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Abstract 

Soil salinity is one of the major problems in and and semi-arid zones, affecting 

up to 50% of arable land in Syria. Salt-affected soils are usually desalinized by 

leaching the excess salts out of the soil profile. Some studies have shown that 

applying the leaching water intermittently instead of continuously may result in 

more efficient leaching. This thesis aims to investigate, theoretically and 

experimentally, the benefits and limitations of intermittent leaching and to 

develop mathematical models able to simulate solute transport through 

structured soils under such conditions. 

Laboratory leaching experiments were conducted on bi-continuum 

media, as an analogue of structured soils, created by packing porous aggregates 
(ceramic spheres or soil aggregates of uni- or multi- diameters) in glass 

columns. The columns were either leached continuously or intermittently and 

with different pore-water velocities. Intermittent leaching was undertaken 

either under saturated or drained conditions. Under "saturated conditions" the 

column remained saturated throughout the experiment, while under "drained 

conditions" the column was allowed to drain at the beginning of each rest 

period and remained like this until being saturated again for the next leaching 

period. The solute concentration in the leachate was monitored continuously 
(either using a flow-through conductivity cell, or by using ion-selective 

electrodes for Ký and Br' ) to produce breakthrough curves. These curves were 

used to investigate solute transport through such media and validate the 
developed models. 
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The experiments showed that water savings of up to 22% under intermittent 

leaching from a soil aggregate column were possible under saturated conditions. 

Such saving increased with aggregate size, flow velocity and duration of rest 

period. Under drained conditions, for ceramic spheres, 12% more solute was 

leached with the same amount of water under intermittent leaching. 

Two models were developed, the SIL (Saturated Intermittent Leaching) 

and the DIL (Drained Intermittent Leaching) models, for saturated and drained 

conditions respectively. The SIL model simulated solute transport in structured 

soils under intermittent leaching. The governing equations during displacement 

period were the mobile-immobile convection-dispersion equations. During the 

rest period the flow is stopped, and the solute transfers only by diff-usion 

between immobile and mobile water regions. The DIL model simulated solute 

transport when the soil drained. Here, during the displacement period, the 

mobile water was drained. The model simulated this using the equations of the 

SIL model by assuming that air displaced the solution in a piston-type 

displacement. During the rest periods the solute difluses within the aggregates 

establishing a more uniform concentration in the immobile water across the 

aggregate. 

The models can be used with a wide range of column conditions and for 

both sorbed and non-sorbed solutes. Both models were verified against 

experimental results. 
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Symbol Definition 

a sphere radius 

sphere or aggregate diameter 

the fraction of adsorption sites that equilibrate with the mobile 
water phase 
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q water flux 

r2 coefficient of determination (linear regresion) 

t time 

V the average pore-water velocity 
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CM average solute concentration in the mobile water region 

Cim solute concentration in the immobile water region 
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CO initial concentration of solute in both the mobile and 
immobile solution 

Do ionic diffusion coefficient in free water 

D, effective diffusion coefficient 

D,, mechanical dispersion coefficient 

D hydrodynamic dispersion coefficient s 
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K distribution coefficient 
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P dimensionless variable (Table 6.2) 

R total retardation factor 
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S concentration of adsorbate, expressed as mass adsorbate 
per unit mass of dry soil 

S2 adsorption on type 2 "kinetic" sites 

Sa initial amount of potassium in the column including the 
adsorbed one 

so initial salt mass in the column 
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V outflow volume 
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Ve volume of external solution (for diffusion model) 101 

VWS volume of solution inside the ceramic spheres [L 3] 

(X mass transfer rate coefficient between the mobile and immobile 

water regions [1-11 

CC k first-order kinetic rate coefficient IT" I 

P dimensionless variable (Table 6.2) 

0 
SP sphere porosity [L3 L-3] 

0 volumetric water content of the column [L3 L-3j 

OM volume of mobile water as a proportion of total column volume [L3 L-3] 

0 
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P soil bulk density [M L-3] 
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CO dimensionless mass transfer coefficient. 

The above symbols represent the main variables and parameters, others will be 

defined through the text as necessary. 



Chapter One 

6rmwwfýý 

The provision of adequate drainage and the accompanying problem of 

accumulation of salt in soil has plagued irrigated agriculture for centuries. 

Different factors can cause such salt accumulation. Saline irrigation water, low 

soil permeability, inadequate drainage conditions, low rainfall, and poor 
irrigation managementý all contribute to the tendency of salt to accumulate in 

soils (Yaron, 1981). Excess salts in the soil solution influence the growth of 

plants by osmotic effects and toxicity of specific ions, and by changing the 

physical properties of the soils. Over time, salts may concentrate to such an 

extent that they hinder germination , seedling, vegetative growth, and the yield 

and quality of crops (Tanji, 1990), and ultimately render land sterile. 

Historical records for the past 6000 years reveal that numerous 

societies based on irrigated agriculture failed due to salinity problems. One of 

the most highly publicised is that of ancient Mesopotamia, now Iraq. This once 

productive land appears to have suffered progressive salt damage from about 
2400 BC to 1700 BC which contributed to decline of this civilisation 
(Gelbured, 1985; Tanji, 1990). Nowadays, salt-affected soils are to be found 

on all continents, covering about 10% of the total surface of dry land 

(SzaboIcs, 1980), and about one-third of all irrigated land (Yarot; 198 1). 
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The only way known to effectively remove excess salts from soil is by 

leaching (Shalhevet, 1973). Ponding water on the soil surface is the traditional 

method, but consumes large quantities of valuable water. During such leaching 

the water does not uniformly flow through the soil, but preferentially through 

macropores (Tanji, 1990; Jury, 1991). These tend to be inter-aggregate pores 

within a structured soil and such preferential flow results in a reduced 

effectiveness of leaching from within aggregates. More uniform leaching 

occurs if soil is leached in the unsaturated condition but this is slower and 

requires greater management control. In practice this requires a sprinkler 

irrigation system, which is unusual in and and semi-arid environments. 

Alternatively, if ponded leaching were intermittent, with a "rest period" 

during which the profile drained, solutes could diffuse to the exterior of the 

aggregates during the rest period even though macropore flow was not 

occurring. During the subsequent ponded-irrigation phase such solutes would 

quickly diffuse to the macropore region and be readily leached. Such a strategy 

should result in more efficient use of water for leaching purposes. 

This study aims to optimise leaching using such intermittent ponded 

leaching of the soil profile. 



Chapter Two 

YteYatuQ 
øview 

This chapter consists of four main parts. The first will explain the idea of 

miscible displacement and will illustrate the different shapes of the resulting 

breakthrough curves. The second will consider the equation of solute transport 

through the soil and a general overview of the modelling approach of solute 

transport. The third part will introduce the idea of soil structure and the bi- 

continuum concept for modelling salt leaching from structured soils. The fourth 

part will summarise the comparative studies between continuous and 

intermittent leaching and will identify the most important factors affecting 

intermittent leaching. 

2.1 Miscible displacement 

2.1.1 Introduction 

Miscible displacement (MD) is the process that occurs when one fluid mixes 

with and displaces another fluid (Kirkham & Powers, 1972). Leaching salts 
from a soil is an example of MD, because added water mixes with, and 
displaces, the solution in the soil. Another example of MD is the movement of 

water containing dissolved fertiliser or herbicides into and through the soil. 
One of the best known introductions of MD techniques to the field of soil 

science was made by Nielsen & Biggar in a series of papers in 1961 1962 and 
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1963. Since then MD techniques have gained widespread acceptance and use in 

the field of soil science . 
Solutes in the displacing fluid are transferred through the soil by mass 

transport of the moving fluid and by diffusion (Bear, 1972; Kirkham & 

Poivers, 1972; Rose, 1973). In a soil column this flow can be expected to be 

rather "erratic". It varies in magnitude and direction from point to point due to 

the complex pore geometry, and this erratic flow causes the solute to disperse 

between the displacing and the displaced fluid. The term "mechanical 

dispersion" is used to differentiate this spreading mechanism from that due to 

diffusion. This distinction is made because diffusion is caused by the random 

thermal motion of solute molecules, whereas dispersion is due to the erratic 

flow of the fluids through complex pore systems. Mangold & Tsang (1991) 

defined three processes occurring in the pore channels causing mechanical 

dispersion: 

1) mixing within individual pore channels due to differences in velocity of the 

molecules between those in the middle of the channel and those subject to 

dragging forces along the pore walls, 

2) mixing caused by differences in the sizes of the pore channels and hence 

velocities along the flow paths, and 

3) differences caused by the branching of flow channel paths in the soil 

matrix. 

The separation between mechanical and diffusion dispersion is, actually, rather 

artificial as they are inseparable. However, molecular diffusion depends on 

concentration differences (Bear, 1972), whereas mechanical dispersion 

depends only on velocity (Wagenet, 1983). 

The coefficient of hydrodynamic dispersion (sometimes called effective 
diffusion coefficient (Jury et al., 1981), or apparent diffusion coefficient 



(Biggar & Nielsen, 1980; Wagenet, 1983), or simply the dispersion coefficient 

(Nielsen et al., 1986)) is a term which is used to describe the spreading 

resulting from both mechanical dispersion and molecular diffusion (Rose & 

Passioura, 197 1; Passioura, 197 1; Bear, 1972; Freeze & Cherry, 1979). 

2.1.2 Breakthrough curves 
Because it is difficult to study the shape of the boundary between different 

fluids as they emerge from a pipe or soil column, it is common to monitor the 

concentration change of the displacing solute in the effluent. The manner in 

which the concentration changes can give some information about the porous 

medium and the physical behaviour of the fluid movement. Data are presented 
in a standard form called a breakthrough curve (BTC). 

The BTC is a graph of concentration in the effluent relative to some 

standard concentration (usually the concentration of influent ), plotted against 

the ratio of the volume of the collected effluent relative to the total pore volume 
in the column (Krupp & Erick, 1968). 

In the absence of dispersion (i. e., immiscible displacement), the BTC 

would take the form of the vertical line. This model, in which there is no 
dispersion, is called the piston-flow model of solute transport (Fig. 2.1), so 

named because the solute is displaced through the soil like a piston. Such 

displacement is seldom if ever encountered in practice (Hillel, 1980). What 

normally happens at the boundary (or the front between the two solutions) is a 

gradual mixing resulting from the hydrodynamic dispersion so that the 

boundary becomes increasingly diff-use about the mean position of the 

advancing front and the BTC will take a form of S-shaped curve (Bear & 

Bachmat, 1991; Rose, 1977). Shifting of the curve to the left indicates 

exclusion or "bypass" from a significant portion of the soil solution, while 

shifting to the right indicates adsorption or solute retention by soil. The 

symmetrical breakthrough curve which passes through the point of relative 
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concentration = 0.5 at pore volume =1 (showed by the dashed line in Fig. 2.1) 

called typical dispersion (or an ideal MD). Comprehensive discussions of the 

shapes of BTCs have been presented by Nielsen & Biggar (1962) and Rose 

(1977). 

1.00 

0.75 

0.50 

0.25 

C 

PlIelon 
IF ow 

Exclusion 

00 0.5 LO 1.5 2.0 
PORE VOWME 

ZI: Solute BTC illustrating several patterns of solute clution (after ffagenct, 1983) 

2.2 Solute transport in soils 

2.2.1 Convection -Dispersion equation 
According to the previous miscible displacement theory, the total flux of solute 
is the result of the combined effects of diffusion and convection. That is: 

J -j Sý D+JC (2.1) 

where J is the mass of solute transported through a cross-sectional area in a 

unit time, and the subscripts s, D, and c repiesent total solute, solute transported 

by diffusion 
, and solute transported by convection, respectively. 
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ZZLI Solute transport by diffusion 

Ficles first equation states that for one-dimensional diffusion in free solution: 

dC JD= -D " dr 
(2.2) 

where 
C= solute concentration, 

x= distance and, 
Do = the ionic diffusion coefficient in free water. (Values of Do for major 
ions can be obtained from Robinson & Stokes, 1970. ) 

In a soil: 
Because of the tortuous flow path in the soil matrix, Eq. 2.2 becomes; 

JD=-D. 0 dC 
dx 

(2.3) 

where De is the effective diffusion coefficient, which takes into account the 

tortuosity of the soil matrix. 

Estimation of D, (0 ) has been the subject of a nwnber of studies (Nye, 

1979). Bresler (1973) related D, (0 ) for any given ion to Do by 

D. (0) = Do 0 
(71, ) 

Cy (2.4) 

where 0 is volumetric water content, (I lie )2 is a tortuosity factor reflecting the 

tortuosity of pores within the soil matrix (I is the average straight path of 
diffusion, le is the actual tortuous path along which diffusing molecules or ions 

move) and ý and y represent the effects of anion exclusion and the charged 

soil matrix on water viscosity respectively. 
Jury (1991) based his equation on the Millington & Quirk (1961) 

tortuosity model to estimate D, , i. e., 



-a 

DJO )= Do 0 10/3 /c2 (2.5) 

where c is soil porosity. 

Other equations are empirical. For example it has been found that, in a 

clay-water system, D, can be represented as (Kemper & van Schaik, 1966): 

D, (0) = D, aeb0 (2.6) 

where a and b are empirical constants. Olsen & Kemper (1968) found a good 
fit for soils of texture ranging from sandy loam to clay, with b=10, and 

0.00 1 <a< 0.005. 

ZZZ2 Solute transport by convection 

Macroscopic convective solute transport is usually described by considering 

the two components of the convective flow to be : 

1) mean pore water velocity, 

2) deviations from mean as a result of local variations of the flow 

velocity in individual pores. 

The latter creates a mechanical dispersion effect which is similar to diffusion 

but the movement is not due to concentration differences but results, as 

discussed before, from interaction between large and small pores through the 

connecting local velocity (Wagenet, 1983). Its effect can be presented now in 

the same general form of Ficles equation by using mechanical dispersion 

instead of molecular diffusion. 

Assuming a steady one-dimensional water movement through a 

homogeneous soil of uniform water content, the total amount of solute 

transported by convection across a unit area in the flow direction is given by 

dC Jc =VOC-OD. (V (2.7) Yd 
z 



Iq 

where 

z= is the space co-ordinate (positive downwards) 

V= is the average pore water velocity 

D.. = is the mechanical dispersion which is given by (EIrick & Clothier, 

1990) 

Dm =? v" (2.8) 

where X and il are empirical constant to be experimentally determined. For 

saturated homogeneous systems, the exponent il has been shown to be close to 

one and the above equation is often written as (Bachmat & Bear, 1964); 

X (2.9) 

where X is the dispersivity, which ranges from about 0.2 to 2 cm for different 

soils (Biggar, 1980). 

ZZZ3 The combined solute transport equation 

Combining Eqs. 2.3 and 2.7 with 2.1 gives 

dC J, =-[(OD. (v)+D, (O)]-+v OC (2.10) 
dz 

or 
J, = -0 Ds (v 0) dC 

+v OC . 
dz 

where D, is the hydrodynamic dispersion coefficient, given by: 

Ds (v, 0) = D. (v + 
D(O) (2.12) 

0 

The continuity equation states that the rate of change of solute within a 

finite volume element must equal the difference between the fluxes of solute 
that enter and leave that element (in addition, in some cases, to the gain or loss 

of solute due to chemical reactions or radioactive decay) (Freeze & Cherry, 

1979). i. e., 
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a (0 C) =a is 
atz 

Applying these relationships to Eq. 2.11, and including consideration of ion- 

soil interaction (i. e., ion adsorption or exclusion) and sources or sinks of solute 

(i. e., chemical precipitation, adsorption, dissolution reactions), one obtains 

(Addiscott & Wagenet, 1985): 

g- 
+v09cT (P (Z, t) (2.13) Ds(0, v at at Za zi aZ 

where: 

9(z, t) = solute source or sink 

P= soil bulk density 

S= concentration of solute in adsorbed phase, expressed as mass of 

sorbant adsorbed on the solids per unit bulk dry mass of the soil. 

For steady water flow, 0, v and D, can be taken as constant (Hillel, 

1980), and the above equation simplifies to (Selim, 1992): 

ac paS-9 (z, +=- -Ds 
0 2C+V 

ac +- at 0 at aZ2 azi 0 

Eq. 2.14 is the historical representation of miscible displacement theory, 

usually called the convection - dispersion equation (CDE). 
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2.2.2 Modelling approaches for solute transport in soils 

Recent years have seen a variety of approaches to describing solute transport in 

soils. A number of models have been proposed, varying widely in their 

conceptual -approach and degree of complexity. Addiscott & Wagenet (1985) 

classified the models for solute transport in soil within this framework : 

L Deterministic models 

A- Mechanistic models 

I- Analytical 

2- Numerical 

B- Functional models. 

I- Partially analytical 

2- Layer and other simple approach 

IL Stochastic models 

The key distinction is between deterministic models, where individual 

processes and the interactions between those processes are defined 

mathematically, with each set of input data leading to a unique and 

reproducible prediction, and stochastic models, which place less emphasis on 

processes and more on predicting the statistical distribution or probability of a 

given characteristic (Tanji, 1990). These last models are particularly useful for 

field studies where the soil properties vary spatially, so that solute and water 

movement also vary (Addiscott & Wagenet, 1985). 
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With deterministic models the main distinction is between mechanistic 

models and functional models. These two types will be discussed in tum 
below. 

ZZZ1 Mechanistic models 

Mechanistic is taken here to imply that the model incorporates the most 
fundamental mechanisms of the process. For solute transport, this implies the 

use of equations derived from Darcy's equation for water flow and the 

expression of resulting solute transport as a combination of mass flow and 
diffusion - dispersion (referred to as the convection - dispersion equation, 
CDE). This is achieved formally in the following way. 

* Transient water flow equation 

One-dimensional water flow in unsaturated soil is given by one of Richards' 

equations (Jury, 199 1): 

ao a 2h 
as -ý-t ": TZ 

[K(O) 

Z]+ 
W. (z (2.15) 

which is termed the water content form of Richards' equation, 

or 
Oh aF cl h"I 

-[K(h)'O' . 
(z, t) 1 l+W 

at Oz TZ I 

which is tenned the matric potential form of Richards' equation. 

where : 
depth 

K= hydraulic conductivity [L 71] 

h= hydraulic potential [L] 

C. (h) =20= water capacity or the slope of soil water retention curve [I; '] 0h 

Ws (z, t) = water sffik or source [0 1; 3 1") 

time. 
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time. 

* CDE equation: 

Recalling Eq. 2.13 for unsteady water flow 

a (0 C) 2g 

+ Ds (0, v+v0-, 
9c 

:F (P 
cl Z atata azi 

For saturated, steady flow conditions, these equations are replaced by 

Eq. 2.14. This equation is soluble analytically for particular initial and 
boundary conditions (reviewed by e. g. van Genuchten & Cleary, 1979), and 

numerically using finite difference or finite element methods. However, 

because of the conditions attached to the analytical models, their practical use 

is geatly limited. 

ZZZ2 Functional models 

The second type of deterministic model are functional models. Such models 
incorporate simplified treatments of solute and water flow and make no claim 

to fundamentalism. Apart from being mathematically very simple, functional 

models have the advantage that their requirements for input data are modest. 

There are two main types of such models: 

(i) Partially analytical models : 

In these models the position of the solute peak is computed by ignoring the 

effects of dispersion and diffusion (piston flow ). The computed qf(ects of 
these factors are then imposed around this peak ( e. g. Rose et aL, 1982). 

(ii) Layer models: 
In these models the incoming water and salts are assumed to mix with water 

and salts already present in the layer. If the new water content of the layer 

exceeds field capacity, the surplus water and the salts it contains are 
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transferred to the next layer where the process is repeated ( e. g. the model 

of Burns, 1974). 

Additionally, it is useful to distinguish between models that are primary 

research tools, developed to aid the testing of hypotheses and exposure of areas 

of incomplete understanding, and those that are mainly useful as guides to the 

management of agricultural resources. This distinction again tends to parallel 

the separation of the models into mechanistic and functional categories 

(Addiscott & Wagenet, 1985) with relatively more complicated mechanistic 

models serving primarily as research tools, and the less demanding (in terms of 

input and execution) functional models serving as more widely used 

management guides. 

2.3- Solute transport in structured soils 

Soil structure can greatly influence the characteristics of the transport process 

(Jury, 1990). The BTCs of structured soils show an early breakthrough and a 

long tailing. This part will study the theory and the modelling approaches of 

solute transport in these soils. But first, what is soil structure? 

2.3.1 Soil structure 

Soils are commonly described as a three-phase system, composed of solid, 

liquid, and gaseous phases. 

The solids consist mainly of mineral particles; however, these minerals 
do not occur as loose particles, but are bound together as aggregates (or peds). 
The arrangement of aggregates and associated pore spaces located between 

them is known as " soil structure " (Marshall & Holmes, 1988). This varies 
from the single-grain structure of sandy soils, in which each particle is 

separate, through those with well-formed aggregates to those that are compact 
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and massive. Well structured soils are soils which have durable peds that 

adhere weakly to one another and consequently readily separate when the soils 

are disturbed (Mle, 1987). 

Z3.1.1 Characterisation ofsoilstructure 
The complete description of soil structure includes (Folh, 1990): 

1) The type, which notes the shape and arrangement of peds: the four basic 

types are granular, platy, blocky, and prismatic. 
2) The class, which indicates the ped size. 
3) The grade, which indicates the distinctiveness of the peds: i. e., structureless, 

weakly, moderately, and strongly distinctive peds. 
The sequence followed in combining the three terms to form compound names 
is first the grade, then the class, and finally the type. An example of soil 

structural description is "strong fine granular. " 

Soil structure, can be considered quantitatively in terms of the total 

porosity and of the pore size distribution of the resulting matrix (Hillel, 1980). 

Soil porosity refers to the proportion of the total soil volume occupied by 

pores. Porosity is represented by the ratio 

Porosity = volume of pores / total soil volume. 

Pore size distribution may be determined from the moisture-tension curve 
(sometimes called, water release curve) that relates the amount of water in the 

soil in equilibrium with the tension forces applied. Using the following 

simplified equation, the size of pores can be calculated from the tension (, r) at 

which they drain (Roiyell, 1994); 
0.15 

where, r is the pore radius in metres, and (r) is the tension in pascals. 
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Z3.1.2 Pore sizes andfunctions 

Greenland (1979) found that clay particles exist in domains up to 5 ýIrn 

diameter with pores of 0.005- 0.1 gm between them; clusters of domains are 

conventionally referred as micro-aggregates which are themselves clustered 

into aggregates 1-5 mm in diameter. Most pores within the aggregates are 

storage pores or micropores with diameter 0.1 - 30 gm, and between the 

aggregates are transmission pores or macropores with diameters 30-500 [Im. 

However, there is normally no sharp break in size distribution of pores in a soil 

and the choice of lower size limit for macropores is arbitrary (nite, 1985). 

Summarising the literature, Beven & Germann (1982) reported the use of the 

term macropore to describe pores from > 30 to > 3000 tim. 

Inter-aggregate pores are larger and straighter than the intra-aggregate 

pores. Large straight pores conduct water more quickly than do small curved 

pores (Singer & Munns, 1992). This arrangement helps control water 

movement through the soil by allowing excess water to drain away but 

retaining moisture in the smaller pores within aggregates (David, 1979). In 

addition to the pore sizes, pore orientation and continuity also play major roles 

in water movement through the soil. 

Z3.1.3 Structure and hydraulic conductivity 
Hydraulic conductivity values are related to textural and structural 

characteristics of a soil. A difference of about ten times in hydraulic 

conductivity values can be found between coarse granular and platy soil 

structure (Landon, 1984). 

2.3.2 Bi-continuum concept 
Solute transport in structured soils is, and has been, the focus of a significant 

research effort. Transport in such systems is often characterised by non-ideal 
(White, 1985) or non-equilibrium transport (van Genuchten, 1981). To model 
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such systems a bi-continuum (or dual porosity) approach is often used, in 

which the porous medium is considered to comprise two "regions" : 

-Mobile water rep-ion where solute transport occurs by convection an 

dispersion, and 

-Immobile water region where diffusion alone, or with minimal 

convection, occurs. 
The BTCs of these systems (Fig. 2.2) are characterised by "early" initial 

break1hrough and by "tailing" or delayed approach to a steady-state relative 

concentration. 

The explanation of this using bi-continuum theory is that in these 

systems rapid transport in. the mobile domain occurs causing the early 
breakthrough. This is accompanied by a slower, diffusive, transfer of solutes 
between the mobile and immobile domains which results in the latter behaving 

as sink / source components and causing tailing (Passioura, 1971; Davidson el 

al., 1980; Lafolie & Hayol, 1993). 

10 

c1co 

05 

0 

Fig. Z2: BTC for I- ideal miscible displacement 
II- displacement in bi-confinuum systems (aller White, 1985) 

This behaviour has been observed in 

0.5 1.0 
Pore volumes (vivo) 
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A)- Aggregated soil :A bi-modal pore size distribution exists, with 

macropores between the aggregates as a region of mobile water and micropores 

within the aggregates as region of immobile water (Fig. 2.3). Flow and mixing 

of the solute is dominated by the larger pores, while the pores within the 

aggregates act as a sink or source. In such soils the solute will be transported 

through the inter-aggregate (mobile water) volume by convection and 
hydrodynamic dispersion while it will transport through intra-aggregate 

(immobile water) volume by diffusion alone (Rose, 1973; van Genuchten & 

Wierenga, 1976; De Smedt & Wierenga, 1979; Rao et al., 1980b; Tillman et 

al., 199 1). 

Biggar & Nielsen (1962) used three aggregate sizes of Aiken clay loam 

for chloride and tritium movement under saturated conditions. Tailing 

increased with an increase in aggregate size. An increase in the proportion of 
"immobile" water with an increase in aggregate size was suggested as the 

cause. In the larger aggregates the increase in "immobile" water in the intra- 

aggregate pores caused diffusion pathways to become longer and thus more 

tailing. 

This approach, as reported by Wagenet (1983), is not limited to strongly 

aggregated media as almost any soil can be envisaged to consist of relatively 

mobile and immobile water phases. 

B)- Unsaturatedflow : here the larger pores are mostly filled with air, 
leaving only small water films on pore walls. This water has been identified as 
dead (Coats & Smith, 1964), stagnant (Gaudet et aL, 1977) or immobile water 
(De Smedt & Wierenga, 1979). A decrease in water content increases the 

proportion of the air-filled macroPores of the mobile region, resulting in the 

creation of additional dead-end pores (immobile water regions). In unsaturated 

sand columns Gaudet et aL (1977) found as much as 40% of all water was 
immobile at a water content of 0.20 CM3/CM3. De Smedt & Wierenga (1979) 
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Fig. 2-3: Schematic section through a column of aggregated material. 
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found that about 16% of all water became immobile when the water content of 

glass beads columns decreased from 0.367 to 0.276 CM3/CM3. Nielsen & Biggar 

(1961) observed increases in tailing with decreasing water content at 

approximately the same flow velocity. 

The bi-continuum concept may also be applied to heterogeneous porous 

media, such as aquifers consisting of laminae having different hydraulic 

conductivities (K). In such cases , the greater K layer(s) correspond(s) to 

mobile water zones and the low K layer(s) to the immobile water zones 
(Gillham et aL, 1984). Transport infractured media can also be modelled with 

a bi-continuum approach. The fractures serve as a mobile water zones, while 

the inter - fracture matrix act as a diffusion sink/source (Huyakorn & Pinder, 

1983). 

2.3.3 Salt leaching in structured soils 
Few papers refer explicitly to salt leaching in structured soils. White (1985) 

produced a comprehensive study about the influence of macropores on the 

transport of solute through soil. He suggested that further studies were required 

and found that the amount of salt leached depends on 
1) location of solute 
2) the ratio of mobile flow to immobile flow 

3) the saturated hydraulic conductivity (Ksat ) of the soil matrix 
4) the antecedent water content of the soil 
5) the contact area between the bypass flow and the relatively immobile water 

of soil matrix; and 
6) the rate of solute diffusion between the mobile and immobile water 

volumes. 
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23.3.1 Modelling approach 

Modelling of solute leaching in structured soils can be treated by simple 

functional models as well as by mechanistic models. 

9 Functional models: 
Addiscott (1977) developed a layer model in which the water in each layer is 

divided into mobile and immobile phases on the basis of the soil moisture 

characteristic with division between the phases at a suction of 2 bar (equivalent 

to a pore size of 0.75 pm). Rainfall causes piston flow in the mobile phase 
during which solute may move just from one layer to the next or, if the fall is 

large, through several layers. When such piston flow ceases , solute movement 

between the phases occurs to equalise the concentrations in the soil water 

between phases. This model was used to simulate the leaching of chloride from 

Rothamsted drain gauges under an irregular rainfall pattern (Addiscott et al., 

1978). Recently the model has been developed so that the pore volume 

available for mobile water is partitioned to allow for flow through smaller 

water-filled pores and rapid preferential flow through larger macropores and 

fissures (Hall, 1993). 

Mechanistic models: 
It has been found that the classical convection-dispersion equation (CDE) (Eq. 

2.14) is not sufficient to explain solute transport through such soils (Biggar & 

Nielsen, 1962; van Genuchten & Wierenga, 1976; Dahyia et al., 1984). 

Several attempts have been made to account for the observed "tailing" in 

BTCs. The resulting equations which describe the movement of non-interacting 

solute in such a porous medium, were presented by Coats & Smith (1964). The 

system consists of a classical CDE for the mobile zone, coupled with a term 
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which describes the sidewards movement of solute in and out the immobile 

zone: 

a C. 
= OmD, 

alc a C. (2.17) of" ý ý'n -Vd- - 0im a ci, 
ataZ, azat 

where: 

z= vertical distance, positive downwards 

solute concentration within the inter-aggregate "mobile water 

region" 
Ci. = solute concentration within the intra-aggregate "immobile water 

region" 

D, = hydrodynamic dispersion coefficient for "mobile water " 

Vd = Darcy velocity, which is equal to the flux q divided by the cohimn 

cross-sectional area A, i. e., 
Vd =q 

A 
0m= ratio of volume of mobile water to total column volume 

im = ratio of volume of immobile water to total column volume. 

Modelling ofsolute transfer between mobile and immobile water regions: 
Solute transfer between the mobile and immobile water regions can be 

modelled either explicitly ( mechanistic or functional ) or implicitly (Brusseau 

&Rao, 1990): 

A) - Explicitly: 

(i) mechanistic diffusion models : by using Ficles equation to 

describe the physical mechanism of diffusion transfer ( e. g., Rao et aL, 1980a; 

Huyakorn, 1983 ). 
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For ex=ple, for a single sphere the diffusion equation is: 

a C, 
', 

(r't) 
= D. (0) D'C,. (r, t) 

at '3r2 

where: 

r= radial distance co-ordinate. 
(H) functional diffusion models: by using an empirical first-order 

mass-transfer expression (van Genuchlen & Wierenga, 1976) 

acim 

Im at _CL (c. i. ) 
where: 

(2.19) 

average solute concentration widiin the immobile water region, im 

a mass transfer rate coefficient between the mobile and immobile water 

region. 

B) - Implicitly 

This uses an effective or lumped dispersion coefficient that includes the 

effects of sink or source diffusion as well as hydrodynamic dispersion and 

axial diffusion (Passioura, 1971; Passioura & Rose, 1971). In this model the 

pore water is also divided into two regions. However, rather than an explicit 
description of solute transfer between each Passioura (1971) lumped the effect 

of the sink/source term into the dispersion coefficient. This lumped parameter 

replaces the usual hydrodynamic dispersion coefficient in the convection - 
dispersion transport equation for a limiting condition but gives an explicit and 

experimentally verified analytic expression for the dispersion coefficient. The 

limiting condition is that, 

(1-(D)D. L 
03 



24 

where: 

(D = fraction of total water existing within inter-aggregate region 

L= column length 

VO = average pore water velocity on the basis of total volumetric water 

content (v, 

a= aggregate radius. 
This model was later developed by van Genuchten & Dalton (1986) for sorbed 

solute. 

Mechanistic diffusion models are not usually attempted because the 

solution processes can be too complicated. The first-order mass transfer model 

is usually preferred because it provides a good approximation of physical 

diffusion, and is simpler to use (Lafolie & Hayot, 1993). This was concluded 

also by Rao et aL (1980b) who related their models for these kinds of transfer 

to saturated flow in columns. They obtained good agreement between the 

measured and calculated BTCs for all pore-water velocities, with the functional 

model giving better agreement with measured results at low pore-water 

velocities than the mechanistic model. They concluded that functional diffusion 

model, which does not require an explicit conceptual "geometric" description 

of porous medium, may be of more immediate practical use. 

2.4 Salt-leaching in practice 

So far this review has been concerned with the theory and mathematics of 

solute transport in soils. In this part the practical side of leaching will be 

reviewed with particular concern to the potential advantage gained by use of 
the intermittent leaching method. 

Leaching is the usual way to reclaim salt-affected soils. Salt leaching 

involves the dissolution of soluble salts in the soil, the passage of the resulting 

solution through soil profiles, and the consequent removal of salt from the root 
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zone. The efficiency of salt leaching can be defted as the quantity of soluble 

salts leached per unit volume of water applied (Tanji, 1990). 

Salt leaching has been carried out in the fields by different methods. 
Table 2.2 summarises the leaching effectiveness of the most common irrigation 

methods. With micro-irrigation systems, salts move away from each emitter 

and accumulate at the outer fringes of the soil mass wetted by the emitter. For 

long-term use they may create a large, irregular zone of salt accumulation 
(Tanji, 1990) which may restrict the use of the land. A sprinkling irrigation 

system has the advantage of uniformly distributing water over the surface of 

the soil but is not usually attempted under high evaporative conditions. 
Continuous ponding of water on the soil surface is the traditional method of 

leaching and is used extensively in surface-irrigated areas (Tanji, 1990). This 

method is cheaper than other methods, but is less efficient. However, several 

experiments have showed that by applying the leaching water intermittently the 

leaching efficiency was increased (Oster et al., 1972; Dahyia et al., 198 1; 

Meiri & Piaui, 1985). The principle of intermittent leaching and the main 
factors affecting its efficiency will be discussed in detail next. 

2.4.1 Intermittent and continuous leaching 

Several studies have examined leaching methods. One of the first experiments 

was conducted by Miller et al. (1965) to observe chloride displacement in 

Panoche clay loam. They used three different water treatments: (i) the soil 

surface continuously ponded with water, (ii) the soil surface intermittently 

ponded with repeated applications of 15 cm. of water and (iii) the soil surface 
intermittently ponded with repeated applications of 5 cm of water. The 

intermittent applications were made when the soil water pressure head at 30 cm 

soil depth reached a value of -150 cra. Of these three treatments, intermittent 

ponding of the soil with 5 cm. increments of water was markedly more efficient 
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Water 
application 
method 
(1) 

Application 
(2) 

Pattern of 
Bait 

accumulation 
(3) 

Leaching 
effectiveness 

(4) 

Special 
considerations 

Furrow Row crops, High in ridges Effective None 
low to medium between l eaching 
infiltration-rate furrows, may beneath 
soils. increase in furrow 

direction of channels, salt 
slope if left in ridges. 
irrigations are Leaching 
nonuniform. requires more 

water than for 
methods with 
lighter, 
intermittent 
applications. 

Corrugation Close-growing Leaves saltier Similar to None 
crops. strips between furrows, 

corrugation above. 
channels 
unless entire 
field surface 
inundated. 

Border dike Close-growing Leaves salt in Areas None 
crops. dikes that between dikes 

separate leached 
borders. uniformly. but 

more water 
required than 
for light. 
intermittent 
applications. 

Sprinkler: set Most crops, all No salt Uniform May 
but very concentrations leaching. Can encourage 
fine-textured in root zone, if be used to disease in 
soils. system leach salt sensitive 

designed and accumulations crops, e. g.. 
managed left by other beans. Salty 
properly. irrigation irrigation water 

methods. may leave 
harmful 
deposits on 
leaves. 

Sprinkler: Most crops, No salt Uniform None 
Mobile except trees. concentrations leaching. 

vines. Can be in root zone. if Same as for 
used to system set sprinklers. 
irrigate fields designed and 
on tolling managed well. 
topography. 

Micro irrigation Because of Salt Soil mass When 
(drip, trickle. high initial concentrates wetted by automated for 
sub-irrigation) costs. used at outer each emitter is light, frequent 

mostly for high fringes of the well-leached. irrigations, 
value crops or soil mass Difficult to saline water 
crops with wetted by leach all soil can be used, 
high irrigation each emitter. to depth of becauselow 
labor costs. root zone. matric stress 

compensates 
for osmotic 
stress. 

