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Abstract 

Transcription, the first stage of gene expression, is performed by the multi-

subunit RNA polymerase (RNAP). The indispensable nature of transcription and 

sequence divergence from eukaryotic counterparts make bacterial RNAP an 

excellent target for antibiotics. Yet very few clinical antibiotics target RNAP. The 

growing prevalence of antibiotic resistance amongst pathogenic bacteria 

demands the identification of novel antibacterial compounds acting through novel 

molecular mechanisms. This work consists of four distinct projects in which we 

investigated the molecular mechanisms of several previously uncharacterised 

transcription inhibitors. 

(i) Most clinical antibiotics are derived from the natural products of 

actinomycete bacteria. Consequently, we screened a library of actinomycetes 

compiled by our industrial collaborators DemurisTM for producers of novel 

inhibitors of bacterial transcription. From this screen we identified Antibiotic 

A39079S-1, produced by Streptomyces strain DEM40380, as an inhibitor of 

bacterial RNAP. The compound is an ansamycin type antibiotic with a previously 

uncharacterised mechanism of action. Here, we show the compound inhibits 

bacterial RNAP through a steric occlusion mechanism typical of rifamycins.  

 

(ii) Recently, the antibiotic ureidothiophene (Urd) was identified within 

a commercial screen of synthetic compounds in which inhibition of S. aureus 

RNAP was analysed. Here, we characterised the molecular mechanism of action 

by which Urd inhibits bacterial RNAP. We show the inhibitor targets regulatory 

sub-region 1.2 of the sigma subunit to prevent melting of the -10 promoter 

element. Consequently, Urd inhibits formation of the open promoter complex, a 

key step in transcription initiation.   

 

(iii) A prior screening program conducted by DemurisTM had identified 

the rifamycin type natural product kanglemycin A (KglA) as an inhibitor of 

rifampicin resistant RNAPs. Here, we show the unique ansa-bridge substituents 

of the compound act to form new binding contacts with RNAP. We also show 
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KglA inhibits transcription through a unique steric occlusion mechanism by 

preventing extension of the nascent transcript at an earlier stage than rifampicin. 

  

(iv) Finally, we investigated ADP-ribosylation as a mechanism of KglA 

inactivation by Mycobacterium smegmatis and Mycobacterium abscessus 

Rifampin ADP-ribosyltransferase (Arr) enzymes. We show KglA is not a substrate 

of the rifampicin inactivating Arr purified from Mycobacterium smegmatis, but 

remains a substrate of Arr purified from the extensively drug resistant pathogen 

Mycobacterium abscessus. 
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Chapter 1. Introduction 

 

The first step of gene expression involves the conversion of genetic information 

encoded in a DNA template into a molecule of RNA. This process is called 

transcription. In all cellular organisms, transcription is performed by the multi-

subunit enzyme DNA-dependent RNA polymerase (RNAP). RNAP catalyses the 

synthesis of RNA from a DNA template using ribonucleoside triphosphates. 

(NTPs) as substrates. 

The essential nature of RNAP makes it an excellent target for therapeutic 

intervention. Indeed, inhibition of RNAP is an established approach in broad 

spectrum antibacterial therapy and antitubercular therapy (Villain-Guillot et al., 

2007a, Darst, 2004, Chopra, 2007, Ma et al., 2016, Mosaei and Harbottle, 2019). 

Furthermore, understanding the mechanisms by which RNAP is targeted at a 

molecular level is of great value in the development of novel therapeutics. The 

expanding public health threat of antibiotic resistance demands the discovery of 

novel antibiotics with which to target resistant pathogenic bacteria. Additionally, 

understanding bacterial mechanisms of resistance is becoming increasingly 

important for effective drug development. 

This introduction aims to briefly highlight the nature of transcription in bacteria 

and how RNAP is targeted by antimicrobial inhibitors. Most inhibitors covered in 

this work target initiation of transcription. Thus, there will be particular emphasis 

on processes of transcription initiation. Mechanisms of antibiotic resistance will 

also be briefly highlighted. Additionally, individual results chapters will also 

contain a brief introduction and discussion section. 

1.1 The transcription cycle 

The process of transcription in bacteria occurs in 3 distinct phases of i) initiation 

ii) elongation and iii) termination.  

1.1.1 Initiation 

During initiation of transcription in bacteria, RNAP is required to identify and bind 

specific duplex DNA sequences termed promoters. The 5 sub-unit catalytic core 
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RNAP (α2β'βω) is unable to achieve this independently (Ruff et al., 2015, 

Burgess et al., 1969). The core enzyme requires an additional initiation factor for 

recruitment to promoter sequences and the melting of duplex DNA. In bacteria, 

this accessory factor is the σ factor which binds to the core enzyme to form the 

holoenzyme (Burgess and Anthony, 2001, Murakami and Darst, 2003, Borukhov 

and Nudler, 2003, Burgess et al., 1969). The primary σ factor (σ70 in Escherichia 

coli) directs transcription to the majority of promoters during exponential growth 

phase (Paget and Helmann, 2003). Alternative σ factors control transcription of 

genes in response to certain environmental conditions (Paget, 2015). 

Following binding of σ to core, σ directs the resultant holoenzyme to a set of 

promoters dictated by the sequence specificity of the given σ factor (Figure 1.1). 

The σ70 holoenzyme recognises cognate -10 (consensus: 5’-TATAAT-3’) and -35 

(consensus: 5’-TTGACA-3’) promoter hexamers upstream of the transcription 

start site (TSS, denoted as +1) (Paget and Helmann, 2003, Murakami, 2013, 

Burgess and Anthony, 2001). σ70 is comprised of five distinct modular domains 

(σR1.1, σR2, σR3, σR3.2 and σR4) of which σR2 and σR4 are responsible for 

the recognition of the cognate -10 and -35 promoter elements, respectively 

(Campbell et al., 2002a). Binding of duplex promoter DNA to RNAP constitutes 

the formation of the closed promoter complex (RPc) in which promoter DNA 

remains double stranded (Ruff et al., 2015, Mazumder and Kapanidis, 2019, 

Hawley and McClure, 1980, Li and McClure, 1998). Following formation of RPc, 

σ70 nucleates promoter melting by intercalating aromatic residues into DNA at the 

-12 position of duplex DNA (Feklistov and Darst, 2009). Conserved non-template 

DNA bases (NT) at the −11 and −7 positions are flipped out of the DNA duplex 

and stabilised in protein pockets on σR2 (Zhang et al., 2012, Murakami et al., 

2002b, Bae et al., 2015a). The template strand is loaded into the main cleft of 

RNAP to position the TSS within the active centre. The melted portion of DNA, 

known as the transcription bubble, extends from the -11 position to the +2 

position (Murakami, 2015, Bae et al., 2015a). RNAP complexed with melted 

promoter DNA is termed the open promoter complex (RPo). RNAP is then 

competent for binding of NTPs and the synthesis of RNA transcripts. 

Before transitioning into processive elongation, the open complex undergoes a 

period of abortive transcription in which the RNAP retains promoter specific 
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contacts and reiteratively synthesises short RNAs, this species is termed the 

initially transcribing complex (RPitc) (Figure 1.1). This reiterative abortive 

synthesis is achieved by a DNA scrunching mechanism, in which DNA is pulled 

into the active centre whilst the trailing edge of the enzyme remains static on the 

DNA template (Kapanidis et al., 2006). Energy stored in this ‘scrunched complex’ 

is resolved either by the release of the short nascent RNA transcript as an 

abortive product and the return of the enzyme to the open promoter complex, or 

the energy of the scrunched complex causes RNAP to relinquish its contacts with 

the promoter, dissociate from the σ factor and transition to a highly stable 

elongation complex (EC) (Gralla et al., 1980, Carpousis and Gralla, 1980). (See 

section 1.2 for further detail regarding initiation of transcription)  

Figure 1.1 Schematic of the transcription cycle and σ:DNA interactions. Adapted from (Alhadid et 

al., 2017). The beginning of the transcription cycle is delineated by the binding of σ (orange) to 

core RNAP (grey) to form the RNAP holoenzyme. The secondary channel (dark grey) and RNA 

exit channel (light grey) are depicted on the right and left hand sides of RNAP, respectively. 

σR3.2 is depicted within the RNA exit channel. Holoenzyme binds double stranded promoter DNA 

to form the closed promoter complex (RPc) by recognition of the -10 and -35 promoter elements 

by σR2 and σR4 (purple dots), respectively. RPc undergoes spontaneous isomerisation to the 

transcription competent open promoter complex (RPo). RPo then undergoes a period of 

reiterative abortive synthesis in which short RNAs are synthesised and released (RPitc). 

Eventually, RNAP escapes the promoter by displacing σR3.2, relinquishing promoter specific 

contacts, and dissociating from sigma, before transition to a highly processive elongation 

complex. (The author directs the reader to section 1.2 for further details regarding the 

transcription cycle)  
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1.1.2 Elongation  

During elongation, the EC travels along the DNA template synthesising a 

complementary RNA transcript. Transcription elongation in prokaryotes is 

extraordinarily processive; the enzyme is capable of synthesising transcripts 

thousands of nucleotides in length without disassembly of the EC (Nudler et al., 

1996). Extension of RNA occurs through the nucleotide addition cycle (NAC) 

(Figure 1.2). NAC is marked by binding of the NTP substrate within the active 

centre followed by nucleotidyl transfer at the growing 3’ end of the nascent 

transcript. Thus, the RNAP active centre contains a binding site for the 3’ 

terminus of RNA (i site) and a binding site for the incoming NTP (i+1 site) 

(Vassylyev et al., 2007a, Korzheva et al., 2000). Following nucleotide addition, 

release of pyrophosphate generates an EC in which the 3’ end of RNA is bound 

in the i+1 site of the active centre. This is termed the pre-translocated state. To 

ensure further elongation of the transcript, the EC must translocate, positioning 

the 3’ end of the transcript into the i site and vacate the i+1 site for an incoming 

NTP substrate. This is termed the post-translocated state (Korzheva et al., 2000) 

Throughout elongation, the EC transiently maintains a transcription bubble of ~12 

bp containing a 9-10bp RNA-DNA hybrid (Nudler et al., 1997). Translocation is 

accompanied by 1bp melting of downstream duplex DNA and a corresponding 

1bp restoration of duplex DNA upstream. Additionally, translocation of RNAP 

causes the RNA-DNA hybrid to shorten by 1bp. This shortening of the RNA-DNA 

hybrid, combined with movement of the transcription bubble, makes passive 

translocation energetically unfavourable (Nudler, 2009, Bar-Nahum et al., 2005a). 

Therefore, it is thought NTP substrate plays a role in assisting RNAP 

translocation. Within this model, RNAP oscillates between pre- and post- 

translocated states with the 3’ end of RNA moving between the i and i+1 site. 

Binding of NTP stabilises the post translocated state by occupying the vacant site 

and locking the enzyme in a catalytically competent state (Bar-Nahum et al., 

2005b). The substrate acts as a stationary pawl in the ‘Brownian ratchet’ 

mechanism of RNAP translocation. Subsequent nucleotidyl transfer and 

pyrophosphate release act to reduce the thermodynamic stability of the EC owing 

to the significant binding energy afforded by the pyrophosphate moiety in NTP 
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binding. Consequently, upon pyrophosphate release, the EC can move laterally, 

adopt the post-translocated state and repeat the nucleotide addition process.  

 

 

Figure 1.2 The nucleotide addition cycle (NAC). Template DNA is shown in red, RNA is shown in 

blue, incoming nucleotides are shown in yellow, and catalytic Mg2+ shown in magenta. Non-

template is omitted for clarity. At the beginning of the NAC, RNAP is in the post-translocated state 

in which RNA 3’-OH is located in the active centre i site. NTPs diffuse into the active site with 

chelated Mg-II, and bind the i+1 site. RNAP then catalyses phosphodiester bond formation, 

following which a pyrophosphate molecule is released. Following catalysis, RNAP then 

translocates, vacating the i+1 site and manoeuvring the RNA 3’-OH into the i site in preparation 

for the subsequent nucleotide addition cycle.    
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Principally, polymerisation of RNA occurs through the nucleophilic attack of the 3’ 

hydroxyl group of the RNA strand on the α-phosphate of an incoming NTP. This 

SN2-type reaction results in the formation a new phosphodiester bond and 

displacement of pyrophosphate. The RNAP active centre, like all nucleic acid 

polymerases, catalyses this process through a two metal ion mechanism 

(Sosunov et al., 2003) (Figure 1.4). RNAP co-ordinates a catalytic Mg2+ ion (Mg-I) 

by an evolutionarily conserved invariant aspartate triad of β'. Principally, Mg-I is 

tasked with activation of the 3’ terminus hydroxyl group and correct positioning of 

the incoming NTP through coordination with the α-phosphate. A second Mg2+ 

(Mg-II) is bound by RNAP ~ 6Å away from Mg-I and with lower affinity. It is 

thought to be delivered to the active centre bound to incoming NTP, stabilised by 

the α-, β- and γ- phosphates. The role of Mg-II is to coordinate the negatively 

charged oxygens of the α-, β- and γ- phosphates, ensuring their correct 

orientation for the nucleophilic attack of the 3’ hydroxyl group (Nudler, 2009, 

Sosunov et al., 2003). The detailed structure of the active centre and its role in 

catalysis will be discussed further in 1.2.1.  

1.1.3 Termination  

Transcription termination in prokaryotes occurs through 2 distinct mechanisms; 

intrinsic termination (Rho-independent) and Rho-dependent termination. In 

intrinsic termination, RNAP transcribes a palindromic G-C rich region followed by 

a U-rich tract. Following transcription of the U-rich tract, RNAP pauses. This 

pause allows the G-C rich region of the transcript to form a hairpin structure 

within the RNA exit channel. The hairpin extends into the main channel causing a 

shortening of the RNA-DNA hybrid and displacing RNA from the exit channel. 

The destabilised EC then dissociates into its constituent parts for further rounds 

of transcription (Gusarov and Nudler, 1999). 

In Rho-dependent termination, the homohexameric Rec-A family helicase Rho 

binds preferentially to C-rich regions of transcribed RNA. RNA is threaded 

through Rho’s central pore, triggering 5’ to 3’ RNA translocase activity (Pallabi et 

al., 2017, Ananya et al., 2016). Rho translocates towards RNAP halted at Rho 

dependent termination sites. Rho then interacts with RNAP to inactivate and 

destabilise the stationary EC causing it to dissociate (Pallabi et al., 2017).  
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1.2 Structure & Mechanisms of RNAP 

1.2.1 Overall core RNAP structure  

The core RNAP is composed of 5 subunits (α2ββ’ω) with an overall molecular 

weight of ~ 400KDa (Murakami, 2015, Korzheva et al., 2000, Vassylyev et al., 

2002, Borukhov and Nudler, 2003, Zhang et al., 1999). The enzyme possesses a 

distinctive crab claw structure with the two largest subunits β and β’ constituting 

the opposing pincer-like structures (Figure 1.3, left panel). The β and β’ subunits 

delineate the main channel of RNAP with the active centre located towards the 

rear of the claw. The two α subunits are located at the back of the enzyme. They 

form a homodimer through interactions of their N-termini onto which the β and β’ 

subunits are loaded during RNAP assembly (Ishihama, 1992). The ω subunit also 

plays a role in assembly, it is thought to aid in recruitment of the β’ subunit during 

assembly and stabilise its conformation within the fully assembled RNAP 

(Mathew and Chatterji, 2006). 

Figure 1.3 Overall structure of E. coli core RNAP and the RNAP elongation complex (surface 

representations). (Left) The structure of the RNAP core enzyme. β is depicted in yellow, β’ is 

depicted in green, ω is depicted in purple, α-II is depicted in dark grey, and α-I depicted in light 

grey. (Right) The structure of the E. coli RNAP elongation complex. Individual subunits are 

depicted as in core RNAP, with DNA depicted in blue. (Images constructed from PDB file 6RH3) 

 

Duplex DNA enters RNAP through the main channel formed by the β and β’ 

subunits (Figure 1.3, right panel). As the DNA nears the active centre it is melted 
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into the transcription bubble and the template strand is passed through the active 

centre to direct complimentary RNA synthesis (Vassylyev et al., 2007a, Korzheva 

et al., 2000). During transcription, the main channel houses a transiently 

maintained 9-10bp RNA-DNA hybrid (Mustaev et al., 2017, Nudler et al., 1997). 

Once RNA extends beyond 10bp, the 5’ end is threaded through the RNA exit 

channel. Access of NTP substrate to the active centre is thought to be enabled 

through the secondary channel. Also termed the pore, the secondary channel is a 

~12Å wide channel that extends from the active centre to the surface of the 

enzyme. NTPs are thought to diffuse through the secondary channel to the active 

site where they are selected for incorporation at the 3’ end of RNA (Korzheva et 

al., 2000, Batada et al., 2004). Additionally, the secondary channel 

accommodates the 3’ end of RNA during backtracking of RNAP (Mustaev et al., 

2017, Korzheva et al., 1998). However, there is also some evidence to suggest 

that NTPs are able to access the active site through the main channel (Landick, 

2005, Burton et al., 2005). 

Within the overall structure, RNAP possesses a number of mobile elements vital 

to the enzyme function. The majority of the β’ subunit constitutes the larger of the 

two pincers, termed the ‘clamp’ (Chakraborty et al., 2012). It is a highly mobile 

domain able to hinge around a flexible region at its base termed the switch region 

comprised of five discrete elements (SW1–SW5) (Belogurov et al., 2009, 

Mukhopadhyay et al., 2008). The clamp is able to swing open to accommodate 

the DNA within the active centre cleft. Upon binding of DNA, the clamp reverts to 

a closed conformation to retain melted DNA within the active centre during 

initiation and elongation (Chakraborty et al., 2012, Duchi et al., 2018, Feklistov et 

al., 2017). Within the main channel there are a number of other structural motifs 

that influence the transcription process. The β flap domain, β’ lid, β’ zipper, and 

Zn2+ finger domain contribute to the structure of the RNA exit channel. These 

domains contribute to the stability and length of the RNA-DNA hybrid within the 

main channel and displace RNA from the DNA template during elongation 

(Korzheva and Mustaev, 2001, Vassylyev et al., 2007a). The β’ lid functions as 

an upstream zip lock serving to displace RNA and prevent overextended 

hybridisation with the template-strand. The β’ rudder domain further stabilises the 

elongation complex by interacting with the upstream edge of the hybrid. A key 
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structural element of the active centre termed the bridge helix (BH) acts along 

with the β fork loop-II to serve as the downstream zip lock (see section 1.2.2 for 

further details on BH function). Following de-hybridsation at the upstream edge, 

the RNA is channelled into a narrow cavity formed by the β’ lid, β’ Zn2+ finger and 

the β flap domain. The β lobes accommodate the non-template strand during 

elongation (Korzheva et al., 2000).  

1.2.2 Architecture of the active centre  

The active site of RNAP, denoted by catalytic Mg-I and Mg-II ions, is located 

within the main cleft at the rear of the crab claw (Vassylyev et al., 2002, 

Vassylyev et al., 2007b). As shown in Figure 1.4, Mg-I is tasked with activation of 

the 3’ RNA hydroxyl group and positioning the incoming NTP through 

coordination with the α-phosphate. Whereas Mg-II is charged with coordinating 

the α-, β- and γ- phosphates, ensuring their correct orientation for the nucleophilic 

attack of the 3’ hydroxyl group (Sosunov et al., 2003) . In doing so, Mg-I and Mg-

II stabilise the pentavalent transitions state that typifies such SN2-type reactions. 

Mg-I is bound permanently within the active centre, coordinated through the 

aspartate triad of the universally conserved NADFDGD motif present in the β’ 

subunit. Any substitution of these aspartate residues (β'D460, β'D462 and 

β'D464, E. coli numbering) abolishes all catalytic activity of RNAP (Sosunov et 

al., 2005, Zaychikov et al., 1996). Mg-II is thought to be brought to the active 

centre bound to the incoming NTP substrate and coordinated primarily by two of 

the catalytic aspartates (β'D460, β'D462). Consequently, Mg-II is bound to RNAP 

with significantly lower affinity than Mg-I (Sosunov et al., 2003).  
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Figure 1.4 Catalytic mechanism of phosphodiester bond formation. Adapted from (Sosunov et al., 

2005) Two catalytic magnesium ions (green) are coordinated by three β’ aspartate residues (E. 

coli numbering). The incoming NTP substrate is in blue. Curly arrows depict the movement of 

electron pairs during the formation of the phosphodiester bond. Activated RNA 3’-hydroxyl group 

attacks the α- phosphate of the NTP bound in the i+1 site, forming a new phosphodiester bond, 

and displacing a pyrophosphate molecule. 

 

Two structural domains of the active centre, the trigger loop (TL) and BH, are 

known to play crucial roles in catalysis in all RNAPs. The TL is a highly flexible 

domain located in the vicinity of the active centre that moves between closed and 

open conformations during catalysis (Mejia et al., 2015, Temiakov et al., 2005a, 

Zhang et al., 1999) (Figure 1.5). It, along with the BH, contributes to binding and 

selection of cognate NTP substrates (Vassylyev et al., 2007a, Vassylyev et al., 

2007b, Wang et al., 2006). Firstly, the open TL conformation permits NTP entry 

into a ‘pre-insertion site’. If bound NTP matches the base of the i+1 site, the TL 

refolds to the closed conformation. This closed state is stabilised through 

interactions of the TL with the base of cognate NTP substrate (Vassylyev et al., 

2007b, Wang et al., 2006, Yuzenkova et al., 2010) . Incorrect hydrogen bonding 

of non-cognate substrates with the i+1 template base prevents complete TL 

refolding due to steric clash with the base of the incoming NTP (Wang et al., 

2006, Vassylyev et al., 2007b, Yuzenkova et al., 2010). As a fully closed TL is a 

prerequisite for catalysis, the TL contributes to transcription fidelity. Furthermore, 

the TL directly contributes to catalysis through β' residues R933 and H936 (E. coli 

numbering). In the closed conformation, these residues are brought into close 

proximity to the catalytic Mg2+ ions and coordinate the α-, β- and γ- phosphates of 

the incoming NTP substrate, further stabilising the transition state during 

nucleotidyl transfer (Vassylyev et al., 2007b, Yuzenkova et al., 2010). 
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Figure 1.5 Location of the bridge helix (BH) and trigger loop (TL). Adapted from (Hein and 

Landick, 2010) Structure of the T. thermophilus elongation complex. DNA is depicted in black, 

RNA is depicted in red. RNA polymerase subunits are shown as partially transparent surface 

representations (α, β, and β'; blue, gray and pink, respectively). The positions of the BH (cyan) 

and closed (folded) TL (orange) are shown. Conformational change to the open (unfolded) TL 

(yellow) is indicated by the black double ended arrow. The thick black arrow indicates proposed 

NTP access through the secondary channel. Active site Mg2+ is indicated in yellow and α,β-

methylene-ATP substrate indicated in green.  

 

Alongside the TL, the BH plays a concerted role in loading of cognate NTP and 

the translocation of RNAP following phosphodiester bond formation. The BH is a 

large metastable α-helix which spans the main cleft of RNAP, bisecting the main 

cleft into the primary and secondary channels (Vassylyev et al., 2007a, Zhang et 

al., 1999, Korzheva et al., 2000). During catalysis, the BH is thought to transition 

between straight and kinked conformations. The TL and BH are proposed to work 

in tandem to enable translocation by a two pawl ratchet mechanism (Bar-Nahum 

et al., 2005a). Transition of the TL to the folded conformation is thought to induce 

a kink of the BH which may push the 3’ nucleotide into the i site, vacating the i+1 

site for further nucleotide addition. Consequently, the RNAP moves from the pre-

translocated state to the post-translocated state. Additionally, the BH works 

alongside the TL to correctly position the incoming NTP for catalysis (Korzheva et 

al., 2000, Vassylyev et al., 2007a). 

1.2.3 σ70 and the holoenzyme 

For sequence-dependent transcription initiation, the core enzyme must bind the 

initiation factor, σ (Figure 1.6). In recent years, a number of high resolution 

structures have described the exquisite architecture of the σ factor and its 

organisation within the bacterial holoenzyme (Murakami et al., 2002a, Murakami 

et al., 2002b, Murakami, 2013). 

In the case of E. coli, σ70 possesses a number of distinct modular domains; 

σR1.1, σR2, σR3, σR3.2 and σR4. σR2, σR3 and σR4 are structured globular 

domains adjoined by flexible linkers (Figure 1.7). σR3.2 constitutes a 

functionalised linker between σR3 and σR4, whereas σR1.1 is a negatively 

charged disordered domain (Campbell et al., 2002b). σR2, σR3 and σR4 

constitute the binding interface between core and σ; σR2 interacts with β' clamp 
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domain both on the exterior and within the main channel, while σR3 and σR4 

interact with the β flap domain. σR3.2 serves as a flexible linker domain situated 

between the globular domains of σR3 and σR4. It extends into the main channel 

and interacts with template DNA upstream of the active centre in the open 

promoter complex (Murakami, 2013, Murakami et al., 2002a, Murakami et al., 

2002b). It is implicated in a number of aspects of transcription initiation (see 

below). σR1.1 is located within the main RNAP cleft within the holoenzyme, 

acting as a ‘gatekeeper’ by mimicking negatively charged DNA. Within the open 

promoter complex, promoter DNA displaces σR1.1 from the main channel. 

Figure 1.6 Overall structure of the E. coli holoenzyme (surface representation). β is depicted in 

yellow, β’ is depicted in green, ω is depicted in purple, α-II is depicted in dark grey, α-I depicted in 

light grey, and σ70 depicted in orange (Images constructed from PDB file 6CA0). 
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1.2.4 Promoter architecture and the open complex (RPo) 

During σ70 -dependent initiation, within the context of the holoenzyme, σR2 and 

σR4 engage with the -10 (consensus: 5’-TATAAT-3’) and -35 (consensus: 5’-

TTGACA-3’) hexamers, respectively (Ruff et al., 2015, Zhang et al., 2012, Bae et 

al., 2015a, Feng et al., 2016, Dickson et al., 1975) (Figure 1.7). Although, note, in 

nature, almost all promoters diverge somewhat from these canonical sequences. 

A consensus spacer region of 17bps separates the -10 and 35 sequences, 

although this distance can vary from between 16-19bp, depending upon the 

promoter (Shimada et al., 2014, Hawley and McClure, 1983). Furthermore, the α-

C terminal domains (αCTD) interacts with DNA upstream of the -35, at positions -

40 to -60, termed the UP element (Ross et al., 1993, Gourse et al., 2000). This 

additional promoter element has been shown to influence rates of promoter 

complex formation and overall rates of transcription. Additionally, some 

promoters, such as the galP1 promoter, possess an additional motif (consensus: 

5’-TG-3’) 2 bps upstream of the -10 element which interacts with σR3 to further 

stabilise open promoter complexes (Barne et al., 1997, Haugen et al., 2006). 

Furthermore, the region between the TSS and -10, termed the discriminator 

region, is also thought to play a role in RPo lifetime (Haugen et al., 2006, 

Shimada et al., 2014).  

As shown in Figure 1.7, within RPo, σR2 binds to the -10 element, σR3 binds to 

the extended -10 motif and σR4 binds to the -35 promoter element. In particular, 

a helix-turn-helix substructure of σR4, σR4.2, binds to bases of the -35 element 

(Zhang et al., 2012, Murakami et al., 2002b, Murakami et al., 2002a).  A 

substructure of σR2, σR2.3, makes specific contacts with the conserved NT 

adenosine and thymine bases at the -11 position and -7 position, respectively 

(Zhang et al., 2012, Murakami et al., 2002b, Murakami et al., 2002a, Feng et al., 

2016). The bases are flipped out of the duplex into protein pockets, while σ70 

makes further non-specific contacts with other bases of the -10 elements to 

stabilise the open promoter complex.  
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Figure 1.7 Domain architecture of σ70 and its interaction with promoter DNA within the open 

promoter complex. Adapted from (Paget, 2015). A) Schematic represents the overall globular 

domain structure of σ70 with respective subdomains noted and their interactions with promoter 

DNA in the context of the open promoter complex denoted by dashed arrows (RPo). σR4 (σ4) is 

denoted in red, σR3 (σ3) is denoted in dark blue, σR2 (σ2) is denoted in green, and σR1.2 is 

denoted in orange (NCR; non conserved region). In the schematic of promoter DNA below, 

individual consensus promoter elements are denoted relative to the transcription bubble and 
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transcription start site. The non-template (NT) strand is depicted in purple, and the template (T) 

strand is depicted in cyan. B) Structure of the E. coli transcription initiation complex. σ70 domains 

(surface representations) and DNA (sphere representations) are coloured as in A. For clarity the 

β, α-II and ω subunits are omitted.  

