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Abstract

The main motivation for conducting this research is the continued development of multilayered

mechanical biomedical sensors. Biosensors which make use of resonant surface acoustic waves

are a contender for Point-of-Care diagnostic technology. An area of interest for this research

group, is in microsystem devices that make use of the cyclic degeneracy of cylindrical geometry.

Ideally, these modes would remain invariant in the angular axis of the polar form geometry, in

reality this isotropy can not be guaranteed. In multilayered biosensor design, various properties of

the material and geometry, will introduce anisotropic behaviour. The main focus of this research

is the effect of these properties on this variation of the wave modes with, the propagation angle

in a material cut. A minor focus is placed on the effect of the various attenuation mechanisms,

due to these physical properties, on the quality of the wave resonance.

A uniform numerical framework is developed, by making use of the multidimensional

complex structure of the functions, capable of solving all the problems presented. The numerical

method, which is well-suited to fixed velocity searches, is combined with optimisation methods to

improve efficiency with other search variables. For biosensor application, the common attenuated

mechanisms are modelled, these include bulk leaky, viscoelastic, fluid and thermoelastic losses.

The effect of these on the annular variation, in addition to the stiffness anisotropic and waveguide

dispersions, is investigated. The fixed velocity solutions are computed for several propagation

angles, for both novel and currently feasible biosensor combinations. The non-fixed velocity

versions of these surfaces are computed for use in shaped annular transducer designs. For the

material combinations of interest for sensor application, the different sources of attenuation are

compared using a Q-factor approach.

The research conducted in this thesis, provides insight into the material properties that alter

the variation of wave modes with angle. Design and research recommendations for mechanical

biosensors, have been made based on the cyclic variation and attenuation investigations.
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Chapter 1

Introduction

1.1 Motivation

Mechanical biosensors are one of the few types of biosensor that have the potential for rapid

detection of biology molecules for portable devices. Wave based mechanical biosensors use the

change in properties of a propagating waveform, to detect the presence of the biological analyte.

This work is focused on a group of wave types known as surface acoustic waves (SAWs), which

are highly localised at the surface of a material. A large number of biosensors that make use of

SAWs, typically only in planar geometries easily represented by Cartesian coordinates. In this

work, biosensors that make use of cylindrical geometries are of interest, along with the unique

properties that these devices possess.

1.1.1 Surface acoustic waveforms

Mechanical resonant wave biosensors, use the shift in resonance frequency, caused by the mass

increase at the binding site of a biosensor. The shift in the resonance frequency of the device

is greater for a lower active mass, when the resonator mass is closer to the loaded substance.

Therefore, the higher the frequency of the propagating waveform, the lower the wavelength

and generalised mass that takes part in the active dynamics. Bulk acoustic waves (BAWs) that

propagate through-the-thickness would require small thicknesses, approaching the microscale,

to achieve higher frequencies. SAWs are localised at the surface of a material, therefore these

waveforms can naturally operate at higher frequencies, without impacting cost or reliability. The

requirement for high frequencies puts biosensor technology within the field of micro-electro-

mechanical systems (MEMS).
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Many different types of SAWs exist in elastic materials of interest, they exist in different

types of crystals and with other physical mechanisms, in addition to elasticity. Two well known

isotropic SAWs are the Rayleigh wave, which can exist in single materials and the Love wave,

which exists in layered mediums. These waveforms will be central to the research conducted in

this thesis and both have been used in the development of SAW biosensors.

1.1.2 Cylindrical geometry and degeneracy

A sensor designed on cylindrical geometry could have many desirable properties, including strong

common mode rejection and high resonator Q-factor. An attractive physical phenomenon of polar

geometry is the ability to propagate cyclic modes [4–6] that have the same natural frequencies

called degenerate modes. The structure of these modes is similar to the orthogonal trigonometric

functions sin(nθ) and cos(nθ), where n is a non-zero integer. In fact, these degenerate modes

are seperable functions, that take the forms F (r, z)cos(nθ) and F (r, z)sin(nθ). These functions

propagate in the angular (θ) axis of a polar coordinate system, see Figure 1.1.

(a) Cartesian (b) Polar

Fig. 1.1 Example of orthogonal trigonometric functions sin3θ and cos3θ in (a) Cartesian and (b)

positive part of the polar form coordinates. Note the orthogonality of the functions at the marked

points π
6

and 2π
3

.

The orthogonality of these degenerate modes, make them useful for a mechanical sensing

mechanism under mass loading. Illustrated in Figure 1.1b, this orthogonality is marked at
π
6

and 2π
3

, mass loading at one of these sites will alter one of the modes. The mass loading

causes a shift in the resonant frequency of one of the degenerate modes, causing a split from

a single resonant frequency peak. This mechanism is called degeneracy breaking, this means

that the sensing and reference signals are embedded into a single device. The major advantage
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of this design over traditional mechanical biosensors, such as the dual delay-line, come as a

result of the compactness and single material cut. Theoretically, the degenerate modes within

these devices are equally affected by change in fields such as temperature or stress. Therefore,

degenerate biosensors are more robust in real world applications in which error due to mechanical

components can impact the reliability of the sensors.

The propagation of degenerate modes is highly dependent on the cyclic symmetry of the

device, in which the circumferentially invariation isotropic case has infinite symmetry. For this

isotropic case, the cyclic modes may be represented as the seperable functions of the coordinate

system, and therefore are solvable. Unfortunately, the common materials used in biosensing

technology are anisotropic in their material tensors, primarily the stiffness and piezoelectric

coupling. These anisotropic effects are no longer seperable in the polar form coordinates, which

will disturb the degeneracy of the cyclic modes. Provided a symmetry structure does exist, then

cyclic degenerate modes may be tailored and optimised to that symmetry. A major theme of this

work is the study of the impact of anisotropy, due to the stiffness tensor, on the cyclic symmetry

of layered solutions. In addition, the study of the interaction of anisotropy with waveguide

dispersion, along with other material properties and sources of energy loss.

1.2 Review of Biosensor Technology

A primary objective in Point-of-Care (PoC) diagnostic research is the development of MEMS

biosensors that are low cost, highly sensitive and highly specific to the desired analyte [1].

Biosensing research is a well established and funded research field, due to the large global market

value of the technology [2, 3], along with predicted future impact. The research area is not

limited to any one school of expertise but is a combination of biological, chemical, mechanical

and electrical engineering fields. Due to this, many types of biosensors exist, based on different

sensing mechanisms and shifts in physical properties, which has lead to a vast amount of research

and review papers on the subject.

The following is a brief summarisation of the review papers for biosensing technology.

Several reviews exist for a general overview of different biosensing technologies [7–13], for this

work, the interest is placed on label-free sensors [14–18], particularly sensors based on mass

loading of an analyte, discussed in section 1.2.1. This research is focused on acoustic biosensors

[19–26] with particular interest placed on SAW devices [27–31], other common acoustic types

include shear bulk [32–34] and resonant cantilever sensors [35–37]. For completeness, review

papers also exist for radiation force mechanisms, which make use of acoustic wave techniques for
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sensing [38, 39]. Additionally, graphene based sensor technology [40] is becoming increasingly

popular due to the unique properties of graphene. Particularly, for mass loading sensors, as they

take advantage of the one atom thick crystal lattice for large detectible resonant frequency shifts

with analyte binding.

1.2.1 Mass loading biosensors

In this section, a brief summary of the mass loading biosensor is presented, for an in-depth

analysis of the literature see the relevant review papers. Mass loading biosensors, of interest,

detect some change in a mechanical property caused by the added mass of an analyte, such as

deflection or a wave property. Focus is placed on biosensors that make use of shifts in resonant

frequency, using a selected normal mode, excited by reflectors. The waveforms within these

devices are excited using piezoelectric effects of the material, generated by using interdigital

transducers (IDTs) on the surface of the material. These IDTs can also be used to detect the shifts

in wave property, due to the linear piezoelectric mechanism back from mechanical to electrical.

Other coupling mechanisms may be used to excite waveforms in multiferroic materials such as

magnetic coupling, the focus in this thesis is solely on the piezoelectric behaviour.

Focusing on biosensors that make use of mechanical waves, the first type of mass loading

biosensors in this discussion uses thickness shear mode (TSM). This waveform propagates with

a displacement that reaches through-the-thickness of the material from the top to the bottom

of a plate. These biosensors are known as film bulk acoustic resonators (FBAR); among TSM

biosensors the most popular design is the quartz microbalance (QCM) which has been well

developed. These devices are also known as thin FBAR, due to the requirement of low thickness

to decrease the generalised mass and increase the senstivity of the resonant frequency shift. This

requirement is also the major limitation of this type of biosensor, design of these devices are a

trade off between high frequency and reliability.

SAW based biosensors make use of propagating surface localised waveforms, which decay

into the bulk of the material. Due to this decay, these devices may operate at high frequencies

with larger thicknesses than FBAR type biosensors. In single isotropic materials the Rayleigh

waveform comes into existence due to the stress-free surface. This SAW has an epiltical dis-

placement form, which is a combination of out-of-plane and in-plane longitudinal displacements.

In the layered isotropic half-space, the Love wave can come into existence, this is dependent

on the relative bulk wave velocities of the layer and substrate, discussed further in Chapter 2.

Unlike the Rayleigh wave, these Love waves have a pure in-plane shear displacement pattern.
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Love waves are perceived to be superior due to the low fluid loss of the shear mode. In the case

of the Rayleigh wave, the out-of-plane displacements couple to generate bulk propagating fluid

pressure waves. These views are based off traditional biosensor designs, and have not been well

quantified for many relevant cases. Plane wave biosensors use an input and output set of IDTs

with an analyte binding site between the IDTs, a second reference device may be used along

with the first, in a dual delay-line configuration.

1.2.2 Materials for acoustic wave biosensors

Throughout this work, the focus is placed on pizeoelectric materials; these operate by taking

advantage of the coupling between mechanical and electrical properties to excite and detect

the waveforms. The multilayered structures must contain a pizeoelectric material with the

desired piezoelectric coupling components to generate propagating SAWs. The type, cut and

manufacturing process of the material can all effect the Q-factor of the resulting MEMS device by

acoustic loss mechanisms. By systematic sampling of the literature, a review of commonly used

materials in acoustic biosensors is presented, for both single and multilayered configurations.

Quartz (SiO2) is a piezoelectric trigonal crystal, in α-quartz configuration, it is popular for

electronic applications due to the high performance versus inexpense of the material. The most

common mechanical biosensor design is the QCM which is one of the most well studied acoustic

biosensors, see review papers [41–47]. The device makes use of the TSM, due to this choice of

waveform the limiting factor for sensitivity is thickness of the quartz. Typically the resonance

frequency of these sensors operate between 10 to 50 MHz, it is desirable to push the frequency

higher for increased sensitivity requiring lower thicknesses. Designing these devices becomes an

optimisation problem between the sensitivity and thickness, thin devices can become too fragile

for real world application. Quartz is a well researched material in standard cut cases which are

of interest for QCM devices. The most commonly used cut for generating shear waves is the

AT-cut [48, 49] which is a 35°rotation from the Y-cut [50, 51] around the X-axis [52]. ST-cut is

another common cut of quartz typically used for layered acoustic biosensors.

Zinc oxide (ZnO) is a common piezoelectric crystal for use in several different types of

biosensors [53] with an 6mm hexagonal structure. ZnO is used in electrochemical [54, 55],

optical [56] and acoustic [57] type biosensors. ZnO has been used in multilayered SAW and

FBAR type biosensors and is typically used as a thin film on top of substrate materials [20]. The

material is a possible contender for acoustic biosensors due to the high piezoelectric coupling

coefficient, and the ability to manufacture multilayered MEMS devices. The hexagonal structure
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of ZnO leads to transverse isotropy [58], beneficial for pure shear SAW propagation. A transverse

isotropic crystal is also useful in cylindrical geometry sensors, that require high cyclic symmetry.

Lead titanate zirconate (PZT) ceramic is a less commonly used piezoelectric material for

biosensors, it has been used in many types of acoustic biosensors [59–63]. PZT has an hexagonal

crystal structure with transverse isotropy, making it of interest for applications in cylindrical

biosensors [64]. One of the drawbacks of PZT is that it contains the toxic substance lead,

lead-free alternatives are more desirable [65, 66], modern trends are moving in the direction of

removing all lead from electronics.

Aluminium nitride (AlN) ceramic is another piezoelectric material, just as with ZnO this

material is typically used as a thin film layer [67, 68, 20]. In recent years this material has

been used in biosensors that use bulk waves in layered thin films [33, 70–72] and SAWs in

multilayered configurations [73, 74]. AlN has a Wurtzite crystal structrue which is within the

crystal class of hexagonal crystals and has been shown to have a transverse isotropic plane [75].

As with ZnO, the isotropic plane, along with the use of AlN as a thin flim layer, means the

material is of interest for applications of biosensors with cylindrical geometry.

Lithium niobate (LiNbO3) is a piezoelectric material with a trigonal crystal structure with a

quasi-6-fold cyclic symmetry in the Z-cut [76], but is in fact 3-fold. The material is transparent,

due to this it has been used in various optical wave applications including electro-optical

biosensors [77]. The material has been used for acoustic biosensors of several types [78–80],

fluid-sensor interactions have been numerically computed for this material [81–83]. The material

has been used for a degenerate mode biosensor [84] in which Z-cut LiNbO3 is manufactured

with circular geometry [85, 86]. Another common cut of LiNbO3 throughout the literature is

128°Y-cut.

Lithium tantalate (LiTaO3) was an early piezoelectric material considered for SAW and

Leaky-SAW biosensors [27, 87, 88], it has a trigonal structure of the same form as (LiNbO3).

Despite the early use of this material for SAW biosensors the literature is quite limited, the

material has been used mostly as a substrate material for SH-SAW devices. Numerical work

exists for hexagonal geometry, in the annular axis of the cut, for LiTaO3 [89]. Even though this

concept is limited in scope it relates closely to cylindrical biosensor devices, by requiring some

form of inhomogeneous shape which is linked to the anistropy of the chosen material and cut.

Multilayered SAW devices have a number of advantages over BAW and single material SAW

devices due to the existence of in-plane shear SAW modes. The remainder of this section is

devoted to the review of material combinations using the piezoelectric materials that have already

been discussed along with other commonly used materials. Table 1.1 gives an overview of the
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literature for different combinations of layer and substrate materials. The literature is comprised

mostly of biosensors with some other MEMS devices and feasibility studies, for a detailed review

of film deposition techiques see [20].

aaaaaaaaa
Quartz LiNbO3 LiTaO3 Silica Silicon

ZnO [90–96] [95, 97, 98] [99–101] [102] [102]

PZT [103] — — — [104, 105]

AlN [106, 116, 108] [109–112] — [113, 114] [113–116]

Silica [117–120] [121–123] [124–126] — —

PMMA [127, 128, 120] [129–131] [132, 133] — [134]

SU-8 [135–137] — — — —

Table 1.1 Review of combinations of layer materials (down the rows) and substrate materials

(across the columns) throughout biosensor and feasibility literatures

Materials typically used as substrates may be grown or directly bonded onto other substrates,

the following is a brief summary. Quartz may be bonded directly onto silicon [138–141] using

SiO2 and quartz has also been shown to be bonded onto LiNbO3 [142] using SiO2. Lithium

niobate has also been shown to be directly bonded onto silicon using SiO2 [143] and SU-8/SiO2

[144], also a study of the growth on silicon using ZnO/SiO2 layers, has been researched [145].
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1.3 Scope of Research

1.3.1 Aim

The investigation into the nature of generalised multilayered surface acoustic wave modes in

particular material cases of interest for mechanical biosensor design.

1.3.2 Objectives

The following is a list of three broad research objectives which each following a distinct trend.

The first is engineering application focused, the second is gaining physical insight and knowledge,

and the third is numerical method development.

1. Applications in sensor design.

• Formulate models of multiple sources of wave energy loss and then identify, char-

acterise and optimise the major sources of loss, for cases of interest to biosensor

application.

• Identification of physical wave behaviour that may be used to enhance existing

mechanical sensing mechanisms or develop novel sensing mechanims.

• Investigate the variation of the cyclic symmetry of SAW modes for the purpose of

cylindrical sensor design.

2. Characterisation of SAW modes that may exist.

• Characterisation of loss in fluid loaded SAW solutions in isotropic and anisotropic

layered media.

• Investigate the difference in energy loss between the Rayleigh and Love wave types

caused by the fluid loading.

• Study of the displacement pattern for the generalised anisotropic versions of well-

studied wave types, for several mulitlayered combinations.

3. Numerical tool development.

• Develop generalised and efficient methodology to compute a large range of propagat-

ing waveforms for various material properties.

• Expand the numerical methods to allow the capture of energy attenuating waveforms.

• Development of polar form extension of these numerical methods.
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1.3.3 Research questions

The following is a list of research questions that might be answerable throughout the course of

this research. Though these questions are linked to the application and objectives, they may also

be viewed as areas where insight to a particular physical behaviour is of interest. Through this

insight current biosensor designs may be improved and novel concepts may be found.

1. In the layered half-space problem, the wavelength may vary from small to large values,

due to the interaction of waveguide dispersion and SAW decay behaviour. How does the

symmetry of the solution relate to the symmetry of the material? How do the symmetries

of the contributing materials interact to give rise to the symmetry of the multilayered

solution? And does the solution symmetry smoothly transition between that of the layer

and of the substrate, dependent on the layer thickness?

2. What are the most significant forms of energy loss for mechanical SAW biosensors using

anisotropic multilayered waveforms? How can these forms be mitigated from a design and

material perspective?

3. For the pure isotropic case, the loss due to fluid loading is assumed to be small in Love

waves, compared to Rayleigh waves. To what degree is this true? And how does this differ

in the anisotropic case?

4. For multilayered SAW modes within a layered medium comprised of confliciting symme-

tries, how do the generalised displacements lead to increased or decreased energy loss?

And how does the energy loss now vary with the propagation angle?

5. What will the form of the displacement be for the generalised versions of the well-known

isotropic wave types in different layered anisotropic media? And how will this impact

the piezoelectric coupling of these modes? Is it possible to produce and detect a shear

dominated waveform by out-of-plane transducer coupling?

9



Chapter 2

Elastic Waveforms

This chapter covers the mathematical and physical background knowledge of waveforms, as a

prerequisite to topics covered in Chapter 4 through to Chapter 7. The existence of surface acoustic

waves, (SAWs) and the classification of these waves in materials with anisotropic stiffness is

reviewed. The concepts of anisotropic compatibility between different layered materials, and

the transition of isotropic to anisotropic waveforms are introduced. At the end of this chapter

bulk wave solutions, and layered bulk wave combinations have been computed as a reference for

future chapters.

2.1 Mathematical Preliminaries

The traditional approach for mathematical modelling of problems in continuum mechanics

is to use tensor formulation. The advantage of this approach is that the model captures the

couplings between all direct and shear interactions, along with anisotropic structures, in a

compact form. These are key to the physical behaviours studied throughout this work for

application in mechanical biosensors. Formulations are based on continuum mechanics theory

using tensor calculus [1], tensor notation is based on [2].

2.1.1 Cartesian wave equation

The Cartesian coordinates in 3-dimensions xi = [x1 x2 x3] where xi ∈ R is used throughout this

work. Using this coordinate system, in Appendix A, results in the 3-dimensional linear wave

equation for an elastic medium,

Cijkl 1

2

(
∂2ul

∂xj∂xk
+

∂2uk

∂xj∂xl

)
= ρ

∂2ui

∂t2
. (2.1)
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The stiffness Cijkl is assumed to be homogeneous, density ρ is a constant and it is assumed that

no other forces are acting on the body. The contravariant components of the displacments u are

denoted ui and t denotes time. The rank-4 stiffness tensor has two minor symmetries due to the

symmetry of the stress,

σij = σji = Cijklεkl = Cjiklεkl, (2.2)

and strain tensors,

σij = Cijklεkl = Cijklεlk = Cijlkεkl. (2.3)

In addition to these minor symmetries the stiffness tensor is also symmetric known as the major

symmetry,

Cijkl = Cklij. (2.4)

2.1.2 Inner product and metric

The pairwise inner products of the covariant basis vectors, denoted Zi, results in the covariant

metric tensor (also called the Gram matrix in linear alegbra),

Zij = ⟨Zi,Zj⟩. (2.5)

The metric tensor is fundamental for concepts in tensor calculus and differential geometry, in the

latter the metric is defined first and the inner product results from the metric. The metric is used

to calculate length and angles, therefore the metric is restricted to a non-degenerate symmetric

bilinear form [2, 3].

Restricting the analysis to a real vector space V over the real scalar field F the inner product

of any two vectors in V is,

⟨w,v⟩ = ⟨wiZi, v
jZj⟩ = wivjZij. (2.6)

For Cartesian coordinates the metric tensor is the kronecker delta and the inner product reduces

to the known dot product,

⟨w,v⟩ = wi · vi. (2.7)
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A metric tensor is positive definite if for any nonzero vector,

vivjZij > 0, (2.8)

and is known as a Riemannian metric. For all the coordinates used throughout this work the

metric tensor is Riemannian and the inner product is defined using the metric.

2.1.3 Complex vector space

For the case of a complex vector space V over a complex scalar field F , the inner product now

takes the form of a Hermitian inner product, see Hermitian operators [4, 5]. The metric tensor

can now be defined as,

Zi
j = ⟨Zj,Z

i⟩ = Zj ·Zi. (2.9)

The metric acting on vectors w scaled by a and v scaled by b can be defined as,

Z(aw, bv) = awiZi · bvjZj = awibvjZ
i
j. (2.10)

Now contravariant tensors must be conjugated,

vj = viZ
ij. (2.11)

The inner product may be defined using the covariant or contravariant metric tensor denoted Zij

and Zij respectively,

(awi)(bvj)Zij = awjbvj, (2.12)

(awi)(bvj)Zij = awibvi. (2.13)

But, unlike the definition, (2.10) the order of index contraction on the metric is not enforced.

