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Abstract 

A Col9a3 EXON 3 SKIPPING AS NOVEL MODEL FOR MULTIPLE EPIPHYSEAL 

DYSPLASIA. 

Introduction: Multiple epiphyseal dysplasia (MED) is generally an autosomal dominant 

chondrodysplasia characterised by early-onset degenerative joint disease. Its genetic 

background is complex and heterogeneous and among the mutated genes are those encoding 

for the pro-α chains of the collagen type IX, COL9A1, COL9A2 and COL9A3, where the 

majority of mutations lead to the skipping of a syngenic exon. 

Aim: Reproduce in a mouse model the skip of exon 3 in the COL9A3 gene to understand its 

pathogenic role in relation to MED. 

Material and Methods: By CRISPR/Cas9 technology we generated two mouse lines, one 

carrying a deletion of Col9a3 exon 3 (Col9a3Δex3/Δex3), reproducing the splicing events 

reported in a MED patients group and a Col9a3-null mouse (Col9a3-/-). On the mutant mice, 

we performed skeletal X-ray phenotyping and growth plate analysis, including 

immunohistochemistry and BrdU labelling to monitor proliferation. Ultrastructure of growth 

plate was visualised using Transmission electron microscopy (TEM). Sequential protein 

extraction and Atomic force microscopy (AFM) were used to evaluate growth plate cartilage 

stability, whereas articular cartilage integrity was assessed by destabilisation of the medial 

meniscus (DMM) surgery and during ageing. Bone density and ultrastructure was assessed by 

Microcomputed tomography (μCT). Mutant transcriptomes were obtained by RNAseq. 

Results: The phenotyping of CRISPR/Cas9 generated offspring through DNA and cartilage 

RNA analysis had led to the establishment of two transgenic mouse lines, one splicing as 

predicted (Col9a3Δex3/Δex3) and a second lacking the Col9a3 transcript and collagen type IX 

protein (Col9a3-/-). Both lines are viable, however only Col9a3-/- mice displayed detectable 

phenotypic abnormalities: mild short stature and hip dysplasia, abnormal tibial epiphysis 

morphology and delayed ossification of femoral head in 18-week old mice. A reduced level 

of growth plate chondrocyte proliferation was detected in both mutant mice compared to WT, 

along with softening of the proliferative zone shown by AFM indentation measurements on 

new-born and 6 weeks old animals. Interestingly, both mutant mice exhibited similar 

transcriptome profiles. Only in Col9a3-/- mice immunoblotting of sequentially extracted 

matrilin-3 and COMP proteins revealed different cartilage extractability from controls. 

Articular cartilage integrity seemed not to be affected by either mutation. 

Discussion and conclusion: Analysis confirmed the production of a shorter transcript from 

cartilage of Col9a3Δex3/Δex3mice. However, these mice still produced collagen type IX protein 

and had no overt phenotype apart from reduced chondrocytes proliferation and softer 

proliferative cartilage extracellular matrix. The Col9a3-/- mice had a mild skeletal phenotype 

and express no Col9a3 transcript or protein, resulting in overall more unstable cartilage.  

Both mutant mice will represent an important tool to gain insights on collagen type IX role 

into the matrix. In particular, the Col9a3Δex3/ Δex3 line, by recapitulating human Col9-MED, 

can add to our understanding of MED disease mechanism.  
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1.1 Bone development 

During embryogenesis bone tissue forms from the mesoderm layer. More specifically 

the axial skeleton derives from the somites, the appendicular skeleton from the lateral plate 

mesoderm, and the cranial neural crest gives rise to the branchial arch and craniofacial bones 

and cartilage. Bone formation, also called osteogenesis, is the transformation of the 

mesenchymal tissue into bone tissue and this can occur through mainly two mechanisms, 

intramembranous or endochondral ossification. Intramembranous ossification is the process 

through which flat bones such as those constituting the skull form. This mechanism involves 

the direct transformation of mesenchymal tissue into bone and starts when proliferating 

mesenchymal cells condense into compact nodules, which gives rise to osteoblasts. As bone 

precursor cells, the osteoblast produce an ECM able to incorporate calcium salt and therefore 

allow for pre-bone matrix calcification. During this process some osteoblasts remain engulfed 

in the calcified matrix they have secreted, becoming bone cells, osteocytes, and bony spicules 

start to radiate while the bone ossifies. A membrane of compact mesenchymal cells 

surrounding the calcified spicules, the periosteum, also deposits osteoid matrix and 

contributes to bone growth (Gilbert 2000).   

Both ossification processes are regulated by various signalling pathways. These include 

members of the bone morphogenetic proteins (BMP), the fibroblast growth factor (FGF) 

groups and the Wnt signalling pathway (Shahi et al. 2017). Moreover, the activation of the 

transcription factor CBFA1, also known as Runx2, is responsible for mesenchymal cell 

transformation into osteoblasts and the activation of bone-specific extracellular matrix (ECM) 

protein genes (Komori 2010).  

Endochondral ossification is the mechanism that allows long bones to develop and grow. The 

stepwise process involves the formation of a cartilage template from aggregated 

mesenchymal cells, which is then replaced by bone (Fig. 1.1). Endochondral ossification 

initiates when mesenchymal cells are induced by paracrine factors to express two 

transcription factors, Pax1 and Scleraxis, which are believed to be activators of cartilage-

specific genes (Cserjesi et al. 1995, Sosic et al. 1997). Subsequently, the mesenchyme cells 

condense and differentiate into chondrocytes, which then proliferate and produce the ECM to 

form the cartilaginous template of the bone. Chondrocytes in the centre of the cartilaginous 

template become then hypertrophic, arrest proliferation and start secreting collagen type X 

into the matrix. Additionally, at this stage hypertrophic chondrocytes produce enzymes 
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promoting the generation of calcium and phosphate ions to permit the mineralisation of 

cartilaginous matrix. Finally, the majority of hypertrophic chondrocytes undergo apoptosis, 

facilitating blood vessel invasion and creating the space for the bone marrow. Blood vessels 

introduce osteoblasts, which produce bone matrix generating the primary ossification centre, 

which extends outwards in both directions to form the metaphysis of the newly formed bone. 

At the bone epiphysis secondary ossification centres form and only a cartilaginous area, 

called epiphyseal growth plate, remains between the primary and secondary ossification 

centres. This area is constituted by ordered chondrocytes organised into zones termed resting, 

proliferative, and hypertrophic and is responsible for longitudinal growth of the newly 

formed bone. In this area chondrocyte differentiation is tightly coordinated to allow 

longitudinal bone growth which continues as long as proliferation of growth plate 

chondrocytes occurs (Burdan et al. 2009). Within the resting or reserve zone, chondrocytes 

are small and uniform. They can be singular or in pairs, if they have divided, and are rich in 

lipid and cytoplasmic vacuoles. Resting chondrocytes proliferate at a low rate and have a 

reduced synthesis of proteoglycan and collagen type II. After the resting zone, the 

proliferative zone is present. Proliferative chondrocytes are flat and organised into 

longitudinal columns which with the immediate surrounding ECM, constitute the chondron. 

Mitotic activity is increased as well as the synthesis of collagen types II and XI. Below the 

proliferative zone is a layer known as the hypertrophic zone whose chondrocytes terminally 

differentiate and become larger. DNA synthesis is reduced and cellular division stops; 

conversely the synthesis of various components of the ECM is increased. Longitudinal 

growth of the skeleton is importantly affected by chondrocytes hypertrophy, as it has been 

reported that a great part of longitudinal growth depends on chondrocytes height, while the 

remaining on matrix synthesis and chondrocytes proliferation. Therefore, the differential 

growth of various bones seems to be related to differences in the size of hypertrophic 

chondrocytes (Ballock and O'Keefe 2003). Notably, the hypertrophic zone is the first zone 

that produces alkaline phosphatase, which by increasing phosphate ions, it allows the process 

of matrix calcification (Burdan et al. 2009).  

While longitudinal growth occurs, a simultaneous bone resorption is carried out by 

osteoclasts forming the endosteum, the fibrovascular membrane that lines the medullary 

cavity of a long bone. This process has the double function of reducing the bone weight and 

creating the space for the bone marrow. At the same time the osteoblasts in the periosteum, 

the membrane that covers the outer surface of all bones, increase the diameter of the bone 

through intramembranous ossification. This process is called appositional growth, which 
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alongside bone resorption, is responsible for a constant bone remodelling which helps 

maintaining the structural integrity of the bone (Rauch 2005). 

Longitudinal growth continues until adult age, after which the cartilage growth plate ossifies, 

fusion between epiphysis and metaphysis occurs and bone growth ceases completely. It is 

worth mentioning that a thin layer of cartilage is present on the surface of the bone epiphyses 

adjacent to the synovial cavity, and it is called articular cartilage. Its function is to facilitate 

joint movement, resist compressive forces and protect the underlying bone. As seen in the 

growth plate, also chondrocytes of articular cartilage follow a pattern of distinct layers 

according to their sub-population of cells and ECM organisation. The superficial zone, 

directly in contact with the joint space, produces a high level of lubricants and provides the 

ability to resist shear stress.  This zone is formed by elongated cells, tightly packed and 

arranged parallel to the joint cavity and they represent a source of cartilage progenitors 

(Kozhemyakina et al. 2015). The middle or transitional zone forms approximately half of the 

total articular cartilage volume and consists of very large and round sparse chondrocytes, 

followed by the deep zone where mostly organized into column-like stacks perpendicular to 

the tissue synovial surface. This zone represents the 30% of the total cartilage and its 

mechanical properties are due to the production of the typical cartilage matrix molecules, 

such as collagen type II and aggrecan (Sophia Fox et al. 2009). Between the deep zone and 

the underlying subchondral bone, is found the last zone called calcified cartilage, which is 

separated from the not calcified tissue by a visible tidemark (Fig. 1.2). In this last zone, cells 

are even larger, entered an hypertrophic state, are active in matrix production and likely 

responsible for interactions with the underlying subchondral bone (Decker et al. 2015).  

Disease- or ageing-driven degeneration of the articular cartilage surface leads to joint pain 

and dysfunction usually identified in osteoarthritis (OA).  
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Fig. 1.1 | Endochondral ossification process. (A, B) Mesenchymal cells condense and 

differentiate into chondrocytes to form the cartilaginous model of the bone. (C) Primary centre of 

ossification forms when chondrocytes in the centre of the shaft undergo hypertrophy and apoptosis 

while they change and mineralize their ECM. Blood vessels can invade the empty spaces left by dead 

cells. (D, E) Blood vessels introduce osteoblasts, which bind to the degenerating cartilaginous matrix 

and deposit bone matrix. Secondary ossification centres also form as blood vessels enter near the tips 

of the bone. They are separated from the primary ossification centre by ordered zones of proliferating, 

hypertrophic, and mineralising chondrocytes (F). 
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Fig. 1.2 | The epiphyseal growth plate. Magnified image of a 3-week old rat proximal tibial 

epiphysis section stained with H&E. Indicated is the epiphyseal growth plate, whose structure is 

divided in different zones, which is positioned between the secondary ossification centre and the 

trabecular bone. In addition, the magnified picture of the articular cartilage surrounding the tibial 

epiphysis showing its division in zones. (magnification x100). Adapted from (Burdan et al. 2009)  
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1.2 The cartilage extracellular matrix 

In most multicellular complex organisms, cells and an intricate network of 

macromolecules, called the extracellular matrix (ECM), constitute the tissues.  Different 

ECM composition is expressed in different multicellular systems, as a result of the 

independent evolution of multicellularity in distinct lineages. Despite this, the basic functions 

of ECM, such as cell adhesion, cell-to-cell communication and differentiation, remain 

common features (Abedin and King 2010). The ECM in cartilage comprises a variety of 

proteins and polysaccharides that are secreted locally by chondrocytes. Once in the 

extracellular space, they assemble into an organised meshwork in close association with the 

surface of the cell that has produced them.  

Two main classes of extracellular macromolecules form the matrix: proteoglycans and 

fibrous proteins, such as collagen. In addition, glycoproteins, such fibronectin, laminin and 

elastin, have both structural and adhesive functions. Members of both classes come in a great 

variety of shapes and sizes. These molecules are mainly synthesised and secreted by stromal 

cells, such as fibroblasts, osteoblasts and chondrocytes. The proteoglycan molecules in 

cartilage form a highly hydrated, gel-like “ground substance” in which the fibrous proteins 

are embedded. This characteristic is given by the presence of several net negative charges 

that attracts positively charged sodium ions, which recruit water molecules via osmosis. This 

osmotic swelling gives to cartilage elastic properties, including the ability to resist 

compressive forces (Gentili and Cancedda 2009). This network enables the rapid diffusion of 

nutrients, metabolites, and hormones between the blood and the tissue cells. The collagen 

fibres are the main structural protein of the matrix, they contribute to the organisation of the 

matrix conferring it stability and specific mechanical properties according to the collagen 

content (Rozario and DeSimone 2010). Elastin fibres give it resilience. Finally, many matrix 

glycoproteins help cell binding in the appropriate locations, conferring typical structure and 

properties to cartilage. Moreover, cartilaginous ECM is remodelled continuously by a 

combination of synthesis and degradation by matrix metalloproteinases (MMPs) and ‘a 

disintegrin and metalloproteinase with thrombospondin motifs’ (ADAMTSs) proteinase 

family members (Takahashi et al. 2005). 

Considering the possible different nature and composition, the ECM can have many 

functions, such as providing support or regulating intercellular communication and cell 

dynamic behaviour. In addition, it can be considered a depot for a wide range of cellular 



 

22 

 

growth factors, which can be released during altered physiological conditions, leading to the 

activation of a cascade of events affecting cellular functions.  

In addition to the zonal stratification according to structure and composition mentioned for 

growth plate and articular cartilage matrix, within each zone different regions of the matrix 

can be distinguished according to proximity of chondrocytes, composition and collagen fibril 

organization. The pericellular matrix (PCM) immediately surrounds the cell membrane and it 

is a thin layer mainly containing sulphated proteoglycans, glycoproteins and very fine 

collagen fibres tightly packed, forming a dense woven enclosure around the chondrocyte 

(Poole 1997). The major components of PCM are collagen type IX, perlecan, hyaluronan, 

biglycan and other small aggregates. Remarkable is the presence of collagen type VI around 

the chondrocytes (Poole et al. 1992). It is believed that this matrix region may play a role in 

the initiation of signal transduction within cartilage (Eggli et al. 1985). Around the PCM, the 

territorial matrix (TM) is thicker region formed by cross-banded fine collagen fibrils 

organised in a basket-like network surrounding the PCM. This tight organization of fibrils 

confers to this region the ability to withstand mechanical stress, hence giving mechanical 

resistance to the chondrons. Finally, the interterritorial matrix (ITM), is situated between the 

chondrons. It is constituted by thick collagen fibrils, assembled in small groups alternated by 

lerger interfibrillar spaces. The differentiation of matrix in various compartments allows for 

differential distribution and diffusion of metabolites applying a tight zonal control of various 

cartilage pathways (Eggli et al. 1985).  

 1.3 Collagens 

Collagen is the most abundant protein in mammals and in particular in humans account 

for one-third of the total protein content. Collagens represent the major component of 

connective tissues. Twenty-eight different types of collagen have been identified in 

vertebrates so far, constituted by at least 45 different polypeptide chains. Collagens provide 

both structural integrity and functional diversity within tissues and by interacting with 

specific receptors, provide signals (cellular adhesion, differentiation, growth and survival) to 

cells overlaying the collagen scaffold that can alter their behaviour (Mienaltowski and Birk 

2014b). The generic collagen structure is formed by a triple helical assembly of α-chains. A 

different gene can encode each distinct α-chain and the α-chains of one collagen type are 

unique and differ from the α-chains of another collagen type. Collagens molecules can be 

homotrimeric, when their composition comprises three identical α- chains, or heterotrimeric, 
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comprising α-chains encoded by different genes of the same collagen type. The primary 

structure of α-chains contains a variable number of conserved Gly-X-Y repetitive motifs 

(where X and Y are often proline and 4-hydroxyproline, respectively), which permit the 

formation of hydrogen bonds between chains (Gordon and Hahn 2010). The formation of a 

triple helix is possible thanks to the presence of the glycine residue, the smallest amino acid 

residue, as it lacks a side chain, and allows sufficient space and flexibility to tightly pack 

three chains in the structure. According to their structural and functional properties, collagen 

molecules can be grouped into seven subfamilies: 

• Fibrillar collagens are mainly present in connective tissues, they provide integrity and 

confer mechanical tensile strength. Collagen type I, II and III are the most abundant 

fibrillar collagens in vertebrates.  

• Network-forming collagens, through the interruption in their triple helical structure, 

they are more flexible and they can associate with each other, forming networks. They 

can also interact with other ECM components giving rise to multi-molecular 

complexes. Collagen type IV is a network forming collagen present in the pericellular 

matrix of normal and osteoarthritic articular cartilage (Foldager et al. 2014). Another 

example is collagen type X, found exclusively in the hypertrophic zone of growth 

plate and basal calcified zone of articular cartilage (Gannon et al. 1991). 

• Fibril-associated collagens with interrupted triple helices (FACIT) are characterised 

by the presence of non-collagenous domains that give flexibility to the molecule. 

FACIT closely interact with the surface of fibrillar collagens and link collagen fibres 

to each other and to other ECM molecules. They are also able to affect the surface 

properties of fibrils as well as fibril packing. Collagens type IX, XII, XIV and XX are 

FACIT collagens. Collagen type IX and type XII also possess covalently attached 

glycosaminoglycan side chains, and for this reason, they are also considered 

proteoglycans. Collagen type XII and XIV are expressed in musculoskeletal 

connective tissues, including tendons and ligaments at various times during 

development, and affect fibre supra-structures and tendon biomechanics (Ansorge et 

al. 2009b, Zhang et al. 2003). The general structure of FACIT collagens comprises 

short collagenous (COL) domains interrupted by non-collagenous (NC) domains with 

an N-terminal NC domain that protrudes from the fibril surface into the interfibrillar 
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space. The two C-terminal domains, NC1 and COL1, are considered to interact with 

other type of collagen fibrils (Mienaltowski and Birk 2014a).  

• Anchoring fibrils are composed of collagen type VII that is a homotrimer flanked by a 

large and a small non-collagenous domains (NC1 and NC2). Collagen type VII 

molecules within the ECM usually dimerise in an antiparallel direction and are 

stabilised through disulphide bonds between the NC2 domains of the two molecules 

forming the dimer.  Many dimers then aggregate to form the basement membranes in 

the stroma of ECM (Chung and Uitto 2010). 

• Multiplexin collagens (types XV and XVIII), are characterised by the central triple 

helical collagen domain interrupted by several non-collagen regions and N- and C- 

terminal domains. Both are found in the basement membrane zones (Rehn and 

Pihlajaniemi 1994). 

• Transmembrane collagens include types XIII, XVII, XXIII, and XXV. These are 

expressed in different cell types and act as cell surface receptors. They have a single 

transmembrane domain with an extracellular C-terminal domain composed by 

collagenous and non-collagenous parts and a cytoplasmic N-terminal domain 

(Mienaltowski and Birk 2014b). Of the transmembrane collagens, collagen type XIII 

is found in musculoskeletal tissues, particularly in myotendinous and neuromuscular 

junctions (Heikkinen et al. 2012, Latvanlehto et al. 2010). 

• Collagen type XXVIII is expressed in peripheral nerves and has the triple helix 

flanked by a von Willebrand factor A (vWFA) structure at both N- and C- terminals 

(Gebauer et al. 2016). 

1.4 Formation of Collagen Fibrils 

After translation, collagen polypeptides have globular propeptide extensions at each 

end and a signal sequence at the N-terminal that is recognised by a signal recognition particle 

on the endoplasmic reticulum (ER) to target them from the ribosomes to the ER. At this level 

molecules are referred to as pre-procollagen (Hulmes 2008). Once in the ER, three post-

translational modifications take place. First, the signal sequence is cleaved to form a 

propeptide. Then hydroxylases add hydroxyl groups to proline and lysine residues to allow 

the formation of cross-links among the α-peptides. The third modification is the attachment 
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of glucose or galactose to the hydroxyl groups of lysines. Then the hydroxylated and 

glycosylated propeptides twist and form a triple helix, now called procollagen (Khoshnoodi 

et al. 2006). Consequently, procollagen is delivered to the golgi apparatus for its 

glycosylation and then transported to the extracellular space by secretory vesicles. Once 

outside the cell, the two globular propeptide extensions at both ends of the collagen triple 

helix, are removed by specific N- and C- terminal collagen peptidases, triggering in this way 

fibril formation. Finally, an extracellular enzyme, named lysyl oxidase, transforms the several 

lysines and hydroxylysines amino groups into aldehydes that covalently crosslink each other, 

stabilising the collagen fibrils. The C-propeptide function is to direct the intracellular 

assembly of the procollagen molecule from its three constituent α-polypeptide chains. The 

general model proposed for fibril assembly that occurs in the extracellular space, is a 

concentric model that follows energy minimisation, whose result is a helicoidal organisation 

of collagen where molecules are leaning obliquely to the fibril surface (Hulmes et al. 1981). 

A tight control of fibril diameter and shape (along with heterotypic collagen interactions and 

interactions with other matrix components), is maintained in part by the N-propeptide, which 

is not immediately cleaved. Its presence functions to prevent incorporation into the centre of 

the fibril, thereby forcing all N-termini to the surface of the fibril, preventing further growth 

and limiting fibril diameter. This might provide a mechanism for diameter control for 

heterotypic collagen interactions such as types II/XI and IX in cartilage (Hulmes 2002). 

Fibrils are made by collagen molecules that are staggered with each other creating the typical 

repeating banding pattern. An overview or the main steps of collagen biosynthesis is shown 

in Fig.1.3.  
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Fig. 1.3 | Overview of the steps involved in the production of collagen. After translation, 

procollagen chains undergo a large number of post-translational modifications (hydroxylation and 

glycosilation) that occur in the ER and the Golgi. At this level, the polypeptides are brought together 

by interactions between the C-propeptides and fold to form a rod-like triple-helical domain flanked by 

globular N-and C-propeptides. The removal of the N-and C-propeptides from fully folded procollagen 

only occurs after transport of procollagen from the Golgi stacks to the extracellur space, and results in 

collagen molecules that are then able to assemble into fibrils. Covalent crosslinks occur within and 

between triple-helical collagen molecules in fibrils. (Image source: cellbiology.med.unsw.edu.au/). 

1.5 Cartilage collagens 

Among the collagens specifically expressed within cartilage, we find types II, III, VI, 

IX, X, XI, XII and XIV. Cartilage fibrils are usually referred to as collagen type II which is 

the most abundant of the fibrillar framework, accounting for 90% of the total cartilage 

collagen. Collagen type II disorders comprise a diverse group of clinical phenotypes 

characterized by skeletal dysplasia, ocular manifestations, hearing impairment, and orofacial 

https://cellbiology.med.unsw.edu.au/
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features, whose severity ranges from perinatal severe lethal disorders to milder conditions 

appearing in adulthood (Gregersen and Savarirayan 1993-2019). Collagen type II provides 

tensile strength, is resistant to shearing forces and supports chondrocyte adhesion. However, 

the protein by itself is incapable of forming fibrils of the extensive lengths required in the 

tissues. It is instead always found as macromolecular composites, which include collagen 

type IX and XI (Mendler et al. 1989).  Collagen type IX is a member of the FACIT family 

and it interacts with collagen type II and other components of cartilage ECM (for a fuller 

description see section 1.6 of this chapter). The biogenesis of the heterotypic collagen type 

II/IX/XI macromolecular structure and its functional complexity in cartilage fibrils is not 

fully understood. Overexpression of normal collagen type II in mice leads to a highly 

disorganised growth plate cartilage that contains abnormally wide fibrils with a strong 

banding pattern. This suggests the crucial importance of the correct molar proportions of 

cartilage collagens in fibrillogenesis (Garofalo et al. 1993). In addition, it is believed that 

collagen type XI is essential for the regulation of the lateral fibril growth (Blaschke et al. 

2000). Direct evidence for this concept came from studies of in vitro fibrillogenesis by 

mixtures of soluble cartilage collagens (Eikenberry E. F. 1992). It was found that collagen 

type XI was essential in restricting lateral growth of collagen type II fibrils to a uniform 

width of about 20 nm, typical of cartilage fibrils (Blaschke et al. 2000). Collagen type II is 

known to interact with other ECM component to create a tight network between matrix and 

chondrocytes, aimed to facilitate and improve the stability of the tissue structure. Among its 

direct interactors there are the integrin receptor α10β1 (Camper et al. 1998), the 

proteoglycans fibromodulin and decorin (Hedbom and Heinegard 1993) as well as annexin V 

(Kim and Kirsch 2008), matrilin-1 (Winterbottom et al. 1992), matrilin-3 (Fresquet et al. 

2007) and COMP (Rosenberg et al. 1998). 

Collagen type III is a homotrimeric fibrillar molecule and is present in smaller amount 

compared to collagen type II in adult articular cartilage, where it localises onto the rest of the 

collagen fibril network. Its function seems to be reinforcing weakened collagen type II fibril 

networks in cartilage, as it is often present in sites of healing and repair (Wu et al. 2010). 

Three distinct α–chains constitute the collagen type VI monomers. These monomers 

assemble in an antiparallel direction to form dimers, which then cross-link together to form 

the tetramers that make up collagen type VI microfibrils (Gelse et al. 2003). Moreover, its 

supramolecular assembly in antiparallel dimers and tetramers begins inside the cell. 

Tetramers stabilised by disulphide cross-linking then associate in the ECM to form the so 
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called beaded filaments. These microfibrils are localised predominantly to the pericellular 

matrix, bind to both decorin and biglycan (Wiberg et al. 2003) in vitro, and are proposed to 

integrate the cartilage fibrillar network that includes collagen type II (Budde et al. 2005). 

Collagen type VI disorders have a continuum spectrum of overlapping phenotypes 

encompassing Bethlem myopathy at the mild end and Ullrich congenital muscular dystrophy 

(CMD) at the severe end (Lampe et al. 1993-2020).  

Collagen type X is present in the cartilage growth plate and localises in the hypertrophic 

zone. It is a short-chain homotrimeric α1(X)3 collagen that is synthesised exclusively by 

hypertrophic chondrocytes during endochondral ossification. Collagen type X usually 

assembles into a hexagonal mesh-like network (Kwan et al. 1991), but it can also exist as a 

fibril-associated form in foetal cartilage (Schmid and Linsenmayer 1990). Collagen type X is 

a reliable marker for new bone formation in articular cartilage since it facilitates 

endochondral ossification through the regulation of matrix mineralisation and 

compartmentalisation of matrix components (Shen and Darendeliler 2005). Mutations in the 

COL10A1 gene cause Schmid metaphyseal chondrodysplasia (MCDS) (OMIM # 156500). 

COL10A1 pathogenic variants cause collagen type X protein misfolding which leads to 

aggregation within the ER of hypertrophic chondrocytes, triggering ER stress and activation 

of UPR, underlying the development of the MCDS (Rajpar et al. 2009).  

Apart from Collagen type IX, other two members of the FACIT subfamily are expressed in 

cartilage, collagens type XII and XIV. Collagen type XII has been proposed to be involved in 

the regulation of cellular communication during bone formation (Izu et al. 2011). Conversely, 

collagen type XIV is known to regulate fibrillogenesis by regulating the entry of fibril 

intermediates into lateral fibril growth (Ansorge et al. 2009a). Finally, member of the 

collagen fibrillar family, collagen type XXVII localises throughout the growth plate and it is 

believed to play a role in the transition of cartilage into bone (Hjorten et al. 2007). 

During cartilage development spatial and temporal changes occur in the expression of 

different types of collagens. For instance, Collagen types I and III are more abundant in the 

mesenchymal matrix of the developing limb bud. However, when chondrogenesis starts and 

mesenchymal cells condensation occurs, gene expression switches to the production of 

collagen types II, IX and XI (Kosher et al. 1986). In addition, as stated before, the expression 

of collagen type X is specific to hypertrophic chondrocytes of the growth plate. Furthermore, 

some types of collagens are slightly differentially expressed in different kinds of cartilage and 
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one example is the case of collagen type VI, which is more abundant in fibrillar cartilage, 

compared to elastic or hyaline cartilage (Eyre 2002). Finally, an important reduction of 

collagen synthesis occurs once skeletal growth is complete, and at this point 

production/remodelling of the fibril network is active only after injury events. Other factors 

that can alter the abundance and ratio of the components of the fibrillar network are the 

proteolytic and mechanical damages that occur during arthritis-like disorders (Bonnans et al. 

2014). 

1.6 Collagen type IX 

Collagen type IX, a FACIT subfamily member, represents about 1% of the collagenous 

proteins in adult mammalian articular cartilage and 10% in foetal cartilage (Eyre 1991). 

Collagen type IX is found mostly in cartilage, but it also occurs in the eye (vitreum and avian 

cornea), ear (tectorial membrane), and intervertebral disc. It is a heterotrimeric collagen, 

whose structure comprises three α-helical polypeptide chains, α1(IX), α2(IX), α3(IX) 

encoded by three different genes, COL9A1, COL9A2 and COL9A3, respectively. Each 

collagen type IX α chain comprises three collagenous domains (COL1-COL3) separated by 

three shorter non-collagenous domains (NC1-NC3), which add flexibility to the usually rigid 

collagen molecule (Olsen 1997) (Fig.1.4).  

 

Fig. 1.4 | Schematic representation of collagen type IX structure. The molecule contains 

three collagenous domains, COL1, COL2 and COL3, and four non-collagenous domains, NC1-NC4 

(Olsen 1997).  

Two isoforms of collagen type IX are known, a short and a long form. This is due to the 

presence of two transcription start sites at a distance of 20 kilobases with each other in 

COL9A1 which give rise to two α1(IX) variants. mRNA transcripts from the upstream site 

encode a large N-terminus globular NC4 domain of 266 amino acids, whereas the transcripts 

from the downstream site encode chains with an alternative shorter sequence, lacking the 
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NC4 domain. The long form is prevalently expressed in cartilage, whereas the shorter form of 

the mRNA transcript is mainly found in cornea and the vitreous of the eye. The incorporation 

of either form in the ECM is believed to contribute to the differences in the macromolecular 

organisation of the ECM in cartilage and cornea (Nishimura et al. 1989). It is hypothesised 

that the presence or absence of the amminoterminal region of the α1(IX) chain to act as 

discriminator for ligands, creating different ligands selection in different tissues. More 

specifically, it has been speculated that the amino-terminal globular domain of cartilage 

collagen type IX molecules interacts with the anionic glycosaminoglycan side chains of 

cartilage proteoglycans, providing a molecular link between collagen fibrils and 

proteoglycans. The absence of such a domain in the corneal form of the molecule is 

consistent with the absence of the large aggregating proteoglycans in cornea. The rate of 

transcription of each α1(IX) is not known, however it is believed that these rates depend on 

tissue specific transcription factors level or activity in corneal cells and chondrocytes. It is 

also believed that the ratio between the two transcript types may vary depending on specific 

physiological or pathological conditions. For example, in conditions characterized by 

cartilage degradation such as rheumatoid arthritis, it is possible that chondrocytes may 

contain higher levels of the short (corneal) form of α1(IX) collagen mRNA and that the 

synthesis of collagen IX molecules that lack the amino-terminal globular domain contributes 

to the pathological changes in the cartilage matrix (Nishimura et al. 1989). This hypothesis is 

supported by the observation of the presence of a sequence element in the downstream 

α1(IX) promoter, which is involved in regulation of the collagenase and stromelysin (a matrix 

metalloprotease) genes (Angel et al. 1987). Therefore, it could be speculated that the 

conditions that lead to an increased transcription of these genes also produce increased levels 

of the corneal form of α1(IX) mRNA. 

As member of the FACIT subfamily, collagen type IX molecules are found periodically 

organised along the surface of collagen type II/ type XI fibrils, forming therefore a 

heterotypic structure, with the COL3 domain functioning as mobile hinge to allow the NC4 

domain to project into the perifibrillar space (Eyre et al. 2004) (Fig. 1.5). The COL1 and 

COL2 domains are believed to maintain the correct linear distance between type II collagen 

molecules (Asamura et al. 2005). Additionally, a chondroitin sulphate (CS) 

glycosaminoglycan (GAG), is attached to a serine residue of α2(IX) NC3 domain (Huber et 

al. 1988). Covalent crosslinks connect collagen type IX with collagen type II molecules and 

studies suggested that its incorporation into the core of collagen type II/XI heterofibrils can 
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control the assembly, growth and diameter of the fibrils, a function fulfilled thanks to the 

unprocessed N-terminal non-collagenous domain of collagen type II (Gelse et al. 2003). 

Supporting this, chondrocytes deficient in collagen type IX exhibit fibrils with a larger 

diameter, indicating a role of the protein in controlling matrix assembly (Blumbach et al. 

2009). 

 

 

Fig. 1.5 | Supramolecular structure of collagen type IX alongside collagen type II. 

Collagen type IX associates via cross-links with the surface of the collagen type II and XI fibrils in an 

antiparallel direction. The globular NC4 domain and the triple-helical COL3 domain project out from 

the fibril surface whereas the CS-chain, covalently attached to a serine residue of α2-NC3 domain,  

faces down and inserts itself into the macromolecular structure (Muragaki et al. 1996).  

Along with the collagen type II and XI interactions, studies showed that collagen type IX has 

the ability to bind to other non-collagenous components of the ECM such as matrilin-3 

(Budde et al. 2005), COMP (Holden et al. 2001), fibronectin (Parsons et al. 2011), heparin 

(Pihlajamaa et al. 2004), fibromodulin (Tillgren et al. 2009), and various integrins (Sandya et 

al. 2007). These findings suggest collagen type IX to act as a macromolecular bridge between 

collagens fibrils and other matrix macromolecules (Shaw and Olsen 1991). Proteomic 

analysis on cartilage of collagen type IX null mice has given more insights about 

direct/indirect physical or genetic interaction of collagen type IX and other proteins. For 

example, along with higher expression of fibronectin detected in collagen type IX null mice, 

also the TGFβ-induced protein Tgfbi and collagen type XII were increased, while epiphycan, 

a small leucine-rich PG involved in fibril assembly, was reduced in abundance. These 

findings highlight the consequences of collagen type IX ablation which might disturb the 
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normal pattern of TGFβ signalling and fibril-assembly in the developing cartilage, as well as 

creating some sort of potential compensation through expression of another FACIT collagens  

(Brachvogel et al. 2013). 

Mice lacking collagen type IX develop non-inflammatory degenerative joint disease with 

pathological changes comparable to some of those seen in human OA, suggesting the 

collagen type IX crucial role in maintaining the mechanical stability of articular cartilage 

(Fassler et al. 1994). Further details about mice carrying mutations in collagen type IX will 

be described in section 1.9.3 Collagen Type IX mice  

1.7 Skeletal dysplasias 

Skeletal dysplasias are an extremely heterogeneous and complex group of rare diseases 

that affect the development, organisation and homeostasis of the skeleton. Among the 

different mechanisms causing skeletal dysplasia, there are the alterations of ECM 

components or the establishment of an intracellular stress which lead as consequence to an 

abnormal change to chondrocyte proliferation and survival. These generalised heritable 

disorders of the bone and cartilage have an incidence of 1.3–3.2 per 10,000. The International 

Skeletal Dysplasia Society, in its latest nosology and classification of genetic skeletal 

disorders, identified a total number of 461 well-characterised phenotypes (Mortier et al. 

2019). In this classification, these genetic disorders have been grouped according to clinical 

and radiological patterns along with the molecular ontology, giving rise to a total of 42 

different groups caused by mutations in 437 genes identified in 425 listed disorders. 

Chondrodysplasias show a broad spectrum of phenotypic severity, varying from some 

disorders associated with mild disability, to others that are lethal at birth. Moreover, great 

variability is also found between chondrodysplasias belonging to the same group, and 

symptoms can sometimes differ between individuals carrying the same mutation. It is 

therefore extremely challenging to understand the causes underpinning the onset of each of 

these disorders and finding an adequate treatment. Moreover, the importance of studying 

skeletal dysplasias relies also on the fact that the knowledge gained by investigating these 

rare disorders can be applied to understanding more general mechanisms of cartilage 

degradation, such as that seen in OA. The focus of this Thesis is to further investigate 

multiple epiphyseal dysplasia (MED), a chondrodysplasia which shares one of the genetic 
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loci with pseudoachondroplasia (PSACH), and a continuum of phenotypic severity, hence 

belonging to the same bone dysplasia group (Table 1.1).   

1.7.1 Multiple Epiphyseal Dysplasia and Pseudoachondroplasia group 

Initially considered as two different entities, MED and PSACH are now classified 

together as a group of skeletal dysplasia comprising a continuum of clinical spectrum, from 

the more severe cases of PSACH to the mild forms of MED, without excluding a certain 

extent of phenotypic overlap between the two.  

Pseudoachondroplasia is an autosomal dominant inherited condition characterised by a more 

severe phenotype than MED.  Patients are usually diagnosed with PSACH early in life, when 

at the onset of walking they exhibit a waddling gait. Among the PSACH clinical findings are 

marked short stature and deformity of the legs, short fingers typical of brachydactyly, loose 

joints, ligamentous laxity and myopathy, but normal facial features, head size and 

intelligence (Briggs and Chapman 2002). Often the joint pain developed during childhood 

progresses into early onset osteoarthritis leading to joint replacement therapy early in life. 

Patients show small and irregular epiphyses, irregular metaphysis, and a delay in the 

ossification of annular epiphyses of the vertebrae upon radiographic analysis.  A milder form 

of PSACH is recognised sharing clinical similarities with MED (Maroteaux et al. 1980).  

Multiple epiphyseal dysplasia is a clinically heterogeneous ostechondrodysplasia whose 

incidence is about 1 in 10,000 people. The disorder is milder than PSACH, but its clinical 

features were initially classified into two kinds of MED, the milder Ribbing type and the 

more severe Fairbank type. The Ribbing type of MED comprises short stature, flat epiphyses, 

and consequently early-onset OA of the hips, whereas the Fairbank type is recognised 

because of the dwarfism, stubby fingers, and small epiphyses of several joints, including the 

hips (Fairbank 1947). Among the symptoms, MED patients suffer from pain and stiffness of 

multiple joints during childhood and adolescence and development of OA in late childhood to 

adulthood. In some patients only radiological evidence of MED or OA have been reported, in 

the absence of joints pain (Oehlmann et al. 1994) and in some forms of MED stature is not 

affected and patients are of normal height. However, MED associated phenotypes are 

extremely variable and sometimes families remain unclassified because their phenotype does 

not overlap with either the Ribbing or Fairbank clinical features.   
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Only mutations in the gene coding for the cartilage oligomeric matrix protein COMP have 

been reported to cause PSACH (Briggs et al. 1995). However, the genetics of MED is more 

complex. MED can be either dominant or recessive and is more genetically heterogeneous 

since mutations in several genes, the majority coding for ECM components, have been 

identified in patients. The autosomal dominant forms are caused by mutations in COMP 

(COMP) (EDM1; MIM# 132400), matrilin-3 (MATN3) (EDM5; MIM# 607078) and in the 

collagen type IX genes (COL9A1 (EDM6; MIM# 120210), COL9A2 (EDM2; MIM# 120260) 

and COL9A3 (EDM3; MIM# 600969)). The recessive form of MED results from mutations in 

the diastrophic dysplasia sulphate transporter (SLC26A2) (EDM4; MIM# 226900) and rarely 

in mutations in CANT1 (EDM7; MIM# 617719) coding for calcium‐activated nucleotidase 1. 

However, an estimation of the incidence of the dominant and recessive forms is difficult, 

since both forms of this disorder may actually be more common and some people with mild 

symptoms may never be diagnosed. Nonetheless, it is estimated that mutations in COMP are 

responsible for at least half of the cases of MED, followed by SLC26A2 mutations, which 

account for one-quarter depending on ethnicity. The remaining 25% of clinical cases, when 

classified, are due mainly to mutated MATN3, then to a lesser extent mutations in COL9A1, 

COL9A2 or COL9A3 genes (Unger et al. 2008). Nevertheless, for a great portion of MED 

cases, the underlying genetic cause remains still unknown.  

Studies conducted on PSACH and the dominant forms of MED showed that in mice 

expressing the mutant forms of COMP or matrilin-3, ER stress which then affected as 

consequence chondrocyte proliferation and apoptosis, was detected in these mice. From these 

findings, arises the idea that the reduced proliferation and an increased and spatially 

dysregulated apoptosis, probably resulting in disrupted linear bone growth, could be 

considered the common disease mechanism for PSACH and dominant MED bone dysplasia 

family (Briggs et al. 2015). The disease mechanism of MED caused by collagen type IX 

mutations is still unknown and later in this thesis some of the most relevant findings leading 

to possible hypothesis will be discussed. When the recessive form of MED was investigated 

using a Dtdst knock-in mouse with a partial loss of function of the sulfate transporter, 

homozygous mutant mice were characterized by growth retardation, skeletal dysplasia and 

joint contractures. Along with the impaired sulfate uptake leading to a significant cartilage 

proteoglycan undersulfation, the reduced proliferation and/or lack of terminal chondrocyte 

differentiation was also hypothesised to contribute to the reduced bone growth (Forlino et al. 

2005), as similarly considered for the dominant forms of MED. The mechanisms underlying 

the newly identified recessive form of MED caused by CANT1 mutations is not clear. 
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CANT1 is localizes to the Golgi and is involved in the synthesis of glycosaminoglycans 

(GAG) and the posttranslational modification of proteoglycans. Nixon et al. demonstrated 

that fibroblasts with impaired CANT1 have reduced GAG synthesis due to the inability of 

CANT1 to transform UDP in UMP (Nizon et al. 2012). Based on this observation, it is 

hypothesised that CANT1-MED results from an indirect effect on normal ECM biosynthesis, 

due to the incorporation of many ECM proteins whose GAG posttranslational modifications 

may depend on wild-type CANT1 activity (Balasubramanian et al. 2017). 
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Table 1.1 | Multiple epiphyseal dysplasia and pseudoachondroplasia disease phenotype 

spectrum and related allelic disorders. Adapted from (Mortier et al. 2019). MIM No.: numerical 

assignment for inherited diseases, genes and functional segments of DNA, as listed in the 

comprehensive catalog Mendelian Inheritance in Man.  
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1.7.2 Matrilin-3 in MED  

Matrilin-3 is a protein encoded by MATN3 and is a member of a family of oligomeric ECM 

proteins which share a similar domain structure (Deak et al. 1999). Matrilin-3 structure 

comprises a signal peptide, vWFA domain, four epidermal growth factor (EGF)-like domains 

and a coiled-coil oligomerisation domain (Belluoccio et al. 1998). Matrilin-3 is 

predominantly found as a homotetramer, but it can also oligomerise with matrilin-1 to form 

heterotetramers (Wu and Eyre 1998). While expression of matrilin-1 is exclusively cartilage 

specific, matrilin-3 is expressed in both cartilage and bone (Segat et al. 2000, Klatt et al. 

2000), and more precisely in cartilage it is usually localised in the pericellular and 

interterritorial matrix of all growth plate zones (Klatt et al. 2002). Expressed during the early 

development of the skeleton, matrilin-3 has been proved able to interact with other important 

ECM components such as COMP, collagen type II and the collagenous domains of collagen 

type IX, sometimes in an ion dependent manner (Budde et al. 2005, Fresquet et al. 2007).  

The vast majority of the mutations identified in MATN3 and responsible for MED (EDM5) 

are missense variants localised in exon 2, which encodes for the vWFA domain of the 

protein. Only one mutation (p.Arg70His) has been identified in exon 1, which localises in the 

proximity of the vWFA domain and is believed to have a role in maintaining its structure and 

function (Maeda et al. 2005). Among those mutations of the vWFA domain, about 70% are 

variants affecting the β-sheet of the domain, while the remaining 30% have been identified in 

the α-helices of the same domain (Briggs et al. 1993-2019). In vitro and in vivo studies have 

suggested that these pathogenic variants are responsible for the misfolding of the vWFA 

domain which interferes with correct protein trafficking, eventually resulting in protein 

accumulation in the ER (Cotterill et al. 2005, Leighton et al. 2007, Nundlall et al. 2010, Otten 

et al. 2005). 

