 2.81 [-0.55,6.18] 0.10 -3.81 [-7.98,0.37] 0.07
Income 1.17 [0.12,2.23] 0.03 -1.12 [-2.33,0.10] 0.07
Married 3.60 [0.85,6.35] 0.01 1.78 [-1.10,4.66] 0.23
Inactive Ref . Ref .
Light activity -0.91 [-5.00,3.18] 0.66 -3.13 [-6.82,0.57] 0.10
Lifestyle Moderate activity -1.48 [-5.95,2.98] 0.52 -4.36 [-8.40,-0.31] 0.04
Heavy activity -1.72 [-6.38,2.94] 0.47 -6.53  [-10.91,-2.15] <0.001
Smoker -4.02 [-6.40,-1.65] <0.001 0.05 [-2.62,2.71] 0.97

Coefficients (coef) are presented with 95% confidence intervals (Cl) and the corresponding level of significance (p); Ref,
reference group. Bold indicates significant at p<0.05.
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Table V Bivariate linear associations between risk factors and WHR in NTFS males and females (age 50)

Males Females
coef Cl p coef Cl p
Early life Birthweight (z-score) -0.01 [-0.02,-0.00] 0.045 0.00 [-0.01,0.01] 0.91
Gestation (weeks) 0.00 [-0.01,0.01] 0.93 0.00 [-0.01,0.01] 0.93
Continuous 0.00 [-0.00,0.00] 0.14 0.00 [-0.00,0.00] 0.48
Maternal age <25 0.02 [-0.00,0.04] 0.12 0.01 [-0.01,0.02] 0.52
25-34 Ref . Ref .
35+ 0.00 [-0.02,0.02] 0.99 0.00 [-0.02,0.02] 0.95
Never breastfed Ref . Ref .
<4 weeks 0.01 [-0.03,0.04] 0.67 0.03 [-0.01,0.06] 0.14
4 wk — 6 months 0.02 [-0.01,0.05] 0.26 -0.01 [-0.04,0.02] 0.61
Infant feeding 6 Months + 0.00 [-0.03,0.03] 0.87 0.00 [-0.02,0.03] 0.84
Breastfed (days) 0.00 [-0.00,0.00] 0.96 0.00 [-0.00,0.00] 0.80
Exclusive (days) 0.00 [-0.00,0.00] 0.11 0.00 [-0.00,0.00] 0.51
Weaning age (days) 0.00 [-0.00,0.00] 0.22 -0.00 [-0.00,0.00] 0.09
Rapid weight gain -0.02 [-0.05,0.01] 0.14 0.00 [-0.02,0.02] 0.96
Any infection 0.00 [-0.01,0.02] 0.73 0.01 [-0.00,0.03] 0.07
Early life Number of infections 0.00 [-0.01,0.01] 0.63 0.00 [-0.00,0.01] 0.20
Bacterial infection 0.01 [-0.02,0.03] 0.53 0.02 [-0.01,0.04] 0.13
Viral infection -0.02 [-0.04,0.00] 0.09 0.02 [-0.00,0.04] 0.06
Least advantaged Ref . Ref .
Mid -0.02 [-0.04,-0.00] 0.02 -0.01 [-0.03,0.01] 0.46
SES (childhood) = Most advantaged -0.05 [-0.08,-0.02] <0.001 -0.01 [-0.05,0.02] 0.34
Housing score 0.00 [-0.00,0.01] 0.25 0.00 [-0.01,0.01] 0.88
Overcrowding 0.01 [-0.01,0.03] 0.22 0.01 [-0.01,0.03] 0.29
Adversity Any adverse event 0.01 [-0.02,0.05] 0.50 0.00 [-0.04,0.04] 0.91
Social class Ref . Ref .
Mid -0.02 [-0.05,0.01] 0.15 -0.03 [-0.05,-0.00] 0.03
Most advantaged -0.03 [-0.06,-0.00] 0.047 -0.01 [-0.04,0.01] 0.24
Educated -0.01 [-0.03,0.00] 0.10 -0.01 [-0.02,0.01] 0.47
SES No qualifications Ref . Ref .
(later life) GCSE/O-level -0.02 [-0.04,0.00] 0.06 -0.01 [-0.03,0.00] 0.14
A level -0.02 [-0.04,0.01] 0.12 -0.02 [-0.04,0.01] O0.16
Degree -0.04 [-0.07,-0.02] 0.002 -0.01 [-0.03,0.02] 0.60
Income -0.01 [-0.02,-0.00] 0.03 -0.01 [-0.02,-0.00] 0.02
Married 0.00 [-0.02,0.02] 0.96 0.00 [-0.02,0.02] 0.71
Inactive Ref . Ref .
Light activity 0.00 [-0.03,0.04] 0.79 0.00 [-0.03,0.02] 0.78
Lifestyle Moderate activity -0.03 [-0.06,0.01] 0.14 0.00 [-0.03,0.02] 0.72
Heavy activity -0.02 [-0.06,0.01] 0.19 -0.02 [-0.05,0.01] 0.14
Smoker 0.00 [-0.02,0.02] 0.72 0.02 [0.00,0.04] 0.02

Reference category for SES was least advantaged. Coefficients (coef) are presented with 95% confidence intervals (Cl) and

the corresponding level of significance (p); Ref, reference group. Bold indicates significant at p<0.05.
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Smoking sensitivity analyses

Table VI Regression sensitivity analyses for categories of smoking and pack years and body composition outcomes in NTFS
study members (age 50)

Unadjusted All Males Females
Smokin Coef/ Coef/ Coef/
status ° OR d P OR d P OR d P
BMI Never Ref .
Ex 0.71 [-0.33,1.75] 0.18
Current -1.02 [-2.10,0.07] 0.066
Pack years 0 [-0.03,0.03] 0.90
Obese Never Ref .
Ex 1.02 [0.58,1.79] 0.94
Current 0.56 [0.29,1.09] 0.088
Pack years 1 [0.98,1.01] 0.76
WHR Never Ref . Ref . Ref .
Ex 0.05  [0.03,0.07] <0.001 0.03 [0.01,0.05] 0.003 0.01 [-0.01,0.03] 0.38
Current 0.03  [0.01,0.05] 0.012 0.02 [-0.00,0.04] 0.094 0.02 [0.01,0.04] 0.008
Pack years 0.00 [0.00,0.00] <0.001 0.00 [0.00,0.00] 0.006 0.00 [0.00,0.00] 0.004
BF% Never Ref . Ref . Ref .
Ex 0.43 [-1.58,2.43] 0.68 0.67 [-1.67,3.01] 0.58 198 [-0.97,493] 0.19
Current -1.25 [-3.35,0.84] 0.24 -3.89 [-6.53,-1.25] 0.004 0.89 [-1.92,3.70] 0.54
Pack years -0.04 [-0.09,0.01] 0.15 -0.04 [-0.09,0.02] 0.19 0.07 [-0.03,0.17] 0.17
Adjusted model All Males Females
Smokin Coef/ Coef/ Coef/
status ° OR d P OR d P OR d P
BMI Never 0 Ref .
Ex 0.81 [-0.25,1.87] 0.14
Current -1.19 [-2.32,-0.05] 0.041
Pack years 0 [-0.03,0.03] 0.86
Obese Never 1 [1.00,1.00]
Ex 0.94 [0.53,1.69] 0.84
Current 0.49  [0.24,0.98] 0.042
Pack years 0.99 [0.98,1.01] 0.39
WHR Never Ref . Ref . Ref .
Ex 0.05 [0.03,0.07] <0.001 0.03 [0.01,0.05] 0.008 0.01 [-0.01,0.03] 0.28
Current 0.02 [-0.00,0.05] 0.052 0.01 [-0.01,0.04] 0.30 0.02 [-0.00,0.03] 0.086
Pack years 0.00 [0.00,0.00] <0.001 0.00 [0.00,0.00] 0.023 0.00 [0.00,0.00] 0.02
BF% Never Ref . Ref . Ref .
Ex 0.46  [-1.62,2.53] 0.67 0.76  [-1.63,3.15] 0.53 2.18 [-0.90,5.25] 0.17
Current -1.62 [-3.85,0.62] 0.16 -3.22 [-6.03,-0.40] 0.025 0.25 [-2.76,3.25] 0.87
Pack years -0.04 [-0.10,0.02] 0.17 0 [-0.07,0.06] 0.88 0.06 [-0.05,0.17] 0.28

Unadjusted models (top) and adjusted (for adult SES, bottom) presented for each outcome. Coefficients (coef) for linear
outcomes or odds ratios (OR) are presented with 95% confidence intervals (Cl) and the corresponding level of significance

(p). Bold indicates p<0.05.
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Appendix C

Correlations between explanatory variables in GMS

©
&
Female
Maternal age
First-born
Caesarean 000 019 0.06/00
0.968 <0.001 0.053
Gestation 003 -0.04 008 -0.18/00
0412 0236 0.012 <0.001
Bwt-z 000 013 -012 008 -0.10[#00
0.983 <0.001 <0.001 0.011 0.001
RWG 002 -007 015 -0.02 012 -0.33[NE00
0.664 0.040 <0.001 0.510 0.001 <0.001
RT 001 -001 014 003 007 -0.03/ 0.66/0H00

0.860 0.690 <0.001 0.465 0.053 0.333 <0.001
Breastfeeding  -0.03 031 003 004 005 010 -007 -0.02[iG0

categories 0351<0.001 0432 0193 0144 0.001 0.056 0.618

Exclusive 001 021 -013 -001 005 010 -0.09 -0.09[ G0N0

breastfeeding  0.821<0.001 0.004 0.793 0262 0.22 0.061 0.068 <0.001

Formula-fed 003 -0.26 -0.10 -0.04 -0.05 -008 002 -0.02] -0.82/ 1000760
0321<0.001 0.002 0247 0114 0015 0586 0.601 <0.001 1.000