Table Z2: Leaching effectiveness of irrigation methods (adopted from Tanji, 1990) 
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in leaching the applied chloride from the profile. In fact, such intermittent 

ponding produced results comparable with continuous ponding of 90 cm after 

only a total of 50 cm of water. A saving of one-third of the quantity of water to 

obtain the same leaching represents a significant reduction in water use. Dahyia 

et aL (19 8 1) cited that "leaching intermittently allows more time for movement 

of water through the small pores and will improve the leaching efficiency . 
Also intermittent irrigation may give time for solute to diffuse from less mobile 

to mobile water in between applications". They concluded that leaching 

efficiency was considerably higher with intermittent than with continuous 

ponding. 

Furthermore, as the water content decreases, the proportion pf water 

moving in the large pores decreases (Dahyia et al., 198 1). With increasing 

macropore flow the effectiveness of solute removal decreases because a 
decreasing proportion of flow occurs through micropores (Oster et al., 1972; 

Hoffman, 1980). The leaching experiments of Nielsen et al. (1965) indicated 

that intermittent leaching caused the soil profile to develop a lower water 

content than continuous and sprinkling leaching. Continuous ponding increased 

the water content of the soil profile up to almost the saturation content, whereas 

sprinkling resulted in water contents 0.0 1 to 0.03 CM3/CM3 less than the 

continuous Ponding and intennittent leaching in water contents of ;: tý 0.07 

cm3/cm3 lower (Fig. 2.4). Thus intermittent leaching does not just give more 

time for solutes to diffuse out of immobile regions between applications, but 

also improves the leaching efficiency by decreasing the proportion of flow in 

large pores. 
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Fig. Z4: Soil water content profiles developed under steady state flow conditions for three different 
application, continuously ponding, continuously sprinkling, and 150 cm of intermittently ponding (15 cm 
applications) (data from Nielsen et al., 1965) 

By contrast, Cameron (1982) found no significant difference between 

80 mm irrigation and 71 mm intermittent net rainfall for silty clay loam soil. 
Similar results found by Verma and Gupta (1989). They attributed that to the 
low hydraulic conductivity of the clay soil which allowed ample time for 

diffusion even under continuous ponding. 

However; as Kulilek & Nielsen (1994) stated, different results will no 
doubt be obtained for different soils, solutes and local conditions. It appears 
that several various factors are involved and need to be taken into account 
(Minhas & Khosla, 1986). 

2.4.2 Factors affecting Intermittent leaching 

Five important factors affecting intermittent leaching can be deduced from the 
literature. There are discussed in tum. 
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24. Z1. Effect of evaporation rate 
The beneficial effects of intermittent water application in terms of quantity of 

water required for leaching may be limited to conditions of low evaporativity. 

When leaching is attempted under high atmospheric evaporativity, the salts 

which are leached to shallow depths move again towards the surface during 

each rest period. Also, as a fraction of the subsequently added water 
increments during intermittent ponding is retained in the upper soil layers to 

replace the water lost by the evaporation, the quantity of water actually 

available for salt displacement to lower depth is decreased. Minhas & Khosla 

(1986) found no difference in leaching of chloride when the same amount of 

water was applied continuously or intermittently (with 10-day intervals 

between applications) during the periods of high (7.74 mm/day) and medium 

(4.51 mm/day) evaporation rates. However, when evaporation at the surface 

remained low (1.52 mm/day), distinctly more chloride was removed from the 

soil and the salt load was displaced deeper under intermittent as compared to 

continuous ponding. Using mulches with intermittent leaching decreases the 

evaporation from soil surface and improves the leaching efficiency. Carter & 

Fanning (1964) demonstrated that combining intermittent ponding with 

mulching greatly improved the performance over a period of five months. It 

can be deduced that the greatest efficiency of intermittent leaching is when it is 

conducted under the lowest evaporation rate environment. Under these 

conditions the least water will be lost during rest periods. 

Z4. Z2 Effect of plot size 
The study of the desalinisation of salt-affected soil in plots of different sizes by 

Dahyia et aL (1984) showed that poor levelling of the large plots (6 x6 m) 

resulted in water concentrating in localised small depressions randomly 
distributed in the plots during the rest periods of intennittent leaching. During 

continuous leaching water was continuously standing over the whole soil 
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surface. The uniformly distributed water was more effective in leaching salts 

and the leaching efficiency for large plots was better under continuous than 

intermittent ponding. However, in the smallest plots (2 x2 in), the leaching 

efficiency was significantly greater with intermittent than with continuous 

ponding, since better levelling was achieved. 

Z4. Z3 Effect of soil hydraulic conductivity 

A low hydraulic conductivity of the soil will allow ample time for solute to 

diffuse out of the soil aggregates even under continuous ponding and the 

solution within the aggregates will be nearer equilibrium with the leaching 

water (depending on, in addition to the time, effective diflusion coefficient and 

aggregate size). This will reduce the advantage of using intermittent ponding 

since this is the main reason for relatively high intermittent leaching efficiency. 

Verma & Gupta (1989) found only a marginal decrease in soil salinity with 

intermittent application compared with continuous leaching. They attributed 

this to the low hydraulic conductivity of their clayey soil. 

Z 4. Z4 Effect of crop 

Crops may play three roles; 

(i) Changing soil water permeability 

Root development may open up channels and improve aggregation in the 

surface and subsoil, thereby increasing permeability (Kovda et al. 1973) 

and thus increasing the relative advantage using intermittent leaching. 

Kanchanasut & Scotter (1982) came to a similar conclusion when they 

leached bromide from soil under pasture. They found that rainfall leached 

bromide more efficiently than did ponded water. 

(ii) Reducing soil surface evaporation 

Crops also shade the soil and reduce soil evaporation which in turn 

reduces water loss and the accumulation of salts on the surface (Kovda et 
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al. 1973) albeit that the transpirational losses will result in an increased 

water movement up to the root zone. 
(iii) Removing part of the salts 
Another possible advantage of leaching during cropping may be that the 

crop will remove part of the salt content (Minhas & Khosla, 1986). At 

intermediate levels of salinity, Chapman (1966) reported that the salt 

content of alfalfa, maize, and sorghum was about 3% of the dry fissue 

mass. 

24.25 Effect of sodicity 

Leaching of highly saline-sodic soils with low soil permeability is best 

accomplished when coupled with the addition of soluble calcium salts (e. g., 

gypsum) to replace the exchangeable sodium (Na'). Abrol & Bhumbla (1973) 

found for high saline-sodic soil, with Na dominating the exchange and 

solution phase that without using gypsum, intermittent ponding had no 

particular advantage over continuous ponding. They ascribed this to the low 

permeability of sodic soils. When gypsum was added, the leaching efficiency 
improved, but there was no particular advantage gained from intermittent 

ponding. They suggested that this was because the surface layer in these soils 

remained limiting to water penetration even after the addition of gypsum. 
However, with greater soil permeability, the benefit of using intermittent 

leaching was increased as found by Dahiya et al. (1981). They found that for 

highly saline-sodic, moderately permeable soil, with Na , C2', and Me' being 

the dominant cations, there was no need to apply any amendment (like 

gypsum) in reclamation, and that leaching efficiency was considerably higher 

with intermittent than with continuous ponding. 
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2.4.3 Management advantage of Intermittent leaching 

Other advantages may result from leaching intermittently. The farmer may be 

able to leach by ponding intermittently without major revision of the existing 
field layout. Pre-irrigating a soil each season before a crop is planted provides 

a source of water for the emerging crop and also reduces the salinity of the 

topsoil. It is not uncommon to pre-irrigate Panoche soils with 30 cm of water 
before planting. If water continuously were ponded on the soil surface until 30 

cm entered the profile Miller et al. (1965) found a major part of the chloride 

originally at the surface would collect in the upper 60 cm, with a maximum 

concentration occurring at 30 cm. depth. A strikingly different distribution is 

obtained by leaching with the same total amount of water in 5-cm increments. 

Not only did most of the chloride collect below 60 cm, but the topsoil from 

which the seedlings emerged had a chloride concentration 4 times less than the 

topsoil under the ponded condition. Oster et al. (1972) showed in their study 
that salinity can be maintained at low levels by several large irrigations prior to 

planting the crop instead of by conventional leaching with long periods of 

continuous ponding. 

2.5 Proposed proqramme of the study 

From Section 2.4.1, it is clear that intermittent leaching (IL) has the potential to 

increase the leaching efficiency in terms of saving leaching water. However, 

many of the variables affecting this efficiency are still not well defmed, and the 

extent of their influence is not fully understood. The main variables which may 

still need more investigation are: the soil aggregate size and aggregate size 
distribution, the interstitial water velocities, the duration of water application 

periods, the duration of rest periods between the applications, the 

adsorption/desorption properties of the solute, and the soil water content. No 

model has been found in the literature which is able to simulate solute transport 
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under such intermittent conditions. This study attempts to fill this gap and 

produce a model which can be used to simulate and optimise leaching using 

intennittent applications of water. 

The investigation starts using a bi-continuum. medium (Section 2.3.2) 

created by packing porous ceramic spheres in cylindrical columns. This 

medium is a simple analogue of aggregated soils with the ceramic spheres 

acting as aggregates (Section 3.1 and 3.2). Using such ceramic spheres ( which 

are physically and chemically inert ) as a start has the advantage of removing 

any confounding effects of the swelling, shrinkage, and dispersion of soil 

aggregates or of solute adsorption/desorption on the clay surfaces. The 

investigation includes leaching under continuously saturated conditions 
(Chapter three) and a situation where the interstitial pore spaces drain during 

the off time ("drained" conditions) (Chapter eleven). 

After establishing the advantage of IL for leaching cermnic spheres, the 

study becomes more realistic by using soil aggregates (Chapter eight). These 

were chosen to be physically inert (with little swelling and no clay dispersion) 

but chemically reactive (with solute adsorption and desorption). The effect of 

adsorption/desorption is studied by simultaneously tracing two ions during 

leaching, potassium and bromide. These were continuously monitored using 

two ion-selective electrodes (ISE) connected to a computer via a data logger. 

2.5.1 Leaching under saturated conditions 
IL will be described by several cycles, each cycle consisting of two periods: 

A)- water application period: during this period the water is 

continuously ponded on the column surface. The column is saturated and the 

flow is steady. This is a case of miscible displacement. Therefore this period 

will be called the displacement period or, briefly, "On time" ; 
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B)- rest period: this period follows the water application period. During 

this period the column is saturated but the flow is stopped for a predetermined 

time. No convective transport will occur and the solute transfers only by 

diffusion from the immobile region within the spheres or aggregates to the 

mobile region between them. Therefore this period will be called the diffusion 

period or, briefly, "Offlime". 

The effect of sphere diameter, interstitial velocities, the On time, and the 

Offtime, were investigated separately. A model was developed to simulate the 

results and to produce a group of graphs relating these parameters together. 

2.5.2 Leaching under drained conditions 

Section (2.4.1) showed that as the water content decreases, the effectiveness of 

solute removal improves due to the decreasing proportion of flow occurring 

through macropores. This gives an idea about what is happening during the 

infiltration of the leaching water. However, it is not clear what is happening 

during the rest periods when no (or minimum) flow occurs. The amount of 

solute diffusing out of the spheres will be decreased because there is less water 
in the mobile water regions around the spheres. The study will tackle this by 

applying different meanings for on/off cycles. The saturated columns will be 

drained at the end of the on time and remain like this during the whole offtime. 
In this case the mobile water region will be almost empty during. this diffusion 

period. 

The thesis has been divided into three main parts. The first part will 

study solute transport through columns of saturated porous ceramic spheres. 
The second will study solute transport through columns of saturated soil 

aggregates. The last part will consider solute transport through columns of 

porous spheres when drained during the offtimes. 



PART ONE 

Solute transport through columns of ceramic spheres 
under saturated condition 
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The experimental work was divided into four main experiments: for each, the 

aim, material and method, and the results are discussed. The experiments were: 

1) Accessory experiments 

2) Diffusion from porous ceramic spheres 
3) Continuous leaching experiments 
4) Intermittent leaching experiments. 

3.1 Accessorv experiments 

3.1.1 Alm of the experiments 
These experiments were designed to measure some independent physical and 

chemical properties of the porous media for use in the later models. 
The porous medium. used was created by packing porous ceramic 

spheres ( D99 balls, Denston Inert Support Products; NORTON 1 Chemical 
Process Products Corporation), composed mainly of A1203 (99%) (see Appendix 

F). Spheres of three sizes were used, 3.6, or 13 mm. diameter respectively. 

3.1.2 Particle density 

The standard procedure described by Avery & Bascomb (1982) was used to 

' NORTON Chemical Process Products Corporation. P. O. Box 350, Arkon, OH 44309-0350. 
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determine average particle density of the ceramic spheres by displacement of 

water in specific gravity bottles. The average particle density was found to be 

pp = 3.97±0.01 g cm-3 , for the three sizes of the spheres, which is in the range 

quoted in International Critical Tables (1927) for A1203 materials (3.93 - 4.00 

g cm-3). 

3.1.3 Porosity of the ceramic porous spheres 
The ceramic spheres were washed, cleaned and oven dried, and then saturated 

under vacuum with de-aired distilled water. They were then removed from the 

water, wiped clean of surplus surface water, weighed (W,,, ) and oven dried for 

24 h and weighed again (W, ). The spheres were assumed to be initially 

saturated and the volume of pores within the spheres was assumed to be equal 

to the water content (V,,, ). The sphere porosity was calculated as follows: 

V,,, = (W,,, - W, )/p,, (the water density at experiment temperature (20" Q is p', 

= 0.998 g cm-3 ), 

volume of the dry solid matrix (Vd) 

Vd = Ws IPp 

Therefore volume of the spheres (V, ) is given by: 

V=V +V s ws dý 

and sphere porosity (0 ) by: 

0 SP V, 

The average sphere porosity was 0.45 ± 0.02 cm 3Cnf3 with no difference 

between the three sizes of spheres. 

3.2 Diffusion from porous ceramic spheres -experimen 

3.2.1 Material and method 
The experiments were aimed to determine the effective diflusion coefficient of 
a non adsorbed solute (KCI) through the porous ceramic spheres. This involved 
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experimental observation of diffusion out of the spheres (reported here) and 

development of a mathematical model describing the diffusion process 

(reported in Section 4.1). The effective diffusion coefficient could then be 

determined by optimisation (Section 5.1). 

The ceramic spheres were first washed, cleaned and oven dried. They 

were then saturated under vacuum with de-aired distilled water and left 

iminersed overnight in excess water (to allow any possible resident solute to 

diffuse out), oven dried and again saturated under vacuum with de-aired 

solution of 7.455 g dM-3 KCI (0.1 M) and left immersed for at least one day. 

For each diffusion experiment a known number of spheres (n, ) (Table 

1) were removed froin solution, wiped clean of surplus solution, weighed and 

placed on a nylon screen, and then placed inside a vessel similar to that used by 

Addiscolt (1982) (Fig. 3.1). 

Of Cover to prevent 
evaporation 

Ceramic 
spheres 

Electfical conductivity 
probe 

Nylon screen 

Magnetic stirrer Initially distilled water 

/ 

Fig. 3.1 : The vessel usedfor measurements of diffusion in ceramic spheres 

The vessel was filled with a known volume of distilled water (V, ) and 

gently stirred. The change in conductivity of the extraneous solution was 

measured using an electrical conductivity electrode and conductivity meter 
(JENWA Y1,4020 Conductivity Meter). The electrode was previously calibrated 

'JENWA Y LTD. Felsted, Dunmow, Essex, CM6 3LB, U. K. 
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against known concentrations solutions of KCI. Temperature was kept constant 

( 20 ± 0.5'C ) during the whole experiment as the molecular diffision rate 

increases with temperature according to Nernst-Einsten equation for molecular 

diff-usion coefficient at infinite dilution (i. e., sufficient dilution such that solutes 
ions/molecules do not interact with each other in solution): 

uRT 
0=- N 

where R= the universal gas constant (8.134 J mol"' IC'), T= the absolute 

temperature, N= Avogadro's number (6.022 x 10 23 mol"), and u= the absolute 

mobility of a particle (Robinson & Stokes, 1970; Shackelford & Daniel, 199 1). 

Table 3.1: Diffusion exr)eriment conditions. 
Sphere diameter (a) 

(MM) 

No. of spheres (n) Ve 
(CM 3) 

co * 

(g dM, 3) 

3 635 524.3 7.455 
6 70 523.0 7.455 
13 18 512.6 7.455- 

* UO is the initial solute concentration in the solution within the spheres 

At the end of each experiment the spheres were weighed, oven dried and 

weighed again so that their solution-filled volume could be calculated (V,,, ). 

The experiment was repeated for spheres of different diameter (13,6, and 3 

mm). 

3.2.2 Experimental results 
The results of experiments were plotted as C .. (tyC,, vs. time, where; 
C .. (t) = the measured concentration of the external solution 
C, = the concentration at equilibrium. 
The total amount of salts in the experiment ( M. ) equals: 

Mr = Vws Co - 
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Thus the equilibrium concentration can be calculated from: 

C, = 
MT 

V. + V., 

Fig. 3.2 shows a plot of C,,, (t) 1C,, against the diffusion time (t) for 

sphere diameters 3,6, and 13 mm. An initial rapid increase in the external 

solution concentration (and so in C,,, (t) IC,, ) was observed due to the initially 

large solute concentration gradient between intra-spheres and external solution. 

This was followed by a more gradual approach to an equilibrium concentration 
for all spheres. However, as the smaller spheres have a shorter difflasion path, 

the initial gradient of the curve was higher and they reached the equilibrium 

much faster than the larger spheres. It took about 5,50 and 120 min for 90% of 

the initial amount of solute in the spheres to diffuse out of the 3,6 and 13 mm 

sphere diameters respectively. Similar shapes of the curves have also been 

observed by Rao et aL (1980a) for porous ceramic spheres and by Addiscott 

(1982) for chalk cubes. 

3.3 Continuous leaching 

3.3.1 Alm of the experiments 
These experiments were designed to investigate the leaching dynamics from a 

column of Porous ceramic spheres by monitoring the concentration of the 

outflow when distilled water displaced a 0.1 M KCI solution out of the column. 
The experimental results would then be used to test the continuous leaching 

model in Section 5.2.1. 

3.3.2 Materials and methods 
The ceramic spheres were initially saturated with 0.1 M KCI solution as in 

Section 3.2.2. They were then carefully poured into 30-cm long glass cylinders 
(which had previously been filled with 0.1 M KCI solution) such that no air 
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Fig. 3.2: Cm(tyCe against diffusion time for spheres of three diamctcrs. o, d-- 3 mm; +, d=6 mm; 

and *, d= 13 mm. 
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bubbles were trapped in the columns (Fig. 3.3). The column was subjected to 

vibration for 10 min to pack to a maximum density. Where a mixture of 

sphere diameters was used, the column was packed following the method of 

McGeary (1961). The column was first packed with the largest diameter 

spheres, then the smaller spheres were slowly poured in while the column was 

vibrated (with a weight of 250 g resting on the surface to prevent the surface 

rising and so eliminate or minimise volume expansion). This method gave a 

homogeneous and reproducible mixture. 
A Mariotte bottle filled with distilled water and connected to the upper 

surface of the porous media, was used to provide the leaching water during the 

experimen . 
Effluent was passed through an in-line conductivity probe (connected to 

a data logger via conductivity meter) and flux was controlled by a peristaltic 

pump downstream. The effluent was finally collected in a container placed on a 

balance for measuring the outflow mass. 

When all was ready the inflow and outflow were simultaneously started 

and the conductivity and mass were recorded. The experiments were performed 

at 20±1'C. Table 3.2 shows the experimental conditions. 

Table 3.2: Continuous leachinji meriment conditions. 

Sphere diameter 

(MM) 

Vd 

(mm/min) 

Interstitial porosity # 

(CM, cid') 

Lr 

(MM) 

Exp. IC 13 2.31 0.486 185 

Exp. 2C 13+3 0.96 1 0.320 140 L 
Exp. 3C 6 5.47 

. 
0.404 1 

L_ 
1.85J 

- me mass proportions oi spnere ciameters, 13 &3 were 0.727 g g-'& 0.273 g, g- respectively. 
# interstitial porosity= 

inter spheres pore space 
total volume of column 

Lr = the length of the porous column. 
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Fig. 3.3: Experiment set-up for continuous leaching. 
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3.3.3 Experimental results 
Fig. 3.4 shows the results as a graph of effluent concentration vs. time for 

experiments IC, 2C and 3C. The three resulting curves are asymmetric, with 

early breakthrough and long tailing, which characterise bi-continuum systems 
(While, 1985) (Section 2.3.2). All the graphs start with a plateau at a 

concentration value equal to the initial concentration CO (due to a systematic 

error arising from the regression equation used for electrode calibration these 

values were a little higher than 0.1 M). After some time depending on the 

experimental conditions the less concentrated solution reached the end of the 

column causing the concentration of solute in the mobile water to start 
decreasing rapidly. The slope of such decrease differed between experiments 
due to different column conditions, but was noticeably increased as the pore- 

water velocity increased. The curve ended with a long tailing as the solute 

within the spheres continued slowly to diffuse out, and such tailing was longer 

when large spheres were present. 

3.4.1 Alm of the experiments 
These experiments were designed to investigate the leaching under intprmittent 

conditions by monitoring the solute concentration in the outflow of a column of 

porous ceramic spheres when distilled water displaced a 0.1 M KCI solution 
from the column intermittently. The results would help in: 

(i) illustrating the advantage of intermittent over continuous leaching 

(ii) testing a mathematical model (Section 5.2.2). 

3.4.2 Materials and methods 
Similar columns to those used in the continuous leaching experiments (Section 

3-3) were prepared, and the same procedures were followed, except that the 

outflow was regularly interrupted (using the on-off valves (Fig. 3.3)) during the 
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Fig. 3.4: Graphs of effluent concentration against time for continuous leaching experiments IC, 2C, 
and 3C (see Table 3.2 for experimental conditions). 
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leaching according to a predetermined on-off cycle. Table 3.3 shows the 

experimental conditions. 

Table 3.3: Intermittent leachins- eXDeriment conditions 

Sphere Vd Interstitial Lr OnlOff 

diameter porosity periods 

(MM) (mm/min) (CM 3 
crd 

3) (MM) I (min) 
_ 

Exp. H 13 2.31 0.486 a 185 45/60 

Exp. 21 13+3 0.93 0.300 b 140 20/20 

Exp. 31 6 5.97 0.400 b 185 30/30 
" the mass proportions of sphere diameters 13 &3 were 0.733 g g-' & 0.267 gg' respectively 
a same value of Exp. I C, because the same column was used with both experiments 
b different values from those of Exp. 2C and 3C; because different column were used and the shaker 
was not able to produce exactly the same interstitial porosity, in addition the sphere shape was not 
exactly spherical. However, the difference is too small to affect the experimental objects. 

3.4.3 Experimental results and discussion 

Fig. 3.5 shows the results as effluent concentration against time for 

experiments 11,21 and M. The curves followed the same basic pattern as in the 

earlier continuous leaching experiment with a decrease in effluent 

concentration after an interval. The concentration was initially equal to CO then 

it decreased rapidly until the end of the first on time. After each off time the 

solute concentration in the effluent increased proving the proposed hypothesis 

that, during off times, the immobile solution within the spheres has a chance to 

equilibrate with the less concentrated mobile solution causing an increase in the 

solute concentration of the latter. The increase in mobile solution concentration 

after each off time means solute is lost from the column more quickly, i. e., 

there is a greater efficiency in leaching. The amplitude of these peaks, which 

occurred after each off time, decreased as leaching proceeded, because the 

concentration gradient between mobile and immobile volumes decreased with a 

consequent decrease in diffUsion flux. 
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Fig. 3.5: Graphs of effluent concentration against time for intermittent leaching experiments 11,21, 
and 31 (see Table 3.3 for experimental conditions). 
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Another interesting point is that if the first off times occurred before the 

rapid falling of the concentration values, or shortly after it they will have a 

minimum effect on the solute concentration of the mobile solution in the lowest 

regions (C. (L,, t)), because the less concentrated solution had not yet reached 

the end of the column and so the concentration gradient between mobile and 
immobile solutions is zero (or still very small). This is the reason why only a 

very small change in effluent concentration occurred in experiment 21 at the 
first two q times. These off times were before (at 20 min) and shortly after (at ff 

60 min) the breakthrough of the solute which occurred at about 50 min (as 

shown in Fig. 3.4b). 

Plotting the results of continuous and intermittent leaching together on 
the same graphs gives a better idea of the effectiveness of salt leaching. The 

results were replotted as the relative effluent concentration (ClCo) against the 

displacement time (i. e., time of adding water, that is cumulative on time) (Fig. 

3.6). The graphs show that both BTCs started changing together, then after the 

first off period, there was a greater effluent concentration for intermittent 

leaching, i. e., more solute was being leached. In fact, it is this difference 

between the curves which reflects the advantage of using the intermittent 

method. This difference'varies from graph to graph, being smaller with the 

smaller sphere sizes in experiments 3(C&D, and bigger with the shorter on time 

of experiments 2(C&I). However, this difference depends on several factors 

such as sphere size, duration of on and off time, and pore water velocity. These 

effects will be discussed later (Section 5.3). 
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Chapter Four 

QAý(, kýalo4eA 

The aim of the modelling work was to write a computer code able to simulate 

the solute transport in a bi-continuum. system during intermittent leaching. This 

chapter consists of four parts. The first, dealing with diffusion out of inert 

spheres, and the resulting spread-sheet programme, will be useful later to 

estimate the effective diffusion coefficient De - In the second part the SIL 

(Saturated Intermittent Leaching) model is constructed; this model is tested for 

continuous leaching against an analytical solution in the third part and the 

validation of the model is discussed in the fourth part. 

4.1 Diffusion from porous spheres 

4.1.1 Introduction 

Diffusion is the process by which matter is transported from one part of a 

system to another down a concentration gradient as a result of random 

molecular motion. 
The transfer of heat by conduction is also due to random molecular 

motion, and there is an obvious analogy between the two processes. This was 

recognised by Fick (1855), who first put diffusion on a quantitative basis by 

adopting the mathematical theory derived some years earlier by Fourier. The 

mathematical theory of diffusion in an isotropic substance is therefore based on 
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the hypothesis that the rate of transfer of diffusible substance through unit area 

of cross-section is proportional to the concentration gradient measured normal 

to the area, i. e. for one-dimensional transfer: 

F= -Do 
dC 
dx 

(4.1) 

where F is the rate of transfer per unit area of cross-section, C the 

concentration of diff-using substance, x the space co-ordinate measured normal 

to the cross-sectional area, and Do is the molecular diffusion coefficient. Eq. 

4.1 is often called Fick's first equation of diffusion. 

The second Fick! s equation for one-dimensional diffusion (i. e., if there is 

a gradient of concentration only along the x-axis) can be derived by combining 

equation 4.1 with the equation of continuity, i. e., 

ac 
=- 

OF=_ a 
D,, 

aC 

at5 -x Tx 
I- 

ax- 
If Do is constant, i. e. not a function of concentration, then 

ac alc 
at= 

Do 5XT (4.2) 

Other forms of this equation follow by transformation of co-ordinates, or 

by considering elements of volume of different shape . Crank (1975) gave, in 

his comprehensive study on the mathematics of difftision, the following 

equation for diffusion in a sphere 

0 C(r, t) fO'C 2aCl 
at-, 

D 'Jar' +r ar f (4.3) 

where 

radial co-ordinate. 
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4.1.2 Alm of the model 
The model aims to simulate the diffusion of a non-adsorbed solute (e. g. KCI) 

out of inert porous spheres into a continuously stirred volume of dilute 

solution. From this, the difftision coefficient of the solute within the spheres 

may be determined. 

4.1.3 Governing equations 
A mechanistic model was developed based on Ficles second equation of 

diffusion (Eq. 4.2 and 4.3) , where the rate of solute transfer is described by: 

a C,. (r, t) D, fa Ici. +20 
Ci. 

cl t[ 5rF r ar 
I 

where 

time 

(4.4) 

Ci 
.. 
(r, t) = concentration of solute in the solution within the sphere 

D,, = effective diffusion coefficient in porous spheres. 

D, replaces the molecular diffusion coefficient, Do, in order to account for the 

tortuous path followed by ions within the complex matrix in the porous 

spheres. 

The total mass of solute (MT) in the system (in the saturated spheres plus 

the external solution, Fig. 4.1) is given by : 
M =v c CM(t) =vc (4.5) T ws im 

(t) + ve 
ws 0 

where 
V', ' = volume of solution inside the spheres 
V" = volume of external solution 
C"'(t) = concentration of solute in the external solution 
CO = initial concentration of solute within the spheres. 
The average concentration in the sphere, C,. (t), is calculated as (Rao et aL, 
1980a): 
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11 it 

-) 
2r (r, t) dr (4.6) -f 

where 

a= sphere radius. 

Porous sphere 

HIS 
c im c External solution 

Fig. 4.1 : Simple diagram showing diffusion model parameters 

The initial and boundary conditions are: 

(',,,, (a, t) = C,, (t); t ý! 0 (4.7a) 

Ci,, (r, t) = CO 0:! ý r:! ý a, t= 0 (4.7b) 

Qt) =0 t= 0 (4.7c) 

(t) can be calculated from the solution of Eqs. 4.4 to 4.6 under conditions 

(4.7a, b, c), given by Crank (1975): 

q-1 
ml Co - c"ll 67 (7 + 1) exp(- -'Iti-) 

a- (4.8) 
2 2 M. CO 

- 
C, 

n- 19+ 97 + qt, y - 

where 

M, M, are the amount of solute in the sphere at times t and oo respectively, 

V 
to and 
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are the non-zero roots of tan q, = 
3q,, 

3+, vq. ' 

A table of q,, values can be found in Crank (1975 ). 

At equilibrium (i. e., as t--->oo ), the solute concentration (Q will be the 

same inside and outside the porous sphere, i. e. 
C. (00) = Ci. (Go) = C. (at t-->oo) 

and can be calculated as 

C. = 
mr (4.9) 

V. + V. 

The external solute concentration, C. Q), can be calculated by 

v. (Co - ji. -(t» C. (t) = 

4.1.4 Testing the diffusion model 

An "Excel" spreadsheet was used to calculate C. (t) and C, using Eqs. 4.8,4.9 

and 4.10 at different time steps. For each time, t, the ratio C. (tyC, was 

calculated and plotted against time. Fig. 4.2 shows such results compared with 

the data of Rao et al. (1980a) (for CaC12 diffusion out of ceramic spheres into a 

continuously stirred volume of water). 
The model successfully simulated the measured results 0.985). 

4.2 Solute transport through a column of saturated l3orous 

spheres 

4.2.1 Alm of the model 

The SIL (Saturated Intermittent Leaching) model was aimed to simulate the 

solute transport, under steady flow conditions, through a saturated column of 

inert porous spheres containing both mobile (inter-spheres) and immobile water 

(intra-spheres) and for continuous or intermittent water application. 
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4.2.2 Continuous leaching 

In this case the water is continuously ponded on the surface of the porous 

medium. The leaching here is similar to the miscible displacement process 
(Section 2.1). 

4. ZZI Governing equations 
Recalling Eqs. 2.17 and 2.19 for solute transport through bi-continuum. media, 

and assuming, from now on, that the solute concentration in the water within 

the spheres (immobile water) is constant across the sphere diameter and equal 

to the average concentration: 

0 aC- 
=O. D, - Vd a c. 

-0im 
a cim 

mtZ2Z 

and 
ac 0 im ý ýim =a (c, 

» - at 

where 

(4.12) 

z= vertical distance, positive downwards 

C. = concentration of solute in the mobile solution (between spheres) 
Ci.. = concentration in of solute in the immobile solution (within spheres) 
D, = hydrodynamic dispersion coefficient for mobile solution 
Vd = Darcy velocity 
0M= volume of mobile solution as a proportion of the total column volume 
0 im = volume of immobile solution as a proportion of the total. column 

volume 

cc = mass transfer rate coefficient from immobile to mobile solution. 

Rao et aL (1980a) showed experimentally that the mass transfer rate 

coefficient, a, is not constant but changes with time. They introduced the 
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averaged mass transfer coefficient which can be calculated independently for 

porous spheres from the equation: 

or 

where 

CC = 
(0.1)"(DO,. 

0.0001< T: 5 0.1 (4.13a) 
I-B, 

Mý 
ýF 

), 

2(1+ OJBI )(DOiln) 
cc = (Dql (I-B 

I 

(Ra 
T2 T 0.1 (4.13b) 

om +oim 

B, = 0.144721n 
(167) 

2) ý(Dqj 

q, = is a constant depending on (D, q, values for various (D values are given in 

Rao et aL (1980), 

a= sphere radius, 

and the dimensionless time, T, is given by 

DAt 
a2 

(4.14) 

is e time period over which a is calculated. For a displacement 

experiment it is considered to be the mean column residence time (i. e. 
At = Vd /Ont ) which has been shown to give the best result (Rao et aL, 1980b). 

4. ZZ2 Initial and boundary conditions 

The initial condition for the solute concentration of the mobile and immobile 

solutions is given by: 
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ci. (Z, t) = c, » 
(Z, t) = Co (t = 0) (4.15) 

where 
CO = the initial solute concentration of both mobile and immobile solutions. 

For the upper boundary condition (z = 0), three possibilities are available 

(Javandel et aL, 1984): 

1) Dirichlet boundary condition: which prescribes concentration along the 

boundary, 

2) Neumann boundary condition: which prescribes the normal gradient of 

concentration over the boundary, and 
3) Cauchy boundary condition or prescribed flux boundary condition: which 

prescribes concentration and its gradient. 

Van Genuchten & Parker (1984) showed that a prescribed flux boundary 

condition is a better representation of the physical reality than the others, since 
it gives a better prediction of the mass balance by allowing for dispersion in the 

column at z=0. With this boundary condition the mass flux of the solute at the 

upper boundary at any time is equivalent to the total flux of that solute carried 

out by dispersion and convection (Javandel et aL, 1984), i. e. 

at z=0, tý-. O 
Vd Cinp 

-z Vd Cm 
-0A 

ac 
m 

az 
where 
Ci,, r = is the concentration of solute in the added water. 

For a finite column of length L, ,a frequently used lower boundary 

condition is 
ac 
az 

Brenner (1962) gave the analytical solution for CDE under these two 

conditions. However, accommodating the presence of a boundary layer at z=L, 
leads to a discontinuous concentration distribution across the lower boundary, 
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and thus to a gradient in the concentration interior to the transition zone that is 

not constrained to be zero (Parker & van Genuchten, 1984). Therefore, it is 

often more convenient to solve the CDE equation for an "effectively" semi- 

infinite column rather than for a finite column (Selim, 1992). For a* column 

assumed to be semi-infinite, the lower boundary condition is written as 

at z= oo ,t>0 
cl (00,1) = cm (00, t)= (", . 

Even though this condition does not exactly represent the physical reality 

(since the column is finite), it can be used if the length of the column is 

extended as shown in Fig. 4.3. Parker (1984) stated that " so long as back 

mixing at the exit boundary is negligible (which normally is the case), Eq. 4.17 

for a semi-infinite case can be used with impunity and the resulting solution 

applied to the finite region 0 :! ý z !ý Lr as well". Accordingly, this boundary 

condition was used. 

Fig. 4.3: flýpothetical expansion of the column. 

4.2.3 Intermittent leaching 

4.2.3.1 Governing equations 

1) During the displacement period, "On Time" 
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The governing equations are same as in the continuous leaching, i. e., Eqs. 4.11 

& 4.12. 

11) During the rest period "Off Time" 

The governing equations can be obtained from Eqs. 4.11 and 4.12, by assuming 

that there is no mass flow, and that solute is only transferred by diflusion (i. e., 

vd= D, =0). Thus, from Eq. 4.11: 

om a C. - =Ojm a ci. (4.18) 
atat 

where 

0 
im 

a 

ci. =a (C. - Ci. ) - at 
In calculating cc during the "on" time, the At in Eq. 4.14 is the same as 

for the continuous case; however, for the "off' time , it is equal to the period of 

the "off' Phase, since this is the real time of the difftision . 

The two main numerical methods are the finite-difference method and the 

finite-element method. Although these methods have their own techniques, 

they are basically very similar, especially in the one-dimensional case (Bear & 

Verruyt, 1987). Both use a spatial discretization and in one dimension this 

discretization is the same in the two methods. Because the finite difference is 

somewhat simpler to derive, it is used in this study. 

4.3.1 Finite-difference methods 
In most numerical methods of solving differential equations (such as Eqs. 4.11 

& 4.12), the first step is to replace the latter by algebraic finite-difference 

equations. These are relationships between values of the dependent variable 
(here, concentration values) at neighbouring points in zt space. The numerical 



60 

solution of the series of simultaneous equations thus obtained gives the values 

of dependent variables at a predetermined number of discrete points ( grid 

points ) through the domain investigated 

There are many possible ways of writing Eqs. 4.11 & 4.12 in a finite- 

difference form, according to the choice of the approximation of the terms. 

Usually the time and space domain is divided into a grid, where At represents 

the time increment and Az the space increment (Fig. 4.4). Time and space can 

be expressed as multiples of At and Az 

t=j. At I j= 0,1,2 ........ n1 

z=i. A-7 Ii=0,1,2 ...... M 1. 

