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Abstract 

Fresh produce, which is often minimally processed and consumed raw, is increasingly 

recognised as a route of contamination leading to foodborne illness. This study focussed on 

the potential of next generation sequencing (NGS) to detect and characterise foodborne 

pathogens and elucidate the microbiome and potential influences on the survival and 

transmission of human pathogens within the fresh produce supply-chain.  

Initial research assessed the ability of several NGS methodologies to screen the microbiome 

of fresh produce and identify the limit of detection of bacterial and viral pathogens, using a 

mock sample set created with known levels of contamination. The limit of detection of 

human pathogens was found to be dependent upon enrichment method, sequencing 

approach and bioinformatics analysis utilised. The most sensitive approach tested involved 

sequence preparation using ribosomal depletion followed by RNAseq and analysis of the 

microbiome using Kraken; yielding a limit of detection of 105 colony forming units / plaque 

forming units (CFU/PFU) per extraction. Subsequent in silico work showed the differing read 

lengths obtained from the MiSeq, HiSeq and NovaSeq has no influence on the limit of 

detection of human pathogens within a mock community. 

Methodological work was applied to study the microbiome associated with commercial fresh 

produce samples to identify species that may confer a positive or negative effect on the 

survival of human pathogens. Sequences were also screened for antimicrobial resistance 

(AMR) associated genes. Data revealed the microbiome to be dominated by potential 

spoilage organisms and plant pathogens. Four unique AMR-associated genes, with over 80% 

identity and coverage, were found (CRP, H-NS, MexF, MexB). Nine taxa, including 

Pectobacterium and Dickeya - soft rot causing bacteria previously linked in the literature to 

survival of Salmonella on fresh produce - were found to be positively correlated with the 

microbiological detection of Enterobacteriaceae and Listeria species. Pseudonocardia was 

the only taxon detected in a large proportion of samples that was inversely correlated with 

detection of Enterobacteriaceae.  

A collection of 48 strains of Listeria monocytogenes originating from the fresh produce 

supply chain was subject to a combination of phenotypic and genotypic methods to 

characterise the resistome, virulome, and biofilm forming ability. The genes present and 

phylogenetic identity of these isolates was then compared to those of 80 isolates from meat 
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and clinical origin, to identify signatures of fresh produce contaminating L. monocytogenes. 

Phenotypic screens revealed no evidence of AMR within L. monocytogenes isolated from UK 

fresh produce. All isolates of L. monocytogenes tested were capable of forming biofilms and 

displayed an increased propensity for biofilm formation in nutrient broth than in brain heart 

infusion broth (suggesting that biofilm formation may be induced by stress). Whole genome 

sequencing data from fresh produce isolates, meat isolates and clinical isolates were 

indistinguishable based on phylogeny, resistome and virulome. When screened using 

genome wide association study (GWAS) many potential genes of interest were highlighted. 
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Chapter 1. General Introduction  

1.1 Foodborne Disease  

The World Health Organisation (2015b) estimated that there were 600 million cases of 

foodborne illness in 2010 and over 1 million people per year were affected in the UK alone. 

This costs the UK economy nearly £1.5 bn in healthcare and associated costs (Food 

Standards Agency 2011). The first report that the consumption of contaminated produce 

may result in disease/food poisoning was in 1912, when leafy greens were recognised as a 

potential vector for Bacillus typhosus (Creel 1912). In the past century, there has been a rise 

in the demand for fresh produce driven by the recognition that fruit, salads and vegetables 

are important constituents of a healthy diet, and through marketing campaigns in recent 

years promoting healthy eating and a 5-a-day rhetoric (Allen et al. 2013). Moreover, 

consumer demands for fresh produce all-year-round have led to increases in transportation, 

faster throughput production and intensive farming approaches (Chitarra et al. 2014; Fatica 

and Schneider 2011) which have increased the risk of contamination by human pathogens 

(Ziuzina et al. 2015). The fact that fresh produce invariably has a short shelf-life and is 

commonly eaten raw and/or with minimal processing means that there is a substantially 

enhanced risk of low-level contamination by several potential pathogens. Moreover, for this 

type of short-shelf life produce routine microbiological testing approaches are inappropriate 

since the results are generally returned several days after the products are consumed and 

thus too late to instigate safe practices, such as withdrawal from market. It is predicted that 

≈10% of food poisoning cases reported in the UK are attributable to contamination of fresh 

produce and/or minimally-processed foods (Tam et al. 2014). Reported incidences of food 

poisoning associated with “salads” are lower at just 4% of reported UK cases; impacting 

≈3,500 people in 82 separate outbreaks (Little and Gillespie 2008). It seems likely that any 

such statistics underestimate the health issues associated with fresh and/or minimally-

processed produce due to (i) the inherent short shelf life of such products which is 

commonly shorter than the incubation time of the disease agent (ii) uncertainties in recall 

during epidemiological studies - people often forget that fresh produce was ingested as a 

garnish or a side as part of other meals (iii) a relatively small proportion of food poisoning 

cases are investigated in any detail and (iv) it is becoming increasingly difficult to identify and 

track outbreaks of food poisoning due to the burgeoning market for the trans-national 

shipment of foods from large centralised processing plants (Monaghan et al. 2008). 
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1.1.1 Diversity of Pathogens causing Foodborne Disease 

There are a wide range of bacterial, fungal, viral and protozoan human pathogens that can 

lead to illness following the consumption of fresh produce. In the UK and Europe, outbreaks 

of identified aetiology associated with fresh produce were predominantly caused by bacteria 

(Little and Gillespie 2008; European Food Safety Authority 2016). The major identified 

causative agents are outlined in Table 1 and described in greater detail below. Of the 

foodborne outbreaks (FBO) identified in the EU in 2017, 33% were of unknown causes 

(European Food Safety Authority 2018). 

  

1.1.1.1 Salmonella 

Salmonella are rod-shaped gram-negative Enterobacteriaceae. There are two species of 

Salmonella: Salmonella enterica and Salmonella bongori. Salmonella enterica is divided into 

6 sub-species. There are currently 2659 described serovars of Salmonella recorded 

(Issenhuth-Jeanjean et al. 2014). Salmonella enterica can cause two types of disease, typhoid 

fever and food poisoning (Boyle et al. 2007). Symptoms of non-typhoidal Salmonella 

infection include diarrhoea, stomach cramps, vomiting and fever. The incubation period for 

the disease is 12 - 72 hours and symptoms last four to seven days (NHS 2014). Most cases of 

infection with Salmonella are mild and usually do not require treatment. However, in some 

cases severe dehydration can result in added complications (World Health Organisation 

2016c). Salmonella infection resulted in the second highest number of deaths and the 

greatest number of hospitalisations due to zoonoses in the EU in 2017 (European Food 

Safety Authority 2018). Non-typhoidal Salmonella was the most frequent cause of foodborne 

Table 1. Case, hospitalisation, death and foodborne associated cases and outbreaks for 

the top four foodborne associated bacteria in 2017 

Pathogen Total Diseasea  Food-borne diseasea 

Human Cases Hospitalisation Deaths  Human 
Cases 

Outbreaks 

Campylobacter 246,158 20,810 45  1,445 395 

Salmonella 91,662 16,796 156  9,600 1,241 

STECb 6,073 933 20  206 48 

Listeria 2,480 988 225  39 10 
a Information adapted from the European Union summary report on trends and sources of zoonoses, 

zoonotic agents and food‐borne outbreaks in 2017 (European Food Safety Authority 2018). 
b Shiga toxin-producing E. coli  
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pathogen outbreaks recorded in England and Wales from 1992-2008, with 1135 outbreaks 

(Gormley et al. 2010), and resulted in 24% of all outbreaks attributed to foodborne disease 

in 2017 across Europe (European Food Safety Authority 2018). It is reported that 1% of FBO 

caused by Salmonella in 2017 were strongly-linked to contaminated fresh produce 

(European Food Safety Authority 2018). Salmonella has been shown to survive and 

proliferate for 2-8 months in contaminated soil meaning any contamination event can have a 

considerable impact (Monaghan and Hutchinson 2010). 

1.1.1.2 Campylobacter 

Campylobacter is the most common cause of zoonosis in the UK (NHS 2015b) and Europe 

(European Food Safety Authority 2016), although only a small percentage of cases have been 

linked to food (Table 1). There are several species of Campylobacter that are pathogenic to 

humans, with most cases attributed to Campylobacter jejuni (European Food Safety 

Authority 2016). Symptoms of infection include diarrhoea, abdominal pain, fever, headache 

and nausea/vomiting. The incubation period of the disease is usually two to five days with 

symptoms lasting for three to six days, although it typically does not require treatment. It is 

predicted that one in 1000 cases of Campylobacter infection lead to Guillain-Barré syndrome 

(Nachamkin et al. 1998), an autoimmune disorder of the peripheral nervous system, that can 

lead to complications and death (World Health Organisation 2016a). Cases are 

predominantly attributed to the consumption of raw or undercooked poultry, however, 

models suggest that approximately 0.3% of fruit and vegetables are contaminated with 

Campylobacter; likely through contamination of soil or produce directly by animal faecal 

matter (Verhoeff-Bakkenes et al. 2011). Campylobacter can survive for 2-3 weeks in soil at 

ambient temperatures and for up to 2 months in cool, moist soil or water, increasing the risk 

that produce may become contaminated via direct contact (Monaghan and Hutchinson 

2010). Campylobacter is the second most common bacteria associated with FBOs and a 

number of reports have identified a correlation between Campylobacteriosis and 

consumption of fresh produce (Mohammadpour et al. 2018). 

1.1.1.3 Listeria monocytogenes 

Clinical infection with Listeria monocytogenes is low incidence, with only 2,480 confirmed 

cases in the EU in 2017; however a high proportion of cases lead to hospitalisation and 

mortality as shown in Table 1 (European Food Safety Authority 2018). The symptoms 

associated with Listeria infection include fever, muscle aches and pains, chills, vomiting and 

diarrhoea. These symptoms do not usually require treatment and pass within a few days. 
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However, if the infection spreads into the blood or central nervous system of the individual 

it can lead to severe listeriosis. In such cases, the symptoms are more extreme and may 

include severe headaches, stiffness of the joints and neck, seizures and tremors. Infection 

can also, rarely, lead to development of meningitis and septicaemia (NHS 2015c). In 

pregnant women, listeriosis can lead to pregnancy and birth complications, resulting in 

miscarriage or stillbirth. Death occurs in approximately 20% of listeriosis cases and the 

number of recognised cases is on the rise (European Food Safety Authority 2016). There are 

few FBOs associated with L. monocytogenes (Table 1) all of which are associated with ready-

to-eat foods, including fresh produce. Listeria monocytogenes is able to grow and survive at 

refrigeration temperatures, in soil and in many food matrices, making it a particular risk in 

the fresh and/or minimally processed food sectors (Gandhi and Chikindas 2007; McLaughlin 

et al. 2011).  

1.1.1.4 Escherichia coli  

Zoonotic infection resulting from Escherichia coli is primarily due to Shiga toxin-producing 

strains (STEC). Infection with STEC is relatively rare but results in high levels of mortality 

(Table 1). The incubation period of STEC is usually three to four days but can be as 

protracted as 14 days. Symptoms of infection include diarrhoea (bloody in about 50% of 

people), stomach cramps and occasionally fevers. These symptoms last for up to two weeks 

but usually do not require treatment.  

In approximately 10% of cases infection with STEC leads to development of haemolytic 

uremic syndrome (HUS), which is a serious condition that can lead to haemolytic anaemia, 

low platelet counts, kidney failure and, ultimately, death. Children under five-years-old are 

at greatest risk (World Health Organisation 2016b). Treatment of STEC infection can increase 

the risk of HUS and therefore administration of antibiotics or anti-diarrhoea drugs is not 

recommended since it can prolong exposure to the toxin responsible for HUS (NHS 2015a). 

Shiga toxin-producing E. coli has been linked to several high profile outbreaks associated 

with fresh produce, including the sprout-associated outbreak in 2011 (Buchholz et al. 2011). 

Shiga toxin-producing E. coli can survive for up to two months in manure and the toxin is 

powerful, causing illness at levels of exposure lower than detectable using conventional 

screens (Monaghan and Hutchinson 2010; Tomás-Callejas et al. 2011). Several recent fresh 

produce-associated outbreaks that have been traced back to STEC-related agents have 

resulted in growing research interest in this pathogen. 
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1.1.1.5 Viruses  

Viruses are the second highest cause of gastrointestinal infections in the UK. It has been 

estimated that up to 95% of clinical cases occur due to person to person transmission 

(O'Brien et al. 2016). Viruses are unable to reproduce outside their hosts, meaning food 

contamination events are most likely to happen at harvest or during post-harvest handling 

processes, when human contamination can inadvertently transmit high titres of virus 

particles. Viruses have been shown to survive on crops and/or in soil for at least a month at 

refrigeration temperatures (Monaghan and Hutchinson 2010) and may persist for longer 

than the shelf life of the product (Cook et al. 2016). There is currently no treatment for 

foodborne viral infection which makes prevention of over-riding importance (NHS 2016a, b).  

Norovirus 

Contraction of norovirus rapidly results in a suite of symptoms including diarrhoea, nausea, 

violent vomiting and mild fever which are short in duration. The incubation period is around 

28 hours (Lee et al. 2013). Complications are rare due to the self-limiting nature of the virus, 

with mortality typical only in the extremely young, old and/or weak. The virus has been 

found to lead to asymptomatic infection in a high percentage of individuals, during which 

time individuals remain highly infectious (Robilotti et al. 2015). There is currently no vaccine 

available to prevent norovirus infection.  

Rotavirus 

Rotavirus infection leads to symptoms similar to norovirus, with the main clinical 

manifestation being diarrhoea. Children are most at risk since infection is usually 

asymptomatic in adults (Greenberg and Estes 2009). The virus is self-limiting but the 

symptoms can result in life-threatening dehydration in children; up to 10% of children who 

have contracted the virus end up in hospital and require rehydration (NHS 2017). A vaccine 

against rotavirus is available for young children, but it is not administered routinely in many 

countries (Greenberg and Estes 2009).  

Hepatitis 

Hepatitis is a cause of viral liver disease which can lead to mild to severe illness. Symptoms 

include tiredness, joint and muscle pain, fever, nausea or vomiting, jaundice and itchy skin 

although not all infections are symptomatic. Incubation time of the disease is around four 

weeks and symptoms last for up to two months, but it is usually self-limiting, and fatality is 

rare. Only hepatitis A and hepatitis E are associated with FBOs. In the case of hepatitis E, 
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approximately 70% of infections are asymptomatic (Van der Poel et al. 2018), whereas 

infection by hepatitis A is usually symptomatic in all bar young children (Pintó et al. 2010). 

The primary transmission route for foodborne-hepatitis is via faecal contamination of foods 

(commonly salads) and/or drinking water (Van der Poel et al. 2018). A vaccine is available for 

hepatitis A for those considered at high risk. 

1.1.2 Sources of Contamination of Fresh Produce with Human pathogens 

Contamination of fresh produce by human pathogens is most frequently associated with 

faecal contamination, due to sewerage issues, contamination of soil or water sources used 

to produce crops. Contamination can occur at any point in the supply chain, although 

evidence suggests most outbreaks are due to pre-harvest contamination of the produce 

(Barak et al. 2010), with studies observing that multiple processing lines can become 

contaminated with the same microbial contaminant from the field (Kim et al. 2016). The 

extent and routes of contamination are believed to vary from country to country as there 

are widely variable standards of hygiene during agronomy/irrigation, harvest, and storage 

dependent on the origin of the produce (Heaton and Jones 2008a).  

In recent years, a significant focus for research has been the potential transmission vectors 

of human pathogens within the food system. Research has shown that flies can become 

contaminated with E. coli during brief exposure to contaminated apple surfaces and are 

capable of transmitting the bacteria from one product to another (Janisiewicz et al. 1999). It 

has also been shown that wild birds can disseminate Campylobacter, Salmonella, Listeria and 

E. coli O157 and contaminate crops in the field (Beuchat and Ryu 1997). Wastewater is 

another potential contamination source that is a focal point for much current research; 

irrigation with waste water is increasing due to water shortages and droughts worldwide and 

this is increasing the risks posed as waste water is a common reservoir for human pathogens 

and may lead to bioaccumulation of human pathogens in soil (Chang et al. 2013; Sallach et 

al. 2015). Principle contamination sources are summarised in Table 2. 
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Table 2. Pre-harvest and post-harvest sources of contamination of fresh produce 

with human pathogenic organisms  

Pre-harvest Contamination Sources Post-harvest Contamination Sources 

Faeces Faeces 

Soil Human handling 

Manure Harvesting equipment 

Slurry Transport containers / vehicles 

Irrigation water Wild and domestic animals 

Fungicide / insecticide application  Insects 

Air (dust) Air (dust) 

Wild and domestic animals Wash and rinse water 

Insects Processing equipment 

Human handling Ice 

Compost Improper storage or packaging 

 Cross-contamination from other foods 

 Improper handling 

Table adapted from Beuchat and Ryu (1997) 
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1.1.3 Prevention of Fresh Produce Contamination 

Currently there are no acceptable methods of removing or inactivating human pathogens on 

fresh produce that do not affect the produce itself via the potential introduction of taints or 

residues (Sela Saldinger and Manulis-Sasson 2015). Post-harvest washing with oxidative 

agents, often with chlorine-based disinfectants, is often employed in the processing of fresh 

produce, but the use of chlorine for the reduction of viable human pathogens is of limited 

efficacy at the low concentrations generally employed in the industry (Beuchat and Ryu 

1997) and has been linked to the formation of potentially carcinogenic compounds in wash 

water (Rico et al. 2007). 

Due to the lack of acceptable decontamination methods, efforts and regulations are often 

focused on the prevention of contamination. The Codex Alimentarius Commission (Adopted 

2003. Revision 2010 (new Annex III for Fresh Leafy Vegetables), 2012 (new Annex IV for 

Melons), 2013 (new Annex V for Berries)) outline key hygiene practices applicable to fresh 

fruit and vegetables and cover primary production through to packing and transportation, 

including hazard analysis critical control point (HACCP) analysis. Further guidelines published 

by the UK Department for Environment Food and Rural Affairs (2015) outline current 

restrictions on UK farmers with regard to spreading and storage of organic manures to 

prevent contamination of produce. Despite guidelines and controls to prevent 

contamination, a lack of time, knowledge and financial pressures can prevent their correct 

implementation.  Adoption of high standards of hygiene during cultivation, harvesting and 

processing of crops destined for the food chain and the implementation of HACCP are 

essential for the proactive control of foodborne contaminants. Food safety cannot be based 

on end product testing alone (Zwietering et al. 2016).  

Previous research has focused on ecological and microbiological factors that influence the 

risk of contamination by human pathogens and the survival of human pathogens on fresh 

produce. Maturity of the fruit, season and cultivar have been correlated with susceptibility 

to contamination by  human pathogens (Barak et al. 2010; Chang et al. 2013). In addition, 

environmental factors can affect the survival of human pathogens associated with fresh 

produce in the field environment, such as exposure to UV light which can decrease their 

persistence (Wood et al. 2010). Mechanical damage of the produce may also affect the 

survival of human pathogens, potentially due to the increase in free available nutrients 

(Fatica and Schneider 2011; Deering et al. 2012). Research has also shown a negative 
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correlation between the diversity of the soil microbiota and survival of bacterial human 

pathogens (van Elsas et al. 2012), as well as correlations between specific bacteria and the 

survival of human pathogens (Wells and Butterfield 1997; Heaton and Jones 2008a). 

1.1.3.1 Internalisation  

A challenge to the prevention of foodborne disease caused by fresh produce is the potential 

for disease-causing organisms to internalise within the plant. Internalisation may confer a 

protective effect to human pathogens against multiple stressors including UV exposure, 

desiccation, temperature changes and nutrition changes (Heaton and Jones 2008a; Bartz et 

al. 2015). It also decreases the efficacy of decontamination as internalised organisms are 

protected within the structure of the produce (Gandhi et al. 2001; Warriner et al. 2003).  

The ability of human pathogens to internalise within fresh produce is affected by a large 

number of factors; notably the species and genera of endophyte, crop type and age (Brandl 

and Amundson 2008; Golberg et al. 2011), soil type (Zhang et al. 2016b), water availability 

(Zhang et al. 2016b), and native endophytic and phytopathogen populations (Ge et al. 2014). 

A key risk factor for internalisation within the food supply chain is when the crop and 

bacteria are co-located in an aqueous environment, with an increased likelihood of 

internalisation if the water is of lower temperature than that of the crop (Buchanan et al. 

1999). This is likely due to the increase in passive movement of contaminated water into the 

crop due to the presence of a temperature differential (Heaton and Jones 2008a). To 

account for this, current processing methods require any steps involving the washing of 

produce in water to maintain the water and produce at the same temperature. However, in 

the field, there may be differences in the temperature of crops and irrigation water which 

could lead to increased risk of internalisation (Burnett et al. 2000).  

The evidence supporting the internalisation of pathogens is inconclusive and findings are 

often contradictory (Warriner and Namvar 2010). As a consequence, it is generally 

concluded that the risks of foodborne illness occurring as a result of the internalisation of 

pathogens is low (Monaghan et al. 2008).  

1.1.3.2 Biofilm Formation 

Biofilms are aggregations of bacteria within an extracellular matrix that can contain a single 

species of organism or, more frequently, a diverse range of organisms. The matrix can 

anneal to biological substances, such as foodstuffs or soil, as well as to hard non-natural 



10 
 

surfaces, such as equipment or storage surfaces (Galie et al. 2018), and formation is possible 

across a range of temperatures (Bonsaglia et al. 2014). The formation of biofilm generally 

results in the enhanced survival of bacteria on food and in the food production environment. 

In addition, biofilm formation leads to a greater resistance to antibiotics and 

decontamination using biocides (Russell 2003; Condell et al. 2012). This increased tolerance, 

with bacterial cells exhibiting 10 to 1,000 times less susceptibility to specific antimicrobial 

agents within a biofilm (Balcazar et al. 2015), is due to numerous mechanisms including 

failure of the biocide to penetrate the biofilm and increased stress response of cells inside a 

biofilm (Olsen 2015). Low concentrations of antimicrobials or biocides may also lead to an 

increase in horizontal gene transfer of AMR associated genes due to an increase in the stress 

response of members of the biofilm, aided by the close proximity of cells within a biofilm 

environment, providing optimum conditions for conjugation (Balcazar et al. 2015). Human 

pathogens isolated from fresh produce have been shown to be able to form biofilms 

(Amrutha et al. 2017), and human pathogens have been found as part of biofilms both on 

fresh produce and within the fresh produce processing environment (Galie et al. 2018). The 

increased persistence of bacteria in biofilms and the potential for increased biocide 

resistance and transfer of AMR genes make food associated biofilms a key risk within the 

fresh produce supply chain. 

1.1.4 Antimicrobial and Biocide Resistance  

Antimicrobial resistance (AMR) develops when bacteria adapt to grow in the presence of 

antimicrobial compounds or elements, often through genetic changes, and leads to the 

acquisition of resistance to the antimicrobial compound. Antimicrobial resistance can occur 

through mutation of genes already present within bacteria, or through acquisition of new 

genetic material through horizontal gene transfer. There are multiple mechanisms of 

horizontal gene transfer including transformation, transduction and conjugation. 

Transformation is the uptake of naked DNA into a bacterial cell from the surroundings, and 

potentially allows for the transfer of genetic material from distantly related cells. 

Transduction is the transfer of genetic elements from one bacterium to another via a 

bacteriophage. The phage can carry the genetic element into their host cell with them upon 

infection. Due to bacteriophage’s specificity to certain species or genera this mechanism is 

limited to the transfer of genetic material to related species. Conjugation is the transfer of 

genetic material via direct contact between a donor cell and the recipient bacteria, therefore 
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is more likely to occur in cells which are in close proximity, for example in a biofilm. As there 

is less likelihood of two different species being able to create a direct contact this 

mechanism is most likely to allow transfer between bacteria of the same species or genera 

(Gyles and Boerlin 2014).  

The mechanisms of action of AMR broadly fall into four categories: drug efflux, where the 

antimicrobial is actively pumped out of the cell thereby not allowing toxic levels to build up 

in the cell (Levy 2002); decreased cell membrane or wall permeability, where microbial cell 

structure is altered and therefore antimicrobial compounds cannot enter and reach toxic 

levels (Delcour 2009); target overexpression, modification or protection, where the target of 

the antimicrobial compound is altered in some way to allow for its function even in the 

presence of the antimicrobial compound (Adu-Oppong et al. 2016) and drug inactivation, 

where the cell gains the ability to render the antimicrobial compound inactive, for example 

through the enzymatic destruction of the active site of the compound (Lakaye et al. 1999). 

AMR genes often confer resistance to multiple antimicrobials due to their mechanism of 

action (Szmolka and Nagy 2013). The transfer of AMR genes has been demonstrated 

experimentally within the fresh produce environment and many studies report AMR within 

human pathogens isolated from fresh produce (de Vasconcelos Byrne et al. 2016; Zhang et 

al. 2016a). There is also a high prevalence of AMR genes and microbes with AMR genes 

within the microbiota of fresh produce and soil (Pedroso et al. 2013; Rolain 2013). The high 

microbial density in these microbiomes favours the transfer of AMR genes (Aarts and 

Margolles 2015). The application of manure to soil also leads to increased numbers of AMR 

genes, both free and within members of the microbiome, creating a reservoir of AMR genes 

that can pass to human pathogens (Zhu et al. 2016). Herbicides including Glyphosate, have 

also been linked to driving antibiotic resistance in human pathogens (Kurenbach et al. 2015).  

The presence of AMR genes may confer advantages to the host in terms of, for example, 

resistance to biocides. Biocides are compounds used to inactivate bacteria and are widely 

used in the food production chain to decrease the likelihood of contamination of foods, 

feeds and drinks with human pathogens. Due to the overlap in some mechanisms of 

resistance to antibiotics and biocides there is the potential for the evolution of cross-

resistance to both types of compounds. This can occur when the biocide and antibiotic have 

the same target or the same transport mechanism into the cell (Condell et al. 2012). Biocides 

are typically lethal to their target, often after a single application, and generally have 
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multiple targets (Wales and Davies 2015). Therefore, the main mechanisms utilised to confer 

biocide resistance are usually drug efflux or decreased cell membrane or wall permeability 

(Russell 2003). Target site mutations are much rarer in biocide resistance than AMR (Poole 

2002). Biocides are often deployed at much higher concentrations than many bacterial 

resistance mechanisms can cope with, therefore it is more difficult for resistance to emerge 

(Condell et al. 2012). Where resistance genes are already present the addition of biocides 

may drive the transfer of these genes between bacteria, notably in biofilms which will 

decrease the concentration of the biocide in contact with the bacteria, thereby allowing 

resistance mechanisms to be selected for.  

AMR is a growing problem, with many initiatives such as the Global Action Plan on 

Antimicrobial Resistance (World Health Organisation 2015a), being developed to try and 

prevent the world entering a “post antibiotic era”. The consequences of antimicrobial 

resistance include limited treatment options, longer and more severe illness, greater 

mortality and increased costs. 

1.1.5 Bacteriophages 

The use of bacteriophages to eliminate bacterial pathogens is increasingly being studied as 

an alternative to antibiotic or biocide use. Bacteriophages are obligate intracellular parasites 

of bacteria that multiply through use of the host biosynthesis machinery and fall under the 

classification of viruses. They are specific to bacteria, although many of the molecular 

interactions between phage and their bacterial hosts remain largely unexplored. The 

observable effects of bacteriophages were first reported by Hankin (1896), who observed 

the antibacterial effect of a component of the Ganges and Jumna rivers in India which could 

pass through a fine filter and retain its activity. It has since been found that bacteriophages 

are ubiquitous in the natural environment, notably in soil and water (Chibani-Chennoufi et 

al. 2004). Bacteriophages play a key role in the transfer of genetic elements between 

prokaryotes. Segments of host DNA can become encapsulated within the bacteriophage and, 

upon attachment of the phage to a new host, transferred to the new bacteria which may 

then incorporate the DNA into its genome. This makes them an important vector for 

resistance associated genes. Bacteriophages are specific to their host, although the host 

range varies, with some being specific to a single strain of bacteria, whilst others are capable 

of parasitizing several members of a bacterial family (Adams 1959). They have no known 

effects on humans, animals, plants or non-host bacteria. Their ubiquity also indicates they 
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are safe for contact with the environment and humans. The FDA approved the first 

bacteriophage treatment as a food additive in 2006 (U.S. Food and Drug Administration 

2014). The use of bacteriophages in the food industry, as well as for other commercial 

applications, is an area that is still under development and the subject of much commercially 

oriented research.  

1.2 Current methodologies for detection of plant associated human pathogens 

Several methodologies may be employed to detect and identify foodborne pathogens, or 

indicators of faecal contamination, on fresh produce. Enrichment and plating onto specific 

agar-based solid medium to detect the pathogen(s) of interest is the basis for most 

International Standards. Enrichment and plating rarely identifies a single target species and 

therefore must be repeated with other selective agars to enrich the bacterium of interest. 

Due to the low prevalence and titre of human pathogens on fresh produce, indicator 

organisms are often utilised to indicate the presence of a contamination event or poor 

hygiene practice (Health Protection Agency (now Public Health England) 2009). These 

indicator organisms are commonly present in higher numbers than the potentially-

associated pathogens and are generally easier to culture and identify. Health Protection 

Agency (now Public Health England) (2009) guidelines for ready-to-eat foods list 

Enterobacteriaceae, Escherichia coli and Listeria species as indicator organisms in fresh 

produce and identifies levels that raise concern. Plating methods are an important, if not 

vital, tool as they are presently the only methods capable of identifying microbes that can 

grow and replicate, therefore are a potential risk, without confusion arising from inactivated 

or damaged cells or free DNA.  

One disadvantage of culture-based methods is that they are labour-intensive; time 

consuming; require replication; and when conducted in bulk to service commercial 

demands, relatively expensive. There is also the potential for artefacts resulting from 

competition on plates, where non-target organisms outcompete the targeted 

microorganisms for space on the plate thus impacting on the recovery of the targeted 

organism(s). For example Listeria monocytogenes usually occurs at low levels and often in 

similar environments as species that are known to outcompete it in culture e.g. other 

Listeria spp. (Keys et al. 2013; Dailey et al. 2015). False negatives for Listeria monocytogenes 

are also frequently encountered as Listeria spp. have indistinguishable colony morphologies 

and only five colonies per plate are required to be tested to determine species to meet 
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UKAS/ISO-testing requirements (Oravcová et al. 2007). Additional issues with culture-based 

approaches include the time delay between culture and identification, which can be several 

days for most common pathogens such as L. monocytogenes and Salmonella, and the fact 

that culture must be combined with further tests (e.g. serological assays, biochemical test 

strips, pulsed-field gel electrophoresis (PFGE), flow cytometry and polymerase chain reaction 

(PCR)) to confirm species identification and sub-typing of isolates. To gain more detailed 

information on the relatedness of strains for source tracking and outbreak control, further 

approaches such as multi-locus sequence typing (MLST) must be performed.  

To counter these disadvantages molecular methodologies, such as PCR, real time PCR and 

Loop-Mediated Isothermal Amplification (LAMP), are increasingly being applied for routine 

microbiological assessments and are standard for viruses. Next Generation Sequencing 

(NGS) approaches are also attracting much interest as a possible means to explore and 

profile the microbiome associated with fresh produce.  

1.3 Next Generation Sequencing 

1.3.1 Development of NGS Technologies  

DNA sequencing is a methodology for determining the sequence of bases within the genetic 

material of an organism. The first method to be widely applied was the ‘chain-termination’ 

method described by Sanger and colleagues (1977). This method utilises adapted 

deoxyribonucleotides (dNTPs), which prevent amplification, in conjunction with unmodified 

dNTPs and amplification using PCR, to lead to a termination of amplification at every point in 

the DNA chain (Figure 1). The mixed DNA with terminations corresponding to every 

nucleotide is then visualised to read the sequence of the DNA. This visualisation was initially 

undertaken on agarose gels, but the invention of automated DNA sequencers led to easier 

visualisation and automation (Smith et al. 1986). The technology was costly, in both money 

and laboratory hours, inhibiting the adoption of DNA sequencing in any routine manner, 

until the advent of next generation sequencing (NGS) technologies.  
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Figure 1. Outline of Sanger sequencing methods showing use of ddNTPs to terminate 
elongation, and detection of DNA sequence using capillary electrophoresis and gel 
electrophoresis. Figure adapted from Karki (2017). 
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The first widely adopted NGS platform was the 454 Pyrosequencer. Released in 2005, it was 

the first commercial sequencer to produce reads of a useable quality and length. Utilising 

similar methods to Sanger sequencing, the 454 used sequence by synthesis technology and 

light signals to take a snapshot of each base added and infer DNA sequence. The normal 

read length of the 454 was between 400 and 500 bases, although subsequent developments 

allowed for read lengths of 500-800 bp, with approximately one million sequences produced 

and a run time of four hours (Margulies et al. 2005). The 454 was the first machine that 

allowed for parallelisation of sequencing, dramatically increasing the amount of DNA 

sequence that could be generated and decreasing the cost of sequencing per base (Heather 

and Chain 2016). Following the success of the 454 many other platforms were developed, 

some focusing on increasing the read length, others on the accuracy and cost of sequence 

per base.  