Wean age 008 013 -007 001 -004 -002 -006 -004 020 034 -0.14 0800

0.036 <0.001 0.066 0.778 0.267 0.678 0.098 0.260 <0.001 <0.001 <0.001
Anyinfection ~ -0.06 0.04 -0.08 002 -0.04 -001 007 005 005 000 000 -0.0480H00
0.068 0235 0.009 0525 0231 0.695 0.059 0.148 0.09 0.983 0.948 0.299

Adversity -0.03 002 007 005 003 000 004 003 003 -0.03 -004 -0.13 0.07 G0
0.440 0451 0.040 0156 0423 0901 0.222 0413 0436 0.582 0.192 0.001 0.041
Sleep issues 001 -003 002 000 002 002 000 -0.03 -0.07 -0.10 0.04 -0.10 -0.01 -0.02[ G0
0815 0526 0651 0911 0603 0.684 0.924 0.466 0.074 0074 0281 0.016 0.734 0.660
Townsend -0.06 018 -006 002 004 007 -006 -003 023 014 -020 008 -0.01 000 -0.07 00
0.078 <0.001 0.074 0556 0171 0.020 0.083 0.472<0.001 0.001<0.001 0.028 0.672 0.881 0.084
Maternal 004 029 009 010 008 016 -002 004 042 035 -036 005 001 013 o001 0.22[ 060
education 0218 <0.001 0.010 0.004 0.016 <0.001 0.642 0.332 <0.001 <0.001 <0.001 0.231 0.743 <0.001 0.901 <0.001
Deprived 005 -038 -008 -0.04 -0.05 -0.15 007 -001 -030 -013 030 -010 -001 -0.05 002 -023 -0.33[NENG0
0.090 <0.001 0.008 0.257 0.118 <0.001 0.045 0.724 <0.001 0.003 <0.001 0.008 0711 0.160 0.574 <0.001 <0.001
SES (age 8) -0.09 034 -003 008 -005 012 -002 005 027 012 -020 010 008 -0.02 -001 015 037 -0.42 00
0.088 <0.001 0592 0.128 0357 0.023 0.742 0.313<0.001 0.124<0.001 0082 0.104 0.687 0.891 0.004 <0.001 <0.001
Upward 006 -004 -003 005 -0.01 -0.01 003 -001 001 000 -002 -006 003 000 -0.05 -0.04 -0.03 022 -0.04[00
mobility 0042 0236 039 0135 0643 0745 0.427 0.720 0.687 0.961 0.534 0.084 0300 0.883 0.250 0.203 0.308 <0.001 0.489
%MVPA 013 -007 010 -004 004 -010 012 011 -009 -011 008 005 000 003 00l -006 -004 005 000 0.02 00
0003 0113 0031 0418 0353 0024 0013 0.014 0059 0.103 0070 0350 0967 0501 0903 0.160 0348 0.229 0.948 0.616
Season 004 001 -004 -002 006 002 -0.06 -0.07 005 000 -001 -007 003 006 -006 011 003 -0.07 -0.01 005 -0.21 00

0.421 0.840 0.424 0.711 0.192 0.706 0.220 0.148 0.271 0.983 0.809 0.151 0.514 0.172 0.255 0.014 0.464 0.122 0.877 0.308 <0.001

Figure X Correlations between all explanatory variables in GMS and p values
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SES and early life factors

Table VII Categorical early life factors that differed by Townsend quintile in the age 6-8 sub-sample.

Total

n
Maternal age 987

Less than 25 324
25-34 543
35+ 120
Formula-fed 947
No 481
Yes 466
Total

Breastfeeding 947
Never 466
<6wk 235
>6wk 88
>4dm 158
Adversity 929
No 715
Yes 214

%

32.8
55
12.2

50.8
49.2

49.2
24.8
9.3

16.7

77
23

Least

advantaged

188
102
77

180
48
132

180
132
34
3
11
174
135
39

Townsend score quintile for North East region

%

54.3
41
4.8

26.7
73.3

73.3
18.9
1.7
6.1

77.6
224

201
38
133
30
191
120
71

191

42

%

18.9
66.2
14.9

62.8
37.2

37.2
30.4
13.1
19.4

78.2
21.8

3

221
72

124
25

212
101
111

212
111
54
18
29
206
152
54

%

32.6
56.1
11.3

47.6
52.4

524
25.5
8.5

13.7

73.8
26.2

4

223
97

101
25

215
101
114

215
114
56
16
29
204
161
43

%

43.5
45.3
11.2

47
53

53
26
7.4
13.5

78.9
21.1

Most

advantaged

154

108
31
149
111
38

149
38
33

52
152
116
36

%

9.7
70.1
20.1

74.5
25.5

25.5
22.1
17.4
34.9

76.3
23.7

p

<0.001

<0.001

<0.001

0.761

Sample sizes (n), column percentages (%) and Chi-square test statistic presented (p)
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Models for bivariate associations for outcomes (age 6-8) in GMS

Table VIl Bivariate (unadjusted) associations between explanatory variables and all body composition outcomes in GMS (age 6-8)

Early life factors OWOB BMIiz FMI Waist OB
OR Cl p coef Cl p coef Cl p OR Cl p
Female 0.89 [0.59,1.34] 0.56 0.02 [-0.16,0.20] 0.85 -0.11 [-0.43,0.20] 0.47 1.01 [0.62,1.64] 0.98
First-born 0.85 [0.57,1.29] 0.45 -0.08 [-0.26,0.11] 0.412 -0.07 [-0.38,0.25] 0.68 0.87 [0.53,1.42] 0.58
Gestation (wk) 1.13 [0.98,1.30] 0.10 0.03 [-0.03,0.09] 0.31 0.02 [-0.08,0.12] 0.66 1.03 [0.89,1.19] 0.71
Preterm 0.64 [0.28,1.47] 0.29 -0.12 [-0.44,0.20] 0.46 -0.14 [-0.69,0.42] 0.63 0.92 [0.41,2.08] 0.85
Normal Ref . Ref . Ref . Ref .
Post term 1.67 [0.77,3.63] 0.19 0.07 [-0.33,0.46] 0.74 0.32 [-0.36,1.00] 0.36 0.89 [0.31,2.55] 0.83
Bwtz 1.53 [1.25,1.88] <0.001 0.26 [0.17,0.34] <0.001 0.22 [0.07,0.37] 0.004 1.37 [1.09,1.73] 0.007
Categories of
birthweight
SGA 0.63 [0.27,1.44] 0.27 -0.30 [-0.62,0.01] 0.060 -0.06 [-0.62,0.49] 0.82 1.24 [0.55,2.83] 0.60
Normal Ref . Ref . Ref . Ref .
LGA 1.67 [0.91,3.08] 0.10 0.25 [-0.06,0.55] 0.11 0.2 [-0.33,0.73] 0.45 1.74 [0.85,3.54] 0.13
Caesarean 1.07 [0.61,1.86] 0.81 0.03 [-0.22,0.28] 0.80 0.25 [-0.18,0.69] 0.26 1.64 [0.90,2.99] 0.11
Maternal age 1.02 [0.98,1.06] 0.27 0 [-0.01,0.02] 0.63 0.01 [-0.02,0.03] 0.64 1.02 [0.98,1.06] 0.30
Less than 25 0.59 [0.36,0.97] 0.038 -0.15 [-0.35,0.06] 0.16 -0.28 [-0.65,0.08] 0.13 0.63 [0.35,1.12] 0.16
25-34 Ref . Ref . Ref . Ref .
35+ 0.67 [0.35,1.28] 0.23 -0.23 [-0.50,0.04] 0.091 -0.39 [-0.87,0.10] 0.12 0.82 [0.37,1.78] 0.61
Categories of breastfeeding
Never Ref . Ref . Ref . Ref .
<6wk 1.2 [0.72,2.00] 0.47 0.11 [-0.12,0.34] 0.35 0.33 [-0.08,0.74] 0.12 1.53 [0.85,2.75] 0.16
>6wk 0.65 [0.30,1.40] 0.27 -0.19 [-0.49,0.12] 0.23 -0.22 [-0.76,0.31] 0.41 0.74 [0.25,2.16] 0.58
>4m 1.19 [0.69,2.04] 0.54 -0.09 [-0.34,0.16] 0.48 -0.18 [-0.62,0.25] 0.41 1.52 [0.78,2.96] 0.22
Exclusive 0.92 [0.33,2.57] 0.88 -0.18 [-0.59,0.23] 0.38 -0.24 [-0.92,0.44] 0.49 1.09 [0.31,3.92] 0.89
Formula fed 0.93 [0.61,1.41] 0.74 0.02 [-0.16,0.21] 0.82 -0.03 [-0.36,0.30] 0.85 0.73 [0.44,1.20] 0.22
Wean age 0.97 [0.91,1.05] 0.47 -0.03 [0.06,0.00] 0.086 -0.02 [0.07,0.04] 0.54 0.97 [0.90,1.06] 0.56
RWG 1.52 [0.98,2.36] 0.060 0.47 [0.27,0.67] <0.001 0.23 [-0.12,0.58] 0.20 1.46 [0.86,2.49] 0.16
Adversity 2.01 [1.28,3.13] 0.002 0.39 [0.18,0.61] <0.001 0.62 [0.25,0.98] 0.001 1.49 [0.85,2.61] 0.17
Sleep issues 1.37 [0.77,2.46] 0.28 0.25 [-0.03,0.53] 0.076 0.22 [-0.25,0.69] 0.36 1.30 [0.65,2.62] 0.46
Infection 1.3 [0.71,2.37] 0.40 0.06 [-0.22,0.34] 0.67 -0.05 [-0.53,0.44] 0.85 1.59 [0.79,3.22] 0.20
MVPA (%) 0.82 [0.73,0.91] <0.001 -0.05 [-0.09,-0.01] 0.016 -0.19 [-0.25,-0.12] <0.001 0.82 [0.70,0.95]  0.008
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Socioeconomic and lifestyle

