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Abstract

An estimated 1158 nuclear encoded proteins function within mammalian mitochondria. 

Over the past ten years the increased implementation of next generation sequencing-

driven diagnostics, particularly whole exome sequencing (WES), has resulted in the 

identification of over 150 nuclear genes not previously implicated in mitochondrial 

disease, necessitating extensive functional studies to determine and confirm 

pathogenicity. Over one third of reported mitochondrial disease-causing nuclear 

genetic variants reside in genes encoding proteins with a role in mtDNA gene 

expression. The overarching aim of my research project was to functionally validate 

novel candidate mitochondrial disease variants, focusing on those identified in genes 

encoding proteins with roles in mitochondrial translation, in order to achieve genetic 

diagnoses for affected patients.

WES of two unrelated patients with early-onset neurological disease presentations 

identified different and previously unreported variants in the GFM2 gene encoding 

ribosome recycling factor mtEFG2. Differential and tissue-specific patterns of 

combined OXPHOS defects were identified in each patient. Novel compound 

heterozygous variants in the TSFM gene, encoding the elongation factor mtEF-Ts, 

were identified in a single patient presenting with adult-onset hypertrophic 

cardiomyopathy. The abundance of mtEF-Ts was significantly decreased in patient 

fibroblasts and cardiac tissue. The resulting OXPHOS deficiency was most severe in 

cardiac tissue, accompanied by decreased levels of elongation factor mtEF-Tu.

A homozygous nonsense mutation in the MRPL47 gene, encoding a mitoribosomal 

large subunit (LSU) protein, was identified in three unrelated paediatric patients 

presenting with metabolic acidosis, epilepsy and liver involvement. Patient fibroblasts 

exhibited disorders of translation and combined OXPHOS defects. Some truncated 

MRPL47 protein was visualised within the destabilised LSU. Variants in MRPL65, a 

second LSU gene, were identified in five paediatric patients presenting with 

overlapping clinical features including developmental delay, ataxia and nystagmus. 

Attempts to generate a CRISPR/Cas9 MRPL65 knock-out cell line were unsuccessful 

due to polyploidy of the target genomic region, highlighting the importance of 
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karyotyping in gene editing studies. MRPL65 cDNA analysis in a single patient 

identified retention of intronic sequence due to a +5 splice variant. Patient fibroblasts 

displayed normal levels of MRPL65 and OXPHOS proteins, but appeared to exhibit a 

defect in mitochondrial translation alongside some abnormal assembly of the LSU.

This work expands upon our current knowledge of Mendelian mitochondrial disorders, 

adding to a growing list of nuclear genes implicated in disorders of translation and 

achieving genetic diagnosis in the presented families. Tissue-specific defects illustrate 

the complexity of the pathomechanisms underlying these disorders and highlight the 

gaps in our understanding of adaptive compensatory mechanisms employed in 

different tissues. This research also emphasises the importance of identifying and 

characterising multiple families when assigning pathogenicity to novel disease-causing 

variants. 
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Chapter 1 : Introduction

1.1 Mitochondria: The organelle

Mitochondria are dynamic double membrane bound organelles present in, and 

essential to, all nucleated human cells. Mitochondria are the product of an 

endosymbiotic event some 1.5 billion years ago, in which the common cellular ancestor 

of all eukaryotes endocytosed an α-proteobacterium with anaerobic respiratory 

capability (Gray, Burger and Lang, 1999). As such, mitochondria possess a genome 

containing retained genes of bacterial origin. However, the evolution of this genome 

varied vastly between both animal and non-animal species (Gray, 2012). From this 

point forward this thesis will focus on human mitochondria, unless otherwise specified. 

A primary function of mitochondria is the generation of chemical cellular energy, in the 

form of adenosine triphosphate (ATP), through a process known as oxidative 

phosphorylation (OXPHOS). Several other vital cellular processes are mediated by the 

mitochondria, including iron sulphur cluster and haem biosynthesis, calcium 

homeostasis and apoptosis (Osellame, Blacker and Duchen, 2012). Many features of 

human mitochondrial biology that are seen today, such as the unique circular genome, 

distinct translation machinery, double membrane bound structure and dynamic fission 

and fusion capabilities are reminiscent of their ancestry as a once independent 

bacterium (Roger, Munoz-Gomez and Kamikawa, 2017). 

1.1.1 Mitochondrial structure

The composition of the outer mitochondrial membrane (OMM) and the inner 

mitochondrial membrane (IMM) differ from each other to reflect their roles within 

mitochondrial structure and function. The OMM forms a smooth lipid bilayer, most 

similar to the plasma membranes of eukaryotes, containing voltage dependent anion 

channels (VDAC) and translocase of the outer membrane (TOM) complexes to 

mediate the movement of small molecules and ions between the cytosol and the 
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intermembrane space (IMS) (Ponnalagu and Singh, 2017). The IMM is less permeable 

and more selective than the OMM, a property which is of significant importance in the 

maintenance of the proton gradient that drives ATP synthesis during oxidative 

phosphorylation. The architecture of the IMM is highly convoluted with many 

invaginations, termed cristae (Figure 1.1) (Gohil and Greenberg, 2009). The cristae 

provide a large surface area, allowing mitochondria to house and abundance of 

membrane proteins (Kondadi, Anand and Reichert, 2019). The central cavity of 

mitochondria, named the matrix, sits within the IMM.

Figure 1.1 Mitochondrial ultrastructure and network organisation. A schematic (A) and an electron micrograph 

(B) image of a single mitochondrion, highlighting the key structural features and compartments formed by the outer 

mitochondrial membrane (OMM), the inner mitochondrial membrane (IMM), the intermembrane space (IMS), cristae 

and matrix. A confocal image of a single cell stained with TMRM, illustrating the reticular nature of mitochondrial 

networks (C).
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1.1.2 Mitochondrial dynamics

Though commonly depicted diagrammatically as static organelles around 2μm in 

length, the mitochondria of healthy cells are typically part of a dynamic reticular 

network, allowing mitochondria to travel between different cellular regions in response 

to energy requirements (Chan, 2012) (Figure 1.1). These changes in network shape 

and mitochondrial morphology are primarily driven by fission and fusion events.

Mitochondrial fission is the process by which both the OMM and IMM divide, to produce 

two separate daughter mitochondria. For this to occur, the protein dynamin-related 

protein 1 (DRP1), a large GTPase, is recruited from the cytosol to the OMM by four 

key proteins; mitochondrial fission protein 1 (Fis1), mitochondrial fission factor (Mff), 

and mitochondrial dynamics proteins 49 and 51 (Mid49 and Mid51) (Loson et al., 

2013). Once positioned at the OMM, DRP1 forms oligomeric ring-like structures at ER-

mitochondria contact sites, where GTP-driven hydrolysis drives constriction of 

mitochondria. The final stage of mitochondrial fission is the scission of the constricted 

area, carried out by the Dynamin-2 (Dnm2) protein, to produce two daughter 

mitochondria (Kraus and Ryan, 2017).

Fusion of mitochondria is initiated upon the docking of mitofusin GTPases Mfn1 and 

Mfn2 at adjacent outer mitochondrial membranes of two proximal mitochondria. 

Conformational changes in mitofusins cause an increase in membrane contact sites, 

followed by GTPase dependent fusion of the OMM (Song et al., 2009). Mitochondrial 

dynamin-like protein OPA1, a large GTPase, interacts with IMM phospholipid content 

to drive subsequent fusion of the IMM (Ban et al., 2017).

1.1.3 The mitochondrial genome

In the matrix of mitochondria there are approximately 1-15 mtDNA molecules, however 

this number is dynamic and responsive to cell-type specific mechanisms of copy 

number control (Clay Montier, Deng and Bai, 2009; Satoh and Kuroiwa, 1991). At 

16,569bp in size, the circular double stranded mitochondrial genome encodes 37 
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genes (Figure 1.2) (Anderson et al., 1981). Of these genes, 13 encode polypeptides, 

all of which are core subunits of one of the OXPHOS complexes I, III, IV and V. The 

remaining genes encode 22 transfer RNAs (tRNAs) and two ribosomal RNAs (rRNAs), 

16S and 12S, that are integral parts of the large and small mitoribosomal subunits 

respectively.

Figure 1.2 The human mitochondrial genome. Diagram of the 16,569 bp human mtDNA molecule with protein 

coding regions in turquoise (complex I), blue (complex III), pink (complex IV) and yellow (complex V). Ribosomal 

RNAs are orange and tRNAs are in black. OH and OL depict the origins of replication for the heavy and light strand 

respectively, with arrows pointing in the direction of replication. Mitochondrial tRNA genes in black are labelled with 

their single letter abbreviations in red.

The two strands of mtDNA are termed the heavy strand (H strand) and light strand (L 

strand) and differ in their guanine content. The H strand is particularly guanine rich and 

encodes the majority of mitochondrial transcripts, whilst the L strand generates the MT-

ND6 transcript and eight of the tRNAs (Figure 1.2). The amount of non-coding DNA 

within mtDNA is very low in comparison to the nuclear genome, with no intronic regions 

and just one main non-coding region (NCR) within which the displacement loop (D-

loop) is found. The D-loop region is a section of the mitochondrial genome 

approximately 1.1 kb in length, in which the H strand has been displaced by the binding 
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of an additional linear DNA strand, termed 7S DNA, to the L strand. The NCR contains 

both heavy (HSP) and light (LSP) strand promoters and other regulatory elements 

involved in the control of mtDNA replication and transcription (Walberg and Clayton, 

1981).
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1.1.3.1 Maternal inheritance

Unlike the mendelian pattern of inheritance displayed by genes of diploid nuclear DNA, 

mtDNA is widely accepted to be inherited solely through the maternal lineage (Giles et 

al., 1980). An unfertilised egg contains up to 600,000 copies of mtDNA which vastly 

outnumbers the ~100 copies carried within each sperm cell (Shoubridge and Wai, 

2007; Wai et al., 2010). In mice, during the early stages of fertilisation, the mitochondria 

of sperm cells were demonstrated to be ubiquitinated within the oocyte cytoplasm, 

marking them for subsequent autophagic proteolytic degradation (Sutovsky et al., 

2004). However, in later studies the role of autophagy in the degradation of sperm 

mitochondria was questioned when it was shown that the association of autophagic 

proteins occurring only transiently and significantly earlier than the elimination of 

paternal mitochondria (Luo et al., 2013). A single case of paternal inheritance of a rare 

mtDNA disease variant isolated to patient muscle has been previously reported 

(Schwartz and Vissing, 2002), igniting debate surrounding the possibility and 

prevalence of paternal mtDNA ‘leakage’. A subsequent study of a cohort of 35 

mitochondrial myopathy patients detected no evidence of paternal mtDNA inheritance, 

suggesting that the phenomenon does not frequently occur (Taylor et al., 2003). More 

recently the publication of data indicating the existence of high heteroplasmy and two 

individual haplotypes resulting from biparental mtDNA inheritance within three 

unrelated families (Luo et al., 2018) has renewed academic interest and debate around 

this topic, though whether paternal mtDNA inheritance exists remains a contentious 

question (Lutz-Bonengel and Parson, 2019; McWilliams and Suomalainen, 2019).  

In 2019, it was hypothesised that the second mtDNA haplotypes detected by Luo et 

al., could be assigned to multi-copy mtDNA concatemers within the nuclear genome, 

rather than circular mtDNA inherited paternally (Balciuniene and Balciunas, 2019). It 

has since been demonstrated experimentally, through the application of WGS in a 

cohort of 11,03 trios, rare instances of heteroplasmic haplotypes can be attributed to 

nuclear-encoded mitochondrial segments (NUMTs) that create the impression of 

paternally inherited mtDNA (Wei et al., 2020).
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1.1.4 Bi-genomic control of mitochondria 

An estimated 1,158 proteins are present within mitochondria to maintain regular 

function, of which only 13 are encoded by mtDNA (Calvo, Clauser and Mootha, 2016). 

During mitochondrial evolution there was vast gene transfer from ancestral 

endosymbiont genome to the nuclear genome (Adams and Palmer, 2003) These 

proteins are synthesised in the cytosol, prior their import into mitochondria. A complex 

system of protein import machinery is required for the appropriate transport of nuclear 

encoded mitochondrial proteins across the OMM and IMM, essential to the 

maintenance of mitochondrial function.

1.1.5 Mitochondrial protein import

Transport of proteins into mitochondria is facilitated by dedicated protein translocases. 

The exact route taken for translocation and assembly is dependent on the type of 

precursor protein being imported and the targeting sequence it carries. Five distinct 

mitochondrial protein import pathways have been described to date (Wiedemann and 

Pfanner, 2017) (Figure 1.3). 
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Figure 1.3 Mitochondrial protein import pathways. Schematic overview of the five major mitochondrial protein 

import pathways. Cysteine rich proteins cross the OMM through translocase of the outer membrane (TOM) and are 

then undergo folding and assembly directed by the mitochondrial import and assembly (MIA) pathway. Proteins 

with an N-terminal pre-sequence are imported through TOM and then translocase of the inner membrane 23 

(TIM23) driven by the presequence translocase associated motor (PAM). IMM carrier proteins cross the OMM 

through TOM and are then directed to translocase of the inner membrane 22 (TIM22) by Tim chaperone proteins. 

Mitochondrial β-barrel proteins also cross the OMM through TOM and interact with Tim chaperone proteins as they 

are directed to the OMM sorting and assembling machinery (SAM). OMM α- helical proteins are imported and 

inserted into the membrane by the mitochondrial import complex MIM.

1.1.5.1 Import pathway for N-terminal presequence proteins

The first import pathway to be described, often termed the ‘classical import pathway’, 

is responsible for the translocation of mitochondrial precursor proteins that carry N-

terminal presequences as mitochondrial targeting signals. Translocase of the outer 

membrane (TOM) and translocase of the inner membrane (TIM23) transport these 

precursor proteins through the outer and inner mitochondrial membranes respectively 
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(Abe et al., 2000; Dayan et al., 2019). Presequence translocase-associated motor 

(PAM) is the driving force behind import through TIM23 and into the matrix (Schiller, 

2009). N-terminal presequences are subsequently cleaved off by the mitochondrial 

processing peptidase (MPP) (Hawlitschek et al., 1988).

1.1.5.2 Import pathway for cysteine rich proteins

The TOM complex also acts as the common OMM entry gate for proteins that do not 

possess cleavable mitochondrial targeting sequences (MTS). These proteins are 

imported according to a range of different internal targeting sequences (Backes et al., 

2018). Proteins targeted to the IMS commonly have mitochondrial IMS sorting signals 

(MISS) residing next to a number of cysteine residues that, once in the IMS, direct 

them into the mitochondrial import and assembly (MIA) pathway (Sideris et al., 2009). 

Components of the MIA machinery interact with imported precursor IMS proteins 

through transiently formed disulphide bonds using specific cysteine residues to 

facilitate proper folding and assembly (Banci et al., 2009).

1.1.5.3 Import pathway for metabolite carrier proteins

The translocation and assembly of IMM metabolite carrier protein precursors represent 

a third unique import mechanism, known as the carrier pathway. Following their TOM 

mediated import into the IMS, carrier precursors are bound by a complex of small Tim 

chaperones Tim9-Tim10 and Tim12 (Ivanova, Jowitt and Lu, 2008; Gebert et al., 

2008). These chaperone proteins direct the carrier precursors to the carrier translocase 

of the inner membrane (TIM22) for insertion and assembly within the IMM (Koehler et 

al., 1998). 

1.1.5.4 Import pathways for OMM proteins

Mitochondrial β-barrel proteins of the OMM also rely on the small Tim chaperone 

complexes of the IMS, through which they are directed to the sorting and assembly 
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machinery (SAM), embedded within the OMM (Wiedemann et al., 2003). 

Conformational changes within the SAM complex mediate the folding of β-barrel 

substrates and their release into the lipid bilayer of the OMM (Becker et al., 2008). 

Another group of OMM proteins, containing α- helical transmembrane segments, are 

thought to be the only class of mitochondrial proteins not to rely on TOM for import. 

Instead, the mitochondrial import (MIM) complex promotes the insertion of these 

proteins into the outer membrane (Dimmer et al., 2012).
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1.2 Mitochondrial DNA replication

A faithful system of mtDNA replication is essential to the maintenance of the 

mitochondrial genome and the expression of its 13 encoded genes. Two main origins 

of replication have been described: the origin of H-strand replication (OH), which lies 

within the NCR, and the origin of L-strand replication (OL), which lies within a cluster of 

tRNAs downstream from OH. The RNA primers necessary for mtDNA replication are 

synthesised by the mitochondrial RNA polymerase (POLRMT) (Fusté et al., 2010; Kuhl 

et al., 2016). DNA synthesis is driven by the mitochondria-specific DNA polymerase γ 

(Pol γ), a heterotrimer composed of one catalytic subunit encoded by POLG and a 

homodimeric accessory subunit, encoded by POLG2, which confers processivity to Pol 

γ by increasing its affinity to DNA (Lee, Kennedy and Yin, 2009). 

In order for Pol γ to proceed the two mtDNA strands must be unwound at the replication 

fork, a role carried out by a hexamer of the mtDNA helicase Twinkle (TWNK) through 

disruption of the hydrogen bonds between strands (Milenkovic et al., 2013). The 

mitochondrial single strand binding protein (mtSSB) additionally enhances the activity 

of both Pol γ and Twinkle (Oliveira and Kaguni, 2010). In addition to these 

mitochondria-specific proteins, several other proteins with dual nuclear and 

mitochondrial functions are involved in mtDNA replication,  including DNA ligase III, 

ribonuclease H1 (RNase H1) (Cerritelli et al., 2003), flap structure-specific 

endonuclease 1 (FEN1) and topoisomerase 3 alpha (TOP3) (Ruhanen, Ushakov and 

Yasukawa, 2011; Nicholls et al., 2018). The termination of replication requires several 

factors with nuclease activity for primer removal, processing and re-ligation. The 

processing of RNA primers can take place in a number of ways, usually involving the 

partial degradation of annealed primers by RNase H1 and subsequent displacement 

of remaining nucleotides by Pol γ to generate a ‘flap’ of varying length. This flap can 

then be cleaved and cleared by FEN1, DNA2 or MGME1 (Uhler and Falkenberg, 2015). 

To complete each replication event, separation of the two newly synthesised mtDNA 

molecules must take place. It has been demonstrated recently that the protein 

topoisomerase 3α (TOP3) carries out decatenation of interlinked mtDNA, releasing 
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each mtDNA molecule to form their final compact nucleoid structure (Nicholls et al., 

2018).

Mitochondria maintain continuous cycles of DNA replication, running independently of 

the broader cell cycle in both actively proliferating and post-mitotic cells (Korr et al., 

1998; Magnusson et al., 2003). Different models for mtDNA replication have been 

proposed, with the main points of contention being whether replication proceeds in a 

strand-synchronous or strand-asynchronous manner and whether the lagging-strand 

template is coated with protein or RNA (Robberson, Kasamatsu and Vinograd, 1972; 

Clayton, 1982; Falkenberg, 2018) (Figure 1.4).

Figure 1.4 The three models of mtDNA replication. Left to right: The strand displacement model (asynchronous), 

the strand coupled model and the RITOLS model. Figure adopted from (Kasiviswanathan, Collins and Copeland, 

2012)
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1.2.1 ‘Strand displacement’ model of mtDNA replication

The model of asynchronous strand-displacement, first described in 1972, suggests that 

replication begins at the OH within the NCR (Robberson, Kasamatsu and Vinograd, 

1972). Unidirectional replication of the H-strand alone then proceeds, either stalling at 

a termination associated sequence (TAS) ~700 nucleotides after the OH, or continuing 

fully around the genome. The displaced lagging-strand template is coated and 

protected by mtSSB until L-strand synthesis is initiated (Miralles Fusté et al., 2014). 

Once the replisome has passed OL, a stem-loop structure becomes exposed, allowing 

POLRMT to form a primer for L-strand replication to begin in the opposite 

direction(Shadel and Clayton, 1997; Clayton, 1982).

1.2.2 ‘Synchronous’ model of mtDNA replication

An alternative model of mtDNA replication postulates that conventional strand-coupled 

DNA synthesis, resulting from bidirectional replication initiation, occurs in mitochondria. 

This theory is predominantly based upon the observation of fully duplex replication 

intermediates using 2-dimensional agarose gel electrophoresis (Holt, Lorimer and 

Jacobs, 2000), and implies the presence of multiple short Okazaki fragments during 

lagging-strand synthesis. However, their role within the mtDNA replication system has 

yet to be demonstrated experimentally (Holt, 2009; Wanrooij and Falkenberg, 2010). 

1.2.3 ‘Ribonucleotide Incorporation Throughout Lagging Strand (RITOLS)’ 

model of mtDNA replication

The third, most recently proposed model of mtDNA replication is RITOLS. The model 

postulates that RNA (rather than mtSSB) is hybridised to the displaced H strand during 

leading-strand replication, providing stability and protection to the exposed ssDNA as 

replication advances. This RNA was more recently suggested to derive from processed 

RNA transcripts, and is referred to as the ‘bootlace model’ due to its emphasis on RNA 

‘threading’ (Reyes et al., 2013). An enzymatic machinery responsible for this process 

has not been identified.
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1.2.4 Maintenance of the dNTP pool

The replication and repair of both the nuclear and mitochondrial genomes requires a 

steadily available pool of deoxyribonucleoside triphosphates (dNTPs). The two major 

pathways that regulate dNTP supply to mitochondria are the salvage and the de novo 

synthesis pathways. The latter operates in the cytosol where the key regulatory 

enzymes involved in dNTP synthesis are ribonucleotide reductase (RNR) and 

thymidylate synthase (TS). RNR is responsible for the reduction of ribonucleotides to 

deoxyribonucleotides (Penque et al., 2018; Pontarin et al., 2008). Specific 

mitochondrial carriers, such as MPV17, then facilitate the transport of cytosolic dNTPs 

into the matrix, as mitochondria do not possess de novo nucleotide synthesis 

pathways, nor can such molecules permeate the inner mitochondrial membrane (IMM) 

due to their charge (Dahout-Gonzalez, 2006). 

The unique mitochondrial dNTP salvage pathway constantly converts former 

deoxynucleosides, already within the mitochondrial matrix as a result of DNA turnover, 

into dNTPs (D’Souza and Minczuk, 2018). Mitochondrial thymidine kinase 2 (TK2) is a 

key driver of the pyrimidine nucleotide salvage pathway as it carries out the initial 

phosphorylation of pyrimidine precursors (Johansson and Karlsson, 1997). Similarly, 

the primary phosphorylation step in purine nucleotide salvage is carried out by 

mitochondrial deoxyguanosine kinase (DGK) (Johansson and Karlsson, 1996). Two 

additional phosphorylation steps follow, performed sequentially by nucleotide 

monophosphate kinase (NMPK) and nucleotide diphosphate kinase (NDPK), resulting 

in the conversion of each of the deoxyribonucleoside monophosphates (dNMPs) into 

dNTPs (Wang, 2016). For NMPK to execute the final phosphorylation of each 

nucleotide it must form a complex with succinyl CoA ligase (SUCL) and 4-

aminobutyrate transaminase (ABAT) (Besse et al., 2015; Kowluru, Tannous and Chen, 

2002).
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1.3 Mitochondrial transcription

Within the D-loop of the mitochondrial genome are the sites of transcription initiation 

for both the H and L strands. Early studies of mitochondrial transcription identified two 

heavy-strand promoters, named HSP1 and HSP2, while the initiation of light strand 

transcription was attributed to a single LSP site. Transcription originating from HSP1 

was proposed to run from the 5’ end of the  mitochondrial (mt)-tRNAPhe  gene through 

to the 3’ end of the 16S gene, thus transcribing two mt-tRNA genes (encoding mt-

tRNAPhe and mt-tRNAVal) and the two mt-rRNA genes (12S and 16S). Transcription 

originating from HSP2, 100bp downstream of HSP1, begins at the boundary between 

the gene encoding mt-tRNAPhe and the 12S gene and proceeds along the entirety of 

the H strand to produce a long polycistronic transcript containing all of the mt-tRNAs, 

mt-rRNAs and mt-mRNAs encoded within the H strand (Montoya et al., 1982). 

Similarly, transcription originating at the LSP continues along the full strand to produce 

a polycistronic transcript of all genes encoded within the L strand. However, difficulties 

in faithfully reconstituting transcription initiation from HSP2 in vitro (Litonin et al., 2010), 

as well as the finding that the proposed HSP transcription termination protein MTERF1 

appears to terminate transcription from LSP rather than HSP (Terzioglu et al., 2013), 

have led many to question the existence of HSP2 as a functional promoter, and there 

is currently little consensus.

The mitochondrial transcription machinery is entirely nuclear encoded and it is well 

demonstrated that mitochondrial transcription can be reconstituted in vitro in the 

presence of just three proteins: mitochondrial RNA polymerase (POLRMT), 

mitochondrial transcription factor A (TFAM) and mitochondrial transcription factor B2 

(TFB2M) (Posse et al., 2015; Falkenberg et al., 2002). POLRMT, a single subunit RNA 

polymerase that is related to the bacteriophage T7 RNA polymerase (T7 RNAP) is the 

driver of mitochondrial transcription. The transcription activity of POLRMT is exclusive 

to the mitochondrial genome. POLRMT requires the two additional cofactors TFAM 

and TFB2M for promoter recognition and melting  during transcription initiation (Hillen, 

Temiakov and Cramer, 2018). 
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1.3.1 Transcription initiation

TFAM has the ability to bind to high affinity binding sites ~10-15bp upstream of the 

promoter sites and introduce a 180° bend in the bound mtDNA. TFAM binding and the 

subsequent conformational change allows for the recruitment of POLRMT to promoter 

DNA to form the pre-initiation complex (Hillen, Temiakov and Cramer, 2018). Finally, 

the recruitment of TFB2M to the pre-initiation complex introduces structural changes 

in POLRMT that drive promoter melting and allow the entry of the initiating nucleotide 

into the catalytic site of POLRMT; thus completing initiation and allowing elongation to 

commence (Figure 1.5).

 

Figure 1.5 Mitochondrial transcription initiation. A four-step model of transcription initiation. 1. TFAM binds 

mtDNA upstream of the transcription start site, introducing a 180° bend. 2.  TFAM recruits POLRMT, which interacts 

with a DNA region upstream of the TFAM binding site. 3. POLRMT undergoes a conformational change. 4. This 

conformational change allows the binding of TFB2M, the final step in the formation of a complete transcription 

initiation complex. Figure adopted from (Gustafsson, Falkenberg and Larsson, 2016). 

1.3.2 Transcription elongation

During the transition from initiation to elongation, TFB2M dissociates and a new 

combination of proteins, the elongation complex, assembles. The mitochondrial 

transcription elongation factor TEFM forms a dimer, binding the POLRMT site 

previously occupied by TFB2M, thus promoting the formation of  a sliding clamp 

structure (Hillen et al., 2017). TEFM drives elongation by increasing POLRMT-DNA 
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interactions, greatly enhancing POLRMT processivity along the mtDNA strand and 

preventing premature termination or stalling (Posse et al., 2015; Posse et al., 2014). 

1.3.3 Transcription termination

The exact mechanism by which mitochondrial transcription is terminated remains 

somewhat unresolved. One protein known to play a key role in the termination of 

transcription is MTERF1 (Terzioglu et al., 2013). As a member of a family of proteins 

with nucleic acid binding properties, MTERF1 binds along the major groove of mtDNA 

at the 3’ end of the 16S rRNA gene and induces a bend, partial unwinding of the double 

helix and the eversion of three nucleotides to stabilise this interaction (Asin-Cayuela et 

al., 2005). MTERF1 exhibits polar transcription termination activity consistent with a 

role in terminating transcription originating only from LSP (Terzioglu et al., 2013). 

Equivalent proteins involved in the termination of transcription originating from HSP 

are yet to be identified. As previously described, mitochondrial transcription, from either 

HSP or LSP, produces long polycistronic messages that must undergo essential post-

transcriptional processing and modification steps prior to mitochondrial translation.

1.3.4 Transcript processing

The majority of protein coding mtDNA genes, along with both mt-rRNA genes, are 

separated by individual mt-tRNA genes. The mt-tRNAs act as guides for 

endonucleolytic excision and thus the release of each flanking mRNA and rRNA 

transcript in a system termed the ‘tRNA punctuation model’ (Ojala, Montoya and 

Attardi, 1981). Cleavage of each tRNA is carried out by ribonuclease P (RNaseP) and 

ribonuclease Z (RNase Z) at the 5’ and 3’ ends respectively. In human mitochondria 

the RNAseP is a complex of 3 proteins, MRPP1, MRPP2 and MRPP3 whereas the 

RNaseZ activity is carried out by a single protein, ElaC ribonuclease Z (ELAC2). 

Though this model can account for the release of the majority of individual transcripts, 

there are some protein-coding genes not flanked by tRNAs on either side. It has been 

suggested that the remaining 3 precursors that are not flanked by tRNAs require one 

of two proteins for their processing, GRSF1 or PTCD2. GRSF1 is crucial for the 
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processing of the MTND6-ncRNA and RNA14-MT-CO3 precursors (Jourdain et al., 

2013; Antonicka et al., 2013) while PTCD2, a pentatricopeptide repeat (PPR) RNA-

binding protein that is involved in the processing of the MT-ND5-MT-CYB transcript 

(Xu et al., 2008). 

1.3.5 mt-mRNA maturation

Following the nucleolytic processing of each polycistronic message, all but one of the 

mt-mRNA transcripts undergo adenylation on their 3’ ends. The majority of mt-mRNAs 

are polyadenylated with poly(A) tails (~45-55 nucleotides in length) with the exception 

of the MT-ND6 transcript. In addition, the poly(A) tails detected on the MT-ND5 

transcript are much shorter in length (between 0-10 nucleotides) than the majority of 

other mt-mRNAs (Temperley et al., 2010). Poly(A) tail synthesis is carried out by the 

poly(A) polymerase (mtPAP) that is localised to the mitochondrial RNA granules and 

is capable of using each of the four NTPs in its polymerase activity, despite showing 

an ATP substrate preference (Bai et al., 2011). An essential function of poly(A) tails is 

to provide mt-mRNA transcripts with a complete ‘stop’ codon. Seven of the thirteen 

mitochondrial open reading frames have incomplete stop codons (‘U’ or ‘UA’) that, 

without poly- or oligo-adenylation to form ‘UAA’, would not cause termination of 

mitochondrial translation (Temperley et al., 2010). The impact of polyadenylation upon 

mt-mRNA stability varies between transcripts. Some mt-mRNAs, such as MT-ATP6/8, 

MT-CO1, MT-CO2 and MT-CO3 appear to be destabilised upon addition of poly(A) 

tails, whereas MT-CYTB, MT-ND3, MT-ND4/4L and MT-ND5 all show increased 

stability in their polyadenylated state (Temperley et al., 2010). The mechanism and 

function behind this transcript-specific response to polyadenylation remains unclear

1.3.6 mt-mRNA turnover

An important regulator of mtDNA gene expression is the ‘mitochondrial degradosome’ 

dedicated to the turnover of RNAs within the matrix. The RNA degradosome apparatus 

consists of a mitochondria-specific helicase hSuv3p that can unwind double stranded 

DNA (dsDNA), double stranded RNA (dsRNA) and DNA-RNA hybrids (Minczuk et al., 
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2002) and polynucleotide phosphorylase (PNPase), encoded by the PNPT1 gene, that 

has poly(A) polymerase (PAP) and 3’-5’ exoribonuclease activities. It has been 

demonstrated that hSuv3p and PNPase form a stable complex that is believed to play 

a role in the removal of RNA transcripts that are antisense, aberrant or have undergone 

damage as well as normally processed mature transcripts in the mitochondrial matrix 

(Borowski et al., 2013; Szczesny et al., 2010). A third protein with a proposed role in 

mitochondrial RNA degradation is RNA exonuclease 2 (REXO2). Showing localisation 

to the matrix and the IMS, as well as the cytosol, REXO2 is an exonuclease that 

degrades oligonucleotides in the 3’ to 5’ direction. The substrates of REXO2 are likely 

to be short ribonucleotides generated during the degradation of RNA transcripts by 

hSuv3p-PNPase or by other nucleases (Bruni et al., 2013). 

The leucine rich PPR (pentatricopeptide repeat)-containing protein (LRPPRC) and 

stem-loop interacting RNA binding protein (SLIRP) are both mitochondrial RNA binding 

proteins involved in the regulation of mt-mRNA stability.  It has been demonstrated that 

the LRPPRC-SLIRP complex conveys stability to mt-mRNAs by blocking PNPase 

access and aiding in the polyadenylation of the 3’ terminus of bound mRNAs (Chujo et 

al., 2012).

1.3.7 mt-tRNA maturation

Following their release from primary polycistronic transcripts, mt-tRNAs are subject to 

a broad range of different post-transcriptional maturation and modification steps, 

necessary for the formation of stable and fully functioning tRNA structures (Salinas-

Giege, Giege and Giege, 2015; Suzuki and Suzuki, 2014). A number of different 

nuclear encoded tRNA modifying enzymes are responsible for the chemical 

modifications of different sites of each mitochondrial tRNAs, some of which also modify 

nuclear tRNAs (Suzuki, Nagao and Suzuki, 2011). The final maturation step that 

involves the addition of CCA nucleotides to the 3’ terminus of mt-tRNAs is followed by 

aminoacylation by the correct mitochondrial aminoacyl-tRNA synthetase (aa-RS). 

Nineteen unique aa-RSs are required for mitochondrial translation (Sissler, Gonzalez-

Serrano and Westhof, 2017). The aa-RSs that produce aminoacyl-tRNA conjugates in 

the cytosol and in mitochondria are generally encoded by two distinct genes. However, 

two aa-RSs, glycyl-ARS aa-RS (GARS) and lysyl-ARS aa-RS (LARS), act within both 
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the cytosolic and mitochondrial systems, which is achieved via the inclusion or 

exclusion of a mitochondrial targeting sequence as a result of alternative initiation sites 

or splicing (Tolkunova et al., 2000; Echevarria et al., 2014).
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Figure 1.6 Schematic of mtDNA gene expression. Replication and transcription of the mitochondrial genome 

depends on a pool of available nucleotides. Following transcription and processing, mt-rRNAs (beige and 

turquoise), mt- mRNAs (light green) and mt-tRNAs (pink) undergo a number of post-transcriptional modification 

steps facilitated by numerous maturation and modification enzymes. The mitoribosomal LSU (turquoise) and SSU 

(beige) assemble to synthesise each of the 13 mitochondrial-encoded OXPHOS polypeptides, followed by their 

insertion into the IMM as constituents of complexes I, III, IV and V (purple). 
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1.3.8 mt-rRNA maturation

Like mt-tRNAs, both the 12S and 16S mt-rRNAs undergo a number of nucleotide 

modifications believed to convey stability and promote mitoribosome biogenesis. The 

12S mt-rRNA is subject to methylation of a cytidine at position 841 and dimethylation 

of neighbouring adenines at positions 936 and 937 by the methyltransferase NSUN4 

and dimethyltransferase TFB1M proteins respectively (Metodiev et al., 2014; Metodiev 

et al., 2009). The recently identified METTL15 protein introduces an N-4 

methylcytedine at position 839 of the 12S mt-rRNA believed to stabilise folding (Haute 

et al., 2019).

The 16S mt-rRNA undergoes one pseudouridinylation, carried out by the 

pseudouridine synthase RPUSD4 at position 1397 (Zaganelli et al., 2017). There are 

also several methylation sites on the 16S mt-rRNA. The protein TRMT61B, a known 

tRNA modifying enzyme, has been shown to introduce a methyladenosine at position 

947 of the 16S mt-rRNA. Structurally this modification sits at the interface of the 

mitochondrial large (mt-LSU) and small subunit (mt-SSU) and may be required to 

maintain mitoribosomal structure and function (Bar-Yaacov et al., 2016). The three 

proteins MRM1, MRM2 and MRM3 are a group of 2’-O-ribose methyltransferases, 

each believed to modify specific bases (Gm1145, Um1369, and Gm1370) within the 

peptidyl transferase centre of the 16S mt-rRNA (Rorbach et al., 2014; Lee and 

Bogenhagen, 2014; Lee et al., 2013).



 
23 

1.4 Mitochondrial translation

Reflective of their alphaproteobacterial ancestral origins, the mechanism of translation 

employed by mitochondria is more akin to prokaryotic protein synthesis systems than 

to the cytosolic translation of eukaryotes (Smits, Smeitink and van den Heuvel, 2010). 

Unlike transcription, mitochondrial translation is yet to be successfully reconstituted in 

vitro and as such is not as well characterised as eubacterial or eukaryotic cytosolic 

translation.

1.4.1 The mammalian mitoribosome

The core driver of mitochondrial translation is the mitoribosome. Consisting of a small 

(28S) subunit (SSU) and large (39S) subunit (LSU), the human mitoribosome contains 

~80 nuclear encoded proteins, two mt-rRNAs (12S and 16S) and a mt-tRNAVal that 

assemble to form the 55S monosome (Chrzanowska-Lightowlers, Rorbach and 

Minczuk, 2017; Amunts et al., 2015). Mammalian mitoribosomes have undergone 

evolutionary changes leading to mitochondria specific features that differ to those of 

bacterial ribosomes. One of the most striking discrepancies is the proportion of RNA 

to protein content. Bacterial ribosomes are comprised of ~70% RNA and 30% protein. 

This ratio has been reversed in mammalian mitoribosomes, which are 70% protein 

content and just 30% RNA (Brown et al., 2014), resulting from an evolutionary loss of 

rRNA domains combined with extension of conserved proteins and gain of 

mitochondria specific proteins (Mai, Chrzanowska-Lightowlers and Lightowlers, 2017). 

Many of the more recently obtained mitochondria specific proteins are located on the 

periphery of the mitoribosome. Once believed to simply fill the structural gaps left 

behind by lost RNA components, it has since been demonstrated that these additional 

mitoribosomal proteins also convey a number of different functionalities including 

membrane association and mRNA recruitment (Greber and Ban, 2016). 

It has been proposed that these additional proteins could function in part as a protective 

layer, shielding the ribosomal RNA from the damaging levels of ROS present within 

mitochondria (Mai, Chrzanowska-Lightowlers and Lightowlers, 2017). The process of 
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mitochondrial translation can, therefore, be divided into three major stages: initiation, 

elongation and termination (Figure 1.7).

 

Figure 1.7 Mitochondrial translation. Diagram depicting the cyclical nature of the three stages of mitochondrial 

translation; Initiation, Elongation and Termination/Recycling. A = acceptor site. P = peptidyl tRNA site. E = 

polypeptide exit site

1.4.2 Translation initiation

Initiation of mitochondrial translation requires the recruitment of a mitochondrial mRNA 

transcript to the SSU of the mitoribosome. When not active in translation, the SSU is 

bound by mitochondrial initiation factor 3 (mtIF3) which blocks its association with the 
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LSU preventing 55S formation (Christian and Spremulli, 2009). Binding of an mRNA 

transcript at the mRNA entry channel of the SSU may be facilitated by the PPR-

containing mS39 protein with mRNA binding properties (Greber et al., 2015). In 

addition to the ‘universal’ AUG initiating codon, the mitochondrial translation system 

also recognises AUA and AUU as ‘start’ codons (Jukes, 1983). Upon the entry of an 

initiating codon of an mt-mRNA into the SSU entry site, formylated tRNAMet (tRNAfMet) 

is recruited by mitochondrial initiation factor 2 in its GTP bound state (mtIF2:GTP) to 

form an initiation complex with the SSU (Christian and Spremulli, 2010). Binding of 

tRNAfMet through a codon:anticodon interaction triggers the recruitment of the LSU to 

form the monosome, and the subsequent hydrolysis of mtIF2:GTP to mtIF2:GDP 

results in the release of both mtIF2 and mtIF3 from the SSU. The monosome can then 

enter the elongation phase of mitochondrial translation. 

1.4.3 Translation elongation

The formation of a ternary complex of elongation factors, along with an aminoacylated 

tRNA (aa-tRNA) binding at the acceptor site (A-site) of the mitoribosome, is required 

for elongation of nascent polypeptides. The elongation phase begins with the binding 

of GTP-bound mitochondrial elongation factor Tu (mtEFTu:GTP) to an aa-tRNA which 

directs the aa-tRNA  into the A-site of the mitoribosome. The formation of a correctly-

matched codon:anticodon between the bound mt-mRNA transcript and the aa-tRNA in 

the A-site, triggers hydrolysis of the mtEFTu:GTP to mtEFTu:GDP that is then released 

from the mitoribosome (Cai et al., 2000). This GTP hydrolysis catalyses the formation 

of a peptide bond at the peptidyl transferase centre (PTC) between the aa-tRNA within 

the A-site and the amino acid sitting at the adjacent peptidyl tRNA site (P-site). The 

tRNA occupying the P-site becomes deacylated as a result and is then displaced by 

the translocation of the bi-peptidyl tRNA from the A-site to the P-site driven by the 

hydrolysis of a second elongation factor, mitochondrial elongation factor (G1), from 

mtEFG1:GTP to mtEFG1:GDP. Regeneration of mtEFTu:GDP back to mtEFTu:GDP 

is carried out by mitochondrial elongation factor Ts (mtEFTS) which allows this process 

to cycle and the peptide chain to grow (Mai, Chrzanowska-Lightowlers and 

Lightowlers, 2017). 
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1.4.4 Translation termination and ribosome recycling

Upon entry of a ‘stop’ codon UAA or UAG into the A-site of the mitoribosome, 

mitochondrial translation release factor A (mtRF1a) is recruited (Christian and 

Spremulli, 2012). mtRF1a catalyses the hydrolysis of the ester bond between the 

peptidyl-tRNA occupying the A-site and the terminal amino acid of the complete 

nascent polypeptide. This GTP-dependent cleavage results in the release of the full 

length polypeptide through the exit tunnel of the LSU (Lightowlers and Chrzanowska-

Lightowlers, 2010). Following this release, the mitoribosome must undergo a recycling 

process to return to independent large and small subunits available for the initiation of 

a new translation event, also releasing the mRNA template and final terminating tRNA. 

Two proteins, mitochondrial ribosome release factor (mtRRF) and mitochondrial 

elongation factor G2 (mtEFG2), promote the dissociation of the mitoribosomal subunits 

in a GTP dependent manner (Tsuboi et al., 2009). A ribosome-dependent peptidyl-

tRNA hydrolase, ICT1, thought to be a structural component of the LSU, and C12orf65 

are believed to facilitate the hydrolysis and release of prematurely terminated peptidyl 

chains from any stalled mitoribosomes (Richter et al., 2010). 

1.4.5 IMM insertion

Following their synthesis by the mitoribosome, the 13 mtDNA encoded OXPHOS 

proteins are inserted into the IMM. Correct insertion of nascent polypeptides into the 

IMM is believed to be aided by a family of insertases. A major candidate for a human 

insertase that carries out this role, OXA1L, has been shown to directly interact with at 

least nine of 13 mtDNA encoded polypeptides and other nuclear encoded accessory 

subunits of OXPHOS complexes to aid insertion of newly synthesised proteins into 

IMM (Haque, Spremulli and Fecko, 2010; Thompson et al., 2018).
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1.5 Functions of mitochondria

Though best known as the main generators of cellular energy through OXPHOS, 

mitochondria are responsible for a number of different molecular mechanisms 

essential to normal cellular function (Osellame, Blacker and Duchen, 2012). 

Mitochondria are essential mediators of cellular calcium ion homeostasis, through their 

dynamic sequestration and release of calcium ions (Ca2+) which act as versatile 

intracellular signalling molecules with regulatory roles in a multitude of biochemical 

pathways. Uptake and release of Ca2+ by mitochondria is mediated by the highly 

selective mitochondrial calcium uniporter (MCU) and the electrogenic Na2+-Ca2+ 

exchanger respectively (Samanta, Mirams and Parekh, 2018). The TCA cycle and ATP 

synthesis are two mitochondrial processes regulated by Ca2+, while influx of calcium 

ions into mitochondria is an important step in apoptosis (Giorgi, Marchi and Pinton, 

2018).

Apoptosis, the process of programmed cell death, is driven by a number of sequential 

mitochondrial events. The Bcl-2 family of proteins regulate apoptosis through dynamic 

interactions of pro- and anti-apoptotic family members with the IMM (Cory and Adams, 

2002). The activation of pro-apoptotic Bak or Bax proteins, or the inhibition of anti-

apoptotic Bcl-2, permeabilises the OMM and triggers the cytosolic release of 

cytochrome c from the IMS (Kluck et al., 1997). This in turn activates a caspase 

cascade essential for proteolytic degradation of proteins during apoptosis (Salvesen 

and Dixit, 1997).

The process of iron-sulphur (Fe-S) cluster biogenesis also takes place within the 

mitochondrial matrix. Fe-S clusters are essential inorganic co-factors found in 

abundance within mitochondria and the cytosol (Beinert, Holm and Munck, 1997). Fe2+ 

ions are transported into the matrix of mitochondria by mitoferrin carriers (Richardson 

et al., 2010), while sulphide ions are released from cysteine by the cysteine 

desulphurase Nfs1 (Kispal et al., 1999). A backbone for cluster synthesis and formation 

is provided by the iron sulphur cluster assembly enzyme ISCU (Marinoni et al., 2012). 

Fe-S clusters are present within respiratory chain complexes I-IV, where they mediate 
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electron transfer through a chain of reactions and are therefore fundamental to 

oxidative phosphorylation (Brzoska, Meczynska and Kruszewski, 2006).

1.6 ATP production through oxidative phosphorylation 

The production of ATP through OXPHOS is a multi-step process that relies on a 

number of upstream metabolic reactions. Glycolysis, taking place in the cytosol, is a 

series of catabolic reactions resulting in the breakdown of glucose into two molecules 

of pyruvate. These pyruvate molecules can be imported into the mitochondrial matrix 

to feed into the tricarboxylic acid (TCA) cycle, the products of which - 3 molecules of 

NADH and 2 molecules of FADH2 - enter through complex I and complex II respectively 

and are utilised as substrates during oxidative phosphorylation (Wilson, 2017; Yellen, 

2018).