So a z, t function ftz, t) is written as F(i. Az , j. At jjF , where 'F is the 

approximate solution of f(z, t) at the discrete point i. Az J. At ) of the defined 

domain. 

Fig. 4.4: A grid of the numerical solution with initial and boundarv conditions. 
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The differential equation is replaced by a finite-difference equation 

written in terms of the values of the dependent variable at the grid points. The 

solution of the difference equation, or set of difference equations, is carried out 

numerically. Denoting the exact solution of the differential equations by S, the 

exact solution of the difference equations by D, and the numerical solution of 
difference equations by N the term IS-DI is called the truncation error and 
ID-NI the numerical, or the round-off error The condition for convergence 

of the solution is that IS-D1 
-4 0 everywhere in the solution domain. The 

condition for stability is that everywhere in the solution domain ID- NJ -> 0 

(Bear, 1972). 

For example, if the partial differential equation was of the style: 

19C 02C 

x Ot x 

then the general finite-difference analogue of this equation would be: 

J+l J+l J+lc+j+lc 

iC-'IC=fl +, 
C-2 j-, +(l -2' 

_ fl) j+1 C iC+i-, 
'C 

At X2 AX2 

where 0<n<1. 

If n=0: the scheme is termed explicit because the previous equation (Eq. 

4.19) at each point i includes only one unknown, namely '+, 'C 
. The solution at 

the new time level j +1 is computed, one point at a time, from the three known 

values at time j. 

If n-- 1: the scheme is called full implicitý and there will be three unknowns in 

Eq. 4.19 for each j. The equation is written for all values of i and the 

resulting set of equations is solved simultaneously. This scheme is superior in 

efficiency to the explicit scheme and is unconditionally stable. 
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If n=0.5: this is called the Crank-Nicolson approximation or central finite 

difference. This scheme is the most natural, and the most accurate, 

approximation of the second-order derivative (Bear & Verruyt, 1987). 

A complete detailed discussion about writing the differential equations 

in a finite-difference analogue can be found in most textbooks on numerical 
integration (such as Smith, 1978). 

4.3.1.1 Crank-Nicolson method 
The Crank-Nicolson implicit method is a finite-difference approximation to a 
differential equation which is unconditionally stable (Peaceman, 1977; Smith, 

1978) and has a truncation error of second order in both space and time 

dimensions. By applying this method Eq. 4.11 becomes : 

I- For continuous displacement: 

J+IC 
_IC 

j 

mjm=D, 
J�', Cm -2 '+i'C. + 11 

+I'C. 
+i+, IC. IC�, -2 ji 

At 
(J+IC 

2 AZ2 

j+I 

äZ2 

(4.20) 
_j+lc ic fcm Vd 41 m i-1 m +-i+l m-i-i 

Oi. Ci. 
- 

if cim 

20. ý2A. - 2Az -)-0. 
( 

At 

Rearranging Eq. 4.20 and taking all the unknowns to the left-hand side gives 

j+IC DsAt(Jiýý'C -21" +Ji"1'C. i+l M 
cm 

-+ 
+lCm 

+ 
Vd At ( ji+ 

11 
Cm - 

ji-1 

= 
2 äZ2 20M 2Az 

jC + 
DsAt JC -21 icm 0 ät cim-Ici, 41 m #Cm+i-jIcm VdAt i+'ICm-i-1 im t 

m 2 AZ2 20m 2, &z 0M At 

(4.21) 

i. e. 
'C -2 J 

, C, +Ds, 
&trt+l 

m 
C. +, -,, 

Cm "RHS =J 12 AZ2 

(4.22) 
ic J+ Vd At rW 

M-i-Ic. 
) I At lcin-i 

I 
Ci. 

If At 

Choosing coefficients A, B, C, E, F and G as: 



aa 

E= 
DsAt 

+ 
VdAt 

2AZ2 40 
MAZ 

Ds., &t 
AZ2 

G= DsAt Vd At 

2AZ 2 40 
MAZ 

A=E 

Ds. At 
, 
&Z2 

C=G 

then, Eqs. 4.21 & 4.22 become respectively: 

(4.23) 

(4.24) 

(4.25) 

(4.26) 

(4.27) 

(4.28) 

A J*'C. +B J"C. +C J"C. =E I-JC. +F JC. +Gj., JC. -0 +1 i-I 1 41 11101C. - iici 

(4.29) 

J+l 

i RHS =E j-JjC. +F JC. +G j+JC. - 
O'm ý+'Cj. 

- JCj. (4.30) iIomii 

where 
RHS is the right-hand side of Eq. 4.29 

J+! C can be derived from Eq. 4.12 as: I IM 

J+IC. 
-jr 

j+I 
0 

im 
i im 1-im 

=(x icm+lJc. i+�Ci. +licim) At 
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0 J+l aAt J+l 

im icim-, 0imici. + 
2( 'C'+"C'-j+"C'-"C') 

j+l CLAt J+IC. CtAt aAt JC" 
i Ci. 

im=ilci. ---io-ilci. +ýo-(i+i'c. +i 
201.1. i. 

j+I CLAt CLAt CLAt 
iCim (1 + =JC (1-- )i im 20 2i, 

)+: i0, 
- 

(j+I c 
'»+jc m) im im im 

J+l cc At 
+ cc At (J+IC 

ic) 
]/(l+, At (4.31) 

(c,,. = [ iici. ('- 
20im ýoi. i no+ 20im 

) 

Eq. 4.30 can be written in matrix form as: 

(M) [C. ] = [RIISI 

where the coefficient matrix (M) is tridiagonal and therefore the simultaneous 

equations can easily be solved for each time step by using one of the 

algorithms based on Gaussian elimination (James & Poole, 198 1). 

11- For intermittent leachin 

-P On Time 

s in e continuous leaching case. 

Off Time 
ýl 

Eq. 4.18 becomes: 

j+I c 

-ici ic». -lic. - 0,. im i 

At 0. ý At 

j+I 
= 

Oim 
J+IC 

-JC icm-licl -0(i im, i im ) 
J+l oim 

, C. =i, C. +o (4.32) 
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The SIL model is written in FORTRAN-77. The following diagram (Fig. 

4.5) represents the flow chart of the model. The computer program is printed in 

Appendix A. 

III- For a column filled with a mixture of spheres 

In this case the model will require the mass proportions of each size of sphere. 

The mass transfer coefficient is calculated for each diameter by Eqs. 4.13ab 

using the relevant D, value. The concentration within the spheres (Cl. ) is also 

separately calculated for each diameter using Eq. 4.3 1. The "overall" C1. at 

each (z, t) is obtained by solution of the equation: 

RP 
J+l Ici. ). P. (4.33) Ci.. (J+i 

where 

np the number of different diameters in the mixture. 
P,, the mass proportion for spheres of diameters (n). 

The SIL model then continues as previously. The FORTRAN-77 code 

for this case is presented in Appendix B. 

4.4 Model stability and convergence 

It is desirable to control the stability and convergence of firlite-difference 

schemes by comparison with an analytical "exact" solution, if such a solution 

exists. Analytical solutions for continuous saturated displacement (Eqs. 4.11 & 

4.12) have been derived for a variety of initial and boundary conditions (De 

Smedt & Wierenga (1979), van Genuchlen (1980,1981), and Parker & van 

Genuchten (1984) ). 

Rao et aL (1980b) performed miscible displacement experiments on 

columns of inert porous spheres. Using the values of parameters of one of their 

experiments (Table 4.1), both analytical and SIL models were run. The results 
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Fig. 4.5: Flow chart of SIL model (for abbreviation definitions, see Appendixes) 



C0 
22 

are shown in Fig. 4.6 as a graph of solute concentration in the effluent as a 

function of time. 

Table 4.1 Nalues of the parameters used with analytical solution and SIL model (data from Rao et al. 

. 1980b). 

d 

(MM) 

Lr 

(MM) 

om 0im Vd 

(MM/Min) 

Ds 

(MM2/min) 

a 
(min-) 

] 

1 
55 1 185 1 0.227 1 0.159 1 0.636 1 3.137 0.00168 

The SIL model was consistent with the analytical solution throughout 

the curve (W=0.99), demonstrating the stability and convergence of the 

numerical code (SIL model). 

The term model validation may be defined in a number of ways. One such 

(adopted from International Atomic Energy Agency (IAEA), 1982) is: 

"A conceptual model and the computer code derived from it are validated when 

it is confirmed that they provide a good representation of the actual processes 

occurring in the real system. Validation is thus carried out by comparison of 

calculations with experimental measurements and field or laboratory 

observation". 
The validation of the SIL model will be carried out in the next chapter. 
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Transport of non-sorbing sobte 
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Fig. 4.6: A plot of effluent concentration against time for SIL model and analytical solution results 
(data from Rao et al. (1980b) for leaching of 36CI- out of column of inert porous ceramic spheres 
randomly distributed through glass beads (125 ýLrn in diameter)). 
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Chapter Five 

eiww", ýWt WOX/C 

In this chapter the validity of the SIL model described in chapter four is 

checked using the experimental results presented in chapter three. The 

diffusion model is used to estimate the effective diffusion coefficient De , Of 

spheres of three different diameters by fitting the model predictions to the 

experimental results. The non-linear least-squares optimisation program 
CXTFIT1 of Parker & van Genuchlen (1984) was used to estimate the 

hydrodynamic dispersion coefficient (D, ) by fitting the program predictions to 

the results of the continuous leaching experiments. The SIL model was checked 

against experimental results using the previous two parameters ( D, and D, ). 

After establishing the validity of the SIL model, the model was used to explore 
the behaviour of IL under different conditions. 

5.1 Estimating of effective diffusion coefficient De 

All the parameters required in the diffusion model (Eqs. 4.8,4.9, and 4.10), 

except D, , can be calculated from the experimental data (Table 3.1). D, was 
found by optimising the fit with the experimental results using the values of the 

coefficient of determination as an indication of the goodness of the fit (Hogg & 

Ledolter, 1992). 
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Fig. 5.1 shows a plot between C .. QYC, against time for experimental 

and numerical results. Experiment and theory agree closely with all values of 

R2 larger than 0.95. The optimised values of effective diffusion coefficient are 

shown in Table 5.1. The values changed slightly with sphere diameter, perhaps 

due to something related to the manufacturing process. 

Table S. I: Parameters of diffusion model. 
Sphere diameter 

(MM) 

No. of spheres Ve 

(CM 3) 

De* 

(=2/min) 

DelDO' R2 

3 635 524.3 0.0528 0.525 0.955 
6 70 523.0 0.0422 0.420 0.996 

13 18 512.6 0.0575 0.572 0.996 
* values are obtained by optimisation using diffusion model 
R2 = coefficient of determination 
#DO= 0.101 mm 2 min" for KCI @ 20* C. 

5.2- SIL model simulation 

5.2.1 Continuous leaching 

The results recorded from continuous leaching experiments (Section 3.3) were 

used to test the SIL model for continuous conditions. The model parameters 

were estimated independently before conducting the test as follows. 

5. Zl. l Estimating theSILmodelparameters 

The main parameters required by the SIL model are: 
1) Om : The ratio of volume of mobile water (within the inter-sphere 

region) to total column volume 

The total volume of the column occupied by the spheres is 

VT'--Lr A 

where 
L,, = the height filled with spheres 
A= cross-sectional area of the column. 

The volume occupied by the spheres is 
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C.. (1) = concentration of solute in the external solution 

Ce = concentration of solute at equilibrium 

Fig. 5.1: A plot between C? n(t)'Ce against time for experimental data and simulation results for each 
of three sphere diameters: o, 3 mm-, +, 6 mm-, *, 13 mm. 
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VIP = 

Ws 

/p; p 

1-0 

SP 

where 

W, = mass of oven-dried spheres 

p,, = average particle density of the spheres 

Osp= sphere porosity. 

Thus the mobile water volume is 
V =V -V mT SP 

and 
v 

om ,M 

VT 

2) 01m : The ratio of volume of immobile water (within the intra-spheres 

region) to total column volume. 

Volume of immobile water is 
V =V 0 
Im SP SP 

and hence 
v 

0im = 
VT 

3) cc : The mass transfer coefficient is calculated using Eqs. 4.13a'b. The 

required effective diffusion coefficient, D, , is taken from the optimised 

values in Table S. I for the relevant sphere diameter. 

4) D, : The hydrodynamic dispersion coefficient is estimated using the 

non-linear least-squares optimisation program CXTFITI of Parker & 

van Genuchten (1984). The parameters used in CXTFITI program for 

inert media are (in addition to D, ) vd, P2 and (o where 

0m 

0m+ 0im 

ct L 
Vd 
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The only unknown parameter is D, . The program optimises the value 

of D, by fitting the predictions to the experimental results. Fig. 5.2ac 

shows the results as a plot between effluent concentration and time. All 

the curves start with a plateau followed by a rapid decrease in the 

effluent concentration, when the less concentrated water reached the end 

of the column, and end with long tailing caused by the slow diffusion of 

solute from the spheres. The results from the optimisation program fit 

the experimental data throughout the curve with a value of R2> 0.95. 

However, the CXTFITI program slightly underestimated the effluent 

concentration at early stages and overestimated it at late stages. This 

may be ascribed to an underestimation of the value of (D (= 0"1 
OM +0j. 

Underestimating the (D value resulted in similar early breakthrough and 

long tailing as observed by van Genuchten & Wierenga (1976). 

The CXTFIT1 program is not applicable to a column containing mixture 

of sphere diameters (i. e., Exp. 2C) because it uses only one value for a. 

It is therefore necessary to optimise an "average' a, in addition to D, . 
The SIL model is able to deal with different sphere diameters (and/or 

different effective diffusion coefficients) using Eq. 4.33 (Section 

4.3.1.1) . The SIL model optimised the value of D, by subsequently 

altering it until the model predictions best fitted the experimental data 

(Fig. 5.2b). 

The SIL model was then run with all the determined parameters (Table 5.2) 

and assuming that the off time equals zero and that the on time equals the 

experiment times. The results are shown in Fig. 5.3 as graphs between effluent 

concentration and time. There is close agreement between the SIL model 
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Fig. 5.3 : Plot of effluent concentration vs. time for SIL model and experimental results for Exp. I C, 
2C, and 3C. 
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predictions and experimental data throughout the simulation (R 2>0.95 in all 

cases). It is also interesting to notice that, as the model used the same D, 

optimised values of Fig. 5.2a, c; , it inherited the similar BTC shapes showing 

also slightly earlier breakthrough and longer tailing than the experimental data 

(Fig. 5.3a, c). 

Table 5.2: Parameter values for SIL model. 

Sphere diameter om olm Vd D, * D, 

(MM) (mm/min) (mm2/min) (=2/min) 

Exp. IC 13 0.486 0.230 2.31 0.0575 2.824 

Exp. 2C 13+3 0.320 0.310 0.96 0.0575 & 2.641 

1 11 1 0.0528 

Exp. 3C 
16 1 

0.404 
1 

0.268 
1 

5.47 0.0422 28. 
* values are obtained from Table (5.1) for relevant diameter 
# values are optimised using CXTFITI program 
I values are optimised using SIL model. 

5.2.2 Intermiftent leaching 

The intermittent leaching (IL) experiments were performed under similar 

conditions to the continuous leaching (CL) experiments (Tables 3.2 & 3.3) with 

the inclusion of several interruptions to the leaching flux. Therefore the same 

values of the parameters previously determined for the CL experiment (Table 

5.2) were used. The main advantage of the CL experiment is the estimation of 

D, , which cannot otherwise be estimated independently. The SIL model will 

run with these parameters but with different values of the onloff time (Table 

5.3). 

Fig. 5.4 shows the results as plots between effluent concentration and 

time. Experimental data points follow the same general pattern as for the 

continuous leaching experiments (Fig. 5.3) with a decrease in effluent 

concentration after a certain time. Superimposed on this pattern are successive 
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Fig. 5A Plot of effluent concentration vs. time for SIL model and experimental results for Exps. 
11,21, and 31 
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Table 5.3: Parameter values for SIL model. 

Sphere diameters om olm Vd ' De * D, 4 

(MM) (mm/min) (MM2/Min) (MM2/Min) 

Exp. 11 13 0.486 0.230 2.150 0.0575 2.82 

Exp. 21 13+3 0.300 0.316 0.862 0.0575 & 2.64 

1 
0.0528 

Exp. 31 6 0.398 0.271 5.240 
1 

0.0422 28.21 
values are obtained from Table (5.1) for relevant diameter 
values are taken from Table (5.2) of continuous leaching simulations. 

short increases in concentration corresponding to measurements made after the 

end of each off period. The amplitudes of these peaks progressively decrease 

with successive offperiods with the most rapid such decrease in Exp. 31 and the 

least rapid in Exp. 21. These reflect the temporary increase in concentration of 

the mobile water during the off time due to continuing difftision out of the 

spheres. 

The model simulated the IL experimental data (Section 3.4) without any 

optimisation and excellent agreement between the model and experimental 

results for all the three cases was obtained (R 2>0.95). The small differences 

between the model predictions and experimental data could be because of some 

small differences between the experimental conditions of CL and IL (Table 5.3 

5.2). The model was able to simulate the increase in effluent concentration at 

each off time using Eq. 4.18 for uni-sphere and mixed-sphere columns. 

Using the parameters of Exp. 11 the model was run with two different 

conditions: 1) with different onloff times 

2) with different inflow concentrations. 

5. ZZI Running the SIL model with different onloff times 

The model was run for different combinations of onlofftimes (5115,15/25, and 
25/15 min). The results of the model were plotted as CICO (relative 

concentration) vs. VIVO (pore volumes) (Fig. 5.5), where 
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C= the concentration of solute in the effluent 
CO = the initial concentration of solute in both the mobile and immobile 

solution 
V =the oufflow volume 
VO = the total volume of mobile and immobile water in the column (i. e., 1 

pore volume). 

With this dimensionless unit on x-axis, the off times will appear as an 
instantaneous increase in concentration because no flow occurred. Every such 
jump will indicate the end and the beginning of a leaching cycle. Fig. 5.5 

shows that the solute concentration of the effluent was initially equal to CO in 

all experiments (CICO=1). The difference in effluent solute concentration 
between CL and IL will appear first with the experiment having the shortest on 

time (appears in red colour in Fig. 5.5). As the on time increased such 

difference between IL and CL decreased. After leaching most of the solute in 

the mobile solution (i. e., after about one pore volume has passed) the BTC of 

CL showed a long tailing (towards the zero value of CICO) as the solute in the 

immobile solution continued to slowly diffuse out. By contrast in IL, as most 

of the solute in the immobile solution diffused out during the off times, shorter 

tailing was observed for all the cases, with a consequent greater effluent 

concentration at the beginning and a shorter tailing. More discussion about the 

effect of on and offtimes will come in Section 5.3. 

However, this is not the whole story since the previous results showed 

only the effluent concentration and gave no information about how the solute 

concentration in the immobile solution was changing. Fig. 5.6 is a plot of 

simulated solute concentrations of the mobile, C. (z, t), and immobile, C,, (z, 1) 31 

solutions vs. depth for both CL and IL (with 5115 min onloff cycles) at two 

values of VIVO (0.5 and 1.8). The concentration of both mobile and immobile 

solutions increased with depth, with the concentration of the immobile solution 
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increasing more rapidly. The solute concentration of immobile solution was 

always lower under IL than under CL. As the leaching progressed the 

concentrations of the immobile solution decreased more rapidly under IL than 

under CL. At VIVO = 1.8 (after 22 IL cycles) both solute concentration in the 

mobile and immobile solutions was five to six times lower under IL than under 
CL. The off times also help in keeping the difference between Qz, I) and 
C,. (z, 1) small under IL as there was more time available to achieve equilibrium 
between mobile and immobile water. 

S. ZZ2 Running the SIL model with dyf'erent inflow concentrations 
IL remains more efficient than CL even when water of lower quality is used for 

IL. Fig. 5.7 shows a plot of Ss(tySo vs. VIVO where: 
So = the initial salt mass in the column, equal to: 

So 
= Co Vo 

Ss (t) = the salt mass in the column at time t, which is calculated by: 

Ss(t) = So + (C,., p - C. (L,, t)) A vd dt 
0 

where QLt) is the effluent concentration. 

The plot is for two different application methods. One is continuous 
leaching with distilled water, the other two are IL with 5115 min onloff cycles 
but different solute concentrations of the leaching water. The three applications 

were otherwise under the same conditions. The figure shows that there was less 

salt remaining in the column, all the time, under CL with distilled water than 

under IL with water containing 1g solute A. However, leaching of about 80% 

of solute (Ss(tySo = 0.2, requiring VIVO ; 4-. 1.2) can be achieved with the same 

quantity of water by continuously leaching with distilled water or intermittently 

with water containing 1g solute A (point B in the graph). 
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When the column was intermittently leached with water containing 0.5 

g solute /1, IL was more effective in leaching than CL after about 0.8 pore 

volumes, and remained so until about 90% of solute leached (Ss(tySo = 0.1 

and VIVO ; zý 1.8, point A in the graph). The salt load in the column remained 

constant under IL as solute kept entering with the inflow water. 

Leaching salt-affected soil with low quality water will be of particular 
importance in and and semi-arid areas where water of good quality is 

frequently unavailable. 

5.3.1 Using the same sphere diameter with different interstitial 

velocities: 
Five experiments were conducted to continuously leach columns containing 

2.4 mm diameter spheres (Table 5.4), each experiment with different 

interstitial velocities. The outflow rate was controlled by using a peristaltic 

pump connected to the column outlet (Fig. 3.3). The experimental conditions 

are shown in Table 5.4. 

Table SA Continuous leaching experiment conditions. 

Erp. d 

(MM) 

VM 

(mm/min) 

om olm Ds * 

(MM2/min) 

tolt, 

(Lr=250 nun) 
1 2.4 1.89 0.498 0.226 1.61 73.98 
2 ei 5.56 0.484 0.232 7.70 25.15 
3 ei 22.78 0.486 0.231 90.30 6.13 
4 ei 48.11 0.514 0.190 256.70 2.90 
5 ei 101.00 0.496 0.227 294.50 1.38 

Vm is mobile water velocity (V. = Vd / 0. ) 
* The values are optimised using CXTFITI program. 

These experiments were aimed both to test the SIL model at different 

velocities and to determine the hydrodynamic dispersion coefficients (D,, ) for 

these experimental conditions (in the same manner as in Section 5.2.1). The 

estimated D, values will be used later with intermittent leaching simulations. 
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Fig. 5.8 shows the results of SIL, CXTFITI, and experimental data as 

effluent concentration against time for Exps. 1,2,3,4, and 5. The experimental 
data points follow the same general pattern for all the experiments with a rapid 

decrease in effluent concentration after a certain time depending, for these 

experiments, on the interstitial velocities. As the interstitial velocity increases, 

the less concentrated water reaches the column end sooner and the effluent 

concentration decreases earlier. The experiment with the highest interstitial 

velocity showed a longer tailing in its BTCs, because the solute of the mobile 

water leached out much faster than the solute of the immobile water, which 

then continued to slowly diffuse out causing such tailing. The SIL model was 

able to simulate all the experiments very well using the parameters in Table 

5.4. However, when the velocity became extremely high ( i. e., Exp. 5), some 

oscillatory behaviour occurred in the numerical results (Fig. 5.8e). 

This oscillation (usually in the form of an overshoot ) is typical of many 
higher-order difference equations designed to eliminate numerical dispersion 

(such as the Crank-Nicolson method). The oscillations slowly die away with 

time (Peaceman 1977; Smith, 1985) and were found to occur when the 
disPlacement " residence " time (t. =L) became very small and close to the 

V. 

characteristic diffusion time (t, a) as shown in Table 5.4. However, by 
15D, 

decreasing the time steps this problem disappeared (Fig. 5.8f 

5.3.1.1 SIL modelpredictionsfor IL 

The SIL model was run with each experimental set of parameters (Table 5.4) 

but with different onloff time combinations. Twelve different intermittent 

leaching cycles were used to explore the effect of different on and off times 

and pore-water velocities on the water required to leach 90% of the initial salt 
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load of the column. The results are presented in Table 5.5 and in Fig. 5.9 

where the xyz axes are on time, offtime, and V,, / V,, respectively, where 

V,, = the volume of added water needed to remove 90% of the initial 

salt load of the column. 

Table S. S: Values of V-IV- at different velocities for sr)heres of diameter cl-'-2.4 mm. 
VM 
(mnVmin) 

48.71 22.78 
I S. S6 

I 1.89 

On Time 
(min) 

11 51 10 11 5 10 11 5ý 10 11 51 10 
Off Time 
(min) 
1 1.047 1.162 1.206 0.995 1.070 1.087 1 0.924 0.945 0.951 0.909 P. 915 1 0.917 

5 1.030 1.151 1.205 0.985 1.064 1.084 0.921 0.942 0.950 0.914 0.917 
10 1.028 1.149 1.205 0.983 1.063 1.083 0.920 0.941 0.950 0.907 0.914 0.917 

1.028 1.149 1.205 0.983 1.063 1.083 1 0.920 0.941 0.950 0.907 0.914 0.917 

It is apparent from Fig. 5.9 and Table 5.5 that the effect of off time was 

very small (2% change in V,, IV, at most). This is because the spheres were 

small and 80% of the solute was able to diffuse out in the first five minutes of 

the rest period (Fig. 5.1). 

The effect of on time was more distinct especially at high velocities. At 

v,, = 48.11 mm/min and off time =1 min, using I min on time rather than 15 

min can save up to 15% in the amount of leaching water. However, at low 

velocities, both on and off time effects were small and the overall benefit of 

intermittent leaching decreased because there was ample time avail-able for 

diffusion during the displacement period. This is consistent with the field 

observation of Verma & Gupta (1989) who found only a marginal decrease in 

soil salinity with intennittent application over continuous for their low 

hydraulic conductivity clayey soil. 

5.3.2 Using different sphere diameters with the same interstitial 

velocity 
Three continuous leaching experiments were performed (Table 5.6) with 

almost the same interstitial velocity but with different sphere diameters. A 
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mixture of 13 and 2.4 mm. diameter spheres was used in Exp. 7 with mass 

proportions of 0.56 and 0.44 g g" respectively. 

Table SA Continuous leachinp, exr)crimcnt conditions. 

Exp. 
(MM) 

VM 

(mm/min) 
om 0im Ds 

(MM2/Min) 
6 13 4.18 0.425 0.259 3.2 * 
7 13+2.4 9 3.83 0.337 0.298 3.7 
8 2 3.94 0.485 0.232 3.7 * 

i ne vaiues are optimisea using uxuýn-i program 
the mass proportions of sphere diameters 13 &3 were 0.56 & 0.44 g g7l respectively. 

5.3. Z2 SIL modelpredictionsfor IL 

The SIL model was then run with these previous conditions (Table 5.6) and for 

different onloff times. The results are shown in Table 5.7 and presented as a 

three-dimensional graph in Fig. 5.10. It is clear that mixing spheres with large 

and small diameters increased the required amount of leaching water (i. e., 
increased the values of V,, / V,, ) significantly and became much closer to the 

case when only large spheres were used. 

Table S. 7. Values of V, / V,, for different sphere diameters at v- =-, 3.89 mm/min. 

d (mm) 13 13+2.4 2 
On Time 
(min) 

11 51 10 1 15 1 20 15 1 10-1 15 1 20 11 57 10 1 15 20 
Off Time 
(min) 

5 . 948 1 1.07 1.17 1.23 1.28 . 932 1.02 1.08 1.12 1.15 . 912 . 923 . 976 . 927 . 928 
10 . 31 1.03 1.11 1.18 1.28 1 . 926 . 994 1.05 1.09 1.12 . 912 . 923 . 976 . 927 . 928 
20 . 923 . 996 1.07 1.13 1.18 . 922 . 978 1.03 - E. O6 1.09 912 . 923 . 976 . 927 . 928 
40 . 918 . 969 1.04 1.09 1.13 1 . 919 . 967 1.01 1.041 . 912 . 923 . 976 . 927 . 928 

The effect of changing on loff times on a column of small spheres (d=2 

mm) was small as the velocity is low which allowed sufficient time for 

difftision. With large spheres, the effect is clearer. 
The effect of On time was found to be much greater than off time. For 

off time =5 min, the largest spheres (13 mm) would require 26% less leaching 
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water if the I min on time had been used than if the 20 min on time had been 

used, and up to 19% less leaching water in the case of a mixture of spheres. 

The effect of Off time was very small for the smallest spheres (almost 

no change was noticed in V,, IV,, values when the off time varied for sphere 

diameter =2 mm). This effect was clearer for large spheres, though it was still 

smaller than the effect of on time. For the "best" case (largest diameter, 

longest on time) 13% of the leaching water could be saved if an offtime of 40 

min had been used instead of 5 min. 

Fig. S. 10 also can be transformed to show the effect of onloff times on 

the total leaching time needed to remove the 90% of the initial salt load of the 

column (TT). Fig. 5.11 and Table 5.8 demonstrates these results. Comparing 

Fig. 5.11 with Fig. 5.10 shows that saving water is always accompanied by 

longer leaching times. 

Table 5.8: Values of total leaching time (min) for different sphere diameters at v. =-! 3.89 mm. /min. 

d (mm 13 13+2.4 2 
On Time 
(min) 5 10 15 1 20 51 10 1 1 51 10 1 15 20 
Off Time 
(min) 

5 215 177 1 167 162 205 164 1151 146 187 1 140 125 1 117 
10 311 225 198 186 302 212 184 170 280 187 156 141 
20 504 324 266 238 495 311 

1 

251 221 467 281 219 ! 88 
40 882 526 405 344 880 509 385 323 840 468 . 344. _ 281 

Tables 5.7 & 5.8 show that for the largest spheres at 20/5 min onloff 

time combination, the number of pore volumes required to leach 90% of solute 

was 1.28, and the time taken for leaching was 162 min. With a 5/40 onlofftime 

combination the number of pore volumes was 0.918, and the leaching time was 

882 min. This means that, to save 28% of the leaching water, the total duration 

of leaching increased 5.4 times. Using the same argument with the same onloff 

time combinations it can be shown that, for the mixture of spheres, increasing 

the total leaching time six-fold saved 20% of water. For the smallest spheres, 
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increasing the leaching time by 718% saved only 1.7% of water. It can be 

concluded that using IL is much more worthwhile if the proportion of large 

aggregates in the soil is high. However, the time taken by IL is still very large 

and is the main disadvantage of this method. 

9 Constructing a dimensionless graph: 

The off time is the period when diffusive flow within the spheres allows a 

movement of solute towards their surfaces. The total amount of such 

movement will depend on D, and a. 
The characteristic difftision time, ti, of a sphere is given (Passioura, 

1971) by: 

a2 
15D, 

If the diffusion of solute within the sphere is assumed to be well approximated 

by a first-order process, then the characteristic diffusion time is the inverse of 

the first-order mass-transfer rate coefficient (Passioura, 197 1; Hayot & 
ft Lafolie, 1993). Therefore, using the ratio 

( Of() 
tj 
ime ) 

as a dimensionless unit 

instead of off time might be more appropriate because the effects of D, and a 

on diffusion results will be minimised. 

The mobile phase "residence" time is the average time required for the 

displacing fluid to reach the column end (assuming piston flow in the mobile 

phase) and is calculated by: 

Lr 

V, 

It also might be more appropriate to use the ratio 
( On time 

as a dimensionless 

unit instead of on time. 
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To calculate the characteristic diffusion time ( t, a) the sphere 15D, 

radius, a, should be known. For a mixture of spheres, a is taken as the mean 

radius of mixture. 

Estimating a mean radiusfor a mixture ofsphere diameters: 

Five different estimates of mean radii have been used in the literature to model 

the diffusion out of mixed sizes of spherical aggregates: 

1) MSR= the mean square radius for the mixture (Passioura, 197 1) 
M =, 

j(j: a, 2p SR 

where 

ai = the radius of sphere i 

Pi = the mass proportion of spheres of radius ai 

2) MVR= mean sphere volume radius (Han et al., 1985) 
3p MVR=(I: a, )1(Za, P, ) 

3) MER= mean exchange area radius (Hayot & Lafolie, 1993) 
MER =3/ (Z Si. Pj) 

Si is the surface to volmne ratio , for spheres S =3 /a. 

4) WAR= weighted-average radius (Rao et al., 1982) 

WAR P, - Tý 

5) VWR= volume-weighted average radius (Rao et al., 1982) 
VWR =Za,. P, . 



97 

To ascertain which mean radius is the best to average a mixture of 

sphere diameters, a FORTRAN-77 computer code depending on Eqs. 4.8 & 

4.10, for diffusion of solute out of inert spheres into a fixed volume of 

solution, was developed (Appendix Q. The equations were: 

D, q,, t 
C=. 6y(, v+1)exp(---j-) 

0 1-E 2 CO - C. 
K-- 1 9+9y+q ', 

y2 

and 
v (C. - *2 V. 

where V,,,, is the total volume of water inside the spheres. 

The code was used in two different ways : 
A)- The code was run with the real medium which consisted of a 

mixture of sphere diameters. At each time step, Eqs. 4.8, and 4.10 will be 

solved for each diameter. 

B)- The code was run assuming a "simple: e' medium consisting only of 

one mean radius. The model was run with each of the five definitions of mean 

radii above. 
The values V,,, , Co , and V, were kept the same in each case. Case A is 

considered as the reference to compare the utility of the results of case B. 

Six tests were done with these two cases: 
Test 1 (Tl): Assuming two spheres of diameter 13 mm., and 177 spheres of 
diameter 2.4 mra (giving a mass proportion for large spheres P, =0.727, and for 

small spheres P2=0.273). 
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Test 2 (T2): Assuming two spheres of diameter 13 mm., and 370 spheres of 

diameter 2.4 mm (giving a mass proportion for large spheres PI=0.56, and for 

small spheres P2=0.44). 

Test 3 (T3): Assuming 12 spheres with diameters normally distributed around a 

mean value of 5 mm, and a value of standard deviation a=0.05. 

Test 4 (T4): Assuming 12 spheres with diameters normally distributed around a 

mean value of 5 mm, and a value of a=0.1 

Test 5 (T5): Assuming 12 spheres with diameters log-normally distributed 

around a mean value of 5 mm, and a value of a=1. 

Test 6 (T6): Assuming 12 spheres with diameters log-normally distributed 

around a mean value of 5 mm., and a value of cr = 1.5. 

For each test, the code was run as A and B above and values of the 

coefficient of determination between the result of case A and case B are given. 

The results are shown numerically in Table 5.9 and as an example the results 

of first test are shown as a plot of external concentration against time in Fig. 

5.12. 

It is clear from the values of coefficient of determination (Table 5.9) 

that, for the case of diffusion from spheres, the mean square radius (Passioura, 

1971) , MSR, was the best to average the mixture of radii for tests 1,2,3 and 4. 

However, for the last two tests (5&6) the volume-weighted average radius, 
VWR, was slightly better to average the mixture. 

The mixture in Exp. 7 was similar to that of test T2, thus the best 

average radius is MSR. i. e., 
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Table 5.9: Values of different aveme radii and their Rý. 
I I 

MSR* I MVR MER* I WAR* I V"* 

Mean radius 
(MM) 

5.83 6.74 2.82 2.04 5.25 

TI R2 0.958 0.881 0.536 0.326 0.952 

Mean radius 

-- 
(MM) 

5.14 
I 

6.68 2.08 1.63 4.29 

T2 R2 0.811 0.352 0.219 0.048 0.810 

Mean radius 
(mm) 

6.03 6.22 5.70 5.54 5.95 

T3 R2 0.998 0.994 0.993 0.983 0.998 

Mean radius 
(mm) 

7.37 7.47 6.98 6.59 7.31 

T4 R2 0.999 0.998 0.991 0.962 0.999 

Mean radius 
(MM) 

29.93 32.60 26.19 24.02 

I 

28.88 

T5 R2 0.991 0.957 0.970 0.922 0.993 

Mean radius 
(mm) 

25.98 28.21 21.95 19.95 24.98 
I ---- -- T6 - R2 0.990 0.962 0.952 0.892 0.991 

* see text for explanation. 

MSR a, 'P, j(670.56 
+122 0.44) = 4.93 mm. 

The mean radius value calculated above was then used to calculate the 

characteristic diffusion time, tj , value for the mixture of sphere diameters of 
Exp. 7. However, using a mean radius to predict the BTCs from miscible 
displacement experiments, instead of the real size distribution, was shown by 

Hayot & Lafolie (1993) to give a very different result. They stated that an 

average radius cannot be found such that this "homogeneoue' medium behaves 

similarly to the porous medium presenting an aggregate size distribution, and 

that the possibility of fmding an average radius depends not only on the 

characteristics of the size distribution but also on the velocity. Therefore, the 

previously calculated mean radius was used only to calculate the value of h- 
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The SIL model was run again with the same conditions of Exps. 6,7, 

and 8, but for new onloff times as shown in Table 5.10. The new onloff times 

were chosen so that all the experiments would have the same dimensionless 

values on the xy axes. The results are shown in Fig. 5.13 where the x and y 

axes become 
(2nttime) 

and 
Offtime 

respectively. 