 

A further substructure of σR2, σR1.2, interacts with non-template promoter DNA 

downstream of the -10 element within the discriminator region (Zhang et al., 

2012, Haugen et al., 2006, Haugen et al., 2008a). The base at non-template 

strand position -6 is stabilised in a protein pocket on σR1.2 within the open 

complex, whilst interactions are also made with the -5 and -4 positions. 

Interestingly, σR1.2 facilitates the binding of single stranded -10 promoter DNA 

by σR2 through an allosteric signal within the context of the holoenzyme (Zenkin 

et al., 2007). Holoenzymes lacking σR1.2 are unable to recognise single stranded 

-10 promoter sequence DNA (Zenkin et al., 2007, Wilson and Dombroski, 1997). 

Furthermore, certain substitutions in σR1.2 make the holoenzyme incapable of 

forming stable open complexes and are highly defective in transcription initiation 

(Baldwin and Dombroski, 2001). It is hypothesised σR1.2 stabilises a particular σ 

factor conformation required for optimal -10 promoter element recognition (Zenkin 

et al., 2007). 

1.2.5 Mechanism of open complex formation 

Several promoter complex structures, inhibitor-promoter complex structures, 

single molecule experiments and footprinting data have allowed the elucidation of 

several intermediates that lie on the pathway towards RPo (Ruff et al., 2015, Roe 

et al., 1984, Buc and McClure, 1985, Mazumder and Kapanidis, 2019). Although 

individual promoters likely have varying intermediates and kinetics, there is a 

general consensus on how RPc transitions to RPo, and a simple sequence of 

events can generally be attributed to all promoters. Firstly, the holoenzyme must 

recognise promoter DNA to form an initial closed promoter complex intermediate, 

termed RPi1, in which promoter DNA is double stranded (Figure 1.8, A). 

Subsequently, a rate-limiting isomerisation to a heparin resistant intermediate, 

termed I2,occurs in which an unstable melted DNA bubble is formed, before a 

final transition to stable transcription competent RPo (Ruff et al., 2015, Bae et al., 

2015a, Mazumder and Kapanidis, 2019a) (Figure 1.8, A,B). 
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Figure 1.8 Formation of the open promoter complex (RPo). Adapted from (Feklistov et al., 2017) 

A) Kinetic scheme of promoter melting by RNAP (R, RNAP; P, promoter DNA; RPi1, promoter 

melting intermediate 1; RPi2, promoter melting intermediate 2, and RPo, open promoter complex. 

B) Modelled positions of downstream duplex DNA within intermediates of promoter melting. 

Respective intermediates and DNA trajectories are indicated with respect to the above kinetic 

equation. Promoter elements are indicated, σR2.3 is depicted in green. C) Schematic of 

spontaneous DNA unwinding during promoter melting. Blue symbols indicate positively charged 

interior surface of the active site cleft. σR2.3 is depicted in green, template DNA is depicted in 

yellow, non-template DNA is depicted in blue with -10 promoter element and conserved -11 

adenosine depicted in red, and catalytic Mg2+ depicted in magenta. Schematic model of RPi1 to 

RPi2 transition is shown. 
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The slow isomerisation of I1 > I2 is thought to be driven by both thermal dynamics 

and an active role of RNAP. It is widely accepted the first step of promoter 

melting involves flipping-out of the conserved non-template -11 adenosine base 

into protein pockets on σR2 (Feng et al., 2016, Zhang et al., 2012, Bae et al., 

2015a). This is thought to activate recognition of the remaining bases of the -10 

element and allow promoter melting to propagate to the TSS. Several conserved 

aromatic residues of σR2.3, namely F419, Y430, W433 and W434 stabilise the 

flipped out base and act to bend promoter DNA 90o towards the RNAP active site 

cleft during melting (Mazumder and Kapanidis, 2019a, Feklistov and Darst, 2009, 

Koo et al., 2009). Y430 and W433 are implicated in intercalation of double 

stranded promoter DNA at the -12 position to initiate nucleation and stabilise the 

flipped out conformation of the -11 base (Feklistov and Darst, 2011).  

Formation of RPo varies greatly depending upon both urea and salt 

concentration. This dependency suggests formation of stable RPo involves 

significant conformational changes of RNAP, namely the mobile β' clamp domain 

(Mekler et al., 2014, Drennan et al., 2012). Within RPo, the clamp adopts a 

‘closed’ conformation, in which the entry of single stranded DNA is prohibited due 

to the width of the cleft and the interactions of σR2 with promoter DNA above the 

cleft (Feklistov et al., 2017, Boyaci et al., 2019). This indicates RPo formation 

requires dynamic movement of the clamp during promoter melting. Single 

molecule FRET studies have shown that the clamp can adopt several 

conformations; a ‘closed’, ‘partly closed’ and ‘open’ conformation, with the ‘open’ 

conformation predominating in solution (Chakraborty et al., 2012). Indeed, 

several current models suggest promoter melting is intricately linked with 

dynamics of the clamp (Boyaci et al., 2019, Feklistov et al., 2017, Lin et al., 

2017a). It is now proposed, following recognition of upstream promoter elements, 

a transient, thermally driven closure of the clamp allows σR2 to engage with the -

10 promoter element, consequently nucleating promoter melting above the cleft 

(Feklistov et al., 2017). As melting propagates downstream of the -10 towards the 

TSS, opening of the clamp (oRNAP) allows negatively charged single stranded 

template DNA to be pulled towards the active centre by electrostatic interactions 

with positively charged residues within the cleft (Feklistov et al., 2017) (Figure 

1.8,C). This particular intermediate in which the DNA is melted, yet the clamp 
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remains open, likely represents the unstable open promoter intermediate I2. 

Subsequent closure of the clamp stabilises the complex to form transcription 

competent RPo in which template DNA is bound stably within the active site.   

1.2.6 Mechanism of initial transcription and promoter escape 

In the presence of NTPs, an open promoter complex undergoes reiterative RNA 

synthesis which can result in either short abortive RNA synthesis or productive 

RNA synthesis (Kapanidis et al., 2006). The productive pathway is characterised 

by synthesis of an RNA molecule of 9-11nt in length, at which point the RNAP 

relinquishes contacts with the promoter and enters processive elongation. In 

contrast, the abortive pathway involves RNAP retaining contacts with the 

promoter, synthesising and releasing short RNAs (termed abortive products), 

returning to RPo, and then reinitiating synthesis of RNA (Carpousis and Gralla, 

1980, Gralla et al., 1980). The balance between these two pathways is influenced 

by promoter sequence and the initially transcribed sequence (Hsu et al., 2003, 

Hsu, 2009). Indeed, it is thought to be an influential regulatory mechanism at 

certain promoters in vivo.  

Utilisation of single molecule methods enabled identification of the mechanism by 

which RNAP proceeds through abortive transcription. By measuring distances 

within promoter complexes engaged in abortive RNA synthesis, it was discovered 

downstream DNA is pulled into RNAP 1bp per nucleotide addition cycle causing 

an enlargement of the transcription bubble, whilst the enzyme remains stationary 

on the promoter fragment (Revyakin et al., 2006). This so-called ‘DNA 

scrunching’ mechanism is an essential step in promoter escape. It is believed, 

during abortive transcription, accumulated DNA unwinding and compaction 

create a high energy intermediate in which stress accumulation drives the 

breakage of specific interactions between RNAP, promoter DNA and σ70. 

Conversely, this high energy intermediate can be resolved by releasing the short 

RNA product and returning to RPo to reinitiate RNA synthesis.    

Structural studies of the RNAP holoenzyme and initially transcribing complexes 

show the σ70 substructure σR3.2 is located in the path of extending RNA during 

initiation (Basu et al., 2014, Murakami et al., 2002a, Murakami et al., 2002b). 

Once a nascent transcript grows to the length of 5- or 6-mer, the transcript would 
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clash with σR3.2. This structural data was reaffirmed by biochemical assays in 

which it was shown RNAP lacking σR3.2 do not synthesise abortive transcripts 

(Murakami et al., 2002b). Consequently, following clash of the nascent transcript 

with σR3.2, it is thought the nascent transcript either dislodges σR3.2 from its 

position, or the short RNA is released as an abortive transcript. Along with DNA 

scrunching stress, this mechanism is thought integral to RNAP promoter escape 

and the transition to elongation. To escape the promoter, sequence specific 

interactions within the open promoter complex must be broken. This principle is 

supported by the observation that, somewhat paradoxically, promoter escape is 

negatively correlated with the strength of the promoter (Ko and Heyduk, 2014, 

Hsu et al., 2006, Vo et al., 2003), supporting the proposed idea energy created 

within the initiation complex determines the breaking of sequence specific 

contacts. By clashing with and displacing σR3.2 the growing transcript displaces 

σR4 from the initiation complex, enabling RNAP to escape the promoter, 

dissociate from σ70, and allow transition to processive elongation.   

1.3 RNA polymerase targeting antibacterials 

The essential nature of RNAP and its divergence from eukaryotic counterparts 

make it an excellent target for antimicrobial therapy. A highly complex molecular 

architecture means a large number of antibacterials, both natural and synthetic, 

bind RNAP and inhibit various stages of the transcription cycle. Additionally, 

conserved sequence homology amongst prokaryotic RNAPs often facilitates 

broad spectrum activity amongst RNAP targeting antibacterials. Furthermore, 

RNAP inhibitors are not just valuable antibiotics, they are often useful aids with 

which to dissect RNAP function. Known RNAP inhibitors can generally be 

grouped into a several main categories depending on the mechanism by which 

they inhibit RNAP; (i) inhibitors of nascent RNA extension (ii) inhibitors of 

holoenzyme assembly (iii) nucleoside analogues (iv) inhibitors of active centre 

mobile elements (v) inhibitors of NTP uptake (vi) inhibitors of open complex 

formation.  
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1.3.1 Inhibitors of nascent RNA extension 

Ansamycins (Rifamycins) 

Ansamycins are a family of natural product antibiotics produced by several 

strains of Actinobacteria (Kim et al., 2006, Wang et al., 2012). They possess a 

distinctive structure, comprised of an aromatic nucleus, commonly a 

naphthoquinone moiety, bridged at its non-adjacent ends by an aliphatic chain 

(Figure 1.9). A subclass of the ansamycins, the rifamycins, were first isolated in 

1959 from the fermentation broth of Amycolotopsis mediterranei, and found to 

possess potent antibacterial activity on account of strong inhibition of prokaryotic 

RNAP (Sensi et al., 1959). The principal rifamycin, rifamycin B, was only 

moderately active, but could be further converted into two more potent species, 

rifamycin O and rifamycin S (Sensi et al., 1960) (Figure 1.9). Reduction of 

rifamycin S to rifamycin SV (Rif SV) yielded the first drug compound of the class 

to be introduced to the clinic (Figure 1.9). Rif SV was used intravenously and 

topically in the treatment of staphylococcal infections, hepatic infections, and 

tuberculosis infections. However, despite good antibacterial activity, Rif SV 

exhibited poor oral bioavailability and marked liver sequestration (Floss and Yu, 

2005). Subsequently, Rif SV became the basis of extensive structure activity 

relationship (SAR) experimentation with the aim of resolving pharmacokinetic 

problems.  

Early SAR studies indicated hydroxyl groups at C1 and C8 on the 

naphthoquinone core, and at C21 and C23 on the ansa- bridge were essential for 

rifamycin function. Modification of any of these functional groups rendered the 

compound inactive (Bacchi et al., 1998). Furthermore, these essential oxygen 

functionalities must remain in a specific spatial orientation for activity (Bacchi et 

al., 2008). Consequently, most alterations to the ansa-bridge, which generally 

effect the conformation of the aliphatic bridge, abolish or significantly reduce 

activity. The naphthalene moiety was identified as the most amenable to 

synthetic modification, particularly at positions C3 and C4. Early efforts focused 

primarily around modifications at C3 (Floss and Yu, 2005). Addition of a 4-methyl-

1-piperazinyl moiety at C3 yielded by far the most important and widely used 

clinical rifamycin, rifampicin (Rif) (Figure 1.9). The compound was introduced to 
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the clinic in 1968 and remains the front-line treatment against Mycobacterium 

tuberculosis infections, the causative agent of tuberculosis (Aristoff et al., 2010). 

 

 

Figure 1.9 Chemical structures of natural and semi-synthetic rifamycins. Adapted from (Robertsen 

and Musiol-Kroll, 2019). Structures of the naturally derived rifamycins; rifamycin B and rifamycin 

SV, and the semi-synthetic derivatives rifampicin, rifabutin, rifapentin, and rifamixin. 

 

Fascinatingly, Rif is 1000 times more potent at mycobacterial RNAPs, when 

compared to E. coli RNAP. This difference is not thought to be due to differences 

in binding site, as this region of RNAP is highly conserved in RNAPs (Zenkin et 

al., 2005a). Indeed, the mechanistic details of this phenomenon remain elusive. 

Several further analogues of Rif, rifabutin, rifapentine, and rifamixin were 
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synthesised by further modifications focused around the C3/C4 positions, and are 

approved for the treatment of a broad range of infections (Aristoff et al., 2010) 

(Figure 1.9). Rifamycins are generally broad spectrum antimicrobials and exhibit 

their highest activity against gram positive bacteria, with MICs commonly below 

0.1μg/ml (Aristoff et al., 2010).  

The antibacterial activity of rifamycin is due to potent inhibition of DNA-dependent 

RNA synthesis as a consequence of binding to prokaryotic RNAP (Campbell et 

al., 2001, McClure and Cech, 1978). Co-crystal structures of several rifamycins 

bound to RNAP show the inhibitors bind at a site within the main RNAP cleft, 

around 12 Å from the active centre (the ‘Rif pocket’) (Campbell et al., 2001, 

Artsimovitch et al., 2005). They bind in the pathway of nascent RNA and sterically 

block its propagation beyond 2-3nt in length (Figure 1.10). When the extending 

RNA collides with the bound rifamycin, it is released as a short abortive product. 

If RNA extends beyond 3-mer, rifamycins cannot bind to RNAP. Consequently, 

rifamycins are unable to inhibit the elongation complex (McClure and Cech, 1978, 

Campbell et al., 2001). 

This ‘steric occlusion’ mechanism, broadly speaking, is mutual to all rifamycins. 

However, slight mechanistic differences exist depending on the substituent 

present at C3/C4. For example, rifabutin inhibits the formation of the first 

phosphodiester bond (when transcription is initiated with a 5’ non-phosphorylated 

dinucleotide primer), whereas Rif and rifapentine inhibit synthesis of the second 

phosphodiester bond (Artsimovitch et al., 2005). It was proposed an additional 

‘allosteric mechanism’ may act in addition to the ‘steric occlusion’ mechanism, in 

which rifamycins allosterically modulate RNAPs affinity for catalytic Mg2+. 

However, this model was later invalidated (Feklistov et al., 2008). Indeed, most 

biochemical and structural data support ‘steric occlusion’ as the principle 

mechanism of the rifamycins. 
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Figure 1.10 Mechanism of transcription inhibition by rifampicin. Adapted from (Artsimovitch and 

Vassylyev, 2006). An initially transcribing complex (upper panel) composed of core enzyme (light 

gray, with bridge helix (bridge) shown in dark gray), σ factor (magenta, with σR3.2 (σHL) shown 

extending into the primary channel toward the RNA:DNA hybrid), promoter DNA (template strand 

in red and non-template strand in dark blue), and nascent RNA (yellow) base paired with the 

template strand. Catalytic Mg2+ is depicted in magenta. Binding of Rif (black/blue) causes a steric 

clash with the 5’ triphosphate of nascent RNA causing it its dissociation through the RNAP 

secondary (lower panel) 

 

Resistance to Rif (RifR) is most commonly caused by amino acid substitutions of 

the Rif-pocket that alter residues involved in binding contacts, or alter the 

conformation of the binding pocket, thus preventing binding of the antibiotic 

(Campbell et al., 2001, Molodtsov et al., 2017a). As shown in Figure 1.11, the 

majority of RifR mutations found on the β subunit are grouped into a region 
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termed the Rif-resistance determining region (RRDR), which is further subdivided 

into four distinct clusters; cluster I (amino acid residues 507-534, E. coli 

numbering), cluster II (amino acid residues 563-572), cluster III (amino acid 

residues 684-690), and the N-terminal cluster (amino acid residues 143-146) 

(Goldstein, 2014, Tupin et al., 2010b) . Almost ~100 unique amino acid 

substitutions have been identified in clinical isolates of RifR Mycobacterium 

tuberculosis (Sandgren et al., 2009). Interestingly, however, only three of these 

mutations account for the vast majority of RifR clinical isolates, with βS531L, 

βH526 and βD516V mutations accounting for ~41%, 36% and 9%, respectively 

(Campbell et al., 2001) (Figure 1.11). The rapid selection rate for mutations (10-7-

10-8) of the Rif pocket observed with rifamycins remains a major drawback in their 

use and generally limits there use to extensive combination therapies (Goldstein, 

2014).  

 

 

Figure 1.11 Sequence alignment of rifampicin resistance determining regions (RRDRs) with 

common mutations observed in E. coli and M. tuberculosis (MTB) conferring resistance to 

rifampicin. Adapted from (Molodtsov et al., 2017a). Individual RRDR regions are indicated above 

the sequence alignments. Positions that share the same amino acid are depicted with a gray 

background. Mutations that confer resistance in E. coli or MTB are indicated, with major mutation 

sites indicated. Mutations exclusive to E. coli RNAP are depicted in blue, mutations exclusive to 

MTB RNAP are depicted in red, and mutations found in both RNAPs are depicted in black.   
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In addition to alteration of RNAP, resistance to rifamycins is known to occur 

through a number of other mechanisms, including target duplication, antibiotic 

modification, and decreased cell permeability. Genome sequencing of the Rif 

resistant pathogen Nocardia farcinica IFM 10152 identified the presence of two 

genes encoding the RNAP β subunit, rpoB1 and rpoB2 (Ishikawa et al., 2004). 

Further analysis of the two genes revealed rpoB2 possesses amino acid 

substitutions in the RRDR that likely result in resistance to Rif. Indeed, generation 

of rpoB2 knockout strains confirmed the gene confers Rif resistance. This 

mechanism of gene duplication is apparently common among species of 

Nocardia and has also been described in a related Actinomadura strain (Vigliotta 

et al., 2005), suggesting Rif producing Actinomadura, such as A. mediterranei, 

may utilise this mechanism to resist the antibiotic. However, at present, this 

theory is unconfirmed.  

Inactivation of rifamycins by covalent modification is a strategy utilised by a 

number of different bacteria, and is thought to prevent binding of the antibiotic to 

RNAP. Bacteria can inactivate Rif in a number of different ways, including 

hydroxylation, glycosylation, phosphorylation, and ADP-ribosylation. In addition to 

duplication of the β subunit, N. farcinica encodes a Rif monooxygenase which 

catalyses 2’ N-hydroxylation of Rif, resulting in a compound with greatly reduced 

antibacterial activity (Abdelwahab et al., 2016). Additionally, 2’ N-hydroxylation of 

Rif is thought to prime the compound for degradation. A related monoxygenase 

has also been identified in the pathogen Rhodococcus equi (Andersen et al., 

1997). Certain Bacillus strains, Nocardia species and related actinomycetes are 

also able inactivate Rif by O-23 glycosylation and O-21 phosphorylation (Dabbs 

et al., 1995, Tanaka et al., 1996). Furthermore, a recent phosphotransferase 

isolated from Listeria monocytogenes phosphorylates Rif at the C21 position 

(Stogios et al., 2016). The opportunistic pathogen Mycobacterium smegmatis 

inactivates Rif by ADP-ribosylation at the C23 position, a reaction catalysed by 

rifampicin ADP-ribosyltransferase enzymes (Arr) (Morisaki et al., 2000). 

Rifamycin SV, and newer semi-synthetic Rif derivatives rifapentine, rifamixin and 

rifabutin, are also substrates for Arr (Baysarowich et al., 2008, Shin et al., 2018). 

Homologues are widely distributed in environmental bacteria and also present in 

certain gram negative pathogens such as P. aeruginosa, Klebsiella pneuominiae 
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Actinetobacter baumannii, and certain E. coli strains (Shin et al., 2018, Houang et 

al., 2003, Arlet et al., 2001, Naas et al., 2001, Tribuddharat and Fennewald, 

1999). Interestingly, Rif analogues with bulky carbamate substituents at the C25 

position are resistant to inactivation by M. smegmatis Arr (Combrink et al., 2007). 

Indeed, recently solved structures of Rif complexed with M. smegmatis Arr 

suggest the bulky substituents would prevent Rif binding to the enzyme, 

consequently evading ADP-ribosylation (Baysarowich et al., 2008).  

A further strategy of resistance to rifamycins (although not exclusive to 

rifamycins) is through altered membrane permeability. For antibiotics with 

cytoplasmic targets the compounds must enter the cell and accumulate at 

sufficiently high concentrations for activity. Bacteria can prevent this in two ways; 

(i) by an intrinsic or acquired decrease in membrane barrier permeability, and (ii) 

by overexpression of membrane associated efflux pumps. Mycobacteria possess 

an inherently impermeable cell envelope as a consequence of their waxy, mycolic 

acid rich cell wall. Early investigations of a Rif resistant Mycobacterium, 

Mycobacteria intracellulare, showed that the strain was intrinsically resistant to 

Rif, yet its RNAP was sensitive to the antibiotic (Hui et al., 1977). Further 

experimentation showed resistance was due to inability of the compound to cross 

the cell envelope. Several efflux pumps are implicated in Mycobacterial 

resistance to Rif and several other antibiotics. The putative efflux pump Tap is 

upregulated by certain Rif resistant Mycobacteria when grown in the presence of 

Rif (Szumowski et al., 2013), suggesting expression of efflux pumps can be 

induced by Mycobacteria in response to treatment with Rif. 

Sorangicin 

Sorangicin (Sor) is a macrolide polyether antibiotic isolated from the fermentation 

broth of Myxobacterium cellulosum. It is a complex of two active structural 

variants, A and B (Irschik et al., 1987). Sor exhibits broad spectrum antibiotic 

activity but is predominantly effective against Gram positives, particularly 

Mycobacteria (Irschik et al., 1987). Sor was shown to effectively inhibit both E. 

coli and T. aquaticus RNAP at IC50’s below 1 μM (Campbell et al., 2005).  The 

crystal structure of Sor complexed with T. aquaticus RNAP showed the inhibitor 

binds RNAP within the Rif binding pocket (Campbell et al., 2005) (Figure 1.12 A, 



 

27 
 

B). Indeed, the mechanism of Sor is essentially the same as Rif; the compound 

sterically blocks formation of the second phosphodiester bond, causing the 

nascent transcript to be released as a short abortive RNA (Campbell et al., 2005). 

Due to the mutual binding site with Rif, there is considerable, but not 

comprehensive, cross resistance (Xu et al., 2005, Campbell et al., 2005). 

Molecular dynamics simulations indicate Sor possesses greater conformational 

flexibility within the Rif binding pocket, and consequently is less susceptible to 

alterations in binding pocket structure. This flexibility is thought to allow Sor to 

retain activity at some RifR RNAPs. For example Sor retains activity at the 

prevalent RifR mutation βS531L (E. coli numbering) (Campbell et al., 2005). 

However, it is worthy to note, selection of spontaneous mutations conferring 

resistance to Sor are selected for at a rate almost identical to Rif (Rommele et al., 

1990). 

 

Figure 1.12 Binding site of rifampicin, sorangicin, and GE23077 on RNAP. Adapted from (Ma et 

al., 2016) (A) T. thermophillus holoenzyme with core subunits (α, β, and β') depicted in gray, and 
σ initiation factor in blue. The catalytic Mg2+ is depicted in cyan, and its position indicated by the 
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red asterisk and arrow. The Rif/Sor binding site is depicted in green. The boxed region is depicted 

in B and C. (B) The overlapping binding site of Sor and Rif. Initiating RNA dinucleotide is depicted 

in orange. Rifampicin is depicted in red and sorangicin is depicted in yellow. Other structures in 

view are depicted as in A. (C) The binding site of GE23077 (orange). The compound binds in the i 

and i+1 sites (pale green). ATP entering the active centre through the secondary channel is 

depicted in red. Other structures in view are depicted as in A. Proximity to the Rif binding site 

(green) is illustrated by bound Rif SV (orange). A hybrid molecule of Rif SV covalently GE23077 

remains active against WT and RifR RNAPs.  

 

GE23077 

GE23077 (GE) is a macrocyclic heptapeptide antibiotic isolated from the culture 

of Actinomadura species in 2004 (Ciciliato et al., 2004). The compound is a 

specific inhibitor of both WT and RifR bacterial RNAP (Sarubbi et al., 2004, Zhang 

et al., 2014a). However, it exhibits limited antibacterial activity due to limited 

membrane permeability (Sarubbi et al., 2004, Zhang et al., 2014a, Ciciliato et al., 

2004). Activity is improved against ΔtolC strains, and when GE is combined with 

a membrane perturbing agent. GE inhibits transcription initiation by preventing 

the synthesis of 2nt nascent transcripts. The crystal structure of GE complexed 

with Thermus thermophilus RNAP holoenzyme showed the compound binds the i 

and i+1 sites within the RNAP active centre, adjacent to the catalytic Mg2+ (Figure 

1.12, C). Numerous binding contacts are formed with residues of the β and β’ 

subunits, including the three aspartate residues responsible for coordination of 

catalytic Mg2+ (Zhang et al., 2014a). By binding within the i and i+1 sites, GE acts 

to sterically hinder the binding of initiating NTP substrates required to start 

transcription. Interestingly, despite establishing extensive binding contacts, only 

four residues of the β subunit (βE565, βG566, βM681 and βN684) have been 

identified that confer viable resistance to GE, suggesting the i and i+1 sites offer 

a promising target for antibiotics. Furthermore, the proximity of the GE binding 

site to the Rif pocket has enabled the synthesis of a bipartite molecule combining 

Rif SV and GE that remains active against WT and RifR RNAPs (Zhang et al., 

2014a) (Figure 1.12, C). By producing such hybrid antibiotics it is hoped the rate 

of selection of resistance mutations can be reduced, and pharmacokinetic issues 

addressed. 
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1.3.2 Disrupting holoenzyme assembly 

SB-2 series 

Transcription initiation requires the binding of a σ initiation factor to RNAP core to 

facilitate formation of the initiation competent holoenzyme (Ruff et al., 2015). A 

high throughput screen of the ChemBridgeTM library, in which binding affinity 

between E. coli RNAP core and the housekeeping σ70 was measured, identified a 

series of synthetic compounds termed the SB-2 series (André et al., 2006, Andre 

et al., 2004). Two initial hit compounds, SB11 and SB15, were identified for their 

specific inhibition of core : σ70 association. Subsequently, both compounds were 

found to inhibit in vitro transcription performed by E. coli RNAP holoenzyme. A 

series of furanyl rhodanine derivatives of the SB series were shown to possess 

antibiotic activity against a number of Gram positive bacteria, specifically from the 

Bacillus, Streptococcus and Staphylococcus genera (Villain-Guillot et al., 2007b, 

André et al., 2006).  

Fascinatingly, SB series compounds are capable of inhibiting σ-independent 

transcription at poly (dA-dT) DNA template, suggesting the binding site of SB 

compounds is situated on RNAP core (André et al., 2006). Furthermore, this 

observation complicates the apparent mechanism of action by which SB 

compounds function. It is likely the compound inhibits transcription by RNAP 

holoenzyme by hindering interactions between σ and RNAP core. The 

compounds inhibit transcription following the formation the holoenzyme 

suggesting their hindrance of σ: core interactions is mediated allosterically (André 

et al., 2006).  However, it is also possible the compound targets a structural 

element of catalytic core required for function. However, as of yet, no structure of 

bacterial RNAP complexed with SB compounds has been solved. Mutations 

conferring resistance to SB series compounds also remain elusive. 

Consequently, the SB series binding site and exact mechanism of action remains 

unclarified.  
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1.3.3 Nucleoside analogues  

Pseudoridmycin 

Nucleoside analogues are compounds structurally related to NTP substrates. 

