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Abstract  

90% of people living with HIV (PLWH) in the UK are now on treatment in the form of antiretroviral 

therapy (ART) and 87% of these PLWH are virally supressed. Due to the success of ART, PLWH are 

now living longer, and the mean age of PLWH in the UK is now 48 years (Public Health England, 

2019).  

Despite successful ART, which has seen an increase in the quality of life for PLWH, some PLWH are 

living with an excess of frailty and reduction in physical function, as well as an increased 

susceptibility to acquiring age-related comorbidities (Guaraldi et al., 2011; Kooij et al., 2016; 

Desquilbet et al., 2007; Desquilbet et al., 2009; Brothers et al., 2017). This phenomenon is 

understood to be highly heterogeneic, but while many of the risk factors are known, the exact 

pathological basis remains poorly understood. This could be due to the fact that there has been a 

lack of studies investigating the cellular and molecular causes in functionally relevant tissues such as 

skeletal muscle.   

Mitochondrial dysfunction is one of the nine cellular and molecular hallmarks of ageing 

characterised by Lopez-Otin (Lopez-Otin et al., 2013). Mitochondrial defects are increased in HIV 

infection, despite viremia control as a result of ART (Payne et al., 2011), and PLWH have a high 

prevalence of mitochondrial-associated toxicities such as myopathy and peripheral neuropathy 

(Selvaraj et al., 2014; Cupler et al., 1995). These toxicities are strongly associated with nucleoside 

reverse-transcriptase inhibitors (NRTIs) such as zidovudine (AZT), zalcitabine (ddC), stavudine (d4T) 

and didanosine (ddI) (Dalakas et al., 1990; Arnaudo et al., 1991; Lim & Copeland, 2001; Lewis, 2003). 

However, mitochondrial dysfunction has also been demonstrated in individuals treated with newer 

antiretrovirals with a safter profile and low mitochondrial polymerase binding affinity, such as 

tenofovir disoproxil fumarate (TDF) (Samuels et al., 2017). 

Given the close association between mitochondrial dysfunction and ageing (Lopez-Otin et al., 2013), 

and mitochondrial dysfunction in HIV infection (Erlandson et al., 2013; Payne et al., 2011; Chou et 

al., 2013), it is more than plausible to suggest that mitochondrial dysfunction plays a significant role 

in the accelerated ageing seen in PLWH. Due to the fact that there is a lack of concise studies which 

have investigated the role of mitochondrial dysfunction in ageing PLWH, I employed a wide range of 

cellular and molecular techniques to study mitochondrial dysfunction and other age-related 

pathology in skeletal muscle of older PLWH. This was correlated with clinical and treatment data, as 

well as physical function and body composition. 
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In addition, techniques established for the study of mitochondrial dysfunction in skeletal muscle 

were employed in a pilot study of mitochondrially-mediated renal disease in PLWH.  
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Chapter 1 – Introduction 

1.1 Human immunodeficiency virus 

1.1.1 Background and history 

The human immunodeficiency virus (HIV) is a lentivirus within the Retroviridae family (Luciw, 1996) 

that is classified into HIV type I (HIV-1) and HIV type 2 (HIV-2). Due to the fact that HIV-1 is much 

more prevalent and significant for this work it will hereby be referred to as HIV in this thesis for 

brevity.   

According to epidemiological and phylogenetic studies, HIV was first introduced into humans 

sometime between 1920-1940. HIV-1 evolved from non-human primate immunodeficiency viruses 

from the Central African chimpanzees (SIVcpz), most likely in Kinshasa in the Democratic Republic of 

Congo. In contrast, HIV-2 was introduced by the West African sooty mangabeys (SIVsm) (Gao et al., 

1999; Sharp & Hahn, 2011; Faria et al., 2014).  

HIV was first reported to be the causative agent of Acquired Immune Deficiency Syndrome (AIDS) in 

1983, two years after AIDS was recognised as a new disease (CDC, 1981; Barre-Sinoussi et al., 1983; 

Popovic et al., 1984). This means that HIV spread for around 50 to 70 years before it was recognised.  

1.1.2 Epidemiology 

By the end of 2019, an estimated 38 million (range 31.6-44.5 million) people are thought to be HIV 

positive (HIV+), with ~690,000 HIV-related deaths occurring throughout that year. Approximately 

three quarters of HIV+ individuals reside in Sub-Saharan Africa, and approximately two-thirds of 

newly diagnosed cases occur in this region. Since the beginning of the HIV/AIDS epidemic roughly 78 

million individuals have contracted HIV, with about 33 million individuals dying as a result (WHO, 

2020). Importantly, the prevalence of HIV-related mortalities has declined since 1999, largely due to 

the advent of effective antiretroviral therapy (ART) (GDB 2017 HIV collaborators, 2019). 

In 2018, there were 96,142 individuals who were HIV+ and receiving care in the UK, with 4453 newly 

diagnosed PLWH. The median age of PLWH in the UK is currently 48 years, and this number is 

increasing (Public Health England, 2019). 
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1.1.3 Genetics  

The HIV genome consists of two identical single-stranded viral RNA molecules enclosed within a viral 

capsid core (Figure 1.1b). Once inside of the target cell, the viral RNA is reverse transcribed into 

double-stranded proviral DNA (HIV provirus) where it integrates into the human genome.  

The HIV genome is flanked on either side by long terminal repeat (LTR) sequences, in which the 5’ 

LTR acts as the promoter for viral gene transcription (Figure 1.1a). Following down the reading frame 

in a 5’ to 3’ fashion, the first gene is the gag gene, which is responsible for encoding outer core 

membrane protein (MA/p17), capsid protein (CA/p24), nucleocapsid protein (NC/p7), and a nuclear 

acid stabilising protein (p6). The next gene on the reading frame is the pol gene, which encodes the 

protease (PR/p12), reverse transcriptase (RT/p51), RNAase H (p15) and integrase (IN/p31). Next, the 

env gene encodes the two envelope glycoproteins gp120 (SU) and gp41 (TM). In addition to these 

genes, the viral genome encodes various regulatory proteins. These include Tat and Rev, which are 

required for the initiation of replication, as well as Nef, Vif, Vpr and Vpu, which are required for viral 

replication, budding and pathogenesis respectively (Levy, 2007; Sauter et al., 2012). 

 

 

Figure 1.1 - HIV genome and particle. (A) The HIV genome is encoded on a single strand of RNA. The gag gene encodes 
viral capsid proteins; pol encodes the viral reverse transcriptase (HIV-RT); env encodes the HIV envelope-associated 
proteins. vif, vpr, tat and rev encode the regulatory proteins. (B) Schematic of the HIV virus particle. 

A 

B 
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1.1.4 HIV pathogenesis  

HIV is transmitted as a cell-free or cell-associated virus, most commonly in semen or at mucosal 

surfaces. Transmission can also occur via injection drug use, through the placenta to the foetus, or 

exposure to infected blood products (Moir et al., 2011).  

Initially, HIV-1 particles interact with the CD4 receptor and either the CXCR4 co-receptor on the 

plasma membrane of T cells, or the CCR5 co-receptor on macrophages and some T lymphocytes  

(Naif, 2013) (Figure 1.2). Once within the cytoplasm, the viral RNA-encoded genome is reverse-

transcribed into linear proviral DNA by HIV-1 reverse transcriptase (HIV-RT). The proviral DNA is then 

integrated into the host nuclear DNA by the viral integrase, which catalyses 3’ end processing and 

viral DNA strand transfer (Sato et al., 2006). Proviral mRNA species are then transcribed following 

the integration of proviral DNA into the host cell’s nuclear DNA. mRNA destined to encode 

regulatory proteins are spliced in the nucleus, while mRNA encoding structural proteins are 

transported into the cytoplasm where they are translated and packaged into new HIV particles along 

with unspliced proviral mRNA.  

If there are no pre-existing immune pressures, the HIV virus will disseminate rapidly following 

transmission and will exponentially increase viremia (viral RNA) by infecting resting CD4+ T cells. At 

this stage (1-2 days post infection) the virus can be detected in regional lymphatic tissue (Maher et 

al., 2005). 

Shortly afterwards (5-6 days post infection), activated CD4+ T cells are infected and the HIV virus 

rapidly migrates to gut-associated lymphoid tissue (GALT) via draining lymph nodes, where it induces 

the depletion of memory CD4+ T cells (particularly the CD4+, CCR5+ subset) and acts as the major site 

for HIV replication (Guadalupe et al., 2003). After 3-6 weeks post infection the humoral response is 

activated, initiating the onset of clinical symptoms such as fever, malaise, fatigue, rash, acute 

neuropathy and gastrointestinal abnormalities (Levy, 2007; Burin des Roziers et al., 1995). This 

symptomatic phase then lasts roughly 2-6 weeks before the onset of an asymptomatic phase, where 

the viral load can drop from 105-1010 copies/ml down to as low as 102 copies/ml. 

If left untreated, the pathogenesis of HIV infection progresses and CD4 count becomes gradually 

depleted until eventually a critical CD4 count threshold of 200 copies/l is reached. At this point, the 

individual’s immune system is severely weakened, and the individual has a significantly increased 

susceptibility to acquiring opportunistic infections and neoplasms. Here, the individual has 

progressed to AIDS. The progression from initial HIV infection to the development of AIDS is highly 

variable, and can range from 2-25 years (Mocroft et al., 1996; Iwuji et al., 2013). 
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Figure 1.2 – Replicative life cycle of HIV infection. Schematic depicting the various stages of the HIV infection lifecycle alongside the point of action of various antiretroviral classes. 
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1.2 Antiretroviral therapy 

At present, there is no available treatment that completely eradicates the HIV virus in an infected 

individual. As such, the most effective option for reducing morbidity and mortality in people living 

with HIV (PLWH) is through long-lasting viral suppression, which is achieved through ART.  

1.2.1 History of ART 

In 1987 the first antiretroviral (ARV) to be approved was zidovudine (AZT), which was prescribed as a 

monotherapy (FDA, 1987). Since then, more than 30 individual ARVs of various classes have been 

approved and rolled out for treatment, and one dual combination ARV has been approved for the 

prevention of HIV infection (Gulick, 2018; Clayden, 2018) (Figure 1.3). In addition, fixed-dose 

combination (FDC) tablets with a long half-life have reduced the burden of ART to once or twice daily 

dosing.  

The early ARVs of the first half of the 90s were prescribed as mono- or dual-therapies. Many were 

overtly toxic whilst not being particularly potent. In response, highly active and better tolerated 

ARVs were developed and began to be prescribed as triple drug regimens, often with FDCs. Triple 

combination ART where ARVs from at least two different classes are used is termed ‘combination 

antiretroviral therapy’ (cART) or ‘highly active antiretroviral therapy’ (HAART) (WHO, 2016).  

By the end of 2019, the global number of PLWH who are on ART is approximately 25.4 million, which 

is ~67% of the HIV+ population (WHO, 2020). The vast majority of untreated PLWH reside in less 

developed countries. Importantly, in the UK, 97% of diagnosed PLWH were on ART by the end of 

2018 (Public Health England, 2019). 
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Figure 1.3 – Evolution of ARV development.  
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1.2.2 Classes of ART and method of action 

There are six main classes of ART drugs, each targeting different stages of the HIV-1 life cycle. These 

are: nucleoside reverse transcriptase inhibitors (NRTIs); protease inhibitors (PIs); non-nucleoside 

reverse transcriptase inhibitors (NNRTIs); integrase inhibitors (INIs); CCR5 antagonists, and fusion 

inhibitors (FIIs) (Arts & Hazuda, 2012). 

NRTIs are prodrugs that exert their suppressive effects by inhibiting transcription of viral RNA via 

chain termination. Chain termination can occur during either RNA-dependant viral DNA synthesis or 

DNA-dependant viral DNA synthesis (Richman, 2011). In developed countries, abacavir (ABC), 

emtricitabine (FTC) and lamivudine (3TC) are the most commonly used NRTIs. Didanosine (ddI), 

stavudine (d4T), zalcitabine (ddC) and zidovudine (AZT) are older NRTIs that are no longer in use in 

developed countries due to their associated toxicity, although some are still in use in less developed 

countries and regions such as sub-Saharan Africa. Tenofovir disoproxil fumarate (TDF) and tenofovir 

alafenamide (TAF) are a nucleotide analogue rather than nucleosides, due to the phosphate group 

being located on the nitrous base. They are therefore sometimes referred to as NtRTIs, and both are 

in common use globally.  

NNRTIs are another class of ARV that exert their suppressive effects by inhibiting HIV-RT. As opposed 

to NRTIs which inhibit polymerase activity by forming a hydrophobic pocket over the active site, 

NNRTIs are allosteric inhibitors and so induce the formation of a hydrophobic pocket proximal to the 

active site – indirectly reducing polymerase activity (Kohlstaedt et al., 1992; Tantillo et al., 1994). 

Currently used NNRTIs include efavirenz (EFV), etravirine (ETR), nevirapine (NVP), doravirine (DOR) 

and rilpivirine (RPV). 

PIs are responsible for inhibiting the viral protease enzyme. The HIV-1 protease cleaves viral gag and 

gag-pol polyprotein precursors following transcription and during viral maturation (Park & Morrow, 

1993). Therefore, inhibition of protease will result in a decrease in the formation of new HIV virus 

particles. Atazanavir (ATV) and darunavir (DRV) are the most commonly used PIs, but other PIs which 

were more commonly used in the past include amprenavir (APV), fosamprenavir (FPV), indinavir 

(IDV), lopinavir (LPV), nelfinavir (NFV), ritonavir (RTV), saquinavir (SQV) and tipranavir (TPV). 

Integrase inhibitors are the newest and most mechanistically complex class of ARVs. They act by 

sequestering and inhibiting the viral integrase active site magnesiums, whilst simultaneously forming 

a hydrophobic group to block the proviral DNA binding to integrase (Grobler et al., 2002). 

Dolutegravir (DTG), elvitegravir (EVG), bictegravir (BIC) and raltegravir (RAL) are currently 

administered integrase inhibitors. 
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Enfuviritide (T20) is the only FII currently available. Fusion inhibitors block the fusion of HIV-1 

particles with target cells by inhibiting the interaction between the two homologous domains of the 

viral gp41 protein, which are essential for HIV pathogenesis (Kahle et al., 2009). Unfortunately, T20 

has a low antiviral activity and easily induces resistance. It can only be administered by 

subcutaneous injection.  

CCR5 antagonists work by binding and inducing the stabilisation of a CCR5 receptor conformation 

that is not recognised by either HIV-1 CCR5 agonists. They do this by binding to hydrophobic pockets 

present in the transmembrane helices of CCR5 (Dragic et al., 2000; Tsamis et al., 2003). Maraviroc 

(MVC) and ibalizumab (IBZ) are the only currently licenced CCR5 antagonists. 

1.2.3 Future perspectives of ART research 

Since 2010 there have been three international conferences on ARV drug optimisation – CADO-1 in 

2010, CADO-2 in 2013 and CADO-3 in 2017. At the most recent, CADO-3 conference, the goal was to 

better define the research necessary to optimise second- and third-line therapy (WHO, 2016). Whilst 

the general success of ART makes identifying improvements difficult, the top short (1-2 years) and 

medium term (2-5 years) priorities for the future of ART was identified as being the improvement 

and increased usage of TAF and DTG ARVs in cART globally. These are seen as being the current ARVs 

with the greatest potency and the lowest toxicity. The long term (>5 years) priorities were identified 

as being the improvement of long-acting formulations of new compounds, as well as the 

development of capsid and maturation inhibitors (Vitoria et al., 2018; WHO, 2016). 

As of the beginning of 2019 there were six new ARVs in phase III studies. These include four entry 

blockers, a NNRTI and an integrase inhibitor (Vitoria et al., 2019). 
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1.3 Biology of ageing  

Ageing is characterised by the progressive accumulation of molecular and cellular damage leading to 

a deterioration in replicative and regenerative processes in tissue, and an increased susceptibility to 

acquiring age-associated diseases such as cancer and diabetes (Kirkwood, 2005). 

1.3.1 Evolutionary theories of ageing: 

The mutation accumulation theory (Medwar, 1952) postulates that ageing is the result of random 

mutations which accumulate in the genome with increasing age, contributing to physical 

deterioration. 

The antagonistic pleiotropy theory (Williams, 1957) suggests that organismal ageing is caused by 

pleiotrophic genes (genes with multiple phenotypic effects). These pleiotrophic genes provide a 

favourable advantage for reproduction early in life but become harmful and increase the rate of 

ageing later in life. 

Thomas Kirkwood’s Disposable Soma theory (Kirkwood, 1977), posits that ageing is caused by the 

physiological stand-off between somatic maintenance and investment in biological functions such as 

reproduction, with over commitment of resources to one resulting in decline of the other. 

1.3.2 Molecular ageing and the mitochondrial theory of ageing 

During the natural course of ageing, somatic (acquired) mutations accumulate in the mitochondrial 

genome. However, it is unknown whether these mutations are a consequence of the ageing process 

itself or a causative driver of ageing. 

The mitochondrial free radical theory of ageing (MFRTA) (Harman, 1965) states that an increase in 

the production of reactive oxygen species (ROS) due to age-related mitochondrial dysfunction 

causes further mitochondrial deterioration and global cellular damage. At low levels, ROS are 

essential for intracellular signalling, but become toxic at increased levels as they damage many 

lipids, proteins and nucleic acids - increasing the rate of mutagenesis (Koopman et al., 2010). 

According to the MFRTA, as organisms age, the accumulation of mitochondrial DNA (mtDNA) 

mutations increases, leading to respiratory chain abnormalities and an increase in ROS leakage. This 

in turn further increases the accumulation of mtDNA mutations, and so on in a ‘vicious cycle’ 

(Harman, 1972). However, if this were the case the propagation of mtDNA mutations would be 

exponential, which has been dismissed by more recent extensive studies (Tengan et al., 1997; Mott 
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et al., 2001; Kennedy et al., 2013; Itsara et al., 2014). In addition, in vivo and in vitro studies have 

demonstrated that manipulation of ROS has no effects on ageing or maximal lifespan (Ristow, 2011).  

In 2004 Trifunovic and colleagues developed a knock-in mouse model deficient in the proof-reading 

domain of the mitochondrial polymerase ꝩ. Subsequently, mice with this genotype experience an 

accumulation of age-related mtDNA point mutations and deletions, leading to the onset of a 

premature ageing phenotype. These mice exhibit a reduced lifespan, weight loss, osteoporosis, 

anaemia, reduced fertility, alopecia, loss of subcutaneous fat, kyphosis, and heart enlargement 

(Trifunovic et al., 2004). Taken together, the development of this mouse model has strengthened the 

causal link between mtDNA mutations, mitochondrial dysfunction and ageing, and has helped 

further understanding in this field.  

More recently, López-Otín et al. (2013) characterised ageing into 9 cellular and molecular hallmarks: 

loss of proteolysis, telomere attrition, genomic instability, epigenetic alterations, altered intercellular 

communication, stem cell exhaustion, cellular senescence, deregulated nutrient signalling and 

mitochondrial dysfunction – further solidifying the significant role mitochondrial dysfunction plays in 

the multifactorial process of ageing (López-Otín et al., 2013). This thesis primarily focuses on the 

impact of mitochondrial dysfunction in ageing. 
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1.4 Mitochondrial biology  

1.4.1 Origins of mitochondria 

Mitochondria are dynamic double-membraned organelles present in nearly every nucleated 

eukaryotic cell, and are significantly involved in a wide range of cellular processes such as energy 

production, haem synthesis, regulation of apoptosis and calcium handling, among others.  

It is thought that mitochondria were once a prokaryotic species that become engulfed in eukaryotic 

cells as the result of an endosymbiotic relationship (Sagan, 1967). Whilst the exact mechanism 

behind this theory remains unknown, there are two prevalent mechanisms which have been 

proposed.  

The first hypothesis is based on the small subunit ribosomal RNA (rRNA) phylogenetic tree and posits 

that a nucleated archezoa host phagocytosed an α-protobacterial endosymbiont, which was 

subsequently transformed into a mitochondrion (Yang et al., 1985; Cavalier-Smith et al., 1987). This 

hypothesis is commonly referred to as the ‘archezoan hypothesis’. The second hypothesis, termed 

the ‘symbiogenesis hypothesis’ suggests that the endosymbiotic event entailing a physical and 

metabolic fusion occurred before the diversion of eukaryotes from prokaryotes, and this event then 

generated the ancestor of the eukaryotic cell. This was then followed by another divergence and 

development of a nucleus to form a eukaryotic cell (Martin & Muller, 1998).  

Both hypotheses have plausible aspects, although it is the archezoan hypothesis which is considered  

the more plausible, due to the rRNA phylogenetic tree evidence (Roger et al., 2017).  

1.4.2 Mitochondrial structure  

As mentioned above, mitochondria are double-membrane structures that lie in the cytoplasm of 

most eukaryotic cells. The outer mitochondrial membrane (OMM) surrounds the inner 

mitochondrial membrane (IMM), which in turn encloses the mitochondrial matrix. The space 

between the OMM and IMM is termed the intermembrane space (IMS) (Figure 1.4).  

The structure of the mitochondrion was first described by Palade (1953) through the utilisation of 

electron microscopy (EM). In this study, Palade noted the characteristic pattern of convoluted and 

pleomorphic IMM invaginations repeated in mitochondria in what was termed the ‘baffle’ model of 

cristae structure (Palade, 1953). The advancement of microscopy in later years has since disproved 

this theory by providing evidence that cristae are in fact connected to the IMS by tubular cristae 

junctions (Daems & Wisse, 1966; Perkins et al., 1997).  
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Figure 1.4 – Mitochondrial ultrastructure. (A) Schematic depicting the OMM and IMM, as well as the IMS, cristae, matrix, 
mtDNA and OXPHOS complexes. (B) Electron micrograph (EM) image. (Scale bar = 500nm). EM image courtesy of Dr Amy 
Vincent. 

  

A 
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The double membrane of the mitochondrion is critical for the regulated transport of ions and 

metabolites into and out of the mitochondria. Here, due to the smooth porous structure of the 

OMM, ions and small uncharged molecules (up to ~5,000 Da) can diffuse into the IMS. Larger 

molecules such as proteins as well as hydrophilic molecules are able to pass into the IMS through 

protein channels such as the voltage-dependant anion channel (VDAC) or translocase of the outer 

mitochondrial membrane (TOMM) (Ponnalagu et al., 2016). In addition to its role in molecule 

transport, the OMM is a platform for cell signalling convergence as well as being responsible for 

forming the interface with other subcellular organelles and compartments such as the endoplasmic 

reticulum (ER) and lysosomes.  

In the immediate interior, the IMM encloses the matrix space, and can be divided into two distinct 

domains connected by cristae junctions – the inner boundary membrane (IMB) and the cristae 

membrane (CM). Importantly, the IMM houses the five complexes required for oxidative 

phosphorylation (OXPHOS) and so is the site of OXPHOS and protein synthesis (Vogel et al., 2006). 

Cristae organisation is modulated in order to maximise conditions for bioenergetic processes. This 

includes tightening of junctions prior to respiration (Demongeot et al., 2007; Hackenbrock et al., 

1966; Mannella et al., 2001). In addition, during cell death cristae undergo morphological changes 

termed cristae remodelling, which promotes the redistribution and release of cytochrome c 

(Scorrano et al., 2002). Compared to the OMM, the IMM is far less permeable and so transport in 

and out of the IMM requires more stringent regulation. To highlight the difference in membrane 

permeability, even small solutes such as ions cannot pass through the IMM without the assistance of 

inner mitochondrial membrane translocases (TIMM) (Kulawiak et al., 2013).  

The mitochondrial matrix is the site where many important biochemical processes such as the 

tricarboxylic acid cycle (TCA) and iron-sulphur (Fe-S) cluster formation occurs. In addition, the 

mitochondrial matrix contains many copies of the mitochondrial genome (mtDNA), which are 

packaged in the form of circular nucleoids, as well as the transcription and translation machinery 

required to undertake these processes.   
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1.4.3 Mitochondrial dynamics 

The multifaceted and heterogenic involvement of mitochondria in a wide range of cellular processes 

is underscored by the vast morphological variability of the organelle. It has long been recognised 

that mitochondrial shape, size, length and organisation can vary between cells and in response to 

certain metabolic and cellular signals (Giacomello et al., 2020). In addition, mitochondria are known 

to constantly undergo fission and fusion processes in order to adapt to cellular and tissue demands 

(Bereiter-Hahn & Voth, 1994). The frequency of these fission and fusion processes is tightly 

regulated, as metabolic and cellular demands are constantly shifting. Mitochondrial fission is 

involved in the selective removal of damaged mitochondria (mitophagy), as well as distribution of 

the organelle, whereas fusion is essential for the stabilisation of mtDNA (Chen et al., 2010), 

adenosine triphosphate (ATP) production (Yao et al., 2019) and exchange of matrix components to 

mitigate mitochondrial stress (Legros et al., 2002). 

Collectively, the processes that allow the alterations to mitochondria are known as mitochondrial 

dynamics. Disruptions of mitochondrial dynamics can lead to several human pathologies such as 

optic atrophy (Alexander et al., 2000; Delettre et al., 2000), Parkinson’s Disease (Van Laar & Berman, 

2009) and Charcot-Marie-Tooth disease (Palau et al., 2009). 

1.4.3.1 Fusion  

Mitochondrial fusion is the process whereby two mitochondria fuse together to form a single 

mitochondrion. This process is a controlled, double membrane fusion event governed by several 

proteins of the dynamin-related (DRP) family of large GTPases. OMM fusion is performed by 

mitofusins 1 and 2 (MFN1 and MFN2) (Zuchner et al., 2004), whilst IMM fusion is undertaken by 

optic atrophy 1 (Opa1) (Meeusen et al., 2006) (Figure 1.5). 

MFN1 and MFN2 have a high degree of structural homology, with both containing two 4,3 

hydrophobic heptad repeats (HR1 and HR2) (Koshiba et al., 2004), and both being able to form 

homo- or heterodimers (Chen et al., 2005). However, genetic and biochemical studies have 

demonstrated that the two mitofusins have different functions and both are required for 

mitochondrial fusion. Whilst MFN1 is the core component of the fusion process together with Opa1, 

the exact role of MFN2 is unknown, although it has been shown to be associated with interactions 

with other organelles such as the endoplasmic reticulum (ER) (Cipolat et al., 2004; Ishihara et al., 

2004; de Brito et al., 2008). During OMM fusion, MFN1 acts as a tether between the two fusing 

mitochondria, where adjacent HR2 domains dimerise in a GTP-dependant fashion to induce 

membrane clustering (Qi et al., 2016).  
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As mentioned above, Opa1 is the driver of IMM fission. Opa1 resides in the IMM as well as the IMS,  

and exists as one of two isoforms – L-Opa1, which is a membrane-bound protein that protrudes into 

the IMS in order to promote tethering to the IMM from the adjacent fusing mitochondria, and S-

Opa1, which is thought to regulate cristae structure during fission (Mishra et al., 2014; DeVay et al., 

2009; Lee et al., 2017). The balance between the two isoforms is required for effective fusion to 

occur.  

 

 

Figure 1.5 – Mitochondrial fusion. Initially, the HR2 domain of MFN1/2 (green circle) docks to an adjacent HR2 domain of 
another MFN1/2, inducing a conformational change which drives the GTP-dependant hydrolysis of MFN1/2, leading to the 
fusion of the two OMMs. In the IMM, Opa1 interacts with cardiolipin in trans to fuse the IMMs from the adjacent 
mitochondria.  
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1.4.3.2 Fission 

Mitochondrial fission is the process by which a mitochondrion divides into two mitochondria. Fission 

is primarily carried out by the cytosolic Drp1 (Smirnova et al., 2001), which translocates to the 

mitochondria where it binds to OMM receptors: mitochondrial fission factor (MFF), mitochondrial 

fission protein 1 (FIS1) and mitochondrial dynamics protein of 49 kDa (MID49) (Otera et al., 2010; 

James et al., 2003; Loson et al., 2013). Next, GTP-mediated binding induces a conformational change 

and formation of linear polymers on the OMM. Through GTP hydrolysis, these polymers shorten to 

cause constriction of the mitochondrial membranes, ultimately leading to membrane scission (Mears 

et al., 2011; Kalia et al., 2018) (Figure 1.6). 

In addition to the important role of the receptor proteins FIS1, MID49 and MFF, the ER has been 

shown to play an essential role in membrane constriction. Here, ER wraps around a mitochondrion 

to form mitochondria-ER tethers, initiating pre-recruitment mitochondrial constriction (Friedman & 

Nunnari, 2014). This ER-mediated constriction reduces the diameter of membranes to 30-70nm, 

which is not sufficient for membrane scission, and so Drp1 recruitment is required (Bohuszewicz & 

Low, 2018; Lee et al., 2016). 



17 
 

 

Figure 1.6 – Mitochondrial fission. Upon Drp1 dephosphorylation by calcineurin, it is translocated to the mitochondria 
where it binds to its receptors (Fis1). Drp1 then oligomerises to induce GTP-hydrolysis dependant membrane constriction.  
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1.4.4 Mitochondrial stress response  

1.4.4.1 Biogenesis  

Mitochondrial biogenesis is a tightly regulated mechanism whereby mitochondria increase their 

mass and mtDNA copy number in order to adapt to cell-specific bioenergetic requirements. The 

major regulator of mitochondrial biogenesis is the peroxisome proliferator-activated receptor- 

(PPAR) coactivator-1 (PGC-1). PGC1 is a co-transcriptional regulation factor that activates 

various transcription factors such as nuclear respiratory factor 1 and 2 (NRF-1/2), oestrogen related 

receptor  (ERR), glucocorticoid, and PPAR. These transcription factors ultimately promote the 

expression of the mitochondrial transcription factor A (TFAM) (Wu et al., 1999), which is responsible 

for promoting the transcription and replication of mtDNA (Virbasius & Scarpulla, 1994). 

As depicted in Figure 1.7, PGC-1 is activated by AMP-activated protein kinase (AMPK), which is the 

master regulator of intracellular bioenergetics in response to acute crises in energy requirement 

(Hardie, 2007). Here, an increased AMP:ATP and NAD+:NADH ratio is detected by AMPK and Sirtuin 1 

(SIRT1), which subsequently leads to PGC-1 phosphorylation and activation (Canto et al., 2009).  

In addition to AMPK, nitric oxide (NO) (Nisoli et al., 2003), calcium-dependant protein kinase IV 

(CaMKIV) (Wu et al., 2000; Wu et al., 2002), Calcineurin (Chin et al., 1998; Ryder et al., 2003), and 

p38 mitogen-activated protein kinase (MAPK) (Boppart et al., 2000) have also been shown to be 

regulators of mitochondrial biogenesis in humans.  

 

Figure 1.7 – Mitochondrial biogenesis signalling pathway. PGC-1  is the master regulator of mitochondrial biogenesis by 

promoting the transcription of various nuclear transcription factors such as NRF-1/2, PPAR and ERR. In the event of 

increased Ca2+ levels, CaMKIV is activated and then subsequently promotes the activation of PGC-1.. In the event of energy 
deprivation (e.g. after exercise) AMP:ATP and NAD+:NADH ratios are increased and detected by AMPK and SIRT1 
respectively.   
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1.4.4.2 Mitophagy 

The selective degradation of irreparably damaged mitochondria, termed mitophagy, is an essential 

cellular quality control mechanism required to maintain bioenergetics. Impairment of mitophagy is 

associated with mitochondrial dysfunction, with consequences of cellular and tissue damage, and 

eventual manifestation of pathology. In particular, abnormalities in mitophagy are commonly age-

related and so are associated with geriatric conditions such as Parkinson’s Disease, cardiovascular 

problems, metabolic disorders and cancer (Palikaras et al., 2018). 

Mitophagy is stimulated by several factors and can be classified as being either ‘basal mitophagy’, 

which is the continued process of mitophagy required for removal of old and damaged mitochondria 

(Palikaras et al., 2018), ‘stress-induced mitophagy’, which is induced by factors such as hypoxia or 

starvation (Liu et al., 2012; Kanki et al., 2009), or ‘programmed mitophagy’, which is required for 

development in several cell types (Sandoval et al., 2008; Schweers et al., 2007; Novak et al., 2010) or 

preventing paternal inheritance of mtDNA (Al Rawi et al., 2011; Rojansky et al., 2016). 

There are several mechanisms of mitophagy that are utilised in different tissues, and the factors that 

regulate mitophagy can be classified as either ‘ubiquitin-dependant’ or ‘ubiquitin-independent’ 

(Khaminets et al., 2016). 

Ubiquitin-dependant mitophagy progresses down the Parkin-PINK1 (phosphatase and tensin 

homologue (PTEN)-induced putative kinase 1) pathway (Pickles et al., 2018) (Figure 1.8). In basal 

conditions, PINK1 is imported into the IMS and rapidly cleaved and degraded by several proteases 

such as presenilin-associated rhomboid-like protein (PARL) (Jin et al., 2010). In the event of 

mitochondrial stress, membrane dissipation prevents the IMS translocation of truncated PINK1, and 

it is instead stabilised on the OMM where it is autophosphorylated (Harper et al., 2018; Sekine & 

Youle, 2018). PINK1 phosphorylation then initiates the recruitment of the E3 ubiquitin ligase Parkin, 

where it is subsequently phosphorylated and activated by PINK1 (Lazarou et al., 2012). In addition to 

phosphorylating Parkin, PINK1 also phosphorylates ubiquitin (Ub) and poly-Ub chains on several 

proteins on the OMM of mitochondria, thereby targeting them for degradation by the 

autophagosome (Chan et al., 2011; Sarraf et al, 2013). Additionally, PINK1 indirectly activates Drp1 

activity to promote mitochondrial fission and enhance autophagic degradation of the mitochondria 

(Pryde et al., 2016), as well as targeting MFNs for proteasomal degradation, thus preventing 

mitochondrial fusion (Tanaka et al., 2010). 

Aside from Parkin-mediated mitophagy, several other molecules can regulate ubiquitin-dependant 

mitophagy, such as Gp78, MUL1 and SMURF1 (Orvedahl et al., 2011). These molecules induce the 
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ubiquitination of OMM proteins in a similar way to Parkin ubiquitination, thereby anchoring the 

autophagosome to damaged mitochondria via their autophagosomal light chain (LC3). 

In contrast to ubiquitin-dependant mitophagy, mitochondrial proteins themselves can induce 

mitophagy by acting as mitophagy receptors. Again, these molecules can attract and bind the 

autophagosome through LC3-interacting region (LIF) motifs (Gatica et al., 2018). Examples of these 

mitophagy-inducing OMM proteins include NIP3-like protein X (NIX) and BCL2 interacting protein 3 

(BNIP3) (Quinsay et al., 2010; Zhang et al., 2016). 

 

 

Figure 1.8 – PINK1-Parkin mitophagy pathway. Damaged mitochondria have low membrane potential and are separated 
from the mitochondrial network. Under normal conditions, truncated PINK1 is cleaved and degradated by PARL and other 
proteases. During mitophagy, PARL protease activity is inhibited and truncated PINK1 localises on the OMM where it 
recruits and stabilises Parkin. Next, Parkin mediates the ubiquitination of OMM proteins, which subsequently initiates the 
recruitment of p62 and autophagosome formation. 
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1.4.4.3 Mitochondrial protein homeostasis 

Mitochondria contain their own genome, which encodes 37 essential genes (detailed further in 

Section 1.4.7) important for mitochondrial homeostasis. The other essential proteins and molecules 

required to maintain mitochondrial function, are encoded by the nucleus (nDNA), and are 

translocated into the mitochondria. The majority of these proteins arrive in a post-translational 

manner through TOM complexes on the OMM, and TIM complexes in the IMM. They then require 

post-transcriptional modifications and guidance to the right mitochondrial sub-compartment, which 

is commonly performed by Hsp70 (Sickmann et al., 2003; Young et al., 2003) (Figure 1.9).  

The next step after nDNA-encoded protein importation and sorting is maturation, which is required 

for the assembly of the proteins into functional complexes. For the majority of these proteins the 

first step is proteolytic removal of the pre-sequence (Mossmann et al., 2012). This action is 

performed by the mitochondrial membrane protease (MPP), which cleaves the N-terminal pre-

sequence, followed by additional cleavage by Icp55 and Oct1 (Vogtle et al., 2011). Another 

important processing event is undertaken on one of the subunits of the mitochondrial ribosome, 

MrpL32, performed by the m-AAA protease, which is part of the AAA+ family of proteases (Bonn et 

al., 2011).  

Following maturation, the mitochondrial proteins require assembly into functional multimeric 

complexes. This process is performed by a range of chaperones and co-chaperones that reside in the 

mitochondrial matrix such as mtHsp70 and its co-chaperones, mtHsp60 and mtHsp10 (Lill et al., 

2012). Whilst the exact process of protein assembly is unknown, it is suspected that protein folding 

requires disulphide bond formation (Banci et al., 2009; Weckbecker et al., 2012). 

 

Figure 1.9 – Mitochondrial protein import and assembly. Nuclear-encoded unfolded proteins are translocated to the 
mitochondria where they are imported via TOM and TIM complexes into the mitochondrial matrix. Once imported, the 
mitochondrial chaperone mtHsp70 mediates the assembly and folding of the proteins into functional complexes.  
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1.4.4.4 Mitochondrial protein degradation and stress response 

As with regular cellular homeostasis, misfolded, damaged, or non-assembled proteins in the 

mitochondria pose a serious threat to mitochondrial homeostasis and have been implicated in 

various pathologies such as Parkinson’s and Alzheimer’s disease (Kong et al., 2018). Protein damage 

can be induced by stressors such as reactive oxygen species (ROS), or alternatively by deleterious 

mtDNA mutations (Corral-Debrinski et al., 1991; Ahlqvist et al., 2012; Ross et al., 2013). 

The mitochondrial proteome has an extremely high turnover rate, with an estimated 6-12% of the 

whole proteome being degraded during each generation (Augustin et al., 2005). As a result, 

mitochondria contain several quality control mechanisms in order to deal with the threat of 

proteotoxicity. The first of these processes is a highly conserved cross-membrane proteolytic system 

which removes and destroys abnormal proteins. Here, LonP and ClpX/P proteases reside in the 

matrix, whilst the m-AAA protease is localised on the IMM facing the matrix and the i-AAA protease 

resides on the IMM facing the IMS (Figure 1.10). The two AAA proteases are responsible for 

degradation of membrane proteins, but also contribute to cleavage of matrix proteins (Benedetti et 

al., 2006; Matsuda et al., 2010). Of these membrane proteins, the most significant proteins that are 

degradated by the AAA proteases belong to OXPHOS complexes, which are extremely susceptible to 

damage due to the amount of ROS produced during electron transfer.  

 

 

Figure 1.10 – Intramitochondrial proteolysis. Mitochondria contain a highly conserved proteolytic system consisting of i-
AAA proteases in the IMM facing the IMS, m-AAA proteases in the IMM facing the matrix, and LonP and ClpX/P proteases 
residing in the mitochondrial matrix. This system of proteases is responsible for proteolytically cleaving imported proteins as 
well as degradation of internal mitochondrial proteins such as OXPHOS complexes.  
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The other conserved system of mitochondrial protein homeostasis is called the mitochondrial 

unfolded protein response (mtUPR). In the mtUPR, proteotoxic stress within the mitochondria is 

detected and triggers the activation of a nDNA-encoded gene expression program aimed at the 

proteolytic removal of the stress (Figure 1.11). An additional function of the mtUPR is to divert 

metabolism away from oxidative phosphorylation towards anaerobic cytoplasmic glycolysis in order 

to alleviate mitochondrial stress (Nargund et al., 2015).  

Whilst the mechanisms by which misfolded or damaged proteins are recognised by the mtUPR are 

not fully understood, it is known that the mtUPR becomes activated in response to various stimuli, 

including: mtDNA depletion (Martinus et al., 1996); oxidative stress (Fiorese & Haynes, 2017); 

inhibition of mtDNA translation (Houtkooper et al., 2013); OXPHOS dysfunction (Duriex et al., 2011); 

or damage to mitochondrial chaperones (Haynes et al., 2007). To date, the strongest hypothesis is 

that oligopeptides generated in the matrix by ClpP proteases are detected by AFTS-1, which 

subsequently activates the mtUPR (Houtkooper et al., 2013). Here, ATFS-1 accumulates in the 

cytoplasm in response to declining membrane potential as a result of proteotoxicity, where its C-

terminal nuclear localisation sequence has access to nuclear import machinery. Once in the nucleus, 

ATFS-1 promotes the activation of a range of genes involved in mitochondrial homeostasis, including 

genes involved in antioxidation, glycolytic factors, genes involved in regulating mitochondrial 

dynamics, such as NRF1, and mitochondrial chaperones such as mtHsp70 and Hsp60 (Narguud et al., 

2015).  

 

 

Figure 1.11 – The mtUPR. Schematic depicting the mtUPR signalling pathway. Here, stressors are detected by the 
transcription factor ATFS-1 which becomes activated and subsequently translocated to the nucleus where it promotes the 
transcription of several genes involved in mitochondrial homeostasis.  
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The final mechanism of mitochondrial protein homeostasis is the isolation and transportation of 

proteins for degradation away from the mitochondria. The most prominent mechanisms of this 

process are performed by mitochondria-derived vesicles (MDVs) and mitochondrial-derived 

compartments (MDCs) (Moehle et al., 2018).  

MDVs have been shown to be strongly implicated in the early response to oxidative stress, preceding 

membrane depolarisation (Soubannier et al., 2012), by transporting oxidised proteins to the 

lysosome for degradation, as well as other mitochondrial proteins such as MAPL for degradation in 

the peroxisomes. Although MDV formation can occur independently of mitophagy, MDV trafficking 

relies on both PINK1 and Parkin (McLelland et al., 2014).  

In contrast to MDV formation and trafficking, MDCs rely directly on mitochondrial fission and 

mitophagy machinery, and traffic mitochondrial cargo for degradation in the vacuole (Hughes et al., 

2016).  
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1.4.5 Mitochondrial electron transport chain  

One of the key functions of mitochondria is to regulate oxidative metabolism and provide cellular 

energy in the form of ATP. There are three respiratory pathways in which mitochondria produce ATP 

– anaerobic glycolysis, the tricarboxylic acid (TCA) cycle, and OXPHOS via the mitochondrial electron 

transport chain (ETC). In normal conditions, the generation of ATP is a multistep process that begins 

with glycolysis and leads to the TCA cycle in the mitochondrial matrix and finally OXPHOS.  

1.4.5.1 Glycolysis and the TCA cycle 

Glycolysis is an anaerobic process that occurs in the cell cytoplasm and produces two molecules of 

pyruvate and the net production of two molecules of ATP (Equation 1.1). The glycolysis pathway is 

composed of two stages: (1) initially, glucose is converted into fructose-1, 6-bisphosphate. Fructose-

1, 6-bisphosphate is then further cleaved into three carbon fragments. (2) In the second stage, NAD+ 

is converted to NADH through reduction reactions. NAD+ levels are then regenerated back to 

baseline levels through the reduction of pyruvate into lactate (Berg et al., 2015a). 

 

𝐺𝑙𝑢𝑐𝑜𝑠𝑒 + 2(𝑃𝑖) + 2(𝐴𝐷𝑃) + 2(𝑁𝐴𝐷+)

→ 2 𝑝𝑦𝑟𝑢𝑣𝑎𝑡𝑒 + 2(𝐻+) + 2(𝐴𝑇𝑃) + 2(𝑁𝐴𝐷𝐻) + 2(𝐻2𝑂) 

Equation 1.1 – Glycolysis reaction (Berg et al., 2015a). 

 

The next stage of respiration is the TCA (or Kreb’s) cycle, which occurs in the mitochondrial matrix. 

The TCA cycle functions to harvest electrons for use in the ETC as well as aerobically processing 

glucose. The first stage is the generation of acetyl coenzyme A (acetyl CoA) from pyruvate, which is 

catalysed by pyruvate decarboxylase (Equation 1.2). This acetyl-CoA then feeds into the TCA cycle. 

Here, a series of oxidation and reduction reactions generate a single molecule of ATP, two molecules 

of CO2, three NADH, and two FADH2 electron carriers (Equation 1.3), all of which are required for 

oxidative phosphorylation via the ETC (Berg et al., 2015b).  

𝑃𝑦𝑟𝑢𝑣𝑎𝑡𝑒 + 𝐶𝑜𝐴 + 𝑁𝐴𝐷+ → 𝐴𝑐𝑒𝑡𝑦𝑙 𝐶𝑜𝐴 + 𝑁𝐴𝐷𝐻 + 𝐻+ + 𝐶𝑂2 

Equation 1.2 Pyruvate decarboxylation reaction. This reaction is catalysed by pyruvate dehydrogenase (Berg et al., 2015b). 

 

𝐴𝑐𝑒𝑡𝑦𝑙 𝐶𝑜𝐴 + 3[𝑁𝐴𝐷+ + 𝐹𝐴𝐷 + 𝐴𝐷𝑃 + 𝑃𝑖 + 2(𝐻2𝑂)]

→ 𝐶𝑜𝐴 + 3(𝑁𝐴𝐷𝐻) + 2(𝐻+) + 𝐹𝐴𝐷𝐻2 + 𝐴𝑇𝑃 + 2(𝐶𝑂2) 

Equation 1.3 Net reaction of the TCA cycle (Berg et al., 2015b). 
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1.4.5.2 Oxidative phosphorylation  

The final stage of respiration is OXPHOS, which comprises the mitochondrial respiratory chain 

complexes I-IV as well as ATP synthase/complex V, all of which are embedded into the IMM (Figure 

1.12). Here, the transport of electrons along complexes I-IV, in combination with the translocation of 

protons across the IMM, produces a chemiosmotic gradient. This chemiosmotic gradient is then 

harnessed by complex V (CV) to allow the flow of electrons through the catalytic domain of ATP 

synthase, thus generating the energy required to drive ATP production.  

 

 

Figure 1.12 – Oxidative phosphorylation. Electron transport chain complexes I-IV are embedded into the IMM. Electrons   
(e-) enter the electron transport chain at complexes I and II and are then shuttled to complex IV via Cytochrome c (Cyt c). 
This transfer of electrons generates the energy needed to translocate protons (H+) across the IMM into the IMS. Finally, 
complex V harnesses the proton gradient to produce ATP from ADP + Pi. 
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1.4.5.3 Oxidative phosphorylation complexes  

As mentioned above, there are four complexes embedded into the IMM which make up the 

mitochondrial ETC, in addition to ATP synthase. Four of the five complexes have subunits encoded 

by mtDNA (CI, CIII, CIV and CV), whilst CII is the only complex that is entirely composed of nuclear-

encoded subunits. In addition, it is the only complex that does not contribute to the electrochemical 

gradient (Chaban et al., 2014).  

Complex I (NADH dehydrogenase), is the largest of the ETC complexes, with a molecular mass of 

~1000kDa. It is composed of 45 subunits, seven of which are encoded by mtDNA whilst the other 38 

are nDNA-encoded (Carrol et al., 2006). CI has a characteristic L shape that is mainly embedded into 

the IMM lipid bilayer, with a small shoulder protruding into the matrix (Baradaran et al., 2013). The 

complex is made up of three functional modules: the P-module, Q-module and N-module. 

CI binds NADH at the distal end of the N-module (in the matrix) and then transfers two electrons 

from NADH down seven Fe-S clusters to ubiquinone via flavin mononucleotide (FMN). Reduction of 

ubiquinone then induces a conformational change that triggers the translocation of four protons (H+) 

into the IMS (Baradaran et al., 2013) (Equation 1.4). 

 

𝑁𝐴𝐷𝐻 + 𝑄 + 5(𝐻+)𝑚𝑎𝑡𝑟𝑖𝑥 → 𝑁𝐴𝐷+ + 𝑄𝐻2 + 4(𝐻+)𝑐𝑦𝑡𝑜𝑝𝑙𝑎𝑠𝑚 

Equation 1.4 – Complex I reaction (Berg et al., 2015b). 

 

Complex II (succinate dehydrogenase) is the smallest complex of the ETC, being ~123kDa, and is 

composed of four nDNA-encoded subunits. In addition to its role in oxidising succinate, CII is 

responsible for the transfer of three electrons to ubiquinone via three Fe-S clusters, as described in 

Equation 1.5 (Cecchine, 2003). 

 

𝑆𝑢𝑐𝑐𝑖𝑛𝑎𝑡𝑒 + 𝐹𝐴𝐷 + 2(𝐻+) + 𝑄 → 𝐹𝑢𝑚𝑢𝑟𝑎𝑡𝑒 + 𝐹𝐴𝐷𝐻2 + 𝑄 → 𝐹𝑢𝑚𝑒𝑟𝑎𝑡𝑒 + 𝐹𝐴𝐷 + 𝑄𝐻2 

Equation 1.5 – Complex II reaction (Berg et al, 2015b). 

 

Complex III (cytochrome c oxioreductase) exists in the IMM as a dimer. It is composed of 11 

subunits, of which only one is encoded by mtDNA (cytochrome b) (Benit et al., 2009). The first role of 

CIII is to oxidise ubiquinone into ubiquinol, which facilitates the translocation of two protons from 
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the matrix across the IMM into the IMS. Next, the electrons released from the newly formed 

ubiquinol are transferred to cytochrome c via cytochrome b (Equation 1.6) (Chaban et al., 2014).  

2(𝑄𝐻2) + 𝑄 + 2(𝐶𝑦𝑡 𝑐)𝑜𝑥 + 2(𝐻+)𝑚𝑎𝑡𝑟𝑖𝑥 → 2(𝑄) + 𝑄𝐻2 + 2(𝐶𝑦𝑡 𝑐)𝑟𝑒𝑑 + (4𝐻+)𝑐𝑦𝑡𝑜𝑝𝑙𝑎𝑠𝑚 

Equation 1.6 – Complex III reaction (Berg et al., 2015b). 

 

Complex IV (cytochrome c oxidase (COX)) is the third largest of the ETC complexes, being composed 

of 13 subunits, of which three are mtDNA-encoded. CIV accepts electrons from reduced cytochrome 

c and transfers it to molecular oxygen, forming two molecules of water (H2O). This facilitates the 

pumping of four protons from the matrix into the IMS, thus contributing to the electrochemical 

gradient in the IMS (Equation 1.7) (Diaz et al., 2010).  

 

4(𝐶𝑦𝑡 𝑐)𝑟𝑒𝑑 + 𝑂2 + 8(𝐻+)𝑚𝑎𝑡𝑟𝑖𝑥 → 4(𝐶𝑦𝑡 𝑐)𝑜𝑥 + 2(𝐻2𝑂) + 4(𝐻+)𝑐𝑦𝑡𝑜𝑝𝑙𝑎𝑠𝑚 

Equation 1.7 – Complex IV reaction (Berg et al., 2015). 

 

Complex V (ATP synthase) is the final complex of the OXPHOS system and is the site of ATP 

production. It is the second largest of the complexes, being composed of 15-18 subunits and 

weighing ~600kDa (Stock et al., 2000). The complex is composed of F0 and F1 domains. The F0 

domain resides in the IMM and contains subunits a, b, c, d, A6L, e, f, g, and OSCP, which form a ring-

shaped barrel, whilst the F1 domain is composed of subunits , , , and , which collectively form a 

central and peripheral stalk structure (Devenish et al., 2008; Jonckheere et al., 2012). 

As alluded to above, the role of CV is to generate ATP from ADP. Here, the proton motive force 

generated by the electrochemical gradient is harnessed in order to drive the F0 motor. This results in 

a conformational change in the catalytic F1 domain that allows the phosphorylation of ADP and 

release of ATP (Chaban et al., 2014). 

1.4.5.4 Supercomplexes 

Several studies utilising the blue-native polyacrylamide gel electrophoresis (BN-PAGE) assay have 

demonstrated that ETC complexes are able to assemble into larger structures termed 

‘supercomplexes’ (Schagger & Pfeiffer, 2000). These supercomplexes can be divided into four main 

groups. Here, complexes I, III2 and IV were found to assemble into I + III2, III2 + IV1-2, or I + III2 + IV1-4 

supercomplexes. In addition, CV is able to form dimers which resemble oligomeric cristae chains 

(Chaban et al., 2014). The abundance of these supercomplexes varies between species, and it has 
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been shown that in mammals the predominant supercomplex is the I + III2 + IV1-4 complex (Schagger 

& Pfeiffer, 2000).  

Whilst the structures of the supercomplexes has been elucidated, it is still unclear what the exact 

function of these macromolecules are. The overriding hypothesis of the function of supercomplexes 

is that they aid in maximising the flow of electrons across the ETC, thereby speeding up and 

increasing the efficiency of OXPHOS (Schagger & Pfeiffer, 2000). In addition, it is thought that the 

formation of supercomplexes reduces the leakage of electrons, and thus, the formation of ROS 

(Maranzana et al., 2013). 
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1.4.6 Other functions of mitochondria  

1.4.6.1 Apoptosis signalling 

Apoptosis is the coordinated process of controlled cell death required in multi-cellular organisms to 

maintain homeostatic balance between newly formed cells and irreparably damaged cells. In 

addition, apoptosis is necessary for the development of anatomical structures such as fingers and 

toes (Zakeri & Ahuja, 1997). Originally described by Kerr et al. (1972), apoptosis is regulated by a vast 

array of regulatory genes and proteins, and the event of apoptosis dysregulation can lead to 

uncontrolled cellular growth and cancer, as well as the accumulation of damaged cells and proteins 

which can cause diseases such as Alzheimer’s Disease (D’Arcy, 2019). 

Apoptosis can be divided into two major pathways: the intrinsic pathway (otherwise known as the 

mitochondrial pathway), where intracellular signals are detected by sensors in response to cellular 

damage such as hypoxia or DNA damage (Igney & Krammer, 2002); or the extrinsic pathway 

(otherwise known as the death receptor pathway), where a damaged cell is detected by the immune 

system and apoptosis is initiated by activation of receptors of the tumour necrosis factor (TNF) 

receptor family. The initiation of both pathways is dependent on the activation of a variety of 

cysteine-aspartic proteases termed caspases (Elmore, 2007). 

As alluded to above, mitochondria play an essential role in the initiation of the intrinsic pathway 

(Figure 1.13). In response to factors such as DNA damage or the absence of cytokines or hormones, 

the mitochondrial permeability transition pore (MPTP) opens in conjunction with the loss of 

membrane potential. The opening of the MPTP facilitates the export of several pro-apoptotic 

molecules such as cytochrome c, Smac/Diablo, and HtrA2/Omi into the cytoplasm in order to initiate 

the apoptosis signalling cascade. Here, the initiator caspase, caspase-9, binds to the caspase 

recruitment (CARD) domain of the adapter protein apoptotic protease activating factor 1 (APAF1) to 

form the ‘apoptosome’, which then cleaves and activates caspases-3 and 7 to initiate apoptosis. 

(Cain et al., 2002). A second group of pro-apoptotic proteins are released from the mitochondria as a 

late stage event of apoptosis after the cell has already committed to die. These proteins include AIF, 

endonuclease G, and CAD, and they function in a caspase-independent manner to promote DNA and 

nuclear fragmentation (Joza et al., 2001). 

Control and regulation of the intrinsic pathway of apoptosis is performed by members of the Bcl-2 

family of proteins. There have been more than 25 members of the Bcl-2 family identified, of which 

some are pro-apoptotic, such as Bax, Bak, Bid, and Bad, and some are anti-apoptotic, including Bcl-2, 

BAG and Bcl-x (Cory & Adams, 2002; Riley et al., 2018). 
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Figure 1.13 – Initiation of the intrinsic pathway of apoptosis.  
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1.4.6.2 Calcium handling 

Calcium (Ca2+) regulated signalling is a highly conserved mechanism that plays a vital role in several 

cellular and physiological processes such as muscle contraction, energy production and regulation of 

apoptosis.   

Whilst ER are known to be the main site of calcium storage, various other organelles are involved in 

Ca2+ signalling such as lysosomes (Rodriguez e al., 1997), endosomes (Gerasimenko et al., 1998), 

Golgi apparatus (Pinton et al., 1998) and significantly, mitochondria (Contreras et al., 2010). Due to 

the vital role played by both the ER and mitochondria in regulating cellular Ca2+, these organelles are 

commonly localised in close association with each other (Filippin et al., 2003). 

With regards to the role of Ca2+ in mitochondrial biology, Ca2+ entry into the mitochondrial matrix is 

facilitated by the IMM mitochondrial Ca2+ uniporter (mCU), which is regulated by membrane 

potential (Kirichok et al., 2004). The function of several matrix proteins such as matrix 

dehydrogenases are regulated by Ca2+ levels (Denton, 2009). In addition, cytosolic Ca2+ has been 

shown to modulate several IMM enzymatic processes such as the malate-aspartate shuffle involved 

in respiration, or glutamate/malate respiration (Gellerich et al., 2009). Most importantly, increased 

import and overexpression of Ca2+ in mitochondria has been shown to induce mitochondrial 

membrane depolarisation and opening of the MPTP, leading to the initiation of the intrinsic pathway 

of apoptosis (Kroemer et al., 2007).  

As mentioned above, regulation of intracellular Ca2+ levels is crucial for physiological processes such 

as muscle contraction. Here, action potentials arriving at the neuromuscular junction (NMJ) triggers 

the opening of Ca2+ channels, leading to the influx of extracellular Ca2+ into the neuron. This then 

triggers the release of acetylcholine (ACh) into the synaptic cleft, where it induces the opening of 

sodium (Na+) and potassium (K+) channels and subsequently depolarisation of the sarcolemal 

membrane. Depolarisation and opening of the sarcolemal membrane leads to Ca2+ release into the 

cytosol via L-type Ca2+ channels on the sarcoplasmic reticulum (SR). The cytosolic Ca2+ then binds to 

the actin filament regulatory protein troponin, which induces a conformational change in order to 

allow the formation of actin-myosin cross bridging and finally muscle contraction (Leiber, 2010). 

Muscle relaxation additionally requires the reuptake of Ca2+ by the SR via ATP-dependant Ca2+ 

pumps and sarcoplasmic/endoplasmic reticulum Ca2+ ATPases (SERCA) 1 and 2 (Brini & Carafoli, 

2009).  
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1.4.6.3 Iron sulphur cluster formation 

Individually, iron (Fe) and sulphur (S) are indispensable ubiquitous molecules in cells, but when 

overloaded induce cellular toxicity. To prevent this cellular toxicity, iron and sulphur elements are 

assembled into Fe-S clusters (Lill, 2009). These Fe-S clusters are essential co-factors for various 

proteins involved in cellular functions such as DNA replication and repair, gene expression regulation 

via tRNA modifications and importantly, OXPHOS (Lill et al., 2012). 

In a regular eukaryotic cell, Fe-S cluster assembly machinery is found in both the cytosol and 

mitochondria. With regard to the mitochondrial Fe-S cluster assembly machinery, there are 18 

proteins so far that have been identified in yeast, whilst 11 cytosolic proteins involved in Fe-S cluster 

formation have been identified (Braymer & Lill, 2017).  

The process of Fe-S cluster formation can be divided into four stages: (1) de novo 2Fe-2S synthesis 

on Isu1 scaffolding proteins; (2) mtHsp70-mediated trafficking and export of 2Fe-2S clusters into the 

cytosol as well as insertion into mitochondrial apo-proteins; (3) conversion of 2Fe-2S clusters into 

4Fe-4S clusters; (4) trafficking and import of the newly formed 4Fe-4S clusters back into the 

mitochondria (Rouault, 2012) (Figure 1.14).  

As mentioned above, Fe-S clusters are essential in order for the TCA cycle and OXPHOS to function. 

They are found within complexes I-IV where they facilitate the transfer of electrons through 

continuous redox reactions (Beinert et al., 1997). 

 

Figure 1.14 – Fe-S cluster formation and functions. The formation and assembly of various Fe-S clusters is essential for 
several functions in eukaryotic cells. 
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1.4.6.4 Reactive oxygen species (ROS) production 

Reactive oxygen (ROS) and reactive nitrogen species (RNS) are a range of chemically active species 

that are involved in various intracellular signalling pathways, but can cause damage to various 

biomolecules such as proteins and DNA when levels are not controlled (Cui et al., 2012).  

ROS are endogenously formed after the incomplete reduction of oxygen. The most commonly 

produced ROS is superoxide (O2
-), which is formed after electrons leak from the mitochondrial 

respiratory chain and are accepted by molecular oxygen (Turrens, 2003). O2
- can then be stabilised 

by superoxide dismutase to form hydrogen peroxide (H2O2), which is highly toxic and inflicts 

significant damage to macromolecules. H2O2 can subsequently be broken down into water and 

molecular oxygen through the actions of catalase (Ray et al., 2012). The other common ROS is the 

hydroxyl radical (HO•) (Ray et al., 2012).  

As well as being the site of ROS production, mitochondria also contain a highly conserved defensive 

mechanism termed the antioxidant system. Oxidative stress is the physiological phenomenon caused 

by dysregulation of the antioxidant system, or when ROS levels themselves become too high and 

overwhelm the system. Oxidative stress results in the direct or indirect damage of macromolecules 

such as nucleic acids, proteins and lipids, and has been associated with the onset or progression of 

several pathologies (Sies, 2015) such as diabetes, atherosclerosis (Paravicini et al., 2006), 

neurodegeneration (Shukla et al., 2011; Kim et al., 2015), and cancer (Trachootham  et al., 2009; 

Hayes et al., 2020). 

Due to the close proximity of mitochondrial proteins and mtDNA nucleoids to the ROS-producing 

ETC, as well as the fact that these macromolecules have no protective histones or sufficient DNA 

repair machinery, they are highly susceptible to damage from these ROS (Turrens, 2003). 

In contrast to the deleterious effects of ROS and RNS, these molecules play an essential role in a 

variety of intracellular signalling pathways such as autophagy (Scherz-Shouval et al., 2007), immunity 

(West et al., 2011), hypoxia (Chandel et al., 1998), mitochondrial dynamics (Bartz et al., 2015), and 

apoptosis (Pierce et al., 1991).   



35 
 

1.4.7 Mitochondrial genetics  

1.4.7.1 mtDNA genome 

Mitochondria are unique organelles in that they are the only organelle with its own genome. The 

mitochondrial genome is a circular double-stranded molecule roughly 16.6kb large (Figure 1.15). It 

encodes 37 genes: 13 OXPHOS complex subunits, as well as 22 transfer RNAs (tRNA), and two 

ribosomal RNAs (rRNA) required for the transcription and translation of the OXPHOS subunits 

(Anderson et al., 1981). The two strands of mtDNA differ in their composition with regard to guanine 

saturation, and so can be separated into heavy (H) and light (L) strands. 

mtDNA is a very compact molecule and does not contain any non-coding introns. Instead, mtDNA 

possess a noncoding region (NCR) where the displacement loop (D-loop) is located. The NCR 

contains promoters of polycistronic transcription for both the H and L strands, appropriately termed 

the heavy strand promoter (HSP) and light strand promoter (LSP). Importantly, the NCR also 

harbours the origin for H strand replication (OH) (Shadel & Clayton, 1997). The origin for light strand 

replication (OL) is located in a tRNA cluster roughly 11,000bp downstream of the OH (Falkenberg, 

2018). 

The mitochondrial genome exists in numerous copies per cell and can be found in the mitochondrial 

matrix in the form of circular nucleoids, localised within a close proximity to the IMM and OXPHOS 

complexes (Satoh & Kuroiwa, 1991). The number of mtDNA nucleoids per cell depends on the cell 

type and its energy requirement. For example, there are roughly 100,000 copies in mature oocytes, 

which require vast amounts of energy supply, whilst there are roughly 3600 copies in skeletal muscle 

fibres (Shoubridge & Wai, 2007; Miller et al., 2003).  
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Figure 1.15 – Mitochondrial genome. The mtDNA genome contains a noncoding region (D-Loop) and 37 genes – 13 
OXPHOS subunits (CI = blue, CIII = purple, CIV = red and CV = dark grey), 22 tRNAs (black lines) and 2 rRNAs (yellow). In 
addition, the origins of heavy (OH) and light (OL) strand promotion are depicted.  
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1.4.7.2 mtDNA replication 

mtDNA replication occurs independently of the cell cycle and so is termed ‘relaxed replication’. As a 

result, mtDNA replication requires its own distinct set of replication machinery. This machinery 

consists of: a mitochondrial polymerase, polymerase gamma (POLG); a helicase, Twinkle; a 

mitochondrial RNA polymerase (POLRMT); single-stranded binding protein (mtSSB); RNA ligase 

(RNaseH1), and topoisomerases (Milenkovic et al., 2013).  

POLG is a heterotrimer that is composed of a catalytic subunit (POLGA) and two accessory subunits 

(POLGB), which are involved in replication fidelity (Gray & Wong, 1992; Fan et al., 2006). Whilst 

there are other known mtDNA polymerases, they are not essential for mtDNA replication (Sykora et 

al., 2017; Wisnovsky et al., 2016). The mtDNA helicase Twinkle is responsible for unwinding of 

mtDNA prior to transcription, whilst the function of mtSSB is to stabilise the unwound, single-

stranded mtDNA. The POLRMT is responsible for initiating the synthesis of RNA stands, and finally, 

the topoisomerases are responsible for unwinding the mtDNA as it progresses through the 

replication fork (Young & Copeland, 2016). 

There is still no consensus as to how mtDNA replication occurs in mammals, although extensive 

research over the last 20 years has demonstrated the presence of two distinct classes of mtDNA 

replication – ‘synchronous’ and ‘asynchronous’ (Figure 1.16). 

In the ‘synchronous’ (or ‘strand-coupled’) model of mtDNA replication, initiation of the H and L 

strand occurs simultaneously at OH in response to priming by oligonucleotide Okazaki fragments, and 

proceeds bidirectionally (Holt et al., 2000). This model of replication was first proposed by 

Robberson et al. (1972) and later developed by Holt et al. (2000), who discovered double-stranded 

replication intermediates through work using two-dimensional agarose gel electrophoresis (2D-

AGE). Further progress to this model was demonstrated through the discovery of long stretches of 

DNA/RNA hybrids, in which whilst the leading H strand replicates as usual from OH, the lagging 

strand replicates as short segments of RNA which subsequently hybridise with the leading strand to 

form mature DNA (Yang et al., 2002; Holt & Reyes, 2012). This model was called the RNA 

incorporation throughout the lagging strand (RITOLS) model of mtDNA replication.  

In contrast to the two synchronous models of mtDNA replication, the asynchronous or ‘stand-

displacement model’ (SDM) of replication suggests that replication of the H strand occurs within the 

D-loop at OH and proceeds unidirectionally in a clockwise manner. After replication has progressed 

around two thirds of the H strand it reaches and exposes the OL. This exposing of the OL then 

initiates replication of the L strand, which proceeds in an anti-clockwise direction, lagging behind the 

H strand (the leading strand) (Brown et al., 2005; McKinney & Oliveria, 2013). The SDM of replication 
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was first proposed by Kasamatsu & Vinograd (1973), who observed the arrangement of replicating 

stands through electron microscopy work. This model was later refined by Clayton (1982). 

 

 

Figure 1.16 – Models of mtDNA replication. The strand-displacement theory of mtDNA replication is an asynchronous 
model of replication, whilst the strand-coupled and RITOLS models propose a synchronous method of mtDNA replication.  
Adapted from McKinney & Oliveria (2013). 
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1.4.7.3 Transcription 

Transcription of mtDNA is a conserved process whereby genetic information encoded by mtDNA is 

copied onto messenger RNA (mRNA), which is then followed by its translation. Due to the fact that 

the mtDNA genome lacks non-coding introns, transcripts are generated as polycistronic mRNA that 

require cleavage. This cleavage occurs at the tRNA coding regions by RNA processing enzymes 

(MRPP1, 2 and 3), which is facilitated by folding of the mRNA (Ojala et al., 1981).  

Transcription of both the H and L strands of mtDNA is initiated at the D-Loop of the mtDNA genome. 

In particular, H strand transcription is initiated at the HSP at two specific sites (HSP1 and HSP2). 

Here, initiation at HSP1 generates a transcript for the two mtDNA-encoded rRNAs, whilst initiation at 

HSP2 generates the transcript encoding the majority of the other mtDNA genes (Chang & Clayton, 

1984; Zollo et al., 2012). Transcription of the L strand is initiated at the LSP. Importantly, 

transcription is a bidirectional process.  

As with mtDNA replication, a range of nDNA-encoded regulatory proteins are required in order to 

undertake mtDNA transcription. The POLRMT is responsible for the actual transcription of mtDNA, 

but it cannot interact with the promoter DNA and initiate transcription without the assistance of 

mitochondrial transcription factor A (TFAM) and the mitochondrial transcription factor B2 (TFB2M) 

(Falkenberg et al., 2002; Barshad et al., 2018). Here, TFAM binds to a region 10-15bp upstream of 

the HSP and LSP, inducing a conformation change in the promoter region. This then allows the 

recruitment of POLMRT to the promoter region. Next, POLRMT binds to TFAM and then recruits 

TFB2M, forming the transcription competent initiation complex (Morozov et al., 2015) (Figure 1.17).  

The next stage of transcription is the elongation process, before finally, the termination process. The 

termination stage is mediated by mitochondrial termination factor (mTERF), which induces the 

unwinding and base flipping of the DNA molecule by binding to the tRNAleu(UUR) gene (Yakubovskaya 

et al., 2010). 

 

 

Figure 1.17 – Transcription initiation. (1) TFAM binds to a region upstream of the HSP and LSP, (2) facilitating the binding 
of POLRMT and promoting its conformational change. (3) TFB2M binds to TFAM and POLRMT to form the transcription 
competent initiation complex.  
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1.4.7.4 Translation 

Translation of mitochondrial transcripts is a three-stage process that requires a range of nDNA-

encoded regulatory proteins (Figure 1.18). The first stage of transcription is the initiation phase. 

Here, mt-mRNA is recruited to the mitochondrial small subunit (mtSSU) with the aid of the initiation 

factor 3 (IF3), which prevents the premature association with the large subunit (mtLSU) by 

competitively inhibiting its initiation codons (Bhargava & Spremulli, 2005). Next, initiation factor 2 

(IF2) promotes the association of the P-binding site of mt-mRNA and tRNAfmet in a GTP-mediated 

fashion to form the ‘mitochondrial monosome’, which promotes the initiation of the elongation 

stage of translation (Ma & Spremulli, 1996; Kummer et al., 2018). 

As mentioned above, the next step of mtDNA translation is the elongation stage, which requires the 

presence of three mitochondrial elongation factors (mtEF-Tu, mtEF-G1 and mtEF-Ts) (Di Notia et al., 

2017). Firstly, the mt-mRNA, together with mtEF-Tu, charged mt-tRNA, and GTP, form a tertiary 

complex called the ‘mitoribosome’. Following GTP hydrolysis, a mtEF-Tu/GDP complex is released for 

recycling by mtEF-T, allowing the tRNA to associate with the peptidyl (P) site of the mitoribosome, 

which promotes the formation of a peptide bond in the peptidyl transferase centre of mt-LSU (Cai et 

al., 2000). This results in the mitoribosome complex containing a deacetylated mt-tRNA and a de-

peptidyl-tRNA at the A-site. Finally, the association of mtEF-G1 induces a conformational change in 

the mitoribosome that initiates the movement of the tRNA to the exit (E)-site and the di-peptidyl-

tRNA to the A-site (Katunin et al., 2002). After rounds of cycling, the newly synthesised polypeptide 

is translocated into the mitochondrial matrix where it is folded via protein folding mechanisms 

described in Section 1.4.4.3.  

The final stage of mtDNA translation is the termination step. Termination is initiated when the STOP 

codon enters the A-site of the mitoribosome, and several mitochondrial release factors (mtRFs) are 

associated with translation termination (Richter et al., 2010). Firstly, mtRF1a promotes the 

hydrolysis of the ester bond between the mt-tRNA at the P-site and the polypeptide chain, which is 

followed by the disassociation of the mitoribosome and release of mRNA and tRNA to be used in 

future translation. These steps are performed by the mitoribosome recycling factors mtRRF-1 and 

mtEF-G2 (Rorbach et al., 2008; Tsuboi et al., 2009).  
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Figure 1.18 – Mitochondrial translation. The process of mtDNA translation can be divided into the three phases of 
initiation, elongation and termination (with recycling). Adapted from Mia et al. (2017). 
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1.4.7.5 Heteroplasmy and the threshold effect 

As mtDNA exists in a highly polyploid state within cells it is possible for both wild-type and mutated 

mtDNA nucleoids to exist side-by-side in the same cell. This phenomenon is termed ‘heteroplasmy’, 

and if all the nucleoids in a cell are genetically identical it is said that the cell is homoplasmic.  

Heteroplasmy is measured as a percentage of total mtDNA copy number and can vary greatly 

throughout adjacent cells of the same tissue. If the proportion of mutated mtDNA exceeds a certain 

threshold it can result in the phenotypic manifestation of the pathogenic mutational defect in what 

is known as the ‘threshold effect’ (Rossignol et al., 2003) (Figure 1.19). The threshold effect varies 

between the type of mtDNA mutation and the cell type themselves. For example, point mutations 

have been shown to have a threshold of around 90% heteroplasmy (Moslemi et al., 1999), whilst the 

threshold of mtDNA deletions is thought to range between 50-90% (Porteous et al., 1998; Sciacco et 

al., 1994). The large reported variation in threshold for deletions is thought to arise from the 

variation in size and location on the mtDNA genome (Rocha et al., 2018).  

 

 

Figure 1.19 – mtDNA heteroplasmy and the threshold effect. As heteroplasmy increases due to the increased proportion of 
mutant mtDNA compared to wild-type mtDNA, the function of OXPHOS (black line) decreases until a certain threshold is 
exceeded (red dotted line). Once exceeded, mitochondria become dysfunctional.  
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1.4.7.6 Maternal inheritance and the bottleneck theory 

A unique aspect of mtDNA is that it is exclusively inherited down the maternal line (Giles et al., 1980; 

Wallace, 2007). Whilst the mechanism behind this phenomenon is still not completely understood, it 

is thought to be the result of a combination of factors, one being that sperm contain ~1000 times 

less mtDNA than oocytes, in addition to the presence of a selective mechanism targeting sperm 

mtDNA for degradation (Sutovsky et al., 2000). The result of this exclusive maternal inheritance 

means that clinically asymptomatic women with low levels of mutated mtDNA may pass down their 

mutated mtDNA to their offspring. However, the proportion of mutated mtDNA variants can be 

highly variable between individual offspring, a phenomenon termed the ‘mitochondrial bottleneck’  

(Howell et al., 2000; Taylor & Turnbull, 2005) (Figure 1.20). The cause of this phenomenon can be 

attributed to the initial reduction in compartmentalised mtDNA nucleoids followed by rapid 

replication of the remaining mtDNA following fertilisation (Cree et al., 2008; Brown et al., 2001). 

If the level of heteroplasmy exceeds the threshold, an individual may present with biochemical 

deficiency and clinical mitochondrial disease. For example, if the Leigh syndrome causing m.8993T > 

G mutation exceeds 30% then the child will likely present with clinical symptoms. The level of 

severity is increased in proportion to the level of heteroplasmy (White et al., 1999).  

Interestingly, a recent study has questioned the theory of exclusively maternal mtDNA inheritance 

(Luo et al., 2018), although more work needs to be done in order to confirm this theory. 

 

 

Figure 1.20 – Mitochondrial bottleneck. Schematic depicting the inheritance of wild-type and mutated mtDNA variants and 
their amplification, which results in cells with varying levels of heteroplasmy. 
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1.4.8 mtDNA mutations 

mtDNA mutations can either be inherited or acquired throughout life as de novo mutations. 

Compared to nDNA, the mitochondrial genome is hyper-mutable, with a mutation rate roughly 10 

times higher than that of nDNA (Brown et al., 1979). The hyper-mutable nature of mtDNA is caused 

by several factors. Firstly, mtDNA is damaged by high levels of ROS due to the fact that mtDNA 

nucleoids are localised in close proximity to the electron transport chain, where ROS is produced 

(Miquel et al., 1980). Secondly, as mtDNA is packaged as nucleoids and not as densely-packaged 

chromatin like nDNA, they are highly susceptible to damage from ROS and other factors. 

Importantly, the proof-reading exonuclease domain of the mtDNA polymerase POLG has a low 

fidelity, which in combination with the fact that the rate of mtDNA replication is very high, results in 

the increased susceptibility for mutation formation (Kunkel & Loeb, 1981; Bogenhagen & Clayton, 

1977). In addition, mtDNA DNA repair machinery is not as comprehensive as that for nDNA, and so 

mutations are often not fully resolved (Fukui & Moraes, 2009).  

The first mtDNA mutations were identified in 1989 (Holt et al., 1989; Wallace, 1989) and intense 

work in the field has since identified numerous other mtDNA mutations, with the estimated 

prevalence of mtDNA mutations in the North East of England being 20 for every 100,000 people 

(Gorman et al., 2015). The clinical pathology induced by mtDNA mutations, as well as the timing of 

onset, is extremely heterogeneous, with some mutations affecting isolated tissues and other causing 

multi-system pathologies (Campbell et al., 2014; Taylor et al., 2003).  

1.4.8.1 Point mutations 

mtDNA point mutations are a single base pair substitution. Point mutations are present in roughly 1 

in 5000 of the adult population, and commonly occur in the 22 tRNA genes on the mtDNA genome 

(Gorman et al., 2015).  

Point mutations are often caused by ROS-induced DNA damage, the most common of which are 

thymine glycol and 7,8-dihydro-8-oxo-2’-deoxyguanosine (8-oxo-dG) base lesions, of which 8-oxo-dG 

lesions are highly mutagenic (Bohr, 2002). For example, 8-oxo-dG lesions result in G:C to T:A 

transversions as a result of POLG mis-incorporating an A base opposite the oxidised G base. 

The most common and well characterised mtDNA point mutations are the m.3243A>G and 

m.8344A>G mutations, which occur in the MT-TL1 and MT-TK tRNA genes, respectively (Gorman et 

al., 2015). There is large variability in the phenotypic spectrum caused by the m.3243A>G mutation, 

with 80% of patients presenting with the mitochondrial encephalopathy, lactic acidosis and stroke-

like episodes (MELAS) phenotype. In contrast, some patients present with chronic progressive 
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external ophthalmoplegia (CPEO) or maternally-inherited diabetes and deafness (MIDD) (Nesbitt & 

McFarland, 2011; Nesbitt et al., 2013; Pickett et al., 2018; Urata et al., 2004). Similarly to the 

m.3242A>G mutation, the m8344A>G mutation has been reported to present as a wide range of 

phenotypes. First reported from patients with myoclonic epilepsy and ragged red fibres (MERRF) 

(Shoffner et al., 1989), the m.8344A>G mutation also presents as ataxia, diabetes mellitus, 

dementia, optic atrophy and hearing loss (Mancuso et al., 2013).  

1.4.8.2 Single, large-scale deletions 

mtDNA deletions are thought to arise sporadically during embryogenesis as the result of errors in 

mtDNA replication or repair of double-stranded breaks (DSBs) (Shoffner et al., 1989; Krishnan et al., 

2008; Fukui & Moraes, 2009). Deletions can be characterised as either class I, II or III deletions 

depending on the mechanism of formation. Class I deletions have direct repeats, class II deletions 

have indirect repeats, whilst class III deletions have no repeats (Reeve et al., 2008).  

Several models of mtDNA deletion formation have been proposed, the first of which assumes the 

asynchronous (or SDM) model of mtDNA replication. Here, during replication the L strand misaligns, 

resulting in the 3’ repeat annealing to the 5’ end of the H strand. This generates a single-strand loop 

that is susceptible to breakage and degeneration (Shoffner et al., 1989). Another model of deletion 

formation suggests that deletions are the result of DSB repair, where the homologous repeats 

generated from POLG exonuclease activity anneal together (Reeve et al., 2008, Krishnan et al., 

2008). More recent work using mouse models has further supported the idea of deletion formation 

during the repair of DSBs. Here, micro-homology-mediated end joining or non-homologous end 

joining of DSBs resulted in class I deletions in neurons (Fukui & Moraes, 2009; Tadi et al., 2009; 

Lieber, 2010). The final model hypothesises that deletions are formed by copy-choice recombination 

during the mtDNA L-strand synthesis step of replication. Here, PolG can dissociate from a newly-

synthesised DNA end following template H-stand replication. Next, the nascent L-stand unpairs from 

the DNA template and reanneals with a downstream repeat sequence. This model is attractive as it 

can account for class I, II and III deletions in vitro, as demonstrated following the recapitulation of 

deletions caused by nDNA-encoded maintenance genes (Persson et al., 2019, Nissanka et al., 2019).   

Whilst there have been several reported mtDNA deletions of varying size, the most commonly 

reported deletion is the 4,977bp deletion between nucleotides 8482 and 13460. This mutation 

accounts for roughly 16% of adult mtDNA mutations and 12% of mitochondrial disease patients, and 

its prevalence has been shown to increase with age (Schon et al., 1989; Gorman et al., 2015; 

Williams et al., 2013). As with mtDNA point mutations, mtDNA deletions induce a range of clinical 

phenotypes. The three most common of these are Pearson syndrome, CPEO and Kearns-Sayre 
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syndrome (KSS) (Magner et al., 2015). In addition, deletions have been shown to induce non-

syndromic disease symptoms such as ptosis, muscle weakness, and ophthalmoparesis (Mancuso et 

al., 2015). 

In contrast to earlier reports, recent studies have demonstrated a relationship between mtDNA 

genotype and clinical phenotype. In addition, these factors have also been shown to be associated 

with the age of onset of clinical manifestation (Yamashita et al., 2008; Lopez-Gallardo et al., 2009; 

Grady et al., 2014). Interestingly, the pattern of OXPHOS biochemical deficiency was shown to be 

associated with the size and location of mtDNA deletion in skeletal muscle fibres (Rocha et al., 2018). 

In addition, fibres with greater levels of energy requirement harboured higher levels of mutation. 

1.4.8.3 Clonal expansion of mtDNA mutations 

‘Clonal expansion’ of mtDNA mutations is the dynamics process whereby a mutated mtDNA species 

accumulate in a cell and can eventually lead to onset and progression of several inherited and 

somatic mitochondrial diseases (Lawless et al., 2020).  

There are several alternative theories which explain the mechanism of clonal expansion, including 

‘random genetic drift’ (Chinnery & Samuels, 1999; Elson et al., 2001), ‘survival of the sickest’ (de 

Grey, 1997; Yoneda et al., 1992), ‘survival of the smallest’ (Wallace, 1989), the ‘negative feedback 

loop’ theory (Kowald & Kirkwood, 2014; Kowald & Kirkwood, 2018) and the ‘perinuclear niche’ 

theory (Vincent et al., 2018) (Figure 1.21). Different theories appear to better explain the clonal 

expansion of certain forms of mtDNA mutations over the other. For example, the random genetic 

drift theory seems to explain the clonal expansion of point mutations, whilst not being appropriate 

to explain the clonal expansion of deletions.   

The first theory mentioned is the random genetic drift theory. Unlike many of the other models, this 

theory proposes that there is no selective advantage for the replication of mutated mtDNA, and so 

commonly forms the null hypothesis for modelling clonal expansion. In this model, the clonal 

expansion and accumulation of mutated mtDNA occurs by chance due to the relaxed replication of 

mtDNA (Chinnery & Samuels, 1999; Elson et al., 2001; Kimura, 1968). This theory is supported by in 

silico models reported in Elson et al. (2001), which suggested that 4% of post-mitotic cells will 

present with biochemical COX deficiency by the age of 80 years. 

The survival of the smallest theory was first proposed by Wallace (1989) and was the first theory to 

suggest a selection advantage for mutated mtDNA species. This theory suggests that due to the fact 

that mutated mtDNA species are smaller, they would be replicated quicker than wild-type mtDNA 

(Russell et al., 2018). Whilst this theory would seem to fit with the clonal expansion of deleted 
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mtDNA, it would not work for point mutations. Importantly, it was later demonstrated that smaller 

mtDNA species do not have a replication advantage in skeletal muscle fibres (Campbell et al., 2014).  