 

The process of oxidative phosphorylation is achieved by a system of five multi-subunit 

complexes embedded within the IMM. Complexes I-IV make up a set of four respiratory 

chain (RC) complexes forming the electron transport chain (ETC). The oxidation of 

NADH and FADH2 to NAD/FAD provides electrons that are transferred to the OXPHOS 

cofactor uniquinone (Q). Transport of electrons down the ETC is coupled with the 

translocation of protons from the matrix into the IMS, producing a proton gradient 

across the IMM. This electrochemical force is used by complex V, coupling the flow of 

protons back into the matrix with the synthesis of ATP (Mitchell, 1961) (Figure 1.8).
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Figure 1.8 Schematic and of OXPHOS complexes and their dual genetic origin. Five multimeric complexes 

are embedded within the inner mitochondrial membrane (IMM). Complexes I-IV form the electron transport chain, 

with cofactors ubiquinone (Q) and cytochrome c (cyt c) acting as mobile electron carriers. The transfer of electrons 

is coupled to the pumping of protons (H+) into the intermembrane space (IMS), generating an electrochemical 

gradient across the IMM. Complex V utilises this proton motive force to synthesise ATP. Each complex, with the 

exception of complex II, is comprised of a combination of mtDNA and nDNA encoded structural subunits and 

assembly factors. Complex II is entirely nuclear-encoded.

1.6.1 Complex I

Complex I (CI), NADH:ubiquinone oxidoreductase, is the first entry point for the ETC. 

A multiprotein structure containing 44 subunits and ~1,000 kDa in size, Complex I is 

the largest of the respiratory chain complexes. Seven of the 14 CI core subunits are 

encoded within the mtDNA, while the remainder of the core subunits, along with all 

accessory components, are nDNA encoded (Zickermann et al., 2015; Carroll et al., 

2006). The subunits of complex I assemble to form an ‘L shaped’ structure, with a 

hydrophobic arm embedded within the IMM and a hydrophilic arm extending into the 

matrix (Figure 1.9). This configuration can be divided into three functionally distinct 

modules; the N module, the Q module and the P module (Zickermann et al., 2015). 

The role of the N module is to bind and oxidise NADH, made available by the TCA 
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cycle. The released electrons are transferred onto a flavin mononucleotide (FMN) 

molecule, forming FMNH2 (Efremov and Sazanov, 2011). A chain of Fe-S clusters then 

form an electron transport cascade, transporting electrons down the Q module, 

ultimately reaching and reducing Q to ubiquinol (QH2). This transfer of electrons results 

in conformational changes in both the IMM and matrix arms to open a channel within 

the P module proton pump, allowing the movement of four protons into the IMS for 

every NADH molecule oxidised (Galkin and Moncada, 2017).

Figure 1.9 Structure and functional domains of complex I. The oxidation of NADH2 takes place within the N 

module (green) releases two electrons that are shuttled into the Q module (yellow) via a chain of iron-sulphur 

clusters (orange). Here, the electrons reduce ubiquinone to ubiquinol (bright green) inducing a conformational 

change in the P-proximal (Pp - purple) and P-distal domains (Pd - red) and resulting in the pumping of four protons 

into the IMS. Figure adapted from (Giachin et al., 2016).
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1.6.2 Complex II

Complex II (CII), or succinate:ubiquinone oxidoreductase, is the only complex within 

the OXPHOS system to be composed of subunits entirely encoded within the nuclear 

genome. With only four nuclear encoded structural subunits, SDHA, SDHB, SDHC and 

SDHD, succinate dehydrogenase is the smallest of the five complexes. SDHA and 

SDHB are hydrophilic proteins that project into the mitochondrial matrix to form the 

catalytic core while SDHC and SDHD form an anchor embedded firmly within the IMM 

to hold the complex in place and confer upon complex II the ability to transfer electrons 

(Sun et al., 2005) (Figure 1.10). The SDHA subunit harbours a covalently bound 

prosthetic flavin adenine dinucleotide (FAD) group which receives electrons for its 

upon oxidation of succinate to fumarate by SDHA. The released electrons are passed 

from FAD through three Fe-S clusters within SDHB. The SDHC/SDHD subunits then 

transfer these electrons to ubiquinone, reducing it to QH2.

Figure 1.10 Structure of complex II. SDHA (blue) and SDHA (green) extend into the mitochondrial matrix, 

anchored to the IMM by membrane bound  SDHC (yellow) SDHD (orange). Electrons gained from the oxidation of 

succinate to fumarate at SDHA are passed along three Fe-S clusters in SDHB too ubiquinone at the Q binding site 

between SDHB, SDHC and SDHD. Figure adapted from (Hadrava Vanova et al., 2020).
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1.6.3 Complex III

Also known as ubiquinol:cytochrome c oxidoreductase, complex III (CIII) contains one 

mtDNA encoded subunit (cytochrome b) and 10 nDNA encoded subunits, forming a 

structure approximately 480 kDa in size (Benit, Lebon and Rustin, 2009) (Figure 1.11). 

Complex III functions as a symmetrical homodimer, with a catalytic core of cytochrome 

b and c subunits together with a Rieske Fe-S cluster protein (UQCRFS1) responsible 

for the transfer of electrons from QH2 to cytochrome b and cytochrome c (Fernandez-

Vizarra and Zeviani, 2018). This process is termed the Q cycle, and is coupled with the 

transport of two protons in to the IMS for every electron passed through CIII (Cramer, 

Hasan and Yamashita, 2011).

Figure 1.11 Crystal structure of dimeric complex III. Each of the 11 structural subunits of mammalian complex 

III are presented as colour coded ribbons and labelled with subunit designation of the left. Figure adapted from (Xia 

et al., 2018).
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1.6.4 Complex IV

Complex IV (CIV), termed cytochrome c oxidase (COX) acts as the terminal oxidase 

in the ETC. At ~200 kDa in size, monomeric CIV is composed of 14 subunits, three of 

which (COXI, COXII and COXIII) are mtDNA encoded (Zong et al., 2018) (Figure 

1.12). Electrons accepted from reduced cytochrome c are transported through haem 

groups and copper centres of CIV and used to reduce O2 to H2O. The reduction of 

each O2 molecule is coupled to the transport of four protons into the IMS (Faxen et al., 

2005). 

Figure 1.12 Crystal structure of complex IV. Subunits are coloured and labelled with text in the same colours. 

The two dashed lines indicate the transmembrane region. Figure adapted from (Zong et al., 2018).
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1.6.5 Complex V

As the final complex within the OXPHOS system, complex V (CV) is an ATP synthase 

made up 19 subunits, two of which (ATP6 and ATP8) are mtDNA encoded, assembled 

as two functional domains – F0 and F1. The F0 domain forms a ring-like structure 

spanning the IMM, while the F1 module extends into the matrix (Figure 1.13) (Von 

Ballmoos, Wiedenmann and Dimroth, 2009). The pore formed by the F0 domain acts 

as a proton channel, allowing the flow of protons from the IMS back into the matrix, 

driven by electrochemical gradient generated by the ETC. This movement of protons 

drives rotary movement of the catalytic F1 module, resulting in its synthesis of ATP 

from ADP and Pi. One ATP molecule is synthesised for every 2.7 protons translocated 

through the proton channel of complex V (Jonckheere, Smeitink and Rodenburg, 

2012).

Figure 1.13 Structure of complex V (ATP synthase). Schematic of the known crystal structure of complex V F1 

subunits δ (red), α/β (green), γ (turquoise) and ε (purple) and F0 subunits b (orange) c (blue). F0 subunit a is 

depicted in cartoon form (peach). Figure adapted from (Von Ballmoos, Wiedenmann and Dimroth, 2009).
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1.6.6 Supercomplex formation

While often depicted as a chain of single, free-moving complexes, it is well 

demonstrated that individual respiratory chain enzymes are able to assemble into 

higher order structures of varying compositions. Blue-native polyacrylamide gel 

electrophoresis (BN-PAGE) experiments using mildly solubilised mitochondrial 

membranes allows the separation and visualisation of intact respiratory complexes and 

supercomplexes (Schagger and Pfeiffer, 2000). Structural evidence for the 

supramolecular organisation of OXPHOS complexes has been obtained through 

electron microscopy (Schafer et al., 2006). Complexes I, III and IV can assemble into 

three distinct arrangements; I+III2, III2+IV1-2 or I+III2+IV1-4 (known as the respirasome). 

ATP-synthase forms dimeric structures, while complex II appears to remain isolated 

with no higher order interactions. The most prevalent supercomplex in mammalian 

mitochondria is the respirasome (Chaban, Boekema and Dudkina, 2014). 
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1.7 Mitochondrial disease

Mitochondrial disease is used as an umbrella term for the many different genetic 

disorders resulting from dysfunctional oxidative phosphorylation. With a prevalence 

estimated at 12.5 per 100,000 adults and 4.7 per 100,000 children, mitochondrial 

diseases are the most common group of inherited metabolic disorders (Gorman et al., 

2015; Skladal, Halliday and Thorburn, 2003).  

The clinical features associated with mitochondrial disorders are diverse. The 

spectrum of clinical disease includes multi-system and isolated organ dysfunction, 

resulting in a range of ‘syndromic’ presentations. However, many patients do not fit 

these classic syndromic archetypes, presenting at various stages of life, with markedly 

different disease severity and outcome (Gorman et al., 2016). Tissues with high energy 

demands are considered the most sensitive to defects in ATP synthesis and 

consequently heart, brain and skeletal muscle are the most commonly affected tissues 

(Frazier, Thorburn and Compton, 2019) while neurological deficits are the most 

commonly reported category of symptoms reported in mitochondrial disease patients 

(Parikh, 2010). However, patients carrying identical pathogenic variants in the same 

gene can present with quite different pathology, while those with similar clinical 

features may have distinct genetic aetiologies. For example, mutations in the nuclear 

gene POLG are reported in disorders with a broad phenotypic spectrum. The age of 

onset of POLG related disease ranges from infancy through to late adulthood, causing 

a number of distinct but phenotypically overlapping disorders (Rahman and Copeland, 

2019). Conversely, paediatric presentation of Leigh syndrome, characterised by 

neurodevelopmental delay and regression, axial hypotonia, failure to thrive, lactic 

acidosis and typical neuroimaging with bilateral symmetrical involvement of brainstem 

and basal ganglia. has been reported in patients with over 75 different monogenic 

causes to date (Schubert Baldo and Vilarinho, 2020). This extensive clinical and 

genetic heterogeneity makes the identification, characterisation and diagnosis of 

mitochondrial disease challenging. Further complicating matters, the clinical features 

of mitochondrial disease often overlap with other neurological or systemic diseases 

(Martikainen and Chinnery, 2015) (Figure 1.14).
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Figure 1.14 Clinical presentations of mitochondrial disease. The clinical features of mitochondrial can be 

classified into two groups; those with a neurological or those with non-neurological origins. Mitochondrial diseases 

are clinically heterogeneous and commonly present with dysfunction in a number of different organs or tissues

1.7.1 mtDNA disease

The mutation rate of mtDNA is 10-20 times higher than that of nuclear DNA (Brown, 

1980). One factor thought to play a part in the accumulation of polymorphisms in 

mtDNA is its proximity to DNA-damage inducing reactive oxygen species (ROS) that 

are produced through electron leaking during their movement along the ETC, along 

with a lack of histone protection on molecules of mtDNA (Yakes and Van Houten, 

1997).

The mitochondrial genome undergoes continuous cycles of replication, independently 

of the broader cell cycle. While pol γ possesses proofreading capability, mitochondria 

have fewer DNA repair mechanisms than those that function within the nucleus. 

Together this gives rise to a much greater frequency of copying errors and the 
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introduction of mtDNA polymorphisms (Hahn and Zuryn, 2019). Mutations in mtDNA 

can occur in the form of single nucleotide substitutions within the mRNA, tRNA or rRNA 

genes, or single, large-scale rearrangements (Taylor and Turnbull, 2005). 

1.7.1.1 Heteroplasmy and homoplasmy

Mutations in mtDNA can result in the co-existence of two variant mtDNA populations 

within a single cell, a concept named heteroplasmy. If all copies of mtDNA within a cell 

are identical, cells are described as homoplasmic. The concepts of heteroplasmy and 

homoplasmy become extremely pertinent in instances of mutations that give rise to 

dysfunctional mitochondria and disease (Taylor and Turnbull, 2005).

If cells contain a combination of wild-type (WT) and pathogenic mutated DNA, the level 

of heteroplasmy, sometimes referred to as the mutation load, can vary significantly. 

The mutation load of mutant mtDNA has positive correlation with both the chances of 

presenting a disease phenotype and the severity of any clinical presentations. This 

phenomenon is recognised as a ‘threshold effect’ whereby an OXPHOS dysfunction 

will not occur until the mutation load has reached a minimum percentage within a cell. 

This threshold typically lies between 60-80% mutant mtDNA, though varies between 

cell and tissue type, at which point the remaining WT mtDNA cannot achieve adequate 

compensation of the resulting metabolic dysfunction (Stewart and Chinnery, 2015) 

(Figure 1.15). 
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Figure 1.15 Heteroplasmy and the threshold effect. Mitochondria can harbour two versions (wild-type and 

mutant) of mtDNA. The proportion of mutant mtDNA within a mitochondrion is known as heteroplasmy, which can 

lie anywhere between 0-100%. Mitochondria can usually tolerate lower levels of heteroplasmy while remaining 

biochemically normal. If heteroplasmy reaches a particular biochemical threshold, usually somewhere between 60-

80%, mitochondria demonstrate a biochemical defect manifesting in a respiratory chain deficiency.  

1.7.1.2 mtDNA point mutations

Point mutations in mtDNA have an estimated population prevalence of one in every 

5,000 people (Gorman et al., 2015). It has been reported that approximately 75% of 

mtDNA point mutations are inherited, while the remaining 25% occur as sporadic de 

novo mutations (Sallevelt et al., 2017). Disease causing mutations have been identified 

in all genes of the mitochondrial genome, of which mutations in tRNA genes are the 

most common (Lott et al., 2013; Elson et al., 2009). The most prevalent, and as such 

the more thoroughly characterised, mtDNA point mutation is m.3243A>G in the MT-

TL1 gene encoding mitochondrial tRNALeu(UUR). This mutation is responsible for 80% 

of mitochondrial encephalopathy, lactic acidosis and stroke-like episodes (MELAS), 

though only 15% of m.3243A>G patients have MELAS. Other syndromes commonly 

associated with this point mutation are maternally inherited deafness and diabetes 

(MIDD) and progressive external ophthalmoplegia (PEO) (Boggan et al., 2019).
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1.7.1.3 Single, large-scale mtDNA deletions

With an estimated prevalence of 1.5 in 100,000, single, large-scale mtDNA deletions 

can range from 1.3-10kb in size, with the most common deletion spanning 4,977bp 

(Gorman et al., 2015). These deletions characteristically occur sporadically during 

embryonic development, meaning that the recurrence risk in future pregnancies is low 

(Chinnery et al., 2004). The three main clinical presentations associated with large 

scale mtDNA deletions are CPEO, Kearns-Sayre syndrome (KSS) and Pearson’s 

syndrome, all three of which share significant overlapping features such as PEO  

(Grady et al., 2014).eo

1.7.2 Nuclear mitochondrial disease

A mutation in any one of the estimated 1145 nuclear encoded mitochondrial proteins 

(Calvo, Clauser and Mootha, 2016) theoretically has the potential to result in 

mitochondrial dysfunction. As such, an ever-expanding number of nuclear genetic 

mutations are implicated in the causation of mitochondrial disease. These pathogenic 

variants are subject to Mendelian patterns of inheritance and therefore autosomal 

dominant, autosomal recessive, X linked and de novo mutations have all been 

identified. The first mitochondrial disease-causing mutation in a nuclear gene was 

identified in the SDHA gene in 1995, causing Leigh syndrome in two siblings 

(Bourgeron et al., 1995). Since 2012, an average of 22 novel nuclear disease genes 

have been implicated in mitochondrial disease each year (Frazier, Thorburn and 

Compton, 2019) almost entirely due to the availability and implementation of next 

generation sequencing technologies in diagnostic and research laboratories.

1.7.2.1 Nuclear disorders of mtDNA maintenance

The integrity of the mitochondrial genome can be affected as a result of defects in 

nuclear encoded proteins with roles in mtDNA replication, maintenance and 

transcription, resulting in secondary mtDNA depletions or large-scale deletions. 
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Pathogenic variants in POLG, the gene encoding the catalytic subunit of pol γ, are the 

most common single gene causes of inherited mitochondrial disorders (Hikmat et al., 

2017). In one Australian cohort, POLG  mutations accounted for 10% of adult cases 

(Woodbridge et al., 2013). At present, over 300 different pathogenic POLG variants 

have been deposited into the Human DNA Polymerase Gamma Mutation Database 

(https://tools.niehs.nih.gov/polg/). These mutations span the entirety of the amino acid 

sequence of POLG, some with autosomal recessive and others with autosomal 

dominant inheritance patterns. Functionally these POLG defects can cause decreased 

activity of Pol γ and stalling at the replication fork. The result of this mtDNA synthesis 

defect can be mtDNA depletion, mtDNA multiple deletion or a combination of both (El-

Hattab, Craigen and Scaglia, 2017). 

As with POLG defects, biallelic mutations in TWNK, the gene encoding the mtDNA 

helicase Twinkle, result in the stalling of replication and can cause qualitative defects 

in the form of mtDNA deletions or quantitative mtDNA depletion defects (Hebbar et al., 

2017). 

Autosomal recessive mutations (homozygous nonsense and homozygous missense 

variants) in the MGME1 gene have been reported in three families, resulting in both 

mtDNA depletion and multiple deletions. The mtDNA rearrangements identified in all 

affected patients are significantly larger than deletions characteristic of POLG-related 

mtDNA maintenance defects and include numerous duplications (Nicholls et al., 2014).

1.7.3 Diagnosing mitochondrial disease

Due to the complex nature of mitochondrial genetics, vast heterogeneity and broad 

clinical spectrum implicated in mitochondrial disease, a collaborative and 

multidisciplinary approach is most effective when seeking genetic diagnosis. 

Histopathological and biochemical investigation of patient muscle tissue has 

traditionally been, and remains, an important aspect of diagnostic investigation. Owing 

to its strong energy dependence, muscle is one of the most commonly affected tissues 

in both isolated organ and multi-system mitochondrial disease, rendering patient 

https://tools.niehs.nih.gov/polg/
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muscle biopsies a very valuable diagnostic resource (Taylor et al., 2004). 

Immunofluorescent techniques developed in recent years can also utilise patient 

tissues to assess the abundance of a number of mitochondrial OXPHOS proteins 

simultaneously (Rocha et al., 2015). Alongside these tissue-based investigative 

techniques a range of molecular genetic tools are employed in the diagnosis of 

mitochondrial disease. The preferred genetic investigation undertaken in each case is 

determined by a number of factors including clinical characterisation, familial 

inheritance patterns and the results of any prior histopathological and biochemical 

studies (Thompson et al., 2019).

1.7.3.1 Histopathology and biochemistry

The basic morphology of patient muscle can be investigated through the application of 

stains such as haematoxylin and eosin (H&E) and modified Gomori trichrome. H&E 

staining will reveal the presence of a number of abnormalities to fibre shape and size. 

Modified Gomori trichrome is applied to visualise mitochondrial and endoplasmic 

reticulum membranes. The presence of ‘ragged red fibres’ (RRF) signifies the 

accumulation of mitochondria along the sarcolemma of myofibres, suggestive of 

mitochondrial proliferation in response to a respiratory chain defect (Joyce, Oskarsson 

and Jin, 2012).

A sequential cytochrome c oxidase/succinate dehydrogenase (COX/SDH) 

histochemical assay is regularly performed to provide a histopathological read out of 

respiratory chain function. The activities of complex II, which is entirely nuclear 

encoded, and complex IV, which is encoded by genes of both mtDNA and nDNA, are 

visualised. A mosaic pattern of COX-deficient fibres in the presence of normal SDH 

(CII) activity is can be indicative of a heteroplasmic mtDNA disease mechanism. Each 

muscle fibre harbours differing mutation loads that will only manifest as COX-deficient 

if above the mutation threshold. Widespread and generalised loss of COX reactivity is 

highly suggestive of respiratory chain dysfunction resulting from nuclear DNA 

mutations or pathogenic homoplasmic mtDNA variants (Taylor et al., 2004).
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The In vitro biochemical measurement of individual respiratory chain enzyme activities 

in both muscle and fibroblasts is another widely used diagnostic technique. The activity 

of each complex (I-IV) can be investigated through spectrophotometry measured, 

against the citrate synthase enzyme as a matrix marker, to identify any defects in 

enzymatic activity (Frazier et al., 2020).

1.7.3.2 Immunohistochemical assessments

The aforementioned histopathology based techniques do not assess the activity of 

complex I, despite complex I being one of the most commonly affected enzymes in 

isolated and combined OXPHOS deficiencies (Loeffen et al., 2000; Mayr et al., 2015). 

A more recently developed technique, named the quadruple immunofluorescent assay, 

targets NDUFB8 of complex I and COXI of complex IV along with porin (mitochondrial 

mass marker) and laminin (marker of myofibre boundaries) in single muscle fibres. 

This assay is able to give precise and reproducible protein quantification in large 

numbers of individual muscle fibres in mitochondrial disease patients with a range of 

genetic defects (Rocha et al., 2015).

1.7.4 Application of whole exome sequencing in mitochondrial disease

The earliest approaches to the identification of novel human disease genes relied on 

the use of linkage analysis across a number of affected and unaffected individuals. 

This method works to identify specific loci on individual chromosomes that are co-

inherited with disease, relying on the high probability that proximally close regions of 

chromosomes remain close following homologous recombination during meiosis 

(Pulst, 1999). While this approach remains in use, it is most powerful when utilised in 

large families/cohorts but is of limited value in individual cases of rare disease (Smith 

et al., 2011). The traditional approach to DNA sequencing, developed by Fred Sanger 

in 1977, utilised radioactively labelled chain-terminating nucleotides to generate 

libraries of products of random sizes that could then be visualised using 

autoradiography of polyacrylamide gels (Sanger, Nicklen and Coulson, 1977). The 

development of methods that allowed Sanger sequencing to be carried out in parallel 
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using capillary sensors marked the beginning of a rapid development and 

advancement of new massively parallel sequencing techniques, also termed ‘next 

generation sequencing’ (NGS) (Luckey et al., 1990). 

A number of different NGS platforms exist, with provider developing different 

technologies specific to the type of sequencing that will be carried out (gene 

targeted/panel/exome/genome) (Meera Krishna, Khan and Khan, 2019). Increased 

implementation of NGS to diagnostic pathways has resulted in the widespread 

application of whole exome (WES) (Figure 1.16) and whole genome sequencing 

(WGS) in rare disease. The human exome represents less than 2% of the total human 

genome, making WES a cost-effective method in the investigation of mendelian 

disease (Rabbani, Tekin and Mahdieh, 2014). Where candidate or targeted gene panel 

approaches to genetic diagnosis rely on neat phenotype-genotype correlations, 

WES/WGS are unbiased sequencing tools, that when used in conjunction with 

bioinformatic filtering pipelines, have proven to be extremely effective in the diagnosis 

of such a complex phenotypic spectrum.  WES has been incorporated into routine 

mitochondrial diagnostic pathways across the world, with some centres achieving 

successful diagnosis in approximately 60% of cases (Pronicka et al., 2016; Taylor et 

al., 2014).
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Figure 1.16 Whole exome sequencing. Genomic DNA is sheared before being enriched for sequences 

corresponding to exons (coloured sections) which are then hybridised to biotinylated DNA baits (grey beads). DNA 

captured is amplified, then sequenced massively in parallel. Output sequences are mapped, aligned to a reference 

genome and then subject to calling of candidate causal variants.

1.7.5 Functional validation of putative pathogenic variants

 One possible outcome of WES or WGS is the identification of a previously reported 

variant in a known disease gene. In such cases, a genetic diagnosis can be confirmed 

with confidence. However, WES/WGS have several other possible outcomes. Novel 

variants may be identified in a known disease gene, in a gene of known function that 

has not been previously reported in association with mitochondrial disease or in a gene 

with unknown function. In each of these cases further functional characterisation of 

candidate variants is required in order to assign pathogenicity. The precise nature of 

each validation study is influenced by the information available pertaining to the 

candidate gene and identified variants, the mitochondrial processes that would be most 

likely affected in the presence of a defect, along with the availability of cells, tissues 

and genetic models (Figure 1.17). 
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As the term ‘mitochondrial disease’ refers specifically to disorders of energy 

production, the assessment of steady-state levels of various OXPHOS subunit proteins 

and complexes through SDS- and BN-PAGE with immunoblotting is a standard 

experiment utilised in the functional characterisation of patient cells and tissues. 

Immunoblotting with an antibody targeting a candidate protein is also rapid way of 

validating destabilising or loss of protein mutations. Other protein-based validation 

studies utilised in patient cells and/or tissues are complexome profiling to assess 

complex assembly (Alston et al., 2016) and [35S] metabolic labelling to interrogate 

mitochondrial translation (Bugiardini et al., 2019). Imaging-based studies, such as 

transmission electron microscopy and high-resolution confocal imaging, are useful 

when investigating disorders affecting mitochondrial morphology and dynamics (Janer 

et al., 2016).

Lentiviral studies can be used to confirm the pathogenicity of novel variants in patient 

cell lines that exhibit clear functional consequences, such as OXPHOS deficiencies or 

translation defects. Rescue of these defects upon the introduction of WT copies of the 

candidate gene is seen as the ‘gold-standard’ technique for assignment of variant 

pathogenicity (Metodiev et al., 2016) however, this is not an option if patient cell lines 

do not exhibit a biochemical defect. The generation of genetic models as an aid in the 

delineation of molecular mechanisms underlying disease variants can be extremely 

informative, particularly when patient cells/tissues are unavailable or biochemical 

defects are only present in a specific tissue. Suitable model systems can obtained 

through both cell line-based studies, including CRISPR/Cas9 knock-outs, or the 

genetic manipulation of whole organisms. 
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Figure 1.17 Workflow for the identification and validation of mitochondrial disease variants. The choice of 

appropriate genetic testing is directly influenced by the clinical information that is available. Full mtDNA sequencing 

is often carried out in patients with clinical features that strongly suggest a mitochondrial aetiology. If no mtDNA or 

syndrome-associated nuclear variants are identified, patients are candidates for trio WES or WGS. The five possible 
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outcomes of WES range from the identification of previously reported variant in a known disease gene to no clear 

candidate variants identified. The identification of a novel variant in a known disease gene, a novel disease gene 

or a disease gene of unknown function all require further functional work to varying extents. The approaches taken 

to confirm variant pathogenicity depend on the availability of patient tissues and/or cell lines. Segregation studies, 

respiratory chain enzyme activity assays and investigation into steady-state levels of OXPHOS proteins/the protein 

of interest are first line approaches in the assignment of pathogenicity. Any additional investigation into unique 

pathomechanisms of disease are chosen based on the function of proteins encoded by the identified disease gene. 

Abbreviations: Co‐IP (co‐immunoprecipitation); EMSA (electrophoretic mobility shift assay); FRET (fluorescence 

resonance energy transfer); iPSC (induced pluripotent stem cells); MELAS (mitochondrial encephalomyopathy, 

lactic acidosis, and stroke‐like episodes); MIDD (maternally inherited diabetes and deafness); OXPHOS (oxidative 

phosphorylation); SBF‐SEM (serial block‐face scanning electron microscopy); STED (stimulated emission 

depletion); TAP (transporter associated with antigen processing); TEM (transmission electron microscopy); WES 

(whole‐exome sequencing); WGS (whole‐genome sequencing); Y2H (yeast two‐hybrid). Figure adapted from 

(Thompson et al., 2019).
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1.8 Disorders of mitochondrial translation

Over one third of reported mitochondrial disease-causing nuclear defects are in genes 

encoding proteins with a role in mtDNA gene expression, encompassing mtDNA 

maintenance and replication through to mitochondrial transcription and translation 

(Thompson et al., 2019). Defects of mtDNA expression, specifically those affecting 

mitochondrial translation, will be the focus of this thesis. 

Mutations in a whole host of genes with roles in processes ranging from tRNA 

modification through to individual translation factors can compromise mitochondrial 

translation. Defects of mitochondrial translation represent a growing group of disorders 

causing both childhood- and adult-onset mitochondrial disease with a broad range of 

clinical presentations. Groups of disorders, such as those affecting mitochondrial 

aminoacyl tRNA synthetases (mt-tRNA aa-RS) and mitoribosomal subunits, show 

some commonalities in disease presentation but also help to highlight the clinical 

heterogeneity seen in defects of mitochondrial translation
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Function Genes 

mtRNA maturation/ 

modification 

ELAC2, ERAL1, DHX30, FASTKD, GTPBP3, HSD17B10, 

LRPPRC, MTO1, MTPAP, MRM2, MTFMT, NSUN3, 

PRORP, PNPT1, PUS1, TRMT10C, TRIT1, TRMU, TRMT5, 

TRNT1 

Mitochondrial 

aa-RS 

AARS2, CARS2, DARS2, EARS2, FARS2, GARS, GATB, 

GATC, HARS2, IARS2, KARS, LARS2, MARS2, NARS2, 

PARS2, QRSL1, RARS2, SARS2, TARS2, VARS2, WARS2, 

YARS2 

Mitoribosomal 

subunits 

MRPS2, MRPS7, MRPS14, MRPS16, MRPS22, MRPS23, 

MRPS25, MRPS28, MRPS34, MRPS39, MRPL3, MRPL12, 

MRPL24, MRPL44 

Mitochondrial 

Translation 

C12orf65, C12orf62, COA3, GFM1, GFM2, GUF1, OXA1L, 

RMND1, TACO1, TSFM, TUFM 

Table 1.1 Nuclear encoded genes implicated in disorders of mitochondrial translation. Genes with reported 

pathogenic variants resulting in defects of mitochondrial translation are categorised according to function. This list 

was compiled through comprehensive searches of the literature using the following key words and phrases: 

‘mitochondrial translation’ ‘mitochondrial protein synthesis’ ‘mitochondrial disease’ and is accurate as of June 2020.

Pathologies caused by mutations in all 19 mt-tRNA aa-RS have now been described. 

These disorders are often hallmarked by features of central nervous system (CNS) 

involvement such as leukodystrophy (AARS2, DARS2, EARS2, MARS2), 

encephalopathy (RARS2, NARS2, CARS2, IARS2, FARS2, PARS2, TARS2, VARS2), 

deafness or hearing loss (NARS2, PARS2, MARS2) (Webb et al., 2015; Mizuguchi et 

al., 2017) or Perrault syndrome (HARS2, LARS2) (Sissler, Gonzalez-Serrano and 

Westhof, 2017). However, non-CNS and isolated pathologies also occur in mt-tRNA 

aa-RS disease. Cardiomyopathy has been reported in patients with pathogenic 

variants in GARS, KARS, YARS2 and AARS2 (McMillan et al., 2014; Verrigni et al., 

2017; Riley et al., 2013; Sommerville et al., 2018), while two distinct syndromes, 

MLASA (mitochondrial Myopathy, Lactic acidosis and Sideroblastic Anaemia) and 

HUPRA (Hyperuricemia, Pulmonary hypertension, Renal failure in infancy and 

https://en.wikipedia.org/wiki/Hyperuricemia
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Alkalosis), can be caused by mutations in the YARS2 and SARS2 genes respectively 

(Nakajima et al., 2014; Belostotsky et al., 2011). Along with the clinical heterogeneity 

between different mt-tRNA aa-RS disease genes, vast variability in disease 

presentation also exists within disorders of single aa-RS genes, such as AARS2. 

Through WES, pathogenic mutations in the AARS2 gene were first reported in an infant 

with fatal hypertrophic cardiomyopathy (Gotz et al., 2011) and then in two further 

families with cardiomyopathic clinical presentation in infancy (Sommerville et al., 

2018), consistent with the original report of AARS2 disease. However, a second 

distinct disease phenotype is seen in patients with AARS2 mutations, characterised by 

leukoencephalopathy with, in female patients, premature ovarian failure (Dallabona et 

al., 2014). The mutations reported across all 19 mt-tRNA aa-RS enzymes do not 

appear to follow any general trends in regard to the location of variants within core 

domains or at evolutionarily conserved residues. This, together with the variability in 

clinical presentation, both within and between the mt-tRNA aa-RS groups, suggests a 

number of different pathomechanisms underlying this broad group of diseases (Sissler, 

Gonzalez-Serrano and Westhof, 2017). 

The first disorder of mitochondrial translation caused by a mitoribosomal defect was 

identified in a patient with a nonsense mutation in the MRPS16 gene. The patient 

presented with neonatal lactic acidosis, agenesis of the corpus callosum and 

dysmorphism. Patient fibroblasts exhibited a severe mitochondrial translation defect 

and a combined OXPHOS deficiency, the latter also observed in patient muscle and 

liver homogenates (Miller et al., 2004). In the past 15 years, disease causing variants 

have been reported in genes for a further nine proteins of the mitoribosomal SSU: 

MRPS2, MRPS7, MRPS14, MRPS22, MRPS23, MRPS25, MRPS28 MRPS34 and 

MRPS39 (also known as PTCD3) (Gardeitchik et al., 2018; Menezes et al., 2015; 

Jackson et al., 2019; Saada et al., 2007; Kohda et al., 2016; Lake et al., 2017; Borna 

et al., 2019; Bugiardini et al., 2019; Pulman et al., 2019); and four of the LSU: MRPL3, 

MRPL12, MRPL24, MRPL44 (Galmiche et al., 2011; Serre et al., 2013; Carroll et al., 

2013; Di Nottia et al., 2020), taking the total number of reported MRP disease genes 

to 14. Although there is significant variation in clinical presentation, some common 

features are seen across the MRP cases. Disease-onset consistently occurs very early 

in life (neonatal or infantile) and almost all patients exhibit mild to severe/fatal lactic 

acidosis (Jackson et al., 2019; Gardeitchik et al., 2018). Many MRP defects result in 
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death early in life and the poor survival associated with these disorders may explain 

the small number of patients carrying pathogenic variants from the 80 mitoribosomal 

proteins that have been identified to date.

1.8.1 Mutations in mitochondrial translation factors

Alongside mitoribosomal mutations, affecting the core translation machinery, defects 

of individual mitochondrial translation factors have also been implicated in 

mitochondrial disease. The first nuclear disease gene to be identified associated with 

defective mitochondrial translation (Coenen et al., 2004), GFM1 encodes the 

elongation factor mtEFG1. Recessive variants in GFM1 have been reported in a total 

of 17 patients with early onset mitochondrial disease. Many of the early cases of GFM1 

disease were rapidly progressive and fatal before the age of two and a half years 

(Smits et al., 2011a; Balasubramaniam et al., 2012; Galmiche et al., 2012; Coenen et 

al., 2004; Antonicka et al., 2006; Valente et al., 2007). The brain imaging typically 

showed hypoplasia of corpus callosum, symmetrical cystic lesions in the white matter 

and involvement of basal ganglia. However, more recent cases of GFM1 disease 

demonstrate long term survival further into childhood, with a less severe clinical 

disease presentation (Brito et al., 2015; Simon et al., 2017). The loss of function 

mutations described in GFM1 result in generalised defects of mitochondrial translation, 

causing combined OXPHOS deficiencies. The severity of OXPHOS deficiency in each 

case appears to correlate with the residual amount of expressed mtEFG1. Patients 

with a higher residual steady-state level of mtEFG1 tend to exhibit a less severe 

OXPHOS defect (Brito et al., 2015). Recessive mutations in the TSFM gene encoding 

another elongation factor, mtEF-Ts, have been described in a number of cases of early 

onset mitochondrial disease resulting in death in early infancy, or a more slowly 

progressing childhood onset cardiomyopathy with ataxia and a neurological phenotype 

(Smeitink et al., 2006b; Vedrenne et al., 2012; Calvo et al., 2012; Emperador et al., 

2017).

In addition to defects of translation elongation, pathogenic variants in initiation factors 

have also been identified. The protein methionyl tRNA formyltransferase (MTFMT), 

encoded by the MTFMT gene, carries out formylation of a tightly regulated proportion 
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of the general Met-tRNAMet pool to provide Met-tRNAs for both mitochondrial 

translation initiation and elongation (Takeuchi et al., 1998). Autosomal recessive 

variants in the MTFMT gene were first identified as pathogenic in two cases of Leigh 

syndrome (Tucker et al., 2011), but have since been implicated in a range of Leigh-

like encephalomyopathic presentations, along with one case of relapsing-remitting 

attacks of neurological dysfunction more reminiscent of a de-myelinating disease 

(Haack et al., 2014; Pena et al., 2016). 

Initiation factor RMND1 is responsible for the anchoring and stabilisation of the 

mitoribosome in close proximity to sites of mt-mRNA maturation. Combined and 

isolated OXPHOS defects have both been observed in RMND1 disease patients, along 

with decreased steady-state levels of mitoribosomal proteins and defects of 

mitochondrial translation (Janer et al., 2015; Ng et al., 2016). The clinical disease 

spectrum of RMND1 variants ranges from fatal encephalomyopathy with lactic acidosis 

to developmental delay, sensorineural deafness, hypotonia and renal disease (Garcia-

Diaz et al., 2012; Janer et al., 2015; Ng et al., 2016). The disease onset varies from 

severe infantile encephalomyopathy culminating in death to, childhood-onset 

nephropathy with longer survival (Garcia-Diaz et al., 2012; Janer et al., 2015). 
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1.9 Aims and Objectives

This PhD was funded by The Lily Foundation as part of their WES project; A UK wide 

recruitment of patients for whole exome sequencing through three highly specialised 

mitochondrial diagnostic and research centres in Newcastle, Oxford and London. As 

part of this wider project, The Lily foundation fund a number of PhD studentships and 

postdoctoral scientists to work on WES, bioinformatic analysis and functional 

characterisation of novel mitochondrial disease genes. Within the WES Project, 202 

families have been screened to date with a diagnostic yield of 73%. Although my work 

has been funded as part of the UK based Lily WES project, it is collaborative 

relationships between clinicians and researchers from across the globe that underpin 

WES gene discovery. A large proportion of the patient investigations presented 

throughout the following chapters have been the result of collaborations with 

international diagnostic and research centres.

While seeking to expand current knowledge of molecular genetic mechanisms 

underlying mitochondrial disease, this work is also of significant diagnostic value. 

Assigning pathogenicity to novel genes/variants in mitochondrial disease provides 

affected patients with firm genetic diagnoses and can expand reproductive options for 

families considering future pregnancies.

My interest in defects of mitochondrial translation began with the investigation of 

patients carrying novel variants in known disease genes encoding mitochondrial 

translation factors. As my PhD progressed the scope of this research broadened to 

include disorders of mitoribosomal proteins upon the identification of variants in novel 

mitoribosomal LSU disease genes. The objective of the research presented within this 

thesis is to functionally validate candidate mitochondrial disease gene variants 

identified through whole exome sequencing, with a focus on disorders of mitochondrial 

translation, thus contributing to the ever-growing signature of nuclear genetic 

mechanisms causing mitochondrial disease.
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Chapter 2 : Materials and methods

2.1 Materials

2.1.1 Equipment

Analogue Tube Roller ThermoScientific 

Aspiration System Vacusafe Integra 

Benchtop Centrifuge 5417R (Refrigerated)  Eppendorf 

Benchtop Centrifuge 5418 Eppendorf 

Benchtop Centrifuge, Universal 32 Hettich 

Benchtop Electrophoresis Digital Slab Gel Dryer Savant 

Cellometer Auto 1000 Bright Field Cell Counter Nexcelom 

Class II Microbiological Safety Cabinet, BH-EN-2004 Faster 

CO2 Cell Culture Incubator, MCO-18AIC Panasonic 

CoolCell Cell Freezing Container  Biocision 

Dry Heat Block Techne 

Electrophoresis Unit, HU10 Mini-Plus Horizontal Unit Scie-Plas 

Falcon Cell Strainer FisherScientific 

Falcon Round-Bottom FACS Tubes FisherScientific 

Genetic Analyser, ABI 3130xl Applied Biosystems 

Imaging System, ChemiDoc MP Bio-Rad 
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LED Microscope, Leica DM IL Leica 

Microcentrifuge, Technicomini Griffin Education 

Mighty Small SDS-PAGE System Hoefer 

Mini-Protean Tetra Cell system Bio-Rad 

MoFlo Astrios Cell Sorter Beckman Coulter 

NanoDrop Spectrophotometer, ND-1000 ThermoScientific 

Nucleofector 2b Device Lonza 

OptimaTM TLX Ultracentrifuge Beckman Coulter 

Orbital Shaker, SSL1 Stuart 

Pestle and Mortar CoorsTek 

pH Meter 3510 Jenway 

Plate Reader, SpectraMax M5e Multimode Molecular Devices 

Stirrer, Ceramic Plate U151  Stuart 

Thermal Cycler, Veriti 96 Well Applied Biosystems 

Ultra-Turrax homogeniser (IKA)  IKA 

UVP PCR Cabinet FisherScientific 
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2.1.2 Consumables

96-Well PCR Plate, Semi-Skirted, Clear StarLab 

Cell Line Nucleofector Kit V Lonza 

Cellstar Disposable Tubes (5 mL, 10 mL, 25 mL) Greiner Bio-One 

Cellstar Falcon Tubes (50 mL) Greiner Bio-One 

Cellstar Tissue Culture Flasks (25cm2, 75cm2)  Greiner Bio-One 

Chromatography Paper, 3mm Whatman 

DNeasy Cell and Tissue Kit Qiagen 

Flat-bottom 6 Well Plates TPP 

Flat-bottom 96 Well Plate TTP 

Immobilon-P PVDF membrane (0.45 µm) Merck 

Nunc-Cryotube Vials Thermo-Scientific 

PCR tubes (200 μL) StarLab 

Plasmid Miniprep Kit Monarch 

RNeasy Mini Kit Qiagen 

Sarogold Pro Food Wrap Sarogold 

Scalpel Swan-Morton 

Stericup-GP, 0.22μm, Polyethersulfone, 500 mL Merick-Millipore  

Ultracentrifuge Tubes Beckman Coulter 

Universal tubes, 20 mL Starlab 
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2.1.3 Chemicals and reagents

2.1.3.1 General reagents

Dulbecco’s Phosphate buffered saline X1 (DPBS) Gibco 

EDTA Sigma-Aldrich 

Emetine Dihydrochloride Sigma-Aldrich 

Glycerol Sigma-Aldrich 

Phenylmethylsulphonyl Fluoride (PMSF) Roche 

Pierce Protease Inhibitor Cocktail Tablet ThermoFisher 

Proteinase K ThermoFisher 
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2.1.3.2 Tissue culture

DMSO Sigma-Aldrich 

Dulbecco’s Modified Eagle Medium Gibco 

Foetal Bovine Serum (FBS) Gibco 

Lipofectamine RNAiMAX ThermoFisher 

MEM Non-essential Amino Acid Solution (100X) Sigma-Aldrich 

MEM Vitamins Gibco 

Minimum Essential Media Gibco 

Opti-MEM Reduced Serum Media Gibco 

Penicillin and Streptomycin Solution Gibco 

siGENOME siRNA Horizon 

Sodium pyruvate Gibco 

TrypLE Express Gibco 

Uridine Sigma-Aldrich 
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2.1.3.3 SDS-PAGE and western Blot

Acrylamide/Bis-acrylamide, 30%, 29:1 Bio-Rad 

Amersham ECL Prime  GE Healthcare 

Blue Wide Range Protein Ladder Cleaver Scientific 

Dried Skimmed Milk Powder Marvel 

Glycine Sigma-Aldrich 

N, N, N’, N’- Tetramethylethylenediamine (TEMED) Sigma-Aldrich 

Polysorbate 20 (Tween-20) Acros Organics 

Protein Assay Dye Reagent Concentrate Bio-Rad 

Sodium Dodecyl Sulphate (SDS) Sigma-Aldrich 

Trisma Base Sigma-Aldrich 

2.1.3.4 [35S] Metabolic labelling

Easy Tag Express Protein Labelling Mix  

(73% L-met, 22% L-cys) 
Perkin-Elmer 

L-Methionine Sigma-Aldrich 

Met/Cyst Free DMEM ThermoFisher 
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2.1.3.5 Sucrose gradient

Chloramphenicol Duchefa Biochemie 

KCl Sigma-Aldrich 

Magnesium Acetate Sigma-Aldrich 

NH4Cl Sigma-Aldrich 

Sucrose Sigma-Aldrich 

Trichloroacetic Acid (TCA) Sigma-Aldrich 

2.1.3.6 Polymerase chain Reaction

Ambion™ Nuclease-free water Invitrogen 

Colourless GoTaq Reacting Buffer, 5X Promega 

Deoxyribonucleotide Triphosphate (dNTP) Mix, 2mM Bioline 

GoTaq G2 DNA Polymerase, 5U μl-1 Promega 

Orange G powder Sigma-Aldrich 
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2.1.3.7 Gel electrophoresis

Agarose (Molecular Grade) Bioline 

GeneRuler 100bp Plus DNA Ladder ThermoFisher 

GeneRuler 1kb Plus DNA Ladder ThermoFisher 

SYBR Safe DNA Gel Stain, 10,000X Invitrogen 

Tris-Acetate-EDTA (TAE) Buffer Formedium 

2.1.3.8 Sanger sequencing

Big Dye Terminator v3.1 Cycle Sequencing Kit Applied Biosystems 

Exonuclease I, 20U μL-1 Thermo Scientific 

FastAP, thermosensitive Alkaline Phosphatase, 1U μl-1 Thermo Scientific 

Hi-Di formamide Applied Biosystems 
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2.1.3.9 Plasmid cloning and transfection 

10x Buffer 2.1 NEB 

10x PNK Buffer NEB 

2x T7 Ligase Buffer NEB 

Alkaline Phosphatase ThermoFisher 

Ampicillin Sigma-Aldrich 

ATP ThermoFisher 

BBsI NEB 

EcoRI NEB 

Glycerol Sigma-Aldrich 

LB Broth Miller 

LB Broth with Agar Miller 

pSpCas9(BB)-2A-GFP (PX458) Addgene 

SOC Media Sigma-Aldrich 

Subcloning Efficiency DH5α Chemically Competent Cells NEB 

T4 PNK Enzyme NEB 

T7 Ligase NEB 
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2.1.3.10 cDNA studies

5x Reaction Buffer Promega 

Hotstart GoTaq G2 polymerase Promega 

M-MLV Reverse Transcriptase Promega 

M-MLV Reverse Transcriptase Buffer Promega 

MgCl2 Promega 

Random Hexamers Promega 

RNasin Promega 
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2.1.4 Solutions

2.1.4.1 Growth media

Reagent Final Concentration 

Dulbecco’s Modified Eagle Media (DMEM) High Glucose - 

Foetal Bovine Serum (FBS) 10% 

Non-Essential Amino Acids 1x 

Penicillin/Streptomycin 1% 

Uridine 50 µg/mL 

2.1.4.2 Cell lysis buffer

Reagent Final Concentration 

Tris-HCl pH7.4 50 mM 

NaCl 130 mM 

MgCl2 2 mM 

Nonidet P-40 1% 

Protease Inhibitor Tablet 1x 

PMSF 1 mM 
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2.1.4.3 RIPA buffer

Reagent Final Concentration 

Tric-Hcl pH 8.0 10 mM 

EDTA 1 mM 

Triton-X 1% 

EGTA 0.5 mM 

Sodium Deoxycholate 0.1% 

SDS 0.1% 

NaCl 140 mM 

PMSF (added just before use) 1 mM 

2.1.4.4 Sample dissociation buffer

Reagent Final Concentration 

Tris-HCl pH 6.8 6.25 mM 

SDS 2% 

Glycerol 10% 

DDT 100 mM 

Bromophenol Blue 0.01% 



 
68 

2.1.4.5 12% Resolving gel

Reagent Final Concentration 

Tris-HCl pH 8.5 380 mM 

Acrylamide/Bis-acrylamide, 30%, 29:1 12% 

SDS 0.1% 

APS 0.1% 

TEMED 0.1% 

2.1.4.6 3.75% Stacking gel

Reagent Final Concentration 

Tric-HCl pH 6.8 125 mM 

Acrylamide/Bis-acrylamide, 30%, 29:1 3.75% 

SDS 0.1% 

APS 0.1% 

TEMED 0.1% 
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2.1.4.7 1x Running buffer

Reagent Final Concentration 

Trisma Base 25mM 

Glycine 192 mM 

SDS 0.1% 

2.1.4.8 1x Transfer Buffer

Reagent Final Concentration 

Trisma Base 25mM 

Glycine 192 mM 

SDS 0.02% 

Methanol 15% 

2.1.4.9 TBS-T

Reagent Final Concentration 

Tris-Buffered Saline 1x 

Tween-20 0.1% 
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2.1.4.10 Sucrose gradient buffer

Reagent Final Concentration 

Tris-HCl pH 7.2 50 mM 

Magnesium Acetate 10 mM 

NH4Cl 40 mM 

KCl 100 mM 

PMSF 1 mM 

Chloramphenicol 50 μg/mL 

2.1.4.11 DNA isolation reagent

For 20 samples: 

Reagent Volume 

DirectPCR Lysis Reagent 1  mL 

Proteinase K 40 μL 
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2.1.4.12 PCR master mix

Reagent Final Concentration 

GoTaq Reaction Buffer 1x 

dNTPs 200 μM 

GoTaq G2 Polymerase 1.25u 

Fwd/Rev Primer Mix 1.25 μM 

Nuclease-Free H2O (up to final volume)  
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2.1.5 Software

Program Developer 

ImageLab 

(Version 6.1) 
Bio-Rad 

ImageJ 

(Version 1.48) 
Open Source 

FinchTV 

(Version 1.4.0) 
Geospiza Incorporated 

Seaview 

(Version 4.5.3) 
PRABI-Doua Pôle Rhône-Alpes de Bioinformatique Site Doua 
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2.1.6 Online web tools

Tool Access Link 

Align GVGD http://agvgd.hci.utah.edu/ 

Combined 

Annotation 

Dependent 

Depletion 

(CADD) 

https://cadd.gs.washington.edu/snv 

 

Mutation 

Taster 

http://www.mutationtaster.org/ 

 

Polymorphism 

Phenotyping 

v2 (Polyphen2) 

http://genetics.bwh.harvard.edu/pph2/ 

Sorting 

Intolerant 

From Tolerant 

(SIFT) 

https://sift.bii.a-star.edu.sg/www/SIFT_aligned_seqs_submit.html 

Alternative 

Splice Site 

Predictor 

(ASSP) 

http://wangcomputing.com/assp/ 

Splice Site 

Prediction by 

Neural 

Network 

https://www.fruitfly.org/seq_tools/splice.html 

Benchling https://www.benchling.com/ 

http://agvgd.hci.utah.edu/
https://cadd.gs.washington.edu/snv
http://www.mutationtaster.org/
http://genetics.bwh.harvard.edu/pph2/
https://sift.bii.a-star.edu.sg/www/SIFT_aligned_seqs_submit.html
http://wangcomputing.com/assp/
https://www.fruitfly.org/seq_tools/splice.html
https://www.benchling.com/
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Tool Access Link 

ZiFiT Targeter http://zifit.partners.org/ZiFiT/ 

CRISPR.MIT http://crispr.mit.edu/ 

Primer3Plus https://primer3plus.com/ 

SNPCheck3 https://genetools.org/SNPCheck/snpcheck.htm 

http://zifit.partners.org/ZiFiT/
http://crispr.mit.edu/
https://primer3plus.com/
https://genetools.org/SNPCheck/snpcheck.htm
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2.2 Methods

2.2.1 Patient recruitment and ethical guidelines

Patients were recruited via the NHS Highly Specialised Service for Rare Mitochondrial 

Disorders and the NHS Highly Specialised Mitochondrial Diagnostic Service in 

Newcastle upon Tyne. Patient and control tissue samples were stored within the 

Newcastle Mitochondrial Research BioBank (REC reference: 16/NE/0267) and 

obtained from the Diagnostic laboratory via a tissue and DNA request form. In 

agreement with the Declaration of Helsinki, all individuals or their guardians provided 

written informed consent before undergoing clinical evaluation and diagnostic genetic 

testing.   

