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Abstract 

 

Introduction 

Dementia with Lewy bodies (DLB), Parkinson’s disease dementia (PDD) and Alzheimer’s 

disease dementia (AD) are associated with different pathologies. Nevertheless, symptomatic 

overlap between these conditions may lead to misdiagnosis. Resting-state functional 

connectivity features in DLB as assessed with electroencephalography (EEG) are emerging as 

diagnostic biomarkers. However, their pathological significance is still questioned. This study 

aims to further investigate this aspect and to infer functional and structural sources of EEG 

abnormalities in DLB. 

Methods 

Graph theory analysis was first performed to assess EEG network differences between healthy 

controls (HC) and dementia groups. Source localisation and Network Based Statistics (NBS) 

were used to infer EEG cortical network and dominant frequency (DF) alterations in DLB 

compared with AD. Further analysis aimed to assess the subnetwork associated with visual 

hallucination (VH) symptom in DLB and PDD, i.e. LBD, compared with not-hallucinating (NVH) 

patients. Finally, probabilistic tractography was performed on diffusion tensor imaging (DTI) 

data between cortical regions, thalamus, and basal forebrain (NBM). Correlation between 

structural and functional connectivity was tested. 

Results 

EEG α-band (7-13.5 Hz) network features were affected in LBD compared with HC, whilst DLB 

β-band network (14-20.5 Hz) was weaker and more segregated when compared with AD. This 

scenario replicated in the source domain. DF was significantly lower in DLB compared with AD, 

and positively correlated with structural connectivity strength between NBM and the cortex. 

Functional visual ventral network connectivity and cholinergic projections towards the cortex 

were affected in VH compared with NVH, and significantly correlated in NVH. 

Conclusions 

Functional connectivity as assessed with EEG is more affected in DLB compared with AD. 

Moreover, the visual ventral network is functionally altered in VH compared with NVH. Results 
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from structural analysis provide empirical evidence on the role of cholinergic dysfunctions in 

DLB and PDD pathology and corresponding functional correlates. 
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Chapter 1. Introduction 

 

1.1. Dementia with Lewy Bodies 

Dementia with Lewy bodies (DLB) is the second most common form of dementia, following 

Alzheimer’s disease dementia (AD), accounting from 4% up to 10% of clinically diagnosed 

dementia cases (McKeith et al., 2007; Vann Jones and O'Brien, 2014; Walker et al., 2015). A 

diagnosis of dementia is generally associated with progressive cognitive decline significantly 

affecting social and occupational functions (World Health Organisation, 2012). People with 

DLB also develop specific core symptoms, as reported in the most recent diagnostic criteria 

for DLB (McKeith et al., 2017): 

• Cognitive fluctuations: people with DLB present at least one alteration experience in 

cognitive functions, such as attention and arousal (Walker et al., 2000; Ballard et al., 

2001a; McKeith et al., 2005), which can also include daytime drowsiness and 

disorganised speech (Bradshaw et al., 2004). 

• Rapid eye movement (REM) sleep behaviour disorder (RBD): 76% of DLB patients  

present altered REM sleep atonia (Ferman et al., 2011; Ferini-Strambi et al., 2014; Chan 

et al., 2018), and may move repeatedly while dreaming (Boeve et al., 2007). 

• Parkinsonism: at later stages of the pathology, over 85% of DLB patients develop 

variable parkinsonian features, including postural and gait disorder (Louis et al., 1995; 

Burn et al., 2003; Hershey and Irwin, 2018). 

• Complex visual hallucinations: being one of the most common symptoms, 

hallucinations to different degrees occur in 80% of DLB patient (Collerton et al., 2005; 

McKeith, 2007a; Mosimann et al., 2008). Hallucinatory phenomena feature people, 

children and/or animals. This symptom is described in detail in section 1.2. 

Other clinical symptoms which are frequently associated with DLB include autonomic 

dysfunction, anxiety, and delusions.  

An effective disease modifying treatment for DLB does not exist yet. However, different forms 

of medication have been shown to produce positive effects on the symptoms. These include 

acetylcholinesterase inhibitors and memantine, which are used to attenuate attentional 
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deficits and visual hallucinations (Aarsland et al., 2009; Burghaus et al., 2012; Wang et al., 

2015). Parkinsonism in generally treated with levodopa (Bonelli et al., 2004; Molloy et al., 

2005; Taylor et al., 2020). 

 

1.1.1. Pathology 

At later stages, DLB pathology and symptoms are the same as those in Parkinson’s disease 

dementia (PDD) (McKeith, 2007b). In fact, both syndromes are associated with the 

development of a Lewy body disease (Kosaka et al., 1984) and belong to the Lewy body 

dementia (LBD) umbrella definition. The aetiology of LBD is likely to be a progressive build-up 

of alpha-synuclein protein bodies, known as Lewy bodies (LB), and thread-like Lewy neurites 

(LN) across the brain (Baba et al., 1998; Mattila et al., 1998; Braak et al., 2003). As described 

in the Braak stages (Braak et al., 2003), Parkinson’s disease (PD) is initially associated with a 

high number of LN, outnumbering LB, over the dorsal motor nucleus of the medulla oblongata 

and within intermediate reticular area. As the pathology progresses, LN and LB spread across 

the medulla oblongata towards projection neurons of the raphe nuclei and the reticular 

formation, also affecting the brainstem and the coeruleus-subcoeruleus complex in the 

pontine tegmentum. As LB number increases, the midbrain is also affected, and protein bodies 

spread across the substantia nigra and the basal forebrain. Dopaminergic cells of the pars 

compacta are then affected, as well as the mesocortex and allocortex. Olfactory areas become 

severely damaged as the pathology spreads across the neocortex and its pyramidal cells, 

involving sensory association areas, the insular fields, the anterior cingulate cortex, and 

prefrontal areas. Primary areas are lastly affected. Dementia from PD is thought to be driven 

by LB density in the neocortex at the latest stage of the pathology (de Vos et al., 1995; Tsuboi 

et al., 2007), although the role of α-synuclein pathology in disease development is still a 

matter of speculation (Schapira and Jenner, 2011; Weil et al., 2017). 

On the other hand, many DLB cases are associated predominantly with cortical presence of LB 

rather than in lower brain regions (Kosaka, 1978; Harding et al., 2002; Frigerio et al., 2011). 

Although DLB is also associated with the extent of LB burden throughout the brain (Beach et 

al., 2009) and dopaminergic degeneration (Walker et al., 2002; O'Brien et al., 2004), it may 

also coexist with AD (McKeith et al., 2005; Weisman et al., 2007). In this latter case, 
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discrimination depends on the extent to which AD-type pathology co-exists with the presence 

of LB (McKeith et al., 2005). DLB symptoms have been also shown to be specifically associated 

with reduced cholinergic activity and dopaminergic deficit throughout the brain (Perry et al., 

1991; Tiraboschi et al., 2000; Tiraboschi et al., 2002; Lemstra et al., 2003; Delli Pizzi et al., 

2015b). 

 

1.1.2. Symptomatic overlap and difference with other dementia types 

Pathological inconsistency between conditions also emerges at symptomatic level. In fact, 

people with DLB first develop cognitive disorders, followed by parkinsonism at later stages. 

According to the “one-year rule” (McKeith et al., 2005; McKeith, 2007b), DLB patients develop 

bradykinesia, tremor and rigidity (Hornykiewicz and Kish, 1987; Gaig and Tolosa, 2009) one 

year after the onset of cognitive impairment. In PDD instead, as already stated above, 

cognitive symptoms develop at the advanced stage of PD. Although AD shows slower rate of 

cognitive decline compared with DLB (Blanc et al., 2017) as well as more severe memory 

impairment (Hamilton et al., 2004; Ricci et al., 2009), symptomatic overlap exists between the 

two conditions at early stages, and is a major contributor to the misdiagnosis of DLB (Palmqvist 

et al., 2009). Over the recent years, the diagnostic criteria for DLB (McKeith et al., 1996; 

McKeith et al., 2005; McKeith et al., 2017) aimed to improve discrimination accuracy between 

DLB and AD (Vann Jones and O'Brien, 2014; Rizzo et al., 2018). The latest guidelines 

recommend probable DLB diagnosis when two or more core clinical features are present 

(McKeith et al., 2017). Biomarkers are also included and classified as indicative and supportive. 

In fact, probable DLB is also diagnosed when an indicative biomarker exists with at least one 

core clinical feature. Indicative biomarkers include: 

• Reduced dopaminergic Ioflupane (commercially known as DaT) uptake in basal ganglia 

as assessed with Single Photon Emission Computed Tomography (SPECT) (Brigo et al., 

2015; McCleery et al., 2015; Shimizu et al., 2017). This has been reported to provide 

with sensitivity of 77.7% and specificity of 90.4% (McKeith et al., 2007). 

• Reduced uptake on 123Iodine-MIBG myocardial scintigraphy (Watanabe et al., 2001; 

Hanyu et al., 2006; Kobayashi et al., 2009). This is a non-invasive technique used to 

assess cardiac nerve damage (Glowniak et al., 1989), a common pathological outcome 
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in LBD. Sensitivity and specificity are respectively 69% and 89%, with higher 

percentages in milder cases (Yoshita et al., 2015). 

• RBD confirmation through Polysomnography (PSG), which has been shown to be 

associated with high probability of synucleinopathy in people with dementia (Boeve et 

al., 2008; Boeve et al., 2013; Pao et al., 2013; Bugalho et al., 2019). 

Supportive biomarkers do not show high specificity. Nevertheless, they provide useful 

information in the diagnostic context. These include: 

• Reduced medial temporal lobe atrophy in DLB compared with AD, as assessed with 

MRI or CT scan (Barber et al., 2000b; Burton et al., 2009). Accuracy of 66% was 

reported for this biomarker in a multicentre study based on autopsy confirmation 

(Harper et al., 2016). 

• Reduced uptake on SPECT and positron emission tomography (PET) metabolism scan 

is associated with reduced activity over the occipital cortex in DLB (Higuchi et al., 2000; 

Lobotesis et al., 2001; Shimizu et al., 2005). 

• Dominant power spectrum frequency (DF) revealed with electroencephalography 

(EEG) reduced over the occipital lobe and other altered patterns in DLB and its 

prodromal stage, correlating with clinical scores (Bonanni et al., 2008; Peraza et al., 

2018). 

Due to its portability and low-cost (Lee and Tan, 2006), EEG is emerging as a promising 

diagnostic tool for several conditions including epilepsy (Smith, 2005; Acharya et al., 2012; 

Mirandola et al., 2017) and AD (Rodriguez et al., 1999; Bennys et al., 2001; Moretti et al., 

2004). However, research on DLB has not been extensive to date (Law et al., 2020), and 

existing studies are discussed in the next sections. The main scope of this thesis project was 

to detect differential EEG biomarkers to discriminate DLB versus AD. Due to their high 

specificity in DLB discrimination against DLB and coexisting pathology cases with prominent 

AD (Tiraboschi et al., 2006; Jicha et al., 2010; Toledo et al., 2013; Yoshizawa et al., 2013), visual 

hallucinations were also a matter of interest in this thesis; investigation on functional and 

structural correlates of this clinical feature is reported in Chapter 6. 
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1.2.  Visual Hallucinations in Lewy Body Dementia 

Single experiences of visual perception not matching with reality are quite common 

phenomena (McKellar, 1957; Ohayon, 2000), in some cases felt as either neutral or comforting 

(Grimby, 1993; Paulson, 1997; Collerton et al., 2005). However, they can be disturbing in 

pathological conditions as misperceptions and visual hallucinations (VH) become a recurrent 

and complex condition. 

Generally speaking, VH differ from misperceptions and illusions, as they are not necessarily 

triggered by non-environmental stimuli (Asaad and Shapiro, 1986; Brasić, 1998; Collerton et 

al., 2005). Collerton and colleagues proposed a definition for complex VH as “repetitive 

involuntary images […] experienced as real […] for which there is no objective reality” 

(Collerton et al., 2005). VH were already described during the ninth-century in the Persian 

literature (Gorji and Ghadiri, 2002), and later became a matter of interest in different 

disorders, such as epilepsy, migraine (Panayiotopoulos, 1994), schizophrenia (Stefan et al., 

1989; Oertel et al., 2007), Charles Bonnet syndrome (Howard et al., 1998; Hanoglu et al., 2016) 

and dementia (Burn et al., 2006; Onofrj et al., 2019). In fact, LBD is among the syndromes 

associated with highest rates of complex VH. As opposed to simple VH, complex hallucinations 

may include unrecognised as well as familiar images, mostly featuring people and animals, but 

also inanimate objects (Aarsland et al., 2001; Burghaus et al., 2012). Hallucinatory episodes 

tend to be short, and mostly occur at night or in reduced environmental brightness (Fénelon 

et al., 2000; Barnes and David, 2001; Holroyd et al., 2001). This latter aspect resonates with 

evidence that the eye condition may also be a risk factor for VH, as also reported for Charles 

Bonnet Syndrome, where VH is associated with eye disease-related vision impairment (Schultz 

and Melzack, 1991; Teunisse et al., 1996). 

 

1.2.1. Pathology 

The pathological mechanisms associated with VH in LBD are not clear yet. Early studies 

speculated that VH might be a consequence of dopaminergic treatment (Fénelon et al., 2000; 

Collerton et al., 2005; Williams and Lees, 2005), due to evidence of levodopa or clozapine 

induced hallucinatory experience (Devanand and Levy, 1995; Cannas et al., 2001). However, 
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the majority of studies do not report any correlation between medication and VH 

characteristics (Goetz et al., 1998; Harding et al., 2002; Williams and Lees, 2005). In fact, VH 

are thought to be associated with LBD-related impairment of cholinergic and dopaminergic 

systems  (Ballard et al., 2000; Harding et al., 2002; Diederich et al., 2005; Shine et al., 2011; 

Shine et al., 2014; Onofrj et al., 2019). Autopsy studies have also reported higher LB burden 

within the ventral visual network, i.e. occipital and temporal cortical lobes, in LBD patients 

(Harding et al., 2002; Williams and Lees, 2005; Gallagher et al., 2011). The involvement of the 

cholinergic system in VH physiology is suggested by the ability of cholinergic drugs to suppress 

VH (Perry and Perry, 1995). This hypothesis is also supported by recent studies demonstrating 

greater burden of LB and damaged white matter (WM) fibre tracts within the nucleus basalis 

of Meynert (NBM) in LBD with VH (Hepp et al., 2017a; Sakai et al., 2019). The NBM is located 

in the basal forebrain (Heimer et al., 1999), and is in fact the primary source of cholinergic 

innervations projecting to the cerebral cortex (Mesulam, 1990; Selden et al., 1998; Hepp et 

al., 2017a).  

 

1.2.2. Computational models 

Multiple attempts have been pursued during the recent years to implement computational 

models describing VH phenomenology in multiple disorders. Based on a previous study 

(Horowitz, 1975), Collerton and colleagues proposed the Perception and Attention Deficit 

(PAD) model, based on VH in DLB (Collerton et al., 2005). According to this model, recurrent 

complex VH are a consequence of disrupted visual perception of objects and impaired 

attentional processes, which in the context of scene representation lead to wrong objects 

representation. This implementation builds on previous psychology models, which represent 

visual perception as a result of an interaction between attentional-mnemonic top-down 

neuronal processes and bottom-up sensory input. These two streams are thought to involve 

respectively the prefrontal cortex (PFC) and inferior-temporal cortex (IT), and the occipital 

region and IT. The PAD model combines the psychological perspective with DLB pathology and 

manipulation of cholinergic system. Hence, disrupted cholinergic projection might affect the 

interaction between the top-down and bottom-up streams, being the underlying driver of VH 

in DLB (Angela and Dayan, 2002; Collerton et al., 2005).  
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The idea of a mismatch between top-down attentional network and bottom-up sensory 

stream in VH nicely resonates with most of the literature describing the visual system. Both 

information flows are thought to exist in the so called ventral visual network, which has a 

major role in object recognition (Bar, 2003). As mentioned above, this network comprises the 

lower-level visual areas, which project towards the IT and to the PFC. According to existing 

models, a rough version of visual information is rapidly sent from the primary visual area to 

the PFC, which based on information already stored in memory and scene context, produces 

a range of predictions. These are projected back to the IT and, together with contextual and 

emotional response originating respectively in the hippocampus and amygdala, are matched 

with the information later provided through the bottom-up sensory stream. A successful 

matching will produce a correct object perception (Bar, 2003; Bar et al., 2006; Chaumon et al., 

2009; Gamond et al., 2011; Chaumon et al., 2014; O’Callaghan et al., 2017). 

In a recently developed model of VH in DLB based on these assumptions, authors showed that 

wrong visual perception is associated with both disrupted projection from the occipital to the 

PFC and impaired communication between occipital and temporal areas. This might lead to 

altered communication between the PFC and the IT, hence the mismatch between the two 

visual processing streams (Tsukada et al., 2015) as proposed in the PAD model. Shine et al. 

(2011) proposed a more complex perspective through a model of VH phenomenology in PD. 

This model assumes that attentional networks are involved in processing visual perception, 

and VH are due to over activation of default mode network (DMN) and ventral attentional 

network (VAN) relatively to the dorsal attentional network (DAN). DMN consists of 

synchronised activation of temporal, prefrontal and parietal regions which occurs in resting-

state, i.e. during mind wandering (Binder et al., 1999; Mazoyer et al., 2001; Raichle, 2015). 

The VAN comprises lateral and inferior PFC, temporoparietal junction and ventral areas, and 

is associated with stimulus driven attentional processes (Corbetta and Shulman, 2002; Menon 

and Uddin, 2010), whilst DAN involves sustained activation of frontoparietal areas and is 

associated with top-down cognitive control of attentional focus (Kastner et al., 1999; Shulman 

et al., 1999; Corbetta et al., 2000; Siegel et al., 2008; DiQuattro and Geng, 2011; Simpson et 

al., 2011). Similarly to the model developed by Tsukada et al. (2015) and the PAD model 

(Collerton et al., 2005), interaction between bottom-up and top-down attentional streams is 

proposed to be affected, as DAN is wrongly engaged by DMN and VAN, making internal 
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imagery prevail over actual perception. On the other hand, it is proposed here that visual 

processing impairment alone is not sufficient to describe VH symptom and its related 

pathological mechanisms, and more extensive network alterations should be taken in account. 

 

1.2.3. Experimental evidence supporting VH-related models 

Consistency of developed models was partly confirmed by empirical results. In a recent work, 

authors used voxel-based morphometry (VBM) and found major grey matter atrophy over the 

frontal gyri, as well as insula and caudate nucleus in DLB with VH (Pezzoli et al., 2019). Glucose 

hypometabolism was also reported in LBD with VH over the occipital and temporal areas 

compared with the control group (Pasquier et al., 2002; Gasca-Salas et al., 2016). This finding 

was also confirmed in a recent study with arterial spin labelling (ASL) magnetic resonance 

imaging (MRI) (Taylor et al., 2012), which is a technique that allows for the measurement of 

tissue blood flow using labelled arterial blood water protons as intrinsic tracer 

(Petcharunpaisan et al., 2010). In addition, Taylor et al. (2012) also reported reduced cortical 

activation in DLB with VH during a visual task over higher level visual areas, including V5, MT 

and lateral occipital cortex, as assessed with functional MRI (fMRI). Supporting these findings, 

significantly greater grey matter atrophy was also found in PD with VH compared with PD 

without VH (NVH), as well as reduced occipital activity assessed with γ-aminobutyric acid 

(GABA) levels, detected with magnetic resonance spectroscopy (MRS) (Firbank et al., 2018). 

MRS GABA level reflects GABAergic activity, which is thought to be associated with 

synchronisation of inhibitory interneurons by perisomatic postsynaptic potentials (Lytton and 

Sejnowski, 1991; Buzsáki and Wang, 2012). 

In support of PD-VH model developed by Shine et al. (2011), one recent study investigated 

brain fMRI response in a task featuring bistable, i.e. ambiguous, and monostable, i.e. well 

defined, images in PD patients with and without VH (Shine et al., 2012; Shine et al., 2014). In 

either type of images, VH group showed reduced activation of DAN regions, associated with 

lower task performance score. Reduced activation of DAN during the task was significantly 

associated with reduced resting state functional connectivity between attentional networks. 

Moreover, reduced resting state connectivity between VAN and DMN was detected in VH, and 

functional alterations were associated with reduced grey matter (GM) volume within the 
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anterior insula (Shine et al., 2014). These findings are in line with other fMRI studies reporting 

DMN over-activation associated with VH in LBD (Yao et al., 2014; Franciotti et al., 2015). 

Another work found significant reduction of functional connectivity across the whole brain in 

PD-VH compared with controls, as well as in areas belonging to attentional networks. 

However, no significant differences were found between PD-VH and PD-NVH (Hepp et al., 

2017b). 

 

1.3. Electroencephalography 

Electroencephalography (EEG) is progressively emerging in research and clinical framework 

due to its low cost (Lee and Tan, 2006), efficiency and portability. It consists of the recording 

of the electrical activity of the brain from the scalp using a wearable cap made of sensors 

(Berger, 1929). The outcome of the recording consists of as many voltage signals as sensors 

available in the cap. Recorded signals reflect the current flowing in pyramidal neuron 

populations, located over the external layer of the cerebral cortex and normally oriented with 

respect to the scalp (Lopes da Silva, 2013). 

 

1.3.1. Frequency bands 

The physiological interpretation of the recorded signals depends on their activity at different 

oscillation frequencies. In fact, brain electrical activity ranges between infraslow and very fast 

oscillations. Save for variability across studies, EEG oscillatory activity has been conventionally 

classified in frequency bands, which can be associated with specific physiological mechanisms 

depending on where in the brain the activity occurs. Generally, lower frequency bands have a 

spatial integration role, whilst higher range activity is involved in information transfer within 

discrete neuronal populations (Lopes da Silva, 2013). In detail: 

• Delta (δ) band. Delta (δ) band ranges between about 0.2 to 3.5 Hz. Signal waves within 

the δ-band become prominent all over the cerebral cortex during sleep, and they are 

thought to have an active role in memory consolidation (Tononi and Cirelli, 2003; 

Walker and Stickgold, 2006; Rasch and Born, 2013). Correlation between δ-band 

activity and memory consolidation during sleep emerges using transcranial magnetic 
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stimulation (TMS) induced low frequency waves; it has been reported that participant 

receiving TMS stimulation during non-REM sleep presented better memory retention 

compared with participants receiving higher frequency stimulation (Marshall et al., 

2006). In line with this hypothesis, lower δ activity during sleep has been reported in 

patients with amnestic mild cognitive impairment (MCI), a condition involving 

impaired memory, that can potentially progress towards AD (Barabash et al., 2009). 

Prominent δ activity was also found to be a specific feature in patients who had an 

ischemic stroke (Jordan, 2004; Finnigan et al., 2016) and, when localised, to be 

associated with white matter lesions (GLOOR et al., 1977). 

• Theta (θ) band. Similarly, theta (θ) band also seems to have major role in memory 

processes (Klimesch et al., 1994; Doppelmayr et al., 1998; Kirov et al., 2009). In fact, θ-

band activity was also observed over the hippocampus and connected regions using 

intracranial EEG (iEEG) (Buzsáki, 2002; Lega et al., 2012). Enhanced θ rhythms are 

typically reported in diverse pathological conditions, including brain tumour (Decker 

and Knott, 1972), schizophrenia (Kirino, 2007) and sickle cell disease (Case et al., 2017). 

The θ-band is conventionally defined within 4 - 7.5 Hz (Lopes da Silva, 2013). 

• Alpha (α) band. Alpha (α) rhythm is the most prominent EEG activity, ranging between 

8 and 13.5 Hz. A physiological EEG power spectrum shows a positive peak within this 

range, whose corresponding frequency value shows some variability across subjects 

(Valdes-Hernandez et al., 2010; Goljahani et al., 2012), and is conventionally referred 

to as the dominant frequency (DF) (Prinz and Vitiell, 1989; Goel et al., 1996), individual 

alpha frequency (Grandy et al., 2013) or α-peak frequency (Valdes-Hernandez et al., 

2010). α-band activity is prominent over the occipital region, is regulated by the 

cholinergic system (Feige et al., 2005; Lopes da Silva, 2013; Wan et al., 2019) and is 

associated with attentional and visual perception processes (Mulholland and Runnals, 

1962; Klimesch et al., 1998; Benedek et al., 2014). Nevertheless, several evidences 

suggest that these mid-range cortical oscillations likely originate in the thalamus 

nuclei, as initially proposed by the inventor of EEG (Berger, 1933). For instance, a study 

reported positive correlation between occipito-parietal α-band power recorded at 

awake rest and thalamus glucose metabolism as revealed with positron emission 

tomography (PET) (Schreckenberger et al., 2004). In previous studies, α-band rhythms 
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have been recorded both in the thalamic nuclei and the cerebral cortex in dogs and 

cats (Lopes da Silva et al., 1973; Schürmann et al., 2000). Moreover, the lateral 

geniculate nuclei (LGN) of the thalamus are highly involved in the visual network, as 

they receive the visual information from the optical nerves and project it towards the 

primary visual area (V1) within the occipital lobe (Reinagel et al., 1999; Kveraga et al., 

2007). Simulations have shown that DF is inversely proportional to the period of 

thalamo-cortico-thalamic loop, being reduced for more marked delays in the 

synchronous activity between thalamus and cortex (Robinson et al., 2001; Roberts and 

Robinson, 2008; Valdes-Hernandez et al., 2010). Hence, most computational models 

aiming to study α-band activity in healthy and pathological condition are built on this 

loop network architecture (Bhattacharya et al., 2011; Onofrj et al., 2019). Also, α-band 

power modulation over the occipital region is associated with perception of visual 

stimuli. This phenomenon is called α-band reactivity and likely reflects synchronisation 

of the corresponding neuronal population. With eyes open, local neuronal population 

is disinhibited, and this reflects into neuronal desynchronization, i.e. lower α-band 

power. Inhibition mechanism occur with eyes closed, in order to avoid any noisy 

perception and optimise signal-to-noise ratio (Chapman et al., 1962; Jensen and 

Mazaheri, 2010; Wan et al., 2019). α-band activity is also referred to as mu (µ) rhythm 

when recorded from the sensori-motor area (Bernier et al., 2014).  

• Beta (β) band. Beta (β) band modulation is also prominent over the sensori-motor 

cortex during movement. β activity is conventionally bounded between 14 and 30 Hz 

(Lopes da Silva, 2013). In fact, several studies have shown that arm reaching 

movements are associated with desynchronization, i.e. reduced power with a negative 

peak at the highest movement speed, followed by synchronisation, i.e. increase of 

power at the end of the movement. Like α-band reactivity, this phenomenon seems to 

reflect the disinhibition followed by feedback mechanism driven by the sensory area 

after a movement. This mechanism was found to be affected in PD (Pfurtscheller, 2000; 

Nelson et al., 2017; Ricci et al., 2019; Tatti et al., 2019). β-band activity has also been 

associated with alertness (Kamiński et al., 2012) and cognitive and emotional 

processing (Ray and Cole, 1985). Specifically, higher parietal β emerged during 

cognitive tasks, with greater lateralisation for verbal tasks, whilst higher parietal and 
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temporal β were revealed in positive tasks compared with sad emotional tasks (Ray 

and Cole, 1985). In recent studies, increased β-band power was also found over the 

occipital area during attentional tasks involving visual cues when correct responses 

were provided by participants (Gola et al., 2013; Güntekin et al., 2013). Moreover, in 

a study involving patients with cerebral stroke, generalised reduced β-band power was 

reported for patients with cognitive impairment compared with patients without 

(Wang et al., 2013b). In this thesis, early β-band will be considered, i.e. 14-20.5 Hz, as 

corresponding EEG activity is less likely affected by muscular artifacts (Whitham et al., 

2007; Stylianou et al., 2018). 

• Gamma (γ) band. Gamma (γ) was initially used to refer to the range within 30 – 45 Hz 

(Jasper and Andrews, 1938). However, today it is usually considered lower bounded 

on 30 Hz and can include frequencies of up to 600 Hz (Gaona et al., 2011; Buzsáki and 

Wang, 2012; Lopes da Silva, 2013). From the cellular perspective, γ-band oscillations 

are thought to be related to GABAergic activity associated with inhibitory post-synaptic 

potentials (IPSPs) in pyramidal cells driven by interneurons (Traub et al., 1997; 

Whittington and Traub, 2003; Bartos et al., 2007; Buzsáki and Wang, 2012). In fact, two 

computational models describe the likely cooperating mechanisms of generation of γ 

rhythms consisting respectively of 1) synchronous IPSPs generated by coupling of 

inhibitory interneurons and 2) phase delay between spikes of interconnected 

excitatory pyramidal neurons and inhibitory interneurons (Buzsáki and Wang, 2012). It 

has been shown that γ activity can be modulated by slower rhythms, i.e. θ oscillations, 

when occurring in memory-related processes, e.g. in the hippocampus, frontal and 

parietal cortex. This mechanism might be involved in information transfer between the 

hippocampus and the cortex, and strength of cross-frequency coupling seems to 

depend on task demand (Caplan et al., 2003; Raghavachari et al., 2006; Axmacher et 

al., 2010; Fujisawa and Buzsáki, 2011). 

 

1.3.2. The inverse problem 

Pyramidal neurons generating the EEG signals are arranged in parallel to each other, building 

an intermediate layer between the cortical surface and the scalp. Sources of signals recorded 
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with each EEG cap sensor correspond to neuronal population potentials, known as local field 

potential (LFP). LFPs result from post-synaptic longitudinal currents which add to each other 

across neurons (Hämäläinen et al., 1993). However, intermediate tissues hamper the route 

between sources and scalp, distorting the travelling signals. From the mathematical 

perspective, transforming source potential to its corresponding sensor signal requires solving 

the forward problem. Assuming that sources are submerged in a linear medium, for N sensors 

and L sources and a specific time point, the forward problem can be formulated as follows 

(Van Veen et al., 1997; Grech et al., 2008): 

 𝒙 =  ∑ 𝑯(𝒒𝑖) · 𝒎(𝒒𝑖)

𝐿

𝑖=1

+ 𝒏 (1.1) 

 𝒎(𝒒𝒊) = 𝑸(𝒒𝒊) · 𝑑𝑖 (1.2) 

 

where: 

• x = surface potentials [V] (N x 1) 

• H = leadfield vector [
𝑉

𝐶·𝑚
] (N x 3) 

• qi = i-dipole spatial coordinates [m] (3 x 1) (i = 1, 2, …, L-1, L) 

• m(qi) = i-dipole current [C · m] (3 x 1) 

• Q(qi) = i-dipole charge [C] (3 x 1) 

• di = distance between i-dipole charges [m] 

• n = perturbation [V] (N x 1). 

 

The leadfield (H) contains the signal transformation between source and sensor domains. This 

is the solution to the forward problem, and is obtained by solving Maxwell’s equations with 

quasi-static assumption (Hämäläinen et al., 1993). It depends on source and sensor locations 

as well as anatomical properties, e.g. geometry of head anatomy and electromagnetic 

properties of the tissues between the cortex and the scalp. For accurate modelling, the 

leadfield matrix should be based on individual anatomical head model rather than head 

template, and surface recording should be performed with high-density EEG cap (Cho et al., 

2015; Song et al., 2015; Dattola et al., 2020). 
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The forward problem relies on computing the leadfield matrix and providing with a univocal 

signal for each electrode (Nunez, 1988; de Munck, 1989; Van Veen et al., 1997). On the other 

hand, inferring the location and intensity of the sources generating the recorded EEG signals 

is an ill posed problem, known as inverse problem. In fact, it is an optimisation problem, as 

additional constraints are needed to obtain a univocal analytical solution (Helmholtz, 1853). 

To date, several approaches have been developed to solve the inverse problem, known as 

source localisation techniques. In such approaches, brain sources are modelled as current 

dipoles, whose intensity and orientation are in general unknown. These techniques can be 

grouped in two main categories, depending on whether a priori assumption of the number of 

source dipoles is made or not. Fixed distribution of sources is chosen in non-parametric 

methods, whilst no a priori choice is made when using parametric techniques (Grech et al., 

2008). In non-parametric methods sources are expected to extend over multiple cortical 

areas, whereas a concentrated source is searched for with parametric methods. Hence, the 

choice of the localisation technique is dependent on the scope of the study, as it may have a 

significant impact on the outcome of source domain analysis (Hincapié et al., 2017). The 

minimum norm estimates fall within the first category (Gorodnitsky et al., 1995; Pascual-

Marqui, 1999b; Pascual-Marqui, 2002; Grave de Peralta Menendez et al., 2004), whereas 

beamformers and subspace techniques are within the second group (Van Veen and Buckley, 

1988; Mosher et al., 1992). Methodologies in this thesis project include one non-parametric 

technique, which is reported in detail below. 

 

1.3.3. Standardised low-resolution brain electromagnetic tomography (sLORETA) 

The minimum norm estimate (MNE) was the first developed non-parametric source 

localisation technique (Hämäläinen and Ilmoniemi, 1984). However, this method is known to 

be biased towards the most external cortical areas and wrongly localise deepest sources 

(Fuchs et al., 1999; Pascual-Marqui, 1999b; Hauk et al., 2011). Pascual-Marqui (2002) 

proposed an improvement to this approach through standardising the obtained solution by 

the variance of the estimated source current density. It is assumed that the forward model is 

defined up to a constant value depending on the arbitrary reference for the leadfield and EEG 

measurement. That is, in equation (1.1), we choose n = c1, being 1 the identity vector and c 
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an arbitrary constant. In a brain without lesions, sources can be assumed to be normal to the 

cortical surface, i.e. source orientation is known. The equation can then be written as follows: 

 𝒙 =  𝑯𝒎 + 𝑐𝟏 (1.3)   

  

where: 

• x = surface potentials (N x 1) 

• H = leadfield matrix, based on known dipole orientations [N x L] 

• m = source current densities [L x 1] 

• c = constant (reference arbitrariness). 

To obtain an optimal solution, the following functional must be minimised: 

 𝐹 = ||𝒙 − 𝑯𝒎 − 𝑐𝟏||
2

+ 𝛼||𝒎||
2
 (1.4) 

 

In functional (1.4), α ≥ 0 is a regularisation parameter which reflects the variance of noise in 

the measurement. It can be estimated with a cross-validation method (Pascual-Marqui, 

1999a; Dale et al., 2000). To obtain an optimal solution, notation is here simplified by 

assuming that the signal at both sensor and source is average referenced, i.e. c = 0. The 

solution to the minimisation problem corresponds to the MNE solution: 

 𝒎𝑀𝑁𝐸 = 𝑲𝒙 (1.5) 

 𝑲 = 𝑯𝑇[𝑯𝑯𝑻 + 𝛼𝑫]+ (1.6) 

 

where D is a N x N centring matrix, and T is the transpose operator. According to the Bayesian 

formulation of the inverse problem (Tarantola, 2005), actual source variance corresponds to 

an L x L identity matrix:  

 𝑺𝒎 = 𝑰 (1.7) 

 

Instead, sensor variance is affected by measurement noise variance: 

 𝑺𝒙
𝒏𝒐𝒊𝒔𝒆 = 𝛼𝑫 (1.8) 
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Sensor noise and actual source variances are assumed to be uncorrelated. Linear relationship 

between sensor variance and actual source variance can then be formulated, based on (1.5) 

with average reference: 

 𝑺𝒙 = 𝑯𝑯𝑇 + 𝑺𝒙
𝑛𝑜𝑖𝑠𝑒 (1.9) 

 

Using (1.5), estimated source variance is: 

 𝑺𝒎𝑀𝑁𝐸
= 𝑲𝑺𝒙𝑲𝑇 = 𝑯𝑇[𝑯𝑯𝑇 + 𝛼𝑫] (1.10) 

 

The sLORETA estimation for the i-source is then obtained by standardising the MNE solution 

(1.5) by the estimated source variance (1.10): 

 𝑚𝑠𝐿𝑂𝑅𝐸𝑇𝐴𝑖
=

(𝑚𝑀𝑁𝐸𝑖
)

𝟐

[𝑆𝒎𝑀𝑁𝐸𝒊
]

𝑖𝑖

 (1.11) 

 

1.4. Electroencephalography and Dementia with Lewy Bodies 

The use of EEG as a supporting diagnostic tool for dementia is becoming widespread in 

research. In fact, it is commonly used to obtain direct inference of cortical activity alteration 

in DLB in either task or resting state experimental protocols, with attempts to link any 

abnormalities to known pathological features and clinical development of DLB. 