Notably, a high intrafamilial MED phenotype variability results from MATN3 mutations 

(Mortier et al. 2001), suggesting a contribution of other modulators to the phenotype of 

EDM5. 

1.7.3 COMP in MED 

COMP is a secreted pentameric glycoprotein of 524KDa (Hedbom et al. 1992) which is 

predominantly expressed in the ECM of cartilage, in tendon and skeletal muscle and bone (Di 
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Cesare et al. 1997, Fang et al. 2000, Maddox et al. 1997). In the epiphyseal growth plate 

COMP is localised in the territorial matrix of resting, proliferating and pre-hypertrophic 

zones.  COMP is a modular protein that belongs to the thrombospondin (TSP) family and its 

structure is organised in a coiled-coil oligomerisation domain, four type II (EGF-like) repeats, 

eight type III (calmodulin-like) repeats and a large C-terminal globular domain (Newton et al. 

1994). Within the ECM, COMP is able to bind to fibrillar and non fibrillar collagens and 

other proteins. Interactions with collagen type I, collagen type II, collagen type IX (Thur et 

al. 2001), fibronectin (Di Cesare et al. 2002), aggrecan  (Chen et al. 2007), matrilins and 

integrins are reported (Fresquet et al. 2008, Mann et al. 2004, Chen et al. 2005). Moreover, 

Posey et al. proposed a role of COMP in regulation of collagen fibre diameter during their 

assembly (Posey et al. 2008a). Mutations in COMP cause PSACH and MED (EDM1). 

Around 85% of PSACH and MED mutations are localised in the T3 repeats, whereas the 

remaining 15% have been reported in the C-terminal domain of COMP (Suleman et al. 2012). 

PSACH-causing mutation are often missense, in-frame insertions/deletions mutations and 

have a dominant negative effect. Studies have shown that consequences of this dominant 

negative effect are identified into retention of mutant COMP into the rRER along with other 

ECM proteins (Hecht et al. 2005), leading to an ER overload response  or alternatively into a 

partial secretion of mutant forms of COMP with potential ECM stability implications, while 

complete knock-out of COMP has no effect. The most common described is the in-frame 

deletion of an aspartic acid residue (p.D469del) from the seventh T3 repeat (T37), which 

accounts for approximately 30% of all PSACH (Suleman et al. 2012).  

MED-causing mutations in COMP are responsible for the most severe and also most 

prevalent form of MED (Unger et al. 2008). Also for MED, COMP mutations are missense, 

insertions or deletions and they have been identified in exons coding for the T3 repeats and 

the C-terminal globular domain, despite the majority of deletions and insertions cause 

predominantly PSACH rather than MED. 

There seem to be a correlation between the site of mutations and severity of the phenotype 

leading to MED or PSACH. It has been reported that missense mutations in the residues of 

T34 and T35 are more likely to result in MED, while mutations in T36–T38 will result in 

PSACH. In addition, it has been demonstrated that in position 473 of COMP, deletion or 

duplication of one or more aspartic acid residues result in either PSACH or MED (Briggs et 

al. 2014).  



 

39 

 

1.7.4 Collagen type IX in MED 

Among the different types of MED, those caused by mutations in the collagen type IX 

genes (EDM2, EDM3, EDM6) are relatively benign. The typical features of COL9-MED 

patients are pain and stiffness mainly in the knee joints, symptoms which tend to appear late 

in patients’ life. The phenotype consists of epiphyseal dysplasia mainly of the knee but also 

of other joints are reported in childhood, with osteochondritis dissecans and osteoarthritis of 

the knee joints in adulthood (Lohiniva et al. 2000). Stature is generally not affected. Notably, 

no effect on sight or hearing is reported in COL9-MED patients, differently from another 

disorder caused by collagen type IX mutations, Stickler syndrome, which will be described in 

section 1.8. 

Surprisingly, all but one mutation reported thus far (Table 1.2) cause splicing defects 

consistently affecting the same region of the collagen type IX protein; the COL3 domain 

(Fig. 1.5). In COL9A2 and COL9A3 the COL3 domain is encoded by exons 2 to 10, and by 

exons 8 to 16 in COL9A1. The mutations reported in COL9A2 and COL9A3 affect only the 

splice acceptor sites in intron 2, splice donor sites in intron 3 and 5′ and 3′ regions of exon 3 

(Bonnemann et al. 2000, Holden et al. 1999, Lohiniva et al. 2000, Muragaki et al. 1996, 

Nakashima et al. 2005, Paassilta et al. 1999, Spayde et al. 2000, van Mourik et al. 1998b). 

When assessed, these mutations cause the skipping of exon 3 during splicing, leading to an 

in-frame deletion of 12 amino acids residues within the COL3 domain. An insertion mutation 

has been reported in exon 8 of COL9A1 gene in MED patients, leading to a complex splice 

pattern involving mainly exons 8 and 10 and causing the deletion of an equivalent region of 

the COL3 domain of collagen type IX. (Czarny-Ratajczak et al. 2001). Of all the MED forms 

described, the least is known about the disease mechanism in the collagen type IX variants. 

During collagen fibril formation, collagen α chains are associated through the C-terminal 

ends of the peptides, followed by triple helix formation that progresses towards the N-

terminus (Engel and Prockop 1991). It is therefore questionable, considering the position of 

the COL3 domain in the whole protein, whether the 12 amino acid deletion is likely to 

prevent the synthesis or assembly of collagen type IX molecules, as suggested by evidence of 

enlargement of ER reported in some patients (Bonnemann et al. 2000). Alternatively, the 

mutations might interfere with the interactions between collagen type IX and other matrix 

collagens, such as collagen type II fibrils. However, in an electron microscopy examination 

of articular cartilage of MED patients with a COL9A2 splicing mutation, no differences were 

observed in MED cartilage compared to control biopsies, presenting normal collagen fibril 
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appearance and a lack of inclusion bodies (van Mourik et al. 1998a, Muragaki et al. 1996). 

Despite this, the deletion is likely to affect the structure and the putative function of the 

COL3 and NC4 domain in mediating the interactions between the fibrils and other matrix 

components (Douglas et al. 1998, Nakata et al. 1993). Evidence of this was reported in a 

study concerning the characterisation of recombinant matrilin-3, a heterotrimeric protein 

important component of cartilage ECM. In the study, matrilin-3 A-domain was shown to bind 

to the COL3 domain of collagen type IX, but this binding was abolished by the in-frame 

deletion of the 12 amino acids from the COL3 domain of the α3(IX) chain (Fresquet et al. 

2007). However, it is entirely possible that type IX collagen has a matrilin-3 binding site that 

involves all three α-chains, which could explain the reason why all collagen IX mutations 

characterised thus far result in an identical deletion in the COL3 domain, which is likely to 

play an important role in the pathogenesis of MED. 

1.7.5 EDM3 Clinical cases 

COL9A3 was proposed as a new and third locus for MED when in 1999, in a family 

diagnosed with a history of MED where no linkage was found with COMP, COL9A1, or 

COL9A2, the genes at the time known to be MED associated. The clinical spectrum presented 

by this family involved mainly knee joint problems with some individuals also presenting 

limited extension of the hip, but with an overall normal stature. When mutation analysis was 

performed, researchers found an A→T transversion in the acceptor splice site of intron 2 

(A−2IVS2→T) of COL9A3. As a consequence of this mutation exon 3 of COL9A3 was 

skipped and an in-frame deletion of 12 amino acid residues in the COL3 domain of the α3 

(IX) chain was proposed to be generated (Paassilta et al. 1999). This case was similar to the 

MED mutations reported previously in COL9A2 (Muragaki et al. 1996, Spayde et al. 2000, 

van Mourik et al. 1998b).  

The following year Bönnemann et al. described another family diagnosed with autosomal 

dominant MED, whose symptoms were predominantly localised at the knee joints along with 

a mild proximal myopathy. Genetic analysis indicated COL9A3 as the locus where a splice 

acceptor mutation in intron 2 occurred due to a G →A transition (G−1IVS2→A). Similarly to 

the previously reported case, this mutation resulted in an mRNA also lacking exon 3 and the 

corresponding encoded 12 amino acids. When studies were performed on patient epiphyseal 

cartilage biopsies, a dilated rER was observed, indicating abnormal processing of mutant 
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protein (Bonnemann et al. 2000). Interestingly, in an independent study, muscle weakness 

was also reported in the proband of a MED family with the same G−1IVS2→A mutation 

(Lohiniva et al. 2000). 

Nakashima et al. then identified a novel COL9A3 mutation in 2005 in a family suffering from 

mild dysplasia of the hip, knee and ankle. The patients’ stature was normal, and the OA 

phenotype of the knee was similar to idiopathic OA of age-matched individuals. Mutation 

analysis reported a G+5IVS3→A mutation in the splice donor site of intron 3 of COL9A3. 

RNA analysis confirmed the in-frame deletion of exon 3 as result of this mutation, 

representing the first evidence of a splice donor mutation having the same effect of the 

previously reported acceptor site mutations (Nakashima et al. 2005). 

It is intriguing how all these mutations cause the same molecular mechanism of skipping of 

exon 3, which then conveys a certain variability in the skeletal phenotype for the different 

patients, suggesting a more complex mechanism underlying the disease onset, and/or a role 

for genetic modifiers.  

Interestingly, the only reported exception was a novel mutation in exon 2 of COL9A3 that 

was detected in 2014 in a Korean family diagnosed with MED. The clinical findings involved 

epiphyseal changes predominantly affecting the knee joints, and only mildly other joints such 

as ankle, foot and wrist. Differing from the splicing mutations around exon 3, this mutation 

was a c.104G>A substitution in exon 2 of COL9A3. This missense mutation resulted in a 

substitution of Gly to Asp (p.Gly35Asp) in the “G-X-Y” consecutive sequence of the COL3 

domain in the α3(IX) polypeptide. So, although this mutation was not involving aberrant 

splicing, the change in the amino acid sequence once again affected the COL3 domain. 

Researchers conducted molecular dynamic simulation to analyse the energy state and 

physical movement of the mutant α3(IX) polypeptide. They found that this amino acid 

substitution generated self-aggregation of the polypeptide strand which severely affected its 

interaction with the other strands in the formation of collagen type IX heterotrimer (Jeong et 

al. 2014). 

Looking at the spectrum of COL9-MED mutations reported to date, a common characteristic 

is mutation affecting the COL3 domain, in α1(IX), α2(IX), α3(IX) (Fig. 1.6). Taken together 

these observations highlight the importance of COL3 domain in MED pathogenesis. 
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Fig. 1.6 | Collagen type IX MED mutations. Schematic representation of Collagen type IX 

molecule and the MED mutations reported to date in COL9A1, COL9A2 and COL9A3 genes. 

NC=non-collagenous domain; COL=collagenous domain; Ex=exon; In=intron. Adapted from (Briggs 

et al. 2017) 
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Table 1.2 | Collagen type IX gene mutations that result in phenotypes within the 

Multiple Epiphyseal Dysplasia disease spectrum. Integrated from (Briggs and Chapman 2002). 
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1.8 Other collagen type IX disorders 

Mutation in collagen type IX have also been associated with other skeletal disorders 

such as Stickler syndrome recessive type, lumbar disc disease and progressive hearing loss. 

1.8.1 Stickler syndrome recessive type 

Stickler syndrome was first described in 1965 as a heterogeneous disorder affecting 

connective tissue (Stickler et al. 1965). Inter and intra familial variability is known in terms 

of clinical spectrum, hence requiring a combination of clinical and genetic analysis during 

diagnosis. Among the characteristic features are reported hearing losses, problems in the 

palate and facial development, and myopia with occasional retinal detachment. In addition, 

patients sometimes develop hypermobility of the joints and early-onset OA (Hanson-Kahn et 

al. 2018). Autosomal dominant and recessive forms of Stickler syndrome have been reported, 

in most cases caused by mutations in genes coding for cartilage expressed collagens. 

Heterozygous mutations in COL2A1, account for the 80–90% of dominant Stickler syndrome 

cases (Liberfarb et al. 2003). Other dominant cases are due to mutations in COL11A1 

(Majava et al. 2007) or COL11A2, causing a form of Stickler syndrome, which does not 

involve eye defects (Pihlajamaa et al. 1998). Fewer cases of the autosomal recessive form of 

Stickler syndrome have been described, and the vast majority involved homozygous variants 

in the collagen type IX genes COL9A1, COL9A2, and COL9A3. Ten families have been 

reported with homozygous loss-of-function variants in the collagen type IX genes either due 

to insertion of premature stop codons leading to nonsense-mediated decay or removal of the 

N-terminal regions of the collagen alpha chains necessary for chain association (Baker et al. 

2011, Nikopoulos et al. 2011, Faletra et al. 2014, Hanson-Kahn et al. 2018, Van Camp et al. 

2006, Nixon et al. 2019). The clinical spectrum does not seem to differ between variants in 

COL9A1, COL9A2, and COL9A3 and mainly comprises high myopia and hypoplastic 

vitreous, whereas the facial flattening is not as pronounced and none of the cases presented 

with palate abnormalities. Joint dysplasia was also often reported, characterised by 

hypermobility, mild spondyloepiphyseal dysplasia and precocious osteoarthritis and was 

expected considering the importance of collagen type IX in articular cartilage. Although it is 

surprising how patients with homozygous variations in genes for collagen type IX did not 

show a more severe joint involvement compared to patients carrying other recessive or 

dominant variants in other Stickler syndrome associated genes. Such discrepancies could be 

due to the different modifications of collagen type IX in different tissues. As mention before, 
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the α1 chain of collagen type IX in cartilage has a large amino-terminal globular domain, 

whereas in vitreous the α1 chain is much shorter and the α2 chain has a very large 

chondroitin sulphate chain attached (Nixon et al. 2019). These differences may be the reason 

for the different penetrance of joint problems versus eye problems, possibly due to some sort 

of redundancy mechanism which takes place in cartilage but not in the vitreous. Compared to 

the dominant form of Stickler syndrome, sensorineural hearing loss was more consistent in 

collagen type IX mutation containing patients. This hearing loss appears to be congenital, 

suggesting that loss-of function mutations might have affected ear development.  

Two other non-collagen genes have also been reported in association to a Stickler syndrome 

phenotype: LRP2, coding for the lipoprotein receptor-related protein-2 or megalin, an 

endocytic receptor which mediates the endocytic uptake of diverse circulating compounds, 

and when mutated causes many major malformations such as craniofacial features, 

developmental delay, intellectual disability, ocular findings, low molecular weight 

proteinuria, and sensorineural hearing loss (Schrauwen et al. 2014); and LOXL3, coding for 

the collagen type II cross-linker enzyme lysyl-oxidase-like 3, plays a role in the formation of 

crosslinks in collagens and elastin, and when deficient is expected to result in collagen defect 

(Chan et al. 2019). 

1.8.2 Non syndromic hearing impairment  

Mutation screening for COL9A3 in non-syndromic sensorineural deafness patients and 

healthy controls has also been reported (Asamura et al. 2005). One identified mutation, which 

appeared recessive, was a homozygous inframe deletion of nine nucleotides at position 541–

549 in exon 11, removing a Gly–Pro–Hypro triplet in the 5′-end of the collagen type IX 

COL2 domain. A second mutation appeared dominant and was a missense mutation, D617E 

(1851 C > A) in exon 31, which locates in the COL1 domain of the protein. Both mutations 

were considered good candidates for the pathogenesis of hearing loss since they were not 

detected in healthy patients or SNP databases and involve highly conserved amino acid 

residues. The hypothesis is that the mutated COL1 and COL2 domains affect the assembly 

and stability of the collagen type IX three-dimensional structure resulting in modifications of 

the integrity of collagen fibres in the tectorial membrane of the inner ear. 
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1.8.3 Intervertebral disc disease (DD) 

Intervertebral disc disease (DD) (OMIM #603932) is the major cause of low back pain 

and it is defined as a degeneration of intervertebral discs with subsequent remodelling of the 

closely attached vertebrae which starts early in life. The degenerative phenotype is believed 

to be caused by the concurrence of genetic and environmental factors, rendering the disease a 

complex condition to treat (Feng et al. 2016). Recent epidemiological studies have 

highlighted genetic inheritance as driving factor for the development of this condition. It is 

still unknown whether the phenotype is due to the strong impact of a specific gene or multiple 

genes that contribute in a synergistic way to the pathogenesis, however it is more likely to be 

a polygene and multifactorial disease. The genes that have been associated to DD are 

COL1A1 (Pluijm et al. 2004), COL11A2 (Solovieva et al. 2006), IL1B or A (Solovieva et al. 

2004), ACAN (Kawaguchi et al. 1999), VDR (vitamin D receptor) (Kawaguchi et al. 2002), 

MMP3 (Takahashi et al. 2001), and CILP (cartilage intermediate-layer protein) (Seki et al. 

2005). Polymorphisms in the collagen type IX genes, COL9A2 and COL9A3 have been 

identified as risk factors for lumbar DD. In a screen conducted in a Finnish population with 

intervertebral DD, a sequence variation, known as the Trp2 allele, in COL9A2, caused a 

glutamine to tryptophan substitution into the protein (Annunen et al. 1999). Subsequently, in 

another study performed on Finnish families, researchers found that the degree of vertebral 

disc degeneration was higher in those individuals carrying the Trp2 variant. A similar 

polymorphism in the COL9A3 gene, causing a substitution of arginine to tryptophan (Trp3 

allele) was described by Passilta et al. In their analysis, they found that in individuals 

carrying at least one Trp3 allele, the risk of lumbar disc degeneration was 3-fold increased 

(Paassilta et al. 2001). However such results were not confirmed in studies carried on other 

ethnic group populations (Seki et al. 2006, Kales et al. 2004), suggesting a variation of the 

genetic risk factors for DD according to ethnicity. Therefore, further investigation and in 

multiple ethnic groups are needed to understand the association of the Trp alleles with DD 

(Wu et al. 2018). Early changes during spine development have been reported in collagen 

type IX null mice. These alterations seemed to develop into disc degeneration defects later in 

these animal lives (Kamper et al. 2016). 
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1.9 Mouse models for the study of PSACH and MED 

Mutation analysis performed on patients has shown that PSACH and the more severe 

cases of MED were caused by mutations in the same gene COMP. However, MED as 

mentioned before, is genetically heterogeneous, therefore also caused by dominant mutations 

in other genes coding for matrilin-3 and collagen type IX and recessive mutations in 

SLC26A2 and CANT1 genes.  

Having identified the causative genes for these disorders, discovering the mechanism 

responsible for their pathogenesis turned out to be a more difficult challenge, especially when 

considering the low availability of patient tissue that could be studied. Though model systems 

that completely reproduce the human PSACH or MED phenotypes are not available, the 

generation of knock-in mice and some tissue culture models have provided important insights 

about these disease mechanisms. There are many limitations in using cell models for these 

diseases, such as the limited amount of patient chondrocyte materials usually available when 

the severe clinical phenotype requires joint replacement (Zhang et al. 2009). Moreover, the 

maintenance of a chondrocyte-like phenotype in monolayer cultures has been also an issue, as 

primary chondrocytes dedifferentiate in serial monolayer with respect to their morphological 

and biosynthetic phenotype, by changing from a round to a flattened fibroblast-like shape and 

secreting collagen type I instead of the cartilage-specific collagen type II (Zaucke et al. 

2001). Even when 3D cultures are established, despite overcoming this problem, the matrix 

produced by chondrons does not completely mimic the ECM 3D organization usually found 

in vivo, but gradients and defects can occur in material properties, affecting proteins 

deposition and diffusion which will impact on chondrocytes behaviour (Tibbitt and Anseth 

2009). In addition, there is also the fact that results obtained from cultured chondrocytes are 

cross-sectional, missing therefore information about how the disease progresses along human 

development (Posey et al. 2008b). Hence, the utility of mouse models to recapitulate human 

diseases have come into fruition. They represent a valuable source of material for different 

kinds of experiments and are a system that can be monitored and analysed throughout 

development. An important aspect to be taken into account when trying to reproduce this 

kind of skeletal disorders with mouse models is the correct correlation between human and 

mouse. Despite sharing similar bone biology, when comparing the human and mouse skeletal 

phenotype, some of the differences between the two systems might make extrapolation of 

meaning of results hazardous. We need to consider for example the different time frames in 
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which skeletal development occurs in the two systems. In most mouse strains, the peak bone 

mass is reached at the age of 4-6 months, so unlike humans, bone acquisition and longitudinal 

bone growth continue in mice after sexual maturity, which occurs at 6–8 weeks of age (Jilka 

2013). Thus, from this derives our choice of specific time points when we evaluated the bone 

phenotype of our mutant mice, which will be described in detail into the results section of this 

thesis. Moreover, the difference of posture and patterns of mechanical loading constitutes 

another difference to be considered, with humans being bipedal, the impact on the skeletal 

elements will be different from mice. Both transgenic and knock-in approaches have been 

undertaken in the study of the PSACH-MED disease spectrum and some of them will be 

outlined in this thesis. The phenotype investigated through these mouse models has 

highlighted important aspects of the disease mechanism involving endoplasmic reticulum 

(ER) stress and chondrocyte proliferation, which contribute to the dysplastic skeletal 

phenotype.  

1.9.1 Matrilin-3 mice   

Transgenic knockout mice for matrilin-3 have been generated to better understand the 

role of the protein during skeletal development and in the pathogenesis of MED. When Ko et 

al. generated a knockout mouse line for matrilin-3, null mice were viable, of normal height, 

and without obvious abnormalities in the skeletal phenotype. Histology and ultrastructural 

analyses showed no defects in endochondral bone formation and intervertebral disc 

development. A compensatory effect of structurally and functionally related proteins was 

suspected to account for the absence of an obvious phenotype. However, expression analysis 

did not show compensatory upregulation of other members of the matrilin family. These 

findings suggested that the skeletal phenotype reported in MED disorders due to mutations in 

the MATN3 gene, are more likely caused by the presence of a mutated protein rather than its 

absence (Ko et al. 2004). Likewise, a double knockout mouse for matrilin-1 and matrilin-3 

(Matn1/Matn3) was found with similar normal features. The growth plate was of normal 

height and no change was noticed in any of its zones. The only variation noticed, was 

detected at the age of 7 days, when in double-deficient mice the collagen fibrils of the 

interterritorial matrix were larger in diameter and more densely packed, giving the matrix an 

overall increased density (Nicolae et al. 2007). To the contrary, in a Matn3 null mouse 

independently generated by van der Weyden et al., researchers identified prenatal changes in 

the growth plate, with a larger hypertrophic zone and reduced chondrocyte proliferation, both 
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evidence of premature maturation of chondrocytes. These alterations recovered at the time of 

mouse birth and during postnatal development, thus confirming the lack of phenotype shown 

in the previous studies. Nonetheless, these mice were reported with increased bone mass 

density and to be more prone to develop OA (van der Weyden et al. 2006).  

To generate a murine model of MED, Leighton et al. knocked-in the equivalent of an MED 

mutation into the mouse Matn3 gene, substituting a valine with an aspartate (p.Val194Asp) 

mutation in the A-domain of matrilin-3. Homozygous mice reproduced the human phenotype, 

by developing progressive dysplasia and short-limbed dwarfism. The retention of the mutant 

protein in the ER was indicated by the observation of enlarged cisternae of ER within the 

chondrocytes, this triggered a cellular stress as indicated by upregulation of chaperones for 

the unfolded protein response (UPR). Moreover, the organisation of chondrocytes into 

chondrons was disrupted, along with reduced proliferation and spatially dysregulated 

apoptosis in the cartilage growth plate, all of which might have influenced linear bone growth 

and resulted in the short-limbed dwarfism phenotype presented by the mutant mice (Leighton 

et al. 2007). 

1.9.2 COMP mice 

Similarly to matrilin-3 deficient mice, knockout mice for COMP did not show skeletal 

abnormalities and did not reproduce any of the clinical features of PSACH and MED 

patients. The histological evaluation revealed a normal growth plate and no dwarfism or short 

limb phenotype, indicating endochondral ossification similar to WT animals. In addition, no 

evidence of OA was detected in COMP null mice up to the age of 14 months. Normal cell 

morphology and collagen fibrillary network in the ECM were confirmed by ultrastructural 

analysis of growth plate cartilage, articular cartilage, and Achilles tendons. The same 

hypothesis of possible compensation mechanisms expressed by functionally related proteins 

was not confirmed by expression analysis, with no variation in the protein levels of other 

components of the thrombospondin family (Svensson et al. 2002). 

With the purpose to study the role of COMP mutations in the pathogenesis of PSACH, 

transgenic mouse models overexpressing mutated COMP were generated. This mutation was 

an in-frame deletion of 3 nucleotides which resulted in a deletion of a single aspartate at 

position 469 in the protein (D469del) and is known to cause a severe form of PSACH (Deere 

et al. 1998). The model generated by Schmitz et al. showed disease features similar to 
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PSACH patients, such as growth retardation in male mice, a disorganised growth plate with 

less densely packed fibrils and increased rate of cell apoptosis, and altered extracellular 

localisation of the mutant COMP in the growth plate. Evidence of enlarged ER cisternae 

suggested probable mutant protein retention. Other features not directly related to PSACH 

were observed, such as sternal malformations and the complete fusion of certain segments of 

the sternum (Schmitz et al. 2008). In the transgenic model for PSACH generated by Posey et 

al. expression of human mutant COMP with the same D469del mutation was induced, with 

the model reproducing the findings of human PSACH growth plate morphology, including a 

disruption of growth plate organisation, chondrocyte retention of mutant COMP as well as 

retention of matrilin -3 and collagen type IX. These have shown to be able to assemble with 

pro-collagen type II to form an intracellular matrix within the rER cisternae where they are 

retained, as previously reported for other PSACH causing COMP mutations (Merritt et al. 

2007). Increased chondrocyte apoptosis in mutant growth plates was also shown by 

immunohistochemistry (Posey et al. 2009). The results obtained through these models 

demonstrated that the PSACH phenotype is caused by the generation, retention and partial 

secretion of the mutant COMP protein, rather than by its absence.  

Using a knock-in approach, the D469del mutation was directly introduced into the mouse 

genome. COMP mutant mice did not display an obvious phenotype at birth, but in the post-

natal period they developed short limb dwarfism. In this mouse model, disorganisation and 

reduced number of columns of chondrocytes in the growth plate and retention of the mutant 

COMP into the ER were confirmed. Chondrocyte proliferation was reduced, and cell death 

was increased and spatially dysregulated. Interestingly, no UPR response was found as the 

cause of the alterations described. Instead expression changes of genes involved in oxidative 

stress, cell cycle regulation, and apoptosis were observed, suggesting that a mechanism of 

chondrocyte stress might be at the base of the pathology induced by a mutant COMP 

(Suleman et al. 2012). 

A model for a mild form of PSACH was generated by introducing p.Thr583Met mutation in 

the C-terminal globular domain (CTD) of COMP (Pirog-Garcia et al. 2007). In these mice 

mutant COMP was secreted into the ECM, and therefore no protein retention was occurring 

in the ER. However, a UPR was detected in combination with increased and spatially 

dysregulated apoptosis. Localisation of COMP, matrilin-3 and collagen type IX were also 

altered. At 9 weeks of age homozygous mice presented with shorter tibiae and hip dysplasia, 

and later in life developed articular cartilage degeneration, consistent with OA reported in 
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patients. Further phenotypic analysis pointed out that homozygous mice show mild myopathy 

equivalent to PSACH and MED patients. Finally, tendons of mutant mice were lax and weak 

with thicker fibrils, reproducing patients’ joint laxity (Pirog et al. 2010).  

1.9.3 Collagen Type IX mice 

Several studies have investigated the role of collagen type IX in cartilage, and to do so 

transgenic mice harbouring different mutations have been generated. Fässler et al generated 

the first mutant mouse for a collagen type IX gene in 1994. To test the role of collagen type 

IX in the interaction with other fibrils and components of the ECM, using gene targeting in 

ES cells, they generated a mouse lacking both isoforms of α1 of collagen type IX (Fassler et 

al. 1994). Homozygous mice, despite lacking Col9a1 RNA and protein, were viable and did 

not show an obvious skeletal phenotype or shorter stature at birth and early in life. 

Nonetheless, evidence of development of degenerative joint disease predominantly localised 

at the knee of 4-months old homozygous mice were reported to be similar to the human OA. 

A few years later was demonstrated that the lack of type IX collagen in Col9a1−/− mice results 

in age‐dependent OA‐like changes in the knee joints and temporomandibular joint (TMJ) (Hu 

et al. 2006). In 1997, Hagg et al. demonstrated that mice lacking the α1 chain, were a 

functional knockout of collagen type IX protein, although expression of the Col9a2 and 

Col9a3 genes, coding for the other two helices, was unaffected when rib cartilage was 

analysed (Hagg et al. 1997). The use of the Col9a1-/- mice allowed the investigation of 

stability and integration of other structural components within the ECM of cartilage when 

collagen type IX protein is missing, such as matrilin-3 and COMP proteins. Cartilage 

integrity was disrupted in collagen type IX deficient mice as shown by loss of matrilin-3 and 

COMP integration in the cartilage primordium of vertebral bodies and ribs of new-born 

Col9a1-/- mice . In fact matrilin-3 is known to interact directly with collagen type IX, or by 

means of COMP as adapter (Budde et al. 2005), and COMP has been shown to bind directly 

to Matrilin-3 and collagen type IX (Holden et al. 2001, Mann et al. 2004, Thur et al. 2001). In 

a study on adult Col9a1 null mice, the absence of collagen type IX affected bone fracture 

healing as maturation of cartilage matrix was delayed and cartilage abundance reduced at the 

level of the healing callus (Opolka et al. 2007).  

Collagen type IX has been also associated with the pathogenesis of osteoporosis. This derives 

from the observation of thoracic kyphosis and weight loss, resembling the clinical signs of 
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osteoporosis in aged Col9a1+/− mice. In addition, ageing leads to progressive loss of 

trabecular bone and bone deterioration in male and female heterozygous mice (Wang et al. 

2008). In Col9a1 null mice the growth of cartilage was profoundly affected. At birth, and in 

the early stages of post-natal development, mutant mice show broadened tibial condyles and 

shorter long bones. Large hypocellular central regions with consequently altered 

proteoglycan content were found in the tibia epiphysis (Blumbach et al. 2008, Dreier et al. 

2008). Growth plate organisation was severely compromised: proliferative cells appeared 

rounded and lost their typical columnar distribution, whereas hypertrophic cells were 

enlarged, more loosely packed, and surrounded by more ECM. Moreover, the separation 

between proliferative and hypertrophic cells was no longer clear (Fig. 1.7). A reduction of 

proliferation rate was also reported. However, these alterations tended to ameliorate during 

adulthood. Remarkably, staining for collagen binding integrin, showed that β1-integrin levels 

in Col9a1-/- proliferative zones were strongly reduced, in particular in the proximity to the 

described hypocellular region. Whether the reduction in β1-integrin is a direct consequence 

of collagen type IX absence or due to other compromised cell vitality mechanisms remains 

unresolved.  (Dreier et al. 2008). It is worth noting that Col9a1-/- mice develop progressive 

hearing loss. This finding is consistent with collagen type IX being expressed in the inner ear, 

hence its absence affects the structural integrity of the tectorial membrane in the cochlea 

(Asamura et al. 2005, Suzuki et al. 2005). 

The absence of collagen type IX also severely affects the integrity of the cartilage of the 

intervertebral discs. At early stages of post-natal development, Col9a1−/− animals showed 

cellular disorganisation in the vertebral end plate, smaller nucleus pulposus and disturbed 

distribution of other matrix proteins. The change in matrix composition led to reduced tissue 

stiffness and a delay in the development of the vertebral body. (Kamper et al. 2016, Kimura 

et al. 1996) 
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Fig. 1.7 | Cartilage growth plate defects in Col9a1-/- mice. Areas of hypocellularity and 

chondrocytes with altered morphology and spatial organization in Col9a1-/- mice. Adapted from 

(Blumbach et al. 2008, Dreier et al. 2008) 

Transgenic mouse models have also been generated to better understand the role of collagen 

type IX in cartilage. A cDNA construct designed to create an in-frame deletion of parts of the 

COL2 and COL3 domains and the whole of the NC3 domain in the central part of cDNA 

encoding the αl (IX) chain, was injected into mice. Cartilage expression specificity was 

provided by collagen type II promoter and enhancer driving expression of the construct. The 

shorter α1 (IX) chain assembled with the endogenous α2 (IX) and α3 (IX) chains to generate 

mutant heterotrimeric collagen type IX. This transgenic mouse phenotype comprised OA like 

changes in the articular cartilage of knee joints, and mild chondrodysplastic features: mild 

dwarfism, cornea pathology, and spinal problems involving shrinkage of the nucleus 
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pulposus, the appearance of clefts in the annulus fibrosus, associated to herniation of disc 

material and slight osteophyte formation (Kimura et al. 1996, Nakata et al. 1993). 

Interestingly, growth plate abnormalities were detected only in null collagen type IX mice, 

but not in transgenic mice carrying a mutated protein. 

The studies mentioned so far demonstrated the importance in vivo of the presence of the α1 

polypeptide for the trimerisation with the other two polypeptide chains, since its absence 

impairs the formation of the whole collagen type IX heterotrimer. Interestingly, these 

findings were not confirmed by studies performed in vitro, when the mechanism of collagen 

type IX chains selection and assembly was tested using recombinant constructs expressing 

the three human α chains (Jaalinoja et al. 2008, Pihlajamaa et al. 1999). These studies showed 

the capability for α1 (IX) chains to form disulphide bonds with each other, therefore giving 

rise to an homotrimeric helical assembly α1(IX)3 which was also secreted in vitro and could 

function as an alternative collagen type IX molecule. However, in the case of co-expression 

of α1(IX), α2(IX) and α3(IX), the formation of the canonical heterotrimer containing all three 

chains remained the most favourable form of trimer assembly. Neither α2(IX) nor α3(IX) 

procollagen chains were able to generate homotrimers. These findings suggest the possibility 

that α1(IX)3 could compensate for the absence of α2(IX) or α3(IX). When examining Col9a1-

/- mice, it was confirmed that a similar mechanism of compensation (i.e. the formation of a 

collagen type IX lacking α1 chains) was not possible. 

The consequences of loss of the α2 (IX) were explored in a recent study where a knockout 

mouse for Col9a2 was generated. Homozygous mice (Col9a2-/-) lacked collagen type IX 

protein, indicating that α2(IX) chain is essential for the correct folding of the whole protein. 

Col9a2-/- mice showed defects in skeletal development, as evidence of short limbs, trunk, tail 

and retarded bone growth. Histological analysis showed growth plate defects similar to 

Col9a1-/- mice. Tibial epiphyseal cartilage was wider in knockout mice and a large 

hypocellular region was present in the centre of the proliferative zone. In addition, 

proliferative chondrocytes showed irregular morphology and disruption of columnar 

distribution was noticed in the proliferative and hypertrophic zones. The knockout mice 

exhibited significant reduced auditory function, reproducing the hearing defects reported by 

patients affected by Stickler syndrome. Finally, Col9a2-/- mice showed early onset 

degenerative joint changes, consistent with those observed in Col9a1-/- joints 

(Balasubramanian et al. 2019). Taken together, we can conclude that both α1(IX) and α2(IX) 

are essential for correct collagen type IX assembly, as their absence leads to a complete 
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knockout of the whole protein. From this we might hypothesise that a knockout of α3(IX) 

would give a similar outcome, however no transgenic mice carrying mutations in Col9a3 

have been described in the literature to date. This will be one of the aspects covered in this 

thesis.  

1.9.4 Combined knockout mice  

Some of the knockout mice for genes of various cartilage proteins did not exhibit an 

obvious skeletal phenotype. Functional redundancy between structurally related proteins was 

assumed to be the reason behind this lack of phenotype, but as stated before, in COMP 

deficient and matrilin-3 deficient mice no change in the expression of related proteins was 

detected (Ko et al. 2004, Svensson et al. 2002). In order to investigate the role of possible 

complementarity between different but related ECM components, combined knockout mice 

for multiple genes were generated. In collagen type IX/COMP double-deficient mice the 

phenotypic abnormalities were similar to the characteristics reported for the functional 

collagen type IX knockout. Increased thoracic spinal curve, shorter limbs and an alteration in 

the bone structure were some of the phenotypic abnormalities in mice deficient in both 

collagen IX and COMP.  Remarkably, along with impaired columnar arrangement and a 

reduction in chondrocytes proliferation, a large uncalcified hypocellular region was found in 

the central region of the growth plate, again as reported for collagen type IX deficient mice. 

Similarly to Col9a1-/- mice,  in the double knockout mice the disorganised appearance of the 

growth plate tended to improve with age (Blumbach et al. 2008). From these observations, it 

seems that the lack of collagen type IX is the predominant contributor to the phenotype of the 

double deficient mice, while the absence of COMP did not cause any specific morphological 

changes. Nonetheless, when matrix protein deposition was assessed, differences were noticed 

in the localisation of matrilin-3 in double deficient mice, indicating a role for COMP in 

matrix deposition. 

To study the role of TSP1, TSP3, TSP5 (COMP), and collagen type IX in the growth plate, 

knockout mouse lines for each of the genes and combinatorial strains were generated. Again, 

from this study, collagen type IX appeared to have a more significant role in growth plate 

stability, although each combined knockout showed some growth plate alterations. The most 

disorganised growth plate was exhibited by TSP3/5/Collagen type IX knockout mice, which 

also showed a 20% reduction in limb length. Additionally, in the absence of both TSP5 
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(COMP) and collagen type IX, mice subjected to exercise develop cartilage degeneration 

(Posey et al. 2008a). 

1.10 Genome editing: CRISPR/Cas9 and Non-homologous end joining 

repair 

In recent years, the development of highly versatile genome-editing technologies has 

given researchers the ability to rapidly and economically introduce sequence-specific 

modifications into the genomes of a broad spectrum of cell types and organisms. The most 

commonly used genome editing technologies nowadays comprise zinc-finger nucleases 

(ZFNs), transcription activator-like effector nucleases (TALENs), homing endonucleases or 

meganucleases, and clustered regularly interspaced short palindromic repeats (CRISPR)-

CRISPR-associated protein 9 (Cas9).  

ZFNs are fusion proteins formed by an array of site-specific DNA-binding domains attached 

to the endonuclease domain of the bacterial FokI restriction enzyme. To cleave a specific site 

in the genome, ZFNs are designed as a pair that recognizes two sequences flanking the site, 

one on the forward strand and the other on the reverse strand. Upon binding of the ZFNs on 

either side of the site, the pair of FokI domains dimerize and cleave the DNA at the site, 

generating a double-strand break (DSB) with 5′ overhangs (Urnov et al. 2010). One potential 

disadvantages in the use of ZFNs is the difficult and extremely time consuming process of the 

assembling of optimized engineered ZFNs domains and the limitation of the target site 

selection (Gupta and Musunuru 2014).  

TALE repeats comprise tandem arrays of 10 to 30 repeats (each repeat is 33 to 35 amino 

acids in length) that bind and recognize extended DNA sequences. TALE repeats have been 

used to create a new type of engineered site-specific nuclease that fuses a domain of TALE 

repeats to the FokI endonuclease domain, termed TAL effector nucleases (TALENs). 

Similarly to ZFNs, TALENs can generate DSBs at a desired target site in the genome 

(Bogdanove and Voytas 2011). TALENs are easier to design and have wider target site 

selection, however a clear disadvantage of TALENs is their significantly larger size 

compared to ZFNs. 

Meganucleases are enzymes able to establish extensive sequence-specific contacts with their 

DNA substrate, showing great specificity (Stoddard 2011). However, unlike ZFNs and 
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TALENs, their binding and cleavage domains are not modular, so that the overlap in form 

and function make challenging their use for more routine applications of genome editing. 

The recent discovery of bacterial adaptive immune systems known as clustered regularly 

interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) systems has 

led to the newest set of genome-editing tools. CRISPR-Cas systems use a combination of 

proteins and short RNAs to target specific DNA sequences for cleavage. The bacteria collect 

“protospacers” from invading DNA sequences (for example from bacteriophages), 

incorporate them into their genomes, and use them to express short guide RNAs, which can 

then be used by a CRISPR-Cas system to destroy any DNA sequences matching the 

protospacers during future invasions. The mode of action of this genome editing tool 

comprises two biological macromolecules, the Cas9 protein and a guide RNA, which interact 

to form a complex that can identify target sequences with high selectivity. The Cas9 protein 

is responsible for locating and cleaving target DNA. In its structure the Cas9 comprises six 

domains, REC I, REC II, Bridge Helix, protospacer-adjacent motif (PAM) Interacting, HNH 

and RuvC. The Rec I domain is the largest and is responsible for binding guide RNA. The 

role of the REC II domain is not yet well understood. The arginine-rich bridge helix is crucial 

for initiating cleavage activity upon binding of target DNA (Nishimasu et al. 2014). The 

PAM-Interacting domain confers PAM specificity and is therefore responsible for initiating 

binding to target. The HNH and RuvC domains are nuclease domains that cut single-stranded 

DNA (Nishimasu et al. 2014). In engineered CRISPR systems the guide RNA is a single 

strand of RNA that forms a T-shape comprised of one tetraloop and two or three stem loops, 

and it is engineered to have a 5′ end that is complementary to the target DNA sequence. 

When the artificial guide RNA binds to the Cas9 protein, it induces a conformational change 

converting the inactive protein into its active form. Once the Cas9 protein is activated, it 

stochastically searches for target DNA by binding with sequences that match its protospacer 

adjacent motif (PAM) sequence (Sternberg et al. 2014). A PAM is a two- or three-base 

sequence located within one nucleotide downstream of the region complementary to the 

guide RNA. PAMs have been identified in all CRISPR systems, and the specific nucleotides 

that define PAMs are specific to the particular category of CRISPR system (Mojica et al. 

2009). The PAM sequence in Streptococcus pyogenes for example, the one mostly used in 

genome editing, is 5′-NGG-3′ (Jinek et al. 2012). When the Cas9 protein finds a potential 

target sequence with the appropriate PAM, the protein will melt the bases immediately 

upstream of the PAM and pair them with the complementary region on the guide RNA 
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(Sternberg et al. 2014). If the complementary region and the target region pair properly, the 

RuvC and HNH nuclease domains will cut the target DNA after the third nucleotide base 

upstream of the PAM (Anders et al. 2014). Previous studies demonstrated the efficiency of 

the system, as the expression of the Cas9 protein along with guide RNA(s) in mammalian 

cells, results in double strand breaks (DSBs) at target sites with a 20-bp sequence matching 

the protospacer of the guide RNA and an adjacent downstream PAM sequence (Cho et al. 

2013). 

Because target site recognition is mediated entirely by the gRNA, CRISPR-Cas9 has emerged 

as the most flexible and user-friendly platform for genome editing, eliminating the need for 

engineering new proteins to recognize each new target site. Its advantage compared to ZFNs 

and TALENs, which require recoding of proteins using large DNA segments for each new 

target site, is that CRISPR-Cas9 can be easily adapted to target any genomic sequence by 

changing the 20-bp protospacer of the guide RNA. This can be accomplished by subcloning 

this nucleotide sequence into the guide RNA plasmid backbone. The Cas9 protein component 

remains unchanged. This ease of use for CRISPR-Cas9 is a significant advantage over ZFNs 

and TALENs, especially in generating a large set of vectors to target numerous sites or even 

genome-wide libraries (Wang et al. 2014b) . The potential advantage of CRISPR-Cas9 is the 

ability to use multiple guide RNAs in parallel to target multiple sites simultaneously in the 

same cell (Cong et al. 2013). This makes it straightforward to mutate multiple genes at once 

or to engineer precise deletions in a genomic region. The main issue regarding CRISPR-Cas9 

usage however, is the possibility of off-target effects mainly related to the guide RNA 

sequence specificity, demonstrating tolerance of single or multiple mismatches in the 

protospacer (Hsu et al. 2013). Off-target mutations have been reported at higher rate at sites 

where sequences are similar to the on-target sites sequences (Fu et al. 2013), however efforts 

to improve the specificity of CRISPR-Cas9 in mammalian cells are in progress. 