They can often compete with NTPs for their respective binding sites and 

consequently inhibit nucleic acid binding enzymes, including nucleic acid 

polymerases (Périgaud et al., 1992). Pseudoridmycin (PUM) was the first 

nucleoside analogue identified capable of specific inhibition of bacterial RNAP 

(Maffioli et al., 2017). It is produced by several bacteria from the Streptomyces 

genus (Rosenqvist et al., 2019, Maffioli et al., 2017). Initially, the compound was 

identified from a large screen of microbial extracts for its ability to inhibit E. coli 

RNAP, but not the structurally unrelated RNAP of the SP6 bacteriophage. The 

compound displayed antibacterial activity against a wide range of bacteria, 

including an array of drug-resistant pathogens (Maffioli et al., 2017).  

Inhibition of bacterial transcription by PUM in vitro indicated the compound 

inhibits RNAP by competing with UTP for the i+1 site. Incorporation of UTP, but 

not ATP, CTP, or GTP, was inhibited by PUM in both single and multiple 

nucleotide addition experiments. Furthermore, PUM lost activity at DNA 

templates that do not direct incorporation of UTP. Spontaneous mutations 

conferring resistance to PUM in E. coli mapped to a region within the RNAP 

active centre, overlapping the i+1 site (Maffioli et al., 2017).  Indeed, the crystal 

structure of T. thermophilus RNAP complexed with PUM confirmed PUM targets 

the i+1 site (Figure 1.13, A,B). The compound forms Watson-Crick base pair 

interactions with residues of the template strand and forms polar interactions with 

several residues of the i+1 site in a manner analogous to NTP substrates (Maffioli 

et al., 2017) (Figure 1.13, B, C). The formation of Watson Crick interactions 

between the PUM base moiety and template strand are only possible at template 

positions directing incorporation of UTP, offering an explanation for PUMs 

targeting of UTP incorporation.  
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Figure 1.13 Inhibition of RNAP by Pseudoridmycin (PUM). Adapted from (Mosaei and Harbottle, 

2019). (A) Orthogonal views of PUM binding position within the active centre of T. thermophilus 

RNAP. RNAP is depicted in gray, PUM is depicted in yellow, and the active centre Mg2+ is 

depicted as magenta sphere. (B) The active centre of T. thermophillus RNAP with PUM (yellow) 

(left) and CMPcPP (purple) (right); a non-hydrolysable nucleoside, bound within the active centre 

i+1 site. The RNAP bridge helix (BH) is depicted in gray, RNAP active centre Mg2+ depicted as 

magenta spheres, and template DNA is depicted in blue. (C) Vital interactions of PUM (left) and 

CMPcPP (right) within the i+1 site of T. thermophilus RNAP (E. coli numbering in brackets). Note 

the comparable interactions of PUM and CMPcPP binding. 
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1.3.4 Inhibitors of mobile elements of the active site 

Salinamides 

The salinamides are a group of structurally related compounds belonging to a 

rare class of depsipeptides isolated from several marine Streptomyces species 

(Trischman et al., 1994, Moore et al., 1999). Salinamide A (Sal), B and F are 

effective antibiotics as a consequence of potent inhibition of bacterial RNAP 

(Hassan et al., 2015, Degen et al., 2014). Biochemical experiments showed Sal 

inhibits both transcription initiation and elongation, as well as the reverse reaction 

of phosphodiester bond formation - pyrophosphorolysis. Sal does not compete 

with binding of NTP substrates, nor does the compound inhibit the formation of 

the promoter complex (Degen et al., 2014). By identifying spontaneous and 

induced Sal resistance mutations, Degan et al identified a putative binding site 

adjacent to the RNAP active centre, overlapping the N-terminal hinge of the BH 

(BH-HN), plus two other structural components implicated in the conformational 

changes of the BH during  nucleotide addition, the ‘F-loop’ and ‘link region’. 

Indeed, Cocrystalisation of Sal and E. coli RNAP showed the inhibitor binds in a 

region between the secondary channel and BH, making direct interactions with 

the BH-HN, link region and F-loop (Figure 1.14 A, B). The compound interacts 

with the BH-HN in an unbent (straight) conformation (Degen et al., 2014). A bent 

conformation of BH-HN has been identified in several molecular dynamics 

simulations, and is thought to be an important intermediate during catalysis of 

both phosphodiester bond formation and pyrophosphorolysis (Kireeva et al., 

2012, Weinzierl, 2010). Thus, it is thought Sal inhibits RNAP by stabilising BH-HN 

in an unbent conformation and consequently prevents conformational cycling of 

the BH-HN between the bent and straight conformations important for catalysis. 

Additionally, the crystal structure of RNAP complexed with Sal possessed a 

disordered TL (Degen et al., 2014). Structural modelling of Sal binding within the 

crystal structure of a T. thermophilus RNAP elongation complex bound to NTP 

substrate suggests Sal may sterically hinder correct folding of the TL. Thus, Sal 

inhibition of TL conformational changes may contribute to the mechanism by 

which Sal inhibits transcription. Although, biochemical data presented by Degen 

et al suggested Sal inhibition was not dependent on TL, a recent smFRET 

experiment in which TL conformations were monitored during nucleotide addition 
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indicated Sal inhibits TL folding in solution, suggesting TL is indeed a target for 

Sal (Mazumder et al., 2019, Degen et al., 2014). 

Streptolydigin 

Streptolydigin (Stl) was first isolated from Streptomyces lydicus in 1955 (Lewis et 

al., 1955, Crum et al., 1955, Deboer et al., 1955). It possessed a distinctive 

structure containing an acylated tetramic acid, a ‘streptolol’ side chain, and a 

monosaccharide moiety. Stl exhibited potent antibacterial activity against a broad 

spectrum of bacteria by inhibiting bacterial RNAP. The compound was able to 

inhibit initiation, elongation, and pyrophosphorolysis activities (Temiakov et al., 

2005b). Additionally, early biochemical studies showed Stl inhibits both 

translocation and nucleotide binding (McClure, 1980). Interestingly, spontaneous 

Stl resistant mutations had been reported in two distinct clusters adjacent the 

RNAP active centre, β543–546 and β‘792–793 (Tuske et al., 2005, Yang and 

Price, 1995, Severinov et al., 1995). The two clusters occupied distinct non 

adjacent regions, approximately 15Å apart, located close to the active centre.  

Saturation mutagenesis experiments delineated 72 individual mutations from 26 

distinct residues, defining a determinant that overlapped three distinct structural 

features; the BH, TL, and a region of the β subunit termed the ‘Stl pocket’ 

(comprised of residues β543–545 and β570–571) (Tuske et al., 2005, Vassylyev 

et al., 2007b, Temiakov et al., 2005a). Interestingly, some of the determinant 

slightly overlapped the proposed binding determinant of the transcription 

inhibiting lasso peptide Microcin J25 (see 1.3.5) (Braffman et al., 2019). 

Indeed, several crystal structures of T. thermophilus RNAP complexed with Stl 

show the inhibitor binds a site adjacent to, but not overlapping, the RNAP active 

site (Temiakov et al., 2005a, Tuske et al., 2005, Vassylyev et al., 2007b) (Figure 

1.14, A, B). The monosaccharide moiety of Stl occupies a space proximal to the 

TL and central region of BH, making polar interactions with downstream DNA and 

hydrophobic interactions with the TL. The streptolol moiety interacts with the ‘Stl 

pocket’ and the N terminal end of the BH, whilst the tetramic acid moiety interacts 

directly with the TL, resulting in its displacement. Interestingly, deletion of the TL 

increases Stl binding affinity at T. thermophilus RNAP (Temiakov et al., 2005a).  

It is proposed, as a consequence of its binding mode, Stl acts to trap the BH in a 
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straight conformation, whilst concurrently trapping the TL in an unfolded 

conformation. In doing so, Stl stabilises the RNAP active site in an inactive 

substrate bound conformation in which accurate substrate loading is disfavoured. 

Consequently, the inhibitor blocks the dynamic conformational changes essential 

for effectual catalysis (Temiakov et al., 2005a). 

CBR Series 

The original CBR series compound, CBR703, was identified in a high throughput 

screen of synthetic compounds in which activity against E. coli RNAP was 

assessed, and activity against E.coli ΔtolC determined (Zhu et al., 2014, 

Artsimovitch et al., 2003). The CBR series possess a distinctive structure 

comprised of two linked aromatic rings. In vitro analysis showed CBRs inhibited 

all catalytic activities of RNAP, but had minimal effect on translocation of RNAP 

(Artsimovitch et al., 2003). Interestingly, CBR703 was active against RNAPs from 

a number of Gram-positive and Gram-negative species, but failed to inhibit 

Mycobacterium tuberculosis RNAP (Feng et al., 2015). Recent crystal structure of 

RNAP complexed with CBR703 show the compound binds at a hydrophobic two-

pocket site adjacent to the β’ fork loop and N-terminal region of the bridge helix, 

in addition to the β subunit link domain, DII loop, and F-loop 2 (Figure 1.14).  

The binding mode is supported by identification of several spontaneous and 

induced mutations conferring resistance to CBR703. Interestingly, the selection 

rate of CBR703 resistance mutations in certain E. coli strains is as low as 1x10-12, 

indicating the CBR binding site may be a desirable target for future therapeutic 

antibiotics (Feng et al., 2015).  

Inhibition of RNAP by CBR703 is thought to be caused by allosteric inhibition of 

TL folding, as consequence of interaction with the β’ fork loop, and through 

inhibition of conformation cycling of the BH-HN (Bae et al., 2015b) (Figure 1.14, 

C). It has also been proposed CBR compounds weaken BH-TL interactions, 

consequently destabilising TL folding required for catalysis (Malinen et al., 2014).  

Interestingly, however, inhibition of nucleotide addition by CBR703 is only 

partially dependent upon the TL, whilst inhibition of pyrophosphorolysis occurs 

entirely independent of the TL. Only inhibition of intrinsic hydrolysis by CBR703 is 

dependent on TL. Consequently, it is proposed CBR703 targets a previously 
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unidentified conformational change of the active centre during catalysis of 

catalytic processes involving NTPs (i.e. nucleotide addition and 

pyrophosphorolysis).  Such conformational changes may be regulated by BH-HN 

(Bae et al., 2015b).  

 

 

 

Figure 1.14. Inhibitors of mobile elements of the active centre. Adapted from (Mosaei and 

Harbottle, 2019) (A)  Orthoganal views of binding positions of Sal (Red), Stl (green), and CBR703, 

(blue) represented in sphere models, mapped onto the structure of T. thermophilus RNAP 

holoenzyme (gray ribbon model). The active centre Mg2+ is depicted as a pale pink sphere (B) 

Close up view of active site mobile elements of T. thermophillus RNAP shown in A. RNAP is 
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shown in a grey semi-transparent surface model and different structural elements of the active 

centre displayed in ribbon models. The bridge helix (BH) is depicted in yellow, the trigger loop 

(TL) is depicted in cyan, the ‘link’ domain is depicted in brown, the DII loop is depicted in 

magenta, the F-loop is depicted in black, and the F-loop 2 is depicted in orange. Template and 

non-template DNA is depicted in pale blue and RNA is depicted violet. (C) Structures of different 

conformations of the BH and TL; closed TL and straight BH associated with closed active site 

(Left panel); and open TL and bent BH associated with an open active site (right panel). The N-

terminal and C-terminal hinges are highlighted in magenta 

D-AAP1 

A novel class of synthetic compounds was recently identified from the high 

throughput screen of a synthetic compound library. D-AAP1, the progenitor 

molecule of the class, was found to possess potent activity against M. 

tuberculosis RNAP in vitro, but exhibited poor activity against other bacterial 

RNAPs and human RNAPs (Lin et al., 2017b). The compound exhibits potent, 

selective activity against several Mycobacteria including M. tuberculosis, M. 

avium, and M. smegmatis, but poor activity against other bacterial and 

mammalian cells. The crystal structure of M. tuberculosis RNAP in complex with 

D-AAP1 and isolation of resistance determinants demonstrated the inhibitor binds 

a pocket adjacent to the BH-HN (Lin et al., 2017b). The binding site overlaps 

directly with that of CBR series compounds. Consequently, the two compounds 

are thought to inhibit RNAP through the same mechanism. However, the 

specificity of D-AAP1 for Mycobacteria is drawn from subtle structural differences 

seen in Mycobacterial RNAP. The binding site of D-AAP1 is comprised of three 

individual protein pockets on the surface of M. tuberculosis RNAP which interact 

with the three ringed structure of the compound. On the other hand, the 

respective binding site of CBR series compounds on E. coli RNAP is comprised 

of two protein pockets on the enzyme surface which interact with the two ringed 

structure of CBRs (Lin et al., 2017b).  

1.3.5 Inhibitors of NTP uptake 

Microcin J25  

Microcin J25 (MccJ25) is a cyclic 21 residue antibiotic peptide synthesised by E. 

coli strains containing the pTUC plasmid encoding the gene cluster mcjABCD 

(Bayro et al., 2003, Wilson et al., 2003). It was first identified in 1992 from E. coli 

strain AY25 (Salomón and Farías, 1992). MccJ25 possesses a distinctive 
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threaded lasso structure with 2 distinct elements; a ‘lariat ring’ formed through a 

covalent linkage between the N-terminus and glutamic acid at position 8, through 

which a ‘tail’ structure, comprised of residues 9-21, is sterically trapped (Bayro et 

al., 2003, Wilson et al., 2003) (Figure 1.15, A). MccJ25 inhibits both transcription 

initiation and elongation of E. coli RNAP in vitro (Adelman et al., 2004). Mutations 

conferring resistance to MccJ25, generated through saturation mutagenesis, 

mapped almost entirely to the secondary channel, indicating a putative binding 

site (Mukhopadhyay et al., 2004, Yuzenkova et al., 2002). It was proposed 

MccJ25 acts to plug the RNAP secondary channel through a so called ‘cork-in-a-

bottle’ mechanism, consequently stopping uptake of NTP substrates into the 

active centre. Certainly, MccJ25 increases Km of NTP binding, supporting the 

proposed mechanism (Mukhopadhyay et al., 2004). However, many MccJ25 

resistance determinants overlap the binding site of the active site inhibitor 

Streptolydigin on the β subunit, indicating certain elements of their mechanisms 

of action may be shared (Yuzenkova et al., 2002). Indeed, binding of MccJ25 and 

streptolydigin occurs competitively, further substantiating this proposal. 

The recently published crystal structure of MccJ25 complexed with E. coli RNAP 

confirmed the peptide binds deep within the secondary channel (Braffman et al., 

2019) (Figure 1.15, B). The tail structure is oriented towards the active centre, 

with the lariat ring located roughly 6.5 Å from the catalytic Mg2+. Modelling of 

MccJ25 binding within T. thermophilus de novo initiation complex suggests the 

peptide would afford both an electronic and steric clash with the triphosphate 

moiety of the 3’-NTP substrate. Furthermore, MccJ25 reduces the solvent 

accessible gap of the secondary channel from 11 Å to below 5 Å, decreasing the 

accessibility of NTP substrates to the active centre (Braffman et al., 2019). These 

observations offer an explanation for the increased Km for NTP binding seen with 

MccJ25. In addition to obstruction of NTP substrate binding, MccJ25 forms 

binding interactions with the BH and unfolded TL. When bound to RNAP the 

peptide introduces a severe steric clash to correct TL folding (Braffman et al., 

2019) (Figure 1.15, C, D). As a result, TL folding is highly disfavoured in the 

presence of MccJ25. Correct folding of the TL is essential for closure of the active 

site during nucleotide addition. Consequently, it appears MccJ25 inhibits RNAP 

through a tripartite mode of action; i) preventing cyclic conformational changes of 
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the TL vital for efficient catalysis, ii) obstructing access of NTP substrates through 

the secondary channel, and iii) impeding binding of NTPs within the active site. 
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Figure 1.15 Inhibition of RNAP by lasso peptide microcin J25 (MccJ25) and capistruin (Cap). 

Adapted from (Braffman et al., 2019). (A) Schematic of MccJ25 (left) and Cap (right). (B) Overall 

structure of E. coli RNAP holoenzyme complexed with MccJ25 (left panel) (molecular model 

coloured as in A) and Cap (molecular model coloured as in A) RNAP is shown as a surface model 

with subunits coloured as in their respective labels. (C) View into the secondary channel with 

varying trigger loop conformations of E. coli RNAP. RNAP is depicted as a ribbon representation 

(β, cyan; β’, light pink) The Active centre Mg2+ is depicted as a yellow sphere, the two alpha 

helices or the TL are depicted TLH1 and TLH2. The F-loop and BH structures are indicated.       . 

(Left panel) Structure of E. coli RNAP with an open (unfolded) TL. (Right panel) Structure of the 

E. coli RNAP transcription initiation complex with a closed (folded) TL. Nucleic acids are shown as 

molecular sphere models (DNA, light gray; post translocated RNA transcript, red). (D) Both panels 

are as right panel of C, with binding site of MccJ25 (left) and Cap (right) superimposed. Note the 

steric clash with the closed TL induced by both lasso peptides. 

 

Capistruin 

Capistruin (Cap) is a 19 amino-acid lasso peptide produced by Burkholderia 

thailandesis E264 (Knappe et al., 2008). It was identified from a genome mining 

experiment aimed at identifying putative lasso peptide precursors, and homologs 

of Mcc25 processing enzymes. Cap is structurally comparable to MccJ25; its N-

terminus is covalently fused to an aspartate residue a position 9, producing a 9 

amino-acid ring, through which the C-terminal tail threads, sterically locked in 

position by an arginine residue at position 15 (Knappe et al., 2008) (Figure 1.15, 

A). Cap was shown to inhibit in vitro transcription by WT E. coli RNAP, but failed 

to inhibit an MccJ25 resistant RNAP containing a β’T931I mutation (Kuznedelov 

et al., 2011). This indicated Cap may bind at the same site on RNAP. Indeed, the 

crystal structure of E. coli RNAP complexed with Cap shows the peptide also 

binds within the secondary channel (Braffman et al., 2019). However, despite 

Cap sharing several binding interactions with residues involved in Mcc25 

interactions, Cap binding determinants are distinct. The peptide binds RNAP with 

a similar orientation to MccJ25; ring and tail proximal to the active site, and loop 

distal (Figure 1.15, B). Yet, Cap binds at a site further from the active centre, 

within a region of the secondary channel that is wider than that occupied by 

MccJ25. Consequently, Cap does not obstruct the channel to the same degree 

as MccJ25, and would seemingly not preclude access of NTP substrates. 

Furthermore, Cap resides almost 12 Å away from the active site Mg2+. Modelling 

within T. thermophilus de novo initiation complex indicates Cap and NTP 

substrates can easily be accommodated simultaneously, indicating Cap inhibition 
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is not caused by preventing access and binding of NTPs to the active site. 

Indeed, biochemical analysis showed transcription inhibition by Cap is principally 

not dependent on NTP concentration (Braffman et al., 2019). However, like 

MccJ25, Cap interacts with both the BH and an unfolded TL. When bound to 

RNAP the peptide introduces a severe steric clash to correct TL folding in a 

manner analogous to Mcc25 (Figure 1.15, C, D). Therefore, in the presence of 

Cap, folding of the TL is highly disfavoured. Hence, despite a similar binding 

mode to MccJ25, it seems the principal mode of action of Cap is through 

inhibition of correct TL folding, a process essential for efficient catalysis of 

nucleotide addition by RNAP.  

1.5.6 Inhibitors of promoter open complex formation 

Fidaxomicin (Lipiarmycin) 

Fidaxomicin (Fdx), also known as lipiarmycin, is a first in class macrocyclic 

antibiotic first identified from culture of the actinomycete bacteria 

Dactylosporangium aurantiacum (Johnson, 2007). It has recently been approved 

for clinical treatment of clostridium difficile-associated diarrhoea. Initial 

biochemical experiments indicated Fdx targets the RNAP switch region, inhibiting 

promoter melting and σ-dependent transcription initiation (Tupin et al., 2010a, Lin 

et al., 2017a). The compound doesn’t inhibit the formation of the promoter 

complex, but was shown to inhibit the binding of template DNA within the RNAP 

active centre (Tupin et al., 2010a). Two recent studies utilising cryo-electron 

microscopy (cryo-EM) elucidated the structure of Fdx complexed with M. 

tuberculosis RNAP (Lin et al., 2017a, Boyaci et al., 2018). The compound 

interacts with SW2, SW3 and SW4, in addition to several clamp alpha helices. Of 

the 5 discrete switch elements, SW1 and SW2 are the principal mediators of 

conformational changes of the clamp. The inhibitor makes 5 essential polar 

interactions with several residues of β and β’ (β’Q94, β’R99, β’248, β’337 and 

βK1303; E. coli numbering). Substitutions at any of these positions confer 

resistance to Fdx (Lin et al., 2017a).  

Structural data indicated the binding of Fdx to RNAP locks the clamp domain in 

an open conformation (Lin et al., 2017a, Boyaci et al., 2018) (Figure 1.16). 

Consequently, it is thought Fdx prevents the correct spatial orientation of the 
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clamp required for simultaneous engagement of both the -10 and -35 promoter 

elements by σR2 and σR4, respectively. This observation is reaffirmed by 

biochemical observations indicating Fdx-RNAP complexes can bind to upstream 

promoter elements, but fail to engage the -10 promoter element, and therefore 

fail to nucleate promote melting (Lin et al., 2017a, Morichaud et al., 2016, Tupin 

et al., 2010a). Specifically, it is proposed the ‘tryptophan wedge’ (Trp wedge), 

responsible for intercalation into the NT strand at the -12 position to nucleate 

promoter melting, cannot engage DNA when the clamp is in an open 

conformation (Figure 1.16, B). Additionally, the protein pocket on σR2 

responsible for binding and stabilising the flipped out non template base at the -

11 position, cannot interact with DNA with the clamp locked open (Lin et al., 

2017a). Therefore, Fdx is thought to inhibit σ-dependent transcription initiation by 

preventing recognition of the -10 promoter element by σR2, and consequently 

RNAP cannot transition from RPc to RPo. 
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Fig 1.16 Mechanism of action of Fidaxomicin (Fdx). Adapted from (Lin et al., 2017a). (A) Structure 

of M. tuberculosis RNAP holoenzyme with a closed clamp conformation in the absence of Fdx 

(left), RPc (centre) and RPo (right. σ is depicted in green ribbon model, σR2 is depicted in green 

surface model, non-template -11 pocket is depicted as yellow surface model, σR2 ‘Trp wedge’ 

depicted as a blue surface model, σR4 is depicted as a yellow surface, and DNA is depicted as a 

blue cartoon model. Note the ability of σR2 and σR4 to simultaneously engage promoter −10 and 

−35 elements, respectively, in both RPc and RPo. (B) Same as A, except Fdx (cyan) is bound to 

RNAP with clamp locked in an open conformation. Colours are as in A, except σ is depicted as a 

brown ribbon model, σR2 NT-11 pocket is depicted as a brown surface model, σR2 Trp wedge 

and σR4 recognition helix are depicted as a pink surface model. Note in the presence of Fdx, σR2 

and σR4 cannot simultaneously engage promoter −10 and −35 elements in RPc and RPo. 

 

Squaramides, myxopyronin, corallopyronin and ripostatin  

Myxopyronin (Myx), corallopyronin (Cor) and ripostatin (Rip) are switch region 

targeting natural products isolated from several species of Myxobacteria 

(Schäberle et al., 2014). The inhibitors bind within a pocket adjacent to the Fdx 

binding site and inhibit RNAP through a slightly different mechanism (Boyaci et 

al., 2019, Mukhopadhyay et al., 2008, Belogurov et al., 2008, Srivastava et al., 

2011). Structural analysis of T. thermophilus RNAP complexed with Myx 

indicates the compound interacts predominantly with SW1 and SW2 to lock the 

RNAP clamp domain in a closed conformation (Belogurov et al., 2009, 

Mukhopadhyay et al., 2008). Introduction of mutations to RNAP elucidated 

several binding determinants essential for Myx activity, all of which exhibit 

extensive cross resistance with Cor and Rip, indicating the compounds bind 

within a mutual pocket (Srivastava et al., 2011, Mukhopadhyay et al., 2008). 

Indeed, a recent cryo-EM structure of Cor complexed with M. tuberculosis 

promoter complexes showed the compound indeed binds within the same pocket 

as Myx on RNAP (Boyaci et al., 2019). The structure of RNAP-Cor promoter 

complexes elucidated a putative intermediate enroute to RPo, in which the 

promoter is partially melted upstream of the transcription start site (Figure 1.17). 

Indeed, biochemical analysis of Myx and Cor show the compounds do not 

entirely prevent promoter melting, but instead prevent the propagation of 

promoter melting reaching the TSS (Srivastava et al., 2011, Mukhopadhyay et al., 

2008). The Cor-RNAP structure indicates late promoter melting might occur 

within the RNAP active centre cleft, and the inhibitors likely act to trap a late 

intermediate by locking the clamp in a closed conformation. The structure 
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indicates a transient opening of the clamp is essential for propagation of melting 

to the TSS, owing to restricted access to the active site cleft due to confined 

space between fork loop-2 and SW2 when the clamp is in a closed conformation 

(Boyaci et al., 2019). Furthermore, binding of both Cor and Myx cause a refolding 

of SW2 that is thought to induce a large steric clash with the position of template 

DNA in RPo. This observation is reaffirmed by inhibition of transcription by Myx 

and Cor at artificially melted promoters (Srivastava et al., 2011). Therefore, it 

appears Myx, Cor and Rip inhibit transcription by preventing essential opening of 

the RNAP clamp during promoter melting, and also act to prevent correct 

positioning of template DNA within the active site. 

 

 

Figure 1.17 Inhibition of RNAP by Corallopyronin (Cor). Adapted from (Boyaci et al., 2019) (Left 

panel) Structure of M. tuberculosis RNAP promoter complex in the presence of Cor. Colouring of 

structures is as indicated by the figure legend. Cor traps a putative promoter melting intermediate 

with the promoter partially melted upstream of the TSS. Note template DNA is not loaded within 

the active site. (Right panel) Structure of M. tuberculosis RNAP promoter complex in the absence 

of Cor. Note the fully melted promoter DNA with template loaded within the active site. 

 

 



 

44 
 

Squaramides (SQ) are a class of synthetic compounds that also target the RNAP 

switch region (Molodtsov et al., 2015). The compounds are active against efflux 

negative strains of E. coli and Haemophilus influenzae (Buurman et al., 2012). 

Crystal structures of SQ complexed with E. coli RNAP show the inhibitors bind 

within the same pocket as Myx and Cor. SQ acts to displace SW2 in a similar 

manner to Myx and Cor, likely effecting clamp conformation, and leading to a 

steric clash with template DNA at positions +3 and +4 (Molodtsov et al., 2015). 

Therefore, it is likely SQ inhibit RNAP is a similar manner to Myx, Cor and Rip, by 

sterically occluding binding of melted promoter DNA within the active site, whilst 

simultaneously locking the clamp in a closed or partly closed conformation.   
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Chapter 2. Materials & Methods 

2.1 Reagents and Antibiotics 

All chemicals, antibiotics and reagents were purchased from Sigma unless 

otherwise stated. All enzymes and their respective buffers were purchased from 

New England Biolabs. NTPs, chromatography columns, and phosphorimaging 

screens were purchased from GE Healthcare. Ureidothiophene was purchased 

from ChemBridgeTM. All promoter DNA fragments were produced by PCR using 

Phusion DNA polymerase from their respective primers (IDT) and purified by 

agarose gel electrophoresis (Qiagen). All radiochemicals were purchased from 

Hartmann Analytic. 

2.2 PCR 

PCR was performed in 50 μL reactions containing the following; 200 μM dNTPs, 

1 unit of Phusion DNA polymerase, ~ 1 ng of template DNA, 10 μM forward 

primer and 10 μM reverse primer and 10 μl 5X Phusion High Fidelity Buffer. All 

primers used can be found in the appendix. The cycling parameters of each 

individual reaction were as recommended by the manufacturer (New England 

Biolabs). Annealing temperature was varied depending upon primer Tm and 

extension time set at 30 seconds per 1000 amplified base pairs.  

2.3 Growth Media and Strains  

All bacterial strains used in this work are described in the Appendix. Unless 

otherwise stated, all strains were grown in liquid Luria – Bertani (LB) medium (1 

% tryptone, 0.5 % yeast extract, 1 % NaCl) or plated on to LB agar (1% tryptone, 

0.5% yeast extract, 1% NaCl, 2% agar) and supplemented with the relevant 

antibiotic when required. Ampicillin was added to a final concentration of 100 

μg/ml. Kanamycin was added to a final concentration of 50 μg/ml.  