 

1.4.1. Task protocols 

As attentional processes are generally affected in dementia, several studies investigated 

alteration of event-related potentials (ERPs) (Makeig and Onton, 2011) associated with 

attentional tasks. P300 occurs within 300 ms to 500 ms after a stimulus and is the most 

prominent ERP component. It has been shown to reflect perception- and cognition-related 

processes (Donchin et al., 1978; Luck, 2014). In fact, few studies reported higher latency of 

P300 component associated with auditory stimuli in AD (Goodin et al., 1978; Pokryszko-
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Dragan et al., 2003) and more severely in DLB (Bonanni et al., 2010), in which it correlated 

with cognitive fluctuation severity. Sensory gating mechanism was also shown to be affected 

in DLB. In other words, people with DLB show less efficient pre-attentional filtering of sensory 

input. EEG activity associated with sensory gating is known as prepulse inhibition (PPI), 

consisting of N100/P200 component suppression due to P50 auditory stimuli paradigm (Wan 

et al., 2008). In fact, PPI was found to be reduced in DLB compared with AD and HC, and 

thought to be linked to DLB-related cortico-thalamic network alteration (Perriol et al., 2005). 

Recent research is also using the visual Attention Network Test (ANT) (Fan et al., 2002) to 

investigate whether attentional subnetworks are affected in DLB. When tested with this 

protocol, patients lacked post-stimulus θ overall synchronisation, which emerged instead in 

AD and HC; this feature positively correlated with the Clinical Assessment of Fluctuation (CAF) 

score (see section 2.1 for details on this clinical score) (Cromarty, 2016).  

Two methodologies used to obtain quantitative EEG (qEEG) metrics in resting state consist of 

time-frequency and functional connectivity analysis. The first involves assessing power and 

frequency shifts across the physiological power spectrum, and how these are associated with 

the clinical condition (Oken and Chiappa, 1988; Salinsky et al., 1991). In the second case, EEG 

sensors – or sources – are used as network nodes, connectivity between nodes is assessed 

using a chosen metric, and network properties are extracted, depending on the type of 

network analysis and hypothesis of interest (Schoffelen and Gross, 2009). 

 

1.4.2. Resting state: time-frequency analysis 

The most consistent feature emerging from comparing DLB with AD and healthy condition is 

a negative shift of DF over specific cortical regions. Early studies already reported α rhythm 

slowing in AD compared with healthy controls (HC) (Penttilä et al., 1985; Soininen and 

Riekkinen, 1992), as also confirmed in more recent studies (Jackson and Snyder, 2008). 

However, Briel et al. (1999) found marked generalised reduced α activity in DLB compared 

with AD, as well as transient slow wave activity over the temporal area. This latter feature 

correlated with temporary loss of consciousness in DLB patients. In another study, authors 

could not find any significant difference in EEG activity between AD and DLB, but a differential 

trend for generalised EEG slowing. Nevertheless, EEG alteration correlated with Mini-Mental 
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State Examination (MMSE) score (see section 2.1 for details on this clinical score), suggesting 

that it could be associated with disease severity (Barber et al., 2000a). The common 

speculation across studies on the origin of these abnormal changes is an impairment of the 

cholinergic system. In line with this hypothesis, early research showed that AD patients with 

more prominent low frequency power had reduced cell density within the NBM (Riekkinen et 

al., 1991). Furthermore, a few studies reported that α slowing in DLB was restored towards 

physiological values due to acetylcholinesterase inhibitor treatment (Agnoli et al., 1983; 

Balkan et al., 2003; Kai et al., 2005). DF shift, increase of θ activity and, generally, α-band 

rhythm slowing in DLB was consistently reported in several other studies, with diagnostic 

classifiers yielding an area under the receiver operating characteristic (AUROC) curve above 

80% (Andersson et al., 2008; Bonanni et al., 2008; Peraza et al., 2018; Stylianou et al., 2018). 

However, some inconsistency exists in reporting DF variability (DFV). Two studies reported 

higher DFV in AD compared with HC, DLB and PDD (Peraza et al., 2018; Stylianou et al., 2018), 

in contrast with one study reporting highest DFV in DLB (Bonanni et al., 2008). This is due to 

different definitions of DFV, which has been defined as standard deviation in the first case, 

and frequency of variability in the second one. It has been suggested that EEG variability in 

DLB might be associated with cognitive fluctuation (Andersson et al., 2008). In fact, a recent 

study explored association between EEG microstates dynamics and cognitive fluctuation in 

patients with DLB (Schumacher et al., 2019). Authors reported that microstates duration 

correlated positively with cognitive fluctuation clinical score, and negatively with connectivity 

between thalamic nuclei and cortex (Schumacher et al., 2019), supporting the idea of cortico-

thalamic network’s relevant role in regulating the cortical activity recorded with EEG. A few 

studies also reported reduced variability in α-power modulation, i.e. α reactivity, in LBD 

compared with AD (Franciotti et al., 2006), and its correlation with reduced NBM volume in 

PDD (Schumacher et al., 2020b). However, no correlation was found between α reactivity and 

clinical measures, suggesting that alteration of this mechanism might be associated with the 

presence but not severity of the disease. 
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1.4.3. Resting state: functional connectivity 

Cerebral dysfunction associated with dementia and specifically DLB emerges as alteration of 

physiological connectivity between brain areas. Brain networks can be assessed at both 

structural and functional levels. In the first case, axons are responsible for connecting brain 

regions, hence white matter anisotropic properties are an index of structural connectivity 

integrity (Moseley et al., 1990; Basser, 1995; Jbabdi et al., 2015). In the second context, areas 

do not need to be structurally linked to be connected, as long as they show some form of 

temporal dependence in their activity (Aertsen et al., 1989; van den Heuvel and Hulshoff Pol, 

2010). EEG is a suitable tool to assess functional brain connectivity, as several studies have 

shown (Astolfi et al., 2007; Sakkalis, 2011; Haufe et al., 2013; Lee and Hsieh, 2014). 

EEG connectivity abnormalities also emerge in dementia. In line with task-related studies, 

results on resting state connectivity also seem to suggest affected attentional processes, 

which rely on ventral and dorsal frontoparietal networks (Corbetta and Shulman, 2002). 

Causal interaction between network nodes can be assessed with phase transfer entropy (PTE); 

specifically, given Xt and Yt two signals recorded at time t from two nodes, PTE measures 

positive contribution of signal Xt to Yt on predicting Yt+1 (Lobier et al., 2014). Dauwan et al. 

(2016) used PTE to investigate network alterations in DLB and AD. From their analysis, 

posterior-to-anterior PTE gradient was significantly reduced in DLB within the α-band 

compared with HC. Differences between DLB and AD in PTE causality drivers (Hillebrand et al., 

2016) emerged over occipital and centrotemporal channels within the α-band network, but 

only for the centrotemporal channels within the β-band network. Moreover, stronger 

connectivity lead from occipital region in posterior/anterior information flow in DLB 

negatively correlated with cognitive fluctuations (Dauwan et al., 2016). This last finding 

resonates with disrupted EEG occipital activity in DLB reported in time-frequency studies, as 

well as with fMRI studies showing such impairment (Peraza et al., 2014). A way to build brain 

network graphs consists of minimum spanning tree (MST), i.e. fully connected network with 

minimum number of strongest edges without cycling paths (Graham and Hell, 1985). A graph 

theory study based on MST reported reduced hubness, i.e. functional centrality of network 

nodes, in DLB compared with HC (van Dellen et al., 2015), in line with previous fMRI study 

(Peraza et al., 2015). DLB showed also reduced connectivity compared with AD within the α 

range, whilst no differences were found in other frequency ranges. Furthermore, network 
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efficiency measures correlated with cognitive performance as assessed with MMSE and Trail 

Marking Test (TMT) (Reitan, 1958; van Dellen et al., 2015). However, these findings partially 

contrast with another study based on MST, which did not report any difference between AD 

and DLB within the α-band network (Peraza et al., 2018). In fact, authors reported reduced 

connectivity in all dementia groups, i.e. AD, DLB and PDD, within the α-band, and DLB 

connectivity lower than AD in the β-band and high-θ-band. In addition, they found higher 

randomisation in the MST for LBD within α-band and θ-band networks. They also investigated 

whether DF functional network was affected in the disease, reporting no differences between 

dementia and HC groups. Authors suggest that similarly to DF negative shift, connectivity 

alteration might reflect compensatory mechanisms associated with over recruitment of neural 

tissues, as also proposed in other studies with diverse modalities (Reuter-Lorenz and Cappell, 

2008; Frantzidis et al., 2014). Both mentioned MST studies measured EEG connectivity using 

the Phase Lag Index (PLI). Different from correlation measures, PLI accounts for 

synchronisation between signals, i.e. to which extent phase difference between signals is fixed 

over time; this measure is not sensitive to volume conduction, which is a common issue in EEG 

measurements (Stam et al., 2007b; Peraza et al., 2012). 

In a recent study, connectivity patterns have been analysed at the source level, using Exact 

LORETA (eLORETA) source localisation technique (Pascual-Marqui, 2007). DLB patients had 

higher interhemispheric connectivity over occipital and temporal areas compared with AD 

within the α-band, but no significant intrahemispheric connection differences were found 

(Babiloni et al., 2018). In line with other studies, authors speculate that abnormal activity 

within this range in dementia might be associated with alteration of cortico-thalamic circuits, 

known to be generators of EEG α-band rhythms as described in section 1.3.1. 

 

1.5. Electroencephalography and Visual Hallucinations in Lewy Body Dementia 

Most EEG studies on VH in LBD consistently reported delayed visual ERPs in VH compared with 

NVH patients and healthy condition. In fact, when presented with checkerboard stimuli, PD 

patients with VH showed delayed P100 component, compared with NVH group (Matsui et al., 

2005). In another study with facial recognition paradigm, P300 visual ERP was significantly 

delayed in LBD-VH group over the parietal area compared with HC, whilst this was not 
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reported for the LBD-NVH group. In addition, the study also involved an auditory stimulus, for 

which auditory P300 latency was measured. Ratio between visual and auditory P300 latencies 

predicted VH condition with AUROC = 73% ± 11% (Kurita et al., 2005; Kurita et al., 2010). These 

results were also confirmed in a more recent study, which reported PD-VH patients showing 

delayed P300 compared with HC, with 6% higher risk of having VH for each millisecond delay 

(Chang et al., 2016). In line with other studies’ speculations, authors suggested these 

alterations to be associated with cholinergic dysfunction. 

Nevertheless, the literature on VH in dementia is lacking resting state EEG studies, as they 

mostly consist of case reports, whose findings include abnormal synchronous discharges (Sun 

et al., 2014a; daSilva Morgan et al., 2018). To the best of author’s knowledge, only three 

studies investigated M/EEG spectral and connectivity correlates of VH in AD, DLB and PDD at 

rest. Specifically, two of these studies found that DF was reduced in VH compared with NVH 

(Dauwan et al., 2018; Dauwan et al., 2019). Also, VH had lower β-band power compared with 

NVH. In addition, β-band connectivity over the right temporal area, discriminated between 

hallucinating AD and DLB as well as between non-hallucinating AD and hallucinating DLB. 

Coherent with existing literature, authors speculated that the cholinergic system must have a 

major role in VH-related EEG alteration (Dauwan et al., 2018; Dauwan et al., 2019). A more 

recent study found increased δ-band activity in DLB with VH compared to NVH, and higher α-

band activity in PDD-VH compared to NVH (Babiloni et al., 2020). Authors believed that 

dysfunctions of dopaminergic system might be associated with reported EEG differences 

between conditions (Babiloni et al., 2020). To date, no M/EEG studies focused on functional 

connectivity differences between VH and NVH condition at rest, specifically in LBD. 

 

1.6. White Matter Abnormalities in Dementia with Lewy Bodies 

Several studies investigated structural abnormalities in DLB compared with AD and HC. As 

mentioned in sections 1.1.2 and 1.2.3, few studies consistently reported preserved medial 

temporal lobe in DLB compared to AD (Barber et al., 2000b; Burton et al., 2009; Mak et al., 

2014) as well as abnormalities within the visual cortex in DLB (Taylor et al., 2012). A meta-

analysis including seven studies on VBM reported reduced grey matter within the right lateral 
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temporal/insular cortex and left lenticular nucleus/insular cortex in DLB compared to HC 

(Zhong et al., 2014). 

Other studies focused on abnormal changes in white matter fibres. As mentioned in section 

1.4.3, white matter tracts’ anisotropy can be used to measure connectivity between brain 

regions. White matter distribution can be assessed using diffusion tensor imaging (DTI). With 

DTI, water molecules diffusion is measured as a diffusion tensor, which contains information 

on magnitude, degree, and orientation of diffusion anisotropy. The most common way to 

obtain a DTI registration is through a single-shot echo-planar imaging (EPI) MRI protocol 

(Mansfield, 1984; Alexander et al., 2007). One can then either look at the fibres’ integrity by 

measuring properties such as mean diffusivity (MD) and fractional anisotropy (FA) or obtain 

extrinsic brain structural pathways by running tractography (Sotiropoulos and Zalesky, 2019). 

Greater MD or reduced FA reflect loss of anisotropy, i.e. connectivity efficiency. Specifically, 

MD is associated with cell membrane pathological damages, whilst FA reduces with less 

organised fibre bundles, which is the case in demyelination or axonal degradation. Radial 

diffusivity (RD) as index of demyelination is also measured in some studies, although its 

interpretation is controversial (Johansen-Berg and Behrens, 2013; Delli Pizzi et al., 2015a). 

Delli Pizzi et al. (2015a) found higher MD within thalamus subregions projecting towards PFC 

and parieto-occipital cortex in DLB compared with HC, but no differences with AD were 

reported, contrasting another study which reported lower FA over the left thalamus in DLB 

compared with AD (Watson et al., 2012). The impairment of these two subregions was 

suggested to be associated respectively with affected consciousness (and alertness) and visual 

perception processes in DLB. In the same study, increased total choline was found within the 

right thalamus in DLB compared with AD, which correlated with cognitive fluctuation severity. 

The cingulum-cingulate gyrus and the uncinate fasciculus also presented higher MD and RD in 

DLB as compared to HC, whilst the inferior longitudinal fasciculus had reduced FA in both AD 

and DLB, in agreement with a previous work (Ota et al., 2009). Alteration of the uncinate 

fasciculus correlated with frontal thinning in DLB. In contrast, AD group showed affected 

mnemonic networks. Based on previous literature on the role of these networks (Bonnelle et 

al., 2012; Leech and Sharp, 2014), authors suggested that white matter alteration in DLB might 

be associated with affected attentional networks, and reduced cholinergic innervation of the 

thalamus (Delli Pizzi et al., 2015a; Delli Pizzi et al., 2015b). Another study also found 
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correlation between presence of visual hallucinations and reduced inferior longitudinal 

fasciculus FA in DLB (Kantarci et al., 2010). This structure connects the amygdala with occipital 

and temporal areas (Catani et al., 2003), hence its degeneration in DLB with VH fits with the 

idea of bottom-up visual stream disruption as described in computational models (section 1.2) 

(Kantarci et al., 2010). Considering that VH symptom is shared with PD/D, this result somehow 

contrasts with another study which failed to report any difference between PDD with and 

without VH after controlling for cognitive function (Firbank et al., 2018). Nevertheless, DLB 

showed higher amygdala MD, whereas AD presented higher MD within the hippocampus. 

Authors speculated that amygdala structural abnormalities might be associated with 

microvacuolation in DLB (Kantarci et al., 2010). Similarly, another study found reduced FA in 

LBD over frontal, parietal and posterior areas (Lee et al., 2010a). In addition, DLB showed more 

affected visual association areas, i.e. occipital and lateral regions, compared with PDD. 

Authors suggested that this latter finding might be reflecting more affected visual recognition 

memory in DLB compared to PDD (Lee et al., 2010a), despite similar pathology. Consistently, 

affected posterior white matter in DLB compared with HC was also reported in other studies, 

as well as less damaged parahippocampal white matter compared with AD (Firbank et al., 

2007; Watson et al., 2012; Nedelska et al., 2015). 

 

1.6.1. Functional and structural interdependence 

Quantitative evidence in literature showed that functional and structural mechanisms in the 

brain are strictly related. In fact, directly structurally connected regions are likely to be also 

functionally connected. However, the inverse might not be true, in which case indirect 

structural connectivity should be taken in account (Guye et al., 2003; Greicius et al., 2008; 

Bullmore and Sporns, 2009; Damoiseaux and Greicius, 2009; Honey et al., 2009; Deco and 

Jirsa, 2012; Stam et al., 2016). Although most studies on this aspect involve fMRI as a 

functional measure, M/EEG evidence has also been reported. 

In a recent study involving seven patients with different diseases, EEG-MNE sources were 

computed, and functional EEG connectivity was measured (Chu et al., 2015). Source network 

nodes were used as regions of interest (ROIs) to perform probabilistic tractography. With 

probabilistic tractography, probability that any couple of voxels is connected to each other is 
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measured, i.e. proportion of fibres passing from one voxel that cross the other (Behrens et al., 

2007). Results showed similarities between functional and structural network, which were 

more evident within higher EEG frequency bands (Chu et al., 2015). One MEG study reported 

positive correlation between α-band amplitude of regions within the “posterior α-network” 

(Hindriks et al., 2015) and structural connections between these regions and V1. Source 

activity was estimated through a beamforming algorithm, whilst structural connectivity was 

assessed through probabilistic tractography (Hindriks et al., 2015). One EEG study found 

positive and negative correlation between respectively left and right inferior longitudinal 

fasciculus FA and EEG-DF over the occipital area (Valdes-Hernandez et al., 2010). However, 

the strongest correlation was found between DF and interhemispheric commissural fibres of 

the Corpus Callosum connecting the occipital lobes, being positive for superior fibres and 

negative for the inferior ones. This study showed white matter asymmetry as well as 

dependence of DF on interhemispheric white matter myelination over the posterior areas 

(Valdes-Hernandez et al., 2010).  

 

1.6.2. Does functional alteration reflect white matter changes in DLB? 

Few attempts have been pursued to infer structural drivers of functional alteration in 

dementia and, specifically, AD. One study involving MCI patients showed that structural 

network strength defined from fMRI network components predicted conversion from MCI to 

AD (Hahn et al., 2013); structural connectivity was assessed with deterministic tractography, 

which methods “provide a point estimate of the path of least hindrance to diffusion between 

two points” (Sotiropoulos and Zalesky, 2019). In line with these results, one EEG study found 

a positive correlation between diffusivity measures over posterior areas and α-band 

coherence in MCI (Teipel et al., 2009), whilst another one found reduced source domain δ-

band network integration associated with lower FA within the Corpus Callosum in MCI 

(Vecchio et al., 2015). Affected Corpus Callosum in MCI was also reported in another study 

which also found correlation with higher θ-band activity over frontal areas in MCI and AD 

compared with HC (Scrascia et al., 2014). However, to date, no studies have investigated the 

relationship between EEG and structural alteration in DLB. 
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1.7. Aims and Hypothesis 

According to the current literature, EEG is a suitable candidate to become a diagnostic tool for 

dementia. Specifically, many studies highlighted its potential to be a discriminative biomarker 

for DLB against AD, whose symptomatic phenotype tend to overlap at early pathological stage. 

From the cortical activity perspective, task based studies consistently reported ERP 

abnormalities in DLB compared with AD and HC (Wan et al., 2008; Bonanni et al., 2010). 

However, DF negative shift in the EEG spectrum at rest over occipital regions has been so far 

the most discriminative biomarker (Bonanni et al., 2008; Peraza et al., 2018; Stylianou et al., 

2018). At the same time, recent studies have investigated alteration of functional network as 

assessed with EEG connectivity. There is a consensus around the idea that DLB network shows 

lower hubness as well as more affected attentional networks compared with AD and HC 

(Dauwan et al., 2016; Peraza et al., 2018). Most studies speculated that EEG activity 

abnormalities in DLB are due to affected cholinergic system throughout the brain and its 

primary source, i.e. the NBM (Riekkinen et al., 1991; Kai et al., 2005), as well as an impaired 

cortico-thalamic network (Perriol et al., 2005). 

In fact, the source of EEG abnormalities in DLB is still a matter of speculation, as no direct 

evidence has been reported as of yet on their origin. Although few studies were source domain 

focused, they often involved the use of low-density EEG caps, which have been shown to be 

suboptimal. In the case of functional network analysis, network graph architecture in DLB was 

investigated only with MST graphs. Furthermore, no investigation of affected cortical network 

topological patterns in the source domain has been reported yet. 

This project focused on investigating the following aspects: 

1) Network architecture differences as defined in sensor domain between dementia 

types, i.e. AD, DLB and PDD, by means of a Graph Theory study based on proportional 

thresholding. An exploratory study has been performed, and significant differences in 

network measures between dementia groups were expected. 

2) Replication of Graph Theory analysis in the source domain. Results were expected to 

resonate with sensor domain analysis outcome. Correlation between α-band 

topographical alterations and DF shift over the posterior regions in AD and DLB was 



 
26 

 

also tested, to investigate whether network and posterior activation abnormalities are 

associated with the same pathological mechanisms. 

3) Discrimination between AD and DLB: source localisation of differences in EEG 

functional network measures as detected in sensor domain analysis. It was 

hypothesised that connectivity paths matching with attentional networks should be 

differentially affected between the two conditions. Correlation between disease-

related DF shift and structural connectivity between NBM, thalamus and cortex was 

tested. This analysis aimed to investigate whether cholinergic dysfunctions in DLB may 

be driving DF negative shift, supporting previous speculations and models. 

4) EEG and structural network in VH and NVH condition in LBD (DLB + PDD): source 

localisation of affected functional network component and corresponding functionally 

weakened regions. The aim was to produce an empirical evidence of the hypotheses 

of existing computational models and clinical based speculations, i.e. affected visual 

subnetworks in VH as compared with NVH. Correlation between functional features 

and GM volumes over cortical and subcortical regions was also tested in both groups. 

Thalamus and NBM were expected to show neuronal loss associated with VH. 

Correlation between EEG functional and structural network measures in VH and NVH 

groups was tested to investigate whether structural connectivity between NBM, 

thalamus and cortex may be driving functional connectivity VH-related alterations, 

supporting previous speculations and models on the role of the cholinergic system in 

VH development. 
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Chapter 2. General Methods 

 

In this chapter shared methodologies across analyses reported in this thesis are outlined. 

Materials and methods which are specific for each analysis are reported in the respective 

chapter. 

 

2.1. Clinical Scores and Participants 

Participant recruitment was performed prior to this research project as part of the Cognitive 

and Attentional Function in Lewy Body Diseases (CATFieLD) study at Newcastle University 

(Cromarty, 2016), funded by the Wellcome Trust. Diagnoses were delivered by two 

experienced clinicians, based on diagnostic criteria for DLB (McKeith et al., 2017), criteria for 

PDD (Emre et al., 2007) and National Institute on Ageing-Alzheimer’s Association criteria for 

AD (McKhann et al., 2011). To this purpose, a battery of neuropsychological and 

neuropsychiatric tests has been collected from all participants: 

• Mini-Mental State Examination (MMSE). The MMSE is widely used to assess cognitive 

function and its impairment in diverse conditions, including ageing and dementia (de 

Folstein, 1975; Brayne et al., 1998). This examination covers aspects of the condition 

including short term memory, language processing and orientation. MMSE score 

ranges from 0 to 30, and MMSE ≤ 24 is usually associated with pathological conditions. 

For this thesis, any patient with MMSE score < 12 and healthy subjects with MMSE 

score < 26 were excluded, which resulted in not including one PDD patient with MMSE 

= 8 in the cohort. 

• Cambridge Cognitive Examination (CAMCOG). The CAMCOG is a cognitive test which 

was developed to capture subtle cognitive alterations emerging in mild dementia (Roth 

et al., 1988; Huppert et al., 1995). It assesses several cognitive subdomain states, 

including orientation, language, memory, attention, praxis, calculation, abstract 

thinking, and perception (Huppert et al., 1995). Threshold between dementia and 

healthy condition is a score of 80 out of 105. 
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• Neuropsychiatric Inventory (NPI). The NPI is provided by the patient’s informants and 

reflects the severity of typical dementia patient symptoms (Cummings, 1997). These 

include “delusions, hallucinations, agitation, dysphoria, anxiety, apathy, irritability, 

euphoria, disinhibition, aberrant motor behaviour, night-time behaviour disturbances, 

and appetite and eating abnormalities” (Cummings, 1997). For each behavioural 

domain, a severity score is obtained from the questionnaire. In this thesis, NPI 

hallucination (NPI-hall) score will be only related to visual hallucinations. 

• Trail Making Test (A). This is a visuomotor control test, consisting of 25 numbered 

circles on a paper sheet in a random spatial distribution, which patients are asked to 

connect by drawing a continuous line. Higher cognitive impairment is associated with 

longer time to complete the task (Reitan, 1958). 

• Phonemic verbal fluency (FAS) and animal naming test. These tests are specifically 

aimed to assess language processing, respectively verbal and semantic fluency. The 

FAS test consists of asking patients to write as many words as possible beginning with 

the letters F, A and S in one minute (Bechtoldt et al., 1962), whilst in the latter patients 

are asked to write names of animals (Kertesz, 1982). 

• Unified Parkinson’s Disease Rating Scale part III (UPDRS III). Part III of the UPDRS 

consists of motor examination. Sections of this form concern several aspects of motor 

behaviour, such as speech, tremor, and rigidity. Total score is obtained by adding up 

single section scores. UPDRS score ≥ 8 is associated with parkinsonism. 

 

Participants cohort with EEG recording comprised 18 HC (11 males, 7 females), 32 AD (22 

males, 10 females), 25 DLB (20 males, 5 females) and 21 PDD (20 males, 1 females). Most 

patients were on an acetylcholinesterase inhibitor medication (AChEI), and LBD patients were 

also taking levodopa. From the latter, levodopa equivalent daily dose (LEDD) data was 

collected. Participants did not report any other neurological or psychiatric condition apart 

from dementia and provided written informed consent before taking part of the study. The 

CATFieLD study was approved by the Northumberland Tyne and Wear NHS Trust and 

Newcastle ethics committee. Complete demographics are reported in Table 2.1; statistics 
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were performed using MATLAB 9.2 (The MathWorks Inc., Natick, MA, 2017) and Statistical 

Package for Social Sciences (SPSS) (version  24).
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 HC (N=18) AD (N=32) DLB (N=25) PDD (N=21) p-value 

Age 76.28 ±5.50 76.63 ±7.72 76.16 ±6.24 73.38 ±5.89 df=3, p-value=0.228ǂ 

Male/Female 11/7 22/10 20/5 20/1 df=3, p-value=0.055ⱡ 

MMSE 29.17 ±0.86 20.16 ±4.30 22.68 ±4.32 23.43 ±3.49 df=3; p-value<0.001ǂ 

CAMCOG total 96.67 ±3.68 66.22 ±15.87 74.84 ±12.78 75.86 ±10.80 df=3; p-value<0.001ǂ 

NPI hall 0 0 0.03 ±0.18 1.71 ±1.88 2.19 ±1.99 p-value=0.312₸ 

CAF total 0 0 0.58 ±1.39 4.13 ±4.13 6.63 ±4.27 p-value=0.045₸ 

Animal naming 20.72 ±5.54 10.66 ±4.97 10.80 ±3.88 11.38 ±4.14 df=3; p-value<0.001ǂ 

UPDRS 1.28 ±1.49 2.77 ±3.11 16.20 ±7.52 24.52 ±6.71 p-value<0.001₸ 

FAS Verbal fluency 44.89 ±16.07 26.43 ±16.23 18.28 ±10.60 20.86 ±13.66 df=3, p-value<0.001ǂ 

Trail making test A 36.43 ±10.25 79.16 ±52.55 109.88 ±68.84 167.35 ±107.11 df=3, p-value<0.001ǂ 

AChEI (yes/no) 0/18 29/3 22/3 17/3^ df=4, p-value=0.537* 

LEDD 0 0 0 0 176.88 ±230.44 805.90 ±392.70 df=44, p-value<0.001₸ 

 

Table 2.1 – Demographic data and clinical scores. ⱡ χ2 test four groups, ₸ Unpaired Mann-Whitney U test (DLB vs PDD), ǂ Kruskal-Wallis four groups, 
* χ2 test three groups (AD, DLB, PDD). ^ One PDD patient was on Memantine.
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2.2. Experimental Protocol 

EEG recordings were obtained in a resting-state paradigm; participants were asked to sit in a 

dim-lit room with eyes closed for ~ 2.5 minutes, relax, mind wander, and refrain from moving.  

To avoid any effect of drowsiness on the recorded data, participants were instructed to stay 

awake, and the researcher conducting the recording session watched them and checked for 

possible slowing (δ-waves) on the ongoing EEG signal. The one-day fluctuations scale (ODFAS) 

was also obtained from all participants. If this was particularly marked, the patient was not 

tested on that day. EEG Waveguard cap (ANT Neuro, The Netherlands) with 128 sintered 

Ag/AgCl electrodes (also referred to as channels) with 10-5 derivation system (Oostenveld and 

Praamstra, 2001) was used (Figure 2.1). Recordings were performed at 1024 Hz sampling 

frequency, with sensor/scalp impedance below 5 kΩ and ground channel attached to the right 

clavicle. Reference channel at recording was Fz.  

 

Figure 2.1 – EEG cap channels distribution on scalp, 10-5 derivation system. Figure obtained 
with EEGLAB toolbox for MATLAB.  
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2.3. Electroencephalography Data Pre-processing 

EEG signals can generally be affected by artefacts. In fact, EEG also captures non-neurogenic 

activity generated by facial muscle contraction, breathing, heartbeat, eye movement, 

amplifier voltage bumps, and power line noise (Corby and Kopell, 1972; Muthukumaraswamy, 

2013; Urigüen and Garcia-Zapirain, 2015). Therefore, it is crucial to implement a pre-

processing pipeline to minimise artefactual contributions to the signal as much as possible 

before performing any further analysis. There is currently no consensus on how to perform 

such cleaning process; in this project, author’s choice fell on a protocol he obtained familiarity 

with in previous research projects (Ricci et al., 2019; Tatti et al., 2019). The pipeline was 

implemented using EEGLAB toolbox version 14 (Delorme and Makeig, 2004) on MATLAB 9.2 

(The MathWorks Inc., Natick, MA, 2017). 

 

2.3.1. Filtering and “epoching” 

Frequency bands of interest in this project span from θ-band to β-band, up to 20.5 Hz. A 

Hamming windowed sinc finite impulse response (FIR) filter was applied between 0.5 Hz and 

80 Hz to remove very low and high frequency oscillation signal. This latter is likely affected by 

muscular artefacts (Muthukumaraswamy, 2013) which are only partially attenuated through 

filtering, whereas slow oscillations and baseline shifts are likely associated with breathing, 

swatting and electrode shifts on the skin (Anderer et al., 1999; Fisch and Spehlmann, 1999). 

Attenuation of this non-neurogenic affected activity aims to increase signal-to-noise (SNR) 

ratio. Furthermore, a notch filter was applied on 50 Hz to remove powerline noise (Figure 2.2). 

Time-series were then segmented in two-seconds time intervals, from here referred to as 

epochs. 
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Figure 2.2 – FIR filters. Top: bandpass filter [0.5 Hz – 80 Hz]; bottom: notch filter [50 Hz].  

 

2.3.2. Visual inspection for artefact 

Filtered signals were visually inspected to detect non-systematic noise as well as badly 

connected channels. Typical sources of the first type of artefacts are sudden isolated muscular 

contractions or voltage bumps. Disconnected channels are a common issue which in high-

density caps mostly emerge for most external channels, due to head anatomy (Nelson et al., 

2017; Stylianou et al., 2018). Sporadic artefacts were removed by removing the corresponding 

2-seconds epochs for all channels, whilst systematically disconnected channels were removed 

from the whole recording. An example of EEG recording before visual inspection is shown in 

Figure 2.3. 
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Figure 2.3 – Sporadic artifacts detected by visual inspection. Red arrow: P10, disconnected 
channel; red circle: voltage bump. Numbers on top indicate 2-seconds consecutive epochs.  

  

2.3.3. Artefactual component detection: independent component analysis 

Following visual cleaning, systematic noise must be removed from signals. These include eye 

blinks, systematic muscle contractions, and heartbeat. Independent component analysis (ICA) 

is an effective method to detect EEG systematic patterns, which include neurogenic and 

artefactual activity (McMenamin et al., 2010; Muthukumaraswamy, 2013). ICA is a 

mathematical method that consists of decomposing a series of signals and obtaining their 

independent features (Comon, 1994; Hyvärinen and Oja, 2000). In general, for N channels and 

L epochs, the mathematical formulation can be expressed as follows (Viola et al., 2010): 

 𝑨 ≃ 𝑾𝑿 (2.1) 

where: 

• X = EEG data [N x L] 

• W = matrix of weights [N x N]; this is estimated by the ICA algorithm 

• A = independent components time-series [N x L] 

Once artefactual components are rejected, a new matrix of weights (Z) is generated, and 

cleaned time-series are obtained: 

 𝑿𝒄𝒍𝒆𝒂𝒏 = 𝒁𝑨𝒄𝒍𝒆𝒂𝒏 (2.2) 
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To date, diverse implementations have been proposed to compute W (Xu et al., 1998; 

Hyvarinen, 1999; Theis et al., 2003; Lin et al., 2007). In this project, we relied on the Infomax 

algorithm, due to its good performance and stability with high-dimensional data (Amari et al., 

1996; Delorme and Makeig, 2004; Langlois et al., 2010). Briefly, the algorithm starts with 

random W(0), and runs the following step until convergence: 

 𝑾(𝑡 + 1) = 𝑾(𝑡) + 𝜂(𝑡)(𝑰 − 𝑓(𝑨)𝑨𝑇)𝑾(𝑡) (2.3) 

 

where: 

• t is the iteration step 

• 𝜂(𝑡) specifies step sizes 

• 𝑓(𝑨) is a nonlinear function depending on the type of distribution. 

ICA is based on certain assumptions. Components to be extracted must be independent, must 

not have Gaussian probability density function, and be the only source of stochasticity; there 

must not be any systematic offset in the data; W must be square and full rank (Langlois et al., 

2010). These assumption are likely to be met in high-density EEG recordings (Delorme and 

Makeig, 2004; Ullsperger and Debener, 2010). 

Inspection of independent components is performed by checking their topography, power 

spectrum, temporal distribution, and pattern waveform. In resting state recordings, 

neurogenic component’s spectrum should resemble physiological EEG spectrum, i.e. 

prominent activity over lower frequency bands, and progressive decrease towards higher 

frequencies. Topographies should reflect physiologically meaningful areas, e.g. occipital areas 

are associated with α-band components, frontal areas with θ-band patterns. Dipolar localised 

high frequency components with pattern of burst are generally associated with muscular 

artifacts. Examples of independent components are shown in Figure 2.4. 
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Figure 2.4 – Examples of independent components from the study sample; from left to right: 
neurogenic, muscular artefact, heartbeat.  

 

ICA outcome consisted of as many components as EEG channels. To identify stable 

components despite short (about two minutes) recordings, principal component analysis 

(PCA) was performed on the data before running ICA in order to reduce data dimension to half 

number of channels preserved at the visual inspection step (Delorme and Makeig, 2004; Ricci 

et al., 2019). 

 

2.3.4. Channel interpolation and average referencing 

After rejection of artefactual components, channels that have been removed during visual 

inspection were replaced with spherical spline interpolation of neighbouring channels. 

Eventually, channels were referenced to spatial average. Choice of reference depends on 

analysis aim, and a sensible choice should rely on a region of no interest (Hagemann et al., 

2001; Lei and Liao, 2017). Average reference is preferable when the analysis involves the 

whole scalp and it can be assumed that EEG activity is not event related, as in resting state 

(Bertrand et al., 1985). 