The final goal of the use of such genome editing tools is the creation of DSBs in the genomic 

DNA of the organisms we are trying to modify. Cells repair DSBs using either the 

nonhomologous end joining (NHEJ) repair pathway, or the homology-directed repair (HDR).  

NHEJ repair can occur during any phase of the cell cycle, but occasionally results in 

erroneous repair. On the contrary, the HDR typically occurs during late S phase or G2 phase 

when a sister chromatid is available to serve as a repair template. Importantly, NHEJ is an 

error-prone repair pathway, since the process does not use a complementary template, thus 

the fusion of the blunt-ended DNA duplexes may result in deletion or insertion of base pairs. 
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The NHEJ repair process requires a nuclease to excise the damaged DNA, polymerases to 

fill-in new DNA, and a ligase to restore integrity to the DNA strands. The precise mechanism 

of NHEJ repair is still under investigation, however the model involves the Ku protein which 

is thought to bind to DNA end and to form a Ku-DNA complex at each end for preparation of 

ligation and recruiting of nuclease, polymerase and ligase activities in any order (Lieber 

2008). The Ku heterodimer has been shown to recruit either directly or indirectly the main 

NHEJ factors, including DNA-PKcs, X-ray cross complementing protein 4 (XRCC4), DNA 

Ligase IV, XRCC4-like factor (XLF), and Aprataxin-and-PNK-like factor (APLF) to DSBs. 

These core NHEJ factors interact with each other to form a stable complex at the DSB (Davis 

and Chen 2013). The DSB ends undergo a step of DNA processing to make them compatible 

for ligation for the terminal step of the NHEJ pathway. The XRCC4 and Ku proteins 

conjugate to recruit specific processing enzymes. After processing, the stabilisation of the 

DNA ends is achieved by the interplay of XRCC4 and XLF with DNA-PKcs and Ku which 

produce a filament able to bridge, protect and stabilise the two regions of broken DNA ends. 

The final ligation and detachment of the NHEJ complex occurs when the DNA ends are 

ligated by the DNA-Ligase IV. XRCC4, XLF, and likely APLF contribute to the process 

while DNA-PKcs gets released after a conformational change, leaving the DSB finally 

repaired (Davis and Chen 2013) . 

1.10.1 Transgenic animal models  

Traditionally, homologous recombination has been used in mouse embryonic stem cells 

to create mouse lines with genetic alterations, such as gene knockouts or knockin. (Smithies 

et al. 1985, Thomas and Capecchi 1987). The main downside of this method has been the 

issue related to the time required for the generation of transgenic animal lines. The most 

eloquent example is in mice, as it takes more than a year to generate a genetically modified 

mouse using homologous recombination. In addition, when the same approach was used to 

modify human cells, the result was not as efficient, and alternative approaches (i.e. antisense 

oligonucleotide and short interfering RNAs) have been used. These techniques have only a 

transient effect and can sometimes have effects also on non-targeted genes (Qiu et al. 2005, 

Wang et al. 2014a). These limitations required more effective methods of gene modification 

to achieve transgenesis in multiple organisms. In recent years, novel genome-editing tools for 

the generation of genetically modified mice have been developed. These tools comprise the 

methods mentioned before, ZNFs, TALENs, meganucleases and CRISPR/Cas9 technology. 
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All three engineered nucleases outlined above have proven effective at producing targeted 

mutations in mouse embryos (Carbery et al. 2010, Cui et al. 2011, Wang et al. 2013, Wefers 

et al. 2013). The efficiency of each system was strongly depending on the nuclease, target site 

in the genome, and amount of RNA injected. However, the highest transgenesis efficiency 

has been demonstrated in experiments where CRISPR/Cas9 was used (Wang et al. 2013). 

Nowadays, CRISPR/Cas9 has become the preferred and elected approach for the generation 

of transgenic animal models, thanks to its incomparable ease of use. A particular advantage is 

that it is possible to obtain knockout animals in the first generation (assuming that the 

targeted gene is not embryonic lethal), dramatically speeding up the time needed to do 

genetic studies in animals. The Cas9 protein and transcribed sgRNA can be directly injected 

into fertilized zygotes to achieve heritable gene modification at one or multiple alleles in 

animal models such as rodents and monkeys (Li et al. 2013, Niu et al. 2014, Wang et al. 

2013) . By bypassing the typical ES cell targeting stage in generating transgenic lines, the 

generation time for mutant mice and rats can be reduced from more than a year to only 

several weeks. Such advance, combined with highly specific editing, has paved the way for 

cost-effective and large-scale in vivo mutagenesis studies in rodent (Fu et al. 2013, Ran et al. 

2013a). Another advantage of this approach is that embryos from any of a variety of animal 

strains can be used; in the case of mice, embryos from an inbred strain can be used to directly 

generate the knockout mice. Similarly, embryos from a strain that already carries genetic 

alterations can be used, relieving the need for many generations of interbreeding to obtain 

mice with multiple genetic alterations. The ability to perform multiplex gene targeting with 

CRISPR-Cas9 is also helpful in this regard.  

Conversely, one outstanding challenge with transgenic animal models generated via zygotic 

injection of CRISPR reagents is genetic mosaicism, partly due to a slow rate of nuclease-

induced mutagenesis. Studies to date have typically relied on the injection of Cas9 mRNA 

into zygotes (fertilized embryos at the single-cell stage). However, because transcription and 

translation activity are suppressed in the mouse zygote, Cas9 mRNA translation into active 

enzymatic form is likely delayed until after the first cell division (Oh et al. 2000) . Because 

NHEJ-mediated repair is thought to introduce indels of random length, this translation delay 

likely plays a major role in contributing to genetic mosaicism in CRISPR-modified mice. To 

overcome this limitation, Cas9 protein and sgRNA could be directly injected into single-cell 

fertilized embryos. The high rate of mutagenic repair by the NHEJ process may additionally 

contribute to undesired mosaicism, due to the risk of introducing indels that mutate the Cas9 

recognition site and this event would then have to compete with zygotic division rates. To 
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increase the mutagenic activity of NHEJ, a pair of sgRNAs flanking a small fragment of the 

target gene may be used to increase the probability of gene disruption. A similar strategy has 

been adopted for the generation of mutant mice in our project and it will be explained in 

detail in future sections of this thesis work. 

1.11 Splicing mechanism 

Pre-mRNA splicing is the mechanism by which introns are removed from the pre-

mRNA whilst exons are simultaneously joined together, forming a continuous protein-coding 

region (open reading frame, ORF) within the RNA sequence (Matlin et al. 2005). Splicing is 

a highly regulated process performed by a macromolecular complex called the spliceosome. 

This complex is constituted of between 150 and 300 individual proteins (Rappsilber et al. 

2002), together with a group of small nuclear ribonucleoproteins (snRNPs) which consist of 

proteins bound to an RNA component (snRNA), which are crucial in the recognition of the 

splicing sites and the catalysis of the splicing reaction. The core elements of the spliceosome 

are able to recognise specific regions at both 5’ and 3’ ends of the intron called splice sites 

and this recognition mediates the splicing event. The sequence of the 5’ splice site, also 

called donor splice site, comprises a nearly invariant “GU” dinucleotide sequence along with 

less conserved residues downstream. The 3’ end, or acceptor splice site, is characterised by a 

conserved “AG” dinucleotide. Along the sequences at the two sites, the presence of an intron 

is also indicated by a further element, the branch site. This sequence is located 20-50 

nucleotides upstream of the acceptor site and consists of a conserved adenosine typically 

followed by a track of 15–20 polypyrimidine residues.  

The splicing mechanisms is a complex two-step trans-esterification reaction carried out by 

the spliceosome. In the first step, a lariat forms thanks to a nucleophilic attack of the 5’ splice 

site phosphate group by the 3’ hydroxyl group of the branch point adenosine. In the second 

step the free hydroxyl of the detached exon attacks the 3’ splice site, creating two fused exons 

and a lariat intron (Montes et al. 2019).  

1.11.1 Alternative splicing and nonsense-mediated decay. 

While some exons are constitutively spliced into mRNA transcript, others are 

sometimes included and other times skipped, therefore alternatively spliced. Alternative 

splicing is one of the major sources of proteomic diversity, since many different mRNA 
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messages can be transcribed from one gene, which then can translate into several proteins 

with different sizes and/or functions. The importance of alternative splicing resides also in its 

capability of regulating gene expression by affecting mRNA stability, altering the 

untranslated regions (UTR) or the open reading frame (ORF) of a transcript (Matlin et al. 

2005). Splice variants can thus arise from mechanisms including alternative promoters, 

preferential usage of exons or splice sites, scrambling of exon order and alternative 

polyadenylation. Splice site selection is influenced by the combinatorial effect of cis-acting 

elements (within the RNA sequence) and trans-acting factors. The splice site strength is a cis-

acting element and is influenced by the sequence complementarity between the 5’ and 

3’splice sites with the snRNA component of the spliceosome snRNP. Along with the splice 

site strength, splice site selection is determined by other cis-acting elements, such as splicing 

enhancer and silencer sequences. These sequences can be found in intronic and exonic 

regions and are recognised by many auxiliary RNA-binding proteins (RBPs) which compete 

to either enhance or repress splice site recognition of both constitutive and alternative exons 

(Matlin et al. 2005). Trans-acting factors affecting splicing comprise the relative 

concentration, localisation and activity of RNA-binding proteins, such as members of the SR-

protein family and the heterogenous nuclear ribonucleoproteins (hnRNPs). SR-proteins are 

generally considered enhancers of splicing, whilst hnRNPs are often considered splicing 

repressors. However, the activating or repressive activity of SR-proteins and hnRNPs is 

largely position-dependent (Erkelenz et al. 2013).  

One third of alternative splicing events result in alteration to the open reading frame (ORF) of 

a gene, potentially leading to the generation of premature stop codons (PTCs) within the 

RNA sequence and subsequently targeting the transcript for nonsense-mediated decay 

(NMD) (Lewis et al. 2003). Accurate splicing of the pre-mRNA constitutes a key aspect in 

maintaining normal cellular physiology, and it is estimated that between 15% and 50% of 

human genetic diseases may arise from mutations to splice sites or splicing regulatory 

sequences (Cartegni et al. 2002, Faustino and Cooper 2003). As mentioned, nonsense-

mediated mRNA decay (NMD) is a translation-coupled mechanism that eliminates mRNAs 

containing premature translation-termination codons which have been acquired as 

consequence of mutations or errors during transcription or RNA processing (Brogna and Wen 

2009). Despite its physiological importance is not yet completely understood, NMD is 

thought to serve as an mRNA-surveillance mechanism to prevent the synthesis of truncated 

proteins that would potentially have toxic effects for the cell, such as dominant negative 



 

63 

 

interactions. In addition, studies involving the inactivation in different species of central 

components of the NMD machinery have highlighted its function in regulation of 

physiological gene expression. These studies led to the suggestion that some alternative 

splicing events had evolved to exploit NMD to achieve quantitative post-transcriptional 

regulation (AS-NMD) (McGlincy and Smith 2008). Two critical steps are recognised in the 

NMD pathway: the PTC recognition and discrimination from natural occurring stops and the 

mechanism by which PTC-containing mRNAs are targeted for fast degradation. Despite 

conservation of the NMD pathway, the nature of the signals and the decay pathway of 

targeted mRNAs vary across species. In mammals the PTC is recognised thanks to the 

crosstalk between the terminating ribosomes and a downstream exon junction complex (EJC), 

a multimeric protein complex deposited by the spliceosome ∼20–24 nucleotides upstream of 

exon–exon junctions. More specifically a stop codon is recognised premature if it is found 

spatially located more than 50-55 nucleotides upstream an EJC (McGlincy and Smith 2008). 

During translation, the ribosome proceeds along the mRNA displacing EJCs, until it reaches 

the stop codon where then a termination complex forms and the mRNA then goes on to direct 

protein synthesis. When an mRNA contains a PTC, it is still recognised by the ribosome as a 

stop codon, but the presence of an exon-exon junction downstream sets the conditions for the 

interaction between the termination complex and the EJC, which activates the NMD pathway. 

The UPF1, UPF2 and UPF3 proteins are core components of the surveillance complex whose 

basic function is conserved in eukaryotes (Conti and Izaurralde 2005), and their deletion or 

silencing results in the stabilization of PTC-containing mRNAs, highlighting their important 

role in the NMD pathway. The model proposed comprises the recruitment of UPF1 by 

translation release factors, and its interaction with the UPF2 and UPF3 proteins bound to the 

downstream EJC. This event facilitates the assembly of an active surveillance complex 

consisting of UPF1, UPF2 and UPF3 and possibly other proteins (Baker and Parker 2004). 

Once an RNA transcript is recognised as aberrant, the enzymes responsible for its 

degradation through NMD are those involved in general mRNA decay. One decay pathway 

for NMD substrates involves removal of the cap structure by the decapping enzymes, which 

expose the body of the transcript to 5′-to-3′ degradation by XRN1 (Muhlrad and Parker 

1994). An alternative pathway, which also contributes to the decay of PTC-containing 

mRNAs, relies on the accelerated deadenylation and 3′-to-5′ degradation by the exosome and 

the Ski complex (Lejeune et al. 2003). 
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The human and mouse genomes have similar sequence organization and have most of their 

genes being homologous. Considering the important role of alternative splicing in gene 

regulation, researchers have wondered the conservation of such mechanism between human 

and mouse. From examination of human splice junctions, from a data set containing human 

transcripts from constitutively and alternatively spliced introns and exons, for comparison 

with mouse transcript data sets, researchers obtained a transcript coverage model indicating 

that 74% of constitutive human splice junctions and 61% of alternative human splice 

junctions are conserved in mouse. Therefore it was concluded that many, and probably most, 

alternative splicing events are conserved between human and mouse (Thanaraj et al. 2003). 
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1.12 Project aims 

Multiple epiphyseal dysplasia (MED) is an autosomal chondrodysplasia characterised 

by early-onset degenerative joint disease. Among the mutated genes identified in MED 

patients are those encoding for the pro-α chains of the collagen type IX, where the majority of 

mutations are splice site mutations (affecting the syntenous exon 3). Interestingly, all splice 

site mutations reported in COL9A2 and COL9A3 genes, lead to the skipping of exon 3 and 

therefore to the in-frame deletion of 12 amino acids from the COL3 domain of the α-helix. 

The consistency of the splice site mutations reported so far is remarkable and emphasises the 

importance of the COL3 domain in the pathogenesis of MED. The hypothesis is that COL3 

domain might have an important functional role for the protein in the matrix, but what that 

function is and why in the mutated form it causes EDM3 along with the other MEDs, is not 

clear. 

The aim of this project was to address these unresolved questions. The strategy applied was 

to reproduce the skipping of exon 3 of Col9a3 in a C57Bl/6 mouse line, in order to assess the 

molecular consequences of the phenomenon and to obtain a mouse model of EDM3. Using 

CRISPR/Cas9 genome editing technology, we have induced the deletion of exon 3, but our 

strategy led to the generation of two mutant mouse lines, Col9a3Δex3/Δex3 and Col9a3-/-. 

Therefore, the purpose of this thesis project was expanded to address additional related 

questions: 

Col9a3Δex3 

Is the Col9a3Δex3 mouse a model of EDM3? 

What is the role of the COL3 domain in the collagen type IX molecule and how, when 

mutated, does this contribute to the pathogenesis of EDM3? 

Col9a3-/- 

Is the Col9a3-/- mouse a functional knockout of collagen type IX as previously demonstrated 

in Col9a1-/- and Col9a2-/- mice? 

What are the differences and similarities with the previous described knockouts? 

Like deletion of Col9a1 or Col9a2, does the Col9a3-/- recapitulate aspects of Stickler 

syndrome? 

Can we deduce from Col9a3-/- mice further information about the role of collagen type IX 

within the ECM?  
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Chapter 2.   

Materials and Methods 
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2.1 Materials 

2.1.1 Commercially available kits 

Commercially available kits used in this study were: Quick Ligation™ Kit (M2200S, 

New England BioLabs, NEB); PureYield™ Plasmid Miniprep System (Promega, 

Southampton, UK); E.Z.N.A.® Tissue DNA Kit (D3396, OMEGA BIO-TEK); ReliaPrep™ 

RNA Tissue Miniprep System (Promega, Southampton, UK); mirVana™ miRNA Isolation 

Kit, with phenol (AM1560, Thermo Fisher Scientific); PHIRE Animal Tissue Direct PCR 

Mastermix Thermo (F170L, Fisher Scientific) DNA-free™ DNA Removal Kit (AM1906, 

Thermo Fisher Scientific); NucleoSpin® Gel And PCR  clean-up (740609, Macherey-Nagel); 

MEGAshortscript™ T7 Transcription Kit (AM1354, Thermo Fisher Scientific);  

MEGAclear™ Kit Purification for Large Scale Transcription Reactions (AM1908, Ambion–

Life Technologies Ltd.). 

2.1.2 Cell culture reagents 

DMEM/F-12 (High glucose, 21331020) and DMEM culture media were both 

purchased from Gibco, Life Technologies Ltd. (Paisley, UK). Foetal bovine serum (FBS), 

Dulbecco’s phosphate buffered saline (PBS), trypsin-EDTA (derived from porcine pancreas), 

L-glutamine, penicillin-streptomycin, and dimethyl sulphoxide (DMSO), were purchased 

from Sigma-Aldrich (Poole, UK). 

2.1.3 Cell lines 

2.1.3.1 HEK 293T 

HEK 293T cells were purchased from the ATCC (293T (ATCC® CRL-3216™)) and 

cultured in DMEM culture media containing 2mM L-glutamine, 100U/ml penicillin, 

100µg/ml streptomycin and 10% (v/v) FBS (DMEM complete). This cell line, originated 

from a foetus, is a highly transfectable derivative of human embryonic kidney 293 cells and 

contains the SV40 T- antigen. Further details or datasheet available on ATCC website 

(www.atcc.org/). 

http://www.atcc.org/
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2.1.3.2 NIH/3T3 

NIH/3T3 cells were purchased from the ATCC (NIH/3T3 (ATCC® CRL-1658™) and 

cultured in DMEM culture media containing 2mM L-glutamine, 100U/ml penicillin, 

100µg/ml streptomycin and 10% (v/v) FBS. This cell line is a derivative of a mouse 

embryonic fibroblast NIH/Swiss and has proven useful in DNA transfection studies. Further 

details or datasheet available on ATCC website (www.atcc.org/). 

2.2 Methods: Generation and maintenance of mouse model  

2.2.1 CRISPR/Cas9 gRNAs design 

The first step for CRISPR/Cas9 genome editing is the design of the gRNAs, for which 

we used the online tool CHOPCHOP (http://chopchop.cbu.uib.no/) (Montague et al. 2014) 

selecting for mus musculus genome assembly and pasting the region of interest spanning the 

intronic region surrounding the exon 3 boundaries of Col9a3 gene (GRCm38/mm10, Pos.: 

>chr2:180599587-180600578). gRNAs hybridization with the two flanking regions of exon 3 

will trigger double-strand breaks with subsequent deletion of the exon 3. Four gRNAs (Table 

2.1) were chosen from the output list and no potential off-targets were found by searching for 

matches in the mouse genome. 

Table 2.1. | Sequences of the chosen gRNAs obtained using CHOPCHOP. PAM sequences 

are shown in bold. 

gRNA 

# 
Target sequence 

Genomic 

location 
Strand 

GC 

content 

(%) 

#7 GATTCTCTCATCTATACCTGGGG sequence:320 - 48 

#8 GGGCCTGTGGAGACATTGTGGGG sequence:349 - 65 

#10 GGCCTGTGTTGCCCTAGGAGAGG sequence:548 + 65 

#11 GTTGCCCTAGGAGAGGCCTGAGG sequence:555 + 65 

 

 

http://www.atcc.org/
http://chopchop.cbu.uib.no/
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2.2.2 In-vitro transcribed gRNAs cloning into viral vector 

2.2.2.1 Lentiviral vector digestion 

5 µg of pLKO.1-puro U6 sgRNA BfuAI large stuffer plasmid (a gift from Scot Wolfe; 

Addgene plasmid # 52628) was digested with 15U of FastDigest BfuAI (NEB) and 3U of 

Fast AP (Fermentas) in 1X FastDigest Buffer containing 1mM DTT. Reaction volume was 60 

µl in total. The digestion was incubated at 37°C for 30 minutes. Inactivation of the enzyme 

was then performed at 65°C for 10 minutes. 

2.2.2.2 gRNAs oligo annealing 

Oligonucleotide annealing was performed using 0.1nM of each oligo per pair (Table 

2.2) in 1X T4 Ligation Buffer (NEB) in a total reaction volume of 10µl. This was incubated 

at 95°C for 5 minutes and then ramped down to 4°C at a speed of 0.1°C /sec. 

Table 2.2. | Forward and reverse sequence of gRNAs oligonucleotides. Oligonucleotide 

sequence in uppercase plus additional sequence for cloning in lowercase. 

Oligo name Sequence 

mCol9a3 g#7 F accgGATTCTCTCATCTATACCTG 

mCol9a3 g#7 R aaacCAGGTATAGATGAGAGAATC 

mCol9a3 g#8 F accgGGGCCTGTGGAGACATTGTG 

mCol9a3 g#8 R aaacCACAATGTCTCCACAGGCCC 

mCol9a3 g#10 F accgGGCCTGTGTTGCCCTAGGAG 

mCol9a3 g#10 R aaacCTCCTAGGGCAACACAGGCC 

mCol9a3 g#11 F accgGTTGCCCTAGGAGAGGCCTG 

mCol9a3 g#11 R aaacCAGGCCTCTCCTAGGGCAAC 
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2.2.2.3 gRNA cloning and bacteria transformation  

The Quick Ligation kit was used for the ligation reaction. Ligation was conducted using 

50ng of pLKO digested plasmid with 1µl of undiluted oligo duplex obtained after gRNAs 

oligo annealing reaction. 1X Quick Ligase buffer (NEB) and nuclease-free water were added 

to a total volume of 9µl. 1µl of Quick Ligase enzyme (NEB) was finally added before gently 

mixing the reaction by pipetting up and down and centrifuging briefly prior to incubation at 

room temperature (25°C) for 5 minutes.  

2µl of the ligation reaction was gently mixed to 50µl (one vial) of One Shot® Stbl3™ 

Chemically Competent E. coli (Invitrogen C737303) and incubated on ice for 30 minutes. 

Competent cells were then heat-shocked at 42°C for 45 seconds before being placed on ice 

for 2 minutes. 250µl of pre-warmed Super Optimal Broth (S.O.C.) medium (Invitrogen 

15544034) were added to each vial of cells and incubated at 37°C horizontally for 1 hour at 

225rpm in a shaking incubator. Subsequently, the transformation mixture was spread onto 

LB-agar plates containing ampicillin (100µg/ml) and incubated inverted at 37°C overnight. 

The following day individual colonies were selected and incubated in 5ml of LB 

supplemented with 100µg/ml ampicillin (Sigma-Aldrich) at 37°C in an orbital shaker at 

225rpm for 16 hours prior to plasmid purification.   

2.2.2.4 Minipreparation of plasmid DNA 

Plasmid DNA minipreparations were performed using the PureYield™ Plasmid Miniprep 

System according to the kit manufacturer’s recommendation. Plasmid DNA was eluted in 

30µl nuclease-free water and DNA concentration was determined using a NanoDrop ND-

1000 spectrophotometer. gRNA cloning was confirmed by Sanger sequencing (Source 

Biosciences, Nottingham, UK). 

2.2.3 Virus production in HEK 293T cells 

Viral particles were produced in HEK 293T packaging cells which were seeded at 

3.8×106 cells per plate in 10ml DMEM complete in 10cm tissue culture plates and left at 37 

℃, 5% (v/v) CO2 overnight. The following day a mixture of 3 transfection plasmids was 

prepared with 3.15µg of vector, 2.5µg of Packaging vector pPAX2 (Addgene plasmid # 

12260) and 0.63 µg of Envelope vector pCMV-VSV-G (Addgene plasmid # 8454) per dish. 

220 µl of DMEM and 19µl of FuGENE® HD Transfection Reagent (Promega E2311) were 
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finally added to the mixture before incubating for 15 minutes at room temperature and then 

adding dropwise to each dish. The third day the media from each dish was replaced with 

10ml of fresh DMEM (plus supplements) with heat inactivated FBS. The viral supernatant 

was harvested at 48, 72, and 96 hours post transfection, centrifuged at ~500g for 10 minutes 

to pellet any cellular material, filtered through a 0.45 μm PES filter, and finally aliquotted 

and stored at -80 ℃ as soon as possible to avoid loss of titre. Cas9 containing viral particles 

were produced by exchanging the pLKO vector for LentiCRISPRv2 (Addgene plasmid # 

52961). Similarly, Green fluorescent protein (GFP) viral particles were also produced by 

exchanging the pLKO vector for pLJM1-EGFP (Addgene plasmid # 19319), as a positive 

control for viral production and transduction (data not shown). 

2.2.3.1 NIH/3T3 cells viral transduction 

NIH/3T3 cells (2×105 per well) were seeded overnight in 3ml of medium in a 6 well-

plate. The following day 500µl of medium was replaced with 500µl of medium containing 

pooled virus (pairs of gRNA virus and LentiCRISPRv2 virus (~165 µl of each)) and 

polybrene (Sigma Aldrich TR-1003) to give a final concentration of 8 µg/ml. The next day 

antibiotic selection for transduced cells was carried on by adding 2µg/ml puromycin (Sigma-

Aldrich) per well and cells were incubated for 2-3 days. Cells transduced with GFP viral 

particles were assessed via fluorescent microscopy. 

2.2.3.2 DNA extraction from transduced NIH/3T3 cells 

Genomic DNA was purified from gRNA-transduced NIH/3T3 cells using E.Z.N.A. ® 

Tissue DNA Kit following manufacturer’s protocol. Briefly, cells were harvested after 

trypsin treatment before adding 25 μL OB Protease Solution and 220 μL BL Buffer followed 

by incubation at 70°C for 10 minutes. 220 μL 100% (v/v) ethanol was added and the entire 

sample was then transferred into a HiBind® DNA Mini Column and centrifuged at maximum 

speed (≥10,000g) for 1 minute. Next, 500 μL HBC Buffer were added to the column and 

centrifugation at maximum speed was performed for 30 seconds. The column was placed into 

a new 2 ml collection tube and 700 μl DNA Wash Buffer added before centrifugation. This 

centrifugation was repeated to remove any trace of ethanol.  The column was then 

centrifuged at maximum speed for 2 minutes to dry and finally DNA was eluted by 

centrifugation in 100μl of pre-heated (70°C) Elution Buffer after 2 minutes of incubation at 

room temperature. 
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2.2.3.3 Phire PCR 

Polymerase chain reaction (PCR) on cell extracted DNA was carried out using Phire 

Hot Start II DNA. Each 20 μl PCR reaction mix contained 5X Phire Taq buffer, 0.2 mM 

dNTP mixture, 0.4 μl Phire Hot Start II Taq DNA Polymerase (Thermo scientific F-122L), 

and 0.5 µM of each primer (Table 2.3). An Applied Biosystems Veriti™ Thermal Cycler was 

used and PCR conditions are outlined in Appendix B.  

Table 2.3. | Primer sequences used for mouse genomic DNA and cDNA amplification. 

Primers were designed using Primer3. 

Oligo name Sequence 

mCol9a3 F GTGTCACTTGGAGGCTACTGTG 

mCol9a3 R CCCAGTAACAGACCACTGCATA 

cDNA_Col9a3F CCAGCCATGACCGGAGC 

cDNA_Col9a3R GTTCTCCAGGGGCACCTTTG 

 

2.2.4 CRISPR/Cas9 genome editing 

2.2.4.1 Production of gRNAs mRNA 

The T7 promoter was added to the sgRNA templates using PCR amplification. The T7 

promoter sequence, plus 6 bases at the 5' end as an extra ‘landing platform’ for the T7 

polymerase, was added to the forward primer complementary to the gRNA cloned in the 

pLKO vector as shown in Fig 2.1. PCR amplification was performed using as reverse 

complement primer (AAAAGCACCGACTCGGTGCC) for the TRACR region within the 

vector. Using 2ng of DNA plasmid plus gRNA template, PCR was carried out using Q5 Hot 

Start High-Fidelity DNA polymerase (NEB #M0493). Each 100μl PCR reaction mix 

contained 5X Q5 Reaction buffer, 200 μM of dNTP mixture, 1μl of (0.02U/µl) Q5 Hot Start 

Polymerase, and 0.5 µM of each primer. An Applied Biosystems Veriti™ Thermal Cycler 

was used following thermocycling conditions outlined in Appendix B. Purification of 

template was then performed using a Macherey‐Nagel NucleoSpin Gel and PCR clean-up kit 

according to manufacturer’s instructions. Briefly, 2 volumes of Buffer NTI were added to 1 
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volume of sample to adjust DNA binding conditions prior to loading on a NucleoSpin® Gel 

and PCR Clean-up Column and centrifugation. Two washes with 700µl of Buffer NT3 were 

then performed before drying the column silica membrane for 1 minute. Elution of DNA in 

water was finally achieved by centrifugation at room temperature for 1 minute.   

 

Fig 2.1. Schematic representation of the designed forward primers structure used for 

gRNAs production. 

2.2.4.2 In vitro transcription (IVT) of Col9a3 #7 and #11 gRNAs 

The PCR amplified T7-sgRNA products (with gRNAs #7 and #11) were used as a 

template for in vitro transcription using the MEGAshortscript T7 kit. In a total volume of 

20µl, 100nM of DNA template were incubated with 7.5 mM of each of the four 

ribonucleotides, 10X T7 reaction buffer and enzyme mix. The reaction was gently mixed 

before incubation at 37˚C for 2 hours. A TURBO DNase treatment at 37˚C for 15 minutes 

was finally performed. 

2.2.4.3 Purification of sgRNA mRNA 

Recovery of sgRNAs was performed using the MEGAclear 3 ™ Kit. The RNA sample 

was brought to 100 µL with Elution Solution and mixed gently. Subsequently, 350 µL of 

Binding Solution Concentrate were added to the sample and mixed before addition of 250 µL 

of 100% (v/v) ethanol. The RNA mixture was passed through a Filter Cartridge by 

centrifugation for 1 min at 10,000g. Two washes with 500 µL of Wash Solution were 

performed and centrifugation continued for 10–30 sec to remove the last traces of Wash 

Solution. The elution of RNA from the filter was obtained by applying 50 µL of RNase free 

water to the centre of the Filter Cartridge and incubation in a heat block set to 65–70°C for 5–

10 minutes. The RNA was finally recovered by centrifuging for 1 min at room temperature 

(10,000–15,000g).  
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2.2.4.4 Zygote cytoplasm injection of gRNAs into foster mother 

Zygote cytoplasm injection was performed by Dr Colin Miles and Paul Cairns to 

generate both transgenic mouse lines following the Ittner and Götz described procedure for 

pronuclear injection to obtain a transgenic mouse line (Ittner and Gotz 2007).  

Briefly, 10–14 days before the first mating, anesthetised stud males were vasectomized and 

sterility was checked by breeding with females.  

To produce zygotes for pronuclear injection, superovulation was induced in females through 

a first intraperitoneal injection of 5 IU pregnant mare’s serum gonadotropin (PMSG) 

following by 5 IU of human chorionic gonadotropin (hCG), before mating with males. To 

obtain pseudo-pregnant females, females in oestrus (as indicated by a swollen, moist and pink 

vagina) were put together with vasectomised males until they were plugged. For zygote 

preparation, super ovulating females were sacrificed and zygotes harvested with follicular 

cumulus cells, after successive treatments with hyaluronidase (1-2 ul of 10 mg/ml 

hyaluronidase (H3884; Sigma)). 

Preparation of DNA for injection was performed by Professor David Young. 

Transgenic mice were generated by injecting a mix of recombinant Cas9 protein 

(TGEN_CP1, ToolGen, CamBioScience, UK) (final concentration of 40 µg/ul), with two IVT 

guide RNAs (each at 50µg/ul) in standard injection buffer (10mM Tris, 0.1mM EDTA pH 

7.5) into the cytoplasm of fertilised eggs. Zygote injection was achieved thanks to the help of 

a holding capillary to stabilize one zygote in the centre of the plate and injection performed 

when position of the zygote was in the same plane of focus as the opening of the holder, 

ideally facing it with the polar body and the female and male pronuclei aligned horizontally. 

The swelling of the female pronucleus was considered as evidence of DNA injection. After 

injection, about 15-30 injected zygotes were reimplanted into foster mothers. Briefly, an 

anesthetised pseudopregnant female was incised parallel to the dorsal midline, and the ovary 

and attached oviduct and uterus gently pulled out from the fat pad in order to expose the 

infundibulum between the coiled oviduct and the ovary. The reimplantation capillary loaded 

with the injected zygotes arranged in a row was inserted into the infundibulum to slowly 

blow the zygotes inside, before pushing the ovary back into the abdomen and sewing up the 

incision. Reimplanted foster mothers were kept warm until fully recovered and hosted in 

cages until delivery of the first transgenic litter, referred to as Founder of transgenic line (F0).  
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2.2.5 Maintenance  

Mice were housed at the Functional Genomics Unit (FGU) at the Institute of Genetic 

Medicine at Newcastle University, in compliance with the Animals (Scientific Procedures) 

Act 1986 and its associated Codes of Practice. Up to 5 mice were housed together in 

independently ventilated cages (300cm2, 12cm height) to allow enough space for physical 

activity/exercise. All animals had access to food and drinking water ad libitum and were 

subjected to a 12-hour light-dark cycle. When breedings were ended, re-introduction of the 

male breeders to already populated cages was avoided in order to avoid social incompatibility 

issues. The FGU technical staff performed the check and cleaning rota of the cages twice a 

week. Detailed records about each animal used in this study was recorded using the AniBio 

and Softmouse software systems and returns of procedures including severity limits and 

protocols performed annually to the Home Office. Every mouse procedure was performed 

under Project licences n° 60/4525-1 and n° P8A8B649A-1. 

2.2.6 Genotyping  

2.2.6.1 DNA extraction 

Mice were ear-notched at postnatal day 21 and separated into male/female cages after 

the weaning period. DNA was extracted from ear biopsies using the PHIRE Animal Tissue 

Direct PCR Master mix (Thermo-Fisher) following manufacturer’s instructions. Briefly, 20µl 

of Dilution Buffer plus 0.5µl of DNA Release Additive from the Kit were added to each 

sample, these were vortexed and centrifuged (13,000g) prior to subsequent incubations at 

room temperature for 2-5 minutes and at 98°C for 2 minutes. The DNA extracted was finally 

vortexed and centrifuged again before Phire PCR amplification or storage at -20 C until 

required.  The PCR reaction consisted of 8 µL nuclease free water, 2X Phire green master 

mix, 0.5 µM forward and reverser primer (Table 2.3) and 1µL of extracted DNA mixture. 

PCR was performed in an Applied Biosystems® Veriti™ Thermal Cycler following the 

thermal cycle programme in Appendix B. PCR products were examined by agarose gel 

electrophoresis. PCR products in gel loading dye (NEB #B7025S) were loaded, onto a 1.5% 

(w/v) agarose gel in 1XTAE (Tris-Acetate-EDTA) buffer. In order to determine DNA band 

size, a DNA marker BIOLINE Hyperladder 100bp (BIO-33056) was loaded along with PCR 

products. The DNA was electrophoresed at 90 V for ~45 minutes and visualised under UV 

light using a UVP Geldoc-it imaging system.   
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2.3 Methods: Validation of mouse model  

2.3.1 Bone measurements 

3-week old mice were sacrificed by exposure to CO2 and 9-week old mice were 

anesthetised using isoflurane.  X-rays images were acquired as DICOM raw files using the 

Faxitron MX-20 cabinet X-ray system (Faxitron Bioptics) at 23 kV for 5 seconds. Raw files 

were then opened in the Fiji (ImageJ) software and bone measurements (tibia, femur, inner 

canthal distance (ICD), skull and hip angle) were performed using the measure tool (Fig 2.2). 

ICD was measured as a marker of intramembranous ossification, whereas length of the skulls, 

tibiae and femurs as indication of endochondral ossification. Hip development was assessed 

by measuring the angle formed by the tuberosity of the ischium protruding from the Ilium 

line. Average measurements of the right and left tibia, femurs and hip angles were calculated 

per mouse. 

 

Fig. 2.2 | Radiographic analysis of skeletal mice morphology. Conventional scheme of mouse 

bone measurement used for x-ray analysis: the inner-canthal distance (ICD) measured as marker of 

intramembranous ossification whereas skull, femur and tibia length as markers of endochondral 

ossification. Hip angle assessed as a marker of general hip development.  
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2.3.2 Quantitative bone morphology by micro-computed tomography (μCT) 

2.3.2.1 Dissection and fixation of bones for μCT 

18-week old male mice were sacrificed by exposure to CO2, subsequently the skin was 

removed from their right legs up to the hip and the head of the femur was dislocated from the 

hip socket in order to remove the limb from the mouse. The foot was cut from the ankle joint 

and the soft tissue removed carefully so as not to disturb knee joint. Legs were then fixed in 

10 % (v/v) neutral buffered formalin (containing 4% (w/v) formaldehyde) overnight before 

being washed twice in PBS and being stored in 70% (v/v) ethanol and water for long-term 

storage, until analysis by μCT. 

2.3.2.2 X-Ray micro-computed tomography (μCT) 

Femurs and tibiae from 18-week old mice were subjected to bone density analysis to 

check their cortical and trabecular bone. All μCT scans were performed using the SkyScan 

1272v2 μCT analysis instrument in the laboratory of by Professor Rob van‘t Hof at the 

Institute of Ageing and Chronic Disease, University of Liverpool (UK). Bone specimens 

were placed in 5ml sample vials filled with 70% (v/v) ethanol and then anchored to the 

rotating stage of the μCT X-ray chamber. For cortical bone density multiple 2D image 

projections of the full height knee were obtained with the following settings: a rotation step 

of 0.4°, an energy filter of 0.50 Aluminium, image format of 2016 x 1344 at a vertical 

position of 33 mm, oversized scan of 57 and a spatial resolution of 9 µm. X-rays were 

obtained at 50 kV and 800 mA. For Trabecular Bone density multiple 2D image projections 

of knees were obtained with a rotation step of 0.3°, an energy filter of 0.50 Aluminium, 

image format of 4032 x 2688 at a vertical position of 46 mm, not applying oversize scanning, 

and with a spatial resolution of 4.5 µm. The scanning protocol was set for each sample stage 

on the machine.  To generate a reconstructed 3D bone image, 2D images for each bone were 

stacked and reconstructed using the NRecon (v1.6.4.1, Bruker) programme selecting the 

region of interest to be reconstructed. Reconstruction was performed with the smoothing 

function on, selecting a ring artefact of 5 and a beam hardening of 38% and with a Gaussian 

smoothing kernel in the advanced options. A dynamic range between 0 and 0.11 was then set 

before starting the process. 3D µCT reconstructions for trabecular bone was performed on the 

region which was 50 slides (225 µm) away from the femoral growth plate in femurs or tibial 

growth plate in tibiae. 3D µCT reconstructions for cortical bone was performed on the region 
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which was 50 slides (450 µm) away from the femoral great trochanter in femurs or the fibular 

notch in tibiae. The images shown in the results section are cross-sectional images of 3D µCT 

reconstructions obtained using the software CtVox for trabecular bone and Dataviewer for 

cortical bone from the median animals of each genotype at similar distance from the 

reference points mentioned. Worth mentioning that our standardised method of analysis and 

imaging did not take into account that one of the genotypes presented shorter long bones. 

2.3.2.3 Bone architecture analysis from 3D μCT images 

Reconstructed 3D bone images were used to analyse bone architecture using the CTAn 

(v.1.16) programme. The volume of interest (VOI) to be analysed was set using the 

Dataviewer programme. In order to analyse trabecular bone, the VOI was set to a depth of 

900 μm, 225 μm from the bottom of the tibial or femoral growth plate. In order to analyse the 

cortical bone of the tibial and femoral shaft, the VOI was set to a depth of 450 μm, from the 

top of the fibular notch of the tibia or from the bottom the greater trochanter crest of the 

femur. Femoral and tibial trabecular and cortical VOIs were then opened in CTan and were 

used as the input with different software macros for cortical and trabecular analysis. The 

macros were written and kindly provided by Professor van‘t Hof.  Reconstruction parameters 

and the selected VOI were kept consistent between all samples. The higher and lower grey 

threshold values corresponding to bone in the macro were set at 70 and 255 for cortical bone 

and at 60 and 255 for trabecular bone respectively. Statistical analysis on the results was 

carried out using the Student’s unpaired t-test comparing the bone structural parameters 

between control and mutant mice. 

2.3.3 Tissue preparation for histological and immunological analysis. 

The mice were sacrificed and dissected removing the skin and part of the muscle, 

before knee joints were collected and fixed. Fixation was performed for 24 hours at room 

temperature or for 48 hours at 4°C in 4% (v/v) formaldehyde (for histological protocols) or in 

a solution of 95% (v/v) ethanol / 5% acetic acid (for immunohistochemical (IHC) protocols). 

After fixation the bones were decalcified in 20 % (w/v) EDTA pH 7.4 (Appendix A) for 1 

week (for mice up to 2 weeks of age) or 2-3 weeks (for mice 3-9 weeks of age), with gentle 

agitation at room temperature. 
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Following decalcification, knee joints were washed with running tap water for 1 hour and 

then transferred in 70% (v/v) ethanol prior to overnight processing in a Thermo Scientific™ 

STP 120 Spin Tissue Processor (Appendix D). Tissue samples were then embedded in 

paraffin blocks in a flat orientation or patella down orientation (for destabilisation of medial 

meniscus (DMM) experiment) and left to set overnight.  

Wax blocks were placed at -20°C prior to sectioning. Legs were sectioned using a Thermo 

Scientific™ HM 355S automatic microtome to 6μm sections (histology and 

immunohistochemistry) or 4 μm (DMM sectioning). Wax sections were fixed onto 

Superfrost® Plus slides (CellPath MBB-0102-54A) at 60 °C on a hot plate for 1 minute and 

left to air dry overnight. During sectioning, sister tissue sections were collected starting from 

the beginning of the appearance of the growth plate and finishing when the growth plate 

started to disappear, to be sure to cover the entire depth of the tissue. An average of 25-30 

slides were collected per sample and they were numbered to be able to recognise the tissue 

depth at which sections were collected. Matching of the slides was carried out by choosing 

those slides with the same or close number for each genotype, representative of each region 

(initial, middle and end region) of the tissue. Matched numbered slides of different samples 

and biological replicates were then processed for staining and imaging showed in this thesis 

work.  

2.3.4 Haematoxylin and eosin (H&E) staining 

Sectioned formaldehyde-fixed joints were dewaxed in xylene and were hydrated in a 

decreasing series (100%, 95%, 75%, 50%) of ethanol and then washed with tap water for 1 

minute. Slides were next submerged in filtered Harris modified haematoxylin for 1.5 minutes 

before being rinsed in tap water for 1 minute. Slides were dipped in 0.5% acid alcohol 

(Appendix A) followed by a water rinse, where needed, to remove excess stain, before a 30 

seconds incubation in Scott’s tap water to enhance nuclear staining. Subsequently, slides 

were stained in filtered alcoholic eosin Y for 30 seconds, and rinsed in water for the same 

time. Afterwards, stained slides went through dehydration in increasing concentrations of 

ethanol (50%, 75%, 95%, 100%) and placed in xylene before being mounted using DPX 

Phthalate-free mounting media (CellPath). Once dry, images were acquired using a DM5500 

B bright field microscope (Leica), connected to a Leica DFC310 FX camera. All 
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morphometric measurements were performed by LAS V4.5 (Leica) and Fiji (Image J) 

software. 