 

Appropriate age-matched control skin fibroblast cell lines, control cardiac tissue 

samples and control skeletal muscle samples were obtained from the NHS Highly 

Specialised Service for Rare Mitochondrial Disorders. 



 
76 

Table 2.1 Details of Individual Patient Referral and Recruitment

Patient Referring Centre 
Year of 

Recruitment 

GFM2 

Patient 1 
Royal Manchester Children’s Hospital, UK 2015 

GFM2 

Patient 2 

University Medical Centre, Hamburg-Eppendorf, 

Germany 
2015 

TSFM 

Patient 1 
Sapienza University, Rome, Italy 2016 

MRPL47 

Patient 1 
King Saud university , Riyadh, Saudi Arabia 2017 

MRPL47 

Patient 2 
King Saud university , Riyadh, Saudi Arabia 2017 

MRPL47 

Patient 3 
Helmhotz Centre, Munich, Germany 2018 

MRPL65 

Patient 1 

American University of Beirut Medical Centre, 

Lebanon 
2018 

MRPL65 

Patient 2 
Children’s Hospital of Michigan, USA 2019 
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2.2.2 Maintenance of human cell lines

Patient skin fibroblasts, age-matched control skin fibroblasts, HEK293 and U2OS cell 

lines were cultured in vented T75 or T25 flasks (unless otherwise stated) with Growth 

Media at 37°C in 5% CO2. Cells were monitored regularly with a benchtop LED 

Microscope. When cell confluency reached ~80%, cells were trypsinised with 1x 

TrypLE Express, resuspended in an equal volume of growth media and pelleted in a 

universal tube via centrifugation at 1,200 rpm. The supernatant was subsequently 

disposed of, and the pellet was resuspended in 1 mL of growth media. The 1 mL cell 

suspension was then split evenly between 2-3 flasks for subculture.

HEK293 Flp-In
TM 

TREx
TM

 is a commercially available human embryonic kidney cell line 

(Life Technologies). These cells will be referred to as HEK293 cells throughout this 

text. 

U2OS Flp-In
TM 

TREx
TM

 is an osteosarcoma derived cell line. Cells from this line will be 

referred to as U2OS cells throughout this text.

2.2.2.1 Harvesting of cells

To harvest cells for subsequent lysis, 1 mL of cell suspension, as described in 2.2.2, 

was aliquoted into a single 1.5 mL eppendorf tube and centrifuged at 3,000 rpm in a 

benchtop centrifuge (Eppendorf 5418)  or 3 minutes at room temperature. The resulting 

supernatant was disposed of and the pellet was snap frozen in liquid nitrogen then 

stored at -80°C.
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2.2.2.2 Freezing and storage of cells

For long-term storage, cell pellets obtained following the centrifugation step in 2.2.2.1 

were resuspended in 0.5 mL of FBS with 10% DMSO, then aliquoted into a cryostorage 

vial and placed in a CoolCell Cell Freezing Container. The CoolCell was placed in a -

80°C freezer for a minimum of 24 hours before tubes were transferred into a liquid 

nitrogen storage vessel.

2.2.2.3 siRNA transfection

Cells were transfected with siRNA in 6 well plates for 6 days. A prewarmed mixture of 

250 μL of Opti-MEM, 2.5 μL of 20 μM siRNA and 2 μL of Lipofectamine was prepared 

for each well and left at room temperature for 15 minutes. Cells were harvested and 

counted using a Cellometer Auto 1000 Bright Field Cell Counter, then diluted into 

1.25 mL aliquots containing 80,000 (U2OS) or 100,000 (fibroblast) cells for seeding 

into each individual well. 6 well plates were placed at 37°C with 5% CO2. After 3 days, a 

second mixture of 250 μL of Opti-MEM, 2.5 μL of 20 μM siRNA and 2 μL of 

Lipofectamine was prepared for each well and left at room temperature for 15 

minutes. Each mixture was combined with 1.25 mL of pre-warmed Opti-MEM. All 

media was removed from growing cells, avoiding cell disturbance or detachment. A 

1.544 mL Opti-MEM/siRNA/Lipofectamine mixture was added to each well for 

forward transfection. Cells were cultured for a further 3 days then harvested for 

analysis. 
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2.2.3 Protein manipulation

2.2.3.1 Preparation of human cell lysate

Cell pellets were resuspended in approximately 50 μl of cell lysis buffer per 10 mg of 

cell pellet. Samples were vortexed for 30 seconds and centrifuged at 1000g for 3 

minutes to pellet nuclei and any unbroken cells. The supernatant was then transferred 

to a fresh 1.5 mL Eppendorf tube, snap frozen in liquid nitrogen and stored at -80°C. 

2.2.3.2 Preparation of human muscle lysate

Approximately 10-20 mg of frozen (in liquid nitrogen) muscle was powdered in a pestle 

and mortar, suspended in 1 mL RIPA buffer and transferred to a 1.5 mL microcentrifuge 

tube. The muscle homogenate was then vortexed 5 times for 15 seconds with 15 

second intervals on ice followed by a 45 minute incubation on ice. The homogenate 

then underwent two 5 second homogenisation steps using an Ultra-Turrax tissue 

homogeniser. The final muscle lysates were prepared by centrifugation at 14,000g for 

10 minutes at 4 °C, retaining the supernatant before snap freezing in liquid nitrogen.

2.2.3.3 Bradford assay

Measurement of protein concentration was carried out using the Bradford assay. 1 and 

2 μL of cell or tissue lysates alongside standard curve standard curve (0, 2, 5, 10, 15 

and 20 μL) volumes of BSA were added to a final volume of 800 μL of dH2O. 200 μL 

of protein assay dye reagent was added to both the lysate and BSA standard curve 

mixtures. The samples were vortexed for a few seconds, then incubated for 5 minutes 

at room temperature. 200 μL aliquots of each sample were added to a 96 well plate. 

The absorbance at 595nm of samples was measured on an ELx800 microplate reader. 

The optical density of samples relative to the BSA standard curve were used to 

calculate the average protein concentration in the test samples. 
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2.2.3.4 TCA precipitation

Precipitation of proteins was carried out through the addition of an equal volume of 

20% trichloroacetic acid (TCA) followed by a 30 minute incubation on ice. The samples 

were then centrifuged at 15,700g for 15 minutes at 4°C. The resulting pellets 

underwent 3 washes with 200 μL of cold acetone. The final pellets were air dried then 

resuspended in 1x sample dissociation buffer.

2.2.3.5 SDS-PAGE

Casting and running of polyacrylamide gels was performed using the Bio-Rad Mini-

Protean® Tetra Cell system, unless otherwise specified. Gels were cast with resolving 

phases of 12% polyacrylamide. Addition of isopropanol on top of the resolving matrix 

as it was setting allowed a flat and even gel surface to form. Isopropanol was removed 

after polymerisation had occurred and washed 3 times with water before the addition 

of a 3.75% stacking gel on top. Lysates used for SDS-PAGE were incubated with 5x 

sample dissociation buffer for 15-20 minutes at 37°C to denature and introduce a 

negative charge to proteins prior to loading. SDS-PAGE was performed in 1x running 

buffer at a stable 200V.

2.2.3.6 Western blotting and immunodetection

Proteins separated by SDS-PAGE were transferred onto a PVDF membrane using the 

Mini Trans-Blot module Bio-Rad system. PVDF membrane was submerged in 100% 

methanol for 15 seconds to activate and then left to equilibrate in transfer buffer for ~1 

minute. The SDS-PAGE gel and activated membrane were then sandwiched between 

double layers of 3 mm Whatman filter papers and sponges within a cassette, prior to 

being placed into the transfer tank containing 1x transfer buffer. Transfer was 

performed at a stable 100V for 1 hour at 4°C.
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Following transfer, the PVDF membrane was blocked with 5% milk/TBS-T for 1 hour 

at room temperature before incubation with primary antibodies. Dilution of primary 

antibodies in 5% milk/TBS-T was carried out, as described in Table 2.2, for overnight 

incubation at 4°C with membrane agitation. The following morning, 3 x 10 minute 

washes of the membrane in TBS-T were carried out, prior to incubation with the 

appropriate secondary antibody for 1 hour at room temperature with membrane 

agitation. The membrane was then subjected to 3 further 10 minute TBS-T washes, 

before the application of ECL prime reagent (GE healthcare) incubated for a minimum 

of 5 minutes. The resulting chemiluminescent signals were visualised using the 

ChemiDocTM MP system (Bio-Rad).

Antibody Dilution 
Predicted 

Size (kDa) 
Host Species Clonality 

NDUFB8 

(ab110242, 

Abcam) 

1:1,000 17 Mouse Monoclonal 

SDHA 

(ab14715, 

Abcam) 

1:1,000 73 Mouse Monoclonal 

CORE2 

(ab14745, 

Abcam) 

1:1,000 48 Mouse Monoclonal 

COXI 

(ab14705, 

Abcam) 

1:1,000 40 Mouse Monoclonal 

COXII 

(ab110258, 

Abcam) 

1:1,000 21 Mouse Monoclonal 
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Antibody Dilution 
Predicted 

Size (kDa) 
Host Species Clonality 

ATP5A 

(ab14748, 

Abcam) 

1:2,000 53 Mouse Monoclonal 

ATP5B 

(ab14730, 

Abcam) 

1:1,000 52 Mouse Monoclonal 

VDAC1 

(ab14734, 

Abcam) 

1:10,000 39 Mouse Monoclonal 

Beta Actin 

(CAB340Hu22, 

CloudClone) 

1:10,000 42 Mouse Monoclonal 

MRPL47 

 (PA5-101365, 
Invitrogen) 

1:1,000 29 Rabbit Polyclonal 

MRPL65 

(MRPS30 - 

HPA021149 

Sigma-Aldrich) 

1:1,000 55 Rabbit Polyclonal 

MRPL45 

(15682-1-AP, 

Proteintech) 

1:1,000 35 Rabbit Polyclonal 

DAP3 

(ab11928, 

Abcam) 

1:1,000 43 Mouse Monoclonal 

Table 2.2 Primary antibodies used for immunoblotting.
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Antibody Dilution Host Species Clonality 

Anti-Mouse 

Secondary 

(P0260, Dako)  

1:2,000 Rabbit Polyclonal 

Anti-Rabbit 

Secondary 

(P0399, Dako) 

1:3,000 Swine Polyclonal 

Table 2.3 Secondary antibodies used for immunoblotting. 

2.2.3.7 Sucrose gradient

To generate a linear 10-30% sucrose gradient, 10% and 30% mixtures of sucrose in 

sucrose gradient buffer were made up in individual falcon tubes. A syringe was used 

to add 0.5 mL of 10% sucrose solution into the bottom of an ultracentrifuge tube. A 

second syringe was used to add 0.5 mL of 30% sucrose solution into the tube, below 

the first 10% sucrose layer. A gradient was generated using the 107 Gradient Master 

Ip (BioComp) set to ‘TLS55, short sucrose 10%-30%, 55 seconds’. The gradient was 

then placed at 4°C for 60 minutes.

Once gradients had been prepared, 100 μL of cell lysate containing 700 μg of protein 

was carefully added to the top of the gradient. The tube was then centrifuged using the 

OptimaTM TLX Ultracentrifuge (rotor TLS 55) at 39,000 rpm (100,000g) for 2 hours 

and 15 minutes at 4°C. Following ultracentrifugation, eleven 100 μL fractions were 

collected, each taken from the top of the gradient. Fractions were stored at -20°C for 

subsequent SDS-PAGE and western blot analysis. 
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2.2.4 [35S] Metabolic labelling

Using cells that had reached a confluency of 80%, growth media was replaced with 

DMEM free of methionine and cysteine and incubated at 37°C for 10 minutes. This 

was repeated twice, before the media was replaced with methionine/cysteine free 

DMEM supplemented with 10% dialysed FBS and 100 μg/mL emetine dihydrochloride 

(to inhibit cytosolic translation) and incubated at 37°C for a further 10 minutes. 20 

μL/mL of [35S]-methionine/cysteine mix (Perkin-Elmer Easy Tag Express protein 

labelling mix NEG-772, 73% L-met, 22% L-cys) was then added to each flask and cells 

were left to incubate at 37°C for 1 hour. Cells were washed in standard growth medium 

supplemented with methionine and then harvested in TrypLE Express, pelleted and re-

suspended in PBS (plus protease inhibitor and 1mM PMSF). The protein concentration 

of each sample was determined using a standard Bradford assay (2.2.3.3). 20-50 μg 

of each radiolabelled sample was loaded onto a 15% SDS-PAGE gel and 

electrophoresed at 20mA for 2 hours. The gel was fixed overnight (3% glycerol, 10% 

glacial acetic acid, 20% methanol), stained with Coomassie brilliant blue for an 

indication of loading, and then dried under a vacuum at 70°C for 2 hours, prior to signal 

detection using Typhoon FLA9500 Phosphorimager and ImageJ software. 



 
85 

2.2.5 DNA manipulation

2.2.5.1 DNA extraction from human cells

DNA was extracted from growing 96 well cell culture plate clonal populations by first 

trypsinising cells with 200 μL of 1x TrypLE Express. 50 μl of trypsinised cell suspension 

was used to re-seed and continue cell culture, while the remaining 150 μl  was 

transferred into a 96 well PCR plate and centrifuged at 12,000 rpm to pellet cells. The 

supernatant was removed and 50 μL of DNA isolation reagent solution was added to 

each well, disturbing the pellet. The plate was incubated at 56°C for 16 hours shaking 

at 300rpm. The plate was then incubated at 95°C for 10 minutes and end samples 

were stored at -20°C.

For extraction of DNA from T75 cell culture flasks for SNP analysis, a Qiagen DNeasy 

Blood & Tissue Kit (cat no. 69504) was used following the manufacturer’s spin column 

quick-start protocol.

2.2.5.2 Primer design

Custom-designed forward and reverse primers were generated using Primer3Plus The 

generated primer sequences were checked for common single nucleotide 

polymorphisms (SNPs) using SNPCheck3. 
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Target Forward Reverse 

GFM2 

Exon 8 
GCACACTCCCCTTCACACTT  TGGAATCATCAAGAAGCCACT 

GFM2 

Exon 9 
GCGTTAAGGAGAATAAAGTGAGTTAAA  GAAAACTACAATGATGACAAGTCTTT  

MRPL65 

Exon 1 
AGACTGGCTCAGATTCCGCT GCATTCAGCGCGAAGGTCT 

MRPL65 

Exons 1-2 

(A) 

CCTCTGGGTCCGGAATCG AATTTCTTCACCACGCACCC 

MRPL65 

Exons 1-2 

(B) 

GCGAGGTCATATCTTTGCCC AATTTCTTCACCACGCACCC 

MRPL65 

Exons 1-4 
CCTCTGGGTCCGGAATCG GTGTGACCGTAACAGCAAGG 

PX458 

Vector 
GACTATCATATGCTTACCGT GGAAAGTCCCTATTGGCGTTA 

Table 2.4 Custom primers used for PCR and Sanger sequencing.
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2.2.5.3 DNA amplification by PCR

PCR amplification of target DNA was performed by adding 1.0 μl of sample DNA to 

24.0μl of Go Taq PCR master mix and subjecting samples to the following PCR 

programme:

1 cycle 94ºC 4 minutes 

30 cycles 94ºC 45 seconds 

 62ºC 45 seconds 

 72ºC 45 seconds 

1 cycle 72 ºC 5 minutes 

Hold 4ºC ∞ 

2.2.5.4 DNA gel electrophoresis

For gel electrophoresis of PCR products, either 1.0 g (1% gel) or 3.0 g (3% gel) of 

agarose was dissolved in 100 mL of 1x TAE buffer. 4 μL of SYBR Safe was added to 

the solution which was then poured into a casting cassette and comb. The gel was left 

to solidify and then submerged in 1x TAE buffer prior to loading. An appropriate ladder 

marker was loaded alongside DNA samples containing a 1:1 mixture of PCR products 

and loading dye. The agarose gel was typically electrophoresed at 80V for 30-50 

minutes prior to visualisation on the ChemiDocTM MP system (Bio-Rad) using the UV 

transilluminator setting.
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2.2.5.5 Sanger sequencing

PCR products were treated with ExoFAP for clean up prior to cycle sequencing. 

Duplicates of 5 μL of PCR product were added to 1.5 μL of ExoFAP. The samples were 

mixed and briefly spun down. The mixture was heated according to the following 

programme: 37°C for 15 minutes then 80°C for 15 minutes, finishing with a hold at 4°C. 

Sanger sequencing of amplified gene products was subsequently carried out in 

accordance with BigDye® Terminator v3.1 Cycle Sequencing Kit (cat no. 4337455) 

manufacturing protocol with the following program: 

1 cycle 96 ºC 1 minutes 

35 cycles 96 ºC 10 seconds 

 50 ºC 5 seconds 

 60 ºC 4 minutes 

Hold 4ºC ∞ 
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2.2.6 RNA manipulation

2.2.6.1 RNA extraction from human cells

RNA was extracted from fibroblasts grown to 80% confluency in a T75 flask, using the 

Qiagen RNeasy Mini Kit (cat no. 74104) , following the manufacturer’s quick-start 

protocol.

2.2.6.2 Reverse transcription

For synthesis of cDNA, 1 µg of RNA, 1 µl of random hexamers (250 μg/mL) and 

nuclease free H2O were combined up to a final volume of 15 µl. This mixture was 

incubated at 70ºC for 5 minutes and then placed immediately on ice for 1 minute. A 

second mixture containing 5 µl of M-MLV reverse transcriptase buffer, 2.5 µl of 20 mM 

dNTPs, 0.5 µl of RNasin, 1 µl of M-MLV reverse transcriptase and 1 µl of RNAse free 

H2O was added and the total mixture incubated at 37ºC for 60 minutes. This sample 

was kept at -80ºC, for long-term storage.
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2.2.6.3 Second strand synthesis

For second strand synthesis of reverse transcription generated cDNA, 1 µl of cDNA 

was added to a master mix containing 5 µl of 5x Promega reaction buffer, 2.5 µl of 2 

mM dNTPs, 2 µl of 25 mM MgCl2, 2.5 µl of 10 µM primer mix, and 0.2 µl of 5 U/µl 

Hotstart GoTaq G2 polymerase. The mixture was made up to 25 µl with nuclease free 

H2O. The final mixture was subject to the following PCR cycling program: 

1 cycle 95 ºC 2 minutes 

30 cycles 95 ºC 1 minute 

 62 ºC 1 minute 

 72 ºC 1 minute 

1 cycle 72 ºC 10 minutes 



 
91 

2.3 CRISPR/Cas9 gene editing

2.3.1 sgRNA oligo design

Three freely available web tools, Benchling, ZiFit Targeter and CRISPR.MIT were 

used for the design of four sgRNA oligos (Error! Reference source not found.). These 

online resources identified suitable 20 nucleotide regions located directly adjacent to 

PAM sites and ranked the guide sequences based on predictions of high target 

specificity with low off-target binding.

 Forward Reverse 

MRPL65 

sgRNA 1 
CACCGAGGCTTTCATTGCACACCG AAACCGGTGTGCAATGAAAGCCTC 

MRPL65 

sgRNA 2 
AAACTCGCGCGGTACCCGCCGATTC CACCGAATCGGCGGGTACCGCGCGA 

MRPL65 

sgRNA 3 
AAACTTGCTACGCGGTCCGAGGCTC CACCGAGCCTCGGACCGCGTAGCAA 

MRPL65 

sgRNA 4 
AAACGCCAAGACGTCGCGGCGACC CACCGGTCGCCGCGACGTCTTGGC 

Table 2.5 Custom sgRNA Oligos for use in CRISPR/Cas9 Studies
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2.3.2 Plasmid vector manipulation

2.3.2.1 sgRNA oligo annealing

For the annealing of short guide RNA oligos, 1 µl of forward oligo and 1 µl of reverse 

oligo (both at 100 µM) were mixed with 1 µl of 10x PNK buffer, 1 µl of ATP, 1 µl of T4 

PNK enzyme and made up to 10 µl with ddH2O. This mixture was treated to the 

following heating program: 37°C for 30 minutes then 95°C for 5 minutes then placed 

in a boiling water bath and allowed to cool for 45 minutes to room temperature. The 

final sample is stored at -20°C.

2.3.2.2 Backbone cutting

In order to cut the Px458 vector at the multiple cloning site, 1 µl of BbsI restriction 

enzyme and 2 µl of 10x Buffer 2.1 was added to 1 µg of PX458 plasmid, then the 

total volume was made up to 20 µl with ddH2O. This mixture was incubated for 1 

hour at 37 °C.

The total 20 µl mixture was combined with 3.5 µl of 1M Tris-HCl pH 9.0, 1 µl of 10% 

SDS and 1 µl of alkaline phosphatase. This mixture was incubated at 37 °C for 30 

minutes followed by a 50°C incubation for a further 30 minutes. 1 µl of 0.5 M EDTA 

was then added and the treated plasmid was gel purified.

2.3.2.3 Ligation

For the ligation of the plasmid vector with sgRNA molecules, 50 ng of BbsI digested 

PX458 plasmid (from section Error! Reference source not found.) was added to a 

ligation mixture containing 2 µl of annealed oligo duplex (from section Error! 

Reference source not found. and diluted 1:200 in ddH2O), 5 µl of 2x T7 Ligase 
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Buffer, 1 µl of T7 Ligase and made up with ddH2O to a total volume of 11 µl. This 

reaction was incubated for 30 minutes at room temperature.

2.3.2.4 Restriction endonuclease DNA digestion

Double digests of PX458 were carried out using 500 ng of plasmid DNA obtained from 

bacterial minipreps (Error! Reference source not found.), added to a mixture 

containing 0.5 µl of BbsI restriction enzyme, 0.5 µl of EcoRI restriction enzyme, 2 

µl of 10x Buffer 2.1 and made up to 10 µl with ddH2O. This reaction was incubated 

at 37 °C for 2 hours and then run on a 1% agarose gel to check digestion product 

sizes.

2.3.3 Plasmid transfection

For transfection of cells with a pSpCas9(BB)-2A-GFP (PX458) plasmid, an Amaxa® 

Cell Line Nucleofector® Kit V (cat no. VVCA-2003) was used. U2OS cells were grown 

an 80% confluency, trypsinised, counted and diluted into 100μL aliquots of Cell Line 

Nucleofector® solution containing 1 million cells. 2 µg plasmid DNA or 2 µg 

pmaxGFP® Vector (control) was added to the solution and cells were transferred into 

a kit-provided cuvette. Cuvettes were inserted into the Nucleofector® device and 

subject to program X-001. 500 µL of growth media was then added to the cuvette and 

the entire contents transferred into a 6 well plate and allowed to recover for 24-48 

hours. 

2.3.4 Single cell sorting

Following recovery of post-transfection cells, each population was at ~2-3 million cells. 

Cell populations were trypsinised and resuspended in 500-600μl of PBS (+ 1-2% FBS) 

in individual FACS tubes to the Core Flow Cytometry Facility. Cells were strained 

through 40μm filters to prevent clumping and were then stained with DAPI (0.1µg/mL-
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10µg/mL) before sorting with a MoFlo Astrios EQ Cell Sorter. The Astrios machine 

sorted cells into single cell wells of a 96 well plate based on positive DAPI signal and 

GFP signal indicating live cells with successful nucleofection. Two 96 well plates were 

sorted for each of the sgRNA plasmids alongside single plates of pmaxGFP® Vector 

cell and no-cell controls. The single cells were then left to proliferate into clonal 

populations in high glucose growth media. 
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2.3.5 Bacterial culture

2.3.5.1 Propagation and storage

Subcloning efficiency DH5α chemically competent cells were used in cloning 

experiments. Competent cells were grown at 37°C in plates of 4% LB broth with agar 

that had been autoclaved prior to pouring.

Transformed strains were stored in 18% glycerol 4% LB stocks and then kept at -80°C 

for future use. For defrosting and propagation a small amount of glycerol stock was 

scraped on a 4% LB broth agar plate and left to grow at 37°C overnight.

2.3.5.2 Transformation

Heat shock was used for the transformation of DH5α cells. 4 µl of ligation reaction 

from section Error! Reference source not found. was added to 40 µl of 

subcloning efficiency DH5α cells. This mixture was left on ice for 30 minutes and then 

treated to heat shock at 42°C for 45 seconds. Following heat shock, the mixture was 

placed back on ice for 2 minutes. 950 µl of pre-warmed SOC media was added prior 

to incubation for 1 hour at 37°C in a shaking incubator. The mixture was centrifuged 

at 15,000g for one minute and the pellet was resuspended in 200 µl of SOC media. 

This suspension was spread out onto LB agar plates supplemented with 100 µg/mL 

ampicillin and incubated at 37°C overnight.

2.3.5.3 Colony screening

Individual transformed clones were picked and spread onto fresh LB+ampicillin plates 

then incubated overnight at 37°C. Half of each colony was resuspended in 40 µl of 

10% Triton-X and frozen at -80°C for 30 minutes. The suspension was then defrosted 
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and centrifuged at 15,000g for 5 minutes at 4°C. The supernatant was kept and used 

to set up PCR using sgRNA forward primer with PX458 plasmid reverse primer. The 

presence of an insert was checked by electrophoresis of PCR product on 1% agarose 

gel.

2.3.5.4 Isolation of plasmid DNA

Plasmid positive cells were propagated on LB+Ampicillin agar plates overnight at 

37°C. Single colonies were picked and propagated overnight in 5-7 mL of 2.5% LB 

broth supplemented with 100 µg/ml ampicillin at 37°C. Cells were pelleted through 

centrifugation for 2 minutes at 16,000g and plasmid was isolated using the 

Monarch® Plasmid Miniprep Kit (cat no. T1010S) following manufacturer’s guidelines.
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Chapter 3 : Defects of mitochondrial translation factors in 

mitochondrial disease

3.1 Introduction

The complex process of mitochondrial translation requires a multitude of different 

proteins, along with 22 mt-tRNAs and two ribosomal RNAs, that must all function in 

concert. As discussed in 1.8, disorders of mitochondrial translation can result from 

mutations within a wide range of different genes in both the mitochondrial and nuclear 

genomes. A growing number of genes encoding mitoribosomal proteins are implicated 

in early-onset mitochondrial disease presentations (Pulman et al., 2019). 

Mitochondrial translation factors, those proteins directly involved in the initiation, 

elongation and termination stages of mitochondrial translation, are another well 

documented group of genes with the potential to cause disorders of mitochondrial 

translation when mutated. Genetic variants affecting mitochondrial translation factors 

characteristically result in combined OXPHOS deficiencies due mtDNA origin of some 

subunits of OXPHOS complexes I, III, IV and V, while the spectrum of resulting clinical 

phenotypes is broad (Pearce, Nezich and Spinazzola, 2013). In 2006 the elongation 

factor mtEF-G1, encoded by the GFM1 gene, was the first mitochondrial translation 

factor to be implicated in disease (Antonicka et al., 2006). In the years following, in 

part due to the application of next generation sequencing techniques within the rare 

disease field, novel pathogenic variants have been described in a number of genes 

encoding mitochondrial translation factors including the mitoribosome recycling factor 

GFM2, elongation factors TSFM and TUFM and the termination factor C12orf65 

(Fukumura et al., 2015; Glasgow et al., 2017; Shamseldin et al., 2012; Valente et al., 

2009; Shimazaki et al., 2012; Antonicka et al., 2010). This chapter will focus on the 

investigation of novel variants in genes encoding two of these mitochondrial translation 

factors, GFM2 and TSFM.
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3.1.1 mtEF-G2: a mitochondrial translation factor

The human genes GFM1 and GFM2 encode the proteins mtEF-G1 and mtEF-G2 

respectively. These genes are homologs of the highly conserved bacterial translation 

elongation factor G (EF-G) (Hammarsund et al., 2001). In prokaryotes, EF-G catalyses 

the translocation tRNAs sitting in the A- and P-sites of the ribosome into the P and E 

sites, facilitating translation elongation (Wintermeyer and Rodnina, 2000; Rodnina et 

al., 2000). Bacterial EF-G also works alongside ribosome recycling factor (RRF) to 

play a crucial role in the dissociation of the post-termination ribosome complex (PoTC) 

and the recycling of the ribosome at the end of each translation event (Hirokawa et al., 

2006). The EF-G equivalent in eukaryotic cytosolic translation is EF-2 (Rapp et al., 

1989), while the mitochondrial translation system possesses both mtEF-G1 and mtEF-

G2 as functional counterparts of prokaryotic EF-G (Hammarsund et al., 2001). 

Prokaryotic EF-G and the eukaryotic cytosolic protein EF-2 possess both elongation 

and ribosome recycling properties. However, it has been demonstrated that these 

roles are split between the two mitochondrial translation homologs mtEF-G1 and 

mtEF-G2. Mitochondrial mtEF-G1 requires GTP for its translocation function during 

the elongation stage of translation, whereas mtEF-G2 is not active during translation 

elongation. Instead, mtEF-G2 interacts with RRF to enable mitoribosome recycling 

(Tsuboi et al., 2009). In light of these findings, it was proposed that the translation 

factor be renamed RRF2, reflective of its ribosome recycling activity (Christian, Haque 

and Spremulli, 2009). Unlike bacterial EF-G, mtEF-G2 does not require GTP 

hydrolysis in order to disassemble the monosome. Instead, GTP hydrolysis is required 

for the release of mtEF-G2 itself from the newly disassembled LSU (Tsuboi et al., 

2009). 

3.1.2 GFM2 in mitochondrial disease

Prior to the work presented here, two sets of sibling pairs with pathogenic variants in 

the GFM2 gene had been identified through WES and reported in the literature. The 
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clinical presentations of these patients included microcephaly, simplified brain gyral 

pattern with insulin dependent diabetes in the first family and Leigh syndrome 

complicated by arthrogryposis multiplex congenita in the second (Fukumura et al., 

2015; Dixon-Salazar et al., 2012). The functional characterisation of the molecular 

mechanisms underlying disease in these patients was limited to the demonstration of 

nonsense mediated mRNA decay of GFM2 transcripts the first patients identified 

(Fukumura et al., 2015).

3.1.3 mtEF-Ts: a mitochondrial translation elongation factor

The mitochondrial elongation factor mtEF-Ts, encoded by the nuclear TSFM gene, 

acts as a guanine nucleotide exchange factor for EF-Tu promoting the formation of 

EF-Tu/GTP from EF-Tu/GDP. This exchange allows EF-Tu/GTP to form a ternary 

complex with aminoacylated mt-tRNAs, for their transport to the mitoribosomal A-site. 

In the A-site, a correct codon-anticodon interaction results in the hydrolysis of GTP 

and the release of EF-Tu/GDP to begin a new cycle (Chiron, Suleau and Bonnefoy, 

2005). 

3.1.4 TSFM in mitochondrial disease

Pathogenic variants in the TSFM gene were first identified in 2012 in two unrelated 

paediatric patients with the same homozygous c.997C>T, p.(Arg333Trp) mutation. 

Despite harbouring an identical TSFM variant, each patient presented with a distinct 

clinical phenotype. Smeitink et al. reported that their first patient experienced fatal 

mitochondrial encephalopathy, alongside muscle weakness, hypotonia, 

rhabdomyolysis and epilepsy, while a second patient presented with hypertrophic 

cardiomyopathy with general hypotonia without any further neurological involvement 

(Smeitink et al., 2006b).

A further thirteen patients with disease-causing TSFM variants have been reported in 

the years following these two initial cases. There is significant heterogeneity in the 
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clinical presentation of TSFM related disease, though patients can be sub-categorised 

into two clear groups, based on age of onset and disease severity. Disease onset in 

the first seven cases to be reported was extremely early, with presentation of severe 

symptoms in the congenital or neonatal period. Despite each patient displaying an 

individual combination of symptoms, some of the more common clinical features 

included hypotonia, respiratory failure and hypertrophic cardiomyopathy. All seven of 

these patients died within their first weeks/months of life (Smits et al., 2011a; Calvo et 

al., 2012; Shamseldin et al., 2012; Vedrenne et al., 2012; Smeitink et al., 2006b). 

The following six patients to be reported with pathogenic variants in the TSFM gene 

were adults surviving into their late teens, twenties and thirties. These patients 

presented with milder phenotypes in infancy or childhood. Similar to the early onset 

cluster of patients, the clinical features of each adult patient vary significantly, though 

optic atrophy, ataxia and hypertrophic cardiomyopathy are common to most cases 

(Ahola et al., 2014; Emperador et al., 2017; Perli et al., 2019; Traschutz et al., 2019). 

Most recently, Scala et al. identified a five-year-old boy with 

encephalocardiomyopathy, sensorineural hearing loss and spontaneously regressing 

lesions on brain MRI. The hypertrophic cardiomyopathy symptoms in this patient 

remain relatively stable with little progression or worsening over time (Scala et al., 

2019). 

The data presented here describes the clinical and biochemical profiles of two 

paediatric patients with novel variants in the GFM2 gene, and one adult patient with 

novel compound heterozygous variants in the TSFM gene, in order to assign 

pathogenicity and broaden the clinical manifestations associated with variants in each 

gene. As discussed in 1.9, confirming pathogenicity in such cases is of vast diagnostic 

value to patients and their families, while also providing insight into the molecular 

mechanisms underlying these extremely rare disorders.
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3.2 Patient reports

3.2.1 GFM2 Patient 1

Patient 1, a 13-year-old male, is the first child of healthy non-consanguineous parents 

and has a healthy younger brother. Pregnancy was complicated by intrauterine growth 

restriction and he was born at term by normal vaginal delivery weighing 2.0 kg. He had 

asymptomatic hypoglycaemia in the neonatal period and mild jaundice and was tube 

fed initially. He subsequently had a urinary tract infection and required orchidopexy for 

an undescended right testis. 

Developmental delay was first noted at 2.5 years in relation to language and 

communication skills; he had acquired his first words at 12–18 months, but did not put 

words together until aged 3 years. From 5 years onwards, he has become increasingly 

dysarthric. He has used a knife and fork from 3 years of age but has never been able 

to write. He started walking at 14 months and could run at 4 years, but he 

subsequently developed a dystonic posture of his right foot and spasticity in both legs, 

leading to toe walking and loss of ambulation at 8 years; he currently mobilises by 

crawling. He has been continent since 2 years of age. He has a normal head 

circumference, normal vision and hearing and no involuntary movements or seizures 

and continues to make slow academic progress.

Cranial MRI showed symmetrical bilateral high signal on T2-weighted images in the 

caudate, putamen and cerebellar dentate nucleus. There were also abnormalities in 

the corpus callosum and the subcortical white matter of the cerebral and, particularly, 

the cerebellar hemispheres, with further abnormal areas in the deep white matter 

(Figure 3.1). CSF lactate was elevated on two occasions at 3.2 and 3.4 mmol/L 

(normal range, 0.7–2.1 mmol/L). Sequencing of the mitochondrial genome and 

the NFU1 gene both failed to detect pathogenic variants. This patient was referred by 

Dr.Andrew Morris, Alder Hey Children's Hospital NHS Foundation Trust.
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Figure 3.1 MRI of Patient 1. MRI demonstrates bilateral T2 hyperintensities involving supratentorial white matter 

(yellow arrows), head of caudate nucleus (white arrows), putamen and genu and splenium of the corpus callosum 

(A) characterised by low T1 signal suggesting irreversible tissue damage (B). Right (R) and left (L) are indicated.

3.2.2 GFM2 Patient 2

Patient 2, a 9-year-old female, is the second child of consanguineous parents 

originating from Syria. Born following an uneventful pregnancy at full term, 

development was unremarkable in the first 2 years of life. At the age of 2 years and 

2 months, involuntary movements of the left hand were reported and within a few 

months, these had extended to involve all four limbs. Muscle strength and mass 

deteriorated and she lost the ability to walk at 4 years, to sit at 5 years and 

subsequently lost the ability to speak. At the age of 6 years, she presented with her 

first seizure and has subsequently developed a severe epilepsy disorder. Clinical 

assessment reveals severe global developmental delay, myopathic facies with an 

open mouth appearance and drooling, severe axial hypotonia with hypertonic limbs 

and dystonic involuntary movements. Communication was restricted to phonetic 

reading. This Patient was referred by Dr.Maja Hempel, University Medical Center 

Hamburg-Eppendorf.
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Lactate was repeatedly elevated in both serum, to 4.1 mmol/L, and CSF, to 3.1 

mmol/L, (normal <2.5mmol/L). Cranial MRI showed diffuse hyperintensities on T2-

weighted imaging of the periventricular and central white matter with associated 

volume loss and atrophy of corpus callosum as well as T2 hyperintense defects of 

bilateral putamen and head of caudate nucleus (Figure 3.2). EEG revealed multifocal 

seizure activity.

Figure 3.2 MRI of Patient 2. MRI demonstrates extensive T2 hyperintensities associated with volume loss 

involving bilateral periventricular and central white matter (A, B, yellow arrows) and defects involving both putamina 

and the head of caudate nucleus on the right (A, B, D, white arrows). Right (R) and left (L) are indicated.
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3.2.3 TSFM Patient

This 36-year-old female patient was born at term to non-consanguineous healthy 

parents. Early psychomotor development was normal, however gross-and fine-motor 

clumsiness with frequent falls were observed in infancy. This was followed by mild 

muscle weakness and reduced limb coordination. Genetic screening for 

spinocerebellar and Friedreich’s ataxias was negative. These symptoms remained 

stable until the patient reached the age of 27 when she experienced worsening fatigue 

and dyspnoea and was referred to the Cardiomyopathies Unit of San Camillo-Forlanini 

Hospital, Rome. Echocardiography revealed a mildly dilated left ventricle (LV), LV end-

diastolic diameter (LVDD) of 51 mm and ejection fraction (EF) of 21%, consistent with 

dilated cardiomyopathy. Serum lactate levels were slightly increased (3.70 mmol/L; 

control <2.2 mmol/L). LV function progressively decreased, despite therapeutic 

intervention. At the age of 33 years, echocardiography showed a hypokinetic and 

dilated LV, LVDD of 54 mm, ventricular septum thickness of 10 mm and EF of 15%. 

The patient underwent cardiac transplant a few months later. This patient was referred 

by Dr.Giulia d’Amati and Dr.Carla Giordano, Department of Molecular Medicine, 

Sapienza University.
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3.3 Results: GFM2 

3.3.1 Histopathological and biochemical studies

Due to the presentation of muscle related clinical features in Patient 1, a skeletal 

muscle biopsy was obtained for histopathological and biochemical investigations. No 

marked structural abnormalities were identified upon H&E staining of skeletal muscle 

from Patient 1 (Figure 3.3A). Oxidative enzyme histochemistry showed intense SDH 

activity and a generalised decrease in cytochrome c oxidase activity throughout the 

muscle section (Figure 3.3B-C). Sequential COX-SDH histochemistry confirmed a 

widespread COX deficiency in the presence of normal SDH activity (Figure 3.3D).

Figure 3.3 Histochemical investigation of patient skeletal muscle and biochemical analysis of skeletal 

muscle and fibroblasts. (A) Haematoxylin and eosin stain. Succinate dehydrogenase (SDH) (B), cytochrome c 

oxidase (COX) (C) and COX-SDH histochemistry (D). Respiratory chain enzyme activity measurements in the 

skeletal muscle of Patient 1 (E), the fibroblasts of Patient 1 (F) and the fibroblasts of Patient 2 (G) normalised to 

citrate synthase. (red: controls, blue: patient). Control datasets for skeletal muscle and fibroblast biochemistry are 

based on n=25 normal samples, normalised and set to 100% with error bars to represent standard deviation. These 
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data were generated by Langping He and Gavin Falkous. Figure adopted and amended from (Glasgow et al., 

2017).

The assessment of respiratory chain enzyme activities in the muscle of Patient 1 

revealed impaired complex IV activity, while the activities of complexes I and II were 

both within the limits of the standard deviation of control values (Figure 3.3E). 

Fibroblast cells from Patient 1 appear to express a mild combined OXPHOS defect 

affecting complexes I and IV, with residual enzyme activities approximately 60% of the 

average of control fibroblasts (Figure 3.3F). Complex activity measurements in the 

fibroblasts of Patient 2 revealed a severe complex IV deficiency, while activity of 

complex II is two-fold higher than controls. Complex I and III activities are within the 

control range (Figure 3.3G). 

3.3.2 Variant identification, confirmation and segregation studies

WES of Patient 1 identified compound heterozygous variants in the GFM2 gene, a 

c.569G>A single nucleotide substitution in exon 8 resulting in an arginine to glutamine 

missense change at residue 190 (p.(Arg190Gln)) and a c.636delA single nucleotide 

deletion in exon 9 producing a frameshift mutation and premature termination codon 

(p.(Glu213Argfs*3)). WES of Patient 2 revealed a homozygous c.275A>C variant in 

exon 5 of GFM2, predicted to cause a tyrosine to serine missense change at residue 

92 (p.(Tyr92Ser)). Sanger sequencing of the probands plus their respective parents 

confirmed the segregation of the bi-allelic GFM2 variants with disease in both families 

(Figure 3.4).
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Figure 3.4 Segregation of recessive GFM2 variants. Familial pedigrees and Sanger sequence data 

demonstrating recessive inheritance of GFM2 variants in Patients 1 (top) and 2 (bottom) from heterozygous 

parents. Figure adopted and amended from (Glasgow et al., 2017).