. owoB BMIz FMI Waist OB
variables
OR Cl p coef Cl p coef Cl p OR Cl p
T score quintile for N region
Least advantaged Ref . Ref . Ref . Ref .
2" to least advantaged 1.24 [0.62,2.47] 0.54 -0.02 [-0.31,0.27] 0.89 0.04 [-0.47,0.54] 0.88 0.7 [0.30,1.65] 0.42
Mid 1.67 [0.86,3.23] 0.13 0.21 [-0.08,0.49] 0.16 0.33 [-0.17,0.83] 0.20 1.49 [0.73,3.04] 0.28
2" to most advantaged 1.46 [0.73,2.91] 0.28 0.22 [-0.08,0.52] 0.15 0.35 [-0.17,0.86] 0.19 1.04 [0.49,2.22] 0.92
Most advantaged 1.28 [0.63,2.61] 0.50 -0.07 [-0.37,0.23] 0.65 -0.18 [-0.71,0.34] 0.49 0.74 [0.30,1.83] 0.51
Maternal education (birth)
None Ref . Ref . Ref . Ref .
GCSE 0.99 [0.51,1.94] 0.98 -0.01 [-0.31,0.29] 0.95 -0.13 [-0.64,0.38] 0.61 1.04 [0.51,2.14] 0.92
A level 0.98 [0.42,2.28] 0.96 0.02 [-0.36,0.40] 0.93 -0.19 [-0.83,0.45] 0.56 1.03 [0.39,2.69] 0.96
Degree 1.01 [0.46,2.24] 0.97 0.02 [-0.34,0.38] 0.91 -0.42 [-1.03,0.18] 0.17 0.76 [0.28,2.07] 0.60
Parental occupational social class (childhood)
Least advantaged Ref . Ref . Ref . Ref .
Mid 0.83 [0.44,1.55] 0.56 -0.1 [-0.38,0.17] 0.46 -0.38 [-0.88,0.12] 0.14 1.02 [0.47,2.23] 0.96
Most advantaged 0.76 [0.40,1.44] 0.41 -0.04 [-0.32,0.24] 0.78 -0.43 [-0.94,0.07] 0.093 0.83 [0.37,1.87] 0.65
Upward mobility 0-8 1.01 [0.49,2.10] 0.97 0.11 [-0.22,0.43] 0.53 -0.1 [-0.66,0.47] 0.74 1.95 [0.80,4.76] 0.14

For outcomes of overweight/obesity (OWOB) and waist obesity (OB) (logistic regression), BMlz, and FMI (linear regression). Coefficients (coef) and odds ratios (OR) are presented with 95%
confidence intervals (Cl) and the corresponding level of significance (p). Ref indicates reference category for factor variables. Bold indicates significant at p<0.05.
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FMI regression model outlier analysis

Before removing outliers

3
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Inverse Normal

Shapiro-Wilk test for normal data
p value <0.0001

After removal of outliers
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Shapiro-Wilk test for normal data
p value=0.00003

Figure XI Regression diagnostic plots for FMI outlier sensitivity analysis.
Plots are for models before (a) and after (b) removal of outliers. The histogram represents the distribution of residuals,

whilst the normal probability (pnorm) plot shows the distribution relative to the specified distribution (straight line). Using
the Shapiro-Wilk W test for normal data, a p-value less than 0.05, means the null hypothesis that the data are normally

distributed is rejected.
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Investigating adversity

In order to determine which factors could be driving the associations between adversity and

adiposity outcomes, each of the components of adversity was investigated individually.

Parental separation and debt were associated with increased odds of OWOB and increased

BMI, and debt was also associated with increased FMI (Table IX). Adversity was not

associated with waist OB in any capacity. There were relatively low numbers for some

exposures, in particular for death in the family (n=12, 2.2%).

Table IX The associations between individual components of adversity and adiposity outcomes (age 6-8).

N % OwoB BMI
OR Cl p coef Cl p
Adversity (all) 144 269 237  [1.29433] 001 033  [0.06,0.61] 0.02
p |
arenta 33 62 319 [1.168.79] 0.02 055  [0.04,1.07] 0.04
separation
Police involvement 28 5.2 1.09 [0.34,3.50] 0.89 0.00 [-0.52,0.52] 0.99
Debt 93 174 268 [1.37,525]  <0.001 045  [0.13,0.78] 0.1
Death in the 12 22 180 [0.1521.28] 0.64 035  [-0.79,1.50] 0.54
family
n % FMI Waist OB
coef Cl p OR cl p
Adversity (all) 0.68  [0.19,1.16]  0.01 123  [0.56,2.69] 0.61
p |
arenta 085  [0.07,1.77] 0.07 286  [0.889.25] 0.8
separation
Police involvement 025  [-0.67,1.18] 0.59 174  [0.46,6.59] 0.41
Debt 075  [0.18,1.32]  0.01 120  [0.48,2.98] 0.70
giiiﬁ: in the 121  [0.82,3.24] 0.24 220  [0.17,29.40] 0.55

Models are adjusted for sex, gestation, maternal age, Townsend score and maternal education at birth, and parental

occupational social class in childhood. Coefficients (coef) or odds ratios (OR) are presented with confidence intervals (Cl)
and the corresponding level of significance (p). Ref indicates reference category for factor variables. N, number of
participants who experienced this adversity and corresponding % of the cohort.
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Appendix D

Inverse probability weighting (IPW) for the cohort comparison models

Table X IPW weighing on adjusted models for BMIz for NTFS and GMS

NTFS - original NTFS - IPW GMS - original GMS -IPW
coef Cl coef Cl coef Cl coef Cl

Female -0.22*  [-0.42,-0.03] -0.20*  [-0.40,-0.01] -0.16  [-0.39,0.06] -0.18  [-0.40,0.05]
f;r’?\'/‘i 0.24*  [0.04,0.45] 0.24*  [0.04,0.44] 0.50***  [0.23,0.76] 0.49***  [0.23,0.75]
Bwtz 0.02 [-0.07,0.12] 0.01  [-0.08,0.11] 0.17**  [0.05,0.29] 0.17**  [0.06,0.29]
Height (cm) 0 [-0.02,0.01] -0.01  [-0.02,0.01] 0.04***  [0.02,0.06] 0.04***  [0.02,0.06]
SES (at
birth)
1 Least Ref Ref Ref Ref
advantaged

2 004 [-0.32,0.39] 0.04  [-0.30,0.39] -0.24  [-0.62,0.14] -0.23  [-0.59,0.14]

3 0.09 [-0.22,0.40] 0.1 [-0.23,0.42] -0.34  [-0.73,0.05] -0.37 [-0.77,0.03]

4 0.03 [-0.46,0.52] 0.12  [-0.46,0.70] -0.19  [-0.58,0.19] -0.19 [-0.57,0.19]
> Most 093  [-1.87,0.00] 0.91* [-1.62,-0.20] 018  [-0.57,0.22] 018 [-0.57,0.21]
advantaged
Adversity 0.30*  [0.05,0.55] 0.30*  [0.04,0.56]
Adjusted R 0.026 0.033 0.212 0.217
n 313 313 269 269

NTFS model was weighted using SES at birth and maternal age, whilst the GMS model was additionally weighted for

adversity as well. Models were adjusted for gestation, maternal age and SES (age 9). Those in most advantaged group had a
lower BMIz in NTFS after weighting was applied. However, this may be a spurious finding as this was a small group size (n=5,
2% of the 313 in the sample). * indicates p<0.05, ** p<0.01 and *** p<0.001.
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Appendix E

Correlations between exposure variables in GMS

Sex

Gestastion length

BWT-z

0.593  <0.001

Firstborn 0.01 0.00 -0.17 -

0.203  0.651 <0.001

Antibiotics (6 months) -0.08 -0.04 0.04 -0.13 -

<0.001 <0.001 <0.001 <0.001

Maternal age -0.02 0.00 0.11 -0.27 0.00 -

0.007 0.606 <0.001 <0.001 0.737

Old maternal age -0.02 -0.02 0.02 -0.11 -0.01 _

0.020 0.026 0.051 0.000 0.220 <0.001

Smoked during pregnancy -0.02  -004 -0.16 -0.01 0.02 -0.24 -0.03 -

0.010 <0.001 <0.001 0.581 0.035 <0.001 0.001

Pre-pregnancy BMI -0.01 0.02 0.16 -0.06 0.03 0.02 0.03 -0.01 -

0.282 0.046 <0.001 <0.001 0.013 0.094 0.013  0.141

Breastfeeding categories 0.01 0.07 0.05 0.03 -0.04 0.27 0.08 -0.20 -0.10 -

0.112 <0.001 <0.001 0.004 <0.001 <0.001 <0.001 <0.001 <0.001

Adversity (pre) -0.01 0.14 0.01 -0.03 0.02 0.00 0.01 0.11 0.03 -0.03 -

0.530 <0.001 0.214 <0.001 0.055 0.981 0.416 <0.001 0.003 0.006

Adversity (post) 0.00 0.12 0.01 -0.02 0.02 0.03 0.01 0.06 0.02 0.00 031 -

0912 <0.001 0.374 0011 0.032 <0.001 0.167 <0.001 0.014 0.647 <0.001

Adversity (pre + post) -0.01 0.08 0.01 -0.03 0.02 0.02 0.01 0.09 0.03 0.00 0.59 -