2.3.5 Toluidine blue staining  

Toluidine blue staining of the cartilage growth plate was used to analyse sulphated 

proteoglycans. Formaldehyde-fixed limb specimens were sectioned and dewaxed in xylene, 

then sections were rehydrated to water through a series of decreasing ethanol concentrations 

as described previously. Slides were then incubated in 0.04 % toluidine blue pH 3.75 

(Appendix A) for 2 minutes. To remove excess stain, slides were rinsed twice in water before 

being incubated in a Nuclear Fast Red solution for 50 seconds to counterstain the nuclei. 

Sections were then rinsed twice in tap water and were dehydrated in 75 % and 100 % ethanol 

for 3 minutes for each incubation, and finally placed in xylene before being mounted using 

DPX Phthalate-free mounting media (CellPath). Once dry, sections were imaged using a 

DM5500 B bright field microscope (Leica). 

2.3.6 Safranin-O – Fast Green staining 

This method is used for the detection of cartilage, mucin and mast cell granules on 

formalin- fixed paraffin-embedded tissue sections. The cartilage and mucin will be stained 

orange to red and the nuclei will be stained black in a green background corresponding to 

cytoplasm. The method is recommended as a semi-quantitative scoring system following 

DMM surgery. Two independent and blind scorers assessed cartilage damage eight-weeks 

post-DMM surgery (see 2.3.13 Surgical destabilization of the medial meniscus (DMM)). 

Briefly, slides were dewaxed and rehydrated as described in section 2.3.4. Slides were stained 

with Weigert’s iron haematoxylin working solution (SIGMA-Aldrich, Poole, UK) for 10 

minutes and then briefly washed under running distilled water. Slides were then quickly 

dipped in 0.5% acid alcohol to remove excess hematoxylin and then rinsed in running tap 

water to stop the reaction. Slides were then placed in 0.06% (w/v) Fast Green solution 

(SIGMA-Aldrich, Poole, UK) for 5 minutes and then quickly rinsed in 1% (v/v) acetic acid 

solution (SIGMA-Aldrich, Poole, UK) for no more than 10-15 seconds. Slides were then 

stained in 0.1% (w/v) Safranin O solution for 5 minutes before being transferred to 95% (v/v) 

ethanol for 1 minute and then subjected to two washes of 100% ethanol for 2 minutes each. 
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Finally, slides were placed twice in xylene for 10 minutes each, before mounting in DPX 

Phthalate-free mounting media and left overnight at room temperature to dry. 

2.3.7 Picrosirius red staining 

Picrosirius red staining was used to visualise collagen fibres (Appendix E.3). The 

reaction of the dye with collagen fibres is able to enhance their birefringence under polarised 

light, collagen fibrils then appear red, orange, yellow, or green depending on their thickness, 

going from red to green as thickness decreases. For picrosirius red staining paraffin sections 

were de-waxed and hydrated through a series of decreasing ethanol concentrations up to 

distilled water as previously described. Nuclei were then stained with Harris modified 

haematoxylin for 20 minutes and excess stain removed by washing in running tap water for 

20 minutes. Picrosirius red stain was then applied to sections and incubated for 1 hour. 

Sections were then washed in two changes of 0.5 % (v/v) acidified water before dehydration 

through three changes of 100 % ethanol. Slides were finally immerged in xylene prior to 

mounting with DPX Phthalate-free mounting media. The staining was visualized at 20X 

magnification using transmitted polarised light with a Leica DM2700 P polarising 

microscope kindly available from Dr Cees van der Land at the School of Natural and 

Environmental Sciences, Geosciences Institute. 

2.3.8 Immunohistochemistry 

Three-week-old mice were sacrificed and their right legs harvested, fixed, decalcified, 

embedded and sectioned as described in section 2.3.3 Tissue preparation for histological 

and immunological analysis.. Sections were dewaxed in xylene and dehydrated through a 

decreasing gradient of ethanol before two washes in water and re-equilibration in PBS. 

Sections were pre-treated with 0.2% (w/v) bovine hyaluronidase in PBS and incubated at 

37°C in a humidified chamber for 45 minutes for epitope unmasking. They were then 

incubated in 0.5% (v/v) Triton™ X-100 (Sigma) for 5 minutes and with 5μg/ml proteinase K 

in PBS for 5 minutes at room temperature, washing with PBS in between each step. Blocking 

was conducted with a 0.6% (v/v) goat serum (Vector Laboratories Ltd., UK), 1% (w/v) 

bovine serum albumin (BSA, Fisher Scientific) solution in PBS for 1 hour at room 

temperature. Sections were then incubated overnight at 4 °C with primary antibodies diluted 

in PBS. The following day, slides were washed in 1% (w/v) BSA/PBS and then incubated at 
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room temperature with secondary antibodies diluted in 1% (w/v) BSA. Antibodies were then 

removed with a final wash in PBS before mounting in Fluoroshield Mounting Media with 

DAPI (ab104139 Abcam). Antibody dilutions are listed in Appendix C. 

Slides were imaged on a Zeiss AxioImager with Apotome (IGM, system 3) microscope, at 

20X and 40X magnification selecting the DAPI and corresponding AlexaFluor™ filter sets 

on the ZenPro microscope associated software. Exposure times were set on negative control 

sections for equivalent antibodies (Appendix C, Fig.C1).   

2.3.9 Bromodeoxyuridine (BrdU) labelling assay 

For the detection of proliferative cells a 5’-bromo-2’-deoxyuridine (BrdU) labelling 

assay was performed on 3-week-old mice tissue sections. Mice were intraperitoneally 

injected with 0.01mL/g BrdU (Amersham RPN201) labelling reagent. Two hours post-

injection, mice were sacrificed by exposure to CO2 and right limbs were fixed for 

immunohistochemistry, decalcified, processed, embedded and sectioned as previously 

described.  

BrdU positive cells were detected by immunohistochemistry. 6μm sections were dewaxed in 

xylene and dehydrated through a decreasing gradient of ethanol. To unmask antigens, slides 

were incubated in 4M HCl for 15 minutes. Slides were then neutralised in 0.1M borate buffer 

pH8.5 (Appendix A) for 5 minutes and then washed in PBS before blocking with 4% (v/v) 

donkey serum (AbD Serotec) (diluted in PBS) for 20 minutes at room temperature or 

overnight at 4°C. Incubation with anti-BrdU primary and subsequently secondary antibodies 

(Appendix C) was performed following an immunohistochemistry protocol as described in 

section 2.3.8 Immunohistochemistry. Slides were mounted using the Fluoroshield 

Mounting Media with DAPI and allowed to dry in a dark box overnight. Images of sections 

were acquired using a Zeiss AxioImager with Apotome (IGM, system 3) microscope at 20X 

magnification using the DAPI and AlexaFluor™488 filter sets using the tiles and stitching 

functions of the ZenPro software for higher imaging resolution. Exposure times were set on 

negative controls which were sections not probed with anti-BrdU antibody. 

Raw images were viewed in Fiji (ImageJ), colour channels were split and images were 

converted to grey-scale. BrdU positive cells were counted using the Watershed Segmentation 

algorithm on the Fiji program and expressed as a percentage of total cells within the 

proliferative zone.  Nine matched slides per mouse, from 3 mice per genotype, were counted 
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and analysed using a Student’s unpaired t-test carried and statistical significance was given as 

p < 0.05. 

2.3.10 Analysis of gene expression 

2.3.10.1 RNA extraction from mouse tissue 

Femoral head caps and xiphoids were dissected from 3-week old mice and snap frozen 

in liquid nitrogen and stored at -80 °C until further use. Total RNA was extracted by 

disrupting the frozen tissue using a Satoris Mikrodismembrator S, shaking for 1 minute at 

2000 rpm. Briefly, the frozen tissue was placed in a cooled stainless steel vial containing a 

cooled stainless steel ball and frozen BL + TG buffer according to sample weight, supplied 

by the ReliaPrep™ RNA Tissue Miniprep System (Promega). RNA was then extracted from 

the powder obtained after tissue disruption using the ReliaPrep™ RNA Tissue Miniprep 

System according to manufacturer’s instructions. Resulting RNA was eluted in 15µl RNase-

free water and its concentration assessed using the NanoDrop ND-1000 spectrophotometer. 

2.3.10.2 Reverse Transcription and cDNA amplification  

For reverse transcription to 1µg of tissue extracted RNA, nuclease-free water was 

added to 9µl final volume and 0.1µg/µl random hexamers pd(N)6 (Integrated DNA 

Technologies, IDT) were added and heated to 70°C for 5 minutes. The samples were then 

placed on ice. To the cooled samples a mixture of 0.25mM dNTPs (Bioline), 4µl of 5X First 

Strand Buffer, 10mM DTT, 1 µl (200 U) Moloney Murine Leukaemia Virus (M-MLV) 

reverse transcriptase (all ThermoFisher Scientific) and water was prepared for a total reaction 

volume of 20µl. Reverse transcription was performed at 42°C for 1 hour. The cDNA obtained 

was immediately used for PCR amplification following the protocol in section 2.2.3.3 Phire 

PCR and PCR cycling programme in Appendix B, or stored at -20°C for future use. 

2.3.10.3 Isolation of rib primary chondrocytes 

Mice at the age of 1 week were sacrificed by cervical dislocation, skinned and the chest 

internal organs removed in order to separate their thoracic cages. Once the sternum was 

removed, ribcages were cut and opened along the spine, cleaned from the bone marrow, and 

placed in warm PBS to keep moist, until all dissections were completed. Each ribcage was 

then digested with 2 mg/ml collagenase type II (Invitrogen) in Dulbecco’s modified Eagle’s 
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medium (DMEM) (Sigma-Aldrich) at 37°C for 75 minutes, vortexing every 15 minutes. Then 

in a Petri dish under the microscope, single ribs were separated and cleaned from muscle and 

fibrous tissue, cartilage harvested and digested with 2 mg/ml collagenase type II at 37°C for 3 

hours, vortexing every 30 minutes. After incubation, cartilage was mechanically 

disaggregated by pipetting and released chondrocytes filtered, washed in PBS, and pelleted.  

2.3.10.4 RNA isolation from primary chondrocytes  

RNA was isolated from ribs primary chondrocytes using mirVana™ miRNA Isolation 

Kit according to manufacturer’s protocol. Briefly, about 400µl of Lysis/Binding Buffer 

solution were added to each cell pellet according to estimated cell number and vortexed 

vigorously to obtain a homogenous lysate. Afterwards, organic extraction was carried out by 

adding 1/10 volume of ‘miRNA Homogenate Additive’ to the cells, mixing by inverting the 

tubes several times, and incubation on ice for 10 minutes. A volume of Acid-

Phenol:Chloroform, pH 4.5, (#AM9720, Thermo Fisher Scientific) equal to the initial lysate 

volume was added, vortexed and samples centrifuged for 5 minutes at 10,000g at room 

temperature to separate the aqueous and the organic phases. The aqueous phase was 

recovered to a fresh tube. For final total RNA isolation, 1.25 volumes 100% ethanol were 

added to the aqueous phase, thoroughly mixed by vortexing, loaded onto a kit Filter Cartridge 

which was quickly centrifuged at 10,000g. The filter was then washed three times, first with 

miRNA wash solution 1, then miRNA wash solution 2 and finally wash solution 3, before 

and elution via centrifugation (10,000g for 30 seconds) into a fresh collection tube with 50 µl 

of pre-heated (95˚C) nuclease-free water. RNA was stored at -80 ˚C until further use.  

2.3.10.5 RNA sequencing 

RNA sequencing was carried out on RNA isolated from costal primary chondrocytes. 

The extracted RNA was initially subjected to a DNase treatment step using the DNA-free™ 

DNA Removal Kit (# AM1906, Thermo Fisher Scientific) in order to avoid genomic DNA 

contamination.  RNA integrity was checked on an Agilent Technology Bioanalyzer and 

samples with a RNA integrity number (RIN) ≥ 8 (Appendix E.1) were considered for 

subsequent sequencing library preparation. Sequencing libraries were prepared from total 

RNA using the Illumina TruSeq Stranded mRNA library preparation kit following 

manufacturer's instructions. Briefly, the Poly-A containing mRNA molecules were purified 

using poly-T oligo attached magnetic beads. Following purification, the mRNA was 
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fragmented into small pieces using divalent cations under elevated temperature. Cleaved 

RNA fragments were copied into first strand cDNA using reverse transcriptase and random 

primers in the presence of Actinomycin D to prevent spurious DNA dependent synthesis. 

Second strand cDNA synthesis followed using DNA polymerase I and RNase H where the 

incorporation of dUTP in place of dTTP quenched the second strand during amplification. A 

further step of 3’-blunt end adenylation prevented the fragments from ligating to each other 

during the adapter ligation reaction. A corresponding single 'T' nucleotide on the 3' end of the 

adapter provided a complementary overhang for ligating the adapter to the fragment in order 

to prepare the double strand cDNA for hybridisation onto a flow cell. PCR enrichment of 

DNA fragments was conducted before final cDNA library preparation. Sequencing was 

performed on an Illumina NextSeq 500 platform (following manufactures instructions) 

yielding ~12 million 75 bp single reads per sample. Four samples were sequenced for each 

biological condition (n = 4). Read QC was performed using FastQC and summarised using 

MultiQC (Ewels et al. 2016). All samples passed QC. Transcripts were quantified using 

Salmon (Patro et al. 2017) in quasi-mapping mode to mouse genome build GRCm38/mm10 

and summarised to gene level using the tximport package in R. Batch effects were estimated 

using the RUVs method from the RUVSeq package (Risso et al. 2014), the factors of 

unwanted variation were adjusted in the differential expression analysis model. 

Normalisation and differential expression analysis were performed using the DESeq2 

package using default settings (Love et al. 2014). An FDR threshold of 0.05 was used to filter 

significant differentially expressed genes. Sequencing was performed by the Genomics Core 

Facility, Newcastle University, and bioinformatics by Dr Kat Cheung within the 

Bioinformatics Support Unit. 

2.3.10.6 Sequential protein extraction 

Three-week old mice were humanly sacrificed and their cartilage was dissected by 

dislocation of femoral head from the acetabulum of the hip joint and subsequent removal of 

cartilaginous femoral head cap. Five biological replicates per genotype were used, 

comprising both femoral heads from each mouse pooled together and immediately snap-

frozen in liquid nitrogen and stored at -80°C until protein extraction step. In the first step of 

protein extraction, femoral heads were dissected into small pieces with a scalpel before being 

transferred into a pre-weighed clean Eppendorf and weighed. The first round of extraction 

was performed by incubation overnight at 4°C of with 10 volumes of cold Buffer I (0.15M 
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NaCl, 50mM Tris-HCl, pH 7.4) per weight in mg of tissue. The following day, samples were 

centrifuged for 5 minutes at 13,000g at 4°C and the supernatant collected in 100 µl aliquots, 

and stored at -80°C. Pellets from each sample were then resuspended in an appropriate 

volume of pre-chilled Buffer II (1M NaCl, 10mM EDTA, 50mM Tris-HCl, pH 7.4), vortexed 

vigorously, and incubated at 4°C on a rotating mixer overnight. The next day the same 

procedure as previously was performed, samples were centrifuged for 5 minutes at 13,000g at 

4°C, the supernatant collected in 100 µl aliquots, and stored at -80°C. The pellet from this 

centrifugation was resuspended in cold Buffer III (4 M GuHCl, 10 mM EDTA, 50 mM Tris, 

pH 7.4), vortexed, and kept rotating overnight at 4°C. The following day samples were 

centrifuged at 13,000g at 4°C for 5 minutes and the supernatant removed in 100 µl aliquots 

and stored at -80°C. Ethanol precipitation of proteins was carried out adding 1.4ml of 96% 

(v/v) ethanol to each 100 µl aliquot and mixing gently before overnight incubation at 4°C. In 

the morning, samples were centrifuged at 4°C for 15 minutes at maximum speed and 

supernatant collected with help of a syringe. 1ml of wash solution made of 96% (v/v) ethanol 

with Tris-buffered saline (9:1 ratio) was added to pellets, vortexed to let them dissociate from 

wall of tube and incubated for 1 hour. Two more centrifugation cycles were carried out at 

max speed for 15 minutes (at 4°C) and the supernatant completely removed with a syringe to 

let the pellet air dry. Pellets were finally resuspended in 60µl of water and kept at -80°C until 

immunoblotting analysis. 

2.3.10.7 SDS-polyacrylamide gel electrophoresis and immunoblotting 

Sequential protein extracts were analysed by western blotting. Briefly, to 20μL ethanol 

precipitated proteins, 5X Laemmli sample buffer (all buffers are given in Appendix A) was 

added, this included 10% (v/v) β-mercaptoethanol when reducing conditions were applied. 

Samples were immediately loaded (if under non-reducing conditions) or denatured at 95°C 

for 5 minutes before being loaded into a 4-12 % NuPAGE® Bis-Tris precast gel (Invitrogen 

#NP0335BOX) alongside a Precision Plus Protein™ dual colour protein marker (Biorad 

#1610374). Electrophoresis was performed in NuPAGE MOPS SDS-PAGE running buffer 

(Invitrogen # NP0001) for 2 hours at 100 V. Electroblotting of proteins was carried out onto a 

Polyvinylidene difluoride membrane (PVDF) membrane in 1X Towbin transfer buffer 

overnight at 80mA at 4°C. Blocking for one hour in a 5% (w/v) solution of semi-skimmed 

powdered milk in PBS-T was carried out to prevent non-specific binding of antibody to the 

membrane. The membrane was then incubated overnight in the required concentration of 
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primary antibody in a 5% (w/v) BSA/TBS-T solution at 4°C. The following day the primary 

antibody solution was removed from the membrane and the membrane washed three times 

for 10 minutes in 1X TBS-T. The membrane was incubated at room temperature with a 

species appropriate horseradish peroxidase (HRP)-conjugated secondary antibody in a 5% 

(w/v) powdered milk/TBS-T solution for 1 hour. After secondary antibody incubation, the 

membrane was washed 3 times for 10 minutes in TBS-T to remove excess of antibody before 

being developed using Amersham ECL-advanced western blotting detection reagents 

(#RPN2106) and imaged using an Azure Imaging System. Primary and secondary Antibodies 

dilutions are outlined in Appendix C. 

2.3.11 Atomic Force Microscopy (AFM) 

Atomic Force Microscopy was performed on growth plate cartilage. Newborn and six-

week old mice were euthanized and their hind limbs collected after peeling off their skin, 

embedded in optimal cutting temperature (OCT, CellPath) tissue freezing medium and snap-

frozen in liquid nitrogen. The following steps of tissue processing, AFM measurements and 

analysis, were performed by Dr. Attila Aszodi and Bastian Hartmann at the Clinic for 

General, Trauma and Reconstructive Surgery Ludwig-Maximilians-University in Munich, 

Germany.  

Cryo-sectioning: Samples were sectioned to 20 μm-thickness using a Leica Cryostat CM1950 

(Leica Biosystems GmbH, Nussloch, Germany). In order to preserve the morphology of the 

undecalcified leg, before each cut, a transparent one-sided adhesive tape was placed on the 

sample and a transparent double-sided adhesive tape was placed on a microscope slide. After 

cutting the tape side of the section was attached to the chilled microscope slide via the 

double-sided adhesive tape. Samples were stored at -20°C until AFM measurements.  

AFM measurements: Immediately before the measurement, the slide was taken out of the 

freezer and left at room temperature for 10 minutes. PBS was applied to the section and the 

tissue was given 5 minutes to equilibrate. AFM measurements were performed using a 

NanoWizard® I (JPK Instruments AG, Berlin, Germany). An overview force map on a 

square area of 30 × 30 μm containing 30 × 30 force-indentation curves was made to identify 

the location of the interterritorial matrix (ITM) and the cells. Three maps (3 × 3μm with 25 × 

25 force-indentation curves) were made on the ITM. Parameters of the force curves were: a 

setpoint of 3V, Z-velocity of tip 15μm/s and a MLCT Cantilever E (Bruker AFM Probes, 
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Camarillo, CA, USA) with a nominal spring constant of 0.1N/m. Two slides per animal were 

measured and three animals for each genotype and age were examined. 

Data processing: AFM curves were analysed using the JPK Data Processing software (JPK 

Instruments AG, Berlin, Germany). To obtain the stiffness value (Young’s modulus), the 

Hertz-Sneddon-model for a pyramidal tip was fitted on each force-indentation curve. All 

Young’s moduli of each genotype (three maps per slide; two slides per mouse; three mice per 

genotype) were merged to one distribution (histogram). Finally, a bimodal distribution was 

fitted on the histograms to obtain the peak values using Igor Pro software V. 6.3.7 

(WaveMetrics Inc., Lake Oswego, OR, USA). 

2.3.12 Transmission Electron Microscopy (TEM) 

Transmission Electron Microscopy (TEM) was used to visualise cartilage ECM 

structure. Seven-day old pups were sacrificed by cervical dislocation and their tibia dissected 

by cutting the lateral and medial collateral ligaments and the two cruciate ligaments in order 

to detach the femur and leave the meniscus intact. As much soft tissue as possible was 

removed from the tibial epiphysis and metaphysis prior to fixation in 2% (w/v) 

glutaraldehyde in sodium cacodylate buffer at 4°C (provided by the EM unit) for a minimum 

of overnight, but up to two weeks incubation. Subsequent protocol steps were performed by 

staff at Newcastle University Electron Microscopy Research Services. A secondary fixation 

was performed with 1% (w/v) osmium tetroxide to preserve the lipid content and add contrast 

to the tissue. Tissue samples were then dehydrated through an increasing gradient of acetone 

before being impregnated in increasing concentration of resin in acetone prior to final 

embedding in 100% resin at 60°C for 24 hours. Semi-thin survey sections of 0.5μm were cut 

and stained with 1% toluidine blue in 1% borax to visualise the growth plate. Ultrathin 

sections of approximately 70nm were then cut using a diamond knife on either an RMC MT-

XL or Leica EM UC7 ultra microtome. The sections were stretched with chloroform to 

remove compression and mounted in pioloform-filmed copper grids. The tissue sections were 

then stained with 2% aqueous uranyl acetate and lead citrate. The grids were examined at the 

Electron Microscopy Research Services Unit, using a Hitachi HT7800 transmission Electron 

Microscope and imaged with an Emsis Xarosa camera connected to Radius software.   
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2.3.13 Surgical destabilization of the medial meniscus (DMM) 

DMM surgery and post-surgery mice checks were performed by Dr Dimitra Tsompani 

and Hua Lin in the Functional Genomic Unit (FGU) at the Institute of Genetic Medicine of 

Newcastle University. 

In the pre-operation step, male mice at 10 weeks of age were used for the DMM surgery. 

Each mouse was anaesthetised separately using isoflurane (2.5-3.5%) 1L/min O2 and then 

placed in a recumbent position applying the mask to their head. The left knee was shaved, 

and the area disinfected with chlorohexidine solution (ECOLAB, MN, USA). The animal was 

weighed and checked for any possible infection. Subcutaneous injection of buprenorphine 

(0.15ml, 3μg/ml solution) was then performed.  

During operation, a small vertical incision in the skin just left of the knee joint was made 

using a scalpel, avoiding the patella ligament region. With curved scissors the incision was 

then enlarged and blood vessels were cauterised to avoid bleeding. The fat tissue was 

removed with a scalpel/scissors pealing back and avoiding blood vessels, which when 

necessary were cauterised. Once the medial collateral ligament and the patella ligament were 

recognised, a small vertical incision was made (large scalpel) down to the side of the patella 

ligament and extended to the left. The fat pad was cleared with two fine forceps to expose the 

medial meniscus with the white medial meniscotibial ligament (MMTL) lying horizontal 

extending towards and behind the patella region. Throughout the surgery, any veins were 

cauterised to avoid bleeding. Using a small scalpel blade an incision of the medial meniscus 

was made, then the skin flaps were held together with forceps and clipped. The clips were 

checked later that day and every day post-surgery up to removal seven days post-surgery.  

In the post-operation, the animals were located in clean cages and the cages placed at 27°C 

until the animals regained consciousness. The following day a further dose of pain relief 

(buprenorphine, 0.15ml, 3μg/ml solution) was subcutaneously injected to all operated mice 

which were closely monitored thereafter to ensure successful recovery.  

At the end of the experiment, eight weeks post-surgery, the animals were euthanised using 

CO2 or by cervical dislocation and both knee joints harvested and fixed in formalin solution, 

overnight at room temperature with rotation, before decalcification in 20 % (w/v) EDTA pH 

7.4, for 3 weeks at room temperature. After decalcification, legs were processed, wax-



 

90 

 

embedded in patella down orientation and cut as described in section 2.3.3 Tissue 

preparation for histological and immunological analysis..  

For each DMM joint, 100 serial 5µm-sections were collected on 25 slides, each slide with 4 

‘sister sections’ in order to cover the whole interesting region. Then only 6 slides (Slide 1, 5, 

10, 15, 20 and 25) were selected from each joint and Safranin-O staining, as described, was 

performed to visualise DMM damage. DMM damage scoring (Table 2.4) was carried out by 

different blind researchers, who scored the MFC and MTP throughout 6 slides (24 sections in 

total, each section presents a different level) for each DMM joint. The four maximal scores 

from each site for each scorer were chosen to calculate the mean of 4 maximal MFC or MTP. 

For MCF+MTP summed score, the two means together for each scorer were added and then 

combined different scorers’ data to get a mean for each site or parameter (ie. MFC, MTP, and 

summed score MFC+MTP). The histological images shown in the DMM results represents 

the sections for each genotype which were associated with the highest score during analysis, 

therefore they do not represent matched sections in terms of tissue depth. 
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Table 2.4. | The recommended semi-quantitative scoring system for assessing cartilage 

damage on DMM mouse joints. Adapted from (Glasson et al. 2010)  

Grade Osteoarthritic damage 

0 Normal 

0.5 Loss of Safranin-O without structural changes 

1 Small fibrillations without loss of cartilage 

2 
Vertical clefts down to the layer immediately below the superficial 

layer and some loss of surface lamina 

3 
Vertical clefts/erosion to the calcified cartilage extending to <25% of 

the articular surface 

4 
Vertical clefts/erosion to the calcified cartilage extending to 25- 50% 

of the articular surface 

5 
Vertical clefts/erosion to the calcified cartilage extending to 50- 75% 

of the articular surface 

6 
Vertical clefts/erosion to the calcified cartilage extending >75% of the 

articular surface 
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Chapter 3. 

Generation of Col9a3Δex3 and Col9a3-/- mouse models using 

CRISPR/Cas9 genome editing. 
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3.1 Introduction: Genome editing strategy to generate the mutant mouse 

line. 

As mentioned, Col9-MED patients whose mutations involve the Col9a3 gene, have the 

recurrent skipping of exon 3 as result of aberrant splicing events. The reason for mutations 

being clustered around exon 3, in a 32-exon long gene, and how the loss of this exon is linked 

to the disease is unknown. 

In our attempt to unravel this, we aimed to generate a mouse to model the disease mutations 

and ideally the disease phenotype reported for the patients. Here we will describe the strategy 

used to generate the genetically modified mouse, carrying the deletion of exon 3 in Col9a3 

gene as found in the Col9-MED subgroup of patients. CRISPR/Cas9 technology was applied 

in order to induce two-double strand cleavage with the concomitant excision of the genomic 

region encompassing Col9a3 exon 3.  

The procedure employed involved the following steps:  

• Designing of gRNAs whose sequences were complementary to the intronic 

regions flanking the exon 3 boundaries of Col9a3 mouse gene.  

• In vitro verification of designed gRNAs in a mouse fibroblast cell line to 

select the efficient gRNA pair able to induce efficient deletion. 

• Zygote cytoplasm injection of CRISPR/Cas9 machinery: in vitro transcribed 

functional gRNAs along with recombinant Cas9 protein. 

• Genotyping of the first transgenic offspring (F0) obtained after CRISPR/Cas9 

injection. 

• Screening of F1 mutant mice to select the deletion mutation more 

representative of those reported in Col9-MED patients and establishment of 

the desired mutant mouse line for the following deep phenotyping study.   
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3.2 Designing of CRISPR/Cas9 genome editing system to target Col9a3 

exon 3 for deletion.  

In order to use the CRISPR/Cas9 genome-editing tool to generate our transgenic mice, 

gRNAs were designed whose sequences were complementary to the intronic regions 

spanning the intron-exon boundaries of exon 3 of Col9a3 gene. gRNAs targeting the exon 3 

boundaries of mouse Col9a3 were designed using the web tool CHOPCHOP ((Montague et 

al. 2014)) using the genomic region >chr2:180599587-180600578 (mm10 coordinates and 

centred around the 36 bp of exon 3) as input. A list of ranked (GC content and minimal off-

targets) gRNAs were generated, with four gRNAs finally selected with the least number of 

off-targets (Fig. 3.1): #10 and #11 mapping precisely in position 548 and 555 on the sense 

strand of the genomic region, and gRNA #7 and #8 respectively in position 320 and 349 of 

the antisense strand. 

 

Fig. 3.1 | Position of the four gRNAs designed and chosen to be used for CRISPR/Cas9 

genome editing. CHOPCHOP bioinformatic tool view of gRNAs #7, #8, #10 and #11 and their 

relative positions and orientation along a schematic representation of 5’- 3’Col9a3 gene. 

  

Exon3 
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3.3 Functional testing of the in silico-designed gRNAs in a mouse 

fibroblast cell line. 

The chosen in silico-designed gRNAs were subsequently tested for efficacy to select 

the pair that most likely was able to induce the desired deletion. Professor David Young 

kindly contributed to the design and the functional testing of the gRNAs. Each individual 

gRNA was cloned into pLKO.1 puroU6 viral vector and viral particles produced in 

HEK293T cells. A Lenti-Cas9-GFP vector provided the Cas9 protein complex. A mouse 

fibroblast cell-line (NIH 3T3) was transduced with various gRNA viral particle combinations 

(one up and downstream of exon 3) and the lenti-Cas9-GFP virus (Fig.3.2).  

After transduction, extracted DNA from each cell line was used as template for PCR 

amplification to assess gRNAs efficiency, using PCR primers outside of the region to be 

deleted. Gel electrophoresis of the PCR amplicons coming from transduced fibroblasts 

confirmed gRNA pair #2 (highlighted by a yellow rectangle in Fig. 3.2) as the most efficient 

in generating the double strand cleavage and repair (presumably by non-homologous end 

joining repair (NHEJ)). The excision of the region encompassing exon 3, was indicated by 

the appearance of an amplicon smaller that the ‘wild-type’ region. All gRNA combinations 

produced low levels of the predicted cleavage size however, none appeared as efficient as 

gRNA pair #2. From this result gRNAs of pair #2 were selected to generate the desired 

deletion in vivo. The exact location of gRNA#7 and #11 with relative PAM sequence, exon 3 

to be removed and PCR primers are presented in Fig. 3.3. Given the location of the gRNAs 

we predicted splicing between exon 2 and 4 should occur, as identified in patient samples.   
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Fig. 3.2 | gRNA pair-viral transduction experimental plan and agarose gel 

electrophoresis of PCR products of mouse fibroblast DNA after transduction.  The four 

gRNA pairs used to transduce mouse fibroblast prior to PCR amplification of extracted DNA. 

Highlighted in the yellow rectangle the gRNA pair showing relatively efficient deletion compared 

with the other pairs. Lane: MM, molecular marker; Empty vector, PCR product from cells transduced 

with empty pLKO virus (negative control); gRNAs pair #1, #2, #3, #4 corresponding respectively to 

pairs 1, 2, 3 and 4 of gRNAs (Table 3.1); lane :CTRL-, untransduced cells as a further negative 

control. 
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Fig. 3.3 | CRISPR gRNAs cleavage sites for exon3 deletion. Partial sequence of mouse 

chromosome 2 showing the sequence of the 2 gRNAs #7 and #11 (underlined) in the intronic regions 

flanking exon 3 (red). Predicted sites of cleavage by Cas9 protein (arrow heads), located between 

gRNA and the three nucleotides called PAM sequence (5’-NGG-3’; blue box). Exon 4 is depicted in 

green. Highlighted in yellow are the PCR primer locations used to verify effective deletion. 

3.4 In vitro transcription and in vitro validation of gRNAs 

From previous studies, a higher efficiency in gene targeting was reported when in vitro 

transcribed gRNAs were injected (Ran et al. 2013b). Therefore, we in vitro-transcribed the 

previously verified functional gRNAs #7 and #11 (2.2.4.2 In vitro transcription (IVT) of 

Col9a3 #7 and #11 gRNAs). Briefly, the gRNA linked with TRACR was amplified by PCR 

from the corresponding pLKO vector. The 5’ PCR primer used in the amplification included 

the T7 RNA polymerase binding sequence (TTAATACGACTCACTATA). The 3′ (reverse) 

primer was complementary to the 3′ region of the TRACR sequence. After purification the 

approximately 120 nt amplicon was used directly in the in vitro transcription (IVT) reaction. 

For the IVT, after optimisation we found that the addition of two extra guanosine nucleotides 

directly at the 5′ of the gRNA sequence improved transcription by T7 polymerase. Similarly, 

addition of several nucleotides upstream of the T7 sequence also increased the efficiency of 

RNA production, presumably aiding the binding of the polymerase to its target sequence. The 

synthesised gRNA/TRACR were also tested for their ability of cleave the Col9a3 genomic 
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region, as amplified above, in an in vitro restriction digestion reaction with recombinant Cas9 

(Fig 3.4).  

Table 3.1 | List of Oligonucleotides. For the gRNA oligonucleotides the lower case bases are 

required for cloning into the restriction digested pLKO.1 vector. For the IVT oligonucleotides the 

sequences in red are the corresponding gRNA sequences. 

 

  

Name Sequence 

gRNA 

mCol9a3 g#7 F accgGATTCTCTCATCTATACCTG 

mCol9a3 g#7 R aaacCAGGTATAGATGAGAGAATC 

mCol9a3 g#8 F accgGGGCCTGTGGAGACATTGTG 

mCol9a3 g#8 R aaacCACAATGTCTCCACAGGCCC 

mCol9a3 g#10 F accgGGCCTGTGTTGCCCTAGGAG 

mCol9a3 g#10 R aaacCTCCTAGGGCAACACAGGCC 

mCol9a3 g#11 F accgGTTGCCCTAGGAGAGGCCTG 

mCol9a3 g#11 R aaacCAGGCCTCTCCTAGGGCAAC 

Genomic PCR   

mCol9a3 PCR F GTGTCACTTGGAGGCTACTGTG 

mCol9a3 PCR R CCCAGTAACAGACCACTGCATA 

IVT  

3GT7 mCol9A3-7 F atgcatTTAATACGACTCACTATAGGGATTCTCTCATCTATAC 

3GT7 mCol9A3-11 F atgcatTTAATACGACTCACTATAGGGTTGCCCTAGGAGAGGC 

T7 TRACR R AAAAGCACCGACTCGGTGCC 
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Fig. 3.4 | In vitro test restriction digestion using IVT gRNAs and recombinant Cas9.  

After PCR amplification, the purified Col9a3 amplicon (115 ng) was incubated with 

recombinant Cas9 (500 ng; ToolGen) and the IVT gRNAs (350 ng) at 37°C for 1 hr, followed 

by agarose electrophoresis. In lane 1-4 the intact amplicon of 538bp is visible. gRNA #7 only 

cutting should result in a band of 117bp and gRNA #11 in a band of 364bp. A complex 

digestion pattern can only be observed in lanes 5-7 where all required components of the 

reaction are present.  

3.5 Mouse zygote cytoplasm injection of in vitro-transcribed gRNAs  

To generate the transgenic mice carrying the deletion of exon 3 of Col9a3, we adopted 

the direct zygote cytoplasm injection approach. In collaboration with Dr. Colin Miles and our 

animal colony manager Paul Cairns, the in vitro-transcribed gRNAs were injected into the 

cytoplasm of mouse donor zygotes along with recombinant Cas9 protein, following the Ittner 

and Götz stepwise procedure for pronuclear injection (Ittner and Gotz 2007). The zygotes 

used for injection were F1 of a mixed C57BL/6 and CBA/ca strain background since F1 

zygotes have proved to have higher viability after injection (Ittner and Gotz 2007). The 

injected donor zygotes were then transferred into recipient foster mothers to obtain the first 

litters of transgenic mice, described as F0. 
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3.6 First generation of transgenic mice (F0) obtained after CRISPR/Cas9 

zygote cytoplasm injection. 

The F0 mice obtained herein were the first CRISPR/Cas9-edited mice to be generated at 

Newcastle University therefore it was deemed important to fully evaluate the efficacy of 

pronuclear injection and whether our CRISPR/Cas9 system/strategy was effective. From the 

nineteen F0 pups of first litter we extracted (ear-notch) DNA and performed PCR 

amplification using the same primers we previously used to assess the deletion efficiency of 

the different gRNA pairs. The PCR analysis showed eight out of nineteen pups were positive 

for a deletion (Fig. 3.5). Moreover, two of these positive mice, #8 and #17 (in yellow circle in 

Fig. 3.5) appeared near-homozygous for a deletion event, although each allele clearly 

contained a differing deletion. Thus, our zygote cytoplasm injection procedure and 

CRISPR/Cas9 system appeared highly effective at generation of transgenic deletion mice. 

From Sanger sequence analysis of the purified deletion PCR products from each of the 

positive mice, we were able to confirm the efficacy and specificity of the gRNAs. No exon 3 

was detected in any of the (putative deletion) amplicons purified, when their sequences were 

aligned with the Col9a3 WT gene. Furthermore, Sanger sequence alignment of all the alleles 

containing the deletion, confirmed to some extent the heterogeneous repair (evident by the 

agarose gel electrophoresis; Fig. 3.5), due to the error-prone Non-Homologous End Joining 

(NHEJ) pathway to repair double-strand breaks. Thus, in total we generated over 10 differing 

Col9a3Δex3 alleles, with each mouse therefore representing a potential unique founder. In 

addition, Sanger sequences of these amplicons often gave poor results downstream of the first 

predicted CRISPR gRNA cleavage site, suggesting that each founder mouse was chimeric for 

Col9a3Δex3 deletion.  
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Fig. 3.5 | Genotype of the first transgenic mice (F0). A. Gel electrophoresis showing the PCR 

product used to genotype the first litter of transgenic mice obtained after CRISPR/Cas9 injection. 

DNA extracted from mouse ear-notch at 3 weeks. From the PCR, eight mice resulted positive for the 

deletion, since a second smaller amplicon was visible. Two mice, #8 and #17 (yellow circle in the 

picture), appeared near-homozygous for a deletion. Transduced NIH/3T3 mouse fibroblast DNA and 

WT C57BL/6 DNA were used respectively as positive and negative control. MW, molecular weight 

ladder. B. BLAT alignment with UCSC Genome Browser of mouse deletion PCR products following 

Sanger sequencing. DNA from lower bands was sequenced using the mCol9a3 PCR F primer to test 

for deletion. Alignment of only those sequences with low level of chimerism is shown.  

Since our Sanger sequencing had suggested some level of chimerism, we crossed all eight 

positive mice for the deletion with pure C57BL/6 mice to quantify and eventually select those 

where the mutation was also in the germline. 

After crossing with pure WT, the different F1 litters were genotyped. PCR amplification and 

Sanger sequencing from ear-notch DNA showed that mice number #6, #8, #10, #11, #12, #17 

and #19 could be considered different founders of different Col9a3Δex3 lines (Fig. 3.6 A). 

Mouse founder #7 failed to produce any Col9a3Δex3 allele containing offspring. The two 

potentially homozygous founders #8 and #17 were bred with the same WT counterpart in the 

same cage and thus different deletion alleles appeared in their litter genotype. Founder line 

#19 could not be further analysed since the line failed to produce offspring. 
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Alignment of the Sanger sequenced deleted alleles confirmed the absence of exon 3 from all 

founders, with each founder generating differing alleles due to the error-prone NHEJ 

mechanism (Fig. 3.6 B; Fig. 3.7A and Fig.3.7B).  

 

 

Fig. 3.6 | Genotype of F1 of transgenic mice indicated which founder had a germline 

mutation. A. Gel electrophoresis of genotyping PCR products from mice born from initial founders 

crossed with WT (C57BL/6) animals (F1). Offspring from different founders indicated by different 

colours. All founders expect #7 gave at list one litter member showing heterozygosity for the exon 3 

deletion. Lane MW, molecular size marker; positive controls: lane 1= C57BL/6 DNA; lane 2= 

CBA/ca DNA; lane 3= NIH/3T3 DNA B. BLAT alignment with UCSC Genome Browser of mouse 

deletion PCR products following Sanger sequencing. A representative mouse from each founder was 

sequenced using the mCol9a3 PCR F primer: 36F for founder #10; 41F for founder #6; 50F for 

founder # 19; 61F for founder #11; 67F for founder #12; 77F, 80F, 81F, 82F, 83F for founders #8-

#17. 
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Fig. 3.7A | Sanger sequences of F1 mice shows the heterogenous DNA repair after 

deletion by CRISPR/Cas9.  Chromatograms of Sanger sequences of Fig. 3.6B showing the region 

in the deletion proximity Arrows indicate the deleted region after CRISPR/Cas9 cutting. Dots indicate 

the extension of the inserted regions as consequence of cell DNA repair after deletion. 
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Fig. 3.7B | Sanger sequences of F1 mice shows the heterogenous DNA repair after 

deletion by CRISPR/Cas9.  Chromatograms of Sanger sequences of Fig. 3.6B showing the region 

in the deletion proximity Arrows indicate the deleted region after CRISPR/Cas9 cutting. Dots indicate 

the extension of the inserted regions as consequence of cell DNA repair after deletion. 
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3.7 cDNA and protein analysis confirmed the generation of Col9a3𝜟ex3/𝜟ex3 

and Col9a3-/- mutant mouse lines.  

Having identified genetically differing founders and confirmed that the mutations were 

germline and specific for deletion of exon 3 of Col9a3, we examined the molecular 

consequences of each independent mutation event, with the purpose of determining which 

founder line best recapitulated the splicing events resulting in exon 3 skipping detected in 

MED (EDM3) patients.  

RNA analysis, initially of the two founders presumed to be homozygous for the deletion (F0 

#8 and #17), was performed to assess whether a transcript of Col9a3 which lacked exon 3 

would be produced. Mice were sacrificed and RNA extracted from xiphoidal cartilage, 

reverse transcribed to cDNA, and PCR amplification performed using forward and reverse 

primers present in exon 1 and 5 of Col9a3, respectively.  Both presumed ‘homozygous’ 

deletion founder mice produced only one PCR product, shorter than the WT amplicon and 

which Sanger sequencing confirmed to be lacking the 36 nucleotides of exon 3 (Fig.3.9). We 

could detect exon 2 spliced directly to exon 4, as no exon 3 was available to form the 

transcript (red square in Fig. 3.8), implying therefore that a correct splicing occurred in both 

mutant mice. 
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Fig. 3.8 | cDNA analysis of #8 and #17 founder mice revealed the expected splicing 

event. A. Gel electrophoresis following RT-PCR amplification of region spanning from exon 1 to 5 

of Col9a3 transcript. #8 and #17 founders’ cDNA bands are shorter than WT founder #1 and C57BL/6 

cDNA. B. UCSC BLAT alignment of Sanger sequences obtained using a forward primer 

complementary to exon 1 of Col9a3 transcript. #8 (8F) and #17 (17F) showed identical sequence at 

exon 2 and 4 regions, but no exon3 when aligned with C57BL/6 (Bl6F) sequence (red square), 

proving that those 36 nucleotides of exon 3 are skipped as expected in both mutant mice. 
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Fig. 3.9 | Sanger sequencing of #8 and #17 founder mice cDNA showed the precise 

deletion of exon 3. Sanger sequences obtained using a forward primer complementary to exon 1 of 

Col9a3 transcript. #8 and #17 showed identical sequence at exon 2 and 4 regions, but no exon3 when 

aligned with C57BL/6 (WT) sequence, proving that the 36 nucleotides of exon 3 are skipped in both 

mutant mice. 