This is due to the conjugate symmetry of the Hermitian inner product,

awjbvj = (awjbvj) = (awiZ
ij)(bviZij). (2.14)
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The definition of the inner product in (2.10) enforces the conjugation of the second term in the

product. Note the choice of which term is conjugated is arbitary, as both still define a suitable

inner product, but consitency must be maintained.

The metric tensor is called Hermitian metric if it is positive definite and can be viewed as the

complex analogue of the Riemannian metric [6]. For all cases within this work the coordinate

system will be real, and the resulting metric is Riemannian. Complex vectors are also used

throughout the formulation of elastic waves, summation and the inner product is assumed to take

the form (2.10).

2.1.4 Stroh formulation

The solution to the wave equation (2.1) is assumed to be in the Stroh form [7],

ui = Aie−ik(m·x+pn·x)+iωt, (2.15)

where k, ω, p ∈ C are the wavenumber, frequency and unknown multiplier to be determined.

The components of the amplitude A ∈ C3 are denoted Ai. The orthonormal vectors m,n ∈ R3

set the propagation direction and bounday surface normal with components mi and ni.

In this form, the magnitude of the wavenumber is imposed in both the m and n directions,

the unknown p must then be found to satisfy the wave equation. This is equivalent to finding

the wavenumber in n for a fixed and consistent wavenumber in m, for each of the partial wave

solutions. The physical interpretation of p is discussed in Section 2.2.1 in relation to the structure

of these partial waves. Substitution of (2.15) into (2.1) results in,

Cijklk
2

2
[(mj + pnj)(mk + pnk)Al + (mj + pnj)(ml + pnl)Ak]− ρω2Ai = 0. (2.16)

Taking advantage of the minor symmetry of the stiffness tensor, (2.3) and rearranging by index

juggling results in the eigenvalue problem,

[
Cijkl(mj + pnj)(mk + pnk)− ρv2δil

]
Al = 0, (2.17)

where the phase velocity is given by v = ω
k

. The imaginary part of the phase velocity may be

zero for particular combinations of k and ω with non-zero imaginary parts. For a majority of

the cases presented in this work v ∈ R, and the Im(k) and Im(ω) have physical meaning in the

spatial and temporal exponential decay, respectively.
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The operator of the eigenvalue problem is Hermitian if it is conjugate symmetric. Up until

now the conjugate contravariant has not been used, but this can no longer be ignored. To ensure

that the operator is Hermitian the following statement must be true,

Γil = Γli, (2.18)

expanded into,

Cijkl(mj + pnj)(mk + pnk) = Clkji(mj + pnj)(mk + pnk) (2.19)

where Cijkl = Clkji due to the minor and major symmetries (2.2) - (2.4) of the stiffness tensor.

Using this symmetry and the Hermitian inner product for the complex variable pnj , this equality

can be shown to be true.

The Hermitian proof comes naturally if the operator is rewritten into the following form,

Γ.l
i = C ..kl

ij (mj + pnj)(mk + pnk). (2.20)

Full stops are used to ensure correct ordering of indices. Taking advantage of the minor and

major symmetries (2.2) - (2.4) of the stiffness tensor but now (2.20) requires conjugate symmetry,

C ..kl
ij = C lk

..ji. (2.21)

Due to the conjugate contravariant (2.10) the operator (2.20) is Hermitian if,

Γ.l
i = Γl

.i = Γ.i
l , (2.22)

which can be easily shown as,

Γl
.i = C lk

..ji(m
j + pnj)(mk + pnk) = Γ.i

l = C ..ji
lk (mj + pnj)(mk + pnk). (2.23)

2.2 Waveform Existence

For the following sections the components of the wave direction will be represented by Xi =

[X1, X2, X3] distinguished from coordinate system notation by the captialised x. The third

direction is the vector orthogonal to m and n denoted p = m × n. The wave direction is
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then Xi = [m · x, p · x, n · x], with the wavenumbers in these wave directions given by the

components ki = [k1, k2, k3].

2.2.1 Bulk and partial wave

For a fixed phase velocity the eigenvalue problem (2.17) results in a characteristic polynomial of

degree six in p. The solutions are the partial waves, which for an isotropic stiffness tensor are

either pure imaginary complex conjugates or pure real, see Figure 2.1.

Fig. 2.1 Partial wave determinant of problem (2.17) between the shear and longitudinal velocities.

Colour map denotes complex phase, solutions are points that appear to have all phase values.

The solutions are the zeros of this determinant, the colour map which denotes the complex phase

of the determinant illustrates the location by solutions as the origins of curves of constant phase.

Points from which two distinct sets of constant phase curves originate correspond to degenerate

solutions of the eigenvalue problem. The behaviour of a partial wave changes as the p solutions

transition from complex conjugate pairs into real solutions, see Figure 2.2.

(a) [k, 0,−ik] (b) [k, 0, 0] (c) [k, 0,−k]

Fig. 2.2 Change in partial wave displacement with the change in p unknown for a fixed real k

value.

Figure 2.2 illustrates the change in behaviour of the partial waves with change in p unknown,

which are dependent on the phase velocity. For isotropic cases, the change in p with the variation
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of velocity always follows a well defined pattern. For low values of velocity the partial waves

propagate in the imposed X1 direction and with pure exponential decay in X3, see Figure 2.2a.

Increasing the phase velocity will cause the conjugate p pairs to move along the imaginary

axis towards zero, the velocity values corresponding to point where p = 0 are called the bulk

velocities. Bulk velocities are characterised by a pure propagation in X1 and constant wave

fronts in X3, see Figure 2.2b. At Im(p) = 0 each p solution from the conjugate pair splits and

travel along the real axis towards positive and negative infinite. Now the partial waves given by

this case no longer propagate in the X1 direction but are rotated due to the nonzero Re(p), see

Figure 2.2c.

The solution is assumed in the plane wave form, the wavefronts are prismatic in 2-dimensions,

uniformal and constant in the propagating direction. Therefore, the propagation direction is

normal to these plane waves, in which all points in the plane have the same wave phase [8]. In

the case of Figure 2.2b, the plane waves may then be visualised as uniform surfaces in X2-X3,

propagating in X1. The SAW solutions, discussed in the following sections, are combinations of

partial waveforms with exponential contributions, see Figure 2.2a. These are now plane-crested

waveforms, prismatic in 1-dimension and complex-exponential in the other.

In elastic materials three bulk wave solutions exist, labelled the longitudinal or pressure (P),

shear horizontal (SH) and shear veritical (SV) waves. In the isotropic case, the P wave displace-

ment polarisaton vector is always in-line with the wave propagation vector. The displacement

polarisation of the SH and SV waves, which correspond to the degenerate solutions, are in the

tangent plane of the propagation vector. For anisotropic materials this may no longer be the

case, except for choices of the propagation vector in directions of high symmetry. The P, SH

and SV waves will favor displacement polarisation, which are no longer in-line with the chosen

propagation direction, these waves are termed quasi-bulk [9]. An anisotropic stiffness, may be

viewed as an isotropic stiffness with addition terms which deviate it from a uniform surface. As

the anisotropic contributions tend to zero, the quasi-bulk solutions should approach the isotropic

case, this concept is briefly investigated in Section 2.4.2 for SAW modes.

2.2.2 Rayleigh wave

The Rayleigh wave is a surface wave that can exist in a single isotropic material on a stress-

free boundary, which causes decays into the depth of the material. Mathematically a uniform

boundary splits the infinite space in half; the tractions on this surface must equal zero,
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2.2 Waveform Existence

ti = σijnj = 0. (2.24)

The half-space material is connected to a vacuum for which no waveform may propagate,

therefore the transmitted part of the waveform equals zero [9]. From Snell’s law the condition is

now,

Cijklnj

(
∂u(I)

l

∂xk
+
∑

R

∂u(R)
l

∂xk

)
= 0 (2.25)

where the summation incident (I) and reflected (R) waves must equal on this boundary. In

the isotropic case the incident longitudinal wave is reflected as a combination of longitudinal

and shear waveforms. The ratio is dependent on the angle of incidence which is dependent

on the bulk wave ratios of the material. The existence of the Rayleigh wave is a result of the

interference of these waveforms at the stress-free boundary. The boundary conditions requires a

linear combination of three of the six p partial waves which cause decay into the bulk, for decay

in X3 > 0 then p < 0 in (2.15),

ui =
3∑

r=1

Bru
r
i =

3∑
r=1

BrA
r
i e

−ik(m·x+prn·x)+iωt. (2.26)

In this chapter only the behaviour of the resulting waveforms is discussed, implementation

and solving boundary condition problems will be covered in Chapter 3. On a single boundary the

Rayleigh wave exists for a single phase velocity and is non-dispersive, has a linear relationship

between k and ω, therefore it exists for all wavenumber values [8]. In dispersive media, frequency

is dependent on wavelength, and so the phase velocity is also dependent. For 3-dimensional

anisotropic cases, the dispersion behaviour varies with propagation direction, this variation of

the solution due to anisotropic is a type of dispersion. The Rayleigh wave exists below the bulk

wave velocity, due to this the wave will always propagate along the surface X1 and decay into

the depth X3. This can be visualised by considering a linear combination of three partial waves

of the type shown in Figure 2.2a,

u = e−ikm·xekn·x(p1+p2+p3) (2.27)

Summating using p values in which p < 0 results in exponential decay in X3 > 0 and pure

propagation in X1. The Rayleigh wave has an elliptical displacement pattern in the X1 −X3

plane that decays away from the boundary surface, see Figure 2.3.
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Fig. 2.3 Example displacements for the Rayleigh type wave in isotropic material. In (a) the

displacements normalised to the maximum u3 displacement, and in (b) the tractions normalised

to the maximum t3 traction. These are presented at X1

λ1
= 1

8
, denoted by the dotted black line on

(c), the half way point between maximum u1 and u3.

A leaky Rayleigh wave may also exist in isotropic materials [8, 10], the transition from

Rayleigh to leaky is dependent on the Poisson ratio of the material. The surface wave can exist

above the lowest bulk velocity of a material, which is coupled to a partial wave of the type shown

in Figure 2.2c. The surface wave now propagates into the bulk of the material, due to the bulk

propagating partial contribution, which causes energy leakage away from the surface. Leaky

waves are discussed more in Chapter 4 along with their possible use in biosensor application.

2.2.3 Generalised anisotropic surface waves

The existence of surface waves in anisotropic half-spaces has been extensively researched, for a

review of termology and wave types the reader is referred to [11]. The half-space problem is not

the focus of this work but the existence of half-space waves is fundamental in the construction

of multilayered waveforms. The transition states of a material are given by the velocities of

the limiting bulk waves, (LBW) called the limiting velocities. The partial roots transition from

complex to real values as previously discussed in Section 2.2.1. Now in materials with anisotropic

stiffness, the transition does not have to occur at p = 0 but may occur at any point along the real

axis. These states are key to characterising the behaviour of the waveforms, that can exist in both

the half-space and multilayered problems. SAW solutions in the so-called subsonic region are

constructed from a linear combination of two or three partial waves, which exponentially decay

into the bulk of the half-space material, Figure 2.2a. SAWs in the supersonic region are now

some linear combination of two partial waves and a bulk propagating wave, Figure 2.2c, these

solutions are generalised Rayleigh waves, leaky surface waves or in some special material cases

only consist of one-component.
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2.3 Multilayered Waveforms

Recent research into SAWs in half-space geometry have focused on more complicated

materials. These problems require the constant development of mathematical and numerical tools

to handle mutliferroics, inhomogeneous behaviours and energy dissipation. Models for materials

in biomechanical research need to handle forms of inhomogeneous and viscoelastic behaviour

[12, 13]. In addition to these forms, the saturation due to water content must be considered

for models in solid mechanics [14, 15], important for geophysical applications. Multiferroic

materials in which the mechanical fields are coupled to electromagnetic and thermal fields are

also an ongoing area of research [16–18].

2.3 Multilayered Waveforms

The main focus of this thesis is on cases in multilayered geometry, the half-space problem is

only of interest in understanding the wave existence problem in the layered case. The numerical

approaches for computing multilayered solutions also differ from those that would be developed

in half-space cases. In this section only the physical behaviour is discussed, the mathematical

model along with the numerical solution is developed in Chapter 3.

2.3.1 Mutlilayered geometry

The model used throughout this work is the layered half-space, with the number of layers varying

with the problem, see Figure 2.4. The half-space boundary is numerically easier to resolve than

SAWs in a plate geometry which would require short wavelengths, resulting in numerical large

numbers. In the real world semi-inifinite boundaries do not exist, but at high frequencies the first

propagating symmetric and anti-symmetric plate modes coalesce into the Rayleigh wave [19].

At the interfaces between materials it is required that the displacements and tractions of each

material are matched. The fully bonded layers at the boundary use all displacements and tractions

in the condition. A reduced set of conditions would capture slipping motion of a sliding contact

in a particular shear direction [20]. At the surface, the stress-free boundary condition is the most

relavent to biosensor design for propagating SAW modes. Alternatively, a clamped boundary

condition may be used, which is the displacement free boundary condition, these conditions are

typical used for plate modes [8].

The stroh vectors allow for the rotation of the entire multilayer structure, it is also a require-

ment to be able to rotate each layer individually. The stiffness tensor may be rotated using

a combined transformation for fourth rank tensors [21], requiring three angle rotation [22] to

19



Elastic Waveforms

m

p

n

Xi = [m · x, p · x, n · x]

x1

x2

x3

Fig. 2.4 Illustration of a single layered half space with an isotropic Love wave solution, additional

layers may be added in the boundary conditions. The orthogonal vectors m (propagation) and

n (normal to the layer surfaces) are, in this case, aligned to x1 and x3 respectively, but may be

freely rotated in the coordinate system.

recover all possible materals cuts. Although three angles are required for computing all possible

cuts, only two angles are required to compute all possible points on a sphere. When the aim is to

compute data for all possible cuts of a material, the additional computations are redundant. In

these cases it is numerically more efficient to compute extra points in the two angle case and

average the third angle using a coordinate minimising method. It is important to note that this is

only the case for specified propagation directions, for example bulk waves, three angles must for

all possible mj and nj combinations.

2.3.2 Layered isotropic waveforms and Love waves

The three main types of SAW that can exist in layered isotropic media are the Love, Rayleigh and

Stoneley [23]. The Stoneley wave is an energy leaking Rayleigh type SAW which is typically

associated with fluidised cases, therefore details on this SAW are covered in Chapter 5. The

Love wave exists in the layered half-space geometry between the bulk velocities of the layer and

substrate, formally,

vLayer < vLove < vsubstrate (2.28)
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2.3 Multilayered Waveforms

shown by the analytic solution [8]. The displacement is in the form of a one component in-plane

shear, which propagates and resonates through the thickness of the layer and decays into the bulk

of the substrate. The Love wave can be viewed as a thickness shear plate mode with a stress-free

boundary condition that is replaced by a interface condition with a half-space. As with the plate

geometry the Love wave is a dispersive waveform, the cut-off frequency for the plate case is

removed by the presence of the substrate, which also breaks the symmetry of the shear mode.

See Figure 2.5 and 2.6 respectively for the displacements and tractions of the first three modes.
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Fig. 2.5 Displacements for the first three modes of the Love type solution in an isotropic layered

half-space. Normalised to the maximum u2 displacement, dotted black line denotes interface

and free surface boundaries, interface at X3 = 0.

-0.3 -0.2 -0.1 0
-0.5

0

0.5

1

(a) 1st mode

-1 -0.5 0
-1

-0.5

0

0.5

1

(b) 2nd mode

-1 -0.5 0 0.5
-1

-0.5

0

0.5

1

(c) 3rd mode

Fig. 2.6 Tractions for the first three modes of the Love type solution in an isotropic layered

half-space. Normalised to the maximum u2 displacement, dotted black line denotes interface

and free surface boundaries, interface at X3 = 0.

The half-space Rayleigh wave can be viewed as the smooth transition of symmetric and

anti-symmetric Lamb plate mode from plate geometry to half space geometry [8, 24]. The

transition can be visualised by either increasing the thickness of plate towards infinity or by

decreasing the wavelength of the plate modes. The behaviour can be seen on the dispersion plot

[25], symmetric and anti-symmetric parts of the lamb modes coalescence due to the removal

of the second boundary at these limits. Therefore multilayered Rayleigh waves, can also be

viewed in the same way as Love waves, but now the second boundary of the Lamb modes
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solution is being replaced with a half-space interface condition. Unlike the Love wave they

may exist under the bulk velocity of the layer material, similar to their half-space counter parts.

Multilayered Rayleigh waves are also dispersive waveforms, see Figure 2.7 and 2.8 respectively

for the displacements and tractions of the first three modes.
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Fig. 2.7 Displacements for the first three modes for Rayleigh type solution in layered isotropic

half-space. Normalised to the maximum u3 displacement, dotted black line denotes interface

and free surface boundaries, interface at X3 = 0.
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Fig. 2.8 Tractions for the first three modes for Rayleigh type solution in layered isotropic half-

space. Normalised to the maximum u3 displacement, dotted black line denotes interface and free

surface boundaries, interface at X3 = 0.

2.3.3 Generalised multilayered surface waves

The anisotropic layered half-space problem has long been studied in the geophysical field but

unlike the half-space problem the literature is still lacking outside of a few well studied cases.

Some examples in the biosensor focused applications include ST-cut and AT-cut quartz [26–30]

and Y-cut lithium niobate [31–33]. The layered problem has a vast increase in the possible

combinations of materials with anisotropy stiffness and is not limited to only a single layer for

many applications. Multilayered structures also contain more wave types in both the Rayleigh

and Love waves, though as mentioned in the isotropic case the well studied half-space and plate

geometries can help predict behaviour.
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A main difference between the isotropic and anisotropic cases is the possibility of Rayleigh

and Love displacement coupling [34, 35]. The coupling is due to the interaction of the quasi-bulk

solutions with the material boundaries, SV wave may excite SH waves. Combinations of different

anisotropy materials can impose coupling at the interface. Due to this coupling the line between

Love and Rayleigh waves becomes blurred, with some cases of near degeneracy having been

shown. The naming convention of these waves becomes problematic, throughout this work the

waveforms will be defined by the partition of Love and Rayleigh parts, distinguished using the

bulk solutions. The consequences of such coupling for biosensor applications is discussed in

detail in Chapter 6 in the case of fluid energy loss. Figure 2.9 shows an example of displacements

of a generalised multilayered SAW, notice the elliptical Rayleigh type motion in (a) and the SH

wave motion in (b).
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Fig. 2.9 Displacement vector plots for generalised anisotropic multilayered SAW mode, for the

case of cubic on cubic meeting the condition for Love wave existence. Both stiffness tensors

rotated at an angle of θ = π
8

in the plane of the surface.

2.4 Layer Compatibility and Symmetry

In this section the concept of anisotropic compatibility between layered anisotropies with

differing symmetries is introduced. Also the anisotropic factor is also introduced as a tool to be

used in layer chapters, examples of anisotropic problems will be presented. For this section the

material used were silicon, quartz [9] and copper [36].

2.4.1 Layer compatability

Plane bulk wave solutions can provide insight into wave types that may exist within materials,

and require little computational cost. In the previous sections, it was shown that the behaviour of

composite waveforms can be predicted using the partial waves. In anisotropic materials these

partial waves are dependant on the propagation direction within the cut of a crystal. Inspecting
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the bulk velocity surfaces of multiple materials relative to each other, can provide insight into

the compatibility of the material combinations.

The definition of compatibility is dependent on the desired output, throughout this thesis

a higher cyclic symmetry is of importance. Therefore, the compatibility is defined as the

ratio between the lowest common symmetry and the contributing symmetry of interest for the

comparison. The bulk wave velocity curves are a good measure of the symmetry of a particular

crystal cut. The compatibility between the relative symmetries of the materials is important for

consistent wave behaviour with the propagation angle, see Figure 2.10.
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Fig. 2.10 Bulk velocities of Z-cut Quartz (red) and quasi-shear velocities of silicon cut in (111)

miller index notation (blue).

The cubic and trigonal symmetries have the lowest common symmetry of 2-fold, when high

symmetry directions are aligned in a multilayered combination. Trigonal has 3-fold symmetry,

but for Z-cut quartz the symmetry many be assumed as quasi-6-fold. In Chapter 5 a case

is presented in which this 6-fold assumption breaks down. In Chapter 6 the effect of the

compatibility on shear dominant and Rayleigh dominant waveforms is explored in more detail.

This will be investigated between cases of high and low compatible cuts of silicon with a quartz

layer.

The intersection of bulk wave velocity curves at particular angles creates new transition

regions. Transition regions are defined, in this work, as the section of the bulk velocity curve

between intersection points which create bounded areas. These areas that are bounded by the

bulk wave velocity curves may have unique behaviours, see Figure 2.10 close to 4900ms−1.

Plane wave rotation in this cut, at a fixed velocity, may cycle between several unique areas. The

changing partial waves between the two materials may result in leaky solutions at particular

directions, and between different layers. This is a prediction of the behaviour based on bulk

solutions, the transition may in fact be dependent on the lowest bulk velocity values, due to the
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2.4 Layer Compatibility and Symmetry

3-dimensional anisotropy of SAW existence theory. Therefore, SAWs around these transition

regions are of interest for further study, to be investigated in Chapter 4.