Another alternative theory based on the selection advantage principle is the negative feedback 

theory. In this theory, mtDNA species which encompass deletions in genes encoding OXPHOS 

subunits have reduced respiratory function and subsequently reduced ROS production. As a result, 

replication of these species is upregulated in an attempt to compensate for biochemical reduction 

(de Grey, 1997; Kowald & Kirkwood, 2014). MT-ND4, MT-ND5 and MT-ND6 have been proposed as 

candidate genes in this hypothesis, as they lie on the major arc of the mtDNA genome and so are 

regularly deleted (Kowald & Kirkwood, 2018). 

The most recent model of clonal expansion is the perinuclear niche theory proposed by Vincent et al. 

(2018). Through the investigation of how single mtDNA mutations expand over post-mitotic skeletal 

muscle fibres, this study demonstrated that genetic rearrangements can originate in a 

subsarcolemmal proliferative perinuclear niche and progressively expand. This theory suggests a 

selective advantage for mutated mtDNA species which results in the localised compensatory 

upregulation of mitochondrial biogenies. Importantly, this theory has only been examined in post-

mitotic skeletal muscle tissue, and so its relevance to other tissues is unknown.  

 

 

Figure 1.21 – Models of clonal expansion. Several mechanisms have been proposed for the model of clonal expansion of 
mutated mtDNA species. Of these, the perinuclear niche, survival of the sickest, and survival of the smallest revolve around 
the idea of a selection advantage for mutated mtDNA, whilst the random genetic drift theory proposed that clonal 
expansion occurs by chance over a lifetime. The perinuclear niche figure was supplied by Lawless et al. (2020).  
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1.4.8.4 Somatic mtDNA mutations and ageing  

With support from various observational and experimental evidence, the accumulation and clonal 

expansion of acquired (somatic) mtDNA mutations with age has been implicated in several age-

related diseases. The driving mechanism behind this pathology is widely hypothesised to be mtDNA-

induced mitochondrial dysfunction (Trifunovic et al., 2008; Krishnan et al., 2007).     

Aged humans present with increased levels of somatic mtDNA mutations compared to younger 

individuals. In contrast to germline inherited mtDNA mutations, somatic mtDNA mutations can be 

present in some cells but not in adjacent ones in tissues such as heart or skeletal muscle (Kang et al., 

2016). This phenomenon subsequently presents as a mosaic pattern of respiratory chain deficiency.  

In order to better understand the role of somatic mtDNA mutations in ageing, mouse models with 

various phenotypes have been developed and studied. In particular, the PolG mutator mouse, which 

carries a nDNA defect within the proofreading domain (D275A) of PolG and so induces increased 

mtDNA mutagenesis, has been extensively studied (Trifunovic et al., 2004; Kujoth et al., 2005). Due 

to this increased mutagenesis, the PolG mouse accumulates a high frequency of somatic mtDNA 

mutations during development and presents with premature ageing phenotypes such as anaemia, 

kyphosis, hearing loss and greying of the hair. Whilst both homozygous and heterozygous PolG mice 

develop mtDNA mutations, only the homozygous mouse presents with premature ageing 

phenotypes, suggesting that the accumulation of somatic mtDNA mutations is not solely responsible 

for the phenotypes. This is supported by a recent observation that increases in heteroplasmy levels 

of both germline and somatic mtDNA mutations was associated with the development of age-

related phenotypes in the PolG mouse model (Ma et al., 2018).  
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 1.5 Frailty in PLWH and the general population  

Due to the virus-supressing effects of cART, PLWH are living longer. As a result, the average age and 

life expectancy of the roughly 36 million worldwide HIV-infected population is increasing. In addition 

to the fact that 20% of new seroconverts are older than 50, the mean age of PLWH is now 50 years  

or older, with an estimated 73% of PLWH expected to be over 50 years old by 2030 (Centers for 

Disease Control and Prevention, 2013; Smit et al., 2015). In the HIV ageing literature there has 

previously been a tendency to describe PLWH aged over 50 as ‘old’. In the general population 

however, people aged over 65 years are considered ‘old’, whilst individuals aged 50-65 years are 

considered ‘middle-aged’. It is now best practice to use the definitions for HIV+ individuals (Kooij et 

al., 2016). Hence, in this thesis both HIV+ and HIV- individuals between the ages of 50-65 are termed 

‘middle-aged’, over 65 years are termed ‘old’, and collectively anyone over 50 years is considered 

‘older’.  

Whilst cART has been effective in reducing the mortality rate and prevalence of HIV-associated 

comorbidities in PLWH, the increased age of these PLWH has resulted in an elevated burden of age-

associated co-morbidities including neurodegenerative and cardiovascular diseases (Chow et al., 

2012; Nightingale et al., 2014; Nou et al., 2016). 

One of the most significant concerns arising from the rising age of the HIV-infected population is the 

increased prevalence of frailty (Leng & Margolick, 2015). Frailty is an age-related clinical syndrome 

characterised by a diminished physiological reserve alongside an increased susceptibility for 

comorbidities and mortality (Fried et al., 2001).  

Frailty is known to be a multisystem condition involving the metabolic, musculoskeletal, 

neuroendocrine, immune, and cognitive systems (Clegg et al., 2013; Fried et al., 2001). Although the 

exact pathophysiological mechanisms underpinning frailty have yet to be fully elucidated, factors 

such as chronic inflammation (Franceschi et al., 2000; Roubenoff et al., 2003; Soysal et al., 2016; 

Leng et al., 2007), immunosenescence (Dihn et al., 2019), cell senescence (Lehman et al., 2018; Xu et 

al., 2018), decreased stem cell availability (Sousa-Victor et al., 2014; Sousa-Victor et al., 2016; Gonen 

& Toledana, 2014; Larrick & Mendelson, 2017), sarcopenia (Dodds & Sayer, 2015; Thompson & 

Dodds, 2020), insulin resistance (Chow et al., 2020; Perkisas & Vandewounde, 2016), neurocognitive 

decline (Puts et al., 2005; Boyle et al., 2010; Sugimoto et al., 2018), oxidative stress (Soysal et al., 

2017; Vina et al., 2018; Liu et al., 2016; Namioka et al., 2017; Wu et al., 2009; Ingles et al., 2014; 

Serviddio et al., 2009; Ble et al., 2006), and mitochondrial dysfunction (Ferrucci & Zampino, 2020; 

Ashar et al., 2015; Andreux et al., 2018) have been implicated as causative factors (Ashar et al., 
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2015; Andreux et al., 2018). In addition, declines in mitochondrial function are known to contribute 

to the pathogenesis and pathophysiology of each respective factor (Ferruci & Zampino, 2020). 

Whilst there are several validated methods for determining frailty in the clinical setting, the most 

commonly used is the Fried’s frailty phenotype (FFP), developed by Fried and colleagues (Fried et al., 

2001).  

1.5.1 Frieds frailty phenotype and alternative assessments of frailty 

Developed and validated in 2001 using a cohort of men and woman over 65 in the Cardiovascular 

Health Study (CHS), the FFP is the most commonly used assessment method for characterising frailty 

in the clinical and research setting (Buta et al., 2015). FFP is based on the assumption that frailty is a 

clinical syndrome in which a cycle of age-related factors interplay with each other and that age-

associated declines in lean body mass, balance, strength, endurance, walking performance and 

activity level collectively create a cycle of declining energetics and reserve (Fried et al., 2001) (Figure 

1.22).  

Importantly, the frailty phenotype can be used clinically to assess immune function decline and as a 

pre-operative evaluator for whether older individuals who undergo surgery are at risk of 

postoperative complications (Makary et al., 2010). In addition, the frailty phenotype can be used to 

independently predict several adverse health outcomes in older individuals such as cognitive decline, 

falls, disability, dependency, acute illness, and hospitalisation (Fried et al., 2001). 

By using a set of five pre-defined criteria: self-reported weight loss, self-reported physical 

exhaustion, self-reported inactivity, slow gait speed and poor handgrip strength – the FFP can define 

individuals as frail, pre-frail or robust (non-frail) (Table 1.1).  

 

FFP category Eligibility 

Robust 0 criteria 

Pre-frail 1-2 criteria 

Frail 3-5 criteria 
 

Table 1.1 – Fried’s frailty phenotype diagnostic scoring criteria. 
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Figure 1.22 – Proposed cycle of frailty dynamics. Adapted from Fried et al. (2001).
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The clinical validity of the prefrail category is not universally recognised, although a recent study 

demonstrated a reduction in oxidative capacity as well as protein levels of ETC complexes in skeletal 

muscle from prefrail individuals (defined through a modified three criteria FFP score) compared to 

age-matched individuals who had been classified as ‘active’ according to metabolic expenditure 

(MET) score, gait speed, skeletal muscle mass, and skeletal muscle strength results. These indicators 

of mitochondrial dysfunction at the cellular level were corroborated by the fact that gene sets 

related to mitochondrial function were also significantly downregulated in the old (> 61 years) 

prefrail individuals compared to ‘active’ individuals (Andreux et al., 2018). The fact that roughly half 

of the elderly population displays early signs of muscle decline indicates that the inclusion of the 

prefrail category is important for detecting potentially subtle differences between prefrail and frail 

individuals, which could aid in improving understanding of the pathogenesis of frailty and optimal 

opportunities for the potential intervention (Fernandez-Garrido et al., 2014). 

The second most commonly used measure of frailty is the cumulative deficit model, or frailty index 

(FI). Based on the idea that frailty is an at-risk state caused by the age-related accumulation of 

deficits (Mitnitski et al., 2001), a frailty index can be developed from existing health data, as well as 

from information derived from a comprehensive geriatric assessment (FI-CGA) (Searle et al., 2008; 

Jones et al., 2004; Jones et al., 2005; Rockwood et al, 2010). Each deficit is translated into a binary 

tally and then expressed as the ratio of deficits considered, thus allowing for consistency across 

different studies (Rockwood & Mitnitski, 2011). The hypothesis behind the FI is that frailty is a multi-

factorial state in which the quantity of deficits is more informative than the quality of deficits an 

individual has accumulated over the course of their adult life. Both the FI and FFP have been 

associated with the increased risk of an individual developing age-related comorbidities, albeit 

through alternate pathophysiological mechanisms (Clegg et al., 2013). An advantage of FI over the 

FFP is that the rate of deficit accumulation can be calculated and used to give an estimation of how 

quickly frailty will progress in an individual. Whilst the FI and FFP propose different 

pathophysiological mechanisms for frailty, both measurements appear to similarly predict frailty 

outcomes. Here, the convergent validity between outcome measures of both the FFP and FI were 

tested through both parametric and non-parametric correlation analyses (as described in Rockwood 

et al., 2007), and determined to be 0.65 in a study which utilised both. This indicates that there is 

considerable, but not complete, convergency between the assessments (Rockwood et al., 2007). 

Aside from the FFP and FI, there are other alternative validated methods for measuring frailty. 

Briefly, these include the Study of Osteoporotic Fracture (SOF) Index, which assesses frailty using 

three characteristics in which only two need to be met for an individual to be classified as frail 



53 
 

(Ensrud et al., 2007); Edmonton Frailty Scale (EFS), which is commonly used in the hospital setting 

(Rolfson et al., 2006); Clinical Frailty Scale (CFS) which scores frailty on a scale of 1-7 based on clinical 

judgement of known markers of frailty (Rockwood et al., 2005a), and PRISMA-7, which is composed 

of seven self-reported characteristics (Raiche et al., 2008).  

Importantly, in response to the development of various frailty assessments, a consensus between 

leading international frailty delegates agreed that criteria for successfully defining frailty includes 

having content validity (i.e. has multiple determinants and can be applied to numerous situations), 

criterion validity (i.e. can predict adverse outcomes), and construct validity (i.e. consistently predicts 

frailty in certain setting, such as in woman and in advanced age) (Rockwood et al., 2005b; Morley et 

al., 2013) 

The geriatric field is currently looking to move towards more specific instruments and methods for 

assessing frailty in specific populations and settings. Two examples are the electronic Frailty Index 

(eFI) and the Hospital Frailty Risk Score (HFRS). These two methods of assessment can measure 

frailty through deficits solely using electronic heath records, and have both been validated to predict 

adverse health outcomes (Clegg et al., 2016; Ambagtsheer et al., 2019; Gilbert et al., 2018). 

Although these different measurements of frailty are based on alternative pathophysiological 

hypotheses of frailty, there is a consensus that individuals with an increased accumulation of deficits 

are more vulnerable and so likely to be frail. There is also a consistency in the relationship between 

frailty and age, as well as frailty and female gender, within each alternative form of frailty 

measurement (Theou et al., 2013).  
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1.5.2 Frailty in the general population 

In the general population the process of ageing and complications which arise from adverse ageing 

are highly heterogeneous, with individuals of the same age experiencing vastly different health 

levels. As such, frailty was introduced as a universal term to describe this variability. Frailty is 

associated with age in the HIV-uninfected population (Althoff et al., 2014; Hoogendijk et al., 2018), 

although the severity of frailty can be modified over time (Womack et al., 2013). In addition, the 

presence of frailty (as determined through the original FFP assessment) predicts outcomes such as 

falls, comorbidity, loss of independence and mortality in the general population (Fried et al., 2001; 

Fairhall et al., 2014; Li et al., 2014; Barbosa et al., 2017).  

Due to the variability in study populations and methods of assessment, accurate figures on the 

epidemiology of frailty in the general population have proven difficult. A systematic review by 

Collard and colleagues pooled together results from over 61,000 community-dwelling residents of 

high-income countries aged 65 and over and assessed frailty using the FFP method. They 

demonstrated the weighted prevalence of frailty to be 11%, although there was vast variation in the 

prevalence of frailty between the different studies (4-59%) (Collard et al., 2012). A more recent 

systematic review and meta-analysis using data from more than 120,000 older individuals 

demonstrated that the incidence of frailty (as measured by various assessment criteria) was 43.4 

new cases every 1000 person-years, and the incidence of prefrailty was 150.6 new cases every 1000 

person-years (Ofori-Asenso et al., 2019). Other systematic reviews have demonstrated that the 

prevalence of frailty, as determined by the original FFP, among long-term care residents is 53% 

(Kojima, 2015), 37% in individuals with end-stage renal disease (Kojima, 2017), and 42% in patients 

with haematological malignancies, although in this study frailty was determined by a variety of 

validated methods (Handforth et al., 2015).  

There is still debate regarding the best method for assessing frailty in the clinical and hospital 

setting, mostly due to the large heterogeneity in pathogenesis and presentation of frailty in different 

individuals. Notably, a survey of 62 geriatricians conducted by Fried and Watson reported the 

characteristics that represent frailty. These included: malnourishment, functional dependence, 

pressure sores, prolonged bed rest, gait abnormalities, general muscle weakness, weight loss, being 

over 90 years old, fear of falling, anorexia, dementia, hip fractures, delirium, polypharmacy, and 

confusion (Fried & Watson, 1998). 

Due to the large heterogeneity of frailty and lack of consensus that still exists, frailty is often used as 

an umbrella term for a syndrome that contains a vast array of symptoms, including loss of reserve 

and disability. Disability is related to frailty but is a distinct condition. A disability is defined as the 
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loss of functional ability and capacity to carry out tasks as an individual (Yoo et al., 2018). Disabilities 

may inversely affect an individual’s quality of life (QOL) and cause an increased burden on health 

services, with QOL being inversely associated with frailty in community-dwelling adults (Kojima et 

al., 2016, Crocker et al., 2019). According to the WHO, 15% of people worldwide live with disabilities 

(United Nations, 2015), and up until 1996, the prevalence of disability among community-dwelling 

individuals above 70 years old was between 20-30%, and this number was forecast to keep 

increasing (Adams et al., 1995). A more recent estimation put the prevalence of disability in this 

population at 66% (Virues-Ortega et al., 2011). As mentioned above, disabilities and frailty are 

distinct entities but can frequently coexist. Several studies have demonstrated that five criteria 

frailty phenotype characterised community-dwelling frail or prefrail individuals are more likely to 

develop disability (Makizako et al., 2015; Aguilar-Navarro et al., 2015).  

An analysis of the SHARE study, which included data from more than 35,000 individuals over 50 

years old, demonstrated that frailty, as measured by the FI, was lower in high-income countries 

compared to low-income countries. In addition, the mean FI score was inversely correlated with 

gross domestic product and health expenditure (Theou et al., 2013). Another study investigating the 

association of frailty with racial differences demonstrated that African-American men and woman 

had an adjusted higher prevalence of frailty compared to Caucasian men and women, and that 

African-American men were four times as likely to develop frailty compared to Caucasian men 

(Hirsch et al., 2006). 

As the average age of the general population increases so too does the prevalence of frailty (defined 

by any validated assessment), and this increased prevalence is expected to pose significant problems 

with care of the elderly (Rodrigues-Laso et al., 2018). Indeed, data from various studies have 

indicated a pattern of increased healthcare costs in several sectors where there is an increased 

prevalence of frailty (Ensrud et al., 2018; Kim et al., 2019). Contextualising this issue, studies using 

the original FFP assessment of frailty have shown that greater than 60% of frail individuals are 

admitted to hospital within 3 years, placing strain on healthcare services (Fried et al., 2001; Chang et 

al., 2018). Importantly, as of 2017 England’s National Health Service general practice contract states 

that identification of frailty is now a requirement (National Health Service England, 2017).  

1.5.3 Progression to frailty  

Frailty is a dynamic state in which individuals can progress through the different stages of robust, 

prefrail, and frail in both directions (Trevisan et al., 2017). There have been three distinct stages 

identified in the developmental process of frailty, starting from robustness and progressing to 

prefrailty, where reductions in physiological reserve lead to slight decreases in an individual’s 
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capacity to respond to stressors and injury. Notably, exhaustion tends to be the first physical 

component of the FFP assessment that manifests in individuals developing frailty (Stenholm et al., 

2019). The individual will then progress from prefrailty to frailty, where physiological reserves have 

fallen below the functional threshold and the individual can therefore no longer fully respond to 

stressors and/or injury, resulting in impaired or incomplete recovery (Lang et al., 2009). Finally, the 

individual will progress from frailty to the frail complications stage, where dramatic functional 

declines lead to disabilities, chronic and acute infections, as well as polypharmacy, increased 

hospitalisation, and mortality (Rodrigues-Laso et al., 2019; Ahmed et al., 2007) (Figure 1.23).  

Longitudinal studies have suggested that frailty is reversible up to the frailty complications stage, 

where physiological reserves are exhausted. Indeed, up to 37% of individuals enrolled in longitudinal 

studies experience at least one transition between frailty states within 1-5 years of follow-up. This 

indicates the importance in developing a better understanding of intervention strategies aiming to 

slow or reverse the progression of frailty (Gill et al., 2006; Trevisan et al., 2017; Pollack et al., 2017). 

The Survey of Health, Aging and Retirement in Europe (SHARE) study assessed the frailty status using 

the original FFP criteria, as well as several other factors of over 85,000 individuals aged 65 or older. It 

revealed that while 8.8% of the study population were classified as frail, 39.1% were prefrail. A two-

year follow-up showed that without any intervention, 22.1% worsened, 61.8% did not change status 

and 16.6% improved their frailty status (Etman et al., 2012). 
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Figure 1.23 – Dynamics of the frailty syndrome  
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1.5.4 Risk factors of frailty  

Over the past couple of decades studies have demonstrated a variety of risk factors directly 

implicated in the development and progression of frailty in the general population. These include old 

age, malnutrition, physical inactivity, cognitive decline, social isolation and being female (Fried et al., 

2001; Nosraty et al., 2012; Luger et al., 2016; Feng et al., 2017; Martone et al., 2013) (Figure 1.24).  

Of the risk factors noted above, physical inactivity appears to play one of the most significant roles. 

Physical inactivity can lead to loss of muscle mass and function, termed sarcopenia (Cruz-Jentoft et 

al., 2019). Sarcopenia will yield a reduced metabolic rate, a slower gait speed and reduced grip 

strength (Bortz, 2002; Walston, 2012; Cruz-Jentoft et al., 2019). Notably, these two factors are two 

of the five factors used in the FFP method of frailty assessment, indicating the significant role 

physical inactivity plays in the development of frailty (Fried et al., 2001). In support of this, a recent 

cohort study demonstrated an increased prevalence of frailty (as determined by a modified FFP 

criteria) in 60+ year old individuals with low physical activity levels and excessive time spent in a 

sitting position (da Silva et al., 2019). Highlighting the heterogeneic and multisystem nature of 

frailty, previous studies have suggested that comorbidities and injury can contribute to the 

development of frailty through the forced inhibition of physical activity (Blaum et al., 2005).  

Malnourishment has a similar contribution to the progression of frailty as does physical inactivity, 

and the two factors can often be interlinked, as hypothesised in the Fried definition of frailty (Fried 

et al., 2001). Nutritional deficiencies, particularly in protein and vitamin D and C intake, will result in 

unintentional weight loss and declines in bone mineral density (BMD), leading to an increased 

susceptibility to developing injuries (Fried et al., 2001; Lorenzo-Lopez et al., 2017). In support of this, 

it was shown that individuals with a low daily energy intake (< 21kcal/kg) have a 24% increased risk 

of developing frailty, as defined by the original FFP (Bartali et al., 2006). Additionally, low calorie 

intake will adversely impact an individual’s energy producing capabilities, and therefore impact the 

individual’s ability to perform daily tasks (Volkert et al., 2019; Landi et al., 2016; Martone et al., 

2013). On the flip side, malnourishment in the form of excessive intake can lead to obesity, and 

obesity and excessive energy intake has been shown to significantly contribute to the pathogenesis 

of frailty (Volkert et al., 2019; Blaum et al., 2005), in particular, inter- and intra-muscular fat 

infiltration as a result of obesity is known to decrease muscle quality (Delmonico et al., 2009). 

Interestingly, a recent study has shown that the Mediterranean diet is linked to a decreased 

prevalence of frailty, defined by the frailty index (Kojima et al., 2018). 

Multimorbidity is a known risk factor for frailty, and the prevalence of comorbid conditions is greater 

in frail individuals, defined through various frailty measurements, when compared to the normal 
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population (Vertano et al., 2019). A recent meta-analysis which included over 14,000 community-

dwelling older individuals enrolled over nine studies demonstrated that 18% of individuals with 

multimorbidity (defined as having two or more comorbid diseases) were frail (regardless of frailty 

assessment) (Vertano et al., 2019), and this was further supported by a large UK study using a 

modified FFP assessment in 37-73 year olds which demonstrated that frailty was associated with 

multimorbidity (Hanlon et al., 2018). Importantly, the National Institute for Health and Care 

Excellence (NICE) in England now advise that the identification of frailty should be attempted in all 

encounters with elderly patients with multimorbidity (National Institute for Health and Care 

Excellence, 2016).  

Another factor contributing to the pathogenesis of frailty is cognitive decline. Declines in cognitive 

function are often attributed to age-related diseases such as Alzheimer’s Disease or other forms of 

dementia, as they can significantly impact an individual’s ability to perform daily activities. In 

addition, cognitive decline can enhance physical function declines (Klein et al., 2005; Panza et al., 

2018). 

Social isolation is more prevalent in frail individuals compared to the general population (Gale et al., 

2018). Consequently, social isolation can lead to a reduction in physical activity as well as weight loss 

(Schrempft et al., 2019). Together, these factors lead to a reduction in QOL and are directly 

associated with increased morbidity levels.   

As mentioned previously, frailty, as defined by five criteria assessments, is more prevalent in females 

compared to age-matched males (Fried et al., 2001; Collard et al., 2012). Although not completely 

understood, this increased prevalence of frailty in females is suspected to be due to lower lean body 

mass and muscle function compared to males.  

As mentioned above, the NICE now advise that frailty should be assessed in older individuals with 

the risk factor of multimorbidity (National Institute for Health and Care Excellence, 2016). Indeed, a 

recent report from the British Geriatrics Society has recommended that all older people who 

encounter health and social care should be assessed for frailty (through the PRISMA-7 questionnaire 

and assessments of gait speed and timed-up-and-go). As frailty is often not recognised in an older 

individual until they experience an adverse outcome such as a fall or delirium, the importance of 

better understanding the risk factors underpinning the pathogenesis of frailty are significant (Morely 

et al., 2013). Identifying frailty earlier through well-designed integrated pathways such as the 

Comprehensive Geriatric Assessment may therefore reduce the burden of frailty-related 

hospitalisations (British Geriatric Society, 2017). Indeed, the NHS is the first health system to 
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systematically identify individuals ≥65 years using a population-based stratification approach – the 

electronic Frailty Index (NHS, 2020).  
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  Figure 1.24 – Risk factors associated with the onset and progression of frailty
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1.5.5 Pathophysiology of frailty  

Frailty is known as a multisystem disorder (Fried et al., 2001; Thillainadesan et al., 2020; Dent et al., 

2019; Fried et al., 2009), with involvements in the musculoskeletal system (Fried et al., 2001), 

neuroendocrine system (Clegg & Smith, 2018), inflammatory system (Kane et al., 2019), and 

haematological system (Alvarez-Rios et al., 2015), in which there is a nonlinear association between 

the number of abnormally functioning systems and frailty, as well as the number of comorbid 

diseases and frailty (Fried et al., 2009) (Figure 1.25). As such, increasing focus has been given to 

proposed subtypes of frailty, such as cognitive frailty, social frailty, and nutritional frailty (Panza et 

al., 2015).  

1.5.5.1 Potential role of mitochondrial dysfunction in the pathophysiology of frailty  

Although not confirmed, it is heavily suspected that dysregulated energetics may significantly 

underpin the pathogenesis and pathophysiology of frailty (Fried et al., 2001). It is well known that 

mitochondrial function and content declines with age, manifesting clinically as a reduction in 

OXPHOS and energy producing capacities (Short et al., 2005; Chistiakov et al. 2014). This reduction in 

energy production with age subsequently adversely affects the function of high energy-demanding 

tissues such as skeletal muscle and the brain, as discussed later. In support of this, it was recently 

demonstrated that frail animal models have a reduced mitochondrial content as well as increased 

lactate levels and abnormal cristae (Sayed et al., 2018). Further, mitochondrial function is also 

heavily implicated in the pathophysiology of frailty by affecting individual aspects of the frailty 

syndrome. For example, declining skeletal muscle oxidative capacity (as measured by phosphorus 

magnetic resonance spectroscopy, 31P-MRS) is significantly associated with lower gait speed (Choi et 

al., 2016). Using novel immunofluorescence assays and 31P-MRS to investigate OXPHOS complex 

activity was hence utilised in this study to investigate skeletal muscle oxidative capacity in ageing 

PLWH.  

 Aside from decreases in energy producing capacity, age-related mitochondrial dysfunction has 

several other adverse pathophysiological implications which can increase the risk of developing 

frailty. Briefly, these include: the dysregulation of redox signalling and an increase in ROS and 

therefore oxidative stress, which can damage important molecules such as DNA (Wu et al., 2009; 

Peterson et al., 2012). In support of this, studies have demonstrated elevated levels of circulating 

oxidative markers such as serum 8-hydroxy-2’-deoxyguanosine (8-OHdG) (Serviddio et al., 2009); 

inducing an increase in the release of inflammatory markers (Coen et al., 2013) and activation of the 

NLR family pyrin domain containing 3 (NLRP3) inflammasome, which both subsequently lead to 

inflammation in various tissues (Sayed et al., 2018; Volt et al., 2016); impairing calcium regulation, 
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which contributes to dysfunctional neurological system (Powers et al., 2011); and altering 

myofilament structure and function, which can progressively lead to declines in muscle quality and 

strength (Powers et al., 2011). In addition, several studies have implicated a role of mitochondrial 

genetics in frailty. For example, mtDNA copy number has been shown to be associated with frailty 

syndrome severity (Ashar et al., 2015), and there is evidence of mitochondrial haplogroup variation 

causing increased susceptibility to developing frailty (Moore et al., 2010). 

1.5.5.2 Musculoskeletal and neuroendocrine decline in frailty pathophysiology  

Several studies have demonstrated the significance of the musculoskeletal system in the onset and 

development of frailty. On average, sarcopenia begins in individuals around 40 years old and can 

lead to a 30-50% reduction in muscle mass and function by age 80 (Bortz, 2002; Cruz-Jentoft et al., 

2019). Sarcopenia ultimately impairs strength and endurance and can adversely affect balance and 

gait, leaving the individual more susceptible to developing comorbidities and a reduction in QOL 

(Cruz-Jentoft et al., 2019). The pathogenesis and pathophysiology of sarcopenia is explained in more 

detail in Section 1.6.4. With regard to the multisystem nature of the pathophysiology of frailty, both 

hormonal deficiency and cytokine excess are involved in the pathogenesis of frailty (Morely et al., 

2005; Fabbri et al., 2015; Swiecicka et al., 2018; Hanlon et al., 2018; Soysal et al., 2016), and both 

insulin resistance (IR) and diabetes are associated with excessive loss of lean body mass and muscle 

strength (Park et al., 2009), hence why I investigated body composition and intramyocellular lipid 

accumulation in this study. Furthermore, loss of lower leg muscle mass and strength is associated 

with elevated inflammation (Guralnik et al., 1994). 

With regards to the impact of neuroendocrine decline in frailty, hormonal abnormalities, IR and 

increased level of inflammatory markers have been shown to contribute to the progression of frailty, 

irrespective of frailty assessment (Cappola et al., 2003; Swiecicka et al., 2018; Perez-Tasigchana et 

al., 2017; Ruan et al., 2017; Clegg et al., 2018). Underscoring the multisystem aspect of frailty, 

hormonal declines that result in an imbalance between catabolic and anabolic processes can 

adversely impact muscle mass and function and thus lead to sarcopenia (Bortz, 2002; Morley et al., 

2013). The main driver of neuroendocrine decline in frail individuals has been attributed to impaired 

function of the hypothalamic-pituitary-gonadal/adrenal and growth hormone axis, which ultimately 

presents as declines in circulating oestrogen and androgen levels (Swiecicka et al., 2018). Declines in 

oestrogen and androgen levels subsequently increase the release of bone cytoclastic cytokines, 

which in turn lead to a reduction in BMD (Bortz, 2002). As mentioned above, a contributing factor to 

neuroendocrine decline in frail individuals is insulin resistance. It has been demonstrated that IR, as 

measured by the insulin resistance-homeostatic model assessment (IR-HOMA), is associated with 
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frailty prevalence frailty in women and men (determined by five criteria FFP) (Blaum et al., 2005) and 

a four times increased incidence of frailty (determined by five criteria FFP) (Kalyani et al., 2012). 

1.5.5.3 Immunosenescence and inflammation in frailty pathophysiology  

Ageing of the immune system eventually leads to a chronic low-grade systemic inflammatory state 

termed ‘Inflamm-Aging’, which is characterised by elevated levels of inflammatory molecules and an 

increased susceptibility to morbidity and mortality (De Martins et al., 2006; Piggott et al., 2015). 

Numerous studies have also demonstrated the elevated levels of inflammatory markers such as 

cortisol, interleukin-6 (IL-6), C reactive protein (CRP) and TNF-α, as well as declines in IGF-1, 

testosterone and growth hormone concentrations in frail individuals compared to the general 

population (Abbatecola & Paolisso, 2008; Soysal et al., 2016; Walston et al., 2002; Hubbard et al., 

2009). As such, frailty is commonly recognised as a chronic inflammatory state (Vina et al., 2016). 

One aspect of the adverse pathophysiological effects of inflammation is the specific impact on 

muscle strength, as studies have demonstrated an association between increased TNF-α levels and 

declines in muscle strength and mass over a 5-year period, as well as mortality (Bruunsgaard et al., 

2003). This is in part due to the TNF-α induced upregulation of NF-κB-dependant muscle catabolism 

and necrosis processes, which leads to a downregulation in regenerative processes (Concepcion-

Huertas et al., 2013; Li et al., 2008). In addition, studies in both mice and humans have 

demonstrated the significant association between increased IL-6 levels with muscle atrophy and 

frailty (Baltgalvis et al., 2008; Ma et al., 2018; Marcos-Perez et al., 2018). There is also an indirect 

association between frailty and inflammation, as frailty determined by five criteria FFP in the 

Woman’s Health and Aging studies is associated with an increasing number of inflammatory diseases 

(Chang et al., 2012). Interestingly, the degree to which inflammation contributes to the 

pathophysiology of frailty appears to be more significant in women compared to men. For example, 

higher baseline concentrations of CRP and fibrinogen were independently associated with frailty in 

woman but not men (Gale et al., 2013). In addition, elevated CRP levels were shown to be negatively 

associated with cognitive and skeletal muscle performance in women but not men (Canon & 

Crimmins, 2011).  

Elevated inflammation may also be a consequence of diet. With regards to this, a recent study 

investigated the role of higher dietary inflammatory index (DII) in frailty and found that both male 

and female subjects (mean age 63) with a high DII score had an 37% increased risk of frailty, defined 

by SOF index (Shivappa et al., 2018). In support of the significant role which inflammation plays into 

the pathophysiology of frailty, molecular evidence from monocytes derived from frail individuals 

demonstrated an upregulation in the ex vivo expression of inflammatory pathways (Jia et al., 2001).  
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To compound the damaging effects of inflammation and ageing, with time, more cells develop the 

secretory phenotype associated with senescence (SASP). These cells are senescent and excrete 

additional inflammatory markers such as IL-1 and IL-6 (Coppe et al., 2008). Age-related immune 

system alterations which contribute to Inflamm-Aging are known to accelerate the loss of muscle 

mass and strength, as well as decreasing physical function capabilities (Dihn et al., 2019; Walston et 

al., 2006; Schlegal et al., 2006; Ferrucci et al., 2002; Visser et al., 2002; Cesari et al., 2004; Santos-

Eggimann et al., 2009). In support of this, a recent study demonstrated a decreased CD4+/CD8+ T cell 

ratio (in favour of CD8+ cells), and reduced proportion of CD19+ B cells in frail individuals compared 

to robust individuals (Marcos-Perez et al., 2018). Frail individuals also appear to have higher 

proportions of CD8+CD28-, CCR5+CD8+ and CCR5+CD45- T cells compared to robust individuals, 

indicating a diminished immune capability in these frail individuals (both men and very old women 

defined by original five criteria FFP) (De Fanis et al., 2008; Semba et al., 2005). In addition, it has also 

been shown that frailty score is inversely correlated to white blood cell (WBC) count (Fernandez-

Garrdio et al., 2018). These age-related declines in immune function are likely to be somewhat 

caused by homeostatic pressure, which diminishes bone marrow production of B cells and limits 

their subsequent migration (Marttila et al., 2014). 

Importantly, immune system changes are often compounded by increased inflammation in the form 

of a vicious cycle. For example, it has been shown that WBC count, in combination with IL-6 levels, 

were independently associated with frailty (Leng et al., 2007). An acute and dramatic increase in 

WBC count is recognised as an indicator of systemic inflammation, and this increase is associated 

with cardiovascular abnormalities and cancer mortality, as well as with all-cause mortality (Leng et 

al., 2005; Ruggiero et al., 2007). 

1.5.5.4 Oxidative stress and molecular alterations in the pathophysiology of frailty 

Studies have also demonstrated the involvement of oxidative damage and epigenetic modifications 

such as DNA methylation and telomere attrition in the pathophysiology of frailty (Breitling et al, 

2016; Soysal et al., 2017; Vina et al., 2018; Liu et al., 2016; Namioka et al., 2017; Wu et al., 2009; 

Ingles et al., 2014; Serviddio et al., 2009; Ble et al., 2006). Several studies in the past decade have 

demonstrated that elevated levels of plasma markers of oxidative damage were related to frailty 

(defined through various methods), as opposed to the chronological age of the subject (Baptista et 

al., 2012; Liu et al., 2016; Saum et al., 2015; Wu et al., 2009), while additional studies have 

demonstrated the association between frailty and increased methylation of promoter CpG islands 

(Collerton et al., 2014). Of note, markers of oxidative stress such as malondialdehyde, oxidised 

glutathione, 4-hydroxy-2,3-nonenal, and protein carbonylation are elevated in frail individuals 

compared to robust individuals (Soysal et al., 2017; Ingles et al., 2014). In particular, several studies 
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have also shown that oxidative stress is associated with declines in grip strength and walking speed 

(Marcos-Perez et al. 2019; Soysal et al., 2017).  

Oxidative damage is thought to contribute to frailty by upregulating inflammation through the 

activation of the NF-κB pathway, as well as directly impacting muscle quality and function (Baumann 

et al., 2016). Studies have also investigated the role of abhorrent genetic processes in the 

pathogenesis of frailty. As such, in a study investigating 620 single nucleotide polymorphisms (SNPs) 

involved in inflammation and hormone pathways, five were found to be associated with the Fried’s 

frailty classification in men and women over 50 years (Mekli et al., 2015). In addition, variable 

number of tandem repeats (VNTR) polymorphisms in the genes for IL-1RN and IL-4 have been shown 

to be associated with higher FFP scores (Perez-Suarez et al., 2016).  

Although the pathophysiology of frailty is extremely multifactorial, novel biomarkers remain highly 

desirable. MicroRNA (miRNA) are small RNA molecules involved in processing mRNA and are thus 

essential in the regulation of various intracellular signalling cascades and processes such as 

inflammation, response to muscle damage and mitochondrial function. The presence or absence of 

some circulating miRNA such as miR-21 can therefore be indicative of a pathophysiological process 

that is occurring, such as sarcopenia (Ameling et al., 2015; Fan et al., 2016; Weilner et al., 2015). A 

recent report showed that eight miRNAs were enriched in frail individuals (defined by the original 

FFP criteria) compared to young and age-matched robust individuals. These included miR-10a-3p, 

miR-92a-3p, miR-185-3p, miR-194-5p, miR-532-5p, MiR-326, miR-576-5p and miR-760 (Ipson et al., 

2018), which are involved in insulin signalling as well as FoxO and AMPK signalling pathways (Martins 

et al., 2016). Additionally, there are several miRNAs that are involved in regulating mitochondrial 

functions and have been implicated in ageing. For example, miR-21 and miR-126a-3p promote the 

activation of Bcl-2 family members which regulate fission/fusion events as well as induce the 

activation of autophagy, and have been shown to be increased with age (Giuliani et al., 2018).  
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Figure 1.25 – Factors involved in the pathophysiology of frailty
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1.5.6 Frailty in the HIV-infected population 

Despite effective viral suppression and immune recovery in response to cART, PLWH experience an 

increased prevalence of age-related conditions compared to HIV- individuals of a similar age 

(Guaraldi et al., 2011; Smit et al., 2015; Chow et al., 2012; Althoff et al., 2014; Drummond et al., 

2014; Kirk et al., 2013; Nou et al., 2016; Shiels et al., 2009; Sico et al., 2015; Desquilbet et al., 2007; 

Silverberg et al., 2015). These conditions include sensory dysfunction, falls, cardiovascular disease, 

kidney disease, lung disease, liver disease, cognitive decline, cancers, polypharmacy, and 

importantly, frailty (Greene et al., 2015; Chow et al., 2015; Drummond et al., 2014; Nou e al., 2016; 

Shiels et al., 2009; Sico et al., 2015; Silverberg et al., 2015).  

As mentioned previously, studies utilising the original FFP criteria have shown that the prevalence of 

frailty in community-dwelling men and women over the age of 65 in the United States is between 7-

12% (Fried et al., 2004). Whilst no studies have examined frailty in PLWH over 65s exclusively, the 

prevalence of frailty (as assessed by the original or modified five criteria frailty phenotype) in all ages 

of the HIV-infected population ranged between 9-19% (Altoff et al., 2014; Onen et al., 2009; Piggott 

et al., 2013; Pathai et al., 2012). However, when using a range of assessments, the prevalence of 

frailty in PLWH was found to range between 5-28.6% (Levett et al., 2016). 

Although the underlying pathophysiologies of frailty are still not completely understood, similarities 

between ageing and HIV infection were observed prior to the extensive studies of the late 2000s 

which assessed frailty in the HIV-infected population. These pathologies included sarcopenia, 

lipodystrophy, anaemia, chronic renal disorders, immunosenescence, hepatic disorders, some 

cancers, and an increased susceptibility to acquired infections (Guaraldi et al., 2011; Deeks, 2011; 

Guaraldi et al., 2019a; Tate et al., 2013; Althoff et al., 2014). In addition, there are several shared 

etiologic factors of both frailty and HIV infection, such as oxidative stress, dysregulation of apoptosis 

and other mitochondrial functions, DNA alterations, telomere attrition, neuroendocrine decline and 

chronic inflammation (Bruunsgaard & Pedersen, 2003; Leng et al., 2007; Huang et al., 2005; Chavez 

et al., 2003; Erlandson et al., 2013; Margolick et al., 2017; Erlandson et al., 2017a; Zhang et al., 2015; 

Li et al., 2017; Guaraldi et al., 2019a; Branas et al., 2017). These observations suggest a potential 

overlap in the pathogenesis of frailty and HIV infection and indicate that PLWH are increasingly 

vulnerable to developing frailty and other age-related comorbidities (Margolick et al., 1992).  

The most significant of these shared aetiologies would appear to be chronic inflammation and 

immune decline (Deeks, 2011; Margolick et al., 2017). Both of these factors have been shown to be 

strongly associated with the development of age-related diseases as well as geriatric syndromes 

such as frailty in the general population (Leng et al., 2007; Walston et al., 2002; Soysal et al., 2016). 
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Chronic inflammation and immune senescence are known play a significant role in multisystem 

physiological declines even in virally supressed PLWH (Deeks, 2011). In the HIV-infected population, 

increased levels of inflammation and immune activation were shown to be associated with poor 

Short Physical Performance Battery (SPPB) scores (Erlandson et al., 2014). 

Although there are clearly links between HIV-infection and ageing phenotypes, controversy remains 

as to whether PLWH exhibit an accelerated ageing phenotype, whereby PLWH display an increased 

rate of age-related complications earlier than age-matched HIV- individuals, or instead experience 

accentuated ageing, whereby PLWH exhibit an enhanced frequency of age-related comorbidities in 

comparison to age-matched HIV- individuals (Pathai et al., 2014).  

1.5.6.1 History of frailty research in the HIV setting 

The first study to investigate frailty in the HIV-infected population was performed by Desquilbet and 

colleagues, who demonstrated that HIV infection was strongly associated with a frailty-related 

phenotype in men recruited to the Multicentre AIDS Cohort Study (MACS). Strikingly, this study 

indicated that a 55-year-old HIV+ man on cART was as likely to develop frailty as an ethnicity- and 

education-matched 65-year-old HIV- individual (Desquilbet et al., 2007). A follow-up study from the 

same group further demonstrated the link between frailty and HIV infection by demonstrating that 

CD4 count is an independent predictor of frailty in PLWH (Desquilbet et al., 2009), although future 

studies contradicted this observation (Onen et al., 2009, Althoff et al., 2014). Importantly, the latter 

study by Desquilbet and colleagues also indicated that the susceptibility of PLWH to developing 

frailty is decreased through cART, albeit not significantly.  

In another study – the AIDS Linked to the IntraVenous Experience (ALIVE) study – a similar frailty 

phenotype as was used in the MACS study demonstrated that being HIV+ was associated with a 

three times increased risk of mortality, and being HIV+ as well as frail was associated with a seven 

times increased risk of mortality (Piggot et al., 2013).  

Studies have also investigated the risks of frailty on adverse geriatric outcomes in PLWH using the 

original or modified FFP. Results from these studies include the increased risk of falls with increasing 

FFP score (Erlandson et al., 2012b), as well the increased prevalence of polypharmacy, 

multimorbidity and hospitalisation (Erlandson et al., 2012a) with frailty in PLWH. These studies also 

demonstrated that abnormalities in immune profiles are associated with declines in physical 

function and frailty. For example, individuals with lower physical function (as measured by the SPPB) 

had lower CD4/CD8 ratios, as well as higher proportions of CD38+HLA-DR+ T cells (a marker of T cell 

activation) compared to individuals with high physical function (Erlandson et al., 2012a). Further, 
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frailty was associated with higher levels of immune senescence and activation in PLWH (Erlandson et 

al., 2017a). 

1.5.6.2 Assessments of frailty in PLWH 

Early investigations into frailty in the HIV-infected population using individuals recruited into the 

MACS cohort utilised a frailty-related phenotype, similar to the original five criteria FFP (Fried et al., 

2001; Desquilbet et al., 2007; Desquilbet et al., 2009). 

The Veterans Aging Cohort Study (VACS) index is a FI-type prognostic tool specifically designed to 

measure frailty as a multisystem deterioration state in PLWH. Operationalised using HIV-infected 

men from the VACS study cohort, the VACS index is composed of deficits such as eGFR, hepatitis c 

co-infection, liver fibrosis and HIV-related factors such as CD4 count and viral load (Womack et al., 

2013). Several cross-sectional studies have utilised the VACS index to measure frailty in PLWH and 

have demonstrated that inflammatory markers such as IL-6 and soluble CD14 are strongly correlated 

with VACS index score (Justice et al., 2014). Additionally, VACS index score was also significantly 

associated with cognitive impairment, physical function status and mortality (Justice et al., 2014).  

The FI has also been adapted for the measurement of frailty in PLWH using PLWH in the Modena HIV 

Metabolic Clinic (MHMC). Here, Guaraldi and colleagues operationalised a 37-deficit index and found 

that the prevalence of frailty in virally supressed PLWH was 28% in 2015, and alarmingly, they 

predicted that in 2030, 50% of HIV+ patients will be frail at the age of 75 (Guaraldi et al., 2019b). 

Importantly, this deficit index did not include HIV-related factors (Akgun et al., 2014). The FI used in 

the MHMC study has been shown to more accurately predict 2-year mortality compared to the VACS 

index (Guaraldi et al., 2015). In addition, another study also demonstrated that the FI has a more 

significant association with age, co-morbidities, falls, and disability than the frailty phenotype 

measure used in the MACS studies (Guaraldi et al., 2017). 

1.5.6.3 Risk factors for frailty development in PLWH 

As demonstrated in Table 1.2 there have been several cross-sectional studies involving ART-treated 

PLWH in which multiple factors have been shown to be associated with frailty in older PLWH (as 

assessed through a variety of validated frailty diagnostic methods in both men and women). These 

include age (Onen et al., 2009; Guaraldi et al., 2015) current CD4 count (Guaraldi et al., 2019a; 

Brothers et al., 2017; Branas et al., 2017; Ianas et al., 2013; Althoff et al., 2014; Pathai et al., 2012; 

Piggott et al., 2013; Terzian et al., 2009); nadir CD4 count (Onen et al., 2014; Guaraldi et al., 2017; 

Brothers et al., 2017; Erlandson et al., 2012a); detectable viral load (Althoff et al., 2014; Brothers et 

al., 2017; Piggott et al., 2013; Desquilbet et al., 2009); increased duration since HIV diagnosis (Onen 

et al., 2014; Brothers et al., 2017); use of PI-boosted regimens (Onen et al., 2009); BMI (Onen et al., 
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2014; Pathai et al., 2012; Shah et al., 2012); hepatitis C co-infection (Ianas et al., 2013; Onen et al., 

2014; Brothers et al., 2017); lipodystrophy (Shah et al., 2012); injection drug use (Brothers et al., 

2017), and unemployment (Onen et al., 2014), amongst others. It is worth noting that the 

heterogeneity in study populations and frailty scales used, as well as the cross-sectional nature of 

many of these studies, undermine the clinical validity of some observations.   

An important facet of frailty is its dynamic and plastic nature in both the general population and HIV-

infected population (Althoff et al., 2014; Gill et al., 2006). In a longitudinal study of the MACS cohort,  

younger age was associated with a reversion from frailty to robust, whilst history of AIDS was 

associated with progression to frailty (defined by the original FFP criteria) (Althoff et al., 2014). In 

addition, a longer duration of HIV infection, smoking history and being female independently 

predicted advancement to frailty in the MHMC cohort (Erlandson et al., 2017a; Brothers et al., 

2017). 

As well as the beneficial effects on viral suppression and immune recovery, the advent of cART 

appeared to decrease the prevalence of frailty in PLWH (Desquilbet et al., 2009). HIV-infected men in 

the MACS study were found to be nine times more likely to be frail than HIV- individuals. Frailty was 

also positively associated with increasing age and increased duration of HIV infection, as well as CD4 

count, viral load, and presence of AIDS (Desquilbet et al., 2007). Interestingly, the prevalence of 

frailty between 1994-1995, when cART usage was <0.1%, was 8%. This had decreased to 5% 

between 2000-2005, when the prevalence of cART usage was >70% (Desquilbet et al., 2009). 

Additionally, an FI based model has predicted that the prevalence of frailty in PLWH over 50 will 

decrease from 26% in 2015 to 7% in 2030, in part thanks to advances in cART effectiveness and 

availability (Guaraldi et al., 2019b). 
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Table 1.2 – Factors associated with frailty among PLWH.  

 Factors related to frailty in PLWH References 

General factors Age 

Onen et al., 2009; Althoff et al., 2014; Desquilbet et al., 2007; 
Piggott et al., 2013; Ianas et al., 2012; Pathai et al., 2012; 

Guaraldi et al., 2015 
 

 Female gender 

Zeballos et al., 2019; Bandeen-Roche et al., 2015; Womack et 
al., 2013; Mitniski et al., 2005;  Brothers et al., 2017; Onen et 

al., 2014 
 

 Smoking 

Onen et al., 2014; Erlandson et al., 2017a; Brothers et al., 2017 
  

Co-morbidities Hepatitis C 
Ianas et al., 2013;  Brothers et al., 2017; Onen et al., 2014 

 BMI Onen et al., 2009; Pathai et al., 2012; Shah et al., 2012 

 Diabetes Kelly et al., 2019; Piggott et al., 2013 

 Hepatotoxicities Piggott et al., 2013 

 Lipodystrophy Shah et al., 2012 

 Inflammation 
Justice et al., 2012; Erlandson et al., 2013; Leng et al., 2011; 

Margolick et al., 2013; Onen et al., 2014 

 Cognitive decline Onen et al., 2009; Marquine et al., 2014 

 Low CD4:CD8 ratio Guaraldi et al., 2019a; Erlandson et al., 2012a 

 Fractures Womack et al., 2013 

HIV-related factors Low CD4 count 
Guaraldi et al., 2019a; Branas et al., 2017; Onen et al., 2014; 
Piggott et al., 2013; Althoff et al., 2014; Adeyemi et al., 2013;  

Brothers et al., 2017 

 
Nadir CD4 count 

Guaraldi et al., 2017; Onen et al., 2014; Erlandson et al., 
2012a;  Brothers et al., 2017 

 Viral load 

Desquilbet et al., 2009; Piggott et al., 2013; Althoff et al., 2014;  
Brothers et al., 2017 

 History of AIDS 
Desquilbet et al., 2009 

 Time since diagnosis 
Onen et al., 2014;  Brothers et al., 2017 

 Duration of cART 
Brothers et al., 2017; Althoff et al., 2014 

 PI-containing ART regimen 
Onen et al., 2014 

 NNRTI-containing ART regimen 
Erlandson et al., 2017a 

Socio-economic factors Unemployment 
Onen et al., 2009; Erlandson et al., 2012a; Onen et al., 2014 

 Poorer education 

Erlandson et al., 2017a; Onen et al., 2009; Althoff et al., 2014; 
Piggott et al. 2013 

 Low income 
Onen et al., 2009 
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1.5.6.4 Comparisons to frailty in type 2 diabetes mellitus patients 

Type 2 diabetes mellitus (T2DM) is chronic age-related disease, and similarly as in the context of HIV, 

T2DM patients appear to be more at risk of developing adverse ageing phenotypes such as frailty 

(Ottenbacher et al., 2009; Cacciatore et al., 2013; Hubbard et al., 2010). For example, frailty (as 

determined by the original five criteria FFP) was demonstrated to be 3-5 times higher in diabetic 

individuals over 65 compared to the age-matched general population (Saum et al., 2014). In 

addition, as in the HIV setting, the population of older T2DM patients is increasing, subsequently 

increasing the potential burden to the healthcare system (Won et al., 2018).  

Of note, a recent systematic review demonstrated that the prevalence of frailty (as defined by 

several frailty measurements in a cohort of men and women with a mean age of 68) was 

approximately 24% in diabetics (Ida et al., 2019). This is slightly above the prevalence of frailty (as 

assessed by the original or modified five criteria frailty phenotype) estimated in all ages of the HIV-

infected population, which ranged between 9-19% (Altoff et al., 2014; Onen et al., 2009; Piggott et 

al., 2013; Pathai et al., 2012). In addition, both are higher than the estimated prevalence of frailty 

(through various frailty assessments) in over 65s in the general population (Fried et al., 2004; Collard 

et al., 2012). 

The underlying pathophysiological mechanisms of frailty in diabetic individuals is similar to that 

proposed in older PLWH, with long-term diabetic pathology accelerating the loss of skeletal muscle 

mass and function (Kalyani et al., 2014), as well as mitochondrial dysfunction as the result of insulin 

resistance (Krentz et al., 2013). Additionally, hyperglycaemia in T2DM is associated with increased 

chronic inflammation and oxidative stress (Morley et al., 2014). Importantly, frailty in older diabetic 

individuals is a multisystem disorder, as is the case in frailty in PLWH (Lee et al., 2017). 

Whilst the risk factors and pathophysiology of frailty in T2DM individuals and older PLWH differ in 

some areas, there are important overlapping mechanisms. Hence, investigations into the 

mechanisms behind adverse ageing phenotypes such as frailty in older diabetic individuals may also 

help better understand frailty in older PLWH, and vice versa.  

1.5.7 Frailty prevention and interventions  

As mentioned above, frailty is a dynamic state and so ‘treatment’ for frailty can either be in the form 

of preventing prefrail individuals from progressing into frailty, or using interventions in order to 

reverse this progression.   

In the case of frailty prevention, the success of care depends on how well-progressed frailty is in the 

individual. Primary care therefore provides the most significant opportunity for prevention. Here, 
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primary care providers who screen older individuals can identify the most at risk individuals, 

including middle-aged individuals with comorbidities such as diabetes and multiple sclerosis. In 

these individuals, frailty can be potentially prevented by first identifying specific factors that make 

that individual susceptible to developing frailty and then attempting to alter lifestyle factors which 

may be beneficial, such as dietary changes or increasing physical activity. As such, primary care 

interventions that promote physical activity have been shown to potentially limit the progression 

from prefrailty to frailty (Serra-Prat et al., 2017; Romera-Liebana et al., 2018). In further support, 

targeted primary care delivery through implementation of the Comprehensive Geriatric Assessment 

(CGA) has been shown to improve physical function, although it did not significantly affect 

emergency department readmission (Preston et al., 2018). In addition, studies have shown that 

interventions which address emergency department staffing and physical infrastructure reduce the 

amount of time a patient is in hospital, as well as the quality of care (Preston et al., 2018). 

Due to the fact that the exact causes and outcomes of frailty in PLWH are yet to be fully determined, 

as well as the fact that there is no consensus in the best method of measuring frailty in PLWH, the 

optimal method of management of frail HIV-infected individuals remains controversial and as of yet, 

no effective pharmacological therapies are available (Calvani et al., 2013). In the general population, 

the gold standard approach to managing frailty is through specific intervention recommendations, 

such as, exercise, nutritional advice, pharmacological interventions, or cognitive therapy. In 

particular, exercise interventions seem the most effective (Walston et al., 2018; Cameron et al., 

2013; Cesari et al., 2015). Whilst studies in the general population have tested clinical interventions 

for individual components of the FFP, no studies have assessed interventions for frailty as a 

syndrome in the HIV+ population. A recently proposed method would be to routinely assess PLWH 

through a HIV-geriatric assessment (Erlandson et al., 2019). This would allow clinicians to 

comprehensively assess a patient’s condition and evaluate the impact of potential interventions. 

Additionally, it is widely accepted that earlier diagnosis of HIV and subsequent earlier initiation of 

cART is beneficial (Molina et al., 2018). 

Targeted clinical trials are evidently an important step in better understanding effective 

interventions for frailty in elderly individuals. However, clinical trials with elderly individuals are 

problematic as recruitment is complex and screening and assessments may be too invasive, 

especially in frail individuals. Other issues include the lack of focus on cost-effectiveness and on 

being patient centric as opposed to generic interventions.  

Dent and colleagues recently published a review of the management of frailty in which they describe 

steps that need to be taken in order to improve the clinical care of frailty. Steps include the better 
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understanding of the pathophysiology of frailty; improving the methodology of clinical trials; 

identifying the best instruments and methods of frailty assessments; expanding knowledge on how 

to prevent the development of frailty; assess and improve screening tools for frailty; and developing 

pathologically-defined and targeted intervention guidelines (Dent et al., 2019). Hence, in this thesis I 

attempt to better understand the pathophysiology of frailty in older PLWH, with a special interest in 

the role mitochondrial dysfunction plays.  

Importantly, frailty based screening services for PLWH are now ongoing, such as the Silver Clinic - a 

CGA based service - at Brighton and Sussex University Hospitals Trust, UK (Levett et al., 2020).  

1.5.7.1 Physical activity as a potential intervention 

With regards to interventions targeting physical function and sarcopenia, although there are several 

ongoing studies with promise, it is hoped that the ongoing Sarcopenia and Physical fRailty In older 

people multi-componenT Treatment strategies (SPRINTT) project will significantly increase our 

understanding of interventional benefits (Hopman et al., 2016). The SPRINTT project is a multi-

centre project involving researchers and participants from 11 European countries and aims to 

specifically test the effect of multicomponent interventions in individuals with early stage frailty and 

sarcopenia.  

Of the most up to date information derived from recent studies, the most promising interventions 

appear to be single-mode physical activity programmes (either resistance, aerobic or balance and 

coordination training programmes) which improve gait speed, mobility, muscle strength and 

ultimately physical function in older frail individuals (Landi et al., 2014; Zubala et al., 2017). 

Additionally, multicomponent activity programmes also improve muscle strength and balance (de 

Labra et al., 2015; Gine-Garriga et al., 2014; Cadore et al., 2013). Furthermore, physical activity 

interventions have been shown to contribute to the reversal of the adverse effects of chronic 

diseases and help maintain functional independence (Paulo et al., 2016; Virtuoso et al., 2012). 

Unfortunately, the effectiveness of the results from these studies are questionable, as they do not 

seem to re-test for frailty post-intervention (Gwyther et al., 2018). And so more work needs to be 

undertaken in order to better understand the optimal programme type for different severities of 

frailty.  

Increasing physical activity has also been shown to have beneficial impacts on mitochondrial 

function in skeletal muscle. In particular, regular exercise in adulthood has been demonstrated to 

maintain the ultrastructure of mitochondria and other organelles involved in calcium handling, 

oxidative phosphorylation, and protein homeostasis (Zampieri et al., 2015). In addition, aerobic 

exercise has been shown to improve the energy producing capabilities of mitochondria by promoting 
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mitochondrial biogenesis through the activation of calcium-mediated signalling pathways, such as 

AMP-activated protein kinase (AMPK) and sirtuins (SIRT) (Marzetti et al., 2008; Rowe et al., 2014). 

Exercise induced ROS signalling also serve as beneficial signal mediators, by activating the PCG-1α 

and NF-κB pathways, which are responsible for regulating several mitochondrial functions such as 

biogenesis and autophagy (Marzetti et al., 2008). In contrast to the metabolic improvements seen in 

response to aerobic exercise, resistance exercise primarily improves muscle mass and strength 

(Suetta et al., 2008; Binder et al., 2005; Campbell et al., 2002; Benito et al., 2020). Mechanisms 

behind this phenomenon are underlined by improvements in endocrine signalling and subsequent 

insulin sensitivity, improved glucose utilisation and enhanced protein homeostasis (Kang & Krauss, 

2010). Another beneficial mechanism of increased physical activity is the improvement in muscle 

stem cell regulation. Both endurance and strength training induce ultra-structural damage to 

skeletal muscle in combination with the release of growth factors such as IGF-1 and fibroblast 

growth factor (FGF), which ultimately results in the differentiation and proliferation of quiescent 

satellite cells (Kang & Krauss, 2010). 

Finally, in PLWH, resistance exercise was also linked to increased CD4+ and CD8+ T cell counts 

(Zanetti et al., 2016; de Brito-Neto et al., 2019) and a decrease in levels of circulating pro-

inflammatory cytokines (Zanetti et al., 2016) in two recent trials.  

1.5.7.2 Dietary and hormonal interventions  

Whilst various studies and clinical trials have attempted to elucidate the beneficial effects of 

hormone therapy, telehealth monitoring, or cognitive training, there is insufficient evidence to 

suggest these are effective therapy strategies (Frost et al., 2017; Apostolo et al., 2018). In particular, 

trials of monotherapies such as oestrogen or testosterone replacement in the late 90’s and 00’s 

improved muscle function but came with significant side effects (Snyder et al., 1999; Taaffe et al., 

2005; Kenny et al., 2010). In contrast, a study by Friedlander and colleagues demonstrated that IGF-1 

therapy improved BMD, muscle strength and ultimately physical function in elderly women who 

presented with no clinical IGF-1 deficiency (Friedlander et al., 2001). 

Dietary changes have also been proposed as potential therapies for frailty and sarcopenia. For 

example, a consensus declared that protein intakes should be between 1.2-1.5 g/kg-bw/day in order 

to impede the loss of muscle mass and strength (Houston et al., 2008). In addition, previous studies 

have also shown that omega 3-fatty acid supplementation may enhance muscle protein synthesis 

and counteract muscle loss (Di Girolamo et al., 2014; Smith et al., 2011). Adherence to the 

Mediterranean diet, which is high in omega 3-fatty acids and antioxidants, has been shown to be 

associated with reduced odds for frailty (Ntanasi et al., 2018). Another study demonstrated that 
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magnesium levels are on average 6% lower in frail individuals compared to robust individuals, and a 

12-week magnesium supplementation improved frail individual’s performance in the chair stand, 

SPPB and 4m walk components of the FFP (Veronese et al., 2014). Finally, vitamin deficiency has also 

been associated with the age-related decline in muscle mass and strength (Chan et al., 2012).  
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1.6 Sarcopenia  

In 2010 the European Working Group on Sarcopenia in Older People (EWGSOP) came to a consensus 

in defining sarcopenia as an age-related syndrome characterised by the progressive and generalised 

loss of skeletal muscle mass and strength, with adverse outcomes in physical function capabilities, 

disability, poor QOL and mortality (Cruz-Jentoft et al., 2010). Over the last decade considerable 

research into sarcopenia has been undertaken and sarcopenia is now recognised as a muscle disease 

with an ICD-10-MC Diagnosis Code (Vellas et al., 2018).  

Improving the understanding of the causes of sarcopenia and optimal methods of care is essential 

due to the high social, personal and economic burden of the condition. As such, sarcopenia increases 

the risk of hospitalisation (Cawthon et al., 2017) and the cost of healthcare itself (Steffl et al., 2017). 

In addition, sarcopenia increases the risk of developing respiratory (Bone et al., 2017), cardiovascular 

(Bahat & Ilhan, 2016), and cognitive disease (Chang et al., 2016), the susceptibility for falls and 

fractures (Bischoff-Ferrari et al., 2015; Schaap et al., 2018), and mortality (De Buyser et al., 2016). 

Systematic reviews using the EWGSOP definition have shown that the prevalence of sarcopenia is 1-

29% in the community-dwelling population and 14-33% in long-term care populations (Cruz-Jentoft 

et al., 2014). Another, more recent meta-analysis demonstrated that PLWH have a 6.1 times higher 

odds ratio for developing sarcopenia compared to age, ethnicity, BMI and sex matched HIV- 

individuals (Oliveira et al., 2020) 

In addition to defining sarcopenia, the EWGSOP made a distinction between primary sarcopenia 

(age-associated) and secondary sarcopenia (disease-associated) (Cruz-Jentoft et al., 2019). It is 

however often difficult to discriminate between the two as many individuals with sarcopenia are 

elderly and 90-95% also have a chronic morbidity (Hung et al., 2011). Other definitions that are used 

to describe adverse changes in muscle mass and function include dynapenia, which defines 

decreased contractility and loss of strength (Manini & Clark, 2012), disuse atrophy, which describes 

muscle loss due to inactivity (Biolo et al., 2005), and cachexia, which describes weakness and 

wasting due to chronic illness (Vanhoutte et al., 2016). 

Both the loss of skeletal mass and strength has been associated with adverse health outcomes such 

as cognitive impairment, loss of physical independence, and an increased risk for hospitalisation and 

developing comorbidities. These include cardiac and respiratory disease, as well as mortality (Tolea 

& Galvin, 2015; Fielding et al., 2011; Morley et al., 2014).  
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Both sarcopenia and frailty are both acknowledged to be adverse age-related complications and 

have been shown to be interlinked with each other, although are not necessarily causative of each 

other (Studenski et al., 2014; Cruz-Jentoft et al., 2019). Underscoring the highly heterogenous and 

complex nature of age-related syndromes, it has been shown that declines in muscle mass and 

strength both contribute to poor health outcomes with age (Mitchell et al., 2012), and that obesity 

combined with loss of muscle strength but not muscle mass is predictive of the risk of falls (Scott et 

al., 2014). In addition, a more recent study demonstrated that the loss of muscle strength is more 

predictive of adverse age-related outcomes such as loss of independence rather than loss of muscle 

mass (dos Santos et al., 2017). 

Muscle strength and muscle mass are associated with each other, although declines in either 

measure does not always equate to decline in the other. It has been demonstrated that the loss of 

muscle strength occurs at a rate five times higher than the loss of skeletal muscle mass in older 

adults, indicating that the loss of muscle strength is more significant to the pathophysiology of 

sarcopenia (Mitchell et al., 2012; Goodpaster et al., 2006; Venturelli et al., 2015). Loss of muscle 

strength is also now widely acknowledged as a better predictor of adverse health outcomes than the 

loss of muscle mass (Schaap et al., 2018, Ibrahim et al., 2016; Schaap et al., 2013). Finally, studies 

conducted within the Baltimore Longitudinal Study of Aging revealed that cognitive performance, 

visceral obesity and velocity of nerve conduction are the strongest predictors of muscle quality 

(Moore et al., 2014). 

1.6.1 Skeletal muscle structure  

Skeletal muscle is organised in a hierarchical formation whereby myofibres are bundled together 

into ‘fascicles’, which are held together by the perimysium. Myofibres contain repeating contractile 

units termed sarcomeres. Sarcomeres are in turn composed of thin and thick contractile 

myofilaments called actin and myosin (Lieber & Ward, 2011) (Figure 1.26).  
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Figure 1.26 – Skeletal muscle structure.   
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1.6.2 Skeletal muscle mitochondria  

Skeletal muscle mitochondria can either be intermyofibrillar (IMF) mitochondria or subsarcolemmal 

(SS) mitochondria, which are morphologically and biochemically distinct from each other (Glancy et 

al., 2015). Roughly 80% of skeletal muscle mitochondria are IMF, and they lie between myofibrils to 

form a rigid lattice like structure. SS mitochondria comprise the other ~20% of skeletal muscle 

mitochondria and have been shown to reside in small perinuclear clusters in the immediate interior 

of the sarcolemma (Cogswell et al., 1993).  

As mentioned above, IMF and SS mitochondria have distinct morphology and biochemical functions. 

In particular, IMF mitochondria have a higher IMM and matrix enzyme activity, which is consistent 

with the fact that they provide energy required for muscle contraction (Ferreira et al., 2010). In 

comparison, SS mitochondria are thought to provide energy for the membrane and nucleus (Hood, 

2001). 

1.6.3 Skeletal muscle through the life course 

Two of the parameters of sarcopenia – muscle mass and strength – are dynamic factors, and can 

vary significantly over the life course (Cruz-Jentoft et al., 2019).  

In general, muscle mass and strength are higher in males compared to females, and maximal levels 

of both factors occur in young adulthood (≤ ~40 years) (Dodds et al., 2014). Subsequently, both 

muscle mass and strength decline beyond the age of 50, and the rate of loss also appears to 

accelerate with advancing age. Significantly, muscle mass in men and women is decreased by 

approximately 4.7% and 3.7% respectively in the seventh decade compared to the maximal, and the 

rate of muscle mass decrease accelerates to 0.64-0.7% and 0.8-0.9% each year in woman and men 

over 75 years old (Mitchell et al., 2012). Of note, loss of muscle mass predominantly occurs in the 

lower limbs (Narici & Maffulli, 2010). 

Although the age-related declines in muscle mass and strength are multifactorial, it is acknowledged 

that genetic and lifestyle factors play a significant role (Bloom et al., 2018). In addition, the age-

related decline in mitochondrial function is suspected to accelerate the decline in muscle mass and 

strength, primarily through declines in energy production. This was previously discussed in more 

detail in Section 1.5.5.1. 
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1.6.4 Identification and diagnosis of sarcopenia  

According to the updated consensus of the EWGSOP(2), diagnosis of sarcopenia begins with 

identifying patients at risk of sarcopenia or with sarcopenia symptoms and then progressing the 

patients to further sarcopenia testing (Cruz-Jentoft et al., 2019). Here, individual sarcopenia 

parameters are tested (Table 1.3). Muscle strength is assessed through measurements of grip 

strength via a hand dynameter, as grip strength correlates with muscle strength in other parts of the 

body, and is a strong predictor of adverse patient outcomes (Ibrahim et al., 2016; Leong et al., 2015). 

The chair rise test can also be used to measure muscle strength in the legs. Importantly, the recent 

consensus is that grip strength as measured through a Jamar dynamometer is the best method of 

determining muscle strength (Cruz-Jentoft et al., 2019). 

Muscle mass is also measured as part of the diagnosis of sarcopenia. Muscle mass can be quantified 

by several methods with adjustments for height or BMI (as described in Cruz-Jentoft et al., 2019). 

However, magnetic resonance imaging (MRI) and computed tomography (CT) are considered the 

gold standard for assessing muscle mass (Beaudart et al., 2016). 

The final parameter tested is physical performance, which is defined as an objectively measured 

whole-body function related to locomotion, as it involves both the nervous system as well as the 

musculoskeletal system (Beaudart et al., 2018). A commonly used surrogate for physical 

performance is gait speed, which predicts adverse outcomes such as disability, falls, hospitalisation, 

and mortality (Studenski et al., 2011). Other commonly used surrogates include the SPPB and the 

Timed-Up and Go test (TUG), which also predict adverse health outcomes (Pavasini et al., 2016). 

Although several of the various methods are easily applied in the clinical setting, the most recent 

consensus recommends the use of gait speed to assess physical performance. This is primarily due to 

the convenience of undertaking the test (Cruz-Jentoft et al., 2019). 

Several new methods for measuring sarcopenia at both the clinical and research level are currently 

being assessed. The majority of these tests aim to improve the measurement of muscle mass and 

quality, although some require expensive machinery. Some of these new methods include computed 

tomography (aimed at lumbar 3rd vertebra and psoas muscle) (Mourtzakis et al., 2008;  Rutten et al., 

2017), ultrasound assessment of muscle; d3 creatine A dilution tests (Shankaran et al., 2018), and 

specific biomarkers of sarcopenia. Of these, the d3 creatine A dilution tests appear to be the most 

promising, as higher levels are associated with DXA-derived lean body mass, physical performance 

and mobility (Shankaran et al., 2018; Cawthon et al., 2019).  
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Characterisation ↓ Muscle mass ↓ Muscle strength ↓ Physical performance  

Robust - - - 

Pre-sarcopenia X - - 

Sarcopenia X X - 

Severe sarcopenia  X X X 

Table 1.3 – Factors required for the diagnosis of sarcopenia (Cruz-Jentoft et aI., 2010). 

 

1.6.5 Pathophysiology of sarcopenia  

Skeletal muscle is the largest organ is the human body, accounting for roughly 40-50% of body mass 

(Tieland et al., 2018). Skeletal muscle is involved in numerous physiological mechanisms including 

heat regulation, energy homeostasis, amino acid metabolism, and insulin sensitivity. With regards to 

the role skeletal muscle plays in insulin sensitivity and other neuroendocrine functions such as the 

release of myokines and anabolic and catabolic peptides, immune function and inflammation, 

skeletal muscle is now considered an endocrine organ (Aversa et al., 2012; Bonetto et al., 2013). 

The most significant factors involved in the pathogenesis of sarcopenia include inflammation (Curcio 

et al., 2016, Cruz-Jentoft et al., 2019), physical inactivity (Mijnarends et al., 2016), malnourishment 

(Muscaritoli et al., 2010; Cederholm et al., 2017; Cederholm et al., 2019), and other age-related 

factors, as described in Figure 1.27.  

1.6.5.1 Chronic inflammation in the pathophysiology of sarcopenia 

As described in previous sections, systemic inflammation plays a hugely significant role in the 

pathophysiology of several adverse age-related pathologies, including frailty. Individuals with 

sarcopenia have higher levels of circulating IL-6, and levels of inflammatory markers such as TNF-α, 

CRP and IL-6 are inversely correlated with skeletal muscle protein synthesis rates (Standley et al., 

2013). These observations suggest that chronic inflammation impedes skeletal muscle anabolic 

functions (Toth et al., 2005; Mayot et al., 2007). Additionally, in skeletal muscle, systemic 

inflammation, in particular increased TNF-α levels, can upregulate mTOR-associated protein 

degradation pathways such as the ubiquitin-proteasome pathway, which can lead to increased 

skeletal muscle autophagy and simultaneously inhibit the production of peptides essential for 

muscle growth (Xia et al., 2017). In addition, TNF-α destabilises MyoD and myogenin to subsequently 

impair skeletal muscle regenerative capacity (Langen et al., 2004). Eventually, these factors can lead 

to increased skeletal muscle senescence and apoptosis, which ultimately results in decreased muscle 

mass and function (Brocca et al., 2012). To highlight the multifactorial nature of sarcopenia, previous 

studies have revealed that the protein intake sufficiently needed to maintain muscle mass and 
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quality is dramatically increased in the presence of high levels of IL-6 (Bartali et al., 2013). The use of 

alcohol and tobacco is also associated with a higher risk of developing sarcopenia (Maddalozzo et al., 

2009; Lee et al., 2007). 

1.6.5.2 Neuroendocrine function and sarcopenia  

Skeletal muscle is responsible for a range of various endocrine functions including the insulin-

stimulated uptake of glucose from blood, fatty acid metabolism, and glycogen synthesis (Otto-

Buckzkowska, 2003). In addition, skeletal muscle derived myokines are involved in regulating 

functions in several tissues including the liver, bone, and adipose tissue (Schnyder & Handschin, 

2015). In resting conditions, skeletal muscle metabolism accounts for roughly 20% of whole-body 

metabolic activities (Muller et al., 2013). Declines in oestrogen in post-menopausal women and 

testosterone in men are responsible for declines in muscle mass and muscle strength, and circulating 

levels of IGF-1, cortisol and vitamin D are lower in frail individuals compared to robust individuals 

(Puts et al., 2005; Leng et al., 2009; Beaudart et al., 2014; Muir et al., 2011). As mentioned 

previously, these observations indicate that dysregulation in the GH-IGF-1 somatotropic axis as well 

as the hypothalamic-pituitary-adrenal axis are implicated in the pathogenesis and pathophysiology 

of sarcopenia and frailty. Dysregulated endocrine signalling has also been implicated in the 

disruption of protein homeostasis through anabolic insensitivity, contributing to loss of muscle mass 

and strength (Koopman & van Loon, 2009). In addition, as circulating IGF-1 is involved in protein 

synthesis via activation of the Akt-mTOR pathway (Glass, 2010), the reduced levels of IGF-1 with age 

will adversely contribute to protein homeostasis.   

The reduction in muscle insulin sensitivity occurs rapidly after physical inactivity and has been shown 

to directly contribute to an increased susceptibility of developing cardiovascular abnormalities, 

through the induction of dyslipidaemia (Mazzucco et al., 2010).  

1.6.5.3 Physical inactivity and sarcopenia 

Numerous studies have demonstrated the age-related decline in skeletal muscle perfusion 

capabilities. This age-related decrease in maximal oxidative capacity is known to adversely impact 

muscle mass and strength by promoting a more oxidative and pro-inflammatory microenvironment, 

in which autophagy and protein homeostasis becomes dysregulated, leading to the upregulation of 

apoptosis and cell senescence (Choi et al., 2016; Zane et al., 2017; Adelnia et al., 2019). Aside from 

age-related mitochondrial decline, the reduction in perfusion capabilities is thought to be explained 

in part by muscle ultrastructure abnormalities such as reduction in capillary number (Bigler et al., 

2016) and impairment of endothelial and other arterial functions (Das et al., 2018; Ward et al., 



85 
 

2018). In support of this, Prior and colleagues previously demonstrated the significant association 

between VO2 max and muscle capillary-to-fibre ratio (Prior et al., 2016). 

The loss of muscle mass with age occurs exponentially, and is dictated by the level of physical 

activity. Extended bed rest itself can lead to a 3-5% decline in lean body mass in healthy volunteers, 

and this impact can be accentuated when combined with other risk factors such as chronic disease 

(Genton et al., 2011). In further support, a 6-week bed rest study demonstrated that muscle atrophy 

was associated with a 6% decrease in resting energy expenditure (Ritz et al., 1998). 

Pathophysiologically, physical inactivity is associated with an increased rate of fat deposition (Olsen 

et al., 2008), which can propagate the increase in systemic inflammation and reduced insulin 

sensitivity (Guillet et al., 2012; Masgrau et al., 2012). Altogether, these factors accentuate muscle 

catabolic functions and so lead to reduced muscle mass and strength. This biological phenomenon is 

commonly seen in cancer patients and in other chronic diseases associated with a sedentary lifestyle 

(Manini, 2010). Physical inactivity is also associated with decreased antioxidant activity. With regard 

to this, increased exercise training results in the elevated activities of glutathione peroxidase, and 

physical inactivity leads to redox imbalance (Agostini et al., 2010). 

Reduced levels of lean body mass in combination with excess adiposity is a condition termed 

sarcopenic obesity, and is common in older individuals (Johnson Stoklossa et al., 2017). The 

increased adiposity exacerbates the adverse pathophysiological functions present in sarcopenia by 

increasing the fatty infiltration into muscle, which further increases inflammation, and adversely 

impacts the individual’s physical performance capabilities (Kalinkovich & Livshits, 2017; Barbat-

Artigas et al., 2014). 

Dynapenia has been shown to be associated with fatigue, disability and falls, as well as reduced bone 

stimulation leading to osteoporosis (Manini & Clark, 2012; Binkley et al., 2013). Dynapenia is 

therefore a predictor of loss of independence in chronically ill patients and elderly.  
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Figure 1.27 – Factors involved in the pathophysiology of sarcopenia.  

  



87 
 

1.6.6 Epidemiology of sarcopenia in PLWH 

In a recent study of 1720 majority male, virally-supressed PLWH (median age 52), the prevalence of 

sarcopenia was determined to be 25.7%. However, the majority of sarcopenic PLWH were female, 

and only 8.8% of men over 50 were classified as sarcopenic (Echeverria et al., 2018). In addition, 

results from this study also demonstrated a close association between sarcopenia and 

presarcopenia. 

The prevalence of sarcopenia in this cohort was similar to previous studies in similarly age, gender, 

and BMI matched PLWH (Pinto Neto et al., 2016; Wasserman et al., 2014; Oliveira et al., 2020). As 

was the association of presarcopenia with sarcopenia (Pinto Neto et al., 2016). Importantly, these 

studies demonstrate that sarcopenia appears to be more prevalent in PLWH compared to matched 

HIV-uninfected individuals. However, differences in the method used to classify sarcopenia appears 

to affect the prevalence of sarcopenia (Echeverria et al., 2018).  

Notably, results from these studies demonstrated that risk factors for sarcopenia in PLWH are similar 

to that seen in the general population. These include old age, low BMI and malnutrition (Echeverria 

et al., 2018; Pinto Neto et al., 2016; Wasserman et al., 2014; Oliveira et al., 2020). In addition, these 

studies demonstrate that HIV-related factors such as duration with HIV infection increase the 

susceptibility to developing sarcopenia, most likely through increased inflammation, although CD4 

count and viral load appeared not to have an effect (Echeverria et al., 2018).  
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1.7 Skeletal muscle mitochondrial dysfunction in PLWH 

ART is extremely effective at reducing HIV viremia, and the advent of ART has dramatically reduced 

HIV and AIDS-related morbidity and mortality (GBD HIV collaborators, 2019). In addition, ART  

restores CD4 counts to near normal levels in the majority of individuals, although factors such as CD4 

count at ART initiation and being male (Maman et al., 2012), as well as older age (Fatti et al., 2014; 

Simms et al., 2018), duration on ART (He et al., 2016), hepatitis C (HCV) coinfection (Laskus et al., 

1998; Laskus et al., 2000) and other genetic and environmental factors like polymorphisms in TNF-α 

(Haas et al., 2006) prevent immune recovery in roughly 15-30% of ART-treated PLWH (Autran et al., 

1999).  

However, use of ARVs in monotherapy or in combination (cART) has been associated with various 

toxicities (Table 1.4). Although the exact mechanisms underpinning these toxicities has yet to be 

completely understood, it is widely regarded that ARV-induced mitochondrial dysfunction is 

significantly implicated in its pathogenesis (Lim & Copeland, 2001).  

The association between mitochondrial dysfunction and ART-related toxicities was first described in 

patients treated with the nucleoside reverse transcriptase inhibitor (NRTI) zidovudine (AZT), who 

presented with myopathy (Dalakas et al., 1990). Ex vivo histology work on tissue from AZT-treated 

myopathy patients subsequently demonstrated ragged-red fibres and abnormal mitochondria with 

loss of cristae - features characteristic of mitochondrial myopathy observed in some mitochondrial 

disease patients (Margolis et al., 2014; Gorman et al., 2015). This was shown to be due to the 

depletion of mtDNA content through the inhibition of the mtDNA PolG (Dalakas et al., 1990; 

Arnaudo et al., 1991). Further studies then demonstrated that other ARVs in the NRTI class (albeit it 

with different affinities) induce mitochondrial toxicities in various tissues, such as peripheral 

neuropathy, lactic acidosis and hepatotoxicity (Selvaraj et al., 2014). As a result, newer NRTIs with a 

reduced PolG-inhibiting capacity were developed and stavudine (d4T) (2018) has been discontinued. 

Additionally, whilst AZT is now only used in the prevention of neonatal HIV acquisition, either as a 

pre-exposure prophylaxis, or as a post-exposure prophylaxis (Kourtis & Bulterys, 2010), as it has 

consistently been shown to effectively prevent neonatal transmission of HIV compared to other 

ARVs such as nevirapine (NVP), in which resistance is more common (Eshleman et al., 2001). Whilst 

other ARVs such as tenofovir disoproxil fumarate (TDF) would appear to be safer whilst still being 

effective, AZTs continued use in preventing neonatal transmission is down to the accumulated 

demonstration of its efficiency (Shaffer et al., 1999; Hurst et al., 2016). However, previous studies 

around the effects of AZT on neonatal mitochondrial function are controversial, with some studies 

suggesting there is limited adverse effect, and conversely an upregulation in mtDNA content (Cote et 
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al., 2008; Desai et al., 2008). The discrepancy between the adverse effects of AZT on neonatal and 

adult mitochondrial function could be due to the short-term in which neonatal AZT is administered.   

In more recent years studies have demonstrated the presence of mitochondrial toxicities induced by 

other NRTIs, such as TDF-induced renal abnormalities (Kohler et al., 2009; Samuels et al., 2017), as 

well as toxicities induced by different classes of ARV, such as protease inhibitor (PI)-induced 

lipodystrophy (Domingo et al., 2014; Dragovic et al., 2014; Alikhani et al., 2019). This suggested that 

ARVs can induce mitochondrial dysfunction independent of PolG-inhibiting mechanisms, such as 

changes in mitochondrial membrane potential (ΔΨm), abnormal mitochondrial morphology, and 

increased oxidative stress.  