Along with the analysis of the two homozygous founders’ mRNA, we examined offspring of 

each of the positive founder mice lines to determine if all the different mutations we had 

generated by CRISPR/Cas9 were producing the same exon 3 skipping spliced transcript, 

again using xiphoidal RNA. PCR amplification results showed that the heterozygous 

descendants from both founders #6 and #12 presented the expected exon skipping and WT 

transcript (note: additional and higher sized products were confirmed to be a PCR 

heteroduplex artefact, Fig 3.10 (Anglani et al. 1990). Interestingly, mice originating from 
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founders #10 but especially #11, surprisingly only produced one PCR band corresponding to 

the WT transcript (Fig. 3.10). From this, we inferred that no stable transcript was produced 

from founder #10 nor #11 mutated alleles.  

Therefore, from the RNA screening of the different lines, we could summarise the generation 

of two groups of alleles which were germline: founders #6, #8, #12 and #17 whose deleted 

allele resulted in the predicted splicing event giving a shorter but still detectable Col9a3 

transcript lacking exon 3, that we called Col9a3𝜟ex3; lines #10 and #11 where the mutated 

allele produced an unstable Col9a3 transcript, thus null allele, denoted as Col9a3-/+. Note that 

for convenience, we adopted the Col9a3𝜟ex3 nomenclature throughout this thesis to indicate 

homozygous Col9a3𝜟ex3/ 𝜟ex3 mutation. We decided then to proceed the analysis and breeding 

of founder #17 to establish the Col9a3𝜟ex3 line and founder #11 for the Col9a3-/-. 

 

Fig. 3.10 | cDNA analysis performed on F1 mice unravelled the consequences of allele 

variability generated by CRISPR/Cas9. Gel electrophoresis of cDNA amplification of region 

spanning from exon 1 to 5 of Col9a3 transcript of F1 heterozygous mice offspring from initial 

founders (indicated by colour). A smaller product compared to WT size amplicon, hence 

corresponding to a shorter transcript was detected from mice 42 and 67, descendants of founders #6 

and #12, respectively. Only a WT sized amplicon was detected for heterozygous mice 40 and 60, 

offspring of breeding’s of founders #10 and #11, respectively. WT and ΔEx3 amplicon sizes are 

indicated in base pairs (bp). The larger products, obvious from mouse 42 and 67 were determined to 

be a PCR heteroduplex artefact. This was confirmed by mixing equal amounts of cDNA from WT 

(C57BL/6) and Col9a3ΔEx3/ΔEx3 Founder #17 and performing the PCR reaction (data not shown). 
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Subsequently, we examined the effect on protein expression of the change in transcript 

splicing. Protein was therefore extracted from femoral heads of a representative mouse with a 

shorter Col9a3 transcript and one lacking the genetically altered Col9a3 transcript, both 

compared to a WT mouse. No specific antibody recognising the collagen α3(IX) chain was 

available when this project started, therefore we used an antibody, kindly provided by 

Professor Frank Zaucke (Orthopedic University Hospital Friedrichsheim, Frankfurt, 

Germany) which recognises the NC4 domain of the collagen α1(IX) of collagen type IX 

heterotrimer. By Western blot analysis we were able to detect collagen α1(IX) protein, and 

therefore presumably collagen type IX heterotrimer, in WT and Col9a3ΔEx3/ΔEx3 mice. 

However, we were unable to detect collagen α1(IX) in the protein extracted from the mouse 

lacking Col9a3 transcript expression. This implies that the lack of Col9a3 transcript and 

subsequent loss of collagen α3(IX) chain impairs the formation of all potential collagen type 

IX trimer. 

We also analysed RNA-seq performed on both homozygous Col9a3 mutant lines 

(Col9a3𝜟ex3/𝜟ex3 and Col9a3-/-) compared to WT mice (Chapter 5) to visualise the expression 

and splicing of Col9a3.  These results were as anticipated by the RT-PCR findings. 

Essentially, for Col9a3𝜟ex3/𝜟ex3 mice the expression level of Col9a3 was almost identical to 

WT mice (average TPM 3063 ± 276 vs. 3090 ± 558, respectively). Further, for the 

Col9a3𝜟ex3/𝜟ex3 mice, Col9a3 exon 2 spliced directly to exon 4 using the GT/AG donor and 

acceptors as predicted. However, approximately 6% of transcripts also skipped exon 4, with 

exon 2 splicing directly to exon 5. Other than this, there was no evidence of aberrant 

donor/acceptor usage. However, for the Col9a3-/- mice, very low read numbers for Col9a3 

were detected and aligned, especially for exon 1 and 2 (with <0.4% of WT reads), which was 

maximally approximately 1.1% of the WT level. An aberrant novel exon was also detected 

for these mice, located between WT exon 4 and 5, which may represent an alternative first 

exon. Approximately 30% of the Col9a3 transcripts would be predicted to start or contain 

this novel exon (gold line – Alt. exon – Fig. 3.11). These data, in line with the already 

described cDNA and protein analysis, were further evidence for the generation of a novel 

knockout mouse for Col9a3. 

We could therefore conclude that our attempt at a creation of a Col9-MED mouse line was 

successful at the genomic level. We generated a mouse line exhibiting the deletion of exon 3 

and a shorter Col9a3 transcript, however we were unable to observe any effect on the α3(IX) 

protein. The stochastic creation of a second line, lacking Col9a3 transcript and α1(IX) 
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protein, putatively a knockout for collagen type IX was considered an opportunity to deepen 

our phenotypic analysis, by comparing WT, Col9-MED and Col9-null mice. Furthermore, by 

assessing the consequences of Col9a3-/- mutation, we questioned whether possible 

overlapping phenotypic features or findings could be unraveled when comparing our mice to 

previously reported Col9a1-/- and Col9a2-/- mice.  

 

 

Fig. 3.11 | RNA and western blotting analysis confirmed the generation of two Col9a3 

transgenic mouse lines: Col9a3𝜟ex3/𝜟ex3 and Col9a3-/-. A. RNA and protein were extracted from 

of 3-week old femoral heads of homozygous mutant and WT mice. Gel electrophoresis of cDNA and 

Western blot of protein probed with antibody against α1 (IX), showed that Col9a3Δex3 mice produced 

a Col9a3 transcript lacking exon 3, but normal collagen type IX protein. On the contrary, Col9a3-/-  

mice were almost completely lacking the transcript and α1 (IX) polipeptide. (Image of full blot in 

Appendix E, Fig. E4.B). Sashimi plot from RNA-seq data showing the number of reads covering the 

col9a3 exon 1 to exon 5 region confirmed the expected splicing event and the consequences of loss of 

exon3 in Col9a3Δex3 mice (blue plot). Aberrant splicing between exon 2 and 5 was apparent for 

approximately 6% of transcripts. Col9a3-/- mice were almost entirely lacking the transcript especially 

for the initial exons. Interestingly, an alternative cryptic exon (Alt. exon; gold line) was apparent, 

representing approximately ⅓ of the remaining transcript.    
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3.8 Mutation analysis of Col9a3𝜟ex3/𝜟ex3 and Col9a3-/- sequences as result of 

CRISPR/Cas9 activity. 

Having achieved our aim in obtaining the transgenic line that replicates the genomic 

result of selected human MED mutations, we questioned the mechanism underlying the 

generation of two different lines of mice when using the same genome editing system to 

mutate the Col9a3 gene. Our genome-editing strategy clearly generated a wide-range of 

mutated alleles in the F0 offspring even when utilising the same Cas9 and pair of gRNAs, 

though all induced mutations did result in the deletion of exon 3 of Col9a3. However, the 

cellular response to the various alleles clearly gave differing outcomes, evident when 

analysing extracted RNA and protein. Comparison of the DNA sequences encompassing the 

CRISPR/Cas9 deleted regions of the two alleles therefore was conducted in order to further 

elucidate the two different mutant lines chosen to be further phenotyped. (Fig. 3.12). We 

could identify the region corresponding to the Cas9 mediated double-strand break sites in-

between the gRNAs and their PAM sequence. When comparing the sequence from the 

Col9a3-/- and Col9a3𝜟ex3 mice the latter contained an additional 5 bases (AACTG) around the 

cleavage/repair site for gRNA#11, for which the AA was non-templated and therefore 

presumably added during the error-prone NHEJ repair mechanism. Since these five 

nucleotides are the only detected difference in the alleles between the two transgenic mice, 

we must assume that these are sufficient to stabilise the transcript in the Col9a3𝜟ex3 animals. 

On the contrary, we hypothesized that in Col9a3-/- animals those missing five nucleotides 

might have created a new cryptic splice site leading to a potential unstable Col9a3 transcript. 

We therefore performed in silico analysis of the region around the deletion in both mutant 

sequences, using the Human Splice Finder bioinformatics tool (HSF 3.1), able to recognise 

consensus sequences for potential splice sites (Desmet et al. 2009). The analysis result 

showed that the potential splice sites for that region were only partially the same between the 

two regions. According to HSF analysis, the Col9a3-/- sequence showed an additional 

potential acceptor splice site which instead was not present in the Col9a3𝜟ex3 sequence (Fig. 

3.13). This observation further supported our hypothesis of the formation of an unexpected 

splice site probably leading to an aberrant splicing and possibly nonsense-mediated decay of 

the remaining transcript. 
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Fig. 3.12 | Differing deletion in the genomic sequence of Col9a3𝜟ex3/𝜟ex3 and Col9a3-/- mice 

following CRISPR/Cas9 mediated cleavage and NHEJ-mediated repair. Alignment of 

Sanger sequence chromatograms obtained using a primer complementary to the upstream intronic 

region flanking the exon 3 of col9a3 gene. Location of gRNAs (red lines) with their PAM sequences 

(NGG; black lines) are indicated. Col9a3𝜟ex3/𝜟ex3 and Col9a3-/- differed in their deletion of exon 3 with 

the former having an additional 5 nucleotides, AACTG (black rectangle), of which the AA were non-

templated. 

 

Fig. 3.13 | Potential additional acceptor splice site in Col9a3-/- sequence. Human Splice 

Finder sequence analysis graph showing the potential acceptor and donor splice site in Col9a3𝜟ex3 and 

Col9a3-/- genomic sequences. The presence of a potential further acceptor splice site in position 23 is 

shown in Col9a3-/- sequence (red square), but it is not reported in the same position in 

Col9a3𝜟ex3sequence.  
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3.9 Discussion 

In this first chapter, we described the strategy and procedure used to generate our 

mutant mice.  One mutant was able to produce the Col9a3 transcript, but lacked exon 3 

(Col9a3𝜟ex3/𝜟ex3 or  Col9a3𝜟ex3 in this thesis) and a second mouse which was almost null for 

the Col9a3 transcript and also lacked collagen type IX protein (precisely α1(IX)), which we 

termed Col9a3-/-. We created our mutant mice using the CRISPR/Cas9 genome editing 

system. Our choice was driven by the speed, efficacy and simplicity of this recent genome-

engineering technology. We chose to use ‘wild-type’ Cas9, which uses HNH and RuvC 

nucleases to cleave both strands of the DNA. When a double strand break is induced, the cell 

double strand break machinery is activated and cells will go through the non-homologous end 

joining repair pathway, which will result in insertions or deletions disrupting the targeted 

locus. Cas9 can also be engineered with an inactive nuclease domain to create a ‘nickase’ 

version of the enzyme which introduces single-strand cleavages. The use of such nickases, 

either singularly, or in pairs, can reduce off-target effects (Ran et al. 2013a) and when 

combined with a repair template, prove more versatile in inserting specific mutations or 

specific DNA sequences. However, such ‘homology-directed repair’ occurs with low 

efficiency compared to the NHEJ methods of repair.  

To generate a mouse recapitulating the splice sites mutations of Col9-MED patients, which 

result in exon3 skipping, the simplest approach was deemed to induce two double strand 

breaks in the intronic regions flanking exon 3. We therefore designed gRNAs complementary 

to the intronic regions flanking exon3 of Col9a3 gene, which were initially tested for 

cleavage efficiency in a mouse fibroblast cell line. Subsequently, the in vitro verified 

functional gRNAs, were in vitro transcribed and in collaboration with Dr. Colin Miles and 

Paul Cairns, they were injected into the cytoplasm of mouse donor zygotes along with 

recombinant Cas9 protein, following a published protocol (Ittner and Gotz 2007). The 

genotyping result of F0 showed a remarkable eight out of a total litter of nineteen pups to be 

positive for the deletion, with a suggestion that several were potentially homozygous. This 

result was considered positive not only because it demonstrated that the CRISPR/Cas9 

system designed was efficient in mice, but also that the cytoplasm injection procedure 

performed in our lab had a good success rate. Our data and experience confirmed previous 

reports surrounding the efficacy and efficiency of generating genetically modified mice using 

the CRISPR/Cas9 system (Wang et al. 2013). Mutant mice were conventionally generated by 
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insertional mutagenesis (Kool and Berns 2009) or by gene-targeting methods (Capecchi 

2005), both of which were costly, time-consuming and prone to failure. A series of studies 

then demonstrated that the induction of double strand breaks (DSB) in DNA can trigger 

genome editing by HR-mediated recombination. Moreover, it was shown that insertions or 

deletion mutations (indels) via the error-prone NHEJ repair pathway were obtained when a 

homologous repair template was not provided during induced double-strand breaks (DSBs). 

Therefore, alternative methods based on nucleases were developed to achieve genome editing 

through DSBs. Among these, meganucleases (Smith et al. 2006) zinc finger nucleases (ZNFs) 

(Urnov et al. 2005) or transcription activator-like effector nucleases (TALENs) (Christian et 

al. 2010), have been used to generate mutant mice, but such systems are complex and 

generally have low efficiency (Hsu et al. 2014). The type II RNA-guided endonuclease Cas9 

instead, has the advantage in that its specificity is provided by a simple gRNA 

complementary to the region to be mutated, without the need to modify proteins. The method 

is therefore easy to use, more efficient and specific. In addition, to generate transgenic 

animals, Cas9 protein and transcribed sgRNA can be directly injected into the fertilized 

zygotes, without going through the typical step of ES cells targeting. This decreases 

considerably the time needed for generation of the mice and with it the associated costs, 

another reason why we opted for CRISPR/Cas9 editing as our mutagenesis strategy to 

generate our mice.  

Sanger sequencing of all the alleles positive for the deletion on gel electrophoresis, confirmed 

that the shorter amplicons were missing exon 3 and the proximal intronic regions, confirming 

CRISPR/Cas9 efficiency and specificity, but also the variability of the sequences carrying the 

mutation. This variability is almost certainly due to the stochastic pattern of NHEJ repair that 

occurs after a double-strand break. Since these were the first CRISPR/Cas9 mutant mice 

generated in our facility, we deemed it important to determine the true efficiency of our 

mutation. Therefore, we bred the mutant animals with pure C57BL/6 mice to ensure that even 

if the mutant F0 were chimeric, the deleted allele was present in the germline. From these 

matings, each of the six mice whose unique mutation/allele was inherited was considered at 

this point a founder of a new mouse line. To identify a mutant line carrying the deletion 

which recapitulates the human MED situation, we analysed the cartilage (xiphoid) mRNA of 

these lines. Interestingly, RT-PCR of the Col9a3 region spanning exon 3 showed that some 

lines produced the anticipated spliced transcript (Founder #6, #8, #12 and #17) whilst no 

mutant transcript was detectable in others (#10 and #11). These data suggested that the 
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heterogeneous repair that occurred after Cas9 cleavage had also fortuitously generated a 

Col9a3 null mutation.  We therefore proceeded to screen the mutant lines for the expression 

of collagen type IX protein. No specific α3(IX) antibody was available for our study, but a 

specific antibody recognising the NC4 domain, in essence the α1(IX) of collagen type IX, 

was able to detect ‘normal’ levels of the protein in mice homozygous for the deletion allele 

Δex3. However, mice lacking Col9a3 transcript showed no α3(IX) protein. Such observation 

confirmed the generation of a knockout line for Col9a3 gene, but also that this deletion might 

have affected overall collagen type IX stability.  

In the attempt to understand the genetic rationale for the two differing consequences of the 

mutations generated, we examined the region of Col9a3 that was directly targeted and edited 

by CRISPR/Cas9. From sequencing of the various alleles it was apparent that the deletion in 

Col9a3𝜟ex3 allele terminates five nucleotides upstream than for the Col9a3-/- allele. A short 

sequence of AACTG, different from the canonical GCCTG, was indeed found in the intronic 

region surrounding the deletion in Col9a3𝜟ex3 mice, but not in Col9a3-/- animals. The non- 

templated AA were a probable result of the NHEJ repair mechanism. We might predict those 

five base pairs to be relevant in discerning the two mutant lines, however the link between the 

sequence mismatch described and the actual detection of either a shorter or absent Col9a3 

transcript remains unclear. 

We could speculate that the five base pair deletion difference contributed in Col9a3-/- 

genomic sequence to the formation of a possible new cryptic splice site leading to an unstable 

transcript. This in turn would trigger the non-sense mediated decay pathway (NMD), a 

cellular monitoring mechanism targeting mutant mRNAs for degradation (Hug et al. 2016). 

However surprisingly, as it will be described in Chapter 5, the genes involved in the NMD 

pathway resulted downregulated in both mutant mice in costal chondrocytes RNA. When we 

compared the two mutant genomic regions for potential splice sites, our in silico analysis 

indeed predicted the presence of an additional splice site only present in the Col9a3-/- deletion 

region. Nonetheless, our hypothesis remained theoretical and taking into account that no full 

gene sequencing was performed, we could not exclude the possible presence of other 

mutations generated by possible unspecific gRNAs pairing in regions outside of those 

targeted. 

In conclusion we successfully used the CRISPR/Cas9 genome editing system to generate a 

Col9a3𝜟ex3 mutant mouse line which reproduces Col9-MED patients genetic defect. We also 

generated a second mouse line, Col9a3-/-, which lacked the Col9a3 transcript and collagen 
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type IX protein. The deep phenotyping performed on both mutant mouse lines will be 

described in detail in the next chapters of this thesis.  
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Summary highlights 

- Our designed CRISPR/Cas9 genome editing system was efficient and specific both in 

vitro and in vivo  

- Two mouse lines were generated as a result of the heterogeneous NEHJ repair 

mechanism after Cas9 cleavage. 

- A Col9a3𝜟ex3 mouse, mimicking the MED situation and able to produce a transcript 

lacking exon 3, but presumably not affecting collagen type IX protein assembly, was 

successfully generated. 

- A Col9a3-/- mouse, null for Col9a3 transcript and collagen type IX protein was 

fortuitously generated and was maintained to complement the Col9a3𝜟ex3 mouse 

phenotypic analysis. 
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Chapter 4.   

Bone phenotypic analysis of mice with altered or absent  

Collagen Type IX 
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4.1 Introduction 

Patients diagnosed with MED due to exon 3 skipping mutations in the gene encoding 

the α3 polypeptide of collagen type IX molecule (OMIM#600969), present a relatively mild 

phenotype when compared to those diagnosed with other MED-causing mutations (eg. 

COMP and MATN3). Orthopaedic and radiologic evaluation of EDM3 patients have shown 

abnormalities involving mainly the pelvic girdle and the lower limbs. Previous studies 

showed evidence of flat and mildly dysplastic hips, flat and irregular knees and ankles, but 

overall normal stature (Bonnemann et al. 2000, Jeong et al. 2014, Nakashima et al. 2005, 

Paassilta et al. 1999, Lohiniva et al. 2000). It is still unknown how collagen type IX splice 

site mutations, and consequently the skipping of exon 3, can result in such clinical findings. 

Long bone formation relies on endochondral ossification, where an initial cartilaginous 

scaffold is replaced by bone, leaving a layer of cartilage, named epiphyseal growth plate, 

through which post-natal longitudinal bone growth occurs. Considering this mechanism and 

taking into account the EDM3 clinical findings, our hypothesis was that collagen type IX, an 

important component of the cartilage ECM, may have a direct or indirect role in bone 

formation, development and/or homeostasis.  

We therefore assessed the Col9a3Δex3 mice for their potential use as a model for Col9-MED, 

starting with an evaluation of their skeletal phenotype. The Col9a3-/- mouse was used as 

constant comparator in all the phenotypic analysis.  

In this chapter the bone phenotype of our mutant mice was explored exploiting two main 

techniques: x-ray morphometric analysis and micro-computed tomography (µCT). The main 

purpose was to test for similarities between the skeletal features of Col9a3Δex3 mice and 

EDM3 patients. In addition, the comparison between our two mutant mice could help to 

unravel if an ECM containing a mutated collagen type IX would result in a similar or 

different bone phenotype compared to a matrix lacking collagen type IX. Together, these data 

would add to our understanding of the role of collagen type IX in bone development. 
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4.2 Radiographic analysis of Col9a3Δex3 and Col9a3-/- mice.  

4.2.1 X-ray analysis of hind limbs and hips. 

The skeletal morphology of Col9a3Δex3 and Col9a3-/- mice was assessed by analysis of 

whole-body x-ray images.  Observations at birth did not indicate any obvious morphological 

or size difference in any of the mutant mice compared to WT. For this reason, we opted to 

evaluate later stages of post-natal bone development. Radiographic images were taken from 

animals at 3 weeks, corresponding to the weaning age, and at 9 weeks, the stage in which 

mice reach sexual maturity and their bone growth drastically slows (Jilka 2013).  An initial 

evaluation of heterozygous Col9a3Δex3/+ and Col9a3+/- mice compared with their WT 

littermates identified no differences in size or bone morphology, hence from this stage, only 

homozygous mice were phenotyped further. Radiographic images of the dorsal view of 3- 

and 9-week old female and male animals showed that Col9a3Δex3 and Col9a3-/- skeletal 

phenotypes were not influenced by sex. Therefore for the full radiographic analysis only the 

gender whose highest number of mice was available at the moment of data collection was 

used, in order not to require more animals, in compliance with the 3Rs principle (Flecknell 

2002). 

From whole-body radiographs, at 3-weeks of age, the height of female homozygous 

Col9a3Δex3 mice was the same size as their female WT littermates, whereas Col9a3-/- mice 

were shorter in size overall (Fig. 4.1). The radiographic investigation applied, was based on 

the measurement of established skeletal parameters previously used in the assessment of 

mouse models of other skeletal dysplasias. The length of the femur and tibia were markers of 

endochondral ossification. The extent of the angle formed by the protrusion of the tuberosity 

of the ischium from the ilium was analysed as a marker of general hip development and 

potential dysplasia. At 3 weeks of age both mutant mice showed tibias on average 

significantly shorter compared to WT, which were respectively 96% for Col9a3Δex3 and 89% 

for Col9a3-/- (Fig. 4.2A). When we measured the femur length, only Col9a3-/- mice presented 

a significant reduction at 3 weeks, as their femur was 91% of WT length. When mice reached 

skeletal maturity at 9 weeks of age, both Col9a3Δex3 and Col9a3-/- male animals had 

significantly shorter femurs at 95% and 85% the length of WT bones, respectively. Only male 

Col9a3-/- mice displayed a reduction of the average tibia length (89% of WT) at 9-weeks 

(Fig.4.2B). 
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Upon examination of the hip angle of mutant mice, we detected a strongly wider average hip 

angle in Col9a3-/- mutant mice. Measurements showed a 2-fold increase in the angle of 3-

week old female mice and 8-fold increase in 9-week old male Col9a3-/- mice angle compared 

to WT (Fig. 4.2A-B). This observation suggested the Col9a3-/- mice hip to be dysplastic, as 

morphologically evident in Fig 4.1. Although in Col9a3Δex3 mice we detected a slight increase 

in hip angle this was not statistically relevant compared to that of WT littermates at 3 weeks 

of age. Moreover, Col9a3Δex3 hip angle values were equal to WT in 9-week old mice. 

Interestingly, along with the dysplasia of the hip, in Col9a3-/- mice we observed a broadened 

tibial condyle and metaphysis (red circle in Fig. 4.1) which was consistent in 9-week animals 

of the same genotype. No such phenotype was observed at any age for the Col9a3Δex3 mice. 

 

Fig. 4.1 | Radiographic images of WT, Col9a3Δex3 and Col9a3-/- skeletal phenotype. 

A. Representative X-ray images of 3 week old female mice (dorsal view). B. close-up of 3-week old 

hips and right legs. The extent of alteration of the hip angle and the tibial condyle are indicated in red. 

Col9a3-/- mice displayed irregular and wider tibial epiphyses and hip dysplasia (assessed by hip angle) 

compared to Col9a3Δex3 or WT mice, which had a similar phenotype.  
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      B 

Age (Weeks) WT  Col9a3Δex3 Col9a3-/- 

Femur 

(mm) ± 

SD 

3 8.35 ± 0.18 8.31± 0.30 7.59 ± 0.32*** 

9 11.97 ± 0.51 11.34 ± 0.49 * 10.17 ± 0.27*** 

Tibia 

(mm) ± 

SD 

3 12.51 ± 0.41 12.01± 0.61* 11.19± 0.34*** 

9 17.27 ± 0.28 17.18 ± 0.34 15.42 ± 0.25*** 

Hip 

angle 

(°) ± 

SD 

3 7.50 ± 1.75 8.43 ±1.71 16.71± 1.71*** 

9 1.62 ± 0.66 1.67 ± 0.62 13.21 ±3.67*** 

 

Fig. 4.2 | Morphometric analysis of femurs, tibia and hip angle in WT, Col9a3Δex3 and 

Col9a3-/- mice. A. Tibia and femur bone lengths and hip angle were measured at 3 weeks of age in 

female mice (WT N=9; Col9a3Δex3 N=11; Col9a3-/- N= 10) and 9 weeks of age in male mice (WT 

N=9; Col9a3Δex3 N=11; Col9a3-/- N= 9) of all 3 genotypes. B. Table showing the average values and 

statistical significance of femur, tibia and hip angle measurements. SD = standard deviation; *p<0.05, 

***p<0.001, two tailed t-test. 
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4.2.2 Morphometric analysis of the skull. 

According to the literature, no cranio-facial abnormalities have been reported in EDM3 

patients. However, loss of function recessive mutations in the COL9A3 gene have also been 

associated with Stickler syndrome. Like MED, Stickler syndrome is a genetically 

heterogeneous disorder with a highly variable clinical spectrum. Among the clinical findings 

of Stickler syndrome caused by loss of function mutations in COL9A3 gene are high myopia, 

hearing loss and mid-face hypoplasia (Faletra et al. 2014). We therefore, assessed the x-rays 

of the skull of mice of all three genotypes to identify any relevant morphological changes due 

to the Col9a3 mutations carried by our mice. The morphology of Col9a3Δex3, Col9a3-/- and 

WT mice skulls was evaluated at 3 and 9 weeks on mice dorsal radiographs. The bones that 

form the skull originate from different processes according to their position. Endochondral 

ossification is the mechanisms through which the cranial base and caudal cranial vault are 

formed, whereas intramembranous ossification is at the base of the craniofacial and rostral 

cranial vault development (Percival and Richtsmeier 2013). 

Following established guidelines for the assessment of mouse models for genetic skeletal 

diseases, two parameters were taken into account: the inner canthal distance (ICD) measured 

as a marker of intramembranous ossification; and skull length as indication of endochondral 

ossification in the skull (Fig.4.3). The ICD was similar for all genotypes at both ages 

examined. In contrast, the skull length was influenced by genotype, but only significantly in 

Col9a3-/- mice. The average skull length of Col9a3-/- female mice at 3 weeks of age and in 

male mice at 9-weeks was 92.8% and 89.4% of the average value measured in WT 

littermates, respectively (Fig. 4.4A-B). Although the Col9a3Δex3 mice showed a small 

decrease in skull length at both time points investigated, the differences were not statistically 

significant. 
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Fig. 4.3 | Radiographic images of skull parameter comparison in WT, Col9a3Δex3 and 

Col9a3-/- mice. Representative skull x-ray dorsal view images of 3-week old female mice. The 

horizontal and vertical red lines represent ICD and skull length respectively. White dashed lines are 

indicated as reference for the skull length.   
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    B 

Age 

(Weeks) 
WT  Col9a3Δex3 Col9a3-/- 

ICD 

(mm) ± 

SD 

3 6.73 ± 0.26 6.78 ± 0.14 6.77 ± 0.15 

9 7.80 ± 0.23 7.82 ± 0.15 7.78 ± 0.16 

Skull 

Length 

(mm) ± 

SD 

3 18.09 ± 1.01 17.97 ± 0.26 16.79 ± 0.58** 

9 21.25 ± 1.44 20.93 ± 0.60 19.01 ± 0.53** 

 

Fig. 4.4 | Morphometric analysis of the skull in WT, Col9a3Δex3 and Col9a3-/- mice. 

ICD and skull lengths were measured at 3 weeks of age in female mice (WT N=9; Col9a3 Δex3N=11; 

Col9a3-/- N= 10) and 9 weeks of age in male mice (WT N=9; Col9a3 Δex3N=11; Col9a3-/- N= 9) of all 3 

genotypes. A. The average ICD and Skull length of homozygous Col9a3Δex3 and Col9a3-/- mice is 

shown. B. Table showing the mean values and statistical significance of femur, tibia and hip angle 

measurements ±SD (standard deviation). Statistical analysis: **p<0.01, two tailed t-test. 
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4.3 Col9a3Δex3 and Col9a3-/- mice differ in their bone ultra-structure. 

To investigate the effects on bone phenotype following deletion of exon 3 of Col9a3 

gene or the ablation of collagen type IX protein, we performed µCT analysis on mice of all 

three genotypes. We performed the analysis on adult long bones, using femurs and tibiae 

from 18-week old male mice. The two types of bone tissues are cortical and trabecular, which 

differ in structure and function.  Cortical bone is compact and constitutes the outer part of 

bones where its function is to provide protection and support but also to be a calcium 

reservoir for the functioning of all body organs. The outer surface of cortical bone is called 

the periosteum, and its inner surface endosteum, which is the perimeter dividing cortical from 

trabecular bone. The trabecular, also called cancellous bone, is a spongy type of bone made 

by a porous network of thin columns of bone forming the trabeculae. It is primarily found at 

the end of long bones and in the interior vertebrae. It harbours blood vessels and bone 

marrow.  

3D reconstruction of scanning images with a resolution of 4.5 µm allowed for visualisation of 

the trabecular structure of the distal femurs and the proximal tibiae. For cortical bones, we 

analysed the femur and tibia shafts, whose structure was 3D reconstructed from scanning 

images with a resolution of 9 µm.  
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4.3.1 Trabecular analysis of femurs in adult mice. 

Trabecular analysis showed no difference in the total volume (TV) and bone volume 

(BV) of the region of interest in Col9a3Δex3 femurs, but these parameters were significantly 

increased (by 35% and 23%, respectively) in Col9a3-/- mice compared to WT controls (Fig 

4.5 and Table 4.1). Interestingly, when the ratio of the segmented bone volume to the total 

volume (BV/TV) was evaluated, a significant 19% decrease in Col9a3Δex3, but no relevant 

change in Col9a3-/-, was observed. The mean thickness of trabeculae (Tb.Th) was reduced 

only in Col9a3-/- femurs at 89% of WT femoral Tb.Th. The measure of the average number of 

trabeculae per unit length, called trabecular number (Tb.N), and the mean distance between 

trabeculae, trabecular separation (Tb.Sp.) were both significantly changed in Col9a3Δex3.  

While we measured a 16% increased trabecular separation in Col9a3Δex3 mice when compared 

to WT, their trabecular number was significantly reduced to 80% of WT mean values, 

suggesting a less compact trabecular bone (Fig. 4.5). No difference was observed in Col9a3-/- 

mice for these variables. The trabecular pattern factor (Tb.Pf.) as well as the structure model 

index (SMI), which defines the plate- versus rod-like characteristic of the trabecular bone 

structure, were not altered compared to the mean value of WT in both mutant mice. The final 

parameter analysed was an index that measures the degree of connectivity of trabeculae 

normalised by TV, the connectivity density (Conn. Dn.). Col9a3Δex3 trabecular connections 

were significantly less dense with mean values corresponding to 76% of mean control values. 

The findings, in relation to Tb.N and Tb.Sp. values, suggest a less structured trabecular bone 

in Col9a3Δex3 femurs.  
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Fig. 4.5 | Trabecular morphometry of femurs of 18-week old mice. A. Morphometric 

analysis of trabecular bone from femurs of 18-week old male WT (N=13) Col9a3Δex3 (N=10) and 

Col9a3 -/- (N=9) mice. Data of the graphs, relating to Col9a3Δex3 and Col9a3 -/- mice are shown as 

percentage of change compared to WT measurements. Data are shown as means ±SD (standard 

deviation). Statistical analysis (Col9a3Δex3 or Col9a3 -/- vs WT) : *p<0.05, **p<0.01, ***p<0.001, two 

tailed t-test. B. Cross-sectional images of 3D µCT reconstructions using CTVox software of femurs 

from the median animals of each genotype, taken 50 slides (225 µm) away from the femoral growth 

plate.  
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Trabecular analysis of the femur (18-weeks) 

 WT (n=13) Col9a3Δex3(n=10) Col9a3-/-(n=9) 

TV (mm3) 2.27 ± 0.26 2.38±0.21 3.07±0.27*** 

BV (mm3) 0.45±0.08 0.39±0.14 0.55±0.12* 

BV/TV (%) 19.76 ± 3.05 16.03 ± 4.77* 17.86 ± 3.19 

Tb.Th (µm) 61.34±4.43 61.80 ±4.37 54.95±4.11** 

Tb.Sp (µm) 184.92±17.37 215.68±30.46** 184.52±15.54 

Tb.N (mm) 3.22±0.39 2.57±0.65** 3.24±0.51 

Tb.Pf (1/mm) 19.51±2.81 21.17±5.27 19.99±4.36 

SMI 2.18±0.19 2.22±0.31 2.05±0.20 

Conn.Dens. 

(1/mm3) 
392.78±90.05 298.33±85.60* 370.49±68.96 

 

Table 4.1. | µCT analysis of trabecular bone in femurs of WT, Col9a3Δex3 and Col9a3-/- 

male mice at 18 weeks of age. Data obtained from µCT trabecular parameters measurements in 

femurs and used to generate the graphs in Fig. 4.5. Data are shown as means ±SD (standard 

deviation). Statistical analysis (Col9a3Δex3 or Col9a3 -/- vs WT): *p<0.05, **p<0.01, ***p<0.001, two 

tailed t-test. 

  



 

130 

 

4.3.2 Trabecular analysis of tibiae in adult mice. 

The same analysis performed on mice femurs, was also performed on tibiae to assess 

their trabecular structure (Fig. 4.6 and Table 4.2). As reported for the femur, in Col9a3-/- 

tibiae we measured an increase in trabecular TV, which was 32% higher than WT.  

The BV in Col9a3Δex3 tibiae was 68.5% of the WT and 18% higher, but not statistically 

significant, in Col9a3-/-. Consistently with the trabecular femur results, in tibiae from 

Col9a3Δex3 the BV/TV was significantly decreased to 65.6% of the mean control BV/TV.  

Trabecular thickness (Tb.Th) was reduced in Col9a3-/- tibiae by 10% and unchanged in 

Col9a3Δex3 mice. The remainder of the trabecular variables were significantly changed only in 

Col9a3Δex3 compared to WT. We observed an increment of trabecular separation and pattern 

factor in Col9a3Δex3 tibiae, whose mean values were respectively 28.6% and 23.7% higher 

than WT mean Tb.Sp. and Tb.Pf. Moreover, the trabecular number and connectivity density 

were 66.5% and 65% of WT, respectively, and significantly decreased. As mentioned 

previously, the structure model index (SMI) defines the trabecular structure and was set to be 

0 for perfect plates and 3 for perfect rods. In Col9a3Δex3 femurs, we measured a 14% increase 

in the SMI mean value, thus indicating a more “rod-like” structure than “plate-like” 

compared to controls. 

  



 

131 

 

 

Fig. 4.6 | Trabecular morphometry of tibia of 18-week-old mice. Morphometric analysis of 

trabecular bone from tibiae of 18-week old male WT (N=13) Col9a3Δex3 (N=10) and Col9a3 -/- (N=9) 

mice. A. Data of the graphs, relating to Col9a3Δex3 and Col9a3 -/- mice are shown as percentage of 

change compared to WT measurements. Data are shown as means ±SD. Statistical analysis 

(Col9a3Δex3 or Col9a3 -/- vs WT): *p<0.05, **p<0.01, ***p<0.001, two tailed t-test. B. Cross-sectional 

images of 3D µCT reconstructions using CTVox software of tibiae from the median animals of each 

genotype, taken 50 slides (225 µm) away from the tibial growth plate. Note the obvious altered 

trabecular bone architecture and low bone volume, connectivity, and the rod-like appearance in 

Col9a3Δex3 when compared to WT and Col9a3 -/-.  
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Trabecular analysis of the tibia (18-weeks) 

 WT (n=13) Col9a3Δex3(n=10) Col9a3-/-(n=9) 

TV (mm3) 1.88 ± 0.22 1.93 ± 0.24 2.48 ± 0.11*** 

BV (mm3) 0.32 ± 0.05 0.22 ± 0.09** 0.38 ± 0.08 

BV/TV (%) 17.13 ± 1.95 11.24 ± 4.21*** 16.17 ± 1.80 

Tb.Th (µm) 55.84 ± 3.94 54.72 ± 3.01 50.54 ± 3.58** 

Tb.Sp (µm) 182.94 ± 15.25 
235.41 ± 

43.20*** 
184.69 ± 16.76 

Tb.N (1/mm) 3.07 ± 0.25 2.04 ± 0.71*** 3.01 ± 0.55 

Tb.Pf (1/mm) 22.53 ± 2.80 27.87 ± 5.52** 23.85 ± 5.39 

SMI 2.02 ± 0.14 2.29 ± 0.29** 1.93 ± 0.22 

Conn.Dens. 

(1/mm3) 
194.48 ± 29.37 

126.55 ± 

37.66*** 
197.37 ± 41.15 

 

Table 4.2. | µCT analysis of trabecular bone in tibiae of WT, Col9a3Δex3 and Col9a3-/- 

male mice at 18 weeks of age. Data obtained from µCT trabecular parameters measurements in 

tibiae and used to generate the graphs in Fig. 4.6. Data are shown as means ±SD. Statistical analysis 

(Col9a3Δex3 or Col9a3 -/- vs WT): *p<0.05, **p<0.01, ***p<0.001, two tailed t-test. 
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4.3.3 Cortical analysis of the femur in adult mice. 

For cortical bone evaluation, 3D and 2D parameters were considered (Fig 4.7 and Table 

4.3). From the 3D analysis, the ratio of the segmented bone volume (BV) to the total volume 

(TV) of the region of interest, BV/TV, was significantly reduced in cortical bone of Col9a3-/- 

femurs. No genotype specific difference in cortical thickness (Cort.Th) was observed in 

femurs. From the 2D analysis the following variables were extrapolated: the total cross-

sectional area inside the periosteal envelope, tissue area (T.Ar.); the periosteal perimeter 

(P.Pm); the endocortical perimeter (E.Pm); and the mean polar moment of inertia (MMI), a 

parameter which describes the resistance of cortical bone to torsion, so an indication about 

cortical bone stiffness.  

In Col9a3Δex3 femoral cortical bone, the only significant change was in the periosteal 

perimeter, which was increased by 5.5%. For all the other variables, mean values equivalent 

to WT controls were observed. In contrast, Col9a3-/- mice showed a relevant increase in tissue 

area, periosteal, and endosteal perimeters, of 18.1%, 11.1% and 18.7% as compared to WT, 

respectively, resulting in an overall wider bone. Col9a3-/- femurs were also determined to be 

stiffer compared to WT, with their MMI measuring 38% higher than the mean control value. 

An overall wider bone diameter was observed in the femurs of both mutant mice, but which 

was more pronounced in Col9a3-/-.   
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Fig. 4.7 | Cortical morphometry of femurs in 18-week old mice. A. Morphometric analysis 

of cortical bone from femurs of 18-week old male WT (N=13) Col9a3Δex3 (N=10) and Col9a3 -/- (N=9) 

mice. A. Data of the graphs, relating to Col9a3Δex3 and Col9a3 -/- mice, are shown as percentage of 

change compared to WT measurements. Data are shown as means ±SD. Statistical analysis 

(Col9a3Δex3 or Col9a3 -/- vs. WT): *p<0.05, **p<0.01, ***p<0.001, two-tailed t-test. B. Cross-

sectional images of 3D µCT reconstructions obtained using the software Dataviewer of femurs from 

the median animals of each genotype, taken 50 slides (450 µm) away from the femoral great 

trochanter.  
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Cortical analysis of the femur (18-weeks) 

 WT (n=13) Col9a3Δex3(n=10) Col9a3-/-(n=9) 

TV (mm3) 1.95±0.22 2.05±0.19 2.39±0.07** 

BV (mm3) 0.90±0.07 0.94±0.06 1.01±0.04* 

BV/TV (%) 46.05±2.26 46.25±2.56 42.21±0.98** 

Cort. Th (µm) 222.77±11.05 221.60±10.68 219.50±7.69 

T.Ar (mm) 2.17±2.17 2.28±0.21 2.56±0.27** 

P.Pm (mm) 5.73±0.29 6.05±0.29* 6.37±6.37*** 

E.Pm (mm) 4.65±0.42 5.38±1.28 5.52±0.73** 

MMI (mm4) 0.57±0.11 0.66±0.09 0.78±0.13*** 

 

Table 4.3. | µCT analysis of cortical bone in femurs of WT, Col9a3Δex3 and Col9a3-/- male 

mice at 18 weeks of age. Data obtained from µCT cortical parameters measurements in femurs and 

used to generate the graphs in Fig. 4.7. Data are shown as means ±SD. Statistical analysis (Col9a3Δex3 

or Col9a3 -/- vs WT): *p<0.05, **p<0.01, ***p<0.001, two tailed t-test.  
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4.3.4 Cortical analysis of tibiae in adult mice. 

Interestingly, we observed different results from cortical bone analysis in adult tibiae. 

In contrast with the changes measured in femoral cortical bone, in the tibial cortical bone the 

genotype did not affect either 3D or 2D parameters, with the exception of cortical thickness 

in the Col9a3-/- mice (Fig. 4.8 and Table 4.4), which was significantly reduced (95.7% of the 

average WT value). Mean values equal to WT were exhibited for all other cortical parameters 

in Col9a3Δex3 and Col9a3-/- mice. 

 

Fig. 4.8 | Cortical morphometry of tibiae in 18-week old mice. A. Morphometry analysis of 

cortical bone from tibiae of 18-week old male WT (N=13) Col9a3Δex3 (N=10) and Col9a3 -/- (N=9) 

mice. Data of the graphs, relating to Col9a3Δex3 and Col9a3 -/- mice, are shown as a percentage change 

compared to WT measurements. Data are shown as means ±SD. Statistical analysis (Col9a3Δex3 or 

Col9a3 -/- vs. WT): *p<0.05, **p<0.01, ***p<0.001, two tailed t-test. B. Cross-sectional images of 3D 

µCT reconstructions obtained using Dataviewer software of femurs from the median animals of each 

genotype, taken 50 slices (450 µm) away from the fibular notch.  
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Cortical analysis of the tibia (18-weeks) 

 WT (n=13) Col9a3Δex3(n=10) Col9a3-/-(n=9) 

TV (mm3) 1.02±0.09 1.00±0.08 0.98±0.10 

BV (mm3) 0.67±0.06 0.67±0.06 0.64±0.05 

BV/TV (%) 66.12±1.42 66.60±2.29 65.11±2.39 

Cort. Th (µm) 268.94±13.16 269.13±14.65 257.56±10.28* 

T.Ar (mm) 1.13±0.11 1.11±0.09 1.10±0.11 

P.Pm (mm) 4.10±0.20 4.05±0.17 3.99±0.20 

E.Pm (mm) 2.39±0.13 2.35±0.15 2.34±0.19 

MMI (mm4) 0.19±0.03 0.18±0.03 0.17±0.03 

 

Table 4.4. | µCT analysis of cortical bone in tibiae of WT, Col9a3Δex3 and Col9a3-/- male 

mice at 18 weeks of age. Data obtained from µCT cortical parameters measurements in tibiae and 

used to generate the graphs in Fig. 4.8. Data are shown as means ±SD. Statistical analysis (Col9a3Δex3 

or Col9a3 -/- vs WT): *p<0.05, **p<0.01, ***p<0.001, Two tailed T-test. 