2.4 Actinomycete Extract Preparation 

All actinomycete bacteria, provided by DemurisTM, were grown on GYM agar (0.4 

% glucose, 0.4 % yeast extract, 1 % malt extract and 1 % agar) for roughly 7 

days at 30 oC. Growth medium was then extracted with methanol (MeOH) and 

evaporated to dryness under negative pressure to yield aqueous extract. Extracts 
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were then cleaned up on a C18 HyperSepTM solid phase extraction (SPE) 

cartridge (ThermoFisher Scientific) and eluted with MeOH.  

2.5 Tandem Liquid Chromatography – Mass Spectrometry    

All analytical separations were performed on an Agilent 1260 HPLC by injection 

of 1-5 μl of sample onto a Raptor ARC-18 LC-2.7 μm - 150×2.1 mm column 

(Restek) or an Ultra C4 5 μm 150 x 2.1 mm operated at 0.2 μl/min and eluted 

using a 30 min linear gradient from 5 % to 100 % acetonitrile. Mobile phases 

were supplemented with 0.1 % formic acid. Mass spectra were recorded in 

positive-ion mode on a Bruker MicrOTOF II time-of-flight mass spectrometer. 

2.6 Disk diffusion assay 

Standard disk diffusion assay (Kirby-Bauer) was performed with respective strain 

as described (Bauer et al., 1966). Briefly, paper disks were loaded with up to 10 

μg of compound, air-dried and placed on LB plates with an embedded lawn of 

respective strain. Reporter strains disk assays were performed with X-gal infused 

agar (100 μg/ml). Plates were incubated overnight at 37oC and scanned. 

2.7 Molecular Cloning 

DNA inserts for cloning were generated by PCR from genomic DNA of respective 

strain. Genomic DNA was purified using the GenElute™ Bacterial Genomic DNA 

Kit (Sigma) by the manufacturer’s protocol. Primers used can be found in the 

appendix. Amplified insert DNA was purified using the Qiagen Gel Extraction kit, 

following the protocol provided. Plasmid and insert DNA were restricted using the 

appropriate restriction enzymes for 1 hour at 37 ⁰C before being gel purified. 1 

unit of Thermosensitive Alkaline Phosphatase (Promega) was added to the 

digested plasmid and incubated for a further 30 mins. For ligation, 3 times molar 

excess of insert DNA to plasmid DNA was incubated at rt using T4 DNA ligase 

(New England Biolabs) for 1-2 h. 5 μl of ligation mix was transformed into 50 μl of 

DH5α competent E. coli cells (New England Biolabs). Cells were transformed 

according to the supplied protocol. Cells were plated on LB containing the 

respective selection antibiotic, either 100 μg/ml ampicillin or 50 μg/ml kanamycin. 

Roughly 5 colonies were picked and grown overnight in LB supplemented with 

selection antibiotic at aforementioned concentrations. Plasmid DNA was isolated 
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using the Qiagen Mini Prep Kit. Presence of insert was then assessed by PCR 

amplification. Individual PCR reactions were loaded onto a 1% agarose gel to 

resolve the amplified insert. Positive clones were then sequenced to verify insert 

presence. All sequencing was carried out by Eurofins Genomics using their 

standard primers. Resultant sequences were visualised using SnapGene 

software. 

2.8 Site-directed mutagenesis  

Amino acid substitutions were introduced using the QuikChange XL Site-Directed 

Mutagenesis Kit (Agilent Technologies). PCR was performed in 50 μL reactions 

containing the following; 125 ng forward primer, 125 ng reverse primer, ~ 10 ng of 

template DNA, 200 μM dNTPs, 5 μl of 10X reaction buffer, 3 μl of QuikSolution, 

2.5 units PfuTurbo DNA Polymerase. All primers used can be found in the 

Appendix. The cycling parameters of each individual reaction were as 

recommended by the manufacturer’s instructions. Annealing temperature was 

varied depending upon primer Tm. 

Following PCR, 10 units of DpnI (Agilent Technologies) was added to each 

reaction for 1 hour at 37 °C to digest parental DNA. 2 μl of the DpnI treated 

reaction were transformed into DH5α competent E. coli cells (New England 

Biolabs) according to the manufacturer’s guidelines.  

2.9 Buffers 

All Buffer compositions can be found in respective methods text. All 

chromatography buffers were filtered through bottle top 0.45 μm PVDF filters 

(Sarstedt) prior to use. 

2.10 Protein expression and purification 

2.10.1 Purification of E. coli core RNAP 

Core E. coli RNAP subunits were expressed in T7 express cells (New England 

Biolabs) transformed with pGEMABC (encoding rpoA, rpoB, and rpoC) and 

pACYCDuet-1_Ec_rpoZ (encoding rpoZ) (Murakami, 2013). Expression was 

induced by addition of 0.4 mM final IPTG to exponentially growing cells and 

incubated on an orbital shaker (150 rpm) at room temperature overnight. Cells 
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were then harvested by centrifugation and resuspended in grinding buffer (50 mm 

Tris-HCl (pH 7.9), 10% glycerol, 200mM NaCl and 1× protease inhibitor mixture). 

Cells were then lysed by sonication and debris cleared by centrifugation. RNAP 

was precipitated from the lysate by addition of polyethyleneimine solution to a 

final concentration of 0.6% and the pellet recovered by centrifugation. The pellet 

was first washed with TGED buffer (10 mM Tris-HCl (pH 7.0), 10% glycerol, 0.1 

mM EDTA, and 2 mM DTT) + 0.5 M NaCl. RNAP was then eluted from the pellet 

by suspension in TGED buffer 1 M NaCl and then precipitated by ammonium 

sulphate to a final concentration of 60 % saturation. RNAP was resuspended in 

TGED buffer + 50 mM NaCl. Lysate was filtered through 0.45 μM PVDF filter 

(Merck) and injected at 1 ml/min onto a 5 ml HiTrap Heparin Affinity column (GE 

healthcare) equilibrated with heparin buffer A (TGED buffer + 50 mM NaCl). 

RNAP was eluted by linear gradient to 100 % heparin buffer B (TGED buffer + 

1M NaCl) at a flow rate of 1 ml/min, and fractions collected. Individual fractions 

were assessed for the presence of RNAP by SDS-PAGE electrophoresis. RNAP-

containing eluates were pooled and injected at 1 ml/min onto a 5 ml Resource Q 

ion-exchange column (GE Healthcare) equilibrated with ResourceQ buffer A 

(TGED buffer + 50 mM NaCl). RNAP was eluted by linear gradient to 100% 

ResourceQ buffer B (TGED buffer + 1M NaCl) at a flow rate of 1 ml/min, and 

fractions collected. Individual fractions were assessed for the presence of RNAP 

by SDS-PAGE electrophoresis. RNAP-containing fractions were pooled and 

concentrated by centrifugation by Ultra-15 Centrifugal Filter Units (Amicon) at 4oC 

according the manufacturers guidelines. RNAP was then dialysed into storage 

buffer (10 mM Tris-HCl (pH 7.5), 50% glycerol, 100 mM NaCl, 0.1 mM EDTA, 1 

mM DTT) at 4°C. 

2.10.2 Purification of S. epidermidis RNAP 

Cellular Staphylococcus epidermidis WT RNAP holoenzyme and E105Q σA 

RNAP holoenzyme were purified from respective strains of WT Staphylococcus 

epidermidis ATCC 12228 and Staphylococcus epidermidis ATCC 12228 

harbouring an E105Q mutation in rpoD (see Isolation of ureidothiophene resistant 

staphylococcus epidermidis). Cells were grown to late exponential phase and 

then harvested by centrifugation and resuspended in grinding buffer (50 mm Tris-

HCl (pH 7.9), 10% glycerol, 200mM NaCl and 1× protease inhibitor mixture). 
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Cells were then lysed by sonication and debris cleared by centrifugation. RNAP 

holoenzymes were purified by HiTrap Heparin Affinity and Resource Q (GE 

Healthcare) column chromatography essentially as described in 2.10.1. 

2.10.3 Purification of mutant E. coli RNAPs 

RIF-resistant & KglA-resistant mutations were introduced in pIA581 plasmid 

(Svetlov and Artsimovitch, 2015) (encoding E. coli rpoA, rpoB, and rpoC, with 

6xHis-tag on N terminus of β subunit) by site-directed mutagenesis. Mutant 

plasmids were co-transformed with pACYCDuet-1_Ec_rpoZ (encoding rpoZ) 

(Murakami, 2013) in T7 Express strain (New England Biolabs). Expression was 

induced by addition of 0.4 mM final IPTG to exponentially growing cells and 

incubated on an orbital shaker (150 rpm) at room temperature overnight. Cells 

were then harvested by centrifugation and resuspended in grinding buffer (50 mm 

Tris-HCl (pH 7.9), 10% glycerol, 200mM NaCl and 1× protease inhibitor mixture). 

Cells were then lysed by sonication and debris cleared by centrifugation. Lysate 

was filtered through 0.45 μM PVDF filter (Merck) and injected onto a 5ml His-trap 

Ni 2+-NTA column (GE Healthcare) equilibrated with Ni 2+ buffer A (50 mm Tris-

HCl (pH 7.9), 10% glycerol, 600mM NaCl). Mutant RNAPs was eluted by 

stepwise increase of Ni 2+ buffer B (50 mm Tris-HCl (pH 7.9), 10% glycerol, 

600mM NaCl, 200mM imidazole) to increase imidazole concentration of eluent 

(0mM, 25mM, 50mM, 100mM and 200mM). Eluates were assessed for the 

presence of RNAP by SDS-PAGE electrophoresis.  

2.10.4 Purification of E. coli σ70 subunit 

E. coli σ70 subunit was expressed in T7 express cells (New England Biolabs) 

transformed with pET28 expression vector encoding N-terminal 6x His-tagged E. 

coli σ70 subunit. Expression was induced by addition of 0.4 mM final IPTG to 

exponentially growing cells and incubated on an orbital shaker (150 rpm) at room 

temperature overnight. Cells were then harvested by centrifugation and 

resuspended in grinding buffer (50 mm Tris-HCl (pH 7.9), 10% glycerol, 200mM 

NaCl and 1× protease inhibitor mixture). Cells were then lysed by sonication and 

debris cleared by centrifugation. E. coli σ70 was then purified by HisTrap HP (GE 

Healthcare) nickel affinity chromatography essentially as described in 2.10.3. 

Ureidothiophene resistant mutations were introduced in pET28a plasmid 
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encoding N-terminus 6x His-tag E. coli σ70 by site-directed mutagenesis (Agilent 

technologies) and purified as above. 

 

2.10.5 Purification of M. smegmatis and M. abscessus Arr 

M. smegmatis and M. abscessus Arr was expressed in T7 express cells (New 

England Biolabs) transformed with pET28 expression vector encoding N-terminal 

6x His-tagged M. smegmatis Arr or M. abscessus Arr. Expression was induced 

by addition of 0.4 mM final IPTG to exponentially growing cells and incubated on 

an orbital shaker (150rpm) at room temperature overnight. Cells were then 

harvested by centrifugation and resuspended in grinding buffer (50 mm Tris-HCl 

(pH 7.9), 10% glycerol, 200mM NaCl and 1× protease inhibitor mixture). Cells 

were then lysed by sonication and debris cleared by centrifugation. E. coli σ70 was 

then purified by HisTrap HP (GE Healthcare) nickel affinity chromatography 

essentially as described in 2.10.3.  

2.10.6 Purification of S. aureus, M. smegmatis and T. aquaticus RNAP 

M. smegmatis and T. aquaticus RNAPs were purified and provided by Dr Amber 

Riaz-Bradley and Dr Christina Julius (Newcastle University) as described 

(Kuznedelov et al., 2003, Mukherjee and Chatterji, 2008). S. aureus RNAP was 

provided by Dr Caitlin Griffiths (Newcastle University). 

2.11 5’ radiolabelling of RNA and DNA primers 

5’-radiolablled DNA primers were used to synthesise 5’-labelled template DNA by 

PCR (as described in 2.2). Where applicable, 5’ radiolabelled RNA primers were 

used in the assembly of artificially assembled elongation complexes. For 5’ 

labelling, 25 μL reactions containing the following; 2.5 μl Primer (10 μm final), 1 

unit T4 Polynucleotide Kinase, 5 μl γ-[32P]-ATP (10 mCi/ml) and 2.5 μl. 10x PNK 

A Buffer incubated at 37 °C for 1 hour. The reaction was inactivated by heating to 

75oC for 10 mins and cleaned up on a bio-spin 6 column (Bio-Rad). 

2.12 In vitro transcription assays 

2.12.1 In vitro transcription on promoter DNA  
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Transcription from promoter DNA fragments was performed essentially as 

described (Mosaei et al., 2018). Briefly, reactions were performed in 10 μL of 

transcription buffer TB (20 mM Tris HCl pH 7.9, 40 mM KCl, 10 mM MgCl2). 1 

pmol of E. coli RNAP core with 3 pmols of σ70 or 1 pmol of T. aquaticus RNAP 

core with 3 pmols of T. aquaticus σA or 1 pmol of M. smegmatis or S. aureus or S. 

epidermidis RNAP holoenzymes were incubated in TB with 1 μL of DMSO (or 

50% MeOH in the case of bacterial extracts) containing or not containing inhibitor 

at 37°C (or 60°C in case of T. aquaticus RNAP) for 5 mins. Transcription was 

initiated by the addition of 2 μL mixture of nucleotides and promoter DNA in TB, 

containing (final concentrations): 10 nM promoter DNA, 25 μM CpA (for T7A1 and 

GalP1 promoters) or 100 μM ApA (for lacUV5 promoter), 0.2 μl α-[32P]UTP 

(10mCi/ml) (Hartmann Analytic), 10 μM UTP with (run off transcription) or without 

(abortive transcription) 100 μM ATP, CTP and GTP. Reactions were stopped 

after 10 min incubation at 37°C (or 60°C in case of T. aquaticus RNAP) for run off 

transcription or 5 minutes for abortive transcription by the addition of equal 

volume of formamide-containing loading buffer. Products were resolved in 

denaturing polyacrylamide gels, revealed by PhosphorImaging (GE Healthcare), 

and analyzed using ImageQuant software (GE Healthcare) 

2.12.2 In vitro transcription on M13ori hairpins 

In vitro transcription on M13ori hairpin template was performed as described in 

(Zenkin and Severinov, 2004). Briefly, reactions were performed in 20 μL final 

volumes. 3 pmols of wild-type RNAP core with 15 pmols of σ70 and 3 pmols of 

single-stranded M13ori promoter (IDT) were incubated at 37 °C for 10 min in TB. 

Transcription was initiated by the addition of 1 mM ATP, CTP and UTP, 100 µM 

GTP and 0.2 μl α-[32P] GTP (10 mCi/ml) (Hartmann Analytic). Reactions were 

stopped after 30-min incubation at 37°C by the addition of formamide-containing 

loading buffer. Products were separated on denaturing polyacrylamide gels, 

revealed by phosphorimaging (GE Healthcare), and analysed using ImageQuant 

software (GE Healthcare). All quantifications were made in triplicate. 

2.12.3 In vitro transcription from artificially assembled elongation 

complexes  
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Elongation complexes were assembled as previously described (Yuzenkova et 

al., 2013). Sequences of assembled elongation complexes used here are 

illustrated in their corresponding figures. Reactions were carried out in 15 μL final 

volume. Briefly, RNA was 5’-radiolabelled by T4 polynucleotide kinase and γ-

[32P]-ATP prior to complex assembly. The reaction was inactivated by heating to 

75oC for 10 mins and cleaned up on a bio-spin 6 column (Bio-Rad). 

Subsequently, 0.5 pmol of 5’-labelled RNA and 1 pmol template DNA were 

incubated in TB at 45°C for 5 mins and then cooled slowly to 4°C to anneal the 

hybrid. The RNA: DNA hybrid was then incubated with 5pmol core RNAP for 5 

mins at 37 oC. The complexes were then incubated with 10 pmol non-template 

DNA bearing a 5’-biotin tag for 5 mins at 37°C .The complexes were then 

immobilised on 5 μL streptavidin beads and then washed first with high salt (1 M 

KCl) and then low salt (40 mM KCl) TB. Reactions were then started with one or 

a combination of 1 μM GTP, CTP, UTP and ATP and incubated at 37 °C for the 

times indicated in the respective figures. Reactions were stopped by the addition 

of formamide-containing loading buffer. Products were separated on denaturing 

polyacrylamide gels, revealed by phosphorimaging (GE Healthcare), and 

analysed using ImageQuant software (GE Healthcare). All quantifications were 

made in triplicate. Rate constants were derived from kinetic data curves fitted to a 

single exponent equation using non-linear regression in SigmaPlot software. 

2.13 KMnO4 and DNAse I footprinting 

Reactions were performed in 20 μL final volume of TB (20 mM Tris HCl pH 7.9, 

40 mM KCl, 10 mM MgCl2). 5 pmol RNAP core and 10 pmols of σ70 were 

incubated in TB. For DNAse I footprinting, 1/10 reaction volume of Urd solution in 

DMSO was added and incubated at 37°C for 5 mins. An identical volume of 

DMSO was added to control samples. For KMnO4 footprinting, 1/10 reaction 

volume of Urd solution in 75% ethanol was added and incubated at 37°C for 5 

mins. An identical volume of 75% ethanol was added to control samples.  

Reactions were supplemented with 0.25 pmol promoter DNA labelled at the 5’ 

end of the non-template strand and incubated for a further 2 minutes at 37°C. 

Samples were then treated with 0.25 units DNAse I (Roche) or 5mM KMnO4 and 

incubated at 37 °C for 30 seconds. For DNAse I footprinting, reactions were 

stopped with equal volume formamide-containing loading buffer. For KMnO4 
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footprinting, the reactions were stopped with an equal volume of 2-

mercaptoethanol. The KMnO4 treated samples were then subject to phenol-

chloroform extraction, ethanol precipitated and dried before resuspension in 

formamide-containing loading buffer. Products were resolved on polyacrylamide 

gels, revealed by phosphorimaging (GE Healthcare), and analysed using 

ImageQuant software (GE Healthcare) 

2.14 EMSA 

Reactions were performed in 20 μL final volume of EMSA Buffer (20 mM Tris HCl 

pH 7.9, 40 mM KCl, 10 mM MgCl2, 5% glycerol) 2 pmol of RNAP core and 6 

pmols of σ70 was incubated in EMSA buffer. Next, 1/10 reaction volume of Urd 

solution in DMSO was added and incubated at 37°C for 5 mins. An identical 

volume of DMSO was added to control samples. Reactions were supplemented 

with 0.2 pmol promoter DNA labelled at the 5’ end of the non-template strand and 

incubated for a further 5 minutes at 37 °C. Samples were then treated with 2 μL 

H2O or H2O with heparin (50μg/ml final) and incubated for a further 2 minutes at 

37°C. Samples were then supplemented with 2 μL dye solution (0.25% 

bromophenol blue and xylene cyanol) and loaded onto 4.5% non-denaturing 

polyacrylamide gel, revealed by phosphorimaging (GE Healthcare), and analysed 

using ImageQuant software (GE Healthcare). 

2.15 Isolation of ureidothiophene resistant staphylococcus 

epidermidis 

Firstly, MIC of S. epidermidis ATCC12228 was assessed by serial dilution on a 

24 well agar plate (2-fold dilutions from 100μg/ml). Individual wells contained 1 ml 

solid LB agar supplemented with 2.5% pluronic F68 (Thermofisher). Prior to agar 

setting, DMSO with or without ureidothiophene was added to the individual well to 

a final concertation of 5%. S. epidermidis ATCC12228 was streaked onto LB agar 

and grown at 37oC overnight. A single colony was picked and grown in liquid LB 

to 1 x106 CFU/ml. 10 μL of 106 CFU/ml S. epidermidis inoculant were dotted onto 

each well and the plate incubated at 37°C overnight. MIC was deduced as the 

concentration in which no visible cell growth was observed (3.125 μg/ml). 

Secondly, S. epidermidis ATCC12228 was streaked onto standard LB agar and 

grown at 37 oC overnight. A single colony was picked and grown in liquid LB until 
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~ 1x109 CFU/ml. 100 μL of 109 CFU/ml S. epidermidis ATCC12228 was streaked 

onto an LB agar plate containing 4x MIC ureidothiophene (12.5 μg/ml). 

Ureidothiophene resistant mutants were identified by their growth on this media, 

and confirmed by re-streaking on the same media. A single resistant strain was 

identified and sent for full illumina genome sequencing (MicrobesNG). Genome 

was assembled and SNPs identified by CLC Genomics Workbench software 

(Qiagen) 

2.16 Isolation of Kanglemycin A 

Kanglemycin A was purified by Dr Hamed Mosai-Sejzi (Newcastle University) as 

described (Mosaei et al., 2018)  

2.17 X-ray Crystallography   

X-ray crystallography data was gathered by Dr Vadim Molodstov (Pennsylvania 

State) and Professor Katsu Murakami (Pennsylvania State) as described (Mosaei 

et al., 2018) 

2.18 Determination of minimum inhibitory concentrations (MICs) 

for M. tuberculosis  

MIC determination data were gathered by Dr Joanna Bacon (Public Health 

England) as described (Mosaei et al., 2018). 

2.19 Rifampicin ADP-ribosyl transferase disk assay 

Reactions were performed in 10 μL final volume of Arr Buffer (20 mM Tris-HCl pH 

7.9, 40 mM KCl, 0.5 mM MgCl2). M. smegmatis or M. abscessus Arr at 

concentration indicated (0μM, 20 μM or 200 μM) was mixed with antibiotic (1 

mg/ml final) in 8 μL Arr buffer at 37oC for 5 minutes. 2 μL NAD+ in water was 

added (10mM final) and incubated for 1h at 37oC. Reaction was quenched with 

an equal volume of MeOH and spotted onto paper disks and a disk assay 

performed as described in 2.6 with an embedded lawn of S. aureus RM4220. 

2.20 In vitro Rifampicin ADP-ribosyl transferase activity assay 

Reactions were performed in 100 μL final volume of Arr Buffer (20 mM Tris-HCl 

pH 7.9, 40 mM KCl, 0.5 mM MgCl2). M. smegmatis or M. abscessus Arr at 10 μM 
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was mixed with RIF or KglA at 100 μM in 80 μL Arr buffer at 37oC for 10 minutes. 

20 μL NAD+ in water was added (250 μM final) and incubated for 1 h at 37 oC. 

Reaction was quenched with 500 μL of Methanol. Methanol was then evaporated 

under negative pressure and the reaction analysed by LC-MS as described in 

2.5. 

 

2.21 Purification of ADP-ribosyl Rifampicin 

Reaction was performed in 2000 μL volume of Arr buffer (20 mM Tris-HCl pH 7.9, 

40 mM KCl, 0.5 mM MgCl2) containing the following; 25 μM M. smegmatis Arr, 5 

mg Rifampicin and 20 mM NAD+. Reaction was incubated at 37 oC for 24 hours 

and cleaned up on a 25 ml HyperSep™ C8 SPE cartridge. ADP-ribosyl RIF was 

eluted with 30% MeOH and dried under negative pressure by a HT-6 series 3 

evaporator (Genevac) to yield 4.8 mg of ADP-ribosyl RIF. Sample homogeneity 

was confirmed by tandem LC-MS as described in 2.5.  

2.22 Microscale thermophoresis 

Binding affinity experiments were carried out on a Monolith NT.115 Series 

instrument (Nano Temper Technologies GMBH). M. smegmatis and M. 

abscessus Arr were labelled with Monolith Protein Labelling Kit RED-NHS 2nd 

Generation Amine (Nano Temper Technologies GMBH) according to the 

manufacturers guidelines. Roughly 5 μl of sample in MST buffer (20 mM HEPES 

(pH 7.9), 40 mM KCl, 10 mM MgCl2) were loaded into Monolith NT.115 premium 

capillaries and thermophoresis measured for 30 s. Analysis was performed with 

Monolith software. Kd was quantified by analysing the change in normalized 

fluorescence (Fnorm = fluorescence after thermophoresis/initial fluorescence) as 

a function of inhibitor concentration. Curves for Kd data were fitted to a four-

parameter logistic equation using non-linear regression in SigmaPlot software.   
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Chapter 3. Aims 

Bacterial RNAP is an excellent target for antibiotics. However, very few clinical 

antibiotics target RNAP. The growing prevalence of antibiotic resistance amongst 

pathogenic bacteria demands the identification of novel antibacterial compounds, 

acting through novel molecular mechanisms. Here, we conduct several distinct 

projects in which we investigate previously uncharacterised molecular 

mechanisms underlying inhibition and resistance of transcription targeting 

antibiotics.  

(i) Most clinical antibiotics are derived from the natural products of 

actinomycete bacteria. Our industrial collaborators DemurisTM previously 

compiled a library of actinomycete bacteria that activate an RNAP reporter 

strain and therefore may produce novel inhibitors of bacterial transcription. 

Consequently, we aimed to identify and characterise novel inhibitors of 

bacterial transcription produced by strains from this particular strain 

library. 

(ii) The synthetic antibiotic ureidothiophene (Urd) was identified within a 

commercial screen of synthetic compounds in which inhibition of S. 

aureus RNAP was analysed. However, how the compound targets RNAP 

is unknown. Here, we aimed to characterise the molecular mechanism of 

action by which Urd inhibits bacterial RNAP. 

(iii) A prior screening program conducted by DemurisTM, and a subsequent 

collaboration with the lab of Professor Nikolay Zenkin identified the 

rifamycin type natural product kanglemycin A (KglA) as an inhibitor of 

rifampicin resistant RNAPs. Here, we aimed elucidate the molecular 

mechanism of action by which KglA inhibits RNAP  

(iv) Finally, we aimed to characterise ADP-ribosylation of Rif and KglA by 

Mycobacterium smegmatis and Mycobacterium abscessus Rifampicin 

ADP-ribosyltransferase (Arr) enzymes. 

 

By investigating these unique mechanistic processes we aim to further our 

understanding of how transcription targeting antibiotics function at RNAP, and 
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understand the exact mechanisms utilised by pathogenic bacteria to facilitate 

resistance to transcription targeting antibiotics.  
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Chapter 4. Streptomyces strain DEM40380 produces Antibiotic 

A39079S-1, a rifamycin type inhibitor of bacterial RNAP 

4.1 Introduction 

Actinomycete bacteria are prolific producers of bioactive secondary metabolites, 

many of which are efficacious therapeutics. Roughly two thirds of antibiotics used 

clinically, including β-lactams, tetracyclines, aminoglycosides, macrolides, 

rifamycins, and macrocyclic antibiotics are all derived from compounds produced 

by Actinomycetes. However, very few novel classes of antibiotics have been 

discovered in the last 40 years (Wohlleben et al., 2016). Research efforts in 

natural product drug discovery have declined since the 1970s, whilst ‘modern 

methods’ of drug discovery, such as rational design, have had limited success in 

identifying effective antibiotics (Jackson et al., 2018). The emergence of 

resistance to antibiotics is a growing public health concern, and demands the 

identification of novel antibacterials with which to treat drug resistant infections 

(Davies and Davies, 2010). Consequently, research efforts are revisiting 

actinomycete bacteria with the aim of identifying novel classes of antimicrobials.  

RNAP is a validated target for antibiotic therapy, exemplified by the successful 

use of rifampicin as a front line treatment against Mycobacterium tuberculosis 

infections. However, rapid selection of Rif resistant mutations in the Rif binding 

pocket remains a major issue, frequently leading to Rif resistant strains of M. 

tuberculosis (Goldstein, 2014). Indeed, there is a pressing need for novel 

transcription targeting compounds, acting through novel mechanisms, with which 

to treat resistant pathogens.  

Our industrial collaborators DemurisTM possess a unique collection of over 10,000 

diverse, highly dereplicated isolates of Actinomycete bacteria, sourced from a 

variety of terrestrial and marine environments. In an attempt to identify producers 

of transcription targeting antibiotics, Demuris performed a preliminary screen of 

their collection in which strains were screened against a Bacillus subtilus reporter 

strain (yvgS) that has lacZ fused to the promoter of the bacterial helicase HelD 

(Hutter et al., 2004a). This promoter is upregulated in response to sub-inhibitory 

concentrations of the transcription inhibitor Rif. Consequently, in a disk assay, it 

is presumed strain extracts containing specific transcription inhibitors produce a 
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blue halo at the frontier of the zone of inhibition upon X-gal infused agar plates. 

By using this reporter strain, Demuris compiled a shortlisted library of 17 

actinomycete strains that activated reporter activity of yvgS, and consequently 

may produce novel inhibitors of RNAP (Figure 4.1).  