Another key NGS platform was the Ion Torrent, originally produced by Life Technologies. 

This machine originally used similar methods to the 454, but instead of using luminescence 

to visualise the sequence it measured pH changes caused by the release of protons (H+ ions) 

during polymerisation. This allowed machine prices to be reduced since the expensive 

optical requirements of the 454 were circumnavigated.  

Arguably the most important NGS development was the introduction of Solexa 

methodologies used by Illumina in their MiSeq and later the HiSeq. Briefly, the Solexa 

method requires the immobilisation of DNA on a plate known as a flow cell, and 

amplification of this DNA (known as bridge-PCR) to create clusters of identical DNA, which is 

then sequenced by washing labelled dNTPs over the flow cell. These labelled dNTPs anneal 

and are excited by lasers leading to fluorescence, thereby allowing identification of the base 

(Illumina 2010). This can be duplicated for both forward and reverse strands of the DNA to 

create paired-end reads. The MiSeq platform is capable of sequencing DNA fragments up to 

600 bp (through two 300 bp reads), and is capable of generating far more data per run than 

the 454 or Ion Torrent machines, but in order to obtain these read lengths it requires a 

greater run time than other machines, taking 56 hrs, although shorter read lengths can be 

achieved in less time. The workflow for sample preparation for the MiSeq is also quicker and 

less prone to errors than the 454 and Ion Torrent methodologies. The ease of use and quality 
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of the data resulting has resulted in Illumina becoming the market leader in current 

sequencing technologies.  

The methods described above give the sequence of a consensus of PCR product, or amplified 

fragment of DNA. The amplification of DNA may lead to errors during sequencing via the 

incorporation of incorrect bases in the amplification stages. In addition, by taking a 

consensus, some of the diversity of single molecules within the sample may be lost. The 

development of single molecule sequencing (SMS) technologies has allowed the direct 

sequencing of a single molecule of unamplified DNA. The first platform to use such SMS 

technology was the single molecule, real time (SMRT) platform from PacBio. Sequencing is 

performed using an array of micro-fabricated nanostructures called zero-mode waveguides 

(ZMWs) that allow light to exclusively illuminate the bottom of a well in which the DNA and 

polymerase complex is immobilised. Modified dNTPs are then used to extend the DNA 

strand allowing detection of the base sequence in real time. This methodology allows for the 

sequencing of fragments of DNA from 250 bp to 40 kb in 0.5 to 4 hours (Pacific Biosciences 

2015), which is particularly useful when sequencing whole genomes. The data produced is 

less accurate than that of Solexa methods and therefore is less applicable where single 

nucleotide differences are of importance, although laboratory methods such as nucleotide 

circularisation can allow for increased accuracy. 

Another SMS method is nanopore sequencing. The first nanopore sequencer to be 

commercially available was the MinION, followed by the larger PromethION and GridION, 

marketed by Oxford Nanopore. These sequencers work through the creation of single 

stranded DNA (ssDNA) which is passed through a protein nanopore immobilised within an 

impermeable “membrane”. The presence of the ssDNA within the nanopore alters the 

current across the membrane, with a different change in current occurring depending on 

which bases are present within the pore. This nanopore then drives the DNA across the 

membrane one base at a time allowing for the changes in current to be read and therefore 

the sequence of the DNA to be calculated. The Oxford Nanopore sequencers give relatively 

long read length (currently believed to be limited only by current extraction technologies) 

and are both cheaper and faster than other sequencing technologies, although there are 

currently significant error rates (Laver et al. 2015).  
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1.3.2 Current NGS Techniques and Applications 

Continuing developments in NGS technologies have allowed for higher throughput of 

samples with greater yield of quality data. With this has come a sharp reduction in the costs 

of sequencing per mega base of data (Wetterstrand 2019) allowing for a further increase in 

the use of sequencing technologies. The decreased cost platform also allows the expansion 

of applications for DNA sequencing, and opens-up opportunities for the routine use of NGS 

in some sectors where it would previously never have been considered feasible (see Table 

3).  

 

Following on from the success of projects such as the Human Genome Project, whole 

genome sequencing (WGS) has been widely utilised in applications in human health, 

including assessment of bacterial genomes for outbreak and phenotypic analysis (Gilchrist et 

al. 2015; Shen et al. 2015; Ellington et al. 2017). Frequently utilised for the identification, 

subtyping and characterisation of human pathogens (Black et al. 2015), WGS is now 

routinely applied in food microbiology (Gilmour et al. 2010; Allard et al. 2012; Franz et al. 

2014; Joensen et al. 2014). The approach potentially allows the improved discrimination of 

similar species over traditional methodologies such as PFGE and MLST (Bergholz et al. 2014), 

facilitating application in surveillance programmes, for example the US FDA’s GenomeTrakr, 

the goal of which is to provide identification of outbreaks and source tracking of causal 

strains (U.S. Food and Drug Administration 2019). In addition, WGS data provides a wealth of 

genetic information which can be used to screen for genes of interest, for example those 

associated with virulence or antimicrobial resistance (Critzer and Doyle 2010; Forsberg et al. 

2012). 

Table 3. Description of techniques used in NGS and examples of their applications 

Technique Description Example applications 

Whole genome 

sequencing 

Total genome of a single organism Subtyping, characterisation of 

new or emerging pathogens 

Metagenomics Total DNA for the whole microbiome 

of a single sample 

Environmental genetics  

Amplicon sequencing / 

Metabarcoding 

Focused DNA (one target gene) for 

whole microbiome for a single sample 

Biodiversity assessment 

Metatranscriptomics Total RNA for whole microbiome for a 

single sample 

Gene activity, gene expression, 

differential gene expression  
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Next generation sequencing also allows for examination of the microbiome associated with 

foods, feeds, drinks, soils and water in greater depth than conventional targeted approaches 

as well as facilitating the identification of non-culturable elements of the microbiome (Trček 

et al. 2016; Andersson et al. 2008). Assessment of the total microbiome is a widely applied 

NGS approach used in food microbiology (Ercolini et al. 2011; Guzzon et al. 2014; Trček et al. 

2016). There are several methodologies that can be employed; metabarcoding, also known 

as amplicon sequencing, metagenomics and metatranscriptomics. Key uses of these 

methodologies are outlined in Table 3. 

Metabarcoding involves the amplification and sequencing of a gene universal to the target 

population (an amplicon), for example the 16S rRNA gene for bacteria or ITS gene for fungal 

populations. This target gene must have a variable region, used for identification, flanked by 

highly conserved regions, which enables annealing of the primers. By focusing on a small 

target gene, it allows for differentiation but requires less sequencing per sample than 

techniques that are totally non-selective. This is the oldest and most frequently utilised 

method for assessing the microbiome due to its lower cost (Johnson et al. 2019). Due to this 

pipelines and databases for analysis of this data are more mature, with most users of this 

data choosing pipelines, such as QIIME (Caporaso et al. 2010) or mothur (Schloss et al. 

2009), in conjunction with databases such as SILVA (Quast et al. 2013) or GreenGenes 

(DeSantis et al. 2006). Additionally, tools to allow users without access to large computing 

clusters to analyse data are also available allowing for greater use of these technologies, one 

such example being MG-RAST (Meyer et al. 2008). One issue with metabarcoding is that, on 

the most commonly-used platforms, the length of the amplicon is too short to achieve 

accurate identification below genera level for many widely used barcodes including the 16S 

rRNA gene amplicon employed for bacterial microbiome analysis (Janda and Abbott 2007). 

This may change in the future with the utilisation of longer read technologies, such as the 

MinION (Benítez-Páez et al. 2016), but currently the error rate prohibits this application of 

nanopore technology. Another limitation is the potential for bias introduced by the 

amplification of the amplicon (Kennedy et al. 2014). 

Metagenomics involves direct sequencing of the total DNA within a sample and yields 

information on the total microbiome of the sample through direct isolation and sequencing 

of nucleic acids. Unlike metabarcoding this is a non-selective approach and therefore will be 

less likely to lead to PCR biases associated with some barcodes and predominantly allows for 
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species level identity. This method also facilitates the examination of the total microbiome, 

including bacteria, fungi and DNA viruses, although it is unable to detect RNA viruses. This 

method has been increasingly utilised to examine the microbiome, and bioinformatics tools 

being developed to allow for this, such as Kraken (Wood and Salzberg 2014) or MetaPhlAn2 

(Truong et al. 2015), and online tools are additionally becoming available such as through 

the MG-RAST system. These bioinformatic methods have not been widely used or validated 

and as yet there is no standard methods or databases that are used in the analysis of these 

data.  

Metatranscriptomics involves sequencing of the total RNA from a sample and thereby can be 

used to study gene expression and activity and, in conjunction with WGS, is a useful tool to 

explore alternative splicing patterns and differential gene expression (Wang et al. 2009). 

Recently, it has been applied to the study of the microbiome, notably for viruses (Bashiardes 

et al. 2016). As with metagenomics, the approach is non-selective and allows for the 

examination of the total microbiome, including bacteria, fungi, RNA viruses and DNA viruses 

that are being actively transcribed within their host. The approach is unable to detect DNA 

viruses that are not actively replicating. Due to this method again being applied in the field 

of the study of the microbiome, it too suffers from a lack of standardised bioinformatic 

methods and databases. The methods used to analyse this data are often adapted 

metagenomics workflows such as using Kraken or MG-RAST, or programs such as BLAST 

(Camacho et al. 2009) which requires high computing power and time costs. These methods 

still require validation of their use in microbiome studies, to allow for accurate and efficient 

processing of data.   By sequencing RNA, metatranscriptomics also yields potentially valuable 

information on patterns of gene expression in the microbiome (Maurice et al. 2013), another 

recent utilisation of this data, which as yet has minimal standardised or validated analysis 

protocols.  

Application of NGS approaches to food, feeds and drinks may allow the proactive screening 

of samples for human pathogens. This would allow samples to be screened for multiple 

agents without the need for multiple tests. A significant percentage of foodborne illness 

arises as a result of unidentified agents and the use of non-targeted approaches such as NGS 

may also allow for the identification of novel, rare or non-culturable causal agents of 

foodborne disease (Scallan et al. 2011). The main issue with using NGS as a screening tool is 

that, as with all molecular techniques, these techniques struggle to distinguish between 
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living and dead cells (Bergholz et al. 2014), and studies have shown that when NGS is 

compared to CFU counts there is a significant difference in the results, attributed to the 

presence of dead cells (de Boer et al. 2015). This presently limits the use of NGS to an initial 

screening tool and follow-on tests must be performed to determine viability. In microbiome 

studies, where information on the community composition and ratios of each is most 

important, research has shown that the profiles of dominant taxa found using NGS is 

comparable to results found through culturing approaches (Jackson et al. 2015). Directed 

microbiome studies may help our understanding of the way in which the microbiome 

impacts on food spoilage and safety , in turn leading to improved shelf life, fewer costly 

recalls, and decrease of waste (Jackson et al. 2015). Further research into the fresh produce 

microbiome may also lead to the development of novel biocontrol agents or greater 

understanding of risk, for example the discovery of additional indicator organisms (Wall et 

al. 2015). Furthermore, understanding the microbiome may also allow for identification of 

sources of contamination within the fresh produce supply chain as different sources of 

contamination may impart different microbial profiles on the produce (Newton et al. 2013).  

1.3.3 NGS Targeting and Enrichment Techniques 

A drawback of NGS in the context of food microbiology is that many techniques have a large 

percentage of the data associated with the plant matrix, not the microbiome (Aw et al. 

2016). Therefore, methods need to be employed to enrich the microbiome, or deplete the 

nucleic acid associated with the matrix.   

Enrichment of the samples via the culturing of the sample prior to extraction may increase 

the proportion of the data associated with the microbiome but also significantly affects the 

microbiome (Rosimin et al. 2016; Hyeon et al. 2017). Culturing will additionally decrease the 

likelihood of detecting certain microorganisms, such as viruses or viable but non-culturable 

organisms (Highmore et al. 2018) negating the benefits of using a non-targeted approach 

such as NGS. Therefore, DNA based or post-extraction enrichment methods may be more 

suitable for use with NGS. There are several kits commercially available to enrich microbial 

nucleic acids, for example from Illumina, New England Biolabs or Qiagen. These 

predominantly use molecular probes to target either the fraction of the microbiome that is 

to be retained, for example poly-A capture, which targets the poly-A tail section of a virus, or 

targets the fraction to be removed, for example ribosomal depletion, that targets ribosomal 

nucleic acids leaving behind a supernatant containing non-ribosomal nucleic acids. There are 



22 
 

many probes available, although due to the predominance of research in human or mouse 

models, many of these kits are focused on removing the nucleic acids associated with these 

hosts. There are fewer kits available to target plant or food microbiomes, although the 

aforementioned poly-A capture and ribosomal depletion are two such methods. 

Additionally, many of these kits target RNA and therefore are only viable for use in 

conjunction with metatranscriptomics, not 16S or metagenomic methods. Although more 

research has been done recently into alternative depletion methods (Sun and Zu 2015; Lee 

et al. 2019; Song and Xie 2020), none are as yet commercially available and therefore have a 

substantial cost and time implication to them. Their lack of commercial availability also 

means a lack of validation and standardisation, ruling them out as candidates for routine and 

standardised screening methods.  

 

1.4 Project Aims  

This PhD focusses on the potential of next generation sequencing (NGS) to detect and 

characterise foodborne pathogens and elucidate the microbiome and potential influences on 

the survival and transmission of human pathogens within the fresh produce supply-chain. 

The aims of this PhD were to: 

(i) Develop laboratory and data analysis protocols that enable the identification of the 

microbiome of fresh produce and identify the limits of detection of these methods 

for human pathogens. 

(ii) Analyse the fresh produce microbiome from samples obtained from the food supply 

chain and examine for correlations with microbiological data. 

(iii) Use phenotypic and genotypic methods to characterise the resistome, virulome, and 

biofilm forming ability and assess the phylogenetic identity and gene content of 

these isolates compared to 80 isolates of meat and clinical origin to identify 

signatures of fresh produce contaminating L. monocytogenes. 

(iv) Assess the incidence of AMR-associated genes in foodborne microbes. 

 

 

  



23 
 

Chapter 2. Development of MiSeq approaches for the detection of the human 

pathogens within the fresh produce microbiome 

2.1 Introduction  

Traditional techniques of pathogen detection on fresh produce allow for the theoretical 

detection of low levels of contamination on produce. The gold-standard approach, used as 

part of many standard methods for bacterial detection, requires plating onto selective and 

semi-selective media. This has a theoretical limit of detection (LoD) of 1 cfu (Bell et al. 2016), 

and also delivers valuable information on viability. Culture-based techniques are however 

limited, in that they only allow for the detection of organisms that are culturable – often a 

small fraction of the microbiome. Moreover, recent research has shown that many 

foodborne bacteria, including some potential pathogens, have viable but non-culturable 

(VBNC) forms, which have lost the ability to grow on media but remain infectious 

(Ayrapetyan and Oliver 2016). In addition, fully effective culturing techniques are not 

available for commonly occurring foodborne viruses such as norovirus. These limitations 

mean that molecular based methodologies are increasingly being utilised to screen food for 

human pathogens and spoilage organisms. The LoD for these techniques is often less 

sensitive than culture-based approaches although Loop Mediated Isothermal Amplification 

(LAMP) has a reported LoD of 1.3-28 targets/reaction (Domesle et al. 2018), and real time 

PCR a theoretical limit of 10 targets/reaction (Bell et al. 2016). Real time-PCR has proven a 

major advancement in the detection and surveillance of viruses, however obtaining 

information on the origin or relatedness of virus strains from different sources cannot 

always be achieved due to the generally small amplicon sizes produced yielding limited 

sequence information. Next generation sequencing (NGS) theoretically allows for the non-

targeted detection of multiple spoilage agents and pathogens. As with other DNA based 

methods it allows for the detection of VBNC organisms and non-culturable organisms such 

as viruses. NGS is increasingly being utilised in research in food microbiology, with most 

studies focusing on whole genome sequencing (WGS) of bacterial isolates (Hyeon et al. 

2017), and the exploration of the microbiome associated with specific commodities (Ottesen 

et al. 2013; Yi et al. 2017). Amplicon sequencing, for example of the 16S rRNA gene for 

bacteria, is currently the most widely applied technique for microbiome analysis due to its 

lower cost, development stage and standardised analytical pipelines (Cao et al. 2017). These 
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pipelines theoretically produce accurate and reproducible results, thereby allowing 

comparison between studies (Thompson et al. 2017; Bolyen et al. 2019). 

The use of metatranscriptomics for interrogation of the microbiome is an emerging field and 

currently few tools are available to analyse data relating to the total microbiome, with those 

that are having been shown to produce variable results (Bashiardes et al. 2016). The use of 

metatranscriptomics for the interrogation of the microbiome has advantages, as it 

potentially allows for the WGS of members of the microbiome, including viruses. One of the 

key issues is contamination of the microbiome with host RNA; therefore, to obtain more 

data associated with the microbiome it is necessary to enrich the RNA associated with the 

microbiome. There are several methods for purifying or enriching this fraction. One example 

is poly-A capture. This allows for the purification of virus RNA through binding of the poly-A 

tail section of the virus allowing for removal of non-poly-A RNA. Another method is 

ribosomal depletion. This degrades ribosomal RNA leaving behind other RNAs, including viral 

RNA. Previous research has compared the efficacy of; multiple extraction methods (Hang et 

al. 2014; Fouhy et al. 2016), primer sets, PCR conditions (Ahn et al. 2012; Fouhy et al. 2016), 

and sequencing platforms (Caporaso et al. 2012; Quail et al. 2012; Allali et al. 2017), but very 

few have focused on the effects of different methodologies within the context of the fresh 

produce supply chain. In addition, scant attention has been paid to the effect of molecular 

enrichment methods on the microbiome or identified the LoD applicable to these methods. 

Those studies which have examined the LoD (Frey et al. 2014; de Boer et al. 2015), utilise 

outdated approaches or have used notably microbiologically sterile matrices which are less 

applicable to most real-world situations. 

This study compared two methods of enrichment, poly-A capture and ribosomal depletion, 

on samples testing positive for norovirus using real time-PCR, followed by metagenomics 

analysis, to assess methodology for the detection of foodborne human pathogenic 

organisms. Findings were then applied to establish the limits of detection of current 

sequencing technologies using Illumina MiSeq and bioinformatic methods. 

The aims of this study were to:  

(i) Examine the effect of enrichment methodology (polyA capture vs ribosomal 

depletion) on the ability to detect viruses in metatranscriptomics studies using 

the ScriptSeq kit. 
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(ii) Identify and compare the limit of detection of metatranscriptomics (using 

NEBNext or ScriptSeq kits), and 16S rRNA gene amplicon sequencing (using 

primers to amplify the V4 region of the rRNA gene), on the MiSeq platform, via 

the analysis of Salmonella and MS2 phage spiked into a lettuce homogenate 

background. 

(iii) Ascertain the impacts of different bioinformatic approaches on the assigned 

microbiome. 

(iv) Use bioinformatic techniques to create a mock community to assess the effect of 

the differing read length and error profiles of current sequencing platforms on 

the LoD. 

 

2.2 Methods  

2.2.1 Comparison of Enrichment Techniques 

2.2.1.1 Sequencing 

Twelve RNA samples extracted from lettuce and raspberries were taken from an archive at 

Fera. They had been extracted following ISO Technical Specification 15216-1:2013, and 

contained mengo virus as a spiked internal positive control and had been tested for 

norovirus as part of a previous study (Cook et al. 2019). RNA was quantified using the Qubit® 

RNA HS Assay Kit (Invitrogen, Thermo Fisher Scientific, Carlsbad, United States) following the 

manufacturer’s instructions (Life Technologies 2015b). Briefly, a working solution was made 

up by diluting Qubit RNA HS Reagent 1:200 in Qubit RNA HS Buffer in a clean appropriately 

sized tube. This was then vortexed and 190 μl added to two clean, low absorbance, 0.8 ml 

tubes and 10 μl of the appropriate standard added to each tube. For samples, 2 μl of the 

RNA extract was added to 198 μl of working solution. This was then gently vortexed and 

incubated at room temperature for 2 mins before reading on a Qubit V2 (Invitrogen, Thermo 

Fisher Scientific, Carlsbad, United States). Each sample was then split into two equal 

volumes, and one replicate of each was directed into one of two workflows, i) ribosomal 

depletion using the ScriptSeq™ Complete Kit for Plant Leaf (Illumina, San Diego, United 

States) following manufacturer’s instructions (Epicentre 2013), or ii) poly-A capture using the 

NEBNext® Poly(A) mRNA Magnetic Isolation Module (New England Biolabs, Ipswich, United 

States) following manufacturer’s instructions (New England Biolabs 2018). The processing of 

samples is outlined in Figure 2.  
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Samples in workflow i were diluted with MGW to create a total volume of 28 µl. The samples 

were added to a 96 well PCR plate and 8 µl of rRNA Removal Solution and 4 µl Reaction 

Buffer added. The mixture was heated in a thermocycler at 68 °C for 5 minutes and then 22 

°C for 5 minutes before being removed to RT. Magnetic beads were washed twice, 

resuspended and RiboGuard RNase Inhibitor added before 65 µl of beads was added to each 

sample and incubated at RT for 5 minutes. The mixture was then heated in a thermocycler at 

50 °C for 5 minutes, before being removed to RT and placed on the magnetic rack and left 

for 2 minutes for the supernatant to clear. The supernatant containing the ribosomal 

depleted RNA was then transferred to a new 96 well PCR plate. The samples were cleaned 

by addition of 160 µl RNAclean XP (Beckman Coulter) and incubated at RT for 15 minutes. 

The mixture was placed onto a magnetic rack and left for 2 minutes for the supernatant to 

clear. The supernatant was removed, and the beads were washed twice in 80% Ethanol, left 

to air dry for 10 minutes before being resuspended in 12 µl molecular biological grade water 

(MBGW), left for 5 minutes at RT to elute the RNA from the beads, and placed on the 

magnetic rack and left for 2 minutes for the supernatant to clear. The supernatant 

containing the ribosomal depleted RNA was then transferred to a new 96 well PCR plate 

ready for processing using the Illumina ScriptSeq kit. 

Samples in workflow ii were diluted with MGW to create a total volume of 50 µl. NEBNext 

Magnetic Oligo d(T)25 Beads were washed twice and mixed with the RNA sample in a 96 

well PCR plate. The mixture was heated in a thermocycler at 65 °C for 5 minutes and then 

the temperature decreased to 4 °C, to denature the RNA and facilitate binding of the poly-A-

 

Figure 2. Flow chart showing methodologies employed for norovirus positive samples to compare two 
enrichment techniques, ribosomal depletion and polyA capture, from extracted RNA to sequencing. 

RNA from Norovirus positive lettuce and raspberries

Ribosomal Depletion (Epicentre 2013)

ScriptSeq RNA Prep (Epicentre 2013)

PolyA Capture (New England Biolabs 2018)

MiSeq Sequencing Preparation and QC (Illumina 2018)
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RNA to the beads, before being removed to RT, resuspended by pipetting gently, incubated 

at RT for 5 minutes, resuspended again and incubated at RT for a further 5 minutes. The 

mixture was placed onto a magnetic rack and left for 2 minutes for the supernatant to clear. 

The supernatant was removed, and beads were washed twice in Wash Buffer and then 

resuspended in 50 µl Tris buffer. The sample was heated in a thermocycler at 80 °C for 2 

minutes, then the temperature decreased to 25 °C, to elute the poly-A RNA from the beads, 

before being removed to RT. 50 µl RNA Binding Buffer was added, to allow the polyA-RNA to 

rebind the same beads and incubated at RT for 5 minutes. The mixture was placed onto a 

magnetic rack and left for 2 minutes for the supernatant to clear. The beads were washed 

twice in Wash Buffer and then resuspended in 17 µl Tris buffer. The sample was heated in a 

thermocycler at 80 °C for 2 minutes, then the temperature decreased to 25 °C, to elute the 

poly-A RNA from the beads, before being removed to RT and placed on the magnetic rack 

and left for 2 minutes for the supernatant to clear. The supernatant containing the polyA 

RNA was then transferred into a new 96 well plate ready for processing using the Illumina 

ScriptSeq kit. 

The samples then underwent ScriptSeq RNA preparation for sequencing. For sequencing 

using the ScriptSeq kit, 9 µl of each sample from both workflows had 1 µl RNA fragmentation 

Solution and 2 µl synthesis primer added to them and were heated in a thermocycler at 85 

°C for 2 minutes to fragment the RNA, then the temperature decreased to 4 °C before being 

removed to RT. A master mix containing 6:1:1 ratios of cDNA Synthesis Premix : 100mM DTT 

: StarScript Reverse Transcriptase was made and 4 µl added to each sample. The mixture was 

then heated in a thermocycler at 25 °C for 5 minutes, 42 °C for 20 minutes to allow the 

synthesis of cDNA, then the temperature decreased to 37 °C before being removed to RT. 

Immediately, 1 µl of Finishing Solution was added to each reaction and the plate replaced in 

the thermocycler and incubated at 37 °C for 10 minutes, 95 °C for 3 minutes, then the 

temperature decreased to 25 °C, before being removed to RT. A second master mix was 

made up using 15:1 ratio of Terminal Tagging Premix : DNA Polymerase and 8 µl of the 

master mix added to each reaction before incubating in a thermocycler at 25 °C for 15 

minutes, 95 °C for 3 minutes, to terminally tag the cDNA, then the temperature decreased to 

4 °C before being removed to RT. The samples were cleaned using AMPure XP beads 

(Beckman Coulter) following the ScriptSeq standard protocol. Briefly, to the samples, 45 μl of 

Ampure XP beads were added and incubated at RT for 5 minutes. The sample was placed on 
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a magnetic block to hold the Ampure XP beads, and once the supernatant had cleared, the 

supernatant was removed from the sample. The samples were washed twice with 80% 

Ethanol, resuspended in 24 μl MBGW and the supernatant containing the DNA moved into a 

new 96 well PCR plate. 

The index PCR master mix was made up in a new plate with 25 μl FailSafe PCR PreMix E, 1 μl 

Forward PCR Primer, 1 μl Index PCR Primer (each sample was indexed with a different index 

PCR Primer) and 0.5 μl FailSafe PCR Enzyme per well and 22.5 μl di-tagged cDNA added to 

each well. The samples were then amplified using the following PCR conditions: 95 °C for 1 

minute, followed by 20 cycles of 95 °C for 30 seconds, 55 °C for 30 seconds, 68 °C for 3 

minutes, followed by a final anneal at 68 °C for 7 minutes and hold at 12 °C. Post-PCR 

samples were cleaned using AMPure XP beads, by addition of 30 μl Agencourt AMPure XP 

beads and elution in 24 µl MBGW. The supernatant containing the purified di-tagged cDNA 

was then transferred to a new 96 well PCR plate. The supernatant was cleaned using 

AMPure XP beads (as in Appendix A).  

The final samples were quantified using the Qubit® DNA HS Assay Kit (Invitrogen, Thermo 

Fisher Scientific, Carlsbad, United States) following the manufacturer’s instructions (Life 

Technologies 2015a). Samples were pooled at equimolar concentrations to create a 4 nM 

pool, and pool quality checked using the Agilent 2200 TapeStation system (Agilent 

Technologies, Santa Clara, United States) with High Sensitivity D1000 reagents (Agilent 

Technologies, Santa Clara, United States) following the manufacturer’s instructions (Agilent 

Technologies 2015), to attain a sample peak between 200-1000bp with no small fragments 

below 200 bp to allow suitable quality for sequencing. The pool was then denatured using 

NaOH (Illumina 2018a), combined with 5% PhiX, diluted to 10 pM, and run on a single MiSeq 

flow cell using the V3 reagents kit (Illumina, San Diego, United States) following the 

manufacturer’s instructions (Illumina 2018b).  

2.2.1.2 Quality Control 

Process blanks, MBGW put through the same processing as samples, were undertaken for 

these samples, given their own index and run through the sequencer as a sample. An 

additional indexing blank, MBGW not run through the processing but given its own index at 

the index PCR stage, were also run through the sequencer as a sample. All were examined 

using the tapestation and Qubit for quality purposes prior to sequencing. All samples, 
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including blanks, were examined for read number and those with low quality reads, or low 

read numbers were filtered out of the analysis.  

The PhiX internal standard was spiked into the final pool and run on the sequencer. The PhiX 

standard was mapped to the PhiX genome on the MiSeq as part of the standard Illumina 

workflow to allow for the assessment of the quality of the MiSeq run, in addition to metrics 

on cluster density and read numbers. This was compared to the average statistics on these 

metrics for the specific run type (amplicon or metagenomics) runs on the MiSeq at Fera to 

ensure the quality of the run was of the standard usually obtained. 

2.2.1.3 Analysis  

Reads from the MiSeq were initially trimmed using Sickle v1.33 (Joshi and Fass 2011) to 

remove sequence of quality less than Q20 (1 in 100 probability of incorrect base call) and 

length less than 100 base pairs. To identify the number of reads in each sample belonging to 

the internal spiked positive control (mengo virus), and norovirus, the trimmed data were 

mapped to the mengo virus complete genome (NCBI DQ294633.1 with a spurious 55 bp 

region of tandemly-repeating cytosine removed from the start of the sequence) or the 

norovirus genome (NCBI NC_001959.2) using bwa mem v0.7.10, and alignments analysed 

using Samtools v0.1.19. This approach is a more sensitive method for detecting sequences 

from known viruses of interest than non-targeted assignment and therefore provided more 

accurate results. A paired t-test was performed in RStudio Version 1.0.136 to compare the 

total number of reads generated and the number of reads mapping to the mengo virus 

positive control by each enrichment method. R studio was additionally used to calculate the 

mean percentage of reads obtained after filtering with sickle and to perform a paired t-test.  

2.2.2 Limit of Detection and Method Comparison  

2.2.2.1 Sample preparation  

MS2 Preparation 

Freeze-dried E. coli (DSMZ strain 5695) and vacuum-dried MS2 phage (DSMZ strain 13767) 

were purchased from DSMZ (Leibniz Institute DSMZ-German Collection of Microorganisms 

and Cell Cultures, Brunswick, Germany).  

To the freeze-dried E. coli, 500 μl NZCYM broth was added and incubated at RT for 20 

minutes to rehydrate the cells. Approximately 100 μl of the rehydrated suspension was 

added to 5 ml NZCYM broth and at 37°C grown for 24 h, to bulk up cells for subsequent MS2 
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propagation. A further 100 μl of the rehydrated suspension was spread onto NZCYM agar 

(Table S1B) plate to assess purity of the culture. 

To grow the MS2, the bulked-up suspension of E. coli was used to create an E. coli lawn by 

mixing 100 μl of the 24 h culture with 4 ml of melted NZCYM soft agar (Table S1C), which 

was then poured over a NZCYM agar plate to form an overlay and left at RT for 10 minutes to 

allow to set. The vacuum-dried MS2 was then placed onto the centre of the overlay and 100 

μl NZCYM broth added and left for 10 minutes to rehydrate. The plate was incubated for 18 

hours at 37°C. After incubation, 5 ml NZCYM broth was added to the plate and placed at RT 

in a shaking incubator for 4 hours. The broth was then removed from the plate and 

centrifuged for to remove debris, before the supernatant was filtered through a 45 µm filter.  

To bulk-up the phage, 500 μl fresh 24 hour grown E. coli was added to 500 μl of the filtered 

MS2 supernatant and incubated at RT for 30 minutes.  200 μl of the E. coli / MS2 mixture 

was then added to 4 ml of melted NZCYM soft agar, subsequently poured over a NZCYM agar 

plate to form an overlay and left at RT for 10 minutes to allow to set. This was repeated four 

times, and the plates were incubated for 24 hours at 37°C. After incubation the soft agar 

layer was scraped off and placed into 50 ml centrifuge tubes and centrifuged at 3000 *g for 

20 minutes. The supernatant was taken from the centrifuged tubes and passed through a 45 

µm filter before quantification.  