3.3.3 Missense residue conservation and in silico pathogenicity predictions

Conservation and in silico pathogenicity predications were carried out in order to 

assess the possible structural and functional importance of amino acids affected by 

missense mutations. Multiple sequence alignment and assessment of the evolutionary 

conservation of each missense variant demonstrates that the Arg190 residue is 

conserved in mammals, and amphibians, but is less so in more distant species such 
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as Danio rerio and Caenorhabditis elegans. The region flanking the p.(Arg190Gln) 

change is similarly conserved throughout most higher order species (Figure 3.5). The 

residue affected by the homozygous p.(Tyr92Ser) variant in Patient 2 is conserved 

from humans through to Caenorhabditis elegans with only Drosophila melanogaster 

varying from the conserved tyrosine to phenylalanine. The surrounding region is 

extremely well conserved (Figure 3.5).

Figure 3.5 Multiple sequence alignment of mtEF-G2 regions surrounding each missense variant. Mutant 

and Wildtype human mtEF-G2 sequence aligned alongside orthologs from 8 further species to visualise 

evolutionary conservation of each affected residue and surrounding sequence. 

All three GFM2 variants are extremely rare; the c.564A>G, p.(Arg190Gln) allele, 

harboured by Patient 1, is present in 5/276,072 alleles on gnomAD (MAF = 0.00002) 

but never in a homozygous state, while the other c.636delA, p.(Glu213Argfs*3) variant 

found in Patient 1 and the c.275A>C, p.(Tyr92Ser) variant present in Patient 2 are 

unreported in the database (https://gnomad.broadinstitute.org/).

In silico pathogenicity prediction tools generated consistent results for the 

p.(Tyr92Ser) missense variant belonging to Patient 2, this change was classified as 

https://gnomad.broadinstitute.org/
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likely to affect protein function according to all in silico prediction tools used. SIFT and 

aGVFD classified the p.(Arg190Gln) change in Patient 1 as unlikely to interfere with 

protein function while Mutation Taster, PolyPhen and CADD scores were supportive 

of a deleterious effect (Table 3.1). CADD scores of 32 for c.569G>A and 27.2 for 

c.275A>C, predict that these variants are in the top 0.01 and 0.1% of deleterious single 

nucleotide variants of the reference genome, respectively.

 

Mutation 
Taster 

Align GVGD SIFT Polyphen CADD 

R190Q 
'disease 

causing’ 
Class C0 'tolerated’ 

‘probably 

damaging’ 
32 

Y92S 
’disease 

causing’ 
Class C55 

’affect protein 

function’ 

‘probably 

damaging’ 
27.2 

Table 3.1 Assessment of missense GFM2 variants using a panel of  in silico pathogenicity prediction tools. 

Output of each in silico pathogenicity prediction tool when assessing missense changes p.(Arg190Gln) (Patient 1 

– first row)) and p.(Tyr92Ser) (Patient 2 – second row). Deleterious predictions are shaded in red, tolerated 

predictions are shaded in green. Align GVGD uses Grantham scores of evolutionary distance alongside sequence 

conservation to categorise missense changes into one of six classes. Class C0 = class containing variants least 

likely to interfere with protein function, Class C55 = class containing variants second most likely to interfere with 

protein function. Combined annotation dependent depletion (CADD) scores are calculated using an array of 

different tools assessing variants and simulated mutations. A CADD score of 20 classifies a variant as within the 

top 1% of most deleterious SNVs in the genome. A CADD score of 30 classifies a variant as within the top 0.1% of 

most deleterious SNVs in the genome. All web-based tools are freely available - see Materials and Methods section 

2.1.6. 

3.3.4 Western blot analysis of patient fibroblasts and skeletal muscle

In order to assess the impact of the GFM2 variants on OXPHOS complex stability, 

investigation into the steady-state levels of individual OXPHOS complex subunits in 

fibroblasts were carried out, revealing patient-specific differences. There was an 

extremely mild decease in the abundance of OXPHOS proteins in the fibroblasts of 

Patient 1, primarily affecting subunits of complexes I (NDUFB8) and IV (COXI and 

COXII) (Figure 3.6A), while the fibroblasts of Patient 2 exhibited a clear decrease in 
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the steady-state levels of subunits of complex I (NDUFB8), complex III (CYTB and 

CORE2) and complex IV (COXI and COXII) (Figure 3.6A). Skeletal muscle sample 

from Patient 1 was obtained, however no tissue samples from Patient 2 were available. 

Skeletal muscle lysates from Patient 1 exhibited a marked decrease in steady-state 

levels of complex IV components COXI and COXII, with subunits of each of the other 

OXPHOS complexes relatively unchanged compared to controls (Figure 3.6B).

Figure 3.6 Western blot analysis in fibroblasts and skeletal muscle. Whole cell lysates from fibroblasts of 

Patient 1 and Patient 2 subjected to SDS-PAGE and western blotting using with antibodies against NDUFB8, SDHA 

(loading control), CORE2, CYT B, COXI, COXII and ATP5B (A). Skeletal muscle lysate from Patient 1 subjected 

to SDS-PAGE and western blotting using antibodies against NDUFB8, SDHA (loading, CORE2, COXI, COXII, 

ATP5A and SDHA (loading) and mtEF-G2 (B). Figure adopted and amended from (Glasgow et al., 2017). Data 

shown is representative of three independent repeats.

Attempts at detecting mtEF-G2 signal in fibroblasts using a commercial antibody 

repeatedly resulted in the presence of non-specific bands. Consequently, investigation 

into the steady-state level of mtEF-G2 was only possible in the skeletal muscle of 

Patient 1, which produced clear signal. The abundance of mtEF-G2 protein in patient 

skeletal muscle lysate was decreased to approximately 50% of the controls (measured 

using an ImageLab densitometry tool) (Figure 3.6B).
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3.3.5 [35S] translation assay in growing fibroblasts

Due to the defects on OXPHOS subunits identified in patient fibroblasts (Figure 3.6A), 

and the role of mtEF-G2 as a mitoribosomal recycling factor, it was important to assess 

mitochondrial translation in patient cell lines. A [35S] metabolic labelling assay was 

performed in order to assess whether these GFM2 variants cause impairment of de 

novo mitochondrial protein synthesis in growing fibroblast cells as a potential 

pathomechanism responsible for the observed OXPHOS defects. Cytosolic translation 

was inhibited through addition of 100 μg/mL emetine to culture media, in order to 

obtain signal from only protein synthesis occurring within mitochondria. Cells were 

incubated for one hour with radiolabelled methionine/cysteine, harvested, and 

separated via SDS-PAGE. The resulting bands correspond to the mtDNA encoded 

proteins that were synthesised within the 1 hour pulse incubation. In the case of both 

patients there does not appear to be any effect on the incorporation of radiolabelled 

methionine/cysteine into newly synthesised mtDNA encoded proteins, except in the 

case of ND1, where there is no corresponding band in either patient (Figure 3.7). 

While it appears that signal in the lane containing labelled sample from Patient 2 is 

generally lower, this is a result of lower loading of total sample as can be seen on the 

Coomassie stain panel. 
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Figure 3.7 [35S] methionine/cysteine incorporation in growing fibroblasts as a measure of de novo 

mitochondrial protein synthesis. Signal detected from fixed and dehydrated SDS-PAGE gel using Typhoon 

Phosphorimager. Bands are visible for radiolabelled COXI, ND4, cyt b. ND2, ND1, COXIII, COXII and ATP6. 

Loading is presented through a Coomassie stain on the bottom panel. Figure adopted and amended from (Glasgow 

et al., 2017).
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3.4 TSFM Results

3.4.1 Histological, histochemical and biochemical studies

Masson trichrome staining of cardiac tissue from both the right and left ventricles 

revealed multiple foci of myocardial fibro-adipose replacement (Figure 3.8A-B). 

Myocytes lost from the RV were mostly replaced with adipose tissue (Figure 3.8A), 

while myocardial replacement in the LV was mostly fibrous (Figure 3.6B). Sequential 

COX-SDH histochemistry revealed a severe and widespread COX deficiency in 

explanted cardiac tissue (Figure 3.8C-D).

Biochemical assessment of respiratory chain enzyme activities revealed a severe 

defect in the activity of complex IV alongside a small decrease in complex I activity 

that remains within the range of standard deviation (Figure 3.8E).
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Figure 3.8 Histological, histochemical and biochemical investigation of patient cardiac tissue. Masson 

trichrome performed on right ventricle (RV) (A) shows abundant connective tissue (blue) replacement of 

cardiomyocytes (red). Arrows denote adipose tissue, asterisks denote fibroadipose replacement. Foci of scarring 

(blue) are present in the left ventricle (LV) (B). Scale bars are 250um. Combined COX/SDH staining of RV and LV 

(C-D). Biochemical analysis of mitochondrial respiratory chain enzyme activities performed on cardiac tissue 

homogenate from proband (blue) and controls (red) (E). Control datasets for fibroblast biochemistry are based on 

n=25 normal samples, normalised and set to 100% with error bars to represent standard deviation. Data contributed 

by Elena Perli, Annalinda Pisano and Langping He. Figure adopted and amended from (Perli et al., 2019).
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3.4.2 Variant identification, confirmation and segregation

Complete mitochondrial genome sequencing was performed. All variants identified 

were previously reported non-pathogenic polymorphisms within the MitoMap database 

(www.mitomap.org), excluding a mtDNA mutation as causative of disease. 

Whole exome sequencing lead to the identification of two novel, heterozygous variants 

in the TSFM gene (NM_001172697.1): One missense mutation c.505C>T, 

p.(Leu169Phe) and one frameshift mutation c.408_409delGT, p.(Leu137Glyfs*24) 

resulting in a shift in the translational reading frame and the generation of a premature 

truncation 24 codons downstream of the deletion. Sanger sequencing confirmed the 

compound heterozygous state of these variants in the proband. The c.505C>T 

mutation was found to be present in a heterozygous state in the proband’s mother. An 

unaffected sibling had two wild-type TSFM alleles. While a paternal DNA sample was 

not available, the genotyping of the proband’s mother and sister is consistent with 

segregation of recessive TSFM variants within the family (Figure 3.9). 

Figure 3.9 Segregation of recessive TSFM variants. Familial pedigree and Sanger sequencing data 

demonstrating recessive inheritance of compound heterozygous variants in the proband and homozygous wildtype 

alleles in her unaffected sibling. Figure adopted and amended from (Perli et al., 2019).

http://www.mitomap.org/
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3.4.3 Missense residue conservation and in silico pathogenicity prediction

The missense c.505C>T mutation identified in this patient has not been reported 

before and is not present within the gnomAD variant browser 

(https://gnomad.broadinstitute.org/), nor has it been previously detected in large-scale 

sequencing studies (http://evs.gs.washington.edu/EVS/). The mutation results in the 

exchange of a highly conserved leucine residue for phenylalanine (Figure 3.10). 

Figure 3.10 Multiple sequence alignment of mtEF-Ts region surrounding missense variant. Mutant and 

Wildtype human mtEF-Ts sequence aligned alongside orthologs from 7 further species to visualise evolutionary 

conservation of each affected residue and surrounding sequence.

The use of five different in silico pathogenicity prediction tools produced varied results 

(Table 3.2). Mutation Taster, Polyphen and CADD predict this missense Leu169Phe 

change to be damaging. The mutation has a CADD score of 26.7, indicating it is 

among the top 1% of the most deleterious substitutions that could occur within the 

human genome (https://cadd.gs.washington.edu/). However Align GVGD and SIFT 

both predict the mutation to be tolerated, and unlikely to affect protein function. 

https://gnomad.broadinstitute.org/
http://evs.gs.washington.edu/EVS/
https://cadd.gs.washington.edu/
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Mutation 

Taster 
Align GVGD SIFT Polyphen CADD 

L169F 
’disease 

causing’ 
Class C0 ’tolerated’ 

‘probably 

damaging’ 
26.7 

Table 3.2 Assessment of missense TSFM variant using a panel of  in silico pathogenicity prediction tools. 

Output of each in silico pathogenicity prediction tool when assessing missense change c.505C>T, p.(Leu169Phe). 

Deleterious predictions are shaded in red, tolerated predictions are shaded in green. Align GVGD uses Grantham 

scores of evolutionary distance alongside sequence conservation to categorise missense changes into one of six 

classes. Class C0 = class containing variants least likely to interfere with protein function, Combined annotation 

dependent depletion (CADD) scores are calculated using an array of different tools assessing variants and 

simulated mutations. A CADD score of 20 classifies a variant as within the top 1% of most deleterious SNVs in the 

genome. All web-based tools are freely available – see Materials and Methods section 2.1.6.

3.4.4 Steady-state levels of mtEF-Ts, EF-Tu and mtEF-G1

Western blot analysis was performed by collaborators, Elena Perli and Annalinda 

Pisano, on patient cardiac tissue lysate alongside non-failing heart (NFH) and failing 

heart (FH) control lysates to investigate the impact of these compound heterozygous 

TSFM variants on steady-state levels of mtEF-Ts alongside two further elongation 

factors EF-Tu and mtEF-G1. mtEF-Ts was dramatically decreased in patient cardiac 

tissue when compared to both NFH and FH. There was also a marked decrease in 

steady-state EF-Tu protein. Abundance of mtEF-G1 protein, a mitochondrial 

elongation factor with no direct mtEF-Ts or EF-Tu interaction, was unchanged (Figure 

3.11A).

Similarly, mtEF-Ts protein levels in patient fibroblasts were severely decreased. 

However rather than decreased in abundance, the steady-state level of EF-Tu 

appeared to be upregulated, though this upregulation is mild when taking into account 

the overloading of patient sample indicated by GAPDH signal. The steady-state level 

of mtEF-G1 was unaffected, as also seen in cardiac tissue lysate (Figure 3.11B).
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Figure 3.11 Western blot analysis of translation factors in patient cardiac tissue and fibroblasts. Cardiac 

tissue (A) and fibroblast (B) lysates immunoblotted for mtEF-Ts, EF-Tu and mtEF-G1 alongside GAPDH as a 

loading control. NFH = non-failing heart control. FH = failing heart control. C = control. Data contributed by Elena 

Perli and Annalinda Pisano. Figure adopted and amended from (Perli et al., 2019).

3.4.5 Western blot analysis of OXPHOS proteins

Investigation into the stability of OXPHOS subunit proteins was carried out through 

western blot analysis, performed on patient cardiac tissue and fibroblast lysates 

alongside age matched controls. There was no decrease in abundance of OXPHOS 

subunits identified in patient fibroblasts when compared to age-matched controls 

(Figure 3.12A). However, a marked decrease of NDUFB8 (CI) and an almost 

complete absence of COXI (CIV) was observed in patient cardiac tissue lysate. 

(Figure 3.12B).
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Figure 3.12 Western blot analysis of OXPHOS subunits in patient fibroblasts and cardiac tissue. Patient 

fibroblast whole cell lysate immunoblotted for NDUFB8, SDHA (loading control), CORE2, COXI and ATP5B (A). 

Patient cardiac tissue lysate immunoblotted for NDUFB8, SDHA, CORE2, COXI and ATP5A with PORIN as a 

loading control. Figure adopted and amended from (Perli et al., 2019). Data shown is representative of three 

independent repeats.
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3.5 Discussion

3.5.1 GFM2

Western blot analysis of patient fibroblasts demonstrated differential effects at the 

steady-state protein level for each of these patients. While patient 2 shows decreased 

steady-state levels of OXPHOS subunits NDUFB8 (CI), CYTB and CORE2 (CIII), and 

COXI and COXII (CIV), revealing a combined OXPHOS deficiency, steady-state 

NDUFB8, COXI and COXII levels were only very mildly decreased in Patient 1 when 

compared to controls (Figure 3.6A). However, the abundance of COXI and COXII 

protein in the skeletal muscle of Patient 1 was severely decreased, demonstrating a 

much clearer clear complex IV deficiency (Figure 3.6B). These results are in 

accordance with the original diagnostic assessment of individual respiratory chain 

enzyme activities in the skeletal muscle of Patient 1, which detected a complex IV 

activity of approximately 40% of controls (Figure 3.3E). Tissue specific discrepancies, 

such as the difference in severity of OXPHOS defect between the fibroblasts and 

muscle of GFM2 Patient 1, are not uncommon in defects of mitochondrial translation. 

Mutations in mt-aaRS genes often demonstrate much clearer OXPHOS deficiencies 

in high energy tissues than glycolytic fibroblasts, producing tissue-specific 

manifestations in the heart, skeletal muscle and brain (Boczonadi, Jennings and 

Horvath, 2018). 

The abundance of mtEF-G2 protein the skeletal muscle of Patient 1 was approximately 

50% of controls (Figure 3.6B). The c.636delA, p.(Glu213Argfs*3) heterozygous GFM2 

variant identified in Patient 1 results in a frame shift and premature stop codon. It is 

therefore highly likely to encode a non-functional truncated version of mtEF-G2 that 

will be targeted for degradation. The 50% residual mtEF-G2 can be consequently be 

attributed to protein resulting from the allele carrying the c.569G>A, p.(Arg190Gln) 

variant, suggesting that this missense change affecting residue 190 has no significant 

impact on mtEF-G2 stability. 
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Consideration of the levels of sequence conservation at missense residue sites and 

in silico pathogenicity predictions might offer a possible explanation for the distinct 

difference in the severity of the OXPHOS defect in the fibroblasts of patients 1 and 2. 

While both missense variants affect residues with strong evolutionary conservation 

(Figure 3.5), all five of the pathogenicity prediction tools predicted the p.(Tyr92Ser) 

missense variant to have some deleterious effect on protein function or stability, 

whereas only three predicted a p.(Arg190Gln) to be as damaging. These tools are 

predictions only and must be interpreted with caution. However, if the heterozygous 

p.(Arg190Gln) present in Patient 1 is tolerated slightly more than the homozygous 

p.(Tyr92Ser) missense change in Patient 2, it may account for the fibroblasts of Patient 

1 exhibiting a milder OXPHOS defect.

Despite mtEF-G2 playing an important role in the termination and mitribosome 

recycling stage of translation, [35S ] metabolic labelling revealed no marked decrease 

in the incorporation of [35S] methionine/cysteine in growing fibroblasts as a measure 

of de novo mitochondrial protein synthesis. A lack of translation defect might have 

been expected in the fibroblasts of Patient 1, due to there being only a very mild 

OXPHOS defect in these cells. However, finding the fibroblasts of Patient 2 to have 

[35S] signal comparable to controls (Figure 3.7) was unexpected, considering their 

clear combined OXPHOS defect upon western blotting (Figure 3.6A). Mitoribosome 

recycling occurs primarily upon completion of a full protein synthesis cycle, following 

the release of the nascent peptide, to disassemble the post-termination complex 

(PoTC) made up of the LSU, SSU, deacylated tRNA and mRNA transcript (Koripella 

et al., 2019). It is likely that dysfunctional mtEF-G2 would not prevent incorporation of 

amino acids throughout the synthesis of individual peptides, as the translocase mtEF-

G1 functions during elongation but mtEF-G2 does not exert its function until 

termination has occurred (Christian, Haque and Spremulli, 2009). The incubation 

period for the [35S] metabolic labelling used in this translation assay was one hour, 

which may not be long enough for signal resulting from incorporated methionine 

cysteine to be affected by a quality control system. Repeating the experiment with a 

one hour pulse followed by several chases of different lengths might reveal differences 

in the subsequent stability of labelled mtDNA encoded proteins between patient and 

control cell lines. 
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The affected missense residues of both Patient 1 and Patient 2 reside within domain 

1 of the 5 domains belonging to mtEF-G2. This domain is responsible for guanine 

nucleotide binding and is very similar to the GTP binding domains of other translational 

GTPases. Swapping of domain 1 between mtEF-G1 and mtEF-G2 does not affect their 

translocase and recycling activities respectively (Tsuboi et al., 2009). GTP hydrolysis 

is not required by mtEF-G2 for the splitting of the PoTC but is necessary for mtEF-G2 

release from the LSU that has been freed from the PoTC. Therefore, if the missense 

changes reported here primarily affect GTP binding, it is possible that mutant mtEF-

G2 is less efficient only at its own recycling, remaining bound to the LSU for longer 

and decreasing the amount of free mtEF-G2 available to other post-termination 

complexes.

Prior to its identification as a ribosome recycling factor, mtEF-G2 was postulated to 

play a role in quality-control of mitochondrial translation. Overexpression of mtEF-G2 

was demonstrated to suppress a translation and respiratory chain defect phenotype 

in the myoblasts of a 3243A>G MELAS patient (Sasarman, Antonicka and 

Shoubridge, 2008). A mechanism for mtEF-G2-mediated quality-control is yet to be 

investigated. Feedback from mtEF-G2 as an influence on the stability of newly 

synthesised mtDNA encoded OXPHOS proteins, as is suggested by the 

overexpression data in MELAS patient myoblasts, might offer an explanation for the 

discrepancy between the results of the translation assay and the clear OXPHOS 

defect observed in the fibroblasts of Patient 2. 
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3.5.2 TSFM

Cardiomyopathy is a common clinical feature of TSFM related disease, found in 10 

out of the 13 reported patients. However, development of hypertrophic 

cardiomyopathy in the index patient investigated within this report is unique, due to its 

manifestation later in adulthood. All previous TSFM cardiomyopathies presented in 

early infancy (Smits et al., 2011a; Calvo et al., 2012; Vedrenne et al., 2012; Smeitink 

et al., 2006b) or later in childhood (Ahola et al., 2014; Emperador et al., 2017; Scala 

et al., 2019). 

Steady-state levels of mtEF-Ts are severely decreased in both patient fibroblasts and 

cardiac tissue, indicative of the c.505C>T, p.(Leu169Phe) mutant protein being 

unstable and the c.408_409delGT, p.(Leu137Glyfs*24) mutation resulting in nonsense 

mediated mRNA decay. However, while loss of mtEF-Ts in patient cardiac tissue 

appears to result in a destabilisation of EF-Tu, patient fibroblast cells exhibit increased 

steady-state EF-Tu protein in comparison with controls (Figure 3.11). Similarly, a 

combined OXPHOS defect affecting complexes I and IV is observed in patient 

myocardium, but not in fibroblasts (Figure 3.12). These findings are in accordance 

with the tissue specific nature of disease in this patient, with a presentation with 

primarily cardiac involvement alongside very mild and stable form of ataxia. 

It was demonstrated in the first report of TSFM as a nuclear mitochondrial disease 

gene that overexpression of EF-Tu was able to rescue a combined OXPHOS defect 

in patient fibroblasts. This rescue is attributed to the re-stabilisation of the EF-Tu-

mtEF-Ts complex due to increased availability of EF-Tu (Smeitink et al., 2006b). 

Control skin fibroblasts have been shown to be very sensitive to changes in the ratio 

of EF-Tu and mtEF-Ts. The overexpression of either elongation factor, or the 

overexpression of both simultaneously, results in a reduction in rate of mitochondrial 

translation between 20-40% (Antonicka et al., 2006). 
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Adaptive upregulation of EF-Tu expression has been previously reported and 

implicated in tissue specific patterns of OXPHOS and translation defects in patients 

with compound heterozygous mutations in the GFM1 gene. In this case the 

upregulation of EF-Tu in patient heart impacted the ratio of EF-Tu:mtEF-Ts, increasing 

from 1:6 in controls to 1:2 in patient cardiac tissue. The severity of translation defect 

in these patients varied significantly between tissues, with cardiac tissue being the 

least affected. The authors hypothesised that this shift in the EF-Tu:EF-TS ratio could 

slow EF-Tu recycling and bring this stage of elongation in line with the subsequent 

function of mtEF-G1, thus ameliorating the translation defect within cardiac tissue 

(Antonicka et al., 2006).

It is possible that the lack of OXPHOS defect in the fibroblasts of the patient presented 

in this chapter is the result of a compensatory mechanism of EF-Tu overexpression. 

The exact mechanism underpinning this EF-Tu overexpression remains unclear. A 

deeper understanding of any post-trancriptional and post-translational modifications 

of individual mitochondrial translation factors in patient and control cell lines and 

tissues would be extremely valuable in the study of adaptive responses and tissue 

specific patterns found within this group of disorders.

3.6 Concluding remarks

In summary, three patients carrying previously unreported variants in the GFM2 and 

TSFM genes have been identified through the application of WES. The diagnostic and 

experimental data presented in this chapter have confirmed the segregation of these 

rare recessive variants and demonstrated the detrimental impact of mutant mtEF-G2 

and mtEF-Ts on steady-state levels of oxidative phosphorylation, confirming 

pathogenicity in all three patients. The tissue-specific differences identified, both within 

and between patients, illustrates the complexity of the underlying pathomechanisms 

and highlights the gap in our current understanding of tissue specific adaptation and 

the compensatory mechanisms present in disorders of mitochondrial translation. 
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Chapter 4 : A homozygous variant in the MRPL47 large subunit 

mitoribosomal gene as a novel cause of mitochondrial disease

4.1 Introduction

Ribosomes are large ribonucleoprotein complexes that are responsible for driving 

protein synthesis within the cytosol of all eukaryotic and prokaryotic cells. All 

ribosomes are comprised of two asymmetrical subunits: The SSU recruits mRNA and 

allows translation of the transcripts by selecting the cognate aminoacyl-tRNA 

molecules. The LSU contains the peptidyl transfer centre (PTC), the catalytic site 

responsible for the formation of peptide bonds between amino acids of growing 

polypeptide chains which then leave the LSU through the polypeptide exit tunnel 

(Greber and Ban, 2016).

4.1.1 Structure and function of the mitoribosome

The existence of active ribosomes within isolated mitochondria was first noted in 1958 

(McLean et al., 1958). Mitochondria possess translation machinery distinct to that of 

the cytosol, as a remnant of their α-proteobacterial ancestry. Mitoribosomes, required 

for the synthesis of proteins encoded by the mitochondrial genome, have undergone 

evolutionary changes in composition, structure and function diverging significantly 

from their bacterial counterparts. The release of increasingly high-resolution cryo-EM 

(cryogenic electron microscopy) structural models in the last two decades has shed 

further light on the specialised features of the mammalian mitoribosome machinery 

(Sharma et al., 2003; Amunts et al., 2015).

One of the most striking evolutionary adaptations of the mitoribosome can be seen in 

the relative amounts of protein and ribosomal RNA. Bacterial ribosomes are 

composed of 70% RNA and 30% protein, whereas this ratio is reversed, at 30% RNA 

and 70% protein, in the mammalian mitoribosome (Greber and Ban, 2016). This shift 
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in composition has been driven by the evolutionary loss of large ribosomal RNA 

domains, the extension of conserved ribosomal proteins and the acquisition of 

mitochondria-specific ribosomal proteins. Many of the more recently evolutionary 

acquired MRPs are located on the periphery of the mitoribosome (Brown et al., 2014) 

(Figure 4.1), which has been postulated to act as a protective barrier shielding the 

core machinery from damaging ROS, while a few mitochondria-specific proteins fill the 

structural spaces left behind by lost ribosomal RNA domains (Pietromonaco, Denslow 

and O'Brien, 1991; Lightowlers, Rozanska and Chrzanowska-Lightowlers, 2014). 

Figure 4.1 Structure and composition of the mammalian mitoribosome. RNA and protein components of the 

55S mammalian mitoribosome (left) and evolutionary conservation of mitoribosomal proteins (right). Figure 

adapted from (Greber et al., 2015) and (Greber and Ban, 2016). 

Bacterial ribosomes are built around three ribosomal RNA molecules, a 16S rRNA 

within the SSU, a 23S rRNA at the core of the LSU and a 5S rRNA within the central 

protuberance of the LSU. In mammalian mitoribosomes a structural tRNA, mt-tRNAPhe 

or mt-tRNAVal, is present within the LSU central protuberance, replacing 5S rRNA 

which is not present within the mammalian mitochondrial genome (Chrzanowska-

Lightowlers, Rorbach and Minczuk, 2017). The functional core of the mammalian 

mitoribosome has remained highly conserved throughout evolution. All tRNA binding 
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A-, P- and E-sites, that occupy the inter-subunit space of the bacterial ribosome, have 

been preserved (Greber and Ban, 2016). 

Biogenesis of mitoribosomes requires the synthesis and assembly of ~80 proteins and 

3 structural RNA molecules in a coordinated fashion. Research into the key factors 

involved in this process is ongoing and our understanding of the mechanisms 

underlying mitoribosome biogenesis remains relatively basic. Studies using stable 

isotope labelling of amino acids in cells (SILAC) followed by sucrose gradient 

fractionation and proteomics demonstrated that a subset of MRPs associate with the 

mtDNA nucleoid, indicating that the initial steps of mitoribosome assembly occur 

proximally to this site (Bogenhagen, Martin and Koller, 2014). An RNA binding 

GTPase, ERAL1, is believed to bind 12S rRNA for its stabilisation prior to insertion 

into the SSU (Uchiumi et al., 2010). Three further GTPases have been demonstrated 

to play roles in mitoribosome assembly. Mtg1 and Mtg2 are membrane bound 

GTPases that interact with the immature LSU (Kotani et al., 2013), while C4orf14 is 

believed to be involved in SSU assembly (He et al., 2012). MPV17L12, a protein found 

within nucleoids that is dependent on mtDNA, is thought to contribute to both the 

assembly and stability of the mitoribosome at the IMM (Dalla Rosa et al., 2014). Two 

RNA helicases, DDX28 and DHX30, and a Fas-activated serine-theronine kinase 

(FASTKD2), each residing within RNA granules, are also thought to be required for 

mitoribosome biogenesis (Antonicka and Shoubridge, 2015). Depletion of a core RNA 

granule protein component, GRSF1, results in the accumulation of SSU sub-

assemblies, indicating it may also be involved in mitoribosome assembly (Antonicka 

et al., 2013) .

Mitochondrial mRNA transcripts lack a 5’ UTR (untranslated region) and therefore do 

not carry Shine-Dalgarno sequences that recruit the ribosome in the initiation stage of 

bacterial translation. The mechanism by which mitoribosomes recognise start-codons 

is therefore unique. Binding of a 5’AUG depends on the presence of a formylated 

tRNAMet and is enhanced by mitochondrial initiation factor 2 (IF2mt) (Rudler et al., 

2019).
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The signal recognition particle system that is employed within the cytosol, coupling the 

synthesis of hydrophobic proteins with their membrane insertion, is absent in 

mitochondria (Pool, 2005). To compensate for this, in order to prevent protein 

aggregation and precipitation, mitoribosomes are anchored to the inner mitochondrial 

membrane in close proximity to membrane insertion machinery (Liu and Spremulli, 

2000). This allows nascent peptides to be rapidly inserted into the IMM as they leave 

the polypeptide exit site of the mitoribosome.

4.1.2 Mitoribosomal mutations in human disease

An increasing number of MRPs are implicated in mendelian human pathologies. To 

date, recessive variants in ten SSU genes and four LSU genes have been reported in 

the literature (Table 4.1). These defects typically result in combined respiratory chain 

defects and cause a wide, and often severe, range of clinical presentations. 

Mammalian mitoribosomal protein nomenclature has historically been determined by 

the presence of the MRP within either the large subunit (MRPL) or the small subunit 

(MRPS) of the mitoribosome, followed by an identifying integer. A recently proposed 

naming system attempts to unify the nomenclature of mitoribosomal proteins with 

proteins belonging to cytoplasmic, and prokaryotic ribosomes (Greber and Ban, 2016). 

However, as almost all previously published mitoribosomal disease genes are 

reported under the original naming system, the same nomenclature will be used 

throughout the following text.
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Gene Patient Variant(s) Onset Age Clinical Features 

 

Biochemical 

findings 

OXPHOS findings Ref 

MRPS2 

 

(NM_016034.5) 

1 

 

c.328C>T, 

p.(Arg110Cys); 

 

c.340G>A, 

p.(Asp114Asn) 

Infantile Alive at 11 years 

FTT, DD, sensorineural deafness, 

hypoglycaemia, redundant skin on 

hands and abdomen, dysmorphic 

features 

↑ lactate, ↑ liver 

enzymes, ↑ serum 

alanine, ↑ excretion of 

Krebs cycle 

intermediates 

Fibroblasts: ↓CIV 

Muscle: ↓CII, ↓CIII, 

↓CIV 

Liver: ↓CI, ↓CIII, ↓CIV 

Gardeitchik 

et 

al. (2018) 

 

2 

c.413G>A, 

p.(Arg138His) 

Infantile Alive at 11 years 
DD, sensorineural deafness, 

hypoglycaemia, ID, exercise intolerance 

↑ lactate, ↑ excretion 

of Krebs cycle 

intermediates 

Fibroblasts: ↑CII, ↓CIII, 

↓CIV 

Muscle: ↑CII, ↓CIV 

Liver: ↓CI, ↓CII, ↓CIII, 

↓CIV 

 

MRPS7 

 

(NM_015971.4) 1S 

c.550A>G, 

p.(Met184Val) 

Infantile Died at 14 years 

 

FTT, sensorineural deafness, 

hepatomegaly and liver failure, 

hypoglycaemia, renal dysfunction, 

encephalopathy 

 

↑ lactate, ↑ fumarate, 

↑ 3- hydroxybutyrate, 

↑ C6-C10 dicarboxylic 

acids 

Fibroblasts: ↓CI, CIV 

Muscle: ↓CI 

Liver: ↓CI, ↓CIII, ↓CIV 

Menezes, 

et al. 

(2015) 

https://www.ncbi.nlm.nih.gov/nuccore/NM_016034.5
https://www.ncbi.nlm.nih.gov/nuccore/NM_015971.4
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Gene Patient Variant(s) Onset Age Clinical Features 

 

Biochemical 

findings 

OXPHOS findings Ref 

 

2S 

c.550A>G, 

p.(Met184Val) 

Infantile Alive at 17 years 

 

Sensorineural deafness, 

hypoglycaemia, primary hypogonadism, 

primary adrenal failure, mild learning 

difficulties 

 

↑ lactate, ↑TSH, ↑ 

urea, creatine 

Muscle: Normal 

Liver: ↓CI, ↓CIII 

 

MRPS14 

 

(NM_022100.3) 

 

1 

c.322C>T, 

p.(Arg108Cys) 

Neonatal Alive at 5 years 

 

HCM (receded by 5 years of age), FTT, 

DD, dysmorphic features, muscle 

hypotonia 

 

‘Episodic metabolic 

acidosis’; ↑ lactate, ↑ 

alanine, 

Fibroblasts: ↓CI, ↓CIII, 

↓CIV, ↓CV 

Muscle: ↓CIV 

Jackson, et 

al. (2019) 

MRPS16 

 

(NM_016065.4) 1 

c.331C>T, 

p.(Arg111∗) 

Neonatal Died at 3 days 

Dilation of cerebral ventricles and 

agenesis of corpus collosum on foetal 

ultrasound, FTT, hypotonia, redundant 

skin on neck 

‘Severe metabolic 

acidosis’; ↑ lactate, ↑ 

liver enzymes 

Fibroblasts: ↓CII+III, 

↓CIV 

Muscle: ↓CI, ↓CII+III, 

↓CIV, ↓CV 

Liver: ↓CI, ↓CII+III, 

↓CIV 

Miller, et 

al.(2004) 

https://www.ncbi.nlm.nih.gov/nuccore/NM_022100.3
https://www.ncbi.nlm.nih.gov/nuccore/NM_016065.4
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Gene Patient Variant(s) Onset Age Clinical Features 

 

Biochemical 

findings 

OXPHOS findings Ref 

MRPS22 

 

(NM_020191.4) 1S 

c.509G>A, 

p.(Arg170Cys) 

Antenatal Died before 1 month 

 

Generalised oedema on foetal 

sonogram, subcutaneous oedema at 

birth, muscle hypotonia, HCM, renal 

tubulopathy 

 

↑ lactate, ↑ ammonia 

Fibroblasts: ↓CIV 

Muscle: ↓CI, ↓CIII, 

↓CIV, ↓CV 

Saada, et 

al. (2007) 

 

2S 

c.509G>A, 

p.(Arg170Cys) 

Antenatal Died before 1 month 

Generalised oedema on foetal 

sonogram, subcutaneous oedema at 

birth, muscle hypotonia, HCM, renal 

tubulopathy 

↑ lactate, ↑ ammonia 

 

Lymphocytes: ↓CIV 

 

 

3S 

 

c.509G>A, 

p.(Arg170Cys) 

 

Antenatal Died before 1 month ‘affected similarly to siblings 1 and 2’ 
‘affected similarly to 

siblings 1 and 2’ 
N/A 

 

https://www.ncbi.nlm.nih.gov/nuccore/NM_020191.4
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Gene Patient Variant(s) Onset Age Clinical Features 

 

Biochemical 

findings 

OXPHOS findings Ref 

 

1 

c.644T>C, 

p.(Leu215Pro) 

Antenatal Alive at 5.5 years 

 

FTT, antenatal microcephaly, stable 

HCM, Cornelia de Lange-like 

dysmorphic features, redundant skin on 

neck, muscle hypotonia, 

leukoencephalopathy, transient 

seizures, tetraspasticity and dystonic 

movements 

 

‘Severe metabolic 

acidosis’; ↑ lactate, ↑ 

urinary TCA-cycle 

intermediates 

Fibroblasts: ↓CI, ↓CIII, 

↓CIV 

Smits, et al. 

(2011) 

 

1 
c.1032_1035dup, 

p.(Leu346Asnfs*21) 
Neonatal Died at 3 days 

Agenesis of the corpus callosum and 

periventricular cysts, atrial and 

ventricular septal defects with a 

coronary artery fistula 

 

‘Severe lactic 

acidosis’; ↑ lactate, ↑ 

ammonia, ↑ lactaturea 

Fibroblasts: ↓CI, ↓CIII, 

↓CIV 

Baertling, 

et al. 

(2015) 

 

1 

c.339+5G>A, 

p.(?) 

Neonatal Alive at 4 years 

DD, hypotonia, mild dysmorphic 

features, Leigh-like brain lesions, 

mosaic Down syndrome, oxygen 

dependence, tetraspasticity, 

nasogastric tube feeding 

 

↑ lactate, ↑ pyruvate, 

↑ urine organic acids 
N/A 

Kilic, et al. 

(2017) 
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Gene Patient Variant(s) Onset Age Clinical Features 

 

Biochemical 

findings 

OXPHOS findings Ref 

 

1S,C 

c.605G>A, 

p.(Arg202His) 

Adolescence Alive at reporting 

Delayed puberty, primary ovarian 

insufficiency with hypergonadotrophic 

hypergonadism, small uterus, delayed 

bone age 

 

↑ gonadotropins, ↓ 

oestrogens 

N/A 

 

Chen, et al. 

(2018) 

 

2S,C 

c.605G>A, 

p.(Arg202His) 

Childhood Alive at reporting 

Primary ovarian insufficiency, elevated 

gonadotrophins,  fibrotic ovaries without 

follicles 

 

↑ gonadotropins, ↓ 

oestrogens 

 

N/A 

 

 

 

3C 

c.605G>A, 

p.(Arg202His) 

Adolescence Alive at reporting 

Delayed puberty, primary ovarian 

insufficiency with hypergonadotrophic 

hypergonadism 

 

↑ gonadotropins 

N/A 
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Gene Patient Variant(s) Onset Age Clinical Features 

 

Biochemical 

findings 

OXPHOS findings Ref 

 

4 

c.404G>A, 

p.(Arg135Gln) 

Adolescence Alive at reporting 

 

Amenhorroea, mild facial dysmorphism, 

delayed bone age, delayed puberty, 

primary ovarian insufficiency with 

hypergonadotrophic hypergonadism, 

small uterus, mild osteoporosis, 

bilateral axonal polyneuropathy 

 

↑ gonadotropins, ↓ 

oestrogens, ↑ lactate, 

↓ ketosteroids, ↑ 

methemoglobin 

N/A 

 

MRPS23 

 

(NM_016070.4) 

1 

 

c.119C>G, 

p.(Pro40Arg) 

 

Infantile N/A Hepatic disease N/A 
'combined respiratory 

chain deficiency’ 

Kohda, et 

al. (2016) 

https://www.ncbi.nlm.nih.gov/nuccore/NM_016070.4
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Gene Patient Variant(s) Onset Age Clinical Features 

 

Biochemical 

findings 

OXPHOS findings Ref 

MRPS25 

 

(NM_022497.5) 

1 

c.215C>T, 

p.(Pro72Leu) 

Antenatal Alive at reporting 

 

Intrauterine growth-restriction, DD, 

choreoathetoid distal limb movements, 

muscle weakness and dystonia, 

dysphagia, partial agenesis of corpus 

collosum and underdevelopment of 

frontal and parietal temporal regions on 

MRI, hip dysplasia, adrenal 

insufficiency 

 

↑ lactate 

Fibroblasts: ↓CI, ↓CIII, 

↓CIV 

M: ↓CIV 

Bugiardini, 

et al. 

(2019) 

MRPS28 

 

(NM_014018.3) 

1 

c.356A>G, 

p.(Lys119Arg); 

 

c.214_395del, 

p.(Gly72Glufs*16) 

Antenatal Alive at 30 years 

 

Intrauterine growth retardation, FTT, 

DD, microcephaly, dysphagia, facial 

dysmorphism,  sensorineural deafness, 

hepatomegaly, hypoglycaemia, bilateral 

lesions in globus pallidus and cerebellar 

atrophy on MRI 

 

↑ lactate, ↑ alanine, ↑ 

liver enzymes, ↑ 

urinary TCA cycle 

metabolites 

Fibroblasts: ↓CIV 

Muscle: ↓CV 

Liver: ↓CIV 

Pulman, et 

al. (2019) 

https://www.ncbi.nlm.nih.gov/nuccore/NM_022497.5
https://www.ncbi.nlm.nih.gov/nuccore/NM_014018.3
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Gene Patient Variant(s) Onset Age Clinical Features 

 

Biochemical 

findings 

OXPHOS findings Ref 

MRPS34 

 

(NM_023936.2) 1 

 

c.321+1G>T, 

p.(Val100 

Gln107del) 

 

Infantile Died at 9 months DD, microcephaly, episodic tachypnoea ↑ lactate, ↑ alanine 

Fibroblasts: ↓CI, ↓CIV 

Muscle: ↓CI, ↓CIII, ↓CIV 

Liver: ↓CI, ↓CIV 

Lake, et al. 

(2017) 

 

2S1 

c.322-10G>A, 

p.(Asn108Leufs∗12/ 

p.(Asn108Glyfs∗50) 

Infantile Alive at 17 years 

 

Hypotonia, DD,  non-verbal, 

microcephaly, horseshoe kidney, 

mild coarsening of facial features, 

extropia and ptosis, kyphoscoliosis, 

bilateral choreoathetoid movements, 

atrophy of extremities with hypertonia, 

contractures at most joints 

 

 

↑ lactate Muscle: ↓CI, ↓CIII, ↓CIV 

 

https://www.ncbi.nlm.nih.gov/nuccore/NM_023936.2


 
139 

Gene Patient Variant(s) Onset Age Clinical Features 

 

Biochemical 

findings 

OXPHOS findings Ref 

 

3S1 

c.322-10G>A, 

p.(Asn108Leufs∗12/ 

p.(Asn108Glyfs∗50) 

Infantile Alive at 14 years 

DD, choreoathetoid spastic 

quadriplegia, abnormal MRI, non- 

verbal, microcephaly, mild coarsening 

of facial features, strabismus, scoliosis, 

dystonia, mild contractures at most 

joints 

 

↑ lactate N/A 

 

 

4S2 

c.322-10G>A, 

p.(Asn108Leufs∗12/ 

p.(Asn108Glyfs∗50) 

Infantile Alive at 7 years 

 

Transient nystagmus, intermittent ptosis 

and alternating extropia, involuntary 

movements, developmental regression, 

axial hypotonia, limb hypertonia, 

contractures at the knees and ankles, 

non-verbal, suspected sleep apnoea, 

dysmorphic facies, premature puberty 

 

↑ lactate, ↓ ammonia 

Muscle: ↓CI, ↓CII, ↓CIII, 

↓CIV 

 

 

 

5S2 

c.322-10G>A, 

p.(Asn108Leufs∗12/ 

p.(Asn108Glyfs∗50) 

Infantile Alive at 2 years 

DD, dysconjugate eye movements, 

dysphagia, suspected sleep apnoea 

 

 

↑ lactate N/A 
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Gene Patient Variant(s) Onset Age Clinical Features 

 

Biochemical 

findings 

OXPHOS findings Ref 

 

6 

c.37G>A, 

p.(Glu13Lys); 

 

c.94C>T, 

p.(Gln32*) 

Neonatal Died at 8 months 

Developmental regression, axial 

hypotonia, pyramidal syndrome of the 

lower limbs, and dystonia, 

hemodynamic instability related to 

tubulopathy 

 

‘Transient metabolic 

acidosis’; ↑ lactate 

 

Fibroblasts: ↓CIV 

Muscle: ↓CIV 

 

 

MRPS39 

 

(NM_017952.6) 

1 

c.415- 2A>G 

p.(?); 

 

c.1747_1748insCT 

p.Phe583Serfs*3 

Antenatal 
Died at 1 year and 4 

months 

 

Intrauterine growth defect, limb rigidity, 

myoclonus, nystagmus, psychomotor 

regression, bilateral optic atrophy, 

bilateral hearing loss, bilateral lesions 

involving ventral side of the medulla, 

cerebral peduncle thalamus, caudate 

nucleus, and putamen of the basal 

ganglia on MRI 

 

N/A 
Fibroblasts: ↓CI, ↓CIII, 

↓CIV 

Borna, et 

al. (2019) 

https://www.ncbi.nlm.nih.gov/nuccore/NM_017952.6
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Gene Patient Variant(s) Onset Age Clinical Features 

 

Biochemical 

findings 

OXPHOS findings Ref 

MRPL3 

 

(NM_007208.4) 

1S 

 

c.950C>G, 

p.(Pro317Arg); 

 

large-scale 225-kb 

deletion 

 

Infantile Died at 17 months 

 

FTT, dyspnoea, hypotrophy, 

hepatomegaly, HCM 

 

↑ lactate, ↑ liver 

enzymes 

Fibroblasts: ↓CIV 

Muscle: ↓CIII, ↓CIV 

Galmiche, 

et al. 

