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Abstract 

This thesis describes the development of a four-phase double-stator switched-reluctance motor 

(DSSRM) with mutually coupled windings. This machine, which has a topology that combines 

features of both the mutually coupled and double-stator switched-reluctance motor, will be 

shown to have the potential to offer improved torque productivity under the same ohmic loss 

limitation; though experimental mechanical and thermal confirmation remains to be completed. 

It is widely thought that the electrification of vehicle traction will be an essential element in the 

automotive industry in the next decade. An eventual sales ban on diesel and petrol vehicles has 

recently been reported to be planned by several industrial countries. Even disregarding these 

political declarations, which could only be considered as expectation rather than strict policy, 

the spread of hybrid powertrain technology and the continuous fall of Li-ion battery prices will 

effectively motivate an increasing number of automotive manufacturers to participate in this 

revolution. Since the cost of rare-earth materials is expected to continuously rise and the mining 

of these resources has left an enormous impact on the environment, the development of a high-

performance SRM as an alternative to a permanent magnet synchronous machine (PMSM) is 

worthy and necessary. 

In addition to the enhancement of electromagnetic performance, this thesis discusses the 

mechanical properties and rotor structure of the DSSRM. The rotor support, which holds the 

rotor segments together, should be strictly of non-conducting material to prevent significant 

eddy current loss. Since most materials struggle to offer a compatible stiffness to steel, methods 

have been investigated to meet the challenge of designing a rotor support able to endure the 

centrifugal force of rotor segments during high-speed spinning. Thermal issues pose another 

challenge for this prototype but simulations indicate that the DSSRM could have better cooling 

capability than the conventional SRM configuration. 

A prototype was built and compared with a 12/16 segmental-rotor SRM, previously developed 

at Newcastle University. The results indicated that the prototype machine gave a promising 

torque performance with a relatively low copper loss. 
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Chapter 1.  Introduction 

This doctoral thesis describes the development of a novel SRM topology, which is designed to 

provide high performance in terms of torque per unit copper loss. The motivation and 

contribution of this research is provided in this chapter, along with a brief outline of the thesis 

structure. 

1.1 Background Knowledge 

With increasing concerns surrounding global warming and air pollution, the electrification of 

the automotive industry is becoming an unstoppable trend; thus it can be predicted that electric 

machines will replace internal combustion engines within a few decades. Amongst all types of 

electric machines, the SRM with its unique features is considered to be a potential candidate 

for future vehicle propulsion. 

1.1.1 The Electrified Propulsion of Automotive Industry 

Electrification is forecast to be the most important development in the automotive industry over 

the next decade and could be realised along four technical routes: 

• Hybrid electric vehicle (HEV): The HEV is powered by an internal combustion engine 

(ICE), as with a conventional vehicle, but is also equipped with an electric motor that 

assists propulsion. This type of powertrain has advantages in terms of fuel-efficiency 

and propulsion power because the electric motor possesses regeneration features and 

prevents low-efficiency operation conditions manifesting in the ICE. For example, the 

fuel economy of the hybrid Toyota Camry is 52.9% higher than the regular engine 

version (see Figure 1-1). Toyota HEVs have already achieved commercial success in 

the automotive market (the model Toyota Prius reached total sales of more than two 

million between 2011 and 2016 [1]). Moreover, increasingly stringent emissions 

policies are also driving other leading manufacturers to enhance fuel economy. In 

addition, the European Union has set a target to limit passenger car CO2 emissions to 

95 g/km by the year 2021, which is equivalent to a fuel consumption of 4.1 l/100 km of 

petrol or 3.6 l/100 km of diesel [2]. Consequently, European car manufacturers, such as 

Volvo and Jaguar Land Rover, whose technology previously centred on the diesel 

engine, have quickly responded to this policy by stating aims to exclusively produce 

hybrid or electric cars from 2020 onwards [3, 4]. Unlike the complicated powertrain 

technology used by Japanese manufacturers, the hybrid system of European car makers 

depends on the 48-V integrated starter generator (ISG), which is only fractionally more 
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expensive and requires less redesign effort than the conventional ICE platform [5, 6]. 

As a result, 48 V mild-hybrid concepts could be widely accepted by the automotive 

industry in the coming years. 

 

Figure 1-1 A comparison of the fuel consumption of hybrid and conventional ICE vehicles [7] 

• Battery electric vehicle (BEV): The BEV is currently the most successful zero-

emissions vehicle on the market; according to [8], sales have increased by 51% over the 

last two years (from 740,000 in 2016 to 1.1 million in 2017). Even excluding the impact 

of subsidies, the BEV has already become competitive in the luxury car market [9] (see 

Figure 1-2) 

 

Figure 1-2 Sales of large luxury cars in the US in 2017, showing that the BEV (Tesla Model S) already 

dominates the market [9] 
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Moreover, due to an increase in global production, the cost of battery packs has been in 

steady decline over the past eight years [10, 11]. In 2010, when the first mass-produced 

BEV model – the Nissan Leaf – was launched, the price of the battery was circa USD 

1,000 per kilowatt hour (kWh). However, nowadays, the cost of a battery for the Tesla 

Model 3 and Chevrolet Bolt is USD 190/kWh and USD 205/kWh, respectively [11]. It 

is almost certain that the price will drop to below USD 100/kWh by 2025 and according 

to [11], the eventual price could fall to USD 73/kWh by 2030 (see Figure 1-3). Since 

the battery pack makes up the largest proportion of the manufacturing costs of the BEV, 

a decrease in battery cost should guarantee a significant increase in the global market 

share of BEVs. 

 

Figure 1-3    The price trend of battery packs in the electric vehicle (EV) industry [11] 

• Plug-in hybrid electric vehicle (PHEV): The PHEV combines features of the HEV and 

BEV. Its battery is relatively small compared to a BEV and is designed to supply a pure-

electricity range of between 30 km and 80 km. Consequently, the PHEV could behave 

as a BEV in urban commuting, with advantages such as zero-emissions and excellent 

economy, but without the range anxiety or the high cost of a large battery pack. 

Although its market share is lower than the BEV and HEV (with global sales of 386,000 

in 2017 [8]), the PHEV is predicted to be a mainstream EV type in the next decade. 

• Fuel-cell vehicle (FCV): the FCV is a type of serial-hybrid vehicle which uses a 

hydrogen-oxygen fuel cell unit rather than an ICE to supply electrical power [12]. Since 

its refill time is similar to a conventional diesel or petrol car, the FCV could effectively 

eliminate the range anxiety often experienced by BEV owners. As such, the FCV would 

otherwise have been the ideal alternative to ICE vehicles, if disadvantages such as the 

high price of the fuel cell unit did not exist. Furthermore, even if the manufacturing 
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costs could be managed in the future, the relatively low production efficiency of 

hydrogen and difficulties with hydrogen transportation could represent further 

challenges [13, 14].  

1.1.2 The Rising Demand for Magnet-Free Electric Machines 

The market size of the automotive industry was circa 79.02 million in 2017 and is set to 

continually expand due to economic development in China and India [15]. According to [16], 

prohibitions on conventional ICE vehicles will come into effect in all major industrial nations 

between 2025 and 2040. Thus, around 100 million electric motors will be required annually in 

the automotive industry following the electric revolution. Nowadays, the high-performance 

electric machine for vehicle propulsion is dominated by PMSMs that use a rare-earth material, 

generally neodymium iron boron (NdFeB)[17, 18]. With concerns of limited mining capability 

of this rare resource, the price of NdFeB has steadily increased in recent years, with further 

expansion expected [19, 20]. As can be seen from Figure 1-4, the price of NdFeB is set to reach 

USD 148,444/metric tonne in 2025, which is almost ten times the price it was in 2009 (USD 

15,208/metric tonne). Moreover, an abnormal price surge between 2011 and 2012 indicates that 

the supply of rare-earth materials is vulnerable to market manipulation. Assuming each PMSM 

would require circa 1.5kg NdFeB[21], then it can be estimated that the automotive industry, as 

a whole, would have to spend a minimum USD 17.5 billion annually securing supplies of 

NdFeB in order to install PMSMs in vehicles. 
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Figure 1-4   The price trend of NdFeB from 2009 to 2025 [20]. 

In addition to the financial costs, this massive use of rare-earth materials could leave a severe 

impact on the environment [22]. According to several reports[23, 24], the mining and recycling 

of rare-earth oxides has already undermined the local ecosystem in East Asia. This issue is 

discussed in [22] where the environmental impact of the NdFeB lifecycle is compared with 

other conventional materials used in PMSM manufacture (see Figure 1-5)  

 

Figure 1-5 NdFeB potentially has a much higher environmental impact than other materials [22] 
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Furthermore, the utilisation of permanent magnets could have other limitations that need to be 

considered: 

• The ever-present magnetic field of the permanent magnet could produce an undesirable 

loss in some scenarios. For example, the electric machine in a 48V mild hybrid 

system(ISG) could be directly connected to the engine shaft. When the vehicle is 

cruising on a highway with the ISG in idle mode, this could generate a loss via the 

rotational magnetic field and cogging torque. For the more sophisticated hybrid system, 

this condition could be avoided by introducing a clutch into the powertrain to allow for 

the decoupling of the electric motor and the engine [25]. However, even in the standard 

operation scenario, the permanent magnet would require a relatively large Volt-Ampere 

(VA) requirement to extend the speed range. As a result, the high-efficiency advantage 

of PMSM may be lost at high speed. 

• The magnetism of a permanent-magnet material is not really ‘permanent’. Its 

degradation could occur if heat or the external field is not appropriately controlled. 

Unfortunately, the electric motor in a hybrid vehicle is exposed to a relatively high 

ambient temperature and often operates under a heavy load. Thus, the PMSM must be 

carefully designed to maintain a low rotor temperature. 

1.1.3 The Advantages and Disadvantages of the Switched-Reluctance Machine for 

Automotive Traction Applications 

The development of a magnet-free electric machine for vehicle traction is worthy and necessary. 

The potential candidates, such as the induction machine (IM), switched-reluctance machine 

(SRM), synchronous-reluctance machine, and wound-rotor-synchronous machine have been 

analysed and compared in several papers [21, 22, 26, 27]. With consideration to torque density 

and efficiency, only the IM and SRM are widely accepted with the potential to be introduced 

into the vehicle traction market.  

The IM has already achieved initial success in the EV market: Tesla, Inc., one of the most 

successful EV manufacturers whose name is a reference to the inventor of the IM, has vastly 

increased its production of powered BEVs since 2012[28], with annual sales figures reaching 

100,000 in 2017 [29]. Interestingly, the SRM may also be evident soon amongst its production 

of BEVs; Elon Musk (the current CEO of Tesla, Inc) states that the twin-motor version Tesla 

Model 3 will be equipped with both an IM and SRM on the front and rear of the vehicle, 

individually [30]. 



Introduction 

7 

 

The SRM is a type of reluctance machine with salient structure in both stator and rotor. 

Compared with the PMSM (which currently dominates the EV traction market) and the IM, the 

SRM possesses several advantages: 

1) Low manufacturing costs: the low cost is guaranteed by the rotor structure. Without a 

permanent magnet and, instead, copper or aluminium in the rotor, an SRM could 

represent reduced material costs compared to the PMSM and IM.  

2) Minimal cooling requirement: due to the absence of a permanent magnet material, the 

SRM is free from the demagnetisation problem associated with the PM machine. Thus, 

the SRM should naturally be able to endure higher temperatures than the PMSM. 

Moreover, since there is neither winding on the rotor nor significant end-winding on the 

stator, the cooling of the SRM should be significantly easier than with the IM. 

3) Robust structure: the geometry of the rotor in the SRM is relatively simple, with neither 

magnets or windings; therefore, the rotor of the SRM tends to survive at higher rotation 

speeds than other electric machines. 

4) Fault tolerance: this is an inherent feature of the SRM, since each of its phases is 

electrically and magnetically isolated. Thus, if a failure occurs in one phase, other 

phases should still operate undisturbed.  

A specific comparison between these three machine types has been frequently discussed [22, 

27, 31], and the results of one such study [22] are presented in TABLE 1-1 below. 

TABLE 1-1 COMPARISON BETWEEN DIFFERENT MACHINE TYPE IN 

AUTOMOTIVE TRACTION APPLICATION [22] 

 PMSM IM SRM 

Power 80kW 50kW 75Kw 

Peak Efficiency 98% 96% 97% 

Active Material cost $223 $144 $118 

Drive VA Rating >twice 

that of  the 

power 

Small >twice that of 

the power 

Torque Ripple Low Low Large 

 

Among the potential candidates for electric propulsion, the SRM can provide reasonable 

performance and efficiency while maintaining the lowest cost – however, there are still certain 

disadvantages that prevent the SRM from being widely accepted: 
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1) Performance: although the SRM could perform comparably within the magnet-free 

electric motor family, its torque density still struggles compared with mainstream 

PMSMs, which dominate the EV market.  

2) Torque ripple: the SRM is known for its relatively large torque ripple. The effort to 

eliminate this issue mainly depends on sophisticated control algorithms. 

3) Acoustic noise and vibration: noise, vibration and harshness (NVH) is a critical 

performance measure in the automotive industry. Noise and vibration in SRMs mainly 

occur on the stator teeth due to the rapidly varying electromagnetic force in the radial 

direction. 

4) High apparent power requirement: The apparent power requirement of the SRM is 

relatively large, especially when compared with the induction machine. This increases 

the cost of the drive which somewhat counteracts any advantages of low manufacturing 

costs. 

To address these disadvantages, researchers have already developed several possible novel 

designs which include, but are not restricted to, the segmental-rotor SRM, double-stator SRM 

and the mutually coupled SRM. 

The segmental rotor SRM was firstly introduced by Mecrow et al. in 2003 [32] and was 

identified as having a 40% higher torque capability than the conventional SRM. However, this 

motor type suffers cross-saturation effects which can limit torque performance under highly 

saturated conditions. Moreover, the large inductance requires a higher VA from the drive than 

the conventional SRM  

The double-stator SRM was initially a development of the segmental-rotor SRM with an 

additional stator inside the machine geometry [33]. This type of design is claimed to effectively 

enhance torque density and reduce vibration. Moreover, the double-stator structure was proven 

compatible with the flux loop in the conventional SRM in 2015 [34]. 

The mutually coupled SRM is a conventional SRM which can utilise the mutual coupling 

effects in torque production [35]. Unlike the fully pitched SRM, this machine should use both 

self and mutual inductance together and be equipped with single-tooth winding. 

1.2 Objective and Contribution to the Knowledge 

The objective of this project is to develop a novel SRM tropology with higher torque per unit 

copper loss. During this process several contributions have been made to the knowledge, and 

are listed as follows: 
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• An investigation of the impact of phase number upon the torque production has been 

made and a conclusion is created: most common three-phase SRMs have an advantage 

when the airgap reluctance has a dominate role in the magnetic path. In contrast, the 

higher phase number designs make better use of the iron path, which makes them more 

competitive when the machine is operating under saturated conditions (Chapter 3); 

• An analytical model has been developed to make a fair comparison between three-phase 

and four-phase SRMs. It reveals that the four-phase machine tends to provide higher 

torque per unit copper loss when the machine design has a large split ratio (rotor radius 

to stator radius) or the machine is operating in the saturated condition (Chapter 3); 

• To effectively analyse the four-phase configurations, an improved static flux-linkage vs 

current analysis was developed to replace the transient finite element analysis which is 

relatively time consuming but used to be necessary when evaluating torque performance 

of an SRM with two or more phase conducting simultaneously (Chapter 4); 

• An analysis that reveals that mutual coupled winding arrangements enhance the 

performance of four-phase SRMs and that such a machine should have a larger splitting 

ratio. A 16/12 SRM with mutually coupled winding has been developed using this 

concept, verified by showing it surpasses the performance of Chiba’s 18/12 SRM 

(widely accepted to be one of the best-optimised SRM ever published so far) during 2D 

transient FEA (Chapter 4);  

• The examination of higher rotor pole number concepts suggests this would improve the 

torque in the linear region, but it is difficult to provide improvement during saturated 

conditions. Modification of the stator pole tip shows an improvement of performance 

when saturated (Chapter 4); 

• Development of novel rotor structures which exhibit good mechanical strength without 

producing significant eddy current loss (Chapter 5, 6). 

• Development of a 16/12 mutual coupled double stator SRM prototype that provides very 

high torque per unit copper loss. The prototype is verified by comparison with a 12/16 

segmental rotor SRM that is developed with the same objective, using both 2D FEA and 

experimental test (Chapter 5, 6). 

Published Work: 

Y. Lu and J. D. Widmer, "Development of a straight pole four-phase double-stator switched 

reluctance machine," The Journal of Engineering, vol. 2019, pp. 3997-4002, 2019. 
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1.3 Thesis Structure 

The structure of this thesis consists of the following components: 

Chapter 2. Literature Review - this chapter introduces the background knowledge of the SRM 

and analyses and evaluates several technologies relating to this project. 

Chapter 3. Comparison between Three-Phase SRM and Four-Phase SRM - this section 

discusses the effects of increasing the number of phases. In the beginning, the investigation 

included a selection of phases ranging from three to six. The results of both 2D finite element 

method (FEM) and analytical equations indicate that the SRM with the higher phase number 

would provide higher overall torque production in certain circumstances. 

Further comparison focuses on the three-phase and four-phase configurations by analysing the 

flux-linkage-current curves. The results suggest that the four-phase SRM performs best with a 

different geometric design to that of the three-phase SRM. 

Chapter 4. The Development of Four-Phase SRM Design – following the conclusion from 

Chapter 3, the proposed SRM was developed, based on the four-phase SRM. The coil 

arrangements and pole number combinations were evaluated and simulation results based on 

the 2D FEM are provided. 

The feasibility and suitability of the double-stator structure was investigated via an analytical 

method. Subsequently, a proposed four-phase double-stator SRM was developed and compared 

with other SRMs.  

Chapter 5. Multi-Physical Challenges and Prototype Development – this chapter 

investigates the mechanical and thermal issues of the proposed machine. Various rotor 

structures and materials, which would provide sufficient robustness without sacrificing too 

much electromagnetic performance, were compared. Thermal analysis was conducted to ensure 

that the cooling performance of the proposed machine design would not be inferior to that of a 

conventional SRM. 

Chapter 6. Construction and Test Results - This chapter describes the final design 

modifications and the construction process, in detail. Experimental results are presented. 

Chapter 7. Conclusion and Future Work - this chapter concludes with the advantages of the 

proposed double-stator SRM, showing its potential for automotive traction applications, and 

suggests areas which require further development.  
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Chapter 2.  Literature Review 

This chapter review of published researches that relate to the thesis objective. Commencing 

with the history and general background knowledge of SRMs (see Section 2.1 and Section 2.2 

respectively), the discussion of modern SRM designs is divided into four categories:  

• A review of the conventional SRM (Section 2.3), including some classic analysis that 

attempts to establish a research guide in the early 1990s, up to the latest published results, 

which seek to deliver equivalent performance modern PMSMs in the automotive 

industry. This review ensures the baseline of a high-performance conventional SRM 

and concludes a generalised design concept that inspired the analysis in Chapter 3. 

• A review of segmental rotor SRM design (Section 2.4), demonstrates both the pros and 

cons of this machine type, which is considered to be a significant milestone of SRM 

development and inspired the invention of the double stator SRM. 

• A review of the double stator SRM design and development which is based on the 

segmental rotor SRM. It suggests that a double stator SRM, based on a conventional 

SRM, needs to be developed (Section 2.5). 

• A review of the work undertaken to improve the performance of SRMs by using the 

mutual coupling effects (Section 2.6). This review provides ideas for developing the 

winding configuration of this project. 

2.1 Switched Reluctance Machine History 

The history of the switched-reluctance machine possibly dates back to the nineteenth century. 

According to Miller [36], the earliest record for the application of this technology was a 

locomotive propulsion system built by Davison for the railway between Glasgow and 

Edinburgh in 1838. Moreover, the original research for the reluctance machine began in 1824 

[37]; however, the modern switched-reluctance machine research is believed to have been 

started in the late 1960s, after the development of modern power electronics [38]. 

2.2 Fundamental Principles and Torque Evaluation Methods 

Unlike permanent-magnet or induction machines, which are mainly driven by the Lorentz force, 

the switched-reluctance machine rotates via a tendency towards seeking minimum reluctance 

[36, 37]. The typical structure of a conventional SRM has salient geometry in both stator and 

rotor, while its winding is often single-toothed on the stator pole. Consequently, an analysis of 

torque performance is complicated due to its highly nonlinear electromagnetic performance 

[39]. 
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In general, the torque of the SRM is calculated as the differential of the co-energy with respect 

to angle[40]. Using a simple equation, the relation could be described as: 

 𝑇(𝜃, 𝑖) =
𝜕𝑊(𝜃,𝑖)

𝜕𝜃
 ( 2-1) 

The co-energy 𝑊is represented by the area below the magnetisation curve; thus, it could be 

described as the integral of the flux linkage ψ in terms of the phase current, i: 

 W = ∫ 𝜓 𝑑𝑖 ( 2-2) 

Since the inductance will be increased steadily from the minimum value at the unaligned 

position to the maximum value at the aligned position, ideally, the corresponding phase will be 

conducting during this period. Consequently, the mean static torque could be evaluated from 

the magnetisation curves at these two positions 

The electromagnetic characteristics which present in the magnetisation curve can be acquired 

via three principal methods [39, 41]:  

1) The experimental method – test-based methods can provide the most accurate result, 

but can only be utilised after the machine is completed. In [42-46], some possible 

methods are outlined for analysing the magnetisation curve, including measuring the 

flux directly, measuring inductance directly and measuring the flux linkage indirectly. 

The first two, however, are direct methods and contain inherently critical disadvantages 

which have led to them never having been widely implemented. Specifically, to measure 

flux directly, a sophisticated (and likely expensive) sensor must be installed inside the 

machine during the assembly process. Whilst measuring the inductance directly, a high-

frequency AC signal must be injected into the DC excitation current. Thus, in order to 

cover the range of operation conditions, taking the necessary measurements is relatively 

time-consuming, as the process must be repeated, beginning with the low excitation 

current all the way up to the maximum current, incrementally.  

The indirect flux linkage measurement is based on the voltage equation: 

 𝑉 = 𝑅𝑖 +
𝑑𝜓

𝑑𝑡
 ( 2-3) 

Where 𝑉, 𝑅, and 𝑖 represent the voltage, resistance and current of the excited phase. 

Then the flux linkage 𝜓 can be calculated from the integration: 

 𝜓 = ∫ 𝑉 − 𝑅𝑖 𝑑𝑡 ( 2-4) 

The calculation of the above integration can be divided into the following methods: 
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a) Analogue integration – in this case, the integration calculation is fulfilled by 

using an operational amplifier circuit technique. As a result, the preparative 

work is relatively time-consuming, and the measurement accuracy will highly 

depend on the quality of the components. 

b) Digital integration – this can eliminate the problems found in the analogue 

method, as the sampled data is amenable to being smoothed and processed by 

computer. Moreover, preparations for this method are simple: only a current 

sensor, voltage sensor, oscilloscope and digital power supply are required. 

 

2) Finite element method (FEM) – the FEM is commonly utilised in contemporary 

machine-design tasks, as it can provide a high level of accuracy during the simulation 

process and is widely accessible through a variety of commercial software [47, 48]. 

In this PhD programme, the Infolytica MagNet is intensively used for electromagnetic 

FEA (Finite Element Analysis). As can be seen from Appendix 1, Visual Basic scripting 

is used to produce the motor geometry in this software. The triangular elements of the 

finite element model are automatically generated in each user-defined component and 

can be limited to a maximum size. The airgap is the critical area in the FEA, thus it is 

divided into four layers, by independently setting the mesh size of the airgap 

components(the tutorial of MagNet suggest the airbox for transient with motion FEA 

should divide into stator virtual air, stator air, rotor air, and rotor virtual air). This can 

improve the accuracy of the results. 

Compared to the full 3D-model analysis, 2D FEM is widely accepted, absorbing just 

15% of the time required by the former [49]. Taking vector potential 𝐴 as an example, 

2D analysis can effectively reduce the complexity of the governing equation relevant to 

the calculation. To be specific, the flux density can be expressed as 𝐵 = 𝑐𝑢𝑟𝑙 𝐴 and the 

current density as 𝐽 = 𝑐𝑢𝑟𝑙 𝐻. Normally, the relation between 𝐴 and 𝐽 is represented as 

𝑐𝑢𝑟𝑙 (
1

𝜇0𝜇𝑟
𝑐𝑢𝑟𝑙 𝐴) = 𝐽 , which could be a relatively complicated structure after 

expansion. But in the two-dimensional environment, only 𝐴𝑧  and 𝐽𝑧  exist and no 

variation occurs in the 𝑧 direction, thus the expression of 𝐽 could be simplified as such: 

 
𝜕

𝜕𝑥
(

1

𝜇0𝜇𝑟

𝜕𝐴𝑧

𝜕𝑥
) +

𝜕

𝜕𝑦
(

1

𝜇0𝜇𝑟

𝜕𝐴𝑧

𝜕𝑦
) = −𝐽𝑧 ( 2-5) 

The 2D FEM, however, is undoubtedly less accurate than 3D FEM and experimental 

test, due to the absence of the following effects: 
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a) End-winding flux - the conductor that surrounds the stack end produces 

magnetic flux which is not considered in the 2D analysis. This effect is believed 

to be the primary source of error between the 3D and 2D FEM [47, 49]. Notably, 

the flux linkage in the 3D FEM analysis and test results should be higher than 

that of the 2D FEM. However, since the SRM will often operate under saturated 

conditions, this extra flux from the end- winding effect would be suppressed 

near the aligned position, and only effectively reinforces the flux around the 

unaligned position. As a result, the co-energy, and hence the torque capability, 

is overrated by the 2D FEM. 

b) Axial fringing – this effect represents the phenomenon of flux fringing between 

the end of the stator and rotor stacks. According to [47, 49], axial fringing could 

become more apparent when the rotor pole nears its aligned position. However, 

since the SRM is presumed to be deeply saturated at this position, the axial 

fringing effect exerts less influence than end-winding flux. 

3) An analytical method, known as the ‘lumped parameter’ method (see Figure 2-1) which 

considers the magnetic circuit in a similar manner to that of an electric circuit[39, 41, 

50, 51].  

 

Figure 2-1 An example of a lumped parameter model [51] 

With proper settings for the fringing effects in the modelling and using iterative 

techniques in the processing, this analytical method can also achieve a level of accuracy 

approaching that of 2D FEM [50]. The major advantage of this method is its economy 

of time: a magnetisation curve can be calculated in a few seconds, which is much more 
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efficient than the 2D FEM. Although the calculation speed of the analytical method is 

reasonably fast, the modelling and code work is relatively time-consuming.  

2.3 Performance Improvement of Conventional Switched Reluctance 

Machines 

Since the torque capability of the SRM is generally lower than that of the PMSM, a number of 

authors have focused their investigations on performance improvement. Moreover, the 

conventional SRM, as the most fundamental configuration, has attracted attention for decades 

[27, 31, 52]. 

Some of the early discussions on this topic, published during the 1990s, could still provide 

inspiration and instruction. In [53], a systematic analysis is made with the objective of torque 

maximisation, providing a range of recommended relationships for the various features, such 

as tooth width/tooth pitch, split ratio (rotor diameter/stator diameter), and back core-to-tooth 

width ratio. This article offers a valuable template for analysing nonlinear and highly coupled 

parameters.  

Michaelides [54, 55] introduced a simple modification of winding direction that effectively 

increases torque capability: an individual phase should be oriented in opposition to its adjacent 

phase. Consequently, a short-flux path is generated when these two phases are energised 

simultaneously (see Figure 2-2). To take full advantage of this winding arrangement, 

Michaelides suggests developing a five- or even seven-phase SRM, which will allow two or 

three phases to be conducting concurrently. This idea was rejected due to the cost of a multitude 

of components in the converter; but this winding design is widely accepted and applied to most 

three-phase SRMs, nowadays. 



Literature Review 

16 

 

 

Figure 2-2 Short flux paths are generated where oppositely polarised phases run adjacent to one 

another [55] 

A similar idea for the short-flux path design was proposed by Hendershot [56], where a 12/10 

three-phase SRM was developed to reduce core loss and yoke reluctance. A detailed diagram 

is shown in Figure 2-3, in which the stator demonstrates an uneven pole architecture. Each 

phase consists of two adjacent poles with opposite polarity to create a short-flux path; however, 

the uneven design of the stator pole leads to wasted slot area, which results in an undesirable 

increase in copper loss. 

Further development of the short-flux path concept is the E-core SRM[57, 58]. As can be seen 

from Figure 2-4, this SRM configuration has only two phases, and two isolated E-shaped cores 

make up the complete stator. Compared to the conventional design, this E-core SRM could 

benefit from low manufacturing costs and low core losses. Nevertheless, as a two-phase SRM, 

the application of the E-core is quite limited, and could also produce acoustic noise issues 

because of the lack of stiffness in the core back. 
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Figure 2-3 Cross section of a 12/10 three-phase SRM with short-flux-path design [54] 

 

Figure 2-4 Flux path of an E-core SRM [57] 
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Higher pole numbers are popular in contemporary SRM design[59, 60]; most three-phase SRMs 

are now designed as 12/8 pole combinations rather than the fundamental 6/4. The origin of this 

logic is uncertain but the advantages are widely accepted as being the short-flux path and 

thinner coreback. Moreover, Chiba [61, 62] made comparisons of various pole combinations 

(including 6/4, 8/6, 12/8, 16/12) and stated that an increase in pole number could lead to an 

improvement in torque capability. As can be seen from Figure 2-5, the subjects of his 

comparison were restricted to the same total axial length (stack length + end-winding length). 

Thus, the conclusions have been affected by the differences in stack length.  

 

Figure 2-5 The variations in stack length and end winding length for different pole combinations  [61] 

 

Based on the above work, Chiba eventually developed a three-phase 18/12 SRM capable of 

providing torque performance comparable to the PMSM now incorporated into the second-

generation Toyota Prius [60, 63-65]. It is possible this study proposed one of the best 

conventional SRM designs so far developed[26, 52], with a torque density of up to 45 Nm/L 

and a rated efficiency of up to 92%. This said, however, the current density of this SRM was 

approximately 32 A/mm2 (with a fill factor of 0.57), which could represent a challenge, even 

for a state-of-the-art cooling system. 

An SRM with a higher number of rotor than stator poles has also attracted some attention and 

prototypes have been explored [66-68]. According to [31], these SRMs could offer numerous 
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advantages, such as higher torque capability, lower torque ripple, and lower material costs over 

a conventional design (6/4 SRM and 8/6 SRM). However, the simulation and experimental 

results in [66-68] were found to exhibit a relatively low current density. Considering these 

machines have a narrow-pole configuration, a decline in performance could be expected during 

saturation conditions. 

 

Figure 2-6 Cross section of an 8/14 SRM [67] 

Instead of enhancing torque capability, the development of a high-speed SRM is another means 

of achieving the desired performance for vehicle traction[69, 70]. In [70], a high-speed SRM 

prototype is presented with a maximum speed of 50,000 rpm. The proposed machine is claimed 

to offer a compatible power density to that of the PMSM used in the third-generation Toyota 

Prius. Nevertheless, the extremely high speed could give rise to unexpected engineering 

challenges relating to the rotor design, of both mechanical and thermal properties. 
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2.4 Segmental Rotor Switched Reluctance Machines 

The segmental-rotor SRM is a novel structure which could provide higher torque capacity than 

a conventional design. The first attempt at utilising a segmental-rotor design is believed to have 

been made by Horst who filed a patent for a two-phase SRM with unidirectional operation [71]. 

However, the version of the segmental-rotor SRM investigated in this study was devised by 

Mecrow[32, 72, 73]. In general, the pole arc-to-pole pitch ratio of a conventional SRM should 

be restricted to no more than 0.5 – otherwise, the unaligned inductance will not be maintained 

at a low level; however, in the segmental-rotor SRM, the pole arc-to-pitch ratio could near 0.7 

without sacrificing the inductance ratio between the aligned and unaligned positions (see Figure 

2-7). As a result, the torque capability of the segmental-rotor SRM could be as much as 40% 

higher than a conventional SRM with the same volume and copper loss.[72] 

 

Figure 2-7 A rectilinear model of the segmental-rotor SRM: a = aligned position; b = unaligned 

position [72] 

Based on the original structure, which had a fully-pitched winding design, a single-tooth 

winding version was developed in [74]. This variant can be seen from Figure 2-8, where both 

copper loss and electromagnetic performance are reduced compared to the fully-pitched 

segmental-rotor SRM. Nevertheless, a detailed comparison reveals that the single-tooth 

segmental SRM could deliver the same torque at a similar copper loss as the fully pitched 

version, whilst reducing the copper material usage by 29% [74]. Numerous authors have been 

working on further developing Mecrow’s design [75-78] but significant improvements have not 

yet been made.  
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Figure 2-8  Magnetic flux plot for the single-tooth segmental SRM [73]. Left: aligned position. Right: 

unaligned position 

Since the segmental SRM has a significantly better torque capability than the conventional 

SRM, the development for vehicle traction was considered in [79] where an 80kw segmental 

SRM is proposed to compare with the PMSM from Nissan Leaf. 

However, any advantages of the segmental SRM are overshadowed by the following 

disadvantages: 

• The energy conversion loop of the segmental SRM is considered to be worse than the 

conventional SRM, as the flux linkage is relatively large at the unaligned position and, 

therefore, would consume a higher VA rating from the drive. 

• The advantage of performance could be undermined under high magnetic saturation - 

for instance, the magnetisation curve at the unaligned position would be steeper at the 

aligned position, causing the energy conversion loop to deteriorate (see Figure 2-9). 

 

Figure 2-9 Magnetisation curve of an SRSRM [80] 
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• Cross-saturation can occur during phase interaction as one stator pole will temporarily 

carry flux from two adjacent phases, giving rise to local saturation, which could reduce 

the average torque expected. 

2.5 Double Stator Switched Reluctance Machines 

The double-stator SRM (DSSRM) has been researched extensively in recent years [81-

83], The configuration of this machine was developed by Abbasian [33, 83](see Figure 

2-10) and is actually a segmental-rotor SRM (SRSRM) with an extra inner stator 

providing higher torque capability. In [33], the development of this novel structure is 

described as having stemmed from an analysis of the surface force at the airgap using 

the Maxwell stress tensor method [84]: the author claimed that the flux density in the 

tangential direction is critical to the motional force, while the flux density in the normal 

direction would merely be a sign of poor utilisation of energy conversion. As can be 

seen from Figure 2-10, Abbasian believed that the flux path in the DSSM could 

effectively suppress the flux density in the normal direction and, therefore, enhance the 

efficiency of the energy conversion. 