TableS. 10: Values of (ontimelt-) and (off timelt. ) for Fijz. 5.13. 

d(mm) 13 13+2.4 2 
On Time 
(min) 

5 10 20 5 10 20 5 10 20 

On Timelto 0.083 0.167 0.334 0.077 0.153 0.306 0.078 0.157 0, . 315 
Off Time 
(min) 

14 38 76 114 8 23 46 69 1 2 3 

Off Timelti 0.262 0.712 1.425 2.137 0.261 0.749 1.499 2.248 0.792 1.584 2.376 

Representing the results on this dimensionless graph did not eliminate 

the differences between the results of the experiments as was expected. It can 

be noted that the number of pore volumes hardly changed for small diameter 

spheres, while it changed almost in the same manner for the mixture and large 

spheres. This is mainly because the graph used residence time rather than 

using other "characteristic displacemenf' times similar to the characteristic 

diffusion time where the influence of hydrodynamic dispersion and the lateral 

diffusion from the spheres are taken into account. Such a characteristic time is 

out of reach because the amount of solute leached during time t is in a very 

complicated mathematical form, especially with the existence of off times and 

different sphere sizes, and will include the integral of the analytical solution of 

Eq. 2.17 with time. 
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V-= 3,98 m. m/'min 

(13 &- 2.4) rim 

, -2, '3' 

V IV = is number of pore volumes needed to remove 90% of the initial salt load of the Column. a0 

Fig. 5.13: Relationship between 
gýlime 

, and Va IVO for Exps. 6 to 8. 

1 
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Solute transport through columns of soil aggregates 
under saturated condition 



Chapter Six 

d4w, 74 SOW4 

This chapter introduces the theory of solute ads orption/desorption from soil 

surfaces. Equilibrium and kinetic adsorption models are introduced and the 

different principles of modelling transport of sorbed solute through the soils are 

explored. 

6.1 Definitions 

Adsorption is the net accumulation of matter at the interface between a solid 

phase and an aqueous solution phase (Sposito, 1989). It differs from 

precipitation because it does not include the development of a three- 
dimensional molecular structure. The material accumulating in such a two- 
dimensional molecular arrangement at an interface is the adsorbate. The solid 

surface on which it accumulates is the adsorbent. A molecule or an ion in the 

soil solution that can potentially be adsorbed is termed an adsorplive ( Sposito, 

1989). 

The processes of adsorption involve changes in the composition of the 

bulk phase from which the amount adsorbed can be described. It is necessary to 

distinguish between changes of bulk phase composition brought by absorption, 

when a given chemical substance is partitioned between two bulk phases, and 
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by adsorbtion at an interface (Burchill et d, 1981). Desorption refers to the 

reverse of the process of adsorption. 

A general term sorption (or sometimes retention) is used when it is not 

desired, or is experimentally impossible, to distinguish between adsorption and 

absorption. 

The partitioning of solutes between liquid and solid phases in a porous medium 

as determined by laboratory experiments is commonly expressed in two- 

ordinate graphical form where the mass adsorbed per unit mass of dry solids 
"adsorbent" (S) is plotted against the concentration of solute in solution (C). 

This graphical relation of S versus C and the equivalent mathematical 

description are known as isotherms. This tenn. derives from the fact that 

adsorption experiments are normally conducted at constant temperature (Freeze 

et aL, 1979). 

Solute sorption-desorption processes in soils have been quantified by 

several scientists along two different lines. One represents equilibrium 

reactions and the second represents kinetic or time-dependent types of 

reactions. A comprehensive survey of sorption relationships for reactive solutes 
in soil has been undertaken by Travis & Etnier (1981). Table 6.1 shows some 

selected equilibrium and kinetic-type isotherms. 

Equilibrium isotherms are those for which solute reaction is assumed to 
be fast or instantaneous. The Langmuir and Freundlich isothenns are perhaps 

the most commonly used equilibrium isotherms (Rubin & Mercer, 1981). 

Kinetic isotherms represent slow reactions in which the amount of solute 

sorption is function of contact time. Most common is the first-order kinetic 

reaction (Selim, 1992). 
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Table 6.1: Selected equilibrium and kinetic-type models (from Selim, 1992). 

Model Formulation' 

Equilibrium type 
Linear S-K. C 
Freundlich (nonlinear) S=K. C' 
Langmuir S-W CS,.,.,, /(l +WQ 
Langmuir with sigmoidicity S=W CS..,, /(l +WC+0, /C) 

Kinetic type 
First order dSIdt - ki(Olp)C - k, S 

n-th order dSIdt = kf(Olp)C4 - kbS 
Irreversible (sink/source) dSlOt = k, (elp)(C - C, ) 
Langmuir kinetic dSlat - kj(E)1p)C(S,,,.,, - S) - kbS 
Elovich dSIdt =A exp(- BS) 
Power dSIdt -, W(E)lp)C-S- 

Mass transfer asIdt = e(elp) (C -C 

6A, B, b, C*, Cp, le, Kd, kb, kt, k,, n, m, S,,,,., w, and a are 
adjustable model parameters. 

6.2.1 Langmuir equilibrium Isotherm 

Langmuir (1918) described the relationship between S and C as: 

K, C 
1+K2 C 

where K, and K2are constants, 
S= is the mass of adsorbate per mass of dry adsorbent, and 

(6.1) 

C= is the equilibrium concentration of solute in the solution after 

adsorption has occurred. 
This isotherm was developed to describe the adsorption of gases by solids 

assumming that the surface of a solid possesses a finite number of adsorption 

sites. If the gas molecule strikes an unoccupied site, it is adsorbed, otherwise it 

is reflected back. The derivation of this equation can be found in most Physical 

chemistry textbooks (e. g., Adamson, 1976; Rubin & Mercer, 198 1). 

This isothenn has been used extensively in the literature (see Travis & 

Etnier . 198 1) e. g., for sorption of Pb, Cd, Zn and P among other elements. 
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6.2.2 Freundlich equilibrium isotherm 

Freundlich (1926) suggested the following empirical equation for describing 

the sorption of ions or molecules from a liquid onto a solid surface: 

S=KC' 

where 

K= is the distribution coefficient, found by Baes & Sharp (1983) to be a 

(6.2) 

very variable and unpredictable parameter, which may range from 

I dm 3 g-1 to many orders of magnitude greater depending on solute and 

soil characteristics, including pH. 
b= is a constant, typically having a value of b<1 (Selim, 1992). 

The Freundlich equation has been used widely to describe the sorption 

of solutes by soils and numerous examples exist in the literature. Travis & 

Etnier (1981) mentioned thirty cases where the Freudlich equation has been 

used, including sulphate, Cd, Zn, Cu and P. 

The resulting curve of the Freundlich equation is normally parabolic. 

However, in the especial case of a linear isotherm where b=1 (as for many 

pesticides at dilute concentrations (Tan, 1982)), the S versus C data will plot as 

a straight line, i. e.: 

S=KC 

and so 
dS 

K 
dC 

(6.3) 

The difference between Freundlich and Langmuir isotherms is shown in 

Fig. 6.1. At very high concentrations, K2 C in the Langmuir equation reaches 

such a value that the factor I (Eq. 6.1) can be neglected and S approaches a 
constant ( K, / K2), whereas, in the Freundlich equation, S continues to increase 

I 
as C increases. In other words, the Langmuir equation describes a system 
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where, at high values of C, the surface of adsorbents becomes saturated and 

adsorption reaches a maximum (Tan, 1982). This makes it more appropriate in 

soils which have a finite adsorption capacity (Jury el aL, 1991). However, in 

practice, since the adsorption maximum is rarely observed, the Freundlich 

equation is used more often than the Langinuir (Him el aL, 1994). 

100 

90 

80 
Z 70 

60 

z 50 

Z 40 

30 

20 

10 

-C 

Fig. 6.1: Adsorption isotherm shapes. (from Jury, 199 1) 

6.2.3 First-order kinetic Isotherm 

A number of empirical models have been proposed to describe kinetic sorption 

reactions of solute. The earliest one is the first-order kinetic reaction (Selim, 

1992): 

40S = kf (01p) C- kbS 
401 

where 
kf , kb = the forward and backward rates of reactions, 

volwnetric water content, and 

p= soil bulk density. 

(6.4) 

Eq. 6.4 assumes that the rate of solute sorption by the soil matrix is 

related to the difference between what can be adsorbed at some concentration 
(C) and what has already been adsorbed (Travis & Etnier, 1981). For small 

0- 
02468 10 12 14 16 18 20 

DISSOLVED CONCENTRATION CL(991M 1) 
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values of kf and kb , the rate of sorption is slow and strong kinetic dependence 

is anticipated. In contrast, for large values of kf and kb , the sorption reaction is 

a rapid one (Selim, 1992). At large times Q ->oo), when the rate of sorption 

approaches zero, the above equation yields 

s=0 
kf 

C=KC 
p kb 

which results in a linear equation similar to that for linear isotherms (Eq. 6.3) in 

which equilibrium conditions were assumed. 
Eq. 6.4 has been used frequently to describe the sorption kinetics of 

several different organic chemicals, some heavy metals and more frequently 

the sorption kinetics of P in soils (Travis & Etnier, 1981). 

Adsorption reactions are important processes governing the fate of dissolved 

solutes. Models of solute transport must therefore incorporate a mathematical 
description of the chemical processes of adsorption as well as the -physical 
processes of convection and dispersion . The classical equation that describes 

one-dimensional solute transport by saturated flow (with no solute source or 

sink) is ( Eq. 2.14): 

ac pas -z'D 
a Ic 

-V 
ac (6.5) 

at +0 at 
S 

aZ2 az 

where 

V= is the average pore water velocity 
C= is solute concentration 

Ds = is the hydrodynamic dispersion coefficient 

z= the space co-ordinate (positive downwards). 
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The transport of reactive solute through the soil is dependent on the rate 

of adsorption-desorption between the soil solution and the solid phase. In a 

general sense, this reaction can be either a kinetic one, in which the relative 

amount of solute in soil solution and in soil matrix is changing with time, or it 

can be an equilibrium situation in which the above relationship is attained 

rapidly and thereafter remains constant (Travis & Etnier, 1981). 

The modelling of adsorption within the transport models therefore takes 

one of two directions depending on the acceptance or not of the local 

equilibrium assumption "LEA", defined by Yalocchi (1985) as: "If the 

microscopic processes are "fast enough" with respect to the bulk fluid flow 

rate, then reversible sorption reaction can be assumed to be in the state of local 

chemical equilibrium7'. In other words, an equilibrium situation is one in which 

the rate of adsorption between the soil solution and solid phase is much faster 

than the rate of change in concentration of solute in the soil solution because of 

any other cause (Travis& Etnier, 198 1). 

6.3.1 Equilibrium model 
If the LEA is accepted, the adsorption reaction is considered to be 

instantaneous, and may be described by one of the equilibrium adsorption 
isotherms. 

The most common approach for modelling the adsorption term (in 
at 

Eq. 6.4) has been to assume instantaneous adsorption and a simple linear 

relation between S and C (Parker et al., 1984; Nielsen et al., 1986). i. e.; 

S=KC 

so that 
as= as ac=K ac Tt ac at at 

and Eq. 6.4 becomes: 
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ac a 2c ac 
R ": DT-j--v 

az 
(6.6) 

atz 
where R is the retardation factor, given by; 

pK 
0 

The validity of LEA is found to depend upon a complex interplay 

between macroscopic transport properties (flow velocity, hydrodynamic 

dispersion, time variation of mass input) and microscopic properties (e. g. 

effective diffusion coefficient, aggregate size, distribution coefficient) 

(Valocchi, 1985). Nielsen et al. (1986) found that the equilibrium model did not 

perform well with aggregated soils. For these soils it is likely that chemical 

transport is not at equilibrium and the equilibrium model fails. Various kinetic 

and diffusion-limited rate laws (i. e., non-equilibrium models) have 

consequently been proposed to describe this non-equilibrium transport. 

6.3.2 Non-equilibrium models 
As reviewed by van Genuchten & Cleary (1979), most models of non- 

equilibrium adsorption of solutes flowing through soils and aquifers have been 

based upon the assumption that only one of the microscopic mechanisms is rate 
limiting. These models are usually grouped in two classes : 

I- chemical non-equilibrium models, or 
2- physical non-equilibrium models. 

6.3. ZI Chemical non-equilibrium models 

A chemical non-equilibrium model that did lead to improved transport 
description is the two- site model (Selim et aL, 1976). The model assumes that 

adsorption sites can be divided into two fractions; adsorption on one fraction 

(type I site) is assumed to be instantaneous (linear Freundlich isotherm), while 
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adsorption on the other fraction (type 2 site) is assumed to be time-dependent. 

This leads to the following equation (Nkedi-Kizzý et aL, 1984; Parker et aL, 

1984); 

1+ 
a C+ P OS2 

=D, 
"C-v 'C (6.7) 

cl t0 19 t OZ2 az 
and, assuming first-order kinetic reaction in site 2 similarly to Eq. 6.3, one 

obtains: 

as (6.8) ýL = cc * 
[(I - F)KC -S2] 

t 
where 

CC k= first-order kinetic rate coefficient 

F= is the mass fraction of type I "equilibrium" sites 

S2 = is the adsorption on type 2 "kinetic" sites. 

The parameters F and CC k were found in most studies to be functions of 

pore-water velocity, and generally could not be derived independently from 

batch equilibrium studies. They usually needed to be adjusted for different 

experiments carried out on the same soil column (Nielsen et al., 1986). 

6.3.2.2 Physical non-equilibrium models 

These are sometimes also called two-region models. In such models fluid 

inside the porous aggregate is assumed to be stagnant, and thus the total liquid 

phase is partitioned into mobile (inter-aggregate) and immobile (intra- 

aggregate) water regions. The soil also is divided into two regions (van 

Genuchten & Wierenga, 1976): 
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a) the mobile water soil region, located sufficiently close to the 

mobile water phase for equilibrium (assumed) between solute in the mobile 
liquid and that adsorbed by this part of the soil mass, and 

b) the immobile water soil region, located mainly around the 

immobile water inside the aggregates. Adsorption occurs here only after the 

chemical has diffused through the liquid barrier of the immobile liquid phase 
(diffusion controlled). 

Transport models are based on first-order exchange of solute between 

the mobile and immobile water regions. Van Genuchten & Wierenga (1976) 

extended this concept of mobile-immobile water to include Freundlich-type 

equilibrium adsorption processes. Their equations are of the form; 

a2C. cc 

0. R. 2-C'" 
=O. D, -v. O. '9 ' -0j. Ri. 'D " (6.9) 

at az, az at 

0,. Ri. 'a C` 
=a (C. - Ci. ) (6.10) 

at 

where 

a= mass transfer rate coefficient between the mobile and immobile water 

regions 

C', = solute concentration in the mobile water (within the inter-aggregate 

region) 

Ci,,, = solute concentration in the immobile water (within the intra-aggregate 

region) 

0m= volume of mobile water as a proportion of total column volume 

jn = volume of immobile water as a proportion of total column volume. 
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R,, and Ri.. = retardation factors, which account for equilibrium-type 

adsorption processes in the mobile and immobile water regions, respectively. 

For a Freundlich adsorption isotherm, they are given by: 

R =l+ 
fpK bC�, b-1 

(1 

0. 
(6.11) 

9. l+ -f)pKbCjmb-' 
01. 

where f represents the fraction of adsorption sites that equilibrate with the 

mobile liquid phase. As f increases, more adsorption occurs in the mobile 

water region and relatively less inside the aggregates, the total adsorption 

remaining the same, and the chemical will appear later in the effluent (Fig. 

6.2). Whenf =I, adsorption takes place only in the mobile water soil region. 
The influence of all the model parameters on the shape of the breakthrough 

curves (BTCs) was comprehensively studied by van Genuchlen & Wierenga 

(1976). 
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Fig. 6.2: Influence off values on the BTCs (from van Genuchten & Mierenga, 1976). 
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Comparison of the two types of non-equilibrium model (Section 6.3.2.1 

& 6.3.2.2) shows that they have the same mathematical structure and can be put 

into the same dimensionless form by means of model-specific dimensionless 

parameters (Nkedi-Kizza et aL, 1984; Parker et aL, 1984). Thus Eqs. 6.7 and 

6.9 may both be expressed as 

Rý-C+(I- P )o c'I a2c 
I 

ac 
1 

aTaT paZ2 aZ 

where 
(I-P)RO c' 

=co (Cl -C2) (6.13) 
aT 

The relations between these parameters and those of the previous two models 

are given in Table 6.2. 

Table 6.2 : The relations between the dimensionless parameters and the physical and chemical non 
equilibrium models Darameters 

Parameter Non equilibrium chemical model Non equilibrium physical model 

z ZIL ZIL 

T V. t v, "t(D 
L L 

p v, "L v. L 
D, D, 

O+FpK 01" +fp K 
O+pK 0+ pK 

ak(I - P)RL (x L 
(0 

vM V"IOM 

C, C- CO C, -CO 
CMp - CO Cinp CO 

C2 
S2 -(I - F)K CO Ci. CO 

(I - F)K (Cjp 
- CO Cl"p CO 

Cj,, P is the solute concentration in the input water. 

(D = 
0. 

0. +O/M 
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The retardation factor R describes the effects of adsorption during 

transport through the soils (R < 1.0 means ion exclusion or negative 

adsorption). The parameter P is directly related to the value of f Or F, and 

reflects the fraction of adsorption occurring in the mobile liquid phase or in site 

I for physical and chemical non-equilibrium models respectively. Finally, the 

mass-transfer coefficient co describes the rate at which equilibrium is attained 
from an initial non-equilibrium situation; the larger is co , the sooner is 

equilibrium obtained (Nkedi-Kizza et aL, 1984). 

Because both models can be described in exactly the same 
dimensionless transport equation (Eq. 6.12 & 6.13), and the BTC curve in both 

models could be described by the same dependent variable (CI), it follows that 

the two models are equivalent with respect to their BTCs. Therefore both 

models were equally successful in describing measured BTCs (Nkedi-Kizza et 

aL, 1984). However, the two dependent variables define conceptually'different 

quantities in the two models. For example, C2 in the physical non-equilibrium 

model describes the average solution concentration of the immobile water 

region, whereas C2 in the chemical non-equilibrium model defines the adsorbed 

concentration associated with type 2 (kinetic) non-equilibrium sites. 
Anamosa et aL (1990) modelled displacement of 3 H20 from an 

undisturbed soil column of a structured soil consisting of a gravelley Oxisol 

(with aggregate diameters <2,2-12 and 12-75 mm with mass fractions of 0.37, 

0.42 and 0.21 respectively). They found that the equilibrium model couldn't fit 

the observed BTC at a large flux (q =111 cm/day = 0.77 mm/min), but 

performed better for a small flux (q = 2.71 cm/day = 0.0 18 mm/min) (Fig. 6.3). 

They attributed this to immobile water regions that were not in-physical 

equilibrium at the greater flux. However, at the smaller flux, there was enough 

time to allow diffusion to bring the concentration of 3H in the mobile and 
immobile water regions closer to physical equilibrium and the fit was better. 
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Using the physical non-equilibrium model they obtained closer agreement with 

the observed BTCs at both the greatest and smallest fluxes (Fig. 6.4). They 

concluded that the equilibrium model was inadequate in describing solute 

transport through such soils but the physical non-equilibrium model adequately 

described solute transport at all flow rates. The equilibrium model was unable 

to account for diflusive mass transfer of solute into immobile water regions. 
For such soils, with a well-defined aggregate geometry, most of the physical 

non-equilibrium model parameters seem easier to define and estimate ýnotably, 

Ojm and 0. ) than those of the chemical-non equilibrium model (i. e., F and ctk). 

For this reason, the physical-non equilibrium model will be used in this study. 
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Fig. 6.3: Measured (o) and equilibrium model (solid line) BTCs at two different fluxes (adopted from 
Anamosa et aL, 1990). 
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Ion-selective electrodes were used in this research for continuous monitoring of 

tracers in the soil column effluent. This chapter introduces the theory, 

principles, and characteristics of ion-selective electrodes, and the possibility of 

using them in continuous flow measurements. 

7.1 Introduction 

The term ion-selective electrode (ISE) is applied to a range of membrane 

electrodes which respond selectively towards one (or several) ion species in 

the presence of others (Covington, 1979). 

The first ISE was invented in the first decade of this century. The active 

component was a glass membrane sensitive to hydrogen ions, and the electrode 
forms the basis of the modem pH glass electrode. Since then much attention 
has been given to crystalline and liquid membranes sensitive to a wide range 

of cations and anions. This has resulted in the availability of membranes of 
high ion specificity and robustness under appropriate environmental conditions 
(Talibudeen, 1991). 

7.2 Essential components 

D- 

. Regardless of sample conditions, the essential components of an ISE 

measuring system are (A TI Orion, 1995): 
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-a sensing electrode (half cell) 

-a reference electrode (half cell) 

-a readout device 

-a solution containing the ion to be measured. 
When a sensing electrode is exposed to a solution of ions for which it is 

selective, an electrical potential develops across the sensing membrane 

surface. This membrane potential varies with the concentration of the ion 

being measured, the magnitude may thus be related to concentration. 

To make a measurement, a second unvarying potential, against which the 

membrane potential may be compared, is required. The reference electrode 

provides this. A filling solution completes the electrical circuit between the 

sample and the internal cell of the reference electrode. The point of contact 

between the sample and the filling solution is known as the liquid junction. 

(Fig. 7.1) 

Volt meter 

Reference electrode Sensing electrode 

Liquid 
junction 

Current flowf 

Fig. 7. / : Ion-selective electrode measuring system (adapted from A Fl Orion, 199.5) 
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7.2.1 Ion-selective electrode types 

There are four major types of ISEs classified by their membrane materials 

(Skoog et al., 1992): 

7.21.1 Glass membrane electrodes 
This is the most familiar type of sensing electrode. A glass membrane is 

routinely used for measuring pH and some ions, such as sodium. 

ZZI. 2 Solid-state membrane electrodes 
The membrane is made of a uniform or homogeneous solid substance (Fig. 

7.2). Examples of this types of electrode and their membrane materials are 

shown in Table 7.1. 

Tahle 7 1! 1.9nliti-onte momhrnnt- elprtmdo. q (ndinted frnm James & Ross- 1969) 

Ion determined Membrane composition 

F, 0+ LaF3 

Cl" AgCl / A92S 

F Agl / A92S 

Br- AgBr / A92S 

ELECTRODE BODY 

F"A ELECTRICAL 
CONNECTION 

ION SENSITIVE 
AREA-W 

Fig. 7.2: Solid-state electrode (from A TI Orion, 1995) 
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7.2 1.3 Plastic membrane electrodes 

This type of electrode has an ion-exchange material contained in a so ip astic 

membrane. The sensed ion is exchanged across the membrane, creating the 

potential. These electrodes are used to measure calcium, potassium and nitrate 

among other ions (Fig. 7.3). 

ELECTRICAL CONTACT 

MODULE HOUSING 

INTERNAL REFERENCE 
ELEMENT (AgCl) 

INTERNAL AQUEOUS 
REFERENCE SOLUTION 

ION SELECTIVE 
MEMBRANE 

Fig. 7.3: Plastic membrane electrode (module) (from A TI Orion, 1995) 

7. Z. 1.4 Gas sensing electrodes 

This electrode responds to dissolved gases in solution. 

7.2.2 Reference electrodes 

The measurements of ion activity require the ISE to be coupled to an external 

reference electrode. The composition of the reference solution in the latter 

must, however, be chosen such that it does not affect the concentration of the 

specific ion in the sample or introduce significant concentrations of interfering 

ions. It is also essential that the liquid junction potential (LJP) between the 

reference electrode and the calibrating and test solutions of the specific ion be 

invariant .A reference electrode must be stable, have a high exchange current 

to maintain its constant potential under high-current demand , and be 

reproducible so that the temperature and concentration dependence of its 
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electrostatic potential difference is not subject to hysteresis (Talibudeen, 

1991). 
They are two main types of reference electrodes: single-junction and 

double-junction reference electrodes (Fig. 7.4). In the first, the filling solution 

is in contact with the sample by means of one liquid junction (usually 

consisting of a porous plug). In double-junction reference electrodes , the 

filling solution makes contact with a "bridge" solution by means of the first 

liquid junction. A second liquid junction enables contact to be made between 

the bridge solution and the sample. The latter electrodes are useful when it is 

essential that contamination of the sample by the inner filling solution must be 

kept at a very low level (Simpson, 1979). 
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Fig. 7.4: Reference electrodes: a) single junction, b) double junction (from A TI Orion, 1995). 

7.3 Operation orinciples 

The electrical potential E of an ion selective electrode is a function of the 

logarithm of the activity of the ion to be measured. The relationship is given 
by the Nemst equafion: 
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E' ± 
2.303RT log A, 

z, F 

where 

E=a measured electrical potential (mV) 

EO =a constant characteristic of the electrode 

T= the absolute temperature 

z! = the charge of the ion 

F= the Faraday constant (96485.3 C mol"') 

R= the universal gas constant (8.3144 J K71 mol'I 
Ai = the activity of the measured ions. 

The sign in the equation is positive when i is a cation and negative when it is 

an anion. 

This equation can be simplified to: 

E= Constant ± S, log A, 

where S,, is the slope of the calibration curve of the electrode. 

For a dilute solution of non-electrolytes it is generally safe to make the 

approximation that solute activity can be replaced by molality. However, in 

ionic solutions, the interactions between ions are so strong that this 

approximation is valid only in very dilute solution (less than 10-3 mol/kg total 

ion concentration) and, in precise work, activities themselves must be used 

(Atkins, 1994). The activity of the ion of interest is related to molality by 

C, fl, 

where 
C! = is the concentration of species i expressed in molality (moles of i per 

kg of solvent). However, in analytical work, it is usual to measure 

concentration on the molar scale (moles of i per litre of solution) or related 

units (mg of 1 per litre of solution, i. e., ppm). Concentrations in either of the 



125 

molal or the molar scales are virtually identical except in very strong solutions. 
Thus the concentration can be considered on the molar scale. 

is the activity coefficient of the ion, which depends upon the ionic 

strength of the solution. The ionic strength of the solution (I) can be 

calculated from the formula: 

I= 
I 

ji Ct Zi2 
2 

The single-ion activity coefficient, fO, is related to the ionic strength of 

the solution by the Debye-Huckel equation applicable to a dilute solution: 

B, z2NFI 
-logfj" = "i 

I+d, *B2NFI 

where do is the mean diameter of the ion (m), and 
B1, B2 are constants of the solvent at a specified temperature and pressure. 
Table 7.1 gives the values of B, and B2 for water as a function of temperature 

at I atm pressure. 

Table 7.1 - Values of B. nnd B, ennonnt-, for water (Tan- 1991) 

Temperature T B, (kg/mol)-"I B2 X 108 (kg/MOI)'112 Ilýl 

0 0.4883 0.3241 
10 0.4960 0.3258 
20 0.5042 0.3273 
30 0.5130 0.3290 
40 1 0.5221 1 0.3305 

Tabulated data for estimated single ion and mean ionic activity 

coefficients in solutions of various ionic strength are usually provided with the 

electrode manual. 



126 

7.4 Calibration 

The purpose of calibration is to enable the response of the electrodes in 

standard solutions to be compared with the response in samples. In order for 

the comparison to be valid, both standards and samples must be treated 

identically (Bailey, 1976), i. e. the concentration standards as presented to the 

electrode should be as similar as possible in all respects to the samples, and the 

determined concentration in the standards should closely bracket the expected 

range in the samples. 

Most often it is desired to measure the concentration of a species rather 

than activity. At fixed ionic strength, activity is proportional to concentration, 

and the Nernst equation may be rewritten to describe electrode response to the 

concentration under these conditions: 

E=E'±S, logC. 

However, if there are differences in activities between standards and 

samples , adding a few millilitres of a recommended ionic strength adjuster 
(ISA) to both of them will eliminate these differences. The ISA "swamps" 

differences in ionic strength and fixes the ionic strength at a constant level. 

No electrode is entirely selective towards the ion specified (Covington, 1979), 

although it is more responsive to the primary ion than to others. 
The degree of selectivity of the electrode for the primary ion, i, with 

respect to an interfering ion j, is expressed by the selectivity coefficient ky. 

When an electrode is very selective for i in comparison with j, then ky will be 

much less than unity. Conversely, if the electrode responds preferentially to j 

than to i, ky will be greater than unity ( Bailey, 1976). For example, the 

selectivity coefficient of the calcium electrode for barium ions, kca Ba 9 
is 0-01; 

thus, the electrode is 100 times more responsive to calcium ions than to barium 
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ions. Every manufacturer usually gives the values of selectivity coefficients for 

the most important interfering ions. 

7.6 Using ISE in continuous flow measurements 

Most of the ISEs can be used in continuous flow measurements to monitor the 

concentration of ions in a flowing solution because of their rapid response 
times (which range from few seconds to about one and half minutes, 
depending on the membrane type and material) (Talibudeen, 1991). A higher 

precision is normally attainable with continuous flow systems when using ISEs 

than with manual methods, because of the greater standardisation of the 

conditions in which the sample is presented to the electrode (Smith & Scott, 

1991). Different analytical methods and industrial modes for using ISEs in 

continuous processes for monitoring or control purposes are presented by 

Light (1969), Toth et al. (1979) and Smith & Scott (1991). They found the 

technique to be promising for the industrial analytical field. 

During continuous flow measurement, the ion-selective electrodes are 

usually mounted in a flow cell through which the sample is passed. The ISE 

and reference electrode may be mounted together in the cell, and sometimes 
more than one ISE are mounted together (Fig. 7.5). 

Reference N05-ISE K+-ISE 
electrode 

Fig. 7.5: Details of a flow cell -Aith two ion-selcctive electrodes (from Sinith &Scott, 1991). 

Pt wire Flow deflectors 
. 
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Some caution must be taken because the reference electrode can affect 

the reading if there is leak-age of filling solution. In this case the reference 

electrode could be mounted in a separate cell (Simpson, 1979). For this reason 

it is always good practice to locate the reference electrode downstream from 

the ISE. 

7.6.1 Continuous flow measurements of soil leachate 

The only paper found where ISEs were used to monitor continuously the 

concentration of a tracer in soil column outflow was by Mansell & Elezzeflmsy 

(197 1). They used a ILICite flow cell with a combination reference and chloride 

electrode (Fig. 7.6) to monitor chloride in aqueous effluent for the range of 

effluent flow velocities frequently encountered in soils, and found that the 

electrode-flow cell system gave realistic measurements of chloride 

concentrations in the colunui effluent. 

Combination reference 
& Cl-electrode 0-ring 

Lucite 
Output f low cell 

Input 

Fig. 7.6: Details of contintios flow cell (from Mansell & Elezeftaivv, 1971) 

7.7 Conclusion 

The previous review of the theory and applications of ISEs shows that they 

have potential for use in the continuous monitoring of solute in the effluent 

from soil colunins. The main advantages are the standardisation of the 
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measuring conditions, and the ability of ISEs to be connected to a data logger. 

The main disadvantages are the possible confounding effect of the changing 
ionic strength of the effluent during leaching, and the interference by other 

ions if they exist at relatively high concentrations. The first disadvantage may 

be overcome by calibrating the ISEs with actual samples of effluent solutions. 

The interference of other ions can be minimised by ensuring that the observed 
ions are always the dominant ions. In the next chapter these processes will be 

discussed in detail. 



Chapter Eight 

Wýoe, 

The aim of the work described in this chapter was to obtain experimental data 

from columns of soil aggregates leached either continuously or intermittently. 

Two ions were selected as tracers and their interactions with the soil 

studied. These two ions were monitored simultaneously in the leachate by 

means of two ion-selective electrodes. The chapter begins with the analysis of 

the soil used. 

8.1 Soil 
-analvsis 

Experiments were performed using a strongly aggregated soil taken from the 

University farm of Cockle Park (11allsworth Series, Jarvis et al., 1984). The 

soil had been under pasture for the last five years. 

8.1.1 Soil texture 

The soil texture was determined by the standard method mentioned by Avery 

& Bascomb (1982). In brief, organic matter was destroyed by hydrogen 

peroxide and the remaining mineral soil dispersed by shaking in the presence 

of sodium hexametaphosphate. The soil was analysed by sieving and 

sedimentation, with sand separated from the soil by a 63-PM mesh and silt and 

clay sampled from the remaining suspension after appropriate sedimentation. 
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The experiments show that the soil texture is clay loam ( with 33% clay, 30% 

silt, and 37% sand). 

8.1.2 Soil pH 
Soil pH was measured in water and 0.01 M calcium chloride solution using 10 

g soil (< 2 mm) mixed with 25 cm 3 of solution (or water). The results were: 

pHw= 5.98 in water, and 

pHs= 5.29 in CaCl2solution. 

The higher value of pHw indicates that the soil has a net negative charge 
(Rowell, 1994 ). 

8.1.3 Aggregate stability 
The stability of the soil aggregates is expressed as the ratio of the proportion 

of < 20 ýtrn material in suspension after mild dispersion to that after complete 
dispersion (Brown, 1991 ( adapted from Puri et aL, 1925 and Quirk, 1950)). 

Mild dispersion involved wetting 10 g of air dried aggregates (1-2 mm) and 

submerging them in 500 cm 3 distilled water and gently shaking end over end 
(24 rev/min) in a stoppered bottle for exactly 2 minutes, then sampling 20 cm 3 

of the suspension < 20 gm after an appropriate sedimentation time (Stokes' 

law) using a pipette. Complete dispersion involved destroying the organic 

matter with hydrogen peroxide and dispersing the soil by shaking it (in the 

presence of sodium hexametaphosphate) overnight. Aggregate stability, AS, 

was calculated as follows; 

AS= I< 
20ýtm (mild dispersion) 

x 100% 
I< 

20gm (complete dispersion)_ 

where 100% indicates complete stability. 

The AS of the soil used in the experiment was 98 ±I% indicating very stable 

aggregates (Brown, 1991). 
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8.1.4 Cation exchange capacity CEC 

The cations adsorbed on the surface of charged clay minerals can be replaced 
by other cations in the surrounding soil solution (Jury el al., 1991). Therefore, 

they are often called "exchangeable cations". The total number of 

exchangeable cations that the surface will adsorb (generally expressed as 

meq/g or mmol,, /kg of soil) is called the cation exchange capacity (CEC). 

The method used to measure CEC involved saturating the exchange sites 

with NH4' solution at pH 7 and then displacing the excess solution with 

ethanol. Acidified potassium chloride (pH = 2.5) then displaced the 

exchangeable ammonium which was measured, by determining the nitrogen of 

the ammonium using a nitrogen analyzer, to give the CEC (Fig. 8.1). 
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K+ 
OCa2+ 

Mg2+ 
00 

Exchangeable 
Ca2+, Mg2+, K+ 
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NH4* 

NH4* 

mwý 

cI 
AE 

NH4+ 

NH + 
NH4* 4+ 

Ammonium 
ethanoate in 
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Exchangeable 
NH4* in KCI 
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Eg. 8.1 : The determination of exchangeable cations and cation exchange capacity (Rowell, 1994). 

The CEC of the soil was equal to 240 mmoIC / kg. 

8.1.5 Linear shrinkage of the soil 

The method used was adapted from Head (1992), in which a smooth 
homogeneous paste was placed in a standard mould and dried in an oven by 

progressively increasing the temperature from room temperature up to 105"C. 
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The linear shrinkage, L, js calculated as a percentage of the original length of 

the specimen from equation; 

Lo 

) 
I _. 

Ld 
x 100% 

where LO = original length (140 mm), and Ld= length of dry specimen. 
The result was L, = 5.84 %=6 

Two ions were selected as a tracers. One was the potassium ion which is 

adsorbed onto soil particle surfaces, the other was bromide which is weakly 

adsorbed. By simultaneously detecting both ions in the soil column effluent, 

the desorption effect on solute leaching can be distinguished. Some of the 

chemical interaction properties between these ions and soil particles are now 
described. 

8.2.1 Potassium in soils 

Selim et aL (1976a) divided potassium in soils into four phases: solution, 

exchangeable, non-exchangeable, and primary mineral (Fig. 8.2). 

Plant uptake 

K ]K 
in soil solution 

[ 1.4 

ch. 

Fig. 8.2: Schematic representation of the reactions of potassium in solution exchangeable, non 
exchangeable, and primary mineral phases in soil ( Selim et aL, 1976a) 

The reactions between the exchangeable and solution phase are rapid 
enough to provide equilibrium or quasi-equilibrium conditions at all times as 
found by Wood & DeTurk (1940) and Malcolm & Kennedy (1969). In contrast, 
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contrast, the transfonnation between the exchangeable and non-'exchangeable 

phases is slow (Wood & DeTurk, 1940; McLean & Simon, 1958). 

