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Abstract 

 

Early failure of Metal-on-Metal (MoM) joint implants is often due to adverse reaction to 

metal debris (ARMD). These MoM implants are composed of a cobalt-chromium 

(CoCr) alloy which generates nanoscale particles and metal ions. Cobalt ions can 

activate the innate immune receptor, Toll-like receptor 4 (TLR4), increasing secretion 

of inflammatory cytokines/chemokines. 

For this study, CoCr particles were generated in a multi-directional pin-on-plate wear 

simulator and characterised for use in cell treatments. In human THP-1 macrophages, 

CoCr particles were found to increase secretion of pro-inflammatory chemokines and 

cytokines including IL-8, CCL2, CCL3, CCL4 and IL-1 The gene expression of IL-8 

and CCL3 was also up-regulated in response to CoCr particles. The expression of 

these markers was found to be largely TLR4-dependent as a small molecule TLR4 

antagonist, CLI-095, significantly reduced these observed effects. 

Further investigation demonstrated that CoCr particles can also increase expression 

of the adhesion molecules ICAM-1 and VCAM-1 in the human endothelial cell line, 

HMEC-1. Furthermore, CoCr particle stimulation in HMEC-1 cells led to increased 

neutrophil migration in a chemotaxis assay. In periprosthetic tissue retrieved from 

patients undergoing hip and knee revision surgery, there was evidence of immune cell 

infiltration and the presence of macrophages and T cells. 

THP-1 macrophages were also treated with aluminium and zirconium oxides which are 

commonly used in ceramic hip implants. Both treatments resulted in significant TLR4-

dependent increases to IL-8, CCL2, CCL3 and CCL4 gene expression and protein 

secretion. Use of ATP to mimic ‘danger’ signalling following initial priming with ceramics 

caused significant increases to IL-1 expression.  

These data demonstrate that CoCr particles and ceramic oxides can induce an 

immune response by up-regulating the expression of pro-inflammatory chemokines by 

a mechanism that appears to be largely TLR4-dependent. This study demonstrates a 

potential role for innate immunological mechanisms in the development of ARMD in 

patients with failed prosthetic joint implants. 
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Chapter 1 : Introduction 

1.1 Total Joint Replacements 

The total joint replacement (TJR) is the leading treatment option for end-stage 

osteoarthritis (OA) with over 90% of hip replacements performed to treat OA (National 

Joint Registry for England, 2019). TJR is utilised when anti-inflammatory drugs or other 

pain relief is insufficient to alleviate patient symptoms (National Joint Registry for 

England, 2019). The pain associated with these OA is caused by the wear of cartilage 

which forms the articulating surface of joints. OA affects joints such as the hips, knees, 

elbows, ankles and shoulders, primarily causing considerable pain and discomfort in 

patients which ultimately debilitates their mobility. TJR is also utilised less commonly 

in other conditions such as rheumatoid arthritis (RA), fractures, dislocation and other 

diseases of the bone (National Joint Registry for England, 2019). 

 

1.1.1 Total hip replacement 

The total hip replacement (THR) involves replacing both the acetabulum, femoral head 

and a large portion of bone from the femur. The first breakthrough in modern joint 

replacements came in the 1960s when Sir John Charnley designed a Metal-on-

Polyethylene (MoP) cemented hip prosthesis consisting of a small metal head and 

ultra-high molecular weight polyethylene (UHMWPE) cup (Knight et al., 2011). The 

Charnley hip was successful in many patients and generally provided good long-term 

outcomes in relieving pain and improving quality of life through enhanced mobility 

(Nilsdotter and Isaksson, 2010; Choi et al., 2012; Milosev et al., 2012; Kiraly and 

Gondos, 2014). However, MoP devices tend to wear over time, which leads to what is 

known as ‘aseptic loosening’ of the implant. Therefore, patients inevitably require 

revision surgery in which the prosthesis is removed and replaced by a new implant. 

Revision surgery is far more complex than primary TJRs and can result in only modest 

clinical improvement and further complications, especially in younger patients (Karam 

et al., 2012). 
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1.1.2 Biomaterials in joint replacements 

The materials used to design THRs are constantly under development to provide 

lesser wear rates and most importantly, improve implant longevity. The different types 

of materials used in these implants are summarised in Figure 1.1. The first alumina 

ceramic implants were introduced in the 1970s as a ‘stronger’ alternative to the 

conventional polyethylene cup which had been previously used. However, despite 

some early positive outcomes, ceramic implants had a particularly high fracture rate 

which were extremely difficult to revise due to difficulties in removal of all parts of the 

shattered components. Ceramic implants also suffered from aseptic loosening over 

time, therefore offering little improvement from the conventional MoP design. Second 

generation ceramic implants were introduced during the 1980s, however, aseptic 

loosening continued to be problematic despite the incidence of fractures reducing. 

Therefore, the most widely used device at the time continued to be MoP designs which 

were becoming more associated over time with failure due to polyethylene wear 

osteolysis (destruction of bone tissue), resulting in aseptic loosening. Although MoP 

devices also failed for various other reasons including dislocations, in younger, more 

active patients, osteolysis was the predominant cause for revision. The longevity of 

any implant is dependent on several different factors; mostly involving the levels and 

type of activity taken by the patient and the weight of the individual. Both of these 

factors can potentially add extra pressure to the implant. However, the general 

degradation of the implant over time will still be a contributing factor to implant failure 

rates. 
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Figure 1.1 Total hip replacement prosthesis 

Figure shows the structure and different materials which can be used in modern total 
hip replacement prostheses. Generally, the femoral stem will be fabricated from a 
titanium/metal alloy and the other component materials will vary. The cup of the implant 
is conventionally polyethylene but can also be metal. The head of the implant varies 
between ceramic and metal and the liner ceramic or polyethylene. Image obtained and 
adapted from https://www.medacta.com/EN/hip-replacement. 

 

1.1.3 Change in patient demographics 

The demographic of patients suffering from OA and the number requiring THRs has 

changed dramatically in recent years in England and Wales (National Joint Registry 

for England, 2019). Obesity rates are continually rising along with an ageing population 

which puts extra stress and pressure on hip joints. Furthermore, an active lifestyle is 

encouraged to help prevent obesity which can also lead to further damage to the hip 

joint and can result in further OA cases. These factors combined suggest that not only 

are cases of OA increasing, but patients are presenting with OA at a much younger 

age. The increasing number of OA cases is reflected in the increase of THRs which 

https://www.medacta.com/EN/hip-replacement
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are performed annually in England and Wales. The number has risen from 42,769 

reported surgeries in 2004 to 92,874 in 2018 (Figure 1.2). 
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Figure 1.2 Total number of primary hip replacement procedures in England and 
Wales. 

(National Joint Registry for England, 2019). 

 

Although conventional MoP implants are successful in most patients, these prostheses 

were originally aimed at older patients with low activity levels. Therefore, the pressure 

put on MoP implants is manageable over a fairly long period of time (i.e. 10 to 15 

years). However, if MoP devices are implanted in younger patients (i.e. under 60 years 

old) then the patient is far more likely to surpass this 10 to 15-year period. Younger 

patients will therefore inevitably require complicated revision surgery and the possibility 

of multiple revisions within their lifetime. Designers of implants began to focus on 

improvements to wear rates by producing prostheses that are low-wearing which led 

to the introduction of Metal-on-Metal (MoM) implants. 
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1.1.4 The move towards Metal-on-Metal implants 

MoM implants consist of both components (the femoral head and acetabular cup) 

being fabricated from a metal alloy. MoM implants were initially introduced in the 1960s 

but the performance of these prostheses were mixed, with poor patient outcomes and 

relatively high failure rates (Brown et al., 2002). Therefore, by the 1970s the use of 

MoM implants was scarce, however, the clinical need for more durable materials 

remained. During the 1980s and early 1990s, a new generation of MoM implants were 

introduced which were made from a cobalt-chromium-molybdenum (CoCrMo) alloy. It 

was also around this time that MoM resurfacing prostheses were developed and 

became particularly popular in younger patients. MoM resurfacing implants were an 

attractive option for younger patients as it allowed improved preservation of the femoral 

head and neck and reduced dislocation (Figure 1.3). Another advantage of using MoM 

implants was due to the fact the materials used were thinner, so that a larger femoral 

head could be placed within the same sized acetabular cup. Larger head sizes helped 

to address the problems associated with dislocation and offered greater stability for the 

patient. 

Initial reports of MoM implants were very positive and analysis indicated that there was 

potentially sixty times less wear when compared with conventional MoP devices 

(Cuckler, 2005). Apparent lower wear rates led to the number of MoM implants used 

dramatically rising during the early 2000s. However, it soon became apparent that 

there was a high failure rate in patients who had received either MoM resurfacing or 

total replacements. In fact, in 2010, the manufacturer of the Articular Surface 

Replacement (ASR), DePuy, voluntarily recalled the device from the market due to 

concerns regarding higher than expected short-term revision rates (Langton et al., 

2011a; Bernthal et al., 2012). Around the same time, The Medicines and Healthcare 

Products Regulatory Agency (MHRA) issued specific guidelines regarding the 

monitoring of patients who had received MoM implants. The concern from the MHRA 

was regarding the presence of soft tissue reactions in patients who suffered with pain. 

Specifically, the MHRA advised that symptomatic patients should have their cobalt and 

chromium ion levels measured in the serum as well as Magnetic Resonance Imaging 

(MRI) scans. If either of these tests revealed abnormally high ion concentrations 

(anything higher than 7 parts per billion or 7µg/L) or any soft tissue reactions (i.e. fluid 

retention or tissue masses) then revision surgery would be considered. Using these 
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parameters as a ‘diagnosis’ was the beginning of what would be termed Adverse 

Reaction to Metal Debris (ARMD). 

 

 

Figure 1.3 Metal-on-Metal hip resurfacing versus the total hip replacement. 

Comparison of a hip resurfacing replacement (right side hip) with a total hip 
replacement (left side hip). In hip resurfacing the femoral stem is considerably shorter 
so preserves more of the patient’s bone (Image taken from (Amarasekera and Griffin, 
2012)). 

 

1.1.5 Current status of biomaterials used in total hip replacements 

Due to the problems associated with MoM implants discussed previously, there was a 

sharp decline in their use from 2008 onwards (see Figure 1.4A.). By 2011, the use of 

MoM implants was completely abrogated. Throughout time, MoP implants have 

consistently remained the most popular choice of implant materials. However, there is 

a clear clinical need for biomaterials which are long-lasting, with low wear rates and 

are low risk for potential immune responses to wear debris. As discussed previously, 

ceramics have been in use since the 1970s and efforts have been made since to 

improve the design and composition of these implants. Implants containing alumina 

https://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjdvuqs7OzcAhWLAMAKHTt1AS4QjRx6BAgBEAU&url=https://www.researchgate.net/figure/X-Ray-shows-a-Hip-Resurfacing-arthroplasty-Right-and-a-Total-Hip-Replacement-Left_fig1_221923221&psig=AOvVaw3ao9ftKu0fz3MhJPrVqocv&ust=1534346507042064
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oxides were introduced due to its apparent hardness and low wear rates which was 

hoped to overcome previous issues of friction and wear. In 1995, the need for hard and 

low-wearing materials led to the development of the BIOLOX® Forte (CeramTec, 

Germany) as a material which was highly dense and pure ceramic. However, increased 

fracture rates remained a problem and thus zirconia was introduced to the material, 

Zirconia Toughened Alumina (ZTA) (17%). Zirconia provided further strength to the 

material whilst counteracting facture and wear issues. The BIOLOX® Delta fabricated 

from ZTA was made commercially available by CeramTec in 2003. 

The development of ZTA as a biomaterial has meant a gradual increase in the number 

of Ceramic-on-Polyethylene (CoP) implants used in primary surgeries (Figure 1.4A). 

Furthermore, the average age of patients receiving CoP implants is significantly less 

than those receiving conventional MoP implants, highlighting their importance to be 

utilised in younger, more active patients (Figure 1.4B). The use of Ceramic-on-

Ceramic (CoC) implants in which both the femoral head and liner are fabricated from 

ZTA initially increased following the decline in MoM implant use. However, CoC 

implants continued to suffer from issues with ceramic liner facture and also ‘squeaking’ 

of the implant which has since led to their more recent decline (Gallo et al., 2012). 

Ultimately, the use of CoC has likely declined due to the success in longevity of CoP 

implants which is also a more cost-effective solution.  
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Figure 1.4 Biomaterials used in total hip replacements and demographics of 
patiens receiving implants.  

A) The percentage of different biomaterials used for bearing surfaces in primary total 
hip replacements. Metal-on-Polyethylene (MoP) consistently remains the most 
commonly used implant type. The use of Metal-on-Metal (MoM) increased between 
2004 and 2008 and then rapidly declined due to issues associated with adverse 
reaction to metal debris. Ceramic-on-Polyethylene (CoP) implants have steadily 
increased during recent years whereas the use of Ceramic-on-Ceramic (CoC) implants 
initially increased following the decrease of MoM but due to problems with fracture 
have also decreased since 2011. B) The average age at primary surgery for each 
bearing implant type. Conventional MoP implants were most commonly used in older 
patients (70+ years) whereas MoM, CoP and CoC implants were most often utilised in 
younger patients (under 65 years) due to lesser wear rates (National Joint Registry for 
England, 2019).  
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1.2 Wear of Total Joint Replacements 

Although MoM implants were initially designed to offer lesser wear rates when 

compared to conventional MoP devices, MoM implants with large femoral head 

diameters (>36mm) were reported to have higher wear rate due to ‘edge loading’. Edge 

loading occurs as a result of decreased contact between the cup and head at the rim 

of the cup resulting in increased contact stress (Underwood et al., 2012). Furthermore, 

general articulation of the joint and motion over time can also result in significant wear 

regardless of the materials used. However, the risk of revision with MoM implants, 

particularly in resurfacing surgeries, was significantly higher than any other type of 

implant which was a major factor in their decline of use (Table 1.1). Interestingly, 

female patients are also at a higher risk of implant failure compared to males especially 

in hip resurfacings and MoM implants. Females have also been shown to report higher 

levels of pain and are at greater risk of dislocation and aseptic loosening (Jameson et 

al., 2012; Cvetanovich et al., 2015). The relatively low risk of revision in CoP implants 

emphasises the reason why they are increasingly growing in popularity. 
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Table 1.1 Risk of revision 10 years post total hip replacement by gender, age and 
implant material.  

Blue italics signify that fewer than 250 cases remained at risk at these time points. 

Risk of revision at 10 years (%) 

MoP hip replacement 

Age (years) Males Females 

<55 5.53 4.47 

55-64 5.10 4.12 

65-74 4.14 3.50 

75+ 3.64 3.49 

MoM hip replacement 

<55 17.79 26.44 

55-64 16.70 22.45 

65-74 13.70 19.33 

75+ 8.70 9.59 

MoM hip resurfacing 

<55 7.76 19.75 

55-64 7.17 17.53 

65-74 7.66 14.89 

75+ 7.24 13.59 

CoP hip replacement 

<55 3.68 4.22 

55-64 3.33 3.31 

65-74 2.55 3.01 

75+ 2.95 3.04 

CoC hip replacement 

<55 4.64 4.57 

55-64 3.79 3.31 

65-74 3.14 2.51 

75+ 4.22 2.92 
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The major concern with wear in MoM implants, is the release of cobalt-chromium 

(CoCr) wear debris particles and ions from the implant into the surrounding tissues and 

vasculature. In particular, cobalt ions are found at significantly higher levels in patient’s 

serum than other metals used in MoM implants (i.e. chromium and molybdenum) 

(Witzleb et al., 2006; Maurer-Ertl et al., 2017). There have also been reports of CoCr 

accumulations observed in organs such as the kidney, spleen and liver, therefore the 

systemic effects that CoCr particles may cause is of obvious concern (Urban et al., 

2000; Abdel-Gadir et al., 2016).  

Most of the debris generated and released from MoM implants are from the two 

articulating bearing surfaces (Callaghan et al., 2004). However, corrosion at the 

femoral head-neck junction or from the trunnion can occur (known as trunnionosis) 

(Whitehouse et al., 2015) (Figure 1.1). The trunnion of the implant is typically 

manufactured from metal alloys including titanium, aluminium and CoCrMo. Therefore, 

trunnionosis and subsequent generation of debris is applicable to not only MoM 

implants but also MoP and ceramic devices. In fact, cases of ARMD have been 

reported in patients who have received either MoP or CoC implants (Matharu et al., 

2016; Waterson et al., 2018). 

Additionally, irrespective of the type of implant used, degradation of the device will 

occur over time which in turn will generate not only metal, but also polyethylene or 

ceramic nano- or micro-particles. Wear debris of any kind are then capable of 

circulating to surrounding tissues or more systemically. It is therefore no surprise that 

wear debris itself is one of the key factors in shortening the lifespan of prosthetic joints 

and increasing the number of revision surgeries. 

 

1.2.1 Cobalt-chromium wear particles 

Studies which have retrieved CoCr particles from the tissues of patients who have 

received MoM implants indicate that these tend to be nanoscale in size (Xia et al., 

2017). Xia et al. (2017) collected tissue from a total of 53 patients who had undergone 

revision surgery for ARMD. The investigators found that all particles were nanoscale 

in size, varying between 10-800nm and were mostly circular in morphology, irregular, 

with a few small needle-like particles. Differences observed in shape and morphology 

of particles could be due to the variations in particle isolation techniques from tissue 
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samples which are employed. Particle isolation methods can ultimately alter particle 

size, morphology and characteristics. Moreover, particle characteristics can effect in 

vitro investigations into cell toxicity as it is known that the size and shape of CoCr 

particles can affect cellular responses (Caicedo et al., 2013; Posada et al., 2015). 

The biological effects that CoCr particles can elicit have been investigated in numerous 

studies. Previous studies have shown potential cell toxicity caused by CoCr nano- (i.e. 

under 1000nm) and micro-scale (i.e. anything over 1000nm) particles in various cell 

lines and peripheral blood mononuclear cells (PBMCs) as well as their ability to up-

regulate inflammatory markers (Alarifi et al., 2013; Nyga et al., 2015; Wang et al., 

2016). In addition to CoCr wear debris particles, cobalt ions which are released from 

the CoCr alloy can also elicit toxic effects on cells as well as inducing apoptosis, 

necrosis and inflammatory responses (Huk et al., 2004; Catelas et al., 2005). One 

study investigated the biological effects of CoCr particles (supplied by DePuy), on a 

monocytic cell line. The CoCr particles used in this study generated significantly 

increased levels of cobalt ions and increased apoptotic gene markers in cells when 

treated with both particles and cobalt ions (Posada et al., 2014). However, the exact 

mechanisms and pathways which are involved in these reactions remains poorly 

understood. 

 

1.2.2 Ceramic wear 

Generally, the survivorship of CoP and CoC implants have been relatively high (97% 

at 10 years) (D'Antonio et al., 2012). The wear rates from ceramic bearings are 

particularly low when compared to other implant types which would explain their 

enhanced longevity. As discussed previously, efforts have been made to improve the 

design and composition of ceramic implants in more recent years. Implants containing 

ZTA e.g. the BIOLOX® Delta have grown in popularity. Furthermore, ZTA devices have 

been reported to generate fivefold less wear in comparison to alumina only implants 

(Al-Hajjar et al., 2013). Previous studies using CoC simulators have shown varied 

results regarding the size distribution of generated alumina particles. Using 

transmission electron microscopy (TEM) and scanning electron microscopy (SEM) 

appeared to give differing results of either nanometre scale particles (5-90nm) or 

micrometre (0.05-3.2µm), respectively (Tipper et al., 2002).  
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The primary concern with CoP and CoC implants have always centred on fracture 

rates. However, ceramic wear debris may not be as biologically inert as first believed 

or proposed. Biopsies taken from CoC implants demonstrated macrophage infiltration 

confirmed by immunohistochemical (IHC) staining (Mochida et al., 2001). However, 

very few studies have investigated the biological effects of ceramic wear debris in 

comparison to CoCr in vitro. Furthermore, very few have used clinically relevant 

materials as it can be particularly difficult to generate high volumes of ceramic wear 

particles on simulators due to the materials durability. One report compared alumina 

ceramic wear particles with CoCr particles and found them to be only weakly genotoxic 

to human cells in vitro (Tsaousi et al., 2010). Another study showed that macrophage-

like cells treated with alumina ceramic particles secreted four-times more tumour 

necrosis factor alpha (TNF) when compared with untreated controls (Sterner et al., 

2004). The investigators also concluded that there was no significant difference in 

TNF secretion when cells were treated with sub-micron particles (0.6µm) or micron 

sized particles (2µm) (Sterner et al., 2004). This finding was in agreement with a 

previous investigation which compared alumina ceramic particles with UHMWPE 

particles of the same size and demonstrated that the alumina particles were capable 

of inducing enhanced TNF secretion and initiating apoptosis in mouse macrophage 

cells (Petit et al., 2002). However, another study concluded that the size of alumina 

wear particles was in fact a crucial factor in determining subsequent biological 

responses. The investigators showed that smaller alumina particles generated in a hip 

simulator were mildly cytotoxic in histiocytic cells at a concentration of 50µm3 per cell 

(approximately 3% of cell by volume) but larger commercial alumina particles did not 

induce the same toxic effects (Germain et al., 2003). 

 

1.3 Adverse Reaction to Metal Debris 

The symptoms associated with failed MoM joint replacements include soft tissue 

damage, bone destruction and in some cases, the formation of large visible masses 

known as pseudotumours (Pandit et al., 2008). These symptoms collectively are 

termed ARMD, which cause pain, swelling and discomfort around the area of the joint 

whilst substantially affecting patient mobility and quality of life (Langton et al., 2011b). 

Due to the symptoms described, ARMD is the primary reason for MoM implant failure 

and requirement for revision surgery. Compared to the failure of conventional implants 
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(e.g. dislocation, loosening and septic infection), ARMD differs significantly due to the 

progressive destructive nature of the disease along with soft tissue necrosis and its 

development in what appear to be well-functioning implants. 

The exact underlying mechanisms behind ARMD are unknown and the unpredictable 

nature of its occurrence in patients makes it difficult to predict and diagnose. For 

example, high serum concentrations of metal ions do not necessarily lead to 

symptomatic patients and some patients with normal metal ion concentrations have 

been known to suffer from symptoms and show signs of ARMD (Langton et al., 2013; 

van Lingen et al., 2013). 

Patients who present with ARMD will typically require revision surgery with an 

alternative implant to alleviate the symptoms described previously. Resolving ARMD 

with revision surgery explains the high failure rates which have been reported with 

MoM devices. However, revision surgery is associated with poorer outcomes 

compared to primary surgery as the bone is typically weaker. Some studies have 

suggested that half of revisions for ARMD suffered from complications and around a 

third underwent further surgery (Grammatopoulos et al., 2009; Rajpura et al., 2011; 

Munro et al., 2014). Although the number of MoM implants being used has reduced 

dramatically since their peak in the early 2000s, there are potentially millions of people 

worldwide who have MoM devices implanted, therefore, it is important to gain a further 

understanding of ARMD. Furthermore, in implants most commonly used today, metals 

are still often used in other medical devices such as dental implants and spinal rods. 

 

1.3.1 Formation of inflammatory pseudotumours 

Inflammatory pseudotumours were first described following the observation of aseptic 

soft tissue masses around hip prostheses which were necrotic in nature and infiltrated 

with immune cells such as macrophages and lymphocytes (Pandit et al., 2008). This 

original finding was identified in 17 female patients who had all received a MoM 

resurfacing implant with the pseudotumours observed being either solid or cystic 

(Pandit et al., 2008). Metal wear debris was also observed within the tissue which 

suggested either a toxic reaction to excess metal wear debris or a hypersensitivity 

reaction. The main symptom associated with inflammatory pseudotumours is 

discomfort and pain, particularly in the groin area (Bosker et al., 2012). However, other 
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patients also complain of instability which can ultimately lead to dislocation and some 

patients describe clicking sensations in the hip itself. 

Whether the presentation of pseudotumours is associated with high wear levels and 

metal ion concentrations is highly debatable. For example, some studies have 

confirmed a correlation between higher wear levels, elevated serum metal ion 

concentrations and the prevalence of pseudotumours (Langton et al., 2010; Davda et 

al., 2011). However, other researchers have found that MoM implants with relatively 

low wear (less than 5µm per year) had a 40% chance of pseudotumour formation 

(Matthies et al., 2012). Moreover, asymptomatic patients with pseudotumours have 

been observed, although these are still concerning and patients should be monitored 

regularly (Kwon et al., 2011; Konan et al., 2017). In addition to these findings, research 

has shown the incidence of pseudotumours does not differ between poor-functioning 

and well-functioning hips i.e. asymptomatic vs symptomatic (Hart et al., 2012). 

Therefore, inflammatory pseudotumours are very difficult to predict and, similarly to 

serum metal ion concentrations and the development of ARMD, appear to be patient-

specific. 

Inflammatory pseudotumours do not appear to be unique to MoM articulations. There 

have been reported cases of pseudotumours developing from MoP implants (Scully 

and Teeny, 2013; Persson et al., 2018). However, pseudotumours associated with 

MoP implants are usually concluded to be due to trunnion corrosion which is typically 

fabricated from metals so may account for reactions occurring in patients (Whitehouse 

et al., 2015). Pseudotumours have also been observed to develop in patients who have 

received CoC and CoP implants i.e. without any CoCr bearing surfaces (Malem et al., 

2013; Campbell et al., 2017; Serrano et al., 2018). Most interestingly, in a particular 

case study with a CoC implant, there was complete absence of a CoCr stem, femoral 

head or source of cobalt metal ions/CoCr debris (Campbell et al., 2017). Therefore, it 

is reasonable to presume that the pseudotumour formation was a direct consequence 

of ceramic debris/wear particles. 
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1.3.2 Cobalt and chromium ion levels in patients with metal-on-metal 

prostheses 

Elevated levels of cobalt and chromium ions have been observed in the serum, urine, 

joint fluid and organs of patients with MoM implants (Sargeant et al., 2006; De Smet et 

al., 2008; Walter et al., 2008; Langton et al., 2010). Langton et al. (2010) found that 

cobalt (~1000µg/L to 10,000µg/L) ion levels in joint fluid can vary hugely in ARMD 

patients but are significantly higher than in asymptomatic patients. However, Langton 

et al. also observed that although the average cobalt ion serum concentration in ARMD 

cases was higher than in asymptomatic patients (29.5µg/L vs. 2.67µg/L), in some 

asymptomatic cases, significantly higher concentrations were recorded e.g. up to 

228µg/L. De Smet et al. (2008) also found that the joint fluid levels of metal ions were 

at least an order of magnitude higher than those measured in patient serum (for 

example, 2185µg/L cobalt ions in joint fluid vs. 33.8µg/L in serum). However, De Smet 

et al. showed that there was a strong correlation between measured high levels of 

serum and joint fluid concentrations of metal ions in each patient which was associated 

with wear-scar depth. Another study was able to demonstrate that abnormal wear 

(greater than 3mm3 per year) was indicative of blood and serum cobalt ion 

concentration, with a concentration of larger than 4.5µg/L showing specificity and 

sensitivity of abnormal wear 95% and 94%, respectively (Sidaginamale et al., 2013).  

It was these findings within the literature that helped shape the MHRA guidelines 

regarding the ‘safe’ limit of cobalt and chromium ion serum concentrations (i.e. 7µg/L). 

However, in other studies, there have been conflicting results regarding large 

variations in reported ion concentrations (Davda et al., 2011; Renner et al., 2016). 

Variations observed in cobalt and chromium concentrations in both serum and synovial 

fluid can make ARMD very difficult to predict and can undermine the supposed ‘cut off’ 

point for safe levels, as determined by the MHRA. Furthermore, there have been 

reported cases of ARMD, pseudotumours and delayed type IV hypersensitivity 

reactions with ion concentrations below the MHRA threshold (Hallab et al., 2010; 

Sampson and Hart, 2012). Differences observed between individual patients suggests 

that patient-specific responses to metal ions may be occurring rather than an adverse 

response developing once a certain concentration is reached. 
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1.3.3 Osteolysis 

Osteolysis in the case of joint replacements is due to increased bone resorption 

triggered by signals from macrophages and inflammatory mediators e.g. cytokines. 

Cytokines have a profound effect on the function and interaction of osteoblasts (bone-

forming), osteoclasts (bone-resorbing) and macrophages which all play a role in bone 

homeostasis. If there is a drive towards osteoclastogenesis, this leads to excessive 

bone-resorption, osteolysis and ultimately aseptic loosening of implants. Osteoclasts 

drive bone resorption by the secretion of acidic matrix metalloproteinases (MMPs) and 

can therefore be a direct cause of osteolysis in implant loosening. The differentiation 

of immune cells such as monocytes into osteoclasts is driven by factors such as 

TNF and interleukin-1 (IL-1). For full differentiation to osteoclasts, cells require 

interactions with their cell surface Receptor Activator of Nuclear Kappa-B (RANK) with 

its ligand, RANKL, expressed by osteoblasts on the bone surface (Figure 1.5). 

Osteoprotegerin (OPG) can prevent osteoclastogenesis by binding to RANKL and 

preventing its interaction with RANK. Therefore, the ratio of RANKL to OPG can 

regulate osteoclast differentiation and the balance between bone formation and 

resorption. It has been shown that both cobalt and chromium metal ions can decrease 

OPG and therefore promote the differentiation of osteoclasts and further osteolysis 

(Zijlstra et al., 2012). Several studies have demonstrated the expression of RANKL, 

OPG, and RANK in peri-implant tissues from cases of osteolysis (Haynes et al., 2001; 

Holding et al., 2006; Chen et al., 2012). 

Consistent with these findings, both CoCr particles and ions reduce proliferation of pre-

osteoblasts as well as significantly elevating RANKL expression and inhibiting OPG 

expression (Yang et al., 2019). In a study which investigated periprosthetic osteolysis 

of loosened hip implants, the authors found an over-expression of RANKL by 

osteoblasts as well as lower OPG/RANKL ratio in the synovial fluid of patients (Wang 

et al., 2010).  

Aseptic loosening due to osteolysis is the leading indication of all revision procedures 

and is also a hallmark of ARMD. Consequently, the effect of wear debris and particles 

on both osteoblasts and osteoclasts has been of interest to researchers. Cobalt ions 

and CoCr particles have been shown to down-regulate expression of members of the 

Transforming Growth Factor beta (TGF-) signalling pathway (which promotes 
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osteoblast differentiation) in osteoblast cell lines as well as collagens which are 

regulated by TGF- (Drynda et al., 2018a; Drynda et al., 2018b).  

CoCr particles were compared to alumina ceramic particles in an investigation 

involving osteolytic markers (Klinder et al., 2018). When human osteoblasts were 

treated with both types of particles, there was a direct induction of matrix 

metalloproteinase-1 (MMP-1) messenger ribonucleic acid (mRNA) but not active 

protein (Klinder et al., 2018). This finding was interesting and conflicts previous reports 

which indicate that particle exposure is associated with increased MMP protein 

expression in macrophages and PBMCs (Jonitz-Heincke et al., 2016; Jonitz-Heincke 

et al., 2017). Other research comparing biomaterials concluded that CoCr particles 

were the most biologically active biomaterial in osteoblasts, increasing their secretion 

of MMP-1 significantly and reducing the synthesis of collagen (Lochner et al., 2011). 

Zirconium appeared to generate the least amount of cellular biological effects (Lochner 

et al., 2011). 

 

Figure 1.5 Bone resorption process.  

The receptor RANK is expressed by osteoclast precursor cells and can bind to RANKL, 
which is expressed and can be secreted by cells such as osteoblasts. Following 
receptor binding of RANK and RANKL, multi-nucleated osteoclasts are formed which 
then drive osteoclastogenesis i.e. bone resorption. Osteoprotegerin (OPG) acts as a 
decoy molecule and can also bind to RANK to prevent osteoclast differentiation and 
therefore promote bone formation. The ratio of RANKL to OPG therefore regulates 
osteoclast differentiation and is vital for determining the balance between born 
resorption and formation. Image created using Biorender. 
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1.3.4 Aseptic lymphocytic vasculitis-associated lesions (ALVAL) 

The infiltration of lymphocytes present in the tissues of patients with ARMD suggests 

that the adaptive immune system may also be implicated in this reaction (Davies et al., 

2005; Blumenfeld et al., 2010). The heavy lymphocytic infiltrate phenotype is termed 

by researchers and clinicians as Aseptic Lymphocytic Vasculitis-Associated Lesions 

(ALVAL). As the main features of ALVAL are lymphocytic in nature this led researchers 

to believe that early implant failure may occur due to delayed type IV hypersensitivity 

(Catelas et al., 2015). Delayed hypersensitivity is characterised by a cell-mediated 

response controlled by T helper 1 (Th1) cells. Th1 can be activated by antigen-

presenting cells i.e. metal ions or wear particles are potentially presented to T cells 

causing them to differentiate into a pro-inflammatory phenotype (Th1). Once 

stimulated, T cells proliferate and secrete ‘lymphokines’ (e.g. interleukin 2-6) which 

further attracts immune cells such as macrophages to the site of inflammation which 

can then become activated. In a chronic state of hypersensitivity this ultimately leads 

to mass cellular infiltrate of macrophages and potentially granuloma formation. It is 

known that CoCr wear debris particles from MoM implants can produce potentially high 

levels of cobalt and chromium metal ions which can act as haptens when combined 

with large carrier protein molecules (Thierse et al., 2005). When wear debris particles 

are combined with haptens they can be presented be either dentritic cells or 

macrophages following phagocytosis to T cells and stimulate the adaptive immune 

response. 

The pathological phenotype of a type IV hypersensitivity response would mostly be a 

heavy lymphocyte infiltrate, a macrophage response and possible tissue necrosis, all 

of which are hallmarks of ARMD. A similar response is observed in the case of contact 

dermatitis to nickel which is often termed as ‘metal allergy’ which is relatively common 

in the general population (around 5 to 10%) (Ahlstrom et al., 2017).  

However, whether hypersensitivity is the main or leading cause of ARMD is 

questionable. One study by Kwon et al. investigated the cellular response to cobalt, 

chromium and nickel between patients with or without inflammatory pseudotumours 

(Kwon et al., 2010). Using a lymphocyte proliferation assay, they found that there was 

no difference in response from either patient group, suggesting that there may be other 

immune reactions taking place in response to metal ions or particles. Cytokine and 
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chemokine profiling in patient’s serum and peri-implant tissues with aseptic loosening 

revealed increased levels of both classically innate immune proteins such as 

interleukin-1 beta (IL-1) and interleukin-8 (IL-8) but also the presence of interleukin-2 

(IL-2) and interferon gamma (IFN-), indicating involvement of T cell mediated 

responses (Christiansen et al., 2019). Therefore, it is likely that both the innate and 

adaptive immune systems are involved in this type of response. 

 

1.4 Immune Response to Wear Debris 

As previously discussed, wear debris is generated from all types of implants, 

regardless of the biomaterial used e.g. UHMWPE and ceramic. Although MoP implants 

generally have a long life-span when compared to MoM implants, one of the primary 

reasons they fail over time is due to osteolysis leading to aseptic loosening of the 

implant itself. It is suggested that polyethylene wear debris released from MoP implants 

are responsible for osteolysis due to chronic inflammation which therefore indicates 

that a possible immune response is occurring. Furthermore, the symptoms which 

accompany ARMD i.e. swelling, soft tissue necrosis and pseudotumour formation are 

all indicators of inflammation and role for the immune system. 

It is important to note that all patients undergoing TJR surgeries will, to some extent, 

suffer from inflammation. However, inflammation following surgery tends to be acute 

whilst the patient starts to become mobile again (Chen et al., 2016). In some patients, 

the immune system appears to be constantly activated resulting in chronic 

inflammation, leading to the symptoms previously described. It is suggested that wear 

debris plays a role in initiating immune responses following TJRs and in the case of 

ARMD, specifically CoCr particles and metal ions. 

 

1.4.1 Innate immune system 

The innate immune response is activated upon recognition of potentially harmful 

pathogens and is therefore termed ‘the first line of defence’. It would therefore seem 

reasonable to assume it would be the innate immune system which would encounter 

and respond to wear debris primarily. Furthermore, one of the main type of cells which 

are involved in the innate immune response, macrophages, have been shown to be 

present in both the synovial fluid and soft tissue surrounding implants in patients with 



21 

 

adverse reactions (Mahendra et al., 2009; Campbell et al., 2010; Pajarinen et al., 2010; 

Dapunt et al., 2014a; Perino et al., 2014). Additionally, in a study investigating 

polyethylene and titanium particle-induced osteolysis in mice, the response was found 

to be independent of lymphocytes, which are mostly associated with the adaptive 

immune response. Interestingly, other types of innate immune cells such as neutrophils 

and eosinophils are found in relatively low numbers in peri-implant tissues from failed 

MoM implants (Mahendra et al., 2009; Perino et al., 2014). 

 

1.4.2 Function of monocytes, macrophages and neutrophils 

The innate immune system is comprised of different cell types which all play a role in 

the initial stage of pathogen clearance. Innate immune cells include; eosinophils, 

neutrophils, monocytes/macrophages and basophils. As this study is investigating the 

innate immune response to biomaterials used in orthopaedic implants, the focus of this 

section will be on the development of immune cells most often implicated in ARMD; 

monocytes, macrophages and neutrophils. 

Monocytes/Macrophages 

Monocytes are derived from haematopoietic stem cells (HSCs) which undergo 

differentiation to common myeloid progenitor cells, monoblasts, pro-monocytes and 

finally monocytes. For this differentiation process to occur, several different growth 

factors are involved such as Macrophage Colony-Stimulating Factor (M-CSF) and 

Granulocyte Macrophage Colony-Stimulating Factor (GM-CSF). Once in circulation, 

monocytes can survey for any pathogens they may encounter and eventually can 

migrate to tissues where they differentiate into macrophages. Under certain conditions, 

monocytes can also differentiate into dendritic cells (DCs) (monocyte-derived DCs). In 

vitro, a combination of GM-CSF and interleukin-4 (IL-4) can stimulate differentiation of 

monocytes into monocyte-derived DCs. 

The primary function of macrophages is to phagocytose potentially harmful pathogens. 

However, they are also capable of secreting both cytokines and chemoattractant 

subtypes, chemokines, which are involved in antigen presentation and activate the 

adaptive immune system. Numerous macrophages can also fuse together to form 

Multi-nucleated Giant Cells (MGCs). MGCs are thought to be critical in the role of 

aseptic loosening of prosthetic joints and osteolysis by promoting osteoclastogenesis 
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(Carli et al., 2011). A study involving a 3-Dimensional peripheral tissue-equivalent 

model, consisting of a monolayer of endothelial cells supported by a collagen gel, 

showed that metal wear particles induce the formation of MGCs (Dutta et al., 2015). 

Macrophages residing in tissues express a range of Pattern Recognition Receptors 

(PRRs). PRRs are capable of recognising and responding to numerous exogenous 

danger pathogens, otherwise known as Pathogen-Associated Molecular Patterns 

(PAMPs) and endogenous ‘alarmins’ also known as Danger-Associated Molecular 

Patterns (DAMPs). Generally, upon recognition of PAMPs and DAMPs, the up-

regulation of pro-inflammatory cytokines and chemokines are promoted which aid in 

pathogen clearance. 

As previously discussed, monocytes and macrophages also play an important role in 

linking the innate and adaptive immune systems by functioning as APCs. Macrophages 

can phagocytose pathogens and present fragments to T cells which then initiates the 

adaptive immune response.  

Neutrophils 

HSCs are also capable of differentiating into neutrophils, using an alternative lineage 

to that of monocytes. Firstly they become myeloblasts, then promyelocytes and finally 

neutrophilic myelocytes (Hidalgo et al., 2019). Mature neutrophils are established once 

intracellular granules are formed. Neutrophils are also released into the circulation but 

quickly migrate into tissues. The primary role of neutrophils is in the removal of 

potentially harmful pathogens from tissue. Neutrophils achieve pathogen clearance by 

a number of different processes including; phagocytosis, degranulation by the release 

of several granule stored factors such as MMPs, defensins and lysosomes and the 

release of Nicotinamide Adenine Dinucleotide Phosphate (NADPH) oxidase which in 

turn produces hydrogen peroxide and ultimately hypochlorus acid (Kolaczkowska and 

Kubes, 2013). 

 

1.4.3 Phagocytosis of wear debris particles 

A major role for both macrophages and neutrophils is phagocytosis and many studies 

have investigated the role of these cells in phagocytosing wear debris particles (Nine 

et al., 2014; Scharf et al., 2014). The process of phagocytosis involves endocytosis in 

which the pathogen is engulfed by the plasma membrane and contained intracellularly 
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within a phagosome (Figure 1.6). The pathogen is degraded by either enzymes (e.g. 

NADPH oxidase, deoxyribonucleic acid (DNa)ses, lipases and proteases) or 

antimicrobial peptides when the phagosome comes into contact with lysosomes. 

These events also cause macrophages to become more activated, leading to 

increased cytokine and chemokine secretion. Furthermore, once digested, some 

pathogen antigens can be presented by antigen-presenting cells to then activate the 

adaptive immune system. 

  



24 

 

 

Figure 1.6. Phagocytosis process.  

1) Pathogen comes into contact with phagocytic cell e.g. macrophage and binds to cell 
surface receptors. 2) The macrophage begins to engulf the pathogen in the plasma 
membrane. 3) Pathogen can now enter the cell by endocytosis. 4) Pathogen is 
enclosed within a phagosome. Image created using Biorender. 

 

Phagocytosed CoCr particles have been observed by histological examination and 

ultrastructural analysis of periprosthetic tissues recovered from patients with MoM 

implants. The ultrastructural analysis of CoCr particles as visualised by TEM 

demonstrated the presence of phagosomes with predominantly round and some rod-

shaped CoCr particles which ranged from nanometer to micrometer in size (Scharf et 

al., 2014). This is in agreement with other in vitro cellular studies in which osteoblasts 

were shown to phagocytose both UHMWPE and CoCr particles (Lohmann et al., 

2000). Papageorgiou et al. (2007a) demonstrated that both micron and nano-sized 

CoCr particles could be internalised by primary human fibroblasts and, in particular, 

nano-sized particles were observed within vacuoles whereas micron-sized particles 

were located in the cytoplasm, surrounding the nucleus. Another study has also shown 

the up-take and internalisation of CoCr nanoparticles in human peripheral leukocytes 

(Colognato et al., 2008). 

Studies have shown the potential for aluminium and zirconium ceramic particles to be 

engulfed by both primary fibroblasts and macrophages (Hashimoto and Imazato, 2015; 

Faye et al., 2017). Phagocytosis of wear debris which is being chronically released 

from implants is likely to activate cells into an inflammatory state. Moreover, any 



25 

 

particles which are too large to be phagocytosed may also be causing similar effects 

and challenging the immune system. It has also been shown that once these CoCr 

particles are phagocytosed by macrophages, metal ions can be released such as 

cobalt and chromium which may also contribute to the inflammatory response (Scharf 

et al., 2014).  

Once any cell type has phagocytosed CoCr particles, then cells such as macrophages 

can become activated and actively secrete pro-inflammatory mediators such as 

cytokines and chemokines. Previous research has demonstrated that macrophages 

which are treated with wear particles, release a number of pro-inflammatory mediators 

such as IL-1 TNF and IL-8 (Dalal et al., 2012; Samelko et al., 2013; Samelko et al., 

2016). 

 

1.4.4 Cytokines and chemokines as inflammatory mediators 

As previously discussed, following phagocytosis or in response to PAMPs and DAMPs, 

cytokines and chemokines are released from immune cells and play a critical role in 

driving inflammation. Cytokines are secreted proteins which play a major role in cell 

signalling and chemokines (a subset of cytokines) are mostly involved in chemotaxis, 

which controls the migration of cell types. 

Both cytokines and chemokines are secreted from cells in response to potential 

dangers e.g. bacteria or viruses, and control cell migration, adhesion, proliferation, 

activation and maturation by binding to specific receptors on target cells. Other cell 

types which are not classically ‘immune cells’ are also known to secrete cytokines and 

chemokines such as fibroblasts and endothelial cells. Therefore, ARMD is potentially 

caused by the over-expression of persistent cytokine and chemokine release which 

results in chronic inflammation (Fahey et al., 2014; Chu et al., 2015). 

Chemokines 

Chemokines are classified based on their associated receptor, of which there are 19 

known G-protein coupled receptors (Lodowski and Palczewski, 2009). These are 

further classified into ‘CC’ receptors or ‘CXC’ receptors and their chemokine ligands 

are therefore named based on this classification e.g. chemokine ligand 3/4 

(CCL3/CCL4) or CXCL8 (IL-8) (Zlotnik and Yoshie, 2012). Generally, CC chemokines 
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attract monocytes/macrophages and a small subset of lymphocytes whereas CXC 

chemokines are chemotactic for neutrophils, although there are some exceptions. In 

the context of ARMD/aseptic loosening the main role of chemokines includes the 

migration of immune and inflammatory cells from the circulation to the periprosthetic 

tissues by creating a chemotactic gradient as well as apoptosis and angiogenesis. 

Chemokines which are secreted by macrophages can affect which type of immune 

cells are attracted to the site of inflammation and therefore determine the cellular 

infiltrate found in tissues. It is known that in failed implants due to aseptic loosening, 

chemokine gene expression and protein expression is up-regulated in the peri-implant 

tissues e.g. CCL3, IL-8 and chemokine ligand 2 (CCL2) (Koulouvaris et al., 2008; Nich 

et al., 2013; Nich et al., 2016). Furthermore, elevated IL-8 expression is directly 

correlated with short revision times from primary surgery (Jamsen et al., 2017). Other 

examples where chemokines have been implicated in implant biomaterial studies 

include; titanium wear debris particles demonstrating an increased expression of 

CCL2, which is a chemoattractant for macrophages (Nakashima et al., 1999). One 

study blocked the interaction of CCL2 with its receptor C-C chemokine receptor type 2 

(CCR2) following exposure to UHMWPE particles in a mouse model and found a 

reduction in particle-induced osteolysis (Gibon et al., 2012). 