 

 

.  
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4.3.5 Bone phenotypic analysis of the femoral head and tibial subchondral 

bone. 

During bone µCT analysis we also assessed other anatomical regions of the long bones 

under investigation, including the femoral head of the proximal femurs and the subchondral 

bone of tibiae in both mutant and WT mice. 

From µCT reconstructed images of the proximal femoral epiphysis, we observed a variability 

in bone composition according to genotype. This finding was of interest when it was 

compared to our µCT observations on the distal femoral epiphysis described in the previous 

section. At 18 weeks, the proximal femoral epiphysis of Col9a3Δex3 male mice presented all 

the characteristics of a fully mature bone, comparable with WT animals. The proximal 

cancellous bone was fully calcified and fusion between epiphysis and metaphysis had 

occurred, in conjunction with complete physeal resorption (Fig. 4.9). In addition, the 

cancellous bone appeared similar to WT with no evidence of reduced trabeculae density or 

altered trabecular space, somewhat different from what we observed in the distal femur. 

Surprisingly, the Col9a3-/- proximal femoral epiphysis showed an important morphological 

change in its cancellous bone composition.  Col9a3-/- epiphysis appeared still in a mineralised 

cartilaginous state, where a distinct layer of articular cartilage was not yet reduced in 

thickness. Formation of trabecular bone was not observed, but a clear separation of epiphysis 

from metaphysis was still present. These features are usually associated with a physeal 

senescence state during the postnatal development of the murine proximal femoral physis 

(Cole et al. 2013). Hence, Col9a3-/- mice were at an earlier stage in the proximal femur 

development process compared to Col9a3Δex3 and WT mice, whose proximal epiphysis were 

in the final stage of calcification denoting completed post-natal development. 
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Fig. 4.9 | µCT analysis of proximal femoral epiphysis. Coronal (top) and trans-axial view 

(bottom) of µCT reconstructed images of proximal femoral epiphysis from 18-week old male WT, 

Col9a3Δex3, and Col9a3-/- mice. Difference in the developmental state of epiphysis indicated by black 

arrow.  

The evaluation of tibial subchondral bone in 18-week old male mice highlighted another 

interesting morphological change in both mutant mice lines. In Col9a3Δex3 there was a lower 

level of trabecular bone, with reduced presence of trabeculae, which were also thinner than 

those forming the subchondral bone of WT mice (Fig. 4.10). This observation was in line 

with the data from the trabecular morphometry on tibial cancellous bone, findings confirmed 

by the coronal view of Col9a3Δex3 tibia, where an overall decrease of trabecular bone was 

observed in the region below the physis. Col9a3-/- subchondral bone resembled the structure 

of that of the WT mice, showing similar sclerotic regions in the lateral condyle, typical of 

C57Bl/6 background mice (personal communication from Professor Rob Van ‘T Hof, 

University of Liverpool). More trabecular bone was visible in both metaphysis and epiphysis 

in Col9a3-/- tibia, as already stated. Moreover, looking more carefully at the subchondral plate 

of both Col9a3Δex3 and Col9a3-/- mice, we noted a thinner bone in the medial and lateral tibial 

plateau compared to WT in Col9a3Δex3 mice (black stars in Fig. 4.10), but not obvious change 

in the subchondral plate of Col9a3-/-  mice. However, in both mutant mice, the tubercles of 

the intercondylar eminence were lost, giving an overall less defined subchondral plate when 

compared to WT.  
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Fig 4.10 | µCT analysis of tibial subchondral bone. Coronal view of µCT reconstructed images 

of proximal tibial epiphysis and metaphysis from 18-week old male Col9a3Δex3, Col9a3-/- and WT 

mice. Note the reduced subchondral cancellous bone in Col9a3Δex3, along with medial and lateral tibial 

plateau indicated by black stars. Sclerotic regions of the lateral condyle are indicated by black arrows.  
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4.4 Discussion 

In this chapter we described the skeletal phenotype of our novel mutant Col9a3-/- and 

Col9a3Δex3 mice. The aims of this chapter were essentially two: to verify the presence of 

possible commonalities between the skeletal defects of Col9a3Δex3 mice with EDM3 cases 

caused by similar exon 3 skipping mutations in COL9A3; to compare the consequences at the 

bone level of the two Col9a3 mutations generated, using other collagen type IX knockout 

mice as a point of reference. Radiographic evaluation was performed on homozygous mice at 

two different time points during post-natal development, at a young age (3 weeks), and at 9 

weeks, corresponding to the age of skeletal maturity (Jilka 2013). Radiographic analysis 

showed that the majority of the skeletal abnormalities were detected in Col9a3-/- mice. The 

Col9a3Δex3 skeletal phenotype was characterised by normal stature, with no skull abnormality, 

and no overt morphological changes – with the exception being a shorter femur length 

measured in 9-week old animals. At 3 weeks of age these mice had a reduced tibia length 

however, this growth delay was recovered when skeletal growth was complete at 9 weeks. 

Col9a3Δex3 mice did not display a hip dysplasia often detected in mouse models of skeletal 

dysplasia disorders. Therefore, from radiographic analysis, we could not detect any striking  

skeletal abnormality, similarly to some EDM3 patients’ clinical data. EDM3 patients are 

indeed classified in the mildest part of the spectrum of skeletal abnormalities associated with 

chondrodysplasias. 

On the contrary, the Col9a3-/- phenotype was characterised by overall shorter stature, shorter 

tibiae and femurs (at both 3 and 9 weeks of age), and abnormal wider tibial epiphysis 

compared to WT animals. The hip angle was significantly larger at 3 weeks compared to WT, 

with the difference even more pronounced when mice reached skeletal maturity. Not 

surprisingly, many of the features described about the Col9a3-/-  mice phenotype, are shared 

with the knockout mouse for Col9a1 gene (Col9a1-/-) and Col9a2 (Col9a2-/-), mutations 

leading in both mice to a functional knockout of collagen type IX. Dreier R. et al. described 

the Col9a1-/- mouse phenotype to be characterised morphologically by a reduction in length 

and increased width in all long bones analysed (including the tibia and femur), along with 

broadened tibial condyles (Dreier et al. 2008).  These commonalities between Col9a1-/- and 

our Col9a3-/- mouse, further confirmed our mouse as a valuable Col9a3 knockout, which 

could provide insights about the importance of each α helix which forms the collagen type IX 

molecule.  
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Moreover, the evidence of a shorter skull length, but unaltered intercanthal distance, detected 

in Col9a3-/- mice, suggests that ablation of collagen type IX could affect directly or indirectly 

endochondral ossification in the development of the skull. 

Along with the assessment of bone morphology by radiography, we further investigated long 

bones microstructure of our mutant mice using µCT. The trabecular and cortical bone were 

analysed in the femur and tibia of adult male mice by µCT.  In Col9a3Δex3 mice, the same 

trabecular pattern was observed in 18-week old femurs and tibiae when compared to their 

age-matched WT littermates. The reduced ratio of bone volume per tissue volume, trabecular 

number and connectivity density, along with increased space between trabeculae, detected in 

femurs and tibiae, indicated Col9a3Δex3 mice to be characterised by a low trabecular bone 

phenotype, relative to their WT littermates. In addition, their tibiae structure model index, 

suggested a “rod-like” structure of trabeculae. The conversion from plate elements to rod 

elements is frequently associated to age- or disease- related degeneration of cancellous bone 

that leads to a more fragile bone, as often seen in osteoporosis. What was immediately 

apparent for Col9a3-/- mice instead, was their higher total tissue volume, indicating their long 

bones to have a larger average diameter than the WT average. Interestingly, their trabecular 

thickness mean value was lower compared to WT in both femur and tibia. There are 

contradictory hypotheses in the literature about the correlation between bone volume and 

trabecular thickness, often reporting how thicker trabeculae are more likely to be associated 

to high volume fractions (Macdonald et al. 2011, Beresheim et al. 2018). However, Waarsing 

et al. showed in rats how this relation could be reversed due to ageing, as they demonstrated 

that trabecular thickness increases with decreasing volume fraction when a mechanism of 

bone degradation is triggered. Their hypothesis suggested that the variation noticed could be 

due to compensatory mechanisms aimed at maintaining bone strength despite microstructure 

changes (J.H. Waarsing 2004). The same hypothesis could be applied to our data. We might 

speculate that the decreased trabecular thickness could be a compensatory response for a 

larger bone, which with thicker trabeculae, would become overly compact and heavy. 

Previously, from μCT analyses conducted on lumbar bones of females and males Col9a1-/- 

mice at 8-10 weeks of age, Wang et al. showed how homozygous females had a more 

pronounced trabecular bone phenotype caused by Col9a1-/- mutation than homozygous male 

littermates. In Col9a1−/−females the lumbar bone volume fraction, trabecular thickness and 

connectivity density were significantly decreased and trabecular spacing increased, showing a 

trabecular profile more similar to our Col9a3Δex3 male mice. Whereas, as reported from our 
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trabecular analysis performed on Col9a3-/- males, also in Col9a1−/− males, the genotype 

seemed not to have a relevant influence on trabecular bone, since only the connectivity 

density was significantly lower. However, with ageing, both female and male heterozygous 

(Col9a1+/−) mice displayed a significant loss of trabecular bone (Wang et al. 2008). 

Conversely, in another study, similar findings to our Col9a3-/- mice were found in Col9a1-/- 

animals vertebral bodies. They showed higher TV and initially reduced BV/TV, which then 

returned to normal by the age of 10 months (Kamper et al. 2016).  

Cortical analysis did not show overt changes in Col9a3Δex3 mice, apart from an increased 

periosteal perimeter in 18-week old femurs. In Col9a3-/- mice the pattern of cortical changes 

recorded in femur was completely consistent with a bone characterised by a wider diameter. 

In fact, a reduction in the bone volume to tissue volume ratio, along with the increased tissue 

area, periosteal and endosteal perimeters were measured in Col9a3-/- femurs. As a 

consequence of the increase in periosteal diameter, the mean polar moment of inertia was 

increased, indicating that the Col9a3-/- mice would be less prone to fragility fracture than WT. 

In Col9a3-/- tibiae only the cortical thickness was significantly lower, leaving all the other 

parameters equal to WT. Such a result could be explained inferring the same hypothesis 

suggested for trabecular bone. We could speculate that the bone, being larger, adapted its 

cortical thickness to be less heavy while at the same time maintaining its supportive function.  

The evaluation of the tibial subchondral bone confirmed the low trabecular bone phenotype 

of Col9a3Δex3 mice and a commonly less defined subchondral plateau in both mutant mice. 

The analysis of the proximal femoral epiphysis by µCT revealed that while in WT and 

Col9a3Δex3 mice calcification, resorption of the physis, and epiphyseal fusion were complete 

(as expected in male mice at the age of 18 weeks), in Col9a3-/- mice maturation of proximal 

femurs was delayed. Col9a3-/- femoral head cartilage was still in the senescent state, 

calcification had been initiated, but the physis was still preventing epiphysis and metaphysis 

fusion. This observation was unexpected, considering that no indication of delayed 

ossification was noticed from µCT images of Col9a3-/- distal femur and tibia. Additionally, it 

is worth noticing that the proximal femur of the Col9a3Δex3 mice did not show evidence of a 

lower trabecular bone phenotype, unlike for their Col9a3Δex3distal femur and proximal tibia. 

Therefore, we could observe different bone microstructure in distinct regions of the same 

bone. These findings confirm that bone morphology and microarchitecture are genetically 

determined on a site-specific basis according to the anatomical region (Judex et al. 2004).  
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In conclusion, our observations suggested that the potential presence in the ECM of a 

mutated collagen type IX affects long bone development or homeostasis differently when 

compared to its total absence from the ECM. However, the mechanism by which this 

differential outcome takes place is not clear. 

In the next chapter we will analyse aspects of bone development by examining the tibial 

growth plate phenotype and the cartilage proteome of Col9a3Δex3 and Col9a3-/- mice, 

compared to WT, to identify possible mechanisms contributing to the bone phenotype 

observed. 
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Summary highlights: 

- Radiological findings did not indicate remarkable skeletal abnormalities in Col9a3Δex3 mice, 

which recall some EDM3 patients’ phenotype. 

- Col9a3-/- reproduced (radiologically) the Col9a1-/- and Col9a2-/- mice phenotype. 

- Col9a3Δex3 mice showed a reduced trabecular bone but normal cortical bone phenotype, 

whereas long bones in Col9a3-/- mice were characterised by a stiffer cortical bone with a 

wider diameter. 

- The regulation of bone development and homeostasis differs in distinct bones and in their 

different anatomical sites, adding mechanistic complexity. From our data, we suggest that 

collagen type IX has a role in the complex mechanism of bone regulatory pathways; 

however, its specific function remains unknown.  
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Chapter 5. 

Evaluation of Col9a3Δex3 and Col9a3-/- cartilage pathology 
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5.1 Introduction 

In Chapter 4 we described the bone phenotype of Col9a3Δex3 and Col9a3-/- mice, with 

radiological analysis showing that morphological defects were more predominant in Col9a3-/- 

mice. Analysis of the bone micro-structure identified different changes between Col9a3Δex3 

and Col9a3-/-, suggesting that each mutation affected bone development, homeostasis, or both 

mechanisms differently.  To further unravel this observation, we performed phenotypic 

analysis of cartilage tissue in the mutant mice, in order to identify tissue morphological 

changes that could help to explain the origin of the observed bone defects. In a previous 

study, cartilage biopsies from MED patients lacking exon 3 of COL9A3 due to a G to A 

transition in the splice acceptor site of intron 2 in the gene, showed chondrocyte and cartilage 

matrix abnormalities. MED chondrocytes were found with intracytoplasmic inclusions, 

enlarged rough endoplasmic reticulum (rER), containing electron-dense and –lucent material, 

likely to be retention of abnormally processed matrix proteins. An accumulation of lipids was 

observed in the cytoplasm and rER for some epiphyseal cartilage biopsies (Bonnemann et al. 

2000). Unfortunately, there is a small number of reported studies performed on tissue from 

MED patients with collagen type IX mutations and this is probably due to low availability of   

patients’ biopsy samples. Nonetheless, previous works conducted on Col9a1-/- and Col9a2-/- 

mice described evidence of growth plate anomalies. These included, altered columnar 

distribution of chondrocytes, loss of clear distinction between different zones, reduced 

number of cells in the epiphyseal middle region at early stages of development, along with 

altered integration of other matrix proteins (Balasubramanian et al. 2019, Blumbach et al. 

2008, Budde et al. 2005, Dreier et al. 2008).  

Given the above, for our study a deep analysis of the epiphyseal growth plate was performed, 

at different stages of development and using a variety of different investigation methods. 

Light microscopy and transmission electron microscopy were used to visualise growth plate 

structure and chondrocytes morphology and ultrastructure. By immunohistochemistry (IHC), 

we assessed the presence and localisation of selected matrix proteins in addition to 

quantifying chondrocyte proliferation. Finally, in the attempt to explain the reasons 

underlying the bone and cartilage findings observed in the mutant mice, we performed RNA-

sequencing on their chondrocytes mRNA with the purpose to identify possible gene 

expression variations contributing to their phenotypes. 
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5.2 Analysis of Col9a3Δex3 and Col9a3-/- murine growth plate  

5.2.1 Histological analysis of growth plate structure 

In order to analyse the epiphyseal growth plate architecture, tibiae from female mice at 

3-weeks of age were collected and processed for histology. Tissue sections were subjected to 

Haematoxylin and Eosin (H&E) staining to visualise the general tissue structure. 

Haematoxylin specifically stains cell nuclei blue, and eosin stains the extracellular matrix 

(ECM) and cytoplasm pink. Using H&E we were able to visualise chondrocyte arrangement 

throughout the different zones constituting the growth plate, in both mutant mice and their 

WT littermates. Going from the epiphyseal to the diaphyseal side, in WT tibial sections, we 

could recognise a defined resting zone with its reservoir of small and circular chondrocytes, 

the proliferative zone whose flattened chondrocytes were arranged in regular columns 

parallel to the axis of the bone, and finally the mature and enlarged chondrocytes of the 

hypertrophic zone. From morphometric analysis, both mutant mice exhibited a total height of 

the growth plate comparable to WT controls. No visible difference was detected in the 

organisation of chondrocytes in Col9a3Δex3 growth plate zones compared to WT (Fig. 5.1), 

although their relative height was changed, with the proliferative zone reduced by 15% and 

the hypertrophic zone 9% larger (when measured relative to the total growth plate height) 

(Fig. 5.2). In Col9a3-/- mice, the spatial organisation of chondrocytes in the different growth 

plate zones was impaired. The separation between resting and proliferative zone was lost and 

proliferative chondrocytes were no longer flat and organised in columns, but were instead 

rounded and randomly clustered. In addition, the neat distinction between proliferative and 

hypertrophic zone was hard to determine, as some proliferative cell invasion within 

hypertrophic region was noted. For this reason, we measured a 15% higher proliferative zone 

and 20% narrower hypertrophic zone in homozygous mice for Col9a3-/- mutation (Fig. 5.2); 

however, the lack of precise separation between the two regions made morphometric analysis 

difficult. Col9a3-/- hypertrophic chondrocytes had no obvious anomaly in their shape, apart 

from some sporadic cell enlargement. Larger intercellular spaces surrounded hypertrophic 

chondrocytes at the boundary with proliferating cells (Fig. 5.1).  
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Fig. 5.1 | Tibial growth plate architecture in 3-weeks old mice. H&E staining of tibial growth 

plates from 3-week old WT, Col9a3 Δex3 and Col9a3-/- female mice. Representative images from three 

mice per genotype, from twelve sections/mouse. RZ= Resting zone; PZ= Proliferative zone; HZ= 

Hypertrophic zone; TB= Trabecular bone. Upper row panel scale bar =100µm; lower row panel 

=50µm. 
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Fig. 5.2 | Tibial growth plate morphometric analysis. Measurements of the different zones of 

the tibial growth plate at 3-weeks of age (N=3). A. Graph of measurement of whole growth plate 

height. B. Graph of proliferative zone height expressed as percentage of total growth plate height. C. 

Graph of hypetrophic zone height expressed as percentage of total growth plate height. Two tailed T-

test: *p<0.05, **p<0.01. RZ= Resting zone; PZ= Proliferative zone; HZ= Hypertrophic zone; TB= 

Trabecular bone. 
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5.2.2 Ultrastructural analysis of growth plate chondrocytes 

A more detailed analysis of chondrocytes morphology in the different zones of growth 

plate was performed using transmission electron microscopy (TEM). Cartilage tissue was 

collected from 7-day old tibiae and processed for TEM by researchers at the Electron 

Microscopy Research Services of Newcastle University.   

In the resting zone of Col9a3Δex3 cartilage, chondrocytes displayed enlargement of their 

endoplasmic reticulum (ER) possibly caused by low level protein retention. However, some 

enlargement was also observed in the ER of WT resting chondrocytes (Fig 5.3). Col9a3-/- 

resting chondrocytes were irregular in their morphology and occasionally surrounded by a 

more dispersed fibril organisation, with regions almost devoid of fibres, indicating a less 

compact pericellular matrix (Fig. 5.3).  

Col9a3Δex3 proliferative chondrocytes, as previously stated in the histology analysis, showed 

an overall organisation similar to WT with some cells having a less defined morphology. In a 

few examples, chondrons were less compact, showing a loose, spread chondrocyte 

arrangement (black rectangle in Col9a3Δex3 Fig. 5.4). In Col9a3-/- proliferative zone, the 

distribution of cells was uneven, with regions devoid of chondrocytes. Chondrocytes were 

smaller, with an altered morphology, and their arrangement in chondrons was affected (Fig. 

5.4). Evidence of ER enlargement was present in Col9a3Δex3 and Col9a3-/- proliferative 

chondrocytes. A clear pre-hypertrophic region was visible in WT growth plate, but in both 

mutant mice this defined region was lost. In Col9a3Δex3 mice cells appeared to progress 

directly into hypertrophy, whereas Col9a3-/- pre-hypertrophic chondrocytes showed an 

abnormal morphology, more rounded with loss of the normal columnar arrangement (Fig. 

5.5). 

In Col9a3Δex3 hypertrophic chondrocytes there was some evidence of enlarged ER with 

protein retention. In Col9a3-/- mice glycogen granules were present in chondrocytes (Fig.5.6). 

In addition, between the resting and proliferative zone in both mutant mice (but not in the 

WT) we detected a region lacking all the tissue characteristics typical of growth plate, with 

no normal chondrocytes and an unusual matrix morphology. The overall characteristic was of 

a region where severe tissue degeneration occurred, within which necrotic nuclei were 

detected, along with collagen fibres in an irregular meshwork (Fig. 5.7). This degeneration 

appeared more severe in the Col9a3-/- growth plate. 



 

152 

 

 

Fig. 5.3 | Ultrastructure of the resting zone in the tibial growth plate. 

Electron micrographs of cartilage from 1-week old mutant mice compared to a WT control (N=1). 

Black arrows indicate ER enlargement. Scale bar = 10μm, higher magnification scale bars = 2 μm.  
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Fig. 5.4 | Ultrastructure of the proliferative zone in the tibial growth plate. 

Electron micrographs of cartilage from 1-week old mutant mice compared to a WT control 

(N=1). Black arrow indicates ER enlargement. Scale bar = 10μm, higher magnification scale 

bars = 2 μm. 
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Fig. 5.5 | Ultrastructure of the pre-hypertrophic zone in the tibial growth plate. Electron 

micrographs of cartilage from 1-week old mutant mice compared to a WT control (N=1). Higher 

magnification images taken from equivalent regions. Black arrow indicates ER enlargement. Scale bar 

= 10μm, higher magnification scale bars = 2 μm.  
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Fig. 5.6 | Ultrastructure of the hypertrophic zone in the tibial growth plate. 

Electron micrographs of cartilage from 1-week old mutant mice compared to WT control (N=1). ER= 

Endoplasmic reticulum; Gly= Glycogen. scale bar = 10μm, higher magnification scale bars = 2 μm. 
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Fig. 5.7 | Alteration of tissue morphology in Col9a3Δex3 and Col9a3-/- tibial growth plate. 

TEM images displaying unorganised regions putatively due to tissue degeneration. Note: cells 

undergoing necrosis (black arrows) and an array of ordered collagen fibrils being engulfed within the 

mass of degenerated material (yellow dashed line). 
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5.2.3 Growth plate abnormalities during early development in mutant mice. 

TEM findings suggested that a more severe phenotype could be exhibited by the growth 

plate at earlier post-natal developmental stages. Therefore, further histological investigation 

on mutant and WT 1-week old tibial epiphysis was needed to confirm the presence of the 

tissue degeneration observed by TEM. 

Unfortunately, because of breeding problems no Col9a3Δex3 samples were available, at the 

time of writing, to perform tissue analysis at 1 week, which therefore only compared Col9a3-

/- mice with their WT littermates. Subsequently the analysis was integrated by adding the 

tissue sections of 1-week old Col9a3Δex3 mice. H&E and Toluidine blue stainings were 

performed on the tibial proximal epiphysis and femoral distal epiphysis growth plates 

sections. Stainings showed Col9a3-/- mice to have a large hypocellular central region, which 

was absent in WT (Fig. 5.8 C, F, I, N). This hypocellular region was localised along the 

whole growth plate height. Starting just below the future secondary ossification centre, 

extending along the resting and proliferative zones and then being engulfed into the 

hypertrophic zone, it finally protruded into the metaphyseal newly formed trabecular bone, 

conferring on the hypertrophic zone an unusual V-shaped morphology. The peripheral tibial 

epiphysis did not show an alteration in chondrocyte density, but only in their distribution. The 

typical columnar organisation of the proliferative zone was profoundly impaired, and 

chondrocytes appeared more rounded and randomly arranged, sometimes following the 

mediolateral axis rather than the proximodistal. Interestingly, no evident broadening of the 

Col9a3-/- tibial condyle was observed at this age. Toluidine blue staining was used as an 

indication of the proteoglycan content in the growth plate. In none of the samples (N=3) a 

change in the intensity of toluidine blue staining was noticed, hence no alteration in the 

proteoglycans abundance or distribution could be observed. However, the possibility of 

overexposure of sections during a not yet fully optimised staining protocol cannot be 

excluded. Indication of cell-free areas were also detected in Col9a3Δex3 tibial sections, mainly 

localised at proliferating region of the growth plate, although not as severe as in Col9a3-/- 

mice (Fig. 5.8 B, E, H, M). Toluidine staining confirmed no change in the proteoglycan 

distribution and abundance also in Col9a3Δex3 tibiae. 

The same cartilage defect was observed also in Col9a3-/- femurs, where an even more 

pronounced central region was completely devoid of cells and was surrounded by smaller and 

round-shaped chondrocytes (Fig. 5.9 C, F, I, N). The femoral hypertrophic zone had reduced 
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height compared to WT. Hypertrophic chondrocytes were enlarged and their spatial 

distribution was profoundly disturbed by the partial invasion of the hypocellular region. The 

presence of a defined circular fold in the tissue section in the middle of the cell-free area, 

suggested that these morphological changes might have affected the mechanical stability of 

the tissue, becoming more fragile and looser. More obvious cell-free areas were also 

recognised in Col9a3Δex3 femurs compared to tibiae, localised in the central proliferating 

region of the growth plate and slightly invading the lower hypertrophic zone (5.9 B, E, H, 

M). Furthermore, we noticed alterations of the secondary ossification centres in both mutant 

mice (5.10). Col9a3-/- mice were found with disrupted secondary ossification centres in 

femurs (5.10 C, F), due to the cell free areas,  and delayed secondary ossification centre in 

tibia (5.10 I, N) whose chondrocytes appeared smaller and at an earlier stage of 

differentiation compared to WT (red circles in Fig. 5.10). Interestingly, from Col9a3Δex3 

sections of both tibiae and femurs (Fig.5.10 E, M), we could notice larger chondrocytes 

showing a hypertrophic phenotype compared to those visualised in WT and Col9a3-/- 

sections. This finding suggested a possibly premature differentiation of chondrocytes and 

formation of the secondary ossification centre in Col9a3Δex3 mice compared to WT and 

Col9a3-/- mice. 
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Fig. 5.8 | Analysis of tissue defects in 1-week old tibial proximal epyphisis. H&E (A-F) and 

Toluidine blue staining (G-N) of 1-week old tibial growth plates from Col9a3-/- and WT animals. 

Hypocellular regions indicated by arrowheads. Representative images of analysis of three mice per 

genotype. (scale bar = 200μm, Higher magnification scale bars = 50μm).  



 

160 

 

 

Fig. 5.9 | Analysis of tissue defects in 1-week old femoral distal epiphysis. H&E (A-F) and 

Toluidine blue staining (G-N) of 1-week old femoral growth plates from Col9a3-/- and WT animals. 

Representative images of analysis of three mice per genotype. Hypocellular regions indicated by 

arrowheads. (scale bar = 200μm, Higher magnification scale bars = 50μm). 
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Fig. 5.10 | Secondary ossification centre alterations in Col9a3Δex3 and Col9a3-/- mice. H&E 

staining of 1-week old femoral distal epiphysis and tibial proximal epiphysis. Secondary ossification 

centres indicated by red circles in low magnification pictures. Representative images of analysis of 

three mice per genotype.  (scale bar = 200μm, Higher magnification scale bars = 50μm). 
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5.2.4 Collagen type IX localisation in tibial growth plate 

Collagen type IX localisation in the tibial growth plate was assessed using IHC. 

Sections of tibiae collected from 3-week old female mice, were probed with a collagen type 

IX antibody recognising as epitope the NC4 domain of α1(IX) helix (Fig. 5.11). In Col9a3Δex3 

tibial epiphysis, the fluorescence signal corresponding to collagen type IX was weaker than 

control. In addition, at higher magnification, the signal detected in WT growth plate was 

predominantly localised in the inter-territorial matrix, surrounding the chondrocytes arranged 

in columns. Interestingly, Col9a3Δex3 mice showed collagen type IX to be more localised at 

the pericellular matrix and reduced in the inter-territorial matrix. In the proliferative zone of 

Col9a3Δex3 mice, intracellular staining was observed increased, suggesting a certain level of 

retention of the ‘mutant’ protein within the resident proliferative chondrocytes. In Col9a3-/- 

growth plate, the presence of collagen type IX was strongly reduced within the matrix, and 

the weak staining detected, was mainly exhibited by the irregularly distributed chondrocytes, 

indicating a possible protein retention, although we cannot exclude the possibility of a 

staining artefact. 
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Fig. 5.11 | Collagen type IX abundance in the tibial growth plate of WT and mutant 

mice. 3-week old tibiae sections (N=3) were probed with an antibody against the α1 chain of collagen 

type IX. Images were taken at 20X (scale bar = 100μm ) and 40X (scale bar = 50μm) magnification 

and exposure time was set on negative control sections (Appendix C, Fig.C1).  
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5.2.5 Localisation of Collagen type IX interactors in the ECM. 

Col9a3Δex3 and Col9a3-/- mutations might affect the localisation and retention of other 

ECM proteins into the matrix. For this reason, the localisation and abundance of other 

important ECM structural proteins, known to directly interact with collagen type IX, was 

assessed in 3-week old tibial growth plates (Fig. 5.12).  

Matrilin-3 staining did not indicate any relative change in abundance throughout the different 

zones in both mutant growth plates. Nonetheless, matrilin-3 localisation appeared more 

pericellular, with some intracellular retention, in Col9a3Δex3 mice compared to WT animals. 

Staining for matrilin-3 in Col9a3-/- mice was distributed throughout the growth plate and was 

equally dispersed into the matrix and within proliferating cells. However, the highly altered 

chondrocyte morphology and organisation and the general impaired growth plate of the 

Col9a3-/- line made the exact localisation difficult to determine. 

The intensity of staining for another collagen type IX interactor protein, COMP was only 

slightly reduced in Col9a3Δex3 tissue, but not in Col9a3-/- growth plates. 

When staining for the hypertrophic marker collagen type X was performed, we visualised a 

more extended fluorescent signal in Col9a3Δex3 growth plates, indicating a larger hypertrophic 

zone than in WT controls, confirming our previous growth plate morphometric analysis. 

Reduced abundance, along with a disorganised staining pattern of collagen type X was 

observed in the Col9a3-/- hypertrophic region. 
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Fig. 5.12 | Localisation of some extracellular matrix proteins in tibial growth plates. 

Immunofluorescence staining was performed by probing 3-week old tibiae sections (N=3) 

with antibodies specific for matrilin-3, COMP and collagen type X. Images were taken at 40X 

(scale bar = 50μm) magnification and exposure time was set on negative control sections (Appendix 

C, Fig.C1).  
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5.2.6 Mutated or absent α3(IX) affects chondrocytes proliferation 

Proliferation of chondrocytes was analysed in the proliferative zone of the tibial growth 

plate at 3 weeks of age using a BrdU (5-bromo-2’-deoxyuridine) in vivo assay.  

Bromodeoxyuridine is a synthetic nucleoside that is an analog of thymidine. The assay is 

commonly used to detect proliferating cells in living tissue by exploiting the capability of 

BrdU to be incorporated into the newly synthesized DNA of replicating cells (during the S 

phase of the cell cycle, when DNA is replicated), substituting for thymidine during DNA 

replication. Col9a3Δex3, Col9a3-/- and WT mice were injected with BrdU solution and their 

legs harvested two hours post-injection. BrdU positive cells were detected by 

immunohistochemistry using a specific anti-BrdU antibody and analysis was performed on 

nine matched sections per mouse (N=3, Fig. 5.13 A) in order to cover the entire growth plate 

depth. The number of cells undergoing mitosis were expressed relative to the total number of 

cells present in the proliferative zone.  

Our results showed that in WT growth plate, 11.4 % of chondrocytes were in proliferative 

activity. The number of BrdU positive cells detected in Col9a3Δex3 and Col9a3-/- growth plate 

proliferative zones were respectively 7.9 % and 6.7 %. Therefore, the proliferation of 

chondrocytes when compared to wild type littermates was significantly reduced of 31% in 

Col9a3Δex3 and 41% in Col9a3-/- mice (Fig. 5.13 B-C).  

  



 

167 

 

 

Chondrocytes proliferation 

 WT  Col9a3Δex3 Col9a3-/- 

n. of BrdU 

positive 

cells ± SD 

113 ± 11 87 ± 9 85 ± 6 

n. of DAPI 

cells ± SD 
871 ± 144 1131 ± 125 1229 ± 115 

% of BrdU 

positive 

cells ± SD 

11.4 ±1.5  7.9±0.9* 6.7±1.0* 

 

Fig. 5.13 | Proliferation rate of chondrocytes in growth plate proliferative zones of 3-

week old WT, Col9a3Δex3 and Col9a3-/- mice. The level of chondrocytes undergoing mitosis into 

the proliferative zone of 3-week old tibial growth plates was analysed by BrdU labelling assay in 

Col9a3Δex3 and Col9a3-/- female mice and their wild type littermates. A. BrdU-labelled proliferative 

cells compared to Dapi-stained nuclei of 20X growth plate images (scale bar = 200 µm). B. Graph of 

BrdU–positive cells expressed as a percentage relative to the total number of cells in the proliferative 

zone. C. Table with numeric data used to generate “Chondrocytes Proliferation” graph. Two tailed T-

test: *p < 0.05 
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5.3 Transcriptomic analysis of Col9a3Δex3 and Col9a3-/- ribs cartilage. 

Transcriptomic analysis was performed to investigate transcriptional changes in 

homozygous mice for Col9a3Δex3 and Col9a3-/- mutations compared to their WT littermates. 

RNA sequencing was conducted using the RNA extracted from chondrocytes of ribs cartilage 

from 7-day old mice (N=4). After successfully passing the first integrity check (Appendix E, 

Fig. E.1), RNA was sequenced at Newcastle University Genomics Core Facility and Dr 

Kathleen Cheung kindly performed the subsequent transcriptomic analysis.  

Three females and one male coming from two different litters constituted the WT group of 

samples; Col9a3Δex3 mice were all male brothers and Col9a3-/- samples were from two 

females and two males from two different litters. To explore how the transcriptome compared 

across all the different samples, we performed a principal component analysis (PCA) (Fig. 

5.14). PCA showed distinct clustering of samples according to their genotype confirming that 

the transcriptome of each genotype was different. To determine the specific gene expression 

changes contributing to the distinct clustering in the three genotypes, we compared each 

mutant genotype with the WT gene set using DESeq2 (Love et al. 2014). The result 

demonstrated statistically significant alterations in expression levels within each group, as 

visualised by volcano plots (Fig. 5.15). Specifically, the expression of 424 genes resulted 

significantly upregulated and 271 genes significantly downregulated in Col9a3Δex3 mice 

compared to WT littermates. The first 15 most significant upregulated and downregulated 

genes are listed in Table 5.1. Among them was a significant increase in expression of 

fibroblast growth factor 13 (Fgf13) and decreased expression of fibroblast growth factor 

receptor 3 (Fgfr3) in Col9a3Δex3 chondrocytes.  

From the comparison of Col9a3-/- transcriptome profile with WT gene set, 259 genes and 185 

genes were respectively upregulated and downregulated in the mutant transcriptome. The first 

15 most significant upregulated and downregulated genes are listed in Table 5.1. Some of the 

genes most significantly upregulated in Col9a3-/- mice comprised Tensin1 (Tns1), Spondin 

1(Spon1), Versican (Vcan) and Cartilage intermediate layer protein (Cilp). A significant 

downregulation of genes such as Thrombospondin type 1 domain containing 4 (Thsd4) and 

Tolloidin like 1 (Tll1) was measured in Col9a3-/- mice. Subsequently we searched for 

commonalities in the gene expression profiles of the two mutant mice. By comparing the list 

of differentially expressed genes which exhibited a significant change in Col9a3Δex3 and 

Col9a3-/- mice, we identified 75 genes commonly upregulated and 31 genes commonly 
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downregulated between the two expression profiles (Fig. 5.15). On the lists of genes whose 

expression changes were found in common in the mutants, we subsequently performed 

pathway enrichment analysis to identify GO terms using the database for annotation, 

visualisation and integrated discovery (DAVID) functional annotation tool. When the list of 

commonly upregulated genes was interrogated, the analysis result displayed significant 

enriched gene ontology (GO) terms correlating with biological processes involving elastic 

fibre assembly (Fbln5, Lox, Mfap4, Tnxb), extracellular matrix (Postn), collagen fibril 

organisation (Dpt, etc..), cell adhesion (Col6a6, Mfap4, Spon1, Vcan, Svep1), regulation of 

cell growth (Igfbp4) and interestingly embryonic eye morphogenesis (Fbn2, Mfap2). In 

contrast, no significant GO terms were obtained using DAVID enrichment analysis out of the 

significantly downregulated genes shared by the two mutant mice.  

 

Fig. 5.14 | Principal component analysis of RNA-seq data. Gene expression changes were 

investigated at 7 days, in costal chondrocytes RNA from Col9a3Δex3 and Col9a3-/- mice versus WT 

(n=4 per genotype). The PCA was performed using normalised RNA-Seq data and results revealed 

separation of different biological replicates according to genotype, (WT animals in dark grey; 

Col9a3Δex3 in blue; Col9a3-/- in red) confirming mutation dependent clustering of RNA-seq profiles. 
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Fig. 5.15 | Outline of significant up- and down-regulated genes (vs. WT) in Col9a3Δex3 

and Col9a3-/- transcriptomes. Volcano plot representation of differential expression analysis of 

genes in Col9a3Δex3 (A) and Col9a3-/- (B) mice versus wild-type. The x-axis shows log2fold-changes 

in expression and the y-axis the log10 of the false discovery rate (FDR) considered significant for 

values < 0.05.  C. Venn diagrams representing the number of genes significantly (padj value < 0.05) 

up- and down-regulated in Col9a3Δex3 and Col9a3-/- gene sets compared to WT.  
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Table 5.1 | Significantly up- and down-regulated genes in Col9a3Δex3 and Col9a3-/- mice. 

List of the first 15 most significant up- and down-regulated genes. (Statistical significance padj value 

< 0.05).  
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To further investigate putative gene expression programs able to contribute to the mutant 

mice phenotype, we compared and examined our mice expression profiles using Rank–rank 

Hypergeometric Overlap (RRHO) and Gene set Enrichment Analysis (GSEA) computational 

methods.  

The RRHO algorithm (Plaisier et al. 2010) was used to check through the two gene lists 

ranked according to the degree of differential expression exhibited by the two mutant mice, 

and to measure if the number of overlapping genes was statistically significant. The RRHO 

analysis output consists of a heatmap showing the overlap trend reflecting the relation 

between the two expression profiles. The highest intensity points depict the statistically 

strongest, or the least likely to randomly occur, overlap between the two profiles. The 

heatmap output of RRHO shows different colours based on the log10-transformed 

hypergeometric P-values. Therefore, the regions of highly significant overlap are denoted by 

red coloured high positive intensity areas, those regions where the overlap was lower than 

expected, are indicated by high negative intensity, purple coloured.  

The output map obtained from RRHO comparison of the ranked Col9a3Δex3 and obtained 

from WT versus Col9a3Δex3 and Col9a3-/- gene sets, revealed a strong red signal 

predominantly located at the bottom left quadrant of the map. (Fig. 5.16). This intensity 

pattern indicated that the highest overlap score was obtained only in the tops of the ranked 

genes lists. In other words, the strongly significant overlap trend suggested that the two 

mutant mice have related gene expression programs mostly involving their significant 

upregulated genes. Whereas not significant overlapping was reported in the downregulated 

genes of both mice. 
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Fig. 5.16 | RRHO heatmap. Heatmap generated by comparing the two ranked lists of transcripts 

that are differentially expressed in Col9a3Δex3 and Col9a3-/- using the rank-rank hypergeometric 

overlap (RRHO) algorithm.  High intensity signals (red lower corner) indicated that the highest 

overlap involved the top differentially expressed genes in Col9a3Δex3 and Col9a3-/- chondrocytes. The 

direction-signed log10-transformed hypergeometric p values are indicated in the associated colour 

scale. 
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Along with the RRHO analysis, Gene Set Enrichment Analysis (Mootha et al. 2003, 

Subramanian et al. 2005) was applied as additional approach to compare different gene sets 

and to look for statistically enriched or depleted functional related genes in both mutant mice. 

GSEA significance was determined as a false discovery rate values (FDR) below 0.25.  

GSEA result showed 102 gene sets to be significantly enriched in Col9a3Δex3 mice when 

compared to WT expression profile. Some of the enriched biological processes in Col9a3Δex3 

(Fig. 5.17) comprised : “Cell cycle”, “DNA replication”, “Collagen formation” (Adamts14, 

Col23a1, Col4a2, Col12a1, P4hb, Col5a2, Col5a1, Bmp1, Col4a4, Col1a2, Col10a1, 

Col4a3, Pcolce, Col14a1, Ppib, Col3a1, Col4a1,  Plod1, Col15a1, Col5a3) and 

“Extracellular matrix organisation, sharing many genes with “Collagen formation” pathway 

plus some other additional genes  (Mmp14 , Cma1, Crtap, Elane, Timp1, Pcolce). Other 

resulting enriched pathways in Col9a3Δex3 were “Muscle contraction”, “Regulation of 

apoptosis”, “Wnt signalling pathway”. In Col9a3-/- mice none of the gene sets obtained by 

GSEA passed the significance threshold for positive enrichment. 

Eleven gene pathways were found to be significantly enriched for downregulated genes in 

Col9a3Δex3 and these included, “nonsense mediated decay enhanced by the exon junction 

complex”, “signalling by Fgfr mutants” (Fgfr3, Fgfr2, Fgfr1, Frs2) and “myogenesis” (Tcf4, 

Mef2a, Mef2d, Abl1). In Col9a3Δex3 it was worth noticing the downregulation of genes Gpc6, 

Gpc1 and Sdc4, involved in the “heparin sulphate glycosaminoglycan degradation pathway”, 

whose FDR was 0.26, therefore just above the significance threshold.  GSEA report for 

Col9a3-/- displayed significant depletion of 17 gene sets, which involved mainly the 

metabolism of RNA such as “3’UTR mediated translational regulation”, “ peptide chain 

elongation”,“ nonsense mediated decay enhanced by the exon junction complex”,  “activation 

of the mRNA upon binding of the cap binding complex and Eifs and subsequent binding to 

43s”. Interestingly, only the depletion of two gene sets directly related to ECM, resulted 

significant from GSEA applied on Col9a3-/-. They were “extracellular matrix organisation” 

and “collagen formation” pathways, which showed and shared the downregulation of only 

Col9a3 and Tll1 genes. 
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Fig. 5.17 | GSEA enrichment of Col9a3Δex3 and Col9a3-/- gene sets in mouse chondrocytes 

RNA-sequencing data. Plots providing a graphical view of the enrichment scores (ES) of some of 

the gene sets enriched in response to Col9a3Δex3 and Col9a3-/- mutations. The green peak represented 

in the top portion of the plot shows the running ES for the gene set as the analysis walks down the 

ranked list. The middle portion of the plot shows where the members of the gene set appear in the 

ranked list of genes. The bottom portion of the plot shows the value of the ranking metric as you 

move down the list of ranked genes and it measures a gene’s correlation with a phenotype. No plot 

related to upregulated genes in Col9a3-/- mice is shown as no gene set was found significantly 

enriched by GSEA. 
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5.4 Discussion 

In this chapter the role of collagen type IX was explored by assessing the tissue 

pathology of the growth plate in our two mutant mice. Our investigation was carried out 

considering the crucial role of the epiphyseal growth plate in linear bone growth and the 

skeletal findings described in the previous chapter in Col9a3Δex3 and Col9a3-/- mice bones. 