 

Figure 2-10 the cross-section of a DSSRM [33] 

An analysis of transient force distribution would not necessarily ensure better overall 

performance as the airgap flux density variation is highly nonlinear in the SRM. However, only 

considering arrangement of the inner stator, which effectively improves the utilisation of 
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volume, a considerable torque density enhancement could still be expected from the DSSRM. 

According to [26, 85], the DSSRM can provide a torque density of 43.5 Nm/L as a liquid-

cooling machine. On the other hand, although the performance of the DSSRM is highly praised 

in [86], the airgap force distribution analysis in that paper does not indicate the necessity of 

reducing the normal flux density. Consequently, although the ratio between normal and 

tangential flux density can affect the local force distribution in transient position, the high 

torque density of the DSSRM should be mainly attributed to the inherent flux path from the 

segmental-rotor configuration and the better utilisation of motor volume by the introduction of 

an inner stator. 

Since the DSSRM possesses the inherent characteristics of the SRSRM, there is no doubt that 

the disadvantages of the SRSRM are also present in the DSSRM; moreover, the cross-saturation 

issues of the DSSRM not only occurr at the stator pole during phase interaction but also in the 

rotor segment, since the flux path is shared between both the inner and outer windings. 

According to [86], although the DSSRM can potentially provide a higher torque density than 

the SR-SRM due to a more compact configuration, other than that, its copper usage and average 

loss do not reveal clear superiority over the SRSRM when restricted to the same torque 

production. 

A different configuration for a DSSRM is revealed in [34, 87, 88] with the flux path more 

similar to a conventional SRM than the SRSRM (see Figure 2-11); however, the purpose of this 

design is described as eliminating the radial force on the rotor – torque capability analysis and 

design optimisation for torque production are not examined in these works. A similar 

configuration is reported in [89] (see Figure 2-12), where a yokeless SRM is said to have been 

developed from the concept of the C-core SRM [90] 

 

Figure 2-11 Cross section of a double-stator conventional SRM [87] 
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Figure 2-12 Structure of the yokeless SRM [89] 

As a novel high-performance machine, the thermal analysis of DSSRM is investigated in[91]. 

Figure 2-13 shows that the prototype is a water-cooling DSSRM with a water jacket in both 

outer stator and inner stator. Since the cooling jacket for the inner stator is relatively small, the 

maximum temperature of inner winding is finally found 16℃ higher than the outer winding 

while the machine is energised with a current density of 10A/mm2. 

 

Figure 2-13 Cooling system of a DSSRM [91] 

Furthermore, the rotor of the DSSRM is undoubtedly less robust than that of the conventional 

SRM, due to its segmental structure, and the use of metallic material in the rotor supporter is 

not recommended if a large eddy-current loss is to be avoided. Since most composite materials 
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could hardly provide a stiffness comparable to stainless steel, a considerable engineering 

challenge remains with regard to this application. It is also surprising to notice that discussions 

and analyses of the DSSRM rotor’s mechanical properties in recent studies have not come close 

to resolving this challenge. 

 

2.6 Development of Mutual Coupled Switched Reluctance Machines 

Unlike conventional SRMs which are mainly driven by a variation in self-inductance, the 

mutually coupled SRM (MCSRM) is able to utilise mutual inductance for torque production. 

The first MCSRM, which was introduced by Mecrow [92], is a fully pitched SRM(see Figure 

2-14). During normal operational conditions, this fully pitched SRM should energise at least 

two phases, simultaneously; its excitation methods, including the two-phase unipolar, two-

phase bipolar, three-phase bipolar and sinusoidal are compared in [92, 93]. With unipolar 

excitation, the fully pitched SRM is reported to produce maximum average torque, which is 

about 25% higher than the conventional SRM[92]; however, the fully pitched winding leads to 

relatively large end-winding which could compromise its torque-to-volume advantage over the 

conventional SRM. 

 

Figure 2-14 The structure and winding configuration of a fully pitched SRM [92] 

In addition, mutual coupling effects also exist in the conventional single-tooth SRM and were 

analysed in [94-97], but, in most cases, the mutual inductance is neglible compared to the self-

inductance in the torque production. In [98], an MCSRM with single-tooth winding and bipolar 
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excitation were introduced. Figure 2-15 shows that the winding arrangement is different from 

the conventional SRM: the two coils in the same phase are opposite one another. According to 

[35, 99, 100], the single-tooth MCSRM not only provides higher torque density than the 

conventional SRM but also eliminates the drawbacks of the fully pitched SRM. 

 

Figure 2-15 The flux path and coil arrangement of a single-tooth MCSRM [98] 

However, in an odd number phase SRM (such as a three-phase), the opposing winding 

arrangement will have difficulty in maintaining a continuous pattern unless a bipolar excitation 

is avialable. The even-number phase SRM (such as a four-phase) could have an innate 

advantage to prevent this awkward situation. Widmer et al. in [101] compared a variety of 

winding configurations for a six-phase 12/10 SRM and revealed that the opposing winding 

arrangement (see Figure 2-16) found in the single-tooth MCSRM provide the best torque 

capability and lowest number of torque ripples. A larger prototype of this six-phase SRM has 

been developed for hybrid-truck traction, with a torque density of 61 Nm/L at a current density 

of 20 A/mm2. 

 

Figure 2-16 Opposing coil arrangement for the 12/10 six-phase SRM, equivalent to a six-phase 

MCSRM[101] 
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2.7 Conclusion 

A variety of methods for improving the performance of SRMs have been explored.  

Those studies which have assessed the conventional SRM and deemed it valid can be essentially 

divided into two categories: use of the short-flux path design to reduce Magnetic Motive Force 

(MMF) consumption in the iron core (to reduce reluctance and, thereby, increase the energy 

conversion in each stroke); an increase in the number of strokes per revolution with proper pole 

combinations. 

The MCSRM appears to be a conventional SRM with a novel winding arrangement. Unlike the 

initial design which is also known as a fully pitched SRM, several studies present the MCSRM 

as a single-tooth winding, eliminating the drawbacks of enormous end-winding. In addition, 

some research indicates that an even phase-number configuration should be more suitable for 

the MCSRM. 

The SRSRM is proposed as a potential novel SRM for torque improvement; however, its 

disadvantages, such as large unaligned inductance and cross-saturation issues, would raise the 

cost of the converter (greater volt–ampere and bipolar excitation) and undermine its 

performance under highly saturated conditions.  

The DSSRM can be considered as a descendant of the SRSRM, while its inner stator is able to 

further enhance torque density. On the other hand, it also inherits all the disadvantages of the 

SRSRM. It is worth noting that the double-stator structure can also be implemented in 

conjunction with the conventional SRM, which could hints at a way to avoid the 

aforementioned drawbacks and could also be a means of enhancing the performance of the 

conventional SRM. Additionally, the rotor segments of the present DSSRM are mainly 

supported by stainless steel, which very likely leads to large eddy current loss and thermal issues 

(see Section 5.1.2).  
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Chapter 3.   Comparison between Three-Phase SRM and 

Four-Phase SRM  

Chapter 2 describes several methods for developing high-performance SRMs. It shows that the 

segmental rotor SRM does not necessarily provide higher torque than conventional SRM in 

some scenario (i.e. when the workload is relatively large). Most double stator SRMs, which 

have attracted attention in recent years, are based on the magnetic circuit from segmental rotor 

SRM. There are therefore concerns surrounding developing a double stator SRM magnetic 

circuit from conventional SRMs.  

Recently published work on conventional SRM designs reveals a preference for high pole 

number topologies. Compared to multiple of the of standard 6/4 combination, such as 12/8 or 

18/12, the discussions of higher phase number conditions is insufficient, as the same benefits 

may be achievable with the three phase multiples above. 

The aim of Chapter 3 is to conduct a study of the impact of increasing phase number upon 

torque production. An analytical method is used to generate an estimation equation to predict 

the performance of SRMs with different phase number when only airgap reluctance is 

considered. The result is verified using static 2D finite element analysis, and suggests the SRM 

with higher phase number could outperform the three-phase SRM when the iron core occupies 

a large portion of the reluctance in the magnetic path. 

Further analytical analysis is undertaken for comparison between three-phase and four-phase 

SRMs. By using a simplified model, it concludes that the four-phase candidate would perform 

better than its 3-phase competitor under a range of conditions. The conclusion is then verified 

and confirmed by 2D transient finite element analysis. 

3.1  The Behaviours of Higher Phase Number SRMs regarding Torque 

Performance 

Over the decades, the three-phase electric motor has dominated industry applications. Unlike 

other AC motors, the SRM has a unique inverter whose phases are isolated from each other. As 

such, the SRM has the freedom to be constructed with a higher phase number. The question is 

whether is it worth designing such an SRM, since it could lead to extra cost owing to the greater 

number of electronic power devices in the drive system.  

A high phase number often means a high pole number which would provide the following 

advantages:  
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1. Increasing the pole number will reduce the width of each pole. As a result, the stator 

yoke width requirement will be reduced as well, giving more space for the rotor and the 

winding.  

2. A narrow stator pole will decrease the length of the end-winding, reducing the winding 

resistance and overall axial length. 

Meanwhile, the high pole number design could suffer several disadvantages: 

1. Increasing the pole number would increase the commutation frequency, which would 

lead to a rise of core loss. 

2. If higher phase number is  considered, the inverter could require either more power 

electronic components or a complicated deisgn topology, which will eventually increase 

the system cost. 

3.1.1 Developing the Torque Equation with the Assumption of Airgap-only Reluctance 

In the first instance, the analysis used a model that only gave consideration to the airgap 

reluctance. Figure 3-1 shows a typical flux linkage-vs-current curve for an SRM in this situation: 

  

Figure 3-1 A basic flux-linkage vs current curve for the unaligned position and aligned position of 

SRM (linear condition) and the section figure of a typical 6/4 SRM at these two positions 

It is easy to derive the co-energy which contributes to the mechanical output from the 

magnetisation curve at the unaligned and aligned positions:  
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 𝑊 =
(𝐿𝑎−𝐿𝑢)𝐼2

2
=

𝐿𝑎

2
(1 −

𝐿𝑢

𝐿𝑎
) 𝐼2 ( 3-1) 

𝐿𝑎 is the inductance for the aligned position and 𝐿𝑢 is the inductance for the unaligned position. 

Since only airgap reluctance is being considered at this stage,  𝐿𝑎 can be deduced as follows: 

 𝐿𝑎 =
𝑁2

ℛ
 ( 3-2) 

In the above equation, 𝑁  is the number of turns and ℛ  is the magnetic reluctance. The 

reluctance can be further disassembled into 𝑙, 𝜇, and 𝐴 which represent the flux-path length, 

permeability and section area, respectively: 

 ℛ =
𝑙

𝜇𝐴
  ( 3-3) 

For the aligned position, the airgap reluctance can be derived from the airgap length 𝑔, 

permeability 𝜇0, bore diameter 𝐷, stator pole arc 𝛽𝑠, and stack length 𝐿: 

 ℛ =
2𝑔

𝜇0𝐷𝛽𝑠𝐿
 ( 3-4) 

In [36], the average torque of the SRM was determined from the energy conversion loop and 

the number of strokes per revolution: 

 𝑇 =
𝑚𝑁𝑟

2𝜋
𝑊 ( 3-5) 

 Combining the above equations; the average torque can be represented by the following 

equation: 

 𝑇 =
𝜇0

8𝜋𝑔
𝑚𝑁𝑟𝐷𝐿𝛽𝑠𝑁2𝐼2𝑘𝑙𝑘𝑝 ( 3-6) 

𝑘𝑙 and 𝑘𝑝 are coefficients which are introduced to represent respectively (1 −
𝐿𝑢

𝐿𝑎
) and the phase 

interaction coefficient (the ratio between the average torque and superposition of the single-

phase torque). A rough comparison can be made, based on this equation. In order to make this 

comparison between the different phase numbers fair, each machine is defined as having the 

same 𝐷, 𝐿, 𝑁 and 𝑔; while 𝛽𝑠 and 𝐼 are inversely proportional to the phase number.  

It can also be easily seen that 𝐿𝑎  will show an inversely proportional relation to the phase 

number. On the other hand, 𝐿𝑢 would not be that straightforward since the flux at this position 

is  complicated [50]. The Figure 3-2 shows a typical example of flux distribution at the 
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unaligned position. As can be seen here, the flux path is dominated by a ‘fringing effect’, which 

is mentioned in [51].  

 

Figure 3-2 The example of fringing effects which describe the flux path from the face of one pole to 

the side of another pole[51] 

In these circumstances, both the cross section and length of the ‘fringing’ flux path keep a linear 

relation to the stator pole width, which equals to 𝐷𝛽𝑠. Consequently, the unaligned inductance 

𝐿𝑢 will remain at a similar level when just increasing the phase number during this comparison 

(this analysis could be less accurate when the change in phase number is large).  

Taking a three-phase 6/4 SRM as standard, if it is assumed that the inductance ratio of this SRM 

is between 5 and 10, the range of 𝑘𝑙would be between 0.8 to 0.9. Its rival, a four-phase 8/6 SRM 

(with the same airgap length 𝑔, permeanbility 𝜇0, bore diameter 𝐷, stator pole arc 𝛽𝑠, and stack 

length 𝐿) would have a 𝑘𝑙 range of approximately 0.7333 to 0.8666.  

Thus, it can be derived that the torque (only airgap reluctance is considered at this stage)from 

the 8/6 SRM must be circa 0.773 to 0.813 of the 6/4 SRM. Similarly, it can be inferred that, as 

the number of phases increases, the torque will experience a decrease at this very condition(see 

Figure 3-3). Therefore, if the permeability of lamination steel is assumed to be infinite, the 

justification provided for considering an SRM with a higher phase number is insufficient. 
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Figure 3-3 Torque production compared to the three-phase SRM using the analytical method (only 

considering airgap reluctance) 

3.1.2 Verification using the 2D Finite Element Method and Considering the Nonlinear 

Condition 

The 2D Finite Element Method (FEM) is a commonly used analysis for studying the 

electromagnetic characteristics of an electric motor. Since this method can provide a much more 

reliable estimate than the analytical method, it was used to verify the conclusions from the 

previous analysis and was utilised in further investigations. 

As can be seen from Figure 3-4, four SRM models were created in Infolytica MagNet. To follow 

the setting of the analytical analysis in Section 3.1.1, parameters, such as the outer diameter, 

airgap, stator yoke, turns number, rotor diameter and rotor yoke, were kept equal in all the 

models. Meanwhile, the stator- and rotor-pole arcs were identical for the same motor, while 

being inversely proportional to the phase number in different models. Thus, the maximum 

current will also be set to inversely proportional to the phase number, to keep the same current 

density and copper loss in those models. 

In order to ensure the accuracy, the default maximum element size of the mesh is limited to 

1mm (based on author’s experience, further reducing the mesh size won’t improve the solving 

accuracy, and the software automatically applies a much smaller mesh in essential areas, such 

as the air-gap). And since the investigation is focused on the average torque in the ideal 

condition, the simulation assumes to current control (equivalent to the condition when the motor 

operates at low speed or has a large DC voltage reserve). 
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These 2D FEM results (based on the average torque under current control during a full electric 

cycle) confirmed the trend which is predicted in the previous analysis was accurate – a 

comparison is shown in Figure 3-5.  

 

Figure 3-4 The 2D FE models for the 6/4 (three-phase), 8/6 (four-phase), 10/8 (five-phase), and 12/10 

(six-phase) SRMs 
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Figure 3-5 A comparison of the 2D FEM and analytical method results 

The conditions in the previous analysis, where only airgap reluctance is important, do not exist 

in reality; therefore, the reluctance of the lamination component needed to be introduced into 

the investigation. Firstly, the lamination material in the simulation was set to constant 

permeability to simulate the conditions when the SRM is operating within the linear region. 

The results can be seen from the TABLE 3-1; , which shows that, under these circumstances, 

the torque drops while an increase in phase number is mitigated. And 𝑘𝑝 is used to demonstrate 

the ratio between average torque and the superposition of single phase torque. 

TABLE 3-1 THE 2D FEM RESULTS (LINEAR PERMEABILITY IN LAMINATION 

STEEL) FOR THE 6/4, 8/6, 10/8 AND 12/10 SRMS 

Linear Permeability 6/4SRM 8/6SRM 10/8SRM 12/10SRM  Unit  

Average torque 111.68 101.21 108.66 97.28  Nm  

Average torque single phase 70.66 46.88 34.04 25.57  Nm  

𝑘𝑝 1.05 1.07 1.27 1.26    

 

It was presumed that, although a lower number of phases in the absence of magnetic reluctance 

in the laminationsd, any advantage would be lost when lamination steel was introduced into the 

magnetic circuit. To prove this, a new group of comparisons was made by applying 

modifications to the geometry to allocate more reluctance into the lamination steel component 

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

3 4 5 6

To
rq

u
e 

co
m

p
ar

e 
to

 6
/4

 S
R

M

Phase number

the predictied lower limit

the predictied upper limit

2D FEM Result



Comparison between Three-Phase SRM and Four-Phase SRM 

35 

 

rather than the airgap. In actuality, this condition was able to be verified by reducing the airgap 

length of the 6/4 and 8/6 SRMs from 3 mm to 2 mm; the results from the 2D FEM are shown 

in TABLE 3-2.  

 

TABLE 3-2 THE 2D FEM RESULTS (LINEAR PERMEABILITY AND REDUCED 

AIRGAP) FOR THE 6/4 AND 8/6 SRMS 

linear 6/4SRM 8/6SRM 

Average torque 162.7 184.4 

 

A similar result was achieved by decreasing the permeability in the lamination material. 

Saturation is a common cause of lowered permeability and it is not an unusual scenario for an 

SRM to be operating in a deeply saturated region.  

Subsequently, by setting the lamination material to M270-35A steel (the B-H curve is shown in 

Figure 3-6), a new comparison was obtained, which factored in the saturation effect (see TABLE 

3-3).  

 

Figure 3-6 The B-H curve of M270-35A 

With these SRMs running in a saturated region, it is clear that the four-phase SRM, with more 

phases, delivered more torque than the three-phase SRM. There is an explanation, as seen in 

Figure 3-7 whereby the magnetic path shortens as the phase number increases. 
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Figure 3-7 Flux-path plots during the phase interaction period: (a) a three-phase 6/4 SRM and (b) a 

four-phase 8/6 SRM 

3.1.3 The influence of Phase Interaction  

It is worth noting that the 𝑘𝑝 in the 10/8 and 12/10 SRMs were higher than in the 6/4 and 8/6 

SRMs. A higher 𝑘𝑝, whilst not guaranteeing a higher torque, might indicate that the machine 

would benefit more from phase interaction. This effect, described by Michaelides in [55], is due 

to the short flux path that is generated when two phases are energised simultaneously.  

Moreover, when discussing phase interaction, there are two effects that cannot be ignored: 

cross-saturation and mutual coupling. Cross-saturation is an adverse effect created when the 

flux from one coil will not cross another coil but, instead, shares part of its flux path, increasing 

the local saturation. This effect is commonly found in SRMs and causes a significant decrease 

in the 𝑘𝑝 (see Table 3) whose value in the 6/4 and 8/6 SRMs was shown below, indicating that 

the overall torque was lower than the superposition of the single-phase torque. 

TABLE 3-3 THE 2D FEM RESULTS (NONLINEAR PERMEABILITY) FOR THE 6/4, 8/6, 

10/8 AND 12/10 SRMS 

Nonlinear 6/4SRM 8/6SRM 10/8SRM 12/10SRM Unit 

Average torque 60.66 64.96 69.21 66.31 Nm 

Average torque single phase 42.48 33.57 26.90 21.68 Nm 

𝑘𝑝 0.95 0.96 1.02 1.01  
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On the other hand, mutual coupling as another phase interaction effect can play a supporting 

role in torque production. In this case, the flux from one coil travels through another coil and, 

therefore, they reinforce one another. The mutual coupling effect is commonly seen in a 

mutually coupled SRM, which produces opposing flux within a single phase (see Figure 3-8). 

In conducting only a single phase, the SRM with the opposing coil follows a unique flux path, 

with a shorter magnetic circuit length and more poles carrying the flux, but at the cost of higher 

airgap reluctance. As a result, the SRM with the opposing coil is in an inferior position when 

only conducting a single phase. However, in a four-phase SRM, there are always two phases 

carrying current at any given moment (if the conduction angle reaches 180°). Due to the positive 

effects of phase interaction, the overall torque of the SRM with the opposing coil could be 

higher than that of the conventional SRM. As can be seen from TABLE 3-4, the SRM with an 

opposing coil would produce higher average torque than the original. Also, the average torque 

is significantly larger than the superposition of the torque from each single phase. 

 

Figure 3-8 The flux path plots of a four-phase 8/6 SRM with differing coil arrangements: (a) opposing 

coils and (b) reinforced coil (the most common) 

TABLE 3-4 THE 2D FEM RESULTS (NONLINEAR PERMEABILITY) FOR THE 8/6 

SRM WITH DIFFERENT COIL ARRANGEMENT 

Nonlinear 8/6SRM opposing coil 8/6SRM Unit 

Average torque 68.99 64.96 Nm 

Average torque single phase 25.52 33.57 Nm 

𝑘𝑝 1.35 0.97  
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3.2 Comparison between the 3-Phase SRM and 4-Phase SRM 

The above comparisons only examine the situation for a particular motor size and geometry; a 

more general analysis should be required to provide a more objective conclusion. Moreover, it 

is unusual to consider the five-phase and six-phase SRMs as options, since too many phases 

would not only lead to a rise of iron loss (the hysteresis loss is proportional to the frequency 

and the eddy current is proportional to the square of the frequency) but also require too many 

electronic power components (increasing the cost and complexity of the drive). In reality, 

therefore, the four-phase SRM is more likely to be the appropriate option.  

3.2.1 Analytical Method in the Linear Region 

Taking the previous 2D FEM results as an example, Figure 3-9 shows the Ψ-I (flux-linkage vs 

phase current) curve comparison of the 6/4 and 8/6 SRM models. At this stage, both machines 

are operating in the linear region. The slope of the Ψ-I curve is the inductance, so the slope of 

L1a represents the inductance of the three-phase SRM at the aligned position, while L2u 

represents the inductance of the four-phase SRM at the unaligned position. To simplify the 

analysis, both 6/4 and 8/6 machines are assumed to have the same current density. Therefore, 

the current of the 8/6 SRM is set to 75% of that in the 6/4 SRM (since the slot area is inversely 

proportional to the phase number, when the split ratio and utilisation factor is fixed). 

 

 

Figure 3-9 The flux linkage-vs-current curve for the 6/4 and 8/6 SRMs  
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The co-energy from each SRM can thus be derived: 

 𝑊1 =
1

2
(𝐿1𝑎 − 𝐿1𝑢)𝐼1

2 ( 3-7) 

 𝑊2 =
1

2
(𝐿2𝑎 − 𝐿2𝑢)𝐼2

2 ( 3-8) 

From the equation𝑇=
𝑚𝑁𝑟

2𝜋
𝑊 ( 3-5), it can be seen that the strokes per revolution of the four-

phase SRM is 24 - twice that of the three-phase SRM. Then if the four-phase SRM is to provide 

more torque than its three-phase competitor, the co-energy of each stroke should satisfy the 

following condition (𝑊2 ≥ 0.5𝑊1): 

 (𝐿2𝑎 − 𝐿2𝑢)𝐼2
2 ≥

1

2
(𝐿1𝑎 − 𝐿1𝑢)𝐼1

2 ( 3-9) 

Since 𝐼2 =
3

4
𝐼1  (to maintain equal current density and copper loss)and  𝐿2𝑢 ≈ 𝐿1𝑢 , then the 

above relationship could be further developed into: 

 𝐿2𝑎 ≥
8

9
𝐿1𝑎 +

1

9
𝐿1𝑢 ( 3-10) 

The ratio between the 𝐿1𝑎 and 𝐿1𝑢 is known as the inductance ratio, which is one of the critical 

parameters in SRM design. A reasonable SRM design should have a large inductance ratio 

(ideally more than 10) [36, 37], and, based on evidence from previous experiments and 

publications, a range from 6 to 12 should cover most situation(see Figure 3-10)  

 

Figure 3-10 example of SRMs with different inductance ratio (a) inductance ratio=6, (b) 

inductance ratio=10. 
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Defining the inductance ratio as letter 𝑏 and taking the equation 𝐿1𝑎 = 𝑏𝐿1𝑢, the formula can 

be rewritten as such: 

 𝐿2𝑎 ≥
(8+

1

𝑏
)

9
𝐿1𝑎  ( 3-11) 

Taking 𝑏 = 6  as an example, the 8/6 SRM will provide more torque if 𝐿2𝑎 ≥ 0.9074𝐿1𝑎 . 

Moreover, if the steel in the magnetic circuit is assumed to have a uniform cross section, then 

the pole width of the 8/6 SRM is approximately 
√3

2
 times that of the 6/4 SRM. Also, it is well 

known that inductance can be calculated using the following equation: 

 𝐿 =
𝑁2

ℛ
=

𝑁2

𝑙

𝜇𝐴

 ( 3-12) 

Where 𝑁 is the number of winding turns per phase, ℛ is the reluctance of the object in the 

magnetic circuit, 𝑙 is the length of the object, 𝜇 is the permeability, and 𝐴 is the cross-section 

area. Assuming the 6/4 and 8/6 SRMs have the same stator pole-to-stator pitch ratio, then it is 

simple to deduce that 𝐿2𝑎 ≈ 0.75𝐿1𝑎 . This assumption is straightforward, but the current 

density under this condition is expected to be lower in the 8/6 SRM; however, it is unfair to 

make a comparison with the 6/4 SRM since the copper loss would be distinctly different in both 

machines, nor is it a proper design for an 8/6 SRM due to its potentially poor magnetic utility. 

Alternatively, keeping the split ratio but changing the pole-to-pitch ratio in the 8/6 SRM could 

help to make a fair and straightforward comparison. In this scenario, following the same split 

ratio means keeping the same stator sector area, which consists of the slot area for winding and 

the core area for lamination. In addition, the stator area can be divided evenly by phase number, 

then, for each section, the 8/6 SRM will have 75% less area compared to the sections in the 6/4 

SRM. Now the space allocated to the winding area is 25% less than that of the 6/4 SRM and, 

since the phase current is 25% less than the 6/4 SRM too, the 8/6 SRM will share the same 

current density as its competitor. As can be seen from the equationCopper Loss = 𝐼2𝑅 =

𝐼2𝜌
𝑙

𝐴
= 𝐼𝐽𝜌𝑙( 3-13), the copper loss is proportional to the phase current 𝐼, current density 𝐽, 

conductivity 𝜌, and conductor length 𝑙. Thus, the copper loss for the 8/6 SRM will equal the 

6/4 SRM under this condition. 

 Copper Loss = 𝐼2𝑅 = 𝐼2𝜌
𝑙

𝐴
= 𝐼𝐽𝜌𝑙 ( 3-13) 
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Furthermore, regarding the magnetic circuit, the ratio 
3

4
  in the sector area was roughly 

equivalent to the ratio 
√3

2
  in the width of the flux path. As such, it was derived that 𝐿2𝑎 ≈

0.866𝐿1𝑎 < 0.9074𝐿1𝑎. This result indicates that the four-phase SRM would produce slightly 

less average torque than the three-phase SRM in the linear region. It is not an unexpected result 

since a similar conclusion was confirmed by both the torque equation and the 2D FEM in 

section 3.1.  

3.2.2 Analytical Method in the Nonlinear Region 

Unlike other types of electric machine, the SRM often works in a magnetic saturation scenario. 

As such, it was more important to analyse the behaviour of the SRM at a highly saturated 

operating point. Also, there is a simplification method that is widely used to convert the 

nonlinear magnetisation curve into a semi-linear model [37, 50, 102].  

As can be seen from Figure 3-11, the nonlinear energy conversion loop can be divided into 

linear and nonlinear regions. The nonlinear region represents the area where the phase current 

is beyond 𝐼𝑠 and, in this area, flux linkage curves between the aligned and unaligned positions 

become a pair of parallel lines.  

Several new parameters are introduced to help analyse this semi-linear energy conversion loop. 

On the horizontal axis, 𝐼1, 𝐼2 and 𝐼𝑠 represents three critical phase current value: 𝐼1 is the peak 

phase current of the 6/4 SRM,  𝐼2 is the peak phase current of the 8/6 SRM(approximately 75% 

of the 𝐼1); 𝐼𝑠 is an assumed value that defines the boundary of linear semi-linear region. Also, 

it can be identified that the 𝐼𝑠 is the same for both machines via the following equation: 

 𝐵 =
𝐿𝑖

𝐴𝑁
 ( 3-14) 

In the above, 𝐵  is the flux density and merely defines the parameters for determining the 

saturation point of the lamination steel. Regarding the remaining elements in the equation, 𝐿 is 

the inductance, 𝑖 is the current, 𝐴 is the cross section area, and 𝑁 is the number of turns. From 

the equation𝐿𝑎=
𝑁2

ℛ
 ( 3-2) and equationℛ=𝑙𝜇𝐴  ( 3-3 ), it could be calculated that 

the inductance 𝐿 was proportional to the cross section area 𝐴. Moreover, the turn number of 

both machines was kept equal, since the peak current was set to be inversely proportional to the 

phase number. Therefore, the flux-density 𝐵 would be proportional only to the current 𝑖 in this 

scenario.  
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Figure 3-11 The nonlinear flux linkage-vs-current curve for the three-phase and four-phase SRMs 

(left) and the simplified nonlinear model (right) 

A group of inductance measures were introduced to describe the coordinates of several unique 

points: 

• 𝐿1 and 𝐿2 were the aligned inductance at the linear region for the 6/4 and 8/6 SRMs, 

respectively. These two inductance values were used to describe the aligned flux linkage 

curve in the linear area.  

• 𝐿1𝑢 and 𝐿2𝑢 were the unaligned inductance for the 6/4 and 8/6 SRMs and, according to 

the analysis in Section 3.1.1, their values were similar to one another. In most cases, the 

value was assumed to remain the same from the beginning to the highly saturated 

condition. 

• And finally, 𝐿1𝑠  and 𝐿2𝑠  were the aligned inductance for the 6/4 and 8/6 SRMs, 

corresponding to 𝐼1 and 𝐼2, respectively. 

The overall co-energy value for this conversion loop of the 6/4 SRM could be calculated thusly: 

 𝑊1 =
1

2
(𝐿1𝐼𝑠 − 𝐿𝑢𝐼𝑠)𝐼𝑠 + (𝐿1𝐼𝑠 − 𝐿𝑢𝐼𝑠)(𝐼1 − 𝐼𝑠) ( 3-15) 

And, similarly, below is the expression for the 8/6 SRM: 

 𝑊2 =
1

2
(𝐿2𝐼𝑠 − 𝐿𝑢𝐼𝑠)𝐼𝑠 + (𝐿2𝐼𝑠 − 𝐿𝑢𝐼𝑠)(𝐼2 − 𝐼𝑠) ( 3-16) 

Using equation𝑇=𝑚𝑁𝑟2𝜋𝑊 ( 3-5), the number of strokes per revolution for the 8/6 

was twice that of the 6/4 SRM, meaning the 8/6 and 6/4 SRMs could produce the same amount 

of average torque, as long as 𝑊2 were to reach 50 % of the value of 𝑊1. 

 Since 𝐼2 =
3

4
𝐼1, it could be concluded that the 8/6 SRM would produce more torque than the 

6/4 SRM, if the following relation were satisfied: 
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 𝐿2 ≥
𝐿1𝐼1𝐼𝑠

2
−

𝐿1𝐼𝑠
2

4
+

𝐿𝑢𝐼1𝐼𝑠
4

−
𝐿𝑢𝐼𝑠

2

4

𝐼𝑠(
3

4
𝐼1−

𝐼𝑠
2

)
 ( 3-17) 

To analyse this complex expression, two new variables were introduced: 

1. 𝑘:  indicated the relation 𝐼𝑠 = 𝑘𝐼1  which represented the ratio of 𝐼𝑠  to 𝐼1 . This 

parameter described the saturation level of the 6/4 SRM. When 𝑘 ≤ 1, it meant the SRM 

was operating in the saturation condition.  

2. 𝑏: indicated the relation 𝐿1 = 𝑏𝐿𝑢 which represented the inductance ratio between 

𝐿1 and𝐿𝑢 . This parameter described the inductance ratio between the unaligned and 

aligned positions in the 6/4 SRM. 

Then the equation 𝐿2≥

𝐿1𝐼1𝐼𝑠
2

−
𝐿1𝐼𝑠

2

4
+

𝐿𝑢𝐼1𝐼𝑠
4

−
𝐿𝑢𝐼𝑠

2

4

𝐼𝑠(
3

4
𝐼1−

𝐼𝑠
2

)
 ( 3-17) could be transformed into the 

following expression: 

 𝐿2 ≥
𝐿1(

𝑘

2
−

𝑘2

4
+

𝑘

4b
−

𝑘2

4b
)

3

4
𝑘−

𝑘2

2

 ( 3-18) 

From the section 3.2.1, it could be assumed that both the 8/6 and 6/4 SRMs had the same stator 

pole-to-stator pitch ratio. As such, it was simple to calculate that 𝐿2 ≈ 0.75𝐿1 and the above 

equation could be further developed into: 

 
(

𝑘

2
−

𝑘2

4
+

𝑘

4b
−

𝑘2

4b
)

3

4
𝑘−

𝑘2

2

≤ 0.75 ( 3-19) 

Consequently, there was inequality between the two elements describing the balance of the 

torque comparison for the 6/4 and 8/6 SRMs. For example, assuming 𝑏 = 5 (in most cases 𝑏 

is between 5and 12), this indicated that the 8/6 SRM would produce more torque, with 𝑘 <

0.744. The curve in Figure 3-12 was generated to show this relation: 
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Figure 3-12 The 𝑘 vs 𝑏 curve describing the boundary for the 8/6 SRM to deliver higher torque 

From the above figure, if the selected combination of 𝑏 and 𝑘 sits at a position beneath the 

curve, it means the 8/6 SRM should provide better torque performance under this condition.  

 

 

3.2.3 2D Finite Element Simulation Results 

The analytical results were verified using the 2D FEM. As can be seen from Figure 3-13, the 

2D models of the 6/4 and 8/6 SRMs were generated in MagNet. In this figure, the two models 

are drawn with the same stator diameter, the same airgap length, same turn number and the 

same pole-to-pitch ratio in the stator. Moreover, the cross section in the flux path is assumed to 

be uniform: the stator and rotor poles share the same width, which also equals twice that of the 

stator and rotor yoke widths. 
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Figure 3-13 2D FE models for 6/4 SRM and 8/6 SRM 

As was mentioned in section 3.2.2, the inductance ratio 𝑏 and saturation ratio 𝑘 were the critical 

values affecting the comparison between the 6/4 and 8/6 SRMs. The saturation ratio was clearly 

related to the phase current if the turn number was fixed. The inductance ratio is linked to a 

more complicated scenario. For instance, the split ratio (rotor outer diameter-to-stator outer 

diameter) and the utilisation factor (stator pole pitch-to-stator pitch) all have been involved in 

the inductance ratio.  