 

2.4. Functional Connectivity 

To analyse brain network characteristics, a connectivity measure must be chosen. As 

mentioned in section 1.4.3, EEG connectivity can be assessed by different means, depending 

on analysis aim. In general, connectivity should assess the extent to which the EEG activity at 
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any couple of nodes shows temporal interdependence. A commonly used measure is phase 

coherence, which for N discrete time points is defined as follows (Mormann et al., 2000): 

 𝑅 = 〈𝑒𝑖∆𝜙〉 = |
1

𝑁
∑ 𝑒𝑖∆𝜙(𝑡𝑘)

𝑁−1

𝑘=0

| (2.4) 

 

where ∆𝜙 is the phase difference between signals and tk is the time step. Phase coherence is 

bounded between 0, i.e. no connectivity, and 1, full connectivity. Higher values of R are 

associated with higher synchronisation between signals, i.e. lower variability of ∆𝜙 across 

time. However, the scenario in which ∆𝜙 ≃ 0, i.e. almost identical signals, falls within the case 

of maximum coherence. In high-density EEG caps where electrodes are close to each other, 

this scenario is likely to be due to volume conduction, i.e. current associated with one EEG 

signal being conducted between electrodes due to head tissues conductivity (Holsheimer and 

Feenstra, 1977; van den Broek et al., 1998). PLI was proposed to overcome this issue (Stam et 

al., 2007b), as it measures asymmetry of phase difference distribution across time between 

two signals. It is an instantaneous measure, based on Hilbert transform.  For discrete time 

steps, its formulation is: 

 𝑃𝐿𝐼 = |⟨𝑠𝑖𝑔𝑛[∆𝜙(𝑡𝑘)]⟩|, 𝑠𝑖𝑔𝑛[∆𝜙] = {

−1, ∆𝜙 < 0
   0, ∆𝜙 = 0
   1, ∆𝜙 > 1

 (2.5) 

 

where sign is the signum function. PLI equals zero when two signals are perfectly overlapping. 

However, it is still sensitive to almost zero-lagging signals, i.e. when ∆𝜙 ≃ 0. In fact, this can 

occur when weak noisy conducting sources contribute to the signal. In this thesis, connectivity 

was measured using weighted PLI (WPLI). Given two signals 𝑍1and 𝑍2, WPLI consist of PLI 

weighted by the imaginary part of the cross-spectrum (X) between the two signals  (Vinck et 

al., 2011): 

 𝑊𝑃𝐿𝐼 =
|〈𝐼𝑚(𝑋)𝑠𝑖𝑔𝑛[∆𝜙(𝑡𝑘)]〉|

〈|𝐼𝑚(𝑋)|〉
 (2.6) 

 𝑋 = 𝑍1𝑍2
∗ = 𝐴 e𝑖∆𝜙 = 𝐴[(𝑐𝑜𝑠∆𝜙) + 𝑖(𝑠𝑖𝑛∆𝜙)] (2.7) 
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where Z2
∗  is the complex conjugate of Z2, and A is the magnitude of the cross-spectrum. 

|Im(X)| spans between 0 and 1 as |∆𝜙| ranges between 0 and 
π

2
. Hence, WPLI attenuates 

signals with shorter time delay. Although false negatives could be generated when two signals 

are generated from the same source (Colclough et al., 2016), this measure is sensitive to linear 

and non-linear mutual activity between regions (Imperatori et al., 2019), and shows inter-

subject reliability and repeatability (Hardmeier et al., 2014). WPLI was computed for θ-band 

(4-7.5 Hz), α-band (8-13.5 Hz) and β-band (14-20.5 Hz) networks (Mehraram et al., 2019) as 

implemented in the Fieldtrip toolbox for MATLAB (Oostenveld et al., 2011) after transforming 

EEG time-series to the time-frequency domain through Windowed Fourier Transform (3-10 

cycles adaptive windows width, 0.5 Hz frequency step). To emphasise those connections 

which consistently maintain the same direction across time and within each frequency band, 

signed WPLI values were first averaged across time and frequency bins, then absolute values 

were computed on the obtained matrices. 

After measuring connectivity, obtained connectomes (Sporns et al., 2005) were represented 

as network graphs, and network features were analysed. The chosen strategy to obtain graphs 

depended on the analysis. Part of this project related to this methodological aspect and is 

reported in Chapter 3. 

 

2.5. Connectivity Strength Difference Between Conditions 

For each frequency band of interest, average connectivity strength over the whole network 

was computed and compared between groups with non-parametric tests (Kruskal-Wallis with 

Mann-Whitney U post hoc tests, p<0.05, Holm-Bonferroni corrected (Holm, 1979)). 

Furthermore, network topological differences between groups were assessed with Network 

Based Statistics (NBS) (Zalesky et al., 2010). This approach consists of assessing network 

components which are most consistently different between groups. This is pursued by first 

testing all connections for the hypothesis of interest. Test statistic threshold (𝑡𝑡ℎ) is chosen, 

and connections with t-value overcoming 𝑡𝑡ℎ are candidates to be part of a significant 

connected network component, i.e. a connection cluster with p<0.05 from testing between 

groups. In fact, the null-hypothesis is tested at the component level rather than single 

connection, by computing the corresponding family wise error rate (FWER) corrected p-value. 
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The size of the detected significant component is computed, and data are permuted between 

groups. Component size can be measured as the extent, i.e. number of connections, or 

intensity, i.e. sum of t-values. This process iterates thousands of times, and the largest 

component sizes are recorded. The FWER-corrected p-value for each component is obtained 

as a ratio between number of iterations at which the largest component was of the same size 

of it or greater and total number of permutations. A weak point of this method is the 

arbitrariness of 𝑡𝑡ℎ choice. In the reported analyses, 𝑡𝑡ℎ was chosen to pursue clarity in 

network topographies and highlight most consistently affected motifs. 

 

2.6. Graph Theory 

Spatial organisation of brain connections determines network topology. Graph theory 

(Diestel, 1997) is a well-established mathematical approach to extract brain network 

topological features, in both structural and functional context (Iturria-Medina et al., 2007; 

Bullmore and Sporns, 2009; Rubinov and Sporns, 2010; van Wijk et al., 2010; Kaiser, 2011). 

Geometrically, a binary graph is made of nodes and edges. In brain network context, nodes 

correspond to brain regions, and an edge between any couple of nodes is traced if a 

connection exists between the corresponding regions. Edges can also feature connection 

intensity, in which case weighted graphs are obtained. Graph theory involves implementation 

of measures associated with different network features depending on connectivity 

distribution across the network. In brain network studies, this set of features is compared 

between subjects to assess any association with physiological mechanisms or pathological 

condition, such as epilepsy, autism, and dementia (de Haan et al., 2009; Zhou et al., 2014; 

Bernhardt et al., 2015). Graph measures are defined for both binary and weighted graphs. In 

this project, they were computed as implemented in the Brain Connectivity Toolbox (BCT) for 

MATLAB (Rubinov and Sporns, 2010). 
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2.6.1. Local network measures 

Local graph features are measured for each node individually and averaged over ROIs. 

Measures of interest in this thesis included node degree (K) and clustering coefficient (C) 

(Watts and Strogatz, 1998). 

Node degree (K). K of a node is an index of centrality of the corresponding brain region and 

consists of the number of edges connected to the node. Hence, higher K is associated with 

higher number of direct connections involving that specific node, i.e. more neighbouring 

nodes. In weighted graphs, weighted node degree (W-K or KW), or node strength, is obtained 

by summing weights of directly connected edges (Opsahl et al., 2010). Since WPLI values span 

between 0 and 1, for the same network, it is true that: 𝑊‑𝐾 ≤ 𝐾. 

Clustering coefficient (C). C is the ratio between number of edges between neighbours (𝜀) 

and number of potential edges between neighbours (Kaiser, 2011). For an i-node, it is defined 

as follows: 

 𝐶𝑖 =
𝜀𝑖

𝐾𝑖(𝐾𝑖 − 1)
 (2.8) 

 

It is a simple measure of network segregation, which is generally associated with higher 

efficiency. The weighted variant (W-C or Cw) is also influenced by weights of connections. 

Weaker connections between neighbours and the node itself have a lowering impact on W-C 

value. In fact, W-C is obtained by weighting C by the average intensity (𝐼) of triangles formed 

by edges connecting the node with every two other neighbours, where I is the geometrical 

mean of connections forming each triangle. Mathematically, for N triangles, W-C of an i-node 

can be expressed as follows (Onnela et al., 2005): 

 𝑊‑𝐶𝑖 =
2

𝐾𝑖(𝐾𝑖 − 1)
∑(

𝑁

𝑗,𝑘

𝑤𝑖𝑗𝑤𝑗𝑘𝑤𝑘𝑖)
1
3 = 𝐼𝑖𝐶𝑖 (2.9) 

 

where w values are the weights normalised by the largest weight of the graph. As per 

definition, both C and W-C are bounded between 0 (neighbours not connected to each other) 

and 1 (neighbours fully connected to each other). 
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2.6.2. Global network measures 

Global features are computed at whole network level, as they reflect the overall organisation 

of the network. Measures included in this project analyses are average characteristic path 

length (L), small-worldness (σ) and modularity (Q). 

Average characteristic path length (L). L is a measure of network integration. The 

characteristic path length between any couple of nodes is the number of intermediate nodes 

belonging to the shortest paths connecting the two nodes. Values for all couple of nodes are 

averaged across the whole network to obtain L (Watts and Strogatz, 1998). A lower L is 

associated with a more efficient network architecture. To compute L for weighted matrices 

(W-L or Lw), paths are obtained assuming that connection length is inversely related to weights 

between nodes (Dijkstra, 1959; Newman, 2001). In both binary and weighted computation, 

the shortest path between two i-j-nodes is obtained with the Dijkstra algorithm (Dijkstra, 

1959), which consists of the following steps: 

1) i-node is set as current node. 

2) Distances are computed with all neighbouring nodes. Nodes that are not neighbours 

are marked with infinite distance from i-node. 

3) Obtained distances are marked as shortest paths from current node. 

4) Neighbour node whose shortest path from current node is the lowest is marked as the 

current node. 

5) Step 2 is performed for the current node. 

6) Obtained distances between current and neighbour nodes are summed with the 

shortest path from i-node to the current node. 

7) The result is compared with previously detected distances between i-node and the 

new neighbour nodes. The lowest value is marked as shortest path between i-node 

and the new node. 

8) Algorithm iterates from step 4 until j-node is reached by the shortest path from i-node. 

 

Small-worldness (σ). σ measures the compromise between segregation and integration of the 

network as compared with a random network. By definition, a small-world network shows 

higher clustering coefficient and similar characteristic path length compared with a random 
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network with the same number of nodes and edges (Watts and Strogatz, 1998; Humphries 

and Gurney, 2008). The mathematical formulation of σ is: 

 𝜎 =

𝐶
𝐶𝑟𝑎𝑛𝑑

𝐿
𝐿𝑟𝑎𝑛𝑑

 (2.10) 

 

where “rand” subscripts indicate that the measure is obtained on a random graph. In this 

thesis, random surrogates were obtained as average across 40 equivalent random networks 

obtained preserving the node degree distribution of the original networks (Milo et al., 2002; 

Sporns and Zwi, 2004). A small-world network shows σ > 1 (Humphries and Gurney, 2008), 

where this value scales linearly with network size. Whether the human brain shows a small-

world organisation is still a matter of debate (Achard et al., 2006; Hilgetag and Goulas, 2016). 

In fact, although different studies report small-world properties of the cerebral cortex (Sporns 

and Zwi, 2004; Stam et al., 2007a; van den Heuvel et al., 2008), some evidence suggests that 

the brain might rather be closer to a more regular scale-free network, i.e. node degree follows 

a power law distribution (Eguiluz et al., 2005; Kaiser et al., 2007; Lee et al., 2010b). 

Modularity (Q). Q measures the extent to which the network is organised in modules. It is 

obtained as the difference between fraction of within-module edges and expected fraction of 

randomly distributed edges. Hence, nodes within the same module are more connected than 

nodes belonging to different modules. For a network with l edges, its mathematical 

formulation is (Newman, 2006): 

 𝑄 = 𝑙−1 ∑ [𝑎𝑖𝑗 − 𝑙−1(𝐾𝑖𝐾𝑗)]

𝑖,𝑗∈𝑁

𝛿𝑚𝑖𝑚𝑗
 (2.11) 

 

where mi is the module containing the i-node, aij equals 1 if i-node and j-node are connected, 

and δmimj
 is the Kronecker delta function. Q (and its weighted variant W-Q or Qw) can either 

be positive or negative, where higher values indicate higher segregation. In fact, Q is not 

associated with the number of modules existing in the network community structure. 
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Chapter 3. Sensor Domain Analysis Across Dementia Types 

 

3.1. Summary 

Early diagnosis of DLB versus AD can be difficult due to similar symptomatic phenotypes. EEG 

is an inexpensive and non-invasive method which may provide additional diagnostic 

information. Previous studies reported alteration in AD functional network compared with 

healthy condition; however, similar studies including DLB and PDD are still not numerous. In 

this chapter, EEG network connectivity patterns were compared across conditions, and 

differential network biomarkers were inferred. In addition, the hypothesis that weighted 

graphs may lead to more reliable network measures by preserving topological information 

was tested. Outcome of this study shows that connectivity is reduced in dementia groups in 

the α-band network, whilst DLB shows affected posterior-anterior patterns in the β-band and 

higher network segregation within the θ-band compared to AD. Higher consistency across 

network densities emerged for weighted graphs, and network properties alterations reflected 

changes in connectivity strength. In conclusion, β- and θ-band network features result in 

suitable diagnostic biomarkers for DLB vs AD, whilst α-band network properties are similarly 

affected in LBD (DLB + PDD) compared with HC. Detected network alterations may be 

associated with impairment of attentional networks in Parkinsonian diseases. 

Content of this chapter is also reported in detail in the publication titled “Weighted network 

measures reveal differences between dementia types: an EEG study” in Human Brain Mapping 

journal (Mehraram et al., 2019). 

 

3.2. Introduction 

As reported in Chapter 1, diagnosis of DLB versus AD can be difficult especially at early 

pathological development due to their similar symptoms, and biomarkers may provide 

additional information for this purpose. At the same time, at later stages DLB shows a 

symptomatic spectrum similar to PDD, which is why researchers tend to group together DLB 

and PDD as LBD when aiming to assess diagnostic biomarkers (Lippa et al., 2007). However, 

symptomatic differences at early stages as well as higher burden of amyloid in DLB compared 
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to PDD (Edison et al., 2008) make the assessment of different physiological correlates between 

these two conditions a further matter of research, as it might provide additional pathological 

insights (Stylianou et al., 2018). 

EEG resting state network studies reported parietal-frontal connectivity patterns affected in 

DLB compared with AD and HC (Lemstra et al., 2014; Dauwan et al., 2016). In fact, these 

pathways are known to be involved in attentional processes (Corbetta and Shulman, 2002). A 

study based on MST reported reduced hubness within α-band in DLB compared with AD, 

associated with more severe cognitive impairment in DLB (van Dellen et al., 2015). A recent 

study showed reduced interhemispheric connectivity in dementia compared with HC, with 

reduced connectivity in AD compared with DLB over posterior and temporal regions within 

the α frequency range (Babiloni et al., 2018); no differences were found between DLB and 

PDD, likely due to pathological similarities between these two conditions (Babiloni et al., 

2018). Another work based on MST reported the α-band to be discriminative between HC and 

dementia, whilst PLI was significantly lower in DLB compared with AD within the β-band (15-

30 Hz) (Peraza et al., 2018). Hence, authors suggested that β-band network might be a 

potential candidate as a diagnostic biomarker for DLB. 

To date, no EEG studies on DLB used proportional thresholding to obtain network graphs. As 

mentioned in section 2.4, diverse strategies can be implemented to obtain a graph once 

connectivity is assessed. Generally, a threshold value is chosen, and connections above this 

value are preserved, whilst the remaining ones are replaced with zeros. Then, the obtained 

matrix may be either binarised, i.e. surviving edges are set to 1, or edge weights may be 

preserved. Graph thresholding is still a matter of debate among researchers (van Wijk et al., 

2010; Langer et al., 2013; Garrison et al., 2015; Jalili, 2016), who proposed different 

approaches with respective rationales. In fact, the thresholding approach is currently 

arbitrary. An EEG network study with schizophrenic patients showed that preserving edge 

weights yielded more prominent differences between conditions in terms of network 

properties (Rubinov et al., 2009). However, no further quantitative evidence has been 

produced so far to assess whether edge weights in graphs in dementia studies might enhance 

differentiation between conditions and improve consistency of the analysis outcomes across 

network densities. 
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3.2.1. Objective 

In this chapter, an exploratory investigation on EEG network feature differences between 

dementia types is reported. A graph theory analysis based on proportional thresholding was 

performed to assess disease-related differences between groups. Additional analysis aimed 

to find evidence to support the hypothesis that weighted graphs lead to more consistent 

results by including additional topological information. 

 

3.3. Methods 

Part of methods implemented in this analysis are reported in detail in Chapter 2. Briefly, the 

study sample comprised 18 HC, 32 AD, 25 DLB and 21 PDD. Clinical information for all 

participants was collected through a battery of tests, which included MMSE, CAMCOG, Trail 

Making Test A, Animal naming, FAS verbal fluency, UPDRS III, CAF and NPI (see Table 2.1). EEG 

was recorded in eyes-closed resting state with high-density sensor cap (128 electrodes). 

Recorded signals were pre-processed (section 2.3), and connectivity was measured with WPLI 

(section 2.4) generating three connectivity matrices representing each frequency band for 

each participant. An example of an estimated connectivity matrix from a HC participant within 

the β-band is shown in Figure 3.1. 

 

3.3.1. Connectivity strength 

The first part of the analysis consisted of investigating any bias that might have been 

introduced to network topology due to group-specific functional connectivity strength. WPLI 

values were averaged across connections and compared between groups. Moreover, edges 

were grouped in four ranges based on their inter-node Euclidean distance (very short: <57 

mm; short: 57-114 mm; long: 115-170 mm; very long: 171-227 mm) and average WPLI was 

computed for each group at each range. 
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3.3.2. Proportional thresholding 

To compute graph theory measures, connectivity matrices were thresholded and weighted 

graphs were obtained. Proportional thresholding was applied as implemented in 

threshold_proportional.m function included in the BCT (Rubinov and Sporns, 2010), with 

network densities (PT%) spanning between 3% and 60% in steps of 1%. To reflect underlying 

structural network properties, PT%=40 as highest density would already be effective (Kaiser, 

2011; Bohr et al., 2013). Nevertheless, some studies included larger density ranges (Giessing 

et al., 2013) and in consequence, the choice in this study aimed to cover most of the range 

choices made in previous research. A wider range was also necessary to effectively assess any 

dependence of network measures on network density (section 3.3.5). For each density, the 

corresponding weighted graph was obtained by setting to 0 any edge weights below the 

respective threshold; corresponding binary graphs were obtained by replacing all weights with 

1. Network features were computed at each network density and averaged across densities. 

 

3.3.3. Network measures 

Topology of binary and weighted EEG networks was assessed computing graph theory local 

and global features using BCT. Specifically, computed measures and their weighted variants 

(W-) included node degree (K), clustering coefficient (C), characteristic path length (L), small-

worldness (σ) and modularity (Q) (see section 2.6 for detailed description on these measures). 

Computation of both binary and weighted measures was aimed to prove that weighted graphs 

yielded stronger preservation of network topology. Weighted measures were computed after 

normalising all WPLI values by the highest weight within each matrix. This step also aimed to 

remove any bias from network features associated with group-dependent functional 

connectivity strength (Onnela et al., 2005). 

 

3.3.4. Statistical analysis: connectivity strength 

Comparisons between groups were performed using MATLAB. Specifically, topographical 

differences were assessed with the NBS toolbox, version 1.2 (see section 2.5 for detailed 

description on this approach). For analysis of variance (ANOVA) tests, 𝑡𝑡ℎ was set to 8, whilst 
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3.8 was chosen for the post hoc one tail t-tests, as the analysed data topographies showed 

enough clarity with these settings (Zalesky et al., 2010). FWER was controlled by performing 

a permutation test (5000 permutations), and differences were considered significant at p-

value < 0.05, with Bonferroni correction for post hoc tests (12 comparisons). Topographies 

were visualised with the BrainNet Viewer (Xia et al., 2013). Average WPLI was compared 

across groups for each frequency band with Kruskal-Wallis tests (p < 0.05) followed by post 

hoc two-tailed Mann-Whitney U tests (p < 0.05) with Holm-Bonferroni correction (six-

comparisons). Average WPLI was also computed at different Euclidean connection distance 

ranges, as described in section 3.3.1. Differences across groups were assessed with Kruskal-

Wallis tests (p < 0.05, Holm-Bonferroni correction for number of distance ranges, four tests) 

followed by two-tailed Mann-Whitney U post hoc tests (p < 0.05, Holm-Bonferroni correction, 

six comparisons). Correlation between average WPLI and clinical scores was tested for each 

group and frequency band with Spearman rank correlation test (p < 0.05, uncorrected). 

 

3.3.5. Dependence of network topology on thresholding level 

Spearman rank correlation was tested (p < 0.05) between graph density and network features 

regardless of group or frequency band. False-positive correlation likely due to high number of 

observations (60 density values for each of the three frequency ranges and four participant 

groups) was avoided by applying bootstrapping with 5000 permutations, and a correlation 

distribution was obtained. A relation between network density and measure was considered 

significant if within the 0.025% of the empirical null distribution tails (|ρ|<0.025%, i.e. double 

sided). Between-group differences of network measures at each PT% were tested by first 

performing a Mack-Skill test (Mack and Skillings, 1980) (p < 0.05) for each frequency range. 

When the test was significant, Kruskal-Wallis test (p < 0.05, Holm-Bonferroni, 60 tests) was 

performed followed by two-tailed Mann-Whitney U post hoc tests (p < 0.05, Holm-Bonferroni 

correction, six comparisons). 

A model fitting approach was pursued (Bradley et al., 2007; Fjell et al., 2010) to confirm the 

outcome of this correlation. A power law model of network measure-versus-PT% curves was 

fitted using the Curve Fitting toolbox (version 3.5.5) in MATLAB. The first derivative of the 

obtained curve, i.e. dependence of network measure on graph density, was compared 
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between binary and weighted graphs. The choice of a power law rather than other fitting 

models such as exponential, linear, or polynomial, was driven by the lowest fitting error as 

revealed by the sum of squares error (SSE). Results of this analysis are reported in section 3.4.2 

for clustering coefficient from the HC group in the β-band. 

 

3.3.6. Differences between groups in weighted matrices 

For each frequency band, network measures were averaged across thresholds and compared 

between groups. Kruskal-Wallis test (p < 0.05) was first performed, followed by post hoc two-

tailed Mann-Whitney U tests (p < 0.05) with Holm-Bonferroni correction (six comparisons). 

Following the approach pursued in Stylianou et al. (2018) study, local measures were also 

tested regionally within frontal, temporal, central and posterior regions; selected regions are 

shown in Figure 3.1. In this case, group comparison was preceded by repeated measures 

ANOVA with region as within subject factor and group as between subject factor. Whether 

any interaction was found, Kruskal-Wallis followed by post hoc Mann-Whitney U tests were 

performed, as described before. Rank correlation was eventually tested between network 

measures and clinical scores for each group and frequency band with Spearman tests (p < 

0.05, uncorrected).  

 

3.3.7. Scale-free behaviour of the network 

To further assess disease-related alteration of EEG network architecture, hubness changes 

were investigated. Hubness indicates existence of nodes with high degree. In general, a 

network with high hubness is less resistant to targeted node attack, i.e. iterative removal of 

connections from high towards low degree nodes. This procedure was applied to weighted 

matrices as described in previous studies (Barabasi and Albert, 1999; Kaiser et al., 2007; Stam 

et al., 2009). Nodes with highest degree were progressively removed, and average weight-

based characteristic path length (W-L) was computed on the resulting network at each 

iteration and plotted with respect to the percentage of removed nodes. As reported in 

previous studies, in such a plot the network measure is expected to show an increasing trend, 

reach a peak of global maximum, and decrease towards zero as nodes are progressively 
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removed. In scale-free networks, this peak occurs earlier when compared with small-world or 

random networks (Kaiser et al., 2007), due to their lower resistance to targeted attack. As 

mentioned in section 2.6.2, some evidence suggests that healthy brains networks show scale-

free properties (Eguiluz et al., 2005). Accordingly, W-L in HC was expected to show an earlier 

peak in the targeted removal plots compared with dementia groups. 

 

3.3.8. Diagnostic accuracy 

In this study, diagnostic potential of graph theory network measures in EEG between 

conditions was also tested. To this purpose, a random forest classifier was implemented using 

the Scikit-Learn framework in Python (version 0.20.1), and the Imbalanced-Learn library for 

Python (version 0.4.3); cross-validation was performed with six-fold, ten repetitions. All 

network variables in all frequency bands were used to train the classifier, and mean accuracy, 

F1 score, sensitivity, specificity, and AUROC curve were obtained. A classifier was built for each 

group comparison scenario associated with significant differences in network measures. 

Results from six-fold cross-validation are reported here, but similar results are obtainable 

when using five-fold or seven-fold (see Appendix A). 

 

3.3.9. Connectivity and network measures: 10-20 system 

In order to explore clinical suitability of these methodologies, additional investigation aimed 

to assess whether these yielded the same results with a standard EEG 10-20 derivation system, 

i.e. the EEG setup normally used in the clinical framework. This was obtained by preserving 

only nodes belonging to 10-20 system in connectivity matrices and extracting network 

features from resulting low-density networks. Since any difference in clustering coefficient 

and characteristic path length was expected to reflect in small-worldness, this measure was 

not further computed for this investigation. 
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Figure 3.1 – Methodological workflow (Mehraram et al., 2019). A) From left to right: 
distribution of the 128 EEG electrodes in the 10-5 system. Grey electrodes were deemed 
noisy, hence were excluded in all network analyses. An example of EEG recording from a 
healthy participant and a connectivity matrix computed on one HC subject in the β-band 
network are reported. Colours span across connectivity (defined as weighted phase lag 
index, or WPLI, as reported in detail in the Methods section) values between 0 and 0.2. 

Coloured bars on the sides of the connectivity matrix and colour of the electrodes define 
scalp regions. Green: frontal region; blue: lateral region; yellow: central region; purple: 

posterior region. B) Topography showing significantly weakened connections in DLB 
compared with AD within the β-band network; C) Left: binary and weighted clustering 

coefficient values across (β-band) network densities, reported here as an example; right: 
average weighted node degree and weighted clustering coefficient, t-tests across groups 
(Kruskal-Wallis value on top, *p<0.05, **test survives multiple comparison correction); D) 

Receiver operating characteristic curve obtained with random forest classifier, testing DLB vs 
AD discrimination. 
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3.4. Results 

3.4.1. Connectivity strength comparison between groups 

Differences in average edge weights between groups are shown in Figure 3.2. Connectivity 

strength was reduced in the α-band in all dementia groups compared with HC, whilst it was 

lower in LBD compared with HC and lower in DLB compared with AD in the β-band (Figure 

3.2a). Long connections were mostly affected within the α-band, whereas all distance ranges 

showed altered connectivity strength in the β-band (Figure 3.2b). Differences in average WPLI 

were not detected within the θ-band network. 

NBS revealed a missing right-occipital network cluster within the α-band network in AD, as 

well as reduced posterior-anterior connectivity and weakened frontal connections (Figure 

3.3). Topographical differences between DLB and HC included affected parietal-frontal 

connectivity. For the β-band network, occipital-central patterns and connections over the 

right-temporal areas were weaker in LBDs vs HC. Left occipital-frontal connectivity patterns 

and left temporal area were lower in DLB compared with AD. 

Average WPLI in DLB correlated negatively with severity of visual hallucinations as assessed 

with NPI hallucination score within the α and β bands (Figure 3.4). No other significant 

correlations were found between connectivity strength and other clinical scores. 
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Figure 3.2 – Results from the connectivity strength analysis (Mehraram et al., 2019). (A) 
Average WPLI for each group and frequency band; values on top indicate the result of the 

one-way ANOVA (p<0.05); *significant two tailed Mann-Whitney U test post hoc test 
(p<0.05); **post hoc test survives Holm-Bonferroni correction (6 comparisons). (B) Distance 
analysis. WPLI values are averaged by edge length ranges; very short: < 57 mm; short: 57 – 

114 mm; long: 115 – 170 mm; very long: 171 – 227 mm. Different markers were used to 
indicate significant results from one-way Kruskal-Wallis (p<0.05) and two-tailed Mann-
Whitney U test post hoc test (p<0.05) as described in the legend on the right side. Red 
marker: test survives Holm-Bonferroni correction (Kruskal-Wallis: 4 ranges; post hoc: 6 

comparisons). Error bars represent 95% confidence interval. 
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Figure 3.3 - Results from the two-tailed t-tests (5000 permutations) with the NBS (Mehraram 
et al., 2019) (Network Based Statistics, ANOVA F-threshold = 8, p<0.0042; post hoc t-

threshold = 3.8, p<0.0042) respectively in α (top) and β (bottom) range. A: anterior; P: 
posterior. No significant differences were found in θ band.  
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Figure 3.4 - Significant Spearman’s test correlation between WPLI and NPI score in DLB at α 
and β frequency bands (Mehraram et al., 2019).  

 

3.4.2. Weighted vs binary graphs after proportional thresholding 

Before estimating graph theory measures, proportional threshold was applied on WPLI 

matrices, obtaining a range of matrices with density spanning between 3% and 60%. 
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Dependency of C and L on PT% was compared between weighted and binary graphs, and was 

lower when weights were preserved, as assessed with Spearman rank correlation test (𝑝 =

0, 𝜌𝐶𝑏
= 0.9666, 𝜌𝐶𝑤

= 0.6765, 𝜌𝐿𝑏
= −0.9692, 𝜌𝐿𝑤

= −0.0665). Normalised metrics were 

less influenced by preservation of weights compared with not normalised ones (𝑝 =

0, 𝜌𝐶𝑏𝑛𝑜𝑟𝑚
= 0.5134, 𝜌𝐶𝑤𝑛𝑜𝑟𝑚

= 0.4673, 𝜌𝐿𝑏𝑛𝑜𝑟𝑚
= −0.7981, 𝜌𝐿𝑤𝑛𝑜𝑟𝑚

= 0.1022). Metric-

versus-density trends for C and L in the β range and statistical tests at each PT% are shown 

respectively in Figure 3.5 and Figure 3.6. 
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Figure 3.5 – Dependence of clustering coefficient on connectivity matrix thresholding level 
(PT%) (Mehraram et al., 2019). Horizontal axis: PT% (range within 3-60); vertical axis: 

network measure. Markers on top represent results of one-way Kruskal-Wallis (p<0.05) and 
two-tailed Mann-Whitney U post hoc tests (p<0.05) performed at each PT% as described in 

the legend on side. Red marker: test survives Holm-Bonferroni correction (Kruskal-Wallis: 60 
tests; post hoc test: 6 comparisons). Dotted lines of the same colour delineate 95% 

confidence interval for each group. From top-left to bottom-right: average clustering 
coefficient (C), average normalized clustering coefficient (N-C), average weighted clustering 

coefficient (W-C), average normalized weighted clustering coefficient (N-W-C).  
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Figure 3.6 - Dependence of characteristic path length on connectivity matrix thresholding 
level (PT%) (Mehraram et al., 2019). Horizontal axis: PT% (range within 3-60); vertical axis: 

network measure. Markers on top represent results of one-way Kruskal-Wallis (p<0.05) and 
two-tailed Mann-Whitney U post hoc tests (p<0.05) performed at each PT% as described in 

the legend on side. Red marker: test survives Holm-Bonferroni correction (Kruskal-Wallis: 60 
tests; post hoc test: 6 comparisons). Dotted lines of the same colour delineate 95% 

confidence interval for each group. From top-left to bottom-right: average characteristic 
path length (L), normalised average characteristic path length (N-L), weight-based average 

characteristic path length (W-L), weight-based normalized average characteristic path length 
(N-W-L). 
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Differences between groups at each PT% were tested only if Mack-Skill test revealed an effect 

of PT% on network measure. As resulting from correlation tests, curves obtained from 

weighted measures show reduced slope, that is, reduced dependency on threshold axis, PT%. 

For C (Figure 3.5), tests were significant only in the weighted case (Kruskal-Wallis: p < 0.05 

with Holm-Bonferroni correction). Notably, W-C was significantly lower in DLB when 

compared with AD for PT% > 15; normalised (W-)C showed similar results, with differences 

between AD and DLB at PT% > 33 in the binary case and PT% > 27 for the weighted measure. 

Moreover, dependence of L on PT% was strongly reduced in the weighted case (W-L) (Figure 

3.6). In fact, Mack-Skill test did not result in any significant PT% effect on W-L (p = 0.0535). 

DLB had higher binary L compared with AD for PT% < 15, whilst the normalised measure 

revealed differences between DLB and AD as well as between DLB and HC for PT% > 28. No 

differences between groups were found for normalised W-L. Correlation curves for other 

network features are reported in Appendix A. 

To investigate the attenuation effect of graph weights on measure – density relation, network-

versus-threshold curves were modelled as first order power law equations. The analysis for C 

in HC within β-band network is reported below, but similar results are obtained with L (see 

Appendix A). Binary and weighted measures were modelled respectively as Cb = ftg + h and 

Cw = mtn + q, with t=PT%, with b and w standing for binary and weighted measures. Model 

fitting yielded the following coefficients (with 95% confidence interval shown in brackets): f = 

0.8065 [0.7941; 0.8189]; g = 0.6718 [0.6269; 0.7161]; h = 0.072 [0.05228; 0.09172]; m = 0.9912 

[0.6306; 1.352]; n = 0.06905 [0.04059; 0.09751]; q = -0.6802 [-1.043; -0.3175]. Goodness of fit 

is described by SSE: SSEb = 0.003371, SSEw = 0.0002147. 

The first derivative of the fitting equations with respect to t is associated with curve dynamics, 

that is, curve slopes. A derivative closer to zero reflects a steady behaviour. For binary and 

weighted C derivatives are: 
dCb

dt
= fgtg−1 and 

dCw

dt
= mntn−1. Values of t were searched for 

which the weighted measure showed lower dependence on PT% compared with the binary 

one. Mathematically: 

 
𝑑𝐶𝑤

𝑑𝐶𝑏
< 1; 0 < 𝑡 ≤ 1 (3.1) 
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Solving inequation (3.1) yielded 0.0322 < t ≤ 1. Hence, dependence of C on PT% in HC is 

lower in weighted graphs than in binary graphs for almost all PT%. 

Remaining results of this study are reported for weighted graphs only, since these have been 

proved to lead to more sable results compared with binary ones. Same statistics for binary 

metrics, as well as network measures computed on non-thresholded weighted matrices, are 

reported in Appendix A.  

 

3.4.3. Network properties alterations 

Hypothesis of this analysis is that EEG network architecture at rest is affected depending on 

dementia subtypes. Results from comparison of network measures between groups are 

shown in Figure 3.7. Differences within the θ-band emerged only for small-worldness and 

modularity. LBD (DLB and PDD) showed increased network segregation when compared with 

AD. These two measures significantly correlated with cognitive scores (MMSE and CAF) and 

NPI-hall score in the same frequency band in PDD, but not in DLB. All measures (except for a 

trend in small-worldness) were significantly different between LBD and HC within the α-band 

network. Network integration was also reduced in dementia groups as reflected by higher 

characteristic path length and modularity. Average clustering coefficient and characteristic 

path length respectively in DLB and PDD correlated with the Animal naming test, whilst node 

degree and average characteristic path length in DLB showed significant correlation with 

verbal fluency (FAS) test score. The strongest difference was found within the β-band network, 

and consisted of greater general alteration of network measures in DLB compared with AD. 

Specifically, DLB showed weaker connectivity and more segregated network compared with 

AD. Subtle differences with PDD and HC were also found. Complete results from correlation 

with clinical score tests are shown in Table 3.1 and Figure 3.8. 