 

Clinical toxicity Tissue affected NRTIs implicated Reference 

Myopathy Skeletal muscle AZT Dalkas et al., 1990 

Peripheral 

neuropathy 

Peripheral nervous 

system 
ddI, ddC, d4T 

Dalkas, 2001; Fichtenbaum et 

al., 1995; Sacktor et al., 2009 

Lipoatrophy Subcutaneous fat d4T, AZT 
van Vonderen et al., 2009; Joly 

et al., 2002 

Pancreatitis Pancreas ddI Sarner et al., 2002 

Lactic acidosis Liver, skeletal muscle d4T, ddI  Boubaker et al., 2001 

Renal tubular toxicity 
Renal proximal 

convoluted tubules 
TDF 

Kohler et al., 2009; Samuels et 

al., 2017  

Table 1.4 – Mitochondrial toxicities associated with NRTIs. AZT = zidovudine; ddI = didanosine; ddC = zalcitabine; d4T = 
stavudine; TDF = tenofovir disoproxil fumarate. 
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1.7.1 NRTI-induced skeletal muscle mitochondrial dysfunction in PLWH – the ‘PolG 

hypothesis’ 

As mentioned previously, early in vitro studies demonstrated that NRTIs inhibit PolG, which leads to 

the depletion of mtDNA, and subsequently mitochondrial dysfunction. This mechanism was dubbed 

the ‘PolG hypothesis’ (Brinkman et al., 1999). 

NRTI triphosphates competitively bind to the polymerase subunit of PolG (Lewis et al., 1996), 

responsible for DNA replication, but as they lack the 3’ hydroxyl group (3’OH) they induce chain 

termination and subsequently inhibit replication of nascent mtDNA, leading to a reduction in mtDNA 

content (Lewis & Dalkas 1995). This depletion of mtDNA leads to diminished energy production 

capabilities, namely through declines in the rate of oxidative phosphorylation and by undermining 

ETC complex formation, as well as increasing ROS production. Diminished energy production then 

leads to clinical toxicities (Arnaudo et al., 1991; Lewis et al., 1992; Wallace, 1992). This effect is 

similar to that seen in mitochondrial toxicities present in some hereditable mitochondrial disease 

patients, where reduced levels of mtDNA depletion become pathogenic (Moraes et al., 1991; 

Gorman et al., 2015). 

The various NRTIs have different steric conformations (Figure 1.28) and so inhibit PolG with different 

affinities. In vitro studies have demonstrated that zalcitabine (ddC), didanosine (ddI), and d4T have 

the strongest PolG inhibiting capacities, while AZT inhibits PolG weakly: ddC ≥ ddI ≥ d4T > lamivudine 

(3TC) > TDF > emtricitabine (FTC) > AZT > abacavir (ABC) (Hoschele et al., 2006; Kakuda et al., 2000). 

Conversely, though monophosphorylated AZT (AZT-MP) is inefficiently excised from the exonuclease 

domain of PolG, which could explain how AZT induces mtDNA depletion without strongly inhibiting 

the polymerase domain (Lim & Copeland, 2001). 

Although there are many factors and key unknowns about the exact mechanisms underpinning NRTI-

induced skeletal muscle mitochondrial dysfunction, largely due in part to the vast heterogeneity in 

HIV+ populations as well as mitochondrial dysfunction itself, a study by Hendrickson and colleagues 

(2009) demonstrated that the risk of developing mitochondrial toxicities may be modified by mtDNA 

haplogroup. In particular, having the mtDNA haplogroup H appears to increase the risk of developing 

ART-induced lipoatrophy (Hendrickson et al., 2009). In addition, studies have highlighted the risk that 

the presence of chronic diseases, which are highly prevalent in older PLWH, may predispose certain 

PLWH to increased mitochondrial dysfunction. For example, a large body of literature has 

demonstrated mitochondrial dysfunction in various tissues in type 2 diabetes mellitus (T2DM), such 

as heart (Ruegsegger et al., 2018; Montaigne et al., 2014; Mackenzie et al., 2013; Croston et al., 2014; 

Marciniak et al., 2014; Yan et al., 2013; Vazquez et al., 2015) and skeletal muscle (Meex et al., 2010; 
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Johnson et al., 2016; Rabol et al., 2009). Results from both human and mouse studies have 

demonstrated decreased oxidative metabolism and mitochondrial biogenesis in T2DM, leading to 

impaired lipid metabolism (Szendroedi et al., 2014 ). It is therefore likely that the presence of a chronic 

condition may predispose an ART-treated HIV+ individual to developing mitochondrial dysfunction in 

various tissues.  

The mechanisms of the PolG hypothesis suggest that NRTI toxicity is cumulative and the toxic 

manifestations increase with the duration of exposure (Chawla et al., 2018). As such, mitochondrial 

toxicities occurring in ART-treated patients often results in the temporary termination of treatment, 

as treatment termination of the culprit NRTI is suspected to reverse to mitochondrially-toxic effect 

(McComsey et al., 2005). In addition, switching to two-drug ART regimens as opposed to three or 

four-drug regimens has been shown to reduce the susceptibility to developing adverse events such 

as toxicities. However, these regimens may not be as effective at supressing the virus (Llibre et al., 

2018; Mondi et al., 2015; Perez-Molina et al., 2017 Margolis et al., 2017). However, there is limited 

data as to whether resumption of a potentially toxic ARV reinstates the toxicity. It would depend on 

the particular ARV, tissue effected, and how cumulative the toxicity itself is. For example, it has been 

suggested that myopathy may arise several years after cessation of treatment (Payne et al., 2011).  

 

 

Figure 1.28 – Chemical structures of the commonly used NRTIs.   
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1.7.2 NRTI-induced mitochondrial dysfunction beyond the PolG hypothesis 

The discrepancy between the poor PolG-inhibiting capabilities and severe clinical toxicities caused by 

AZT, as well as the fact that newer NRTIs that have weaker PolG inhibitory effect have been shown 

to induce mitochondrial toxicities, led to the questioning of the robustness of the PolG hypothesis. In 

addition, more recent in vitro studies have demonstrated mitochondrial dysfunction in the absence 

of mtDNA depletion, for example AZT-induced reduction of ATP production and simultaneous ROS 

increase in rat heart tissue (Enomoto et al., 2011), impaired fatty acid oxidation in d4T-treated 

cultured rat hepatocytes (Igoudjil et al., 2006), reduced ATP production in AZT-treated murine 

brown adipocytes (Viengchareun et al., 2007) and inhibition of mitochondrial respiration and ATP 

production in ABC-treated Hep3B cells (Blas-Garcia et al., 2010). The robustness of the PolG 

hypothesis has also been questioned by in vivo studies, whereby PBMCs from patients experiencing 

NRTI-induced mitochondrial toxicities had normal mtDNA levels (Lewis & Dalkas 1995; McComsey et 

al., 2002), as well as normal mtDNA levels in PBMCs from d4T-, AZT- and ddI-treated PLWH with 

lipodystrophy (McComsey et al., 2008). Some studies have in fact reported an increase in mtDNA 

content in patients treated with NRTIs (Oldfors et al., 1995). Moreover, PIs and NNRTIs, which do not 

directly inhibit PolG, are also associated with mitochondrial dysfunction (Deng et al., 2010; Blas-

Garcia et al., 2010; Apostolova et al., 2010).  

Another caveat to the questioning of the PolG hypothesis is the fact that PLWH who have been 

exposed to some of the early NRTIs have an excess of skeletal muscle mtDNA mutations, which can 

lead to declines in mitochondrial function at the individual myofibre level. Importantly, these defects 

are still seen years after cessation of treatment (Payne et al., 2011). This not only dismisses the 

hypothesis of mtDNA depletion as a result of PolG inhibition, preferring instead large-scale mtDNA 

deletions, but provides a basis for the hypothesis that there is a legacy effect of historical NRTI 

exposure, and PLWH who were exposed to these NRTIs are at a higher risk for developing 

mitochondrial dysfunction (Payne et al., 2011; Hunt & Payne, 2020). As such, the prevalence of 

mtDNA deletions in various tissues from PLWH exposed to various ARVs was investigated using 

quantitative real-time PCR in Chapter 4 and Chapter 8. 

Indeed, alternative mechanisms of NRTI-induced mitochondrial dysfunction beyond PolG inhibition 

have been proposed, including the formation of mtDNA deletions, depletion in ribonucleotide (RN) 

and deoxyribonucleotide (dRN) pools (Jordheim & Dumonet, 2007), and dysregulation of ETC 

complex formation (Lund & Wallace 2008) (Figure 1.29). 
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1.7.2.1 Perturbations in endogenous nucleotide pools 

As most NRTIs are administered as prodrugs, they need to be metabolised intracellularly into their 

active moieties (triphosphates) in order to exert their effects (Peter, 2004). This occurs via either the 

de novo or salvage pathways, similarly to how deoxynucleotide triphosphates (dNTPs) are produced 

from endogenous RNs and dRNs (Van Rompay et al., 2000). Due to the similarities in conformation 

and metabolism, unphosphorylated NRTIs compete with endogenous RNs for phosphorylation, 

which can reduce the size of RN and dRN pools (Jordheim & Dumonet, 2007; Selvaraj et al., 2014). 

NRTI-triphosphates (NRTI-TPs) also compete with endogenous dNTPs for incorporation into 

elongating DNA, in which the former induce chain termination (Jordheim & Dumonet, 2007). Both of 

these processes ultimately lead to impaired mtDNA replication and reduced mtDNA content 

(McComsey et al., 2002). Tissue-specific differences in the ratios of intracellular kinases (e.g. 

thymidine kinase 1 and 2 (TK1 and TK2 respectively)) could explain the discrepancy between mtDNA 

depletion levels in different tissues and in response to different NRTIs. For example, TK1 is 

predominantly expressed in the cytosol of active cells, while TK2 is expressed more in the 

mitochondria and in quiescent cells (Lemmon & Schlessinger, 2010). AZT has been shown to have a 

higher affinity to phosphorylation by TK1 rather than TK2, whilst ddI and ddC are the opposite 

(Feeney & Mallon, 2010). This suggests that AZT is more likely to deplete RN and dRN pools in more 

active cells, while ddC and ddI are more likely to deplete the pools in quiescent cells such as skeletal 

muscle fibres, although this is not necessarily reflected in clinical observations (Arnaudo et al., 1991; 

Lewis et al., 1992).  

1.7.2.2 ART and mitochondrial genomic alterations  

Another proposed alternative mechanism of NRTI-induced mitochondrial dysfunction is the 

formation and propagation of mtDNA mutations. As well as its polymerase functions, PolG contains a 

3’-5’ exonuclease domain which is responsible for proofreading activities (Stumpf & Copeland, 

2013). In vitro studies have shown that monophosphorylated NRTIs (NRTI-MP), particularly AZT-MP, 

have a high affinity to the exonuclease domain of PolG (Maagaard & Kvale 2009) and inhibit the 

proofreading capabilities once bound, subsequently lowering the fidelity of mtDNA replication and 

increasing the susceptibility of mtDNA mutation formation (Wang et al., 1996). Further studies from 

our lab have shown that large-scale mtDNA deletions induced by NRTIs clonally expand with age in 

skeletal muscle fibres, causing mitochondrial dysfunction (Payne et al., 2011). 

As well as the depletion of mtDNA content, NRTIs have also been shown to deplete mtRNA content. 

Although the mechanisms of mtRNA depletion are yet to be fully understood, a study by McComsey 

et al. (2008) demonstrated the reduction of mtRNA content in lipodystrophy affected PLWH and 

suggested the mechanism could be through limitations in the availability of cofactors needed for 
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mtRNA synthesis as well as through PolG inhibition. mtRNA and mtDNA depletion may be 

intertwined, as mtDNA synthesis requires RNA-primed DNA replication (Young & Copeland, 2016).  

1.7.2.3 Other proposed mechanisms of ART-induced mitochondrial dysfunction 

NRTIs, in particular AZT, have been shown to directly affect CI of the ETC and subsequently cause 

defects in oxidative phosphorylation capabilities. A study by Lund & Wallace (2004) demonstrated 

AZT-induced decoupling of CI (Lund & Wallace 2004), while other studies have suggested AZT 

disrupts electron flow through CI (Pereira et al., 2002), and both AZT and ddC cause disruptions in 

NADH linked respiration (Szabados et al., 1999). Although controversial, the likely mechanism 

behind this phenomenon is NRTI-induced inhibition of cyclic adenosine monophosphate (cAMP)-

mediated phosphorylation events responsible for ETC complex formation (Lund & Wallace 2008). To 

investigate this further, in this thesis I utilised a novel immunofluorescence assay that allows the 

quantification of CI proteins in individual myofibres in PLWH. 

Another proposed alternative theory which has gained more traction in recent years is the idea of 

increased ROS and oxidative stress being responsible for diminished oxidative capacity (Cote et al., 

2005; Schieber & Chandel, 2014). In vitro studies on various human cell lines have demonstrated 

that short-term exposure to NRTIs such as AZT + 3TC, d4T + 3TC (Ciccosanti et al., 2010) and AZT + 

d4T (Lagathu et al., 2007) has a direct effect on ROS production. A recent study using liver autopsies 

from AIDS patients and mice exposed to ARVs demonstrated a significantly higher proportion of 8-

oxo-G positive mtDNA in ART-treated cells (Liang et al., 2018). Although yet to be fully elucidated, 

the mechanisms underpinning this theory centre around the idea of oxidative damage to 

macromolecules involved in oxidative phosphorylation, such as PolG and mtDNA, which are highly 

susceptible to oxidative damage (Richter et al., 1988). This is supported by ex vivo studies on AZT-

treated mouse tissue (Nerurkar et al., 2001). In addition, ROS signalling is implicated in several 

physiological processes such as lipid metabolism and apoptosis, and an imbalance in redox potential 

has adverse effects on these processes. One of the key signalling pathways involved is thought to be 

that of PPAR-γ. Expression of the PGC-1α as well as PPAR-γ itself is reduced in ART-treated patients 

(Caron et al., 2009; Feeney & Mallon, 2010), as well as in in vitro studies (Viengchareun et al., 2007). 

A study by Kohler and colleagues, (2009) demonstrated that mitochondrial superoxide dismutase 

and mitochondrially-targeted catalase dismutase were reduced in AZT-induced cardiomyopathy 

tissue in a transgenic mouse model (Kohler et al., 2009). 
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Figure 1.29 – Intramitochondrial actions of ‘mitochondrially toxic’ NRTIs. (A) Triphosphorylated AZT (AZT-TP) competitively binds to the polymerase domain of PolG and induces chain 
termination of mtDNA replication as it lacks the ‘3 OH group. (B) Monophosphorylated AZT (AZT-MP) accumulates in the mitochondrial matrix and has a high affinity towards the exonuclease 
domain of PolG, where it inhibits exonuclease activities, subsequently reducing the fidelity of mtDNA replication. Unphosphorylated AZT and AZT-MP also increase the rate of ROS production, 
causing oxidative stress and oxidative damage to cellular kinases such as TK2. This then leads to the reduction in the rate of RN and dRN phosphorylation.  
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1.7.3 PI and NNRTI induced mitochondrial dysfunction 

Similarly to NRTIs, some PIs and NNRTIs have been shown to induce a range of adverse 

pathophysiological factors that are linked to mitochondrial dysfunction (Table 1.5). Unlike NRTIs, PIs 

and NNRTIs do not directly inhibit PolG and therefore do not induce mtDNA depletion via the 

mechanisms described in the PolG hypothesis (Deng et al., 2010; Blas-Garcia et al., 2010; Apostolova 

et al., 2010). Instead, the proposed mechanisms underpinning this mitochondrial dysfunction centre 

around alterations in the regulation of mitochondrial bioenergetics and apoptosis (Apostolova et al., 

2010).  

Due to the event of cART, where a PI or NNRTI is administered alongside a backbone of two NRTIs, it 

has become difficult to dissect the exact contributions of ARVs from these classes of drugs on ART-

induced mitochondrial toxicities seen in PLWH. As a result, most of the work on PI and NNRTI-

induced mitochondrial dysfunction has been done through in vitro studies.  

Clinical reports from PLWH treated with PIs described occurrences of lipodystrophy, insulin 

resistance (IR) and cardiovascular abnormalities (Bongiovanni et al., 2004; Koster et al., 2003). As 

mentioned above, PIs do not inhibit PolG, and so PI-induced mitochondrial defects are related to 

disturbances in redox regulation, mitochondrial membrane potential (ΔΨm) and energy production. 

Indinavir (IDV) and nelfinavir (NFV) have been shown to inhibit the glucose transporter isoform 4 

(GLUT4) in vitro (Kumar et al., 2010) and IDV was also found to reduce respiration and ATP 

production in brown and white murine adipocytes (Viengchareun et al., 2007). Both these effects are 

thought to contribute to PI-induced insulin resistance. In support of this, increased β cell apoptosis 

followed ΔΨm reduction and increased cytochrome c release in PI-treated INS-1 cells (Zhang et al., 

2009). Both ritonavir (RTV) (HPAEC cells) (Wang et al., 2009), and IDV (HPAEC and HUVEC cells) 

(Wang et al., 2009) increased ROS production in the respective cell lines, leading to increased 

apoptosis. PIs have also been shown to induce cell senescence in PLWH-derived fibroblasts and fat 

tissue as a result of elevated ROS levels (Caron et al., 2007). Saquinavir (SQV), RTV and NFV all 

induced mitochondrial fragmentation and disruption of the mitochondrial network in the same 

patient-derived cell lines (Roumier et al., 2006). Although the exact pathophysiological mechanisms 

remain controversial, it is thought that PI-induced inhibition of the MPP plays a key role 

(Mukhopadhyay et al., 2002). As with studies with NRTIs, PI-induced mitochondrial defects appear to 

be cell type-specific. In non-adipocyte related cell lines NFV, RTV, SQV, IDV and lopinavir (LPV) have 

all been found to exert anti-apoptotic effects (Badley, 2005), and NFV upregulated anti-apoptotic 

Bcl-2 family proteins in leukaemia cells (Bruning et al., 2010). 
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The NNRTI efavirenz (EFV) has been associated with lipodystrophy in clinical studies (Zaera et al., 

2001). NNRTI-induced lipodystrophy is thought to be caused by inhibition of adipocyte 

differentiation and reduced lipogenesis (Jemsek et al., 2006; Moyle et al., 2012). Several in vitro 

studies have reported disruption of the ΔΨm in EFV-treated cell lines, which lead to increased rates 

of apoptosis (Pilon et al., 2002). Another study demonstrated the EFV dose-dependent increase in 

ROS production and decrease in ΔΨm in vitro, again leading to increased apoptosis (Jamaluddin et 

al., 2010). EFV also caused increased ROS production and decreased ΔΨm as a result of CI inhibition 

in patient-derived hepatic cells (Blas-Garcia et al., 2010; Apostolova et al., 2010). Treatment with 

EFV also increased the rate of mitophagy in hepatic cells (Apostolova et al., 2011). Finally, EFV 

treatment has also been shown to induce ER stress in brain endothelial cells, leading to thinning of 

the blood-brain barrier (Bertrand et al., 2016). This mechanism is thought to underpin the 

pathophysiology of cerebrovascular pathology in EFV-treated PLWH (Bertrand et al., 2016). 

 

ART class Drug Adverse effects 

PI Saquinavir (SQV) CVR; Insulin resistance; Lipohypertrophy 

 Ritonavir (RTV) CVR; Insulin resistance; Lipohypertrophy; Dyslipidemia  

 Indinavir (IDV) 
CVR; Nephrotoxicity; HB; Insulin resistance; 

Lipohypertrophy; Dyslipidemia 

 Nelfinavir (NFV) CVR; CRs; Insulin resistance; Lipohypertrophy; Dyslipidemia  

 Atazanavir (ATV) CVR; Nephrotoxicity; HB; Lipohypertrophy 

 Darunavir (DRV) Hepatoxicity; CRs; Lipohypertrophy 

NNRTI Nevirapine (NVP) Hepatotoxicity; CRs; Dyslipidemia 

 Etravirine (EFV) 
Hepatotoxicity; CRs; CNS toxicity; Insulin resistance; 

Dyslipidemia; Lipodystrophy; Stroke 

 Delavirdine (DLV) CRs 

 Etravirine (ETR) CRs 

Table 1.5 – Pathologies associated with NNRTI and PI use. CVR = cardiovascular disease risk; HB = hyperbilirubinemia; CRs 
= cutaneous reactions. 
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1.7.4 Mitochondrial dysfunction in ART-naïve PLWH 

Although the majority of mitochondrial defects and subsequent toxicities in PLWH are associated 

with ART, numerous reports have described mitochondrial abnormalities in ART-naïve PLWH. 

Maagaard and colleagues demonstrated mtDNA depletion in T and B lymphocytes in ART-naive 

PLWH (Maagaard et al., 2005). Although the mechanisms underpinning this mtDNA depletion are 

not fully understood, it is suggested that the pro-apoptotic effects of HIV proteins were heavily 

implicated either directly or indirectly (Fevrier et al., 2011; Rumlova et al., 2014).  

The HIV Env glycoprotein (gp120) is expressed on ER and has been shown to cause ER stress when 

misfolded Env accumulates (Fields et al., 2016). ER stress can then lead to mitochondrial membrane 

(ΔΨm) depolarisation and increased apoptosis as a result of BAX translocation to mitochondria (Ferri 

et al., 2000). The gp120 glycoprotein also increased MFN1 and DRP1 levels in vitro (Fields et al., 

2016) and induced cristae remodelling and mitochondrial swelling (Avdoshina et al., 2016).  

The viral protein Nef has also been shown to trigger apoptosis in vitro, either through decreasing the 

expression of Bcl-2 or by decreasing ΔΨm (Lenassi et al., 2010). Tat protein also induces apoptosis in 

Jurkat cells by decreasing the levels of Bcl-2 proteins, as well as increasing oxidative stress by 

downregulating the levels of superoxide dismutase 2 (SOD2) (Giacca, 2005). In addition, Tat proteins 

were also shown to trigger changes in mitochondrial structure and induce mitochondrial 

fragmentation, leading to disruptions in ΔΨm and accumulations of damaged mitochondria (Rozzi et 

al., 2018). Finally, Vpr proteins have also been shown in vitro to increase mitochondrially-mediated 

apoptosis by reducing levels of Bcl-2 and Bcl-XL (Deniaud et al., 2004; Huang et al., 2012). 

1.7.5 Impact of genetic and environmental factors  

The HIV+ population is extremely diverse genetically, demographically and in lifestyle factors. It is 

therefore difficult to determine the exact impact any potential confounding factors, such as smoking 

or alcohol intake, have on the development of mitochondrial defects. In addition, diversity in study 

protocols used in many of the current cohort studies make it difficult to extrapolate the exact impact 

many genetic or lifestyle factors have on increasing the susceptibility of developing mitochondrial 

dysfunction in PLWH. For example, there are potential confounding factors such as smoking, body 

composition, and levels of exercise activity which are either not routinely assessed, or assessment 

methods vary (Nansseu et al., 2020). 

However, it has been shown that chronic exposure to ethanol can increase the level of ROS 

production (Kukielka et al., 1994) whilst simultaneously decreasing the levels of the antioxidant 
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glutathione (Fernandez-Checa et al., 1998). This can lead to increased oxidative stress with 

consequences for mitochondrial function (Blas-Garcia et al., 2010).  

Finally, studies investigating mitochondrial haplogroups of PLWH in the AIDS clinical trials (ACTG) 

group have shown associations between the European haplogroup T and peripheral neuropathy 

(Hulgan et al., 2005), whilst having a mtDNA haplogroup H was associated with increased risk of 

lipoatrophy (Henrickson et al., 2009). 
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1.8 Kidney function in the HIV setting 

As the average age of PLWH increases, kidney diseases are becoming more prevalent. In addition to 

HIV-associated kidney disease (HIVAN), kidney disease in PLWH can manifest as various pathologies, 

such as acute kidney injury (AKI), chronic kidney disease (CKD) and end-stage renal disease (ESRD). In 

particular, whilst the advent of ART has reduced the prevalence of HIVAN in PLWH, AKI, CKD, and 

ESRD pose now significant issues (Swanepoel et al., 2018). CKD is therefore seen as one of the most 

important age-associated comorbidities in older PLWH.  

1.8.1 Kidney structure and function 

Kidneys are responsible for the control of the body’s fluid levels, filtration of blood, removal of 

waste, and electrolyte regulation. As a result of blood filtration, urine is created and ultimately 

drained into the bladder via the pelvis (Smith, 1952). 

The kidney is composed of a fibrous outer layer termed the renal capsule, a peripheral layer called 

the cortex, and an interior layer called the medulla. The medulla is arranged into pyramidal 

structures which, in combination with the cortex, form the renal lobe (Figure 1.30). Nephrons are 

structures that span the cortex and medulla and are where the majority of kidney processes occur. 

In particular, nephrons contain a glomerular blood filter composed of podocytes and tubular 

epithelium, which can be further subdivided into proximal, intermediate, and distal segments 

(Smith, 1952; Davidson, 2009).  

 

 

Figure 1.30 – Kidney structure.   
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1.8.2 Kidney disease and HIV infection 

1.8.2.1 Renal diseases in PLWH 

AKI is a broad clinical condition describing acute kidney failure, often resulting in electrolyte 

imbalance and a significant decrease or elimination of urine, with the sufferer then requiring 

haemodialysis (Okusa & Davenport, 2014). Histologically, AKI is characterised by focal or diffuse 

tubular luminal dilation, loss of proximal tubule brush border, simplification of lining epithelium, and 

loss of nuclei (Gaut & Liapis, 2020). Although the prevalence of AKI in PLWH has fallen since the 

advent of ART, the prevalence still remains high, and these virally-supressed PLWH appear to 

experience higher rates of more severe AKI (Li et al., 2012; Nadkarni et al., 2015). Indeed, although 

the burden of AKI is not as significant as that of CKD in PLWH, AKI is recognised as being a risk factor 

for the initiation and progression of CKD (Chawla et al., 2014; Pannu, 2013; Coca et al., 2011). 

Similarly to AKI, the prevalence of CKD in virally-supressed PLWH remains high. The decline in eGFR 

(estimated glomerular filtration rate) with age is known to be enhanced in both virally-supressed 

and non-virally suppressed PLWH compared to the HIV-uninfected population (Wetzels et al., 2007; 

Choi et al., 2009; Scherezer et al., 2012). This increased prevalence of pathology appears to be down 

to the high prevalence of risk factors that are found in PLWH, as discussed below (Medapalli et al., 

2012).  

HIVAN was the first renal disease to be described in HIV+ individuals, and unlike AKI and CKD, the 

prevalence of HIVAN has significantly fallen since the advent of ART. HIVAN is now only commonly 

seen in newly-diagnosed PLWH with late-stage HIV infection, or those who have discontinued ART 

(Wyatt, 2017). 

1.8.2.2 Risk factors for renal disease in PLWH 

Risk factors for CKD include: black race, hypertension, age, recreational drug use, HCV as well as HBV 

coinfection, and diabetes. In particular, diabetes appears to increase the susceptibility for CKD onset 

and progression, primarily due to increased inflammation seen in diabetic individuals (Medapalli et 

al., 2012; Mallipattu et al., 2013). Notably, HBV and HCV coinfection with HIV is associated with a 2- 

to 3- fold increased risk of CKD (Lucas et al., 2013; Mocroft et al., 2012). 

Among the common risk factors for kidney disease, sepsis appears to increase the severity of AKI in 

PLWH (Nadkarni et al., 2015).  

Another major risk factor for renal disease is African ancestry (Kopp & Winkler, 2003). This is 

primarily due to pathogenic polymorphisms in the APOL1 gene, which encodes apolipoprotein 1 

(Lucas et al., 2014, Kasembeli et al., 2015). Although the mechanisms behind APOL1 mediated 
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kidney pathology are unknown, increased APOL1 expression is thought to cause podocyte injury by 

inducing apoptosis or autophagy in renal epithelium as a result of increased cellular and 

mitochondrial membrane permeability (Fu et al., 2017; Kruzel-Davila et al., 2017; Me et al., 2017).  

1.8.2.3 ART and renal disease in HIV 

Exposure to the nucleoside reverse transcriptase inhibitor tenofovir disoproxil fumarate (TDF) 

increases the susceptibility of developing renal disease (Woodward et al., 2009; Bonjoch et al., 2014; 

Flandre et al., 2011; Hall et al., 2011; Winston et al., 2006; Goicoechea et al., 2008).  

In addition, increased age, immunodeficiency, and concomitant use of didanosine or ritonavir-

boosted protease inhibitors are risk factors for AKI in PLWH (Hamzah et al., 2017). Finally, the 

incidence of CKD was increased 16% with every year of TDF exposure, 21% with every year of 

atazanavir (ATV) exposure, and 8% with every year of ritonavir-boosted lopinavir (LPV) in the 

EuroSIDA study of HIV+ individuals (Mocroft et al., 2010).  

1.8.2.4 Mitochondrial dysfunction in chronic kidney disease  

As mitochondria are responsible for various cellular processes essential for kidney function, as well 

as the fact that kidneys are second only to the heart in oxygen consumption and mitochondrial 

abundance (Wirthensohn & Guder, 1986), mitochondrial dysfunction has serious implications for 

kidney function and therefore kidney disease.  

Although the link between mitochondrial function and CKD is heavily suspected, the underlying 

mechanisms remain elusive. Various in vitro studies have sought to assess alterations in 

mitochondrial function in CKD disease models. This includes the demonstration of increased 

mitochondrial fragmentation in kidney tubules (Galloway et al., 2012; Zhan et al., 2015). In addition, 

studies have demonstrated increased phosphorylation of Drp1 and therefore increased 

mitochondrial fission in podocytes (Ayanga et al., 2016; Han et al., 2008). MtDNA mutations, and 

defective mitophagy have also been linked to CKD (Hartleben et al., 2010). 

Additionally, alterations in mitochondrial biogenesis have also been implicated in renal 

abnormalities (Tran et al., 2016; Hershberger et al., 2017; Yuan et al., 2012; Perico et al., 2016). Of 

note, deacetylation of PGC-1α was demonstrated to reduce aldosterone-induced podocyte injury, 

whist an activator of SIRT1 – Resveratrol – increased mitochondrial biogenesis and protected 

mitochondrial induced podocyte injury (Yuan et al., 2012). 

Importantly, the link between kidney mitochondrial dysfunction and diabetes gives insights into how 

mitochondrial dysfunction may induce CKD. In this instance, oxidative stress as the result of 

mitochondrial dysfunction is a common pathway behind CKD in in diabetic individuals (Brownlee, 
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2005). Here, the free radical theory of diabetic microvascular complications hypothesises that 

increased ROS production results in damage to renal epithelial cells and accelerates the progression 

of kidney disease (Brownlee, 2005). In support of this, both in vitro and in vivo studies have 

demonstrated increased ROS in diabetic mouse models displaying kidney abnormalities, including 

podocyte apoptosis and elimination (Brownlee, 2005; Wang et al., 2012; Dieter et al., 2015). Finally, 

several studies have demonstrated that administration of the mitochondrial-targeted antioxidant 

mitoTEMPO reduced the prevalence of pathological diabetic neuropathy features (Chen et al., 2015; 

Sims et al., 2014). 

Perturbations in mitochondrial dynamics are also thought to be associated with diabetic kidney 

abnormalities. For example, PGC-1α was significantly downregulated in streptozotocin-induced 

diabetic rat tubules, as well as in OVE26, Akt2 and db/db mice (Morigi et al., 2015; Dugan et al., 

2013; Nakatani & Ingani, 2016; Hasegawa et al., 2013; Platt & Coward, 2017). In addition, knockout 

of SIRT1 in non-diabetic mice resulted in albuminuria (Hasegawa et al., 2013). 

Given the importance of kidney disease as an age-associated comorbidity in PLWH, we therefore 

performed a pilot study of mitochondrial dysfunction in HIV/ART associated kidney disease.  
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Chapter 2 – Thesis Aims and objectives 

Due to the successful virus-supressing effects of ART, PLWH now experience a lower prevalence of 

HIV-related morbidity and mortality. As a result, PLWH are now on average living longer, and the 

average age of the HIV+ population is increasing (GDB 2017 HIV collaborators, 2019; Public Health 

England, 2019).  

Some older PLWH exhibit features of unsuccessful ageing, such as frailty and sarcopenia (Desquilibet 

et al., 2007; Brothers et al., 2017; Erlandson et al., 2015; Echeverria et al., 2018; Pinto Neto et al., 

2016; Wasserman et al., 2014). This phenomenon has serious implications with regard to the effects 

a population experiencing adverse ageing phenotypes has on healthcare systems, and so focus has 

shifted towards trying to better understand the causes of this adverse ageing in virally-supressed 

PLWH (Kojima et al., 2019). 

Mitochondrial dysfunction is one of the best characterised pathways of human ageing (Lopez-Otin et 

al., 2013). Therefore, given the established role mitochondrial dysfunction plays in ART-mediated 

toxicities and other HIV-related comorbidities (Hunt & Payne, 2020), recent interest has been shown 

towards the potential role of mitochondrial dysfunction as a driver of unsuccessful ageing in older 

PLWH. However, few studies have investigated mitochondrial function in skeletal muscle of older 

PLWH and in particular, how age-related skeletal muscle mitochondrial dysfunction is linked to 

adverse ageing phenotypes and their underlying pathophysiological decline. 

The over-arching hypothesis of this thesis is therefore that: 

‘Mitochondrial dysfunction is an important driver of adverse ageing phenotypes in PLWH’. 

The primary aims of this thesis were therefore to: 

1. Better understand skeletal muscle mitochondrial dysfunction in PLWH in the contemporary cART 

era.  

2. Compare the prevalence of adverse ageing phenotypes and clinical factors between older PLWH 

and age-matched HIV- individuals.  

3. Determine whether older PLWH have greater levels of skeletal muscle mitochondrial dysfunction 

compared to age-matched HIV- individuals, and whether skeletal muscle mitochondrial 

dysfunction is associated with adverse ageing phenotypes in older PLWH. 

4. Investigate the levels of various other skeletal muscle pathophysiological factors in older PLWH, 

and subsequently compare whether any of these factors are more prevalent than in age-

matched HIV- individuals. 
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In addition, aside from skeletal muscle mitochondrial dysfunction and the adverse implications that 

has on the older PLWH, a growing concern in the field of mitochondrial dysfunction in the 

contemporary cART era is TDF-induced renal pathology (Guaraldi et al., 2011; Lucas et al., 2008; 

Samuels et al., 2017; Swanepoel et al., 2018). Due to the difficulty in obtaining renal biopsies from 

TDF-treated PLWH with renal pathology, in combination with the lack of validated techniques to 

investigate mitochondrial dysfunction at the individual cellular level in these individuals, the 

secondary aims of this thesis was to: 

1. Assess whether mitochondrial dysfunction can be investigated in renal tissue from TDF-treated 

PLWH at the cellular and molecular level using novel experimental techniques. 

2. Compare mechanisms of ART-induced mitochondrial dysfunction in renal tissue with that seen in 

skeletal muscle tissue.  
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Chapter 3 – Methods 

3.1 Ethical guidelines 

All participant samples were collected with informed written consent. All human tissue was stored in 

compliance with the Human Tissue Act (HTA licence number – 12534), on HTA licenced premises. 

Control skeletal muscle tissue was acquired with prior informed consent from the distal part of the 

hamstring of people undergoing anterior cruciate ligament (ACL) surgery. Approval for this was given 

by Newcastle biobank (NAHPB reference: 042). More detailed patient and control information is 

given in the relevant chapters and sections.  

Specific research ethics and NHS research governance arrangements are detailed in the following 

sections.  

3.2 Patient cohorts 

Data from the work presented in this thesis is derived from patients recruited as part of three 

studies. Two studies were set up with the aim of investigating mitochondrial function in skeletal 

muscle from HIV+ and HIV- people in various settings (MAGMA study and SMMFA study), whilst the 

other study aimed to investigate mitochondrial function in renal tissue from PLWH and HIV- 

individuals. This section describes the various cohorts. 

3.2.1 MAGMA study 

All research activity was conducted with permission from local research ethics committee (REC) and 

HRA (Health Research Authority), ref. 17/NE/0015. 

30 HIV+ and 15 HIV- males were recruited as part of the MAGMA study, with patients giving prior 

written permission. 38 patients were recruited at the Royal Victoria Infirmary (RVI) in Newcastle 

upon Tyne, UK, whilst 7 patients were recruited at St Marys Hospital in London, UK. All patients were 

50 years or older. HIV+ individuals were able to participate if they had been on ART and had a low or 

undetectable HIV-1 viral load (<200 copies/ml). Exclusion criteria included: being female, inability to 

give informed consent, life expectancy <6 months, known coagulation disorder or taking anti-

coagulant medication, known or suspected neuromuscular disorder of a genetic basis, and being 

unable to walk 4 meters (including with a walking aid). Further study details are in the MAGMA study 

protocol (Appendix 1). 
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Patient details for the MAGMA study subjects are described in Table 3.1, with delineation as to 

whether individuals were recruited as part of the MAGMA study or as part of the SMMFA study 

described in the following section.  

All participants completed a standardised interview and any missing clinical information as well as 

CD4+ lymphocyte count, HIV diagnosis, ART history and viral load were identified and confirmed 

through patient medical records where available. Laboratory results were the most recent values 

available. The presence or absence of the following comorbidities was self-reported and 

subsequently confirmed through medical records: stroke and CVD, neuropathy, diabetes, dementia, 

cancer, renal disease, fractures, hepatitis, peripheral vascular disease, joint disease or replacements, 

osteoporosis, and falls. Medications were self-reported and confirmed through medical records. In 

addition, patients underwent a dual-energy X-ray absorptiometry (DXA) scan in order to assess body 

composition and muscle mass . Patients were also asked to undertake a range of tests such as 

walking, grip strength, standing/sitting, and stair climb in order to assess frailty, sarcopenia and 

physical capabilities. In addition, percutaneous muscle biopsies were acquired from all 45 patients 

for research purposes and stored at -80°C.  

3.2.2 Skeletal muscle mitochondrial function and ART (SMMFA) study  

Samples were obtained from the Newcastle Academic Health Partners Biobank. Samples had 

previously been collected under REC and HRA approved research protocols and subsequently stored 

in the Biobank under REC approval 12/NE/0395 and 17/NE/0361. Donors had given prior consent for 

retention of residual tissue for the purposes of future research. Research activity on these samples 

was approved by the Biobank oversight committee and was conducted under REC approval 

17/NE/0015 (Appendix 5).  

Skeletal muscle samples were taken by tibialis anterior (TA) biopsy from adult PLWH (n = 37) for 

research purposes and obtained through the Newcastle Academic Health Partners Bioresource, with 

patients giving prior written consent. TA biopsies were stored at -80°C. Table 3.1 describes the 

patient cohort, with delineation as to whether patients were recruited as part of the SMMFA study 

or MAGMA study described above.  

Subjects were classified into three groups depending on whether they had been treated with ART 

and if so, further grouped depending on whether they had previous or current exposure to certain 

NRTIs: group 1 (‘naïve’) had no previous exposure to any ART; group 2 (‘contemporary’) had only 

ever received contemporary NRTIs – tenofovir (TDF), abacavir (ABC), lamivudine (3TC) or 

emtricitabine (FTC); group 3 (‘historical’) were currently being treated with contemporary NRTIs, but 
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had previously been exposed to one or more of the older NRTIs known to be associated with 

mitochondrial toxicity – zidovudine (AZT), zalcitabine (ddC), didanosine (ddI) or stavudine (d4T). 

3.2.3 Skeletal muscle biopsies  

Skeletal muscle samples were taken by tibialis anterior (TA) biopsy from adult PLWH (n = 37) and 

obtained through the Newcastle Academic Health Partners Bioresource as part of the SMMFA study, 

with patients giving prior written consent. In addition, percutaneous biopsies were obtained from 

PLWH (n = 30) and HIV- individuals (n = 15) as part of the MAGMA study. Table 3.1 delineates 

whether an individual was recruited as part of the MAGMA study or SMMFA study. 

Control skeletal muscle tissue required for the calibration of the multiplex immunofluorescence for 

CI, CIV and mitochondrial mass assay was acquired with prior informed consent from the distal part 

of the hamstring of HIV-uninfected individuals undergoing anterior cruciate ligament (ACL) surgery. 

Age and gender details for these individuals (n = 3) is described in Table 3.1. Approval for this was 

given by Newcastle biobank (NAHPB reference: 042).  
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Group Age Sex Ethnicity 

Months 

since 

diagnosis 

Months on 

ART 

Months with 

untreated 

HIV 

CD4+ 

(cells/µl) 

Nadir CD4+ 

(cells/µl) 

Viral load 

(copies/ml) 
Current treatments All treatments 

31P-

MRS 
MAGMA SMMFA 

ART naïve 37 M WB 64 0 64 1165 1033 4300 N/A N/A N N Y 

 
45 F BA 99 0 99 214 214 1050 N/A N/A N N Y 

 
49 M WB 227 0 227 223 199 18900 N/A N/A N N Y 

 
46 M BA 110 0 110 387 328 17000 N/A N/A N N Y 

 
27 M WB 45 0 45 391 283 34300 N/A N/A N N Y 

 
50 F WB 120 0 120 1358 541 40 N/A N/A N N Y 

 
32 F BA 27 0 27 380 380 13900 N/A N/A N N Y 

 
53 F WB // 0 // 1439 // 40 N/A N/A N N Y 

 
34 M WB 31 0 31 422 389 4700 N/A N/A N N Y 

 
32 F WB 44 0 44 626 522 41600 N/A N/A N N Y 

 
24 M WB 31 0 31 217 197 1250 N/A N/A N N Y 

 
27 M WB 37 0 37 633 438 12700 N/A N/A N N Y 

 
23 M WB 50 0 50 796 451 150 N/A N/A N N Y 

Contemporary 

NRTI 
55 M WB 96 48 48 503 117 <40 TDF/FTC/ATV/r TDF/FTC/ATV/r Y N Y 

 
39 M WB 40 12 28 417 187 <40 TDF/FTC/EFV TDF/FTC/EFV N N Y 

 
39 M WB // // // 687 405 // TDF/FTC/EFV TDF/FTC/EFV N N Y 

 
62 M WB 63 62 1 190 56 <40 TDF/FTC/NVP TDF/FTC/NVP Y N Y 

 
25 M WB 311 33 278 729 270 <40 TDF/FTC/ATV/r TDF/FTC/ATV/r/ABC/3TC N N Y 

 
66 M WB 71 26 45 455 287 <40 TDF/FTC/EFV TDF/FTC/EFV Y N Y 
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54 M WB 79 38 41 638 244 <40 TDF/FTC/DRV/r TDF/FTC/EFV/DRV/r Y N Y 

 
53 M WB 73 48 25 804 301 <40 TDF/FTC/EFV TDF/FTC/EFV Y N Y 

 
34 F BA 21 18 3 265 // <40 TDF/FTC/EFV TDF/FTC/EFV N N Y 

 
57 M WB 145 21 124 432 379 <40 TDF/FTC/EFV TDF/FTC/EFV Y N Y 

 61 M WB 181 95 86 1049 200-350 <20 TDF/FTC/EFV TDF/FTC/EFV/LPV/r N Y Y 

 57 M WB 269 151 118 259 100-200 <20 ABC/3TC/DRV/r ABC/3TC/DRV/r/EFV/TDF/FTC N Y Y 

 71 M WB 87 86 1 549 100-200 31 
TDF/FTC/EFV/ABC

/3TC/DTG 
TDF/FTC/EFV/ABC/3TC/DTG/RPV N Y Y 

 52 M WB 96 82 14 // >350 // TDF/FTC/RPV TDF/FTC/RPV/EFV N Y Y 

 60 M WB 266 99 167 584 0-100 52 ABC/3TC/DTG ABC/3TC/DTG/TDF/FTC/ATV/r N Y Y 

 62 M WB 28 28 0 773 >350 63 TDF/FTC/DRV/c TDF/FTC/DRV/c/r N Y Y 

 54 M WB 155 155 0 744 100-200 355 ABC/3TC/DTG ABC/3TC/DTG/TDF/FTC/RAL/MVC/NVP N Y Y 

 51 M WB 99 // 99 598 200-350 118 TDF/FTC/EFV TDF/FTC/EFV N Y Y 

 54 M WB 81 22 59 1111 >350 <20 TDF/FTC/RAL TDF/FTC/RAL N Y Y 

 53 M WB 152 83 69 669 200-350 <20 TDF/FTC/RPV ABC/3TC/TDF/FTC/RPV N Y Y 

 68 M WB 373 65 308 878 0-100 <20 
ABC/3TC/DTG/TP

V/DTG/r 
ABC/3TC/DTG/TPV/TDF/FTC/r N Y Y 

 50 M WB 33 32 1 746 0-100 188 TDF/FTC/DRV/r TDF/FTC/DRV/r N Y Y 

 56 M WB 135 134 1 388 0-100 350 TDF/FTC/EFV TDF/FTC/EFV N Y Y 

 54 M WB 283 160 123 624 0-100 <20 ATV/c TDF/IDV/ATV/c N Y Y 

 65 M WB 297 120 157 781 >350 <20 TDF/FTC/DTG TDF/FTC/DTG/EFV N Y Y 

 60 M WB 176 99 77 // 200-350 <20 TDF/FTC/DRV/c TDF/FTC/DRV/c N Y Y 

 53 M WB 141 126 15 568 200-350 74 TDF/FTC/NVP TDF/FTC/NVP N Y Y 
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 51 M WB 64 60 4 446 200-350 63 TDF/FTC/RAL TDF/FTC/RAL N Y Y 

 65 M WB 162 6 156 737 >350 105 ABC/3TC/DTG ABC/3TC/DTG N Y Y 

Historical NRTI 71 M WB 130 130 0 530 // <40 TDF/FTC/EFV DDI/AZT/3TC/EFV/TDF/FTC Y N Y 

 
62 M WB 299 248 51 370 // <40 DRV/r/MVC/RAL 

AZT/DDC/3TC/SQV/IDV/DDI/D4T/ABC/EFV/APV/NFV/H

U/LPV/r/TDF/T20/FTC/NVP/DRV/r/MVC/RAL 
N N Y 

 
63 M WB 238 221 17 438 // <40 ABC/3TC/NVP AZT/DDI/D4T/3TC/DDC/IDV/NVP/ABC Y N Y 

 
49 M WB 193 193 0 762 120 <40 TDF/FTC/ATV/r 

AZT/DDI/D4T/3TC/SQV/NVP/IDV/NFV/ABC/TDF/LPV/F

TC/ATV/r 
Y N Y 

 
48 M WB 158 151 7 872 10 <40 TDF/ABC/NVP AZT/DDI/D4T/3TC/RTV/NVP/IDV/DDC/ABC/ATV/r/TDF Y N Y 

 
54 M WB 96 96 0 // // // DDI/3TC/NVP AZT/3TC/EFV/DDI/NVP N N Y 

 
62 M WB 284 202 82 422 // <40 ABC/NVP/LPV/r SQV/AZT/DDC/3TC/D4T/DDI/IDV/ABC/NVP/NFV/LPV/r Y N Y 

 
50 M WB 140 138 2 669 0 <40 TDF/FTC/NVP AZT/D4T/IDV/NFV/SQV/3TC/NVP/DDI/TDF/FTC N N Y 

 
56 M BA 240 224 16 401 150 97 

TDF/FTC/ETR/DRV

/r 

AZT/DDC/SQV/3TC/IDV/D4T/NVP/DDI/ABC/LPV/r/TDF

/ATV/r/FPV/r/DRV/r/MVC/FTC 
Y N Y 

 
45 M WB 165 146 19 592 305 <40 RAL/ABC/ATV/r D4T/3TC/NVP/DDI/IDV/ABC/ATV/r/RAL Y N Y 

 
51 M WB 236 164 72 559 327 <40 TDF/FTC/EFV AZT/DDI/RTV/NFV/TDF/FTC/EFV Y N Y 

 
74 F WB 200 182 18 825 // <40 TDF/FTC/EFV AZT/DDI/D4T/SQV/TDF/3TC/EFV/FTC Y N Y 

 
60 F WB 145 144 1 666 96 <40 ABC/3TC/EFV D4T/ABC/EFV/3TC Y N Y 

 
63 F WB 182 153 29 865 300 <40 TDF/FTC/EFV D4T/3TC/NVP/NFV/EFV/AZT/TDF/FTC Y N Y 

 54 M WB 246 241 5 659 100-200 <20 TDF/FTC/EFV AZT/3TC/ddI/SQV/TDF/FTC/EFV N Y Y 

 58 M WB 252 240 12 994 200-350 <20 TDF/FTC AZT/3TC/TDF/FTC N Y Y 

 62 M WB 265 33 232 247 100-200 <20 ABC/3TC/DTG AZT/ABC/3TC/DTG/TDF/LPV/r N Y Y 

 61 M WB 444 163 281 571 0-100 <20 
TDF/FTC/DRV/EFV

/RAL/r 
ddC/TDF/FTC/DRV/EFV/RAL/NVP/NFV/ATV/TAF/r N Y Y 
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 55 M WB 314 85 229 650 >350 <20 TDF/FTC/NFV AZT/3TC/TDF/FTC/NFV N Y Y 

 56 M WB 227 156 71 589 0-100 83 TDF/FTC/ATV/r AZT/3TC/TDF/FTC/ATV/NFV/EFV/ddI/FPV/ATV/r N Y Y 

 85 M WB 306 253 53 451 100-200 30 ABC/3TC/DTG AZT/ddI/d4T/IDV/TDF/ABC/3TC/DTG N Y Y 

 70 M WB 200 184 16 357 0-100 <20 TDF/FTC/NVP AZT/3TC/TDF/FTC/NVP N Y Y 

 70 M WB 355 236 119 738 // <20 DRV/r AZT/ddC/3TC/SQV/ DRV/r N Y Y 

 67 M WB 124 123 1 486 0-100 84 TDF/FTC/NVP AZT/3TC/EFV/ddC/DRV/r/ TDF/FTC/NVP N Y Y 

 54 M WB 196 97 99 1118 200-350 <20 TDF/FTC AZT/3TC/TDF/FTC N Y Y 

HIV- 50 M WB // // // // // // // // N Y N 

 70 M WB // // // // // // // // N Y N 

 51 M MR // // // // // // // // N Y N 

 70 M WB // // // // // // // // N Y N 

 52 M WB // // // // // // // // N Y N 

 58 M WB // // // // // // // // N Y N 

 69 M WB // // // // // // // // N Y N 

 51 M WB // // // // // // // // N Y N 

 59 M WB // // // // // // // // N Y N 

 57 M WB // // // // // // // // N Y N 

 62 M WB // // // // // // // // N Y N 

 60 M WB // // // // // // // // N Y N 

 63 M WB // // // // // // // // N Y N 

 54 M BA // // // // // // // // N Y N 

 69 M WB // // // // // // // // N Y N 
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Table 3.1 – Cohort characteristics. WB (white British); BA (black African); N/A (not applicable); TDF (tenofovir disoproxil fumarate); FTC (emtricitabine); /r (ritonavir boosted); ATV (atazanavir); 
EFV (efavirenz); NVP (nevirapine); ABC (abacavir); 3TC (lamivudine); DRV (darunavir); ddI (didanosine); AZT (zidovudine); MVC (maraviroc); RAL (raltegravir); ddC (zalcitabine); SQV 
(saquinavir); IDV (indinavir); d4T (stavudine); APV (amprenavir); NFV (nelfinavir); HU (hydroxyurea); LPV (lopinavir); T20 (enfuvirtide); RTV (ritonavir); ETR (etravirine); Y = yes; N = no; // = 
missing value.

Control ACL 24 M // // // // // // // // // N Y Y 

 20 M // // // // // // // // // N Y Y 

 22 M // // // // // // // // // N Y Y 
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3.2.4 Mitochondrial disease patients  

In order to qualitatively contextualise the level of skeletal muscle mitochondrial dysfunction in the 

HIV+ and HIV- individuals of the MAGMA study, post-mortem percutaneous muscle biopsies were 

acquired from mitochondrial disease patients (Table 3.2) from the Newcastle Mitochondrial 

Research Biobank (REC - 16/NE/0267) and stored at -80°C until use.  

 

Patient Age Gender Genotype Phenotype 

1 80 Male p.T251I/p.P587L and p.A467T  

POLG 

CPEO 

2 52 Male Homozygous p.(Ala467Thr) 

POLG 

Neuropathy; CPEO; 

progressive sensory ataxia  

Table 3.2 – Mitochondrial disease patient characteristics. Both patients had confirmed mitochondrial disease, with varying 
mutations in the nDNA-encoded maintenance gene POLG. Both patients were decease. CPEO = chronic progressive external 
ophthalmoplegia. 

 

3.2.5 Renal mitochondrial function study 

Renal biopsies were collected as diagnostic procedures, with additional consent obtained for 

subsequent research use of the tissue. These samples were supplied in anonymised form by the 

Cellular Pathology department of the Royal Free Hospital, London. The research performed on these 

samples as part of this thesis was conducted under REC permission 17/NE/0015.   

Percutaneous biopsies were taken from PLWH (n = 6) (supplied as residual diagnostic tissue from 

Royal Free Hospital London (RFH) Cellular Pathology Department) and open renal biopsies were 

taken from HIV- individuals (n = 5) (supplied by Dr Ashwin Sachdeva and Manchester University NHS 

Biobank as residual diagnostic tissue). All biopsies were formalin-fixed and paraffin-embedded. 

Of the PLWH, four were being treated with an ART regimen including TDF at the time of biopsy, 

while one had never been exposed to TDF, and clinical information was missing for one subject 

(Table 8.1). Of the four TDF-treated PLWH, only patient 3 had discontinued TDF treatment. 

Aside from their age, race and gender, little information was given to us about the HIV- control 

subjects. Biopsies came from ‘normal’ tissue adjacent to explanted renal masses, however, I did not 

know whether these individuals had been diagnosed with any renal pathologies and I have no 

information about potential co-morbidities or other adverse factors such as certain medications.  
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3.3 MAGMA study protocol and assessment of adverse ageing phenotypes 

3.3.1 Clinical interview  

All participants (n = 45), recruited in both Newcastle (n = 38) and London (n = 7), were asked to 

complete a health questionnaire during the sole study visit (Appendix 2). This was carried out by a 

clinical researcher and data was made available for examination alongside biological samples.  

This health questionnaire included: general questions about age, country of birth, ethnicity and 

sexual orientation; lifestyle questions about smoker status, whether they drink alcohol, and how 

many units a week, as well as whether they had used recreational drugs in the last 6 months, and 

which ones.  

Participants where then asked to list whether they suffered from any medical conditions including: 

heart disease, peripheral vascular disease, stroke, liver disease, diabetes, cancer, joint disease, 

fractures, osteoporosis, and falls. In addition, participants were asked to list what medications they 

were currently prescribed or buying over-the-counter. 

Finally, HIV+ participants (n = 30) were asked to list what HIV treatments they were currently or have 

previously been on, as well as when they started and finished the respective treatments. In addition, 

HIV+ participants were asked when they were first diagnosed with HIV, when they think they first 

became HIV positive, and what their lowest CD4 count was (either: 0-100; 100-200; 200-350, or 

more than 350 copies/µl). This information was subsequently confirmed through medical records 

where available.  

3.3.2 Determination of frailty 

A frailty phenotype was assessed using a modified five FFP criteria as previously described by Onen 

and colleagues (2009). Cut-offs for weakness and slow walking time are described in Table 3.3.  

For the self-reported unintentional weight loss, participants were asked (1) whether their weight 

had increased, decreased, or stayed the same in the last 12 months?; (2) if ‘decreased’, was the 

weight loss intentional?; (3) if ‘yes’, how much weight did they lose, in kg or lbs? Note, answers in lbs 

were covered to kg (1lbs = 0.45kg). 

For self-reported low physical activity, participants were asked whether their health limited their 

ability to do vigorous activities such as running or lifting heavy objects (Table 3.3). 
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For self-reported exhaustion, participants were asked to confirm whether ‘rarely or none of the time 

(<1 day)’, ‘some or a little of the time (1-2 days)’, ‘occasionally or a moderate amount of time (3-4 

days)’, or ‘most or all of the time (5-7 days)’ was most appropriate for the following two questions: 

(1) everything I did was an effort; (2) I could not get going (Table 3.3; Appendix 2). 

Missing clinical and HIV-related information were later identified and confirmed through patient 

medical records where available. Laboratory results were the most recent values available. 

 

 FFP criteria Definition 

Self-reported Low physical activity When subjects answer 3 to questions regarding whether their health 
limits their ability to conduct vigorous activities: 

1 = not at all; 2 = yes, limited a little; 3 = yes, limited a lot 

 Exhaustion 
When subjects answer 2 or 3 to either statement: 

How often have you felt that: 
(1) Everything you did was an effort 

(2) I could not get going 
0 = rarely (<1 day); 1 = some of the time (1-2 days); 2 = 
occasionally (3-4 days); 3 = most of the time (5-7 days) 

 Unintentional weight 
loss 

>4.5kg/10 lbs weight loss in the past 12 months or <5% of previous 
year’s body weight 

Clinical 
assessment 

Weak grip strength Male BMI (kg/m2) / Kg 
≤24 / ≤29 

24.1-26.0 / ≤30 
26.1-28.0 / ≤30 

>28 / ≤32 

 Slow walking time Male height (cm) / seconds 
≤173 / ≥7 
>173 / ≥6 

Table 3.3 – Diagnostic criteria for assessing frailty.  
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3.3.3 Short Physical Performance Battery (SPPB)  

Assessment of physical function was done by a SPPB, which consisted of a repeat chair stand 

(recorded as the time taken in seconds to complete 5 and 10 stands without using their arms); 

standing balance test (recorded as the time - up to 30 seconds – that the participant can hold a side-

by-side, semi-tandem, tandem and single-leg stands) (Figure 3.1); hand grip assessment (the average 

of three dominant hand grip measurements using a hand dynamometer, measured in kilograms (kg)) 

and 4m walk (recorded as the time taken, in seconds, for the participant to walk 4 meters in a 

straight line. Results were derived from the average of 3 repeats). SPPB was scored using a binary 

tally and scored out of 12 (Table 3.4), with 0 points indicating the individual’s inability to complete a 

task and 4 points demonstrating the optimal performance in the task (Guralnik et al., 1994) 

(Appendix 3).  

 

Figure 3.1 – Foot positions in the standing balance test component of the SPPB. (A) side-by-side, (B) semi-tandem, (C) 
tandem and (D) single-leg stand. 

  

Characterisation Score 

Robust > 11 

Intermediate physical performance 9-11 

Low physical performance < 9 

Table 3.4 – SPPB scoring classification. 

 

  

A B C D 



118 
 

3.3.4 MET score  

Metabolic equivalent (MET) expenditure per week was calculated as an additional surrogate for 

physical performance assessment. Patients were asked to answer how many days, hours and 

minutes a week they performed vigorous physical activities such as heavy lifting, aerobics or fast 

cycling; moderate physical activities such as carrying light loads, cycling at a moderate pace or 

doubles tennis etc; walking; and sitting (Appendix 4). Results were calculated as described in 

Ainsworth et al. (1993) and Ainsworth et al. (2000).  

3.3.5 Classification of sarcopenia  

According to the EWGSOP, sarcopenia can be classified in the clinical and research setting based on 

analyses of muscle mass, muscle strength and physical performance (Cruz-Jentoft et al. 2019). 

In our study, (1) muscle mass was quantified as appendicular skeletal muscle mass by dual-energy X-

ray absorptiometry (DXA). The cut-off point for this variable was having an appendicular skeletal 

muscle mass/height2 index (ASMI) of 7.26kg/m2. Subjects with an AMSI below the cut-off point were 

defined as having abnormal muscle mass; (2) muscle strength was assessed using a Jamar handheld 

dynamometer, with cut-off points described in Table 3.3, and (3) physical performance was assessed 

through the SPPB, as described in Section 3.3.3. 

Patients were classified as having presarcopenia if they had abnormal results for muscle mass; 

sarcopenia if they had abnormal results for muscle mass as well as either muscle strength or physical 

performance, and severe sarcopenia if they had abnormal results from all three criteria (Table 3.5). 

 

Status Decreased muscle mass 
Decreased muscle 

strength 
Physical function 

decline 

Presarcopenia X - - 

Sarcopenia X 
X - 

Severe sarcopenia X 
X X 

Table 3.5 – Variables used to characterise the presence of presarcopenia, sarcopenia and severe sarcopenia, as defined 
by the EWGSOP. (Cruz-Jentoft et al., 2019). 
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3.4 Immunofluorescence and fluorescence histochemistry 

3.4.1 Cryosectioning and microtome sectioning  

Snap-frozen skeletal muscle biopsies were cut into sections of various thicknesses onto glass slides 

using the Cryo-star HM 560 cryostat (Lecia), which was maintained at -20˚C. Sections were then left 

to air-dry at room temperature for one hour and then stored at -80˚C until required for use. After 

use, sections were stored at -20˚C. 

Formalin-fixed paraffin-embedded (FFPE) renal biopsies were sectioned at 4µm, 10µm and 15µm 

onto glass slides using a microtome and left to settle for 24 hours at 37˚C before being stored at 4˚C.  

3.4.2 Multiplex immunofluorescence for quantification of mitochondrial protein level 

in human skeletal muscle  

Multiplex immunofluorescence using antibodies for subunits of mitochondrial OXPHOS complexes 

and a mitochondrial outer membrane protein was carried out on frozen muscle sections (10μm) in 

order to quantify the levels of ETC complexes I and IV as well as mitochondrial mass in individual 

myofibres. Complex I was detected by an antibody against the NDUFB8 subunit and complex IV was 

detected with an antibody against MTCO1. An antibody against Porin (VDAC1) was used to quantify 

mitochondrial mass and the basement membrane glycoprotein laminin was used to label myofibril 

boundaries (Table 3.6). Firstly, the sections were air-dried at room temperature (RT) before fixation 

in cold 4% paraformaldehyde (PFA) (Sigma) in phosphate buffered saline (PBS) (ChemCruz) for 3 

minutes. After washes for 3 x 5 minutes in tris-buffered saline with Tween 20 (TBST), the antigenic 

sites were exposed through a graded methanol series (Fisher Chemical): 10 minutes 70% methanol, 

10 minutes 95% methanol, 20 minutes 100% methanol, 10 minutes 95% methanol, 10 minutes 75% 

methanol, then washed 3 x 5 minutes in TBST. Sections were then incubated in 10% normal goat 

serum (NGS) to prevent non-specific protein binding before another 3 x 5 minute wash cycle. Next, 

endogenous biotin was blocked by incubating the sections for 15 minutes in avidin, followed by 2 x 5 

minute washes, then 15 minutes in biotin from the Avidin/Biotin blocking kit (Vector Laboratories). 

Sections were then incubated in the primary antibody cocktail diluted in 10% NGS overnight in a 4°C 

humidified chamber (Table 3.6). Initially on day 2 the sections were washed in TBST for 3 x 5 minute 

wash cycles before being incubated in the secondary antibody cocktail for two hours in a humidified 

chamber at 4°C. All secondary antibodies were diluted in 10% NGS. Sections were then incubated in 

streptavidin-conjugated Alexa 647 (Thermo Fisher Scientific) at 1:100 diluted in 10% NGS for two 

hours in at 4°C in a dark humidified chamber (Table 3.7). After a final round of 3 x 5 minute TBST 
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washes, the sections were mounted in Prolong Gold Antifade Mountant (Thermo Fisher Scientific) 

and stored at -20°C until required for imaging. 

3.4.3 Multiplex immunofluorescence for quantification of mitochondrial protein level 

in human renal tissue  

A novel multiplex immunofluorescence assay was used to quantify levels of complexes I, III, IV and V 

of the ETC as well as mitochondrial mass in proximal tubules.  

Serial 4um renal sections were cut and allowed to air dry for an hour at RT, deparaffinised in 2 

changes of Histoclear then taken to water for 5 minutes. Next, the sections were rehydrated in a 

graded ethanol (EtOH) series (10 minutes 100% EtOH, 5 minutes 95% EtOH, 5 minutes 70% EtOH) 

then taken to water for 5 minutes. Antigen retrieval of the sections was performed with 1mM EDTA 

pH8.0 buffer for 40 minutes. Sections were incubated in 10% NGS for 1 hour to block endogenous 

protein activity and then covered in the primary antibody cocktail (see Table 3.6) overnight at 4°C. 

Following washes in TBST, sections were incubated in a secondary antibody cocktail for 2 hours at RT 

(Table 3.7). Sections were then washed again in TBST, and for the CI and CIV assay, were incubated 

in the tertiary antibody cocktail for 2 hours at room temperature then washed in TBST. All sections 

were then subjected to incubation in 0.1% Sudan Black B (BDH) for 25 minutes in order to minimise 

autofluorescence, then washed in deionised water (dH2O) for 10 minutes. Sections were then 

mounted in ProLong Gold Antifade Mountant (Thermo Fisher Scientific) and stored at -20°C until 

imaged. Separate panels were used to analyse mitochondrial OXPHOS complexes I/IV (CI, CIV) and 

complexes III/V (CIII, CV) as described in tables below. 
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Assay Antibody Target Host Isotype Manufacturer Product # Dilution 

CI + CIV NDUFB8 

Mitochondrial 

complex I 

subunit 

Mouse IgG1 Abcam ab110242 1:100 

CI + CIV MTCO1 

Mitochondrial 

complex IV 

subunit 

Mouse IgG2a Abcam ab14705 1:200 

CIII + CV UQCRFS1 

Mitochondrial 

complex III 

subunit 

Mouse IgG2b Abcam ab14746 1:200 

CIII + CV ATPB 

Mitochondrial 

complex V 

subunit 

Mouse IgG1 Abcam ab14730 1:200 

Both VDAC1 

Mitochondrial 

mass marker - 

Porin 

Mouse IgG2b Abcam ab14734 1:200 

Both 

(Skeletal 

muscle) 

Laminin 
Myofibre 

boundary 
Rabbit IgG Sigma 

Sigma 

L9393 
1:50 

Table 3.6 – Antibodies used in the primary antibody cocktail for multiplex immunofluorescence staining of human 
skeletal muscle (CI/CIV assay) and human renal tissue (CI/CIV and CIII/CV assays). 
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Assay Antibody Conjugate Target Host Isotype Specificity Manufacturer Dilution 

CI + CIV 
Anti-IgG1-

biotin 
- NDUFB8 Goat IgG1 Mouse 

Jackson 

ImmunoResearch 

Laboratories 

115-065-205 

1:100 

CI + CIV 
AlexaFluor 

647 
Streptavidin Biotin Goat IgG1 Mouse 

ThermoFisher 

Scientific 

S-32357 

1:200 

CI + CIV 
AlexaFluor 

488 
- MTCO1 Goat IgG2a Mouse 

ThermoFisher 

Scientific 

A-21131 

1:200 

CIII + CV 
AlexaFluor 

647 
- UQCRFS1 Goat IgG2b Mouse 

ThermoFisher 

Scientific 

A-21121 

1:200 

CIII + CV 
AlexaFluor 

488 
- ATPB Goat IgG1 Mouse 

ThermoFisher 

Scientific 

A-21242 

1:200 

Both 
AlexaFluor 

546 
- VDAC1 Goat IgG2b Mouse 

ThermoFisher 

Scientific 

A-21143 

1:200 

Both 

(Skeletal 

muscle) 

AlexaFluor 

405 
- Laminin Goat IgG Rabbit 

ThermoFisher 

Scientific 

A-31556 

1:100 

Table 3.7 – Antibodies used in the secondary and tertiary antibody cocktail for multiplex immunofluorescence  staining 
of human skeletal muscle (CI/CIV assay) and human renal tissue (CI/CIV and CIII/CV assays). 
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3.4.4 Image acquisition and determination of ETC complex activity in skeletal muscle 

Fluorescent images were acquired using a Zeiss Axio Imager M1 and Zen 2011 (blue edition) 

software with a Monochrome Digital Camera (AxioCam MRm) at 20x magnification. Filter cubes for 

Alexa Fluor dyes at wavelengths 405nm, 488nm, 546nm and 647nm were used for laminin, MTCO1, 

VDAC1 and NDUFB8 respectively. Exposure time was set for the four channels and maintained 

between cases in order to avoid pixel saturation. Images were tiled and then processed at 16-bit czi 

files and exported as Tagged-Image File Format (TIFF) files. The tiled images were then processed by 

Zen 2011 (blue edition) software using the stitching function.  

Stitched images were analysed with the Quadruple Immunofluorescence Analyser developed in our 

lab (Rocha et al., 2015). Briefly, the raw intensity values for MTCO1, VDAC1 and NDUFB8 in 

individual myofibres were corrected for background signal by subtracting the mean optical density 

(OD) from the no primary control (NPC) for each fluorophore, respectively.   

An in-house R Shiny script software was then used to generate z-scores indicating how many 

standard deviations a fibre deviated from the control population, and was initially used to assess 

mitochondrial mass in the patient myofibres. Individual myofibres were classified into mitochondrial 

mass groups depending on their z-score: ‘very low’ (VDAC1_z < -3); ‘low’ (-3 < VDAC1_z < -2); 

‘normal’ (-2 < VDAC1_z < +2); ‘high’ (+2 < VDAC1_z < +3) and ‘very high’ (3 < VDAC1_z). Individual 

myofibres were then classified into groups based on their z-scores for MTCO1 and NDUFB8: 

‘positive’ (z > -3); ‘intermediate positive (+)’ (-3 > z > -4.5); ‘intermediate negative (-)’ (-4.5 > z > -6) 

and ‘deficient’ (z < -6).  

3.4.5 Image acquisition and determination of ETC complex activity in renal tissue  

Fluorescent images were acquired using a Zeiss Axio Imager M1 and Zen 2011 (blue edition) 

software with a Monochrome Digital Camera (AxioCam MRm) at 20x magnification. Filter cubes for 

Alexa Fluor dyes at wavelengths 405nm, 488nm, 546nm and 647nm were used for DAPI, MTCO1 or 

ATPB, VDAC1 and NDUFB8 or UQCRSF1, respectively. Exposure time was established from a case 

with the putatively highest signalling intensity for the four channels and maintained between cases. 

As the renal tissue from HIV+ subjects was taken by needle biopsy, the sections were small enough 

to tile, whereas the open biopsy sections taken from HIV- subjects were much larger and so were 

imaged as snaps. 40 PCTs were randomly manually identified per subject, except for patient 6 where 

a maximum of 23 PCTs were present. Each PCT was marked in order to prevent multiple imaging of 

the same PCT. 
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Stitched images were analysed with the Quadruple Immunofluorescence Analyser developed in the 

Wellcome Centre for Mitochondrial Research (Rocha et al., 2015). Briefly, the raw intensity values 

for MTCO1, ATPB, VDAC1, UQCRFS1 and NDUFB8 in individual PCTs was corrected for background 

signal by subtracting the mean OD from the NPC for each fluorophore, respectively.   

An in-house R Shiny based web application was then used to generate z-scores indicating how many 

standard deviations a PCT deviated from the control population. This was initially used to assess 

mitochondrial mass in the patient PCTs. Individual PCTs were then classified into mitochondrial mass 

groups depending on their z-score: ‘very low’ (VDAC1_z < -3); ‘low’ (-3 < VDAC1_z < -2); ‘normal’ (-2 

< VDAC1_z < +2); ‘high’ (+2 < VDAC1_z < +3) and ‘very high’ (3 < VDAC1_z). Individual PCTs were 

then classified into groups based on their z-scores for MTCO1, NDUFB8, UQCRFS1 and ATPB. 

Respective z-scores were calculated after normalisation to VDAC1 staining intensity: ‘positive’ (z > -

3); ‘intermediate positive (+)’ (-3 > z > -4.5); ‘intermediate negative (-)’ (-4.5 > z > -6) and ‘deficient’ (z 

< -6). Subsequently, the ‘deficient’, ‘intermediate -‘ and ‘intermediate +’ groups were pooled 

together to create the ‘deficient’ group (i.e. z < -3 = deficient). 

3.4.6 Duplex fluorescence histochemistry for the quantification of intramyocellular 

lipid accumulation 

Fluorescence histochemistry was carried out on 10μm frozen transverse muscle sections in order to 

detect and quantify intramyocellular lipid droplets in skeletal muscle fibres. BODIPY (493/503) 

(ThermoFisher) is a lipid-soluble fluorescent dye used to detect and measure intramyocellular lipid 

droplets, and was diluted in DMSO to create a stock at a concentration of 1mg/mL. Cryosections 

were air-dried at RT for 30 minutes and then fixed by incubation in 3.7% formaldehyde (ChemCruz) 

in PBS for 30 minutes at RT. Sections underwent a wash cycle of PBS for 5 minutes, followed by 5 

minutes in 0.25% Triton x-100 (ThermoFisher) diluted in PBS. Next, the sections were incubated in 

IgG Goat-anti-rabbit Laminin antibody (Sigma) diluted at 1:100 in 0.05% Tween 20/PBS, for 60 

minutes in a humidified chamber. Sections then underwent another wash cycle followed by 

incubation in the secondary cocktail (Table 3.8) for 90 minutes in a dark humidified chamber at RT. 

Following a final wash cycle sections were mounted in Molwiol 4-88 (Sigma) and stored at -20˚C.  
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Primary 

antibody 

Isotype Product # Dilution Secondary 

antibody/dye 

Isotype Product #  Dilution 

Laminin IgG Sigma L9393 1:100 
AlexaFluor 

405 
IgG 

ThermoFisher 

Scientific 

A-31556 

1:200 

- - - - 
BODIPY 

(493/503) 
- 

ThermoFisher 

Scientific 

D3822 

1:100 

Table 3.8 – Antibodies and dyes used in the duplex fluorescence histochemistry assay for the quantification of 
intramyocellular lipid accumulation. 

 

3.4.7 Image acquisition and analysis for quantification of intramyocellular lipid 

accumulation 

Fluorescent images were acquired using a Zeiss Axio Imager M1 and Zen 2011 (blue edition) 

software with a Monochrome Digital Camera (AxioCam MRm) at 20x magnification. Filter cubes at 

wavelengths 405nm and 488nm were used for laminin and BODIPY (493/503) respectively. Exposure 

time for the two channels was set and maintained between cases in order to remove pixel 

saturation. Images were then tiled and processed at 16-bit czi files and exported as TIFF files and 

then processed by Zen 2011 (blue edition) software using the stitch function.  

Stitched images were then analysed on the Zen 2011 (blue edition) software. Briefly, each individual 

fibre was qualitatively classified into one of four categories depending on the extent of BODIPY 

staining coverage and staining intensity – BODIPY+++; BODIPY++; BODIPY+ and BODIPY-.  

3.4.8 Duplex immunofluorescence for quantification of Pax7+ satellite cells  

Duplex immunofluorescence was carried out on 10µm transverse muscle cryosections in order to 

quantify the frequency of quiescent Pax7+ muscle satellite cells. Cryosections were air-dried for 1 

hour at RT before fixation in cold 4% PFA for 4 minutes. Sections were then washed in a cycle of 

three, 5 minute washes in PBST before endogenous protein was blocked by incubation in 5% 

NGS/0.2% Triton-x100 diluted in PBST for 1 hour at RT. Sections were then washed for 5 minutes in 

PBST before the Pax7 primary antibody (DSHB) was applied and sections were incubated overnight 

at 4˚C in a dark humidified chamber (Table 3.9). After incubation with Pax7 primary antibody, the 

sections went through a washing cycle before the secondary antibody cocktail (diluted in 10% NGS) 

was applied for 2 hours at RT in a humidified chamber. Sections were then washed again in PBST and 
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incubated with Hoerst for 15 minutes in a dark humidified chamber in order to counter stain for 

nuclei. Finally, the sections went through another wash cycle, mounted using ProLong Gold Antifade 

Mountant (Thermo Fisher Scientific) and then stored at -20˚C. 

 

Primary 

antibody 
Isotype Product # Concentration 

Secondary 

antibody 
Isotype Product # Dilution 

Pax7 IgG1 DSHB  8.5µg/ml 
AlexaFluor 

488 
IgG1 

ThermoFisher 

Scientific 

A-21242 

1:200 

- - - - Hoerst  - - 1:1200 

Table 3.9 – Antibodies used in the duplex immunofluorescence assay to quantify Pax7+ satellite cells. 

 

3.4.9 Image acquisition and analysis for quantification of Pax7+ satellite cells 

Fluorescent images were acquired using a Zeiss Axio Imager M1 and Zen 2011 (blue edition) 

software with a Monochrome Digital Camera (AxioCam MRm) at 20x magnification. Filter cubes at 

wavelengths 405nm and 488nm were used for Hoerst and Pax7, respectively. Exposure time for the 

two channels was set and maintained between cases in order to remove pixel saturation. Images 

were then tiled and processed as 16-bit czi files and exported as TIFF files and then processed by Zen 

2011 (blue edition) software using the stitch function.  

Stitched images were then analysed on Zen 2011 (blue edition) software. Here, a Pax7+ satellite cell 

was confirmed by co-localised staining of Pax7 and nuclei identified Hoerst. The number of Pax7+ 

satellite cells was then quantified and expressed as the proportion of Pax7+ satellite cells per 100 

fibres. These values were then log10 transformed in order to normalise the data sets.  

3.4.10 Multiplex immunofluorescence for fibre type quantification  

A multiplex immunofluorescence assay to quantify the proportions of fibre types I, IIa and IIx, as well 

as their cross-sectional area, was performed on patients biopsies. 10µm transverse cryosections 

were removed from -80˚C and air-dried for 1 hour at room temperature before fixation with cold 4% 

PFA for 3 minutes. Sections underwent a 3 x 5 minute washing cycle in TBST and then incubated in 

10% NGS for 1 hour at room temperature in order to block non-specific protein binding. Following 

another cycle of washes, the sections were incubated overnight at 4˚C in the primary antibody 

cocktail (Table 3.10), diluted in 5% NGS. Following another cycle of washes the sections were 
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incubated in the secondary antibody cocktail (Table 3.10) for 90 minutes at RT in a dark humidified 

chamber. Finally, sections were subjected to a washing cycle and mounted in ProLong Gold Antifade 

Mountant (Thermo Fisher Scientific) and stored at -20˚C. 

 

Primary 

antibody 
Target Dilution Product code 

Secondary 

antibody 
Dilution 

Product 

code 

BA-F8 Type I 1:100 DSHB 10572253 Anti-IgG2b-488 1:200 Invitrogen 

A31141  

SC-71 Type IIa 1:100 DSHB 2147165 Anti-IgG1-546 1:200 Invitrogen 

A21123 

6H1 Type IIx 1:15 DSHB 2314830 Anti-IgM-647 1:200 Invitrogen 

A21238 

Laminin Myofibre 

boundary 

1:100 Sigma L9393 Anti-rabbit-405 1:200 Invitrogen 

A31556  

Table 3.10 – Antibodies used in the primary and secondary cocktails for the detection and quantification of fibre types I, 
IIa and IIx. 

 

3.4.11 Image acquisition and analysis of fibre type quantification  

Fluorescent images were acquired using a Zeiss Axio Imager M1 and Zen 2011 (blue edition) 

software with a Monochrome Digital Camera (AxioCam MRm) at 20x magnification. Filter cubes at 

wavelengths 405nm, 488nm, 546nm and 647nm were used for laminin, BE-F8, SC-71 and 6H1 

antibodies, respectively. Exposure time for the four channels was set and maintained between cases 

in order to remove pixel saturation. Images were then tiled and processed as 16-bit czi files and 

exported as TIFF files, then processed by Zen 2011 (blue edition) software using the stitch function.  

Stitched images were then analysed on the in-house R script Quadruple Immunofluorescence 

Analyser developed in our lab (Rocha et al., 2015). Briefly, each individual fibre was qualitatively 

characterised as one of the three fibre types (I, IIa and IIx) based on staining pattern. In addition, the 

cross-sectional area (CSA) (µm2) of each fibre was quantified using the in-house drawing tool.   

3.4.12 Preparation of slides for lipofuscin quantification, and image acquisition and 

analysis 

In order to quantify the frequency of, and area (µm2) covered by lipofuscin granules, 10µm 

transverse cryo-sections were removed from -80°C storage and air-dried for 1 hour. Sections were 

then immediately cover-slipped with Prolong gold and stored at -20°C until imaged. 
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Fluorescent images were acquired using a Zeiss Axio Imager M1 and Zen 2011 (blue edition) 

software with a Monochrome Digital Camera (AxioCam MRm) at 20x magnification. Filter cubes at 

wavelengths 546nm and 647nm were used for the identification of autofluorescent lipofuscin 

granules. Exposure time for the four channels was set and maintained between cases in order to 

remove pixel saturation. Images were then tiled and processed as 16-bit czi files and exported as 

TIFF files and then processed by Zen 2011 (blue edition) software using the stitch function.  

Stitched images were then analysed on Columbus Image Data Storage and Analysis System software. 

Briefly, thresholds for the positive identification of lipofuscin granules were set for both 546nm and 

647nm channels, and lipofuscin granules were confirmed by co-localisation in both respective 

channels. Lipofuscin is identifiable by its auto fluorescence across multiple wavelengths. The 

frequency, as well as CSA (µm2) covered by co-localised lipofuscin granules was then automatically 

quantified.   
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3.5 Histochemistry 

3.5.1 Haematoxylin & Eosin histochemistry staining and imaging for renal tissue 

FFPE sections (4µm) were dewaxed at 60°C for 1 hour and then immediately deparaffinised in two 

changes of Histoclear. Next, sections were dehydrated in a graded ethanol series (10 minutes 100% 

EtOH, 5 minutes 95% EtOH, 5 minutes 70% EtOH) before being taken to water for 10 minutes. 

Sections were then stained with haematoxylin for 10 minutes then rinsed clear in dH2O followed by 

staining with Scott’s tap water for one minute in order to blue the nuclei. Sections were then stained 

with Eosin for one minute for cytoplasmic staining. Finally, sections were rinsed clear in dH2O then 

rehydrated through a graded ethanol series (10 dips 70% EtOH, 10 dips 95% EtOH, 20 dips 100% 

EtOH) followed by two changes of 20 dips in Histoclear, then mounted in DPX. Sections were stored 

at RT until imaged. 

For imaging, sections were imaged using Zeiss Axio Scope A1 (brightfield) at 10x magnification. 

Sections were tiled and then stitched using the ’stitch’ function in Zeiss Zen blue edition to acquire 

an image of the full section. 

3.5.2 Haematoxylin & Eosin histochemistry staining and imaging for skeletal muscle 

tissue 

Haematoxylin & Eosin histochemistry was undertaken in order to identify and quantify the 

proportions of degenerated and regenerated fibres. Here, 10µm cryosections were removed from -

80˚C and air-dried for 1 hour at room temperature. Sections were then initially fixed with cold 4% 

PFA for 3 minutes and before being rinsed clear in dH2O. Next, sections were stained with 

Haematoxylin for 10 minutes in order to stain nuclei and then rinsed clear in dH2O. Next, sections 

were washed in Scott’s tap water for 1 minute to blue the nuclei and then rinsed clear in dH2O. 

Sections were then stained with Eosin for 1 minute in order to stain the cytoplasm. Finally, sections 

were rinsed clear in dH2O then rehydrated through an ethanol gradient (10 dips 70% EtOH, 10 dips 

95% EtOH, 20 dips 100% EtOH) followed by 2 changes of 20 dips in Histoclear and mounted in DPX. 

Sections were stored at RT until imaged. 

3.5.3 Masson’s trichrome histochemistry for skeletal muscle fibrosis  

Masson’s trichrome histochemistry was undertaken in order to quantify skeletal muscle fibrosis. 

10µm cryosections were removed from -80˚C and air-dried for 1 hour at room temperature. Sections 

were then initially fixed with cold 4% PFA for 3 minutes and then further fixed in Bouin’s Fluid 

(Sigma), heated to 60˚C for 30 minutes, before being rinsed clear in dH2O. Next, sections were 
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stained with Weigert’s Iron Haematoxylin (Abcam) for 5 minutes in order to stain nuclei and then 

rinsed clear in dH2O.  Next, sections were stained for 15 minutes in acid fuscin (Abcam) in order to 

stain cytoplasm and then differentiated in phoshotunsic acid solution (Abcam) for 10 minutes 

following a rinse in dH2O. Sections were then rinsed and incubated in alanine blue (Abcam) for 7 

minutes in order to stain collagenous tissue, before being rinsed clear in dH2O and subsequently 

differentiated in acetic acid (Abcam) for 3 minutes. Finally, sections were rehydrated through an 

ethanol gradient (10 dips 70% EtOH, 10 dips 95% EtOH, 20 dips 100% EtOH) followed by 2 changes of 

20 dips in Histoclear and mounted in DPX. Sections were stored at RT until imaged. 