Here, we analysed this shortlisted library for novel inhibitors of transcription 

through a two-pronged approach. Individual strain extracts were subjected to in 

vitro transcription assays to identify the presence of selective inhibitors of 

bacterial RNAP. In parallel, extracts were subjected to tandem liquid 

chromatography-mass spectrometry (LC-MS), alongside a comprehensive 

literature search to identify previously characterised RNAP inhibitors. From this 

approach we aimed to identify producers of novel selective inhibitors of bacterial 

transcription.  

 

Figure 4.1 Table of actinomycete bacterial strains and their respective genus identified by 

DemurisTM for a screening program aimed at identifying novel inhibitors of bacterial RNAP. Strains 

were compiled as a result of activation of the B. subtilus yvgS reporter strain. The yvgS reporter 

has lacZ fused to the promoter of the bacterial helicase HelD; a promoter upregulated in response 

to sub-inhibitory concentrations of Rif (Hutter et al., 2004b). Consequently, in a disk assay, it is 

presumed strain extracts containing specific RNAP inhibitors produce a blue halo at the frontier of 

the zone of inhibition upon X-gal infused agar plates.   
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4.2 Results 

4.2.1 Identification of producers of transcription targeting compounds by in 

vitro transcription analysis and tandem liquid chromatography-mass 

spectrometry   

Firstly, our industrial collaborators at DemurisTM performed a preliminary screen 

of their extensive actinomycete collection in which strains were screened against 

the yvgS reporter strain. From this preliminary screen, DemurisTM technicians 

identified 17 actinomycete strains that activated reporter activity of yvgS, and 

consequently may produce novel inhibitors of RNAP (Figure 4.1). These strains 

were subsequently provided to us to pursue the further characterisation 

described herein. 

To identify producers of secondary metabolites targeting transcription, we 

cultivated individual isolates from the shortlisted library on GYM agar plates for 

approximately 7 days. Growth mediums were extracted with methanol and 

evaporated to dryness, from which aqueous extracts were prepared. These crude 

extracts were subsequently ‘cleaned-up’ on C18 solid phase extraction (SPE) 

cartridges and then eluted with methanol in preparation for in vitro analysis. 

Production of active compound(s) by individual strains was confirmed by a disk 

assay of the respective extract against the yvgS reporter strain prior to further in 

vitro analysis.   

Following extract preparation, we assessed the effect of extracts on in vitro 

transcription by WT E. coli RNAP on a linear DNA template containing the T7A1 

promoter. Extracts were added to in vitro transcription reactions before template 

DNA. Expectedly, all extracts were able to inhibit WT E. coli RNAP, confirming 

the presence of transcription inhibiting compounds in the respective extracts 

(Figure 4.2, A). Next, we investigated if this inhibition could be replicated at RifR 

RNAPs. We analysed the effect of extracts in a second in vitro transcription 

assay in which transcription was performed by a mutant RNAP bearing the 

rifampicin resistant mutation βH526Y. This particular mutation is frequently seen 

in clinical isolates of rifampicin resistant Mycobacterium tuberculosis, and confers 

high level resistance to Rif (Goldstein, 2014, Mosaei et al., 2018). In this 

instance, with the exceptions of DEM40376, DEM40380, and DEM40347, all 
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extracts lost inhibitory activity, suggesting prior inhibition at WT RNAP is likely 

due to compounds targeting the Rif binding pocket (Figure 4.2, A). Moreover, all 

extracts that lost inhibitory activity at the mutant RNAP induced a marked 

increase in transcription levels relative to the control. It is possible these extracts 

are contaminated with NTP substrates and/or transcription activating compounds 

that can positively influence transcription rates when rifamycin type inhibitors are 

redundant at the mutant RNAP.  
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Figure 4.2 Inhibition of WT and RifR E. coli RNAP by strain extracts. (A) Quantification of inhibition 

of in vitro transcription by respective strain extracts. Transcription performed by WT E. coli RNAP 

and RifR βH526Y RNAP on a linear DNA template containing the T7A1 promoter. Reactions were 

initiated with dinucleotide primer CpA. Quantification is derived from average of [32P]-labelled run-

off and terminated transcription products. Values were normalised to quantity of [32P] RNA 

synthesised in the absence of inhibitor. Error bars are ± SD from at least 3 independent 

experiments. (B) Table of exact atomic masses corresponding to known natural product RNAP 

inhibitors. Masses were identified by tandem liquid chromatography-positive ion mass 

spectrometry (LC-MS) of respective strain extracts. Subsequently, exact masses [-H] were 

searched ± 0.05 Da within the dictionary of natural products (http://dnp.chemnetbase.com), and 

results analysed for respective natural product transcription inhibitors. 

 

To assess the presence of characterised RNAP inhibitors, extracts were 

subjected to tandem reverse phase liquid chromatography - mass spectrometry 

(LC-MS). Distinct peaks from total ion chromatograms were identified and 

corresponding molecular masses searched in the dictionary of natural products, a 

comprehensive archive of chemical data on natural products. Mass spectrometric 

analysis confirmed the vast majority of strains produced well characterised 

rifamycin type inhibitors. Excluding DEM1086, DEM10817, DEM10826, 

DEM10846, and DEM40380, all strain extracts contained masses corresponding 

to either rifamycin B, rifamycin S, or rifamycin SV. Of the strains in which no 

masses corresponding to RNAP inhibitors were identified, DEM1086, DEM10817, 

DEM10826, and DEM10846, all lost inhibitory activity at rifampicin resistant 

RNAP. This loss of activity at mutant RNAP suggests rifamycin type inhibitors 

may be present in these extracts that are hitherto unidentified, or are not yet 

registered in the dictionary of natural products. Nonetheless, identification and 

characterisation of novel rifamycins that fail to inhibit rifampicin resistant RNAPs 

falls outside the scope of this project. Consequently, all strain extracts which 

contained known rifamycin type inhibitors, and/or failed to inhibit transcription by 

rifampicin resistant RNAP, were dropped from further analysis. Thus, the strain 

extract of DEM40380 was selected for further investigation.  

4.2.2 DEM40380 extract inhibits both transcription initiation and elongation 

Specific inhibitors of RNAP often target a distinct stage of the transcription cycle. 

To investigate how the active compound(s) present in the crude extract of 

DEM40380 (DEM40380-CE) inhibit transcription, we first assessed if DEM40380-

CE inhibited the synthesis of short abortive RNAs by WT E. coli RNAP on a linear 
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DNA template containing the T7A1 promoter. Specifically, we investigated 

inhibition of CpApU synthesis. In this instance, transcription was initiated with the 

dinucleotide primer CpA. It is well described Rif fails to inhibit synthesis of the first 

phosphodiester bond under such conditions, i.e. when transcription is initiated 

with a 5’ non-phosphorylated dinucleotide. The principal mode of action of 

rifamycins is through steric occlusion of the translocating nascent transcript 

following formation of the first or second phosphodiester bond (Campbell et al., 

2001, McClure and Cech, 1978). Interestingly, however, as shown in Figure 4.3, 

DEM40380-CE exhibited dose dependent inhibition of CpApU synthesis. This 

suggests DEM40380-CE targets a step of transcription initiation preceding 

formation of the first phosphodiester bond, or inhibits an element of the 

nucleotide addition cycle. 

To establish if DEM40380-CE inhibits catalytic events, we assembled elongation 

complexes in vitro with fully complementary template and non-template strands, 

and 5′- radiolabelled RNA (Figure 4.3, B). By artificially assembling elongation 

complexes we circumvent transcription initiation events and can assess the effect 

of DEM40380-CE on transcription elongation. Indeed, as can be seen from figure 

4.3, high resolution gel analysis of run-off RNA products synthesised by RNAP 

showed DEM40380-CE moderately inhibits transcription elongation. Thus, these 

data suggest the compound(s) present in DEM40380-CE can inhibit both 

initiation and elongation of transcription.  
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Figure 4.3 Extract of DEM40380 inhibits both transcription initiation and transcription elongation. 

(A) The reaction scheme of an in vitro transcription reaction from promoter DNA (B) The promoter 

DNA sequence of the T7A1 promoter used in C (C) Abortive synthesis of [32P]-labelled CpApU by 

WT E. coli RNAP on linear DNA template containing the T7A1 promoter in the absence and 

presence of a serial dilution of Rif or a serial dilution of DEM40380 extract. Reactions were 

initiated with the 5’-non-phosphorylated dinucleotide primer CpA. (D) The elongation complex 

(EC) used in C. Template DNA, non-template DNA, and 5’-[32P]-labelled RNA are as indicated. 

(E) 5’-[32P]-labelled RNA products synthesised from the EC scaffold shown in B, in the absence 

and presence of Rif (100μg/ml) (negative control) or DEM40380 extract (crude). 5’-[32P]-RNA13 

primer and 5’-[32P]-RNA product are indicated.    
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4.2.3 DEM40380-CE contains a selective and a non-selective transcription 

inhibitor 

To retain a high throughput nature to our initial screen, purification of bacterial 

extracts was kept minimal, comprising only a methanol extraction and single C18 

solid phase extraction. However, to identify the exact compound(s) responsible 

for transcription inhibition, a more thorough purification was warranted. We 

therefore performed a second C18 Solid Phase Extraction in which the cartridge 

was eluted with incremental methanol (MeOH) elutions to fractionate DEM40380-

CE. Fractions were evaporated to dryness and suspended in 50% MeOH. We 

subsequently analysed individual fractions in an in vitro transcription assay with 

WT E. coli RNAP on a linear DNA template containing the T7A1 promoter. 

Interestingly, as can be seen in figure 4.4, two distinct fraction groups inhibited 

transcription by WT E. coli RNAP; the 20% elution and 70%-90% elutions, 

suggesting 2 inhibitory compounds may be produced by DEM40380. Moreover, 

the 70%-90% elutions inhibited transcription of full length RNA products with 

concurrent accumulation of short abortive products. This mechanism is typical of 

rifamycin inhibitors which inhibit transcription through steric hindrance of the 

translocating nascent transcript following synthesis of the first or second 

phosphodiester bond (McClure and Cech, 1978, Campbell et al., 2001). 

To establish the selectivity of inhibitory fractions for bacterial RNAP, we assessed 

the effect of both the 20% elution fraction (DEM40380-F20) and the 80% elution 

fraction (DEM40380-F80) on in vitro transcription by RNA polymerase of the T7 

bacteriophage (T7 RNAP) on a linear DNA template containing the T7 promoter 

sequence. T7 RNAP is a single subunit polymerase, structurally unrelated to 

multi-subunit RNAPs (Cheetham et al., 1999). Consequently, T7 RNAP can be 

used as a tool with which to identify non-specific inhibitors of transcription, such 

as the DNA binding compound echinomycin. Disappointingly, DEM40380-F20 

inhibited transcription by T7 RNAP, suggesting the compound is a non-specific 

inhibitor of transcription. However, DEM40380-F80 doesn’t inhibit T7 RNAP 

indicating the inhibitory compound(s) present in this particular fraction are 

selective for bacterial RNAP (Figure 4.4, B).  
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Figure 4.4 DEM40380 produces a specific and non-specific transcription inhibitor. (A) in vitro 

transcription by WT E. coli RNAP on a linear DNA template containing the T7A1 promoter, 

performed in the absence or presence of DEM40380 methanolic elution fractions. Fractions were 

obtained from incremental aqueous methanol elutions of DEM40380 crude extract loaded onto a 

C18 solid phase extraction cartridge. Fractions were subsequently dried and resuspended in 50% 

MeOH before in vitro transcription analysis. [32P]-RNA products (Run-off and terminated) are 

indicated. Reactions were initiated with the 5’-non-phosphorylated dinucleotide primer CpA. (B) in 

vitro transcription by RNAP of the T7 bacteriophage on a linear DNA template containing the T7 

promoter, performed in the absence or presence of 80% and 20% DEM40380 methanolic elution 

fractions (attained as in A), or in the presence of DNA binding compound echinomycin (100μg/ml). 

5’-[32P]-RNA run-off product is shown. (C)   Disk diffusion assay with echinomycin, rifampicin, and 

80% and 20% DEM40380 methanolic elution fractions (attained as in A). Paper disks soaked with 

antibiotic or respective fraction and were placed on LB agar plates infused with X-gal and lawn of 

yvgS B. subtilis reporter strain carrying the lacZ gene under the HelD promoter. This promoter is 

induced during partial inhibition of transcription (Hutter et al., 2004b). Note the blue halo at the 

frontier of the zone of growth inhibition in the case of transcription inhibitors.    

 

To provide further clarification on the selectivity of our inhibitory fractions, we 

subjected DEM40380-F20 and DEM40380-F80 to a disk assay against the yvgS 

reporter strain. In such a disk assay, it is presumed specific inhibitors of RNAP 

produce a blue halo at the frontier of the zone of inhibition upon X-gal infused 
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agar plates.  Like echinomycin, DEM40380-F20 fails to produce a blue halo at the 

frontier of the zone of growth inhibition, further substantiating the putative non-

specific mechanism of transcription inhibition (Figure 4.4, C). However, 

DEM40380-F80, like rifampicin produces a visible blue halo at the frontier of the 

zone of growth inhibition, further corroborating the presence of an antibiotic 

targeting RNAP. Consequently, we selected DEM40380-F80 for further analysis. 

 4.2.4 DEM40380 produces the RNAP targeting compound Antibiotic 

A39079S-1 

DEM40380-F80 inhibited transcription of full-length RNA transcripts (both 

terminated and run off) whilst concurrently causing an accumulation of short 

abortive products (Figure 4.4, A). This mechanism is typical of rifamycins, 

suggesting DEM40380-F80 may contain a ‘rifamycin-like’ compound. 

Consequently, we reanalysed DEM40380-F80 by LC-MS and performed a 

corresponding literature search in the dictionary of natural products. The HPLC 

chromatogram indicated a single prominent peak at 220nm absorbance, 

indicating sample homogeneity (Figure 4.5, A). Mass spectroscopic analysis of 

this peak showed 100% relative abundance of a species with m/z of 704.2779 

Da. Moreover, a further species was identified with m/z of 1385.5495 Da 

corresponding to [2M+Na], where [M+Na] = 704.27. An additional species with 

m/z of 682.288 Da was identified and presumed to correspond to [M+H] (Figure 

4.5, B). We therefore deduced DEM40380-F80 contains a compound with the 

exact mass of 681.288 Da. A search within the dictionary of natural products of 

681.288 ± 0.01 Da yielded a single hit; ‘Antibiotic A39079S-1’, suggesting 

DEM40380-F80 contains this particular compound.  Mass spectroscopic analysis 

of DEM40380 70 and 90% elution fractions showed they also contained Antibiotic 

A39079S-1. The structure of Antibiotic A39079S-1 is highly similar to the RNAP 

targeting ansamycin, rifamycin S (Rif-S), albeit with several subtle structural 

differences (Figure 4.5, C). The C27 methoxy group present in Rif-S is 

substituted by a hydroxyl group in Antibiotic A39079S-1. The methyl group at C16 

present in Rif-S is absent in Antibiotic A39079S-1, and an additional methyl group 

is present at the C3 position of naphthoquinone moiety in Antibiotic A39079S-1.  
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Antibiotic A39079S-1 was first isolated from Streptomyces spheroides NRRL 

15600 in Vancouver, Canada (Boeck, 1985). It is a broad spectrum antibiotic with 

a previously uncharacterised mechanism of action. Our results thus far and 

structural similarity to Rif-S indicate Antibiotic A39079S-1 targets RNAP through 

a mechanism of steric occlusion in which the compound binds within the Rif 

pocket and sterically blocks translocation of the nascent transcript. To further 

assess if Antibiotic A39079S-1 targets the Rif pocket on RNAP, we reassessed 

DEM40380-F80 in an in vitro transcription assay with RifR E. coli RNAP bearing 

βH526Y on a linear DNA template containing the T7A1 promoter. DEM40380-

F80 was unable to inhibit transcription performed by the mutant RNAP, 

suggesting Antibiotic A39079S-1 targets RNAP at the Rif binding pocket (Figure 

4.5, D). Previous inhibition of βH526Y RNAP by DEM40380-CE was presumably 

due to the presence of another inhibitory compound within the crude fraction. 
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Figure 4.5 DEM40380 produces the rifamycin class compound ‘Antibiotic A39079S-1’ (A) A 

representative reverse phase HPLC trace of DEM40380 80% MeOH fraction (DEM40380-F80) at 

256nm absorbance. (B) Positive ion mass spectrum corresponding to peak ‘1’ identified in A. 

Probable Ion adducts of ‘Antibiotic A39079S-1’ are indicated. (C) Structural formulae of Antibiotic 

A39079S-1 (left) and Rifamycin S (right). Structural differences are indicated in red. (D) in vitro 

transcription by RifR βH526Y RNAP on a linear DNA template containing the T7A1 promoter, 

performed in the absence or presence of rifampicin or antibiotic A39079S-1. [32P]-RNA products 

(Run-off and terminated) are indicated. Reactions were initiated with the 5’-non-phosphorylated 

dinucleotide primer CpA. 
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4.5 Discussion 

The growing prevalence of infections resistant to antibiotics demands compounds 

with novel modes of action and novel binding interactions. In this chapter, we 

aimed to identify novel RNAP inhibitors produced by actinomycete bacteria from 

a shortlisted library of actinomycetes compiled by our industrial collaborators at 

Demuris. Actinomycetes form a rich reservoir of active natural products, from 

which many of our current antibiotics are derived directly, or synthesised from. 

Demuris possess an extensive collection of actinomycete bacteria from a variety 

of marine and terrestrial sources. In an effort to identify novel transcription 

targeting antibiotics, Demuris performed a screen of their collection in which 

strains were screened against the Bacillus subtilus yvgS reporter strain which has 

lacZ fused to the promoter of the bacterial helicase HelD. This particular promoter 

is upregulated in response to sub-inhibitory concentrations of the transcription 

inhibitor Rif. Consequently, it was assumed this particular strain reports on 

producers of specific transcription inhibitors. However, our work here has shown 

most, if not all, strains forwarded for investigation produce rifamycin class 

antibiotics. This indicates producers of rifamycins may be far more prevalent than 

producers of other transcription inhibitors, or the yvgS reporter strain fails to 

report transcription inhibitors other than rifamycins. Indeed, work at Demuris 

following the course of this project showed certain actinomycete derived 

transcription inhibitors, such as streptolydigin, fail to activate yvgS (unpublished), 

illustrating the limited suitability of the yvgS reporter in drug discovery. 

Consequently, a reporter strain with broader scope for activation is required if 

actinomycete bacteria are to be comprehensively examined for novel RNAP 

inhibitors. 

Nevertheless, Streptomyces DEM40380, isolated from the Atacama Desert in 

Chile, was identified as a likely producer of a previously unknown RNAP inhibitor. 

In vitro transcription assays combined with mass spectroscopic analysis identified 

DEM40380 as a producer of Antibiotic A39079S-1, a broad spectrum ansamycin 

antibiotic with a previously undefined mechanism of action. Here, we have shown 

Antibiotic A39079S-1 exhibited a mechanism of action typical of rifamycin 

inhibitors, in which the compound inhibits transcription of full length RNA products 

whilst concurrently accumulating short abortive RNAs. This indicates the 
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compound acts through steric occlusion of the extending nascent transcript 

following initial phosphodiester bond synthesis (McClure and Cech, 1978, 

Campbell et al., 2001). Furthermore, the antibiotic lost activity at RNAP bearing 

the RifR mutation βH526Y, indicating the compound targets the Rif binding pocket 

on RNAP (Campbell et al., 2001). Indeed, Antibiotic A39079S-1 has a highly 

similar structure to the natural product rifamycin S, a potent inhibitor of RNAP 

(Sensi et al., 1960). The compound possesses the distinctive naphthelenic, 17-

mer ansa chain structure characteristic of rifamycin antibiotics. Yet, the activity of 

antibiotic A39079S-1 sheds new light on the structure-activity relationship of 

rifamycins. Indeed, in the context of antibiotic A39079S-1, the methoxy group at 

C27, common to most rifamycins, can seemingly be cleaved to a hydroxyl without 

abolishing activity. Furthermore, the absence of a C16 methyl group in Antibiotic 

A39079S-1 suggests this substituent is not required for the correct conformation 

of essential oxygen functionalities at C1, C8, C21 and C23. This observation may 

point to a site on the ansa- bridge where small substituents can be introduced 

successfully to the compound.  

To summarise, we have shown the previously uncharacterised compound 

Antibiotic A39079S-1 mediates antibiotic activity through selective inhibition of 

bacterial RNAP. The compound likely binds within the Rif binding pocket on 

RNAP to block the extension of the nascent transcript following initial 

phosphodiester bond formation. We have also shown actinomycetes remain an 

abundant source of active natural products. However, the methods by which we 

screen for producers of these compounds requires further work if we are to 

prevent re-discovery of non-novel compound classes. Indeed, our identification of 

strain DEM4038 as a producer of Antibiotic A39079S-1 provides an example of 

the difficulties in identifying truly novel compounds in the natural product drug 

discovery process. 
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Chapter 5. Ureidothiophene inhibits recognition of -10 promotor 

element by targeting regulatory region 1.2 of sigma subunit 

 

5.1 Introduction  

The synthetic antibiotic ureidothiophene (Urd) (Figure 5.1, A) was discovered in a 

high-throughput screen of some 250,000 commercially available compounds in 

which activity against S. aureus RNAP holoenzyme was assessed in vitro (Arhin 

et al., 2006). The compound was shown to be highly active against S. aureus 

RNAP in vitro, with an IC50 of ~1μM. Urd possessed a narrow spectrum of activity 

against S. aureus ATCC 13709 and S. epidermidis with a ~MIC of 1μg/ml and 

0.25μg/ml, respectively (Arhin et al., 2006). An isopropyl derivative of Urd was 

shown to inhibit RNA and protein synthesis, but not DNA synthesis by S. aureus 

strain RN4220; an effect typical of selective RNAP inhibition. Additionally, the 

compound retained activity against Rif resistant strains of S. aureus suggesting 

the binding site of Urd is different to that of Rif (Arhin et al., 2006). However, the 

exact binding site and mechanism of inhibition by Urd at RNAP remained 

unknown. This study aimed to elucidate the molecular mechanism by which Urd 

inhibits bacterial RNAP. 

5.2 Results 

5.2.1 Ureidothiophene inhibits RNA polymerases in vitro 

Firstly, we assessed the effects of Urd on in vitro transcription by the wild-type E. 

coli RNAP, the most extensively characterised bacterial RNAP. Urd inhibited 

transcription on a linear DNA template containing lacUV5 promoter (IC50   ~15.1 ± 

8.1μg/ml) (Figure 5.1, B). A decrease in full length transcript synthesis coincided 

with a corresponding decrease in the synthesis of short abortive products. This 

mechanism is seemingly different to that of Rif which typically causes an 

accumulation of short abortive products whilst inhibiting full length transcript 

synthesis (McClure and Cech, 1978, Campbell et al., 2001). Indeed, Urd inhibits 

synthesis of both the tri- and tetra- nucleotide abortive products ApApU and 

ApApUpU in an abortive transcription assay (IC50 ~18.5 ± 1.9 μg/ml) (Figure 5.1, 

C).  
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Figure 5.1 Ureidothiophene (Urd) inhibits bacterial RNA polymerases. (A)  Structural formula of 

Urd. (B) Urd inhibition of in vitro transcription performed by WT E. coli RNAP on a linear DNA 

template containing the lacUV5 promoter.  [32P]-RNA products (Run-off and terminated) are 

indicated. Reactions were initiated with the 5’-non-phosphorylated dinucleotide primer ApA. (C) 

Urd inhibition of abortive synthesis of [32P]-labelled ApApU and ApApUpU by WT E. coli RNAP 

holoenzyme on linear DNA template containing the lacUV5 promoter. Reactions were initiated 

with the 5’-non-phosphorylated dinucleotide primer ApA. (D) Sequence of promoters used in E. 

Promoter elements and TSS are indicated. (E) Urd inhibition of in vitro transcription by E. coli 

RNAP holoenzyme on linear DNA templates containing different promoter sequences as indicated 

in D. Error bars are ± SD from 3 independent experiments. (F) Urd inhibition of in vitro 

transcription by bacterial RNAP holoenzymes from different bacteria on linear DNA templates 

containing the T7A1 promoter. Error bars are ± SD from at least 3 independent experiments. 
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To ensure the transcription inhibition by Urd wasn’t specific to the lacUV5 

promoter, we assessed Urd inhibition of abortive transcription by wild-type E. coli 

RNAP on linear DNA templates containing the T7A1, T7A2 promoter and the 

extended -10 galP1 promoter (Figure 5.1, D). These promoters represent 

differing deviations from consensus -10 and -35 promoter element sequences. 

For example, the galP1 promoter sequence possesses a 5’-TG-3’ motif 2 bps 

upstream of the -10 element but does not possess a recognisable -35 element. 

On the other hand, T7A1 and T7A2 possess distinct -10 and -35 promoter 

element sequences whilst also possessing differing lengths within the spacer 

region (see section 1.2.4 for further details on promoter architecture). Urd 

inhibited abortive transcription on T7A1, T7A2 and the extended -10 galP1 

promoters with comparable potency (Figure 5.1, E). This suggests Urd inhibition 

is not sequence specific per se, and possesses a general mechanism of 

inhibition. We also assessed the ability of Urd to inhibit transcription by different 

bacterial RNAPs (Figure 5.1, F). In this experiment we used the T7A1 promoter 

as template. Consistent with previous observations, S. aureus RNAP was highly 

susceptible to Urd with an IC50 ~ 0.3 (± 0.3) μg/ml (Arhin et al., 2006). In contrast, 

T. thermophilus and M. smegmatis RNAPs were much less sensitive to Urd.  

5.2.2 Ureidothiophene is an inhibitor of transcription initiation 

Concurrent inhibition of both abortive and run-off transcription suggests Urd may 

inhibit nucleotide binding or catalysis. Therefore, we analysed the ability of Urd to 

inhibit single and multiple nucleotide addition by elongation complexes formed by 

E. coli RNAP core. Elongation complexes were assembled with synthetic 

oligonucleotides wherein the elongation complex contained fully complementary 

template and non-template strands and 5′- radiolabelled RNA (Figure 5.2, A). As 

seen from Figure 5.2, even a high concentration (100 μg/mL) of Urd had no effect 

on single nucleotide and multiple nucleotide RNA extension, indicating that the 

inhibitor doesn’t effect NTP binding or catalysis. This suggests Urd targets an 

early stage of transcription initiation. 
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Figure 5.2. Ureidothiophene does not inhibit transcription elongation. (A) The elongation complex 

scaffold (EC) used in (B) and (C). Template DNA, non-template DNA, and 5’-[32P]-labelled RNA 

are as indicated. (B) 5’-[32P]-labelled RNA products synthesised from single nucleotide addition of 

the EC scaffold shown in A, in the absence and presence of Urd (100μg/ml). 5’-[32P]-RNA13 

primer and 5’-[32P]-RNA14 product are indicated. Rate constants are shown below the gels 

(numbers that follow the ± sign are standard errors). (C) 5’-[32P]-labelled RNA products 

synthesised from multiple nucleotide addition of the EC scaffold shown in A, in the absence and 

presence of Urd (100μg/ml). 5’-[32P]-RNA13 primer indicated, and quantified 5’-[32P]-RNA product 

is marked by asterisk. Rate constants are shown below the gels (numbers that follow the ± sign 

are standard errors)      
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Figure 5.3 Urd inhibits formation of the RNAP open promoter complex. (A) Effect of order of 

addition of Urd, prior to, or following addition of promoter DNA, on inhibition of in vitro transcription 

by E. coli RNAP holoenzyme. (B) KMnO4 probing of RNAP-lacUV5 promoter complexes 

assembled in the absence and presence of Urd (100μg/ml) Non-template strand was 5’-[32P]-

labelled. The lacUV5 promoter sequence is shown above the gel with sensitive thymines 

indicated by black arrows. Profiles to the right of the gel are representative scans for free DNA 

(blue), RPo (red) and RPo + Urd (black). Position of thymine’s susceptible to modification by 

KMnO4 in RPo are indicated.  Sanger sequencing of the promoter fragment is shown on the left 

hand portion of the gel. (C) Electrophoretic mobility shift assay (EMSA) of RNAP-lacUV5 promoter 

complexes assembled in the absence and presence of Urd (100μg/ml). Complexes were further 

challenged with heparin as indicated. Non-template strand was 5’-[32P]-labelled. Complexes were 

resolved in native 4.5% PAGE. The position of the RNAP-lacUV5 promoter complexes (RP) and 

non-bound DNA (Free DNA) are shown. 
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Figure 5.4 Urd prevents recognition of downstream promoter DNA. (A) DNAase I probing of 

RNAP-lacUV5 promoter complexes assembled in the absence and presence of Urd (100μg/ml) 

Non-template strand was 5’-[32P]-labelled. Profiles to the right of the gel are representative scans 

for free DNA (blue), RPo (red) and RPo + Urd (black). Sanger sequencing of the promoter 

fragment is shown on the left hand portion of the gel. (B) Bar graph showing quantification of 
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DNase I footprinting data shown in A. Chart indicates peak area values for indicated bands within 

promoter DNA fragment in RPo in the presence and absence of Urd, normalised to peak area 

values for corresponding position in free DNA. Error bars are ± SD. 