8.2.1.1 Potassiumfixation 

Under certain conditions, the adsorbed potassium cations are held so strongly 
by clays that they cannot be recovered by exchange reactions. These cations 

are called fixed potassium cations. Among the several reasons reported for 

fixation, the most important is the entrapment of the ions in the interlayer 

regions of the clays (e. g., micas, illites, montmorillonites, and vermiculites) 
(Tan, 1993). 

8. ZI. 2 Release qfpotassium 
Extensive studies (Mortland et al., 1957; Cook & Hutcheson, 1960) have been 

aimed at measuring the rates of transformation and release of potassium from 

various minerals such as biotite, illite, etc. These studies suggest that 

potassium release from soil minerals is extremely slow in comparison to 

transfonnations between soluble and exchangeable phases. In addition, the 

release of mineral potassium is relatively more rapid than mineral fixation. 

Martine & Sparks (1983) found that the equilibrium in K' release was 

attained in 40 days for their sandy loam and loamy sand soils. 

This preview indicates that using potassium as a tracer should not cause 

any problem either due to its fixation or to its release, especially for the 

relatively much shorter time of laboratory leaching experiments. Over this 

time scale the primary exchange will be between the soil solution and (non- 

fixed) exchange sites (Jensen, 1984). 

8.2.2 Potassium adsorption-desorption Isotherms 

The method used to determine potassiwn adsorption-desorption isotherms is 

that used by van Genuchlen et al. (1977), Rao & Dividson (1979) and Peek & 

Volk (1985). Duplicate samples of 5g of dry soil (d < 0.5 mm) were mixed 
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with 30 cm 3 of KBr solutions of eight different concentrations from 11.9 to 

0.476 g KBr/I (3.91 to 0.156 g K/l, i. e. 0.1 to 0.004 M) in 50-cm 3 test tubes and 

shaken for 36 h (preliminary experiments showed that there were no real 
increases in the adsorption beyond this time), and then centrifuged at 17000 g 

for 20 min. 20 cm 3 of supernatant was then removed and analysed for 

potassium concentration by means of a flame photometer (previously 

calibrated). The experiments were done at constant temperature ( 20 ±1' C ). 

The results are shown in Fig. 8.3 as adsorbed potassium per dry mass of the 

soil against the potassium concentration in the sample at equilibrium. The 

amount of adsorbed potassium sharply increased at very low concentrations 

then increased almost linearly with solution concentration similar to the shape 

of a Freundlich isotherm (Fig. 6.1). The experimental results were fitted very 

well (R2= 0.982) with a Freundlich isotherm: 

S=0.0024CO. 404 

where S is in g/g, and C is in g/l. 

To determine whether the adsorption - desorption process is reversible 
(i. e., whether or not there is hysteresis), the 20 cm 3 removed previously from 

the samples was immediately replaced by 20 cm. 3 of distilled water. The soils 

were loosened from the tubes by vigorous hand shaking and the same 

procedures were followed (shaking, centrifuging). Again 20 cm. 3 removed from 

the supernatant and analysed to measure the amount of potassium desorbed 

from the soil. The results shown in Fig. 8.4 indicate that there is hysteresis. 

Thus the desorption curve will depend on the initial potassium concentration of 

the sample. 

For the desorption isotherm curve, the initial concentration will be taken 

as 0.1 M KBr (since this is the value chosen later as the initial concentration of 

soil solution in the leaching experiments). The curve was obtained using 5g 

soil to 30 cm 3 of 0.1 M KBr solution. After following the same process of 
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shaking and centrifuging, 20 cm 3 of the supernatant was removed to determine 

the initial adsorption, then replaced by 20 cm 3 of distilled water and continued 

as before. This procedure was repeated each successive desorption step. The 

results are shown in Fig. 8.5 as adsorbed potassium per dry mass of the soil 

against the potassium concentration in the sample at equilibrium. The 

potassium was desorbing slowly at high concentrations. However, at low 

concentrations (<I g/1), the potassium started to desorb sharply as the 

potassium concentration in the solution decreased. The best equation fitting the 

experimental results was a Freundlich equation with R2= 0.930. The fitted 

equation is: 

S=0.00390"' (8.2) 

where S is in g/g, and C is in g/l. 

8.2.3 Bromide adsorption -desorption isotherms 

Similar procedures to the above were followed. Only a negligible amount of 
bromide was found to be adsorbed and desorbed because of the negative 

charge of the clay particle surfaces (Section 8.1.2). Thus bromide ions will be 

considered in this study as a non-sorbed solute. 

8.3 Electrode characteristics 

As discussed in Chapter seven, ISEs have potential for use in the continuous 

monitoring of solute in the effluent from soil columns, with the main 

advantage of the standardisation of the measuring process. This section will 

present some of the characteristics of the two ISEs used. These two electrodes 

were used to detect potassium and bromide ions in the soil column effluent. 
Both potassium and bromide electrodes were made by SENTEK' . Finally, the 

1 SENTEK Ltd., Unit 6-7 Crittall Court, Crittall Drive, Springwood Industrial Estate, Braintree, Essex 
CM7 7RT, England. 
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Fig. 8.5 : Adsorbed potassium per unit dry mass of soil as a function of potassium concentration 
during desorption (for observed and fitted results). 

0234 



140 

section will examine the system of flow-through cells used in the continuous 

in-line monitoring and the response time of the electrodes will be checked to 

ensure that in-line sensors are adequate for both bromide and potassium. 

8.3.1 Potassium ISE 

The potassium ISE is a plastic-membrane electrode type (Section 7.2.1.3 ), and 

consists of an inert fluorocarbon body with a detachable PVC membrane, on 

the end of which is glued the ion-selective membrane. Inside the membrane 

unit, an internal filling solution makes contact between the membrane and the 

internal silver/silver chloride reference element. The sensitive membrane 

consists of liquid ion-exchange material immobilised in a poly-(vinyl chloride) 

matrix. 
The electrode will respond to uncomplexed potassium ion activity over 

the range 100 - 104 M. The linear detection limit is around 10-4 M. A non- 

linear response is observed at lower concentrations because the solubility of 

the liquid ion-exchanger, leached from the membrane, contributes a small but 

significant amount of potassium to the solution to be measured 

(Manufacturer's technical specification and operating instruction). The 

relations between the activity coefficient of potassium and ionic strength are 

given in Table 8.1. 

Table 8.1 Nalues of potassium activity coefficients and ionic strength, (data from Manufacturer's 

manual). 

Ionic strength 0.001 0.005 0.01 0.05 0.1 0.2 

Activity coeff. (K) 0.975 0.945 0.925 0.85 0.805 0.755 

The electrode membrane is chosen to give the greatest possible 

selectivity for potassium against other ions. The main interfering ions and the 

selectivity coefficients of the electrode for these ions (Section 7.5), given by 

the manufacturer, are: 
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Ca++: 2.8 x 10-3 Mg++: 1.9 X 10-3 Na+: 2.6 x 10-3. 

8.3.2 Bromide ISE 

The bromide ISE was a solid-state electrode (Section 7.2.1.2 ), consisting of an 
inert polymer body on the end of which is mounted the sensitive membrane. 

All connections in the electrode are solid-state contacts, there being no liquids 

of any type inside the body. 

The electrode responds to uncomplexed bromide ion activity over the 

range 100 - 
10-5 M. The linear detection limit is around 5x 10-5 M. The 

relation between the activity coefficient of bromide and ionic strength are 

given in Table 8.2. 

Table 8.2 Nalues of bromide activity coefficients and ionic strength, (data from Manufacturer's 
manual). 

Ionic strength 0.001 0.005 0.01 0.05 0.1 0.2 

Activity coeff. (B rý 0.975 0.946 0.926 0.853 0.808 0.755 

The electrode is highly selective for bromide. The main interfering ions 

and the selectivity coefficients of the electrode for these ions, given by the 

manufacturer, are: 

OH-: 3x 10-5 Cl -: 2.5 x 10-3. 

8.3.3 Reference electrodes 
The reference electrodes are of the double junction type (Section 7.2.2 ) filled 

with 3.0 M KCI saturated with AgCl. 

8.3.4 Calibration of ISEs 

Potassium and bromide electrodes were calibrated by using eight different 

solutions of KBr (0.004,0.006,0.008,0.02,0.04,0.06,0.08, and 0.1 M) 

without using any ionic strength adjuster (ISA). Fig. 8.6 shows the results as 
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electrode potential, E, against sample concentration on a semi-log scale. It is 

clear that, in the range of 0.004-0.1 M of pure KBr solutions, the relation 

between logarithm of concentration and electrode electrical potential is linear 

(r2 > 0.995) which indicates that the use of ionic concentration (instead of 

ionic activity) results in a linear relationship under these conditions. The 

electrodes were calibrated daily, as recommended by the manufacturer. 

8.3.5 Flow-through cells 
Two types of flow-through cell were constructed, one for the bromide and 

reference electrodes, the other for the potassium electrode. Fig. 8.7 shows the 

shape of the two cells. Water flowed through the capillary tube. of the 

potassium flow-through cell at a high velocity enabling it to displace the 

solution in the volume just beneath the electrode's membrane and thus 

enhance the sensitivity of the electrode. The dead volume in both cells was 

very small (about 0.1 cm 3 for potassium electrode cell, and 0.25 cm. 3 for the 

bromide and reference electrode cells). The flow-through cells were connected 

together as required using capillary tubes, which minimised the dead volumes 

inside the connections. The electrode was inserted in the flow-through cell and 

electrolyte passed through the cell keeping the electrode membrane 

continuously in contact with the solution. Fig. 8.8 shows the arrangements 

used. 

8.3.6 Response time 

When placing the electrodes in a solution, the electrodes will respond rapidly 

to the ionic activity in the solution. Equilibrium was reached by the bromide 

electrode in less than two seconds and by the potassium electrode in less than 

one minute. To test the transient response of the flow-cell system a 0.1 M KBr 

solution in a column of I mm glass beads was displaced by a 0.004 M KBr 

solution. 
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With the reference electrode installed downstream (Fig. 8.8), both the 

reference and ISEs were connected to the analogue inputs of the data logger 

via a pH meter (acting as an amplifier). The data logger was programmed to 

measure the voltage at its analogue inputs every minute and store the results. 

These results were then transferred to a computer and analysed using a 

spreadsheet. 

The outflow was passed through the ISE and the reference-electrode cells 

at a constant flow of 4 cm 3/Min which translates (depending upon the 

dimensions and porosity of the column) to a pore-water velocity of I cm/min (a 

very high pore-water velocity for soils) . The effluent was collected as fractions 

at specific times and the electrode's potential in the fractions subsequently later 

measured in these batch samples using the same ISEs. The results are presented 

in Fig. 8.9 as the ISE potential against time for both the readings of the in-line 

(flow-through cell) system and the batch fractions. The fit between the two 

methods was very good (=0.997 and 0.994 for bromide and potassium 

electrode respectively) with a closer fit between batch and in-line readings for 

bromide due to the faster response time of the ISE. However, it is clear from 

the results that in-line sensors for the range of effluent flow velocities that may 

encountered in soils would be adequate for both bromide and potassium. 

8.4 Using, ]$Ea with soil-columns 
After establishing the success of the in-line monitoring of the bromide and 

potassium in the leachate from the glass-bead column, the two ions will be 

monitored in the leachate from soil-aggregate columns. Firstly the soil columns 

will be prepared and the flow-through system will be set up. The potassium, 
bromide and common reference electrodes will be installed in the system and 

the leaching experiments will then be carried out. The resulting electrical 

potential will be recorded and, by calibrating the ISEs with soil solution 
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samples, such results can be converted to concentration units. These 

procedures are discussed in turn. 

8.4.1 Preparing soil columns 
Glass columns (30 cm long, and 20.43 cm2 cross-section area) were used. The 

ends of these columns were fitted with 1-cm long capillary tubes. A pad of 

glass wool was placed at the base to prevent soil from passing out of the 

columns. 

After air drying, the soil aggregates were sieved into appropriate size 
fractions, and packed into the columns with gentle shaking to ensure a uniform 
bulk density (Table 8-3). The air inside the columns and aggregates was 
displaced by C02 which is easy to dissolve in water, by allowing carbon 

dioxide gas to flow gently upward through the bases of the columns for about 

an hour. The columns were then saturated with 0.1 M KBr by passing the 

solution slowly through the bases of the columns. 

Table 8.3: The conditions of the exDerimcnt soil columns. 
Aggregate 

diameter 

(mm) 

q 

(ml/min) 
, 

Vd 

(=Vrnin) 
. 

0M 01M P 

(g/CM3) 
I 

OnlOff 

periods 

(min) 

Exp. la 11.2-13.2 3.35 1.64 0.311 0.220 0.732 Cont. 

Exp. lb 11.2-13.2 3.33 1.63 0.329 0.212 0.708 50150 

1 Exp. 2a 11.2-13.2 6.91 3.38 0.337 0.212 0.708 Cont. 

Exp. 2b 11.2-13.2 6.79 3.32 0.258 10.224 1 0.747 25/50 
p is tne L)uiic censity, 
q is the flow rate, 
* the estimation of these values is discussed in Section 10.1. 

The solution inside the column was then displaced slowly with at least 

two pore volumes of fresh 0.1 M KBr every day for three days so that most of 

other ions in the soil solution were leached out. The column was then left for 

another two days in a constant temperature room (20±11C) to complete the 
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equilibrium between soil aggregates and soil solution. 

8.4.2 The ISEs' connections 
The ISEs were connected to two of the analogue inputs of the data logger via 

two pH meters (acting as amplifiers). Connecting the ISEs without using pH 

meters gave unstable results. One reference electrode was installed downstream 

as a common reference for both K+ and Br' electrodes, and connected to both 

of the pH meters. The data logger was programmed to measure the voltage at 

these two analogue inputs every minute and store the results, which were then 

transferred to a computer to be analysed. Fig. 8.10 shows a simple description 

of these connections. 

The flow was controlled by a peristaltic pump downstream and was 

finally collected in a container placed on a balance for measurement of the 

outflow (Fig. 8.11). 

8.4.3 Leaching experiment 
The leaching experiment procedures were the same as for the leaching of the 

porous ceramic spheres (Section 3.3), except that the displacing solution was 

0.004 M KBr instead of distilled water. This was for two reasons: 

1) the readings of the ISEs are unstable at concentrations < 0.004 M; 

2) the interference of other ions will be greater at very low concentrations of 

the monitored ions. 

The 0.1 M KBr was displaced from the columns of saturated aggregates 

by the displacing solution (0.004 M KBr), and the effluent was passed through 

the ISE set-up for continuous in-line monitoring. 

Two groups of experiments (differing in flow rate) were carried out 

using the same aggregate size and same column dimensions. Each group 

consisted of two experiments differing only in the leaching method. One was 
leached continuously and the other intermittently. Table 8.3 shows the 

conditions. 
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Fig. 8.11: Displacement experimcnt set-up, showing the connection of ISEs with the soil column. 
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8.4.4 Calibrating ISEs with soil solution 
To transfer the readings of the ISEs to concentration units, the ISEs should be 

calibrated, but using actual soil solutions instead of the pure KBr solutions so 

that the effect of interference by any other ions is included. 

During the experiment a few samples (five to six) of the effluent were 

collected. The concentrations of these samples were determined by means of 

the same electrodes using incremental methods of known addition (which do 

not require using ion strength adjuster) (ATI Orion, 1995), and plotted against 

their ISE readings. Fig 8.12 presents an example of this plot (for Exp. la) 

which shows that the relationship between the concentrations and ISE readings 

using a semi-log scale is linear. This is similar to the calibration with pure 

solutions (Fig. 8.6) mainly because the measured ions are the dominant ions in 

the leachate. The data were statistically analysed and the equations which best 

fit the data were obtained. This allowed transformation of the readings of the 

ISEs from electrical potential to concentration units. Fig. 8.13 shows an 

example of these best fit curves for Exp. la while the results for all 

experiments are shown in Table 8.4. 

Table 8A Best-fit equations which relate the ISE readine with concentration. 

For potassium For bromide 

Best fit Eqs. R2 Best fit Eqs. R2 

Exp. la C= e , 
(-11.43+0.054 Y) 0.999 C= e(O. 496-0.043 Y) 0.997 

Exp. lb C=- e(-l 1.44+0.052 Y) 0.999 C_ e(O. 747-0.044 Y) 0.992 

Exp. 2a C= e(-l 1.46+0.054 Y) 0.998 C- e(I. 306-0.042 Y) 0.999 

Exp. 2b C- C(-l 1.87+0.057 Y) 0.997 C= e(l. 125-0.042 Y) 0.999 

. K, is coetticient ot actermination, 
Y is the ISE readings (mV), 
C is the solute concentration (mol/1). 
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8.4.5 Experimental results and discussion 

Figs. 8.14 & 8.15 show the results of the leaching experiments as ISE readings 

against the displacement time (i. e., the cumulative on time), for experiments 

I a, b and 2a, b respectively. 

The BTCs show, as expected, a long tailing because of the slow transfer 

of solute out of the aggregates. During intermittent leaching experiments (Exps. 

lb, 2b), the electrode potential changed after each rest period, showing that 

there was solute diffusion out of aggregates during such periods (note that a 

decrease of bromide electrode potential means an increase in bromide 

concentration). These changes were slightly smaller with potassium than with 

bromide. This is because potassium ions are retarded within the aggregates 

much more than bromide ions. 

Such results will be more informative if the graph uses concentration 

units instead of the electrical potential. The fitted equations of Table 8.4 were 

applied to the previous ISE readings. Figs. 8.14 & 8.15 can be represented 

nowas 
C-C'-P 

vs. pore volumes where C. - Cj. P 
C= is solute concentration in the effluent, 

Ci, v = is solute concentration in the input, 

C, = is initial solute concentration. 

The results are shown in Figs. 8.16 & 8.17 for Exps. I&2, respectively. 

The figures show that potassium concentration was greater than bromide 

concentration almost all the time. This is because of the desorption of some of 

the adsorbed potassium on the soil particle surfaces. Eventually, the two ions 

reached, the same concentration when most of the adsorbed potassium was 

desorbed. However, with intermittent leaching, the rqst periods resulted in 

more time available for equilibration between the solute in mobile and 
immobile water causing more potassium to desorb. Thus the two ions reached 
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the same concentration earlier than with continuous leaching (and used about 

25% less water). 
Comparing the results of continuous leaching experiments (Figs. 8.16a & 

8.17a) shows that the effluent relative concentration, of both ions, was slightly 
higher with the lower pore-water velocity (Fig. 8.16a) because, during such 

slower water movement, more time was available for intra-aggregates solute to 

diffuse out of the spheres. This also resulted in the shorter tailing of the BTC of 
Fig. 8.16a. 

With intermittent leaching experiments (Figs. 8.16b & 8.17b) the tailing 

was again shorter in Exp. Ib (Fig. 8.16b) than Exp. 2b for the same reason. The 

pore-water velocity was double in Exp. 2b, thus an on time of half the. duration 

of Exp. 2a was required to pass the same amount of leaching water. 

Consequently less solute diffused out of the aggregates, which left the 

concentration in the immobile solution greater than that of Exp. 2a. Therefore, 

with the next 50 min rest period, and according to Fick's equation, more solute 

diffused out of the aggregates in Exp. 2b causing larger concentration peaks. 

This explains why higher concentrations of bromide and potassium were 

observed in the effluent in Exp. 2b (Fig. 8.16b). 

The effect of intermittent leaching can be clearly recognised by plotting 

the results of continuous and intermittent leaching, for each ion, together on the 

same graph. Fig. 8.18a and 8.18b show such results for Exp. 2 as C, - cillp VS. 

pore volumes for potassium and bromide leaching respectively. It is clear that 

during intermittent leaching the concentration of both ions was greater than 

during continuous leaching, as with the leaching of porous spheres (Fig. 3-6). 

This demonstrates that solute was leached more quickly during intermittent 

leaching. The difference between the two methods was, however, smaller for 

the lower velocity of Exp. 1, for both ions (as shown in Fig. 8.19), as the lower 
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velocity allowed more time for diflusion out of aggregates and therefore the 

advantage of introducing rest periods was less. Similarly one would expect the 

advantage to be less for small aggregates as it was with small spheres (Section 

5.3.2.2). 
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Chapter Nine 

Qwo"tý'v tvad 

In this chapter the SIL model is modified to simulate the transport of sorbing 

solute through a column of soil aggregates. The chapter discusses the 

estimation of model parameters, particularly the values of 0., 0, and f, and 

ends by testing the modified model against the analytical solution to check its 

stability and convergence. 

9.1 Model qoverninq equations 

To describe solute leaching Erom columns of soil aggregates, the SIL model 

was modified by adding the effect of retardation (R) due to interaction 

between some ions and the soil matrix. The model assumed physical non- 

equilibrium adsorption of solutes during flow through the soil aggregate 

column as discussed in Section 6.3.2.2. Thus the governing equations used 
during the displacement period (On time) are Eqs. 6.9&6.10. i. e., 

0. Rm" Cm 
= 0. D, 

a2c 
m- vm 0 

mac 
m -0 i. 

AM 
DC 

fin 
ata z2 DZat 

a (C, - Cj, ) 
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where the retardation factors R,, and Ri. account for equilibrium type 

adsorption processes in the regions of mobile and immobile water respectively. 
Section 8.2.2 showed that the potassium desorption followed a Freundlich 

isotherm. For such isotherms, the retardation factors are given by: 

R. 1+ 
fpK bC,. b-I 

om 

14 
f)pK hCimb-1 

oim 

R=Ri. +R. . 

During rest periods (Off times) the only process assumed to occur was 

the diffusion of solute from the aggregates. The governing equation is 

therefore obtained from Eqs. 6.9 & 6.10 assuming that v. and D, = 0. i. e., 

ac ac R. Om ý ým =-A.. Of. ý ýim 
at at 

where 

0i'A., a cim = cc (C. at 

The SIL model of Section 4.2 was modified to solve the above equations. 
A copy of the computer code can be found in Appendix C. 

9.2 Model parameter estimation 

9.2.1 Mobile and immobile water content 
The only known method for estimating the proportions of mobile 0. and 
immobile 0,, water in the soil is based on the measurement of 0 at an 

arbitrarily chosen water tension y (Passioura & Rose, 1971; Ma & Selim, 
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1995). From the shape of xy -0 curve, Smellem & Kirkby (1990) chose V/ of 
14 cm as the matchingpoint between mobile and immobile water regions (Fig. 

9.1). This point occurs when the curve slope, dT /d0, increases suddenly from 

low values (corresponding with the mobile water region) to higher values 
(corresponding with the immobile water region). 

Other water tensions have been used to differentiate mobile from 
immobile water, including 10 cm (Wilson et al., 1992), 20 cm (Selim et al., 

1987), field capacity (50 cm) (Seyfried & Rao, 1987), 75 cm. (Passioura & 

Rose, 1971), and 80 cm (Nkedi-Kizza et al., 1982). Clearly, there is no standard 
definition of mobile or immobile water and it probably depends upon the 

structure of the soil and the size of the aggregates. However, using the shape of 

V/ -0 curve seems more realistic than using a constant value. Therefore this 

method was adopted in this study. 

9.2.2 Fraction of adsorption sites f) 

The second parameter to be estimated is f which represents the fraction of 

adsorption sites in the mobile water region. 
Different assumptions have been made since there is no direct 

measurement forf (Selim et aL, 1987). Nkedi-Kizza et aL (1983) assumedf = 
(D (where (D is the Eraction of mobile water) while Seyfried & Rao (1987) 

proposed an intermediate approximation of f= (1) 12. Nkedi-Kizza et aL (1982) 

proposed that since the absorbing surface area associated with a unit volume 

of water in the small pores of the immobile water region is probably much 

greater than the surface area associated a similar unit volume of water in the 

mobile water region, f may be approximated to zero. Selim & Ma (1995) 

found that the assumptions off =0 and f=I could be used to examine the 

significance of physical vs. chemical non-equilibrium behaviour in their study 

of atrazine transport in Sharkey soil. A value of f -- 0 might suggest that 

physical non-equilibrium plays an important role whereas a value of fz 1 
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might imply that physical non-equilibrium was insignificant. However, in all 

approximations of f, the magnitude of any error in the eventual estimation of 

the solute transport is influenced by the value of R (Anamosa et al., 1990). If 

there is almost no chemical adsorption or repulsion (R approaches 1.0), then 

the location of the sites becomes less important (as in the case of bromide). For 

an adsorbed solute, like potassium, it is usual practice forf to be estimated 

using one of the optimisation programs discussed next. 

9.2.3 Using the best-fit optimisation program 
The parameters required by the SIL model are: v., 0 j. ,0K, b, f DS, and 

(x . Five parameters (0.0,, , v, , K, b) can be estimated either directly from 

displacement experiments (i. e., v. ) or by independent experiments (i. e., 

0.0,., K, b). The remaining parameters (D,, cc, f ) cannot be determined by 

independent experiments (Davidson et al., 1980; Selim & Ma, 1995). 

Therefore, these must be estimated using the non-linear least-squares 

optimisation program CXTFITI of Parker & van Genuchten (1984) by fitting 

the programme predictions to the measured BTCs. This program uses the 

analytic solution of the dimensionless Eqs. 6.12 & 6.13 assuming a linear 

adsorption /desorption isotherm and is based on minimising the differences 

between simulated and measured BTCs by successive refinement of the initial 

parameters. The parameters which can be optimised are Ds ,P, co ,v, and R. 

. 
The relations between ctj (used in the SIL model) and P e) (used in 

the optimisation programme), are given by: 

()t = 
(0 Vd 

L, 
(9.2) 

(0 +p K)-0. 

pK 
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However, one should always be careftil when using curve-fitting techniques to 

estimate unknown parameters, especially for sorbed solutes. Davidson et aL 
(1980) concluded that, although these techniques are useful in parameter 

estimation, they fail to ensure identification of the process. 
In the literature, if only the input concentration was changed, Rao et aL 

(1979) found that a different set of optimised parameters was required to 

describe the resulting BTC. Nkedi-Kizza et al. (1983) found that optimised cc 

and 0 values changed with Darcy flow velocity and aggregate size. (x was also 
found to be a function of column length, the duration of the experiment, and 

solute retardation (Young & Ball, 1995). Kutilek & Nielsen (1994) noticed from 

optimised results that the immobile water fraction, Oi., was sensitive to 

hysteresis, the concentration of soil solution , the soil water content and soil 

water flux. 

Despite this, curve fitting is still a useful tool for parameter estimation 

and may be the only way when there are no independent experiments for 

determining these parameters. However, during testing the model in the next 

chapter (Chapter 10), a minimum number of parameters were optimised, 

especially when testing the model against IL experimental results. 

9.3 Model stability and convergence 

The SIL model was tested against the analytic solution of Parker & van 
Genuchten (1984) for continuous leaching with a linear adsorption/desorption 
isotherm. A set of parameters as used by Nkedi-Kizza et aL (1983) (to describe 

the movement of tritiated water through a column of an aggregated Oxisol) was 

used with both the SIL model and the analytic solution. The results are shown 
in Fig. 9.2 as effluent concentration against time. The results indicate excellent 
agreement between the model and the analytic solution (Rý > 0.99) 
demonstrating the stability and the convergence of the numerical procedure 
used in the model. 
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Chapter Ten 

P, '-T*"eyiwff dw wtodd 

In this chapter the modified SIL model (Chapter nine) was validated against the 

experimental results of Chapter eight. The mobile and immobile water contents 

were estimated first, then the model was tested with the experimental results of 
bromide leaching (as a non-adsorbed ion) and potassium leaching (as an 

adsorbed ion). 

10.1 Estimating mobile and immobile water content 

The method employed to determine 0. and 0 j. is that used by Smettem & 

Kirkby (1990) (Section 9.2.1) which uses the shape of the xy -0 curve to 
define the tension (and water content) at the matching point which 
differentiates the mobile water (mainly inter-aggegate) from the immobile 

water (mainly intra-aggegate). 

The xV -0 curves for aggregates of 4-6.7 and 11.2-13.2 mm. diameter 

respectively are shown in Figs. 10.1a & 10.1b. From these curves the 

matchingpoints (MPs) were defined when the curve slope changes its value 

suddenly. The tension and the corresponding water content values at the MPs 

for each aggregate fraction are shown in Table 10.1. 
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Table 10.1. - Tensions and water content values at matchinLy noints. 

Aggregate diameter 
(mm) 

Tension at MP 

(CM) 

Water content at MP 

(g/kg) 

4-6.7 30 300 
11.2 - 13.2 25 300 

The results show that for Exps. 1&2, which contain 11.2-13.2 mm aggregates, 

the water content corresponding to immobile water is 300 g/kg. The 

immobile, O,,,, and mobile, O,,, water content were calculated as follows: the 

saturated column (containing both mobile and immobile water) was poured into 

a tared beaker (Wb), weighed (W,,, t), then oven dried and weighed again (WdY). 

Assuming water density =1g cm73, the total water content 0=0,. + 0. is 

0= 
Waat - Wdry 

VT 

and the immobile water content is, using data from Table 10.1: 

Oim = 
0.3 (Wd, - Wb) 

51 VT 

thus, the mobile water content is 

0m =O-Oim* 

The values of mobile and immobile water contents of Exps. 1&2 were shown 

previously in Table 8.3. 

10.2 Validatinq the model 

The SIL model was validated against experimental results of bromide and 
potassium leaching (Section 8.4). The results of CL experiments were used to 

optimise the unknown parmneters. These parameters were used later in 

simulating the results from IL experiments. 
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10.2.1 With experimental results of bromide leaching 

IO. Zl. l For continuous leaching 

A previous experiment (Section 8.2.3) had shown that there was no bromide 

adsorption in the soil (i. e., K= 0 ). Therefore the P value is given by: 

=Om+fpK=O. 0 +pK 0 

and the R value is equal to: 

R=I+ pK=I. 
0 

With R and P known, and v measured, D, and co were optimised. The 

results of bromide continuous leaching experiments (Exps. la & 2a, Section 

8.4.5) were used in optimising these unknown parameters ( D, and (o ) using 

the best-fit non-linear optimisation program CXTFITI of Parker & van 
Genuchten (1984). The resulting parameters are shown in Table 10-2. 

Table 10.2 : Optimised parameters (with Jý P being estimated) using the optimisation. program of 
Parker & van Genuchten (1984) (CXT'FITI). 

I Ontimised iDarameters 
1 

R ß D, (mm2/min) Co Ot (min") R' 
Exp. la 1 0.586 6.71 0.708 0.0063 0.989 

, 
Exp. 2a 

, 
11 0.614 

, 
22.70 

1 0.498 1 0.0091 , 0.996_. j 
R2 =coefficient of determination 

CC = 
(1) Vd 

L, 

However, since the soil particles were found to have a net negative charge 
(Section 8.1.2), one could expect a value of R less than one. Optimising R, in 

addition to D, and co, gave values very close to one (0.97 and 1.05 for Exp. Ia 

and 2a respectively). Thus, using a fixed value of R=I seems reasonable and 
limits the number of optimised parameters. 

Using the optimised parameters (Ds a), the SIL model was run to 

simulate the continuous leaching experiment results. Fig. 10.2 shows the 
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experimental data, and both SIL and CXTFIT1 results as relative bromide 

concentration of the effluent against the number of pore volumes. The SIL and 
CXTFIT1 results are almost identical since both the SIL model and the 

CXTFITI program used the same parameters. The agreement with the 

experimental data for both experiments was also very good (Rý> 0.98). The SIL 

model was able to simulate the early breakthrough of the solute and the tailing 

with a small overestimation by both models between 1 and 3 pore volumes. 

The difference could arise from an underestimation of the values of the 
immobile water fraction or there may be a proportion of "dead end" pores in 

the assumed mobile water region. Such water is effectively immobile and 

would not transport the solute by mass flow and would therefore give a lower 

effluent bromide concentration than predicted by the model. 

10. ZI. 2 For intermittent leaching 

IL experiments, Exps. lb and 2b, have almost the same conditions as the CL 

experiments, Exps. la and 2a, respectively (Table 8.3). Therefore, keeping the 

same previously optimised values of the parameters (D, a), the SIL model 

should be able to predict the breakthrough curves (BTCs) obtained from IL 

experiments. Table 10.3 shows the parameter values used in the SIL model. 

Table 10.3: Paramctcr values used in the SIL model to predict IL results. 

R fl# D, * 
(mm7/min) 

a* 
(min7l 

Exp. lb 1 0.608 6.71 0.00 3 
Exp. 2b 1 0.535 22.70 0.0091 

calculated using Eq. 10.1 
values were taken from Table 10.2. 

The results are shown in Fig. 10.3 as relative bromide concentration of 

the effluent against number of pore volumes. The SIL model was able to 

simulate the intermittent leaching results successfully using the same 
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optimised parameters as the CL experiments. With Exp. lb (Fig. 10.3a) the 

predicted concentration started identically to the experimental data. However, 

for the next two displacement periods, the model overestimated the effluent 

concentration as with the continuous leaching experiments. This difference 

decreases with successive displacement periods. A similar pattern was 

observed with Exp. 2b (Fig. 10.3b) but the simulation predicted an earlier drop 

in effluent concentration than was observed. This is perhaps due to the lower 

Darcy velocity than in Exp. 2a (which was used in optimising the parameters). 

To compare CL and IL efficiencies, the SIL model predictions were 

-expressed as the amount of salt remaining in the column, Ss(t), relative to the 

initial amount of salt in the column, So, during both continuous and 

intermittent leaching, as shown in Fig. 10.4. The amount of remaining solute 

started to decrease rapidly due to the leaching of solute in the mobile water 

and then more slowly due to the slower leaching of solute from the immobile 

water regions. Intermittent leaching was more efficient than continuous 

leaching. To leach 90% of the initial amount of solute in the column (i. e., 

SslSo = 0.1) in Exp. 1, IL used 15% less water than CL. At the highdr Darcy 

velocity of Exp. 2 there was a 22% saving with IL. However, in terms of the 

amount of leached solute, the difference between the two methods was small. 

When 1.5 pore volumes of leaching water had passed, IL leached 4% more of 

the initial amount of solute in Exp. I (Fig. 10.4a) whereas, for a higher pore 

water velocity (Exp. 2), the difference was greater (;: ti 8%) (Fig. 10.4b). 

The greater IL efficiency at higher pore-water velocities is expected 

because there is then relatively less time for diffusive flow from within the 

aggregate to the exterior where solute may be removed by mass flow. There 

was therefore a greater advantage from the use of rest periods. This was 

previously observed with the ceramic spheres (Section 5.3.1.1). 

It is also interesting to note that the differences between the intermittent 

and continuous leaching started directly after the first "Off " time (the 
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beginning of each leaching cycle is indicated by an arrow on the graphs), and 

that the curve slope increased (i. e., higher solute leaching rate) after each Off 

time. Such changes in curve slopes were more easily recognised with the 

higher pore-water velocity of Exp. 2b. These points in the leaching process 

corresponded to enhanced effluent concentrations. 
A 50 min rest period was eventually sufficient for immobile and mobile 

solutions to reach equilibrium and, therefore, an increase in the duration of rest 

periods from 50 to 150 min did not result in any benefit, as shown in Fig. 10.4. 

10.2.2 With experimental results of potassium leaching 

1O. ZZ1 For continuous leaching 

Potassium differs from bromide because it is retarded due to 

adsorption/desorption processes in the soil. 

In order to use the CXTFIT1 optimisation program, it was necessary to 

approximate the non-linear desorption isotherm of Fig. 8.5 by a straight line 

since the fitting program CXTFITI assumes linear adsorption (or desorption) 

isotherms. The following procedure (van Genuchten et al., 1977) was used to 

linearize the equilibrium isotherm. 

The linearized isotherm was denoted by S=K, C where KL is the 

linearized distribution coefficient, such that the area under the isotherm over 

the range of potassium concentration of 0.156 to 3.91 g/l (0.004 M, 

concentration of leaching water to 0.1 M, initial concentration) for both the 

linearized and non-linear Freundlich equations should be the same, i. e. 

3.91 3.91 

fKLC dC = fO. 00339C'-"' dC 
0.156 0.156 

which gives KL = 1.76 cmý/g. The non-linear equation used is the same as Eq. 

8.2. 
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The value of R is calculated from 
p KL (10.2) 

0 

where p is bulk density of the soil. The calculated values of R (Table 10.4) 

show a retardation factor R>1 as was expected. With negative charge on the 

surface of soil particles, the cations will be adsorbed and retarded. Nkedi-Kizza 

et aL (1982) found a retardation factor R=3.03 for calcium ions during 

miscible displacement through an aggregated Oxisol. However, such values 

will depend on K (i. e. soil particle-ion interactions), p, and 0 (Eq. 10.2). 