3.5.4 Succinate dehydrogenase histochemistry  

Tissue was subjected to succinate dehydrogenase histochemistry in order to prepare tissue for laser 

capture microdissection. 15µm serial skeletal muscle cryo-sections were removed from -80°C and 

left to air dry for one hour. Sections were then rinsed in 1M PBS whilst the succinate dehydrogenase 

(SDH) reaction medium was prepared: 100µl sodium succinate, 100µl PBS, 10µl sodium azide and 

800µl NBT. SDH reaction medium reagents were defrosted in at 55°C. Once prepared, sections were 

covered with SDH reaction medium and incubated for 40 minutes at 37°C. Sections were then 

washed in a cycle of three, 5 minute rinses with 1M PBS then dehydrated in an ethanol gradient of 

10 minutes in 70%, then 90% then two 10 minute incubations in 100%, followed by two changes in 

Histoclear and stored at 4°C.  

3.5.5 Brightfield microscopy 

Brightfield images were acquired using a Zeiss Axio Imager M1 and Zen 2011 (blue edition) software 

with a chromatic digital camera (AxioCam MRm) at 10x magnification. Exposure time was set and 

maintained between cases in order to avoid pixel saturation. Images were processed as 16-bit czi 

files and exported as TIFF files. The tiled images were then processed by Zen 2011 (blue edition) 

software using the stitching function.  
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3.6 Laser capture microdissection of single cells 

In order to isolate tissue for subsequent quantitative PCR analysis, laser capture microdissection was 

performed, followed by amplification of isolated tissue lysate.    

3.6.1 Single cell lysis buffer and lysate amplification  

Lysis buffer (0.5M Tris-HCl, 0.5% Tween 20 and 1% Proteinase K) was made fresh into autoclaved 

1.5ml Eppendorf tubes and kept on ice. 

Cells were captured into 15µl of lysis buffer and kept on ice. Immediately before amplification, cells 

were centrifuged on a short cycle and then amplified at 55˚C for 16 hours followed by a 10 minute 

incubation at 95˚C. 

3.6.2 Laser capture microdissection 

Cells were isolated from histochemically stained tissue sections by laser capture microdissection 

using a Ziess Laser Capture Microdissection microscope with Palm Robo v4.6 using either the 

Closecut + AutoLPC function for glass slides and RoboLPC for membrane slides (Zeiss).  

15µl of lysis buffer was added into the cap of two 0.2ml Eppendorf tubes, which were then inserted 

into the TubeCollector prior to cell isolation. 
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3.7 Quantitative PCR for the detection of mtDNA mutations 

In order to detect and quantify mtDNA mutations in human homogenate tissue, a qualitative real-

time PCR (qPCR) assay was utilised. The mitochondrially encoded NADH-dehydrogenase core subunit 

1 gene (MT-ND1, Genbank accession ID: NC_012920.1) and NADH-dehydrogenase core subunit 4 

gene(MT-ND4, Genebank accession ID: NC_012920.1) were used respectively as mtDNA targets.  

3.7.1 Preparation of PCR reagents 

Stock probes (IDT) and primers to be used in qPCR assays were resuspended using Ambion nuclease-

free water (ThermoFischer Scientific) under a UV sterilizing PCR cabinet (UVP) to the working 

concentration of 10µM and the stored at -20˚C. 

3.7.2 Generation of qPCR standard templates  

Quantitative standards of qPCR assays were prepared by PCR generated templates.  

MT-ND1 and MT-ND4 standards were generated using a control DNA sample. Primer sequences are 

described in Table 3.11.  

PCR reactions were performed in a mastermix containing:- 1X MyTaq Reaction Buffer, one unit of 

MyTaq HS DNA Polymerase (Bioline), 400nM of each respective forward and reverse primer and 

dH2O. Approximately 30ng of DNA was loaded into each reaction well of 8-strip PCR tubes (StarLab) 

and ran on an Applied Biosystems Veriti 96 well thermal cycler (ThermoFischer Scientific). Run 

conditions were: initial denaturation at 95˚C for one minute followed by 30 cycles of denaturation at 

95˚C for 15 seconds and finally annealing at 61˚C for 15 seconds and extension at 72˚C for 10 

seconds.  

 

Gene 
Amplicon 

size (BP) 
Forward primer sequence (5’-3’) Reverse primer sequence (5’-3’) 

Annealing 

temp 

MT-

ND1 
1040 CAGCCGCTATTAAAGGTTCG AGAGTGCGTCATATGTTGTTX 61 

MT-

ND4 
1072 ATCGCTCACACCTCATATCC TAGGTCTGTTTGTCGTAGGC 61 

Table 3.11 – Primers used to generate the standard templates for the respective genes. 
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3.7.3 Agarose gel electrophoresis  

Amplified template PCR products were pooled together and mixed with Orange G loading buffer 

(50% glycerol, Orange G powder (Sigma) and 50% water) and loaded into a 1% agarose gel (1g 

agarose (Bioline) in 100ml 1X TAE buffer and 0.4mg/µl UltraPure ethidium bromide (Invitrogen)). As 

a ladder, I used a GeneRuler 1kb Plus DNA Ladder (ThermoFischer Scientific) as well as a negative 

PCR product, both mixed with Orange G dye. Agarose gels were electrophoresed at 75V for one hour 

in 1X TAE buffer. 

3.7.4 Purification and quantification of standards  

Agarose gels were imaged with the UVP GelDoc-It imaging system (UVP) and the gel-extracted 

fragment was extracted with a QIAquick gel extraction kit (Qiagen). Concentrations of the templates 

were measured using a Nanodrop ND-1000 Spectrophotometer and template DNA copy number 

concentrations were calculated using Equation 3.1. Template DNA was then multiplexed together to 

obtain a single copy number of 1010ng/µl, then diluted by a factor of 10 to achieve a starting copy 

number stock of 109ng/µl. Stock template were then stored at -20˚C. 

𝐶𝑜𝑝𝑦 𝑛𝑢𝑚𝑏𝑒𝑟 = [
𝐶

(𝐿 𝑥 2 𝑥 300)
] 𝑥 𝐴 

Equation 3.1 – Formula used to calculate the starting copy number stocks (copies/µl). C is the DNA concentration in 
nanolitres, L is the amplicon length in base pairs and A is Avogadro’s constant (6.023 x 1023). 

 

3.7.5 Quantitative PCR for the detection and quantification of large-scale mtDNA 

mutations 

All qPCR reaction plates were set up in a UV hood to minimise DNA contamination. qPCR was 

performed on a CFX96 Touch Real-Time PCR Detection System (Bio-Rad). mtDNA from the single-cell 

lysate was quantified using a probe-based multiplex assay targeting mitochondrial MT-ND1 and MT-

ND4 genes. MT-ND4 is in the major arc of the mtDNA genome and is usually lost through large-scale 

mtDNA mutations. In contrast, MT-ND1 lies on the minor arc as is rarely deleted. Primers for both 

MT-ND1 and MT-ND4 are described in Table 3.12. 2μl of DNA lysate from individual muscle fibers 

were amplified separately in triplicate using the ND1/ND4 combination, mixed with 18μl mastermix: 

10μl iTaq (Bio-Rad, catalog #172-5134); 75nM ND1 forward primer; 75nM ND1 reverse primer; 

75nM ND4 forward primer; 75nM ND4 reverse primer; 200nM HEX probe; 200nM Cy5 probe; 5.8μl 

deionised water. Amplification conditions were: three minutes at 95°C (for activation of iTaq), then 
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39 cycles of 10 seconds at 95°C followed by one minute at 62°C (for probe/primer hybridization and 

DNA synthesis). We screened for mtDNA deletions in individual myofibres by determining the ratio 

of MT-ND1 to MT-ND4 relative to a calibrator sample (δδCt), as previously described (He et al., 2002; 

Bury et al., 2017). We screened for mtDNA depletion in individual cells by considering the calculated 

starting quantity (SQ) of mtDNA relative to the 5th centile of SQ in CI-normal cells from the same 

individuals.  

 

Gene 
Amplicon 

size (BP) 
Forward primer sequence (5’-3’) Reverse primer sequence (5’-3’) Fluorophore 

MT-

ND1 
111 ACGCCATAAAACTCTTCACCAAAG GGGTTCATAGTAGAAGAGCGATGG HEX 

MT-

ND4 
107 ACGCCATAAAACTCTTCACCAAAG GGGTTCATAGTAGAAGAGCGATGG Cy5 

Table 3.12 – Primers for the qPCR amplification of mitochondrial and nuclear genes used in the large-scale mtDNA 
deletion assay. All primers were from Integrated DNA Technologies. 
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3.8 Phosphorus magnetic resonance spectroscopy (31P-MRS) 

31P-MRS analysis was performed by Dr Brendan Payne (Newcastle University) in a previous study 

(Payne et al., 2014) in order to quantify skeletal muscle oxidative potential in vivo in response to 

short bouts of exercise. Briefly, MR studies were performed on calf muscle using a 3T Intera Achieva 

magnet (Philips). 31P-MRS measurements were obtained using a calf coil with a voxel within soleus 

muscle throughout a cycle of: a 1 minute baseline resting period; a 3 minute period of calf flexion 

exercise at 25% of maximal voluntary contractile force; and a 6 minute recovery period (Trenall et 

al., 2006, Hollingworth et al., 2008), which was designed to keep metabolism within the aerobic 

phase. Analysis was performed in jMRUI v3.0 (Java Magnetic Resonance User Interface) using 

AMARES with appropriate prior knowledge parameters for skeletal muscle (Naressi et al., 2001) and 

metabolite levels were calculated as previously described (Hollingworth et al., 2008). 

Phosphorylation potential was calculated from the concentration of ATP, buffered at 8.2 mM, and 

the empirically calculated concentrations of adenosine diphosphate (ADP) and inorganic phosphate 

(Pi) (Equation 3.2) (Harris et al., 1974). 

 

𝑃ℎ𝑜𝑠𝑝𝑜𝑟𝑦𝑙𝑎𝑡𝑖𝑜𝑛 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 =
[𝐴𝑇𝑃]

[𝐴𝐷𝑃 𝑥 𝑃𝑖]
 

Equation 3.2 – Formula used to calculate the phosphorylation potential of calm muscle from 31P-MRS analysis. 
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3.9 Statistical analyses 

Statistical analysis was performed in Prism v5.04, IBM SPSS Statistics v23 and Microsoft Excel 2016. 

Graphs were produced in Prism v5.04.  

The chosen sample size for the MAGMA study was well-powered to detect a mean difference of 0.33 

log10 between groups (α 0.05, 1-β 0.8) based on past experience of SD for this measure. The sample 

size was also chosen in order to detect a moderate correlation (r = 0.5) (α 0.05, 1-β 0.8) between 

treatment parameters and mitochondrial dysfunction (Lachin, 1981). 

Normality was determined by Shapiro-Wilk tests. Unpaired t tests were performed to assess 

differences in means between parametric data from two experimental groups. Mann-Whitney tests 

assessed differences between non-parametric data from two experimental groups. One-way ANOVA 

was used to determine differences between the means of three or more groups, with Tukey’s 

multiple comparison post hoc test used to determine differences between respective individual 

groups. Fisher’s exact test or chi-squared tests determined differences between nominal data. 

Linear regression analysis was performed in order to determine the associations between factors. 

Pearson’s correlation was performed on parametric data, while Spearman’s correlation was 

performed on non-parametric data sets. Multivariate linear regression was used to determine 

associations between factors after adjustment for other variables. Of note, unstandardised 

regression coefficients and their significance were reported, as well as the fit of the models and how 

much variance (adjusted r2) they accounted for. Multivariate linear regression models and their 

components are described in more detail in the relevant sections.  

Statistical significance was set at p ≤ 0.05. 

Finally, description of the specific tests used to handle specific data sets relevant to the respective 

experiments are described in the methods section of each respective chapter. 
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Chapter 4 – Skeletal muscle mitochondrial dysfunction in 

PLWH in the contemporary ART setting 

4.1 Introduction 

As discussed in Section 1.7, whilst the advent of antiretroviral therapy (ART) has been successful at 

suppressing HIV viral loads and restoring immune function in the majority of treated PLWH, several 

clinical reports and cohort studies have demonstrated the presence of ART-related mitochondrial 

toxicities in different tissues (Dalakas et al., 1990; Dalakas et al., 2001; Arnaudo et al., 1991; Lewis et 

al., 2003; Kakuda et al., 1999).  

The first of these studies demonstrated the presence of myopathy in PLWH treated with the 

nucleotide reverse transcriptase inhibitor (NRTI) zidovudine (AZT), in a monotherapy. This toxicity 

appeared to be underpinned by mtDNA depletion caused by the inhibition of the mitochondrial 

polymerase - PolG (Dalakas et al., 1990). In the following years, numerous reports surfaced of NRTI-

treated PLWH presenting with various other toxicities in several tissues, all of which were linked to 

mechanisms involving PolG, leading to mitochondrial dysfunction (Brinkman et al., 1999; Lim & 

Copeland, 2001; Dalakas et al., 2001; Arnaudo et al., 1991). As such, several of the older NRTIs 

associated with these toxicities were either discontinued or phased out of HIV treatments, and 

replaced with newer NRTIs that had a safer profile and lower binding affinity to PolG (Venter et al., 

2019; Venhoff et al., 2007).  

Aside from the PolG hypothesis, several other proposed mechanisms underpinning ART-induced 

mitochondrial dysfunction have been hypothesised (Selvaraj et al., 2014; Apostolova et al., 2011), 

including depletion of the endogenous dRN and RN pools (Jordhiem & Dumonet, 2007), and 

increased oxidative stress (Cote et al., 2005; Schieber & Chandel, 2014; Apostolova et al., 2010). 

Additionally, in recent years, reports of mitochondrial toxicities have surfaced in PLWH treated with 

these newer NRTIs (Payne et al., 2014; Samuels et al., 2017; Fields et al., 2019), PLWH treated with 

protease inhibitors (PIs) (Deng et al., 2010; Apostolova et al., 2011; Domingo et al., 2014; Dragovic et 

al., 2014; Alikhani et al., 2019; Carr et al., 1999), and non-nucleoside reverse transcriptase inhibitors 

(NNRTIs) (Zaera et al., 2001). In addition, mitochondrial dysfunction has been demonstrated in tissue 

from ART-naïve PLWH (Maagaard et al., 2005).  

However, due to the fact that the vast majority of PLWH are now on one of numerous variations of 

combination ART (cART), in combination with the large heterogeneity of the HIV+ population, it has 
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become difficult to determine the exact effect certain ARVs have on mitochondrial function. In 

addition, the demonstration from our group of the presence of clonally expanded mtDNA deletions 

in PLWH who were previously treated with the older, supposedly ‘mitochondrially-toxic’ NRTIs has 

led to the questioning of whether there is a ‘legacy effect’ in HIV+ individuals who were treated with 

these ARVs (Payne et al., 2011), further complicating the understand in the field.  

As the average age of the HIV+ population is steadily increasing, in combination with the fact that 

older PLWH exhibit a higher prevalence of age-related phenotypes such as frailty (Guaraldi et al., 

2011; Piggott et al., 2016; Kooij et al., 2016), and age-related pathologies (Guaraldi et al., 2011), the 

better understanding of mitochondrial dysfunction in the contemporary ART era is vital.  

As such, by examining mitochondrial dysfunction in skeletal muscle tissue from PLWH treated with 

various ART regimens through novel techniques, I sought to better understand ART-associated 

mitochondrial function in a clinically relevant tissue in the contemporary ART era.  
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4.2 Experimental aims 

Various studies have demonstrated a ‘mitochondrially toxic’ effect of several of the early NRTIs in a 

range of tissues, including skeletal muscle (Dalakas et al., 1990; Arnaudo et al., 1991; Payne et al., 

2011). In contrast, few studies have sought to investigate whether PLWH who have only been 

exposed to newer NRTIs with a lower PolG-binding affinity develop skeletal muscle mitochondrial 

dysfunction. In addition, it is not fully understood whether previous treatment with older NRTIs 

leads to an excess of mitochondrial defects in a ‘legacy effect’. Therefore, in this study I aimed to:  

• Determine whether ART-treated PLWH have cellular defects of mitochondrial complex I and 

IV in skeletal muscle. 

• Determine the nature of mtDNA defects responsible for mitochondrial CI and CIV deficiency 

in skeletal muscle of PLWH at the single cell level. 

• Determine the proportion of myofibres showing deficiency of mitochondrial CI and CIV in 

the skeletal muscle of PLWH who have been exposed only to those NRTIs in contemporary 

usage, and to compare this with those PLWH who have also been exposed to older NRTIs. 

• Assess whether previous exposure to older NRTIs is responsible for a ‘legacy effect’, 

whereby PLWH previously treated with ‘mitochondrially-toxic’ NRTIs have an excess of 

mtDNA mutations in skeletal muscle and subsequent mitochondrial defects in individual 

myofibres.  
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4.3 Methods 

4.3.1 Patient cohort 

Skeletal muscle biopsies obtained from 67 HIV+ individuals from both the MAGMA and SMMFA 

studies were included in this study cohort, with subject clinical and HIV-related characteristics 

described fully in Table 3.1. Subjects were combined from both MAGMA and SMMFA cohorts in 

order to increase the power to detect inter- and intra-group differences. Specifically, 30 subjects 

were derived from the MAGMA study, whilst 37 were derived from the SMMFA study. 

Control skeletal muscle tissue (for calibration of the multiplex immunofluorescence assay) was 

acquired with prior informed consent from the distal part of the hamstring of people undergoing 

anterior cruciate ligament (ACL) surgery. Approval for this was given by Newcastle biobank (NAHPB 

reference: 042), as described in Section 3.2.3. 

4.3.2 Multiplex immunofluorescence for quantification of skeletal muscle 

mitochondrial complex I and IV activity and mitochondrial mass  

10µm cryosections were subjected to multiplex immunofluorescence staining for the quantification 

of mitochondrial CI and CIV activity as well as mitochondrial mass in skeletal muscle, as described in 

Section 3.4.2. 

4.3.3 Image acquisition and analysis of mitochondrial complex I and IV activity and 

mitochondrial mass  

Fluorescent images were acquired using a Zeiss Axio Imager M1 and Zen 2011 (blue edition) 

software with a Monochrome Digital Camera (AxioCam MRm) at 20x magnification, as described in 

Section 3.4.4. The ‘intermediate –’, ‘intermediate +’ groups were pulled together to create a 

‘intermediate’ group (-3 > z > -6). 

4.3.4 Succinate dehydrogenase histochemistry 

Prior to laser capture microdissection of individual myofibres, 15µm cryosections were subjected to 

succinate dehydrogenase histochemistry in order to improve visualisation of tissue, as described in 

Section 3.5.4. 
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4.3.5 Laser capture microdissection of individual myofibres  

Laser capture microdissection of tissue of interest was undertaken in order to acquire tissue for 

downstream qPCR analysis. Serial 15µm cryo-sections were cut onto membrane slides (as described 

in Section 3.4.1) from the skeletal muscle biopsies of interest and before SDH histochemistry (as 

described in Section 3.5.4 and above). CI positive, intermediate and deficient myofibres from 

patients in both the ‘contemporary’ and ‘historical’ groups were laser microdissected as described in 

Section 3.6.2 and captured into 15µm lysis buffer, as described in Section 3.6.1.  

4.3.6 Quantitative PCR for the detection and quantification of mtDNA mutations  

A duplex quantitative real-time PCR assay targeting the mitochondrial genes MT-ND1 and MT-ND4 

was used to detect and quantify deletions in the mitochondrial genome, as described in Section 

3.7.5. By assuming that MT-ND1 was not deleted through mutations I was also able to calculate 

mtDNA copy number. Details of all primers and standards used, as well as their preparation, are 

described in Section 3.7. 

4.3.7 Phosphorus magnetic resonance spectroscopy (31P-MRS) 

31P-MRS analysis was performed by Dr Brendan Payne (Newcastle University) in a previous study 

(Payne et al., 2014) in order to quantify skeletal muscle oxidative potential in vivo in response to 

short bouts of exercise, as described in Section 3.8.  

4.3.8 Statistical analyses  

Statistical tests were performed in Prism v5.04 and IBM SPSS Statistics v23. Graphs were also made 

in Prism v5.04.  

Shapiro-Wilk tests were performed in order to determine normality of data sets. The percentage of 

myofibres classified as either deficient, intermediate, or positive for both CI and CIV was quantified 

and subsequently log-transformed in order to normalise the data. The average VDAC1 z-score for 

each subject was also quantified, although not log-transformed. Differences in the proportion of 

myofibres with CI and CIV deficiency was compared between NRTI patient groups using a one-way 

ANOVA with Tukey’s multiple comparison post hoc test to compare differences between groups. In 

addition, unpaired t tests were used to determine differences in proportional CI and CIV deficiency 

between PI and NNRTI groups. Fisher’s exact test was used to determine differences between the 

prevalence of current PI and NNRTI treatment between the two ART-treated groups. Finally, chi-

squared test was performed in order to determine if there was significant differences in sex between 

the treatment groups.  
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Unadjusted linear regression analysis between CI deficiency and clinical as well as HIV-related factors 

was done using Pearson’s correlation analyses in order to assess the relationship between 

mitochondrial dysfunction in the form of CI deficiency and the respective factors. Multivariate linear 

regression analysis was also undertaken, with models including factors determined to be significant 

from univariate analysis as independent variables and CI deficiency as the dependant variable. 

Unstandardised regression coefficients and their significance were reported, as well as the fit of the 

models and how much variance (adjusted r2) they accounted for. 

Statistical significance was set at p ≤ 0.05. 

mtDNA deletions in individual myofibres were determined by the ratio of MT-ND1 to MT-ND4 

relative to a calibrator sample (δδCt method). We screened for mtDNA depletion in individual cells by 

considering the calculated starting quantity (SQ) of mtDNA relative to the 5th centile of SQ in CI-

normal cells from the same individuals.  
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4.4 Results  

4.4.1 Cohort clinical characteristics  

The full clinical characteristics of the subjects (n = 67) are described in Table 3.1 in Section 3.2.3. All 

subjects were HIV+ and the mean age of the cohort was 53.1 (range 23-85) years. 13% were female 

and 92.5% of participants were white British (Table 4.1). Subjects were derived from both the 

MAGMA and SMMFA study cohorts.  

The subjects were divided into three groups depending on the form of ART they have been exposed 

to. Subjects in the ‘naïve’ group (n = 13) had no previous exposure to any form of ART, while subjects 

in the ‘contemporary’ group (n = 29) had only been exposed to those NRTIs which are currently in 

common use in the UK (abacavir (ABC), lamivudine (3TC), emtricitabine (FTC) and tenofovir 

disoproxil fumarate (TDF)), and subjects in the ‘historical’ group (n = 25) were currently being 

treated with these contemporary ARVs, but had previous exposure to those older NRTIs which are 

generally considered as being mitochondrially-toxic (zidovudine (AZT), zalcitabine (ddC), didanosine 

(ddI) and stavudine (d4T)).  

The mean age of the naïve group was 36.8 years (range 23-53), contemporary group was 54.5 years 

(range 25-71) and historical group 60 years (45-85). As expected, patients in the historical group had 

a higher mean duration on ART compared to the contemporary group. In addition, patients in the 

historical group also had a significantly higher duration since diagnosis and duration with untreated 

HIV infection compared to the naïve and contemporary groups. The vast majority of individuals in 

the two ART treated groups had suppressed plasma HIV viral load (<200 copies/mL). In the untreated 

group, the mean HIV viral load was about 11,000 copies/mL (Table 4.1). 
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 Naïve (n = 13) Contemporary (n = 29) Historical (n = 25) P 

Age+ 38.6 (23-53) 54.5 (25-71) 60.0 (45-85) <0.0001 

Female sex^ 5 (38%) 1 (3%) 3 (12%) 0.009 

Months since 

diagnosis* 
74 (58) 142 (96) 225 (80) <0.0001 

Months on ART* 0 71 (47) 168 (57) <0.0001 

Months untreated* 74 (58) 73 (82) 57 (80) 0.72 

CD4 count (copies/µl)* 635 (431) 616 (223) 618 (213) 0.98 

Nadir CD4 (copies/µl)* 415 (228) 221 (111) 162 (112) <0.0001 

Viral load (copies/ml)* 11533 (13607) 71 (89) 37 (20) <0.0001 

Current treatment 

with PIs^ 
0 9 (31%) 7 (24%) 0.98 

Current treatment 

with NNRTIs^ 
0 14 (48%) 15 (60%) 0.42 

 

Table 4.1 – Cohort clinical and HIV-related characteristics. + = values are given as the mean (with range). * = values are 
given as the mean (± SD). ^ = nominal value (%). P values calculated by one-way ANOVA, or chi-squared for nominal values. 
Differences in the prevalence of current treatment with PIs and NNRTIs was determined by Fisher’s exact test between the 
contemporary and historical groups.  

 

 

 

 

 

 



145 
 

4.4.2 Mitochondrial respiratory chain complex I and IV dysfunction in ART-treated 

PLWH 

Previous studies using COX/SDH histochemistry have demonstrated possible persistent 

mitochondrial defects in skeletal muscle of PLWH who have been treated with older, supposedly 

mitochondrially-toxic NRTIs (Payne et al., 2011). To further investigate whether these NRTIs produce 

a legacy effect whereby skeletal muscle mitochondrial dysfunction, underpinned by clonally 

expanded mtDNA deletions, persists even after the cessation of treatment with those NRTIs, I 

subjected skeletal muscle sections (10µm) to a multiplex immunofluorescence assay (Figure 4.1a). 

As well as being more objective and quantitative than COX/SDH histochemistry, this validated assay 

has the advantage of simultaneously quantifying CI protein levels and mitochondrial mass in addition 

to CIV protein levels. 

A mean of 1229 myofibres were examined per subject. Initially, I compared the proportions of CI and 

CIV deficient myofibres between ART treatment groups. The data was skewed and so subsequently 

log-transformed in order to normalise the data. The proportion of myofibres with CI deficiency was 

significantly different between the three groups (p = 0.017, one-way ANOVA) (Figure 4.1c), with 

both the historical (p = 0.0061, Tukey’s multiple comparisons) and contemporary (p = 0.046) groups 

having a significantly higher proportion than the naïve group. Whilst there was no significant 

difference in the proportion of myofibres with CIV deficiency across the three groups (p = 0.12 one-

way ANOVA), patients in the contemporary group had a significantly higher proportion of CIV 

deficiency compared to the naïve group (p = 0.025, Tukey’s multiple comparisons) (Figure 4.1d).  

Next, I assessed mitochondrial mass by VDAC1 staining intensity in individual myofibres. Here, there 

was no significant difference in the average myofibre mitochondrial mass between the three groups 

(Figure 4.1e).  
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Figure 4.1 – Skeletal muscle mitochondrial function in various NRTI regimens. (A) Example of multiplex 
immunofluorescence for CI (NDUFB8), CIV (MTCO1), mitochondrial mass (VDAC1) and laminin in ART-naïve, contemporary 
NRTI, and historical NRTI-treated PLWH. The bright red fibre (arrow in the overlay channel) is deficient in CI and CIV but 
shows VDAC1 hyperintensity, indicating compensatory mitochondrial proliferation. Scale bar = 100µm. (B) Dot plots 
depicting the fibre z-scores for example plot of quantitative CI (x-axis) and CIV (y-axis) deficiency in a participant exposed to 
historical NRTIs. Each dot represents an individual myofibre plotted by NDUFB8 and MTCO1 z-score. Dots are coloured 
according to mitochondrial mass: cream (‘normal’), orange (‘high’) and red (‘very high’). Dotted lines indicate the cut off 
points of -1.5SD, -3SD, -4.5SD and -6SD. Each dot represents an individual fibre. (C-E) Proportional levels of (C) CI-deficient, 
and (D) CIV-deficient myofibres by ART exposure group (mean ± SEM). Each dot represents an individual subject and is 
plotted by the (log10) proportion of myofibres with the respective mitochondrial defects. (E) Mitochondrial mass (expressed 
as mean VDAC1 z-score) (mean ± SEM). Each dot represents the mean of all fibres examined in an individual subject. 
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Finally, I performed unadjusted linear regression analysis in order to determine whether CI and CIV 

skeletal muscle mitochondrial deficiency was synergistic. I found that CI deficiency was significantly 

associated with CIV deficiency when investigated in all participants (n = 67; r = 0.68; p < 0.0001, 

Pearson’s correlation) (Figure 4.2).  

As the proportion of myofibres with CI defects was higher than those with CIV defects, I focussed 

subsequent analyses on CI deficient myofibres. This finding is also significant as it is the first time 

that CI defects have been shown to be more predominant than CIV defects in skeletal muscle of 

older PLWH.  

 

 

 

Figure 4.2 – Correlation between CI and CIV skeletal muscle deficiency in PLWH. Dot plot demonstrating the significant 
positive association (r = 0.68; p < 0.0001) between the proportion of CI- and CIV-deficient myofibres in our cohort of PLWH 
(n = 67) (Pearson’s correlation and linear regression for line). Each dot represents an individual subject in either the ART 
naïve (n = 13, white), contemporary NRTI (n = 29, grey) or historical NRTI (n = 25, black) groups.  
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4.4.3 Mitochondrial function in PI or NNRTI-treated PLWH 

As previous in vitro studies have demonstrated a potential mitochondrially-toxic effect induced by 

various protease inhibitors (PIs) and non-nucleoside reverse transcriptase inhibitors (NNRTIs), I 

wanted to investigate whether there was evidence of skeletal muscle mitochondrial dysfunction in 

PLWH currently treated with ARVs from either of these classes. 

Here, there was no significant difference in the proportion of myofibres with either CI or CIV 

deficiency (unpaired t test) between PLWH who were treated with PIs (n = 16) and those who were 

treated with an ART regimen that did not include a PI (n = 38) (Figure 4.3a, b). In addition, there was 

also no significant difference in the proportion of myofibres with CI and CIV deficiency between 

PLWH who were treated with NNRTIs (n = 29) and those who were not (n = 25) (Figure 4.3d, e). 

Finally, there was no significant difference in myofibre mitochondrial mass between PI and non-PI-

treated PLWH or NNRTI and non-NNRTI-treated PLWH (Figure 4.3c, f). 

 

 

Figure 4.3 – Skeletal muscle mitochondrial dysfunction in PI and NNRTI-treated PLWH. Dot plots (mean ± SEM) showing 
proportional (A) CI, or (B) CIV deficiency, and (C) average myofibre mitochondrial mass in PLWH who were on PI treatment 
and those who were not. (D) proportional CI, (E) proportional CIV deficiency, and (F) average mitochondrial mass in NNRTI-
treated and non-NNRTI-treated PLWH. Each dot represents an individual patient.    
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4.4.4 Comparison of mitochondrial defects in PLWH quantification methods 

COX/SDH histochemistry has long been the gold standard for assessing mitochondrial dysfunction in 

skeletal muscle fibres, through quantification of the percentage of mtDNA-encoded COX deficient 

fibres. It has also been a powerful tool for assessing mitochondrial dysfunction in skeletal muscle 

from PLWH (Payne et al., 2011). Here, I wanted to assess whether the results from multiplex 

immunofluorescence (Section 3.4.2) agreed with COX/SDH histochemistry results. 

Unadjusted linear regression analysis using data from COX/SDH histochemistry (previously 

performed by Dr Brendan Payne, Newcastle University) and multiplex immunofluorescence (Section 

4.4.2), both performed on skeletal muscle serial sections cut from the same SMMFA patient samples 

(n = 37), showed that proportional CI (r = 0.70; p < 0.0001, Pearson’s correlation) and CIV (r = 0.56; p 

= 0.0003) deficiency both had a statistically significant positive correlation with the percentage COX 

defect (Figure 4.4). 

  

 

Figure 4.4 – NDUFB8 and MTCO1 deficiency correlates with COX defect level. The log-transformed proportion of COX 
defect level was significantly associated with the log-transformed proportion of (A) NDUFB8-deficient fibres (r = 0.70; p < 
0.0001) and (B) MTCO1-deficient fibres (r = 0.56; p = 0.0003) (Pearson’s correlation and linear regression for line). 
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4.4.5 31P-MRS quantification of skeletal muscle respiratory capacity 

For 17 of the subjects in this study (listed in Table 3.1), data on in vivo mitochondrial function was 

available from 31P-MRS. These measurements had been taken as part of a previous study conducted 

in our lab (Payne et al., 2014), and reanalysed by me. These 17 PLWH included individuals from the 

contemporary NRTI (n = 6) and historical NRTI (n = 11) groups, along with 23 age-matched HIV- 

controls. 31P-MRS data were therefore compared with cellular skeletal muscle mitochondrial defects 

measured by multiplex immunofluorescence.  

There was a statistically significant difference in resting-state ADP/ATP ratio across the three groups 

(p = 0.0015, one-way ANOVA), with both the historical NRTI (p = 0.0077, Tukey’s multiple 

comparison) and contemporary NRTI (p = 0.011, Tukey’s multiple comparison) exposed HIV+ groups 

having a higher resting ADP/ATP ratio than the HIV-uninfected group (Figure 4.5a). There was no 

significant difference between the NRTI exposure groups.  

In order to assess whether higher levels of skeletal muscle mitochondrial dysfunction at the cellular 

level translated to mitochondrial dysfunction at the physiological level, I performed unadjusted 

linear regression analysis between the proportion of CI-deficient myofibres and the resting-state 

ADP/ATP ratio in the paired HIV+ subjects (n = 17). Surprisingly, I found that proportional CI-

deficiency did not significantly predict diminished mitochondrial respiratory capacity in the form of 

ADP/ATP ratio (r = 0.35; p = 0.17, Pearson’s correlation) (Figure 4.5b), suggesting that cellular 

OXPHOS deficiency does not necessarily predict declines in physiological respiratory capacity.   

 

Figure 4.5 – Skeletal muscle mitochondrial respiratory capacity. (A) ADP/ATP ratio in skeletal muscle through 31P-MRS 
analysis. Each dot represents an individual subject in either the contemporary NRTI (n = 6), historical NRTI (n = 11), or HIV-
uninfected control (n = 23) group. Dotted lines indicate the mean. (B) Correlation of proportional CI deficiency in skeletal 
muscle biopsies and ADP/ATP ratio in calf muscle (Pearson’s correlation and linear regression for line). Each dot represents 
and individual subject with available data for both histological analyses and in vivo mitochondrial function assessment (n = 
17). 
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4.4.6 Clinical and HIV-related predictors of skeletal muscle mitochondrial dysfunction,  

After demonstrating that mitochondrial dysfunction is present in skeletal muscle fibres from PLWH 

with exposure to contemporary ART, I next assessed whether HIV-related clinical factors or general 

clinical characteristics predicted myofibre mitochondrial CI defects (Table 4.2). These clinical 

parameters included age (Figure 4.6a), current (Figure 4.6b) as well as nadir CD4 count (copies/µl) 

(Figure 4.6c), viral load (copies/ml) (Figure 4.6d), time since HIV diagnosis (Figure 4.6e), duration on 

ART (Figure 4.6f), and duration with untreated HIV infection (Figure 4.6g).  

Through univariate linear regression analysis, I found that duration on ART significantly predicted 

proportional CI deficient myofibres (r = 0.29; p = 0.017, Pearson’s correlation) (Figure 4.6d).  

The association between CI deficiency and age did not quite reach statistical significance (p = 0.056) 

(Pearson’s correlation). Further, as the age of both the historical and contemporary groups was 

higher than the ART-naïve group, I performed linear regression analysis between age and 

proportional CI deficiency within each of the individual groups in order to better understand the 

predictive significance of age on mitochondrial function in ART-treated PLWH. Importantly, age did 

not significantly predict proportional CI deficiency in either the historical (n = 25; r = -0.33; p = 0.11, 

Pearson’s correlation), or contemporary (n = 29; r = 0.25; p = 0.19) ART groups. In addition, age did 

not significantly predict CI deficiency when the two groups were combined (n = 54; r = 0.02; p = 

0.88).  

There was no significant correlation between CD4 count and proportional CI deficiency, suggesting 

that CD4 count is not a reliable predictor of mitochondrial defects in skeletal muscle of the general 

PLWH population. In addition, there was no significant association between proportional CI 

deficiency and age, months since diagnosis, months with untreated HIV infection, nadir CD4 count, 

or viral load.  

As this was an observational study, factors such as age and duration on ART were highly dependent 

of treatment group. This is inevitable, as choices of NRTIs used in ART have changed over time as 

new agents became available. Hence, I then performed multivariate linear regression to see if the 

effect of duration of ART treatment was independent of the effect of age. Here, both variables were 

positively associated with CI deficiency (unstandardised regression coefficients, age = 0.011; 

duration on ART = 0.02) but neither was independently statistically significant (p = 0.24 and p = 0.23 

respectively, multivariate linear regression). Overall model fit was statistically significant (p = 0.04), 

but only predictive of a small amount of the variation in proportional CI deficiency (r2 = 0.1). 
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 CI deficiency 

 r p 

Age 0.23 0.056 

CD4 count (copies/µl) -0.012 0.93 

Nadir CD4 count (copies/µl) -0.11 0.43 

Viral load (copies/ml) -0.24 0.061 

Months since diagnosis 0.073 0.56 

Months on ART 0.29 0.017 

Months untreated -0.24 0.051 

 

Table 4.2 – HIV-related clinical predictors of proportional myofibre CI deficiency. Table depicting the unadjusted linear 
regression analysis (Pearson’s correlation) between proportional log10(CI deficiency) and HIV-related clinical parameters. 
Statistically significant results are in bold.  
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Figure 4.6 – Correlations between proportional CI deficiency and clinical parameters. Scatter plots depicting linear 
regression analysis (Pearson’s correlation) between proportional CI deficiency and (A) age, (B) CD4 T cell count (cells/µl), (C) 
nadir CD4 T cell count (cells/µl), (D) viral load (copies/ml), (E) time since HIV diagnosis (months), (F) duration on ART (r = 
0.29; p = 0.0017), and (F) months untreated. Pearson’s correlation and linear regression for the correlation and line. Black 
dots = ART naïve PLWH (n = 13), grey dots = contemporary NRTI (n = 29), and white dots = historical NRTI (n = 25).  
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4.4.7 Molecular basis of skeletal muscle mitochondrial dysfunction in ART-treated 

PLWH 

Finally, to better understand the molecular mechanisms underpinning the skeletal muscle 

mitochondrial dysfunction demonstrated in ART-treated PLWH, I subjected individual myofibres to 

laser capture microdissection (n = 90) and qPCR analyses (described in Section 3.5.5). In particular, 

CI-deficient (n = 24), CI-intermediate (n = 27) and CI-positive (n = 39) myofibres were dissected from 

subjects in both the historical (n = 5) and contemporary (n = 4) groups. 

Initially, I excluded mtDNA depletion as a cause of CI deficiency in myofibres. In keeping with our 

VDAC1 data for mitochondrial mass at the myofibre level, there was no evidence of reduced mtDNA 

content in individual CI deficient fibres (Figure 4.7).  

 

 

Figure 4.7 – mtDNA copy number in individual myofibres. Dot plot demonstrating no significant levels of mtDNA depletion 
in individual CI-deficient (n = 24, blue), CI-intermediate (n = 27, orange) and CI-positive (n = 39, green) myofibres from PLWH 
exposed to only contemporary NRTIs (circle) or contemporary NRTIs but previously historical NRTIs (square). Dots are 
plotted by MT-ND1 and MT-ND4 copy number (Ct). Dotted line indicates the mean MT-ND1 and MT-ND4 copy number of 
the CI-positive myofibre population which was used as the control.  
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MT-ND1 lies on the minor arc of the mitochondrial genome and so is rarely deleted in large-scale 

mtDNA deletions. I therefore used MT-ND1 copy number as a measure of whole mtDNA copy 

number using the standard curve method and compared MT-ND1 and MT-ND4 copy number to 

determine the presence of mtDNA deletions.  

Published data in the HIV and ageing field has previously demonstrated the presence of large-scale 

mtDNA deletions in skeletal muscle from PLWH (Payne et al., 2011). Here, by quantifying the copy 

number of the two mitochondrially-encoded genes MT-ND1 and MT-ND4, expressed relative to a 

control, I found that 64% of CI-deficient myofibres contained large-scale mtDNA deletions. In 

addition, 22% of CI-intermediate fibres had mtDNA deletions as well as 8% of CI-positive fibres 

(Figure 4.8a).  

Interestingly, mtDNA deletions in the minor arc (MT-ND1) of the mitochondrial genome were 

present in all three groups of myofibres, albeit at a significantly less prevalent frequency than major 

arc deletions (MT-ND4). Briefly, 79% of deletions in CI-deficient fibres were in the major arc, while 

21% were in the minor arc. 67% of deletions in both CI-intermediate and CI-positive fibres were in 

the major arc while 33% were in the minor arc. Interestingly, I found that there was a significant 

difference in the mtDNA deletion heteroplasmy (as measured by ddCt) across the three groups of 

fibres (p < 0.0001, one-way ANOVA) (Figure 4.8a), with mtDNA deletion heteroplasmy in CI-deficient 

fibres being significantly greater than mtDNA deletion heteroplasmy seen in both the CI-

intermediate (p = 0.0089, Tukey’s multiple comparison), and CI-positive fibres (p , 0.0001, Tukey’s 

multiple comparison). Further studies should look to map the exact locations and sizes of the 

mtDNA deletions.  

I next wanted to assess whether there were any differences in the patterns of mtDNA deletions 

occurring in CI-deficient and CI-intermediate myofibres isolated from PLWH in the historical (n = 45) 

and contemporary (n = 45) ART treatment groups. I subsequently found that there was no significant 

difference in the pattern of mtDNA deletion locations (unpaired t test) (Figure 4.8b). This suggests 

that the type of ARV or exposure to a particular NRTI has no discernible implication with regards to 

the size or location of mtDNA deletions underpinning mitochondrial defects in skeletal muscle.  
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Figure 4.8 – mtDNA deletions detected by qPCR in single myofibres. (A) Distribution of mtDNA deletion levels in CI-
deficient (n = 24), CI-intermediate (n = 27) and CI-positive (n = 39) single myofibres. Lightly shaded dots represent myofibres 
from historical NRTI-treated PLWH and darkly shaded dots represent fibres form contemporary NRTI-treated PLWH. (B) 
Distribution of mtDNA deletions in all fibres from PLWH exposed to historical NRTIs (n = 45) and contemporary NRTIs (n = 
45). For both (A) and (B) each dot represents an individual myofibre and deletion sizes are expressed as δδCt (difference in 
MT-ND1 and MT-ND4 Ct values relative to control). Myofibres with a δδCt above 2 standard deviations (thin dotted line) 
from the control were classified as having minor arc deletions, and myofibres with a δδCt below 2 standard deviations (thin 
dotted line) were determined to have a major arc deletion.  
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4.5 Discussion 

4.5.1 Conclusions 

Whilst early clinical reports and subsequent cohort studies have demonstrated a mitochondrially-

toxic effect of various NRTIs used in the monotherapy era of ART (Dalakas et al., 1990; Arnaudo et 

al., 1991), few studies have investigated whether newer NRTIs developed to overcome the toxic 

profile of these NRTIs similarly induce mitochondrial dysfunction, particularly in skeletal muscle. This 

is primarily due to the fact that clinical trials and in vitro studies demonstrated that these newer 

NRTIs have a low PolG-binding affinity and few clinical reports of associated toxicities have surfaced 

(Venter et al., 2019; Venhoff et al., 2007). With regards to the growing interest in adverse ageing in 

older PLWH and the strong association between mitochondrial dysfunction and ageing (Lopez-Otin 

et al., 2013), this study sought to better characterise mitochondrial function in a functionally 

relevant tissue in PLWH in the contemporary ART era. These included PLWH who have never been 

on ART, PLWH who have been exposed to older, mitochondrially-toxic NRTIs but are now on ‘safer’ 

NRTIs, and PLWH who have only ever been exposed to the NRTIs that remain in contemporary use.  

4.5.1.1 ART-treated PLWH have greater cellular, molecular and physiological mitochondrial 

dysfunction than ART-naive PLWH 

This is the first study to demonstrate a defect of cellular mitochondrial function in skeletal muscle of 

PLWH who have only ever been exposed to contemporary ART regimens, despite the perception 

that contemporary NRTIs are free from mitochondrial toxicity (Venhoff et al., 2007). This statement 

is supported by both cellular and molecular findings from skeletal muscle tissue biopsies, as well as 

in vivo functional evidence from 31P-MRS.  

I demonstrate that PLWH who have been exposed to only contemporary NRTIs as well as PLWH who 

are currently on contemporary NRTIs but have previously been exposed to older NRTIs both 

displayed a significantly higher proportion of myofibres with CI deficiency compared to ART-naïve 

PLWH. PLWH who have been exposed to contemporary NRTIs also had a significantly higher 

proportion of myofibres with CIV deficiency compared to ART-naïve PLWH. In addition, there was no 

significant difference in proportional CI or CIV deficiency between age-matched patients in the 

historical or contemporary groups, suggesting that the levels of CI and CIV deficiency are similar in 

both ART-treated groups. Finally, as none of the HIV-related or clinical parameters significantly 

predicted greater CI deficiency through adjusted multivariate linear regression analyses, these 

findings indicate that ARVs themselves play a significant role in mitochondrial dysfunction (Dalakas 

et al., 1990, Arnaudo et al., 1991; Payne et al., 2011; Lim et al., 2001).   
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Another aim of this study was to better understand the molecular mechanisms underpinning 

mitochondrial dysfunction at the cellular level. qPCR analysis demonstrated the presence of large-

scale mtDNA deletions, primarily in the major arc portion of the mtDNA genome, in the majority of 

CI-deficient myofibres. This supports previous data which demonstrated mtDNA deletions in skeletal 

muscle fibres with mitochondrial dysfunction, as determined by COX/SDH histochemistry, in ART-

treated PLWH (Payne et al., 2011). mtDNA deletions were also found in the minor arc of the 

mitochondrial genome. As these findings have not previously been described in skeletal muscle from 

ART-treated PLWH, this merits future research. 

qPCR analysis also failed to identify alterations in mtDNA content. This finding is supported by 

immunofluorescence analysis whereby no increase or decline in average myofibre mitochondrial 

mass was observed. Together, these findings suggest the absence of a compensatory upregulation in 

mitochondrial mass in response to OXPHOS defects.   

Additionally, through 31P-MRS analysis previously performed by Dr Brendan Payne on subjects 

included in the SMMFA cohort (Payne et al., 2014) and further analysed by me, it was demonstrated 

that contemporary and historical NRTI-treated PLWH had a significantly diminished resting-state 

ADP/ATP level when compared to age-matched HIV- individuals. This observation provides an 

important validation of our cellular and molecular findings, as well as pointing to a possible non-

invasive read-out for future studies. However, ADP/ATP ratio was not significantly predicted by 

proportional CI deficiency. This is most likely due to the small number of subjects with paired 31P-

MRS measurements, thereby limiting the power to detect an association with CI deficiency. These 

findings support previous observations of decreased phosphocreatine concentrations in skeletal 

muscle from AZT-treated PLWH (Sinwell et al., 1995).  

4.5.1.2 Potential causes of mitochondrial dysfunction in ART-treated PLWH 

These novel findings raise a number of mechanistic questions. In both the historical and 

contemporary NRTI exposure groups I observed that the mitochondrial ETC complex defects seen in 

individual myofibres were predominantly explained by mtDNA deletions. This is surprising as most in 

vitro data suggest that contemporary NRTIs have a low PolG-binding affinity (Venhoff et al., 2007) 

and do not inhibit mtDNA replication (Birkus et al., 2002). Nevertheless, it is conceivable that very 

prolonged exposure to a contemporary NRTI in vivo, and/or cell-type specific effect could be 

sufficient to promote mtDNA deletions, potentially via chronic oxidative stress. These mtDNA 

deletions would subsequently clonally expand after an extended period of time, even after cessation 

of treatment (Payne et al., 2011). For example, work from our group has recently demonstrated the 

presence of mtDNA deletions in the renal tract in the setting of TDF exposure (Samuels et al., 2017).  
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Another possibility is that other ART classes such as protease inhibitors (PIs) or non-nucleoside 

reverse transcriptase inhibitors (NNRTIs) might contribute to mitochondrial dysfunction in 

contemporary cART treatment. For example, limited in vitro data suggests that the NNRTI efavirenz 

may impair mitochondrial function (Funes et al., 2014). I therefore stratified PLWH in both the 

contemporary and historical NRTI groups into whether they were on an ART regimen that included a 

PI or NNRTI, but subsequently found no difference in skeletal muscle CI or CIV deficiency. In addition, 

there was no difference in average myofibre mitochondrial mass. Additionally, it is possible that 

long-term treated HIV infection itself might be having a detrimental effect on mitochondrial 

function. However, the lack of any mitochondrial defects in the ART-naïve group argues against this 

being a major effect.  

Finally, as mitochondrial dysfunction is known to increase with age (Barazzoni et al., 2000; Welle et 

al., 2003; Short et al., 2005; Lopez-Otin et al., 2013), another hypothesis could be that the skeletal 

muscle mitochondrial defects seen in the ART-treated groups could be due to increased age and age-

related effects such as chronic inflammation, immunosenescence, and oxidative stress, which could 

be propagating the formation of mtDNA mutations, among other damaging effects (Melov et al., 

1999; Zorov et al., 2014; Rao et al., 2014; Massaad & Klann, 2011). Indeed, CI defects have been 

reported in different tissues from Parkinson’s Disease patients (Franco-Iborra et al., 2016; Kraytsberg 

et al., 2006; Balaban et al., 2005). However, adjusted linear regression analysis demonstrated that 

the mitochondrial defects were not explained by age itself. It would therefore be interesting to 

investigate the effect of these other age-related factors such as chronic inflammation or 

immunosenescence.  

4.5.1.3 Is there a legacy effect in PLWH treated with historical NRTIs? 

The final objective of this study was to assess whether there is a ‘legacy effect’ induced by exposure 

to older NRTIs. Although this theory needs to be tested in a larger, ideally longitudinal cohort of 

PLWH and HIV- individuals, this study suggests against the presence of a legacy effect. This is due to 

the fact that PLWH in the historical NRTI group did not have an excess of cellular mitochondrial 

defects compared to age-matched PLWH in the contemporary group. In addition, isolated CI-

deficient myofibres from patients in both groups were seen to have a similar prevalence and pattern 

of mtDNA deletions underpinning the cellular defects. However, the levels of ART-induced 

mitochondrial dysfunction can vary between tissue types, and so whilst these findings suggest 

against a legacy effect in skeletal muscle, this may not be the case in other relevant tissue such as 

the liver or PBMCs.  
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4.5.1.4 Significance of predominant CI deficiency  

An important strength of this study was that I employed techniques that can objectively quantify 

mitochondrial deficiency with single-fibre resolution. Given the stochastic nature of somatic 

(acquired) mtDNA defects within postmitotic tissues such as skeletal muscle, studies of homogenised 

tissue may miss these defects (Murphy et al., 2012). As opposed to the current gold-standard in 

histologically detecting cellular mitochondrial defects, sequential COX/SDH histochemistry, our assay 

allows for the objective quantification of CI defects and mitochondrial mass, as well as CIV defects. 

This is a significant advantage as genes encoding CI subunits form the greatest proportion of the 

mtDNA genome and are therefore the most commonly deleted genes in the event of large-scale 

mtDNA deletions. Our observation that CI defects, as opposed to CIV defects, predominate in 

skeletal muscle of PLWH could be of potential therapeutic relevance. Interestingly, CI deficiency is 

the most commonly observed biochemical defect in child-onset mitochondrial disease (Fassone & 

Rahman, 2012), and can result in a range of clinical phenotypes, such as leigh syndrome, lactic 

acidosis, hypertrophic cardiomyopathy and significantly, myopathy (Distelmaier et al., 2009). 

Unfortunately though, treatment strategies for isolated CI deficiency in mitochondrial disease are 

limited due to poor understanding of the underlying pathophysiology, and are therefore restricted 

to symptomatic treatment (Rodenburg, 2016). However, limited in vitro data demonstrate that 

targeting ROS production may alleviate some of the detrimental consequences of CI deficiency, such 

as mitochondrial membrane (ΨΔ) depolarisation (Distelmaier et al., 2009). In addition, the 

hypothesis that impaired calcium homeostasis as the result of CI deficiency is a significant 

pathophysiological mechanism underpinning CI-related pathology is being explored (Rodenburg, 

2016; Valsecchi et al., 2009). 
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4.5.2 Summary of experimental findings  

 Naïve ART Contemporary ART Historical ART Conclusions 

Physiological 
mitochondrial 
dysfunction 

• Not investigated • Lower oxidative 
capacity than 
HIV-uninfected 
individuals 

• Comparable 
levels to 
historical NRTI 
group 

• Lower oxidative 
capacity than 
HIV-uninfected 
individuals 

• Comparable 
levels to 
contemporary 
NRTI group 

• ART treated 
PLWH have 
lower 
physiological 
skeletal muscle 
oxidative 
capacity 
compared to 
age-matched 
HIV-uninfected 
individuals 

Cellular 
mitochondrial 
dysfunction 

• Low levels of CI 
deficiency 
compared to 
contemporary 
and historical 
NRTI groups 

• Lower CIV 
deficiency 
compared to 
contemporary 
NRTI group 

• Normal levels of 
mitochondrial 
mass 

• Higher levels of 
CI deficiency 
than naïve 
patients 

• Comparable 
levels of CI 
deficiency with 
historical NRTI 
group 

• Higher levels of 
CIV deficiency 
compared to 
naïve group 

• Normal levels of 
mitochondrial 
mass 

• Higher levels of l 
CI deficiency 
than ART-naïve 
patients 

• Comparable 
levels of CI and 
CIV deficiency 
compared to 
contemporary 
NRTI group 

• Normal levels of 
mitochondrial 
mass 

• Skeletal muscle 
mitochondrial 
dysfunction in 
contemporary 
and historical 
ART groups is 
comparable  

• No 
compensatory 
upregulation in 
mitochondrial 
mass 

Molecular 
mitochondrial 
dysfunction 

• Not investigated 
as cellular 
mitochondrial 
deficiency not 
observed 

• mtDNA deletions 
present in CI-
deficient and 
intermediate 
fibres 

• No difference in 
mtDNA pattern 
compared to 
historical NRTI 
patients 

• mtDNA deletions 
present in CI-
deficient and 
intermediate 
fibres 

• No difference in 
mtDNA pattern 
compared to 
contemporary 
NRTI patients 

• Majority of CI-
deficient and 
intermediate 
fibres contained 
mtDNA deletions 

• No evidence of 
mtDNA depletion 

Cellular 
mitochondrial 
dysfunction in PI-
treated PLWH 

• Not investigated  • PLWH currently treated with a PI had no 
difference in proportional CI or CIV 
deficiency compared to ART-treated PLWH 
not currently treated with a PI 

• No evidence of 
increased 
mitochondrial 
dysfunction in PI-
treated PLWH 

Cellular 
mitochondrial 
dysfunction in 
NNRTI-treated 
PLWH 

• Not investigated • PLWH currently treated with a NNRTI had 
no difference in proportional CI or CIV 
deficiency compared to ART-treated PLWH 
not currently treated with a NNRTI 

• No evidence of 
increased 
mitochondrial 
dysfunction in 
NNRTI-treated 
PLWH 

Table 4.3 – Summary of experimental findings.  
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4.5.3 Limitations 

The work presented in this chapter demonstrates an array of novel findings and a convincing 

hypothesis that ART leads to an accelerated onset of skeletal muscle mitochondrial defects in ART-

treated PLWH compared to ART-naïve PLWH. However, as mentioned previously, there were a 

number of limitations to our study.  

Our study was limited to only 67 subjects who participated in only one study visit. Although this 

sample size provided enough materials and data in order to demonstrate novel findings, it does limit 

the scope of investigations. A larger, longitudinal study group recruited based on exposure to 

particular combinations of ARVs (e.g. two NRTIs + PI vs two NRTIs + NNRTI, or subdividing the 

contemporary group into patients with and without exposure to tenofovir disoproxil fumarate (TDF), 

or subdividing the historical group into patients with and without exposure to zidovudine (AZT)) 

would give us greater power to detect differences in mitochondrial defects over a period of time.  

As both age and NRTI exposure type are difficult to control due to the strong correlation between 

these factors, studies like those mentioned above would also allow us to better understand the exact 

effects of particular NRTIs in vivo (Venhoff et al., 2007). Indeed, the limitation regarding being 

unable to extract the specific effects of factors such as age from individual groups promoted the 

recruitment of the MAGMA study, discussed in the following chapters, whereby older age-matched 

HIV+ and HIV-uninfected males were recruited in an observational study. 

As mentioned above, the significantly lower age of the ART-naïve group compared to both ART-

treated groups is a limitation. However, as the majority of ART-naive PLWH are younger, this would 

be very difficult to control. Indeed, a major strength of this study is that it included an ART-naïve 

comparator group, due to the fact that the majority of newly-diagnosed PLWH begin ART soon after 

diagnosis and so ART-naive individuals are difficult to recruit.  

Of particular note, the 31P-MRS study was limited by the fact that not enough ART-naïve PLWH 

participated, and although contemporary ART and historical ART-treated PLWH participated, 

numbers were low.  

Whilst the multiplex immunofluorescence assay that was used to quantify mitochondrial protein 

levels in individual skeletal muscle fibres has many advantages over other assays such as COX/SDH 

histochemistry, it too has some disadvantages. Primarily, as the assay measures protein levels of 

subunits of the ETC complexes I and IV, it cannot measure the actual activity of the electron 

transport chain, which is instead inferred by antibody level. The qPCR analysis is also limited by 

issues in detecting very small mtDNA deletions. 
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4.5.4 Future work 

As mentioned above, this study was limited by the size of the patient cohort and that fact that it was 

an observational study. Future work should look to perform these analyses on a larger group of 

PLWH and ideally at numerous time points (perhaps every 2-5 years).  

Another potential aspect of future work should be to investigate the power of individual NRTIs to 

induce mitochondrial dysfunction through mtDNA deletion mutation formation. In the current study 

I have demonstrated the presence of defects in oxidative phosphorylation in skeletal muscle fibres 

from PLWH exposed to both historical and contemporary NRTIs, predominantly underpinned by 

mtDNA deletions. It is impossible to extract the effects of individual NRTIs from our cohort, and so in 

vitro assessments using fibroblasts, myofibre-derived cell lines or induced pluripotent stem cells 

treated with individual NRTIs, as well as combinations of NRTIs over various periods of time, should 

be performed. In addition, some previous studies have performed similar investigations, but none 

have looked specifically at the effect of various ARVs on myofibre-derived cell lines. Another 

alternative would be to perform similar work to that mentioned previously but in mouse models 

treated with various ARVs.  

In order to further investigate the cellular and molecular mechanisms underpinning skeletal muscle 

fibre mitochondrial defects, future studies should look to directly quantify and map the size and 

locations of mtDNA deletions. This could potentially be performed through long-range PCR or 

southern blot studies or if available, next-generation sequencing analysis (Taylor et al., 2014). As the 

mitochondrial defects were not explained by mtDNA depletions via the PolG hypothesis, future work 

should look to explore the viability of other mechanisms of mitochondrial dysfunction and induction 

of mtDNA mutations. One potential aspect could be to investigate the frequency of oxidatively 

damaged macromolecules, either histochemically or through molecular assessments (Liang et al., 

2018). 

Finally, as it was difficult to extract the specific effects of factors such as age and HIV-related 

parameters on skeletal muscle mitochondrial dysfunction, further work was undertaken on the 

MAGMA cohort of older HIV+ and HIV- individuals in the following chapters.  
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Chapter 5 – Ageing phenotypes in older PLWH 

5.1 Introduction 

Due to the success of antiretroviral therapy (ART), the average age of the HIV+ population in 

developed countries is increasing, with the proportion of PLWH over the age of 50 expected to be an 

estimated 73% by 2030 (Centres for Disease Control and Prevention, 2013; Smit et al., 2015).  

In combination with the fact that virally-supressed PLWH appear to have an excess of risk factors for 

adverse ageing (Brothers et al., 2017; Onen et al., 2014; Desquilbet et al., 2007) and chronic 

conditions such as elevated chronic inflammation (Deeks, 2011; Justice et al., 2012; Erlandson et al., 

2013; Erlandson et al., 2017a; Leng et al., 2011; Margolick et al., 2013; Onen et al., 2014), this 

population of ageing PLWH appear to be undergoing accelerated ageing (Pathai et al., 2014). A result 

of this phenomenon is that the HIV+ population exhibit declining physical function and a higher 

prevalence of adverse ageing phenotypes such as frailty and sarcopenia (Guaraldi et al., 2011; Kooij 

et al., 2016; Desquilbet et al., 2007; Desquilbet et al., 2009; Brothers et al., 2017; Echeverria et al., 

2018; Pinto Neto et al., 2016; Wasserman et al., 2014; Oliveira et al., 2020). This may have serious 

adverse implications for both the healthcare system and PLWH themselves (Kim et al., 2019; Smit et 

al., 2015).  

As such, a better understanding of the risk factors and causes underpinning this biological 

phenomenon are needed in order to develop optimal intervention and preventative strategies for 

PLWH with adverse ageing phenotypes.  

As a result, the MAGMA study was set up with the aim of developing pathologically-defined 

subgroups for stratified interventional trials. This study includes 45 males over the age of 50, both 

HIV+ and HIV-uninfected, and sought to better understand the underlying pathophysiological 

mechanisms behind accelerated ageing in PLWH, with a special interest in the role of age-related 

mitochondrial dysfunction.  

In this chapter, I quantified physical function as well as the prevalence of frailty and sarcopenia in 

older (≥ 50 years) PLWH and age-matched HIV- individuals using a range of clinically-validated 

assessments, and sought to identify potential links with both clinical parameters and body 

composition factors.  
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5.2 Experimental aims 

The significant medical, functional, and socioeconomic consequences of adverse ageing phenotypes 

such as frailty in HIV-infected individuals (Kim et al., 2019; Smit et al., 2015) means that a better 

understanding of the causes and consequences of these conditions in PLWH is imperative.  

By utilising an array of clinical assessments that measure physical functional capabilities, as well as 

assessments of frailty, sarcopenia and body composition, in addition to data obtained from health 

records detailing general and HIV-related clinical data, in this study I sought to: 

• Quantify the prevalence of frailty and sarcopenia in older PLWH and age-matched HIV- 

individuals.  

• Determine whether any HIV-related or general clinical parameters are predictive of 

reduced physical function and adverse ageing phenotypes in older PLWH. 

• Determine whether body composition changes and physical activity levels are predictive 

of adverse ageing phenotypes in older PLWH.   



166 
 

5.3 Methods 

5.3.1 Patient cohort and ethical guidelines  

This study was approved by the research ethics committee (Newcastle and North Tyneside 2 (17-NE-

0015)), as detailed in Section 3.1.  

30 HIV+ and 15 HIV- males were recruited as part of the MAGMA study, with patients giving prior 

written permission. All patients were 50 years or older and therefore classed as ‘older’. Full inclusion 

criteria and study visit details are described in Section 3.2.1 and Section 3.3. 

5.3.2 Clinical interview  

In order to assess clinical parameters and undertake physical performance assessments, all 

participants (n = 45), recruited in both Newcastle (n = 37) and London (n = 8), were asked to 

complete a health questionnaire during the sole study visit, as described in Section 3.3.1 (further 

described in Appendix 2).  

5.3.2 Determination of frailty 

A frailty phenotype was assessed as previously described using a modified five FFP criteria (Onen et 

al., 2009), as described in Section 3.3.2.  

5.3.3 Short Physical Performance Battery (SPPB) assessment 

Assessment of physical function was done through a short physical performance battery (SPPB) test, 

as described in Section 3.3.3. 

5.3.4 MET score  

Metabolic equivalent (MET) expenditure per week was calculated as a surrogate for physical activity 

assessment. Criteria and cut-offs are described in Section 3.3.4.  

5.3.5 Classification of sarcopenia  

According to the EWGSOP, sarcopenia can be classified in the clinical and research setting based on 

analyses of muscle mass, muscle strength, and physical performance (Cruz-Jentoft et al. 2019), as 

described in Section 3.3.5. 
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5.3.6 Statistical analysis  

Statistical analysis was performed in Prism v5.04, IBM SPSS Statistics v23 and Microsoft Excel 2016. 

Graphs were produced in Prism v5.04.  

Normality was assessed through Shapiro-Wilk tests. Statistical differences between the HIV+ and 

HIV- individuals were determined by Fisher’s exact test for nominal data and unpaired t tests for 

ordinal data. One-way ANOVA was performed to assess differences between factors with three or 

more variables, such as smoker category or SPPB category.  

Unadjusted linear regression analysis between clinical factors, body composition factors and HIV-

related factors was performed using Pearson’s correlation for normally distributed data, or 

Spearman correlation for non-normally distributed data. Multivariate linear regression analysis with 

adjustment for age was also conducted, with models described in more detail in the relevant 

sections. As outcomes of multivariate linear regression analysis, unstandardised regression 

coefficients and their statistical significance were reported, as well as the fit of the models and how 

much variance (adjusted r2) they accounted for.  

Initially, differences in the various clinical, HIV-related, and body composition parameters between 

frail, prefrail, and robust, as well as sarcopenic, presarcopenic, and non-sarcopenic PLWH was 

determined through one-way ANOVA analysis. However, as the size of some groups was small, the 

prefrail HIV+ group was combined with the frail HIV+ group to create the frail/prefrail HIV+ group 

and the presarcopenia HIV+ group was combined with the sarcopenia HV+ group to form the 

sarcopenic/presarcopenic HIV+ group, as done in a recent study (Kooij et al., 2016). Differences 

between the frail/prefrail and robust groups, as well as the sarcopenic/presarcopenic and non-

sarcopenic groups were determined by unpaired t tests for normally-distributed data and Mann-

Whitney tests for non-parametric data. Statistical significance was set at p ≤ 0.05.  
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5.4 Results  

5.4.1 MAGMA study cohort characteristics 

Table 5.1 summarises the general clinical characteristics of both the HIV+ (n = 30) and HIV- (n = 15) 

groups. The median age of the HIV+ group was 58 (range 50-85) compared to 59 (range 50-70) years 

in the HIV- group, confirming excellent age-matching, as expected from the study design.  

As described in Table 5.2, individuals in the HIV+ group were virally-supressed and had good 

immune function. 11 (37%) individuals had previously been exposed to older, supposedly 

mitochondrially-toxic NRTIs (stavudine (d4T), didanosine (ddI), zalcitabine (ddC), zidovudine (AZT)). 9 

(30%) were being treated with protease inhibitors (PI), and 11 (37%) were being treated with non-

nucleoside reverse transcriptase inhibitors (NNRTI) at time of study visit.  

Aside from waist circumference (p = 0.0043) and BMI (p = 0.0003) (unpaired t test) (Figure 5.1b, c), 

the HIV+ and HIV- groups were well matched for body composition factors as well as prevalence of 

various comorbidities (Table 5.1/Figure 5.1). 
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 HIV+ (n = 30) HIV- (n = 15) p  

Age (years) 58 (54-65) 59 (52-69) 0.99 

Race (white) 30 (100%) 13 (87%) 0.11 

Alcohol consumption (current) 16 (53%) 13 (87%) 0.046 

Tobacco use:   0.14 

Current 11 (37%) 2 (13%)  

Former 11 (37%) 5 (33%)  

Never 8 (27%) 8 (53%)  

Recreational drugs:    

Cannabis 

Other 

4 (13%) 

2 (7%) 

1 (7%) 

1 (7%) 

0.65 

1 

HBV or HCV infection 5 (17%) 2 (13%) 0.98 

Diabetes mellitus (Type 2) 3 (10%) 3 (20%) 0.38 

Chronic kidney disease 3 (10%) 0 (0%) 0.54 

Number of Comorbidities* 1.2 (1.1) 1.1 (0.8) 0.67 

Number of medications* 3.7 (3.0) 2.5 (2.1) 0.18 

Polypharmacy 18 (60%)  7 (47%) 0.53 

BMI (kg/m2)* 

Body composition: 

27.2 (3.3) 32.8 (6.3) 0.0003 

Waist circumference (cm)* 97 (9.9) 108 (14.3) 0.0043 

% Fat mass+ 30 (7.8) 34 (7.9) 0.15 

% Muscle mass+ 70 (7.8) 66 (7.9) 0.15 

Table 5.1 – Clinical characteristics. Nominal data expressed as the number (%). Ordinal data expressed as the median (± 
interquartile range). * Expressed as mean (SD). + = Missing information from two HIV- patients who were unable to 
undertake a DXA scan. P values were determined by Fisher’s exact test for nominal data, unpaired t test for ordinal data, 
and ANOVA for categories such as tobacco use. Statistically significant results were in bold.  

  



170 
 

 HIV+ (n = 30) 

CD4 count (copies/µl) 656 (231) 

Nadir CD4 count (copies/µl) 72 (86) 

Viral load (copies/ml) 66 (91) 

Historical NRTI exposure (AZT, ddI, d4T, ddC) 11 (37%) 

PI treated 9 (30%) 

NNRTI treated 11 (37%) 

Months since diagnosis 200 (105) 

Months on ART 118 (69) 

Months untreated 86 (89) 

Table 5.2 – Cohort HIV-related characteristics. Data presented as mean (SD) or number (%).   
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Figure 5.1 – Clinical characteristics by HIV status. Dot plot graphs (mean ± SEM) depicting the differences between the 
HIV+ and HIV- groups with regard to (A) age, (B) waist circumference (cm) (p = 0.0043, unpaired t test), (C) BMI (kg/m2) (p = 
0.0003), (D) percentage fat mass, and (E) percentage lean mass. Each dot represents an individual subject. 
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5.4.2 Physical performance capabilities, frailty, and sarcopenia in older HIV+ and HIV- 

individuals  

4 (13%) individuals from the HIV+ group (n = 30) were classified as frail according to the modified 

FFP assessment, while 15 (50%) were classified as prefrail. None of the HIV- group (n = 15) were 

classified as frail and 7 (53%) HIV- individuals were classified as prefrail (Table 5.3). Excess of frailty 

and sarcopenia in the HIV+ group did not reach statistical significance (Fisher’s exact test), nor was 

there a statistically significant difference in FFP score between the two groups (Figure 5.2a).  

In the HIV+ group, 5 (17%) individuals were defined as being sarcopenic and 6 (20%) as 

presarcopenic according to the EWGSOP classification (Cruz-Jentoft et al., 2019), whilst no 

individuals in the HIV- group were classified as either sarcopenic or presarcopenic. There was a 

significantly higher prevalence of combined sarcopenic and presarcopenic (n = 11) individuals in the 

HIV+ group compared to the HIV- group (n = 0; p = 0.0093, Fisher’s exact test) (Table 5.3). 15 (100%) 

individuals from the HIV- group were non-sarcopenic, which was significantly higher compared to 

the HIV+ group (p = 0.008, Fisher’s exact test). Although the HIV+ group had a slightly lower mean 

grip strength (35.3 ± 8.91 kg) compared to the HIV- group (37.5 ± 6.60 kg), this difference was not 

statistically significant (p = 0.39, unpaired t test) (Figure 5.2d). In addition, the percentage of 

individuals with pathologically low grip strength (as defined in the FFP assessment) was not 

significantly different between the two groups (Fisher’s exact test). 

The two groups were well matched for physical performance results in the form of SPPB score 

(Fisher’s exact test) (Figure 5.2b) and physical activity levels in the form of MET score (Figure 5.2e).   
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 HIV+ (n = 30) HIV- (n = 15) p  

Frailty status:   0.61 

Frail 4 (13%) 0 (0%)  

Pre-frail 15 (50%) 8 (53%)  

Robust 11 (37%) 7 (47%)  

FFP Score^ 1 (0-2) 0 (0-1) 0.12 

Physical performance (SPPB):   0.87 

Low 1 (3%) 0 (0%)  

Intermediate 10 (34%) 4 (27%)  

High 19 (63%) 11 (73%)  

SPPB Score^ 10 (9-11)  10 (9-12) 0.53 

MET score^*  1446 (497-4100) 1446 (630-5172) 0.44 

Muscle function:    

Sarcopenia*+ 5 (17%) 0 (0%) 0.0093 

Pre-sarcopenia*+ 6 (20%) 0 (0%)  

Non-sarcopenic*+ 18 (60%) 13 (100%) 0.008 

Grip strength (kg)* 35.3 (8.9) 37.5 (6.6) 0.39 

Low grip strength*  11 (37%) 3 (20%) 0.25 

ASMI (kg/m2)+ 8.1 (1.4) 8.6 (1.0) 0.21 

Table 5.3 – Cohort physical function, frailty, and sarcopenia results. Nominal data expressed as the number (%). * 
Expressed as mean (SD) for parametric data and median (IQR) for non-parametric tests (denoted by ^). + Missing 
information from two HIV- patients who were unable to undertake a DXA scan. P values were determined by Fisher’s exact 
test for nominal data, unpaired t test for ordinal data, and ANOVA for categories such as SPPB category. Statistically 
significant results are in bold.  
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Figure 5.2 – Physical assessment characteristics by HIV status. Dot plot graphs (mean ± SEM) depicting the differences 
between the HIV+ and HIV- groups with regard to (A) FFP score, (B) SPPB score, (C) ASMI (kg/m2), (D) grip strength (kg), and 
(E) MET score. Each dot represents an individual subject. 
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5.4.3 Determinants of physical function in older PLWH 

Initially, I wanted to investigate whether HIV-related factors such as CD4 count and months since 

diagnosis predicted abnormalities in clinical characteristics and physical function such as 

comorbidities, FFP score, MET score, SPPB score, and body composition factors in the HIV+ group (n 

= 30) (Table 5.4). In addition, as age is a well-known risk factor for adverse physical outcomes, I 

additionally sought to determine whether age predicted these outcomes. 

Interestingly, unadjusted linear regression analysis demonstrated that a greater duration of 

untreated HIV infection significantly predicted poorer grip strength (r = -0.41; p = 0.023, Pearson’s 

correlation) (Figure 5.3a). As such, in order to investigate the effect of greater months with 

untreated HIV infection after adjustment for age, I developed a multivariate linear regression model 

with grip strength as the dependant variable and age, as well as months untreated, as the 

independent variables. Here, multivariate linear regression confirmed that the association between 

grip strength and duration of untreated infection was independent of age (unstandardised 

regression coefficient = -0.039; p = 0.037, multivariate linear regression) (Table 5.4). The overall 

model fit was significant (p = 0.037), but only predictive of a small amount of variation (r2 = 0.22).  

In addition, a greater CD4 count significantly predicted a higher appendicular skeletal muscle mass 

index (ASMI) (r = 0.40; p = 0.035, Pearson’s correlation) (Figure 5.3b). This was then adjusted for age 

in a multivariate linear regression model. Here, multivariate linear regression confirmed that the 

significant association between CD4 count and ASMI was independent of age (unstandardised 

regression coefficient = 0.002; p = 0.046, multivariate linear regression) (Table 7.4). However, the 

overall model fit was not significant (p = 0.11) and was only predictive of a small amount of variation 

(r2 = 0.094). 

Finally, there were no other significant associations between physiological factors mentioned above 

and HIV-related factors such as duration of HIV and ART, or exposure to mitochondrially-toxic NRTIs 

(ddC, ddI, d4T and AZT) (Table 5.4).  
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Figure 5.3 – Linear regression analysis of physical determinants in older PLWH. Scatter plots representing the linear 
regression analysis (Pearson’s correlation) between (A) months with untreated HIV infection and grip strength (kg), and (B) 
CD4 count (copies/µl) and ASMI (kg/m2). 
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Age 

Months since 
diagnosis 

Months on ART Months untreated CD4 count (copies/µl) 
Mitochondrially toxic 

NRTI 

r p r p r p r p MV p r p MV p r p 

Age - - 0.34 0.065 0.29 0.12 0.17 0.37 - -0.18 0.35 - - 0.082 

BMI (kg/m2) 0.038 0.84 -0.11 0.57 -0.29 0.13 0.072 0.70 - 0.33 0.09 - - 0.10 

Waist circumference 
(cm) 

0.01 0.96 -0.12 0.52 -0.072 0.71 -0.11 0.57 - 
-

0.014 
0.95 - - 0.34 

Number of 
comorbidities 

0.10 0.58 0.078 0.68 0.10 0.61 0.018 0.92 - 0.14 0.47 - - 0.78 

Number of medications -0.11 0.58 0.25 0.19 0.12 0.53 0.21 0.28 - 0.12 0.54 - - 0.68 

Polypharmacy - 0.17 - 0.48 - 0.60 - 0.20 - - 0.32 - - - 

Grip strength (kg) -0.27 0.15 -0.34 0.064 0.038 0.84 -0.41 0.020 0.037 -0.14 0.50 - - 0.50 

ASMI (kg/m2) -0.14 0.47 -0.095 0.62 -0.14 0.45 -0.01 0.96 - 0.40 0.035 0.046 - 0.81 

% Fat mass -0.25 0.18 -0.29 0.16 -0.15 0.43 -0.23 0.23 - 0.15 0.46 - - 0.59 

% Lean mass 0.25 0.18 0.29 0.16 0.15 0.43 0.23 0.23 - -0.15 0.46 - - 0.59 

FFP score^ -0.007 0.97 0.19 0.32 -0.15 0.44 0.34 0.065 - 0.10 0.61 - - 0.86 

MET score^ 0.26 0.89 -0.13 0.48 -0.006 0.98 -0.15 0.44 - -0.19 0.35 - - 0.44 

SPPB score^ -0.082 0.67 -0.22 0.24 0.097 0.61 -0.16 0.40 - 
-

0.014 
0.95 - - 0.49 

 

Table 5.4 – Predictors of physical function. Table depicting associations between clinical and HIV-related parameters in older HIV+ (n = 30) individuals. Linear regression and correlation 
analysis was determined by Pearson’s correlation for normal data and Spearman’s correlation for non-normal data (denoted by ^). Individuals were grouped into mitochondrially-toxic NRTI (n 
= 11) and non-mitochondrially toxic NRTI (n = 19), and statistical differences determined were by unpaired t test (parametric) and Mann-Whitney test (non-parametric). Statistically significant 
values are in bold. MV = multivariate.
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5.4.4 Determinants of ageing phenotypes in older PLWH 

To better understand the associations between the various clinical factors, body composition 

factors, and HIV-related factors with frailty and sarcopenia in older PLWH, I stratified the HIV+ group 

(n = 30) into frail (n = 4), prefrail (n = 15) and robust (n = 11) HIV+ groups, as well as sarcopenic (n = 

5), presarcopenic (n = 6) and non-sarcopenic (n = 19) HIV+ groups.  

There was no significant difference in any of the clinical, HIV-related, body composition, physical 

performance, or lifestyle factors between the frail, prefrail, and robust PLWH (one-way ANOVA) 

(Figure 5.4). Nor was there any significant difference in any these factors between the sarcopenia, 

presarcopenia, and non-sarcopenia HIV+ groups (Figure 5.5).  
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Figure 5.4 – Clinical parameters in frail PLWH. Dot plots (mean ± SEM) showing (A) age, (B) months since diagnosis, (C) 
months on ART, (D) months untreated, (E) BMI (kg/m2), and (F) MET score in frail PLWH (n = 4), prefrail PLWH (n = 15) and 
robust PLWH (n = 11). Each dot represents an individual subject. 
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Figure 5.5 – Clinical parameters in sarcopenic PLWH. Dot plots (mean ± SEM) showing (A) age, (B) months since diagnosis, 
(C) months on ART, (D) months untreated, (E) BMI (kg/m2), and (F) MET score in sarcopenic PLWH (n = 5), presarcopenic 
PLWH (n = 6) and non-sarcopenic PLWH (n = 19). Each dot represents an individual subject. 
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Although frailty and sarcopenia were only seen in the HIV+ group, they were nevertheless 

uncommon. Therefore, in order to increase the power to detect differences between PLWH with 

normal ageing phenotypes and those with adverse ageing phenotypes, I grouped the HIV+ group (n = 

30) into frail/prefrail HIV+ (n = 19) and sarcopenic/presarcopenic HIV+ (n = 11) groups, as has been 

done in previous studies (Kooij et al., 2016). The frail/prefrail HIV+ group was then compared to the 

robust HIV+ group (n = 11) (Table 5.5), whilst the sarcopenia/presarcopenia HIV+ group was 

compared to the non-sarcopenic HIV+ group (n = 19) (Table 5.6). Of note, measurements of grip 

strength were not included as part of these assessments as they are important components of both 

frailty and sarcopenia classification criteria. In addition, measurements of fat and lean mass were 

not included in the assessments in sarcopenic/presarcopenic PLWH as they are also important 

components of the sarcopenia diagnostic criteria. 

Interestingly, MET score was significantly lower in the frail/prefrail group (n = 19) compared to the 

robust group (n = 11; p = 0.0097, Mann-Whitney test) (Figure 5.6f).  

Notably, there was no significant difference in any other factor tested between the frail/prefrail HIV+ 

and robust HIV+ groups, or the sarcopenia/presarcopenia HIV+ (n = 11) and non-sarcopenia HIV+ 

groups (n = 19) (Figure 5.7). Importantly, age was not a predictor of frailty or sarcopenia.  
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 Frail/Pre-frail HIV+ (n = 19) Robust HIV+ (n = 11) P  

Age 59 (6.6) 60 (10.0) 0.85 

Months since diagnosis 218 (108.3) 181 (92.9) 0.36 

Months on ART 110 (58.3) 133 (81.6) 0.36 

Months untreated 107 (92.1) 48 (72.2) 0.077 

CD4 count (copies/µl) 691 (240.9) 592 (207.6) 0.28 

MET score^ 1040 (198-3050) 4158 (1386-6336) 0.0097 

SPPB score^ 10 (9-11) 10 (9-11) 0.84 

BMI (kg/m2) 27 (3.6) 27 (2.8) 0.94 

Waist circumference (cm) 96 (11.3) 98 (7.2) 0.54 

% Fat mass+ 30 (9.2) 30 (4.5) 0.85 

% Lean mass+ 70 (9.2) 70 (4.5) 0.85 

Number of comorbidities 1 (1.1) 1 (1) 0.26 

Number of medications 4 (3.4) 3 (2) 0.27 

Table 5.5 – Clinical characteristics in frail/prefrail PLWH. Expressed as mean (SD) for parametric data, and median (IQR) 
for non-parametric data (denoted by ^). + = Missing information from two HIV- patients who were unable to undertake a 
DXA scan. P values were determined by unpaired t test for normalised data and Mann-Whitney test for non-normalised 
data. Statistically significant values are in bold. 

 

 

 
Sarcopenic/Pre-sarcopenic HIV+  

(n = 11) 
Non-sarcopenic HIV+ (n = 19) P  

Age 61 (7.6) 59 (8.1) 0.54 

Months since diagnosis 242 (120.1) 182 (87.4) 0.12 

Months on ART 134 (63.3) 104 (67) 0.12 

Months untreated 97 (110.5) 79 (76.3) 0.59 

CD4 count (copies/µl) 664 (182.9) 650 (262.5) 0.88 

MET score^ 1040 (495-2772) 3050 (498-4212) 0.18 

FFP score^ 1 (1-2) 1 (0-2) 0.59 

BMI (kg/m2) 27 (3.6) 27 (3.2) 0.59 

Waist circumference (cm) 97 (11.4) 97 (9.3) 0.91 

Number of comorbidities 1 (0.7) 1 (1.2) 0.79 

Number of medications 3 (2.7) 4 (3.1) 0.40 

Table 5.6 – Clinical characteristics in sarcopenic/presarcopenic PLWH. Expressed as mean (SD) and median (IQR) for non-
parametric data (denoted by ^). P values were determined by unpaired t test for normalised data and Mann-Whitney test 
for non-normalised data. There were no statistically significant results 
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Figure 5.6 – Clinical characteristics in frail/prefrail PLWH. Dot plots (mean ± SEM) showing (A) age, (B) months since 
diagnosis, (C) months on ART, (D) months untreated, (E) BMI (kg/m2), and (F) MET score in frail/prefrail PLWH (n = 19) and 
robust PLWH (n = 11). Each dot represents an individual subject. 
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Figure 5.7 – Clinical characteristics in sarcopenic/presarcopenic PLWH. Dot plots (mean ± SEM) showing (A) age, (B) 
months since diagnosis, (C) months on ART, (D) months untreated, (E) BMI (kg/m2), and (F) MET score in 
sarcopenic/presarcopenic PLWH (n = 19) and non-sarcopenic PLWH (n = 19). Each dot represents an individual subject. 
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5.5 Discussion 

In this chapter, as well as in later chapters of this thesis (Chapters 6 and Chapter 7), data collected 

and analysed as part of the MAGMA study is presented for the first time.  