 

 

 

 



 
60 

 

 

Figure 3.7 – Results from the graph theory analysis on the average weight-based network 
measures. Vertical axis: network measure. W: weighted. K: node degree; C: clustering 

coefficient; L: characteristic path length; σ: small-worldness; Q: modularity. Horizontal axis: 
frequency band of interest (θ: 4-7.5 Hz, α: 8-13.5 Hz, β: 14-20.5 Hz). Values on top indicate 

the result from the one-way Kruskal-Wallis test (p<0.05); *significant two-tailed Mann-
Whitney U test post hoc test (p<0.05); **post hoc test survives Holm-Bonferroni correction 

(6 comparisons).  
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 HC AD DLB PDD 

θ α β θ α β θ α β θ α β 

WPLI NPI 
- - - - - - -0.29 

(0.165) 
-0.61 

(0.002) 
-0.53 

(0.008) 
0.02 

(0.936) 
-0.21 

(0.362) 
-0.23 

(0.325) 

W-K FAS 
-0.01 

(0.974) 
-0.35 

(0.154) 
-0.44 

(0.070) 
0.07 

(0.705) 
0.03 

(0.886) 
-0.13 

(0.493) 
-0.26 

(0.215) 
-0.46 

(0.020) 
-0.36 

(0.081) 
-0.10 

(0.666) 
-0.19 

(0.400) 
-0.26 

(0.250) 

W-C Animals 
-0.46 

(0.056) 
-0.18 

(0.465) 
0.14 

(0.578) 
-0.06 

(0.740) 
0.32 

(0.073) 
-0.18 

(0.315) 
-0.10 

(0.639) 
-0.44 

(0.028) 
-0.13 

(0.524) 
-0.12 

(0.617) 
-0.43 

(0.050) 
-0.11 

(0.627) 

W-L 
FAS 

0.04 
(0.871) 

0.34 
(0.173) 

0.42 
(0.086) 

-0.06 
(0.734) 

-0.00 
(0.981) 

0.17 
(0.384) 

0.30 
(0.147) 

0.44 
(0.030) 

0.36 
(0.073) 

0.06 
(0.781) 

0.16 
(0.499) 

0.28 
(0.215) 

Animals 
0.38 

(0.115) 
0.09 

(0.733) 
-0.28 

(0.270) 
0.06 

(0.742) 
-0.16 

(0.388) 
0.32 

(0.075) 
0.12 

(0.553) 
0.39 

(0.057) 
0.18 

(0.380) 
0.24 

(0.300) 
0.45 

(0.041) 
0.15 

(0.504) 

W-σ 

MMSE 
-0.36 

(0.142) 
-0.09 

(0.724) 
-0.44 

(0.070) 
0.21 

(0.254) 
-0.25 

(0.160) 
0.12 

(0.508) 
-0.06 

(0.782) 
0.12 

(0.571) 
0.14 

(0.501) 
-0.62 

(0.003) 
-0.37 

(0.101) 
-0.01 

(0.968) 

CAF 
- - - - - - 0.09 

(0.691) 
-0.31 

(0.138) 
-0.09 

(0.684) 
0.56 

(0.014) 
0.43 

(0.064) 
0.06 

(0.818) 

NPI 
- - - - - - 0.22 

(0.292) 
0.17 

(0.428) 
0.37 

(0.077) 
0.49 

(0.025) 
0.32 

(0.151) 
-0.16 

(0.499) 

UPDRS 
0.02 

(0.949) 
-0.18 

(0.478) 
-0.17 

(0.497) 
-0.20 

(0.290) 
0.11 

(0.547) 
0.04 

(0.844) 
0.40 

(0.049) 
-0.04 

(0.842) 
-0.17 

(0.421) 
0.31 

(0.165) 
0.38 

(0.093) 
-0.16 

(0.476) 

W-Q 

MMSE 
-0.17 

(0.491) 
-0.04 

(0.869) 
-0.31 

(0.217) 
0.19 

(0.287) 
-0.26 

(0.157) 
0.06 

(0.746) 
-0.17 

(0.425) 
0.27 

(0.196) 
0.16 

(0.440) 
-0.74 

(0.0001) 
-0.37 

(0.102) 
-0.07 

(0.777) 

CAF 
- - - - - - 0.21 

(0.328) 
-0.19 

(0.371) 
0.06 

(0.770) 
0.69 

(0.001) 
0.40 

(0.092) 
-0.02 

(0.951) 

FAS 
0.003 
(0.99) 

0.52 
(0.026) 

0.33 
(0.177) 

0.34 
(0.063) 

0.02 
(0.932) 

0.13 
(0.495) 

-0.22 
(0.286) 

0.31 
(0.137) 

0.03 
(0.891) 

-0.09 
(0.711) 

-0.03 
(0.913) 

0.01 
(0.982) 

 

Table 3.1 – Correlations between network measures and clinical scores as assessed by Spearman test (p<0.05, uncorrected). ρ and p values are 
shown whether any correlation for that network measure and clinical variable was found for any diagnosis group and frequency band. Significant 

correlations are highlighted in bold.  



 
62 

 

 

 

Figure 3.8 – Significant correlations between weight-based network measures and clinical 
scores assessed by Spearman test (p < 0.05, uncorrected). For each correlation, r2 and p-

value are shown. 

 

Regional differences in local measures (average node degree and clustering coefficient) were 

also investigated (Figure 3.9). Node degree was not locally different between groups in the α-

band network, whilst differences in DLB compared with AD within the β-band were driven by 

the occipital region (p < 0.01), although frontal regions also presented significant differences 

(p < 0.05). Clustering coefficient was significantly lower in DLB compared with AD in the β-

band over frontal and posterior areas. For both measures, lateral areas were not differently 



 
63 

 

affected by the disease. Local changes of node degree and clustering coefficient reflect 

connectivity patterns which are associated with network disruption (see section 3.4.1). 

 

 

Figure 3.9 – Results from local graph theory analysis through average local weight-based 
network measures. Y-axis: local network measure; x-axis: frequency band of interest (θ: 4-
7.5 Hz, α: 8-13.5 Hz, β: 14-20.5 Hz). If any interaction was found in the repeated measures 

ANOVA (within subjects: areas; between subjects: group), the result of the one-way Kruskal-
Wallis test (p<0.05) is indicated on top of each plot. Red triangle: Kruskal-Wallis test survives 
Holm-Bonferroni correction (4 areas); *significant two-tailed Mann-Whitney U test post hoc 

test (p<0.05); **post hoc test survives Holm-Bonferroni correction (6 comparisons). A: 
frontal area. B: central area. C: posterior area. No significant differences between groups 

were found in the lateral area and for the node degree in the central area. 
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3.4.4. Targeted node attack outcome 

Figure 3.10 shows the outcome of the network node attack analysis at network density of 

15%. The clearest result is a delayed peak of LBD in the α-band compared with HC. No clear 

differences between groups in terms of peak position emerged in other frequency bands. 

Similar outcome is obtained at network density of 10% and 20%, as reported in Appendix A. 
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Figure 3.10 – Results of targeted node attack (edge density = 15%). Y axis is the weight-based 
characteristic path length, x axis is the percentage of removed nodes.  
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3.4.5. Diagnostic accuracy 

From statistical analysis, two scenarios emerged for which significant differences between 

groups were found for most network features: DLB versus AD and LBD versus HC. Results for 

other scenarios are reported in Appendix A. All weighted network measures were used to train 

a random-forest classifier, from which ROC curves shown in Figure 3.11 were obtained. For 

each scenario, mean variable importance ranking was obtained. DLB vs AD classifier yielded 

mean accuracy of 66% (± 13%), mean F1 score of 65% (± 13%), mean positive predictive value 

(PPV) of 66% (± 22%), mean negative predictive value (NPV) of 71% (± 13.04%), optimal 

sensitivity and specificity respectively of 47 and 100%, and AUROC of 78% (± 15%). The four 

most important variables based on classifier ranking were WPLI in the β-band, modularity in 

the θ-band, node degree in the β-band, and small-worldness in the θ-band. LBD and HC were 

classified with mean accuracy and F1 score of 76% (± 12%), mean PPV of 88% (± 10%), mean 

NPV of 59% (± 21%), optimal sensitivity and specificity respectively of 59 and 100% and AUROC 

of 82% (± 14%). The four most important variables were the WPLI in the β-band, modularity, 

characteristic path length and clustering coefficient in the α-band. 

 

 

Figure 3.11 – Receiver operating characteristic (ROC) curves obtained with random forest 
classifier and computed for each of the defined scenarios. All (weighted) network measures 

were used to train the classifier. A: DLB vs AD, mean accuracy: 66% (± 13), optimal sensitivity 
and specificity respectively of 47% and 100%; B: LBD vs HC, mean accuracy: 76% (± 12%), 

optimal sensitivity and specificity respectively of 59% and 100%.  
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3.4.6. Effect of EEG cap density on connectivity and graph measures 

Spatial subsample of EEG recordings did not lead to significant differences in network features. 

In fact, connectivity strength difference patterns were not affected by subsampling, whilst 

some topological differences between groups were less prominent (Figure 3.12). 

 

 

Figure 3.12 - Connectivity and network measures obtained with EEG 10-20 system. y-axis: 
measure; x-axis: frequency band of interest (θ: 4-7.5 Hz, α: 8-13.5 Hz, β: 14-20.5 Hz). The 

result of the one-way Kruskal-Wallis test (p < 0.05) is indicated on top. *significant two-tailed 
Mann-Whitney U test post hoc test (p < 0.05); **post hoc test survives Holm-Bonferroni 

correction (6 comparisons). Small-worldness is not reported here, as it can be obtained from 
C and L.  
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3.5. Discussion 

The primary hypothesis of this study was that different dementia subtypes are associated with 

differential alterations in EEG network features. Connectivity strength was lower in dementia 

groups compared with HC within α-band network and reduced in DLB compared with AD in 

the β-band. These differences could potentially introduce a bias in network measures (van den 

Heuvel et al., 2017), hence weighted graphs were normalised before extracting network 

features. Results from the present work supported the proposition that weighted graph 

measures are consistent across graph densities, and these measures were significantly altered 

in DLB compared with AD within the β-band. In addition, in Lewy body dementia (LBD) groups, 

i.e. DLB and PDD, network properties were significantly altered compared to HC and were 

more segregated than AD network. Classification between DLB and AD based on random 

forest approach was driven by connectivity strength and node degree in the β-band as well as 

segregation measures in the θ-band. For LBD, differentiation from HC was mostly due to 

connectivity strength in β-band network and graph features in α-band. 

Patients in this study were on a range of medications. As mentioned in section 1.4.2, this likely 

partially restored EEG activity and network properties towards normative values (Agnoli et al., 

1983; Balkan et al., 2003) making group differences less distinct. Nevertheless, significant 

alterations across patient group emerged and resonated with previous findings (Stam et al., 

2009; Peraza et al., 2018). 

 

3.5.1. Average connectivity is reduced in dementia 

Statistical analysis revealed lower WPLI in dementia compared with HC within the α-band 

network. Also, overall β-band network connectivity was weakened for all groups, and 

significantly lower in LBD compared with HC. Notably, connectivity analysis revealed that β-

band might potentially be a biomarker for differentiation of DLB vs AD. This latter finding is 

supported by previous M/EEG network studies (Stam et al., 2009; Dauwan et al., 2016; Engels 

et al., 2017; Peraza et al., 2018), and may reflect network randomisation in LBD (Peraza et al., 

2018). Distance analysis outcome in α- and β-band reproduced the scenario of a previous fMRI 

study, where authors found a decreasing trend of connectivity strength towards longer 

connections (Peraza et al., 2015). WPLI values correlated negatively with visual hallucination 
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frequency and severity as assessed with NPI-hall score in DLB for both α- and β-band. This 

correlation is in line with a previous study which pursued a modelling approach to associate 

visual hallucinations with impairment of attentional networks in LBD (Shine et al., 2011), and 

might reflect the role of EEG α- and β-band frequency activity respectively in visuo-attentional 

and cognitive mechanisms (Anderson and Ding, 2011; Bauer et al., 2012; Lopes da Silva, 2013). 

 

3.5.2. Topographical connectivity patterns are altered in dementia 

NBS analysis revealed that most affected connections in AD and DLB compared with HC 

comprised posterior-anterior pathways, in agreement with previous findings (Lemstra et al., 

2014; Dauwan et al., 2016). This also matches with the outcome from NBS, which detected 

affected long connections in both α- and β-band networks (Figure 3.3). A possible speculation 

is that weakening of these pathways is associated with impairment of attentional networks, 

which are thought to be affected in AD and DLB (Corbetta and Shulman, 2002; Cromarty et al., 

2018). In fact, disruption of the occipital cortical network may play a role in alteration of 

information flow towards frontal areas in DLB (Briel et al., 1999; Bonanni et al., 2008; Peraza 

et al., 2014). 

Results of this analysis partially contrast with a recent EEG connectivity study which reported 

differences between dementia groups in the α-band, but no differences in the β-band (van 

Dellen et al., 2015). This apparently contrasting finding may be due to methodological 

differences in the analysis. For instance, PLI might omit significant differences between groups 

in scenarios when the overall connectivity is low, such as we found in the β-band, and 

uncorrelated noise might affect connectivity (Vinck et al., 2011). 

 

3.5.3. Weighted measures preserve topological information 

Preservation of graph weights prevents loss of topological network information. In line with 

previous research on schizophrenia (Rubinov et al., 2009), in this analysis more prominent 

differences between patient groups emerged in weighted than in binary measures. Contrary 

to what has been stated in other studies (Li et al., 2009; Ponten et al., 2009; van Wijk et al., 

2010), the outcome of the analysis was influenced by graph weights. In fact, in Ponten et al. 
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(2009) analysis was performed with only network measures normalised by random surrogates 

when comparing binary and weighted graphs. Normalised measures as reported in section 

3.4.2 were less dependent on graph weights. However, normalisation may be associated with 

a bias accentuating size effect on the measures (van Wijk et al., 2010). Furthermore, the 

strategy pursued to obtain normalised metrics may influence their dependence on network 

size, as discussed below. 

 

3.5.4. Normalised clustering coefficient shows an unexpected trend 

In order to compute small-worldness, (weighted) clustering coefficient and characteristic path 

length were normalised by the same measures obtained on random matrices (see section 

2.6.2). According to most network studies, small-world networks show a clustered 

organisation which is in between random and regular networks, i.e. normalised clustering 

coefficient is above 1, and decays linearly as network density increases (Humphries and 

Gurney, 2008; Telesford et al., 2011; Sun et al., 2014b; Peraza et al., 2015). However, an 

inverse trend was obtained in this study, i.e. normalisation yielded values lower than 1, which 

increased towards higher network density (Figure 3.5). Further investigation revealed that this 

outcome is due to the choice of preserving node degree distribution when randomising 

connectivity matrices. This approach was preferred to a complete random edge shuffling as it 

takes into account differences in degree distribution between groups which might influence 

network clustering (Milo et al., 2002; Sporns and Zwi, 2004). In addition, this approach is 

comparable with previous dementia studies (Stam et al., 2007a; Peraza et al., 2018). In fact, if 

randomisation is performed by shuffling edges (in either binary or weighted graphs) regardless 

of node degree distribution, i.e. by generating equivalent Erdős–Rényi networks as proposed 

by Humphries and Gurney (2008), the obtained trend is in line with previous studies, as shown 

in Figure 3.13. To the best of author’s knowledge, the analysis presented in this thesis is the 

only one to date based on WPLI in which network measure trends with respect to network 

density are investigated. Hence, speculation on the source of this apparently unexpected 

outcome cannot be based on direct comparison with existing literature. Previous studies 

based on (W)PLI did actually rely on Erdős–Rényi random surrogates rather than degree-

conservative matrices, and results matched with the criterium for which (W-)C>Crand (Stam et 

al., 2009; Hardmeier et al., 2014), although Stam et al. (2009) also found relatively low values 
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compared with other studies. A possible explanation to this phenomenon as suggested by 

Stam et al. (2009) is that spurious connectivity due to volume conduction captured by other 

connectivity strength measures might generate spurious clusters throughout the network, 

which are absent in PLI-based graphs. This attenuation is likely even more enhanced in WPLI, 

and preserving node degree while randomising WPLI-based graphs might generate spurious 

clustering, which leads to N-C < 1. Instead, a complete randomisation destroys graph 

structure, preventing this phenomenon and leading to N-C > 1. Therefore, unlike other 

connectivity measures, it seems to be crucial in WPLI network graphs to take the degree 

distribution in account when assessing network motifs to correctly interpret associated 

analyses and results. 

Nevertheless, even in this case recommendation proposed in this study on the use of weighted 

measures without normalisation holds true all the more for this reason. In fact, topological 

information is lost after normalisation and no differences between groups emerge anymore 

(Figure 3.13). Moreover, dependence of normalised measure on PT% is higher than of W-C 

(ρN-W-C = -0.8898). This latter aspect is discussed in the section below. 

 

 

Figure 3.13 – Normalised clustering coefficient (N-W-C) vs graph density (PT%). 
Normalisation of W-C is computed with equivalent Erdős–Rényi random surrogates. Similar 

outcome is obtained with binary clustering coefficient.  
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3.5.5. Weighted measures are less dependent on network density 

Dependence of network measures on edge density is a well reported issue (van Wijk et al., 

2010; Langer et al., 2013). With the analysis presented in this chapter, a rationale has been 

proposed for using thresholded weighted graphs rather than binary ones in graph theory 

studies. In fact, weighted network measures are more consistent across densities than their 

binary counterpart. Alternative may be to consider full non-thresholded weighted matrices, 

in which case interpretation of connectivity measures would change. In fact, node degree 

would instead be a measure of nodal strength, i.e. total involvement of the node in the 

network, rather than number of connected edges (Opsahl et al., 2010). Network thresholding 

preserving graph weights is here recommended as a reasonable compromise. MST 

constructed graphs are also another strategy to avoid dealing with thresholding arbitrariness. 

As mentioned in section 1.4.3, MST leads to fully connected weighted graphs (Stam et al., 

2014), i.e. full sized networks. Peraza et al. (2018) performed an EEG study based on MST with 

the same cohort of participants. Although differences in connectivity strength are comparable 

with findings of the analysis reported in this chapter, MST approach does not provide local 

alterations within network architecture, which in the present study were found significant in 

patient groups. 

However, the approach pursued in this study presents with some limitations. In fact, these 

results are limited to the context of EEG connectivity analysis. Further investigation will be 

required to reproduce these results with other methodologies. The choice of WPLI as 

connectivity measure may also have influenced the analysis outcome. Attenuation of quasi-

zero lag connections (Vinck et al., 2011) likely introduces higher number of weak edges which 

weakly influence the whole network when introduced as the network density increases. 

 

3.5.6. Brain functional network is segregated in dementia 

Dementia groups showed higher segregation and lower integration in the EEG brain network. 

Reduced integration reflects in higher characteristic path length, as also found in a previous 

EEG study (Stam et al., 2007a). Longer path length is thought to be associated with reduced 

interaction between cortical areas (Sporns and Zwi, 2004), although this contrasts with 

another study where path length in AD group was shorter than in HC (de Haan et al., 2009). In 
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fact, different thresholding strategy and connectivity measure might play a role in interpreting 

the contrasting results. In de Haan et al. (2009) three arbitrary threshold values were chosen 

to obtain network graphs, whilst in the present study a wide range of graph densities was 

considered, which might have led to the inclusion of more network topological information. 

In addition, their study was only based on normalised binary network features. Contrasting 

results in normalised values may be due to normalisation approach, as discussed in section 

3.5.4. However, they suggest that their results are associated with loss of hubness and more 

randomised network topology in AD, in agreement with other studies (de Haan et al., 2012a; 

Stam, 2014) and results presented in this study, as discussed in the next section (3.5.7). 

Network segregation in LBD emerged within the θ-band, i.e. higher small-worldness and 

modularity, in line with a previous fMRI study on the same participant cohort (Peraza et al., 

2015). As suggested in that study, this phenomenon is likely associated with the presence of 

a larger number of short-range connections, altogether with weaker long-range connections 

in dementia groups, as we also found in the distance analysis (Figure 3.2). This might have led 

to higher normalised clustering coefficient and consequently higher small-worldness in LBD. 

Network segregation within θ-band in LBD significantly correlated with cognitive performance 

(MMSE and CAF scores) in PDD. It has been reported that θ-band activity has a role in memory 

consolidation processes, modulation of information transfer and integration across neuronal 

populations (Lopes da Silva, 2013). One may then speculate that these processes are affected 

in PDD, but not in DLB. However, further analysis is needed to assess why such correlation did 

not emerge in DLB, and to interpret significant correlations between graph measures and 

Animal naming and FAS tests reported in section 3.4.3 and Table 3.1. 

 

3.5.7. Network hubness is reduced in dementia 

LBD also present reduced node degree and clustering coefficient in the α-band, whilst these 

measures are lower in DLB compared with AD in the β-band. As also reported in another study, 

this finding may be interpreted as reduced network hubness associated with the pathology 

(Engels et al., 2015), driven by posterior and frontal regions (Figure 3.9), resonating with 

disrupted topological patterns reported in section 3.4. This interpretation is also supported by 

the outcome of targeted node attack (see section 3.4.4). As expected, robustness to targeted 
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node attack as measured through characteristic path length (Figure 3.10) was higher in LBD 

compared to HC, suggesting that pathological condition is associated more with a small-world 

or random rather than a scale-free organisation of functional brain network (Kaiser et al., 

2007). In fact, as mentioned in section 2.6.2, whether the human brain is a scale-free network 

is still controversial (Eguiluz et al., 2005; Kaiser et al., 2007). Due to their higher hubness as 

compared with small-world and random networks, in a targeted node attack process scale-

free networks show a peak in characteristic path length at an earlier percentage of removed 

nodes (Barabasi and Albert, 1999). In the reported analysis, this peak was delayed in LBD 

compared with HC, suggesting that hubness is affected in the pathological condition. Slight 

differences also emerged between groups within θ- and β-bands. As described in section 1.3.1, 

EEG α- and β-band activities are known to be involved respectively in attentional (Anderson 

and Ding, 2011) and cognitive processes (Ray and Cole, 1985). This leads to speculate that 

impairment of corresponding networks may emerge as alteration of connectivity features. 

However, in the α-band network, node degree was not locally affected, and the clustering 

coefficient showed a reduction over the central nodes regions in DLB. 

 

3.5.8. LBD versus HC classification yields high accuracy 

The most accurate discrimination obtained with random forest classifier was between LBD 

and HC groups (AUROC = 0.82 ± 0.14). Results obtained from classifier training reflect the 

outcome of graph theory analysis, as β- and α-band network measures were the most 

important for classification. Notably, WPLI in the β-band was the strongest driver of 

discrimination. As mentioned above, randomisation of the network in LBD might be 

specifically associated with network abnormalities in pathological groups (Peraza et al., 2018). 

 

3.5.9. Higher segregation and reduced hubness discriminate DLB from AD 

Importance of WPLI within the β range in discriminating LBD also emerges in DLB versus AD 

scenario (AUROC = 0.78 ± 0.15). Important features for classification also comprise 

segregation of θ-band network as well as node degree in the β-band. These results are in line 

with the outcome of statistical tests between groups discussed in previous paragraphs and 
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suggest that EEG network features within θ- and particularly β-band network may be potential 

biomarkers for DLB versus AD differentiation. Outcome of classification analysis further 

confirms that higher randomisation and reduced hubness of EEG network in DLB are 

prominent features, suggesting that DLB may be described as a more severe disconnection 

syndrome compared with AD (Delbeuck et al., 2003; de Haan et al., 2009). 

 

3.5.10. The optimal working point of the classifier yields maximum specificity 

Notably, the optimal point of the classifier corresponded to highest specificity (100%) and 

lowest sensitivity (47% and 59%, respectively, for the two scenarios). In this work, the optimal 

point was computed as the point on the ROC curve at which the difference between true and 

false positive values was the highest (Fluss et al., 2005; Perkins and Schisterman, 2005). Choice 

of the optimal point is a matter of debate among researchers, as alternative methods are 

being proposed whose choice might be more clinically relevant (Zou et al., 2013; Rota and 

Antolini, 2014). In the presented work the most common strategy was pursued. However, the 

discrete sample size as well as imbalanced distribution of observations between groups might 

have introduced a bias to the outcome of the classification (Brereton, 2006; Sun et al., 2009). 

 

3.5.11. Connectivity strength is the most discriminatory variable 

Higher relevance of connectivity strength as compared with other network measures for 

discrimination between types of neurological disease was also reported in previous studies 

(Xu et al., 2016; Peraza et al., 2018). In fact, findings of the present study provide further 

evidence that simple measures such as connectivity strength are likely accurate enough for 

diagnostic purposes. Consistency of connectivity strength difference between conditions also 

emerged after spatial subsampling, as shown in Figure 3.12. Suitability of EEG features as 

diagnostic biomarkers is strengthened by this aspect. Nevertheless, graph features 

abnormalities might be associated with the severity of the disease. Future studies involving 

prodromal and larger participant cohorts shall investigate whether similar network alteration 

may be detected at earliest stages of disease development and be suitable as predictive 

biomarkers. 
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3.6. Conclusions 

Main findings of this study include reduced connectivity and node degree, as well as increased 

network segregation in the β- and θ-band in DLB compared with AD. These differential 

features provide accurate classification of DLB cases versus AD. In addition, network measures 

obtained in the α-band were significantly altered in LBD compared to HC. Further, it was 

demonstrated that weighted thresholded graphs yield more consistent network features 

across graph densities. A rationale was then provided for choosing this approach rather than 

binarise connectivity matrices, as this latter choice would suppress topological information 

stored in graph weights. These findings altogether with advantageous properties of EEG 

support its use as a suitable diagnostic tool for dementia and, particularly, DLB. 
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Chapter 4. Cortical Source Alterations in Dementia with Lewy Bodies 

 

4.1. Summary 

The graph theory study reported in the previous chapter revealed significant differences in 

network features between dementia types; these consisted of altered α-band network in LBD 

compared to HC, and differences in β-θ-band between AD and DLB. Although already clinically 

relevant, this information does not provide direct inference on possible pathological 

mechanism associated with abnormal functional changes. In the present chapter, source 

localisation was used to assess whether EEG graph differential features between DLB and 

other groups emerge at the cortical level with a source domain analysis. Furthermore, affected 

α-band network topographical patterns in AD and DLB were assessed, and correlation with 

EEG slowing over the posterior cortex was tested. Outcome of the graph theory analysis 

showed that scalp and source domain are equally affected in DLB, which validated EEG scalp 

measure as a reliable methodological approach. Affected patterns in AD and DLB within the 

α-band included attentional and default mode networks, in line with speculations suggesting 

that efficiency of such networks may be affected in dementia. Moreover, average strength 

across affected pathways was associated with reduced DF over the occipital lobe in DLB, but 

not in AD; this may lead to speculate that DF slowing and connectivity alteration could 

originate from the same pathological mechanisms in DLB. 

 

4.2. Introduction 

The sensor domain analysis reported in Chapter 3 showed that EEG functional connectivity 

between brain regions is significantly affected in dementia, depending on its type. Specifically, 

β-band connectivity and α-band network features are affected in LBD (DLB and PDD) as 

compared with HC (AUROC = 82% ± 14%), whilst β- and θ-band networks are discriminative 

between DLB and AD (AUROC = 78% ± 15%). No differences emerge between DLB and PDD. 

As discussed in section 3.5, these outcomes are supported by previous investigations on 

dementia-related functional alterations based on EEG and other modalities. However, 

whether EEG sensor domain abnormalities in DLB are associated with similar patterns at the 

source level is still a matter of research. Existing source domain studies involving DLB either 
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relied on low-density EEG recordings (Babiloni et al., 2018; Babiloni et al., 2020) or used a 

standard template as a head model to solve the inverse problem (Babiloni et al., 2017).  

As mentioned in section 1.4.2, the most specific EEG feature associated with DLB is a negative 

DF shift as compared with HC and AD (Andersson et al., 2008; Bonanni et al., 2008; Peraza et 

al., 2018; Stylianou et al., 2018), most prominent over posterior areas (Bonanni et al., 2015; 

Babiloni et al., 2017; Stylianou et al., 2018). To date, no studies have investigated whether any 

correlation exists between weakening of connectivity in DLB network and DF shifting. This 

information would provide further insight into functional processes associated with the 

pathology and disease severity. 

 

4.2.1. Objective 

The first part of this chapter aimed to assess whether network features which showed 

abnormalities in DLB compared with HC and AD in the sensor domain are also significantly 

altered at the source level. In second part of the presented analysis α-band network 

differential topographical patterns and DF changes in DLB and AD compared to HC were 

obtained, and correlation between these two features was tested in both conditions. 

 

4.3. Methods 

Details on experimental protocol, EEG acquisition and measured network features are 

reported in Chapter 2. Since individual MRI recordings were needed to perform source 

localisation, a subsample of the original cohort with available MRI was selected for this 

analysis; this comprised 18 HC, 28 AD, and 21 DLB (see Table 4.1). EEG was recorded in eyes-

closed resting state with a high-density sensor cap (128 electrodes). Recorded signals were 

pre-processed (section 2.3) (number of removed channels: 15 ± 13; number of removed 

epochs: 14 ± 10; number of removed ICA components: 39 ± 10), source localised (section 4.3.2 

below) and connectivity between cortical sources was measured with WPLI (section 2.4). 
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 HC (N=18) AD (N=28) DLB (N=21) p-value 

Age 76.28 ±5.50 76.71 ±7.52 76.52 ±6.21 df=2, p-value=0.878ǂ 

Male/Female 11/7 20/8 16/5 df=2, p-value=0.580ⱡ 

MMSE 29.17 ±0.86 20.82 ±3.83 22.90 ±4.45 df=2; p-value<0.001ǂ 

CAMCOG 
total 

96.67 ±3.68 69.07 ±13.46 74.71 ±13.36 df=2; p-value<0.001ǂ 

NPI hall 0 0 0 0 1.71 ±1.95 / 

CAF total 0 0 0 0 3.67 ±3.92 / 

Animal  
naming 

20.72 ±5.54 11.50 ±4.65 10.81 ±3.91 df=2; p-value<0.001ǂ 

UPDRS 1.28 ±1.49 2.39 ±2.17 16.62 ±8.14 / 

Angle  
discrimination 

19.65 ±0.86 18.71 ±2.27 15.35 ±5.27 df=2, p-value=0.003ǂ 

FAS  
Verbal fluency 

44.89 ±16.07 27.39 ±16.39 19.29 ±10.70 df=2, p-value<0.001ǂ 

Trail making 
test A 

36.43 ±10.25 77.14 ±53.31 109.57 ±69.97 df=2, p-value<0.001ǂ 

ACheI 
(yes/no) 

0/18 26/2 19/2 df=1, p-value=0.763* 

LEDD 0 0 0 0 182 ±243 / 

 

Table 4.1 - Demographic data (subsample) and clinical scores. ⱡ χ2 test three groups, ǂ 
Kruskal-Wallis three groups, * χ2 test two groups (AD, DLB). 

 

4.3.1. Magnetic resonance imaging recording and processing 

To perform source localisation, individual MRI recordings were obtained. Acquisitions were 

performed on a 3-T Philips Intera Achieva scanner with magnetisation prepared rapid gradient 

echo (MPRAGE) sequence, sagittal acquisition, echo time 4.6 ms, repetition time 8.3 ms, 

inversion time 1250 ms, flip angle=8°, SENSE factor = 2, in-plane field of view 240x240 mm2 

with slice thickness 1.0 mm, yielding voxel size of 1.0 x 1.0 x 1.0 mm3 (Peraza et al., 2014; 

Schumacher et al., 2020b). Pre-processing and segmentation of acquired T1 weighted images 

were performed by Dr Sean Colloby using FreeSurfer (version 5.1, 

http://surfer.nmr.mgh.harvard.edu/) (Dale et al., 1999; Fischl and Dale, 2000) as in previous 

analyses which included part of the cohort of this thesis and were reported in their respective 

publications (Colloby et al., 2011; Blanc et al., 2015). The automated processing pipeline 

involved intensity non-uniformity correction, Talairach registration, removal of non-brain 

tissue (i.e. skull stripping), white matter (WM) and subcortical grey matter (GM) 

segmentation, tessellation of GM-WM boundary, and surface deformation following GM-

http://surfer.nmr.mgh.harvard.edu/
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Cerebrospinal fluid (CSF) intensity gradients for optimal placing of GM-WM and GM-CSF 

borders. Modelling of cortical surface was followed by surface inflation, transformation to 

spherical atlas and parcellation into regions according to the atlas developed by Destrieux et 

al. (2010). This parcellation consists of 148 cortical areas and is entirely based on anatomical 

information. Respective network nodes are obtained as mass centroids across each region 

vertices. Cortex parcellation and coordinates of network nodes in the Montreal Neurological 

Institute (MNI) reference space are reported respectively in Figure 4.1 and in Appendix B. 

Resulting images from each processing step were visually inspected and, were required, 

manually corrected to ensure accurate segmentation (Blanc et al., 2015). 
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Figure 4.1 – Destrieux parcellation on MNI ICBM152 template. Cortical surface and 
parcellation were visualised with Brainstorm toolbox for MATLAB. Views from top-left to 

bottom-right: left, right, dorsal, internal left, internal right, ventral. Network nodes 
corresponded to mass centroids of segmented regions. 

 

4.3.2. Cortical source localisation 

Cortical source estimation from EEG signals was obtained through sLORETA technique 

(Pascual-Marqui, 2002) implemented in the Brainstorm toolbox for Matlab (Tadel et al., 2011) 

and described in section 1.3.3. This method has been proven to be the most accurate 

compared with other existing non-parametric methods in literature (Grech et al., 2008), and 

suitable for connectivity analysis (Hincapié et al., 2017). Since digitised sensor localisation was 

unavailable, EEG sensors distribution was manually co-registered over the scalp for each 

participant using the Brainstorm toolbox (Stropahl et al., 2018) before performing any further 
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step. An example of co-registration outcome from one subject is shown in Figure 4.2. Head 

model based on the individual anatomical data was obtained with boundary element method 

(BEM) as implemented in OpenMEEG (Kybic et al., 2005; Gramfort et al., 2010). Noise 

covariance was set to an identity matrix as recommended in the Brainstorm’s tutorial for not 

available baseline recording, cortical sources were reconstructed with assumption of normal 

dipole orientations with respect to cortical surface, and resulting time-series were averaged 

within each of the 148 regions defined with the Destrieux atlas (Destrieux et al., 2010). 

Channels which were removed and interpolated during the pre-processing step were excluded 

from source localisation to reduce the risk of false positives. Signs of opposite sources within 

each region were flipped to match the main orientation and averaged. Before any analysis, 

source activity from all subjects was projected back to the ICBM152 template (Mazziotta et 

al., 2001) using Shepard’s interpolation method (Shepard, 1968). 

Validation of the implemented pipeline was performed using data collected for a different 

study involving active motor task, where participants were asked to maintain isometric 

contraction by opposition of thumb and index (Graziadio et al., 2010). Four subjects were 

randomly chosen, respective EEG task data were pre-processed, source localised, and power-

spectrum topographies generated. For the source localisation pipeline being deemed correct, 

prominent power activation across time points within the β-band over sensory-motor areas 

was expected, as described in section 1.3.1. This was in fact the case, as shown in Figure 4.3. 

 

 

Figure 4.2 – MRI – EEG cap co-registration. White dots correspond to EEG cap sensors. 
Outcome produced with Brainstorm toolbox.  
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Figure 4.3 – Instantaneous β-band power activation during motor task in four participants. 
Prominent activation emerges over either left or right sensori-motor areas. 

 

4.3.3. Graph theory 

Connectivity between localised cortical sources was computed with WPLI, whose 

implementation is described in detail in section 2.4. As described in section 3.3.2, obtained 

graphs were proportionally thresholded at densities spanning between 3% and 60%, weighted 

network features were computed for all participants and averaged across thresholding values. 

In this case, comparison between DLB and other groups was only performed for scenarios 

which were found to be significant in the sensor domain analysis as reported in the previous 

chapter. Mann-Whitney U tests were carried out for each scenario (one-tail, p < 0.05) as listed 

in Table 4.2. Small-worldness was not extracted in this analysis as its value is directly 

dependent on Cw and Lw. 

 

vs DLB 

HC 
α-band: WPLI, Kw, Cw, Lw, Qw 

β-band: WPLI, Cw 

AD 
θ-band: Qw 

β-band: WPLI, Kw, Cw, Lw, Qw 

 

Table 4.2 – Tested network metrics. Only measures which were significantly different 
between DLB and the other groups in Chapter 3 were extracted. Subscript W = weighted 

measure. 
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4.3.4. Topographical differences 

To test the correlation between connectivity strength and DF in DLB and AD, analysis was 

restricted to α-band. Specifically, affected topological network patterns in DLB and AD against 

HC were obtained with NBS (Zalesky et al., 2010), of which implementation is described in 

detail in section 2.5. One-tailed t-tests were performed for AD < HC and DLB < HC scenarios at 

tth = 3.5; FWER was controlled by performing a permutation test (5000 permutations), 

components were deemed significant at p < 0.025, and were visualised with the BrainNet 

Viewer (Xia et al., 2013). Average strength across connections belonging to NBS component 

(WPLINBS) was computed for all the subjects. 