For the remaining parameters, since there is retardation, P will not only 

depend on the mobile water fraction (as for bromide) but also on the 

distribution coefficient KL (Table 6.2). The value of co could be different from 

that of bromide due to the smaller diffusion rate. 
Using the experimental data of continuous leaching (Figs. 8.16a & 8.17a), 

the fitting program CXTFIT I was used to optimise the values of P, co, and Ds . 
The fitted parameters co and P were then used to calculate the parameters 

and cc of the SIL model using Eq. 9.2. The optimisation results are shown in 

Fig. 10.5 & Table 10.4. 

Table 10.4 : Optimised parameters for potassium (with estimated R) using the optimisation program 
of Parker & van Genuchten (19 84) (CXTFIT 1). 

I Optimised Parameters I 

R* Ds(mm 2 /min) ß CL # 
(Ilmin) 

f# R' 

Exp. la 
. 

3.43 1 67.55 0.044 , 0.243 . 0.00039 , 
0.102 0.994 ý 

Exp. 2a 1 3.28 1 129.63 0.032 1 0.251 1 0.00058 1 0.091 

1 

0.9971 
R7 coefficient ot determination 
* values are calculated using Eq. (10.2) 
# 

values are calculated from optimised parameters using Eq. (9.2). 

The lower values of the dimensionless parameter co for potassium 

compared with bromide (Table 10.2) were expected because these values are 
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directly related to the values of the mass transfer coefficient, a 
L) (0) 

ý! 

Vd d 

which describes the diffusion of the ions through the aggregate. Bromide ions 

will be excluded from the surfaces of soil particles (which were previously 

found to have a net negative charge, Section 8.1.2) enhancing their mobility 

and resulting in a greater value of mass transfer coefficient. The values of a 
for both Ký and Br' ions increased as the pore-water velocity increased (i. e., 
from Exp. Ia, b to Exp. 2a, b). Rao et aL (1980 a, b) showed, both theoretically 

and experimentally, that cc (and so (o ) is not constant but a function of 

residence time (in addition to effective difftision coefficient, aggregate. size and 

mobile water content). The residence time (Eq. 4.14) is a measure of the length 

of time available for solutes to diffiase into or out of immobile water regions 

during miscible displacement. They found that cc increased as the residence 

time decreased. The residence time is inversely related to pore-water velocity, 

thus a should increase with an increase in pore-water velocity (Nkedi-Kizza et 

aL, 1983). 

The Peclet number for molecular diffusion is given by 
vd 
D, 

where 

the mobile water velocity 

the mean aggregate diameter 

D,, =molecular diffusion coefficient( 0.118 and 0.125 min 2/inin for Ký' and 

Br' respectively (Shacketrord & Daniel, 199 1) ). 

Using this equation Peclet numbers are approximately 527 and 1110 

for Exps. I a, b and 2a, b respectively. These values are high enough Q, >> 20) 

to ensure that mechanical dispersion dominates the hydrodynamic dispersion 

coefficient D, for both experiments (Perkins & Johnson, 1963; Kutilek & 

Nielsen, 1994). Mechanical dispersion depends only on pore-water velocity 
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(Section 2.1.1) which is the same for both ions. This means that similar values 

of Ds are expected for both bromide and potassium leaching. 

Tables 10.2 & 10.4 show that the hydrodynamic dispersion coefficients, 

Ds, used to describe potassium displacement (Fig. 10.5) are higher tfian those 

for bromide displacement through the same columns at the same velocities. 

Theoretically, similar values for Ds would be expected. Similar results were 

obtained by van Genuchten et aL (1977). They found that the Ds values based 

on 2,4,5-T displacement through Glendale clay loam were smaller than those 

determined from tritium data (no retardation) under similar conditions. They 

suggested that one reason was that Ds was influenced by the fact that a 

linearized adsorption relation was used (here by CXTFITI program), instead of 

the non-linear one observed. 

When thef and (x values were calculated from the optimised parameters 

and (o (Eq. 9.2) and used in the SIL model, the model predicted, for both 

experiments, lower effluent potassium concentration than actually observed 

(Fig. 10.5). This is due to the fact that the SIL model uses the actual desorption 

equation (Eq. 8.2) instead of the linearized equation used in CXTFITI by 

which these parameters were optimised. 

To improve the fit, the value off was altered using the SIL model ( the 

effect of varying (x was marginal). The best optimised value was found to be f 

=1. This high value implies that most of the desorption occurred from the 

mobile water soil regions with very little desorption from immobile water soil 

regions. The amount of desorbed solute, S, depends on the equilibrium 

concentration, C, of the surrounding solution ( S=K Cb ). The desorption curve 

for this soil (Fig. 8.5) showed a very small desorption at high concentrations 

with a sharp increase in desorption at very low concentrations (<I g/1). The 

main obstacle to decreasing the concentration of potassium in the immobile 

water is the slow diffusion rate of potassium (the mass transfer coefficient, cc , 
for potassium was found to be 10 to 20 times smaller than for bromide (Table 



10.2 and 10.4)). This means that there is a greater difference in potassium 

concentration between immobile and mobile water and that the mobile water 

will have low concentrations much sooner than the immobile. Bearing in mind 

the desorption behaviour of the potassium, such concentration differences will 

cause much more desorption in the mobile water soil regions than in the 

immobile water soil regions. 

IO. ZZ2 For intermittent leaching 

The SIL model was run using the same previously determined parameters (f 

D, and cc ; Table 10.4) to simulate the results of intermittent leaching 

experiments (Exp. lb, 2b) with the R value calculated using Eq. 6.11. 

As with CL, the SIL model failed to simulate the IL results using the 

calculatedf value (Table 10.4) and for the same reason. Using the SIL model, 

the optimal value forf was found to be (Rý = 0.995 and 0.946 for Exp. lb and 

2b respectively) f= (D (the volumetric fraction of mobile water, (D =00 

(Fig. 10.6). 

The difference in the optimal f value of IL from that of CL (f =1) is due 

to the greater diffusion time available during IL. Since intermittent leaching 

gives more time for solute to diffuse out of the immobile water regions (during 

rest periods), the concentration inside such regions will decrease and therefore 

more desorption will occur. Such an increase in potassium desorption in the 

immobile water soil regions will decrease the value of f. When complete 

equilibrium with the mobile water occurs, the soil in the immobile and mobile 

water regions will be equally active in potassium desorption, thus f will equal 

(D (i. e. desorption is partitioned between immobile and mobile water regions in 

the same ratio as the water is partitioned between mobile and immobile water 

regions) . 
Fig. 10.6 shows that the SIL model fits the experimental results very well 

in the early stages, but fails to simulate the "tailing" during the later stages 



186 

0 Q 

S 
11-b -- - 

Exp. lb 

(a) 

ExpL 2b 

SL3 

Li Exp 

(b) 

Fig. 10.6: Relative potassium concentration against number of pore volumes for: (a) Exp. lb, (b) 
Exp. 2b. 

2 
Pore voh-mes 

2 
Pore voiumes 



187 

where the model overestimates the effluent concentration. It seems that using 
CXTFITI, which uses the linearized desorption isotherm to optimise the 

unknown parameters, influences the values of these parameters since the actual 

isotherm is non-linear. A new approach was used attempting to overcome this 

inherited problem of using the CXTFITI fitting program by fitting the 

parameters directly using the SIL model (which uses the actual desorption 

isotherm). 

10.2. Z3 Fitting theparameters using the SIL model 

A best-fit procedure was carried out, with CL experiment results, using the SIL 

model directly by allowing cc andf to change and keeping identical values of 

D, to those obtained from optimised bromide leaching results (Table 10.2). The 

results are shown in Table 10.5. 

Table 10.5: Optimised CC andf (with a given Ds ) using SIL model. 

I Optimised Parameters 
I 

R Ds* cc 0) # w 

(mm 2 /min) 

Exp. la From Eq. 6.11 6.71 0.0005 0.95 0.056 0.996 
Exp. 2a From Eq. 6.11 22.70 0.0008 0.95 0.044 10.982 

values are taken from Table 10.2. 
cc I 
Vd 

Fig. 10.7 shows the results as relative potassium concentration against 

number of pore volumes. Large values forf (f= 0.95) were needed. However, 

when such values were used with the IL experiments, the model Thiled to 

successfully simulate the tailing (Fig. 10.8). The fit improved when the values 

of f were decreased successively for each on cycle (Fig. 10.9) using the 

following empirical equation: 

=f, [1- 0.45 Nj , N, <3 
f=O 

31 N,; 
-> 3 
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where 
f" = the initial value off ( 0.95 in these experiments), 
N, = the sequential number of the on cycle (starting from zero). 

This can be interpreted as: during the first stage of leaching, the mobile 

water will be displaced by the leaching water much faster than the immobile 

water and thus its concentration will decrease much sooner causing the 

surrounding soil to start desorbing its adsorbed potassium. In contrast, in the 

soil surrounding the immobile water, where the solute concentration is greater 

(because it did not have enough time to equilibrate with the solute in the mobile 

water), much less potassium will desorb. This will give a very high value forf ( 

f=0.95; i. e., 95% of desorption occurred on the mobile water soil regions). In 

the later stages the immobile water has had more chance to equilibrate with 

mobile water (during rest periods) so decreasing its concentration. Thus more 

desorption will occur in the immobile water soil regions which will decrease 

the values off successively. During the very late stages, the majority of the 

adsorbed potassium in the mobile water soil region has been desorbed, whereas 

in the immobile water regions it is still desorbing resulting in the lowest value 

forf (f =0i. e., all the desorption is occurring from the immobile water soil 

regions). 

Using these empirical equations, the SIL model (Fig. 10.9) was more 

successful (R 2=0.998 and 0.995 for Exp. lb and 2b respectively) in describing 

the whole of the leaching curve. Such changes in thef value during leaching 

have never been documented before, probably because of the special case 

adopted in this study of "intermittent leaching" . 
The SIL model was then used to calculate the amount of solute 

remaining in the column under both intermittent and continuous leaching. The 

results are shown in Fig. 10.10 as the ratio Ss(t)lSa against number of pore 

volumes, where; 
Ss(t) = the amount of potassium remaining in the column 
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Sa = the initial amount of potassium in the column (including the solute 

adsorbed). 

Fig. 10.10 shows that, as for bromide, there was rapid leaching of the 

mobile-water solute followed by slower leaching of the immobile-water solute. 

Note that the minimum value of the y-axis was 0.6 since the relative amount of 

adsorbed potassium which cannot be desorbed (and so, leached) with 0.004 M 

KCI leaching solution (Eq. 8.2) was around 0.56 for both experiments. 

Differences between CL and IL were apparent directly after the first rest period 
(the beginning of each leaching cycle is indicated by an arrow on the graphs). 
Increasing the duration of the rest periods (from 50 to 150 min) increased 

leaching cfficiency, especially with the greater pore-water velocity. The results 

show that for Exp. 1, for IL to leach 70% of the initial salt load, 22 and 35% 

less leaching water is required with 50 and 150 min off times respectively. For 

Exp. 2 these savings increased to 32 and 43% respectively. I 

10.3 Conclusions 

The results of bromide and potassium leaching can be used to examine the 

efficiency of intermittent leaching for adsorbed and non-adsorbed ions. A few 

conclusions can be deduced from comparison of the results of Figs. 10.3 and 
10.10: 

1) Intermittent leaching is more efficient, in terms of use of leaching 

water and amount of leached solute, than continuous leaching for both 

adsorbed and non-adsorbed ions. 

2) As with ceramic spheres, the benefit of using intermittent leaching is 

greater the higher the pore velocity and/or the larger the aggregate size. 
3) Since non-adsorbed ions are not retarded, they will be leached faster, 

and thus will need less leaching water than adsorbed ions (continuous or 
intermittent leaching). This was also found by Verma & Gupta (1989) during 

chloride leaching. They attributed the lower requirement for leaching water to 
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the relatively fast movement of anions (such as chloride or bromide) through 

their montmorillonitic clay soils. For adsorbed ions the ion mobility is much 

less and adsorbed ions will desorb slowly (according to the shape of the 

desorption curve), which will delay their leaching. 

4) Non-adsorbed ions transfer more quickly between immobile and 

mobile water and hence shorter off times are efficient (with same on time). 

Thus the 50 min offtime used in Exp. I&2 was sufficient to allow bromide to 

diffuse out of aggregates, and any further increase did not result in greater 

efficiency (Fig. 10.4). By contrast, for potassium an increase in the off time (to 

at least 150 min) resulted in greater efficiency. 

From all of the above, it can be concluded that leaching adsorbed ions 

requires more and longer off time periods than for more mobile ions. This 

should be borne in mind when planning the number and periods of intermittent 

leaching cycles. 
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11.1 Introduction 

So far the study has focused on intermittent leaching under saturated 

conditions. The porous media (ceramic spheres or soil aggregates) were 

saturated and subsequently leached by a less concentrated solution. During the 

rest periods, the column remained saturated, the outflow simply being stopped 

using a tap. However, in the field, this is rarely the case. The initial water 

content of the soil is less than saturation most of the time, and the water 

content profile may not be uniform. During leaching, water will infiltrate into 

the soil, increasing the water content, and leaching the solute. After the 

leaching event, water redistributes through the soil profile, large pores will 

empty first, and thus most of the mobile water regions will be drained. The soil 

will be unsaturated and will have different water content profiles depending 

upon the initial water content time, amount and method of water application 
(e. g., Fig. 2.4), properties of the soil..., etc. All of these factors will keep the 

soil unsaturated during the rest periods. The question is now: 

how does this affect the efficiency of intermittent leaching ? 

One answer could be that, for the saturated system, at the end of a 
displacement period the solute concentration within soil aggregates is not 
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the displacement period the solute within the aggregate will diff-use out to the 

less concentrated solution in the mobile water region due to a concentration 

gradient (Section 2.2.1). Thus, the solute concentration will be greater at the 

centre of the aggregate and lower near the surfaces closer to the mobile water 

region. During the rest period, with most of the mobile water drained, Ficles 

equation (Eq. 2.2) suggests that solute will diffuse within the aggregates in 

order to establish a more uniform concentration across the aggregate. The 

approach to equilibrium will depend on the duration of the rest period and the 

aggregate size, in addition to the effective diffusion coefficient. During the next 
displacement period solute within the aggregates will move into the mobile 

water region more quickly than if still concentrated in the aggregate centre. The 

longer the rest period, the closer to a uniform concentration across the 

aggregate and more quickly will solute move out of the aggregates during the 

subsequent displacement period. A simple description of this hypothesis is 

shown in Fig. 11.1. 

11.2.1 Aim of the experiment 
An experiment was designed to investigate and answer the previous question. 
The idea was to arrange an experiment closer to field conditions, in which 
during the rest periods the mobile water regions were empty and only the 

immobile water region remained saturated. 

11.2.2 Method and materials 
Columns of ceramic spheres were saturated with 0.1 M KCI and prepared in a 

similar way to Section 3.3.2. An on-off valve was installed on the side of the 

column (Fig. 11.2) and connected to a distilled water container. The effluent 

was passed through an in-line conductivity probe (connected to a data logger 

via conductivity meter) and controlled by a peristaltic pump downstream. The 
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Fig. 11.1: A simplified diagram of mobile and immobile water regions in the column, showing the 
solute concentration within the latter at the end of drained and rest periods. 
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effluent was collected at the end in a container placed on a balance for 

measuring the outflow mass. 

At the beginning of the experiment, all the mobile water regions were 

drained, distilled water was quickly passed (taking care to avoid bubbles in the 

column) through the valve at the end of the column side and filled the column 

(taking s: z 15 seconds), then the pump started to pull the solution out of the 

column through the conductivity probe until all mobile water was drained 

again. It took about 40 minutes for the column to drain. The column remained 
like this through the whole of the rest period. 

The procedure was repeated for each successive cycle. The experiments 

consisted of three leaching cycles, each cycle comprising a drained and a rest 

period. For each cycle the volumes and concentration of the collected effluent 

were measured to calculate the amount of solute leached at the end of the cycle. 

To investigate the influence of the rest periods, two experiments were 

conducted with different rest periods, 60 and 0 min ( i. e., for the latter the 

column was allowed to drain and was immediately refilled), but otherwise 

under similar conditions (Table 11.1). 

Table 11.1 : Experimental conditions (drained case). 
Sphere diameter 

(mm) 

Off time 

(min) 

UM Ulm VM 

(mm/min) 

Exp. 1D 13 60 0.462 0.265 4.51 

Exp. 2D 13 0 0.470 0.270 4.47 
Vm = pore-water velocity in mobile water region. 

The volume of drained water was assumed to be the mobile water (inter- 

spheres water) volume (V,, ). The difference in mass of the spheres directly 

after the experiment and after oven drying was'considered to be the mass of 
immobile water, i. e. immobile water (intra-spheres water) volume (Vi,, ). 
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11.2.3 Results and discussion 

Fig. 11.3 shows the solute concentration of the leachate as a function of mobile 

water volumes (MWV). Curves for each of the three leaching cycles are shown. 
Each curve started at a low concentration which increased sharply as solute 
diflused out of the spheres. As the mobile water drained down, the rate of 
increase of effluent concentration also decreased due to a decreasing number of 

spheres still in contact with the mobile water and (effectively) under leaching. 

In addition, as concentration in the mobile water region increased so the rate of 

transfer from immobile to mobile water decreased resulting in a similar 

reduced rate of increase in effluent concentration. 
For subsequent cycles, as the total amount of solute remaining in the 

spheres decreased, the diffusion flux within the sphere decreased as did the 

concentration gradient between immobile and mobile water. Thus fluxes within 

spheres and into the mobile water decreased. This is why the rate of change in 

effluent concentration decreases from one cycle to the next. 
A comparison of Exps. ID and 2D (Fig. 11.3) shows a greater 

concentration of effluent during Exp. ID (i. e., more leached solute) throughout 

the whole experiment, confirming that there is a benefit from the rest periods. 
Fig. 11.4 shows the percentage of the solute leached against MWV. The 

amount of solute leached after each cycle was calculated from the 

concentration of the collected effluent. The initial solute load of the column 
(So) was calculated by: 

SO 
= COM V. + colm Vil. 

where 
CM 

0= the initial concentration of mobile solution (= 0 
CO' =the initial concentration of immobile solution(= 0.1 MKCI) 

V,., = the mobile water volume 

the immobile water volume. IM 
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Fig. 11.3: A graph of cffluent concentration vs. mobile water volumes for Exps. ID & 2D. 
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The results show that Exp. ID leached 76% of the initial immobile 

solute (since the solute came only from spheres) after three MWV have passed 

(i. e. three cycles), compared to 68% leached by Exp. 2D (no off time), i. e. 

12% more solute has been leached under the intermittent method. 

It is now clear that using rest periods under drained conditions (Exp. 

I D) increases leaching efficiency (compared with Exp. 2D). To complete the 

picture, how much more solute would inten-nittent leaching remove if the same 

experiment were done under saturated conditions?. To answer this, two more 

experiments (Exps. IS & 2S) were conducted under saturated conditions. The 

mobile and immobile regions were filled with 0.1 M KCI and then displaced by 

distilled water continuously and intermittently (with 60 min duration of each 

rest period) in the same way as for Section 3.3. The other conditions of the 

columns were similar to Exps. ID & 2D. Table 11.2 shows the experimental 

conditions. 

The SIL model parameters were estimated using die same procedures 
followed in Section 5.2. The model was run with Exp. IS & 2S parameters to 

give the amount of solute leached out, pnly from the immobile regions, after 

passing a total of three MWV. Continuous leaching leached 78% of the initial 

immobile water solute compared to 90% leached by inten-nittent leaching, 

which means 14% more solute leached under intermittent leaching . 
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Tahle IL2 ? Fxnerimental conditions (saturated case). 
Sphere diameter 

(mm) 

Off time 

(min) 

om olm VM 

(mm. /min) 

Exp. 1S 13 60 0.471 0.267 4.45 

Exp. 2S 13 0 0.476 0.276 4.31 

The greater percentage of leached solute under saturated conditions than 

under drained conditions is attributed mainly to the fact that, when saturated, 

solute inside the spheres continues to move out into the mobile water 

throughout the whole displacement period, whereas under the drained condition 

solute stops diffusing out as the falling water front passes the spheres. 

Consequently the upper layers of the column have a shorter time in contact 

with leaching water and transfer into the mobile region progresses more slowly. 

Fig. 11.5 shows the profile of solute concentration in immobile water 

(i. e. Ci,, (zt), average concentration within the spheres centred at z) for 

saturated and drained conditions at the end of leaching ( i. e. after leaching with 

three MWV). The solute concentration in the upper layers of the column is 

much greater under drained than saturated conditions. This is because the time 

available for solute to diff-use out of the immobile waier region is much shorter 

under drained conditions and will finish soon after the water front passes the 

spheres. However, this concentration is smaller in the lowest layers under 

drained conditions than under saturated conditions. This is because, near the 

bottom of the column, spheres are in contact with the mobile water during 

almost all the "drained" period as in the case of saturated conditions. 

Furthermore, under drained conditions, the solute concentration of the mobile 

water will start from zero at the beginning of each cycle (immediately after 
filling the column with the distilled water) which will enhance diffusion of 
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(MWV) have been passed, for drained (Exps. ID & 2D) and saturated (Exps. IS & 2S) experiments. 
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solute out of the spheres (by increasing the concentration gradient) resulting, at 

the end, in a lower Cj. under drained than saturated conditions. 
These experiments have proved that, even when all the mobile water is 

drained, there is still a benefit in using intermittent leaching. 

To make it easier to simulate Exps. ID & 2D, it is better to consider it as 
follows: suppose that this was a displacement experiment of the continuously 

saturated type (i. e. like Exps. IS & 2S) but with air as the displacing fluid 

causing simple piston flow [i. e. D, = 0, (no mixing)]. Draining the column 
(immediately prior to a rest period) is equivalent to air displacing the water in 

the mobile water region. 

Along the length of column occupied by air, there is no transfer of solute 
between the mobile and immobile water regions, so that the mass transfer 

coefficient, a, is zero. On this basis, the model would suggest no change during 

the rest period (since there will be no mass transfer and the model does not 
describe the redistribution ivithin the ceramic spheres). 

After the rest period the solute will more readily diffuse out of the 

spheres as there is a greater solute concentration close to the surface (Fig. 

11.1). This will increase the mass transfer rate of solute between immobile and 

mobile water regions during the next displacement "drained" period. In terms 

of the model this is translated as a higher cc value. 

The model was modified to allow for. different values of a when 

solving the transport equations (Eqs. 2.17 & 2.19) during each displacement 

period. 

The column was assumed to have length,, L, greater than the actual 
length, L, of the column (L > L, and the model, in effect, describes a semi- 
infinite column). 
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The length of displacement period (On time) is taken as the time 

required to drain all the mobile water (i. e., air to displace mobile water from 

the length of the column). If V. is the mobile water volume, q is the flow rate, 

then the on time is equal to 

ton =!. 
q 

The rest period is assumed to begin after all mobile water has drained. Fig 11.6 

shows a schematic of the model. The new model is termed the DIL (Drained 

Intermittent Leaching) model. The DIL model is written in FORTRAN-77. The 

computer program is printed in Appendix E. 

11.3.1 Estimating DIL model parameters 

To solve Eqs. 2.17 & 2.19, five parameters need to be estimated, namely 0. , 
0,. , v,,, , DS , and a. Ile first three parameters can be calculated from the 

experimental conditions. DS is assumed to be zero during the displacement 

periods as discussed before. The only unknown parameter is a. This was 

empirically determined by optimising the fit between the experimentally 

observed cumulative leaching and predictions from the DIL model. 

Fig. 11.7 indicates such optimised values for a for Exps. 1D & 2D. 

Although a was initially the same (as the starting conditions were similar), 

subsequently a values for Exp. ID (with 60 min rest period) were two to four 
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times higher than those for Exp. 2D, in agreement with hypothesis that the 

solute becomes more readily availablefor leaching after restperiods. 

The a values in second and third cycles (a2 and a3) should be similar 

since both cycles begun after the same rest period (0 or 60 min). However, 

these values were respectively 0.02 and 0.07 for Exp. ID, and 0.01 and 0.016 

for Exp. 2D. 'Mis could be because of the existence of thin films of water 

around the spheres which were not drained with the mobile water. During the 

rest period, and because of the diffusion within the spheres, the concentration 

of solute in these films will increase, especially for the spheres in the upper 

layers of the column where Cj. is still relatively very high (Fig. 11.5). Also 

there is a complication of a water potential gradient across the spheres from the 

saturated interior to the drained exterior causing a mass flow of solute during 

the rest period. When the column refilled, these films will easily mix with the 

incoming distilled water, and quickly increase its concentration. The model 

does not rccognise the effect of such films. So, to simulate this quick increase 

in concentration, a higher value of cc is required. Since this effect occurs during 

the rest period, it may be expected that cc will increase more for a longer rest 

period. This explains why the value of cc increased much more from cycle two 

to three for Exp. ID (60 min rest period) (from 0.02 to 0.07) than for. Exp. 2D 

(from 0.0 1 to 0.0 16) (0 min rest period). 

Another possible reason is the decrease in the total concentration of the 

immobile water from cycle to cycle. The data of Nkedi-Kizza et al. (1983) 

from chloride-36 transport through an aggregated Oxisol showed that the value 

of cc for 36CI for displacement by CaC12 solutions increased as the solution 

concentration decreased. Fig. 11.8 shows a plot created from their data forl cc 

values against the concentration of CaC12 solutions. The cc value increased by_ 

a factor of three when the solution concentration decreased from 0.1 N to 0.00 1 

N. However, this reas9n is not sufficient on its own as in Exps. ID and 2D 

there is not much difference in concentration between cycles 2&3. A further, 
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explaiiatioii of NkL'dI-KI__: kJ et al. 's results is that, as the experiments were on 

tropical soils, there may have been changes in die ion-exchange capacity of the 

soil with change in concentration. 

Fig. 11.8 ýThe mass transfer coefficient a as a function of concentration (Based on data from Nkedi- 
Kazza et al. ( 1983) for 3', Cl) 

The optlinised values of ct were then used in the model to simulate the 

experimental results. Fig. 11.9 shows the effluent concentration against MWV 

for Exps. ID & 2D. The results consist of three curves, each curve for each 

displacement period. The experimental results were steeper and with a higher 

concentration at the beginning of each curve and then became flatter than 

predicted. This could be because, during filling the column, just before the 

displacement period, die incoming leaching water vigorously mixed with the 

water films surrounding the spheres (which are relatively very concentrated) 

sharply raising its concentration. Then, with time, the concentration inside the 

spheres will decrease mid die transfer of solute out of the spheres will decrease. 

In other words, the value of a will decrease. The model assumed a single value 

for a for each displacement period. By optimising the a value, the model in 

fact, averages die a value over the whole individual displacement period. The 
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model thus underestimates the experimental results at the beginning, but 

overestimates them at the end, of each displacement period. 

The above discussion shows that the value of cc : 

1) changes from one cycle to next cycle, and 

2) changes with time during each individual displacement 

pcriod. 

Such changes will depend on the sphere size, effective diff-usion coefficient, 

length of duration of the rest period, pore-water velocity and the average 

concentration of the solution within the spheres. More studies are needed to 

clarify the effect of all these parameters on cc values. 

Fig. 11.10 shows the predicted change in Ci .. (L, t) and C .. (L, t) against 

MWV for Exps. ID & 2D. C1 .. (L, t) decreased with each leaching cycle as 

expected, with most of the leaching (about 42%) occurring during the first 

cycle. For the second and third displacement periods of Exp. ID, it is 

interesting to notice that the value of C. (L, t) was greater than the value of 

Ci .. (L, t). This is because a relatively larger amount of solute diffused out from 

the spheres in the upper layers which still have a large solute concentration. 

This diffusion was enhanced by the rest period. With no rest period, i. e. Exp. 

21), the Ci,, (L, t) values become smaller than the C,, (L, t) values only at the 

third cycle. 
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Chapter Twelve 

6 ýwm /I 

In order to further validate the simulation model it was decided to use the SIL 

model to describe an adsorption/desorption experiment. This chapter reports 

the experimental data and attempts to simulate it. 

12.1 Experimental method 

The 13-mm ceramic spheres were washed, cleaned and saturatedunder vacuum 

with de-aired distilled water and left immersed overnight in excess water (to 

allow any possible resident solute to diffuse out), then packed in a 30-cm long 

glass column previously filled with distilled water. A miscible displacement 

procedure was conducted as in Section 3.3 & 3.4. Four separate miscible 
displacement experiments were conducted on the same column; two were 
intermittent displacement and the other two were continuous displacement. In 

the first experiment (Exp- IA), the 0.1 M KCI solution was added intermittently 

(with 45/60 min as on/offtime) to the column for five cycles, then continuously 

until the effluent concentration reached 0.1 M (i. e., the column was fully 

saturated with 0.1 M KCI solution). 

The second experiment was then started (Exp. IL) in which distilled 

water displaced the 0.1 M KCI from the column intermittently (with the same 

onloff times as above) for another five cycles, then continuously until'all the' 

solute had leached out (i. e., the column was fully saturated with distilled' 
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water). For the next two experiments, Exp. CA & CL, the same procedures 

were followed except that the displacement was continuous. 

12.2 Results and discussion 

The continuous displacement experiments were used to optimise the values of 

the hydrodynamic dispersion coefficient, Ds , as in Section 5.2.1. Table 12.1 

shows the experimental conditions and optimisation results. 

Tahl-o 12-L ! Rynf! rimL-ntnl ennilitinnt nnd nntimi-, f-d 7). 

Vd 

(mm/min) 

om AM Ds* 

(rnM2/min) 

R2 

Exp. CA 2.15 0.489 0.230 125.75 0.968 

Exp. CL 2.14 0.489 0.230 2.82 0.979 
* optimised values. 

The results show that two very different values of Ds were required to fit the 

continuous displacement results. Theoretically, similar values should have been 

obtained since both experiments were on the same column with the same 

method of water application and at almost the same mobile water velocity. The 

only reason one might consider is the possibility that the electrical conductivity 

electrode was more sensitive to an increasing concentration than to a 

decreasing. Such greater sensitivity meant that the electrode sensed the very 

early increase in concentration in Exp. IL and a higher value of DS was 

required to simulate such early sensing. Since the influence of Ds on the shape 

of the BTC is not very large (van Genuchten & Wierenga, 1976), much larger 

values of Ds were required for simulating Exp. IL than Exp. IA. 

Using these parameters the SIL model was run to simulate the 

internuttent displacement results. The simulation results are shown in Fig. 12.1 

as effluent concentration against time. The graph consists of two branches, one 
for displacement with solution and the other for 'displacement with distilled 

water. In the first branch solute appeared in the effluent shortly after starting 
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the experiment and then the effluent concentration rapidly increased as the 

solute reached the column end via macropores. The effluent concentration 

reached the 0.1 M value gradually as solute slowly diffused into the spheres. 

After each off time the effluent concentration dropped as the solute in the 

mobile water diflused to the immobile water within the spheres. This change in 

effluent concentration decreased with successive cycles as the concentration 

gradient between mobile and immobile water decreased (Fick's equation). For 

the second branch the story was the exact opposite and was similar to the 

results obtained in Section 3.4.3. 

The two branches of the curve were similar in that the rest periods 

caused similar changes in the effluent concentration (increasing or decreasing). 

These changes were very similar in magnitude in the two branches of the 

curve. The SIL model successfully simulated the two branches. There was a 

small difference during the early stage of adding solution which may be 

because of a slight difference in the pore-water velocity between Exp. CA 

(used to optimise Ds ) and Exp. IA (the latter experiment had slightly higher 

mobile water velocity). 

12.3 Conclusion 

These results proved that intermittent displacement is a reversible process 
(except for different values of Ds ). Similar behaviour was obtained by 

Addiscolt et al. (1978) for transport of applied chloride through the Rothamsted 

drain gauges under irregular winter rainfall pattern when they monitored the 

chloride concentration in drainage water. The relationship between chloride 

concentration and cumulative drainage showed several subsidiary peaks on the 

curve when the drainage concentration was increasing and when it was 
declining. 

The SIL model was able to satisfactorily describe both adsorption and 
desorption processes. 



Chapter Thirteen 

aImeQzdato 

13.1 Conclusions 

This study shows that intermittent leaching (IL) has the potential to increase the 

efficiency (compared with continuous leaching, CL) with which water might be 

used to leach excess salts from a soil profile. Based on the results of the 

experimental and the simulation work the following conclusions can be made. 

1) The advantage of using IL increases as the soil permeability 
increases. A low soil permeability (and consequent slow leaching) allows more 

time for equilibrimn between regions of mobile and immobile water. Leaching 

of bromide from columns of soil aggregates showed that the difference in 

saving water between CL and IL increased almost 1.5 times when the mobile 

water velocity doubled (Section 10.2.1). 

2) The advantage of using IL also increases as the aggregate size 
increases. A small aggregate size means that equilibrium between mobile and 
immobile water regions is reached more quickly than for a large aggregate. 
Leaching solute from columns of ceramic spheres indicated that the difference 

between the amount of water required to reach the same degree of 
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desalinisation with CL and with IL increased approximately IS times when the 

sphere diameter increased from 2 to 13 mm (Section 5.3.2). 

3) IL remains more efficient than CL even when water of lower quality 

is used. Section 5.2.2.2 showed that leaching of about 80% of initial amount of 

solute was achieved with the same quantity of water by continuously leaching 

with distilled water or intermittently with water containing 1g solute A. This is 

particularly important in and and semi-arid areas where good quality water is 

frequently unavailable. 

4) The effects of duration of on and offtimes on IL efficiency depend on 

several factors. The effect of on time was more distinct, especially at high 

velocities; at vm= 48.11 mm/min(= 69.3 m/d) using I min on time rather than 

15 min can save up to 15% of the amount of leaching water (but will require 

more on times). The effect of varying off time was very small for the smallest 

spheres. However, this effect was more pronounced for large spheres, though it 

was still smaller than the effect of on time. 

5) IL is more efficient for both adsorbed and non-adsorbed ions. The 

dependency of IL advantage on aggregate size and mobile water velocity is the 

same for both adsorbed and non-adsorbed ions. However, leaching of adsorbed 

ions requires a greater number, and longer, off time periods than it requires for 

non-adsorbed, more mobile ions. 

6) IL is an effective leaching method even when most of the macropores 
(the mobile water regions) are drained during the rest periods. Such rest periods 

result in a more uniform solute concentration across individual aggregates so 

that solute diffuses out of the aggregates more quickly during the next 
displacement period. With completely drained macropores during the rest 
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period, IL was able to leach 12% more of the initial amount of solute of the 
immobile water regions than CL (Section 12.2.3). 

7) The assumptions in the SIL (Saturated Intermittent Leaching) model 

and the methods used for estimating its parameters are reasonably accurate as 

demonstrated by the validation work for the particular conditions examined. 

The model may be used as an investigative and/or management tool. 

8) In a similar manner the DIL (Drained Intermittent Leaching) model, 

and the theory used to develop it, may be used in any study investigating the 

effect of rest periods between water applications (such as rainfall events). 

9) Conversely, intermittent application of plant nutrients will reduce. the 

losses of such nutrients by leaching. Applying plant nutrients intermittently 

means that they will have enough time (between the applications) to diffuse 

into the soil aggregates and be much less mobile, thus less subject to leaching. 

Such a reduction of leaching losses would be undoubtedly of great advantage 

for both farmer and environment. 

13.2 Recommendations and further research 

This study established, experimentally and mathematically, the benefit of the IL 

method and built a foundation for ftirther research. However, as the study was 

mainly on laboratory columns, the next step must be towards conditions closer 
to the field situation. These include: 

1) Examination of the effect of soil structure on IL under saturated 

conditions using undisturbed soil columns having large aggregates. Such 

aggregates would not be uniform in size or in shape. Optimisation technique 

used with the developed SIL model in Section 10.2.2.3 would be helpful in 
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optimising some of the parameters (e. g. f, cc). Swelling could occur in a clay 

matrix causing some parameters to be time dependent (e. g. 0. , 
Oi,, 

, and v,,, ). 

2) Study IL under unsaturated conditions. The processes are now more 

complicated and most of the parameters are likely to depend on the soil water 

content (e. g., 0. and 0j. ). Solute and water movement during a "single" 

displacement period under unsaturated conditions have been studied in detai. 1 in 

the literature (e. g. van Genuchten, 1982; Nielsen et al., 1986). More studies are 

required in two areas: 
(i) the effect of successive displacement periods (re-wetting the 

soil) on solute and water movement. 
(ii) solute and water movement during rest periods where water is 

not stagnant but continues to redistribute. 

3) The last step will be to investigate IL in the field. Water can be 

applied intermittently to the soil surface by different methods (e. g., by flooding, 

sprinkling, or by trickle irrigation). Choosing the most appropriate water 

application method depends on several factors including the existing irrigation 

system, land topography, and the atmospheric conditions (see also Section 2.4). 

With the first two methods an adequate drainage system is necessary to drain 

away the leached solute. 