Here, using a range of validated clinical assessments such as the assessment of sarcopenia using the 

EWGSOP diagnostic criteria, modified FFP assessment (Onen et al., 2009), SPPB, and MET score, I 

demonstrated that our cohort of older PLWH have a higher prevalence of frailty, sarcopenia, and 

pre-sarcopenia compared to the age-matched HIV- individuals. Although due to the small cohort size 

and therefore limitation in the statistical power, this was not statistically significant. However, the 

prevalence of combined sarcopenic and presarcopenic HIV+ individuals compared to 

sarcopenic/presarcopenic HIV- individuals was significantly higher. These data support various 

previous observations of a higher prevalence of frailty (Desquilbet et al., 2007; Kooij et al., 2016; 

Brothers et al., 2017) and sarcopenia (Echeverria et al., 2018; Pinto Neto et al., 2016; Wasserman et 

al., 2014; Oliveira et al., 2020) in PLWH compared to age-matched HIV- individuals, as well as a 

decline in physical performance capabilities in this group (Onen et al., 2009; Erlandson et al., 2014).  

One of the experimental aims of this study was to investigate the links between adverse ageing 

phenotypes such as frailty and sarcopenia, and clinical, HIV-related, as well as body composition 

factors in older PLWH. As HIV-related clinical parameters such as low CD4 count (Guaraldi et al., 

2019a; Erlandson et al., 2012; Onen et al., 2014), months on ART (Brothers et al., 2017; Althoff et al., 

2014), and exposure to particular ARVs (Onen et al., 2014; Erlandson et al., 2017a) are known risk 

factors for frailty in PLWH, through linear regression analyses I sought to identify whether these 

factors predicted adverse outcomes in the physiological factors mentioned above. Interestingly, of 

these factors, a longer duration of untreated HIV infection significantly predicted poorer grip 

strength. This was confirmed in a multivariate linear regression model after adjustment for age. In 

addition, a lower CD4 count was significantly associated with lower adjusted muscle mass, as 

assessed through ASMI. However, this association was not independent of the effect of age, and was 

driven mainly by one outlier. Together, these findings suggest that a longer duration of untreated 

HIV infection may lead to a decline in physical strength, which may subsequently produce an 

increased susceptibility to developing adverse ageing phenotypes, supporting previous data 

(Brothers et al., 2017; Althoff et al., 2014; Desquilbet et al., 2009; Guaraldi et al., 2019a; Erlandson 

et al., 2012a; Branas et al., 2017; Erlandson et al., 2017b). Indeed, as the majority of these HIV+ 

patients have been virally-supressed as the result of cART, this physiological phenomenon is likely to 

be due to a ‘legacy effect’ of untreated HIV infection, whereby incomplete immune recovery may 

induce residual chronic inflammation and immune activation that may predispose the individual to 
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complications and morbidity (Wilson & Sereti, 2013; Guaraldi et al., 2011). These findings may also 

have clinical significance when determining whether PLWH are more at risk of developing frailty or 

whether they will progress through the frailty phenotypes faster. However, more work, including 

longitudinal study, needs to be undertaken in order to better understand these associations.  

Finally, by initially stratifying the HIV+ group by whether they are frail, prefrail, or robust, as well as 

whether they were sarcopenic, presarcopenic, or non-sarcopenic, I assessed whether any of the 

clinical, HIV-related, or body composition factors were significantly altered in PLWH with adverse 

ageing phenotypes. Notably, there were no statistically significant associations, and so in order to 

increase the power to detect differences in these factors, I next stratified the HIV+ individuals into 

frail/prefrail or sarcopenic/presarcopenic groups, as done recently in a study by Kooij and colleagues 

(Kooij et al., 2016). Here, I investigated whether any of the clinical, HIV-related, or body composition 

factors were significantly altered in frail and sarcopenic older PLWH compared to age-matched 

robust PLWH. Interestingly, MET score was significantly higher in robust PLWH compared to 

frail/prefrail PLWH. Importantly, although the relationship between frailty/prefrailty and physical 

activity is complex and bidirectional, this novel finding supports previous observations regarding the 

potential therapeutic advantages of exercise training programmes in preventing the onset of frailty 

(Walston et al., 2018; Cameron et al., 2013; Silva et al., 2017). Notably, there was no significant 

difference in any of the factors mentioned above when comparing sarcopenic/presarcopenic older 

PLWH and age-matched non-sarcopenic PLWH.  

An important advantage of this study compared to other cohort studies conducted in this field is the 

large array of clinical tests performed in order to assess not only frailty and sarcopenia in older 

PLWH and age-matched HIV- individuals, but also body composition factors and numerous 

surrogates for physical function capability. This allowed for a more comprehensive analysis of the 

relationships between these factors in older PLWH.  
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5.5.1 Summary of experimental findings  

 Conclusions 

Cohort 
characteristics  

• Well matched for age, comorbidities, and most lifestyle factors. 

• HIV- group had higher BMI and waist circumference 

• HIV+ group had higher alcohol consumption 

Prevalence of 
adverse ageing 
phenotypes and 
physical function 
parameters 

• Higher prevalence of frailty and sarcopenia in HIV+ group compared to HIV- group, 
although not statistically significant.  

• Prevalence of combined sarcopenic and presarcopenic HIV+ individuals 
significantly higher compared to sarcopenic/presarcopenic HIV- individuals. 

• Well matched for physical performance results. 
 

Prediction of HIV 
parameters on 
clinical factors 

• Months untreated HIV infection predicted poor grip strength, after adjustment for 
age. 
CD4 count predicted higher adjusted muscle mass, after further adjustment for 
age. 

Determinants of 
factors associated 
with ageing 
phenotypes in PLWH 

• MET score was significantly lower in frail/prefrail PLWH compared to robust 
PLWH. 

Table 5.7 – Summary of experimental findings.  

 

5.5.2 Limitations  

Whilst this study has advantageous aspects, it is limited by the fact that it is not a longitudinal study. 

As frailty is a dynamic state, the frailty status of our cohort could change over time, and this 

phenomenon is therefore not accounted for in this study.  

Another limitation lies in the fact that our cohort is composed solely of males. This was a deliberate 

aspect of the study protocol design, as older HIV+ women are more heterogeneic than older HIV+ 

men, owing to the effects of menopause. Furthermore, the majority of the older HIV+ population in 

England is male. Finally, body composition and skeletal muscle changes in ageing differ between 

men and women. This ultimately means that the findings are not generalisable to older HIV+ 

women, and a separate study should be conducted in this group.  

5.5.3 Future work 

As mentioned above, any future studies should aim to be longitudinal cohort studies. In addition, the 

cohort size should be increased to increase the in which power to investigate effects within groups. 

Comparable studies should ideally also be undertaken in older HIV+ and HIV- females.  

In the next chapter I go on to examine the effect of mitochondrial dysfunction in these ageing 

phenotypes in PLWH.   
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Chapter 6 – Skeletal muscle mitochondrial dysfunction in 

older PLWH and adverse ageing phenotypes 

6.1 Introduction 

The link between mammalian mitochondrial dysfunction and ageing in several tissues is well 

acknowledged. This link appears, in part, to be underpinned by an accumulation of mtDNA 

mutations with age, with resultant age-related decreases in oxidative capacity amongst other 

mitochondrial functions, ultimately leading to a decline in cellular function (Kujoth et al., 2005; 

Nooteboom et al., 2010; Lopez-Otin et al., 2013; Park & Larsson, 2011; Kauppila et al., 2017; Lawless 

et al., 2020). Indeed, mitochondrial dysfunction was noted as one of the nine cellular and molecular 

hallmarks of ageing (Lopez-Otin et al., 2013). Importantly, recent data also appear to suggest a 

causal link between age-related mitochondrial dysfunction and frailty, as well as sarcopenia (Alway 

et al., 2017; Andreux et al., 2018; Brierley et al., 1998). 

Mitochondrial dysfunction is well described in PLWH. In particular, early studies demonstrated a 

reduction in mtDNA content in PLWH who were exposed to certain older NRTIs that inhibited the 

mitochondrial polymerase – PolG (Dalakas et al., 1990; Arnaudo et al., 1991; Lim & Copeland, 2001). 

In addition, later studies by our group demonstrated an excess of mtDNA deletions in PLWH exposed 

to those ARVs, even after they have switched to supposedly less harmful, newer, ARVs (Payne et al., 

2011). In further support, data presented in Chapter 4 indicated that skeletal muscle from PLWH 

treated with both newer and older ARVs also had an excess of mitochondrial dysfunction. 

Taken together, there is a strong hypothesis that the increased prevalence of adverse ageing 

phenotypes experienced by older (≥50 years) PLWH compared to the age-matched general 

population (Desquilbet et al., 2007; Kooij et al., 2016; Curcio et al., 2016; Echeverria et al., 2018) may 

be underpinned by both age-related and HIV-related mitochondrial dysfunction. Due to the 

increasing age of the HIV+ population and the adverse impact this will have on healthcare, attempts 

to better understand the underlying pathophysiological mechanisms of adverse ageing in this 

population is imperative (Steffl et al., 2017; Kim et al., 2019).   
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6.2 Experimental aims  

Mitochondrial dysfunction is widely recognised as one of the key hallmarks of the ageing process in 

the general population (Lopez-Otin et al., 2013). In addition, the established role of mitochondrial 

dysfunction in toxicities experienced by PLWH exposed to older nucleoside reverse transcriptase 

inhibitors suggests that mitochondrial dysfunction may be a driver of adverse ageing seen in older 

PLWH (Dalakas et al., 1990; Arnaudo et al., 1991; Dalakas et al., 2001; Ashar et al., 2015; Hunt & 

Payne, 2020).  

Researchers in the field of ageing with HIV are now giving more attention to the hypothesis that 

mitochondrial dysfunction plays a causative role in adverse ageing phenotypes in PLWH. However, 

few studies have investigated mitochondrial function at the cellular level in tissues heavily 

implicated in the ageing process, such as skeletal muscle. As such, using clinical data and tissue 

collected as part of the MAGMA study, in this chapter I aimed to: 

• Determine if there is mitochondrial CI and CIV deficiency at the individual myofibre level 

in older PLWH compared with age-matched HIV- controls. 

• Determine if there is an alteration in mitochondrial mass at the individual myofibre level 

in older PLWH compared with age-matched HIV- controls.  

• Determine whether skeletal muscle mitochondrial CI and CIV deficiency is associated 

with adverse ageing phenotypes such as frailty and sarcopenia.  

• Determine whether skeletal muscle mitochondrial CI and CIV deficiency is predicted by 

any physical, clinical, or lifestyle factors in older PLWH.   
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6.3 Methods 

6.3.1 Patient cohort  

This study was approved by the research ethics committee (Newcastle and North Tyneside 2 (17-NE-

0015)). Skeletal muscle samples were taken by percutaneous biopsy from HIV-infected males (n = 

30) as well as HIV-uninfected males (n = 15) as part of the MAGMA study (Table 3.1), with patients 

giving prior written permission.  

Control skeletal muscle tissue (for calibration of the multiplex immunofluorescence assay) was 

acquired with prior informed consent from the distal part of the hamstring of people undergoing 

anterior cruciate ligament (ACL) surgery. Approval for this was given by Newcastle biobank (NAHPB 

reference: 042) (described in Section 3.2.3). 

In addition, percutaneous skeletal muscle biopsies from the two mitochondrial disease patients 

described in Section 3.2.4 were also subjected to the multiplex immunofluorescence assay for 

quantification of Complex I (CI) and IV (CIV) deficiency as a positive control group, in order to provide 

additional context to the levels of CI/CIV deficiency observed. 

6.3.2 Multiplex immunofluorescence for the quantification of mitochondrial protein 

level in human skeletal muscle  

Transverse cryo-sections (10µm) were subjected to a validated multiplex immunofluorescence assay 

in order to objectively quantify the abundance of mitochondrial ETC complexes I and IV as well as 

mitochondrial mass within individual myofibres, using the CI + CIV assay described in Section 3.4.2 

(Rocha et al., 2015). 

6.3.3 Image acquisition and analysis for mitochondrial protein level 

Fluorescent images were acquired using a Zeiss Axio Imager M1 and Zen 2011 (blue edition) 

software with a Monochrome Digital Camera (AxioCam MRm) at 20x magnification, as described in 

Section 3.4.4. The ‘intermediate –’, ‘intermediate +’ and ‘deficient’ groups were pooled together to 

create the ‘abnormal’ group (z > -3). 

6.3.4 Statistical analysis  

Statistical analysis was performed in Prism v5.04, IBM SPSS Statistics v23 and Microsoft Excel 2016. 

Graphs were produced in Prism v5.04.  
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Normality was assessed by Shapiro-Wilk tests. Statistical differences in mitochondrial function 

between the HIV+ and HIV- individuals as well as PLWH stratified by frailty/prefrailty and 

sarcopenia/presarcopenia were determined by unpaired t tests for normalised data and Mann-

Whitney tests for non-normal data sets. One-Way ANOVA was used to determine differences in 

mitochondrial parameters between frail, prefrail, and robust PLWH, as well as sarcopenic, 

presarcopenic, and non-sarcopenic PLWH. Fisher’s exact test was performed in order to determine 

differences in mitochondrial deficiency in nominal data sets such as stratification by smoker status. 

Linear regression analysis between mitochondrial dysfunction and clinical as well as body 

composition factors was performed using Pearson’s correlation for normal data, or Spearman’s 

correlation for non-normal data. Finally, multivariate linear regression analysis was undertaken with 

factors of interest. Here, these multivariate models included (1) average myofibre mitochondrial 

mass as the dependant variable, and age, percentage fat mass and proportional CI deficiency as the 

independent variables; (2) proportional CI deficiency as the dependant variable and age as well as 

number of medications as the independent variables. Unstandardised regression coefficients and 

their statistical significance were reported, as well as the fit of the models and how much variance 

(adjusted r2) they accounted for. 

Statistical significance was set at p ≤ 0.05.  
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6.4 Results  

6.4.1 Cohort characteristics  

Patient characteristics for both the HIV+ (n = 30) and HIV- (n = 15) groups are described in Table 5.1 

in Chapter 5. Briefly, the median age of the HIV+ group was 58 years (range 50-85) compared to 59 

years (range 50-70) in the HIV- group. 4 (13%) individuals from the HIV+ group were classified as frail 

according to the FFP assessment, while 15 (50%) were classified as prefrail. None of the HIV- group 

were classified as frail and 7 (53%) HIV- individuals were classified as prefrail. In the HIV+ group, 5 

(17%) individuals were defined as being sarcopenic and 6 (20%) as presarcopenic, whilst 15 (100%) 

were classified as non-sarcopenic in the HIV- group 

In addition, the HIV-related characteristics of the HIV+ individuals are described in Table 5.2 in 

Chapter 5. Briefly, individuals in the HIV+ group were virally-supressed and had restored CD4 counts. 

11 (37%) individuals had previously been exposed to older, supposedly mitochondrially-toxic NRTIs 

(stavudine (d4T), didanosine (ddI), zalcitabine (ddC), zidovudine (AZT)). 9 (30%) were being treated 

with protease inhibitors (PIs) and 11 (37%) were being treated with non-nucleoside reverse 

transcriptase inhibitors (NNRTIs) at time of study visit.  

Skeletal muscle biopsies from two post-mortem mitochondrial disease patients (described in Section 

3.2.4) were included in the multiplex immunofluorescence quantification of mitochondrial function 

in order to add qualitative contextualisation.  
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6.4.2 Skeletal muscle mitochondrial dysfunction in older PLWH 

The HIV+ group (n = 30) had a significantly higher proportion of myofibres with mitochondrial 

dysfunction in the form of CI (p = 0.049, unpaired t test) and CIV (p = 0.001) deficiency compared to 

the HIV- group (n = 15) (Figure 6.1b, c). For a contextual comparison, I also included results from two 

individuals with diagnosed mitochondrial disease (Table 3.2, Section 3.2.4). In general, proportional 

levels of both CI and CIV deficiency were higher in the mitochondrial disease patients than both the 

HIV+ and HIV- groups, although the cases with the highest levels of proportional CI and CIV 

deficiency were comparable with these disease controls (Figure 6.1b, c).  

 

 

Figure 6.1 – Skeletal muscle mitochondrial dysfunction. (A) Representative images of multiplex immunofluorescence  
staining on 10µm skeletal muscle sections from a HIV+ and HIV- individual. Markers include laminin, VDAC1 (mitochondrial 
mass marker), NDUFB8 (CI subunit) and MTCO1 (CIV subunit). Scale bar = 100µm. (B) Dot plot (mean ± SEM) showing 
significantly higher proportion of muscle fibre CI defects in the HIV+ group (n = 30) compared to the HIV- group (n = 15; p = 
0.049). The mitochondrial disease group (n = 2) had a significantly higher proportion of CI defects compared to both the 
HIV+ group (p = 0.04) and HIV- group (p = 0.02). Each dot represents an individual patient. (C) Dot plot (mean ± SEM) 
showing a significantly higher proportion of fibres with CIV deficiency in the HIV+ group compared to the HIV- group (p = 
0.001). The mitochondrial disease group also had a significantly higher proportion of fibres with CIV deficiency compared to 
both the HIV+ (p = 0.01) and HIV- groups (p < 0.0001). (D) Example dot plot of a HIV+ individual depicting the CI and CIV z-
score of each individual fibre. Fibres with a z < -3 were classified as abnormal and z > -3 were classified as normal. Dots are 
coloured depending on mitochondrial mass status: dark blue = very low; light blue = low; pale yellow = normal; orange = 
high and red = very high.  

A 

B C 
D 
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Using a marker for voltage-dependant anion channel 1 (VDAC1) in our multiplex 

immunofluorescence assay allowed for the quantification of the average mitochondrial mass in 

individual myofibres. Here, there was no significant difference in the average skeletal muscle 

mitochondrial mass between the HIV+ and HIV- groups (unpaired t test) (Figure 6.2).  

 

 

Figure 6.2 – Skeletal muscle mitochondrial mass. Dot plot (mean ± SEM) representing average mitochondrial mass for each 
subject. Z-scores were calculated for each individual fibre and the mean score was calculated for each patient. There was no 
significant difference in mitochondrial mass between the HIV+ (n = 30) and HIV- (n = 15) groups (p = 0.16, unpaired t test). 
Each dot represents an individual patient. 
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Finally, unadjusted linear regression analysis was undertaken in both the HIV+ and HIV- groups in 

order to determine if proportional CI and CIV deficiency was significantly associated with each other.  

Here, proportional CI deficiency was highly significantly associated with proportional CIV deficiency 

in both the HIV+ (n = 30; r = 0.61; p < 0.0001) (Pearson’s correlation) and HIV- groups (n = 15; r = 

0.79; p = 0.001) (Figure 6.3a). 

Additionally, there was a strong association between proportional CI deficiency and mitochondrial 

mass in the HIV+ group, although this was not statistically significant (n = 30; r = 0.33; p = 0.074) 

(Pearson’s correlation). The association between proportional CI deficiency and mitochondrial mass 

was also not statistically significant in the HIV- group (n = 15; r = 0.30; p = 0.28) (Figure 6.3b). Nor 

was proportional CIV deficiency significantly associated with mitochondrial mass in either the HIV+ 

(n = 30; r = 0.17; p = 0.37) or HIV- groups (n = 15; r = 0.18; p = 0.51) (Figure 6.3c). 

 

Figure 6.3 – Associations between mitochondrial parameters. Scatter plots depicting the linear regression (Pearson’s 
correlation) between log10(CI abnormal) and (A) log10(CIV abnormal) and (B) VDAC1 z-score; and between log10(CIV 
abnormal) and (C) VDAC1 z-score. Each dot represents an individual patient. Black dots represent HIV+ individuals, and grey 
dots represent HIV- individuals.  * = statistical significance.  
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C 

* * 
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6.4.3 Clinical factors predicting skeletal muscle mitochondrial dysfunction in older 

PLWH 

In order to better understand whether clinical factors (such as age and number of medications), 

body composition, or environmental factors (such as smoker status) predicted the greater skeletal 

muscle mitochondrial dysfunction seen in older PLWH, linear regression analyses were undertaken 

in the HIV+ group (n = 30).  

Results from the various unadjusted linear regression analyses are described in Table 6.1. Of these 

analyses, proportional CI deficiency was significantly predicted by a lower number of medications (n 

= 30; r = -0.42; p = 0.02, Pearson’s correlation) (Figure 6.4e). However, multivariate linear regression 

demonstrated that the association between proportional CI deficiency and number of medications 

was not independent of age (unstandardised regression coefficient = 0.38; p = 0.28, multivariate 

linear regression) (Table 6.1). Indeed, the model fit was not significant (p = 0.10), and subsequently 

only predictive of a small amount of variation in proportional CI deficiency (r2 = 0.094). 

Additionally, average mitochondrial mass in individual myofibres (determined by VDAC1 z-score) was 

significantly predicted by a higher percentage lean mass (r = 0.43; p = 0.0018, Pearson’s correlation) 

(Figure 6.6d), and subsequently a lower percentage fat mass (r = -0.43; p = 0.0018) (Figure 6.6c).  

Mitochondrial mass is known to be linked with both age and OXPHOS deficiency. Hence, in order to 

determine if average myofibre mitochondrial mass was predicted by lower percentage fat mass 

independently of the effect of both age and proportional CI deficiency, a multivariate linear 

regression model was developed with VDAC1 z-score as the dependant variable and age, percentage 

fat mass, and proportional CI deficiency as the independent variables. Here, multivariate linear 

regression confirmed that the association of mitochondrial mass and percentage fat mass was 

independent of both age and proportional CI deficiency (unstandardised regression coefficient = -

0.044; p = 0.043, multivariate linear regression) (Table 6.2). Model fit was marginally above 

statistical significance (p = 0.053), and only predictive of a small amount of variance in VDAC1 z-score 

(r2 = 0.17). 

There were no significant clinical predictors of proportional CIV deficiency in the HIV+ group (Figure 

6.5). 

Finally, supporting previous work in this thesis (Section 4.4.6), unadjusted linear regression analyses 

demonstrated that none of the HIV-related clinical parameters significantly predicted proportional CI 

or CIV deficiency, or mitochondrial mass (Table 6.1).  
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 HIV+ (n = 30) 

 CI abnormal CIV abnormal VDAC1 z-score 

 r p 
adjusted 

p 
r p r p 

Age 0.18 0.33 - 0.33 0.077 0.22 0.25 

BMI (kg/m2) 0.18 0.35 - -0.066 0.73 -0.085 0.66 

Waist 

circumference (cm) 
0.077 0.69 - -0.17 0.37 -0.14 0.45 

# Comorbidities -0.24 0.20 - 0.31 0.093 -0.18 0.35 

# Medications -0.42 0.020 0.28 0.29 0.12 -0.19 0.31 

Polypharmacy* - 0.98 - - 0.66 - 0.49 

% Fat mass+ -0.34 0.064 - -0.31 0.094 -0.43 0.018 

% Lean mass+ 0.34 0.064 - 0.31 0.094 0.43 0.018 

Smokers* - 0.45 - - 0.75 - 0.45 

Alcohol drinkers* - 0.91 - - 0.60 - 0.41 

Recreational drug 

use* 
- 0.54 - - 0.32 - 0.47 

Months since 

diagnosis 
0.27 0.15 - 0.19 0.31 -0.16 0.40 

Months on ART 0.24 0.21 - 0.20 0.30 0.011 0.96 

Months untreated 0.13 0.48 - 0.08 0.67 -0.20 0.30 

CD4 count 

(copies/µl) 
-0.17 0.39 - -0.034 0.87 -0.21 0.29 

Mitochondrially-

toxic NRTIs* 
- 0.98 - - 0.51 - 0.38 

Table 6.1 – Mitochondrial dysfunction and clinical characteristics linear correlation. Table depicting the associations 
between proportional skeletal muscle CI and CIV deficiency in older HIV+ (n = 30) and age-matched HIV- (n = 15) individuals. 
Linear regression and correlation analysis was determined by Pearson’s correlation for normal data and Spearman’s 
correlation for non-normal data (denoted by ^). * = ordinal data in which individuals were stratified by yes/no, and 
differences determined by unpaired t test. + = DXA data missing from 2 HIV- individuals. Statistically significant values are in 
bold. 

 

Dependant 

variable 

Independent 

variables 

Unstandardised regression 

coefficients 
p 

Age 
CI 

deficiency 

% fat 

mass 
Age 

CI 

deficiency 

% fat 

mass 

VDAC1  

z-score 

Age, CI deficiency, 

% fat mass 
-0.004 0.41 -0.044 0. 85 0.18 0.043 

Table 6.2 – Multivariate linear regression models. Table depicting the dependant and independent variables, as well as the 
corrected coefficients and p value outputs from a multivariate linear regression model to determine predictive factors of 
VDAC1 z-score. Statistically significant results are bold.
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Figure 6.4 - Clinical predictors of proportional CI deficiency. Scatter plots showing linear correlation analysis (Pearson’s 
correlation) between proportional CI deficiency and (A) age, (B) BMI (kg/m2), (C) percentage fat mass, (D) percentage lean 
mass;, and (E) number of medications. Each dot represents an individual patient.  
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Figure 6.5 - Clinical predictors of proportional CIV deficiency. Scatter plots showing linear correlation analysis (Pearson’s 
correlation) between proportional CIV deficiency (A) age, (B) BMI (kg/m2), (C) percentage fat mass, and (D) percentage lean 
mass. Each dot represents an individual patient.  

  

A B 

C D 
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Figure 6.6 - Clinical predictors of VDAC1 z-score. Scatter plots showing linear regression analysis (Pearson’s correlation) 
between average VDAC1 z-score and (A) age, (B) BMI (kg/m2), (C) percentage fat mass, and (D) percentage lean mass. Each 
dot represents an individual patient.  
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6.4.4 Physical function outcomes of skeletal muscle mitochondrial dysfunction 

Next, I sought to investigate the relationship between skeletal muscle mitochondrial dysfunction and 

outcomes of the physical function and ageing phenotype assessments (Table 6.3).  

Here, through unadjusted linear regression analyses it was found that proportional CI deficiency did 

not significantly predict any of the respective physical outcomes such as MET score (Figure 6.7a), 

SPPB score (Figure 6.7b), FFP score (Figure 6.7c), grip strength (Figure 6.7d) or ASMI (Figure 6.7e) 

(Pearson’s correlation). 

In addition, proportional CIV deficiency did not significantly predict any of the respective physical 

factors (Figure 6.8a-e). 

Finally, it was also found that mean myofibre mitochondrial mass (determined by VDAC1 z-score) did 

not significantly predict any of the respective physical factors (Figure 6.9a-e). 

 HIV+ (n = 30) 

 CI abnormal CIV abnormal VDAC1 z-score 

 r p r p r p 

MET score^ 0.014 0.94 0.22 0.24 0.26 0.16 

SPPB score^ 0.17 0.38 -0.037 0.84 0.22 0.25 

FFP score^ 0.11 0.094 0.11 0.99 -0.17 0.38 

Grip strength (kg) 0.015 0.94 -0.17 0.36 0.21 0.20 

ASMI (kg/m2) -0.29 0.12 0.14 0.46 0.056 0.77 

Table 6.3 – Mitochondrial dysfunction and physical function parameters. Table depicting the correlation between 
proportional CI and CIV deficiency as well as average VDAC1 z-score and physical function and adverse ageing phenotype 
parameters. ^ indicate non-parametric data. Pearson’s correlation performed on parametric data and Spearman’s 
correlation performed on non-parametric data.  
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Figure 6.7 – Physical performance predictors of proportional CI deficiency. Scatter plots showing linear correlation analysis 
between proportional CI deficiency and (A) MET score^, (B) SPPB score^, (C) FFP score^, (D) grip strength (kg), and ASMI 
(kg/m2). ^ indicates non-parametric data. Correlation for parametric data determined by Pearson’s correlation, and non-
parametric data determined by Spearman’s correlation. Each dot represents an individual patient. 
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Figure 6.8 – Physical performance predictors of proportional CIV deficiency. Scatter plots showing linear correlation 
analysis between proportional CI deficiency and (A) MET score^, (B) SPPB score^, (C) FFP score^, (D) grip strength (kg), and 
ASMI (kg/m2). ^ indicates non-parametric data. Correlation for parametric data determined by Pearson’s correlation, and 
non-parametric data determined by Spearman’s correlation.  Each dot represents an individual patient. 
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Figure 6.9 – Physical performance predictors of myofibre mitochondrial mass. Scatter plots showing linear correlation 
analysis between average VDAC1 z-score and (A) MET score^, (B) SPPB score^, (C) FFP score^, (D) grip strength (kg), and 
ASMI (kg/m2). ^ indicates non-parametric data. Correlation for parametric data determined by Pearson’s correlation, and 
non-parametric data determined by Spearman’s correlation. Each dot represents an individual patient. 
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6.4.5 Skeletal muscle mitochondrial function in frail and sarcopenic PLWH 

I next investigated whether skeletal muscle mitochondrial dysfunction was higher in PLWH with the 

adverse ageing phenotypes of frailty and sarcopenia.  

Therefore, I stratified the HIV+ group (n = 30) into frail (n = 4), prefrail (n = 15), and robust (n = 11), 

as well as into sarcopenic (n = 5), presarcopenic, (n = 6), and non-sarcopenic (n = 19), and compared 

mitochondrial parameters between the respective groups.  

There was no significant difference in proportional CI deficiency between frail, prefrail, and robust 

HIV+ individuals (p = 0.15, one-way ANOVA) (Figure 6.10a). Although the frail HIV+ individuals had 

numerically higher proportional CI deficiency compared to robust and prefrail PLWH, this was not 

statistically significant, most likely due to the small number in the group. There was also no 

significant difference in proportional CI deficiency between sarcopenic, presarcopenic, and non-

sarcopenic HIV+ individuals (p = 0.32) (Figure 6.10b). 

In addition, there was also no significant difference in proportional CIV deficiency between the frail, 

prefrail and robust HIV+ groups (p = 0.17, one-way ANOVA) (Figure 6.10c). Again, the levels of 

proportional CIV deficiency were higher in the frail group compared to both the prefrail and robust 

groups, but due to the small size of the group, this difference was not statistically significant. There 

was also no significant difference in proportional CIV deficiency between the sarcopenic, 

presarcopenic, and non-sarcopenic HIV+ groups (p = 0.46) (Figure 6.10d). 

Finally, there was also no significant difference in average myofibre mitochondrial mass between the 

frail, prefrail, and robust HIV+ individuals (p = 0.29, one-way ANOVA) (Figure 6.10e), or between the 

sarcopenic, presarcopenic, and non-sarcopenic HIV+ individuals (p = 0.076) (Figure 6.10f).  
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Figure 6.10 – Mitochondrial function in adverse ageing phenotypes in older PLWH. Dot plots (mean ± SEM) showing no 
significant difference in log10(CI abnormal) between (A) frail (n = 4), prefrail (n = 15) and robust (n = 11) PLWH, or (B) 
sarcopenic (n = 5), presarcopenic (n = 6) or non-sarcopenic (n = 19) PLWH. log10(CIV abnormal) between (C) frail, prefrail 
and robust PLWH or (D) sarcopenic, presarcopenic and non-sarcopenic PLWH; average VDAC1 z-score between (E) frail, 
prefrail and robust PLWH, or between (F) sarcopenic, presarcopenic and non-sarcopenic PLWH.  
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Similarly to analyses performed in Section 5.4.4, in order to increase the power to detect differences 

between the groups, in combination with the fact that prefrailty and presarcopenia are more 

physiologically related to frailty and sarcopenia than being robust, HIV+ patients classified as prefrail 

(n = 15) were grouped with the HIV+ frail individuals (n = 4) to form the frailty/prefrailty HIV+ group 

(n = 19), and HIV+ subjects classified as presarcopenic (n = 6) were grouped with sarcopenic PLWH (n 

= 5) to form the sarcopenia/presarcopenia HIV+ group (n = 11).  

Interestingly, frail/prefrail HIV+ individuals (n = 19) did not have a significantly higher proportion of 

myofibres with CI (p = 0.72, unpaired t test) or CIV deficiency (p = 0.67) (Figure 6.11a, b) compared 

to robust HIV+ individuals (n = 11). Nor was there a significant difference in average myofibre 

mitochondrial mass, as measured by VDAC1 z-score (p = 0.19) (Figure 6.11c). 

In addition, there was no difference in proportional CI deficiency (p = 0.38, unpaired t test), CIV 

deficiency (p = 0.27), or average myofibre mitochondrial mass (p = 0.50) between 

sarcopenic/presarcopenic PLWH (n = 11) and non-sarcopenic PLWH (n = 19) (Figure 6.11d, e, f).  
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Figure 6.11 – Mitochondrial dysfunction in frail/prefrail and sarcopenic/presarcopenic older PLWH. Dot plots (mean ± 
SEM) showing mitochondrial dysfunction in frail/prefrail HIV+ (n = 19) and robust HIV+ (n = 11) in the form of (A) 
proportional CI and (B) CIV deficiency, in addition to (C) mitochondrial mass (VDAC1 z score). Proportional (D) CI and (E) CIV 
deficiency and (F) mitochondrial mass (VDAC1 z score) in sarcopenia/presarcopenia HIV+ (n = 11) and no-sarcopenia HIV+ (n 
= 19) individuals. Each dot represents an individual patient.  
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6.5 Discussion 

Here, I presented data regarding skeletal muscle mitochondrial dysfunction in adverse ageing 

phenotypes in older HIV+ and HIV- individuals recruited to the MAGMA study. This study is the first 

study to comprehensively investigate skeletal muscle mitochondrial dysfunction (in the form of 

OXPHOS subunit protein deficiency and mitochondrial mass) in the context of the highly 

heterogenous pathophysiology of frailty, sarcopenia, and physical function decline in older PLWH.  

6.5.1 Conclusions 

6.5.1.1 Older PLWH have higher skeletal muscle mitochondrial mass compared to age-

matched HIV- individuals 

Importantly, this cohort study demonstrated that older (≥ 50 years) PLWH have higher levels of 

skeletal muscle mitochondrial dysfunction compared to age-matched HIV- individuals. Notably, this 

increase in CI and CIV deficiency in older PLWH did not seem to be compensated by an upregulation 

in mitochondrial mass. Interestingly, whilst other studies have found higher levels of skeletal muscle 

mitochondrial dysfunction in PLWH compared to HIV-uninfected individuals, this study 

demonstrated mitochondrial defects at the individual myofibre level, in contrast to the tissue 

homogenate level (Jankowski et al., 2019). In addition, as a result of utilising a novel multiplex 

immunofluorescence assay developed in our lab (Rocha et al., 2015), this study is the first to 

objectively quantify and subsequently demonstrate significantly higher levels of CI deficiency as well 

as CIV deficiency in older PLWH compared to age-matched HIV- individuals. Previous studies have 

been limited by only being able to qualitatively quantify cytochrome oxidase (COX) activity at the 

myofibre level through COX/succinate dehydrogenase (SDH) histochemistry (Payne et al., 2011).    

6.5.1.2 Determinants of skeletal muscle mitochondrial dysfunction in older PLWH 

An important aim of this study following the quantification of skeletal muscle mitochondrial 

(dys)function was to investigate whether this mitochondrial dysfunction was predicted by clinical or 

environmental factors in older PLWH, as several of these factors are thought to impair mitochondrial 

function through potential mechanisms such as chronic inflammation and oxidative stress 

(Hollensworth et al., 2000; Voets et al., 2012; Castro Mdel et al., 2012; Andreazza et al., 2010; Sun et 

al., 2016; Harman, 1972). As such, through unadjusted linear regression analyses I demonstrated 

that a greater average myofibre mitochondrial mass was significantly associated with a higher 

percentage of lean body mass and simultaneously associated with a lower percentage of fat body 

mass. As percentage lean and fat body mass are inverses of each other, and the fact that fat mass is 

more detrimental to age-related physiology than lean body mass in PLWH (Erlandson et al., 2017a; 
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Onen et al., 2009), I assessed the association between myofibre mitochondrial mass and percentage 

fat mass after adjustment for skeletal muscle CI deficiency and age. Here, this association remained 

significant after adjustment for these factors, suggesting that a lower proportion of fat tissue 

promotes a more efficient regulation of mitochondrial content in older PLWH, even in the event of 

OXPHOS decline. As increased physical activity is associated with both decreased fat mass and 

enhanced mitochondrial function in the general population (Menshikova et al., 2006; Distefano et 

al., 2018), it could be that greater levels of physical activity were promoting the upregulation of 

skeletal muscle mitochondrial mass. However, the lack of significant association between MET score 

and either CI and CIV deficiency, or mitochondrial mass in the older PLWH suggests that this is not 

the case. Altogether, these findings support previous work demonstrating the harmful effects excess 

fat tissue has on mitochondrial function in the general population (Shetty et al., 2009; Winalawansa, 

2019; Li et al., 2017; Slawik & Vidal-Puig, 2006).  

In addition, in older PLWH, proportional CI deficiency was surprisingly significantly predicted by a 

lower number of medications through unadjusted linear regression analysis. However, through 

multivariate linear regression analysis it was demonstrated that this significant association was 

dependant on age. As older people are generally prescribed with more medications and generally 

have a higher prevalence of comorbidities (Divo et al., 2016), this result makes sense.  

6.5.1.3 Potential other underlying pathophysiological mechanisms underpinning skeletal 

muscle mitochondrial dysfunction in older PLWH in the contemporary ART era 

Importantly, data from a previously discussed chapter of this thesis (Chapter 4) demonstrated that 

there was no difference in skeletal muscle mitochondrial dysfunction between ART-treated PLWH 

who have been exposed to mitochondrially-toxic NRTIs and those who have not, as well as PLWH 

who are on protease inhibitors (PIs) or non-nucleoside reverse transcriptase inhibitors (NNRTIs) 

compared to those who were not. In addition, adjusted multivariate linear regression analysis 

conducted in that chapter demonstrated that there was no significant associations between skeletal 

muscle mitochondrial dysfunction and HIV-related factors (Section 4.4.6). However, a key strength 

of the MAGMA study was that it recruited age-matched HIV+ and HIV- individuals, and so allowed 

for the better understanding of the effect of age on mitochondrial function in older PLWH. 

Therefore, linear regression analyses was again performed in order to assess the predictive effect of 

HIV-related clinical parameters on skeletal muscle mitochondrial function. Importantly, none of the 

HIV-related factors significantly predicted either proportional CI and CIV deficiency, or mitochondrial 

mass. Additionally, previous exposure to older NRTIs that have been shown to induce mitochondrial 

toxicities, or current exposure to PIs or NNRTIs, also did not significantly predict skeletal muscle 

mitochondrial defects. These are important findings, as together with the data presented in a larger 
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cohort in Chapter 4, they comprehensively demonstrate that ART-treated PLWH have higher levels 

of skeletal muscle mitochondrial dysfunction compared to age-matched HIV- individuals, although 

there is no direct effect of previous exposure to older, supposedly mitochondrially-toxic NRTIs on 

skeletal muscle function. Indeed, they suggest that the underlying pathophysiological mechanisms 

behind age-related physiological decline are more likely to be indirect effects of HIV infection, such 

as chronic inflammation, immunosenescence, or oxidative stress (Melov et al., 1999; Zorov et al., 

2014; Rao et al., 2014; Massaad & Klann, 2011; Deeks, 2011; Erlandson et al., 2017a). 

6.1.5.4 Frail and sarcopenic PLWH do not have significantly greater levels of skeletal muscle 

mitochondrial dysfunction than robust and non-sarcopenic PLWH 

Finally, another important experimental aim was to determine whether PLWH with adverse ageing 

phenotypes such as frailty and sarcopenia have excess skeletal muscle mitochondrial dysfunction 

compared to age-matched PLWH who did not have these phenotypes. To do this, I firstly stratified 

the HIV+ group into frail, prefrail and robust groups, as well as sarcopenic, presarcopenic and non-

sarcopenic groups and assessed differences in proportional CI and CIV levels, as well as 

mitochondrial mass. Here, although the frail HIV+ group appeared to have higher levels of 

proportional CI deficiency, this was not statistically significant. This is most likely due to the small 

size of the group meaning analysis was underpowered to detect group differences. Hence, I further 

classified the HIV+ individuals into whether they were defined as frail and prefrail as well as those 

defined as sarcopenic and presarcopenic, as similarly done in a previous study (Kooij et al., 2016), 

and compared proportional CI, CIV levels and mitochondrial mass against robust and non-sarcopenic 

PLWH. Again, I found that there was no significant differences in skeletal muscle mitochondrial 

dysfunction between the experimental groups. These findings indicate that although older PLWH 

have greater levels of skeletal muscle mitochondrial dysfunction compared to age-matched HIV- 

individuals, this mitochondrial dysfunction is not a significant direct causative factor of the greater 

risk of frailty and sarcopenia in PLWH (Onen et al., 2012; Desquilbet et al., 2009; Brothers et al., 

2017; Echeverria et al., 2018). 
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6.5.2 Summary of experimental findings 

 Older PLWH Older HIV-  individuals Conclusions 

Proportional CI and 
CIV deficiency 

• Higher proportional CI 
and CIV deficiency than 
HIV- individuals 

• Highest levels of 
deficiency comparable 
with levels seen in 
mitochondrial disease 
patients 

• Lower proportional CI 
and CIV deficiency than 
HIV+ individuals 

• Highest levels of 
deficiency comparable 
with levels seen in 
mitochondrial disease 
patients 

• Older PLWH have 
significantly higher CI 
and CIV deficiency 
compared to age-
matched HIV- 
individuals. 

Mitochondrial mass • Comparable to HIV- 
individuals 

• Comparable to HIV+ 
individuals 

• No difference in 
average myofibre 
mitochondrial mass 
between older HIV+ 
and HIV- individuals 

Associations with 
clinical factors in older 
PLWH 

• Higher prevalence of medications predicted unadjusted CI deficiency, but not after 
adjustment for age 

• Higher percentage lean mass predicted higher mitochondrial mass independently of 
age and CI deficiency 

• Lower percentage of fat mass predicted higher mitochondrial mass independently of 
age and CI deficiency 

Associations of 
mitochondrial 
deficiency with 
physical factors in 
older PLWH 

• No significant associations  

Mitochondrial 
dysfunction in adverse 
ageing phenotypes in 
older PLWH 

• No difference in mitochondrial dysfunction between frail and robust, or sarcopenic and 
presarcopenic PLWH 

Table 6.4 – Summary of experimental findings. 
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6.5.3 Limitations 

As discussed in Section 5.5, the MAGMA study was an observational study. Due to the fact that 

frailty is dynamic, a longitudinal cohort study in which the participants undertake several study visits 

would allow for a better understanding of the role of skeletal muscle mitochondrial dysfunction in 

the pathophysiology of adverse ageing phenotypes such as frailty or sarcopenia. In addition, both 

the HIV+ and HIV- participants were male, limiting our capabilities to understand the role of skeletal 

muscle mitochondrial dysfunction in adverse ageing phenotypes in older HIV+ women.  

6.5.4 Future work 

As mentioned above, this study was limited by the cohort size and the fact that it was not a 

longitudinal study. Therefore, future work should look to perform these analyses on a larger cohort 

with both older male and female PLWH and ideally at numerous time points. In addition, as the 

prevalence of individuals over 65 years old was small, future studies should look to include more of 

these patients.  

Whilst this study utilised a novel multiplex immunofluorescence assay which allowed the objective 

quantification of CI and CIV deficiency at the individual myofibre level (Rocha et al., 2015), skeletal 

muscle mitochondrial function could also be assessed with other assays (Fraizer et al., 2020; Hunt & 

Payne, 2020). In light of the fact that greater skeletal muscle mitochondrial mass was associated 

with lean body mass, these studies could include homogenate tissue studies which quantify levels of 

enzymes involved in mitochondrial biogenesis, such as PGC-1α, or markers of other mitochondrial 

dynamics such as fission and fusion molecules. Additionally, investigating the levels of other OXPHOS 

complexes III and V, or levels of proteins and enzymes involved in other forms of mitochondrial 

metabolism such as citrate would be of interest.  

As mitochondrial dysfunction was not significantly predictive of adverse ageing phenotypes in older 

PLWH, I subsequently went on to investigate other aspects of age-associated skeletal muscle 

pathology and their potential role in adverse ageing phenotypes in older PLWH in the following 

chapter.  
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Chapter 7 – Assessment of age-related skeletal muscle 

pathophysiological mechanisms in older PLWH  

7.1 Introduction 

The average age of the HIV-infected population is increasing, and the prevalence of adverse ageing 

phenotypes such as frailty and sarcopenia is also greater in the HIV+ population compared to the 

age-matched general population (Centers for Disease Control and Prevention, 2013; Desquilibet et 

al., 2007; Piggott et al., 2016; Kooij et al.,2016; Echeverria et al., 2018).  

Both frailty and sarcopenia are known to be a multisystem conditions involving the metabolic, 

musculoskeletal, neuroendocrine, immune, and cognitive systems (Clegg et al., 2013; Fried et al., 

2001). Although the exact pathophysiological mechanisms underpinning frailty have yet to be fully 

elucidated, factors such as chronic inflammation (Soysal et al., 2016; Leng et al., 2007), 

immunosenescence (Dihn et al., 2019), cell senescence (Lehman et al., 2018; Xu et al., 2018), 

decreased stem cell availability (Sousa-Victor et al., 2016; Fry et al., 2015; Gonen & Toledana, 2014; 

Larrick & Mendelson, 2017), insulin resistance (Cacciatore et al., 2013; Hubbard et al., 2010; Perez-

Tasigchana et al., 2017), and mitochondrial dysfunction (Ferrucci & Zampino, 2020; Ashar et al., 

2015; Andreux et al., 2018) have been implicated as causative factors. In addition, declines in 

mitochondrial function are known to contribute to the pathogenesis and pathophysiology of each 

respective factor (Ferruci & Zampino, 2020).  

Age-related declines in skeletal muscle function is widely acknowledged to be a significant causative 

factor in both frailty and sarcopenia (Mitchell et al., 2012; Cruz-Jentoft et al., 2019). Whilst many of 

the pathophysiological factors are known, such as changes in fibre type composition (Murgia et al., 

2017; Ubaida-Mohien et al., 2019), intramyocellular lipid accumulation (St-John-Pelletier et al., 2017, 

lipofuscin accumulation (Reeg & Grune, 2015), or decreased stem cell prevalence (Fry et al., 2015; 

Lopez-Otin et al., 2013), no previous studies have investigated the specific link between these factors 

and the potential role they play in the context of frailty and sarcopenia in the older HIV+ population.  

Whilst the preceding chapters have investigated adverse ageing phenotypes in older PLWH (Chapter 

5) and the impact of skeletal muscle mitochondrial dysfunction in these individuals (Chapter 6), this 

chapter aims to better understand the role of several other potential pathophysiological  processes 

affecting skeletal muscle, and the role that these factors may play in adverse ageing phenotypes in 

older PLWH.   
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7.1.1 Fibre type composition 

Skeletal muscle fibres are multinucleated single cells, and in human skeletal muscle there are three 

types of fibres – one ‘slow twitch’ (type I) and two ‘fast twitch’ (type IIa and IIx). Each respective 

fibre type is composed of specific isoforms of myosin heavy chain (MHC), and this determines the 

fibre type functions, contractile capabilities and metabolic profile (Scott et al., 2001).  

Type I fibres are slow twitch due to their oxidative metabolism, while type IIa fibres are composed of 

a mix of slow and fast twitch MHCs, and type IIx are fast twitch and so completely glycolytic (Burke 

et al., 1971; Berchtold et al., 2000). Due to their oxidative metabolism, type I fibres have a higher 

abundance of mitochondria, mtDNA, mtrRNA, and mtmRNA compared to both type IIa and type IIx 

fibres, and thus have a higher oxidative capacity (Howald et al., 1985; Picard et al., 2012; Picard et 

al., 2008). As expected, there is a higher activity of PGC-1a in type I fibres, and it has been suggested 

that PGC-1a expression could drive the conversion of the fast twitch fibres into type I fibres through 

upregulation of various transcription factors (calcineurin signalling; Mef2; MAPK signalling) (Lin et 

al., 2002; Olson et al., 2008; Murgia et al., 2017). Adult skeletal muscle displays impressive plasticity, 

and as well as in response to degeneration from ageing, fibre type conversion and increase in 

mitochondrial content can occur in response to endurance training and mechanical overload (Chin, 

1998; Olson, 2008; Nielsen et al., 2010).  

Importantly, the selected atrophy of certain fibres and fibre type switching occurs with ageing 

(Larsson et al., 2019). The proportion of type I fibres increases with age, whilst the proportion of 

type IIa and IIx decrease with age (Brunner et al., 2007; Grimby, 1995; Murgia et al., 2017; Ubaida-

Mohien et al., 2019; Roberts et al., 2018; Verdijk et al., 2009; 2010; 2012; 2014; McKay et al., 2012; 

2013), and this is suspected to contribute to frailty and prefrailty (St-Jean Pelletier et al., 2017; 

Sonjak et al., 2019). Whilst the exact mechanisms are unknown, it has previously been demonstrated 

that there is a general upregulation in the expression of ribosomal proteins in type I fibres, and a 

simultaneous downregulation in their expression in both type IIa and IIx fibres (Rose et al., 2009), as 

well as increased denervation with age (Rowan et al., 2012). This suggests a decline in sarcomere 

quality control in both type IIa and IIx fibres. Another alternative mechanism could be the declining 

fuel sources available to fast twitch fibres with age. As such, fast twitch fibres contain a higher 

concentration of glycogen (required for glycolysis) than slow twitch fibres, and muscle glycogen 

contents are known to decrease with age (Nielsen et al., 2011).  

As mentioned previously, skeletal muscle mass and strength decline with age. At the cellular level, 

larger fibres are commonly the more glycolytic type IIa and IIx fibres, indicating an inverse 

relationship between VO2max and fibre size (Van Der laarse et al., 1998). Muscle fibre size has also 
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been shown to decrease with age, although this decrease primarily occurs in both type II fibres 

compared to type I fibres (St-Jean Pelletier et al., 2017; Sonjak et al., 2019). This could be due to the 

fact that the fast twitch fibre types are generally smaller (Dreyer et al., 2006; Van Der Laarse et al., 

1998). As type II fibres are primarily glycolytic and heavily involved in resistance activities, this age-

related decrease in fibre size has been suggested to contribute to the decline in muscle function with 

age (Miljkovic et al., 2015). In addition to the decrease in average fibre size with age, the total 

number of muscle fibres also decreases with age, suggesting an age-related increase in fibre atrophy 

(Lexell et al., 1983).  

A recent investigation into the proteomics of the fibres type in both old and young individuals 

demonstrated a reduction in the expression of OXPHOS complexes in both slow and fast twitch 

fibres with age, although this was more pronounced in the fast twitch fibres (Murgia et al., 2017). In 

addition, the expression of proteins involved in regulating mitochondrial dynamics such as MFN2 

and OPA1 (involved in mitochondrial fusion) is decreased in older fibres, whilst the expression of 

proteins involved in proteolysis and autophagy are increased. Finally, enzymes involved in the TCA 

cycle were also elevated in older fibres. This coincided with the age-related increase in the 

expression of proteins involved in glycolytic metabolism in type I fibres, indicating a general decline 

in skeletal muscle mitochondrial homeostasis with age (Murgia et al., 2017; Murgia et al., 2019). As a 

result, both skeletal muscle oxidative function in the form of OXPHOS complex prevalence, as well as 

fibre type proportions, were investigated in a cohort of older PLWH in this study.  

Type I fibres are more likely to undergo hypertrophy compared to type II fibres. One reason for this 

is due to the fact that the highly oxidative type I fibres contain more myonuclei per mm of fibre 

length than the glycolytic fibres, and hypertrophy is dependent on newly formed myonuclei (Sayegh 

& Lajtha, 1989). In addition, a higher proportion of type I MHC mRNA compared to type IIa MHC 

mRNA, as seen in type I fibres, is associated with a faster rate of protein synthesis and better 

regulated protein homeostasis (Toth & Tchernof, 2006). Interestingly, type I fibres have a higher rate 

of transcription and translation than type IIa or IIx fibres (Habets et al., 1999).  
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7.1.2 Skeletal muscle satellite cell decline with age  

Declines in tissue homeostatic and regenerative capacity are a common characteristic of ageing, 

which is driven at the cellular level by the reduction in functioning stem cell capacity (Jones & Rando, 

2011; Dorshkind et al., 2009). Tissue repair and regular homeostasis in adults requires a functioning 

population of undifferentiated pluripotent stem cells within fully differentiated tissue. These stem 

cells are contained in a systemically controlled microenvironment termed the ‘niche’, where various 

trophic and growth factors, as well as cytokines, regulate and maintain the stem cells (Jasper & 

Kennedy, 2012).  

In skeletal muscle, stem cells are termed satellite cells (SCs) and are located beneath the basal 

lamina of mature myofibres (Mauro, 1961). SC niches are established in early development and 

remain in a quiescent state, characterised by expression of the paired-box protein (Pax7), until 

induced by injury or stress (Yin et al., 2013; Dell’Orso et al., 2019). In response to injury or stress, 

these Pax7+ SCs become activated and begin to proliferate, before committing to one of three 

pathways: (a) exiting the cell cycle; (b) differentiation and fusion in order to repair damaged 

myofibres or form new myofibres, or (c) self-renewal in order to replenish and maintain the SC pool 

(Weissman, 2000). In addition, the myogenic regulatory factors Myf5 and MyoD, which are involved 

in embryonic muscle development, are required for skeletal muscle regeneration in adults 

(Yamamota et al., 2018). In the past few years single cell RNA sequencing and proteomics have 

confirmed the heterogeneity of SCs within SC pools in normal resting adult muscle, and has 

confirmed the presence of the core cell types -  quiescent SCs, activated SCs, primary myoblasts and 

committed progenitors (Porpiglia et al., 2017; Rubenstein et al., 2020; Dell’Orso et al., 2019; Barruet 

et al., 2020).    

With regards to pathway (b), quiescent Pax7+ SCs become activated, enter the cell cycle and acquire 

MyoD expression, which facilitates their expansion. Next, activated SCs will then either commit to 

differentiation, and in doing so downregulate Pax7 expression, or alternatively return to quiescence 

in the niche by losing MyoD expression and undertake MyoD-induced Myogenin activation (pathway 

(c)). Differentiating SCs then further proliferate and express Myogenin, which in combination with 

other myogenic differentiation factors such as myocyte enhancer factor 2 (Mef2), activates 

downstream genes. This allows differentiated myoblasts to fuse with either an existing fibre or 

contribute to the development of new and growing myotubes (Almada & Wagers, 2016) (Figure 7.1).  

As mentioned above, ageing is characterised by the decline in stem cell function (Lopez-Otin et al., 

2013). The regenerative potential of SCs has been shown to decline with age, and this decline is 

particularly pronounced in sarcopenic muscle, where there is an increased formation of fibrotic 
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tissue (Zwetsloot et al., 2013; Sousa-Victor et al., 2014; Fry et al., 2015). The consequences of 

dysfunctional SC dynamics will reduce the individual’s capacity to respond to hypertrophic stimuli 

such as exercise, or respond to stressors and injury (Blau et al., 2015; Cartee et al., 2016). 

Interestingly, work from in vitro studies has demonstrated that Pax7 null muscles are smaller, 

contain less nuclei, have a narrower diameter compared to normal Pax7+ SCs, and have an earlier 

mortality (Oustanina et al., 2004; Kuang et al., 2006). 

7.1.2.1 Mechanisms of age-related Pax+ SC decrease 

Whilst the exact mechanism for the age-related decline in skeletal muscle SCs is yet to be fully 

elucidated, several mechanisms have been proposed. These include changes in the niche leading to 

poor trophic signalling response, or declines in the systemic signalling modulation (Conboy et al., 

2005; Brack et al., 2007; Rando & Chang et al., 2012; Carlson et al, 2009). The underlying genetic 

mechanisms for these phenomena are the increased expression of genes associated with FOXO 

regulation, which is responsible for atrophy. In addition, aged SCs have abhorrently altered genes 

associated with mitochondrial function and protein homeostasis (Pietrangelo et al., 2009; Bortoli et 

al., 2003). Herein, a recent in vitro study demonstrated that SCs with a higher burden of somatic 

mutations proliferate and differentiate slower than SCs with a lower mutational burden (Franco et 

al., 2018). Alternatively, aged SCs display declines in Notch signalling. This is due to the age-

associated downregulation of Notch ligands, which are responsible for regulating the proliferation of 

activated SCs (Conboy et al., 2003). These age-related changes have been shown to decrease the 

activation, proliferative and differentiation potential of SCs (Shadrach & Wagers, 2001; Roth et al., 

2000; Shefer et al., 2006; Day et al., 2010; Charge et al., 2002).  

Additionally, the proportion of Pax7+ SCs in skeletal muscle is roughly 30% at birth but falls to 

roughly 5% in adults and 2% in older mice (Gopinath & Rando, 2008).  

Age-related increases in cell senescence and apoptosis are also known to affect SC populations. Age-

associated decline in the proliferation potential and function of stem cells has been shown to be 

associated with increased senescence (Sousa-Victor et al., 2014) and subsequently attenuated by 

ablation of p16INK4a (Janzen et al., 2006), whilst telomere shortening has been reported in several 

stem cell compartments (Flores et al., 2008). In addition, age-related DNA damage accumulation 

impairs several mechanisms of SC function such as quiescence, self-renewal, and regeneration (Rossi 

et al., 2007; Sousa-Victor et al., 2014). Interestingly, SCs have been shown to enter alternative 

differentiation programmes such as those towards adipogenic or fibrogenic fates, with increasing 

frequency with age, thereby reducing the functional capacity of the niche whilst simultaneously 
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increasing adiposity and fibrosis in skeletal muscle, both of which significantly contribute to 

sarcopenia and frailty (Taylor-Jones et al., 2002).   

The final set of factors that affect SC function with age are changes in extrinsic signals from the SC 

microenvironment. In particular, age-related declines in transforming growth factor β inhibit SC 

proliferation by altering Notch signalling (Baltgalvis et al., 2008), whilst declines in Wnt, responsible 

for differentiation following Notch-dependant proliferation, and Transforming Growth Factor (TGF- 

β) signalling have also been demonstrated in aged individuals (Brack et al., 2007; Conboy et al., 

2003; Conboy et al., 2005; Carlson et al., 2009).  

Adult SC niches are often under hypoxic conditions and so utilise glycolysis as a metabolic pathway 

when quiescent (Suda et al., 2011; Escribese et al., 2012; Chandel et al., 2016). When undergoing 

proliferation and differentiation, myoblasts switch from glycolysis to OXPHOS. This metabolic switch 

is mediated by high levels of mitophagy (Domenech et al., 2015; Esteban-Martinez et al., 2017; 

Rajasekaran et al., 2020). Differentiation can also be impaired by the age-associated dysregulation of 

redox status and oxidative stress (Rajasekaran et al., 2020). Collectively, these factors suggest that 

the age-related dysregulation of mitochondrial dynamics could have an adverse effect on SC 

function in adult skeletal muscle, hence why I investigated pax7+ SC prevalence and skeletal muscle 

mitochondrial dysfunction in the form of OXPHOS complex deficiency in older PLWH. 

Finally, SCs require a tightly coordinated regulation of epigenetic modifications, such as DNA 

methylation (Carrio et al., 2015; Carrio et al., 2016), histone modifications (Asp et al., 2011), and 

transcription factor activation of MRFs via specific muscle miRNA (myomiRs) (Chen et al., 2006; Chen 

et al., 2010; Rao et al., 2006) in order retain SC niche dynamics and function. Therefore, the age-

related decline in epigenetic regulation contributes to the dysregulation of SC niches with age. 

Altogether, previous research in the field of muscle stem cells and ageing has demonstrated that 

there are various factors that contribute to the  age-related decline of Pax7+ SCs. However, in this 

study I will be focusing on whether age-related declines in skeletal muscle mitochondrial function 

contribute to muscle stem cell declines, and whether these factors predict physiological decline and 

adverse ageing phenotypes in older PLWH.   
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Figure 7.1 – Lineage progression of muscle fibre formation.  
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7.1.3 Neuromuscular junction decline with age 

Age is associated with a decline in neurophysiological functions, and this decline is implicated in the 

progressive loss of muscle mass and strength with age.  

Autopsy and clinical studies have demonstrated that ageing skeletal muscle undergo greater levels 

of denervation, which leads to a loss of muscle mass and function (Hepple & Rice, 2016; Mosole et 

al., 2014; Messi et al., 2016; Rowan et al., 2012). Denervation is regularly compensated by a re-

innervation programme which aims to replace the damage from denervation in a continuous cycle. 

As individuals age the rate of reinnervation deteriorates and denervated fibres thus become 

apoptotic. This leads to muscle atrophy and contractile dysfunction (Rowan et al., 2012; Gonzalez-

Freire et al., 2014). This ageing phenomenon has been supported by studies showing the age-

dependant increase in muscle fibres positive for denervation-responsive sodium channels (Rowan et 

al., 2012) (Figure 7.2). The denervation-reinnervation cycle is also an important process as it can 

alter fibre type conformations and remodels the spatial domain of motor units (Hepple & Rice, 

2016). 

Mitochondria play important roles in the NMJ, as they provide energy and act as the buffer for the 

large calcium ion loads needed to conduct an action potential (Barrett et al., 2011). Mitochondrial 

abnormalities have been identified in the pre-synaptic region of the NMJ. These abnormalities 

include cristae swelling and fragmentation, formation of megamitochondria in aged rats, and 

reduction in mitochondrial respiratory capacity. Importantly, these factors appear to correlate with 

denervation (Garcia et al., 2013; Spendiff et al., 2016). In axon terminals that contain abnormal 

mitochondria there is a reduction in ETC efficiency, an increase in ROS and an increased 

susceptibility to permeability transition (Garcia et al., 2013; Trounce et al., 1989; Hepple & Rice, 

2016). Whilst it is well understood how age-related mitochondrial abnormalities may contribute to 

NMJ denervation, the extent of which it actually contributes to the physiology of age-related 

declines remain controversial. Hence, a study of aged human limb segments found that 95% of 

muscle fibre segments with high levels of pathogenic mtDNA mutations did not exhibit atrophy (Bua 

et al., 2006). In contrast, an alternative study of post-mortem spinal cord motoneurons of elderly 

individuals found evidence of mtDNA depletion, but not mtDNA deletions (Rygiel et al., 2014).  

As it has been difficult to study the dynamics of the NMJ in humans, several mouse models originally 

developed to study neurodegenerative diseases have been increasingly utilised. One of the foremost 

mouse models is one with a homozygous deletion of the Cu/Zn superoxide dismutase (Cu/Zn SOD), 

which develops age-related muscle atrophy as a result of mitochondrial dysfunction, a switch to type 

I fibres, increased ROS, and exaggerated alternations in the NMJ (Sakellariou et al., 2011).  
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Figure 7.2 – Primary factors involved in neuromuscular junction decline with age. Factors can be broadly defined into the three categories of mitochondrial dysfunction, neurodegenerative, 
and inflammatory factors.
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7.1.4 Skeletal muscle insulin resistance  

Under basal conditions, skeletal muscle is responsible for approximately 80% of insulin-stimulated 

glucose uptake as well as regulation of several metabolic functions (Petersen et al., 2002; Petersen 

et al., 2007). Insulin resistance (IR) is defined as the decline in the ability of insulin to stimulate 

glucose uptake from peripheral tissues, such as skeletal muscle and the liver. 

In physiological conditions, insulin promotes glucose uptake via the canonical IRS-PI3K-Akt pathway 

as well as stimulating glucose transported type (GLUT) 4 translocation to the membrane by 

inactivating the Akt substrate 160 (AS160). This in turn promotes GLUT4 fusion with the plasma 

membrane and subsequent uptake of glucose (Sakamoto & Holman, 2008) (Figure 7.3).  

Skeletal muscle IR is primarily caused by the prolonged exposure to high levels of fatty acids such as 

palmitic and stearic acids (Hirabara et al., 2010; Yuzefovych et al., 2010). In brief, this leads to 

oxidative stress, alterations in gene transcription, as well as increases in inflammation and 

mitochondrial dysfunction (Hirabara et al., 2007; Griffin et al., 1999; Randle et al., 1963; Calvalho-

Filho et al., 2005). 

The first proposed mechanism for the pathogenesis of skeletal muscle IR was from Randle and 

colleagues, who demonstrated that elevated fatty acid oxidation increased acetyl-CoA production. 

Elevated levels of acetyl-CoA then inhibited pyruvate dehydrogenase activity and increased citrate 

levels. Next, citrate in combination with a higher ATP:ADP ratio inhibited phosphofructokinase, 

which subsequently reduced glucose flux and resulted in hexokinase II inhibition, increased cellular 

glucose content, and therefore a reduction in glucose uptake (Randle et al., 1963; Randle, 1998; 

Dresner et al., 1999). This finding has been further supported by several in vivo and in vitro studies 

(Jenkins et al., 1988; Boden & Chen, 1995; Griffin et al., 1999; Roden et al., 1996; Rothman et al., 

1992).  

Several studies have additionally demonstrated the ability of saturated fatty acids to alter insulin 

signalling (Hirabara et al., 2010; Roden et al., 1996; Hawley et al., 2000; Savage et al., 2007). As such, 

elevated levels of saturated fatty acids have been shown to reduce the activation of PI3-kinase, JNK, 

mTOR, and Akt signalling pathway activation due to decreased Insulin Receptor Substrate 1 (IRS-1) 

phosphorylation (Yu et al., 2002, Kim et al., 2000). These signalling pathways are involved in growth 

and glucose sensitivity and so decreased activation of these signalling pathways subsequently 

contribute to declines in insulin sensitivity and tissue dysfunction (Zisman et al., 2000).  

Another pathophysiological mechanism underpinning fatty acid-induced IR is the induction of 

lipotoxicity. This occurs as a result of levels of circulating fatty acids exceeding uptake and storage 
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capabilities in white adipose tissue (Consitt et al., 2009). This lipotoxicity and increased levels of 

circulating fatty acids and fatty acid derivatives such as diacylglycerol, ceramides, triacylglycerol and 

sphingosines are associated with glucose intolerance and therefore IR (Chavez et al., 2003; Holland 

& Summers, 2008; Lipina & Hundal, 2011).  

Increased levels of circulating fatty acids also increase the activation of inflammatory pathways 

through the interaction with members of the Toll-like receptor (TLR) family, in addition to increasing 

the production and secretion of cytokines such as IL-6, IL-1 and TNF-α (Haversen et al., 2009; Wen et 

al., 2011; Dali-Yousef et al., 2013). One example is the increased activation of the NF-κB pathway in 

skeletal muscle via JNK and IKK complex activation, which indirectly promotes IRS-1 inhibition 

(Hotamisiligil et al., 1993). Importantly, increased macrophage and T cells levels have also been 

demonstrated in skeletal muscle of type 2 diabetes mellitus (T2DM) and obese-induced IR patients 

(Khan et al., 2015; Varma et al., 2009; Patsouris et al., 2014; Fink et al., 2014), and a mice fed with a 

high-fat diet to induce IR also exhibited increased accumulation of skeletal muscle immune cells, 

indicating increased inflammation in IR (Olefsky & Glass, 2010; Patsouris et al., 2014; Nguyen et al., 

2007; Fink et al., 2013; Hong et al., 2009; Lee et al., 2011). Importantly, immune cell accumulation 

and increased TNF-α signalling have both been shown to adversely impact IR by contributing to the 

inhibition of IRS-1 signalling (Khan et al., 2015; Austin et al., 2008; Schmitz-Peiffer & Biden, 2008). 

7.1.4.1 Links between age-related mitochondrial dysfunction and insulin resistance  

One of the most significant responses to increased saturated fatty acid levels is the alteration in 

gene expression. Examples include alterations to enzymes involved in the glycolysis pathway such as 

pyruvate dehydrogenase kinase isozyme 1 (PDK-1) and lactate dehydrogenase (LDHA) (Xu et al., 

2006; Lopez et al., 2004). Additionally, the downregulation of PCG-1α expression, as well as 

downregulation of mtDNA genes encoding OXPHOS complexes (Sparks et al., 2005; Heilbronn et al., 

2007) and other genes involved in regulating mitochondrial function, such as NRF-1 and NRF-2, also 

occurs (Scarpulla, 2008). Taken together, these findings indicate that altered gene expression in 

response to increased levels of saturated fatty acids results in the dysregulation of normal 

mitochondrial and metabolic function, resulting in decreased insulin sensitivity and therefore IR. As a 

result, in this study I investigated intramyocellular lipid accumulation and ETC CI and CIV prevalence 

in the context of adverse ageing phenotypes in older PLWH.  

Another important pathogenic factor is increased ROS production and oxidative stress. ROS are 

involved in several signalling pathways implicated in modulating insulin sensitivity and other 

metabolic functions, and so significantly elevated ROS levels are associated with impaired IRS-1 

activation and therefore decreased GLUT4 transcription and function (Bloch-Damti & Bashan, 2005; 
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Anderson et al., 2009). In addition, oxidative stress causes molecular damage to proteins and DNA, 

which will lead to the abhorrent processes described above. Taken together, imbalances to the 

redox potential will result in impaired glucose tolerance (Rains & Jain, 2011). This theory has been 

supported by in vitro studies which demonstrated the reduction in insulin-stimulated glucose uptake 

in response to elevated H2O2 levels (Maddux et al., 2001). This is also supported by the 

demonstration of elevated ROS levels in cellular models for IR (Houstis et al., 2006), and the fact that 

overexpression of the antioxidant mitochondrial superoxide dismutase (MnSOD) in rodent models 

improved insulin sensitivity and glucose uptake (Hoehn et al., 2009; Boden et al., 2012). Importantly, 

T2DM, metabolic syndrome and obesity are all associated with increased ROS in skeletal muscle 

(Abdul-Ghani et al., 2008; Bonnard et al., 2008; Kumashiro et al., 2008).  

Significantly, several studies have demonstrated a decline in mitochondrial content and function in 

T2DM and insulin-resistant obese individuals (Holloway et al., 2007; Schrauwen-Hinderling et al., 

2007). Decreased mitochondrial fatty acid oxidative capacity was also demonstrated in primary 

myocytes derived from T2DM patients (Kim et al., 2000; Hulver et al., 2003; Ukropcova et al., 2005), 

and humans and rats supplemented with a high-fat diet displayed decreases in PGC-1 signalling, 

oxygen consumption and ATP synthesis (Brehm et al., 2006; Sparks et al., 2005; Desco et al., 2002; 

Erdei et al., 2006; Szendroedi et al., 2009). One of the pathogenic mechanisms underpinning these 

abnormalities is the increased prevalence of mtDNA mutations in T2DM and insulin-resistant obese 

individuals (Lim et al., 2001; Guo et al., 2005; Juo et al., 2010). These could cause alterations in 

mitochondrial homeostasis and ultimately lead to increased inflammation and oxidative stress, as 

mentioned above. As such, fatty acid induced mitochondrial fission has been shown to be associated 

with reduced insulin-stimulated glucose uptake. Finally, a recent study demonstrated lower 

mitochondrial oxidative capacity (as measured by 31P-MRS) was associated with a more severe 

HOME-IR score, as well as decreased insulin sensitivity (Fabrri et al., 2017). This finding is supported 

by other patient-based studies which have shown the positive correlation between mitochondrial 

activity and insulin sensitivity (Szendroedi et al., 2009; Szendroedi et al., 2014). 
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Figure 7.3 – Normal insulin signalling and insulin signalling in IR muscle. (A) Insulin binds to the insulin receptor, which subsequently induces its conformational change and phosphorylation, 
leading to the recruitment and phosphorylation of insulin receptor substrate (IRS) and Shc proteins. Shc then activates the RAS/RAF/MAPK pathway which leads to the upregulation in mRNA 
translation and protein synthesis. IRS activates the PI3K/AKT signalling pathway which leads to mitochondrial-induced gluconeogenesis as well as cell growth and differentiation, and glycogen 
synthesis. In addition, this pathway induces the production of GLUT4 transporters and increased GLUT4 signalling. (B) In the presence of increased free fatty acids there is a decline in baseline 
insulin signalling due to increased competition for the insulin receptor. This prevents the signalling pathways activated in normal insulin signalling and thus prevents the downstream effects of 
insulin signalling. In addition, accumulation of FFAs leads to increased inflammation, ROS production and lipids involved in lipotoxicity.

A B 
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7.1.5 Lipofuscin accumulation  

Lipofuscin granules are autofluorescent pigments composed of highly oxidised, cross-linked lipids 

and misfolded proteins (Hohn et al., 2010; Konig et al., 2017; Rodolfo et al., 2018). Due to the highly-

oxidised nature of lipofuscin granules, they cannot be degraded and so accumulate with age in 

lysosomes and cytoplasm in post-mitotic tissues such as neurons, cardiac and skeletal muscle (Brunk 

& Terman 2002, Hohn & Grune 2013, Moreno-Garcia 2018).  

Previous studies have indicated that lipofuscin accumulation accentuates age-related 

pathophysiological factors by inhibiting the proteasome, and therefore proteolytic removal of 

damaged proteins - leading to an increase in ROS production, cytotoxicity and inflammation (Reeg & 

Grune, 2015). Lipofuscin accumulation in lysosomes also adversely impacts protein homeostasis and 

decreases the efficiency of autophagy, which can lead to the inefficient clearance of damaged 

mitochondria (Terman & Bunk 2004; Ryhanen et al., 2009; Hohn et al., 2011; Reeg & Grune, 2015; 

Terman et al., 2010). Both these mechanisms lead to further oxidation of proteins and lipids, 

increasing the formation and accumulation of lipofuscin pigments, and subsequent dysregulation of 

lysosomal activities. In addition, previous studies have demonstrated that the accelerated 

accumulation of lipofuscin is linked to the pathogenesis of Parkinson’s disease (Ulfig, 1989) and 

Alzheimer’s Disease (Mountjoy et al., 2005). 

Although not extensively proven, Terman and Brunk postulated the ‘mitochondrial-lysosomal axis 

theory of aging’, which states that the incomplete degradation of mitochondria through mitophagy 

is the primary cause of lipofuscin accumulation (Brunk & Terman, 2002; Terman et al., 2010; Konig et 

al., 2017).  
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7.2 Experimental aims  

Age-related decline in skeletal muscle function is recognised as one of the significant causative 

factors in adverse ageing phenotypes seen in the general population and PLWH (Mitchell et al., 

2012; Cruz-Jentoft et al., 2019).  

Whilst numerous observational and longitudinal cohort studies have identified several risk factors 

that contribute to the age-related decline in skeletal muscle function, such as mitochondrial 

dysfunction and intramyocellular lipid accumulation (IMCL), the underlying pathophysiological 

mechanisms remain not fully understood. In addition, few studies have investigated the level and 

role of several of these skeletal muscle pathophysiological factors in the ageing with HIV setting. 

Therefore, in this study I sought to: 

• Determine the prevalence of several age-related skeletal muscle pathophysiological 

factors including IMCL, quiescent stem cell prevalence, fibre type composition, fibrosis, 

lipofuscin accumulation, and the proportion of regenerated and degenerated fibres, in 

older PLWH compared with age-matched HIV- individuals. 

• Determine whether skeletal muscle CI and CIV deficiency as well as mitochondrial mass 

is predictive of these age-related skeletal muscle pathophysiological factors in older 

PLWH.  

• Determine the associations between these pathophysiological skeletal muscle factors, 

and whether they are predicted by any of the clinical, HIV-related, physical, or lifestyle 

parameters.   

• Determine whether any of these pathophysiological factors are associated with adverse 

ageing phenotypes in older PLWH. 
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7.3 Methods 

7.3.1 Patient cohort  

This study was approved by the research ethics committee (Newcastle and North Tyneside 2 (17-NE-

0015)). Skeletal muscle samples were taken by percutaneous biopsy from older (≥ 50 years) HIV-

infected males (n = 30) as well as HIV-uninfected males (n = 15) as part of the MAGMA study (Table 

3.1), with patients giving prior written permission.  

7.3.2 Immunofluorescence and fluorescence histochemistry 

7.3.2.1 Duplex fluorescence histochemistry for the quantification of intramyocellular lipid 

accumulation 

Fluorescence histochemistry was carried out on 10μm frozen transverse muscle sections in order to 

detect and quantify intramyocellular lipid droplets in skeletal muscle fibres, as described in Section 

3.4.6. 

7.3.2.2 Image acquisition and analysis of intramyocellular lipid accumulation 

Fluorescent images were acquired using a Zeiss Axio Imager M1 and Zen 2011 (blue edition) 

software with a Monochrome Digital Camera (AxioCam MRm) at 20x magnification, and analysed as 

described in Section 3.4.7. 

7.3.2.3 Duplex immunofluorescence for the quantification of Pax7+ satellite cells  

10µm cryosections were subjected to a duplex immunofluorescence staining assay, as described in 

Section 3.4.8 in order to quantify the prevalence of quiescent Pax7+ satellite cells. 

7.3.2.4 Image acquisition and analysis for quantification of Pax7+ satellite cells 

Fluorescent images were acquired and the prevalence of Pax+ satellite cells was quantified as 

described in Section 3.4.9. Briefly, the number of myofibres per biopsy as well as the prevalence of 

Pax7+ cells (characterised by colocalised staining in the DAPI and Pax7 channels) was quantified in 

each subject in order to determine the proportion of Pax7+ satellite cells per 100 fibres.  

7.3.2.5 Multiplex immunofluorescence for fibre type quantification  

Multiplex immunofluorescence for the quantification of fibre types I, IIa, and IIx as well as fibre 

cross-sectional area (µm2) was performed as described in Section 3.4.10. 
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7.3.2.6 Image acquisition and analysis of fibre type quantification  

Fluorescent images were acquired using a Zeiss Axio Imager M1 and Zen 2011 (blue edition) 

software with a Monochrome Digital Camera (AxioCam MRm) at 20x magnification, as described in 

Section 3.4.11. 

7.3.2.7 Preparation of slides for lipofuscin quantification, image acquisition and analysis 

For the quantification of skeletal muscle lipofuscin accumulation, 10µm transverse cryo-sections 

were removed from -80°C storage and air-dried for 1 hour. Sections were then immediately cover-

slipped with Prolong gold and stored at -20°C until imaged. Image acquisition and analysis was 

performed using Columbus Image Data Storage and Analysis System software as described in Section 

3.4.12. 

7.3.3 Histochemistry  

7.3.3.1 Haematoxylin & Eosin histochemistry staining and imaging for the quantification of 

regenerated and degenerated skeletal muscle fibres 

10µm cryosections were subjected to haematoxylin & eosin histochemistry in order to quantify to 

proportion of regenerated and degenerated myofibres, as described in Section 3.5.2. 

7.3.3.2 Masson’s trichrome histochemistry for skeletal muscle fibrosis  

Masson’s trichrome histochemistry was performed on 10µm cryosections in order to quantify 

skeletal muscle fibrosis, as described in Section 3.5.3. 

7.3.3.3 Brightfield microscopy 

Brightfield images were acquired using a Zeiss Axio Imager M1 and Zen 2011 (blue edition) software 

with a chromatic digital camera (AxioCam MRm) at 10x magnification, as described in Section 3.5.5. 

7.3.4 Statistical analysis  

Statistical analysis was performed in Prism v5.04, IBM SPSS Statistics v23 and Microsoft Excel 2016. 

Graphs were produced in Prism v5.04.  

Normality was assessed by Shapiro-Wilk tests. Statistical differences in the various pathogenic 

muscle parameters between the HIV+ and HIV- individuals as well as PLWH stratified by 

frailty/prefrailty and sarcopenia/presarcopenia was determined by unpaired t tests for normalised 

data and Mann-Whitney tests for non-normally distributed data sets. Differences in skeletal muscle 

pathogenic factors between frail, prefrail, and robust PLWH as well as between sarcopenic, 

presarcopenic, and non-sarcopenic PLWH were determined by one-way ANOVA with Tukey’s 

multiple comparisons test to investigate differences between the comparator groups. Fisher’s exact 
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test was performed in order to determine differences in the various pathogenic muscle parameters 

in nominal data sets such as stratification by smoker status. 

Unadjusted linear regression analysis between pathophysiological skeletal muscle factors and clinical 

as well as physical factors was performed using linear regression and Pearson’s correlation for 

normally distributed data, or Spearman correlation for non-normally distributed data. Adjusted 

linear multivariate regression analysis was also undertaken, with respective models including age 

and factors determined to be significant from univariate analysis as independent variables and 

predicted factors as the dependant variable. Reported outcomes of multivariate linear regression 

analysis included unstandardised regression coefficients and their significance, as well as the fit of 

the models and how much variance (adjusted r2) they accounted for. This is described further in the 

relevant results sections.  

Statistical significance was set at p ≤ 0.05.   
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7.4 Results  

7.4.1 No difference in intramyocellular lipid accumulation between older HIV+ and 

HIV- individuals  

In order to investigate intramyocellular lipid accumulation (IMCL), I initially qualitatively classified 

individual muscle fibres into one of four groups depending on expression of Bodipy: Bodipy+++ for 

fibres with very high expression of punctate bodipy-stained granules, then Bodipy++, Bodipy+ and 

Bodipy- respectively (Figure 7.4). 

 

 

 

Figure 7.4 – Example fluorescence image depicting the qualitative classification system used to quantify IMCL. Bodipy+++ 
fibres display extensive and bright Bodipy staining coverage; Bodipy++ fibres display slightly less coverage with less intense 
staining; Bodipy+ fibres display patchy coverage with weak staining intensity, and Bodipy- fibres display no Bodipy granules. 
Scale bars = 50µm. 
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The percentage of fibres in each respective Bodipy class was quantified for the individual subjects (n 

= 45). This data was then subsequently log transformed and normalised to allow the use of 

parametric tests (Figure 7.5).  

 

 

Figure 7.5 – Proportion of fibres with IMCL. Dot plot (mean ± SEM) representing Log10 percentage of Bodipy+++, Bodipy++, 
Bodipy+ and Bodipy- fibres for both the HIV+ (n = 30) and HIV- (n = 15) individuals. Each dot represents an individual 
patient.  

 

There were no significant differences in expression of any of the bodipy categories between the HIV+ 

and HIV- groups (unpaired t tests).  

I next grouped the Bodipy+++ and Bodipy++ categories together to generate a classification of 

abnormal bodipy expression. This was the used as the primary group for compassions – the ‘Bodipy 

abnormal (BodipyAbn)’ group.  

Here, there was no significant difference in the proportion of BodipyAbn fibres between the HIV+ or 

HIV- groups (unpaired t test) (Figure 7.6b), nor the proportion of Bodipy- fibres between the 

experimental groups (Figure 7.6c).  
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Figure 7.6 – Proportion of BodipyAbn and Bodipy- fibres. (A) Representative images of skeletal muscle sections from a 
HIV+ and HIV- individual depicting Bodipy (493/503) staining. Scale bar = 50µm; Dot plots (mean ± SEM) depicting (B) the 
log10 proportion of BodipyAbn fibres for HIV+ (n = 30) and HIV- (n = 15) individuals, and (C) the log10 proportion of Bodipy- 
fibres for HIV+ and HIV- individuals. Each dot represents an individual patient.  
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7.4.2 Impact of NRTI and PI use on IMCL in older PLWH 

I wanted to investigate whether IMCL was predicted by current exposure to particular ARVs, such as 

nucleoside reverse transcriptase inhibitors (NRTIs) or protease inhibitors (PIs), as previous studies 

have demonstrated a link between these classes of ARV and lipodystrophy (Glidden et al., 2018; Carr 

et al., 1999; Dragovic et al., 2014; Miller et al., 2003; McComsey et al., 2016). Herein, HIV+ 

individuals who had been exposed to mitochondrially toxic NRTIs (didanosine (ddI), zalcitabine (ddC), 

stavudine (d4T), and zidovudine (AZT)) (n = 11) had a significantly lower proportion of IMCL (defined 

as BodipyAbn, see above) compared to HIV+ individuals who had not been exposed to those 

respective NRTIs (n = 19, p = 0.024, unpaired t-test) (Figure 7.7a). There was no significant 

difference in IMCL between HIV+ individuals who had been exposed to PIs (n = 9) and those who had 

not (n = 21) (Figure 7.7b). 