(2011) 

 

2S 

 

c.950C>G, 

p.(Pro317Arg); 

 

large-scale 225-kb 

deletion 

 

Infantile Died at 15 months 
FTT, HCM, similar disease course to 

sibling 
↑ lactate Fibroblasts: ↓CIV 

 

https://www.ncbi.nlm.nih.gov/nuccore/NM_007208.4
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Gene Patient Variant(s) Onset Age Clinical Features 

 

Biochemical 

findings 

OXPHOS findings Ref 

 

3ST 

 

c.950C>G, 

p.(Pro317Arg); 

 

large-scale 225-kb 

deletion 

 

Infantile Alive at 3 years 

 

Hepatomegaly, liver dysfunction, HCM 

(stable), hypergyria of the cortical brain 

on MRI 

 

 

↑ lactate, ↑ alanine, ↑ 

liver enzymes 

Fibroblasts: ↓CI, ↓CIV 

Muscle: ↓CIV 

 

 

4ST 

 

c.950C>G, 

p.(Pro317Arg); 

 

large-scale 225-kb 

deletion 

 

Infantile Alive at 3 years 

Hepatomegaly, liver dysfunction, HCM 

(stable), FTT, hypergyria of the cortical 

brain on MRI 

 

↑ lactate, ↑ alanine, ↑ 

liver enzymes 
Fibroblasts: ↓CI, ↓CIV 
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Gene Patient Variant(s) Onset Age Clinical Features 

 

Biochemical 

findings 

OXPHOS findings Ref 

MRPL12 

 

(NM_002949.4) 

1S 

c.542C>T, 

p.(Ala181Val) 

Antenatal/ 

neonatal 

Died at 2 years 

 

Severe general hypotrophy, FTT, 

muscle weakness, psychomotor delay, 

trunk hypotonia, mild hepatomegaly, 

intermittent nystagmus, cerebellar 

ataxia and tremor, mild dysmorphic 

facial features, tonic seizure, lesions in 

white matter and basal ganglia on MRI 

↑ lactate, ↓ plasma 

IGF1 

Fibroblasts: ↓CI, ↓CIV 

Muscle: ↓CII+III, ↓CIV 

Liver: ↓CII+III, ↓CIV 

Serre, et al. 

(2013) 

 
2ST  Antenatal Pregnancy terminated   

Cells from amniotic 

fluid: ↓CIV 

 

 
3ST  Antenatal Pregnancy terminated   

Cells from amniotic 

fluid: ↓CIV 

 

MRPL24 

 

(NM_145729.3) 

1 

c.272T>C, 

p.(Leu91Pro) 

Infantile Alive at 14 years 

 

Developmental regression, spasticity 

and dystonic posturing of distal upper 

and lower limbs, dyskinetic facial 

grimacing, ID, choreoathetosis of limbs 

and face, Wolff-Parkinson-White 

syndrome 

 

↑ lactate 

Fibroblasts: ↓CIV 

Muscle: ↓CI, ↓CIII, 

↓CIV, ↓CIV 

Di Nottia, et 

al. (2020) 

https://www.ncbi.nlm.nih.gov/nuccore/NM_002949.4
https://www.ncbi.nlm.nih.gov/nuccore/NM_145729.3
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Gene Patient Variant(s) Onset Age Clinical Features 

 

Biochemical 

findings 

OXPHOS findings Ref 

MRPL44 

 

(NM_022915.5) 

1S 

c.467T>G, 

p.(Leu156Arg) 

Infantile Died at 6 months 

 

HCM, mild steatosis in all 

cardiomyocytes, steatosis of liver 

 

N/A 

Muscle: ↓CIV 

Heart: ↓CI, ↓CIV 

Carroll, et 

al. (2013) 

 

2S 

c.467T>G, 

p.(Leu156Arg) 

Infantile Alive at 14 years 

 

HCM (stable and asymptomatic after 2 

years), steatosis of liver, mild granular 

pigmentation in the retina 

 

↑ lactate, ↑ liver 

enzymes 
Muscle: ↓CIV 

 

 

1 

 

c.233G>A, 

p.(Arg78Gln); 

 

c.467T>G, 

p.(Leu156Arg) 

Infantile Alive at 8 years 

 

Feeding difficulties in infancy, exercise 

intolerance, non-obstructive HCM, mild 

hepatopathy, muscle weakness 

 

↑ lactate, ↓ free 

carnitine, ↑ liver 

enzymes 

Fibroblasts: ↓CIV 

Distelmaier

, et al. 

(2015) 

https://www.ncbi.nlm.nih.gov/nuccore/NM_022915.5
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Gene Patient Variant(s) Onset Age Clinical Features 

 

Biochemical 

findings 

OXPHOS findings Ref 

 

2 

c.467C>T, 

p.(Leu156Arg) 

Neonatal Alive at 26 years 

Exercise intolerance, learning 

difficulties, hemiplegic migraine, 

tapetoretinal dystrophy, non-obstructive 

HCM, Leigh-like lesions in the 

thalamus, basal ganglia, and 

cerebellum on MRI 

‘Metabolic acidosis’ Heart: ↓CI, ↓CIV 

 

Table 4.1 Mitoribosomal pathologies: Variants reported to date with associated clinical and biochemical presentations. FTT = failure to thrive; DD = developmental 

delay; HCM = hypertrophic cardiomyopathy; ID = intellectual disability; S indicates siblings, numbered for distinction where multiple sibships presented within single report; C 

indicates cousins; T indicates twins; ↓ and ↑ used to denote decreases and increases in biochemical markers and OXPHOS enzyme activities or steady-state levels; OXPHOS 

defect listed where demonstrated biochemically or at the steady-state level.
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While the clinical spectrum of these pathologies is broad, there are some clear 

overlapping features common to a number of different mitoribosomal disorders. 

Severe lactic acidosis, a common finding in mitochondrial disease, is also a frequently 

reported clinical feature in mitoribosomal defects. Of the 38 patients currently reported 

in the literature, 30 individuals suffered from elevated levels of lactate (Table 4.1), 

while acidosis in a number of cases was fatal (Miller et al., 2004; Baertling et al., 2015). 

A hypertrophic cardiomyopathy phenotype is reported in cases of MRPS14, MRPS22, 

MRPL3 and MRPL44 disease, affecting a total of 13 patients (Jackson et al., 2019; 

Smits et al., 2011b; Saada et al., 2007; Galmiche et al., 2011; Carroll et al., 2013; 

Distelmaier et al., 2015), while nine MRP patients, harbouring mutations in MRPS22, 

MRPS34, MRPS39 or MRPL44 presented with Leigh syndrome or a Leigh-like 

phenotype (Kilic et al., 2017; Lake et al., 2017; Borna et al., 2019). One of the most 

striking similarities in this group of pathologies is an extremely early age of disease 

onset; clinical presentation occurred at the antenatal/neonatal stage or in early infancy 

in almost all MRP patients, a distinguishing feature from many other forms of 

mitochondrial disease. Four patients, with missense mutations in the MRPS22 gene 

are the only exception to this pattern of early-onset disease, presenting with a distinct 

phenotype of primary ovarian insufficiency presenting only in later 

childhood/adolescence (Chen et al., 2018).

4.1.3 Defects of the LSU

The earliest report of a LSU gene implicated in mitochondrial disease describes the 

use of a combination of SNP genotyping and WES to identify compound heterozygous 

variants, c.950C>G (p.Pro317Arg) and 225-kb deletion in the MRPL3 gene in four 

siblings. The clinical presentation of these patients included hypertrophic 

cardiomyopathy, hepatomegaly and psychomotor retardation. The identified 

mutations caused a severe decrease in steady-state MRPL3 levels, resulting in the 

defective assembly of the LSU. Patient fibroblasts and muscle exhibited combined 

respiratory chain defects at both the enzymatic and steady-state level (Galmiche et 

al., 2011).
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Hypertrophic cardiomyopathy was also reported in all four previously reported cases 

of MRPL44 disease. A homozygous c.467T>G (p.Leu156Arg) missense mutation in 

the MRPL44 gene was first identified in a sibling pair. While the older sibling died at 

the age of six months, the hypertrophic cardiomyopathy phenotype in the second 

sibling became stable and asymptomatic at two years of age. The Leu156Arg change 

resulted in decreased levels of MRPL44 protein, demonstrated in patient fibroblasts. 

A combined OXPHOS deficiency was present in patient cardiac and skeletal muscle 

(Carroll et al., 2013). Two further patients with missense mutations in the MRPL44 

gene are reported, presenting with a slowly-progressing multisystem disease with 

cardiac, kidney and neurological involvement (Distelmaier et al., 2015).

The third LSU gene to be implicated in mitochondrial disease was MRPL12. A 

homozygous c.542C>T (p.Ala181Val) variant was identified in a patient presenting at 

birth with severe general hypertrophy and growth defect followed by fatal neurological 

and cardiac distress  (Serre et al., 2013). A combined respiratory chain defect was 

observed in patient fibroblasts, heart and liver. Steady-state levels of MRPL12 and a 

number of other LSU proteins were significantly decreased, resulting in a defect of 

global mitochondrial translation in patient fibroblasts.

Most recently, MRPL24 was characterised as the fourth LSU gene harbouring 

mitochondrial disease variants. A homozygous c.272T>C (p.Leu91Pro) mutation was 

identified in a patient presenting in infancy with a complex movement disorder, 

intellectual disability and developmental regression. Patient fibroblasts and muscle 

homogenate demonstrated a dramatic decrease in MRPL24 protein. A defect affecting 

subunits of OXPHOS complexes I, IV and V was observed in patient muscle. Steady-

state levels of several other LSU proteins were also reduced, while sucrose gradient 

fractionation of mitoribosome in patient fibroblasts revealed significant destabilisation 

of the LSU (Di Nottia et al., 2020).
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4.1.4 Assigning pathogenicity to a variant in a novel LSU gene

Of the ten previously reported SSU genes with reported pathogenic variants, five are 

core evolutionary conserved subunits with bacterial ribosome homologs (MRPS2, 

MRPS7, MRPS14, MRPS16 and MRPS28), while the remaining five genes encode 

mitochondria-specific mitoribosomal proteins (MRPS22, MRPS23, MRPS25, 

MRPS34 and MRPS39). With 52 protein subunits, the mammalian LSU contains 22 

more individual proteins than the mammalian SSU. However, with only four LSU genes 

published in association with mitochondrial disease to date, defects of LSU MRPs 

remain extremely rare. Three of these genes, MRPL3, MRPL12 and MRPL24, are 

conserved from bacterial counterparts, while MRPL44 is unique to the mitoribosome.

The mammalian MRPL47 gene, encoding a protein of the same name, is homologous 

to the bacterial rpmC gene, encoding RPL29. MRPL47 is a constitutive subunit of the 

ring of proteins that surround the polypeptide exit site of the mitoribosomal LSU 

(Greber et al., 2014). This ring of proteins surrounding the exit tunnel are highly 

conserved from the bacterial ribosome, however the sequence of MRPL47 has 

undergone significant divergence from bacterial RPL29 such that it is almost past 

homology detection limits (Smits et al., 2007).

This chapter will outline work undertaken to characterise the molecular mechanisms 

underlying disease in three unrelated paediatric patients with a novel homozygous 

nonsense variant in the LSU gene MRPL47, not previously implicated in mitochondrial 

disease.
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4.2 Patient reports

4.2.1 Patient 1

Patient 1, a 4 year-old female, is the first child of healthy consanguineous parents of 

Arab ethnicity from Saudi Arabia. The patient was delivered at term, but required 

admission to the neonatal intensive care unit for 10 days due to hypoglycaemia, 

hyperammonaemia and metabolic acidosis. She presented later at the age of 2 years 

5 months with hypoglycaemic seizure, occurring while sleeping, with very low blood 

sugar preceded by mild febrile illness and poor feeding. Neurological examinations 

have been normal. Laboratory investigations showed low blood sugar on presentation, 

metabolic acidosis, high ammonia with high ketones and lactate. Her weight and 

height are normal for her age and there are no motor or language developmental 

delays. Lactate continues to be persistently high at 3-6 mmol/L (normal <2.5 mmol/L). 

This patient was referred by Dr.Malak Ali Alghamdi, College of Medicine and University 

Hospitals, King Saud University.

4.2.2 Patient 2

Patient 2, a 3 year-old female, is the first child of healthy consanguineous parents of 

Arab ethnicity from Saudi Arabia. Patient 2 was healthy at birth, with weight, height 

and head circumference measurements within normal ranges. At two days of age the 

patient was admitted to NICU with hypoglycaemia and metabolic acidosis related to 

febrile illness and poor oral intake. At 17 months she presented with persistent 

vomiting preceded by URTI complicated by moderate to severe dehydration and 

associated with lactic acidosis and metabolic acidosis. Recurrent attacks of 

hypoglycaemia, keto-acidosis with failure to thrive prompted a genetic and metabolic 

work up at the age of 17 months. Neurological examinations have been normal. Liver 

enzymes were modestly elevated and liver ultrasound revealed increased echotexture 

consistent with hepatic steatosis. At last examination, height and head circumference 

measurements had fallen to below the 3rd centile. This patient was referred by 
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Dr.Malak Ali Alghamdi, College of Medicine and University Hospitals, King Saud 

University.

4.2.3 Patient 3

Patient 3, a 17 year-old female, is the second child of healthy non-consanguineous 

parents originating from Germany. Born at full term, this patient was healthy at birth 

but the neonatal period was complicated by hypoglycaemia (1.11 mmol/L, normal 

range 4.0-6.0 mmol/L). In the context of febrile illness a diagnosis of hypothyroidism 

was made, but a L-thyroxine supplementation could be stopped in the follow-up 

appointments. Developmental delay was reported in infancy, with delayed speech and 

walking. The patient has moderate intellectual disability. Febrile seizures began at 

three and a half years of age and increased in frequency over time. Despite continued 

treatment with anti-epileptics, she experiences one (self-limiting after 2-3 minutes) 

seizure per week. At the age of 15 the patient developed acute liver failure 

(encephalopathy, vomiting, abdominal pain) which resolved after treatment. This 

patient was referred by Dr. Saskia Wortmann, Department of Human Genetics, 

Paracelsus Medical University Salzburg.
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4.3 Results 

4.3.1 Variant identification

Diagnostic WES, carried out at Centogene (https://www.centogene.com), identified a 

segregating homozygous nonsense variant in both Patient 1 and 2. The mutation, 

c.646C>T, is located within the nuclear gene MRPL47 (NCBI Reference Sequence: 

NM_020409.2) and produces a premature stop codon resulting in early truncation at 

the protein level (p.Arg216*). This truncation occurs at amino acid 216 of 250 in exon 

7, the final exon, of MRPL47.

WES of Patient 3, carried out in the lab of Professor Holger Prokisch at the Institute of 

Human Genetics, Helmholtz Centre Munich, identified the same c.(646C>T) truncating 

variant. Trio Sanger sequencing confirmed segregation of this variant (Figure 4.2). 

This variant is present in the gnomAD browser at an allele frequency of 0.00001205 

(3 heterozygous alleles out of 248942), but is not found in a homozygous state.

Skin biopsies for all three patients were obtained and shipped to Newcastle for culture 

and functional investigation. However, the fibroblasts of Patient 1 did not recover upon 

arrival. For this reason, the following data has been acquired using the cells of patients 

2 and 3 only. 

https://www.centogene.com/
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Figure 4.2 Familial pedigrees of MRPL47 Patients. Familial pedigrees to demonstrate recessive inheritance of 

the same homozygous c.646C>T, p(Arg218*) truncating variant in each Patient.

4.3.2 Western blot analysis of MRPL47 and OXPHOS proteins

To investigate the impact of c.(646C>T) introducing a premature truncation at position 

216 of MRPL47, western blot analysis using a commercially available antibody was 

carried out. This revealed undetectable levels of full-length MRPL47 protein in the 

fibroblasts of patients 2 and 3 (Figure 4.3). 

Figure 4.3 Western blot analysis of MRPL47 patient fibroblasts. Whole cell lysates from fibroblasts of Patient 

2 and Patient 3 were probed with antibodies against MRPL47 and VDAC1 (loading control) on the left panel. 

Antibodies targeting NDUFB8, SDHB (loading) CORE2, COXII and ATP5A were applied (right panel). Data shown 

is representative of three independent repeats.
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Investigation into steady-state levels of individual OXPHOS subunits demonstrated 

moderately decreased NDUFB8 and COXII, indicating a combined OXPHOS defect 

affecting complexes I and IV (Figure 4.3). 

4.3.3 [35S] translation assay in growing fibroblasts 

A translation assay using [35S] labelled methionine/cysteine was carried out in order 

to assess the consequence of a loss of full-length MRPL47 from the tunnel exit region 

of the mitoribosome in relation to de novo protein synthesis in growing patient 

fibroblasts. This metabolic labelling assay was carried out over a 1 hour incubation 

period, in the presence of 100 μg/mL emetine for cytosolic translation inhibition. 

Through the measurement of signal resulting from incorporation of [35S] labelled 

methionine/cysteine into newly synthesised mitochondrial proteins in the fibroblasts of 

patients 2 and 3, alongside controls, a generalised defect of mitochondrial translation 

was detected (Figure 4.4). This defect appears to affect all detectable proteins 

synthesised by the mitoribosome, suggesting a global decrease in mitochondrial 

translation.
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Figure 4.4 [35S] methionine/cysteine incorporation in growing MRPL47 patient fibroblasts as a measure of 

de novo mitochondrial protein synthesis. Signal detected from fixed and dehydrated SDS-PAGE gel using 

Typhoon Phosphorimager. Bands are visible for radiolabelled COXI, ND4, cyt b. ND2, ND1, COXIII, COXII and 

ATP6. Even loading is demonstrated through a Coomassie stain on the bottom panel.

4.3.4 siRNA knock-down of MRPL47 in patient and control cell lines

Investigation into the specificity of a previous commercial MRPL47 antibody through 

siRNA knockdown of MRPL47 resulted in an incidental finding in the fibroblasts of 

Patient 2. Treatment of MRPL47 siRNA in the patient cells led to the exacerbation of 

the combined OXPHOS defect affecting complexes I and IV. Steady-state levels of 

NDUFB8 and COXI were greatly decreased when Patient 2 fibroblasts were treated 

with MRPL47 siRNA (Figure 4.5), in comparison with non-targeting siRNA treatment, 

indicating a much more severe defect upon MRPL47 knockdown. This finding 

suggests there to be some residual and functional MRPL47 protein in patient 

fibroblasts, despite full-length protein being undetectable (Figure 4.3). Sample taken 

from the patient fibroblasts treated with non-targeting siRNA were overloaded in 

comparison to other fibroblast conditions when using SDHA as an indication of 

loading.
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Figure 4.5 siRNA knockdown of MRPL47 in patient fibroblasts, control fibroblasts and U2OS cells. Patient 

2 fibroblasts, control fibroblasts and a U2OS cell line were transfected with either MRPL47 siRNA (siL47) or non-

targeting siRNA (siNT) with a second transfection on day three and harvested on day six. SDS-PAGE of whole cell 

lysis was followed by immunoblotting with antibodies againt NDUFB8, SDHA (loading control) and COXI. Data 

shown is representative of two independent repeats.

4.3.5 Western blot analysis of 25kDa MRPL47 species

In order to identify a truncated protein species that might be mediating the response 

to MRPL47 siRNA knockdown identified in 4.3.4, further siRNA studies were carried 

out using the fibroblasts of patients 2 and 3 alongside controls. In no-treatment, and 

non-targeting siRNA treatment conditions, the use of MRPL47 antibody and 

subsequent over-exposure of blot on detection revealed an approximately 25 kDa 

species. This band disappears in cell lysates harvested from MRPL47 siRNA 

treatments (Figure 4.6). 

Figure 4.6 Over-exposure of blot with siRNA knockdown of MRPL47 in patient and control fibroblasts. 

Whole cell lysates of patient and control fibroblasts were harvested following a six-day treatment with MRPL47 or 

non-targeting siRNA, with no siRNA cells as a second control, were subject to SDS-PAGE and immunblotted for 

MRPL47 only. A second species corresponding to a 25 kDa MRPL47 protein is present in the lysates taken from 

patient fibroblasts in the non-targeting and no siRNA conditions only.
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Using the commercial antibody, full-length MRPL47 appears on a western blot at 

approximately 28 kDa. The expected decrease in size resulting from a loss of the final 

35 residues of MRPL47 has been estimated using the Science Gateway Protein 

Molecular Weight Calculator tool

(https://www.sciencegateway.org/tools/proteinmw.htm). Uniprot fasta sequence 

UniProtKB - Q9HD33 (RM47_HUMAN) was used to calculate the size of full-length 

and truncated protein. This tool predicted MRPL47 protein corresponding to the full 

250 residue sequence to weigh 29.46 kDa and protein generated from a shorter 216 

residue sequence to weigh 25.53 kDa (Figure 4.7). Using these predictions, the 

overall decrease in size resulting from a premature truncation at residue 216 would be 

3.93 kDa. The 25 kDA species identified upon over-exposure of blots incubated with 

MRPL47 antibody is consistent with this estimated size difference (Figure 4.6). This, 

combined with the decrease in intensity of the bands upon treatment with siRNA 

targeting MRPL47 is highly indicative of the truncated version of MRPL47 retaining 

some stability. 

Figure 4.7 Molecular weight predictions of full-length and mutant MRPL47.Science gateway protein molecular 

weight calculator predictions for sequences corresponding to the 250 residue wild-type MRPL47 protein and a 216 

residue truncated MRPL47 protein. Fasta sequence was obtained from the Uniprot website 

(https://www.uniprot.org/) and corresponds to UniProtKB - Q9HD33 (RM47_HUMAN).

https://www.sciencegateway.org/tools/proteinmw.htm
https://www.uniprot.org/
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4.3.6 Investigation of MRPL47 assembly within the LSU 

Following the identification of the truncated MRPL47 protein stable at low steady-state 

levels, it was important to ascertain whether this protein retains any function and 

whether it is incorporated into the LSU of the mitoribosome. Sucrose gradient 

ultracentrifugation fractionation of samples containing 700 μg of total protein, followed 

by TCA precipitation of each fraction, was used to address this question. SDS-PAGE 

of fractions 1-11 and immunoblotting of mitoribosomal subunits determines the 

sedimentation profiles of the LSU and SSU. DAP3 and MRPL65 antibodies were used 

to attribute the SSU to fractions 4-5 and LSU to fractions 6-7. Bands corresponding to 

MRPL47 could be detected in LSU fraction 6 and 7 with low signal strength in 

comparison to the control (Figure 4.8). This weak signal for MRPL47 was detected at 

a slightly lower molecular weight in Patient samples when measured using the protein 

ladder and compared to controls. This confirms that, while severely decreased at the 

steady-state level, some truncated MRPL47 is successfully assembled within the LSU 

of the mitoribosome.



 
158 

Figure 4.8 Sucrose gradient ultracentrifugation and immunoblotting to investigate MRPL47 in 

mitoribosome assembly. 700 μg of total protein from the fibroblasts of patients 2 and 3 was separated on a linear 

10-30% sucrose gradient. Following ultracentrifugation, eleven fractions were taken and TCA precipitated for 

protein enrichment, then run on SDS-PAGE gels and immunoblotted for MRPL47, MRPL65 and DAP3. Fractions 

4 and 5 (red) contain proteins of the SSU. Fractions 6 and 7 (blue) contain proteins of the LSU. Data shown is 

representative of two independent repeats.

4.3.7 Investigation into LSU and monosome stability 

Further sucrose gradient ultracentrifugation experiments were carried out in order to 

assess the impact of severely decreased and truncated MRPL47 protein on the 

stability of the mitoribosomal LSU and monosome. Centrifugation over a longer period 

of time, followed by the sampling of seventeen fractions allows visualisation of signal 

corresponding to the monosome alongside the LSU and SSU. The fibroblasts of 
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Patient 2 consistently exhibit decreased levels of large subunit proteins MRPL3, 

MRPL37, MRPL12 and MRPL28, within both the LSU and the monosome (Figure 

4.9). Immunoblotting for SSU protein MRPS15 reveals no equivalent decrease in the 

SSU but a comparable decrease in signal in monosomal fractions. These data suggest 

destabilisation of the LSU and the monosome as a result of the Arg216* MRPL47 mutant 

protein. 

Figure 4.9 Sucrose gradient ultracentrifugation and immunoblotting to investigate LSU and monosome 

stability. 900 μg of total protein from the fibroblasts of Patient 2 and a control line were separated on a linear 10-

30% sucrose gradient. Following centrifugation at 79,000 g for 15 hours at 4°C, 17 fractions were taken and 

subjected to SDS-PAGE. Membranes were immunoblotted for MRPL3, MRPL37, MRPL12, MRPL28 and MRPS15.
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4.4 Discussion

The identification of a homozygous c.646C>T (p.Arg216*) variant in three unrelated 

patients adds to a rare, but growing, number of pathogenic mutations in mitoribosomal 

proteins. Of the pathogenic variants reported to date in genes encoding mitoribosomal 

proteins, 14 have been demonstrated to result in a moderate to severe destabilisation 

and decrease in steady-state levels of the mutant protein (Gardeitchik et al., 2018; 

Menezes et al., 2015; Miller et al., 2004; Chen et al., 2018; Smits et al., 2011b; 

Bugiardini et al., 2019; Pulman et al., 2019; Lake et al., 2017; Borna et al., 2019; 

Galmiche et al., 2011; Serre et al., 2013; Di Nottia et al., 2020; Carroll et al., 2013). In 

the majority of cases this leads to a destabilisation of the mitoribosomal subunit of 

which the affected protein is a constituent, and in one MRPL12 case assembly and 

stability of both the LSU and SSU is affected (Serre et al., 2013). Interestingly, while 

variants in all four previously reported LSU genes implicated in mitochondrial disease 

have resulted in decreased steady-state levels of the affected protein, three of these 

mutant proteins have been shown to continue be incorporated as a structural 

component of the mitoribosome (Serre et al., 2013; Di Nottia et al., 2020; Carroll et al., 

2013). 

While a premature ‘stop’ codon at MRPL47 residue 216 of 250 results in a complete loss 

of full length protein (Figure 4.3), a ~25 kDa truncated version of MRPL47 remains 

stable at very low steady state levels (Figure 4.6) and is able to assemble as a 

structural component of the LSU (Figure 4.7). Despite this, the fibroblasts of patients 

2 and 3 exhibit a clear and global defect of mitochondrial translation when subjected 

to a [35S] metabolic labelling assay (Figure 4.4). This appears be the result of 

destabilisation of the LSU and mitoribosomal monosome (Figure 4.9), and results in 

a combined OXPHOS defect affecting subunits of complexes I and IV at the steady-

state level (Figure 4.3).

While these data clearly demonstrate the pathogenicity of this novel variant, further 

work will help to elucidate the precise mechanism underlying the mitochondrial 

translation defect. At present, it is unclear whether mitoribosomal function is impeded 
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by a structural impact on the tunnel exit region of the LSU resulting from the 

incorporation of a truncated version of MRPL47, by decreased availability of mutant 

MRPL47, or through a combination of both.

To answer this question, I plan to carry out two parallel rescue experiments, over-

expressing either wild-type MRPL47 or p.Arg216* mutant MRPL47, in patient 

fibroblasts. If the translation defect observed in patient fibroblasts can be rescued by 

over-expression of mutant MRPL47, this would indicate that the pathomechanism is 

driven primarily by low steady-state levels of MRPL47. If rescue can only be achieved 

through the expression of wild-type MRPL47, it is most likely that a structural 

consequence of mutant MRPL47 on the LSU is underpinning this generalised 

translation defect. It remains possible that both decreased steady-state levels and 

aberrant folding of MRPL47 within the LSU are contributing to this disorder in 

translation, in which case one might expect to see a degree of improvement in 

translation efficiency and restoration of OXPHOS in both rescue experiments. 

4.5 Concluding remarks

In conclusion, a novel truncating variant in the MRPL47 gene has been identified in 

three unrelated paediatric mitochondrial disease patients presenting in early infancy 

with overlapping clinical presentations including metabolic acidosis, epilepsy and liver 

involvement. The data presented within this chapter has demonstrated the impact of 

this variant on MRPL47 size and stability, confirmed a detrimental impact on the 

assembly of the LSU and monosome, and revealed a global translation defect that 

results in a combined OXPHOS defect in patient fibroblasts. These data have 

assigned pathogenicity to this variant, confirming genetic diagnosis in three families 

and expanding our current understanding of LSU disorders. Future rescue 

experiments should be carried out to investigate any impact that truncated MRPL47 

might have on the structure of the polypeptide exit site of the mitoribosome.
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Chapter 5 : Investigation of novel variants in MRPL65 encoding a 

large mitoribosomal subunit 

5.1 Introduction

The functional validation of novel and extremely rare disease variants is, for the most 

part, reliant on the study of patient biopsies and samples. When investigating novel 

variants to assign pathogenicity it is important to understand the underlying disease 

pathomechanisms within cells and tissues that are of relevance to the affected patient. 

However, the acquisition of patient samples for functional testing is not always 

possible. In such cases, it is important to consider cell line models, or whole-organism 

options, for the modelling of specific variants in order to obtain evidence of their 

pathogenicity (Thompson et al., 2019). 

5.1.1 CRISPR/Cas9: A genome editing tool

One emerging technique, now extensively used for the generation of cell-line and 

animal models of disease-causing mutations, is CRISPR/Cas9 genome editing. The 

CRISPR/Cas system is a naturally occurring adaptive immune response mechanism 

employed by eubacteria and archaea for the destruction of foreign viral or plasmid 

DNA or RNA (Horvath and Barrangou, 2010) that has subsequently been modified 

and optimised for use as a gene-editing tool. CRISPR, standing for Clustered 

Regularly Interspaced Short Palindromic Repeats, was first identified in 1987 within 

the genome of Escherichia coli as 29 nucleotide repeat fragments of genomic DNA 

interspaced by 32 nucleotide variable sequence fragments (Ishino et al., 1987). Many 

of the variable fragments within CRISPR regions were later found to correspond to 

viral genomic regions (Pourcel, Salvignol and Vergnaud, 2005). 

CRISPR associated (Cas) genes, identified due to their proximity to the CRISPR locus 

(Jansen et al., 2002), encode nucleases with the ability to introduce double strand 
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breaks (DSBs) in specific and targeted regions of DNA (Garneau et al., 2010). Also 

adjacent to the CRISPR array is trans activating CRISPR RNA (tracrRNA), that is 

complimentary to the primary CRISPR array transcript and aids in transcript 

processing into individual CRISPR RNA (crRNA) molecules carrying ~20 nucleotide 

sequences complimentary to the target foreign DNA (Deltcheva et al., 2011). The 

crRNA-tracrRNA complex interacts with the Cas encoded protein to form an active 

RNA guided nuclease (Karvelis et al., 2013). This ribonuclease complex interacts with 

a ~2-4 nucleotide protospacer adjacent motif (PAM), lying immediately adjacent to 

target DNA sequences, where the sequence-specific cleavage is carried out and DSBs 

are introduced (Mojica et al., 2009). Three different classes of CRISPR/Cas systems 

exist endogenously, grouped into types I, II and III, based on similarities in the 

sequences and structures of the constituent Cas proteins (Makarova et al., 2011). The 

type II CRISPR/Cas system is reliant on a single Cas protein (Cas9) (Figure 5.1A), 

and has therefore been the most simple to develop into a sophisticated tool for genome 

editing (Ma, Zhang and Huang, 2014). Cas9 from Streptococcus pyogenes possesses 

two nuclease domains: The HNH domain, for cleavage of the DNA strand 

complimentary to the crRNA, and the RuvC-like domain for cleavage of the non-

complimentary strand (Nishimasu et al., 2014).
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Figure 5.1 Structure and function of the type II CRISPR/Cas9 system. (A) The genomic organisation, 

transcription processing and assembly of CRISPR/Cas9 elements in an endogenous environment. (B) An 

engineered CRISPR/Cas9 system used for targeted genome editing directed by a sgRNA. Figure adopted from 

Lino, Christopher A et al. (2018).

The utilisation of CRISPR/Cas9 as a genome editing tool has been achieved through 

the design of short guide RNAs (sgRNAs) that encompass both the tracrRNA and 

crRNA elements of the endogenous CRISPR/Cas system (Figure 5.1B) (Jinek et al., 

2012). These guide RNA are typically complimentary to genomic DNA 18-24 
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nucleotides in length, lying adjacent to a 2-4 nucleotide PAM sequence (Zhang, Wen 

and Guo, 2014). Introduction of a DSB at a precise and targeted region of the nuclear 

genome triggers a cellular DNA repair by non-homologous end joining (NHEJ) 

response. NHEJ is an error-prone process and can therefore result in the introductions 

of insertions and deletions (indels) at the site of DSB repair which have the potential 

to disrupt or eliminate gene function to generate target gene knock-outs (Iliakis et al., 

2004). 

Delivery of a CRISPR/Cas9 system into model systems can be achieved via three 

main routes: A delivery plasmid encoding both the Cas9 nuclease and a guide RNA, 

a mixture of separate mRNAs encoding the Cas9 nuclease and a guide RNA or a 

delivery of a Cas9 protein and guide RNA formed as a ribonuclease complex (Lino et 

al., 2018). The applications of CRISPR/Cas9 technology, both as a basic science 

research tool and as a therapeutic approach, are continuously expanding (Rodriguez-

Rodriguez et al., 2019).

5.1.2 CRISPR/Cas9 studies in mitochondrial research

In the field of mitochondrial research, genome-wide CRISPR/Cas9 death screens and 

CRISPR interference (CRISPRi) screens have been utilised for the identification and 

annotation of genes encoding proteins previously unknown to be essential to 

OXPHOS and energy metabolism (Arroyo et al., 2016; Mendelsohn et al., 2018). 

Knock-out models of nuclear genes associated with mitochondrial disease are shown 

to be extremely useful in instances when samples of clinically affected tissues are 

scarce. Induced pluripotent stem cell (iPSC) lines have been used in the generation 

of DGOUK CRISPR/Cas9 knockout cells. The DGOUK gene encodes a mitochondrial 

kinase required for the phosphorylation of purine deoxyribonucleosides. Patients with 

DGOUK deficiencies suffer from mitochondrial depletion, often manifesting as 

progressive liver disease. Differentiation of DGOUK CRISPR/Cas9 knockout iPSCs 

into hepatocyte-like cells has enabled the study of mitochondrial dysfunction and the 

application of drug screens within a clinically relevant cell type (Jing et al., 2018).
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5.1.3 MRPL65: A mitoribosomal LSU gene 

As discussed in 4.1.3, pathogenic variants in genes encoding proteins of the 

mitoribosomal LSU remain extremely rare, with only four LSU genes implicated in 

mitochondrial disease to date (Galmiche et al., 2011; Carroll et al., 2013; Serre et al., 

2013; Di Nottia et al., 2020). Detailed within this chapter are investigations into the 

molecular mechanism underpinning disease in two unrelated paediatric mitochondrial 

disease patients harbouring novel variants in the MRPL65 gene which were deemed 

to be the likely cause of the patients’ clinical presentation. A lack of available patient 

biopsy material has driven a need to generate an MRPL65 knockout cell line and this 

work will focus on the use of a CRISPR/Cas9 genome editing system to achieve that 

goal. Having previously been believed to be a constituent of the SSU named MRPS30, 

the name of this gene was recently changed to MRPL65. Cryo-EM studies of 

mitoribosomal structure revealed that MRPL65 protein forms a heterodimer with 

homologous MRPL37, together occupying a void left behind after the evolutionary loss 

of LSU ribosomal RNA domain III (Brown et al., 2014).
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5.2 Patient reports

5.2.1 Patient 1

This female patient was the second child of healthy, non-consanguineous, Lebanese 

parents. The patient was healthy at birth, but developed jerky eye movements at the 

age of 2 weeks, which, by the age of 2 months, progressed to nystagmus with poor 

tracking. An eye examination revealed bilateral optic nerve atrophy. The patient 

demonstrated axial hypotonia and worsening dystonic limb movements. By 6 months 

the patient had developed myoclonic limb jerks, which over the course of one month 

progressed into infantile spasms. At the age of 1 year, she exhibited oromandibular 

dyskinesia with snouting and tongue thrusting movements. The patient’s hypotonia 

worsened significantly and she developed severe muscle weakness. Head growth was 

poor, falling off the centiles, and the patient had poor feeding. Lactate was elevated at 

6.98mmol/L (normal <2.5mmol/L). The patient died at 3 years of age.

The older sister of the index patient died after exhibiting clinical findings very similar 

to those described above. Histochemical analysis of a muscle biopsy was carried out 

in a laboratory at the American University of Beirut at the time and reported to 

demonstrate COX deficiency, however no tissue has been available for further 

analysis. Brain MRI was reported as normal.

Diagnostic WES of Patient 1, and a deceased sibling, carried out at Centogene 

(https://www.centogene.com), identified compound heterozygous variants in the 

MRPL65 gene (NCBI Reference Sequence: NM_016640.3). One of the variants, 

c.(601+5G>A) is a single base substitution located 5 nucleotides into the first intron of 

MRPL65 and is therefore predicted as likely to impact splicing. This variant has a 

CADD score of 21.9, indicating it is in the top 1% of possible damaging single 

nucleotide variants in the human genome. The second variant is a nonsense mutation, 

c.(382G>T), resulting in a premature ‘stop’ codon (p.Glu128*) at amino acid 128 of 

439 (Figure 5.2). This variant has a CADD score of 34, indicating it is in the top 0.1% 
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of deleterious possible mutations. Both of these variants are absent from the gnomAD 

population database. This patient was referred by Dr.Rose-Mary Boustany and 

Dr.Rolla Shbarou, Department of Pediatrics and Adolescent Medicine, American 

University of Beirut.

Figure 5.2 Familial pedigree of MRPL65 Patient 1. Familial pedigree to demonstrate the recessive inheritance 

of compound heterozygous c.382G>T, p.(Glu128*); c.601+5G>A, p.(?) MRPL65 variants.

5.2.2 Patient 2

This male patient is the second child of healthy, unrelated parents, both of Lebanese 

ethnic origin and investigated in the US. The parents of Patient 2 had experienced 

three prior miscarriages. The patient first presented at 18 months of age with an 

unsteady gait. A progressive ataxia has persisted throughout childhood, alongside a 

tremor and mild global developmental delay while optic atrophy and nystagmus were 

noted in later childhood. Repeat brain MRI studies revealed a progressive cerebellar 

atrophy and nerve conduction studies identified diffuse axonal sensory neuropathy. 

The patient is currently alive at 12 years of age. Diagnostic WGS of Patient 2 identified 

a homozygous c.(601+5G>A) variant in the MRPL65 gene (Figure 5.3), the same 

splice variant identified in Patient 1. This patient was referred by Dr.Vinod Misra and 

Mitchell Cunningham, Division of Genetics and Metabolic Disorders, Children's 

Hospital of Michigan.
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Figure 5.3 Familial pedigree of MRPL65 Patient 2. Familial pedigree to demonstrate the recessive inheritance 

of homozygous c.601+5G>A, p.(?) MRPL65 variants in Patient 2.
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5.3 Results

5.3.1 MRPL65 cDNA studies in Family 1

Given that the truncating MRPL65 variant present in Patient 1 occurs less than one 

third of the way into the protein, it is very unlikely to lead to the synthesis of functional 

MRPL65 protein. Two PCR primer pairs were designed to investigate the impact of 

the second MRPL65 variant, c.(601+5G>A), on splicing. The first pair was designed 

to amplify exons 1-2, and the second to amplify exons 1-4 producing 673bp and 915bp 

products respectively (Figure 5.4). These experiments were conducted using RNA 

extracted from fixed tissue of Patient 1 and their deceased sibling, which had been 

shipped to the Newcastle Highly Specialised Mitochondrial Diagnostic Service. 
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Figure 5.4 Schematic of MRPL65 primers and expected PCR product. Binding sites of each primer targeting 

MRPL65 and the size of PCR products resulting from specific primer pairs used throughout chapter. Intronic regions 

are depicted with red dashed line.

Following reverse transcription and second strand synthesis of cDNA, neither primer 

pair were able to amplify MRPL65 product in patient samples(Figure 5.5). Both primer 
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pairs successfully amplified MRPL65 using cDNA generated from control RNA 

samples. Patient samples were successfully used as controls for cDNA studies of 

other genes within the diagnostic service, suggesting that the c.(601+5G>A) variant 

may result in MRPL65 aberrantly spliced mRNA transcripts that are targeted for 

nonsense mediated mRNA decay.

Figure 5.5 cDNA studies in Family 1. RNA samples of Patient 1 (P1) and an affected sibling (P1S) were used for 

reverse transcription and second strand synthesis to investigate the potential impact of a c.(601+5C>A) variant on 

splicing of MRPL65 mRNA transcripts. Two primer pairs were used for the PCR amplification of exons 1-2 (left 

panel) and exons 1-4 (right panel). Asterisks indicate cDNA bands corresponding to correctly sized PCR products 

in control samples.

5.3.2 MRPL65 knockdown in U2OS control cells

No skin or tissue biopsies from Patient 1 have been available for further investigation 

into the effect of these compound heterozygous MRPL65 variants on mitochondrial 

function. Due to the inherent pathogenic nature of the truncating variant and the 

apparent absence of MRPL65 cDNA, knock-down of MRPL65 expression was carried 

out to assess the impact of decreased MRPL65 in U2OS cells. Cells treated with an 

MRPL65 siRNA smart-pool, containing siRNA molecules targeting four different 

regions of MRPL65 sequence, demonstrate almost undetectable steady-state levels 

of COXI and COXII, while NDUFB8 and CORE2 are also decreased (Figure 5.6). This 

indicates that decreased abundance of MRPL65 protein results in a severe combined 

OXPHOS defect affecting complexes I, III, and IV. The combined OXPHOS deficiency 
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is likely to be the result of impaired mitoribosomal function leading to a defect of 

mitochondrial translation. 

Figure 5.6 Western blot analysis of MRPL65 knock-down U2OS cells. Whole cell lysates from U2OS cells 

treated with an MRPL65 siRNA smart pool, U2OS cells treated with a non-targeting siRNA and an untreated U2OS 

control. MRPL65 antibody was applied to confirm successful knock-down. Antibodies detecting SDHA, NDUFB8, 

COXI, COX II and CORE2 were used to investigate the impact of MRPL65 knockdown on OXPHOS. Data shown 

is representative of three independent repeats.
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5.3.3 Generating an MRPL65-targeting PX458 CRISPR/Cas9 plasmid 

Due to the clear and very severe, steady-state OXPHOS protein defect resulting from 

MRPL65 knock-down, and given the lack of available patient cell lines, I decided to 

generate a MRPL65 CRISPR/Cas9 knockout cell line as the best approach to 

investigate the potential mechanisms underlying disease in Family 1. As neither 

MRPL65 variant carried by patient 1 is missense (being a splice variant and a loss of 

function truncating variant) an MRPL65 knock-out cell line was thought to be the best 

representative model of the combined functional consequences of these two variants. 

A PX458 plasmid expressing Cas9 from Streptococcus pyogenes, 2A-EGFP, and with 

a cloning backbone for sgRNA insertion was purchased from Addgene. In order to 

target the Cas9 nuclease to MRPL65, four sgRNA sequences were designed for 

subsequent insertion into the PX458 plasmid through backbone cutting and ligation 

reactions. Competent DH5α cells were transformed using PX458 inserted with each 

of the four sgRNA oligos. DH5α clonal colonies were grown from populations 

transformed with sgRNAs 1, 2 and 4 plasmids, and plasmid DNA isolated. Double 

restriction digests, using BbsI and EcoRI restriction enzymes were used to identify 

plasmids in which sgRNA insertion had been successful. The PX458 plasmid contains 

one BbsI restriction site and two EcoRI restriction sites. Insertion of a short guide 

sequence destroys the PX458 BbsI restriction site, resulting in only two digestion 

products identifiable upon gel electrophoresis. If short guide insertion has not 

occurred, the plasmid will be digested at the BbsI restriction site along with the EcoRI 

site, resulting in three digestion products (Figure 5.7).
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Figure 5.7 Diagram depicting test digest of PX458 plasmid. Px458 plasmids contain a single BbsI restriction 

site and two EcoRI restriction sites. BbsI was used for backbone cutting for sgRNA insertion. When incubated with 

BbsI and EcoRI, sgRNA negative plasmids will be cut into three linear products at 738bp, 3,231bp and 5,274bp in 

length. The BbsI restriction site is destroyed in sgRNA positive plasmids, resulting in only two linear digestion 

products at 738bp and 8,505bp in size.

Double restriction digests demonstrated that all but one of the purified sgRNA-inserted 

plasmids were successful. Samples from three clones of PX458 sgRNA 1, two clones 

of PX458 sgRNA 2 and one clone of PX458 sgRNA 4 each generated two digestion 

products at 738 and 8,505 base pairs in length. Sample from clone 3 of PX458 sgRNA 

2 generated two incorrectly sized bands, indicating that insertion of sgRNA 2 had not 

been achieved (Figure 5.8). 
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Figure 5.8 Test digest identification of sgRNA positive PX458 plasmids. Product from test double digests of 

miniprep purified sgRNA-inserted PX458 plasmid DNA and unmodified PX458 plasmid DNA. Single digest 

unmodified plasmid, undigested unmodified plasmid and undigested sgRNA1-inserted PX458 plasmid were used 

as negative controls.

5.3.4 Sequencing the BbsI region of PX458 plasmid

Sequencing of each sgRNA positive clone was undertaken to check that each full short 

guide had been inserted without the introduction of any sequence errors. A primer pair 

targeting the BbsI restriction site region of the PX458 plasmid was used for PCR and 

Sanger sequencing to confirm the presence of each sgRNA sequence (Figure 5.9). 

An sgRNA positive clone was confirmed for sgRNAs 1, 2 and 4, each of which were 

used for the nucleofection of wildtype U2OS cell populations alongside nucleofection 

of a single U2OS cell population a pmaxGFP Vector as a control. As both the PX458 

plasmid and the pmaxGFP control vector express GFP, each transfected population 
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was sorted into single cell populations using flow cytometry selecting for cells with 

GFP fluorescence. 

Figure 5.9 Example sequence confirmation of error-free sgRNA 1 insertion into PX458 plasmid. The BbsI 

restriction region of each sgRNA positive PX458 plasmid was sequenced in order to confirm the error-free insertion 

of full short guide sequences. Sequence traces were searched for the entire sgRNA sequence (highlighted in blue) 

using FinchTV software.

5.3.5 PCR screens of transfected U2OS clones

PCR screens of MRPL65 exon 1 were carried out on all clonal populations grown from 

each single sorted cell to identify clones that generate bands of a different size to 

isogenic control GFP clones and control genomic DNA, indicating insertions or 

deletions in MRPL65. Lanes containing multiple bands were noted as containing likely 

heterozygous mutants (red), lanes containing single bands that looked larger or 

smaller than control bands were noted as possible homozygous mutants (blue) and 

lanes containing bands identical to control were noted as possible wild-type clones 

(green) (Figure 5.10). 
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Figure 5.10 PCR screening of post-transfection U2OS clonal populations. Genomic DNA was extracted from 

each post-transfection clonal population for PCR using primers targeting MRPL65 exon 1. Samples of genomic 

DNA extracted from U2OS cells transfected with pmaxGFP vector and wildtype U2OS cells were used as controls. 