0.334 <0.001 0.375 0.001 0.044 0.065 0.276 <0.001 0.005 0.621 <0.001 <0.001

RWG -0.03 0.15 - 0.18 0.04 -0.05 -0.02 0.06 -0.04 -005 -0.04 -004 -0.04 -

0.238 <0.001 <0.001 <0.001 0.238 0.088 0.603 0.053 0.217 0.088 0.178 0.150 0.207

RT -0.0455 0.0322 -0.0198 0.138 0.0758 -0.0517 -0.0475 0.0333 0.0248 -0.0539 0.0057 0.0181 -0.0033-

0.118 0.268 0.496 <0.001 0.011 0.076 0.132 0262 0420 0068 0.843 0.534 0.910 <0.001

SES (birth) 0.00 0.01 0.04 0.07 0.00 0.27 0.08 -0.19 -0.09 0.26 -0.07 -0.04 -0.04 0.02 -0.02 -

0.642 0479 <0.001 <0.001 0.675 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0480 0.515

SES (age 8) 0.01 0.00 0.03 0.06 -0.01 0.19 0.07 -0.13  -0.11 0.20 -0.03  -002 -0.03 0.02 0.03 0.43 -

0.509 0.908 0.061 <0.001 0.769 <0.001 <0.001 <0.001 <0.001 <0.001 0.065 0.216 0.038 0.680 0.496 <0.001

Figure XlI Pairwise correlations between exposure variables in GMS and corresponding significance
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Models for bivariate associations in ALSPAC

Table XI Bivariate associations between early life factors and adiposity outcomes (BMIz, OWOB) at ages 7 and 17 in ALSPAC study members

Age 7 Age 17
Exposures BMiIz OowO0OB BMIz OowO0OB
Coef (I p OR Cl p Coef (I p OR Cl p

Female 0 [-0.05,0.04] 0.83 0.95 [0.83,1.08] 0.42 0.03  [-0.03,0.10] 0.31 0.98 [0.85,1.12] 0.75
Gestation (weeks) 0.02 [0.01,0.03] 0.005 1.02 [0.98,1.06] 0.37 0 [-0.02,0.02] 0.86 1.01 [0.96,1.05] 0.80
Pre-term -0.03  [-0.10,0.05] 0.489 1.12 [0.89,1.40] 0.33 0.08 [-0.03,0.19] 0.14 1.2 [0.95,1.51] 0.12
Post-term 0.06 [-0.03,0.14] 0.21 1.08 [0.84,1.40] 0.54 -0.08 [-0.20,0.05] 0.25 091 [0.68,1.22] 0.53
Bwt z-score 0.18 [0.16,0.21] <0.001 1.30 [1.21,1.39] <0.001 0.12 [0.08,0.15] <0.001 1.20 [1.12,1.30] <0.001
Bwt categories SGA -0.23  [-0.33,-0.14] <0.001 0.86 [0.64,1.17] 0.35 -0.04 [-0.17,0.09] 0.56 0.93 [0.69,1.24] 0.62
LGA 0.35 [0.28,0.42] <0.001 1.73 [1.43,2.09] <0.001 0.30 [0.20,0.40] <0.001 1.64 [1.33,2.01] <0.001
Maternal age
Less than 25 0.04 [-0.03,0.10] 0.24 1.09 [0.90,1.31] 0.39 0.24  [0.15,0.33] <0.001 1.50 [1.24,1.80] <0.001
35+ 0.01 [-0.06,0.08] 0.83 1.04 [0.84,1.28] 0.72 -0.11 [-0.21,-0.01] 0.033 0.83 [0.66,1.05] 0.12
First-born 0.02 [-0.02,0.07] 0.31 1.08 [0.94,1.25] 0.27 0.01 [-0.06,0.08] 0.73 0.95 [0.82,1.10] 0.51
RWG 0.52 [0.37,0.66] <0.001 2.04 [1.36,3.06] 0.001 0.25 [0.04,0.45] 0.020 1.25 [0.80,1.96] 0.32
RT 0.77 [0.63,0.90] <0.001 3.82 [2.53,5.76] <0.001 0.26  [0.05,0.46] 0.014 1.55 [1.00,2.39] 0.051

Pre-natal 0.05 [0.00,0.09] 0.045 1.06 [0.92,1.21] 0.42 0.12 [0.05,0.19] <0.001 1.28 [1.11,1.47] 0.001

. Post-natal 0.02 [-0.03,0.07] 0.34 1.02 [0.88,1.18] 0.79 0.03 [-0.04,0.10] 0.42 1.03 [0.88,1.20] 0.75

Adversity

Pre and

post 0.08 [0.02,0.14] 0.012 1.08 [0.91,1.29] 0.39 0.14 [0.06,0.23] 0.001 1.38 [1.15,1.65] 0.001
Antibiotics 0.02 [-0.03,0.07] 0.39 0.12 [0.05,0.19] 0.002 0.98 [0.84,1.14] 0.80 1.19 [1.02,1.40] 0.028
SES at birth
Mid 0.01 [-0.12,0.13] 0.90 0.92 [0.64,1.32] 0.66 -0.1 [-0.29,0.08] 0.26 0.76 [0.53,1.10] 0.14
Most advantaged -0.03 [-0.15,0.10] 0.68 0.78 [0.55,1.11] 0.17 -0.25 [-0.43,-0.08] 0.005 0.52 [0.37,0.74] <0.001
SES in childhood
Mid -0.01 [-0.13,0.11] 0.85 0.78 [0.54,1.11] 0.17 -0.11  [-0.28,0.05] 0.18 0.71 [0.49,1.03] 0.070
Most advantaged -0.05 [-0.16,0.07] 0.42 0.65 [0.46,0.91] 0.012 -0.20 [-0.36,-0.05] 0.010 0.58 [0.41,0.81] 0.001

Coefficients (coef) or odds ratios (OR) are presented with 95% confidence intervals (Cl) and the corresponding level of significance (p). Bold indicates significant at p<0.05. Reference categories were
normal term for gestational age categories; the least advantaged group for SES; and age 25-34 for maternal age. SES, socioeconomic status; Bwt, birthweight; RWG, rapid weight gain.
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Table XIl Multivariable regression models for adiposity outcomes in ALSPAC using RWG and adjusted for SES

Age 7 BMIz OWOB
Adjusted for early life Adjusted for SES (birth) Adjusted for SES (childhood) Adjusted for early life Adjusted for SES (birth) Adjusted for SES (childhood)
Coef Cl p Coef Cl p Coef Cl p OR Cl p OR Cl p OR Cl p
Female -0.07 [-0.20,0.06] 0.27 -0.07 [-0.21,0.06] 0.27 -0.08 [-0.28,0.12] 0.43 0.63 [0.41,0.98] 0.039 0.63 [0.40,0.99] 0.047 0.71 [0.36,1.40] 0.32
Gestation (weeks) 0O [-0.04,0.05] 0.87 0 [-0.04,0.05] 0.97 0 [-0.07,0.07] 0.99 1 [0.87,1.15] 0.98 1.01 [0.87,1.17] 0.91 1.02 [0.81,1.28] 0.87
Bwtz 0.35 [0.27,0.42]  <0.001 0.35 [0.27,0.42] <0.001 0.30 [0.18,0.42] <0.001 1.86 [1.43,2.42] <0.001 172 [1.31,2.26] <0.001 1.09 [0.73,1.62] 0.67
Maternal age
<25 -0.01 [-0.21,0.20] 0.94 0.09 [-0.14,0.32] 0.45 0.40 [-0.03,0.82] 0.066 0.9 [0.46,1.76] 0.76 1.18 [0.58,2.43] 0.64 2.06 [0.65,6.46] 0.22
35+ -0.18 [-0.37,0.01] 0.065 -0.17 [-0.37,0.02] 0.086 -0.04 [-0.32,0.24] 0.77 0.56 [0.27,1.17] 0.13 0.51 [0.23,1.11] 0.089 0.26 [0.06,1.15] 0.076
First-born 0.09 [-0.04,0.23] 0.19 0.06 [-0.08,0.21] 0.38 0.12 [-0.10,0.34] 0.28 1.24 [0.79,1.96] 0.35 1.15 [0.72,1.85] 0.55 1.13 [0.54,2.38] 0.74
RWG 0.79 [0.63,0.94] <0.001 0.81 [0.65,0.96] <0.001 0.62 [0.38,0.86] <0.001 3.36 [2.05,5.52] <0.001 3.15 [1.90,5.23] <0.001 136 [0.63,2.96] 0.43
Adversity
Pre and post-natal  0.09  [-0.09,0.26] 0.34 0.03 [-0.16,0.22] 0.76 0.1 [-0.19,0.39] 0.50 11 [0.62,1.96] 0.74 1.03 [0.55,1.92] 0.93 17 [0.71,404] 023
SES at birth
Mid 0.23 [-0.11,0.58] 0.19 -0.23  [-0.88,0.42] 0.48 1.25 [0.34,453] 0.74 0.38 [0.06,2.40] 0.31
g/tl:i?:ntaged 0.25 [-0.09,0.60] 0.15 -0.09 [-0.74,0.55] 0.77 1.57 [0.44,5.64] 0.49 0.71 [0.12,4.36] 0.71
SES in childhood
Mid 0.11 [-0.27,0.50] 0.56 1.03 [0.32,3.30] 0.96
Most advantaged 0.02 [-0.36,0.39] 0.93 0.62 [0.20,1.93] 0.41
N 825 772 382 825 772 382
:\fg:ztsi/_ . 0.142 0.143 0.079 0.066 0.061 0.049
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Age 17 BMIz OWOB
Adjusted for early life Adjusted for SES (birth) Adjusted for SES (childhood) Adjusted for early life Adjusted for SES (birth) Adjusted for SES (childhood)
Coef Cl p Coef CI p Coef ClI p OR Cl p OR Cl p OR Cl p
Female -0.08 [-0.27,0.11] 0.42 -0.1 [-0.31,0.10] 0.32 -0.09 [-0.36,0.18] 0.53 0.98 [0.63,1.51] 0.92 0.94 [0.60,1.46] 0.78 0.93 [0.49,1.77] 0.82
Gestation (weeks) 0 [-0.07,0.06] 0.88 -0.01 [-0.08,0.06] 0.74 0 [-0.10,0.09] 0.92 1.01 [0.87,1.17] 0.88 1.01 [0.86,1.17] 0.94 0.99 [0.79,1.23] 0.93
Bwtz 0.12 [0.01,0.24] 0.040 0.12 [-0.01,0.24] 0.063 0.15 [-0.02,0.31] 0.084 131 [1.00,1.71] 0.051 1.28 [0.98,1.69] 0.075 1.19 [0.80,1.78] 0.39
Maternal age
<25 0.19 [-0.13,0.51] 0.24 0.26  [-0.10,0.62] 0.15 0.41 [-0.28,1.11] 0.24 1.12 [0.56,2.26] 0.75 119 [0.55,2.56] 0.66 133  [0.30,5.92] 0.71
35+ -0.12 [-0.41,0.17] 0.41 -0.09 [-0.39,0.21] 0.54 0.03 [-0.37,0.42] 0.89 1.35 [0.73,2.47] 0.34 141 [0.75,2.62] 0.28 1.91 [0.81,4.48] 0.14
First-born 0.04 [-0.18,0.25] 0.74 0.01 [-0.21,0.23] 0.93 0.11 [-0.19,0.41] 0.47 0.99 [0.62,1.60] 0.98 0.99 [0.61,1.62] 0.97 1.14 [0.56,2.33] 0.72
RWG 0.34 [0.10,0.57] 0.006 0.36 [0.11,0.60] 0.005 0.31 [-0.03,0.65] 0.072 1.65 [0.97,2.81] 0.066 1.64 [0.95,2.81] 0.073 1.17 [0.53,2.61] 0.69
Adversity
Pre and post-natal 0.33 [0.05,0.61] 0.021 0.28 [-0.02,0.58] 0.068 0.21 [-0.20,0.63] 0.31 1.84 [1.05,3.25] 0.034 1.66 [0.91,3.03] 0.10 143 [0.58,3.50] 0.44
SES at birth
Mid 0.42 [-0.13,0.98] 0.16 -0.18 [-1.16,0.80] 0.72 1.59 [0.42,5.96] 0.49 1.42 [0.14,14.36] 0.77
Most advantaged 0.28 [-0.26,0.83] 0.31 -0.51  [-1.48,0.47] 0.31 1.41 [0.38,5.21] 0.60 0.78 [0.08,8.05] 0.84
SES in childhood
Mid -0.22  [-0.78,0.35] 0.45 1.04 [0.28,3.83] 0.95
Most advantaged -0.06  [-0.60,0.47]  0.82 115  [0.33,3.99] 0.83
N 527 498 270 527 498 270
/;S::Zts‘:{/_ w 0.018 0.017 0.008 0.02 0.018 0.024