 

4.3.5. Dominant frequency 

DF and DFV in all groups over the occipital lobe were computed. Sources belonging to the 

occipital lobe were first selected from the parcellation as shown in Figure 4.4; these included: 

parieto-occipital sulcus, anterior occipital sulcus, occipital inferior gyrus and sulcus, occipital 

superior and transverse sulcus, occipital superior gyrus, middle occipital gyrus, middle 

occipital gyrus and Lunatus, transverse collateral posterior sulcus, lingual gyrus, calcarine 

sulcus, cuneus and occipital pole. EEG source time-series were transformed to the time-

frequency domain using Windowed Fourier Transform (3-10 cycles adaptive windows width, 

0.5 Hz frequency step), and power-spectrum for each 2-s epochs of each subject was obtained. 

Lowest number of clean epochs across subjects was extracted from all recordings, which 

resulted in selecting 40 epochs from each subject. DF of each epoch was measured by 

obtaining the frequency value corresponding to the maximum power peak between 4-13 Hz. 

Mean DF for each subject was then obtained by averaging DF across epochs (Bonanni et al., 

2008), whilst DFV was computed as standard deviation (Peraza et al., 2018). Differences in DF 

and DFV values across groups were assessed with Kruskal-Wallis test (p < 0.05) followed by 

post hoc Mann-Whitney U tests; test tails were chosen with prior hypothesis based on DF and 

DFV findings reported in previous publications (Peraza et al., 2018; Stylianou et al., 2018) (p < 

0.05, DF tests: HC > AD, HC > DLB, AD > DLB, one-tailed; DFV tests: one-tailed for HC < AD and 

AD > DLB, two-tailed for HC vs DLB; Holm-Bonferroni corrected). 
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Figure 4.4 – Regions belonging to the occipital lobe (ICBM152 template). 22 regions were 
selected from Destrieux parcellation. Views from top-left to bottom-right: left, right, dorsal, 

internal left, internal right, ventral. 

 

4.3.6. Correlation between connectivity and dominant frequency 

Connectivity values were averaged across network edges belonging to NBS components, and 

correlation between averaged connectivity and DF was tested in both AD and DLB as well as 

within HC group for both NBS networks with Spearman rank correlation test (p < 0.05, one-

tailed, Holm-Bonferroni corrected for two NBS tests). If any positive correlation was found 

between the two measures, a random forest regressor was implemented to compute 

prediction accuracy of DF from NBS average strength. To this purpose the Scikit-Learn 

framework in Python (version 0.20.1) was used. Cross-validation was implemented with k-

folds algorithm (10 folds), and prediction accuracy was obtained as [100 · (1 − 𝑀𝐴𝑃𝐸)]%, 
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where MAPE is the mean absolute percentage error, computed as 
1

𝑛
∑ |

𝐷𝐹𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑−𝐷𝐹𝑡𝑟𝑢𝑒

𝐷𝐹𝑡𝑟𝑢𝑒
|𝑛  (De 

Myttenaere et al., 2016), where n is the number of participants of the tested group. 

 

4.4. Results 

4.4.1. Network alterations in DLB 

Alteration of connectivity strength and weighted graph features in DLB compared with AD and 

HC also emerged in the source domain, as all Mann-Whitney U test results were significant (p 

< 0.05), as shown in Figure 4.5. WPLI in DLB group was lower than HC in both α- and β-band, 

whilst DLB and AD were significantly different in the β-band. Node degree and clustering 

coefficient were lower than HC and AD respectively in the α- and β-band, and the latter 

measure was also reduced in the β-band compared with HC. Characteristic path length and 

modularity were higher compared with HC and AD respectively in the α- and β-band networks, 

and modularity was also higher than AD in the θ-band. 
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Figure 4.5 – Graph theory measure comparisons in the source domain. Outcome of 
comparisons in the sensor domain emerges identically in the source domain. Small-

worldness was not computed as directly dependent on Cw and Lw. *significant Mann-
Whitney U test (p < 0.05, one-tail). 

 

4.4.2. NBS components (α-band) vs DF: outcome of correlation analysis 

Outcome of NBS tests are shown in Figure 4.6. AD < HC test yielded one network component 

comprising 43 nodes and 54 edges (p = 0.024), whilst DLB < HC resulted in one component 

with 59 nodes and 85 edges (p = 0.013). In both scenarios, affected components comprised 

posterior-anterior patterns, including areas belonging to attentional networks. AD group 

showed affected dorsal network over the right hemisphere, whilst weaker connectivity 

emerged between left insula and cingulate cortex. Similarly, connections over dorsal regions 

were weaker in DLB within the right hemisphere, although affected connectivity within ventral 

regions including occipital cortex, inferior temporal cortex, cingulate, insula, and ventral PFC 
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was more prominent than in AD. In both conditions, affected patterns were lateralised over 

the right hemisphere. Reduced inter-hemispheric connectivity also emerged in both groups. 

DF over the occipital lobe was reduced in both disease groups compared to HC, and lower in 

DLB than in AD. DFV was significantly higher in AD as compared with both HC and DLB. As 

shown in Figure 4.7, all tests survived Holm-Bonferroni correction. 

Outcome of correlation tests is shown in Figure 4.8. Correlation between WPLINBS and DF was 

significant for DLB group (ρ = 0.483, p = 0.014), whilst only a trend towards significance 

emerged in AD group (ρ = 0.250, p = 0.099). Hence, weaker functional connectivity between 

NBS detected areas corresponded to more pronounced DF negative shift in DLB, but not 

significantly in AD. For each differential component, correlation between WPLINBS and DF in 

HC group was also tested, and no significant results emerged. Random forest regressor was 

then trained with WPLINBS values from DLB < HC test, and DF values of DLB subjects were 

predicted with accuracy of 88.58%. 

 



 
89 

 

 

 

Figure 4.6 – Outcome of NBS analysis within the α-band in the source domain. Green lines 
represent edges belonging to a significantly affected network component. Both groups show 
affected attentional networks, and DLB also shows weakened visual ventral network. A: AD < 

HC; B: DLB < HC. 
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Figure 4.7 – DF and DFV over the occipital lobe. DF was lower in patient groups compared to 
HC, and lower in DLB as compared with AD. DFV was higher in AD compared to HC and DLB. 

**significant Mann-Whitney U test surviving Holm-Bonferroni correction (three tests for 
each measure).  

 

 

Figure 4.8 – WPLINBS vs DF: linear fitting for AD and DLB. Significant correlation emerges from 
Spearman rank test for DLB, but not for AD. Thicker line represents significant correlation 

trend. Blue: AD (ρ = 0.250); red: DLB (ρ = 0.483). 
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4.5. Discussion 

In this chapter network graph features measured in the source domain were compared 

between DLB, AD and HC. The analysis focused on those measures which were significantly 

differential between groups at the sensor level as reported in Chapter 3, to assess whether 

any resonance exists between the sensor and the source domains. As a result, differential 

trends in the source domain matched with the ones obtained with sensor domain analysis, 

suggesting that differences which emerged with the latter approach can be deemed reliable 

and not influenced by non-cortical sources. The NBS analysis within the α-band revealed that 

attentional networks are affected in both AD and DLB, in line with speculations from previous 

studies based on EEG and fMRI. DF differences between groups over posterior regions showed 

the pattern DLB < AD < HC, consistently with previous EEG studies. Reduced average 

connectivity within NBS component in DLB was associated with more pronounced DF 

reduction, suggesting that DF changes in DLB might be as well associated with impairment of 

attentional processing at rest. 

 

4.5.1. Graph measures are equally altered in DLB at source and sensor level 

Differences between DLB and other groups were tested for those graph measures which were 

significantly altered in DLB at the sensor domain. Specifically, comparisons included: reduced 

connectivity strength and clustering coefficient in DLB compared to HC in the α- and β-band, 

and compared to AD in the β-band; lower node degree and higher characteristic path length 

against HC and AD respectively in α- and β-band; higher modularity compared to HC and AD 

respectively in α-band and θ-β-band. Notably, both connectivity strength and graph measures 

differential trends resonated between the two domains, as all statistical test results were 

significant. This result supports the idea that for diagnostic purposes the methodological 

approach, i.e. scalp or source analysis, does not introduce significant variability into the 

analysis. However, this idea partially contrasts with recent studies comparing network 

measures at source, i.e. iEEG or source localised, and scalp level (Snyder and Smith, 2015; Lai 

et al., 2018; Snyder et al., 2018). For instance, Lai et al. (2018) compared EEG connectivity 

strength and graph features between the two domains using diverse source localisation 

techniques, including sLORETA, and connectivity measures. They found that connectivity 
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strength strongly correlated between the two domains, whereas for graph features only 

moderate correlation emerged in the best case, i.e. when connectivity was assessed with 

metrics insensitive to volume conduction. A number of methodological aspects might explain 

this partially contrasting outcome. First, their study was based on MST graphs; such approach 

might omit local topological organisation of the network which would instead emerge through 

graph proportional thresholding, as discussed in section 3.5.5. Second, source localisation in 

the present study was based on individual MRI recordings, which likely yielded more accurate 

source reconstruction as compared with their use of standard template (Cho et al., 2015). 

Third, in their study binary graph measures were used, whilst the present analysis is based on 

weighted network measures, which have been proven in Chapter 3 to be more consistently 

associated with network topology. On the other hand, in the reported study comparison 

between sensor and source level was performed only at the group level. Hence, individual 

variances leading to potential inconsistency between sensor and source domain might be 

attenuated. Similarity of between-group graph differences across source and scalp domains 

supports EEG as a reliable diagnostic tool from a clinical perspective. However, whilst scalp 

recordings may therefore be robust enough for clinical purposes, source reconstructed 

measures can potentially provide additional insights into topological distribution of 

functionally affected cortical areas, as discussed in the next sections. 

 

4.5.2. Attentional networks are affected in DLB 

Another objective in this chapter was to assess whether DF shifts over occipital regions in DLB 

are associated with connectivity alteration. As discussed in section 1.4.2, DF has been 

consistently reported as a reliable differential parameter for DLB against AD and HC (Bonanni 

et al., 2008; Peraza et al., 2018; Stylianou et al., 2018). The aim of this analysis was to provide 

further informative elements supporting speculation on associated pathological mechanisms. 

To this purpose, most consistently affected connectivity patterns in DLB and AD were spatially 

assessed using NBS. Comparison of the two groups against HC yielded differential network 

components which included parietal and frontal regions, as well as affected connectivity 

between cingulate and insular cortex. These areas are known to be part of the default mode 

and attentional networks, as assessed in previous studies with different modalities (Corbetta 

and Shulman, 2002; Fox et al., 2006; Vossel et al., 2014; Raichle, 2015; Jimenez et al., 2016). 
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As initially proposed by Corbetta and Shulman (2002), top-down cognitive driving of attention 

is likely associated with dorsal-frontoparietal information flow, whilst sensitivity to external 

and unexpected stimuli is processed by a ventral-frontoparietal stream. Task-based fMRI 

(Kastner et al., 1999; Shulman et al., 1999; Corbetta et al., 2000; DiQuattro and Geng, 2011) 

and M/EEG (Siegel et al., 2008; Simpson et al., 2011) studies have reported consistent 

activations of above mentioned areas during visual clue detection tasks; sustained dorsal 

areas activation was observed, whilst ventral areas were triggered by unexpected clues, and 

interaction emerged between the two streams. Studies based on resting-state paradigms 

were also successful in reporting such segregation. For instance, an fMRI study by Fox et al. 

(2006) reported higher correlation between areas belonging to one or the other attentional 

network, and Morillas-Romero et al. (2015) found lower frontal and parietal resting-state EEG 

theta/beta ratio associated with better orienting abilities as well as higher parietal delta/beta 

ratio positively correlating with score of self-reported attention control questionnaire. AD and 

DLB are typically featured with attentional dysfunctions (Perry and Hodges, 1999; Foldi et al., 

2002; Bradshaw et al., 2006; Ferman et al., 2006), and functional alteration in fronto-parietal 

areas reported in previous task and resting-state studies have been in fact consistently 

associated with such impairment (Li et al., 2012; Franciotti et al., 2013; Peraza et al., 2014; 

Kobeleva et al., 2017). The data driven approach pursued in the present chapter provides 

further topographical evidence of attention-related functional impairment in AD and DLB. 

Also, altered connectivity between regions belonging to the default mode network at rest is 

in line with previous findings in fMRI studies (Galvin et al., 2011; Franciotti et al., 2013). NBS 

test between DLB and HC also produced affected pathways belonging to the visual ventral 

network, i.e. linking occipital and IT areas. This is likely due to the fact that part of the DLB 

cohort presents complex visual hallucinations, which are thought to be associated with 

affected information flow within visual networks (Collerton et al., 2005; Tsukada et al., 2015). 

This aspect is investigated in Chapter 6. Although differential features between AD and DLB 

were not detected in the α-band network, these emerged within the β-band, as reported in 

Chapter 3 with the sensor-domain investigation. Source domain topographical analysis in the 

β-band is presented in the next chapter. 
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4.5.3. Reduced DF is associated with lower functional connectivity in DLB 

Comparison across groups of DF and DFV over the occipital lobe yielded the differential 

pattern DLB < AD < HC, in line with all previous findings (Briel et al., 1999; Bonanni et al., 2008; 

Jackson and Snyder, 2008; Roks et al., 2008; Peraza et al., 2018; Stylianou et al., 2018). The 

source localisation approach pursued in the presented analysis allows for detailed focus on 

posterior cortical regions, which were significantly affected in the present study. As discussed 

in section 1.4.2, DF abnormalities in AD and DLB have been consistently associated with 

disruption of the cholinergic system (Perry et al., 1991; Tiraboschi et al., 2000; Tiraboschi et 

al., 2002; Lemstra et al., 2003; Delli Pizzi et al., 2015b). However, there is no investigation to 

date assessing whether such alteration and functional connectivity abnormalities originate 

from the same disease-related process. Based on the results obtained from correlation 

analysis, this seems to be the case for DLB, but not for AD. Notably, DLB-DF values could be 

predicted based on WPLINBS using a random forest regressor with accuracy close to < 90%. This 

suggests that in DLB both phenomena might depend on the same pathological mechanism. 

Correlation between WPLINBS and DF in the HC group did not yield any significant result for 

either NBS components, strengthening the idea that such correlation may be associated with 

a DLB-specific pathological mechanism. From the functional perspective, establishing a 

causality relationship between the two biomarkers is challenging. It is possible that either 

affected communication between brain areas might cause the posterior EEG slowing, or that 

the posterior abnormal activity propagates through the attentional network altering its 

efficiency. This latter speculation would resonate with the fact that the EEG slowing is 

generally detected over the whole scalp, although less prominently (Peraza et al., 2018; 

Stylianou et al., 2018), including anterior regions (Franciotti et al., 2020). Further disruption 

of the cholinergic system in DLB compared with AD might be generating a more severe 

functional alteration, which reflects in both DF slowing and connectivity reduction, whilst 

some degree of preservation in AD might let the two phenomenon still not be equally affected. 

To which extent cholinergic dysfunctions in the two conditions are associated with respective 

EEG alterations is still unanswered. This aspect will be investigated in the next chapter. 
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4.6. Conclusions 

This chapter followed up on the sensor domain analysis reported in Chapter 3 by using source 

localisation. Network measures which were found to be differential at the sensor level 

between DLB and other groups were tested in the source domain. All tested network features 

were significantly different between groups, supporting EEG network analysis as robust 

diagnostic approach. Second aim of this analysis was to assess whether the well reported DF 

alteration in DLB is associated with detected functional connectivity changes. This hypothesis 

was valid as DF values in DLB, but not in AD, positively correlated with connectivity strength 

of most consistently affected pathways, which included attentional and default mode 

networks. Overall, the presented analysis further validated EEG capability as a diagnostic tool 

and provided a step forward towards association between disease phenotype and underlying 

pathological mechanisms in DLB. Direct comparison between AD and DLB functional network 

topographies at the cortical level as well as association between DF and cholinergic system is 

presented in the following chapter. 
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Chapter 5. Modular Segregation and Cholinergic Alteration in Dementia with Lewy 

Bodies 

 

5.1. Summary 

In Chapter 3 it was observed that the EEG β-band network comprised most of the differential 

features between AD and DLB, with average WPLI being the most discriminative variable. DLB 

network was also more segregated compared to AD. As discussed in the previous chapter, 

analysis in the source domain can provide further mechanistic insights into processes 

associated with functional abnormalities. The primary aim of the present chapter was to 

assess affected network patterns and modular distribution in DLB compared to AD at the 

cortical level using source localisation. In addition, integrity of the cholinergic system was 

measured by obtaining structural connectivity between the cholinergic cell group of the basal 

forebrain, thalamus, and occipital cortex, and comparing it between groups. Correlation with 

DF values in both groups was also tested to investigate any association between cholinergic 

system and posterior EEG α-band slowing. Modular analysis revealed that DLB group presents 

higher number of modules compared to AD, due to frontal and temporal connectivity 

disruption. Two main differential clusters emerged from NBS analysis, each comprising 

intrahemispheric connections, and connected by only one interhemispheric edge. The right 

temporal lobe was the most consistently affected, due to reduced connectivity between 

inferior temporo-occipital and prefrontal regions. Higher disruption of EEG source network in 

DLB also reflected into higher modularity, which positively correlated with better cognitive 

performance. Since lower modularity was associated with AD pathology, low modularity 

values within DLB groups associated with worst cognitive performance might be reflecting the 

presence of mixed AD-LB pathology cases within DLB cohort. This idea might also explain the 

fact that association between NBM-occipital cortex white matter tract integrity and DF over 

the occipital cortex emerged in both groups, but was less consistent in DLB, although still 

significant. Among EEG features, connectivity was the most discriminative variable between 

groups. Overall, these results provide further validation to EEG as a diagnostic tool for DLB 

and shows that its features may significantly reflect persistence of mixed-pathology condition. 
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5.2. Introduction 

In the sensor domain analysis, most topological differences in EEG network between DLB and 

AD were detected in the β-band. As reported in Chapter 3, the best differential measure 

between conditions was connectivity strength, which was lower in DLB compared to AD. From 

a clinical perspective, this result is advantageous since computation and interpretation of 

connectivity strength is a more immediate measure compared to graph features estimation. 

In addition, it was shown in Chapter 4 that source localisation combined with NBS is an 

effective approach to infer cortical topographical differences between groups. The analysis 

reported in Chapter 3 also showed that EEG network in DLB is more segregated than in AD 

within the β-band network. Greater segregation in DLB is in agreement with an fMRI study 

(Peraza et al., 2015) where it is suggested to reflect distribution of stronger connections within 

the network over shorter edges compared to AD topology, as also found in the EEG sensor 

domain analysis and shown in Figure 3.2b. Such distribution likely leads to higher disruption, 

hence segregation of the network. However, this aspect was not further investigated in other 

studies, and modular distribution in DLB and its differences with AD are still unknown. 

In the previous chapter, it was also shown that DF is significantly lower in DLB than in AD over 

the occipital lobe, in line with previous investigations (Briel et al., 1999; Bonanni et al., 2008; 

Peraza et al., 2018; Stylianou et al., 2018). In addition, DF values were associated with reduced 

average strength of those α-band network pathways which were significantly weakened 

compared with HC. This latter result suggested that both DF and functional alterations in DLB 

might originate from the same disease-related mechanisms. As discussed in the first chapter, 

the most prevailing speculation in the literature regarding the source of these abnormalities 

is a dysfunction of the cholinergic system. Specifically, it has been speculated that DF slowing 

might be associated with neurodegeneration of cholinergic projection towards the occipital 

lobe (Babiloni et al., 2017). This hypothesis is supported by several evidences which include 

degeneration of the basal forebrain in AD with prominent DF slowing (Riekkinen et al., 1991) 

and in DLB (Hepp et al., 2017a; Sakai et al., 2019), as well as DF restoring capabilities of 

cholinergic treatment (Agnoli et al., 1983; Balkan et al., 2003; Kai et al., 2005). However, 

existence of any direct correlation between DF slowing and degeneration of cholinergic 

projections has still not been investigated. 
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5.2.1. Objective 

The first aim of this chapter was to investigate topographical differences between DLB and AD 

in the β-band; specifically, connectivity strength and modular distribution in the source 

domain were assessed and compared between groups. The second aim of this chapter was to 

assess whether cholinergic projections towards the cortex are more affected in DLB compared 

to AD, and whether in any of the groups any association between cholinergic pathways and 

EEG slowing emerges. 

 

5.3. Methods 

Details on experimental protocol, EEG acquisition and measured network features are 

reported in Chapter 2. A subsample with available EEG, MRI and DTI data was selected for this 

analysis. Also, stricter selection was performed based on the quality of structural recording, 

according to evaluation performed in a previous study including participants of the same 

cohort (Blanc et al., 2015). The final subsample comprised 26 AD and 18 DLB (see Table 5.1). 

EEG was recorded in eyes-closed resting state with high-density sensor cap (128 electrodes). 

Recorded signals were pre-processed (section 2.3) (number of removed channels: 14 ± 10; 

number of removed epochs: 13 ± 10; number of removed ICA components: 41 ± 10), source 

localised and connectivity between cortical sources was measured with WPLI and averaged 

across time and frequency bins within the β-band (14-20.5 Hz). Modularity (QW) was 

computed on non-thresholded WPLI matrices and compared between groups with Mann-

Whitney U test (one-tailed, p < 0.05). 
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 AD (N=26) DLB (N=18) p-value 

Age 77.15 ±7.50 76.28 ±6.64 df=1, p-value=0.459₸ 

Male/Female 20/6 14/4 df=1, p-value=0.947ⱡ 

MMSE 21.15 ±3.71 23.00 ±4.10 df=1; p-value=0.157₸ 

CAMCOG total 69.88 ±13.64 74.56 ±13.61 df=1; p-value=0.599₸ 

NPI hall 0 0 1.56 ±1.79 / 

CAF total 0 0 3.83 ±3.92 / 

Animal  
naming 

11.62 ±4.78 10.67 ±3.71 df=1; p-value=0.254₸ 

UPDRS 2.38 ±2.21 15.50 ±8.10 / 

Angle  
discrimination 

18.69 ±2.35 15.82 ±5.19 df=1, p-value=0.051₸ 

FAS  
Verbal fluency 

28.77 ±16.18 20.28 ±10.74 df=1, p-value=0.077₸ 

Trail making test A 77.15 ±55.20 110.82 ±72.67 df=1, p-value=0.055₸ 

ACheI (yes/no) 24/2 17/1 df=1, p-value=0.782ⱡ 

LEDD 0 0 163 ±213 / 

 

Table 5.1 – Demographic data (subsample) and clinical scores. ₸ Unpaired Mann-Whitney U 
test, ⱡ χ2 test. 

 

5.3.1. Magnetic resonance imaging recording 

Individual MRI T1 recordings were obtained on a 3-T Philips Intera Achieva scanner with 

MPRAGE sequence, sagittal acquisition, echo time 4.6 ms, repetition time 8.3 ms, inversion 

time 1250 ms, flip angle=8°, SENSE factor = 2, in-plane field of view 240x240 mm2 with slice 

thickness 1.0 mm, yielding voxel size of 1.0 x 1.0 x 1.0 mm3 (Peraza et al., 2014; Schumacher 

et al., 2020b). Pre-processing and segmentation of acquired T1 weighted images was 

performed by Dr Sean Colloby using FreeSurfer software package (version 5.1, 

http://surfer.nmr.mgh.harvard.edu/) (Dale et al., 1999; Fischl and Dale, 2000) as in the 

previous analyses which included part of the cohort of this thesis and were reported in their 

respective publications (Colloby et al., 2011; Blanc et al., 2015). The automated processing 

pipeline involved intensity non-uniformity correction, Talairach registration, removal of non-

brain tissue (i.e. skull stripping), WM and subcortical GM segmentation, tessellation of GM-

WM boundary, and surface deformation following GM-CSF intensity gradients for optimal 

placing of GM-WM and GM-CSF borders. Modelling of cortical surface was followed by surface 

inflation, transformation to spherical atlas and parcellation into regions according to the atlas 

http://surfer.nmr.mgh.harvard.edu/
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developed by Destrieux et al. (2010). Respective network nodes are obtained as mass 

centroids across each region vertices. Resulting images from each processing step were 

visually inspected and, where required, manually corrected to ensure accurate segmentation 

(Blanc et al., 2015). 

DTI recordings were performed with a 2-dimensional spin-echo, echo planar imaging 

diffusion-weighted sequence with 59 slices: TR = 6100 ms; TE = 70 ms; flip angle = 90°; field of 

view = 270 x 270 mm; pixel size= 2.1 x 2.1 mm; slice thickness = 2.1 mm. Images were diffusion 

weighted along 64 uniformly distributed directions (diffusion contrast b = 1000 s·mm-2), and 

six acquisitions did not have any diffusion weight applied (b = 0 s·mm-2) (Firbank et al., 2007). 

 

5.3.2. Cortical source localisation 

The pipeline for EEG source reconstruction is reported in detail in section 4.3.2. Briefly, cortical 

source estimation from EEG signals was obtained through sLORETA technique (Pascual-

Marqui, 2002) as implemented in the Brainstorm toolbox for Matlab (Tadel et al., 2011) and 

described in section 1.3.3. EEG sensors distribution was manually co-registered over the scalp 

for each participant using the Brainstorm toolbox (Stropahl et al., 2018) before performing 

any further steps. Head model based on the individual anatomical data was obtained with 

boundary element method (BEM) as implemented in OpenMEEG (Kybic et al., 2005; Gramfort 

et al., 2010). Noise covariance was set as identity matrix, cortical sources were reconstructed 

with assumption of normal dipole orientations with respect to cortical surface, and resulting 

time-series were averaged within each of the 148 regions defined with the Destrieux atlas 

(Destrieux et al., 2010). Channels which were removed and interpolated during the pre-

processing step were excluded from source localisation to reduce the risk of false positives. 

Signs of opposite sources within each region were flipped to match the main orientation and 

averaged. Before any analysis, source activity from all subjects was projected back to the 

ICBM152 template (Mazziotta et al., 2001) using Shepard’s interpolation method (Shepard, 

1968). 
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5.3.3. Topographical differences 

Differential topographical network patterns between DLB and AD were obtained using NBS 

(Zalesky et al., 2010), of which implementation is described in detail in section 2.5. One-tailed 

t-tests were performed (DLB < AD) at two different tth values, i.e. 𝑡𝑡ℎ1
= 3.3 and 𝑡𝑡ℎ2

= 3.5; 

FWER was controlled by performing a permutation test (5000 permutations), network 

differential components were deemed significant at p < 0.05, and were visualised with the 

BrainNet Viewer (Xia et al., 2013). Average strength across connections belonging to the NBS 

components (WPLINBS) was computed and compared between groups (one-tailed Mann-

Whitney U test, p < 0.05). 

Modular distribution was obtained for both groups using routines implemented in the BCT. 

First, for each EEG network, the optimal community structure was obtained and each node 

was assigned to a module; an agreement matrix was obtained for each group, where each 

element aij indicates the number of networks in the group for which i-node and j-node belong 

to the same module; elements of the agreement matrix were then converted to probabilities 

according to the formulation 
𝑎𝑖𝑗

𝑛
, where n is the number of networks of each group; the 

agreement matrix was thresholded preserving probabilities above 60%; eventually, modular 

distribution was obtained as consensus matrix, whose computation was based on the 

algorithm developed by Lancichinetti and Fortunato (2012). Obtained modular distribution 

was visualised with the BrainNet Viewer, by marking nodes belonging to the same module 

with the same colour. For each group, proportion of within-module NBS connections was 

obtained based on the group’s modular distribution. This measure was computed as a ratio 

between number of within-module NBS connections and total number of NBS connections. 

 

5.3.4. Correlation between EEG network measures and cognitive performance 

Correlation between network metrics (WPLINBS and Qw) and MMSE in DLB group was tested 

with Spearman rank correlation test (p < 0.05, Holm-Bonferroni corrected, two tests). If any 

significant correlation was found, prediction accuracy was tested by implementing a random 

forest regressor using the Scikit-Learn framework in Python (version 0.20.1). Cross-validation 

was implemented with k-folds algorithm (10 folds), and prediction accuracy was obtained as 
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[100 · (1 − 𝑀𝐴𝑃𝐸)]%, where MAPE is the mean absolute percentage error, computed as 

1

𝑛
∑ |

𝑀𝑀𝑆𝐸𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑−𝑀𝑀𝑆𝐸𝑡𝑟𝑢𝑒

𝑀𝑀𝑆𝐸𝑡𝑟𝑢𝑒
|𝑛  (De Myttenaere et al., 2016), where n is number of DLB 

participants. 

 

5.3.5. Dominant frequency 

DF and DFV in DLB and AD groups over the occipital lobe were computed, as performed in 

Chapter 4 with the larger subsample. Sources belonging to the occipital lobe were first 

selected from the parcellation as shown in Figure 4.4. EEG source time-series were 

transformed to the time-frequency domain using Windowed Fourier Transform (3-10 cycles 

adaptive windows width, 0.5 Hz frequency step), and power-spectrum for each 2-s epochs of 

each subject was obtained. Lowest number of clean epochs across subjects was extracted 

from all recordings, which resulted in selecting 40 epochs from each subject. DF of each epoch 

was measured by obtaining the frequency value corresponding to the maximum power peak 

between 4-13 Hz. Mean DF for each subject was then obtained by averaging DF across epochs, 

whilst DFV was computed as standard deviation. Differences in DF and DFV values between 

groups were assessed with Mann-Whitney U tests (p < 0.05, one-tailed). 

 

5.3.6. Probabilistic tractography and correlation with EEG 

Integrity of white matter fibre tracts connecting the occipital lobe, NBM and thalamus was 

compared between AD and DLB, by testing whether number of fibres was lower in DLB 

compared to AD for each of the three tracts of interest (Mann-Whitney U test, one-tailed, p < 

0.05). Tractography pipeline was implemented with the FMRIB's Diffusion Toolbox (Jenkinson 

et al., 2012). DTI recordings were first corrected for eddy current distortion, movement and 

motion-induced signal dropout using the eddy package (Andersson et al., 2016; Andersson 

and Sotiropoulos, 2016), preserving the original gradient directions. Local probability 

distribution of fibre direction was then assessed at each voxel with automatic detection of 

number of fibres per voxel (Behrens et al., 2003a; Behrens et al., 2007). Probabilistic 

tractography algorithm (Behrens et al., 2003a; Behrens et al., 2007) was eventually used to 

track white matter fibres connecting the defined ROIs. Probability between voxels was 
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estimated as proportion of connecting fibres over 5000 sampled fibres per voxels. ROI masks 

defining the occipital lobe, thalamus and NBM, were used as tractography seeds, and 

connections passing any of the other two ROIs was candidate to be deemed valid. No 

minimum fibre-length was set as termination threshold, whilst streamlines were terminated 

after 2000 steps (i.e. 1 metre), if they turned by more than 80 degrees, if they looped back on 

themselves, or if they left the brain. Any streamline either crossing the ventricles, not being 

contained within the WM, not reaching any other ROI or with a volume fraction of subsidiary 

fibres lower than 0.01 was considered invalid and discarded. The outcome of tractography 

was a structural connectivity matrix of dimension 3 (seed masks) x 3 (target masks). 

Connectivity strength was measured as number of streamlines connecting two different 

regions. Previous studies suggested that streamline count may be a biased measure of 

connectivity, as number of streamlines is directly proportional to ROI sizes and to straightness, 

shortness and simplicity of connection path (Jones, 2010; Jones et al., 2013). Other methods 

which rely on WM properties rather than fibre count have been proposed as indices of 

connectivity, including FA, MD and RD (Conti et al., 2017; Messaritaki et al., 2019; Yeh et al., 

2020). However, principal interest of the present analysis was to infer between-group 

differential connectivity features, rather than assessing individual network properties. Hence, 

it was assumed that any bias associated with the connectivity measure would have equally 

affected the analysed groups, and that any condition-related difference would have emerged. 

Streamlines’ directionality could not be assessed, hence each connectivity matrix S was 

symmetrised by replacing each si,j element with average between itself and sj,I (Cabral et al., 

2011). 

NBM ROI in the MNI space, limited specifically to the Ch4 cholinergic group (Liu et al., 2015), 

was generated with Statistical Parametric Mapping (SPM) Anatomy Toolbox for MATLAB 

(Eickhoff et al., 2005), whilst thalamus MNI ROI was selected from the Harvard-Oxford 

subcortical atlas included in the FMRIB Software Library (Jenkinson et al., 2012). Subcortical 

ROIs were transformed to the subject space using affine and non-linear transformations as 

implemented in the Advanced Normalisation Tools (ANTs) software (Avants et al., 2009). 

Occipital lobe for each subject was defined generating a ROI mask comprising region volumes 

from the Destrieux parcellation as listed in section 4.3.5 and shown in Figure 4.4, i.e. regions 

within which DF was computed. Before performing tractography, ROI masks were 

transformed from subject space to the diffusion space. To this purpose, a linear 
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transformation matrix for each subject was generated with the FLIRT package (Jenkinson et 

al., 2002) using as origin and target respectively a FA map and brain-extracted T1 MRI image. 

Subcortical ROIs as defined in the MNI space are shown in Figure 5.1. 

Association between white matter degeneration and altered EEG activation was also 

investigated. Spearman rank correlation tests (p < 0.05, one-tailed) were performed between 

DF and number of fibre tracts connecting respectively NBM-occipital lobe, NBM-thalamus and 

thalamus-occipital lobe for both AD and DLB groups. 

 

Figure 5.1 – NBM (top) and thalamus (bottom) masks on ICBM152 brain. NBM was 
generated with SPM toolbox, whilst thalamus definition is from the Harvard-Oxford atlas. 

Figure generated with FSLeyes tool (https://doi.org/10.5281/zenodo.1470761). 

 

5.3.7. Diagnostic accuracy: WPLINBS vs Qw vs DF 

Accuracy of group classification was obtained for EEG connectivity strength, modularity, and 

dominant frequency. A random forest classifier was implemented using the Scikit-Learn 

framework in Python (version 0.20.1) and the Imbalanced-Learn library for Python (version 

0.4.3). To perform cross-validation, each group was randomly split in 80% training and 20% 

https://doi.org/10.5281/zenodo.1470761
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test subsets. NBS component and respective WPLINBS were obtained on the training subsample 

and obtained values together with Qw and DF were used to train the classifier. Predictions 

were tested on the remaining 20% subjects. This procedure was performed 60 times, and 

mean accuracy, F1 score, sensitivity, specificity, and AUROC curve were obtained. Iterations 

for which no significant NBS component was detected were excluded from classifier training. 

 

5.4. Results 

5.4.1. Differential topographical patterns 

Modular distribution in both groups is shown in Figure 5.2. In AD group, optimal community 

structure yielded four modules, of which two comprised respectively left and right temporal 

and occipital regions, one included the right PFC, part of the right IT and nodes belonging to 

left parietal regions, and one included left prefrontal areas as well as two nodes belonging 

respectively to parietal and occipital regions. Compared to AD group, DLB showed general 

alteration of modular organisation of the network leading to six modules, driven by disruption 

of left prefrontal and temporal area, and right inferior temporal lobe. 
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Figure 5.2 – Modular distributions. A: AD, four modules; B: DLB, six modules. Nodes marked 
with the same colour belong to the same module. DLB shows higher network disruption 

compared to AD.  

 

Outcome of NBS analysis is shown in Figure 5.3. The less conservative primary statistical 

threshold, i.e. 𝑡𝑡ℎ1
= 3.3, produced one network component comprising 43 nodes and 48 

edges (p = 0.013). This included two ventral intrahemispheric clusters connected with one only 
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interhemispheric edge between the inferior part of the right precentral sulcus and the left 

transverse temporal sulcus. Differentially altered connections within the left hemisphere were 

between occipito-temporal areas and PFC, whilst affected pattern in the right hemisphere 

included connections between occipital, inferior-temporal and superior temporal lobe, and 

PFC. Both hemispheres showed differential patterns comprising the cingulate and the insula. 

With stricter thresholding, i.e. 𝑡𝑡ℎ2
= 3.5, only a significant pattern of six nodes and six edges 

within the right hemisphere survived (p = 0.017), which comprised connections between 

inferior temporal and occipital lobe, and superior and inferior pre/central regions, as shown 

in Figure 5.4. 

 

 

 

Figure 5.3 – NBS outcome for DLB < AD test (tth = 3.3). Affected pathways comprise two 
ventral intrahemispheric clusters. Red edges: NBS outcome for tth = 3.5.  
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Figure 5.4 – NBS outcome for DLB < AD test (tth = 3.5). Resulting component included right 
hemisphere temporal and parietal regions. Nodes are labelled according to the Destrieux 

atlas (S = sulcus; G = gyrus, R = right). 