PCR products were run on long 3% agarose gels to maximise resolution between bands with subtle differences in 

size. Red arrows indicate likely heterozygous mutants that exhibit two MRPL65 bands of different sizes. Blue 

arrows depict possible homozygous mutants that run as a single band of a different size to controls. Green arrows 

highlight suspected wildtype clones that appear to run as bands identical in size to controls. This gel illustrates the 

PCR screening of 15 out of a total of 96 screened clones. 
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5.3.6 Sequencing MRPL65 to identify mutant clones

A total of 18 clones, six targeted with each sgRNA, were selected from the PCR 

screens for Sanger sequencing of MRPL65 exon 1. Both suspected mutants and 

suspected wild-type clones were sequenced. Sequence data demonstrated the 

introduction of mutations in 12 of the 18 clones and confirmed each sgRNA to be 

successful in targeting the Cas9 nuclease to exon 1 of MRPL65. However, no 

homozygous mutants were identified. Example chromatograms are shown in (Figure 

5.11, Figure 5.12 and Figure 5.13).

Figure 5.11 Example sequence confirmation of sgRNA 1 targeted MRPL65 mutation. Sanger sequencing of 

clone 1B-E11, generated through transfection with sgRNA 1 positive PX458 plasmid, identified the introduction of 

mutations at the site of sgRNA 1 binding proximal to the PAM site. The resulting sequencing file contains multiple 

frameshift traces that are not clear enough to resolve the precise nature of the mutations. As neither trace appeared 

to correspond to wild-type MRPL65 sequence, this clone was classified as a bi-allelic mutant. Sequence data for 

wild-type genomic U2OS DNA is provided as a control.
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Figure 5.12 Example sequence confirmation of sgRNA 2 targeted MRPL65 mutation. Sanger sequencing of 

clone 2A-E11, generated through transfection with sgRNA 2 positive PX458 plasmid, identified the introduction of 

mutations at the site of sgRNA 2 binding proximal to the PAM site. Two sequence traces are visible at this site, one 

of which corresponds to wild-type MRPL65 indicating this clone to be a mono-allelic mutant. Sequence data for 

wild-type genomic U2OS DNA is provided as a control.

Figure 5.13 Example sequence confirmation of sgRNA 3 targeted MRPL65 mutation. Sanger sequencing of 

clone 4B-E11, generated through transfection with sgRNA 4 positive PX458 plasmid, identified the introduction of 

mutations at the site of sgRNA 4 binding proximal to the PAM site. Two sequence traces are visible at this site, one 

of which corresponds to wild-type MRPL65 indicating this clone to be a mono-allelic mutant. Sequence data for 

wild-type genomic U2OS DNA is provided as a control.
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While unable to assign precise genotypes, clones exhibiting sequence traces that 

corresponded to multiple mutant alleles were classified as ‘bi-allelic mutants’ (Figure 

5.11) while clones that still displayed one clear wild-type trace were classified as 

‘mono-allelic mutants’ (Figure 5.12, Figure 5.13).

5.3.7 Western blot analysis of U2OS clones

In order to identify any successful knock-out clones, six clones were grown for cell 

lysis and western blotting to investigate the steady state levels of MRPL65. Two bi-

allelic and two mono-allelic mutants were investigated, alongside two wild-type clones 

as isogenic controls. Despite the introduction of suspected deleterious mutations, 

surprisingly all the mutant cell lines failed to demonstrate the loss of steady-state 

MRPL65 levels (Figure 5.14). 

Figure 5.14 Western blot analysis of mitoribosomal proteins in U2OS CRISPR clones. Whole cell lysates 

were generated from two ‘bi-allelic’ and two ‘mono-allelic’ mutant clones, alongside two clones with a wild-type 

genotype (confirmed through Sanger sequencing) as isogenic controls. SDS-PAGE and Immunoblotting with 

MRPL65 antibody was carried out in an attempt to identify a knock-out clone. Antibodies for two other LSU proteins 

MRPL47 and MRPL11 were also interrogated; Beta-actin was used as a loading control.  

One bi-allelic mutant appeared to have two bands corresponding to MRPL65 protein, 

however, none of the mutants appeared to have decreased levels of other LSU 

proteins (Figure 5.14), or any protein subunits of OXPHOS complexes (Figure 5.15).  
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This suggests that, in addition to there being no successful complete knock-out of 

MRPL65, the mutations introduced in each clone did not have any deleterious effects 

on MRPL65 function or downstream impact on the LSU and OXPHOS. 

Figure 5.15 Western blot analysis of OXPHOS proteins in U2OS CRISPR clones. Whole cell lysates were 

generated from two suspected ‘bi-allelic’ and two suspected ‘mono-allelic’ mutants alongside two clones with 

wildtype genotype. SDS-PAGE and immunoblotting with NDUFB8, SDHA, CORE2, COXII and ATPB was used to 

interrogate the steady state levels of protein subunits of complexes I-IV. SDHA was used as an indication of equal 

loading. 

5.3.8 SNP genotyping of WT U2OS cells

The MRPL65 gene is located on the P arm of Chromosome 5 (cytogenetic band 5p12). 

In order to identify any aneuploidy affecting this region within the clones, genomic DNA 

was extracted from wildtype U2OS cells and sent for single nucleotide polymorphism 

(SNP) genotyping, kindly carried out by Dr.Simon Zwoliński at the NHS Northern 

Genetics Service, International Centre for Life, Newcastle upon Tyne. DNA was 

analysed for 850,000 SNPs using the Illumina CytoSNP-850K v1.2 BeadChip 

microarray. The results from this array revealed the U2OS population to have an 

extremely abnormal karyotype, consistent with the known genome instability of cancer 

derived cell lines, with no fully diploid chromosomes. Copy number across 

Chromosome 5 was determined using the LogR ratio as a function of B-allele 

frequency. The entire P arm of Chromosome 5 is within a region of tetraploidy, 



 
184 

meaning that there are four copies of all genes encoded within this region, including 

the MRPL65 gene (Figure 5.16). 

Figure 5.16 SNP genotyping of Chromosome 5 in a wildtype population of U2OS cells. Log R ratio and B-

allele frequency across the entirety of Chromosome 5 allows the identification of copy number changes. Areas of 

homozygosity have B-allele frequencies of either 1 or 0. Areas of allelic balance and heterozygous SNPs have B-

allele frequencies of 0.5. Regions of allelic imbalance will have intermediate value B-allele frequencies. LogR ratio 

corresponds to normalised measure of total probe intensity of all alleles at each given SNP. If a duplication is 

present, LogR ratio increases. The region of Chromosome 5 containing the MRPL65 gene has a B-allele frequency 

indicating balanced heterozygosity and an increased LogR ratio to indicate duplication. From this, the copy number 

variation of the region is determined as tetraploidy. 

To obtain a complete MRPL65 knock-out cell line using this population of U2OS cells, 

all four MRPL65 alleles must be targeted by the Cas9 nuclease to achieve gene 

disruption through NHEJ. If the starting population of cells had been diploid in this 

region of Chromosome 5, introduction of indels into all MRPL65 alleles would be much 

more likely. 
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5.3.9 PCR screens of transfected HEK293 clones

Due to the tetraploidy region identified in Chromosome 5 encompassing the MRPL65 

gene in U2OS cells, HEK293 cells were chosen as a second cell line to transfect with 

each sgRNA positive PX458 plasmid. Cells were GFP sorted and single cell clonal 

populations were grown. PCR screening of HEK293 clones using primers to amplify 

exon 1 of MRPL65 revealed multiple clones producing three bands (Figure 5.17). This 

indicates that the wild-type HEK293 population are also subject to a copy number 

duplication in the region of Chromosome 5 containing the MRPL65 locus. 

Figure 5.17 PCR screening of post-transfection HEK293 clonal populations. Genomic DNA was extracted 

from each post-transfection HEK293 clonal population for PCR using primers targeting MRPL65 exon 1. Genomic 

DNA extracted from HEK293 cells transfected with pmaxGFP vector was used as an isogenic control. PCR 

products were run on long 3% agarose gels to maximise resolution between bands with subtle differences in size. 

The presence of double bands and shifts in product size confirmed the successful sgRNA targeting of Cas9 to 

MRPL65 in this cell population. A number of clones ran with three bands (black arrows), suggesting that MRPL65 

is within a region of duplication on HEK293 Chromosome 5.

To acquire the precise karyotype of the wild-type HEK293 cells used for transfection, 

genomic DNA was once again extracted and sent for SNP genotyping. Copy number 

analysis confirmed that the 5p12 region in this cell line was also aneuploid, this time 

lying within a 50Mb region of triploidy. 
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5.3.10 PCR screens of second round transfected HEK293 clones

Following the confirmation of a triploid MRPL65 copy number, three suspected mutant 

HEK293 clones from the first PCR screen were selected for a second round of 

nucleofection. Each clone was transfected with a plasmid containing the same sgRNA 

sequence as its original transfection, to increase the likelihood of targeting only 

wildtype alleles. As above, transfected cells were sorted into single cell wells to obtain 

clonal populations. However, the recovery rate of these cells was very low and 

attempts to extract DNA from these populations were often unsuccessful due to very 

limited cell survival within each well. PCR screens were conducted where possible on 

surviving cells to identify clones with bands that differed in size to the pmaxGFP vector 

transfected control (Figure 5.18).

Figure 5.18 PCR screening of surviving second-round post-transfection HEK293 clonal populations. 

Attempts to amplify MRPL65 exon 1 using genomic DNA extracted from HEK293 clones following a second round 

of transfection with sgRNA positive PX458 plasmids was successful in very few clones. Empty lanes correspond 

to failed PCR reactions. All successful PCR reactions confirmed the presence of MRPL65 mutations through the 

presence of bands corresponding to multiple PCR products. 
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5.3.11 Investigation into steady-state MRPL65 in HEK293 clones

Of the clones that underwent PCR screening following a second round of transfection, 

only four grew to a confluency that allowed cell lysis for investigation into the steady-

state levels of MRPL65. No clone exhibited any significant loss of MRPL65 protein 

(Figure 5.19). These data suggest that, despite the introduction of mutations within 

the MRPL65 gene and repeated rounds of transfection with a CRISPR/Cas9 plasmid, 

the aneuploid nature of 5p12 prevented the generation of an MRPL65 knock-out cell 

line to model the variants identified in Family 1.

Figure 5.19 Western blot analysis of steady-state MRPL65 levels in four HEK293 CRISPR clones. Whole cell 

lysates were generated from the four clones that survived a second round of transfection with sgRNA positive 

PX458 plasmid, alongside a single pmaxGFP transfected clone as a control. SDS-PAGE and immunoblotting with 

MRPL65 antibody was carried out, alongside SDHA as a loading control. Data shown is representative of two 

independent repeats.

5.3.12 cDNA studies in Patient 2

Following the identification of a homozygous c.(601+5G>A) variant in a second 

paediatric patient, fibroblasts were obtained for functional investigation. RNA was 

extracted from the fibroblasts of Patient 2 for reverse transcription and the synthesis 

of cDNA, in order to investigate the splicing of MRPL65 transcripts in this patient using 

a primer pair targeting exons 1-4 (Figure 5.4) producing a product 915bp in size. A 

faint band was visible in the lane containing cDNA from Patient 2, that was very similar 

in size to the bands corresponding to MRPL65 product in controls (Figure 5.20). 

However, Sanger sequencing and Basic Local Alignment Search Tool analysis of 

sequence data revealed product to be non-specific and not MRPL65.
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Figure 5.20 MRPL65 cDNA studies in Patient 2. RNA extracted from the fibroblasts of Patient 2 was used for 

reverse transcription and second strand synthesis of cDNA, to investigate the potential impact of a homozygous 

c.(601+5C>A) variant on splicing of MRPL65 mRNA transcripts. Asterisks indicate product of expected size in 

control samples, arrow indicates a band of a similar size in the Patient 2 sample, possibly indicating MRPL65 cDNA 

product of a normal size.

A deeper investigation into potentially unstable MRPL65 transcripts was undertaken 

by treating growing cells with emetine, a specific inhibitor of nonsense mediated 

mRNA decay (NMD). A new primer set was designed to amplify a smaller 143bp region 

surrounding the boundary of exons 1 and 2. Using this primer pair, a larger amplimer 

between 400-500bp in length becomes visible in the cDNA of Patient 2, both with and 

without emetine treatment (Figure 5.21). This band is not present in untreated or 

treated controls. 
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Figure 5.21 MRPL65 cDNA studies with inhibition of nonsense mediated decay in Patient 2. Patient and 

control fibroblast cells were cultured in media containing 100ug/mL emetine for 10 hours prior to RNA extraction. 

RNA was extracted from untreated patient and control cells as a control. RNA was used for reverse transcription 

and second strand synthesis of cDNA. A primer pair amplifying a 143nt region encompassing the exon 1/ exon 2 

boundary was used for PCR and agarose gel electrophoresis. Asterisks indicate a band of increased size present 

only in patient samples.

5.3.13 Identification of cryptic MRPL65 splice donor site in Patient 2 

The larger MRPL65 cDNA band which was only present in samples from Patient 2 

was subjected to Sanger sequencing, leading to the identification of two unique 

sequence traces. The smaller of the traces corresponds to the expected product of 

this primer pair, containing the final 96 nucleotides of exon 1 and the first 47 

nucleotides of exon 2. However, the second underlying trace exhibits read-through 

from the end of exon 1 into intron 1 (Figure 5.22).
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Figure 5.22 Sequencing of larger MRPL65 product previously identified in Patient 2 cDNA sample. Sanger 

sequencing of cDNA generated from emetine treated fibroblasts of Patient 2 revealed two individual sequence 

traces. Trace 1 (red) is a product of normal splicing at the exon 1/ intron 1 and in intron 1/ exon 2 boundaries. This 

trace ends with the end of the reverse primer, lying 47 base pairs into exon 2. Trace 2 (blue) in the product of loss 

of processing at the exon 1/intron 1 boundary, resulting in intron retention and generating a longer transcript, 

corresponding to the larger band seen on the cDNA gel in (Figure 5.21).

Two free, online splice site predictor tools Alternative Splice Site Predictor (ASSP -

http://wangcomputing.com/assp/) (Wang and Marin, 2006) and Splice Site Prediction 

by Neural Network (https://www.fruitfly.org/seq_tools/splice.html) (Reese et al., 1997) 

were used for the analysis of wild-type and mutant MRPL65 genomic sequences . In 

the c.(601+5G>A) sequence, prediction of the regular splice donor site at the end of 

exon 1 was lost (Figure 5.23). Cross-referencing of predicted splice donor sites that 

aren’t typical donor sites with a second sequence trace containing intronic sequence 

was carried out in order to identify potential cryptic splice donor sites. A predicted 

donor site 268 nucleotides downstream of the exon 1/intron boundary (Figure 5.23) 

corresponds perfectly in size with the size of band seen on cDNA gels above the 400bp 

marker in Patient 2 (Figure 5.21) as retention of 268bp would result in a PCR product 

411bp in size. 

http://wangcomputing.com/assp/
https://www.fruitfly.org/seq_tools/splice.html
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Figure 5.23 Output from splice donor site predictor tool analysis of wildtype and mutant MRPL65. The 

analysis of MRPL65 sequence containing the c.(601+5G>A) variant demonstrates that this mutation is predicted 

to result in the loss of the typical splice donor site at the end of exon 1. Output from this prediction tool was searched 

for predicted splice donor sites not typically active, but that if active might result in retention of the length of intron 

seen via Sanger sequencing. A splice donor site was identified 268 nucleotides downstream of the typical splice 

site. Activation of this splice donor would result in a transcript identical in size to trace 2 in the sequencing data. 

Output obtained from (https://www.fruitfly.org/seq_tools/splice.html) (Reese et al., 1997).

I confirmed the activation of this predicted donor site through Sanger sequencing of 

the intron/exon boundaries, clearly demonstrating a trace corresponding to 268 

nucleotides of intronic sequence (Figure 5.24), corroborating its activation as a cryptic 

splice donor site in MRPL65 transcripts of Patient 2. 

https://www.fruitfly.org/seq_tools/splice.html
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Figure 5.24 Exonic/intronic boundaries in transcript resulting from activation of a cryptic splice donor site. 

Dashed line on top panel marks boundary between exon 1 and intron 1 at which processing would normally occur 

to remove intronic sequence. Dashed line on bottom panel marks boundary at which a cryptic splice donor site 

results in the read-through of sequence belonging to intron 1 back into sequence of exon 2. 

5.3.14 Western blot analysis of protein levels in Patient 2 fibroblasts

Western blot analysis was carried out on fibroblast cell lysates of Patient 2, to 

investigate the impact of this homozygous c.(601+5G>A) splice variant on the steady-

state levels of MRPL65 and protein subunits of OXPHOS. 

Figure 5.25 Western blot analysis of steady state MRPL65 in fibroblasts of Patient 2. SDS-PAGE and 

immunoblotting of whole cell lysate from fibroblasts of Patient 2 alongside two paediatric control fibroblasts. 

MRPL65 antibody was used alongside SDHA as an indication of loading. Data shown is representative of three 

independent repeats.



 
193 

The abundance of full-length MRPL65 protein appears to be unaffected in the 

fibroblasts of Patient 2 (Figure 5.25). There was also no observable OXPHOS defect 

at the steady-state level in the fibroblasts of Patient 2 (Figure 5.26).

Figure 5.26 Western blot analysis of OXPHOS proteins in fibroblasts of Patient 2. SDS-PAGE and 

immunoblotting of whole cell lysate from fibroblasts of Patient 2 alongside two paediatric control fibroblasts. An 

antibody cocktail containing NDUFB8, SDHB, CORE2, COXII and ATP5A was used to investigate OXPHOS 

complexes I-IV. VDAC1 was used as a loading control. Data shown is representative of three independent repeats.

5.3.15 Investigation of MRPL65 assembly within the LSU

Next, I used sucrose gradient centrifugation and immunoblotting to investigate the 

assembly of MRPL65 within the LSU. The ultracentrifugation of 700 ug of protein 

through sucrose gradients allowed the sedimentation of mitoribosomal subunits based 

on size. SDS-PAGE and western blotting of MRPL45 confirmed the presence of the 

LSU in lanes six and seven in both Patient 2 and control sample. However, in Patient 

2 MRPL65 signal appears to be limited to lanes three and four, containing protein 

complexes smaller than the mitoribosomal LSU (Figure 5.27). This could indicate that 

MRPL65 does not assemble successfully within the LSU of the mitoribosome. 
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Figure 5.27 Sucrose gradient ultracentrifugation and immunoblotting to investigate MRPL65 in 

mitoribosome assembly. 700 μg of total protein from the fibroblasts of patients 2 and a paediatric control was 

separated on a linear 10-30% sucrose gradient. Following ultracentrifugation, eleven fractions were taken to be 

run on SDS-PAGE gels and immunoblotted for MRPL45 and MRPL65. Fractions 6 and 7 (blue) contain proteins of 

the LSU, demonstrated through MRPL45 signal. Whole cell lysate used for loading controls. Data shown is 

representative of three independent repeats.

5.3.16 [35S] translation assay in growing fibroblasts

To assess the impact of a potential loss of MRPL65 from the assembled LSU, 

metabolic labelling assay using [35S] labelled methionine/cysteine was used to 

investigate de novo protein synthesis in Patient 2 fibroblasts. Incubation of growing 

patient and control fibroblasts with radiolabelled media for 1 hour was conducted in 

the presence of 100 μg/mL emetine to inhibit cytosolic translation. Phosphorimaging 

of the resulting signal revealed a generalised defect of mitochondrial translation in 

Patient 2. All visible bands, corresponding to newly-synthesised mtDNA encoded 

OXPHOS proteins, are decreased in signal when compared to signal in the control 

lane (Figure 5.28).  
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Figure 5.28 [35S] methionine/cysteine incorporation in growing MRPL65 patient fibroblasts as a measure 

of de novo mitochondrial protein synthesis. Signal detected from fixed and dehydrated SDS-PAGE gel using 

Typhoon Phosphorimager. Bands are visible for radiolabelled COXI, ND4, cyt b. ND2, ND1, COXIII, COXII and 

ATP6 in Patient 2 and control sample. Loading is demonstrated using the Coomassie Brilliant Blue (CBB) stain on 

the bottom panel. 
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5.4 Discussion

5.4.1 Ploidy of cell lines used for CRISPR/Cas9 studies

While cancer derived cell lines such as U2OS and HEK293 are of immense value to 

biomedical research, they are characteristically genotypically unstable, and often have 

extremely abnormal karyotypes (Ozaki et al., 2003). As the ploidy of a target region 

increases, the likelihood of successful CRISPR/Cas9 editing of all target alleles 

decreases. Despite the successful introduction of indels using PX458 plasmids 

expressing sgRNAs 1, 3 and 4, no MRPL65 knockout clones were successfully 

generated (Figure 5.14, Figure 5.19). This is highly likely to be a result of the tetraploid 

and triploid nature Chromosomal region 5p12 in U2OS and HEK293 cells respectively 

(Figure 5.16), and highlights the importance of identifying the cell line most amenable 

to genome editing at a desired target site when still in the early stages of knockout 

study design. 

5.4.2 Resolving specific genotypes of heterozygous CRISPR clones

Due to the random and unpredictable nature of indels introduced upon NHEJ following 

the introduction of DSBs by Cas9, sequencing of clones with multiple indels can 

produce chromatograms with multiple frameshift traces (Figure 5.12). As a result, from 

sequence data alone it is difficult to ascertain the precise mutations that have been 

introduced. A long-standing method used classically in the resolution of this type of 

problem is the cloning of the mixture of alleles into bacterial vectors, followed by 

bacterial transformation and cloning. Sequencing multiple colonies would result in the 

eventual sequencing of each individual allele, from which a single trace would be 

obtained, thereby allowing the identification and genotyping of precise insertions or 

deletions. However, the advent of CRISPR/Cas9 genome editing has resulted in the 

development of various tools and techniques, such as CRISP-ID, to circumvent this 

classic approach. CRISP-ID is a tool that allows the detection of exact indel sizes and 

locations within a given target region, based on Sanger sequencing alone (Dehairs et 
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al., 2016). This tool can resolve multiple frameshift sequences up to a maximum of 

three traces. Retrospective attempts to analyse the Sanger sequence data of the 

mutant U2OS CRISPR clones generated within this study using the CRISP-ID online 

tool, resulted in the detection of four sequences, preventing trace ‘unmixing’ for these 

data. Despite being unable to resolve the precise sizes of indels within these tetraploid 

clones, receiving information regarding the number of individual alleles within a single 

clone would be of use in the early stages of CRISPR/Cas9 studies, particularly if using 

a cell line with a normal target gene copy number. 

5.4.3 Knock-out Vs knock-in models

Repeated attempts to generate a CRISPR/Cas9 MRPL65 knockout cell line have 

proven to be unsuccessful. However, the identification of a second family at a later 

stage of the functional workflow, through the online GeneMatcher tool 

(https://genematcher.org/), allowed for more detailed functional validation studies 

using patient fibroblasts. The fibroblasts of Patient 2 did not exhibit any decrease in 

steady-state MRPL65. While this finding was surprising, it further highlighted the 

limitations of knockout studies in the absence of patient cell lines. Had the MRPL65 

knockout studies been successful, they would be used to model a c.(601+5A>G) 

disease variant that does not result in the loss of MRPL65 expression (Figure 5.25).

In addition to CRISPR/Cas9 knock-out studies using NHEJ, a second DNA repair 

mechanism, error-free homology directed repair (HDR), can also be triggered by the 

introduction of DSBs. HDR can be utilised for CRISPR knock-in or precise gene-

editing through the delivery of homology-containing donor DNA templates alongside 

the CRISPR/Cas9 machinery (Ryu, Hur and Kim, 2019). This technique offers a much 

more precise way of modelling specific variants in cell-lines and whole organisms 

which, with more time, would have proven to be a very useful tool in the modelling of 

disease in these patients.

https://genematcher.org/


 
198 

5.4.4 Impact of intron retention on MRPL65 function

The cDNA studies in Patient 2 revealed the specific impact of a c.(601+5G>A) variant 

on splicing at the donor site of exon 1 in some MRPL65 transcripts. Some transcripts 

fail to splice at the constitutive donor site and a downstream cryptic donor site is 

activated, resulting in the retention of 268 nucleotides of intron 1 (Figure 5.22). This 

c.(601_602ins601+1_601+268) transcript results in a frameshift, and the introduction 

of a downstream STOP codon, with the nomenclature p.(Asp201Glyfs*68). These 

transcripts are therefore extremely unlikely to produce any stable MRPL65 protein. 

However, steady-state levels of MRPL65 appear to be normal in the fibroblasts of 

Patient 2 (Figure 5.25). It is therefore difficult to connect the c.(601+5G>A) splice 

mutation with the translation defect in fibroblast cells (Figure 5.28), and the clinical 

disease in Patient 2. The antibody used against MRPL65 has been validated through 

siRNA knock-down studies in U2OS cells (Figure 5.6) which should rule out the 

possibility of a non-specific band being mistaken for full-length MRPL65 in the 

fibroblasts of Patient 2. However, the siRNA knock-down should be repeated in Patient 

fibroblasts to confirm with certainty that the visible band represents MRPL65. It would 

also be interesting to combine siRNA treatment with a [35S] translation assay, to 

investigate whether MRPL65 knock-down exacerbates the existing translation defect 

in this cell-line.

Diagnostic RNA sequencing was ordered by the referring clinician of Patient 2. These 

studies were carried out by MNG Laboratories in the US using RNA extracted by 

lymphocytes and skin fibroblasts and determined that 24% and 19% of MRPL65 

transcripts remained unprocessed at the affected splice donor site respectively. As the 

ratio of processed:unprocessed transcripts appears to vary in the two cell types tested, 

it is possible that the proportion of unprocessed transcripts may be high enough to 

cause a decrease in steady-state MRPL65 protein in cell types that are clinically 

relevant to the Patient’s disease presentation.
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5.4.5 Identification of multiple families through ‘GeneMatcher’

Both patients investigated within this chapter are of Lebanese ethnic origin. The 

c.(601+5A>G) mutation is present in Patient 1 in a compound heterozygous state and 

in Patient 2 in a homozygous state. A very recent GeneMatcher ‘hit’ has identified a 

third family of Lebanese origin, containing three paediatric patients homozygous for 

the c.(601+5A>G) splice variant and presenting with significantly overlapping clinical 

features to Patients 1 and 2 including ataxia, developmental delay and nystagmus. So 

far, this splice variant appears to be ethnically isolated to patients of Lebanese descent 

and is therefore a potential founder mutation. However, we don’t yet have samples 

available to prove this in the laboratory.
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Chapter 6 : Final discussion

The research within this thesis has contributed new understanding of the mitochondrial 

pathophysiology and mechanisms associated with two mitochondrial proteins not 

previously linked to human disease, MRPL47 and MRPL65, thus expanding the list of 

nuclear genes implicated in mitochondrial presentations. Novel disease variants in two 

previously reported genes, GFM2 and TSFM, have also been validated. Throughout 

this thesis I have employed a number of different techniques to assess mitochondrial 

function using patient cell lines and tissues, as well as working with CRISPR/Cas9 and 

siRNA in U2OS and HEK293 cell lines, to aid in the validation of these variants. This 

demonstrates the value of further research-based functional studies in assigning 

pathogenicity to novel variants as part of the diagnostic algorithm used for 

mitochondrial disorders.

6.1 Diagnostic algorithm

The investigation and diagnosis of suspected mitochondrial disease requires a 

dynamic multidisciplinary approach. Due to the vast clinical heterogeneity of 

mitochondrial disease, a wide range of different clinical and biochemical investigations 

can indicate disease with a mitochondrial aetiology. Abnormalities identified on brain 

MRI, nerve conduction studies or electrocardiogram together with metabolic 

abnormalities such as increased lactate or the presence of urinary 3-methylglutaconic 

acid could be suggestive of a mitochondrial disorder. However, these presentations 

are not limited to diseases with underlying mitochondrial dysfunction and thus require 

further investigation (Thompson et al., 2019). Biochemical and histopathological 

techniques using patient muscle biopsies are used to identify defects in respiratory 

chain function or abnormalities in muscle morphology, both of which can also signify 

a mitochondrial defect (Taylor et al., 2004; Frazier et al., 2020).

Approaches to the diagnosis of mitochondrial disease are steadily adapting as the 

power of NGS technologies continues to grow. The identification of mitochondrial 

disease variants via this ‘genetics first’ approach potentially avoids the requirement for 
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skin or muscle biopsies when identified variants have been previously reported 

(Wortmann et al., 2017). Further large data-set methods such as proteomics, 

transcriptomics and metabolomics (‘multi-omics’) are also increasingly being 

incorporated into functional characterisation pathways (Stenton and Prokisch, 2020). 

However, as a result of NGS and ‘multi-omic’ implementation, the list of nuclear genes 

implicated in mitochondrial disease is ever-growing. Half of the 14 reported MRP 

mitochondrial disease genes have been reported within the past three years alone 

(Table 4.1). This rate of gene discovery drives the need for molecular characterisation 

studies in the investigation of novel variants. The availability of skin and/or tissue 

biopsies is extremely beneficial to functional studies that allow confirmation of 

pathogenicity. The studies conducted in the investigation of MRPL65 variants in 

Chapter 5 highlight the advantages of having access to patient biopsies rather than 

drawing conclusions on the molecular mechanisms of a particular variant based only 

on knock-down and knock-out experiments. In the absence of a patient cell line, 

sirRNA and CRISPR/Cas9 studies were carried out working under the assumption that 

the variants identified in MRPL65 would result in a loss of steady-state protein. 

However, subsequent patient samples harbouring one of the same variants 

demonstrated that this was not the case (Figure 5.25). Biopsies of tissues with clinical 

relevance to the specific disease presentation in each patient are of particular value, 

owing to the tissue specificity often observed in mitochondrial disorders, as can be 

seen in the investigation of novel TSFM variant. 

6.2 Tissue specificity in mitochondrial disease

Tissue specific patterns of mitochondrial dysfunction and subsequent clinical 

presentations are frequently observed in mitochondrial disorders of both mtDNA and 

nuclear genetic origins. While often reported, the mechanisms underlying tissue 

specificity in mitochondrial disease remain elusive in many cases. Clinical and 

functional tissue specific features can be seen in the cases presented throughout this 

thesis, however it was particularly striking in the TSFM patient presented in Chapter 

3. This patient presented with clinical features linked almost exclusively to cardiac 

dysfunction which was mirrored by the presence of a steady-state level OXPHOS 
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defect in cardiac tissue but not in fibroblasts (Figure 3.12). While mtEF-Ts levels were 

decreased in both cardiac tissue and fibroblasts, its interacting elongation factor mtEF-

Tu was only decreased in cardiac tissue as patient fibroblasts appeared to exhibit 

over-expression of mtEF-Tu protein (Figure 3.11). Increased abundance of mtEf-Tu 

might form a compensatory mechanism that prevents the loss of mtEF-Ts from 

severely impeding mitochondrial translation. As mtEF-Tu steady-state levels are not 

increased in the cardiac tissue of this patient, this may offer an explanation for the 

stark tissue specificity observed. 

Fifteen patients with mitochondrial disease arising as a result of variants in the TSFM 

gene have been reported to date (Emperador et al., 2017; Finsterer, 2019; Perli et al., 

2019; Scala et al., 2019; Traschutz et al., 2019; Smeitink et al., 2006a; Calvo et al., 

2012; Ahola et al., 2014; Vedrenne et al., 2012), including the patient presented here. 

Hypotrophic cardiomyopathy is common to almost all of these patients, but despite 

this overlap a number of TSFM cases also present with clinical features affecting other 

organs and systems, such as optic atrophy and ataxia. Interestingly, one of the three 

TSFM patients whose clinical features do not include cardiac involvement exhibits no 

decrease in of steady-state mtEF-Tu in myoblasts (Ahola et al., 2014), further 

supporting the theory that increased levels of mtEF-Tu might act as a protective 

compensatory mechanism in some tissues. 

6.3 Mitoribosome biogenesis and stability

Throughout Chapter 4 and Chapter 5 I have described the investigation of two 

mitoribosomal proteins, MRPL47 and MRPL65. The vast majority of reported 

mitochondrial disease variants in mitoribosomal subunits have been demonstrated to 

result in the destabilisation of the mitoribosome, leading to a defect of mitochondrial 

translation (Di Nottia et al., 2020). While it is known that the process of mitoribosome 

construction is extremely energy-demanding, the precise mechanisms of 

mitoribosome biogenesis remain relatively poorly understood. High-resolution crystal 

structures of the mammalian mitoribosome have been obtained through the use of 

sophisticated cryo-EM techniques, shedding new light on the structural nuances that 



 
204 

distinguish the mitoribosome from its bacterial and cytosolic counterparts (Amunts et 

al., 2015). Attention has now begun to shift to obtaining a deeper understanding of 

mitoribosome biogenesis and assembly (Bogenhagen et al., 2018).

Although a handful of mitoribosome assembly factors have been identified, there are 

likely more to be discovered and characterised. The process of bacterial ribosome 

assembly requires approximately 20 proteins (Shajani, Sykes and Williamson, 2011), 

while the number of identified cytoplasmic ribogenesis factors lies at ~200 (Klinge and 

Woolford, 2019). With a greater understanding of the proteins involved in 

mitoribosome assembly, it may be possible to elucidate the specific assembly 

pathways affected by mutations in MRP genes that result in the mitoribosome 

destabilisation observed in patients. This in turn could identify possible therapeutic 

targets within the mitoribosome assembly pathway that could be genetically or 

pharmacologically manipulated to stabilise the mitoribosome. To this end, cell-lines 

obtained from patients with pathogenic variants in MRP genes and an observable 

mitoribosome assembly defect are potentially a valuable resource for the identification 

and/or validation of new mitoribosome assembly factors. I have plans to further 

investigate the MRP defects presented here while collaborating with Dr. Joanna 

Rorbach at the Division of Molecular Metabolism, Karolinska Institute. This work will 

first focus on understanding the precise impact that the truncated MRPL47 has on 

mitoribosome assembly and function.

6.4 The investigation of splicing mutations 

The difficulties encountered in Chapter 5 when attempting to ascertain the precise 

impact on splicing of the c.601+5G>A variant highlights the importance of functional 

validation of variants found at intron/exon boundaries. The process of pre-mRNA 

transcript splicing is carried out by a large protein-RNA complex named the 

spliceosome (Zhang et al., 2019). In the majority of cases, the spliceosome recognises 

and binds cis splicing elements in the form of highly conserved GT and AG nucleotides 

at the 5’ (donor) and 3’ (acceptor) ends of each intron. As the splicing consensus 

sequences are short, there are many other similar sites found throughout an individual 
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gene known as pseudo or cryptic splice sites (Green, 1986). Binding of the 

spliceosome at the correct splice donor and accepter sites is aided by other cis splicing 

elements such as splicing branchpoints (Mercer et al., 2015), polypyrimidine tract 

sequences (Coolidge, Seely and Patton, 1997) and exonic splicing enhancers 

(Jobbins et al., 2018). Mutations that occur within cis splicing element sequences can 

result in the skipping of exons/exon fragments or the inclusion of intronic sequence. 

These changes to splicing may produce a transcript that remains in the same reading 

frame or cause a shift in the reading frame thus introducing a premature stop codon 

(Abramowicz and Gos, 2018).

The patients presented in Chapter 5 harboured a c.601+5A>G splicing mutation in the 

MRPL65 gene. The most common splicing mutations are found at the +1 and +2 

nucleotides of a splicing donor site, and usually lead to exon skipping (Krawczak et 

al., 2007). Splicing mutations that occur further from the intron/exon boundary, such 

as the +5 variant in the MRPL65 patients presented here, are less commonly identified 

in disease and the effects are harder to predict. If the affected splice site is weak, a 

+3/+4/+5/+6 mutation may result in the activation of a cryptic splice site and cause 

intronic fragment retention or exonic fragment removal (Abramowicz and Gos, 2018). 

A number of in silico tools have been developed to analyse and identify splice 

consensus sequences using a range of databases and statistical models. However, 

the results from such in silico tools must be treated as predictions only and cannot be 

used in isolation to assign pathogenicity to a novel splicing mutation (Spurdle et al., 

2008). 

6.5 Concluding remarks

The work presented within this thesis documents the validation of multiple pathogenic 

variants in mitochondrial disease cases, and is a product of the increasing rate of gene 

discovery in mitochondrial disease brought about by NGS implementation into 

diagnostic pathways. My research has allowed the assignment of pathogenicity to 

novel variants in four genes, GFM2, TSFM, MRPL47 and MRPL65, across eight 

families. Obtaining this information enables the provision of risk recurrence estimates 
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and reproductive advice to affected families. A genetic diagnosis can be achieved in a 

higher proportion of mitochondrial disease patients than ever before, with the functional 

characterisation of novel variants being an integral part of this field of diagnostic 

research. The further implementation of multi-omic pipelines in this genetics-first era 

will continue to improve upon diagnostic yields, benefiting an even higher proportion 

of affected families.



 
207 



 
208 

References

Abe, Y., Shodai, T., Muto, T., Mihara, K., Torii, H., Nishikawa, S., Endo, T. and Kohda, 
D. (2000) 'Structural basis of presequence recognition by the mitochondrial protein 
import receptor Tom20', Cell, 100(5), pp. 551-60. 

Abramowicz, A. and Gos, M. (2018) 'Splicing mutations in human genetic disorders: 
examples, detection, and confirmation', J Appl Genet, 59(3), pp. 253-268. 

Adams, K. L. and Palmer, J. D. (2003) 'Evolution of mitochondrial gene content: gene 
loss and transfer to the nucleus', Mol Phylogenet Evol, 29(3), pp. 380-95. 

Ahola, S., Isohanni, P., Euro, L., Brilhante, V., Palotie, A., Pihko, H., Lonnqvist, T., 
Lehtonen, T., Laine, J., Tyynismaa, H. and Suomalainen, A. (2014) 'Mitochondrial 
EFTs defects in juvenile-onset Leigh disease, ataxia, neuropathy, and optic atrophy', 
Neurology, 83(8), pp. 743-51. 

Alston, C. L., Compton, A. G., Formosa, L. E., Strecker, V., Olahova, M., Haack, T. B., 
Smet, J., Stouffs, K., Diakumis, P., Ciara, E., Cassiman, D., Romain, N., Yarham, J. 
W., He, L., De Paepe, B., Vanlander, A. V., Seneca, S., Feichtinger, R. G., Ploski, R., 
Rokicki, D., Pronicka, E., Haller, R. G., Van Hove, J. L., Bahlo, M., Mayr, J. A., Van 
Coster, R., Prokisch, H., Wittig, I., Ryan, M. T., Thorburn, D. R. and Taylor, R. W. 
(2016) 'Biallelic Mutations in TMEM126B Cause Severe Complex I Deficiency with a 
Variable Clinical Phenotype', Am J Hum Genet, 99(1), pp. 217-27. 

Amunts, A., Brown, A., Toots, J., Scheres, S. H. W. and Ramakrishnan, V. (2015) 'The 
structure of the human mitochondrial ribosome', Science, 348(6230), pp. 95-98. 

Anderson, S., Bankier, A. T., Barrell, B. G., de Bruijn, M. H., Coulson, A. R., Drouin, J., 
Eperon, I. C., Nierlich, D. P., Roe, B. A., Sanger, F., Schreier, P. H., Smith, A. J., 
Staden, R. and Young, I. G. (1981) 'Sequence and organization of the human 
mitochondrial genome', Nature, 290(5806), pp. 457-65. 

Antonicka, H., Østergaard, E., Sasarman, F., Weraarpachai, W., Wibrand, F., 
Pedersen, A. M. B., Rodenburg, R. J., Van Der Knaap, M. S., Smeitink, J. A. M., 
Chrzanowska-Lightowlers, Z. M. and Shoubridge, E. A. (2010) 'Mutations in C12orf65 
in Patients with Encephalomyopathy and a Mitochondrial Translation Defect', The 
American Journal of Human Genetics, 87(1), pp. 115-122. 

Antonicka, H., Sasarman, F., Kennaway, N. G. and Shoubridge, E. A. (2006) 'The 
molecular basis for tissue specificity of the oxidative phosphorylation deficiencies in 
patients with mutations in the mitochondrial translation factor EFG1', Human Molecular 
Genetics, 15(11), pp. 1835-1846. 

Antonicka, H., Sasarman, F., Nishimura, T., Paupe, V. and Shoubridge, E. A. (2013) 
'The mitochondrial RNA-binding protein GRSF1 localizes to RNA granules and is 
required for posttranscriptional mitochondrial gene expression', Cell Metab, 17(3), pp. 
386-98. 

Antonicka, H. and Shoubridge, E. A. (2015) 'Mitochondrial RNA Granules Are Centers 
for Posttranscriptional RNA Processing and Ribosome Biogenesis', Cell Rep, 10(6), 
pp. 920-932. 

Arroyo, J. D., Jourdain, A. A., Calvo, S. E., Ballarano, C. A., Doench, J. G., Root, D. E. 
and Mootha, V. K. (2016) 'A Genome-wide CRISPR Death Screen Identifies Genes 
Essential for Oxidative Phosphorylation', Cell Metab, 24(6), pp. 875-885. 



 
209 

Asin-Cayuela, J., Schwend, T., Farge, G. and Gustafsson, C. M. (2005) 'The human 
mitochondrial transcription termination factor (mTERF) is fully active in vitro in the non-
phosphorylated form', J Biol Chem, 280(27), pp. 25499-505. 

Backes, S., Hess, S., Boos, F., Woellhaf, M. W., Godel, S., Jung, M., Muhlhaus, T. and 
Herrmann, J. M. (2018) 'Tom70 enhances mitochondrial preprotein import efficiency 
by binding to internal targeting sequences', J Cell Biol, 217(4), pp. 1369-1382. 

Baertling, F., Haack, T. B., Rodenburg, R. J., Schaper, J., Seibt, A., Strom, T. M., 
Meitinger, T., Mayatepek, E., Hadzik, B., Selcan, G., Prokisch, H. and Distelmaier, F. 
(2015) 'MRPS22 mutation causes fatal neonatal lactic acidosis with brain and heart 
abnormalities', Neurogenetics, 16(3), pp. 237-40. 

Bai, Y., Srivastava, S. K., Chang, J. H., Manley, J. L. and Tong, L. (2011) 'Structural 
Basis for Dimerization and Activity of Human PAPD1, a Noncanonical Poly(A) 
Polymerase', Molecular Cell, 41(3), pp. 311-320. 

Balasubramaniam, S., Choy, Y. S., Talib, A., Norsiah, M. D., van den Heuvel, L. P. and 
Rodenburg, R. J. (2012) 'Infantile Progressive Hepatoencephalomyopathy with 
Combined OXPHOS Deficiency due to Mutations in the Mitochondrial Translation 
Elongation Factor Gene GFM1', JIMD Rep, 5, pp. 113-22. 

Balciuniene, J. and Balciunas, D. (2019) 'A Nuclear mtDNA Concatemer (Mega-
NUMT) Could Mimic Paternal Inheritance of Mitochondrial Genome', Front Genet, 10, 
pp. 518. 

Ban, T., Ishihara, T., Kohno, H., Saita, S., Ichimura, A., Maenaka, K., Oka, T., Mihara, 
K. and Ishihara, N. (2017) 'Molecular basis of selective mitochondrial fusion by 
heterotypic action between OPA1 and cardiolipin', Nat Cell Biol, 19(7), pp. 856-863. 

Banci, L., Bertini, I., Cefaro, C., Ciofi-Baffoni, S., Gallo, A., Martinelli, M., Sideris, D. P., 
Katrakili, N. and Tokatlidis, K. (2009) 'MIA40 is an oxidoreductase that catalyzes 
oxidative protein folding in mitochondria', Nat Struct Mol Biol, 16(2), pp. 198-206. 

Bar-Yaacov, D., Frumkin, I., Yashiro, Y., Chujo, T., Ishigami, Y., Chemla, Y., Blumberg, 
A., Schlesinger, O., Bieri, P., Greber, B., Ban, N., Zarivach, R., Alfonta, L., Pilpel, Y., 
Suzuki, T. and Mishmar, D. (2016) 'Mitochondrial 16S rRNA Is Methylated by tRNA 
Methyltransferase TRMT61B in All Vertebrates', 14(9), pp. e1002557. 

Becker, T., Vogtle, F. N., Stojanovski, D. and Meisinger, C. (2008) 'Sorting and 
assembly of mitochondrial outer membrane proteins', Biochim Biophys Acta, 1777(7-
8), pp. 557-63. 

Beinert, H., Holm, R. H. and Munck, E. (1997) 'Iron-sulfur clusters: nature's modular, 
multipurpose structures', Science, 277(5326), pp. 653-9. 

Belostotsky, R., Ben-Shalom, E., Rinat, C., Becker-Cohen, R., Feinstein, S., Zeligson, 
S., Segel, R., Elpeleg, O., Nassar, S. and Frishberg, Y. (2011) 'Mutations in the 
Mitochondrial Seryl-tRNA Synthetase Cause Hyperuricemia, Pulmonary Hypertension, 
Renal Failure in Infancy and Alkalosis, HUPRA Syndrome', The American Journal of 
Human Genetics, 88(2), pp. 193-200. 

Benit, P., Lebon, S. and Rustin, P. (2009) 'Respiratory-chain diseases related to 
complex III deficiency', Biochim Biophys Acta, 1793(1), pp. 181-5. 

Besse, A., Wu, P., Bruni, F., Donti, T., Brett, William, McFarland, R., Moretti, P., Lalani, 
S., Kenneth, Robert and Penelope (2015) 'The GABA Transaminase, ABAT, Is 
Essential for Mitochondrial Nucleoside Metabolism', 21(3), pp. 417-427. 



 
210 

Boczonadi, V., Jennings, M. J. and Horvath, R. (2018) 'The role of tRNA synthetases 
in neurological and neuromuscular disorders', FEBS Lett, 592(5), pp. 703-717. 

Bogenhagen, D. F., Martin, D. W. and Koller, A. (2014) 'Initial steps in RNA processing 
and ribosome assembly occur at mitochondrial DNA nucleoids', Cell Metab, 19(4), pp. 
618-29. 

Bogenhagen, D. F., Ostermeyer-Fay, A. G., Haley, J. D. and Garcia-Diaz, M. (2018) 
'Kinetics and Mechanism of Mammalian Mitochondrial Ribosome Assembly', Cell Rep, 
22(7), pp. 1935-1944. 

Boggan, R. M., Lim, A., Taylor, R. W., McFarland, R. and Pickett, S. J. (2019) 
'Resolving complexity in mitochondrial disease: Towards precision medicine', Mol 
Genet Metab, 128(1-2), pp. 19-29. 