The local micro-environment can determine whether a macrophage is polarised to two 

different states or sub-classes; M1 or M2. The M1 subset is typically pro-inflammatory 

in phenotype and induced by lipopolysaccharide (LPS) and/or IFN. When activated, 

M1 macrophages induce pro-inflammatory cytokine release (e.g. TNF and interleukin 

6 (IL-6)) as well as chemokines (e.g. CCL2, CCL3, CCL4 and IL-8). M1 macrophages 

are the predominant subset found in cases of aseptic loosening of implants (Nich et 

al., 2013). M2 macrophages are induced by various cytokines including interleukin-4 

(IL-4), interleukin-13 (IL-13) and interleukin-10 (IL-10). M2 macrophages exhibit a more 

immunomodulatory phenotype and exert anti-inflammatory effects. A recent study 

described a new macrophage phenotype induced by CoCr wear particles which 

differed from typical M1 or M2 macrophages (Bijukumar et al., 2020). The authors 

observed increased expression of M1 markers and decreased M2 markers. However, 

these CoCr particles induced macrophages also exhibited higher expression of signal 

transducer and activator of transcription 6 (STAT-6) (M2 marker) and lower cluster of 
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differentiation 86 (CD86) expression (M1 marker), suggesting a mixed phenotype 

(Bijukumar et al., 2020). 

 

1.5 Metal Ions Activate Toll-like Receptors 

1.5.1 Nickel ions and TLR4 

As previously discussed, hypersensitivity to nickel is relatively common with around an 

estimated 65 million people in Europe effected, or between 5-10% of the general 

population, with a higher prevalence observed in young females (Mattila et al., 2001; 

Ahlstrom et al., 2017). Hypersensitivity reaction occurs upon contact with nickel-

containing items such as costume jewellery, body piercings and coins (Liden et al., 

2008). Under these circumstances, individuals can develop allergic contact dermatitis 

which is believed to be predominantly driven by the adaptive immune response 

involving antigen presentation to T lymphocytes by dendritic cells. However, for 

efficient sensitisation following re-exposure to contact allergens, a second pro-

inflammatory stimulus is required. This unknown stimulus led to a ground-breaking 

study in 2010 by Schmidt et al. who began to investigate the mechanisms behind 

hypersensitivity to nickel (Schmidt et al., 2010).  

Nickel ions can stimulate the pro-inflammatory transcription factor Nuclear Factor 

Kappa-light-chain-enhancer of activated B cells (NF-B) and subsequent release of 

inflammatory cytokines. Schmidt et al recognised that the gene profiling studies 

investigating pro-inflammatory responses associated with nickel ions appeared to be 

linked primarily with innate immunity (Viemann et al., 2007). For an innate immune 

response to occur, membrane-bound and intracellular receptors (PRRs) are activated 

by immune signals (PAMPs and DAMPs). These receptors most commonly belong to 

families such as Toll-like Receptors (TLRs) or Nucleotide Oigodimerisation Domain 

(NOD)-like Receptors (NLR). The authors of this study therefore hypothesised that 

nickel ions could potentially activate these receptors and initiate an immune response 

(Schmidt et al., 2010). 

Firstly, Schmidt et al (2010) investigated which receptor family could be involved in the 

immune response to nickel ions. The authors decided to target Myeloid Differentiation 

primary response 88 (MyD88) which is an adaptor protein essential for TLR signalling 

pathways. Schmidt et al. found that depletion of MyD88 by RNA-mediated interference 
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in nickel ion-stimulated endothelial cells almost completely abolished the expression 

of IL-8. These findings suggested a potential role for TLRs in the observed response 

(Schmidt et al., 2010). 

LPS, or bacterial endotoxin, also up-regulates IL-8 expression in endothelial cells 

through activation of Toll-like Receptor 4 (TLR4). To evaluate whether TLR4 is 

implicated in nickel ion-mediated immune responses, Human Embryonic Kidney cells 

(HEK293) were transfected with human TLR4 and its co-receptor Myeloid 

Differentiation factor 2 (MD2) which are not endogenously expressed. Parental 

HEK293 cells did not respond to nickel ions or LPS, however, TLR4 and MD2 

transfected cells responded to both stimuli, which demonstrates the ability of nickel 

ions to activate human TLR4 (Schmidt et al., 2010). 

Another important finding within this research was that the TLR4 response to nickel 

ions was species-specific. Schmidt et al. found that mouse cells such as bone marrow-

derived macrophages or Raw264.7 macrophages did not produce TNF when 

stimulated with nickel ions despite their sensitivity to LPS. The investigators predicted 

that non-conserved sequence motifs of human TLR4 could be responsible for the 

difference in species responses. To test this hypothesis, HEK293 cells were 

transfected with either human or mouse TLR4 as well as human MD2 and found that 

cells expressing mouse TLR4 and human MD2 did not secrete IL-8 in response to 

nickel ions. They also discovered that the differences between species is caused by a 

so-called ‘histidine pocket’ consisting of 3 histidine residues at positions 431, 456 and 

458 in the human TLR4 sequence. Murine TLR4 lacks both H456 and H458 which 

means the 3 residues are unable to come together to form a binding site for nickel ions 

and as a result murine TLR4 cannot be activated by nickel ions. TLR4 activation was 

proven by a series of mutant deletion experiments which demonstrated that double 

mutation of H456 and H458 considerably decreased nickel ion-induced IL-8 production 

in numerous assays including western blots, flow cytometry and Enzyme-Linked 

Immunosorbent Assay (ELISA) (Schmidt et al., 2010). This finding further explains why 

previous mouse models were unresponsive to nickel ions as murine TLR4 is lacking in 

these two crucial histidine residues (Sato et al., 2007). 

Due to its association with hypersensitivity reactions, nickel is rarely used in prosthetic 

implants or is present in small, trace amounts. As previously discussed, the main 

materials used in MoM implants are CoCr. Cobalt shares many similar properties to 
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nickel as they are adjacent transition metals on the periodic table. Importantly, it is 

known that both metals are capable of binding to histidine as cobalt and nickel columns 

are frequently used to isolate histidine-tagged proteins (Bornhorst and Falke, 2000). 

Therefore, it was hypothesised that perhaps cobalt ions could also bind directly to 

human TLR4 in a similar way to nickel ions and provide a possible link to ARMD. 

 

1.5.2 Cobalt ions and TLR4 

The first study conducted by Tyson-Capper et al. investigated the potential for cobalt 

ions to activate human and mouse TLR4 (Tyson-Capper et al., 2013). The study design 

involved using both a human and mouse reporter cell line which contained a Secreted 

Alkaline Phosphatase (SEAP) reporter gene. Upon activation of NFB, the SEAP gene 

is induced and released from cells. Increased NFB activity results in further SEAP 

secretion which can be quantified using a colorimetric assay. In this set of experiments, 

the addition of cobalt ions only increased SEAP secretion in human TLR4-expressing 

reporter cells and not in murine TLR4-expressing reporter cells. These findings were 

therefore in agreement with the previous investigations by Schmidt et al. involving 

nickel ions and their ability to only activate the human form of TLR4 (Schmidt et al., 

2010). The findings regarding cobalt-mediated activation of human TLR4 have been 

further confirmed by other studies (Raghavan et al., 2012; Potnis et al., 2013; Oblak et 

al., 2015; Lawrence et al., 2016b). These studies have used human TLR4-specific 

inhibitors (e.g. monoclonal antibodies or CLI-095) which decrease the production of 

pro-inflammatory cytokines in macrophage cell models treated with cobalt ions 

(Lawrence et al., 2014; Lawrence et al., 2016b). 

The fact that cobalt ions released from MoM implants potentially activate TLR4 

provided a potential aetiology for ARMD and inflammation associated with these 

prostheses. 

 

1.5.3 Toll-like receptor 4 

TLR4 is an innate immune receptor belonging to the TLR family. TLRs are PRRs and 

form an essential part of initiating the innate immune response by recognising a variety 

of pathogens. There are currently 10 known TLRs which are either expressed on the 

cellular surface (TLR2, 4, 5, 6 and 10) or intracellularly (TLR3, 7, 8 and 9). Each TLR 
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recognises specific PAMPs which are expressed by individual pathogens. In the case 

of TLR4, its specific PAMP is LPS which is expressed in the cell wall of gram-negative 

bacteria. Furthermore, TLRs are also able to recognise a number of DAMPs for 

example, High Mobility Group Box 1 (HMGB1), a nuclear protein secreted by necrotic 

cells which can go on to activate TLR2, 4 and 9. 

To become fully activated, TLR4 requires homodimerisation to allow the binding of 

adaptor proteins such as MyD88. Homodimerisation of the TLR4 receptor allows a 

downstream signalling cascade to occur which results in the activation of transcription 

factors such as NFB and Interferon Regulatory Factor 3 (IRF3). NFB regulates the 

transcription of both cytokines and chemokines such as IL-8 and TNF TLR activation 

also aids in the link between the innate and adaptive immune systems by promoting 

enhanced phagocytosis and antigen presentation to T cells. This study will focus 

mostly on TLR4, which is expressed by many different cell types such as macrophages 

and endothelial cells (Vaure and Liu, 2014). 

 

1.5.4 LPS activation of TLR4 

As discussed previously, LPS is the main ligand for TLR4. However, TLR4 can only 

become fully activated by LPS with the addition of accessory proteins such as LPS-

Binding Protein (LBP), Cluster of Differentiation 14 (CD14) and MD2. LBP binds to LPS 

and forms a complex with CD14 which transfers LPS to MD2 which is complexed with 

TLR4. Once MD2/TLR4 binds with LPS, this initiates the homodimerisation of TLR4. It 

is known that the MD2 complex is crucial to LPS-mediated activation of TLR4 as MD2 

deficient mice do not respond to LPS (Park and Lee, 2013). 

TLR4 can recruit further adaptor proteins to initiate a signalling cascade by utilising its 

Toll IL-1 Resistance domain (TIR). The adaptor proteins which are recruited also 

contain TIRs and include, MyD88, TIR domain containing Adaptor Protein (TIRAP), 

TIR domain containing adaptor-inducing Interferon- (TRIF) and TRIF-related Adaptor 

Molecule (TRAM) and can activate signalling pathways via Interleukin-1 Receptor 

Associated Kinase 1 (IRAK1) and TNF Receptor Associated Factors (TRAF) 

molecules as well as transcription factors such as NFB (Lu et al., 2008). The 

recruitment of these adaptor proteins ultimately leads to the up-regulation of pro-
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inflammatory cytokines and chemokines and promotes an immune response against 

LPS. The TLR4 pathway signalling pathway is outlined in Figure 1.7. 

Although LPS is the main ligand described for TLR4 and the most frequently studied, 

there are known other stimulants of TLR4. As discussed earlier, HMGB1 is another of 

the more well-known ligands but various Heat Shock Proteins (HSPs), hyaluronans 

and fibrinogens are others (Erridge, 2010). However, it is debtable whether these 

‘DAMPs’ are able to bind to TLR4 directly or whether they are potentially assisted by 

endotoxin contamination (Erridge, 2010). What has been established though, is that 

various stimuli can activate TLR4 other than LPS, whether this be PAMPs, DAMPs or 

in fact metal ions such as nickel and cobalt. 
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Figure 1.7 TLR4 pathway.  

Lipopolysaccharide (LPS)-mediated activation of Toll-like receptor 4 (TLR4) requires 
several molecules including LPS binding protein (LBP), cluster differentiation 14 
(CD14) and myeloid differentiation factor-2 (MD2). LBP is a protein which binds directly 
to LPS and facilitates the interaction between LPS and CD14. CD14 can either be 
anchored to the cell membrane or exist in its soluble form. CD14 transfers the LPS/LBP 
complex to MD2, which complexes with TLR4 itself and ‘recognises’ LPS. Following 
this recognition, TLR4 begins to recruit its downstream adaptors through interactions 
with Toll IL-1 Resistance (TIR) domains. The signalling cascade can either follow the 
Myeloid differentiation primary response 88 (MyD88)-dependent pathway or the 

MyD88-independent pathway (TIR-domain-containing adapter-inducing interferon- 
(TRIF)). The MyD88-dependent pathway recruits several complexes and kinases. This 

ultimately leads to the activation of the transcription factors, nuclear factor-B (NF-B) 
and activator protein 1 (AP-1), leading to up-regulation of pro-inflammatory cytokines 
and chemokines. The TRIF pathway also recruits proteins and kinases. Following this 
downstream signalling the transcription factor interferon regulatory transcription factor 
(IRF3) is activated which results in the production of Type I interferons. Image created 
using Biorender. 
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1.5.5 Wear debris particles and TLR4 

Few studies have investigated CoCr particles and their role in potentially activating 

TLR4, despite knowing that activation can occur through cobalt ions.  

In the few studies that have investigated CoCr particles and the TLR4 pathway, the 

particles used have largely been commercially available and do not represent the most 

‘clinically relevant’ model particles. Commercially available particles are usually either 

too large in size or uniform in shape (i.e. micrometre sized as opposed to nanometre 

and regular versus irregular shaped). One study investigated whether CoCr particles 

activated a monocytic cell line, PBMCs and an in vivo mouse model more 

predominantly through TLR4 or TLR2 (Samelko et al., 2017). The authors concluded 

that in co-stimulation experiments with either LPS (TLR4 agonist) or PAM3CSK (TLR2 

agonist) the osteolytic and inflammatory effect (measured by the secretion of 

TNF and IL-1) of CoCr particles was greater in the TLR4 model (Samelko et al., 

2017). However, the same group also found that using a blocking TLR4-specific 

antibody in a monocytic cell line, did not significantly reduce the secretion of TNF or 

IL-1 following stimulation with CoCr particles (Samelko et al., 2016). In contrast to 

these findings, another group investigated the effect of CoCr particles on a monocytic 

cell line in combination with a TLR4 blocking antibody as well as silencing of MyD88 

(Potnis et al., 2013). TLR4 inhibition prevented particle-induced NFB activation and 

significantly decreased IL-8 release. Furthermore, the gene expression of TLR4 in 

osteoblasts has been shown to be up-regulated when treated with CoCr particles 

(Jonitz-Heincke et al., 2019). 

After reviewing the literature, there appears to be no direct investigations into ceramics 

and their effect on the TLR4 pathway. However, titanium oxide (TiO2) and zirconium 

oxide (ZrO2) have been shown to up-regulate the expression of other TLRs (TLR3 and 

TLR7) (Lucarelli et al., 2004). It is possible that these biomaterials may be activating 

alternative pathways which in turn up-regulate TLR expression. 

 

1.6 Consequences of TLR4 Activation 

Once activated by LPS (or other potential stimuli), TLR4 initiates an inflammatory 

response which is described in the following section. 
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1.6.1 Cytokine and chemokine secretion 

The activation of transcription factors following TLR4 activation will determine which 

cytokines or chemokines are up-regulated and secreted. For example, NFB activation 

leads to the production of pro-inflammatory cytokines and chemokines such as IL-6, 

IL-8 and TNF whereas IRF3 activation promotes interferon up-regulation (Honda et 

al., 2006; Liu et al., 2017). In the case of LPS activation of TLR4, a milieu of cytokines 

and chemokines are released which all combine to promote an effective inflammatory 

response (Guijarro-Munoz et al., 2014). 

IL-8 is a CXC chemokine most commonly secreted by macrophages and endothelial 

cells. As discussed in section 1.4.4. IL-8 has been associated with aseptic implant 

loosening due to its increased expression in the tissues of patients with loosened 

implants. Furthermore, IL-8 is a selected marker of inflammation and TLR4 activation 

in many cellular in vitro studies which have investigated cobalt ion and CoCr particle 

initiated immune responses (Lawrence et al., 2014; Lawrence et al., 2016b). The main 

function of IL-8 is to attract neutrophils to the site of inflammation. CCL2, CCL3 and 

CCL4 are all CC chemokines and are also up-regulated following TLR4 activation. 

CCL2, similarly to CCL3 and CCL4, can chemoattract monocytes, however, they are 

also capable of recruiting Natural Killer (NK) cells and T cells (Hughes and Nibbs, 

2018). 

TLR4 signalling must be tightly regulated so that the immune system can be returned 

to a physiological state and prevent causing harm such as sepsis which can lead to 

organ failure and potentially death. Regulation of TLR4 activation can occur by several 

mechanisms; down-regulating expression of TLR4, blocking interactions with soluble 

factors or decoy receptors and various inhibitory signalling molecules. One example of 

a soluble factor involved in the regulation of TLR4 signalling is the soluble form of TLR4 

which has been shown to significantly reduce LPS-induced NF-B activation and 

subsequent cytokine production in a mouse macrophage cell line (Iwami et al., 2000). 

Interleukin Receptor-Associated Kinase-M (IRAK-M) is an example of an inhibitory 

molecule, typically expressed by monocyte/macrophage cells. IRAK1 and IRAK4 are 

active kinases part of the signalling cascade initiated by TLR4 activation and IRAK-M 

inhibits their signalling thus negatively regulating TLR4 signalling (Kobayashi et al., 
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2002). Mice deficient in IRAK-M display heightened inflammatory responses in 

response to LPS such as increased cytokine production and NF-B activation (Deng 

et al., 2006). 

 

1.6.2 Enhanced phagocytosis 

Not only does activation of TLR4 lead to the production of the inflammatory cytokines 

and chemokines discussed, it can also promote phagocytosis by immune cells. For 

example, TLR4 knockout mice have reduced phagocytic capability when compared 

with wild type and macrophages treated with LPS have significantly increased rate of 

phagocytosis (Blander and Medzhitov, 2004; Anand et al., 2007). The exact 

mechanisms by which phagocytic capability is enhanced following TLR4 activation is 

unclear. A recent study suggested that the adaptor protein TRAM is instrumental for 

the effective phagocytosis of Escherichia coli and Staphylococcus aureus (Skjesol et 

al., 2019). Ultimately, the mechanisms which lead to enhanced phagocytosis likely 

differ dependent on the pathogen encountered. 

 

1.6.3 Process of leukocyte extravasation, adhesion and migration 

For an inflammatory immune response to be fully orchestrated, leukocytes such as 

monocytes or neutrophils from the circulation must enter tissue at the site of infection, 

injury or stress to ultimately aid tissue repair. TLRs are crucial for leukocyte migration 

to occur as they can recognise and bind to ligands from pathogens, activate immune 

cells and initiate the secretion of cytokines and chemokines which in turn activate 

endothelial cells within the microvasculature. The first step of leukocyte migration is 

the establishment of interactions with the leukocytes and endothelial cells through a 

series of steps; capturing, rolling, leukocyte arrest, crawling to sites of exit and 

transmigration through the endothelium (Figure 1.8).  

Adhesion molecules expressed by both leukocytes and endothelial cells aid with the 

initial interaction between the two cell types. Selectins, expressed by endothelial cells 

e.g. E-selectin and P-selectin are up-regulated in response to inflammatory stimuli and 

initiate the capture of leukocytes in the circulation (McEver, 2015). As the leukocytes 

flow, with this transient interaction, they begin to roll across the endothelium which is 

slowed due to pulling of long membrane tethers. Integrins, expressed by the leukocytes 
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become activated and can bind to adhesion markers such as Intercellular Adhesion 

Molecule 1 (ICAM-1) and Vascular Cell Adhesion Molecule 1 (VCAM-1). ICAM-1 and 

VCAM-1 expression are up-regulated by endothelial cells in response to pro-

inflammatory cytokines and allow firm adhesion to the rolling leukocytes. Leukocyte 

integrins are also activated in response to inflammatory stimuli such as chemokines 

and are crucial for firm adhesion to take place. The ligands for ICAM-1 binding are 

Lymphocyte Function-associated Antigen (LFA-1), expressed by all leukocytes and 

Macrophage antigen 1 (MAC-1) which is typically expressed by 

monocytes/macrophages. The integrin ligand for VCAM-1 is Very Late Antigen 4 (VLA-

4), expressed by both lymphocytes and monocytes (Chigaev and Sklar, 2012). The 

expression of adhesion molecules is tightly regulated so that these processes only 

occur during pathogenic conditions. As discussed, pro-inflammatory cytokines such as 

IL-6 and TNF are secreted in response to pathogens which in turn cause the up-

regulation of adhesion molecules and the activation of the endothelium (Zhang et al., 

2011). As activation of TLR4 results in cytokine production, LPS has been shown to 

directly influence the expression of ICAM-1 in an endothelial cell line (Sawa et al., 

2008). Moreover, following exposure of cobalt ions to myoblasts there is a significant 

increase in ICAM-1 expression which is further enhanced by the addition of monocytes 

(Laumonier et al., 2019). 

Once firm adhesion has become established, leukocytes are able to ‘crawl’ on the 

surface of blood vessels until they encounter suitable ‘exit sites’ and transmigrate 

through the endothelium into the tissue. The secretion of chemokines from 

macrophages located within the inflamed tissue creates a gradient for the leukocytes 

to migrate towards. However, cell surface receptors located at endothelial cell 

intercellular junctions are thought to also play a major role such as Platelet Endothelial 

Cell Adhesion Molecule-1 (PECAM-1) on both leukocytes and endothelial cells 

allowing the transmigration of leukocytes. The type of immune cell attracted to site of 

inflammation is dependent on the pathogen encountered and which profile of 

chemokines are secreted e.g. IL-8 attracts neutrophils or CCL3 and CCL4 will attract 

monocytes/macrophages. Chemokines are also capable of conformational changes to 

adhesion markers which contribute to the process of adhesion binding to leukocytes. 

Once the leukocytes have infiltrated the inflamed tissue, they are able to orchestrate 

further inflammatory immune responses such as phagocytosis and eventual clearance 

of the pathogen which initiated the response. 
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Figure 1.8 Leukocyte adhesion and migration.  

Leukocyte extravasation is a process which involves a number of proteins and 
chemotactic stimuli. Firstly, the endothelium is activated by pro-inflammatory cytokines 
or chemokines released by activated immune cells such as macrophages. 
Endothelium activation causes the up-regulation of selectins on endothelial cells such 
as E-selectin and P-selectin which interact with molecules expressed on the surface of 
leukocytes. This transient interaction allows the leukocytes to roll across the 
endothelium until they become firmly bound to the endothelial adhesion markers ICAM-
1 and VCAM-1 which attach to LFA-1 and VLA-4 expressed by leukocytes. The 
leukocyte can then either cross the endothelium by paracellular migration (between 
cell junctions) or transcellularly. It is not fully understood which proteins/molecules are 
involved in this process but PECAM-1 is believed to play an important role. Image 
created using Biorender.  
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1.7 The Inflammasome Response 

Inflammasomes are intracellular multiprotein signalling complexes that are assembled 

upon recognition of pathogenic microorganisms and danger signals. Upon activation 

of inflammasomes, pro-inflammatory caspases can become cleaved and up-regulated. 

There are various distinct inflammasomes, all of which are assembled in response to 

both PAMPs and DAMPs within the cytosol. Upon recognition of these ligands; 

activation, oligomerisation and the recruitment of an adaptor protein, Apoptosis-

associated Speck-like protein containing a CARD (ASC), follows. ASC consists of two 

domains: a Pyrin Domain (PYD) and a Caspase Recruitment Domain (CARD) which 

allow ASC to bridge the interaction between the inflammasome sensor and caspase 1 

(Petrilli et al., 2007). Ultimately, this interaction leads to the formation of active protease 

caspase 1, increased secretion of the pro-inflammatory cytokines IL-1 and interleukin-

18 (IL-18) and pyroptosis, a highly inflammatory form of cell death. Numerous 

receptors have been identified and confirmed to assemble inflammasomes. These 

include the Nucleotide-binding Oligomerisation Domain (NOD), Leucine-Rich Repeat 

(LRR)-containing protein (NLR) family members, NLRP1, NLRP3 and NLRC4. These 

‘canonical’ inflammasomes are also complimented by the nan-canonical pathway, 

which targets both caspase 4 and 5 in humans and can also induce pyroptosis 

(Kayagaki et al., 2013). 

The NLRP3 inflammasome has been investigated in relation to implant wear debris in 

vitro (Caicedo et al., 2009; Samelko et al., 2016). For example, a monocytic cell line 

treated with cobalt, chromium and nickel ions as well as CoCrMo alloy particles 

demonstrated an up-regulation of IL-1 for all treatments which was caspase-1 

dependent (Caicedo et al., 2009). In agreement with this study, the NLRP3 pathway 

was shown to play a greater role in CoCr particle-mediated inflammation when 

compared to the TLR4 pathway by comparing the use of inhibitors for capase-1 and 

TLR4, respectively (Samelko et al., 2016). The NLRP3 signalling pathway is 

summarised in Figure 1.9. 

  



39 

 

 

Figure 1.9 The NLRP3 inflammasome. 

For NLRP3 to become fully activated 2 signals are required; priming and activation. 
The priming signal can be achieved through a plethora of PAMP signals e.g. LPS which 

acts through the toll-like receptors (TLRs) and leads to the activation of NF-B. This in 

turn results in the production of pro-IL-1 and pro-IL-18 which remains cytosolic. The 
second activation signal remains rather more poorly understood however potassium 
(K+) efflux and cathepsin B are possible activators of NLRP3. The effect of ATP is 
mediated by the purinergic P2X7 receptor which causes K+ efflux from the cytosol upon 
activation. The phagocytosis of crystals such as alum and silica can lead to lysosomal 
swelling, destabilisation and damage. This process releases cathepsin B, a lysosomal 
cysteine protease which is thought to then directly activate NLR3P3. Upon activation, 
NLRP3 can assemble with ASC which in turn induces pro-capase-1 dimerisation 
allowing auto-activation to the proteolytic form caspase-1. Caspase-1 is activated 

through interaction with ASC and can then cleave pro-IL-1 and pro-IL-18 to their 
active form which is then secreted from the cell. Image created using Biorender. 
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1.7.1 NLRP3 activation 

The NLRP3 inflammasome consists of 3 main components; a sensor (NLRP3), adaptor 

(ASC) and an effector (caspase 1). The domains that make up NLRP3 itself are an 

amino-terminal pyrin domain (PYD), a central NACHT domain and a carboxyl-terminal 

LRR domain. For NLRP3 to become full activated, 2 steps are required; a priming step 

followed by activation. The priming stage is initiated in response to several different 

PAMPs which as previously stated, activate PRRs such as TLRs or through cytokines 

which activate NF-B which can lead to the up-regulation of NLRP3 components, 

caspase-1 and pro-IL-1 (Bauernfeind et al., 2009). The priming stage of NLRP3 

activation is also involved in post-translational modifications such as ubiquitination and 

phosphorylation. However, the second activation step is required to induce full 

activation and the assembly of the inflammasome. Interestingly, unlike other 

inflammasomes, NLRP3 has many proposed activators such as bacterium, viruses and 

endogenous danger signals (i.e. DAMPs), however, the common factor with these 

activators is that they induce cellular stress although it is currently unknown the exact 

mechanisms NLRP3 facilitates to be able to sense stresses. 

The second activating signal is believed to cause a number of signalling events which 

cause the full activation of NLRP3 such as efflux of potassium ions (K+) and lysosomal 

destabilisation. Once more, these events remain to be confirmed and may be over-

lapping. However, K+ efflux appears to be an important upstream signal for NLRP3 

activation as Adenosine Triphosphate (ATP) and nigericin (which cause the depletion 

of K+) are known to induce the maturation of pro IL-1 so that IL-1 can be secreted 

(Perregaux and Gabel, 1994). These factors can activate the P2X purinoceptor 7 

(P2X7), a non-specific ligand-gated cation channel. However, upon stimulation, P2X7 

promotes sodium and calcium ion influx and interacts with the Two-pore domain Weak 

Inwardly rectifying K+ 2 (TWIK2) channel which ultimately promotes K+ efflux. 

Therefore, TWIK2 may play a more important role in K+ efflux and ultimately NLRP3 

activation. This has recently been demonstrated by depleting Kcnk6 (the gene 

encoding TWIK2) in macrophages which prevented NLRP3 activation and suppressed 

sepsis-induced lung inflammation in mice (Di et al., 2018). Lysosomal destabilisation 

is another proposed signalling event to cause NLRP3 full activation and can be caused 

by the phagocytosis of particulates such as aluminium salts and silica crystals 

(Hornung et al., 2008). Phagocytosis of crystals and salts induces lysosomal 
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acidification, swelling and finally rupture which causes the release of particulates into 

the cellular cytoplasm. The importance of lysosomal destabilisation has been 

demonstrated using cathepsin inhibitors which reside in the lysosome and cathepsin 

B has been shown to be released following lysosomal membrane degradation 

(Orlowski et al., 2015). Once NLRP3 is fully activated, the assembly of the 

inflammasome can ensue i.e. with ASC and caspase-1 which leads to the production 

of mature IL-1 and IL-18. 

 

1.7.2 Consequences of NLRP3 activation 

As discussed previously, pro IL-1 is an inactive pre-cursor found in the cellular 

cytoplasm which is only released in its mature form following the activation of the 

inflammasome e.g. NLRP3. Therefore, pro IL-1 is expressed following the initial 

‘priming’ step and secretion occurs when the second activation step is induced. NLRP3 

activation causes pro caspase-1 to become its active form and cleaves pro IL-1 to its 

mature form, although the exact mechanisms that IL-1 is then secreted from cells 

remains poorly understood. However, it has been established that IL-1  secretion 

occurs prior to Lactase Dehydrogenase (LDH) release, therefore prior to cell death or 

pyroptosis (Brough and Rothwell, 2007). This method of IL-1 secretion is also similar 

for the cleavage of pro-IL-18 by caspase-1 to its active form, IL-18. Both IL-1 and IL-

18 can be secreted by many different cell types but most typically by immune cells 

such as monocytes and macrophages. Mature IL-1 is a pro-inflammatory cytokine 

and important mediator in a number of immune responses. For example, IL-1 is 

involved in the recruitment of innate immune cells to the site of inflammation and 

modulates adaptive immune cells such as T cells. The function of mature IL-18 is rather 

different and plays an important role in the production of IFN- as well as controlling 

the cytotoxic activity and proliferation of NK cells and T cells. IL-18 can also promote 

the secretion of other cytokines such as TNF and IL-8 and can therefore influence 

neutrophil migration and activation. 
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1.7.3 Metal ions, wear debris and the inflammasome 

Previous studies have shown that metal ions such as cobalt, chromium and nickel are 

all able to trigger NLRP3 activation in macrophages (Caicedo et al., 2009; Li and 

Zhong, 2014). However, the underlying mechanisms behind NLRP3 activation remains 

elusive although it is known that NLRP3 induction relies on NF-B activation which 

metal ions are known stimuli of. Moreover, DAMP signalling can activate NLRP3 such 

as Reactive Oxygen Species (ROS) production and lysosomal destabilisation which 

are all potential effects of metal ion stimulation. Studies have also demonstrated the 

production of IL-1 in macrophage cell lines treated with metal ions in vitro, a hallmark 

of NLRP3 activation (Caicedo et al., 2009). However, a recent study investigating metal 

ions and their effect on bone marrow-derived mouse macrophages found that cobalt 

ions did not induce IL-1 secretion when using LPS as the ‘priming’ first signal (Ferko 

and Catelas, 2018). In contrast, another study showed that chromium ions acted as 

the second ‘activation stimuli’ in a model using THP-1 macrophages (Adam et al., 

2017). IL-1 secretion was induced following priming with 12-O-tetradecanoylphorbol-

13-acetate (TPA) (a known priming signal in THP-1 cells) and subsequent stimulation 

with chromium ions. The amount of IL-1 secreted under these conditions was 

comparable with ATP (Adam et al., 2017). 

 

1.8 Future of Biomaterials in Joint Replacements 

The current literature suggests that the causes of ARMD appear to be “immune 

regulated” leading to chronic inflammation in some patients receiving implants 

containing metals (Lawrence et al., 2014). It has been well established that metal ions 

potentially released from these implants can activate the TLR4 pathway which may be 

partially responsible for reactions observed. However, few studies have used clinically 

relevant CoCr particles to investigate these effects. It is also important to establish 

which other immunological pathways may be involved i.e. the NLRP3 inflammasome 

and whether this is caused directly by wear debris particles or indirectly through 

activation of alternative pathways. Although the use of MoM implants has been almost 

completely abrogated, CoCr continues to be used in implants such as MoP prostheses. 

Therefore, these implants may lead to similar CoCr wear debris and as a result 
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potentially cause ARMD. Moreover, there are currently millions of patients worldwide 

who have received MoM implants which may suffer from ARMD in the future. 

The lessons we have learned from MoM implants and any further biological 

understanding we can gain from investigating their effects can also be applied to 

different and increasingly used biomaterials such as ceramics. Although ceramics were 

originally believed to be bio-inert, the presence of a pseudotumour in a case of a patient 

with a CoC implant suggests otherwise (Campbell et al., 2017). 
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1.9 Summary 

In summary, MoM implants are believed to fail mostly due to ARMD which causes 

enhanced osteolysis, soft tissue necrosis, pseutumour formation and pain meaning 

that implants need to be revised in a costly and complicated procedure. Furthermore, 

it seems that other implants such as MoP, CoP and CoC could also potentially cause 

similar effects which are yet to be fully understood or investigated. ARMD is driven by 

inflammation due to the presence of immune cells in periprosthetic tissue and the up-

regulation of pro-inflammatory cytokines and chemokines in response to metal ions 

and wear debris. However, the exact mechanisms and immune pathways which initiate 

this response and the downstream signalling events remain unknown. It has previously 

been established that metal ions such as cobalt can activate the TLR4 pathway, which 

is usually activated by bacterial LPS. However, the effects of clinically relevant CoCr 

wear debris particles is less clear and whether any other pathways are involved i.e. the 

inflammasome and how much of a role these pathways play. Furthermore, the effect 

that other biomaterials used in ceramic implants e.g. alumina and zirconia have on the 

TLR4 pathway etc. has not been investigated despite their ever-growing popularity. 

 

1.10 Hypothesis and Aims 

This study therefore hypothesises that metal wear debris from joint implants can 

activate human TLR4 and subsequently the inflammasome which results in 

inflammatory responses accounting for the development of ARMD. 

The aims of this study are to use in vitro cell models to demonstrate the potential 

inflammatory effect of clinically relevant CoCr particles and ceramic oxide 

nanopowders and assess the role of TLR4 and the inflammasome in these responses. 
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1.11 Objectives 

A. To generate and characterise clinically relevant CoCr wear particles 

suitable for cell culture 

Nanoscale particles were generated using a six-station pin-on-plate wear simulator 

using the alloy material which is used in MoM implants, CoCrMo. Particles were 

characterised using scanning electron microscopy (SEM) to establish their size and 

composition and then sterilised for use in cell culture treatments. Inductively couple 

plasma mass spectroscopy (ICP-MS) was used to confirm the concentration of cobalt 

and chromium ions released from the particles in cell culture medium. 

B. To determine the role of TLR4 and the inflammasome in the inflammatory 

response to CoCr particles 

A Meso Scale Discovery (MSD) multiplex cytokine/chemokine assay was conducted 

to investigate potential markers of CoCr-mediated inflammation in 

monocyte/macrophage cell lines. TLR4 inhibitors were employed to see whether they 

inhibited any of the observed effects. The inflammasome response to CoCr particles 

was also investigated by evaluating IL-1  expression and secretion. The phagocytosis 

of CoCr particles by THP-1 cells investigated by transmission electron microscopy 

(TEM) and a phagocytosis assay. 

C. To Investigate the functional effects of CoCr particles in vitro and the 

translation to patient tissue following hip and knee revision surgery 

The effect of adhesion molecule expression was assessed in HMEC-1 endothelial cell. 

The migration of neutrophils was investigated using a transwell chemotaxis assay. Soft 

tissue was collected from patients undergoing revision TJR and stained for immune 

cell infiltration to further establish the migration of cells in an in vivo setting.  

D. To investigate the biological effect of ceramic oxide nanopowders 

The techniques and assays previously established were applied to two ceramic oxide 

nanopowders, aluminium and zirconia. Cell lines were treated with these ceramic oxide 

nanopowders to establish whether an inflammatory response occurred and whether 

this was TLR4 specific or involved activation of the inflammasome. 
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Chapter 2 : Materials and Methods 

2.1 Cell Culture 

Cell culture work was performed under sterile conditions using Class II Microbiological 

Safety Cabinets and aseptic technique employed at all times. Cells were incubated in 

a humidified atmosphere at 37oC and 5% CO2 in tissue culture flasks with ventilated 

caps (Greiner, Austria). 

 

2.1.1 Summary of cell lines used 

MonoMac 6 

MonoMac 6 (MM6) cells are a human monocytic cell line derived from acute monocytic 

leukaemia (provided by Dr Jem Palmer, Newcastle University, UK) and known to 

express TLR4 (previous research within group) as well as responding to bacterial LPS 

by secretion of inflammatory cytokines e.g. IL-8 (work undertaken as part of previous 

MRes project). MM6 cells were cultured in Roswell Park Memorial Insitute Medium 

(RPMI)-1640 medium (Sigma Aldrich, USA) and supplemented with 10% foetal bovine 

serum (FBS), 2mM L-glutamine, 50U/ml penicillin and 50µg/ml streptomycin (Sigma 

Aldrich, USA).  

THP-1 

THP-1 cells are a human monocytic cell line derived from acute pre-monocytic 

leukaemia (ATCC® TIB-202™) and cultured in RPMI-1640 medium and supplemented 

with 10% FBS, 2mM L-glutamine, 50U/ml penicillin and 50µg/ml streptomycin. 

J774 

J774 cells are murine macrophages isolated from BALB/c mice (provided by Dr Jem 

Palmer, Newcastle University, UK) and were cultured in RPMI-1640 medium 

supplemented with 10% FBS, 2mM L-glutamine, 50U/ml penicillin and 50µg/ml 

streptomycin. 

HMEC-1 

Human microvascular endothelial cells (HMEC-1) are derived from dermal foreskin 

(ATCC® CRL-3243™, USA). Cells were cultured in MCDB131 medium (ThermoFisher 
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Scientific, UK) supplemented with 10% v/v FBS, 50U/ml penicillin, 50μg/ml 

streptomycin, 10ng/ml epidermal growth factor (EGF) and 1μg/ml hydrocortisone (all 

Sigma Aldrich, USA). 

MG63 

MG63 cells are human osteoblast-like cells isolated from an osteosarcoma of a 14 year 

old male (ATCC® CRL-1427™). MG63 cells were cultured in Eagle’s Modified 

Essential Medium (EMEM) (Sigma Aldrich, USA) supplemented with 10% FBS, 2mM 

L-glutamine, 50U/ml penicillin and 50µg/ml streptomycin. 

 

2.1.2 Cell Maintenance  

Cell lines were cultured and experimented using aseptic technique within Class II 

Microbiological Safety Cabinets. Once cells reached around 80% confluency they were 

passaged using cell culture medium described in section 2.1.1.  

Suspension cells (MM6 and THP-1) were centrifuged at 300g for 5 minutes, 

supernatant discarded and the pelleted cells re-suspended in pre-warmed (to 37oC) 

fresh complete culture medium. 

Adherent cells (HMEC-1 and MG63) were washed with phosphate-buffered-saline 

(PBS) (Sigma Aldrich, USA) following removal of media. Cells were then detached 

using 2mM trypsin-ethylenediaminetetraacetic acid (EDTA) (Sigma Aldrich, USA) at 

37oC, centrifuged at 300g for 5 minutes and re-suspended in complete media. 

J774 cells are loosely adherent therefore sub-cultured by scraping to dislodge the cells, 

centrifuged at 300g for 5 minutes and re-suspended in complete media. 

 

2.1.3 Cryopreservation of cells 

Stocks of cells were maintained by routinely performing cell cryopreservation. Cells 

were frozen in cryovials at approximately 1 x 106 ml-1 cells in FBS with 10% v/v dimethyl 

sulphoxide (DMSO) (Sigma Aldrich, USA) at -80oC in a freezing container containing 

isopropanol overnight. They were then moved to liquid nitrogen for long-term storage. 
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2.1.4 Thawing and reseeding of cell lines 

A cryovial containing approximately 1 x 106 ml-1 of all cell types was retrieved from 

liquid nitrogen and immediately thawed in a water bath at 37oC. The cells were then 

transferred to a sterile universal containing 10ml of sterile pre-warmed PBS to remove 

DMSO. The cell suspension was centrifuged at 300g for 5 minutes, PBS discarded and 

cell pellet re-suspended in 10ml of pre-warmed cell culture medium. This cell 

suspension was then transferred to a sterile cell culture flask (75cm2) containing a 

further 5ml of fresh cell culture medium and stored in an incubator at 37oC and 5% CO2 

until approximately 80% confluent. 

 

2.1.5 Mycoplasma testing 

All cell lines were routinely tested for mycoplasma contamination using the 

MycoAlert™ Mycoplasma Detection Kit (Lonza, Switzerland). The kit tests cell 

supernatant by lysing any mycoplasma that is present and the released enzymes react 

with the MycoAlert™ Substrate which catalyses the conversion of adenosine 

diphosphate (ADP) to ATP. The ATP is catalysed by luciferase (in the MycoAlert™ 

Reagent) into a light signal. The ratio of ATP before and after addition of the 

MycoAlert™ Subsrate is then calculated, which indicates the presence or absence of 

mycoplasma in the sample. A ratio of < 0.9 suggests the sample is mycoplasma free. 

 

2.1.6 THP-1 differentiation 

THP-1 cells are a suspension (non-adherent) monocytic cell line which can be 

differentiated to become non-polarised adherent macrophage-like cells (Chanput et al., 

2013). In this state the cells stop proliferating, change morphology, become more 

phagocytic and are in a more activated state i.e. release inflammatory mediators. THP-

1 cells were treated with 5ng/ml phorbol 12-myristate 13-acetate (PMA) (PeproTech, 

USA) for 24 hours at 370C, 5% CO2. The concentration of PMA selected was based 

on previous published studies and also work undertaken by fellow PhD student Miss 

Chelsea Griffiths, Newcastle University, UK (Park et al., 2007). Following this time 

period, all THP-1 cells became adherent and were therefore deemed to be 

macrophage-like. To avoid over-activation of the cells prior to stimulation assays, cell 
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supernatant was discarded, cells washed with PBS and fresh complete culture medium 

was added and incubated for a resting period. 

 

2.2 Cell Stimulation 

2.2.1 Lipopolysaccharide 

LPS is a known agonist of TLR4 and was used as a positive control throughout, it is 

also well established to mount an inflammatory response in the cell lines used in this 

study (Bosshart and Heinzelmann, 2016; Lawrence et al., 2016b). TLR4-specific LPS 

(from E.coli serotype J5, Alexis Biochemicals, USA), which does not contain any other 

TLR agonists or contaminants which may activate TLRs was diluted in the appropriate 

complete culture medium for cell stimulation assays. A stock solution of 1000ng/ml was 

made and further diluted to a final working concentration between 10-1000ng/ml. 

 

2.2.2 Negative control 

During all cell stimulation studies, cells incubated in complete medium only were used 

as a negative control. Vehicle controls were included for reagents reconstituted in 

DMSO. 

 

2.2.3 Cobalt ions 

Cobalt hexahydrate (CoCl2) (Sigma Aldrich, USA) was diluted in appropriate complete 

culture medium prior to cell stimulation. The concentrations selected for CoCl2 were 

based on previous research within the group (Lawrence et al., 2014; Lawrence et al., 

2016b). This varied between 0.025mM to 0.75mM which provides maximal cell 

responses without inducing cell toxicity. These concentrations are similar to other 

studies in similar cell lines and refined when comparing metal ion concentrations found 

in the serum and joint fluid of patients with failing MoM implants (De Smet et al., 2008; 

Davda et al., 2011; Holland et al., 2012). 

 



50 

 

2.3 TLR4 Signalling Inhibitors 

2.3.1 CLI-095 

CLI-095 (Invivogen, USA) is a small molecule TLR4 antagonist which acts specifically 

by blocking signalling mediated by the intracellular domain of TLR4 (Ii et al., 2006; 

Kawamoto et al., 2008). A stock of CLI-095 was reconstituted in DMSO and then 

further diluted in complete culture medium to obtain a final stock concentration of 

100µg/ml. A concentration of 1µg/ml was used in cell treatments as this dose had been 

previously optimised in similar cell lines to achieve effective inhibition whilst not 

affecting cell viability (Lawrence et al., 2016a). In all experiments, cells were pre-

treated with 1µg/ml CLI-095 for 6 hours prior to stimulation with TLR4 agonists. 

 

2.3.2 MAb-tlr4 

MAb-tlr4 (Invivogen, USA) is a human TLR4 specific IgG1 neutralising monoclonal 

antibody. MAb-tlr4 is from the W7C11 clone, although its exact binding site is 

unavailable. The antibody was reconstituted in 1ml of sterile water to obtain a 

concentration of 0.1mg/ml. Cells were pre-treated with between 0.5 and 10µg/ml MAb-

tlr4 for 1 hour prior to simulation with TLR4 agonists. 

 

2.3.2.1 Mouse IgG1 isotype control antibody 

Mouse IgG1 isotype control antibody (Invivogen, USA), from the T8E5 clone, was used 

as a negative control in conjunction with MAb-tlr4 (an IgG1 monoclonal antibody). The 

isotype control was used at the maximal concentration of MAb-tlr4 used and cells 

treated for the same amount of time. The antibody was reconstituted in 1ml of sterile 

water to obtain a concentration of 0.1mg/ml. 

 

2.4 Investigating the Inflammasome Response 

2.4.1 ATP 

Adenosine 5'-triphosphate disodium salt (ATP) (Invivogen, USA) is a potassium efflux 

agent which can trigger activation of the NLRP3 inflammasome in response to PAMPs 

such as LPS. It stimulates the caspase-1 dependent cleavage and secretion of IL-
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1 from LPS-stimulated cells (Mariathasan et al., 2006). ATP was reconstituted in 

endotoxin-free water and the pH adjusted using 4 M sodium hydroxide (NaOH). 