 

5.2.3 Ureidothiophene prevents RNAP interaction with downstream 

promoter DNA 

We found Urd inhibition possesses a marked order-of-addition dependency. The 

compound inhibits initiation of transcription at a stage prior to formation of 

promoter open complex as it does not have any effect on transcription when 

added after formation of RPo (Figure 5.3, A). We therefore, analysed if Urd 

targets formation of the RPo by KMnO4 footprinting, which probes unpaired 

thymidine residues in the melted region of the RPo. Linear DNA fragment 

containing the lacUV5 promoter was radiolabelled at the 5’ end of the non-

template strand. As can be seen from Figure 5.3, B, Urd (100μg/ml) added before 

mixing RNAP and promoter DNA completely inhibited formation of RPo; 

thymidines in positions -10, -7, -5 and -3 that were melted in RPo, remained 

double-stranded in the presence of Urd.  

Urd may block interactions of RNAP with DNA or prevent crucial interactions of 

RNAP with promoter DNA that precede the melting and/or loading of promoter 

DNA in to the RNAP active-site cleft. In order to distinguish between these 

possibilities, we analysed RNAP-promoter formation by electrophoretic mobility 

shift assay (EMSA) (Straney and Crothers, 1985). E. coli RNAP was treated with 

Urd (100 μg/ml) and then incubated with radiolabelled lacUV5 promoter DNA. As 

can be seen from Figure 5.3, C, Urd did not abolish interaction of RNAP with 

promoter DNA. However, a challenge with polyanion heparin leads to destruction 

of the complexes formed in the presence of Urd. Heparin sequesters free RNAP 

and is also thought destabilise RPc, however has less effect on stable RPo 

(Walter et al., 1967). We therefore conclude that Urd blocks a stage of 

isomerisation into RPo, but does not abolish recognition of promoter DNA by 

RNAP. 

To understand the nature of Urd/RNAP/promoter complexes, we performed 

DNase I footprinting of promoter complexes in the absence or presence of Urd 

(100μg/ml) added before mixing RNAP and the promoter DNA (lacUV5 with 5’-
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radiolabelled non-template strand). DNase I is a non-specific endonuclease that 

can be used to identify DNA regions protected by DNA binding proteins such as 

RNAP. Our results indicate Urd doesn’t cause a significant change in protection 

in the upstream promoter regions from positions -39 to -25 (Figure 5.4), 

suggesting that σR4.2 is engaged with the -35 promoter element in the presence 

of Urd. However, a large difference in protection pattern is observed downstream 

of the -35 promoter region. Hypersensitive sites at positions -23 and -24 on the 

non-template strand, that arise from distortion of the 18 base pair spacer region 

between the -10 and -35 promoter elements (Carpousis and Gralla, 1985), have 

diminished sensitivity to DNAse I digestion in the presence of Urd (Figure 5.2, A), 

suggesting the -10 may be disengaged by σR2 . Indeed, Urd causes a strong 

deprotection of nearly all bases downstream of position -20 up to +18. Notably, -

11 adenosine residue, essential for recognition of -10 element (Bae et al., 2015a, 

Roberts and Roberts, 1996), is deprotected in the presence of Urd indicating the -

10 element is unable to form stable contacts with σR2 (Figure 5.4, A, B). We 

therefore conclude that Urd doesn’t inhibit binding of the -35 promoter element, 

however the inhibitor prevents melting of -10 element and/or prevents correct 

loading of DNA within the active site cleft and DNA binding to the β/ β’ channel.  

5.2.4 Ureidothiophene doesn’t inhibit binding of DNA to downstream DNA-

binding channel or loading of template DNA into the active cleft 

Urd may occlude the access of single stranded template DNA into the active site 

cleft and/or occlude the binding of duplex DNA into the β and β’ downstream DNA 

binding channel and/or affect the recognition of downstream promoter elements 

essential for formation of RPo. Two previously described inhibitors of RNAP, 

fidaxomicin (Fdx) and ripostatin (Rip), were shown to inhibit isomerisation into 

RPo. Fdx blocks RPo formation by locking the RNAP clamp in an open 

conformation by binding to the switch region, the molecular hinge that facilitates 

clamp movement, and by blocking binding of template DNA within the active 

centre (Boyaci et al., 2018, Lin et al., 2017a, Tupin et al., 2010a). Like Urd, Fdx 

doesn’t affect the binding of upstream promoter elements whilst destabilising 

binding of downstream promoter DNA (Tupin et al., 2010a, Morichaud et al., 

2016). Rip also binds to the switch region but inhibits isomerisation to RPo at a 

later stage than Fdx by trapping a promoter complex with a partially melted 
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transcription bubble that fails to propagate to the transcription start site. 

(Mukhopadhyay et al., 2008). 

We analysed if the mechanism of action of Urd has similarities with that of Fdx 

and Rip by using single-stranded promoter of the origin of replication of M13 

bacteriophage (M13ori; Figure 5.5, A) (Bochkareva and Zenkin, 2013, Zenkin and 

Severinov, 2004, Zenkin et al., 2006). M13ori forms a hairpin which is recognised 

by the downstream DNA-binding channel of RNAP but does not require -10 or -

35 elements for its function. Neither DNA upstream of the +4 position of the ‘non-

template’ strand, nor upstream of -3 position of the ‘template’ stand, are required 

for binding of the M13 hairpin by RNAP. Although, σ70 is required for the initiation 

 

Figure 5.5 Ureidothiophene doesn’t inhibit binding of DNA to downstream DNA-binding channel or 

loading of template DNA into the active cleft (A) Structure of the single-stranded M13 minimal 

promoter recognized by downstream-DNA-binding channel of RNAP, and which binding does not 

depend on -10/-35 elements or on the σ70 subunit. 18nt RNA product (pRNA) synthesized on 

M13ori promoter is shown with an arrow. (B) in vitro transcription of an 18nt pRNA primer 

performed by WT E. coli RNAP holoenzyme, on single stranded M13 minimal promoter template 

shown in A. Experiment was performed in the absence and presence of ureidothiophene, and 

switch region targeting inhibitors ripostatin and fidaxomicin.  [32P]-pRNA and [32P]-abortive 

products are indicated.    
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of transcription at M13ori, σ70 is not required for the binding of M13ori to RNAP 

(Zenkin et al., 2006, Bochkareva and Zenkin, 2013, Zenkin and Severinov, 2004). 

Thus, M13ori can be used to assess if a compound inhibits downstream DNA-

binding and/or loading of the single-stranded DNA into the active cleft (Zenkin et 

al., 2006, Zenkin and Severinov, 2004). Therefore, we tested transcription by E. 

coli holoenzyme on minimal M13ori that leads to the formation of an 18nt primer 

RNA (pRNA; Figure 5.5, A, B), in the presence of the inhibitors Urd, Fdx and Rip. 

As expected, Fdx and Rip strongly inhibit transcription on M13ori (Fig 5B) 

(Srivastava et al., 2011, Tupin et al., 2010a). However, Urd has no effect of 

formation of pRNA. Results indicate that, unlike Fdx and Rip (Tupin et al., 2010a, 

Mukhopadhyay et al., 2008), Urd does not occlude the binding of single stranded 

template DNA into the active site and does not prevent binding of downstream 

DNA duplex to the downstream DNA channel. Taken together, the above data 

suggest that Urd inhibits isomerisation from RPc to RPo by precluding melting of 

the -10 promoter element, potentially through a previously unseen mode of 

action. 

5.2.5 Ureidothiophene targets σR1.2  

To delineate the putative binding site of Urd, we isolated an S. epidermidis 

spontaneous Urd resistant mutant conferring resistance to Urd termed Urd-Mut1 

(Figure 5.6, A). Urd-Mut1 was isolated from LB agar plates containing 12.5 μg/ml 

Urd (4 x MIC) and 2.5% Pluronic F68. The Pluronic F68 copolymer was used in 

this instance to improve solubility of Urd, and is further known to improve 

penetration of small molecules across cellular membranes. Ureidothiophene 

resistant mutants were identified by their growth on this media and confirmed by 

re-streaking on the same media, leading to the identification of a single mutant - 

Urd-Mut1. Note that the low number of mutants identified may perhaps be due to 

a low resistance frequency in the S. epidermidis strain used here and/or insufficient 

plating of cells onto the growth media (see section 2.15). Genome sequencing 

revealed a sole amino-acid substitution in the genome of the Urd-Mut1; an E105Q 

mutation in the rpoD gene encoding the primary sigma factor, SigA. The mutation 

is located within σR1.2 (Figure 5.6, B). To confirm this mutation is responsible for  
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Figure 5.6 Urd inhibits RNAP by targeting σR1.2. (A) Table indicating the MIC values of S. 

epidermidis ATCC12228 and Urd-Mut1, a spontaneous Urd resistant S. epidermidis ATCC12228 

with an σA E105Q mutation. MIC was gathered by solid agar dilution method (Wiegand et al., 2008). 

(B) Orthogonal views of the location of S. epidermidis σA E105 residue (E104; E. coli numbering) 

mapped onto the structure of E. coli holoenzyme. Core RNAP is depicted in grey ribbon model. σ70 

is depicted in orange with residue E104 indicated depicted as blue sphere model. (C) Abortive 

synthesis of [32P]-labelled CpApU by cellular WT S. epidermidis RNAP and cellular σA E105 S. 

epidermidis RNAP on linear DNA template containing the T7A1 promoter in the absence and 

presence of Urd. Reactions were initiated with the 5’-non-phosphorylated dinucleotide primer CpA. 

% inhibition by Urd normalised. (E) Urd inhibition of in vitro transcription by WT E. coli RNAP 

holoenzyme and σ70 E104Q E. coli RNAP holoenzyme. Error bars are ± SD from 3 independent 

experiments. (F) Structural recognition of the promoter -10 element by σR2, and proposed allosteric 

switch of σR1.2 within WT E. coli holoenzyme. Promoter DNA is depicted in black, with the -10 

element depicted with atomic colouring, non-template base at -7 position is indicated. σ70 is depicted 

in gray, and the RNAP β’ coiled-coil domain depicted in yellow. Residues within the proposed σR1.2 

allosteric switch are indicated in sphere model. σR1.2 (residues 96-126) is depicted in pink, σR2.3 

(residues 416 to 434) is depicted cyan, and 2.4 (residues 435-452) is coloured green (Feklistov and 

Darst, 2011).  

 

the resistance phenotype, we purified cellular RNAP holoenzyme from wild-type S. 

epidermidis and Urd-Mut1, and analysed sensitivity to Urd on the T7A1 promoter. 

Unlike the wild-type S. epidermidis RNAP, holoenzyme bearing the E105Q 

mutation is highly resistant to inhibition by Urd (Figure 5.6, C). This result confirms 

RNAP is a cellular target of Urd and also indicates the E105Q mutation underlies 

the observed resistance phenotype. To further corroborate this finding, we 

introduced the corresponding mutation into the E. coli σ70 subunit (E104Q; E. coli) 

and assessed the effect of the mutation on E.coli holoenzyme sensitivity to Urd. 

Indeed, the mutant holoenzyme was almost 6-fold more resistant to Urd than the 

WT RNAP (Figure 5.6, E). σR1.2 is implicated in the formation of RPo (Haugen et 

al., 2006, Zenkin et al., 2007, Wilson and Dombroski, 1997, Baldwin and 

Dombroski, 2001). Our results therefore suggest that inhibition of RPo formation 

by Urd may involve σR1.2. 

5.4 Discussion 

In this study, we have shown the transcription inhibitor Urd inhibits initiation of 

transcription by preventing the formation of a transcription competent open 

promoter complex. Our data indicate Urd inhibition of RPo formation may involve 

σR1.2. This particular σ sub-region is implicated in the formation of open 

promoter complexes by regulating recognition of downstream promoter elements 
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(Baldwin and Dombroski, 2001, Zenkin et al., 2007).  Indeed, here, we identify a 

mechanism of transcription inhibition involving σR1.2 wherein Urd prevents 

melting of the -10 promoter element to prevent formation of an open promoter 

complex. 

Our data show Urd, like other inhibitors of open complex formation, acts at the 

promoter melting stage of transcription initiation. However, we have shown Urd 

acts through a different mechanism to previously described inhibitors of RPo 

formation, as the compound fails to inhibit loading of template DNA within the 

active centre. Fdx prevents recognition of the promoter -10 element and directly 

targets loading of single stranded template DNA into the active centre cleft, a 

detail supported by our own findings at M13ori DNA template (Tupin et al., 

2010a). Urd, however, despite also preventing simultaneous recognition of the -

10 and -35 elements, appears not to impede the interaction of single stranded 

template DNA at the active site, showing that Urd doesn’t inhibit RPo formation 

by targeting template loading. This is highly indicative Urd acts through a 

mechanism different to that of other inhibitors of RPo formation.  

A series of 2nd generation ureidothiophene-2-carboxylic acids (2G-Urds) 

structurally related to Urd were shown to possess mutually exclusive binding with 

Myx, Rip and Cor; switch region targeting ligands that bind to and lock the RNAP 

cleft in a closed conformation (Mukhopadhyay et al., 2008, Belogurov et al., 

2008, Fruth et al., 2014). Fruth et al used saturation transfer difference NMR to 

show 2G-Urds competitively bind with these closed cleft locking ligands (Fruth et 

al., 2014). In this case, the authors concluded that 2G-Urds competitively bind at 

the same site on RNAP - the switch region. However, these aforementioned 

inhibitors target a later promoter melting step in which the promoter DNA is 

partially melted but propagation to the transcription start site is obstructed due to 

clamp conformation (Boyaci et al., 2019). This is dissimilar to the earlier stage of 

promoter complex formation targeted by Urd in which complexes possess an 

entirely closed transcription bubble. If Urd binds at the same site as 2nd 

generation analogues, we propose an alternative explanation. It is tempting to 

speculate this competitive binding does not arise from direct competition at the 

switch region binding site but instead arises from altered clamp conformation 

induced by ureidothiophenes that precludes the closed clamp conformation likely 
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required for Myx, Cor and Rip binding. Note that Myx, Cor and Rip are closed 

cleft locking ligands and therefore most probably require a closed clamp 

conformation in order for the compound to bind RNAP. Indeed, biochemical data 

from the same study suggests 2G-Urd compounds do not interact with RNAP 

residues crucial for Myx binding. We therefore suggest that Urd may affect 

conformation of the RNAP clamp, in addition to targeting σR1.2, predisposing an 

open or partly closed clamp conformation that may influence recognition of the -

10 and -35 elements, but not through a means identical to Fdx in which binding of 

template DNA within the active centre is affected.  

We have shown that Urd transcription inhibition is dependent on σ factor sub-

region 1.2, in particular residue E104. σR1.2 has previously been shown to play a 

role in formation of stable open promoter complexes, in particular it is implicated 

in allosteric control of -10 promoter element recognition by σR2.3 (Baldwin and 

Dombroski, 2001, Zenkin et al., 2007). Furthermore, σR1.2 interacts with the 

‘discriminator’ region of the non-template strand of promoter DNA to further 

stabilise RNAP promoter complexes (Haugen et al., 2006, Haugen et al., 2008b). 

The dependence of Urd inhibition on σR1.2 integrity suggests the compound 

mediates inhibition of transcription by interacting with or influencing this particular 

σ factor sub-region. The preclusion of recognition of the -10 promoter element by 

Urd suggests the inhibitor may target a crucial allosteric signal from σR1.2 to 

σR2.3.  

Mapping of the Urd resistance mutation E104Q onto the structure of E. coli 

holoenzyme shows the residue is located in the centre of the σR1.2 α-helix 

(Figure 5.6, B, F). It has been shown previously that holoenzymes with an E104V 

mutation are unable to form stable open promoter complexes and are highly 

defective in both abortive and run-off transcription, suggesting this residue is 

fundamental to the σR1.2 ‘allosteric signal’ (Baldwin and Dombroski, 2001) . 

Indeed, structural data of the E. coli holoenzyme shows this particular residue 

interacts with residue I290 of the β’ coiled-coil domain both within RPo and apo 

form of RNAP (Figure 5.6, F). Concurrently, residue E381 of σR2.1 also makes 

contacts with the same I290 residue, creating a mechanical linkage between 

σR1.2 and σR2.1 (Figure 5.6, F). This network of structural contacts is ideally 

positioned to influence -10 promoter element binding by σR2.3 and it is 
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reasonable to suggest this region must adopt a strict conformation for successful 

DNA binding. Interestingly, it has been previously shown that certain mutation of 

σR1.2 can augment the activity of Fdx at RNAP (Morichaud et al, 2016). 

However, here, we have shown an effect to the contrary for inhibition by Urd, 

wherein mutation of σR1.2 decreases activity of the compound at RNAP 

Nonetheless, although these observations serve to obfuscate interpretation of the 

data, they serve to reaffirm the role of σR1.2 in inhibition of RPo formation. 

Indeed, if the Urd resistance mutation E104Q delineates a residue targeted by 

Urd, it is plausible to propose Urd may effect the structural elements of the σR1.2 

allosteric signal and consequently prevent the conformation required for promoter 

recognition by σR2.3. However, it is possible the compound binds at a site away 

from these structural elements, and the mutation at residue E104 disrupts a 

separate allosteric signal linked to σR2. 

In summary, Urd is the first transcription inhibitor that blocks the formation of the 

open promoter complex by targeting σ factor sub-region 1.2, and provides an 

exciting new compound for future drug development. Additionally, the 

identification of a novel putative binding site affords a new target for rational drug 

design.  Urd also provides and interesting tool with which to dissect the process 

of transcription initiation. However, further structural analysis is required to 

confirm the exact binding site of Urd. 
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Chapter 6. Kanglemycin A inhibits transcription by a novel steric 

occlusion mechanism 

 

6.1 Introduction 

The natural product antibiotic Kanglemycin A (KglA) was first isolated from the 

fermentation broth of the actinomycete bacteria Nocardia mediterranei var. 

kanglensis 1741-64 (Wang et al., 1988). The compound was shown to possess 

activity against certain Gram positive bacteria. However, no mechanism of action 

had been previously described. The compound is an ansamycin antibiotic 

structurally related to the rifamycins (Figure 6.1, A). However, KglA possesses 

structural elements not seen in other naturally occurring or semisynthetic 

rifamycins. In particular, KglA contrasts from other rifamycins through two large 

substituents present on the ansa bridge; a 2,2-dimethylsuccinic acid chain at C20 

and a β-O-3,4-O,O’ methylene digitoxose moiety at C27. These variations are 

particularly unusual as synthetic ansa-bridge modifications of bioactive rifamycins 

frequently lead to inactivation of the compound. Consequently, synthetic 

modifications have focused primarily on the naphthoquinone moiety.  

More recently, our industrial collaborators at DemurisTM identified Amycolotopsis 

DEM30355 as a producer of KglA. In an attempt to identify new transcription 

targeting antibiotics, the strain extract was screened against the yvgS  

Bacillus subtilus reporter strain that has lacZ fused to the promoter of the 

bacterial helicase HelD (Figure 6.1, B). This particular promoter was chosen 

because it is known to be upregulated in response to sub-inhibitory 

concentrations of the transcription inhibitor rifampicin (Hutter et al., 2004b). 

Consequently, in a disk assay, rifamycin type transcription inhibitors produce a 

blue halo at the frontier of the zone of inhibition upon X-gal infused agar plates. 

DEM30355 produced a compound (later identified as KglA) that activated this 

reporter strain. Interestingly, KglA was also active against the Rif resistant B. 

subtilus reporter strain possessing a βH482R (βH526R in E. coli numbering) 

RNAP mutation. Accordingly, DEM30355 was cultivated at 500L scale and KglA 

extracted and purified by multi-step chromatography. Initial investigative work 

performed by Dr Lucia Ceccaroni and Dr Hamed Mosaei showed that KglA  



 

88 
 

 

Figure 6.1 Preliminary identification of KglA as an inhibitor of RNAP. Adapted from (Mosaei et al., 

2018) (A) Chemical structures of Rifampicin (left), with the synthetic 4-methyl-1-piperazinyl moiety 

at C3 indicated in purple, and Kanglemycin A (right) with 2,2-dimethylsuccinic acid chain at C20 

and a β-O-3,4-O,O’ methylene digitoxose moiety at C27, indicated in pink and red, respectively. 

(B)  Disk diffusion assay with Kanglemycin A, Rifampicin, and Carbenicillin (negative control). 

Paper disks soaked with antibiotic were placed on LB agar plates infused with X-gal and lawn of 

yvgS B. subtilis reporter strain carrying the lacZ gene under the HelD promoter (left) and an 

identical Rif resistant yvgS B. subtilus possessing βH482R RNAP mutation (βH526R in E. coli 

numbering) (Mosaei et al., 2018). The HelD promoter is induced during partial inhibition of 

transcription (Hutter et al., 2004b). Note, the blue halo at the frontier of the zone of growth 

inhibition in the case of transcription inhibitors. (C) Quantification of inhibition of in vitro 

transcription performed by WT E. coli RNAP and RifR E. coli RNAPs on a linear DNA template 
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containing the T7A1 promoter. Quantification is derived from average of [32P]-labelled run-off and 

terminated transcription products. Values were normalised to quantity of [32P] RNA synthesised in 

the absence of inhibitor. Numbers in brackets are ± SD (Mosaei et al., 2018). 

 

inhibits WT E. coli RNAP in vitro. Furthermore, the compound retained activity 

against a suite of Rif-resistant RNAPs including βS531L, βD516V, βD516Y, 

βH526Y, βH526P,βH526R and βI572F (Figure 6.1, C). These mutants 

correspond to frequently observed Rif resistant clinical isolates of M. tuberculosis 

(Gill and Garcia, 2011).  

These initial results suggest that KglA binds to and inhibits bacterial RNAP. 

However, the exact mode of action of KglA at RNAP remained unknown. In this 

study we aimed to elucidate the molecular mechanism of transcription inhibition 

by KglA. 

6.2 Results 

6.2.1 Kanglemycin A inhibits transcription at an earlier stage than 

Rifampicin 

Activation of the helD promoter by KglA and the compounds structural similarities 

to rifamycins suggests it may inhibit transcription via a similar mechanism to that 

of rifampicin. Consequently, we compared the effects of Rif and KglA on 

transcription by WT E. coli RNAP on a linear DNA template containing the T7A1 

promoter. In this instance, the dinucleotide primer CpA was used to initiate 

transcription. Interestingly, KglA inhibited transcription of full length RNA 

transcripts (both terminated and run off) whilst concurrently causing an 

accumulation of short tri- and tetra- nucleotide abortive products (Figure 6.2, A). 

This mechanism is typical of rifamycins (McClure and Cech, 1978, Campbell et 

al., 2005), as illustrated by transcription inhibition of rifampicin. The principal 

mode of action of rifamycins is through steric occlusion of the translocating 

nascent transcript following initial phosphodiester bond synthesis (Campbell et 

al., 2001).  

This results in inhibition of synthesis of full length transcripts but accumulation of 

short abortive products. Interestingly, however, it was noted that the ratio of tri- 

(CpApU) to tetra-nucleotide (CpApUpC) abortive products were different for KglA  
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Figure 6.2 Comparable mechanisms of rifampicin (Rif) and kanglemycin A (KglA). (A) In vitro 

transcription by E. coli RNAP on a linear DNA template containing the T7A1 promoter, performed 

in the absence or presence of rifampicin (left) or Kanglemycin A (right). [32P]-RNA products (Run-

off and terminated) are indicated. Reactions were initiated with the 5’-non-phosphorylated 

dinucleotide primer CpA. [32P]-CpApU and [32P]-CpApUpC are indicated. Note, tetra-nucleotides 

migrate faster than tri-nucleotides under the electrophoretic conditions used here (Borukhov et al., 

1993). (B) Bar chart showing quantification of the ratio of [32P]-CpApU and [32P]-CpApUpC in the 

presence of Rif or KglA, as shown in (A) - the percentages represent the quantity of the 
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respective abortive product in respect of the overall quantity of tri- and tetra- nucleotide abortive 

products synthesised in the respective reaction. (C) In vitro transcription by E. coli RNAP on a 

linear DNA template containing the T7A1 promoter, performed in the absence or presence of 

rifampicin or Kanglemycin. Indicated are different ratios of the di-nucleotide (pppApU) and the tri-

nucleotide (pppApUpC) abortive products in the presence of Rif and KglA. Transcription was 

performed in the presence of the nucleotides depicted (in the absence of the CpA primer). Note 

that, in the 33% gel, runoff and termination products remain in the gel well. 

 

than for Rif (Figure 6.2, B). In the presence of KglA, there is greater inhibition of 

tetra-nucleotide synthesis compared to Rif. This suggests that KglA acts at a 

stage preceding that of Rif, perhaps by increased steric hindrance to the 

translocating nascent transcript. 

Interestingly, KglA completely prevents synthesis of triphosphorylated tri-

nucleotide and even inhibited the production of triphosphorylated di-nucleotide 

(~70-fold inhibition), as compared to Rif (~3-fold inhibition) (Figure 6.2, C). This 

result further indicates that KglA affords additional hindrance to the translocating 

nascent transcript and may even effect binding of the initiating NTP substrate. 

6.2.2 Structural basis of Kanglemycin A – RNAP binding interaction  

To reveal the structural basis for RNAP inhibition by KglA, we established a 

collaboration with Prof Katsuhiko Murakami of the Department of Biochemistry & 

Molecular Biology at Pennsylvania State University (Penn State). All 

crystallographic data shown here were gathered by Dr Vadim Molodstov (Penn 

State) & Prof Katsuhiko Murakami (Penn State). 

To analyse binding interactions of the RNAP-KglA complex we determined the X-

ray crystal structure of T. thermophilus holoenzyme in complex with the pyrG 

promoter template and KglA at 3.0Å resolution (Mosaei et al., 2018) (Figure 6.3, 

A, B). Electron density maps showed unambiguous density within the Rif binding 

pocket of the RNAP β subunit. The binding mode of KglA within the binding 

pocket is highly similar to that of RIF. KglA forms polar contacts with several 

residues involved in RIF binding; including βQ513, βF514, βS531 and βR540 (E. 

coli numbering) (Figure 6.3, C).  
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Figure 6.3 Structural basis of kanglemyicn A (KglA) inhibition. (A) Overall view of T. thermophilus 

RNAP with KglA (left, PDB: 6CUU) and Rif (right, PDB: 1YNN) bound within the RIF-binding 

pocket. RNAP (gray core and orange σA) and DNA (red) are depicted as ribbon models, and KglA 

(blue) and Rif (green) stick model. (B)  A close-up view of the RIF-binding pocket of the T. 

thermophilus RNAP containing KglA (in blue, with the side chains in yellow) and Rif (green). 

RNAP is shown as a semi-transparent surface model (pale gray), KglA is shown as a stick model 

with the ansa bridge side chains labelled. (C) β subunit residues forming the RIF-binding pocket 

shown as stick models. The hydrogen bonds between KglA and β amino acid residues are 

depicted by yellow dotted lines. (D) Critical oxygen functionalities present in rifampicin (left) and 

kanglemycin (right) involved in binding to RNAP are circled in red. Relevant carbon atom 

numbering is indicated in the left panel (E) Quantification of inhibition of in vitro transcription by 

rifampicin (left panel) kanglemycin (right panel). Transcription was performed by WT E. coli RNAP 

and mutant RNAPs on a linear DNA template containing the T7A1 promoter. Reactions were 

initiated with 5’- non-phosphorylated dinucleotide primer CpA. Quantification is derived from 

average of [32P]-labelled run-off and terminated transcription products. Values were normalised to 

quantity of [32P] RNA synthesised in the absence of inhibitor. Error bars are ± SD from at least 3 

independent experiments.    