 

Figure 3-14 The 2D FEM results for inductance ratio against different utilisation factors 

As can be seen from the Figure 3-14, the inductance ratio in both the 6/4 and 8/6 SRMs shows 

a falling tendency as the utilisation factor increases. This result indicates that the inductance 

ratio does not have a linear relation to the utilisation factor. To be specific, the inductance ratio 
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stays at virtually the same level until the utilisation factor reaches 0.4. This reveals that the 

unaligned inductance is constant when the utilisation factor is under 0.4. 

Once the utilisation factor exceeds 0.4, the inductance ratio begins to decrease. This 

phenomenon is due to the large level of unwanted inductance at the unaligned position, which 

is caused by a narrow airgap at this point.  

Although increasing the width of the poles could lower the value of 𝑏 (the inductance ratio) in 

some conditions, the torque capability does not demonstrate a simple linear relation to it (see 

Figure 3-15). 

 

Figure 3-15 2D FEM results for torque against different utilisation factors 

 

As can be seen from Figure 3-15, the torque from both SRM models is nearly proportional to 

the utilisation factor until the factor reaches circa 0.475. Furthermore, it seems that the four-

phase SRM performs less favourably than the three-phase SRM with respect to torque 

capability. However, it does not mean the previous analytical method was incorrect. There is 

indeed a reason that could explain that difference. As in the last analysis, the flux path was 

assumed to be uniform. In this condition, the stator and rotor poles have the same width, which 

also equals twice that of the stator and rotor yokes. However, as in the more realistic 2D FEM 

models, the flux density could not spread evenly, even if the machine is designed to produce a 

uniform flux path. Moreover, the phase interaction effects were considered in the 2D FEM and 

it was apparent that the uniform flux path was not the optimal design during the phase 

interaction period. Since the phase interaction periods of four-Phase SRM is 50% longer than 
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the three-Phase SRM, there is no doubt the 2D FEM result of the four-Phase SRM will be 

slightly worse than the preivious analysis. 

 Also, the 2D FEM results did not prove that the three-phase SRM could outperform the four-

phase SRM regarding torque capability, since this comparison was not limited to the same 

copper loss (see Figure 3-16)  

 

Figure 3-16 2D FEM results for torque against different utilisation factors 

 The curves in Figure 3-16 indicate that the three-phase SRM would require almost twice as 

much copper as that of the four-phase SRM. Substituting the copper loss in the torque data, a 

torque-per-unit copper loss figure is obtained (see Figure 3-17) 

 

Figure 3-17 2D FEM results for torque-per-unit copper loss under different utilisation factors 
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As can be seen from the Figure 3-17, the 8/6 SRM has considerable advantages over the 6/4 

SRM when it comes to torque-per-unit copper loss. It indicates that neither the 8/6 nor the 6/4 

SRM take the absolutely advantage in this comparison. Although the above comparison would 

not be entirely fair, its data could be processed to illustrate the relationship between the 

inductance and torque ratios (see Figure 3-18) 

 

Figure 3-18 2D FEM results for the torque ratio against different inductance ratios 

The vertical axis in Figure 3-18 represents the torque ratio (Torque of 8/6 SRM divide by the 

torque of 6/4 SRM), which describes the result from the torque of the 8/6 SRM divided by the 

torque of the 6/4. Moreover, there are two curves in Figure 3-18 representing the data from two 

different current levels. Specifically, the upper orange curve is the data for the 200-A phase 

current in the 6/4 SRM (150 A for 8/6 SRM), and the lower blue curve is for the 100-A phase 

current. The higher phase current indicates more saturation and therefore has a lower current 

ratio 𝑘. The overall results revealed that the small inductance and current ratios were in favour 

of the four-phase SRM design, in line with expectations from the analysis. 

 

3.2.4 Correction for Copper Loss 

In the above comparison, there is a considerably larger gap in copper loss between both models. 

Thus, correction of the previous model was required to generate a proper environment for 

simulation and analysis. A possible method for maintaining the copper loss in both models was 

to keep the same current density and make the slot area inversely proportional to the phase 

number. Examples of stator sections from both models are shown in Figure 3-19. 
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Figure 3-19 Stator sections of the 6/4 and 8/6 SRMs 

Assuming the entire area of the 6/4 SRM stator section is equal to A1, it is given by: 

 𝐴1 = 𝐴1𝑠 + 𝐴1𝑝 ( 3-20) 

As can be seen from Figure 3-19, 𝐴1𝑠 is the section area of the slot in the 6/4 SRM and 𝐴1𝑝 is 

the section area of iron core in the 6/4 SRM.  

As with the 8/6 SRM, its stator section area A2 can be given by: 

 𝐴2 = 𝐴2𝑠 + 𝐴2𝑝 ( 3-21) 

Where 𝐴2𝑠 is the section area of the slot in the 8/6 SRM and 𝐴2𝑝 is the section area of iron core 

in the 8/6 SRM. 

The rotor and stator radii were exactly the same in both models, indicating that 𝐴2 is equal to 

3

4
𝐴1. Also, since the slot area is inversely proportional to the phase number, 𝐴2𝑠 must be equal 

to 
3

4
𝐴1𝑠. Thus, the relation between 𝐴1𝑝 and 𝐴2𝑝 can be deduced as: 

 𝐴2𝑝 =
3

4
𝐴1𝑝 ( 3-22) 

Using basic geometric knowledge, the two-dimensional area is known to be proportional to the 

square of the one-dimensional length. Thus, the pole width of the 6/4 SRM (𝑊𝑝1) and the pole 

width of the 8/6 SRM (𝑊𝑝2) would obey the following relation: 

 𝑊𝑝2 =
√3

2
𝑊𝑝1 ( 3-23) 
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It is simple to find that 𝐿2 ≈ 0.866𝐿1 at this condition, and thus the equation 𝑘2 −
𝑘2

4
+

𝑘

4b
−

𝑘2

4b


3

4
𝑘 −

𝑘2

2
 ≤ 0.75 ( 3-19) could be revised as thus: 

 
(

𝑘

2
−

𝑘2

4
+

𝑘𝑏

4
−

𝑘2𝑏

4
)

3

4
𝑘−

𝑘2

2

≤ 0.866 ( 3-24) 

As a result, it was possible to transform the data from Figure 3-12, the results are presented in 

Figure 3-20: 

 

Figure 3-20 The 𝑘 vs 𝑏 curve describing the boundary for the 8/6 SRM to deliver higher torque 

The blue curve in Figure 3-20 represents the data for the revised inductance relation (L2= 0.866 

L1). Compared with the orange curve, which is precisely the curve from Figure 3-19(and 

represents the inductance relation L2=0.75 L1), the blue curve shows a similar steady trend. 

Meanwhile, the area beneath the blue curve is significantly larger than that under the orange 

curve. This result indicates that the four-phase SRM exhibits an advantage in this particular 

comparison. In other words, after the correction to maintain the same level of copper loss in 

both models, the 8/6 SRM model was very likely to offer better torque capacity. 

Also, it should be noted that the analytical model did not carefully consider the changes that 

occurred in the unaligned inductance when the pole width increased in the 8/6 SRM. To some 

extent, if the utilisation factor were to increase, further enhancement of the pole width would 

no longer benefit the torque capacity as the clearance between the stator and rotor poles 

deteriorates at the unaligned position. 
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In addition, as can be seen in Figure 3-14 to Figure 3-17, the utilisation factor would have had 

a similar influence on the results, affecting such aspects as the inductance ratio, torque 

production and copper loss in both the 8/6 and 6/4 SRMs. Therefore, in reality, the suggested 

utilisation factor for both the 8/6 and 6/4 SRMs was a similar value. Moreover, this indicated 

that the method that merely extends the width of the stator pole would be insufficient for 

maintaining the level of copper loss. 

There were two possible solutions that could be taken into consideration: the first was to keep 

the original geometry and phase current but increase the turns-number (from 20 to 25); the 

second was to raise the split ratio (from 0.6 to 0.68). These two methods were able to increase 

copper loss and the 2D FEM results are presented in Figure 3-21. 

 

Figure 3-21 2D FEM results for torque against different utilisation factors 

Compared to the data from the original four-phase 8/6 SRM model, the copper loss in these two 

methods increased significantly to match that of the three-phase 6/4 SRM model – the 

corresponding torque data is shown in Figure 3-22. 
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Figure 3-22 2D FEM results for torque against different utilisation factors 

As can be seen from Figure 3-22, there is a considerable enhancement in torque capability. 

Specifically, by increasing the turn number, the four-phase SRM model not only notably 

outperforms its original but also delivers higher torque than the three-phase SRM model. 

Moreover, another method with an increased split ratio (yellow curve) performs even better, 

with a torque 40% higher than that of the three-phase SRM model. The results revealed that the 

four-phase SRM might display better torque performance than the three-phase SRM if the same 

copper loss were maintained.  

This conclusion was double checked using an inverse process: reducing the copper loss of the 

original three-phase SRM model to match that of the original four-phase SRM. This process 

was undertaken by reducing the turn number-per-phase or the split ratio, and the corresponding 

results are shown in Figure 3-23. 
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Figure 3-23 2D FEM results for torque against different utilisation factors 

By decreasing the turn number (from 20 to 15) or the split ratio (from 0.6 to 0.53), the copper 

loss of the three-phase models was reduced significantly. The exact copper loss was still higher 

than the four-phase model, but the difference was minimised to less than 11%. The torque 

performance was also reduced, as expected (see Figure 3-24): these two derivatives from the 

original three-phase model all delivered significantly lower torque than the four-phase model. 

 

Figure 3-24 2D FEM results for torque against different utilisation factors 
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Based on the above results, the four-phase SRM had already proven its potential for offering 

higher torque capability and lower copper loss consumption than the three-phase SRM. Also, 

from the perspective of machine design, it indicated that the four-phase SRM required a larger 

split ratio than the three-phase SRM.   

3.3 Conclusion 

In conclusion, the work presented in this chapter can be divided into several steps. 

1. The torque equation was developed as a tool to analyse the airgap torque of a 

conventional SRM. Also, the analysis showed that the SRM with a higher phase number 

produced less torque under this circumstance. The results were validated by 2D FEM. 

2. Further analysis for considering linear permeability in lamination steel was completed 

using 2D FEM. The results revealed that the SRM with a higher phase number would 

have benefited from this condition, as its structure achieved better utilisation of the iron 

core. This conclusion could be proved by reducing the airgap or by letting the SRM 

operate in the saturated region. 

3. A simplified flux linkage-current model was used to make a further comparison between 

the three-phase 6/4 and four-phase 8/6 SRMs. The analysis suggested that the 8/6 SRM 

would benefit from a larger inductance ratio and a high saturation condition. The 2D 

FEM results showed that this condition could be achieved effectively by increasing the 

split ratio. Moreover, it illustrated the fact that the 8/6 provided higher torque capability 

than the 6/4 SRM with the same copper loss.  

These findings made contributions to knowledge as follows: 

• The effect of SRM phase number upon torque capability is apparent: the SRM with 

lower phase number would take advantage at torque production when the airgap dominates the 

aligned flux path. On the other hand, the SRM with higher phase number has better utilisation 

of iron core. 

• Further analysis at 6/4 and 8/6 SRM reveals that the 4 Phase SRM could produce higher 

torque with the same copper loss limit. This advantage will become prominent when the 

machine is operating at the saturated condition or has a large split ratio. 
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Chapter 4.  The Development of Four-Phase SRM Design 

Chapter 3 provided numerous comparisons between three-phase and four-phase SRMs. The 

conclusion revealed that the four-phase SRM has advantages of higher torque capability and 

lower copper loss. It also suggested that its design tended to require a larger split ratio, which 

could offer more design freedom in the rotor and could, therefore, be implemented in several 

novel structures, such as those with higher rotor pole numbers and double stators. The aim of 

Chapter 4 is to analyse those potential structures with 4 Phase SRMs. 

Firstly, it should be noticed that the 4 Phase SRM has an issue with conventional coil 

configurations because there cannot be symmetry between phase polarities. Opposing coil 

configurations are introduced in the MCSRM and compared alongside the conventional coil 

with same core geometry using 2D FEM. The results suggests opposing coils could produce 

higher average torque. Moreover, by modifying the core geometry, it is suggested that the 

unique flux path from opposing coil has better usage of the stator core, which provides 

motivation for a larger split ratio and higher saturation level. It should be noticed that this 

motivation is in line with the 4 Phase SRM design. 

Secondly, an investigation of cases where the rotor number exceeds that of the stator is 

considered for the opposing coil 4 Phase SRM. By using 2DFEM, the result reveals that the 

higher rotor number concept only produces higher torque during the linear condition due to the 

larger unaligned inductance. Based on this inference, a modified stator pole is then designed, 

and is shown to enhance the torque capability. 

Thirdly, the double stator structure is studied using an analytical model. The study starts from 

a linear SRM (LSRM) geometry and linear magnetic conditions and then extends to a rotational 

SRM and saturated conditions. The study indicates that to utilise the advantage of the double 

stator structure, the SRM should have larger split ratio and operate at higher saturation level. It 

should be noticed that this design suggestion is in line with the 4 Phase SRM.and opposing coil 

arrangement. 

Finally, to verify the design suggestion which is produced in this chapter, a 4 Phase16/12 SRM 

and a 16/12 DSSRM is designed and compared with a world-leading 3 Phase 18/12 SRM using 

2D FEM. 

. 
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4.1 Conventional Four-Phase Switched Reluctance Machine 

The three-phase design is a standard option for most electric machine categories. As a 

consequence, research on the four-phase SRM is relatively limited – notably, studies that focus 

on more specific aspects, such as optimisation for higher torque output and lower copper loss. 

This section summarises the works and discoveries made whilst seeking to enhance the 

performance of the conventional four-phase SRM. 

. 

4.1.1 Mutual Coupling Effect and Opposing Coil Arrangement 

As briefly mentioned in section 3.1.3, the mutual coupling effect is a phase interaction effect – 

and, unlike the other phase interaction effects, such as cross-saturation, mutual coupling is able 

to deliver positive assistance for torque output. 

The Mutual Coupled SRM (MCSRM), which is developed from the fully pitched SRM, could 

generate torque from mutual coupling effects[98-100]. The major difference between the 

conventional SRM and MCSRM is the coil arrangement. Unlike the conventional coil 

arrangement in which the coils in the same phase generate flux in the same direction, the case 

with the MCSRM is the opposite. Under this opposing coil arrangement, the coil within the 

same phase generates flux in opposite direction The example in Figure 4-1 shows the specific 

coil arrangement and excitation pattern for a three-phase MCSRM.  
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Figure 4-1 3 A three-phase MCSRM: (a) 2D model with coil distribution pattern, (b) flux path ( the 

direction is indicated in white arrows)and flux density plots for a single-phase conducting and (c) the 

excitation current for each phase. 

It can be noticed that it is impossible to achieve the desired flux path in a three-phase MCSRM 

without the more expensive bipolar drive. However, the opposing coil arrangement is suitable 

for an even phase condition [95, 101], since the opposing coil arrangement is symmetrical when 

the SRM has an even number of phases. It should also be noted that the four-phase SRM will 

always excite two phases at any given moment (assuming the excitation period is 180 electrical 

degrees for each phase). This provides sufficient opportunity for taking the mutual coupling 

benefits of the opposing coil arrangement. 

In contrast, the conventional coil arrangement in the even phase number SRM introduces an 

asymmetric flux pattern, which leads to an unexpected torque drop at certain phase interaction 
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positions. A detailed comparison between the opposing coil and ordinary reinforced coil 

arrangements for the four-phase SRM are presented in this section. As can be seen from Figure 

4-2, the geometry is identical in both models, the only difference being the coil polarity. 

 

 

Figure 4-2 Coil distribution patterns. Left: reinforce coil. Right: opposing coil 

 

It should be noted that the model using the reinforced coil does not have a continuous coil 

pattern around the entire circle [95, 101]; thus a torque disturbance can be expected when phase 

interaction happens at this position. The effects are presented in Figure 4-3. 

 

Figure 4-3 2D FEM Torque curve for a full electric cycle, showing a torque drop due to the 

discontinuous coil pattern in the 8/6 SRM with a conventional “reinforce” coil arrangement 
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This torque loss is considerable and inevitable, just as with a three-phase MCSRM using 

opposing coils. The results indicated that the reinforced coil arrangement could not be suitable 

for a four-phase conventional SRM, as it would create extra complexity for the controller. 

Moreover, this reinforced arrangement could also lead to lower torque output, compared to the 

opposing coil arrangement. To compare the torque capability between these two coil 

arrangement, 2D FE models have been built with identical geometries. By using a range of pole 

utilisation factors as a variable and adjusting the width of the entire magnetic circuit accordingly, 

the result is shown in Figure 4-4  

 

Figure 4-4 Average torque comparison between opposing coil and conventional coil arrangements 

with a range of pole utilisation factors 

From the results in Figure 4-4, the four-phase SRM with the opposing coil appears to deliver 

more torque than the conventional reinforced coil in most cases (especially when the magnetic 

loop becomes wider). Examples of two extreme utilisation factors are shown in Figure 4-5 (note 

that the width of the entire magnetic circuit has been adjusted to fit the utilisation factor 

according to the previous assumption). This is because the SRM with opposing coil has less 

flux-density at stator yoke due to its unique flux pattern; while in a SRM with reinforced coil, 

the stator yoke will tend to suffer the local saturation. Further analysis is presented later in this 

section. 
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Figure 4-5 The example of the machine core design of different utilisation factors 

  

From the result, it can be assumed that an opposing coil would make better use of the iron core 

part of the machine (since the iron core only dominates the magnetic circuit during saturated 

conditions and a wider magnetic loop will insure a higher flux density when the MMF is 

unchanged). This assumption was briefly verified by selecting different phase currents, the 

results of which are presented in Figure 4-6. 

 

 

Figure 4-6 The advantages of the opposing coil method regarding torque output variation with pole 

utilisation factor and phase current. 
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In Figure 4-6, the vertical axis does not represent the absolute torque value. Instead, the value 

is a ratio that compares the torque from the opposing coil method to that from the reinforced 

coil method. If the torque ratio is larger than 1, it indicates that the opposing coil method 

delivers more torque than the reinforce method, in this scenario. There are three curves in this 

figure, representing three different excitation currents. Since a higher excitation current would 

undoubtedly lead to higher flux density, the values for the orange curve (100 A) and the blue 

curve (75 A) are higher than the grey curve (50 A) at low utilisation factors. 

The reason why an opposing coil in the four-phase SRM demonstrates an advantage at this 

stage is due to its unique flux pattern. A comparison of flux patterns for different coil 

arrangements can be seen in Figure 4-7.  

 

 

Figure 4-7 The different flux distribution patterns for opposing coil and reinforced coil 

 

As can be seen from Figure 4-7, two phases are conducting simultaneously – one is at the 

unaligned position and the other is at an intermediate position. In both models, a portion of flux 

is flowing directly between these two conducting stator poles. The difference occurs in the 

remaining flux path. For the conventional coil on the right-hand side, a large proportion of flux 

is going between the two poles in the same phase and therefore needs to pass both the rotor and 

stator yokes. However, for the opposing coil, on the left-hand side, the remaining flux is going 

through the nearest poles and penetrates the airgap to eventually return to the coil. Moreover, it 
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appears that the conventional coil method suffers local saturation at its stator yoke between the 

two adjacent conducting phases. 

Therefore, compared to the conventional path, the flux path of the opposing coil has larger 

airgap reluctance but lower iron reluctance. Because the iron core reluctance is affected by the 

flux density, it will increase rapidly in the saturated region. This is the reason why opposing 

coil could perform better with a higher exciting current and larger utilisation factor. Moreover, 

lower flux density in the iron core could also contribute to reducing iron loss. 

As such, to further optimise the design for the opposing coil, a wider pole and narrower stator 

yoke could be used  in contrast to the original reinforced coil design. Also, as mentioned in 

Chapter 3, the undesirable inductance rise at the unaligned position would prevent an increase 

in the utilisation factor. Then, a wider pole design could be achieved by expansion of the split 

ratio rather than by only increasing the utilisation factor. 

 

4.1.2 The Development of a Static Torque Analysis Method for the Opposing Coil SRM 

In a conventional-winding SRM, the average torque could be calculated using the static flux 

linkage-vs-current data at the unaligned and aligned positions[36]. This is a concise and 

effective method for estimating the performance of a new SRM model at the outset. But the 

precondition for this method is that the average torque should be similar to the superposition of 

the torque in each phase. This is not the case for the opposing-coil-winding SRM. Figure 4-8 

shows the 2D transient FEM torque data (current control) for a four-phase opposing-coil SRM.  

 

Figure 4-8 2D FEM torque curve in a full electric cycle (current control) 
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The superposition value of the single phase represents the torque value when only conducting 

a single phase. It is clear that the real average torque curve for the 4 phase machine is higher 

than the superposition curve and this difference is too significant to be ignored. Moreover, if 

the machine is operating at light load, where the magnetic circuit is unsaturated, the difference 

is likely to be greater. By setting the permeability value of the lamination steel to a constant, 

the situation for the linear region was simulated and is presented in Figure 4-9 

 

Figure 4-9 2D FEM torque curve in a full electric cycle under constant permeability 

 

The cause of the significant difference is the interaction between phases, resulting from mutual 

coupling. In a conventional-winding SRM, as with a three-phase SRM, the phase interaction 

will only cause some cross-saturation issues which usually can be  ignored(as can be seen from 

Section 3.1.2). However, for the opposing-coil-winding four-phase SRM, phase interaction will 

produce mutual coupling effects which enhance the torque capability.  

Although it is not accurate to use a conventional one-phase static Psi-I curve for torque 

performance prediction, a full- cycle transient 2D FEM solution is still not necessary. As can 

be seen from Figure 4-10, the torque curve for a full mechanical cycle can be evenly divided 

into four repeat curves. Thus, only a quarter of the entire cycle needs to be solved.  
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Figure 4-10 2D FEM-torque results in a full electric cycle under current control 

Taking the first quarter (phase1+phase4 curve) as an example: during this period, phases 1 and 

4 will conduct. As can be seen from Figure 4-11, the phase-1 period starts at the unaligned 

position and terminates at an intermediate position. In phase 4, its starting point is an 

intermediate position and ends at the aligned position.  

 

Figure 4-11 The period of a quarter of full-electric cycle when two adjacent phases are conducting 

together (rotation direction anticlockwise). 
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During this period, the inductance in these two phases should experience a monotonous increase 

(As this is the positive torque period for both phase1 and phase4). This could be verified by the 

2D FEM: 

When only conducting phase 1, the flux linkage in those two phases is shown in Figure 4-12. 

In this condition, the flux linkage wholly emanates from self-inductance, while the flux in phase 

4 is completely due to mutual coupling effects. Both the self-inductance in phase 1 and mutual-

inductance in phase 4 rise monotonously.  

 

Figure 4-12 Flux linkage data for phases 1 and 4 

A similar situation can also be seen when only conducting phase 4. (see Figure 4-13). 

 

Figure 4-13 Flux linkage data for phases 1 and 4 
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Since the flux linkage in both phases is rising constantly during this period, the average torque 

for ideal current control can be easily estimated using the static flux linkage-vs-current data 

during a quarter of the full electric cycle. 

The method is to conduct the two phases simultaneously and to collect the flux linkage-vs-

current data at the beginning and ending positions for each phase, calculating the energy 

conversion during this period. 

The energy conversion loop for phase 1 is shown in Figure 4-14, as an example. Just like a 

regular static method, the area between these two curves represents the co-energy that is 

converted into mechanical power. However, the difference is the energy conversion that is 

being investigated is from 0 to 90 electric degrees (rather than the 0 to 180 electric degree in a 

regular static method).  

 

Figure 4-14 The flux linkage-vs-current curve for phase 1 

A similar process can be repeated for phase 4 and, as can be seen from Figure 4-15, the energy 

conversion loop ends at the aligned position. Its starting position is at the mid-point, which 

happens to be the end position for phase 1.  
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Figure 4-15 The flux linkage-vs-current curve for phase 4 

The sum of the co-energy from these two phases can be used to calculate the average torque, 

just like the classic static method: 

 𝑇 =
m𝑁𝑟𝑊

2𝜋
 ( 4-1) 

Where m is the phase number, 𝑁𝑟  is the rotor pole number, and 𝑊  is the co-energy. The 

calculated torque 𝑇 is compared to the results from the 2D transient FEM solution (current 

control) in Figure 4-16 

 

Figure 4-16 The difference between the 2D transient FEM (current control) and the static method 

results for the four-phase opposing-winding SRM 

The difference between these two results is less than 2.4%. In fact, the classical single-phase 

static torque estimation for the conventional-winding SRM was unable to achieve a similar 

level of accuracy. Moreover, this method could be applied to other even-phase number SRMs 
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that use opposing winding. For example, the results comparison of a six-phase 12/10 SRM is 

shown in Figure 4-17, and is also relatively close.  

 

Figure 4-17 The difference between the 2D transient FEM (current control) and static method results 

for the six-phase opposing-winding SRM 

 

Overall, the static method for SRMs with even-phase numbers and opposing windings was 

proven to be effective and efficient and could, therefore, be a useful tool for quick comparison 

of the different candidate designs during optimisation 

 

4.1.3 Discussion of Higher Rotor Pole Number 

 

A higher rotor pole number than stator pole number is not a novel concept for the SRM design 

and a discussion and analysis of this concept was carried out in the 1990s [36]. However,  in 

some recent journals articles, such as [67] and [66], the higher-rotor-pole-number design has 

been discussed again, with experimental results for the small-scale prototypes claiming to 

provide better performance for static torque and torque ripple. 

Because of the above work, in this project the higher-rotor-pole-number design was not 

excluded from the potential options for investigation. 

However, a comparison of the 8/6 and 8/10 SRMs using a static 2D FEM did not reveal the 

obvious benefits of a higher-rotor pole-number design. The static flux linkage-vs-current curve 

is shown in Figure 4-18 
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Figure 4-18 The 2D FEM flux linkage-vs-current curve for the 8/10 and 8/6 SRMs 

As can be derived from Figure 4-18, the 8/10 SRM does have better static torque capability in 

the linear region. To be specific, the 8/10 model produces 40% higher torque than the 8/6 model 

if the phase current is limited to 10 A. However, when the phase current is 50 A, the torque 

from the 8/10 model is 5% less than that from the 8/6 SRM. 

The narrow poles of the 8/10 SRM are one of the reasons it will become saturated earlier than 

the 8/6 SRM, but it is not the primary issue. Instead, the larger unaligned position inductance 

is mostly responsible for the inferior performance. Figure 4-19 shows a plot of the flux density 

distribution of the 8/10 SRM in the unaligned position, illustrating high flux densities. 
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Figure 4-19 The flux density plot at the unaligned position for the 8/10 SRM 

To solve this issue, the shape of the pole was redesigned to taper near the tip. The flux 

distribution plot for these uniquely tapered poles is presented in Figure 4-20. Compared to the 

plot in Figure 4-19, the novel pole design evidently relieves the inductance in the unaligned 

position while not losing too much inductance at aligned position.  
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Figure 4-20 The flux density plot at the unaligned position for the 8/10 SRM with the redesigned 

stator pole 

With the novel pole design, the static torque performance of the 8/10 model was effectively 

improved, even in the saturated condition. In Figure 4-21, the torque comparison between the 

novel-taper model and the original is presented. 
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Figure 4-21 the 2D FEM-Psi-I curve for the conventional and novel stator poles 

The 2D FEM result reveals that the co-energy from the novel taper model is 5.85% higher than 

that for the original model while phase current is kept identical (copper loss is 10.01% lower 

due to the larger slot area). 

Although the higher-rotor-pole-number concept could potentially offer better static 

performance, especially in the linear region, its high commutation frequency (due to many more 

strokes per revolution than the conventional SRM) will significantly increase the requirement 

for volt-amperes and generate higher core loss. Thus, the specific output power would be 

difficult to achieve. The characteristics of the higher-rotor-pole-number design are more 

suitable for particular applications where efficiency at low speed and light load is critical.  

4.1.4 Pole Number Combinations and Design Optimisation 

The selection of the pole combination depends on the particular design requirement. Thus, a 

specific design objective needed to be settled at this stage. Meanwhile, an ideal method for 

evaluating the concept for a four-phase-opposing-coil SRM was to select a target SRM that had 

already been well optimised to make a fair comparison. For the conventional SRM structure, 

the SRM developed by Chiba et al. in [60, 103] is considered to be an outstanding design in 

this category [26]. Chiba’s SRM was a three-phase 18/12 SRM, designed to be compatible with 

the PMSM currently used in the second-generation Toyota Prius hybrid vehicle. Then the 

objective of this stage was to develop a four-phase-opposing-coil SRM that was at least as 

competitive as Chiba’s SRM. 
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The essential parameters for the objective SRM are shown in TABLE 4-1, Most parameters of 

the proposed four-phase SRM needed to be similar to Chiba’s 18/12 SRM; the only difference 

being the phase current, which was reduced to compensate for the increased number of phases, 

thereby balancing the overall volt-ampere for a higher phase number. 

TABLE 4-1 THE PARAMETERS FOR THE OBJECTIVE DESIGN 

 18/12 SRM 4 Phase SRM 

Stator Outer Diameter 269mm 269mm 

Airgap Length 0.5mm 0.5mm 

Stator Axis length 135mm 135mm 

Maximum Speed 6000RPM 6000RPM 

Torque Density 45Nm/L >45Nm/L 

Phase Current (RMS) 206A 155A 

DC Voltage 500V 500V 

Power 50kW >50kW 

 

According to [36], the selection of pole numbers is limited and for the regular SRM, the relation 

between the rotor pole number 𝑁𝑟 and the stator pole number 𝑁𝑠 is thus: 𝑁𝑠 = 𝑁𝑟 ± 2 [36]. As 

such, for a four-phase SRM, the selection could contain the 8/6 and 8/10 options. In the interests 

of multiplicity[36], 16/12 and 16/20 could also be included. Moreover, in [67], a novel pole 

design formula was introduced: 𝑁𝑟 = 2𝑁𝑠 ± 2. This indicated that 8/14 and 8/18 could also be 

options. 

However, as discussed in section 4.1.3, the higher-rotor-pole-number method could possess an 

advantage in static torque performance, especially in the linear region, but would also likely 

suffer a poor specific power output due to the high demand for controller volt-ampere (because 

the fluxlinkage is very high compared to a conventional design with same torque capability ). 

Therefore, the higher-rotor-number design was merely used as a backup method for this project 

and the pole combination gave priority to the conventional options, such as 8/6 and 16/12. 

Comparing the 8/6 and 16/12 methods, the 8/6 was deemed suitable for high-speed application, 

since the lower number of strokes per revolution reduces the commutation frequency and, 

therefore, effectively decreases the iron loss and volt-ampere requirement.  

The 16/12 method, on the other hand, was deemed more suitable for the high-torque application. 

Comparing to the 8/6, the multiplicity structure  could reduce the flux path length for each coil 
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and copper loss as well[36]. Moreover, due to the pole width being narrower than the 8/6 design, 

the stator yoke width could be thereby reduced and  potentially contribute to increasing the 

airgap radius. 

To achieve the design objective, the torque density achieved should be more than 45 Nm/L, a 

relatively high number for the conventional SRM. Compared to the torque requirement, the 

maximum speed of 6,000 rpm was more than acceptable. Therefore, the 16/12 pole combination 

was chosen for this project. 

In Chiba’s design, the lamination is made of high-silicon steel known as 10JNEX900. It is a 

very thin lamination material with a thickness of only 0.1 mm. According to [60], the B-H curve 

for this material is relatively poor and the main purpose of using this material is to reduce the 

iron loss. However, detailed data for this material is unachievable in the infolytica MagNet; 

therefore, Chiba’s SRM needed to be remodelled using more conventional material, such as 

M270-35A in order to make a fair comparison.. The geometric details of Chiba’s machine are 

presented in   Figure 4-22, which was obtained from the ‘SRM2’ detailed in [103].  

 

Figure 4-22 The iron core design of Chiba’s SRM2 [103] 

The first model of the 16/12 SRM was named SRM-1 and the half cross section of the SRM-1 

in the MagNet is shown in Figure 4-23.  



The Development of Four-Phase SRM Design 

75 

 

 

Figure 4-23 2D cross-section of 16/12 SRM developed in this section 

The 2D FEMtorque comparison (under current control) between the two models at the same 

current density is shown in Figure 4-24. The current density for this condition is circa 34 A/mm2, 

which is high, even for liquid cooling, and the average torque for the 16/12 and 18/12 SRMs is 

593.5 Nm and 522.4 Nm, respectively. It can be observed that the torque from the 18/12 is 

higher than in [103], which is 400 Nm at a similar current density. There are two reasons behind 

this difference: first, the measured value is always lower than a 2D FEM result (about 10% for 

this machine); second, the lamination material M270-35A performed better magnetically than 

the 10JNEX900 in the original design. 

 

Figure 4-24 The static test comparision at a current density of 34A/mm2 
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For a more reasonable comparison, the current of the 16/12 SRM was reduced to 155 A in rms. 

Under this condition, the two models were predicted to be driven with similar volt-amperes 

from the drive if the DC were limited to the same value of 500 V. The results reveal that these 

two models happened to produce a similar average torque at a very low speed (50 rpm). Since 

the fill factor was only 0.5, the copper loss was relatively high. But the copper loss in the 16/12 

SRM was still 21.7% lower than in the 18/12 SRM. 

TABLE 4-2 2D FEM RESULTS FOR LOW-SPEED 

50rpm 18/12 SRM 
SRM-1 

(16/12) 
 

Torque 521.7NM 520.4NM  

Phase Current (RMS) 206.5A 155.0A  

Copper loss 14.0KW 11.0KW  

current density (assuming 50% fill factor) 34.4A/mm^2 27.0A/mm^2  

 

However, although the 16/12 model performed better at a very low speed, the conditions for 

dynamic performance could be rather complicated. Figure 4-25 shows the 2D transient FEM 

results for the torque at 1,000 rpm. In this condition, the conducting angle for each phase is 180 

electric degrees, without any advance angle. As can be seen from the results, the16/12 SRM 

failed to produce a competitive torque waveform compared with the 18/12 SRM 

  

Figure 4-25 The 2D FEM torque waveform comparison at 1,000 rpm 
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 The specific current waveform for this 1,000 rpm operation situation is shown in Figure 4-26. 

Clearly, it indicates that the 16/12 SRM requires more volt-amperes to offer a comparable 

output. As such, the design of the 16/12 SRM needed to be adjusted. 