Quantification of the MS2 was done using a Plaque assay (Adams 1959). A dilution series 

from -1 to -10 was created of the filtered supernatant collected above. 100 μl fresh 24 hour 

grown E. coli was added to 4 ml of melted NZCYM soft agar, poured over a NZCYM agar plate 

to form an overlay and left at RT for 10 minutes to allow to set. For each MS2 dilution, 10 μl 

of the phage dilution was spotted on the surface of the plate in triplicate. Three dilutions 

were done per plate. The plates were incubated for 18 hours at 37°C and then removed and 

plaques counted for each dilution to calculate the titre of MS2 in Plaque Forming Units 

(PFU).  The MS2 suspension was aliquoted and kept at 4°C for temporary storage (less than 1 

week) and -80°C for long term storage (greater than 1 week). 
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Figure 3. Overview of procedure for preparation of a dilution series of MS2 and 
Salmonella in lettuce homogenate, subsequent disruption and extraction, and 
sequencing workflows for mock contaminated samples. 
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Salmonella Preparation  

Salmonella enterica subsp. enterica serotype Cerro (NCTC 5801) was grown in nutrient broth 

(NB). A dilution series of the fresh 24-hour culture was created by adding 1 ml of the liquid 

culture to 9 ml PBS, mixed and then a serial dilution created from -1 to -8. The dilution series 

from -5 to -8 were plated in duplicate onto nutrient agar (NA), to quantify colony forming 

units (CFU) per ml and assess purity, through the addition of 100 μl of the appropriate 

dilution to the plate, spreading using a sterile spreader and incubated at 38 °C for 24 hours. 

After incubation colonies were counted to allow quantification in colony forming units (CFU). 

The Salmonella culture was kept at 4°C for temporary storage (less than 1 week) and -80°C 

for long term storage (greater than 1 week).  

2.2.2.4 Dilution Series Preparation and Extraction 

Iceberg lettuce was purchased from a local retailer and used to make a lettuce homogenate 

for preparation of a dilution series (Figure 3). Briefly the outermost leaves were removed 

and placed into a Bioreba filtered grinding bag (Lynchwood Diagnostics, Peterborough, UK) 

and ground before 24 aliquots each of 50 µl were transferred into sterile 1.5 ml tubes. A 

serial dilution of MS2 and Salmonella was prepared based on the PFU and CFU calculated for 

the cultures, respectively, through the dilution of the culture in molecular biological grade 

water (MBGW) and combined with the lettuce homogenate. Each dilution was performed in 

triplicate. The samples were extracted using the AllPrep DNA/RNA Mini Kit (Qiagen, Hilden, 

Germany) following the manufacturer’s instructions (Qiagen 2005). The RNA was eluted in 

50 µl, followed by a further 30 µl of MBGW, and the DNA eluted in 100 µl buffer EB. The 

eluate was transferred to a new 1.5 ml tube and stored at -80 °C.  

2.2.2.3 Sample QC 

DNA samples were subject to PCR and real time PCR using the methods outlined in Figure 3. 

For conventional PCR, a mastermix was made using 12.5 µl, 2* ReddyMix (Thermo Fisher 

Scientific, Waltham, United States), 5 µl MGW, 1.25 µl 10 mM forward primer Salm-invA-

285-F (GTGAAATTATCGCCACGTTCGGGCAA), 1.25 µl 10 mM reverse primer Salm-invA-285-R 

(TCATCGCACCGTCAAAGGAACC) per sample. This was then run on a thermocycler at 95 °C for 

2 mins, followed by 35 cycles of 95 °C for 20 s, 60 °C for 30 s, 72 °C for 90 s, and one cycle at 

a final annealing temperature of 72 °C for 5 mins. The PCR products were visualised on a 1% 

agarose gel made with 1 * Tris/Borate/EDTA (TBE) buffer, with 3% ethidium bromide to 

visualise, and run for 90 mins at 80V, before using UV to image. Real time PCR was 
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undertaken using the mericon Salmonella spp. Kit (Qiagen, Hilden, Germany) following 

manufacturer’s instructions (Qiagen 2012a). Briefly, a mastermix containing 5.4 µl ROX dye 

and 130 µl Multiplex PCR MM was made and per well 10.4 µl of this mixed with 9.6 µl of 

either sample, positive control DNA or MGW as required. This was run on a real time PCR 

instrument, with an initial denaturation of 5 mins at 95 °C, followed by 40 cycles of 95 °C for 

15 s, 60 °C for 30 s and 72 °C for 10 s.  

2.2.2.4 Sequencing  

ScriptSeq RNA-seq 

The RNA samples were quantified using the Qubit® RNA HS Assay Kit (Life Technologies 

2015b) on the Qubit v2 to ensure an input concentration of lower than 5 µg as specified by 

the ScriptSeq kit protocol. The samples were then processed for sequencing using the 

ScriptSeq Compete Plant Kit (Illumina, San Diego, United States) following the 

manufacturer’s protocol (Illumina 2018d), as outlined in section 2.2.1.1 workstream i. 

Briefly, this included treatment with Ribozero to remove ribosomal RNA, synthesis and 

tagging of cDNA and addition of unique indexes by PCR.  

Post-PCR samples were cleaned using Agencourt AMPure XP beads (Beckman Coulter, Brea, 

United States) following the protocol presented in Appendix A, with the addition of 30 μl of 

Ampure XP beads and elution in 35 μl MBGW. The samples were then quantified using the 

Qubit® DNA HS Assay Kit (Life Technologies 2015a) and pooled at equimolar concentrations 

to create a 4 nM pool. Pool quality was checked using the Agilent 2200 TapeStation system 

with High Sensitivity D1000 reagents (Agilent Technologies 2015). The sample peak was 

between 200 bp and 1000 bp, with no small fragments below 200 bp, thus meeting the 

required criteria for MiSeq analysis. The 24 sample 4 nM pool was denatured and combined 

with PhiX (Illumina 2018a) then run on the MiSeq using the V3 reagents kit at 8 pM with 5% 

PhiX (Illumina 2018b).  

NEB-Next Ultra II RNA-seq 

The RNA samples were subject to treatment with DNase I (Qiagen, Hilden, Germany) to 

minimise DNA contamination prior to sequencing. This required mixing 30 μl of sample with 

13.75 μl MBGW and addition of 5 μl Buffer RDD, and 1.25 μl DNase I. The mix was incubated 

at room temperature for 10 mins and then cleaned-up using AMPure XP beads (Appendix A) 

with an input of 90 μl AMPure XP beads (ratio 1.8:1, beads to sample), and elution in 20 μl of 

MBGW.  
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The DNA-free RNA was then prepared for sequencing using the NEBNext® Ultra™ II RNA 

Library Prep Kit for Illumina® following the manufacturer’s protocol NEBNext® Ultra™ II RNA 

Library Prep Kit for Illumina Instruction manual, version 1, chapter 2 (New England Biolabs 

2017). To 12 µl RNA, 1 µl rRNA depletion solution and 2 µl buffer were added and mixed 

before placing on a PCR machine for 2 min at 95 °C, ramp down 0.1 °C per s to 22 °C, held 22 

°C for 5 min. After the hold, 2 µl RNAse H, 2 µl Buffer and 1 µl MBGW were added and the 

mix incubated at 37 °C for 30 min. To this, 2.5 µl DNAse I, 5 µl buffer, 22.5 µl MBGW were 

added to remove DNA and incubated at 37 for 30 min. To remove DNAse and clean AMPure 

XP beads were used as per Appendix A, eluting in 7 µl MBGW. To enrich the RNA, 4 µl buffer 

and 1 µl random primers were added to the eluate and incubated for 8 min at 94 oC. After 

incubation, 8 µl MBGW and 2 µl First strand synthesis enzyme mix were added, and then the 

mix thermal cycled for 10 min at 25, 50 min at 42 oC, 15 min at 70 oC and held at 4 oC. A 

further 8 µl buffer, 4 µl Second strand synthesis enzyme and 48 µl MBGW were added and 

the mix incubate for 1 hour at 16 oC. The product was cleaned using AMPure XP beads (as in 

Appendix A), eluting in 50 µl 0.1x TE buffer. To this, 7 µl buffer, and 3 µl End Prep enzyme 

mix were added and incubated for 30 min at 20 and 30 min at 65 oC. A 5-fold dilution of 

NEBNext adapter in buffer was made and 2.5 µl of this dilution was combined with 1 µl 

ligation enhancer and 30 µl ligation master mix before being added to the sample and 

incubated for 15 min at 20 oC. To this, 3 µl USER enzyme was added and incubate for a 

furhher 15 min at 37 oC. The product was cleaned using AMPure XP beads, eluting in 15 µl 

0.1x TE buffer, before being combined with 25 µl Q5 master mix and 5 µl of each of forward 

and reverse primers and thermocycled for 30s at 98 oC, then 10 cycles of 98 oC for 10 s, 65 oC 

for 75 s, followed by a final 5 min at 65 oC.  The final samples with adapters were cleaned 

using AMPure XP beads, eluting into 20 µl 0.1x TE buffer.  

The 24 samples were quantified using the Qubit® DNA HS Assay Kit (Life Technologies 2015a) 

and pooled to equimolar concentrations. Pool quality was checked using the Agilent 2200 

TapeStation system with High Sensitivity D1000 reagents (Agilent Technologies 2015) and 

quantified using the Qubit® DNA HS Assay Kit following the manufacturer’s instructions. The 

24 sample 4 nM pool was denatured and combined with 5% PhiX (Illumina 2018a) and was 

run on the MiSeq using the V3 reagents kit at 8 pM (Illumina 2018b).  
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16S rRNA Gene Amplicon Sequencing 

The DNA samples underwent preparation for 16S rRNA gene amplicon sequencing (see 

Figure 3). PCR reactions of 30 μl were carried out using the Phusion High-Fidelity DNA 

Polymerase (New England Biolabs) containing 6 μl of HF buffer, 0.3 μM forward 

(TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGTGYCAGCMGCC-GCGGTAA) and reverse 

(GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGGACTACNVGGGTWTCTA-AT) primers 

(Caporaso et al. 2011) containing Nextera tags, 0.3 mM of dNTPs, 0.3 μl Phusion DNA 

polymerase and 1 μl of 1:10 diluted template DNA. The final reaction volume was made up 

with nuclease-free water. A touchdown PCR protocol was followed. Amplification started 

with an initial single denaturation step for 2 min at 98°C, followed by 22 cycles of 

denaturation at 98°C for 20 s, annealing for 45 s starting at 65°C with a reduction of 0.5oC 

per cycle down to 54°C, and extension for 60 s at 72°C. This was followed by a further 8 

cycles of denaturation for 20 s at 98°C, annealing for 45 s at 54°C, and extension for 60 s at 

72°C prior to a final extension for 10 min at 72°C. PCR Products were cleaned-up using 

AMPure XP Beads (Appendix A) with an input of 24 μl of beads, and elution in 50 μl MBGW. 

Nextera XT sequencing adapters and indexes (Illumina) were then attached using Phusion 

High-Fidelity DNA Polymerase by combining 10 μl HFb, x 0.3 μM dNTP, x 1 μM MgCl2, 0.5 μl 

Phusion polymerase and 5 μl of each unique index 1, 2 and the purified PCR product per 

sample. The final reaction volume was made up with nuclease-free water. Amplification 

started with an initial denaturing step for 3 mins at 95°C, followed by 8 cycles of 

denaturation for 30 s at 95°C, annealing for 30 s at 55°C and extension for 30 s at 72°C prior 

to a final extension for 5 mins at 72°C. The PCR product was then cleaned-up using AMPure 

XP Beads (Appendix A), with addition of 56 μl of beads and elution in 25 μl MBGW. All 

samples were then quantified using the Qubit® DNA HS Assay Kit (Life Technologies 2015a) 

and pooled to equimolar concentrations with a further 96 unrelated amplicon samples to 

reflect a standard amplicon run. Pool quality was checked using the Agilent 2200 

TapeStation system with High Sensitivity D1000 reagents (Agilent Technologies 2015). The 

120-sample pool was denatured with NaOH, plus an additional heat denaturation step, then 

combined with 10% PhiX (Illumina 2018a) and run on the MiSeq using the V3 reagents kit at 

10 pM (Illumina 2018b).  
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2.2.2.5 Quality Control 

Extraction blanks were undertaken as part of the RNA extraction. Process blanks, MBGW put 

through the same processing as samples, were undertaken for each sequencing method. All 

were examined using the tapestation and Qubit for quality purposes. For ScriptSeq and 16S 

rRNA sequencing these were run on the sequencer as a separate sample. For NEB, due to a 

lack of availability of unique indexes, the negatives were unable to be sequenced. An 

additional indexing blank, MBGW not run through the processing but given its own index at 

the index PCR stage, were also done for the 16S rRNA method and run through the 

sequencer as a separately indexed sample. All samples, including blanks, were examined for 

read number and those with low quality reads, or less than 500 reads were filtered out of 

the analysis. Any blanks remaining were run through the bioinformatic analysis separately to 

samples and the top taxa compared manually to those in experimental samples to rule out 

cross contamination.  

The PhiX internal standard was spiked into the final pool and run on the sequencer. The PhiX 

standard was mapped to the PhiX genome on the MiSeq as part of the standard Illumina 

workflow to allow for the assessment of the quality of the MiSeq run, in addition to metrics 

on cluster density and read numbers. This was compared to the average statistics on these 

metrics for the specific run type (amplicon or metagenomics) runs on the MiSeq at Fera to 

ensure the quality of the run was of the standard usually obtained. 

2.2.2.6 Bioinformatics 

RNA-Seq Analysis  

Several methodologies were undertaken to interrogate RNA-Seq data to examine the 

impacts of bioinformatic protocols on LoD. Initially, reads from the MiSeq were trimmed 

using Sickle v1.33 (Joshi and Fass 2011) to remove sequence of quality less than Q20 (1 in 

100 probability of incorrect base call) and lengths less than 100 base pairs. The remaining 

reads were used in subsequent analyses using: MG-RAST v.4.0.3 (Meyer et al. 2008), Kraken 

v1 (Wood and Salzberg 2014) with and without an initial prefiltering step to remove lettuce 

contamination, Bracken (Lu et al. 2017) with and without an initial prefiltering step to 

remove lettuce sequence contamination and mapping to the Salmonella and MS2 genomes 

using BWA-MEM (Li and Durbin 2009).  

Kraken was also used to assign taxonomy following the mapping of reads to the lettuce 

chloroplast. Mapping was done using BWA-MEM v0.7.10 and then data filtered using 
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Samtools v0.1.19 (Li et al. 2009) to give a list of the unmapped reads. The unmapped reads 

were assigned taxonomy using MiniKraken and full Kraken databases. The outputs were 

summarised in Kraken-summary tables and used to generate summary tables of read count 

against assignment. Summary data from Kraken outputs was then used in Bracken v1.0.0 to 

create a semi-quantitative list of the species present in each sample.  

Trimmed data were mapped to the Salmonella and MS2 complete genomes using BWA-

MEM, and alignments were analysed using Samtools to create an output of the number of 

reads mapping to each of the genomes. 

16S rRNA gene Sequence Analysis 

The data were analysed using several methods: MG-RAST, QIIME (Caporaso et al. 2010), 

mapping to the Salmonella genome using BWA-MEM and QIIME2 (Bolyen et al. 2019). MG-

RAST 16S rRNA gene sequencing samples were QC’d using the MG-RAST standard online 

pipeline and taxonomy assigned using the Greengenes database (DeSantis et al. 2006). 

Analysis by QIIME v1.9.0 briefly comprised QC to remove reads of low quality or length, the 

removal of chimeric sequences from the data, OTU picking and taxonomic assignment, then 

visualisation within QIIME. Quality controlled data were mapped to the Salmonella complete 

genome using BWA-MEM, and alignments analysed using Samtools to create an output of 

the number of reads mapping to the genome. QIIME2 was adopted using methodology 

outlined in the tutorial documentation, all steps outlined were performed as part of the 

QIIME2 pipeline. Importing of data was done following the Cassava 1.8 paired-end 

demultiplexed fastq section of the importing tutorial (Qiime2docs 2017a). The “Moving 

Pictures” tutorial (Qiime2docs 2017b) was then followed from the summary of 

demultiplexed results onwards. DADA was used to denoise the data then sequences were 

aligned using MAFFT (Nakamura et al. 2018) and filtered to remove variable positionings. A 

tree was generated, rooted and used to analyse diversity. Diversity was analysed using alpha 

rarefaction and beta significance. Taxonomic assignment was completed using the command 

“qiime feature-classifier classify-sklearn”. 

Assessment of LoD 

For all methodologies, species with fewer than 10 reads were filtered out of the data and are 

reported as having zero reads for subsequent analysis. The LoD was assigned as the lowest 

concentration at which greater than 10 reads were observed for the target species for all 

replicates at that concentration. Basic statistics to examine the linearity of the relationship 
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between the number of reads assigned and the concentration of MS2 or Salmonella spiked 

were performed in Microsoft Excel (Office 365, Microsoft, Redmond, United States). 

2.2.3 MiSeq vs HiSeq read simulation  

To create a simulated mock community, the top bacterial genera from the analysis of the 

LoD lettuce microbiome samples were downloaded from the NCBI database (Table 4) and 

combined with the lettuce chloroplast genome (NC 007578.1 Lactuca sativa chloroplast, 

complete genome) to simulate host contamination. Varying levels of Salmonella enterica (NC 

003198.1 Salmonella enterica subsp. enterica serovar Typhi str. CT18, complete genome) 

were also added to the mock community to create a dilution series, giving a final abundance 

of Salmonella ranging from 0 to 10% of the sample (Appendix B). This was then used to 

simulate 1 million MiSeq, HiSeq or NovaSeq reads for each “dilution”, performed in 

triplicate, using InSilicoSeq (Gourle et al. 2018). The 21 mock samples were then analysed 

using Kraken with the mini database. Read numbers were assessed in Microsoft Excel and a 

single factor ANOVA performed to check the significance of the difference in read numbers 

between platforms.  

  

Table 4. NCBI accession number, strain name, and details on chromosome or full genome 

used, for all isolates used to produce the mock community dilution series. 

Accession 
Number 

Name Genome detail 

NC 002944.2  Mycobacterium avium subsp. paratuberculosis str. k10 complete genome 

NC 002947.4  Pseudomonas putida KT2440 chromosome complete genome 

NC 004722.1  Bacillus cereus ATCC 14579 chromosome complete genome 

NC 016830.1  Pseudomonas fluorescens F113 complete genome 

NZ CP010519.1  Streptomyces albus strain DSM 41398 complete genome 

NZ CP011007.1  Bacillus pumilus strain SH-B9 complete genome 

NZ LT700188.1  Negativicoccus massiliensis strain Marseille-P2082 
genome assembly 

chromosome: 
contig00001 

NC 003198.1 Salmonella enterica subsp. enterica serovar Typhi str. 
CT18 

complete genome 
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2.3 Results  

2.3.1 Quality Assessment  

Run quality metrics are found in Table 5. All runs had a high level of reads passing filter and 

assigned to indexes, indicative of a good quality run. Negative controls were examined and 

all had read numbers of less than 500, therefore were filtered out at QC stage and no 

subsequent analysis was performed on them.   

 

Table 5. MiSeq run metrics for each run associated with data from enrichment comparison 
and limit of detection (LoD) study 

Method 
Cluster 
Density 

Reads 
Passing 
Filter 

% of 
Clusters 
Passing 
Filter 

% PhiX 
Loaded 
into 
Library 

Concentration 
of library 
loaded 

% of 
Reads 
Aligned 
to PhiX 

Enrichment 
Comparison 1168 24,185,876 89.13 5 8 7.17 
LoD: ScriptSeq 1021 21,308,336 89.66 5 10 4.33 

LoD: NEBNext  1166 25,370,000 91.37  5 10 2.91  
LoD: 16S 866 18,635,296 83 10 10 4.61 
 

      

Method 
Error 
Rate %Q30 

% 
Identified 

% 
Assigned 
to Index 

Number of 
Samples in 
Pool  

Enrichment 
Comparison 3.19 46.36 92.9 99 27  
LoD: ScriptSeq 3.35 69.05 92.51 96 24  
LoD: NEBNext 4.52  63.10  97.44  100  24  
LoD: 16S 3.99 63.43 81.9 86 120  

 

 

 

2.3.2 Enrichment Comparison  

All samples contained less RNA than the minimum input recommended for the Scriptseq 

complete protocol. Nevertheless, through use of the low input adaptations to the protocol 

and increased cycle numbers, a total of 44,898,822 reads were produced, with data meeting 

QC requirements obtained for all samples (Table 6). The number of reads produced was 

significantly (p = 0.004, paired t-test) less for poly-A capture than for ribosomal depletion. 

The percentage of reads retained following QC using Sickle was also significantly (p≤ 0.0001, 

paired t-test) different between the two enrichment methodologies with the mean value for 

retained sequence for poly-A capture and for ribosomal depletion being 5% and 39% 
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respectively. This is indicative of the input RNA quality being low or fragmented or of 

methodological incompatibilities between the enrichment and sequencing methods.  

No reads mapped to the norovirus genome for either enrichment methodology, and the 

number of reads mapping to mengo virus (see Table 6) was significantly (p= 0.02, paired t-

test) different between enrichment methods. This finding indicates that ribosomal depletion 

may provide a more sensitive means of detection than poly-A capture when targeting 

foodborne viruses.  
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Table 6. Total number of reads and those passing quality and length filters, plus 

number of reads mapping to mengo virus for each sample using the poly-A capture 

and ribosomal depletion enrichment methodologies. 

Sample Enrichment method Total number of 
reads  

Total number 
of reads post-
trim 

Reads 
mapped to 
mengo virus 

1 Poly-A capture 1199920 42830 0 

1 Ribosomal depletion 1571760 538156 0 

2 Poly-A capture 1115124 74568 0 

2 Ribosomal depletion 1095900 233798 4 

3 Poly-A capture 1006296 43914 0 

3 Ribosomal depletion 1473212 404342 2 

4 Poly-A capture 995802 49236 0 

4 Ribosomal depletion 2139938 750424 4 

5 Poly-A capture 956490 69938 0 

5 Ribosomal depletion 3051470 1351222 2 

6 Poly-A capture 1218258 59384 0 

6 Ribosomal depletion 2966918 1049910 4 

7 Poly-A capture 835690 46934 4 

7 Ribosomal depletion 5857586 3747664 0 

8 Poly-A capture 686446 45954 0 

8 Ribosomal depletion 3975074 1869944 2 

9 Poly-A capture 1260962 37590 0 

9 Ribosomal depletion 1553518 512870 2 

10 Poly-A capture 613204 24176 0 

10 Ribosomal depletion 3610274 1510350 0 

11 Poly-A capture 822908 45916 0 

11 Ribosomal depletion 2802394 1241134 2 

12 Poly-A capture 1221984 37818 0 

12 Ribosomal depletion 1033246 351834 0 
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2.3.3 Limit of Detection Methods Comparison  

2.3.3.1 Sample QC results  

Using conventional PCR with visualisation on an agarose gel, the lowest detectable level of 

Salmonella in the samples was 103 CFU/ml (Figure 4). The qPCR method tested proved more 

sensitive, detecting Salmonella consistently at levels down to 102 CFU/ml (Figure 5).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Agarose gel image showing PCR products for Salmonella specific PCR on 
limit of detection dilution series DNA extracts. Samples are labelled with 
concentration of Salmonella. 
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2.3.3.2 Bioinformatics Method Comparison 

The number of reads of Salmonella and MS2 detected using the different sequencing and 

bioinformatic approaches are summarised in Figure 6 with the linearity of relationships 

examined in Table 7. Table 8 shows the relationship between the methods and 

concentration of pathogen in samples and the mis-assignment of Salmonella, as well as 

outlining the LoDs for each approach. 

  

 

 

Figure 5. Salmonella qPCR results (CT) for dilution series samples. Samples not spiked 
with Salmonella had CT values that were undetermined. 
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A: MS2 using ScriptSeq                         

Bioinformatics method 

Concentration of MS2 

0 10 102 103 104 105 106 107 

Mapping to Genome 
using BWA 

   

                     

MG-RAST    
                     

Lettuce pre-filtered 
Kraken mini database 

   

                     

Lettuce pre-filtered 
Bracken mini database 

   

                     

Lettuce pre-filtered 
Kraken full database 

   

                     

Lettuce pre-filtered 
Bracken full database 

   

                     

Kraken mini database - 
no filtering 

   

                     

Bracken mini database - 
no filtering 

   

                     

Kraken full database - no 
filtering 

   

                     

Bracken full database - 
no filtering 

   

                     

Average Read Numbers  819072 906421 1133499 912453 722494 792135 575824 518592 

 

 

B: MS2 using NEBNext                         

Bioinformatics method 

Concentration of MS2 

0 10 102 103 104 105 106 107 

Mapping to Genome 
using BWA                         
MG-RAST                         
Lettuce pre-filtered 
Kraken mini database                         
Lettuce pre-filtered 
Bracken mini database                         
Lettuce pre-filtered 
Kraken full database                         
Lettuce pre-filtered 
Bracken full database                         
Kraken mini database - 
no filtering                         
Bracken mini database 
- no filtering                         
Kraken full database - 
no filtering                         
Bracken full database - 
no filtering                                                 

Average Read 
Numbers  937986 1070995 1177812 1244793 647349 1231444 1078245 851226 

 

Figure 6 (continued on next page) 
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C: Salmonella using 
ScriptSeq                         

Bioinformatics method 

Concentration of Salmonella 

0 10 102 103 104 105 106 107 

Mapping to Genome using 
BWA                         

MG-RAST 
                        

Lettuce pre-filtered Kraken 
mini database                         
Lettuce pre-filtered Bracken 
mini database                         
Lettuce pre-filtered Kraken 
full database                         
Lettuce pre-filtered Bracken 
full database                         
Kraken mini database - no 
filtering                         
Bracken mini database - no 
filtering                         
Kraken full database - no 
filtering                         
Bracken full database - no 
filtering                                                 

Average Read Numbers  819072 906421 1133499 912453 722494 792135 575824 518592 

 

 
D: Salmonella using 
NEBNext                         

Bioinformatics method 

Concentration of Salmonella 

0 10 102 103 104 105 106 107 

Mapping to Genome 
using BWA                         
MG-RAST                         
Lettuce pre-filtered 
Kraken mini database                         
Lettuce pre-filtered 
Bracken mini database                         
Lettuce pre-filtered 
Kraken full database                         
Lettuce pre-filtered 
Bracken full database                         
Kraken mini database - 
no filtering                         
Bracken mini database 
- no filtering                         
Kraken full database - 
no filtering                         
Bracken full database - 
no filtering                                                 

Average Read 
Numbers  937986 1070995 1177812 1244793 647349 1231444 1078245 851226 

 

Figure 6 (continued on next page) 
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E: 16S                         

Bioinformatics method 

Concentration of Salmonella 

0 10 102 103 104 105 106 107 

Mapping to Genome using 
BWA                         

MG-RAST 
                        

QIIME 
                        

QIIME2                                                 

Average Read Numbers  81362 96670 87876 82939 94198 82104 76091 83918 

 

Figure 6. Heat map showing number of reads for different bioinformatics procedures for A: 
MS2 using the ScriptSeq methodology B: MS2 using the NEBNext methodology C: Salmonella 
using the ScriptSeq methodology D: Salmonella using the NEBNext methodology E: 
Salmonella using the 16S rRNA gene sequencing methodology. Red indicates a read number 
less than 10; yellow a read number between 10 and 500; and green a read number greater 
than 500. 
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Table 7. Linear regression parameters for concentration of target against read number; where y-formula = ax + b, and shows the slope and y-coordinates, and R2 = 
regression coefficient. Analysis method A: RNAseq data, B: 16S rRNA gene amplicon data. 

A                       
 ScriptSeq MS2  ScriptSeq Salmonella  NEBNext MS2  NEBNext Salmonella 

Analysis Method y formula R²  y formula R²  y formula R²  y formula R² 

Mapping to Genome using BWA 
0.0002x + 
6.6018 

0.799  -0.0054x + 
79161 

0.0376ᶧ  1E-05x - 
0.1849 

0.9237  0.004x + 
189698 

0.0164ᶧ 

MG-RAST 5E-05x + 3.6701 0.8299  0.0002x + 15.22 0.8191  0* na  0 na 
Lettuce pre-filtered Kraken mini 
database 

0.0002x + 
5.9136 

0.7916  0.0007x + 
75.628 

0.839  1E-05x - 
0.1554 

0.9213  2E-05x + 
1.2138 

0.8523 

Lettuce pre-filtered Bracken mini 
database 

0.0002x + 
5.9136 

0.7916  0.0065x + 
8425.9 

0.5784  1E-05x - 
0.1554 

0.9213  0.0006x - 
4.196 

0.7983 

Lettuce pre-filtered Kraken full 
database 

0.0002x + 
6.2109 

0.7976  0.0009x + 
82.933 

0.9399  1E-05x - 
0.1849 

0.9237  0.0002x + 
102.96 

0.3008 

Lettuce pre-filtered Bracken full 
database 

0.0002x + 
6.2109 

0.7976  0.0036x + 
9873.4 

0.7532  1E-05x - 
0.1849 

0.9237  0.0005x + 
600.92 

0.3935 

Kraken mini database - no 
filtering 

9E-05x + 2.9014 0.7919  0.0004x + 
40.607 

0.8367  6E-06x - 
0.4377 

0.9181  1E-05x + 
1.0583 

0.833 

Bracken mini database - no 
filtering 

9E-05x + 2.9014 0.7919  0.0011x + 
1188.4 

0.5389  6E-06x - 
0.4377 

0.9181  0.0012x + 
3770.3 

0.1322 

Kraken full database - no filtering 9E-05x + 3.19 0.7966  0.0005x + 
48.808 

0.9405  6E-06x - 
0.4426 

0.9214  0.0002x + 
163.09 

0.2677 

Bracken full database - no 
filtering 

9E-05x + 3.19 0.7966   
0.0015x + 
2273.1 

0.7139   
6E-06x - 
0.4426 

0.9214   
0.0005x + 
4750.6 

0.196 

* indicate values where there are zero regression/na R2 values due no data being obtained for this sample analysis  

ᶧ indicates non-significant regression at p=0.05 
         

              

B      
  

 
     

 16S rRNA gene amplicon  
  

 
     

Analysis Method y formula R²  
  

 
     

Mapping to Genome using BWA 
0.0009x + 
422.09 

0.9763  
  

 

     
MG-RAST 0.0003x - 19.451 0.6394  

  
 

     

QIIME 
0.0009x + 
174.63 

0.9779  
  

 

     
QIIME2 3E-05x + 24.85 0.7875  
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Table 8. Mean number of reads of Salmonella mis-assigned in the lettuce control samples and the limit of 

detection for Salmonella and MS2 for sequencing and bioinformatics methods.  

Sequencing 

Method 

Bioinformatics Method Mean Reads 

of Salmonella 

in Lettuce 

Control 

Limit of 

Detection 

Salmonella 

(CFU 

extraction-1) 

Limit of 

Detection 

MS2 (CFU 

extraction-1) 

ScriptSeq Mapping to Genome using BWA 35977  Undetectable*  105 

ScriptSeq MG-RAST 0  105  105 

ScriptSeq Lettuce pre-filtered Kraken mini 

database 

0  104  105 

ScriptSeq Lettuce pre-filtered Bracken mini 

database 

0  104  105 

ScriptSeq Lettuce pre-filtered Kraken full 

database 

26  Undetectable*  105 

ScriptSeq Lettuce pre-filtered Bracken full 

database 

8069  Undetectable*  105 

ScriptSeq Kraken mini database - no filtering 0  104  105 

ScriptSeq Bracken mini database - no filtering 0  104  105 

ScriptSeq Kraken full database - no filtering 23  Undetectable*  105 

ScriptSeq Bracken full database - no filtering 2055  Undetectable*  105 

NEBNext Mapping to Genome using BWA 146104  Undetectable*  107 

NEBNext MG-RAST 0  Undetectable  Undetectable 

NEBNext Lettuce pre-filtered Kraken mini 

database 

0  106  107 

NEBNext Lettuce pre-filtered Bracken mini 

database 

0  106  107 

NEBNext Lettuce pre-filtered Kraken full 

database 

0  106  107 

NEBNext Lettuce pre-filtered Bracken full 

database 

0  106  107 

NEBNext Kraken mini database - no filtering 0  107  107 

NEBNext Bracken mini database - no filtering 0  107  107 

NEBNext Kraken full database - no filtering 50  Undetectable*  107 

NEBNext Bracken full database - no filtering 3597  Undetectable*  107 

16S Mapping to Genome using BWA 299  Undetectable*  Undetectable 

16S MG-RAST 0  106  Undetectable 

16S QIIME 56  Undetectable*  Undetectable 

16S QIIME2 9  Undetectable*  Undetectable 

* LoD was unable to be determined due to incorrect assignment of Salmonella in lettuce control samples 
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For the detection of MS2 phage, all bioinformatics methods tested yielded the same LoD; 

105 PFU/reaction for the ScriptSeq sequencing and 107 PFU/reaction for the NEBNext 

sequencing (Figure 6). No false positive results were detected using any method. Detection 

of MS2 using ScriptSeq and NEBNext both yielded a linear relationship between the 

concentration of MS2 and the number of reads assigned to MS2 for all bioinformatic 

methods tested (Table 7), except for NEBNext in conjunction with MG-RAST which was 

unable to detect any MS2 within the samples. At the highest concentration the number of 

reads of MS2 detected varied considerably (Figure 6). For ScriptSeq, the highest average for 

the three replicates was 1860 reads at 107 PFU/reaction, by mapping to the reference using 

BWA, and the lowest average for the three replicates was 486 reads at 107 PFU/reaction, 

using MG-RAST. For NEBNext, the highest average read number for the three replicates was 

119 reads at 107 PFU/reaction, found using multiple methods: mapping to the reference 

using BWA and both Kraken and Bracken in combination with prefiltering of lettuce (Figure 

6). 