 

Distribution of connections belonging to the NBS component (tth = 3.3) across modules in AD 

and DLB is shown in Figure 5.5. In the AD group, 27.08% of NBS edges were connecting nodes 

belonging to the same module, whilst in DLB, i.e. the group in which connections detected 

with NBS were more affected, this was the case for only 8.33%. This resulted in 18.75% of NBS 

connections being associated with higher modular disruption in DLB. 
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Figure 5.5 – Modular distribution of NBS component. A: AD group, 27.08% within-module 
edges; B: DLB group, 8.33% within-module edges. Within-module edges are marked with the 
same colour as the module the connected nodes are part of, based on Figure 5.2. Between-

module edges are marked in grey. 
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5.4.2. Connectivity strength and modularity differences 

Distribution within groups of average connectivity of NBS component (WPLINBS) and Qw values 

are shown in Figure 5.6. Compared to the NBS component associated with 𝑡𝑡ℎ1
, NBS 

connections in AD for 𝑡𝑡ℎ2
 were overall higher, leading to a more consistent difference with 

DLB. Modularity (Qw) was significantly higher in DLB compared with AD (p < 0.001). 

Among network measures, only Qw in DLB group showed significant correlation with MMSE (ρ 

= 0.55, p = 0.018), as shown in Figure 5.7. Random forest regressor with cross-validation 

predicted MMSE values from Qw with accuracy of 81.66%. 

 

 

 

Figure 5.6 – WPLINBS and modularity (Qw) distributions. Both measures are significantly more 
affected in DLB compared with AD. 
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Figure 5.7 – Linear fitting for Qw-MMSE trend in DLB. Spearman rank correlation test yielded 
significant positive correlation (ρ = 0.55, p = 0.018), and random forest regressor yielded 

accuracy of 81.66%. 

 

5.4.3. Structural connectivity vs DF: outcome of correlation analysis 

Replication of DF and DFV analysis pursued in Chapter 4 with a smaller subsample produced 

the same outcome, i.e. both measures were lower in DLB compared to AD, as shown in Figure 

5.8. 

Comparison of number of white matter (WM) fibres between groups did not produce any 

significant outcome in any of the three tracts of interest, which included NBM-occipital cortex, 

NBM-thalamus, and thalamus-occipital cortex. However, significant correlation was found 

between average structural connectivity in the NBM-occipital tract and DF values in AD and 

DLB as a whole group (ρ = 0.40, p = 0.004), as well as within the single groups, although more 

consistently in AD (ρ = 0.43, pAD = 0.015, pDLB = 0.039). WM-DF trends are shown in Figure 5.9. 
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Figure 5.8 – DF and DFV over the occipital lobe. DF and DFV were significantly lower in DLB 
as compared with AD. 

 

 

Figure 5.9 – Structural connectivity (NBM – occipital) vs DF: linear fitting for AD and DLB. 
Significant correlation emerges from Spearman rank test in both groups together (ρ = 0.40) 

and within each group (ρAD = ρDLB = 0.43). Thicker line represents significant correlation 
trend. Blue: AD; red: DLB. 
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5.4.4. EEG features: diagnostic accuracy 

Random forest classifier discriminated between DLB and AD with an accuracy of 71.26% ± 

11.48%, F1 score 69.73% ± 12.37%, optimal sensitivity 0.46, optimal specificity 1.00, mean PPV 

77.00% ± 20.32%, mean NPV 72.00% ± 11.07%, AUROC 72% ± 13% (Figure 5.10). Variables 

were ranked based on their importance with first WPLINBS (0.4938 ± 0.0287) followed by Qw 

(0.2718 ± 0.0248) and DF (0.2344 ± 0.0239). 

 

 

Figure 5.10 – ROC curve obtained with random forest classifier, AD vs DLB. Most predictive 
variable was WPLINBS.  
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5.5. Discussion 

The analysis presented in this chapter aimed to directly compare structural and functional 

features between the DLB and AD groups. Since in Chapter 3 significant differences between 

the groups in the sensor domain emerged within the β-band network, differential EEG source 

network features were investigated in the presented analysis within that frequency band. 

Topographical analysis showed that ventral pathways including prefrontal, temporo-occipital 

and parietal areas were more affected in DLB compared to AD. 18.75% NBS connections were 

associated with higher network disruption in DLB, as evidenced by a higher number of 

modules and greater modularity, and where this latter measure positively correlated with 

cognitive performance as assessed with MMSE score, with 81.66% prediction accuracy. 

Despite a lack of difference in structural connectivity, fibre tract integrity between basal 

forebrain and occipital lobe was positively associated with DF values in both groups, although 

more consistently in AD. EEG features yielded discrimination between groups with accuracy 

of 71.26% ± 11.48%, with WPLINBS being the most predictive feature. 

 

5.5.1. DLB network is more segregated than AD 

In line with the sensor domain network, β-band source network was more segregated in DLB 

compared to AD. The optimal community structure obtained with 60% threshold on the 

agreement matrices consisted of four modules in AD and six modules in DLB. Difference in the 

number of modules was mainly driven by disruption of the left prefrontal and part of the right 

temporal modules, as well as redistribution of other modules. Higher propensity of DLB 

network to organise in modules emerged as higher modularity, as also found in the sensor 

domain analysis reported in Chapter 3 and in agreement with a previous fMRI study which 

included the same cohort (Peraza et al., 2015). Outcome of NBS analysis concurs with the idea 

that impairment of long-range connections in DLB compared to AD may lead the network 

towards higher segregation. In fact, affected pathways consisted of posterior-anterior and 

ventral-dorsal projections, whilst short weakened edges did not emerge. Physiological brain 

dynamics have been shown to be also associated with transient modular organisation (Betzel 

et al., 2012). Such dynamics were reported to be slowed in DLB compared to AD in a recent 

study on the same participants cohort (Schumacher et al., 2019). Therefore, higher modularity 
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in DLB might be a consequence of disruption of physiological brain transient states, which 

leads the functional network towards a more segregated organisation. Interestingly, affected 

regions also included the insular cortex and cingulate, which in DLB have been found to show 

dopaminergic deficit (Pilotto et al., 2019), reduced metabolism (Minoshima et al., 2001) and 

enhanced α-synuclein pathology likely involving the von Economo neurons (Kosaka, 1978; 

Gómez-Tortosa et al., 1999; Pletnikova et al., 2005; Blanc et al., 2016; Fathy et al., 2019). These 

latter are known to be involved in fast assessment of complex situations (Allman et al., 2005) 

and salience (Cauda et al., 2013), both parts of physiological cognitive and attentional 

processes which are typically affected in DLB. Future studies combining autopsy and EEG 

might provide additional insights into these DLB-related features and their specificity for 

diagnosis purposes. 

Moreover, the differential pattern within the right hemisphere was consistently weakened in 

DLB and comprised connections within a disrupted module (the teal coloured module in Figure 

5.5). This network component consists of connections between dorsal and ventral areas, 

suggesting that interaction between attentional networks might be particularly affected in 

DLB over the right hemisphere, towards which the ventral network was proposed to be 

lateralised in healthy condition (Corbetta and Shulman, 2002; Corbetta et al., 2008). 

Alternatively, it is possible that such consistent connectivity reduction within the right 

hemisphere is associated with emotional and cognitive features which typically emerge in DLB, 

such as delusion or depression (McKeith et al., 2017). Supporting this speculation is that 

previous studies have attributed a major role in cognitive and emotional processing to the 

right hemisphere (Schwartz et al., 1975; Liotti and Tucker, 1992; Spence et al., 1996) which 

has also been associated with β-band activity (Ray and Cole, 1985; Wang et al., 2013b), as 

described in section 1.3.1. However, MMSE was not significantly different between DLB and 

AD, as reported in Table 5.1. Therefore, perhaps only emotional alteration might be associated 

with such network abnormality. Right-hemisphere-related psychiatric features are reflected 

into the score of NPI questionnaire, as described in section 2.1. To explore the possible 

relationship between psychiatric dysfunctions and right-hemisphere connectivity disruption 

as speculated, Spearman rank correlation test (one-tailed) was performed between 

𝑊𝑃𝐿𝐼𝑁𝐵𝑆𝑡𝑡ℎ2
 and NPI total score in DLB group. Correlation test resulted in a trend towards 

significance (ρ = -0.34, p = 0.082), as shown in Figure 5.11, showing that right-hemisphere 
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psychiatric dysfunctions are at least partly associated with functional connectivity alteration. 

Tests for single subdomains revealed that the detected trend was driven by eating (p = 0.043, 

uncorrected) and sleep disorders (p = 0.075, uncorrected); however, whilst symptom severity 

values within NPI subdomains corresponding to high connectivity values were consistently 

low, weak WPLINBS was overall associated with strong NPI values variability across subjects. 

This likely biased the correlation tests towards a not significant outcome. Further analysis with 

a larger DLB cohort will be needed to reliably assess which specific psychiatric domains as 

measured with NPI subsections are driving the detected correlation trend and are significantly 

associated with the detected connectivity strength weakening. 

 

 

 

Figure 5.11 – Linear fitting between right-hemisphere functional connectivity and NPI total 
score in DLB. Only a trend towards significance emerged from Spearman rank correlation 

test (ρ = -0.34).  
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On the other hand, modularity in DLB showed positive correlation with MMSE, which could 

be predicted with an accuracy of 81.66%. Paradoxically, higher network disruption in DLB was 

associated with better cognitive performance, but not in AD. Any neurobiological explanation 

to this phenomenon remains speculative. Correspondence between 18.75% of differential 

pathways and disrupted modules as shown in Figure 5.5 may suggest that functional modular 

network organisation in DLB acts as a compensatory mechanism aimed to preserve cognitive 

functions, which would otherwise be more affected than in AD due to differences in 

connectivity strength. This speculation resonates with previously reported lower modularity 

associated with ageing (Meunier et al., 2009; Onoda and Yamaguchi, 2013; Song et al., 2014), 

a physiological condition which normally leads to cognitive decline (Gallagher and Colombo, 

1995; Christensen, 2001; Deary et al., 2009; Bishop et al., 2010). Another possible explanation 

may rely on the fact that most DLB cases show coexisting AD pathology (McKeith et al., 2005; 

Schneider et al., 2007; Weisman et al., 2007; Iizuka and Kameyama, 2016), which has been 

associated with low functional modularity using diverse modalities (de Haan et al., 2012b; 

Wang et al., 2013a; Peraza et al., 2015; Jalili, 2017). Concurrence of pathological condition 

might more severely affect cognitive functions whilst prominence of AD component and lower 

LB pathology might result in a reduced segregation of the network, yielding significant 

correlation between the two features as obtained in this analysis. 

 

5.5.2. Cholinergic system is associated with DF 

Structural connectivity between thalamus, basal forebrain and occipital cortex was assessed 

with probabilistic tractography. Main scope of this analysis was to assess whether the 

cholinergic system shows any degeneration in one condition or the other. Although inclusion 

of the basal forebrain, i.e. the main source of cholinergic projections (Mesulam, 1990; Selden 

et al., 1998; Hepp et al., 2017a), among regions of interest might be enough for this purpose, 

the thalamus was also considered due to its cholinergic projections from the reticular 

formation (Yeo et al., 2013) and pedunculpontine nucleus (French and Muthusamy, 2018), its 

regulatory role on EEG oscillations (Lopes da Silva et al., 1973; Schürmann et al., 2000; 

Robinson et al., 2001; Roberts and Robinson, 2008) and its reported involvement in DLB 

clinical phenotype (Delli Pizzi et al., 2015b; Onofrj et al., 2019; Schumacher et al., 2019). 

Unexpectedly, none of the considered white matter tracts were differentially affected 
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between conditions. This result apparently contrasts speculations which associate prominent 

cholinergic disruption with DLB pathology (Perry et al., 1991; Tiraboschi et al., 2000; Tiraboschi 

et al., 2002; Lemstra et al., 2003; Delli Pizzi et al., 2015b). Notably, structural connectivity 

between NBM and occipital cortex was associated with DF values in both groups. This 

outcome introduces novel evidence that α-band activity over the occipital cortex might be 

directly driven by the cholinergic system originating from the NBM.  However, in DLB group 

correlation was not as consistent as in AD, as emerges from the distributions showed in Figure 

5.9 (pAD = 0.015, pDLB = 0.039). In fact, monotonic trend in DLB assessed with Spearman rank 

test appears to be mostly driven by those subjects with number of fibres above 105, whilst 

those below form a randomly distributed cluster. In contrast, a consistent increasing trend 

emerges in AD. As already proposed in the previous section for Qw-MMSE correlation, DLB 

subjects which show an association between WM integrity and DF might again have developed 

coexisting pathology. It could be suggested that WM-DF association reflects control of 

cholinergic system over functional processes in the cortex; such mechanism is still intact in AD 

pathology and only partially affected in mixed pathology where AD component is prominent. 

Instead, in LB-prevalent cases, cholinergic system might be majorly disrupted, as also reflected 

into lower and less variable DF values over time, e.g. lower DFV. In addition, it is possible that 

in DLB a negative shift of DF involves other pathological mechanisms, which are worth of 

investigation in future studies. Interestingly, there was no correlation between any of the WM 

tracts including the thalamus and DF in either groups. It is possible that functional 

abnormalities associated with DLB persist in the thalamus, and their involvement in occipital 

DF slowing might be mediated by the above-mentioned pathological mechanisms. 

Implementation of EEG subcortical source localisation will be needed to explore this 

hypothesis. 

One of the most specific clinical features of DLB is complex visual hallucinations (VH), which 

have been shown to effectively discriminate DLB from AD and AD-LB mixed pathology where 

AD component is prominent (Tiraboschi et al., 2006; Jicha et al., 2010; Toledo et al., 2013; 

Yoshizawa et al., 2013). The fact that part of the DLB cohort included here did not feature VH 

further suggests the existence of coexisting pathology in some subjects, which may introduce 

a level of variability in EEG and structural metrics within the group. To further investigate this 

aspect, the focus of the next chapter will be on this specific disease phenotype within Lewy 

body pathology, i.e. DLB and PDD. 
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5.5.3. Connectivity strength is the most discriminative EEG feature 

The purpose of the research presented in this thesis is to further validate EEG and, specifically, 

EEG connectivity metrics as biomarkers for DLB against AD. Connectivity strength was the 

most discriminative variable between DLB and AD, in line with findings from the EEG scalp 

analysis, as well as previous EEG network studies also including other conditions (Xu et al., 

2016; Blinowska et al., 2017; Peraza et al., 2018). Overall, network features were more 

predictive than DF, suggesting that the first should be progressively introduced in a diagnostic 

framework beside EEG power frequency features and assessed indicative biomarkers. 

However, classification accuracy was not as high as reported in previous studies (Andersson 

et al., 2008; Bonanni et al., 2008; Peraza et al., 2018; Stylianou et al., 2018). This is likely due 

to two reasons. First, compared to the presented analysis, classifiers in those studies were 

trained with higher number of differential variables. Second, a conservative cross-validation 

approach was pursued in the presented analysis: WPLINBS feature was obtained by performing 

NBS on 60 random subsamplings, and due to the relatively small sample with probable 

presence of outliers, few iterations did not yield any significant differential network 

components or, in the best case, produced inconsistent patterns. Performing the same 

analysis on a larger sample may reduce influence of outliers on the analysis, provide more 

consistent differential topographies and consequently lead to a better classification between 

groups. 

 

5.6. Conclusions 

This chapter investigated differential EEG features between AD and DLB in the source domain. 

Functional connectivity analysis within the β-band network resulted in higher segregation of 

DLB network compared to AD, as well as weaker connectivity patterns likely associated with 

affected cognitive and emotional processes. Modularity was associated with better cognitive 

performance in DLB, but not in AD. Investigation of cholinergic involvement in DF showed that 

the cholinergic system likely has a regulatory role over EEG activity. It was observed that white 

matter projections were not more significantly affected in DLB, but association between 

structural connectivity and DF in DLB was not as consistent as in AD. From the diagnostic 

perspective, EEG connectivity was the most discriminative variable, and it may be suggested 
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to be included as a supportive biomarker for DLB beside DF slowing. However, outcomes of 

the presented analysis suggest that pathological differences between AD and DLB may not 

consistently emerge if mixed pathology cases in DLB are not taken into account. This will be 

pursued in the next chapter by investigating functional and structural abnormalities 

associated with complex visual hallucinations in Lewy body dementias, i.e. DLB and PDD. 
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Chapter 6. Functional and Structural Alterations in Lewy Body Dementia with Visual 

Hallucinations 

 

6.1. Summary 

Visual hallucinations occur in most Lewy body dementia cases. Previous studies have shown 

that VH is highly specific in differentiating LBD from AD and AD-LB mixed pathology cases with 

prominent AD. Computational models proposed impairment of visual and attentional 

networks to be at the basis of VH symptomatology. However, there is still a lack of 

experimental evidence on functional and structural brain network abnormalities associated 

with VH in LBD. In this chapter, EEG source localisation and NBS were used to assess 

differential topographical patterns between VH and NVH participants; grey matter differences 

were also tested within functionally affected cortical areas belonging to the visual ventral 

network, thalamus and NBM. DTI was used to assess structural connectivity between 

subcortical regions of interest and cortical regions belonging to the functionally affected 

network component in VH, as assessed with NBS. Number of WM fibres within the cortex and 

between subcortical and cortical regions was compared between VH and NVH and correlated 

with average EEG source connectivity of the NBS component. Moreover, modular organisation 

of the EEG source network was obtained, compared between groups, and tested for 

correlation with structural connectivity. Network analysis showed that there is consistent 

weakened connectivity within visual ventral network, and between this network and DMN or 

VAN, but not between or within attentional networks. The cuneus was the most functionally 

disconnected region, although cortical thickness was preserved in VH and reduced in NVH, in 

this latter group comparable with thickness values in AD. Subcortical volumes were reduced 

in VH, although no significant correlation between GM and EEG connectivity strength 

emerged. Between-group comparison yielded significantly affected WM fibres between NBM 

and cortical regions in VH compared to NVH. Number of fibres in the tract correlated with 

cortical functional connectivity in NVH, but not in VH. Furthermore, significant negative 

correlation emerged between modularity and cholinergic innervation in the thalamus in NVH, 

and only a trend in VH. This study proposes for the first time differential topography of altered 

functional network between VH and NVH, and provides a validation of existing computational 

models. Specifically, outcome of the present study shows that VH condition is associated with 
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functional network segregation in LBD and confirms the involvement of the cholinergic system 

in LB pathology and, specifically, VH condition. 

 

6.2. Introduction 

Complex visual hallucinations (VH) are a common feature in Lewy body dementia (LBD), i.e. 

DLB and PDD, occurring in about 80% of clinically diagnosed cases (Collerton et al., 2005; 

McKeith, 2007a; Mosimann et al., 2008). As described in section 1.2, complex VH can feature 

people, animals, and inanimate objects (Aarsland et al., 2001; Burghaus et al., 2012), tend to 

have short duration and occur at low-light environment (Fénelon et al., 2000; Barnes and 

David, 2001; Holroyd et al., 2001). Due to their high specificity in discriminating LBD from AD 

and AD-LB mixed pathology cases (Tiraboschi et al., 2006; Jicha et al., 2010; Toledo et al., 2013; 

Yoshizawa et al., 2013), VH are a matter of interest in dementia research and, specifically, in 

this chapter of this thesis. 

A consistent picture of the underlying pathology and associated functional dysfunctions in 

LBD-related VH has not been defined yet. Autopsy and clinical studies support the idea that 

dysfunction of the cholinergic and dopaminergic systems must have a relevant role in 

generation of VH by affecting brain areas involved in visual and attentional processing (Ballard 

et al., 2000; Harding et al., 2002; Diederich et al., 2005; Shine et al., 2011; Shine et al., 2014; 

Onofrj et al., 2019). Models by Collerton et al. (2005) and Tsukada et al. (2015) proposed 

mismatch of top-down and bottom-up affected visual networks to be associated with 

pathological mechanisms generating VH. This hypothesis is supported by evidence which 

includes GM atrophy over the frontal cortex (Pezzoli et al., 2019), hypometabolism within 

occipital and temporal areas (Pasquier et al., 2002; Gasca-Salas et al., 2016), reduced 

activation over secondary visual areas (Taylor et al., 2012) and lower occipital GABA levels 

(Firbank et al., 2018). On the other hand, Shine et al. (2011) proposed a deranged interaction 

between DAN, DMN and VAN to be drivers of VH phenomenon; empirical evidence on this 

perspective includes reduced fMRI activation of DAN areas and lower connectivity between 

VAN and DMN associated with lower GM within the insula (Shine et al., 2014), although 

another study did not report significant functional connectivity differences within attentional 

networks between VH and NVH in a PD cohort (Hepp et al., 2017b). As discussed in section 
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1.5, EEG features on the topic remain under-researched. Recent works reported delayed ERP 

components associated with visual stimuli in LBD-VH (Kurita et al., 2005; Matsui et al., 2005; 

Kurita et al., 2010; Chang et al., 2016), lower resting state DF, β-band power and right-

temporal connectivity (Dauwan et al., 2018; Dauwan et al., 2019) and higher δ-band and α-

band activity (Babiloni et al., 2020) compared to NVH and HC. As shown in Chapter 5, there 

appears to be partial loss of cholinergic regulation over cortical activity in DLB compared to 

AD. It was speculated that partial preservation of such control within DLB group was 

associated with reduced α-synuclein pathology in mixed AD-LB pathology cases, whilst EEG 

features in pure DLB cases might be significantly affected by cholinergic disruption. This aspect 

might be untangled by investigating such correlation in LBD-related VH, due to specificity of 

development of VH as a marker of purer α-synuclein pathology against mixed pathology 

condition (Tiraboschi et al., 2006; Jicha et al., 2010; Toledo et al., 2013; Yoshizawa et al., 2013). 

 

6.2.1.  Objective 

In this chapter, EEG source localisation and NBS were used to assess network alteration 

patterns associated with VH in LBD. It was hypothesised that regions belonging to the visual 

network were significantly affected in VH condition, in line with existing computational 

models. Due to its well reported association with visual and attentional processing (Chapman 

et al., 1962; Mulholland and Runnals, 1962; Klimesch et al., 1998; Jensen and Mazaheri, 2010; 

Benedek et al., 2014; Wan et al., 2019), the analysis here focused on the α-band network. 

Regions which were functionally more disconnected were detected, and cortical thickness 

(CTh) in such regions which also belonged to the visual network was compared between 

groups. To obtain speculative elements on whether EEG and structural volume alterations 

share pathological mechanisms, correlation tests were performed in both groups. It was 

hypothesised here that abnormalities of cortical functional connectivity are associated with 

degeneration of cholinergic projections towards the cortex. To prove this hypothesis, volumes 

differences between groups of thalamus and NBM were first tested; moreover, following the 

approach pursued in Chapter 5, structural connectivity between basal forebrain, thalamus and 

functionally affected cortical areas was assessed, compared between groups, and correlated 

with EEG connectivity strength. In addition, for exploratory purposes, functional modular 

distribution in VH and NVH was obtained and compared between groups. 
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6.3. Methods 

Details on the experimental protocol, EEG acquisition and measured network features are 

reported in Chapter 2. A subsample of DLB and PDD patients with available EEG and MRI data 

was selected and distributed in VH and NVH groups based on the NPI hallucination total score, 

respectively higher than zero and equal to zero. To reach a balanced distribution of DLB and 

PDD among groups, eight additional subjects were included from the “Visual hallucinations: 

an EEG and non-invasive Stimulation” (VEEG-Stim) study at Newcastle University (Murphy, 

2016; Firbank et al., 2018), which featured the same resting-state protocol as CATFieLD. 

Although the majority of VH patients presented complex hallucinations, four of them had only 

simple visual hallucinations. These have been included in the VH group since minor 

hallucinatory phenomena have been shown to be associated with progressive development 

of complex VH (Ffytche et al., 2017) and have been suggested to be part of the same psychotic 

spectrum. The resulting sample comprised 26 VH (12 DLB and 14 PDD) and 17 NVH (7 DLB and 

10 PDD) (see Table 6.1). EEG was recorded in eyes-closed resting state with high-density 

sensor cap (128 electrodes). Recorded signals were pre-processed (section 2.3) (number of 

removed channels: 16 ± 16; number of removed epochs: 10 ± 9; number of removed ICA 

components: 36 ± 13), source localised and connectivity between cortical sources was 

measured with WPLI and averaged across time and frequency bins within the α-band (8-13.5 

Hz). 
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 VH (N=26) NVH (N=17) p-value 

Age 73.88 ±6.32 74.88 ±6.53 df=1, p-value=0.737₸ 

Male/Female 25/1 13/4 df=1, p-value=0.049ⱡ 

DLB/PDD 12/14 7/10 df = 1, p-value=0.748ⱡ 

MMSE 22.58 ±4.11 24.65 ±4.00 df=1; p-value=0.067₸ 

NPI hall num. 1.73 ±1.00 0 0 / 

NPI hall freq. 2.15 ±1.08 0 0 / 

NPI hall sev. 1.15 ±0.37 0 0 / 

NPI hall dis. 1.04 ±1.31 0 0 / 

NPI hall TOT. (freq. x sev.) 2.65 ±1.96 0 0 / 

Complex hall (yes/no) 22/4 / / 

ACheI (yes/no) 23/3 10/6* df=2, p-value=0.065ⱡ 

LEDD 499 ±474 475 ±431 df=1, p-value=0.500₸ 

 

Table 6.1 - Demographic data and clinical scores (CATFieLD + VEEG-Stim subsample with 
available EEG-MRI data). ₸ Unpaired Mann-Whitney U test, ⱡ χ2 test. * One PDD patient was 

on Memantine. 

 

For the modularity and DTI analysis, a narrower subsample of DLB and PDD patients with 

available EEG, MRI and DTI data was selected. The resulting sample comprised 25 VH (11 DLB 

and 14 PDD) and 16 NVH (7 DLB and 9 PDD) (see Table 6.2). Modularity (Qw) was computed 

on non-thresholded WPLI matrices and compared between groups with ANCOVA test 

corrected for MMSE (p < 0.05). 

 VH (N=25) NVH (N=16) p-value 

Age 73.88 ±6.17 74.31 ±6.29 df=1, p-value=0.820₸ 

Male/Female 24/1 12/4 df=1, p-value=0.045ⱡ 

DLB/PDD 11/14 7/9 df=1, p-value=0.987ⱡ 

MMSE 23.04 ±3.78 24.69 ±4.13 df=1; p-value=0.098₸ 

NPI hall num. 1.56 ±0.87 0 0 / 

NPI hall freq. 2.08 ±1.04 0 0 / 

NPI hall sev. 1.12 ±0.33 0 0 / 

NPI hall dis. 0.92 ±1.22 0 0 / 

NPI hall TOT. (freq. x sev.) 2.44 ±1.66 0 0 / 

Complex hall (yes/no) 21/4 / / 

ACheI (yes/no) 22/3 10/5* df=2, p-value=0.121ⱡ 

LEDD 540 ±482 480 ±445 df=1, p-value=0.378₸ 

 

Table 6.2 - Demographic data and clinical scores (CATFieLD + VEEG-Stim subsample with 
available EEG-MRI-DTI data). ₸ Unpaired Mann-Whitney U test, ⱡ χ2 test. * One PDD patient 

was on Memantine. 
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6.3.1. Magnetic resonance imaging recording 

Individual MRI T1 recordings were obtained on a 3-T Philips Intera Achieva scanner with 

MPRAGE sequence, sagittal acquisition, echo time 4.6 ms, repetition time 8.3 ms, inversion 

time 1250 ms, flip angle=8°, SENSE factor = 2, in-plane field of view 240x240 mm2 with slice 

thickness 1.0 mm, yielding voxel size of 1.0 x 1.0 x 1.0 mm3 (Peraza et al., 2014; Firbank et al., 

2018; Schumacher et al., 2020b). Pre-processing and segmentation of acquired T1 weighted 

images was performed by Dr Sean Colloby using FreeSurfer software package (version 5.1, 

http://surfer.nmr.mgh.harvard.edu/) (Dale et al., 1999; Fischl and Dale, 2000) as in previous 

analyses which included part of the cohort of this thesis and were reported in their respective 

publications (Colloby et al., 2011; Blanc et al., 2015). The automated processing pipeline 

involved intensity non-uniformity correction, Talairach registration, removal of non-brain 

tissue (i.e. skull stripping), WM and subcortical GM segmentation, tessellation of GM-WM 

boundary, and surface deformation following GM-CSF intensity gradients for optimal placing 

of GM-WM and GM-CSF borders. Modelling of cortical surface was followed by surface 

inflation, transformation to spherical atlas and parcellation into regions according to the atlas 

developed by Destrieux et al. (2010). Respective network nodes are obtained as mass 

centroids across each region vertices. Resulting images from each processing step were 

visually inspected and, were required, manually corrected to ensure accurate segmentation 

(Blanc et al., 2015). 

CTh (measured in mm) for each cortical region was obtained as the closest distance from GM-

WM and GM-CSF boundaries at each vertex of the tessellated surface (Fischl et al., 2004), and 

mapped to the inflated surface (Blanc et al., 2015). 

DTI recordings were performed with a 2-dimensional spin-echo, echo planar imaging 

diffusion-weighted sequence with 59 slices: TR = 6100 ms; TE = 70 ms; flip angle = 90°; field of 

view = 270 x 270 mm; pixel size= 2.1 x 2.1 mm; slice thickness = 2.1 mm. Images were diffusion 

weighted along 64 uniformly distributed directions (diffusion contrast b = 1000 s·mm-2), and 

six acquisitions did not have any diffusion weight applied (b = 0 s·mm-2) (Firbank et al., 2007). 

 

 

http://surfer.nmr.mgh.harvard.edu/
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6.3.2. Subcortical ROIs definition for subcortical volume analysis 

Subcortical volumes were computed by Dr Julia Schumacher. For subcortical volume analysis, 

thalamus and NBM (Ch4 cellular group) structures and respective ROI masks were obtained 

using the SPM Anatomy Toolbox for MATLAB (Eickhoff et al., 2005). The thalamus mask was 

based on the Oxford thalamic connectivity atlas (Behrens et al., 2003b), whilst the NBM was 

defined with a probabilistic anatomical map from microscopic delineation of ten post mortem 

human brains (Zaborszky et al., 2008). Resulting masks in the MNI space are shown in Figure 

6.1. Volumes were averaged across hemispheres and measured for each subject. Obtained 

values were normalised by total GM volume. 

 

 

Figure 6.1 – Thalamus (left) and NBM (right) ROI masks in MNI space obtained with SPM 
anatomy toolbox for MATLAB.  
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6.3.3. Cortical source localisation 

The pipeline for EEG source reconstruction is reported in detail in section 4.3.2. Briefly, cortical 

source estimation from EEG signals was obtained through sLORETA technique (Pascual-

Marqui, 2002) as implemented in the Brainstorm toolbox for Matlab (Tadel et al., 2011) and 

described in section 1.3.3. EEG sensors distribution was manually co-registered over the scalp 

for each participant using the Brainstorm toolbox (Stropahl et al., 2018) before performing 

any further step. Head model based on the individual anatomical data was obtained with 

boundary element method (BEM) as implemented in OpenMEEG (Kybic et al., 2005; Gramfort 

et al., 2010). Noise covariance was set as identity matrix, cortical sources were reconstructed 

with assumption of normal dipole orientations with respect to cortical surface, and resulting 

time-series were averaged within each of the 148 regions defined with the Destrieux atlas 

(Destrieux et al., 2010). Channels which were removed and interpolated during the pre-

processing step were excluded from source localisation to reduce the risk of false positives. 

Signs of opposite sources within each region were flipped to match the main orientation and 

averaged. Before any analysis, source activity from all subjects was projected back to the 

ICBM152 template (Mazziotta et al., 2001) using Shepard’s interpolation method (Shepard, 

1968). 

 

6.3.4. Topographical differences: functional and structural alterations 

Differential topographical network patterns between VH and NVH were obtained using NBS 

(Zalesky et al., 2010), of which implementation is described in detail in section 2.5. F-test was 

performed at tth = 13.8, and FWER was controlled by performing a permutation test (5000 

permutations); network differential components were deemed significant at p < 0.05, and 

were visualised with the BrainNet Viewer (Xia et al., 2013). Average strength across 

connections belonging to the NBS components (WPLINBS) was computed and compared 

between groups (two-tailed Mann-Whitney U test, p < 0.05). This analysis was performed in 

both the EEG-MRI available sample and the EEG-MRI-DTI subsample. 

To detect the most functionally altered regions within NBS component, node strength (KW) 

was computed for NBS nodes, and compared between groups by performing a Wilks’ Lambda 

multivariate test as implemented in SPSS (p < 0.05), followed by post hoc Mann-Whitney U 
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tests as implemented in MATLAB (p < 0.05, Holm-Bonferroni corrected for number of NBS 

nodes). Before computing node strength, edge weights were divided by the maximum WPLI 

value across NBS edges (Onnela et al., 2005). This analysis was performed on the EEG-MRI 

subsample. 

CTh values in significantly altered nodes (including those not surviving multiple comparison 

correction) which were part of occipital cortex, IT or PFC, were compared between groups by 

performing a Wilks’ Lambda multivariate test (p < 0.05), followed by post hoc Mann-Whitney 

U tests (p < 0.05, Holm-Bonferroni corrected for number of selected nodes). Association 

between node strength and CTh was tested for nodes which had significantly different CTh 

between groups with Spearman rank correlation tests (p < 0.05). This analysis was performed 

on the EEG-MRI subsample. 

Modular distribution was obtained for both groups using routines implemented in the BCT, as 

described in detail in section 5.3.3. Briefly, for each EEG network, the optimal community 

structure was obtained, an agreement matrix was obtained for each group, the agreement 

matrix was thresholded preserving probabilities above 63%, and modular distribution was 

obtained as consensus matrix, whose computation was based on the algorithm developed by 

Lancichinetti and Fortunato (2012). Obtained modular distribution was visualised with the 

BrainNet Viewer. For each group, proportion of within-module NBS connections was obtained 

based on the group’s modular distribution. This measure was computed as a ratio between 

number of within-module NBS connections and total number of NBS connections. This analysis 

was performed on the EEG-MRI-DTI subsample. 

 

6.3.5. Subcortical alterations vs functional connectivity 

Volume (V) differences between groups for both thalamus and NBM were tested with Wilks’ 

Lambda multivariate test (p < 0.05), followed by post hoc analysis of covariate (ANCOVA) 

tests (p < 0.05); thalamus differences were tested in both directions (two-tails, VVH ≶ VNVH), 

whilst NBM was hypothesised to show higher degeneration in VH (one-tail, VVH < VNVH), based 

on previous evidence and speculations related to the role of cholinergic system dysfunction in 

VH, as discussed in section 1.2.1 (Ballard et al., 2000; Harding et al., 2002; Diederich et al., 

2005; Shine et al., 2011; Shine et al., 2014; Hepp et al., 2017a; Onofrj et al., 2019; Sakai et al., 
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2019). Spearman rank correlation tests (p < 0.05) were performed between volume values of 

each subcortical region and WPLINBS for both groups. This analysis was performed on the EEG-

MRI subsample. 

 

6.3.6. Probabilistic tractography and correlation with EEG 

Tractography pipeline was implemented with the FMRIB's Diffusion Toolbox (Jenkinson et al., 

2012) and described in detail in section 5.3.6. Briefly, DTI recordings were first corrected for 

eddy current distortion, movement and motion-induced signal dropout using the eddy 

package (Andersson et al., 2016; Andersson and Sotiropoulos, 2016). Local probability 

distribution of fibre direction was then assessed at each voxel with automatic detection of 

number of fibres per voxel (Behrens et al., 2003a; Behrens et al., 2007). Probabilistic 

tractography algorithm (Behrens et al., 2003a; Behrens et al., 2007) was eventually used to 

track white matter fibres connecting functionally affected cortical regions, thalamus and NBM. 

Probability between voxels was estimated as proportion of connecting fibres, over 5000 

sampled fibres per voxels. The outcome of tractography was a structural connectivity matrix 

of dimension n+2 (seed masks) x n+2 (target masks), where n was the number of cortical 

regions detected with NBS. Each connectivity matrix S was symmetrised by replacing each si,j 

element with an average between itself and sj,I (Cabral et al., 2011). 