The definition presented here for compatibility only considers the lowest common symmetry

for bulk wave velocity curves, this definition could be expand. For example, combinations for

desired wave types, an example of this is the Love wave which has the requirement on the relative

bulk wave velocities (2.28). This can vary with the propagation angle due to the crossing of bulk

wave velocity curves, altering the portion of Love wave to leaky wave within the cut. In some

cases the desired wave type may be one that changes from non-leaky to leaky, in such a case it

would be desirable to have a particular number of crossing points of the bulk velocity surface.

Depending on the bulk waves which overlap, new lossy regions may be created, this is part of

the investigation of Chapter 4.

2.4.2 Isotropic to cubic transition

The coefficients of the stiffness tensor describle the shape of the anisotropy, for the crystal classes

[37] these shapes are symmetric. Another way of describing the anisotropy of highly symmetric

materials is to use anisotropic factors which weigh the change in stiffness parameters between

points. Cubic materials are one of the simplest symmetries only requiring one additional stiffness

coefficient, than the isotropic case which means only one anisotropic factor is required, see

Figure 2.11.
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Fig. 2.11 Variation of C66 stiffness coefficient in vogit notation by fixing coordinate system and

rotating the stiffness tensor in the x1 − x2 plane.

The anisotropic factor is another tool that may be used to help predict and further classifiy the

behaviour within crystal symmetries. An example is the use in the half-space existence problem

of Rayleigh and generalised Rayleigh waves [9]. For the cubic materials presented in Figure 2.11
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the change in anisotropic factor causes the stiffness coefficients, in this case C66 in vogit notation,

to increase or decrease.

The anisotropic factor can also be used in investigating the change of a wave property

with anisotropy, this is used in Chapter 6 to compare isotropic and ansiotropic substrates. The

use of the factor will be shown here, by considering the problem of changing wave structure

with transition of a material, from isotropic to cubic by increasing the anisotropic factor, see

Figure 2.12. The modes start with the isotropic form at A = 1, for mode one and three the

structure instantly becomes cubic in shape at A = 1.2, mode three sees a gradual change up to

A = 1.8 to cubic structure.
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Fig. 2.12 The first three modes for the layered half-space case, the anisotropic factor is varied for

both materials at the same rate. The materials are copper layered on silicon which is compatible

for isotropic Love wave propagation, velocity fixed at 3000ms−1. Colour map denotes anisotropic

factor.

On inspection of Figure 2.12 it would seem at first glance that the plots are incorrect at

higher values of A in particular regions. The sudden shift in behaviour could be seen as incorrect

resolution of crossing points between the modes 2.12a and 2.12b and modes 2.12b and 2.12c.

Infact these are cases in which the wavenumbers of two modes converge onto a point at a

particular anisotropic factor value, the mode remains smoothly continuous before and after, see

Figure 2.13.

In Figure 2.13b the modes have both a Rayleigh dominant and a Love dominant range in the

cut, this is what causes the change in shape at approximately π
4
. The behaviour of each mode

switches with each other after the degenerate points, the modes take on the same displacement

pattern at these points. Therefore, for anisotropic combinations, points of idenitical or near

idenitical wave solution may exist for multiple modes, further illustrating the move away from

isotropic wave descriptions. The change in anisotropic factor will shift the bulk wave solutions

altering the structure of the problem, a full description of the behaviours would require a third

dimension for velocity to generate anisotropic cylinders. In addition, the problem may be viewed
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in two angle rotations, Figure 2.14 shows the same degenerate point from 2.13b in two angles by

2-dimensional surfaces touching at a point.
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Fig. 2.13 The convergence of the wavenumber of two modes onto the same point with change in

anisotropic factor. In (a) point occurs at A = 2.8 and in (b) at A = 2.6, modes are distinguished

by the solid and dashed lines, with the colour map denoting fixed A-factor values.
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Fig. 2.14 The point shown in Figure 2.13b, now in two angle rotations in the X1 − X2 and

X2−X3 planes. Colour map denotes magnitude of wavenumber.

2.5 Standard Test Cases

Several standard cases will be considered based on the commonly used materials, feasibility of

material combinations and the symmetry of the anisotropy, see [9] for material data. These cases

will be used primarily in Chapter 4 to 6 when considering forms of SAW energy loss in layered
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anistropic materials. The variation of piezoelectric coupling around the chosen cuts is also a key

consideration for the excitation of these waveforms. Along with the thermoelastic properties for

minimising energy loss, to be further discussed in Chapter 7.

2.5.1 Bulk slowness surfaces

In section 1.2.2, a selection of commonly used materials for biosensor application were reviewed.

For several of these materials the bulk wave velocity surfaces are presented for several cuts of

interest using only the mechanical properties. Lead zirconate titanate (PZT) and Zinc oxide

(ZnO) are both part of the hexagonal crystal class, therefore these materials have a transverse

isotropic plane which is the Z-cut. The bulk wave velocities do not change in this plane just as

with an isotropic medium but the two shear velocities have distinct values due to the anisotropy.

For PZT the Z-cut longitudinal and shear velocities are approximately 4305ms−1, 2017ms−1 and

1848ms−1 , for ZnO the Z-cut longitudinal and shear velocities are approximately 6077ms−1,

2795ms−1 and 2737ms−1. Presented in Figure 2.15 and 2.16 are the X-cut bulk wave slowness

of PZT and ZnO respectivitly, which have the same structure as the Y-cut due to the crystal

symmtries. The slowness of ZnO is consistent with the literature [9, 38].
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Fig. 2.15 Slowness surfaces for the quasi-shears and quasi-longitudinal bulk waves of X-cut PZT.
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Fig. 2.16 Slowness surfaces for the quasi-shear and quasi-longitudinal bulk waves of X-cut ZnO.

For trigonal crystals quartz and lithium niobate (LiNbO3) the Z-cut has the most symmetry

with a quasi-6-fold axis cyclic symmetry. Presented in Figure 2.17 and 2.18 are the Z-cut bulk

wave slowness of quartz and LiNbO3 respectively. The variation of the velocities around the

Z-cut of LiNbO3 are much less than quartz, due to this LiNbO3 is more attractive for biosensor

designs that use cyclic degenerate modes. The maximum variation in velocities around the Z-cut

quartz are approximately 576ms−1, 782ms−1 and 277ms−1 for the lowest shear, highest shear

and longitudinal bulk wave velocities. Opposed to Z-cut LiNbO3 where the maximum variations

are approximately 110ms−1 for the two shear waves and 10ms−1 for the longitudinal wave. The

slowness surface of Z-cut Quartz is consistent with the literature [38, 39].
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Fig. 2.17 Slowness surfaces for the quasi-shears and quasi-longitudinal bulk waves of Z-cut

quartz.
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Fig. 2.18 Slowness surfaces for the quasi-shears and quasi-longitudinal bulk waves of Z-cut

LiNbO3.

Other common cuts for these materials are chosen for biosensor application, due to their

electrical or thermal properties. Traditionally SAW biosensors make use of propagating waves

in 1-dimension and so the symmetry of the cut is not as important. The bulk wave slowness of

AT-cut quartz is presented in Figure 2.19. Another common cut for SAW devices is ST-cut which

bears similar symmetry structure to AT-cut due to only a 7.75°difference in rotation angle from

Z-axis in the Y-cut of quartz.
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Fig. 2.19 Slowness surfaces for the quasi-shears and quasi-longitudinal bulk waves of AT-cut

quartz.
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Cubic crystals in the Z, X and Y-cuts have 4-fold cyclic symmetry which are the cuts with the

highest symmetry. The bulk wave slowness for Z-cut cubic silicon is presented in Figure 2.20.

Slowness surface for Z-cut silicon is consistent with computed literature [9, 40].
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Fig. 2.20 Slowness surfaces for the quasi-shears and quasi-longitudinal bulk waves of Z-cut

silicon.

The highest cyclically symmertic cut does not mean that it has the lowest solution variation, for

silicon the so called isotropic cut has the lowest variation. In reality this cut has 6-fold symmetry,

visualised by a 2-dimensional hexagonal plane slotted at an angle inside a cube, similar to

the Z-cut of trigonal crystals. The bulk wave slowness of this cut for silicon is presented in

Figure 2.21 denoted in miller indices as (111).
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Fig. 2.21 Slowness surfaces for the quasi-shears and quasi-longitudinal bulk waves of (111)

silicon.

The longitudinal bulk wave has a variation of approximate 30ms−1, the shears are larger, around

360ms−1, due to the cubic structure.

2.5.2 Material combinations

For the materials cuts presented in Section 2.5.1 several combinations were considered for

standard test cases. The interest, at this stage, is placed solely on the anisotropy of these crystal

cuts and the affect it will have on mechanical SAW propagation. In Section 2.4 the concept of

layer compatibility was used with the case of Z-cut quartz on (111) silicon, in Figure 2.10. For

quartz on silicon the crossing of bulk wave solutions gives rise to extra regions of behaviour,

which is of interest for the study of leaky waveforms. For LiNbO3 on silicon in Figure 2.22

this is not an issue, this and the lower variation in bulk solution of LiNbO3 leads to a highly

compatible combination. The symmetries of quartz and silicon in Figure 2.10 have the same

6-fold cyclic symmetry and the cuts are in-line. It is predicted that this will lead to a more

consistent displacement form of plane wave propagation, as a function of the propagation angle

due to interactions at the interface. In constrast Figure 2.23 shows Z-cut Quartz with 6-fold

cyclic symmetry on Z-cut silicon that has 4-fold cyclic symmetry. The differing symmetries is

expected to have an effect on the consistency of generalised displacements around the cut, along

with the new overlapping of quasi-shear solutions. This overlapping is interesting for firstly,

the possible angle dependent generation of leaky SAWs, and secondly for the comparison of

Rayleigh type and Love type displacements around the cut between the two layers.
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Fig. 2.22 Quasi-shear velocities of Z-cut LiNbO3 (red) and silicon cut in (111) miller index

notation (blue).
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Fig. 2.23 Bulk velocities of Z-cut Quartz (red) and quasi-shear velocities of Z-cut silicon (blue).

AT-cut quartz has a number of advantages which were discussed in the previous sections,

the symmetry of this cut is low as shown in Figure 2.19. Even though the lowest quasi-shear

of AT-cut quartz has 2-fold cyclic symmetry it is close to 4-fold cyclic symmetry similar to the

lowest quasi-shear of Z-cut silicon. Figure 2.24 presents the comparison between AT-cut quartz

and Z-cut silicon, the current relative rotations put the quasi-shears of quartz below silicon with

touching points. For the lowest quasi-shears of the two materials to be in-line, would require a

rotation of π
4

causing additional overlay of bulk velocities.
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Fig. 2.24 Bulk velocities of AT-cut Quartz (red) and quasi-shear velocities of Z-cut silicon (blue).

Quartz and LiNbO3 have the same trigonal stiffness symmetry, but due to the overlapping of

the lowest quasi-shear solutions the materials are not compatible, see Figure 2.25 and 2.26. It

has been shown that these materials may be bonded together, but this is not benefical outside of

linear devices that take advantage of plane wave propagation and resonance.
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Fig. 2.25 Quasi-shear velocities of Z-cut LiNbO3 (red) and Z-cut quartz (blue).
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Fig. 2.26 Quasi-shear velocities of Z-cut LiNbO3 (red) and AT-cut quartz (blue).
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Piezoelectric materials such as PZT, ZnO and AlN are desirable in circular sensor design

due to their transverse isotropic plane. The study of the interaction of these hexagonal crystals

with other crystal symmetries, may be of interest along with the energy loss in other polycrystals.

SiO2 benefits from being isotropic, the use of an isotropic waveguide layer on an ansiotropic

substrate could reduce energy loss through out-of-plane displacements at the fluid/solid interface.

Isotropic and hexagonal waveguides are also of interest for reducing the rotation variation of the

overall composite SAW wave, this is dependent on the relative energy partition between layers.

For cases of leaky wave propagation, the substrate material would take a more active role in the

dynamics, and the cyclic symmetry of the substrate would influence the slowness of the SAW

solutions. These cases are of interest for both energy loss mitigation and development of novel

biosensor concepts taking advantage of the changing cyclic symmetry.

2.5.3 Piezoelectric coupling

For piezoelectric materials, the coupling between the mechanical and electrical properties can

lead to a change in structure of the bulk wave solutions. This change in bulk wave value

and structure is dependent on the piezoelectric tensor, see Appendix B for the piezoelectric

thermoelastic formulation. The piezoelectric tensor shows which electric fields are linked to

which stresses, describing how mechanical waves may be excited by interdigital transducers.

Quartz is a piezoelectric 32 trigonal crystal class, the change in bulk wave velocities for Z-cut

and AT-cut are presented in Figure 2.27 and Figure 2.28. For quartz, the change in the bulk wave

velocities due to the piezoelectric coupling is small. Due to this it is expected that the error in

using the mechanical solutions should be insignificant.
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Fig. 2.27 Comparison of quasi-bulk velocities of Z-cut quartz, between mechanical solid-line

blue and piezoelectric dotted-line red.
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Fig. 2.28 Comparison of quasi-bulk velocities of AT-cut quartz, between mechanical solid-line

blue and piezoelectric dotted-line red.

Lithium niobate is also piezoelectric triganol but of the 3m class, with a completely different

piezoelectric tensor structure. The piezoelectric coefficients are also larger than quartz, the

change in bulk wave velocities for the Z-cut are presented in Figure 2.29.
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Fig. 2.29 Comparison of quasi-bulk velocities of Z-cut LiNbO3, between mechanical solid-line

blue and piezoelectric dotted-line red.

The change in the bulk wave velocities in lithium niobate is much greater than the changes

seen in quartz. The symmetry still remains 6-fold but the quasi-shear solutions are now at

a different value and the quasi-longitudinal has non-zero change with angle. The change in

value of the bulk wave solutions will change the location of existence regions for types of

multilayer surface wave solutions. Depending on the material combination, this could alter

the location of leaky transitions and may even remove regions of purly mechanical quasi-Love

wave propagation. The effects differ for each of the bulk wave velocities, this implies that the

affect of piezoelectric coupling may be different for types of surface modes. The error between
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mechanical and piezoelectric SAW solutions will be studied in Chapter 7, in which the impact

on annular transducer design will be discussed.

2.6 Conclusions

The fundamental knowledge of the mathematical models and physical behaviour for 3-dimensional

elastic SAW modes have been outlined. The problem has been formulated using the traditional

tensor calculus approach, in complex vector space which is essential for later chapters. The

operator for the elastic wave problem is shown to be Hermitian, as expected for a system that

is expected to conserve energy. A brief review of the physics of half-space and multilayered

SAW solutions has been presented. The underlying partial waves that combine to create these

composite waveforms are key in understanding the structure of these waveforms.

For multilayered waveforms, the concept of compatability between the properties of the

layers has been introduced. The location of the bulk waves in relation to the bulk waves of other

layers provides insight into how these layers will interact with each other. From the bulk wave

solutions the multilayered waveform may be predicted, this can be used to tailor which layers

will be dynamically active. The problem is complicated further by the anisotropy of the layers

which may now cause overlapping of bulk wave velocity surface, it is predicted that these will

give rise to new transition regions. These regions may have waveforms with different structures

which smoothly transition from previous regions of solutions. Combining this behaviour with

the dispersive nature of multilayered waveforms leads to many variations of the problem, which

require inspection in later chapters.

The anisotropic A-factor is introduced as a method of scaling the anisotropy, altering the

structure of the crystal based on the isotropic values. The number of A-factors required is

dependent on the number of independent stiffness coefficients, leading to many degrees of

freedom outside of the simple cubic case. A case of two cubic crystals, with differing properties,

in the layered half-space geometry is presented, cuts that align the anisotropies are chosen. The

main point from this analysis is that the generalised versions of the Love and Rayleigh waves are

coupled to each other, this coupling is dependent on the propagation angle. In special cases the

modes take on the same solution, at these points the waveforms take on the exact same structure.

For bisosensor application the main interest lies in the excitation of these generalised modes, the

coupling may now allow excitation of waveforms through other displacements.

The bulk waves and some combinations, have been computed for several anisotropic materials

of interest for biosensor application. A case of interest is trigonal Z-cut quartz on silicon Z-cut,
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for the transition problem, and isotropic cut due to the high compatibility. The data presented will

act as a reference to aid in the predicition of SAW behaviour. Finally the effect of piezoelectric

coupling on the bulk wave solutions is inspected for quartz and lithium niobate. The piezoelectric

coupling was predicted to not have a large effect on the SAW solutions for these crystal, based

on the bulk wave velocities this remains true for quartz. For lithium niobate, the larger coupling

coefficient shifts the bulk waves velocity surfaces and increases the anisotropic structure of the

crystal. The impact this will have on mulitllayered SAW existence will be explored in Chapter 7,

along with possible consequences of ignoring the coupling.
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Chapter 3

Development of Numerical Methods

The numerical toolkit that will be used in the subsequent chapters will be developed throughout

this chapter. Methods that can solve both the partial wave eigenvalue problem in materials with

anisotropic stiffness and layered boundary condition determinant are required. For both stages of

the procedure, the problems covered in this work are all deterministic and formulated as linear

systems. The main tool is the procedure of tracking curves of constant complex phase, this

method is well suited to the problem of layered attenuated surface acoutic wave (SAW) modes.

The methods to be able to solve fixed frequency problems are also developed at the end of this

chapter, along with any prerequisite conditions for the use.

3.1 Introduction

3.1.1 Requirements of Numerical Methods

In Chapter 2 the behaviour of partial wave solutions of the characteristic polynomial of the wave

equation was discussed. For simple cases, for example isotropic materials, the complex roots

to the equation of motion lie on either the imaginary or real axis [1]. A particular behaviour of

interest occurs around the bulk waves velocity in which the complex conjugate pairs become real

by combining and then spliting on the real axis. This leads to loss of information in the numerical

tracking with changes in velocity, requiring new initial search input. In cases of anisotropy

stiffness, these roots are allowed to be complex and may even return to being complex conjugates

after real transition by reforming with another real partial solution. This removes the possibility

of attempting to re-track the solutions by sweeping the real axis, instead requiring some form of

grid method or redefining the tracker location. This behaviour means that the method to track
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these roots must either be able to efficiently track the unknown solutions or be able to re-track

the solution after points of joining.

The majority of the work presented in the remaining chapters is focused on SAWs in layered

geometries, many requiring searching in the complex domain. Unlike the half-space geometry

which has non-dispersive solutions at particular velocity values, branches of solutions may exist

for multiple values of velocity. Allowing energy attenuating solutions to the boundary condition

determinant now requires searching in the complex plane of the wavenumber or the frequency,

see Chapters 4 and 5. The numerical methods need to be 2-dimensional, tracking on the real

and imaginary parts similar to the partial wave solution. Unlike the partial wave case which has

six solutions, the boundary conditions for dispersive waveforms can have an infinite number

of modes. The numerical method would need to be capable of tracking a variable number of

solutions as specified by some input range.

3.1.2 Brief review of numerical methods

Traditional gradient descent methods [2, 3] in 2-dimensions make use of the divergence to

track a minimum, but require some knowledge of the starting point. An example of a gradient

independent method is the search by golden sections, which eliminates regions until convergence

on a point is achieved [4, 5]. This method requires some knowledge of the location of a solution

and requires only one minimum within a region. Due to the requirements listed in Section 3.1.1

these methods may only be used for secondary tracking within the neighbourhood of a solution.

If the functions in each part of the problem can be shown to be holomorphic, this allows for

the use of winding number based methods to determine the complex roots. Focusing on these, a

number of methods are present in the literature which use the argument principle in discretisation

of a region of complex space [6–9]. Such approaches use the argument principle as a condition

for the search of roots by eliminating none solution regions and focusing on correct regions of

solutions.

3.2 Complex Analysis and Argument Principle

3.2.1 Argument principle

The main numerical method that will be developed in this chapter uses the argument principle

for holomorphic functions, the statement of this principle can be found here [10]. The following
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statement is a modified version of this definition of the argument principle, where the p-points,

z = p, are the preimages of f(z) = 0.

If f(z) is holomorphic inside and on a simple closed loop G, and N is the number of

p-points (counted with their multiplicity) which reside within the loop G, then there

exists exactly N curves of constant complex phase which originate at p-points and

end at distinct points on the loop G for every complex phase angle.

This is illustrated in Figure 3.1, (a) the curves of constant phase angle for 0 and π
2

, in the preimage,

connect the p-points and loop G. These curves are, in this case, just the portion of the real and

imaginary axis between zero and loop G in f(z) in (b). A p-point which is a multiple root will

have multiple curves each with distinct end points on loop G.

(a) Domain (b) Image

Fig. 3.1 (a) shows the closed loop G around two p-points on the domain of f(z), for both points

the curves of constant phase are shown for angle 0 (dashed) and π
2

(solid). (b) shows the image

of G, now G loops around zero and the lines of constant phase are the real and imaginary axis

which intersect f(G) twice.

For cases in which solutions of the f(z) are outside of the simple loop G additional curves

of constant phase may also exist,

For all points on the simple loop G of a fixed phase angle, denoted R, there exists M

lines connecting each R point to another unique R point on the loop G or a p-point

within the simple loop G, for which the number of curves is given by M = N + R−N
2

.

These curves of constant phase may never intersect as this would invalidate the argument principle

at the point of intersection. A loop G that smoothly deforms over this intersection to a loop H

would have a varying winding number for constant p-points. The definition of the argument

principle presented is equivalent by requiring distinctive end points to the curves of constant
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phase for each of the p-points. These distinct curves are useful for the fast numerical tracking of

all possible solutions within some predefined region of a holomorphic function.