Borna, N. N., Kishita, Y., Kohda, M., Lim, S. C., Shimura, M., Wu, Y., Mogushi, K., 
Yatsuka, Y., Harashima, H., Hisatomi, Y., Fushimi, T., Ichimoto, K., Murayama, K., 
Ohtake, A. and Okazaki, Y. (2019) 'Mitochondrial ribosomal protein PTCD3 mutations 
cause oxidative phosphorylation defects with Leigh syndrome', Neurogenetics, 20(1), 
pp. 9-25. 

Borowski, L. S., Dziembowski, A., Hejnowicz, M. S., Stepien, P. P. and Szczesny, R. 
J. (2013) 'Human mitochondrial RNA decay mediated by PNPase-hSuv3 complex 
takes place in distinct foci', 41(2), pp. 1223-1240. 

Bourgeron, T., Rustin, P., Chretien, D., Birch-Machin, M., Bourgeois, M., Viegas-
Pequignot, E., Munnich, A. and Rotig, A. (1995) 'Mutation of a nuclear succinate 
dehydrogenase gene results in mitochondrial respiratory chain deficiency', Nat Genet, 
11(2), pp. 144-9. 

Brito, S., Thompson, K., Campistol, J., Colomer, J., Hardy, S. A., He, L., Fernã¡Ndez-
Marmiesse, A., Palacios, L., Jou, C., Jimã©Nez-Mallebrera, C., Armstrong, J., 
Montero, R., Artuch, R., Tischner, C., Wenz, T., McFarland, R. and Taylor, R. W. 
(2015) 'Long-term survival in a child with severe encephalopathy, multiple respiratory 
chain deficiency and GFM1 mutations', Frontiers in Genetics, 6. 

Brown, A., Amunts, A., Bai, X. C., Sugimoto, Y., Edwards, P. C., Murshudov, G., 
Scheres, S. H. W. and Ramakrishnan, V. (2014) 'Structure of the large ribosomal 
subunit from human mitochondria', 346(6210), pp. 718-722. 

Brown, W. M. (1980) 'Polymorphism in mitochondrial DNA of humans as revealed by 
restriction endonuclease analysis', Proc Natl Acad Sci U S A, 77(6), pp. 3605-9. 

Bruni, F., Gramegna, P., Oliveira, J. M., Lightowlers, R. N. and Chrzanowska-
Lightowlers, Z. M. (2013) 'REXO2 is an oligoribonuclease active in human 
mitochondria', PLoS One, 8(5), pp. e64670. 

Brzoska, K., Meczynska, S. and Kruszewski, M. (2006) 'Iron-sulfur cluster proteins: 
electron transfer and beyond', Acta Biochim Pol, 53(4), pp. 685-91. 

Bugiardini, E., Mitchell, A. L., Rosa, I. D., Horning-Do, H.-T., Pitmann, A., Poole, O. V., 
Holton, J. L., Shah, S., Woodward, C., Hargreaves, I., Quinlivan, R., Amunts, A., 
Wiesner, R. J., Houlden, H., Holt, I. J., Hanna, M. G., Pitceathly, R. D. S. and 
Spinazzola, A. (2019) 'MRPS25 mutations impair mitochondrial translation and cause 
encephalomyopathy', Human Molecular Genetics. 

Cai, Y. C., Bullard, J. M., Thompson, N. L. and Spremulli, L. L. (2000) 'Interaction of 
Mitochondrial Elongation Factor Tu with Aminoacyl-tRNA and Elongation Factor Ts', 
275(27), pp. 20308-20314. 



 
211 

Calvo, S. E., Clauser, K. R. and Mootha, V. K. (2016) 'MitoCarta2.0: an updated 
inventory of mammalian mitochondrial proteins', Nucleic Acids Res, 44(D1), pp. 
D1251-7. 

Calvo, S. E., Compton, A. G., Hershman, S. G., Lim, S. C., Lieber, D. S., Tucker, E. J., 
Laskowski, A., Garone, C., Liu, S., Jaffe, D. B., Christodoulou, J., Fletcher, J. M., 
Bruno, D. L., Goldblatt, J., Dimauro, S., Thorburn, D. R. and Mootha, V. K. (2012) 
'Molecular diagnosis of infantile mitochondrial disease with targeted next-generation 
sequencing', Sci Transl Med, 4(118), pp. 118ra10. 

Carroll, C. J., Isohanni, P., Poyhonen, R., Euro, L., Richter, U., Brilhante, V., Gotz, A., 
Lahtinen, T., Paetau, A., Pihko, H., Battersby, B. J., Tyynismaa, H. and Suomalainen, 
A. (2013) 'Whole-exome sequencing identifies a mutation in the mitochondrial 
ribosome protein MRPL44 to underlie mitochondrial infantile cardiomyopathy', J Med 
Genet, 50(3), pp. 151-9. 

Carroll, J., Fearnley, I. M., Skehel, J. M., Shannon, R. J., Hirst, J. and Walker, J. E. 
(2006) 'Bovine complex I is a complex of 45 different subunits', J Biol Chem, 281(43), 
pp. 32724-7. 

Cerritelli, S. M., Frolova, E. G., Feng, C., Grinberg, A., Love, P. E. and Crouch, R. J. 
(2003) 'Failure to produce mitochondrial DNA results in embryonic lethality in Rnaseh1 
null mice', Mol Cell, 11(3), pp. 807-15. 

Chaban, Y., Boekema, E. J. and Dudkina, N. V. (2014) 'Structures of mitochondrial 
oxidative phosphorylation supercomplexes and mechanisms for their stabilisation', 
Biochim Biophys Acta, 1837(4), pp. 418-26. 

Chan, D. C. (2012) 'Fusion and fission: interlinked processes critical for mitochondrial 
health', Annu Rev Genet, 46, pp. 265-87. 

Chen, A., Tiosano, D., Guran, T., Baris, H. N., Bayram, Y., Mory, A., Shapiro-Kulnane, 
L., Hodges, C. A., Akdemir, Z. C., Turan, S., Jhangiani, S. N., van den Akker, F., 
Hoppel, C. L., Salz, H. K., Lupski, J. R. and Buchner, D. A. (2018) 'Mutations in the 
mitochondrial ribosomal protein MRPS22 lead to primary ovarian insufficiency', Hum 
Mol Genet, 27(11), pp. 1913-1926. 

Chinnery, P. F., DiMauro, S., Shanske, S., Schon, E. A., Zeviani, M., Mariotti, C., 
Carrara, F., Lombes, A., Laforet, P., Ogier, H., Jaksch, M., Lochmuller, H., Horvath, 
R., Deschauer, M., Thorburn, D. R., Bindoff, L. A., Poulton, J., Taylor, R. W., Matthews, 
J. N. and Turnbull, D. M. (2004) 'Risk of developing a mitochondrial DNA deletion 
disorder', Lancet, 364(9434), pp. 592-6. 

Chiron, S., Suleau, A. and Bonnefoy, N. (2005) 'Mitochondrial translation: elongation 
factor tu is essential in fission yeast and depends on an exchange factor conserved in 
humans but not in budding yeast', Genetics, 169(4), pp. 1891-901. 

Christian, B., Haque, E. and Spremulli, L. (2009) 'Ribosome shifting or splitting: it is all 
up to the EF-G', Mol Cell, 35(4), pp. 400-2. 

Christian, B. E. and Spremulli, L. L. (2009) 'Evidence for an active role of IF3mt in the 
initiation of translation in mammalian mitochondria', Biochemistry, 48(15), pp. 3269-
78. 

Christian, B. E. and Spremulli, L. L. (2010) 'Preferential selection of the 5'-terminal start 
codon on leaderless mRNAs by mammalian mitochondrial ribosomes', J Biol Chem, 
285(36), pp. 28379-86. 



 
212 

Christian, B. E. and Spremulli, L. L. (2012) 'Mechanism of protein biosynthesis in 
mammalian mitochondria', 1819(9-10), pp. 1035-1054. 

Chrzanowska-Lightowlers, Z., Rorbach, J. and Minczuk, M. (2017) 'Human 
mitochondrial ribosomes can switch structural tRNAs – but when and why?', RNA 
Biology, 14(12), pp. 1668-1671. 

Chujo, T., Ohira, T., Sakaguchi, Y., Goshima, N., Nomura, N., Nagao, A. and Suzuki, 
T. (2012) 'LRPPRC/SLIRP suppresses PNPase-mediated mRNA decay and promotes 
polyadenylation in human mitochondria', Nucleic Acids Res, 40(16), pp. 8033-47. 

Clay Montier, L. L., Deng, J. J. and Bai, Y. (2009) 'Number matters: control of 
mammalian mitochondrial DNA copy number', Journal of Genetics and Genomics, 
36(3), pp. 125-131. 

Clayton, D. A. (1982) 'Replication of animal mitochondrial DNA', Cell, 28(4), pp. 693-
705. 

Coenen, M. J., Antonicka, H., Ugalde, C., Sasarman, F., Rossi, R., Heister, J. G., 
Newbold, R. F., Trijbels, F. J., van den Heuvel, L. P., Shoubridge, E. A. and Smeitink, 
J. A. (2004) 'Mutant mitochondrial elongation factor G1 and combined oxidative 
phosphorylation deficiency', N Engl J Med, 351(20), pp. 2080-6. 

Coolidge, C. J., Seely, R. J. and Patton, J. G. (1997) 'Functional analysis of the 
polypyrimidine tract in pre-mRNA splicing', Nucleic Acids Res, 25(4), pp. 888-96. 

Cory, S. and Adams, J. M. (2002) 'The Bcl2 family: regulators of the cellular life-or-
death switch', Nat Rev Cancer, 2(9), pp. 647-56. 

Cramer, W. A., Hasan, S. S. and Yamashita, E. (2011) 'The Q cycle of cytochrome bc 
complexes: a structure perspective', Biochim Biophys Acta, 1807(7), pp. 788-802. 

D’Souza, A. R. and Minczuk, M. (2018) 'Mitochondrial transcription and translation: 
overview', Essays In Biochemistry, 62(3), pp. 309-320. 

Dahout-Gonzalez, C. (2006) 'Molecular, Functional, and Pathological Aspects of the 
Mitochondrial ADP/ATP Carrier', 21(4), pp. 242-249. 

Dalla Rosa, I., Durigon, R., Pearce, S. F., Rorbach, J., Hirst, E. M., Vidoni, S., Reyes, 
A., Brea-Calvo, G., Minczuk, M., Woellhaf, M. W., Herrmann, J. M., Huynen, M. A., 
Holt, I. J. and Spinazzola, A. (2014) 'MPV17L2 is required for ribosome assembly in 
mitochondria', Nucleic Acids Res, 42(13), pp. 8500-15. 

Dallabona, C., Diodato, D., Kevelam, S. H., Haack, T. B., Wong, L. J., Salomons, G. 
S., Baruffini, E., Melchionda, L., Mariotti, C., Strom, T. M., Meitinger, T., Prokisch, H., 
Chapman, K., Colley, A., Rocha, H., K, Schiffmann, R., Salsano, E., Savoiardo, M., 
Hamilton, E. M., Abbink, T. E. M., Wolf, N. I., Ferrero, I., Lamperti, C., Zeviani, M., 
Vanderver, A., Ghezzi, D. and Van Der Knaap, M. S. (2014) 'Novel (ovario) 
leukodystrophy related to AARS2 mutations', Neurology, 82(23), pp. 2063-2071. 

Dayan, D., Bandel, M., Gunsel, U., Nussbaum, I., Prag, G., Mokranjac, D., Neupert, 
W. and Azem, A. (2019) 'A mutagenesis analysis of Tim50, the major receptor of the 
TIM23 complex, identifies regions that affect its interaction with Tim23', Sci Rep, 9(1), 
pp. 2012. 

Dehairs, J., Talebi, A., Cherifi, Y. and Swinnen, J. V. (2016) 'CRISP-ID: decoding 
CRISPR mediated indels by Sanger sequencing', Sci Rep, 6, pp. 28973. 



 
213 

Deltcheva, E., Chylinski, K., Sharma, C. M., Gonzales, K., Chao, Y., Pirzada, Z. A., 
Eckert, M. R., Vogel, J. and Charpentier, E. (2011) 'CRISPR RNA maturation by trans-
encoded small RNA and host factor RNase III', Nature, 471(7340), pp. 602-7. 

Di Nottia, M., Marchese, M., Verrigni, D., Mutti, C. D., Torraco, A., Oliva, R., 
Fernandez-Vizarra, E., Morani, F., Trani, G., Rizza, T., Ghezzi, D., Ardissone, A., Nesti, 
C., Vasco, G., Zeviani, M., Minczuk, M., Bertini, E., Santorelli, F. M. and Carrozzo, R. 
(2020) 'A homozygous MRPL24 mutation causes a complex movement disorder and 
affects the mitoribosome assembly', Neurobiol Dis, 141, pp. 104880. 

Dimmer, K. S., Papic, D., Schumann, B., Sperl, D., Krumpe, K., Walther, D. M. and 
Rapaport, D. (2012) 'A crucial role for Mim2 in the biogenesis of mitochondrial outer 
membrane proteins', J Cell Sci, 125(Pt 14), pp. 3464-73. 

Distelmaier, F., Haack, T. B., Catarino, C. B., Gallenmuller, C., Rodenburg, R. J., 
Strom, T. M., Baertling, F., Meitinger, T., Mayatepek, E., Prokisch, H. and Klopstock, 
T. (2015) 'MRPL44 mutations cause a slowly progressive multisystem disease with 
childhood-onset hypertrophic cardiomyopathy', Neurogenetics, 16(4), pp. 319-23. 

Dixon-Salazar, T. J., Silhavy, J. L., Udpa, N., Schroth, J., Bielas, S., Schaffer, A. E., 
Olvera, J., Bafna, V., Zaki, M. S., Abdel-Salam, G. H., Mansour, L. A., Selim, L., Abdel-
Hadi, S., Marzouki, N., Ben-Omran, T., Al-Saana, N. A., Sonmez, F. M., Celep, F., 
Azam, M., Hill, K. J., Collazo, A., Fenstermaker, A. G., Novarino, G., Akizu, N., 
Garimella, K. V., Sougnez, C., Russ, C., Gabriel, S. B. and Gleeson, J. G. (2012) 
'Exome Sequencing Can Improve Diagnosis and Alter Patient Management', 4(138), 
pp. 138ra78-138ra78. 

Echevarria, L., Clemente, P., Hernandez-Sierra, R., Gallardo, M. E., Fernandez-
Moreno, M. A. and Garesse, R. (2014) 'Glutamyl-tRNAGln amidotransferase is 
essential for mammalian mitochondrial translation in vivo', Biochem J, 460(1), pp. 91-
101. 

Efremov, R. G. and Sazanov, L. A. (2011) 'Respiratory complex I: 'steam engine' of the 
cell?', Curr Opin Struct Biol, 21(4), pp. 532-40. 

El-Hattab, A. W., Craigen, W. J. and Scaglia, F. (2017) 'Mitochondrial DNA 
maintenance defects', Biochimica et Biophysica Acta (BBA) - Molecular Basis of 
Disease, 1863(6), pp. 1539-1555. 

Elson, J. L., Swalwell, H., Blakely, E. L., McFarland, R., Taylor, R. W. and Turnbull, D. 
M. (2009) 'Pathogenic mitochondrial tRNA mutations--which mutations are inherited 
and why?', Hum Mutat, 30(11), pp. E984-92. 

Emperador, S., Bayona-Bafaluy, M. P., Fernández-Marmiesse, A., Pineda, M., 
Felgueroso, B., López-Gallardo, E., Artuch, R., Roca, I., Ruiz-Pesini, E., Couce, M. L. 
and Montoya, J. (2017) 'Molecular-genetic characterization and rescue of a TSFM 
mutation causing childhood-onset ataxia and nonobstructive cardiomyopathy', 
European Journal of Human Genetics, 25(1), pp. 153-156. 

Falkenberg, M. (2018) 'Mitochondrial DNA replication in mammalian cells: overview of 
the pathway', Essays In Biochemistry, 62(3), pp. 287-296. 

Falkenberg, M., Gaspari, M., Rantanen, A., Trifunovic, A., Larsson, N.-G. and 
Gustafsson, C. M. (2002) 'Mitochondrial transcription factors B1 and B2 activate 
transcription of human mtDNA', 31(3), pp. 289-294. 

Faxen, K., Gilderson, G., Adelroth, P. and Brzezinski, P. (2005) 'A mechanistic 
principle for proton pumping by cytochrome c oxidase', Nature, 437(7056), pp. 286-9. 



 
214 

Fernandez-Vizarra, E. and Zeviani, M. (2018) 'Mitochondrial complex III Rieske Fe-S 
protein processing and assembly', Cell Cycle, 17(6), pp. 681-687. 

Finsterer, J. (2019) 'Extensive clinical and genetic workup is worthwhile in patients with 
Leigh-like syndrome due to the TSFM variant c.547G>A', Neurogenetics. 

Frazier, A. E., Thorburn, D. R. and Compton, A. G. (2019) 'Mitochondrial energy 
generation disorders: genes, mechanisms, and clues to pathology', J Biol Chem, 
294(14), pp. 5386-5395. 

Frazier, A. E., Vincent, A. E., Turnbull, D. M., Thorburn, D. R. and Taylor, R. W. (2020) 
'Assessment of mitochondrial respiratory chain enzymes in cells and tissues', Methods 
Cell Biol, 155, pp. 121-156. 

Fukumura, S., Ohba, C., Watanabe, T., Minagawa, K., Shimura, M., Murayama, K., 
Ohtake, A., Saitsu, H., Matsumoto, N. and Tsutsumi, H. (2015) 'Compound 
heterozygous GFM2 mutations with Leigh syndrome complicated by arthrogryposis 
multiplex congenita', J Hum Genet, 60(9), pp. 509-13. 

Fusté, J. M., Wanrooij, S., Jemt, E., Granycome, C. E., Cluett, T. J., Shi, Y., 
Atanassova, N., Holt, I. J., Gustafsson, C. M. and Falkenberg, M. (2010) 'Mitochondrial 
RNA Polymerase Is Needed for Activation of the Origin of Light-Strand DNA 
Replication', 37(1), pp. 67-78. 

Galkin, A. and Moncada, S. (2017) 'Modulation of the conformational state of 
mitochondrial complex I as a target for therapeutic intervention', Interface Focus, 7(2), 
pp. 20160104. 

Galmiche, L., Serre, V., Beinat, M., Assouline, Z., Lebre, A. S., Chretien, D., Nietschke, 
P., Benes, V., Boddaert, N., Sidi, D., Brunelle, F., Rio, M., Munnich, A. and Rotig, A. 
(2011) 'Exome sequencing identifies MRPL3 mutation in mitochondrial 
cardiomyopathy', Hum Mutat, 32(11), pp. 1225-31. 

Galmiche, L., Serre, V., Beinat, M., Zossou, R., Assouline, Z., Lebre, A. S., Chretien, 
F., Shenhav, R., Zeharia, A., Saada, A., Vedrenne, V., Boddaert, N., de Lonlay, P., 
Rio, M., Munnich, A. and Rotig, A. (2012) 'Toward genotype phenotype correlations in 
GFM1 mutations', Mitochondrion, 12(2), pp. 242-7. 

Garcia-Diaz, B., Mario, Sanna-Cherchi, S., Emmanuele, V., Hasan, Claudia, Horvath, 
R., Tadesse, S., Nader, Dimauro, S., Darryl, Shokr, A., Hirano, M. and Catarina (2012) 
'Infantile Encephaloneuromyopathy and Defective Mitochondrial Translation Are Due 
to a Homozygous RMND1 Mutation', 91(4), pp. 729-736. 

Gardeitchik, T., Mohamed, M., Ruzzenente, B., Karall, D., Guerrero-Castillo, S., 
Dalloyaux, D., van den Brand, M., van Kraaij, S., van Asbeck, E., Assouline, Z., Rio, 
M., de Lonlay, P., Scholl-Buergi, S., Wolthuis, D., Hoischen, A., Rodenburg, R. J., 
Sperl, W., Urban, Z., Brandt, U., Mayr, J. A., Wong, S., de Brouwer, A. P. M., Nijtmans, 
L., Munnich, A., Rotig, A., Wevers, R. A., Metodiev, M. D. and Morava, E. (2018) 'Bi-
allelic Mutations in the Mitochondrial Ribosomal Protein MRPS2 Cause Sensorineural 
Hearing Loss, Hypoglycemia, and Multiple OXPHOS Complex Deficiencies', Am J 
Hum Genet, 102(4), pp. 685-695. 

Garneau, J. E., Dupuis, M. E., Villion, M., Romero, D. A., Barrangou, R., Boyaval, P., 
Fremaux, C., Horvath, P., Magadan, A. H. and Moineau, S. (2010) 'The CRISPR/Cas 
bacterial immune system cleaves bacteriophage and plasmid DNA', Nature, 
468(7320), pp. 67-71. 



 
215 

Gebert, N., Chacinska, A., Wagner, K., Guiard, B., Koehler, C. M., Rehling, P., Pfanner, 
N. and Wiedemann, N. (2008) 'Assembly of the three small Tim proteins precedes 
docking to the mitochondrial carrier translocase', EMBO Rep, 9(6), pp. 548-54. 

Giachin, G., Bouverot, R., Acajjaoui, S., Pantalone, S. and Soler-Lopez, M. (2016) 
'Dynamics of Human Mitochondrial Complex I Assembly: Implications for 
Neurodegenerative Diseases', Front Mol Biosci, 3, pp. 43. 

Giles, R. E., Blanc, H., Cann, H. M. and Wallace, D. C. (1980) 'Maternal inheritance of 
human mitochondrial DNA', Proc Natl Acad Sci U S A, 77(11), pp. 6715-9. 

Giorgi, C., Marchi, S. and Pinton, P. (2018) 'The machineries, regulation and cellular 
functions of mitochondrial calcium', Nat Rev Mol Cell Biol, 19(11), pp. 713-730. 

Glasgow, R. I. C., Thompson, K., Barbosa, I. A., He, L., Alston, C. L., Deshpande, C., 
Simpson, M. A., Morris, A. A. M., Neu, A., Lobel, U., Hall, J., Prokisch, H., Haack, T. 
B., Hempel, M., McFarland, R. and Taylor, R. W. (2017) 'Novel GFM2 variants 
associated with early-onset neurological presentations of mitochondrial disease and 
impaired expression of OXPHOS subunits', Neurogenetics, 18(4), pp. 227-235. 

Gohil, V. M. and Greenberg, M. L. (2009) 'Mitochondrial membrane biogenesis: 
phospholipids and proteins go hand in hand', J Cell Biol, 184(4), pp. 469-72. 

Gorman, G. S., Chinnery, P. F., DiMauro, S., Hirano, M., Koga, Y., McFarland, R., 
Suomalainen, A., Thorburn, D. R., Zeviani, M. and Turnbull, D. M. (2016) 'Mitochondrial 
diseases', Nat Rev Dis Primers, 2, pp. 16080. 

Gorman, G. S., Schaefer, A. M., Ng, Y., Gomez, N., Blakely, E. L., Alston, C. L., 
Feeney, C., Horvath, R., Yu-Wai-Man, P., Chinnery, P. F., Taylor, R. W., Turnbull, D. 
M. and McFarland, R. (2015) 'Prevalence of nuclear and mitochondrial DNA mutations 
related to adult mitochondrial disease', Annals of Neurology, 77(5), pp. 753-759. 

Gotz, A., Tyynismaa, H., Euro, L., Ellonen, P., Hyotylainen, T., Ojala, T., Hamalainen, 
R. H., Tommiska, J., Raivio, T., Oresic, M., Karikoski, R., Tammela, O., Simola, K. O., 
Paetau, A., Tyni, T. and Suomalainen, A. (2011) 'Exome sequencing identifies 
mitochondrial alanyl-tRNA synthetase mutations in infantile mitochondrial 
cardiomyopathy', Am J Hum Genet, 88(5), pp. 635-42. 

Grady, J. P., Campbell, G., Ratnaike, T., Blakely, E. L., Falkous, G., Nesbitt, V., 
Schaefer, A. M., McNally, R. J., Gorman, G. S., Taylor, R. W., Turnbull, D. M. and 
McFarland, R. (2014) 'Disease progression in patients with single, large-scale 
mitochondrial DNA deletions', Brain, 137(Pt 2), pp. 323-34. 

Gray, M. W. (2012) 'Mitochondrial evolution', Cold Spring Harb Perspect Biol, 4(9), pp. 
a011403. 

Gray, M. W., Burger, G. and Lang, B. F. (1999) 'Mitochondrial evolution', Science, 
283(5407), pp. 1476-81. 

Greber, B. J. and Ban, N. (2016) 'Structure and Function of the Mitochondrial 
Ribosome', Annu Rev Biochem, 85, pp. 103-32. 

Greber, B. J., Bieri, P., Leibundgut, M., Leitner, A., Aebersold, R., Boehringer, D. and 
Ban, N. (2015) 'The complete structure of the 55S mammalian mitochondrial 
ribosome', Science, 348(6232), pp. 303-8. 

Greber, B. J., Boehringer, D., Leitner, A., Bieri, P., Voigts-Hoffmann, F., Erzberger, J. 
P., Leibundgut, M., Aebersold, R. and Ban, N. (2014) 'Architecture of the large subunit 
of the mammalian mitochondrial ribosome', Nature, 505(7484), pp. 515-9. 



 
216 

Green, M. R. (1986) 'Pre-mRNA splicing', Annu Rev Genet, 20, pp. 671-708. 

Gustafsson, C. M., Falkenberg, M. and Larsson, N. G. (2016) 'Maintenance and 
Expression of Mammalian Mitochondrial DNA', Annu Rev Biochem, 85, pp. 133-60. 

Haack, T. B., Gorza, M., Danhauser, K., Mayr, J. A., Haberberger, B., Wieland, T., 
Kremer, L., Strecker, V., Graf, E., Memari, Y., Ahting, U., Kopajtich, R., Wortmann, S. 
B., Rodenburg, R. J., Kotzaeridou, U., Hoffmann, G. F., Sperl, W., Wittig, I., 
Wilichowski, E., Schottmann, G., Schuelke, M., Plecko, B., Stephani, U., Strom, T. M., 
Meitinger, T., Prokisch, H. and Freisinger, P. (2014) 'Phenotypic spectrum of eleven 
patients and five novel MTFMT mutations identified by exome sequencing and 
candidate gene screening', 111(3), pp. 342-352. 

Hadrava Vanova, K., Kraus, M., Neuzil, J. and Rohlena, J. (2020) 'Mitochondrial 
complex II and reactive oxygen species in disease and therapy', Redox Rep, 25(1), pp. 
26-32. 

Hahn, A. and Zuryn, S. (2019) 'Mitochondrial Genome (mtDNA) Mutations that 
Generate Reactive Oxygen Species', Antioxidants (Basel), 8(9). 

Hammarsund, M., Wilson, W., Corcoran, M., Merup, M., Einhorn, S., Grander, D. and 
Sangfelt, O. (2001) 'Identification and characterization of two novel human 
mitochondrial elongation factor genes, hEFG2 and hEFG1, phylogenetically conserved 
through evolution', Hum Genet, 109(5), pp. 542-50. 

Haque, M. E., Spremulli, L. L. and Fecko, C. J. (2010) 'Identification of Protein-Protein 
and Protein-Ribosome Interacting Regions of the C-terminal Tail of Human 
Mitochondrial Inner Membrane Protein Oxa1L', 285(45), pp. 34991-34998. 

Haute, L. V., Hendrick, A. G., D’Souza, A. R., Powell, C. A., Rebelo-Guiomar, P., 
Harbour, M. E., Ding, S., Fearnley, I. M., Andrews, B. and Minczuk, M. (2019) 
'METTL15 introduces N4-methylcytidine into human mitochondrial 12S rRNA and is 
required for mitoribosome biogenesis', Nucleic Acids Research. 

Hawlitschek, G., Schneider, H., Schmidt, B., Tropschug, M., Hartl, F. U. and Neupert, 
W. (1988) 'Mitochondrial protein import: identification of processing peptidase and of 
PEP, a processing enhancing protein', Cell, 53(5), pp. 795-806. 

He, J., Cooper, H. M., Reyes, A., Di Re, M., Kazak, L., Wood, S. R., Mao, C. C., 
Fearnley, I. M., Walker, J. E. and Holt, I. J. (2012) 'Human C4orf14 interacts with the 
mitochondrial nucleoid and is involved in the biogenesis of the small mitochondrial 
ribosomal subunit', Nucleic Acids Res, 40(13), pp. 6097-108. 

Hebbar, M., Girisha, K. M., Srivastava, A., Bielas, S. and Shukla, A. (2017) 
'Homozygous c.359del variant in MGME1 is associated with early onset cerebellar 
ataxia', European Journal of Medical Genetics, 60(10), pp. 533-535. 

Hikmat, O., Tzoulis, C., Chong, W. K., Chentouf, L., Klingenberg, C., Fratter, C., Carr, 
L. J., Prabhakar, P., Kumaraguru, N., Gissen, P., Cross, J. H., Jacques, T. S., 
Taanman, J. W., Bindoff, L. A. and Rahman, S. (2017) 'The clinical spectrum and 
natural history of early-onset diseases due to DNA polymerase gamma mutations', 
Genet Med, 19(11), pp. 1217-1225. 

Hillen, H. S., Parshin, A. V., Agaronyan, K., Morozov, Y. I., Graber, J. J., Chernev, A., 
Schwinghammer, K., Urlaub, H., Anikin, M., Cramer, P. and Temiakov, D. (2017) 
'Mechanism of Transcription Anti-termination in Human Mitochondria', Cell, 171(5), pp. 
1082-1093 e13. 



 
217 

Hillen, H. S., Temiakov, D. and Cramer, P. (2018) 'Structural basis of mitochondrial 
transcription', Nature Structural & Molecular Biology, 25(9), pp. 754-765. 

Hirokawa, G., Demeshkina, N., Iwakura, N., Kaji, H. and Kaji, A. (2006) 'The ribosome-
recycling step: consensus or controversy?', Trends Biochem Sci, 31(3), pp. 143-9. 

Holt, I. J. (2009) 'Mitochondrial DNA replication and repair: all a flap', Trends in 
Biochemical Sciences, 34(7), pp. 358-365. 

Holt, I. J., Lorimer, H. E. and Jacobs, H. T. (2000) 'Coupled Leading- and Lagging-
Strand Synthesis of Mammalian Mitochondrial DNA', Cell, 100(5), pp. 515-524. 

Horvath, P. and Barrangou, R. (2010) 'CRISPR/Cas, the immune system of bacteria 
and archaea', Science, 327(5962), pp. 167-70. 

Iliakis, G., Wang, H., Perrault, A. R., Boecker, W., Rosidi, B., Windhofer, F., Wu, W., 
Guan, J., Terzoudi, G. and Pantelias, G. (2004) 'Mechanisms of DNA double strand 
break repair and chromosome aberration formation', Cytogenet Genome Res, 104(1-
4), pp. 14-20. 

Ishino, Y., Shinagawa, H., Makino, K., Amemura, M. and Nakata, A. (1987) 'Nucleotide 
sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in 
Escherichia coli, and identification of the gene product', J Bacteriol, 169(12), pp. 5429-
33. 

Ivanova, E., Jowitt, T. A. and Lu, H. (2008) 'Assembly of the mitochondrial Tim9-Tim10 
complex: a multi-step reaction with novel intermediates', J Mol Biol, 375(1), pp. 229-
39. 

Jackson, C. B., Huemer, M., Bolognini, R., Martin, F., Szinnai, G., Donner, B. C., 
Richter, U., Battersby, B. J., Nuoffer, J. M., Suomalainen, A. and Schaller, A. (2019) 'A 
variant in MRPS14 (uS14m) causes perinatal hypertrophic cardiomyopathy with 
neonatal lactic acidosis, growth retardation, dysmorphic features and neurological 
involvement', Hum Mol Genet, 28(4), pp. 639-649. 

Janer, A., Prudent, J., Paupe, V., Fahiminiya, S., Majewski, J., Sgarioto, N., Des 
Rosiers, C., Forest, A., Lin, Z. Y., Gingras, A. C., Mitchell, G., McBride, H. M. and 
Shoubridge, E. A. (2016) 'SLC25A46 is required for mitochondrial lipid homeostasis 
and cristae maintenance and is responsible for Leigh syndrome', EMBO Mol Med, 8(9), 
pp. 1019-38. 

Janer, A., Van Karnebeek, C. D., Sasarman, F., Antonicka, H., Al Ghamdi, M., Shyr, 
C., Dunbar, M., Stockler-Ispiroglu, S., Ross, C. J., Vallance, H., Dionne, J., 
Wasserman, W. W. and Shoubridge, E. A. (2015) 'RMND1 deficiency associated with 
neonatal lactic acidosis, infantile onset renal failure, deafness, and multiorgan 
involvement', 23(10), pp. 1301-1307. 

Jansen, R., Embden, J. D., Gaastra, W. and Schouls, L. M. (2002) 'Identification of 
genes that are associated with DNA repeats in prokaryotes', Mol Microbiol, 43(6), pp. 
1565-75. 

Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A. and Charpentier, E. 
(2012) 'A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial 
immunity', Science, 337(6096), pp. 816-21. 

Jing, R., Corbett, J. L., Cai, J., Beeson, G. C., Beeson, C. C., Chan, S. S., Dimmock, 
D. P., Lazcares, L., Geurts, A. M., Lemasters, J. J. and Duncan, S. A. (2018) 'A Screen 
Using iPSC-Derived Hepatocytes Reveals NAD(+) as a Potential Treatment for mtDNA 
Depletion Syndrome', Cell Rep, 25(6), pp. 1469-1484 e5. 



 
218 

Jobbins, A. M., Reichenbach, L. F., Lucas, C. M., Hudson, A. J., Burley, G. A. and 
Eperon, I. C. (2018) 'The mechanisms of a mammalian splicing enhancer', Nucleic 
Acids Res, 46(5), pp. 2145-2158. 

Johansson, M. and Karlsson, A. (1996) 'Cloning and expression of human 
deoxyguanosine kinase cDNA', 93(14), pp. 7258-7262. 

Johansson, M. and Karlsson, A. (1997) 'Cloning of the cDNA and Chromosome 
Localization of the Gene for Human Thymidine Kinase 2', 272(13), pp. 8454-8458. 

Jonckheere, A. I., Smeitink, J. A. and Rodenburg, R. J. (2012) 'Mitochondrial ATP 
synthase: architecture, function and pathology', J Inherit Metab Dis, 35(2), pp. 211-25. 

Jourdain, A. A., Koppen, M., Wydro, M., Rodley, C. D., Lightowlers, R. N., 
Chrzanowska-Lightowlers, Z. M. and Martinou, J. C. (2013) 'GRSF1 regulates RNA 
processing in mitochondrial RNA granules', Cell Metab, 17(3), pp. 399-410. 

Joyce, N. C., Oskarsson, B. and Jin, L. W. (2012) 'Muscle biopsy evaluation in 
neuromuscular disorders', Phys Med Rehabil Clin N Am, 23(3), pp. 609-31. 

Jukes, T. H. (1983) 'Evolution of the amino acid code: inferences from mitochondrial 
codes', J Mol Evol, 19(3-4), pp. 219-25. 

Karvelis, T., Gasiunas, G., Miksys, A., Barrangou, R., Horvath, P. and Siksnys, V. 
(2013) 'crRNA and tracrRNA guide Cas9-mediated DNA interference in Streptococcus 
thermophilus', RNA Biol, 10(5), pp. 841-51. 

Kasiviswanathan, R., Collins, T. R. and Copeland, W. C. (2012) 'The interface of 
transcription and DNA replication in the mitochondria', Biochim Biophys Acta, 1819(9-
10), pp. 970-8. 

Kilic, M., Oguz, K. K., Kilic, E., Yuksel, D., Demirci, H., Sagiroglu, M. S., Yucel-Yilmaz, 
D. and Ozgul, R. K. (2017) 'A patient with mitochondrial disorder due to a novel 
mutation in MRPS22', Metab Brain Dis, 32(5), pp. 1389-1393. 

Kispal, G., Csere, P., Prohl, C. and Lill, R. (1999) 'The mitochondrial proteins Atm1p 
and Nfs1p are essential for biogenesis of cytosolic Fe/S proteins', EMBO J, 18(14), pp. 
3981-9. 

Klinge, S. and Woolford, J. L., Jr. (2019) 'Ribosome assembly coming into focus', Nat 
Rev Mol Cell Biol, 20(2), pp. 116-131. 

Kluck, R. M., Bossy-Wetzel, E., Green, D. R. and Newmeyer, D. D. (1997) 'The release 
of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis', 
Science, 275(5303), pp. 1132-6. 

Koehler, C. M., Jarosch, E., Tokatlidis, K., Schmid, K., Schweyen, R. J. and Schatz, 
G. (1998) 'Import of mitochondrial carriers mediated by essential proteins of the 
intermembrane space', Science, 279(5349), pp. 369-73. 

Kohda, M., Tokuzawa, Y., Kishita, Y., Nyuzuki, H., Moriyama, Y., Mizuno, Y., Hirata, 
T., Yatsuka, Y., Yamashita-Sugahara, Y., Nakachi, Y., Kato, H., Okuda, A., Tamaru, 
S., Borna, N. N., Banshoya, K., Aigaki, T., Sato-Miyata, Y., Ohnuma, K., Suzuki, T., 
Nagao, A., Maehata, H., Matsuda, F., Higasa, K., Nagasaki, M., Yasuda, J., 
Yamamoto, M., Fushimi, T., Shimura, M., Kaiho-Ichimoto, K., Harashima, H., 
Yamazaki, T., Mori, M., Murayama, K., Ohtake, A. and Okazaki, Y. (2016) 'A 
Comprehensive Genomic Analysis Reveals the Genetic Landscape of Mitochondrial 
Respiratory Chain Complex Deficiencies', PLoS Genet, 12(1), pp. e1005679. 



 
219 

Kondadi, A. K., Anand, R. and Reichert, A. S. (2019) 'Functional Interplay between 
Cristae Biogenesis, Mitochondrial Dynamics and Mitochondrial DNA Integrity', Int J Mol 
Sci, 20(17). 

Koripella, R. K., Sharma, M. R., Risteff, P., Keshavan, P. and Agrawal, R. K. (2019) 
'Structural insights into unique features of the human mitochondrial ribosome 
recycling', Proc Natl Acad Sci U S A, 116(17), pp. 8283-8288. 

Korr, H., Kurz, C., Seidler, T. O., Sommer, D. and Schmitz, C. (1998) 'Mitochondrial 
DNA synthesis studied autoradiographically in various cell types in vivo', Brazilian 
Journal of Medical and Biological Research, 31(2), pp. 289-298. 

Kotani, T., Akabane, S., Takeyasu, K., Ueda, T. and Takeuchi, N. (2013) 'Human G-
proteins, ObgH1 and Mtg1, associate with the large mitochondrial ribosome subunit 
and are involved in translation and assembly of respiratory complexes', Nucleic Acids 
Res, 41(6), pp. 3713-22. 

Kowluru, A., Tannous, M. and Chen, H.-Q. (2002) 'Localization and Characterization 
of the Mitochondrial Isoform of the Nucleoside Diphosphate Kinase in the Pancreatic 
β Cell: Evidence for Its Complexation with Mitochondrial Succinyl-CoA Synthetase', 
398(2), pp. 160-169. 

Kraus, F. and Ryan, M. T. (2017) 'The constriction and scission machineries involved 
in mitochondrial fission', J Cell Sci, 130(18), pp. 2953-2960. 

Krawczak, M., Thomas, N. S., Hundrieser, B., Mort, M., Wittig, M., Hampe, J. and 
Cooper, D. N. (2007) 'Single base-pair substitutions in exon-intron junctions of human 
genes: nature, distribution, and consequences for mRNA splicing', Hum Mutat, 28(2), 
pp. 150-8. 

Kuhl, I., Miranda, M., Posse, V., Milenkovic, D., Mourier, A., Siira, S. J., Bonekamp, N. 
A., Neumann, U., Filipovska, A., Polosa, P. L., Gustafsson, C. M. and Larsson, N. G. 
(2016) 'POLRMT regulates the switch between replication primer formation and gene 
expression of mammalian mtDNA', Sci Adv, 2(8), pp. e1600963. 

Lake, N. J., Webb, B. D., Stroud, D. A., Richman, T. R., Ruzzenente, B., Compton, A. 
G., Mountford, H. S., Pulman, J., Zangarelli, C., Rio, M., Boddaert, N., Assouline, Z., 
Sherpa, M. D., Schadt, E. E., Houten, S. M., Byrnes, J., McCormick, E. M., Zolkipli-
Cunningham, Z., Haude, K., Zhang, Z., Retterer, K., Bai, R., Calvo, S. E., Mootha, V. 
K., Christodoulou, J., Rotig, A., Filipovska, A., Cristian, I., Falk, M. J., Metodiev, M. D. 
and Thorburn, D. R. (2017) 'Biallelic Mutations in MRPS34 Lead to Instability of the 
Small Mitoribosomal Subunit and Leigh Syndrome', Am J Hum Genet, 101(2), pp. 239-
254. 

Lee, K. W. and Bogenhagen, D. F. (2014) 'Assignment of 2'-O-methyltransferases to 
modification sites on the mammalian mitochondrial large subunit 16 S ribosomal RNA 
(rRNA)', J Biol Chem, 289(36), pp. 24936-42. 

Lee, K. W., Okot-Kotber, C., LaComb, J. F. and Bogenhagen, D. F. (2013) 
'Mitochondrial ribosomal RNA (rRNA) methyltransferase family members are 
positioned to modify nascent rRNA in foci near the mitochondrial DNA nucleoid', J Biol 
Chem, 288(43), pp. 31386-99. 

Lee, Y.-S., Kennedy, W. D. and Yin, Y. W. (2009) 'Structural Insight into Processive 
Human Mitochondrial DNA Synthesis and Disease-Related Polymerase Mutations', 
139(2), pp. 312-324. 

Lightowlers, R. N. and Chrzanowska-Lightowlers, Z. M. (2010) 'Terminating human 
mitochondrial protein synthesis: a shift in our thinking', RNA Biol, 7(3), pp. 282-6. 



 
220 

Lightowlers, R. N., Rozanska, A. and Chrzanowska-Lightowlers, Z. M. (2014) 
'Mitochondrial protein synthesis: figuring the fundamentals, complexities and 
complications, of mammalian mitochondrial translation', FEBS Lett, 588(15), pp. 2496-
503. 

Lino, C. A., Harper, J. C., Carney, J. P. and Timlin, J. A. (2018) 'Delivering CRISPR: a 
review of the challenges and approaches', Drug Deliv, 25(1), pp. 1234-1257. 

Litonin, D., Sologub, M., Shi, Y., Savkina, M., Anikin, M., Falkenberg, M., Gustafsson, 
C. and Temiakov, D. (2010) 'Human mitochondrial transcription revisited: only TFAM 
and TFB2M are required for transcription of the mitochondrial genes in vitro', 285(24), 
pp. jbc.C110.128918. 

Liu, M. and Spremulli, L. (2000) 'Interaction of mammalian mitochondrial ribosomes 
with the inner membrane', J Biol Chem, 275(38), pp. 29400-6. 

Loeffen, J. L., Smeitink, J. A., Trijbels, J. M., Janssen, A. J., Triepels, R. H., Sengers, 
R. C. and van den Heuvel, L. P. (2000) 'Isolated complex I deficiency in children: 
clinical, biochemical and genetic aspects', Hum Mutat, 15(2), pp. 123-34. 

Loson, O. C., Song, Z., Chen, H. and Chan, D. C. (2013) 'Fis1, Mff, MiD49, and MiD51 
mediate Drp1 recruitment in mitochondrial fission', Mol Biol Cell, 24(5), pp. 659-67. 

Lott, M. T., Leipzig, J. N., Derbeneva, O., Xie, H. M., Chalkia, D., Sarmady, M., 
Procaccio, V. and Wallace, D. C. (2013) 'mtDNA Variation and Analysis Using Mitomap 
and Mitomaster', Curr Protoc Bioinformatics, 44, pp. 1 23 1-26. 

Luckey, J. A., Drossman, H., Kostichka, A. J., Mead, D. A., D'Cunha, J., Norris, T. B. 
and Smith, L. M. (1990) 'High speed DNA sequencing by capillary electrophoresis', 
Nucleic Acids Res, 18(15), pp. 4417-21. 

Luo, S., Valencia, C. A., Zhang, J., Lee, N. C., Slone, J., Gui, B., Wang, X., Li, Z., Dell, 
S., Brown, J., Chen, S. M., Chien, Y. H., Hwu, W. L., Fan, P. C., Wong, L. J., Atwal, P. 
S. and Huang, T. (2018) 'Biparental Inheritance of Mitochondrial DNA in Humans', Proc 
Natl Acad Sci U S A, 115(51), pp. 13039-13044. 

Luo, S. M., Ge, Z. J., Wang, Z. W., Jiang, Z. Z., Wang, Z. B., Ouyang, Y. C., Hou, Y., 
Schatten, H. and Sun, Q. Y. (2013) 'Unique insights into maternal mitochondrial 
inheritance in mice', Proc Natl Acad Sci U S A, 110(32), pp. 13038-43. 

Lutz-Bonengel, S. and Parson, W. (2019) 'No further evidence for paternal leakage of 
mitochondrial DNA in humans yet', Proc Natl Acad Sci U S A, 116(6), pp. 1821-1822. 

Ma, Y., Zhang, L. and Huang, X. (2014) 'Genome modification by CRISPR/Cas9', 
FEBS J, 281(23), pp. 5186-93. 

Magnusson, J., Orth, M., Lestienne, P. and Taanman, J. W. (2003) 'Replication of 
mitochondrial DNA occurs throughout the mitochondria of cultured human cells', Exp 
Cell Res, 289(1), pp. 133-42. 

Mai, N., Chrzanowska-Lightowlers, Z. M. A. and Lightowlers, R. N. (2017) 'The process 
of mammalian mitochondrial protein synthesis', Cell and Tissue Research, 367(1), pp. 
5-20. 

Makarova, K. S., Haft, D. H., Barrangou, R., Brouns, S. J., Charpentier, E., Horvath, 
P., Moineau, S., Mojica, F. J., Wolf, Y. I., Yakunin, A. F., van der Oost, J. and Koonin, 
E. V. (2011) 'Evolution and classification of the CRISPR-Cas systems', Nat Rev 
Microbiol, 9(6), pp. 467-77. 