Of the mitochondrially-toxic NRTIs, AZT and d4T have in particular been shown to be associated with 

fat redistribution elsewhere in the body (Moyle et al., 2006; Jones et al., 2005; Domingo et al., 2014; 

Dragovic et al., 2014; de Waal et al., 2013). I therefore tested the association between 

current/previous exposure to AZT and/or d4T and IMCL. Interestingly, I found that HIV+ subjects 

exposed to AZT/d4T (n = 10) had a significantly lower proportion of BodipyAbn fibres than the HIV+ 

subjects not exposed to AZT/d4T (n = 20; p = 0.027, unpaired t test) (Figure 7.7c).  
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Figure 7.7 – Proportion of BodipyAbn fibres and ART regimens. Dot plots (mean ± SEM) depicting the log10 proportion of 
BodipyAbn fibres in (A) HIV+ individuals who have been exposed to mitochondrially-toxic NNRTIs (n = 11) and those who 
have not (n = 19), (B) HIV+ individuals who have been exposed to PIs (n = 9) and those who have not (n = 21), and (C) HIV+ 
individuals who have been exposed to either AZT or d4T (n = 10) against those who have not (n = 20). Each dot represents 
an individual patient. 
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7.4.3 Predictors of intramyocellular lipid accumulation in older PLWH 

Next, I wanted to investigate whether IMCL was significantly predicted by any of the clinical, HIV-

related, body composition, or lifestyle factors assessed as part of the MAGMA study, in older HIV+ 

individuals (n = 30). 

7.4.3.1 Clinical predictors of IMCL  

Here, I performed unadjusted bivariate linear regression analysis and Fisher’s exact tests in order to 

assess whether any clinical, HIV-related, or lifestyle factors significantly predicted increased IMCL, 

with results depicted in Table 7.1.  

Notably, greater IMCL was not significantly predicted by any of the clinical, lifestyle or body 

composition factors such as age (Figure 7.8a), BMI (Figure 7.8b), percentage lean mass (Figure 7.8c), 

or percentage fat mass (Figure 7.8d) in older PLWH (n = 30) (Pearson’s correlation and Fisher’s 

exact test) (Table 7.1).  

Interestingly, none of the HIV-related factors such as CD4 count or duration on ART significantly 

predicted increased IMCL.  
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 IMCL 

 HIV+ (n = 30) 

 r p 

Age 0.017 0.93 

BMI (kg/m2) 0.19 0.31 

Waist circumference (cm) -0.026 0.89 

# Comorbidities 0.30 0.11 

# Medications 0.12 0.52 

Polypharmacy* - 0.67 

% Fat mass -0.23 0.22 

% Lean mass 0.23 0.22 

Months since diagnosis 0.090 0.64 

Months on ART -0.043 0.82 

Months untreated  0.13 0.50 

CD4 count (copies/µl) 0.21 0.28 

Smokers* - 0.93 

Alcohol drinkers* - 0.77 

Recreational drug use* - 0.80 

 

Table 7.1 – Clinical predictors of IMCL in older PLWH. Table depicting the associations between proportional 
Log10(BodipyAbn) and various clinical factors. Linear regression and correlation analysis was performed by Pearson’s 
correlation. * = ordinal data in which individuals were stratified by yes/no and differences determined by Fisher’s exact test. 
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Figure 7.8 – Clinical determinants of IMCL in older PLWH. Scatter plots depicting the linear regression analysis (Pearson’s 
correlation) between log10(BodipyAbn) and (A) age, (B) BMI (kg/m2), (C) percentage lean mass, and (D) percentage fat mass 
in older PLWH (n = 30).  
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7.4.3.2 Physical determents of IMCL 

Next, I performed linear regression analysis to determine if any of the physical parameters such as 

FFP score or grip strength predicted IMCL in older PLWH (Table 7.2).  

As such, there were no statistically significant associations between IMCL and any of the respective 

factors (Pearson’s and Spearman’s correlation) (Figure 7.9a-e).  

 

 IMCL 

 HIV+ (n = 30) 

 r p 

FFP score^ 0.23 0.22 

SPPB score^ 0.085 0.65 

MET score^ -0.25 0.19 

Grip strength (kg) -0.24 0.21 

ASMI (kg/m2) 0.21 0.26 

 

Table 7.2 – Physical factors predicting IMCL in older PLWH. Table depicting the associations between proportional 
Log10(BodipyAbn) and various factors. Linear regression and correlation analysis was determined by Pearson’s correlation 
for normally distributed data and Spearman’s correlation for non-normally distributed data (denoted by ^).  
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Figure 7.9 – Physical determinants of IMCL. Scatter plots depicting the linear regression between log10(BodipyAbn) and (A) 
FFP score, (B) SPPB score, (C) MET score, (D) grip strength (kg), and (E) ASMI (kg/m2) in older PLWH (n = 30). Pearson’s 
correlation was performed for parametric data (D and E), and spearman’s correlation was performed on non-parametric 
data (A, B, C). 
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7.4.3.3 Pathophysiological skeletal muscle determinants of IMCL in older PLWH  

Finally, unadjusted linear regression analysis between IMCL and results from the various other 

muscle pathophysiology assessments such as Pax7+ SC prevalence and fibrosis was undertaken in 

order to investigate pathophysiological determinants of IMCL in older PLWH (full data for these 

parameters are presented later in this chapter).  

Again, there was no statistically significant associations between these factors in the HIV+ individuals 

(n = 30 (Pearson’s correlation) (Table 7.3). 

 

 IMCL 

 HIV+ (n = 30) 

 r p 

Type I % 0.040 0.83 

Type IIa % -0.27 0.15 

Type IIx % 0.35 0.059 

Fibre CSA (µm2) 0.046 0.81 

Log10(Pax7+ SC) -0.026 0.89 

Log10(% Fibrosis) -0.13 0.49 

Log10(Lipofuscin CSA)+ -0.008 0.97 

Log10(Lipofuscin frequency)+ 0.10 0.62 

Regenerated fibres 0.060 0.76 

Degenerated fibres -0.067 0.73 

 

Table 7.3 – Pathophysiological skeletal muscle determinants of IMCL. Table depicting the associations between 
proportional Log10(BodipyAbn) and various skeletal muscle pathophysiological factors. Linear regression and correlation 
analysis was determined by Pearson’s correlation. + = data missing from 1 patient.
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7.4.4 IMCL in older frail and sarcopenic PLWH 

After demonstrating that there was no significant difference in IMCL between older HIV+ and HIV- 

individuals, I stratified the HIV+ group into whether they were frail (n = 4), prefrail (n = 15), or robust 

(n = 11), as well as whether they were classified as sarcopenic (n = 5), presarcopenic (n = 6), or non-

sarcopenic (n = 19) and compared IMCL between the respective groups.  

Here, although IMCL was numerically higher in frail PLWH, there was no significant difference in 

IMCL between the frail, prefrail and robust HIV+ groups (p = 0.090, one-way ANOVA) (Figure 7.10a), 

or between the sarcopenic, presarcopenic and non-sarcopenic groups (p = 0.22) (Figure 7.10b).  

However, to increase the power to detect differences, the robust and prefrail groups were pooled 

together (n = 26), and IMCL was compared against frail individuals (n = 4). Here, it was demonstrated 

that frail PLWH had significantly higher IMCL compared to robust/prefrail PLWH (p = 0.027, unpaired 

t test) (Figure 7.10c). 

 

 

Figure 7.10 – IMCL differences in frailty and sarcopenia classification. Dot plots (mean ± SEM) depicting proportional 
Log10(BodipyAbn) differences between (A) frail (n = 4), prefrail (n = 15), and robust PLWH (n = 11) and (B) sarcopenic (n = 5), 
presarcopenic (n = 6), and non-sarcopenic (n = 19) PLWH. (C) Frail PLWH (n = 4) had a statistically significant greater level of 
IMCL compared to robust/prefrail PLWH (n = 26). Each dot represents an individual patient.   
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Next, in order to overcome limitations regarding the small prevalence of frail and sarcopenic HIV+, in 

combination with the fact that prefrailty and presarcopenia is more physiologically related to frailty 

and sarcopenia than being robust or non-sarcopenic, HIV+ patients classified as prefrail (n = 15) were 

grouped with the frail HIV+ individuals (n = 4), and HIV+ patients classified as presarcopenic (n = 6) 

were grouped with sarcopenic PLWH (n = 5). Here, I determined if there were differences in IMCL 

between the respective groups and robust HIV+ (n = 11) and non-sarcopenic HIV+ individuals (n = 

19).  

Notably, there was no significant difference in IMCL between frail/prefrail PLWH (n = 19) and robust 

PLWH (n = 11) (p = 0.60, unpaired t test) (Figure 7.11a) or between sarcopenic/presarcopenic PLWH 

(n = 11) and non-sarcopenic PLWH (n = 19) (p = 0.093) (Figure 7.11b). 

 

 

Figure 7.11 – IMCL in frail/prefrail older PLWH and sarcopenic/presarcopenic PLWH. Dot plots (mean ± SEM) depicting 
proportional Log10(BodipyAbn) in (A) frail/prefrail HIV+ (n = 19) and robust HIV+ (n = 11), as well as (B) 
sarcopenic/presarcopenic HIV+ (n = 11) and non-sarcopenic HIV+ (n = 19). There were no significant differences between 
any of the respective experimental groups, determined by unpaired t tests. Each dot represents an individual patient. 
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7.4.5 No difference in Pax7+ satellite cell prevalence between older PLWH and HIV- 

individuals 

In order to quantify the frequency of undifferentiated satellite cells (SCs) in skeletal muscle of our 

subjects, and subsequently investigate the role of SCs in the pathophysiology of frailty and 

sarcopenia in older PLWH, I stained the 10µm skeletal muscle sections with a duplex 

immunofluorescence assay with a nuclei marker (DAPI) and SC marker (Pax7) (Figure 7.12). 

 

 

Figure 7.12 – Example fluorescence image of Pax7+ satellite cells. 10µm skeletal muscle sections from HIV+ and HIV- 
individuals were stained with immunofluorescence markers for nuclei (DAPI) and quiescent SCs (Pax7). Pax7+ SCs were 
confirmed by co-localisation with a nuclei (e.g. white arrows). Scale bar = 20µm. 

 

A Pax7+ SC was determined by the strong staining intensity in the Pax7 channel and co-localisation 

with the nuclear marker DAPI (white arrows in Figure 7.12). 

The number of Pax7+ SCs and the total number of fibres were quantified, allowing us to determine 

the frequency of Pax7+ SCs per 100 fibres. In order to normalise the distribution of the data these 

values were then log transformed.  

Notably, there was no significant difference in the frequency of Pax7+ SCs per 100 fibres between the 

HIV+ (n = 30) and HIV- (n = 15) groups (unpaired t test) (Figure 7.13).  
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Figure 7.13 – No difference in Pax7+ satellite cell frequency per 100 fibres between the HIV+ and HIV- groups. Dot plot 
(mean ± SEM) depicting the log10(frequency of Pax7+ satellite cells per 100 fibres) for both the HIV+ (n = 30) and HIV- (n = 
15) groups. Each dot represents an individual patient.  
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7.4.6 Predictors of Pax7+ satellite cell abundance 

Next, I wanted to investigate whether the frequency of Pax7+ SCs was significantly predicted by any 

HIV-related or clinical factors, as well as body composition, environmental factors, and other skeletal 

muscle pathophysiological factors. To do this I performed linear regression analyses and unpaired t 

test analysis between the log10-transformed frequency of Pax7+ SCs per 100 fibres and the respective 

comparator factors. Pearson’s correlation was performed on normally distributed data sets whilst 

Spearman’s correlation was performed on non-normally distributed data sets. 

7.4.6.1 Clinical predictors of Pax7+ SC prevalence in older PLWH 

Notably, Pax7+ SC prevalence was not significantly predicted by any clinical, body composition, HIV-

related, or environmental factors (Table 7.4). This included age (Figure 7.14a), BMI (Figure 7.14b), 

percentage lean mass (Figure 7.14c) or percentage fat mass (Figure 7.14d) (Pearson’s correlation). 

 

 Pax7 SC prevalence 

 HIV+ (n = 30) 

 r p 

Age 0.15 0.43 

BMI (kg/m2) 0.30 0.88 

Waist circumference (cm) 0.087 0.65 

# Comorbidities 0.022 0.91 

# Medications 0.067 0.73 

Polypharmacy* - 0.90 

% Fat mass -0.07 0.72 

% Lean mass 0.07 0.72 

Months since diagnosis 0.24 0.20 

Months on ART 0.15 0.43 

Months untreated 0.15 0.42 

CD4 count (copies/µl) 0.08 0.69 

Smokers* - 0.27 

Alcohol drinkers* - 0.23 

Recreational drug use* - 0.80 

 

Table 7.4 – Clinical predictors of Pax7+ SC prevalence in older PLWH. Table depicting the associations between Log10(Pax7+ 
SCs per 100 fibres) and various clinical factors. Linear regression and correlation analysis was determined by Pearson’s 
correlation. * = ordinal data in which individuals were stratified by yes/no and differences determined by unpaired t tests. 
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Figure 7.14 – Clinical determinants of Pax7+ SC prevalence. Scatter plots depicting the linear regression (Pearson’s 
correlation) between proportional Log10(Pax7+ SCs per 100 fibres) and (A) age, (B) BMI (kg/m2), (C) percentage lean mass, 
and (D) percentage fat mass in older PLWH (n = 30). 
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7.4.6.2 Physical determinants of Pax7+ SCs in older PLWH 

Next, in order to determine whether there were any physical determinants of the prevalence of 

Pax7+ SCs, I performed unadjusted linear regression analyses between Pax7+ SC prevalence and 

physical parameters. Again, there was no significant associations between these factors and Pax7+ SC 

prevalence (Table 7.5/Figure 7.15).  

 

 

 
Pax7 SC prevalence 

 HIV+ (n = 30) 

 r p 

FFP score^ -0.066 0.73 

SPPB score^ -0.25 0.19 

MET score^ 0.059 0.76 

Grip strength (kg) 0.076 0.69 

ASMI (kg/m2) 0.019 0.92 

 

Table 7.5 – Physical factors predicting Pax7+ SC prevalence in older PLWH. Table depicting the associations between 
proportional Log10(Pax7+ SCs per 100 fibres) and various factors. Linear regression and correlation was determined by 
Pearson’s correlation for normalised data and Spearman’s correlation for non-normalised data (denoted by ^). 
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Figure 7.15 – Physical determinants of Pax7+ SC prevalence. Scatter plots depicting the linear regression between 
Log10(Pax7+ SCs per 100 fibres) and (A) FFP score, (B) SPPB score, (C) MET score, (D) grip strength (kg), and (E) ASMI (kg/m2) 
in older PLWH (n = 30). Pearson’s correlation was performed for parametric data (D and E), and spearman’s correlation was 
performed on non-parametric data (A, B, C). 
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7.4.6.3 Pathophysiological skeletal muscle determinants of Pax7+ SC prevalence in older PLWH 

Finally, linear regression analyses was performed in order to determine whether Pax7+ SC prevalence 

was predicted by other pathophysiological skeletal muscle factors (full data for these parameters are 

presented later in this chapter) (Table 7.6). 

Interestingly, Pax7+ SC prevalence was significantly predicted by skeletal muscle fibrosis (r = 0.57; p = 

0.001, Pearson’s correlation) (Figure 7.16a) and a greater proportion of regenerated fibres (r = 0.52; 

p = 0.003) (Figure 7.16b) in older PLWH (n = 30). 

As the prevalence of Pax7+ SCs is linked with age, multivariate linear regression models were 

developed with Pax7+ SCs as the dependant variable, and age as well as either fibrosis or percentage 

of regenerated fibres as the independent variables.  

Here, multivariate linear regression confirmed that the association between Pax7+ SC prevalence and 

fibrosis was independent of the effect of age (unstandardised regression coefficient = 0.62; p = 

0.002, multivariate linear regression) (Table 7.6). Indeed, the overall model fit was statistically 

significant (p = 0.005), and was predictive of roughly a third of the variation in Pax7+ SC prevalence 

(r2 = 0.32). 

In addition, multivariable linear regression analysis also confirmed that the association between 

Pax7+ SC prevalence and the proportion of regenerated fibres was independent of the effect of age 

(unstandardised regression coefficient = 0.013; p = 0.005, multivariate linear regression) (Table 7.6). 

The overall model fit was statistically significant (p = 0.012), although only predictive of a small 

amount of variation in Pax7+ SC prevalence (r2 = 0.28).  
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Pax7 SC prevalence 

 HIV+ (n = 30) 

 r p Age-adjusted p 

Type I % -0.072 0.71 - 

Type IIa % -0.017 0.93 - 

Type IIx % 0.19 0.32 - 

Fibre CSA (µm2) 0.18 0.34 - 

Log10(BodipyAbn) -0.026 0.89 - 

Log10(% Fibrosis) 0.57 0.001 0.002 

Log10(Lipofuscin CSA)+ 0.052 0.79 - 

Log10(Lipofuscin frequency)+ 0.10 0.60 - 

Regenerated fibres 0.52 0.003 0.005 

Degenerated fibres 0.031 0.87 - 

 

Table 7.6 – Skeletal muscle determinants of Pax7+ SC prevalence. Table depicting the associations between proportional 
Log10(Pax7+ SC per 100 fibres) and various skeletal muscle pathophysiological factors. Linear regression and correlation 
analysis was determined by Pearson’s correlation. Multivariate linear regression with adjustment for age was performed for 
determinants significantly associated with Pax7+ SC prevalence through univariate regression analyses. Statistically 
significant associations are bold. + = data missing from 1 patient. 

 

 

 

Figure 7.16 – Pathophysiological determinants of Pax7+ SC prevalence. Scatter plots depicting linear regression analysis 
(Pearson’s correlation) between proportional Log10(Pax7+ SCs per 100 fibres) and (A) Log10(% fibrosis), and (B) percentage 
regenerated fibres. Each dot represents an individual patient.  

  

A B 



253 
 

7.4.7 Pax7+ satellite cell prevalence in frail and sarcopenic older PLWH 

To investigate differences in quiescent Pax7+ SC prevalence between PLWH in the respective frailty 

and sarcopenic classification groups, the HIV+ individuals (n = 30) were stratified into frail (n = 4), 

prefrail (n = 15), and robust (n = 11) groups, as well as sarcopenic (n = 5), presarcopenic (n = 6), and 

non-sarcopenic (n = 19) groups, and the prevalence of log10(Pax7+ SCs per 100 fibres) was compared.  

Here, there was no significant difference in the prevalence of Pax7+ SCs between the frail, prefrail 

and robust HIV+ groups (p = 0.78, one-way ANOVA) (Figure 7.17a). In addition, there was also no 

significant difference between the sarcopenia, presarcopenic and no-sarcopenia HIV+ groups (p = 

0.22) (Figure 7.17b). 

 

 

Figure 7.17 – Quiescent Pax7+ SC prevalence in frail and sarcopenic PLWH. Dot plots (mean ± SEM) showing no significant 
difference in log10(Pax7+ SCs per 100 fibres) between HIV+ (A) frail (n = 4), prefrail (n = 15) and robust (n = 11) individuals, or 
(B) sarcopenic (n = 5), presarcopenic (n = 6) and non-sarcopenic (n = 19) individuals. Each dot represents an individual 
patient.  
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Next, the HIV+ group (n = 30) was stratified into frail/prefrail HIV+ (n = 19) and 

sarcopenic/presarcopenic HIV+ (n = 11) groups in order to assess whether quiescent satellite cell 

prevalence was altered in these groups compared to robust HIV+ (n = 11) and non-sarcopenic PLWH 

(n = 19) respectively.  

Importantly, there was no statistically significant difference in the proportion of Pax7+ SCs between 

frail/prefrail PLWH and robust PLWH (p = 0.48, unpaired t test) (Figure 7.18a). In addition, there was 

also no significant difference in proportional Pax7+ SC prevalence between sarcopenic/presarcopenic 

PLWH and non-sarcopenic PLWH (p = 0.65) (Figure 7.18b). 

 

 

Figure 7.18 – Pax7+ SC prevalence in adverse ageing phenotypes in older PLWH. Dot plots (mean ± SEM) depicting no 
significant difference in log10(Pax7+ SCs) between (A) frail/prefrail PLWH (n = 19) and robust PLWH (n = 11), and between 
(B) sarcopenic/presarcopenic PLWH (n = 11) and non-sarcopenic PLWH (n = 19). Each dot represents an individual patient.  

  

A B 



255 
 

7.4.8 No difference in fibre type proportions or fibre CSA between older HIV+ and 

HIV- individuals 

Using a multiplex immunofluorescence assay I quantified the proportions of fibre types I, IIa, and IIx, 

as well as the average fibre CSA (µm2) of the respective fibre types in 10µm cryo-sections (n = 45) 

(Figure 7.19). 

 

 

Figure 7.19 – Example fluorescence image of cryosections stained with fibre type markers. Representative images of 
skeletal muscle sections from HIV+ and HIV- individuals stained with fibre type markers. Each skeletal muscle section was 
stained with markers to distinguish type I (BA-F8), type IIa (SC-71), type IIx (6H1) as well as a myofibre boundary marker 
(laminin). As depicted in the figure, type I fibres are green, type IIa are red, and type IIx are blue. Scale bar = 50µm. 
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Here, the percentage of the three fibre types was significantly different in HIV+ individuals (n = 30; p 

< 0.0001, one-way ANOVA), with the percentage of type I fibres being significantly greater than that 

of both type IIa (p = 0.0001, Tukey’s multiple comparison) and type IIx fibres (p < 0.0001), as well as 

the percentage of type IIa fibres being significantly greater than the percentage of type IIx fibres (p < 

0.0006). However, there was no significant difference in the proportions of any of the respective 

fibre types between HIV+ and HIV- individuals (unpaired t tests) (Figure 7.20a). 

In addition, the average fibre CSA was significantly different between the three fibres types in HIV+ 

individuals (n = 30; p < 0.0001, one-way ANOVA), with the fibre CSA of type IIa fibres being 

significantly greater than type I fibres (p = 0.0006, Tukey’s multiple comparison). However, there 

was no significant difference in the average fibre CSA of the three fibre types individually, or when 

grouped together, between the HIV+ and HIV- individuals (unpaired t tests) (Figure 7.20b). 

 

 

 

Figure 7.20 – No difference in fibre type proportions or fibre CSA between the HIV+ and HIV- groups. Dot plots (mean ± 
SEM) representing (A) the proportion of type I, IIa, and IIx fibres for the HIV+ (n = 30) and HIV- (n = 15) patients. There was 
no significant difference in the proportion of the respective fibre types between the two groups, although there was a 
significantly higher proportion of type I fibres in both the HIV+ and HIV- groups compared to type IIa and type IIx fibres. (B) 
The average CSA (µm2) of each fibre type for both the HIV+ and HIV- groups, as well as the average CSA of all fibre types 
combined for each individual (grey bars). Dots represent induvial patients.  
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7.4.9 Determinants of fibre type proportions and average fibre CSA 

Here, I wanted to investigate whether the prevalence of fibre types I, IIa, IIx and average fibre CSA 

(µm2) was predicted by any clinical, HIV-related, environmental, or body composition factors, as well 

as other skeletal muscle pathophysiological factors such as fibrosis or IMCL.  

7.4.9.1 Clinical determinants of fibre type proportions and fibre CSA in older PLWH 

Of the clinical factors and HIV-related parameters, an increased percentage of type IIx fibres was 

significantly predicted by a greater number of comorbidities in older PLWH (n = 30; r = 0.52; p = 

0.003, Pearson’s correlation) (Figure 7.23e). In addition, a greater number of medications also 

significantly predicted a higher proportion of type IIx fibres (r = 0.46; p = 0.011) (Figure 7.23f).  

The percentage of type I fibres was also significantly lower in HIV+ individuals with polypharmacy (n 

= 19; p = 0.038, unpaired t test) (Table 7.7).  

Hence, as the proportion of fibre type IIx is known to decline with age, and the prevalence of 

prescribed medications and comorbidities generally increases with age, I generated multivariate 

linear regression models with the percentage fibre type IIx as the dependant variable, and age as 

well as either number of medications, or number of comorbidities as the independent variables. 

Here, multivariate linear regression confirmed that the association between the proportion of type 

IIx fibres and number of comorbidities was independent of the effect of age (unstandardised 

regression coefficient = 3.33; p = 0.004, multivariate linear regression) (Table 7.7). The model fit 

was significant (p = 0.014), although it only explained a reasonably small amount of variation in the 

proportion of type IIx fibres (r2 = 0.27). 

Similarly, multivariate linear regression confirmed that the association between the proportion of 

type IIx fibres and number of medications was independent of age (unstandardised regression 

coefficient = 1.07; p = 0.011, multivariate linear regression) (Table 7.7). Again, the model fit was 

statistically significant (p = 0.035), although it only predicted a small amount of variation in the 

proportion of type IIx fibres (r2 = 0.22).  

There were no significant associations between clinical determinants and fibre type IIa proportions 

(Figure 7.22), or fibre CSA (Figure 7.24). 
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 Type I Type IIa Type IIx Fibre CSA 

 HIV+ (n = 30) HIV+ (n = 30) HIV+ (n = 30) HIV+ (n = 30) 

 r p r p r p 
Age-

adjusted p 
r p 

Age 0.055 0.77 -0.11 0.55 0.065 0.74 - 0.052 0.79 

BMI (kg/m2) -0.20 0.30 0.11 0.57 0.26 0.17 - 0.06 0.75 

Waist circumference (cm) -0.25 0.18 0.24 0.21 0.16 0.39 - 0.096 0.61 

# Comorbidities -0.29 0.12 0.070 0.71 0.52 0.003 0.004 -0.022 0.91 

# Medications -0.31 0.094 0.14 0.47 0.46 0.011 0.011 -0.24 0.20 

Polypharmacy* - 0.038 - 0.10 - 0.070 - - 0.19 

% Fat mass -0.055 0.77 0.13 0.50 -0.085 0.66 - -0.031 0.87 

% Lean mass 0.055 0.77 -0.13 0.50 0.085 0.66 - 0.031 0.87 

Months since diagnosis -0.21 0.26 0.083 0.66 0.33 0.076 - 0.071 0.71 

Months on ART -0.041 0.83 0 0.99 0.092 0.63 - 0.001 0.99 

Months untreated -0.21 0.26 0.095 0.62 0.30 0.10 - 0.069 0.72 

CD4 count (copies/µl) -0.047 0.81 -0.007 0.97 0.12 0.56 - -0.15 0.44 

Smokers* - 0.45 - 0.77 - 0.77 - - 0.24 

Alcohol drinkers* - 0.76 - 0.91 - 0.91 - - 0.62 

Recreational drug use* - 0.98 - 0.90 - 0.90 - - 0.90 

Table 7.7 – Clinical predictors of fibre type proportion and fibre CSA in older PLWH. Table depicting the associations 
between proportional fibre types as well as average fibre CSA (µm2) and various clinical factors. Linear regression and 
correlation analysis was determined by Pearson’s correlation. * = ordinal data in which individuals were stratified by yes/no 
and differences determined by unpaired t tests. 
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Figure 7.21 – Clinical determinants of fibre type I prevalence. Scatter plots depicting the linear regression (Pearson’s 
correlation) between the percentage of type I fibres and (A) age, (B) BMI (kg/m2), (C) percentage lean mass, and (D) 
percentage fat mass in older PLWH (n = 30). 
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Figure 7.22 – Clinical determinants of fibre type IIa prevalence. Scatter plots depicting the linear regression (Pearson’s 
correlation) between the percentage of type IIa fibres and (A) age, (B) BMI (kg/m2), (C) percentage lean mass, and (D) 
percentage fat mass in older PLWH (n = 30). 
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Figure 7.23 – Clinical determinants of fibre type IIx prevalence. Scatter plots depicting the linear regression (Pearson’s 
correlation) between the percentage of type IIx fibres and (A) age, (B) BMI (kg/m2), (C) percentage lean mass, (D) 
percentage fat mass, (E) number of comorbidities, (F) number of medications in older PLWH (n = 30). 
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Figure 7.24 – Clinical determinants of average fibre CSA. Scatter plots depicting the linear regression (Pearson’s 
correlation) between the average fibre CSA (µm2) and (A) age, (B) BMI (kg/m2), (C) percentage lean mass, and (D) 
percentage fat mass in older PLWH (n = 30). 
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7.4.9.2 Physical determinants of  fibre type proportions and fibre CSA in older PLWH 

Next, I sought to determine whether physical parameters predicted the proportions of the 

respective fibre types or average fibre CSA (Table 7.8). 

Notably, there were no significant associations between physical factors and proportions of either 

fibre type I (Figure 7.25), type IIa (Figure 7.26) or type IIx (Figure 7.27), as well as average fibre CSA 

(Figure 7.28) (Table 7.8). 

 

 Type I Type IIa Type IIx Fibre CSA 

 HIV+ (n = 30) HIV+ (n = 30) HIV+ (n = 30) HIV+ (n = 30) 

 r p r p r p r p 

FFP score^ -0.027 0.89 -0.14 0.48 0.19 0.35 -0.034 0.86 

SPPB score^ 0.18 0.35 -0.17 0.36 -0.13 0.50 0.21 0.28 

MET score^ 0.21 0.27 -0.13 0.50 -0.14 0.47 0.065 0.73 

Grip strength (kg) -0.043 0.82 0.17 0.36 -0.19 0.33 0.050 0.79 

ASMI (kg/m2) 0.062 0.74 -0.09 0.64 0.009 0.96 0.006 0.98 

 

Table 7.8 – Physical factors predicting fibre type proportions and fibre CSA in older PLWH. Table depicting the 
associations between proportional fibre types and average fibre CSA (µm2) and various factors. Linear regression and 
correlation was determined by Pearson’s correlation for normally distributed data and Spearman’s correlation for non-
normally distributed data (denoted by ^). 
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Figure 7.25 – Physical determinants of type I percentage. Scatter plots depicting the linear regression between the 
percentage of type I fibres and (A) FFP score, (B) SPPB score, (C) MET score, (D) grip strength (kg), and (E) ASMI (kg/m2) in 
older PLWH (n = 30). Pearson’s correlation was performed for parametric data (D and E), and spearman’s correlation was 
performed on non-parametric data (A, B, C). 
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Figure 7.26 – Physical determinants of type IIa percentage. Scatter plots depicting the linear regression between the 
percentage of type IIa fibres and (A) FFP score, (B) SPPB score, (C) MET score, (D) grip strength (kg), and (E) ASMI (kg/m2) in 
older PLWH (n = 30). Pearson’s correlation was performed for parametric data (D and E), and spearman’s correlation was 
performed on non-parametric data (A, B, C). 
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Figure 7.27 – Physical determinants of type IIx percentage. Scatter plots depicting the linear regression between the 
percentage of type IIx fibres and (A) FFP score, (B) SPPB score, (C) MET score, (D) grip strength (kg), and (E) ASMI (kg/m2) in 
older PLWH (n = 30). Pearson’s correlation was performed for parametric data (D and E), and spearman’s correlation was 
performed on non-parametric data (A, B, C). 
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Figure 7.28 – Physical determinants of fibre CSA. Scatter plots depicting the linear regression between the average fibre 
CSA (µm2) and (A) FFP score, (B) SPPB score, (C) MET score, (D) grip strength (kg), and (E) ASMI (kg/m2) in older PLWH (n = 
30). Pearson’s correlation was performed for parametric data (D and E), and spearman’s correlation was performed on non-
parametric data (A, B, C). 
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7.4.9.3 Pathophysiological skeletal muscle determinants of fibre type proportions and fibre 

CSA in older PLWH 

Finally, linear regression analyses was performed in order to determine whether pathophysiological 

skeletal muscle factors assessed as part of the MAGMA study (full data presented later in the 

chapter) predicted the proportions of the respective fibre types or average fibre CSA (Table 7.9).  

Here, fibre CSA was significantly associated with percentage regenerated fibres in older PLWH (n = 

30; r = 0.45; p = 0.014) (Pearson’s correlation) (Figure 7.29).  

Subsequently, as fibre CSA is known to decline with age, a multivariate linear regression model was 

developed with average fibre CSA as the dependant variable, and age and the proportion of 

regenerated fibres as the independent variables. Here, this multivariate linear regression model 

confirmed that the association between fibre CSA and the proportion of regenerated fibres was 

independent of age (unstandardised regression coefficient = 0.45; p = 0.016, multivariate linear 

regression) (Table 7.9). However, the model fit was marginally not statistically significant (p = 0.051), 

and subsequently only predicted a small amount of variation in fibre CSA (r2 = 0.20). 

 

 Type I Type IIa Type IIx Fibre CSA 

 

HIV+ (n = 30)  HIV+ (n = 30) HIV+ (n = 30) HIV+ (n = 30) 

 r p r p r p r p 

Age-

adjusted 

p 

Log10(Pax7+ SC) -0.072 0.71 -0.017 0.93 0.19 0.32 0.18 0.34 - 

Log10(BodipyAbn) 0.040 0.83 -0.27 0.15 0.35 0.059 0.046 0.81 - 

Log10(% Fibrosis) 0.072 0.71 -0.12 0.54 0.02 0.92 0.23 0.22 - 

Log10(Lipofuscin CSA)+ -0.025 0.90 0.11 0.59 -0.12 0.54 -0.001 0.99 - 

Log10(Lipofuscin frequency)+ 0.017 0.93 0.023 0.91 -0.076 0.69 0.14 0.46 - 

Regenerated fibres -0.11 0.55 -0.028 0.88 0.29 0.12 0.45 0.014 0.016 

Degenerated fibres 0.32 0.087 -0.31 0.098 -0.19 0.31 0.34 0.064 - 

Table 7.9 – Skeletal muscle determinants of fibre type proportions and average fibre CSA. Table depicting the associations 
between fibre type proportions and average fibre CSA (µm2) and various skeletal muscle pathological factors. Linear 
regression and correlation analysis was determined by Pearson’s correlation. Multivariate linear regression with adjustment 
for age was performed for determinants significantly associated through univariate regression analyses. Statistically 
significant associations are bold. + = data missing from 1 patient.
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Figure 7.29 – Pathophysiological determinants of fibre CSA. Scatter plots depicting linear regression analysis (Pearson’s 
correlation) between average fibre CSA (µm2) and percentage degenerated fibres. Each dot represents an individual patient. 
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7.4.10 Fibre type proportions and fibre CSA in frail and sarcopenic older PLWH 

Next, in order to better understand fibre type proportions and fibre CSA specifically in frailty and 

sarcopenia in older PLWH, I stratified the HIV+ group (n = 30) into frail (n = 4), prefrail (n = 15), and 

robust (n = 11) groups, as well as sarcopenic (n = 5), presarcopenic (n = 6), and non-sarcopenic (n = 

19) groups.  

With regards to the frail, prefrail, and robust HIV+ groups, there was no significant differences 

between the proportion of type I (p = 0.70, one-way ANOVA) (Figure 7.30a) and type IIa fibres (p = 

0.83) (Figure 7.30c), as well as average fibre CSA (p = 0.37) (Figure 7.30g). However, there was a 

statistically significant difference in the proportion of type IIx fibres between the three groups (p = 

0.021) (Figure 7.30e). In particular, frail PLWH had a significantly higher proportion of type IIx fibres 

compared to both the prefrail (p = 0.033, Tukey’s multiple comparison) and robust (p = 0.019) 

groups (Figure 7.30e). 

There was no significant difference in the proportions of fibre type I (p = 0.42, one-way ANOVA) 

(Figure 7.30b), type IIa (p = 0.24) (Figure 7.30d) and type IIx fibres (p = 0.87) (Figure 7.30f), or 

average fibre CSA (p = 0.96) (Figure 7.30h) between the sarcopenic, presarcopenic, and non-

sarcopenic groups.  
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Figure 7.30 – Fibre type proportions and fibre CSA in frail and sarcopenic PLWH. Dot plots (mean ± SEM) showing the differences between frail (n = 4), prefrail (n = 15) and robust (n = 11) 
PLWH in the proportions of (A) % fibre type I, (C) % fibre type IIa, (E) % fibre type IIx and (G) fibre CSA (µm2). No differences between sarcopenic (n = 5), presarcopenic (n = 6) and non-
sarcopenic (n = 19) PLWH in the proportions of (B) % fibre type I, (D) % fibre type IIa, (F) % fibre type IIx and (H) fibre CSA (µm2). Each dot represent an individual patient.  
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Next, the HIV+ group (n = 30) was stratified into frail/prefrail HIV+ (n = 19) and 

sarcopenic/presarcopenic HIV+ (n = 11) groups. Here, I determined whether there were differences 

in the proportion of fibre types I, IIa, and IIx, as well as average fibre CSA between the respective 

groups and robust HIV+ (n = 11) and non-sarcopenic HIV+ individuals (n = 19).  

Again, there was no significant difference in the proportion of type I fibres between frail/prefrail 

PLWH and robust PLWH (p = 0.96, unpaired t test) (Figure 7.31a), nor was there a significant 

difference between sarcopenic/presarcopenic PLWH and non-sarcopenic PLWH (p = 0.26) (Figure 

7.31e). In addition, there was no significant difference in the proportion of type IIa fibres between 

frail/prefrail PLWH and robust PLWH (p = 0.66) (Figure 7.31b) or between sarcopenic/presarcopenic 

PLWH and non-sarcopenic PLWH (p = 0.11) (Figure 7.31f).  

There was also no statistically significant difference in the proportion of type IIx fibres between 

frail/prefrail PLWH and robust PLWH (p = 0.55, unpaired t test) (Figure 7.31c) or between 

sarcopenic/presarcopenic PLWH and non-sarcopenic PLWH (p = 0.92) (Figure 7.31g). Finally, there 

was also no significant difference in average fibre CSA between frail/prefrail PLWH and robust PLWH 

(p = 0.96) (Figure 7.31d), or between sarcopenic/presarcopenic PLWH and non-sarcopenic PLWH (p 

= 0.81) (Figure 7.31h). 
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Figure 7.31 – Fibre type proportions and fibre CSA in adverse ageing phenotypes in older PLWH. Dot plots (mean ± SEM) 
depicting the differences between frail/prefrail HIV+ individuals (n = 19) and robust HIV+ individuals (n = 11) in (A) fibre type 
I proportion, (B) fibre type IIa proportion, (C) fibre type IIx proportion, or (D) average fibre CSA (µm2). And between 
sarcopenic/presarcopenic HIV+ individuals (n = 11) and non-sarcopenic HIV+ individuals (n = 19) in (E) fibre type I 
proportion, (F) fibre type IIa proportion, (G) fibre type IIx proportion, or (H) average fibre CSA (µm2). Each dot represents an 
individual patient.  
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7.4.11 Greater skeletal muscle fibrosis in older PLWH compared to age-matched HIV- 

individuals 

10µm skeletal muscle sections (n = 45) were subjected to Masson’s trichrome histochemistry (Figure 

7.32a) in order to quantify the levels of tissue fibrosis and to subsequently investigate whether 

increased levels of fibrosis were contributing to declines in physical and muscle specific function. 

The CSA (µm2) of each section was measured, as well as the area of fibrotic tissue (µm2), allowing for 

the quantification of the proportion of fibrotic tissue for each subject. In order to normalise the 

distribution of the results, the data was log transformed.   

Interestingly, the HIV+ group (n = 30) had a significantly higher proportion of fibrotic tissue 

compared to the HIV- group (n = 15) (p < 0.0001, unpaired t test) (Figure 7.32b).  

 



275 
 

     

      

Figure 7.32 – Elevated skeletal muscle fibrosis in PLWH. (A) Example brightfield image of a skeletal muscle section from a 
HIV+ and HIV- individual stained with Masson’s trichrome histochemistry. Fibrotic tissue appears blue. Scale bar = 50µm. (B) 
Dot plot (mean ± SEM) showing the significantly higher levels of fibrosis in skeletal muscle from HIV+ individuals (n = 30) 
compared to HIV- individuals (n = 15; p < 0.0001, unpaired t test). 
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7.4.12 Determinants of skeletal muscle fibrosis 

Following this result, I next wanted to investigate whether the elevated levels of tissue fibrosis was 

predicted by any of the various clinical, lifestyle, or body composition factors, as well as any of the 

pathophysiologic skeletal muscle factors such as IMCL or quiescent satellite cell prevalence.  

7.4.12.1 Clinical predictors of skeletal muscle fibrosis in older PLWH 

Notably, increased skeletal muscle fibrosis was not significantly predicted by any of the clinical, body 

composition, or lifestyle factors (Pearson’s correlation) (Table 7.10/Figure 7.33). In addition, 

skeletal muscle fibrosis was not significantly predicted by any of the HIV-related factors, although it 

was marginally associated with both percentage lean and fat mass.  

 

  Log10(%Fibrosis) 

 HIV+ (n = 30) 

 r p 

Age  0.20 0.30 

BMI (kg/m2) 0.03 0.87 

Waist circumference (cm) 0.012 0.95 

# Comorbidities 0.11 0.57 

# Medications 0.14 0.46 

Polypharmacy* - 0.45 

% Fat mass -0.35 0.059 

% Lean mass 0.35 0.059 

Months since diagnosis 0.19 0.31 

Months on ART -0.044 0.82 

Months untreated  0.25 0.19 

CD4 count (copies/µl) -0.013 0.95 

Smokers* - 0.059 

Alcohol drinkers* - 0.57 

Recreational drug use* - 0.45 

 

Table 7.10 – Clinical predictors of skeletal muscle fibrosis in older PLWH. Table depicting the associations between 
Log10(%Fibrosis) and various clinical factors. Linear regression and correlation analysis was determined by Pearson’s 
correlation. * = ordinal data in which individuals were stratified by yes/no and differences determined by unpaired t tests. 
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Figure 7.33 – Clinical determinants of fibrosis. Scatter plots depicting the linear regression (Pearson’s correlation) between 
log10(% fibrosis) and (A) age, (B) BMI (kg/m2), (C) percentage lean mass, and (D) percentage fat mass in older PLWH (n = 
30). Each dot represents an individual patient. 
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7.4.12.2 Physical determinants of skeletal muscle fibrosis in older PLWH 

Next, I investigated whether parameters of physical function predicted skeletal muscle fibrosis in 

older PLWH through unadjusted linear regression analysis (Table 7.11).  

Here, there were no significant associations between the proportion of skeletal muscle fibrosis and 

any of the physical parameters (Pearson’s and Spearman’s correlation) (Figure 7.34). 

 

  Log10(%Fibrosis) 

 HIV+ (n = 30) 

 r p 

FFP score^ -0.083 0.66 

SPPB score^ -0.003 0.99 

MET score^ 0.07 0.71 

Grip strength (kg) -0.022 0.91 

ASMI (kg/m2) 0.11 0.58 

 

Table 7.11 – Physical factors predicting skeletal muscle fibrosis in older PLWH. Table depicting the associations between 
Log10(%Fibrosis) and various factors. Linear regression and correlation analysis was determined by Pearson’s correlation for 
normally distributed data and Spearman’s correlation for non-normally distributed data (denoted by ^). 
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Figure 7.34 – Physical factors predicting skeletal muscle fibrosis. Scatter plots depicting the linear regression between 
log10(% fibrosis) and (A) FFP score, (B) SPPB score, (C) MET score, (D) grip strength (kg), and (E) ASMI (kg/m2) in older PLWH 
(n = 30). Pearson’s correlation was performed for parametric data (D and E), and Spearman’s correlation was performed on 
non-parametric data (A, B, C). Each dot represents an individual patient.  
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7.4.12.3 Pathophysiological determinants of skeletal muscle fibrosis in older PLWH 

Finally, linear regression analysis was performed in order to determine if any pathophysiological 

skeletal muscle parameters significantly predicted skeletal muscle fibrosis (Table 7.12). 

As demonstrated previously in Section 7.4.6.3, through univariate linear regression analysis it was 

found that greater skeletal muscle fibrosis was significantly associated with the prevalence of Pax7+ 

SCs (r = 0.57; p = 0.001, Pearson’s correlation) (Figure 7.35a). In addition, fibrosis was significantly 

associated with and the percentage of regenerated fibres (r = 0.59; p = 0.001) (Figure 7.35b). 

Next, multivariate linear regression models were developed with fibrosis as the dependant variable, 

and age, as well as either pax7+ SC prevalence, or the percentage of regenerated fibres as the 

independent variables.  

Here, multivariate linear regression analysis confirmed that the association between skeletal muscle 

fibrosis and Pax7+ SC prevalence was independent of the effect of age (unstandardised regression 

coefficient = 0.49; p = 0.002, multivariate linear regression) (Table 7.12). Overall model fit was 

statistically significant (p = 0.004), and the model was predictive of a third of the variation in fibrosis 

(r2 = 0.33). 

In addition, the association between fibrosis and the proportion of regenerated fibres was also 

independent of age (unstandardised regression coefficient = 0.013; p = 0.001, multivariate linear 

regression) (Table 7.12). Again, the overall model fit was significant (p = 0.02) and predictive of a 

modest amount of variation in fibrosis (r2 = 0.36).  
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  Log10(%Fibrosis) 
HIV+ (n = 30)  

 r p Age-adjusted p 

Type I % 0.078 0.68 - 

Type IIa % -0.12 0.54 - 

Type IIx % 0.020 0.92 - 

Fibre CSA (µm2) 0.23 0.22 - 

Log10(Pax7+ SC) 0.57 0.001 0.002 

Log10(% BodipyAbn) -0.13 0.49 - 

Log10(Lipofuscin CSA)+ 0.037 0.85 - 

Log10(Lipofuscin frequency)+ -0.097 0.62 - 

Regenerated fibres 0.59 0.001 0.001 

Degenerated fibres 0.07 0.71 - 

 

Table 7.12 – Skeletal muscle pathophysiological determinants of fibrosis. Table depicting the associations between 
log10(%Fibrosis) and various skeletal muscle pathophysiological factors. Linear regression and correlation analysis was 
determined by Pearson’s correlation. Multivariate linear regression with adjustment for age was performed for 
determinants significantly associated through univariate regression analyses. Statistically significant associations are bold. 
+ = data missing from 1 patient. 
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Figure 7.35 – Pathophysiological determinants of skeletal muscle fibrosis. Scatter plots depicting linear regression analysis 
(Pearson’s correlation) between log10(%Fibrosis) and (A) percentage regenerated fibres and (B) log10(Pax7+ SCs per 100 
fibres). Each dot represents an individual patient. 
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7.4.13 Skeletal muscle fibrosis in frail and sarcopenic older PLWH 

Next, I sought to determine whether there were differences in skeletal muscle fibrosis between frail 

(n = 4), prefrail (n = 15), and robust (n = 11) PLWH, as well as sarcopenic (n = 5), presarcopenic (n = 

6), and non-sarcopenic PLWH (n = 19).  

Here, there was no significant difference in the proportion of fibrotic skeletal muscle tissue between 

the frail, prefrail, and robust HIV+ individuals (p = 0.42, one-way ANOVA) (Figure 7.36a). In addition, 

there was also no significant difference in skeletal muscle fibrosis between the sarcopenic, 

presarcopenic, and non-sarcopenic HIV+ individuals (p = 0.27) (Figure 7.36b). 

 

Figure 7.36 – Skeletal muscle fibrosis differences across the frailty and sarcopenic spectrum. Dot plots (mean ± SEM) 
showing no significant differences in log10(fibrosis) between (A) frail (n = 4), prefrail (n = 15), and robust (n = 11) PLWH, or 
between (B) sarcopenic (n = 5), presarcopenic (n = 6), and non-sarcopenic PLWH (n = 19). Dots represent individual patients.      
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As performed previously, I next stratified the HIV+ group (n = 30) into frail/prefrail HIV+ (n = 19) and 

sarcopenic/presarcopenic HIV+ (n = 11) groups and compared the proportion of skeletal muscle 

fibrosis in the respective groups against robust HIV+ (n = 11) and non-sarcopenic HIV+ individuals (n 

= 19).  

Notably, there was no significant difference in the level of skeletal muscle fibrosis between older 

frail/prefrail PLWH (n = 19) and age-matched robust PLWH (n = 11; p = 0.35, unpaired t test) (Figure 

7.37a). Similarly, there was also no significant difference in skeletal muscle fibrosis between 

sarcopenic/presarcopenic PLWH (n = 11) and non-sarcopenic PLWH (n = 19; p = 0.26) (Figure 7.37b). 

 

 

Figure 7.37 – Skeletal muscle fibrosis in adverse ageing phenotypes in older PLWH. Dot plots (mean ± SEM) depicting no 
significant difference in log10(% fibrosis) between (A) frail/prefrail PLWH (n = 19) and robust PLWH (n = 11), as well as (B) 
sarcopenia/presarcopenia PLWH (n = 11) and non-sarcopenic PLWH (n = 19). Each dot represents an individual patient.  
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7.4.14  H&E histochemistry for assessment of regenerated and degenerated 

myofibres 

H&E histochemistry was performed on 10µm cryo-sections (n = 45) in order to quantify the 

proportion of muscle fibres with central nuclei, indicative of regenerated fibres, and the proportion 

of degenerated fibres (Figure 7.38).  

Interestingly, the HIV- group (n = 15) had a significantly higher proportion of regenerated fibres 

compared to the HIV+ group (n = 30; p = 0.02, unpaired t test) (Figure 7.39a). Whilst there was no 

significant difference in the proportion of degenerated fibres between the two groups (Figure 

7.39b). 

 

 

Figure 7.38 – Example H&E histochemistry for degenerated and regenerated fibres. (A) Degenerated fibres (indicated by 
thick white arrow). (B) Regenerated fibre characterised by central nuclei (indicated by thin white arrows). Scale bar = 50µm. 

A B 
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Figure 7.39 – Greater proportion of regenerated fibres in HIV- individuals. Dot plots (mean ± SEM) showing (A) a 
significantly higher level of proportional regenerated fibres in the HIV- group (n = 15) compared to the HIV+ group (n = 30; p 
= 0.02), and (B) no significant difference in the proportion of degenerated fibres between the HIV+ and HIV- groups. Each 
dot represents an individual patient.  
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7.4.15 Predictors of the proportion of regenerated and degenerated fibres in older 

PLWH 

I next sought to investigate whether the proportion of regenerated fibres and degenerated fibres 

was predicted by any of the clinical, HIV-related, lifestyle, body composition, or pathogenic skeletal 

muscle factors in older PLWH. To this end, I performed linear regression analysis and unpaired t tests 

between these factors.  

7.4.15.1 Clinical predictors of regenerated and degenerated fibres in older PLWH  

With regards to the HIV-related factors, the proportion of regenerated fibres was significantly 

predicted by a greater duration of untreated HIV infection (n = 30; r = 0.39; p = 0.035) (Figure 7.40e). 

As such, through a multivariate linear regression model which included the proportion of 

regenerated fibres as the dependant variable and age as well as months untreated as the 

independent variables, the association between regenerated fibres and months of untreated HIV 

infection was confirmed to be independent of age (unstandardised regression coefficient = 0.041; p 

= 0.045, multivariate linear regression) (Table 7.13). However, the overall model fit was not 

statistically significant (p = 0.11) and was subsequently predictive of only a small amount of variation 

in the percentage of regenerated fibres (r2 = 0.15). 

Of the lifestyle factors, smokers had a significantly lower proportion of regenerated fibres compared 

to non-smokers (p = 0.039, unpaired t test) (Table 7.13).  

None of the clinical parameters significantly predicted the proportion of degenerated fibres (Figure 

7.41/Table 7.13). 
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 % Regenerated fibres % Degenerated fibres 

 HIV+ (n = 30) HIV+ (n = 30) 

 r p 
Age-adjusted 

p 
r p 

Age 0.11 0.55 - 0.033 0.86 

BMI (kg/m2) 0.31 0.92 - -0.14 0.45 

Waist circumference (cm) 0.52 0.056 - -0.091 0.63 

# Comorbidities 0.21 0.26 - -0.15 0.42 

# Medications 0.032 0.87 - -0.093 0.63 

Polypharmacy* - 0.92 - - 0.32 

% Fat mass -0.10 0.78 - -0.028 0.93 

% Lean mass 0.10 0.78 - 0.028 0.93 

Months since diagnosis 0.35 0.061 - -0.10 0.60 

Months on ART -0.012 0.95 - 0.12 0.53 

Months untreated 0.39 0.035 0.045 -0.20 0.28 

CD4 count (copies/µl) -0.085 0.67 - -0.22 0.27 

Smokers* - 0.039 - - 0.28 

Alcohol drinkers* - 0.83 - - 0.48 

Recreational drug use* - 0.44 - - 0.93 

 

Table 7.13 – Clinical predictors of regenerated and degenerated fibre prevalence in older PLWH. Table depicting the 
associations between the percentage of regenerated and degenerated fibres and various clinical factors. Linear regression 
and correlation analysis was determined by Pearson’s correlation. * = ordinal data in which individuals were stratified by 
yes/no and differences determined by unpaired t tests. Statistically significant associations are bold. 
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Figure 7.40 - Clinical determinants of percentage regenerated fibres. Scatter plots depicting the linear regression 
(Pearson’s correlation) between the percentage of regenerated fibres and (A) age, (B) BMI (kg/m2), (C) percentage lean 
mass, (D) percentage fat mass, and (E) months untreated HIV infection in older PLWH (n = 30). Each dot represents an 
individual patient. 
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Figure 7.41 – Clinical determinants of percentage degenerated fibres. Scatter plots depicting the linear regression 
(Pearson’s correlation) between the percentage of degenerated fibres and (A) age, (B) BMI (kg/m2), (C) percentage lean 
mass, and (D) percentage fat mass in older PLWH (n = 30). Each dot represents an individual patient. 
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7.4.15.2 Physical determinants of regenerated and degenerated fibre percentages in older 

PLWH 

Through linear regression analysis, I next determined whether physical parameters significantly 

predicted the percentage of regenerated and degenerated fibres in older PLWH.  

As described in Table 7.14, MET score was significantly associated with the proportion of 

degenerated fibres in the older PLWH (n = 30; r = 0.41; p = 0.025, Spearmans’s correlation) (Figure 

7.43c). Subsequently, in a multivariate linear regression model where the predictive value of MET 

score for the proportion of degenerated fibres was adjusted for age, the association between 

degenerated fibre proportion and MET score was demonstrated to be independent of the effect of 

age (unstandardised regression coefficient = 0.000078; p = 0.009, multivariate linear regression) 

(Table 7.14). Indeed, the overall model fit was statistically significant (p = 0.030) but was only 

predictive of a modest amount of variance in the percentage of degenerated fibres (r2 = 0.29). 

There were no other significant associations between physical parameters and either the percentage 

of regenerated (Figure 7.42) or degenerated fibres (Figure 7.43). 

 

 % Regenerated fibres % Degenerated fibres 

 HIV+ (n = 30) HIV+ (n = 30) 

 r p r p 
Age-

adjusted p 

FFP score^ -0.083 0.66 -0.21 0.26 - 

SPPB score^ -0.19 0.31 0.32 0.081 - 

MET score^ 0.081 0.67 0.41 0.025 0.009 

Grip strength (kg) -0.20 0.47 0.30 0.10 - 

ASMI (kg/m2) 0.38 0.84 0.087 0.65 - 

 

Table 7.14 – Physical factors predicting percentage regenerated and degenerated fibres in older PLWH. Table depicting 
the associations between the percentage of regenerated and degenerated fibres, and various physical factors. Linear 
regression and correlation analysis was determined by Pearson’s correlation for normally distributed data and Spearman’s 
correlation for non-normally distributed data (denoted by ^). 
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Figure 7.42 – Physical factors predicting percentage regenerated fibres. Scatter plots depicting the linear regression 
between percentage regenerated fibres and (A) FFP score, (B) SPPB score, (C) MET score, (D) grip strength (kg), and (E) 
ASMI (kg/m2) in older PLWH (n = 30). Pearson’s correlation was performed for parametric data (D and E), and Spearman’s 
correlation was performed on non-parametric data (A, B, C). Each dot represents an individual patient. 
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Figure 7.43 – Physical factors predicting percentage degenerated fibres. Scatter plots depicting the linear regression 
between percentage degenerated fibres and (A) FFP score, (B) SPPB score, (C) MET score, (D) grip strength (kg), and (E) 
ASMI (kg/m2) in older PLWH (n = 30). Pearson’s correlation was performed for parametric data (D and E), and Spearman’s 
correlation was performed on non-parametric data (A, B, C). Each dot represents an individual patient. 
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7.4.15.3 Pathophysiological skeletal muscle determinants of the percentage regenerated and 

degenerated fibres in older PLWH 

Finally, linear regression analyses was performed in order to determine whether pathophysiological 

skeletal muscle factors significantly predicted the proportion of regenerated and degenerated fibres 

in older PLWH (Table 7.15). 

Here, unadjusted linear regression analysis demonstrated that the proportion of regenerated fibres 

was significantly associated with average fibre CSA (r = 0.45, p = 0.014, Pearson’s correlation) 

(Figure 7.44a), and predicted by the prevalence of Pax7+ SCs (r = 0.52; p = 0.003) (Figure 7.44b), and 

skeletal muscle fibrosis (r = 0.59; p = 0.001) (Figure 7.44c).  

Next, as these pathophysiological factors are linked with age, multivariate linear regression models 

were developed with the percentage regenerated fibres as the dependant variable, and age as well 

as either Pax7+ SC prevalence, fibre CSA, or fibrosis percentage as the independent variables.   

Firstly, multivariate linear regression analysis confirmed that the association between the 

percentage of regenerated fibres and fibre CSA was independent of the effect of age 

(unstandardised regression coefficient = 0.01; p = 0.016, multivariate linear regression) (Table 7.15), 

and that the overall model fit was statistically significant (p = 0.044). However, the model was 

predictive of a small amount of variation in the percentage of regenerated fibres (r2 = 0.21).  

Additionally, the association between the percentage of regenerated fibres and fibrosis was also 

independent of the effect of age in a model with fibrosis and age as the independent variables 

(unstandardised regression coefficient = 26.9; p = 0.001) (Table 7.15). The overall model fit was 

statistically significant (p = 0.003) and predictive of a modest amount of variation in the percentage 

of regenerated fibres (r2 = 0.35).  

Next, in a multivariate linear regression model with Pax7+ SC prevalence and age as the independent 

variables, the association between the percentage of regenerated fibres and the prevalence of Pax7+ 

SC was also independent of the effect of age (unstandardised regression coefficient = 20.87; p = 

0.005) (Table 7.15). Again, the overall model fit was significant (p = 0.014), although predictive of 

only a small amount of variation in the percentage of regenerated fibres (r2 = 0.27). 

In univariate linear regression analysis, the proportion of degenerated fibres was significantly 

associated with the area covered by lipofuscin granules (r = -0.60; p = 0.001, Pearson’s correlation) 

(Figure 7.44d). Next, a multivariate linear regression model with the percentage of degenerated 

fibres as the dependant variable and age as well as lipofuscin CSA as the independent variables, the 

significant association between degenerated fibres and lipofuscin CSA was independent of the effect 
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of age (unstandardised regression coefficient = -0.28; p = 0.001, multivariate linear regression) 

(Table 7.15). Again, the overall model fit was statistically significant (p = 0.003) and was predictive of 

a reasonably small amount of variation in the percentage of degenerated fibres (r2 = 0.37). 

 

 HIV+ (n = 30) 

 % Regenerated fibres % Degenerated fibres 

 r p 

Age-

adjusted 

p 

r p 

Age-

adjusted 

p 

Type I % -0.11 0.55 - 0.32 0.087 - 

Type IIa % -0.028 0.88 - -0.31 0.098 - 

Type IIx % 0.29 0.12 - -0.19 0.30 - 

Fibre CSA (µm2) 0.45 0.014 0.016 0.34 0.064 - 

Log10(Pax7+ SC) 0.52 0.003 0.001 0.031 0.87 - 

Log10(% BodipyAbn) 0.059 0.76 - -0.067 0.73 - 

Log10(Lipofuscin CSA)+ 0.097 0.62 - -0.60 0.001 0.001 

Log10(Lipofuscin frequency)+ -0.006 0.93 - -0.096 0.62 - 

Log10(% Fibrosis) 0.59 0.001 0.005 0.07 0.71 - 

 

Table 7.15 – Skeletal muscle determinants of regenerated and degenerated fibre proportions. Table depicting the 
associations between the percentage of regenerated and degenerated fibres and various skeletal muscle pathological 
factors. Linear regression and correlation analysis was determined by Pearson’s correlation. Multivariate linear regression 
with adjustment for age was performed for determinant significantly associated through univariate regression analyses.+ = 
data missing from 1 patient. Statistically significant associations are bold. 

 

  



296 
 

 

Figure 7.44 – Pathophysiological determinants of regenerated and degenerated fibres. Scatter plots depicting linear 
regression analysis (Pearson’s correlation) between the percentage of regenerated fibres and (A) fibre CSA (µm2), (B) 
log10(Pax7+ SCs per 100 fibres), and (C) log10(% fibrosis); percentage of degenerated fibres and (D) log10(lipofuscin CSA 
(µm2)). Each dot represents an individual patient. 
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7.4.16 Regenerated and degenerated fibre proportions in frail and sarcopenic older 

PLWH 

Here, in order to better understand proportions of regenerated and degenerated fibres in frailty and 

sarcopenia in older PLWH, I grouped the HIV+ group (n = 30) into frail (n = 4), prefrail (n = 15), and 

robust PLWH (n = 11), as well as sarcopenic (n = 5), presarcopenic (n = 6), and non-sarcopenic PLWH 

(n = 19).  

There was no significant difference in the proportion of either regenerated (p = 0.80, one-way 

ANOVA) (Figure 7.45a) or degenerated fibres (p = 0.42) between the frail, prefrail and robust groups 

(Figure 7.45c). There was also no significant difference in the proportion of either regenerated (p = 

0.41) (Figure 7.45b) or degenerated fibres (p = 0.80) between the sarcopenia, presarcopenia or no-

sarcopenia groups (Figure 7.45d). 
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Figure 7.45 – Differences in the proportion of regenerated and degenerated fibres across the frailty and sarcopenia 
spectrum. Dot plots (mean ± SEM) depicting no significant differences in the proportion of regenerated fibres between (A) 
frail (n = 4), prefrail (n = 15) and robust (n = 11) PLWH, or (B) sarcopenic (n = 5), presarcopenic (n = 6) and non-sarcopenic (n 
= 19) PLWH; no significant differences in the proportion of degenerated fibres between (C) frail, prefrail and robust PLWH, 
or (D) sarcopenic, presarcopenic and non-sarcopenic PLWH. Each dot represent an individual patient.  
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Next, in an attempt to improve the power to detect differences between PLWH characterised by the 

adverse ageing phenotypes, I stratified the HIV+ group (n = 30) into frail/prefrail HIV+ (n = 19) and 

sarcopenic/presarcopenic HIV+ (n = 11) groups, as done in previous sections and studies (Kooij et al., 

2016). I then determined if there were differences in the proportion of regenerated and 

degenerated fibres between the respective groups and robust HIV+ (n = 11) and non-sarcopenic 

HIV+ individuals (n = 19).  

Here, there was no significant difference in the proportion of regenerated fibres between the 

frail/prefrail HIV+ group and the robust HIV+ group (p = 0.81, unpaired t test) (Figure 7.46a), or 

between the sarcopenia/presarcopenia HIV+ group and the no-sarcopenia HIV+ group (p = 0.99) 

(Figure 7.46b). 

Additionally, there was also no significant difference in the proportion of degenerated fibres 

between the frail/prefrail HIV+ group (n = 19) and the robust HIV+ group (n = 11; p = 0.21, unpaired t 

test) (Figure 7.46c), or between the sarcopenia/presarcopenia HIV+ group (n = 11) and the no-

sarcopenia HIV+ group (n = 19; p = 0.51) (Figure 7.46d).  
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Figure 7.46 – Regenerated and degenerated fibres in adverse ageing phenotypes in older PLWH. Dot plots (mean ± SEM) 
showing no significant difference in the proportion of regenerated fibres between (A) frail/prefrail PLWH (n = 19) and robust 
PLWH (n = 11), or (B) sarcopenic/presarcopenic PLWH (n = 11) and non-sarcopenic PLWH (n = 19); degenerated fibre 
proportion between (C) frail/prefrail PLWH (n = 19) and robust PLWH (n = 11), or (D) sarcopenic/presarcopenic PLWH (n = 
11) and non-sarcopenic PLWH (n = 19). 
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7.4.17 No difference in lipofuscin accumulation between older PLWH and HIV- 

individuals 

Due to the autofluorescent nature of lipofuscin granules I was able to observe and quantify granules 

in 10µm skeletal muscle sections simply by air-drying, fixing, cover-slipping, and imaging the sections 

at two different wavelengths (546nm and 647nm). Unlike with antibody-targeting 

immunofluorescence in which a no primary control (NPC) can be used, the autofluorescence aspect 

of lipofuscin imaging means all imaged sections contain lipofuscin granules and so there are no 

NPCs. Therefore, lipofuscin granules were confirmed by co-localisation in both the 546 and 647 

channels (Figure 7.47). Once imaged, I subsequently quantified the CSA (µm2) covered by the 

lipofuscin granules as well as the frequency of granules per µm2 for HIV+ (n = 29) and HIV- (n = 13) 

individuals. One subject from the HIV+ group and two from the HIV- group were excluded due to 

poor tissue quality.  

 

 

Figure 7.47 – Example fluorescence image of lipofuscin granules. 10µm skeletal muscle sections from HIV+ and HIV- 
individuals were imaged at 546nm and 647nm channels and merged. Lipofuscin granules were confirmed by localisation in 
both channels. Scale bar = 50µm. 
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For both the frequency and area of lipofuscin granules, data was normalised through log 

transformation. 

Notably, neither the frequency (Figure 7.48a) nor area covered by lipofuscin granules (Figure 7.48b) 

was significantly different between the HIV+ and HIV- groups (unpaired t tests). 

 

 

Figure 7.48 – No difference in proportional frequency of lipofuscin granules or proportional area covered by lipofuscin 
granules. Dot plots (mean ± SEM) showing (A) no significant difference in the proportional frequency of lipofuscin granules 
between the HIV+ (n = 29) and HIV- (n = 13) groups; (B) no significant difference in proportional CSA (µm2) covered by 
lipofuscin granules. Each dot represents an individual patient.  
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7.4.18 Determinants of lipofuscin accumulation 

7.4.18.1 Clinical determinants of lipofuscin coverage in older PLWH 

I next sought to assess whether the area covered by of lipofuscin granules was predicted by clinical 

parameters collected as part of the MAGMA study, such as HIV-related and clinical characteristics, 

body composition, and lifestyle factors (Table 7.16).  

Here, in unadjusted regression analysis, the area covered by lipofuscin granules was significantly 

greater in PLWH with higher CD4 counts (r = 0.48; p = 0.012, Pearson’s correlation) (Figure 7.49e). 

As lipofuscin accumulation is linked with age, a multivariate linear regression model was developed 

with lipofuscin CSA as the dependant variable, and age as well as CD4 count as the independent 

variables. Thus, multivariate linear regression confirmed that the significant association between 

lipofuscin area and CD4 count was independent of age (regression coefficient = 0.003; p = 0.012, 

multivariate linear regression) (Table 7.16). The overall fit of this model was statistically significant 

(p = 0.039) and was predictive of a small amount of the variation in lipofuscin CSA (r2 = 0.24).  

In addition, PLWH with polypharmacy had a significantly higher lipofuscin area than those who do 

not have polypharmacy (p = 0.044, unpaired t test) (Table 7.16). Finally, HIV+ smokers had a 

significantly higher area covered by lipofuscin granules compared to older PLWH who do not smoke 

(p = 0.012, unpaired t test) (Table 7.16). 
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 Log10(Lipofuscin CSA (µm2)) 

 HIV+ (n = 29) 

 r p 
Age-

adjusted p  

Age -0.21 0.88 - 

BMI (kg/m2) 0.24 0.21 - 

Waist circumference (cm) 0.21 0.28 - 

# Comorbidities 0.13 0.51 - 

# Medications -0.092 0.64 - 

Polypharmacy* - 0.044 - 

% Fat mass 0.18 0.36 - 

% Lean mass -0.18 0.36 - 

Months since diagnosis -0.076 0.69 - 

Months on ART -0.19 0.32 - 

Months untreated 0.047 0.81 - 

CD4 count (copies/µl) 0.48 0.012 0.012 

Smokers* - 0.012 - 

Alcohol drinkers* - 0.30 - 

Recreational drug use* - 0.37 - 

Table 7.16 – Clinical predictors of lipofuscin accumulation in older PLWH. Table depicting the associations between 
log10(lipofuscin CSA) and various clinical factors. Linear regression and correlation analysis was determined by Pearson’s 
correlation. * = ordinal data in which individuals were stratified by yes/no and differences determined by unpaired t test. 
Statistically significant associations are bold. 
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Figure 7.49 - Clinical determinants of lipofuscin accumulation. Scatter plots depicting the linear regression (Pearson’s 
correlation) between log10(lipofuscin CSA) and (A) age, (B) BMI (kg/m2), (C) percentage lean mass, (D) percentage fat mass, 
and (E) CD4 count (copies/µl) in older PLWH (n = 30). Each dot represents an individual patient. 
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7.4.18.2 Physical determinants of lipofuscin accumulation in older PLWH 

Next, I sought to determine whether physical parameters significantly predicted increased lipofuscin 

area in skeletal muscle from the HIV+ group (n = 30). Hence, unadjusted linear regression analysis 

was performed between lipofuscin area and physical function results (Table 7.17). In particular, 

Pearson’s correlation was performed on normalised data sets whilst Spearman’s correlation was 

performed on non-normalised data sets, which is denoted in Table 7.17.   

Here, there was no significant association between the area covered by lipofuscin granules and any 

of the physical parameters such as FFP score, SSPB score or grip strength (Figure 7.50). 

  

 Log10(Lipofuscin CSA (µm2)) 

 HIV+ (n = 29) 

 r p 

FFP score^ -0.14 0.46 

SPPB score^ 0.20 0.31 

MET score^ -0.30 0.11 

Grip strength (kg) -0.11 0.58 

ASMI (kg/m2) 0.22 0.24 

 

Table 7.17 –  Physical factors predicting lipofuscin CSA in older PLWH. Table depicting the associations between 
log10(lipofuscin CSA), and various physical factors. Linear regression and correlation analysis was determined by Pearson’s 
correlation for normal data and Spearman’s correlation for non-normal data (denoted by ^). 
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Figure 7.50 – Physical factors predicting lipofuscin accumulation. Scatter plots depicting the linear regression between 
log10(lipofuscin CSA (µm2)) and (A) FFP score, (B) SPPB score, (C) MET score, (D) grip strength (kg), and (E) ASMI (kg/m2) in 
older PLWH (n = 30). Pearson’s correlation was performed on parametric data (D and E), and Spearman’s correlation was 
performed on non-parametric data (A, B, C). Each dot represents an individual patient. 
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7.4.18.3 Skeletal muscle pathophysiological determinants of lipofuscin accumulation in older 

PLWH 

Finally, linear regression analysis was undertaken in order to determine whether any of the 

pathophysiological skeletal muscle factors previously discussed in this chapter significantly predicted 

an increased area covered by lipofuscin granules (Table 7.18). 

As demonstrated in the previous sections (Section 7.4.15.3), lipofuscin CSA was significantly 

associated with a lower proportion of degenerated fibres (n = 29; r = -0.60; p = 0.001, Pearson’s 

correlation) (Figure 7.51). Hence, another multivariate linear regression model was developed with 

lipofuscin CSA as the dependant variable and age, as well as percentage degenerated fibres as the 

independent variables. Here, the overall model fit was significant (p = 0.003) and was predictive of a 

reasonably modest amount of variation in lipofuscin CSA (r2 = 0.37). Indeed, the association between 

lipofuscin CSA and the percentage of degenerated fibres remained significant independently of the 

effect of age (unstandardised regression coefficient = -1.30; p = 0.001, multivariate linear 

regression) (Table 7.18).  
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 Log10(Lipofuscin CSA (µm2)) 

 HIV+ (n = 29) 

 r p Age-adjusted p 

Type I % -0.025 0.90 - 

Type IIa % 0.11 0.59 - 

Type IIx % -0.12 0.54 - 

Fibre CSA (µm2) -0.001 0.99 - 

Log10(Pax7+ SC) 0.052 0.79 - 

Log10(% BodipyAbn) -0.008 0.97 - 

% Regenerated fibres 0.097 0.62 - 

% Degenerated fibres -0.60 0.001 0.001 

Log10(% Fibrosis) 0.037 0.85 - 

 

Table 7.18 – Skeletal muscle determinants of lipofuscin accumulation. Table depicting the associations between the 
log10(lipofuscin CSA) and various skeletal muscle pathophysiological factors. Linear regression and correlation analysis was 
determined by Pearson’s correlation. Multivariate linear regression with adjustment for age was performed for 
determinants significantly associated through univariate regression analyses. Statistically significant associations are bold. 
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Figure 7.51 – Pathophysiological determinants of lipofuscin accumulation. Scatter plot depicting linear regression analysis  
(Pearson’s correlation) between log10(lipofuscin CSA (µm2)) and percentage degenerated fibres. Each dot represents an 
individual patient.  
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7.4.19 Lipofuscin in adverse ageing phenotypes in older PLWH 

To investigate whether there is increased skeletal muscle lipofuscin accumulation in older PLWH 

with adverse ageing phenotypes such as frailty and sarcopenia, I stratified the HIV+ group (n = 29) 

into frail (n = 4), prefrail (n = 14), and robust (n = 11) HIV+, as well as sarcopenic (n = 5), 

presarcopenic (n = 5), and non-sarcopenic (n = 19) HIV+ groups. 

Here, there was no significant difference in the area covered by lipofuscin granules between frail, 

prefrail and robust individuals (p = 0.083, one-way ANOVA) (Figure 7.52a) or sarcopenic, 

presarcopenic and non-sarcopenic individuals (p = 0.77) (Figure 7.52c).  

In addition, there was no significant difference in the frequency of lipofuscin granules between frail, 

prefrail and robust PLWH (p = 0.13) (Figure 7.52b), or between sarcopenic, presarcopenic and non-

sarcopenic HIV+ individuals (p = 0.99) (Figure 7.52d). 
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Figure 7.52 – Differences in lipofuscin accumulation across the frailty and sarcopenia spectrum in older PLWH. Dot plots 
(mean ± SEM) showing no significant difference between frail (n = 4), prefrail (n = 14) or robust (n = 11) PLWH in either (A) 
log10(lipofuscin CSA (µm2)) or (C) log10(lipofuscin frequency); no significant difference between sarcopenic (n = 5), 
presarcopenic (n = 5) or non-sarcopenic (n = 19) PLWH in either (B) log10(lipofuscin CSA (µm2)) or (D) log10(lipofuscin 
frequency). Each dot represents an individual patient.   

  

A B 

C D 



313 
 

Next, I further stratified the HIV+ group into frail/prefrail HIV+ (n = 18) and sarcopenic/presarcopenic 

HIV+ (n = 10) groups, and compared both the CSA covered by and frequency of lipofuscin granules in 

the respective groups against robust HIV+ (n = 11) and non-sarcopenic HIV+ individuals (n = 19). 

Again, there was no significant difference in either the area covered by lipofuscin granules (p = 0.51, 

unpaired t test) (Figure 7.53a), or the frequency of lipofuscin granules (p = 0.37) (Figure 7.53c) 

between the frail/prefrail PLWH (n = 18) and robust PLWH (n = 10). Similarly, there was also no 

significant difference in the area covered by lipofuscin granules (p = 0.89) (Figure 7.53b) or 

frequency of lipofuscin granules (p = 0.94) (Figure 7.53d) between sarcopenic/presarcopenic PLWH 

(n = 10) and non-sarcopenic PLWH (n = 19). 
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Figure 7.53 – Lipofuscin accumulation in adverse ageing phenotypes in older PLWH. Dot plots (mean ± SEM) depicting no 
significant difference in log10(lipofuscin CSA (µm2)) between (A) frail/prefrail PLWH (n = 18) and robust PLWH (n = 11) and, 
(B) sarcopenic/presarcopenic PLWH (n = 10) and non-sarcopenic PLWH (n = 19); no significant difference in the frequency of 
lipofuscin granules between (C) frail/prefrail PLWH and robust PLWH and, (B) sarcopenic/presarcopenic PLWH and non-
sarcopenic PLWH. Each dot represents an individual patient.  
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7.4.20 Links between skeletal muscle mitochondrial dysfunction and 

pathophysiological skeletal muscle factors 

Work undertaken in Chapter 6 demonstrated that skeletal muscle mitochondrial dysfunction in the 

form of CI and CIV deficiency was significantly higher in older PLWH compared to age-matched HIV- 

individuals (Section 6.4.2). Here, I sought to assess whether skeletal muscle mitochondrial 

dysfunction significantly predicted any of the respective skeletal muscle pathophysiological factors 

previously discussed in this chapter. To this end, I performed linear regression analysis between 

proportional CI and CIV deficiency, as well as mitochondrial mass (represented as VDAC1 z-score) 

and the various respective skeletal muscle pathophysiological factors (Table 7.19).  

Interestingly, proportional CI deficiency significantly predicted a lower percentage of type I fibres in 

older PLWH (n = 30; r = -0.39; p = 0.033, Pearson’s correlation) (Figure 7.54a), as well as a greater 

percentage of type IIx fibres (r = 0.51; p = 0.004) (Figure 7.54b).  

Subsequently, as both fibre type proportions and mitochondrial dysfunction are linked with age, I 

developed multivariate linear regression models with either the percentage of type I fibres or the 

percentage of type IIx fibres as the dependant variable and age, as well as proportional CI deficiency 

as the independent variables. Here, multivariate linear regression confirmed that the association 

between proportional CI deficiency and the lower percentage of type I was independent of the 

effect of age (unstandardised regression coefficient = -12.18; p = 0.018, multivariate linear 

regression) (Table 7.19). The overall model fit was marginally not significant (p = 0.055) and 

predicted only a small amount of variation in the percentage of type I fibres (r2 = 0.19).  

Next, another multivariate linear regression model with the percentage of type IIx fibres as the 

dependant variable, and proportional CI deficiency and age as the independent variables 

demonstrated that the association between the percentage of type IIx fibres and proportional CI 

deficiency was independent of the effect of age (unstandardised regression coefficient = 6.70; p = 

0.003) (Table 7.19). The overall fit of this model was statistically significant (p = 0.012) although was 

only predictive of a small amount of variation in the percentage of type IIx fibres (r2 = 0.28). 

In addition, as the percentage of type IIx fibres was also significantly predicted by a higher number of 

comorbidities (Section 7.4.9.1), a multivariate linear regression model with the percentage of type 

IIx fibres as the dependant variable, and independent variables including age, proportional CI 

deficiency, and number of comorbidities was developed. Here, multivariate linear regression 

confirmed that the association between proportional CI deficiency and the percentage of type IIx 

fibres was independent of the effect of age and greater number of comorbidities (unstandardised 
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regression coefficient = 5.26; p = 0.013, multivariate linear regression) (Table 7.20). In addition, the 

association between percentage type IIx fibres and greater number of comorbidities remained 

significant after adjustment for age and proportional CIV deficiency (unstandardised regression 

coefficient = 0.26; p = 0.015) (Table 7.20). The overall fit of this model was statistically significant (p 

= 0.002) and predictive of a moderate amount of variation in the percentage of type IIx fibres (r2 = 

0.36). 

Finally, proportional CIV deficiency significantly predicted a greater prevalence of quiescent Pax7+ 

SCs (r = 0.49; p = 0.006, Pearson’s correlation) (Figure 7.54c). Again, in a multivariate linear 

regression model with adjustment for age, the association between proportional CIV deficiency and 

Pax7+ SC prevalence was demonstrated to be independent on the effect of age (unstandardised 

regression coefficient = 0.22; p = 0.009, multivariate linear regression) (Table 7.19). Here, the 

overall fit of this model was significant (p = 0.023) although was only predictive of a small amount of 

variation in Pax7+ SC prevalence (r2 = 0.24).  
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 HIV+ (n = 30) 

 CI abnormal CIV abnormal VDAC1 z-score 

 r p 
Age-

adjusted p 
r p 

Age-

adjusted p 
r p 

Type I % -0.39 0.033 0.018 -0.17 0.82 - -0.059 0.76  

Type IIa % 0.21 0.27 - 0.009 0.96 - 0.030 0.88  

Type IIx % 0.51 0.004 0.003 0.35 0.061 - 0.078 0.68  

Fibre CSA (µm2) -0.14 0.47 - -0.18 0.34 - -0.18 0.35  

Log10(Pax7+ SC) 0.29 0.12 - 0.49 0.006 0.009 -0.081 0.67  

Log10(% BodipyAbn) 0.050 0.79 - 0.19 0.31 - 0.024 0.90  

% Regenerated fibres 0.19 0.32 - 0.056 0.77 - 0.018 0.93  

% Degenerated fibres 0.086 0.65 - 0.11 0.56 - 0.088 0.64  

Log10(% Fibrosis) 0.10 0.59 - 0.32 0.085 - -0.036 0.85  

Log10(Lipofuscin CSA)+ -0.093 0.63 - -0.067 0.73 - 0.031 0.87  

Log10(Lipofuscin frequency)+ 0.25 0.19 - 0.12 0.54 - 0.044 0.82  

 

Table 7.19 – Skeletal muscle determinants of mitochondrial dysfunction. Table depicting the associations between the proportion of log10(CI abnormal), log10(CIV abnormal) fibres, as well as 
average myofibre VDAC! Z-score, and various skeletal muscle pathological factors. Linear regression and correlation analysis was determined by Pearson’s correlation. Multivariate linear 
regression with adjustment for age was performed for determinants significantly associated through univariate regression analyses.+ = data missing from 1 patient. Statistically significant 
associations are bold.
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Figure 7.54 - Pathophysiological determinants of skeletal muscle mitochondrial dysfunction. Scatter plot depicting linear 
regression analysis (Pearson’s correlation) between log10(CI abnormal) and (A) percentage type I fibres, and (B) percentage 
type IIx fibres; log10(CIV abnormal) and log10(Pax7+ SCs per 100 fibres). Each dot represents an individual patient. 

 

Dependant 

variable 

Independent 

variables 

Unstandardised regression 

coefficients 
p 

CI 

abnormal 
Age 

# 

Comorbidities 

CI 

abnormal 
Age 

# 

Comorbidities 

% Type IIx 
Age, CI abnormal, 

# comorbidities,  
5.26 -0.11 2.60 0.013 0.42 0.015 

Table 7.20 – Fibre type IIx multivariate linear regression model. Table depicting the dependant and independent variables, 
as well as the unstandardised regression coefficients and p value outputs from a multivariate linear regression model used 
to determine predictive factors of the percentage of type IIx fibres. Statistically significant results are bold. 
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7.4.21 Is there a compensatory upregulation in myofibre regenerative capacity in 

older PLWH? 

Pax7+ SC prevalence was previously demonstrated to be predicted by mitochondrial dysfunction (in 

particular CIV deficiency) (Section 7.4.20), as well as the increased fibrosis in older PLWH (Section 

7.4.6.3). This therefore suggests that muscle damage through both mitochondrial dysfunction and 

fibrosis may be stimulating a regenerative response, mediated by an increased prevalence of 

quiescent satellite cells. As such, through various multivariate linear regression analyses I next 

investigated the hypothesis that increased fibrosis and CIV deficiency was underpinning an 

upregulated skeletal muscle regenerative response in older PLWH.  