Applying leaching water by a sprinkler irrigation system is preferable 

when it is difficult to obtain level plots (Section 2.4.2.2 ) and the existence of 
large macropores might mean that ponded water would be quickly lost. 

However, because of the high evaporation rate of the sprinkled water, this 

method is not recommended under conditions of high evaporativity. 
Applying water intermittently by a trickle irrigation system (sometimes 

called, pulsed trickle irrigation) has been found to reduce water loss below the 

root zone and to increase the horizontal diameter of the wetting area Vur, 
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1976; AI-Amoud & Saced, 1988). Therefore, in addition to driving out more 

solute from the soil aggregates, pulsed trickle irrigation would reduce water 
loss and keep the leached salts further away from the plant. This method 
implies a three-dimensional movement of solute and water and further research 

is still required. 

The duration of the first application should be enough to supply a 

sufficient amount of water to saturate the soil profile and displace most of the 

mobile water. The duration of subsequent rest periods will depend on the 

aggregate size, the effective diffusion coefficient and the desorption 

characteristics of the leached ions. Conducting the first two recommended 

experiments on samples taken from the same field would help in developing the 

existing SIL & DIL models which could then be used to optimise the onloff 

times. However, long rest periods, with high evaporation rates, might result in 

the upward movement of water and consequent salt accumulation at the surface 

(Section 2.4.2.1). This should be investigated and taken into account when 

conducting IL under such conditions. 
Restructuring the soil would enhance the leaching by providing an inter- 

connected macropore system to facilitate the transport of leaching water. 
Tanton el al. (1990) showed that, after restructuring a saline heavy clay soil by 

intensive subsoiling to 0.7 m depth, it was possible to leach 60% of the 

leachable salts by inducing a lateral flow of leaching water through the soil 

profile in two successive leachings (with an increase in drainage concentration 

after the rest period between the two leachings). Furthermore, without 

restructuring the soil, the infiltration rate decreases with each successive 

application of water, whereas the same previous study showed that the 

permeability was maintained in the subsoiled plot on re-wetting after a period 

of drainage and desaturation (Arnistrong et al., 1989; Tanton et aL, 1990). This 

enhanced permeability would increase the advantage of using IL (Section 

10.2.1). 
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APPENDICES 



Abbreviations used in the models 

ALFA 

AREA 

, AS 

BC 

Co 

cim 

CIN 

cm 

DE 

DELrr 

DELTZ 

DK 

DS 

EM 

FF 

Cc mass transfer coefficients 

column cross-section area 
initial amount of adsorbed solute 

-b constant in Eq. 6.2 

- CO initial solute concentration 

- C). solute concentration in the immobile water 

= Cj. P solute concentration in the added water 

= C. solute concentration in the mobile water 

= D, effective diffusion coefficient 

= At time increment 

= Az space increment 

=K distribution coeff icient 

= Ds hydrodynamic dispersion coefficient 

mean value 

=f the fraction of adsorption sites in the mobile 
water phase 

Units 

min-' 

mm 
2 

P9 

IOFF 

ION 

IR 

ITERA 

ITIME 

LO 

LR 

NP 

p 

POR 

PORI 

Ilg -3 
, MM 

p9 MM -3 

gg MM -3 

lig MM' 

mm min` 

mm 

mm 

mm 
2 
min" 

length of rest period duration min 
length of displacement period duration min 
number of spheres for diffusion model 
number of iteration loops 

total leaching time min 
L imaginary column length mm 
Lp real column length mm 

number of different diameters 

mass proportion of sphere diameters 
OM volume of mobile water to total column volume MM3 MM73 
Oj. volume of immobile water to total column volume MM3 MM, 3 
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Q =q flux 
Q1 =q, constant in Eq. 4.13 

RID =a aggregate/sphere radius 
RU =P soil bulk density 

SEG = cr variance in normal and log-normal distribution 

TOLR the allowed difference in concentration required 
to exit the loop (error tolerance) 

VEX volume of external solution 

mm 3 min»' 

mm 

gg mid' 

Ilg nlrd3 

3 cm 
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Appendix A 

C 
MODEL SIL 

C inturateu intermittent Leacningi 
C 
C Programfor simulating solute transport under intermittent 
C leachingfor aggregated media and saturated conditions 
c 
c (case]: for uni-diameter spheres) 
c 

PROGRAM INTERMITTENT SATURATED 

DIMENSION CIM(500,3,2) 
DIMENSION A(500,2), B(500,2), C(500,2) 
DIMENSION E(500,2), F(500,2), G(500,2) 
DIMENSION CM(500,2), RHS(500,2), EEI(500,2), FFI(500,2) 
DIMENSION XXCM(500), RESID(500) 
DOUBLE PRECISION RHS 
DOUBLE PRECISION EEI, FFI, XXCM, RESID 
DOUBLE PRECISION A, B, C, E, F, G 
DOUBLE PRECISION ZZ, PZ, ALFA 

OPEN(UNIT=8, FILE='resultli. daf) 
C------ 

c-- DATA 
DELTT=1.0 
DELTZ=1.0 
S=0.0 
SI=0.0 

Q=3.62*1000 
AREA=16.982*100 
V=Q/AREA 
DS=1.153 

co=o. l 
POR=0.486 
PORI=0.231 
LO=300 
LR=180 
CIN=7.45 
ITERA=18 
ITIME=620 
ION=45 
IOFF=60 

ICYCLE=ITIME/(ION+IOFF) 
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ZZ=DELTZ*DELTZ 
FI=POR/(POR+PORI) 
PZ=POR*DELTZ 

HEADINGS 

C ...................................... VNO & S/SOXOR LR ........................... 
c WRITE(8,1 1) 
c 11 FORMAT(5X, 'VNO', IOX, 'S/SO') 
C ...................................... VNO & C/CO. FOR LR .......................... 

WRITE(8,8) 
8 FORMAT(5X, 'WVO', I OX, 'C/CO') 

C ...................................... TIME &C FOR L ................................... C WRITE(8,9) 
C9 FORMAT(5X, 71ME', I OX, 'CONCENT. ') 
C ...................................... DEPTH &C@ VNO .............................. 
C WRITE(8,10) 
C 10 FORMAT(5X, 'DEPTIr, I OX, 'Cnf, I OX, 'Cim) 

C--- 

c : THEPROGRAM- 
IJ=O 
IC=ICYCLE-1 

DO 5000 JJ=O, IC 
JI=JJ*(ION+IOFF) 

DO 3000 J=JI+I, ION+Jl 

C- Calculating of ALFA 
DE=0.0575 
RID=6.5 
QI=3.57 

TETA=PORI 

TIM=LR*POR/(Q/AREA) 
BI=0.14472*LOG(167.0/(FI*Ql**2. )) 
T=DE*TIM/RID**2. 
IF(T. GE. O. I)THEN 
ALFA=((FI*Ql**2. )*(I. +(O. I*Bl/((I. -Bl)*T))))*DE* 
&TETA/RID**2 
ELSE 

ALFA=((FI*Ql**2J(I. -Bl))*(O. I/T)**Bl)*DE*TETA/RID**2 
ENDIF 

c PRINT*, ALFA=: ý, ALFA, 'Fl=ý, Fl, 'T=', T, B I =: O, B I 'v=%V 
C_ ..... . ............ 
C----- ----Initial condition----- - ----- - 

IF (J. GT. I)GO TO 2990 
DO 7 I= I, LO 
CM(l, l)--co 
CIM(I'1,1)=CO 
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7 CONTINUE 
GO TO 2970 

2990 CONTINUE 
DO 2980 I=I, LO 
CM(1,2)--CM(l, l) 

2980 CONTINUE 
c Iteration loop 

2970 DO 2000 ITER=I, ITERA 
DO 777 I= I, LO 
CIM(1,1,2)=O 

777 CONTINUE 

DO 999 I= I, LO 
IF (J. EQ. I)GO TO 550 

C ............................. Calculating Cim .............................................. 

CIM(1,1,2)=((ALFA*DELTTI(2*PORI))*(CM(1,1)+CM(1,2))+CIM(1,1,1)* 
&(I-(DELTT*ALFA/(2*PORI))))/(I+(ALFA*DELTT/(2*PORI))) 
GO TO 999 

550 IF(ITEPEQ. 1)GO TO 553 
CIM(I, 1,2)--«ALFA*DEI: IT/(PORI*2»*(CM(1,1)+CM(I, 2»+CIM(I, 1,1)* 
&(1-(DEL'IT*ALFA/(2*PORI»»7(1+(ALFA*DELTT/(2*PORI») 

GO TO 999 

553 CIM(1,1,2)=((ALFA*DELTT/(PORI*2))*2*CM(I, I)+CIM(1,1,1)* 
- &(I. -(DELTT*ALFA/(2*PORI))))/(I. +(ALFA*DELTT/(2*PORI))) 

999 CONTINUE 
C .................................................................................................... 

DO I 1=2, LO 
A(1,2)--(DS*DELM(2*ZZ)+(V*DELT'T)/(4*PZ) 
B(1,2)--I. +(DS*DELTT)/(ZZ) 
C(1,2)--(DS*DELTT)/(2*ZZ)-(V*DELTT)/(4*PZ) 
E(1,2)=A(1,2) 
F(1,2)=I. -(DS*DELTT)/(ZZ) 
G(1,2)=C(1,2) 

I CONTINUE 

B(1,2)=V+(POR*DS)/DELTZ 
C(1,2)=(POR*DS)/DELTZ 

C_ -Calculating RHS---- 
LOLESI=LO-l 
DO I 100 1=2, LOLES I 
IF(J-I. EQ. O)GO TO 1090 
RHS(1,2)--E(I, 2)*CM(1-1,1)+F(1,2)*CM(1,1)+G(1,2)*CM(1+1,1) 
&-(PORI/POR)*(CIM(I, 1,2)-CIM(1,1,1)) 
GO TO 1100 

1090 RHS(I, J)=CO 

I 100 CONTINUE 
C ........................... Boundary conditions ......................................... 
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IF (J-I. NE. O)GO TO 45 
RHS(i, t)--V*CIN 
GO TO 47 

45 CONTINUE 
RHS(1,2)-V*CIN 

47 IF (J-I. NE. O)GO TO 48 
RHS(LO, I)--CO 
GO TO 49 

48 COUT=CO 

RHS(LO, 2)=E(LO, 2)*CM(LO-1,1)+F(LO, 2)*CM(LO, I)+G(LO, 2)*COUT 
&-(PORI/POR)*(CIM(L0,1,2)-CIM(LO, 1,1)) 

49 CONTINUE 

c: .......... Storing the old Cm(1,2) in XXCNI(I) and Calculate new 
c Cm(1,2) 

DO 711 1-1, LO 
XXCM(I)=O. O 

711 CONTINUE 

IF(J. EQ. I)GO TO 815 
805 CONTINUE 

DO 811 I=I, LO 
XXCM(I)=CM(1,2) 
CM(1,2)--O 

811 CONTINUE 
GO TO 821 

815 CONTINUE 
IF (ITEPLEQ. I)GO TO 816 
GO TO 805 

816 CONTINUE 
DO 819 I= I, LO 
XXCM(I)--CM(1,1) 

819 CONTINUE 
821 CONTINUE 

C .............. Calculating Cm(1,2) using Rhychmyer Algorithm 

IF(J. EQ. I)GO TO 840 
K=2 
GO TO 845 

840 K=1 
845 CONTINUE 

EEI(I, K)--C(1,2)/B(1,2) 
FFI(I, K)--RHS(I, K)/B(1,2) 

DO 1300 1=2, LO 
EEI(I, K)--C(UY(B(1,2)-A(1,2)*EEI(I-1, K)) 
IF (FFI(I-1, K). LT. I. OE-74) FFI(I-I, K)=0.0 
FFI(I, K)=(RHS(I, K)+(A(1,2)*FFI(I-1, K)))/(B(1,2)-(A(1,2) 

& *EEI(I-1, K))) 
1300 CONTINUE 

I=LO 
COUT=CO 
CM(1,2)=EEI(I, K)*COUT+FFI(I, K) 
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LOLESI=LO-I 
DO 1400 11=1, LOLESI 
I=LO-ll 

CM(1,2)--EEI(T, K)*CM(1+1,2)+FFI(I, K) 
C WRIT'E(S, *)'CMC, I, ', 2)', CM(1,2) 
1400 CONTINUE 

C ............ Storing the highest difference between old and ............... C new Cm into variable BIG 
C .... the BIG compared with the tolerant differnce TOLR (g/1) 

BIG=0.0 
DO 720 I= I, LO 
RESID(I)=(ABS(CM(1,2)-XXCM(l))) 
RES=RESID(l) 
IF (RES. GT. BIG) BIG=RES 

720 CONTINUE 

TOLR=0.0001 

IF (BIG. LT. TOLR)GO TO 730 

2000 CONTINUE 
C .................................................................................................... 730 CONTINUE 

DO 2500 I=I, LO 
CIM(1,1,1)=O 

CIM(1,1,1)=CIM(1,1,2) 

2500 CONTINUE 

cot Otto Otto MI of of Otto #I it Otto Mo Otto t ............... ""Printing", ""'-, 11119111111911 filiff 11 tell of Iloilo 

M=(JJ*ION)+J-JI 
VOL=M*Q 
VO=LR*(POR+PORI)*AREA 
VR=VOLNO 
SO=VO*CO 
XR=CM(LP, 2)/CO 
DELTV=DELTT*Q 
S=S+CM(LP, 2)*DELTV 
SI=SI+CIN*DELTV 
SS=SO-S+Sl 
SR=SS/SO 

C ...................................... VNO & S/SO @ L=LR ............................. 
c WRITE(8,91)VPSR 
c 91 FORMAT(IOX, F8.4, IOX, F8.4) 
C ...................................... VNO & C/CO @ L=LR ............................ WRITE(8,89)VR, XR 

89 FORMAT(IOX, F8.4, IOX, F8.4) 
C ...................................... TIME &C@ L=LR ................................ c 
c WRITE(8,88)J, CM(LF, 2) 
c 88 FORMAT(5X, 15, IOX, F8.4, IOX, F8.4) 
C ...................................... DEPTH &C@ VNO .............................. 
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C IF(VPLT. 2.99. OF-VPGT. 3.0)GOTO 14 
C WRITE(8, *)VR 
C DO 13 I=I, LR 
C WRITE(8,90)1, CM(1,2), CIM(1,1,2) 
C 90 FORMAT(5X, 15, I OX, F8.4, IOX, F8.4) 
C 13 CONTINUE 
C 14 CONTINUE 
Cto"ll"ll ... ... " ... 

DO 2700 I=I, LO 
RHS(1,2)--O 
A(1,2)=O 
B(1,2)=O 
C(1,2)=O 
E(1,2)=O 
F(1,2)--O 
G(1,2)=O 
EEI(1,2)--O 
FFI(1,2)=O 
CM(l, l)--o 
CM(1,1)=CM(1,2) 
CM(I, 2)=O 

2700 CONTINUE 
3000 CONTINUE 

IJ=J-l 
Off time 

IJF=IOFF+IJ 
DO 4000 J=IJ+I, IJF 

C- Calculating of ALFA 

TETA=PORI 

TIMAOFF 
B 1=0.14472*LOG(I 67.0/(FI*Q 1* *2. )) 
T=DE*TIM/RID**2. 
IF(T. GE. O. I)THEN 
ALFA=((FI*Q 1* *2. )*(1. +(0.1 *B 1/((I. -B 1)*T))))*DE* 
&TETA/RID**2 
ELSE 

ALFA=((FI*Ql**2J(I. -Bl))*(O. IM**Bl)*DE*TETAAUD**2 
ENDIF 

C PRINT*, 'ALFA=: ý, ALFA, 'Fl=', Fl, 'T=', T, 'Bl=', Bl, 'v--', V 
c -- - ---------- - --- - ---------- - ----------- 

DO 2981 I=I, LO 
CM(1,2)--CM(l, l) 

2981 CONTINUE 
C -------Iteration loop - ---- - ------------------------------- 

2971 DO 2001 ITER= I, ITERA 
DO 771 I=I, LO 
CIM(1,1,2)=O 
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771 CONTINUE 

......................... Calculting Cim .................................................... 

DO 991 I=I, LO 

CIM(1,1,2)--((ALFA*DELTT/(2*PORI))*(CM(1,1)+CM(1,2))+CIM(1,1,1)* 
&(I-(DELTT*ALFA/(2*PORI))))/(I+(ALFA*DELTT/(2*PORI))) 

991 CONTINUE 

C- _______ 

DO 712 I= I, LO 
XXCM(I)=O. O 

712 CONTINUE 

IF(J. EQ. I)GO TO 1815 
1805 CONTINUE 

DO 1811 I=I, LO 
XXCM(I)=CM(1,2) 
CM(1,2)=O 

1811 CONTINUE 
GO TO 1821 

1815 CONTINUE 
IF (ITEPLEQ. I)GO TO 1816 
GO TO 1805 

1816 CONTINUE 
DO 1819 I=I, LO 
XXCM(I)=CM(1,1) 

1819 CONTINUE 
1821 CONTINUE 

c-- --------- 
DO 345 I=I, LO 
CM(1,2)=CM(l, l)-(PORI/POR)*(CIM(1,1,2)-CIM(1,1,1)) 

345 CONTINUE 
C .................................................................................................... BIG=0.0 

DO 721 I= l, LO 
RESID(I)=(ABS(CM(1,2)-XXCM(l))) 
RES=RESID(l) 
IF (RES. GT. BIG) BIG=RES 

721 CONTINUE 

TOLR=0.0001 

IF (BIG. LT. TOLR)GO TO 731 

2001 CONTINUE 
C .................................................................................................... 
731 CONTINUE 

DO 2501 I=I, LO 
CIM(1,1,1)=O 

CIM(1,1,1)=CIM(1,1,2) 

2501 CONTINUE 
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C WRIT7E(8,88)J, CM(LR, 2), CIM(LF, 1,2) 

DO 2701 I= 1, LO 
RHS(1,2)=O 
A(1,2)--O 
B(1,2)=O 
C(1,2)--O 
E(1,2)--O 
F(1,2)=O 
G(1,2)=O 
EEI(1,2)--O 
FFI(1,2)=O 
CM(l, l)--o 
CM(1,1)=CM(1,2) 
CM(1,2)--O 

2701 CONTINUE 
4000 CONTINUE 

CA AAA & 1AA AAJ AA A/ AA AA AAAVIAAAAAAAAAAAAAAA. AA 

5000 CONTINUE 

STOP 
END 

c- END OF THE PROGRAM 
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Appendix B 

c 

c MODEL SIL 
c (Saturated Interm*ttent Leach*nf! ) 

C Programfor simulating solute transport under intermittent 
C leachingfor aggregated media and saturated conditions 

c (case 2: for multi-diameter spheres) 
c 

PROGRAM INTERMITTENT SATURATED 

DIMENSION CIM(500,3,2), XCX(500,10,2) 
DIMENSION A(500,2), B(500,2), C(500,2) 
DIMENSION E(500,2), F(500,2), G(500,2) 
DIMENSION CM(500,2), RHS(500,2), EEI(500,2), FFI(500,2) 
DIMENSION XXCM(500), RESID(500) 
DIMENSION DE(IO), RID(IO), P(IO), ALFA(IO) 
DOUBLE PRECISION CIM, CM, RHS 
DOUBLE PRECISION EEI, FFI, XXCM, RESID 
DOUBLE PRECISION A, B, C, E, FG 
DOUBLE PRECISION ZZ, PZ 

OPEN(UNIT=8, FILE='result3i. daV) 
c 
c DATA 

DELTT=1.0 
DELTZ=1.0 
S=0.0 
SI=0.0 
Q=7.3 * 1000 
AREA=56.7*100 
CO=7.634 
POR=0.337 
PORI=0.298 
LO=350 
LR=250 
XCIN=0.0 
ITERA=18 

c .......................... Mass proportion of sphere diameters 
NP--2 
P(I)=0.56 
P(2)--0.44 

c ........................................................................................... ITIME=1300 
ION=20 
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IOFF=69 
ICYCLE=ITIME/(ION+IOFF) 
ZZ=DELTZ*DELT'Z 
FI=POR/(POR+PORI) 
PZ=POR*DELTZ 

C -- - 

-hEADINGS 
C ...................................... VNO & S/SOXOR LR ..... 

WRITE(S, 11) 
II FORMAT(5X, VNO', I OX, S/SO') 

C ...................................... VNO & CICOXOR LP L ..... 
C WRITE(8,8) 
C8 FORMAT(5X, VNO', I OX, C/CO') 
C ...................................... TIME &C FOR LR L ......... 
c WRITE(8,9) 
c9 FORMAT(5XTIMV, lOX, 'CONCENT. ) 
C ...................................... DEPTH &C@ VNO ........ 
C WRITE(8,1 0) 
C 10 FORMAT(5X, DEPTIT, I OX, 'Cm', I MUM) 

c 

c THEPROGRAM- 
IJ=O 
IC=ICYCLE-1 

DO 5000 JJ=O, IC 
JI=JJ*(ION+IOFF) 

DO 3 000 J=J I+I, ION+J I 

C, Calculating of ALFA 
V=Q/AREA 

DS=3.71 

DE(l)--0.0575 
DE(2)--0.0528 
RID(I)=6.43 
RID(2)=1.19 
QI=3.496 

TETA=PORI 
TIM=LR*POR/(Q/AREA) 
BI=0.14472*LOG(167.0/(FI*Ql**2. )) 

DO 2991 N=INP 
T=DE(N)*TIM/RID(N)**2. 
IF(T. GE. O. I)THEN 
ALFA(N)=((FI*Ql**2. )*(I. +(O. I*Bl/((I. -Bl)*T))))*DE(N) 
&*TETA/RID(N)**2 
ELSE 

ALFA(N)=((FI*Ql**2J(I. -Bl))*(O. IM**Bl)*DE(M) 
&*TETA/RID(N)**2 
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ENDIF 

C PRINT*, 'ALFA=: ý, ALFA(N), 'Fl=', Fl, 'T=ý, T, 'Bl=', Bl, 'v--', V 
2991 CONTINUE 
C- --- --- -------------- 
C -------Initial condition ---------- - ---- -- ---------- -- 

IF (J. GT. I)GO TO 2990 
DO 7 I= I, LO 
CM(l, l)=CO 
CIM(T, 1,1)=CO 

DO 2503 N=INP 
XCX(I, N, I)--CO 

2503 CONTINUE 

7 CONTINUE 

GO TO 2970 
2990 CONTINUE 

DO 2980 I=I, LO 
CM(1,2)=CM(l, l) 

2980 CONTINUE 
C -------- ----------Iteration loop ------- --- -------------------------- 
2970 DO 2000 ITER=I, ITERA 

DO 777 I= l, LO 
CIM(1,1,2)=O. 
DO 776 N=I, NP 
XCX(I, N, 2)=O. 

776 CONTINUE 
777 CONTINUE 

C ............................. Calculating Cim .............................................. 
DO 999 I= I, LO 
DO 997 N=INP 
IF (J. EQ. I)GO TO 550 

XCX(I, N, 2)=((ALFA(N)*DELTT/(2*PORI))*(CM(1,1)+CM(1,2))+XCX(I, N, I)* 
&(I-(DELTT*ALFA(N)/(2*PORI))))/(I +(ALFA(N)* DELTT/(2* PORI))) 
GO TO 998 

550 IF(ITER. EQ. I)GO TO 553 
XCX(I, N, 2)=((ALFA(N)*DELTTI(PORI*2))*(CM(1,1)+CM(1,2))+XCX(I, N, I)* 
&(I-(DELTT*ALFA(N)/(2*PORI))))/(I+(ALFA(N)*DELTT/(2*PORI))) 

GO TO 998 

553 XCX(IN, 2)=((ALFA(N)*DELTT/(PORI*2))*2*CM(1,1)+XCX(I, N, I)* 
&(I. -(DELTT*ALFA(N)/(2*PORI))))/(I. +(ALFA(N)*DELTT/(2*PORI))) 

998 CONTINUE 
CIM(1,1,2)=CIM(1,1,2)+XCX(I, N, 2)*P(N) 

997 CONTINUE 
999 CONTINUE 

C -------------------------------------------------- - ----------------- 

DO I 1=2, LO 
A(1,2)=(DS*DELTT)/(2*ZZ)+(V*DELT"r)/(4*PZ) 
B(I, 2)=I. +(DS*DELTT)/(ZZ) 
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C(1,2)=(DS*DELTT)/(2*ZZ)-(V*DELTT)/(4*PZ) 
E(1,2)=A(1,2) 
F(1,2)=I. -(DS*DELT'T)/(ZZ) 
G(1,2)=C(1,2) 

I CONTINUE 

B(1,2)--V+(POR*DS)/DELTZ 
C(1,2)=(POR*DS)/DELTZ 

C ----Calculating RHS - ------- - ---------------------- - ---- 
LOLESl=LO-I 
DO I 100 1=2, LOLES I 
IF(J- I. EQ. O)GO TO 1090 
RHS(1,2)=E(1,2)*CM(1-1,1)+F(1,2)*CM(1,1)+G(1,2)*CM(I+1,1) 
&-(PORI/POR)*(CIM(l, 1,2)-CIM(1,1,1)) 
GO TO 1100 

1090 RHS(I, J)--CO 

I 100 CONTINUE 
C ........................... Boundary conditions ......................................... 

IF (J-I. NE. O)GO TO 45 
RHS(1,1)=V*XCIN 
GO TO 47 

45 CONTINUE 
RHS(1,2)=V*XCIN 

47 IF (J-I. NE. O)GO TO 48 
RHS(LO, I)=CO 
GO TO 49 

48 COUT=CO 

RHS(LO, 2)=E(LO, 2)*CM(LO-1,1)+F(LO, 2)*CM(LO, I)+G(LO, 2)*COUT 
&-(PORI/POR)*(CIM(L0,1,2)-CIM(LO, 1,1)) 

49 CONTINUE 
C .......... Storing the old Cm(1,2) in XXCM(I) and Calculate new ...... 
c Cm(1,2) 

DO 711 I= I, LO 
XXCM(I)=O. O 

711 CONTINUE 

IF(J. EQ. I)GO TO 815 
805 CONTINUE 

DO 811 I=I, LO 
XXCM(I)=CM(1,2) 
CM(1,2)=O 

811 CONTINUE 
GO TO 821 

815 CONTINUE 
IF (ITER. EQ. I)GO TO 816 
GO TO 805 

816 CONTINUE 
DO 819 I=I, LO 
XXCM(I)=CM(I, I) 

819 CONTINUE 
821 CONTINUE 
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.............. Calculating Cm(1,2) using Rhychmyer Algorithm 

IF(J. EQ. I)GO TO 840 
K=2 
GO TO 845 

840 K=1 
845 CONTINUE 

EEI(I, K)=C(l, 2YB(1,2) 
FFI(I, K)-RIIS(I, K)VB(1,2) 

DO 13001-2, LO 
EEI(I, K)=C(1,2)V(B(1,2)-A(1,2)*EEI(I-1, K)) 
IF (FF I (I- 1, K). LT. LOE-74) FF I (I- I, K)=0-0 
FFI(I, K)=(RIIS(I, K)+(A(1,2)*FFI(I-1, K)))/(B(1,2)-(A(1,2) 

& *EEI(I-1, K))) 
1300 CONTINUE 

I=LO 
COUT-co 
CM(1,2)=EEI(I, K)*COUT+FFI(I, K) 

LOLESI=LO-I 
DO 1400 II=I, LOLES I 
I=LO-ll 
CM(U)=EEI(I, K)*CM(1+1,2)+FFI(I, K) 

C WRITE(8, *)'CMC, I, ', 2Y, CM(1,2) 
1400 CONTINUE 

C... --. Storing the highest difference between old and ....... . ...... 
C new Cm Into variable BIG 
C ... the BIG compared with the tolerant differnce TOLR (gli) 

BIG=0.0 
DO 720 I= I, LO 
RESID(I)=(ABS(CM(1,2)-XXCM(l))) 
RES=RESIDO) 
IF (RES. GT. BIG) BIG=RES 

720 CONTINUE 

TOLR=0.0001 

IF (BIG. LT. TOLR)GO TO 730 

2000 CONTINUE 
C ................................................................. 
730 CONTINUE 

DO 2500 I= I, LO 
DO 2502 N=INP 

XCX(I, N, I)=O. 
XCX(I, N, I)=XCX(I, N, 2) 

2502 CONTINUE 

CIM(1,1,1)--o. 
CIM(1,1,1)--CIM(1,1,2) 

2500 CONTINUE 
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C-11 ... ......... Printing""", ", 

M=(JJ*ION)+J-JI 
VOL=M*Q 
VO=LR*(POR+PORI)*AREA 
VR=VOL/VO 
SO=VO*CO 
XR=CM(LF, 2)/CO 
DELTV=DELTT*Q 
S=S+CM(LR, 2)*DELTV 
SI=SI+XCIN*DELTV 
SS=SO-S+Sl 
SR=SS/SO 

C ...................................... VNO & S/SO. FOR LP L ..... WRITE(8,9I)VR, SR 
91 FORMAT(IOX, F8.4, IOX, F8.4) 

C ...................................... VNO & C/COXOR LP L ..... C WRITE(8,89)VRXR 
C 89 FORMAT(IOX, F8.4, IOX, F8.4) 
C ...................................... TIME &C FOR LR .......... C WRITE(8,88)J, CM(LP, 2), CIM(LR, 1,2), XCX(LP, 1,2), XCX(LF, 2,2) 
C 88 FORMAT(5X, 15,4(IOX, F8.4)) 
c WRITE(8,88)J, CM(LR, 2) 
c 88 FORMAT(5X, 15, I OX, F8.4) 
C ...................................... DEPTH &C@ VNO ........ C IF(VR. LT. 2.99. OF-VR. GT. 3.0)GOTO 14 
C WRITE(8, *)VR 
C DO 13 I=I, LR 
C WRITE(8,90)1, CM(1,2), CIM(I, 1,2) 
C 90 FORMAT(5X, 15, I OX, F8.4, I OX, F8.4) 
C 13 CONTINUE 
C 14 CONTINUE 

DO 2700 I= I, LO 
RHS(1,2)=O 
A(1,2)=O 
B(1,2)=O 
C(1,2)=O 
E(1,2)=O 
F(1,2)=O 
G(I, 2)=O 
EEI(I, 2)=O 
FFI(1,2)=O 
CM(1,1)=O 
CM(1,1)=CM(1,2) 
CM(1,2)--O 

2700 CONTINUE 
3000 CONTINUE 

IJ=J-l 
Off time 

IJF=IOFF+IJ 
DO 4000 J=lj+l, IJF 

Calculating of ALFA 
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TIM=IOFF 
DO 2891 N=INP 
T=DE(N)*TIM/RID(N)**2. 
IF(T. GE. O. I)THEN 
ALFA(N)--((FI*Ql**2. )*(I. +(O. I*Bl/((I. -Bl)*T))))*DE(N) 
&*TETA/RID(N)**2 
ELSE 

ALFA(N)=((FI*Ql**2J(I. -Bl))*(O. IM**Bl)*DE(N) 
&*TETA/RID(N)**2 
ENDIF 

C PRINT*, ALFA=', ALFA(N), 'Fl=ý, Fl, 'T=, T, 'Bl=ý, Bl, 'v--, V 
2891 CONTINUE 
C______ -- --- -- - ------ 

DS=0.0 
V=0.0 
DO 2981 1= 1, LO 
CM(U)=CM(1,1) 

2981 CONTINUE 
C --------- loop ---- - ---- - ---------- - ----- - -------- 

DO 2001 ITER=I, ITERA 
DO 771 I=I, LO 
CIM(1,1,2)=O. 

771 CONTINUE 

DO 991 I=I, LO 
DO 992 N=INP 

c ......................... Calculting Cim .................................................... 

XCX(T, N, 2)=((ALFA(N)*DELTT/(2*PORI))*(CM(1,1)+CM(I, 2))+XCX(I, N, I)* 
&(I-(DELTT*ALFA(N)/(2*PORI))))/(I+(ALFA(N)*DELTT/(2*PORI))) 
CIM(1,1,2)=CIM(1,1,2)+XCX(I, N, 2)*P(N) 

992 CONTINUE 
991 CONTINUE 

c------------------------------------------------------------------ 

DO 712 I=I, LO 
XXCM(I)=O. O 

712 CONTINUE 

IF(J. EQ. I)GO TO 1815 
1805 CONTINUE 

DO 1811 I=I, LO 
XXCM(I)=CM(1,2) 
CM(1,2)=O 

1811 CONTINUE 
GO TO 1821 

1815 CONTINUE 
IF (ITE&EQ. I)GO TO 1816 
GO TO 1805 

1816 CONTINUE 
DO 1819 I= I, LO 
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XXCM(I)=CM(1,1) 
1819 CONTINUE 
1821 CONTINUE 

C 
DO 345 I=I, LO 
CM(1,2)--CM(I, IWORI/POR)*(CIM(1,1,2)-CIM(I, 1,1)) 

345 CONTINUE 
C ................................................. BIG=0.0 

DO 721 I= I, L0 
RESID(I)=(ABS(CM(1,2)-XXCM(l))) 
RES=RESID(l) 
IF (RES. GT. BIG) BIG=RES 

721 CONTINUE 

TOLR=0.0001 

IF (BIG. LT. TOLR)GO TO 731 

2001 CONTINUE 
c ................................................................. 731 CONTINUE 

DO 2501 I=I, LO 

DO 2504 N=INP 
XCX(I, N, I)--O. 
XCX(I, N, I)=XCX(I, N, 2) 
XCX(I, N, 2)=O. 