Following priming of cells with LPS or other PAMP stimulants (e.g. potentially CoCr 

particles), 5mM ATP was added for 1 hour to stimulate IL-1 maturation and secretion. 

 

2.5 Cell Viability 

2.5.1 Trypan blue staining 

Cell viability was assessed using the trypan blue exclusion assay. A 1:1 dilution of 

trypan blue dye (ThermoFisher Scientific, UK) and cell suspension was added to a 

Luna disposable cell counting slide and cell viability counted and measured using a 

Luna II automated cell counter (both Logos Biosystems, South Korea). A cell with 

reduced viability will have a disrupted cell membrane so cannot exclude the dye. 

Therefore, these cells appear blue in colour. However, healthy cells with intact 

membranes can exclude the dye and appear clear. All cells were automatically counted 

and a cell viability percentage determined in relation to the total number of cells in the 

suspension. 

 

2.5.2 XTT assay 

The XTT (2,3-Bis-(2-Methoxy-4-Nitro-5-Sulfophenyl)-2H-Tetrazolium-5-Carboxanilide) 

assay kit (Roche, Switzerland) was used to determine the impact of THP-1 cell 

stimulation treatments on cell viability. The assay is based on the cleavage of yellow 

tetrazolium salt, XTT, to form an orange formazan dye, which only occurs in viable 

cells. Therefore, the more dye present then the more viable cells in each 

well/treatment. The dye formed is soluble in aqueous solutions and can be directly 

quantified using a standard spectrophotometer.  

THP-1 cells were seeded in a clear, flat-bottomed 96 well plate at 5x104 cells/well in 

100µl of complete cell culture medium and 5ng/ml PMA and incubated for 24 hours. 

Cells were subsequently washed with sterile PBS and fresh complete medium added 

to each well overnight. Cells were then stimulated with either LPS, CoCr particles or 

CoCl2 at various concentrations for a further 24 hours. Following this period, 50µl of 

XTT with electron coupling reagent (final concentration 0.3mg/ml) was added to each 
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well and incubated at 370C for between 2 and 24 hours. At 2, 4, 6 and 24 hours the 

plate was read at 450nm using a spectrophotometer. 

 

2.6 Transmission Electron Microscopy (TEM) 

Cross-sections of individual cells were used to generate TEM images so that 

intracellular features could be visualised and analysed. TEM microscopes use streams 

of electrons which are focused by magnetic condenser lenses onto a specific sample. 

This electron beam passes through the sample and electrons are scattered according 

to the density of the sample. For the samples to be imaged, detection of electrons is 

sensed by a fluorescent plate. 

Stimulated THP-1 cells were collected in 1.5ml microcentrifuge tubes and centrifuged 

at 5,500g for 5 minutes. All traces of media were carefully removed and the cell pellet 

re-suspended in 1ml of 2% glutaraldehyde with 0.2M cacodylate to fix the cells. These 

were then handed to EM Research Services (Newcastle University, UK) for the 

remainder of sample processing. After fixation, samples were dehydrated through 

serial ethanol concentrations. Samples were then placed in propylene oxide as a 

transitional buffer before embedding in epoxy resin. Samples were then cut into ultra-

thin sections (50-70nm) and stained with electron dense stains, typically heavy metals, 

to show cellular structures. 

 

2.7 Quantification of Gene Expression 

2.7.1 RNA isolation 

Total RNA was isolated from stimulated cells using the Promega ReliaPrep RNA 

Miniprep Systems Kit (Promega, USA) following the manufacturer’s protocol. Briefly, 

suspension cells were collected in a sterile 1.5ml microcentrifuge tubes, centrifuged, 

re-suspended in sterile PBS, further centrifuged then lysed in BL buffer containing 1% 

1-Thioglycerol (BL+TG buffer). The cell pellet was further homogenised by a 

combination of vortexing and pipetting prior to the addition of isopropanol. Adherent 

cells were washed in sterile PBS before being directly lysed with BL+TG buffer in the 

cell culture plate, scraped using the end of a 1ml syringe and collected in a sterile 

microcentrifuge tube before the addition of isopropanol. The cell lysate for both 
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suspension and adherent cells was then transferred to ReliaPrep Minicolumns followed 

by a series of washing steps with RNA wash solution, centrifugation (at 8,000g) and a 

15-minute incubation step with a DNase I incubation mix. This was followed by several 

further wash steps including with a column wash solution then the elution of RNA in 

nuclease-free water. Analysis of total RNA quantity and quality was determined by a 

NanoDrop One spectrophotometer (ThermoFisher Scientific, UK). Absorbance was 

read at 260nm, 280nm and 230nm, which measures nucleic acid, protein and organic 

solvent content, respectively. Thus, these values can be used to generate ratios which 

evaluate the purity of each RNA sample. A 260/280 ratio of between 1.8 and 2.2 

indicates the sample was pure enough to use in future experiments. RNA was then 

stored at -80oC. 

The integrity of RNA was assessed by gel electrophoresis on a 2% w/v agarose gel. 

Intact RNA is represented by two distinct bands; 28S and 18S ribosomal RNA units 

(Figure 2.1). 

 

 

Figure 2.1 RNA gel electrophoresis 

Isolated RNA was separated by electrophoresis on a 2% w/v agarose gel. The 28S 
and 18S bands are the two ribosomal subunits and show intact RNA. 
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2.7.2 cDNA synthesis 

First strand complementary DNA (cDNA) was synthesised using the Bioline Tetro 

cDNA synthesis kit (Bioline, UK) using between 0.5µg and 1µg of total RNA. Each 

reaction contained the appropriate amount of RNA, 1µl of either Oligo (dT)18 or 

Random hexamers, 1µl 10mM dNTP mix, 4µl 5x RT buffer, 1µl RiboSafe RNase 

inhibitor, 1µl Tetro Reverse Transcriptase (200u/µl) and diethyl pyrocarbonate 

(DEPC)-treated water up to a volume of 20µl. Reactions were incubated in a T100 

thermocycler (BioRad, USA) at 45oC for 30 minutes and if using random hexamers, 10 

minutes at 25oC followed by 45oC for 30 minutes. The reaction was terminated by 

incubating at 85oC for 5 minutes then immediately storing at 4oC before transferring to 

-20oC for long-term storage. 

 

2.7.3 Quantitative real-time polymerase chain reaction 

Quantitative real-time polymerase chain reaction (qRT-PCR) can be used to quantify 

changes in gene expression. qRT-PCR throughout this study was conducted using 

Taqman gene expression probes and reagents (Table 2.1). These probes contain both 

forward and reverse primers, in addition to Taqman probes. The probes are conjugated 

to a fluorescent reporter dye and a quencher which prevents fluorescence when the 

probe is intact. However, following cDNA replication, the probe is degraded by Taq 

polymerase and the fluorescence signal is released.  

Each reaction contained 5µl of 2X Taqman gene expression mastermix, 2µl diluted 

cDNA template, 0.5µl Taqman gene expression probe and 2.5µl RNase-free water (all 

ThermoFisher Scientific, UK). For each primer used, a negative control containing 

RNase-free water was used in place of the diluted cDNA template. Unless otherwise 

stated, gene expression was normalised to either 18S or GAPDH as a housekeeping 

gene. 

A 10µl sample of the reaction mix was added in triplicate to a MicroAmp 96 well plate 

(ThermoFisher Scientific, UK) which was then ran on a StepOnePlus real-time PCR 

thermocycler (Applied Biosystems, USA). Reactions were incubated at 50oC for 2 

minutes and 95oC for 10 minutes followed by 40 cycles of 95oC for 15 seconds and 

60oC for 1 minute.  



55 

 

Relative gene expression values were quantified by normalising CT values of the target 

genes with CT values of the housekeeping gene using the 2-ΔΔCt method. 

 

Table 2.1 Taqman gene expression assays 

TaqMan gene expression assays were purchased from ThermoFisher Scientific, UK 

Target gene Species Assay ID 

18S Human Hs03003631_g1 

GAPDH Human Hs02758991_g1 

IL-8 Human Hs00174103_m1 

CCL3 Human Hs00234142_m1 

IL-1 Human Hs01555410_m1 

ICAM-1 Human Hs01003372_m1 

VCAM-1 Human Hs01003372_m1 

 

2.8 Protein Quantification 

2.8.1 Enzyme-linked immunosorbent assay (ELISA) 

ELISA is a technique used to quantify protein secretion, most commonly cytokines and 

chemokines. The ELISA kits used throughout this study were DuoSet sandwich 

ELISAs purchased from R&D Systems and performed according to the manufacturer’s 

protocol. The DuoSet ELISA Ancillary Reagent Kit (R&D Systems, USA) provided all 

additional reagents required. The general overview and principle of the assay is 

described below. 

Firstly, a clear polystyrene microplate (R&D Systems, USA) was coated with a capture 

antibody diluted in ELISA plate-coating buffer at room temperature (RT) overnight. The 

plate was then blocked with 1% bovine serum albumin (BSA) in PBS for 1 hour at RT 

to prevent non-specific binding. Supernatant from stimulated cells was collected in 

1.5ml microcentrifuge tubes whilst processing cell lysates therefore no cells or debris 

would be present. Known standards and appropriately diluted supernatants were 

added in triplicate to the plate and incubated for 2 hours at RT. The detection antibody 
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was then added to the plate for 2 hours at RT, followed by the addition of Strepavidin-

horseradish peroxidase (HRP) for 20 minutes at RT. The ELISA was developed using 

a 1:1 dilution of colour reagent A (hydrogen peroxide) and colour reagent B 

(tetramethylbenzidine) (R&D Ancillary Kit) and incubated at RT for 20 minutes or until 

the reaction had developed sufficiently. The solution was stopped with a stop solution 

(2N sulfuric acid) and plates then read at 450nm on a spectrophotometer. In between 

all steps (excluding the addition of stop solution) the plate was aspirated and washed 

3 times using an automated plate washer (ThermoFisher Scientific, UK) and wash 

buffer (0.05% Tween 20 in PBS). 

Reagent concentrations for the ELISAs used during this study are summarised in 

Table 2.2. and the reagents from the DuoSet ELISA Ancillary Reagent Kit summarised 

in Table 2.3. 

 

Table 2.2 ELISA reagent concentrations 

 IL-8 CCL3 CCL3 

(mouse) 

CCL4 CCL2 IL-10 IL-1 

Capture Antibody 

(µg/ml) 

4 0.4 0.4 1 1 2 4 

Maximum Standard 

(pg/ml) 

2000 500 500 1000 1000 2000 250 

Detection Antibody 

(ng/ml) 

20 200 100 50 25 75 200 
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Table 2.3 DuoSet ELISA ancillary reagent kit 

 

2.9 Statistical Analysis 

Statistical analysis was performed using GraphPad Prism 8.0. All error bars represent 

standard deviation unless otherwise stated. The analysis method is described for each 

individual experiment, majority used were one-way analysis of variance (ANOVA). 

Statistical significance is shown as follows:  

* p<0.05 

** p<0.01 

*** p<0.001 

 Description Working concentration 

ELISA Plate-Coating 

Buffer 

Sterile-filtered 1X PBS N/A 

Reagent Diluent 

Concentrate 

10% Bovine Serum 

Albumin (BSA) solution 

1% BSA in PBS (dilute in deionised 

water) 

Stop Solution 2N sulfuric acid N/A 

Colour Reagent A Hydrogen peroxide Mix together in equal volumes 

Colour Reagent B Tetramethylbenzidine 

Wash Buffer 

Concentrate 

Concentrated solution of 

buffered surfactant with 

preservative 

1 in 25 dilution in distilled water to 

prepare 1X wash buffer (0.05% 

Tween) 



58 

 

Chapter 3 : Generation, Isolation and Characterisation of Clinically-

relevant Cobalt Chromium Wear Particles 

3.1 Introduction 

As discussed in Chapter 1, CoCr particles which have been characterised from both 

retrieval and hip simulator studies are observed to be mostly nanoscale in size (Doorn 

et al., 1998; Catelas et al., 2003). The morphology of these particles also tend to be 

round in shape with a small number of needle-like shard particles as observed by TEM 

(Doorn et al., 1998). To fully understand the biological responses to wear debris 

generated by orthopaedic implants it is important that particles used in cell culture 

experiments are comparable to those released from implants in vivo. Previous in vitro 

cell culture studies have also utilised commercially available particles (Dalal et al., 

2012; Caicedo et al., 2013). However, these tend to be much larger in size (µm range) 

and mostly uniform in their morphology (see Figure 3.1). Therefore, researchers have 

developed various systems with increasing levels of complexity to produce or generate 

CoCr wear particles. These include; pin-on-plate simulators, whole joint simulators and 

retrieved particles isolated from patient tissue (Tipper et al., 1999; Germain et al., 2003; 

Papageorgiou et al., 2014). 
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Figure 3.1 Microscopy images comparing CoCr wear particles generated on pin-
on-plate simulator versus commercial CoCr particles 

A) SEM image of CoCr particles generated by pin-on-plate simulator displaying large 
aggregates as well as smaller nanoscale individual particles as demonstrated by 
arrows. B) TEM image of CoCr particles generated by pin-on-plate simulator, small 10-
20nm particles can be observed more clearly within the aggregates. C) SEM image of 
commercially available CoCr particles (supplied by Osprey Metals Ltd.) which 
displayed a uniform morphology of a much larger average size of 9.87±5.6 7µm (all 
images taken from (Germain et al., 2003)).  

 

The lubricant in which the particles are generated, using simulators, also needs to be 

taken into consideration. If proteins are present in the sample, for example from cell 

culture media containing FBS, this can make visualisation of the particles under 

microscopy problematic and prevent accurate size distribution and characterisation of 
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the particles. Furthermore, isolation methods for CoCr particles generated in these 

lubricants are difficult as the material is unable to tolerate extreme changes to pH which 

can cause changes in morphology, aggregation or potential loss of particles (Catelas 

et al., 2001). More recently, Lal et al. (2016) developed a novel particle isolation 

method employing enzymatic digestion with proteinase K followed by a density 

gradient using sodium polytungstate (SPT) (Lal et al., 2016). The method was 

developed for the recovery of both ceramic and metal particles from lubricants 

containing serum and found to have no effect on size or morphology of the recovered 

particles. 

Pin-on plate wear simulators utilise a technique that mimics the wear mechanisms of 

total hip replacement devices during what would be classed as a ‘normal’ gait cycle 

(Jin et al., 2000). The simulator is multidirectional, with the plate moving linearly, whilst 

the pin rotates which replicates the movement of the femoral head within the acetabular 

cup of the hip joint. Sterile water can be used as the lubricant in this setting as it has 

been shown that these conditions lead to the generation of clinically relevant CoCr 

particles (in terms of their size and shape) and eliminates the requirement for a 

digestion protocol to isolate the particles (Germain et al., 2003). 

Therefore, for this study, a multidirectional pin-on-plate simulator was used to generate 

clinically relevant CoCr particles in sterile water which are similar in size, morphology 

and composition to those in the published literature. However, generating particles in 

sterile water is not necessarily the most accurate representation of what may be 

occurring in vivo or in patients. This is because the presence of proteins and other 

metabolites may affect wear rates and the composition of the particles produced. 

Moreover, the six-station pin-on-plate simulator which was to be utilised as part of this 

study is extremely difficult to run under sterile conditions due to the positioning of the 

rig. This means, that for cell culture studies, particles would have to be sterilised prior 

to use, and therefore, would lose released metal ions and other natural properties that 

may be altered during this process. For this reason, a single station pin-on-plate wear 

rig based within a class II biological safety cabinet, was also used to generate sterile 

CoCr particles with complete cell culture medium containing 25% FBS used as a 

lubricant. The method developed by Lal et al. (2016) for the isolation and recovery of 

metal wear debris from lubricants containing serum was employed due to its 

effectiveness and efficiency so that particles could be characterised prior to use (Lal 
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et al., 2016). The particles produced under these conditions would therefore offer a 

‘gold standard’ which could ultimately be used for cell culture studies and potentially 

produce more meaningful conclusions. 

 

3.2 Aims and Objectives 

The aim of this chapter was to generate and isolate clinically-relevant CoCr wear 

particles to be used for subsequent investigation into their biological effects. Nanoscale 

particles were generated using a six-station pin-on-plate wear simulator using material 

with some alloy compositions used in MoM hip implants. The lubricant chosen in this 

instance was water, which removed the need for lubricant digestion. CoCr particles 

were also generated using a single station pin-on-plate wear simulator under sterile 

conditions. The lubricant used in these tests was cell culture medium containing 25% 

(v/v) FBS, therefore, digestion methods were employed to isolate the particles for 

further characterisation. 

 

3.2.1 Objectives 

• Generate clinically-relevant cobalt chromium wear particles using a six-station 

pin-on-plate wear simulator in sterile water, using high carbon CoCrMo alloy 

pins and plates 

• Filter and characterise CoCr wear particles generated to determine particle size 

and morphology using SEM, EDX analysis and ImageJ 

• Prepare generated CoCr wear particles for cell culture studies by sterilising and 

determining the concentration of particles 

• Generate sterile clinically-relevant cobalt chromium wear particles using a 

single station pin-on-plate wear simulator in cell culture medium containing 25% 

(v/v) FBS, using high carbon CoCrMo alloy pins and plates 

• Isolate particles generated in cell culture medium containing 25% (v/v) FBS 

using enzymatic digestion and a density gradient ultracentrifugation method 
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3.3 Specific Materials 

Smooth, high carbon, CoCr alloy pins and plates were manufactured in house (School 

of Mechanical Engineering, University of Leeds) from a high carbon > 0.2% (w/w) 

CoCrMo alloy (ASTM F1537), which is the alloy used in surgical implants. The pins 

and plates were polished to a smooth contact surface of approximately 0.02-0.04µm 

and 0.01-0.02µm surface roughness, respectively. 

The pins and plates were engraved with an identification number on the non-contact 

face to allow for continuity in the test rig. Prior to use, pins and plates were washed in 

household detergent before sonication for 10 minutes in 70% (v/v) isopropanol. 

Following on from this, the pin and plates were stored in a moisture controlled 

environment for at least 48 hours, and then weighed (repeated 3-5 times, accuracy + 

5g) prior to the test run. 

 

3.4 Specific Methods 

3.4.1 Generation of CoCr particles using a six-station pin-on-plate wear 

simulator 

Clinically relevant CoCr wear particles were generated using a six-station pin-on-plate 

wear simulator. The simulator used was designed and manufactured within the School 

of Mechanical Engineering at University of Leeds. Smooth, high carbon, CoCr alloy 

pins and plates were used throughout to generate CoCr particles as described in 

section 3.3. Once generated, these wear particles were used in vitro to investigate the 

inflammatory response of cell lines to CoCr wear particles. 

 

3.4.1.1  Cleaning of rig components and CoCr pins and plates 

The entire components of the six-station rig were firstly immersed in household 

detergent with warm water for 15 minutes then individually scrubbed with a toothbrush. 

All metal components were sonicated in 70% (v/v) isopropanol for 10 minutes. All 

components were then immersed in 1% (v/v) Trigene (Scientific Laboratory Supplies, 

UK) for 20 minutes then thoroughly rinsed in distilled water before completely drying in 

disposable paper towels (Figure 3.2). 
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Figure 3.2 Components of the six-station pin-on-plate wear simulator 

A) Ball bearing assembly components, B) threaded nut, C) bridge section, D) polymer 
baffle, E) connecting rod, F) collet, G) toothed rack, H) pin holder with polymer gear, I) 
stainless-steel bath with seal inside the side groove. Image taken from PhD thesis 
Craven, 2016 (Craven, 2016).  

 

3.4.1.2 Assembly of six-station pin-on-plate wear simulator 

The components required for the setup of the six-station pin-on-plate wear rig simulator 

are listed in Table 3.1. 
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Table 3.1 The components required for the assembly of the six-station pin-on-
plate wear simulator 

Assembly of pin/plate/load Six station pin-on-plate wear 

simulator components 

Assembly of plate in bath Six stainless steel baths, six stainless 

steel bath inserts (cobalt chromium 

plates were fixed into these for test), six 

polymer baffles, six stainless steel 

toothed racks and six plastic sheets 

Assembly of pin in holder Six polymer gear wheels, four stainless 

steel bridges (spans all six stations), six 

stainless steel pin holders (collets), six 

collet outer sleeves, six threaded nuts 

and six stainless steel spacers 

Screws, pins and bearings 12 large stainless steel screws, 12 short, 

small stainless steel screws, 24 long, 

small stainless steel screws, six pivot 

pins, 12 split pins, six ball bearing 

assemblies and six linear bearings 

Additional equipment Six polyethylene connecting rods, six 

cantilever arms, six weights, a range of 

Allen keys, spirit level, adjustable 

wrench, 50ml syringe, sterile deionised 

water, 150ml sterile collection pot 

 

3.4.1.3 Linear bearing tray 

Prior to the assembly of the six-station wear simulator, the pins and plates were 

individually numbered and the pairing of the pin and plates for each station remained 

constant throughout the tests. The orientation of the plate within the bath also remained 

the same. The linear bearing tray was assembled, whereby each plate was screwed 

into a separate bath using the short, small screws. A rubber seal was placed in the 

groove of the bath and a polymer baffle was secured into position using the long and 

small screws, covering the top of the bath with the polymer baffle. The toothed racks 

were screwed into position on the side of each bath. Each numbered bath was secured 

into place on the rig at the corresponding station number. 
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3.4.1.4 Assembly of pin holder 

Each individual pin was placed in a collet, to ensure the pin protruded approximately 

5mm. Different sized metal spacers were also inserted to ensure each pin protruded 

by roughly the same distance. The collet containing the pins was then placed into the 

pin holder, which was then placed into the corresponding bridge section and the 

threaded nut screwed in to place, fixing the pin into position in the collet. The polymer 

gear wheel was then fixed onto the top of the pin holder. The bridge apparatus was 

then transferred across to the support brackets within the simulator. The polymer wheel 

was aligned with the toothed rack at the side of each stainless-steel bath which allowed 

the rotation of the pin. It was important to check at this point that the motion was smooth 

between the two bearings. The bridge was secured by tightening clamps, clearance 

distances were checked between the threaded nut and the bridge and the pin-on-plate 

movement was also established. 

 

3.4.1.5 Final assembly 

The lubricant used was ultrapure deionised water and approximately 30 ml was added 

to each bath using a syringe. The pin holder was lifted slightly to ensure the presence 

of lubricant between the pin and plate prior to commencing the operation of the wear 

rig. The polymer connecting rods were slotted into place at the front of the baths and 

secured to the scotch yoke mechanism situated at the other end of the rod. The 

cantilever arms were secured into place using 2 split pins per arm and a single pivot 

pin. Using a spirit level and spanner, the pin on the cantilever arm was altered to ensure 

the arm was level. A ball bearing assembly was placed on top of the pin holder and a 

small amount of Vaseline® was applied around the washers to act as a lubricant (and 

allow rotation). The cycle counter on the rig was set to zero and the motor was turned 

on. The frequency was recorded and adjusted to 1 Hz or 60 cycles.min-1, with a stroke 

length of 28 mm and a rotation ± 30°. A steel weight was then added to each of the 

cantilever arms to correspond to 80 N per station. The rig was operated for 3 weeks 

during the day (approximately 8 hours per day). Before switching off the rig at the end 

of each day, the speed was slowly reduced and the weights were removed. The 

lubricant was topped up each day to maintain sufficient lubrication. Upon completion 

of the pin-on-plate testing, the number of cycles was recorded and the rig was 
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dismantled. The lubricant containing the particle debris for each station was transferred 

into appropriately labelled sterile plastic pots and stored at -20°C. 

 

3.4.2 Generation of sterile CoCr particles using a single-station pin-on-plate 

wear simulator 

Sterile, clinically relevant CoCr wear particles were generated using a single station 

pin-on-plate wear simulator. The simulator used was designed and manufactured 

within the School of Mechanical Engineering at University of Leeds. Smooth, high 

carbon, CoCr alloy pins and plates were manufactured in house (School of Mechanical 

Engineering, University of Leeds) from a high carbon > 0.2% (w/w) CoCrMo alloy 

(ASTM F1537). Once generated, these wear particles were used in vitro to investigate 

the inflammatory response of cells to CoCr wear particles. 

 

3.4.2.1 General preparation and cleaning of rig components 

All components from the single station wear simulator were washed in household 

detergent in warm soapy water before being thoroughly rinsed with distilled water 

(Figure 3.3). The metal components were placed in a sonicating water bath in 70% 

(v/v) isopropanol for a minimum of 20 minutes then rinsed with copious amounts of 

distilled water and dried. These were then wrapped in tin foil and heated in an oven at 

180oC for 4 hours to sterilise the components.  

All lubricant samples and aliquots of ultrapure water were prepared in a class II laminar 

flow cabinet to ensure sterility. Sterile running of the test rig was performed in a class 

I laminar flow cabinet. All items including components were sprayed with 70% (v/v) 

ethanol before being placed inside the cabinet. Prior to each test, the cabinet was 

exposed to UV for 1 hour. 

The serum lubricant was made up either the day before the rig was operated and 

stored at 4oC, or on the day of the test run. The lubricant consisted of RPMI 1640 media 

supplemented with 25% (v/v) FBS and was transferred into a sterile container. Sterile 

aliquots of ultrapure water were also prepared in sterile universals to be used to ‘top 

up’ the lubricant during the duration of the wear test. 

 



67 

 

 

Figure 3.3 Components of single station pin-on-plate wear simulator 

Image taken from PhD thesis, Yarrow-Wright 2018 (Yarrow-Wright, 2018). 

 

3.4.2.2 Assembly of single station pin-on-plate wear simulator 

Prior to assembly, the cabinet and rig base were cleaned with household detergent in 

warm water followed by 1% (w/v) Trigene and finally 70% (v/v) ethanol.  

All components were assembled within a class I laminar flow cabinet. Using the 

components pictured in Figure 3.3, firstly, the plate screws were used to tighten the 

CoCr plate inside the bath, which was then placed into the rig where it was secured 

into position using the short screws. The O ring was inserted into the pin holder, the 

CoCr pin inserted into the O ring and tightened using the screw on the side of the pin 

holder. The assembled pin holder was fed through the arm of the rig and lowered by 

rotating the mechanism to ensure the flat sides of the pin holder were aligned with the 

bearings (Figure 3.4). 
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Figure 3.4 Assembly of pin holder for single-station pin-on-plate wear simulator 

Image taken from PhD thesis, Yarrow-Wright 2018 (Yarrow-Wright, 2018). 

 

Approximately, 30ml of RPMI 1640 medium (supplemented with 25% (v/v) FBS) was 

added to the bath using a sterile plastic syringe. The pin holder was then lifted to allow 

the lubricant to pass over all the surfaces. A load of 80N was applied using a weight 

positioned on the cantilever arm. The motor was switched on and the speed set to the 

equivalent of 1 Hz. The lubricant was topped up using ultrapure water throughout the 

duration of the test run. The final assembly of the rig is pictured in Figure 3.5. 
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Figure 3.5 Fully assembled single pin-on-plate wear simulator 

Image taken from PhD thesis, Yarrow-Wright 2018 (Yarrow-Wright, 2018). 

 

The test was continuously run for 8 hours per day for 3 weeks and lubricant collected 

at the end of every week. Lubricant was removed using a sterile 50ml syringe and 

transferred to a sterile pot and stored at -20oC. 

 

3.4.2.3 Sterility testing of retrieved lubricant 

A sample of the collected lubricant from the single-station pin-on-plate wear simulator 

was tested for bacterial contamination by plating out on heated blood agar (HBA), 

saboraud dextrose agar (SAB) and nutrient agar (NA) plates (all ThermoFisher 

Scientific, UK) using sterile technique (i.e. under the presence of a Bunsen burner 

flame). The lubricant was spread over the plates in a series of standard lines (Figure 

3.6). Plates were incubated over a period of 24-72 hours at either 37oC (HBA and NA) 

or 30oC (SAB). Any bacteria present would colonise along the lines and confirm the 

presence of contamination. 
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Figure 3.6 Plating out serum onto bacterial growth plates using standard method 

 

3.4.3 Scanning electron microscopy (SEM) 

The size, composition and morphology of the CoCr particles generated in section 

3.4.1 and section 3.4.2 were determined and analysed using SEM and energy 

dispersive x-ray spectroscopy (EDX) analysis.  

 

3.4.3.1 Preparation of cobalt-chromium particles for SEM analysis from six 

station pin-on-plate wear simulator 

CoCr particles generated from the six-station pin-on-plate wear simulator were filtered 

onto 0.015µm pore size membranes using filtration glassware. The glassware was 

firstly washed thoroughly using household detergent and a bottle brush then rinsed a 

minimum of 3 times with distilled water, followed by a final rinse with ultrapure water. 

All filtration was performed in a class I laminar flow hood.  

A 1mg.ml-1 stock of CoCr particles was diluted in a further 5ml of sterile water. The 

diluted stock was sonicated for 30 minutes in a sonicating water bath whilst pipetting 

the solution before being filtered through a 0.015µm pore size filter membrane. Prior 

to filtration, each membrane was cleaned by filtering 10ml of 70% (v/v) ethanol followed 

by 10ml of ultrapure water. Once the particle solution had passed through the filter, it 

was transferred to a petri dish and allowed to dry overnight at room temperature. A 

small section of the dried filter membrane was mounted on to a 2.5cm aluminium short 
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stub using an adhesive carbon tab and the edges of the filter coated with carbon paste. 

The CoCr particle samples were sputter coated with carbon to a thickness of 3nm. 

 

3.4.3.2 Isolation of cobalt-chromium particles for SEM analysis from single-

station pin-on-plate wear simulator 

As the CoCr particles collected from the single-station pin-on-plate wear simulator 

were generated in lubricant containing serum an enzymatic digestion and density 

gradient ultracentrifugation method was employed in order to isolate and purify 

particles prior to their characterisation (summarised in Figure 3.7). 

Firstly, the SW32Ti rotor buckets for centrifugation were cleaned thoroughly using hot 

water and detergent followed by drying the inner and outer surfaces using tissue paper. 

The centrifuge tubes (Beckman Coulter Ltd, UK) were also thoroughly cleaned using 

hot water and detergent before rinsing 3 times with filtered water and one final rinse 

using sterile water. All the centrifuge tubes were coated using siliconising fluid 

surfactant (Surfasil) (ThermoFisher Scientific, UK) using lint free cloths and tweezers. 

Specifically, the lint free cloth was wet with undiluted Surfasil solution then the inner 

surface of the centrifuge tube rubbed with the wet lint free cloth making sure the whole 

inner surface was covered. A dry lint free cloth was then using to rub the inner surfaces 

until dry. The tubes were rinsed with methanol then twice with sterile water prior to use. 

The lubricant retrieved from the simulator was vortexed 3 times for 10 seconds and the 

volume made up to 30ml by the addition of sterile water. Immediately after mixing, the 

lubricant was added to the centrifuge tubes and placed inside the SW32Ti rotor buckets 

and balanced using sterile water. The tubes were centrifuged at 160,000g for 3 hours 

at room temperature using a Beckman Optima L-90K ultra-centrifuge and SW32Ti 

rotor. Following centrifugation, the supernatant was carefully removed by aspiration 

leaving behind a volume of 3ml to re-suspend the pellet, located in the bottom of the 

tube. 

The re-suspended pellets of particles containing proteins (from FBS) were 

subsequently added to 0.1M 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

(HEPES) buffer (Melford Laboratories, UK), 0.5% (w/v) sodium dodecyl sulphate 

(SDS) (Sigma Aldrich, USA) and 3mM calcium chloride, to a final volume of 5ml. For 

enzymatic digestion, 250µl of proteinase K (1mg.ml-1) (ThermoFisher Scientific, UK) 
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was added then transferred to an incubator on an orbital shaker for 18 hours at 50oC. 

Following this time, the particle solution was sonicated for 10 minutes before the 

enzymatic digestion step was repeated by the addition of proteinase K (1mg.ml-1) and 

further incubation for 22 hours at 50oC, whilst being shaken. 

SPT gradients were prepared by sequentially layering 60% (v/v) SPT (ρ=2.0 g/cm3), 

40% (v/v) SPT (ρ=1.6 g/cm3) and 20% (v/v) SPT (ρ=1.2 g/cm3) in thin wall 

polypropylene tubes (Beckman, UK). The digest was sonicated for 10 minutes before 

it was pipetted slowly on top of the SPT density gradient. The tubes were filled to the 

top by the addition of sterile water. The samples were centrifuged (Beckman Optima 

L-90K ultra-centrifuge and SW40 rotor) at 180,000g for 4 hours at room temperature. 

At this point, a protein band was observed between the 20% (v/v) and 40% SPT layers 

(v/v). The supernatant was carefully aspirated and discarded and the pellet of particles 

at the bottom of the tube was re-suspended in 1ml of sterile water, sonicated for 10 

minutes before being transferred to clean pre-coated centrifuge tubes. 

The recovered particles were washed 3 times in sterile water using Beckman Optima 

L-90K ultra-centrifuge and SW40 rotor at 180,000g for 1 hour at 37oC. Between each 

wash, the supernatant was collected and the particles were re-suspended in sterile 

water before sonication for 10 minutes. The particles finally pelleted at the bottom of 

the tube were re-suspended in sterile water and stored at -20oC for future analysis. 

The isolated particles could then be filtered onto 0.015µm pore size membranes as 

described in section 3.4.3.1. for SEM analysis. 
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Figure 3.7 CoCr particle isolation method 

The method employed for particle isolation can be divided into 3 main stages. 1) The 
concentration stage involves pelleting the particles by centrifugation so that a smaller, 
more concentrated volume can be obtained. 2) The enzymatic digestion stage involves 
the addition of Proteinase K for 22 hours which digests the proteins present from the 
serum. 3) A density gradient is formed in the isolation stage by using sodium 
polytungstate and ultra-centrifugation to ultimately separate the isolated particles from 
the digested proteins (Lal et al., 2016) 

 

3.4.3.3 Imaging and characterisation of cobalt-chromium particles 

The CoCr particles were visualised using a Hitachi SU8230 field emission gun electron 

microscope (FEGSEM) (University of Leeds) at a working distance of 3mm and an 

acceleration of 1kV. Images were taken at magnifications between x 30K and x 100K 

by Dr Saurabh Lal (Faculty of Engineering, University of Leeds). The images obtained 

were analysed using the image analysis software ImageJ, to measure the maximum 

length and area of the particles. Approximately 150 particles were characterised in total 

and only particles where the entire circumference could be observed were measured. 
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3.4.3.4 Energy dispersive x-ray spectroscopy analysis of cobalt-chromium 

particles 

EDX spectroscopy analysis was performed to identify the elemental composition of 

CoCr particles collected on the filter membranes. This analysis was performed whilst 

taking the SEM images. Pin point analysis using numerous EDX detection points were 

selected from a range of CoCr particles, including aggregates. 

 

3.4.3.5 Cobalt-chromium particle characterisation 

The SEM images were analysed using ImageJ software to generate a size distribution 

for the particles generated. Each particle was sized manually by drawing around the 

perimeter of the particle. Particles were only included if the entire outer edge was 

viewable i.e. if the particles had aggregated these were not included. A minimum of 

300 particles were analysed, pooled from all magnifications taken with the SEM. The 

size range was distributed between 0-150nm in 10nm increments and >150nm. The 

results were then presented as a percentage of the total number of particles which 

were sized. 

 

3.4.4 Preparation of particles for cell culture studies 

The exact volume of CoCr particles generated was calculated by completing the 

following. Firstly, the pins and plates were stored in a moisture controlled environment 

for at least 48 hours after the test run and then weighed (repeated 3-5 times, accuracy 

+ 5g) to determine the mass lost from both components. This mass loss was then 

combined to give a total mass loss (in mg) which could then be divided by the amount 

of lubricant retrieved to give a µg.ml-1 stock solution.  

The particle suspension was thawed and transferred into a glass flask which was then 

placed in an oven for 4 hours at 180oC to sterilise the particles, evaporate the water 

they were generated in and remove any potential endotoxin. The particles were re-

suspended in 40ml RPMI cell culture medium (containing no other supplements) to 

give a final stock solution of approximately 2000-3000 µg.ml-1 and stored at -20oC. 

Smaller stocks of approximately 200-300 µg.ml-1 were stored to help avoid particle 

aggregation and repeated freeze-thawing. 
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Cells were cultured with CoCr particles at volumes of 0.5µm3, 5µm3 and 50µm3 per cell 

using the calculation specified in Appendix A. Previously published literature have 

determined these particle volumes for the use in cell viability assays in similar cell lines 

which were used in this study (Germain et al., 2003; Papageorgiou et al., 2007). Once 

thawed, particle suspensions were sonicated in an ultrasonic water bath for 5 minutes 

before being added to cells. 

 

3.4.5 Endotoxin testing of generated CoCr particles 

The presence of endotoxin in lubricants taken from both the six- and single-station pin-

on-plate wear simulators was tested using the Pierce™ Chromogenic Endotoxin 

Quantitation Kit (ThermoFisher Scientific, UK) which accurately measures and detects 

the endotoxin, LPS, in samples using the amebocyte lysate assay. The kit offers a 

highly sensitive endpoint with detection between 0.1 to 1 endotoxin units/ml (EU.ml-1). 

One EU is equal to approximately 0.1 to 0.2 ng endotoxin/ml of solution. The 

ameboycte lysate used in this assay is derived from the blood of the horseshoe crab 

which initiates several enzymatic reactions in the presence of endotoxin, including the 

activation of Factor C, B and pro-clotting enzyme. Once activated, this enzyme 

catalyses the release of p-nitroaniline (pNA) from a colourless chromogenic substrate 

(Ac-lle-Glu-Ala-Arg-pNA), producing a yellow colour which can be stopped with the 

addition of acetic acid and measured on a spectrophotometer at 405nm. The intensity 

of developed colour is therefore proportional to the concentration of endotoxin present 

in any given sample and the concentration can be calculated using a standard curve. 
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3.4.5.1 Endotoxin kit components 

 

Table 3.2 Pierce LAL chromogenic endotoxin quantitation kit contents and 
reagent preparation 

Pierce LAL chromogenic endotoxin 

quantitation kit contents 

Storage and preparation 

Lyophilized E. coli (0111:B4) Endotoxin 

Standard, 1 vial, 20 endotoxin units 

(EU)/vial 

Stored at 4°C and reconstituted with 2ml 

endotoxin free water. 

Lyophilized Amebocyte Lysate (LAL), 1 

vial, 1.7 mL/vial upon reconstitution 

Stored at 4°C and reconstituted with 

1.7ml endotoxin free water. 

Lyophilized Chromogenic Substrate, 1 

vial, 3.4 mL/vial upon reconstitution 

Stored at 4°C and reconstituted with 

3.4ml endotoxin free water. 

Endotoxin-Free Water, 1 vial, 50 mL Stored at 4°C 

 

3.4.5.2 Sample preparation 

Generated CoCr particle samples were defrosted and 500µl from each sample 

transferred to an eppendorf. Samples were heated to 75°C for 30 minutes, vortexed 

then centrifuged at 13,000 g for 10 minutes. A volume of 0.5 µl supernatant from each 

sample was transferred to a new eppendorf and diluted with 49.5 µl endotoxin free 

water to achieve a 1:100 dilution as per the manufacturer’s instructions to eliminate 

interference from undiluted serum. 

 

3.4.5.3 Reagent preparation 

3.4.5.3.1 Endotoxin standard 

Standards of E. coli were prepared at room temperature by reconstituting in 2ml of 

endotoxin-free water to give a final concentration of 10 EU/ml. The solution was then 

vortexed vigorously for 15 minutes. Standards were prepared from this stock endotoxin 

by firstly adding 200µl of stock to 1800µl of endotoxin-free water to achieve a final 

concentration of 1 EU.ml-1 (standard 1). Standard 2 (0.5 EU.ml-1) was prepared by 
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taking 1000µl of standard 1 and diluting in a further 1000µl of endotoxin-free water. 

Standard 3 (0.25 EU.ml-1) was prepared using 500µl of standard 1 diluted in 1500µl of 

endotoxin-free water and standard 4 (0.10 EU.ml-1) by taking 200µl of standard 1 and 

diluting in 1800µl of endotoxin-free water. All standards were vortexed for 1 minute 

after mixing. 

 

3.4.5.3.2 Limulus Amebocyte Lysate reagent 

LAL reagent was reconstituted immediately before use with 1700µl of endotoxin-free 

water and swirled gently to dissolve. 

 

3.4.5.3.3 Chromogenic substrate 

The chromogenic substrate was reconstituted in 3.4ml of endotoxin-free water and pre-

warmed at 37oC for 5 minutes before use. 

 

3.4.5.4 Assay procedure 

Before starting the assay procedure, all reagents were brought to room temperature 

and a 96 well plate heated to 37oC. The 96 well plate was maintained at 37oC in a heat 

block throughout the assay. A volume of 50µl of either standards, blanks (endotoxin-

free water or RPMI media only) and diluted samples were added in triplicate to the 96 

well plate followed by the addition of 50µl of LAL reagent and a timer was started. The 

plate was briefly removed from the heat block and mixed gently by tapping 10 times 

on the side of the plate before returning to the heat block and incubating for precisely 

12 minutes. The reconstituted chromogenic substrate was pre-warmed for 5 minutes 

at 37oC and after exactly 12 minutes of incubation with the LAL reagent 100µl of 

chromogenic substrate added to each well. Again, the plate was briefly removed from 

the heat block and mixed gently by tapping 10 times on the side of the plate before 

returning to the heat block for 6 minutes. Following this 6-minute incubation period, 

50µl of stop solution (25% (v/v) acetic acid) was added to each well and again the plate 

mixed by tapping as before. The plate was then immediately read at 405nm using a 

spectrophotomer. The blank readings were subtracted from all standards and samples 

and a standard curve prepared from the endotoxin standards (1, 0.5, 0.25 and 0.10 
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EU.ml-1). The concentration of the samples were then determined using linear 

regression. 

 

3.4.6 Inductively coupled plasma mass spectroscopy (ICP-MS) 

ICP-MS was used to determine the cobalt (Co) and chromium (Cr) ion concentrations 

that were released from the CoCr particles using the concentrations to be investigated 

in cell culture assays (0.5µm3, 5µm3 and 50µm3 particles per cell) and over a period of 

0 to 48 hours. ICP-MS analyses single elements within a sample by using an ionisation 

source that breaks the sample up into its integral elements and converts these 

elements into ions. An induction coil enables energy to ‘couple’ with ICP, normally 

composed of argon gases. The samples in liquid form must firstly be converted to 

aerosol form using a nebuliser which uses supersonic expansion of gas to create a 

fine mist from the liquid sample. A spray chamber then removes large droplets which 

could not be processed in the plasma. The samples are then digested in 2% (v/v) nitric 

acid which stabilises elements in their ionic form. 

The particles at the above concentrations were incubated at 370C in 5% (v/v) CO2 in 

complete cell culture medium for 48 hours. Samples were collected at 0, 6, 12, 24 and 

48 hours. Particle suspensions were centrifuged for 20 minutes at (16,800g) and the 

supernatants containing the released ions analysed using ICP-MS at the Department 

of Blood Sciences, Freeman Hospital, Newcastle upon Tyne by Dr Barry Toole.  
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3.5 Results 

3.5.1 Generation of cobalt-chromium wear particles using the six- and single 

station pin-on-plate wear simulator 

The aim of this chapter was to generate sufficient volumes of clinically-relevant cobalt 

chromium particles to be used in future cell culture studies. By running the pin-on-plate 

simulators for the durations discussed, a large volume of particles was generated 

under different conditions and were ample for the experiments planned as part of this 

project.  

 

3.5.2 Characterisation of cobalt-chromium particles generated using a six-

station pin-on-plate wear simulator 

The characterisation in terms of size and morphology and the composition of the CoCr 

particles generated in the six-station pin-on-plate wear simulator were determined and 

analysed after filtration on 0.015µm filter membranes using SEM and EDX analysis as 

described in section 3.4.3.1. Image analysis was performed using ImageJ software to 

determine the diameter of the particles (minimum of 150 particles per sample). The 

morphology of the generated particles collected on the filter membranes are shown in 

Figure 3.8 to Figure 3.11. 
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Figure 3.8 SEM images of CoCr particles generated on six-station pin-on-plate 
wear simulator  

(A) x10K and (B) x15K magnification 

 

 

 

 

Figure 3.9 SEM image of CoCr particles generated on six-station pin-on-plate 
wear simulator  

x35K magnification 
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Figure 3.10 SEM images of CoCr particles generated on six-station pin-on-plate 
wear simulator 

Images are representative of 4 different tests, x50K magnification. 

 

 

Figure 3.11 SEM image of CoCr particles generated on six-station pin-on-plate 
wear simulator 

Images are representative of 4 different tests, x100K magnification. 
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Under low magnification (x10K and x15K) granular, micron sized CoCr particles were 

observed (Figure 3.8). However, these irregular particles which are larger in 

morphology appear to be due to agglomerations of particles from smaller nano-scale 

particles. As magnification increased it became clearer that the individual particles are 

in fact much smaller and the agglomerations make up the larger sized particles viewed 

(Figure 3.10). Furthermore, at higher magnifications (e.g. x100K), numerous round to 

oval shaped particles, uniform in their morphology, were observed and were nano-

scale in size (Figure 3.11). There were no shard-like particles observed in these 

samples. 

The size distribution of the particles collected on the filters was generated using ImageJ 

software. The percentage (calculated against the total number of particles observed 

i.e. minimum of 150 per sample) of CoCr particles which were <50nm in length was 

42%, 47.3% were between 50 and 99nm in length and only 8.7% of particles generated 

were larger than 100nm in size (Figure 3.12). 