Coefficients (coef) or odds ratios (OR) are presented with 95% confidence intervals (Cl) and the corresponding level of significance (p). Reference categories were; normal term for gestational age

categories; the least advantaged group for SES; and age 25-34 for maternal age.
SES, socioeconomic status; RWG, rapid weight gain
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Multivariable parsimonious models in ALSPAC

Table XIll Multivariable linear regression parsimonious models for BMIz at ages 7 and 17

BMIz7 BMIz17
Coef Cl p Coef Cl p

Female -0.07 [-0.20,0.05] 0.26 -0.09 [-0.29,0.10] 0.35
Gestation (weeks) 0 [-0.04,0.05] 0.90 -0.01 [-0.07,0.06] 0.80
First-born 0.09 [-0.05,0.23] 0.20 0.03 [-0.18,0.24] 0.81
Maternal age

Less than 25 -0.01 [-0.21,0.20] 0.95 0.19 [-0.12,0.51] 0.23

35+ -0.18 [-0.37,0.01] 0.066 -0.11 [-0.40,0.17] 0.44

Birthweight z-score 0.35 [0.27,0.42] <0.001 0.12 [0.00,0.24] 0.043
RWG 0.78 [0.63,0.94] <0.001 0.35 [0.12,0.59] 0.004
Adversity - prenatal 0.34 [0.14,0.55] 0.001
n 825 527
Adjusted R? 0.142 0.028

Coefficients (coef) presented with 95% confidence intervals (Cl) and the corresponding level of significance (p). The reference category was age 25-34 for maternal age.
n, sample size; SES, socioeconomic status; RWG, rapid weight gain.
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Table XIV Multivariable logistic regression parsimonious models for OWOB at ages 7 and 17

OwWO0B7 OwWO0B17
OR Cl p OR cl p
Female 0.63 [0.40,0.97] 0.037 0.81 [0.64,1.03] 0.081
Gestation (weeks) 1.00 [0.87,1.15] 0.99 1.03 [0.95,1.11] 0.45
First-born 1.24 [0.79,1.95] 0.36 1.04 [0.81,1.33] 0.75
Maternal age
Less than 25 0.90 [0.46,1.77] 0.76 1.42 [0.97,2.09] 0.073
35+ 0.56 [0.27,1.17] 0.13 0.98 [0.70,1.38] 0.93
Birthweight z-score 1.86 [1.43,2.42] <0.001 1.26 [1.10,1.43] 0.001
RWG 3.35 [2.04,5.50] <0.001
Adversity - prenatal 1.43 [1.12,1.82] 0.004
SES at birth
Mid 0.50 [0.25,0.97] 0.041
Most advantaged 0.39 [0.20,0.76] 0.006
SES in childhood
Mid 0.74 [0.50,1.09] 0.12
Most advantaged 0.67 [0.45,0.98] 0.039
n 825 1952
pseudo R-sq 0.066 0.026

Odds ratios (OR) are presented with 95% confidence intervals (Cl) and the corresponding level of significance (p). Reference categories were; the least advantaged group for SES; and age 25-34 for
maternal age. n, sample size; SES, socioeconomic status; RWG, rapid weight gain.
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Table XV Multivariable regression models for adiposity outcomes in ALSPAC using RWG and adjusted for SES