The aim was to assess whether the putative collagen type IX role in bone formation was 

fulfilled by affecting cartilage growth plate stability.  

When localisation and abundance of collagen type IX was assessed in 3-week old tibial 

growth plates, Col9a3Δex3 mice showed a slightly reduced amount of the protein in the 

extracellular matrix but a more prominent accumulation around the pericellular space and 

more importantly its retention into chondrocytes. We can speculate a longer protein 

permanence inside the cell and subsequent delayed trafficking and secretion of it, probably 

caused by a defect in the correct triple helix formation due to the insertion of a mutated α3 

chain into the final protein. The same defect in the triple helix could then prevent or delay the 

correct integration of the mutated collagen type IX molecule in the inter-territorial ECM, 

which would explain the accumulation of the protein around the pericellular space as 

indicated by immunofluorescence localisation. Col9a3-/- mice showed very little staining for 

α1 of collagen type IX, which was predominantly cellular retained. This resulted in the 

absence of the whole protein into the matrix and therefore into a functional knockout of 

collagen type IX, as previously demonstrated in Col9a1-/- and Col9a2-/- mice 

(Balasubramanian et al. 2019, Dreier et al. 2008, Fassler et al. 1994, Hagg et al. 1997). 

We started investigating the consequences of Col9a3Δex3 and Col9a3-/- mutations, by assessing 

growth plate structure through basic histology using animals at 3-weeks of postnatal 

development. Microscopy images showed no obvious changes in Col9a3Δex3 chondrocyte 

morphology or arrangement; however, an alteration of the relative height of the different 

zones was measured. On the contrary, tissue analysis showed Col9a3-/- mutation to cause a 

more severe phenotype than Col9a3Δex3. The Col9a3-/- tibial growth plate was severely 

affected in its organisation, boundaries between the functional distinct zones were confused 

and chondrocyte morphology and arrangement were severely compromised. We observed 

alterations in chondrocytes predominantly in their proliferative state, which were visibly 

smaller, round-shaped and not anymore arranged in the typical columnar distribution. From 

this finding we could speculate that collagen type IX might have a direct or indirect role in 
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the process of rotation and cell movement of chondrocytes during columnar arrangement in 

the proliferative zone. Although to our knowledge no evidence of this has been demonstrated 

in previous studies. Despite maintaining their morphology, hypertrophic chondrocytes 

appeared misaligned and less compactly distributed. Based on our observations, by 

reproducing the growth plate phenotype previously described in Col9a1-/- and Col9a2-/- mice, 

we further proved our Col9a3-/- mouse to be a functional knockout of collagen type IX.  

In a family affected by MED due to a mutation in the α3 chain of collagen type IX, electron 

micrographs of epiphyseal cartilage biopsies showed lamellar material retained in a dilated 

rER, organised in a hexagonal array of fibrils. The study authors suggested that this material 

was an accumulation of aberrant or not fully processed matrix proteins. (Bonnemann et al. 

2000). On the contrary, in another study involving MED patients affected by mutations in 

COL9A2 gene, articular cartilage biopsies appearance was similar to controls, not showing 

particular inclusions or variations in fibrils (van Mourik et al. 1998a). These discrepancies 

could be explained by probable differences in cartilage tissues analysed and their relative 

tissue- specific gene expression. In our study, TEM was performed on 1-week old tibial 

growth plates to confirm the findings observed through basic histology and to help 

visualisation of chondrocyte ultrastructure. A certain degree of ER enlargement was noted in 

chondrocytes along the different zones of both mutant growth plates. Based on previously 

described chondrodysplasia mouse models, we could speculate protein retention as the cause 

for ER enlargement. We speculated whether the dilated ER observed in mutant mice could 

lead to the activation of ER stress related pathways. However, RNA-seq analysis did not 

show significant enrichment of the pathways generally associated with ER stress. This could 

potentially be explained by the fact that RNA-seq was performed on costal chondrocytes and 

not on growth plate cartilage. The poorly packed chondrocytes observed in the early 

proliferative zone of both mutant mice, suggests a surrounding matrix with possibly changed 

mechanical properties. In fact, changes in the structural components of ECM could result in a 

no longer compact matrix meshwork, with reduced functional support to the encompassed 

cells. Therefore, the forces that usually help and guide the chondrocytes arrangement into 

chondrons might be less effective, leading to a loose or even completely impaired chondron 

structure. Further analysis on cartilage stability to better elucidate any change into the matrix 

induced by Col9a3Δex3 and Col9a3-/- mutations, will be explored in chapter 6 of this thesis. 

Despite the morphological abnormalities recognised in Col9a3-/- growth plate chondrocytes, 

the presence of glycogen granules visualised in Col9a3-/- hypertrophic chondrocytes indicated 
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normal physiological functioning of the cells, prior calcification steps. The distribution of 

glycogen particles indeed increases with the degree of differentiation and maturation of the 

chondrocytes, reaching the maximum level in hypertrophic chondrocytes. Glycogen in cells 

provides energy and substrates for protein synthesis. In particular glycolytic breakdown 

products of glycogen constitutes the necessary substrates for alkaline phosphatase or as 

source material for the production, or alteration, of cartilage prior to calcification (Daimon 

1977). 

In addition, TEM images identified an interesting tissue deformity in both 1-week old mutant 

growth plates, localised just in the central core area between resting and proliferative zone. In 

this highly disrupted area, the typical morphology of chondrocytes and matrix was lost, 

instead a confused pattern of poorly defined material was observed. In both mutant animals, 

the cells in this core region appeared in a state of necrosis, probably indicative of a 

generalised cell death event within the area. Moreover, in Col9a3-/- tissue, an ordered pattern 

of what appeared an array of collagen fibres was noted to be misplaced and detached from the 

rest of disordered material, indicating some remnants of a possible ECM. The fact that this 

acellular core was observed only from the two mutant mice, suggested a mutation related 

defect, rather than an artefact generated during tissue processing for TEM. However, in order 

to exclude the possibility of an artefact, we checked tibial growth plates at the same time 

point (1-week) through basic histology. Both H&E and Toluidine blue staining showed the 

presence of a region almost devoid of cells in the core region of the growth plate, starting 

from the resting zone and protruding down to the hypertrophic zone. This tissue defect was 

severe in Col9a3-/- mice, while attenuated in Col9a3Δex3, similar to the hypocellular region 

observed by TEM. Interestingly, the cell-free area was observed in both the proximal tibiae 

and distal femur, with femurs having a more dramatic change in both mutant growth plates. 

Thus through combined histology and TEM we could conclude, that this hypocellular region 

formed as consequence of the mutations. Surprisingly, the hypocellularity region was not 

detected in 3-week old growth plate sections, suggesting mechanisms were responsible for 

the recovery of the cartilage tissue structure during bone maturation. Similar hypocellular 

regions were previously described in mutant Col9a1-/- and Col9a2-/- mice, reinforcing the idea 

of the lack of collagen type IX causing the generation of these areas. However, interestingly, 

despite a lack of a significant growth phenotype (at least compared to Col9a3-/- or other 

collagen type IX null mice) also Col9a3Δex3 mice exhibit the hypocellular region 

phenomenon. This suggests that the formation of this region might not be a consequence 
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solely due to the absence of collagen type IX, but perhaps it is sufficient its miss-localisation 

or altered function to trigger such changes, even though not dramatic as when it is absent. 

Notably, we noted lack of hypoxic, apoptotic or necrotic gene expression pathways in our 

costal RNA-seq on Col9a1-/- mice. This could be explained by the possibility that ribs are too 

small to develop such hypocellular regions. Alternatively, considering that RNA-seq is 

performed on a bulk of cells, it could be possible that the RNA coming from those few 

remaining cells of that area is lost in the total amount of RNA. Lastly, there is the possibility 

that a necrotic gene expression signature is not involved in the formation of such regions. 

Furthermore, delayed or disrupted secondary ossification centres were noticed in Col9a1-/- 

most likely due to the nearby hypocellularity. On the other hand, Col9a3Δex3 secondary 

ossification centres showed an early differentiation of chondrocytes into hypertrophic state. 

This observation was a confirmation on how the different collagen type IX mutations 

described, elicit different molecular changes reflecting then in the different skeletal 

phenotype observed in Col9a3Δex3 and Col9a3-/- mice. 

Based on our analysis, Col9a3Δex3 and Col9a3-/- mice expressed reduced chondrocyte 

proliferation rates at 3-weeks of age. This was perhaps to be expected given the highly 

disrupted growth plate organisation of Col9a3-/-, but surprising for Col9a3Δex3 mice, whose 

growth plate appeared relatively normal. We might hypothesise that the reduced proliferation 

seen in Col9a3-/- mice could contribute to the formation of the hypocellular area, usually 

predominantly involving the proliferative zone of the growth plate. 

For future analysis, assessing apoptosis rates along with proliferation, would provide insights 

on whether an increase in cell death could account for the generation of the hypocellularity 

regions, along with the reduced level of cell proliferation. However, previously, apoptosis 

seemed not to be involved in the generation of cell-free areas in a double deficient mouse 

model for collagen type IX and COMP (Col9a1-/-/COMP-/- ) (Blumbach et al. 2008).  

Collagen type IX represents an important structural component of ECM, deeply connected 

with its surrounding protein network. Direct interactions have been shown for collagen type 

IX through its collagenous and non-collagenous domains with the adapter protein matrilin-3 

and to COMP, respectively (Budde et al. 2005, Holden et al. 2001). Notably, no significant 

expression changes of the genes encoding for matrilin-3 and COMP proteins were observed 

in the transcriptome of Col9a3Δex3 or Col9a3-/- mice. However, using immunohistochemistry, 

we assessed the presence and abundance of matrilin-3 and COMP to verify if Col9a3Δex3 or 
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Col9a3-/- mutations affected their deposition into the matrix. From our results, we did not 

detect obvious changes in matrilin-3 abundance in either of the two mutant growth plates. Its 

distribution though was affected in Col9a3Δex3 tibiae, which showed pericellular accumulation 

and potentially some cellular retention of matrilin-3, mainly in the proliferative zone cells. 

Surprisingly, in Col9a3-/- tibial epiphysis, no change in the staining for matrilin-3 was 

observed, but its distribution was altered although this could be simply due to the impaired 

growth plate organisation obvious for these animals. In addition, partial cellular retention of 

matrilin-3 was evident in the Col9a3-/- growth plate.   

COMP appeared less abundant in Col9a3Δex3 tibiae, which we could speculate to be due to a 

probable alteration of its binding site to the mutated collagen type IX, albeit its interaction is 

known to occur with non-collagenous domains of collagen type IX (Holden et al. 2001). 

From this, the expectation would have been further reduced staining of COMP in the Col9a3-

/- mice, however staining in these animals was similar, if not equal, to WT. It is worth 

noticing that COMP localisation was found unusually prominent in the hypertrophic zone of 

mice of all genotypes and we believe that this might have occurred because of some antigen-

retrieval artefact during the staining protocol. Earlier studies showed that the integration of 

matrilin-3 and COMP into the matrix was strongly reduced into the cartilage of vertebral 

bodies and ribs of Col9a1-/- mice. A defect in matrilin-3 anchorage to the matrix has also 

been observed when collagen type IX deficient chondrocytes were cultured (Budde et al. 

2005). Subsequently, Blumbach et al. showed that matrilin-3 was absent along with collagen 

type IX in Col9a1-/- tibial epiphysis (Blumbach et al. 2008). Furthermore, the A-domain of 

matrilin-3 was shown to interact with the COL3 domain of collagen type IX, since this 

binding was disrupted when collagen type IX contained a mutation leading to a deletion of 12 

amino acids (from exon 3) in its COL3 domain (Fresquet et al. 2007).  

Collagen type X distribution provided further confirmation of the morphometric analysis 

result of a more extended hypertrophic zone in Col9a3Δex3 growth plates compared to WT. 

However, the reason for an expanded hypertrophic zone in Col9a3Δex3 growth plates remained 

unclear. On the contrary, the reduction of collagen type X observed in Col9a3-/- hypertrophic 

regions, was in line with an overall highly disorganised growth plate with likely impaired 

matrix proteins deposition. 

As previously stated, a portion of collagen type IX molecule is covalently attached to the 

surface of collagen type II fibrils. Moreover, previous observations revealed its role in 
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modulating the diameter of larger fibrils such as collagen II fibres (Blumbach et al. 2009). 

Therefore, we found essential the analysis of this other important collagen type IX interactor, 

collagen type II. However, when this was addressed in this thesis work, staining was 

unsuccessful. Nonetheless, investigating collagen type II will be one of the priorities in the 

future follow up of this project.  

When we searched for enrichment of genes and gene sets able to explain the alterations or the 

lack of alterations in our mutant mice phenotypes, we surprisingly observed shared 

expression profiles between the two mouse lines. Despite showing different phenotypes at the 

tissue level, the statistically significant overlap pointed out by RRHO analysis of RNA-seq 

data, indicated relating underlying upregulated gene expression programmes for Col9a3Δex3 

and Col9a3-/- mice. It was not a surprise to find pathways associated with collagen fibril 

organisation, cell adhesion and matrix organisation among the GO terms indicated by 

DAVID analysis for the communal enriched genes in the mutant mice. On another note, 

upregulation of gene such as Fgf13 and downregulation of Fgfr3 in Col9a3Δex3 as well as 

upregulation of Vcan and Cilp in Col9a3-/- drew our attention. These genes and relative gene 

sets will be the candidate for validation in follow-up experiments leading from this study. 

Additionally, it is important to highlight the fact that both Col9a3Δex3 and Col9a3-/- 

transcriptomes did not show significant expression changes of genes coding for proteins 

belonging to the collagen type IX interactome (Brachvogel et al. 2013). Same situation was 

for the other collagen type IX genes.   

Col9a3-/- mice, whose phenotype was confirmed to be more severe, showed only Col9a3 and 

Tll1 genes significantly depleted into the extracellular matrix organisation and collagen 

formation pathways.  

Surprisingly, in Col9a3Δex3 the muscle contraction pathway resulted enriched, whereas 

Col9a3-/- transcriptome had depletion of genes involved in myogenesis. This evidence was 

unusual considering that our analysis was conducted on chondrocytes transcriptome. On the 

other hand, the fact that MED has been previously also associated with mild myopathy 

(Jackson et al. 2010) gives the hint for further investigation on muscle associated genes in 

these mutant mice to verify if and how muscles could represent a secondary target for 

collagen type IX mutations.  
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Furthermore, it was surprising to notice that gene sets such as DNA replication, regulation of 

apoptosis and Wnt signalling were upregulated only in Col9a3Δex3, albeit chondrocytes 

proliferation was reduced in both mutant growth plate.  

The nonsense-mediated decay enhanced by the exon junction complex pathway was reduced 

in both mutant mice, but intriguingly we were unable to detect a Col9a3 mRNA in Col9a3-/- 

mice.  

From the data observed so far, we collected very little evidence of the involvement of ER 

stress to the skeletal and cartilage phenotype observed into both mutant mice, however its 

contribution cannot be ruled out from the molecular mechanisms that cause collagen type IX-

MED.  In addition, taking into account the complex fibrillar network of which collagen type 

IX is an important constituent, we believe reasonable that Col9a3Δex3 and Col9a3-/- mutations 

might have altered cartilage stability by affecting the extracellular matrix organisation. This 

hypothesis will be addressed by the analysis described in the next chapter.  

In conclusion, RNA-seq provided important insights about the possible implications of the 

two collagen type IX mutations we have generated. However, when of interpreting these data, 

in relation to the histological observations, we should bear in mind the tissue origin of the 

material analysed. Distinct bone anatomical regions can express different gene expression 

programmes, resulting in their differential development. We therefore advice a cautious 

approach when comparing RNA-seq data obtained from costal cartilage, with tissue analysis 

performed on load-bearing cartilage of long bones.  



 

183 

 

Summary highlights: 

- Collagen type IX mutations affect the skeletal phenotype by altering cartilage 

stability. 

- Severe cartilage tissue phenotype was observed in Col9a3-/- mice but not in 

Col9a3Δex3. 

- Consistent with other collagen type IX functional knockout mice, Col9a3-/- mice, and 

less severely Col9a3Δex3 mice, exhibited hypocellular regions in early stages of 

postnatal development, however the specific role of collagen type IX in the generation 

of this phenotype is not understood. 

- Significant reduced chondrocytes proliferation was measured in both mutant mice. 

- The cartilage defects observed seemed to be more matrix rather than cellular related, 

although we cannot exclude that the presence of hypocellular regions might be the 

cause for delay in bone growth. 
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Chapter 6.   

ECM integrity in Col9a3Δex3 and Col9a3-/- mice 
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6.1 Introduction 

The results of Chapter 5 indicated that the skeletal abnormalities detected in Col9a3Δex3 

mice and in particular in Col9a3-/- mice might be induced by defects in the ECM stability 

affecting chondrocyte behaviour. The involvement of collagen type IX in the proper 

assembly of the fibrillar structure of ECM, and therefore in the complex interplay of its 

interacting factors, is well recognised. Hence, we hypothesised that the presence of a mutated 

collagen type IX molecule or its total absence from the ECM might have a negative influence 

on fibrillar structure assembly. These alterations eventually might change the mechanical 

properties of the tissue and the right chondrocyte-matrix interactions. In this chapter our aim 

was to determine whether our mutant mice exhibited an alteration of ECM stability as a result 

of their Col9a3 mutations. To assess matrix stability, we applied a multi-technique approach 

in order to assess various aspects of its integrity. To evaluate the collagen fibrils constituting 

the ECM we used transmission electron microscopy (TEM). To determine differences in the 

interaction strength of collagen type IX binding partners, we performed sequential protein 

extraction from cartilage. In addition, to better elucidate the nanostructure and mechanical 

properties of the growth plate cartilage, atomic force microscopy (AFM) allowed for 

simultaneous imaging and stiffness analysis on a nanometer scale of native cartilage samples.  

Amongst the clinical findings, patients diagnosed with MED resulting from collagen type IX 

defects, were reported to have knee joints showing osteochondritis dissecans and early-onset 

osteoarthritis (OA) (Bonnemann et al. 2000, Lohiniva et al. 2000, Jeong et al. 2014, 

Muragaki et al. 1996).  Moreover, in previous studies it was reported that mice deficient of 

collagen type IX (Col9a1−/−) develop early onset OA in their knee and temporomandibular 

joints (Hu et al. 2006, Fassler et al. 1994, Balasubramanian et al. 2019). These findings 

suggested a role for collagen type IX in the long-term maintenance of articular cartilage 

integrity.  Therefore, we further assessed the stability of ECM by evaluating articular 

cartilage integrity to investigate if our mutant mice developed an OA-like phenotype. As a 

comprehensive approach, we induced an accelerated cartilage degradation by stressing the 

articular cartilage of mice by performing destabilisation of the medial meniscus (DMM) 

surgery in young adult mice. In addition, we assessed articular cartilage integrity in aged 

mice. We focused our attention on the changes at the level of the medial side of the joint, as it 

has been demonstrated to be the most affected area in Col9a1−/− mice (Hu et al. 2006).  
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6.2 Effect of Col9a3Δex3 and Col9a3-/- mutations on ECM ultrastructure. 

In order to visualise if Col9a3Δex3 and Col9a3-/- mutations affected ECM fibril structure, 

images of ECM were obtained by TEM from knee cartilage of 1-week old animals. Within 

the cartilage growth plate, chondrocytes are surrounded by a thin layer of matrix, the 

pericellular matrix (PCM). The PCM is usually rich in proteoglycans and characterised by the 

presence of thinner fibrils. Chondrocytes, and their relative PCM, are then enclosed into the 

territorial matrix (TM), which contains a network of heterotypic fibrils made of collagen 

types II, IX and XI. The usual arrangement of chondrocytes into columns together with the 

PCM and TM form the chondron within the proliferative zone of growth plate. In-between 

chondrons is the interterritorial matrix (ITM) which contains thick fibrils arranged parallel to 

each other. When the hypertrophic zone is approached, the separation between different 

compartments of the ECM is progressively less-well defined, and the PCM, TM and ITM 

space drastically reduces when chondrocyte enlargement occurs during the transition to 

hypertrophy.  

From TEM images of the PCM and TM, there was no evidence of a difference between WT 

and Col9a3Δex3 fibrils in the proliferative zones of growth plate sections (Fig. 6.1). However, 

an indication of thickened collagen fibrils was noted in Col9a3-/- TM (arrowheads in Fig. 

6.1). Progressing towards the pre-hypertrophic and hypertrophic zones, WT and Col9a3Δex3 

PCM and TM again displayed a similar pattern of fibrils. On the other hand, in Col9a3-/- 

cartilage micrographs, collagen fibrils appeared less dense although their orientation was 

comparable to WT. From an evaluation of ITM along the same regions of growth plate, a 

small reduction in the density of fibrils was observed in Col9a3-/- mice. This difference was 

more obvious in the hypertrophic ITM (Fig. 6.2).  WT fibrils appeared to be oriented on a 

different plane compared to both mutants in the ITM, which we attributed to the orientation 

of the cutting plane during tissue sectioning; however, we could observe that fibrils were 

sparser in the ECM of Col9a3Δex3 line. More remarkable was the variation in Col9a3-/- 

cartilage morphology in the hypertrophic zone.  The distribution of fibrils was uneven 

compared to the equivalent area in WT, with many regions characterised by a reduced density 

of fibrils alternating with areas where the fibrils appeared abnormally compactly clustered 

(Fig. 6.2).  

  



 

187 

 

 

Fig. 6.1 | Electron micrographs of pericellular matrix (PCM) and territorial matrix 

(TM). Arrowheads indicate thicker fibrils. Scale bar = 400nm; PZ= Proliferative zone; PHZ= Pre-

hypertrophic zone; HZ= Hypertrophic zone 
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Fig. 6.2 | Electron micrographs of interterritorial extracellular matrix (ITM). Scale bar = 

200nm. PZ= Proliferative zone; PHZ= Pre-hypertrophic zone; HZ= Hypertrophic zone 
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6.3 Effects of Col9a3Δex3 and Col9a3-/- mutations on cartilage protein 

extractability. 

Another approach applied to test ECM stability in our mutant mice involved the 

analysis of the extractability from the ECM of collagen type IX itself and two other matrix 

components known to interact directly with it, matrilin-3 and COMP (Budde et al. 2005, 

Holden et al. 2001). In our hypothesis, the integration of mutated collagen type IX molecules, 

or its total absence, would affect the incorporation and binding strength of other proteins in 

the ECM, resulting in changes in their extractability. To test our hypothesis, we collected 

cartilage from femoral heads of 3-week old mutants and WT mice and from it we 

sequentially extracted protein using a series of three increasing denaturant properties 

solutions. We then analysed the cartilage extracts for the presence/absence of collagen type 

IX, matrilin-3 and COMP proteins by Western blotting. 

The analysis of cartilage sequential extractions showed differences in the detection of 

collagen type IX in mice of different genotypes. Immunoblot for collagen type IX was 

performed using an antibody recognizing the NC4 domain of the α1 (IX) polypeptide since, 

as previously mentioned, no specific antibody for α3 (IX) was available. A strong band of 

around 150 kDa, corresponding to the collagen type IX heterotrimer, was observed in WT 

controls in all three extractions under reducing conditions. Only in harshest condition (buffer 

III) was a band corresponding to collagen type IX observed in Col9a3Δex3 extracts. For 

Col9a3-/-, as expected, no band corresponding to collagen type IX was observed. A series of 

bands whose molecular weight was between ~50 and ~37 kDa was consistently observed 

especially in mutant extracts from buffer III under reducing condition, however the identity 

of these proteins remained unclear.  The same pattern of extraction was visualised in all the 

mouse cartilage extracts analysed (Appendix E, Fig. E.2). Analysis of extractability of 

matrilin-3 revealed a higher quantity of the protein in both reduced and native extracts in 

buffer I when extracted from Col9a3-/- cartilage, although we could not detect a product of 50 

kDa, which we considered corresponded to matrilin-3 monomers, under non-reducing 

conditions (Fig. 6.3 A vs. B). Buffer II non-reduced extracts from Col9a3Δex3 showed an 

increase in matrilin-3 quantity compared to WT and Col9a3-/-. However, the same result was 

not observed in buffer II extracts of reduced proteins, where the quantity of matrilin-3 

monomers extracted was comparable to WT.  The extractability of matrilin-3 observed in the 

final buffer III was equal in WT and Col9a3Δex3, but decreased in Col9a3-/- native and 
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reduced extracts (Fig. 6.3 A-B). This pattern of extraction was consistent in buffer III extracts 

under reducing and non-reducing conditions in all the mice analysed (Appendix E, Fig. E.2). 

A similar extraction profile was noted when we analysed COMP extractability from cartilage. 

In the mild conditions of buffer I, no difference was noticed in the extraction of the protein 

from reduced and native extracts of the different genotypes. An increase of COMP 

extractability in both mutant extracts was noticed when buffer II extracts were resolved under 

reducing conditions.  However, when protein extracted with buffer II was analysed in non-

reducing conditions, a greater extractability of COMP was only observed for Col9a3-/- 

cartilage extracts (Fig.6.3B). Immunoblot of proteins extracted in the most stringent 

extraction buffer III, demonstrated a slightly higher COMP amount in Col9a3Δex3 compared 

to WT under both reducing and non-reducing conditions whereas, COMP level were lower in 

reduced and native Col9a3-/- cartilage extracts. This pattern of extractability was not 

consistent in other mice analysed (Appendix E, Fig. E.2), preventing the possibility of any 

definitive conclusion regarding COMP stability in the mutant matrix. 
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Fig. 6.3 | Genotype dependent differences in the extractability of some ECM proteins. 

Femoral head cartilage was sequentially extracted from 3-week old WT and mutant Col9a3Δex3 and 

Col9a3-/- mice using a series of three buffers: Buffer I, II and III. Proteins were separated by SDS-

PAGE under reducing (A) and non-reducing (B) conditions and analysed by Western blotting using 

antibodies specific to the NC4 domain of collagen type IX α1 (Collagen Type IX-NC4), matrilin-3 

(Matn-3) and COMP. Images are indicative of the differences detected in protein extraction profiles 

between mice of the different genotypes;  Proteins molecular weight in kilo Daltons (kDa). 
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6.4 Analysis of Col9a3Δex3 and Col9a3-/- matrix mechanical stiffness.  

Ultrastructural and biochemical properties of the altered ECM structure were assessed 

using AFM. Limbs from newborn and 6-week old mice of all genotypes, were collected and 

snap frozen in liquid nitrogen to preserve the cartilage. Samples were sent to the Centre for 

Applied Tissue Engineering and Regenerative Medicine in Munich, to Dr. Attila Aszodi’s 

laboratory where researcher Bastian Hartmann kindly performed the AFM. Indentation 

measurements were conducted on the right tibial growth plate in the interterritorial matrix 

(ITM) of the proliferative zone.  

ECM detailed images allowed us to visualise collagen fibrils in a 3 µm2 area of ITM as 

shown in Fig. 6.4. No apparent change in fibrils appearance was seen in both mutant newborn 

cartilage compared to WT. However, at 6 weeks of age, Col9a3-/- fibrils appeared thinner and 

less compact compared to fibrils of WT and Col9a3Δex3 ITM images.  

Mean values of nano-stiffness measurements from three animals per age and genotype (N=3) 

showed a bimodal distribution, as previously seen in studies on articular cartilage and for 

growth plate cartilage. The first peak in stiffness is generally assigned to proteoglycan phase 

(E1) and the second peak (E2) to the collagen phase (Loparic et al. 2010). In newborn WT 

mice, indentation measurements within the ITM gave such a bimodal stiffness distribution 

characterised by a first peak at 25.83 kPa and a second peak at 56.55 kPa. In Col9a3Δex3 

newborn mice peak values corresponded to 31.54 kPa and 58.70 kPa, for E1 and E2 

respectively, showing nanostiffness similar to WT newborns. However, when measurements 

at 6 weeks of age were compared, Col9a3Δex3 cartilage exhibited a tendency for softening 

compared to WT, with E1 values of 29.86 kPa vs. 65.35 kPa for the WT, and E2 values of 

61.26 kPa vs. 82.24 kPa for the WT (Fig. 6.5). By comparison, Col9a3-/- mice had a 

remarkably softer cartilage compared to both WT and Col9a3Δex3 mice.  Col9a3-/- peaks were 

E1= 12.95 kPa and E2=28.89 kPa in newborn mice, and E1=14.10 kPa and E2=22.28 kPa at 

6 weeks of age (Fig. 6.5).  
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Fig. 6.4 | AFM detailed images of ECM of ITM in the proliferative zone. ITM images of a 

3 µm2 region in the growth plate of newborn and 6-week old WT, Col9a3Δex3 and Col9a3-/- mice. No 

difference is noted in mutant matrices compared to WT in newborn mice, but thinner fibrils were 

noted in 6-week old Col9a3-/- ECM. 
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Fig. 6.5 | Distribution of ITM stiffness in the ECM of proliferative zone at different time 

points. Nanostiffness measurements were performed on newborn and 6-week old WT, Col9a3Δex3 

and Col9a3-/- growth plate ITM. Histograms represent mean values of measurements (~10,000) on 

three slides per mouse and three animals per genotype. Solid line represents the sum of two Gaussian 

functions, which are represented separately by dashed lines. Calculation of standard deviation was not 

possible as we did not expect to find just one true value for the Young’s modulus since we observed a 

biological system with all its variations, so the width of the Gaussian distribution did not originate 

from any uncertainties of the measurement. The standard error would better describe how 

representing the peak values are with all the values measured. But since in the distributions are so 

many measurement values (~10000) the standard errors would be overly small compared to the peak 

value. 
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6.5 Effect of Col9a3Δex3 and Col9a3-/- mutations on articular cartilage 

stability.  

To assess the involvement of mutant collagen type IX in the development of early-onset 

osteoarthritis (OA), as reported in some MED patients (Jeong et al. 2014, Nakashima et al. 

2005, Lohiniva et al. 2000, Holden et al. 1999), we analysed Col9a3 Δex3 knee joints 

histologically. Additionally, we searched for similar OA‐like changes in the knee joints of 

our mice deficient in collagen type IX as reported previously for Col9a1-/- mice (Hu et al. 

2006). We applied a double approach for the evaluation of OA changes in the knees of our 

animals. Our experimental strategy comprised the assessment of OA in mice after inducing a 

stress in the joint by surgical destabilisation of the medial meniscus (DMM). DMM surgery 

and post-surgery mice checks were performed by Dr Dimitra Tsompani and Hua Lin. In 

addition, we assessed for possible changes in the joints of aged mice to evaluate if a potential 

OA-like phenotype was triggered by naturally occurring ageing. Hua Lin kindly processed 

the tissue samples for Safranin-O-Fast Green staining. 

In the first part of our investigation, we performed DMM to induce OA in 10-week old WT 

(N= 5), Col9a3Δex3 (N= 10) and Col9a3-/- (N= 9) male animals following the procedure 

described in section 2.3.13. Eight weeks post-DMM, the mice were sacrificed to collect their 

right knee joints which had undergone surgery, these were then processed for histological 

examination and scoring as previously described (Glasson et al. 2010). Two experienced, 

independent and blinded scorers performed the scoring and data were combined to obtain 

average values. In this study cartilage degeneration was only scored in the medial femoral 

condyle (MFC), medial tibial plateau (MTP) (Fig. 6.6) and the severity of OA was indicated 

by the combination of the two parameters.  

At 8 weeks post-surgery, scores relative to the damage of MFC cartilage showed no 

significant variations amongst the different genotypes (Fig. 6.7 B), whose mean values were 

1.58±1.40, 1.71±1.09 and 1.18±1.25 for WT, Col9a3Δex3 and Col9a3-/- respectively. This 

indicated the presence of very mild lesions especially in WT and Col9a3Δex3 cartilage, but in 

Col9a3-/- no particular fibrillation of cartilage was apparent and only loss of proteoglycan 

content was noticed, indicated by partial loss of Safranin-O staining (Fig. 6.7A). Despite 

being the region where a more severe level of cartilage degeneration was observed, similar 

cartilage changes were observed in the MTP of Col9a3Δex3 and WT knees, whose scores were 

2.95±2.04 and 2.63±2.20, indicating some loss of surface lamina and slight erosion of the 
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layer below the surface. In contrast, Col9a3-/- cartilage just showed a reduction in 

proteoglycan staining but overall good condition of the tissue hence the associated score was 

1.56±1.7.  When we combined MTP and MFC scores, both mutant mice did not show 

significant alterations in their OA phenotype compared to WT.  Therefore, we concluded that 

Col9a3Δex3 and Col9a3-/- mice exhibited extremely mild OA in their joints, which did not 

show evidence of increased severity compared to WT. However, the experimental procedure 

has not been consistent across all the mice. Accidentally, nine of the mice (four Col9a3Δex3 

mice and five Col9a3-/-  mice) did not have the clips removed after DMM surgery. We believe 

that this might have had an impact on their movement, consequently in the development of 

OA in their joints. When we excluded those mice whose clip were left on to verify their effect 

on the overall damage score (Fig. 6.7C), we noticed indeed that values for both mutants, 

despite still not significant, shifted towards more severe damage scores. In particular, for 

Col9a3Δex3 MFC and MTP, score values of 2.17 ± 0.72 and 3.95± 1.05 indicated vertical cleft 

and some loss of surface lamina in their articular cartilage. Similar situation, but less severe 

in Col9a3-/- MFC and MTP whose scores were 1.64±1.14 and 2.17 ± 1.87 respectively.  

Subsequently, we assessed the susceptibility to degradation of articular cartilage in both 

mutant mice due to ageing. Two female mice per genotype were kept until the age of 12 

months and then their right leg harvested for the same histological treatment used for DMM 

joints (Fig. 6.8A).  The damage score associated to MFC in both mutant mice was equal to 

0.56 ± 0.08 and was similar for the WT MFC (0.50±0.0). Similarly, in Col9a3Δex3 mice the 

MTP showed only partial loss of proteoglycan with limited tissue fibrillation whose damage 

score was 0.75 ± 0.35, similar to WT (0.87 ± 0.17). Col9a3-/- MTP cartilage appeared almost 

normal, with only a slight reduction in the proteoglycan content with a 0.25 ± 0.35 damage 

score. No difference was observed in the combined effect of the MFC and MTP damage in 

any of the genotypes (Fig.6.8B). Although for the ageing study the small number of animals 

available did not allow statistical analysis, our histological observation of cartilage damage 

did not indicate any mutant genotype to be more prone to develop OA during ageing. 
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Fig. 6.6 | Mouse knee joint after DMM surgery. Safranin-O staining of posterior view of 8-

week old knee joint following DMM procedure. A consistent feature of the DMM model is 

loss of Safranin-O, fibrillation and cartilage loss on the medial tibial plateau (arrowhead). 

MFC = medial femoral condyle; LFC = lateral femoral condyle; MTP = medial tibial plateau; 

LTP = lateral tibial plateau; MM indicates a medially displaced medial meniscus. Adapted 

from (Glasson et al. 2007) 
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Fig. 6.7 | Accelerated DMM-induced OA in mice. 10-week-old WT (N= 5), Col9a3Δex3 (N=10) 

and Col9a3-/- (N=9) male mice were subjected to DMM surgery and legs harvested 8 weeks post-

surgery and processed for histological staining. A. Representative coronal sections of the knee joint 

analysed by staining with Safranin O-Fast Green. Highlighted in a rectangle and magnified is the 

cartilage damage at the MFC and MTP Scale bars =100 µm. B. Graphs showing the results of 

histological scoring of OA (Glasson et al. 2010) for the three DMM operated groups. C. Graphs 

showing the same results as B without animals with unremoved clips. Scale bars =100 µm. Scoring 

was performed by two blind scorers on twenty sections from each mouse. Values are mean ± SD for 

the medial femoral condyle (MFC), the medial tibial plateau (MTP) and the sum of the medial 

femoral condyle and the tibial plateau (MFC+MTP) for each genotype group. 
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Fig. 6.8 | OA evaluation in aged mice. Legs from 12-month old WT, Col9a3Δex3 and Col9a3-/- 

female mice (N=2) were harvested and processed for histological staining. A. Representative coronal 

sections of the knee joint from each mouse, analysed by staining with Safranin O-Fast Green. 

Highlighted in a rectangle and magnified is the cartilage damage at the MFC and MTP. Scale bars 

=100 µm. B. Graphs showing the results of histological scoring of OA (Glasson et al. 2010) for the 

three aged groups. Scoring was performed by two blind scorers on twenty sections from each mouse. 

Values are mean ± SD for the medial femoral condyle (MFC), the medial tibial plateau (MTP) and the 

sum of the medial femoral condyle and the tibial plateau (MFC+MTP) for each genotype group. The 

low number of samples did not allow statistical analysis.  
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6.6 Discussion 

The aim of this chapter was to verify the effect of both collagen type IX mutations on 

ECM stability. Collagen type IX represents an important element in the ECM thanks to its 

ability to bind and stabilise other structural proteins. The hypothesis to be tested was 

therefore the possibility of deleterious changes in the stability of the heterotypic collagen type 

II/XI/IX fibrils in the mutant ECM as consequence of the two different collagen type IX 

mutations in our mice. Limited investigation of the cartilage ultrastructure is reported for 

EDM3 patients due to the lack of patient cartilage biopsies. Most observations predominantly 

report findings about chondrocyte morphology and speculative evidence of ER enlargement, 

likely to be due to protein retention (Bonnemann et al. 2000, Spayde et al. 2000). More 

detailed studies of the ultrastructure of cartilage from collagen type IX deficient mice have 

indicated that collagen fibril diameter is increased compared to WT or collagen type IX/ 

COMP double knockout animal fibrils (Blumbach et al. 2009, Budde et al. 2005).  From 

TEM images of our mutant mice growth plates, we could observe mild differences in their 

cartilage fibrils compared to WT. The alterations were more obvious in null mice, which 

showed both the TM and ITM with less densely arranged and sporadic unusual clustered 

fibrils, with an indication of increased thickness in the proliferative TM. On the contrary, 

Col9a3Δex3 fibrils were almost identical to WT, with a general less dense population of ITM 

fibrils.  

To assess the strength of incorporation into the ECM of collagen type IX and its direct 

interactor proteins matrilin-3 and COMP, we evaluated how readily these proteins can be 

extracted from the matrix of 3-week old animals using three solutions having increasing 

denaturant properties. This gave an indication of the level of cross-linking of these proteins 

within the ECM, since it is established that by 3 weeks of age collagen types II, IX and XI are 

highly cross-linked in mouse cartilage (Mendler et al. 1989). The experiment aim was to find 

genotype-specific profiles of extraction which gives indication of integration strength, but no 

actual quantification of protein extracted. Western blot analysis of sequentially extracted 

femoral head cartilage samples revealed genotype specific differences. Surprisingly, in anti-

NC4 α1(IX) immunoblots we were able to detect what we considered, according to its 

molecular weight, collagen type IX heterotrimer only in WT in all three extraction conditions 

and in Col9a3Δex3 extracts only in the final buffer. From the absence of protein detection in 

Col9a3Δex3 we can speculate that collagen type IX potentially harbouring a shorter α3 chain is 
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more tightly integrated within the ECM. Although it seems unlikely that mutated collagen 

type IX interaction with the surrounding environment can be stronger than WT protein, 

whose extracts showed collagen type IX band in all buffer conditions. Hence the reason why 

we did not detect any collagen type IX band in milder extraction conditions in Col9a3Δex3 

samples remains unclear. A possible explanation would be that the collagen type IX 

harbouring the mutated α3(IX) is less present and very unstably located in the ECM, which 

might have washed off during extraction steps, and the only protein visible was the one still 

retained intracellularly, which we could see when cells were lysate by the harsh conditions of 

buffer III. As anticipated Col9a3-/- mice lacked detectable collagen type IX when extracted 

with any solution.  

A reduction of matrilin-3 presence in buffer III Col9a3-/- cartilage extracts was consistent and 

could be due to loss of the protein during the earlier stages of extraction, indicating a possibly 

weaker integration of the protein within the mutant ECM. Conversely, the COMP extraction 

profile was more difficult to interpret with results less reproducible. More COMP was 

extractible from Col9a3-/- cartilage and on occasions from Col9a3Δex3 femoral cartilage. 

However, in other mice with the same genotype we encountered problems in reproducing a 

similar extraction profile. The extreme variability in the results obtained, prevented any 

reasonable conclusion. The findings obtained by µCT related to the bone microstructure 

pointed out a different status of ossification in Col9a3Δex3 and Col9a3-/- proximal femurs. 

While Col9a3Δex3 femoral head was characterised by a fully mature bone with no evidence of 

lower trabecular bone phenotype, Col9a3-/- femoral head was delayed in its ossification. This 

suggested a possible cause for such a variation observed in the extraction profiles in the 

femoral head cartilage of different mice.  

AFM results showed important changes in the mechanical properties of both mutant matrices. 

Cartilage ECM has a well-established double composition which confers different 

mechanical characteristics due to the two main molecule types, proteoglycans and collagen 

fibrils. Proteoglycans (PG), thanks to their negatively charged glycosaminoglycan (GAG) 

side chains, create an osmotic balance which leads to the formation of a PG gel able to 

deform and dissipate the energy under loading conditions. Meanwhile, collagen fibrils, by 

their extensive covalent cross-linking, form a three dimensional network which confers 

stability and elasticity to the matrix. Thus, cartilages mechanical propensity to counteract 

compressive and tensile stresses is provided by the combination of these components. From 

this concept, it is apparent that the correct ratio between PG, collagen fibrils and water are 
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required to preserve matrix stability, because changes in this composite network will affect 

the overall tissue mechanical properties. Using AFM we were able to test these mechanical 

properties in order to have an indication about changes in the matrix composition.  Good 

evidence of the reliability of our measurements was the reproduction of a bimodal 

distribution of the nanostiffness, already described in studies where the structural and 

mechanical properties of the developing murine growth plate and the porcine articular 

cartilage were assessed by AFM (Prein et al. 2016, Loparic et al. 2010). In these studies, it 

was shown that nanoscale AFM was able to measure the local matrix nanostiffness by 

probing the elasticity of separate components, proteoglycan and collagen fibrils. This is 

reflected into a bimodal Gaussian distribution on the histograms constituted by a lower peak 

generally indicating the stiffness given by the proteoglycan content and a higher peak as a 

result of collagen fibril stiffness. In our study, WT newborn samples exhibited elastic moduli 

ranging in the typical interval reported previously for a young but well-established matrix, 

with clear peaks showing dense PG and collagen fibrils. In Col9a3Δex3 matrix the stiffness 

reported in newborn mice was similar to WT, whereas Col9a3-/- mice showed a shift towards 

lower values, indicating a decrease in nano-stiffness. However, despite being similar to WT 

during early post-natal stages, Col9a3Δex3 mice demonstrated a tendency to softening with 

time in both PG and collagen phases, as shown by 6-week old samples. Likewise, Col9a3-/- 

mice nano-stiffness did not improve with time and their elastic moduli were remarkably 

shifted towards low values also at 6 weeks of age. We can therefore imply that the absence of 

collagen type IX severely affects the mechanical properties of the matrix. Similar findings 

were shown in a study conducted on intervertebral discs of collagen type IX null mice 

(Col9a1-/-), where a less dense collagen network was identified by AFM in intervertebral 

endplates. Nanoindentention AFM measurement indicated a markedly softer ECM in the 

inner annulus and the articular region of vertebral endplate, consistent with our findings 

(Kamper et al. 2016). From our TEM analysis, an indication of collagen fibrils thicknening 

was noticed in Col9a3-/- cartilage, observation which was in contrast when Col9a3-/- fibrils 

were imaged from AFM detection. When the cartilage surface of Col9a3-/- ITM was 

visualised through AFM, collagen fibrils appeared thinner compared to WT cartilage surface 

images. Similar result was given by the observation of collagen fibrils diameter under 

polarised light after picrosirius red staining. Fibrils diameter was similar to WT in Col9a3Δex3 

but slightly reduced in Col9a3-/- as they appeared yellow and green under polarised light 

(Appendix E, Fig. E.3). In the attempt to elucidate these discrepancies about fibril diameter 

results, it would be informative to perform a further fibrils diameter measurement on AFM 
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images of ITM surface. In a previous study, in 1-month old Col9a1-/- mice fibril thickening 

correlated with increased nanostiffness of articular cartilage, which then tended to soften by 

the age of 12 months (Stolz et al. 2009).  Our AFM data on newborn and 6-week old Col9a3-

/- mice contradicts the findings by Stolz et al. and did not correlate with our TEM observation. 