NBM (Ch4 cellular group) ROI in the MNI space was generated with the SPM Anatomy Toolbox 

for MATLAB (Eickhoff et al., 2005), whilst thalamus MNI ROI was selected from the Harvard-

Oxford subcortical atlas included in the FMRIB Software Library (Jenkinson et al., 2012). 

Subcortical ROIs were transformed to the subject space using affine and non-linear 

transformations as implemented in the ANTs software (Avants et al., 2009). Cortical ROIs were 

defined as nodes detected from NBS, i.e. being part of a functionally affected network 

component. Corresponding volume masks were selected from the Destrieux parcellation 

among the regions shown in Figure 4.1. Before performing tractography, ROI masks were 

transformed from subject space to the diffusion space. To this purpose, a linear 

transformation matrix for each subject was generated with the FLIRT package (Jenkinson et 

al., 2002) using as origin and target respectively a FA map and brain-extracted T1 MRI image. 

Subcortical ROIs as defined in the MNI space are shown in Figure 5.1. 
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Integrity of white matter fibres within the cortex, in cortex-NBM, cortex-thalamus, and NBM-

thalamus tracts was compared between VH and NVH, by testing whether or not the number 

of fibres was lower in VH compared to NVH in each tract of interest (Mann-Whitney U test, 

one-tailed, p < 0.05). Association between white matter degeneration and altered EEG source 

network was also investigated. Spearman rank correlation tests (p < 0.05, one-tailed) were 

performed between EEG features, i.e. WPLINBS (right-tailed) and Qw (left-tailed), and average 

structural connectivity between cortical (NBS-detected) regions, number of NBM-thalamus 

WM fibres, and total number of WM fibres connecting cortical regions to respectively 

thalamus and NBM, for both VH and NVH groups. 

This analysis was performed on the EEG-MRI-DTI subsample. 

 

6.4. Results 

6.4.1. Demographic data 

Demographic information and clinical score comparison between groups are reported in Table 

6.1 and Table 6.2. Groups were matched for age and diagnosis, however matching for gender 

was not achievable due to sample availability. Results could not be corrected for gender, as 

the number of female subjects was too low. Since there is no evidence in literature of gender 

effect on VH-related pathological and functional processes, it was assumed that results were 

not significantly affected by gender imbalance. A trend towards significance was found for 

MMSE, hence NBS test and subcortical volume comparisons were corrected for MMSE score 

to exclude any cognitive deficit effect. The majority of participants were on cholinergic 

medication and one NVH patient was on memantine, and distribution across groups was not 

significantly different. Daily intake of levodopa was not different between groups. 

 

6.4.2. Topographical differences 

Results of NBS analysis are shown in Figure 6.2. Comparison between groups yielded one 

significant component comprising 18 nodes and 18 edges (p = 0.031), which included areas 

belonging to occipital cortex, left and right IT, and PFC. Comparison of WPLINBS and average 
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KW between groups showed that NBS component consisted of weaker connectivity pattern in 

VH compared to NVH (Figure 6.3). Affected subnetwork included: 

• connectivity between the right cuneus and both the right inferior occipito-temporal 

lobe and the right primary auditory cortex 

• connections between the left orbitofrontal cortex and right IT, right cingulate, superior 

part of right PFC and left parieto-occipital region 

• inter-hemispheric connections between temporal lobes 

• connectivity between left occipital cortex and right cingulate. 

• connections between left insula and right occipito-temporal areas. 

Multivariate test for node strength comparison yielded p = 0.032, hence individual nodes 

differences were tested. 11 out of 18 node strengths were significantly different in VH 

compared to NVH, as highlighted in Figure 6.2; individual nodes values were all lower in VH 

compared to NVH, as shown in Figure 6.4, but only right cuneus’ strength comparison test 

survived Holm-Bonferroni correction (p = 0.0015). 

 

 

Figure 6.2 – NBS test outcome: VH vs NVH. Green lines represent network pattern affected 
in VH compared to NVH; these include interhemispheric connectivity, as well as occipital-

temporal-frontal projections. Yellow nodes had lower strength in VH compared to NVH; red 
nodes, i.e. only right cuneus, survived multiple comparison correction. Node sizes are 

inversely proportional to respective p-values.  
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Figure 6.3 – Average connectivity and node strength within the NBS component: VH vs NVH. 
Functional source connectivity is weakened in VH compared to NVH. Red dots: DLB; blue 

dots: PDD. 
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Figure 6.4 – Individual node strength distributions for significantly affected nodes. 11 out of 
18 nodes were significantly weaker in VH compared to NVH, but only the right cuneus 

(highlighted in red) survived multiple comparison correction. L: left; R: right; G: gyrus; S: 
sulcus. Red dots: DLB; blue dots: PDD. 

 

Modular distribution in VH and NVH networks is shown in Figure 6.5. The consensus matrix 

included four modules in VH, one including right and central frontal regions and right temporal 

pole, one comprising left frontal and temporal pole regions, and the other two mainly 

comprising respectively the left and the right temporal-parietal-occipital cortices. NVH 

modular organisation comprised three major modules over the left hemisphere, the right 

prefrontal region, and the right temporal-parietal-occipital areas; two further modules 

emerged which comprised respectively three nodes within the left temporal lobe and two 

nodes over the right temporal and prefrontal cortex. 
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Figure 6.5 – Modular distributions. Top: VH, four modules; bottom: NVH, five modules. 
Nodes marked with the same colour belong to the same module. Despite two further minor 
modules in NVH compared to VH, VH shows an additional major module compared to NVH, 

associated with disruption of left hemisphere modular distribution in VH. 

 

In the EEG-MRI-DTI subsample, NBS analysis reproduced the same alteration pattern as 

detected in the larger subsample. Specifically, one differential component was detected 

comprising 18 nodes and 17 edges (p = 0.038). Topographical distribution of NBS edges across 
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modules is shown in Figure 6.6. In the NVH group, 29.41% of NBS edges were connecting 

nodes belonging to the same module, whilst in VH, i.e. the group in which connections 

detected with NBS were more affected, that was the case for only 11.76%. This resulted in 

17.65% NBS connections being associated with a higher modular disruption in VH. Edges 

associated with modular disruption in VH include frontal-posterior projections as well as 

occipital-temporal connectivity. 

Distribution within groups of average connectivity of NBS component (WPLINBS) and QW values 

are shown in Figure 6.7. As already found with the larger subsample, WPLINBS was lower in VH 

compared to NVH. Qw was significantly higher in VH compared with NVH (p = 0.02). 
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Figure 6.6 - Modular distribution of NBS component. Top: VH group, 11.76% within-module 
edges; bottom: NVH group, 29.41% within-module edges. Within-module edges are marked 
with the same colour as the module the connected nodes are part of, based on Figure 6.5. 

Between-module edges are marked in grey. 
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Figure 6.7 – WPLINBS and modularity (QW) distributions in VH and NVH. Both measures are 
significantly more affected in VH compared with NVH. 

 

6.4.3. Cortical thickness alterations in functionally affected regions 

To compare CTh values between groups, nodes corresponding to occipital cortex, IT or PFC 

were selected among the 11 nodes which showed significantly reduced functional strength in 

VH compared to NVH. This resulted in selecting seven regions, which comprised left 

frontomarginal sulcus and gyrus, right inferior- and occipito-temporal lobes, right inferior 

occipital lobe, right cuneus, left occipital anterior lobe, and left inferior temporal lobe. 

Multivariate test proved significant (p = 0.009), and among tested regions only the right 

cuneus showed differential thickness between groups (p = 0.004), being lower in NVH 

compared to VH, as shown in Figure 6.8. Correlation test between cuneus node strength and 

cortical thickness did not produce any significant result. 
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Figure 6.8 – Cortical thickness of right cuneus: comparison between VH and NVH. Cuneus 
was thinner in NVH group. Red dots: DLB; blue dots: PDD. ** Mann-Whitney U test survived 

Holm-Bonferroni correction (seven tests).  

 

6.4.4. Thalamus and NBM volumes vs functional connectivity 

Multivariate test corrected for MMSE yielded significant result (p = 0.002), and both thalamus 

and NBM showed a higher degeneration in VH compared to NVH as revealed with ANCOVA 

tests with MMSE as covariate (post hoc tests yielded respectively p = 0.001 and p = 0.0375). 

No significant correlation was found between subcortical volumes and WPLINBS in any of the 

groups. Distribution of volume values across subjects is shown in Figure 6.9. 
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Figure 6.9 – Thalamus (left) and NBM (right) volumes. Both structures showed higher 
degeneration in VH compared to NVH. Red dots: DLB; blue dots: PDD. ** Mann-Whitney U 

test survives Holm-Bonferroni correction (2 tests).  

 

6.4.5. Structural vs functional connectivity: outcome of correlation analysis 

Comparison of the number of white matter (WM) fibres between groups produced significant 

outcome for NBM-cortex tract, but not for NBM-thalamus, thalamus-cortex or within cortex. 

Specifically, the number of fibres projected from the NBM towards functionally affected 

cortical regions was significantly lower in VH compared to NVH, as shown in Figure 6.10 (p = 

0.023). In addition, significant correlation was found between average structural connectivity 

in the same WM tract and WPLINBS values in VH and NVH as a whole group (ρ = 0.34, p = 0.014), 

and it was marked within NVH group (ρ = 0.60, p = 0.008), but no correlation emerged within 

the VH group (ρ = -0.07, p = 0.636). A trend towards significance was also found between 

WPLINBS and WM fibres in the thalamus-cortex tract (ρ = 0.29, p = 0.077). Significant 

correlation emerged also between QW and structural connectivity between thalamus and 

NBM for NVH group (ρ = -0.49, p = 0.027, and only a trend towards significance for VH (ρ = -

0.30, p = 0.072). WM-WPLINBS and WM-Qw trends are shown in Figure 6.10. 
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Figure 6.10 – Number of white matter fibres within NBM-cortex tract (left) and structural vs 
functional connectivity: linear fitting for VH and NVH (right). Left panel: cortical targets are 
regions which were functionally weakened as detected with NBS; red dots: DLB; blue dots: 
PDD. Right panel: significant correlation emerges from Spearman rank test between NBM-
cortex structural connectivity and WPLINBS in NVH (ρ = 0.60), and between NBM-thalamus 

structural connectivity and Qw in NVH (ρ = -0.49); a trend towards significance was found for 
WPLINBS vs thalamus-cortex connectivity (ρ = 0.29) and between Qw and NBM-thalamus 

connectivity (ρ = -0.30) in the VH group; thicker line represents significant correlation trend; 
blue: NVH; red: VH. 

                             

                               

 

    

   

    

   

    

   

    

   

    

   

 
 
 
  
 
 

               

                          

 

    

   

    

   

    

   

    

   

    

   

 
 
 
  
 
 

                

                            

    

    

    

    

   

    

    

 
 

     

 

 

  

  

 
 
  
  
  
 

    



 
142 

 

6.5. Discussion 

The scope of the present chapter was to investigate EEG source network abnormalities at 

resting state and their correlation with structural features associated with VH clinical 

condition in Lewy body dementias (LBD), i.e. dementia with Lewy bodies (DLB) and Parkinson’s 

disease dementia (PDD). In line with existing models, areas belonging to visual networks were 

hypothesised to show altered properties in VH group compared to NVH. Furthermore, it was 

explored whether VH condition is associated with modular distribution alterations in the 

functional EEG network. Structural connectivity between functionally affected cortical regions 

and subcortical regions was also extracted and correlated with functional connectivity 

measures. This latter analysis was aimed to provide direct evidence of cholinergic involvement 

in VH-related functional network abnormalities, as speculated in previous studies (Ballard et 

al., 2000; Harding et al., 2002; Diederich et al., 2005; Shine et al., 2011; Shine et al., 2014; 

Onofrj et al., 2019). 

The NBS analysis detected one differential network component consisting of topographical 

patterns within the visual ventral network, i.e. occipital cortex, IT and PFC. The most 

functionally disconnected region within the NBS component in VH was the right cuneus, which 

paradoxically showed more thinning in NVH group compared to VH. Both thalamus and basal 

forebrain showed major degeneration in VH, concurring with the idea of cholinergic disruption 

associated with VH. However, no direct association was found between EEG connectivity and 

subcortical volumes. As expected, modular distribution was altered in VH, leading to higher 

network segregation. Specifically, one additional relevant module emerged in VH compared 

to NVH, and modularity measure was significantly higher in VH. Affected network pattern was 

also differentially distributed between groups, with 17.65% NBS connections being 

topographically associated with modular distribution changes between groups. Tractography 

analysis yielded significantly lower connectivity between NBM and functionally affected 

cortical regions in VH compared to NVH. Moreover, structural connectivity strength within the 

same tract was associated with functional cortical connectivity strength in NVH, but not in VH. 

The majority of patients in this study were taking cholinesterase inhibitors. As mentioned in 

section 1.4.2, this likely partially restored EEG activity and network properties towards 

normative values (Agnoli et al., 1983; Balkan et al., 2003) in the VH group making group 

differences less distinct. Nevertheless, significant alterations across patient groups emerged. 
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On the other hand, cholinergic medication might be argued to be the actual cause of absence 

of visual hallucinations in the NVH group. To exclude this possibility, clinical history of those 

patients was previously checked, and no record of visual hallucination prior to medication was 

reported. 

 

6.5.1. The visual ventral network is disconnected in LBD with VH 

As detected with NBS, connectivity between occipital cortex, IT and PFC was reduced in VH 

compared to NVH. Interestingly, the obtained differential topography nicely fits with the PAD 

model (Collerton et al., 2005) and the computational model by Tsukada et al. (2015), according 

to which VH in LBD are due to a mismatch between top-down, i.e. PFC to IT, and bottom-up 

streams, i.e. occipital to IT, as described in section 1.2.2. Notably, connectivity with the cuneus 

was strikingly reduced in VH, in line with reported lower GABA level (Firbank et al., 2018) and 

glucose metabolism (Pasquier et al., 2002; Perneczky et al., 2008; Gasca-Salas et al., 2016) 

over the occipital lobe, associated with VH. In fact, cortical electrical activity generation is due 

to energy consumption by neuron membranes, associated with oxidative metabolism (Ingvar 

et al., 1979). Hence, EEG activity depends on cerebral metabolism, and abnormal features in 

this latter are expected to reflect into the first. This seems to be the case in the present 

analysis and in other studies with PET/EEG combined modality involving clinical conditions 

which included depression, vascular dementia and AD (Buchan et al., 1997; Larson et al., 1998; 

Szelies et al., 1999; Dierks et al., 2000; Pizzagalli et al., 2003). From the network perspective, 

cuneus functional alteration in VH might propagate along the visual ventral network and affect 

the inferior temporal lobe, whose functional strength also was significantly reduced (p < 0.05), 

although not surviving multiple comparison correction. Frontal projections towards the IT 

were also affected; these may likely be reflecting dysfunction of top-down visual stream as 

predicted by the models (Collerton et al., 2005; Tsukada et al., 2015). Specifically, affected 

connectivity patterns involved the cortical region including the frontomarginal sulcus and 

gyrus. According to the implemented parcellation, the region is in the inferior part of the 

frontal pole, continuous to the orbital gyrus (Destrieux et al., 2010), limiting the frontopolar 

and orbital regions (Luders, 2008). The orbitofrontal cortex is reportedly engaged within the 

top-down stream; according to the existing visual perception models, a rough version of visual 

information (Bar, 2003) is projected from the occipital cortex through either dorsal visual 
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network (Livingstone and Hubel, 1987) or the thalamus (Morris et al., 1999) towards PFC, and 

OFC activates depending on whether such stimulus can be associated with any information 

stored in memory, and generates a predictive template (Chaumon et al., 2014). This process 

rapidly takes place before any visual stimuli is processed through high level visual cortices to 

reach IT (Bar et al., 2006), where matching between sensory bottom-up and predictive top-

down streams takes place, generating an internal image (Bar, 2003; Kveraga et al., 2007). 

Activation of the frontal areas involved in visual perception mechanism was also reported in 

another fMRI study, where authors used dynamic casual modelling (DCM) and successfully 

simulated association between face recognition, activation of frontal areas and effective 

information flow along the visual ventral network (Summerfield et al., 2006). The present 

findings may be considered as empirical validation of the implemented models, suggesting 

that in LBD with VH the information flow stream is also affected at resting-state, being possibly 

associated with erroneous matching between bottom-up and top-down visual perception 

streams in the IT. 

Notably, reduced interhemispheric connectivity also emerged in the NBS component. 

Association between reduced interhemispheric connectivity and auditory hallucinations was 

reported for schizophrenia (Chang et al., 2015; Wigand et al., 2015; Lang et al., 2016), however 

no study to date reported similar differential topographical patterns in LBD-VH. An EEG study 

by Mima et al. (2001) showed that temporally early coherence between the left and the right 

occipitotemporal areas is positively correlated with successful object recognition, whilst no 

significant connectivity enhancement emerged when participants observed meaningless 

objects. Authors suggested that interhemispheric information flow in visual perception is 

likely “the first gate of an active attention system” (Mima et al., 2001). In the context of this 

finding, the NBS topography clearly reproduce such interhemispheric patterns between 

occipitotemporal areas, suggesting impairment of early functional processes associated with 

active perception in VH, which already emerges in resting-state. 

Moreover, differential topography showed lateralisation towards the right hemisphere. Right 

cuneus was significantly weakened in VH, whilst no connections from/towards left cuneus 

were affected, and three different regions within the right IT were affected, against only one 

within left IT. This result resonates with evidence in literature showing that the right 

hemisphere pathological features in PD, i.e. left-sided symptoms, are likely associated with 
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visuo-spatial features, whilst verbal deficits are associated with the left hemisphere (Blonder 

et al., 1989; Lee et al., 2001; Harris et al., 2003). In fact, perceptual deficits tend to be 

associated with right hemisphere damage; this has been suggested to be due to different 

efficiency of the two hemispheres, the right one being mostly involved in processing low-

frequency information (Robertson and Ivry, 2000), as it is the one transferred within the top-

down stream. From a pathological perspective, reduced node strength within the IT regions 

might be associated with higher burden of LBs within this region associated with VH, as found 

by Harding et al. (2002). 

Interestingly, connectivity between right cuneus and primary auditory cortex was also 

affected. Although auditory hallucinations are not typical features in LBD, they may emerge 

among the symptomatic spectrum and are mostly associated with VH (Inzelberg et al., 1998; 

Ballard et al., 2001b; Tsunoda et al., 2018). However, this aspect is beyond the scope of the 

present thesis, and future studies will be needed to explore brain network features associated 

with auditory hallucinations. 

 

6.5.2. Interaction between VAN, DMN and visual network is weakened in VH 

Connectivity between visual areas and the middle-posterior cingulate cortex, anterior insula 

and temporal superior sulcus was shown to be weakened in VH. According to previous 

research, the posterior part of the cingulate cortex is part of the DMN (Raichle, 2015), whilst 

anterior insula and temporal superior sulcus, this latter connected to the temporoparietal 

junction (Krall et al., 2015), belong to the VAN (Vossel et al., 2014; Jimenez et al., 2016). NBS 

differential component shows that connectivity between areas belonging to the ventral visual 

network and VAN or DMN areas is reduced in VH, but no alteration emerged in connectivity 

within or between VAN and DMN. This result may partially contrast the model by Shine et al. 

(2011) according to which overactivation of DMN and VAN causes faulty engagement of DAN 

and image misperception, as described in section 1.2.2. On the other hand, the approach 

pursued in the present study may suggest that predicted faulty interaction between 

attentional and default networks in LBD-VH is mediated by the visual streams, rather than 

reduced direct connectivity between attentional cortical regions. Unaltered connectivity 

between attentional networks in VH also appears to contrast with previous studies, where 
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reduced functional connectivity between attentional networks or higher DMN activation were 

associated with VH condition (Shine et al., 2014; Yao et al., 2014; Franciotti et al., 2015). This 

apparent contrast may be due to a different methodological approach having been used. In 

those studies, functional connectivity analysis was based on hypothesis-based ROIs selection, 

whilst in the present study affected connectivity patterns emerged from NBS, which is a data 

driven statistical method (Zalesky et al., 2010) (see section 2.5 for details on its 

implementation). This leads to speculation that although interaction between attentional and 

default mode networks and within network connectivity may be altered in VH compared to 

NVH, such alteration may not be as prominent as the affected interaction between regions 

within the visual streams, which are more directly involved in visual information processing; 

hence, altered attentional network patterns in awake resting-state condition would not 

emerge with the present strategy. An alternative explanation to this contrasting outcome may 

possibly rely on the condition of interest, i.e. PD in Shine and colleagues’ work and PDD+DLB 

in the present chapter. However, pathological similarities between PD/D and DLB (McKeith, 

2007b) and focus in both works on VH symptom regardless of the clinical condition make this 

scenario less plausible. Reduced functional connectivity with the anterior insula and middle-

posterior cingulate cortex is also consistent with previous research showing that GM over 

anterior insula and hypometabolism over the middle cingulate correlate with the intensity of 

visual hallucinations in AD and AD-LB mixed pathology condition (Blanc et al., 2014). 

 

6.5.3. Functional network is more segregated in VH compared to NVH 

Similar to what was found for DLB versus AD in Chapter 5, LBD patients with VH showed higher 

functional brain modularity compared to NVH. Although the number of modules was higher 

in NVH, numerosity was driven by two minor modules comprising respectively three and two 

nodes (respectively the purple and yellow modules in Figure 6.5). In fact, VH network showed 

significant modular disruption over the left hemisphere, which comprised two respectively 

frontal and parieto-occipital modules in VH against one only module in NVH, and featured 

modular redistribution within central-frontal regions. Disruption of left hemisphere module 

was also associated with connectivity reduction between PFC and occipital and cingulate 

cortices as detected with NBS. 
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To the best of author’s knowledge, the present analysis, for the first time, provides evidence 

of functional network segregation associated with VH in LBD. Modular network organisation 

has been shown to be crucial for visual perception processing, as different functional 

mechanisms are allocated to different brain areas (Treisman and Kanwisher, 1998; Zeki and 

Bartels, 1998; Borowsky et al., 2005) as also described in computational models (Bar, 2003; 

Bar et al., 2006; Chaumon et al., 2009; Gamond et al., 2011; Chaumon et al., 2014; O’Callaghan 

et al., 2017). Physiological modular properties of the network are likely disrupted in VH, 

possibly due to connectivity reduction, as detected in the present study. Specifically, 

decoupling of areas belonging to certain modules may take place in VH, leading to a higher 

number of modules. In addition, propensity of the network to organise in modules, i.e. higher 

modularity, emerges more strongly in VH compared with NVH, possibly due to impairment of 

long-range connections in VH, as proposed for DLB against AD in section 5.5.1 (Peraza et al., 

2018). Based on this hypothesis and differential topographies obtained with NBS and shown 

in Figure 6.2, affected top-down projections might potentially be driving network segregation 

in VH. Overall, this analysis shows that visual-related functional subnetwork is a significant 

factor to effectively assess DLB and PDD network properties, which should not be ignored 

when analysing functional alterations associated with LB pathology. 

 

6.5.4. Occipital cortex shows higher atrophy in NVH compared to VH 

Among visual ventral network nodes which showed lower strength in VH, only the cuneus 

showed differential CTh between groups. Specifically, CTh was higher in VH compared to NVH, 

and no significant correlation emerged in any of the groups between cuneus CTh values and 

functional node strength. As discussed in section 6.5.1, functional alteration within the cuneus 

are reportedly associated with VH, as also found in the present chapter. Functional brain 

features are generally associated with respective structural properties, as extensively 

reported in the literature and discussed in Chapter 1 (Guye et al., 2003; Greicius et al., 2008; 

Bullmore and Sporns, 2009; Damoiseaux and Greicius, 2009; Honey et al., 2009; Deco and 

Jirsa, 2012; Stam et al., 2016). Therefore, abnormalities in one would be expected to reflect in 

the other; however, this seems not to be the case based on the outcome of CTh analysis. 

Although it would be tempting to interpret cortical thickness preservation as a permissive 

state of VH generation in LBD, an attempt should be made to discuss this result from the 
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pathological perspective. As described in section 1.1, cortical atrophy within the medial-

temporal lobe is a well reported differential feature in AD against Lewy body pathology 

associated conditions (Barber et al., 2000b; Burton et al., 2009; Blanc et al., 2015). In the 

previous chapter, it has been proposed that part of the DLB cohort might include AD-LB mixed 

pathology cases, which would likely not feature VH (Tiraboschi et al., 2006; Jicha et al., 2010; 

Toledo et al., 2013; Yoshizawa et al., 2013). Although AD was not reported to show significant 

cortical thinning over posterior areas, it is possible that mixed pathology cases feature such 

further structural alteration, possibly associated with attentional rather than visual perception 

impairment. To test this hypothesis, CTh of right cuneus was computed for HC and AD 

participants included in the previous chapter. For this analysis, one AD subject was excluded 

due to cortical segmentation issues which yielded outlying CTh values. This resulted in 

including structural data from 18 HC and 25 AD. CTh differential patterns between groups 

were tested with Mann-Whitney U tests (p < 0.05, Holm-Bonferroni correction, six tests) based 

on hypotheses of interest, i.e.: HC > AD (one-tailed), HC ≷ VH (two-tailed), HC > NVH (one-

tailed), AD < VH (one-tailed), AD ≷ NVH (two-tailed), VH > NVH (one-tailed). As shown in 

Figure 6.11, cuneus CTh in AD and NVH were significantly lower than VH, and thickness values 

distributions were not significantly different between AD and NVH. As expected, AD thickness 

was not significantly lower compared to HC (O'Donovan et al., 2013), whilst a trend towards 

significance emerged for NVH compared to HC. This outcome provides an evidence of cuneus 

cortical alteration likely associated with AD-LB mixed pathology, whilst cuneus degeneration 

seems not featured in pure LBD condition, i.e. patients with VH. This idea also concurs with a 

previous study assessing more severe cortical atrophy associated with mixed pathology as 

compared with pure pathology condition (van der Zande et al., 2018), as well as posterior 

cortical atrophy associated with the “visual dementia” variant of AD (Benson et al., 1988; 

Crutch et al., 2017). 
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Figure 6.11 – Cuneus cortical thickness, comparison between LBD (VH and NVH), AD and HC. 
CTh values were not lower in NVH compared to AD, and both groups had reduced CTh 

compared to VH. Red dots: DLB; blue dots: PDD. * Significant Mann-Whitney U test (p < 
0.05); ** test survived Holm-Bonferroni correction (six tests). 

 

6.5.5. Subcortical degeneration is not associated with EEG connectivity in LBD 

Volume differences between VH and NVH groups emerged for both thalamus and NBM. The 

thalamus has been reportedly associated with α-band rhythms, possibly having a role in 

generating such waves throughout the cortex (Berger, 1933; Lopes da Silva et al., 1973; 

Schürmann et al., 2000; Robinson et al., 2001; Schreckenberger et al., 2004; Roberts and 

Robinson, 2008), and specifically with visual processing (Reinagel et al., 1999; Kveraga et al., 

2007). Functional alteration within the thalamus in LB pathology-related conditions was 

already reported in an fMRI study including part of the same participant cohort, where 

functional connectivity between thalamic nuclei and cortex negatively correlated with EEG 

microstates duration (Schumacher et al., 2019). Onofrj et al. (2019) proposed that thalamic 
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functional dysfunction might be associated with decoupling between DMN and attentional 

networks, generating short time connectivity states leading to psychotic symptoms in LBD. 

However, empirical evidence of a correlation between thalamus anatomical degeneration and 

LBD-VH has not been reported to date. The present study shows a strikingly significant 

reduction of thalamus volume in VH compared to NVH, in agreement with previous autopsy 

studies showing pulvinar degeneration in DLB compared to AD (Erskine and Khundakar, 2016; 

Erskine et al., 2017; Erskine et al., 2019). The present result suggests that such neuronal loss 

might be specifically associated with VH symptomatic phenotype. However, severity of 

thalamus degeneration did not correlate with EEG functional connectivity strength within 

affected NBS component for any of the groups. 

NBM volume was also significantly reduced in VH compared with NVH, in line with previous 

reports (Choi et al., 2012; Shin et al., 2012). This result nicely fits with the idea of cholinergic 

dysfunction being a driver of VH generation in LBD (Ballard et al., 2000; Harding et al., 2002; 

Diederich et al., 2005; Shine et al., 2011; Shine et al., 2014; Onofrj et al., 2019), which may be 

due to degeneration and LB burden over the main cholinergic sources of the brain (Hepp et 

al., 2017a; Sakai et al., 2019). A recent study which compared NBM volume across dementia 

types did not find any significant difference between groups (Schumacher et al., 2020b). 

Comparation of theirs and present results strengthens the hypothesis that NBM neuronal loss 

might be specifically associated with VH-related pathological features regardless of dementia 

type. However, NBM atrophy did not correlate with EEG connectivity strength in either groups. 

Hence, visual network alterations and subcortical degeneration in VH are either associated 

with different pathological mechanisms, or, if any effect of the latter exists on the first, that 

might be mediated by a third feature, e.g. subcortical-cortical white matter fibre tracts. 

 

6.5.6. Cholinergic dysfunction is associated with EEG network abnormalities in VH 

Previous studies investigating functional brain abnormalities associated with VH in LBD 

consistently attributed to the cholinergic system a primary role in the generation of such 

alterations (Ballard et al., 2000; Harding et al., 2002; Diederich et al., 2005; Shine et al., 2011; 

Shine et al., 2014; Onofrj et al., 2019). These speculations were suggested by indirect 

evidences, which included restoration effect of cholinergic medication on EEG features 



 
151 

 

towards healthier values in DLB (Agnoli et al., 1983; Balkan et al., 2003; Kai et al., 2005), the 

ability of these to suppress VH (Perry and Perry, 1995) and degeneration of the NBM (Hepp et 

al., 2017a; Sakai et al., 2019). This latter was also found in the present chapter, where NBM 

volume was lower in VH compared to NVH. In the present analysis, it has been found that WM 

projections from the cholinergic cell group in the NBM (Ch4 group in the basal forebrain) 

towards cortical regions belonging to the functionally affected network component show 

higher degeneration in VH compared to NVH. This result, together with reduced NBM volume, 

show that LBD-VH condition is associated with generalised damage of the main source of the 

cholinergic system. WM degeneration within cholinergic projections towards the cortex was 

also detected in a study with PD patients (Hepp et al., 2017a), where higher MD was detected 

in VH compared to NVH for the tracts between NBM and occipital and parietal areas. Authors 

suggested that such projections might have a key role in aetiology of VH in PD. Main interest 

of the present chapter was to investigate association between structural and functional 

connectivity, hence a data driven approach was pursued and GM cortical target ROIs were 

defined as regions corresponding to the NBS-detected nodes. Interestingly, correlation 

between cortical functional connectivity and number of NBM-cortex WM fibres emerged in 

NVH group, but not in VH. This outcome partially resembled the result of WM-DF correlation 

analysis reported in Chapter 5, where EEG-DTI significant correlation was more consistent in 

AD than in DLB. In line with the interpretation proposed in that chapter and the outcome of 

cortical thickness analysis, it is suggested here that NVH patients might include mixed LB-AD 

pathology cases, where AD component is predominant over LB pathology. In such condition, 

cholinergic-dependent regulation of functional cortical network connectivity might still 

persist, whereas they are disrupted in VH, where LBD cases could be associated with either 

pure LB pathology, i.e. cases with number of fibres < 2 · 104 as shown in Figure 6.10, or mixed 

pathology cases with predominant LB pathology, i.e. number of fibres > 2 · 104. Future studies 

may specifically aim to assess to which extent a LBD cohort include mixed-pathology cases; to 

this purpose, hippocampal volume might be extracted, and compared between groups, as 

hippocampal degeneration is known to be associated with co-existence of AD pathology 

(Gosche et al., 2002; Carmichael et al., 2012). 

Surprisingly, structural connectivity between thalamus and any of the other ROIs was not 

significantly affected in VH compared to NVH. This outcome apparently contrasts findings 

from a previous study where correlation between MD within the right thalamic subregion, i.e. 
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thalamic area projecting towards occipital and parietal areas, and NPI hallucination score were 

reported in DLB (Delli Pizzi et al., 2014b). However, as discussed above, in the present analysis 

a data driven approach was pursued, different from the mentioned study. Specifically, in the 

present analysis thalamus structural alteration was not tested in its subregions separately, 

whereas fibre tracts from the whole thalamus towards NBM and NBS-detected cortical regions 

were extracted, number of fibres was compared between groups, and correlation with 

functional connectivity was tested. Hence, WM alteration in specific thalamic subregions 

might not necessarily emerge with the present approach. However, investigating such aspect 

is beyond the scope of the present chapter, as the analysis was aimed to investigate for any 

functional-structural connectivity relationship associated with the pathological condition 

rather than thalamic involvement in VH aetiology per se. In fact, although association with α-

band connectivity abnormalities and thalamic neuronal loss did not emerge, a subtle 

correlation trend towards significance was found in VH when testing correlation between the 

number of fibres in the thalamus-cortex tract and EEG source connectivity strength; this trend 

did not emerge in NVH. If any causality exists between thalamic degeneration and functional 

connectivity alterations in VH, it seems that consistent degeneration of thalamic projections 

is needed to cause significant functional connectivity reduction. Hence, it is possible that a 

larger cohort sample size might be necessary to obtain enough statistical power so that 

correlation significance may emerge. As described in section 1.3.1, the thalamus is believed 

to be the functional source of α-band rhythms in the cortex (Chapman et al., 1962; Mulholland 

and Runnals, 1962; Klimesch et al., 1998; Jensen and Mazaheri, 2010; Benedek et al., 2014; 

Wan et al., 2019). Whether significant, the present outcome would show that beside DMN 

and attentional network alteration as proposed by Onofrj et al. (2019), thalamic abnormalities 

may also affect functional visual network at rest and its interaction with DMN and VAN, as 

shown with the NBS analysis. This aspect will need to be further explored in future studies. 

Cholinergic projections towards the thalamus, i.e. WM fibres in NBM-thalamus tract, were not 

affected in VH compared to NVH and did not correlate with WPLINBS, whilst significant 

correlation emerged with Qw in the NVH group. Disruption of the cholinergic system, and more 

specifically cholinergic deficit in the right thalamus, was reported to be more severe in LBD 

compared to AD and associated with cognitive fluctuation severity, together with reduced 

functional connectivity between thalamus and cortical regions (Ballard et al., 2002; Pimlott et 

al., 2006; Delli Pizzi et al., 2015b; Schumacher et al., 2019). It is possible that such thalamic 
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impairment causes the slowing of brain dynamics associated with cognitive dysfunctions 

(Schumacher et al., 2019) and drives network modular organisation towards higher 

segregation when VH symptomatology is absent. However, investigation of this pathological 

aspect is beyond the scope of this thesis. 

 

6.6. Conclusions 

In this chapter it has been shown that LBD features different EEG functional network 

properties depending on whether patients have also developed VH. For the first time 

differential topography between the two groups was obtained without any prior hypothesis, 

using data driven approaches instead and successfully validating predictive computational 

models. The most prominent differential feature consisted of affected visual processing 

streams in VH compared to NVH, although affected interaction between ventral visual 

network and DMN or VAN also emerged. The most functionally affected area was the right 

cuneus, which was also more atrophied in NVH compared to VH, probably due to underlying 

mixed pathology in NVH condition. Modular organisation of EEG source network is more 

disrupted when LBD patients also present VH. Correspondingly, modular distribution of the 

affected network component in VH is altered, within both top-down and bottom-up visual 

streams. Moreover, thalamus and basal forebrain were expectedly more degenerated in VH 

compared with NVH, although GM volumes were not correlated with functional cortical 

connectivity strength. However, the present study provides a direct evidence supporting the 

hypothesis that disruption of cholinergic projections from the basal forebrain towards the 

cortex is associated with functional connectivity abnormalities emerging when VH clinical 

feature develops in LBD. Results of this chapter further validate EEG as an effective tool to 

investigate pathological insights associated with LBD and, specifically, VH. Potentiality of 

multiple modalities for investigating functional and structural pathological correlates of LBD 

was demonstrated, by combining efficiency of EEG methodological approach with widely used 

structural imaging techniques, e.g. MRI and DTI. Future analysis will need to assess whether 

VH-related functional and structural biomarkers may be suitable to infer informing features 

to predict pathological progression at the earliest stage of LBD-associated disease 

development, e.g. prodromal or MCI-LB.  
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Chapter 7. Conclusions 

 

The main scope of this thesis was to investigate EEG feature alterations in DLB, with a focus 

on VH symptom, and their pathological correlate. To this purpose, EEG network and activation 

features were measured in both sensor and source domain, compared between dementia 

types and with healthy controls, and correlated with structural measures. Functional and 

structural network measures were then compared between VH and NVH condition in LBD, and 

correlation with structural connectivity was tested. Key findings of this study included: 

• EEG network features were differentially affected in AD, DLB and PDD. Specifically, α-

band measures were altered in LBD, i.e. DLB+PDD, compared to HC, and β-band 

network was overall more affected in DLB compared to AD. 