 

Figure 4-26 current waveform comparison at 1000 rpm 

The phase voltage and current obey the following relation: 

 𝑉 = 𝑅𝑖 +
𝑑𝜓

𝑑𝑡
= 𝑅𝑖 + 𝐿

𝑑𝑖

𝑑𝑡
+ 𝑖

𝑑𝐿

𝑑𝜃
𝜔 ( 4-2) 

To improve the dynamic performance of the 16/12 SRM, the 
𝑑𝑖

𝑑𝑡
 needed to be increased. 

 
𝑑𝑖

𝑑𝑡
≈

Δ𝑖

Δ𝑡
=

𝑉−𝑖(𝑅+
Δ𝐿

Δ𝜃
𝜔)

𝐿
 ( 4-3) 

Since the 𝑅𝑖 is relatively small compared to the 𝑖
𝑑𝐿

𝑑𝜃
𝜔 (motional EMF), for a fixed DC voltage 

and peak current, the increase of 
𝑑𝑖

𝑑𝑡
 could be ensured by a decrease in 𝐿. Note that 𝐿 here is the 

inductance at the aligned position for the peak-phase current. For convenience, it could also be 

marked as 𝐿𝑎
𝑠 . 

However, a decrease in 𝐿𝑎
𝑠  would directly reduce the maximum flux-density at the aligned 

position and therefore could affect the torque capability and efficiency. To maintain the energy 

conversion loop in this situation, there were two possible methods:  

1. Decrease the inductance for the unaligned position (also known as 𝐿𝑢). For an iron-core 

geometric design, this target could be achieved by enlarging the airgap between the 

stator and rotor poles at the unaligned position; specifically, either reducing the pole arc 

or increasing the split ratio could achieve this effect. In addition, decreasing the turn 

number-per-phase would also be a feasible choice, but this method has an adverse effect 

of lowering the inductance at the aligned position. 

2. Saturate the machine earlier, at the aligned position. In fact, this method would require 

increasing the inductance for the unsaturated condition at the aligned position (𝐿𝑎
𝑢 ). 
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From the point of geometry design, a shorter flux path and wider poles (while yoke 

width remain unchanged) could be possible solutions. Increasing the turn number would 

also effectively increase the𝐿𝑎
𝑢  but it would increase the𝐿𝑢, as well. In theory, it is also 

possible to replace the iron core with a new material which saturates earlier while has a 

high permeability. 

By increasing the split ratio and decreasing the pole arc, a revised model was developed. This 

new model was named SRM-2 and the 2D sector is shown in Figure 4-27. Although the model 

looks like a combination of several segments, in fact, the iron core portion is completely solid. 

The segmental appearance is due to the model having been drawn from the segment section 

created by Visual Basic Script. 

 

Figure 4-27 2D half cross-section of the revised 16/12 SRM (SRM-2) 

The dynamic performance of the SRM-2 was verified by transient 2D FEM and the results are 

presented in Figure 4-28. This indicates that the SRM-2 could deliver the same torque as the 

18/12 SRM under the given controller volt-amperes. 
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Figure 4-28 Torque-speed envelop comparison between SRM-2 and 18/12 SRM 

The copper loss comparison can be seen from Figure 4-29, which shows that SRM-2 has a 

significant advantage at a lower speed. But as the speed increases, SRM-2 tends to follow a 

larger advance angle so as to maintain the torque output which finally reduces the efficiency. 

However, as can be seen from Figure 4-30, the iron loss of the SRM-2 is lower than the 18/12 

SRM at this stage. Although the iron loss calculated in the 2D FEM would certainly be smaller 

than the real measured value, these results give a useful guide for comparing iron loss between 

two different models. 

 

Figure 4-29 Copper loss comparison between SRM-2 and 18/12 SRM 
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Figure 4-30 Iron loss comparison between SRM-2 and 18/12 SRM 

 

4.2 4 Phase Double Stator Switched Reluctance Machine 

In section 4.1.4, a 16/12 SRM was developed to match the performance of Chiba’s 18/12 [103] 

so as to verify the basic concept of the four-phase opposing-winding SRM. The results indicated 

that the 16/12 SRM would be able to offer similar performance to that of a well-designed three-

phase SRM and would hold an apparent advantage with regard to copper loss at low speeds. 

During the previous analysis and design process, the design of this machine was revealed to 

prefer a relatively large split ratio compared to the conventional three-phase and four-phase 

SRMs with a conventional winding. However, this design trend could prove to be a waste of 

space in the rotor since the unnecessarily large rotor yoke would not contribute to the torque 

capability. On the other hand, the large split ratio would provide an opportunity to implement 

a double-stator structure. In this section, the verification and analysis of the four-phase 

opposing-winding DSSRM will be described. 

4.2.1 Analytical Analysis of Basic Concept 

To analyse the electromagnetic performance of the DSSRM, simplified models of the 

conventional and double-stator SRMs are shown in Figure 4-31. As can be seen from the figure, 

the magnetic flux path in the SRM was simplified into that of a linearised segment, as in a linear 

SRM (LSRM) and several assumptions were made: 

1. The LSRM and the double-stator LSRM (DSLSRM) models would both have a uniform 

cross section in the flux path. 
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2. The stator and rotor poles in the LSRM model as well as the inner and outer stator poles 

in the DSLSRM model would have the same length, marked as 𝑙1. 

3. The sum of the stator and rotor yoke lengths in the LSRM model would be equal to the 

sum of the outer- and inner-stator yoke lengths in the DSLSRM model, with a value 𝑙2. 

4. The airgap lengths in these two models would each be equal to 𝑙 (the DSLSRM had two 

airgaps of this size). 

5. The LSRM and DSLSRM models would be excited by the same level of current. 

 

 

Figure 4-31 A simplified model of magnetic flux path. Left side : conventional SRM. Right side: 

double-stator SRM 

When only taking into account the reluctance in the airgap, then there was no doubt that the 

reluctance of the DSLSRM would be twice that of the LSRM. To achieve the same inductance 

in both models, the following relation needed to be fulfilled: 

 𝐿 =
𝑁1

2

ℛ
=

(𝑁2)2

2ℛ
  ( 4-4) 

Where ℛ represents the reluctance of the LSRM, 𝑁1 is the turn number in the LSRM model 

and 𝑁2 is the turn number in the DSLSRM. It could be deduced that 𝑁2 should be equal to 
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√2𝑁1. For this simplified model, the slot area of the DSLSRM was twice as large as that of the 

LSRM. As a result, these two models would have the same winding resistance: 

 𝑅 =
𝑙𝑁1

𝜇
𝐴

𝑁1

=
𝑙𝑁2

𝜇
2𝐴

𝑁2

 ( 4-5) 

Thus, the above analysis suggested that there would be an equilibrium point between the 

double-stator and conventional single-stator structures in this condition. However, in reality, 

the majority of the reluctance in a magnetic circuit will be provided by the iron core of the 

machine. In this condition, the double-stator configuration would begin to gain the advantage. 

Since the flux path in these simplified models was assumed to have a uniform cross section, so 

the reluctance in the iron core would be proportional to the length of the flux path. If the analysis 

sets the 𝜇𝑟 as the permeability of the iron core, 𝜇0 as the permeability of air, and 𝐴 as the cross 

section of the flux path, then the reluctance of the LSRM would be equal to 
𝑙1+𝑙2

𝜇𝑟𝐴
+

𝑙

𝜇0𝐴
, and 

the reluctance of the DSLSRM would be equal to 
𝑙1+𝑙2+𝑙3

𝜇𝑟𝐴
+

2𝑙

𝜇0𝐴
. The ratio between these two 

reluctances could be defined as 𝑘𝑟:  

 

𝑙1+𝑙2+𝑙3
𝜇𝑟𝐴

+
2𝑙

𝜇0𝐴

𝑙1+𝑙2
𝜇𝑟𝐴

+
𝑙

𝜇0𝐴

= 1 +
𝜇0𝑙3+𝜇𝑟𝑙

𝜇0(𝑙1+𝑙2)+𝜇𝑟𝑙
= 𝑘𝑟 ( 4-6) 

As discussed earlier in this section, 𝑘𝑟 would be equal to 2 if only the airgap reluctance is being 

considered. This is, in fact, assumes the iron core has infinite permeability: 

 lim
𝜇𝑟→∞

1 +
𝜇0𝑙3+𝜇𝑟𝑙

𝜇0(𝑙1+𝑙2)+𝜇𝑟𝑙
= 2 ( 4-7) 

Another limiting case is when 𝜇𝑟 approaches 0; this is a condition approximate to where the 

iron core is heavily saturated. The calculation is as follows: 

 lim
𝜇𝑟→0

1 +
𝜇0𝑙3+𝜇𝑟𝑙

𝜇0(𝑙1+𝑙2)+𝜇𝑟𝑙
= 1 +

𝑙3

𝑙1+𝑙2
 ( 4-8) 

Moreover, the rotor pole length 𝑙3 was much shorter than the sum of the stator pole (𝑙1) and 

stator yoke (𝑙2) lengths, so the value of 𝑘𝑟 in this condition would approximate to 1. Therefore, 

the value of 𝑘𝑟 under real conditions would be between 1 and 2,  

From equations 𝐿=
𝑁1

2

ℛ
=

(𝑁2)2

2ℛ
  ( 4-4) and 𝑅=

𝑙𝑁1

𝜇
𝐴

𝑁1

=
𝑙𝑁2

𝜇
2𝐴

𝑁2

 ( 4-5), for 𝑘𝑟 = 2 , the 

DSLSRM will provide the same flux-linkage as the LSRM with the same copper loss. And with 
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smaller 𝑘𝑟 , the DSLSRM would offer higher inductance than the LSRM. That means the 

DSLSRM would provide higher torque than LSRM. This is because the aligned inductance is 

significantly larger than the unaligned inductance. 

In reality, 𝑘𝑟 tends towards 2 in the unaligned position and towards 1 in the aligned position. 

This means that the advantage for the aligned position when normally saturated would be larger 

than that for the unaligned position. For example, assuming 𝑘𝑟  to be 1.8 at the unaligned 

position and 1.5 at the aligned position, then the inductance ratios between the DSLSRM and 

LSRM would be 1.11 at the unaligned position and 1.33 at the aligned position and, obviously, 

a larger inductance ratio between the aligned and unaligned positions would increase the 

advantages of the DSLSRM. As mentioned in Chapter 3.  the requirements of the inductance 

ratio could be fulfilled by increasing the split ratio in the iron core design. 

Compared to the LSRM, the inductance increase is also contributed by the increase in the 

number of turns from the inner stator. Thus, the DSLSRM will have lower flux-density at the 

same torque output. This means that the DSLSRM also have advantages of lower iron loss and 

better overload potential. 

Although the analysis in this section clearly reveals that the DSLSRM would offer higher torque 

capability than the LSRM within the same copper loss limit, the conditions for the rotational 

machine could be more complicated. For example, in the DSSRM, the inner-stator pole is 

narrower than the outer-stator pole to ensure sufficient slot area. Also, the slot area in the inner 

stator is smaller than in the outer stator. These problems will weaken the advantage of a double-

stator structure in the rotational SRM. Thus, further analysis was required. 

A quarter cross-section of a typical DSSRM is shown in Figure 4-32. The inner stator region, 

rotor region and outer stator region form three concentric annuli. The area of the inner stator 

region and outer stator region are 𝜋(𝑅1
2 − 𝑅0

2)  and 𝜋(𝑅3
2 − 𝑅2

2)  respectively. The 

difference between these two areas could be marked as 𝑒. For the DSLSRM, the structure is 

equivalent to the DSSRM with 𝑒 = 0. When the DSSRM has a small 𝑒, its structure will  be 

more closer to the structure of DSLSRM, and can take more advantage of the double stator 

configuration. 
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Figure 4-32 Quarter cross section of the DSSRM 

 

 

Define h1 to be the radial depth of the inner stator, h2 the radial depth of the outer stator and g 

the radial depth of the rotor. 

Since 𝑅1 = 𝑅0 + ℎ1, 𝑅2 = 𝑅1 + 𝑔, 𝑅3 = 𝑅2 + ℎ2, then 𝑒 is calculated as follows: 

𝜋((𝑅0 + ℎ1)2 − 𝑅0
2) + 𝑒 = 𝜋((𝑅0 + ℎ1 + 𝑔 + ℎ2)2 − (𝑅0 + ℎ1 + 𝑔)2)  

Assuming ℎ1 ≈ ℎ2 ≈ ℎ, then 𝑒 is approximated by: 

𝑒 = 2𝜋ℎ(𝑔 + ℎ) 

This indicates that the values of 𝑔  and ℎ  should be small for the DSSRM design. i.e. the 

machine works best when the inner and outer diameters are similar, making it similar to a linear 

machine. 

In a conventional SRM, the unaligned inductance mainly depends on the clearance between the 

rotor pole and stator pole (which is related to the pole width). However, in the DSSRM, the 

unaligned inductance should also consider the clearance between the outer stator and inner 

stator (which is related to the rotor pole length: 𝑔). For instance, if the rotor pole length is too 

small compared to its width, the flux path at the unaligned position will directly connect 

between the inner stator and outer stator and significantly increase the inductance at this 

condition. There are two methods to reduce 𝑔: 
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•  Simply reduce the radial length of the rotor, maintaining the same inside and outside 

diameter, thereby increasing h. The gap between the inner and outer stator reduces, so 

that a large unaligned inductance is inevitable, resulting in a poor magnetic design. 

• Increase the stator-pole number so that the width of each pole reduces. This can be 

obtained by increasing the phase number or using the multiplicity of structure. 

There are also two methods to reduce ℎ: 

• Increase the split ratio: a machine with more poles will tend to have a large split ratio. 

• Reduce the stator-yoke width. This method could be fulfilled by using opposing-coil-

winding and a higher phase number. 

Thus, it was concluded that a four-phase design with opposing winding would be the ideal 

configuration for the DSSRM. 

As can be seen from Figure 4-33, an 8/10 DSSRM was developed from the 8/10 SRM. It should 

be noted that the outer stator of the 8/10 DSSRM has exactly the same dimensions as the stator 

of the 8/10 SRM. The results of the static psi-I curve are shown in Figure 4-34. Compared to 

the 8/10 SRM, the 8/10 DSSRM increases the aligned position inductance by about 32 %, while 

less favourably the unaligned inductance also increases by approximately 23%. Moreover, for 

the same flux linkage, the flux density in the DSSRM is apparently lower, which will also 

contribute to reducing iron loss. 

 

Figure 4-33 Cross-section of 8/10 SRM (left) and 8/10 DSSRM (right) 
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Figure 4-34 The flux-linkage vs current curve for 8/10 SRM and 8/10 DSSRM 

 

With the assistance of the inner stator, the DSSRM will apparently be able to achieve higher 

torque density. As can be seen from TABLE 4-3, the 8/10 DSSRM would deliver 34.2 % higher 

torque than the single-stator SRM with the same current value.  

Although the inner stator would also increase the copper loss by about 70 %, if the average 

torque of the 8/10 SRM were to be increased to a similar level, the 8/10 DSSRM would actually 

produce 24.6 % less copper loss.  

TABLE 4-3 THE AVERAGE TORQUE AND CORRESPONDING COPPER LOSS OF 8/10 

SRM AND 8/10 DSSM 

 
Single Stator 

SRM 

Double Stator 

SRM 

Single Stator SRM 

(higher phase current) 

Average torque 79.86Nm 107.16Nm 109.61Nm 

Copper losses 888W 1503.45W 1994.13W 

 

4.2.2 Potential Design Developments and Simulation Results 

To further verify the four-phase opposing-winding DSSRM concept, a design was developed 

to compare with the 18/12 and 16/12 models in section 4.1.4. 
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According to [87], the DSSRM is a machine type that potentially offers high torque capability, 

whilst maintaining low inductance. This is because the DSSRM has a relatively large airgap at 

the unaligned position. As a result, a lower controller volt-ampere could be expected. 

In section 4.1.3, the higher-rotor-pole-number configuration of the four-phase SRM was 

discussed and several 8/10 SRMs were verified with the 2D FEM. The major issue for this 

design was the large volt-ampere requirement due to the small airgap at the unaligned position. 

Therefore, the double-stator structure represented a potential solution for improving the 

performance of the 8/10-pole configuration. The first attempted design, which will be 

introduced in this section, was an 8/10 DSSRM and the cross section of that machine is shown 

in Figure 4-35. 

The machine was modelled with the same dimensions (269-mm outer diameter, 135-mm active 

length and 0.5-mm airgaps) that were used in section 4.1.4. The performance of this design was 

verified by the 2D FEM. The static results are shown in TABLE 4-4, and revealed that this 

model could provide a very high torque density with a 20 A/mm2 current density. 

 

Figure 4-35 Cross section of the 8/10 DSSRM (269-mm stator diameter) 

TABLE 4-4 STATIC PERFORMANCE OF 8/10 DSSRM 

8/10DSSRM 
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Average torque 534.79NM 

Torque density 69.64 Nm/L 

Current density 20.36 A/mm2 

 

However, the dynamic performance of this machine would drop relatively quickly as the speed 

increases. As can be seen from TABLE 4-5, even with an advance angle of 30 degrees, the 

torque output at 1,000 rpm still reduced by about 24% from its static value. This situation was 

not observed during optimisation of the 16/12 SRM. This meant that the 8/10 DSSRM might 

not be suitable for this specific application. 

Moreover, the eight-stator pole in this model could only offer limited freedom for design 

optimisation and might not adequately utilise the advantage of the double stator. This design 

was, therefore, abandoned. 

TABLE 4-5 DYNAMIC PERFORMANCE OF 8/10 DSSRM 

500V DC 30 degrees at 1000 rpm 45 degrees  at 2000 rpm 

torque 406.74Nm 131.69Nm 

power 42.60KW 27.58KW 

 

As the multiplicity of the basic four-phase design had already presented its effectiveness in the 

conventional single-stator SRM, as described in section 4.1.4. the second attempt described in 

this section is that of a DSSRM with 16 stator poles. 

Under this condition, the feasible pole combinations would be limited to 16/12 and 16/20.  

However, as discussed in section 4.1.3, the higher rotor pole number configuration does not 

ensure better torque production, especially when the machine operates at saturated condition. 

Moreover, a higher rotor pole number will undoubtedly increase the commutation frequency, 

thus substantially increasing the iron loss. At this condition, it is the 16/12 rather than 16/20 

which should be considered (the cross section is shown in Figure 4-36). 
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Figure 4-36 Cross-section of 16/12 DSSRM 

The design of the 16/12 DSSRM is an upgrade from the 16/12 SRM whose development was 

outlined in section 4.1.4. Its torque-speed curve, copper loss data and iron loss result are shown 

in Figure 4-37, Figure 4-38, and Figure 4-39 respectively. The comparison reveals that although 

the 16/12 DSSRM does not enhance torque capability, both copper and iron loss are reduced 

efficiently. 

 

Figure 4-37 Torque-speed-curve comparison of the 16/12 DSSRM and the 18/12 SRM 
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Figure 4-38 Copper-loss comparison of the 16/12 DSSRM and the 18/12 SRM 

 

Figure 4-39 Iron-loss comparison of the 16/12 DSSRM and the 18/12 SRM 

4.3  Conclusion 

Several conclusions resulted from this chapter: 

• Opposing windings were deemed suitable for four-phase SRMs. They have a symmetric 

flux distribution, better torque capability and lower iron loss in a saturated condition. 

Regarding the design rule, opposing winding would also allow for a narrower stator 

yoke and larger split ratio than in the conventional winding method. 

• The 8/10 SRM was discussed briefly: with a higher number of rotor than stator poles, 

this machine could offer better torque performance before saturation. However, this 

machine type would also consume a larger number of volt-amperes, reducing its 

dynamic performance. 

• To show the advantages of a four-phase opposing coil configuration, a 16/12 opposing-

winding SRM was developed and compared with Chiba’s 18/12 SRM. The results from  

2D FEM showed the 16/12 SRM could provide the same torque as Chiba’s SRM with 

lower copper loss. 
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• Analytical analysis of the DSLSRM revealed the advantages of the double-stator 

structure: better torque capability and lower loss can be expected. Additionally, further 

study suggested that for the rotational DSSRM, the four-phase opposing-winding 

configuration should be recommended. 

•  To verify the conclusion from the analytical analysis of DSSRM, a 16/12 opposing-

winding DSSRM was developed; the 2D FEM results showed that this machine could 

efficiently reduce copper and iron loss compared with the previous 16/12 SRM. 

This chapter made several contributions to knowledge: 

• 2D FEM results have confirmed the opposing coil can produce higher torque than a 

traditional reinforced coil at 4 Phase SRM. Moreover, from a design perspective, opposing coil 

would require thinner stator core back and therefore leave the possibility of a larger split ratio. 

• An analysis of higher rotor pole number configuration reveals that this concept only 

provides better torque capability at the linear region, which is a rare operating condition for 

most SRMs. Furthermore, a novel stator pole design is developed and shown to improve the 

performance of this configuration, with a higher rotor pole number. 

• Analytical analysis demonstrates that a conventional SRM can benefit from a double 

stator structure (it should be noted that previous double stator SRM studies were based on a 

segmental rotor SRM). Moreover, this benefit will become evident with a higher split ratio. 

• A 16/12 SRM  and a 16/12 DSSRM is developed to compare with a world-leading three 

phase SRM design, and the result illustrates that the above analysis is reasonable. 
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Chapter 5.  Multi-Physical Challenges and Prototype 

Development 

Chapter 4 discussed the development of the proposed SRM topology which combines features 

from mutual coupled SRMs and double stator SRMs. An optimised design is generated to 

compare with Chiba’s 18/12 SRM, which is considered to be one of the best ever published. 

The design had a very similar size and overall VA rating to that of Chiba’s SRM, but results in  

30% less copper loss whilst delivering same torque performance. 

This chapter develops a prototype that will eventually be tested in Newcastle University. Firstly, 

the size of the prototype machine is selected by considering the limitations and accessibility for 

both benchmark equipment and the target machine. Since mechanical aspects of design could 

be a critical obstacle to building a double stator SRM, several rotor structures and a range of 

materials will be analysed in detail to ensure satisfactory mechanical and electromagnetic 

performance. Based on the selected rotor structure, the prototype design is generated and 

optimised. Finally, as a part of feasibility check, thermal properties of the prototype machine 

have also been simulated and analysed. 

5.1 Volume Selection and Design Objective 

In Chapter 4. the four-phase, opposing-coil, double-stator SRM was shown to be a capable and 

potential machine type for this project through comparison with a machine built and tested by 

Chiba. Chiba’s machine was funded by the Toyota Motor Corporation to develop an electric 

machine that is capable of providing similar performance to an IPMSM that is being used in 

automotive traction. There are difficulties from both budget and bench equipment availability 

to build and test a SRM on that scale within this project. A reasonable alternative option is to 

build a smaller prototype and compare it with other SRMs which have the same volume. 

Newcastle University has built a large number of electric machines in the past. The majority of 

the SRMs were constructed using the D100L frame size (150 mm active length and 150mm 

active diameter). As a result, using the D100L frame size also allows for direct comparisons 

with a recently built machine of a similar size. 

Moreover, there is a  12/16 segmental rotor SRM in Newcastle University that can be used to 

make comparative analysis with the prototype machine[80, 104]: Not only because that 12/16 

machine was built in D100L frame size, but also because it was a successful design that was 

developed for the same objective of providing higher torque per unit copper loss. 
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Considering the points mentioned above, the prototype machine needed to be built with the 

same frame size; however, the double-stator structure is relatively complicated compared to the 

conventional SRM, which is eased by a larger diameter. Thus, the final decision of prototype 

design was one with short axial length and a large diameter. In order to make comparisons with 

existing machines, the volume of the prototype needed to match that of the D100 frame size. 

The final dimensions were chosen to be a 210-mm outer diameter and a 75-mm active length. 

Performance of the prototype was verified by comparing it with an SRM which had been 

previously constructed at Newcastle University [80, 104]. The cross section for the prototype 

and this rival machine are presented in Figure 5-1. The selected machine was a fully-pitched 

12/16 segmental-rotor SRM, designed to provide high torque per unit copper-loss at low speeds. 

The requirements for the prototype are shown in TABLE 5-1 

 

Figure 5-1 Full 2D cross section of the 12/16SRSRM (constructed at Newcastle University in the 

past[80, 104] and the 16/12 DSSRM (the prototype whose development was outlined in this chapter) 

 

TABLE 5-1 BASIC PARAMETERS AND PERFORMANCE COMPARISON BETWEEN 

THE 12/16 SRSRM AND PROTOTYPE REQUIREMENT 

 12/16 segmental Prototype requirement 

Outer Diameter 150mm 210mm 

Axial Length 150mm 75mm 

Airgap Length 0.3mm 0.3mm(each) 

Average Torque at 10A/mm2 45Nm >45Nm 

Copper Loss at 10A/mm2 850W <850W 
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The objectives of this prototype were to produce the following: 

• Good torque per unit copper loss. 

• Good torque density 

• Can be constructed in the mechanical workshop within the university. 

The preliminary design for this prototype selected the 16/12 configuration verified in section 

4.2.2 and its parameters are shown in TABLE 5-2.  

TABLE 5-2 THE NECESSARY GEOMETRIC PARAMETERS FOR THE PRELIMINARY 

DESIGN OF THE PROTOTYPE 

 16/12 DSSRM 

Inner Stator Angle 5 

Outer Stator Angle 5 

Inner Stator Radius 72.5mm 

Rotor Depth 10mm 

Stator Yoke 8mm 

 

 

5.2 Mechanical Challenges for the Rotor Support Structure 

Before optimising the preliminary design of the prototype, the specific rotor-structure needed 

to be determined, since it could significantly affect the eventual electromagnetic capability. 

Due to the unique segmental structure of the rotor in this four-phase DSSRM, there were several 

potential mechanical problems which needed careful consideration: 

• The rotor in this DSSRM consisted of a series of independent segments located between 

the inner and outer stators; therefore, a support structure should be developed to connect 

these rotor segments and to assemble them to a shaft. 

• The segmental rotor is not naturally as strong as the rotor in the conventional SRM. As 

such, the rotor support structure should be strong and rigid to guarantee its survival 

during high-speed operation; its specific requirement was that it must be capable of 

enduring the centrifugal force created at 3,500 rpm. 
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•  The iron core design needed to be modified to implement the support structure; thus, 

the performance of the prototype would be affected. 

• The material in the rotor support structure should be both affordable and easily 

machined by conventional methods.   

The basic idea of how to construct and insert the rotor is presented in Figure 5-2. The inner 

stator is fixed on a shallow, stationary shaft with bearings on either side. The rotor segments is 

then be connected to the two rotor caps, which are mounted on these bearings. Several methods 

that could potentially secure the connection between the rotor segments and caps were 

subsequently investigated and are discussed in this section. Mechanical modelling used 2D/3D 

FEM in the JMAG.  

The rotor segments are made of 0.35 mm M270-35A silicon-steel sheets. Thus it gives weak 

mechanical strength in the axial direction and needs to be considered during the investigation.  

Based on the data in [105], the mechanical property of this orthotropic material are shown in 

TABLE 5-3. 

 

Figure 5-2 An assembly view of how the rotor mounts onto the inner stator 

 



Multi-Physical Challenges and Prototype Development 

96 

 

TABLE 5-3 A MECHANICAL-CHARACTERISTICS COMPARISON BETWEEN 

LAMINATION STEEL AND SOLID STEEL [105, 106] 

 lamination Solid Steel 

Mass Density 7461kg/m3 7840 kg/m3 

Steel fraction 0.97 1 

Young’s Modulus 187.2 GPa (in-plane) 207 GPa 

 75.73 GPa (z-axial) 207 GPa 

Poisson’s Ratio 0.3(in-plane) 0.3 

 0.121 (z-axial) 0.3 

Material Type Orthotropy Isotropy 

 

5.2.1 The Stainless-Steel Bolt and Eddy Currents 

The first potential method was to use non-magnetic stainless steel or aluminium to link the rotor 

segments together and to fit them into the corresponding keyhole in the rotor caps. The 

advantage of this method is straight forward, for the metal – especially the stainless steel – 

offers the required stiffness and strength. 

However, as can be seen from Figure 5-3, the solid metal structures between the rotor segments 

would induce a significantly large eddy current (the eddy current loss almost equal to 38% of 

the copper loss from winding). This would severely hinder efficiency and performance due to 

the extra loss. 

 

Figure 5-3 The current density distribution in a quarter-cross section view when a very high current 

density is induced in the stainless-steel link 
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A more developed solution to reduce the eddy current would be to insert a bolt into the rotor 

segments, as it would be surrounded by the high-permeability iron core and not directly exposed 

to the flux. The effects can be seen from Figure 5-4; comparing the current density plot at the 

same position as in Error! Reference source not found.. A significant reduction in eddy 

current losses is predicted, at 13% of the copper loss from the winding. 

 

 

Figure 5-4 The current density distribution in a quarter cross-section view: the bolt within the middle 

of a rotor segment has very low current density comparing to conducting winding 

As mentioned at the beginning of section 5.2, the primary mechanical issue that needs to be 

solved is whether the rotor structure can withstand the centrifugal force during operation. Thus, 

to verify the mechanical performance of the new rotor design, a 3D FEA model is developed in 

JMAG(Structural Study- Static Analysis ). In this model, the structures are made up of rotor 

segments, bolt, and endplates. Their material properties are linked to orthotropic silicon steel, 

stainless steel and aluminium, respectively. A solution is obtained at 4000rpm. The deformation 

and stress condition of the bolt is shown in Figure 5-5 with a scaling factor of 200 to highlight 

the displacement, indicating that the maximum principal stress in this scenario is around 63 

MPa. Considering the typical tensile strength (yield) of type 304-stainless steel is 215 MPa, this 

mechanical design is considered suitable. However, the bolt will still have small eddy current 

losses during operation. For this specific design, it is predicted to increase the overall loss from 

564 W to 636 W; therefore, other structure types made of non-metallic materials needed to be 

considered.  
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Figure 5-5 The principal stress distribution from the 3D FEM. Maximum stress occurs at the 

connection between the bolt and rotor cap. 

5.2.2 Study of Potential Rotor Structures using Engineering Plastic 

Since any metal material will have induced eddy currents during operation, thereby reducing 

efficiency, a non-metal material rotor support would be advantageous. One option is 

engineering plastic. By considering the Young’s modulus, tensile strength, temperature and 

accessibility, polyether ether ketone (PEEK) was found to be a good choice. The physical 

properties of PEEK are presented below in comparison to aluminium. It transpired that the 

mechanical properties of PEEK are poorer than aluminium, especially when considering the 

Young’s Modulus. 

TABLE 5-4 MECHANICAL PROPERTIES COMPARISON BETWEEN PEEK AND 

ALUMINIUM 

 PEEK Aluminium 

Mass Density 1320 kg/m3 2700kg/m3 

Young’s Modulus 3.6 GPa 68.9GPa 

Tensile Strength 100 MPa 290MPa 
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Young’s modulus (also known as the elastic modulus) is a means of measuring the stiffness of 

a solid. A material with a lower Young’s modulus value will have more significant deformation 

under stress. Therefore, to prevent the rotor eventually impacting into the outer stator at high 

speed, a rotor support made from PEEK would need to have less stress than its metallic rivals. 

To achieve this requirement, a PEEK support component needed to be significantly thicker than 

a metal component. Four potential designs for the PEEK supporting structure were proposed, 

as shown in Figure 5-6. In these designs, the rotor lamination is represented by the colour red, 

while the white component represents the PEEK.  

 

Figure 5-6  The 3D models of four different rotor structure candidates 

The features and structures of each design can be described in turn:  

(1) In this design, the rotor lamination is linked by a thin bridge in the middle and PEEK 

sheets secure the position from both sides of the bridge. 

(2) In this design, the rotor segments have round wedges on each side that insert into the 

PEEK sheets. 

(3) This method is a modification of the first design but the bridge, which links the segments 

together, is no longer in the middle. Instead, the PEEK sheet is fitted into the middle 

and surrounded by the bridge. 



Multi-Physical Challenges and Prototype Development 

100 

 

(4) The last method is a modification of the second design. Here, the rotor segments have a 

groove on both sides to allow the PEEK sheet to be fitted.  

It should be noted that the rotor segments in the fourth design are wider than the original 

segments at the edges near the airgap. The entire design, including the stator cores, is shown in 

Figure 5-7. This shows that the stator poles have small tips extruded which would match the 

arc of the rotor segments at the airgap. The purpose of these small tips is to enhance 

electromagnetic performance:  

In Figure 5-8, the torque data (from 2D FEM under current control) of the preliminary prototype 

with different pole widths is presented. It suggests the torque performance would be enhanced, 

even if the stator arc-to-pitch ratio reaches 0.6. On the other hand, wider poles would lead to 

narrower slot areas which would increase the copper loss at the same phase current. But 

increasing the width of the stator pole solely at the airgap would not cause significant sacrifice 

of the slot area and would still enhance electromagnetic performance at the airgap. Moreover, 

combined with the rotor segments design of the fourth method, the unaligned inductance would 

not increase much compared to directly increasing the pole width. Thus, a decent inductance 

ratio between the aligned and unaligned positions is maintained. As a result, the electromagnetic 

characteristics of this method are equivalent to a reduced airgap. As discussed in Chapter 3. 

lower airgap reluctance is highly advantageous and will enhance the torque capability. 

The torque capability and copper loss for these four different rotor structures is shown in 

TABLE 5-5 which indicates that the third method would exhibit the worst torque performance 

and the fourth the best, as expected. The copper loss of the fourth method is slightly higher than 

that of the other three candidates because the slot area is occupied partially by the stator-pole 

tip. But this trade-off would be entirely worthwhile, since the copper loss only rises by around 

4.2 % while the torque capability increases by 32.5 % compared to the first method. 

TABLE 5-5 TORQUE CAPABILITY AND COPPER LOSS COMPARISON BETWEEN 

THESE FOUR ROTOR STRUCTURE CANDIDATES 

Structural 

Design 
(1) (2) (3) (4) 

average torque 

(Nm) 
34.1 33.2 28.3 45.2 

Copper loss(W) 564 564 564 588 
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Figure 5-7 2D cross-section of the rotor structure Number 4 

 

Figure 5-8 The relation between the average torque and the stator arc-to-pitch ratio 

The mechanical performance of these four different designs was verified by 3D FEM with the 

condition of centrifugal force being under 4000rpm, and the plots of principal stress are shown 

in Figure 5-9, Figure 5-10, Figure 5-11, and Figure 5-12 respectively. The results indicate that 

the tensile strength of PEEK (which is 100MPa) is strong enough for those four designs.  

The fourth method was assumed to be the best choice due to its outstanding torque capability. 