 

 

Figure 3.12 Frequency distribution of CoCr particles generated using a six-
station pin-on-plate wear simulator 

Particles were generated using a six-station pin-on-plate wear simulator, imaged using 
SEM and the percentage size distribution determined using ImageJ. At least 150 
particles were characterised per sample.  
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The elemental composition of the CoCr particles was determined using EDX analysis 

as described in section 3.4.3.4. (Figure 3.13). The EDX detection point was taken 

from within a particle agglomerate. The analysis revealed peaks of excitation for 

carbon, cobalt, chromium, phosphorous and oxygen. The high carbon content was due 

to the method for sample preparation which involved carbon coating of the sample for 

SEM imaging and subsequent EDX analysis. Therefore, the elemental composition 

was as expected and composed of Co, Cr and Mo elements. 

 

 

Figure 3.13 Energy dispersive x-ray spectroscopy analysis of nanoscale CoCr 
particles 

Pin point energy dispersive x-ray spectroscopy was used to determine the elemental 
composition of generated CoCr particles. In this instance, the peak for carbon (C) is 
due to the coating of the particles for SEM analysis. There are other significant peaks 
at cobalt (Co) and chromium (Cr). 

 

3.5.3 Characterisation of isolated cobalt-chromium particles generated using a 

single-station pin-on-plate wear simulator 

The characterisation in terms of size and morphology and the composition of the CoCr 

particles generated in the sterile single-station pin-on-plate wear simulator, where 

RPMI media containing 25% (v/v) FBS was used as the lubricant, were firstly digested 

then determined and analysed after filtration on 0.015µm filter membranes using SEM 

and EDX analysis as described in section 3.4.3.1. Image analysis was performed 

using ImageJ software to determine the diameter of the particles (minimum of 150 
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particles per sample). The morphology of the generated particles collected on the filter 

membranes are shown in Figure 3.14 to Figure 3.16. These particles were isolated 

using the method described in section 3.4.3.2, and SEM imaging was used to confirm 

that the morphology of the particles were similar to those particles generated in sterile 

water described in section 3.5.2. 

 

 

Figure 3.14 SEM image of isolated CoCr particles generated using a single-
station pin-on-plate wear simulator  

(A) x15K and (B) x30K magnification 

 

 

Figure 3.15 SEM image of isolated CoCr particles generated using a single-
station pin-on-plate wear simulator  

x60K magnification 
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Figure 3.16 SEM image of isolated CoCr particles generated using a single-
station pin-on-plate wear simulator 

(A) x100K and (B) x110K magnification 

 

The particles isolated from the single-station pin-on-plate wear simulator were similar 

in morphology to the particles generated using a six-station pin-on-plate simulator as 

previously described. Larger aggregates were observed at low magnification (x15K 

and 30K) (Figure 3.14), whereas smaller individual particles, although difficult to 

resolve were visible at higher magnifications (x100K and x110K) (Figure 3.16).  

The size distribution of the particles which were isolated and then collected on the 

filters was generated using ImageJ software. The percentage (calculated against the 

total number of particles observed i.e. minimum of 150 per sample) of CoCr particles 

which were <50nm in length was 48%, 53.7% were between 50-99nm in length and 

only 3% of particles were larger than 100nm in size (Figure 3.17). Therefore, the size 

of the observed particles following isolation were similar to those that were generated 

using water as a lubricant. 

 



86 

 

 

Figure 3.17 Frequency distribution of isolated CoCr particles generated using a 
single-station pin-on-plate wear simulator 

Particles were generated using the single-station pin-on-plate wear simulator, isolated 
from their lubricant and imaged using SEM. The percentage size distribution was then 
determined using ImageJ. At least 150 particles were characterised per sample.  

 

3.5.4 Microbiological testing of generated CoCr particles from single-station 

pin-on-plate wear simulator 

Agar plates, as described in section 3.4.2.3, were used for the microbiological testing 

of sample lubricants from the single-station pin-on-plate wear simulator and incubated 

for up to 72 hours to assess for any contamination. All samples which were collected 

throughout the running of the wear rig came back clear i.e. no contamination was 

detected in any of the tests, and the lubricants were deemed sterile.   

 

3.5.5 Endotoxin testing 

Lubricants taken from both the six- and single-station pin-on-plate wear simulators 

were tested for endotoxin using the Pierce™ Chromogenic Endotoxin Quantitation Kit. 

A standard curve was also created using E. coli at concentrations ranging between 0.1 

and 1 EU/ml-1 (Figure 3.18). The endotoxin concentration of each sample could then 

be determined by extrapolating from the standard curve using a linear regression 
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equation. Previous research has shown that as little as 0.1 EU/ml-1 of LPS/endotoxin 

can upregulate inflammatory gene expression in primary human monocytes (Oostingh 

et al., 2011). Table 3.3 and Table 3.4 demonstrate the concentrations of endotoxin 

(EU/ml-1) in CoCr lubricant samples taken from the six-station and single-station pin-

on-plate wear simulators, respectively, extrapolated from the standard curve.  
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Figure 3.18 Standard curve for the quantitation of endotoxin 

A standard curve was calculated using linear regression so that lubricant samples 
taken from wear testing could be tested for endotoxin and the optical densities 
extrapolated from the graph to determine the EU.ml-1.  

 

Table 3.3 Endotoxin concentrations taken from lubricants of six-station pin-on-
plate wear simulator  

Concentrations taken from triplicate values and standard deviation of the mean 
calculated 

Source of lubricant Eu.ml-1 

Six station sample 1 0.0880.21 

Six station sample 2 0.2110.11 

Six station sample 3 0.0250.31 
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Table 3.4 Endotoxin concentrations taken from lubricants of single-station pin-
on-plate wear simulator 

Concentrations taken from triplicate values and standard deviation of the mean 
calculated 

Source of lubricant Eu.ml-1 

Single station sample 1  2.3230.42 

Single station sample 2 2.5560.23 

 

3.5.6 Release of cobalt and chromium ions from CoCr particles 

In both cobalt and chromium ion measurement, there was a dose dependent increase 

in ion concentration as CoCr particle concentration increased reaching a peak of 

1500µg/L and 350µg/L, respectively at 50µm3 per cell equivalent (Figure 3.19A and 

Figure 3.19B). 

The largest concentration of CoCr particles (50µm3 per cell) was then used to 

determine cobalt and chromium ion release over a period of up to 48 hours (Figure 

3.20A and Figure 3.20B). The results showed that following 24 hours, maximal 

concentration of both cobalt and chromium ions had been reached as at 48 hours there 

was very little difference between the two concentrations. For example, cobalt ion 

concentration after 24 hours ranged between 1292µg/L-1372µg/L and at 48 hours 

1275µg/L-1447µg/L. This was similar for chromium ion concentrations which ranged 

between 519µg/L-569µg/L following 24 hours and 534µg/L-608µg/L at 48 hours. 
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Figure 3.19 Cobalt and chromium ion release from CoCr particle dose between 
0.05 and 50µm3 CoCr particles per cell response at 24 hours 

Generated CoCr particles from a six-station pin-on-plate wear simulator were 
incubated in complete cell culture medium to determine the release of cobalt (A) and 
chromium (B) ions after 24 hours measured by ICP-MS. Data is representative of two 
independent experiments. 

 

 

Figure 3.20 Time course showing cobalt and chromium release from CoCr 
particles 

Generated CoCr particles from a six-station pin-on-plate wear simulator were 
incubated with the equivalent volume of 50µm3 particles per cell in complete cell culture 
medium to determine the release of cobalt (A) and chromium (B) ions between 0 and 
48 hours measured by ICP-MS. Data is representative of two independent 
experiments. 
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To be able to investigate the differences in biological effect of both CoCr particles and 

cobalt ions alone it was important to determine the cobalt ion concentration to be used 

in cell treatments to compare responses. The concentration of cobalt ions released 

from 50µm3 particles per cell (1500µg/L) was converted into mM to approximately 

0.025mM (or 25µm) CoCl2. This concentration was added to complete RPMI media 

and incubated for 48 hours to determine the cobalt ion concentration by ICP-MS and 

ensure this was accurate compared to what was measured (Figure 3.21). As shown 

previously, the release of cobalt ions from CoCr particles increased between 0 and 24 

hours, reaching a peak of 1500µg/L. At 0 hours, cobalt ion concentration from CoCl2 

was larger when compared to CoCr particle treatment (approximately 1250µg/L versus 

975µg/L, respectively). CoCl2 ion concentration did not change over time indicating that 

the concentration added remained consistent over 48 hours. Cobalt ion concentration 

in this instance reached a peak of 1243µg/L and was therefore similar to the 

concentration of cobalt ions released from the 50µm3 per cell dose of CoCr particles 

(1378µg/L). 

 

 

Figure 3.21 Comparison of CoCr particles and CoCl2 ion concentration over time 

The estimated dose of CoCl2 (0.025mM) which was released by CoCr particles (50µm3 

per cell) after 24 hours was added to complete RPMI media and cobalt ion 
concentration measured by ICP-MS over a period of 0-48 hours. Data is representative 
of two independent experiments. 
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3.6 Discussion 

For this part of the study, both a six- and single-station pin-on-plate wear simulator 

were used to generate CoCr particles, using smooth high carbon CoCrMo alloy pins 

and plates and using either sterile water or RPMI media (+ 25% (v/v) FBS) as a 

lubricant, respectively. In this instance, metal pins articulated against metal plates 

using multi-directional motion and generated wear particles over a total of 3 weeks, 

articulating at a frequency of 1 Hz under a load of 80N (to replicate the motions and 

loads of a typical hip joint). The CoCr particles generated could then be compared to 

previous studies to ensure they were of correct elemental composition, size and 

morphology. The six-station pin-on-plate wear simulator was utilised so that large 

volumes of CoCr particles could be generated in a relatively short time frame. The 

single-station wear simulator provided fewer, but potentially more clinically-relevant 

CoCr particles, due to the presence of proteins from the FBS included within the RPMI 

lubricant as well as cobalt and chromium ions that are released during the wear testing. 

The single-station simulator also provided a sterile environment to generate CoCr 

particles for cell culture studies. The sterility of these CoCr particles was confirmed by 

taking samples during the test run for microbiological analysis and also tested for 

endotoxin to ensure there was no contamination. 

The use of these pin-on-plate wear simulators has been previously established in the 

literature to generate CoCr particles of a clinically-relevant size and morphology 

(Germain et al., 2003). The benefit of generating CoCr particles in sterile water with 

the six-station simulator was that these could be simply characterised due to the lack 

of proteins in the lubricant. These particles could also be easily sterilised by heat-

treating at 180oC for 4 hours which has been shown to effectively remove any 

endotoxin meaning they are suitable to be used in cell culture experiments (Germain 

et al., 2003). However, it was also important to generate CoCr particles which would 

be more similar to those generated in an in vivo patient setting and hence the addition 

of serum into the lubricant was employed for the single-station simulator. This meant 

that the simulator had to be ran under aseptic conditions so that the lubricant containing 

the serum and potentially released cobalt and chromium ions could be maintained for 

cell culture studies as heat-treating for sterilisation leads to the evaporation and loss 

of the lubricant. 
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The CoCr particles generated in the six-station pin-on-plate wear simulator had an 

average size of 45nm. The size of generated particles did not significantly alter when 

characterising particles isolated from lubricant containing serum generated in the 

single-station wear simulator, which had an average size of 57nm. The particles 

produced were of a comparable size to those observed in tissues from patients with 

failed implants (i.e. the nanoscale range) and similar in size and morphology to those 

studies which have also used metal-on-metal wear and pin-on-plate simulators to 

produce CoCr wear particles for cell culture studies (Brown et al., 2007; Papageorgiou 

et al., 2014). However, it was particularly difficult to accurately measure the size of 

each individual particle due to the agglomeration and aggregation of particles. In 

another study which also used the six-station pin-on-plate wear simulator with water 

as the lubricant of choice, aggregated CoCr particles were also observed with an 

average size of 40-49nm (Behl et al., 2013). In this study, efforts to prevent the 

formation of aggregates of CoCr particles were employed by using sonication for 10 

minutes, as it has been shown that longer periods of sonication (more than 30 minutes) 

can in fact lead to further re-agglomeration (Chowdhury et al., 2010). However, despite 

using a shorter sonication time, re-agglomeration of particles occurred relatively 

quickly and was therefore difficult to avoid completely. It is likely that CoCr particle 

aggregates are reflected in the tissues of patients with metal implants and have also 

been observed in the tissues of in vivo mouse models (Akbar et al., 2012; Paulus et 

al., 2019). 

In a study which isolated CoCr particles from the tissue of 13 patients with MoM hip 

implants undergoing revision surgery investigators found that the morphology of these 

particles were mostly round but with some shard-like particles observed (Doorn et al., 

1998). This is in agreement with other retrieval studies which have isolated particles 

from explanted tissue in patients with MoM hip resurfacings (Xia et al., 2011; Goode 

et al., 2012). In this study, there did not appear to be any shard-like particles with all 

observed particles appearing to be round in their morphology. This appears to be 

similar to other simulator studies generating CoCr particles which also report round 

morphologies with the absence of shard-like particles (Brown et al., 2007; 

Papageorgiou et al., 2007; Paulus et al., 2019). These findings may come down to 

which type of CoCr alloy is investigated, for example; cast or wrought alloys which can 

produce different particle morphologies (cast are known to produce shard-like 

particles). Wrought CoCr alloys possess higher strength in comparison to cast alloys 
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and therefore are more likely to be used in implants requiring increased strength 

properties and this was the alloy utilised in this study as well as the other simulator 

studies discussed. However, cast alloys are frequently used in some resurfacing 

devices e.g. Birmingham Hip Resurfacing. This would explain why some of the studies 

investigating tissue from patients who have received MoM hip implants have observed 

shard-like particles. 

EDX analysis was employed to confirm the elemental composition of the generated 

CoCr particles. Both cobalt and chromium were detected at 34.1% and 16.79% (Wt%), 

respectively, and a small peak for molybdenum at 1.44% which demonstrated a 

consistent ratio of elements when compared with the clinical biomaterial used in 

CoCrMo implants. The importance of evaluating morphological and elemental 

composition of these particles is paramount prior to investigating cellular responses. 

This is because, particle volume, size and shape can alter consequent effects and to 

ensure particles are as close to being clinically relevant as possible (Papageorgiou et 

al., 2007; Nine et al., 2014). For example, nanoscale CoCr particles have been shown 

to cause more mitochondrial damage, more DNA damage and enhanced cytotoxicity 

in fibroblasts when compared to microscale CoCr particles (Papageorgiou et al., 2007). 

Furthermore, an effective particle isolation protocol which does not alter particle 

characteristics is equally important for particles generated in the presence of FBS. The 

use of these particles in cell culture assays will add further clinical relevance as the 

presence of proteins better mimics the in vivo setting. This isolation protocol must also 

be reproducible and efficient. Previous alkaline and acid digestion methods have 

proven to be inadequate in preventing alterations to particle characteristics and 

enzymatic digestion can also be inefficient and unreliable. However, a novel method 

for the isolation and recovery of metal wear debris from lubricants containing serum 

was employed in this study, which involved enzymatic digestion with proteinase K and 

density gradient ultracentrifugation methods (Lal et al., 2016). The particles were then 

filtered onto 0.015µm pore sized filters and imaged using SEM. These particles did not 

appear to differ in size or morphology compared to the CoCr particles generated in 

sterile water from the six-station pin-on-plate wear simulator thus validating six-station 

pin-on-plate simulator and use of water as a lubricant. 

Before CoCr particles could be used for in vitro cell culture experiments it was crucial 

to ensure the sterility of the particles generated from both the six- and single-station 
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pin-on-plate wear simulators. This is because this research focuses on inflammatory 

responses so it is important to establish that any responses observed are from the 

sample stimuli and not due to contaminant endotoxin/LPS. The lubricants collected 

from the six-station pin-on-plate wear simulator were generated under non-sterile 

conditions and were therefore subject to heat treatment to remove any potential 

endotoxin prior to testing with the Pierce™ Chromogenic Endotoxin Quantitation Kit. 

All possible efforts were made in the running of the single-station pin-on-plate wear 

simulator to keep conditions sterile so that this lubricant (cell culture media with and 

without the addition of FBS) could be directly used in future cell culture experiments 

and directly tested for endotoxin contamination. The results from the endotoxin 

quantitation demonstrated that 2 out of the 3 lubricants tested from the heat-treated 

six-station pin-on-plate wear simulators contained less than 0.1 EU/ml-1 with one 

sample slightly over this threshold at 0.211 EU/ml-1. Therefore, it could be assumed 

that these samples were suitable for future cell culture experiments. Conversely, the 

lubricants taken from the single-station pin-on-plate wear simulator tested higher for 

endotoxin at concentrations of 2.3 and 2.5 EU/ml-1. This was surprising given that these 

particles were generated under ‘sterile conditions’ and had passed initial 

microbiological testing checks using agar plates. To ensure the agar plates were 

working as expected, known sources of bacteria and fungi could have been used to 

streak the plates alongside lubricant testing. The higher levels of endotoxin were 

possibly due to serum contamination within the lubricant samples or could have been 

easily contaminated during the endotoxin testing itself. However, it does demonstrate 

the effectiveness of heat treatment in eliminating endotoxin from the particles 

generated in the six-station using water as the lubricant of choice.  

It is likely that endotoxin binds easily on the surface of nanoparticles due to their highly 

reactive surfaces (Li and Boraschi, 2016). It is also possible that nanoparticles can 

interfere with the optical densities of LAL assays which has been cited in ISO 

regulations. The single-station samples were taken directly from the lubricant and 

therefore potentially contained a higher concentration of particles which could have 

explained the higher endotoxin concentrations. It is interesting that when samples of 

lubricant were taken during the running of the single-station for use in microbiological 

tests (agar plate streaking) that these all came back clear of any contamination. It is 

therefore possible that perhaps these sample lubricants became contaminated at a 

different stage perhaps in transfer to long term storage. In future, it is important to run 
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appropriate controls and ensure the same concentration of particles is used across 

test samples in LAL assays. Further experiments investigating the biological effects of 

CoCr particles on cell lines involved only using samples measuring under 0.1 EU/ml to 

ensure any inflammatory effects were due to CoCr particles and not potential endotoxin 

contamination. 

The results from the ICP-MS investigating the release of cobalt and chromium ions 

from generated particles demonstrated that these ions are released in a dose 

dependent manner as well as gradually over a course of time (0-24 hours). There was 

no significant difference in ion release between 24 and 48 hours for both cobalt and 

chromium ions. This is in agreement with previous studies which have demonstrated 

that cobalt and chromium ion release from CoCr particles reached its maximum at 24 

hours and did not significantly increase at 48 hours (Papageorgiou et al., 2007; Behl 

et al., 2013). It has been hypothesised that this is due to an oxidation film layer that is 

formed, preventing corrosion of particles and subsequent ion release. It was 

particularly important to establish the concentration of cobalt ions released from the 

generated CoCr particles to provide a further ‘control’ to future cell culture studies. By 

using the observed released cobalt ion concentration alongside CoCr treatments, this 

will help establish whether any inflammatory effects are due to cobalt ions alone or 

whether the effect is enhanced in the presence of the particles. 

 

3.6.1 Conclusions 

CoCr wear particles for use in cell culture studies were generated either in water from 

a six-station pin-on-plate wear simulator or in RPMI media (+25% (v/v) FBS) in a single-

station simulator. The size and morphology of these particles were similar to those 

observed from patients who have received implants containing metals, therefore, they 

could be deemed clinically-relevant. The CoCr particles generated were vacuum 

filtered (particles generated in RPMI media containing FBS were firstly isolated using 

enzymatic digestion and density gradient methods) and characterised using SEM and 

elemental analysis confirmed using EDX. The number of particles produced were 

sufficient to complete all future cell culture assays to investigate the effect of CoCr 

wear particles on human cell lines. 
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Chapter 4 : Role of the Toll-like Receptor 4 Signalling Pathway and 

Inflammasome in the Inflammatory Response to CoCr Particles 

4.1 Introduction 

Chapter 3 described the generation of clinically relevant CoCr particles and the steps 

taken to characterise and prepare these particles to be utilised in cell culture 

treatments, in vitro. Previous work carried out within the group investigating 

inflammatory effects of cobalt ions have focussed on the use of monocytic/macrophage 

cell lines (Lawrence et al., 2014; Lawrence et al., 2016a; Lawrence et al., 2016b). 

Therefore, in this study, the human MM6 and THP-1 cell lines as well as mouse J774 

cells were used to optimise cell treatments with CoCr particles. Once the dose of 

particles was optimised, it was important to establish reliable and significant markers 

of inflammation following treatments. Specific immunological pathways such as TLR4 

and the NLRP3 inflammasome were then subsequently targeted to elucidate their role 

in this inflammatory response. The TLR4 pathway was the main signalling pathway of 

interest based on our previous work using cobalt ions which are known to activate 

TLR4 and cause up-regulation of chemokines and cytokines, particularly IL-8 

(Lawrence et al., 2014; Lawrence et al., 2016b). The inflammasome pathway, 

specifically NLRP3, was also investigated as researchers have suggested CoCr-

mediated inflammation acts through a DAMP rather than a PAMP response so could 

therefore be caused by NLRP3 activation and subsequent up-regulation of IL-

1 (Samelko et al., 2016). 

The effect of CoCr particles on a mouse macrophage cell line (J774) was investigated 

to determine whether the particles could elicit a response in these cells and species. 

As previously discussed, it has been established that cobalt and nickel ions are unable 

to activate mouse TLR4 due to the lack of two conserved histidine residues found only 

in the human TLR4 amino-acid sequence to which metal ions bind, causing TLR4 

activation. Therefore, if CoCr particles can activate J774 cells this would suggest that 

other alternative pathways may be involved. 

It was important to first determine whether the dosage of particles used to treat cells 

caused cytotoxicity/cell death. It is known that high concentrations of cobalt ions can 

cause cytotoxicity and results from the previous chapter indicate that cobalt ions are 

released into cell culture medium from the generated CoCr particles to be used in this 
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study (Kwon et al., 2009). It was therefore necessary to establish a dose sufficient to 

perpetuate an inflammatory effect without causing toxicity. Trypan blue staining was 

selected to measure cytotoxicity and an XTT assay to assess proliferation rate of cells. 

Phagocytosis of CoCr particles was discussed in section 1.4.3 and therefore as part 

of this study, TEM was used on activated THP-1 cells to analyse intracellular changes 

following stimulation with CoCr particles. Furthermore, in section 1.6.2, enhanced 

phagocytosis following TLR4 activation was also discussed so a phagocytosis assay 

was utilised to establish how treatment with CoCr particles can affect the phagocytic 

ability of macrophage cells.  

 

4.2 Aims and Objectives 

The aim of this chapter was to establish the effects of clinically relevant CoCr 

nanoscale particles in monocyte/macrophage cell lines by assessing toxicity and 

protein and gene expression of pro-inflammatory cytokines and chemokines known to 

be involved in ARMD and osteolytic responses. The TLR4 and NLRP3 inflammasome 

pathways were investigated to determine their potential role in these responses. 

Macrophage phagocytic capability was investigated by imaging cells by TEM following 

CoCr particle treatment as well as performing a phagocytosis assay. 

 

4.2.1 Objectives 

• To investigate the effect of CoCr particles on MM6, THP-1 and J774 cell viability 

• To establish whether THP-1 cells can phagocytose CoCr particles 

• To establish the effect of CoCr particles on the phagocytic ability of THP-1 cells 

• To establish which proteins are significantly up-regulated in response to CoCr 

particles  

• To investigate whether the use of TLR4-specific inhibitors can prevent the 

inflammatory response mediated by CoCr particles 

• To investigate whether CoCr particles can activate the NLRP3 inflammasome 

complex 
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4.3 Specific Methods 

4.3.1 Cell treatments 

For all cell treatments using CoCr particles in this part of the study, sterilised particles 

generated in the six-station pin-on-plate wear simulator were used as described in 

section 3.4.4. These particles were used due to findings from endotoxin testing in 

section 3.5.5, which demonstrated potential endotoxin contamination in particles 

generated in the single-station pin-on-plate wear simulator. 

 

4.3.2 Meso Scale Discovery (MSD) multiplex cytokine analysis 

A Meso Scale Discovery (MSD) plate was used to measure changes in cytokine and 

chemokine expression in THP-1 cells treated with CoCr particles in the presence and 

absence of the TLR4 inhibitor, CLI-095. Specifically, 400,000 activated THP-1 cells 

were stimulated with varying concentrations of CoCr particles (0.5 to 50µm3 per cell) 

for 24 hours. For treatments including CLI-095, cells were pre-treated with 1µg/ml CLI-

095 for 6 hours prior to stimulation. 

MSD analysis offer many advantages over ELISAs such as, the sensitive 

measurement of up to 10 different cytokines or chemokines in one single sample, and 

a wide dynamic range whilst only requiring a small sample volume. This study used U-

PLEX technology, which allows for the custom creation of any combination of up to 10 

compatible markers to be analysed on the same plate. The following cytokines and 

chemokines were chosen due to their association with innate immune responses and 

due to data extrapolated from a previous PCR microarray of cobalt ion treated 

monocytes; IL-8, CCL2, CCL3, CCL4, CCL20, CXCL10, TNF IL-1 IL-10 and IL-13. 

The role of these cytokines and chemokines is summarised in Table 4.1. The principle 

of the assay involves biotinylated capture antibodies which are coupled to U-PLEX 

linkers and self-assemble onto unique spots on the U-PLEX plate. Analytes in the 

sample bind to the capture reagents and detection antibodies conjugated with electro-

chemiluminescent labels (MSD Gold™ SULFO-TAG) bind to the analytes to complete 

the sandwich immunoassay (Figure 4.1). 

Once the sandwich immunoassay is complete, the U-PLEX plate is loaded into an MSD 

instrument where a voltage is applied to the plate electrodes causing the captured 

labels to emit light. The reaction is catalysed by Tris(2,2’-bipyridyl)dichlororuthenium(II) 
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hexahydrate (Ru(bpy)3) with the co-reactant, triproplylamine (TPA). The instrument 

measures intensity of emitted light (which is proportional to the amount of analyte 

present in the sample) and provides a quantitative measure. Assays were performed 

according to the manufacturer’s instructions. 

 

Table 4.1 Cytokines and chemokines measured for multiplex analysis and their 
functions 

(Hughes and Nibbs, 2018) 

Protein of interest Function 

IL-8 Chemoattractant specific for neutrophils, 

stimulates phagocytosis. Binds to 

CXCR1 and CXCR2. 

CCL2 Chemoattractant specific for monocytes. 

Binds to CCR2 and CCR4. 

CCL3 Chemoattractant for polymorphonuclear 

leukocyte. Binds to CCR1 and CCR5. 

CCL4 Chemoattractant specific for monocytes 

and NK cells. Binds to CCR5. 

CCL20 Strong chemoattractant for lymphocytes. 

Binds to CCR6. 

CXCL10 Secreted in response to interferons, 

chemoattractant for monocytes, 

lymphocytes and NK cells. Binds to 

CXCR3. 

TNF Inflammatory cytokine involved in 

systemic inflammation during acute 

phase. 

IL-1 Secreted following inflammasome 

activation. Mediator of cell proliferation, 

differentiation and apoptosis. 

IL-10 Anti-inflammatory cytokine  

IL-13 Mediator of allergic inflammation 

 

  



100 

 

 

Figure 4.1 MSD multiplex method and set up 

The MSD multiplex immunoassay employed involves adding a capture antibody to an 
MSD plate, adding samples and calibrators and washing away any unbound analyte. 
The SULFO-TAG-conjugated detection antibody is then added and incubated before 
adding read buffer and analysing with an MSD instrument. The MSD MULTI-SPOT 
panel allows the analysis of 10 different analytes using a single well. Image obtained 
and adapted from https://www.mesoscale.com/en 

 

4.3.2.1 MSD Components 

The components provided with the U-PLEX assay are listed in Table 4.2. 

 

Table 4.2 Components of U-PLEX MSD assay 

Reagent Storage Description 

Diluent 43 <10oC Diluent for samples and 
calibrators; contains 
serum, blockers and 
preservatives 

Diluent 3 <10oC Diluent for detection 
antibody; contains protein, 
blockers and 
preservatives 

Stop solution 2-8 oC Biotin-coating buffer to 
stop Linker-antibody 
coupling reaction 

Read Buffer T (4X) RT Buffer to catalyse the 
electro-
chemiluminescence 
reaction. Dilute to 2X 
before use 

 

U-PLEX assays use MSD 96-well 10-spot plates. The spots correspond to 10 unique 

U-PLEX linkers, each linker has biotin-binding domain which couples to the biotinylated 
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capture antibody, as well as a domain which binds to its matching spot on the U-PLEX 

plate. The linkers are colour coded and numbered with the spot to which they attach 

to. 

U-PLEX antibody sets were provided for the 10 proteins of interest. These sets 

contained the biotinylated capture antibody provided at a ready-to-use concentration 

and the SULFO-TAG conjugated detection antibody provided at a 100X concentration.  

Calibrators 1 and 2 were provided for the analytes which were selected for this assay. 

Calibrators are multi-analyte blends, each containing multiple recombinant human 

proteins lyophilised in a buffered diluent. 

 

4.3.2.2 Preparation of U-PLEX plate 

All reagents were brought to room temperature before beginning the protocol. The 

preparation of the plate involved coating the plate with Linker-couple capture 

antibodies. A different linker must be used for each unique biotinylated antibody; 200µl 

of antibody was added to 300µl of the assigned linker and mixed by vortexing. The 

plate was then incubated at room temperature for 30 minutes. Following incubation, 

600µl of each U-PLEX linker-coupled antibody solution (10X) was combined into a 

single tube, vortexed and 50µl of the multiplex coating solution mixture added to each 

well. The plate was then sealed and incubated with shaking at room temperature for 1 

hour then washed three times with PBS-Tween (PBS plus 0.05% Tween-20). 

 

4.3.2.3 Preparation of standards and samples 

The calibrator vials were brought to room temperature and reconstituted by adding 

250µl of Diluent 43 to the glass vials. This resulted in a 5X concentrated stock of each 

calibrator which is further diluted five-fold to generate the highest point in the standard 

curve. Diluent 43 was then used to dilute samples 1 in 15 for activated macrophage 

THP-1 cell supernatants based on results obtained from ELISAs for IL-8 and CCL3 

(previously optimised data not shown). Once samples were added to the plate along 

with standards, the plate was sealed and incubated with shaking at room temperature 

for 1 hour then washed 3 times with PBS-Tween. 
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4.3.2.4 Preparation of detection antibody solution 

The detection antibodies (stock 100X) were diluted to a 1X solution by combining 60µl 

of each 100X detection antibody and the addition of Diluent 3 to a final volume of 6ml. 

Following the previous wash step, 50µl of detection antibody solution was added to 

each well. The plate was then sealed and incubated with shaking at room temperature 

for 1 hour then washed 3 times with PBS-Tween. The Read Buffer T (stock 4X) was 

diluted to 2X by the addition of deionised water then 150µl added to each well. The 

plate was then immediately analysed on an MSD instrument. 

 

4.3.3 Phagocytosis assay 

The quantitative measurement of phagocytosis was assessed using pHrodoTM Red E. 

coli BioParticles® conjugates (ThermoFisher Scientific, UK). The phagocytic activity is 

based on acidification of the particles as they are ingested by the cells by conjugating 

the particles to PHrodoTM dye that increases in fluorescence as the pH of its 

surroundings become more acidic. 

THP-1 cells were seeded in a 24 well plate (2 x 105 cells) and PMA treated to promote 

differentiation as described in section 2.1.6. Cells were then either; left untreated 

(used as a positive control as macrophages should have phagocytic capability) or 

stimulated with treatments of interest for 24 hours. For the final hour of stimulation, 

some cells were treated with a phagocytic inhibitor, Cytochalasin D (10µM) 

(ThermoFisher Scientific, UK) for 1 hour, as optimised in a previous study (Kapellos et 

al., 2016).  

Following 24 hours of stimulation, supernatant was removed, cells were washed with 

PBS then AccutaseTM (Biolegened, USA) added to detach adhered cells. Cells were 

transferred to fluorescence activated cell sorting (FACs) tubes and centrifuged at 300g 

for 5 minutes. Supernatant was removed and cells re-suspended in 100µl of incubation 

buffer (PBS + 500nM EDTA + 1% FBS). Different concentrations of pHrodoTM particles 

were added (5 to 25µg/ml) to each tube and incubated at 37oC for between 1 hour and 

24 hours. Controls containing only pHrodoTM particles with no cells and cells without 

pHrodoTM particles were included. Tubes were then centrifuged at 300g for 5 minutes. 

For the analysis of PE-labelled pHrodoTM particles, the FACSCanto II was used, 
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utilising the FACSDiva Software (BD Biosciences, USA). Data were analysed using 

FlowJo 7.6 software (Treestar, USA) 
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4.4 Results 

4.4.1 Effect of CoCr particles on cell viability 

Cell viability for the MM6, THP-1 and J774 cell lines following treatment with CoCr 

particles was assessed using trypan blue staining to determine the percentage of 

healthy, viable cells and those with reduced viability. The proliferation rate of the THP-

1 cell line was measured using the XTT assay. 

 

4.4.1.1 Trypan blue staining 

Cell lines were treated with a range of concentrations of CoCr particles (0.5 to 50µm3 

per cell) as described previously (Germain et al., 2003; Behl et al., 2013; Papageorgiou 

et al., 2014). Following exposure to CoCr particles for either 24 or 48 hours, cell viability 

was assessed using trypan blue exclusion as described in section 2.5.1. Viability was 

calculated as a percentage difference between untreated cells (100% viable) and 

treated cells. Across all cell lines, viability was not significantly affected across all 

concentrations of CoCr particles at 24 hours (MM6 cells p=0.0898, THP-1 cells 

p=0.1847 and J774 cells p=0.1220 for untreated versus 50µm3 CoCr particles per cell) 

(Figure 4.2). However, following 48 hours of exposure, cell viability was significantly 

decreased following stimulation with the highest concentration of CoCr particles 

(50µm3 per cell) in MM6 and THP1 cells (p<0.0001 and p=0.0011, respectively) whilst 

remaining unaffected in J774 cells (p=0.1129) (Figure 4.3). 

 



105 

 

 

Figure 4.2 Cell line viability CoCr particle dose response at 24 hours determined 
by trypan blue staining 

Cell lines were assessed for viability following stimulation with varying concentrations 
of CoCr particles (0.5 to 50µm3 per cell) for 24 hours using trypan blue staining. Viability 
for all cell lines were not significantly affected across all concentrations of CoCr 
particles. Data was normalised to 100% viability in untreated cells. Graph is 
representative of 3 independent experiments. Statistical significance was calculated 
by one-way ANOVA with Dunnett’s multiple comparisons test comparing treated 
samples to the untreated control. 
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Figure 4.3 Cell line viability CoCr particle dose response at 48 hours determined 
by trypan blue staining 

Cell lines were assessed for viability following stimulation with varying concentrations 
of CoCr particles (0.5 to 50µm3 per cell) for 48 hours using trypan blue staining. Cell 
viability was significantly decreased in MM6 and THP1 cells following stimulation with 
the highest concentration of CoCr particles (50µm3 per cell) whilst remaining 
unaffected in J774 cells. Graph is representative of 3 independent experiments. 
Statistical significance was calculated by one-way ANOVA with Dunnett’s multiple 
comparisons test comparing treated samples to the untreated control. 

 

4.4.1.2 XTT proliferation assay 

Proliferation of differentiated THP-1 cells was evaluated using the XTT proliferation 

assay as described in section 2.5.2. Cells were treated with a range of concentrations 

of either LPS (10 to 1000ng/ml), CoCl2 (0.25 to 0.75mM) or CoCr particles (0.5 to 

50µm3 per cell) for either 24 hours (Figure 4.4) or 48 hours (Figure 4.5) and 
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proliferation assessed 24 hours after the addition of the XTT reagent for 24 hour 

treatments and 6 hours for 48 hour treatments.  

Following 24 hours of stimulation with LPS, there was no significant difference in 

proliferation of THP-1 cells across all concentrations (10ng/ml p=0.0877, 100ng/ml 

p=0.2306 and 1000ng/ml p=0.4298). However, CoCl2 stimulation for 24 hours induced 

significant loss of proliferation in all concentrations (0.25mM p=0.0003 and 0.5mM and 

0.75mM both p<0.0001). For CoCr particle treatments, lower concentrations of 0.5 and 

5µm3 particles per cell did not significantly effect THP-1 proliferation (p=0.9994 and 

p=0.1657, respectively). However, at 50µm3 particles per cell there was a significant 

reduction in proliferation (p=0.0015). 

THP-1 cells were then stimulated for 48 hours with the above treatments to assess 

proliferative changes. Following LPS stimulation, all concentrations significantly 

increased proliferation and this increase was most significant at the lowest 

concentration of 10ng/ml (10ng/ml p=0.0013, 100ng/ml p=0.0021 and 1000ng/ml 

p=0.0166). Conversely, CoCl2 treatments again significantly reduced proliferation 

across all concentrations (all p<0.0001). Similarly to the 24 hour treatments, lower 

CoCr particle concentrations (0.5 and 5µm3 particles per cell) did not significantly effect 

THP-1 proliferation (p=0.5151 and p=0.9642, respectively). THP-1 cells treated with 

50µm3 per cell of CoCr particles for 48 hours demonstrated significantly decreased 

proliferation (p<0.0001). However, this decrease in proliferation was far more 

significant after 48 hours of stimulation versus 24 hours (p<0.0001 versus p=0.0015, 

respectively). Therefore, in future experiments, stimulation with CoCr particles in cell 

treatments were for a maximum of 24 hours to avoid potential toxic effects. 
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Figure 4.4 Proliferation of THP-1 cells following exposure to stimulants for 24 
hours 

THP-1 cells were stimulated for 24 hours with treatments prior to the addition of XTT 
reagent for a further 24 hours to assess proliferation. (A) LPS treatments across all 
concentrations did not significant effect the proliferation of THP-1 cells (B) CoCl2 

stimulation induced significant loss of proliferation in all concentrations (C) In CoCr 
particle treatments, the lower concentrations of 0.5 and 5µm3 per cell did not 
significantly effect THP-1 proliferation. However, at 50µm3 per cell there was a 
significant reduction in proliferation. Graph is representative of 3 independent 
experiments. Statistical significance was calculated by one-way ANOVA with Dunnett’s 
multiple comparisons test comparing treated samples to the untreated control. 

 



109 

 

 

Figure 4.5 Proliferation of THP-1 cells following exposure to stimulants for 48 
hours 

THP-1 cells were stimulated for 48 hours with treatments prior to the addition of XTT 
reagent for a further 6 hours to assess proliferation. (A) Following LPS stimulation, all 
concentrations significantly increased proliferation and this increase was most 
significant at the lowest concentration of 10ng/ml (B) CoCl2 treatments significantly 
reduced proliferation across all concentrations (C) Lower CoCr particle concentrations 
(0.5 and 5µm3 per cell) did not significantly effect THP-1 proliferation. THP-1 cells 
treated with 50µm3 per cell of CoCr particles demonstrated significantly decreased 
proliferation. Graph is representative of 3 independent experiments. Statistical 
significance was calculated by one-way ANOVA with Dunnett’s multiple comparisons 
test comparing treated samples to the untreated control. 
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4.4.2 Internalisation of CoCr particles by THP-1 cells 

Differentiated THP-1 cells i.e. in a macrophage-like state were treated with CoCr 

particles (50µm3 per cell) for 24 hours and imaged using TEM as described in section 

2.6. Untreated cells are shown in Figure 4.6. From these images, THP-1 cells have 

clearly become fully differentiated to macrophage-like cells as represented by their 

round, enlarged nuclei and enhanced granularity. Higher magnification images 

demonstrate the presence of fat droplets lying next to mitochondria. Most of the 

mitochondria are small and oval in shape with a few elongated.  

Figure 4.7 to Figure 4.9 show THP-1 cells which have been stimulated with CoCr 

particles (50µm3 per cell) for 24 hours. Figure 4.7 shows whole cells which have 

increased nuclei irregularity, a slightly more irregular cell shape and the presence of 

pseudopodia. Interestingly the nuclei appear to have taken a more pronounced “bean-

shape” which is more typical of a monocyte nucleus rather than the enlarged round 

shape shown in Figure 4.6A and B. Pseudopods are crucial to cellular movement and 

the sensing of potential pathogens. They are also involved in changes to the cell 

membrane to aid with phagocytosis (Rosales and Uribe-Querol, 2017). The TEM 

images confirmed the internalisation of CoCr particles by THP-1 macrophage-like cells. 

One of the most pronounced changes to CoCr treated THP-1 cells is the presence of 

aggregates and agglomerates of CoCr particles within phagosomes, lysosomes or 

endosomes; which appear to distinct to these vesicles and membrane bound. These 

phagosomes are shown more clearly in Figure 4.8 and display particles being engulfed 

at the cell membrane (Figure 4.8C) before being contained within distinct vesicles. 

This suggests that internalisation of particles is an active process, for example, via 

endocytosis. There also appears to be an increase in the number of lysosomes (as 

shown by higher magnification in Figure 4.9) although the mitochondria appear to have 

not significantly changed compared to untreated cells. Figure 4.10 demonstrates a 

high magnification (x100K) image of the CoCr particles individually and confirms the 

characterisation performed in Chapter 3; they are nanometre in size and mostly round 

in shape. 
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Figure 4.6 Transmission electron microscopy of untreated THP-1 cells 

Representative TEM images of untreated THP-1 activated with 5ng/ml PMA. The 
nuclei in whole cell images is round and enlarged (A)-(B). Scale bars represent either 
2µm for whole cell images (A)-(B) or 500nm for cellular structures such as 
mitochondria (C)-(D). 
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Figure 4.7 Transmission electron microscopy of THP-1 cells treated with CoCr 
particles 

Representative TEM images of THP-1 cells activated with 5ng/ml PMA and treated 
with CoCr particles (50µm3 per cell). (B) Arrows indicate the presence of pseudopodia. 
(A)-(D) Arrows point to examples of aggregates and agglomerates of CoCr particles 
within distinct membrane bound vacuoles. Scale bars represent 2µm. 
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Figure 4.8 Transmission electron microscopy displaying aggregates of CoCr 
particles within phagosomes of THP-1 cells 

Representative TEM images of THP-1 cells activated with 5ng/ml PMA and treated 
with CoCr particles (50µm3 per cell). Images show CoCr particle aggregates located 
within distinct vacuoles (A)-(C) and arrow indicates the process of particles entering 
the cell, potentially through endocytosis (C). Scale bars represent 500nm. 
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Figure 4.9 Transmission electron microscopy displaying THP-1 intracellular 
structures following CoCr particle treatment 

Representative TEM images of THP-1 cells activated with 5ng/ml PMA and treated 
with CoCr particles (50µm3 per cell). Images show the presence of numerous 
lysosomes (A) and (C) and mitochondria (B). Scale bars represent 500nm. 
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Figure 4.10 Transmission electron microscopy using high magnification to 
visualise and characterise individual CoCr particles 

High magnification (x100K) image of CoCr particles within an intracellular phagosome 
of treated THP-1 cells. Individual particles are shown to be less than 100nm in size 
and mostly round with fewer irregular shaped particles. Scale bar represents 100nm 

 

4.4.3 Phagocytic capability of THP-1 cells 

A phagocytosis assay was undertaken, as described in section 4.3.3. Firstly, the 

optimal concentration of pHrodo™ particles was investigated using a dose response 

(5 to 25µg/ml) with untreated activated THP-1 macrophages. In this instance, cells 

were incubated with the pHrodo™ particles for 1 hour and uptake analysed by FACS 

(Figure 4.11A). Data are presented as percentage of cells expressing pHrodo™ 

particles from the population analysed. 
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Figure 4.11A demonstrates that cells which were treated with 25µg/ml pHrodo™ 

particles for 1 hour resulted in the greatest uptake of particles across the 

concentrations analysed. The percentage of cell expression was significantly higher 

than both 5 and 10µg/ml (both p=0.0020). However, overall cell expression was 

relatively low (reaching a maximum of approximately 7%). Therefore, a time course 

was completed treating activated THP-1 cells with 25µg/ml pHrodo™ particles for a 

longer period of between 6 and 24 hours (Figure 4.11). Furthermore, a negative control 

of cytochalasin D (10µM) was included to assess its ability to inhibit phagocytosis. As 

time increased, the percentage of cells expressing pHrodo™ particles also increased 

to a peak of 65% at 24 hours (Figure 4.11E). Cells which were pre-treated with 

cytochalasin D (10µM) for 1 hour expressed significantly less pHrodo™ particles at all 

time points investigated, therefore, cytochalasin D somewhat inhibited phagocytosis 

(at 6 hours; p=0.0327, 12 hours; p=0.0203 and 24 hours; p=0.0079) (Figure 4.11B-D). 

Therefore, the optimal conditions for this assay appeared to be treating THP-1 cells 

with 25µg/ml pHrodo™ particles for a minimum of 12 hours. Furthermore, cytochalasin 

D was confirmed as an effective negative control.  

Due to time constraints, optimised conditions could not be completed for CoCr particle 

treatments to see how this effected the phagocytosis ability of THP-1 cells. However, 

it was hypothesised that phagocytosis of pHrodo™ particles would be compromised 

and therefore cell expression reduced. 
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Figure 4.11 Optimisation of pHrodoTM Red E. coli BioParticles® phagocytosis 
assay, dose and time response in activated THP-1 cells 

(A) Activated THP-1 cells were treated with pHrodo™ particles (5 to 5µg/ml) for 1 hour 
at 37oC and fluorescence emission measured using flow cytometry to give a 
percentage of expressing cells. Graph is representative of 3 independent experiments. 
Statistical significance was calculated by one-way ANOVA with Tukey’s test for 
multiple comparisons comparing all samples to each other. (B)-(E) Activated THP-1 
cells were pre-treated with cytochalasin D (10µM) for 1 hour prior to treatment with 
pHrodo™ particles (25µg/ml) for either 6, 12 or 24 hours at 37oC. Graph is 
representative of 3 independent experiments. Statistical significance was calculated 
by an unpaired Student’s t-test comparing the treated sample to the untreated control. 
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4.4.4 Validation of cytokines and chemokines as a marker of inflammatory 

responses to CoCr particles 

4.4.4.1 MSD assay 

For the initial validation of a marker of CoCr-mediated inflammation, differentiated 

THP-1 cells were treated with a range of concentrations of CoCr particles (0.5 to 50µm3 

per cell) for 24 hours and then the supernatant used for an MSD U-PLEX assay 

evaluating the targets described in section 4.3.2. LPS (10ng/ml) was used as a 

positive control as a known inducer of inflammation and subsequent enhanced 

cytokine/chemokine production. The results of this initial dose response are 

summarised in Figure 4.12 and Figure 4.13. 