 
221 

Marinoni, E. N., de Oliveira, J. S., Nicolet, Y., Raulfs, E. C., Amara, P., Dean, D. R. 
and Fontecilla-Camps, J. C. (2012) '(IscS-IscU)2 complex structures provide insights 
into Fe2S2 biogenesis and transfer', Angew Chem Int Ed Engl, 51(22), pp. 5439-42. 

Martikainen, M. H. and Chinnery, P. F. (2015) 'Mitochondrial disease: mimics and 
chameleons', Pract Neurol, 15(6), pp. 424-35. 

Mayr, J. A., Haack, T. B., Freisinger, P., Karall, D., Makowski, C., Koch, J., Feichtinger, 
R. G., Zimmermann, F. A., Rolinski, B., Ahting, U., Meitinger, T., Prokisch, H. and 
Sperl, W. (2015) 'Spectrum of combined respiratory chain defects', J Inherit Metab Dis, 
38(4), pp. 629-40. 

McLean, J. R., Cohn, G. L., Brandt, I. K. and Simpson, M. V. (1958) 'Incorporation of 
labeled amino acids into the protein of muscle and liver mitochondria', J Biol Chem, 
233(3), pp. 657-63. 

McMillan, H. J., Schwartzentruber, J., Smith, A., Lee, S., Chakraborty, P., Bulman, D. 
E., Beaulieu, C. L., Majewski, J., Boycott, K. M. and Geraghty, M. T. (2014) 'Compound 
heterozygous mutations in glycyl-tRNA synthetase are a proposed cause of systemic 
mitochondrial disease', BMC Medical Genetics, 15(1), pp. 36. 

McWilliams, T. G. and Suomalainen, A. (2019) 'Mitochondrial DNA can be inherited 
from fathers, not just mothers', Nature, 565(7739), pp. 296-297. 

Meera Krishna, B., Khan, M. A. and Khan, S. T. (2019) 'Next-Generation Sequencing 
(NGS) Platforms: An Exciting Era of Genome Sequence Analysis', in Tripathi, V., 
Kumar, P., Tripathi, P., Kishore, A. and Kamle, M. (eds.) Microbial Genomics in 
Sustainable Agroecosystems: Volume 2. Singapore: Springer Singapore, pp. 89-109. 

Mendelsohn, B. A., Bennett, N. K., Darch, M. A., Yu, K., Nguyen, M. K., Pucciarelli, D., 
Nelson, M., Horlbeck, M. A., Gilbert, L. A., Hyun, W., Kampmann, M., Nakamura, J. L. 
and Nakamura, K. (2018) 'A high-throughput screen of real-time ATP levels in 
individual cells reveals mechanisms of energy failure', PLoS Biol, 16(8), pp. e2004624. 

Menezes, M. J., Guo, Y., Zhang, J., Riley, L. G., Cooper, S. T., Thorburn, D. R., Li, J., 
Dong, D., Li, Z., Glessner, J., Davis, R. L., Sue, C. M., Alexander, S. I., Arbuckle, S., 
Kirwan, P., Keating, B. J., Xu, X., Hakonarson, H. and Christodoulou, J. (2015) 
'Mutation in mitochondrial ribosomal protein S7 (MRPS7) causes congenital 
sensorineural deafness, progressive hepatic and renal failure and lactic acidemia', 
Hum Mol Genet, 24(8), pp. 2297-307. 

Mercer, T. R., Clark, M. B., Andersen, S. B., Brunck, M. E., Haerty, W., Crawford, J., 
Taft, R. J., Nielsen, L. K., Dinger, M. E. and Mattick, J. S. (2015) 'Genome-wide 
discovery of human splicing branchpoints', Genome Res, 25(2), pp. 290-303. 

Metodiev, M. D., Lesko, N., Park, C. B., Cámara, Y., Shi, Y., Wibom, R., Hultenby, K., 
Gustafsson, C. M. and Larsson, N.-G. (2009) 'Methylation of 12S rRNA Is Necessary 
for In Vivo Stability of the Small Subunit of the Mammalian Mitochondrial Ribosome', 
9(4), pp. 386-397. 

Metodiev, M. D., Spåhr, H., Loguercio Polosa, P., Meharg, C., Becker, C., Altmueller, 
J., Habermann, B., Larsson, N.-G. and Ruzzenente, B. (2014) 'NSUN4 Is a Dual 
Function Mitochondrial Protein Required for Both Methylation of 12S rRNA and 
Coordination of Mitoribosomal Assembly', 10(2), pp. e1004110. 

Metodiev, M. D., Thompson, K., Charlotte, Andrew, He, L., Assouline, Z., Rio, M., Bahi-
Buisson, N., Pyle, A., Griffin, H., Siira, S., Filipovska, A., Munnich, A., Patrick, 
McFarland, R., Rötig, A. and Robert (2016) 'Recessive Mutations in TRMT10C Cause 



 
222 

Defects in Mitochondrial RNA Processing and Multiple Respiratory Chain Deficiencies', 
98(5), pp. 993-1000. 

Milenkovic, D., Matic, S., Kuhl, I., Ruzzenente, B., Freyer, C., Jemt, E., Park, C. B., 
Falkenberg, M. and Larsson, N. G. (2013) 'TWINKLE is an essential mitochondrial 
helicase required for synthesis of nascent D-loop strands and complete mtDNA 
replication', Human Molecular Genetics, 22(10), pp. 1983-1993. 

Miller, C., Saada, A., Shaul, N., Shabtai, N., Ben-Shalom, E., Shaag, A., Hershkovitz, 
E. and Elpeleg, O. (2004) 'Defective mitochondrial translation caused by a ribosomal 
protein (MRPS16) mutation', Ann Neurol, 56(5), pp. 734-8. 

Minczuk, M., Piwowarski, J., Papworth, M. A., Awiszus, K., Schalinski, S., 
Dziembowski, A., Dmochowska, A., Bartnik, E., Tokatlidis, K., Stepien, P. P. and 
Borowski, P. (2002) 'Localisation of the human hSuv3p helicase in the mitochondrial 
matrix and its preferential unwinding of dsDNA', Nucleic Acids Res, 30(23), pp. 5074-
86. 

Miralles Fusté, J., Shi, Y., Wanrooij, S., Zhu, X., Jemt, E., Persson, Ö., Sabouri, N., 
Gustafsson, C. M. and Falkenberg, M. (2014) 'In Vivo Occupancy of Mitochondrial 
Single-Stranded DNA Binding Protein Supports the Strand Displacement Mode of DNA 
Replication', PLoS Genetics, 10(12), pp. e1004832. 

Mitchell, P. (1961) 'Coupling of phosphorylation to electron and hydrogen transfer by 
a chemi-osmotic type of mechanism', Nature, 191, pp. 144-8. 

Mizuguchi, T., Nakashima, M., Kato, M., Yamada, K., Okanishi, T., Ekhilevitch, N., 
Mandel, H., Eran, A., Toyono, M., Sawaishi, Y., Motoi, H., Shiina, M., Ogata, K., 
Miyatake, S., Miyake, N., Saitsu, H. and Matsumoto, N. (2017) 'PARS2 and NARS2 
mutations in infantile-onset neurodegenerative disorder', J Hum Genet, 62(5), pp. 525-
529. 

Mojica, F. J. M., Diez-Villasenor, C., Garcia-Martinez, J. and Almendros, C. (2009) 
'Short motif sequences determine the targets of the prokaryotic CRISPR defence 
system', Microbiology, 155(Pt 3), pp. 733-740. 

Montoya, J., Christianson, T., Levens, D., Rabinowitz, M. and Attardi, G. (1982) 
'Identification of initiation sites for heavy-strand and light-strand transcription in human 
mitochondrial DNA', 79(23), pp. 7195-7199. 

Nakajima, J., Eminoglu, T. F., Vatansever, G., Nakashima, M., Tsurusaki, Y., Saitsu, 
H., Kawashima, H., Matsumoto, N. and Miyake, N. (2014) 'A novel homozygous 
YARS2 mutation causes severe myopathy, lactic acidosis, and sideroblastic anemia 
2', 59(4), pp. 229-232. 

Ng, Y. S., Alston, C. L., Diodato, D., Morris, A. A., Ulrick, N., Kmoch, S., Houstek, J., 
Martinelli, D., Haghighi, A., Atiq, M., Gamero, M. A., Garcia-Martinez, E., 
Kratochvilova, H., Santra, S., Brown, R. M., Brown, G. K., Ragge, N., Monavari, A., 
Pysden, K., Ravn, K., Casey, J. P., Khan, A., Chakrapani, A., Vassallo, G., Simons, 
C., McKeever, K., O'Sullivan, S., Childs, A. M., Ostergaard, E., Vanderver, A., 
Goldstein, A., Vogt, J., Taylor, R. W. and McFarland, R. (2016) 'The clinical, 
biochemical and genetic features associated with RMND1-related mitochondrial 
disease', J Med Genet, 53(11), pp. 768-775. 

Nicholls, T. J., Nadalutti, C. A., Motori, E., Sommerville, E. W., Gorman, G. S., Basu, 
S., Hoberg, E., Turnbull, D. M., Chinnery, P. F., Larsson, N. G., Larsson, E., 
Falkenberg, M., Taylor, R. W., Griffith, J. D. and Gustafsson, C. M. (2018) 



 
223 

'Topoisomerase 3alpha Is Required for Decatenation and Segregation of Human 
mtDNA', Mol Cell, 69(1), pp. 9-23 e6. 

Nicholls, T. J., Zsurka, G., Peeva, V., Scholer, S., Szczesny, R. J., Cysewski, D., 
Reyes, A., Kornblum, C., Sciacco, M., Moggio, M., Dziembowski, A., Kunz, W. S. and 
Minczuk, M. (2014) 'Linear mtDNA fragments and unusual mtDNA rearrangements 
associated with pathological deficiency of MGME1 exonuclease', 23(23), pp. 6147-
6162. 

Nishimasu, H., Ran, F. A., Hsu, P. D., Konermann, S., Shehata, S. I., Dohmae, N., 
Ishitani, R., Zhang, F. and Nureki, O. (2014) 'Crystal structure of Cas9 in complex with 
guide RNA and target DNA', Cell, 156(5), pp. 935-49. 

Ojala, D., Montoya, J. and Attardi, G. (1981) 'tRNA punctuation model of RNA 
processing in human mitochondria', Nature, 290(5806), pp. 470-474. 

Oliveira, M. T. and Kaguni, L. S. (2010) 'Functional Roles of the N- and C-Terminal 
Regions of the Human Mitochondrial Single-Stranded DNA-Binding Protein', 5(10), pp. 
e15379. 

Osellame, L. D., Blacker, T. S. and Duchen, M. R. (2012) 'Cellular and molecular 
mechanisms of mitochondrial function', Best Pract Res Clin Endocrinol Metab, 26(6), 
pp. 711-23. 

Ozaki, T., Neumann, T., Wai, D., Schafer, K. L., van Valen, F., Lindner, N., Scheel, C., 
Bocker, W., Winkelmann, W., Dockhorn-Dworniczak, B., Horst, J. and Poremba, C. 
(2003) 'Chromosomal alterations in osteosarcoma cell lines revealed by comparative 
genomic hybridization and multicolor karyotyping', Cancer Genet Cytogenet, 140(2), 
pp. 145-52. 

Parikh, S. (2010) 'The neurologic manifestations of mitochondrial disease', Dev Disabil 
Res Rev, 16(2), pp. 120-8. 

Pearce, S., Nezich, C. L. and Spinazzola, A. (2013) 'Mitochondrial diseases: translation 
matters', Mol Cell Neurosci, 55, pp. 1-12. 

Pena, J. A., Lotze, T., Yang, Y., Umana, L., Walkiewicz, M., Hunter, J. V. and Scaglia, 
F. (2016) 'Methionyl-tRNA Formyltransferase (MTFMT) Deficiency Mimicking Acquired 
Demyelinating Disease', 31(2), pp. 215-219. 

Penque, B. A., Su, L., Wang, J., Ji, W., Bale, A., Luh, F., Fulbright, R. K., Sarmast, U., 
Sega, A. G., Konstantino, M., Spencer-Manzon, M., Pierce, R., Yen, Y. and Lakhani, 
S. A. (2018) 'A homozygous variant in RRM2B is associated with severe metabolic 
acidosis and early neonatal death', European Journal of Medical Genetics. 

Perli, E., Pisano, A., Glasgow, R. I. C., Carbo, M., Hardy, S. A., Falkous, G., He, L., 
Cerbelli, B., Pignataro, M. G., Zacara, E., Re, F., Della Monica, P. L., Morea, V., 
Bonnen, P. E., Taylor, R. W., D’Amati, G. and Giordano, C. (2019) 'Novel compound 
mutations in the mitochondrial translation elongation factor (TSFM) gene cause severe 
cardiomyopathy with myocardial fibro-adipose replacement', Scientific Reports, 9(1). 

Pietromonaco, S. F., Denslow, N. D. and O'Brien, T. W. (1991) 'Proteins of mammalian 
mitochondrial ribosomes', Biochimie, 73(6), pp. 827-35. 

Ponnalagu, D. and Singh, H. (2017) 'Anion Channels of Mitochondria', Handb Exp 
Pharmacol, 240, pp. 71-101. 

Pontarin, G., Fijolek, A., Pizzo, P., Ferraro, P., Rampazzo, C., Pozzan, T., Thelander, 
L., Reichard, P. A. and Bianchi, V. (2008) 'Ribonucleotide reduction is a cytosolic 



 
224 

process in mammalian cells independently of DNA damage', 105(46), pp. 17801-
17806. 

Pool, M. R. (2005) 'Signal recognition particles in chloroplasts, bacteria, yeast and 
mammals (review)', Mol Membr Biol, 22(1-2), pp. 3-15. 

Posse, V., Hoberg, E., Dierckx, A., Shahzad, S., Koolmeister, C., Larsson, N. G., 
Wilhelmsson, L. M., Hallberg, B. M. and Gustafsson, C. M. (2014) 'The amino terminal 
extension of mammalian mitochondrial RNA polymerase ensures promoter specific 
transcription initiation', Nucleic Acids Res, 42(6), pp. 3638-47. 

Posse, V., Shahzad, S., Falkenberg, M., Hallberg, B. M. and Gustafsson, C. M. (2015) 
'TEFM is a potent stimulator of mitochondrial transcription elongation in vitro', Nucleic 
Acids Res, 43(5), pp. 2615-24. 

Pourcel, C., Salvignol, G. and Vergnaud, G. (2005) 'CRISPR elements in Yersinia 
pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide 
additional tools for evolutionary studies', Microbiology, 151(Pt 3), pp. 653-663. 

Pronicka, E., Piekutowska-Abramczuk, D., Ciara, E., Trubicka, J., Rokicki, D., 
Karkucińska-Więckowska, A., Pajdowska, M., Jurkiewicz, E., Halat, P., Kosińska, J., 
Pollak, A., Rydzanicz, M., Stawinski, P., Pronicki, M., Krajewska-Walasek, M. and 
Płoski, R. (2016) 'New perspective in diagnostics of mitochondrial disorders: two years’ 
experience with whole-exome sequencing at a national paediatric centre', Journal of 
Translational Medicine, 14(1). 

Pulman, J., Ruzzenente, B., Bianchi, L., Rio, M., Boddaert, N., Munnich, A., Rotig, A. 
and Metodiev, M. D. (2019) 'Mutations in the MRPS28 gene encoding the small 
mitoribosomal subunit protein bS1m in a patient with intrauterine growth retardation, 
craniofacial dysmorphism and multisystemic involvement', Hum Mol Genet, 28(9), pp. 
1445-1462. 

Pulst, S. M. (1999) 'Genetic linkage analysis', Arch Neurol, 56(6), pp. 667-72. 

Rabbani, B., Tekin, M. and Mahdieh, N. (2014) 'The promise of whole-exome 
sequencing in medical genetics', J Hum Genet, 59(1), pp. 5-15. 

Rahman, S. and Copeland, W. C. (2019) 'POLG-related disorders and their 
neurological manifestations', Nature Reviews Neurology, 15(1), pp. 40-52. 

Rapp, G., Klaudiny, J., Hagendorff, G., Luck, M. R. and Scheit, K. H. (1989) 'Complete 
sequence of the coding region of human elongation factor 2 (EF-2) by enzymatic 
amplification of cDNA from human ovarian granulosa cells', Biol Chem Hoppe Seyler, 
370(10), pp. 1071-5. 

Reese, M. G., Eeckman, F. H., Kulp, D. and Haussler, D. (1997) 'Improved splice site 
detection in Genie', J Comput Biol, 4(3), pp. 311-23. 

Reyes, A., Kazak, L., Wood, S. R., Yasukawa, T., Jacobs, H. T. and Holt, I. J. (2013) 
'Mitochondrial DNA replication proceeds via a 'bootlace' mechanism involving the 
incorporation of processed transcripts', Nucleic Acids Res, 41(11), pp. 5837-50. 

Richardson, D. R., Lane, D. J., Becker, E. M., Huang, M. L., Whitnall, M., Suryo 
Rahmanto, Y., Sheftel, A. D. and Ponka, P. (2010) 'Mitochondrial iron trafficking and 
the integration of iron metabolism between the mitochondrion and cytosol', Proc Natl 
Acad Sci U S A, 107(24), pp. 10775-82. 

Richter, R., Rorbach, J., Pajak, A., Smith, P. M., Wessels, H. J., Huynen, M. A., 
Smeitink, J. A., Lightowlers, R. N. and Chrzanowska-Lightowlers, Z. M. (2010) 'A 



 
225 

functional peptidyl-tRNA hydrolase, ICT1, has been recruited into the human 
mitochondrial ribosome', 29(6), pp. 1116-1125. 

Riley, L. G., Menezes, M. J., Rudinger-Thirion, J., Duff, R., De Lonlay, P., Rotig, A., 
Tchan, M. C., Davis, M., Cooper, S. T. and Christodoulou, J. (2013) 'Phenotypic 
variability and identification of novel YARS2 mutations in YARS2 mitochondrial 
myopathy, lactic acidosis and sideroblastic anaemia', 8(1), pp. 193. 

Robberson, D. L., Kasamatsu, H. and Vinograd, J. (1972) 'Replication of Mitochondrial 
DNA. Circular Replicative Intermediates in Mouse L Cells', Proceedings of the National 
Academy of Sciences, 69(3), pp. 737-741. 

Rocha, M. C., Grady, J. P., Grunewald, A., Vincent, A., Dobson, P. F., Taylor, R. W., 
Turnbull, D. M. and Rygiel, K. A. (2015) 'A novel immunofluorescent assay to 
investigate oxidative phosphorylation deficiency in mitochondrial myopathy: 
understanding mechanisms and improving diagnosis', Sci Rep, 5, pp. 15037. 

Rodnina, M. V., Stark, H., Savelsbergh, A., Wieden, H. J., Mohr, D., Matassova, N. B., 
Peske, F., Daviter, T., Gualerzi, C. O. and Wintermeyer, W. (2000) 'GTPases 
mechanisms and functions of translation factors on the ribosome', Biol Chem, 381(5-
6), pp. 377-87. 

Rodriguez-Rodriguez, D. R., Ramirez-Solis, R., Garza-Elizondo, M. A., Garza-
Rodriguez, M. L. and Barrera-Saldana, H. A. (2019) 'Genome editing: A perspective 
on the application of CRISPR/Cas9 to study human diseases (Review)', Int J Mol Med, 
43(4), pp. 1559-1574. 

Roger, A. J., Munoz-Gomez, S. A. and Kamikawa, R. (2017) 'The Origin and 
Diversification of Mitochondria', Curr Biol, 27(21), pp. R1177-R1192. 

Rorbach, J., Boesch, P., Gammage, P. A., Nicholls, T. J., Pearce, S. F., Patel, D., 
Hauser, A., Perocchi, F. and Minczuk, M. (2014) 'MRM2 and MRM3 are involved in 
biogenesis of the large subunit of the mitochondrial ribosome', Mol Biol Cell, 25(17), 
pp. 2542-55. 

Rudler, D. L., Hughes, L. A., Perks, K. L., Richman, T. R., Kuznetsova, I., Ermer, J. A., 
Abudulai, L. N., Shearwood, A. J., Viola, H. M., Hool, L. C., Siira, S. J., Rackham, O. 
and Filipovska, A. (2019) 'Fidelity of translation initiation is required for coordinated 
respiratory complex assembly', Sci Adv, 5(12), pp. eaay2118. 

Ruhanen, H., Ushakov, K. and Yasukawa, T. (2011) 'Involvement of DNA ligase III and 
ribonuclease H1 in mitochondrial DNA replication in cultured human cells', Biochimica 
et Biophysica Acta (BBA) - Molecular Cell Research, 1813(12), pp. 2000-2007. 

Ryu, S. M., Hur, J. W. and Kim, K. (2019) 'Evolution of CRISPR towards accurate and 
efficient mammal genome engineering', BMB Rep, 52(8), pp. 475-481. 

Saada, A., Shaag, A., Arnon, S., Dolfin, T., Miller, C., Fuchs-Telem, D., Lombes, A. 
and Elpeleg, O. (2007) 'Antenatal mitochondrial disease caused by mitochondrial 
ribosomal protein (MRPS22) mutation', J Med Genet, 44(12), pp. 784-6. 

Salinas-Giege, T., Giege, R. and Giege, P. (2015) 'tRNA biology in mitochondria', Int J 
Mol Sci, 16(3), pp. 4518-59. 

Sallevelt, S. C., de Die-Smulders, C. E., Hendrickx, A. T., Hellebrekers, D. M., de Coo, 
I. F., Alston, C. L., Knowles, C., Taylor, R. W., McFarland, R. and Smeets, H. J. (2017) 
'De novo mtDNA point mutations are common and have a low recurrence risk', J Med 
Genet, 54(2), pp. 73-83. 



 
226 

Salvesen, G. S. and Dixit, V. M. (1997) 'Caspases: intracellular signaling by 
proteolysis', Cell, 91(4), pp. 443-6. 

Samanta, K., Mirams, G. R. and Parekh, A. B. (2018) 'Sequential forward and reverse 
transport of the Na(+) Ca(2+) exchanger generates Ca(2+) oscillations within 
mitochondria', Nat Commun, 9(1), pp. 156. 

Sanger, F., Nicklen, S. and Coulson, A. R. (1977) 'DNA sequencing with chain-
terminating inhibitors', Proc Natl Acad Sci U S A, 74(12), pp. 5463-7. 

Sasarman, F., Antonicka, H. and Shoubridge, E. A. (2008) 'The A3243G 
tRNALeu(UUR) MELAS mutation causes amino acid misincorporation and a combined 
respiratory chain assembly defect partially suppressed by overexpression of EFTu and 
EFG2', Hum Mol Genet, 17(23), pp. 3697-707. 

Satoh, M. and Kuroiwa, T. (1991) 'Organization of multiple nucleoids and DNA 
molecules in mitochondria of a human cell', Exp Cell Res, 196(1), pp. 137-40. 

Scala, M., Brigati, G., Fiorillo, C., Nesti, C., Rubegni, A., Pedemonte, M., Bruno, C., 
Severino, M., Derchi, M., Minetti, C. and Santorelli, F. M. (2019) 'Novel homozygous 
TSFM pathogenic variant associated with encephalocardiomyopathy with 
sensorineural hearing loss and peculiar neuroradiologic findings', Neurogenetics, 
20(3), pp. 165-172. 

Schafer, E., Seelert, H., Reifschneider, N. H., Krause, F., Dencher, N. A. and Vonck, 
J. (2006) 'Architecture of active mammalian respiratory chain supercomplexes', J Biol 
Chem, 281(22), pp. 15370-5. 

Schagger, H. and Pfeiffer, K. (2000) 'Supercomplexes in the respiratory chains of yeast 
and mammalian mitochondria', EMBO J, 19(8), pp. 1777-83. 

Schiller, D. (2009) 'Pam17 and Tim44 act sequentially in protein import into the 
mitochondrial matrix', Int J Biochem Cell Biol, 41(11), pp. 2343-9. 

Schubert Baldo, M. and Vilarinho, L. (2020) 'Molecular basis of Leigh syndrome: a 
current look', Orphanet J Rare Dis, 15(1), pp. 31. 

Schwartz, M. and Vissing, J. (2002) 'Paternal inheritance of mitochondrial DNA', N Engl 
J Med, 347(8), pp. 576-80. 

Serre, V., Rozanska, A., Beinat, M., Chretien, D., Boddaert, N., Munnich, A., Rotig, A. 
and Chrzanowska-Lightowlers, Z. M. (2013) 'Mutations in mitochondrial ribosomal 
protein MRPL12 leads to growth retardation, neurological deterioration and 
mitochondrial translation deficiency', Biochim Biophys Acta, 1832(8), pp. 1304-12. 

Shadel, G. S. and Clayton, D. A. (1997) 'Mitochondrial DNA Maintenance In 
Vertibrates', 66(1), pp. 409-435. 

Shajani, Z., Sykes, M. T. and Williamson, J. R. (2011) 'Assembly of bacterial 
ribosomes', Annu Rev Biochem, 80, pp. 501-26. 

Shamseldin, H. E., Alshammari, M., Al-Sheddi, T., Salih, M. A., Alkhalidi, H., Kentab, 
A., Repetto, G. M., Hashem, M. and Alkuraya, F. S. (2012) 'Genomic analysis of 
mitochondrial diseases in a consanguineous population reveals novel candidate 
disease genes', J Med Genet, 49(4), pp. 234-41. 

Sharma, M. R., Koc, E. C., Datta, P. P., Booth, T. M., Spremulli, L. L. and Agrawal, R. 
K. (2003) 'Structure of the mammalian mitochondrial ribosome reveals an expanded 
functional role for its component proteins', Cell, 115(1), pp. 97-108. 



 
227 

Shimazaki, H., Takiyama, Y., Ishiura, H., Sakai, C., Matsushima, Y., Hatakeyama, H., 
Honda, J., Sakoe, K., Naoi, T., Namekawa, M., Fukuda, Y., Takahashi, Y., Goto, J., 
Tsuji, S., Goto, Y. I. and Nakano, I. (2012) 'A homozygous mutation of C12orf65 causes 
spastic paraplegia with optic atrophy and neuropathy (SPG55)', 49(12), pp. 777-784. 

Shoubridge, E. A. and Wai, T. (2007) 'Mitochondrial DNA and the mammalian oocyte', 
Curr Top Dev Biol, 77, pp. 87-111. 

Sideris, D. P., Petrakis, N., Katrakili, N., Mikropoulou, D., Gallo, A., Ciofi-Baffoni, S., 
Banci, L., Bertini, I. and Tokatlidis, K. (2009) 'A novel intermembrane space-targeting 
signal docks cysteines onto Mia40 during mitochondrial oxidative folding', J Cell Biol, 
187(7), pp. 1007-22. 

Simon, M. T., Ng, B. G., Friederich, M. W., Wang, R. Y., Boyer, M., Kircher, M., Collard, 
R., Buckingham, K. J., Chang, R., Shendure, J., Nickerson, D. A., Bamshad, M. J., Van 
Hove, J. L. K., Freeze, H. H. and Abdenur, J. E. (2017) 'Activation of a cryptic splice 
site in the mitochondrial elongation factor GFM1 causes combined OXPHOS 
deficiency'. 

Sissler, M., Gonzalez-Serrano, L. E. and Westhof, E. (2017) 'Recent Advances in 
Mitochondrial Aminoacyl-tRNA Synthetases and Disease', Trends Mol Med, 23(8), pp. 
693-708. 

Skladal, D., Halliday, J. and Thorburn, D. R. (2003) 'Minimum birth prevalence of 
mitochondrial respiratory chain disorders in children', Brain, 126(Pt 8), pp. 1905-12. 

Smeitink, J. A., Elpeleg, O., Antonicka, H., Diepstra, H., Saada, A., Smits, P., 
Sasarman, F., Vriend, G., Jacob-Hirsch, J., Shaag, A., Rechavi, G., Welling, B., Horst, 
J., Rodenburg, R. J., van den Heuvel, B. and Shoubridge, E. A. (2006a) 'Distinct clinical 
phenotypes associated with a mutation in the mitochondrial translation elongation 
factor EFTs', Am J Hum Genet, 79(5), pp. 869-77. 

Smeitink, J. A. M., Elpeleg, O., Antonicka, H., Diepstra, H., Saada, A., Smits, P., 
Sasarman, F., Vriend, G., Jacob-Hirsch, J., Shaag, A., Rechavi, G., Welling, B., Horst, 
J., Rodenburg, R. J., Van Den Heuvel, B. and Shoubridge, E. A. (2006b) 'Distinct 
Clinical Phenotypes Associated with a Mutation in the Mitochondrial Translation 
Elongation Factor EFTs', 79(5), pp. 869-877. 

Smith, K. R., Bromhead, C. J., Hildebrand, M. S., Shearer, A. E., Lockhart, P. J., 
Najmabadi, H., Leventer, R. J., McGillivray, G., Amor, D. J., Smith, R. J. and Bahlo, M. 
(2011) 'Reducing the exome search space for mendelian diseases using genetic 
linkage analysis of exome genotypes', Genome Biol, 12(9), pp. R85. 

Smits, P., Antonicka, H., Van Hasselt, P. M., Weraarpachai, W., Haller, W., Schreurs, 
M., Venselaar, H., Rodenburg, R. J., Smeitink, J. A. and Van Den Heuvel, L. P. (2011a) 
'Mutation in subdomain G' of mitochondrial elongation factor G1 is associated with 
combined OXPHOS deficiency in fibroblasts but not in muscle', 19(3), pp. 275-279. 

Smits, P., Saada, A., Wortmann, S. B., Heister, A. J., Brink, M., Pfundt, R., Miller, C., 
Haas, D., Hantschmann, R., Rodenburg, R. J., Smeitink, J. A. and van den Heuvel, L. 
P. (2011b) 'Mutation in mitochondrial ribosomal protein MRPS22 leads to Cornelia de 
Lange-like phenotype, brain abnormalities and hypertrophic cardiomyopathy', Eur J 
Hum Genet, 19(4), pp. 394-9. 

Smits, P., Smeitink, J. and van den Heuvel, L. (2010) 'Mitochondrial translation and 
beyond: processes implicated in combined oxidative phosphorylation deficiencies', J 
Biomed Biotechnol, 2010, pp. 737385. 



 
228 

Smits, P., Smeitink, J. A., van den Heuvel, L. P., Huynen, M. A. and Ettema, T. J. 
(2007) 'Reconstructing the evolution of the mitochondrial ribosomal proteome', Nucleic 
Acids Res, 35(14), pp. 4686-703. 

Sommerville, E. W., Zhou, X.-L., Oláhová, M., Jenkins, J., Euro, L., Konovalova, S., 
Hilander, T., Pyle, A., He, L., Habeebu, S., Saunders, C., Kelsey, A., Morris, A. A. M., 
McFarland, R., Suomalainen, A., Gorman, G. S., Wang, E.-D., Thiffault, I., Tyynismaa, 
H. and Taylor, R. W. (2018) 'Instability of the mitochondrial alanyl-tRNA synthetase 
underlies fatal infantile-onset cardiomyopathy', Human Molecular Genetics. 

Song, Z., Ghochani, M., McCaffery, J. M., Frey, T. G. and Chan, D. C. (2009) 
'Mitofusins and OPA1 mediate sequential steps in mitochondrial membrane fusion', 
Mol Biol Cell, 20(15), pp. 3525-32. 

Spurdle, A. B., Couch, F. J., Hogervorst, F. B., Radice, P., Sinilnikova, O. M. and 
Group, I. U. G. V. W. (2008) 'Prediction and assessment of splicing alterations: 
implications for clinical testing', Hum Mutat, 29(11), pp. 1304-13. 

Stenton, S. L. and Prokisch, H. (2020) 'Genetics of mitochondrial diseases: Identifying 
mutations to help diagnosis', EBioMedicine, 56, pp. 102784. 

Stewart, J. B. and Chinnery, P. F. (2015) 'The dynamics of mitochondrial DNA 
heteroplasmy: implications for human health and disease', Nat Rev Genet, 16(9), pp. 
530-42. 

Sun, F., Huo, X., Zhai, Y., Wang, A., Xu, J., Su, D., Bartlam, M. and Rao, Z. (2005) 
'Crystal structure of mitochondrial respiratory membrane protein complex II', Cell, 
121(7), pp. 1043-57. 

Sutovsky, P., Van Leyen, K., McCauley, T., Day, B. N. and Sutovsky, M. (2004) 
'Degradation of paternal mitochondria after fertilization: implications for heteroplasmy, 
assisted reproductive technologies and mtDNA inheritance', Reprod Biomed Online, 
8(1), pp. 24-33. 

Suzuki, T., Nagao, A. and Suzuki, T. (2011) 'Human Mitochondrial tRNAs: Biogenesis, 
Function, Structural Aspects, and Diseases', 45(1), pp. 299-329. 

Suzuki, T. and Suzuki, T. (2014) 'A complete landscape of post-transcriptional 
modifications in mammalian mitochondrial tRNAs', Nucleic Acids Res, 42(11), pp. 
7346-57. 

Szczesny, R. J., Borowski, L. S., Brzezniak, L. K., Dmochowska, A., Gewartowski, K., 
Bartnik, E. and Stepien, P. P. (2010) 'Human mitochondrial RNA turnover caught in 
flagranti: involvement of hSuv3p helicase in RNA surveillance', Nucleic Acids Res, 
38(1), pp. 279-98. 

Takeuchi, N., Kawakami, M., Omori, A., Ueda, T., Spremulli, L. L. and Watanabe, K. 
(1998) 'Mammalian mitochondrial methionyl-tRNA transformylase from bovine liver. 
Purification, characterization, and gene structure', J Biol Chem, 273(24), pp. 15085-
90. 

Taylor, R. W., McDonnell, M. T., Blakely, E. L., Chinnery, P. F., Taylor, G. A., Howell, 
N., Zeviani, M., Briem, E., Carrara, F. and Turnbull, D. M. (2003) 'Genotypes from 
patients indicate no paternal mitochondrial DNA contribution', Ann Neurol, 54(4), pp. 
521-4. 

Taylor, R. W., Pyle, A., Griffin, H., Blakely, E. L., Duff, J., He, L., Smertenko, T., Alston, 
C. L., Neeve, V. C., Best, A., Yarham, J. W., Kirschner, J., Schara, U., Talim, B., 
Topaloglu, H., Baric, I., Holinski-Feder, E., Abicht, A., Czermin, B., Kleinle, S., Morris, 



 
229 

A. A. M., Vassallo, G., Gorman, G. S., Ramesh, V., Turnbull, D. M., Santibanez-Koref, 
M., McFarland, R., Horvath, R. and Chinnery, P. F. (2014) 'Use of Whole-Exome 
Sequencing to Determine the Genetic Basis of Multiple Mitochondrial Respiratory 
Chain Complex Deficiencies', 312(1), pp. 68. 

Taylor, R. W., Schaefer, A. M., Barron, M. J., McFarland, R. and Turnbull, D. M. (2004) 
'The diagnosis of mitochondrial muscle disease', Neuromuscul Disord, 14(4), pp. 237-
45. 

Taylor, R. W. and Turnbull, D. M. (2005) 'Mitochondrial DNA mutations in human 
disease', Nat Rev Genet, 6(5), pp. 389-402. 

Temperley, R. J., Wydro, M., Lightowlers, R. N. and Chrzanowska-Lightowlers, Z. M. 
(2010) 'Human mitochondrial mRNAs—like members of all families, similar but 
different', 1797(6-7), pp. 1081-1085. 

Terzioglu, M., Ruzzenente, B., Harmel, J., Mourier, A., Jemt, E., Lopez, M. D., Kukat, 
C., Stewart, J. B., Wibom, R., Meharg, C., Habermann, B., Falkenberg, M., Gustafsson, 
C. M., Park, C. B. and Larsson, N. G. (2013) 'MTERF1 binds mtDNA to prevent 
transcriptional interference at the light-strand promoter but is dispensable for rRNA 
gene transcription regulation', Cell Metab, 17(4), pp. 618-26. 

Thompson, K., Collier, J. J., Glasgow, R. I. C., Robertson, F. M., Pyle, A., Blakely, E. 
L., Alston, C. L., Olahova, M., McFarland, R. and Taylor, R. W. (2019) 'Recent 
advances in understanding the molecular genetic basis of mitochondrial disease', J 
Inherit Metab Dis, 43(1), pp. 36-50. 

Thompson, K., Mai, N., Oláhová, M., Scialó, F., Formosa, L. E., Stroud, D. A., Garrett, 
M., Lax, N. Z., Robertson, F. M., Jou, C., Nascimento, A., Ortez, C., Jimenez‐
Mallebrera, C., Hardy, S. A., He, L., Brown, G. K., Marttinen, P., McFarland, R., Sanz, 
A., Battersby, B. J., Bonnen, P. E., Ryan, M. T., Chrzanowska‐Lightowlers, Z. M., 
Lightowlers, R. N. and Taylor, R. W. (2018) 'OXA1L mutations cause mitochondrial 
encephalopathy and a combined oxidative phosphorylation defect', EMBO Molecular 
Medicine, pp. e9060. 

Tolkunova, E., Park, H., Xia, J., King, M. P. and Davidson, E. (2000) 'The human lysyl-
tRNA synthetase gene encodes both the cytoplasmic and mitochondrial enzymes by 
means of an unusual alternative splicing of the primary transcript', J Biol Chem, 
275(45), pp. 35063-9. 

Traschutz, A., Hayer, S. N., Bender, B., Schols, L., Biskup, S. and Synofzik, M. (2019) 
'TSFM mutations cause a complex hyperkinetic movement disorder with strong relief 
by cannabinoids', Parkinsonism Relat Disord, 60, pp. 176-178. 

Tsuboi, M., Morita, H., Nozaki, Y., Akama, K., Ueda, T., Ito, K., Nierhaus, K. H. and 
Takeuchi, N. (2009) 'EF-G2mt is an exclusive recycling factor in mammalian 
mitochondrial protein synthesis', Mol Cell, 35(4), pp. 502-10. 

Tucker, E. J., Hershman, S. G., Kohrer, C., Belcher-Timme, C. A., Patel, J., 
Goldberger, O. A., Christodoulou, J., Silberstein, J. M., McKenzie, M., Ryan, M. T., 
Compton, A. G., Jaffe, J. D., Carr, S. A., Calvo, S. E., RajBhandary, U. L., Thorburn, 
D. R. and Mootha, V. K. (2011) 'Mutations in MTFMT underlie a human disorder of 
formylation causing impaired mitochondrial translation', Cell Metab, 14(3), pp. 428-34. 

Uchiumi, T., Ohgaki, K., Yagi, M., Aoki, Y., Sakai, A., Matsumoto, S. and Kang, D. 
(2010) 'ERAL1 is associated with mitochondrial ribosome and elimination of ERAL1 
leads to mitochondrial dysfunction and growth retardation', Nucleic Acids Res, 38(16), 
pp. 5554-68. 



 
230 

Uhler, J. P. and Falkenberg, M. (2015) 'Primer removal during mammalian 
mitochondrial DNA replication', 34, pp. 28-38. 

Valente, L., Shigi, N., Suzuki, T. and Zeviani, M. (2009) 'The R336Q mutation in human 
mitochondrial EFTu prevents the formation of an active mt-EFTu.GTP.aa-tRNA ternary 
complex', Biochim Biophys Acta, 1792(8), pp. 791-5. 

Valente, L., Tiranti, V., Marsano, R. M., Malfatti, E., Fernandez-Vizarra, E., Donnini, 
C., Mereghetti, P., De Gioia, L., Burlina, A., Castellan, C., Comi, G. P., Savasta, S., 
Ferrero, I. and Zeviani, M. (2007) 'Infantile Encephalopathy and Defective 
Mitochondrial DNA Translation in Patients with Mutations of Mitochondrial Elongation 
Factors EFG1 and EFTu', The American Journal of Human Genetics, 80(1), pp. 44-58. 

Vedrenne, V., Galmiche, L., Chretien, D., de Lonlay, P., Munnich, A. and Rotig, A. 
(2012) 'Mutation in the mitochondrial translation elongation factor EFTs results in 
severe infantile liver failure', J Hepatol, 56(1), pp. 294-7. 

Verrigni, D., Diodato, D., Di Nottia, M., Torraco, A., Bellacchio, E., Rizza, T., Tozzi, G., 
Verardo, M., Piemonte, F., Tasca, G., D'Amico, A., Bertini, E. and Carrozzo, R. (2017) 
'Novel mutations in KARS cause hypertrophic cardiomyopathy and combined 
mitochondrial respiratory chain defect', Clinical Genetics, 91(6), pp. 918-923. 

Von Ballmoos, C., Wiedenmann, A. and Dimroth, P. (2009) 'Essentials for ATP 
synthesis by F1F0 ATP synthases', Annu Rev Biochem, 78, pp. 649-72. 

Wai, T., Ao, A., Zhang, X., Cyr, D., Dufort, D. and Shoubridge, E. A. (2010) 'The role 
of mitochondrial DNA copy number in mammalian fertility', Biol Reprod, 83(1), pp. 52-
62. 

Walberg, M. W. and Clayton, D. A. (1981) 'Sequence and properties of the human KB 
cell and mouse L cell D-loop regions of mitochondrial DNA', Nucleic Acids Res, 9(20), 
pp. 5411-21. 

Wang, L. (2016) 'Mitochondrial purine and pyrimidine metabolism and beyond', 
Nucleosides, Nucleotides and Nucleic Acids, 35(10-12), pp. 578-594. 

Wang, M. and Marin, A. (2006) 'Characterization and prediction of alternative splice 
sites', Gene, 366(2), pp. 219-27. 

Wanrooij, S. and Falkenberg, M. (2010) 'The human mitochondrial replication fork in 
health and disease', Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1797(8), pp. 
1378-1388. 

Webb, B. D., Wheeler, P. G., Hagen, J. J., Cohen, N., Linderman, M. D., Diaz, G. A., 
Naidich, T. P., Rodenburg, R. J., Houten, S. M. and Schadt, E. E. (2015) 'Novel, 
Compound Heterozygous, Single-Nucleotide Variants in MARS2 Associated with 
Developmental Delay, Poor Growth, and Sensorineural Hearing Loss', Human 
Mutation, 36(6), pp. 587-592. 

Wei, W., Pagnamenta, A. T., Gleadall, N., Sanchis-Juan, A., Stephens, J., Broxholme, 
J., Tuna, S., Odhams, C. A., Genomics England Research, C., BioResource, N., 
Fratter, C., Turro, E., Caulfield, M. J., Taylor, J. C., Rahman, S. and Chinnery, P. F. 
(2020) 'Nuclear-mitochondrial DNA segments resemble paternally inherited 
mitochondrial DNA in humans', Nat Commun, 11(1), pp. 1740. 

Wiedemann, N., Kozjak, V., Chacinska, A., Schonfisch, B., Rospert, S., Ryan, M. T., 
Pfanner, N. and Meisinger, C. (2003) 'Machinery for protein sorting and assembly in 
the mitochondrial outer membrane', Nature, 424(6948), pp. 565-71. 



 
231 

Wiedemann, N. and Pfanner, N. (2017) 'Mitochondrial Machineries for Protein Import 
and Assembly', Annu Rev Biochem, 86, pp. 685-714. 

Wilson, D. F. (2017) 'Oxidative phosphorylation: regulation and role in cellular and 
tissue metabolism', J Physiol, 595(23), pp. 7023-7038. 

Wintermeyer, W. and Rodnina, M. V. (2000) 'Translational elongation factor G: a GTP-
driven motor of the ribosome', Essays Biochem, 35, pp. 117-29. 

Woodbridge, P., Liang, C., Davis, R. L., Vandebona, H. and Sue, C. M. (2013) 'POLG 
mutations in Australian patients with mitochondrial disease', Internal Medicine Journal, 
43(2), pp. 150-156. 

Wortmann, S. B., Mayr, J. A., Nuoffer, J. M., Prokisch, H. and Sperl, W. (2017) 'A 
Guideline for the Diagnosis of Pediatric Mitochondrial Disease: The Value of Muscle 
and Skin Biopsies in the Genetics Era', Neuropediatrics, 48(4), pp. 309-314. 

Xia, D., Yu, C.-A., Zhou, F. and Esser, L. (2018) 'Ubiquinol-Cytochrome c 
Oxidoreductase (Complex III)', in Roberts, G. and Watts, A. (eds.) Encyclopedia of 
Biophysics. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 1-8. 

Xu, F., Ackerley, C., Maj, M. C., Addis, J. B., Levandovskiy, V., Lee, J., Mackay, N., 
Cameron, J. M. and Robinson, B. H. (2008) 'Disruption of a mitochondrial RNA-binding 
protein gene results in decreased cytochrome b expression and a marked reduction in 
ubiquinol-cytochrome c reductase activity in mouse heart mitochondria', Biochem J, 
416(1), pp. 15-26. 

Yakes, F. M. and Van Houten, B. (1997) 'Mitochondrial DNA damage is more extensive 
and persists longer than nuclear DNA damage in human cells following oxidative 
stress', Proc Natl Acad Sci U S A, 94(2), pp. 514-9. 

Yellen, G. (2018) 'Fueling thought: Management of glycolysis and oxidative 
phosphorylation in neuronal metabolism', J Cell Biol, 217(7), pp. 2235-2246. 

Zaganelli, S., Rebelo-Guiomar, P., Maundrell, K., Rozanska, A., Pierredon, S., Powell, 
C. A., Jourdain, A. A., Hulo, N., Lightowlers, R. N., Chrzanowska-Lightowlers, Z. M., 
Minczuk, M. and Martinou, J.-C. (2017) 'The Pseudouridine Synthase RPUSD4 Is an 
Essential Component of Mitochondrial RNA Granules', Journal of Biological Chemistry, 
292(11), pp. 4519-4532. 

Zhang, F., Wen, Y. and Guo, X. (2014) 'CRISPR/Cas9 for genome editing: progress, 
implications and challenges', Hum Mol Genet, 23(R1), pp. R40-6. 

Zhang, L., Vielle, A., Espinosa, S. and Zhao, R. (2019) 'RNAs in the spliceosome: 
Insight from cryoEM structures', Wiley Interdiscip Rev RNA, 10(3), pp. e1523. 

Zickermann, V., Wirth, C., Nasiri, H., Siegmund, K., Schwalbe, H., Hunte, C. and 
Brandt, U. (2015) 'Structural biology. Mechanistic insight from the crystal structure of 
mitochondrial complex I', Science, 347(6217), pp. 44-9. 

Zong, S., Wu, M., Gu, J., Liu, T., Guo, R. and Yang, M. (2018) 'Structure of the intact 
14-subunit human cytochrome c oxidase', Cell Res, 28(10), pp. 1026-1034. 

 