Further analysis was undertaken for this design. 
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Figure 5-9 principal stress-distribution for rotor structure number 1(22MPa at maximum) 

 

Figure 5-10 principal stress-distribution for rotor structure number 2(29MPa at maximum) 
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Figure 5-11 principal-stress-distribution for rotor structure Number 3(22MPa at maximum) 

 

Figure 5-12 principal stress-distribution for rotor structure number 4(13MPa at maximum) 
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5.2.3 Discussion of Potential Alternative Materials 

The relatively low Young’s modulus of  PEEK was the most significant uncertainty of this rotor 

design. The 3D FEM results showed that the maximum radial direction displacement would be 

circa 0.1 mm at 4,000 rpm. This would be feasible since the airgap would be 0.3-mm long. 

However, the simulation could not absolutely preclude a potential hazard during high-speed 

operation. As such, other stronger non-metal materials with higher Young’s modulus values 

were taken into consideration. The mechanical properties of several potential candidates are 

shown in TABLE 5-6 

TABLE 5-6 THE MECHANICAL PROPERTIES COMPARISON BETWEEN PEEK, 

ALUMINA CERAMIC, GLASS, AND BAMBOO 

 PEEK 
Alumina 

Ceramic 
Glass Bamboo(1) 

Young's 

modulus 
3700Mpa 330000Mpa 70000Mpa 20000Mpa 

tensile 

strength 
96.5Mpa 172Mpa 40Mpa 160Mpa 

Note: 1) Material properties of Bamboo based on the references [107-109] 

One of the stiffest non-metal materials widely used in engineering is alumina ceramic. Its 

Young’s modulus is more than 50 % higher than typical steel. As can be seen from Figure 5-13, 

alumina ceramic could provide more than enough strength and stiffness in this application. 

However, it can be extremely expensive and is extremely difficult to be machined by traditional 

equipment. Thus, it was excluded from the options. 
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Figure 5-13 The 3D principal stress-distribution graph for an alumina ceramic rotor support 

Glass was another candidate with a Young’s modulus similar to aluminium and its price 

affordable compared to alumina ceramic. This material could offer enough stiffness to restrict 

the axial displacement; however, it is also relatively fragile with a typical tensile strength of 

around 40 MPa. The results in Figure 5-14 indicate the stiffness of glass could limit the strain 

of the rotor to the expected value, but the principle strength at this condition would break the 

glass itself. 
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Figure 5-14 The 3D principal stress-distribution graph for a glass rotor support 

The third option was bamboo. This is not usually used in electrical and electronic engineering 

but, according to [107-109], it has long been used as a construction material and is being 

investigated as an alternative to glass fibre in the mass production of wind turbine blades. The 

Young’s modulus of bamboo is around 20,000 MPa, which is five times higher than PEEK. 

Although its stiffness would not be comparable to alumina ceramic or glass, the tensile strength 

of bamboo is high. As can be seen from Figure 5-15, the maximum tensile stress on the bamboo 

bar is less than 40 MPa, which is low compared to its capability of 160 MPa tensile strength. 

Consequently, bamboo could fulfil the mechanical requests for this application; but there were 

still some issues that could prevent its use in this project: 

• Accessibility: it is difficult to find a vendor that can offer natural bamboo of a suitable 

size and with reliable mechanical property information. Although solid bamboo 

products could be supplied in appropriate sizes, these products are made by gluing 

together processed bamboo strips and have a relatively low Young’s modulus. 

• Reliability: since most research about bamboo is carried out for the construction 

industry, its mechanical properties are mainly investigated under moderate temperatures. 

However, for electric machine applications, the maximum temperature inside the case 

could reach 120 ˚C so more research for this condition is required. 
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Therefore, although bamboo is a readily available material for this application and has several 

advantages, such as low cost and being environmentally friendly, because of issues surrounding 

reliability and accessibility, it was decided not to use it in the construction of the prototype 

machine, but only as a study option in future work. 

 

 

Figure 5-15 The 3D principal stress-distribution graph for a bamboo rotor support 

5.2.4 Electromagnetic Force and Resonant Analysis 

Other than the centrifugal force, the electromagnetic force might also challenge the robustness 

of the rotor. However, due to the unique airgap distribution, the electromagnetic force in a radial 

would almost achieve balance on the rotor segments. As can be seen from Figure 5-16, the 

radial force would slightly bias towards the inner stator and, therefore, might even neutralise a 

small portion of the centrifugal force – and since the rotor support structure would be relatively 

solid and thick in the tangential direction, it is unnecessary to discuss tangential force more 

specifically in this section. The effect of the electromagnetic force on the rotor structure for 45 
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Nm average torque is shown in Figure 5-17. The results revealed that the principal stress for 

the electromagnetic force would be lower than that for the centrifugal force. 

 

Figure 5-16 Vector graph showing the electromagnetic force on the rotor segment 

 

Figure 5-17 The 3D principal stress-distribution graph for the electromagnetic force on the rotor 
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However, vibration would still exist in the rotor, since the electromagnetic force in the radial 

direction would not achieve complete balance. Resonance is an extremely harmful phenomenon 

for any structure as it can significantly magnify the vibration at a particular frequency. For the 

conventional SRM with a relatively robust rotor, resonance investigation is usually focused on 

the stator to prevent excessive vibration and noise. In this project, as the prototype machine has 

a fragile rotor, so the resonance study concentrates on the rotor. 

In this prototype, the electromagnetic force on the rotor would emanate from four directions, 

evenly distributed in a full circle. Under these conditions, the resonance should mainly occur at 

eigenmode 4. 

The results of the vibration analysis are presented in Figure 5-18, revealing that the frequency 

of eigenmode 4 is 4,244 Hz. For the 16/12-pole combination, the rotational speed at this 

conducting frequency would be in excess of 20,000 rpm. As discussed in section 5.2.2, the rotor 

structure needed to be designed to survive at a maximum speed of 4,000 rpm. Consequently, it 

would be meaningless to investigate any potential resonance hazard over 20,000 rpm, since the 

centrifugal force would already have destroyed the rotor at a far lower speed.   

  

 

Figure 5-18  The eigonmode for the four-pole conducting condition 
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5.3 Design Optimisation and Simulation Results 

Once the design of the rotor structure had been chosen, the primary iron core geometry of the 

prototype was confirmed. Subsequent work optimised the design to further enhance 

performance. For the PC-based automatic optimisation process, two types of algorithm are 

commonly used: annealing and genetic algorithms. 

JMAG software offers a built-in optimisation function based on a genetic algorithm. The 

genetic algorithm, known as the ‘revolution algorithm’, is an optimisation method developed 

using the well-known concepts of genetic endowment, evolution, and natural selection in 

biology. The algorithm consists of several steps: 

1. It initially establishes a set of possible solutions, at random. This set represents the 

population of the first generation. The design parameters for each individual are in the 

‘genes’. These genes are combined in the ‘chromosomes’ which contain the entire 

design details of an individual. 

2. After solving the entire population, all the individuals are given a fitness score from the 

fitness function: there are three different methods for generating the population of the 

next generation ion: 

• Some of those individuals with the best fitness score are directly promoted to 

the next generation. 

• Crossover: some individuals in the current population with better fitness scores 

are selected as parents, as if those animals in the real world who adapted to the 

environment and are more likely to propagate; then, their children (i.e. the next 

generation) would have a mixture of ‘chromosomes’ from the parents. 

• Mutation: some of the individuals are also promoted to the next generation if a 

random change in their chromosome occurs. In reality, this mechanism is a 

critical driving force for biological evolution. 

3. The new generation repeats the process in step two and continually evolves until the 

termination condition is achieved. This condition would include, but is not restricted to 

the following: 

• Generation number limit: This is a method of terminating the process after the 

generation number reaches a pre-set value.  

• Tolerance limit: Because the diversity of such a population would be relatively 

low compared to in real biological evolution, the fitness score of the population 

would eventually converge to a certain number after several generations. Thus, 

the algorithm should terminate after the fitness score drops to the tolerance. 
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Since this optimisation mechanism is a simulation of the biological evolutionary process, the 

result would not necessarily be the best among the entire set of possibilities, but the algorithm 

can be relied upon to consistently function reliably, no matter how complicated the problem. It 

is, therefore, suitable for solving issues in which the objective function is relatively nonlinear 

and random. 

For this specific task, the dimensions that were involved in the optimisation process are shown 

in Figure 5-19. The limit of range can be seen in TABLE 5-7. 

 

Figure 5-19 The dimensions that were involved in optimisation 
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TABLE 5-7 THE DIMENSION RANGES USED IN OPTIMISATION 

Dimensions Minimum Maximum 

Outer Diameter 210mm (fixed) 

Active Length 75mm (fixed) 

Airgap Length 0.3mm (fixed) 

Inner Stator Radius 64.5mm 78.5mm 

Inner Stator Pole Angle 4.5˚ 6˚ 

Inner Stator Tip Angle 6.3˚ 7.1˚ 

Inner Stator Tip Depth 1mm 3mm 

Outer Stator Pole Angle 4.5˚ 6˚ 

Outer Stator Tip Angle 6.3˚ 7.1˚ 

Outer Stator Yoke 6mm 12mm 

Outer Stator Tip Depth 1mm 3mm 

Rotor Segment Length 8mm 12mm 

Rotor Waist Depth 4mm 7mm 

Rotor Waist Width 3mm 10mm 

 

Several constraints were set in JMAG to prevent any invalid design accidentally appearing in 

the population. Examples of these constraints are shown in Figure 5-20 and included the 

following cases: 

• The stator tip angle should always be larger than the stator pole angle. This would 

guarantee that the tip of the stator pole is wider than other parts of the poles. 

• The rotor waist width should be smaller than the arc length at the airgap. This is because 

the rotor segment is designed to be narrow in the middle and wider near the airgap, as 

if two trapezoidal shapes were combined, end-to-end – otherwise, the PEEK bar 

structure will not remain fixed to constrain the location between the rotor segments. 

• The rotor waist depth should always be smaller than its length. Since the waist is 

expected to be in the middle of the rotor, if the rotor waist depth is larger than the length, 

an error would occur in the iron core geometry.  

• The sum of the airgaps, rotor length, inner stator radius, and outer stator yoke should 

total less than 95 mm. This would allow at least 10 mm of leeway for allocating the 

outer stator pole. 
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Figure 5-20 The constraints set for optimisation 

The winding was assumed to be solid conductor, filling the slot area, while the current density 

of 10 A/mm2 would be fixed for each individual in the optimisation, since this is a typical value 

for an air-cooled SRM at this volume. In addition, the optimisation process would focus on 

three objectives: 

• The average torque should be no less than 45 Nm. This is because the competitor SRM 

with which it was to be compared could offer 45-Nm torque at 10-A/mm2 current density. 

The prototype should be capable of providing better torque capacity under the same 

conditions, even though the current density limit could vary between different SRMs.  

• The maximum average torque should be sought. In conjunction with the first objective, 

this would guarantee an optimised result with obvious advantage regarding torque 

capability. 

• The highest torque-to-copper loss value should be sought. This objective was the most 

important of the three; moreover, since the current density would be fixed at 10 A/mm2, 

the copper loss would be directly proportional to the section area of the slot. Thus, this 

objective was equivalent to seeking those individuals with a higher torque-to-slot area 

ratio. 

Eventually, the genes of the various individuals would converge to form a specific combination. 

Figure 5-21 shows the changes in the geometric design following optimisation. Compared to 



Multi-Physical Challenges and Prototype Development 

114 

 

the original design, the optimised DSSRM has a shorter rotor length, narrower stator pole tips, 

and a wider stator pole and yoke. The details of these modifications are presented in TABLE 

5-8. 

 

Figure 5-21 A comparison of the original and optimised geometric designs 

 

TABLE 5-8 A COMPARISON OF THE DIMENSIONS BETWEEN THE ORIGINAL AND 

OPTIMISED DESIGNS 

Dimensions Before Optimisation After Optimisation 

Outer Diameter 210mm (fixed) 

Active Length 75mm (fixed) 

Airgap Length 0.3mm (fixed) 

Inner Stator Radius 64.5mm 78.5mm 

Inner Stator Pole Angle 4.5˚ 6˚ 

Inner Stator Tip Angle 6.3˚ 7.1˚ 

Inner Stator Tip Depth 1mm 3mm 

Outer Stator Pole Angle 4.5˚ 6˚ 

Outer Stator Tip Angle 6.3˚ 7.1˚ 

Outer Stator Yoke 6mm 12mm 

Outer Stator Tip Depth 1mm 3mm 

Rotor Segment Length 8mm 12mm 

Rotor Waist Depth 4mm 7mm 

Rotor Waist Width 3mm 10mm 
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In terms of performance enhancement, the average torque was increased by 13% from 45.19 

Nm to 51.37 Nm at a current density of 10 A/mm2, while the copper loss was reduced by 6.75 %. 

The optimisation process proved to be effective. 

In comparing this model to its competitor, which is the 12/16 segmental-rotor SRM with similar 

volume, it was evident that the optimised DSSRM produced significantly higher torque-to-

copper loss ratio, especially under high loading conditions. Figure 5-22 presents a comparison 

of torque-to-copper loss between these two SRMs with a current density of up to 20 A/mm2. 

The prototype DSSRM provides 15% higher torque than the 12/16 segmental-rotor SRM with 

a 500W copper loss, and this advantage would increase to 25 % with a 1,000W copper loss, 

eventually reaching 65 % if a 2,000W copper loss were allowed. From these curves, it can be 

seen that both machines actually demonstrate a similar torque-to-copper loss performance, at 

low currents but, once the copper loss exceeds 500 W, the curve of the prototype machine 

continues to increase at a steady rate, while the curve of the 12/16 segmental SRM becomes 

saturated. 

 

Figure 5-22 A torque-to-copper loss comparison between the prototype and the 12/16 segmental-rotor 

SRM 

As can be seen from Figure 5-23, this phenomenon is more clearly reflected in the flux linkage-

vs-current curve. These two machines would have a very similar flux linkage-vs-current curve 

at the aligned position, but the prototype machine maintains very low flux linkage at the 

unaligned position, which effectively enhances its energy-conversion loop. Consequently, this 
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indicates that the DSSRM would offer higher torque capability than its rival in the saturation 

region. Moreover, since the peak current and inductance of the DSSRM was lower than that of 

the segmental SRM, a lower volt-ampere requirement from the drive could be expected. 

 

Figure 5-23 A flux linkage-vs-current comparision between the prototype and the 12/16 segmental-

rotor SRM 

Further comparison at 1500 rpm is delivered using 2D transient FEM, in which the two 

machines are under current control (with the limitation of same DC voltage at 500V while the 

advance angle is selected with the maximum average torque for each machine respectively.). 

The peak current of the 12/16 SRSRM is 35A, which is almost as twice that of the 16/12 

DSSRM (18A). This indicates the 12/16 SRSRM should require a higher VA rating than the 

16/12 DSSRM (even after considering the 1atter has one more phase). The comparison result 

is shown in TABLE 5-9, which indicates the 16/12 DSSRM has better efficiency with similar 

output. 

TABLE 5-9 PERFORMANCE COMPARISON  

1500rpm 12-16 segmental SRM 16-12 DSSRM 

Resistance (Per Phase) 0.38ohms 0.78ohms 

Torque (Average) 43.6Nm 43.7Nm 

Copper Loss 1175.5W 477.7W 

Iron Loss 144.6W 152.4W 

Efficiency 83.8% 91.6% 

DC Voltage 500V 500V 

Peak Current 48A 18A 
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5.4 Thermal Analysis 

Unlike conventional SRMs, the DSSRM would have another stator in the centre of the machine. 

Obviously, the heat generated by the inner winding could have difficulty transferring to the 

motor case. It was necessary to verify the heat transfer of the inner-stator winding in this project. 

The experimental test of the prototype machine would be undertaken with a phase current 

density up to 10 A/mm2. This level of current density is not unusual for an air-cooling SRM, 

but for a DSSRM, its inner-stator winding would possibly require additional investigation. To 

analyse the thermal problem, the half model of the machine was deveoped in JMAG. The 

thermal properties of the materials that comprised the machine are presented in TABLE 5-10. 

 

TABLE 5-10 THE THERMAL PROPERTIES FOR DIFFERENT MATERIALS IN THE 

PROTOTYPE 

property Lamination Coils Slot Liner Structure 
Rotor 

Support 

material M270-35A Copper Nomex Aluminium PEEK 

Heat 

Capacity 

J/(kg.K) 

460 380 260 900 1050 

Thermal 

Conductivity 

W/(m.K) 

23 380 0.13 230 0.25 

 

As can be seen from the lumped-parameter model in Figure 5-24, there are distinct differences 

between the prototype machine and the conventional SRM. For example, there are two air gaps 

connect to the rotor and the shaft in the middle of the device is a hollow and stationary structure 

which also provides a heat path to the ambient environment. Then, there are three heat-transfer 

paths to the ambient: the end cap, hallow shaft, and case. For modelling convenience, the heat 

transfer coefficient was set at the outer stator-to-case and inner stator-to-shaft conditions, by 

assuming the case to be a fluid and ignoring its heat capacity.  
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TABLE 5-11 THERMAL PROPERTY SETTING IN SIMULATION 

 Case to Ambinet 
End Cap to 

Ambient 
Shaft to Ambient 

Heat Capacity NA 1230.2J/K NA 

Heat Transfer 1.35W/K 0.2945W/K 0.057W/K 

 

 

 

Figure 5-24 Lumped-parameter model for thermal analysis 

In the simulation, the prototype DSSRM was defined to use a air-cooling method. Thus, the 

heat transfer coefficient of any surface to the ambient was set to 10 W/m2 /°C. Regarding the 

heat source, the copper loss in the winding was circa 550 W, which corresponded to the average 

torque at 45 Nm or a current density of 10 A/mm2. The simulation results in Figure 5-25 show 

that the final temperature rise could be limited to 120 K. If an ambient temperature of 20 °C is 

considered, then this rise could eventually reach 140 °C. Unlike a permanent magnet 

synchronous machine, the primary thermal limitation of the SRM would be the isolation of the 

windings, a temperature of 140 °C being entirely acceptable in this situation. Considering this 

result was modeled on a air-cooling senario, the prototype machine proved to be relatively 

effective in terms of cooling performance.  
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Figure 5-25 Temperature distribution in 3D model 

Although the temperature distribution plot and results seem reasonable, the definition in the 

lumped-parameter model is subject to many assumptions and, therefore, needed to be verified. 

As such, a new lumped-parameter model was developed, assuming a small airgap between the 

case and the stator core, and so the heat-transfer coefficient would be calculated for this small 

airgap. The new lumped-parameter model and temperature-distribution plot can be seen in 

Figure 5-26 and Figure 5-27  respectively. Observing the new temperature-distribution plot, it 

is apparent that although a different modelling method was used, the eventual result is 

nevertheless close enough. Thus, this thermal analysis result could be considered reliable.  
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Figure 5-26 Lumped-parameter model for thermal analysis 

 

 

Figure 5-27 Temperature distribution in 3D model 
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5.5 Conclusion 

In this chapter, several milestones for developing the final design of the prototype have been 

described: 

• The frame size of the prototype machine was 210 mm in diameter and 75 mm in active 

length. There were two important reasons for choosing these dimensions: firstly, the 

structure of the DSSRM would be more complicated in the radial direction; therefore, 

it would be easier to construct it with a larger diameter; secondly, a segmental SRM 

with the same design purpose (high torque-to-copper loss ratio) was constructed in 

Newcastle University and the prototype machine would need to maintain a similar 

volume in order to make a fair comparison. 

• The development for the novel rotor support structure has been presented. This section 

could be divided into four parts: 

(1) The conventional metal (stainless-steel) structure has been analysed. The 2D 

FEM revealed that the metal support would induce a large loss from the eddy 

current and the method with a bolt imbedded inside the rotor segment would 

create less losses compared to others. 

(2) An engineering plastic named Polyether Ether Ketone (PEEK) has been 

considered for use in the support structure to avoid an eddy current. Four 

different support structures were analysed by the 3D FEM for both mechanical 

robustness and electromagnetic performance. The centrifugal force at a 

maximum speed of 6,000 rpm was carried out to verify the mechanical 

properties. Finally, a structure for the prototype was chosen due to its 

outstanding electromagnetic performance. 

(3) Several potential alternative materials for PEEK have been discussed, including 

alumina ceramic, glass, and bamboo. This revealed bamboo to be a suitable 

material, in terms of both cost and processing; but its reliability within a harsh 

environment (a hot electric machine) would require further investigation. 

(4) The electromagnetic force on the rotor structure has also been analysed in this 

section. Since there are two airgaps in each side, the radial force on the rotor 

segment would be almost balanced with a slight bias towards the shaft. The 

principal stress from the electromagnetic force would be relatively small 

compare to the centrifugal force at maximum speed. A resonance analysis was 

implemented for the four-pole vibration model and revealed that the resonance 
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frequency would exceed 4,000 Hz, which is far beyond the conducting 

frequency at maximum speed. 

• After the rotor-structure type was developed, optimisation of the prototype SRM could 

commence. The optimisation used a built-in genetic algorithm-optimisation tool in 

JMAG. The prototype achieved 13% torque enhancement and 6.75% copper loss 

reduction after optimisation. Further comparison between the prototype machine and a 

previously constructed segmental SRM was made by the 2D FEM. The results revealed 

that the prototype machine could provide relatively higher torque capability with the 

same copper loss limit. 

• Thermal analysis is necessary for an unusual machine structure. In this machine, the 

heat in the inner stator could have difficulty transferring to the outer stator, causing these 

components to experience the highest temperature rise inside the machine. However, 

since there was a hollow stationary shaft within the middle of the prototype, there would 

be more areas, if required for cooling, compared to the conventional SRM. The thermal 

analysis by the 3D FEM revealed that the prototype machine could maintain the max 

temperature rise to 120 ℃ in a 10 A/mm2 current density with only air-cooling method. 

The work presented in this chapter has contributed to knowledge as follows: 

To minimise the extra eddy current loss, several novel rotor structures have been developed, 

and several non-metal materials are discussed. The analysis indicates that the rotor support 

structure could fulfil the mechanical requirement and that non-metallic structures are feasible. 
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Chapter 6.  Construction and Test Result 

Chapter 5 analysed the prototype development and design details, using a variety of simulations 

covering mechanical robustness, thermal capability and optimisation of torque performance. 

The mechanical simulation included applying a centrifugal force at a maximum speed of 6,000 

rpm, an electromagnetic force at a 45-Nm operating point and a vibration mode-verification for 

resonance effects. Consequently, this simulation confirmed the design of the rotor support 

structure. The optimisation focused on enhancing the torque-to-copper loss performance with 

a genetic algorithm. This optimised design was compared with the original design and a SR-

SRM, proving it capable in terms of performance. Finally, the thermal properties were 

examined by assuming the prototype machine would operate at a 10 A/mm2 current density 

while cooled by natural air convection. In this Chapter, the construction process, experimental 

test procedure and results will be presented in detail. 

6.1 Rotor Design Revision for Construct Feasibility 

Although the rotor structure was analysed in Chapter 5. concerns over installation accuracy and 

durability from mechanical experts led to several revisions of the motor design: 

1. Firstly, to guarantee the robustness and accuracy of the rotor laminations, the rotor 

structure had to be linked together.  

2. Secondly, as a single-tooth machine, the winding could be pre-wound on a bobbin to 

achieve a higher fill factor. However, to fit the winding on the stator, the tang design 

near the pole tip had to be eliminated. 

The geometric design revisions can be seen in Figure 6-1. Comparing this to the original design 

in Chapter 5.  the modified version has a thin bridge in the rotor lamination and the stator pole 

is completely straight, without any tang or taper. Thus, it could be expected that the torque 

performance might be affected and very likely deteriorate.  

In TABLE 6-1, the effects of the geometric modification to the torque capability are presented. 

This shows that the presence of the bridge will decrease the torque capability by nearly 20 %. 

In terms of the stator-pole modification, there are two ways to achieve a straight pole from the 

previous overhang-tip design: either remove the overhang or fill in the slot behand it. Based on 

2D FEM, the first option of directly redesigning the pole tips would offer the best result. When 

the bridge was introduced into the rotor core, the stator pole with the tang removed would 

provide almost the same average torque compared to the original design. In addition, with 

regard to enhancing the fill factor from the straight pole design, its torque capability would 
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increase under the same copper loss conditions. Since the fill factor could be improved from 

0.4 to 0.5, the proposed design (removing the overhang from the stator tip and placing a bridge 

in the rotor) could offer 56.27 Nm in average torque, which would be as much as 9.5 % higher 

than the original design at the same current density. 

 

Figure 6-1 Cross section of the rotor with a thin bridge-link along the inner airgap 

 

TABLE 6-1 THE CHANGES IN AVERAGE TORQUE FOR THE DIFFERENT 

GEOMETRIC MODIFICATIONS 

 Fill Factor 0.4 Fill Factor 0.5 

Torque(NM) original 
remove 

tang 
fill the slot 

remove 

tang 
fill the slot 

without bridge 51.36 46.23 38.95 61.70 52.33 

bridge 41.41 41.40 34.60 56.27 47.40 

 

Another significant change in the rotor structure was the materials for the rotor support. In 

reality, the university’s manufacturing team lack the experience in processing the solid plastic 

with high precision. Thus, an epoxy potting compound (834ATH) which would remain liquid 

before a full cure could be selected to fill in the hole between the rotor segments. However, the 

mechanical properties of the epoxy might not satisfy the requirements, as its tensile strength is 
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28 MPa, which is relatively low compared to PEEK. To guarantee sufficient strength, a number 

of carbon fibre rods would be inserted into the rotor support structure. The modified rotor 

structure is shown in Figure 6-2 

 

Figure 6-2 3D model of the revised rotor structure 

The mechanical robustness of the modified structure was also verified by the 3D FEM. The 

simulation would run at under 4,200 rpm and the Young’s modulus of the epoxy would be 

reduced to 50 % of its ideal value. The reason for adopting the above conditions was to 

introduce a safety factor. 

The principal stress result is shown in Figure 6-3, and reveals that the stress on the epoxy parts 

is far below its tensile strength. As expected, the maximum stress is focused on the tip of the 

carbon fibre rods with a maximum value of 40 MPa. Considering the ultimate tensile strength 

of carbon fibre rods is claimed to be 1600 MPa to 2300 MPa by the vendor, the revised rotor 

support is shown to be sufficient for this design. Moreover, the displacement plot with a 1000X 

scale factor is presented in Figure 6-4. It shows that the maximum displacement occurs at the 
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middle of the rotor with a deformation in the radial direction. It is generally safe since the airgap 

is about 0.3mm long which is more than sufficient for the maximum 0.0075 mm displacement. 

  

Figure 6-3 The principal stress distribution conditions of the revised rotor-support structure 
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Figure 6-4 The displacment results and 1000X deformation view of the revised rotor 

 

6.2 Construction Process 

The construction process consisted of four steps: 

• Firstly, the stator laminations were machined from steel sheets and compressed together 

to form the stator core. 

• The coil bobbins were pre-wound and fitted into the stator slot. 

• Next, the case and shaft were machined from aluminium to act as a holder for the stator 

core. 

• Lastly, the rotor lamination and support structures were constructed, based on the design 

in section 6.1, and mounted on the bearing on the shaft. 

 

6.2.1 Stator Lamination and Machining Method  

M270-35A steel was selected as the lamination material, to provide direct comparison with 

existing machines. The stator lamination was designed to have a 75-mm stack length and it was 
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decided it would be glued into three 25-mm sub-stacks before being machined. It was believed 

this method would provide very good tolerance in the machining precision. As can be seen from 

Figure 6-5, the laminations were glued with epoxy resin and compressed to achieve a high stack 

factor of circa 98 %.  

 

Figure 6-5 The laminations – glued, compressed and drilled 

Holes on the lamination stack were drilled to offer an action point for the Electrical Discharge 

Machining (EDM). EDM offers high precision for machining metal components and, thus, was 

considered advantageous for the prototype manufacture. However, this technology also has one 

major drawback – a relatively slow cutting speed (9.8 mm/h during this task). Since the speed 

was not a critical consideration for a one-off manufacture, it was deemed acceptable for this 

task. A glimpse of the cutting process of the EDM is presented in Figure 6-6. As the workpiece 

was immersed in the dielectric fluid, the machining process will be near the ambient 

temperature. This is another advantage over laser cutting and conventional machining, both of 

which generate a considerable temperature rise.   
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Figure 6-6 The outer stator lamination was created using EDM 

The finished workpiece of the inner stator is shown in Figure 6-7. Two minor modifications 

from the 2D FEA model can be seen: 

• A small groove has been cut near the pole tips to install the slot wedge, which could 

isolate the winding and prevent it from intruding into the airgap. 

• A location feature has been created along the inner edge in the middle hole, which was 

designed to correctly position the inner stator onto the shaft.  

 

Figure 6-7 The finished inner stator sub-stacks 
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6.2.2 Manufacture of the Shaft  

The shaft was constructed from 6082 T6 Aluminium, a material which offers both adequate 

mechanical strength (a tensile strength of 260 MPa, Young’s modulus of 70 GPa) and good 

machinability (a hardness of 75 HV), a conventional machining process (see Figure 6-8) was 

selected. 

 

Figure 6-8 The stationary shaft during the machining process 

As can be seen from the Figure 6-9, the shaft in the prototype differs from a conventional shaft 

in two aspects: 

•  The shaft is stationary and hollow, with eight holes of 3.8-mm radius distributed evenly 

around the shaft surface. 

• The shaft was engineered to lock the position of the inner stator and to deliver pressure 

to compress the lamination in the axial direction. Moreover, the hollow structure and 

drill holes would offer a path for the inner stator coils to exit the machine. 

The completed work is shown in Figure 6-10, where the inner stator is mounted on the shaft.  
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Figure 6-9 The assembly view of the inner stator and shaft in Autodesk Inventor 

 

Figure 6-10 The inner stator, mounted on the shaft, being compressed to eliminate any gaps between 

laminations. 
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6.2.3 Motor Winding Production 

The prototype machine used single-tooth windings which were pre-wound on bobbins. 

The turn number for an SRM is determined by the dynamic performance requirement. In a 

DSSRM, there exists an extra constraint: the same current density shall be maintained in both 

the inner- and outer-stator windings. 

Based on transient 2D FEM result in Chapter 5. 5.3, the turn number was selected as 30 for the 

inner stator and 44 for the outer to provide a torque-speed profile compatible with the previous 

12/16 segmental SRM. With the appropriate turn number set, a diameter of 1.4 mm (a cross 

section area of approximately 1.5 mm2) was decided for this machine. 

The machine used pre-wound bobbins to achieve a 50%fill factor. As can be seen from Figure 

6-11, the bobbin was wound on a turning lathe. The rotation of the lathe and the tension of the 

coils was based on manual force only. With a mechanical counter connected to the lathe shaft, 

the turn number could be precisely measured during the winding process. Although the coils 

would be pre-wound on bobbins, coil-pressing and gluing was not considered for this prototype. 

The complete winding was bound by electric tape to provide fundamental isolation for 

protection and to prevent the winding from coming loose.  

In Figure 6-12, two windings have been installed on two adjacent inner-stator poles. The winding 

was insulated using a slot liner made from 0.5-mm Nomex sheet to prevent the coil touching 

the stator core, thus ensuring isolation even in the event of a flaw in the wire coating. A glass 

fibre slot wedge was also used to prevent anything in the slots from intruding into the airgap 

and impacting the rotor.  



Construction and Test Result 

133 

 

 

Figure 6-11 The procees of winding the coils onto the bobbin 

 

Figure 6-12  The process of fitting the pre-winding onto the inner stator 

Since the slot in the outer stator was wider at the bottom and narrower at the tip, two pre-

windings from adjacent poles would struggle to fit into the slot together. To solve this issue, 



Construction and Test Result 

134 

 

two different pre-winding shapes were produced. Bobbins manufactured to allow these coils to 

be wound are presented in Figure 6-13: half of the windings were completed prior to using the 

left bobbin and fitted to the eight non-adjacent poles; then another eight windings were made 

using the right bobbin and successfully fitted to the remaining poles. As can be seen from Figure 

6-14, the windings were installed on the outer stator and the red lines drawn along the edges 

clearly demonstrate the difference in these two winding types. Eventually, the windings in both 

the inner and outer stators were tested with 2,000 V to confirm isolation for the phase-to-stator 

core or the phase-to-phase condition. 

 

Figure 6-13 Two differenct bobbins for the outer-stator windings 
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Figure 6-14 The winding assemblage in the outer stator 

6.2.4 Rotor Lamination and Support Structure 

The rotor lamination was cut with the same method as the stator lamination, as can be seen from 

Figure 6-15. Corrosion on the surface was due to immersion in the dielectric liquid during 

machining.  

At this stage, the rotor segments were linked by bridges, which enclose several slots to allow 

for the further procession. As can be seen from the Figure 6-16, an epoxy potting compound 

has been filled into those slots. This compound was allowed 24 hours to cure at room 

temperature.  

The terminal ring was made from 6082 T6 aluminium and its structure is presented in Figure 

6-17. This was the adapter between the rotor laminations (filled with the carbon fibre reinforced 

epoxy support) and the rotor caps (mounted on the bearings). The connection between the rotor 

cups and rotor ring was based on a screw method; thus, it would offer detachability to some 

extent. However, the connection between the rotor ring and the rotor support became permanent 

once the epoxy filling had cured. The physical security of this connection was guaranteed by 

the fillings in the rotor support hole (see Figure 6-17). Specifically, three carbon fibre rods were 

locked within one rotor support hole to prevent displacement between the rotor and rotor ring 

in the radical or tangential directions (see Figure 6-18). Furthermore, as the support hole was 

filled with epoxy, these step shapes around the edges could provide stress through the rotor-

support structure in the axial direction. As such, the rotor laminations could obtain stress from 



Construction and Test Result 

136 

 

the two rotor rings on both sides to maintain the tightness between the steel sheets unless the 

epoxy filling cracked.  

 

Figure 6-15 Rotor lamination made using EDM 

 

Figure 6-16 Pouring the epoxy plotting compound into the rotor lamination slot 



Construction and Test Result 

137 

 

 

Figure 6-17 Model of the rotor terminal ring in Autodesk Inventor 

 

 

 

Figure 6-18 Connection between the rotor terminal ring and the rotor (only the rotor segments and 

carbon fibre rod are visible) 

Left for 24 hours at room temperature and with the assistance of a heat gun, the viscous black 

fluid in Figure 6-16 was finally transformed into a rigid solid. Its hardness in Shore D durometer 



Construction and Test Result 

138 

 

was 85 D; as a comparison, hard hats used for head protection are made from a material of 80 

D, as measured on the same hardness scale. 

After the epoxy potting compound had cured, the outer redundant ring had also finished its task 

and needed to be cut off from the rotor lamination (see Figure 6-19). During the cutting process, 

some cavities were found on the surface of the epoxy, in part due to the imperfect filling method. 

Although the structure proved relatively stiff during cutting, it was decided to fill the cavity and 

repeat the cure process. 