Figure 4.12 demonstrates all proteins which were significantly increased following 

stimulation of THP-1 cells with CoCr particles. The most significantly increased 

inflammatory protein was the chemokine IL-8 reaching a peak of around 33,000pg/ml. 

All concentrations of CoCr particles significantly increased IL-8 secretion compared to 

untreated THP-1 cells (0.5µm3 per cell p=0.0005, 5 and 50µm3 per cell both p<0.0001).  

Results show that the next most induced inflammatory proteins were CCL3 and CCL4, 

which reached maximal secretion of 1000pg/ml and 2800pg/ml, respectively when 

THP-1 cells were treated with 50µm3 CoCr particles per cell (both p<0.0001). For the 

lower CoCr particle concentrations, there was less of an increase in CCL3 but these 

increases were still significant (0.5µm3 per cell p=0.0293 and 5µm3 per cell p=0.0023). 

CCL4 saw more significant increases with lower CoCr particle concentrations (0.5µm3 

per cell p=0.0008 and 5µm3 per cell p=0.0009). 

Following the largest dose of CoCr particles, CCL2 secretion was significantly 

increased to around 350pg/ml (p=0.0009) although this is much less significant than 

the previous inflammatory markers discussed. The lowest concentration of CoCr 

particles did not increase CCL2 protein expression (p=0.6854) and there was only a 

slightly significant increase when THP-1 cells were treated with 5µm3 per cell 

(p=0.0238). These differences were less due to a relatively high concentration of CCL2 

secretion in untreated THP-1 cells, approximately 220pg/ml. 

CCL20 secretion reached a maximal peak of approximately 650pg/ml following 

treatment with 50µm3 CoCr particles per cell, significantly more than untreated THP-1 
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cells (p=0.0007). There were smaller but significant increases for lower CoCr particle 

concentrations (0.5µm3 per cell p=0.0111 and 5µm3 per cell p=0.0011). 

A similar pattern was observed for IL-1 protein expression in which 50µm3 CoCr 

particles per cell increased secretion to 235pg/ml, which was particularly significant 

due to very little secretion from untreated cells (47pg/ml) (p<0.0001). Lower CoCr 

particle concentrations induced smaller but significant increases in IL-1 expression 

(0.5µm3 per cell p=0.0498 and 5µm3 per cell p=0.00165). 
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Figure 4.12 CoCr particle dose response in THP-1 cells, assessment of 
inflammatory proteins – significant changes 

Activated THP-1 cells were treated with different doses of CoCr particles (0.5 to 50µm3 
per cell) or LPS (10ng/ml) for 24 hours and changes to inflammatory protein expression 
assessed by MSD U-PLEX assay. The following markers were all significantly 
increased in response to 50µm3 CoCr particles per cell; IL-8, CCL3, CCL4, CCL2, 

CCL20 and IL-1. Graph is representative of 3 independent experiments. Statistical 
significance was calculated by one-way ANOVA with Dunnett’s multiple comparisons 
test comparing treated samples to the untreated control. 
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Some of the inflammatory markers investigated demonstrated no significant changes 

in response to CoCr particles which are summarised in Figure 4.13. Importantly, LPS 

(used as a positive control) significantly induced up-regulation of these markers. At the 

highest dose of CoCr particles (50µm3 per cell), TNF (p=0.1871), CXCL10 

(p=0.4221), IL-10 (p=0.9993) and IL-13 (p=0.5373) were all non-significantly changed 

when compared to untreated THP-1 cells. 
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Figure 4.13 CoCr particle dose response in THP-1 cells, assessment of 
inflammatory proteins – non-significant changes 

Activated THP-1 cells were treated with different doses of CoCr particles (0.5 to 50µm3 
per cell) or LPS (10ng/ml) for 24 hours and changes to inflammatory protein expression 
assessed by MSD U-PLEX assay. At the highest dose of CoCr particles (50µm3 per 

cell), TNF, CXCL10, IL-10 and IL-13 were all non-significantly changed when 
compared to untreated THP-1 cells. Graph is representative of 3 independent 
experiments. Statistical significance was calculated by one-way ANOVA with Dunnett’s 
multiple comparisons test comparing treated samples to the untreated control. 

 

4.4.4.2 Effect of CoCr particles on inflammatory gene expression 

As IL-8 and CCL3 protein expression were both significantly up-regulated in response 

to CoCr particles, these were then used for qRT-PCR evaluation (as described in 

section 2.6). 

Firstly, a dose response for IL-8 gene expression was evaluated using the same CoCr 

particle concentrations described previously (0.5 to 50µm3 per cell) for a 24-hour 
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treatment with activated THP-1 cells to ensure the optimised dose from protein 

secretion was reflected for RT-PCR. Figure 4.14 demonstrates that IL-8 expression 

was significantly increased in response to the largest CoCr particle dose (50µm3 per 

cell) (p<0.0001). However, at the lower concentrations there was no significant 

increase of IL-8 when compared to untreated THP-1 cells (0.5µm3 per cell p=0.9990, 

5µm3 per cell p=0.8957). Therefore, the previously optimised concentration of 50µm3 

CoCr particles per cell was also deemed appropriate for evaluating gene expression. 

 

 

Figure 4.14 IL-8 gene expression following CoCr particle dose response 

IL-8 expression was significantly increased in response to the largest CoCr particle 
dose (50µm3 per cell) in THP-1 cells following 24 hours of stimulation as measured by 
qRT-PCR. At lower concentrations, there was no significant increase of IL-8 when 
compared to untreated THP-1 cells. Gene expression normalised to untreated control, 
set to 1. Graph is representative of 3 independent experiments. Statistical significance 
was calculated by one-way ANOVA with Dunnett’s multiple comparisons test 
comparing treated samples to the untreated control. 

 

A time course for this concentration of CoCr particles was then completed at 6, 12 and 

24 hours to confirm at which point gene expression of inflammatory proteins reaches 

its maximal change. LPS (10ng/ml) was used as a positive control throughout and 

CoCl2 was also used as a control to determine the effect that cobalt ions induce at the 

concentration obtained from the ICP-MS study shown in Figure 3.21 (0.025mM). The 

results for the IL-8 time course are shown in Figure 4.15. Following 6 hours of 
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stimulation with 50µm3 CoCr particles per cell, the gene expression of IL-8 was 

approximately 6-fold when compared to untreated THP-1 cells (p=0.0107). CoCl2 

induced IL-8 slightly more to 7-fold (p=0.0022). At the 12-hour time point, a similar 

pattern was observed in that CoCr particle treatment led to a 3-fold increase in IL-8 

and CoCl2 was slightly higher at a 4-fold increase. However, these were both significant 

increases in comparison to untreated controls (both p<0.0001). At 24 hours, the largest 

fold-changes were observed for both treatments. Both CoCr particles and CoCl2 

increased IL-8 by approximately 14-fold (both p=0.0004).  
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Figure 4.15 IL-8 gene expression following CoCr particle treatment time course 

THP-1 cells were stimulated for either 6, 12 or 24 hours with either LPS (10ng/ml) CoCr 
particles (50µm3 per cell) or CoCl2 (0.025mM) and gene expression of IL-8 assessed 
by qRT-PCR. Gene expression normalised to untreated control, set to 1. Graph is 
representative of 3 independent experiments. Statistical significance was calculated 
by one-way ANOVA with Dunnett’s multiple comparisons test comparing treated 
samples to the untreated control. 

 

The same time course was repeated to analyse CCL3 expression (Figure 4.16). 

Following 6 hours of stimulation with 50µm3 CoCr particles per cell, the gene 

expression of CCL3 was approximately 3.5-fold when compared to untreated THP-1 

cells (p<0.0001). CoCl2 induced IL-8 almost twice as much to approximately 6-fold 

(p<0.0001). Interestingly, at the 12-hour time point, both CoCr particle and CoCl2 

treatment did not significantly change CCL3 expression compared to the untreated 

control (p=0.9999 and p=0.9972, respectively). Similarly to IL-8, the largest fold-

change for CCL3 was observed for CoCr particle treatment at 24 hours (11-fold, 
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p<0.0001). Whilst CoCl2 treatment for 24 hours increased CCL3 expression 3-fold, this 

was not of significance (p=0.0547). 

 

 

Figure 4.16 CCL3 gene expression following CoCr particle treatment time course 

THP-1 cells were stimulated for either 6, 12 or 24 hours with either LPS (10ng/ml) CoCr 
particles (50µm3 per cell) or CoCl2 (0.025mM) and gene expression of CCL3 assessed 
by qRT-PCR. Gene expression normalised to untreated control, set to 1. Graph is 
representative of 3 independent experiments. Statistical significance was calculated 
by one-way ANOVA with Dunnett’s multiple comparisons test comparing treated 
samples to the untreated control. 

 

4.4.5 Effect of TLR4 inhibition on CoCr-mediated cytokine release 

The results from section 4.4.4 demonstrate that CoCr particles can up-regulate both 

the protein and gene expression of inflammatory mediators (e.g. IL-8, CCL3, CCL4). 

This is indicative of an immune response and therefore, given what has been 
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established regarding metal ions such as cobalt and their ability to directly activate the 

immune pathway TLR4, was further investigated in the context of CoCr article-

mediated inflammation. Activated THP-1 cells were pre-treated with CLI-095 (1µg/ml) 

(as described in section 2.3.1) for 6 hours prior to stimulation with either LPS 

(10ng/ml), CoCr particles (50µm3 per cell) or CoCl2 (0.025mM) for 24 hours. 

Supernatant was collected from treatments and the MSD U-PLEX assay used to 

quantify protein expression. Using LPS as a positive control activator of TLR4; there 

was a highly significant decrease in protein expression in all markers of interest (Figure 

4.17 and Figure 4.18) (all p<0.0001). Therefore, CLI-095 was established to be 

working effectively in blocking the TLR4 pathway. 

Following CoCr particle treatment, IL-8 protein expression was reduced to 

approximately 9000pg/ml from 33,000pg/ml in the presence of CLI-095 (p<0.0001). 

Similarly, CoCl2 treatment led to an increase of IL-8 to 15,000pg/ml which was 

significantly reduced to untreated levels of 5000pg/ml (p<0.0001) (Figure 4.17).  

CCL3 expression followed a similar trend in that CoCr particles caused an increase of 

CCL3 to highs of 1000pg/ml which was significantly reduced to 180pg/ml with the 

addition of CLI-095 and CCL3 expression was reduced from 425pg/ml to 150pg/ml in 

CoCl2 treated cells (p=0.0002 and p=0.0031, respectively) (Figure 4.17). 

Other inflammatory markers assessed and the effect CLI-095 had on secretion in 

relation to CoCr particle and CoCl2 treatments in THP-1 cells is summarised in Table 

4.3 and Table 4.4, respectively. 
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Table 4.3 Protein secretion of inflammatory markers of interest following CoCr 
particle treatment in THP-1 cells with and without the addition of TLR4 inhibitor 
(CLI-095) 

Statistical significance was calculated by one-way ANOVA with Tukey’s test for 
multiple comparisons comparing all samples to each other. 

Protein of 

interest 

Maximal secretion 

(pg/ml) 

Secretion following addition 

of CLI-095 (pg/ml) 

Significance 

(p number) 

IL-8 33,323 9,042 <0.0001 

*** 

CCL3 1,059 184 0.0002 

*** 

CCL4 1,413 248 0.0001 

*** 

CCL2 363 146.50 0.0008 

*** 

CCL20 648.50 150.50 0.0012 

** 

IL-1 235 73.50 <0.0001 

*** 

TNF 2 Not detectable N/A 

CXCL10 252.50 189 0.0277 

* 

IL-10 1 Not detectable N/A 

IL-13 Not detectable Not detectable N/A 
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Table 4.4 Protein secretion of inflammatory markers of interest following CoCl2 
treatment in THP-1 cells with and without the addition of TLR4 inhibitor (CLI-095) 

Statistical significance was calculated by one-way ANOVA with Tukey’s test for 
multiple comparisons comparing all samples to each other. 

Protein of 

interest 

Maximal secretion 

(pg/ml) 

Secretion following addition 

of CLI-095 (pg/ml) 

Significance 

(p number) 

IL-8 15,501.50 4,987.50 <0.0001 

*** 

CCL3 428 152.50 0.0031 

** 

CCL4 2,030.5 288.50 <0.0001 

*** 

CCL2 286 142 0.0039 

** 

CCL20 437.50 146.50 0.0034 

** 

IL-1 115.50 41.50 <0.0001 

*** 

TNF Not detectable Not detectable N/A 

CXCL10 295.50 132.50 0.0004 

*** 

IL-10 Not detectable Not detectable N/A 

IL-13 Not detectable Not detectable N/A 
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Figure 4.17 Effect of TLR4 inhibition in CoCr particle treated THP-1 cells, 
assessment of inflammatory proteins - significant changes 

Activated THP-1 cells were pre-treated with CLI-095 (1µg/ml) for 6 hours then 
stimulated with either LPS (10ng/ml) CoCr particles (50µm3 per cell) or CoCl2 
(0.025mM) for 24 hours. Changes to inflammatory protein expression were assessed 
by the MSD U-PLEX assay. Graph is representative of 3 independent experiments. 
Statistical significance was calculated by one-way ANOVA with Tukey’s test for 
multiple comparisons comparing all samples to each other. 

 



131 

 

 

Figure 4.18 Effect of TLR4 inhibition in CoCr particle treated THP-1 cells, 
assessment of inflammatory proteins - non-significant changes 

Activated THP-1 cells were treated with CLI-095 (1µg/ml) for 6 hours then stimulated 
with either LPS (10ng/ml) CoCr particles (50µm3 per cell) or CoCl2 (0.025mM) for 24 
hours. Changes to inflammatory protein expression were assessed by the MSD U-
PLEX assay. Graph is representative of 3 independent experiments. Statistical 
significance was calculated by one-way ANOVA with Tukey’s test for multiple 
comparisons comparing all samples to each other. 

 

4.4.6 Effect of TLR4 inhibition on CoCr-mediated inflammatory gene expression 

The findings from section 4.4.5 demonstrate that CoCr particle-mediated inflammation 

may be due to activation of the TLR4 pathway as inflammatory protein expression is 

significantly reduced when using the TLR4 inhibitor, CLI-095. Therefore, qRT-PCR 

was performed to assess whether there was a similar change in gene expression of 

IL-8 when TLR4 is inhibited (Figure 4.19). Firstly, LPS used as a positive control 

demonstrated a significant reduction in IL-8 expression when THP-1 cells were firstly 

pre-treated with CLI-095, validating its effectiveness as a TLR4-specific inhibitor (21-

fold increase vs 0.5-fold) (p<0.0001). IL-8 expression was increased 6-fold in response 

to CoCr particles (50µm3 per cell) which was reduced to 2.75-fold with the addition of 
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CLI-095 (p<0.0001). This was similar to CoCl2-mediated IL-8 expression which was 

increased to 8-fold in comparison to untreated THP-1 cells and significantly down-

regulated to 2-fold in the presence of CLI-095 (p<0.0001). 

 

 

Figure 4.19 Effect of TLR4 inhibition in CoCr particle treated THP-1 cells, 
assessment of IL-8 gene expression 

Activated THP-1 cells were pre-treated with CLI-095 (1µg/ml) for 6 hours then 
stimulated with either LPS (10ng/ml) CoCr particles (50µm3 per cell) or CoCl2 
(0.025mM) for 24 hours. IL-8 expression was measured using qRT-PCR. Gene 
expression normalised to untreated control, set to 1. Graph is representative of 3 
independent experiments. Statistical significance was calculated by one-way ANOVA 
with Tukey’s test for multiple comparisons comparing all samples to each other 

 

4.4.7 Effect of anti-TLR4 neutralising antibody on the inflammatory response to 

CoCr particles 

The data presented so far demonstrate a potential role of TLR4 signalling in regulating 

CoCr particle-mediated inflammation and up-regulated expression of specific 

chemokines (e.g. IL-8, CCL2, CCL3, CCL4 and CCL20). This has been shown using 

CLI-095, a small molecule antagonist which specifically targets the intracellular region 

of TLR4. However, if a TLR4 antagonist was to be considered as a potential therapeutic 

option for treating ARMD, CLI-095 would not be suitable as this would prevent the 

immune response required against gram-negative bacteria containing LPS. Therefore, 
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a more attractive option could be the use of TLR4-specific antibodies, particularly 

monoclonal antibodies which are used as therapeutics in other diseases and 

conditions. This could allow specific inhibition of CoCr particle-mediated TLR4 

activation whilst preserving the LPS response. 

For this study, MAb-tlr4 was selected for investigation (as described in section 2.3.2). 

However, according to the manufacturer, the exact concentration of MAb-tlr4 required 

for TLR4 inhibition is dependent on cell type used and the TLR4 agonist and its 

concentration. Therefore, MAb-tlr4 concentration was firstly optimised in untreated 

cells to assess any toxic effects and then using LPS as a positive control for TLR4 

activation to determine required concentration to effectively inhibit TLR4. 

 

4.4.7.1 Optimisation of MAb-tlr4 

The ability of MAb-tlr4 to inhibit LPS-induced IL-8 expression and protein secretion was 

investigated to determine the optimal concentration to be used in further assays 

involving CoCr particles and CoCl2. Activated THP-1 cells were firstly treated with 0.5-

10µg/ml MAb-tlr4 for 1 hour prior to stimulation with 10ng/ml LPS for 24 hours. 

Untreated cells were also treated with the largest concentration of MAb-tlr4 (10µg/ml) 

and with an IgG isotype antibody (10µg/ml) (Figure 4.20). Following LPS stimulation, 

expression and secretion of IL-8 was significantly increased (both p<0.0001). When 

pre-incubated with MAb-tlr4, all concentrations significantly reduced LPS-induced IL-8 

gene expression in a dose dependent manner (0.5µg/ml p=0.0006, 1µg/ml p=0.0003, 

5µg/ml p=0.0002 and 10µg/ml p<0.0001). This was similarly reflected in IL-8 protein 

secretion which was significantly reduced in the presence of all concentrations of MAb-

tlr4 (all p<0.0001). There was no significant difference in the response of untreated 

cells in the presence or absence of MAb-tlr4 (10µg/ml) or the IgG isotype control 

antibody (all p<0.9999). Therefore, it was concluded that 10µg/ml MAb-tlr4 was the 

optimal concentration for maximal TLR4 inhibition in LPS-treated cells. 
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Figure 4.20 Optimisation of MAb-tlr4 in LPS-stimulated THP-1 cells 

Activated THP-1 cells were pre-treated with 0.5, 1, 5 or 10µg/ml MAb-tlr4 for 1 hour 
prior to stimulation with 10ng/ml LPS for 24 hours. An untreated control was included, 
in the presence and absence of the highest concentration of antibody as well as with 
an IgG isotype control antibody. IL-8 gene expression was assessed by qRT-PCR and 
protein secretion by ELISA. Gene expression normalised to untreated control, set to 1. 
Graph is representative of 3 independent experiments. Statistical significance was 
calculated by one-way ANOVA with Tukey’s test for multiple comparisons comparing 
all samples to each other. 
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4.4.8 Mouse macrophage inflammatory response to CoCr particles 

4.4.8.1 CCL3 Dose response 

As discussed in section 1.5.2, previous research demonstrated that cobalt ions can 

activate human TLR4, and it is a human-specific response. Therefore, to determine 

whether CoCr particles could activate murine macrophages, J774 cells were 

stimulated for 24 hours with either a range of CoCr particle concentrations (0.5µm to 

50µm3 per cell), 10ng/ml LPS or 0.75mM CoCl2 (Figure 4.21). This higher dose of 

CoCl2 was selected as it has previously been shown to give maximal activation in other 

macrophage cell lines (Tyson-Capper et al., 2013). CCL3 was chosen as the 

inflammatory marker of interest as mice do not express IL-8. CCL3 concentration was 

measured using ELISA from the supernatants of stimulated cells. Following treatment 

with LPS, CCL3 protein secretion was significantly increased to approximately 

10,000pg/ml (p<0.0001) whereas stimulation with CoCl2 did not change significantly 

compared to untreated cells (p=0.9966). The two higher doses of CoCr particles (5 and 

50µm3 per cell) both significantly increased CCL3 secretion to a peak of 6000pg/ml (vs 

4000pg/ml in untreated cells) (p=0.0225 and p=0.0147, respectively). 
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Figure 4.21 CoCr particle dose response in mouse J774 cells - assessment of 
CCL3 protein expression 

J774 macrophage cells were treated with either; LPS (10ng/ml), CoCl2 (0.75mM) or 
different doses of CoCr particles (0.5 to 50µm3 per cell) for 24 hours and changes to 
CCL3 protein expression assessed by ELISA. Graph is representative of 3 
independent experiments. Statistical significance was calculated by one-way ANOVA 
with Dunnett’s multiple comparisons test comparing treated samples to the untreated 
control. 

 

4.4.8.2 Effect of TLR4 inhibition on CCL3 protein secretion 

To determine whether the observed small yet significant increase in CCL3 secretion 

following CoCr particle stimulation was TLR4 dependent, the small molecule TLR4 

antagonist, CLI-095 was used in further J774 cell treatments (Figure 4.22). The same 

treatment method was employed described in section 4.4.8.1, however, prior to the 

addition of stimulants for 24 hours, some cells were pre-treated with 1µg/ml CLI-095 

for 6 hours. CCL3 secretion was then quantified by ELISA. In LPS stimulated cells, 

there was a significant decrease in CCL3 protein expression with the addition of CLI-

095, roughly halving secretion from 25,000pg/ml to 13,000pg/ml (p<0.0001). However, 

this was not reflected in the CoCr particle treatments which demonstrated no significant 

difference in CCL3 secretion in the presence of CLI-095 (p>0.9999). Once more, CoCl2 

stimulation did not induce an up-regulation in CCL3 expression and was unaffected by 

CLI-095 (p=0.9977). 
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Figure 4.22 Effect of TLR4 inhibition in CoCr particle treated J774 cells, 
assessment of CCL3 protein expression 

J774 macrophage cells were pre-treated with CLI-095 (1µg/ml) for 6 hours then 
stimulated with either LPS (10ng/ml) CoCr particles (50µm3 per cell) or CoCl2 (0.75mM) 
for 24 hours. CCL3 protein expression assessed by ELISA. Graph is representative of 
3 independent experiments.  Statistical significance was calculated by one-way 
ANOVA with Tukey’s test for multiple comparisons comparing all samples to each 
other. 

 

4.4.9 Monocyte inflammatory response to CoCr particles 

4.4.9.1 Naïve THP-1 cells 

The response of naïve THP-1 cells i.e. in their monocyte-like state to CoCr particles 

was also investigated. The same dose response as described in section 4.4.4 was 

used for the treatment of inactivated THP-1 cells with a range of CoCr particle 

concentrations (0.5 to 50µm3 per cell) for 24 hours before supernatant was collected 

for protein expression quantification by ELISA. Two doses of LPS were used as 

positive controls (10 and 100ng/ml). The higher concentration of 100ng/ml LPS was 

used in addition to previous treatments as monocytes can require larger stimuli to 

induce an inflammatory response in comparison to macrophage cells. Both IL-8 and 

CCL3 secretion were assessed and the results shown in Figure 4.23. LPS at both 

concentrations significantly up-regulated IL-8 and CCL3 protein expression (all 
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p<0.0001) so therefore going forward 10ng/ml LPS was deemed an effective positive 

control. For IL-8 expression, only the highest concentration of CoCr particles (50µm3 

per cell) led to a significant increase compared to untreated cells, reaching a peak 

secretion of 250pg/ml (p=0.0402) (Figure 4.23A). There was a small but non-

significant increase in CCL3 secretion following CoCr particle concentration again at 

the highest concentration, 40pg/ml vs 7pg/ml for untreated cells (p=0.2868) (Figure 

4.23B). Therefore, 50µm3 CoCr particles per cell was the optimised concentration to 

be used in future treatments. 

The TLR4-specific inhibitor, CLI-095 was used to investigate whether the observed 

effects were TLR4 dependent as seen previously for activated THP-1 cells (Figure 

4.24). CoCl2 (0.025mM) was also included to determine its effect on naïve THP-1 cells. 

There was a significant down-regulation of both IL-8 and CCL3 protein secretion with 

the addition of CLI-095 in CoCr particle treated naïve THP-1 cells (p=0.0056 and 

p<0.0001, respectively). This was also reflected in CoCl2 treatments, both proteins 

demonstrating significant reductions when cells were pre-treated with CLI-095 

(p<0.0001 and p=0.0210, respectively).  
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Figure 4.23 CoCr particle dose response in naive THP-1 monocytic cells - 
assessment of IL-8 and CCL3 protein expression 

Inactivated naïve THP-1 cells were treated with either; LPS (10ng/ml or 100ng/ml), or 
different doses of CoCr particles (0.5 to 50µm3 per cell) for 24 hours and changes to 
(A) IL-8 and (B) CCL3 protein expression assessed by ELISA. Graph is representative 
of 3 independent experiments. Statistical significance was calculated by one-way 
ANOVA with Dunnett’s multiple comparisons test comparing treated samples to the 
untreated control. 
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Figure 4.24 Effect of TLR4 inhibition in CoCr particle treated naive THP-1 
monocytic cells, assessment of IL-8 and CCL3 protein expression 

Inactivated naïve THP-1 cells were pre-treated with CLI-095 (1µg/ml) for 6 hours then 
stimulated with either LPS (10ng/ml) CoCr particles (50µm3 per cell) or CoCl2 
(0.025mM) for 24 hours. (A) IL-8 and (B) CCL3 protein expression assessed by ELISA. 
Graph is representative of 3 independent experiments. Statistical significance was 
calculated by one-way ANOVA with Tukey’s test for multiple comparisons comparing 
all samples to each other. 
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4.4.10 Effect of CoCr particles on the inflammasome 

As discussed in section 1.7 some research groups have suggested that metal wear 

debris-mediated inflammation is a result of inflammasome activation (i.e. acting as a 

DAMP inducer) rather than a direct activator of PAMP pathways such as TLR4. As IL-

1 is a marker of inflammasome activation, its protein and gene expression was 

investigated further using a model of NLRP3 activation, which is the most well studies 

of the inflammasomes (Lopez-Castejon and Brough, 2011). The NLRP3 specific 

inhibitor, MCC950, has been shown to significantly reduce IL-1 secretion in an 

inflammatory model (Perera et al., 2018). CoCr particles were either substituted as the 

first ‘priming’ PAMP signal in place of LPS followed by treatment with ATP to allow full 

NLRP3 activation. Or, LPS was used as the priming signal followed by stimulation with 

CoCr particles; thereby acting as a DAMP inducer. IL-1 protein secretion was 

assessed by ELISA from the supernatants of treated THP-1 cells and qRT-PCR was 

used to analyse IL-1 gene expression. 

 

4.4.10.1 Protein and gene expression of IL-1 

Firstly, activated THP-1 cells were treated with either LPS (10ng/ml) or CoCr particles 

(50µm3 per cell) for 23 hours to replicate the initial ‘priming’ signal of NLRP3 activation. 

The second activation signal was then induced by the addition of ATP (5mM) for 1 

hour. Following this stimulation, the expression of IL-1 was quantified using ELISA 

and qRT-PCR (Figure 4.25). The model of NLRP3 activation was confirmed by treating 

THP-1 cells with LPS either alone or with the addition of ATP, which should increase 

up-regulation of IL-1 For gene expression, LPS treatment alone increased IL-

1 approximately 13-fold in comparison to cells treated only with ATP which was 

increased to 27-fold when LPS-stimulated cells were then treated with ATP. There was 

a similar trend for protein secretion which was 25pg/ml in LPS-only cells and increased 

to 145pg/ml with the addition of the second signal of ATP. Therefore, there was a 

significant increase in IL-1 gene and protein expression when THP-1 cells were 

treated with LPS for 23 hours followed by ATP for 1 hour (both p<0.0001). 

The treatment was repeated but LPS was replaced with CoCr particles to act as the 

initial ‘priming’ signal which did not lead to any significant changes to gene or protein 

expression of IL-1 (p=0.9961 and p=0.6504, respectively). The addition of the second 
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activation signal of ATP for 1 hour, also had no significant effect on IL-1 expression 

(p=0.9999 and p=0.1516, respectively). 

 

Figure 4.25 IL-1 gene and protein expression following CoCr particle and ATP 
treatment in THP-1 cells 

Activated THP-1 cells were either left untreated or stimulated with LPS (10ng/ml) or 
CoCr particles (50µm3 per cell) for 23 hours. Cells were then treated with ATP (5mM) 

for 1 hour before IL-1 gene expression was analysed by qRT-PCR (A) or IL-1 protein 
expression assessed by ELISA (B). Gene expression normalised to untreated control, 
set to 1. Graph is representative of 3 independent experiments. Statistical significance 
was calculated by one-way ANOVA with Dunnett’s multiple comparisons test 
comparing treated samples to the untreated control with ATP and Tukey’s test for 
multiple comparisons comparing all samples to each other. 
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To establish whether CoCr particles stimulate THP-1 cells as a DAMP inducer rather 

than a PAMP stimulus, LPS-treated cells were treated with a 1 hour stimulation of 

either CoCr particles or CoCl2 (i.e. to be used in place of ATP). Therefore, THP-1 cells 

were treated with 10ng/ml LPS for 23 hours and then stimulated for 1 hour either with; 

ATP (5mM), CoCr particles (50µm3 per cell) or CoCl2 (0.025mM) (Figure 4.26). 

Similarly to results shown in Figure 4.25, LPS treatment followed by ATP stimulation 

led to the largest increases in IL-1 gene and protein expression. When THP-1 cells 

were firstly treated with LPS and then with either CoCr particles or CoCl2 there was no 

significant difference in IL-1 gene expression for either treatments when compared to 

LPS alone (p=0.9631 and p=0.9982, respectively). This was also reflected in IL-

1 protein expression with no significant increases following the addition of either CoCr 

particles or CoCl2 for 1 hour after 24 hours of LPS stimulation (p=0.2018 and p=0.5773, 

respectively).  
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Figure 4.26 IL-1 gene and protein expression following LPS treatment and CoCr 
particle stimulation in THP-1 cells 

Activated THP-1 cells were either left untreated or stimulated with LPS (10ng/ml) for 
23 hours. Cells were then treated with either; ATP (5mM), CoCr particles (50µm3 per 

cell) or CoCl2 (0.025mM) for 1 hour before IL-1 gene expression was analysed by 

qRT-PCR (A) or IL-1 protein expression assessed by ELISA (B). Gene expression 
normalised to untreated control, set to 1. Graph is representative of 3 independent 
experiments. Statistical significance was calculated by one-way ANOVA with Dunnett’s 
multiple comparisons test comparing treated samples to LPS-stimulated only cells and 
Tukey’s test for multiple comparisons comparing all samples to each other. 
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4.5 Discussion 

Selection of CoCr particle concentration 

Previous studies have investigated the biological effects of CoCr particles in various 

cell lines and the results and outcomes vary significantly in deciding what is the optimal 

dose to use and the method used to calculate ‘doses’. For example, some studies will 

employ a ‘particle: cell ratio’ method or mg.ml-1 (Potnis et al., 2013; Samelko et al., 

2017; Klinder et al., 2018) . However, the issue with ‘particle: cell ratio’ is that it does 

not take into consideration the size of each individual particle which can vary greatly in 

any given sample, especially when generated on simulators (as opposed to 

commercially available particles which tend to be more uniform). As previously 

discussed, the size of CoCr particles can have an impact on the effects observed in 

cell treatments and the reactivity is thought to be greater for nanoparticles versus 

microparticles (Papageorgiou et al., 2007). Therefore, using µm3 per cell, allows for 

the size of the particles to be taken into consideration and has been previously used 

frequently in other similar studies (Germain et al., 2003; Papageorgiou et al., 2007; 

Behl et al., 2013). These studies also used a concentration range of 0.5 to 50µm3 per 

cell and found, for example, the viability of dural eplithelial cells were reduced in a 

dose-dependent manner but not fibroblasts, demonstrating the clear difference of 

sensitivity between cell types used (Behl et al., 2013).  

The results presented in Chapter 3 regarding cobalt ion release from particles in cell 

culture media, measured by ICP-MS, demonstrated that 0.5 to 50µm3 CoCr particles 

per cell released a relatively low concentration of CoCl2 (with a maximum of 

approximately 0.025mM or 1500µg/L). Previous studies in the group have used 

concentrations ranging from 0.25mM-1mM CoCl2 (Lawrence et al., 2016a; Lawrence 

et al., 2016b), however, this is significantly higher than reports investigating serum 

cobalt concentrations in patients with MoM implants, therefore, this lower concentration 

is perhaps a more ‘clinically-relevant’ representation (Kwon et al., 2011) (see section 

1.3.2). However, it is particularly difficult to select and define a concentration range 

deemed to be ‘clinically-relevant’ as the concentrations observed vary significantly. For 

example, either between individual patients or whether the synovial fluid or serum is 

used for concentration measurements, the latter typically being much lower. 
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Cytotoxicity of CoCr particles 

Cobalt ions and CoCr particles are known to cause cytotoxicity at high concentrations, 

with some cell lines more sensitive than others (Laumonier et al., 2020). For example, 

Behl et al. found that dural epithelial cells were more sensitive than fibroblasts (Behl et 

al., 2013). All concentrations of CoCr particles investigated in this study did not 

significantly affect cell viability following 24 hours of treatment in MM6, THP-1 and J774 

cells. However, when treated for 48 hours, there was a significant decrease in viability 

at the highest concentration of 50µm3 CoCr particles per cell in both MM6 and THP-1 

cells. It is interesting that J774 mouse macrophages remained unaffected at 48 hours. 

This may be because previous studies have shown that only human and primate 

species perpetuate a TLR4-mediated inflammatory response to cobalt ions, suggesting 

it is in fact the ions which are most toxic to cells (Raghavan et al., 2012; Tyson-Capper 

et al., 2013). Despite MM6 cells having previously been used most frequently by this 

group when investigating responses to CoCl2, THP-1 cells were selected as the most 

appropriate cell line for this study as they can be activated to a mature macrophage 

phenotype and therefore are more responsive to stimuli when compared to MM6 cells. 

Furthermore, macrophages are one of the most common cell types located within the 

peri-implant tissue of inflammatory pseudotumours (Perino et al., 2014).  

The proliferative capacity of activated THP-1 cells treated with CoCr particles over 48 

hours was also investigated using an XTT assay. There was a small but significant 

decrease in proliferation only at the highest concentration of 50µm3 CoCr particles per 

cell following 24 hours of treatment. At 48 hours, this reduction of proliferation for the 

same treatment was far more significant. It is hypothesised that dose-dependent 

cytotoxicity from metal ions is due to interference with DNA replication and DNA repair 

mechanisms which ultimately results in cell necrosis (Kwon et al., 2009). Furthermore, 

production of ROS is likely to contribute to these cytotoxic effects by initiating oxidative 

cell stress as cobalt ions have been shown to induce ROS leading to cell damage and 

death (Petit et al., 2005).  

It is important that cytotoxicity is avoided where possible so that subsequent assays 

assessing inflammatory effects are not influenced by this factor. As toxic effects 

appeared to be minimal at 50µm3 CoCr particles per cell following 24 hours of 

treatment, and provided an approximate ‘clinically-relevant’ concentration, this range 

of concentrations were selected for future investigations. 
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Phagocytosis of CoCr particles 

Phagocytosis of CoCr particles was confirmed by TEM images of activated THP-1 cells 

which had been treated for 24 hours with 50µm3 CoCr particles per cell. This finding is 

consistent with other studies which have shown that CoCr particles can be 

phagocytosed by other cells such as osteoblasts (Lohmann et al., 2000). However, 

from reviewing the literature, this appears to be the first study to demonstrate the 

phagocytosis of CoCr particles in THP-1 macrophage cells. CoCr particle aggregates 

were surrounded by distinct membranes suggesting similarities to phagosomes or 

lysosomes when engulfing pathogens. The suggestion internalisation of particles is 

due to an active endocytosis process was highlighted by images of THP-1 cells 

engulfing CoCr particles at the cell membrane which would require ATP energy. It 

could be that ATP stores become depleted over time through continual exposure to 

CoCr particles. By phagocytosing CoCr particles into distinct phagosomes, it can be 

assumed that this could cause cellular stress and therefore activate an immune 

inflammatory response. Therefore, in a clinical setting, this indicates that CoCr 

aggregates are present in peri-implant tissue containing macrophages, causing 

inflammation within the tissue, which could be attributed to the formation of 

pseudotumours and ARMD.  

Although the phagocytosis assay using pHrodo™ particles could not be completed for 

CoCr particle treatments in THP-1 cells, it was hypothesised phagocytosis would be 

compromised. A study has investigated ‘endotoxin tolerance’ and how this can affect 

E. coli phagocytosis when macrophages are pre-treated with LPS and hypothesised 

this as the reason M1 macrophages have decreased phagocytic capacity (Kapellos et 

al., 2016). The authors found with increasing concentrations of LPS, phagocytosis was 

inhibited, suggesting tolerance to M1 stimuli. Therefore, similar effects may have been 

observed for THP-1 cells pre-treated with CoCr particles. It is important to be aware of 

limitations with these type of assays, the use of commercially available ‘dead’ 

pathogens do not accurately reflect in vivo situations.  

Cytokine and chemokine expression; potential roles in ARMD 

An MSD U-PLEX assay was utilised to determine the protein secretion of 10 selected 

inflammatory cytokine/chemokines across a dose response of CoCr particles. Out of 

the ten markers investigated, six were increased in a dose dependent manner in 

response to CoCr particles; IL-8, CCL2, CCL3, CCL4, CCL20 and IL-1. Whereas four 
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markers were not significantly affected compared to untreated control cells; TNF-, IL-

10, CXCL10 and IL-13. 

In agreement with previous studies within the group which have investigated the effect 

of CoCl2 on IL-8 expression, CoCr-mediated IL-8 secretion showed the largest increase 

of expression. IL-8 is a pro-inflammatory chemokine which mainly attracts neutrophils 

to sites of inflammation via activation of CXCR1 and CXCR2 receptors. Several studies 

have shown the presence of IL-8 in periprosthetic tissues in cases of aseptic loosening 

and IL-8 has been suggested to be a potential biomarker of osteolysis (Lassus et al., 

2000; Koulouvaris et al., 2008). One study has also demonstrated a correlation 

between increased IL-8 expression and earlier time to revision surgeries (Jamsen et 

al., 2017). Furthermore, IL-8 appears to play an important role in the formation of 

osteoclasts and subsequent bone resorption. For example, in metastatic bone disease, 

IL-8 can stimulate osteoclast differentiation leading to enhanced bone destruction 

(Bendre et al., 2003). RANKL stimulation of osteoclasts can lead to increased secretion 

of IL-8 which in turn enhances osteoclastogenesis. This effect can be blocked by using 

IL-8 antibodies or CXCR1/CXCR2 inhibitors in vitro (Kopesky et al., 2014). Therefore, 

in the context of ARMD, if patients with a CoCr-containing implant have increased 

secretion of IL-8 in response to wear debris particles then this could potentially cause 

IL-8-mediated osteoclastogenesis and therefore aseptic loosening of the implant. 

CCL2 potently chemoattracts monocytes but also macrophages, NK cells and T cells 

through activation of the CCR2 and CCR4 receptors. A study used a rodent air-pouch 

model to assess the inflammatory response to CoCr wear debris to demonstrate vast 

monocyte/macrophage cellular infiltration and attributed this to increased expression 

of CCL2 (Akbar et al., 2012). However, CCL2 is also involved in the formation of 

osteoclasts and can therefore promote bone resorption and osteolysis. For example, 

CCL2 knockouts in bone marrow cells caused significant reduction in osteoclast 

formation when compared to wild-types (Khan et al., 2016). The role of CCL2 in the 

context of failed UHMWPE implants is well studied, for example, blocking CCR2 and 

its interaction with CCL2 in a murine implant model reduced macrophage recruitment 

to the site of the implant (Gibon et al., 2012). Furthermore, recently, a group 

investigated the use of a mutant form of CCL2; 7ND (functioning as a competitive 

inhibitor) (Long et al., 2020). They found that osteoclast differentiation of PBMCs was 

significantly inhibited and in an LPS-induced bone erosion animal model, the protein 
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attenuated bone resorption, concluding that competitively inhibiting CCL2 could be a 

potential approach in treating inflammatory osteolysis (Long et al., 2020).  

CCL3 and CCL4 are secreted mostly by macrophages, NK cells and fibroblasts. Both 

chemokines can bind to the chemokine receptor, CCR5 and CCL3 has a strong affinity 

to CCR1. Both CCL3 and CCL4 are strong chemoattractants for monocytes and CCL3 

has been shown to induce the differentiation of monocytes to osteoclasts (Dapunt et 

al., 2014b). Increased expressions of CCL3 are found in osteolytic lesions around 

implants (Dapunt et al., 2014b). Similarly to CCL2, the differentiation of osteoclasts by 

CCL3 is believed to be RANK/RANKL dependent as mice deficient in RANK which are 

injected with CCL3 do not increase osteoclast numbers when compared with wildtype 

(Oyajobi et al., 2003). In comparison to CCL3, CCL4 does not appear to play as major  

a role in osteoclast differentiation with one study indicating that CCL4 is not directly 

involved in the osteoclastogenetic process (Lee et al., 2018). However, the same study 

suggested that CCL4 is involved in the early osteoclast differentiation process by 

recruiting viable preosteoclast cells (Lee et al., 2018). However, there are few 

investigations involving the expression of CCL3 and CCL4 in response to wear debris 

or metal ions.  

CCL20 is strongly chemotactic for lymphocytes and less so for neutrophils and acts 

via the CCR6 receptor, which is highly expressed by lymphocytes. As previously 

discussed, a hallmark of ARMD is ALVAL which describes the infiltration of immune 

cells, particularly T lymphocytes to peri-implant tissues. Previously, CCL20 has been 

shown to increase its expression by MM6 cells in response to cobalt ions in our 

research group (Lawrence et al., 2016a). Therefore, if monocytes or macrophages 

secrete CCL20 in the peri-implant tissues, this may contribute to the infiltration of 

lymphocytes observed in ARMD. 

The cytokine, IL-1 and its mode of expression following NLRP3 activation is described 

in detail in section 1.7. The increase in concentration of IL-1 was not as high (albeit 

significant) compared to previously discussed markers in response to CoCr particles. 

It may be that increases in IL-1 may promote further activation of immune responses 

and lead to inflammatory processes such as osteolysis, particularly due to its 

interaction with TNF. For example, IL-1 upregulates the production of RANKL and 

therefore stimulates osteoclastogenesis. Reports have suggested that blocking both 

IL-1 and TNF can completely abrogate bone resorption (Amarasekara et al., 2018). 
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Interestingly, in this study, TNF secretion was not increased in response to CoCr 

particles, despite being a cytokine which is involved in many inflammatory processes. 

However, this is in agreement with other studies which have demonstrated increased 

expression of IL-1 but not TNF by THP-1 macrophages treated with CoCr particles 

(Samelko et al., 2016).  

IL-10 is an anti-inflammatory cytokine that plays an important role in limiting 

inflammation and is up-regulated in response to LPS-mediated TLR4 activation (Den 

Haan et al., 2007). Therefore, if CoCr particles mediate a pro-inflammatory cytokine 

and chemokine response then increased concentrations of IL-10 would also be 

expected. However, IL-10 levels were undetectable in the supernatants of THP-1 cells 

treated with CoCr particles. This could be due to the secretion of IL-10 believed to 

primarily be a T cell response in vivo (Kubo and Motomura, 2012). 

Although CXCL10 concentrations were increased slightly following CoCr particle 

stimulation, this did not reach statistical significance. CXCL10 is secreted by cells such 

as monocytes and endothelial cells in response to IFN and binds to the chemokine 

receptor CXCR3. CXCL10 can also stimulate osteoclast formation by inducing RANKL 

expression in osteoblasts (Lee et al., 2012). Patients with ARMD have elevated 

concentrations of CXCL10 protein expression in the synovial fluid and to a lesser 

extent, serum (Kolatat et al., 2015). MM6 cell treatment with cobalt ions have also 

shown increased expression of CXCL10 (Lawrence et al., 2014). 

IL-13 was also undetectable in the supernatants of THP-1 cells treated with CoCr 

particles. Perhaps this is unsurprising given IL-13 is mostly secreted by T cells, mast 

cells, basophils and eosinophils rather than monocytes/macrophages (Junttila, 2018). 

However, studies have investigated its role in particle-induced inflammation alongside 

IL-4. In a mouse air pouch model with polyethylene particles, injection with both IL-13 

and IL-4 reduced both bone collagen loss and osteoclast function, therefore offering a 

protective, anti-inflammatory role (Wang et al., 2013). It is likely this is due to the link 

between both IL-4 and IL-13 stimulating the production of OPG and inhibiting RANKL 

which is discussed in more detail in section 1.3.3 (Stein et al., 2008). 