3.2.2 Partial wave determinant

In Chapter 2 the eigenvalue problem (2.17) of the 3-dimensional wave equation was solved

using the Stroh form. Additionally, the operator of the eigenvalue problem has been shown

to be Hermitian using major and minor symmetries of the stiffness tensor. Now if f is the

characteristic equation of (2.17) then f(p) is a sextic polynomial in which each characteristic

root p has an associated eigenvector Al for the eigenvalue ρv2. Therefore, f is holomorphic

and must have six complex solutions, which may be degenerate but will have distinct curves

of constant phase. These curves of constant phase can been seen in the determinant of (2.17),

presented in Figure 3.2. The complex function presented is a 2-dimensional surface but require

four axes to fully visualise the C2 structure. Although, from the point of view of vector spaces,

this statement ignores the additional structure that makes C isomorphic to R2. But this statement

still highlights the approach to plotting complex surfaces using computation methods.
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Fig. 3.2 Eigenvalue determinant of problem (2.17) fixed at a velocity between the shear and

longitudinal bulk velocities. Colour map denotes complex phase, solutions are points that appear

to have all phase values.

The partial wave solutions for an isotropic stiffness tensor presented in Figure 3.2 are either pure

imaginary complex conjugates or pure real. The zeroes of this determinant are the solutions,

these are located in the domain of f(p) at the origins of curves of constant phase. The image of

these curves of constant phase in f(p) are straight lines which originate at a zero in the complex

plane and tend towards infinite at their respective phase angles. Zero points at which two distinct
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sets of constant phase curves originate corresponds to degenerate solutions of the eigenvalue

problem.

The isotropic case presented in Figure 3.2 has an analytic solution [11], along with special

cases such as cubic in highly symmetric directions. A symbolic approach with Cardano formula

may be used if the problem can be written as a bi-cubic then an analytic solution may be

determined. The introduction of odd power terms into the sextic equation breaks the symmetry

in the complex plane in the imaginary axis, this is normally due to the loss of symmetry in the

stiffness tensor. In most anisotropic cases, numerical methods are required to compute these

partial wave solutions.

3.2.3 Boundary condition determinant

The boundaries used throughout this work are uniform surfaces which are normal to n, this

allows inhomogenous behaviour in only the njxj direction. Several types of boundary conditions

listed in Table 3.1 [11].

Type Boundary conditions

Free surface ui = 0

Free surface ti = 0

Interface ui = u′
i

ti = t′i

Table 3.1 Lists several boundary conditions taken into consideration for the development of the

numerical scheme.

The components of the traction t are ti, these are normal to the boundary surfaces defined as,

ti =
3∑

j,k,l=1

Cijkl
∂ul

∂xk

nj. (3.1)

The displacements in these boundary conditions are the linear combinations of the solutions to

the eigenvalue problem (2.17) in the summation,

ui =
6∑

r=1

BrA
(r)
i ei(k(m·x+p(r)n·x)+ωt). (3.2)

The boundary conditions listed in Table 3.1 are sufficient for describing the plate and half-

space geometries for single or multi-layer combinations of materials. The constants Br of (3.2)
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are found by solving the boundary condition determinant, constructed for a particular geometry.

A square determinant is a summation of d! terms in which each term is a permutation of products

for d elements. Once rearranged, each term of the determinant will be some combination of

sums and products of the displacements (3.2) and tractions,

ti =
6∑

r=1

BrL
(r)
i kei(k(m·x+p(r)n·x)+ωt), (3.3)

Therefore, for all boundary conditions listed, the determinant is composed from sums and

products of analytic functions and therefore is holomorphic.

3.2.4 Modular object orientated MATLAB code

Throughout all of the remaining chapters, additional physical behaviours are introduced along

with the updated boundary conditions. The methods developed in this chapter may be applied

to all of these up coming cases. Therefore, the numerical code that is developed in this chapter

will take advantage of object-oriented coding to modularise the boundary conditions [12]. This

combination of different behaviours is done through each of the material types and will allow

cross combinations to generate determinants.

The object-oriented code is used only for the organisation and inherited functionalities,

different types of materials are created using classes. The class contains all the matlab functions

and methods required for the generation of mathematical functions pertaining to that material

type, primary the eigenvalue and boundary conditions. The base class of this numerical code is

the elastic class, which contains the definable properties values for stiffness and density. The

eigenvalue and boundary condition functions may be generated as an instance of this class for a

defined material. The material types to follow in the remaining chapters will be subclasses from

this base class, or from each other but the elastic class is the superclass to all.

For each of the boundary types outlined in Table 3.1, a matrix or matlab function will be

generated. These may be combined into a predefined function for the determinant, using all

of the materials in the combination. Taking this approach will allow many different layered

combination to be explored including variation of plate and half-space geometries, for various

types of materials. New types of boundary conditions or physics, that can be modelled using the

eigenvalue approach, can be inserted with ease. This will prove useful for modelling the various

material combinations of interest, see Section 1.2.2 for common materials.
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3.3 Tracking Along Curves of Constant Phase

3.3.1 Procedure

The following steps outline the procedure for tracking over curves of constant phase on a 2-

dimensional surface f(z), see Appendix C for example MATLAB code. The main procedure

uses a two part algorithm consisting of a tracker section and a correction section, when the

curvature increases the correction activates to adjust the direction of the next step. Without a

correction step the tracker may drift onto a curve for another solution, the correction method used

is based on ridge tracing methods [13]. When the sign of the curvature changes, the direction of

the correction search also changes to reduce the amount of steps required to make a correction,

the procedure is illustrated in Figure 3.3.

Fig. 3.3 Shows the line tracing part of the procedure. At (a) the linear step is taken in the predicted

direction to find the next point on the curve. At (b) the correction step, due to increased curvature,

requries additional search steps which may be reduced by predicting the correct direction.

Initial procedure to find all starting point z0:

I. Define a search region enclosed by a loop or box G.

II. Search over G for all the starting points denoted z0 of a selected phase arg(f(z0)). The

approach taken is a search on the elements of G to minimise the difference in arg(f)

between points along G and the selected phased.

Main procedure for each starting point z0:

1. The first step can take one of two possible directons along the curve of constant phase.

A minimum of four steps in two orthogonal directions is required to get a rough approx-

imation of the correct direction for the first step, see Figure 3.4. Assuming that the test

steps are within a linear range, from the two orthogonal directions one should minimise

the change in phase arg(f) which corresponds to the direction closest to the curve. Two
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possible directions now remain on a line, the step that minimises the magnitude |f | is the

correct direction. More steps can be used for greater accuracy without a large cost to the

overall runtime of the procedure.

2. Tracker: Take a primary step dz in the predicted direction to a new point on the curve zn.

Take two secondary steps with the same radius dz but at a positive and negative angle from

the primary step, see (a) in Figure 3.3. In this procedure the angle is tied to the correction

step size.

* If step is outside of the search region G discontinue search.

* If |f | of the primary step is not the minimum of the three steps taken, then proceed

to the correction step 3 with updated sgn(C) based on which step is the minimum,

otherwise zn+1 = zn return to 2.

3. Correction: Search over a circle around the centre point zn in the direction given by

sgn(C), the step zc is based on the radius dz and the number of discretizations.Take the

point zn+1 which minimises the arg(f) and lowers the |f | from zn. The correction section

concludes as soon as zc meets the criteria, see (b) in Figure 3.3.

* If the circle sweep is unable to find a value for zn+1, with a lower|f | than zn, then

continue to final step, otherwise return to 2.

4. Reduce the |dz|.

* If the error term is within the required convergence then output solution, otherwise

return to step 2.
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Fig. 3.4 The regions on the surface f(z) illustrate different behaviours for a step taken from

the white point on the constant phase curve (dotted) into these regions. For (a) and (c) the step

will have greater change in |f(z)| than arg(f(z)) and for the two (b) regions the step will have

greater change in arg(f(z)) than |f(z)|. For the curve of constant phase, the region (a) with

|f(z)| → 0 is towards the solution, and so (c) with |f(z)| → ∞ moves away from the solution.

3.3.2 Optimisation of input

To further analyse the numerical method that has been developed, the overall procedure must be

broken down into seperate algorithm blocks. Three different step sizes are used in the outlined

procedure, one in part II of the initial procedure and two in the main procedure in parts 2 and

3. The number of steps performed in Part II is a linear funtion of the step size or divisions of

the loop G. The step size should be chosen to minimise the number of steps without sacrificing

accuracy. Though the selected starting phase angle may be chosen to be any phase angle with

the same result, therefore the step size only needs to be small enough to distinguish between sets

of phase angles for different solutions. If the number of roots are known then the step size can

be reliably large as long as the starting phase is redefined for the main procedure.

The steps taken in the main procedure starts as a linear function of two input step sizes, this

is then followed by a quasi-logarithmic form when the tracker starts to approach the solution.

For each step in the main procedure the number of steps taken is given by,

f = 3n2 +Ncn3, (3.4)

where n2 and n3 are step sizes for part 2 and part 3. The order of magnitude of n3 is consecutively

reduced whenever the tracker reaches the solution, inducing the quasi-logarithmic convergence.

The number of correction steps taken is Nc which varies for each step. The step size n3 is the arc

length dependent on the radius n2, see (b) in Figure 3.3. The input variable is instead taken as d,

the number of line elements in the discretisation of the completed circle around zn. On the last
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step of the procedure the correction step acts as a convergence check with the number of steps

Nc = d. So now n3 can be written in the form

n3 =
2πn2

d
. (3.5)

Increasing the size of n2 reduces the number of steps required to get within the local range

of the solution for the convergence process to begin, see Figure 3.5. The maximum allowable

size of the initial input n2 is limited by the smallest length between what is numerically taken as

non-degenerate solutions. Increasing this initial size of n2 leads to a higher chance of the tracker

jumping to the curve of constant phase of another solution, in the case shown in Figure 3.5 this

occurs close to the maximum step size presented. Note this optimisation test was performed on

the partial wave determinant of an anisotropic material and results may vary based on the case.

0 0.02 0.04 0.06 0.08 0.1

0

200

400

600

800

1000

Tracker

Correction

Fig. 3.5 The total number of steps taken in the tracker (part 2) and correction (part 3) with change

in the initial starting step of n2 with d = 36, the case shown is the average computation of all six

solutions to the partial wave determinant.

The input d should be as small as possible to reduce the number of correction steps Nc, see

Figure 3.6. If the step size n3 is too large the correction or convergence will fail, this is the only

factor limiting the minimum possible input of d. Therefore, for both stepsizes, the optimisation

of the stepsize is a simple balance between reliability and number of steps required to complete.
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Fig. 3.6 The total number of steps taken in the tracker (part 2) and correction (part 3) with

variation of number of divisions d with n2 = 0.1, the case shown is the average computation of

all solutions to the partial wave determinant.

3.3.3 Comment on real velocity

The eigenvalue problem (2.17) for the non-attenuated and non-leaky case only requires real

values of k and ω. By fixing the velocity, the p roots remain constant from point to point in the

boundary condition search due to the form of (2.17). This significantly reduces the computation

required in the boundary condition problem which is a function of k for fixed velocity, and can

easily be transformed back to the k − ω form. For the attenuated and leaky cases, constant

velocity values may be imposed and solutions will exist. However, for complex k values, which

are required for these cases, complex ω values are also required to get real velocities. Constant

velocity solutions are still of interest but limiting in scope, the more applicable solutions require

real ω values. This would require a changing velocity value of the form,

v = vreal

(
1 + i

α

β

)
, (3.6)

where k = β + iα which reduces to the non-attenuated case for α = 0. Therefore, p roots

would no longer remain constant but is now a function of the ratio between imaginary and

real wavenumber values for fixed ω. A numerical search applied in the β − α space, for the

boundary condition problem, would now require the computation of p roots for every point.

Taking advantage of the form (3.6), the search could be performed in directions of constant ratio
α
β

in which the complex velocity v remains fixed. In Chapter 4 the existence of solutions in

which Im(ω) = 0 will be investigated by introducing a complex velocity in this form.
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3.4 Phase Tracking for Fixed Frequency

In wave based biosensor design a fixed wavelength is typically imposed in the transducer design,

this is imposed by the geometry of the biosensor. Solving the wave problem in velocity space is

useful for viewing the existence of different types of waveforms within particular ranges, this

would also limit the possible frequency range. In mechanical biosensor design, it is the frequency

shift mechanism which is of interest; waveforms are excited at particular frequencies and the

changes are observed. For annular transducer design, the entire transducer array is excited at a

single frequency, requiring a non-circular structure for variation due to anisotropy in material

properties. Annular transducer design will be discussed further in Chapter 5.

The frequency may just be fixed at a set value in the constant phase tracking procedure,

the partial wave roots would have to be computed for every change in velocity at each step or

precomputed for a velocity range. The computation of these roots would not only be numerically

costly but at times lead to instability, requiring a higher degree of convergence and checking to

smoothly plot the boundary conditions. The instability occurs most typically in problems which

couple physical gradients that are orders of magnitude apart, magnifying boundary determinant

errors. Therefore, it is of interest to develop a fixed frequency numerical method which has the

benefits of constant velocity tracking, this is the objective of this section.

3.4.1 Fix frequency and sampling dispersion curves

The first approach which may be taken is to compute the dispersion curves in for fixed velocity,

and then take slices at particular frequencies that may exist. If the waveguide dispersion

information has already been computed, then this becomes a rough way of approximating the

possible fixed frequency surfaces. For frequency independent cases, the dispersion curve only

need to be computed for one wavenumber, the frequency and wavenumber can be scaled relative

to the velocity, assuming a fixed real velocity. For frequency dependent cases, the dispersion

structure will also be dependent on frequency and would have to be computed on a based by

based case. In the case of computing anisotropic slowness information, the dispersion curves

will be a set of slowness-dispersion cylinders for each of the modes. The fixed frequency data

would then be slices of these slowness cylinders at particular frequency values. Examples of

anisotropic velocity surfaces are given in Section 4.2 in the wavenumber domain. These slowness

cylinders are numerically costly to compute, this without factoring in the possibility of frequency

dependence. The computation of this data would also have to be at a high enough resolution

to minimise error in slicing the velocity data for which the fixed frequency may lie between
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computed steps. This approach is not feasible for computing frequency information for particular

cases, the use of this method should be restricted to first approximations for pre-existing data.

3.4.2 Golden section optimisation with phase tracking

An alternative approach is to use an additional numerical search after the constant phase tracking

to minimise the difference between the required and output freqency. The optimisation method

chosen is search by golden sections [4, 5], taking advantage of the golden ratio (3.7) allows the

sampling and elimination of sections of a predefined 1-dimensional region,

Φ =
1−

√
5

2
. (3.7)

This would require prior knowledge of the location of a solution, the easiest approach would

be computing the dispersion information within the desirable velocity range. So this method

would either be used to converge on an already known solution or find the starting point of a

solution branch at constant frequency. Even though prior information of the solution is also

required in the constant phase tracking approach, in the forms of starting regions, this method

requires knowledge of a local branch of solutions. The major benefit of this method is the

faster computation time along with natural reduction of error caused by frequency dependence,

discussed further in the next section.

Provided that the dispersion structure is known, the desired fixed frequency within a section

of the dispersion is selected. A velocity range around this frequency is selected as the golden

section search range, this is illustrated in Figure 3.7.

Fig. 3.7 An illustration of the search by golden section method on a portion of the dispersion

curve, the function is now the difference in magnitude of the frequency curve and the selected

fixed frequency.

For each step of the golden section search, the constant phase tracking procedure is used on a

local area to find the point on the dispersion curve. A direct magnitude tracking approach may

be used for the search dispersion, provided the search range is small and outside the range of
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other dispersion curves. The partial wave solutions must be tracked using curves of constant

phase to allow the search by golden sections to be performed across transiton points. The search

by golden section method is briefly outlined in the following steps:

1. Define the set frequency and velocity search range, labelled xL to xH , around this value.

2. Find x1 and x2 using the golden ratio,

x1 = xH − Φ(xH − xL), (3.8)

x2 = xL + Φ(xH − xL). (3.9)

3. Check the function f(v) at x1 and x2, and then redefine xL or xH based on the following

conditions.

* If f(x1) > f(x2) set xL = x1

* If f(x1) < f(x2) set xH = x2

It is guaranteed that the minimum, dependent of course on the shape of the function, is

within the remaining search range.

4. If sufficient convergence is achieved between the function values at xL and xH , then output

the solution, else repeat steps 2 through to 4.

3.4.3 Fixed partial solutions in frequency dependent cases

In the remaining chapters, partial wave eigenvalue problems which have a frequency dependency

exist. Therefore, in the constant phase tracking step, the partial waves will be dependent on

the changing frequency even if the velocity is fixed. This would make the search by golden

section redundant, increasing the computation steps beyond the amount needed for a constant

phase tracking in the frequency domain. It is possible to attempt a search by repeated fixing

and updating frequencies, briefly outlined in the following steps. This may be combined with a

perturbation method to find the change in the solution with changes in a parameter such as layer

thickness or angle.

1. Set the fixed frequency ωfix close to a known solution.
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2. Using gradient tracking or constant phase tracking, find the local change in frequency ωout.

For a perturbation approach the change in solution from a known solution may be track

with change in a parameter such as angle or thickness.

3. Update ωfix with ωout.

* If a convergence between fixed and output values is reached then end procedure.

* Else repeat steps 2 to 3.

Unfortunately, the frequency dependency may cause large drifts from the true value with small

shifts in the fixed frequency. With increased steps the error between ωfix and ωout divergences,

this can occur close to known solutions. For searches using golden sections, this divergence

can be seen in the function to minimise, f = |ωout − ωset|. Presented in Figure 3.8 is the

comparison between the correctly tracked and fixed minimisation functions, where for the fixed

case ωfixed = ωout at ωset.
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Fig. 3.8 Comparison between the correctly tracked and fixed frequency functions, ωfix is set to

ωout at the ωset of the correct function. Presented in (a) is the minimsation function used in the

golden section search and in (b) the ωout functions projected on the complex plane.

Away from the point where ωfix = ωout, the solutions to the fixed case diverge from the correctly

tracked solutions. Attempting to track the minimum for any changes in parameter leads to

diverging errors, dependent on the strength of the frequency dependency. In this case the function

is the branch of solutions for SU-8 epoxy-based photoresist (shear viscosity of η = 0.059) on

lithium niobate, this particular material is discussed in more detail in Section 5.2.

Tracking fixed slowness surfaces will be of interest in Chapter 5, the error between the fixed

and tracked slowness surfaces will be checked to see if the fixed approach is suitable. Otherwise,

the remaining options are constant phase tracking or locally tracking the shift in solution, this

would be done using a 2-dimensional gradient method on the complex plane. This approach
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is numerically quicker than constant phase tracking, but can not account for variation due to

transition points. Additionally, the branches of solutions must not be in the local vicinity of other

branches, due to the 3-dimensional nature of the problem, this tends not to occur.

3.5 Conclusions

In this chapter the argument principle for holomorphic functions, has been redefined to emphasise

the structure of the curves of constant complex phase. For this definition to be equivalent to

the well-known argument principle, it is required that the curves of constant phase of different

solutions can not intersect. The functions of the partial wave and boundary condition problems

are holomorphic, this allows for the use of numerical methods that take advantage of the argument

principle. A numerical method based on the curves of constance phase has been developed, in

constrast to the literature which is comprised of grid based approaches. This constant phase

tracking procedure traces the phase curves from a loop G to the solutions. For this procedure it

has been shown that the two step sizes should be set as large as possible, with the limiting factor

being reliability of the curve tracing. The other factors affecting computation time includes, size

of search loop in relation to solutions and the number of curves of constant phase to track.

For the mechanical problem, the partial waves remain constant for fixed phase velocity, this

significantly reduces computation time for the boundary condition problem. Fixed velocity

searches are normally used in the existence problem, where the change in velocity can lead to

changes in wave structure. For biosensor application, it is required that the frequency remains

constant, a hybrid search by golden section with velocity constant phase tracking has been

developed. This approach minimises the frequency within a velocity range, unlike constant phase

tracking for a set frequency, this would require prior knowledge of the location of the solution.

Another disadvantage is the limiting of one branch of solutions per computation, these negatives

are outweighed by the increased computation time. For cases with frequency dependent partial

waves, it has been shown that a fixed frequency approach leads to divergences in the solution.

The procedure requires additional partial wave tracking to account for these frequency dependent

variations, unless the dependency is small.
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Chapter 4

Attenuation in Mechanical Waveforms

In Chapter 2 several non-attenuated waveforms were defined, as discussed in Chapter 1, these

waveforms have traditionally been used in biosensor designs. In addition to these waveforms,

energy leakage SAWs may exist in the half-space geometry which carry energy away from the

surface of the structure. The study of these attenuated waveforms will lead to insight on their

behaviour, which may be used to optimise current biosensor designs and develop novel sensors.

Presented throughout this chapter is the definition and numerical study of leaky behaviour

in SAWs. The leaky transition is explored in anisotropic combinations, in which conflicting

symmetries create new transition regions, and directional dependent leaking of energy. These

transition regions are sections of the bulk wave velocity curves between intersection points with

other bulk velocity curves. The resulting bounded area between the two velocity curves may

have unique behaviour, due to the partial wave roots, this is investigated in this chapter. At the

end of this chapter, velocity surfaces for fixed real frequency values are presented, in this format

the data can be used readily for biosensor design.

4.1 Formulation of Attenuated Waveforms

The leaky surface acoustic wave (LSAW) is a supersonic phenomenon that exists in isotropic

media under certain conditions, [1, 2] and in anisotropic media [3]. These waveforms are

labelled supersonic, due to the coupling of a bulk propagating partial wave, which comes into

existence above the bulk velocities of the material. The slowness structure of these LSAWs,

is of interest for circular biosensor application, for the mitigation of energy loss. Numerical

studies in the slowness structure of LiNbO3 and LiTaO3 have been preformed for LSAWs [4–6],

recently the experimental and numerical study of several silicon cuts were conducted [7]. LSAW
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branched solutions may exist in the layered case, in which the substrate has a contribution from

a bulk propagating partial wave. The literature on multilayered LSAWs is limited compared to

the half-space cases, most literature that can be found only considers particular directions of

anisotropic materials [8, 9]. Leaky behaviour in most cases is detrimental to the preformance of

a biosensor, but some cases of biosensor detection mechanisms based on LSAWs exist [10–13].