 

 

Figure 6-19 The process of post machining the redundant parts from the rotor lamination 

 

6.3 Test Result 

Experimental testing of the machine was based on the static method, since a four–phase drive 

was unavailable at the university; however, these tests should offer sufficient experimental data 

for performance analysis via the following steps: 

• First, a pulse test was used to generate the details of the flux linkage-vs-current 

characteristics during an electric cycle. 
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• Static torque was obtained from a torque transducer to develop the torque-vs-electric 

degree curve. 

• Mechanical performance was verified with a load machine by spinning at a speed up to 

4,000 rpm. 

These tests are presented in the following sections with technical details. 

6.3.1 Static Pulse Test 

As briefly mentioned above, the purpose of the pulse test was to obtain the motor’s 

magnetisation characteristics. According to [36] and [42], the digital integration method is the 

most in common measurement in technology. To be specific, the rotor would be locked into a 

fixed position and the phase current and voltage trace would be obtained during the conduction 

period. Then, the flux linkage-vs-current data could be generated, based on the following 

equation: 

    [Ψ] = ∫([𝑉] − 𝑅[𝐼]) 𝑑𝑡 ( 6-1) 

Where the square bracket represents the value obtained from the discrete form and which is 

stored in arrays for digital computation. Thus, to calculate the flux linkage[Ψ] at a certain 

position, the voltage and current trace need to be recorded during a current rising (or falling) 

process while the rotor is locked at this position.   

As can be seen from Figure 6-20, the machine was mounted on a bench table in order to be 

tested. So as to ensure accurate measurement of the rotor angle, the machine shaft was 

connected to a torque transducer and a rotary table. The test process is briefly concluded in a 

flowchart (see Figure 6-21). The rotary table locked the position of the rotor during the test and 

allowed precise alteration of the rotor angle, by manually rotating the hand wheel. This test was 

taken between the unaligned and aligned positions. In reality, the rotor would tend to rotate to 

the aligned position while the winding is conducted. However, since the shaft could not freely 

rotate in this test, the start position had to be found with the aid of a torque transducer. Because 

the aligned and unaligned positions were in stable- and unstable-equilibrium positions, 

respectively, the static torque at these two position equalled 0 Nm.  The prototype machine had 

12 rotor segments, thus 360 electric degrees was equal to 30 mechanical degrees. The rotor 

angles were accumulated in half-degree increments from the starting point (either the aligned 

or unaligned position) and completed 30 increments, in total. In each angle, the programmable 

DC power supply provided a five-second current pulse with the maximum allowable current 

for this machine, which was 46 A (peak)/32.5 A (RMS) and equivalent to an RMS current 

density of 20 A/mm2.  
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Figure 6-20 The benchmark table and prototype machine 

 

Figure 6-21 the flowchart of the static pulse test process 



In order to consider the effects of temperature rise on the winding resistance during the 

conducting period, the winding resistance was calculated, based on the static value of the 

voltage and current trace during the excitation periods: its value was 0.76 
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The voltage and current probes were mounted to the current carrying winding. Their signals 

were obtained using an oscilloscope and then stored in .csv format to allow for further analysis. 

One of the current and voltage traces at the aligned position is shown in Figure 6-22.  

In order to consider the effects of temperature rise on the winding resistance during the 

conducting period, the winding resistance was calculated, based on the static value of the 

voltage and current trace during the excitation periods: its value was 0.76 Ω, according to ohm’ 

law. The calculation of the instantaneous flux linkage was done using 

the equation [Ψ] = ∫([𝑉] − 𝑅[𝐼]) 𝑑𝑡 ( 6-1) within Matlab, and 

specific code is shown in Appendix 3 Script for Pulse Test 
The script from Matlab is responsible for calculate the magnetisation curve from the current 

and voltage data which collected during pulse test 

 

cd('D:\OneDrive\static test\23A') 
filename = ('T0001all.csv'); 

  
voltage=xlsread(filename,'D17:D90000') 
current=xlsread(filename,'B17:B90000') 
time=xlsread(filename,'A17:A90000') 

  

  
%filter the source data 
b = fir1(100,0.0001); % design a FIR filter 
filtvoltage=filter(b,1,voltage); 
filtcurrent=filter(b,1,current); 

  
maxcurrent=max(filtcurrent); 
mincurrent=min(filtcurrent); 
maxvolts=max(filtvoltage); 
minvoltage=min(filtvoltage); 

  
%find rise start point 

  
for n = 1:length(filtvoltage) 
    if(filtvoltage(n) > minvoltage*1.05) 
        start_point = n; 
        break 
    end 
end 

  
%find rise end point 

  
for n = 1:length(filtcurrent) 
    if filtcurrent(n) > maxcurrent*(0.995) 
        settling_point = n; 
        break 
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    end 
end 

  

  

  

  
%find fall start point 

  
for n = settling_point:length(filtvoltage) 

    
    if(filtvoltage(n) < 0.9*maxvolts)  %the voltage goes negative on switch 

off and we need to detect when the current begins to decay 
        fall_start_point = n-1; 
        break 
    end 
end 

  

  
%find fall end point 
for n = settling_point:length(filtcurrent) 
    if (filtcurrent(n) < mincurrent*1.2)&(filtvoltage(n) > 0.5*minvoltage) 
        fall_settling_point = n; 
        break 
   end 
end     

  
%Now find the value of resistance just after the end of the rise 
%v= sum(filtvoltage(settling_point-5:settling_point+5))/10; 
%i= sum(filtcurrent(settling_point-5:settling_point+5))/10; 
v= sum(filtvoltage(34000:34110))/110; 
i= sum(filtcurrent(34000:34110))/110; 
coil_resistance_rise=v/i; 

  
Psi=zeros(1,length(filtcurrent)); 
for i=start_point:settling_point; 
deltaT = time(i+1)-time(i); 
%Psi(i+1)=(deltaT*((filtvoltage(i)+filtvoltage(i+1))/2-(filtcurrent(i)-

filtcurrent(i+1))/2*coil_resistance_rise))+Psi(i); 
Psi(i+1)=(deltaT*(((filtvoltage(i)-

filtcurrent(i)*coil_resistance_rise)+(filtvoltage(i+1)-

filtcurrent(i+1)*coil_resistance_rise))/2))+Psi(i); 
end 
hold on 
plot 

(filtcurrent(start_point:settling_point),Psi(start_point:settling_point),'r

'); 

  
risecurrent=filtcurrent(start_point:settling_point) 
risefluxlinkage=Psi(start_point:settling_point) 

  
xi=0:2:60 

yi=interp1(risecurrent,risefluxlinkage,xi,'linear','extrap'). During the test, 

noise and oscillation in the voltage and current trace should be avoided; otherwise, a significant 

accumulative error would be generated during the digital integration process. As such, the data 

collected from the oscilloscope was smoothed by using a filter technique to eliminate the 
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sampling noise. Moreover, only the falling periods of winding-current data were taken into 

consideration in the integration calculation. There were two reasons for not considering the data 

of the rising period: 

• The temperature would rise rapidly once the winding was excited which would lead to 

an inaccurate winding resistance value in the integration calculation. 

• Although the programmable DC power supply used in this test was equipped with a 

dedicated controller, overshoot and oscillations were still inevitable during the current-

rising period and would potentially give rise to an accumulative error. 
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Figure 6-22 Current and voltage traces collected during the pulse period 

 

The flux linkage-vs-current curve at the aligned and unaligned positions are presented in Figure 

0-23 to make a comparison between the simulation and test results. It appears there are several 

differences between the 2D FEM and reality: 

• At the unaligned position, the flux linkage is higher in the experimental test.  
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• At the aligned position, the flux linkage is higher in the experimental test at the 

beginning, but then the two curves converge soon after. 

This situation is relatively common and typical in almost every SRMs and is widely recognised 

as the absence of 3D effects in 2D FEA. In addition, according to [47, 49, 110], the 3D effects 

would include end-winding flux and axial fringing; however, it should be noted that the axial 

fringing effects were minimal in the unaligned position (because the airgap between stator and 

rotor pole is at a maximum at this point). The flux linkage difference of the unaligned position 

in Figure 0-23 was mainly caused by the extra flux from the end-winding. In terms of the aligned 

position, the 3D effects should depend on both end-winding flux and axial fringing effects; but 

this extra flux would be suppressed in the saturation condition (this phenomenon is indicated 

in Figure 0-23). 

 

Figure 0-23 Flux linkage-vs-current result comparison between the experimental test and the 2D FEM 

As the energy-conversion loop of the measured result was slightly smaller than that of the 2D 

FEM result, there is no doubt that the measured torque would be lower than in the simulation 

data. In Figure 0-24, the average torque curve at different phase currents is presented. It reveals 

that the measured torque and 2D FEM results are relatively close when the phase current is 

below 23A (equal to a current density of 10 A/mm2). However, when the phase current exceeds 

23 A, the gap between the measured data and the 2D simulation result increasingly expands, 

and a circa 10% drop can be witnessed at peak current. 
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Figure 0-24 The average torque comparison between the measured result and 2D FEM result 

Moreover, the unaligned flux linkage curve in this machine was slightly different to that of a 

conventional SRM. As can be seen, the unaligned curve for both the test and 2D FEM results 

reveal evidence of saturation at the very beginning. The explanation of this phenomenon relates 

to the geometrical design revision in section 6.1. In Figure 0-25, the flux density plot at the 

unaligned position is presented. Here, it can be noted that the thin rotor bridge along the inner 

airgap would be deeply saturated at this position.  
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Figure 0-25 The flux density plot of the prototype machine at the unaligned position (2D FEM) 

6.3.2 Static Torque Test 

As the torque transducer was installed on the bench table, the torque-position data could be 

obtained and a comparison with the 2D FEM made. 

The torque was measured simultaneously during the static pulse test and its values in different 

rotor positions were collected. In Figure 0-26, both the measured- and 2D FEM-torques for an 

entire electric cycle are presented and the average values are 19.58 Nm and 20.83 Nm, 

respectively. However, compared to the 2D FEM results, the curve of the measured torque 

experiences distortion in the horizontal direction. 

Since Figure 0-23 and Figure 0-24 indicates that the magnetisation characteristic of the prototype 

machine performed as expected, this indicates that the construction tolerance of the iron core 

geometry was maintained properly.  

Subsequently, excluding the core geometry issue, there were two possible reasons that could 

have led to this distortion in the torque-angle curve: 

• Since there was a small flexure between gears in the rotary table, the accuracy of angular 

tolerance was about 0.1 mechanical degrees during the static test. Therefore, the 
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measured-torque curve could have suffered an error of approximately 1.2 electric 

degrees.  

• The rotor cap of the machine was connected with a stainless-steel extender. As can be 

seen from Figure 0-27, this connection shaft was relatively thin, thus a twist under the 

torque was inevitable. 

Nevertheless, the rotor-position error is unlikely to have occurred at the aligned position and 

the unaligned position (which are the equilibrium positions in the static torque test). Thus, the 

data in Figure 0-23 and Figure 0-24 should be reliable. 

 

Figure 0-26 Static torque comparison between experimental test and 2D FEM 
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Figure 0-27 The connection between the extended shaft and the coupling 

6.3.3 Rotation Test 

The mechanical test was intended to exam the robustness of the rotor structure during operation. 

According to Section 5.2, the major challenge for the rotor structure was the centrifugal force 

under high-speed spinning. To counter this, the prototype was connected to a load machine with 

a maximum speed of 3,500 rpm, while a torque transducer was used to provide early warning 

if any abnormality occurred (see Figure 0-28).  

 

Figure 0-28 The prototype machine was connected to a load machine and a torque transducer 
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For safety reasons, the bench was covered by a stainless-steel guard to offer basic protection, 

in case of rotor-structure failure and its subsequent adverse effects (see Figure 0-29). 

 

Figure 0-29 The bench table is covered with a stainless-steel protective guard 

During the test, noise and vibration was observed to be significant once the rotational speed 

rose above 2,000 rpm. However, the reading on the torque transducer did not reveal any 

mechanical contact between the rotor and stator. As can be seen from Figure 0-30, the power 

measured by the torque transducer almost linearly increases with the rotational speed, while the 

torque value is distributed around 0.25 Nm during the full-speed range. 
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Figure 0-30 Torque and power readings taken from the torque transducer indicates no catching 

between rotor and stator during the accelaration process 

After discussion with the mechanical technicians in the University, it was believed that the 

vibration might be attributed to the absence of a balancing process and voids in the epoxy (see 

Figure 0-31). Consequently, there was no indication that the rotor structure would not be robust 

enough under the centrifugal force in this condition. 
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Figure 0-31 The void is randomly distributed in the epoxy parts as a manufacturing faliure; this could 

lead to an unbalanced force being imposed on the shaft and bearings 

 

6.4 Conclusion 

In this Chapter, the manufacturing process and experimental test of the prototype machine have 

been described in detail:  

• Considering the equipment from the university’s mechanical workshop, several 

revisions of the prototype design were made for construction convenience: 

1. To enhance the assembly precision and mechanical robustness, it was decided 

that the rotor segments would be connected by very thin bridges along the inner 

airgap. 

2. Due to the limited machining accuracy of the PEEK sheet, the rotor support 

structure was to be replaced by epoxy potting compound and reinforced carbon 

fibre rod. 

3. A trade-off was made in the stator-pole design by eliminating the overhang near 

the airgap to allow for a higher fill factor in the winding technique.  
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• The prototype machine was a double-stator SRM, and its structure was relatively 

complicated compared to a conventional SRM. These differences in the construction 

process have been described in detail in this chapter: 

1. The inner stator was a unique structure, only existing in double-stator SRMs. 

The geometry of its lamination core was similar to the rotor lamination in a 

conventional rotor. However, the inner stator was mounted and fixed to a 

stationary hollow shaft, which not only locked the lamination in both the axial 

and tangential directions but also provided a path for the stator winding and heat 

flux. 

2. This machine initially consisted of pre-wound bobbins prior to installation of the 

stator slot. There were three different bobbins used during this stage (one for the 

inner and another two for the outer stator), and a fill factor of 50% was obtained. 

3. The slot for the support structure in the rotor lamination was enclosed by a 

redundant bridge at the beginning to allow for the filling process of the epoxy 

compound. Once the epoxy was cured, this redundant bridge was removed by a 

lathe. This process would guarantee a precise rotor-diameter tolerance. 

• The prototype machine was experimentally tested in the lab; a process which can be 

divided into three steps: 

1. Static pulse test: during this test, the machine was fixed on the bench table while 

the rotor was connected to the rotary table. The electromagnetic characteristics 

were derived from the current and voltage data at every 0.1 mechanical degrees. 

The test results were compared to the 2D FEM data and considered to be close 

to expectations (the gap is less than 10% at a peak current density of 20A/mm2). 

2. Static torque test: the static torque data was collected at a current density of 20 

A/mm2 during a full electric cycle. Due to the shaft being very thin, a distortion 

of the torque-angle curve was found between the test and simulation results.  

3. Mechanical test: during this test, the prototype machine was connected to a load 

machine to verify the robustness of the rotor structure under centrifugal force. 
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Chapter 7.  Conclusion and Future Work 

This thesis has described the development of a four-phase double-stator SRM with a mutually 

coupled-winding configuration and a straight stator-pole configuration. The work comprised a 

number of steps: 

• Firstly, the background literature relating to SRM torque-capability enhancement was 

reviewed in Chapter 2. Compared with the SRSRM, which is considered a successful 

novel SRM in terms of torque capability, the conventional SRM was proven to have its 

own advantages. Methods to improve the torque production of a conventional SRM 

include increasing the number of strokes per revolution and the energy conversion per 

stroke. The former indicates that higher phase numbers may give better torque capability 

and thus requires further analysis; meanwhile the latter suggests that modification of the 

flux-path in the iron-core could be considered. Clues to a proper solution were inspired 

by mutually coupled and double-stator SRMs. 

 

• The phase number of a conventional SRM was investigated in Chapter 3. An analytical 

torque equation was introduced to compare the torque capability for 6/4, 8/6, 10/8, 12/10 

SRMs with a condition in which the iron-core is assumed to have infinite permeability. 

After comparing the analytical results with the results of the 2D FEA, it was 

demonstrated that the higher phase number will benefit higher torque production when 

the iron core-reluctance tended to dominant the flux path. Further analysis was carried 

out between 6/4 and 8/6 SRMs using a semi-linear psi-I model. The results were 

subsequently verified by 2D FEA, which confirmed that an 8/6 SRM would provide a 

higher torque-per-unit copper loss than a 6/4 SRM, especially when operating in a 

saturated condition. It also suggested that the four-phase machine should have a 

relatively large split ratio. 

 

• Based on the four-phase SRM, the proposed SRM design achieved clarity in Chapter 4. 

The mutually coupled winding configuration was proven capable of enhancing the 

torque production of the four-phase SRM. The higher-rotor pole-number concept was 

found to potentially contradict the four-phase SRM, as it did not prefer a saturated 

condition. Then, a 16/12 MCSRM was designed and compared with Chiba’s 18/12 SRM 

which is widely considered a successful example of SRM design for automotive traction. 

The results showed that the 16/12 MCSRM could provide torque capability comparable 
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to that of the 18/12 SRM, while generating  significantly lower copper loss and slightly 

lower iron loss. Moreover, the double-stator structure was analysed using a simplified 

linear model, revealing this structure would benefit from a similar design and operating 

condition to the four-phase MCSRM. Results of the transient 2D FEM confirmed that 

the 16/12 DSSRM with a mutually coupled-winding configuration had a significant 

advantage regarding the torque-to-copper loss ratio when compared with the previous 

16/12 MCSRM.  

 

• A specific prototype design has been developed (Chapter 5). The size of the prototype 

machine was selected to provide a fair comparison with an SRSRM constructed at 

Newcastle University. To avoid eddy current loss in the rotor support construction, 

several novel structures and materials were investigated. The final decision on the rotor 

shape was taken by considering both mechanical and electromagnetic performance. 

Once the basic design was confirmed, further optimisation processes were carried out 

using a genetic algorithm, which was briefly described. The simulation results revealed 

that the optimised design could provide comparable torque production to that of the 

SRSRM and had a significantly smaller copper loss and VA requirement. In addition, 

thermal analysis was conducted using FEM and demonstrated that the DSSRM had 

adequate cooling performance due to the extra-heat-dissipation path at the inner stator. 

Thus, the thermal issue was not a concern. 

 

• For convenience and feasibility of manufacturing, the final design of the prototype was 

modified (Chapter 6). The rotor structure was enhanced by reserving a slender bridge 

linking the rotor poles together and the rotor support was reinforced with carbon-fibre 

rods. Moreover, the stator-pole tip was trimmed to fit the pre-wound coil technique. It 

is certain that these modifications caused negative effects on the electromagnetic 

performance to a certain extent, but with a higher fill factor achieved than in the original 

design, the overall performance of the prototype was still be able to meet expectations. 

The electromagnetic performance of the completed prototype was verified by a static-

pulse test and, finally, it was possible to determine that its performance was relatively 

close to expectations (with nearly no difference in the linear condition and 10% lower 

at a current density of 20 A/mm2). Finally, a mechanical test examined the rotor 

robustness under centrifugal force at 3,500 rpm, proving that the novel rotor support 

was able to provide the containment required. 
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In overall conclusion, this project consisted of a series of investigations and developments of a 

four-phase mutually coupled DSSRM. Based on analysis and test, it was proven that this 

machine is able to offer a relatively high torque-to-loss ratio under heavy load conditions, while 

not consuming a large number of volt-amperes compared with other novel SRMs of similar 

torque density. Consequently, this machine type has the potential to become a magnet-free 

solution in the large-scale electrification of automotive traction in the future. 

Several challenges remain to be addressed, including the investigation of the use of bamboo as 

a more eco-friendly and affordable material in the rotor support; further analysis and 

optimisation of this particular machine concept over the full-speed range and under a variety of 

load conditions; and a study to expand the design into a six-phase model, which could be driven 

by a novel converter developed from a standard three-phase full-bridge inverter[111]. 
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Appendix 1 Script File for Machine Design and Optimisation  

This appendix provides the Visual Basic script that were used to build SRM models and 

calculate critical parameter in Infolytica  software (MagNet and OptiNet) 

A1.1 Script File for Conventional SRM 

' MagNet 64-bit Version 7.4.1.4 (2012/11/16 03:06 R2012-4) 

' Computer: EEEJWPG01, User: b3015239 

' Time: 28/11/2014 16:31:26 

Call SetLocale("en-us") 

Dim Name, Control(0)  

Dim xr0(30), yr0(30), xr1(30), yr1(30), xs2(30), ys2(30), xs3(30), ys3(30) , 

xc(30), yc(30) , xc2(30), yc2(30) 

Dim stator, statslotr, betaS, betaR, statorpolepitch, gap, rotorpolepitch  

Dim r0, r1, r2, r3, r4, r5, s, AMP, Length, alphar, alphas, theta  

Dim lcore, lpole, halfpole, statpole, statarc2, statarc3, halfwidth, 

polewidth, ext  

Dim I, ns, nr, Nt  

Dim z0, L, a, b, d, position  

Dim CoilMaterial, CoilName, I1, I2, I3, I4, I5, turns, IPEAK  

Dim Errorflag  

Dim MN6, Doc, Con, Cur, Sol  

Dim Dir, File, Material, Unit  

Dim x0, y0, X1, Y1, Z1, X2, Y2, Z2, X3, Y3, Z3  

Dim Pi, rad  

Dim transX0, transY0, transR  

 

nr=4 

ns=6 

r1=4.5 'rotor radius(bore) 

gap=0.025 

stator=7.5 'stator radius (outer) 

betar=36 '(rotor pole arc in degrees) 

r0=3 'radius of rotor core 

rotorpolepitch=360/nr 

rc=r1+gap 

statorpolearc=0.418 

  Pi = 3.14159265358979 



Appendix 1 Script File for Machine Design and Optimisation 

158 

 

  rad = Pi / 180       'Converts degrees to radians 

alphar = betaR / rotorpolepitch      'Ratio of rotor pole arc to pole pitch 

     

  alphas = statorpolearc/ (pi/3)       

theta = 0         'Angular position 

'calculate stator pole length and stator core depth 

lcore = 1.03 'back iron sickness 

lpole = stator-lcore - r1 - gap 'rotor pole length 

  

'Construct stator 

r2 = r1 + gap 

r3 = r2 + lpole 

r4 = r3 + lcore 

halfpole = Pi / ns 

statpole = 2 * halfpole 

statarc2 = alphas * halfpole 

halfwidth = Sin(statarc2) * r2 

polewidth = 2 * halfwidth 

s = halfwidth / r3 

statarc3 = Atn(s / Sqr(1 - s * s)) 

For I = 0 To ns 

    beta1 = -statarc2 + I * statpole 

    beta2 = statarc2 + I * statpole 

    xs2(2 * I + 1) = r2 * Cos(beta1) 

    ys2(2 * I + 1) = r2 * Sin(beta1) 

    xs2(2 * I + 2) = r2 * Cos(beta2) 

    ys2(2 * I + 2) = r2 * Sin(beta2) 

Next 

For I = 0 To ns + 1 

    beta1 = -statarc3 + I * statpole 

    beta2 = statarc3 + I * statpole 

    xs3(2 * I + 1) = r3 * Cos(beta1) 

    ys3(2 * I + 1) = r3 * Sin(beta1) 

    xs3(2 * I + 2) = r3 * Cos(beta2) 

    ys3(2 * I + 2) = r3 * Sin(beta2) 

Next 

For I = 0 To ns 
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    Call getDocument().getView().newArc(0, 0, xs2(2 * I + 1), ys2(2 * I + 1), 

xs2(2 * I + 2), ys2(2 * I + 2)) 

Next 

For I = 0 To ns 

    Call getDocument().getView().newArc(0, 0, xs3(2 * I + 2), ys3(2 * I + 2), 

xs3(2 * I + 3), ys3(2 * I + 3)) 

Next 

For I = 1 To 2 * ns + 1 

    Call getDocument().getView().newLine(xs2(I), ys2(I), xs3(I), ys3(I)) 

Next 

Call getDocument().getView().newCircle(0, 0, r4) 

 

ReDim ArrayOfValues(0) 

    ArrayOfValues(0) = infoSliceSurface 

   Call getDocument().getView().selectAt(0, r4 * 0.99, infoSetSelection, 

ArrayOfValues) 

    ArrayOfValues(0) = "Stator" 

Call getDocument().getView().makeComponentInALine(0, ArrayOfValues, 

"Name=M270-35A") 

 

'Construct rotor 

halfpole = Pi / nr 

rotpole = 2 * halfpole 

rotarc1 = alphar * halfpole 

s = Sin(rotarc1) * r1 / r0 

rotarc0 = Atn(s / Sqr(1 - s * s)) 

For I = 0 To nr 

    beta1 = rad * theta - rotarc1 + I * rotpole 

    beta2 = rad * theta + rotarc1 + I * rotpole 

    xr1(2 * I + 1) = r1 * Cos(beta1) 

    yr1(2 * I + 1) = r1 * Sin(beta1) 

    xr1(2 * I + 2) = r1 * Cos(beta2) 

    yr1(2 * I + 2) = r1 * Sin(beta2) 

Next 

For I = 0 To nr + 1 

    beta1 = rad * theta - rotarc0 + I * rotpole 

    beta2 = rad * theta + rotarc0 + I * rotpole 

    xr0(2 * I + 1) = r0 * Cos(beta1) 

    yr0(2 * I + 1) = r0 * Sin(beta1) 
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    xr0(2 * I + 2) = r0 * Cos(beta2) 

    yr0(2 * I + 2) = r0 * Sin(beta2) 

Next 

For I = 0 To nr 

    Call getDocument().getView().newArc(0, 0, xr1(2 * I + 1), yr1(2 * I + 1), 

xr1(2 * I + 2), yr1(2 * I + 2)) 

Next 

For I = 0 To nr 

    Call getDocument().getView().newArc(0, 0, xr0(2 * I + 2), yr0(2 * I + 2), 

xr0(2 * I + 3), yr0(2 * I + 3)) 

Next 

Call getDocument().getView().newCircle(0, 0, 1.4) 

For I = 1 To 2 * nr + 1 

    Call getDocument().getView().newLine(xr1(I), yr1(I), xr0(I), yr0(I)) 

 next 

ReDim ArrayOfValues(0) 

    ArrayOfValues(0) = infoSliceSurface 

    Call getDocument().getView().selectAt(0, 0.99*r0, infoSetSelection, 

ArrayOfValues) 

    ArrayOfValues(0) = "Rotor" 

    Call getDocument().getView().makeComponentInALine(0, ArrayOfValues, 

"Name=M270-35A") 

   

'construct coils 

For I = 0 To ns 

    beta1 = 0.5*statpole + I * statpole 

xc(i) = r3 * Cos(beta1) 

    yc(i) = r3 * Sin(beta1) 

next 

For I = 0 To ns 

    Call getDocument().getView().newLine(0, 0, xc(I), yc(I)) 

Next 

Call getDocument().getView().newCircle(0, 0, rc)  

 

For I = 0 To ns 

    beta1 = 0.4*statpole + I * statpole 

    beta2 = 0.6*statpole + I * statpole 

    xc2(2 * I + 1) = 0.9*r3 * Cos(beta1) 

    yc2(2 * I + 1) = 0.9*r3 * Sin(beta1) 
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    xc2(2 * I + 2) = 0.9*r3 * Cos(beta2) 

    yc2(2 * I + 2) = 0.9*r3 * Sin(beta2) 

Next 

for i=1 to 2*ns 

ReDim ArrayOfValues(0) 

    ArrayOfValues(0) = infoSliceSurface  

   Call getDocument().getView().selectAt(xc2(i) , yc2(i) , infoSetSelection, 

ArrayOfValues) 

  segmentname="conductor"&i 

    ArrayOfValues(0) = segmentname 

Call getDocument().getView().makeComponentInALine(0, ArrayOfValues, 

"Name=Copper: 5.77e7 Siemens/meter")  

next 

 

'air 

Call getDocument().getView().selectAll(infoSetSelection, Array(infoSliceLine, 

infoSliceArc)) 

Call getDocument().getView().deleteSelection() 

rrotorair=r1+0.5*gap 

rrotorvirtualair=r1+0.25*gap 

rstatorair=r1+0.75*gap 

routerair=1.25*stator 

Call getDocument().getView().newCircle(0, 0, rrotorair)   

Call getDocument().getView().newCircle(0, 0, rrotorvirtualair)  

Call getDocument().getView().newCircle(0, 0, rstatorair)  

Call getDocument().getView().newCircle(0, 0, routerair)  

ReDim ArrayOfValues(0) 

    ArrayOfValues(0) = infoSliceSurface 

   Call getDocument().getView().selectAt(0,rrotorvirtualair-0.1*gap , 

infoSetSelection, ArrayOfValues) 

    ArrayOfValues(0) =  "rotor virtual air" 

Call getDocument().getView().makeComponentInALine(0, ArrayOfValues, 

"Name=Virtual Air")  

ReDim ArrayOfValues(0) 

    ArrayOfValues(0) = infoSliceSurface  

   Call getDocument().getView().selectAt(0,rrotorair-0.1*gap , 

infoSetSelection, ArrayOfValues) 

    ArrayOfValues(0) =  "rotor air" 

Call getDocument().getView().makeComponentInALine(0, ArrayOfValues, 

"Name=AIR")  
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ReDim ArrayOfValues(0) 

    ArrayOfValues(0) = infoSliceSurface  

   Call getDocument().getView().selectAt(0,rstatorair-0.1*gap , 

infoSetSelection, ArrayOfValues) 

    ArrayOfValues(0) =  "stator air" 

Call getDocument().getView().makeComponentInALine(0, ArrayOfValues, 

"Name=AIR")  

ReDim ArrayOfValues(0) 

    ArrayOfValues(0) = infoSliceSurface  

   Call getDocument().getView().selectAt(0,rs-0.1*gap , infoSetSelection, 

ArrayOfValues) 

    ArrayOfValues(0) =  "stator virtual air" 

Call getDocument().getView().makeComponentInALine(0, ArrayOfValues, " 

Name=Virtual Air")   

 

' rotor  

Call getDocument().getView().selectObject("Rotor", infoToggleInSelection) 

Call getDocument().getView().selectObject("rotor virtual air", 

infoToggleInSelection) 

Call getDocument().getView().selectObject("rotor air", infoToggleInSelection) 

REDIM ArrayOfValues(2) 

ArrayOfValues(0)= "Rotor" 

ArrayOfValues(1)= "rotor virtual air" 

ArrayOfValues(2)= "rotor air" 

Call getDocument().makeMotionComponent(ArrayOfValues) 

Call getDocument().setMotionSourceType("Motion#1", infoVelocityDriven) 

Call getDocument().beginUndoGroup("Set Motion Component", true) 

Call getDocument().setMotionRotaryCenter("Motion#1", Array(0, 0, 0)) 

Call getDocument().setMotionRotaryAxis("Motion#1", Array(0, 0, 1)) 

Call getDocument().endUndoGroup() 

 

'coils 

n=2*ns 

Call getDocument().getView().selectObject("conductor1", infoSetSelection) 

Call getDocument().getView().selectObject("conductor"&n, 

infoToggleInSelection) 

 ReDim ArrayofValues(1) 

    ArrayofValues(0) = "conductor1" 

    ArrayofValues(1) = "conductor"&n 

Call getDocument().makeSimpleCoil(1, ArrayOfValues) 
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    i = 2 

    Do While i < n 

        ArrayofValues(0) = "conductor"&i 

        ArrayofValues(1) = "conductor"&i + 1 

        Call getDocument().makeSimpleCoil(1, ArrayofValues) 

        i = i + 2 

    Loop 

 for i=1 to ns/2 

 s=2*i+1 

    Call getDocument().reverseCoilSide("Coil#"&s, 1) 

    Call getDocument().reverseCoilSide("Coil#"&s, 2) 

    next 

     

    'For i = 1 To ns / 2 

       ' Call getDocument().setParameter("Coil#" & i, "NumberOfTurns", 

"%n_turns", Con.infoNumberParameter) 

'Next i 

 

A1.2 Script File for DSSRM 

' MagNet 64-bit Version 7.4.1.4 (2012/11/16 03:06 R2012-4) 

' Computer: EEEJWPG01, User: b3015239 

' Time: 28/11/2014 16:31:26 

Call SetLocale("en-us") 

Dim Name, Control(0)  

Dim xr0(60), yr0(60), xsi1(60), ysi1(60), xs2(60), ys2(60), xs3(60), 

ys3(60) ,xs4(60), ys4(60) , xc(60), yc(60) , xc2(60), 

yc2(60),xr1(60),xr2(60),yr1(60),yr2(60),xc3(60),yc3(60),xr05(60),yr05(60) 

Dim stator, statslotr, betaS, betaR, statorpolepitch, gap, 

innerstatorpolepitch  

Dim r0, si1, r2, r3, r4, r5, s, AMP, Length, alphar, alphas, 

theta ,rro,rri,airgap,rotorpole,rotorinnerarc,rotorouterarc 

Dim lcore, lpole, halfpole, statpole, statarc2, statarc3, halfwidth, 

polewidth, ext  

Dim I, ns, nsi, Nt  

Dim z0, L, a, b, d, position  

Dim CoilMaterial, CoilName, I1, I2, I3, I4, I5, turns, IPEAK  

Dim Errorflag  

Dim MN6, Doc, Con, Cur, Sol  

Dim Dir, File, Material, Unit  
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Dim x0, y0, X1, Y1, Z1, X2, Y2, Z2, X3, Y3, Z3  

Dim Pi, rad  

Dim transX0, transY0, transR  

nr=12 

nsi=16 

ns=16 

spilt=0.813236321065956 

gap=0.017/(269/210) ' the space for air-gap and rotor 

airgap=0.0003 

stator=0.105 'stator radius (outer) 

StatorToothArctoPitchinner=0.438380087625864 

si1=stator*spilt-gap 'inner stator radius(bore)without air gap 

betar=360/ns*StatorToothArctoPitchinner'(inner stator pole arc in degrees) 

 

isp=0.02662/(269*1/210) 'inner stator pole length 

r0=si1-isp      'radius of inner stator core 

innerstatorpolepitch=360/nsi 

rc=si1+gap 

Pi = 3.14159265358979 

statorpolearc=(2*pi/ns)*StatorToothArctoPitchinner 

  rad = Pi / 180       'Converts degrees to radians 

alphar = betaR / innerstatorpolepitch      'Ratio of inner stator pole arc 

to pole pitch   

  alphas = statorpolearc/ (pi/(ns/2))       

theta = 0         'Angular position 

  

'calculate stator pole length and stator core depth 

lcore = 0.012*0.95/(269/210) 'back iron sickness 

 

lpole = stator-lcore -si1-gap 'outer stator pole length 

 msgbox lpole 

  

'Construct stator 

r2 = si1+gap  'stator inner radius 

r3 = r2 + lpole'statorpole outer radius 

r4 = stator 

halfpole = Pi / ns 

statpole = 2 * halfpole 
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statarc2 = alphas * halfpole 

halfwidth = Sin(statarc2) * r2 

polewidth = 2 * halfwidth 

s = halfwidth *1.3/1.3/ r3 

'r25=(0.6*r2+0.4*r3) 