The role of TLR4 in CoCr particle-mediated increases in cytokine and chemokine 

expression 
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The results discussed so far demonstrate that THP-1 macrophages treated with CoCr 

particles can induce the secretion of some cytokines and chemokines. One of the aims 

of this study was to elucidate the role of TLR4 in this response, given its importance of 

activation in relation to metal ions such as cobalt. Previous research within the group 

have utilised the small molecule TLR4 inhibitor, CLI-095 under similar conditions when 

investigating CoCl2 stimulation so was therefore previously optimised. For all the 

protein markers discussed previously which were up-regulated in response to CoCr 

particles, this increase was significantly abrogated with the addition of CLI-095 – 

indicating that these increases are TLR4-mediated. A similar pattern was observed for 

CoCr-mediated IL-8 gene expression which was also significantly decreased when 

THP-1 cells were pre-treated with CLI-095. In all cases, cytokine and chemokine 

expression was reduced to that of untreated THP-1 cells, indicating that TLR4 plays a 

major role in these responses. It was important to note that the inclusion of untreated 

control cells with the addition of CLI-095 demonstrated no significant changes in 

protein expression for all markers investigated.  

The equivalent concentration of CoCl2 (0.025mM) released from 50µm3 CoCr particles 

per cell over 24 hours was also included in this set of experiments. The reason for its 

inclusion was to determine whether increases in cytokine and chemokine expression 

by CoCr particles were mostly due to the presence of CoCl2 released from the particles 

or whether the particles themselves have an additive effect to the observed response. 

CoCl2 solutions were also tested for any endotoxin contamination (using the LAL assay 

described in section 3.4.5) to ensure responses observed were not due to LPS 

activation of TLR4. 

In nearly all inflammatory markers investigated (with the exception of CCL4), there was 

a larger increase in secretion from CoCr particle treatments compared to CoCl2. 

Therefore, it could be assumed that although much of the increases in expression from 

CoCr particle treatments may be due to CoCl2 released from particles, the particles 

enhance this increase. This could be due to a more generalised stress response as 

the THP-1 cells attempt to phagocytose the particles (as demonstrated by TEM) or 

also due to the presence of chromium. Chromium ions have been shown to be less 

toxic than cobalt in human myoblasts and do not increase expression of ICAM-1 or 

inflammatory cytokines (Jonitz-Heincke et al., 2019; Laumonier et al., 2019). This 

finding is consistent with another study which demonstrated that chromium ions were 
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unable to induce ROS production, inflammasome activation and cytotoxicity (Adam et 

al., 2017). Furthermore, chromium ions are thought to play a lesser role in bone 

homeostasis than cobalt ions with no effect on TGF- or RANKL expression (Drynda 

et al., 2018b). Therefore, it is likely that any effects due to the presence of chromium 

in CoCr particles are negligible.  

Inhibiting TLR4 in CoCr particle treated cells reduced protein expression to that of 

untreated cells suggesting that cobalt ions (known to activate TLR4) may be the major 

source initiating these observed increases. It is difficult to accurately measure the 

concentration of cobalt ions released from particles for each individual treatment which 

could explain the observed differences between CoCr particle and CoCl2 treatments. 

Despite the fact that concentrations were measured by ICP-MS in Chapter 3 it may be 

that there are slight inaccuracies when dosing cells (potentially due to aggregation of 

particles) which account for the larger increases in concentration in this instance. 

Interestingly, with IL-8 gene expression, CoCl2 treatment over 24 hours increased 

expression more than CoCr particle treatment. In both treatments, IL-8 expression was 

significantly reduced with the addition of CLI-095. The difference may be the time point 

investigated (at 24 hours) as the time course for either treatment may differ from each 

other (as shown in previous time course experiments for IL-8 and CCL3). For example, 

in CoCl2 treatments, the cells are exposed to the concentration of ions for the entire 

treatment time whereas with CoCr particle treatments, the ions are gradually released. 

Additionally, this may also come down to inaccuracies in dosing of CoCr particles for 

them to release the exact concentration of cobalt ions calculated by ICP-MS. 

CLI-095 is effective at inhibiting downstream signalling of TLR4 by binding to Cys747 

in the intracellular domain of TLR4 and thus preventing the recruitment of all adaptor 

proteins involved in TLR4 activation (Matsunaga et al., 2011). As all adaptor proteins 

are prevented from recruitment this means that both the MyD88 and TRIF (MyD88 

independent) pathways are inhibited. These signalling pathways ultimately result in 

activation of different transcription factors (e.g. NFB or IRF3) which are responsible 

for the regulation and production of different inflammatory cytokines and chemokines 

which are investigated in this study. For example, IL-8 is known to be regulated by the 

MyD88-dependent pathway via activation of NFB whereas CXCL10 production is 

mostly associated with the TRIF-dependent pathway (Weighardt et al., 2004; He et al., 

2013). Both pathways have been shown to be involved in the response to metal ions 



153 

 

(Oblak et al., 2015). However, in this study, most markers investigated are involved in 

MyD88-depndent responses (CXCL10 expression increases were minimal in 

comparison to other chemokines). Therefore, to reach firmer conclusions as to which 

arms of the TLR4 pathway play a more dominant role in CoCr-mediated inflammatory 

responses, inhibitors targeting specific adapter molecules e.g. MyD88 or TRIF could 

be utilised. 

Anti-TLR4 neutralising antibodies have previously been tested to inhibit CoCl2-

mediated inflammatory responses with the monoclonal antibody (MAb2-Htlr4) 

inhibiting cobalt-mediated IL-8 and CCL20 expression (Lawrence et al., 2016b). 

However, a polyclonal neutralising antibody (PAb-hTLR4), did not inhibit IL-8 secretion 

and did not significantly reduce IL-8 gene expression in CoCl2 treated MM6 cells 

(Lawrence et al., 2016b). It was concluded that the differences in effective inhibition 

were likely due to the antibodies different binding sites. Furthermore, the fact the 

antibodies effectively reduced LPS-mediated activation of TLR4 supports the 

hypothesis that metal ions and LPS bind to different regions of TLR4. 

In this study, a different monoclonal neutralising antibody (MAb-tlr4), was used to 

investigate its effectiveness in reducing chemokine expression in THP-1 cells treated 

with CoCr particles (due to antibodies previously used having discontinued). Firstly, 

the antibody concentration was optimised using LPS as the TLR4 ligand and IL-8 as a 

marker of TLR4 activation. Both IL-8 gene expression and protein secretion were 

significantly reduced in a dose-dependent manner with the addition of increasing 

concentrations of MAb-tlr4. Due to the circumstances of time constraints, experiments 

with CoCr particles could not be completed but we would have done so using the 

concentration optimised. 

TLR4 is the most studied TLR as a target in clinical trials for the treatment of many 

different diseases and conditions such as rheumatoid arthritis, sepsis and other 

inflammatory diseases (Fox et al., 2018; Monnet et al., 2020). However, clinical 

success is minimal, for example, two phase III clinical trials using CLI-095 and eritoran 

(a TLR4 antagonist) as a treatment for sepsis were suspended (Rice et al., 2010; Opal 

et al., 2013). In the context of ARMD, the results from this study have shown a potential 

role of TLR4 in the inflammatory response to CoCr particles and/or cobalt ions. 

However, for TLR4 to be considered as a therapeutic option, careful consideration 

would be required in the design of a potential antagonist. For example, if TLR4 was to 
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be inhibited, it is crucial that the natural response to LPS and Gram negative bacteria 

is preserved so that an immune response can be initiated to clear infection. It is 

possible that this could be achieved as it is known that cobalt ions and LPS do not 

share the same TLR4 binding sites. By designing an antibody which specifically targets 

the histidine pocket which cobalt ions are believed to bind to; initiating TLR4 activation, 

this could prevent this response whilst conserving the LPS activation of TLR4. 

Monocyte response 

The response of monocytic (i.e. inactivated THP-1) cells to CoCr particles was 

evaluated to confirm whether this cell type was also able to mount similar inflammatory 

effects observed by THP-1 macrophages. Monocytes are more typically found 

circulating in the blood compared to tissue resident macrophages. It has been shown 

that cobalt ions can be detected in relatively high concentrations in the serum of 

patients with implants containing CoCr, therefore, monocytes are likely to be one of 

the first cell types to encounter these ions. 

IL-8 and CCL3 protein expression were investigated firstly using the dose response of 

CoCr particles discussed previously (0.5 to 50µm3 per cell). There was a small but 

significant increase of IL-8 expression at the highest concentration of CoCr particles. 

CCL3 expression was increased compared to untreated THP-1 monocytes but did not 

reach significance. It is perhaps unsurprising that the concentrations observed were 

relatively low compared to the activated THP-1 macrophage response as monocytes 

are generally much less inflammatory. Furthermore, CD14 expression is much lower 

in THP-1 monocytes compared to primary monocytes. As a result, THP-1 monocytes 

are less responsive to TLR4 stimuli such as LPS and metal ions (Bosshart and 

Heinzelmann, 2016).  

CLI-095 was then utilised to see whether this response was also TLR4-mediated. 

Similarly to the activated THP-1 results, both IL-8 and CCL3 secretion were 

significantly reduced when cells were pre-treated with CLI-095. Furthermore, there was 

a slight increase in response to CoCr particles when compared to CoCl2 (at the 

concentration of ions expected to be released from particles). Again, this strengthens 

the hypothesis previously discussed that perhaps the particles have an additive effect 

compared to ions alone.  

Mouse macrophage response 
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As discussed previously, cobalt ions can only activate human and primate TLR4 as 

other species do not express the conserved histidine residues required for the ions to 

bind to and allow activation. Therefore, it was interesting to investigate a mouse 

macrophage cell line (J774) to see whether CoCr particles could elicit an inflammatory 

response. If inflammatory chemokine expression increased this would suggest that 

CoCr particles are initiating the immune response independently of TLR4. The muroid 

lineage do not express IL-8 so CCL3 was used instead as a marker of inflammation 

(Modi and Yoshimura, 1999). A study has also shown that mice carrying a TLR4 

mutation have diminished CCL3 expression in monocytes (Song et al., 2011). 

In this study, CoCl2 treatments (at a relatively high concentration known to activate 

human macrophages) were included as an additional negative control. As expected, 

CoCl2 failed to increase CCL3 secretion in comparison to untreated J774 cells. This 

provided confirmation that cobalt ions are unable to elicit an inflammatory response in 

mice via TLR4 activation. Interestingly, CoCr particle treatments caused a small but 

significant increase in CCL3 secretion at both 5 and 50µm3 per cell. This small increase 

in CCL3 suggests CoCr particles are activating the immune response via an alternative 

pathway to TLR4, again perhaps through a more generalised stress response. These 

findings were confirmed using CLI-095 as previously described, which worked 

effectively at inhibiting LPS-mediated CCL3 secretion. However, there was no 

significant difference in CCL3 secretion between CoCr particle-treated J774 cells with 

and without the addition of CLI-095. Therefore, any increases in CCL3 secretion 

following CoCr particle stimulation were not due to TLR4 activation. This further 

supports the hypothesis that CoCr particles may cause inflammatory effects in addition 

to TLR4 activation from released cobalt ions in human cells. 

The fact CoCr particles could induce CCL3 secretion in mouse J774 macrophages 

demonstrates the particles ability to induce inflammation through alternative pathways 

to TLR4. Inflammatory responses caused by CoCr particles could be due to the 

phagocytosis of particles by macrophages (as shown by TEM imaging) which can then 

potentially be presented to T cells in conjunction with immunogenic haptens, activating 

the adaptive immune response. Although it is clear cobalt ions can directly activate 

TLR4, the role CoCr particles play in activating either the innate or adaptive immune 

response and specific pathways, is less certain.  
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The role of the NLRP3 inflammasome in CoCr particle-mediated inflammatory 

responses 

The role of the NLRP3 inflammasome in CoCr particle-mediated inflammation was 

investigated to evaluate whether its activation was responsible for the added effects 

observed from CoCr particles when compared to cobalt ions alone. The activation of 

NLRP3, caspase-1 and subsequent release of IL-1 is described in greater detail in 

section 1.7. Several studies have hypothesised that both CoCr particles and metal 

ions can lead to NLRP3 activation in vitro (Li and Zhong, 2014; Samelko et al., 2016; 

Ferko and Catelas, 2018). The inflammasome pathway requires sensing of DAMPs 

such as ATP or lysosomal destabilisation following stimulation from an initial PAMP 

(e.g. LPS). Therefore, CoCr particles were investigated to see whether they primarily 

act as a PAMP primary stimulus or as a DAMP ‘danger signal’ inducer of NLRP3 

activation. 

Firstly, THP-1 macrophages were primed with CoCr particles for 23 hours followed by 

stimulation with the DAMP inducer, ATP for 1 hour. IL-1 expression was used as a 

marker of NLRP3 activation. However, IL-1 expression and secretion were not 

significantly increased under these conditions. These findings were interesting, as 

MSD protein secretion analysis had shown CoCr particle-treated THP-1 macrophages 

demonstrated increased IL-1 expression even without further ATP stimulation. This 

highlights potential differences between using different techniques for measuring 

protein concentrations i.e. MSD versus ELISA. It cannot be ruled out that under the 

artificial conditions of cell culture (e.g. the differentiation of cells using PMA), this 

provides sufficient ‘PAMP stimulus’ to increase IL-1 expression when THP-1 

macrophages are then dosed with CoCr particles. It has been shown PMA can play 

the priming role in THP-1 cells as demonstrated by increased expression of pro-IL-

1 (Song et al., 2017) It may be plausible during the ‘rest period’ of THP-1 cell 

activation when PMA is removed, the reversal of over-activation differs each time so 

cells are in altered states of activation prior to stimulation.  

To determine whether CoCr particles play a role in the second NLRP3 activation step 

(i.e. act as a DAMP inducer), THP-1 macrophages were primed with LPS for 23 hours 

followed by 1 hour of stimulation with CoCr particles. CoCl2 was also included in the 

experimental set up to compare responses. There was no significant difference 

between IL-1 expression between cells treated with LPS alone and those further 
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stimulated with either CoCr particles or CoCl2. This would suggest CoCr particles and 

cobalt ions do not act as a DAMP inducer following PAMP stimulation. This contrasts 

with findings by Samelko et al. who hypothesised that CoCr particles induce lysosomal 

damage, subsequent cathepsin B release and therefore activate NLRP3 (Samelko et 

al., 2016). 

However, for any conclusions to be made, this work requires much further 

investigation. For example, the expression of cytosolic pro-IL-1 expression by 

western blotting would be beneficial to determine whether stimulants are providing the 

initial ‘priming’ signal. Furthermore, assessing IL-18 (and pro-IL-18) as an additional 

marker of NLRP3 activation would also confirm findings shown by IL-1 Assessment 

of caspase-1 activation could also provide further insight into the activation of the 

NLRP3 inflammasome pathway. 

 

4.5.1 Future work 

One important factor to consider was the CoCr particles used in this part of the study. 

For all experiments, particles generated in sterile water in the six-station pin-on-plate 

wear simulator were used for dosing cells. As Chapter 3 demonstrated, although these 

do not differ morphologically from those generated in the sterile single-station pin-on-

plate wear simulator, they are not generated in the mostly ‘clinically-relevant’ lubricant 

which would be containing FBS. Furthermore, ions released from particles during their 

generation are lost when sterilising prior to cell treatments. It would be important to 

repeat all investigations using particles generated in the single-station wear simulator 

to provide further clinical relevance. 

This work has also focussed on one cell line, THP-1, which although is a good model 

for in vitro investigations into cell responses to CoCr particles, further cell lines (e.g. 

osteoblasts) and primary cells would need to be assessed to make firmer conclusions. 

Primary cells (such as PBMCs) offer better in vivo representation and physiological 

relevance when compared to cell lines. Cell lines, particularly at higher passages, can 

have a varied phenotype and genotype meaning results obtained can be difficult to 

fully translate to humans. Therefore, the use of primary cells in future experiments is 

of great importance to determine whether similar effects can be replicated. However, 

as it is known some patients appear to be more sensitive to ARMD than others, the 
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use of primary cells such as PBMCs may prove difficult to draw conclusions from as it 

is likely results would be variable. Therefore, for preliminary results presented here, 

cell lines were a suitable model to obtain consistent findings which should be repeated 

using human primary cells to replicate key findings. 

The small molecule antagonist, CLI-095 was the only TLR4 inhibitor which was fully 

investigated regarding CoCr particle-mediated inflammation. Therefore, the use of 

other TLR4 inhibitors such as neutralising antibodies would provide additional 

confirmation that TLR4 plays a central role in the upregulation of pro-inflammatory 

chemokines and cytokines in response to CoCr particles. By investigating several 

TLR4 inhibitors this would give an improved overview of the efficacy of each antagonist 

and which exact part of TLR4 should be targeted for targeting CoCr particle-mediated 

responses.  

To further understand the role of the NLRP3 inflammasome in CoCr particle-mediated 

responses, much more detailed investigations are required into each stage of NLRP3 

activation. As previously discussed, this would involve assessing the expression of 

cytosolic pro-IL-1 and pro-IL-18 as well as the cleavage of caspase-1 and its activity. 

 

4.5.2 Conclusion 

The primary aim of this chapter was to determine which inflammatory cytokines and 

chemokines are upregulated in response to CoCr particle-mediated inflammation and 

which pathways are potentially involved in initiating this response.  

Overall, results suggest it is unlikely that inflammatory effects elicited by CoCr particles 

and metal ions are limited to the activation of one specific pathway. The results 

demonstrated in this part of the study suggest a central role for the TLR4 pathway, 

particularly cellular effects from cobalt ions in vitro. In contrast, preliminary studies 

regarding the NLRP3 inflammasome, CoCr particles did not appear to directly 

influence its activation as measured by IL-1 expression. However, it is probable other 

pathways are involved and CoCr particles may well act as both a PAMP and a DAMP 

rather than exclusively one or the other. For example, cobalt ions released from CoCr 

particles appear to primarily act through TLR4 activation to initiate an immune 

response whereas the particles themselves may initiate a more general stress 

response by enhancing ROS production and causing lysosomal destabilisation. 
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Chapter 5 : Functional Effects of CoCr particles in vitro and 

Translation to Patient Tissue Following Hip and Knee Revision 

Surgery 

5.1 Introduction 

The data presented in Chapter 4 demonstrate CoCr particles can alter the expression 

and secretion of various chemokines and cytokines in THP-1 macrophages which in 

turn regulate a number of different immune functions. For example, as discussed in 

section 1.6.3, the process of immune cell migration and infiltration into tissues is 

initiated by inflammatory cytokines and chemokines, causing leukocyte recruitment. 

Furthermore, TLR4 activation increases expression of adhesion molecules such as 

ICAM-1 and VCAM-1 which bind to integrins (LFA-1 and VLA-4) on the cell surface of 

the recruited leukocytes resulting in transendothelial migration of immune cells into 

local tissues (Sawa et al., 2008).  

Inflammatory pseudotumours observed in patients who have received MoM implants 

are histologically associated with increased inflammatory cell infiltration, particularly 

macrophages as well as lymphocytes (i.e. ALVAL) and a small population of 

granulocytes (e.g. neutrophils) (Pandit et al., 2008; Campbell et al., 2010; Paukkeri et 

al., 2016). For example, in a study which examined the histology of periprosthetic hip 

tissues from revised MoM implants for aseptic loosening, 88% of patients displayed 

macrophage infiltration whereas only 30% had moderate to high ALVAL scores 

(Phillips et al., 2014). In this study, a collection of soft tissue was collected from patients 

undergoing both hip and knee revision surgery for various reasons. Therefore, 

histological analysis was performed to determine inflammatory infiltrate for the 

presence of both macrophages and T cells. 

The expression of ICAM-1 and VCAM-1 are crucial for promoting the interactions 

required between endothelial and leukocytes to elicit an effective immune response, 

particularly leukocyte extravasation and immune cell infiltration. Their expression is 

usually tightly regulated to prevent unwanted stimulation of the inflammatory response. 

However, in response to pathogens, their expression is increased to promote this 

process. Previous work has shown the effect of CoCl2 on HMEC-1 endothelial cells, 

which resulted in significantly increased expression of ICAM-1 (Anjum et al., 2016). 

Furthermore, studies have demonstrated increased ICAM-1 and VCAM-1 expression 
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in primary endothelial cell lines treated with cobalt ions and CoCr nanoparticles 

(Ninomiya et al., 2013; Alinovi et al., 2015). The expression of ICAM-1 and VCAM-1 in 

HMEC-1 cells following treatment with CoCr particles generated in Chapter 3 was 

assessed. Furthermore, a chemotaxis assay using a transwell insert system was set 

up to determine endothelial activation with CoCr particle treatment and whether this 

enhanced neutrophil migration towards a chemokine gradient. 

It was also hypothesised CoCr particles and subsequent up-regulated cytokine and 

chemokine expression can influence bone homeostasis (i.e. the balance of 

osteoclastogensis and osteoblast formation) and cell migration of the cell types 

involved in these processes. Therefore, the osteoblast-like cell line, MG63, was 

stimulated with CoCr particles and used in a migration wound healing assay to analyse 

migration properties. 

 

5.2 Aims and Objectives 

The aim of this chapter was to assess the effect of CoCr particles on an endothelial 

cell line, HMEC-1, including adhesion molecule expression and activation to enhance 

transendothelial migration of neutrophils. The migratory properties of MG63 cells were 

used as a model of bone homeostasis, proliferation and metabolic activity. Finally, a 

small collection of soft tissue from patients undergoing revision hip and knee surgery 

was analysed by haematoxylin and eosin (H&E) staining for the presence of immune 

cell infiltration and the phenotype of infiltrate determined by IHC.  

 

5.2.1 Objectives 

• To investigate the effect of CoCr particles on HMEC-1 cells, including cell 

viability, proliferation and internalisation of particles 

• To establish the effect of CoCr particles on adhesion molecule expression in 

HMEC-1 cells 

• To investigate the effect of CoCr particles on neutrophil chemotaxis 

• To investigate the histology of patient derived soft tissue using 

immunohistochemistry to determine inflammatory cell phenotype 
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• To analyse the migration properties of MG63 cells following CoCr particle 

treatment 
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5.3 Specific Methods 

5.3.1 Chemotaxis assay 

Chemotaxis of neutrophils was evaluated using a transwell system in a protocol 

optimised by Dr Georgie Wilkins, Newcastle University, UK (Figure 5.1). Transwells 

with 3µm pores (Sigma Aldrich, USA) were coated with HMEC-1 cells to replicate the 

endothelial barrier. Approximately 250,000 HMEC-1 cells were seeded per transwell 

and allowed to grow to confluency for 48 hours. The HMEC-1 cells were then 

stimulated for 24 hours with either 100ng/ml LPS or CoCr particles (50µm3 per cell). 

The lower chamber was then blocked with 2% BSA in PBS then replaced with 30nM 

IL-8 (R&D Systems, USA) diluted in serum free media. A chemokinesis control, in 

which 30nM IL-8 was also added to the upper chamber, was included to determine 

direction of chemotaxis. Neutrophils were isolated from healthy human blood and 

kindly provided by Mr Jonathan Scott, Newcastle University, UK. Following a 1 hour 

rest period in serum free medium (RPMI-1640 medium containing 0.1% BSA), 

approximately 200,000 neutrophils were added to the upper chamber and allowed to 

migrate for 2 hours at 37oC. Any neutrophils which had adhered to the lower chamber 

were firstly washed with PBS, detached with AccutaseTM (Biolegend, USA) then 

counted using Absolute Countbright beads™ (ThermoFisher Scientific, UK) by flow 

cytometry on the FACS Canto II (Figure 5.2). The chemotactic index was calculated 

as described in Figure 5.2E by normalising the number of migratory neutrophils in 

treatments (i.e. LPS and CoCr particles) to untreated controls relative to the total 

number of cells added to the upper chamber.  
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Figure 5.1 Neutrophil chemotaxis protocol 

Approximately 250,000 HMEC-1 cells were seeded into a 3µm transwell and grown to 
confluency over 48 hours. The cells were then either treated with CoCr particles 
(50µm3 per cell) or LPS (10ng/ml) for 24 hours or left untreated. The lower chamber 
was blocked with 2% BSA in PBS then replaced with 30nM IL-8. Approximately 
200,000 neutrophils were then added to the upper chamber and allowed to migrate for 
2 hours. Neutrophils which had migrated to the lower chamber could then be detached 
and counted using absolute count bright beads on the FACs Canto II. Image created 
using Biorender. 
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Figure 5.2 Migratory neutrophil counting using absolute count bright beads by 
flow cytometry 

For counting of migratory neutrophils, cells were detached from the lower chamber of 
the transwell, pelleted and re-suspended in 200µl FACS buffer. To the cell suspension, 
30µl Absolute Countbright beads™ were added. The suspension was then counted by 
flow cytometry. (A)-(D) Gating strategy to identify counting beads and neurophil 
population. (A) Untreated (B) LPS (C) CoCr particles (D) Chemokinesis control. (E) 
Equation to calculate total number of migratory neutrophils based on total counting 
bead events. Graphs are representative of 2 independent experiments. 
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5.3.2 Haematoxylin and eosin (H&E) staining 

Human soft tissue was collected from patients undergoing hip and knee revision 

surgery at the Freeman Hospital, Newcastle. This collection was approved by the 

Newcastle Academic Health Partners Bioresource (REC 12/NE/0395). All patients 

gave their informed consent for collection of the tissue. The tissue was retrieved fresh, 

as soon as possible following surgery, and kept on ice. All sections were formalin fixed, 

processed and paraffin embedded using standard procedures. 

Sections were stained to assess cellular infiltration using haematoxylin (Sigma Aldrich, 

USA) for 60 seconds then washed thoroughly in tap water. Slides were then blued in 

Scott’s tap water for 20 seconds to blue the nuclei and again washed in tap water. 

Sections were then stained with Eosin (Sigma Aldrich, USA) for 30 seconds and then 

washed in tap water. Slides were then dehydrated through graded alcohols (70%, 95% 

and 99% ethanol), mounted using Dibutylphthalate Polystyrene Xylene (DPX) and left 

to dry at room temperature overnight. 

 

5.3.3 Immunohistochemistry 

IHC is a staining technique used to visualise protein distribution (antigens) in cells of 

tissues. Tissues can be fixed, stained with specific antibodies and visualised by 

microscopy.  

For this study, IHC was performed on formalin-fixed paraffin-embedded (FFPE) human 

soft tissue retrieved from patients undergoing hip and knee revision surgery as 

described in section 5.3.2. FFPE tissue sections were cut to a thickness of 3µm onto 

a glass slide coated with 3-aminopropylthriethoxysilane (APES) to help tissue adhere 

to the slides. Slides were then incubated at 37oC for 24 hours to further help sections 

adhere to slides due to the high content of fat in the tissue used. 

Slides were de-waxed in xylene for 5 minutes then rehydrated through graded alcohols 

(99%, 95% and 70% ethanol) and washed in tap water. Slides were then blocked with 

1.5% hydrogen peroxide for 10 minutes, prior to antigen retrieval. Both primary 

antibodies used in this study had been previously optimised by Mrs Barbara Innes, 

Newcastle University, UK for both concentration and antigen retrieval method (Table 

5.1). Antigen retrieval was performed using citrate buffer (pH 6) in a pressure cooker. 
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Once at boiling point, slides were placed inside the cooker and were incubated for 2 

minutes once the cooker had reached pressure, before rapidly cooling in water. 

Slides were next blocked for 10 minutes in normal horse blocking serum (Vector 

Laboratories) to block endogenous peroxidase and alkaline phosphatase activity. 

Diluted primary antibodies were then added to all appropriate sections for 1 hour. A 

negative control section with no primary antibody (tris buffered saline (TBS) only) was 

also included. Staining was continued using the ImPRESS™ HRP Universal Antibody 

Polymer Detection Kit (Vector Laboratories, USA) according to the manufacturer’s 

protocol. Specifically, the secondary antibody was added to each section for 30 

minutes. All kit components and antibodies were prepared and diluted in TBS. In 

between all steps, slides were washed 3 times for 5 minutes in TBS. 

The Vector® 3, 3’-diaminobenzidine (DAB) peroxidase substrate kit (Vector 

Laboratories, USA) was then used as a substrate, to develop colour, according to the 

manufacturer’s protocol. Once colour was developed, slides were washed thoroughly 

in tap water, counterstained in haematoxylin for 60 seconds and blued in in alkaline 

solution for 20 seconds. Slides were then dehydrated through graded alcohols (70%, 

95% and 99% ethanol) and finally placed in xylene. Slides were mounted using DPX 

and left to dry at room temperature overnight. In all cases, tonsil tissue was used as a 

positive control for immune cell markers. 
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Table 5.1 Primary antibodies used in immunohistochemistry 

Primary antibodies were diluted in tris-buffered saline (TBS) (pH 7.6) 

Target 

Protein 

Dilution Description Clone Antigen 

Retrieval 

Source 

CD3 1:20 Monoclonal 

mouse anti-

human 

PS1 Citrate Leica 

Biosytems, 

USA 

CD68 1:100 Monoclonal 

mouse anti-

human 

KP1 Citrate Dako, USA 

Ki67 1:300 Polyclonal rabbit 

anti-human 

Polyclonal Citrate Novus 

Biological, 

USA 

 

5.3.3.1 Dual colour immunohistochemistry 

To determine whether cells stained positive for CD3 were in fact proliferating, dual 

coloured IHC was employed to visualise both CD3 and Ki67 (nuclear proliferation 

marker) staining in the same tissue section. As both antibodies require the same 

optimal antigen retrieval step (using citrate buffer), dual coloured IHC was possible for 

CD3 and Ki67. 

Sections were stained using the ImPRESS™ HRP Universal Antibody Polymer 

Detection Kit as described in section 5.3.3 for the first primary antibody according to 

the manufacturer’s protocol and developed using the Vector® 3, 3’-diaminobenzidine 

(DAB) peroxidase substrate kit. Slides were then washed with TBS before staining 

could continue for the second primary antibody. Avidin-Biotin block was then used and 

followed by with the ImmPRESS™-AP Alkaline Phosphatase Polymer Detection Kit 

(Vector Laboratories, USA) according to the manufacturer’s instructions. An AP system 

was used in conjunction with the peroxidase kit to prevent enzyme cross-reactivity and 

prevent false labelling. Stains were developed using the Vector® Blue Substrate 

Alkaline Phosphatase Kit (Vector Laboratories, USA) following the manufacturer’s 

instructions. To prevent confusion between colours, the haematoxylin step was 
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omitted. Sections were aqueous mounted using Faramount aqueous mounting 

medium (Dako, USA). Single-stained slide controls for each antibody were included to 

demonstrate a lack of epitope masking as well as no primary antibody controls. 

 

5.3.4 Cell migration assay 

Cell migration was assessed by using a wound healing scratch assay with MG63 cells 

in which 100,000 cells were seeded and grown to approximately 80-90% confluency 

for 72 hours to create a monolayer. A scratch of approximately 600µm was created in 

each well by scratching down the middle of the monolayer of cells with a pipette tip, 

visible under light microscope. Cells were then washed with PBS and media replaced 

containing either 100ng/ml LPS, 0.25mM CoCl2 or 50µm3 per cell of CoCr particles. 

The closure of the gap was then analysed over 48-hours. Images were analysed using 

ImageJ analysis software. Cell migration was expressed as a percentage of the initial 

wound area measured at 0 hours to give a percentage of closure at a given time point 

(24 or 48 hours). 
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5.4 Results 

5.4.1 Effect of CoCr particles on human microvascular endothelial cells 

5.4.1.1 Cell viability 

HMEC-1 cells were treated with varying concentrations of CoCr particles (0.5 to 50µm3 

per cell) for either 24 or 48 hours (Figure 5.3). Cell viability was assessed using trypan 

blue exclusion as described in section 2.5.1. Viability was calculated as a percentage 

difference between untreated cells (100% viable) and treated cells. Following 24 hours 

of stimulation, viability was not significantly affected at the lowest concentration of 

0.5µm3 particles per cell (p=0.2050) but was significantly decreased at both 5 and 

50µm3 particles per cell (both p<0.0001) (Figure 5.3A). However, following 48 hours 

of exposure, all concentrations of CoCr particles significantly decreased HMEC-1 cell 

viability (0.5µm3 particles per cell; p=0.0023, 5 and 50µm3 particles per cell; both 

p<0.0001) (Figure 5.3B). 

 

 

Figure 5.3 HMEC-1 cell viability following CoCr particle treatment determined by 
trypan blue staining 

HMEC-1 cells were assessed for viability following stimulation with varying 
concentrations of CoCr particles (0.5 to 50µm3 per cell) for (A) 24 hours and (B) 48 
hours using trypan blue staining. Data was normalised to 100% viability in untreated 
cells. Graph is representative of 3 independent experiments. Statistical significance 
was calculated by one-way ANOVA with Dunnett’s multiple comparisons test 
comparing treated samples to the untreated control. 
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5.4.1.2 XTT proliferation assay 

The effect of CoCr particles on HMEC-1 proliferative capacity was assessed using the 

XTT assay as described in section 2.5.2. Cells were treated with varying 

concentrations of CoCr particles (0.5 to 50µm3 per cell) for either 24 hours or 48 hours 

and proliferation assessed 6 hours after the addition of the XTT reagent (Figure 5.4). 

Following 24 hours of stimulation with CoCr particles, there was no significant 

difference in proliferation of HMEC-1 cells at both 0.5 and 50µm3 particles per cell 

(p=0.2109 and p=0.3598, respectively). However, treatment with 5µm3 particles per 

cell resulted in a significant increase in proliferation (p=0.0339) (Figure 5.4A). 

HMEC-1 cells which were treated for 48 hours with CoCr particles displayed a dose 

dependent loss of proliferation (Figure 5.4B). Although there was no significant 

difference in cell proliferation at either 0.5 or 5µm3 particles per cell (p=0.9991 and 

p=0.1215, respectively), stimulation with 50µm3 particles per cell significantly 

decreased proliferation of HMEC-1 cells (p=0.0015).  

 

 

Figure 5.4 Proliferation of HMEC-1 cells following exposure to CoCr particles 

HMEC-1 cells were stimulated for either (A) 24 hours or (B) 48 hours with CoCr 
particles prior to the addition of XTT reagent for a further 6 hours to assess 
proliferation. Graph is representative of 3 independent experiments. Statistical 
significance was calculated by one-way ANOVA with Dunnett’s multiple comparisons 
test comparing treated samples to the untreated control. 
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5.4.1.3 Internalisation of CoCr particles 

HMEC-1 cells were imaged using TEM as described in section 2.6 to assess whether 

an endothelial cell line could also internalise CoCr particles as shown previously by 

THP-1 cells. Untreated cells are shown in Figure 5.5. Figure 5.5A shows numerous 

cells forming a monolayer using a relatively low magnification (1200X). Individual cells 

can be observed which have classic endothelial cell structure with little presence of 

vacuoles or lysosomes and a large nucleus.  

Following 24 hours’ stimulation with CoCr particles (50µm3 per cell), Figure 5.6 clearly 

shows the internalisation of CoCr particles within phagocytic vacuoles. Figure 5.6C 

shows a particularly large vacuole containing CoCr particles which has potentially 

formed due to the fusion of several phagosomes, encompassing much of the single 

cell cytoplasmic volume. However, in comparison to the THP-1 cells, the number of 

phagocytic vacuoles appears to be fewer (see Figure 4.7). 
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Figure 5.5 Transmission electron microscopy of untreated HMEC-1 cells 

Representative TEM images of untreated HMEC-1 cells. Images show classic HMEC-
1 individual endothelial cell structure as well as the formation of monolayers and 
interaction between cells (A). Arrows indicate HMEC-1 cell nuclei. Scale bars 
represent either 5µm for (A)-(B) or 2µm (C)-(D).  
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Figure 5.6 Transmission electron microscopy of CoCr particle treated HMEC-1 
cells 

Representative TEM images of HMEC-1 cells treated with CoCr particles (50µm3 per 
cell). (A)-(D) Arrows point to examples of aggregates and agglomerates of CoCr 
particles within distinct membrane bound vacuoles. Scale bars represent either 2µm 
(A)-(B) or 1µm (C)-(D). 

 

5.4.2 Effect of CoCr particles on adhesion molecule expression 

The effect of CoCr particles on expression of adhesion molecule expression in HMEC-

1 cells was investigated as ICAM-1 and VCAM-1 expression in response to stimuli are 

frequently studied in endothelial cell lines (Munoz-Vega et al., 2018).  

HMEC-1 cells were treated with 50µm3 CoCr particles per cell despite the results from 

the cell viability and proliferative XTT assay having shown potentially cytotoxic effects 

and a reduction in cell proliferation. This was to keep challenges consistent with 

previous investigations using THP-1 macrophages in Chapter 4. Following 24 hours’ 

stimulation with CoCr particles, HMEC-1 cells were analysed for ICAM1 and VCAM1 
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expression by qRT-PCR (Figure 5.7). Treatment with CoCr particles significantly 

increased the expression of both ICAM1 (p=0.0004) and VCAM1 (p=0.0009) compared 

to untreated control HMEC-1 cells.  

 

 

Figure 5.7 Effect of CoCr particles on ICAM1 and VCAM1 expression 

HMEC-1 cells were stimulated with 50µm3 CoCr particles per cell for 24 hours then (A) 
ICAM1 and (B) VCAM1 expression analysed by qRT-PCR. Gene expression 
normalised to untreated control, set to 1. Graphs are representative of three 
independent experiments. Statistical significance was calculated by an unpaired 
Student’s t-test comparing the treated sample to the untreated control. 

 

5.4.3 CoCr particle-mediated neutrophil migration 

The results shown in section 5.4.2 demonstrate increased expression of ICAM1 and 

VCAM1 in response to CoCr particles. It has been previously shown that cobalt ions 

can up-regulate the expression of the adhesion markers ICAM-1 and VCAM-1 (Anjum 

et al., 2016). Furthermore, cobalt ions can also increase the recruitment of 

inflammatory cells in vitro (Lawrence et al., 2016a). Therefore, for this part of the study, 

the effect of CoCr particles on the endothelium and subsequent chemotaxis of 

neutrophils was investigated as described in section 5.3.1. LPS was used a positive 

control and a chemokinesis control was also included. HMEC-1 cells seeded onto 

transwell inserts were stimulated with either CoCr particles (50µm3 per cell) or LPS 

(10ng/ml) for 24 hours. Neutrophils were then added to the upper chamber of the 

transwell and 30nM IL-8 to the lower chamber (and also the upper chamber of the 

chemokinesis control) and incubated for 2 hours at 37oC. Migratory neutrophils were 
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counted by flow cytometry using Absolute Countbright beads™ and chemotactic index 

calculated (Figure 5.8). Treatment with both LPS and CoCr particles resulted in a 

significant increase in neutrophil chemotaxis compared with untreated control cells 

(p=0.0198 and p=0.0259, respectively).  

 

 

Figure 5.8 Trans-endothelial chemotaxis of neutrophils towards IL-8 following 
stimulation of HMEC-1 with CoCr particles 

HMEC-1 cells were seeded onto 3µm transwells for 48 hours then stimulated with 
either LPS (10ng/ml) or CoCr particles (50µm3 per cell) for 24 hours. Neutrophils were 
then added to the upper chamber of the transwell and 30nM IL-8 added to the lower 
chamber (and the upper of the chemokinesis control) and incubated for 2 hours at 
37oC. Migratory neutrophils were counted using Absolute Countbright Beads™ and 
analysed by flow cytometry. Graphs are representative of 2 independent experiments. 
Statistical significance was calculated by one-way ANOVA with Dunnett’s multiple 
comparisons test comparing treated samples to the untreated control. 

 

5.4.4 Periprosthetic soft tissue analysis from patients undergoing hip and knee 

revision surgeries 

Soft tissue samples from regions adjacent to implanted total hip or knee replacements 

were collected during revision surgery as part of a collection described in section 

5.3.2.  
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5.4.4.1 Patient clinical information 

Of the soft tissue collected from patients undergoing hip and knee revision surgeries, 

11 in total were analysed for inflammatory cell infiltrate by H&E staining and 

phenotyping of the infiltrate by IHC. The clinical characteristics of the patient cohort 

are summarised in Table 5.2. All primary operations were performed for treatment of 

osteoarthritis. 

Of the samples analysed, seven were taken from total hip revision surgeries (63.66%) 

and four from total knee revisions (36.36%). Eight of the eleven patients were male 

(72.73%) and 27.27% were female. The average age of patients was 66 (range: 43-

87), and the mean duration of implant survival was 97 months (approximately 8 years) 

(range: 27 to 240 months). The reasons for revision were varied, the most common 

being aseptic loosening (4/11) followed by other isolated reasons such as recurrent 

dislocation (2/11), infection (1/11), pain (1/11), initial surgery error (1/11), chondral 

degeneration (1/11) and hip avulsion fracture (1/11). Of the hip revisions, two were 

MoM implants (including one resurfacing) (2/6) and four were MoP (4/6). The knee 

implants used for primary surgery were either the DePuy Press Fit Condylar® (2/5) or 

the Stryker Triathlon® (3/5), both of which contain cobalt-chrome components. There 

was limited clinical information available. Two patients had recorded cobalt and 

chromium serum tests, both of which were below the acceptable range dictated by the 

MHRA (119 nmol/L cobalt or 134 nmol/L chromium). Both patients had MoM implants 

for their primary surgery.  
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Table 5.2 Summary of patient clinical information 

Patient ID Hip/Knee 

Revision 

Implant Type Gender Age of 

Patient 

Implant in-

situ time 

(months) 

Cobalt/Chromium 

Test (nmol/L) 

Reason for revision 

1 Right Hip MoM 

(resurfacing) 

Male 51 96 48.2/31.8 Aseptic loosening 

2 Left Hip MoM  Male 80 240 12.3/12.3 Aseptic loosening 

3 Left Hip MoP  Female 63 30 N/A Recurrent dislocation 

4 Right Hip MoP Male 83 180 N/A Aseptic loosening 

5 Left Knee Press fit 

condylar  

Male 76 120 N/A Aseptic Loosening 

6 Right Knee Triathlon Female 62 102 N/A Infection 

7 Left Knee Triathlon Male 61 35 N/A Pain following re-surfacing of the patella 

8 Left Knee Press fit 

condylar 

Male 43 27 N/A Initial surgery unsuccessful – not securely 

implanted 

9 Right Knee Triathlon Male 44 98 N/A Chondral degeneration in the tibiofemoral 

10 Left Hip MoP Female 74 38 N/A Post-traumatic avulsion of hip 

11 Left Hip MoP Male 87 108 N/A Recurrent dislocation 
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5.4.4.2 Histological findings of periprosthetic soft tissue following revision 

surgery, H&E staining 

To visualise immune cell infiltrate in the perioprosthetic soft tissue, H&E staining was 

performed on FFPE sections as described in section 5.3.2. Representative images of 

staining are shown in Figure 5.9 to Figure 5.12. Most cases studied, seven out of 

eleven (63.64%), demonstrated large areas of immune cell infiltration (patients #1, 2, 

3, 5, 6, 8 and 10). However, in three of the eleven samples analysed (36.36%), few 

immune cells were observed in the soft tissue, as shown in representative images in 

Figure 5.12 (patients #4, 7, 9 and 11). Generally, there was considerable variability in 

the number and arrangement of inflammatory cells between samples.  
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Figure 5.9 Representative H&E images illustrating inflammatory infiltration I 

Representative H&E staining in FFPE patient tissues showing medium to high immune 
cell infiltrate (A) (x100) (B) (x200). Highlighted areas indicate presence of immune 
cells. 
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Figure 5.10 Representative H&E images illustrating inflammatory infiltration II 

Representative H&E staining in FFPE patient tissues showing high immune cell 
infiltrate (x200). (A) and (B) represent different tissue samples. Highlighted areas 
indicate presence of immune cells. 
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Figure 5.11 Representative H&E images illustrating inflammatory infiltration III 

Representative H&E staining in FFPE patient tissues showing high immune cell 
infiltrate (x400). (A) and (B) represent different tissue samples. Highlighted areas 
indicate presence of immune cells. 
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Figure 5.12 Representative H&E images illustrating inflammatory infiltration IV 

Representative H&E staining in FFPE patient tissues showing very low immune cell 
infiltrate (x200). (A) and (B) represent different tissue samples. 
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5.4.4.3 Histological findings of periprosthetic soft tissue following revision 

surgery, IHC staining 

To determine whether the inflammatory infiltrate observed in section 5.4.4.2 was more 

lymphocyte- or macrophage-dominant, IHC was performed on the same soft tissue 

samples using antibodies to T lymphocytes (CD3) and macrophages (CD68) as 

described in section 5.3.3. Controls for both CD3 and CD68 were performed on tonsil 

tissue (shown in Appendix B). Overall, the inflammatory infiltrate was primarily a 

combination of both lymphocytes and macrophages. 

Figure 5.13 and Figure 5.14 shows areas of tissue which were positive for T 

lymphocytes. There were seven soft tissue patient samples which had particularly high 

inflammatory cell infiltrate and of these seven, three were lymphocyte-dominant 

(patients #2, 5 and 10) (42.86%). A further two of these seven (28.57%) (patients #1 

and 8) were observed to be macrophage-dominant (representative images shown in 

Figure 5.15 and Figure 5.16). Therefore, the remaining two patient’s tissues were of 

a mixed population of both lymphocytes and macrophages (28.57%) (patients #3 and 

6). 

Of the cases which had relatively low cell infiltrate, two patients stained negatively for 

both cell types (patients #4 and 11) and two others stained weakly for macrophages 

and negative for lymphocytes (patients #7 and 9). 
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Figure 5.13 Representative IHC images illustrating T lymphocyte population I 

Representative IHC staining for CD3 in FFPE patient tissues (x400) (A) lower number 
of CD3 positive cells as indicated by brown staining of cell cytoplasm (B) higher 
number of CD3 positive cells as indicated by brown staining of cell cytoplasm. 
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Figure 5.14 Representative IHC images illustrating T lymphocyte population II 

Representative IHC staining for CD3 in FFPE patient tissues (A) (x400) medium 
number of CD3 positive cells as indicated by brown staining of cell cytoplasm (B) 
(x200) medium number of CD3 positive cells 
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Figure 5.15 Representative IHC images illustrating macrophage population I 

Representative IHC staining for CD68 in FFPE patient tissues (x400) (A) high number 
of CD68 positive cells as indicated by brown staining of cell cytoplasm (B) mid-high 
number of CD68 positive cells 
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Figure 5.16 Representative IHC images illustrating macrophage population II 

Representative IHC staining for CD68 in FFPE patient tissues (x400) (A) mid-high 
number of CD68 positive cells as indicated by brown staining of cell cytoplasm (B) 
lower number of CD68 positive cells. 
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5.4.4.4 Are T cells present in periprosthetic tissues proliferative? 