4.1.1 Expansion to attenuated cases

The assumed form for the solution in Chapter 2, only permitted propagating waves in the m

direction. An approach to capturing leaky behaviour in the literature, [14] is to introduce a

complex wavenumber k = β + iα. The imaginary part, corresponds to the energy loss through

decay behaviour in the propagation direction, denoted the attenuation α. The solution now takes

the form,

ui = Aie−(iβ−α)(m·x+pn·x)+iωt. (4.1)

This solution can be rewritten into the velocity form using v = ω
β+iα . For now only attenuated

cases in which v ∈ R will be considered, these require k, ω ∈ C. These cases have improved

computation runtime when v remains fixed, and serve to provide initial insight into attenuated

wave behaviour.

The partial wave eigenvalue problem of (4.1) is written in terms of k and ω in the form;

[
(β + iα)Γil − ρω2δli

]
Al = 0. (4.2)

The case of setting only α = 0 has already been covered, the operator is Hermitian and so

a set of p solutions may be found for a real frequency input. Setting only β = 0 results in

the skew-Hermitian version of Γil leading to an imaginary value for the frequency. Isotropic

solutions which were originally on the real axis, in the Hermitian case, are now rotated back onto

the imaginary axis, see Figure 4.1.
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Fig. 4.1 The effect of rotating the wavenumber along the complex unit circle has on the partial

wave solutions of an isotropic material. The starting point is on the real axis with a phase velocity

that is greater than the highest bulk velocity, the dotted lines correspond to the degenerate shear

partial solutions.

The operator kΓil can be shown to be normal, simply from the product of the commutative

Hermitian and skew-Hermitian parts. This commutative property is well expressed in the

summation notation of the tensor formulation, order of the terms does not matter in this case.

Following this for attenuated cases, the eigenvalues ω does not have to be purely real but the

eigenvectors do form an orthogonal basis.

Consider once again the complex case, but with an additional condition to enforce ω ∈ R

requiring a complex velocity. The constrained dispersion relationship takes the form;

ω

β + iα
= vr − i

α

β
vr, (4.3)

where vr is the real part of the velocity Re(v). This condition reduces the allowable range of

velocity values, by enforcing the imaginary part of the velocity to be a scaling of the real part,

by the ratio of imaginary to real parts of the wavenumber k. This can be viewed as restricting

the search to the subset of possible solutions, which result in complex wavenumber with real

frequency. Setting both of the values vr and ω, enforces the following condition between the real

and imaginary parts of the wavenumber,

β =
α2vr
ω

+ 2iα +
ω

vr
. (4.4)
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4.2 Transition to Leaky Waves

Combinations of anisotropic materials, with differing material symmetries for particular cuts, can

commonly occur in biosensor applications. For most biosensing technologies, these anisotropic

effects do not have a significant impact. For devices that take advantage of circular geometry,

these effects can no longer be ignored due to excitation of the whole cut. The overlapping of bulk

solutions can give rise to new regions of wave transition in the combined bulk wave solutions,

in these new regions LSAWs can exist. In this section the affect of leaky behaviour is studied

in particular crystal symmetries and the resulting dispersive behaviour of the composite SAW

modes is discussed.

4.2.1 Leaky transition in anisotropic materials

Cubic silicon has 4-fold cyclic symmetry, while trigonal quartz has 3-fold cyclic symmetry,

but a quasi-6-fold symmetry in the Z-cut which is dependent on wave type. The behaviour of

LSAWs is explored in these cuts of quartz on silicon, in a layered half-space configuration. The

bulk wave velocities of quartz, are typically lower than the bulk velocities of silicon, making

them compatible for quasi-Love propagation. As discussed in Chapter 2, this less compatible

combination of silicon and quartz symmetries, will lead to extra transition regions due to

overlapping bulk solutions. The relative bulk wave surfaces are the same as those shown in

Figure 2.23. Interest is placed on the overlapping of the first silicon and second quartz velocities,

which occurs at four points, the first is at approximately 2π
6

. At these points the wave is expected

to become leaky, due to the contribution of a bulk propagating shear horizontal partial wave in

the silicon.

After the maximum point on the lowest shear velocity of quartz, there is a region from

approximately 3900ms−1 to 4300ms−1 of no overlapping in bulk solutions. After this region,

up to around 4600ms−1, the solutions remain non-leaky, but several crossings of the second

quartz bulk wave occurs. This whole range is ideal for non-leaky SAW propagation, presented in

Figure 4.2 are the first two complete SAW modes at velocities within the non-leaky range, which

are above 4300ms−1. The first mode is a shear dominate SAW and the second is the Rayleigh

displacement dominate SAW. However, due to the cyclic dispersion by anisotropic stiffness, the

relative contributions of each are not constant with propagation angle. Both modes illustrate

2-dimensional dispersive behaviour, in particular they show the coupling between these two

dispersions, namely the waveguide and anisotropy. This behaviour is clearly seen in the first

mode at 4300ms−1, it has the 6-fold cyclic symmetry of the Z-cut quartz layer. On increasing the
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velocities to 4600ms−1 the wave length into the depth increases, leading to a shape resembling

the 4-fold symmetry of the silicon substrate. This is a reflection of the energy partitioning

between the layer and the substrate, with increased velocity, the energy in the cubic substrate

increases modifying the cyclic dispersion.
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Fig. 4.2 Wavenumber surface for the first two complete plane propagating SAW modes in Z-cut

quartz on (100) silicon, rotated in the X1 − X2 plane. For velocities 4300ms−1 (outer) to

4600ms−1 (inner) in increments of 100ms−1.

At around 4700ms−1 the lowest shear of silicon will start having an effect on the SAWs,

introducing leaky behaviour at particular angles. Presented in Figure 4.3 are the first two

complete SAW modes between 4500ms−1 across the leaky transition to 4900ms−1, note these

are different modes than those shown in Figure 4.2. The leaky behaviour has an affect on the

the 2-dimensional dispersion structure, in addition to the effects in the non-leaky case. The

rapid shift in the symmetry structure of the modes is once again due to the increased energy

contribution in the substrate, but this is due to the bulk penetrating LSAWs. The contribution of

a bulk propagating partial, will change the generalised displacement form of the modes. Along

with the relative dominance shear and Rayleigh type displacements between layer and substrate.

The peak of the attenuation of the first mode at 4900ms−1 is approximately 0.81 rad, this is close

to, but not directly corresponding to, the minimum of the lowest silicon bulk. This would suggest

that the leaky behaviour is not completely dependent on the substrate bulk velocity as expected,

but is slightly offset due to the quartz symmetry.
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Fig. 4.3 Wavenumber solutions for the first two complete plane propagating SAW modes over

leaky transition in Z-cut quartz on (100) silicon, rotated in the X1 −X2 plane. For velocities

4500ms−1 (outer) to 4900ms−1 (inner) in increments of 100ms−1. Colour map denotes complex

phase of the wavenumber.

Presented in Figure 4.4 is the change in real wavelength in X1 denoted Re(λ1) over the

leaky transition, which is seen on Figure 4.3. The shift to LSAW behaviour is seen as a smooth

kink in the wavelength surface for both presented modes. The rate of change in the real part

of the wavelength in the X1 direction reduces after this transition. The waveform is no longer

propagating in the X1 direction, but instead at some angle into the bulk, the wavelength surface

supports this idea.

The behaviour presented is just the case of a single layer on a substrate, the bulk propagating

partial is only coupling a larger portion of the substrate. The possiblility of taking advantage of

this transition mechanism for dynamical activation of embedded inactive layers also exists. The

study between the effect of SAWs verse LSAWs on embedded layers with bulk velocities lower

than the transition velocity, would have to be conducted. Such mechanisms are beyond the scope

of this research, but may prove interesting for enhancing biosensor detection mechanisms.
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Fig. 4.4 Change in real wavelength in X1 over the leaky transition for both modes presented in

Figure 4.3. Presented for angles 0 rad (dotted) and 0.81 rad (solid), 1st corresponds to the mode

with the lowest wavenumber.

So far, in this chapter, the data computed has been for fixed real velocity, a desirable

requirement is that the frequency remains real requiring a complex value for the velocity. Such

a solution would have no decay in the time part of the waveforms, this would correspond to

pure spatial leaking. The possible existence of such solutions is worth checking, though the

goal should be to minimise the imaginary part of the frequency. The imaginary frequency is

discontinuous over zero imaginary velocity and tends toward large values towards positive and

negative imaginary velocity. Figure 4.5 presents the frequency solutions in quartz on silicon over

the leaky transition at a propagation angle 0.81 rad. These branches are from the same case as

Figure 4.3 of transition from a non-leaky to leaky solutions.
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Fig. 4.5 Frequency solutions for the first five low attenuated branches in quartz on silicon at a

propagation angle of 0.81 rad for velocity values over the leaky transition point.
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For completeness, there also exists high attenuation solution branches before the transition

point. Presented in Figure 4.6 are the positive high attenuation branches for the case of quartz

on silicon, across the transition velocity at an angle of 0.81 rad. Based on the existence theory,

these branches may correspond to a type of bulk propagating generalised Rayleigh LSAW in

the layer. The Rayleigh type waves, come into existence below the lowest bulk velocity of a

material, and may become leaky for transition velocities of the layer. The peak attenuation of

these branches occurs within the first transition at approximately 4700ms−1 and the second

transition at approximate 4900ms−1, corrsponding to the second bulk velocity of quartz. The

attenuation reduces as the velocity approaches the second transition, after the transition point the

attenuation reduces to a similar range as the shear branches of Figure 4.5.
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Fig. 4.6 Frequency solutions for the first five high attenuated branches in quartz on silicon at a

propagation angle of 0.81 rad for velocity values over the leaky transition point.

The presence of small minimums in the third region suggest the possibility of an optimum

Im(v) to minimise the Im(ω). In this third region the substrate material will also have a bulk

propagating partial contribution, which may lead to interactions between the layer and substrate

leaky behaviours.

An interesting question arises, in the case of a generalised supersonic Rayleigh wave in the

layer on a substrate with only decaying partial contributions. Can a leaky Rayleigh wave exist in

this layer, and what happens to the waveform as the wavelength decreases from the plate range

to the SAW range? Unfortunately these high attenuated solutions are not of interest for biosensor

application and the focus is placed solely on low attenuated cases.
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4.2.2 Plane wave solutions

The transition to leaky behaviour significantly changes the structure of the modal symmetry, the

changing displacement forms of the mode gives insight into this rapid shift. The displacements

will be inspected in the direction of maximum attenuation for the first mode shown in Figure 4.3 at

an angle of 0.81 rad. Presented in Figure 4.7 and Figure 4.8 are the 1-dimensional displacements

of the first and second modes, respectively. Each shown at the 4500ms−1 and 4900ms−1.
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(a) 1st mode at 4500ms−1
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Fig. 4.7 Displacements of 1st silicon on quartz SAW mode in X3 normalised using Re(λ1).

Stiffness tensors for both materials rotated in x1 − x2 by 0.81 rad. Normalised to the surface

displacement u2(h), dotted lines denote the interface (at 0) and surface (at 1
Re(λ1

)) boundary

conditions.
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Fig. 4.8 Displacements of 2nd silicon on quartz SAW mode in X3 normalised using Re(λ1).

Stiffness tensors for both materials rotated in x1 − x2 by 0.81 rad. Normalised to the surface

displacement u3(h), dotted lines denote the interface (at 0) and surface (at 1
Re(λ1)

) boundary

conditions.
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In the chosen direction of propagation, the modes presented in Figures 4.7 and 4.8 before the

leaky wave transition are both generalised SAWs. After transiton the decaying structure in the

substrate remain the same for the Rayleigh displacements U1 and U3, but now with a propagating

horizontal shear component. For both modes, the substrate is now dominated by the shear waves

due to the coupling of the shear bulk propagating partial wave. This behaviour is tied to the

LSAW, quartz on silicon on a new substrate would allow Rayleigh displacements to propagate

along the new interface, removing the horizontal shear dominance. These leaky structures are of

interest to circular devices for mitigating energy leakage and possible novel devices, that may

take advantage of the cyclic dispersive behaviour.

4.2.3 Fixed frequency surfaces

For biosensor applications, a fixed frequency data set is required for the design of IDTs for the

excitation of waveforms at a uniform frequency. The fixed velocity approach is still useful for

the fast computation of the existence problem and dispersion data. Computing this dispersion

data is also the first step in computing fixed frequency surfaces, for the correct selection of a

starting position. Presented in Figure 4.9 are the first three complete frequency curves between

4000ms−1 to 5200ms−1 with a 1µm thick layer.
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Fig. 4.9 The (a) real and (b) imaginary parts of the frequency of the first four modes of 1µm thick

Z-cut quartz layer on silicon (100) substrate with velocity. Data is computed for propagation

angles 0 rad (solid) and π
4

rad (Dotted).

Using the hybrid search by golden sections with constant phase tracking, outlined in Sec-

tion 3.4, the fixed frequency velocity data can be computed. Presented in Figure 4.10 are velocity
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solutions computed for changes in propagation angle along the X1 − X2 surface for the first

mode between fixed frequency values of 20GHz to 25GHz.
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Fig. 4.10 For real fixed frequencies of 20GHz (outer), 23GHz (centre) and 25GHz (inner), the

velocity surfaces have been computed for rotations in the X1 −X2 plane. For the case of 1µm

thick Z-cut quartz on silicon (100), the colour map denotes the imaginary frequency.

In the non-leaky range the fixed frequency surfaces, at 20GHz and 23GHz, have a dominate

6-fold cyclic symmetry of the Z-cut quartz layer. Increasing the frequency to 25GHz over the

leaky transition leads to angle dependent leaky behaviour at the same angles as the fixed velocity

cases, as expected. This angular dependent leakiness increases the coupling to the 4-fold (100)

silicon substrate, and breaks the dominant 6-fold structure. The novel problem shown here, is

not typical of cylindrical biosensor design; in the next chapter a case which is closer to a real

world application of these surfaces will be studied.

4.3 Conclusion

A common approach throughout the literature, is to model leaky behaviour by making use of

a complex wavenumber. Unlike the non-leaky problem, the partial wave eigenvalues may be

complex for velocities higher than the bulk velocities. The problem of transition from non-leaky

to leaky behaviour, is considered in the case of quasi-6-fold Z-cut quartz on 4-fold (100) silicon.

The bulk wave solutions in Section 2.5 hint that this combination will cause leaky transitions in

particular directions, this has been shown to be true.
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Attenuation in Mechanical Waveforms

The overall symmetry of the combination is 2-fold, but the relative energy partitioning

between the layers, will alter the dominant symmetries. The non-leaky case of a dominant 6-fold

structure changing into a dominant4-fold, has been shown is due to only the waveguide and

anisotropic dispersions. In the leaky transition case, the shift in symmetry is larger at particular

angles, due to the increase depth of propagation into the substrate. Due to the anisotropic

combination, the modes presented are generalised multilayered modes with some combination

of Rayleigh and shear horizontal displacements. For the lowest mode a clear transiton between

dominant 6-fold and dominant 4-fold symmetry is seen, at angles of leakiness this 4-fold shape

is accentuated. The existence of high attenuated solutions were also noted and briefly discussed,

these solutions are currently not of interest for biosensor application.

For biosensor applications, it is required that the slowness surfaces be computed using a

fixed frequency value. For the same case of quartz on silicon, several fixed frequency velocity

surfaces have been computed around the same transition point. The behaviour viewed in the

fixed velocity surfaces is also present in the fixed frequency surfaces with the same angular

dependent leakiness. These velocity surfaces play a important role for the design of annular IDTs

on anisotropic crystals for cylindrical biosensor design, to be discussed further in Chapter 5. The

possibility of using directional dependent bulk penetrating waveforms to dynamically activate

embedded layers was briefly discussed. These concepts are beyond the scope of this research,

but will be discussed briefly as further work in Chapter 8.
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Chapter 5

Viscoelastic Waveguide and Shaped

Annular Transducers

Biosensors are a combination of several different components including mechanical components,

viscoelastic and biological. Viscoelastic components of biosensor design will have damped

contributions which leads to time-dependent energy loss by internal friction mechanisms. When

tailoring the waveforms for engineering applications these effects can not be ignored, in the case

of resonant biosensors, the Q-factor (quality) is impacted. Damping in materials is studied using

a 3-dimensional viscoelastic formulation which extends the formulations of Chapter 4. The

effect of frequency dependency on the partial wave solutions is investigated, this dependency

will alter the numerical approach. The computation of fixed frequency velocity surfaces, started

in Chapter 4, is extended in this chapter to illustrate the design process of shaped annular

transducers. The effect of the anisotropy of particular crystal symmetries is studied along with

the potential impact to these annular transducer designs.

5.1 Formulation of Viscoelastic Waveforms

Biosensors are constructured using a combination of mechanical, electrical and biological

elements. These biological and mechanical elements can contribute to the energy loss of the

waveform due to their viscoelastic properties. The viscoelastic behaviour of the waveguide,

[1, 2] and biological binding site [3–5] can contribute to the overall attenuation of the waveform.

Depending on the anisotropy of the material, the impact of viscoelastic damping may have cyclic

dependence, also impacting the effective electromechanical coupling [6] in particular directions.

For these cases the viscoelastic behaviour will therefore, in addition to waveguide and anisotropic
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dispersion, alter the solution surfaces of wave modes in a cut. The common motivation behind

studying the viscoelastic behaviour is to reduce the energy loss for traditional biosensor designs,

particularly layered devices [7–9]. In other applications, such as constrained layer damping, the

viscoelastic properties are tailored to attenuate energy at particular excitation frequencies [7, 8].

This behaviour also has the potential to be used as a sensing mechanism in biosensor technology

due to rapid frequency shifts and modal degeneracy breaking.

5.1.1 Viscoelastic damping in equation of motion

So far in this work the analysis has been focused on only elastic materials in which the stresses

instantaneously result in a strain response. Viscoelastic materials are a combination of the elastic

response and the viscous property which is a measure of the resistance to change. Due to this

the stress-strain response in viscoelastic materials is now time-dependent, giving rise to creep

and relaxtion behaviours [9]. The linear viscoelastic behaviour may be introduced into the wave

equation through several different approaches in the constitutive relationship, see Appendix A.

The numerical methods developed in Chapter 3 are sufficient for solving the resulting

eigenvalue problems which will be discussed. The choice of approach is therefore dependent on

which viscoelastic behaviours are trying to be captured by the model and the amount of material

data that is available.

The first approach is a full model by capturing the viscoelastic behaviour in rank-4 tensor

similar to the stiffness [10],

σij = Cijklεkl + µijkl∂εkl
∂t

, (5.1)

where µijkl captures viscous behaviour. The viscoelastic equation of motion using this form for

the stress is,

Cijkl ∂2ul

∂xj∂xk
+ µijkl ∂3ul

∂xj∂xk∂t
= ρ

∂2ui

∂t2
. (5.2)

Assuming a solution in the form (4.1) results in an eigenvalue problem with an additional

frequency dependent term,

[
(Cijkl + iωµijkl)(mj + pnj)(mk + pnk)− ρv2δli

]
Al = 0. (5.3)

Another approach seen in the literature uses a reduced form by introducing imaginary terms

into the stiffness tensor, typically the materials are isotropic. For these isotropic materials the
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5.2 Characterisation of Damped Loss

shear modulus is a common variable used to introduce an imaginary part to capture the shear

loss effects. The shear modulus is a combination of the shear storage G′ and shear loss G′′,

G = G′ + iG′′. (5.4)

A similar loss modulus can also be introduced into Young’s modulus, but typically for biosensor

applications only the shear loss modulus is considered. For waves propagating in biosensors,

the energy loss occurs in waveguide materials which are assumed to be thin film leading to

damped behaviour, dominated by the in-plane displacements. The frequency dependence in the

equation of motion will no longer exist in this approach, instead the shear modulus is now a

function of frequency; typically using a relaxtion function. Unlike (4.2) for a real wavenumber,

the partial wave determinant will already have an inital rotation into the complex plane breaking

the conjugate symmetry.

5.2 Characterisation of Damped Loss

Viscoelastic behaviour will be modelled using the viscosity of the material, and solving (5.2)

using the assumed form (4.1). This approach will be similar to the modelling of linear fluid

behavior in Chapter 6, except a pressure waveform is not generated in this case. SU-8 photo-resist

will be used as the viscoelastic waveguide throughout this section, it is an isotropic epoxy-type

material. The properties of this material significantly vary depending on the processes used to

layer SU-8 in MEMS devices, see [11].

5.2.1 Frequency dependence on partial wave solution

The viscoelastic form of the constitutive equation presented in (5.1) introduces frequency

dependence in the equation of motion and boundary condition procedure. The partial wave

solutions, need to be computed for each step of the boundary conditon for each viscoelastic

layer, computating these changes is numerically inefficient. The order of magnitude of the

viscoelastic coefficients is approximately nine times smaller than the stiffness coefficients. The

viscoelastic behaviour will only have an effect on the partial wave and boundary solutions for

high order of magnitude frequency values. The mechanism is similar to the constrained layer

damping mechanism in which the thicknesses of the viscoelastic layers is tailored to particular

wavelengths corrsponding to lossy frequency ranges. The shear viscosity, denoted η, of SU-8

in [11] depending on the type is either 0.059, 1.5 or 15 Pa·s. Figure 5.1 presents the change in
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partial wave solution for SU-8, with change in frequency between these values of viscosity at a

velocity above the bulk wave velocities.
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Fig. 5.1 Presented is the change in partial wave solutions of SU-8, with change in frequency for

different values of shear viscosity η at a velocity of 3000ms−1 above the bulk wave velocities.