Age 7 BMlz OWO0OB
Adjusted for early life Adjusted for SES (birth) Adjusted for SES (childhood) Adjusted for early life Adjusted for SES (birth) Adjusted for SES (childhood)
Coef Cl p Coef Cl p Coef Cl p OR Cl p OR Cl p OR Cl p
Female -0.07  [-0.20,0.06] 0.27 -0.07 [-0.21,0.06] 0.27 -0.08 [-0.28,0.12] 0.43 0.63 [0.41,0.98] 0.039 0.63 [0.40,0.99] 0.047 0.71 [0.36,1.40] 0.32
(Cijzzj(tsl;m [-0.04,0.05] 0.87 0 [-0.04,0.05] 0.97 0 [-0.07,0.07] 0.99 1 [0.87,1.15] 0.98 1.01 [0.87,1.17] 0.91 1.02 [0.81,1.28] 0.87
Bwtz 0.35 [0.27,0.42]  <0.001 0.35 [0.27,0.42] <0.001 0.30 [0.18,0.42] <0.001 1.86 [1.43,2.42] <0.001 1.72 [1.31,2.26] <0.001 1.09 [0.73,1.62] 0.67
Maternal age
<25 -0.01 [-0.21,0.20] 0.94 0.09 [-0.14,0.32] 0.45 0.40 [-0.03,0.82] 0.066 0.9 [0.46,1.76] 0.76 1.18 [0.58,2.43] 0.64 2.06 [0.65,6.46] 0.22
35+ -0.18 [-0.37,0.01] 0.065 -0.17 [-0.37,0.02] 0.086 -0.04 [-0.32,0.24] 0.77 0.56 [0.27,1.17] 0.13 0.51 [0.23,1.11] 0.089 0.26  [0.06,1.15] 0.076
First-born 0.09 [-0.04,0.23] 0.19 0.06 [-0.08,0.21] 0.38 0.12 [-0.10,0.34] 0.28 1.24 [0.79,1.96] 0.35 1.15 [0.72,1.85] 0.55 1.13 [0.54,2.38] 0.74
RWG 0.79 [0.63,0.94] <0.001 0.81 [0.65,0.96] <0.001 0.62 [0.38,0.86] <0.001 3.36 [2.05,5.52] <0.001 3.15 [1.90,5.23] <0.001 136 [0.63,2.96] 0.43
Adversity
Pre and 11 [0.62,1.96] 0.74 103  [0551.92] 0.93 1.7 [071,404] 0.23
post-natal 0.09 [-0.09,0.26] 0.34 0.03 [-0.16,0.22] 0.76 0.1 [-0.19,0.39] 0.50 ’ e ’ ’ T ’ ' e '
SES at birth
Mid 0.23 [-0.11,0.58] 0.19 -0.23  [-0.88,0.42] 0.48 1.25 [0.34,4.53] 0.74 0.38 [0.06,2.40] 0.31
Most 0.25 [-0.09,0.60] 0.15 -0.09 [-0.74,0.55] 0.77 1.57 [0.44,5.64] 0.49 0.71 [0.12,4.36] 0.71
advantaged
SESin
childhood
Mid 0.11 [-0.27,0.50] 0.56 1.03 [0.32,3.30] 0.96
Most 002 [0.36039 093 062 [0.20,1.93 041
advantaged
N 825 772 382 825 772 382
Adjusted/ 0.142 0.143 0.079 0.066 0.061 0.049
pseudo R-sq
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Age 17 BMIz OWOB
Adjusted for early life Adjusted for SES (birth) Adjusted for SES (childhood) Adjusted for early life Adjusted for SES (birth) Adjusted for SES (childhood)
Coef Cl p Coef CI p Coef ClI p OR Cl p OR Cl p OR Cl p
Female -0.08 [-0.27,0.11] 0.42 -0.1 [-0.31,0.10] 0.32 -0.09 [-0.36,0.18] 0.53 0.98 [0.63,1.51] 0.92 0.94 [0.60,1.46] 0.78 0.93 [0.49,1.77] 0.82
Gestation (weeks) 0 [-0.07,0.06] 0.88 -0.01 [-0.08,0.06] 0.74 0 [-0.10,0.09] 0.92 1.01 [0.87,1.17] 0.88 1.01 [0.86,1.17] 0.94 0.99 [0.79,1.23] 0.93
Bwtz 0.12 [0.01,0.24] 0.040 0.12 [-0.01,0.24] 0.063 0.15 [-0.02,0.31] 0.084 131 [1.00,1.71] 0.051 1.28 [0.98,1.69] 0.075 1.19 [0.80,1.78] 0.39
Maternal age
<25 0.19 [-0.13,0.51] 0.24 0.26  [-0.10,0.62] 0.15 0.41 [-0.28,1.11] 0.24 1.12 [0.56,2.26] 0.75 119 [0.55,2.56] 0.66 133  [0.30,5.92] 0.71
35+ -0.12 [-0.41,0.17] 0.41 -0.09 [-0.39,0.21] 0.54 0.03 [-0.37,0.42] 0.89 1.35 [0.73,2.47] 0.34 141 [0.75,2.62] 0.28 1.91 [0.81,4.48] 0.14
First-born 0.04 [-0.18,0.25] 0.74 0.01 [-0.21,0.23] 0.93 0.11 [-0.19,0.41] 0.47 0.99 [0.62,1.60] 0.98 0.99 [0.61,1.62] 0.97 1.14 [0.56,2.33] 0.72
RWG 0.34 [0.10,0.57] 0.006 0.36 [0.11,0.60] 0.005 0.31 [-0.03,0.65] 0.072 1.65 [0.97,2.81] 0.066 1.64 [0.95,2.81] 0.073 1.17 [0.53,2.61] 0.69
Adversity
Pre and post-natal 0.33 [0.05,0.61] 0.021 0.28 [-0.02,0.58] 0.068 0.21 [-0.20,0.63] 0.31 1.84 [1.05,3.25] 0.034 1.66 [0.91,3.03] 0.10 143 [0.58,3.50] 0.44
SES at birth
Mid 0.42 [-0.13,0.98] 0.16 -0.18 [-1.16,0.80] 0.72 1.59 [0.42,5.96] 0.49 1.42 [0.14,14.36] 0.77
Most advantaged 0.28 [-0.26,0.83] 0.31 -0.51  [-1.48,0.47] 0.31 1.41 [0.38,5.21] 0.60 0.78 [0.08,8.05] 0.84
SES in childhood
Mid -0.22  [-0.78,0.35] 0.45 1.04 [0.28,3.83] 0.95
Most advantaged -0.06  [-0.60,0.47]  0.82 115  [0.33,3.99] 0.83
N 527 498 270 527 498 270
/;S::Zts‘:{/_ w 0.018 0.017 0.008 0.02 0.018 0.024

Coefficients (coef) or odds ratios (OR) are presented with 95% confidence intervals (Cl) and the corresponding level of significance (p). Reference categories were; normal term for gestational age

categories; the least advantaged group for SES; and age 25-34 for maternal age.
SES, socioeconomic status; RWG, rapid weight gai
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Table XVI Multivariable linear regression parsimonious models for BMIz at ages 7 and 17

BMIz7 BMIz17
Coef Cl p Coef Cl p

Female -0.07 [-0.20,0.05] 0.26 -0.09 [-0.29,0.10] 0.35
Gestation (weeks) 0 [-0.04,0.05] 0.90 -0.01 [-0.07,0.06] 0.80
First-born 0.09 [-0.05,0.23] 0.20 0.03 [-0.18,0.24] 0.81
Maternal age

Lessthan 25 -0.01 [-0.21,0.20] 0.95 0.19 [-0.12,0.51] 0.23

35+ -0.18 [-0.37,0.01] 0.066 -0.11 [-0.40,0.17] 0.44

Birthweight z-score 0.35 [0.27,0.42] <0.001 0.12 [0.00,0.24] 0.043
RWG 0.78 [0.63,0.94] <0.001 0.35 [0.12,0.59] 0.004
Adversity - prenatal 0.34 [0.14,0.55] 0.001
n 825 527
Adjusted R? 0.142 0.028

Coefficients (coef) presented with 95% confidence intervals (Cl) and the corresponding level of significance (p). The reference
category was age 25-34 for maternal age.

n, sample size; SES, socioeconomic status; RWG, rapid weight gain.

Table XVII Multivariable logistic regression parsimonious models for OWOB at ages 7 and 17

OwWOB7 OWO0B17
OR Cl p OR cl p
Female 0.63 [0.40,0.97] 0.037 0.81 [0.64,1.03] 0.081
Gestation (weeks) 1.00 [0.87,1.15] 0.99 1.03 [0.95,1.11] 0.45
First-born 1.24 [0.79,1.95] 0.36 1.04 [0.81,1.33] 0.75
Maternal age
Less than 25 0.90 [0.46,1.77] 0.76 1.42 [0.97,2.09] 0.073
35+ 0.56 [0.27,1.17] 0.13 0.98 [0.70,1.38] 0.93
Birthweight z-score 1.86 [1.43,2.42] <0.001 1.26 [1.10,1.43] 0.001
RWG 3.35 [2.04,5.50] <0.001
Adversity - prenatal 1.43 [1.12,1.82] 0.004
SES at birth
Mid 0.50 [0.25,0.97] 0.041
Most advantaged 0.39 [0.20,0.76] 0.006
SES in childhood
Mid 0.74 [0.50,1.09] 0.12
Most advantaged 0.67 [0.45,0.98] 0.039
n 825 1952
pseudo R-sq 0.066 0.026

Odds ratios (OR) are presented with 95% confidence intervals (Cl) and the corresponding level of significance (p). Reference
categories were; the least advantaged group for SES; and age 25-34 for maternal age. n, sample size; SES, socioeconomic

status; RWG, rapid weight gain.
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RWG regression diagnostic plots

Leverage

Residuals

.04

.03

.01

o

0 .005 .01

.015

.02

Normalized residual squared

-2 0

2

Inverse Normal

Residuals

Normal F[(r-m)/s]

1.00

0.75

0.50

0.25

0.00

0.

o

Fitted values

00 025 050 075  1.00
Empirical P[i] = i/(N+1)

Figure XIIl Regression diagnostic plots for the parsimonious model for RWG and BMIz7 in ALSPAC.
From left-right and top-bottom: Leverage vs. squared residual plot; residuals vs. predicted values (Yhat) plot, Quintile-
normal plot and Standardize normal probability plot.
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Figure XIV Regression diagnostic plot for the parsimonious model for RWG and BMIz17 in ALSPAC.
From left-right and top-bottom: Leverage vs. squared residual plot; residuals vs. predicted values (Yhat) plot, Quintile-
normal plot and Standardize normal probability plot.
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A. BMIz7 — basic model
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Residuals

B. BMIz7 — basic model + SES (birth)
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C. BMIz7 — basic model + SES (birth) + SES (childhood)
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E. BMIz17 — basic model + SES (birth)
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F. BMIz17 — basic model + SES (birth) + SES (childhood)
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Figure XV Regression diagnostic plots for linear regression models (basic, adjusted for SES (birth) and for SES (childhood)) for
BMiz at age 7 and 17.

From left-right and top-bottom: Leverage vs. squared residual plot; residuals vs. predicted values (Yhat) plot, Quintile-
normal plot and Standardize normal probability plot.
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Rapid thrive regression diagnostic plots
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Figure XVI Regression diagnostic plots for the RT multivariable linear regression models for BMI at age 7 and age 17.
From left-right and top-bottom: Leverage vs. squared residual plot; residuals vs. predicted values (Yhat) plot, Quintile-

normal plot and Standardized normal probability plot.
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Figure XVII EWAS regression diagnostic plots.

An example of meffil g-g- plots for each adjustment model (none (1), all (2), ISVA (3) and SVA (4)). The Q-Q plots present
the distribution of the p value for the association between CpG site methylation and RWG. The straight line is the expected
distribution under the null hypothesis. For example, in the ISVA model the locus highlighted in red deviated from the
expected distribution and was significantly associated with the exposure (RWG at the Bonferonni cut-off (Figure XVII)).
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Figure XVIII EWAS regression diagnostic plots for RWG cell count sensitivity analysis.