To assess whether the CD3 positive T cells observed in the periprosthetic tissues were 

proliferative or in a resting state, dual coloured IHC was performed using Ki67 as a 

nuclear marker of proliferation. Unfortunately, positive control images for dual staining 

were unavailable. This part of the study was undertaken in a small number of samples 

(patients #2, 5 and 6) which stained positive for CD3 and were either deemed to be 

lymphocyte-dominant or mixed. Figure 5.17A and Figure 5.17B shows representative 

staining for both CD3 and Ki67 positive cells but across all tissues analysed there did 

not appear to be any clear co-localisation of both. Some cells, in close proximity, 

appear to be potentially dual-coloured, however these are not clear (Figure 5.17B). 

These findings suggest that T cells resident in these patient tissues are resting rather 

than proliferative. 
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Figure 5.17 Representative images of CD3 and Ki67 dual coloured IHC staining 

Representative dual coloured IHC staining for CD3 (blue) and Ki67 (brown) in FFPE 
patient tissues (A) (x200) (B) (x400) Black arrows indicate Ki67 positive cells, red arrow 
indicates CD3 positive cells, green arrow indicates potential dual-positive cell 
population. 
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5.4.5 CoCr particles effect on cell migration of MG63 cells 

The effect of CoCr particles and CoCl2 on the migration of MG63 cells was assessed 

using a wound healing scratch assay as described in section 5.3.4. In untreated cells, 

the gap was reduced by an average of 27.34 ± 4.37% after 24 hours and 82.23 ± 3.22% 

following 48 hours (Figure 5.18 and Figure 5.19). LPS treatment (100ng/ml) 

significantly accelerated cell migration when cells were observed after 48 hours 

(100%), although there was no significant difference at 24 hours, 32 ± 2.06% 

(p=0.0033 and p=0.8533, respectively). Figure 5.18 clearly shows how confluent LPS 

treated cells were after 48 hours, with monolayers growing on top of each other when 

compared with untreated cells. 

CoCr particle treatment (50µm3 per cell) did not significantly affect the process of cell 

migration in comparison to unstimulated control cells at both time points; 15.28 ± 3.30% 

at 24 hours and 82.70 ± 9.16% at 48 hours (p=0.0584 and p=>0.9999, respectively). 

However, after 24 hours, CoCl2 (0.25mM) resulted in a significant deceleration of this 

process (p=0.0005). Following 48 hours, CoCl2 treated cells had completely lost their 

monolayer formation and adherence to the cell culture plate, suggesting cell death due 

to toxicity.  
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Figure 5.18 Effect of treatment with CoCr particles and CoCl2 on wound closure 
and migration in MG63 cells I 

Representative images of MG63 cells stimulated with either; LPS (100ng/ml), CoCr 
particles (50µm3 per cell) or CoCl2 (0.25mM). Effect on relative cell migration over 48 
hours using a scratch wound healing assay. Images are representative of 3 
independent experiments. Scale bars represent 400µm. 
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Figure 5.19 Effect of treatment with CoCr particles and CoCl2 on wound closure 
and migration in MG63 cells II 

MG63 cells were stimulated with either; LPS (100ng/ml), CoCr particles (50µm3 per 
cell) or CoCl2 (0.25mM). Effect on relative cell migration over 48 hours using a scratch 
wound healing assay. Graph is representative of 3 independent experiments. 
Statistical significance was calculated by one-way ANOVA with Tukey’s test for 
multiple comparisons comparing all samples to each other. 
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5.5 Discussion 

The aim of this chapter was to investigate the effect of CoCr particles on the immune 

response in endothelial cells, specifically the HMEC-1 cell line. Following on from these 

findings the second aim was to establish how this translates in vivo by histologically 

phenotyping soft tissue from patients who have received both hip and knee implants 

containing cobalt-chromium. An additional aim was to see how CoCr particles effect 

the migratory properties of an osteoblast-like cell line. 

Effect of CoCr particles on HMEC-1 cells and neutrophil chemotaxis 

Transendothelial migration of immune cells into tissues following cell adhesion is of 

importance in the context of this study, as it is known that pseudotumours formed due 

to ARMD display high immune cell infiltrate. Furthermore, results described in Chapter 

4 demonstrate increased expression of IL-8 (along with other chemokines) in response 

to CoCr particles which will increase the chemotaxis of neutrophils and other immune 

cells. Furthermore, cobalt ion- and CoCr particle-mediated chemokine and cytokine 

secretion has been hypothesised to increase adhesion molecule expression in vitro 

(ICAM-1 and VCAM-1) (Alinovi et al., 2015; Anjum et al., 2016). HMEC-1 cells were 

selected for this part of the study to model the endothelium which potentially becomes 

activated by CoCr particles, thus increasing neutrophil chemotaxis into peri-implant 

tissue via increased expression of adhesion molecules. HMEC-1 cells have been 

previously used by the group for similar studies involving CoCl2 and were readily 

available (Anjum et al., 2016; Lawrence et al., 2016a). 

Firstly, cell viability of HMEC-1 cells treated with a range of CoCr particles was 

assessed over 48 hours. Cell viability was significantly affected at both 24 and 48 hours 

at the two highest concentrations of CoCr particles (5 and 50µm3 per cell) but only 

following 48 hours of stimulation with the lowest concentration (0.5µm3 per cell) was 

viability significantly reduced. This reiterates reports of varied susceptibility of different 

cell types to the effects of CoCr particles, as for example, a dose of 50µm3 per cell was 

better tolerated in THP-1, MM6 and J774 macrophage cell lines in the previous chapter 

(Behl et al., 2013).  

The proliferative capacity of HMEC-1 cells following CoCr particle treatment was then 

assessed using the XTT assay. Interestingly, following 24 hours of stimulation, there 

was a significant increase in proliferation at 5µm3 CoCr particles per cell before a 



194 

 

decrease at 50µm3 per cell. This would suggest the cells are becoming somewhat 

activated by CoCr particles up until a certain concentration where cytotoxicity may then 

occur. HMEC-1 cells treated for 48 hours with CoCr particles confirmed this hypothesis 

as there was a dose-dependent downward trend of proliferation resulting in a 

significant decrease at 50µm3 particles per cell. This therefore reflects the results from 

assessment of cell viability. However, it was decided to continue with a concentration 

of 50µm3 CoCr particles per cell so maximal activation could be investigated as 

endothelial cells were likely to be less inflammatory than previously studied 

macrophage cells. This also meant treatments could be kept consistent throughout the 

study to draw comparisons.  

There is no evidence in the literature in respect to the uptake or internalisation of either 

wear debris or CoCr particles by endothelial cells by TEM. However, Alinovi et al. 

confirmed uptake of cobalt and titanium nanoparticles by flow cytometry (Alinovi et al., 

2015). Although not classically known to be phagocytic, endothelial cells have shown 

phagocytosis-like uptake of particles and bacteria (Serda et al., 2009; Rengarajan et 

al., 2016). Furthermore, it is hypothesised that phagocytosis by endothelial cells may 

also recruit immune cells to the vasculature, potentially by increased expression of pro-

inflammatory cytokines and chemokines such as IL-8 (Opitz et al., 2006). The TEM 

images from this study indicated that HMEC-1 cells could internalise CoCr particles 

following 24 hours of stimulation. The particles appeared to be similar to those 

phagocytosed by THP-1 macrophages; dense clusters within membrane bound 

vacuoles. Therefore, it is likely that CoCr particles will be inducing inflammatory or 

stress effects on endothelial cells as well as monocytes/macrophages in vivo.  

As discussed previously, interaction between leukocytes and endothelial cells is crucial 

to the process of leukocyte binding and migration into inflamed tissues. Importantly, 

one of the first steps of leukocyte adhesion to the endothelium requires the expression 

of ICAM-1 and VCAM-1. Therefore, HMEC-1 cells treated with CoCr particles were 

assessed for the expression of these adhesion molecules. The results demonstrated 

significantly increased expression of both ICAM-1 and VCAM-1, suggesting increased 

activation of endothelial cells following CoCr particle exposure. These findings are 

consistent with a recent study which showed increased ICAM-1 expression after 

monocyte exposure to cobalt ions (Laumonier et al., 2020). However, this does not 

necessarily translate to increased vascular permeability and immune cell chemotaxis. 
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Therefore, a neutrophil chemotaxis assay was used to determine whether endothelial 

activation by CoCr particles led to increased leukocyte migration. 

Neutrophil chemotaxis was selected for this study as results discussed previously in 

Chapter 4 indicate that IL-8 expression and secretion, which is particularly chemotactic 

for neutrophils, is significantly increased in response to CoCr particles. Neutrophil 

migration was significantly increased when HMEC-1 cells were treated with CoCr 

particles, indicating the activated endothelium did in fact lead to increased permeability 

and enhanced transendothelial migration. The results were comparable to those cells 

treated with the positive control, LPS. This data, however, was taken from only two 

independent experiments (two separate neutrophil donors). Therefore, caution must 

be taken when inferring significance from results and be repeated further to reach more 

meaningful conclusions. Previous investigations within the group have found 

conditioned supernatant from CoCl2-treated MM6 cells can significantly increase the 

chemotaxis of both neutrophils and monocytes (Lawrence et al., 2016a). However, this 

is the first study to show the physiological relevance of this by recreating the 

endothelium and determining how CoCr particles can affect this cell barrier. 

Histological findings of periprosthetic soft tissue following revision surgery 

The findings discussed so far suggest a role for possible endothelial activation as a 

result of CoCr particle stimulation which then increases expression of adhesion 

molecules and promote the migration of leukocytes such as neutrophils. Therefore, it 

would be expected that patients’ periprosthetic soft tissue would contain these types 

of immune cells. 

The purpose of analysing a small cohort of patients’ periprosthetic soft tissue was to 

compare the histology as part of a preliminary study to be further continued using a 

much larger cohort. Therefore, it is important to accept there are several limitations 

when attempting to draw meaningful conclusions from the findings represented, 

particularly due to the small sample size.  

Firstly, the patient clinical information was too variable for a cohort of its size. For 

example, inconsistencies with type of implant (hip or knee), material/manufacturer 

used and more important reason for revision. For this type of study, the reason for 

revision should be ideally aseptic loosening or signs of ARMD e.g. pseudotumour 

formation rather than infection, surgical error at primary surgery or fractures. However, 
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the histological methods employed in this study, H&E and IHC staining, were shown to 

be useful for identifying both immune cell infiltration and phenotyping of these cells. 

Therefore, as a pilot study, for both retrieval of tissue and subsequent analysis, proof-

of-concept was successfully achieved and could be continued to create a larger patient 

cohort in the future. Once a larger cohort of patient tissue is collected and stained 

perhaps a more quantitative measure of cell counting could be employed as opposed 

to the qualitative analysis used in this study. Semi-quantitative analysis could be 

employed using a ‘grading system’ in which H&E immune infiltrates as well as CD3 

and CD68 positive cells could be added together to give an overall score to determine 

the inflammatory status of each patient. This data could then be used to compare 

different patient groups and whether this is a link to increased inflammation, for 

example, gender, type of implant or reason for revision.  

There was one particular case of interest (patient #1) involving a 51-year-old male who 

had received a unilateral (right side) Birmingham Hip Resurfacing (BHR) MoM implant 

in primary surgery 9 years previously. The implant was revised due to aseptic 

loosening despite a relatively short duration, however, there is no information regarding 

activity levels of the patient. Cobalt and chromium ions levels in the serum were 

recorded on the day of revision surgery at 48.2 nmol/L and 31.8 nmol/L, respectively. 

These were considerably below the acceptable range dictated by the MHRA (119 

nmol/L cobalt or 134 nmol/L chromium). The tissue from this patient had significant 

areas of positive staining for both T cells and particularly macrophages, indicating a 

potential immune response.  

The majority of patients’ tissues (7 out of 11) had prominent immune cell infiltrate. 

However, even in cases of low cell infiltrate, two of these patients had a small number 

of macrophages staining positive. Overall, the findings were similar to other studies 

investigating similar patient cases, with a fairly even mixture of lymphocytes and 

macrophages between the cohort with most patients either being predominantly 

lymphocyte-dominant or macrophage-dominant (Campbell et al., 2010; Phillips et al., 

2014; Paukkeri et al., 2016). It has been hypothesised that general wear leading to 

aseptic loosening has a significantly lower population of lymphocytes compared to 

those patients suspected to have ARMD, and particularly ALVAL (Campbell et al., 

2010). 
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The dual coloured IHC to determine whether CD3 positive T cells were proliferating 

suggested that the cells were in a resting state. However, this was analysed in only 

three samples in this instance. The method employed did prove to be potentially useful 

for expansion as this could help gain further insight into the pathology of ALVAL 

reactions. For example, if T cells are activated and proliferating this would suggest 

contact hypersensitivity (delayed type IV reaction) plays a central role and metal ions 

or particles are working as haptens presented by antigen presenting cells. However, a 

study which treated isolated human lymphocytes with CoCr particles hypothesised the 

potential for T cell anergy, which describes a state of reduced function due to a 

tolerance mechanism following antigen encounter and therefore inhibition of 

proliferation (Posada et al., 2015). The authors found a decrease in proliferation, IL-2 

secretion and reduction in pro-inflammatory cytokines from lymphocytes in the 

presence of CoCr particles (Posada et al., 2015).  

The role of T cells in these responses could be further elucidated by staining 

specifically for CD4-positive T helper cells, which are specific for antigens presented 

by major histocompatibility complex II molecules (MHC II) or for CD8-positive cytotoxic 

T cells which function through major histocompatibility complex I molecules (MHC I), 

endogenously. Previous studies have shown an increased proportion of CD8-positive 

T cells and decreased ratio of CD4 to CD8 in patients with worn implants as well as a 

correlation between serum cobalt and chromium concentrations and percentage of 

CD8-positive cells (Case et al., 2000; Hailer et al., 2011). This is in agreement with a 

more recent study which incubated CoCr particles with blood samples from 25 donors 

and assessed T-cell phenotypes by IHC and flow cytometry (Du et al., 2018). 

Furthermore, CoCr particles injected into murine knee joints displayed a largely CD8-

positive T cell driven immune response rather than CD4-positive (Du et al., 2018). It 

could be that the cytotoxic effects caused by CoCr particles and cobalt ions activate 

MHC I molecules which increases CD8-positive T cell responses.  

Other studies have shown a link between cobalt and chromium ions from MoM 

resurfacing implants and a decreased lymphocyte population, particularly CD8-positive 

T cells (Hart et al., 2009). It has been hypothesised that cobalt ion-mediated 

cytotoxicity of T cells inhibits further T cell proliferation, thus lowering overall numbers 

(Akbar et al., 2011). It could be that although the overall population of CD8-positive T 

cells is decreased in comparison to healthy controls, it remains the most dominant T 
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cell response in the presence of CoCr particles and cobalt ions. Therefore, these 

findings make it clear further studies are required to elucidate the specific mechanisms 

of lymphocyte-mediated osteolytic responses.  

It would be interesting to also stain for other granulocytes such as neutrophils and 

eosinophils (e.g. CD15 and CD16) due to results from chemokine analysis (i.e. high 

expression of IL-8) as well as the enhanced neutrophil migration observed in the 

chemotaxis assay. Furthermore, RNA isolation from cells within the tissue would allow 

for the analysis of inflammatory markers of interest and how these are expressed. 

Unfortunately, there remains difficulties with obtaining appropriate control tissue to 

draw comparisons to healthy tissue. The most suitable control would be to obtain soft 

tissue in patients undergoing primary surgeries verses revision.  

Migratory capacity of osteoblast-like cells treated with CoCr particles 

The migratory capacity of MG63 cells was assessed by using a wound healing assay. 

Although the cell images appeared to show the migratory capacity of cells was reduced 

following CoCr particle treatment after 24 hours particularly, this did not reach statistical 

significance. However, the enhanced proliferative effect shown by treatment with LPS 

was not mirrored. Interestingly, treatment with CoCl2 almost completely abrogated 

migration of the cells and following 48 hours, the cells appeared to have suffered from 

cytotoxicity and were no longer adhered to the cell culture plate. This may have been 

due to the larger concentration of CoCl2 used for treatments in this series of 

experiments (0.25mM). However, this concentration has been tolerated by different 

cell lines previously such as MM6 and HMEC-1 (Lawrence et al., 2016a; Lawrence et 

al., 2016b), suggesting osteoblast-like cells are especially sensitive to CoCl2. 

The findings presented here are similar to those published by Drynda et al. who 

demonstrated the deceleration of migratory MG63 cells following CoCl2 treatment but 

this was not reflected with CoCr particle treatment (Drynda et al., 2018a). Furthermore, 

a study investigated the migrating ability of smooth muscle cells treated with CoCl2 and 

also found that migration was slowed as a result despite only a slight reduction in cell 

proliferation (Li and Wang, 2014). It would therefore be of interest to see how CoCr 

particles effect other pathways which are potentially involved such as TGF-/Smad3 

which regulates the secretion of collagens (Lin et al., 2017). The extracellular matrix, 

which includes molecules such as collagens, is known to influence cell migration 
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(Painter, 2009). A recent study found that collagen 1 synthesis was reduced after 

treatment with CoCl2 in human primary osteoblasts (Jonitz-Heincke et al., 2019). 

 

5.5.1 Future work 

The expression of ICAM-1 and VCAM-1 was increased by CoCr particles at gene level, 

however, the expression at protein level was not explored in this study. Therefore, it 

would be interesting to assess these changes either by flow cytometry or Western 

blotting. Furthermore, soluble ICAM-1 (sICAM-1) is a secreted form of the 

membranous adhesion molecule and could be measured by ELISA. Investigation by 

the group have previously shown CoCl2-mediated sICAM-1 expression is TLR4 

dependent (Anjum et al., 2016). sICAM-1 is thought to be a marker of endothelial 

activation as well as infection and inflammatory responses (Videm and Albrigtsen, 

2008; De Pablo et al., 2013). The expression of integrins LFA-1 and VLA-4 in 

leukocytes and how CoCr particles may affect their expression would also provide 

further insight into the processes of transendothelial migration. 

The chemotaxis assay data presented from this study indicated that CoCr particles 

could activate HMEC-1 cells to promote the migration of neutrophils. It would also be 

interesting for these experiments to be repeated using PBMCs to analyse the migration 

of monocytes/macrophages. Particularly, as these types of cells are found in such high 

numbers in the tissue of pseudotumours from patients with ARMD. The use of primary 

cells such as PBMCs and neutrophils adds complexity to these assays as there will be 

variability between donor cells meaning some may be more migratory than others. 

Therefore, the number of repeated independent experiments would likely have to be 

higher to account for this. Furthermore, it would be of interest to analyse the expression 

of specific chemokine receptors e.g. CXCR2 to determine whether there is a 

correlation between expression and migratory potential. It would also be interesting to 

use the TLR4 inhibitor, CLI-095 in the chemotaxis assay to see whether the CoCr 

particle-mediated endothelial activation is in fact TLR4 dependent. Furthermore, the 

inclusion of CoCl2 controls would provide further insight into whether the effect is due 

to cobalt ion release from the particles or direct. 

As discussed, the importance of generating a larger cohort of patient tissue to be 

analysed will strengthen the findings presented here. Once a larger cohort has been 
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analysed for immune cell infiltrate and the presence of both T cells and macrophages, 

this data can be semi-quantified to produce more meaningful conclusions as to 

whether certain implants or reasons for revision surgery are more closely associated 

with inflammatory responses. Future work should also focus on the potential of adding 

primary surgery patients to the tissue collection cohort as this could provide suitable 

control tissue to draw further comparisons. 

The migratory potential of MG63 cells demonstrated that CoCr particles did not 

significantly affect the closure of the scratch wound in comparison to untreated cells. 

However, it would be useful to study these osteoblast-like cells further to determine 

how the process of bone resorption is affected by CoCr particles and could be linked 

to increased osteolysis in cases of ARMD. For example, gene expression analysis of 

genes involved in osteogenesis such as TGF-, and other members of its superfamily 

such as bone morphogenetic proteins 4 and 5 (BMP4/5) could be investigated. For 

example, Zijlstra et al. also examined RNA levels of OPG and RANKL using qRT-PCR 

in cells treated with cobalt ions which would provide insight into this balance of bone 

resorption and formation (Zijlstra et al., 2012). 

 

5.5.2 Conclusion 

In summary, the data presented in this chapter shows that CoCr particles can activate 

the endothelium which can then lead to increased migration of leukocytes. Firstly, 

HMEC-1 cells treated with CoCr particles significantly increased expression of the 

adhesion molecules, ICAM-1 and VCAM-1. In a chemotaxis assay, an endothelial 

monolayer stimulated with CoCr particles lead to increased migration of neutrophils 

towards an IL-8 chemotactic gradient. These results suggest CoCr particles increase 

transendothelial migration of leukocytes into periprosthetic tissues by activating the 

endothelium, increasing adhesion molecule expression which results in leukocyte 

arrest and migration. It is likely that this response is also driven by inflammatory 

chemokine and cytokine secretion which has been shown to be increased following 

CoCr particle stimulation in the previous chapter. Ultimately, in the clinical context of 

ARMD, this process could contribute to the inflammatory cell infiltrate observed in the 

tissues of patients with pseudotumours. 
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Chapter 6 : Investigating the Biological Effects of Ceramic Oxides 

6.1 Introduction 

It is clear from the findings in previous chapters that CoCr particles and cobalt ions can 

activate the immune system through stimulation of receptors such as TLR4 which in 

turn promotes the secretion of pro-inflammatory cytokines and chemokines by both 

monocytes/macrophages. This leads to activation of the endothelium, promoting the 

migration of leukocytes from the circulation into inflamed tissues. These processes can 

therefore potentially explain some of the adverse reactions observed in patients who 

have received joint implants containing CoCr. 

As discussed in Chapter 1, these adverse reactions are not unique to CoCr-containing 

MoM implants and inflammatory pseudotumours have been shown to develop in 

patients who have received both CoP and CoC implants (Malem et al., 2013; Campbell 

et al., 2017; Serrano et al., 2018). Due to their increasing popularity, it is important to 

investigate the inflammatory potential of materials such as ZTA, which is used in 

ceramic implants. Furthermore, because ceramics are known to be very low-wearing 

in comparison to their MoP and MoM counterparts, it has been suggested that these 

materials are ‘bio-inert’. However, reports have shown ceramic wear debris in tissue of 

patients who have received ceramic implants suggesting that these implants may still 

produce significant wear debris accumulations over time (Bertrand et al., 2018; Rony 

et al., 2018). Bertrand et al. also looked at the effects of fibroblasts and PBMCs 

cultured on either alumina-toughened zirconia (ATZ) or ZTA ceramic surfaces and 

demonstrated increased expression of cytokines, particularly for ATZ ceramics when 

compared with ZTA (Bertrand et al., 2018). 

J774 mouse cells have been shown to increase their secretion of TNF- in response 

to alumina particles (Rodrigo et al., 2006). Furthermore, other mouse macrophage cell 

lines (e.g. RAW 264.7) have been shown to increase IL-6, ROS, NF-B as well as 

TNF- when stimulated with aluminium nanoparticles (Olivier et al., 2003; Nishanth et 

al., 2011). Therefore, J774 cells were used as a mouse macrophage cell model to 

determine whether ceramic oxides can up-regulate the inflammatory chemokine, CCL3 

in this species.  
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So far, very few studies of the biological effects of zirconium or alumina have been 

published. In the few that have, the results are usually dwarfed by comparisons made 

with CoCr or UHMWPE particles (Petit et al., 2002; Germain et al., 2003). Therefore, 

the techniques demonstrated in Chapter 4 were applied to investigate the biological 

response to both aluminium oxide (Al2O3) and zirconium oxide (ZrO2) nanopowders.  

 

6.2 Aims and Objectives 

The aim of this chapter was to establish the effects of ceramic oxides in the THP-1 

macrophage cell line by assessing toxicity and expression of pro-inflammatory 

chemokines. The TLR4 and NLRP3 inflammasome signalling pathways were 

investigated to determine their potential role in these responses. 

 

6.2.1 Objectives 

• To investigate the effect of ceramic oxides on THP-1 macrophage cell viability and 

proliferation 

• To establish whether THP-1 and HMEC-1 cells can phagocytose ceramic oxides 

• To establish which chemokines are significantly up-regulated in response to 

ceramic oxides in THP-1 cells 

• To investigate whether the use of a TLR4-specific inhibitor can prevent the 

inflammatory response mediated by ceramic oxides 

• To investigate whether ceramic oxides can activate the NLRP3 inflammasome 

complex 
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6.3 Specific Materials 

6.3.1 Ceramic oxides 

Both aluminium oxide (Al2O3) and zirconium(IV) oxide (ZrO2) (both Sigma Aldrich, 

USA) were tested for any endotoxin contamination (using the LAL assay described in 

section 3.4.5) to ensure responses observed were not due to LPS activation of TLR4. 

6.3.1.1 Aluminium oxide  

Al2O3 was used to replicate wear debris released from joint implants containing 

ceramics, specifically ZTA. The particles which make up the nanopowder are stated to 

be less than 50nm in size by the manufacturer. Cells were cultured with Al2O3 particles 

at volumes of 0.5µm3, 5µm3 and 50µm3 per cell using the calculation specified in 

Appendix A.  

6.3.1.2 Zirconium(IV) oxide 

ZrO2 was used to replicate wear debris released from joint implants containing 

ceramics, specifically ZTA. The particles which make up the nanopowder are stated to 

be less than 100nm in size by the manufacturer. Cells were cultured with ZrO2 particles 

at volumes of 0.5µm3, 5µm3 and 50µm3 per cell using the calculation specified in 

Appendix A. 

  



204 

 

6.4 Results 

6.4.1 TEM images of ceramic oxide nanopowders 

High magnification TEM was used (x100K) to characterise both the Al2O3 and ZrO2 

nanopowders purchased for in vitro cell treatments (Figure 6.1 and Figure 6.2). 

Figure 6.1 demonstrates individual aluminium oxide particles, which are mostly ‘shard 

like’ rather than spherical in morphology and form agglomerations and aggregates of 

particles. It is possible to identify single particles which are less than 50nm from the 

scale bar which confirms the manufacturer’s specifications and suitability for the study 

in which nanoparticles are preferred. 

Zirconium oxide particles were imaged as shown in Figure 6.2 and demonstrate a very 

different morphology to that of aluminium. The particles appear to be much denser in 

appearance with globular/round morphology. The particles are uniform in their 

morphology and size which again appear to be under 50nm for individual particles as 

demonstrated by the scale bar. Therefore, being nanoscale in their size, these particles 

were also deemed appropriate for the study. 
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Figure 6.1 Transmission electron microscopy using high magnification to 
visualise and characterise individual aluminium oxide particles 

Representative images of aluminium oxide particles (x100K). Scale bars represent 
50nm.  
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Figure 6.2 Transmission electron microscopy using high magnification to 
visualise and characterise individual zirconium oxide particles  

Representative images of zirconium oxide particles (x100K). Scale bars represent 
50nm.  

 

6.4.2 Effect of ceramic oxides on THP-1 cell viability 

The viability of THP-1 cells treated with ceramic oxides was assessed by trypan blue 

staining and an XTT proliferation assay.  

6.4.2.1 Trypan blue staining 

Activated THP-1 cells were treated for 24 hours with varying concentrations of either 

Al2O3 or ZrO2 (0.5 to 50µm3 particles per cell) and assessed for viability using trypan 

blue exclusion as described in section 2.5.1. There was no significant differences in 

cell viability following treatment for both Al2O3 or ZrO2 across all concentrations (Figure 

6.3). At the highest concentration of 50µm3 particles per cell, Al2O3 treated cells had a 

viability of approximately 92% (p=0.5984) and in ZrO2 treated cells, 87% (p=0.1142). 
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Given that previous CoCr treatments were optimised for 24 hours and there was no 

significant effect on cell viability, the same treatments and time point were investigated 

for cellular proliferation by XTT assay. 
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Figure 6.3 THP-1 cell viability Al2O3 and ZrO2 dose response at 24 hours 
determined by trypan blue staining 

Activated THP-1 cells were assessed for viability following stimulation with varying 
concentrations of Al2O3 or ZrO2 (0.5 to 50µm3 particles per cell) for 24 hours using 
trypan blue staining. Viability was not significantly affected across all concentrations of 
Al2O3 and ZrO2. Data were normalised to 100% viability in untreated cells. Graph is 
representative of 3 independent experiments. Statistical significance was calculated 
by one-way ANOVA with Dunnett’s multiple comparisons test comparing treated 
samples to the untreated control. These experiments were conducted in collaboration 
with MRes student Shannon Jamieson, who worked under my guidance. 
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6.4.2.2 XTT proliferation assay 

The proliferation of activated THP-1 cells was evaluated using the XTT proliferation 

assay as described in section 2.5.2. Cells were treated with varying concentrations of 

either Al2O3 or ZrO2 (0.5 to 50µm3 particles per cell) for 24 hours and proliferation 

assessed 24 hours after the addition of the XTT reagent (Figure 6.4). 

Following 24 hours of stimulation with Al2O3, there was a significant increase in 

proliferation of THP-1 cells across all concentrations (0.5µm3 particles per cell 

p=0.0006, 5µm3 per cell p=0.0002 and 50µm3 per cell p=0.0021). Similarly, for ZrO2 

treatments, all concentrations significantly increased proliferation of THP-1 cells 

(0.5µm3 particles per cell p=0.0083, 5µm3 per cell p=0.0015 and 50µm3 per cell 

p=0.0041). 

The results from Figure 6.3 and Figure 6.4 indicate that similarly to CoCr particle 

treatments, the 24-hour treatment time and a dose of 50µm3 particles per cell did not 

affect the viability of THP-1 cells and we could therefore use these conditions in 

subsequent investigations. 
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Figure 6.4 Proliferation of THP-1 cells following exposure to Al2O3 and ZrO2 for 
24 hours 

THP-1 cells were stimulated for 24 hours with treatments prior to the addition of XTT 
reagent for a further 24 hours to assess proliferation. Graph is representative of 3 
independent experiments. Statistical significance was calculated by one-way ANOVA 
with Dunnett’s multiple comparisons test comparing treated samples to the untreated 
control. These experiments were conducted in collaboration with MRes student 
Shannon Jamieson, who worked under my guidance. 
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6.4.3 Uptake of ceramic oxides by macrophage and endothelial cells 

Cells (either THP-1 macrophages or HMEC-1 endothelial cells) were treated with Al2O3 

or ZrO2 (50µm3 particles per cell) for 24 hours and imaged using TEM as described in 

section 2.6.  

6.4.3.1 THP-1 cells 

The images shown in Figure 6.5 to Figure 6.8 clearly show differentiated THP-1 cells 

in a macrophage-state can phagocytose both Al2O3 and ZrO2. Similarly, to results 

found with CoCr particle treatment, aggregates of both Al2O3 and ZrO2 were observed 

in distinct membrane bound vacuoles (as shown in Figure 6.6 and Figure 6.8, 

respectively). It is likely these vacuoles are phagosomes, endosomes and eventually 

fused with lysosomes in an attempt to break down the phagocytosed particles. There 

is also evidence of pseudopodia, indicating the THP-1 macrophages are in an 

activated inflammatory state.  
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Figure 6.5 Transmission electron microscopy of THP-1 cells treated with Al2O3 

Representative TEM images of THP-1 cells activated with 5ng/ml PMA and treated 
with Al2O3 (50µm3 particles per cell). (C) Arrows indicate the presence of pseudopodia. 
(D) Arrows point to examples of aggregates and agglomerates of aluminium oxide 
particles within distinct membrane bound vacuoles. Scale bars represent either 2µm 
(A)-(B) or 1µm (C)-(D). 
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Figure 6.6 Transmission electron microscopy displaying aggregates of Al2O3 

within vacuoles of THP-1 cells  

Representative TEM images of THP-1 cells activated with 5ng/ml PMA and treated 
with Al2O3 (50µm3 particles per cell). Arrows point to examples of aggregates and 
agglomerates of aluminium oxide particles within distinct membrane bound vacuoles. 
Scale bars represent either 1µm (A) or 500nm (B)-(C). 

 



214 

 

 

Figure 6.7 Transmission electron microscopy of THP-1 cells treated with ZrO2 

Representative TEM images of THP-1 cells activated with 5ng/ml PMA and treated 
with ZrO2 (50µm3 particles per cell). Arrows point to examples of aggregates and 
agglomerates of zirconium oxide particles within distinct membrane bound vacuoles. 
Scale bars represent either 2µm (A) and (D) or 1µm (B) and (C). 
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Figure 6.8 Transmission electron microscopy displaying aggregates of ZrO2 
within phagosomes of THP-1 cells 

Representative TEM images of THP-1 cells activated with 5ng/ml PMA and treated 
with ZrO2 (50µm3 particles per cell). Arrows point to examples of aggregates and 
agglomerates of zirconium oxide particles within distinct membrane bound vacuoles. 
Scale bars represent 500nm (A)-(D)  

 

6.4.3.2 HMEC-1 cells 

Figure 6.9 and Figure 6.10 represent TEM images of HMEC-1 cells treated with either 

Al2O3 or ZrO2 (50µm3 particles per cell) for 24 hours, respectively. Again, there was 

evidence that HMEC-1 cells can phagocytose ceramic oxides, as shown by aggregates 

within distinct vacuoles. However, these vacuoles were generally in fewer numbers 

compared to THP-1 cells treated with ceramic oxides, particularly for Al2O3 treatments. 
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Figure 6.9 Transmission electron microscopy of HMEC-1 cells treated with Al2O3 

Representative TEM images of HMEC-1 cells treated with Al2O3 (50µm3 particles per 
cell). Arrows point to examples of aggregates and agglomerates of aluminium oxide 
particles within distinct membrane bound vacuoles. Scale bars represent 2µm (A)-(D). 
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Figure 6.10 Transmission electron microscopy of HMEC-1 cells treated with ZrO2 

Representative TEM images of HMEC-1 cells treated with ZrO2 (50µm3 particles per 
cell). Arrows point to examples of aggregates and agglomerates of zirconium oxide 
particles within distinct membrane bound vacuoles. Scale bars represent either 2µm 
(A)-(C) or 1µm (D). 

 

6.4.4 Effect of ceramic oxides on THP-1 cells 

THP-1 macrophages were shown to phagocytose ceramic oxides without any 

significant effect to cell viability or proliferation at a concentration of 50µm3 particles per 

cell. Therefore, the effect of ceramic oxides on the protein and gene expression of 

inflammatory chemokines and cytokines was assessed in THP-1 cells. 

 

6.4.4.1 Inflammatory and chemotactic protein secretion 

Differentiated THP-1 cells were treated with varying concentrations of either Al2O3 or 

ZrO2 (0.5 to 50µm3 particles per cell) for 24 hours and then the supernatant analysed 

by ELISA for IL-8, CCL2, CCL3 and CCL4 protein secretion as described in section 
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2.8.1 (Figure 6.11). Stimulation for a duration of 24 hours was optimised by MRes 

student Shannon Jamieson (data not shown). LPS (10ng/ml) was used as a positive 

control throughout all experiments.  

Similarly, to results from CoCr particle treatments, IL-8 was the most significantly 

increased chemokine following treatment with both Al2O3 and ZrO2, reaching a maximal 

concentration of approximately 5000pg/ml for both treatments at 50µm3 particles per 

cell. This was significant in comparison to untreated THP-1 cells (both p<0.0001).  

CCL2 secretion reached a maximal concentration of approximately 850pg/ml following 

stimulation with ZrO2 (p<0.0001) and approximately 500pg/ml with Al2O3 treatment 

(p=0.0141) (both 50µm3 particles per cell). CCL3 secretion was also significantly up-

regulated in response to both Al2O3 and ZrO2 at the largest concentration of particles 

investigated (50µm3 per cell) (both p<0.0001). Interestingly for CCL4, the middle 

concentration of ZrO2 (5µm3 particles per cell) also significantly increased secretion 

(p=0.0057) as well as at 50µm3 particles per cell (p<0.0001). Treatment with Al2O3 

(50µm3 per cell) increased CCL4 secretion to approximately 1300pg/ml which was 

almost double untreated THP-1 cell concentrations (750pg/ml) (p<0.0001).  
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Figure 6.11 Al2O3 and ZrO2 particle dose response in THP-1 cells, assessment of 
inflammatory proteins 

Activated THP-1 cells were treated with different doses of either Al2O3 or ZrO2 (0.5 to 
50µm3 particles per cell) or LPS (10ng/ml) for 24 hours and changes to inflammatory 
protein expression assessed by ELISA. Graph is representative of 3 independent 
experiments. Statistical significance was calculated by one-way ANOVA with Dunnett’s 
multiple comparisons test comparing treated samples to the untreated control. These 
experiments were conducted in collaboration with MRes student Shannon Jamieson, 
who worked under my guidance. 

 

6.4.4.2 Inflammatory and chemotactic gene expression 

THP-1 cells were also assessed for changes to gene expression following treatment 

with either Al2O3 or ZrO2 (0.5 to 50µm3 particles per cell) for 24 hours (this time point 

was optimised by MRes student Shannon Jamieson, data not shown). After 

stimulation, RNA was extracted from cells, cDNA synthesised and qRT-PCR used to 

analyse relative gene expression as described in section 2.7. 



220 

 

Figure 6.12 summarises the changes observed to the gene expression of IL-8, CCL2, 

CCL3 and CCL4. Following treatment with both Al2O3 and ZrO2 (both 50µm3 particles 

per cell) there was a significant increase in IL-8 expression with a 5-fold increase for 

Al2O3 and 10-fold increase for ZrO2 when compared to untreated control THP-1 

macrophages (both p<0.0001). 

Interestingly, CCL2 was the gene with the highest fold-change following THP-1 cell 

treatments, 24-fold for Al2O3 and 36-fold for ZrO2 (both 50µm3 particles per cell and 

p<0.0001). In fact, there was a significant increase in CCL2 expression across all 

concentrations of ZrO2 (0.5µm3 particles per cell, p=0.0025 and 5µm3 particles per cell, 

p<0.0001). 

For CCL3 expression, only the highest concentration of ZrO2 (50µm3 particles per cell) 

elicited a significant increase, reaching an 11-fold increase compared to untreated 

THP-1 macrophages (p=0.0020). Although there was a 6-fold increase in CCL3 

expression following Al2O3 stimulation, this did not reach statistical significance 

(p=0.2068). 

CCL4 expression was significantly up-regulated following treatment with both Al2O3 

and ZrO2 (both 50µm3 particles per cell). There was a 3-fold increase for Al2O3 

(p=0.0005) and a 7-fold increase for ZrO2 treatment in comparison to untreated THP-

1 macrophages (p<0.0001). 
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Figure 6.12 Al2O3 and ZrO2 particle dose response in THP-1 cells, assessment of 
inflammatory gene expression 

Activated THP-1 cells were treated with different doses of either Al2O3 or ZrO2 (0.5 to 
50µm3 particles per cell) or LPS (10ng/ml) for 24 hours and changes to inflammatory 
gene expression assessed by qRT-PCR. Gene expression normalised to untreated 
control, set to 1. Graph is representative of 3 independent experiments. Statistical 
significance was calculated by one-way ANOVA with Dunnett’s multiple comparisons 
test comparing treated samples to the untreated control. These experiments were 
conducted in collaboration with MRes student Shannon Jamieson, who worked under 
my guidance. 

 

6.4.5 The role of TLR4 in ceramic oxide-mediated inflammation 

Due to the findings presented in Chapter 4 regarding the role of the TLR4 pathway in 

CoCr particle-mediated inflammation, it was of interest to see whether the observed 

increases in chemokine expression following ceramic oxide stimulation in THP-1 

macrophages was also TLR4 dependent. 
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Activated THP-1 cells were pre-treated with the TLR4 small molecule antagonist, CLI-

095 (1µg/ml) for 6 hours prior to stimulation with either Al2O3 or ZrO2 (50µm3 particles 

per cell) for 24 hours and expression of IL-8 analysed by both qRT-PCR and ELISA 

(Figure 6.13). Treatment with LPS (10ng/ml) was again used as a positive control 

throughout which demonstrated a significant decrease in IL-8 expression and secretion 

in cells which were pre-treated with CLI-095 (both p<0.0001). There was also no 

significant change in untreated cells treated with and without CLI-095 (both p>0.9999). 

For THP-1 macrophages stimulated with Al2O3 and ZrO2, there was also significant 

decreases in IL-8 gene expression when cells were pre-treated with CLI-095 (p=0.0070 

and p=0.0065, respectively) (Figure 6.13A). These findings were reflected when 

analysing IL-8 protein secretion which was also significantly reduced when THP-1 cells 

were pre-treated with CLI-095 then received stimulation with both Al2O3 and ZrO2 (both 

p<0.0001) (Figure 6.13B). Secretion in this instance dropped to concentrations 

observed in untreated THP-1 macrophages (approximately 1000pg/ml). 
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Figure 6.13 Effect of TLR4 inhibition in Al2O3 and ZrO2 treated THP-1 cells, 
assessment of IL-8 gene and protein expression 

Activated THP-1 cells were pre-treated with CLI-095 (1µg/ml) for 6 hours then 
stimulated with either LPS (10ng/ml), Al2O3 or ZrO2 (both 50µm3 particles per cell) for 
24 hours. (A) IL-8 expression was measured using qRT-PCR. (B) Changes to IL-8 
protein expression was assessed by ELISA. Gene expression normalised to untreated 
control, set to 1. Graph is representative of 3 independent experiments. Statistical 
significance was calculated by one-way ANOVA with Tukey’s test for multiple 
comparisons comparing all samples to each other. These experiments were conducted 
in collaboration with MRes student Shannon Jamieson, who worked under my 
guidance. 
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6.4.6 Mouse macrophage inflammatory response to CoCr particles 

6.4.6.1 CCL3 dose response 

Results from Chapter 4 indicated that CoCr particles could cause a small but 

significant increase in CCL3 secretion from J774 mouse macrophages whereas CoCl2 

could not. Therefore, it was of interest to determine whether Al2O3 and ZrO2 could also 

activate murine macrophages.  

J774 cells were stimulated for 24 hours with either; a range of Al2O3 and ZrO2 particle 

concentrations (0.5µm to 50µm3 per cell) or 10ng/ml LPS. CCL3 concentration was 

measured by ELISA using supernatants from stimulated cells (Figure 6.14). Following 

treatment with LPS, CCL3 protein secretion was significantly increased to 

approximately 10,000pg/ml (p<0.0001). The highest dose of Al2O3 (50µm3 particles per 

cell) significantly increased CCL3 secretion to a similar concentration observed in LPS-

treated cells (p<0.0001). There were significant increases in CCL3 secretion in all ZrO2- 

concentrations used for treatments, up to a maximum of 11,000pg/ml at 50µm3 

particles per cell (p<0.0001). 
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Figure 6.14 Al2O3 and ZrO2 dose response in mouse J774 cells - assessment of 
CCL3 protein expression 

J774 macrophage cells were treated with either; LPS (10ng/ml), or different doses of 
Al2O3 or ZrO2 (0.5 to 50µm3 particles per cell) for 24 hours and changes to CCL3 protein 
expression assessed by ELISA. Graph is representative of 3 independent experiments. 
Statistical significance was calculated by one-way ANOVA with Dunnett’s multiple 
comparisons test comparing treated samples to the untreated control. 

 

6.4.6.2 Effect of TLR4 inhibition on CCL3 protein secretion 

To determine whether the observed significant increase in CCL3 secretion following 

Al2O3 and ZrO2 stimulation was TLR4 dependent, the small molecule TLR4 antagonist, 

CLI-095 was used in further J774 cell treatments. The same protocol is described in 

section 6.4.6.1, however, prior to the addition of stimulants for 24 hours, some cells 

were pre-treated with 1µg/ml CLI-095 for 6 hours. CCL3 protein secretion was then 

quantified by ELISA (Figure 6.15). 

In LPS stimulated cells, there was a significant decrease in CCL3 protein expression 

with the addition of CLI-095 (p<0.0001). There were also significant decreases in CCL3 

secretion in both Al2O3 and ZrO2 treatments in the presence of CLI-095 (p=0.0014 and 

p=0.0113, respectively). 
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Figure 6.15 Effect of TLR4 inhibition in Al2O3 and ZrO2 treated J774 cells, 
assessment of CCL3 protein expression 

J774 macrophage cells were pre-treated with CLI-095 (1µg/ml) for 6 hours then 
stimulated with either LPS (10ng/ml), Al2O3 or ZrO2 (both 50µm3 particles per cell) for 
24 hours. CCL3 protein expression assessed by ELISA. Graph is representative of 3 
independent experiments.  Statistical significance was calculated by one-way ANOVA 
with Tukey’s test for multiple comparisons comparing all samples to each other. 

 

6.4.7 The role of the inflammasome in ceramic oxide-mediated inflammation 

Supernatant from Al2O3 and ZrO2-treated THP-1 macrophages was analysed on the 

MSD U-PLEX assay for the expression of chemokine and cytokine targets described 

in section 4.3.2 (data not shown). As there was a significant increase in IL-

1 secretion, the activation of the NLRP3 inflammasome was assessed as discussed 

in section 4.4.10. Briefly, Al2O3 or ZrO2 were either substituted as the first ‘priming’ 

PAMP signal in place of LPS followed by treatment with ATP to allow full NLRP3 

activation. Or, LPS was used as the priming signal followed by stimulation with Al2O3 

or ZrO2 particles; thereby acting as a DAMP inducer. IL-1 protein secretion was 

assessed by ELISA from the supernatants of treated THP-1 cells and qRT-PCR was 

used to analyse IL-1 gene expression. 