For the detection of Salmonella, using both the ScriptSeq and NEBNext sequencing protocols 

there were differences in LoD dependent upon bioinformatics techniques utilised, with the 

most sensitive technique delivering an LoD of 104 CFU/reaction. Many of the bioinformatics 

techniques used delivered incorrectly assigned reads of Salmonella in the lettuce 

homogenate unspiked with Salmonella and in which no Salmonella had been detected 

during QC (Section 3.2.1). Only Kraken and Bracken in conjunction with the mini database, 

and MG-RAST, yielded no mis-assigned Salmonella reads. These methods also produced a 

linear relationship between read number and the quantity of Salmonella spiked into the 

samples. For the detection of Salmonella using 16S rRNA gene sequencing, all methods 

tested, bar assignment using MG-RAST, yielded incorrect assignment of Salmonella in the 

unspiked samples. MG-RAST delivered an LoD of 106 CFU/reaction. When the mis-assigned 

reads were subtracted from the number of reads found in the samples, QIIME gave a more 

sensitive LoD of 105 CFU/reaction, QIIME2 gave a less sensitive LoD of 107 CFU/reaction, and 

BWA gave an LoD of 106 CFU/reaction. All methods showed a linear relationship between 

the number of reads and the CFU of Salmonella in the original sample, including mapping to 

the reference genome using BWA which contrasts with results for ScriptSeq and NEBNext. 

Overall, the bioinformatics method yielding the most sensitive LoD was prefiltration to 

remove lettuce associated reads, followed by the assignment of species using Kraken, 
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followed by Bracken. Differences in the total number of sequence reads for each sample 

accounted for much of the variability in the number of reads associated with MS2 and 

Salmonella between extraction replicates. 

 2.3.3.3 Sequencing Method Comparison 

ScriptSeq sequencing gave the most sensitive LoD for detection of both MS2 (105 PFU) and 

Salmonella (104 CFU). Although a comparable methodology, the NEBNext sequencing 

protocol gave a less sensitive LoD, detecting MS2 107 PFU at and Salmonella at 106 CFU. 

Amplicon sequencing using 16S rRNA gene sequencing is (by its semi-targeted nature) 

unable to detect MS2, or any non-bacterial species, due to the lack of the 16S rRNA gene. 

The LoD of Salmonella using 16S rRNA gene sequencing was 106 CFUs; less sensitive than 

that of ScriptSeq kit but equivalent to the NEBNext.  

2.3.4 Read Simulation Comparison  

Despite the differences in error profiles and read length, for the same number of reads, the 

HiSeq, MiSeq and NovaSeq all yielded the same limit of detection (Figure 7). The number of 

reads associated with Salmonella varied, with the average of the 3 replicates at the highest 

“concentration” tested being 28132 for the HiSeq, 49207 for the MiSeq and 48554 for the 

NovaSeq. There was no significant (p≤ 0.9, one-way ANOVA) difference in the number of 

reads between the three platforms. A linear relationship was found between 

“concentration” of Salmonella and the number of reads assigned to Salmonella for all 

platforms. Despite having an input of the equivalent of 100000 reads of Salmonella at the 

highest concentration, using this analysis none of the platforms were able to detect greater 

than 50% of the reads as belonging to Salmonella (Figure 7).  
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Figure 7. Average number of simulated read counts assigned to Salmonella at a mock 
'concentration' (equivalent to read number) for three platforms; HiSeq, MiSeq and 
NovaSeq; that simulated microbiome reads were created for and analysed using Sickle 
and Kraken 
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2.4 Discussion  

Next Generation Sequencing is increasingly being applied in broader settings, with recent 

approaches using both amplicon sequencing and metatranscriptomics to study microbial, 

particularly bacterial, communities associated with fresh produce (Adams et al. 2009; 

Jackson et al. 2013; Aw et al. 2016; Beckers et al. 2016). 

Initial results exploring the most appropriate enrichment method to study the microbiome 

associated with fresh leafy produce showed that ribosomal depletion gave a greater number 

of reads associated with the control than polyA capture, suggesting it is a superior method 

for the detection of the microbiome in metatranscriptomics studies. Although sequencing 

was successfully performed on all samples no norovirus was detected for any qPCR-positive 

samples, this is likely due to the low titre of the virus and the low RNA input levels. The small 

quantity of RNA present in the samples prior to processing and the indication of low-quality 

RNA shown by the filtering out of a large proportion of reads suggests that, although 

preferable for real time-PCR, the ISO extraction methodology and storage of samples was 

not appropriate for metagenomics. Therefore, a different extraction method was used for 

subsequent experiments which employed homogenisation to facilitate harvest of the total 

microbiome, inclusive of microbes strongly adhered to the surface, associated with biofilms 

or internalised. This allowed for a non-targeted analysis, unachievable using other 

techniques, such as washing and recovering rinsates. In addition, the use of a non-

specialised column-based kit facilitated the recovery of total RNA and DNA (Leonard et al. 

2015; Aw et al. 2016; Beckers et al. 2016).  

Work examining the limit of detection of multiple sequencing methods on the MiSeq 

platform identified that the most sensitive approach delivered an LoD of 104 CFU for 

Salmonella and 105 PFU for MS2. This approach used the ScriptSeq sequencing method in 

combination with ribosomal depletion, followed by bioinformatic analysis using Kraken with 

the mini database. The LoD identified in this study is less sensitive than current 

methodologies, and cannot detect human pathogens at the titres outlined as unsatisfactory 

in guidelines from the Health Protection Agency (now Public Health England) (2009). Thus, 

the NGS methods adopted were not sensitive enough to use as a routine screening tool to 

ensure food safety. Similar conclusions have been drawn from other studies endeavouring to 

use NGS as a tool to screen other food matrices for pathogens. For example, Leonard et al. 

(2015) found that without pre-enrichment Escherichia coli spiked into spinach was only 
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detectable at levels of 107 CFU/sample. However, de Boer et al. (2015), report a more 

sensitive LoD (2 x 102 spores ml-1) for Bacillus spp. in canned soup utilising 454-

pyrosequencing, and Frey et al. (2014) report a LoD of ≈1 x 102.5 PFU ml-1 for dengue virus in 

blood using 454-pyrosequencing. The relative insensitivity of the approaches tested explains 

the lack of capability to detect low level norovirus and mengo virus without enrichment.  

Culture-based enrichment methods may improve the sensitivity of NGS approaches for 

bacterial pathogens and viruses (Matias et al. 2010; Leonard et al. 2015; Rosimin et al. 

2016), but also lead to a significant change in the microbiome composition and will affect 

the LoD of non-bacterial targets (Jarvis et al. 2015; Hyeon et al. 2017). Enrichment therefore 

negates the benefits of using a non-targeted approach, including the potential for source 

tracking or hygiene monitoring through the comparison of the microbiomes associated with 

samples and food production processes (Newton et al. 2013; Bartsch et al. 2018). 

ScriptSeq sequencing yielded a more sensitive LoD than NEBNext, possibly because although 

both methods use ribosomal depletion to enrich the samples, the ScriptSeq method 

removes chloroplast RNA, in addition to mitochondrial and cytoplasmic rRNA, and thus 

problems caused by contamination with host RNA are smaller. One of the most notable 

findings was that the ScriptSeq kit delivered greater sensitivity than 16S rRNA gene amplicon 

sequencing, which due to its semi-targeted nature is widely regarded as the most sensitive 

technique. The results presented show that, as previously described in the literature 

(Hanshew et al. 2013; Beckers et al. 2016), the universality of the 16S rRNA gene primers 

leads to cross-amplification of the 16S rRNA gene from the host chloroplasts, due to its 

similarity in sequence to the bacterial 16S rRNA gene.  

There were large differences in the LoD observed between bioinformatics methods for 

assignment of Salmonella. This is largely due to the incorrect assignment of non-Salmonella 

bacteria and chloroplast RNA to conserved regions of the Salmonella genome, notably 16S 

and 23S rRNA genes, seen for mapping to the reference using BWA, assignment using Kraken 

with the full database for metatranscriptomics analysis, and both QIIME and QIIME2 for 16S 

rRNA gene analysis. This leads to a lack of correlation between the input concentration of 

Salmonella and the number of assigned reads and therefore these bioinformatic methods 

should be avoided in this context due to the potential for false positives. 
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A more sensitive LoD may have been achieved had there been greater sequencing depth. 

Within replicates of the same titre of spiked MS2 or Salmonella, much of the variation in 

reads of MS2 or Salmonella correlated with the total number of reads obtained for that 

sample, showing the effects of sequencing depth on sensitivity. The sequencing depths 

chosen for these experiments reflected realistic uses of the techniques, with amplicon 

sequencing being used at considerably lower depths than metatranscriptomics and was 

highlighted in this study through the use of read numbers not normalised reads or 

percentages. The sequencing depth could be increased through the running of fewer 

samples on a single MiSeq run, although this would make it prohibitively expensive for 

routine use, or through the use of alternate platforms such as the HiSeq or NovaSeq, 

although little has been published in the literature on the effect of the shorter read lengths 

of these platforms on the LoD.  

To examine this effect a comparison was run on a simulated dataset with increasing levels of 

reads associated with Salmonella to mimic the LoD run. The samples were then analysed 

using the most sensitive technique identified in the LoD run – Kraken with the mini database 

– to allow for the direct comparison of outputs from these three platforms. The finding that 

all these platforms give no significant difference in the detection of Salmonella at equal read 

depth is a key finding and allows for the use of these platforms, which are cheaper per 

sample than the MiSeq, without loss of sensitivity at the same depth of sequencing. This 

makes it financially achievable to sequence at a greater depth. The more sensitive LoD 

established for this method when compared to the LoD found in the lab may be due to the 

decreased levels of “host contamination” specified for the mock community, thereby 

increasing the percentage of reads associated with the microbiome. This again shows that 

removal of the host RNA is an important step in the sequencing of the microbiome and 

affects the LoD.  

2.5 Conclusions  

The identified LoD on the MiSeq is not sensitive enough to detect low level pathogen 

contamination in a biologically complex fresh produce sample without incorporating an 

enrichment step in the sample preparation protocol. Therefore, current NGS technologies 

are not suitable for non-targeted routine screening of fresh produce for human pathogens. 

HiSeq and NovaSeq simulated reads show that the LoD of these short read technologies do 

not affect the LoD identified, and therefore the increased depth per sample cost of these 
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platforms may deliver an increase in sensitivity. This is the first study reporting the LoD of 

current sequencing and bioinformatics approaches as applicable to the analysis of microbial 

contamination of fresh produce. This study should be treated as the first step in a validation 

procedure looking at the use of NGS within the fresh produce microbiome and informs on 

the key drawbacks of the currently available methods. Future studies should focus on 

increasing the sensitivity of NGS, for example through increased depth of sequencing, to 

obtain a more representative measure of the microbiome.  
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Chapter 3. Metatranscriptomics of the fresh produce microbiome 

 

3.1 Introduction 

Current pathogen screening methodologies are labour-intensive, overly-prescriptive, slow to 

deliver results and expensive when conducted in bulk, as they are inevitably performed to 

service due diligence requirements applicable to determining the safety of fresh produce for 

human consumption (Aw et al. 2016). To ensure due diligence, current testing 

methodologies often also test for indicator organisms. Indicator organisms are present at 

higher concentrations than those of human pathogens and are used to reveal problems 

within the production chain (Aguado et al. 2004; Health Protection Agency (now Public 

Health England) 2009). Their presence may indicate faecal contamination events, poor 

process control, and/or the potential for contamination with human pathogens. The Health 

Protection Agency (now Public Health England) (2009) Guidelines for Assessing the 

Microbiological Safety of Ready-to-Eat (RTE) Foods list Enterobacteriaceae, Escherichia coli 

and Listeria species as hygiene indicator organisms for RTE – a food category that includes 

fresh produce and leafy greens. Both Enterobacteriaceae and E. coli often originate in the 

animal and human intestinal tract but are also found in plant and soil microbiomes. Listeria 

spp. originate in the environment, survive on processing equipment and show a capability to 

multiply and grow at 4oC. A significant issue with the application of these organisms is that 

many studies reveal no correlation between currently used indicator organisms and the 

presence of human pathogen contamination of food or outbreaks of food poisoning (Wells 

and Butterfield 1997; Harwood et al. 2014; Orlofsky et al. 2016).  

Although the limit of detection of Next Generation Sequencing (NGS) technologies is 

insufficient to detect trace level contamination of fresh produce, as shown in Chapter 2, 

there is a lot of other information we can gain from NGS techniques. For example, the 

presence of antimicrobial resistance (AMR) associated genes, the composition of the 

microbiome, and, in the case of metatranscriptomics, the actively transcribing genes within, 

and thereby function of, the microbiome. If NGS microbiome data is combined with 

information from traditional methodologies on the presence of human pathogens, the 

resulting data may be used to identify novel indicator organisms, or profiles of multiple 

organisms, that better correlate with contamination of food with human pathogens, or 

potential members of the microbiome that encourage the survival of human pathogens in 



57 
 

the microbiome. Previous studies have shown that the presence of certain species within the 

microbiome can correlate with the survival of human pathogens. It has been shown that 

presence of soft rot pathogens, such as Pectobacterium, correlates with enhanced 

Salmonella survival on fresh produce (Wells and Butterfield 1997). This may be due to the 

nutrient-rich environment associated with the damage caused by soft rot which encourages 

Salmonella to flourish and outcompete other elements of the microbiome (Fatica and 

Schneider 2011; Deering et al. 2012). Utilising NGS may also help identify elements of the 

microbiome that negatively correlate with human pathogens. This may facilitate the 

discovery of novel biocontrol agents. Heaton and Jones (2008b), for example, found that 

growth of E. coli may be suppressed by the presence of certain epiphytic bacteria, for 

example some Enterobacter and Pseudomonas species.  

The microbiome also affects the survival of human pathogens through the production of 

antimicrobial compounds (Mendes et al. 2013). Many members of the fresh produce 

microbiome produce antimicrobial compounds, for example Leuconostoc spp. (Trias et al. 

2008a). The antimicrobials produced by these species have been proven to influence the 

survival of human pathogens within the fresh produce microbiome (Trias et al. 2008b; 

Olaimat and Holley 2012). In addition, the presence of antimicrobials produced by these 

organisms may also create a selection pressure leading to the increased acquisition of AMR 

associated genes (Martínez et al. 2007), thereby increasing incidence of AMR bacteria in the 

fresh produce microbiome. Other factors that may influence the abundance of AMR bacteria 

in the fresh produce microbiome include the supplementation of the soil with manure from 

animals treated with antibiotics (Marti et al. 2013), or the use of non-potable water for 

irrigation (Cerqueira et al. 2019). Current research on the prevalence of AMR genes within 

the fresh produce microbiome is limited and therefore this is a key area of study to assess 

the impact of AMR within the fresh produce supply chain.  

The aims of this study were to: 

(i) Characterise the actively transcribed microbiome associated with commercial samples of 

fresh produce. 

(ii) Identify active members of the microbiome that correlate with human pathogen 

contamination and thus afford potential as indicators of contamination events or 

pathogen suppression. 
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(iii) Determine the prevalence of AMR-associated genes in the microbiome associated with 

fresh produce. 

3.2 Materials and Methods 

3.2.1 Sample handling and receipt 

Samples of fresh produce (full details in Table 10) were collected during routine production 

at a major sandwich production facility.  

The first step on the production line was the washing of produce. Washing was undertaken 

by one of two methods dependent on produce type (as outlined in Table 9). Iceberg Lettuce, 

Baby Spinach, Cos Lettuce, Apollo Lettuce and Rocket were washed using the Kronen 

Washer, a two-stage continuous salad washer. An initial washer stage was undertaken using 

untreated water wash (mains water) and followed by a second wash stage within a chemical 

dosed washer (chilled water) which was monitored by a Prominent System (an automated 

chemical dosing system) to ensure a concentration of free chlorine was maintained between 

>40ppm-<80ppm, and citric acid used to achieve a pH between 6.0-8.0 to allow for optimum 

presence of free chlorine. The flow and submersion of ingredients through both washers was 

controlled by a series of water jets. All other produce was washed using the Atir washer, a 

single stage batch washer. Produce were washed using a single chemical wash, using a 

chilled water supply. The chemical wash was monitored by a Prominent System as described 

in the chemical wash stage of the Kronen Washer protocol. The length of wash was product 

dependent (Table 9) and timed with a digital clock / stopwatch to ensure accuracy. 
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Table 9. Chemical wash details for produce included in this chapter, A) shows products washed 
on the Kronen washer, B) shows products washed using the Atir washer. 

A 

Product 

Max. loading 
and wash rate 
(kg per minute) Target pH Level 

Target Free Chlorine 
Level 

Iceberg Lettuce 6 6.0 – 7.5  >40ppm-<80ppm  
Baby Spinach 4 6.0 – 7.5  >40ppm-<80ppm  
Cos Lettuce 4 6.0 – 7.5  >40ppm-<80ppm  
Apollo Lettuce 4 6.0 – 7.5  >40ppm-<80ppm  
Rocket 4 6.0 – 7.5  >40ppm-<80ppm  

 

B 

Product 
Max. single 
load (kg) 

Wash time 
(mins) 

Target pH 
Level 

Target Free 
Chlorine Level 

Onions Diced 10 10 6.0 – 8.0  >40ppm-<80ppm 
Red Onion Sliced 10 10 6.0 – 8.0  >40ppm-<80ppm 
Red Onion Diced 10 10 6.0 – 8.0  >40ppm-<80ppm 
Cress 10 7 6.0 – 8.0  >40ppm-<80ppm 
Coriander 4 7 6.0 – 8.0  >40ppm-<80ppm 
Baby Watercress 5 10 6.0 – 8.0  >40ppm-<80ppm 
Spring Onions Sliced 15 9 6.0 – 8.0  >40ppm-<80ppm 

 



60 
 

Samples were collected post wash, split in to two, and one half sent via refrigerated same-

day transport to a contract lab to undergo routine microbiological testing, the other half was 

sent to Fera via next day delivery in a refrigerated vehicle. Upon receipt at Fera samples 

were immediately placed in -80°C storage until analysis.  

3.2.2 Sample extraction  

Samples were taken from -80°C storage and powdered while still frozen to allow the 

subsampling of a mixture of parts of each sample. A 50 mg sample of frozen tissue was 

placed in a pestle and mortar and ground to a homogenous paste. To each sample, 180 µl of 

buffer RLT + β- Mercaptoethanol was added and then pipetted into a QIAshredder spin 

column (Qiagen, Hilden, Germany) and centrifuged at 8000 *g for 1 minute to homogenise. 

The supernatant was then combined with 0.5 volume of ethanol and mixed, before 

extracting RNA using the RNeasy plant mini kit (Qiagen, Hilden, Germany) following the 

manufacturer’s protocol (Qiagen 2012b) “Purification of total RNA from plant cells and 

tissues” with inclusion of on-column DNase digestion, eluting in 2 x 50 µl molecular 

biological grade water (MBGW). The eluate was transferred to a new 1.5 ml tube and stored 

at -80 °C. 

3.2.3 Sequencing 

Samples of RNA extract were quantified using the Nanodrop 2000 spectrophotometer 

(Thermo Fisher Scientific, Waltham, United States), then diluted to achieve a concentration 

of 1 µg RNA in 10 µl MBGW. Preparation for sequencing was undertaken using the TruSeq 

Stranded Total RNA with Ribo-Zero Plant kit (Illumina, San Diego, United States) following 

the manufacturer’s instructions (Illumina 2018d). Samples were quantified using the 

Nanodrop 2000 and diluted to less than 1 µg total RNA in 10 µl. To each sample, 5 µl of rRNA 

binding buffer and 5 µl rRNA removal mix (plant) were added and the mix incubated at 68 °C 

for 5 mins, held at 4 °C, then incubated at RT for 1 min. To each sample, 35 µl of rRNA 

removal beads were added, incubated at RT for 1 min and placed on a magnetic stand for 1 

min, and the supernatant transferred to a new plate. Samples were cleaned using Ampure 

XP beads (Appendix A), eluting in 8.5 µl elution buffer. To the supernatant, 8.5 µl elution, 

bind, fragment high mix was added and incubated at 94 °C for 8 mins and hold at 4 °C. A 

master mix containing 1:9 ratios of Superscript II:first strand synthesis mix was made and 8 

µl added to each sample, then the mix incubated at 25 °C for 10 mins, 42 °C for 15 mins, 70 

°C for 15 mins, then the temperature decreased to 4 °C. After PCR, 10 µl resuspension buffer 
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and 20 µl 2nd strand marking master mix were added to each sample and incubated at 16 °C 

for 1 hour before leaving at RT to warm. Samples were cleaned using Ampure XP beads 

(Appendix A), eluting in 15 µl resuspension buffer. An additional 2.5 µl resuspension buffer 

was added followed by 12.5 µl A-tailing mix and incubated at 37 °C for 30 mins, 70 °C for 5 

mins, then the temperature decreased to 4 °C. To each sample, 2.5 µl resuspension buffer, 

2.5 µl ligation mix, 2.5 µl RNA adapters were added and incubated at 30 °C for 10 mins, then 

the temperature decreased to 4 °C. To each sample, stop ligation buffer was added to stop 

the activity of the ligase. Samples were then cleaned twice using Ampure XP beads 

(Appendix A), eluting in 20 µl resuspension buffer. To each sample, 5 µl PCR primer cocktail 

and 25 µl PCR master mix were added and thermal cycled for 98 °C for 30 s, followed by 15 

cycles of 98 °C for 10 s, 60 °C for 30 s and 72 °C for 30 s, before a final extension of 72 °C for 

300 s. Samples were finally cleaned using Ampure XP beads, eluting in 30 µl resuspension 

buffer 

The concentration of sequencing ready DNA was quantified using the Qubit® DNA HS Assay 

Kit (Life Technologies 2015a) and pooled at equimolar concentrations. Free adapters were 

removed from the pooled samples to prevent index hopping using Illumina Free Adapter 

Blocking Reagent (Illumina, San Diego, United States), and the processed pool containing 

sequencing ready DNA was quantified using the Qubit® DNA HS Assay Kit (Life Technologies 

2015a) and quality checked using the Agilent 2200 TapeStation system with High Sensitivity 

D1000 reagents (Agilent Technologies 2015). The sample peak was between 200 bp and 

1000 bp, with no small fragments below 200 bp, thus meeting the required criteria for HiSeq 

analysis. The pool was frozen at -80 °C and transferred to Leeds Institute of Molecular 

Medicine NGS facility (http://dna.leeds.ac.uk/genomics/hiseq.php) and run on a single lane 

of the HiSeq 3000 creating 2x150 bp reads. 

3.2.4 Quality Control 

Extraction blanks were undertaken as part of the RNA extraction. Process blanks, MBGW put 

through the same processing as samples, and indexing blanks, MBGW added at indexing PCR 

stage, were undertaken for each sequencing method. All were examined using the 

tapestation and Qubit for quality purposes. Blanks were run on the sequencer as a 

separately indexed sample. All samples, including blanks, were examined for read number 

and those with low quality reads, or less than 500 reads were filtered out of the analysis. 

Any blanks remaining were run through the bioinformatic analysis separately to samples and 

http://dna.leeds.ac.uk/genomics/hiseq.php
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the top taxa compared manually to those in experimental samples to rule out cross 

contamination.  

Due to being run on the HiSeq at Leeds Institute of Molecular Medicine NGS facility, the final 

pool was prepared to their specification, and run metrics, including the use of the PhiX 

internal standard, mapped to the PhiX genome as part of the standard Illumina workflow run 

quality, in addition to metrics on cluster density and read numbers was assessed as part of 

their service.  

3.2.5 Bioinformatics  

Reads from the HiSeq were trimmed using Sickle v1.33 (Joshi and Fass 2011) to remove 

sequence of quality less than Q20 (1 in 100 probability of incorrect base call) and lengths less 

than 100 base pairs. Data were then subject to two different paths of analysis (Figure 8). 

Initial analysis was undertaken to identify AMR associated genes, comprising of assembly of 

the trimmed reads using Trinity v2.8.4 (Haas et al. 2013) followed by screening of AMR 

genes using ABRicate v0.8 (Seemann 2018). All genes with more than 80% identity or 80% 

coverage were recorded. From the trimmed reads, the plant matrix genome was removed by 

mapping the reads to the matrix genome using BWA-MEM 0.7.17 (Li and Durbin 2009). 

Mapping was performed against the full genome or, when unavailable, the matrix 

mitochondrial genome, or else where no genetic information was available, against the 

RefSeq plant chloroplast database (see Table 10).  The data were then filtered to remove 

data associated with the matrix genome using Samtools v1.9 (Li et al. 2009) and a fastq file 

created for each sample using Bedtools v2.280 (Quinlan and Hall 2010) to obtain files 

containing the unmapped reads that were able to undergo taxonomic assignment. The 

taxonomy was assigned to unmapped reads using Kraken v1.1 using the MiniKraken 

database (Wood and Salzberg 2014) and a table of taxonomy versus read numbers was 

made and filtered to remove taxa only present in a single sample. This was then used in 

conjunction with metadata as an input in to Lefse (Segata et al. 2011; Huttenhower 2019) to 

examine differential taxa abundance based on the metadata associated with the sample 

(Table 10). Briefly, Lefse performs a Kruskall-Wallis test to analyse all taxa, testing whether 

the abundances in different metadata classes are differentially distributed. If any taxa violate 

the null hypothesis, Lefse then runs a pairwise Wilcoxon test to check whether all pairwise 

comparisons between samples within different metadata classes significantly agree with the 

class level trend. The resulting values are used to build a Linear Discriminant Analysis model 
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which ranks the taxa association with each metadata class. This is then used to plot 

significant (p≤ 0.05) results. The metadata used as input for Lefse were (as outlined in Table 

10 and Table 11): Enterobacteriaceae positive or negative microbiology, Listeria spp. positive 

or negative microbiology, produce type, and the presence and absence of AMR associated 

genes based on outputs from ABRicate. The outputs were manually interrogated for 

biological and statistical relevance.  

 

 

3.3 Results 

3.3.1 Quality Assessment 

Negative controls were examined, and those with read numbers of less than 500, were 

filtered out at QC stage and no subsequent analysis was performed on them.  Negative 

controls which did not fall below this threshold (likely in part due to the higher depth of 

sequencing) were run through same analysis pipelines as experimental samples and 

examined to check for evidence of contamination. The top taxa did not overlap between 

samples and controls, suggesting no contamination, but no firm thresholds exist as this is a 

developing field. 

3.3.2 Microbiological Testing Results 

Microbiological testing results provided by Westward Laboratories are summarised in Table 

10. Enterobacteriaceae results below the laboratory’s standard dilution-series detection 

 

Figure 8. Bioinformatics methodologies employed to examine AMR associated genes and 
identify differential taxa within metadata sets. 
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limit (<100 colonies) were classified as Not Detected. Those above the detection limit were 

classified as Detected. 
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Table 10. Fresh produce sample details; type, subcategory, presence/absence data for 
Enterobacteriaceae and Listeria spp. and genome employed for subtraction in NGS analysis. 

Item Description Category 
Enterobact-
eriaceae Listeria spp. Genome Subtracted 

Baby Watercress Leafy Green Not detected Not detected Nasturtium officinale chloroplast 

Apollo Leafy Green Not detected Not detected Lactuca sativa genome 

Baby Spinach Leafy Green Not detected Not detected Spinacia oleracea full genome 

Red Onion Diced Onion Detected Not detected Allium cepa chloroplast 

Cress Leafy Green Detected Not detected Refseq plant chloroplast database 

Iceberg Lettuce Leafy Green Not detected Not detected Lactuca sativa genome 

Cos Lettuce Leafy Green Not detected Not detected Lactuca sativa genome 
Spring Onions 
Sliced 

Spring 
onion Detected Not detected Allium cepa chloroplast 

Corriander Leafy Green Not detected Not detected Coriandrum sativum chloroplast 

Baby Spinach Leafy Green Detected Not detected Spinacia oleracea full genome 

Red Onion Sliced Onion Detected Detected Allium cepa chloroplast 

Red Onion Diced Onion Detected Not detected Allium cepa chloroplast 
Spring Onions 
Sliced 

Spring 
onion Detected Not detected Allium cepa chloroplast 

Coriander Leafy Green Detected Not detected Coriandrum sativum chloroplast 

Red Onion Diced Onion Detected Not detected Allium cepa chloroplast 

Coriander Leafy Green Not detected Not detected Coriandrum sativum chloroplast 

Cos lettuce Leafy Green Not detected Not Detected  Lactuca sativa genome 

Baby Watercress Leafy Green Detected Not Detected  Nasturtium officinale chloroplast 

Iceberg Leafy Green Not detected Not Detected Lactuca sativa genome 

Apollo Leafy Green Not detected Not Detected  Lactuca sativa genome 

Baby Spinach Leafy Green Detected Not Detected  Spinacia oleracea full genome 

Red Onion Diced Onion Detected Not Detected  Allium cepa chloroplast 

Coriander Leafy Green Detected Not Detected  Coriandrum sativum chloroplast 

Cress Leafy Green Detected Not Detected  Refseq plant chloroplast database 

Red Onion Diced Onion Detected Detected  Allium cepa chloroplast 

Baby Spinach Leafy Green Not detected Not Detected Spinacia oleracea full genome 

Red Onion Sliced Onion Detected Detected  Allium cepa chloroplast 
Spring Onions 
Sliced 

Spring 
onion Detected Not Detected  Allium cepa chloroplast 

Baby Watercress Leafy Green Not detected Not Detected  Nasturtium officinale chloroplast 

Coriander Leafy Green Detected Not Detected  Coriandrum sativum chloroplast 

Cress Leafy Green Detected Not Detected  Refseq plant chloroplast database 

Onions Diced Onion Detected Not Detected  Allium cepa chloroplast 

Coriander Leafy Green Detected Not Detected  Coriandrum sativum chloroplast 

Baby Watercress Leafy Green Detected Detected  Nasturtium officinale chloroplast 
Spring Onions 
Sliced 

Spring 
onion Detected Not Detected  Allium cepa chloroplast 

Red Onion Sliced Onion Detected Not Detected  Allium cepa chloroplast 

Red Onion Diced Onion Detected Not Detected  Allium cepa chloroplast 

Baby Spinach Leafy Green Detected Not Detected  Spinacia oleracea full genome 

Cress Leafy Green Detected Not Detected  Refseq plant chloroplast database 

Apollo Leafy Green Not detected Not Detected  Lactuca sativa genome 

Baby Watercress Leafy Green Detected Not Detected  Nasturtium officinale chloroplast 

Onions Diced Onion Detected Not Detected  Allium cepa chloroplast 

Red Onion Sliced Onion Detected Detected  Allium cepa chloroplast 

Coriander Leafy Green Detected Not Detected  Coriandrum sativum chloroplast 
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3.3.2 Sequencing Results 

Between 4,387,110 and 55,790,718 reads were produced for samples that passed HiSeq QC, 

with an average of 15,709,445 reads (Table 11). Quality was checked using Sickle, taking the 

average read number down to 15,268,388 reads. The number of reads assigned to a taxa in 

the Kraken database was on average 196,276, although this varied widely between samples 

with the lowest being 678 reads, and the highest 1,281,892 reads (Table 11). This equates to 

the percentage of reads assigned to taxa of between 0.02 - 5.3% of reads per sample, with 

the average being 1.3% of reads assigned to taxa.  

A total of 56 unique AMR associated genes were identified across 23 of 53 samples. Most 

were of low identity and coverage. When the data were filtered to include only genes with 

greater than 80% identity and 80% coverage, four genes (CRP, H-NS, MexF, MexB) were 

identified across seven samples. Of the seven samples yielding over 80% identity and 

coverage, there were three samples which contained multiple AMR associated genes, two 

containing both CRP and H-NS, and one containing both MexF and MexB. Of these seven 

samples, five were from onion (out of 12 samples) and two were from leafy greens (out of 34 

samples).  