Solid lines are η = 15 Pa·s and dashed lines are η = 0.059 Pa·s.

The partial waves, at a frequency that is dependent on the viscosity, switches from real to

imaginary values which corresponds to a rotation of the solutions back into the complex, similar

to Figure 4.1. This switching may be visulised as the wave transitioning from propagating

sinusoidal behaviour to expontial decay. The point of switching can be clearly shown on a

log-log scale shown in Figure 5.2, the frequency at this point is denoted ωη the switch frequency.
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Fig. 5.2 Presented is the change in partial wave solutions of SU-8, with change in frequency on a

log-log plot for different values of shear viscosity η at a velocity of 3000ms−1 above the bulk

wave velocities. Solid lines are η = 15 Pa·s and dashed lines are η = 0.059 Pa·s.
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5.2 Characterisation of Damped Loss

For η = 15 Pa·s the switching occurs approximately within the range 107 < ωη < 108 corrspond-

ing to a wavelengths around the 100µm range. For the lower viscosity of η = 0.059 Pa·s,

the switching range is higher at 1010 < ωη < 1011, within the µm range for wavelength. For

both cases the lossy behaviour occurs in wavelength ranges that are within common guidewave

thicknesses for biosensor application, typically the µm range. The guidewave at these thicknesses

are perfect for attenuation of the propagating SAWs, this would lead to a significant decrease in

the biosensor Q-factor. The correct excitation frequency should be chosen, so that the nautral

frequency is in the non-lossy range, so that the damping ratio is as low as possible. In addition,

the changes in the velocity have a insignificant effect on ωη, see Figure 5.3 for a comparison of

velocities. Therefore, for viscoelastic behaviour, the selection of frequency and velocity can be

assumed independent for the isotropic partial solutions.
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Fig. 5.3 Presented is the change in partial wave solutions of SU-8 with change in frequency

for different velocities for fixed viscosity of η = 0.059. Solid lines are at v = 3000 ms−1 and

dashed lines are at v = 10000 ms−1.

Inspecting the partial wave solutions not only gives clear insight into the possible ranges of

lossy behaviour of a material, but also the computational approach that should be taken. When the

frequency is smaller or larger than ωη, the changes in partial wave solutions, for the case of SU-8,

are predictable. For ω < ωη Re(p) does not change and the change in Im(p) is insignificant

compared to the Re(p) within the limit as ω approaches ωη. For these ranges the boundary

conditon solutions may be accurately tracked by only computating the partial solutions once,

using the phase tracking procedure. For ranges around ωη the propagating partial waves rapidly

switch to expontial decaying waves, this change must be tracked but this is inefficient. A more

desirable approach is to apply the phase tracking procedure, to small enough regions in which
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the change in partial wave solution is negligible. The change in partial values between regions

must be small enough to approximately connect the surface together without discontinuities.

5.2.2 Effect of lossy term on damping of generalised modes

Presented is the case of plane wave propagagtion in the half space geometry, 1µm thick SU-8

with η = 0.059 is layered on Z-cut lithium niobate. Lithium niobate is in the trigonal crystal

class, it has a 3-fold rotational symmetry but in the Z-cut the bulk solutions have a 6-fold cyclic

symmetric, termed quasi-6-fold. The velocity is set to 3000ms−1 above the bulk wave solutions

of SU-8 and below the bulk solutions of lithium niobate. The resulting modes are generalised

multilayered waveforms indistinguishable from the isotropic cases covered in Chapter 2. The

attenuation is dependent on propagation angle, all the modes in this case are lossy which results

in the tilting of the solution surface off the real axis, this is clearly shown in the first computed

mode see Figure 5.4, modes ordered by magnitude of Re(k).
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Fig. 5.4 Presented is the 1st computed mode for SU-8 on lithium niobate, (a) change in Re(k)

with propagation angle θ, colour map denotes Im(k). In (b) the solutions presented in (a) shown

in the complex plane of k.

Modes are not required to have the uniform tilting, non-uniform attenuation α = Im(k) leads to a

breakage of the symmetry projected onto the real plane. Figure 5.5 shows the seventh computed

mode in which the quasi-6-fold cyclic symmetry of the lithium niobate is twisted into 3-fold.

Trigonal crystals has 3-fold cyclic symmetry, although the bulk wave solutions of the Z-cut show

a 6-fold rotational symmetry. This is a quasi-6-fold symmetry which is dependent on the wave

types, for example a horizontal shear SAW would also have a quasi-6-fold structure.
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Fig. 5.5 Presented is the 7th computed mode for SU-8 on lithium niobate, (a) change in Re(k)

with propagation angle θ, colour map denotes Im(k). In (b) the solutions presented in (a) shown

in the complex plane of k, solid line for the range 0 < θ < 2π
6

and dotted line for 2π
6
< θ < 2π

3
.

A change in symmetry from quasi-6-fold to 3-fold is seen in this simple case of a viscoelastic

isotropic layer on a high symmetry, low variation cut. Another mode of interest is the sixth

computed mode which has a wavenumber close to the seventh mode, presented in Figure 5.6.

This mode exhibits the same attenuated behaviour, but now the odd and even peaks have been

twisted in reverse directions which results in a flipping of the symmetry shown in Figure 4.4.

Note this case is only symmetric in Re(k) not Im(k), the attenuation varies with a different

symmetry.
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Fig. 5.6 Presented is the 6th computed mode for SU-8 on lithium niobate, (a) change in Re(k)

with propagation angle θ, colour map denotes Im(k). In (b) the solutions presented in (a) shown

in the complex plane of k, solid line for the range 0 < θ < 2π
6

and dotted line for 2π
6
< θ < 2π

3
.
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5.3 Annular Transducer for Lithium Niobate

In this section the problem of annular transducers for excitation of waveforms in cylindrical

geometry is considered. The methods developed up to this point are in the form of plane

propagating waves. The methodology used here takes advantage of this formulation by assuming

plane fronted waves in the far field. The method uses the precomputed slowness diagrams to

approximate the Green’s function for a point loading that propagates SAWs into the far field

[12–14].

The goal is to design a transducer using the Green’s functions that does the reverse, focusing

plane waves onto a central point for biosensor application. For isotropic materials there is no

cyclic dispersion, therefore the phase and group velocities do not vary, and a circular transducer

may be used. In the case of anisotropy, this is no longer the case and an annular transducer based

on the slowness shape must be developed.

In the literature, only the half-space problem has been considered, applying a layer also adds

waveguide dispersion. This will alter the structure of the slowness structure in the third frequency

axis, in the half-space case these structures are uniform slowness cylinders. Even though the

inital research into the half-space transducer design exists, literature in this area is limited and

does not exist for the layered case.

5.3.1 Effect of piezoelectric coupling

The solution surfaces computed throughout this work are purly mechanical, neglecting the

effects of the piezoelectric materials. The piezoelectric coupling can be introduced to get a more

accurate picture of the slowness surface for these layered structures. Instead, in the approach

taken here, it is assumed that the variation due to the piezoelectric coupling is small. Provided

the error is small, then the mechanical slowness surfaces will be sufficient for a first concept.

Piezoelectric slowness surfaces may be computed in the future for further optimisation of the

transducer designs, if required.

The error must be small enough per cycle of the oscillatory waveform to not significantly

impact the excitation of the overall mode, number of cycles is dependent on the size of the

device. The error is dependent on the piezoelectric coupling coefficient of the materials in the

multilayered structure, the larger the coupling the larger the variation. As shown in Chapter 2,

quartz has a relatively low piezoelectric coupling opposed to lithium niobate which has high

coupling. The error in slowness data due to the piezoelectric coupling will be checked at

particular angles for both of these materials in Chapter 7.
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5.3 Annular Transducer for Lithium Niobate

The piezoelectric coupling strength between particular applied electric fields and stresses will

not be considered in the design of the transducer. The main reason for neglecting this is due to the

current limitations in transducer designs, even if the variation in piezoelectric coupling is known,

it can not be controlled in the annular transducers that will be presented. More sophisticated

annular or grid based IDT designs will need to be developed, which is currently beyond the

scope of the work presented but will be discussed further in Chapter 8.

5.3.2 Half-space shaped annular transducer design

The starting point for the annular transducer design is the fixed freqency slowness diagram, for

half-space waveforms, the solution only exists at particular velocity values. The solution for

every propagation angle is searched in the velocity domain, these solutions are non-dispersive. In

this case, for Z-cut lithium niobate, a velocity surface may be computed for a non-leaky Rayleigh

type waveform, presented in Figure 5.7.
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Fig. 5.7 The velocity surface for a generalised non-leaky Rayleigh wave solution in Z-cut lithium

niobate half-space.

The velocity surface is computed using the elastic formulation, the slowness is the reciprocal

of this surface, ignoring the effect of the piezoelectric coupling. As seen in Section 2.5.3, the

coupling in lithium niobate can have significant effects on the bulk solutions, unlike quartz. The

annular transducer pattern will be designed by not considering the piezoelectric coupling in

the slowness computation and Green’s function. The impact of this will be investigated with

comparison to some piezoelectric computations and the literature.

Using the data surface of lithium niobate, in Figure 5.7, the Green’s function may be computed

and used for shaped transducer designs. An example of a shaped annular transducer using this

data is presented in Figure 5.8, designed by Dr H.T. Grigg as a collaboration. The curvature of

this particular design has been increased by a rough factor of ten to emphasise the anisotropic
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structure which would not be visible but still relevant. This procedure may be automated, an

input slowness curve can be processed into a shaped transducer. Several design parameters may

also be automated in this computation process, for example the number of reflectors, allowing

fine tune control of the design process. The real advantage of this comes when combined with a

robust slowness surface computation method and adequate MEMS production facilities.

Fig. 5.8 A portion of the shaped annular transducer design for a non-leaky SAW mode in the

half-space of lithium niobate. Elements include reflectors at the outer most radius, two sets of

interdigital transducers and sites for analyte functionalisation.

5.3.3 Slowness curves of SU-8 on lithium niobate

Using the hybrid phase tracking and golden sections method, developed in Section 3.4, the fixed

frequency velocity surface for SU-8 on lithium niobate are computed. For this case the behaviour

of the modes are dependent on the anisotropy of the substrate, dispersion due to the layer and

viscoelastic parameters of the layer. It is expected, due to the dominant layer dynamics, that the

wave structure is dependent mostly on layer properties, which are isotropic but viscoelastic.

Several cases are shown to illustrate some of the factors that need to be considered when

designing annular transducers for a viscoelastic layered piezoelectric crystal. Starting with the

case of shear viscosity η = 0.059Pa·s, the dispersion of the first four modes is presented in

Figure 5.9, within the first and second bulk velocity of SU-8.
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Fig. 5.9 The (a) real and (b) imaginary parts of the frequency of the first four modes of SU-8

(η = 0.059Pa·s) on Z-cut lithium niobate for velocities. Velocity range is between the first and

second bulk wave solutions of SU-8.

For the first mode, from right to left, the velocity surface for rotation of propagation angle θ

around the cut is presented in Figure 5.10. The velocity surface is computed for a fixed frequency

of 2.7GHz.
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Fig. 5.10 The velocity surface computed for multiple angles within the surface of SU-8 (η =

0.059Pa·s) on Z-cut lithium niobate. Velocities are computed at a fixed frequency of 2.7GHz

with colour map denoting imaginary frequency.

The major point to highlight for this case, is that the velocity variation between the maximum

and minimum is only 0.0159ms−1. This compared to the half-space case, which is roughly a

difference of 50ms−1, this may be considered insignificant for IDT design. This is a case in

which the cyclic dispersion caused by anisotropic stiffness is small due to the dominant isotropic

layer. Assuming the annular transducer to be circular, will induce an error per cycle of the

propagating waveform. This error may be insignificant compared to other sources such as design

imperfections, or the error in electrical components of the device.
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For the third mode, in Figure 5.9, a high attenuation peak exists which rapidly changes both

the real and imaginary parts of the frequency. Presented in Figure 5.11 is the change of the first

four modes with change in shear viscosity, at a constant velocity of 1900ms−1.
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Fig. 5.11 Presented is the change in the (a) real and (b) imaginary parts of the frequency solutions,

for the first four modes of SU-8 on Z-cut lithium niobate, with changing shear viscosity. The

velocity is set at 1900ms−1

On inspecting the change of these modes, with change in the shear viscosity, it becomes clear that

the third mode becomes highly attenuated close to η = 0.059Pa·s. Unlike the other modes this

produces a small velocity range in which the real frequency rapidly changes, which might prove

desirable for a leaky biosensor. For a fixed frequency annular transducer design the structure of

the velocity surface also rapidly changes over this range. The novelty that may come from this is

once again irrelevant due to the small velocity variation of the solutions in the isotropic layers. In

fact this viscosity curve and the dispersion curves, are near identical between the Z-cut lithium

niobate and quartz cases, illustrating that the substrate material plays almost no significant role

in the cyclic symmetry. From the point of view of a degenerate mode biosensor, this behaviour

is ideal for propagating cyclic degenerate modes, provided that the desired waveform may be

excited. The mean error difference between the numerical results using the tracked frequency

and fixed frequency approaches, discussed in Section 3.4.3, is 5.1454x10−5 checked for the third

mode at 4GHz.

Next is the case of SU-8 on lithium niobate with a higher shear viscosity of η = 1.5Pa·s, the

disperion curves are presented in Figure 5.12.
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Fig. 5.12 The (a) real and (b) imaginary parts of the frequency of the first four modes of SU-8

(η = 1.5Pa·s) on Z-cut lithium niobate for velocities. Velocity range is between the first and

second bulk wave solutions of SU-8.

The fixed frequency velocity surface is computed with rotation in propagation angle, presented

in Figure 5.13, for a fixed frequency of 0.4GHz.
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Fig. 5.13 The velocity surface computed for multiple angles within the surface of SU-8 (η =

0.059Pa·s) on Z-cut lithium niobate. Velocities are computed at a fixed frequency of 0.4GHz

with colour map denoting imaginary frequency.

The increased viscoelastic parameter combined with the lower frequency of 0.4GHz, due to

dispersion, has lead to a situation with an increased velocity variation of roughly 6.5ms−1. In this

case, the imaginary part of the frequency is much higher than the real part, the velocity surface

has twisted from quasi-6-fold cyclic symmetry to 3-fold cyclic symmetry. In this case, even

though the layer is isotropic, if a circular transducer is used the viscosity of the layer increases

the variation in velocity, which increases the error per cycle.
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5.4 Conclusion

The visocelastic extension has been made to the leaky formulation of Chapter 4, and the frequency

dependent behaviour of the resulting partial wave solutions discussed. At a particular frequency

the coupling of the viscoelastic tensor becomes large enough to effect the partial wave solution,

rotating the partial waves in the complex plane. For real propagating partial waves, at velocities

above the corresponding bulk velocity, this rotation sees a transition from propagating to decay

behaviour. For the problem of an isotropic viscoelastic layer on anisotropic lithium niobate, the

slowness structure may be altered by the attenuation. Cases are presented in which this alteration,

is an uniform rotation leading to uniform compacting of the slowness shape projected in the real

axis. In other cases, the attenuation varies with the propagation driection, this causes a twisting

behaviour in the complex plane of the wavenumber, changing the symmetry from quasi-6-fold to

3-fold.

For biosensor application, the problem of high frequency multilayered waveforms in vis-

coelastic layered Z-cut lithium niobate is considered. The annular transducer design for a

generalised non-leaky Rayleigh wave on a Z-cut lithium niobate half-space has been presented.

In the case of SU-8 viscoelastic layer, the isotropic behaviour dominates the dynamics, reducing

the velocity variation closer to the isotropic case. Some cases are presented of large velocity

vairation due to the viscoelastic twisting of the quasi-6-fold symmetry into 3-fold. In some of

these cases, a shaped annular transducer may be required, but typically the isotropic layer will

dominate. The key point is the large energy loss in biosensors with a viscoelastic layer, this will

be considered further in Chapter 7.
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Chapter 6

Linear Fluid Waves and Material

Compatibility

SAW biosensors orginated as an attempt to transfer the techniques developed for Rayleigh wave

based gas sensors. These attempts were unsuccessful due to the increased energy loss of these

devices when a liquid was applied to the surface. Rayleigh wave type displacements, have an

out-of-plane displacement, which couples to the fluid to generate pressure waves in the fluid, that

propagate energy away from the surface. Shear horizontal wave types such as the Love wave in

isotropic media, are significantly less attenuated by the presence of a fluid layer. This perceived

view of the physics is based on traditional biosensor designs and 1-dimensional isotropic models

of the solid-fluid interface problem. As discussed in Chapter 2, anisotropic stiffness contributions

in the multilayered combination, can lead to generalised wave types containing both shear

horizontal and Rayleigh type displacements.

In this chapter, a 3-dimensional fluid loading model is developed based on a small signal

approximation to linearise the continuity and momentum equations. The goal is to develop

a model capable of providing quantitative results and to further the insight of these isotropic

waveforms. Along with their generalised anisotropic extensions, for which the behaviour is

not well understood or modelled, all providing a novel contribution to this thesis. The pressure

wave displacement is introduced into the eigenvalue problem as a fourth displacement field

coupled to the wave motion in the solid. The methods for attenuated waveforms developed in

Chapter 4 and 5 are expanded to the fluid case. The objective is to study the effect of fluid

loading on the waves propagating at the surface of an anisotropic media, less interest is placed

on the behaviour of the fluid.

81



Linear Fluid Waves and Material Compatibility

6.1 Fluid Mathematical Formulation

6.1.1 Linearisation and mass continunity

The following formulation of the equation of state, and linearisation by small-signal approxima-

tion is based on methods from [1]. It is assumed that pressure is only dependent on the density,

changes in temperature are not considered, the series expansion of the isentropic equation of

state is given,

P = c0
2(ρ− ρ0)

[
1 +

B

2!A

(
ρ− ρ0
ρ0

)
+

C

3!A

(
ρ− ρ0
ρ0

)2

+ · · ·

]
. (6.1)

Pressure and initial presure are denoted P and P0 = v0
2(ρ − ρ0), density and initial density

are denoted ρ and ρ0. The speed of sound, of the fluid, is assumed to remain constant using a

small-signal approximation, this constant speed is denoted c0. A small disturbance in the density

δρ and by extension pressure δP is taken,

ρ = ρ0 + δρ, (6.2)

P = P0 + δP. (6.3)

A requirement of the linearisation is that these changes are insignificantly small in δρ << ρ

and |δP | << ρ0c0
2, neglecting higher order term in (6.1). This would then impose a maximum

limit on the magnitude of the displacements of the fluid wave equation of motion, making large

wavelength formulations less reliable. However, the linearity as a result of this small-signal

approximate will be valid for ranges of interest for biosensor application, typically micrometre

to picometre ranges.

The statement of mass continuty for a system leads to,

∂ρ

∂t
+

∂ρVi

∂xi

= 0, (6.4)

which describles the change in density of a fluid, where Vi denotes the particle velocity. Substi-

tuting (6.2) into (6.4) results in,

∂(ρ0 + δρ)

∂t
+

∂(ρ0Vi + δρVi)

∂xi

= 0, (6.5)

expanded and removing any derivatives of constants,
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∂δρ

∂t
+ δρ

∂Vi

∂xi

+ Vi
∂δρ

∂xi

+ ρ0
∂Vi

∂xi

= 0. (6.6)

The quantities δP , δρ and Vi are assumed to be small and any products of these terms is

neglectable,

∂δρ

∂t
+ ρ0

∂Vi

∂xi

= 0. (6.7)

The equation of state (6.1) also reduces to,

P = c0
2δρ. (6.8)

Substituting (6.8) into (6.7) results in,

1

c02
∂P

∂t
+ ρ0

∂Vi

∂xi

= 0. (6.9)

6.1.2 Linear fluid wave equation

The approach to modelling the fluid in this thesis now differs from [1], in which the 3-dimensional

model is simply an expanded 1-dimensional model. This would ignore the interaction of the

shears, which is a key component of studying these waveforms, the formulation must therefore

start from the 3-dimensional constitution. A novel approach will have to be developed to

numerically solve the resulting system of equations for the desirable displacement information,

instead of the pressure waveform.

The fluid stress constitution is a combination of the hydrostatic pressure and isotropic

viscosity terms. The viscosity tensor of Chapter 5 is used to capture all direct and shear

interactions in the following form,

σij = −Pδij + µijklEkl. (6.10)

Unlike the elastic or viscoelastic formulations the stiffness is zero and so, there are no direct or

shear stresses due to elasticity. The derivative of the strain tensor is denoted Ekl the strain rate

tensor,

Ekl =
1

2

(
∂Vk

∂xl

+
∂Vl

∂xk

)
. (6.11)

Substituting (6.10) into the equations of motion results in,
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− ∂P

∂xj

δij + µijkl ∂2Vl

∂xj∂xk
= (δρ+ ρ0)V̇ i. (6.12)

The derivative of the velocity term can be found using the kinematic expression for acceleration

[2],

V̇i =
∂Vi

∂t
+ Vj

∂Vi

∂xj

. (6.13)

Substituting (6.13) into (6.12) and expanding results in,

− ∂P

∂xi

+ µijkl ∂2Vl

∂xj∂xk
= δρ

[
∂V i

∂t
+ V j ∂V

i

∂xj

]
+ ρ0

[
∂V i

∂t
+ V j ∂V

i

∂xj

]
. (6.14)

Similar to the continuty of mass, products of small terms are assumed to be negligible resulting

in the final form for the equations of motion,

− ∂P

∂xi

+ µijkl ∂2Vl

∂xj∂xk
= ρ0

∂V i

∂t
. (6.15)

6.1.3 Coupled eigenvalue problem

The equations of motion (6.15) and mass continuity equation (6.9) must be solved as a set of

coupled equations. Substituting the displacements into these leads to the set of equations,

− ∂P

∂xi

+ µijkl ∂3ul

∂xj∂xk∂t
= ρ0

∂2ui

∂t2
, (6.16)

1

c02
∂P

∂t
+ ρ0

∂2ui

∂xi∂t
= 0. (6.17)

The solution to the displacements and pressure is assumed in the same form as (4.1),

ui = Aie−(iβ−α)(m·x+pn·x)+iωt, (6.18)

P = A4e−(iβ−α)(m·x+pn·x)+iωt, (6.19)

Substituting (6.18) and (6.19) into (6.16) and (6.17) results in,

iω(iβ − α)2µijkl (mj + pnj) (mk + pnk)Al − (iβ − α)
(
mi + pni

)
A4

− ρ0ω
2Ai = 0,

(6.20)
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A4 − ρ0c0
2(iβ − α)(mi + pni)Ai = 0. (6.21)

Substituting (6.21) into (6.20) results in the combined eigevalue characteristic for displacement

amplitudes,

(
iωµijkl (mj + pnj) (mk + pnk)− ρ0c0

2
(
mi + pni

) (
ml + pnl

)
−ρ0v

2δli
)
Al = 0.