 

However, interestingly, KglA conformation within the Rif pocket is subtly different 

to that of Rif. The ansa-bridge adopts a slightly tilted conformation away from the 

molecular surface of the β subunit preventing the polar interaction of C23 with 

βF514 seen in RNAP-Rif complexes, an interaction thought essential to Rif 

binding. However, the β-O-3,4-O,O’ methylene digitoxose moiety at C27 creates 

a new hydrogen bond with the side chain of βR143; this interaction does not 

occur with Rif (Figure 6.3, C, D). Furthermore, the acid side chain establishes 

further non-polar interactions with surrounding residues dramatically increasing 

the overall binding surface of KglA compared to Rif. 

To validate this novel interaction by the novel C27 β-O-3,4-O,O’ methylene 

digitoxose moiety with βR143, we created E. coli RNAP with βR143A mutation. 

The mutation had no effect on sensitivity to Rif. However, the mutant RNAP was 

over 10-fold less sensitive to KglA, reaffirming the importance of this residue in 

KglA binding. Nevertheless, the IC50 of KglA for the mutant RNAP is still lower 

than for any Rif resistant mutant RNAP, suggesting other interactions within the 

binding pocket are still important. Indeed, only the introduction of a βR143A 

concurrently with the common clinical Rif resistant mutation βS531L induced 

resistance to KglA (Figure 6.3, E). (Note, in vitro transcription data for Rif shown 

in Figure 6.3 E, left panel, was gathered with support from Dr Hamed Mosaei)   
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6.2.3 Structural basis of Kanglemycin A mode of action 

Rifamycin inhibitors act through steric hindrance of translocating nascent 

transcript following the synthesis of the first or second phosphodiester bond 

formation (McClure and Cech, 1978). Consequently, this leads to a reduction in 

full length transcripts and increase in short abortive products. However, during de 

novo transcription, KglA inhibits transcription of both full length transcripts and 

abortive products, indicating that KglA acts at an earlier stage than Rif. 

To further investigate the effects of KglA on substrate binding and 

phosphodiester bond formation, the structure of a T. thermophilus RNAP de novo 

initiation complex (4Q4Z) was overlaid onto the T. thermophilus RNAP-KglA and 

RNAP-Rif complex structures. Modelling of Rif shows no substantial steric clash 

with initiating substrate nor DNA. Additionally, the piperazine N4 is positively 

charged and thus will not disfavour NTP binding in the i site through electrostatic 

repulsion with the negatively charged oxygens of the γ-phosphate (Figure 6.4, A). 

This is consistent with previous data suggesting Rif has a minor effect on Km of 

initiating substrate (McClure and Cech, 1978). Furthermore, there is sufficient 

flexibility in the Rif C3 sidechain and also sufficient space to accommodate 

extension of the nascent transcript to 3-mer before a significant clash with the γ-

phosphate of the initiating nucleotide.  

Structural modelling of KglA, however, within T. thermophilus RNAP de novo 

initiation complex indicates that the orientation of the unique C20 2,2-

dimethylsuccinic acid moiety would generate a moderate steric clash with the γ-

phosphate of the initiating NTP (Figure 6.4, B). This moderate clash explains how 

KglA can inhibit dinucleotide synthesis. Additionally, the modelled structure 

shows the negatively charged carboxylic acid group of the 2,2-dimethylsuccinic 

acid would further disfavour initiating NTP binding through electrostatic repulsion 

of the negatively charged oxygens of the 5’-triphosphate group (Figure 6.4, B). 

To test this hypothesis, we assessed KglA inhibition of transcription initiated with 

nucleotide monophosphate (NMP). Structural data suggest there would be no 

steric clash between the C20 2,2-dimethylsuccinic acid moiety and the α- 

phosphate of an initiating NMP. However, electrostatic repulsion between 2,2-

dimethylsuccinic acid side chain and α- phosphate may disfavour NMP binding 
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and transcript translocation and consequently inhibit di- and tri-nucleotide 

synthesis. As can be seen from Figure 6.4, C, as compared to Rif, KglA 

moderately inhibits synthesis of pApU suggesting this electrostatic repulsion 

plays an influential role in KglA inhibition. Furthermore, synthesis of pApUpC 

(which is not inhibited by Rif) is strongly inhibited by KglA. This data reaffirms 

both steric and electrostatic effects of KglA hinder both formation of the first 

phosphodiester bond and translocation of the 5’-phosphorylated dinucleotide. 

 

Figure 6.4 Structural basis for mechanism of action of kanglemycin A. View of the RNAP active 

site from T. thermophilus de novo initiation complex (PDB: 4Q4Z) with bound Rif (green) (PDB: 

1YNN) superimposed. Depicted  is the t-strand DNA from +1 to −7 (light gray), the initiating NTP 

substrates (i site NTP, ATP; i+1 NTP, CMPcPP; (orange/purple)) ,and two Mg2+ ions , Mg-I and 

Mg-II (green spheres; Mg-I is the bound in the active site, Mg-II is bound to the i+1 NTP). Rif and 

the NTPs are depicted as transparent surface models. Positive charge (+) of the Rif piperazine 

moiety (blue), and negative charge (-) of the i NTP γ-phosphate are indicated. (B) Identical to (A) 

but depicting Kanglemycin A (coloured as in Fig. 5.3). Note the proximity of electrostatic charge in 

each case. (C) ) In vitro transcription by E. coli RNAP on a linear DNA template containing the 

T7A1 promoter, performed in the absence or presence of rifampicin or Kanglemycin. Indicated are 

different ratios of the mono-phosphorylated di-nucleotide (pApU) and mono-phosphorylated tri-

nucleotide (pApUpC) abortive products in the presence of RIF and KglA. Transcription was 

performed in the presence of the nucleotides depicted (in the absence of the CpA and ATP 

primer).   
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Figure 6.5 Kanglemycin inhibits Mycobacterial RNAP and retain activity against RifR M. 

tuberculosis. (A) Table indicating the MIC values of Rif-susceptible M. tuberculosis strains H37Rv 

and 1192/015, and RIF-resistant M. tuberculosis 08/00483E by KglA and RIF. Data presented are 

the mean of four independent experiments ± SD (Mosaei et al., 2018). (B) Sequence alignment of 

the Rif resistance determining regions (RRDRs) of the β subunit of RNAPs from M. tuberculosis, 

M. smegmatis, E. coli and T. thermophilus. (C) in vitro transcription performed by WT M. 

smegmatis RNAP on a linear DNA template containing the T7A1 promoter in the presence and 

absence of rifampicin and kanglemycin A.  [32P]-RNA products (Run-off and terminated) are 

indicated. Reactions were initiated with the 5’-non-phosphorylated dinucleotide primer CpA. (D) In 

vitro transcription by M. smegmatis RNAP on a linear DNA template containing the T7A1 

promoter, performed in the absence or presence of rifampicin or Kanglemycin. Indicated are 

different ratios of the di-nucleotide (pppApU) and the tri-nucleotide (pppApUpC) abortive products 

in the presence of Rif and KglA. Transcription was performed in the presence of the nucleotides 

depicted (in the absence of the CpA primer) (E) Quantification of inhibition of in vitro transcription 

by rifampicin (left panel) kanglemycin (right panel). Transcription was performed by WT M. 

smegmatis RNAP on a linear DNA template containing the T7A1 promoter. Reactions were 

initiated with 5’- non-phosphorylated dinucleotide primer CpA. Quantification is derived from 

average of [32P]-labelled run-off and terminated transcription products. Values were normalised to 

quantity of [32P] RNA synthesised in the absence of inhibitor. Error bars are ± SD.     

 

6.2.4 Kanglemycin A is active against Mycobacterial RNAP and MDR M. 

tuberculosis 

Rifampicin has been used as a frontline treatment for over half a century against 

infections caused by M. tuberculosis. However, Rif resistant strains are becoming 

increasingly prevalent and problematic to treat (Zumla et al., 2015). Our data thus 

far suggests KglA may be effective in treating Rif resistant bacteria, in particular 

MDR-M. tuberculosis. To investigate the effectiveness of KglA against MDR- M. 

tuberculosis we entered into a collaboration with Dr Joanna Bacon of the TB 

research group at Public Health England. MIC determination data shown here 

were gathered by Dr Joanna Bacon.  

To assess activity against Rif resistant M. tuberculosis we determined MIC values 

for Rif and KglA against a clinical MDR-M. tuberculosis isolate, Beijing 

08/00483E. This particular isolate is fully resistant to Rif and is also resistant to all 

other first-line antitubercular drugs (ethambutol, isoniazid and pyrazinamide). 

Beijing 08/00483E carries the most frequently observed amino acid mutation in 

Rif resistant M. tuberculosis (βS450L, M. tuberculosis numbering; S531L, E. coli 

numbering) (Jamieson et al., 2014, Zhang et al., 2014b). In addition to the MDR-

isolate, we also assessed activity against two Rif susceptible strains, H37Rv and 

1192/015. Expectedly, the MDR-resistant isolate Beijing 08/00483E is several 



 

98 
 

orders of magnitude less sensitive to Rif than the Rif-sensitive strains (Figure 6.5, 

A). On the contrary, KglA was active against all 3 strains in a dose-dependent 

manner, demonstrating KglA is active against MDR-M. tuberculosis. Despite this, 

KglA was less active than Rif against Rif-sensitive strains. This is apparently 

contradictory to in vitro data suggesting KglA and Rif are equally active against E. 

coli RNAP (Figure 6.1, C). It is plausible KglA and Rif act differently at M. 

tuberculosis RNAP. Subsequently, we assessed transcription inhibition by Rif and 

KglA at M. smegmatis RNAP, a commonly used experimental model for M. 

tuberculosis RNAP. The amino acid composition of the Rif-binding pocket is 

identical in both Mycobacterial RNAPs (Figure 6.5, B). The mode of transcription 

inhibition by KglA and Rif at M. smegmatis appeared very similar to inhibition of 

E. coli RNAP. At high concentrations both Rif and KglA inhibited full length 

transcripts with a concurrent accumulation of short abortive RNAs (Figure 6.5, C). 

Again, as with E.coli RNAP, synthesis of CpApUpC was observed in the 

presence of Rif but inhibited in the presence of KglA (transcription was initiated 

with CpA) (Figure 6.5, C). This is indicative KglA, when compared to Rif, retains 

its additional hindrance to translocation of 5’ non-phosphorylated nascent 

transcript at Mycobacterial RNAP. Indeed, the mode of inhibition of de novo 

transcription by KglA was also identical to that seen at E.coli RNAP (Figure 6.5, 

D). Synthesis of pppApU was strongly inhibited by KglA, yet Rif allowed synthesis 

of dinucleotide triphosphate and even permitted some synthesis of pppApUpC. 

The IC50 of KglA at M. smegmatis RNAP indicated it was around four-fold less 

active than Rif (Figure 6.5, E). It is worthy of mention, the increased sensitivity of 

Mycobacterial RNAP to rifamycins is well documented in prior literature (Zenkin 

et al., 2005b). Despite the slightly lower activity of KglA at mycobacterial RNAP 

when compared to Rif, the respective activities cannot explain the disparity in 

activity between Rif and KglA at Rif-sensitive M. tuberculosis. The most plausible 

explanation for this difference is due to decreased ability of KglA to cross the cell 

envelope.  

Discussion 

The growing prevalence of Rif resistant infections demands compounds with 

novel modes of action and novel binding interactions. This study has shown KglA 

forms previously undescribed binding contacts within the RNAP Rif binding 
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pocket and inhibits transcription through a novel molecular mechanism. Structural 

analysis of KglA bound within T. thermophilus open promoter complexes has 

shown the additional sugar (β-O-3,4-O,O’ methylene digitoxose) and acid (2,2-

dimethylsuccinic acid) moieties at C27 and C20, respectively, establish new 

contacts within the Rif binding pocket and influence compound conformation 

within the Rif binding pocket. The slight rotation away from the binding pocket 

may allow the compound to attenuate the effect of certain resistance mutations 

(Mosaei et al., 2018). Consequently, the altered conformation and novel binding 

interactions within the Rif pocket may explain the preliminary data indicating 

activity of KglA against a suite of Rif-resistant bacterial RNAPs. Indeed, our data 

here show only a double mutation within the Rif binding pocket leads to 

resistance in vitro.  

The mode of action of KglA is different to that of Rif. During de novo transcription, 

KglA inhibits the formation of the first phosphodiester bond, whereas Rif inhibits 

the formation of the second phosphodiester bond. With our collaborators, the 

combined biochemical and structural approach we have taken here has allowed 

us to discern the basis of this mechanistic difference. The C20 2,2-

dimethylsuccinic acid moiety appears to afford an additional steric and 

electrostatic obstacle to both initiating nucleotide binding and to translocation of 

the nascent transcript. Interestingly, inhibition of first phosphodiester bond 

synthesis has been described previously for the semisynthetic rifamycin, rifabutin 

(Artsimovitch et al., 2005). However, in this instance, 5’ non-phosphorylated 

dinucleotide ApU (corresponding to +1,+2 positions) was used to initiate 

transcription from the T7A1 promoter, unlike our use here of CpA (corresponding 

to -1,+1 positions). Consequently, our results are not comparable. Nevertheless, 

our data show KglA failed to inhibit synthesis of 5’ non-phosphorylated 

trinucleotide, despite the earlier projected clash with 5’ cytidine when transcripts 

are initiated with CpA, suggesting they likely act through different mechanisms.  

KglA inhibition of first phosphodiester bond formation is likely to offer a further 

ancillary mechanism of inhibition, when compared to Rif. RNAP can continually 

synthesis 2-3 nucleotide abortive products (termed RNA priming) when bound to 

Rif (McClure and Cech, 1978, Campbell et al., 2001). However, Rif binding is 

precluded when RNAs become longer than 3-mer. Thus, the likelihood of RNAP 
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synthesising a longer transcript, which would then prevent Rif binding if Rif were 

to transiently dissociate, is quite probable. However, inhibition of first 

phosphodiester bond formation by KglA would serve to prevent this RNA priming. 

This effect may be of particular relevance in the context of Rif-resistant RNA 

polymerases in which binding affinity will be significantly reduced, and the 

transient dissociation of antibiotic becomes more probable (Molodtsov et al., 

2017b, Campbell et al., 2001).  

Semi synthesis of the rifamycin class has generally centred on variations of the 

C3/C4 positions of the naphthoquinone moiety (Bacchi et al., 1998, Sensi, 1983). 

Synthetic modifications of the ansa-bridge have generally rendered compounds 

inactive or significantly less potent. The unique substituents of KglA described 

here reveal the significant potential of ansa-bridge modifications, particularly the 

novel binding interactions that can be utilised by substitution at the C27 position. 

Furthermore, flexible acidic substitutions at the C20 position can facilitate novel 

interactions with the initiating nucleotide. It appears, however, that these native 

modifications come at the cost of reduced penetration of the cell envelope. This is 

most likely a consequence of the polar carboxyl groups present on the C20 2,2-

dimethylsuccinic acid sidechain. Indeed, despite a highly similar potency and 

mode of action at mycobacterial RNAP, KglA has a significantly reduced potency 

against Rif-susceptible strains of M. tuberculosis when compared to Rif. 

Although, it should be noted, KglA still possesses MIC values below those of 

frontline antitubercular drugs isoniazid and pyrazinamide. Importantly, however, 

KglA remained active against the MDR-M. tuberculosis isolate, Beijing 

08/00483E, which is completely resistant to Rif. The struggle to find compounds 

active against MDR-M. tuberculosis, plus the beneficial mechanistic 

characteristics of the inhibitor we have described here, demand KglA be 

optimised for clinical usage.  

In summary, KglA is a naturally evolved solution to the question of Rif-resistant 

bacteria, in particular Rif-resistant M. tuberculosis. Our study has illustrated there 

is still great scope to effectively explore the chemical space surrounding the 

rifamycin core. In particular, novel binding interactions within the Rif pocket can 

be utilised by substitution at the C27 position. Furthermore, substitution at C20 

can exploit novel inhibitory mechanisms not typically seen in the rifamycin class. 
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Namely, additional steric and electrostatic hindrance to translocating nascent 

RNA and binding of initiating nucleotide. Together, KglA offers an exciting new 

lead towards effective therapeutic agents.  
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Chapter 7. Rifampin ADP-ribosyl transferases from M. 

smegmatis and M. abscessus have differing substrate 

specificities. 

7.1 Introduction 

Resistance to the front line TB drug Rifampicin (Rif) is typically conferred through 

point mutations within the rpoB gene encoding the Rif binding β-subunit of RNAP 

(Campbell et al., 2001). However, Rif is also subject to enzymatic inactivation by 

several recently described bacterial enzymes (Spanogiannopoulos et al., 2012, 

Baysarowich et al., 2008, Liu et al., 2016, Stogios et al., 2016). ADP-ribosylation 

of Rif by M. smegmatis Rifampicin ADP-ribosyl transferase (ArrMs) is believed to 

preclude Rif binding to the RNAP β subunit. ArrMs utilises an NAD+ cosubstrate to 

catalyse the ADP-ribosylation of Rif at the C23 hydroxyl group, with concurrent 

expulsion of the nicotinamide moiety from NAD+ (Morisaki et al., 2000) (Figure 

7.1, A). Rifamycin SV, and newer semi-synthetic Rif derivatives rifaxamin and 

rifabutin, are also substrates for ArrMs, suggesting the enzyme has a broad 

substrate specificity (Baysarowich et al., 2008).  However, it has recently been 

shown C25 carbamate derivatives of rifampicin exhibit greatly improved 

antimicrobial activity against M. smegmatis (Combrink et al., 2007). In vitro 

experiments with purified ArrMs indicated C25 carbamate rifamycins are resistant 

to inactivation by Arr (Combrink et al., 2007). The recently solved crystal structure 

of ArrMs in complex with Rif provides a rational explanation for this evasion of Arr 

inactivation; the supposed position of the large C25 carbamate group would 

afford a pronounced clash within the ArrMs Rif binding pocket (Baysarowich et al., 

2008). Seemingly, C25 carbamates do not bind to the enzyme and evade 

inactivation by ADP-ribosylation. It was recently discovered the genome of the 

pathogen M. abscessus may encode a Rifampicin ADP-ribosyl transferase 

(ArrMab) conferring innate high-level Rif resistance. Deletion of ArrMab increases 

sensitivity of M. abscessus to Rif by over 500-fold. Interestingly, C25 modified 

rifamycins (Figure 7.1, C) showed increased activity against WT M. abscessus, 

but also against an M. abscessus mutant lacking ArrMab, suggesting increased 

activity of C25 derivatives may not be due to resistance to ArrMab inactivation in M. 
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abscessus (Rominski et al., 2016). This indicates the putative ArrMab may have a 

different substrate specificity to ArrMs. 

 

Figure 7.1 Structural scheme of ADP-ribosylation by rifampicin ADP ribosyltransferases (Arr) (A) 

ADP-ribosylation of rifampicin by Mycobacterial Arr (Baysarowich et al., 2008) (B) Anticipated 

ADP-ribosylation of kanglemycin A by Arr. (C) The chemical structure of C25 carbamate 

rifampicin derivatives. 

 

The ability of C25 carbamates to avoid inactivation by ArrMs suggests other 

modifications to the ansa- chain may preclude binding to Arr. The natural product 

KglA is an ansamycin antibiotic that inhibits transcription by binding within the Rif 

binding pocket on the β-subunit of RNAP. The compound has distinctive 

substituents present on the ansa bridge; a 2,2-dimethylsuccinic acid chain at C20 

and a β-O-3,4-O,O’ methylene digitoxose moiety at C27. When bound to RNAP, 

these substituents afford additional binding contacts in the Rif pocket and 
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produce a distinctivive binding conformation (Mosaei et al., 2018). Consequently, 

KglA inhibits RNAP by a unique steric occlusion mechanism and retains activity 

at Rif resistant RNAPs. Whether these unique moieties effect KglA binding to Arr 

is yet to be assessed. We speculated these large bulky substituents may prevent 

KglA binding to Arr in a manner analogous to C25 carbamate Rif derivatives 

(Figure 7.1, B). Consequently, in this study, we aimed to discern if M. abscessus 

Arr encodes a functional Rifampicin ADP-ribosyl transferase, and aimed to 

determine if KglA is a substrate for purified ArrMs and ArrMab. We also assessed 

the activity of ADP-ribosylated rifampicin and ADP-ribosylated KglA in an in vitro 

transcription assay.  

7.2 Results  

7.2.1 Characterisation of Mycobacterium smegmatis Arr (ArrMab) 

Firstly, in order to characterise ArrMs in vitro, we cloned the Arr gene from M. 

smegmatis into a pET28 expression vector, and expressed and purified the 

protein from E.coli. To assess activity of ArrMs, we utilised a tandem LC-MS 

based assay in which antibiotic substrate and NAD+ cosubstrate were incubated 

in the absence and presence of ArrMs, and then the reaction products separated 

by HPLC and resolved by tandem mass spectrometry. When Rif is incubated with 

NAD+ in the absence of ArrMs, Rif, and its oxidised form rifampicin quinone (Rifq), 

are resolved with no identifiable ADP-ribosylated product (Figure 7.2, A, B). 

However, when Rif is incubated in the presence of NAD+ and ArrMs, both Rif and 

Rif quinone are ADP-ribosylated, confirming the activity of our purified ArrMs 

(Figure 7.2, top panel). We then assessed if KglA was subject to ADP-

ribosylation by ArrMs. As seen previously with Rif, incubation of KglA with NAD+ in 

the absence of ArrMs afforded no ADP-ribosylation of the antibiotic. Interestingly, 

additional incubation with ArrMs  also failed to ADP ribosylate KglA, suggesting 

that KglA is not a substrate of ArrMs (Figure 7.2, bottom panel).  

To clarify the in vivo efficiency of antibiotic inactivation, or lack thereof, of ArrMs, 

we performed in vitro inactivation reactions with a tandem disk assay. Increasing 

concentrations of ArrMs were coincubated with NAD+ and antibiotic (1mg/ml), and 

then spotted onto paper disks which were placed onto a lawn of S. aureus 

RM4220. Apparent decreases in zones of inhibition were interpreted to signify 
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functional inactivation of the respective antibiotic. As shown in figure Figure 7.2, 

E, the control antibiotic carbenciliin is not inactivated by ArrMs. However, as 

indicated by our LC-MS based assay, rifampicin is inactivated by ArrMs, resulting 

in decreased zones of inhibition when ArrMs concentration is increased. 

Additionally, consistent with our previous data, KglA is resistant to inactivation by 

ArrMs, as indicated by no decrease in zone of inhibition even at very high 

concentrations of ArrMs. Combined with previous data, this result reaffirms KglA is 

not a substrate for  
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Figure 7.2 M. smegmatis Arr (Arrms) fails to inactivate kanglemycin A (KglA) by ADP-ribosylation.   

Representative reverse phase HPLC traces of in vitro inactivation of rifampicin (Rif) by Arrms. 

(Upper panel) Trace represents the Rif standard in which Rif is incubated with NAD+ in the 

absence of ArrMs. (Lower panel) Trace represents Rif incubated with NAD+ for 1h in the presence 

of ArrMs. Absorbance is at 220nm. (B) Positive ion mass spectrum corresponding to peaks 

indicated ‘1’, ‘2’, ’3’ and ‘4’ identified in (A). Ion adducts are as indicated. (C) Representative 

reverse phase HPLC traces of in vitro incubation of KglA (Rif) with Arrms. (Upper panel) Trace 

represents the KglA standard in which Rif is incubated with NAD+ in the absence of ArrMs. (Lower 

panel) Trace represents KglA incubated with NAD+ for 1h in the presence of ArrMs. Absorbance is 

at 256nm. (D) Positive ion mass spectrum corresponding to peaks indicated ‘1’ and ‘2’ identified 

in (C). Probable Ion adducts are as indicated. (E) Disk diffusion assay of aliquots of in vitro 

reactions (corresponding to (A) and (C)) with carbenicillin, rifampicin, or kanglemycin A incubated 

in the presence of increasing concentrations of ArrMs. Paper disks were soaked with aliquots from 

in vitro reactions and were placed on LB agar plates infused with lawn of S. aureus RM4220 

(Combrink et al., 2007). 

 

ArrMs. Note the smaller zones of inhibition seen with KglA, when compared to Rif, 

is thought to be due to poorer penetration of the compound through the cell 

envelope.  

Furthermore, our collaborators in the lab of Prof. Peter Sander at the University of 

Zurich have gathered MIC data for Rif and KglA with both WT M. smegmatis and 

ΔArrMs M. smegmatis (unpublished). Their results show ΔArrMs M. smegmatis is 

considerably more sensitive to Rif than the WT strain. However, there was 

essentially no difference in sensitivity of both WT and ΔArrMs strains to KglA, 

further corroborating KglA is not a substrate for ArrMs. 

7.2.2 Characterisation of Mycobacterium abscessus Arr (ArrMab) 

Prior genetic experiments have indicated the substrate specificity of a putative 

ArrMab may differ from that of ArrMs. Consequently, we aimed to determine the 

function and activity of ArrMab in vitro. We cloned the Arr gene from M. abscessus 

into a pET28 expression vector, and expressed and purified the protein from E. 

coli. Once more, we utilised our tandem LC-MS based assay to determine the 

activity of ArrMab. As previously, coincubation of Rif and Rif quinone with NAD+ in 

the absence of ArrMab resulted in no ADP-ribosylated products (Figure 7.3, top 

panel). However, upon coincubation of NAD+ and Rif with ArrMab we see a shift in 

retention time distinctive of ADP-ribosylation of Rif and Rif quinone. ADP-

ribosylation of Rif was confirmed through identification of masses corresponding 

to inactivated products (Figure 7.3, top panel). This result confirms that the 
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apparent Arr gene present in M. abscessus encodes a functional Rifampicin 

ADP-ribosyl transferase. Next, we attempted to determine if KglA is a substrate 

for ArrMab. As previously, coincubation of KglA and NAD+ in the absence ArrMab 

fails to facilitate ADP-ribosylation of the antibiotic (Figure 7.3, bottom panel). 

However, when KglA is incubated with ArrMab and the cosubstrate NAD+ there is 

a characteristic shift in retention time of the product, analogous to that seen with 

rifampicin. The peak corresponds to a compound with the exact mass of 1523.40 

Daltons; the predicted mass of ADP-ribosyl KglA (Figure 7.3, bottom panel). This 

confirms ArrMab can inactivate KglA, and possesses a broader substrate specificity 

than its homologue ArrMs.   

To ascertain the efficacy of antibiotic inactivation by ArrMab within an in vivo 

context, as for ArrMs, we performed in vitro inactivation reactions alongside 

tandem disk assay. As previously, increasing concentrations of ArrMab were 

coincubated with NAD+ and antibiotic, and then spotted onto paper disks which 

were placed onto lawns of S. aureus RN4220. Again, apparent decreases in 

zones of inhibition were interpreted to indicate functional inactivation of the 

respective antibiotic. As suggested by our LC-MS assay, ArrMab is a functional 

Rifampicin ADP-ribosyl transferase. Rif activity is almost completely eliminated by 

both low- and high- range concentrations of ArrMab tested here (Figure 7.3, E). 

Fascinatingly, ArrMab is indeed capable of inactivating KglA; there was marked 

reduction in the zone of inhibition when KglA is incubated with ArrMab. This data 

further corroborates the functionality of ArrMab in innate resistance of M. 

abscessus to a wide range of rifamycins, and clarifies KglA is a substrate of 

ArrMab (Figure 7.3, E).  

In addition, our collaborators in the lab of Prof. Peter Sander at the University of 

Zurich have gathered MIC data for Rif and KglA with both WT M. abscessus and 

ΔArrMab M. abscessus (unpublished). Their results show ΔArrMab M. abscessus is 

considerably more sensitive to Rif than the WT strain. Furthermore, there was a 

marked increase in sensitivity of the ΔArrMab M. abscessus strain to KglA, when 

compared to WT, further verifying KglA is a substrate for ArrMs. 
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Figure 7.3 M. abscessus Arr (ArrMab) inactivates kanglemycin A (KglA) by ADP-ribosylation.   