The top genera assigned across all samples were Alteromonas, Pseudomonas, Leuconostoc 

and Rahnella (average and total read numbers summarised in Table 12). All other genera 

identified had less than an average of 1000 reads per sample. The microbiome varied by 

produce sub-category (Figure 9). When samples were split by category of produce (as shown 

in Table 10), all produce types returned Alteromonas as the genus with the highest number 

of reads, but the other top members of the microbiome varied (Table 10). When Lefse was 

used to identify differences in the fresh produce microbiome associated with category of 

produce, the greatest number of genera correlated with onions (11), three genera correlated 

with spring onions and one genus correlated with leafy greens (Figure 10 A).  
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Table 11. Read numbers per sample; from the HiSeq, after QC using trinity, post host subtraction, and reads 
assigned by Kraken. Presence of AMR genes and whether they had >80% identity and coverage, 
Enterobacteriaceae and Listeria read counts per sample, colour coded by consistency with microbiological 
results (read no. greater than 50) - blue false positives, green correct positives, orange false negatives, white 
true negatives. 

Sample name 

Read no. 
from 
HiSeq 

Read no. 
post QC 

Read no. 
post host 
subtraction 

Reads 
assigned 
by 
Kraken 

AMR 
Gene 
Found 

AMR 
genes 
over 
80% 
coverage 
/ 
identity 

Enterobac-
teriaceae 
read no. 

Listeria 
spp. 
read 
no. 

302850_4_5 26089266 25431276 14173687 189015 N N 74 0 

302907_4_5 11892030 11576818 128060 16706 N N 17 0 

302910_4_5 10232472 9908688 44518 2749 N N 13 0 

303082_4_5 5099030 4966640 3866574 129535 Y Y 20698 8 

303124_4_5 34277818 33458770 19362069 570698 Y Y 65871 2 

303187_4_5 7118490 6910946 115510 7490 N N 25 0 

303221_4_5 7342508 7122400 77186 15925 N N 11 0 

303239_4_5 50973622 49669690 40787193 326709 Y N 510 456 

303245_4_5 7945194 7756306 4181242 59475 N N 7 0 

308845_14_6 4387110 4252440 13706 678 N N 2 0 

309228_14_6 5443568 5305152 4359199 266347 Y Y 169160 5 

309229_14_6 12935072 12682002 8359466 162898 Y Y 26091 2 

309230_14_6 16664670 16240822 9556147 124083 N N 645 58 

309238_14_6 11968696 11594144 5184573 65079 N N 14 0 

313154_12_7 12904162 12395304 11571374 241124 Y N 6038 64 

313166_12_7 17365440 16764826 7447240 128613 N N 17 0 

318663_23_8 8073844 7889002 133120 8597 N N 135 0 

318982_23_8 6412722 6232270 3995802 204533 Y N 2501 2 

319002_23_8 11468056 11099836 213057 13502 N N 171 6 

319003_23_9 11095966 10820782 137393 12257 N N 5 0 

319004_23_8 6163996 5986374 72495 6611 N N 296 0 

319093_23_8 12709418 12371028 10438651 277037 Y N 25004 21 

319100_23_8 17880148 16786130 11789545 390401 Y N 1492 0 

 

(Table 10 continued on next page) 
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Table 11. Read numbers per sample; from the HiSeq, after QC using trinity, post host subtraction, and reads 

assigned by Kraken. Presence of AMR genes and whether they had >80% identity and coverage, Enterobacteriaceae 

and Listeria read counts per sample, colour coded by consistency with microbiological results (read no. greater than 

50) - blue false positives, green correct positives, orange false negatives, white true negatives.(continued) 

Sample name 

Read no. 
from 
HiSeq 

Read no. 
post QC 

Read no. 
post host 
subtraction 

Reads 
assigned 
by 
Kraken 

AMR 
Gene 
Foun
d 

AMR 
genes 
over 80% 
coverage 
/ identity 

Enterobac-
teriaceae 
read no. 

Listeria 
spp. 
read no. 

320046_13_9 20884458 20286496 11202628 189452 Y N 2458 0 

321909_13_9 7858428 7622666 6568444 131712 Y N 19777 35 

321994_13_9 26889614 26193086 132273 7182 N N 398 0 

322066_13_9 9523120 9348218 6078696 302483 Y Y 156850 1 

322068_13_9 9473536 9280728 6631304 81237 Y N 919 65 

322162_13_9 5602436 5490016 3251805 60474 N N 152 0 

322236_13_9 20665710 20205154 12035278 186406 N N 34 0 

326777_18_10 40637404 39666532 22755815 521226 Y N 3545 0 

326945_18_10 10678624 10409018 8467217 399557 Y N 222 2 

326953_18_10 14791476 14419110 7088068 120467 Y N 336 0 

326996_18_10 18640936 18102172 10418615 679687 Y Y 11036 2 

327019_18_10 55790718 54259102 7249593 199229 N N 6320 4 

327089_18_10A 24204234 23256192 33775122 1281892 Y N 356 26 

327089_18_10B 9839550 9609030 14580038 341004 Y N 47862 6 

331896_21_11 8824026 8568764 36115 9475 N N 25 0 

331962_23_11 8331798 8097694 4475831 91732 Y N 2847 0 

332045_23_11 8359864 8144074 101945 15569 N N 9 0 

332105_23_11 23850566 23114328 11816301 284279 N N 114 0 

332109_23_11 19090362 18687200 15701686 292078 Y Y 71375 16 

332110_23_11 14336984 13836284 11663132 203459 Y N 13027 11 

332117_23_11 16498456 15991586 6400778 138483 Y N 55 0 
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Figure 9. Graph showing percentage abundance for top 25 genera detected using Kraken 
in samples analysed by HiSeq metatranscriptomics. 
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Table 12. Table showing the top genera identified for all samples, fresh produce, 

onions and spring onions, and the total and average number of reads assigned to each 

genus. 

Samples Genus Total Read Number Average Read Number 

All Samples Alteromonas 3031644 57201 

Pseudomonas 928560 17520 

Leuconostoc 574317 10836 

Rahnella 370050 6982 
Fresh Produce Alteromonas 1092971 32146 

Pseudomonas 686039 20178 
Onion Alteromonas 1573897 104926 

Leuconostoc 543673 36245 

Rahnella 341637 22776 

Pseudomonas 211132 14075 
Spring Onion Alteromonas 364776 91194 

Pseudomonas 31389 7847 

Leuconostoc 30520 7630 
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Figure 10 (continues on next page) 
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C        

D  

    

Figure 10. Graphs showing differential bacterial abundances at genus level for metadata associated with 
fresh produce samples calculated using Lefse. A: differential abundance for samples split by produce types: 
leafy greens, onions, spring onions; B: differential abundance for samples split by positive or negative for 
Enterobacteriacea; C: differential abundance for samples split by positive or negative for Listeria spp.; D: 
differential abundance for samples split by positive or negative for presence of antimicrobial resistance 
genes. 
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From Kraken taxonomy assignments, all samples that passed HiSeq QC (44) had reads 

assigned to Enterobacteriaceae (Table 11). Of these, 32 samples exhibited more than 50 

reads; 27 of which equated to positive Enterobacteriaceae in microbiological testing, and 5 

of which equated to samples where Enterobacteriaceae had remained undetected in routine 

microbiological testing. Four samples positive by microbiological testing for 

Enterobacteriaceae exhibited read numbers of less than 50. For Listeria spp., all five samples 

that tested positive in routine microbiological testing and passed HiSeq QC had reads 

assigned to Listeria, although none of these had greater than 50 reads. Interestingly, a 

further 15 samples also had reads assigned to Listeria, four of which had over 50 reads, 

despite not being found to test positive for Listeria spp. using conventional microbiology 

(Table 11).  

Lefse examination of the microbiome in combination with microbiological data on presence 

or absence of Enterobacteriaceae (Table 10) identified 15 genera correlated with detectable 

levels of Enterobacteriaceae, and three genera correlated with no detectable 

Enterobacteriaceae (Figure 10 B). Of these, three genera were in fewer than 10 samples and 

15 genera in 10 or greater (Pseudonocardia, Achromobacter, Betabaculovirus, Pantoea, 

Picrophilus, Rahnella, Rickettsia, Erwinia, Leuconostoc, Serratia, Enterobacter, Yersinia, 

Lactobacillus, Dickeya and Pectobacterium). Pseudonocardia was identified in the highest 

proportion of samples; detected in 41 samples.  

For presence or absence of Listeria spp., 20 genera were correlated with detectable levels of 

Listeria spp., and one genus correlated with no detectable Listeria species (Figure 10 C). Of 

these, there were 12 genera in fewer than 10 samples and 9 genera in 10 or greater samples 

(Pantoea, Rahnella, Dickeya, Leuconostoc, Serratia, Enterobacter, Yersinia, Lactobacillus and 

Pectobacterium), with Pantoea found in the highest proportion of samples; detected in 25 

samples.  

There were 32 taxa positively correlated with samples containing AMR genes above 80% 

identity and coverage, and no taxa negatively correlated (Figure 10 D). Of these, there were 

21 genera in fewer than 10 samples and 11 genera in 10 or greater samples (Pantoea, 

Rahnella, Erwinia, Leuconostoc, Serratia, Enterobacter, Yersinia, Burkholderia, Lactobacillus, 

Dickeya and Pectobacterium), with Pantoea again detected in the highest proportion of 

samples. 
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Nine taxa (Rahnella, Pectobacterium, Yersinia, Dickeya, Serratia, Buchnera, Lactobacillus, 

Pantoea and Enterobacter) were found which correlate with detection of 

Enterobacteriaceae, detection of Listeria spp. and the presence of AMR associated genes 

with greater than 80% identity. There were no taxa present negatively correlated with all 

metadata tested (Figure 10 B, C and D).  

3.4 Discussion 

The total burden of expressed AMR associated genes within the fresh produce microbiome 

was low, with only 15% (seven out of 44) of samples revealing AMR genes in this study. Few 

previous studies have looked at the incidence of AMR genes in the microbiome associated 

with leafy fresh produce, with these having given conflicting results depending on the 

methods utilised. Food associated bacteria screened for AMR phenotypes had a reported 

prevalence of 1% (Holzel et al. 2018). This is much lower than the rates identified by work in 

this thesis, and other studies utilising metagenomics. Metagenomics has reported higher 

levels of AMR-associated genes than both phenotypic screening and metatranscriptomics, 

with 20 classes of antibiotic resistance genes in the lettuce and radish microbiome (Fogler et 

al. 2019). The differences between the reported rates from the literature utilising 

metagenomics, and the work in this thesis utilising metatranscriptomics, may be due to the 

fact metagenomics will screen DNA and therefore all genetic information present within the 

microbiome, whereas metatranscriptomics will screen RNA and is therefore likely to only 

detect the actively transcribed genes within the microbiome, arguably the genes which are 

most important (Bashiardes et al. 2016).  

In the current study, five of seven samples containing AMR associated genes originated from 

onions, with the other two being from leafy greens. Of the genes identified, H-NS was the 

most common (4 of 9 samples). This encodes a histone-like protein involved in global gene 

regulation including many membrane fusion protein and multidrug exporter genes. 

Homologues are found in several Gram-negative bacteria, notably Escherichia coli, Klebsiella 

oxytoca and several Shigella species (Nishino and Yamaguchi 2004; Jia et al. 2017b). The 

second most commonly detected gene was CRP (3 of 9 samples). This is another global 

regulator that affects the expression of the multidrug efflux pump MdtEF and has been 

characterised in the resistomes of numerous organisms, notably Enterobacter species, E. 

coli, Salmonella enterica, Shigella species and Yersinia species (Nishino et al. 2008; Jia et al. 

2017a). The genes mexF and mexB were identified in a single sample; these both encode for 
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the inner membrane multidrug exporter of the efflux complex MexAB-OprM and are found 

on the same loci in Pseudomonas aeruginosa (Middlemiss and Poole 2004; Jia et al. 2017c, 

d). Pseudomonas aeruginosa was identified in the sample in which mexF and mexB were 

identified, suggesting this is the organism of origin of these genes. This is of notable 

importance as previous research has shown that L. monocytogenes may associate with 

Pseudomonas biofilms, encouraging survival and transfer of AMR associated genes to L. 

monocytogenes, thereby increasing the burden of AMR in human pathogenic organisms 

(Balcazar et al. 2015; Puga et al. 2018). Metatranscriptomic screens for AMR-associated 

genes are often unable to identify the organism of origin, and this study was unable to find 

the organism of origin for the other genes identified.  

One of the limitations of the current study is that the analysis method employed to examine 

for AMR-associated genes only probed for genes believed to be directly associated with 

AMR, therefore may have missed AMR phenotypes caused by point mutations in 

antimicrobial targets. The identification of point mutations would be difficult to obtain from 

metagenomic data using currently available methodologies, due to the difficulty in 

determining which organism the genes are from and therefore the true sequence of the 

target gene. In addition, with low frequency genes it can be difficult to determine whether 

mutations are due to the presence of mutations within the organism or due to sequencing or 

analysis error. It is possible that additional information could be gained from this dataset by 

further examining the low identity or coverage matches in greater detail to identify 

functional mutations to antimicrobial targets or homologies to known AMR gene products. 

This approach might facilitate the identification of novel AMR associated genes (Adu-Oppong 

et al. 2016). 

Testing with NGS found that 4/31 samples that were positive for Enterobacteriaceae using 

microbiology were negative using NGS, and none of the Listeria spp. positive samples (5) 

were detected using NGS. This observation maybe linked to the relative ‘insensitivity’ of 

NGS, with the LoD insufficient to detect low levels of contamination (see Chapter 2). To 

increase the sensitivity the depth of sequencing was increased, from an average read 

numbers per sample of 797,561 in Chapter 2, to an average read number per sample of 

15,709,445 in the current study. This allowed for detection of Enterobacteriaceae in samples 

where the concentration detected by microbiological testing was below the LoD determined 

in Chapter 2. If we assume a linear relationship between read number and LoD, this study 
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would yield an LoD of 5*103 CFU or PFU per sample based on the data collected in Chapter 2. 

This LoD is still less sensitive than microbiological methods.  

The presence of Enterobacteriaceae and Listeria in samples recorded by NGS that were 

negative by traditional microbiological testing may be due to several factors. The presence 

of dead cells or free RNA will be detectable using molecular methods, including NGS, but 

would not be detected by traditional culture-based approaches. NGS will also record viable 

but non-culturable (VBNC) organisms. VBNC cells are living cells that are no longer able to 

produce colonies on rich laboratory media, and have a lower metabolic rate and different 

gene expression patterns to culturable bacteria (Li et al. 2014). In this way the VBNC state is 

believed to minimise energy requirements (Oliver 2010) enhancing survival of the cells in an 

environment of stress, such as on fresh produce or in the fresh produce environment. Many 

human pathogenic organisms, such as Campylobacter, Salmonella and L. monocytogenes, 

have been shown to have VBNC forms and it is notable that, for Salmonella and L. 

monocytogenes, these forms can be induced by chlorine stress (Magajna and Schraft 2015; 

Highmore et al. 2018). In general, VBNC bacteria are also more resistant to physical lysis and 

chemical stress than their culturable counterparts (Signoretto et al. 2000), an important 

observation for food associated human pathogenic organisms. 

The microbiome of all samples was dominated by Alteromonas. This is notable as 

Alteromonas is most often associated with saltwater or saline environments (Quesada et al. 

1983). The apparent prevalence of Alteromonas maybe an artefact resulting from the 

misassignment of reads using Kraken. Although this study subtracted the full genome of the 

matrix where available, for many samples it was possible only to subtract chloroplast 

genome from the data, and for some even this was not obtainable. Despite this a high 

proportion of reads were unclassified by Kraken (Table 11) which suggests matrix sequence 

remained within the filtered sequence reads. The similarity of the matrix genome, notably 

the chloroplast, to some bacterial genes can lead to misassignment of reads (see Chapter 2 

Section 2 Limit of Detection and Method Comparison). The top taxa found across all samples 

were Alteromonas, Pseudomonas, Leuconostoc and Rahnella. There were differences in the 

top taxa identified in the different produce types. In the leafy green microbiome, the top 

taxa were Alteromonas and Pseudomonas; for the onion microbiome, the top taxa were 

Alteromonas, Leuconostoc, Rahnella and Pseudomonas; and for the spring onion 

microbiome, the top taxa were Alteromonas, Pseudomonas, Leuconostoc and Thiobacillus. 
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These findings are supported by the literature, which found the leafy green microbiome, for 

many produce types including rocket and lettuce, and the onion microbiome, are dominated 

by Pseudomonas (Frohling et al. 2018; Yurgel et al. 2018; Cernava et al. 2019). It has also 

been reported that the relative abundance of Pseudomonas increases upon refrigeration of 

the product (Tatsika et al. 2019). This observation is consistent with the high levels of 

Pseudomonas in this study where produce was refrigerated prior to analysis. Leuconostoc 

and Rahnella are both commonly associated with onions and have previously been described 

as potential onion plant pathogens (Bonasera et al. 2017; Asselin et al. 2019) but have not 

been described as a key member of the microbiome of leafy greens. Leuconostoc has also 

been noted to be a spoilage organism associated with food (Andreevskaya et al. 2018). 

Thiobacillus has previously been described in agricultural soils (Chapman 1990). The present 

study is the first known research to examine the spring onion microbiome.  

Lefse allowed for the interrogation of the data obtained in this study to probe for members 

of the microbiome correlated with sample metadata. Lefse identified nine taxa (Rahnella, 

Pectobacterium, Yersinia, Dickeya, Serratia, Buchnera, Lactobacillus, Pantoea and 

Enterobacter) associated with microbiological detection of Enterobacteriaceae and Listeria 

and the detection of AMR associated genes. Eight of these taxa were part of the family 

Enterobacteriaceae. This is unsurprising as the microbiome of fresh produce has previously 

been described as containing high levels of Enterobacteriaceae (Frohling et al. 2018; Yurgel 

et al. 2018). The correlation between the presence of Enterobacteriaceae in the 

microbiology data and the presence of several Enterobacteriaceae genera in the NGS data 

also acts as an internal control of the statistical methods used. The correlation of 

Enterobacteriaceae detected by NGS with Listeria spp. detected by microbiological testing is 

a likely reason this is used as an indicator organism, but Enterobacteriaceae were also found 

in many samples not containing Listeria spp., therefore they are unlikely to give us clear 

information on the presence of human pathogenic organisms within the fresh produce 

microbiome.  

The association found by Lefse between the presence of plant pathogenic bacteria (including 

Pectobacterium and Dickeya) and both Enterobacteriaceae and Listeria spp. may point to a 

common source or survival characteristic between these organisms or indicate that plant 

pathogens increase survival of human pathogens within the fresh produce microbiome. This 

suggests that plant pathogens are worthy of further exploration as potential indicator 
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organisms, with their higher titre allowing detection of these species using methods such as 

NGS where the LoD is too low to detect the human pathogens themselves. Interestingly, 

Pectobacterium has also been shown to enhance the survival of Salmonella (Wells and 

Butterfield 1997) and Escherichia coli O157:H7 (Brandl 2008) on fruit and vegetables. It has 

previously been suggested this increase in survival is due to the soft rot-associated release of 

nutrients in the local environment of the infection zone (Brandl 2008).  

Lefse also found an association between presence of Lactobacillus and microbiological 

positive Enterobacteriaceae and Listeria spp. screens. Lactobacillus has long been known to 

produce antimicrobial compounds which inhibit growth of numerous species found within 

the fresh produce microbiome (Price and Lee 1970). Therefore, the presence of 

antimicrobial compounds produced by Lactobacilli may lead to a decrease in the microbial 

load and diversity on fresh produce, allowing for decreased competition within the 

microbiome, and in this way may enhance the ability of Enterobacteriaceae and Listeria spp. 

to survive. This conclusion may be supported by research finding that a less diverse soil 

microbiota leads to enhanced survival of bacterial human pathogens (van Elsas et al. 2012). 

The findings that Lactobacillus is associated with microbiological positive Enterobacteriaceae 

and Listeria spp. is also of interest as previous literature has focused on the use of 

Lactobacilli have been used as a biocontrol, or bio-preservative for fresh produce (Jamuna et 

al. 2005). The findings in the current study may suggest that the incorrect application of 

Lactobacilli may lead to enhanced survival of human pathogens. This finding is not 

supported by much of the literature, where Lactobacilli have been shown to produce 

antimicrobial compounds that are effective against human pathogens (Cleveland et al. 

2001). It has also been shown that Lactobacillus can be used as a biocontrol agent, 

decreasing levels of various human pathogens (Olaimat and Holley 2012; Iglesias et al. 2017), 

including L. monocytogenes (Martinis and Franco 1998) and E. coli (Ogunade et al. 2016), 

within the food microbiome.  

Leuconostoc, like Lactobacillus, are lactic acid bacteria that produce antimicrobial 

compounds (Daba et al. 1991). Leuconostoc was only found in samples with detectable levels 

of Enterobacteriaceae (Appendix C, i), therefore indicating a common source or survival 

conditions. The association between presence of Leuconostoc and Enterobacteriaceae 

microbiological positives may be for similar reasons as outlined for Lactobacillus. In addition, 

Leuconostoc’s role as a spoilage organism of vegetable-based foods (Vihavainen et al. 2008) 
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may lead to a greater accessibility of nutrients allowing enhanced survival of human 

pathogens, as previously hypothesised for the correlation between Enterobacteriaceae and 

plant pathogenic bacteria. Importantly, Leuconostoc was also found to be associated with 

negative microbiology results for Listeria species. This may be due to antimicrobial 

compounds produced by Leuconostoc which are active against Listeria spp. (Harding and 

Shaw 1990). This finding is in line with the literature where Leuconostoc has been found to 

have a bioprotective effect in fresh produce against L. monocytogenes (Trias et al. 2008a), 

and been shown to be a bio-preservative in some foods (Bah et al. 2019). This finding 

highlights the biological differences between bacteria associated with food and highlights 

the importance of further research into the total, and potentially conflicting, effects of 

biological control agents within the fresh produce microbiome. 

From Lefse, the genera correlated with the samples negative for Enterobacteriaceae were 

Pseudonocardia, Ophiovirus and Varicovirus. Of these, Ophiovirus and Varicovirus were only 

present in 3 samples and therefore there is not strong evidence that these represent a true 

effect. Pseudonocardia was identified in 41 samples, with the relative abundance 

significantly higher in samples where Enterobacteriaceae were not detected by 

microbiological methods. Pseudonocardia is a protective mutualist within ants and is also 

found in soil (Holmes et al. 2016). Pseudonocardia been shown to produce anti-fungal and 

antibiotic compounds (Jafari et al. 2014). Interestingly, in the present study, there was an 

inverse correlation between Pseudonocardia and Enterobacteriacea and Listeria spp. 

consistent with the known antimicrobial action of  Pseudonocardia and the fact that human 

pathogens have been shown to be susceptible to the compounds produced by 

Pseudonocardia (Jafari et al. 2014). These observations suggest further research on the 

potential afforded by Pseudonocardia as a biocontrol agent should be pursued. 

Although Lefse is a useful methodology to identify potential correlations between the 

microbiome and associated metadata, the statistical methods used within the Lefse program 

are skewed by the presence of zeros in the microbiome data (i.e. samples where the species 

in question are not detected). While in the present study microbiome data was filtered to 

remove members of the microbiome only present in a single sample, the data could not be 

filtered further without biasing the statistical analysis. A larger sample size may allow for 

greater filtering without bias. As well as this, there is a bias when examining metadata where 

there are low sample numbers within one of the groups, for example in this study only having 
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seven samples positive for AMR associated genes of greater than 80% coverage and identity. 

This bias may lead to members of the microbiome being found to be significantly correlated 

with metadata, when this is in fact just an artefact of low sample numbers. The statistically 

significant outputs obtained from Lefse in this study, although significant, gave very small 

changes in abundance (Appendix C) and so the results need further exploration to verify their 

biological significance. Further work is needed to examine the genera of interest identified by 

Lefse for the effects these genera have on the other members of the microbiome and 

ascertain whether it is of biological relevance within the fresh produce microbiome.  

3.5 Conclusions 

The fresh produce microbiome was dominated by several key taxa, Alteromonas, 

Pseudomonas, Leuconostoc and Thiobacillus. The methodologies employed identified four 

AMR associated genes, H-NS, CRP, mexF and mexB, although further work could be done to 

examine this dataset for novel AMR associated genes. The statistical analysis of the 

microbiome in conjunction with metadata regarding the produce category, microbiological 

presence of Enterobacteriaceae and Listeria, and AMR gene presence yielded several genera 

which may affect the survival of human pathogens within the fresh produce microbiome, or 

show potential as an indicator organism, and could be of interest for future research. The 

most notable findings are the presence of Pseudonocardia, which correlates with the 

absence of Enterobacteriaceae, and the presence of Leuconostoc, which correlates with the 

absence of Listeria spp., and therefore may be utilisable as a novel method of biocontrol of 

human pathogens within the fresh produce microbiome. The use of Lactobacillus as a 

biocontrol agent may also lead to an increase in survival of human pathogens within the 

fresh produce microbiome, therefore more work is needed to ensure strains and 

concentrations used allow for removal of human pathogens.  
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Chapter 4. Phenotypic and genotypic study of Listeria monocytogenes isolated 

from vegetables, meat and clinical cases in the UK 

 

4.1 Introduction 

Listeria monocytogenes can survive and reproduce in a variety of habitats, including on food 

and within the food processing environment, and can also reproduce at refrigeration 

temperatures (Chan and Wiedmann 2009; Leong et al. 2014). The ability of L. 

monocytogenes to form biofilms can increase its ability to persist both in the environment 

and on food (Ferreira et al. 2014). Biofilm formation also increases an isolate’s resistance to 

biocides thereby increasing its persistence (Ölmez and Temur 2010). Biofilm formation may 

also drive the acquisition of antimicrobial resistance (AMR). This may be caused by the 

biofilm matrix preventing antimicrobials coming into contact with cells, leading to the 

presence of sub-lethal concentrations of these compounds in the environment or through 

the close contact of cells within the biofilm increasing the potential for conjugation and the 

exchange of AMR associated genes (Rodriguez-Lopez et al. 2018). The mechanisms of action 

of many antibiotic resistance genes, for example efflux pumps, may also allow for survival of 

L. monocytogenes in the presence of biocides. 

Isolates of antibiotic resistant L. monocytogenes have been found in the food supply chain in 

various countries throughout the world (Obaidat et al. 2015; Escolar et al. 2017; Noll et al. 

2018; Wilson et al. 2018). In addition, there is growing concern over the potential of 

multidrug resistant bacteria within the food supply chain (Noll et al. 2018). The presence of 

multidrug resistant bacteria within the food supply chain is an issue as this will affect the 

treatment potential thus affecting clinical outcomes of L. monocytogenes. In addition, AMR 

associated genes may pass from foodborne bacteria into bacteria with high clinical 

relevance, leading to a generalised increase in morbidity and mortality due to bacterial 

infections. 

The virulence potential of L. monocytogenes influences the infection potential and clinical 

outcomes of listeriosis. Virulence in L. monocytogenes is predominantly mediated by genes 

involved in cell to cell transfer or evasion of the host immune system (Nishibori et al. 1995). 

It has been demonstrated that plant-based molecules can inhibit the expression of virulence 

associated genes in L. monocytogenes, suggesting they are not needed for survival in the 
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phyllosphere, although this does not affect their expression in vivo (Kathariou 2002). There is 

limited understanding of the genes needed for survival in the phyllosphere and of whether 

these are linked to presence or absence of specific virulence factors, although it has 

previously been shown that the presence of specific genes can mediate both stress survival 

and virulence (Wonderling et al. 2004).  

As previously discussed, whole genome sequencing (WGS) is increasingly being utilised in the 

context of food microbiology and pathogen identification (U.S. Food and Drug 

Administration 2019) and has been used successfully to track outbreaks of Listeria 

monocytogenes within the food supply chain (Public Health England 2019). This services a 

significant volume of data that can be utilised to screen for phylogenetic relationships 

between isolates, and potential phenotypic qualities, for example resistance or virulence 

associated genes (Smith et al. 2019). Genome wide association studies (GWAS) can also 

beundertaken to probe the presence of novel genes associated with a specific phenotype or 

piece of metadata, for example the origin of the isolate.  

The aims of this study were to: 

(i) Qualify, through phenotypic testing, the antibiotic resistance profile and biofilm-

forming capability of L. monocytogenes isolated from fresh produce. 

(ii) Compare WGS data of L. monocytogenes isolated from the fresh produce supply 

chain with similar from UK-related meat and clinical isolates from the NCBI Sequence 

Read Archive to identify the multi-locus sequence typing (MLST) types most 

frequently associated with each source, their phylogenetic relationships, and the 

rates of incidence of AMR and virulence genes. 

(iii) Employ GWAS on WGS data and metadata on the category of origin (fresh produce, 

meat or clinical), to identify genes associated with the origin of the sample. 

4.2 Methods 

4.2.1 Phenotypic screening of L. monocytogenes isolated from fresh produce 

4.2.1.1 Selection of Bacterial Strains 

Listeria monocytogenes strains isolated from fresh produce (see Appendix D for information 

on source of isolates) were supplied by Edinburgh Napier University (isolates veg1-14 

appendix D) and a UK-based fruit and vegetable manufacturer (isolates veg15-48 appendix 

D). The strains were isolated during routine food testing between May 2016 and November 
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2018 following ISO 11290-2: 2017 and were identified using biochemical testing or MALDI-

TOF. Strains were received streaked on nutrient agar slopes. The isolates were then sub-

cultured at Fera onto Chromogenic Listeria Agar (OCLA) (Thermo Scientific, Oxoid, 

Basingstoke, UK) and grown for 48 h at 37 oC enabling preliminary confirmation as L. 

monocytogenes and assessment of purity. Individual colonies were then recovered into 

Protect tubes (Technical Service Consultants) containing liquid cryoprotectant buffer plus 

plastic beads (aiding viability of frozen cultures) prior to storage at -80oC. Streptococcus 

pneumonia strain NCTC 12977 was obtained from the PHE culture collection to use as a 

positive control. The strain was plated onto Columbia Blood Agar (CBA) and grown overnight 

at 37 oC to obtain an active culture and assess purity, then a 1 µl loopful of culture placed 

into a Protect tube and stored at -80oC.  

4.2.1.2 Phenotypic Screens 

Isolates of L. monocytogenes, plus Streptococcus pneumoniae per batch tested, were 

removed from -80 °C storage and a 1 µl loopful of cryoprotectant containing the culture 

plated on Columbia Blood Agar (CBA) and grown overnight at 37 oC. Bacteria were taken 

from this plate and resuspended in phosphate buffered saline (PBS) to McFarlan 0.5 

standard; equivalent to an absorbance of 0.08 at OD650. This suspension was then used for 

subsequent phenotypic screens as in Figure 11 following EUCAST guidelines for disk diffusion 

(The European Committee on Antimicrobial Susceptibility Testing 2017).  

 

Figure 11. Flow chart showing the processing of Listeria monocytogenes isolates upon 
receipt through phenotypic and whole genome sequencing methods.  
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Briefly, to test for antimicrobial resistance; resuspended isolates were inoculated onto 

Mueller Hinton Media with Horse Blood (MH-F)(Thermo Scientific, Oxoid), following EUCAST 

guidelines. A sterile swab was dipped into the prepared culture dilution, and swabbed onto 

the plate in three directions to spread inoculum evenly over entire plate. Antibiotic disks of 

Penicillin (P), Ampicillin (AMP), Meropenem (MEM), Erythromycin (E), Trimethoprim-

sulfamethoxazole (SXT) and a blank were taken from their packaging using sterile forceps 

and place directly onto plate. Plates were incubated at 37 °C for 18 h in stacks no larger than 

6 plates. After 18 h, electronic callipers were used to read the size of the zone of clearance 

around the antibiotic disk. Resistance and non-resistance breakpoints were categorised 

using the EUCAST breakpoints for Listeria monocytogenes.  

To test the ability of the isolates to form biofilms, 1 ml of liquid media, brain heart infusion 

(BHI) or nutrient broth (NB) was added to appropriate wells of a 24 well flat-bottomed ELISA 

plate. To this, 100 μl of absorbance 0.08 at OD650 resuspended culture was added, with 

each culture performed in triplicate for each medium, and one well left as a blank per row. 

This was incubated at 35 oC for 24 h, then the liquid media removed, the plate washed three 

times with 1 ml of PBS and stained with 200 μl 0.1% crystal violet (Kadam et al. 2013) at 

room temperature for 45 minutes. After this the excess crystal violet was removed and the 

plate washed three times with 1 ml of sterile distilled water (SDW). To de-stain the biofilm, 

200 μl of 95-98% ethanol was added to each well and incubated for 30 minutes at room 

temperature, then a 100 μl aliquot transferred to a 96 well microplate and read in a plate 

reader at 595 nm. Absorbance data were plotted to assess the ability of the isolates to form 

biofilms (Appendix E).  