(6.22)

6.1.4 Fluid partial waves

Throughout this chapter the fluid used in the loading is water [3], the properties of which may

be assumed to be linear under the Newtonian fluids assumption. The eigenvalue problem (6.22)

may be solved using the same numerical methods developed in Chapter 3. The partial wave

solutions for a fluid are initially complex, see Figure 6.1 for the case of water.
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Fig. 6.1 Partial wave eigenvalue determinant of the combined fluid characteristic at 3000ms−1 at

ω = 100 for water. Colour map denotes complex phase, solutions are points that appear to have

all phase values.

The partial waves are initially complex above bulk wave velocities, like viscoelastic materials the

solutions may be rotated onto the real axis using an imaginary wavenumber. This may be seen as

pumping energy into the fluid but unlike the viscoelastic materials, this rotation will not align all

the partial solutions with the real axis.The frequency dependency simplifies significantly from

the viscoelastic case, due to the lack of elastic stiffness to interact with the viscous behaviour. Up

to values of 1010 the roots are linearly dependent with frequency on a log-log scale, illustrated in

Figure 6.2, this linear relationship is independent of input velocity (ratio of input k and ω).
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Fig. 6.2 The change in partial wave solution of water with change in frequency for different

velocities on a log-log scale. Solid and dashed lines correspond to the shear partial solutions and

dash-dot lines correspond to longitudinal partial solutions.

The change in the longitudinal partial wave solutions within the frequency range is negligible, in

Figure 6.2 at values δp < 10−5. For a fixed velocity the shear solutions can be approximated for

any frequency using the gradient of the log-log scale in the simple relationship,

p(ω) = p0ω
m. (6.23)

The value of m can be easily calculated, for the case shown in Figure 6.2, m ≈ −0.5 for all shear

partials for both the real and imaginary p-values. The change of the highest shear partial solution

with change in imaginary frequency is presented in Figure 6.3. The bulk partial solutions remain

constant and the lower shear follows the same trend as the highest shear.
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Fig. 6.3 The change in the highest shear partial wave solution of water with change in imaginary

frequency at fixed real frequency values on a log-log scale. Solid lines are at a velocity of

500ms−1 and dotted at 5000ms−1.
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For values below the fixed imaginary frequency the partial solutions remain constant, beyond

this point they have the same linear change on the log-log scale as the real frequency. Changes

in velocity will only alter the starting values of the partials and does not effect the frequency

dependence, the roots may be approximated from a starting value. The point Re(ω) = Im(ω)

is the change from constant partial wave solution to the constant gradient on the log-log scale.

This point can be used as the starting value p0 for approximating the solution at any complex

frequency. The change in solution with the changing frequency with equating Re(ω) and Im(ω)

parts is the same as Figure 6.3. Varying Re(ω) with differing fixed Im(ω) values will result in

a relationship similar to that shown in as Figure 6.3. But this approximation will track each of

these parts individually starting with Re(ω).

The approximate tracking of the partial wave solution with changes imaginary frequency is

shown in Figure 6.4, real frequency fixed at 104.
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Fig. 6.4 The tracking of the positive shear partial wave solutions by using sloped elements at

500ms−1 and Re(ω) = 104. Solid lines are computed using phase tracking and dashed lines

using sloped elements.

The curved section has an estimated range of 103 to 105, within the dashed boundary lines in

Figure 6.4, an order of magnitude on each side of p0. In this case, for illustration purposes, the

curved section has been discretised into two elements, the gradients for each element only needs

be calculated once for all possible partial wave solutions. These gradient inputs are different

for the real and imaginary parts of the partial waves, each must be calculated seperately. Note

negative Im(ω) values start Re(ω) search from Re(ω) = -Im(ω), reversing the gradients between

Im(p) and Re(p) parts for the Im(ω) search.

The change in partial solutions with Re(ω) and Im(ω) are for frequency ranges up to 1010,

for relevant velocity ranges. Beyond this point the frequency dependency no longer follows
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these trends, but also does not vary by large orders of magnitude with changes in frequency. In

summary this approximation of the partial change, has been developed to track the fluid partials

over large changes in complex frequency. At high frequencies the rapid change in fluid partial

waves no longer occurs, allowing the use of 2-dimensional gradient tracking methods.

6.2 Characterisation of Fluid Loss

The case of fluid loaded anisotropic layered half-space will be investigated using the linear fluid

model developed in the previous section. In a majority of these cases the layer thickness is set to

a micrometre, with the other cases investigating the change in thickness. Within this frequency

range, the effect that the change in fluid partial solutions has on the mutlilayered solution is

small compared to the effect of anisotropy. Within this range the frequency dependences may be

ignored or tracked using 2-dimensional gradient methods.

6.2.1 Isotropic waveforms

In Chapter 2 the existence of Rayleigh and Love waves was reviewed, these waves exist in

elastic isotropic materials. In an half-space, coupling between the mechanical Rayleigh mode

and fluid medium, propagates the so called Scholte wave [4–6]. Similar to the Stonely wave

at the solid-solid interface, this waveform decays in both the mechanical half-space and fluid

medium away from the interface. The fluid medium is unable to hold a propagating waveform

due to the lack of stiffness, displacements have frequency dependent decay due to the viscosity

tensor. Displacements that contribute to direct stresses couple to generate pressure waves, in

fluid loaded Rayleigh wave devices, the out-of-plane displacement leads to attenuation [7, 8].

As a starting point, the fluid loaded layered isotropic problem is discussed, the Love waves

do not leak energy out of the system due to the in-plane shear polarisation. Introducing an

elastic layer between the fluid and elastic half-spaces yields the same decaying structure; this

is dependent on the relative bulk velocities of the materials. Provided that the bulk velocity

of the layer is lower than the mechanical half-space, then propagating modes may exist in the

layer and decay in both half-spaces. This structure is presented in the Figures 6.5, which shows

1-dimensional displacements of copper [1] on silicon [9] using A-factor scaled to isotropic.
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Fig. 6.5 The first Rayleigh mode (a) and Love mode (b) of fluid loaded copper layer on silicon

substrate, both materials scaled to isotropic using A-factor. Normalised to the maximum surface

displacement ui(h), grey dotted lines denote interfaces, the line at zero is the interface between

fluid and elastic.

The attenuation of the Rayleigh mode is much greater than the Love mode due to the structure of

the stress constitution of the fluid. In the fluid, the spatial decay of the out-of-plane displacement

u3 is siginificantly larger than that of the shear displacements. This result is expected, due to the

structure of the fluid stress constitution which couples the direct strains to the pressure wave.

In application this may be physically interpreted as the generation of pressure waves due to

out-of-plane displacements.

The case shown in Figure 6.5 is when the thickness is set to unity, presented in Figure 6.6 is

the change in ratio of imaginary to real parts of the wavenumber for the first Rayleigh and Love

modes.
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Fig. 6.6 Presented is the change in the ratio of imaginary to real parts of the wavenumber with

change in the layer thickness. In (a) the first two Rayleigh modes and in (b) the first two Love

modes, the blue lines are the first mode for each.
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For the Love modes of this particular case, the change in layer thickness does not have any

siginificant effect on the attenuation when compared to the Rayleigh case. As the layer thickness

approaches a micrometre, the attenuation of the Rayleigh wave approaches that of the Love wave

solution. In this range, the attenuation of the distinctive isotropic wave types is low, for this

particular layered case, in the next section particular anisotropic cases will be explored.

In comparison with analytic models from the literature [10], there is a difference of approxi-

mately 70ms−1 at 1MHz for a shear viscosity of 10Pa. The attenuation is within a similar magni-

tude range as the analytic mode at approximately 1. Note for this comparison a 3-dimensional

modification of the water parameters using Stokes assumption was made. Along with this a bulk

modulus for copper and steel was included to allow for the modelling of 3-dimensional waves.

6.2.2 Compatible symmetries of quartz and silicon

In Chapter 2 the topic of compatibility between different layered anisotropic crystals was

introduced using bulk wave solutions. In Chapter 4, the compatibility discussion was expanded

in the context of directional dependent LSAW propagation. In this section compatibility once

again becomes relevant, in this case, the nature and variation of the generalised SAW modes.

The interaction of differing symmetries will reduce the overall symmetry of the combination.

The structure of the generalised modes in these combinations will differ from the isotropic

waveforms, along with the attenuation, due to fluid coupling. These changes will be different for

the dominant quasi-Rayleigh and quasi-shear horizontal modes, provided that a clear distinction

between these displacement forms exist.

Before considering the fluid loading problem, the mechanical solutions for quartz on (100)

and (111) cuts of silicon, in Miller notation, are investigated. These combinations are rare but

are possible, see Section 1.2.2, typically an isotropic waveguide is used at the surface. Single

crystals used in biosensor design are typically all anisotropic, so these types of combinations

may not be avoidable. Limiting microsystems design to isotropic materials would also exclude

many anisotropic behaviours, such as those explored in Chapter 4. Presented in Figure 6.7 are

the wavenumber surfaces of first two generalised SAW modes with change in propagation angle.

All the results in this and the next section are computed in the non-leaky range at at 4000ms−1.
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Fig. 6.7 Mechanical wavenumber solutions with change in the propagation angle for the first two

generalised SAW modes of quartz layered on silicon (111) (Solid) and silicon (100) at 4000ms−1.

For the modes of (111) substrate, a clear 6-fold symmetry is observed, expected due to the

alignment of the symmetries of quartz and silicon. In the case of (100) substrate the 6-fold

symmetry of the modes is broken, the 6-fold behaviour can be observed but an overall 2-fold

symmetry is seen. This is predicted by lowest common symmetry of the bulk solutions of Z-cut

quartz and (100) silicon, which is 2-fold symmetry. To predict the possible attenuation that the

modes in these combinations will suffer under fluid loading, will require inspecting the out-of-

plane displacement component. Using this data the average u3 displacements at the surface,

thickness of h, of quartz is computed over a wavelength (λ1) area, presented in Figure 6.8.
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Fig. 6.8 Presented is the u3 displacement for (a) first and (b) second generalised SAW modes of

quartz layered on silicon (111) and silicon (100) with change in the propagation angle. These

displacements have been normalised to maximum silicon (100) and averaged over a wavelength

(λ1) area at the surface of the quartz layer.
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Even though the wavenumber surfaces are reasonably consistent in shape, the difference in value

of the u3 displacement can be clearly seen. The shape of the average u3 closely matches between

the two substrate cuts, though this is more distinct in the silicon (100) case. From these results it

is expected that the (100) substrate should have a significantly large attenuation and that for both

the attenuation should not be uniform with changes in propagation direction.

For completeness the relative displacement components are presented for the first mode of

both cases in Figure 6.9.
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Fig. 6.9 Presented are the relative displacements ui for the first generalised SAW mode of quartz

layered on (a) silicon (111) and (b) silicon (100) with change in the propagation angle. These

displacements have been normalised to maximum of u3 and averaged over a wavelength (λ1)

area at the surface of the quartz layer.

6.2.3 Fluid loaded quartz layered on silicon

For the cases considered in the previous section a fluid will now be loaded, with the addition

of an isotropic silicon case using the A-factor from Section 2.4.2. For all three cases at a high

frequency, distinct lower and higher attenuated branches of solutions exist. Due to the frequency

dependency of the fluid coupling, the attenuation varies with changes in layer thickness, see

Figure 6.10. At large thicknesses the attenuation between the two generalised modes becomes

comparable. These thicknesses are far larger than normal application range and the reliable range

of this fluid formulation. Within the biosensor application range, the attenuation remains constant

for both the maximum and minimum peaks of the multilayered solutions. For all branches of

solution, the anisotropic case has a much greater value for the attenuation when compared to the

isotropic cases previously.
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Fig. 6.10 Presented is the change in the ratio of imaginary to real parts of the wavenumber with

change in the quartz layer thickness on silicon. In (a) are solutions from the high attenuated

branches and in (b) are solutions from the low attenuated branches, blue line for (100), red for

(111) and yellow for (Iso) by scaled A-factor.

The variation of the solution with propagation direction, due to the anisotropy, is presented

for the high attenuated branches of all substrates in Figure 6.11. Figure 6.12 shows the same

results but using the magnitude and phase representation of the complex wavenumber. For silicon

(100) in this high attenuated branch the cubic structure of this cut can be clearly seen in the real

part of the wavenumber. In the magnitude plot, this cubic structure is less prominent, though

both clearly show the 2-fold cyclic structure that is expect due to the alignment of 4-fold and

quasi-6-fold symmetries.
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Fig. 6.11 Presented is the variation of the 1st SAW mode from the high attenuated with branch

change in the propagation angle. In (a) the change in real part of the wavenumber with the

propagation angle, colour map denotes imaginary part, and in (b) the projection of this in the

real and imaginary axis of the wavenumber.
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Fig. 6.12 Presented is the variation of the 1st SAW mode from the high attenuated with branch

change in the propagation angle. In (a) the change in magnitude of the wavenumber with the

propagation angle, colour map denotes complex phase, and in (b) the projection of this in the

complex magnitude and phase axis of the wavenumber.

For both silicon (111) and (Iso), a clear 6-fold cyclic symmetry exists in both the real and magni-

tude representations of these modes. The variation is due to the curvature of the solutions into

the complex plane, and is uniform for all six peaks, unlike the viscoelastic cases in Section 5.2.2.

For higher modes, for all the cases, the structure approaches the 6-fold cyclic symmetry structure

of the isotropic silicon case, due to the lower contribution of the substrate for higher modes.

The variation of the low attenuated modes with propagation angle is presented in Figure 6.13,

for all silicon cases.
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Fig. 6.13 Presented is the variation of 1st SAW mode from the low attenuated branch with

change in the propagation angle. In (a) the change in real part of the wavenumber with the

propagation angle, colour map denotes imaginary part, and in (b) the projection of this in the

real and imaginary axis of the wavenumber.
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For all cases, the structure in the complex plane is similar to the high attenuated solutions.

The complex curvature in the (111) and (Iso) cases does not effect of the structure of the real

wavenumber variation as much as the high attenuated branch. In the case of (100) the structure

is 2-fold cyclic symmetry, but this is a small deformation from the quasi-6-fold symmetry of the

quartz.

Inspecting the silicon (100) case in closer detail, the two generalised multilayered modes

have a degree of attenuation, both greater than the pure isotropic case. The stress distribution in

the fluid for both modes is presented in Figure 6.14.
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Fig. 6.14 The 1-dimensional traction distribution with fluid depth from the surface. Presented for

the first (a) high attenuated mode and (b) low attenuated mode of fluid loaded quartz layered on

silicon (100) substrate.

Unlike the isotropic case, both types of mode now have an out-of-plane displacement which

couples to the fluid, the shears rapidly decay. Due to the large energy loss in the high attenuated

solution, the wave vector is tilted which leads to propagation into the bulk of the fluid. The

displacements of this propagating wave will rapidly decay, due to the lack of an elastic tensor, and

generate pressure waves due to the coupling in (6.10). Inspecting the 2-dimensional t3 surfaces,

presented in Figure 6.15, the difference in wave tilting between the high and low attenuated

modes can be clearly seen.
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Fig. 6.15 The 2-dimensional out-of-plane traction distribution with fluid depth from the surface.

Presented for the first (a) high attenuated mode and (b) low attenuated mode of fluid loaded

quartz layered on silicon (100) substrate. Colour map denotes out-of-plane u3 displacement.

6.3 Conclusion

The 3-dimensional fluid partial wave eigenvalue problem has been developed using the viscosity

tensor allowing for the coupling of both direct and shear stresses. The problem of fluid loading on

a layered medium is presented for the case of water loading on isotropic and anisotropic layered

medium. For the isotropic case, the Rayleigh wave attenuation is shown to be significantly larger

than the Love wave attenuation, at high frequencies these both approach a negligible value.

The anisotropic case is focused on the compatibility of layer to substrate symmetries, and

the impact this has on energy loss by fluid coupling. For all the cases presented, the attenuation

increased with decreased layer thickness, in contrast to the isotropic layer behaviours. A set of

high and low attenuated branches exist, similar to the LSAW modes. For the low attenuated case,

the (Iso) silicon has the highest attenuation out of the three cases presented, but all approach

zero as the layer thickness decreases. For the high attenuated mode, the incompatible quartz on

silicon (100) has a significantly large attenuation, with the (Iso) case having the lowest.

For the low attenuated mode, the cyclic symmetry takes the structure of the layer material

for all cases, with some minor variation for the (100) silicon case. The difference in cyclic

symmetry is clearly seen in the high attenuated modes, for the (Iso) and compatible (111) cuts of

silicon, the structure has a clear 6-fold cyclic symmetry. In the case of (100) cut of the silicon,

the quasi-6-fold and 4-fold symmetries conflict resulting in an over 2-fold cyclic symmetry.
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Chapter 7

Sources of Energy Loss and Q-factor

Model

In this chapter the effect of various energy loss mechanisms, that have been explored in the

previous chapters, is investigated using the Q-factor (quality). The energy loss of these devices

will lead to error in the sensing mechanism, measured by the Q-factor, this must be lower than

the errors of other components of the biosensor. In addition to the forms of attenuation that have

already been developed, the effect of thermoelastic loss is also modelled. Unlike the previous

forms which may be seen as purely mechanical, the thermal behaviour requires solving the

heat equation, which will be coupled to the mechanical displacements. The comparison of the

Q-factor for different forms of attenuation will be made in the simplified case of plane wave

propagation in a single direction, as an analogue to a delay-line type biosensor. Along with the

thermoelastic formulation, the piezoelectric coupling is also modelled using a similar approach.

The piezoelectric effect is important for the excitation of surface acoustic wave (SAW) modes

for biosensor applications and the design of shaped annular transducers.

7.1 A Review of Sources of Loss

The numerical models that have been developed so far can be used to predict the attenuation for

various physical mechanisms. These include acoustic bulk leaking in Chapter 4, viscoelastic loss

in Chapter 5 and fluid leakage in Chapter 6. In addition, the method developed for viscoelastic

loss may be used to model the collective intrinsic losses within elastic materials. Intrinsic loss

covers energy loss due to impurites and dislocations within a material which forms during the

manufacturing process [1, 2]. If the material is a polycrystal then grain boundaries also exist,
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which can cause energy loss due to scattering [3]. The propagating waveform is a physical

motion of energy transfer between kinetic and potential, in reality this transfer of energy is not

completely conservative due to this material scattering. The degree of energy loss is dependent

on the material type and the quality of the manufacturing process.

In cases of non-fluid loading, outside of a vacuum, the acoustic loss in air [4] may be

approximated using the methods developed for fluid loss. Another form of loss that can occur in

mechanical sensors is surface loss, which is the loss due to imperfections and absorbates on the

surface of the device [1, 4]. This may be viewed as the mass loading of a substance on the surface

of the device, which has a lower stiffness than the materials that make up the sensor. Although

both of these can be modelled, the loss due to these two effects can typically be mitigated by

using vacuum packaging techniques. The degree of effect that the surface loss has is dependent

on the class of clean room that a device would be produced in, before vacuum packing.

The SAW boundary conditions that have been used up to this point assume that the substrate

material is an isolated half infinite space. In reality the SAW device is finite, and therefore

energy may be acoustically leaked out of the system through support loss [1, 4, 5]. Resonators

are designed to be free floating devices with supports, if the resonance frequency of the device

matches that of the supports, then energy make be lost through flexural mode excitation. In

addition to this, SAW resonators use reflectors to generate the stand mode, and mitgate energy

leakage out of the system [6]. In the real world these reflectors will still leak energy out of the

system through the supports. Therefore, these two types of loss mechanisms are inherently linked

[7, 8], typically this is a design problem and therefore will be ignored for this investigation. The

number and design of the reflector can also depend on the Q-factor of the tailored SAW mode, to

contain other forms of energy loss.

Thermoelastic damping is a form of loss induced by the coupling between the mechanical

and thermal properties. The propagating waveform in a thermoelastic medium create local

temperature gradients, due to the coupling with strain. Material relaxation occurs due to the

irreversible heat flow through the material in the form of an oscillating motion, due to the wave

generated gradients. The traditional model for thermoelastic damping in micro-mechanical

resonators is the Zener’s approximation [9, 10], based on beam geometry. The approach taken in

this work is to model this form of loss, covered in Section 7.2.