Firstly, activated THP-1 cells were treated with either LPS (10ng/ml), Al2O3 or ZrO2 

(both 50µm3 particles per cell) for 23 hours to replicate the initial ‘priming’ signal of 

NLRP3 activation. The second activation signal was then induced by the addition of 
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ATP (5mM) for 1 hour. Following this stimulation, the expression of IL-1 was 

quantified using ELISA and qRT-PCR (Figure 6.16).  

For IL-1 expression, THP-1 macrophages stimulated with Al2O3 or ZrO2 only, did not 

demonstrate any significant increase, remaining at untreated cell levels (p=0.1823 and 

p=0.1291, respectively) (Figure 6.16A). However, with the addition of ATP, IL-

1 expression was significantly increased approximately 4-fold for Al2O3 treated cells 

(p=0.0002) and 4.5-fold for ZrO2 treatments (p<0.0001) in comparison to cells treated 

with ATP only. There was no significant difference in IL-1 expression between 

untreated cells with and without ATP (p=0.0642). 

IL-1 protein secretion, as measured by ELISA, demonstrated a similar trend to gene 

expression (Figure 6.16B). However, there was a small but significant increase in 

THP-1 macrophages which received ATP treatment only (p=0.0202). Again, THP-1 

macrophages stimulated with Al2O3 or ZrO2 only, did not demonstrate any significant 

increase, remaining at untreated cell levels (p=0.1657 and p=0.4786, respectively). IL-

1 protein secretion reached a maximal peak of approximately 100pg/ml for both Al2O3 

and ZrO2 treatments which were then stimulated with ATP. This was a significant 

increase in comparison to untreated cells with the addition of ATP for 1 hour (both 

p<0.0001). 
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Figure 6.16 IL-1 gene and protein expression following Al2O3 or ZrO2 stimulation 
and ATP treatment in THP-1 cells 

Activated THP-1 cells were either left untreated or stimulated with either LPS 
(10ng/ml), Al2O3 or ZrO2 (both 50µm3 particles per cell) for 23 hours. Cells were then 

treated with ATP (5mM) for 1 hour before IL-1 gene expression was analysed by qRT-

PCR (A) or IL-1 protein expression assessed by ELISA (B). Gene expression 
normalised to untreated control, set to 1. Graph is representative of 3 independent 
experiments. Statistical significance was calculated by one-way ANOVA with Dunnett’s 
multiple comparisons test comparing treated samples to the untreated control with ATP 
and Tukey’s test for multiple comparisons comparing all samples to each other. These 
experiments were conducted in collaboration with MRes student Shannon Jamieson, 
who worked under my guidance. 
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To establish whether Al2O3 and ZrO2 were stimulating THP-1 cells as a DAMP-inducer 

rather than a PAMP-stimulus, LPS-treated cells were followed by a 1 hour stimulation 

with either Al2O3 or ZrO2 (i.e. to be used in place of ATP). Therefore, THP-1 cells were 

treated with 10ng/ml LPS for 23 hours and then stimulated for 1 hour either with ATP 

(5mM), Al2O3 or ZrO2 (both 50µm3 particles per cell) (Figure 6.17). LPS treatment 

followed by ATP stimulation led to the largest increases in IL-1 gene and protein 

expression. When THP-1 cells were firstly treated with LPS and then with Al2O3 there 

was no significant difference in IL-1 gene expression or protein secretion when 

compared to LPS alone (p=0.1367 and p=0.2975, respectively). However, there were 

significant increases in both IL-1 gene and protein expression following the addition 

of ZrO2 for 1 hour after 24 hours of LPS stimulation (p<0.0001 and p=0.0018, 

respectively).  
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Figure 6.17 IL-1 gene and protein expression following LPS treatment and Al2O3 
or ZrO2 stimulation in THP-1 cells 

Activated THP-1 cells were either left untreated or stimulated with LPS (10ng/ml) for 
23 hours. Cells were then treated with either; ATP (5mM), Al2O3 or ZrO2 (both 50µm3 

particles per cell) for 1 hour before IL-1 gene expression was analysed by qRT-PCR 

(A) or IL-1 protein expression assessed by ELISA (B). Gene expression normalised 
to untreated control, set to 1. Graph is representative of 3 independent experiments. 
Statistical significance was calculated by one-way ANOVA with Dunnett’s multiple 
comparisons test comparing treated samples to LPS-stimulated only cells and Tukey’s 
test for multiple comparisons comparing all samples to each other. 
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6.5 Discussion 

Characterisation of ceramic oxide nanoparticles 

The ceramic oxides used for this part of the study, Al2O3 and ZrO2, were characterised 

using TEM to determine their size and shape. As expected, the images revealed 

particles were all nanometre in size. However, Al2O3 nanoparticles were shard-like in 

appearance and ZrO2 nanoparticles displayed a round morphology. Interestingly, it is 

believed that clinically-relevant alumina wear particles have a bimodal size distribution, 

with some nanometre sized (5-90nm) particles and some larger particles (0.2-10µm) 

observed by SEM and TEM (Tipper et al., 2002). A study compared responses from 

PBMCs challenged with either clinically-relevant alumina wear particles as described 

above or with alumina nanopowder, with uniform morphology and nanometre in size 

(similar to the one used in this study) (Hatton et al., 2003). Significantly higher volumes 

of the clinically-relevant particles than the alumina powder were required to stimulate 

TNF- secretion (Hatton et al., 2003). The authors hypothesised this was due to the 

clinically-relevant particles having fewer particles in the size range most likely to be 

phagocytosed by cells (0.1-1µm) (Green et al., 2000). 

Therefore, the ceramic oxide nanopowders used in this study offer an in vitro model 

for ceramic wear debris particles but cannot be classified as accurately clinically-

relevant. However, the size range observed by TEM means they are within the critical 

size range required for macrophage activation. 

Cytotoxicity of ceramic oxides 

A previous study has shown that ceramic particles do not reduce viability of fibroblasts 

and only at a high concentration of 50µm3 particles per cell was viability reduced in a 

macrophage cell line following 48 hours of stimulation (Germain et al., 2003). In this 

study, both Al2O3 and ZrO2 did not affect THP-1 macrophage cell viability when treated 

for 24 hours. Therefore, it would be interesting to treat the THP-1 cells for a longer 

period (e.g. 48 hours) to determine whether this would cause cytotoxicity. Similarly to 

the findings presented here, Radziun et al. found that 24 hours of cell exposure to 

Al2O3 did not decrease cell viability (Radziun et al., 2011).  

Alumina particles have consistently demonstrated increased cytotoxicity for 

macrophages than fibroblasts in previous studies (Olivier et al., 2003; Tsaousi et al., 

2010). It is likely that macrophages such as THP-1 cells are more susceptible to the 
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effects of Al2O3 and ZrO2 as they more actively phagocytic in comparison to other cell 

types such as fibroblasts. This was emphasised by TEM images of both THP-1 and 

HMEC-1 cells treated with Al2O3 and ZrO2 as it appeared the THP-1 cells had 

phagocytosed a greater volume of particles compared to the HMEC-1 cells. 

Assessment of HMEC-1 cytotoxicity following ceramic oxide treatment would provide 

further insight into this hypothesis.  

Studies have demonstrated the potential for primary fibroblasts and J774 

macrophages to engulf both aluminium and zirconium nanoparticles in endocytosis 

vesicles (Hashimoto and Imazato, 2015; Faye et al., 2017). A study comparing 

internalisation of different sized Al2O3 particles indicated that with decreasing particle 

diameter more particles were internalised, particularly those less than 100nm (the size 

of particles used in this study) (Bohme et al., 2014). These findings are supported by 

the fact ceramic wear debris have been observed in the peri-prosthetic tissues of 

patients with CoC implants and appear to be engulfed by macrophages (Rony et al., 

2018).  

Interestingly, the proliferation of THP-1 cells, assessed by XTT assay, appeared to 

significantly increase when treated with both Al2O3 and ZrO2. Roualdes et al. also found 

that Al2O3 and ZrO2 particle slightly increased fibroblast proliferation using a similar 

assay used here (Roualdes et al., 2010). Furthermore, another study showed increase 

in proliferation of monocytes treated with ZrO2 at low concentrations (Dalal et al., 

2012). However, the duration of cell treatments in these studies were 3 and 48 hours, 

respectively, and in this study for 24 hours. Whereas, a study which treated an 

epithelial cell line with Al2O3 found that proliferation reduced by day 5 of exposure (Wei 

et al., 2014). Therefore, investigating the proliferative capacity of THP-1 cells over a 

longer time could also be useful.  

Ceramic oxide-mediated chemokine expression 

In this study, THP-1 macrophages stimulated with both Al2O3 and ZrO2 demonstrated 

significant increases in chemokine gene expression and protein secretion (IL-8, CCL2, 

CCL3 and CCL4). This finding is consistent with a previous study which observed 

increased IL-8 and CCL2 secretion from primary human macrophages treated with 

alumina particles (Kaufman et al., 2008). Interestingly, Klinder et al. demonstrated a 

greater induction of IL-8 expression from ceramic particles compared to CoCr particles 

in human osteoblasts (Klinder et al., 2018). Furthermore, CCL2 concentrations in the 
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synovial fluid of patients are found to be significantly higher in patients with CoC 

implants compared to controls (Montesi et al., 2012). This highlights the importance of 

investigating the biological effects of ceramics used in CoP and CoC implants as their 

popularity increases. The notion that these materials are considered highly 

biocompatible can be brought into question given the results presented here and from 

others. 

However, it is important to note that wear from CoP and CoC implants is significantly 

lower than their MoP and MoM counterparts so any adverse effects from wear debris 

may take considerably longer to come to fruition. For example, in a patient cohort 

study, only 18% of patients with a CoC implant had elevated levels of serum aluminium, 

emphasising the low corrosion level (Savarino et al., 2006). For that reason, the 

concentrations used in this study (50µm3 particles per cell) for in vitro cell treatments 

may be considerably higher than what is experienced in vivo. Nevertheless, despite 

the general low wear rates from CoP and CoC implants, these prostheses have 

reported cases of osteolysis and pseudotumour formation (Campbell et al., 2017; 

Serrano et al., 2018). Therefore, understanding the biological effects of ceramics at 

high concentrations may be beneficial in understanding these more extreme cases.  

The increased expression of the chemokine IL-8 following Al2O3 and ZrO2 stimulation 

was found to be largely TLR4-dependent as inhibiting TLR4 signalling significantly 

reduced these observed increases. The role of TLR4 in biological responses to 

ceramics has not been investigated extensively by other groups. Zirconium particles 

have been reported to increase TLR4, MyD88, TRIF and NF-B gene expression in 

isolated mouse macrophages (Obando-Pereda et al., 2014). The authors also found 

increased expression of TNF-a, IL-1 and IL-6. Therefore, this is the first study to 

demonstrate that TLR4 plays a central role in ceramic oxide-mediated chemokine 

expression in a human macrophage cell line. 

Results from this study also indicated that both Al2O3 and ZrO2 could perpetuate an 

inflammatory response in J774 mouse macrophages, as measured by CCL3 secretion. 

This is perhaps unsurprising given that many other studies investigating the biological 

effects of ceramics have used this cell line and other similar (e.g. RAW 264.7 cells) as 

an in vitro model (Petit et al., 2002; Rodrigo et al., 2006; Nishanth et al., 2011). For 

example, studies have reported an increase in TNF- secretion when J774 cells were 

incubated with alumina particles (Petit et al., 2002; Rodrigo et al., 2006). As both Al2O3 
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and ZrO2 could significantly increase CCL3 secretion in J774 mouse macrophages, 

this highlights the differing mechanisms of TLR4 activation when compared to cobalt 

ions which bind to conserved histidine residues which are not expressed by murine 

TLR4. The results presented here demonstrate that Al2O3 and ZrO2 must use an 

alternative mechanism of TLR4 activation which are yet to be fully elucidated.  

It was interesting that although CCL3 secretion was significantly reduced when J774 

cells were pre-treated with the TLR4 inhibitor (CLI-095), this decrease was not as 

prominent as observed in THP-1 macrophages. This could be due to the particularly 

large increases in CCL3 secretion following ceramic oxide treatment (specifically 

ZrO2). Therefore, the efficacy of CLI-095 to inhibit these observed high concentrations 

may been reduced. This was emphasised by the fact CCL3 expression in J774 cells 

stimulated with LPS in the presence of CLI-095 did not reduce to untreated control cell 

levels, despite eliciting its response exclusively through TLR4 signalling. 

The role of the NLRP3 inflammasome in ceramic oxide-mediated inflammatory 

responses 

As discussed in Chapter 4 for CoCr particles, the role of the NLRP3 inflammasome in 

ceramic oxide-mediated inflammatory responses was initially investigated by using IL-

1 secretion as a marker of NLRP3 activation. Previous studies have focused on the 

potential role of NLRP3 activation in CoCr particles or CoCl2 mediated inflammatory 

osteolysis (Caicedo et al., 2009; Samelko et al., 2016). Therefore, it was of interest to 

investigate this model of NLRP3 activation in ceramic oxide inflammatory responses. 

The results from this part of the study were in contrast to the findings from CoCr 

particles in that both Al2O3 and ZrO2 appeared to effectively ‘prime’ THP-1 

macrophages as IL-1 expression was significantly increased following treatment with 

the ceramic oxides and then stimulation with ATP. These observed effects were not 

reflected when THP-1 cells were solely treated with Al2O3 and ZrO2. These findings 

suggest that ceramic oxides activate the NLRP3 inflammasome as a PAMP priming 

inducer, similar to LPS (Mariathasan et al., 2006). Moreover, this highlights the results 

discussed previously regarding the central role for TLR4 in ceramic oxide inflammatory 

responses. 

Aluminium salts (sometimes referred to as alum) are commonly used in vaccine 

adjuvants and have been shown to induce NLRP3-dependent induction of IL-1 and 
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IL-18 (Hornung et al., 2008). Importantly, it has been shown alum achieves this by 

lysosomal destabilisation and therefore works through the second activation signal of 

the NLRP3 activation pathway (Hornung et al., 2008). Although alum has a different 

composition (alum hydroxide) to the Al2O3 used in this study, its potential to act as a 

DAMP inducer in place of ATP was investigated further. THP-1 macrophages were 

firstly primed with LPS for 23 hours and then stimulated with either Al2O3 or ZrO2 for 1 

hour. Interestingly, there was no significant increase in IL-1 expression between cells 

treated with LPS alone and those further stimulated with Al2O3. However, there was a 

significant increase in IL-1 expression when LPS pre-treated cells were then 

stimulated with ZrO2. The observed differences between the ceramic oxides could be 

because ZrO2 has been proven to be a more potent inflammatory inducer in terms of 

chemokine expression compared to Al2O3.  

Another possible explanation for these findings could be the possibility of induced 

‘lysosomal mediated necrosis’. Lima et al. performed a set of experiments comparing 

the effect of either lysosome-disrupting agents (such as alum) with ATP on mouse 

macrophages (Lima et al., 2013). When ATP was used as the second NLRP3 

activation signal, caspase-1 became activated resulting in caspase-1 induced 

pyroptosis and secretion of IL-1 However, alum, which is known to cause lysosomal 

destabilisation, induced caspase-1 independent cell death with minimal release of IL-

1 The investigators therefore demonstrated the potential for alum to cause complete 

lysosomal rupture, release of cathepsins, which can then degrade inflammatory 

proteins such as caspase-1, preventing NLRP3 activation and resulting in necrotic cell 

death (Lima et al., 2013). Therefore, in the set of experiments presented in this study, 

both Al2O3 and ZrO2 may have potentially caused lysosomal mediated necrosis 

following previous priming with LPS, preventing significant increases in IL-1  

secretion. The findings presented in Chapter 4 when CoCr particles were used as a 

potential NLRP3 inducer and failed to induce IL-1  secretion may also be due to 

lysosomal rupture caused by the phagocytosis of particles as presented in TEM 

images.  

Conclusions made from these set of experiments should be taken with caution as 

further optimisation and markers of NLRP3 activation are required. For example, a time 

course in which perhaps a shorter LPS ‘priming’ period followed by a longer stimulation 

with Al2O3 or ZrO2 would be useful. For example, a recent study investigating 
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responses to titanium particles primed macrophages with LPS for 1 hour and then 

stimulated with titanium for 8 hours (versus 23 hours and 1 hour used in this study, 

respectively) (Jamsen et al., 2020). Furthermore, the use of NLRP3 or caspase-1 

inhibitors would confirm the specificity of this response. To fully elucidate whether 

Al2O3 and ZrO2 predominantly influence the first ‘priming’ step or second activation step 

of NLRP3 activation, western blot analysis of pro-IL-1-, IL-1, NLRP3 and activation 

of caspase-1 could be investigated in future work.  

 

6.5.1 Future work 

It is important to emphasise that this study focussed on the use of ceramic oxide 

nanopowders and not wear debris or particles generated from materials used in 

ceramic implants. The use of commercially-obtained ceramic wear particles is very 

common in previous in vitro investigations and is probably due to the difficulties in 

generating high volumes of clinically-relevant particles due to the extremely low wear 

rates from ceramics. This means wear simulators must be run for extended periods of 

time to generate the number of particles required for studies. The issue with 

commercially available particles is that their size, morphology and composition may 

not be clinically-relevant nor accurate when determining biological responses in vitro 

when modelling the wear debris generated in vivo.  

Additionally, cell treatments in this study were with Al2O3 and ZrO2 independently of 

each other. However, the materials used in CoP and CoC implants are usually 

composed from ZTA and therefore wear debris particles will contain both Al2O3 and 

ZrO2. Therefore, future work could focus on the use of clinically-relevant ZTA particles 

which would provide more accurate and meaningful conclusions. 

Furthermore, the effect ceramic oxides have on the endothelium as discussed in 

Chapter 5 would be of interest to determine whether this could enhance the migration 

of immune cells. This could be investigated by studying the response of HMEC-1 cells 

to ceramics in both adhesion molecule expression and as part of a chemotaxis assay. 
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6.5.2 Conclusion 

The results from this chapter present a potential inflammatory profile of THP-1 

macrophage cell model following treatment with both Al2O3 and ZrO2. Significant 

increases in IL-8, CCL2, CCL3 and CCL4 chemokine expression was comparable with 

results presented in Chapter 4 from THP-1 cells treated with CoCr particles. These 

increases in chemokine expression were found to be largely TLR4-dependent which 

helps establish a possible role for ceramic oxides in activating immune signalling 

pathways. This was further emphasised by the ability of Al2O3 and ZrO2 ‘prime’ THP-1 

macrophages through a PAMP-like mechanism to up-regulate IL-1 expression when 

stimulated with ATP. These findings provide a sound basis for further research into 

ZTA-mediated inflammatory effects and how these are regulated. Given the increasing 

popularity of joint implants containing ceramics it is important that these effects are 

fully understood if patients do experience ceramic-mediated inflammation in the future 

more commonly. 
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Chapter 7 : Concluding Discussion 

7.1 Aims and Outcomes 

The hypothesis of this study was that metal wear debris from joint implants can activate 

human TLR4 and, subsequently the inflammasome, resulting in inflammatory 

responses accounting for the development of ARMD in patients with failed joint 

implants. 

 

The main aims and outcomes of this study are summarised below:  

A. To generate and characterise clinically relevant CoCr wear particles 

suitable for cell culture 

Nanoscale particles were generated using a six-station pin-on-plate wear simulator 

using the material which is used in MoM implants, CoCrMo. Particles were 

characterised using SEM and found to be of the correct size, morphology and 

composition to be classified as ‘clinically-relevant’ according to the literature. 

Generated CoCr particles from the six-station pin-on-plate wear simulator were 

successfully sterilised to be used in cell culture treatments. ICP-MS confirmed the 

concentration of cobalt ions released from particles so concurrent treatments could be 

investigated with cobalt ions alone or alongside CoCr particles. 

 

B. To determine the role of TLR4 and the inflammasome in the inflammatory 

response to CoCr particles 

THP-1 macrophages stimulated with CoCr particles were clearly shown to 

phagocytose and internalise particles in membrane bound vacuoles, as shown by 

TEM. An MSD U-PLEX cytokine/chemokine assay was conducted to investigate 

potential markers of CoCr-mediated inflammation secreted by THP-1 macrophages. 

CoCr particles significantly up-regulated the secretion of several chemokines and 

cytokines, including IL-8, CCL2, CCL3, CCL4, CCL20 and IL-1. The small molecule 

TLR4 inhibitor, CLI-095, demonstrated that observed increases were largely TLR4-

dependent. Using IL-8 as a marker of activation, these results were also confirmed by 

analysis of gene expression using qRT-PCR. The inflammasome response to CoCr 
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particles was also investigated by evaluating IL-1  expression and secretion which 

showed no significant increases in either models of activation (either using CoCr 

particles as a PAMP- or DAMP-inducer). 

 

C. Investigate the functional effects of CoCr particles in vitro and the 

translation to patient tissue following hip and knee revision surgery 

HMEC-1 endothelial cells stimulated with CoCr particles could also internalise particles 

in a similar manner to THP-1 cells. Both ICAM-1 and VCAM-1 adhesion molecule 

expression was significantly up-regulated in response to CoCr particles. The migration 

of neutrophils was investigated using a transwell chemotaxis assay which showed an 

increase in migration when the HMEC-1 endothelial barrier was activated by CoCr 

particles. Soft tissue was collected from 11 patients undergoing revision TJR and 

stained by H&E which demonstrated increased immune cell infiltration in the majority 

of cases. Out of these cases, there was a mixture of lymphocyte- and macrophage-

dominant inflammation as determined by IHC staining. The findings from this cohort 

require expansion so semi-quantitative analysis can be used to determine whether 

there are links between either the age, gender, type of implant or reason for revision 

and the number of infiltrating immune cells and their phenotype.  

 

D. To investigate the biological effect of ceramic oxide nanopowders 

THP-1 macrophages treated with the ceramic oxide nanopowders, Al2O3 and ZrO2, 

displayed significantly increased chemokine gene expression and secretion of IL-8, 

CCL2, CCL3 and CCL4. These observed increases were found to be largely TLR4-

dependent when pre-treating cells with CLI-095. Using a model of inflammasome 

activation both Al2O3 and ZrO2 were shown to potentially act as a PAMP ‘priming’ signal 

since IL-1 expression increased upon stimulation with ceramic oxides followed by 

ATP. Furthermore, ZrO2 also increased IL-1 expression in THP-1 macrophages 

following pre-treatment with LPS, indicating a potential role as a DAMP inducer, acting 

in place of ATP. Both Al2O3 and ZrO2 may have induced lysosomal mediated necrosis 

which would prevent full activation of NLRP3 and subsequent IL-1 secretion. 
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7.2 Overall Conclusions 

The data presented in this study demonstrate that both clinically-relevant CoCr 

particles and ceramic oxides can increase the expression of inflammatory cytokines 

and chemokines in THP-1 macrophages. This inflammatory response appears to be 

largely regulated through TLR4 signalling as a TLR4 inhibitor proved effective at 

reducing the expression of both CoCr particle- and ceramic oxide-mediated cytokine 

and chemokine expression. Both THP-1 macrophages and HMEC-1 endothelial cells 

can also internalise these particles, possibly through a phagocytic process in which 

particles are found as dense agglomerates within membrane-bound vacuoles. In a 

model of NLRP3 inflammasome activation, CoCr particle treated macrophages which 

were then stimulated with ATP failed to increase expression of IL-1. This suggested 

that at least with the concentrations used in this instance, CoCr particles were unable 

to effectively ‘prime’ macrophages in the same way LPS could or had possibly caused 

lysosomal mediated necrosis. Therefore, further investigation is required to fully 

elucidate the role of NLRP3 in these responses. Contrastingly, both Al2O3 and ZrO2 

treatments resulted in significant increases in IL-1 expression with the addition of 

ATP.  

Further analysis of adhesion molecule expression and neutrophil cell migration 

suggested a role for CoCr-mediated endothelial activation. Both ICAM-1 and VCAM-1 

expression were significantly up-regulated in HMEC-1 cells treated with CoCr particles. 

Furthermore, in a model of neutrophil migration, HMEC-1 cells replicating the 

endothelial cell barrier were activated when treated with CoCr particles which 

subsequently enhanced neutrophil migration.  

In summary, metals commonly used in joint implants such as CoCr, Al2O3 and ZrO2 

can all mediate an inflammatory response by activation of TLR4, increasing 

inflammatory cytokine and chemokine expression, which in turn may activate the 

NLRP3 inflammasome and IL-1 production. These effects can not only increase the 

migration of immune cells into the peri-implant tissues, forming inflammatory 

pseudotumours but also enhance osteolytic processes leading to failure of joint 

implants. Therefore, both the TLR4 and NLRP3 signalling pathways should be targets 

for further investigation into ARMD as well as a role in potential therapeutics.  
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7.3 Final Discussion 

The failure of MoM implants in some patients has been associated with ARMD, 

formation of inflammatory pseudotumours and osteolysis. Ultimately, this leads to 

swelling, discomfort or aseptic loosening of the implant and the need for complicated 

revision surgery. Furthermore, these observed effects do not appear to be unique to 

MoM implants, with reported cases of pseudotumours developing from both MoP and 

CoC or CoP prostheses (Matharu et al., 2016). The exact underlying immune 

mechanisms remain to be fully elucidated. However, previous in vitro studies appear 

to indicate a role for a pro-inflammatory response to metal wear debris and ions, 

characterised by increases to cytokines and chemokines. Many of these studies have 

modelled the in vivo environment using either metal ions or commercially available 

wear debris particles which lack accurate size, morphology and composition (Dalal et 

al., 2012). Therefore, the present study shows the potential for clinically-relevant CoCr 

particles to mediate inflammation through activation of the TLR4 signalling pathway in 

THP-1 macrophages. Moreover, it appears that the cellular responses observed were 

mostly driven by cobalt ions released from CoCr particles. 

The THP-1 macrophage cell line was used throughout the study as macrophages are 

found in the periprosthetic tissues and inflammation associated with ARMD is 

associated with both macrophage infiltration and activation (Nich et al., 2016). This 

was further confirmed in this study in which patient soft tissue stained positive for 

macrophages using IHC. The THP-1 cell line has also been commonly used by other 

groups when investigating cellular responses to metal wear debris and ions (Caicedo 

et al., 2013; Potnis et al., 2013; Samelko et al., 2016). THP-1 cells were selected 

instead of using PBMCs from human donors to reduce inter-donor variability which 

would make it particularly difficult to compare responses. Results demonstrated 

increased TLR4-dependent inflammatory chemokine and cytokine expression when 

THP-1 cells were stimulated with CoCr particles. This suggests that macrophages 

present in periprosthetic tissues may become activated in response to wear debris 

from implants which would account for the elevated chemokine levels found in 

osteolytic lesions around implants (Dapunt et al., 2014b; Jamsen et al., 2017). 

The role of the NLRP3 inflammasome in CoCr-mediated inflammation requires further 

investigation. In this study, although IL-1 secretion was significantly increased in CoCr 

particle treated THP-1 macrophages when measured by an MSD U-PLEX assay this 
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increase was not reflected using ELISA, despite the addition of ATP as a further 

activation signal. To gain further insight, IL-18 expression and caspase-1 activation 

could be investigated as these are also markers of NLRP3 activation. Numerous 

studies have focussed on this signalling pathway as NLRP3 mediates the activation of 

IL-1 which is known to promote osteoclast function and believed to be a key 

inflammatory cytokine associated with aseptic loosening (Caicedo et al., 2013; Jamsen 

et al., 2020). For full NLRP3 activation to occur, both a ‘priming’ and activation signal 

are required (Bauernfeind et al., 2009). It remains to be fully understood whether CoCr 

particles alone can provide both or either of these signals. 

The results presented throughout the study aimed to provide comparative cellular 

responses between CoCr particles and cobalt ions (using a concentration of ions 

similar to the concentration expected to be released from particles). Generally, 

chemokine and cytokine expression was comparable for both treatments. This 

suggests that CoCr-mediated inflammation is likely caused by cobalt ions which are 

released from the particles. However, CCL3 secretion was increased in J774 mouse 

macrophages following CoCr particle stimulation. This indicates that CoCr particles 

may activate other pathways or cause general inflammation in addition to cobalt ions 

since ions cannot activate murine TLR4 (Tyson-Capper et al., 2013). Moreover, murine 

models of CoCr particle-induced osteolysis have been used by groups indicating 

observed inflammatory effects in vivo are not unique to humans and primates 

(Samelko et al., 2016; Paulus et al., 2019). This is reflected in findings presented by 

Paulus et al. who observed increased numbers of adherent and rolling leukocytes in 

mice injected with CoCr particles but not with metal ions (Paulus et al., 2019). 

Additionally, despite high cobalt ion treatment, no pseudotumour-like tissue could be 

induced in the mice whereas it was observed frequently in CoCr particle-stimulated 

mice (Paulus et al., 2019). 

HMEC-1 endothelial cells were also selected as an endothelium model, representing 

the barrier between the circulation and tissues surrounding the joint. Adhesion 

molecule expression of both ICAM-1 and VCAM-1 was significantly increased when 

HMEC-1 cells were challenged with CoCr particles, suggesting their ability to activate 

the endothelium. HMEC-1 cells have previously shown increased chemokine 

expression (e.g. IL-8) in response to cobalt ions which is also TLR4-dependent (Anjum 

et al., 2016). Therefore, it could be the case that CoCr-mediated chemokine secretion 
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causes this observed up-regulation in adhesion molecule expression. Both TNF- and 

IFN- have been shown to increase the expression of ICAM-1 and VCAM-1 (Hosokawa 

et al., 2006). Evidence of CoCr particle-mediated endothelial activation was further 

confirmed as neutrophil migration was enhanced using a transwell chemotaxis assay, 

suggesting increased leukocyte extravasation, adhesion and subsequent migration.  

An additional aim of this study was to investigate the biological effects of ceramic 

oxides which are commonly used in both CoP and CoC implants, specifically ZTA. 

Therefore, the techniques and assays optimised with CoCr particle treatments were 

applied to Al2O3 and ZrO2 stimulation of THP-1 macrophages. Although wear from 

these type of implants is considerably less than MoM or MoP prostheses it remains 

important to understand any potential biological and inflammatory effects from 

ceramics as reports of excessive wear, inflammatory pseudotumours and aseptic 

loosening are uncommon but not unheard of (Malem et al., 2013; Campbell et al., 

2017). 

Results indicated that both Al2O3 and ZrO2 increased chemokine expression in THP-1 

macrophages in a TLR4-dependent manner. Moreover, IL-1 expression was 

significantly increased when Al2O3 and ZrO2 ‘primed’ THP-1 macrophages prior to 

challenge with ATP, suggesting a role as a PAMP inducer. This is interesting as 

ceramics are generally believed to be ‘bio-inert’ particularly in comparison to other 

biomaterials such as CoCr and UHMWPE. However, it is important when considering 

these findings, whether the ceramic oxide nanopowders used in this study were of 

clinical-relevance. This limitation is not uncommon given the difficulties in generating 

high volumes of ceramic wear particles, with many other groups using similar 

nanopowders in previous investigations (Tsaousi et al., 2010; Faye et al., 2017). 

Moreover, given the low wear rate of CoC bearings it is unlikely the higher 

concentrations used in this study would be reached in an in vivo setting in most well 

working prostheses. 

A working model summarising the findings from this study is shown in Figure 7.1.  
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Figure 7.1 Working model  

1. Wear debris particles and metal ions (CoCl2, Al2O3, ZrO2) are released from joint 
implants as the prostheses wear over time and enter the peri-implant tissues. 2. 
Resident tissue macrophages phagocytose particles whilst metal ions directly activate 
TLR4. 3. This immune activation results in increased cytokine and chemokine 
expression and secretion e.g. IL-8 and CCL3. 4A. Chemokines attract leukocytes such 
as monocytes and neutrophils to the site of inflammation. 4B. Secreted cytokines as 
well as wear debris particles directly activate the endothelium, up-regulating adhesion 
molecule expression e.g. ICAM-1 and VCAM-1. 5. This enhances firm adhesion of 
leukocytes, inducing increased leukocyte migration across the endothelium and into 
the tissues. 6. Leukocytes infiltrate the peri-implant tissues, causing pseudotumour 
formation and ALVAL in patients with failed implants. Image created using Biorender. 

 

7.4 Study Limitations 

The selection of cell lines throughout this study (e.g. THP-1 and HMEC-1) were used 

as they are used widely in the literature and maintain consistency in cellular responses 

which would be more difficult with primary cells such as PBMCs which would cause 

inter-donor variability. However, it is important to acknowledge that these cell lines are 

not fully representative of primary cells which would respond to stimuli in vivo. For 
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example, THP-1 cells were activated to a macrophage-like phenotype using PMA 

which may influence the effect of treatments on cells since it has been reported that 

PMA can increase secretion of cytokines and chemokines such as IL-1 CCL2, CCL3 

and IL-8 (Schutte et al., 2009). These unwanted effects were negated to a degree by 

resting the cells for 24 hours following PMA stimulation and using negative control, 

untreated cells throughout as a comparative baseline. In the future, it would be useful 

to use PBMCs for CoCr particle treatments, as this could offer further insight into the 

variability of patient-specific responses to stimuli.  

Furthermore, the use of in vitro assays is not truly representative of the in vivo 

environment in which there are numerous tissue layers containing different cell types 

which are able to interact with one another. Therefore, although useful for preliminary 

investigations, in vitro cell culture cannot reproduce this specific three-dimensional 

environment and interactions to replicate CoCr particle-induced inflammation in vivo. 

Originally, animal in vivo models had been previously ruled out due to the specificity of 

cobalt ions binding to only human and primate TLR4. However, the findings presented 

here and in the literature, offer a case for further investigation into mouse in vivo 

models, specifically osteolytic effects and histological analysis. However, it is important 

to emphasise that the human response to cobalt ions released from particles would be 

lost in this model. 

The study is further limited by concentrations used for CoCr particle treatments. It is 

particularly difficult to select ‘clinically-relevant’ concentrations given the discrepancies 

in the literature regarding concentrations observed in patients with failed implants. 

Importantly, the largest inflammatory effects were only observed using the highest 

concentration of CoCr particles which is potentially at the higher end of concentrations 

previously reported in patients’ synovial fluid (Kwon et al., 2011). However, the 

concentrations selected have been used extensively by other groups when 

investigating CoCr particle-mediated inflammation in vitro  (Behl et al., 2013). In vitro 

studies usually require larger concentrations as the in vivo environment is far more 

sophisticated, for example with concentration gradients, which are impossible to 

reproduce using a simple cell culture system. Additionally, exposure of wear debris 

particles and metal ions in vivo will occur perhaps at lower concentration but over a 

prolonged period of up to years which is not feasible using in vitro systems.  
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Unfortunately, the CoCr particles which were generated on the single-station pin-on-

plate wear simulator could not be used for cell culture studies due to possible endotoxin 

contamination. However, in future studies, these particles would be important to 

include and could enhance clinical relevance since the lubricant used contained serum 

rather than water which is a better representation of the in vivo joint fluid environment. 

To avoid possible contamination in the future, extra care must be taken when 

transferring lubricants between containers and the endotoxin quantitation kit should be 

completed in a microbiological safety cabinet. 

 

7.5 Clinical Implications 

The clinical implications from the findings in this study are far reaching given the 

number of patients worldwide who either have MoM or ceramic joint implants as well 

as other medical devices containing CoCr such as dental implants and spinal rods. 

Currently, the use of MoM hip implants is negligible since the emergence of ARMD and 

increased revision rates for these prostheses. However, as previously discussed, 

ARMD does not appear to be unique to MoM implants, therefore investigating cellular 

responses to both CoCr (which is still used in MoP implants and in the trunnions of 

ceramic implants) provides further understanding of potentially involved immunological 

mechanisms. This could lead to therapeutic prevention in cases of ARMD from these 

types of implants or possible biomarkers for diagnosis. 

It is clear from the results presented in this study that TLR4 plays a central role in CoCr 

particle- and ceramic-mediated inflammation. Therefore, the prospect of a therapy 

which specifically targets TLR4 to prevent this unwanted activation and subsequent 

immune response is an attractive option. The fact that J774 mouse macrophages 

appeared to be activated by CoCr particles suggests that TLR4 is not the sole mode 

of inflammatory activation in this response. Although it is worth acknowledging these 

investigations have only been demonstrated in THP-1 macrophages, the use of CLI-

095 significantly reduced chemokine secretion to similar concentrations observed in 

untreated control cells, suggesting in this case the response is completely TLR4-

dependent. Targeting TLR4 in this way is possible as metal ions (specifically cobalt) 

are known to have a separate binding site to TLR4’s natural ligand LPS. Therefore, the 

response to bacterial LPS could be preserved whilst preventing cobalt ion-mediated 

TLR4 activation and inflammation. Therefore, it is possible that future therapeutics for 
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patients with ARMD could be designed to specifically target the histidine residues, the 

known binding site for cobalt ions in their activation of TLR4. Furthermore, if future 

investigations confirm the role of the NLRP3 inflammasome in the inflammatory 

response to both CoCr and ceramic particles, this could also be exploited in potential 

therapeutics by targeting proteins involved in the pathway. 

 

7.6 Future Directions 

The data presented in this study have helped to provide insight into the mechanisms 

of CoCr particle- and ceramic-mediated inflammation. However, as discussed in 

specific chapters, the questions arisen from this study allow for further investigation. 

Therefore, a number of different avenues would be useful to further investigate the 

potential inflammatory effects of both CoCr and ceramic particles. 

The role of both CoCr and ceramic particles in activating the NLRP3 inflammasome 

requires further work. Particularly, the potential for both materials to cause lysosomal 

mediated necrosis, which has been shown when macrophages are treated with alum 

in previous studies. Further investigations could involve the use of both caspase-1 and 

cathepsin inhibitors to establish whether cell death is dependent on either of these 

mechanisms. If cathepsin inhibitors could prevent cell death when cells are pre-treated 

with LPS followed by the addition of CoCr or ceramic particles, this would suggest that 

particles which are phagocytosed by cells cause lysosomal degradation and release 

of cathepsins. Therefore, this set of events would prevent full activation of NLRP3 and 

secretion of IL-1  

An important factor to continue to pursue from this study is the inflammatory effects 

observed by ceramic oxides. The use of CoP implants especially are increasing year-

on-year due to their attractive wear properties and perceived biocompatibility. 

However, although this study demonstrated the potential for ceramic oxides to activate 

TLR4 and increase chemokine expression, the use of clinically-relevant ZTA ceramic 

wear particles would enhance these findings by providing an improved in vitro model. 

With these particles, assays could be repeated to determine whether these effects are 

replicated. This is particularly important due to the lack of studies in the literature which 

use both clinically-relevant ceramic particles at relevant concentrations. 
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It would also be useful to assess the expression of cytokines and chemokines from 

HMEC-1 cells treated with CoCr particles. This has been previously investigated using 

cobalt ions, however, it would be of interest to determine whether clinically-relevant 

CoCr particles demonstrate a similar expression profile in this cell type. Moreover, this 

would offer further explanation for the mechanisms behind endothelial activation 

observed in this study if inflammatory chemokines and cytokines were up-regulated.  

Further functional studies would provide further insight into the effect increased 

expression of chemokines and cytokines have on different cell types. For example, the 

neutrophil chemotaxis assay used in this study could be further expanded to include 

both PBMCs as well as inhibiting TLR4 in HMEC-1 cells which provide the endothelial 

barrier. This would help determine whether the observed increase in leukocyte 

migration was in fact TLR4-dependent. Cell adhesion can also be analysed using a 

Cellix platform which better replicates shear stress along blood vessels. 

It would also be of interest to further establish the osteolytic processes which are 

potentially effected by CoCr particles and ceramics. MG63 osteoblast-like cells were 

used briefly in this study for a cell migration, wound healing assay. However, this cell 

type could be investigated further, for example, assessing the expression of osteogenic 

markers such as different collagens and members of the TGF- superfamily. 

Assessment of RANKL and OPG expression by either ELISA, qRT-PCR or western 

blotting would also be useful given the importance of these proteins for 

osteoclastogenesis balance. Furthermore, mouse models which were discussed 

previously can also demonstrate bone loss following treatments with wear particles. 

Further analysis of tissue samples from patients undergoing hip and knee revision 

surgeries would also strengthen the clinical translation of this work. In this study only 

11 samples were collected and analysed, however, a larger patient cohort would be 

hugely beneficial in providing links between histological analysis and patient 

information such as types of implant used, duration of implant and reasons for revision. 

A larger cohort of patient tissue would allow for semi-quantitative analysis by counting 

the number of cell types present (e.g. T cells or macrophages) and whether these 

correlate with either the implant material, age, gender or reason for revision. 

Additionally, quantification of cytokines and chemokines in synovial fluid could be 

assessed as well as their expression in the tissue by isolating RNA. 
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To conclude, this study demonstrates that CoCr particles and ceramic oxides from 

prosthetic joint implants can activate the innate immune receptor TLR4, leading to 

increased expression and secretion of inflammatory cytokines and chemokines. 

Additionally, CoCr particles can also up-regulate adhesion molecule expression by 

activating the endothelium which enhances neutrophil migration. Therefore, wear 

debris particles released from these implants have the potential to promote a pro-

inflammatory environment which can induce immune cell infiltration, pseudotumours, 

osteolysis and eventual failure of the implant. A greater understanding of the pathways 

which are involved in this response gives opportunity to potential novel therapeutics in 

the future which could prevent CoCr particle- and ceramic-mediated inflammation in 

symptomatic patients allowing for their safe use as a biomaterial. 
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Appendix A 

 

Calculating particle volumes for generated cobalt chromium particles: 

Density of CoCr = 7.7g/cm3  

7.7g in 1cm3 

7.7 x 10-12g in 1µm3 

3.85 x 10-10g in 50µm3 

3.85 x 10-4g in 50µm3 per cell 

192.5µg particles required per well for 500,000 THP-1 cells 

115.5µg particles required per well for 300,000 HMEC-1 cells 

 

Calculating particle volumes for generated aluminium oxide particles: 

Density of Al2O3 = 3.85g/cm3  

3.85g in 1cm3 

3.85 x 10-12g in 1µm3 

1.925 x 10-10g in 50µm3 

1.925 x 10-4g in 50µm3 per cell 

96.25µg particles required per well for 500,000 THP-1 cells 

57.75µg particles required per well for 300,000 HMEC-1 cells 

 

Calculating particle volumes for generated zirconium oxide particles: 

Density of ZrO2 = 5.89g/cm3  

5.89g in 1cm3 

5.89 x 10-12g in 1µm3 

2.945 x 10-10g in 50µm3 

2.945 x 10-4g in 50µm3 per cell 
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147.25µg particles required per well for 500,000 THP-1 cells 

88.35µg particles required per well for 300,000 HMEC-1 cells 
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Appendix B 

 

 

Figure B.1. Immunohistochemistry staining on control tonsil tissue 

Immunohistochemistry staining showing positive CD3 (T cells) (A) and CD68 
(macrophages) (B) in control tonsil tissue. 
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Publications, presentations and awards 

 

Lawrence, H, Mawdesley AE, Holland JP, Kirby JA, Deehan DJ, Tyson-Capper AJ. 

Targeting Toll-like receptor 4 prevents cobalt-mediated inflammation. Oncotarget. 

2016, 7(7): 7578-85. (joint 1st author) 

Lawrence, H, Deehan DJ, Holland JP, Anjum SA, Mawdesley AE, Kirby JA, Tyson-

Capper AJ. Cobalt ions recruit inflammatory cells in vitro through human Toll-like 

receptor 4. Biochemistry and Biophysics Reports. 2016, 7: 374-378. 

Mawdesley AE, Davidson L, Anjum SA, Kirby JA, Tyson-Capper AJ. Effect of Cobalt 

Ions on Chemokine Expression: Case Report of Immune Cell Infiltration in Patient 

Undergoing Revision of Metal-On-Metal Implant. Journal of Orthopaedic Research and 

Therapy 2020, 5: 1154 

Jamieson, S, Mawdesley AE, Deehan DJ, Holland, JP, Kirby JA, Tyson-Capper AJ.  

Orthopaedic biological responses: a TLR4-mediated inflammatory response to metal 

oxide ceramic nanopowders. Publication currently under review with Scientific 

Reports, June 2020 (joint 1st author) 

Mawdesley AE. Clinically relevant cobalt-chromium particles can increase 

inflammatory chemokine expression in macrophages. Manuscript in preparation 

 

Conferences and Presentations 

Oral Presentation, European Orthopaedic Research Society, Bristol, September 2015  

Oral Presentation, North East Postgraduate Conference, Newcastle upon Tyne, 

October 2015 

Oral Presentation, ICM Seminar Programme, Newcastle University, February 2018 

Oral Presentation, MRC DTP Conference, University of Manchester, May 2018 

Oral Presentation, Immunology North East Symposium, Durham University, June 2018 

Oral Presentation, British Orthopaedic Research Society, University of Leeds, 

September 2018 
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Oral Presentation, North East Postgraduate Conference, Newcastle upon Tyne, 

November 2018 

Oral and Poster Presentation, Keystone Symposium: Innate Immune Receptors, 

Taipei, Taiwan, March 2019 

1 hour Public Lecture ‘Tricked: Can metal hip replacements confuse our immune 

system?’, Explore Perspectives, Joseph Cowen Lifelong Learning Centre, Newcastle 

upon Tyne, December 2019  

 

Prizes and Awards 

European Orthopaedic Research Society, Bristol, September 2015 – 2nd Prize, Bristol 

Orthopaedic Trust Travel Grant 

North East Postgraduate Conference, Newcastle upon Tyne, October 2015 – Best 

Immunology Talk 

Faculty of Medical Sciences Travel Award, January 2019 – for travel to Keystone 

Symposium, Taipei, Taiwan 
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