2504 CONTINUE 
CIM(1,1,1)=O. 
CIM(1,1,1)=CIM(1,1,2) 

2501 CONTINUE 

C WRITE(8,88)J, CM(LR, 2), CIM(LP,, 1,2) 

DO 2701 I=I, LO 
RHS(1,2)--O 
A(1,2)--O 
B(1,2)=O 
C(1,2)=O 
E(1,2)=O 
F(1,2)--O 
G(1,2)=O 
EEI(1,2)=O 
FFI(1,2)=O 
CM(l, l)=O 
CM(I, I)=CM(1,2) 
CM(I, 2)=O 

2701 CONTINUE 
4000 CONTINUE 

c 
5000 CONTINUE 

STOP 
END 

END OF THE PROGRAM 
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Appendix C 

c 

c DIFFUSION MODEL 

C Programfor predicting the diffusion of solute out 
C of inert spheres into afaed volume of solution 
C 
c 
c 

PROGRAM DIFFUSION 
REAL MSRMVI; ýMERK I 
DIMENSION RID(400), ARID(6), QN(6), V(400), CM(I 000), XCM(I 000,6), CD(6) 
DOUBLE PRECISION TM 
OPEN(UNIT=8, FILE='resdiff2. dat') 
OPEN(UNIT=9, FILE='resdiff2A') 
WRITE(8,201) 

201 FORMAT(5X, 71ME', 6X, 'Reference', 3X, 'MSR!, 6X, 'MVR!, 7X, 'MER! 
&, 8X, 'AMR!, 6X, 'WAR!, 6X, 'VWR! ) 

C ................. Normal Size Distribution ........................ 
C EM=0.5 
C SEG=0.05 
C DO 500 1=1,3 
C KI=2*1 
C RID(KI-I)=EM+SQRT(2*SEG**2. *ALOG(IJ((1/12. )*SEG* 
C &SQRT(2. *3.1416)))) 
C RID(Kl)--EM-SQRT(2*SEG**2. *ALOG(IJ((1/12. )*SEG* 
C &SQRT(2. *3.1416)))) 
C 500 CONTINUE 

C ................ Log-Normal Size Distribution .................. 
C EM=0.5 
C SEG=1.9 
C DO 505 1=1,3 
C KI=2*1 
C RID(Kl-l)=EXP(-(SEG**2. -EM)+SQRT((SEG**2. -EM)**2. 
C &-EM**2. -2*SEG**2. *ALOG((I/12. )*SEG*(2. *3.1416)**. 5))) 
C RID(KI)=EXP(-(SEG**2. -EM)-SQRT((SEG**2. -EM)**2. 
C &-EM**2. -2*SEG**2. *ALOG((1/12. )*SEG*(2. *3.1416)**. 5))) 
C 505 CONTINUE 
C ................ Assumed Size Distribution 

.................. IR=372 
DE=0.033 
RID(I)=0.68 
RID(2)=0.68 
DO 18 1=3,372 
RID(I)=O. II 
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IS CONTINUE 

c DATA 
C- (Unites: min, mg, cm 

ITIME=500 
VEX=400 
CO=7.55 
PORI=0.45 

C IR-12 
C RID(3)=0.617 
C RID(4)=0.617 
C RID(S)=0.382 
C RID(6)=0.382 
C RID(7)=RID(3) 
C RID(S)=RID(4) 
C RID(9)--RID(5) 
C RID(10)=RID(5) 
C RID(I I)--RID(6) 
C RID(12)--RID(6) 

THE PROGRAM 

DO 13 I=I, IR 
WRITE(9, *)I, RID(l) 

9 FORMAT(21,5X, F8.4) 
13 CONTINUE 

DO 2 K=I, ITIME 
KI=K/60. 
CM(K)=O. O 
SEGMAI=0.0 
SEGMA2=0.0 
VT=o. 
DO I I=I, IR 

V(I)=4. *3.14*RID(I)*RID(I)*RID(])/3. 
VT=VT+V(I) 

I CONTINUE 
BETA=VEX/(PORI*VT) 
VS=VEX+VT 

POR=VEXNS 
FI=VEX/(VEX+VT*PORI) 
MT=PORI*VT*CO 
CE=MT/(VT*PORI+VEX) 
GAMA=VS*(VEX+VT*PORI)/(VEX*VT*PORI) 

QN(I)=3.3668 
QN(2)=6.4098 
QN(3)=9.5113 
QN(4)--12.6319 
QN(S)=15.7607 
QN(6)=18.89 
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TM=0.0 
DO 3 I= I, IR 
SEGMA2-0.0 
DO 100 N- 1,6 

C SEGMAI-SEGNIAI+((6. *BETA*(BETA+I. )*QN(N)**2J(9. +9. *BETA+ 
C &QN(N)* $2. * BETA* *2. )) 
C &*EXP(-(DE*QN(N)**2. *KI/RID(I)**2. ))) 

SEGMA2-SEGMA2+((6. *BETA*(BETA+I. )/(9. +9. *BETA+QN(N)**2. *BETA**2. )). 
&*EXP(-(DE*QN(N)**2. *Kl/(RID(I)**2. )))) 

100 CONTINUE 

C XK-(DE*FIOPORMD(I)**2. )*(SEGMAI/SEGMA2) 
C CATI=CE+(CO-CE)*EXP(-GAMA*XK*Kl) 

CATI=CE+(CO-CE)*SEGMA2 
TMI-(CO-CATI)*V(I)* PORI 
TM-TM+TMI 

3 CONTINUE 
CM(K)=TW(VEX+VT*PORI) 

C-- -- 

c MEAN VALUES 
C ............ THE MEAN SQUARE RADIUS (MSR) 

RS=0.0 
RC=0.0 
AM=0.0 
xs--o. o 
XWA=0.0 
vw--o. o 
DO 4 I=I, IR 
RC=RC+RID(I)*RID(I)*RID(I)*V(I)/VT 
RS=RS+RID(I)*RID(I)*V(I)/VT 
AM=AM+RID(l) 
VW=VW+V(I)*RID(I)NT 

4 CONTINUE 
DO 5 I=I, IR 
XS=XS+(3AUD(l))*(V(I)NT) 
XWA=XWA+V(ly((RID(I)*RID(I))*VT) 

5 CONTINUE 
PRINT*, XS 

MSR=(RS)**0.5 
C ............ THE MEAN AGGREGATE VOLUME RADIUS (MVR) 

MVR=RC/(RS) 

C ............ THE MEAN EXCHANGE AREA RADIUS (MER) 
MER=3/XS 

C ............ THE ARTHIMATIC MEAN RADIUS (AMR) 
AMR=AM/IR 

c ............ WEIGHTED-AVERAGE RADIUS (WAR) 
WAR=I/XWA**(0.5) 

c ............ VOLUME-WEIGHT AVERAGE RADIUS 
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VWR-VW 

cI of m 
ARID(l)-NISR 
ARID(2)-NIVR 
ARID(3)-NIER 
ARID(4)-ANIR 
ARID(5)-WAR 
ARID(6)-VWR 

DO 10 M-1.6 
Vhl-4.03.14*ARID(Nf)*ARID(Nf)*ARID(Nf)13. 
BETA-VEX/(PORIOVT) 
VS-VE-X+VT 
POR-VE-XNS 
FI-VEX/(VEX+VTI PORI) 
MT-PORI*VT*CO 
CE-NITI(VTOPORI+VEX) 
GANfA-VS'(VEX+VT' PORI)'(VEX* VTO PORI) 
SEGNIA 1 -0.0 
SEGMA2-0.0 
DO 101 N-1,6 

C SEGMA I -SEGMA 1 +((6.0 BETA*(BETA+ 1. )* QN(N)* *2J(9. +9. * BETA+ 
C &-QN(N)**2. *BETA'*2. )) 
C LOEXP(-(DE*QN(N)0*2. *KIIAR"ttt)0*2. ))) 

SEGNLA2-SEGNIA2+((6. $BETA*(BETA+I. )'(9. +9. *BETA+QN(N)**2. *BETA**2. )) 
&, *EXP(-(DE$QN(N)*02. *KI/ARID(Nf)*02-))) 

101 CONTINUE 

C XK-(DE"FI*PORVARICOI)**2. )"(SEGNIAI/SEGNLA, 2) 

CATII-CE+(CO-CE)*SEG, NLA, 2 
T'NMI-(CO-CATII)*VT'* PORI 

XCM(K, Nf)-T? *tXt'(VEX+VT* PORI) 

10 CONTINUE 

C WR'TE(VOO)KCýll(K), XCNI(KI), XCI*t(K, 2), XCNI(K. 3)ýXCIýl(K, 4), 
C &XCM(K, 5), XCNf(K, 6) 
C 200 FOMIAT(5)(, 14,7(2XX8.4)) 

2 CONTINUE 
DO 205 K-I, ITINIF, 10 
WRITE(9,206)K. CNI(K), XCNI(K, I).. XChl(K, 2), XC? *I(K, 3), XCNI(K, 4), 
&XCM(K, 5)=Nl(K, 6) 

206 FORNlAT(5Y, 14,7(2XF8.4)) 
205 CONTINUE 

WRITE(9,312) 
312 FOMIATCAW, 2Y, 'Ve, 4Y, *Cc) 

DO 203 1-1,6 
WRIT'E(9, O)ARID(l). VT, CE 

203 COIPMNUE 
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CMT=0.0 
DO 300 K=I, ITIME 
CMT=CMT+CM(K) 
CMA=CMT/ITIME 

300 CONTINUE 

DO 301 1=1,6 
SU=0.0 
SD=0.0 
DO 303 K-I, ITIME 
Sl=(CM(K)-XCM(K, I))**2. 
SU=SU+SI 
S2=(CM(K)-CMA)**2. 
SD=SD+S2 
CD(I)=I. -(SU/SD) 

303 CONTINUE 
301 CONTINUE 

WRITE(9,310) 
3 10 FORMATCCoffi. of Determinatiotf) 

DO 304 1=1,6 
WRITE(9, *)CD(l) 

304 CONTINUE 
STOP 
END 

c END OF THE PROGRAM 
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Appendix D 

c 

c MODEL SIL 
c (Saturated Intermittent Leaching) 

C Programfor simulating solute transport under intermittent 
C leachingfor aggregated media and drained conditions 
C 
c 
c (case 3: for soil aggregates) 
c 

PROGRAM INTERMITTENT SATURATED 

DIMENSION CIM(500,3,2) 
DIMENSION A(500,2), B(500,2), C(500,2) 
DIMENSION E(500,2), F(500,2), G(500,2), RM(500), RIM(500) 
DIMENSION CM(500,2), RHS(500,2), EEI(500,2), FFI(500,2) 
DIMENSION XXCM(500), RESID(500) 
DOUBLE PRECISION CIM, CM, RHS 
DOUBLE PRECISION EEI, FFI, XXCM, RESID 
DOUBLE PRECISION A, B, C, E, F, G 
DOUBLE PRECISION ZZ, PZ, ALFA 

OPEN(UNIT=8, FILE='resullsi. dat') 
c 
C---- DATA - --------- - -- - --- --- ------- - ------ - ----- 

DELTT=1.0 
DELTZ=1.0 
S=0.0 
SI=0.0 

c ...................................................... 

c adsorbed solute 
AS=1618*1000 

c ...................................................... 
c Desorption isotherm 

RU=747 
DK=0.00339 
BC=0.105 
FF=0.95 

c ...................................................... 
c Initial conditations .- 

CO=3.6318 
POR=0.258 
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PORI=0.224 
LO=350 
LR=195 
CIN=0.156 
Q=6.79 * 1000 
AREA=20.428*100 
ITERA-18 
ITIME=200 
ION=25 
IOFF=O 

ICYCLE=ITIME/(ION+IOFF) 
ZZ=DELTZ*DELTZ 
FI=POR/(POR+PORI) 
PZ=POR*DELTZ 

------------ HEADINGS- 

C ...................................... VNO & S/SOXOR LR ..... 
WRITE(8,1 1) 

II FORMAT(5X, VNO', I OX, S/SO') 
C ...................................... VNO & CICOXOR LR 
c WRITE(8,8) 
c8 FORMAT(SX, VNO', I OX, 'C/CO') 
C ...................................... TIME &C FOR L .......... C WRITE(8,9) 
C9 FORMAT(5X, TIME', I OX, 'CONCENT. ) 
C ...................................... DEPTH &C@ VNO ........ 
C WRITE(8,1 0) 
C 10 FORMAT(5X, DEPTIT, IOX, 'Cm', IOX, 'Cim') 

: THEPROGRAM 

IJ=O 
IC=ICYCLE-1 

DO 5000 JJ=O, IC 
JI=JJ*(ION+IOFF) 

DO 3000 J=JI+I, ION+Jl 

C------ Calculating of ALFA &f - ------ -- ---------------------- 
ALFA=0.0008 
NCYCLE=(J/(ION+IOFF)) 
IF (NCYCLE. GT. 1) FF=0.95*(I. -O. 45*NCYCLE) 
IF (FF. LT. 0) FF=0.000000 I 

V=Q/AREA 

DS=22.708 
c PRINT*, ALFANCYCLE 

- ----- -Initial condition ---- - -- - ---- - ------ - --------- 

IF (J. GT. I)GO TO 2990 
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DO 7 I= I, LO 
CM(l, l)--co 
CIM(1,1,1)-CO 

7 CONTINUE 
GO TO 2970 

2990 CONTINUE 
DO 2980 I=I, LO 
CM(1,2)--CM(l, l) 

2980 CONTINUE 
C Itcration loop- 

2970 DO 2000 ITER=I, ITERA 
C ............................. Calculating Cim .............................................. 

DO 777 I=I, LO 
IF (J. EQ. 1) CM(1,2)=CM(l, 1) 
RM(I)=I. +(RU*FF*DK*BC*CM(1,2)**(BC-I)/POR) 
RIM(l)--I. +(RU*(I. FF)*DK*BC*CIM(l, l, 2)**(BC-I)/PORI) 
CIM(1,1,2)--O 

777 CONTINUE 
DO 999 I= I, LO 
IF (J. EQ. I. AND. ITEFLEQ. I)GO TO 553 

CIM(1,1,2)=((ALFA*DELTT/(RIM(I)*2*PORI)) 
&*(CM(1,1)+CM(1,2))+CIM(1,1,1)* 
&(I-(DELTr*ALFA/(RIM(I)*2*PORI))))/(I+(ALFA*DELTT/(RIM(I)*2*PORI))) 
GO TO 999 

553 CIM(1,1,2)=((ALFA*DELTr/(RIM(I)*PORI*2))*2*CM(1,1)+CIM(I, 1,1)* 
&(I. -(DELTT*ALFA/(RIM(I)*2*PORI))))/(I. +(ALFA*DELTT/(RIM(I)*2*PORI))) 

999 CONTINUE 

c--------- 
DO I 1=2, LO 
A(1,2)=(DS*DELTT)/(RM(I)*2*ZZ)+(V*DELTI)/(4*PZ*RM(l)) 
B(1,2)--I. +(DS*DELTI)/(RM(I)*ZZ) 
C(1,2)=(DS*DELTT)/(2*ZZ*RM(l))-(V*DELTT)/(4*PZ*RM(l)) 
E(1,2)=A(1,2) 
F(1,2)=I. -(DS*DELTT)I(RM(I)*ZZ) 
G(1,2)=C(I, 2) 

I CONTINUE 

B(1,2)=V+(POR*DS)ADELTZ 
C(1,2)--(POR*DS)/DELTZ 

C ----------Calculating RHS - --------- -- ----------------------- 
LOLESI=LO-I 
DO I 100 1=2, LOLES I 
IF(J. EQ. I)GO TO 1090 
RHS(1,2)=E(1,2)*CM(1-1,1)+F(1,2)*CM(I, I)+G(1,2)*CM(1+1,1) 
&-(PORI/POR)*(RIM(I)/RM(l))*(CIM(1,1,2)-CIM(1,1,1)) 
GO TO 1100 

1090 RHS(T, J)--CO 
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I 100 CONTINUE 

C ....... . .................. Boundary conditions ......................................... 

IF (J-I. NE. O)GO TO 45 
RIIS(1,1)=V*CIN 
GO TO 47 

45 CONTINUE 
RIIS(1,2)=V*CIN 

47 IF (J-I. NE. O)GO TO 48 
RIIS(LO, I)=CO 
GO TO 49 

48 COUT=CO 

RIIS(LO, 2)=E(LO, 2)*CM(LO-1,1)+F(LO, 2)*CM(LO, I)+G(LO, 2)*COUT 
&-(PORI/POR)*(RIM(IYW(l))*(CIM(LO, 1,2)-CIM(LO, 1,1)) 

49 CONTINUE 

C .......... Storing the old Cm(1,2) In XXCAI(l) and Calculate new 
C Cm(1,2) 

DO 711 I= l, LO 
XXCM(I)=O. O 

711 CONTINUE 

IF(J. EQ. I)GO TO 815 
805 CONTINUE 

DO 811 I=I, LO 
XXCM(I)=CM(1,2) 
CM(1,2)=O 

811 CONTINUE 
GO TO 821 

815 CONTINUE 
IF (ITEF-EQ. I)GO TO 816 
GO TO 805 

816 CONTINUE 
DO 819 I= I, LO 
XXCM(I)--CM(1,1) 

819 CONTINUE 
821 CONTINUE 

C .............. Calculating Cm(1,2) using Rhychmyer Algorithm 

IF(J. EQ. I)GO TO 840 
K=2 
GO TO 845 

840 K=I 
845 CONTINUE 

c ................................................. EEI(I, K)--C(1,2)/B(1,2) 
FFI(I, K)--RHS(I, K)/B(1,2) 

DO 1300 1=2, LO 
EEI(I, K)=C(1,2)/(B(1,2)-A(1,2)*EEI(I-1, K)) 
IF (FFI(I-1, K). LT. I. OE-74) FFI(I-1, K)=O. O 
FFI(I, K)=(RHS(I, K)+(A(1,2)*FFI(I-1, K)))/(B(1,2)-(A(1,2) 

& *EEI(I-1, K))) 
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1300 CONTINUE 

I=LO 
COUT=CO 
CM(1,2)=EEI(I, K)*COUT+FFI(I, K) 

LOLESI=LO-I 
DO 1400 11=1, LOLESI 
I=LO-lI 
CM(1,2)=EEI(I, K)*CM(1+1,2)+FFI(T, K) 

C WRITE(8, *)CMC, I:, 2)', CM(1,2) 
1400 CONTINUE 

C ...... _Storing the highest difference between old and ............... C new Cm into variable BIG 
C ... the BIG compared with the tolerant differnce TOLR (g/1) 

BIG=0.0 
DO 720 I= I, LO 
RESID(I)=(ABS(CM(1,2)-Y. XCM(l))) 
RES=RESID(l) 
IF (RES. GT. BIG) BIG=RES 

720 CONTINUE 

TOLR=0.0001 

IF (BIG. LT. TOLR)GO TO 730 

2000 CONTINUE 
C ................................................................. 730 CONTINUE 

DO 2500 I=I, LO 
CIM(1,1,1)--o 

CIM(I, 1,1 )=CIM(I, 1,2) 

2500 CONTINUE 

rintin g"I'll off"Iff"Ift, of 

M=(JJ*ION)+J-JI 
VOL=M*Q 
VO=LR*(POR+PORI)*AREA 
VR=VOUVO 
SO=(VO*CO)+AS 
XR=CM(Llt, 2yCO 
DELTV=DELTT*Q 
S=S+CM(LF, 2)*DELTV 
SI=SI+CIN*DELTV 
SS=SO-S+Sl 
SR=SS/SO 

c ...................................... VNO & S/sO. FOR LR . ..... 
c WRITE(8,91)VRSR 
c 91 FORMAT(IOX, F8.4, IOX, F8.4) 
C ...................................... VNO & C/CO. FOR LR 
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c WRITE(8,89)VR. XR 
c 89FORMAT(IOX, F8.4, IOX, F8.4) 
C ...................................... TIME &C FOR LR L ......... c 
C WRITE(8,88)J, CM(LR, 2) 
C 88 FORMAT(5X, I5, I0X, F8.4, I0X, F8.4) 
C ...................................... DEPTH &C@ VNO 

IF(VP-LT. O. 99. OR. VF-GT. I. O)GOTO 14 
WRITE(S, *)VR 
DO 13 I-1, LR 
WRITE(8,90)1, CM(1,2), CIM(1,1,2) 

90 FORMAT(5X, I5, I0X, F8.4, I0X, F8.4) 
13 CONTINUE 
14 CONTINUE 

c .............. 0 ...................................... of""ll If"" 

DO 2700 1-1, LO 
RHS(1,2)=O 
A(1,2)--O 
B(1,2)--O 
C(1,2)--O 
E(1,2)=O 
F(1,2)=O 
G(1,2)--O 
EEI(1,2)=O 
FFI(1,2)=O 
CM(1,1)=O 
CM(l, l)--CM(U) 
CM(1,2)=O 

2700 CONTINUE 
3000 CONTINUE 

IJ=J-l 

C Off time 

IJF=IOFF+IJ 
DO 4000 J=IJ+I, IJF 

C Calculating of ALFA 

DS=0.0 
V=0.0 
FF=0.95 

DO 2981 I=I, LO 
CM(1,2)--CM(l, l) 

2981 CONTINUE 
Iteration loop - ---- - --- -- ------------ 

2971 DO 2001 ITER= I, ITERA 
DO 771 I=I, LO 
RM(l)--I. +(RU*FF*DK*BC*CM(1,2)**(BC-I)/POR) 
RIM(l)--I. +(RU*(I-FF)*DK*BC*CIM(l, 1,2)**(BC-I)/PORI) 
CIM(1,1,2)=O 

771 CONTINUE 
c ......................... Calculting Cim .................................................... 

DO 991 I=I, LO 
CIM(1,1,2)=((ALFA*DELTT/(RIM(I)*2*PORI)) 
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&*(CM(1,1)+CM(U))+CIM(1,1,1)* 
&(I-(DELTT*ALFA/(RIM(I)*2*PORI))))/(I+(ALFA*DELTT/(RIM(I)*2*PORI))) 

991 CONTINUE 

C 

DO 712 I=I, LO 
XXCM(I)=O. O 

712 CONTINUE 

IF(J. EQ. I)GO TO IS 15 
1805 CONTINUE 

DO 1811 I-I, L0 
XXCM(I)--CM(1,2) 
CM(1,2)=O 

1811 CONTINUE 
GO TO 1821 

1815 CONTINUE 
IF (ITER. EQ. I)GO TO 1816 
GO TO 1805 

1816 CONTINUE 
DO 1819 I=I, LO 
XXCM(I)=CM(Ill) 

1819 CONTINUE 
1821 CONTINUE 

C- -- ------ - ---- 
DO 345 I=I, LO 
CM(1,2)=CM(l, l)-(PORI*RIM(I)/(RM(I)*POR))*(CIM(1,1,2)-CIM(I, 1,1)) 

345 CONTINUE 
C ................................................. 

BIG=0.0 
DO 721 I=I, LO 
RESID(I)=(ABS(CM(1,2)-XXCM(l))) 
RES=RESID(l) 
IF (RES. GT. BIG) BIG=RES 

721 CONTINUE 

TOLR=0.0001 

IF (BIG. LT. TOLR)GO TO 731 

2001 CONTINUE 
c ................................................................. 
731 CONTINUE 

DO 2501 I= I, L0 
CIM(1,1,1)=O 

CIM(1,1,1)=CIM(1,1,2) 

2501 CONTINUE 

C WRIT'E(8,88)J, CM(LP, 2), CIM(LP, 1,2) 
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DO 27011- UO 
RHS(1,2)=O 
A(1,2)=O 
B(1,2)=O 
C(1,2)=O 
E(U)--O 
F(1,2)=O 
G(1,2)=O 
EEI(1,2)=O 
FFI(1,2)=O 
CM(1,1)=O 
CM(I, I)--CM(1,2) 
CM(1,2)=O 

2701 CONTINUE 
4000 CONTINUE 

5000 CONTINUE 

STOP 
END 

c- END OF THE PROGRAM--- 
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Appendix E 

C 
MODEL DIL 

C (urainea intermittent Leacnium 
C 
C Programfor simulating solute transport under intermittent 
C leachingfor aggregated media and drained conditions 
C 
c 

C 

PROGRAM INTERMITTENT UNSATURATED 

DIMENSION CIM(500,3,2) 
DIMENSION A(500,2), B(500,2), C(500,2) 
DIMENSION E(500,2), F(500,2), G(500,2), RM(500), RIM(500) 
DIMENSION CM(500,2), RHS(500,2), EE I (500,2), FF 1 (500,2) 
DIMENSION XXCM(500), RESID(500), ALFA(500), ALFAO(10) 
DOUBLE PRECISION CIM, CM, RHS 
DOUBLE PRECISION EEI, FFIYXCM, RESID 
DOUBLE PRECISION A, B, C, E, F, G 
DOUBLE PRECISION ZZ, PZ 

OPEN(UNIT=8, FILE='resunlsi. daV) 
c 
C------- DATA ----- -- -- -- ---------- - 

DELTT=1.0 
DELTZ=1.0 
S=0.0 
SI=0.0 

c ...................................................... 
c Desorption isotherm 

RU=708 
DK=O. 
BC=I. 
FF=0.95 

c ...................................................... 
c Initial conditations 

Q=3.542* 1000 
CO=O. 
CIMO=7.675 
AREA=16.982*100 
POR=0.462 
PORI=0.265 
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LO=500 
LR=180 
CIN=O. 

ALFAO(O)=O. O II 
ALFAO(I)--0.02 
ALFAO(2)=0.03 

ICYCLE=3 
ITERA=18 
IOFF=60 
V=Q/AREA 
DS=O. 
ION=LR/(V/POR) 

ITIME=ICYCLE*(ION+IOFF) 
ZZ=DELTZ*DELTZ 
FI=POR/(POR+PORI) 
PZ=POR*DELTZ 

PRINT*, "ION=", ION, " IOFF=", IOFF, " ICYCLE=", ICYCLE, 
&" ITIME=", ITIME, "ITERA", ITERA, " V", V, " Q", Q, 
&" AREA", AREA, " POR", POR 

----------- HEADINGS---- 

C ...................................... VNO & S/SO. FOR LR ..... 
c WRITE(8,1 1) 
cII FORMAT(5X, 'VNO', I OX, 'S/SO') 
C ...................................... VNO & C/CO. FOR LR ..... 

WRITE(8,8) 
8 FORMAT(5X, 'VNO', IOX, 'C/CO') 

C ...................................... TIME &C FOR L .......... C WRITE(8,9) 
C9 FORMAT(5X, 'TIME`, I OX, 'CONCENT. ') 
C ...................................... DEPTH &C@ VNO ........ 
c WRITE(8,1 0) 
c 10 FORMAT(5X, 'DEPTH', I OX, 'Cm', I OX, 'Cim') 

c THEPROGRAM= 
U=0 
IC=ICYCLE-1 

DO 5000 JJ=O, IC 
JI=JJ*(ION+IOFF) 

DO 3 000 J=J I+1, ION+J I 
PRINT*, "IC", IC, " J", J 

-ALFA &f estimation -- - -- - ------------------------------ 
NCYCLE=(J/(ION+IOFF)) 
IF (NCYCLE. GT. 1) FF=0.95*(I. -O. 45*NCYCLE) 



2Z3- 

IF (FF. LT. 0) FF--0.000000 I 

DO 110 I=I, LO 
ALFA(I)=ALFAO(NCYCLE) 

I 10 CONTINUE 

C 
C Initial condition 

J2=J-J I 

IF (NCYCLE. GT. 0) GOTO 444 

IF(J2. GT. I)GOTO333 
DO III I=I, LR 
CM(1,1)=CO 
CIM(1,1,1)=CIMO 

III CONTINUE 

DO 222 I=LR+1, LO 
CM(l, l)--Co 
CIM(T, 1,1)--co 

222 CONTINUE 
333 CONTINUE 

DO 2980 I= I, LO 
CM(1,2)=CM(l, l) 

2980 CONTINUE 
GOTO 1010 

C ........................................ 
444 IF (J2. GT. I) GOTO 666 

DO 555 1=1, LR 
CM(1,1)=CO 

555 CONTINUE 

DO 888 I=LR+I, LO 
CM(l, l)--Co 
CIM(1,1,1)--co 

888 CONTINUE 
666 CONTINUE 

DO 2982 I=I, LO 
CM(U)=CM(1,1) 

2982 CONTINUE 

1010 CONTINUE 
C ....................................................................... 

IA=J2*VIPOR 
DO 776 I=I, IA 
ALFA(l)--O. 

776 CONTINUE 
C__ ----- -Iteration loop-- 

2970 DO 2000 ITER=I, ITERA 
DO 777 I= I, LO 
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IF (J2. EQ. 1) CM(I, 2)=CNl(I, I) 
MI(l)-I. +(RU*FF*DK*BC*CM(1,2)**(BC-I)/POR) 
RIM(l)-I. +(RU*(I-FF)*DK*BC*CIM(1,1,2)**(BC-I)/PORI) 
CINI(1,1,2)=O 

777 CONTINUE 
DO 999 I-I, L0 
IF (J. EQ. I. AND. ITEF-EQ. I)GO TO 553 

C ............................. Calculating Cim .............................................. 

CIM(l, 1,2)=((ALFA(I)*DELTrl(RIM(I)*2* PORI)) 
&*(CM(1,1)+CM(1,2))+CIM(1,1,1)* 
&(I -(DELTT*ALFA(IY(RIM(I)*2* PORI)))) 
&, /(I+(ALFA(I)*DELI'r/(RIM(I)*2*PORI))) 
GO TO 998 

553 CIM(1,1,2)=((ALFA(I)*DELTr/(RIM(I)*PORI*2))*2*CM(1,1)+CIM(1,1,1)* 
&, (I. -(DELTT*ALFA(I)/(RIM(I)*2*PORI))))/(I. +(ALFA(l) 
&*DELTT/(RIM(I)*2*PORI))) 

998 CONTINUE 
999 CONTINUE 

C-- --- 

DO I 1=2, LO 
A(1,2)=(DS*DELTTY(RM(I)*2*ZZ)+(V*DELTF)/(4*PZ*RM(l)) 
B(1,2)=I. +(DS*DELTTY(RM(l)*ZZ) 
C(1,2)=(DS*DELTT)/(2*ZZ*RM(l))-(V*DELM(4*PZ*RM(l)) 
E(1,2)--A(1,2) 
F(1,2)--l. -(DS*DELM(RM(I)*ZZ) 
G(1ý2)--C(1,2) 

I CONTINUE 

C-CONTSTANT FLUX CONDITION FOR UPPER BOUNDARY 
B(1,2)=V+(POR*DS)/DELT-L 
C(1,2)=(POR*DS)/DELTZ 

C Calculating RHS-- 

LOLESI=LO-l 
DO I 100 1=2, LOLES I 
IF(J. EQ. I)GO TO 1090 
RHS(1,2)--E(1,2)*CM(1-1,1)+F(U)*CM(1,1)+G(1,2)*CM(1+1,1) 
&-(PORI/POR)*(RIM(I)/RM(l))*(CIM(1,1,2)-CIM(1,1,1)) 
GO TO 1100 

1090 RHS(I, J)=CO 

1100 CONTME 
C ........................... Boundary conditions ......................................... 

IF (J-I. NE. O)GO TO 45 
RHS(l, l)--V*CIN 
GO TO 47 

45 CONTINUE 
RHS(1,2)--V*CIN 
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47 IF (J-I. NE. O)GO TO 48 
RIIS(LO, I)-CO 
GO TO 49 

48 COUT-CO 

RIIS(LO, 2)-E(LO, 2)*CM(LO-1,1)+F(LO, 2)*CM(LO, I)+G(LO, 2)*COUT 
&-(PORIWR)*(RINI(IMI(I))*(CIM(LO, 1,2)-CIM(LO, 1,1)) 

49 CONTINUE 
C .......... Storing the old Cm(1,2) In XXCAI(I) and Calculate new 
c Cm(1,2) 

DO 711 1-1, LO 
XXCM(I)-O. O 

711 CONTINUE 

IF(J. EQ. I)GOT0815 
805 CONTINUE 

DO 811 I-I, L0 
XXCM(I)=CM(1,2) 
CM(1,2)--O 

811 CONTINUE 
GO TO 821 

815 CONTINUE 
IF (ITER. EQ. I)GO TO 8 16 
GO TO 805 

816 CONTINUE 
DO 819 I= I, LO 
XXCM(I)=CM(1,1) 

819 CONTINUE 
821 CONTINUE 

C .............. Calculating Cm(1,2) using Rhychmyer Algorithm 

IF(J. EQ. I)GO TO 840 
K=2 
GO TO 845 

840 K=1 
845 CONTINUE 

C ................................................. EEI(I, K)--C(1,2)/B(1,2) 
FFI(I, K)--RHS(I, K)/B(1,2) 

DO 1300 1=2, LO 
EEI(I, K)--C(1,2)/(B(1,2)-A(1,2)*EEI(I-1, K)) 
IF (FF I (I- 1, K). LT. LOE-74) FF I (I- I, K)=0.0 
FFI(I, K)=(RHS(I, K)+(A(1,2)*FFI(I-1, K)))/(B(1,2)-(A(I, 2) 

& *EEI(I-1, K))) 
1300 CONTINUE 

I=LO 
COUT=CO 
CM(1,2)--EEI(I, K)*COUT+FFI(I, K) 

LOLESI=LO-l 
DO 1400 11=1, LOLESI 
I=LO-ll 
CM(1,2)=EEI(I, K)*CM(1+1,2)+FFI(I, K) 
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C WRITE(8, *)'CM(', I, ', 2)', CM(1,2) 
1400 CONTINUE 

C ...... -. -Storing the highest difference between old and ............... 
C new Cm into variable BIG 
C .... the BIG compared with the tolerant differnce TOLR (g/1) 

BIG=0.0 
DO 720 I=I, LO 
RESID(I)=(ABS(CM(1,2)-XXCM(l))) 
RES=RESID(l) 
IF (RES. GT. BIG) BIG=RES 

720 CONTINUE 

TOLR=0.0001 

IF (BIG. LT. TOLR)GO TO 730 

2000 CONTINUE 

C ................................................................. 730 CONTINUE 
DO 2500 I= I, LO 
CIM(1,1,1)=O 

CIM(1,1,1)=CIM(1,1,2) 

2500 CONTINUE 

coffillooll to Iflooltill .............. . ................ 1119111#11 

M=(JJ*ION)+J-JI 
VOL=M*Q 
VO=LR*(POR)*AREA 
VR=VOLNO 
SO=LR*PORI*AREA*CIMO 
XR=CM(LR, 2YCO 
DELTV=DELTr*Q 
S=S+CM(Ll; ý2)*DELTV 
SI=SI+CIN*DELTV 
SS=SO-S+Si 
SR=SS/SO 

c PRINT*, "SO=", SO 
c ...................................... VNO & S/SO. FOR LR 
c WRITE(8,91)VFCM(LR, 2), CIM(LF, 1,2) 

WRITE(8,91)VF, SR 
91 FORMAT(I0X, F8.4,2(l0X, F8.4)) 

C ...................................... VNO & C/CO. FOR LR 
c WRITE(8,89)VRXR 
c 89 FORMAT(IOX, F8.4, I OX, F8.4) 
C ...................................... TIME &C FOR LR .......... c 

c WRITE(8,88)J, CM(LR, 2), CIM(LR, 1,2) 
c 88 FORMAT(5X, 15, IOX, F8.4, IOX, F8.4) 
c WRITE(8,88)J, CM(LF, 2) 
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c 88 FORMAT(5X, 15, I OX, F8.4) 
C ...................................... DEPTH &C@ VNO 
c IF(VF-LTI. 9. OP-VR. GT. 3.0)GOTO 14 
c WRITE(8, *)VR 
c DO 13 I=I, LO 
c WRITE(8,90)1, CM(1,2), CIM(1,1,2) 
c 90 FORMAT(5X, 15, IOX, F8.4, IOX, F8.4) 
c 13 CONTINUE 

14 CONTINUE 
c .............................. to ...... 

DO 2700 I= l, LO 
RHS(1,2)--O 
A(1,2)=O 
B(1,2)=O 
C(1,2)=O 
E(1,2)=O 
F(1,2)=O 
G(1,2)=O 
EEI(1,2)=O 
FFI(1,2)=O 
CM(1,1)=O 
CM(1,1)=CM(1,2) 
CM(1,2)=O 

2700 CONTINUE 
3000 CONTINUE 
c 

5000 CONTfNUE 
STOP 
END 

END OF THE PROGRAM 
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Appendix F 

How to Specify 
Denstone Inert Support Products 
A complete set of certified specs Is available on request for any product. 

TypicalChemical 
Composition DS78alls D57Pellets D80 Balls D2000 Balls D95 Balls D99 Balls 

S102 67.40% 67.40% 66.10% 70.00% 0.20% max 0.20% max 
A1203 24.10% 24.10% 26.20% 22.00% 94.5% min 99.00% min 
TiO3 1.18% 1.18% 1.25% 0.90% - 0.30% max 
Cao 0.39% 0.39% 0.61% 0.20% 4.5% max - 
MqO 051% 0.51% 0.25% 0.44% - - 
K20 3.28% 3.28% 2.43% 2.97% - 0.35% max 
Na2O 1.18% 1.18% 2. Sl% 1.61% 0.30% max - 

Leachable Iron . 10/0 (. 1% (0.005% (0.011VO - 
Typical 

Physical Properties D578alls D57Pellets D80 Balls D2000 Balls D95 Balls D99 Balls 
Free space (%) 400/b - 40% 400, b 40% 40% 

Particle density (gryVcc) 2.4 2.4 2.4 2.4 2.8 2.8 
Mohs'hardness 6.5 6.5 6.5 6.5 8 min 8 min 

Specific heat 
100 OC (callgm) 0.25 0.25 0.25 0.25 0.34 

Waterabsorption (0.4% (0.4% (0.3% (3% (7% (7% 
Apparent porosity (1.0% (11.0% (0.75% (80/0 (20% (20% 

Crush strength - V4 1201b (55kg) - 200lb(91kg) 250lb(Il5kg) 130lb(60kg) 1651b (75kg) min 
Crush strength - 1/2 3701b(170kg) 

- 
- 400lb(182kg) 5001b (225kg) 550lb(250kg) 4401bL200kq)min 

Crush strength - V41 950lb(430kg) - 1150lb(520kg) 660lb(300kg) 550lb(250kg)min 
Crush strength -V 1422L L635kg) - 18001b (815kg) 9901b (450kq) 1100lb( kg)min 

Max. Operating Temp. 1800*F(968*C) 1800"F(9680C) 1800"F(9680C) 1800"F(968*C) 2730"F(1500*C) 3000*F(16500C) 

Approximate 
Packing Density 

1450kglm3 
87-93lb/cf 

1450kg/M3 
87-93 lb/cl 

1450kgIM3 
87-93 lb1cf 

1400kgIM3 
85-91 lb/cf 

1700kg/m3 
97-116 lb/cf 

1700kg/m3 
97-116 lb/cl 

SIZESAVAILABLE 

D5713alls 
(in. ) (mm) 

D57Pellets 
(in. ) (mm) 

D80 Balls 
(in. ) (mm) 

D2000 Balls 
(in. ) (mm) 

D95 Balls 
(in. ) (mm) 

D99 Balls 
(in. ) (mm) 

1/8 03 1/8 x 1/8 OU03 1/8 03 1/8 03 118 03 1/8 03 
1/4 06 3/16 x 1/4 04 x 06 114 06 1/4 06 1/4 06 1/4 06 
3/8 10 114 x 3/8 06xlO 3/8 10 3/8 10 318 10 318 10 
1/2 13 3/8 x 1/2 10 x 13 1/2 13 1/2 13 1/2 13 1/2 13 
5/8 16 1/2 x 5/8 13 x 16 3/4 19 5/8 16 3/4 19 3/4 19 
314 19 518 x 314 16 x 19 1 25 314 19 1 25 1 25 
1 25 3/4 x 7/8 19x22 - 25 1 1-1/2 38 1-1/2 38 
1-1/4 32 718 0-114 22 x 32 - 

_ 
1-1/4 32 2 50 2 50 

1-1/2 38 - - 1-1/2 38 
2 50 - 2 50 