All phenotypic screens were performed in triplicate with a control plate of S. pneumoniae 

run for each batch of samples tested. Standard deviation, minimum values and maximum 

values for each phenotypic test were calculated using Microsoft Excel.  

4.2.2 Whole Genome Analysis 

4.2.2.1 Preparation of L. monocytogenes isolated from fresh produce 

For WGS; isolates of L. monocytogenes from fresh produce were taken from Protect, plated 

on Columbian Blood Agar (CBA) and grown overnight at 37 oC. Two culture collection strains 

(NCTC 11994 and NCTC 5214) were also plated and grown overnight at 37 oC. DNA 

extractions were performed on a single colony using the Qiagen Blood and Tissue kit 

following manufacturer’s instructions for Gram-positive bacteria (Qiagen 2006). Lysis buffer 
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was made up by mixing 0.1g Lysozyme, 60 µl TritonX, 100 µl Tris-EDTA and 5 ml MBGW. A 

single colony of L. monocytogenes was taken from the CBA plate and resuspended in 180 µl 

lysis buffer, then incubated for 50 min at 37 °C. To this, 25 µl proteinase K and 200 µl buffer 

AL were added and the mixture incubated for 30 mins at 56 °C, followed by a further 15 mins 

at 95 °C. After this, 200 µl of 100% ethanol was added and the mixture loaded onto a DNeasy 

spin column. Manufacturer’s instructions (Qiagen 2006) were followed and the DNA eluted 

in 50 µl, followed by a further 50 µl of buffer EB.  

The samples were quantified using the Qubit® DNA HS Assay Kit following the 

manufacturer’s instructions and diluted to 0.8 ng in 5 μl. Samples were prepared for WGS 

using the Nextera XT Library Preparation Kit following the manufacturer’s instructions 

(Illumina 2018c), with an input of 0.8 ng DNA. To the diluted DNA, 10 µl buffer TD and 5 µl 

ATM per sample were added, the plate sealed and placed on a thermal cycler for: 5 mins at 

55 °C , held at 10 °C. Upon reaching 10 °C, 5 µl NT buffer was added to each well and mixed 

gently by pipetting up and down 10 times. The mixture was incubated at RT for 5 mins 

before addition of 15 µl NPM to each well, plus 5 µl each of unique forward and reverse 

index primers. The plate was sealed and place on thermal cycler for 72 °C for 3 mins, 95 °C 

for 30 s, followed by 13 cycles of 95 °C for 10 s, 55 °C for 30 s and 72 °C for 30 s, before a 

final elongation step at 72 °C for 5 mins. Samples were cleaned via the addition of 30 µl 

AMPure XP beads, incubated at RT for 5 mins, placed on magnetic stand and supernatant 

removed, before being washed twice with 80% ethanol, and resuspended in 38 µl MBGW.  

Samples were then quantified using the Qubit® DNA HS Assay Kit following the 

manufacturer’s instructions and pooled to equimolar concentrations. Pool quality was 

checked using the Agilent 2200 TapeStation system with High Sensitivity D1000 reagents 

(Agilent Technologies) following the manufacturer’s instructions. The pool was denatured, 

combined with 5% PhiX and diluted to 10 pM then run on a single MiSeq flow cell using the 

V3 reagents kit (Illumina). 

4.2.2.2 Quality control  

Extraction blanks were undertaken as part of the RNA extraction. Process blanks, MBGW put 

through the same processing as samples, and indexing blanks, MBGW added at indexing PCR 

stage, were undertaken for each sequencing method. All were examined using the 

tapestation and Qubit for quality purposes. Blanks were run on the sequencer as a 

separately indexed sample. All samples, including blanks, were examined for read number 
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and those with low quality reads, or less than 500 reads were filtered out of the analysis. 

Any blanks remaining were run through the bioinformatic analysis separately to samples and 

the top taxa compared manually to those in experimental samples to rule out cross 

contamination.  

The PhiX internal standard was spiked into the final pool and run on the sequencer. The PhiX 

standard was mapped to the PhiX genome on the MiSeq as part of the standard Illumina 

workflow to allow for the assessment of the quality of the MiSeq run, in addition to metrics 

on cluster density and read numbers. This was compared to the average statistics on these 

metrics for the specific run type (amplicon or metagenomics) runs on the MiSeq at Fera to 

ensure the quality of the run was of the standard usually obtained. 

4.2.2.3 Bioinformatic Analysis 

WGS data from 46 clinical samples and 34 meat isolated samples were downloaded from the 

NCBI Sequence Read Archive. Details of origin and NCBI reference number are outlined in 

Appendix D.  
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Initially, to examine the relatedness of the strains (as outlined in Figure 12), the samples 

were trimmed using Sickle v1.33 (Joshi and Fass 2011) to remove sequence of quality less 

than Q20 (1 in 100 probability of incorrect base call) and length less than 100 base pairs. The 

genomes were then assembled using Spades v3.10.1 (Nurk et al. 2013). Core genome MLST 

(cgMLST) assignment was undertaken using chewBBACA (Silva et al. 2018) and then 

visualised in PHYLOViZ (Francisco et al. 2012) in conjunction with metadata related to the 

origin of the sample. Average nucleotide identity was undertaken using PyANI (Pritchard et 

al. 2016). 

 

Analysis of MLST type, assignment of the resistome and virulome, and the phylogeny of 

isolates were examined using Nullarbor version 2.0.20181010 (Seemann et al. 2018), a 

pipeline designed to generate public health microbiology reports from WGS isolates, with 

Listeria monocytogenes strain NCTC10357 (NZ_LT906436.1) as the reference genome (Figure 

12). The Nullarbor pipeline briefly includes trimming the sequence using Trimmomatic, use 

 

Figure 12. Flow chart of bioinformatic methods used to analyse whole genome 
sequencing data of Listeria monocytogenes. 
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of trimmed data to call variants using snippy and examine core genome single nucleotide 

polymorphisms (SNP) using snippy-core, which then allowed for the creation of an SNP 

phylogeny tree using IQTree. The trimmed sequences underwent de novo assembly using 

SKESA. Assembled reads were used to assign MLST type using the software mlst with the 

PubMLST database, to infer the resistome and virulome using abricate plus Resfinder and 

VFDB databases and were annotated using Prokka. The annotated reads were used to 

identify the pan genome of the isolates using Roary. De novo assembly outputs from 

Nullarbor were also used as inputs for Pyseer (Lees et al. 2018), to compare genomes and 

obtain genome wide association (GWAS) data for each origin. 

4.3 Results  

4.3.1 Phenotypic screening 

None of the isolates tested appeared to exhibit resistance to any of the antibiotics used 

when assessed against EUCAST breakpoints (The European Committee on Antimicrobial 

Susceptibility Testing 2018). There was variability in the extent of clearance zones observed 

(Appendix F), but all were above the breakpoints (Figure 13). However, the minimum zone of 

clearance for both AMP and SXT was within 0.25 mm of the breakpoint. There were no 

statistically significant differences between the resistance profiles of the two lineages 

(lineage identified by WGS).  
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Figure 13. Phenotypic screening for: A) antibiotic resistance and B) biofilm formation 
capability. AMP = Ampicillin, E = Erythromycin, MEM = Meropenem, P = Benzylpenicillin, 
SXT = Trimethoprim-sulfamethoxazole. Antibiotic resistance is measured in mm, biofilm 
formation is measured in OD at 595 nm.  
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All isolates tested were able to form biofilms in both NB and BHI. The biofilm formation 

screens showed a highly significant difference in biofilm formation capability in NB and BHI 

(Students Paired T-Test p ≤ 0.0001); L. monocytogenes forming biofilm better in NB than in 

BHI (Figure 13), which is consistent with the observation that stress conditions favour biofilm 

formation. The maximum absorbance reading was similar in both media, but the minimum 

absorbance was lower for BHI than NB (Figure 13). The ability to form biofilms in NB varied 

significantly (Students T-Test p ≤ 0.0001) between isolates from lineage 1 and lineage 2.  

4.3.2 WGS 

4.3.2.1 Quality Assessment 

Run quality metrics are found in Table 13. All runs had a high level of reads passing filter and 

assigned to indexes, indicative of a good quality run. Negative controls were examined, and 

all had read numbers of less than 500, therefore were filtered out at QC stage and no 

subsequent analysis was performed on them.   

 

Table 13. MiSeq run metrics for each run associated with data from whole genome 
sequencing of Listeria monocytogenes samples 

Cluster 
Density 

Reads 
Passing 
Filter 

% 
Clusters 
Passing 
Filter 

% PhiX 
Loaded 
into 
Library 

Concen-
tration of 
library 
loaded 

% of 
Reads 
Aligned 
to PhiX 

Error 
Rate %Q30 

% 
Identified 

% 
Assigned 
to Index 

1189 25395640 90.83 5 10 7.09 3.43 78.84 90.8 2539655 

1054 25530000 93.24 10 10 20.18 3.59 76.6 72.23 2553072 

 

 

4.3.2.2 Identification and relatedness 

The WGS data showed all samples belonged to either lineage I (82 isolates) or II (46 isolates), 

except culture collection sample NCTC 5214, which was lineage III (Figure 14). The 

proportion of isolates from each category of origin varied between the two lineages. Of the 

isolates in lineage I, 42% were from fresh produce, 20% were from meat and 35% were from 

clinical cases, compared to lineage II where only 28% of the isolates were from fresh 

produce, 37% from meat and, as with lineage I, 35% were from clinical cases. Moreover, 

there was greater genetic variation in isolates from lineage II than lineage I as shown using 

average nucleotide identity plots (Figure 15). There were 35 MLST sequence types (ST) 

(Figure 14), with ST6 constituting the most frequently found ST (33 isolates), then ST 9 (14 
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isolates), and ST1 (13 isolates). The cgMLST was found to give greater differentiation of 

strains than conventional MLST. When the relatedness, as assigned by cgMLST, was 

visualised coloured by MLST type (Figure 16) the MLST types cluster within the cgMLST 

phylogeny. None of the methods tested differentiated the origin of samples, and none of the 

STs clustered to a single origin (where n>2), except for ST3, which was assigned to 4 isolates 

from meat, but none of vegetable or clinical origin, and ST 7, which was assigned to 4 

isolates from clinical origin, but none of meat or vegetable origin. In addition, samples did 

not phylogenetically cluster based on origin (Figure 14). 

A total of 7185 coding sequences (CDS) were found in this dataset by Nullarbor, with this 

ranging from 2785-3073 CDS within each isolate. The core genome (genes found in 99-100% 

of isolates) consisted of 2103 genes, a further 132 were found in 95-99% of strains, 1245 

found in 15-95%, and 3701 found in 0-15% of strains. 
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Figure 14. Phylogenetic tree produced by core SNP analysis via Nullarbor. Number of reads associated with 

the sample, CG content, depth, MLST sequence type and lineage, and the distribution of genetic elements 

associated with antimicrobial resistance and virulence. Shading on the right of the tree indicate the 

presence (green), absence (red), or potential presence (yellow) of genes. 
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Reference_NCTC11994 Culture Collection 1140862 39.2 117 328 I   ? ?  ? ? presentpresent? ? presentpresent? presentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresent

clinical_SRR6798559 Clinical 3870804 38.1 131 1 I   ? ?  ? ? presentpresent? ? presentpresent? presentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresent

veg9 Vegetables 1960370 39.1 168 1 I   ? ?  ? ? presentpresent? ? presentpresent? presentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresent

veg24 Vegetables 1453332 39.6 150 1 I   ? ?  ? ? presentpresent? ? presentpresent? presentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresent

meat_SRS2048887 Meat 1843088 38.4 126 1 I   ? ?  ? ? presentpresent? ? presentpresent? presentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresent

veg11 Vegetables 1543736 38.8 133 1 I   ? ?  ? ? presentpresent? ? presentpresent? presentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresent

veg6 Vegetables 3892686 39.1 335 1 I   ? ?  ? ? presentpresent? ? presentpresent? presentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresent

clinical_SRR6798535 Clinical 3964100 40 135 1 I   ? ?  ? ? presentpresent? ? presentpresent? presentpresentpresentpresentpresentpresentpresent? present? presentpresentpresentpresent

clinical_SRR6798560 Clinical 4085400 38.8 136 1 I   ? ?  ? ? presentpresent? ? presentpresent? presentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresent

clinical_SRR6798622 Clinical 2820652 39.7 95 1 I   ? ?  ? ? presentpresent? ? presentpresent? presentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresent

veg20 Vegetables 2139560 40.4 221 1 I   ? ?  ? ? presentpresent? ? presentpresent? presentpresentpresentpresentpresentpresentpresent? presentpresentpresentpresentpresentpresent

clinical_SRR6798623 Clinical 3300576 38.3 112 1 I   ? ?  ? ? presentpresent? ? presentpresent? presentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresent

veg18 Vegetables 1661028 39.9 171 1 I   ? ?  ? ? presentpresent? ? presentpresent? presentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresent

clinical_SRR6798616 Clinical 3106936 38.1 105 1 I   ? ?  ? ? presentpresent? ? presentpresent? presentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresent

meat_SRS1909385 Meat 1355752 37.5 112 218 I   present?  ? ? presentpresent? ? presentpresent? presentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresent

clinical_SRR6798518 Clinical 1509946 38.4 51 220 I   present?  ? ? presentpresent? ? presentpresent? presentpresent        presentpresentpresentpresent

clinical_SRR6798542 Clinical 2735348 38.8 93 220 I   present?  ? ? presentpresent? ? presentpresent? presentpresent        presentpresentpresentpresent

clinical_SRR6798605 Clinical 3459216 38.1 117 220 I   ? ?  ? ? presentpresent? ? presentpresent? presentpresent        presentpresentpresentpresent

meat_SRS1909337 Meat 623800 38 51 220 I   present?  ? ? presentpresent? ? presentpresent? presentpresent        presentpresentpresentpresent

clinical_SRR6798603 Clinical 6192510 38 210 220 I   present?  ? ? presentpresent? ? presentpresent? presentpresent        presentpresentpresentpresent

clinical_SRR6798563 Clinical 2987874 37.9 96 2 I   present?  ? ? presentpresent? ? presentpresent? presentpresent        presentpresentpresentpresent

clinical_SRR6798617 Clinical 3519612 38.2 119 2 I   present?  ? ? presentpresent? ? presentpresent? presentpresent        presentpresentpresentpresent

meat_SRS1909656 Meat 947170 38 77 2 I   present?  ? ? presentpresent? ? presentpresent? presentpresent        presentpresentpresentpresent

clinical_SRR6798569 Clinical 3710950 38.3 126 2 I   present?  ? ? presentpresent? ? presentpresent? presentpresent        presentpresentpresentpresent

clinical_SRR6798575 Clinical 2452872 39.3 83 2 I   present?  ? ? presentpresent? ? presentpresent? presentpresent        presentpresentpresentpresent

meat_SRS2048879 Meat 414402 38.2 32 2 I   present?  ? ? presentpresent? ? presentpresent? presentpresent        presentpresentpresentpresent

clinical_SRR6798556 Clinical 2947072 38.6 100 388 I   present?  ? ? presentpresent? ? present? ? presentpresent        presentpresentpresentpresent

veg35 Vegetables 1694900 40.7 175 388 I   present?  ? ? present? ? ? present? ? presentpresent        presentpresentpresentpresent

clinical_SRR6798570 Clinical 3382086 38.1 115 219 I   ? ?  ? ? presentpresent? ? presentpresent? presentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresent

clinical_SRR6798626 Clinical 4627206 40.5 157 219 I   ? ?  ? ? presentpresent? ? presentpresent? presentpresentpresentpresentpresentpresentpresent? presentpresentpresentpresentpresentpresent

veg7 Vegetables 714158 38.7 61 219 I   ? ?  ? ? presentpresent? ? presentpresent? presentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresent

clinical_SRR6798627 Clinical 4595486 38.4 152 4 I   ? ?  ? ? presentpresent? ? presentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresent

veg5 Vegetables 4707218 39.5 405 4 I   ? ?  ? ? presentpresentpresent? presentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresent

veg15 Vegetables 1807956 39.7 186 4 I   ? ?  ? ? presentpresent? ? presentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresent

veg8 Vegetables 621240 38.5 53 4 I   ? ?  ? ? presentpresent? ? presentpresentpresentpresentpresentpresentpresentpresentpresentpresent? presentpresentpresentpresentpresentpresent

veg19 Vegetables 2051810 40.4 212 217 I   present?  ? ? presentpresent? ? presentpresent? presentpresentpresentpresentpresentpresentpresent? presentpresentpresentpresentpresentpresent

clinical_SRR6798621 Clinical 3129632 39.3 103 - -   ? ?  ? ? presentpresent? ? presentpresent? presentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresent

clinical_SRR6518418 Clinical 3099730 39.6 102 6 I   present?  ? ? presentpresentpresent? presentpresent? presentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresent

clinical_SRR6518419 Clinical 4023850 39.1 131 6 I   present?  ? ? presentpresentpresent? presentpresent? presentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresent

clinical_SRR6798596 Clinical 3424946 39.4 114 6 I   present?  ? ? presentpresentpresent? presentpresent? presentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresent

clinical_SRR6882060 Clinical 6081638 40.4 204 6 I   present?  ? ? presentpresentpresentpresentpresent? ? presentpresentpresentpresent? present? ? present? presentpresentpresentpresent

clinical_SRR6798541 Clinical 2576990 38.7 87 6 I   present?  ? ? presentpresentpresent? presentpresent? presentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresent

clinical_SRR6805285 Clinical 3170138 38.6 107 6 I   present?  ? ? presentpresentpresent? presentpresent? presentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresent

clinical_SRR6798551 Clinical 3120156 38.4 106 6 I   present?  ? ? presentpresentpresent? presentpresent? presentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresent

clinical_SRR6798581 Clinical 3464882 38.5 117 6 I   present?  ? ? presentpresentpresent? presentpresent? presentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresent

clinical_SRR6798546 Clinical 2889116 39.4 98 6 I   present?  ? ? presentpresentpresent? presentpresent? presentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresent

meat_SRS1909586 Meat 1675792 37.4 139 6 I   present?  ? ? presentpresentpresent? presentpresent? presentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresent

clinical_SRR6798606 Clinical 3955920 38.3 130 6 I   present?  ? ? presentpresentpresent? presentpresent? presentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresent

clinical_SRR6798591 Clinical 4139714 38 138 6 I   present?  ? ? presentpresentpresent? presentpresent? presentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresent

meat_SRS1908657 Meat 280794 38.2 23 6 I   present?  ? ? presentpresentpresent? presentpresent? presentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresent

meat_SRS1909335 Meat 650962 38 53 6 I   present?  ? ? presentpresentpresent? presentpresent? presentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresent

veg45 Vegetables 1321022 40.4 136 6 I   present?  ? ? presentpresentpresent? presentpresent? presentpresentpresentpresentpresentpresentpresent? presentpresentpresentpresentpresentpresent

veg29 Vegetables 1704010 40.3 176 6 I   present?  ? ? presentpresentpresent? presentpresent? presentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresent

veg42 Vegetables 1782876 41.2 184 6 I   present?  ? ? presentpresentpresent? presentpresent? presentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresent

veg48 Vegetables 1248110 40.2 128 6 I   present?  ? ? presentpresentpresent? presentpresent? presentpresentpresentpresentpresentpresent? ? presentpresentpresentpresentpresentpresent

veg47 Vegetables 1667564 40.8 172 6 I   present?  ? ? presentpresentpresent? presentpresent? presentpresentpresentpresentpresentpresentpresent? presentpresentpresentpresentpresentpresent

veg31 Vegetables 1904098 40.6 196 6 I   present?  ? ? presentpresentpresent? presentpresent? presentpresentpresentpresentpresentpresentpresent? presentpresentpresentpresentpresentpresent

veg33 Vegetables 1822250 40.8 188 6 I   present?  ? ? presentpresentpresent? presentpresent? presentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresent

veg39 Vegetables 1979702 41 204 6 I   present?  ? ? ? presentpresent? presentpresent? presentpresentpresentpresentpresentpresentpresent? presentpresentpresentpresentpresentpresent

veg46 Vegetables 1226728 40.1 126 6 I   present?  ? ? presentpresentpresent? presentpresent? presentpresentpresentpresentpresentpresentpresent? presentpresentpresentpresentpresentpresent

veg38 Vegetables 1672990 40.6 172 6 I   present?  ? ? presentpresentpresent? presentpresent? presentpresentpresentpresentpresentpresentpresent? presentpresentpresentpresentpresentpresent

veg40 Vegetables 1803662 40.6 186 6 I   present?  ? ? presentpresentpresent? presentpresent? presentpresentpresentpresentpresentpresentpresent? presentpresentpresentpresentpresentpresent

veg30 Vegetables 1870464 40.4 193 6 I   present?  ? ? presentpresentpresent? presentpresent? presentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresent

veg43 Vegetables 1295746 40.5 133 6 I   present?  ? ? presentpresentpresent? presentpresent? presentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresent

veg34 Vegetables 2335524 41.3 241 6 I   present?  ? ? presentpresentpresent? presentpresent? presentpresentpresent? ? presentpresent? presentpresentpresentpresentpresentpresent

veg36 Vegetables 1316780 41.3 136 6 I   present?  ? ? presentpresentpresent? presentpresent? presentpresentpresentpresentpresentpresentpresent? present? presentpresentpresentpresent

veg37 Vegetables 1601472 40.7 165 6 I   present?  ? ? presentpresentpresent? presentpresent? presentpresentpresentpresentpresentpresentpresentpresentpresent? presentpresentpresentpresent

veg32 Vegetables 1633160 40.7 168 6 I   present?  ? ? present? present? present? ? presentpresentpresent? ? presentpresent? presentpresentpresentpresentpresentpresent

veg41 Vegetables 1800802 40.8 186 6 I   present?  ? ? presentpresentpresent? presentpresent? presentpresentpresentpresentpresentpresent? ? presentpresentpresentpresentpresentpresent

veg44 Vegetables 942066 41.3 97 6 I   present?  ? ? presentpresentpresent? presentpresent? presentpresentpresentpresentpresentpresentpresent? presentpresentpresentpresentpresentpresent

meat_SRR5344715 Meat 2124868 38.2 146 5 I presentpresent? ? present? ? presentpresent? presentpresentpresent? presentpresent        presentpresentpresentpresent

veg1 Vegetables 1893838 38.9 163 5 I   ? ? present? ? presentpresent? presentpresentpresent? presentpresent        presentpresentpresentpresent

veg2 Vegetables 874062 38.6 75 5 I   ? ? present? ? presentpresent? presentpresentpresent? presentpresent        presentpresentpresentpresent

meat_SRS2048880 Meat 3987430 38.4 279 224 I   presentpresentpresent? ? presentpresent? presentpresentpresent? presentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresent

meat_SRS1908667 Meat 413838 37.9 34 3 I   present? present? ? presentpresent? presentpresentpresent? presentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresent

meat_SRS1908669 Meat 1221528 38.1 99 3 I   presentpresentpresent? ? presentpresent? presentpresentpresent? presentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresent

meat_SRS1909383 Meat 282170 38.1 22 3 I   present? present? ? presentpresent? presentpresentpresent? presentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresent

meat_SRS1908995 Meat 689324 38 56 3 I   present? present? ? presentpresent? presentpresentpresent? presentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresentpresent

meat_SRS1908708 Meat 933482 37.9 77 59 I   ? ? present? ? presentpresent? presentpresentpresent? presentpresent        presentpresentpresentpresent

meat_SRS717409 Meat 2346498 37.7 149 59 I   ? ? present? ? presentpresent? presentpresentpresent? presentpresent        presentpresentpresentpresent

veg16 Vegetables 1449664 39.8 149 59 I   ? ? present? ? presentpresent? presentpresentpresent? presentpresent        presentpresentpresentpresent

veg17 Vegetables 1865768 39.7 192 59 I   ? ? present? ? presentpresent? presentpresentpresent? presentpresent        presentpresentpresentpresent

meat_SRS1909654 Meat 410268 38.1 22 59 I   ? ? present? ? presentpresent? ? present ? ? present        presentpresent present

Reference_NCTC5214 Culture Collection 1470702 39.8 151 202 III   ?   ? ? presentpresent? ?    present         ? presentpresent 

meat_SRS1909367 Meat 579688 38 33 121 II   ? ? present? ? presentpresent? presentpresent ? presentpresent        presentpresentpresentpresent

veg14 Vegetables 494268 39 42 399 II   ? presentpresent? ? presentpresent? presentpresent ? presentpresent        presentpresentpresentpresent

veg27 Vegetables 2081170 39.5 215 14 II   presentpresentpresent? ? presentpresent? presentpresent ? presentpresent        presentpresentpresentpresent

veg28 Vegetables 1239000 39.4 128 14 II   present? present? ? presentpresent? presentpresent ? presentpresent        presentpresentpresentpresent

meat_SRS1909658 Meat 398870 37.7 33 425 II   presentpresentpresent ? presentpresent? presentpresentpresentpresentpresentpresent        presentpresentpresentpresent

clinical_SRR6798567 Clinical 3138836 39.8 106 391 II   ? presentpresent ? presentpresentpresentpresentpresentpresentpresentpresentpresent        presentpresentpresentpresent

veg21 Vegetables 1690708 39.7 174 91 II   presentpresentpresent ? presentpresent? presentpresentpresentpresentpresentpresent        presentpresentpresentpresent

veg22 Vegetables 2451572 40.4 253 91 II   presentpresentpresent? ? presentpresent? presentpresentpresentpresentpresentpresent        presentpresentpresentpresent

clinical_SRR6798561 Clinical 3068062 38 99 173 II   present? present ? presentpresentpresentpresentpresentpresentpresentpresentpresent        presentpresentpresent 

clinical_SRR6798580 Clinical 3632084 38 123 20 II   present? present ? presentpresentpresentpresentpresentpresentpresentpresentpresent        presentpresentpresentpresent

clinical_SRR6798577 Clinical 3088832 39.5 104 9 II presentpresentpresent? present ? presentpresentpresentpresentpresentpresentpresentpresentpresent        presentpresentpresentpresent

clinical_SRR6798588 Clinical 4589972 39.2 156 9 II   present? present ? presentpresentpresentpresentpresentpresentpresentpresentpresent        presentpresentpresentpresent

clinical_SRR6805087 Clinical 4026064 39.3 136 9 II   presentpresentpresent ? presentpresentpresentpresentpresentpresentpresentpresentpresent        presentpresentpresentpresent

meat_SRS1908704 Meat 607746 38.1 50 9 II   presentpresentpresent ? presentpresentpresentpresentpresentpresentpresentpresentpresent        presentpresentpresentpresent

clinical_SRR6798586 Clinical 3547876 39.1 121 9 II   present? present ? presentpresentpresentpresentpresentpresentpresentpresentpresent        presentpresentpresentpresent

clinical_SRR6805082 Clinical 3956356 39.8 134 9 II   present? present ? presentpresentpresentpresentpresentpresentpresentpresentpresent        presentpresentpresentpresent

meat_SRS2048896 Meat 1914190 38.5 132 622 II   presentpresentpresent ? presentpresentpresentpresentpresentpresentpresentpresentpresent        presentpresentpresentpresent

clinical_SRR6798624 Clinical 3522378 38.6 119 9 II   present? present ? presentpresentpresentpresentpresentpresentpresentpresentpresent        presentpresentpresentpresent

meat_SRS1908997 Meat 442654 38.1 36 9 II   present? present ? presentpresentpresentpresentpresentpresentpresentpresentpresent        presentpresentpresentpresent

meat_SRS1909344 Meat 997140 37.9 80 9 II   presentpresentpresent ? presentpresentpresentpresentpresentpresentpresentpresentpresent        presentpresentpresentpresent

meat_SRS1909591 Meat 727922 37.9 58 9 II   presentpresentpresent ? presentpresentpresentpresentpresentpresentpresentpresentpresent        presentpresentpresentpresent

meat_SRS717411 Meat 2189738 37.8 135 9 II   presentpresentpresent ? presentpresentpresentpresentpresentpresentpresentpresentpresent        presentpresentpresentpresent

meat_SRS1909360 Meat 1031988 38 78 9 II   presentpresentpresent ? presentpresentpresentpresentpresentpresentpresentpresentpresent        presentpresentpresentpresent

meat_SRS717415 Meat 3055988 37.9 175 9 II   presentpresentpresent ? presentpresentpresentpresentpresentpresentpresentpresentpresent        presentpresentpresentpresent

meat_SRR5182476 Meat 412602 37.7 23 9 II   presentpresentpresent? ? presentpresentpresentpresentpresentpresentpresentpresentpresent        present? presentpresent

veg12 Vegetables 2222968 38 191 204 II   presentpresentpresent ? presentpresent? presentpresentpresentpresentpresentpresent        presentpresentpresent 

meat_SRS1908664 Meat 941054 38.2 77 18 II   present? present ? presentpresent? presentpresentpresentpresentpresentpresent        presentpresentpresentpresent

clinical_SRR6798566 Clinical 4128456 40.2 140 16 II   present? present ? presentpresentpresentpresentpresentpresentpresentpresentpresent        presentpresentpresent 

meat_SRS1909296 Meat 519284 38.5 27 16 II   presentpresentpresent? ? presentpresentpresentpresentpresentpresentpresentpresentpresent        presentpresentpresent 

meat_SRS2048872 Meat 1290784 38.2 87 16 II   presentpresentpresent ? presentpresentpresentpresentpresentpresentpresentpresentpresent        presentpresentpresent 

meat_SRS1908665 Meat 1147766 38.3 94 8 II   present? present ? presentpresentpresentpresentpresentpresentpresentpresentpresent        presentpresentpresent 

meat_SRS1909374 Meat 342786 38 26 8 II   present? present ? presentpresentpresentpresentpresentpresentpresentpresentpresent        presentpresentpresent 

veg25 Vegetables 1961782 40.5 202 1413 II   present? present? ? presentpresent? presentpresentpresentpresentpresentpresent        presentpresentpresent 

veg3 Vegetables 917908 38.4 79 325 II presentpresent? ? present ? presentpresentpresentpresentpresentpresentpresentpresent         presentpresentpresent 

veg4 Vegetables 1525660 38.3 131 325 II presentpresent? ? present ? presentpresentpresentpresentpresentpresentpresentpresent         presentpresentpresent 

clinical_SRR6798552 Clinical 3299834 39.6 112 37 II   present? present ? presentpresentpresentpresentpresentpresentpresentpresentpresent        presentpresentpresent 

veg10 Vegetables 1010208 38.9 87 37 II   present? present ? presentpresentpresentpresentpresentpresentpresentpresentpresent        presentpresentpresent 

veg13 Vegetables 861572 38.6 74 37 II   presentpresentpresent ? presentpresentpresentpresentpresentpresentpresentpresentpresent        presentpresentpresent 

meat_SRS717414 Meat 1617724 37.5 108 37 II   present? present ? presentpresentpresentpresentpresentpresentpresentpresentpresent        presentpresentpresent 

clinical_SRR6798573 Clinical 2165812 40 73 37 II   present? present ? presentpresentpresentpresentpresentpresentpresentpresentpresent        presentpresentpresent 

veg26 Vegetables 1281824 39.2 132 29 II   presentpresentpresent ? presentpresentpresentpresentpresentpresentpresentpresentpresent        presentpresentpresent 

veg23 Vegetables 1864260 40.5 192 451 II   presentpresentpresent? ? presentpresent? presentpresentpresentpresentpresentpresent        presentpresentpresentpresent

clinical_SRR6798529 Clinical 2021956 40 68 7 II   present? present? ? presentpresentpresentpresentpresentpresentpresentpresentpresent        presentpresentpresent 

clinical_SRR6798538 Clinical 3035066 38.4 98 7 II   presentpresentpresent ? presentpresentpresentpresentpresentpresentpresentpresentpresent        presentpresentpresent 

clinical_SRR6798554 Clinical 3339444 39.8 113 7 II   presentpresentpresent ? presentpresentpresentpresentpresentpresentpresentpresentpresent        presentpresentpresent 

clinical_SRR6798630 Clinical 5287916 39.7 180 7 II   present? present ? presentpresentpresentpresentpresentpresentpresentpresentpresent        presentpresentpresent 
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Figure 15. PyANI output showing the genetic relatedness of Listeria monocytogenes isolates tested, with 
red being most closely related (>98% ANI). 
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4.3.2.3 Phenotypic Inference  

The antibiotic resistance genes fosX (conferring resistance to Fosfomycin) and lin (conferring 

resistance to Lincosamide) were identified in all isolates. The genes bcrB and bcrC (both 

conferring resistance to Bacitracin) were found together in 4 isolates (Figure 14). There were 

42 genes found in the virulome. Of the genes found, 17 were ubiquitous amongst the 

isolates tested (bsh, clpC, clpE, clpP, essC, hly, hpt, iap/cwhA, lap, lpeA, lspA, mpl, oatA, plcA, 

plcB, prfA, prsA2), and two (cpsB and essC) exhibited 16% coverage and 78% identity to the 

corresponding assigned gene.  