Differently from Stolz et al. which performed AFM on articular cartilage of Col9a1-/- femoral 

heads, in our study we analysed tibial growth plate cartilage. This could be accounted for the 

conflicting results, however further investigation on fibril diameter would contribute to 

unravel the origin of such discrepancies.   

Among the symptoms reported from patients diagnosed with MED caused by collagen type 

IX mutations, the appearance of early-onset OA was the most commonly mentioned. 

Moreover, collagen type IX has been frequently associated with OA changes, where its 

expression is increased in areas of the joint where cartilage defects were present, putatively as 

an attempt by the diseased cartilage tissue to stabilise and protect the remaining matrix from 

further destruction (Koelling et al. 2008). Degradation of collagen type IX was also observed 

in  primary stages of OA and rheumatoid arthritis (Diab 1993). In addition, both collagen 

type IX null mice (Col9a1-/- and Col9a2-/-) were described with early-onset joint 

degeneration. As consequence Col9a1-/- mice present behavioural changes, such as gait 

changes and impairment during exercise tasks, consistent with anatomic signs of OA and 

intervertebral disc degeneration (Allen et al. 2009). Findings of OA-like changes in the knee 

and temporomandibular joints during ageing were described in collagen type IX deficient 

mice (Col9a1-/-) (Hu et al. 2006). It was suggested that the proteoglycan depletion and loss of 

intact collagen II reported in the joints of these mice were caused by an increase of MMP-13 

expression due to induction of the discoidin domain receptor-2 (DDR-2). The increased 

MMP activity generates fragments of collagen type II and fibronectin which by binding to 

α2β1 and α5β1 respectively, induce more proteinases activity. Also cytokines such as IL-1 

further stimulate signalling pathways that induce MMP-13 expression (Li et al. 2007). We 

therefore decided to perform DMM surgery to induce a damage in the knee joints of our 

mutant mice which would accelerate the joint cartilage degeneration and progression of OA. 

The prevalence and clinical manifestation of OA is strongly affected by sex, with men 

showing higher prevalence of OA than women before the age of fifty (Srikanth et al. 2005). 

Similarly, also in different strains of mice which develop spontaneous OA, it has long been 

documented that male mice had a higher incidence of degenerative joint disease than females. 

Sex hormones play a critical role in the progression of OA in the murine DMM surgical 
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model, with males having more severe OA than females. This seems to be due to the 

protective effect exercised by the ovarian-derived hormone on cartilage, whereas male 

hormones, such as testosterone, have a detrimental effect on the severity of OA (Ma et al. 

2007). Therefore, to be able to visualise a more dramatic OA phenotype we chose to perform 

DMM surgery on male mice. However, when we sought to determine the effect of both of our 

collagen type IX mutations on the articular cartilage of mice whose joints were stressed by 

DMM, we could not identify any difference in the damage scores when compared to WT. 

This observation would mean that the incorporation of a mutant collagen type IX as well as 

its absence does not affect the articular cartilage stability in this model. A similar observation 

was obtained when we assessed the tissue damage in articular cartilage of aged mutant mice. 

Although the very small sample size must be considered, no indication of worsening of 

articular cartilage was obtained from Col9a3Δex3 joints and more unexpectedly in Col9a3-/- 

joints. However, our study was greatly underpowered and despite it suggests that Col9a3Δex3 

mice do not reproduce the OA changes observed for EDM3 patients, this cannot be a certain 

conclusion. Moreover, our observations were in contrast with published evidence that the 

lack of collagen type IX contributes to OA-like changes in different mouse joints. We 

focused our attention only on knee joints, maybe missing other sites where possibly the effect 

of the mutations on cartilage degeneration is more prominent. We also recognise the sample 

size used in our analysis as a limitation and the possible explanation for the result, therefore 

increasing the number of animals in each arm of the study is required before a firm 

conclusion about role of Col9a3 in OA-like articular cartilage can be drawn.  

To summarise, we have explored the effect of Col9a3Δex3 and Col9a3-/- mutations on cartilage 

stability. Col9a3Δex3 mutation affects the growth plate cartilage stiffness in late stages of post-

natal development, but does not affect fibril appearance, the interactions with matrilin-3 and 

COMP, nor articular cartilage stability. The absence of collagen type IX has more severe 

consequences at least at the level of the growth plate cartilage, whose fibrils are less compact 

and dense. The binding strength of matrilin-3 resulted affected, as it showed to be more 

soluble in mild extraction conditions, while results obtained regarding COMP stability were 

inconclusive. The ageing related OA evaluation was inconclusive in both mice. Notably, 

ageing was evaluated only in females, but indication of sex related differences in the 

development of OA were noticed for example after DMM surgery, which affects 

predominantly males. In addition, we questioned if mice should have been kept longer than 

12 months or physically challenged by exercise to be able to detect an actual change in their 
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articular cartilage. Hence we think that implementing our experiment, by increasing the 

sample size, including male mice and possibly challenging them, will be imperative to fully 

conclude whether the lack of this fibre plays any role in OA-like disease development in 

these mice.  
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Summary highlights 

- Col9a3Δex3 mice presented decreased cartilage nanostiffness in late post-natal 

development stages, despite retaining the stability of interaction of collagen type IX 

with matrilin-3 and COMP.  

- Col9a3-/- mice presented significant decreased cartilage nanostiffness, dispersed 

collagen fibrils with an indication of mild thickening and possibly weakly integrated 

matrilin-3 protein in the ECM. 

- Col9a3Δex3 did not phenocopy the OA observed by EDM3 patients.  

- Col9a3-/- mice did not present an osteoarthritic phenotype in knee joints, contrary to 

that reported for Col9a1-/- and Col9a2-/- mice. 
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Chapter 7.  

Discussion 
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Discussion 

Multiple epiphyseal dysplasia (MED) is an autosomal skeletal disorder which when 

dominant is caused by mutations in structural components of ECM such as COMP, matrilin-3 

and the genes coding for the collagen type IX α-helices, COL9A1, COL9A2 and COL9A3. 

Patients belonging to the group of MED cases caused by mutations in the collagen type IX 

genes are found with the mildest form of symptoms such as irregular epiphysis and early 

onset OA mainly involving the hip and knee joints. Collagen type IX belongs to the FACIT 

collagen subfamily and constitutes an important element inside the ECM, as its role in 

controlling and stabilise the packing of collagen fibrils in the matrix has been suggested, 

along with its interactions with other collagenous and non-collagenous components within 

the ECM.  Intriguingly, the majority of collagen type IX genes mutations related to MED 

have been reported to be splice sites mutations in either acceptor or donor splice sites leading 

consistently to the skip of exon 3 and consequently to the deletion of 12 amino acids in the 

COL3 domain of the protein. The precise function of the COL3 domain is not understood, but 

we know that it protrudes together with the NC4 domain into the extracellular space where it 

reported to have a role in interacting with other ECM components. Because of its persistent 

association with MED, we believe that the COL3 domain represents a critical region for the 

pathogenicity of MED caused by collagen type IX mutations, however the pathological 

mechanism that links its mutations to the onset of MED is still unknown.  

The aim of this project was therefore to understand the pathological role of the deletion of 

exon3 in relation to MED. To do so, our strategy involved the induction in a murine model of 

the deletion of exon 3 from the Col9a3 gene to mimic the molecular consequence of splice 

sites mutations in COL9A3 (and COL9A2) of MED patients, being aware of the high degree 

of conservation of splicing between human and mouse (Thanaraj et al. 2003). Our aim was to 

reproduce in the mouse the human MED phenotype to generate a valuable tool for further 

molecular analysis of the disease mechanism.  

Firstly, we described our approach to generate the mutant mice. Using CRISPR/Cas9 gene 

editing we designed gRNAs targeting the intronic regions flanking the exon 3 of Col9a3 to 

induce deletion. We opted for this specific genome editing tool over the more conventional 

ones for site specific mutagenesis, mainly for its ease of design and use and for being 

extremely quick and efficient. Moreover, the specificity given by the simple design of the 

sgRNAs was sufficient to obtain the kind of mutation we were trying to induce, being a 

simple and short deletion without the need of a DNA template for repair. However, as 
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consequence of the error prone NHEJ repair mechanism triggered in the cell after Cas9 

double-strand cleavage, multiple different alleles carrying the desired deletion were 

generated. We therefore performed some initial characterisation of the F0 generation. After 

screening of all alleles, we selected two deletion mutations to be carried on in established 

mouse lines. One mutation, which we called Col9a3Δex3, caused the generation of a shorter 

Col9a3 mRNA lacking the 36 nucleotides of exon 3, proving that our strategy was successful 

in obtaining the desired consequence. From the Col9a3Δex3 mRNA a shorter α3 (IX) chain is 

generated, which did not affect the full collagen type IX formation or stability, as suggested 

by detection of α1 (IX) protein on Western blot analysis. The second mutation, which we 

termed Col9a3-/-, impaired Col9a3 mRNA stability, presumably due to aberrant splicing, and 

protein formation, resulting in a null mouse for collagen type IX. Aberrant splicing originates 

from different mechanistic models. It can arise from alterations in core spliceosomal 

components, leading to global splicing deregulation and resulting in a large number of 

aberrant products. Similarly, alterations in an accessory splicing factor can lead to 

deregulation or upregulation of splicing for the limited set of transcripts where the factor is 

required for accurate splicing. Alternatively, when the genomic mutations are in a critical 

splicing motif of a single gene, this will change the splicing pattern of just that transcript 

(Chen and Weiss 2015). We, therefore, consider unlikely that the phenotype we observed in 

Col9a3-/- mice could be caused by aberrant splicing induced stress rather than mutation in 

Col9a3 related changes.  

By fortuitously obtaining the Col9a3-/- mouse, we generated the first knockout mouse for 

Col9a3 and importantly we demonstrated that the α3 (IX) chain is indispensable for the 

formation of collagen type IX heterotrimer, as previously proved for α1 (IX) and α2 (IX) in 

Col9a1-/- and Col9a2-/- mice, respectively (Balasubramanian et al. 2019, Fassler et al. 1994, 

Hagg et al. 1997). Preceding studies on in vitro reassociation of the single collagen type IX α-

polypeptides, suggested the formation of homotrimeric or heterotrimeric molecules with 

different stoichiometry  (Jaalinoja et al. 2008, Pihlajamaa et al. 1999). However, as 

mentioned in this thesis work, any sort of compensation of the other two expressed α-helices 

can be excluded when one of the three is absent in vivo. In Col9a3-/- mice, despite the 

mRNAs for α1 (IX) and α2 (IX) chains are normally transcribed (data not shown), we could 

not detect α1 (IX) polypeptide when a specific antibody was used, and presumably the same 

result would be given by detection of α2 (IX). The reason for this is beyond the 

understanding we can reach from our results and investigation. We can presume that α1 (IX) 
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and α2 (IX) chains might be rapidly degraded or their production might be suppressed at the 

translational level, when normal collagen folding is not possible in the absence of α3 (IX) 

chain.  

The subsequent characterisation of the two mutant mice was driven by a new double purpose 

of our study.  Col9a3Δex3 mice were analysed to verify if phenotype commonalities with 

collagen type IX-MED patients were developed, to define these mice as valuable model for 

MED. Col9a3-/- mouse phenotype was analysed to determine its equivalence to the other 

collagen type IX functional knockout mice, but also used to verify if phenotype 

commonalities were shared with Stickler syndrome.  

We started the characterisation of the two mutant mouse lines from the analysis of their bone 

phenotype. Col9a3Δex3 mice did not show obvious skeletal abnormalities, but presented a low 

trabecular bone phenotype. On the contrary, Col9a3-/- mice showed hip dysplasia, short limbs 

with widening of tibial epiphysis reproducing the skeletal phenotype shown by other collagen 

type IX deficient mice, and features of Stickler syndrome patients. Our µCT analysis showed 

an increased bone volume in femurs and tibia of adult Col9a3-/- mice with an unexpected 

delayed ossification in their proximal femur. However, conflicting bone microstructure 

observations are reported in literature for mice deficient in collagen type IX, which suggest a 

variability in the bone phenotype observed probably influenced by different age, anatomical 

region or mouse background related variation.  

In Col9a3Δex3 mice µCT analysis gave evidence of a reduced trabecular bone phenotype and 

especially the indication of a “rod-like” structure of the cancellous bone, typical of conditions 

characterised by bone fragility and osteoporosis (Liu et al. 2010). Low bone mass, 

osteoporosis and increased incidence of fractures have been observed in several myopathies 

(Barzegar et al. 2018, van den Berg et al. 2010), neuromuscular disorders characterised by 

muscle weakness due to dysfunction of muscle fiber. Interestingly, in several skeletal 

dysplasia phenotypes, myopathy is a recognised neuromuscular complication of the disease. 

In particular, cases of mild myopathy have been reported for patients diagnosed with MED 

caused by mutations in COL9A2 and COL9A3 genes (Bonnemann et al. 2000, Jackson et al. 

2010). No evidence of collagen type IX expression in skeletal muscle have been reported so 

far (Irwin et al. 1985, Muller-Glauser et al. 1986), however its expression is found in 

fibrocartilaginous tissue in the enthesis, the attachment site at the tendon to bone interface. 

Based on this, researchers have considered the possibility of a tendinopathy condition caused 
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by the expression of a mutant collagen type IX, which might affect the musculoskeletal 

tissues. A similar myopathy condition analysed in a mouse model for MED resulting from 

Comp mutation (Pirog et al. 2010), helped to further explain this hypothesis. The enthesis site 

is responsible for transmitting the forces between the tendon and muscle fibers, so an altered 

structure of the tendon junction might disturb the mechanical forces transmitted to the muscle 

and therefore alter the ability of those tissues to remodel following stress. The bone is a 

dynamic tissue which is able to remodel in response to the mechanical load, such as an 

increase in loading, results in increased bone formation and decreased resorption whilst 

unloading of the bone has an opposite effect. Bone mineral density correlates directly with 

the mechanical forces applied by muscle strength, so that a reduced muscle tension on bone 

and consequent loss of muscular strength negatively affect the bone density. Taking into 

account these considerations, our finding of low trabecular and osteoporotic-like bone 

phenotype in Col9a3Δex3 mice could indicate a possible consequence of a form of muscle 

weakness in these mice, which would perfectly be in line with the myopathy reported for 

some colIX-MED patients. A follow-up study aiming at analyse the skeletal muscle and 

tendons will certainly add to the understanding of Col9a3Δex3  low trabecular bone phenotype 

and whether these mice represent a valid model for the study of MED related myopathy.  In 

addition, in the current study we did not undertake any analysis of bone deposition and 

resorption. An investigation on common bone turn over markers in both mutant mice, is 

advised as it will help understand if and how the mutations affect bone development and/or 

homeostasis.  

Subsequently, we explored the growth plate phenotype of the mice, by assessing its 

organisation, chondrocyte proliferation, and the presence and localisation of collagen type IX 

protein plus two of its binding partners, matrilin-3 and COMP. We investigated the growth 

plate of our mutant mice at similar time points already assessed previously in other mouse 

models of MED, to be able to better interpret our results in relation to the other MED models 

findings.  Col9a3Δex3 growth plate was not severely affected by the mutation in terms of 

morphology and chondrocytes appearance, although the relative height of the zones, was 

different from WT and more importantly they presented a significant reduction of 

chondrocyte proliferation. An indication of partial collagen type IX retention within 

chondrocytes was noted, but probably was not sufficient to trigger an ER stress response at 

least according to our transcriptome analysis. Conversely, Col9a3-/- growth plates were 

severely affected in terms of organisation, chondrocyte morphology and proliferation, 
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reporting some indication of enlarged ER by TEM. Interestingly similar changes of 

chondrocytes, appearing misaligned and misshapen were also detected in other mouse models 

of PSACH-MED harbouring mutations in matrilin-3 (moderate MED: Matn3 V194D) 

((Leighton et al. 2007) and COMP (mild PSACH: Comp T585M and severe PSACH: Comp 

DelD469) (Pirog-Garcia et al. 2007, Suleman et al. 2012) as well as in Col9a1-/- and Col9a2-/- 

mice (Balasubramanian et al. 2019, Fassler et al. 1994). These mouse models despite having 

different mutations resulting in different molecular changes responsible for the disease, 

presented some commonalities. All of them had short stature, misaligned and abnormal 

chondrocytes shape, decreased chondrocyte proliferation and some of them also had 

increased and spatially dysregulated apoptosis in the cartilage growth plate. In these previous 

studies it was hypothesised such changes in chondrocytes proliferation and apoptosis to be 

the cause of disrupted linear bone growth identifying these features as common disease 

signatures of these disorders. If this hypothesis can be applied to explain the short stature 

phenotype of Col9a3-/- mice, the same reasoning does not explain the absence of reduced 

bone growth in Col9a3Δex3 mice in light of the significant reduction of proliferation in their 

growth plate. This finding is the first evidence of reduced proliferation which does not affect 

bone growth, opening the question whether other mechanisms could compensate the 

detrimental effect of Col9a3Δex3 mutation on long bone growth or may signify that the reduce 

stature is not a direct consequence of it but of the interplay of several other factors with it. A 

phenotype similar to collagen type IX deficient mice was also observed in mice with a 

cartilage-specific deletion of β1-integrin gene.  Integrins mediate cell-matrix interactions and 

for this reason it is considered the insufficient adhesion of β1-null chondrocytes to be the 

cause of the change in the cellular morphology and alignment. Collagen type IX has unique 

cell adhesion properties thanks to its interaction with the cartilage integrins α1β1 and α2β1 

(Kapyla et al. 2004) and the importance of this interaction is also demonstrated by the 

changes of β1 localisation and intensity in Col9a1-/- mice (Dreier et al. 2008). We can think 

that even in our mice the absence of collagen type IX induces structural changes in the ECM 

which then have consequences on the signalling pathways based on integrins function, which 

affect chondrocytes morphology, division and survival.  

ER stress response has been considered another disease signature of some PSACH-MED, 

thanks to the study of knock-in models for the disease. A knock-in mouse model for mild 

PSACH, carrying the T585M mutation in COMP, developed a mid UPR stress without 

retention of the mutant protein in the ER, while the mutation V194D in matrilin-3 caused 
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retention of the mutant protein in the ER with subsequent UPR response. A different 

mutation in COMP DelD469 causing severe PSACH was found to induce a novel cell stress 

response, independent from the conventional UPR (Leighton et al. 2007, Pirog-Garcia et al. 

2007, Suleman et al. 2012). The indication of ER enlargement in both collagen type IX 

mutant mice might suggest a molecular pathology similar to these mice, where we can 

speculate that the folding of a proper collagen type IX heterotrimer cannot be fulfilled 

because of either the absence of α3(IX) or the presence of a mutated α3(IX) chain. The 

consequence would be longer retention of the mutated collagen type IX molecules and delay 

of their secretion and insertion in Col9a3Δex3 ECM, probably explaining the pericellular 

localisation detected by immunostaining. Conversely, we suggest the retention and 

subsequent targeting for degradation of the other two (α1(IX) and α2(IX)) helices in Col9a3-/- 

ER, to be the reason for the ER enlargement and the lack of immunostaining signal observed. 

However, from our preliminary transcriptomic analysis did not emerge the activation in our 

mutant mice of specific ER stress pathways. For example, when we looked for expression 

changes of specific genes belonging to the ER stress and UPR associated genes such as 

Grp94, Grp78/BiP, Erp72/Pdia4, Calnexin, Calreticulin, CHOP, eIF2α, eIF2αP, none of them 

passed the threshold for significance in their relative expression in both mutant mice. In 

Col9a3Δex3 mice the genes Rgs5, Cdh5 which were associated to oxidative stress pathway in a 

previous study (Suleman et al. 2012), were significantly upregulated. Other genes such as 

Cilp involved in cell proliferation, and Srxn1 and Meox involved in NF-κB signalling 

(Suleman et al. 2012), were also significantly changed in Col9a3Δex3. Another significantly 

upregulated gene in Col9a3Δex3 was Smad2, coding for a protein that mediates the signal of 

the transforming growth factor (TGF)-beta, and thus regulates multiple cellular processes, 

such as cell proliferation, apoptosis, and differentiation (Eppert et al. 1996). Upregulated 

genes in Col9a3-/- included Cilp, Kera, Srxn1, Sox11, Agtr2, involved in cell survival and 

proliferation (Suleman et al. 2012). These observations pointed out that a more in-depth 

analysis of specific genes pertaining specific stress pathways, other than the classical UPR is 

needed to create a more comprehensive understanding of the consequences at the molecular 

level of these two mutations in collagen type IX.  

On another note, from RNAseq data we could notice the upregulation of the genes Lox (Lysyl 

oxidase), Loxl1(Lysyl oxidase-like 1) and Loxl2 (Lysyl oxidase-like 1) in both mutant mice 

(data not shown). These are members of the lysyl oxidase family of genes which encode 

enzymes oxidizing the side chain of peptidyl lysine permitting the covalent crosslinking of 
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collagen and elastin chains. This finding reminded of the involvement of LOXL3 mutations in 

the onset of Stickler syndrome (Chan et al. 2019). Moreover, biallelic mutations in COL9A1, 

COL9A2, and COL9A3 cause autosomal recessive Stickler syndrome. In this respect, 

previously described collagen type IX null mice were found with reduced auditory function, 

reproducing the hearing defects reported by patients affected by Stickler syndrome 

(Balasubramanian et al. 2019)(Asamura et al. 2005, Suzuki et al. 2005), which in addition to 

the other skeletal defects described, they represent good models of the disease. Notably the 

assessment of hearing impairment in our mutant mice was not addressed, but these findings 

suggest that it would be interesting to investigate the effect of Col9a3Δex3 and Col9a3-/- 

mutations also in the inner ear.  

As mentioned, no collagen type IX was present in Col9a3-/- growth plate, as expected, but 

surprisingly, matrilin-3 and COMP did not appear to be less abundant. This is in contrast with 

what reported previously in Col9a1-/- mice which showed an overall loss of matrilin-3 and re-

distribution of COMP in their growth plate (Blumbach et al. 2008). This observation made us 

question the reliability of the antibodies used, in particular for matrili-3 and in this regard, 

performing a positive control staining, which was not included initially, would be useful to 

ascertain the antibody specificity.  

The most striking observation was the presence of a hypocellular region, a nearly cell-free 

area in the centre of young developing tibial and femurs growth plate, in both mutant mice, 

but less severe in Col9a3Δex3. The hypocellular region was accompanied with a widening of 

the epiphysis, which was consistent with the findings reported previously in Col9a1-/- and 

Col9a2 -/- mice (Balasubramanian et al. 2019, Blumbach et al. 2008, Dreier et al. 2008). TEM 

also provided the first indication of this cell-free areas in both mutant mice, which we were 

able to confirm by histology. However, it has to be kept in mind that the observation through 

TEM came from analysis of only one mouse per genotype, which represents a risk of 

overinterpretation of results. Especially if we cannot exclude that those areas might also be a 

sectioning artefact or a cut through the edge of their secondary ossification centres. However, 

the histological findings and the absence of such area in TEM of WT growth plate make us 

consider the TEM observations reliable. Notably, mice carrying a targeted deletion of oxygen 

sensitive transcription factor HIF-1α presented acellular regions in the growth plate cartilage 

(Schipani et al. 2001) similar to those detected here in Col9a3-/-  and those of the other 

collagen type IX null mice.  HIF-1α transcription factor is one of the major regulators of the 

hypoxic response (Semenza 1999) and is required by chondrocytes during normal embryonic 
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development, as the central regions of the growth plate become hypoxic and as a result cells 

express HIF-1α which mediates their survival in such condition. The hypothesis provided 

previously regarding the origin of such regions was considering that cartilage is an avascular 

tissue, and it is supplied with nutrients and oxygen only by diffusion. Therefore, the widening 

of the bones of collagen type IX null mice increases the diffusion distance, possibly leading 

to an undersupply with nutrients and/or hypoxia within the central region, despite no increase 

in cellular apoptosis was detected as possible explanation for such reduced cell density 

(Blumbach et al. 2008). On the contrary, considering that cell-free areas were found in both 

Col9a3Δex3 and Col9a3-/-  growth plates, but not widening of epiphysis was noticed in the mice 

carrying the exon 3 deletion, and taking into account the reduced proliferation detected in 

both mutant mice, we can speculate the lower cell density to be due to reduced cell division 

rather than a cell death induced by impaired diffusion of nutrients. Therefore we think that 

the analysis of cellular apoptosis in both mutant growth plates, which is lacking in this thesis 

work, will add to the understanding of the origin of these hypocellular areas. In addition, the 

localisation of other important ECM components and related collagen type IX interactors, 

could give new insights on the complex ECM network and how it affects important signalling 

pathways involved in cell viability. This could help understand if such a region is a 

consequence or the cause of the skeletal phenotype.  

From gene expression analysis, we could not detect possible compensatory effects of 

collagen type IX related proteins in Col9a3Δex3 and Col9a3-/- mice. Nonetheless, the 

observation of the upregulation of Fgf13 gene and downregulation of Fgfr3 in Col9a3Δex3 

suggested variations in the FGF growth factors signalling pathway, one of the major systems 

for cellular communication throughout development, life, and disease. More than eighteen 

different FGF ligands transmit extracellular signals through interaction with four receptor 

tyrosine kinases, FGFR1–4, which exert different physiological functions due to the 

differences in their temporal and spatial distribution of expression (Johnson and Williams 

1993). FGFR3 is expressed in different tissues, but its major physiological function seems to 

be the regulation of cartilage growth. In this regard, evidence showed FGFR3 to be a 

physiological negative regulator of skeletal growth, which restricts the length of long bones 

via inhibition of chondrocyte proliferation. Fgfr3 null mice have long bone overgrowth due to 

expanded zones of epiphyseal growth plate cartilage, caused by increased chondrocyte 

proliferation (Colvin et al. 1996). Gain of function mutations in FGFR3, resulting in its 

overactivation, are at the base of the most common genetic form of human dwarfism, 
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achondroplasia (Shiang et al. 1994). Moreover, the process of chondrocyte transition from 

proliferation to hypertrophy depends on the intricate cross-talk between the Ihh and PTHrP 

signalling pathways, and FGFR3 is known to mediate the downregulation of this pathway and 

inhibition of Ihh/PTHrP signalling due to aberrant activation of FGFR3 contributes to 

disrupted chondrocyte differentiation. Col9a3Δex3 mice presented enlarged hypertrophic zone, 

but their chondrocytes proliferation was reduced, therefore we could deduce that such 

enlargement is probably due to a decrease of the number of chondrocytes exiting the 

hypertrophic zone, rather than an increase of new proliferative chondrocytes entering it. For 

instance, Fgf2, which is a ligand for Fgfr3, has been reported to inhibit chondrocytes terminal 

differentiation (Kato and Iwamoto 1990). In addition, the early differentiation status detected 

in Col9a3Δex3 secondary ossification centres, offers ground for speculation about changes in 

Ihh and PTHrP cross-talk, possibly due to a reduction of the inhibitory effect of FGFR3 on 

the Ihh/PTHrP pathway. The link between collagen type IX and Ihh/PTHrP signalling was 

already reported in a study showing that during the embryonic development of the spine in 

collagen type IX null mice (Col9a1-/-) an imbalance in the Ihh-PTHrP signaling pathway 

leads to an accelerated hypertrophic differentiation. Researchers concluded that the changes 

of collagen fibril interactions and the matrix structure of collagen type IX null mice are the 

cause of a disturbance of signal molecule diffusion or presentation, creating for example an 

imbalanced Ihh–PTHrP feedback loop (Kamper et al. 2017). This finding would correlate 

with our observation of an earlier differentiation state of chondrocytes in the secondary 

ossification centre found in young Col9a3Δex3 growth plates. Although in the study it was 

hypothesised that the accelerated hypertrophic differentiation may result in a higher bone 

mineral density in the vertebral bodies of newborn Col9a1-/- mice and, give rise to the early 

onset of disc degeneration previously reported in these mice (Kamper et al. 2016). This 

would be in contrast with the lower trabecular bone phenotype found in tibia and femur of 

Col9a3Δex3mice, despite we are considering different tissues at different stages of 

development. 

Studies to unravel the role of FGF13 in the development of the skeletal muscle have shown 

that it plays a negative regulatory role in the process of myogenic differentiation (Lu et al. 

2015). The upregulation of the Fgf13 gene then might be the indication of an alteration of the 

correct skeletal muscle development in Col9a3Δex3 mice, leading to a possibly weaker and 

underdeveloped muscle in these mice, recalling the above considerations about myopathy and 

low trabecular bone phenotype. Furthermore, RNAseq data in Col9a3Δex3 cartilage showed 
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reduced expression of other two genes coding for important receptors involved in FGF 

signalling, Fgfr1 and Fgfr2 (data not shown).  In mice, targeted ablation of Fgfr2 impairs 

postnatal long bone growth, suggesting that Fgfr2 acts as a positive regulator of endochondral 

bone formation at the growth plate (Eswarakumar et al. 2002, Yu et al. 2003). In contrast, 

activating mutations in FGFR1 cause osteoglophonic dysplasia, another short-limbed skeletal 

dysplasia in humans, raising the possibility that FGFR1 acts as a negative regulator of 

skeletal growth (White et al. 2005). Recent studies have also demonstrated that mice 

conditionally deleted for FGFR1 in osteo-chondro-progenitor cells display an increased 

hypertrophic zone size, probably due to a decrease in the rate of cartilage resorption and 

ossification (Jacob et al. 2006). This would further contribute to the explanation of an 

enlarged hypertrophic zone in Col9a3Δex3 growth plate. 

Despite these findings, the fact that RNAseq was performed on isolated rib chondrocytes, 

rather than on cartilage of load-bearing anatomical regions, such as the knee, could be 

considered a limitation of our analysis. A histological analysis to verify if the ribs cartilage 

follows the same tissue pathology recognised in the growth plate, was not addressed during 

this work. Indeed, it is very probable that our analysis did not define the expression changes 

of genes and pathways that are a consequence of the mutations in a site-specific manner.  

When we assessed the ECM stability in our mutant mice we started from the hypothesis that 

the expression in Col9a3Δex3 mice of a collagen type IX molecule carrying a mutation in the 

COL3 domain, as well as the absence of the entire molecule in Col9a3-/-, would affect the 

stability of other direct interactors of collagen type IX present in the ECM of these mutant 

mice. In particular we investigated changes in the extractability of matrilin-3 and COMP, 

along with collagen type IX, as indication of alterations to their anchoring or associations and 

of the overall functional properties of the tissue. However, when we verified this hypothesis 

analysing the sequential extraction protein profiles of our mutant mice cartilage extracts, only 

in Col9a3-/- mice we noticed differences in the extractability of only matrilin-3. This 

confirmed the impact on cartilage stability of the absence of collagen type IX protein. Our 

analysis did not add information on the consequences of the insertion of collagen type IX 

with a mutant COL3 domain on matriln-3 and COMP anchoring, which we could not detect 

through this analytical method. Conversely, the same method resulted efficient when was 

used previously for similar purposes in other mouse models of PSACH-MED.  In this study, 

the cartilage protein extraction profile of the previously generated targeted mouse models of 

PSACH-MED with mutations in matrilin-3 (Matn3 V194D) (Leighton et al. 2007) and 



 

218 

 

COMP (Comp T585M and Comp DelD469) (Pirog-Garcia et al. 2007, Suleman et al. 2012) 

was investigated. Their Western blot analysis of sequentially extracted knee cartilage 

revealed genotype-specific differences in the extraction of a number of proteins that are all 

known to interact with each other. Among these, they were able to demonstrate that collagen 

type IX was more easily extractable from Comp DelD469 and Comp T585M cartilage, 

suggesting that it may be less tightly integrated into the ECM of these animals, implying an 

effect on overall integrity of their cartilage. In the same study they detected increased 

extractability of matrilin-3 and COMP, with some variability of extraction in different 

conditions and of their molecular forms, giving insights on protein processing and 

detrimental molecular mechanisms which might be responsible for the disease. 

Demonstrating indeed that the mutation of matrilin3 or COMP can induce changes to the 

extractability of other cartilage proteins, confirmed a close functional relationship between 

matrilin-3 and COMP and FACIT collagens, in particular collagen type IX, in the 

chondrocyte pericellular matrix and that disruptions to this network might be a key disease 

trigger in cartilage degradation (Bell et al. 2013). The conclusions obtained in that study were 

the result of an integrated approach involving also analysis of protein from isolated 

chondrocytes and semi-quantitative proteomic analysis, which defines our investigation 

incomplete and suggests that a similar approach could help elucidate the results obtained by 

sequential extraction. 

Consistently with the results obtained by sequential protein extraction and proteomic 

analysis, the visualization by electron microscopy of the cartilage from the same three mouse 

models has previously demonstrated changes in the morphology of the ECM (Leighton et al. 

2007, Pirog-Garcia et al. 2007, Suleman et al. 2012). In particular, the collagen fibrils were 

more clearly visible, suggesting that lower levels of fibril surface-associated proteins were 

decorating individual collagen fibrils. 

When we assessed the matrix stability of Col9a3Δex3 mice, such trait was not observed, as we 

did not detect any striking difference in the collagen fibrils, the protein extraction profile of 

matrilin-3 and COMP, or any worsening of OA-like cartilage damage due to DMM or ageing. 

Despite this, taking into account all the weak points of our methods, we cannot fully conclude 

that Col9a3Δex3 joints do not replicate the early onset OA trait often diagnosed in MED 

patients. Likewise, Col9a3-/- mice displayed less abnormalities than expected, in terms of 

collagen fibril appearance. We did not observe on TEM more exposed collagen fibrils, but 

they appeared sparser and sometimes aggregated. The indication of fibrils thickening, in line 



 

219 

 

with previously reported evidence of collagen type IX role in limiting fibrils diameter, which 

then tends to increase in its absence (Blumbach et al. 2009), was not supported by AFM 

observations, implying the risk of overinterpretation of TEM findings only based on n=1 

biological replicate. An OA-like phenotype is well recognised in the joints of other functional 

collagen type IX knockouts, with Col9a1-/- knee joints developing OA changes already at 3 

months of age, which then become severe by 12 months of age. Surprisingly, in Col9a3-/- 

knee joints we could not detect a similar OA phenotype in either DMM stressed 18-week old 

or in unchallenged aged 12-month old knee joints. However, our analysis was limited to only 

one tissue joint, and is probably missing changes in cartilage damage in other joints. In 

addition, no real conclusions about the ageing effect on development of OA could come from 

an underpower study, as no power analysis was performed to identify the correct number of 

animals needed to reach a significant result. AFM indentation test revealed reduced 

nanostiffness in both mutants, which was particularly pronounced in Col9a3-/-. This result 

demonstrated that the mutation of collagen type IX and more importantly its absence, has a 

severe effect on the mechanical properties of the cartilage tissue, probably realised by 

affecting the distribution and interaction of other matrix components as well as collagen type 

II fibril diameter. It remains unclear why DMM, ageing or sequential protein extraction 

showed little effect while the mechanical stiffness of the Col9a3-/-cartilage was profoundly 

affected by the mutation. 

To conclude, we have generated and described the first mouse model for MED caused by 

splice sites mutations in Col9a3 gene. These mice, despite genetically reproducing the 

patients’ mutations molecular result, present very little phenotypic abnormalities which 

partially, but not completely, mimic patients’ phenotype, at least based on our current 

analysis.  Considering that collagen type IX mutations cause a very mild form of MED in 

humans, we questioned if using mice to replicate such disease is the appropriate approach to 

undertake. The phenotype expressed by collagen type IX null mice further confirmed the 

importance of this protein for the stability of cartilage. In addition, their phenotype resembles 

some features of patients null for collagen type IX who experience Stickler syndrome. This 

suggested that a mutant collagen type IX protein retains many of the functions of the wild-

type protein within the ECM, explaining the limited phenotype observed in the Col9a3Δex3 

mice. Both these mice represented novel tools to gain insights on collagen type IX structure 

and function, however we were unable to sufficiently expand our understanding of MED 

mechanism caused by collagen type IX mutations.  
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Appendix 

 

Appendix A: Buffers 

0.5 % Acid alcohol:  

0.5% v/v Hydrochloric acid in 70% ethanol 

Tris-Acetate-EDTA Buffer (TAE):  

0.04M Tris (pH8), 5.7% (v/v) glacial acetic acid and 0.001M Methylenediaminetetraacetic 

acid (EDTA) 

Loading Buffer: 

(Tris 0.125M (pH 6.8), 10% (v/v) glycerol and 0.001% (w/v) bromophenol blue) 

Tris buffered saline -Tween (TBS-T):  

150mM NaCl, 10mM Tris Base pH7.4, 0.1% (v/v) Tween-20) 

5X Laemmli sample buffer: 

0.1M Tris-HCl, pH 6.8, 0.35M SDS, 20% (v/v) glycerol, 0.01% bromophenol blue and 10% 

(v/v) β-mercaptoethanol 

Towbin transfer buffer: 

25mM Tris Base, 192mM Glycine, 20% Methanol 

Toluidine blue:  

0.04% (w/v) Toluidine Blue, 0.1M sodium acetate buffer pH 3.75 

5X 0.1M Borate Buffer (pH 8.5): 

30.0g Boric acid, 13.5 ml 10M NaOH, dH20 to 1liter of volume 
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Appendix B: PCR Programs 

 

Table. B.1 | PCR program for generation of sgRNA mRNA. 

Step Temperature Time 
n˚ of 

cycles 

Initial denaturation 98 ˚C 30 seconds 1 

Denaturation 98 ˚C 7 seconds 

25 Primer annealing 50-72 ˚C 15 seconds 

Elongation 72 ˚C 50 seconds 

Final elongation 72 ˚C 2 minutes 1 

Hold 10 ˚C ∞ 1 

 

 

Table. B.2 | PCR program for mice genotyping and cDNA amplification. 

Step Temperature Time 
n˚ of 

cycles 

Initial denaturation 98 ˚C 30 seconds 1 

Denaturation 98 ˚C 5 seconds 

35 
Primer 

annealing 

mCOL9a3 F/R 69 ˚C 

5 seconds 
mcDNA-

COL9a3 F/R 
61 ˚C 

Elongation 72 ˚C 10 seconds 

Final elongation 72 ˚C 5 minutes 1 
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Appendix C: Antibodies 

 

Table. C.1 | List of primary antibodies. 

 

Primary 

Antibody 

Name 

Company Code Raised in Dilution 

Collagen type 

IX 

Professor Frank 

Zaucke, 

University of 

Cologne 

N/A Guinea-pig 

IHC 1:500 

WB 

1:1000 

Matrilin-3 R&D Systems AF3357 
Goat 

polyclonal 
IHC 1:500 

Comp GeneTex GTX14515 Rabbit IHC 1:100 

Collagen type 

X 

Professor Ray 

Boot-Handford, 

University of 

Manchester 

N/A Rabbit 
IHC 

1:500 

Aggrecan 

Professor Tim 

Hardingham, 

University of 

Manchester 

N/A 
Rabbit 

monoclonal 

IHC 

1:500 

BrdU Abcam Ab6326 
Rat  

monoclonal 
IHC 1:100 
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Table. C.2 | List of secondary antibodies. 

 

Secondary 

Antibody Name 
Company Code Raised in Dilution 

Anti-guinea pig 

IgG H+L 

(AlexaFluor® 488) 

Thermo Fisher Scientific A11073 Goat 1:200 

Anti-goat IgG H+L 

(AlexaFluor® 594) 
Thermo Fisher Scientific A11080 Rabbit 1:200 

Anti-rabbit IgG 

H+L 

(AlexaFluor® 594) 

Thermo Fisher Scientific A11037 Goat 1:200 

Anti-rat IgG H+L 

(AlexaFluor® 488) 
Thermo Fisher Scientific A21208 Donkey 1:200 

 

 

 

Fig. C1 | Immunofluorescence secondary antibody controls (no primary antibody). 

 

  



 

224 

 

Appendix D: Tissue processing programme 

 

Table. D.1 | Tissue processing programme.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Step  Solution Time 

1. 70 % Ethanol 6 hours 

2. 90 % Ethanol 45 minutes 

3. 95 % Ethanol 45 minutes 

4. 100 % Ethanol 45 minutes 

5. 100 % Ethanol 45 minutes 

6. 100 % Ethanol 45 minutes 

7. Xylene 30 minutes 

8. Xylene 30 minutes 

9. Xylene 30 minutes 

10. Paraffin wax 1 hour 

11. Paraffin wax 1 hour 
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Appendix E: Supplementary material  

 

RNA quality determination for RNA sequencing 

Before proceeding with RNA sequencing and generating reliable gene expression profiles, 

the quality of the RNA provided by each sample was verified by analysis using an Agilent 

Technologies 2100 Bioanalyzer. This analysis provides an RNA integrity number (RIN) 

value indicative of RNA quality (and the degree of degradation). Samples with RIN > 8 were 

recommended for following RNA sequencing.  

The electropherograms and gel images provided by the Bioanalyzer showed that all samples 

and controls were of good quality. One peak corresponding to the marker and other two 

peaks, of 18S and 28S RNA, were detected for all samples, and no other peaks (indicative of 

RNA degradation) were observed. All RINs assigned were then higher than 9 and all samples 

passed the quality control check and were subsequently processed for sequencing.  

  

 

Fig. E.1 | Results of RNA integrity analysis from ribs chondrocytes. 

RNA samples (n=4 per genotype) quality was checked before sequencing. Two bands 

denoting the 18S and 28S ribosomal subunits were detected on the Agilent 2100 Bioanalyzer 

gel images in all RNA samples and no other bands corresponding to degraded RNA were 

observed. All samples RINs were above 8 and passed quality control. All samples were 

therefore used for RNA sequencing.  
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Sequential protein extraction 

 

 

 

Fig. E.2 | Extractability of some ECM proteins in other mice. Femoral head cartilage was 

sequentially extracted from 3-week old WT and mutant Col9a3Δex3 and Col9a3-/- mice using a series of 

three buffers: Buffer I, II and III. Proteins were separated by SDS-PAGE under reducing and non-

reducing conditions and analysed by Western blotting using antibodies specific to the NC4 domain of 

α1(IX) (Collagen Type IX-NC4), Matrilin-3 (Matn-3) and COMP denotes differences detected in 

protein extraction profiles between mice of different genotypes; Each blot represents one biological 

replicate for each genotype. Proteins molecular weight in kilo Daltons (kDa). 
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Collagen fibrils thickness 

 

 

 

Fig. E.3 | Collagen fibrils thickness. Under polarised light collagen fibrils stained with 

picrosirius red appear red, orange yellow or green depending on the thickness of the fibril, decreasing 

in thickness from red to green. Fibrils diameter is similar to WT in Col9a3Δex3 but slightly reduced in 

Col9a3-/- after picrosirius staining on 3-week old mice tibiae.  
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Fig. E4 | Western blot of cartilage protein probed with antibody against α1 (IX). Image 

showing full blot of results section 3.7 Fig. 3.9. MW= molecular weight. Blot repeated four times 

using four different biological replicates and no indication of lower protein amount was noticed in 

Col9a3Δex3, however no loading control was performed.   
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