's1= halfwidth*1.2/r25 

statarc3 = Atn(s / Sqr(1 - s * s)) 

statarc4 = Atn(s1 / Sqr(1 - s1 * s1)) 

For I = 0 To ns 

    beta1 = -statarc2 + I * statpole 

    beta2 = statarc2 + I * statpole 

    xs2(2 * I + 1) = r2 * Cos(beta1) 

    ys2(2 * I + 1) = r2 * Sin(beta1) 

    xs2(2 * I + 2) = r2 * Cos(beta2) 

    ys2(2 * I + 2) = r2 * Sin(beta2) 

Next 

For I = 0 To ns + 1 

    beta1 = -statarc3 + I * statpole 

    beta2 = statarc3 + I * statpole 

    xs3(2 * I + 1) = r3 * Cos(beta1) 

    ys3(2 * I + 1) = r3 * Sin(beta1) 

    xs3(2 * I + 2) = r3 * Cos(beta2) 

    ys3(2 * I + 2) = r3 * Sin(beta2) 

Next 

For I = 0 To ns 

    beta1 = -statarc4 + I * statpole 

    beta2 = statarc4 + I * statpole 

    xs4(2 * I + 1) = r25 * Cos(beta1) 

    ys4(2 * I + 1) = r25 * Sin(beta1) 

    xs4(2 * I + 2) = r25 * Cos(beta2) 

    ys4(2 * I + 2) = r25 * Sin(beta2) 

Next 

For I = 0 To ns 

    Call getDocument().getView().newArc(0, 0, xs2(2 * I + 1), ys2(2 * I + 1), 

xs2(2 * I + 2), ys2(2 * I + 2)) 

Next 

For I = 0 To ns 
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    Call getDocument().getView().newArc(0, 0, xs3(2 * I + 2), ys3(2 * I + 2), 

xs3(2 * I + 3), ys3(2 * I + 3)) 

Next 

For I = 1 To 2 * ns + 1 

    Call getDocument().getView().newLine(xs2(I), ys2(I), xs3(I), ys3(I)) 

Next 

'For I = 1 To 2 * ns + 1 

  '  Call getDocument().getView().newLine(xs4(I), ys4(I), xs3(I), ys3(I)) 

'Next 

Call getDocument().getView().newCircle(0, 0, r4) 

 

ReDim ArrayOfValues(0) 

    ArrayOfValues(0) = infoSliceSurface 

   Call getDocument().getView().selectAt(0, r4 * 0.99, infoSetSelection, 

ArrayOfValues) 

    ArrayOfValues(0) = "Stator" 

Call getDocument().getView().makeComponentInALine(0, ArrayOfValues, 

"Name=M270-35A") 

 

'Construct inner stator 

halfpole = Pi / nsi 

rotpole = 2 * halfpole 

rotarc1 = alphar * halfpole 

s = Sin(rotarc1) * si1*1.2*(1/1.2) / r0 

r05=(0.2*r0+0.8*si1) 

's1=Sin(rotarc1) * si1*1.4 /r05 

rotarc0 = Atn(s / Sqr(1 - s * s)) 

'rotarc05 = Atn(s1 / Sqr(1 - s1 * s1)) 

For I = 0 To nsi 

    beta1 = rad * theta - rotarc1 + I * rotpole 

    beta2 = rad * theta + rotarc1 + I * rotpole 

    xsi1(2 * I + 1) = si1 * Cos(beta1) 

    ysi1(2 * I + 1) = si1 * Sin(beta1) 

    xsi1(2 * I + 2) = si1 * Cos(beta2) 

    ysi1(2 * I + 2) = si1 * Sin(beta2) 

Next 

For I = 0 To nsi + 1 

    beta1 = rad * theta - rotarc0 + I * rotpole 
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    beta2 = rad * theta + rotarc0 + I * rotpole 

    xr0(2 * I + 1) = r0 * Cos(beta1) 

    yr0(2 * I + 1) = r0 * Sin(beta1) 

    xr0(2 * I + 2) = r0 * Cos(beta2) 

    yr0(2 * I + 2) = r0 * Sin(beta2) 

Next 

'For I = 0 To nsi  

  '  beta1 = rad * theta - rotarc05 + I * rotpole 

   ' beta2 = rad * theta + rotarc05 + I * rotpole 

   ' xr05(2 * I + 1) = r05 * Cos(beta1) 

   ' yr05(2 * I + 1) = r05 * Sin(beta1) 

   ' xr05(2 * I + 2) = r05 * Cos(beta2) 

   ' yr05(2 * I + 2) = r05 * Sin(beta2) 

'Next 

For I = 0 To nsi 

    Call getDocument().getView().newArc(0, 0, xsi1(2 * I + 1), ysi1(2 * I + 

1), xsi1(2 * I + 2), ysi1(2 * I + 2)) 

Next 

For I = 0 To nsi 

    Call getDocument().getView().newArc(0, 0, xr0(2 * I + 2), yr0(2 * I + 2), 

xr0(2 * I + 3), yr0(2 * I + 3)) 

Next 

 

Call getDocument().getView().newCircle(0, 0, 0.015) 

For I = 1 To 2 * nsi + 1 

    Call getDocument().getView().newLine(xsi1(I), ysi1(I), xr0(I), yr0(I)) 

 next 

'For I = 1 To 2 * nsi + 1 

  '  Call getDocument().getView().newLine(xr05(I), yr05(I), xr0(I), yr0(I)) 

 'next 

ReDim ArrayOfValues(0) 

    ArrayOfValues(0) = infoSliceSurface 

    Call getDocument().getView().selectAt(0, 0.99*r0, infoSetSelection, 

ArrayOfValues) 

    ArrayOfValues(0) = "inner stator" 

    Call getDocument().getView().makeComponentInALine(0, ArrayOfValues, 

"Name=M270-35A") 

  

'construct coils 



Appendix 1 Script File for Machine Design and Optimisation 

168 

 

For I = 0 To ns 

    beta1 = 0.5*statpole + I * statpole 

xc(i) = r3 * Cos(beta1) 

    yc(i) = r3 * Sin(beta1) 

next 

For I = 0 To ns 

    Call getDocument().getView().newLine(0, 0, xc(I), yc(I)) 

Next 

Call getDocument().getView().newCircle(0, 0, rc)  

Call getDocument().getView().newCircle(0, 0, si1)  

For I = 0 To ns 

    beta1 = 0.4*statpole + I * statpole 

    beta2 = 0.6*statpole + I * statpole 

    xc2(2 * I + 1) = 0.95*r3 * Cos(beta1) 

    yc2(2 * I + 1) = 0.95*r3 * Sin(beta1) 

    xc2(2 * I + 2) = 0.95*r3 * Cos(beta2) 

    yc2(2 * I + 2) = 0.95*r3 * Sin(beta2) 

Next 

For I = 0 To ns 

    beta1 = 0.4*statpole + I * statpole 

    beta2 = 0.6*statpole + I * statpole 

    xc3(2 * I + 1) = 0.95*si1 * Cos(beta1) 

    yc3(2 * I + 1) = 0.95*si1 * Sin(beta1) 

    xc3(2 * I + 2) = 0.95*si1* Cos(beta2) 

    yc3(2 * I + 2) = 0.95*si1 * Sin(beta2) 

Next 

for i=1 to 2*ns 

ReDim ArrayOfValues(0) 

    ArrayOfValues(0) = infoSliceSurface 

  

   Call getDocument().getView().selectAt(xc2(i) , yc2(i) , infoSetSelection, 

ArrayOfValues) 

  segmentname="conductor"&i 

    ArrayOfValues(0) = segmentname 

Call getDocument().getView().makeComponentInALine(0, ArrayOfValues, 

"Name=Ideal Copper")  

next 
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for i=1 to 2*ns 

ReDim ArrayOfValues(0) 

    ArrayOfValues(0) = infoSliceSurface 

  

   Call getDocument().getView().selectAt(xc3(i) , yc3(i) , infoSetSelection, 

ArrayOfValues) 

  segmentname="conductorinner"&i 

    ArrayOfValues(0) = segmentname 

Call getDocument().getView().makeComponentInALine(0, ArrayOfValues, 

"Name=Ideal Copper")  

next 

'coils 

n=2*ns 

Call getDocument().getView().selectObject("conductor1", infoSetSelection) 

Call getDocument().getView().selectObject("conductor"&n, 

infoToggleInSelection) 

 ReDim ArrayofValues(1) 

    ArrayofValues(0) = "conductor1" 

    ArrayofValues(1) = "conductor"&n 

Call getDocument().makeSimpleCoil(1, ArrayOfValues) 

    i = 2 

    Do While i < n 

        ArrayofValues(0) = "conductor"&i 

        ArrayofValues(1) = "conductor"&i + 1 

        Call getDocument().makeSimpleCoil(1, ArrayofValues) 

        i = i + 2 

    Loop 

 for i=1 to ns/2 

 s=2*i-1 

    Call getDocument().reverseCoilSide("Coil#"&s, 1) 

    Call getDocument().reverseCoilSide("Coil#"&s, 2) 

    next 

      

 O_turns=1  

    For i = 1 To ns  

       Call getDocument().setParameter("Coil#" & i, "NumberOfTurns", 

"%O_turns", infoNumberParameter) 

    'i=i+1 

    Next  
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n=2*ns 

Call getDocument().getView().selectObject("conductorinner1", 

infoSetSelection) 

Call getDocument().getView().selectObject("conductorinner"&n, 

infoToggleInSelection) 

 ReDim ArrayofValues(1) 

    ArrayofValues(0) = "conductorinner1" 

    ArrayofValues(1) = "conductorinner"&n 

Call getDocument().makeSimpleCoil(1, ArrayOfValues) 

 

    i = 2 

    Do While i < n 

        ArrayofValues(0) = "conductorinner"&i 

        ArrayofValues(1) = "conductorinner"&i + 1 

        Call getDocument().makeSimpleCoil(1, ArrayofValues) 

        i = i + 2 

    Loop 

 for i=9 to ns 

 s=2*i-1 

    Call getDocument().reverseCoilSide("Coil#"&s, 1) 

    Call getDocument().reverseCoilSide("Coil#"&s, 2) 

   next  

   I_turns=1  

   For i = 17 To 2*ns  

       Call getDocument().setParameter("Coil#" & i, "NumberOfTurns", 

"%I_turns", infoNumberParameter) 

    'i=i+1 

    Next  

 ' delete lines   

Call getDocument().getView().selectAll(infoSetSelection, Array(infoSliceLine, 

infoSliceArc)) 

Call getDocument().getView().deleteSelection 

' construct rotor 

rro=r2-airgap 

rri=si1+airgap 

rotorouterarc=statorpolearc 

rotorinnerarc=betaR*2*pi/360 

rotorpole=2*3.14159265358979/nr 

For i= 0 to nr 



Appendix 1 Script File for Machine Design and Optimisation 

171 

 

 beta1= -rotorinnerarc/2+i*rotorpole 

 beta2= rotorinnerarc/2+i*rotorpole 

  xr1(2 * I + 1) = rri * Cos(beta1) 

    yr1(2 * I + 1) = rri * Sin(beta1) 

    xr1(2 * I + 2) = rri * Cos(beta2) 

    yr1(2 * I + 2) = rri * Sin(beta2) 

Next 

For i= 0 to nr 

 beta1= -rotorouterarc/2+i*rotorpole 

 beta2= rotorouterarc/2+i*rotorpole 

  xr2(2 * I + 1) = rro * Cos(beta1) 

    yr2(2 * I + 1) = rro * Sin(beta1) 

    xr2(2 * I + 2) = rro * Cos(beta2) 

    yr2(2 * I + 2) = rro * Sin(beta2) 

next 

For I = 0 To nr 

    Call getDocument().getView().newArc(0, 0, xr1(2 * I + 1), yr1(2 * I + 1), 

xr1(2 * I + 2), yr1(2 * I + 2)) 

Next 

For I = 0 To nr 

    Call getDocument().getView().newArc(0, 0, xr2(2 * I + 1), yr2(2 * I + 1), 

xr2(2 * I + 2), yr2(2 * I + 2)) 

Next 

For I = 1 To 2 * nr + 1 

    Call getDocument().getView().newLine(xr1(I), yr1(I), xr2(I), yr2(I)) 

Next 

   'air 

Call getDocument().getView().newCircle(0, 0, (r2+rro)/2) 

Call getDocument().getView().newCircle(0, 0, (rri+si1)/2) 

Call getDocument().getView().newCircle(0, 0, (r2+(r2+rro)/2)/2) 

Call getDocument().getView().newCircle(0, 0, (si1+(rri+si1)/2)/2) 

Call getDocument().getView().newCircle(0, 0, (rro+(r2+rro)/2)/2) 

Call getDocument().getView().newCircle(0, 0, (rri+(rri+si1)/2)/2) 

'Call getDocument().getView().newCircle(0, 0, si1) 

Call getDocument().getView().newCircle(0, 0, 1.2*stator) 

ReDim ArrayOfValues(0) 

    ArrayOfValues(0) = infoSliceSurface 
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   Call getDocument().getView().selectAt(0,((r2+(r2+rro)/2)/2+r2)/2 , 

infoSetSelection, ArrayOfValues) 

    ArrayOfValues(0) =  "outer stator  virtual air" 

 Call getDocument().getView().makeComponentInALine(0, ArrayOfValues, 

"Name=Virtual Air")  

ReDim ArrayOfValues(0) 

    ArrayOfValues(0) = infoSliceSurface 

   Call getDocument().getView().selectAt(0,((r2+(r2+rro)/2)/2+(r2+rro)/2)/2 , 

infoSetSelection, ArrayOfValues) 

    ArrayOfValues(0) =  "outer stator  air" 

 Call getDocument().getView().makeComponentInALine(0, ArrayOfValues, 

"Name=AIR")   

ReDim ArrayOfValues(0) 

    ArrayOfValues(0) = infoSliceSurface  

   Call 

getDocument().getView().selectAt(0,((r2+rro)/2+(rro+(r2+rro)/2)/2)/2 , 

infoSetSelection, ArrayOfValues) 

    ArrayOfValues(0) =  "outer rotor  air"  

 Call getDocument().getView().makeComponentInALine(0, ArrayOfValues, 

"Name=AIR")   

ReDim ArrayOfValues(0) 

    ArrayOfValues(0) = infoSliceSurface  

   Call 

getDocument().getView().selectAt(0,((rri+si1)/2+(rri+(rri+si1)/2)/2)/2 , 

infoSetSelection, ArrayOfValues) 

    ArrayOfValues(0) =  "inner rotor  air"   

 Call getDocument().getView().makeComponentInALine(0, ArrayOfValues, 

"Name=AIR")   

ReDim ArrayOfValues(0) 

    ArrayOfValues(0) = infoSliceSurface  

   Call 

getDocument().getView().selectAt(0,((rri+si1)/2+(si1+(rri+si1)/2)/2)/2 , 

infoSetSelection, ArrayOfValues) 

    ArrayOfValues(0) =  "inner stator  air"  

Call getDocument().getView().makeComponentInALine(0, ArrayOfValues, 

"Name=AIR")   

ReDim ArrayOfValues(0) 

    ArrayOfValues(0) = infoSliceSurface  

   Call getDocument().getView().selectAt(0,(si1+(si1+(rri+si1)/2)/2)/2 , 

infoSetSelection, ArrayOfValues) 

    ArrayOfValues(0) =  "inner stator virtual air"  

Call getDocument().getView().makeComponentInALine(0, ArrayOfValues, 

"Name=Virtual Air")   
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A1.3 Script File for Average Torque Calculation 

 

const CATEGORY_OPTINET="OptiNet" 

const VARIANT_RESULTS= 2  

Call SetLocale ("en-us") 

Call setVariant(VARIANT_RESULTS, Torque(), CATEGORY_OPTINET)  

Function Torque() 

 CALL getDocument().getProblem(1).getParameter("","cycles", cycles) 

 CALL getDocument().getProblem(1).getParameter("","steps_cycle", 

steps_cycle) 

 CALL getDocument().getProblem(1).getParameter("","t_step", t_step) 

 CALL getDocument().getProblem(1).getParameter("","t_elec", t_elec) 

 CALL getDocument().getProblem(1).getParameter("","fraction", fraction) 

 t_start = 0 

 t_end = 5  

 for i = 0 to (5/0.1) 

  t_i = t_start + (0.1*i) 

  CALL 

getDocument().getSolution().getTorqueAboutOriginOnBody(Array(1,t_i), 1, 

torque_x, torque_y, torque_z) 

  T_sum=T_sum+abs(torque_z) 

 Next  

 Torque=T_sum/i/fraction 

 'MsgBox Torque 

End Function 

 

const CATEGORY_OPTINET="OptiNet" 

const VARIANT_RESULTS= 2  

Call SetLocale ("en-us") 

Call setVariant(VARIANT_RESULTS, Resistance(), CATEGORY_OPTINET)  
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Function Resistance() 

 CALL getDocument().getProblem(1).getParameter("","split", split) 

 CALL getDocument().getProblem(1).getParameter("","t_sc", t_sc) 

 CALL getDocument().getProblem(1).getParameter("","k_si", k_si) 

 CALL getDocument().getProblem(1).getParameter("","k_so", k_so) 

 CALL getDocument().getProblem(1).getParameter("","l_z", l_z) 

 CALL getDocument().getProblem(1).getParameter("","n_turns", n_turns) 

 statorinnerR=269*split/2 

 statorouterR=269/2-t_sc 

 statortoothW=(statorinnerR*k_si+statorouterR*k_so)/2 

 statorpitch=2*3.1415926/16 

 CoilslotW=((statorpitch-k_si)*statorinnerR+(statorpitch-

k_so)*statorouterR)/2 

 endwindingD=(statortoothW+CoilslotW) 

 statortoothL=statorouterR-statorinnerR 

 CoilsectionA=statortoothL*CoilslotW 

 fillfactor=0.5 

 Resistance=(1.6/100000)*n_turns*4*(3.1415926*endwindingD+2*l_z)/(Coil

sectionA*fillfactor/n_turns)  

End Function  
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Appendix 2 16/12 DSSRM Drawing 

This appendix describe the drawing of the critical component of the prototype machine which 

constructed  in Chapter 6. 

A2.1 Shaft 
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A2.2 Inner Stator Lamination 
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A2.3 Rotor Assembly 
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A2.4 Rotor Lamination 
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A2.5 Rotor Ring 
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A2.6 Rotor Caps
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A2.7 Outer Stator Lamination 
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Appendix 3 Script for Pulse Test 

The script from Matlab is responsible for calculate the magnetisation curve from the current 

and voltage data which collected during pulse test 

 

cd('D:\OneDrive\static test\23A') 
filename = ('T0001all.csv'); 

  
voltage=xlsread(filename,'D17:D90000') 
current=xlsread(filename,'B17:B90000') 
time=xlsread(filename,'A17:A90000') 

  

  
%filter the source data 
b = fir1(100,0.0001); % design a FIR filter 
filtvoltage=filter(b,1,voltage); 
filtcurrent=filter(b,1,current); 

  
maxcurrent=max(filtcurrent); 
mincurrent=min(filtcurrent); 
maxvolts=max(filtvoltage); 
minvoltage=min(filtvoltage); 

  
%find rise start point 

  

for n = 1:length(filtvoltage) 
    if(filtvoltage(n) > minvoltage*1.05) 
        start_point = n; 
        break 
    end 
end 

  
%find rise end point 

  
for n = 1:length(filtcurrent) 
    if filtcurrent(n) > maxcurrent*(0.995) 
        settling_point = n; 
        break 
    end 
end 

  

  

  

  
%find fall start point 

  
for n = settling_point:length(filtvoltage) 

    
    if(filtvoltage(n) < 0.9*maxvolts)  %the voltage goes negative on switch 

off and we need to detect when the current begins to decay 
        fall_start_point = n-1; 
        break 
    end 
end 
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%find fall end point 
for n = settling_point:length(filtcurrent) 
    if (filtcurrent(n) < mincurrent*1.2)&(filtvoltage(n) > 0.5*minvoltage) 
        fall_settling_point = n; 
        break 
   end 
end     

  
%Now find the value of resistance just after the end of the rise 
%v= sum(filtvoltage(settling_point-5:settling_point+5))/10; 
%i= sum(filtcurrent(settling_point-5:settling_point+5))/10; 
v= sum(filtvoltage(34000:34110))/110; 
i= sum(filtcurrent(34000:34110))/110; 
coil_resistance_rise=v/i; 

  

Psi=zeros(1,length(filtcurrent)); 
for i=start_point:settling_point; 
deltaT = time(i+1)-time(i); 
%Psi(i+1)=(deltaT*((filtvoltage(i)+filtvoltage(i+1))/2-(filtcurrent(i)-

filtcurrent(i+1))/2*coil_resistance_rise))+Psi(i); 
Psi(i+1)=(deltaT*(((filtvoltage(i)-

filtcurrent(i)*coil_resistance_rise)+(filtvoltage(i+1)-

filtcurrent(i+1)*coil_resistance_rise))/2))+Psi(i); 
end 
hold on 
plot 

(filtcurrent(start_point:settling_point),Psi(start_point:settling_point),'r

'); 

  
risecurrent=filtcurrent(start_point:settling_point) 
risefluxlinkage=Psi(start_point:settling_point) 

  
xi=0:2:60 
yi=interp1(risecurrent,risefluxlinkage,xi,'linear','extrap') 

  



Reference 

187 

 

Reference 

[1]  J. Zhang, X. Lu, J. Lu, Q. Kang, and X. Dong, "Study of the New Permanent Magnet 

switched reluctance motor," in 2011 International Conference on Advanced Power 

System Automation and Protection, 16-20 Oct. 2011 2011, vol. 3, pp. 1684-1687, doi: 

10.1109/APAP.2011.6180757. [Online]. Available: 

https://ieeexplore.ieee.org/ielx5/6175562/6180616/06180757.pdf?tp=&arnumber=618

0757&isnumber=6180616 

[2] "Reducing CO2 emissions from passenger cars." 

https://ec.europa.eu/clima/policies/transport/vehicles/cars_en (accessed. 

[3] "Jaguar Land Rover to make only electric or hybrid cars from 2020 ", ed, 2017. 

[4] A. Tovey. "Volvo becomes the first major car manufacturer to go all electric." 

http://www.telegraph.co.uk/business/2017/07/05/volvo-becomes-first-major-car-

manufacturer-go-electric/ (accessed 2017). 

[5] D. Tracy. "Everything You Need To Know About The Upcoming 48-Volt Electrical 

Revolution In Cars." http://jalopnik.com/everything-you-need-to-know-about-the-

upcoming-48-volt-1790364465 (accessed 2017). 

[6] "Mild Hybrid Electric Vehicle (MHEV) – architectures." https://x-

engineer.org/automotive-engineering/vehicle/hybrid/mild-hybrid-electric-vehicle-

mhev-architectures/ (accessed. 

[7] "The official U.S. government source for fuel economy information." 

https://www.fueleconomy.gov/feg/findacar.shtml (accessed 2018). 

[8] D. Scutt. "Global electric vehicle sales are booming." 

https://www.businessinsider.com.au/the-rapid-growth-in-global-electric-vehicle-sales-

in-4-charts-2018-1 (accessed. 

[9] "Large luxury vehicle sales by model in the United States 2017." 

https://www.statista.com/statistics/287753/large-luxury-vehicles-sales-by-make-in-

the-united-states/ (accessed 2018). 

[10] M. Chediak. "The Latest Bull Case for Electric Cars: the Cheapest Batteries Ever." 

https://www.bloomberg.com/news/articles/2017-12-05/latest-bull-case-for-electric-

cars-the-cheapest-batteries-ever (accessed 2018). 

[11] "Electric Vehicle Battery: Materials, Cost, Lifespan." Electric Vehicle Battery: 

Materials, Cost, Lifespan (accessed 2018). 

[12] "Fuel cell vehicle." https://en.wikipedia.org/wiki/Fuel_cell_vehicle (accessed 2018). 

[13] F. Ognissanto, T. Landen, A. Stevens, M. Emre, and D. Naberezhnykh, "Evaluation of 

the CO2 emissions pathway from hydrogen production to fuel cell car utilisation," IET 

Intelligent Transport Systems, vol. 11, no. 7, pp. 360-367, 2017, doi: 10.1049/iet-

its.2016.0210. 

[14] H. Oman, "Performance, life-cycle cost, and emissions of fuel cells," IEEE Aerospace 

and Electronic Systems Magazine, vol. 17, no. 9, pp. 33-37, 2002, doi: 

10.1109/MAES.2002.1039792. 

[15] "Number of cars sold worldwide from 1990 to 2018 (in million units)." 

https://www.statista.com/statistics/200002/international-car-sales-since-1990/ 

(accessed 2018). 

[16] "List of countries banning fossil fuel vehicles." 

https://en.wikipedia.org/wiki/List_of_countries_banning_fossil_fuel_vehicles 

(accessed 2018). 

[17] Y. Sato, S. Ishikawa, T. Okubo, M. Abe, and K. Tamai, Development of High Response 

Motor and Inverter System for the Nissan LEAF Electric Vehicle. 2011. 

[18]  F. Momen, K. Rahman, Y. Son, and P. Savagian, "Electrical propulsion system design 

of Chevrolet Bolt battery electric vehicle," in 2016 IEEE Energy Conversion Congress 

https://ieeexplore.ieee.org/ielx5/6175562/6180616/06180757.pdf?tp=&arnumber=6180757&isnumber=6180616
https://ieeexplore.ieee.org/ielx5/6175562/6180616/06180757.pdf?tp=&arnumber=6180757&isnumber=6180616
https://ec.europa.eu/clima/policies/transport/vehicles/cars_en
http://www.telegraph.co.uk/business/2017/07/05/volvo-becomes-first-major-car-manufacturer-go-electric/
http://www.telegraph.co.uk/business/2017/07/05/volvo-becomes-first-major-car-manufacturer-go-electric/
http://jalopnik.com/everything-you-need-to-know-about-the-upcoming-48-volt-1790364465
http://jalopnik.com/everything-you-need-to-know-about-the-upcoming-48-volt-1790364465
https://x-engineer.org/automotive-engineering/vehicle/hybrid/mild-hybrid-electric-vehicle-mhev-architectures/
https://x-engineer.org/automotive-engineering/vehicle/hybrid/mild-hybrid-electric-vehicle-mhev-architectures/
https://x-engineer.org/automotive-engineering/vehicle/hybrid/mild-hybrid-electric-vehicle-mhev-architectures/
https://www.fueleconomy.gov/feg/findacar.shtml
https://www.businessinsider.com.au/the-rapid-growth-in-global-electric-vehicle-sales-in-4-charts-2018-1
https://www.businessinsider.com.au/the-rapid-growth-in-global-electric-vehicle-sales-in-4-charts-2018-1
https://www.statista.com/statistics/287753/large-luxury-vehicles-sales-by-make-in-the-united-states/
https://www.statista.com/statistics/287753/large-luxury-vehicles-sales-by-make-in-the-united-states/
https://www.bloomberg.com/news/articles/2017-12-05/latest-bull-case-for-electric-cars-the-cheapest-batteries-ever
https://www.bloomberg.com/news/articles/2017-12-05/latest-bull-case-for-electric-cars-the-cheapest-batteries-ever
https://en.wikipedia.org/wiki/Fuel_cell_vehicle
https://www.statista.com/statistics/200002/international-car-sales-since-1990/
https://en.wikipedia.org/wiki/List_of_countries_banning_fossil_fuel_vehicles


Reference 

188 

 

and Exposition (ECCE), 18-22 Sept. 2016 2016, pp. 1-8, doi: 

10.1109/ECCE.2016.7855076. [Online]. Available: 

https://ieeexplore.ieee.org/ielx7/7835398/7854636/07855076.pdf?tp=&arnumber=785

5076&isnumber=7854636 

[19] "Forecast of rare earth oxide prices worldwide from 2014 to 2025." 

https://www.statista.com/statistics/449838/forecast-average-rare-earth-oxide-prices-

globally/ (accessed 2018). 

[20] "Neodymium oxide price worldwide from 2009 to 2025 (in U.S. dollars per metric ton)." 

https://www.statista.com/statistics/450152/global-reo-neodymium-oxide-price-

forecast/ (accessed 2018). 

[21]  D. G. Dorrell, A. M. Knight, M. Popescu, L. Evans, and D. A. Staton, "Comparison of 

different motor design drives for hybrid electric vehicles," in 2010 IEEE Energy 

Conversion Congress and Exposition, 12-16 Sept. 2010 2010, pp. 3352-3359, doi: 

10.1109/ECCE.2010.5618318. [Online]. Available: 

https://ieeexplore.ieee.org/ielx5/5606065/5617696/05618318.pdf?tp=&arnumber=561

8318&isnumber=5617696 

[22] J. D. Widmer, R. Martin, and M. Kimiabeigi, "Electric vehicle traction motors without 

rare earth magnets," Sustainable Materials and Technologies, vol. 3, pp. 7-13, 

2015/04/01/ 2015, doi: https://doi.org/10.1016/j.susmat.2015.02.001. 

[23] C. Bontron. "Rare-earth mining in China comes at a heavy cost for local villages." 

https://www.theguardian.com/environment/2012/aug/07/china-rare-earth-village-

pollution (accessed 2018). 

[24] S. PARRY and E. DOUGLAS. "In China, the true cost of Britain's clean, green wind 

power experiment: Pollution on a disastrous scale." 

http://www.dailymail.co.uk/home/moslive/article-1350811/In-China-true-cost-

Britains-clean-green-wind-power-experiment-Pollution-disastrous-scale.html 

(accessed 2018). 

[25] "Global Hybrid Cooperation." 

https://en.wikipedia.org/wiki/Global_Hybrid_Cooperation (accessed. 

[26] I. Boldea, L. N. Tutelea, L. Parsa, and D. Dorrell, "Automotive Electric Propulsion 

Systems With Reduced or No Permanent Magnets: An Overview," Industrial 

Electronics, IEEE Transactions on, vol. 61, no. 10, pp. 5696-5711, 2014, doi: 

10.1109/TIE.2014.2301754. 

[27] J.-R. Riba, C. López-Torres, L. Romeral, and A. Garcia, "Rare-earth-free propulsion 

motors for electric vehicles: A technology review," Renewable and Sustainable Energy 

Reviews, vol. 57, pp. 367-379, 2016/05/01/ 2016, doi: 

https://doi.org/10.1016/j.rser.2015.12.121. 

[28] "Tesla, Inc." https://en.wikipedia.org/wiki/Tesla,_Inc. (accessed. 

[29] "Global Plug-in Vehicle Sales for 2017 – Final Results." http://www.ev-

volumes.com/news/global-plug-in-vehicle-sales-for-2017-final-results/ (accessed. 

[30] E. Musk. https://twitter.com/elonmusk/status/998015873167208448?s=21 (accessed. 

[31]  N. Zabihi and R. Gouws, "A review on switched reluctance machines for electric 

vehicles," in 2016 IEEE 25th International Symposium on Industrial Electronics (ISIE), 

8-10 June 2016 2016, pp. 799-804, doi: 10.1109/ISIE.2016.7744992. [Online]. 

Available: 

https://ieeexplore.ieee.org/ielx7/7740453/7744853/07744992.pdf?tp=&arnumber=774

4992&isnumber=7744853 

[32]  B. C. Mecrow, E. A. El-Kharashi, J. W. Finch, and A. G. Jack, "Performance evaluation 

of switched reluctance motors with segmental rotors," in Electric Machines and Drives 

Conference, 2003. IEMDC'03. IEEE International, 1-4 June 2003 2003, vol. 1, pp. 568-

574 vol.1, doi: 10.1109/IEMDC.2003.1211319. [Online]. Available: 

https://ieeexplore.ieee.org/ielx7/7835398/7854636/07855076.pdf?tp=&arnumber=7855076&isnumber=7854636
https://ieeexplore.ieee.org/ielx7/7835398/7854636/07855076.pdf?tp=&arnumber=7855076&isnumber=7854636
https://www.statista.com/statistics/449838/forecast-average-rare-earth-oxide-prices-globally/
https://www.statista.com/statistics/449838/forecast-average-rare-earth-oxide-prices-globally/
https://www.statista.com/statistics/450152/global-reo-neodymium-oxide-price-forecast/
https://www.statista.com/statistics/450152/global-reo-neodymium-oxide-price-forecast/
https://ieeexplore.ieee.org/ielx5/5606065/5617696/05618318.pdf?tp=&arnumber=5618318&isnumber=5617696
https://ieeexplore.ieee.org/ielx5/5606065/5617696/05618318.pdf?tp=&arnumber=5618318&isnumber=5617696
https://doi.org/10.1016/j.susmat.2015.02.001
https://www.theguardian.com/environment/2012/aug/07/china-rare-earth-village-pollution
https://www.theguardian.com/environment/2012/aug/07/china-rare-earth-village-pollution
http://www.dailymail.co.uk/home/moslive/article-1350811/In-China-true-cost-Britains-clean-green-wind-power-experiment-Pollution-disastrous-scale.html
http://www.dailymail.co.uk/home/moslive/article-1350811/In-China-true-cost-Britains-clean-green-wind-power-experiment-Pollution-disastrous-scale.html
https://en.wikipedia.org/wiki/Global_Hybrid_Cooperation
https://doi.org/10.1016/j.rser.2015.12.121
https://en.wikipedia.org/wiki/Tesla,_Inc
http://www.ev-volumes.com/news/global-plug-in-vehicle-sales-for-2017-final-results/
http://www.ev-volumes.com/news/global-plug-in-vehicle-sales-for-2017-final-results/
https://twitter.com/elonmusk/status/998015873167208448?s=21
https://ieeexplore.ieee.org/ielx7/7740453/7744853/07744992.pdf?tp=&arnumber=7744992&isnumber=7744853
https://ieeexplore.ieee.org/ielx7/7740453/7744853/07744992.pdf?tp=&arnumber=7744992&isnumber=7744853


Reference 

189 

 

http://ieeexplore.ieee.org/ielx5/8600/27264/01211319.pdf?tp=&arnumber=1211319&i

snumber=27264 

[33] M. Abbasian, M. Moallem, and B. Fahimi, "Double-Stator Switched Reluctance 

Machines (DSSRM): Fundamentals and Magnetic Force Analysis," Energy Conversion, 

IEEE Transactions on, vol. 25, no. 3, pp. 589-597, 2010, doi: 

10.1109/TEC.2010.2051547. 

[34] M. Asgar and E. Afjei, "Radial Force Reduction in a New Flat-Type Double-Stator 

Switched Reluctance Motor," Energy Conversion, IEEE Transactions on, vol. PP, no. 

99, pp. 1-9, 2015, doi: 10.1109/TEC.2015.2465833. 