Genes in L. monocytogenes pathogenicity island III (llsA, llsB, llsD, llsG, llsH, llsP, llsX, llsY), 

encoding Listeriolysin S and associated proteins, were not found in isolates belonging to 

lineage II or III. In lineage I there are clusters of isolates containing (n= 61) or missing (n= 21) 

the full pathogenicity island. None of the antibiotic resistance or virulence genes found were 

exclusively found in isolates belonging to a single category of origin (Figure 14).  

GWAS highlighted 218 genes significantly (p≤ 0.00000001) associated with isolation from 

vegetables (Appendix G, i), with the top results being int (an integrase from bacteriophage 

A118); cds2325 (encoding a hypothetical protein of unknown function); and cds2326 (an 

anti-repressor with limited information known about its function). Many of the top results 

identified as hypothetical proteins with little or no information known about their function. 

GWAS identified 11 genes significantly (p≤ 0.00000001) associated with L. monocytogenes 

isolated from clinical samples (Appendix G, ii), with the top results being cds460 (a 

 

Figure 16. cgMLST of L. monocytogenes isolates assigned using chewBBACA and visualised in PHYLOViZ, 
coloured based on MLST type given by Nullarbor. 
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hypothetical protein) and cds456, (a transcriptional regulator). No genes were identified as 

significantly associated with L. monocytogenes isolated from meat or variation in the 

phenotypic screens undertaken in the laboratory including those for AMR and biofilm-

producing capability. 

4.4 Discussion  

All L. monocytogenes isolates exhibited the ability to form biofilms in both NB and BHI. 

Consistent with previous findings, strains of L. monocytogenes lineage II showed a stronger 

capability to form biofilms than those of lineage I (Djordjevic et al. 2002; Borucki et al. 2003). 

However, biofilm formation was more evident in NB than BHI. This suggests that the ability 

of L. monocytogenes to form biofilms is linked to stress, as NB is a nutrient-poor, less 

suitable media for the culture of L. monocytogenes than BHI (Jones and D'Orazio 2013). 

Similar findings were reported by Kadam and co-workers (2013) who also noted that, as in 

the present study, biofilm screens performed at 37 °C are unlikely to reflect the biofilm-

forming capability of L. monocytogenes in the food processing environment where 

temperatures are commonly much lower. Previous research by Bonsaglia et al. (2014) has 

shown that, although there are differences in biofilm formation dependant on temperature, 

these are down to the speed of growth not L. monocytogenes’ ability to form biofilms, 

therefore given a longer timescale at the temperatures found in the food processing 

environment we would see similar results. The ability of L. monocytogenes to form biofilms 

may also be affected by other microbes in the environment (Carpentier and Chassaing 2004). 

Likewise, the development of multispecies biofilms may influence L. monocytogenes’ 

resistance to biocides thus influencing its survival in the food environment (Bridier et al. 

2015).  

Low levels of AMR were observed in L. monocytogenes isolated from UK fresh produce using 

both molecular and phenotypic methodologies, and low levels of AMR were also evident in 

meat and clinical isolates assayed using molecular methods. There was no resistance 

observed using phenotypic testing to the clinically relevant antibiotics P, AMP, MEM, E and 

SXT. Only four genes were identified using WGS that are associated with AMR. Of these fosX 

and lin were ubiquitous in the 130 isolates tested in this study. Most strains of L. 

monocytogenes have previously been described as exhibiting innate resistance to fosfomycin 

and lincomycin (Aureli et al. 2003; Olaimat et al. 2018). Four isolates were found to also 

contain the genes bcrB and bcrC, two of vegetable origin, one of meat, and one of clinical 
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origin. These genes encode for resistance to bacitracin, an antimicrobial not clinically 

relevant for treatment of L. monocytogenes and therefore not tested as part of the 

phenotypic screens of fresh produce associated isolates. Bacitracin is an antibiotic, naturally 

produced by members of the Bacillus subtilis group (Johnson et al. 1945), that is 

predominantly utilised as a topical treatment for skin infections (Spann et al. 2004). 

Recorded resistance to this antibiotic is uncommon but has been previously recorded in 

staphylococci (Spann et al. 2004).  

Similarly low levels of AMR have previously been reported using WGS to explore L. 

monocytogenes from European ready to eat foods and human clinical cases (Painset et al. 

2019); and other studies reported similar finding for isolates of Italian, Polish and Australian 

origin (Conter et al. 2009; Maćkiw et al. 2016; Wilson et al. 2018). However, isolates from 

Iran, Germany and Spain have been reported to exhibit much higher levels of AMR (Kalani et 

al. 2015; Escolar et al. 2017). For example, Noll and co-workers (2018) reported significant 

multidrug resistance in 56% of L. monocytogenes isolates recovered from food samples in 

Germany, predominantly milk, with resistance observed to a wide spectrum of antibiotics, 

including several traditionally used to treat listeriosis. The regional variation in the detection 

of AMR genes in L. monocytogenes may be due to the difference in the methodologies and 

origin of samples between studies, with studies testing different foods and numbers of 

isolates. This highlights the importance of screening human pathogenic organisms for the 

emergence of antimicrobial resistance, something that could be achieved with the routine 

use of WGS.  

The L. monocytogenes genome is highly conserved; the core genome of the isolates in this 

study comprised 2,235 genes. The number of CDS found in this study ranged from 2785-

3073, which is consistent with other studies (Fox et al. 2016). This equates to 73%-80% of 

CDS identified in each isolate being part of the core genome. Phylogenetic analysis showed a 

clear separation between L. monocytogenes lineages and clustering of MLST STs, with 

cgMLST delivering greater differentiation of strains than conventional MLST (Chen et al. 

2016). cgMLST also delivers the added advantage of enabling comparison of data between 

laboratories, making it a powerful (and commercial) tool for surveillance, source tracking 

and analysis of outbreaks. Previous work reflected the finding in this study that isolates from 

food and human cases belong to lineage I and II, although in contradiction to the presented 
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work, studies also show lineage I is made up of a greater proportion of clinical than food 

isolates (Painset et al. 2019).  

Many of the virulence factors found in this study were ubiquitous to all 130 isolates 

examined. For those that were not ubiquitous, the presence or absence of the virulence 

genes were predominantly clustered based on the phylogeny of the isolates, notably for the 

genes found in pathogenicity island III. This reflects the limited amount of recombination 

reported in L. monocytogenes (den Bakker et al. 2010). There were no virulence factors 

found where presence or absence was associated with a single category of origin. There was 

no evidence of attenuation of virulence genes in food isolates compared to clinical isolates 

as has previously been theorised within the literature (Kathariou 2002). Further work is 

needed to examine samples with partial mapping to virulence genes to identify truncation 

and non-sense mutations, as these have previously been shown to be associated with 

changes in virulence (Maury et al. 2016; Maury et al. 2017). At present all strains of L. 

monocytogenes are treated equally in a regulatory capacity, but an increased knowledge of 

virulence patterns may allow for a greater understanding of the survival of fresh produce 

associated strains and their potential of to cause disease. 

GWAS was able to identify a greater range of CDS associated with isolates of vegetable origin 

(218) compared with isolates of clinical (11) or meat (0) origin. The variation in the number 

of CDS significantly associated with each category of origin may reflect the genetic diversity 

required to survive in the produce environment or may be due to the higher number of 

isolates from vegetables in lineage I, which is genetically more variable. GWAS found 

Internalin associated with clinical case isolates, which is unsurprising as it is one of the most 

well described virulence genes of L. monocytogenes (Gaillard et al. 1991). Many of the other 

CDS identified were for hypothetical proteins, this finding reflects findings by Pirone-Davies 

and co-workers (2018) and highlights the need for further research into non-clinical isolates, 

which may house novel genes of interest. This may allow for the development of new 

measures to reduce the persistence of L. monocytogenes in/on food or within the food 

environment. Many of the proteins associated with either vegetable or clinical origin were 

hypothetical proteins, again consistent with the work of Pirone-Davies and co-workers 

(2018) and highlights the need for further research into non-clinical isolates, which may 

house novel genes of interest. GWAS was unable to identify any CDS linked to the 

phenotypic variations seen in the phenotypic screens performed in this study. This is possibly 
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due to the low levels of variability in phenotype between samples, and the low sample 

numbers screened (n = 48). Greater sample numbers may have yielded more information.  

4.5 Conclusions 

L. monocytogenes isolates from the UK food chain are genetically closely related to clinical 

case isolates and contain many well documented virulence genes. WGS identified four genes 

contributing to AMR and enabled screening of resistance to a greater number of 

antimicrobial compounds than would have been possible using phenotypic screens. The use 

of WGS, notably through cgMLST typing, facilitated greater differentiation of strains than 

feasible via conventional MLST typing, demonstrating the power of this approach and 

highlighting a need to implement WGS as a precautionary (rather than a reactionary) 

approach in routine food microbiological analyses. Deployment of WGS approaches in food 

testing could lead to improved source tracking, antibiotic resistance detection and the 

identification of potentially novel methods for biocontrol and prevention of disease. 
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Chapter 5. General Discussion 
 

Throughout this thesis next generation sequencing (NGS) has been utilised, in conjunction 

with traditional microbiological methodologies, to detect and characterise foodborne 

pathogens, examine the microbiome of fresh produce and examine potential influences on 

the survival and transmission of human pathogens within the fresh produce supply-chain. 

This was achieved using both whole genome sequencing (WGS) and metatranscriptome 

approaches in conjunction with a variety of bioinformatic methodologies. 

This project had several aims;  

(i) Develop laboratory and data analysis protocols that enable the identification of the 

microbiome of fresh produce and identify the limits of detection of these methods for 

human pathogens. 

In chapter 2 of this thesis, methods for the enrichment of nucleic acids, sequencing 

preparation and bioinformatics methodologies were compared in the context of detection of 

foodborne pathogens. It was found that the most sensitive limit of detection using the 

adopted protocols was 104 CFU of Salmonella and 105 PFU of MS2 per sample, a level 

achievable utilising enrichment via ribosomal depletion, sequence preparation for MiSeq 

analysis using the ScriptSeq kit, and bioinformatic analysis using Kraken in conjunction with 

mini-database. Additionally, a comparison of sequencing platforms was undertaken to assess 

the effect of sequencing platform, and differences in read length achieved, on the LoD 

achievable. For Illumina platforms, the HiSeq, MiSeq and NovaSeq, the LoD did not change 

despite differences in read length, when the read depth was kept constant. This study is of 

importance as it ascertains the limits of detection of current sequencing and bioinformatic 

techniques, where previous studies are now outdated due to their focus on technologies no 

longer in use, such as the 454-pyrosequencer (Frey et al. 2014; de Boer et al. 2015). 

Moreover, many previous studies have undertaken the examination of methods at points in 

the sequencing chain (Caporaso et al. 2012; Fouhy et al. 2016; Allali et al. 2017), with none 

having examined the effects of all stages of the sequencing process simultaneously, as 

achieved in this study. Methodologies have recently been described for the use of 

metagenomics for pathogen detection (Wylezich et al. 2018), but until the current work 

there were no studies examining the utilisation of metatranscriptomics for the detection of 

human pathogens in fresh produce, or comparing multiple methods. This can be viewed as 
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the first step in the validation of the potential use of NGS in food microbiology, a crucial step 

for standardisation and comparison between laboratories. In order to utilise NGS as a 

potential detection tool, standardised and validated methods are required (Endrullat et al. 

2016; Haynes et al. 2019). This is important since a third of all reported foodborne 

contamination issues are presently of unknown causes and may therefore be due to 

pathogens not routinely tested for, all of which could be screened for using non-targeted 

approaches such as NGS (European Food Safety Authority 2018).  

(ii) Analyse the fresh produce microbiome from samples obtained from the food supply 

chain and examine for correlations with microbiological data. 

In chapter 3 of this thesis, samples were obtained from within the fresh produce supply 

chain analysed using the most appropriate methods ascertained in chapter 2 of this thesis, 

to examine the microbiome. Samples sequenced were also tested by a collaborator, using 

standard microbiological screening, to assess the presence and absence of 

Enterobacteriaceae and Listeria species. These data were combined and used to assess the 

taxa within the microbiome that were positively or negatively correlated with presence of 

Enterobacteriaceae and Listeria spp. to highlight elements which show potential to be 

indicators or biocontrol agents.  

Nine taxa were found that were positively correlated with the presence of 

Enterobacteriaceae and Listeria species, several of which have been linked in the literature 

with the increased survival of human pathogens in the fresh produce microbiome (Wells and 

Butterfield 1997). This may be due to common factors allowing the survival of these 

organisms, or more likely due to the direct impact of these taxa, probably on nutrient 

availability via their effect on the competitive speciation of the microbiome and/or the 

production of antimicrobial compounds (Daba et al. 1991; Cleveland et al. 2001). 

Only one taxon, Pseudonocardia, was found to correlate with the absence of 

Enterobacteriaceae. This is a bacteria which produces antimicrobial compounds, and 

previous research has shown human pathogens are susceptible to these compounds (Jafari 

et al. 2014). Further work is recommended to elucidate the potential of this organism as a 

biocontrol agent, including the examination of its effects on the microbiome, specifically 

human pathogens. 

The microbiome sequence information collected in chapter 3 was compared to data on 

presence of Enterobacteriaceae and Listeria spp. by microbiological methods to examine the 
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concordance of NGS with routine microbiological methods. Of the samples tested as positive 

using microbiological methods, four of 31 positive for Enterobacteriaceae and all those 

positive for Listeria spp. were negative by NGS screening. This may reflect the relative 

insensitivity of NGS as shown in chapter 2 of this thesis. In addition, many samples testing 

negative by microbiological testing were found to contain Enterobacteriaceae and Listeria 

spp. by NGS approaches. These results highlight a key issue with the use of NGS approaches 

as a routine microbiological screening tool, the lack of consensus between NGS results and 

microbiological results, examined in more detail later in this discussion. Previous studies 

have shown that the microbiome predicted by NGS methods is influenced by the study 

design (Jones et al. 2015) and although studies have been undertaken to examine best 

practice in microbiome studies (Pollock et al. 2018), little information is available to compare 

the known microbiological content of foods, feeds and drinks to those reported using NGS 

methods. 

 

(iii) Use phenotypic and genotypic methods to characterise the resistome, virulome, and 

biofilm forming ability and assess the phylogenetic identity and gene content of these 

isolates compared to 80 isolates of meat and clinical origin to identify signatures of fresh 

produce contaminating L. monocytogenes. 

In chapter 4 of this thesis, isolates of L. monocytogenes isolated from the fresh produce 

supply chain were screened using microbiological methods to highlight phenotypes of 

interest, including those expressing antibiotic resistance and biofilm formation. There were 

broad differences between isolates of L. monocytogenes in their capability to form biofilms, 

and all were stronger biofilm formers in NB than BHI, consistent with previous findings 

(Borucki et al. 2003). No AMR phenotypes were identified in 50 isolates of L. monocytogenes 

from the fresh produce supply chain. This study represents the most extensive AMR 

screening yet conducted on L. monocytogenes from the UK fresh produce supply chain. 

These isolates of L. monocytogenes obtained from the fresh produce supply chain 

additionally underwent WGS. The resulting data were combined with data from the NCBI 

database of whole genome sequence data of L. monocytogenes from isolates from meat and 

clinical cases. Examination by WGS was able to give greater differentiation of L. 

monocytogenes strains than MLST typing, as has previously been reported in the literature 

(Henri et al. 2017). Additionally, these data were screened for genes associated with 

phenotypes of interest, including virulence. This work built on similar studies examining 



102 
 

phenotypic and genotypic relationships in L. monocytogenes isolated from fresh produce 

(Smith et al. 2019). The presence of virulence genes was found in all isolates, and no gene 

was specific to a single category of origin.  

The work presented in this thesis probed beyond phenotypic screening, comparing the 

whole genomes of these isolates to those of meat and clinical origin using genome wide 

association. This assessed the genetic relatedness of these isolates and employed statistical 

methods to mine for genes belonging to a specific category of origin. It was found that there 

were 218 CDS associated with vegetable origin, 11 CDS associated with clinical origin and 

zero associated with meat. Many of these coded for proteins of unknown function, as found 

by similar studies previously (Pirone-Davies et al. 2018), highlighting the need for further 

research in this area to elucidate the function of these proteins. The work undertaken in 

chapter 4 is the first to examine the genome of L. monocytogenes using GWAS to extract 

potential genes that effect the survival of L. monocytogenes within the fresh produce 

microbiome.  

 

(iv) Assess the incidence of AMR-associated genes in foodborne microbes. 

The presence of genes associated with AMR was screened in the microbiome associated 

with fresh produce in chapter 3 of this thesis. This is the first known study utilising NGS to 

assess the burden of AMR-associated genes in fresh produce from the UK food supply chain. 

This study found evidence of the presence of four AMR-associated genes: H-NS, CRP, mexF 

and mexB. These resistance genes are potentially of clinical importance, encoding for gene 

regulators and efflux pumps, but due to limitations meaning metatranscriptomics cannot 

assign the genes to the member of the microbiome the full clinical impact cannot be 

ascertained. Previous studies have examined bacteria isolated from food (Holzel et al. 2018) 

or the general plant microbiome (Fogler et al. 2019) for AMR or AMR genes, but these do 

not reflect the burden of AMR associated with food as it would reach the consumer, and 

therefore the potential for these genes to be passed to bacteria within the gut microbiome. 

The current study, by focusing on ready to eat products, demonstrates the burden of AMR 

potentially entering the gut on foods. The gut has previously been shown to denote one of 

the best ecological niches for horizontal gene transfer (Lerner et al. 2017), and it has been 

noted that these genes could pass from the food microbiome to the gut microbiome (Rolain 

2013; Aarts and Margolles 2015). 
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Isolates of L. monocytogenes isolated from the fresh produce supply chain were additionally 

screened for AMR associated genes in chapter 4 of this thesis. This built on previous work 

screening L. monocytogenes for antimicrobial resistance genes (Painset et al. 2019; Smith et 

al. 2019). It was found, in concordance with previous work, that there were low levels of 

AMR genes found in L. monocytogenes isolated from food and clinical cases the UK.  

 

Can next generation sequencing be used as a screening tool for human pathogenic 

organisms in fresh produce? 

As identified in chapter 2, the limit of detection (LoD) of current NGS methodologies on the 

MiSeq are not sensitive enough to detect the legislative limits of human pathogens 

associated with fresh produce (Health Protection Agency (now Public Health England) 2009). 

These limits vary from pathogen to pathogen, ranging from not detected in 25 g for 

pathogens including Salmonella to 102 CFU in 25 g for L. monocytogenes. It therefore is not 

suitable as a screening tool to detect human pathogens within the fresh produce 

microbiome as the LoD was found to be 104 CFU of Salmonella and 105 PFU of MS2 per 

sample. The utilisation of the high throughput Illumina platforms, such as the NovaSeq or 

HiSeq, would allow for a lower cost per base, but are still too expensive for routine use and 

additionally would yield shorter read lengths. New technologies are available, for example 

the PromethION by Oxford Nanopore, which have a lower cost per base than the Illumina 

platforms, allowing a greater depth of sequencing and so increasing sensitivity. While the 

error rate of these technologies is currently a lot higher than that for the Illumina platforms 

(Lima et al. 2019), the longer read length may allow for a more accurate classification of the 

microbiome despite this error rate (Pearman et al. 2019). The work undertaken in chapter 2 

needs to be extended to the assessment and development of these new platforms as a first 

step in any validation procedure to allow the identification of the LoD and examine the 

effect the higher error rate of the Oxford Nanopore platforms has on the specificity and LoD.  

Future work will need to focus on the delivery of a more representative nucleic acid sample 

to the sequencing instrument. This should facilitate increased sensitivity, and decreased 

cost. The extraction methodology used in chapters 2 and 3 was designed to extract the total 

microbiome, including internalised and strongly adhered members of the community, and to 

mimic the stomaching method utilised as part of the microbiological testing undertaken. This 
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method, while allowing for examination of the total microbiome and thereby not 

underestimating the LoD, may have increased the proportion of the extracted sample 

belonging to the plant matrix (in the case of chapter 2 this was lettuce). Further work 

therefore must be undertaken to create an extraction method that allows for extraction of 

the total microbiome while minimising contamination from the plant matrix. Some key 

methods to examine may include, centrifugation of the samples to remove the plant matrix 

and concentrate the microbiome or washing the microbiome from the fresh produce and 

extracting this instead of a homogenate (Ahn et al. 2012; Fouhy et al. 2016). Post extraction 

molecular enrichment methods were examined in chapter 2 and, while the best method was 

ribosomal depletion, data still yielded a high percentage RNA from the plant matrix. New 

methods enabling molecular enrichment may allow for greater sequencing depth to 

represent the microbiome. One method worthy of exploration may be the utilisation of 

nucleic acid probes (Shih et al. 2018). These can be used to target either the microbiome or 

the plant matrix, delivering a higher proportion of nucleic acid extract pertaining to the 

microbiome, in a similar way to ribosomal depletion. The probes would need to be less 

specific than those for ribosomal depletion. This may not be a viable solution for screening 

methods, as it is costly to design new probes, which would be needed for each plant matrix, 

and there would remain a trade-off between specificity, and the proportion of plant matrix 

removed. An additional new technology that could be used as a method for molecular 

probing is the CRISPR/Cas9 system. CAS-9 probes could be designed to specifically target 

plant matrix sequences and break them, thereby decreasing the likelihood of them making it 

to sequencing. Initial work using this system has shown promise, but has primarily focused 

on 16S where the contamination that requires removal is limited to ribosomal and 

chloroplast RNA (Song and Xie 2020). Significant further research may be needed to apply 

this to metagenomics/metatranscriptomics studies in the future.  

A further issue with the use of NGS as a screening tool for human pathogenic organisms is 

that there is often bias or misassignment attributed to the bioinformatics protocol and 

databases used. This was seen in chapter 2, where several methods of data analysis showed 

Salmonella in the results in samples where no Salmonella was detected using qPCR. When 

these reads were mapped to the Salmonella genome (data not shown) it was found that the 

reads were predominantly in the rRNA region, and when mapped to the lettuce chloroplast 

sequence they mapped well with the chloroplast RNA. This was notably true for 16S 
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sequencing where high proportions of the reads were filtered out in chapter 2 by mapping to 

the chloroplast. Without this mapping, higher levels of misassignment was also seen. This is 

a notable issue in the sequencing of fresh produce, where most extraction methods will 

extract chloroplast RNA as easily as bacterial RNA. This has an impact on the use of NGS as a 

screening tool for fresh produce as even low levels of misassignment when using NGS as a 

screening tool could give a false positive result, a potentially serious and costly problem that 

would require further testing to ascertain whether it was a true positive. Additionally, the 

bias in database and bioinformatics tools used would lead to the results being incomparable 

between laboratories, therefore before these methods could be used as a true screening 

tool standardised methods, as with the ISO methods currently used, should be validated and 

verified, and adopted by all laboratories. This would allow for quantification of the 

uncertainties and issues with the techniques, allowing the users to know information on the 

detection limits, potential for false negatives and false positives and the standardisation and 

comparability of results between laboratories.  

Another reason that NGS is not yet applicable as a screening method for the presence of 

human pathogens in fresh produce is that, as with all molecular methods, these techniques 

have difficulties in determining whether the microorganisms found are viable or infective 

(Emerson et al. 2017). This is reflected in chapter 3 where, when NGS is compared to 

microbiological methods the data for NGS show a high false positive rate for Listeria species. 

Additionally, RNA based methods, as utilised in chapter 2 and 3, may give a more accurate 

representation of the viability of the sequenced organisms than DNA based methods, as RNA 

will potentially only be available from actively transcribing members of the microbiome and, 

being shorter lived than DNA, could allow for a better correlation with viability. However, 

there has been little or no research into whether presence of RNA correlates with viability, 

and in chapter 3 of this thesis data from RNA methods did not correlate with microbiological 

results. The divergence found in chapter 3 could be due to the presence of viable but non-

culturable strains potentially missed by microbiological screens (Highmore et al. 2018), 

although the role this plays in food microbiology is highly debated by many in the field. In 

conclusion, further work is needed to validate RNA sequencing as a potential methodology 

and prove the links to the viability of the organisms it detects. 
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Are NGS methods suitable to examine phenotypic traits, such as AMR? 

NGS is often used for the screening of whole genome and metagenomics or 

metatranscriptomics data for genes associated with phenotypes of interest, such as 

antimicrobial resistance (AMR), as undertaken in chapters 3 and 4, or virulence, as 

undertaken in chapter 4. This is a key benefit of the use of NGS as it allows us to gain more 

insight into the genes associated with fresh produce samples. 

One issue with the screening of NGS data for genes associated with specific phenotypic traits 

is that currently there is limited knowledge as to whether the presence and absence of 

genes associated with these phenotypes correlate with the phenotype itself. In the context 

of AMR, many studies have utilised NGS to screen for AMR associated genes (Cerqueira et al. 

2019) but few studies have yet to link these data to conventional phenotypic screen data. 

Those studies that have been undertaken found that, for isolates that have undergone 

phenotypic screening, WGS screening for AMR associated genes finds AMR genes in most, 

but not all isolates of a resistant phenotype (Neuert et al. 2018; Guo et al. 2019). The lack of 

concordance between NGS and phenotypic screen may be due to the limited databases of 

AMR associated genes, and with further exploration and the detection of novel AMR genes 

this correlation should get stronger. In addition, the screening of AMR genes in microbiome 

samples is problematic as the data does not give insights into which organism the AMR 

genes found were associated with. As AMR genes may be silent in some hosts this is a key 

problem with the current methods (Dantas and Sommer 2012). Long read technologies, such 

as the Oxford Nanopore sequencers, may allow us to put these genes in genomic context 

(Ashton et al. 2014), although as many AMR genes are plasmid borne current techniques will 

not be able to solve the issues for all genes. 

The presence of a gene also does not mean phenotypic activity within the ecosystem, a 

problem associated with phenotypic screening methods as well. The use of RNA based 

methods, such as in chapter 3, may provide more biologically relevant data as it will only 

detect genes that are actively transcribed (Bashiardes et al. 2016). For the case of AMR 

associated genes, active transcription may point to the presence of antimicrobial 

compounds, therefore these organisms may be under greater selection pressure, increasing 

the likelihood of transmission of AMR genes to other organisms. Using RNA based methods 

to screen L. monocytogenes isolates (for example those analysed using WGS in chapter 4) 

under different conditions associated with fresh produce, for example at cool temperatures 
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and on plant-based media, could yield data on differential gene expression in the fresh 

produce production chain versus under standard laboratory conditions. This may lead to 

greater information on genes associated with survival in these conditions and unlike WGS 

data, where the information is on presence and absence of genes, RNAseq will allow the 

analysis of actively transcribing genes. 

Is NGS usable as a tool for the assessment of the microbiological safety of fresh produce? 

In its current form NGS cannot fully replace current methodologies. Microbiome analysis is 

not sensitive enough for the detection of human pathogens in fresh produce (as outlined in 

chapter 2), but in food spoilage studies where the concentration of organisms of interest is 

higher, this LoD is sufficient to identify organisms that may lead to spoilage, as found in 

chapter 3. In chapter 3, NGS was successfully used in conjunction with other metadata, 

including microbiological results regarding the presence and absence of human pathogens or 

indicators, to allow for the screening of the microbiome. Several members of the 

microbiome were found to positively correlate with the presence of Enterobacteriaceae and 

Listeria species. With further study, examining additional samples including those positive 

for human pathogens, these could be utilised as indicator organisms, or potentially included 

as a risk factor associated with the survival of human pathogens within the fresh produce 

microbiome, making the study of these even more important.  

Pseudonocardia was inversely correlated with presence of Enterobacteriaceae, and future 

work could be undertaken to examine the potential use of this organism as a biocontrol 

agent to decrease the survival of human pathogens on fresh produce. Initial work will need 

to be done to ascertain that the organism would be safe for human consumption although it 

has been previously reported as a member of both the fresh produce microbiome (Cerqueira 

et al. 2019), including in chapter 3, and the human microbiome (Bassiouni et al. 2015). 

Further work will need to be undertaken, likely in the form of a glass house trial, to show 

that Pseudonocardia can survive, and potentially reproduce, in the fresh produce 

microbiome. It would also be important to demonstrate this organism is able to confer a 

negative effect on the survival of human pathogens. This could be done through the direct 

application of the bacterium, or via screening of these bacteria for production of antibiotic 

compounds that can then be screened for activity against human pathogenic organisms, the 

latter also allowing for the potential discovery of novel antimicrobials of therapeutic 

interest.  
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One of the key issues with use of NGS to examine the microbiome, notably using 

metatranscriptomics, is the lack of robust analysis pipelines and well curated sequence 

databases, which in turn lead to the misassignment of sequences and misrepresentation of 

the microbiome. This was shown in chapter 3, where the prevalence of Alteromonas in the 

samples is likely in part to be due to misassignment. Time needs to be invested in the 

creation of databases with well curated, accurate and appropriate representation of species 

for NGS analysis of the fresh produce microbiome. This microbiome is diverse and, 

compared with the human microbiome, poorly studied and therefore the current databases 

are biased against this environment which likely leads to misassignment. Bioinformatic 

pipelines also need to be created and validated on mock communities or simulated fresh 

produce microbiomes to allow for confidence in the microbiome assignment of 

bioinformatic tools. 

The microbiome data produced in chapter 3 was successfully screened for AMR associated 

genes. This is important as it may allow for the qualification of the burden of AMR within the 

food supply chain, and further interrogation of the data may also allow for the identification 

of genes encoding for novel antimicrobial compounds. AMR screening of L. monocytogenes 

isolates was also successfully undertaken in chapter 4, giving us further information on the 

risk of AMR in a medically important bacterium in the UK. Further work could be done on 

these data to screen for novel AMR genes (Adu-Oppong et al. 2016) in which the utilisation 

of machine learning and newly emerging computer based methodologies may be extremely 

useful and could allow for the discovery of many new genes of interest (Arango-Argoty et al. 

2018). 

Chapter 4 also utilised NGS, through WGS of L. monocytogenes, to screen L. monocytogenes 

for specific genes of interest, including AMR, virulence and, in conjunction with metadata on 

the origin of the isolate, genes associated with survival in the fresh produce environment. 

Many genes of potential interest were correlated with isolates from fresh produce, but more 

work is needed to establish what effect, if any, these may be having on survival of L. 

monocytogenes. The first step in this could be to increase the power of statistical inferences 

by increasing the number of isolates screened. This would likely lead to a smaller number of 

genes being identified as important and allow for more formal screening of their potential 

functions. The functional screens would allow for the identification of genes essential for 
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survival, which may be targeted to prevent the persistence of these isolates in the fresh 

produce environment. 

 The use of WGS of pathogens isolated using traditional microbiological methods is now 

implemented as part of outbreak tracking within the UK (Public Health England 2019) but is 

currently too expensive to be routinely deployed in non-outbreak or industrial settings. New 

technologies, such as the Oxford Nanopore sequencers, may decrease this cost, but at 

present cannot obtain the resolution and accuracy needed to source track outbreaks. As 

further advances are made in this technology, decreasing the error rates, this may become a 

cheaper alternative to existing methods allowing for greater use of WGS. There is also a 

requirement in this field for more standardised pipelines for the analysis of WGS data, and 

validation of these pipelines, to allow for the comparison of results across labs and to ensure 

the results obtained are true. This is notably important in outbreak tracking, where there is a 

potential burden of fault with a commercial company who are the source of a product that 

has led to an outbreak.  

In addition, data generated by NGS currently requires intensive computer infrastructure and 

bioinformatic knowledge to analyse. The generation of standardised and potentially 

centralised facilities, that can be used by laypeople to analyse data, is important if NGS is to 

be used more routinely in the food microbiology setting. 

What are the technological advances required for the routine use of NGS in the 

assessment of microbiological safety of fresh produce? 

As outlined, there are many technological advances that are required to overcome the 

current limitations in the use of NGS within food microbiology. These include but are not 

limited to:  

1. Improvement of methods of extraction and molecular enrichment to allow sequencing of 

the total microbiome while minimising plant matrix contamination.  

The method of extraction and enrichment plays a large role in the microbiome sequenced 

and the proportion of plant matrix contamination sequenced (Fricker et al. 2019). Many 

enrichment methods have focused on depletion of human or mouse associated nucleic acids 

due to the focus of research in these areas (Heravi et al. 2020). Existing technologies for 

depletion of plant matrix contamination have a limited success, as seen in chapter 2 of this 

thesis, therefore there is a focus on potential novel technologies to be utilised in this area. 
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Techniques such as CRISPR-Cas (Song and Xie 2020), CRISPR-Cap (Lee et al. 2019) and 

aptamer technologies (Sun and Zu 2015), all promise to deliver a more targeted depletion, 

but as yet are in the early stages of their development.  