• The same network feature alterations emerged in the source analysis. In the α-band, 

differential topographical patterns in AD and DLB against HC matched with attentional 

networks, and correlated with occipital DF in DLB, but not in AD. 

• DLB showed higher network segregation compared to AD in the β-band. Interaction 

between VAN and DAN was weakened in DLB compared to AD, and differential 

network pattern strength was associated with integrity of cholinergic projection 

towards the cortex, more consistently in AD than in DLB. 

• Connectivity strength within the visual ventral network and prominently from/toward 

the cuneus was weaker in VH compared to NVH in LBD. Thalamus and NBM showed 

more atrophy in VH compared to NVH, but neuronal loss did not correlate with 

functional connectivity in either groups. 

• Integrity of cholinergic projections from the NBM towards the cortex was associated 

with functional connectivity strength in NVH, but not in VH. Cholinergic deficit in the 

thalamus was associated with higher network segregation in NVH, with a trend 

towards significant correlation in VH. 

 

Methodological finding: 

• Weighted thresholded graphs yield more consistent network measures across network 

densities compared to binary graphs. 
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7.1. General Discussion: Novelties and Strengths 

The third chapter of this thesis aimed to explore discriminative EEG network features across 

dementia types, i.e. AD, DLB and PDD, and between dementia and HC. Previous studies 

reported differential EEG network measures (Lemstra et al., 2014; van Dellen et al., 2015; 

Dauwan et al., 2016; Babiloni et al., 2018), however no study to date involved a graph theory 

analysis also measuring local condition-related functional alterations. In the present analysis, 

network graphs were obtained through proportional thresholding, and local and global graph 

features were extracted and compared between participant groups. Results of this analysis 

revealed that EEG network measures within the α-band accurately discriminate LBD from HC, 

whilst most β-band network features are differential between DLB and AD. Specifically, DLB 

showed weaker connectivity and greater network segregation compared to AD, and nodal 

measure differences were more consistent over posterior and anterior regions. This analysis 

provided novel evidences showing differential functional network properties between DLB 

and AD, which were speculated to be associated with differential attentional network 

alterations. Further aim of this chapter was to contribute to the debate on the most efficient 

method to obtain network graphs from connectivity matrices (van Wijk et al., 2010; Langer et 

al., 2013). It was hypothesised here and proved that applying proportional thresholding while 

preserving graph weights yields more consistent network measures by reducing their 

dependency on network density (Mehraram et al., 2019). Hence, any graph measure in the 

following chapter was obtained as its weighted variant. 

 

7.1.1. DLB vs AD 

Suitability of EEG as supportive diagnostic tool for dementia and, specifically, DLB, was 

demonstrated. The following analyses aimed to combine EEG with other brain imaging 

modalities to obtain pathological insights into the diseases. In the fourth chapter, source 

localisation was used to reconstruct cortical sources and their corresponding functional 

network and condition-related abnormalities. To spatially localise the cortical subnetwork 

involved in such alterations, NBS approach was used (Zalesky et al., 2010), and consistently 

affected network components between HC, AD and DLB groups were extracted. All differential 

graph measures detected in the sensor domain analysis were significantly differential also in 
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the source domain, confirming reliability of EEG as diagnostic biomarker and the potential of 

EEG-source reconstruction to infer pathological correlates. NBS analysis showed significant 

alteration of connectivity patterns comprising ventral and dorsal networks in both AD and DLB 

compared to HC, being more ventrally pronounced in DLB, in agreement with proposed 

speculations. Interestingly, it has been shown for the first time that average connectivity over 

the affected subnetwork significantly correlated with DF measured over the posterior cortex 

in DLB, but not in AD, suggesting that α-band network and posterior activation alterations in 

DLB might both originate from more severe cholinergic dysfunction in DLB compared to AD 

(Perry et al., 1991; Tiraboschi et al., 2000; Tiraboschi et al., 2002; Lemstra et al., 2003; Delli 

Pizzi et al., 2015b). This open question was addressed in the following chapter, and NBS 

analysis was also used to assess cortical alterations associated with EEG β-band differential 

features between AD and DLB detected in the sensor domain analysis. As hypothesised, 

cholinergic regulation of cortical activity was weakened in DLB but still maintained in AD. 

Modular disruption in DLB compared to AD corresponded to significant functional connectivity 

reduction over the right hemisphere between dorsal and ventral areas, likely associated with 

emotional alterations typically emerging in DLB (McKeith et al., 2017). Positive correlation 

between Q and MMSE suggested that DLB group may likely include mixed-pathology cases, 

associated with more severe cognitive performance and AD-driven lower modularity. In 

agreement with the sensor domain analysis, connectivity strength was the most discriminative 

feature between AD and DLB. 

 

7.1.2. LBD: VH vs NVH 

Due to its specificity in discriminating LB pathology from AD (Tiraboschi et al., 2006; Jicha et 

al., 2010; Toledo et al., 2013; Yoshizawa et al., 2013), functional and structural correlate of VH 

symptomatic condition were investigated in Chapter 6. With the same approach as 

implemented in the previous chapter, NBS was used to detect differential network 

components between VH and NVH. In addition, functional affected regions within NBS 

components were assessed by measuring individual node strengths and comparing the 

obtained values between groups. The obtained component consisted of topographical 

patterns comprising connections between regions belonging to the visual ventral network, i.e. 

PFC, IT and occipital cortex (Bar, 2003; Bar et al., 2006; Chaumon et al., 2009; Gamond et al., 
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2011; Chaumon et al., 2014; O’Callaghan et al., 2017), providing the first empirical evidence 

of developed models of VH in LBD (Collerton et al., 2005; Tsukada et al., 2015). The right 

cuneus showed the most consistent strength reduction in VH compared to NVH, suggesting 

that network alterations associated with VH are likely originating from posterior regions. 

Interestingly, the cuneus showed higher neuronal loss in NVH compared to VH. Post hoc 

comparison with AD and HC showed that right cuneus thickness in (LBD-)NVH and AD were 

not significantly different, hence it was speculated that NVH group likely consists of mixed AD-

LB pathology cases, in line with previously reported posterior cortical atrophy in such 

condition (Benson et al., 1988; Crutch et al., 2017). NBM and thalamus featured significant 

atrophy in VH, although there was no correlation between subcortical GM volume and 

WPLINBS. On the other hand, correlation between structural and functional connectivity 

emerged from EEG-DTI combined analysis. Specifically, integrity of cholinergic projections 

towards the cortex correlated with WPLINBS in NHV, but not in VH, suggesting that 

physiological cholinergic regulation of cortical activity might be disrupted in VH. To the best 

of author’s knowledge, this latter result is the first empirical direct evidence of the fact that 

cholinergic dysfunctions might be the underlying cause of EEG abnormalities in LBD, as 

consistently speculated in the literature on EEG and dementia (Perry et al., 1991; Ballard et 

al., 2000; Tiraboschi et al., 2000; Harding et al., 2002; Tiraboschi et al., 2002; Lemstra et al., 

2003; Diederich et al., 2005; Shine et al., 2011; Shine et al., 2014; Delli Pizzi et al., 2015b; 

Onofrj et al., 2019). Instead, when VH is absent, network segregation seems to be likely 

associated with cognitive dysfunctions, and is apparently driven by cholinergic deficit in the 

thalamus (Ballard et al., 2002; Pimlott et al., 2006; Delli Pizzi et al., 2015b; Schumacher et al., 

2019). 

 

7.2. Limitations 

The analyses reported in this thesis present some limitations. 
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7.2.1. Small sample size 

Due to the limited occurrence of DLB compared to other types across dementia cases, the 

available cohort was imbalanced across groups. This likely biased any diagnosis accuracy 

analysis such as the ones reported in chapters 3 and 5 to some extent, although proper Python 

libraries were used to attenuate any sample imbalance effect on classifier trainings. In 

addition, some of the analyses likely lacked statistical power, which could be increased by 

including a larger cohort. The reader is referred to section 6.5.6 for an example of correlation 

trend which did not reach significance likely due to small sample size. Small sample size also 

produced gender imbalance, with relatively large male cohort compared to female. This was 

marked in the VH analyses (Chapter 6), where statistical tests could not be corrected for 

gender distribution imbalance between groups. 

 

7.2.2. EEG has low spatial resolution 

As discussed in the first chapter, EEG is emerging as convenient tool for research and 

diagnostic purpose in neurological diseases. Its advantages rely on its low cost, portability, and 

non-invasiveness. In addition, compared to fMRI it features high temporal resolution, which 

makes it suitable to record high frequency electrical activity, such as γ-band oscillations 

(Freeman and Rogers, 2002; Davidson et al., 2007). In contrast, EEG provides relatively low 

spatial resolution. Clinical EEG equipment usually features standard 10-20 derivation system 

comprising 19 scalp electrodes (Jurcak et al., 2007), limiting the accuracy of any source 

localisation approach (Song et al., 2015). Hence, solutions with higher spatial resolution are 

often chosen in research, as done in this thesis by analysing high-density EEG data comprising 

128 channels (10-5 derivation system). Nevertheless, this is still lower than any resolution 

reachable with fMRI systems, e.g. 3-4 mm (Glover, 2011). 

 

7.2.3. sLORETA yields smooth source reconstruction 

Low spatial resolution is also a weak point of the chosen source localisation technique, hence 

any interpretation of analyses’ results based on spatial information should be read with 

caution. Generally speaking, there is some inconsistency of connectivity estimates across 
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source localisation techniques (Mahjoory et al., 2017; Lai et al., 2018). For instance, 

beamforming method are based on the assumption of uncorrelated sources, whilst this is not 

the case for MNE approaches (Hämäläinen and Ilmoniemi, 1984; Hämäläinen et al., 1993), 

likely making this latter more suitable for connectomics analysis. Hincapié et al. (2017) showed 

that connectivity of simulated MEG signals was more accurately reconstructed with 

beamforming or MNE depending on whether sources were assumed to be respectively point-

like or extended cortical patches. Accuracy of combined MEG/EEG source localisation 

approaches may possibly reduce the influence of this methodological inconsistencies yielding 

higher precision (Huizenga et al., 2001; Ebersole and Ebersole, 2010). 

 

7.2.4. WPLI cancels true zero-lag connectivity 

The main advantage of (W)PLI connectivity measure, especially at the sensor level, is its 

insensitivity to volume conducted signals, i.e. zero-lag synchronised time-series. However, 

zero-lag connectivity does not necessarily involve volume conduction, as it may also be due to 

multiple signals associated with the same (sub)cortical source activation (Roelfsema et al., 

1997; Gollo et al., 2014; Colclough et al., 2016). In this latter case, unrecorded connectivity 

would correspond to a false negative, and possibly relevant topological information might be 

lost. Moreover, accuracy of phase-based connectivity measures depends on signal-to-noise 

ratio, which in turn depends on overall signal power (Colclough et al., 2016). However, 

influence of zero-lag connectivity on network topology and difference between phase-based 

and correlation measures is beyond of the scope of the present thesis and should be 

addressed by proper methodological studies. 

 

7.2.5. Lack of connectivity directionality 

The EEG network analysis was based on undirected weighted graphs; hence directionality of 

affected connectivity patterns could not be empirically assessed. Therefore, any assumption 

of origin and target of connectivity projections was made based on existing speculations, 

hypotheses, and computational models. Measurement of effective connectivity was not of 

interest in the present thesis, hence future studies based on effective connectivity measures 
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will be needed to confirm such assumptions and further prove the validity of, or possibly 

contradict, the models. 

 

7.2.6. The NBS threshold is arbitrarily chosen 

As mentioned in section 2.5, NBS requires choosing a threshold on the single connection t-

values before performing a network statistical analysis. The choice of this threshold is a 

consequence of trials and attempts, as no specific protocol has been proposed yet (Zalesky et 

al., 2010). Purpose of the research presented in this thesis was to investigate for localised 

differential network properties, hence tth conservative values were chosen. However, it is 

possible that sensitivity of NBS may change due to the choice of lower thresholds, leading to 

either larger network components or no significance at all. This aspect was not investigated 

and remains a limitation of this work. 

 

7.2.7. Simple and complex hallucinations may have different aetiology 

In Chapter 6, patients with simple and complex hallucinations have been grouped together as 

VH, in order to exclude any visual perception alteration from the NVH group. In fact, NBS 

yielded consistently affected network component within VH group with no outliers, as shown 

in Figure 6.2 and Figure 6.3. However, simple and complex hallucinatory features have been 

suggested to be associated with different pathological mechanisms (Archibald et al., 2011), 

and other studies chose to include only complex hallucinations in VH group (Delli Pizzi et al., 

2014a; Franciotti et al., 2015; Firbank et al., 2018). Due to the small sample size, the extent to 

which simple hallucination phenomenon influences functional connectivity as compared to 

complex hallucinations could not be investigated in the present thesis. 

 

7.2.8. DTI data could not be corrected for susceptibility-induced distortions 

Differently than T1 MRI recordings, DTI recordings are also sensitive to susceptibility-induced 

off-resonance fields, which depend on subject head (Graham et al., 2017). To correct for these, 

an extra unweighted diffusion recording with different acquisition parameters is needed for 
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each subject. Whilst this was available for subjects from the VEEG-Stim study, this was not the 

case for the CATFieLD subjects. Therefore, DTI data could not be corrected for susceptibility-

related distortions due to data unavailability. 

 

7.3. Conclusions and Future Directions 

In this thesis it has been shown that EEG is suitable as indicative diagnostic tool for DLB and 

its differentiation from AD. Furthermore, combination of multiple modalities, i.e. EEG, MRI, 

and DTI, allowed to detect differential functional network patterns at the source level 

between AD and DLB, and their structural correlates. Specifically, it has been experimentally 

demonstrated that cholinergic dysfunctions generating from the basal forebrain are likely the 

drivers of detected EEG abnormalities in DLB and, specifically, associated with VH symptom. 

Moreover, structural and functional features in LBD are significantly influenced by the 

occurrence of AD-LB mixed-pathology cases, which should be taken in account to correctly 

interpret obtained results. 

 

7.3.1. EEG as diagnostic tool for MCI-LB? 

From the diagnostic perspective, the long-term goals of the research reported in this 

dissertation is to develop predictive diagnostic tools which can effectively detect the condition 

type at the earliest disease development stages. Most recent EEG studies have investigated 

EEG differential features between MCI subtypes, which resonated with the ones between 

dementia types (Babiloni et al., 2014; Bonanni et al., 2015; Babiloni et al., 2019; Law et al., 

2020; Schumacher et al., 2020a). However, graph theory studies and multi-modality 

approaches have not been pursued to date. It is proposed here for future studies to 

implement the same methodological pipeline as in the present thesis with an MCI cohort, train 

a classifier with the obtained EEG features, and test prediction accuracy with the dementia 

cohort. High classification accuracy would support EEG as a predictive biomarker at the 

earliest clinical manifestation, and potentially help to better provide effective treatments. 
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7.3.2. EEG source features to inform targeted medication 

From the pathological perspective, cortical and subcortical source localisation and 

combination with structural data may potentially inform the development and/or prescription 

of targeted medication. Future studies will need to assess effectiveness of existing treatment 

to restore localised abnormal disease-related functional and structural features in respective 

brain areas. In addition, specific medication targeting specific brain areas may be developed 

to treat individual symptoms such as VH. 

 

7.3.3. EEG subcortical source localisation: is the thalamus functionally altered? 

EEG cortical source localisation is becoming widely implemented in most studies involving 

diverse conditions. However, whether such approach may be suitable to accurately infer 

activation of subcortical regions is still a matter of research. For instance, Krishnaswamy et al. 

(2017) have proposed spatial source sparsity as an approach to correctly infer both cortical 

and subcortical activation, successfully extracting thalamus and brainstem signals. More 

recently, Seeber et al. (2019) showed that thalamus α-band activity could correctly be 

detected with source reconstruction, comparing the obtained signal with intracranial EEG 

recording from the same area. Although promising, these findings will need to be validated 

with diverse source localisation techniques, simulated data, and large cohorts before being 

extensively implemented for diagnostic and pathological research. Once consolidated, such 

approaches will potentially provide further insights on association between cortical and 

subcortical activity and their hypothesised and modelled abnormalities in DLB. 
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Appendix A. Supplementary Materials for Chapter 3 

 

This appendix contains supplementary information to the study reported in Chapter 3, as also 

reported in the respective publication (Mehraram et al., 2019). 

 

A. Proportional Thresholding: Binary Measures 

Figure A shows the trends of all network measures (excluding C and L in the β-band network, 

reported in the main manuscript) with respect to the network density. 

Spearman correlation test between the network measures and the thresholding level for all 

frequency ranges and groups together: 𝜌𝐾 = 1 (𝑝 = 0); 𝜌𝐾𝑤
= 0.9105 (𝑝 = 0); 𝜌𝑄 =

−0.4727 (𝑝 = 0); 𝜌𝑄𝑤
= −0.4254 (𝑝 = 0); 𝜌𝜎 = 0.6424 (𝑝 = 0); 𝜌𝜎𝑤

= 0.4754 (𝑝 = 0). 
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Figure Aa – See caption at Figure Ac. 
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Figure Ab – See caption at Figure Ac. 
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Figure Ac - Dependence of the network measures on the connectivity matrix thresholding 
level (PT%). Horizontal axis: PT% (range within 3% to 60%); vertical axis: network measure. 

Markers on top represent results of the one-way Kruskal-Wallis (p<0.05) and two-tailed 
Mann-Whitney U post hoc tests (p<0.05) performed at each PT%, as described in the figure’s 
legend (bottom right). Red marker: test survives Holm-Bonferroni correction (Kruskal-Wallis: 

60 tests; post hoc test: 6 comparisons). Dotted lines of the same colour delineate 95% 
confidence interval for each group. Weighted clustering coefficient and characteristic path 

length plots in the β-band are reported in the main manuscript. 

 

For both binary and weighted characteristic path length measures (clustering coefficient is 

reported in the main text), their edge-density vs value behaviour curves was modelled as 𝐿𝑏 =

𝑓𝑡𝑔 + ℎ and 𝐿𝑤 = 𝑚𝑡𝑛 + 𝑞, with t= thresholding level; f=-5.27 [-6.206; -4.333]; g=0.09554 

[0.07464; 0.1164]; h=6.431 [5.48; 7.381]; m=0.03879 [0.02946; 0.04813]; n=-0.8438 [-0.8974; 

-0.7902]; q=3.086 [3.063; 3.109] (Figure B and Figure C). The goodness of fit described by the 

sum of squares error (SSE) was SSEb=0.01649, SSEw=0.06544. Numbers in square brackets 

represent the 95% confidence interval.  

By computing the first derivative of the equations with respect to the thresholding level t, the 

following equations were obtained: 𝑑𝐿𝑏/𝑑𝑡 = 𝑓𝑔𝑡𝑔−1 and 𝑑𝐿𝑤/𝑑𝑡 = 𝑚𝑛𝑡𝑛−1. As in the main 

text, values of t at which the weighted measure showed lower dependence on PT% compared 

with the binary measure were searched, i.e. t at which: 
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𝑑𝐿𝑤

𝑑𝐿𝑏
< 1;   0 < 𝑡 ≤ 1 (A)  

By computing the ratio in (A) and replacing the corresponding coefficients, the condition in 

equation (A) is true when 0.0544 < 𝑡 ≤ 1. Hence the condition expressed in (A) is true for 

almost all network density values for the characteristic path length. 

 

 

Figure B – Power law fitting curve for the binary characteristic path length L. y-axis: L; x-axis: 
network density. Black dots: average experimental L across subjects. Blue line: fitting curve. 

 

 

Figure C – Power law fitting curve for the weight-based characteristic path length L. y-axis: 
W-L; x-axis: network density. Black dots: average experimental L across subjects. Blue line: 

fitting curve. 
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B. Network Features: Binary Measures 

 

Figure D – Results of the graph theory analysis from the binary network measures. y-axis: 
network measure; x-axis: frequency band of interest (θ: 4-7.5 Hz, α: 8-13.5 Hz, β: 14-20.5 

Hz). Values on top indicate the result of the one-way Kruskal-Wallis test (p<0.05); * : 
significant two-tailed Mann-Whitney U test post hoc test (p<0.05); ** : post hoc test survives 

Holm-Bonferroni correction (6 comparisons).  
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C. Network Features: Weighted Non-Thresholded (Complete) Matrices 

 

Figure E – Results from the graph theory analysis from the weighted measures computed 
over non-thresholded networks. x-axis: network measure; y-axis: frequency band of interest 

(θ: 4-7.5 Hz, α: 8-13.5 Hz, β: 14-20.5 Hz). Values on top indicate the result of the one-way 
Kruskal-Wallis test (p<0.05); * : significant two-tailed Mann-Whitney U test post hoc test 

(p<0.05); ** : post hoc test survives Holm-Bonferroni correction (6 comparisons). 
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Figure G – Graph theory analysis from local weight-based network measures over non-
thresholded matrices. y-axis: local network measure; x-axis: frequency band of interest (θ: 4-

7.5 Hz, α: 8-13.5 Hz, β: 14-20.5 Hz). If any interaction was found in the repeated measures 
ANOVA (within subjects: areas; between subjects: group), the result of the one-way Kruskal-

Wallis test (p<0.05) is indicated on top. Red triangle: Kruskal-Wallis test survives Holm-
Bonferroni correction (4 areas); *significant two-tailed Mann-Whitney U test post hoc test 

(p<0.05); **post hoc test survives Holm-Bonferroni correction (6 comparisons). Top (A): 
Weighted node degree. Bottom (B): Weighted clustering coefficient. 
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D. Robustness of The Network: Analysis Outcome for PT% = 10% and PT = 20% 

 

 

Figure H – Results from the targeted node attack (A: density 10%, bottom row: density 20%). 
The y-axis shows the weight-based characteristic path length, the x-axis is the percentage of 

nodes removed from the network. 
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E. Diagnostic Accuracy: 5 and 7 Folds Classifiers 

Figure I shows the results of the random forest classifier using 5 and 7 folds at cross-validation 

for the scenarios reported in the main text, i.e. DLB vs AD and LBDs vs HC. Similar classification 

accuracy was found. 

 

Figure I – Receiver operating characteristic (ROC) curves obtained with random forest 
classifier and computed for the DLB-vs-AD and dementia-vs-HC scenarios. All weighted 

network measures were used to train the classifier. Computations were performed using 
cross-validation with four and seven folds (first and second row respectively) and 10 

repetitions; for this the Scikit-Learn framework (version 0.20.1) and the Imbalanced-Learn 
(version 0.4.3) library in Python were used. 

 

Scenarios which did not yield any significance, i.e. all dementia groups together vs HC group 

(Figure J) and DLB vs PDD (Figure K), were also tested for exploratory purposes. Classification 

between all dementia groups together vs HC group was less accurate than LBDs vs HC reported 
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in the main manuscript. This is since only WPLI measured in the α range was significantly 

affected in AD compared with HC. 

 

 

Figure J – Receiver operating characteristic (ROC) curves obtained by the random forest 
classifier and computed for the dementia-vs-HC scenario. All weighted network measures 

were used to train the classifier. Computations were performed using cross-validation with 
six folds and 10 repetitions; for this the Scikit-Learn framework (version 0.20.1) and the 

Imbalanced-Learn (version 0.4.3) library in Python were used. 

 

 

The overlapping pathology between PDD and DLB affects the classification between the two 

groups, which was driven by chance (Figure K). 
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Figure K – Receiver operating characteristic (ROC) curves obtained by the random forest 
classifier and computed for DLB vs PDD scenario. All (weighted) network measures were 
used to train the classifier. Computations were performed using cross-validation with six 

folds and 10 repetitions; for this the Scikit-Learn framework (version 0.20.1) and the 
Imbalanced-Learn (version 0.4.3) library in Python were used. 
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Appendix B. MNI Coordinates of Network Nodes from Destrieux Atlas 

 

Label x y z 

'Pole_occipital_L' -16,856895 -100,1667 -5,6742534 

'Pole_occipital_R' 18,1147846 -95,929877 -2,8385904 

'G_occipital_sup_L' -13,980972 -92,103146 30,6393072 

'S_oc_middle_and_Lunatus_L' -31,049869 -89,221256 6,53669457 

'G_occipital_sup_R' 18,3290267 -87,948505 35,1847473 

'G_occipital_middle_L' -40,138361 -87,491509 13,4534898 

'S_oc_sup_and_transversal_L' -25,742421 -84,568726 20,9439325 

'G_and_S_occipital_inf_L' -38,461317 -83,414618 -11,446184 

'G_cuneus_L' -3,3468657 -81,646603 17,567933 

'S_oc_middle_and_Lunatus_R' 37,2338349 -81,03735 9,27653886 

'S_oc_sup_and_transversal_R' 30,1793647 -80,346951 22,1792641 

'S_collat_transv_post_L' -24,259606 -79,935652 -7,833175 

'G_occipital_middle_R' 46,3450485 -79,025415 15,2361303 

'S_collat_transv_post_R' 27,3908389 -78,88232 -8,8665384 

'G_cuneus_R' 5,90665408 -78,013931 19,8297602 

'G_oc-temp_med-Lingual_L' -9,5373903 -74,311454 -5,9839477 

'G_and_S_occipital_inf_R' 44,2472872 -74,053108 -12,277754 

'S_calcarine_L' -15,496666 -72,070582 4,71003843 

'S_parieto_occipital_L' -15,504848 -69,375785 25,8156653 

'G_pariet_inf-Angular_L' -45,302616 -68,591351 42,2196655 

'S_occipital_ant_L' -43,101425 -68,519245 4,15231965 

'G_oc-temp_med-Lingual_R' 9,37101745 -67,3593 -3,6127028 

'S_parieto_occipital_R' 17,3258766 -66,76769 27,3665577 

'S_calcarine_R' 17,2170709 -66,715428 6,10398333 

'S_occipital_ant_R' 47,6111792 -62,243474 4,33894048 

'G_parietal_sup_L' -23,406961 -61,896369 59,818168 

'G_pariet_inf-Angular_R' 49,5164272 -60,790665 42,767234 

'G_precuneus_L' -4,134602 -60,289891 43,6100051 

'G_precuneus_R' 4,79367477 -60,271867 46,5138273 

'S_intrapariet_and_P_trans_L' -30,657589 -59,100794 41,7982714 

'G_parietal_sup_R' 25,1441688 -57,872513 63,2070373 

'S_intrapariet_and_P_trans_R' 30,5651545 -56,858196 44,7500326 

'S_interm_prim-Jensen_L' -52,211148 -55,547456 36,9375096 

'G_oc-temp_lat-fusifor_L' -38,018595 -54,096665 -20,14663 

'G_oc-temp_lat-fusifor_R' 34,2769577 -51,637045 -20,75457 

'S_oc-temp_lat_L' -44,815804 -51,018649 -11,938669 

'S_oc-temp_lat_R' 43,8580055 -48,834051 -14,267307 

'S_subparietal_L' -9,5142274 -48,27462 35,7512872 

'S_subparietal_R' 8,9537357 -48,226819 37,5207114 

'G_cingul-Post-ventral_R' 7,09224502 -46,656395 5,58728157 

'S_oc-temp_med_and_Lingual_L' -28,407234 -46,364172 -13,258884 

'S_oc-temp_med_and_Lingual_R' 29,0422694 -45,597104 -12,87741 

'G_cingul-Post-ventral_L' -7,6501913 -44,821491 3,14298627 

'S_interm_prim-Jensen_R' 53,4322737 -43,416018 35,9316095 
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'S_temporal_sup_L' -49,801234 -42,712461 7,05405015 

'G_temporal_inf_L' -55,181424 -40,845183 -21,999078 

'G_cingul-Post-dorsal_L' -2,2440024 -40,328792 30,7762786 

'G_temp_sup-Plan_tempo_L' -60,074589 -39,214686 21,6403281 

'S_temporal_sup_R' 50,8477299 -38,19845 9,12947461 

'G_cingul-Post-dorsal_R' 1,85359023 -38,108126 33,1704614 

'G_temporal_inf_R' 55,1884657 -38,095535 -24,232985 

'S_cingul-Marginalis_L' -13,062979 -36,829735 48,9899833 

'G_and_S_paracentral_L' -7,3626139 -36,226501 69,8499747 

'G_pariet_inf-Supramar_L' -61,114305 -35,991977 33,2433335 

'G_and_S_paracentral_R' 7,88003389 -35,652382 71,5312243 

'S_cingul-Marginalis_R' 11,9953128 -35,555264 49,2884566 

'S_temporal_inf_R' 56,0866664 -34,854645 -14,660639 

'Lat_Fis-post_L' -41,857889 -34,072207 19,4094988 

'S_postcentral_L' -40,476822 -33,284302 46,1508686 

'S_temporal_inf_L' -55,519184 -31,191312 -18,6941 

'G_pariet_inf-Supramar_R' 58,3919828 -30,067496 37,0142107 

'S_postcentral_R' 39,559387 -29,737032 46,4406676 

'G_temporal_middle_L' -62,091079 -28,564557 -11,401692 

'G_temp_sup-Plan_tempo_R' 60,8702299 -28,49692 21,4961563 

'Lat_Fis-post_R' 40,1730677 -24,817006 18,5783136 

'G_postcentral_L' -47,507469 -24,046153 55,9848725 

'S_temporal_transverse_L' -53,333727 -22,0591 5,73130557 

'G_temporal_middle_R' 62,3925978 -21,611309 -15,007033 

'G_postcentral_R' 47,0899879 -21,027259 56,1218101 

'G_temp_sup-G_T_transv_L' -47,5505 -20,574775 9,92095113 

'S_central_L' -38,25244 -20,149708 46,0067886 

'S_collat_transv_ant_L' -42,103808 -19,177564 -28,981915 

'S_central_R' 37,3316732 -18,272409 46,4338759 

'S_temporal_transverse_R' 52,3678114 -18,024797 9,32791289 

'S_collat_transv_ant_R' 41,7743007 -17,738935 -29,330809 

'G_oc-temp_med-Parahip_L' -25,057202 -17,490021 -26,242779 

'G_oc-temp_med-Parahip_R' 23,8832041 -13,10857 -27,340384 

'G_temp_sup-G_T_transv_R' 48,2852039 -12,302355 7,36303752 

'G_and_S_subcentral_L' -57,601796 -10,807142 14,2693463 

'S_precentral-sup-part_L' -27,848176 -10,494424 56,7640435 

'G_Ins_lg_and_S_cent_ins_L' -41,825645 -10,458351 2,23362653 

'G_and_S_cingul-Mid-Post_L' -6,8746307 -10,239292 41,5425646 

'S_circular_insula_inf_L' -41,121354 -10,133728 -5,6777533 

'S_pericallosal_R' 4,30568889 -8,4860049 18,3588585 

'G_precentral_L' -43,837353 -8,4417451 54,910341 

'S_precentral-sup-part_R' 28,6509131 -8,3610497 56,5433254 

'S_circular_insula_inf_R' 41,2795259 -8,1585978 -6,7111148 

'G_and_S_cingul-Mid-Post_R' 6,50004415 -7,7839869 43,8611272 

'G_and_S_subcentral_R' 57,5925372 -7,347811 13,2478443 

'S_pericallosal_L' -4,3191537 -6,9543949 19,463515 

'G_temp_sup-Lateral_L' -58,757359 -6,301999 -8,2924862 

'G_precentral_R' 43,4064661 -6,0062333 54,1418552 

'G_Ins_lg_and_S_cent_ins_R' 41,0476219 -4,1843056 -2,0747366 
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'G_temp_sup-Lateral_R' 60,0830469 -4,1825595 -6,4375975 

'S_precentral-inf-part_L' -44,575172 4,73598383 30,7636279 

'Pole_temporal_L' -32,059063 5,8561879 -42,534359 

'S_circular_insula_sup_L' -36,382066 6,36621618 11,0907429 

'S_precentral-inf-part_R' 43,232989 7,0130399 30,9769796 

'G_subcallosal_L' -9,3007413 7,64565551 -13,67521 

'G_insular_short_L' -41,382944 8,3707236 -3,5490326 

'G_subcallosal_R' 3,97513351 8,8112282 -10,74926 

'G_temp_sup-Plan_polar_L' -38,32092 8,93823446 -19,277701 

'S_circular_insula_sup_R' 36,0867079 10,1757653 9,78910851 

'G_temp_sup-Plan_polar_R' 37,8185339 10,644779 -19,135848 

'Pole_temporal_R' 32,0010683 10,8225352 -42,322704 

'G_front_inf-Opercular_R' 53,0049681 13,2134486 7,86952158 

'G_insular_short_R' 40,1523395 13,2278407 -3,9137817 

'G_front_inf-Opercular_L' -52,695732 13,4175965 10,8084564 

'G_and_S_cingul-Mid-Ant_L' -6,3511835 17,120075 36,7664882 

'G_and_S_cingul-Mid-Ant_R' 5,64775196 18,6216281 37,9453958 

'Lat_Fis-ant-Vertical_L' -47,339246 20,4408408 9,84885165 

'S_front_sup_L' -24,146665 22,3512719 44,793897 

'S_circular_insula_ant_L' -31,336991 22,5220224 -8,4050156 

'Lat_Fis-ant-Vertical_R' 50,3782686 23,1261706 8,80138268 

'S_circular_insula_ant_R' 31,7375088 23,9660666 -8,2205039 

'S_orbital_med-olfact_L' -12,789413 26,2275148 -20,002537 

'S_orbital_med-olfact_R' 11,3397309 26,5968279 -19,801781 

'S_front_inf_L' -40,559908 26,8651178 19,8092285 

'S_front_sup_R' 23,9212788 26,8800996 43,9376926 

'G_front_sup_L' -9,8095551 27,1560262 46,6208742 

'G_front_inf-Orbital_L' -48,374082 27,7471761 -10,024611 

'G_front_sup_R' 9,54122583 28,6498217 46,1859897 

'S_front_inf_R' 40,022604 29,0828579 20,520266 

'Lat_Fis-ant-Horizont_R' 40,7323844 29,6613769 -1,9917581 

'G_front_inf-Triangul_L' -52,34446 30,9573826 2,63543048 

'Lat_Fis-ant-Horizont_L' -43,401756 32,2568612 -4,6294391 

'G_rectus_R' 2,87156024 32,3256205 -25,355636 

'G_front_inf-Triangul_R' 53,2683917 32,6627652 5,90740657 

'G_orbital_L' -31,042782 34,1044698 -20,590706 

'G_orbital_R' 29,1962396 35,6463052 -20,406356 

'G_front_middle_L' -38,591993 35,7733403 33,0580822 

'G_front_inf-Orbital_R' 51,1508807 36,9698238 -13,594139 

'S_orbital-H_Shaped_L' -27,354868 37,6675795 -16,42051 

'G_rectus_L' -4,1211068 38,1418317 -23,422932 

'G_front_middle_R' 38,6936979 38,2369656 32,078083 

'S_orbital-H_Shaped_R' 26,8075877 38,7712856 -16,740152 

'S_suborbital_R' 3,15998605 41,9296244 -16,421215 

'G_and_S_cingul-Ant_R' 5,85787713 42,3592462 4,55362515 

'G_and_S_cingul-Ant_L' -7,2514034 42,3919445 6,63595362 

'S_suborbital_L' -5,220484 43,9476634 -12,708837 

'S_orbital_lateral_L' -43,648027 45,4283591 -5,5656196 

'S_orbital_lateral_R' 43,6923782 46,5803129 -3,1078501 



 
246 

 

'S_front_middle_L' -28,307357 47,0646389 19,3032746 

'S_front_middle_R' 28,9039738 47,4571278 17,8662803 

'G_and_S_frontomargin_L' -25,310918 60,9520505 -9,0834118 

'G_and_S_frontomargin_R' 21,2763927 63,2872608 -11,452679 

'G_and_S_transv_frontopol_L' -16,838447 68,2448486 -2,3301895 

'G_and_S_transv_frontopol_R' 17,4681568 68,4477277 0,18827672 

 

Table A – Network node coordinates based on the atlas by (Destrieux et al., 2010). Nodes are 
computed as mass centroids within each parcellated region. 
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