[35] L. Guangjin, J. Ojeda, S. Hlioui, E. Hoang, M. Lecrivain, and M. Gabsi, "Modification 

in Rotor Pole Geometry of Mutually Coupled Switched Reluctance Machine for Torque 

Ripple Mitigating," Magnetics, IEEE Transactions on, vol. 48, no. 6, pp. 2025-2034, 

2012, doi: 10.1109/TMAG.2011.2179307. 

[36] T. J. E. Miller, Switched Reluctance Motors and their Control. Oxford University Press, 

1993. 

[37] T. J. E. Miller, Electronic Control of Switched Reluctance Machines. Newnes, 2001. 

[38] P. Lawrenson, "Switched-reluctance motor drives," Electronics and Power, vol. 29, no. 

2, pp. 144-147, 1983, doi: 10.1049/ep.1983.0071. 

[39]  P. Materu and R. Krishnan, "Analytical prediction of SRM inductance profile and 

steady-state average torque," in Industry Applications Society Annual Meeting, 1990., 

Conference Record of the 1990 IEEE, 7-12 Oct. 1990 1990, pp. 214-223 vol.1, doi: 

10.1109/IAS.1990.152189. [Online]. Available: 

http://ieeexplore.ieee.org/ielx2/497/3988/00152189.pdf?tp=&arnumber=152189&isnu

mber=3988 

[40] P. J. Lawrenson, J. M. Stephenson, P. T. Blenkinsop, J. Corda, and N. N. Futon, 

"Variable-speed switched reluctance motors," Electric Power Applications, IEE 

Proceedings B, vol. 127, no. 4, pp. 253-265, 1980, doi: 10.1049/ip-b:19800034. 

[41]  Y. C. Wu, S. J. Song, S. Chen, H. C. Liu, and Z. H. Zhang, "Analytic calculation of 

electromagnetic characteristics of switched reluctance machine," in Industrial 

Electronics and Applications (ICIEA), 2013 8th IEEE Conference on, 19-21 June 2013 

2013, pp. 1005-1010, doi: 10.1109/ICIEA.2013.6566514. [Online]. Available: 

http://ieeexplore.ieee.org/ielx7/6559347/6566328/06566514.pdf?tp=&arnumber=6566

514&isnumber=6566328 

[42] A. D. Cheok and N. Ertugrul, "Computer-based automated test measurement system for 

determining magnetization characteristics of switched reluctance motors," IEEE 

Transactions on Instrumentation and Measurement, vol. 50, no. 3, pp. 690-696, 2001, 

doi: 10.1109/19.930441. 

[43]  V. N. Walivadekar, S. K. Pillai, S. S. Sadistap, and R. Bhandhari, "PC based data 

acquisition system for measurement of switched reluctance motor (SRM)," in Power 

Electronics, Drives and Energy Systems for Industrial Growth, 1996., Proceedings of 

the 1996 International Conference on, 8-11 Jan 1996 1996, vol. 2, pp. 957-963 vol.2, 

doi: 10.1109/PEDES.1996.536401. [Online]. Available: 

http://ieeexplore.ieee.org/ielx3/3837/11204/00536401.pdf?tp=&arnumber=536401&is

number=11204 

[44]  R. Krishnan and P. Materu, "Measurement and instrumentation of a switched reluctance 

motor," in Industry Applications Society Annual Meeting, 1989., Conference Record of 

the 1989 IEEE, 1-5 Oct. 1989 1989, pp. 116-121 vol.1, doi: 10.1109/IAS.1989.96639. 

[Online]. Available: 

http://ieeexplore.ieee.org/ielx2/858/3081/00096639.pdf?tp=&arnumber=96639&isnu

mber=3081 

http://ieeexplore.ieee.org/ielx5/8600/27264/01211319.pdf?tp=&arnumber=1211319&isnumber=27264
http://ieeexplore.ieee.org/ielx5/8600/27264/01211319.pdf?tp=&arnumber=1211319&isnumber=27264
http://ieeexplore.ieee.org/ielx2/497/3988/00152189.pdf?tp=&arnumber=152189&isnumber=3988
http://ieeexplore.ieee.org/ielx2/497/3988/00152189.pdf?tp=&arnumber=152189&isnumber=3988
http://ieeexplore.ieee.org/ielx7/6559347/6566328/06566514.pdf?tp=&arnumber=6566514&isnumber=6566328
http://ieeexplore.ieee.org/ielx7/6559347/6566328/06566514.pdf?tp=&arnumber=6566514&isnumber=6566328
http://ieeexplore.ieee.org/ielx3/3837/11204/00536401.pdf?tp=&arnumber=536401&isnumber=11204
http://ieeexplore.ieee.org/ielx3/3837/11204/00536401.pdf?tp=&arnumber=536401&isnumber=11204
http://ieeexplore.ieee.org/ielx2/858/3081/00096639.pdf?tp=&arnumber=96639&isnumber=3081
http://ieeexplore.ieee.org/ielx2/858/3081/00096639.pdf?tp=&arnumber=96639&isnumber=3081


Reference 

190 

 

[45] Z. Jinhui and A. V. Radun, "A New Method to Measure the Switched Reluctance 

Motor's Flux," Industry Applications, IEEE Transactions on, vol. 42, no. 5, pp. 1171-

1176, 2006, doi: 10.1109/TIA.2006.880876. 

[46] L. Kaiyuan, P. O. Rasmussen, and A. E. Ritchie, "Investigation of Flux-Linkage Profile 

Measurement Methods for Switched-Reluctance Motors and Permanent-Magnet 

Motors," Instrumentation and Measurement, IEEE Transactions on, vol. 58, no. 9, pp. 

3191-3198, 2009, doi: 10.1109/TIM.2009.2017154. 

[47]  T. J. E. Miller, M. I. McGilp, and M. Olaru, "Finite elements applied to synchronous 

and switched reluctance motors," in Current Trends in the Use of Finite Elements (FE) 

in Electromechanical Design and Analysis (Ref. No. 2000/013), IEE Seminar on, 2000 

2000, pp. 3/1-3/4, doi: 10.1049/ic:20000050. [Online]. Available: 

http://ieeexplore.ieee.org/ielx5/6817/18283/00843240.pdf?tp=&arnumber=843240&is

number=18283 

[48] A. B. J. Reece, Finite element methods in electrical power engineering. Oxford, 

[England]: Oxford, England : Oxford University Press, 2000. 

[49] A. M. Michaelides and C. Pollock, "Effect of end core flux on the performance of the 

switched reluctance motor," Electric Power Applications, IEE Proceedings -, vol. 141, 

no. 6, pp. 308-316, 1994, doi: 10.1049/ip-epa:19941476. 

[50] R. Krishnan, Switched Reluctance Motor Drives : modeling, simulation, analysis, 

design, and applications 

 CRC Press, 2001. 

[51] J. M. Kokernak and D. A. Torrey, "Magnetic circuit model for the mutually coupled 

switched-reluctance machine," Magnetics, IEEE Transactions on, vol. 36, no. 2, pp. 

500-507, 2000, doi: 10.1109/20.825824. 

[52] S. Li, S. Zhang, T. G. Habetler, and R. G. Harley, "Modeling, Design Optimization, and 

Applications of Switched Reluctance Machines—A Review," IEEE Transactions on 

Industry Applications, vol. 55, no. 3, pp. 2660-2681, 2019, doi: 

10.1109/TIA.2019.2897965. 

[53] J. Faiz and J. W. Finch, "Aspects of design optimisation for switched reluctance 

motors," Energy Conversion, IEEE Transactions on, vol. 8, no. 4, pp. 704-713, 1993, 

doi: 10.1109/60.260984. 

[54]  A. M. Michaelides and C. Pollock, "A new magnetic flux pattern to improve the 

efficiency of the switched reluctance motor," in Conference Record of the 1992 IEEE 

Industry Applications Society Annual Meeting, 4-9 Oct. 1992 1992, pp. 226-233 vol.1, 

doi: 10.1109/IAS.1992.244290. [Online]. Available: 

https://ieeexplore.ieee.org/ielx2/650/6279/00244290.pdf?tp=&arnumber=244290&isn

umber=6279 

[55] A. M. Michaelides and C. Pollock, "Modelling and design of switched reluctance 

motors with two phases simultaneously excited," Electric Power Applications, IEE 

Proceedings -, vol. 143, no. 5, pp. 361-370, 1996, doi: 10.1049/ip-epa:19960483. 

[56] J. R. Hendershot, "Polyphase electronically commutated reluctance motor," European 

Patent WO 90/01823 Patent Appl. WO 90/01823, 1990.  

[57] C. Lee, R. Krishnan, and N. S. Lobo, "Novel Two-Phase Switched Reluctance Machine 

Using Common-Pole E-Core Structure: Concept, Analysis, and Experimental 

Verification," IEEE Transactions on Industry Applications, vol. 45, no. 2, pp. 703-711, 

2009, doi: 10.1109/TIA.2009.2013592. 

[58] C. Lee and R. Krishnan, "New Designs of a Two-Phase E-Core Switched Reluctance 

Machine by Optimizing the Magnetic Structure for a Specific Application: Concept, 

Design, and Analysis," IEEE Transactions on Industry Applications, vol. 45, no. 5, pp. 

1804-1814, 2009, doi: 10.1109/TIA.2009.2027570. 

http://ieeexplore.ieee.org/ielx5/6817/18283/00843240.pdf?tp=&arnumber=843240&isnumber=18283
http://ieeexplore.ieee.org/ielx5/6817/18283/00843240.pdf?tp=&arnumber=843240&isnumber=18283
https://ieeexplore.ieee.org/ielx2/650/6279/00244290.pdf?tp=&arnumber=244290&isnumber=6279
https://ieeexplore.ieee.org/ielx2/650/6279/00244290.pdf?tp=&arnumber=244290&isnumber=6279


Reference 

191 

 

[59] J. W. Jiang, B. Bilgin, and A. Emadi, "Three-Phase 24/16 Switched Reluctance Machine 

for a Hybrid Electric Powertrain," IEEE Transactions on Transportation Electrification, 

vol. 3, no. 1, pp. 76-85, 2017, doi: 10.1109/TTE.2017.2664778. 

[60] A. Chiba, K. Kiyota, N. Hoshi, M. Takemoto, and S. Ogasawara, "Development of a 

Rare-Earth-Free SR Motor With High Torque Density for Hybrid Vehicles," Energy 

Conversion, IEEE Transactions on, vol. 30, no. 1, pp. 175-182, 2015, doi: 

10.1109/TEC.2014.2343962. 

[61]  Y. Takano et al., "Design and analysis of a switched reluctance motor for next 

generation hybrid vehicle without PM materials," in The 2010 International Power 

Electronics Conference - ECCE ASIA -, 21-24 June 2010 2010, pp. 1801-1806, doi: 

10.1109/IPEC.2010.5543565. [Online]. Available: 

https://ieeexplore.ieee.org/ielx5/5523765/5542000/05543565.pdf?tp=&arnumber=554

3565&isnumber=5542000 

[62]  Y. Takano et al., "Torque density and efficiency improvements of a Switched 

Reluctance Motor without rare earth material for hybrid vehicles," in Energy 

Conversion Congress and Exposition (ECCE), 2010 IEEE, 12-16 Sept. 2010 2010, pp. 

2653-2659, doi: 10.1109/ECCE.2010.5618025. [Online]. Available: 

http://ieeexplore.ieee.org/ielx5/5606065/5617696/05618025.pdf?tp=&arnumber=5618

025&isnumber=5617696 

[63] A. Chiba, M. Takeno, N. Hoshi, M. Takemoto, S. Ogasawara, and M. A. Rahman, 

"Consideration of Number of Series Turns in Switched-Reluctance Traction Motor 

Competitive to HEV IPMSM," IEEE Transactions on Industry Applications, vol. 48, 

no. 6, pp. 2333-2340, 2012, doi: 10.1109/TIA.2012.2227093. 

[64] A. Chiba et al., "Torque Density and Efficiency Improvements of a Switched 

Reluctance Motor Without Rare-Earth Material for Hybrid Vehicles," IEEE 

Transactions on Industry Applications, vol. 47, no. 3, pp. 1240-1246, 2011, doi: 

10.1109/TIA.2011.2125770. 

[65] K. Kiyota and A. Chiba, "Design of Switched Reluctance Motor Competitive to 60-kW 

IPMSM in Third-Generation Hybrid Electric Vehicle," IEEE Transactions on Industry 

Applications, vol. 48, no. 6, pp. 2303-2309, 2012, doi: 10.1109/TIA.2012.2227091. 

[66] B. Bilgin, A. Emadi, and M. Krishnamurthy, "Comprehensive Evaluation of the 

Dynamic Performance of a 6/10 SRM for Traction Application in PHEVs," IEEE 

Transactions on Industrial Electronics, vol. 60, no. 7, pp. 2564-2575, 2013, doi: 

10.1109/TIE.2012.2196015. 

[67] P. C. Desai, M. Krishnamurthy, N. Schofield, and A. Emadi, "Novel Switched 

Reluctance Machine Configuration With Higher Number of Rotor Poles Than Stator 

Poles: Concept to Implementation," IEEE Transactions on Industrial Electronics, vol. 

57, no. 2, pp. 649-659, 2010, doi: 10.1109/TIE.2009.2034678. 

[68]  M. Ćosović, S. Smaka, I. Salihbegović, and M. Š, "Design optimization of 8/14 

switched reluctance machine for electric vehicle," in 2012 XXth International 

Conference on Electrical Machines, 2-5 Sept. 2012 2012, pp. 2654-2659, doi: 

10.1109/ICElMach.2012.6350260. [Online]. Available: 

http://ieeexplore.ieee.org/document/6350260/ 

https://ieeexplore.ieee.org/ielx5/6330482/6349821/06350260.pdf?tp=&arnumber=6350260&i

snumber=6349821 

[69] J. B. Bartolo, M. Degano, J. Espina, and C. Gerada, "Design and Initial Testing of a 

High-Speed 45-kW Switched Reluctance Drive for Aerospace Application," IEEE 

Transactions on Industrial Electronics, vol. 64, no. 2, pp. 988-997, 2017, doi: 

10.1109/TIE.2016.2618342. 

[70]  M. Besharati, J. Widmer, G. Atkinson, V. Pickert, and J. Washington, "Super-high-

speed switched reluctance motor for automotive traction," in 2015 IEEE Energy 

https://ieeexplore.ieee.org/ielx5/5523765/5542000/05543565.pdf?tp=&arnumber=5543565&isnumber=5542000
https://ieeexplore.ieee.org/ielx5/5523765/5542000/05543565.pdf?tp=&arnumber=5543565&isnumber=5542000
http://ieeexplore.ieee.org/ielx5/5606065/5617696/05618025.pdf?tp=&arnumber=5618025&isnumber=5617696
http://ieeexplore.ieee.org/ielx5/5606065/5617696/05618025.pdf?tp=&arnumber=5618025&isnumber=5617696
http://ieeexplore.ieee.org/document/6350260/
https://ieeexplore.ieee.org/ielx5/6330482/6349821/06350260.pdf?tp=&arnumber=6350260&isnumber=6349821
https://ieeexplore.ieee.org/ielx5/6330482/6349821/06350260.pdf?tp=&arnumber=6350260&isnumber=6349821


Reference 

192 

 

Conversion Congress and Exposition (ECCE), 20-24 Sept. 2015 2015, pp. 5241-5248, 

doi: 10.1109/ECCE.2015.7310397. [Online]. Available: 

https://ieeexplore.ieee.org/ielx7/7298093/7309651/07310397.pdf?tp=&arnumber=731

0397&isnumber=7309651 

[71] G. A. HORST, "Isolated segmental switched reluctance motor," United States, 1992.  

[72] B. C. Mecrow, J. W. Finch, E. A. El-Kharashi, and A. G. Jack, "Switched reluctance 

motors with segmental rotors," IEE Proceedings - Electric Power Applications, vol. 149, 

no. 4, pp. 245-254, 2002, doi: 10.1049/ip-epa:20020345. 

[73] B. C. Mecrow, E. A. El-Kharashi, J. W. Finch, and A. G. Jack, "Preliminary 

performance evaluation of switched reluctance motors with segmental rotors," Energy 

Conversion, IEEE Transactions on, vol. 19, no. 4, pp. 679-686, 2004, doi: 

10.1109/TEC.2004.837290. 

[74] B. C. Mecrow, E. A. El-Kharashi, J. W. Finch, and A. G. Jack, "Segmental rotor 

switched reluctance motors with single-tooth windings," Electric Power Applications, 

IEE Proceedings -, vol. 150, no. 5, pp. 591-599, 2003, doi: 10.1049/ip-epa:20030366. 

[75]  X. Chen, Z. Deng, X. Wang, J. Peng, and X. Li, "New designs of switched reluctance 

motors with segmental rotors," in 5th IET International Conference on Power 

Electronics, Machines and Drives (PEMD 2010), 19-21 April 2010 2010, pp. 1-6, doi: 

10.1049/cp.2010.0179.  

[76]  T. Higuchi, K. Suenaga, and T. Abe, "Torque ripple reduction of novel segment type 

Switched reluctance motor by increasing phase number," in 2009 International 

Conference on Electrical Machines and Systems, 15-18 Nov. 2009 2009, pp. 1-4, doi: 

10.1109/ICEMS.2009.5382754.  

[77]  J. Oyama, T. Higuchi, T. Abe, and K. Tanaka, "The fundamental characteristics of 

novel switched reluctance motor with segment core embedded in aluminum rotor 

block," in 2005 International Conference on Electrical Machines and Systems, 27-29 

Sept. 2005 2005, vol. 1, pp. 515-519 Vol. 1, doi: 10.1109/ICEMS.2005.202582.  

[78]  R. Vandana, N. Vattikuti, and B. G. Fernandes, "A Novel High Power Density 

Segmented Switched Reluctance Machine," in 2008 IEEE Industry Applications Society 

Annual Meeting, 5-9 Oct. 2008 2008, pp. 1-7, doi: 10.1109/08IAS.2008.66.  

[79]  J. D. Widmer, R. Martin, and B. C. Mecrow, "Optimisation of an 80kW Segmental 

Rotor Switched Reluctance Machine for automotive traction," in Electric Machines & 

Drives Conference (IEMDC), 2013 IEEE International, 12-15 May 2013 2013, pp. 427-

433, doi: 10.1109/IEMDC.2013.6556132. [Online]. Available: 

http://ieeexplore.ieee.org/ielx7/6548947/6556119/06556132.pdf?tp=&arnumber=6556

132&isnumber=6556119 

[80] J. D. Widmer and B. C. Mecrow, "Optimized Segmental Rotor Switched Reluctance 

Machines With a Greater Number of Rotor Segments Than Stator Slots," Industry 

Applications, IEEE Transactions on, vol. 49, no. 4, pp. 1491-1498, 2013, doi: 

10.1109/TIA.2013.2255574. 

[81] N. Arbab, W. Wei, L. Chenjie, J. Hearron, and B. Fahimi, "Thermal Modeling and 

Analysis of a Double-Stator Switched Reluctance Motor," Energy Conversion, IEEE 

Transactions on, vol. 30, no. 3, pp. 1209-1217, 2015, doi: 10.1109/TEC.2015.2424400. 

[82] A. H. Isfahani and B. Fahimi, "Comparison of Mechanical Vibration Between a Double-

Stator Switched Reluctance Machine and a Conventional Switched Reluctance 

Machine," Magnetics, IEEE Transactions on, vol. 50, no. 2, pp. 293-296, 2014, doi: 

10.1109/TMAG.2013.2286569. 

[83]  M. Abbasian, B. Fahimi, and M. Moallem, "High torque double-stator switched 

reluctance machine for electric vehicle propulsion," in Vehicle Power and Propulsion 

Conference (VPPC), 2010 IEEE, 1-3 Sept. 2010 2010, pp. 1-5, doi: 

10.1109/VPPC.2010.5729077. [Online]. Available: 

https://ieeexplore.ieee.org/ielx7/7298093/7309651/07310397.pdf?tp=&arnumber=7310397&isnumber=7309651
https://ieeexplore.ieee.org/ielx7/7298093/7309651/07310397.pdf?tp=&arnumber=7310397&isnumber=7309651
http://ieeexplore.ieee.org/ielx7/6548947/6556119/06556132.pdf?tp=&arnumber=6556132&isnumber=6556119
http://ieeexplore.ieee.org/ielx7/6548947/6556119/06556132.pdf?tp=&arnumber=6556132&isnumber=6556119


Reference 

193 

 

http://ieeexplore.ieee.org/ielx5/5720573/5728974/05729077.pdf?tp=&arnumber=5729

077&isnumber=5728974 

[84]  W. Jiang, M. Moallem, B. Fahimi, and S. Pekarek, "Qualitative Investigation of Force 

Density Components in Electromechanical Energy Conversion Process," in IECON 

2006 - 32nd Annual Conference on IEEE Industrial Electronics, 6-10 Nov. 2006 2006, 

pp. 1113-1118, doi: 10.1109/IECON.2006.347809. [Online]. Available: 

http://ieeexplore.ieee.org/document/4153697/ 

https://ieeexplore.ieee.org/ielx5/4152824/4152825/04153697.pdf?tp=&arnumber=4153697&i

snumber=4152825 

[85]  W. Wang and B. Fahimi, "Comparative study of electric drives for EV/HEV propulsion 

system," in Electrical Systems for Aircraft, Railway and Ship Propulsion (ESARS), 2012, 

16-18 Oct. 2012 2012, pp. 1-6, doi: 10.1109/ESARS.2012.6387497. [Online]. Available: 

http://ieeexplore.ieee.org/ielx5/6375603/6387375/06387497.pdf?tp=&arnumber=6387

497&isnumber=6387375 

[86] E. Bostanci, M. Moallem, A. Parsapour, and B. Fahimi, "Opportunities and Challenges 

of Switched Reluctance Motor Drives for Electric Propulsion: A Comparative Study," 

IEEE Transactions on Transportation Electrification, vol. 3, no. 1, pp. 58-75, 2017, doi: 

10.1109/TTE.2017.2649883. 

[87] M. Asgar, E. Afjei, and H. Torkaman, "A New Strategy to Design and Analysis of a 

Double-Stator Switched Reluctance Motor: Electromagnetics, FEM and Experiment," 

Magnetics, IEEE Transactions on, vol. PP, no. 99, pp. 1-1, 2015, doi: 

10.1109/TMAG.2015.2465307. 

[88]  M. Asgar, E. Afjei, A. Behbahani, and A. Siadatan, "A 12/8 double-stator switched 

reluctance motor for washing machine application," in Power Electronics, Drives 

Systems & Technologies Conference (PEDSTC), 2015 6th, 3-4 Feb. 2015 2015, pp. 168-

172, doi: 10.1109/PEDSTC.2015.7093268. [Online]. Available: 

http://ieeexplore.ieee.org/ielx7/7085977/7093233/07093268.pdf?tp=&arnumber=7093

268&isnumber=7093233 

[89]  P. Luk and P. K. Jinupun, "Yokeless switched reluctance motors," in 2006 37th IEEE 

Power Electronics Specialists Conference, 18-22 June 2006 2006, pp. 1-5, doi: 

10.1109/pesc.2006.1712236. [Online]. Available: 

http://ieeexplore.ieee.org/ielx7/11209/36090/01712236.pdf?tp=&arnumber=1712236

&isnumber=36090 

[90]  X. D. Xue, K. W. E. Cheng, Y. J. Bao, and J. Leung, "Design consideration of C-core 

switched reluctance generators for wind energy," in 2011 4th International Conference 

on Power Electronics Systems and Applications, 8-10 June 2011 2011, pp. 1-6, doi: 

10.1109/PESA.2011.5982957.  

[91] N. Arbab, W. Wang, C. Lin, J. Hearron, and B. Fahimi, "Thermal Modeling and 

Analysis of a Double-Stator Switched Reluctance Motor," Energy Conversion, IEEE 

Transactions on, vol. 30, no. 3, pp. 1209-1217, 2015, doi: 10.1109/TEC.2015.2424400. 

[92] B. C. Mecrow, "Fully pitched-winding switched-reluctance and stepping-motor 

arrangements," Electric Power Applications, IEE Proceedings B, vol. 140, no. 1, pp. 

61-70, 1993. 

[93]  J. Sun, S. Wang, Z. Kuang, and H. Wu, "Torque ripple comparison of short-pitched and 

fully-pitched winding switched reluctance machine," in 2012 15th International 

Conference on Electrical Machines and Systems (ICEMS), 21-24 Oct. 2012 2012, pp. 

1-6.  

[94] M. A. Preston and J. P. Lyons, "A switched reluctance motor model with mutual 

coupling and multi-phase excitation," IEEE Transactions on Magnetics, vol. 27, no. 6, 

pp. 5423-5425, 1991, doi: 10.1109/20.278859. 

http://ieeexplore.ieee.org/ielx5/5720573/5728974/05729077.pdf?tp=&arnumber=5729077&isnumber=5728974
http://ieeexplore.ieee.org/ielx5/5720573/5728974/05729077.pdf?tp=&arnumber=5729077&isnumber=5728974
http://ieeexplore.ieee.org/document/4153697/
https://ieeexplore.ieee.org/ielx5/4152824/4152825/04153697.pdf?tp=&arnumber=4153697&isnumber=4152825
https://ieeexplore.ieee.org/ielx5/4152824/4152825/04153697.pdf?tp=&arnumber=4153697&isnumber=4152825
http://ieeexplore.ieee.org/ielx5/6375603/6387375/06387497.pdf?tp=&arnumber=6387497&isnumber=6387375
http://ieeexplore.ieee.org/ielx5/6375603/6387375/06387497.pdf?tp=&arnumber=6387497&isnumber=6387375
http://ieeexplore.ieee.org/ielx7/7085977/7093233/07093268.pdf?tp=&arnumber=7093268&isnumber=7093233
http://ieeexplore.ieee.org/ielx7/7085977/7093233/07093268.pdf?tp=&arnumber=7093268&isnumber=7093233
http://ieeexplore.ieee.org/ielx7/11209/36090/01712236.pdf?tp=&arnumber=1712236&isnumber=36090
http://ieeexplore.ieee.org/ielx7/11209/36090/01712236.pdf?tp=&arnumber=1712236&isnumber=36090


Reference 

194 

 

[95] P. Debiprasad and V. Ramanarayanan, "Mutual Coupling and Its Effect on Steady-State 

Performance and Position Estimation of Even and Odd Number Phase Switched 

Reluctance Motor Drive," Magnetics, IEEE Transactions on, vol. 43, no. 8, pp. 3445-

3456, 2007, doi: 10.1109/TMAG.2007.898101. 

[96]  Q. Bingni, S. Jiancheng, L. Tao, and Z. Hongda, "Mutual coupling and its effect on 

torque waveform of even number phase switched reluctance motor," in Electrical 

Machines and Systems, 2008. ICEMS 2008. International Conference on, 17-20 Oct. 

2008 2008, pp. 3405-3410.  

[97]  D. Wen and L. Deliang, "Calculation of Flux Linkages of a 12/8 Dual-Channel SRM 

Including Mutual Coupling and Saturation: From Magnetic Circuit Model to FEM 

Analysis," in Industry Applications Society Annual Meeting, 2008. IAS '08. IEEE, 5-9 

Oct. 2008 2008, pp. 1-8, doi: 10.1109/08IAS.2008.68. [Online]. Available: 

http://ieeexplore.ieee.org/ielx5/4658787/4658788/04658856.pdf?tp=&arnumber=4658

856&isnumber=4658788 

[98] A. Jin-Woo, O. Seok-Gyu, M. Jae-Won, and H. Young-Moon, "A three-phase switched 

reluctance motor with two-phase excitation," Industry Applications, IEEE Transactions 

on, vol. 35, no. 5, pp. 1067-1075, 1999, doi: 10.1109/28.793367. 

[99]  G. J. Li, X. Ojeda, S. Hlioui, E. Hoang, M. Gabsi, and C. Balpe, "Comparative study 

of Switched Reluctance Motors performances for two current distributions and 

excitation modes," in Industrial Electronics, 2009. IECON '09. 35th Annual Conference 

of IEEE, 3-5 Nov. 2009 2009, pp. 4047-4052, doi: 10.1109/IECON.2009.5415318. 

[Online]. Available: 

http://ieeexplore.ieee.org/ielx5/5405664/5414636/05415318.pdf?tp=&arnumber=5415

318&isnumber=5414636 

[100] L. Xiaobin, L. Guangjin, J. Ojeda, M. Gabsi, and R. Zhuoxiang, "Comparative Study of 

Classical and Mutually Coupled Switched Reluctance Motors Using Multiphysics 

Finite-Element Modeling," Industrial Electronics, IEEE Transactions on, vol. 61, no. 9, 

pp. 5066-5074, 2014, doi: 10.1109/TIE.2013.2282907. 

[101]  J. D. Widmer, R. Martin, C. M. Spargo, B. C. Mecrow, and T. Celik, "Winding 

configurations for a six phase switched reluctance machine," in Electrical Machines 

(ICEM), 2012 XXth International Conference on, 2-5 Sept. 2012 2012, pp. 532-538, doi: 

10.1109/ICElMach.2012.6349921. [Online]. Available: 

http://ieeexplore.ieee.org/ielx5/6330482/6349821/06349921.pdf?tp=&arnumber=6349

921&isnumber=6349821 

[102] T. J. E. Miller, "Converter Volt-Ampere Requirements of the Switched Reluctance 

Motor Drive," IEEE Transactions on Industry Applications, vol. IA-21, no. 5, pp. 1136-

1144, 1985, doi: 10.1109/TIA.1985.349516. 

[103] M. Takeno, A. Chiba, N. Hoshi, S. Ogasawara, M. Takemoto, and M. A. Rahman, "Test 

Results and Torque Improvement of the 50-kW Switched Reluctance Motor Designed 

for Hybrid Electric Vehicles," Industry Applications, IEEE Transactions on, vol. 48, no. 

4, pp. 1327-1334, 2012, doi: 10.1109/TIA.2012.2199952. 

[104]  J. D. Widmer and B. C. Mecrow, "Optimised Segmental Rotor Switched Reluctance 

Machines with a greater number of rotor segments than stator slots," in Electric 

Machines & Drives Conference (IEMDC), 2011 IEEE International, 15-18 May 2011 

2011, pp. 1183-1188, doi: 10.1109/IEMDC.2011.5994770. [Online]. Available: 

http://ieeexplore.ieee.org/ielx5/5981421/5993850/05994770.pdf?tp=&arnumber=5994

770&isnumber=5993850 

[105]  R. Pupadubsin, A. Steven, J. D. Widmer, and B. C. Mecrow, "Mechanical material 

properties for structural simulation model of switched reluctance machines," in 2016 

XXII International Conference on Electrical Machines (ICEM), 4-7 Sept. 2016 2016, 

pp. 2293-2299, doi: 10.1109/ICELMACH.2016.7732841. [Online]. Available: 

http://ieeexplore.ieee.org/ielx5/4658787/4658788/04658856.pdf?tp=&arnumber=4658856&isnumber=4658788
http://ieeexplore.ieee.org/ielx5/4658787/4658788/04658856.pdf?tp=&arnumber=4658856&isnumber=4658788
http://ieeexplore.ieee.org/ielx5/5405664/5414636/05415318.pdf?tp=&arnumber=5415318&isnumber=5414636
http://ieeexplore.ieee.org/ielx5/5405664/5414636/05415318.pdf?tp=&arnumber=5415318&isnumber=5414636
http://ieeexplore.ieee.org/ielx5/6330482/6349821/06349921.pdf?tp=&arnumber=6349921&isnumber=6349821
http://ieeexplore.ieee.org/ielx5/6330482/6349821/06349921.pdf?tp=&arnumber=6349921&isnumber=6349821
http://ieeexplore.ieee.org/ielx5/5981421/5993850/05994770.pdf?tp=&arnumber=5994770&isnumber=5993850
http://ieeexplore.ieee.org/ielx5/5981421/5993850/05994770.pdf?tp=&arnumber=5994770&isnumber=5993850


Reference 

195 

 

http://ieeexplore.ieee.org/ielx7/7592391/7732494/07732841.pdf?tp=&arnumber=7732

841&isnumber=7732494 

[106]  M. v. d. Giet, K. Kasper, R. W. D. Doncker, and K. Hameyer, "Material parameters for 

the structural dynamic simulation of electrical machines," in 2012 XXth International 

Conference on Electrical Machines, 2-5 Sept. 2012 2012, pp. 2994-3000, doi: 

10.1109/ICElMach.2012.6350314.  

[107] "  Mechanical properties of bamboo." http://bambus.rwth-

aachen.de/eng/reports/mechanical_properties/referat2.html (accessed. 

[108] P. Michael James, "Strength, Fatigue Strength and Stiffness of High-Tech 

Bamboo/Epoxy Composites," Agricultural Sciences, vol. Vol.05No.13, p. 10, 2014, Art 

no. 51594, doi: 10.4236/as.2014.513136. 

[109] S. Schröder. "What are the Mechanical Properties of Bamboo?" 

https://www.bambooimport.com/en/blog/about-bamboo/what-are-the-mechanical-

properties-of-bamboo (accessed. 

[110] Y. Sofiane, A. Tounzi, F. Piriou, and M. Liese, "Study of head winding effects in a 

switched reluctance machine," Magnetics, IEEE Transactions on, vol. 38, no. 2, pp. 

989-992, 2002, doi: 10.1109/20.996254. 

[111]  J. D. Widmer, B. C. Mecrow, C. M. Spargo, R. Martin, and T. Celik, "Use of a 3 phase 

full bridge converter to drive a 6 phase switched reluctance machine," in Power 

Electronics, Machines and Drives (PEMD 2012), 6th IET International Conference on, 

27-29 March 2012 2012, pp. 1-6, doi: 10.1049/cp.2012.0260. [Online]. Available: 

http://ieeexplore.ieee.org/ielx5/6235114/6241991/06242110.pdf?tp=&arnumber=6242

110&isnumber=6241991 

 

http://ieeexplore.ieee.org/ielx7/7592391/7732494/07732841.pdf?tp=&arnumber=7732841&isnumber=7732494
http://ieeexplore.ieee.org/ielx7/7592391/7732494/07732841.pdf?tp=&arnumber=7732841&isnumber=7732494
http://bambus.rwth-aachen.de/eng/reports/mechanical_properties/referat2.html
http://bambus.rwth-aachen.de/eng/reports/mechanical_properties/referat2.html
https://www.bambooimport.com/en/blog/about-bamboo/what-are-the-mechanical-properties-of-bamboo
https://www.bambooimport.com/en/blog/about-bamboo/what-are-the-mechanical-properties-of-bamboo
http://ieeexplore.ieee.org/ielx5/6235114/6241991/06242110.pdf?tp=&arnumber=6242110&isnumber=6241991
http://ieeexplore.ieee.org/ielx5/6235114/6241991/06242110.pdf?tp=&arnumber=6242110&isnumber=6241991