Firstly, I wanted to determine whether a greater prevalence of Pax7+ SCs was dependant on factors 

found to be significantly predicitive of Pax7+ SC prevalence through unadjusted linear regression 

analysis. As such, a multivariate linear regression model was developed with Pax7+ SC prevalence as 

the dependant variable and age, fibrosis, and proportional CIV deficiency as the independent 

variables. Here, the overall fit of the model was statistically significant (p = 0.002) and predicted a 

reasonably large amount of variation in Pax7+ SC prevalence (r2 = 0.37). Interestingly, a greater 

prevalence of Pax7+ SCs was significantly predicted by proportional CIV deficiency independently of 

the effect of age and fibrosis (unstandardised regression coefficient = 0.16; p = 0.033, multivariate 

linear regression) (Table 7.21). In addition, Pax7+ SCs prevalence was also significantly predicted by 

fibrosis independently of the effect of age and proportional CIV deficiency (unstandardised 

regression coefficient = 0.52; p = 0.007) (Table 7.21).  

Next, I wanted to investigate whether a greater prevalence of regenerated fibres was directly 

predicted by an increased prevalence of Pax7+ SCs, or whether other factors of muscle damage such 

as fibrosis independently predicted increased regeneration, irrespective of an increased prevalence 

of Pax7+ SCs. As such, a multivariate linear regression model was developed with the percentage of 

regenerated fibres as the dependant variable and age, months untreated HIV infection, proportional 

CIV deficiency, fibrosis, and Pax7+ SC prevalence as independent variables (Table 7.22). Of note, the 

proportion of degenerated fibres was not included in the model as it was not significantly predictive 

of the percentage of regenerated fibres. 

Here, the overall fit of the model was statistically significant (p = 0.002), and was predictive of a large 

amount of variation in the percentage of regenerated fibres (r2 = 0.52). Notably, a greater 

prevalence of regenerated fibres was indeed significantly predicted by a greater prevalence of Pax7+ 

SCs independently of the effect of age, greater months untreated HIV infection, fibrosis, and CIV 

deficiency (unstandardised regression coefficient = 16.43; p = 0.041, multivariate linear regression) 
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(Table 7.22). In addition, increased fibrosis also significantly predicted a greater prevalence of 

regenerated fibres independently of the effects of age, CIV deficiency, months untreated HIV 

infection, and importantly, Pax7+ SC prevalence (unstandardised regression coefficient = 17.72; p = 

0.037) (Table 7.22).  
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Dependant variable Independent variables 

Unstandardised regression coefficients p 

Age 
CIV 

deficiency 
Fibrosis Age 

CIV 

deficiency 
Fibrosis 

Pax7+ SC 
Age, fibrosis, proportional CIV 

deficiency 
-0.002 0.16 0.52 0.70 0.033 0.007 

Table 7.21 – Pax7+ SC prevalence multivariate linear regression analysis model. Table depicting the dependant and independent variables included in the multivariate model used to 
determine factors predictive of the prevalence of Pax7+ SCs. Statistically significant data is bold. 

 

Dependant variable 
Independent 

variables 

Unstandardised regression coefficients p 

Age 
CIV 

deficiency 
Fibrosis Pax7+ SCs 

Months 

untreated 
Age 

CIV 

deficiency 
Fibrosis Pax7+ SCs 

Months 

untreated 

Percentage 

regenerated fibres 

Age, Pax7+ SCs, 

fibrosis, months 

untreated, 

proportional CIV 

deficiency 

0.040 -5.30 17.72 16.43 0.030 0.83 0.093 0.037 0.041 0.11 

Table 7.22 – Skeletal muscle regeneration multivariate linear regression analysis models. Table depicting the dependant and independent variables included in the multivariate model used 
to determine whether Pax7+ SC prevalence was directly responsible for skeletal muscle regeneration. Statistically significant data is bold. 



322 
 

7.5 Discussion 

Data on skeletal muscle pathophysiological factors in older (≥ 50 years) PLWH and age-matched HIV- 

individuals recruited as part of the MAGMA study was presented for the first time in this chapter.  

Other studies conducted as part of the MAGMA study and discussed in previous chapters (Chapter 5 

and 6) demonstrated that older HIV-infected males had a higher prevalence of adverse ageing 

phenotypes such as frailty and sarcopenia when compared to age and sex-matched HIV-uninfected 

individuals. In addition, these older HIV+ individuals had a significantly higher proportion of skeletal 

muscle mitochondrial dysfunction in the form of CI and CIV deficiency compared to the matched 

HIV- individuals.  

However, as this skeletal muscle mitochondrial dysfunction did not appear to directly explain the 

observed frailty and sarcopenia in older PLWH, I wanted to investigate the effect of other 

pathogenic muscle factors that are known to be involved in the pathophysiology of age-related 

muscle decline, such as stem cell availability and intramyocellular lipid accumulation (Wu & 

Ballantyne, 2017; Collins et al., 2007; Sousa-Victor et al., 2014). Importantly, I also aimed to 

determine whether skeletal muscle mitochondrial dysfunction was predictive of any of these 

pathophysiological factors, and additionally whether any of these factors were implicated in frailty 

and sarcopenia in older PLWH.  

7.5.1 Study findings 

7.5.1.1 Insulin resistance and adverse ageing phenotypes in older PLWH 

Initially, I sought to investigate the role of insulin resistance (IR) in adverse ageing conditions in older 

PLWH, as IR has been shown to be associated with physiological decline (Wu & Ballantyne, 2017; 

Phielix et al., 2012). Firstly, I assessed whether there were differences in skeletal muscle IR between 

the HIV+ and HIV- individuals. Here, by staining skeletal muscle sections with the fluorescent 

histochemical dye BODIPY (493/503), I quantified a surrogate for IR – IMCL – in both the HIV+ and 

HIV- individuals and found that there was no statistically significant difference in the proportion of 

IMCL between the respective serostatus groups. Importantly, this is the first study to demonstrate 

that there is no significant difference in IMCL at the individual myofibre level between older PLWH 

and age-matched HIV- individuals.  

Next, I assessed whether exposure to particular ARV classes predicted IMCL. Surprisingly, PLWH who 

had been exposed to older, mitochondrially-toxic nucleoside reverse transcriptase inhibitors (NRTIs) 

had significantly lower IMCL than PLWH who had not been exposed to these ARVs. As zidovudine 

(AZT) and stavudine (d4T) in particular have been shown to be associated with fat redistribution 
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elsewhere in the body (Moyle et al., 2006; Jones et al., 2005; Glidden et al., 2018; Carr et al., 1999; 

Dragovic et al., 2014; Miller et al., 2003; McComsey et al., 2016), I further stratified the HIV+ group 

into those who had been exposed to those two NRTIs and those who had not. Again, PLWH who had 

been exposed to these NRTIs had significantly lower IMCL compared to those who had not. This 

suggests that any potential abnormalities in fat distribution seen in PLWH exposed to these drugs 

did not contribute to an increased insulin resistance and IMCL accumulation in skeletal muscle, and 

exposure to these ARVs may in fact result in increased metabolism of fats in skeletal muscle. It is  

plausible that because these drugs cause loss of subcutaneous limb fat (lipoatrophy) (Innes et al., 

2012), they might also reduce IMCL. 

Finally, through unadjusted linear regression analysis I demonstrated that increased IMCL was not 

significantly predicted by any of the clinical, HIV-related, physical, or lifestyle factors assessed as part 

of the MAGMA study. Even though the average BMI of the HIV- group was significantly higher 

compared to the HIV+ group, this did not predict IMCL. In addition, IMCL was not significantly 

altered in PLWH with adverse ageing phenotypes such as frailty and sarcopenia, nor did skeletal 

muscle mitochondrial dysfunction appear to predict IMCL in the older HIV+ individuals. This was 

surprising as mitochondrial dysfunction is thought to be associated with IR (Kelley et al., 2002; 

Hwang et al., 2010; Heilbronn et al., 2007; Ritov et al., 2005; Phielix et al., 2008), which in turn is a 

risk factor for the age-associated decline in muscle function (Wu & Ballantyne, 2017). In addition, 

these results suggest that metabolic abnormalities do not significantly contribute to the 

pathophysiology of adverse ageing phenotypes in older PLWH, as they do in diabetics (Park et al., 

2009; Cacciatore et al., 2013). As IR is associated with oxidative stress (Rains & Jain, 2011) and 

chronic inflammation (Patsouris et al., 2014), it would therefore be interesting to investigate 

whether there were differences in systemic, or skeletal muscle specific oxidative stress, as well as 

inflammatory markers between the HIV+ and HIV- groups.  

7.5.1.2 Lipofuscin accumulation does not contribute to the pathophysiology of adverse ageing 

phenotypes in older PLWH 

Another pathophysiological skeletal muscle factor assessed was lipofuscin accumulation. In the 

general population, age-associated skeletal muscle lipofuscin accumulation has been associated with 

declining muscle function through proteolytic mechanisms (Hutter et al., 2007; Sitte et al., 2000; 

Hohn et al., 2011; Sugano et al., 2006; Powell et al., 2005; Stroiken et al., 2004), and there are 

possible links to the causative role of age-associated mitochondrial dysfunction in this phenomenon 

(Terman & Brunk, 2006; Konig et al., 2016; Terman & Sandberg, 2002; Couve et al., 2012). As such, I 

quantified both the area covered by, and frequency of lipofuscin granules in both the HIV+ and HIV- 

individuals, and found that there was no significant difference in either parameter between the two 
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respective groups. In addition, older PLWH with the adverse ageing phenotypes of frailty and 

sarcopenia did not have a significantly different amount of either parameter compared to age-

matched robust and non-sarcopenic PLWH respectively.  

The discrepancy between my results and results from previous studies are possibly explained by the 

fact that I measured lipofuscin accumulation through the quantification of the area covered as well 

as by the frequency of lipofuscin granules, and imaged lipofuscin autofluorescence in two different 

channels. In contrast, the Hutter et al. (2007) study only measured lipofuscin by the raw 

autofluorescence intensity in one channel (488nm), and in only 6 individual fibres. The variation in 

participant ages was also much larger in the Hutter et al. (2007) study compared to this study.  

Surprisingly, through unadjusted and age-adjusted linear regression analyses it was also 

demonstrated that an increased area covered by lipofuscin granules was significantly predicted by a 

higher CD4 count and a lower proportion of degenerated fibres. However, there was no significant 

association between lipofuscin accumulation and skeletal muscle mitochondrial dysfunction, again 

contradicting previous studies (Terman & Bunk, 2006). 

Notably, this was the first study to investigate skeletal muscle lipofuscin accumulation in the context 

of ageing in HIV. As such, the demonstration that there was no significant difference either the area 

covered by or frequency of lipofuscin granules between older PLWH and age-matched HIV- 

individuals is novel.  

7.5.1.3 Skeletal muscle CI deficiency predicts decreased fibre type conversion in older PLWH 

In addition to IR and decreased stem cell prevalence, age-related changes in fibre type composition 

have previously been implicated in the age-associated decline in muscle function (Manini, 2011; 

Milijkovic et al., 2015). In particular, older individuals in the general population have lower 

proportions of the glycolytic fibre types IIa and IIx, and an increased prevalence in fibre type I 

proportions, which account for loss of muscle mass and strength with age (Brunner et al., 2007; 

Grimby, 1995; Murgia et al., 2017; Ubaida-Mohien et al., 2019; Roberts et al., 2018; Verdijk et al., 

2009; 2010; 2012; 2014; McKay et al., 2012; 2013). Therefore, in both the HIV+ and HIV- groups, I 

quantified the proportions of the three fibre types, as well as their cross-sectional area, as this is also 

associated with muscle function (van Wessel et al., 2010; Frontera et al., 2000; Milijkovic et al., 

2015). Whilst the proportion of type I fibres was higher than that of both types IIa and IIx fibres in 

both the HIV+ and HIV- groups, there was no significant difference in the proportions of the 

respective fibres types between the HIV+ and HIV- individuals themselves. In addition, there was no 

significant difference in average fibre cross-sectional area between the HIV and HIV- groups. 
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Importantly, this study is the first to investigate differences in fibre type proportions between older 

PLWH and age-matched HIV- individuals.   

I then wanted to determine if altered proportions of any of the fibre types or average fibre cross-

sectional area was linked to frailty or sarcopenia in older PLWH. Here, frail PLWH had a significantly 

higher proportion of type IIx fibres compared to both prefrail and robust PLWH, contradicting 

previous observations (St-Jean Pelletier et al., 2017; Sonjak et al., 2019).  

Additionally, through unadjusted and age-adjusted linear regression analysis, the proportions of the 

fibre types were investigated in relation to the other pathogenic skeletal muscle factors, as well as 

clinical, physical, and lifestyle parameters. Here, it was also found that a higher average fibre cross-

sectional area was significantly associated with the proportion of regenerated fibres, suggesting that 

those older PLWH with higher regenerative capacity have increased muscle mass and potentially 

therefore, muscle strength (Verdijk et al., 2007; van Wessel et al., 2010). In addition, individuals with 

a higher prevalence of comorbidities, as well as those prescribed with more medications, had a 

significantly higher proportion of type IIx fibres. Together, this suggests that increased age-related 

pathology in older PLWH may impair fibre type switching with age, potentially through increased 

chronic inflammation or poorer neuromuscular junction dynamics, leading to inadequate fibre type 

switching (D’Antona et al., 2003; Gonzalez-Freire et al., 2014). This therefore merits further 

investigation.  

Interestingly, greater proportional skeletal muscle CI deficiency also appeared to predict a higher 

proportion of type IIx fibres, as well as a lower proportion of type I fibres through unadjusted and 

age-adjusted linear regression analysis. Further, multivariate linear regression models also 

demonstrated that greater proportional CI deficiency significantly predicted a lower percentage of 

type I fibres and a simultaneous increase in the percentage of type IIx fibres, independently of the 

effect of both age and a greater number of comorbidities. As type IIx fibres have a lower 

mitochondrial content compared to type I fibres, as well as the fact that type IIx fibres are glycolytic 

and type I fibres are oxidative (Murgia et al., 2019; Howald et al., 1985; Picard et al., 2012; Picard et 

al., 2008), these findings suggest that age-related skeletal muscle mitochondrial dysfunction may be 

preserving type IIx fibres from age-related atrophy. Conversely, these findings may also be 

suggestive of a phenomenon whereby instead type I fibres are preferentially selected for atrophy as 

a result of metabolic and functional decline (Murgia et al., 2017; Murgia et al., 2019). Unfortunately 

it was not possible to precisely determine which of these processes were occurring, or whether both 

were occurring in the older PLWH, and so further work is required.  
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7.5.1.4 Elevated skeletal muscle fibrosis does not directly contribute to the onset of adverse 

ageing phenotypes in older PLWH 

Next, as age-associated mitochondrial dysfunction induces skeletal muscle apoptosis and potentially 

fibrosis (Marzetti et al., 2006; Powers et al., 2012), I investigated and compared the level of skeletal 

muscle fibrosis in both the older HIV+ and HIV- individuals. Notably, HIV+ individuals had a 

significantly higher level of skeletal muscle fibrosis compared to age-matched HIV- individuals. As 

this was a novel result, I undertook unadjusted and age-adjusted linear regression analysis in order 

to determine the factors that predicted this increased fibrosis in the older HIV+ individuals.  

Surprisingly, greater fibrosis did not seem to be explained by any of the clinical, HIV-related, 

physical, or lifestyle factors assessed in the MAGMA study. Nor was fibrosis associated with skeletal 

muscle mitochondrial dysfunction. This later finding is surprising, as mitochondrial dysfunction is 

linked with increased skeletal muscle atrophy in the general population (Powers et al., 2012). 

However, atrophy is not solely dependent on fibrosis, and other factors not investigated in this 

study, such as inflammation, may be contributing. 

Additionally, by stratifying the HIV+ individuals into whether they were frail/prefrail or 

sarcopenic/presarcopenic, and comparing levels of fibrosis against robust and non-sarcopenic PLWH, 

it was demonstrated that there was no significant difference in skeletal muscle fibrosis in PLWH with 

these adverse ageing phenotypes.  

Importantly, as previously mentioned, fibrosis was significantly associated with a higher prevalence 

of Pax7+ SCs and regenerated fibres. In this circumstance, even though a greater prevalence of 

quiescent Pax7+ SCs allows for a greater regeneration potential in response to injury, there will be 

some abhorrent skeletal muscle healing that results in fibrosis (Mann et al., 2011).  

7.5.1.5 Older PLWH with adverse ageing phenotypes did not have higher prevalences of 

regenerated or degenerated fibres compared to normal older PLWH 

Loss of muscle mass is a contributing factor to the development of sarcopenia (Cruz-Jentoft et al., 

2019), and the age-associated decline in muscle regenerative capacity contributes to both the 

decline in muscle mass and strength (Garcia-Prat et al., 2013; Li et al., 2019). Here, by subjecting 

muscle sections to H&E histochemistry, I determined the proportions of regenerated and 

degenerated muscle fibres in both the HIV+ and HIV- groups. Notably, HIV+ individuals had a 

significantly lower proportion of regenerated fibres when compared to the HIV- individuals. This is 

the first time this result has been demonstrated and this novel finding may be explained by the fact 

that greater duration (months) of untreated HIV infection was significantly predictive of a lower 

proportion of regenerated fibres in unadjusted and age-adjusted linear regression analysis. Here, 
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individuals with a greater duration of untreated HIV infection may be predisposed to residual 

chronic inflammation and immunosenescence, impairing muscle regenerative capabilities (Wilson & 

Sereti, 2013; Guaraldi et al., 2011).  

As expected, the proportion of regenerated fibres was also significantly associated with the 

prevalence of Pax7+ SCs as well as average fibre CSA in unadjusted and age-adjusted linear 

regression, supporting previous observations (Sambasivan et al., 2011). A higher percentage of 

regenerated fibres was also significantly predicted by fibrosis in unadjusted and age-adjusted linear 

regression. There were no other significant associations between the proportion of regenerated 

fibres and any of the clinical, HIV, physical, or lifestyle parameters. Overall, these findings suggest 

that older PLWH with a long duration of untreated HIV infection have a reduced regenerative 

capacity. This may be due to an impaired immune system and residual chronic inflammation (Wilson 

& Sereti, 2013; Guaraldi et al., 2011; Fornica et al., 2020). 

Finally, there was no significant difference in either the proportion of regenerated, or degenerated 

fibres between PLWH with the adverse ageing phenotypes of frailty and sarcopenia, and those who 

did not have these adverse ageing phenotypes.  

7.5.1.6 Potential compensatory mechanisms inducing the upregulation of skeletal muscle 

regenerative capacity in older PLWH 

Another factor associated with declining muscle and physical function with age is the reduced 

prevalence of quiescent stem cells (Lopez-Otin et al., 2013; Verdijk et al., 2007). As such, I sought to 

investigate the prevalence of Pax7+ satellite cells (SCs) in the older HIV+ and HIV- individuals.  

Indeed, there was no statistically significant difference in Pax7+ satellite cell prevalence between the 

two respective groups. This result is this first demonstration that there is no significant difference in 

the prevalence of quiescent skeletal muscle stem cells between older PLWH and age-matched HIV- 

individuals.  

I next sought to determine whether the prevalence of Pax7+ SCs was significantly predicted by any of 

the clinical, HIV-related, or lifestyle parameters. As such, through unadjusted linear regression 

analysis it was shown that none of these factors significantly predicted the prevalence of Pax7+ SCs. 

Additionally, linear regression analysis also determined that Pax7+ SC prevalence was not 

subsequently predictive of physical function or indeed that Pax7+ SC prevalence was significantly 

different in frail/prefrail or sarcopenic/presarcopenic PLWH compared to robust or non-sarcopenic 

PLWH.  
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However, it was determined through unadjusted and age-adjusted linear regression analysis that 

mechanisms of skeletal muscle damage in the form of mitochondrial dysfunction (specifically CIV 

deficiency) and fibrosis were both significantly predictive of a greater prevalence of Pax7+ SCs in 

older PLWH. Indeed, in a multivariate linear regression model developed to determine the predictive 

value of both CIV deficiency and fibrosis independently of age and the other respective factor, both 

factors remained statistically significant after adjustment.  

Interestingly, as mentioned previously, both increased fibrosis and prevalence of regenerated 

myofibres were significantly predicted by an increased prevalence of Pax7+ SCs independently of age 

in older PLWH. Additionally, a higher proportion of regenerated fibres was also significantly 

predicted by a greater prevalence of Pax7+ SCs following adjustment for the effect of other factors 

shown to be predictive of fibre regeneration, such as age, greater months untreated HIV infection, 

fibrosis, and CIV deficiency. Finally, a greater percentage of regenerated fibres was also significantly 

predicted by increased fibrosis after adjustment for age, months untreated, CIV deficiency, and stem 

cell prevalence – further supporting the idea that muscle damage is stimulating regeneration.  

Altogether, these findings are strongly suggestive of phenomenon in older PLWH whereby both 

fibrosis and mitochondrial dysfunction are independently inflicting muscle damage, which is 

subsequently stimulating the compensatory increase in quiescent satellite cell prevalence. However, 

this increased prevalence of Pax7+ SCs is leading to increased levels of both normal muscle healing, 

via the regeneration of myofibres, as well as abhorrent healing, in the form of fibrosis formation. 

This would indicate a reduction in the functional efficiency of Pax7+ SCs in older PLWH, as the Pax7+ 

SC pool is not necessarily depleted (Sacco et al., 2010; Attia et al., 2017; Dumont et al., 2015). 

Indeed, elevated residual chronic inflammation as the result of HIV infection may be contributing to 

this phenomenon (Wanschitz et al., 2013; McKay et al., 2013; Rudnicki et al., 2008; Collins et al., 

2007; Yang et al., 2011; Conboy et al., 2005; Merritt et al., 2013). In addition, exhaustion of satellite 

cells could be due to continued activation in response to muscle damage, as is the case in studies of 

Duchenne Muscular Dystrophy using the mdx mouse model (Lu et al., 2014; Sacco et al., 2010). 

Indeed, it is likely that chronic inflammation is a primary driver of continued SC activation and 

exhaustion (Fornica et al., 2020). This therefore requires further investigation.      

Finally, as none of fibrosis, the percentage of regenerated fibres, or the prevalence of Pax7+ SCs was 

significantly different in frail/prefrail or sarcopenic/presarcopenic PLWH compared to robust and 

non-sarcopenic PLWH, this would suggest that none of these factors are directly responsible for the 

greater prevalence of adverse ageing conditions seen in PLWH compared to age-matched HIV- 

individuals. Altogether, these findings subsequently suggest that the proposed compensatory 
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upregulation in regenerative capacity may not be fully efficient, but is functional enough to 

attenuate the onset of adverse ageing in PLWH. Indeed, as mentioned several times previously 

throughout this thesis, it also suggests that other factors known to be present in ART-treated PLWH, 

such as elevated chronic inflammation or immune senescence, are likely to be playing a significant 

causative role in age-related pathogenesis.  

Importantly, these findings could have significant clinical and therapeutic relevance, as they suggest 

that age-related muscle decline could potentially be attenuated in older PLWH through exercise 

regimens (Lo et al., 2020; Zampieri et al., 2015; Marzetti et al., 2008; Rowe et al., 2014; Walston et 

al., 2018; Cameron et al., 2013; Silva et al., 2017; Li et al., 2019). Notably, these findings also support 

recent studies which have suggested that the transplantation of functional Pax7+ SCs may be 

beneficial in preventing declining muscle function (Yang et al., 2017; Berberoglu et al., 2017). 

7.5.1.7 Study conclusions 

In conclusion, whilst there were several key age-associated pathogenic skeletal muscle parameters 

that were significantly altered in older HIV+ individuals compared to age-matched HIV- individuals, 

such as increased skeletal muscle fibrosis and the decreased proportion of regenerated fibres, only a 

greater proportion of type IIx fibres appeared to be directly linked to the adverse ageing phenotype 

of frailty, whilst none were linked to sarcopenia in older PLWH.  

Interestingly however, results from this chapter did demonstrate the presence of some potential 

compensatory regenerative mechanisms in older PLWH. Here, a higher prevalence of quiescent 

Pax7+ SCs was significantly predicted by both increased proportional CIV deficiency and skeletal 

muscle fibrosis, suggesting a compensatory upregulation in the stimulation of regeneration. 

Normally, this increased prevalence of quiescent Pax7+ SCs would consequently then induce 

increased muscle healing. However, as the increased prevalence of quiescent Pax7+ SCs was 

significantly predictive of both fibre regeneration and abhorrent healing in the form of increased 

fibrosis, this would instead suggest that regenerative mechanisms are not fully efficient in older 

PLWH – most likely to a decline in Pax7+ SC function. Importantly though, as there was not a 

significantly lower level of quiescent Pax7+ SCs or regenerated fibres in frail and sarcopenic PLWH, 

these findings together suggest that the attempted compensatory upregulation in muscle 

regeneration in response to muscle damage is attenuating the pathogenic decline in muscle function 

and onset of adverse ageing phenotypes in older PLWH. However, these findings do not explain the 

exact mechanisms behind this compensation. Hence, as chronic inflammation is known to be linked 

to declining muscle function with age (Perandini et al., 2018), as well as the fact that inflammation is 
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known to regulate stem cell function (McKay et al., 2013; Rudnicki et al., 2008; Collins et al., 2007; 

Yang et al., 2011; Conboy et al., 2005) this should be investigated in future studies. 

Another interesting finding was that, through investigations into the proportions of skeletal muscle 

fibre types, it was demonstrated that mitochondrial dysfunction in the form of CI deficiency 

significantly predicted a greater proportion of type IIx fibres, independently of the number of 

comorbidities, as well as a decrease in the proportion of type I fibres. Importantly, the proportion of 

type IIx fibres was significantly higher in frail PLWH compared to prefrail and robust PLWH. Taken 

together, as the age-related decrease in the proportion of glycolytic type IIx fibres is associated with 

declining muscle function (Brunner et al., 2007; Grimby, 1995; Murgia et al., 2017; Ubaida-Mohien et 

al., 2019; Roberts et al., 2018; Verdijk et al., 2009; 2010; 2012; 2014; McKay et al., 2012; 2013), as 

well as frailty and prefrailty (St-Jean Pelletier et al., 2017; Sonjak et al., 2019), these results indicate 

that another compensatory mechanism could also involve attenuated fibre type switching in 

response to age-related mitochondrial dysfunction, ultimately slowing down the onset of adverse 

ageing phenotypes. Alternatively, these findings could also suggest that declining skeletal muscle 

mitochondrial function may induce the selective atrophy of type I fibres in older PLWH. To better 

understand this phenomenon, other factors such as chronic inflammation, oxidative stress, immune 

senescence, and neuromuscular junction decline should be investigated in order to better 

understand these pathophysiological mechanisms.  

The design of the MAGMA study, in particular the range of clinical parameters and skeletal muscle 

factors investigated, has meant that several novel observations have been made. Of note, this is the 

first study to simultaneously investigate whether physical parameters such as percentage fat mass or  

MET score are associated with pathogenic factors such as IMCL or stem cell availability in the context 

of HIV in ageing. In addition, whether HIV-related clinical parameters such as CD4 count or duration 

on antiretroviral therapy contributed to these pathogenic factors was also investigated for the first 

time. 

Importantly, the utilisation of a novel immunofluorescence assay which objectively quantifies 

mitochondrial mass as well as CI and CIV deficiency at the individual myofibre level (Rocha et al., 

2015) afforded the ability to investigate the role skeletal muscle mitochondrial dysfunction plays in 

these pathophysiological mechanisms. Whilst previous studies have demonstrated that 

mitochondrial dysfunction is present in some virally-supressed PLWH (Cote et al., 2002; Payne et al., 

2011; Martin et al., 2013; Morse et al., 2012; McComsey et al., 2008; Samuels et al., 2017; Lewis & 

Dalkas, 2003), this is the first study to assess whether mitochondrial dysfunction is implicated in the 
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pathophysiology of age-associated skeletal muscle decline and adverse ageing phenotypes in older 

PLWH.  
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 Older PLWH Older HIV- individuals Conclusions 

IMCL  • Comparable to HIV- individuals 

• No associations with clinical parameters 

• No difference between frail and robust, or 
sarcopenic and non-sarcopenic PLWH 

• Not predicted by mitochondrial 
dysfunction 

• ARV regimen did not predict increased 
IMCL 

• Comparable to HIV+ individuals  • IMCL was not significantly different in 
HIV+ and HIV- individuals 

• IMCL did not appear to contribute to 
adverse ageing phenotypes  

Quiescent Pax7+ SC prevalence  • Comparable to HIV- individuals 

• Predictive of age-adjusted fibrosis and 
regenerated fibre percentage 

• No difference between frail and robust, or 
sarcopenic and non-sarcopenic PLWH 

• Predicted by age-adjusted CIV deficiency 
and fibrosis, independently of various 
other pathophysiological factors 

• Comparable to HIV+ individuals • Pax7+ SC prevalence was not significantly 
different in HIV+ and HIV- individuals 

• No difference between frail and robust, or 
sarcopenic and non-sarcopenic PLWH 

• CIV deficiency appeared to predict greater 
Pax7+ SC prevalence independently of 
age-related pathophysiologic factors 

Fibre type proportions and fibre CSA • Comparable to HIV- individuals 

• Frail PLWH had higher levels of type IIx 
fibres than prefrail and robust PLWH 

• Type I percentage was negatively 
predicted by age-adjusted CI deficiency 

• Type IIx percentage predicted by age-
adjusted CI deficiency, number of 
comorbidities, and number of 
medications 

• Fibre CSA predicted by age-adjusted 
percentage of regenerated fibres 

• Comparable to HIV+ individuals • Fibre type prevalence and fibre CSA was 
not significantly different in HIV+ and HIV- 
individuals 

• Frail PLWH had higher levels of type IIx 
fibres than prefrail and robust PLWH 

• CI deficiency appeared to predict 
increased type IIx prevalence and 
decreased type I prevalence, potentially 
attenuating frailty and sarcopenia onset 

• Proposed decrease in fibre type switching 
in response to  mitochondrial dysfunction 

Fibrosis • Greater fibrosis than in HIV- individuals  

• No difference between frail and robust, or 
sarcopenic and non-sarcopenic PLWH 

• Predicted by age-associated regenerated 
fibres and Pax+ SC prevalence 

• Not predicted by mitochondrial 
dysfunction 

• Significantly lower than in HIV+ 
individuals  

• HIV+ had higher skeletal muscle fibrosis 

• No difference between frail and robust, or 
sarcopenic and non-sarcopenic PLWH 
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Regenerated fibres • Lower prevalence than in HIV- individuals  

• No difference between frail and robust, or 
sarcopenic and non-sarcopenic PLWH 

• Predicted by months untreated HIV 
infection, Pax7+ SC prevalence, and 
fibrosis after age-adjustment 

• Predicted by Pax7+ SC prevalence and 
fibrosis after adjustment for age-related 
pathophysiological factors 

• Associated with higher fibre CSA 

• Not predicted by mitochondrial 
dysfunction 

• Significantly greater than in HIV+ 
individuals 

• HIV+ individuals had a lower prevalence 
of regenerated fibres 

• No difference between frail and robust, or 
sarcopenic and non-sarcopenic PLWH 

• Fibre regeneration induced by muscle 
damage in the form of fibrosis 

• Proposed compensatory upregulation in 
regenerative capacity 

Lipofuscin accumulation • Comparable to HIV- individuals 

• No difference between frail and robust, or 
sarcopenic and non-sarcopenic PLWH 

• Not predicted by mitochondrial 
dysfunction 

• Associated with decreased degenerative 
fibre prevalence 

• Comparable to HIV+ individuals • Lipofuscin accumulation was not 
significantly different in HIV+ and HIV- 
individuals. 

• No difference between frail and robust, or 
sarcopenic and non-sarcopenic PLWH 

• Lipofuscin accumulation did not appear to 
contribute to adverse ageing phenotypes 

Involvement of mitochondrial 
dysfunction 

• Predicted age-adjusted increase in type IIx 
and decrease in type I percentage  

• Predicted age-adjusted increase in Pax7+ 
prevalence  

• Not investigated  • Appeared to predict a decline in age-
related fibre type switching 

• Predicted compensatory upregulation in 
stem cell prevalence 

Potential pathophysiological 
mechanisms behind adverse ageing 
phenotypes in older PLWH 

Two distinct potential compensatory mechanisms: 
1. Mitochondrial dysfunction predicts a decline in age-related fibre type switching 
2. Upregulation in regenerative capacities in response to skeletal muscle damage, in which fibrosis and mitochondrial dysfunction are involved. 

However, this compensatory regenerative response may not be fully efficient.   

• Both mechanisms appear to be underpinned by age-related factors not investigated in the present study, such as chronic inflammation 

Table 7.23 – Summary of experimental findings.
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7.5.2 Limitations  

Whilst this study has several novel aspects, it is limited in the fact that it is not a longitudinal study. 

An important aspect of this study was the large data set and several parameters assessed, as no 

previous studies have been able to combine all these parameters. However, this limited the ability to 

recruit a large cohort. As a result of this, it is difficult to extrapolate whether several of the 

pathogenic skeletal muscle factors such as mitochondrial dysfunction or increased fibrosis are a 

consequence or causal factor of the increased prevalence of adverse ageing phenotypes in the HIV+ 

group. It is acknowledged though that due to the comprehensive nature of tissue acquisition 

outlined in the study manual, repeated study visits may be difficult to achieve. Additionally, 

variability in repeat muscle sections would restrict the validity of several muscle biopsies being 

taken.   

Whilst the HIV+ and HIV- groups are well matched for age, another limitation lies in the fact that the 

two groups are not perfectly matched in body composition. Notably, the HIV- individuals had a 

higher average BMI and mean percentage fat mass than the HIV+ group. It is not clear whether this 

was largely explained by differences in lifestyle factors between the groups or whether HIV-

associated changes in fat metabolism are implicated. BMI and malnutrition have been shown to 

affect the onset and progression of frailty in PLWH (Erlandson et al., 2017a; Onen et al., 2009), 

although BMI did not however seem to be predictive of any outcome measures in this study. In 

response, future studies should look to better match the body compositions of the experimental 

groups. As a low daily protein intake is associated with an increased susceptibility to developing 

frailty, another potential alteration to the study protocol could have been the addition of a food 

dairy (Bartali et al., 2006).   

Importantly, although our cohort size of 45 is large enough to allow us to get a reasonably firm 

understanding of the cellular and pathophysiological mechanisms underpinning frailty and 

sarcopenia in HIV+ individuals, a larger cohort size would increase the power afforded to us to make 

more detailed within-group observations. In addition, our cohort was solely made up of males, as 

older (≥ 50 years) males are less heterogeneic than older females (Kennedy et al., 2014), as well as 

the fact that there is a much larger population of older HIV-infected males as opposed to females in 

the UK, and especially in the North East (Public Health England, 2019). The fact that the MAGMA 

study recruited majority middle-aged individuals (50-65 years) also meant that the ability to 

potentially predict the age of onset of adverse ageing phenotypes was more restricted. Hence, 

future studies should look to study females. In addition, a wider range of age should be included, 

especially enriching for old (≥65 years) individuals.  
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7.5.3 Future work 

Whilst this study has many novel aspects, there is scope for additional work to be conducted in order 

to better answer the study’s experimental aims. As mentioned above, any future studies should aim 

to be longitudinal cohort studies. In addition, the sample size should increase and should ideally 

include younger and old (≥65 years) individuals, in addition to middle-aged (50-65 years) individuals. 

This would allow for the better understanding of the trajectories of adverse ageing conditions in 

PLWH, as well as allowing us to better test our compensatory mechanism hypotheses. In addition, 

HIV+ and HIV- females from various age ranges should be included. 

One of the most immediate areas of future work would be to perform proteomics or genomics on 

individual muscle fibres or homogenate tissue, with a keen interest in comparing the signatures of 

HIV+ vs HIV- individuals, frail vs robust HIV+ subjects, and individual fibres from HIV+ subjects with 

mitochondrial dysfunction vs fibres with normal mitochondrial function. This work would expand on 

several significant recent proteomic and genomic studies done in isolated muscle fibres (Murgia et 

al., 2019) and would completement the existing experimental work.  

An additional recent advance being pioneered by our lab is the use of multiplex imaging mass 

cytometry (IMC) (Warren et al., 2020). Here, instead of being limited to four or five channels in 

which to immunofluorescently stain muscle sections, IMC would allow the simultaneous staining and 

imaging of up to 40 channels. Any IMC work should be preceded by the proteomic or genomic work, 

as this will allow us to identify any additional proteins or genes of interest.  

One of the interesting findings of this study was that muscle damage in the form of mitochondrial 

dysfunction and fibrosis were predictive of an increased prevalence of Pax7+ SCs. However, whilst 

this led to increased fibre regeneration, it also predicted a further increase in the formation of tissue 

fibrosis – indicating a possible defect in Pax7+ SC functional efficiency (Sacco et al., 2010; Attia et al., 

2017; Dumont et al., 2015). As such, in order to further investigate this phenomenon, investigations 

should be undertaken into Pax7+ SC function in older PLWH. As it would be difficult to fully 

recapitulate the heterogeneity of older PLWH in mouse models such as the mdx mouse model or in 

in vitro studies (Lu et al., 2014; Sacco et al., 2010), other markers of muscle regeneration, such as 

MyoD and Myf5 should be investigated in muscle biopsies from older PLWH (Tedesco et al., 2010; 

Almada & Wagers, 2016).     

One of the primary research interests of this study was to better understand the role of 

mitochondrial dysfunction in adverse age-related complications such as frailty and sarcopenia in 

older PLWH. In this study I utilised a novel assay which allowed us to quantify protein levels of 
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OXPHOS complexes and mitochondrial mass in individual fibres (Rocha et al., 2015). There are 

however several other experimental methods that could be used to better understand the 

mitochondrial function in our patients (Hunt & Payne, 2020; Fraizer et al., 2020). These include 

quantifying mitochondrial OXHPOS capacity through physiological assessments such as 31P-MRS. 

Additionally, specific functions of mitochondria known to be adversely affected by ART and ageing 

itself such as fission and fusion dynamics, calcium handling, signalling pathway activity, or 

mitochondrial morphology can be assessed through a range of cellular assays and electron 

microscopy imaging. In particular, as mitochondrial biogenesis and particularly PGC-1α are involved 

in fibre type switching (Liu et al., 2016), it would be of interest to investigate this specifically. At the 

molecular level, whole exome sequencing (WES) could be used to screen for pathogenic mtDNA 

mutations (Taylor et al., 2014), or alternatively qPCR and long-range PCR can be used to better 

assess mtDNA mutations (Hunt & Payne, 2020). 

As chronic immunosenescence and other immune system alterations are significantly implicated in 

the pathology of adverse age-related complications (Dihn et al., 2019), future flow cytometry work, 

with the aim of assessing the cohorts’ immune profile, should be conducted. This would 

complement the existing experimental analyses and allow us to comprehensively assess its role in 

the majority of pathophysiological factors underpinning adverse age-related complications. In 

addition, it would be of interest to assess various mitochondrial parameters such as mitochondrial 

mass or OXPHOS capabilities in certain immune cell subsets of interest.  

Another important factor involved in the decline of muscle function with age is increased muscle 

denervation (Pannerec et al., 2016; Morat et al., 2016; Always et al., 2017). Indeed, as 

neuromuscular junction decline is associated with deregulated fibre type switching (Gonzalez-Freire 

et al., 2014), and the findings in this study demonstrated a potential alteration in fibre type 

switching in older PLWH, these investigations would be of interest. In addition, as alluded to 

previously, general interest in this area has increased over recent years and so it would be 

interesting to assess whether frail HIV+ individuals have greater levels of muscle denervation 

compared to robust HIV+ individuals or HIV- individuals. 

As both chronic inflammation and oxidative stress at both the systemic and skeletal muscle level 

have been associated with adverse ageing through a variety of mechanisms (Soysal et al., 2016; Leng 

et al., 2007), another interesting aspect of potential future work would be to investigate these 

factors. Unfortunately, both of these factors are difficult to experimentally investigate at the 

individual myofibre level, and so homogenate tissue or plasma studies would most likely be 

conducted.  
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Finally, as a proxy for a larger cohort size, collaborators at University College London (UCL) possess a 

database and tissue resource for several thousand PLWH. Ideally, once the future work mentioned 

above is completed and pathologically defined ageing phenotypes are identified, it is hoped that I 

can utilise this database and resource to further validate our findings.      

  



338 
 

Chapter 8 – TDF-induced mitochondrial dysfunction in 

proximal convoluted tubules  

8.1 Introduction 

Prior to the advent of ART, HIV-associated kidney disease (HIVAN) was one of the most prevalent 

comorbidities associated with HIV infection itself (Phair & Palella, 2011; Choi et al., 2010; Swanepoel 

et al., 2018). However, ART drastically reduced the onset of HIVAN in PLWH (Ross & Klotman, 2002; 

Lucas et al., 2004; Swanepoel et al., 2018), reports of tissue-specific drug-induced toxicities surfaced.  

With regard to nephrotoxicities, acute kidney injury (AKI), nephrolithiasis, tubulopathies, and chronic 

kidney disease (CKD) were reported in virally supressed PLWH (Izzedine et al., 2004, Peyriere et al., 

2004; Izzedine et al., 2009, Wong et al., 2017; Guaraldi et al., 2011). Although the exact 

pathophysiological mechanisms underpinning these ART-induced nephrotoxicities are yet to be 

completely understood, it is well regarded that there are multiple potential mechanisms including 

direct and indirect tubular toxicity, and the precipitation of insoluble drug crystals, and that 

mitochondrial dysfunction is thought to play a significant role in these pathophysiological 

mechanisms (Kohler et al., 2009; Ramamoorthy et al., 2014; Hall, 2011; Zhao et al., 2017; 

Ramamoorthy et al., 2018; Samuels et al., 2017; Murphy et al., 2017).  

Although several ARVs of varying classes, including the PI atazanavir (ATV) (ritonavir-boosted) (Ryom 

et al., 2013), have been shown to contribute to the onset of some nephrotoxicities, the NRTI 

tenofovir has been consistently implicated in several nephrotoxicities occurring in PLWH (Thigpen et 

al., 2012; Gupta et al., 2014; Jotwani et al., 2016; Hertlitz et al., 2010; Samuels et al., 2017; Scherzer 

et al., 2012; Winston et al., 2006; Ryom et al., 2013; Poizot-Martin et al., 2013; Atta et al., 2006; Foy 

et al., 2013; Woodward et al., 2009; Hamzah et al., 2017; Mocroft et al., 2016).  

Therefore, in this pilot study I sought to better understand the role of mitochondrial dysfunction in 

nephrotoxicities in TDF-treated PLWH. 

8.1.1 Causes and pathology of tenofovir-induced nephrotoxicity   

Tenofovir (TFV) disoproxil fumarate (TDF) is a newer oral-prodrug NRTI produced in 2001 in order to 

overcome issues of earlier NRTIs such as difficult dosing schedules and several tissue-specific 

adverse effects (Gilead Sciences Inc, 2001). Clinical trials and early in vitro studies demonstrated the 
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advantages of TDF’s efficiency, tolerability, convenient dosing, and low toxicity compared to older 

NRTIs, and as a result TDF is now one of the most commonly used NRTIs in cART (Jimenez-Nacher et 

al., 2008, Izzedine et al., 2004; Nelson et al., 2007). In fact, a large cohort study of 10,343 TDF-

treated PLWH demonstrated that less than 1% of patients developed adverse renal effects after 4 

years of use (Nelson et al., 2007). Various other cohort studies have calculated that prior to 2008, 

the incidence of TDF-induced AKI ranged from 1.6 per 100 individuals to 1.5 per 1000 individuals 

(Antoniou et al., 2005; Madeddu et al., 2008). 

Initial concerns about the potential nephrotoxicity of TDF arose due to its structural similarity to the 

two acyclic nucleotide analogue drugs adefovir and cidofovir, which are used to treat hepatitis B and 

cytomegalovirus (CMV) infection (Gallant et al., 2004) (Figure 8.1). Both adefovir and cidofovir have 

been shown to cause acute tubular necrosis (ATN) and Fanconi’s syndrome, which lead to proximal 

tubulopathies (Tanji et al., 2001; Meier et al., 2002). Although the underlying mechanism is yet to be 

fully elucidated, it is widely believed that adefovir and cidofovir deplete mtDNA content by inhibiting 

PolG (Tanji et al., 2001; Zhao et al., 2017). This induces disruptions in proximal tubular mitochondrial 

function, similarly to how other NRTIs induce tissue-specific mitochondrial toxicities such as 

zidovudine (AZT)-induced myopathy or zalcitabine (ddC)-induced peripheral neuropathy (Dalkas et 

al., 1990; Dalakas et al., 2001). Notably, Fanconi’s syndrome and renal tubular acidosis are also 

reported in various mitochondrial disease patients (Gorman et al., 2016).  

Controversially, post-marketing studies supported the demonstration of TDF’s safe profile (Nelson et 

al., 2007), and early in vitro studies showed that TDF induced minimal changes in mtDNA content or 

cellular expression of the mitochondrial ETC protein cytochrome c oxidase in various human cell 

lines, including proximal renal tubules (Birkus et al., 2002; Biesecker et al., 2003). In vitro studies also 

demonstrated the significantly lower nephrotoxicity potential of TDF compared to both adefovir and 

cidofovir (Rodriguez-Nova et al., 2010).  
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Figure 8.1 – Chemical structures of acyclic nucleotide inhibitors tenofovir, adefovir and cidofovir.  

 

However, reports of AKIs such as ATN and Fanconi’s syndrome began to surface from case reports of 

TDF-treated PLWH following the widespread use of TDF in clinical practice (Rifkin & Perazella 2004; 

Coca & Perazella 2002, Peyriere et al., 2004, Zimmerman et al., 2006; Agarwala et al., 2010; Hall et 

al., 2011; Quinn, 2010). Proximal tubular injury baring a striking resemblance to adefovir and 

cidofovir-induced AKI, with characteristics such as loss of brush border, luminal ectasia, and 

hypereosinophilia, were noted in these renal histopathology investigations. Significantly, alterations 

in mitochondrial structure such as cristae remodelling, mitochondrial swelling, fragmentation, and 

reductions in mtDNA content were also observed in PLWH but not HIV- individuals with renal 

toxicities (Cote et al., 2006; Herlitz et al., 2010). Conversely however, the same retrospective studies 

failed to demonstrate a difference in mtDNA content in renal tissue from TDF-treated PLWH 

compared to TDF-unexposed PLWH (Cote et al., 2006; Herlitz et al., 2010).  

Other studies in rats, monkeys, woodchucks, and mice have supported the demonstration of TDF-

induced mtDNA depletion in proximal tubules (Kohler et al., 2009; Lebrecht et al., 2009; Biesecker et 

al., 2003) and a study on transgenic HIV+ mice showed, through electron microscopy (EM), that only 

mice exposed to TDF had ultrastructural changes to mitochondria in proximal tubule cells (Kohler et 

al., 2009). In both studies, the NRTI didanosine (ddI) was also given to the animals and induced 



341 
 

isolated hepatic alterations, but no abnormal renal changes. This further supports the hypothesis 

that ART-induced nephrotoxicities are caused by TDF-specific mechanisms. In support of this, recent 

studies demonstrated that chronic TDF exposure induced mitochondrial dysfunction which leads to 

kidney damage, primarily through ROS and RNS overproduction and oxidative stress (Ramamoorthy 

et al., 2012; Abraham et al., 2013; Ramamoorthy et al., 2014).  

Renal pathologies are complex and difficult to diagnose due to the undesirability of taking renal 

biopsies in most cases. Several validated biomarkers are therefore used for determining declining 

kidney function, including proteinuria, low eGFR and serum creatinine. A large cohort study of over 

10,000 PLWH demonstrated that TDF is significantly associated with increased proteinuria, rapid 

decline in eGFR, creatine doubling and incident CKD in PLWH, and that cumulative exposure to TDF 

increased these risks. The same study also found that these risk factors were not associated with 

concomitant use of PIs, NNRTIs, or ritonavir-boosted ART regimens (Scherzer et al., 2012). The 

association between TDF, eGFR decline, and serum creatine has also been demonstrated in other 

studies (Winston et al., 2006; Gallant et al., 2005; Ryom et al., 2013; Poizot-Martin et al., 2013; Rifkin 

& Perazella, 2004). 

Whilst the majority of the more recent studies on the effect of TDF on renal function have supported 

the notion of TDF exposure increasing the susceptibility of developing nephrotoxicities, several 

studies have argued against this theory (Antoniou et al., 2005; Gayet-Ageron et al., 2007; Padilla et 

al., 2005; Scott et al., 2006). A randomised study investigating the effect of exposure to 

TDF/emtricitabine (FTC) against abacavir (ABC)/lamivudine (3TC) found no significant differences in 

estimated glomerular filtration rate (eGFR) between the two groups (Martinez et al., 2009). 

Additionally, TDF was not found to be associated with worsening kidney function over 48 weeks in 

the multicentre FRAM study (Longenecker et al., 2009), whilst a 1 year prospective study of PLWH 

also failed to find an association between proximal tubular damage and exposure to TDF (Ando et 

al., 2011). These studies mainly determined kidney function through eGFR measurement, and unlike 

some of the studies mentioned above, did not use clinical observations of kidney damage, therefore 

limiting their clinical significance. These studies also used patients with short TDF follow-up times 

and so may not have allowed for the adverse effects of TDF exposure to sufficiently develop. For 

example, in another retrospective study PLWH who were exposed to TDF for 27 months on average 

had a significantly steeper decline in eGFR compared to age-matched PLWH who had never been 

exposed to TDF (Horberg et al., 2010). 

Although difficult to precisely pin down, the discrepancy between initial clinical trials and later 

clinical reports and experimental analysis of the potential of TDF to cause nephrotoxicities is partially 
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explained by the cohorts used in the early trials. These studies generally excluded subjects with pre-

existing renal impairments and those with a higher susceptibility to developing adverse renal 

pathologies (Squires et al., 2003; Gallant et al., 2004). The discrepancies may also be explained by 

the lack of consensus regarding the definition of what declining kidney function and kidney disease 

itself is.  

Although there is large heterogeneity in the HIV+ population, cohort studies have identified older 

age, lower CD4 count, lower BMI, higher serum creatinine levels, and the presence of other 

comorbidities as risk factors in the development of TDF-induced nephrotoxicities (Campbell et al., 

2009; Gallant et al., 2005; Wever et al., 2010; Nartey et al., 2019; Nelson et al., 2007; Madeddu et 

al., 2008; Guaraldi et al., 2011). In the normal population, kidney function, as measured by eGFR, 

declines 0.4ml/min with every year, and TDF treatment and HIV infection itself both significantly 

increase this rate (Wetzels et al., 2007; Scherezer et al., 2012). 

8.1.2 Mechanisms of TDF-induced nephrotoxicity  

Due to the vast heterogeneity in the HIV+ population, as well as the complexity in kidney biology and 

disease, the exact pathophysiological mechanism underpinning TDF-induced nephrotoxicity is not 

completely understood. From in vivo and in vitro studies of TDF and studies on other acyclic 

nucleoside inhibitors adefovir and cidofovir, the primary mechanism behind TDF-induced 

nephrotoxicities is believed to be driven by TDF-induced mitochondrial defects, which are caused by 

the accumulation of the metabolite TFV in proximal convoluted tubules (Kohler et al., 2009; 

Ramamoorthy et al., 2018; Murphy et al., 2017) (Figure 8.2). 

After oral administration, TDF undergoes rapid cleavage into TFV in plasma. TDF is then eliminated 

from circulation renally through a combination of glomerular filtration and active tubular secretion 

(Barditch-Crovo et al., 2001; Rodriguez-Novoa et al., 2009). Normally, active tubular secretion is 

tightly regulated by uptake transporters on the basolateral membrane and efflux transporters on the 

apical membrane of proximal convoluted tubules (PCTs) (Ray et al., 2006). These transporters 

mediate the active transport of small molecules from systemic circulation into urine. Initially, TFV is 

actively taken up by proximal tubular cells at the basolateral membrane through human organic 

anion transporter 1 (hOAT1) and hOAT3 (Cihlar et al., 2001). In vitro cell based studies have 

demonstrated that TFV has a >20 times higher affinity for hOAT1 than hOAT3, but that hOAT3 is 

significantly more highly expressed than hOAT1 (Cihlar et al., 2001). This study also showed that TFV 

is not a substrate for human organic cation transporter 1 (hOCT1) or hOCT2, and is therefore 

exclusively taken up by hOAT1 and hOAT3 at the basolateral membrane. After active uptake, TFV is 
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effluxed primarily by the ATP-binding cassette transporter subfamily member multidrug resistance-

associated protein type 4 (MRP4) and to a less potent degree MRP2, but not P glycoprotein (PgP) 

(Izzedine et al., 2004; Klokouzas et al., 2003; Reid et al., 2003; Schaub et al., 1997; van Aubel et al., 

2002; Ray et al., 2006).  

In the presence of increased TFV plasma concentration, or when apical efflux is inhibited, TFV 

accumulates in proximal renal cells. Here, the increased intracellular concentration of TFV becomes 

toxic and can lead to the partial inhibition of PolG (Lewis et al., 2003) and mtDNA depletion (Kohler 

et al., 2009; Cote et al., 2006), which subsequently causes defects in OXPHOS and other 

mitochondrially-mediated processes. Due to the resultant declines in ATP production, proximal 

tubular cells fail to perform active reabsorption of ions and small molecules such as phosphate, 

amino acids, and β2-microglobulin. These molecules are then secreted in abnormal quantities in 

urine, and thus are characteristic of Fanconi syndrome (Fanconi, 1936; Herlitz et al., 2010). Support 

for this theory was demonstrated through two studies which showed that significantly increased 

tubular toxicity was associated with polymorphisms in the MRP2 gene, which led to increased 

intracellular accumulation of TFV (Izzedine et al., 2006; Rodriquez-Novoa et al., 2009). A study from 

our group also provided evidence to support the theory of TDF-induced mitochondrial-dysfunction 

mediated nephrotoxicity by demonstrating the elevated presence of mtDNA deletions in urine from 

TDF-treated PLWH compared to PLWH who had not been exposed to TDF (Samuels et al., 2017).  

In more recent years, studies have suggested that the primary mechanism behind TDF-induced renal 

toxicities is increased ROS leading to cellular apoptosis and necrosis. This is mediated through 

mitochondrial abnormalities (Ramamoorthy et al., 2018; Murphy et al., 2017). Here, as the result of 

oxidative stress and increased inflammation, activation of apoptosis is upregulated. Neutrophil 

infiltration then further exacerbates the inflammatory response and oxidative stress, leading to 

tissue necrosis, hypoxia, kidney dysfunction, and failure (Fernandes Bertocchi et al., 2008; Schreiber 

et al., 2006; Kim, 2016; Biro et al., 2016; Zoja et al., 2009). 
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Figure 8.2 – Transport pathway for TDF in proximal tubular cells. Tenofovir (TFV) is actively taken up into proximal tubular epithelial cells through the organic anion transporter 1 (OAT1) and 
OAT3 and is effluxed into urine through multidrug resistance protein 2 (MRP2) in individuals with normally functioning kidneys. When TFV accumulates intracellularly, possibly via increased 
uptake from plasma or decreased efflux into urine, it can cause mitochondrial defects. These defects can arise from mtDNA depletion, large-scale mtDNA deletions, and increased ROS and 
oxidative stress, leading to declines in energy production and an increased level of mitochondrially-mediated apoptosis.  
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8.1.3 Effect of concomitant use of PIs and NNRTIs on nephrotoxicity  

8.1.3.1 PIs and nephrotoxicity 

Between the roll-out of TDF in 2001 and 2006, the US FDA reported 164 cases of TDF-induced 

Fanconi syndrome (Gupta, 2014). 74% of those patients were co-exposed to a ritonavir-boosted PI - 

mainly ritonavir-boosted lopinavir (LPV). However, a more recent systematic review and meta-

analysis demonstrated that the risk of eGFR decline in PLWH treated with LPV or ATV was not 

substantial (Bagnis & Stellbrink, 2015).  

In a cohort study, declines in kidney function were more frequent and more pronounced in TDF-

treated PLWH who were co-administered with ddI or ritonavir-boosted PI than those TDF-treated 

PLWH without co-administration (Crane et al., 2007). Another study calculated that PLWH who are 

treated with TDF plus a ritonavir-boosted PI had a 3.7 times higher risk of developing 

nephrotoxicities than PLWH who were treated with TDF plus an NNRTI (Goicoechea et al., 2008). 

Other PIs such as saquinavir (SQV) and nelfinavir (NFV) have been reported to be associated with 

nephrotoxicities in both case reports and cohort studies (Rollot et al., 2003; Gutmann et al., 1999; 

Engeler et al., 2002; Mocroft et al., 2010; Ryom et al., 2013). Another large cohort study found that 

the PI atazanavir (ATV) was associated with an increased risk of the rapid decline in eGFR, but not 

CKD. In addition, another PI, NFV was associated with a decreased risk of both CKD and proteinuria 

(Scherzer et al., 2013).  

Unlike TDF, ARVs in the PI class are not eliminated renally. In fact, they are primarily eliminated 

through the hepatic cytochrome P450 system and so do not accumulate in proximal tubule cells like 

TDF (Balani et al., 1995). One proposed mechanism behind the adverse effects of ritonavir-boosted 

PIs is that both ARVs partially inhibit the apical efflux transporter MRP2, leading to decreased efflux 

and increased intracellular accumulation of TFV (Cihlar et al., 2007). 

8.1.3.2 Links between NNRTIs as well as other ARV classes and nephrotoxicity  

Like the majority of PIs, ARVs in the NNRTI class are also eliminated through the cytochrome P450 

system as opposed to renally. There have been no reports of NNRTIs interacting with any of the 

luminal proximal tubule transporters, and subsequently there have been no reports of an association 

between NNRTI use and nephrotoxicity (Gallant et al., 2005).  

Fusion inhibitors and integrase inhibitors are two of the most recently developed classes of ARV. 

Whilst the majority of ARVs in these two classes have demonstrated a good safety profile and do not 

induce toxicities like several other ARVs, there have been limited clinical and in vitro studies 
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undertaken in order to assess the nephrotoxicity potential of these drugs. A recent study into the 

metabolic, mitochondrial and renal impact of the fusion inhibitor enfuvirtide (T20) and the integrase 

inhibitor raltegravir (RAL) found that these two drugs produce no adverse effects on the factors 

mentioned above when given as either a monotherapy or in combination with other ARVs (Barroso 

et al., 2019). 

8.1.4 Potential treatment of TDF-induced nephrotoxicities 

Importantly, PLWH on stable ART should be monitored regularly for CKD in the form of urinalysis, 

GFR estimation, serum phosphate quantification, and quantification of proteinuria (Yombi et al., 

2015). If CKD is identified, patients should undergo risk stratification. Referral to nephrology should 

be conducted in patients with unexplained AKI or CKD, worsening proteinuria, and rapid kidney 

function decline. Here, a nephrologist will assess the degree of renal impairment and recommend 

treatments. In addition, patients with CKD stage G3b/G4 should have a biopsy taken and be 

recommended for kidney replacement therapy (Swanepoel et al., 2018). 

One of the most obvious treatments for TDF-induced nephrotoxicities is cessation of TDF treatment. 

Whilst treatment cessation appears to have at least some clinical benefit, the heterogeneity in renal 

disease type and severity dictates that this method will not always be successful. For example, only 

50% of PLWH who had discontinued TDF treatment following the onset of AKI had their renal 

function return to baseline (Herlitz et al. 2010). However, other cohort studies determined that the 

risk of renal events did not decrease after TDF cessation (Scherzer et al., 2012, Monteagudo-Chu et 

al., 2012).  

A meta-analysis demonstrated that there is a substantial statistical heterogeneity (I2 = 66%) between 

the cohort studies conducted prior and up to 2010 (Cooper et al., 2010). As such, due to the 

heterogeneity of the various studies, it is extremely difficult to reach a firm conclusion with regards 

to the potential beneficial effect of TDF cessation.  

Another viable option is lowering the toxicity of TDF itself (Jose et al., 2014; Post et al., 2017; Ryom 

et al., 2017; Waheed et al., 2015). Tenofovir alafenamide fumarate (TAF) is a recently developed 

prodrug form of TFV with a far lower plasma exposure than that of TDF (Podany et al., 2018). In vitro 

studies have also demonstrated the far lower pathogenic potential of TAF compared to TDF with 

regards to eGFR decline, general tubular function, as well as on bone mass (Venter et al., 2018), and 

switches from TDF to TAF have been associated with improved kidney function (Jose et al., 2014; 

Post et al., 2017; Ryom et al., 2017; Waheed et al., 2015). However, as TAF is newly administered 

antiretroviral, the long-term safety is not known.  
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A potential alternative previously considered was the administration of probenecid, which is 

commonly used to prevent cidofovir-induced nephrotoxicity. Probenecid is an effective inhibitor of 

the basolateral membrane transporter hOAT1 and so prevents the nephrotoxic build-up of cidofovir 

in proximal tubule cells (Izzedine et al., 2009; Perazella, 2010). Controversially though, use of 

probenecid has been associated with dose-limiting toxic side-effects (Lalezari et al., 1997). 

As the primary mechanism of TDF-induced renal toxicities is thought to be elevated oxidative stress, 

the potential therapeutic effect of the antioxidant melatonin is currently being investigated 

(Ramamoorthy et al., 2018). As melatonin has been shown to have several beneficial antioxidant 

effects, such as inhibiting apoptosis (Zhao et al., 2015; Perdomo et al., 2013), decreasing ROS and 

RNS levels (Rieter et al., 2002; Hardeland, 2005; Ding et al., 2014; Rodriguez et al., 2004), and 

improving mitochondrial function (Reiter et al., 2008; Kleszcynski et al., 2016), it is hoped it may 

provide a future clinical and therapeutic benefit.  
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8.2 Experimental aims  

In the years following the early clinical trials and in vitro studies which demonstrated the safe profile 

and low PolG-binding affinity of TDF, numerous clinical reports and cohort studies have 

demonstrated a link between TDF exposure and the development of various nephrotoxicities 

(Thigpen et al., 2012; Gupta et al., 2014; Jotwani et al., 2016; Hertlitz et al., 2010; Samuels et al., 

2017; Scherzer et al., 2012; Winston et al., 2006; Ryom et al., 2013; Poizot-Martin et al., 2013).  

Whilst the exact underlying pathogenic mechanisms behind this phenomenon are yet to be fully 

elucidated, various studies have suggested a causative role for TDF-induced mitochondrial 

dysfunction (Kohler et al., 2009; Ramamoorthy et al., 2014; Hall, 2013; Zhao et al., 2017; 

Ramamoorthy et al., 2018; Murphy et al., 2017). However, a comprehensive understanding of these 

mechanisms is limited due to the difficulty in acquiring renal biopsies, as well as extraction of genetic 

material from renal tubules and tubular cells. Hence, by using renal biopsies acquired from TDF-

treated PLWH and matched HIV- individuals in a pilot study, in this chapter I sought to: 

• Determine whether the novel immunofluorescence assay developed in our lab (Rocha et al., 

2015) can be applied to quantify mitochondrial ETC complexes CI, CIII, CIV, CV, and 

mitochondrial mass in renal tissue. 

• Determine whether mtDNA can be successfully extracted from proximal tubules and 

individual proximal tubule cells following laser capture microdissection. 

• Explore whether TDF-treated PLWH had higher levels of proximal tubule mitochondrial CI, 

CIII, CIV, and CV deficiency compared to HIV- individuals.  

• Explore whether TDF-treated PLWH had higher levels of CI, CIII, CIV, and CV deficiency 

compared to non-TDF-treated PLWH. 

• Determine if CI-deficient proximal tubules and tubule cells contained mtDNA deletions or 

reductions in mtDNA copy number. 
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8.3 Methods 

8.3.1 Patient cohort  

This study was approved by the research ethics committee (Newcastle and North Tyneside 2; 17-NE-

0015), as described in Section 3.2.1 and Section 3.2.5. 

Percutaneous renal biopsies were taken from PLWH (n = 6) (supplied as residual diagnostic tissue 

from Royal Free London Hospital (RFH) Cellular Pathology Department) and open renal biopsies 

were taken from HIV- individuals (n = 5) (supplied by Dr Ashwin Sachdeva and Manchester University 

NHS Biobank), as described in Section 3.2.5. All biopsies were formalin-fixed and paraffin-

embedded. 

Of the PLWH, four were being treated with an ART regimen including TDF at the time of biopsy, 

while one had never been exposed to TDF, and clinical information was missing for one subject 

(Table 8.1). Of the four TDF-treated PLWH, only patient 3 had discontinued TDF treatment. 

8.3.2 Haematoxylin & Eosin histochemistry staining and imaging for renal tissue 

In order to visualise the renal biopsies, FFPE sections (4µm) were subjected to H&E histochemistry as 

described in Section 3.5.1. 

8.3.3 Multiplex immunofluorescence for OXPHOS complex I, III, IV and V activity in 

proximal convoluted tubules 

To objectively quantify mitochondrial dysfunction in renal tissue, serial FFPE renal sections (4µm) 

were subjected to both the CI + CIV as well as CIII + CV panels separately (Table 3.6/3.7), as 

described in Section 3.4.3. 

8.3.4 Image acquisition and determination of ETC complex activity in proximal tubules 

and proximal tubule epithelial cells  

Fluorescent images were acquired as described in Section 3.4.5. With regards to quantifying CI and 

CIV protein levels in individual proximal tubule epithelial cells, 37 putatively OXPHOS-deficient 

individual PCT cells were manually randomly identified from renal biopsies from PLWH (n = 3). No 

putatively deficient cells were identified from the HIV- individuals.  
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8.3.5 Laser microdissection of PCTs and individual PCT epithelial cells  

In order to isolate renal tissue for downstream molecular analysis, stained serial 4µm sections were 

removed from -20°C and left to air-dry for 1 hour at RT. Sections were then incubated in 1% PBS 

overnight at RT in order to remove cover slips. PCTs and individual PCT epithelial cells of interest 

were laser microdissected as described in Section 3.6.2 and captured into 15µm lysis buffer, as 

described in Section 3.6.1.  

8.3.6 Quantitative PCR for the detection and quantification of mtDNA mutations  

A duplex quantitative real-time PCR assay targeting the mitochondrial genes MT-ND1 and MT-ND4 

was used to detect and quantify deletions in the mitochondrial genome, as described in Section 

3.7.5. By assuming that MT-ND1 was not deleted through mutations I was also able to calculate 

mtDNA copy number. Details of all primers and standards used as well as their preparation are 

described in Section 3.7. 

8.3.7 Statistical analyses 

Normality was determined by Shapiro-Wilk tests.  

Individual PCTs were then classified into groups based on their z-scores for MTCO1, NDUFB8, 

UQCRFS1 and ATPB. Respective z-scores were calculated after normalisation to VDAC1 staining 

intensity: ‘positive’ (z > -3); ‘intermediate positive (+)’ (-3 > z > -4.5); ‘intermediate negative (-)’ (-4.5 

> z > -6) and ‘deficient’ (z < -6). Subsequently, the ‘deficient’, ‘intermediate -‘ and ‘intermediate +’ 

groups were pooled together to create the ‘deficient’ group (i.e. z < -3 = deficient). The log10-

transformed percentage of PCTs in either category for NDUFB8, UCQRFS1, MTCO1 and ATPB activity 

were compared between patient groups using unpaired t tests in Prism v5.04. Graphs were also 

made in Prism v5.04.  

The average mitochondrial mass (as indicated through VDAC1 staining intensity z-score) for each 

subject was also quantified, although not log-transformed. Individual PCTs were then classified into 

mitochondrial mass groups depending on their z-score: ‘very low’ (VDAC1_z < -3); ‘low’ (-3 < 

VDAC1_z < -2); ‘normal’ (-2 < VDAC1_z < +2); ‘high’ (+2 < VDAC1_z < +3) and ‘very high’ (3 < 

VDAC1_z). 

Unadjusted linear regression analysis (Pearson’s correlation) was undertaken in order to assess the 

relationship between mitochondrial complex deficiency and average mitochondrial mass.   

Statistical significance was set at p ≤ 0.05. 
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8.4 Results 

8.4.1 Cohort clinical characteristics 

The clinical characteristics of the HIV-infected subjects are described in Table 8.1. Clinical 

information was missing for patient 6. The mean age of the HIV+ subjects (n = 6) at biopsy was 55.6 

(range 47-79) years old and 100% of the subjects were male and white British. Of the HIV- subjects 

(n = 5), 80% were male and 100% were white British. The average age of the HIV- individuals was 32 

years old. Clinical information was missing from the HIV- individuals except for age, gender and 

ethnicity.  

Of the patients with available clinical information (n = 5), four of the five had an eGFR lower than 15 

ml/min/1.73m2, which is indicative of stage 5 kidney disease. The other individual, patient 5, had an 

eGFR indicative of stage 2 kidney disease. All five HIV+ subjects with available clinical information 

were virally supressed.
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Patient  Age Ethnicity 

CD4 

(copies/ml) 

Nadir CD4 

(copies/ml) 

Viral load 

(copies/ml) 

eGFR 

(ml/min/1.73m2) ART 

Duration 

on TDF 

(months) 

Duration of 

HIV infection 

(months) Renal pathology Comorbidities 

Potential 

pathogenic 

factors 

1  50 WB 294 294 50 5 
TDF, FTC, 

ATV/r 
18 19 Acute tubular injury 

T2D, 

hyperlipidaemia 
Metformin 

2  59 WB 214 214 50 9 
TDF, FTC, 

ATV/r 
69 176 

Acute tubular injury + 

Diabetic neuropathy 
Cellulitis ACEi, cellulitis 

3  43 WB 510 - 40 6 
TDF, FTC, 

EFV, DRV/r 
37 218 Acute tubular injury 

T2D, 

hyperlipidaemia 
NSAIDs 

4  79 WB 296 26 40 6 
TDF, FTC, 

ATV/r 
22 115 

Tubulointerstitial 

nephritis + Diabetic 

neuropathy 

Diarrhoea LRTI 

5  47 WB 590 80 50 71 
3TC, EFV, 

SQV/r 
N/A 158 

Interstitial fibrosis and 

tubular atrophy 
None None 

6  - - - - - - - - - - - - 

Table 8.1 - Clinical characteristics of the PLWH. Clinical information was missing for patient 6. T2D = type 2 diabetes; TDF = tenofovir disoproxil fumarate; FTC = emtricitabine; ATV = 
atazanavir; /r = ritonavir boosted; EFV = efavirenz; DRV = darunavir; 3TC = lamivudine; SQV = saquinavir; ACEi = angiotensin-converting enzyme inhibitor; LRTI = lower respiratory tract 
infection
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8.4.2 Haematoxylin and Eosin (H&E) histochemistry 

Renal biopsies from PLWH (n = 6) and HIV- individuals (n = 5) were subjected to H&E histochemistry 

in order to determine the robustness of the tissue morphology prior to subjecting the sections to 

multiplex immunofluorescence and laser microdissection. H&E was also performed in order to 

detect the presence of any significant tissue abnormalities (Figure 8.3).  

 

 

 

Figure 8.3 – Representative example of a renal needle biopsy taken from a HIV+ and HIV- individual. (1) Proximal 
convoluted tubule (PCT). (2) Glomeruli. (3) Distal convoluted tubule (DCT). Proximal tubules exhibit partial loss of brush-

border, cytoplasmic simplification and epithelial desquamation. Scale bar = 50m. 
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8.4.3 PCT mitochondrial ETC CI and CV deficiency in PLWH  

Protein levels of the four mitochondrially-encoded ETC complexes - CI, CIII, CIV, and CV were 

quantified in 40 randomly selected PCTs from renal biopsies derived from a cohort of PLWH (n = 6) 

and HIV- individuals (n = 5) using novel multiplex immunofluorescence assays developed in our lab 

(Rocha et al., 2015) (Figure 8.4a). As there is a lack of literature describing immunofluorescence-

analysed mitochondrial activity in PCTs, I reported the findings using z < -3 as the cut-off for defining 

deficiency in the respective mitochondrial complexes. 

HIV+ patients (n = 6) had a significantly higher proportion of PCTs with CI deficiency (p = 0.021, 

unpaired t-test) compared to HIV uninfected individuals (n = 5) (Figure 8.4d). There was no 

significant difference in proportional PCT CIII and CIV deficiency. 

Proportional CV deficiency was high in both the HIV+ and HIV- groups. However, there was no 

statistically significant difference between the respective serostatus groups (unpaired t test) (Figure 

8.4d). 

Mitochondrial mass was quantified by background corrected VDAC1 staining intensity in individual 

PCTs from both groups. Although mean PCT mitochondrial mass was lower in the HIV+ compared to 

HIV-uninfected subjects, this did not reach statistical significance (p = 0.18, unpaired t test) (Figure 

8.4e).  

There was no significant correlation between mean PCT mitochondrial mass and proportional CI, CIII, 

CIV, or CV deficiency (Pearson’s correlation). 

Through immunofluorescence analysis of ETC activity in whole PCTs, it was observed that some 

individual epithelial cells had a staining pattern indicative of putative CI deficiency (i.e. 

hyperintensity in the mitochondrial mass channel with simultaneous downregulation of CI channel 

intensity). Therefore, further work was performed in order to investigate this perceived epithelial 

cell mitochondrial dysfunction (Section 8.4.5).       
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Figure 8.4 – Mitochondrial function in PCTs. (A) Example images of multiplex immunofluorescence stained renal biopsy 
sections stained for DAPI (nuclear marker), VDAC1 (mitochondrial mass), NDUFB8 (CI subunit), MTCO1 (CIV subunit), 
UQCRFS1 (CIII subunit), and ATPB (CV subunit). Scale bar = 50µm. (B-C) Example plot of (B) CI (x-axis) and CIV (y-axis) 
deficiency in 40 proximal tubules from each of the HIV+ (n = 6) and HIV- (n = 5) individuals; (C) CIII (x-axis) and CV (y-axis) 
deficiency in 40 proximal tubules from each of the HIV+ and HIV- individuals. Each dot represents an individual proximal 
tubule plotted by z-score. Red dots represent proximal tubules from HIV+ subjects and purple dots represent proximal 
tubules from HIV- individuals. (D) Proportional levels of CI, CIII, CIV and CV deficiency in proximal tubules from the HIV+ and 
HIV- groups. Each dot represents an individual subject and is plotted by the (log10) proportion of proximal tubules with the 
respective mitochondrial defects. (E) Dot plot (mean ± SEM) depicting mitochondrial mass as measured by normalised 
VDAC1 staining intensity. Each dot represents an individual subject and is plotted by the average VDAC1 z-score of the 40 
proximal tubules analysed. There was no significant difference in mitochondrial mass between the HIV+ and HIV- groups. 
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8.4.4 Differences in PCT CI and CV deficiency in PLWH 

Due to the large heterogeneity in the HIV+ individuals themselves, differences in PCT mitochondrial 

function between TDF-treated PLWH and non-TDF-treated PLWH, or PLWH with acute tubular injury 

(AKI) and those with other nephrotoxicities may be masked when solely comparing the HIV+ and 

HIV- groups. Therefore, by comparing the levels of PCT mitochondrial dysfunction (in the form of CI 

and CV deficiency) between the HIV+ individuals with available clinical information (n = 5), I 

attempted to qualitatively identify differences in the HIV+ group stratified by the above 

characteristics.  

Notably, the only patient not exposed to TDF (patient 5) had a similar level of PCT CI deficiency 

compared to the TDF-treated individuals (n = 4) (Figure 8.5a) as well as having the highest level of CV 

deficiency (Figure 8.5b). 

In addition, the two patients not diagnosed with AKI (patients 4 and 5) had comparable levels of PCT 

CI (Figure 8.5a) and CV (Figure 8.5b) deficiency compared to the AKI patients (patients 1, 2 and 3). 

 

Figure 8.5 – PCT CI and CV deficiency in PLWH. Bar charts depicting the differences in (A) log10(CI deficiency) and (B) 
log10(CV deficiency) between the HIV+ individuals with available clinical information (n = 5). X-axis = patient number. 
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8.4.5 PCT epithelial cell mitochondrial dysfunction  

Following the observation that there were individual PCT epithelial cells which putatively looked CI 

deficient within PCTs with ‘normal’ mitochondrial ETC activity (Figure 8.6), I manually identified a 

maximum of 33 individual cells (all from HIV+ subjects) and quantified their CI and CIV protein levels 

using methods described previously (Section 8.3.4). 

All single epithelial cells of interest were subsequently found to have z-scores < -3 for CI when 

compared to randomly identified epithelial cells with putatively ‘normal’ CI activity (n = 27) from 

both the HIV+ (n = 17) and HIV- group (n = 10), and so were classified as CI deficient.  

Notably, although proportional CV deficiency was the most prevalent ETC complex deficiency after CI 

deficiency at the whole PCT level, I was unable to identify any individual epithelial cells with putative 

CV deficiency.  

 

 

Figure 8.6 – Example image of a PCT epithelial cell with CI and CIV deficiency. Renal biopsies stained with markers for 
mitochondrial mass (VDAC1), CI (NDUFB8), and CIV (MTCO1). The arrow indicates a proximal tubule epithelial cell with 
putative CI and CIV deficiency, characterised by the weak staining intensity of CI and CIV markers in synergy with 
hyperintensity staining in the VDAC1 channel. Scale bar = 100µm. 
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8.4.6 Molecular basis of CI deficiency in PCTs from PLWH 

I next wanted to explore the molecular basis of the observed CI deficiency in PCTs from PLWH. After 

isolating both CI deficient (n = 13), and CI normal (n = 33) PCTs, as well as glomeruli (n = 10) through 

laser microdissection (Figure 8.7a), I amplified genetic material from the lysate and subjected it to 

qPCR analysis (as described in Section 3.7.5) in order to detect and quantify mtDNA mutations.  

Initially, mtDNA depletion was excluded as a possible cause of CI deficiency in affected PCTs, as qPCR 

analysis demonstrated no reduction in mtDNA copy number when compared to CI normal PCTs 

(Figure 8.7b).  

Based on previous literature describing TDF-related renal mitochondrial defects, which suggests the 

predominant cause of mitochondrial dysfunction in TDF-treated PLWH are large-scale mtDNA 

deletions, I expected this to be the cause of CI deficiency in PCTs from PLWH (Samuels et al., 2017). 

By quantifying the copy number of two mtDNA-encoded genes (MT-ND1 and MT-ND4) I however 

observed mtDNA deletions in only 15% of CI-deficient PCTs and in 3% of CI-positive PCTs. No 

deletions were found in the isolated glomeruli (Figure 8.7c). These deletions occurred in both the 

major and minor arc of the mitochondrial genome.  
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Figure 8.7 – Molecular analysis of mtDNA mutations in laser microdissected proximal tubules. (A) Example image of a 
renal biopsy from a HIV+ individual with a proximal tubule isolated by laser capture microdissection. Scale bar = 500µm. (B) 
Dot plot (mean) depicting no significant differences in mtDNA content between CI-deficient and CI-normal proximal tubules 
as well as glomeruli isolated from HIV+ (n = 6) and HIV- (n = 5) individuals. Each dot represents an individual proximal 
tubule or glomeruli isolated by LCM. The thin dotted line represents 2 standard deviations below the mean MT-ND1 copy 
number for CI-positive proximal tubules and glomeruli. (C) Distribution (mean) of mtDNA deletion levels in CI-deficient (n = 
13) and CI-normal (n = 33) proximal tubules as well as glomeruli (n = 10). The dotted lines represent 2 standard deviations 

away from the mean Ct of positive PCTs and glomeruli. Dots that lie above the upper dotted line contained a deletion in 
the minor arc of the mtDNA genome, and dots that lie below the lower dotted line contained a deletion in the major arc of 
the mtDNA genome.    
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8.4.7 Molecular basis of CI deficiency in proximal tubule epithelial cells  

I next performed quantitative molecular analyses on individual PCT epithelial cells with either CI 

deficiency (n = 33) or normal CI activity (n = 27), after isolation by LCM (Figure 8.8a).  

qPCR analysis again demonstrated no reduction in mtDNA copy number and so mtDNA depletion 

was excluded as a potential cause of mitochondrial dysfunction (Figure 8.8b). In fact, MT-ND1 copy 

number was significantly higher in CI-deficient proximal tubular cells (n = 33) compared to CI-normal 

proximal tubular cells from HIV+ (n = 17; p = 0.047, unpaired t-test) and HIV- individuals (n = 10; p = 

0.017), as well as all CI-normal proximal tubular cells from both HIV+ and HIV- individuals (n = 27; p = 

0.013).  

I found that 18% of CI-deficient PCT epithelial cells contained an mtDNA deletion. These deletions 

occurred in both the major and minor arc of the mitochondrial genome (Figure 8.8c).  
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Figure 8.8 – Molecular analysis of isolated individual proximal tubule epithelial cells. (A) Example image of an isolated 
proximal tubular epithelial cell from a HIV+ individual. Scale bar = 500µm. (B) Dot plot (mean) demonstrating significantly 
higher mtDNA content in CI-deficient proximal tubule cells compared to CI-normal proximal tubular cells overall (n = 27) (p = 
0.013), from HIV- individuals (n = 10) (p = 0.017) and HIV+ individuals (n = 17) (p = 0.047). Each dot represents an individual 
isolated proximal tubule epithelial cell and is plotted by its MT-ND1 copy number. (C) Distribution (mean) of mtDNA 
deletions in isolated CI-deficient (n = 33) and CI-normal (n = 27) proximal tubular epithelial cells. Dotted lines represent 2 

standard deviations away from the mean Ct of positive cells. Dots that lie above the upper dotted line contained a 
deletion in the minor arc of the mtDNA genome, and dots that lie below the lower dotted line contained a deletion in the 
major arc of the mtDNA genome.   
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8.5 Discussion 

In this chapter I assessed cellular and molecular mitochondrial function in whole proximal convoluted 

tubules and in individual proximal tubule epithelial cells derived from renal biopsies from TDF-treated 

PLWH who presented with varying clinically significant nephrotoxicities.  

8.5.1 Conclusions 

8.5.1.1 Successful application of novel immunofluorescence assay to quantify mitochondrial 

protein levels in renal tissue 

As there are limited experimental methods to assess renal mitochondrial function at the cellular level, 

an important aim of this study was to determine whether a novel multiplex immunofluorescence assay 

developed in our lab (Rocha et al., 2015) could be applied to renal tissue. As such, this 

immunofluorescence assay, with markers for mitochondrial mass as well as subunits of CI, CIII, CIV and 

CV of the mitochondrial ETC, was successfully applied to renal tissue from both HIV+ and HIV- 

individuals. Notably, this was the first study to demonstrate specific CI deficiency in proximal tubules of 

PLWH who had been treated with TDF at the cellular level, as opposed to in tissue homogenates. This 

assay also allowed for the quantification of lesser analysed subunits of the ETC - CIII and CV, as well as 

mitochondrial mass. Hence, I also demonstrated deficiency in CV protein levels in proximal tubules 

from PLWH. However, the proportional levels of CV deficiency appeared comparable with CV deficiency 

seen in PCTs in the HIV- group, suggesting CV deficiency could be a universal factor in renal toxicity.   

8.5.1.2 Assessment of proximal tubule mitochondrial dysfunction in PLWH 

Although the sample size was small and there was heterogeneity between the HIV+ individuals, another 

aim of this study was to explore whether there appeared to be differences in PCT mitochondrial 

dysfunction between TDF-treated PLWH and non-TDF-treated PLWH, as well as between PLWH 

diagnosed with AKI and those with other nephrotoxicities. Interestingly, the only non-TDF-treated 

patient had comparable levels of CI and CV deficiency compared to the TDF-treated patients, suggesting 

TDF exposure may not be the only pathogenic HIV-related factor. In addition, levels of PCT CI and CV 

deficiency were comparable between AKI patients and non-AKI patients, supporting previous 

observations that mitochondrial dysfunction is not restricted to AKI patients (Samuels et al., 2017). It 

should be stressed that due to the small size of the HIV+ group with available clinical information and 

the heterogeneity of the group, these observations are not heavily weighted.   