Representative reverse phase HPLC traces of in vitro inactivation of rifampicin (Rif) by ArrMab 

(Upper panel) Trace represents the Rif standard in which Rif is incubated with NAD+ in the 

absence of ArrMab. (Lower panel) Trace represents Rif incubated with NAD+ for 1h in the 

presence of ArrMab. Absorbance is at 220nm. (B) Positive ion mass spectrum corresponding to 

peaks indicated ‘1’, ‘2’, ’3’ and ‘4’ identified in (A). Ion adducts are as indicated. (C) 

Representative reverse phase HPLC traces of in vitro inactivation of KglA (Rif) with ArrMab. (Upper 

panel) Trace represents the KglA standard in which Rif is incubated with NAD+ in the absence of 

ArrMab. (Lower panel) Trace represents KglA incubated with NAD+ for 1h in the presence of 

ArrMab. Absorbance is at 256nm. (D) Positive ion mass spectrum corresponding to peaks indicated 

‘1’ and ‘2’ identified in C. Probable Ion adducts are as indicated. (E) Disk diffusion assay of 

aliquots of in vitro reactions (corresponding to (A) and (C)) with carbenicillin, rifampicin, or 

kanglemycin A incubated in the presence of increasing concentrations of ArrMab. Paper disks were 

soaked with aliquots from in vitro reactions and were placed on LB agar plates infused with lawn 

of S. aureus RM4220 
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7.2.3 Rifampicin and kanglemycin A binding affinities at ArrMab and ArrMs  

The crystal structure of ArrMs  complexed with Rif provides an explanation for how 

C25 carbamate derivatives of rifampicin evade inactivation by ADP-ribosylation 

(Baysarowich et al., 2008). If the binding mode is comparable to Rif, the C25 

substituent is expected to sterically clash with the interior of the Arr Rif binding 

pocket, preventing high affinity association to the protein. Thus far, our data show 

KglA is not a substrate for ArrMs. We had previously hypothesised the large ansa 

bridge substituents; a 2,2-dimethylsuccinic acid chain at C20 and a β-O-3,4-O,O’ 

methylene digitoxose moiety at C27, may produce a similar steric clash within the 

antibiotic binding pocket. To ascertain if the additional substituents of KglA 

preclude binding to ArrMs, we assessed binding affinities of both Rif and KglA at 

ArrMs  and ArrMab by microscale thermophoresis (MST). Apparent dissociation 

constants (Kd) were determined by titrating serial dilutions of antibiotic against 

ArrMs and ArrMab.  

As expected, Rif binds to both ArrMs  and ArrMab, although the compound binds 

with greater affinity to ArrMs, suggesting the apparent diversity in substrate 

specificity of ArrMab comes at a cost of reduced binding affinity (Figure 7.4, A). 

Conversely, as predicted, KglA binds to ArrMs with a drastically reduced affinity 

when compared to Rif, suggesting the bulky 2,2-dimethylsuccinic acid chain at 

C20 and/or β-O-3,4-O,O’ methylene digitoxose at C27 of KglA prevents high 

affinity binding of the compound (Figure 7.4, B). In contrast, KglA bound to ArrMab 

with an affinity comparable to Rif, further corroborating KglA as a substrate for 

ArrMab.  Indeed, from this data, it is apparent KglA is not a substrate for ArrMs due 

to a marked reduction in binding affinity at the enzyme. However, ArrMab 

accommodates high affinity binding of KglA, consequently facilitating inactivation 

by ADP-ribosylation. 

In an attempt to identify structural elements that may determine the respective 

substrate specificities, we overlaid the crystal structure of KglA onto the structure 

of ArrMs complexed with Rif using pair fit atomic alignment (Figure 7.4, C, D). If 

KglA adopts a similar conformation to Rif within the ArrMs binding pocket, our 

structure suggests a marked steric clash of the C27 β-O-3,4-O,O’ methylene 

digitoxose moiety with the inner sidewall of the binding pocket. Specifically, the  
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Figure 7.4 Substrate specificity of M. smegmatis and M. abscessus Arr. (A) Binding affinities of 

rifampicin at labelled M. abscessus Arr and labelled M .smegmatis Arr identified by microscale 

thermophoresis. (B) Binding affinities of kanglemycin A at labelled M. abscessus Arr and labelled 

M .smegmatis Arr identified by microscale thermophoresis. For both (A) and (B), Fnorm 

(normalized fluorescence = fluorescence after thermophoresis/initial fluorescence) is plotted 

against antibiotic concentration. Error bars are ± SD. (C) Crystal structure of Rif (green stick 

model) complexed with M. smegmatis Arr (Baysarowich et al., 2008). Arr is shown as semi-

transparent surface model. (D)  Modelling of KglA (blue stick model, side chains are depicted in 

yellow) in the Rif binding pocket of M. smegmatis Arr (2HW2). Arr is shown as semi-transparent 

surface model. Projected steric clash with interior of Arr rifampicin binding pocket is indicated. (E) 

Sequence alignment of Arr M. smegmatis and M. abscessus with regions of homology indicated. 

The alpha helix structure (ArrMab α1) highlighted in (F) is indicated with a red asterisk. (F) 

Modelling of KglA (blue stick model, side chains are depicted in yellow) in the Rif binding pocket 

of M. smegmatis Arr (2HW2). Arr is shown as gray ribbon model. M. abscessus low homology 

alpha helix (ArrMab α1) is identified within the structure of M. smegmatis Arr, indicated in red 

ribbon/stick model, and projected steric clash with interior of M. smegmatis Arr rifampicin binding 

pocket is indicated.   

 

bulky substituent would clash with an alpha helix structure (residues 54-65) that 

constitutes one half of the Rif binding cleft (Figure 7.4, E, F). This alpha helix, 

termed α1, is implicated in Rif binding interactions; residue D55 makes polar 

interactions with O11 of Rif, whilst A56, W59, G60 and L63 form non-polar 

interactions with the carbon backbone of the ansa- bridge (Baysarowich et al., 

2008).  

To ascertain how this steric clash may be overcome in Mycobacterium 

abscessus, we analysed sequence homology of ArrMs  and ArrMab. Overall, the 

amino acid sequences are strikingly similar, exhibiting a 67.4% sequence 

homology (Figure 7.4, E). However, ArrMab α1 bears almost no sequence 

homology with ArrMs. This lack of homology may underlie structural differences 

that determine the broader substrate specificity exhibited by ArrMab. Furthermore, 

the variation of α1 residues involved in Rif binding may underlie the reduced 

affinity with which ArrMab binds Rif, perhaps as a consequence of reduced or 

altered binding contacts with the respective substrate. Yet, structural analysis of 

the respective Arr enzymes complexed with KglA and Rif is required in order to 

confirm the basis of such variations. 
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7.2.4 ADP-ribosylation renders Rifampicin inactive at RNA polymerases in 

vitro  

ADP-ribosylation of Rif by Arr enzymes occurs at the hydroxyl group at the C23 

position; an essential oxygen functionality in binding of Rif to RNAPs. Indeed, 

early SAR experimentation demonstrated any alteration of this functionality 

abolished activity of the compound (Aristoff et al., 2010, Bacchi et al., 1998).  

 

 

Figure 7.5 ADP-ribosyl rifamycins fail to inhibit RNAP and do not function as an initiating 

substrate. (A) Quantification of inhibition of in vitro transcription by rifampicin and ADP-ribosyl 

rifampicin. Transcription was performed by WT E. coli RNAP on a linear DNA template containing 

the T7A1 promoter. Reactions were initiated with 5’- non-phosphorylated dinucleotide primer CpA. 

Quantification is derived from average of [32P]-labelled run-off and terminated transcription 

products. Values were normalised to quantity of [32P] RNA synthesised in the absence of inhibitor. 

Error bars are ± SD. (B) A representative gel of in vitro abortive transcription performed by WT E. 

coli RNAP on a linear DNA template containing the T7A1 promoter. Reactions were initiated with 

substrates indicated. Note the negligible transcription initiated by ADP-ribosyl rifampicin.      
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Despite the assertion that ADP-ribosylation of Rif prevents binding of the inhibitor 

to RNAP, ADP-ribosyl Rif has never been analysed against RNAP in vitro. 

Consequently, we produced ADP-ribosyl Rif by incubating Rif with purified ArrMs 

and isolating the compound with a C8 solid phase extraction cartridge. We then 

analysed the effects of purified ADP-ribosyl Rif on transcription by WT E. coli 

RNAP on a linear DNA template containing the T7A1 promoter. Expectedly, ADP- 

ribosyl Rif was completely unable to inhibit transcription even at high 

concentrations, showing ADP-ribosylation renders rifampicin ineffectual by 

inactivating inhibitory activity (Figure 7.5, A).  

Interestingly, the structure of ADP ribosyl-Rif possesses an accessible 3’ hydroxyl 

group on the ribosyl moiety that may subsequently act as an initiating substrate 

for RNAP. Despite, poor binding to RNAP, we assessed if high concentrations of 

ADP-ribosylated Rif can act as an initiator of abortive transcription by WT E. coli 

RNAP on a linear DNA template containing the T7A1 promoter, and compared 

abortive synthesis to several other initiating substrates; CpA, ATP and NAD+. 

Cognate ATP and dinucleotide CpA are efficient initiating substrates of abortive 

synthesis, whereas transcription initiation by NAD+ is comparatively less efficient 

(Figure 7.5, B). However, abortive transcription initiating from ADP-ribosyl Rif was 

virtually undetectable, when compared to CpA, ATP and NAD+. The great steric 

bulk of ADP ribosyl Rif and its required orientation within the i site of RNAP would 

likely produce a series of large steric clashes with the interior of RNAP, producing 

an extremely high energy initiation complex. Indeed, when considering the high 

concentration of substrate (1mM) used in this instance, under physiological 

conditions the amount of transcription initiation from ADP- ribosyl Rif would be 

negligible. Unfortunately, lack of material prevented further reciprocal analysis of 

ADP-ribosyl KglA in vitro. However, ADP- ribosylation would likely prevent the 

compound binding to RNAP in a manner identical to Rif. Furthermore, the 

increased bulk of KglA, when compared to Rif, would further reduce the suitability 

of ADP-ribosyl KglA as an initiating substrate. Indeed, our results indicates ADP-

ribosylation of rifamycins cannot subsequently be used as initiating substrates by 

RNAP.   
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7.3 Discussion 

The communal existence of bacteria generates pressure to gain a competitive 

edge over neighbouring microorganisms. Consequently, bacteria have evolved a 

number of mechanisms to counter antibiotics secreted by microbes in their 

surroundings. Indeed, resistance determinants are found almost ubiquitously 

amongst bacteria (Crofts et al., 2017). The secondary metabolite precursors of 

clinical rifamycins are produced by several actinomycetes from highly competitive 

marine and terrestrial environments. Furthermore, synthetic Rif derivatives have 

been used to treat a number of clinical infections for over 60 years (Wang et al., 

2012, Kim et al., 2006). Consequently, many pathogenic and non-pathogenic 

bacteria have developed a diverse array of strategies to survive in the presence 

of rifamycins (see section 1.3.1 for further details).  

Rifamycins inhibit transcription by targeting the β-subunit on bacterial RNAP, 

consequently preventing translocation of the nascent transcript and inhibiting 

formation of the second or third phosphodiester bond (McClure and Cech, 1978). 

Resistance to rifamycins is most commonly conferred through point mutations 

within the Rif binding pocket on the β-subunit (Campbell et al., 2001). However, 

our work here has shown the growing relevance of rifamycin antibiotic 

inactivation by ADP-ribosylation in pathogenic Mycobacteria.  

ADP-ribosylation of Rif by Arr was first discovered as an intrinsic mechanism of 

resistance in Mycobacterium smegmatis. ArrMs utilises an NAD+ cosubstrate to 

catalyse the ADP-ribosylation of Rif at the C23 hydroxyl group, with concurrent 

expulsion of the nicotinamide moiety from NAD+ (Morisaki et al., 2000) (Figure 

7.1). It had been proposed ADP-ribosylation by Arr enzymes inactivates Rif by 

eliminating the C23 hydroxyl group essential for binding to RNAP. Furthermore, 

addition of the ADP-ribosyl at C23 orientates the bulky substituent toward the 

surface of the Rif binding pocket on RNAP, likely precluding binding Rif by severe 

steric clash (Campbell et al., 2001). Indeed, here we show for the first time ADP-

ribosylation of Rif completely abolishes activity of Rif at RNAP in vitro, most likely 

by precluding binding of the compound to RNAP. Furthermore, we show the 

ADP-ribosyl moiety present on ADP-ribosyl Rif cannot function as an initiating 
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substrate for RNAP. We believe this mechanism of covalent inactivation is likely 

to be mutual to all bacterial Arr enzymes. 

In addition to Rif, the natural product rifamycin SV, and semi-synthetic Rif 

derivatives rifaxamin and rifabutin, are also substrates for ArrMs, indicating a 

broad substrate specificity (Baysarowich et al., 2008). However, the discovery 

that bulky C25 carbamate Rif derivatives are not subject to ADP- ribosylation by 

ArrMs indicated ansamycins with large steric bulk may be able to evade the 

enzyme, seemingly by no longer associating with the Arr Rif binding pocket 

(Combrink et al., 2007, Baysarowich et al., 2008). The RNAP inhibitor KglA is a 

novel ansamycin antibiotic with unique bulky substituents present on the ansa 

bridge; a 2,2-dimethylsuccinic acid chain at C20 and a β-O-3,4-O,O’ methylene 

digitoxose moiety at C27 (Peek et al., 2018, Mosaei et al., 2018) (Figure 7.1). We 

hypothesised these unique sidechains may prohibit the antibiotic binding to ArrMs, 

and consequently evade ADP- ribosylation. Indeed, our data show KglA is not a 

substrate for ArrMs in vitro, as a consequence of reduced binding affinity at the 

enzyme. Molecular modelling of KglA bound to ArrMs indicated a large steric clash 

with the interior of the binding pocket, offering a plausible explanation for the 

inability of the compound to associate with ArrMs. Considering KglA also retains 

activity against RifR RNAPs and RifR bacteria (Peek et al., 2018, Mosaei et al., 

2018), the antibiotic may be a promising lead compound with which to target 

some pathogens possessing Arr enzymes.  

However, recently, a putative Arr encoding gene was identified in the highly 

pathogenic Mycobacterium abscessus, one of the most extensively drug-resistant 

strains of rapidly growing non-tuberculous mycobacteria (NTM) (Rominski et al., 

2016). M. abscessus is responsible for a wide range of infectious manifestations, 

including debilitating infections of the skin and respiratory system. A principal 

challenge in treating infections caused by M. abscessus is the bacteria’s 

extraordinary level of innate resistance to a plethora of clinical antibiotics (Luthra 

et al., 2018). Indeed, deletion of putative ArrMab increases M. abscessus 

sensitivity to Rif almost 500 fold. Yet, C25 modified rifamycins, which evaded 

activity at ArrMs, showed equal activity against both WT M. abscessus, and an M. 

abscessus mutant lacking ArrMab, suggesting the putative ArrMab may have a 

differing substrate specificity to ArrMs (Rominski et al., 2016). Consequently, we 
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wished to ascertain if, i) The M. abscessus genome encodes a viable Arr 

enzyme, and ii) if so, is the unique ansamycin KglA a substrate for purified ArrMab 

in vitro. Indeed, our data show the M. abscessus genome encodes an active Arr 

responsible for innate resistance to Rif. Like ArrMs, we show ArrMab utilises an 

NAD+ cosubstrate to catalyse the ADP- ribosylation of Rif, presumably at the C23 

hydroxyl group, as is the case for Rif (Baysarowich et al., 2008). However, unlike 

ArrMs, the bulky ansamycin KglA remains a substrate of ArrMab, and is 

consequently subject to covalent inactivation by ADP-ribosylation. This indicates 

ArrMab possesses a divergent substrate specificity to ArrMs, and can seemingly 

accommodate a broader range of ansamycins with bulky ansa-bridge 

substituents. To examine exactly how ArrMab can accommodate the binding of 

larger rifamycin substrates, we performed sequence alignment analysis to identify 

divergence in the amino acid sequence of the Rif binding pocket of ArrMab and 

ArrMs. Indeed, our analysis shows a large portion of the interior of the Rif binding 

pocket of ArrMab and ArrMs lack sequence homology. In particular, an alpha helix, 

termed α1, implicated in several binding interactions with the Rif ansa-bridge, 

possesses almost no sequence homology between ArrMs and ArrMab. We propose 

the differing amino acid constitutions of the interior binding pocket likely underlie 

structural differences facilitating different substrate specificities. However, direct 

structural analysis of ArrMab complexed with KglA is required to ascertain the 

exact structural basis of ansamycin substrate binding. Furthermore, structural 

analysis of how different Arr enzymes bind varying substrates is essential for the 

rational design of novel antibiotics which can evade Arr. Indeed, understanding of 

how ADP- ribosylation mechanisms vary amongst different bacteria is essential if 

this abundant resistance mechanism is to be nullified.   

Exactly how M. abscessus Arr and M. smegmatis Arr have diverged to 

accommodate a different range of ansamycin substrates has not yet been 

investigated. Nevertheless, competition amongst environmental bacteria places 

strong evolutionary pressure on production of variant antibiotics capable of 

avoiding common resistance mechanisms, while synchronously pressurising the 

development of resistance mechanisms with which to evade these novel variants. 

Indeed, bulky ansamycin compounds, such as KglA, are produced by 

actinomycetes that occupy the same natural niches as NTMs, such as M. 
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abscessus (Peek et al., 2018, Honda et al., 2018). Consequently, it is tempting to 

speculate KglA represents an evolved solution to both spontaneous and innate 

resistance mechanisms of bacterial competitors (Peek et al., 2018, Mosaei et al., 

2018). Subsequently, producers of KglA placed a selective advantage upon 

competitors capable of surviving in their presence, leading to the development of 

more diverse Arr enzymes capable of inactivating novel, more complex 

rifamycins. Indeed, there is now strong genomic evidence that most innate 

resistance mechanisms seen in clinical pathogens are of environmental origin 

(Peterson and Kaur, 2018). Consequently, many pathogenic bacteria may 

already possess a reservoir of resistance determinants to nullify as of yet 

undiscovered antibiotic variants. Therefore, a comprehensive understanding of 

resistance mechanisms is essential if we are to capitalise upon future antibiotic 

discoveries and facilitate the rational development of efficacious antibiotics with 

which to treat drug resistant infections.   
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8. Concluding Remarks 

Transcription, the first stage of gene expression, is performed by the multi-

subunit RNA polymerase (RNAP). The indispensable nature of transcription and 

sequence divergence from eukaryotic counterparts make bacterial RNAP an 

excellent target for antibiotics. However, very few clinical antibiotics target RNAP. 

The growing prevalence of antibiotic resistance amongst pathogenic bacteria 

demands the identification of novel antibacterial compounds acting through novel 

molecular mechanisms. Here, we conducted four distinct projects in which we 

investigated the molecular mechanisms of several previously uncharacterised 

transcription inhibitors. 

Most clinical antibiotics are derived from the natural products of actinomycete 

bacteria. Our industrial collaborators DemurisTM previously compiled a library of 

actinomycete bacteria that activate an RNAP reporter strain and therefore may 

produce novel inhibitors of bacterial transcription. Consequently, we aimed to 

identify and characterise novel inhibitors of bacterial transcription produced by 

strains from this particular strain library. 

Firstly - our industrial collaborators DemurisTM previously compiled a library of 

actinomycete bacteria that activate the yvgS RNAP reporter strain and therefore 

may produce novel inhibitors of bacterial transcription. Subsequently, we aimed 

to identify and characterise novel inhibitors of bacterial transcription produced by 

strains from this particular strain library. We utilised In vitro transcription assays 

combined with mass spectroscopic analysis to identify DEM40380 as a producer 

of Antibiotic A39079S-1, a broad spectrum ansamycin antibiotic with a previously 

undefined mechanism of action (Boeck, 1985). Here, we have presented data 

suggesting the compound inhibits transcription through a steric occlusion 

mechanism typical of rifamycins, likely by targeting the Rif binding pocket on 

RNAP. The compound possesses the distinctive naphthelenic, 17-mer ansa 

chain structure characteristic of rifamycin antibiotics. However, the activity of 

antibiotic A39079S-1 sheds new light on the structure-activity relationship of 

rifamycins. The compound structure indicates a methoxy group at C27, common 

to most rifamycins, can seemingly be cleaved to a hydroxyl without abolishing 

activity. Furthermore, the absence of the common C16 methyl group in Antibiotic 
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A39079S-1 suggests this substituent is not required for the correct conformation 

of essential oxygen functionalities at C1, C8, C21 and C23. This observation may 

point to a site on the ansa- bridge where small substituents can be introduced 

successfully to rifamycins.  

Secondly - the recently discovered antibiotic ureidothiophene (Urd) was identified 

within a commercial screen of synthetic compounds in which inhibition of S. 

aureus RNAP was analysed. Here, we have shown the inhibitor targets 

regulatory sub-region 1.2 of the sigma subunit to prevent melting of the -10 

promoter element. The compound consequently prevents formation of the 

transcription competent open promoter complex. Urd inhibition is dependent upon 

the integrity of σR1.2, suggesting the compound may directly, or perhaps 

indirectly (allosterically), interact with this particular σ factor sub-region. σR1.2 

has previously been shown to play a vital role in formation of stable open 

complexes (Wilson and Dombroski, 1997, Baldwin and Dombroski, 2001, Zenkin 

et al., 2007). Specifically, it is proposed to allosterically regulate recognition of the 

-10 promoter element by σR2.3. By interacting with σR1.2, we believe Urd 

interferes with this regulatory signal between σR1.2 and σR2.3, preventing the 

formation of the open promoter complex. 

Thirdly - a prior screening program conducted by our industrial collaboraters 

DemurisTM had identified the rifamycin type natural product kanglemycin A (KglA) 

as an inhibitor of rifampicin resistant RNAPs. Here, we show the unique ansa-

bridge substituents of the compound act to form new binding contacts with 

RNAP. We also present data showing KglA inhibits transcription through a unique 

steric occlusion mechanism, distinct from that of Rif. During de novo transcription, 

KglA inhibits the formation of the first phosphodiester bond, whereas Rif inhibits 

the formation of the second phosphodiester bond. With our collaborators, the 

combined biochemical and structural approach has allowed us to discern the 

basis of this mechanistic difference. The C20 2,2-dimethylsuccinic acid moiety 

appears to afford an additional steric and electrostatic obstacle to both initiating 

nucleotide binding and to translocation of the nascent transcript. Furthermore, we 

have shown KglA also inhibits mycobacterial RNAPs, and consequently retains 

activity against multi-drug resistant M. tuberculosis. 
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Finally - we investigated ADP- ribosylation as a mechanism of KglA inactivation 

by Mycobacterium smegmatis and Mycobacterium abscessus rifampicin ADP-

ribosyltransferase (Arr) enzymes. We show KglA is not a substrate of the 

rifampicin inactivating Arr purified from Mycobacterium smegmatis, but remains a 

substrate of Arr purified from the extensively drug resistant pathogen 

Mycobacterium abscessus. We determined dissociation constants for KglA at 

both Arr enzymes and discovered KglA is unable to bind to ArrMs, yet is able to 

bind to ArrMab. Molecular modelling of KglA bound to ArrMs indicated a large steric 

clash with the interior of the binding pocket, offering an explanation for the 

inability of the compound to associate with the enzyme. To identify the basis for 

the differing substrate specificities between Arr enzymes, we performed 

sequence alignment analysis to identify divergence in the amino acid sequence 

of the Rif binding pocket of ArrMab and ArrMs. Our analysis indicates a large portion 

of the interior of the Rif binding pocket of ArrMab and ArrMs lack sequence 

homology. Specifically, an alpha helix, termed α1, implicated in several binding 

interactions with the Rif ansa-bridge, possesses almost no sequence homology 

between ArrMs and ArrMab. We suggest the differing amino acid constitutions of the 

interior binding pocket likely underlie structural differences facilitating different 

substrate specificities. Additionally, we have shown ADP-ribosylation of Rif 

completely abolishes activity of Rif at RNAP in vitro, most likely by precluding 

binding of the compound to RNAP. Also, we have also shown the ADP-ribosyl 

moiety present on ADP-ribosyl Rif cannot function as an initiating substrate for 

RNAP. 

By investigating these unique mechanistic processes, we have advanced our 

understanding of how transcription targeting antibiotics function at RNAP. 

Furthermore, we have furthered our understanding of the mechanisms utilised by 

pathogenic bacteria to facilitate resistance to transcription targeting antibiotics. 
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9. Appendix 

T7A1-F 5’-GGTCGACTCTAGAGGATCGCT-3’  

T7A1-R 5’-Bio-CGACGTTGTAAAACGACGGCCAGTG-3’ 

lacUV5-F 5’-CTCACTCATTAGGCACCCCAGGC-3’ 

lacUV5-R 5’-Bio- CCAGGCGGTGAAGGGCAATCAGC 

T7A2-F 5’-CGCTTAAGTCACCTAGAAGGC-3’ 

T7A2-F 5’-TCGACACCGGGGGAATTCGG-3’ 

galP1-F 5’-GGCTAAATTCTTGTGTAAACGATTCCA-3’ 

galP1-R 5’- CTCATAATTCGCTCCATTAGGCTTATG-3’ 

βR143A-F 5’-TGTTATCAACGGTACTGAGGCTGTTATCGTTTCCCAGCTG-3’   

βR143A-R 5’-CAGCTGGGAAACGATAACAGCCTCAGTACCGTTGATAACA-3’   

βS531L-F 5’-CGCACAAACGTCGTATCTTGGCACTCGGCCC-3’   

βS531L-R 5’-GGGCCGAGTGCCAAGATACGACGTTTGTGCG-3’  

σ70E104Q-F 5’GTACGCATGTACATGCGTCAAATGGGC-3’ 

σ70E104Q-R 5’-CAACGGTGCCCATTTGACGCATGTACATGCGTAC-3’ 

ArrMs-F-NdeI 5’-TAAGCAAAGCTTGTCAGTCATAGATGA-3’   

ArrMs-R-Hind III 5’-TAAGCAAAGCTTATCCTCACCAACCTC-3’ 

ArrMab-F-NdeI 5’-TAAGCACATATGATGGCGAATCCGCC-3’ 

ArrMab-R-Hind III 5’-TAAGCACATATGATGACGATGCCCAA-3’ 

 

Figure S1. List of primers used in this work (5’-3’; Bio, Biotin tag) 
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Figure S2. List of plasmids used in this work  

 

 

 

 

  

Plasmid Resistance 
Marker 

Characteristic Reference 

pTZ19-T7A1 Kanamycin PT7A1 (Kashlev et al., 
1996) 

pTZ19- galP1 Kanamycin PgalP1 (Minakhin and 
Severinov, 

2003) 

pT7blue-T7A2 Ampicillin PT7A2 (Yuzenkova et 
al., 2011) 

pIA581 Ampicillin PT7–rpoA–rpoB: 
Nterm:His6–rpoC 

(Svetlov and 
Artsimovitch, 

2015) 

pGEMABC Ampicillin PT7–rpoA–rpoB–
rpoC 

(Murakami, 
2013) 

pACYCDuet-1_Ec_rpoZ Kanamycin PT7–rpoZ (Murakami, 
2013) 

pET28a-σ70  Kanamycin PT7-rpoD:Nterm:His6 (Zenkin et al., 
2007) 

pET28a-σ70-E104Q  Kanamycin PT7-
rpoDE104Q:Nterm:His6 

This work 

pET28a-ArrMs Kanamycin PT7-M. smegmatis 
Arr:Nterm:His6 

This work 

pET28a-ArrMab Kanamycin PT7-M. abscessus 
Arr:Nterm:His6 

This work 
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Figure S3. List of strains used in this work   

Species/Strain Genotype Reference 

Bacillus subtilus  
(yvgS) 

B. subtilis 168 
amyE::PhelD-lacZcat 

reporter strain 

(Hutter et al., 2004b) 

Staphylococcus aureus  
(RN4220) 

 
WT 

 
(Nair et al., 2011) 

Staphylococcus 
epidermidis  

(ATCC12228) 

 
WT 

 
(MacLea and 

Trachtenberg, 2017) 

Mycobacterium 
smegmatis 
(MC2 155) 

 
WT 

 
(Mohan et al., 2015) 

Mycobacterium  
Abscessus 

(NCTC 13031) 

 
WT 

 
(Ripoll et al., 2009) 

Staphylococcus 
epidermidis- Mut1 

(ATCC12228) 

 
rpoDE105Q 

 
This work 

 
Escherichia coli 

(DH5α) 

fhuA2 Δ(argF-lacZ)U169 
phoA glnV44 Φ80 

Δ(lacZ)M15 gyrA96 
recA1 relA1 endA1 thi-1 

hsdR17 

 
 

New England Biolabs 

 
Escherichia coli 

(T7 express) 

fhuA2 lacZ::T7 gene1 
[lon] ompT gal sulA11 
R(mcr-73::miniTn10--

TetS 
)2 [dcm] 

R(zgb-210::Tn10--TetS 
) endA1 

Δ(mcrCmrr)114::IS10 

 
 
 

New England Biolabs 
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