Q-Q plots of cell counts sensitivity analysis EWAS (age 7) for RWG for each adjustment model (none, all, ISVA and SVA). The
Q-Q plots present the distribution of the p value for the association between CpG site methylation and RWG. The straight
line is the expected distribution under the null hypothesis.
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CpG island and gene associations

Table XVIII Linear associations between RWG and CpG loci in nearby genes and/or CpG islands in ALSPAC participants (age
7)

RWG
CpG loci Coef P R?
CpGs inisland cg24802244 0.00 0.255 0.014
chr17:17206527-17207306  ¢g07527330 0.00 0.075 0.004
€g21614420 0.00 0.021 0.062
cg01379158 0.01 0.001 0.247
cg04495270 0.01 0.329 0.035
cg08693337 -0.00 0.932 0.131
cg09810313 -0.00 0.578 -0.014
cg18850434 -0.00 0.777 0.263
cgl19118161 -0.00 0.771 0.021
cg27410828 0.01 0.479 -0.004
CpGs inisland cg02012576 0.00 0.618 -0.012
chr12:133484658-133485739 ¢g20307302 0.00 0.431 0.080
€g25928819 -0.01 0.235 0.142
cg24427504 -0.00 0.612 0.022
cg03279164 0.01 0.459 -0.001
cg07388347 0.00 0.102 0.170
cg08572734 0.00 0.418 0.082
cg09831026 0.00 0.192 0.042
cg11531579 0.01 <0.0001 0.110
cg15607538 0.00 0.182 0.130
cg16562275 -0.00 0.288 0.063
cg24459893 0.01 0.510 0.217
CpGs in NT5M cg24802244 0.00 0.255 0.014
NT5M cg07527330 0.00 0.075 0.004
€g21614420 0.00 0.021 0.062
cg01379158 0.01 0.001 0.247
cg01979266 -0.01 0.203 0.014
cg04495270 0.01 0.329 0.035
cg08693337 -0.00 0.932 0.131
cg09810313 -0.00 0.578 -0.014
cg15761954 0.01 0.193 0.128
cg18850434 -0.00 0.777 0.263
cg19118161 -0.00 0.771 0.021
€g27410828 0.01 0.479 -0.004

Linear regression models with methylation age 7 as the outcome, and RWG as the main exposure. All models are adjusted
for WBCs, age and sex. Underlined are the significant CpG loci from the EWAS. n=116. R? is adjusted r-squared.
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Table XIX EWAS linear associations between significant CpG loci (age 7) and RT in ALSPAC participants

No. of
Exposure CpG name n Age Model  surrogate Estimate SE P value
variables
With cell counts
RT cg01379158 116 7 SVA 12 0.0078 0.0025 0.0022
Without cell counts
RT cg01379158 125 7 SVA 10 0.0065 0.0025 0.0107
RT cg11531579 125 7 SVA 10 0.0056 0.0028 0.0493

Models are adjusted for age, sex, SVAs and with or without adjustment for cell counts.
Estimates represent beta coefficients. n, sample size; SE, standard error; SVA, surrogate variable analysis.
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Consortium CpG loci featured in sub-analyses

Table XX Consortium CpG loci and associated genes from (Wabhl et al., 2016) featured in the candidate gene analysis

cg00094412
cg00108715

cg00138407
cg00144180
cg00238353
cg00244001
cg00431050
cg00574958
cg00634542
cg00673344
cg00711896
cg00863378
cg00973118
cg01101459
cg01243823
cg01511901
cg01798813
cg02119938
cg02286155
cg02560388
cg02650017
cg02711608
cg02716826
cg03050965
cg03159676
cg03318904
cg03327570
cg03433986
cg03523676
cg03725309
cg03885055
cg03940776
cg03957124
cg04011474
cg04126866
cg04232128
cg04524040
cg04577162
cg05063895
¢g05095590

GABBR1
NT5DC2

KLHL18
HDAC4
PTPRE
FAM53B
ELOVL3
CPT1A
SLC11A1
LINC00880
ZNF48
BBS2
AXIN1
LINCO0184
NOD2
UBE2L5P
ZZEF1
ACSBG1
SLC34A1
LPIN1
PHOSPHO1
SLC1A5
AQP3
S1PR1
GSE1
TAB1
ZEB2
BSCL2
CPNE6
SARS
SPATA21
SYNJ2
COX6A1P2
RNA5SP89
C100rf99
TMEM173
CREB3L3
RFC2
SLC9A3R2
MAD1L1
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95

96

97

98

99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

€g11614585
€g11650298

cg11832534
€g11927233
€g11969813
€g12484113
€g12593793
€g12992827
€g13097800
€g13123009
cgl13274938
cg13591783
cgl13781414
€g13922488
cg14020176
cgl14264316
cgl4476101
€g15323828
cg15357118
€g15681239
cg15721584
cg16163382
cg16578636
cg16594806
cgl16611584
€g16815882
cg16846518
cgl7178175
cgl17260706
cg17501210
cg17901584
cgl7971578
€g18098839
cg18120259
€g18181703
cg18217136
cg18219562
cg18513344
cg18608055
€g19217955

ANGPT4

SMIM2-
AS1

WRAP73
NPM1
P4AHB
AHDC1
LMNA
ZPLD1
RPL1OL
LY6G6F
RARA
ANXA1
NACC2
PKN1
SLC9A3R1
PRRC2B
PHGDH
TMEMG63A
UGGT1
DLEC1
SOX2-0T
CDC42EP3
PCGF5
PHBP3
AKAP10
KIAAO319L
EEFSEC
NFE2L2
BCLOL
RPS6KA2
DHCR24
STK40
GOLIM4
C6orf223
SOCS3
PPIAP3
MEOX1
MUC4
SBNO2
ACADVL



41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

cg05648472
€g05720226
cg05845030
cg06012428
cg06164260
€g06192883
cg06500161
cg06559575
cg06603309
cg06690548
cg06898549
cg06946797
cg07021906
cg07037944
cg07136133
cg07202479
cg07471614
cg07504977
cg07682160
cg07728579
cg07769588
cg08305942
cg08309687
cg08443038
cg08548559
cg08648047
cg08726900
cg08813944
cg08857797
€g09152259
€g09222732
cg09315878
cg09349128
cg09554443
cg09613192
cg09664445
cg09777883
€g10179300
€g10438589
cg10505902
cgl0513161
€g10549088
cg10717869
cg10734665
€g10814005

PRDM11
ST7

DCN
ARID1B
BCL6
MYO5C
ABCG1
IGFBP6
KCNQ1
SLC7A11
CNTN1
RMI2
SLC7A5
DAPK2
PRR5L
DARC
LINCO0964
LINC00263
UPF1
FSD2
ATG4D
MAF
LINC00649
CBFA2T3
PIK3IP1
Clorf127
ANKRD11
CPSF4L
VPS25
MAP3K2
EXOC2
SDF4
CRELD2
CD247
FTH1P20
CLUH
BCO2
TRIO
LINCO0504
PDE4DIP
ABCC5
PRICKLE2
SLC41A1
ATP10A
GPR68
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135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179

€g19373099
cg19566658
€g19589396
€g19695507
€g19750657
€g19881557
€g19998073
€g21108085
€g21429551
€g21486834
€g22012981
€g22103219
€g22488164
€g22534374
€g22590032
€g22695339
€g22700686
cg23032421
€g23232188
cg24174557
cg24403644
€g24469729
€g24531955
€g24679890
€g25001190
€g25096107
€g25197194
€g25217710
cg25435714
€g25570328
€g25649826
€g26033520
€g26253134
€g26357885
€g26361535
€g26403843
€g26542660
€g26663590
€g26687842
€g26804423
€g26836479
€g26878209
€g26894079
€g26952928
€g27050612

CRYGFP
TRIP6
RPL5P24
BEND7
UFM1
RNASE10
ZC3H14
CD82
GARS
RHBDF2
ACOX2
SH2B2
PLBD1
RPS10P7
FLT4
CHD3
S100A2
IL5RA
EAF2
VMP1
TOX2
HOXA-AS2
LOXL2
MYO9B
NFIA
IGHA2
EFCC1
BCAN
RN7SL142P
SULT1C2
USP22
ANAPC16
TGFA
HSPA2
ZC3H3
RNF145
CEP135
NFATC2IP
LINCO0598
ICA1
DEDD2
SMC3
CLMP
SLC45A4
NFE2L1



86
87
88
89
90
91
92
93
94

cg10919522
10922280
cg10927968
cg10975897
cg11024682
cg11080651
cg11183227
cg11202345
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Relationship between methylation and adiposity outcomes

For cg01379158 methylation at age 7 and adiposity outcomes at age 7, there was evidence
from the results of the ANOVA that at least one pair of means were not equal. There was a
statistically significant difference between groups as determined by one-way ANOVA
(F(3,121) = 3.35, p =.017). After all possible pairwise comparisons were performed, a
Bonferroni post-hoc test revealed that DNAm was statistically significantly higher in those
who had RWG and were OWOB (age 7) (2.2% increase, p = .049) compared to those who did
not have RWG and were a healthy weight (age 7) (Figure XIX, left). There was no statistically

significant difference between the other groups or for outcomes at age 17 (Figure XIX, right).

As samples sizes for some categories were small, there is reduced likelihood of observing
significant differences, and therefore whilst these results give an indication of methylation

patterns, they are not conclusive.

Table XXI Descriptive characteristics of CpG (cg01379158) methylation (age 7) by phenotype (at ages 7 and 17) in ALSPAC
participants

Groups n Mean SD Median Min Max

Age 7

Healthy weight No RWG 74 0.069 0.017 0.068 0.033 0.125
RWG 35 0.078 0.025 0.076 0.033 0.149

OwWOB No RWG 10 0.075 0.021 0.071 0.042 0.106
RWG 6 0.091 0.019 0.090 0.064 0.114
Total 125 0.073 0.021 0.073 0.033 0.149

Age 17

Healthy weight No RWG 39 0.071 0.017 0.071 0.039 0.103
RWG 26 0.078 0.026 0.077 0.033 0.149

OowoB No RWG 13 0.067 0.016 0.062 0.042 0.106
RWG 6 0.088 0.024 0.083 0.056 0.118
Total 84 0.074 0.021 0.073 0.033 0.149

n, total in each group; SD, standard deviation; min, minimum; max, maximum.
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Figure XIX Box plots of methylation level (age 7), RWG and OWOB (age 7 (left), age 17 (right)).
* indicates Pgont<0.05. Differences between groups were non-significant at age 17.