 

2. The assessment of methods to judge their ability to determine viability of targets, 

notably for human pathogen screening 

The use of molecular methods to determine viability of the targets has been a challenge to 

molecular methodologies. It has been previously examined, predominantly in the context of 

PCR based methods (Reyneke et al. 2017) and in the context of food microbiology (Dinh 

Thanh et al. 2017; Agusti et al. 2018). Despite this, there has been limited success in the use 

of these methods, with studies showing potential false positives or biases introduced by 

current methodologies (Agusti et al. 2017; Codony et al. 2020). Additionally, none of these 

methods have been examined in the context of NGS. It is therefore important that these 

methods are assessed in the context of human pathogens in the fresh produce microbiome 

when assessed using NGS.  

 

3. Lower cost sequencing per base to a greater depth of sequencing, leading to an LoD in 

the range of other methods, attainable at a cost low enough to make this screening 

routine 

The cost of NGS has decreased dramatically since the introduction of these technologies. It is 

now in some applications commercially viable to employ NGS methods over traditional 

microbiological screening (Torchia et al. 2019), but this is dependent on the cost, sensitivity 

and specificity of the microbiological methods currently used and in most cases NGS is still 

deemed more costly than traditional techniques (Gwinn et al. 2019). In the context of food 

microbiology although there has been much research into the potential applications of NGS 

in this field, the cost often prohibits utilisation of NGS in a routine fashion (Jagadeesan et al. 

2019). With new technological advances, such as the Promethion by Oxford Nanopore, we 

are again seeing a decrease in the cost of NGS. But further technologies and validation of 

procedures on these platforms are needed to determine their viability as screening tools.  
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4. Standardised analysis pipelines that do not require local computing infrastructures and 

expertise 

As shown in chapter 2 of this thesis, the choice of bioinformatics technique affects the 

results of NGS sequencing, highlighting the need for standardised analysis techniques that 

have been validated. In addition to this, current bioinformatics processes often require 

access to complex computer clusters and technical knowledge to run and manipulate, 

making the analysis costly and often unique to each laboratory.  Many consortiums have 

been established to try and create consensus in the analysis of NGS data between 

institutions (e.g. International Cancer Genome Consortium, the External RNA Control 

Consortium, the Genome in a Bottle Consortium, Earth Microbiome Project), but these are 

primarily focused on clinical applications.  

 

5. Curated and appropriate sequence databases 

The sequencing database, in addition to the laboratory and analysis protocols, can also 

influence the data obtained from NGS, including the rates of misassignment and the 

perceived diversity of samples (Allali et al. 2017). As seen in chapter 2, the lack of relevant 

data in the database (in this case the lack of the full lettuce genome) can lead to 

misassignment of reads to incorrect taxa. Errors in databases can additionally introduce 

errors into results. It is therefore key to have a centrally agreed and well curated database 

with a broad scope, including potential matrices, to allow for the qualification of the bias 

associated with these databases and to decrease the potential for misassignment.  

 

6. Fully validated processes to allow for inter-laboratory consistency of results 

The key to use of any technology as a recognised screening tool is the presence of fully 

validated processes, with data available on the detection limits, scope of the method, 

sensitivity and specificity of the technique. The ISO standard protocols are a requirement for 

most commonly tested for food-borne pathogens, and therefore this level of between 

laboratory comparability would be needed for NGS to allow this to be fully adopted as a 

routine screening tool in the context of food microbiology.  

 

The above technological advances, and appropriate validation procedures would allow for a 

routine use of NGS in the assessment of microbiological safety of fresh produce. The focus 



112 
 

needs to be on the validation of any new technologies to allow for the presentation of 

accurate and repeatable results, fundamental for risk management in the food supply chain. 

What future impact could NGS have in the assessment of microbiological safety of fresh 

produce? 

NGS is likely to be an important tool in the future for the assessment of the microbiological 

safety of fresh produce. It may be a generalised method for the screening of all potential 

human pathogenic organisms, their associated virulence (and therefore whether they would 

be a risk to consumers), and the presence of AMR (and therefore the levels of AMR that 

consumers are exposed to). This would negate the need for multiple tests and the high cost, 

or high risk associated with under or over screening of fresh produce for human pathogens 

using traditional targeted methodologies. Although this is currently not feasible, NGS can be 

used in conjunction with other data, as in chapter 3, to allow for the discovery of new 

indicator species, or a panel of species, that better correlate with presence of human 

pathogens. This would allow for wider testing, and decreased risk of false negatives or false 

positives, of fresh produce contamination in the food chain, so decreasing both grower and 

consumer risk. 

The large quantity of information within microbiome studies may allow for the discovery of 

novel biocontrol agents, such as Pseudonocardia described in chapter 3, that can be applied 

in the field or processing environment to prevent the survival or, notably in the case of L. 

monocytogenes, growth of human pathogens on fresh produce. These data, as well as WGS 

data, may also allow for the discovery of novel biocides or antibiotics produced within these 

organisms. WGS may lead to the identification of novel pathways required for the survival of 

human pathogens within the fresh produce microbiome. These could then be targeted in the 

design of novel biocides. 

The advances in NGS technologies are rapid, with new platforms, sequencing kits and 

bioinformatic analysis techniques being designed at a pace quicker than any formal 

validation procedure can currently keep up with. It is important that validation and 

verification of these are undertaken before use, and that validation bodies are pragmatic in 

the accreditation of these techniques, as a non-targeted approach does not necessarily fit 

into the current scheme of validation. Although this study has shown that NGS cannot 

currently be routinely used in food microbiology, there is no reason that in the future, given 
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the technological advances outlined, NGS will not be a standard part of the assessment of 

microbiological risk within the fresh produce supply chain.  
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Appendices 

Appendix A. Agencourt AMPure XP bead clean up protocol for post indexing samples  

Preparation: 

• Allow AMPure XP beads to come to room temperature and vortex thoroughly before 

use 

• Make up 80% ethanol for washing your samples within an hour of performing the 

protocol 

 

Procedure: 

1. Add indicated quantity of beads to the sample and mix gently by pipetting up and 

down 10 times. 

2. Incubate for 5 mins at room temperature 

3. Place plate on magnetic stand and leave until the supernatant has cleared 

4. With the plate on the stand, remove the supernatant and discard, being careful not 

to disturb the pellet 

5. With the plate on the stand, wash the beads with freshly prepared 80% Ethanol twice 

as outlined below: 

a. Add 200 μl of 80% ethanol to each sample well 

b. Incubate for 30 s at room temperature 

c. Remove and discard the supernatant, being careful not to disturb the pellet 

d. Repeat for a second wash 

6. Spin plate briefly to collect residual ethanol and remove using a p10 pipette with fine 

tip 

7. Leave on magnetic stand to air dry at room temperature for 5-10 mins, or until 

completely dry 

8. Remove the plate from the stand and add 47.5 μl MBGW to the samples, ensuring 

the pellet is fully resuspended, 

9. Incubate for 5 mins at room temperature 

10. Place back onto the magnetic stand until the supernatant has cleared 

11. Transfer 45 μl of supernatant to a new well, ensuring no beads are transferred 
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Appendix B. Mock microbiome dilutions series – proportion of each microbiome member per 

sample 

 

Accession 
Number 

Name 
Dilution series (proportion of 1) 

100,000 10,000 1,000 100 10 1 0 

NC 002944.2 
Mycobacterium avium 
subsp. paratuberculosis 
str. k10 0.015 0.02 0.02 0.02 0.02 0.02 0.02 

NC 002947.4 
Pseudomonas putida 
KT2440 chromosome 0.02 0.04 0.04 0.04 0.04 0.04 0.04 

NC 004722.1 
Bacillus cereus ATCC 
14579 chromosome 0.02 0.03 0.03 0.03 0.03 0.03 0.03 

NC 007578.1 
Lactuca sativa 
chloroplast 0.8 0.85 0.85 0.85 0.85 0.85 0.85 

NC 016830.1 
Pseudomonas 
fluorescens F113 0.015 0.02 0.02 0.02 0.02 0.02 0.02 

NZ 
CP010519.1 

Streptomyces albus 
strain DSM 41398 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

NZ 
CP011007.1 

Bacillus pumilus strain 
SH-B9 0.01 0.01 0.019 0.0199 0.01999 0.019999 0.02 

NZ 
LT700188.1 

Negativicoccus 
massiliensis strain 
Marseille-P2082 
genome assembly 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

NC 003198.1 

Salmonella enterica 
subsp. enterica serovar 
Typhi str. CT18 0.1 0.01 0.001 0.0001 0.00001 0.000001 0 
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Appendix C. Differential Features from Lefse  

i) Differential features of association with positive or negative microbiology results for 

Enterobacteriaceae  
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ii) Differential features of association with positive or negative microbiology results for Listeria 

spp. 
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Appendix D. List of Isolates  

 

Name Source Data from 
External 
Reference 

Additional 
Metadata 

clinical_SRR6518418 Clinical NCBI SRA SRR6518418   

clinical_SRR6518419 Clinical NCBI SRA SRR6518419   

clinical_SRR6798518 Clinical NCBI SRA SRR6798518   

clinical_SRR6798529 Clinical NCBI SRA SRR6798529   

clinical_SRR6798535 Clinical NCBI SRA SRR6798535   

clinical_SRR6798538 Clinical NCBI SRA SRR6798538   

clinical_SRR6798541 Clinical NCBI SRA SRR6798541   

clinical_SRR6798542 Clinical NCBI SRA SRR6798542   

clinical_SRR6798546 Clinical NCBI SRA SRR6798546   

clinical_SRR6798551 Clinical NCBI SRA SRR6798551   

clinical_SRR6798552 Clinical NCBI SRA SRR6798552   

clinical_SRR6798554 Clinical NCBI SRA SRR6798554   

clinical_SRR6798556 Clinical NCBI SRA SRR6798556   

clinical_SRR6798559 Clinical NCBI SRA SRR6798559   

clinical_SRR6798560 Clinical NCBI SRA SRR6798560   

clinical_SRR6798561 Clinical NCBI SRA SRR6798561   

clinical_SRR6798563 Clinical NCBI SRA SRR6798563   

clinical_SRR6798566 Clinical NCBI SRA SRR6798566   

clinical_SRR6798567 Clinical NCBI SRA SRR6798567   

clinical_SRR6798569 Clinical NCBI SRA SRR6798569   

clinical_SRR6798570 Clinical NCBI SRA SRR6798570   

clinical_SRR6798573 Clinical NCBI SRA SRR6798573   

clinical_SRR6798575 Clinical NCBI SRA SRR6798575   

clinical_SRR6798577 Clinical NCBI SRA SRR6798577   

clinical_SRR6798580 Clinical NCBI SRA SRR6798580   

clinical_SRR6798581 Clinical NCBI SRA SRR6798581   

clinical_SRR6798586 Clinical NCBI SRA SRR6798586   

clinical_SRR6798588 Clinical NCBI SRA SRR6798588   

clinical_SRR6798591 Clinical NCBI SRA SRR6798591   

clinical_SRR6798596 Clinical NCBI SRA SRR6798596   

clinical_SRR6798603 Clinical NCBI SRA SRR6798603   

clinical_SRR6798605 Clinical NCBI SRA SRR6798605   

clinical_SRR6798606 Clinical NCBI SRA SRR6798606   

clinical_SRR6798616 Clinical NCBI SRA SRR6798616   

clinical_SRR6798617 Clinical NCBI SRA SRR6798617   

clinical_SRR6798621 Clinical NCBI SRA SRR6798621   

clinical_SRR6798622 Clinical NCBI SRA SRR6798622   

clinical_SRR6798623 Clinical NCBI SRA SRR6798623   

clinical_SRR6798624 Clinical NCBI SRA SRR6798624   

clinical_SRR6798626 Clinical NCBI SRA SRR6798626   

clinical_SRR6798627 Clinical NCBI SRA SRR6798627   

clinical_SRR6798630 Clinical NCBI SRA SRR6798630   
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clinical_SRR6805082 Clinical NCBI SRA SRR6805082   

clinical_SRR6805087 Clinical NCBI SRA SRR6805087   

clinical_SRR6805285 Clinical NCBI SRA SRR6805285   

clinical_SRR6882060 Clinical NCBI SRA SRR6882060   

meat_SRR5182476 Meat NCBI SRA SRR5182476   

meat_SRR5344715 Meat NCBI SRA SRR5344715   

meat_SRS1908657 Meat NCBI SRA SRS1908657   

meat_SRS1908664 Meat NCBI SRA SRS1908664   

meat_SRS1908665 Meat NCBI SRA SRS1908665   

meat_SRS1908667 Meat NCBI SRA SRS1908667   

meat_SRS1908669 Meat NCBI SRA SRS1908669   

meat_SRS1908704 Meat NCBI SRA SRS1908704   

meat_SRS1908708 Meat NCBI SRA SRS1908708   

meat_SRS1908995 Meat NCBI SRA SRS1908995   

meat_SRS1908997 Meat NCBI SRA SRS1908997   

meat_SRS1909296 Meat NCBI SRA SRS1909296   

meat_SRS1909335 Meat NCBI SRA SRS1909335   

meat_SRS1909337 Meat NCBI SRA SRS1909337   

meat_SRS1909344 Meat NCBI SRA SRS1909344   

meat_SRS1909360 Meat NCBI SRA SRS1909360   

meat_SRS1909367 Meat NCBI SRA SRS1909367   

meat_SRS1909374 Meat NCBI SRA SRS1909374   

meat_SRS1909383 Meat NCBI SRA SRS1909383   

meat_SRS1909385 Meat NCBI SRA SRS1909385   

meat_SRS1909586 Meat NCBI SRA SRS1909586   

meat_SRS1909591 Meat NCBI SRA SRS1909591   

meat_SRS1909654 Meat NCBI SRA SRS1909654   

meat_SRS1909656 Meat NCBI SRA SRS1909656   

meat_SRS1909658 Meat NCBI SRA SRS1909658   

meat_SRS2048872 Meat NCBI SRA SRS2048872   

meat_SRS2048879 Meat NCBI SRA SRS2048879   

meat_SRS2048880 Meat NCBI SRA SRS2048880   

meat_SRS2048887 Meat NCBI SRA SRS2048887   

meat_SRS2048896 Meat NCBI SRA SRS2048896   

meat_SRS717409 Meat NCBI SRA SRS717409   

meat_SRS717411 Meat NCBI SRA SRS717411   

meat_SRS717414 Meat NCBI SRA SRS717414   

meat_SRS717415 Meat NCBI SRA SRS717415   

Reference_NCTC11994 
Culture 
Collection  

In house 
sequencing -   

Reference_NCTC5214 
Culture 
Collection  

In house 
sequencing -   

veg1 Vegetables 
Smith et al. 
(2019)  Nlmo2 Spinach 

veg2 Vegetables 
Smith et al. 
(2019)  Nlmo3 Kale 



139 
 

veg3 Vegetables 
Smith et al. 
(2019)  Nlmo4 Swab 

veg4 Vegetables 
Smith et al. 
(2019)  Nlmo5 Baby spinach 

veg5 Vegetables 
Smith et al. 
(2019)  Nlmo6 Red Leaf 

veg6 Vegetables 
Smith et al. 
(2019)  Nlmo7 Spinach 

veg7 Vegetables 
Smith et al. 
(2019)  Nlmo8 Baby spinach 

veg8 Vegetables 
Smith et al. 
(2019)  Nlmo9 Baby spinach 

veg9 Vegetables 
Smith et al. 
(2019)  Nlmo10 Spinach 

veg10 Vegetables 
Smith et al. 
(2019)  Nlmo13 Spinach 

veg11 Vegetables 
Smith et al. 
(2019)  Nlmo14 Beetroot 

veg12 Vegetables 
Smith et al. 
(2019)  Nlmo15 Peashoots 

veg13 Vegetables 
Smith et al. 
(2019)  Nlmo16 Spinach 

veg14 Vegetables 
Smith et al. 
(2019)  Nlmo18 Baby salad kale 

veg15 Vegetables 
In house 
sequencing - Baby Spinach 

veg16 Vegetables 
In house 
sequencing - Rocket 

veg17 Vegetables 
In house 
sequencing - Lollo Rosso 

veg18 Vegetables 
In house 
sequencing - Lollo Rosso 

veg19 Vegetables 
In house 
sequencing - Spinach 

veg20 Vegetables 
In house 
sequencing - Rocket 

veg21 Vegetables 
In house 
sequencing - Spring Greens 

veg22 Vegetables 
In house 
sequencing - Chinese Stir Fry 

veg23 Vegetables 
In house 
sequencing - Red onion 

veg24 Vegetables 
In house 
sequencing - Wild Rocket 

veg25 Vegetables 
In house 
sequencing - 

Spring Greens 
(sliced) 

veg26 Vegetables 
In house 
sequencing - Onions (diced) 
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veg27 Vegetables 
In house 
sequencing - Red Onion 

veg28 Vegetables 
In house 
sequencing - Spinach 

veg29 Vegetables 
In house 
sequencing - 

Spinach 
(unwashed) 

veg30 Vegetables 
In house 
sequencing - Mixed Salad 

veg31 Vegetables 
In house 
sequencing - Wild Rocket 

veg32 Vegetables 
In house 
sequencing - Spinach 

veg33 Vegetables 
In house 
sequencing - Mixed Salad 

veg34 Vegetables 
In house 
sequencing - Mixed Salad 

veg35 Vegetables 
In house 
sequencing - Wild Rocket 

veg36 Vegetables 
In house 
sequencing - Baby Spinach 

veg37 Vegetables 
In house 
sequencing - Mixed Salad 

veg38 Vegetables 
In house 
sequencing - Mixed Salad 

veg39 Vegetables 
In house 
sequencing - Spinach 

veg40 Vegetables 
In house 
sequencing - Red Chard 

veg41 Vegetables 
In house 
sequencing - Spinach 

veg42 Vegetables 
In house 
sequencing - Baby Spinach 

veg43 Vegetables 
In house 
sequencing - Spinach 

veg44 Vegetables 
In house 
sequencing - Spinach 

veg45 Vegetables 
In house 
sequencing - Spinach 

veg46 Vegetables 
In house 
sequencing - Spinach 

veg47 Vegetables 
In house 
sequencing - Baby Spinach 

veg48 Vegetables 
In house 
sequencing - Swab 
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Appendix E. Histograms of biofilm formation 
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Appendix F. Histograms of antibiotic zone of clearance 
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Appendix G. Pyseer Genes of Interest 

 

i) Genes associated with isolation from vegetables  

 

gene hits maxp avg_af avg_maf avg_beta 

int 1143 17.30539 0.17126 0.17126 0.828628 

cds2325 546 15.29073 0.173886 0.173886 0.824284 

cds2326 415 14.11748 0.174308 0.174308 0.822265 

cds2310 365 15.29073 0.16891 0.16891 0.817989 

cds2329 300 14.11748 0.183077 0.183077 0.790897 

cds1801 294 15.27409 0.175671 0.175671 0.812306 

cds2323 255 14.37161 0.165813 0.165813 0.828929 

cds2328 230 14.11748 0.202709 0.202709 0.71037 

cds2273 229 13.57675 0.177978 0.177978 0.826406 

cds2324 204 13.57675 0.172142 0.172142 0.818074 

cds1350 158 14.11748 0.173285 0.173285 0.812854 

cds1223 157 14.11748 0.173573 0.173573 0.818866 

cds1723 155 14.11748 0.18351 0.18351 0.809497 

ftsA 153 14.11748 0.174734 0.174734 0.809007 

cds1739 151 14.11748 0.171689 0.171689 0.821053 

cds499 151 14.11748 0.169841 0.169841 0.836219 

cds639 149 14.11748 0.174619 0.174619 0.82053 

cds1580 143 14.11748 0.183471 0.183471 0.824916 

cds2580 141 14.11748 0.16508 0.16508 0.818383 

cds129 139 13.57675 0.168317 0.168317 0.827158 

cds2337 136 13.80688 0.173743 0.173743 0.819272 

cds2274 135 14.11748 0.167691 0.167691 0.837304 

cds2394 133 16.25337 0.176015 0.176015 0.822105 

ruvA 132 14.11748 0.174614 0.174614 0.824364 

serC 120 14.11748 0.181683 0.181683 0.817208 

cds1736 114 14.31876 0.179193 0.179193 0.820991 

cds60 108 13.57675 0.20137 0.20137 0.800417 

cds585 105 14.11748 0.173914 0.173914 0.807333 

cds517 95 14.23136 0.164579 0.164579 0.830042 

cds2693 91 13.57675 0.190659 0.190659 0.817066 

cds2331 84 14.93554 0.163146 0.163146 0.82125 

cds2317 76 13.57675 0.175618 0.175618 0.810618 

cds2400 75 14.11748 0.203017 0.203017 0.813773 

qoxC 73 14.11748 0.182233 0.182233 0.832014 

cds2318 70 13.69465 0.162486 0.162486 0.853643 

cds887 70 14.68194 0.180886 0.180886 0.820843 

cds2315 64 13.57675 0.168203 0.168203 0.823797 

cds2312 62 13.80688 0.184516 0.184516 0.819323 
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cds460 61 13.57675 0.181349 0.181349 0.798541 

cds1136 58 14.16178 0.16781 0.16781 0.821983 

cds2327 56 14.11748 0.175268 0.175268 0.816357 

cds2311 52 13.9431 0.170987 0.170987 0.828558 

cds2330 48 13.57675 0.174167 0.174167 0.805437 

cds496 44 13.57675 0.16 0.16 0.824432 

comK' 44 15.29073 0.180432 0.180432 0.800955 

cds2399 41 13.69465 0.171927 0.171927 0.843537 

ssb 34 13.27984 0.219 0.219 0.777882 

cds159 31 13.57675 0.198484 0.198484 0.843548 

cds2305 14 13.27984 0.194429 0.194429 0.781643 

cds2398 13 13.27984 0.162231 0.162231 0.795538 

cds456 7 13.27984 0.173714 0.173714 0.768286 

cds431 7 12.18111 0.370286 0.370286 0.622 

cds2334 5 12.87615 0.2986 0.2986 0.6066 

inlA 4 13.27984 0.1655 0.1655 0.75825 

cds919 4 13.9431 0.42875 0.42875 0.71475 

thrS 4 11.03058 0.45375 0.45375 0.6985 

cds2015 4 9.896196 0.5 0.5 0.62825 

cds1979 4 10.7122 0.4945 0.4945 0.67425 

cds539 3 10.35655 0.453667 0.453667 0.641 

cds2592 3 10.54363 0.351 0.351 0.699333 

cds106 3 13.41341 0.474333 0.474333 0.74 

cds2302 3 8.756962 0.274333 0.274333 0.526667 

cds1002 3 9.543634 0.407667 0.407667 0.678 

cds2581 3 11.39147 0.464333 0.464333 0.792667 

cds1207 3 8.178486 0.479333 0.479333 0.566 

cds130 2 13.48149 0.4575 0.4575 0.675 

cds1719 2 8.779892 0.4305 0.4305 0.583 

cds556 2 11.49757 0.462 0.462 0.758 

cds2 2 11.48017 0.3305 0.3305 0.7345 

cds1096 2 8.614394 0.281 0.281 0.621 

cds147 2 9.415669 0.45 0.45 0.543 

cds2742 2 10.86646 0.4385 0.4385 0.7155 

cds2450 2 8.739929 0.35 0.35 0.5855 

cds433 2 8.059484 0.5115 0.4885 0.625 

cds65 2 8.463442 0.4 0.4 0.584 

purM 2 9.102923 0.4615 0.4615 0.5915 

cds723 2 11.68613 0.481 0.481 0.8275 

cds398 2 10.53611 0.477 0.477 0.742 

glyQ 2 9.032452 0.3965 0.3965 0.5505 

cds1679 2 14.04001 0.4305 0.4305 0.773 

purD 2 10.24109 0.4805 0.4805 0.7255 

bvrA 2 12.54821 0.4845 0.4845 0.759 

cds941 2 8.879426 0.427 0.427 0.6005 

cds420 2 10.95078 0.4 0.4 0.7005 
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cds319 2 8.806875 0.4805 0.4805 0.628 

cds2180 2 10.05306 0.442 0.442 0.681 

cds2003 2 8.220404 0.627 0.373 0.648 

cds1763 2 11.86967 0.515 0.485 0.657 

cds1355 2 8.271646 0.442 0.442 0.6985 

cds2016 2 12.18842 0.4195 0.4195 0.6865 

cds2279 2 7.866461 0.1885 0.1885 0.629 

cds63 2 8.688246 0.5575 0.4425 0.5515 

cds2320 2 8.982967 0.1885 0.1885 0.66 

atpI 2 13.56384 0.4695 0.4695 0.825 

cds1821 2 14.65956 0.454 0.454 0.844 

codY 2 12.75449 0.477 0.477 0.7135 

fliD 2 12.81248 0.423 0.423 0.764 

cds824 2 8.853872 0.477 0.477 0.6195 

cds2674 2 10.47366 0.492 0.492 0.708 

cds2783 2 11.31158 0.327 0.327 0.6725 

cds327 2 9.477556 0.458 0.458 0.6625 

ilvD 2 8.946922 0.296 0.296 0.656 

cds2027 2 10.04769 0.4575 0.4575 0.663 

cds720 2 8.876148 0.327 0.327 0.6655 

cds2174 2 9.527244 0.423 0.423 0.688 

cds835 2 11.38091 0.45 0.45 0.778 

cds457 1 11.61798 0.154 0.154 0.842 

cds1102 1 9.247952 0.169 0.169 0.709 

cds2256 1 9.243364 0.315 0.315 0.65 

cds1119 1 7.761954 0.277 0.277 0.657 

gltX 1 9.02641 0.385 0.385 0.656 

cds2308 1 8.723538 0.215 0.215 0.628 

cds218 1 14.27654 0.477 0.477 0.874 

cds1583 1 7.838632 0.292 0.292 0.588 

purN 1 8.320572 0.385 0.385 0.656 

cds2289 1 9.675718 0.3 0.3 0.549 

cds2680 1 7.735182 0.423 0.423 0.558 

cds2599 1 8.551294 0.415 0.415 0.567 

cds266 1 9.224026 0.4 0.4 0.663 

cds2376 1 9.104025 0.277 0.277 0.733 

cds1093 1 9.411168 0.431 0.431 0.605 

cds802 1 8.25649 0.562 0.438 0.473 

cds1289 1 8.801343 0.346 0.346 0.688 

cds2127 1 8.958607 0.408 0.408 0.669 

cds1422 1 10.54516 0.446 0.446 0.73 

cds821 1 11.16178 0.408 0.408 0.726 

cds2297 1 8.054039 0.231 0.231 0.591 

cds479 1 9.492144 0.423 0.423 0.675 

purB 1 9.192465 0.454 0.454 0.682 

cds2004 1 8.801343 0.385 0.385 0.636 
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cds1647 1 10.23062 0.292 0.292 0.725 

cds839 1 9.793174 0.515 0.485 0.622 

cds279 1 13.61979 0.169 0.169 0.895 

murD 1 8.5867 0.331 0.331 0.648 

cds315 1 8.492144 0.308 0.308 0.629 

cds1960 1 9.396856 0.308 0.308 0.713 

cds2785 1 8.486782 0.423 0.423 0.525 

cds316 1 8.879426 0.354 0.354 0.648 

cds785 1 8.74958 0.323 0.323 0.687 

cbiP 1 10.1209 0.308 0.308 0.703 

cds2346 1 7.742321 0.408 0.408 0.517 

lysS 1 8.112946 0.485 0.485 0.638 

cds250 1 8.111259 0.315 0.315 0.635 

cds1500 1 9.291579 0.508 0.492 0.66 

tkt 1 8.920819 0.285 0.285 0.723 

cds464 1 11.29757 0.285 0.285 0.785 

cds2678 1 10.50446 0.269 0.269 0.781 

cds506 1 8.928118 0.469 0.469 0.685 

cds363 1 7.815309 0.392 0.392 0.517 

cds1211 1 7.787812 0.569 0.431 0.595 

cds2303 1 8.701147 0.208 0.208 0.611 

cds253 1 8.195861 0.377 0.377 0.61 

cds2321 1 9.156767 0.169 0.169 0.71 

cds2681 1 13.24489 0.385 0.385 0.754 

phoR 1 9.394695 0.346 0.346 0.652 

cds786 1 9.812479 0.577 0.423 0.595 

cds382 1 9 0.477 0.477 0.66 

cds761 1 10.16877 0.469 0.469 0.708 

cds66 1 7.818156 0.315 0.315 0.623 

cds2030 1 11.02733 0.392 0.392 0.708 

cds2818 1 9.432974 0.385 0.385 0.676 

cds1204 1 11.67162 0.469 0.469 0.812 

gbuA 1 11.49485 0.477 0.477 0.805 

cds2500 1 8.653647 0.292 0.292 0.684 

cds1099 1 13.24565 0.185 0.185 0.799 

cds469 1 10.15058 0.315 0.315 0.662 

cds1235 1 10.27165 0.469 0.469 0.699 

cds518 1 9.427128 0.269 0.269 0.713 

cds2640 1 11.70774 0.485 0.485 0.798 

cds2755 1 8.492144 0.369 0.369 0.657 

trmE 1 8.492144 0.369 0.369 0.657 

cds289 1 9.189767 0.692 0.308 0.683 

cds2277 1 10.21254 0.169 0.169 0.742 

cds1923 1 9.241845 0.415 0.415 0.644 

cds1114 1 11.07314 0.162 0.162 0.787 

cds131 1 8.191789 0.354 0.354 0.564 
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cds2858 1 9.9914 0.438 0.438 0.714 

cds742 1 8.114639 0.308 0.308 0.63 

cds1035 1 9.767004 0.285 0.285 0.697 

cds1030 1 10.0804 0.562 0.438 0.609 

cds1307 1 7.935542 0.508 0.492 0.62 

dapF 1 7.761954 0.431 0.431 0.626 

pheS 1 7.954677 0.331 0.331 0.613 

cds2840 1 9.002614 0.408 0.408 0.673 

cds2309 1 10.21538 0.162 0.162 0.742 

hisA 1 7.978811 0.638 0.362 0.642 

cds1201 1 12.55596 0.392 0.392 0.733 

cds74 1 9.14813 0.531 0.469 0.61 

cds2434 1 11.80967 0.469 0.469 0.784 

cds276 1 11.51856 0.254 0.254 0.736 

cadA 1 8.28567 0.385 0.385 0.614 

cds2654 1 8.679854 0.323 0.323 0.599 

cds1376 1 12.37675 0.323 0.323 0.78 

gyrB 1 8.630784 0.346 0.346 0.651 

cds898 1 9.835647 0.577 0.423 0.587 

menB 1 8.112946 0.631 0.369 0.537 

cds78 1 8.283162 0.446 0.446 0.585 

cds2584 1 9.806875 0.408 0.408 0.617 

cds1117 1 7.978811 0.308 0.308 0.588 

pyrG 1 13.41341 0.469 0.469 0.88 

cds2849 1 10.33536 0.454 0.454 0.73 

acpP 1 8.399027 0.423 0.423 0.655 

cds2052 1 8.308035 0.362 0.362 0.581 

cds2448 1 7.790485 0.5 0.5 0.656 

cds849 1 11.76447 0.431 0.431 0.758 

cds586 1 14.41454 0.454 0.454 0.861 

cds516 1 10.39686 0.585 0.415 0.616 

cds2278 1 8.003051 0.231 0.231 0.574 

cds2050 1 8.420216 0.285 0.285 0.676 

cds486 1 9.425969 0.338 0.338 0.688 

cds2594 1 8.850781 0.423 0.423 0.633 

cds1865 1 8.266001 0.277 0.277 0.673 

cds323 1 9.546682 0.492 0.492 0.613 

cds1115 1 10.55129 0.138 0.138 0.792 

cds1671 1 8.910095 0.308 0.308 0.642 

cds2679 1 11.25885 0.492 0.492 0.755 

glyS 1 7.739929 0.408 0.408 0.55 

cds1577 1 8.450997 0.408 0.408 0.62 
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ii) Genes associated with isolation from clinical samples  

  

gene hits maxp avg_af avg_maf avg_beta 

cds460 44 12.69037 0.684659 0.315341 0.517909 

cds456 41 10.05355 0.708073 0.291927 0.517902 

cds2400 8 13.94692 0.656 0.344 0.58775 

gsaB 2 7.939302 0.738 0.262 0.517 

cds479 2 10.05355 0.731 0.269 0.571 

cds459 2 7.982967 0.654 0.346 0.478 

cds2640 2 9.806875 0.869 0.131 0.743 

prfA 1 8.165579 0.831 0.169 0.614 

cds2592 1 8.163676 0.638 0.362 0.479 

cds158 1 8.616185 0.792 0.208 0.582 

cds1226 1 7.995679 0.869 0.131 0.676 

 

 

 

 

 

 

 