Importantly, this is also the first study to demonstrate CI and CIV protein deficiency at the individual 

proximal tubule epithelial cell level in TDF-induced nephrotoxicities. These results build on previous 

work which demonstrated the presence of punctate abnormal mitochondria, characterised by swelling 
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and irregular morphology, in TDF-exposed proximal tubules (Herlitz et al., 2010). Whilst highlighting the 

vast variability in how mitochondrial dysfunction may present in nephrotoxicities, these findings are 

suggestive of a mechanism by which individual proximal tubule epithelial cells develop mitochondrial 

dysfunction in a mosaic pattern. Nephrotoxicities then subsequently arise following the accumulation 

of abnormal epithelial cells, leading to defects in proximal tubule function (Biro et al., 2016; Zoja et al., 

2009).  

Importantly, mitochondrial mass was not significantly elevated in the HIV+ group at the proximal tubule 

level, indicating that there was no compensatory upregulation in mitochondrial content in response to 

ETC deficiencies. Notably though, there appeared to be hyperintense staining in the VDAC1 channel in 

individual proximal tubule epithelial cells with putative CI and CIV deficiency, indicative of a 

compensatory upregulation in mitochondrial mass in those cells. These results appear to indicate that 

punctate mitochondrial defects at the individual cellular level are compensated at the whole proximal 

tubule level, revealing unanswered questions regarding the contribution of individual epithelial cells or 

whole proximal tubules to the pathophysiology of various nephrotoxicities. This finding also argues 

against the mechanism of mtDNA depletion underpinning TDF-induced renal toxicities (Tanji et al., 

2001; Cote et al. 2006; Kohler et al., 2009). In addition, this finding highlights the need for further 

investigation into whether mitochondrial dysfunction in individual tubule cells expand to neighbouring 

epithelial cells and whether this leads to whole tubule dysfunction. 

8.5.1.3 Molecular basis of proximal tubule mitochondrial dysfunction  

Finally, this study is also the first to successfully isolate and amplify mtDNA from individual proximal 

tubule epithelial cells by LCM and qPCR techniques. Importantly, I found that 18% of CI-deficient 

proximal tubule epithelial cells harboured an mtDNA deletion in either the major or minor arc of the 

mtDNA genome, while simultaneously failing to detect evidence of mtDNA depletion in these cells. In 

fact, the results demonstrate an increase in mtDNA content, presumably as a result of upregulated 

mitochondrial biogenesis in response to ETC defects. However, a large proportion of CI-deficient tubule 

cells did not contain a detectable mtDNA deletion or mtDNA depletion and so the underlying 

mechanisms behind their CI deficiency remains unsolved (Samuels et al., 2017). One possibility may be 

mtDNA point mutations, which have been shown to eventually induce mitochondrial toxicities. mtDNA 

point mutations have been found in substantia nigra neurons as well as mitotic cells such as colonic 

crypt cells (Greaves et al., 2012; Reeve et al., 2009). These point mutations are most likely arising as the 

result of increased ROS production due to TFV accumulation (Ramamoorthy et al., 2012; Abraham et 

al., 2013; Ramamoorthy et al., 2014; Ramamoorthy et al., 20108). This theory is supported by the 

strong link between elevated ROS production and the generation of mtDNA point mutations (Taylor & 

Turnbull, 2005; Chung et al., 2014; Caldecott, 2008; Pinz et al., 1995; Baines et al., 2014). The increase 
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in ROS and subsequently mtDNA point mutations may be part of a vicious cycle, whereby mtDNA 

mutations further exacerbate ROS production, leading to further tubular damage through apoptosis 

and subsequently necrosis (Ramamoorthy et al., 2018, Murphy et al., 2017, Liu et al., 2014; Servais et 

al., 2008; Wang et al., 2013). These observations could be significant to future work in the field as they 

suggest more investigations are needed looking into the mitochondrial effects of TDF, in particular the 

exacerbatory effects on ROS and inflammation, at the individual epithelial cell level.   
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8.5.2 Summary of results 

 HIV+ individuals HIV-uninfected individuals Conclusions 

Cellular proximal 
tubular mitochondrial 
dysfunction 

• High levels of CI and CV 
proximal tubule 
deficiency  

• Comparable levels of 
CV deficiency 
compared to HIV- 
individuals 

• Individual epithelial 
cells had CI deficiency 
inside whole tubules 
with normal CI levels 

• Comparably high levels 
of CV deficiency 
compared to HIV+ 
individuals 

• PLWH displayed high 
levels of CI and CV 
deficiency in whole 
proximal tubules 

• Punctate epithelial cells 
had CI deficiency    

Molecular proximal 
tubule mitochondrial 
defects 

• Majority of CI-deficient 
whole tubules or 
epithelial cells did not 
contain mtDNA 
deletions 

• No evidence of mtDNA 
depletion 

• No tissue extracted for 
molecular analysis  
 

• CI deficiency at the 
whole tubule or 
epithelial cell level was 
not explained by 
mtDNA deletions 

• Most likely caused by 
mtDNA point mutations 

Disparities between 
TDF-treated PLWH and 
non-TDF treated PLWH 

• Comparable levels of CI 
and CV deficiency 
between groups 

• Not investigated • There appeared to be 
no difference in CI or 
CV proximal tubule 
deficiency between TDF 
and non-TDF-treated 
PLWH 

Disparities between 
PLWH with AKI and 
those with other renal 
pathology 

• Comparable levels of CI 
and CV deficiency 
between groups 

• Not investigated • No evidence of 
increased 
mitochondrial 
dysfunction in PLWH 
with AKI 

Table 8.2 – Summary of experimental findings. 
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8.5.3 Limitations 

As this was a pilot study there are a few limitations which need to be noted. Most obviously, the 

greatest limitation lies in the small sample size of both the HIV+ and HIV- groups used in the study. This 

limitation significantly reduced the power to detect differences between the HIV+ and HIV- groups, as 

well as restricting the ability to include a HIV+/TDF- comparator group in order to determine how 

specific to TDF the mitochondrial defects were. Hence, I was unable to extrapolate pathophysiological 

information about the role chronic HIV-infection itself plays. Ideally, I would also have recruited a 

cohort with a wider variation in nephrotoxicity diagnoses, in order to better understand the role of 

mitochondrial defects in those specific pathologies.  

Another limitation was missing clinical information. With regards to the HIV+ group in our cohort, 

although I had information about whether the PLWH had ever been exposed to TDF, ATV/r, SQV, 3TC or 

FTC ARVs, information regarding current/previous exposure to NNRTIs or older, more mitochondrially-

toxic NRTIs such as AZT or ddI was missing. Missing clinical information from patient 6 also reduced our 

ability to understand potential mechanisms behind mitochondrial defects in their proximal tubules.  

Aside from their age, ethnicity and gender, little information was given to us about the HIV- control 

subjects. Biopsies came from ‘normal’ tissue adjacent to explanted renal masses, however, I did not 

know whether these individuals had been diagnosed with any renal pathologies and I had no 

information about potential co-morbidities or other adverse factors such as certain medications.  

Finally, another limitation lies in the fact that these biopsies were taken at one time point and I was 

therefore unable to extrapolate data directly to drug administration or disease progression. Ideally, 

biopsies should be taken when the patients eGFR began to decline and then at multiple follow up visits 

to the clinic. The biopsies used in this study were taken from PLWH who already had well developed 

nephrotoxicities, and so I was unable to determine whether mitochondrial dysfunction played a 

causative role in these nephrotoxicities or whether it was consequence of declining tissue homeostasis. 

However, due to the highly invasive nature of taking kidney biopsies, it is well acknowledged that taking 

several biopsies from the same individual is not entirely practical. 

8.5.4 Future work 

Due to the fact that this was a pilot study, there is significant scope for potential future work. The most 

significant addition to any future work would be to use a much larger cohort in order to increase our 

power to detect inter- and intragroup differences. As mentioned above, this would ideally include more 

patients in both the HIV+ and HIV- groups as well as a group of PLWH who had never been exposed to 

TDF. Ideally, this future cohort should also contain individuals with varying renal pathologies. This 
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would help extrapolate information about the specific role of mitochondrial dysfunction in the 

pathogenesis of various nephrotoxicities. In this regard, it would be hugely beneficial to conduct a 

longitudinal study in which renal biopsies are taken from patients at several time points, including 

when eGFR initially starts declining (or failing that, when symptoms first develop). As mentioned in the 

previous section (Section 8.5.2), this would help better the understanding of the pathogenesis of 

nephrotoxicities in TDF-treated PLWH. 

One of the most significant findings of this study was the presence of individual proximal tubule 

epithelial cells deficient in complex I of the ETC within a proximal tubule with normal mitochondrial 

protein levels. Future work should look to expand the understanding of the significance of punctate 

mitochondrial dysfunction in the pathogenesis of nephrotoxicities. As recent studies have suggested 

the potential causative factor of elevated ROS and inflammation in the pathophysiology of TDF-induced 

renal toxicities (Murphy et al., 2017; Ramamoorthy et al., 2018), investigations into these factors at the 

tubular and cellular level would also be of benefit.  

Conducting longitudinal studies is not always possible, especially when concerning the invasive nature 

of renal biopsies. With regards to this, research is steering away from human biopsy and toward non-

invasive fluid biomarkers and well-characterised animal models. Abraham et al. (2016) recently 

developed a mouse model with TDF-induced nephrotoxicity similar to that seen in humans. This mouse 

model has the potential to be hugely beneficial in studies investigating the pathogenic mechanisms 

behind TDF-induced nephrotoxicity. Additionally, a recent study by our lab investigated mtDNA 

mutations in the urine of TDF-treated PLWH (Samuels et al., 2017). Although urine contains a 

heterogenous mix of cell types, including non-proximal tubule tissue, it can still be used as a clinically 

relevant tissue to investigate renal pathology and mtDNA deletions, and may be useful in cases where 

renal biopsies are unavailable (Blackwood et al., 2010). 

EM studies should also be performed in any future work. It would be a significant benefit to analyse 

mitochondrial morphology, particularly in the CI-deficient proximal tubule cells. This would allow for 

comparisons to be made between these CI-deficient epithelial cells and adjacent cells which do not 

appear to have mitochondrial defects. This could be performed through super resolution microscopy, 

which allows for simultaneous detection of fluorescence (to identify CI-deficient tubules) and 

morphology, or immunofluorescence EM. Limitations lie in the fact that super resolution microscopy 

does not provide high enough resolution to analyse individual mitochondria to a high standard, and 

immunofluorescence EM requires no primary controls in order to eliminate the effects of non-specific 

binding. 



 

368  

Finally, another future study with potential benefit would be one which performs detailed genetic 

assessment of pathologic proximal tubules through RNA sequencer analysis. Experiments such as this 

would be hugely informative regarding differences in gene expression between comparator groups and 

may further our understanding in the pathogenesis behind TDF-induced nephrotoxicities.  
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Chapter 9 – Conclusions 

In this chapter I discuss the main findings with relation to the thesis aims and objectives outlined in 

Chapter 2, as well as the potential impact these findings may have on the current and future work in 

the field of mitochondrial dysfunction and adverse ageing in the HIV setting. 

9.1 Physiological, cellular and molecular skeletal muscle mitochondrial 

dysfunction in the contemporary ART setting 

Several studies conducted over the course of the past three decades have established the link between 

older antiretrovirals (ARVs) and the development of mitochondrial toxicities such as myopathy or lactic 

acidosis (Dalakas et al., 1990; Arnaudo et al., 1991; Samuels et al., 2017; Domingo et al., 2014; Dragovic 

et al., 2014; Alikhani et al., 2019; Carr et al., 1999; Lewis, 2003; Brinkman & Kakuda, 2000). These 

mitochondrial toxicities are tissue-specific and heterogenous in presentation, and are induced by 

various ARVs of different classes. In particular, the NRTIs zidovudine (AZT), zalcitabine (ddC), didanosine 

(ddI), and stavudine (d4T) have been shown to induce mitochondrial dysfunction and subsequent 

toxicities (Dalakas et al., 1990; Arnaudo et al., 1991; Lim & Copeland, 2001; Lewis, 2003). However, no 

studies have assessed the impact of newer ARVs such as tenofovir disoproxil fumarate (TDF) and 

abacavir (ABC), which have been considered as being free from mitochondrial toxicity in vitro (Venhoff 

et al., 2007), on skeletal muscle mitochondrial function at the cellular level. This study was therefore 

the first to do so. In addition, previous studies such as those done by our group have suggested that 

previous exposure to early NRTIs such as AZT may predispose PLWH to an excess of skeletal muscle 

mitochondrial defects years after cessation of treatment with the NRTI (Payne et al., 2011). As such, I 

aimed to investigate whether there were differences in skeletal muscle mitochondrial dysfunction in 

PLWH stratified by the type of antiretrovirals they have been exposed to, in an effort to better 

understand skeletal muscle mitochondrial dysfunction in the contemporary ART era.  

Notably, this study was the first to demonstrate skeletal muscle mitochondrial defects in the form of CI 

deficiency in PLWH who have only been exposed to newer, supposedly non-mitochondrially toxic ARVs 

(Chapter 4). Here, using a novel immunofluorescence assay developed in our lab (Rocha et al., 2015) I 

demonstrated that PLWH who had been exposed to mitochondrially-toxic NRTIs had a significantly 

higher proportion of myofibres with CI deficiency than treatment-naïve PLWH. In addition, PLWH who 

had only been exposed to newer NRTIs also had a significantly higher proportion of CI and CIV deficient 

fibres than ART-naïve PLWH, and a comparable level to historical NRTI-treated PLWH. Finally, results 

presented in Chapter 6 using age-matched older HIV+ and HIV- individuals supported the notion that 
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skeletal muscle mitochondrial dysfunction in PLWH in the contemporary ART era is not primarily age 

related, and there are therefore other pathogenic mechanisms driving this mitochondrial dysfunction.  

Through qPCR analysis I then demonstrated that the majority of CI-deficient myofibres contained 

mtDNA deletions, supporting previous work (Payne et al,. 2011). As CI is the largest mtDNA-encoded 

complex of the electron transport chain, it is more likely to be affected by large-scale mtDNA deletions. 

The cellular and molecular work was also supported by in vivo functional evidence from previously 

obtained 31P-MRS data (Payne et al., 2014). 

The final aim of the study conducted in Chapter 4 was to determine whether there was the presence of 

a ‘legacy effect’ in PLWH who have previously been exposed to older NRTIs such as AZT, ddC, ddI, d4T 

(Hunt & Payne, 2020). Surprisingly, data presented in Chapter 4 seemingly argues against the existence 

of this phenomenon, at least in skeletal muscle. Support for this observation centres around the fact 

that PLWH who had been exposed to these older NRTIs had comparable levels of skeletal muscle 

mitochondrial defects compared to age-matched PLWH who had never been exposed to the older 

NRTIs. Importantly, the majority of these cellular mitochondrial defects were underpinned by mtDNA 

deletions in both sets of ART-treated PLWH. Indeed, as PLWH treated only with newer NRTIs over a 

long duration had comparable levels of skeletal muscle mitochondrial defects compared to those 

treated with the older NRTIs, the mechanisms behind this mitochondrial dysfunction could therefore be 

underpinned by other factors seen in long-term ART-treated PLWH, such as chronic inflammation or 

oxidative stress (Melov et al., 1999; Zorov et al., 2014; Rao et al., 2014; Massaad & Klann, 2011; Deeks, 

2011).  

9.2 Older PLWH have a higher prevalence of frailty and sarcopenia 

compared to age-matched HIV- individuals 

The advent of cART has greatly reduced the mortality rate of PLWH as well as considerably extending 

their lifespan. As a result, the average age of the HIV+ population is now ~50 years old, with this 

number still increasing (Public Health England, 2019; Smit et al., 2015). Consequently, whilst the 

mortality rate and prevalence of HIV-associated comorbidities has decreased, the prevalence of age-

associated conditions such as frailty or cardiovascular diseases in PLWH has increased (Desquilbet et al., 

2007; Nou et al., 2016; Leng et al., 2015; Guaraldi et al., 2011; Smit et al., 2015; Chow et al., 2012; 

Althoff et al., 2014; Drummond et al., 2014; Kirk et al., 2013; Shiels et al., 2009; Sico et al., 2015; 

Silverberg et al., 2015). 

Work in Chapter 5 using data obtained from the MAGMA study supported observations from previous 

studies which demonstrated the increased prevalence of both frailty and sarcopenia in PLWH compared 
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to age-matched HIV- individuals (Desquilbet et al., 2007; 2009; Hanlon et al., 2018; Brothers et al., 

2017; Erlandson et al., 2015; Echeverria et al., 2018; Pinto Neto et al., 2016; Oliveria et al., 2020).  

Interestingly, metabolic expenditure (MET) score was significantly lower in frail/prefrail PLWH 

compared to robust PLWH. As this was a cross-sectional study I cannot be certain whether low MET 

score was a cause or consequence of frailty in older PLWH. However, as lower MET score was also seen 

in prefrailty this may suggest that decreased metabolic expenditure predates the onset of frailty. In 

addition, whilst none of the clinical or lifestyle parameters were associated with either frailty or 

sarcopenia in older PLWH themselves, a longer duration of untreated HIV infection, adjusted for age, 

significantly predicted weaker grip strength, which is well-recognised to be a very important measure of 

declining physical function. In addition, a poorer immune function in the form of CD4 count significantly 

predicted poorer muscle mass adjusted for height (ASMI). The link between these factors may well be 

mediated through increased inflammation and immune senescence (Deeks, 2011; Baylis et al., 2013; 

Shaw et al., 2010), however further work is required. 

Altogether, these findings suggest that poorer immune function, possibly as the result of delayed 

initiation of ART after initial HIV infection, may contribute to reduced muscle strength in older PLWH. 

This, among potentially other untested factors, is responsible for the greater prevalence of adverse 

ageing phenotypes in older PLWH compared to the age-matched general population. Importantly, 

these findings suggest that physical activity interventions aimed at improving muscle strength would 

likely to be beneficial to older PLWH who are more susceptible to developing adverse ageing 

phenotypes, supporting previous data from the general population (Landi et al., 2014; Zubala et al., 

2017; Lo et al., 2020). 

9.3 Skeletal muscle mitochondrial dysfunction in frail and sarcopenic 
PLWH 

One of the important aims of this thesis was to determine whether older PLWH had greater levels of 

skeletal muscle mitochondrial dysfunction compared to age-matched HIV- individuals.  

Hence, a major finding from the study in Chapter 6 was the demonstration of significantly higher 

skeletal muscle mitochondrial dysfunction in older PLWH compared to age-matched HIV- individuals. 

Specifically, individuals in the HIV+ group had a significantly higher proportion of myofibres with CI and 

CIV deficiency compared to the HIV- individuals, although there was no difference in mean skeletal 

muscle mitochondrial mass. This mitochondrial dysfunction did not seem to be explained by exposure 

to particular ARVs including NRTIs such as AZT and ddC, or protease inhibitors (PIs), supporting work 
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from Chapter 4. Neither could this mitochondrial dysfunction be explained by other HIV-related factors 

such as duration on ART in adjusted linear regression models.  

Whilst average myofibre mitochondrial mass was not significantly different between the HIV+ and HIV- 

individuals, it was notable that increased myofibre mitochondrial mass was significantly associated with 

a decline in fat mass in the older PLWH. This observation may suggest that obesity adversely impacts 

mitochondrial content, reducing skeletal muscle quality, and resulting in physical decline (Shetty et al., 

2009; Winalawansa, 2019; Li et al.,2017; Slawik & Vidal-Puig, 2006). In addition, this finding supports 

the idea that increased physical exercise, in this instance particularly aerobic exercise resulting in a 

reduction in fat mass, may be beneficial in improving mitochondrial function in older PLWH (Marzetti et 

al., 2008; Rowe et al., 2014).  

Following the demonstration of a greater prevalence of adverse ageing phenotypes in older PLWH 

compared to the HIV- individuals in Chapter 5, and owing to the link between mitochondrial 

dysfunction and these phenotypes in both frailty and sarcopenia (Chistiakov et al. 2014; Andreux et al., 

2018; Sayeed et al., 2018), I also sought to assess whether increased mitochondrial dysfunction 

contributed to frailty and sarcopenia in PLWH.  

Somewhat surprisingly, it was demonstrated that frail and sarcopenic PLWH did not have a significantly 

higher level of skeletal muscle mitochondrial dysfunction compared to robust and non-sarcopenic 

PLWH – suggesting that mitochondrial dysfunction alone is not driving these adverse ageing 

phenotypes in older PLWH. However, this finding should be treated with caution, owing to the 

relatively small numbers of frail and sarcopenic individuals. Furthermore, mitochondrial dysfunction 

can be measured through different parameters (Hunt & Payne, 2020; Fraizer et al., 2020). In addition, 

other pathophysiological factors that were not analysed in this study, such as chronic inflammation or 

immunosenescence, may also be driving adverse ageing phenotypes in PLWH (Deeks, 2011; Baylis et al., 

2013; Shaw et al., 2010; Soysal et al., 2016). 

9.4 Analysis of age-associated cellular skeletal muscle 

pathophysiological decline and its associations with adverse ageing 

phenotypes  

Due to the fact that the pathophysiology of declining muscle function in frailty and sarcopenia is 

extremely heterogenic in the general population (Fried et al., 2009; Cruz-Jentoft et al., 2019), and the 

fact that skeletal muscle pathology is little studied in PLWH, I sought to better understand these 

pathophysiological mechanisms in the context of ageing with HIV. As such, one aim of the work 
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conducted in Chapter 7 was to compare the levels of several skeletal muscle pathophysiologic factors in 

older HIV+ and HIV- individuals.  

The most notable aspect of the study conducted in Chapter 7 using data and tissue collected as part of 

the MAGMA study is the fact that it is the first study to assess a range of pathophysiological factors 

such as satellite (stem) cell availability and fibrosis in the skeletal muscle of older PLWH. The 

comprehensive nature of this study allowed for a wider understanding of the factors that are at play in 

age-related physiological decline in older PLWH. 

Notably, I failed to find any significant difference in several of these factors between the HIV+ and HIV- 

groups, including, intramyocellular lipid accumulation, Pax7+ satellite cell (muscle stem cell) prevalence, 

fibre type proportions, average fibre size, lipofuscin accumulation, or proportion of degenerated fibres. 

I did however demonstrate that older PLWH had a significantly greater level of skeletal muscle fibrosis 

and significantly lower percentage of regenerated fibres compared to age-matched HIV- individuals.  

In addition, it was demonstrated that except for an increased prevalence of type IIx fibres, none of 

these pathophysiological factors were significantly altered in frail PLWH compared to robust and 

prefrail PLWH. Interestingly, no skeletal muscle pathophysiological factor appeared to be altered in 

sarcopenic PLWH compared to non-sarcopenic PLWH. Importantly, these were novel findings in the 

context of skeletal muscle function in older PLWH. 

9.5 Role of skeletal muscle mitochondrial dysfunction in muscle 

pathophysiological factors, and the combined role in adverse ageing 

phenotypes in older PLWH – potential compensatory mechanisms? 

After investigating whether there were differences in several skeletal muscle pathophysiological factors 

between the age-matched HIV+ and HIV- groups, I next sought to determine whether there was any 

association between mitochondrial dysfunction and these other factors in the skeletal muscle of older 

PLWH.  

Importantly, the only factors that appeared to be predicted by skeletal muscle mitochondrial 

dysfunction was the relative fibre type proportions, and an increased Pax7+ satellite cell (SC) 

prevalence.  

In particular, greater proportional CI deficiency was significantly predictive of a lower proportion of 

oxidative type I fibres, and therefore a greater proportion of glycolytic type IIx fibres, both after 

adjustment for age. These novel findings suggest that skeletal muscle mitochondrial dysfunction may 

be compensated in older PLWH by a reduction in the usual pattern of age-associated fibre type 
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switching (from type II to type I). This preservation of glycolytic fibres might partially compensate for a 

loss of oxidative metabolism, and therefore diminish the onset of adverse ageing phenotypes (Wang et 

al., 2013; Maughan et al., 1983; Anderson, 2003; Phillips & Leeuwenburgh, 2005). Conversely though, 

mitochondrial dysfunction may be leading to selective atrophy of type I fibres. As it was not possible to 

fully elucidate which mechanisms were occurring, future studies should investigate neuromuscular 

junction efficiency and fibre apoptosis.  

Furthermore, mitochondrial dysfunction (in the form of proportional CIV deficiency) predicted a higher 

prevalence of Pax7+ SCs in the older PLWH. This may again suggest the presence of a compensatory 

mechanism whereby an intact stem cell population allows skeletal muscle to respond to the adverse 

effects of mitochondrial dysfunction. However, a greater prevalence of Pax7+ SCs predicted not only a 

greater level of regenerated fibres, but also increased fibrosis. This may suggest an impairment in the 

regenerative function of quiescent satellite cells in older PLWH, with some muscle damage being 

resolved by scarring (fibrosis) rather than regeneration.   

With regard to potential clinical or therapeutic implications of these findings, they support previous 

work in the general population which has suggested that increased exercise is the most effective 

mechanism in preventing the onset of adverse ageing conditions (Walston et al., 2018; Cameron et al., 

2013; Silva et al., 2017). For example, resistance and aerobic exercise is known to improve muscle 

function (Cesari et al., 2015; Suetta et al., 2008; Binder et al., 2005; Campbell et al., 2002; Benito et al., 

2020), muscle mitochondrial function (Zampieri et al., 2015; Marzetti et al., 2008; Rowe et al., 2014), 

improve stem cell function (Yang et al., 2017; Berberoglu et al., 2017), metabolic function (Kang & 

Krauss, 2010), and a greater proportion of type I fibres is known to be associated with poorer physical 

performance (Kitada et al., 2015). Future studies should therefore investigate the role of exercise in 

preventing or treating declining muscle function in older PLWH. 

9.6 Novel investigations of mitochondrial function at the cellular and 
molecular level in renal tissue 

Chronic kidney disease (CKD) remains an important comorbidity in older PLWH. In recent years, there 

has been particular concern about the renal toxicities of tenofovir disoproxil fumarate (TDF) (Atta et al., 

2006; Foy et al., 2013; Woodward et al., 2009; Hamzah et al., 2017; Mocroft et al., 2016; Guaraldi et al., 

2011). Although TDF has been shown to have a low binding affinity to the mitochondrial polymerase – 

PolG – it is nevertheless considered that the most likely pathological mechanism underpinning these 

renal-specific toxicities is TDF-induced mitochondrial dysfunction (Kohler et al., 2009; Samuels et al., 

2017; Murphy et al., 2017; Ramamoorthy et al., 2018).  
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However, due to limitations around the ability to firstly acquire renal tissue in TDF-treated PLWH, and 

secondly investigate mitochondrial function at the individual cellular level (as opposed to homogenate 

studies), the underlying mechanisms remain poorly understood. In addition, whilst in vitro models allow 

for the assessment of these factors in specific renal cells, they fail to fully recapitulate the real effects of 

TDF in human renal toxicity in PLWH.  

Hence, after acquiring renal biopsies from TDF and non-TDF-treated PLWH, as well as HIV- individuals 

who all presented with varying renal pathologies, I sought to determine whether renal mitochondrial 

function can be better assessed using novel validated cellular and molecular techniques pioneered in 

our lab (Rocha et al., 2015).   

Indeed, the novel immunofluorescence assay which quantifies protein levels of CI, CIII, CIV, CV and 

mitochondrial mass, previously used on skeletal muscle (Rocha et al., 2015; Ahmed et al., 2017; Warren 

et al., 2020; Lehmann et al., 2019; Chapter 4; Chapter 6), brain (Hatton et al., 2020), and 

colon/intestinal tissue (Smith et al., 2020) was successfully applied to renal tissue, as discussed in 

Chapter 8.  

In addition, individual proximal tubules and proximal tubule epithelial cells were successfully isolated by 

laser capture microdissection (LCM). Finally, using a quantitative real-time PCR assay with mtDNA gene 

targets, mtDNA deletions were investigated in isolated renal proximal tubules and single renal tubular 

epithelial cells for the first time. Hence, the work conducted as part of Chapter 8 contained several 

novel experimental protocols which could have beneficial implications for future work aiming to better 

understand the pathophysiological mechanisms behind TDF-induced mitochondrial dysfunction and 

renal pathology.  

9.7 Potential underlying mechanisms of mitochondrial dysfunction in 
older PLWH 

A clear finding throughout this thesis was that mitochondrial dysfunction is implicated in age-related 

pathophysiology in older PLWH. Although specific CI dysfunction was demonstrated in both renal tissue 

(in Chapter 8) and skeletal muscle tissue (Chapter 4, Chapter 6), the mechanisms underpinning these 

phenomena are most likely different.  

Whilst it is heavily suspected that the cause of skeletal muscle CI (and to a lesser extent CIV) deficiency 

in the HIV+ individuals was somatic large-scale mtDNA deletions that have clonally expanded and 

subsequently accumulated to a point exceeding the threshold for biochemical function (Payne et al., 

2011), this was likely not the case for the CI and CV renal dysfunction. Instead, although this was not 

proven through the data collected as part of Chapter 8, the most likely genetic mechanisms 
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underpinning this CI and CV deficiency are somatic mtDNA point mutations. These de novo mtDNA 

point mutations could be the result of increased ROS production and subsequent oxidative stress, 

which is known to induce mtDNA point mutations (Taylor & Turnbull, 2005; Chung et al., 2014; 

Caldecott, 2008; Pinz et al., 1995; Baines et al., 2014). Indeed, more recent work in the field has 

suggested the role of enhanced oxidative stress in renal tubules leading to higher levels of 

mitochondrially-mediated apoptosis (Murphy et al., 2017; Ramamoorthy et al., 2018). Although CV is 

not a commonly affected ETC complex in age-associated mitochondrial dysfunction, preliminary work 

from our collaborators has suggested through genomic analyses of in vitro nephrotoxicity cell models 

that there is an upregulation in cristae remodelling genes and a downregulation of CV genes in TDF-

exposed renal cells. They/we suggest that TDF proximal tubule accumulation induces enhanced ROS 

production, which would lead to mitochondrial stress and cristae remodelling (Cole et al., 2011; Cogliati 

et al., 2016), ultimately leading to a dysregulation in CV activity (Geromel et al., 2001; Ide et al., 1999). 

This model would also explain the formation of mtDNA point mutations, which subsequently could be 

affecting CI activity (Taylor & Turnbull, 2005). 

9.8 Final conclusions 

In this thesis, I have presented the first comprehensive analysis of skeletal muscle function in older 

PLWH, combining histopathological data with physical function, body composition and clinical 

parameters. This approach has allowed several novel observations to be made. Many of which provide 

a basis for future work, and some of which could have potential future clinical and therapeutic 

implications.  

Firstly, I have shown that older PLWH in the contemporary ART era have an excess of skeletal muscle 

mitochondrial dysfunction. However, in contrast to the historical literature (Dalakas et al., 1990; 

Arnaudo et al., 1991; Lim & Copeland, 2001), this skeletal muscle mitochondrial dysfunction in PLWH 

was not solely predicted by ART exposure. In fact, the findings suggest that other potential factors such 

as chronic inflammation, oxidative stress, or immunosenescence are driving skeletal muscle 

mitochondrial dysfunction in older PLWH in the contemporary ART era.  

Importantly, skeletal muscle function in older PLWH, including frail and sarcopenic PLWH, was 

comprehensively studied. Overall, these studies have significantly advanced our understanding of the 

potential pathophysiological mechanisms contributing to adverse ageing phenotypes in older PLWH. Of 

note, it was demonstrated that older PLWH experience dysregulated fibre type switching, in which 

mitochondrial dysfunction is playing a significant role. In addition, I demonstrated that older PLWH 

have an excess of skeletal muscle fibrosis. Both mitochondrial dysfunction and fibrosis were correlated 

with myofibre regeneration, suggesting an adaptive response to muscle damage. 
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However, neither mitochondrial dysfunction nor fibrosis appeared to directly explain the greater 

prevalence of frailty and sarcopenia in PLWH compared to age-matched HIV- individuals. This suggests 

that other HIV-related factors such as chronic inflammation are likely to also be playing a causative role 

in these adverse ageing phenotypes.  

With regard to potential clinical impacts, these findings suggest that targeted exercise regimes may be 

beneficial in attenuating age-related physiological decline in older PLWH.  

In conclusion, the work described in this thesis has demonstrated the importance of several aspects of 

skeletal muscle function in older people living with HIV, including mitochondrial function. Future work 

should attempt to link muscle and mitochondrial dysfunction with chronic inflammation in PLWH, and 

explore therapeutic strategies to improve these factors.  
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Chapter 10 – Appendices  

Appendix 1 – MAGMA study protocol 
 

 
 

 

‘Muscle Ageing and Anti-retroviral Study’ 

 
 
 

 
Chief Investigator: Dr Brendan Payne 
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Protocol version: 1.21 (22.5.2017) 

Funder: Wellcome Trust 

Sponsor: Newcastle-upon-Tyne Hospitals NHS Foundation Trust (Ref.: 8149) 
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Protocol Contacts 

Chief Investigator: 

Dr Brendan Payne, Honorary Consultant in Infectious Diseases & Virology 

Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle 

University, Newcastle-upon-Tyne. 

Department of Infection & Tropical Medicine, Royal Victoria Infirmary, Newcastle-upon-Tyne. 

0191 282 1161 / 0771 7531935 

brendan.payne@ncl.ac.uk 

 

Co-Investigator: 

Dr Alan Winston, Reader in Genitourinary Medicine 

Winston Churchill Wing, St. Mary’s Campus, Imperial College London. 

a.winston@imperial.ac.uk 

mailto:brendan.payne@ncl.ac.uk
mailto:a.winston@imperial.ac.uk
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Protocol Summary 

 
Short title: MAGMA 

Protocol version: 1.21 

Protocol date: 22.5.2017 

Chief Investigator: Dr Brendan Payne 

Sponsor: Newcastle-upon-Tyne Hospitals NHS Foundation Trust 

Funder: Wellcome Trust 

Study design: Observational, cross-sectional 

Primary objective: To determine whether anti-retroviral treated HIV-infected older 

people have an excess of mitochondrial defects in skeletal muscle 

compared with age-matched uninfected people. 

Secondary objectives: To determine whether mitochondrial defects in HIV-infected older 

people are in keeping with accelerated clonal expansion of 

mitochondrial DNA mutations. 

To determine whether mitochondrial defects in older HIV-infected 

people correlate with clinical parameters, anti-retroviral treatment, 

or markers of systemic inflammation. 

To determine whether muscle mitochondrial defects in HIV-infected 

people correlate with reduced physical function. 

Number of study sites: 2 

Study population/size: 45 

Study duration: 36 months 
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Background 

Anti-retroviral treated HIV-infected persons achieve good immune reconstitution, but nevertheless 

experience an increase in many of the common diseases and physiological changes of older age (1-3). 

Given the known links between mitochondria and ageing (4-8), and mitochondria and HIV infection 

(9-12), it is plausible that increased mitochondrial damage may be a biological mediator of ageing in 

HIV. 

 
We have previously demonstrated that younger (aged <50) anti-retroviral treated persons have an 

excess of cells containing mtDNA mutations, but the mechanism remains to be determined (13). Our 

modelling suggests that the increase may be consistent with an acceleration of clonal expansion of 

mtDNA mutations within cells, particularly in the setting of exposure to certain NRTI anti-retroviral 

drugs. Conversely, other authors have suggested that HIV infection or therapy may be mutagenic for 

mtDNA (14-16). Which model is correct will dictate the natural history of the mitochondrial defect in 

later life. 

 
 
 

Hypotheses 

1) Anti-retroviral treated HIV-infected older men will have an excess of mitochondrial defects in 

skeletal muscle compared with age-matched HIV-uninfected men. 

2) The pattern of mitochondrial defects found in HIV-infected men will be consistent with a 

mechanism of accelerated clonal expansion of mtDNA mutations. 

3) Correlates of mitochondrial damage will include: increased age (>60 years), longer history of 

treated HIV infection (>15 years), increased systemic inflammation. 

4) Increased mitochondrial damage will correlate with decreased physical function in HIV- 

infected men. 
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Objectives 

Primary objective: To determine whether anti-retroviral treated HIV-infected older men 

have an excess of mitochondrial defects in skeletal muscle compared 

with age-matched uninfected men. 

 
Secondary objectives: To determine whether mitochondrial defects in HIV-infected older 

men are in keeping with accelerated clonal expansion of 

mitochondrial DNA mutations. 

To determine whether mitochondrial defects in HIV-infected men 

correlate with clinical parameters, anti-retroviral treatment, or 

markers of systemic inflammation. 

To determine whether muscle mitochondrial defects in HIV-infected 

men correlate with reduced physical function. 
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Study Design 

This is an observational cross-sectional study. 
 
 

Primary outcome measures: 

The proportion of skeletal muscle fibres with functional mitochondrial COX (cytochrome c oxidase) 

defects. 

The level of mtDNA mutations in skeletal muscle. 
 

 
Secondary outcome measures: 

The plasma levels of inflammatory cytokines. 

Physical performance as measured by a testing battery. 
 
 

Definition of end of study: 

For the purposes of recruitment, the end of study will be the last participant’s final study contact. 

Recruitment is expected to take approximately 12 months. 

Ethical permission will include ongoing analyses and storage of samples beyond that date. 
 
 
 
 

Study of archived tissue: 

The ethical and HRA permission for this study also allows for similar mitochondrial analyses to be 

performed on anonymised archival tissue samples obtained from research tissue banks and residual 

tissue from NHS histopathology departments. 

Study of these tissues will allow cellular and molecular findings from the muscle biopsies to be 

extended to other tissues. 

Tissues studied may include (but are not limited to): brain, bowel, cardiac, renal, plasma/serum, 

urine. 

Samples requested may be from HIV positive subjects or healthy controls. 

Samples will be supplied in anonymised form. 

 Tissue may be supplied as blocks or as slides (10μm sections, 2 sections per slide, 10 slides per case) 

at the preference of the supplying site. 
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Participants 

A total of 45 subjects will be recruited: 

 
HIV-infected n = 30. 

HIV-uninfected n = 15. 

 
Inclusion criteria 

• Patient has provided written informed consent for participation in the study prior to any study 

specific procedures 

• Age ≥50 years at time of study visit. 

• Male 

• Willing to travel to one of the study sites 

• Willing to have muscle biopsy 
HIV-infected group only: 

• Documented positive HIV status at study entry 
HIV-uninfected group only: 

• Documented negative HIV test at study entry 

 
 
Exclusion criteria 

• Female 

• Inability to give informed consent 

• In the opinion of the investigator, those unable or unwilling to comply with the requirements 

of the study 

• Life expectancy <6 months 

• Known coagulation disorder or taking anti-coagulant medication 

• Known or suspected neuromuscular disorder of a genetic basis 

• Unable to walk 4 metres (use of a stick or walking frame is permitted) 
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Screening, Recruitment and Consent 

Identification and screening of participants 

Different processes will apply at the two study sites (Newcastle-upon-Tyne Hospitals, Imperial 

College Healthcare NHS Trust as follows): 

 
Imperial College 

• All subjects recruited will already be part of an existing longitudinal study of ageing in HIV 

(‘POPPY’). 

• Potential subjects will be identified by a member of the POPPY study team, or the normal 

clinical team at site. 

• This mechanism applies to both HIV-infected and uninfected subjects. 

 
Newcastle 

• Potential HIV-infected participants will be identified through screening of clinical records by a 

member of the study team who is also a member of the usual clinical team (the PI, or a 

colleague with documented, delegated responsibility). 

• Potential HIV-infected participants will also be eligible if they receive their usual HIV care at 

other clinics within the Northeast HIV Network. In these cases those sites will serve as PIC 

sites. At these sites potential participants will be identified by a member of the usual clinical 

team at site. 

• Potential HIV-uninfected subjects will be identified through genitourinary medicine clinics 

within the Northeast HIV Network (operating as PIC sites, as described above). 

• Potential HIV-infected and uninfected subjects may also be peer referred. 

 
 
Recruitment procedures 

Imperial College 

Potential participants from POPPY can be approached at the time of their routine clinic appointment, 

or a planned POPPY study visit. They may also be contacted by email or letter. A study Participant 

Information Sheet will be provided at this time and the patient allowed time to read it. At least 24 

hours later this will be followed up by a telephone call to allow the patient to ask further questions, 

and if they are then agreeable, to book the study visit. 

If a patient declines to participate this will be recorded to avoid them being approached again. 
 
 

Newcastle 

 

Eligible participants will be invited to participate by a member of the study team, who is also a 

member of the clinical team, during their routine consultation. A study Participant Information Sheet 

will be provided at this time and the patient allowed time to read it. Where prior consent exists to 

contact the patient by email or by letter a PIS may also be sent out in this manner. At least 24 hours 

later this will be followed up by a telephone call to allow the patient to ask further questions, and if 

they are then agreeable, to book the study visit. 
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If a patient declines to participate this will be recorded in the medical notes to avoid them being 

approached again. 

 

 
Age bands 

Whilst (for practical reasons) there is no specific stratification of recruitment target by age bands, 

sites will be specifically encouraged to identify older subjects, aged over 60, in addition to those aged 

50-60 years. 

In the case of HIV-uninfected subjects, these will be specifically age (by 5 year bands: 50-54, 55-59, 

60-64, 65+) and sex matched with HIV-infected cases. This will be facilitated by identification of 

potential HIV-uninfected participants at the St Mary’s site. 

 

 
Consent procedures 

Informed consent discussions will be untaken only by the investigator who is to perform the study 

procedures. Opportunity will be given for participants to ask any questions. Those wishing to take 

part will provide written informed consent by signing and dating the study consent form, which will 

be witnessed and dated by a member of the research team with documented, delegated 

responsibility to do so. Written informed consent should always be obtained prior to study specific 

investigations. The original signed consent form will be retained in the Investigator Site File, with a 

copy in the clinical notes and a copy provided to the participant. The participant will specifically 

consent to their GP being informed of their participation in the study. The right to refuse to 

participate without giving reasons must be respected. 

Due to the small subject population, the information sheet and consent form for the study will be 

available only in English. Interpreters will be arranged for all visits of patients who require them via 

local NHS arrangements. Qualified interpreters will be used to explain the consent form and 

information sheet, and great priority will be placed on finding the most direct communication. 

Consent will be taken at the time of the study visit, which in all cases will be at least 24 hours after 

receipt of the PIS by the patient. 
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Study Data 

Study procedures 

There will be some differences in the number of study procedures performed at the two study sites 

as those subjects attending the Imperial site will have already had some procedures performed as 

part of the POPPY study (procedures not required for these participants indicated *) and those data 

will be available for this study. HIV-specific data is not required for HIV uninfected participants 

(indicated †). 

Subjects will attend for a single study visit, where the following will be performed: 
- Written informed consent 

- Completion of health and treatment questionnaires: 

o Demographics (age, self-reported ethnicity, country of birth, sexual orientation)* 

o Lifestyle factors (smoking, alcohol, drug use history), past medical history, current 

(non-HIV) medications* 

o General health and wellbeing (frailty assessment questions) 

o Current HIV treatment† 

o Past HIV treatment*† 

o HIV history (duration of infection, nadir CD4)† 

- Completion of physical activity questionnaire 

- Anthropometric measurements: height, weight, BMI, waist circumference 

- Collection of serum, whole blood and urine samples, for immune / inflammatory cytokine 

profiling, mitochondrial DNA analyses, and storage for possible future metabolic profiling. 

- Lean muscle mass assessment by whole body DXA* 

- Short physical performance battery (17) 

- Percutaneous skeletal muscle biopsy (from leg muscle) for mitochondrial analyses and gene 

expression profiling. 

See study appendix for details of procedures. 

 
Timings 

All procedures will be performed in a single study visit, approximately as follows: 
- Consent, collection of clinical data and blood samples: 30 mins 

- Completion of questionnaires: 20 mins 

- DXA scan: 20 mins 

- Physical performance assessments: 20 mins 

- Muscle biopsy: 20 mins 

- Rest / observation after biopsy: 120 mins 

All procedures should be completed within ~4hr. 

Clinical laboratory data 

Clinical and past treatment data for subjects in POPPY will be obtained by a data download. Only 

those parameters marked (†) will need verifying at the time of study visit. 

In addition to those data collected by questionnaire (as above), clinical disease and treatment data 

will be collected by case-note review by a member of the study team who is also a member of the 
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clinical team. The following will be recorded: 

- Current CD4 lymphocyte count† 

- Current HIV RNA plasma viral load† 

- Most recent laboratory tests will be recorded (in the HIV-infected cohort): renal, liver, lipid 

and bone profiles, glucose, full blood count. These tests should have been performed within 

a year of the clinic visit. 

 
Data Handling & Record Keeping 

A Study File will be maintained at each of the two study sites by the PI / Co-I in a locked office. Only 

members of the study team will have access to this file. This will contain a copy of the screening log 

and copies of the consent forms for enrolled subjects. This file will also contain a key of patient 

identifiers linked to anonymised study code for each subject. 

All patient-identifiable data will be handled at the two clinical study sites and all samples and data 

handled at the University site will use anonymised codes only. 

The PI has overall responsibility for data management. 
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Statistical Considerations 

The primary analysis is the between-group comparison (HIV-infected vs. uninfected) of mtDNA 

mutation burden. The chosen sample sizes are well-powered to detect a mean difference of 0.33 

log10 between groups (α 0.05, 1-β 0.92), based on past experience of SD for this measure. 

Secondary analyses will include within group (HIV-infected) correlation between treatment 

parameters and mtDNA defect. The selected sample size will allow detection of a moderate (r 0.5) 

correlation (α 0.05, 1-β 0.8) (18). 

 

 
Withdrawal 

Participants have the right to withdraw from the study at any time for any reason, and without giving 

a reason. Should a patient decide to withdraw from the study, all efforts will be made to report the 

reason for withdrawal as thoroughly as possible. 

As the study is a single visit, a request to withdrawal from the study will mean that no data is used 

for that patient, up until the point of publication of the study results. 

 

 
Incidental findings 

All blood results on HIV-infected subjects will already have been performed as part of routine clinical 

care and will have been actioned already if required. 

Although not the primary purpose of performing the test, DXA scans may produce clinically 

actionable results regarding bone mineral density. This will be communicated to the patient’s usual 

physician and GP. 

The molecular analyses performed on mtDNA are such that no genetic information of potential 

relevance to the patient or their family would be discovered. 

 

 
Adverse events 

Adverse event reporting for this study will be as follows: 

All Adverse Events (AE) that are related to any of the study procedures outlined in the protocol (e.g. 

during muscle biopsy, physical function testing, DXA scanning) will be reported to the sponsor. 

(Discomfort and bruising in line with that expected for the muscle biopsy or venepuncture does not 

count as an AE.) 

As such AEs may present up to a few days after the study procedures, if the patient reports any AE 

with reference to the study visit then this will be recorded. 

All Serious Adverse Events (SAE) will be reported to the sponsor (both those related to study 

procedures and those which may not be related to study procedures). 

All study-related adverse events, however minor, will be documented. An adverse event is any 

untoward medical occurrence in a subject administered a pharmaceutical product or, in the case of 

this study, in a subject undergoing a study procedure (including events that do not necessarily have a 
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causal relationship with the study procedure). Adverse events observed by the Investigator, or 

reported by the subject, and any remedial action taken, will be recorded in the subject’s CRF and 

should be verifiable in the subject’s notes throughout the study. The nature of each event, time of 

onset (if known), after undergoing a study procedure will be documented together with in the 

Investigator’s opinion of the causal relationship to the study procedure (unrelated, unlikely, possible, 

probable, definite and not assessable). All subjects experiencing adverse events, whether considered 

associated with study procedures or not, must be monitored until the symptoms subside. 

Severity should be recorded and graded according to the AIDS Clinical Trial Group (ACTG) Grading 

Scale. Moreover, adverse events should be assessed in relation to their intensity, defined as follows: 

MILD: the adverse event does not interfere with subject’s usual function 

MODERATE: the adverse event interferes to some extent with subject’s usual function 

SEVERE: the adverse event interferes significantly with subject’s usual function 

 
Serious Adverse Events (SAE) 

A SAE is any untoward medical occurrence or effect that: 

• Results in death 

• Is life-threatening – refers to an event in which the subject was at risk of death at the time of the 

event; it does not refer to an event which hypothetically might have caused death if it were more 

severe 

• Requires hospitalisation, or prolongation of existing inpatients’ hospitalisation 

• Results in persistent or significant disability or incapacity – there is a substantial disruption of a 

person’s ability to carry out normal life functions 

• Is a congenital abnormality or birth defect 
 

 

An SAE form should be completed and faxed to for all SAEs within 24 hours of notification about the 

event. The ICTU / CRF will inform the following individuals within 24 hours of receiving notice of 

them: 

- The Sponsor (Newcastle-upon-Tyne Hospitals) 

- The Chief Investigator (Dr Brendan Payne) 
 

 
Given the observational and nature of this study, no additional information on SAEs will be captured. 

All SAEs and AEs will be recorded on the annual study reports that are sent to the REC. 

Also, given the observational and non-interventional nature of this study, no serious, unexpected 

adverse drug reactions (SUSARs) reporting will be undertaken. As all subjects continue with their 

general clinical care, which is unaltered during the course of this study, the ‘yellow card’ reporting 

will be unaffected. 
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Ethics & Regulatory Issues 

The conduct of this study will be in accordance with the recommendations for physicians involved in 

research on human subjects adopted by the 18th World Medical Assembly, Helsinki 1964 and later 

revisions. 

Favourable ethical opinion from an appropriate REC and NHS R&D approval will be obtained prior to 

commencement of the study. 

Information sheets will be provided to all eligible subjects and written informed consent obtained 

prior to any study procedures. 

 

 
Study management 

A study management group will be convened which will meet quarterly or as required (in person or 

by teleconference). This will include the CI, Co-I, research nurses involved in the study. 

 
Confidentiality 

Personal data will be regarded as strictly confidential. To preserve anonymity, any data leaving the 

site will identify participants by a unique study identification code only. The study will comply with 

the Data Protection Act, 1998. All study records and Investigator Site Files will be kept at site in a 

locked filing cabinet with restricted access. 

 

 
Insurance 

The Newcastle-upon-Tyne Hospitals NHS Foundation Trust has liability for clinical negligence that 

harms individuals toward whom they have a duty of care. NHS Indemnity covers NHS staff and 

medical academic staff with honorary contracts conducting the trial for potential liability in respect 

of negligent harm arising from the conduct of the study. The Trust is Sponsor and through the 

Sponsor, NHS indemnity is provided in respect of potential liability and negligent harm arising from 

study management. Indemnity in respect of potential liability arising from negligent harm related to 

study design is provided by NHS schemes for those protocol authors who have their substantive 

contracts of employment with the NHS and by Newcastle University Insurance schemes for those 

protocol authors who have their substantive contract of employment with the University. This is a 

non-commercial study and there are no arrangements for non-negligent compensation. 

 

 
Study Report / Publications 

The data will be the property of the Chief Investigator and Co-Investigators. Publication will be the 

responsibility of the Chief Investigator. 

It is planned to publish this study in peer review articles and to present data at national and 

international meetings. Results of the study will also be reported to the Sponsor and Funder. All 
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manuscripts, abstracts or other modes of presentation will be reviewed by the Trial Steering 

Committee and Funder prior to submission. Individuals will not be identified from any study report. 

Participants will be informed about their treatment and their contribution to the study at the end of 

the study, including a lay summary of the results. 
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Appendix 2 – Health Questionnaire 

 
Instructions to Clinical Research Nurse: 

Please ask the participant to complete the following forms. 

 
This questionnaire is in 5 sections. Not all participants need to complete all sections. Please check 
the top of each section before giving it to the participant. 

 
Please write the participant code number on the top of each sheet before giving them to the 
participant. 

 
The table below shows which forms are required for each group of participants: 

 
HIV positive participant at Newcastle site 

Section 1 

Section 2 

Section 3 

Section 4 

Section 5 

HIV positive participant at St Mary’s site 

 
Section 2 

Section 3 

 
Section 5 

HIV negative participant at Newcastle site 

Section 1 

Section 2 

HIV negative participant at St Mary’s site 

 
Section 2 
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Section 1 – questions about your medical history 

Note to research nurse: this section is for participants at Newcastle site only. 

 
Please complete this questionnaire as best as you can. Please ask the research nurse / doctor if you are 
uncertain. This section contains 3 sides of questions. 

 
General questions: 

What is your age in years?    

What country were you born in?    

How would you describe your ethnic group (e.g. black African, white British etc.)? 

(leave blank if prefer not to say)    

How would you describe your sexual orientation? 

Gay Bisexual 

Straight Other / prefer not to say 
 

Lifestyle questions: 

Have you ever smoked? (Please tick one answer): I 

am a current smoker 

I am a social smoker I 

am an ex-smoker 

I have never smoked 
 

Do you drink alcohol? 

Yes currently 

Previously but not currently 

Never / almost never 

 
If you drink alcohol currently, how much do you drink in an average week? (Please write the number 
of each drink per week in the box): 

Beer or cider (pints) 

Wine (glasses) 

Spirits (single measures) 
 

Have you used any recreational drugs in the last 6 months? (Please tick one answer): 

Yes No 
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If yes, please list which    

Please turn over for the next set of questions 

Medical history: 

Below is a list of common types of medical conditions, with examples of each type. Please tick any that you 
have ever suffered from. Please give any further details in the right hand column where indicated. 

 
Medical condition Tick if here you 

have been affected 
Further details 

Heart disease 

Includes: myocardial infarction (‘heart 
attack’), angina, acute coronary 
syndrome, coronary artery bypass, 
coronary artery stenting, cardiac 
arrhythmias (abnormal heart 
rhythms), cardiac arrest, heart failure 
(congestive cardiac failure) 

 Please state type of cardiovascular 
disease: 

Peripheral vascular disease 

Includes: claudication, bypass grafts 
of legs, stents to legs, aortic 

aneurysm 

 Please state type of peripheral 
vascular disease: 

Stroke 

Includes: ‘mini stroke’, TIA 

 Please state type: 

Renal (kidney) disease  Please state type: 

Liver disease 

Includes: hepatitis, hep B, hep C 

 Please state type: 

Diabetes   

Cancer  Please state type: 

Joint disease (arthritis) or joint 
replacements 

 Please state type of arthritis and 
any joints that have been replaced: 

Fractures (broken bones)  Please state which bones: 

Osteoporosis   

Falls  Please state number of falls that 
you think you have had in the last 
12 months: 
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Medications 

Please list below all the medications that you currently take. Please list both prescribed 
medications and ones that you buy over-the-counter. 

 
Tick here if you do not take any medications 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

Thank you for completing this form. Please hand it back to the research nurse / doctor. 
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Section 2 – questions about your general health and wellbeing 

Note to research nurse: this section is for all participants 

 

Please complete the following questions. It is not a test! Please just choose the answer that you think 

fits best for you. If you are not sure, please ask the research nurse / doctor. 

1. In the last 12 months has your weight decreased, increased or has it stayed about the same? 
(Please tick one answer): 

1-Decreased 2-Increased 3-Stayed about the same 

 

If you chose answer 1, go to question 2. 

If you chose answer 2 or 3, go straight to question 3. 

 

2. Was your weight loss intentional, for example, you were dieting? (Please tick): 
1-Yes 2-No 

 

If you answered ‘Yes’, go to question 3. 

If you answered ‘No’, continue with this question. 

a. Approximately how much weight did you lose over the last 12 months? (You can give 
your answer in either kg or lbs): 

 
...... kg ...................... lbs 

 

3. Does your health limit you in vigorous activities, such as running, lifting heavy objects, or 
participating in strenuous sports? (Please tick one answer): 

1- Yes, limited a lot 2-Yes, limited a little 3-No, not limited at all 
 

For the following statement, tick the answer that best describes how often you felt or behaved this way 
during the past week: 

4. Everything I did was an effort: 1-Rarely or none of the time (<1 day) 
 

2- Some or a little of the time (1-2 days) 
 

3- Occasionally or a moderate amount of time (3-4 days) 

4-Most or all of the time (5-7 days) 

For the following statement, tick the answer that best describes how often you felt or behaved this way 
during the past week: 

5. I could not get going: 1-Rarely or none of the time (<1 day) 
 

2- Some or a little of the time (1-2 days) 
 

3- Occasionally or a moderate amount of time (3-4 days) 

4-Most or all of the time (5-7 days) 
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Section 3 – questions about your current HIV treatment 

Note for research nurse: this section is for HIV positive participants only 

 

Please write the names of all the HIV drugs that you are currently taking in the table below. We just need 

drug names, not doses or how many times per day. 

If you cannot remember the date that you started a drug please just put a ? in the relevant box (e.g. 

??/12 for sometime in 2012, or ??/?? if you have no idea). If you are not sure about how to complete 

this form, please ask the research nurse or doctor. Thank you. 

 
 
 

HIV treatment name Date started 
(MM/YY) 

Date stopped 
(MM/YY) 

   

   

   

   

 
 
 

 
Thank you for completing this form. Please hand it back to the research nurse / doctor. 
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Section 4 – questions about your previous HIV treatment 

Note for research nurse: this section is for HIV positive participants at the Newcastle site only. 

 

We would like you to try and remember the details of any HIV treatment that you may have had in the past. 

Please include all previous HIV treatments but do not include the treatment you are on now. We just need 

drug names, not doses or how many times per day. 

If you cannot remember the dates please just put a ? in the relevant box (e.g. ??/12 for sometime in 2012, 

or ??/?? if you have no idea). If you are not sure about how to complete this form, please ask the research 

nurse or doctor. Thank you. 

If your current HIV treatment is your first ever regimen then please tick this box (you do not need to 

complete the rest of this page). 

If you have had other HIV treatment regimens in the past but cannot remember any of them please tick this 

box (we will try to confirm them from your medical records). 

 
 
 

HIV treatment name Date started 
(MM/YY) 

Date stopped 
(MM/YY) 

   

   

   

   

   

   

   

   

   

 
 

If you have any other comments about past HIV treatments you have taken please write them here: 
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Thank you for completing this form. Please hand it back to the research nurse / doctor. 

 
 

Section 5 – questions about your HIV 

Note for research nurse: this section is for HIV positive participants only 

 

Please try and complete the three questions below. 
 

If you cannot remember the dates please just put a ? in the relevant box (e.g. ??/12 for sometime in 2012, or ??/?? if 

you have no idea). If you are not sure about how to complete this form, please ask the research nurse or doctor. Thank 

you. 

 

 
When were you first diagnosed with HIV? (MM/YY) _  _  /  _ _ 

 
 
 

When do you think you became HIV positive? (MM/YY) _  _  /  _ _ 

 
 
 

What is the lowest CD4 count that you can ever remember having (please tick the relevant box)? 

 

Between 0 and 100 

 

Between 100 and 200 

 

Between 200 and 350 

 

 

 

 
 
 
 

Thank you for completing this form. Please hand it back to the research nurse / doctor. 

  

More than 350 

Don’t know  
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Appendix 3 – Physical performance assessment 
 
Scoring sheets 
 

Single Chair Rise, Repeated Chair Rise 

1) "This is a test of strength in your legs in which you stand up without using your arms." 

2) "Fold your arms across your chest, like this, and stand when I say GO, keeping your arms in this position. OK? 

Ready, go!” 
 

Able to rise 1 time? 
 

3) If able to rise… “This time, I want you to stand up ten times as quickly as you can, keeping your arms folded 

across your chest. When you stand up, come to a full standing position each time, and when you sit down, sit 

all the way down each time. I’ll demonstrate two chair stands to show you how it is done.” Rise two times as 

quickly as you can, counting as you sit down each time. Cross your arms over your chest and emphasize full 

standing position, all the way down. 

 
4) "When I say ‘Go’ stand ten times in a row, as quickly as you can, without stopping. Stand up all the way, and 

sit all the way down each time. Ready? Go!" Start timing as soon as you say “Go.” Count aloud: "1, 2, 3, 4, 5, 6, 
7, 8, 9, 10" when the participant sits down each time. After the participant sits down for the fifth time, 
depress the split button on the stopwatch. When the participant stops for the tenth time, then “stop” the 
stopwatch. 

10x chair rise  :  seconds 

 

  Unable to complete 5 chair stands 

 

  Complete > 5 but < 10 stands 

 

  # completed  :  sec 

 

  :  seconds 5 x chair rise 

Yes / No 



 

404 
 

 
  Side-by-side x 10 sec 

   Side-by-side x 30 sec 

Time (if other than 30 sec) 

  :    

 
   Not attempted 

Balance Test 

 

1. “I’m going to ask you to stand in several different positions that test your balance. I’ll demonstrate each position and 

then ask you to try to stand in each position for up to 30 seconds. I’ll be near you to provide support, and the wall is 

close enough to prevent you from falling if you lose your balance. Do you have any questions?” 

 

2. “First I would like you to try to stand with your feet together, side-by side, for 30 seconds. Please watch while I 
demonstrate.” Demonstrate while you say: “You may use your arms, 
bend your knees, or move your body to maintain your balance, but try not 

to move your feet. Try to hold your feet in this position until I say stop.” 

 

3. Begin the test.  Allow the participant to hold onto your arm to get 
balanced. “Hold onto the chair while you get in position. When you are 
ready, let go and I’ll start timing. Ready? Go!” Start timing when the 
participant lets go. (If the participant does not hold onto your arm, start 
timing when he/she is in position. Stop the stopwatch if he/she takes a step 
or grabs for support. Record to 0.01 second the time the participant could 
hold this position. Say, “STOP” after 30 seconds. 

 
If side-by-side test is 10 seconds or longer, proceed with the next test: 

 

4. “Now I would like you to try to stand with the side of the heel of one foot 

touching the big toe of the other foot for 30 seconds. Please watch while I 

demonstrate.” Demonstrate and say: “You may put either foot in front, 

whichever is more comfortable. You can use your arms and body to 

maintain your balance. Try to hold your feet in position until I say stop. If 

you lose your balance, take a step like this. Hold onto the chair while you 

get in position. When you are ready, let go and I’ll start timing. Ready? 

Go!” Start timing when the participant lets go. (If the participant does not 

hold onto your arm, start timing when he/she is in position. Stop the 

stopwatch if he/she takes a step or grabs for support. Record to 0.01 

second the time the participant could hold this position. Say, “STOP” after 

30 seconds. 

 
 

If able to hold semi-tandem for 10 seconds or longer, proceed with next test: 

 
 

5.  “Now I would like you to try to stand with the heel of one foot in front of 

and touching the toes of the other foot. I’ll demonstrate.” Demonstrate, 

and say: “Again, you may use your arms and body to maintain your 

balance. Try to hold your feet in position until I say stop. If you lose your 

balance, take a step, like this. Hold onto the chair while you get in 

position. When you are ready, let go and I’ll start timing. Ready? Go!” 

Start timing when the participant lets go. Stop the stopwatch if he/she 

takes a step or grabs for support. Record to 0.01 second how long the 

participant is able to hold this position. Say, “STOP” after 30 seconds. 

 
   Tandem x 10 sec 

 
    Tandem x 30 sec 

Time (if other than 30 sec) 

  :    

 
    

Not attempted 

 
  Semi-tandem x 10 sec 

Semi-tandem x 30 sec 

Time (if other than 30 sec) 

  :    

 
   

Not attempted 
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6. If the participant holds the position for at least 10 seconds, go to the Single Leg Stand. If the participant 

attempts the Tandem Stand and is unable or cannot hold it for at least one second, perform a second trial of the 

Tandem Stand. “Now, let’s try that again. Hold onto my arm while you get into position. When you are ready, 

let go and I’ll start timing.” 
 

 
If able to hold tandem stand for 10 seconds or longer, proceed with the next test: 
 

7.  “For the last position, I would like you to try to stand on one leg for 30 seconds. You may 

stand on either leg, whichever is more comfortable. I’ll demonstrate.” Demonstrate the 

single leg stand by lifting the heel of one leg so that the toes are about 2 inches off the floor. 

The knee should be flexed and hip should remain straight (so that the foot goes behind the 

participant rather than in front). Demonstrate and say: “Try to stand on one leg until I say 

stop. If you lose your balance, then put your foot down.  Hold onto my arm while you get 

in position. When you are ready, let go, and I’ll start timing. Ready? Go!” Start timing 

when the participant lets go. Stop the stopwatch if he/she takes a step or grabs for support. 

Record to 0.01 second how long participant is able to hold this position. Say, “STOP” after 

30 seconds. 

 
8. If the position is held for less than 30 seconds, for this test only, perform a second trial of the Single Leg Stand. 

“Now, let’s try the same thing one more time.” 

 
   One-leg x 30 sec on 1st try 

 
   One-leg x 30 sec on 2nd try 

 
Time (if not 30 sec) on 1st try  :    

Time (if not 30 sec) on 2nd  try   :     

   Not attempted 



 

406  

 
Grip Strength 

 

Assess whether the participant can complete the Grip Strength Test. 
 

Script: “In this exercise, I am going to use this instrument to measure the strength in your dominant hand.” 

 

1) “Are you right handed or left handed?” 
2) “Have you had any recent pain in your wrist or hand, or any acute 

flare-up in your wrist or hand from conditions like arthritis, tendonitis or carpel tunnel syndrome? Do you 
think that squeezing this instrument would cause you to have pain”? 

3) “Have you had any surgery on your hands or arms during the last 3 months?” 
4) “Do you think you can safely squeeze this instrument as hard as you can with your [right/left] hand?” 

 
 
Instructions and Demonstration 
 

While the examiner is demonstrating the procedure, read the following script: “I’d like you to take your dominant arm, 

press your arm against your side and grab the two pieces of metal together like this.” (Examiner should be holding the 

dynamometer in the correct position). 

 
“When I say ‘squeeze,’ squeeze as hard as you can (examiner demonstrates). The two pieces of metal do not move, but I will 

be able to read the force of your grip on the dial (examiner points to the dial). I will ask you to do this three times. If you feel 

any pain or discomfort, tell me. Do you have any questions?” 

 
Performance and Scoring 
 

1. Hand the dynamometer to the participant and place the wrist strap around his/her wrist. 
 

2. Script: “Press your arm against your side and grip the two pieces of metal with your dominant hand. Your 
wrist should be straight. “Ready? Go! Squeeze, squeeze, squeeze!! When the needle starts to go down, tell the 
subject to stop. 

 
3. Record the strength in kilograms (round DOWN to the nearest line). Reset the 

dynamometer to zero. 

 
4. “Now we will test your strength a second time. When I say ‘squeeze,’ squeeze as 

hard as you can. Ready? Go! Squeeze, squeeze, squeeze! When the needle starts 
to go down, tell the subject to stop. 

 
5. Record the strength in kilograms (round DOWN to the nearest line). Reset the dynamometer to zero. 

 
6. “Now we will test your strength a third and final time. When I say ‘squeeze,’ squeeze as hard as you can. 

Ready? Go! Squeeze, squeeze, squeeze! When the needle starts to go down, tell the subject to stop. 
 
If unable, indicate why he/she was unable to complete the grip strength test and STOP TESTING. If attempted, but 
unable physically, STOP TESTING. 

 
Attempt #1  kg 

 

Attempt #2  kg 

 
Attempt #3  kg 

Dominant Hand: Right / Left 
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METER WALK 

 

Script: “In this test, I would like you to 

walk at your usual pace from this red 

line to the other red line. Do you think 

you could do that? Good. Can you see 

the tape? Good. Let me demonstrate 

what I want you to do.” Read the 

following script while demonstrating the 

procedure for the participant: “To do 

this test, place your toes behind the 

tape. I will time you. When I say ‘Go!’ 

walk at your usual pace past the line 

(examiner walks the 4 meters past the 

other piece of tape). Do you have any 

questions?” 

 
Performance and Scoring 
 

1. The tester will stay at the finish line to time the test. When you are in position, say: “Now 
we will begin the test. Please start with your toes behind the piece of tape.” 

 
2. When the participant is properly at the starting tape, say “Ready? Go!” and start the 

stopwatch when you say go (even if the participant has a pause before he/she begins). 
Stop the stopwatch when the participant’s first foot is completely across the finish line. 

 
3. Record the time and reset the stopwatch to 0. Ask the participant to return to the starting line. 

 
4. Script: “Now, I’d like you to try this test a second time. Start with your toes behind the piece of 

tape. 

When I say “Go!” walk at your usual pace to the line.” 

 
4. When the participant is properly at the cone, say “Ready, go!” and start the stopwatch 

when you say go. Stop the stopwatch when the participant’s first foot is completely 
across the finish line. 

 

 

 

Record if participant regularly uses an 

assistive device (cane/walking stick, 

walker, wheelchair, scooter, or other) 

when walking? Y / N 

 
Device:   
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“Thank you. This is the end of this test.” 

  

Walk attempted?   Y / N If no, record reason(s) 

 
 

Walk #1  ▪  seconds 

 

Walk #2  ▪  seconds 
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Appendix 4 – Physical activity questionnaire  

We are interested in finding out about the kinds of physical activities that people do as part of their 
everyday lives. The questions will ask you about the time you spent being physically active in the last 7 
days. Please answer each question even if you do not consider yourself to be an active person. Please 
think about the activities you do at work, as part of your house and garden work, to get from place to 
place, and in your spare time for recreation, exercise or sport. 
 
Think about all the vigorous activities that you did in the last 7 days. Vigorous physical activities refer to 
activities that take hard physical effort and make you breathe much harder than normal. Think only 
about those physical activities that you did for at least 10 minutes at a time. 
 

1. During the last 7 days, on how many days did you do vigorous physical 
activities like heavy lifting, digging, aerobics, or fast bicycling? 

 

  days per week 

 

No vigorous physical activities Skip to question 3 

 

2. How much time did you usually spend doing vigorous physical activities on one of 
those days? 

 

  hours per day 

  minutes per day 

 
Don’t know/Not sure 

 

Think about all the moderate activities that you did in the last 7 days. Moderate activities refer to 
activities that take moderate physical effort and make you breathe somewhat harder than normal. 
Think only about those physical activities that you did for at least 10 minutes at a time. 

 
 

3. During the last 7 days, on how many days did you do moderate physical activities like 
carrying light loads, bicycling at a regular pace, or doubles tennis? Do not include 
walking. 

 

  days per week 

 

No moderate physical activities Skip to question 5 
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4. How much time did you usually spend doing moderate physical activities on one of those days? 
 

  hours per day 

  minutes per day 

 
Don’t know/Not sure 

 
 
Think about the time you spent walking in the last 7 days. This includes at work and at home, walking to travel from 
place to place, and any other walking that you have done solely for recreation, sport, exercise, or leisure. 
 

5. During the last 7 days, on how many days did you walk for at least 10 minutes at a time? 
 

  days per week 

 

No walking                   Skip to question 7 

 
 

6. How much time did you usually spend walking on one of those days? 
 

  hours per day 

  minutes per day 

 
Don’t know/Not sure 

 

The last question is about the time you spent sitting on weekdays during the last 7 days. Include time spent at 
work, at home, while doing course work and during leisure time. This may include time spent sitting at a desk, 
visiting friends, reading, or sitting or lying down to watch television. 
 

7. During the last 7 days, how much time did you spend sitting on a week day? 
 

  hours per day 

  minutes per day 

 
Don’t know/Not sure 

 
This is the end of the questionnaire, thank you. Please hand it back to the nurse / doctor. 
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Appendix 5 – IRAS approval 
 

17 March 2017 

Dear Dr Payne 

 
 

Study title: Muscle Ageing and Anti-retroviral study 

IRAS project ID: 212276 

REC reference: 17/NE/0015 
Sponsor Newcastle-upon-Tyne Hospitals NHS Foundation Trust 

 
 

I am pleased to confirm that HRA Approval has been given for the above referenced study, on the basis 

described in the application form, protocol, supporting documentation and any clarifications noted in this 

letter. 

 
Participation of NHS Organisations in England 

The sponsor should now provide a copy of this letter to all participating NHS organisations in England. 

 

Appendix B provides important information for sponsors and participating NHS organisations in England for 

arranging and confirming capacity and capability. Please read Appendix B carefully, in particular the 

following sections: 

• Participating NHS organisations in England – this clarifies the types of participating organisations in 

the study and whether or not all organisations will be undertaking the same activities 

• Confirmation of capacity and capability - this confirms whether or not each type of participating NHS 

organisation in England is expected to give formal confirmation of capacity and capability. Where 

formal confirmation is not expected, the section also provides details on the time limit given to 

participating organisations to opt out of the study, or request additional time, before their 

participation is assumed. 

• Allocation of responsibilities and rights are agreed and documented (4.1 of HRA assessment criteria) - 

this provides detail on the form of agreement to be used in the study to confirm capacity and 

capability, where applicable. 

Further information on funding, HR processes, and compliance with HRA criteria and standards is also 

provided. 

 
 
 

 

 
 
 

It is critical that you involve both the research management function (e.g. R&D office) supporting each 

Letter of HRA Approval 
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organisation and the local research team (where there is one) in setting up your study. Contact details and 

further information about working with the research management function for each organisation can be 

accessed from www.hra.nhs.uk/hra-approval. 

 
Appendices 

The HRA Approval letter contains the following appendices: 

• A – List of documents reviewed during HRA assessment 

• B – Summary of HRA assessment 

 
After HRA Approval 

The document “After Ethical Review – guidance for sponsors and investigators”, issued with your REC 

favourable opinion, gives detailed guidance on reporting expectations for studies, including: 

• Registration of research 

• Notifying amendments 

• Notifying the end of the study 

The HRA website also provides guidance on these topics, and is updated in the light of changes in reporting 

expectations or procedures. 

 
In addition to the guidance in the above, please note the following: 

• HRA Approval applies for the duration of your REC favourable opinion, unless otherwise 

notified in writing by the HRA. 

• Substantial amendments should be submitted directly to the Research Ethics Committee, as detailed 

in the After Ethical Review document. Non-substantial amendments should be submitted for review 

by the HRA using the form provided on the HRA website, and emailed to hra.amendments@nhs.net. 

• The HRA will categorise amendments (substantial and non-substantial) and issue confirmation of 

continued HRA Approval. Further details can be found on the HRA website. 

 
Scope 

HRA Approval provides an approval for research involving patients or staff in NHS organisations in England. 

 
If your study involves NHS organisations in other countries in the UK, please contact the relevant national 

coordinating functions for support and advice. Further information can be found at 

http://www.hra.nhs.uk/resources/applying-for-reviews/nhs-hsc-rd-review/. 

 

If there are participating non-NHS organisations, local agreement should be obtained in accordance with the 

procedures of the local participating non-NHS organisation. 

 
User Feedback 

The Health Research Authority is continually striving to provide a high quality service to all applicants and 

sponsors. You are invited to give your view of the service you have received and the application 

http://www.hra.nhs.uk/hra-approval
http://www.hra.nhs.uk/documents/2014/11/notification-non-substantialminor-amendmentss-nhs-studies.docx
mailto:hra.amendments@nhs.net
http://www.hra.nhs.uk/resources/hra-approval-applicant-guidance/during-your-study-with-hra-approval/
http://www.hra.nhs.uk/resources/applying-for-reviews/nhs-hsc-rd-review/
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procedure. If you wish to make your views known please use the feedback form available on the HRA website: 

http://www.hra.nhs.uk/about-the-hra/governance/quality-assurance/. 

 
HRA Training 

We are pleased to welcome researchers and research management staff at our training days – see details at 

http://www.hra.nhs.uk/hra-training/ 

 

Your IRAS project ID is 212276. Please quote this on all correspondence. Yours 

sincerely 

Alison Thorpe 

Senior Assessor 

 
Email: hra.approval@nhs.net 

 
 
 
 

 

Copy to: Mr Andrew Johnston , RM&G Manager, Newcastle Joint Research Office 

http://www.hra.nhs.uk/about-the-hra/governance/quality-assurance/
http://www.hra.nhs.uk/hra-training/
mailto:hra.approval@nhs.net
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Appendix A - List of Documents 

 

The final document set assessed and approved by HRA Approval is listed below. 
 
 

Document Version Date 

Contract/Study Agreement [Template Agreement]  24 December 2016 

Copies of advertisement materials for research participants [Poster] 1.0 06 December 2016 

Covering letter on headed paper  12 December 2016 

Covering letter on headed paper  10 February 2017 

Evidence of Sponsor insurance or indemnity (non NHS Sponsors only) 
[Indemnity for study design - Newcastle University] 

 19 July 2016 

GP/consultant information sheets or letters 1.0 06 December 2016 

IRAS Application Form [IRAS_Form_21122016]  21 December 2016 

IRAS Application Form XML file [IRAS_Form_21122016]  21 December 2016 

Laboratory Manual [Skeletal muscle biopsy] 1.1 10 February 2017 

Laboratory Manual [Physical performance assessment - 
instructions] 

1.0 06 December 2016 

Laboratory Manual [Physical performance assessment - record] 1.0 06 December 2016 

Letter from funder [Fellowship award letter - Wellcome Trust]  18 December 2015 

Letters of invitation to participant [Letter of invitation] 1.1 10 February 2017 

Non-validated questionnaire [Health questionnaire] 1.0 06 December 2016 

Other [SoA PIC Sites] 1.0 10 February 2017 

Other [SoA Study Sites] 1.1 10 February 2017 

Other [SoE PIC Sites] 1.0 10 February 2017 

Other [SoE Study Sites] 1.0 10 February 2017 

Participant consent form 1.0 06 December 2016 

Participant information sheet (PIS) [Newcastle site] 1.3 08 March 2017 

Participant information sheet (PIS) [St Mary's Site] 1.3 08 March 2017 

Referee's report or other scientific critique report [Reviewer's comments - 
Wellcome Trust] 

  

Research protocol or project proposal 1.2 10 February 2017 

Summary CV for Chief Investigator (CI)  06 December 2016 

Validated questionnaire [Physical activity questionnaire] 1.0  
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Appendix B - Summary of HRA Assessment 

 

This appendix provides assurance to you, the sponsor and the NHS in England that the study, as reviewed 

for HRA Approval, is compliant with relevant standards. It also provides information and clarification, where 

appropriate, to participating NHS organisations in England to assist in assessing and arranging capacity and 

capability. 

For information on how the sponsor should be working with participating NHS organisations in England, 

please refer to the, participating NHS organisations, capacity and capability and Allocation of responsibilities 

and rights are agreed and documented (4.1 of HRA assessment criteria) sections in this appendix. 

The following person is the sponsor contact for the purpose of addressing participating organisation 

questions relating to the study: 

 
 

Name: Andrew Johnston 

Tel: 0191 282 5969 

Email: andrew.johnston@nuth.nhs.uk 

 
HRA assessment criteria 

 

Section HRA Assessment Criteria Compliant with 

Standards 

Comments 

1.1 IRAS application completed 

correctly 

Yes No comments 

    

2.1 Participant information/consent 

documents and consent process 

Yes No comments 

    

3.1 Protocol assessment Yes No comments 

    

4.1 Allocation of responsibilities 

and rights are agreed and 

documented 

Yes The sponsor intends that an unmodified 

mNCA acts as the agreement between the 

sponsor and the research site. 

The statement of activities will act as the 

agreement for participant identification 

centres (PICs), there will be no funding 

provided by the sponsor to the PICs. 

4.2 Insurance/indemnity Yes Where applicable, independent 

mailto:andrew.johnston@nuth.nhs.uk
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Section HRA Assessment Criteria Compliant with 

Standards 

Comments 

 arrangements assessed  contractors (e.g. General Practitioners) 

should ensure that the professional 

indemnity provided by their medical 

defence organisation covers the activities 

expected of them for this research study 

4.3 Financial arrangements 

assessed 

Yes Financial arrangements for research 

sites are detailed in the mNCA. 

There is no funding available from the 

sponsor for the PICs. 

    

5.1 Compliance with the Data 

Protection Act and data 

security issues assessed 

Yes No comments 

5.2 CTIMPS – Arrangements for 

compliance with the Clinical 

Trials Regulations assessed 

Not Applicable No comments 

5.3 Compliance with any applicable 

laws or regulations 

Yes Human Tissue Act – the applicant 

confirmed that any samples imported 

for the study would have the 

appropriate consent in place taken in 

the country of origin. 

    

6.1 NHS Research Ethics Committee 

favourable opinion received for 

applicable studies 

Yes No comments 

6.2 CTIMPS – Clinical Trials 

Authorisation (CTA) letter 

received 

Not Applicable No comments 

6.3 Devices – MHRA notice of no 

objection received 

Not Applicable No comments 

6.4 Other regulatory approvals 

and authorisations received 

Not Applicable No comments 
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Participating NHS Organisations in England 

 
This provides detail on the types of participating NHS organisations in the study and a statement as to whether the 

activities at all organisations are the same or different. 

There are two types of participating NHS organisations. 

1) Research sites will identify, recruit and consent participants and conduct the study 

interventions including blood and urine samples, muscle biopsies and DXA scans. 

2) PICs will identify and approach potential participants regarding their participation in the study. 

 
The Chief Investigator or sponsor should share relevant study documents with participating NHS organisations 

in England in order to put arrangements in place to deliver the study. The documents should be sent to both 

the local study team, where applicable, and the office providing the research management function at the 

participating organisation. For NIHR CRN Portfolio studies, the Local LCRN contact should also be copied into 

this correspondence. For further guidance on working with participating NHS organisations please see the HRA 

website. 

 

If chief investigators, sponsors or principal investigators are asked to complete site level forms for 

participating NHS organisations in England which are not provided in IRAS or on the HRA website, the chief 

investigator, sponsor or principal investigator should notify the HRA immediately at hra.approval@nhs.net. 

The HRA will work with these organisations to achieve a consistent approach to information provision. 

Confirmation of Capacity and Capability 

 
This describes whether formal confirmation of capacity and capability is expected from participating NHS organisations in 

England. 

Participating NHS organisations in England will be expected to formally confirm their capacity and 

capability to host this research. 

• Following issue of this letter, participating NHS organisations in England may now confirm to the 

sponsor their capacity and capability to host this research, when ready to do so. How capacity and 

capacity will be confirmed is detailed in the Allocation of responsibilities and rights are agreed and 

documented (4.1 of HRA assessment criteria) section of this appendix. 

• The Assessing, Arranging, and Confirming document on the HRA website provides further 

information for the sponsor and NHS organisations on assessing, arranging and confirming 

capacity and capability. 

Principal Investigator Suitability 

 
This confirms whether the sponsor position on whether a PI, LC or neither should be in place is correct for each type of 

participating NHS organisation in England and the minimum expectations for education, training and 

experience that PIs should meet (where applicable). 

PIs have been identified at the research sites, neither local collaborators nor PIs are expected at the PICs. 

 
GCP training is not a generic training expectation, in line with the HRA statement on training 

mailto:hra.approvalprogramme@nhs.net
http://www.hra.nhs.uk/documents/2015/11/assess-arrange-confirm-clarifications-hra-terminology.pdf
http://www.hra.nhs.uk/resources/before-you-apply/roles-and-responsibilties/researcher-suitability-and-training/
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HR Good Practice Resource Pack Expectations 

 

This confirms the HR Good Practice Resource Pack expectations for the study and the pre-engagement 

checks that should and should not be undertaken 

Where arrangements are not already in place, network staff (or similar) undertaking any 

research activities that may impact on the quality of care of the participant (such as blood 

sampling, informed consent procedures), would be expected to obtain an honorary research 

contract from one NHS organisation (if university employed), followed by Letters of Access 

for subsequent organisations. 

This would be on the basis of a Research Passport (if university employed) or an NHS to 

NHS confirmation of pre-engagement checks letter (if NHS employed). These should 

confirm enhanced DBS checks, including appropriate barred list checks, and occupational 

health clearance. 

 
For research team members undertaking activities that do not impact on the quality of 

care of the participant (for example, administering questionnaires) a Letter of Access 

based on standard DBS checks and occupational health clearance would be appropriate. 

 
Other Information to Aid Study Set-up 

 

This details any other information that may be helpful to sponsors and participating NHS organisations 

in England to aid study set-up. 

 
• The applicant has indicated that they intend to apply for inclusion on the NIHR CRN 

Portfolio. 

 

 

 

 

 

 

 

 

 

expectations. 

http://www.hra.nhs.uk/resources/before-you-apply/roles-and-responsibilties/researcher-suitability-and-training/
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