For cg11531579 methylation at age 7 and adiposity outcomes at age 7, there was evidence
of a statistically significant difference between methylation and the phenotype groups (x2
(3)=14.556, p 0.002). Correcting for multiple comparisons revealed that the differences were
between no RWG and healthy weight and a comparative small increase in methylation in
those who had RWG and were healthy weight (p=0.04)(Figure XX, left). Also, compared to
those with no RWG and healthy weight, those with RWG and OWOB had a notably higher

methylation (+2%, p=0.003), however there were few in this group (n=6).

Table XXII Descriptive characters of CpG (cg11531579) methylation (age 7) by phenotype (at ages 7 and 17) in the ALSPAC
cohort

Groups n Mean SD Median Min Max

Age 7

Healthy = No RWG 65 0.036 0.011 0.034 0.016 0.084

weight RWG 35 0.045 0.020 0.039 0.020 0.118

OWOB No RWG 10 0.039 0.011 0.041 0.024 0.054
RWG 6 0.057 0.013 0.059 0.042 0.075

116 0.040 0.016 0.036 0.016 0.118

Age 17

Healthy = No RWG 47 0.037 0.012 0.035 0.023 0.084

weight RWG 28 0.041 0.014 0.037 0.020 0.086

OWOB No RWG 18 0.036 0.010 0.035 0.016 0.054
RWG 9 0.059 0.027 0.057 0.025 0.118
Total 102 0.040 0.015 0.036 0.016 0.118

n, total in each group; SD, standard deviation; min, minimum; max, maximum. Testing the assumptions of the ANOVA
indicated that there was a slight positive skew in the residuals. Furthermore, Levene’s test statistic (to test for homogeneity
of variances) was significant; therefore, variances were not equal. This was true when analysing adiposity outcomes in both
childhood and adolescence. Instead, the non-parametric KW test was used to assess group differences, plus Dunn’s test with
Bonferroni adjustment for multiple testing.
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For methylation at age 7 and adiposity outcomes at age 17, there was evidence from the
results from the KW test that there was a statistically significant difference between
methylation and the phenotype groups (x 2 (3)=8.735, p 0.033). Correcting for multiple
testing revealed that there was a statistically significant difference between RWG and OWOB
with both: no RWG and healthy weight (p=0.02) and no RWG and OWOB (p=0.04) (Figure XX,

right).
Childhood methylation and childhood adiposity outcomes Childhood methylation and adolescent adiposity outcomes
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Figure XX Boxplots of childhood methylation and adiposity outcomes in childhood and adolescence.
The tests for significance (p values) from the KW test with Bonferroni correction for multiple testing.

Overall, methylation was consistently higher in those who were OWOB and experienced
RWG, compared to those who did not experience RWG and were a healthy weight, at both
time points. In those that had RWG, there is the potential that methylation at this CpG site
may be able to act as a predictive biomarker of subsequent OWOB (Figure XXI); those who
had RWG and were OWOB at age 7 or age 17, had higher methylation. Furthermore, those
who were healthy weight at age 7, but then became OWOB at age 17 had higher
methylation at age 7. Although this included few study members (n=6), methylation at age 7

could have indicated future risk of OWOB in this group.

Whereas, those who had RWG but were a healthy weight at age 7 and 17, had consistently

lower levels of methylation. On average, methylation was lower in those who did not have
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RWG regardless of weight status. Sample sizes are for those with complete data at that time

point. Group sizes were small for some phenotypes.

No RWG RWG

Cw

owos

Age7 Healthy

YAgel7 Healthy OWOB Healthy OWOB  Healthy | OowoB Healthy OWOB\<

Figure XXI Pathways of mean methylation levels (%, age 7) and body composition (at ages 7 and 17).
Sample sizes are for those with complete data at that time point. Group sizes were small for some phenotypes.
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Appendix F

Additional laboratory methods

Table XXIII Primers designed for examination of the 2 Significant CpG loci in the NTFS samples

CpG site Direction Size Tm Sequence
(bp)
cgl11531579  Forward 25 49.5 AGTTTTTGTGGAAATTTAGAAGTAA
Forward (IUPAC) 25 49.5 RGTTTTTGTGGAAATTTARAAGTAA
Reverse (bio) 20 52.3 AACCAACCCCATCCTAAATC
Sequencing 15 38.2 TTTTTTGGGAATGAA
cg01379158  Forward 17 42.7 GGAGGAGAAGTTTTTAA
Forward (IUPAC) 17 41.5 GRAGGAGAAGTTTTTAA
Forward (IUPAC 3'edit) 17 41.9 GRAGGAGAAGTTTTTAR
Reverse (bio) 27 46.7 CCATAATAATCRATACAATAAAAAAAA
Sequencing 15 38.0 YGTTTTTAGAAGGTT

All primers are in the 5’23’ direction. If the original primers failed, they were redesigned with IUPAC ‘wobble’ base pairing
to account for potential SNPs (underlined). bp, base pairs; Tm, melting temperature.

ladder A B C D E F G H NTC1 NTC2

Temp (°C) 52 514 501 482 459 440 427 420 482 459

Figure XXII Gel electrophoresis image for the cg11531579 assay.
Gel image for the temperature gradient PCR for cg11531579 performed using HEK cell-line bsDNA.
NTC, no template control.
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Methylation %

Examining the relationship between RWG, DNAm and body composition in NTFS

Within either the OWOB or healthy weight categories, there were differences in CpG3
methylation levels between those who had/did not have RWG (p<0.1) (Figure XXIIl). There

were no significant differences observed for CpG 1 or 2.

Overall mean methylation, all CpG3 methylation, all
100
° P=0.07 P=0.07
& 1 1
60 S ° :
40 : °
8 ° ° o
20 g °
- El S = = ==
No RWG RWG No RWG RWG No RWG RWG No RWG RWG
Healthy weight OwWOB Healthy weight OwWOB
Mean methylation Cpg3 methylation
Healthy weight owoB Healthy weight owosB
No No No No
RWG RWG RWG RWG Total RWG RWG RWG RWG Total
N 39 19 38 36 132 39 19 38 36 132
p50 3.05 3.4 346 2.19 3.08 3.24 2.98 3.16 1.22 2.53
min 0 0 0 0 0 0 0 0 0 0
max 95.46 69.53 25'1 50.09 95.46 91.27 66.01 64.28 4528 91.27
p25 1.22 0 1.18 O 0.97 0.85 0 0.91 0 0
p75 5.81 4,28 796 5.1 5.18 4.5 4.02 7.25 3.78 4.42
p 0.22 0.13

Figure XXIIl Box plots of DNA methylation by phenotype groups.
Kruskal-Wallis p value shows differences across groups. There were no significant differences at p<0.05 between groups
(Bonferroni adjusted using Dunn's Pairwise Comparison), however differences were observed at p<0.1.

Similar to results for body composition at age 50, those who had RWG and were subsequent
OWOB (age 60) had the lowest levels of methylation (Figure XXIV). However, overall there
were no significant differences between groups (Kruskal-Wallis, x2(3) = 5.507, p = 0.14).

There were no significant differences for CpG 1 or 2.
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Figure XXIV Box plot for CpG3 methylation (age 50) by RWG and subsequent adiposity outcomes (age 60).

The tests for significance (p values) from the Kruskal-Wallis test with Bonferonni correction for multiple testing.
The Kruskal-Wallis test for differences between groups was non-significant overall, x2(3) = 5.507, p = 0.14.
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Examining the relationship between DNAm and body composition in those who had RWG

Methylation was investigated further with respect to body composition only in those who
experienced RWG in infancy, as this was the ‘exposed’ group in which differences in
methylation were previously observed (in the ALSPAC cohort). There were no significant

associations between DNAm and body composition in those who had RWG (Table XXIV).

Table XXIV Logistic/linear regression models for weight outcomes (age 50) and DNAm (age 50), investigated only in those
who had infancy RWG

OB owoB BMI

coef ClI p coef ClI p coef CI p
Mean methylation 0.97 [0.88,1.07] 0.57 0.99 [0.95,1.04] 0.72 0 [-0.10,0.10] 0.94
Cpgl 0.93 [0.77,1.13] 0.48 0.99 [0.94,1.04] 0.63 -0.02 [-0.12,0.08] 0.72
Cpg2 0.98 [0.92,1.06] 0.68 1 [0.95,1.04] 0.86 O [-0.09,0.10] 0.96
Cpg3 0.98 [0.90,1.07] 0.61 0.99 [0.94,1.04] 0.69 0.01 [-0.10,0.11] 0.92

Weight outcome was the dependent variable and DNAm the independent variable. Healthy weight was the reference
category for the OWOB and OB logistic regression models. Only in those who had infancy RWG. Adjusted for sex. n=55.
Odds ratios (OR) and coefficients (coef) are presented with 95% confidence intervals (Cl) and the corresponding level of
significance (p)
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Figure XXV SNP patterns in sequenced matched samples.
There were differences observed at positions (pos) 90, 339 and 424 for matched pairs of high and low methylation. In these

samples, there were SNP differences between high and low methylation in matched pairs A and C. These pairs
demonstrated similarities in that they had RWG and a higher BMI, contrary to pair B which did not exhibit differences

between high and low methylation.
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Linkage disequilibrium

D prime (D') wvalues for the query SNPs
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Figure XXVI LDlink output for the SNPs in the region of interest for cg11531579 for European populations.

The image output shows the chromosomal location and proximity of the SNPs, and the text output indicates there is no
correlation between them (R2=0.01). The X2 and p-value (=0.16) indicate that the haplotypes do not deviate from the
expected values and therefore there was no evidence of linkage disequilibrium.
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