Piezoelectric coupling is the mechanism used to generate and detect SAW modes for mechan-

ical biosensors. This subject has been mentioned throughout this work, but now in this chapter

the problem is modelled using the standard tools developed in Chapter 3. With the coupling of
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electric fields comes the introduction of several forms of energy loss, either through a complex

piezoelectric or dielectric constant, see [11].

Alternatively, the piezoelectric coupling may alter the existence problem for the pure mechan-

ical waves, requiring a complex wavenumber to exist. The existence of SAWs on anisotropic

piezoelectric half-spaces can not be guaranteed for the free surface conditions [12], unlike in

the elastic case. Although for the short circuit surface condition a solution can typically be

guaranteed; multilayered anisotropic piezoelectric solutions have been calulated for particular

biosensor applications [13]. For both possible forms of piezoelectric loss, a solution in the leaky

form of Chapter 4 would be capable of capturing the attenuation.

7.2 Thermoelastic Formulation

The formulation, up to this point, has been 3-dimensional to allow the capture of anisotropic

behaviour of different symmetry classes of crystals. A 3-dimensional approach is also used for

the modelling of the thermoelastic coupling, to allow the modelling of anisotropic thermoelastic

effects [14]. In addition, this will make all the models for Q-factor consistent and allow the

modelling through the 3-dimensional eigenvalue approach.

7.2.1 3-Dimensional wave model

The coupled piezoelectric and thermoelastic constitutive and motion equations are formulised in

Appendix B, using [15, 16]. Only the thermoelastic equations are used in this section, using the

coupled wave and heat equations as the starting point,

Cijkl ∂2ul

∂xj∂xk
− λij ∂δT

∂xj
= ρ

∂2ui

∂t2
, (7.1)

Kij ∂2δT

∂xi∂xj
= T0λ

ij ∂
2uj

∂t∂xi
+ ρC

∂δT

∂t
. (7.2)

The extra terms, in addition to those introduced in Section 2.1, are thermal expansion λij , thermal

conductivity Kij , small temperature change δT and reference temperature T0 for the material.

The constant temperature superscript has been dropped for the stiffness C(T )
ijkl, along with the

constant strain superscript for specific heat capacity C(ε), for convenience. Assuming a solution

for the mechanical and thermal displacements, ui and δT respectively, in the same form as (4.1).

This solution is substituted in (7.1) and (7.2) which results in the coupled eigenvalue problem,
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(iβ − α)2Cijkl(mj + pnj)(mk + pnk)Al + (iβ − α)λij(mj + pnj)A4 = i2pω2Ai, (7.3)

(iβ − α)2Kij(mi + pni)(mj + pnj)A4 = iωρCA4 − iω(iβ − α)T0λ
ij(mi + pni)Aj. (7.4)

Where A4 is now the amplitude of the thermal displacement. These can be rearranged into the

following form in frequency ω and phase velocity v,

[Γil − ρv2δil]Al +
v

iω
ΛiA4 = 0, (7.5)

[K − ρv2C

iω
]A4 + vT0Λ

jAj = 0. (7.6)

The summation terms, along with the propagation tensor Γil, have been redefined as follows,

K = Kij(mi + pni)(mj + pnj), (7.7)

Λj = λij(mi + pni), (7.8)

Λi = λij(mj + pnj), (7.9)

7.2.2 Separated Eigenvalue problem

The determinant of the combined system of equations (7.5) and (7.6) is a function of the partials

p with eight solutions. Six of these solutions belong to the mechanical displacements while the

other two are introduced due to the thermal coupling, see Figure 7.1.
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Fig. 7.1 Partial wave eigenvalue determinant of the combined set of equations (7.5) and (7.6),

below bulk wave velocities at a frequency of 1MHz. Colour map denotes complex phase,

solutions are points that appear to have all phase values.

In both the thermoelastic and piezoelectric cases, the mechanical, electrical, and thermal

material input parameters are of several orders of magnitude, different from each other. The

effect can be seen in the thermoelastic case, in Figure 7.1, the two thermal partial solutions

are several orders of magnitude greater than the six mechanical solutions. This difference is

dependent on frequency, with similar orders around 10GHz, for much smaller frequencies the

thermal partial solutions increase in value. From a numerical approach, it is desirable to seperate

the thermal and mechanical partial solutions, to reduce unnecessary computations. The approach

taken here is to rearrange the thermal part (7.6),

A4 =
vT0Λ

j

K + ρv2C
iω

Aj, (7.10)

and substitute the amplitude into the mechanical part (7.5),

[Γil − ρv2δil +
v2T0Λ

iΛq

iωK
δlq +

ΛiΛq

ρC
δlq]Al = 0, (7.11)

Equation (7.11) may be numerically solved for the mechanical partial solutions of Figure 7.1,

using techniques developed in Chapter 3. The mechanical amplitudes in (7.11) can be written

as a function of the input partial Ai = f(p), in this work this is achieved using a computer

coded function. So now the thermal part of the problem can be computed using (7.6) with the

mechanical amplitudes, the seperated partial determinant are presented in Figure 7.2.
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Fig. 7.2 Partial wave eigenvalue determinants of (a) mechanical part (6.11) and (b) thermal part

(6.6) with mechanical amplitudes as a function of p. Both are below bulk wave velocities at a

frequency of 1MHz. Colour map denotes complex phase, solutions are points that appear to have

all phase values.

7.2.3 Thermoelastic boundary conditions

The mechanical boundary conditions outlined in Section 3.2.3 remain the same, the only change

is the extra terms in the tractions due to the coupling,

ti = Cijkl ∂ul

∂xk
nj − λijδTnj. (7.12)

In addition, thermal boundary conditions are required at the interface between materials and

at the free surface. For the interface [17], the continuity of temperature and the component of

temperature gradient, normal to the surface,

δT = δT ′, (7.13)

∂δT

∂xj

nj =
∂δT ′

∂xj

nj. (7.14)

For the free surface condition, a common approach seen through the literature [18, 19] is to

use both the temperature and temperature gradient expressed in the form,

∂δT

∂xj

nj + gδT = 0. (7.15)

As g → 0 the condition becomes thermally insulated and g → ∞ the surface becomes isothermal.
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7.2 Thermoelastic Formulation

7.2.4 Uncoupled boundary conditions

For thermoelastic problems it is often assumed that the mechanical stress fields have a negligible

impact on the thermal gradients. With this assumption the coupling is only considered in the

mechanical part and the thermal contribution is treated as a body force in the wave equation [20].

Solving the mechanical eigenvalue problem (7.11) yields the coupled mechanical partial wave

roots as a function of the frequency and velocity. Solving the coupled part of the mechanical

boundary conditions (7.12) will produce solutions, but the thermal part of the problem will not

be constrained.

This uncoupled approach gives an approximation of thermoelastic loss by neglecting thermal

interactions, but is computational cost efficient. Another benefit of this approach is the insignif-

icant frequency dependency in the mechanical partial solutions, from the thermal coupling.

The partial wave solutions of the thermal part of the eigenvalue problem are highly frequency

dependence. This dependency does not significantly interact with mechanical partials, but does

couple into the mechanical boundary conditions. Presented in Figure 7.3 is a comparison between

the uncoupled curves with data points of the fully coupled problem.
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Fig. 7.3 Comparison between the coupled (points) and uncoupled (curves) solutions for the

thermoelastic problem, for the case of SU-8 on Z-cut quartz. In (a) the real frequency data and

(b) the imaginary frequency data for the first four SAW modes.

For Re(ω) the coupled and uncoupled agree with each other, a key point to note is that the

curves also resemble the mechanical only problem. The thermal coupling in this case is not

having a significant effect on the mechanical displacements, this is shown by the difference

in magnitude between the real and imaginary parts of the solutions. For Im(ω) the uncoupled

problem, for most of the curve, overestimates the impact of the thermoelastic coupling. There
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is some disparity between the shapes of these curves, the uncoupled formulation predicts the

presence of a peak at around 2400ms−1 for modes n2 and n3, but underestimates the value. Due

to the overestimation of the loss and the dominance of the real part over imaginary, this is a

suitable approximation of the Q-factor for this case. The uncoupled problem should not be relied

on for information on presence of lossy spikes in the frequency.

7.3 Piezoelectric Formulation

Mechanical waveforms are excited using the applied electric fields in piezoelectric crystals,

in which the mechanical and electric displacements are coupled. In addition the piezoelectric

and dielectric tensors also differ between the crystal symmetry classes, similar to the stiffness

coefficients. The piezoelectric coupling can alter the symmetry structure of a crystal and therefore

must be computed when considering cases of cylindrical sensor design.

7.3.1 Coupled equations and eigenvalue problem

The approach to modelling the piezoelectric coupling is almost idenitical to the thermal model in

the previous section. Starting with the equations in Appendix B, now only the piezoelectric part

of the formulation is used alongside the mechanical part. The resulting equations take the form,

Cijkl ∂2ul

∂xj∂xk
+ dkij

∂2ϕ

∂xj∂xk
= ρ

∂2ui

∂t2
, (7.16)

dijk
∂2uk

∂xi∂xj
− eij

∂2ϕ

∂xi∂xj
= 0. (7.17)

The extra terms, in addition to those introduced in Section 2.1, are piezoelectric coupling tensor

dijk, dielectric constants eij , electric potential ϕ. The constant electric field superscript has been

dropped for the stiffness C(E)
ijkl, along with the constant strain superscript for specific dielectric

constants e(ε)ij , for convenience.

As with the thermoelastic formulation, the coupled eigenvalue problem can be formed,

[
Γil − ρv2δil

]
Al + γiA4 = 0, (7.18)

γkAk + eA4 = 0. (7.19)

104



7.3 Piezoelectric Formulation

Where A4 is now the amplitude of the electric potential. The summation terms, along with the

propagation tensor Γil, have been redefined as follows,

γi = dkij(mj + pnj)(mk + pnk), (7.20)

γk = dijk(mi + pni)(mj + pnj), (7.21)

e = eij(mi + pni)(mj + pnj). (7.22)

The mechanical eigenvalue problem may be written in the following form by rearranging (7.19)

and substituting into (7.18),

[
Γil +

γiγq

e
δlq − ρv2δil

]
Al = 0. (7.23)

The numerical solution to these eigenvalues problems are the same as the thermoelastic problem.

Unlike the thermoelastic problem, these eigenvalue problems are only dependent on the velocity,

similar to the pure elastic problem. For dielectric materials, the resulting amplitudes are uncou-

pled due to the zero piezoelectric coupling, for these cases the mechanical and electrical parts

can be solved seperately.

The mechanical boundary conditions remain the same as Section 3.2.3, except for the extra

terms in the tractions,

ti = Cijkl ∂ul

∂xk
nj + dkij

∂ϕ

∂xk
nj. (7.24)

For the interface between two materials, the electrical boundary conditions [21] are the continuity

of the electric potential and electric displacement normal to the surface,

ϕ = ϕ′, (7.25)

Dini = Di′ni. (7.26)

The electric displacement normal to the surface is given as,

Dini = dijk
∂uk

∂xj
ni − eij

∂ϕ

∂xj
ni. (7.27)
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The free surface electric boundary condition used through the remainer of this chapter is the zero

electric displacement, normal to the surface,

Dini = 0. (7.28)

7.3.2 Slowness error due to piezoelectric coupling

In Chapter 5 the annular transducer for generating plane waves in the far field was designed

for the case of SAWs in a lithium niobate half-space. The method required estimating the far

field contribution to the Green’s function, as a reverse point excitation. The approximation given

in [22] uses piezoelectric coupling to determine the strength of the coupling and to compute

slowness surfaces. For the case of SU-8 layered on lithium niobate the contribution of the

piezoelectric coupling to the slowness computation is assumed to be negligible. Using the

coupled piezoelectric model, these claims may be checked, Figure 7.4 shows the comparison

between the mechanical and piezoelectric solutions.
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Fig. 7.4 For the case of dielectric SU-8 on piezoelectric lithium niobate, the comparison between

the dispersion curves of the mechanical and piezoelectric formulation is presented. In the Z-cut

of lithium niobate at a fixed angle θ = 0 rad, in the non-leaky mechanical range.

For the case shown, the solutions of the piezoelectric and mechanical models are consistent,

similar agreement is also seen at θ = π
6
. For the cases in Chapter 5, the piezoelectric coupling

can be assumed to negligible, note this is due to the dominate SU-8 in the dynamics and should

not be assumed for the half-space or other combinations.
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7.4 Q-factor Model

For all of the loss mechanisms that have been developed so far the Q-factor may be computed

for cases of interest. In this section different definitions of Q-factor for a resonator are briefly

summarised along with the assumptions that will be made. For the case of SU-8 layered on an

anisotropic substrate, the Q-factors will be calculated within the non-leaky velocity range and

compared.

7.4.1 Q-factor modelling

Propagating waveforms in MEMS devices will suffer multiple sources of loss by leaking energy

out of the system. The aim is to mitigate this energy loss which will result in the reduced

performance of the device in real world situations. The degree of this energy loss will impact

the design approach, and will be one of the criteria in optimising SAW propagation. Therefore,

a measure of the energy loss must be developed, which will be done using the Q-factor. The

Q-factor is a standard way to measure the energy loss of a resonator, this can be done using the

energy loss directly [23, 24],

Q = 2π
E

∆E
. (7.29)

Another approach is to inspecting the real and imaginary parts of frequency of the propagating

waveforms [25, 26],

Q =
Re(ω)
2Im(ω)

. (7.30)

The numerical methods developed up to this point have been developed to output the real

and imaginary parts of the frequency. Mathematically these represent the conserved and non-

conversed parts of the system, which is an equivalent description of energy loss. This defintion of

Q-factor can be applied readily, as it comes directly from the solution to the boundary condition

problem, and therefore will be used throughout this chapter.

Several numerical models have been developed that can model various mechanisms of loss.

For each of these sources the Q-factors can be obtained and summated into the total Q-factor,

1

Qtotal

=
1

Qleaky

+
1

Qvisco

+
1

Qfluid

+
1

Qthermo

+
1

Qpiezo

+ ...+
1

Qothers

. (7.31)
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The total Q-factor can be used as the minimum seeking optimisation function to help narrow the

possible high Q SAW types in general anisotropic materials. The mechanisms of loss will be

modelled independently of each other, with exception for leaky loss which is inherent in all the

models, but can still be shown independently in the pure mechanical case.

7.4.2 Assumptions of Q-factor model

The approach taken to modelling the Q-factor, discussed in the previous section, has several

limitations due to required assumptions. The following are a list of the assumptions;

1. Material inputs remain constant.

2. The effects of each of the loss mechanisms are independent of each other.

3. The total Q-factor is the summation of the magnitude without consideration of direction.

The goal is to get an approximate effect of each of the loss mechanisms on the energy leakage of

particular wave types. Even though the three approximations may be modelled, the increase in

computation would be wasteful for an approximate solution. If situations arise in which certain

loss mechanisms dominate, then their interaction may be modelled at a later date, for example

fluid and thermal. Only the overall magnitudes are summated due to the sign of the imaginary

parts of the wavenumber having physical meaning. The overall effect on the waveforms is what

is of importance, not how the relative rotations of the wave vector interact.

7.4.3 Q-factor comparison for SU-8 on piezoelectric substrates

The following Q-factor investigation is presented for SU-8 layered on quartz and on lithium

niobate, independently. It has been previously stated that the mechanical solutions between

these cases should be similar due to the dominant layer. This may be true for the mechanical

part but the difference in thermoelastic and piezoelectric coefficients may alter the Q-factors.

The thickness of the waveguide for these Q-factor computations will be fixed at a micrometre,

requiring operating frequencies in the GHz range. The non-attenuated mechanical dispersion

curves are computed, presented in Figure 7.5 are the first four modes of SU-8 on lithium niobate

and on quartz.
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Fig. 7.5 The elastic dispersion curves for SU-8 on (a) quartz and (b) lithium niobate for the

non-attenuated range. Viscoelastic parameter of SU-8 is set to zero.

The dispersion curves and Q-factors for multiple forms of attenuation have been computed

independently of each other. The Q-factor is presented for viscoelastic loss with η = 0.059 in

Figure 7.6, for fluid loss in Figure 7.7, for thermoelastic coupling in Figure 7.8 and piezoelectric

coupling with real coefficients in Figure 7.9. The combined summation of the Q-factors is

presented in Figure 7.10.
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Fig. 7.6 Inverse Q-factor for viscoelastic loss in first four SAW modes of SU-8 (η = 0.059)

loaded on (a) quartz and (b) lithium niobate, within the non-leaky velocity range.
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Fig. 7.7 Inverse Q-factor for a fluid half-space loading in first four SAW modes of SU-8 (η = 0.0)

loaded on (a) quartz and (b) lithium niobate, within the non-leaky velocity range.
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Fig. 7.8 Inverse Q-factor for loss through thermoelastic coupling in first four SAW modes of

SU-8 (η = 0.0) loaded on (a) quartz and (b) lithium niobate, within the non-leaky velocity range.
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Fig. 7.9 Inverse Q-factor for loss through piezoeletric coupling, with real piezoelectric and

dielectric constants, in the first four SAW modes of SU-8 (η = 0.0) loaded on (a) quartz and (b)

lithium niobate, within the non-leaky velocity range.
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Fig. 7.10 Inverse total Q-factor for the first four SAW modes of SU-8 loaded on (a) quartz and

(b) lithium niobate, within the non-leaky velocity range.

For all computed modes the greatest forms of attenuation is the viscoelastic loss, which also

dominates the total Q-factor. The second mode for Quartz has a large thermoelastic peak, which

is expected to be higher to due to the underestimation of the peak by the uncoupled approximation.

Otherwise, the Q-factors for the two materials are more or less consistent, except for values

closer to 3000ms−1 due to a attenuated peak in the piezoelectric Q-factor for quartz. The loss in

the piezoelectric part is not due to complex piezoelectric or dielectric coefficients. Instead the

attenuation is required to match the boundary conditions of the SU-8 and piezoelectric substrate

materials.
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7.5 Conclusion

In this chapter the extensions to thermoelastic and piezoelectric behaviours in the numerical

model were achieved. For the thermoelastic extension, the goal was to make an approximation

of Q-factor in 3-dimensional multilayered anisotropic combinations. Modelling the piezoelectric

behaviour is required for designing MEMS that make use of the piezoelectric coupling to excite

waveforms. Additionally, the piezoelectric coupling can alter the structure of the slowness

curves used to design annular transducers. For the case of SU-8 on piezoelectric substrates, no

significant change, due to the piezoelectric coupling, was present. For this case, this is due to

the dominant isotropic dielectric layer, and should not be considered true for all cases involving

lithium niobate.

For the particular cases presented of SU-8 on lithium niobate and on quartz, the Q-factor

data was computed for multiple loss mechanisms. The dominant form of attenuation was due to

the viscoelastic layer, which dominated the structure of the combined Q-factor. This form of

attenuation is near identical between the two substrates, due to the dominate dynamics of the

isotropic layer. Fluid behaviour has the lowest attenuation, this result is consistent with the data

presented in Chapter 6 for the comparison of isotropic and anisotropic fluid loading.

For thermoelastic loss and the attenuation required for piezoelectric wave propagation, the

attenuation of quartz is significant enough to impact the structure of the combined Q-factor. As

for the lithium niobate substrate the attenuation due to these loss mechanisms remains an order

of magnitude lower than the viscoelastic loss. The viscoelastic loss in the lithium niobate case

dominates the structure of the combined Q-factor.
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Chapter 8

Conclusion

8.1 Introduction

In this final chapter the outcomes of each of the major chapters will be discussed in the context

of the research as a whole. The limitations of research in each of these chapters will be discussed,

this will lead onto the recommendations for further work. Additionally, the original research

questions posed in Chapter 1 will be reviewed in this chapter.

8.2 Review of Outcomes

In this section the outcomes for all major sections are reviewed in view of the original objectives

and the overall research.

8.2.1 Chapter 3

One of the main requirements for studying the behaviour of multilayered waveforms for biosensor

application is a robust numerical model. At the transition points for a material, corresponding to

the bulk wave solutions, the complex partial wave solutions coalesce on the real axis and then

seperate. At these points, the gradient based tracking methods suffer a loss of information on the

location of the partial roots. The structure of the function depends heavily on the symmetry and

rotation of the stiffness tensor for the anisotropic material. For attenuated cases these solutions

can be rotated back into the complex plane, rendering methods that sweep along an axis useless.

As stated in the objectives, the numerical method must be general enough to handle multiple

material symmetries, properties and forms of attenuations.
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It has been shown that the functions of the partial wave eigenvalue problem and boundary

condition determinant are holomorphic. A novel method based on the curves of constant phase

has been developed which makes use of both the phase and magnitude of the function. This

method has been shown to be capable of computing materials with varied anisotropic stiffness,

boundary conditions and attenuation mechanisms. A hybrid search by golden sections and curves

of constant phase method has been developed for the fixed frequency. This allowed for the

computation of problems for biosensor application, opposed to the fixed velocity cases which

were limited to the existence problem. Therefore the robust and generalised numerical method

has been developed which may be used to investigate the changing behaviour of SAW solutions

and biosensor design.

A polar formulation, of the numerical methods of this problem, has not been developed.

Instead the approach to use the plane wave formulation to approximate a point loaded Green’s

function is used in Chapter 5. The major advantage comes from the integrated approach to

modelling waves in anisotropic layered, resulting in a general method that may be applied to

many biosensor cases. Using the plane wave approach allows for the use of the modular coding

methods developed, which may be efficiently tailored to particular problems of interest.

8.2.2 Chapter 4

Waveforms that only have pure sinusoidal variation in the direction of propagation are only a

small group of waveforms of interest for biosensor applications. In in real world, just as with

isotropy, these waveforms are an approximation which is suitable for first concept designs but

not detailed optimisation. This case is limited, to capture solutions closer to the real world

case, decay must also be allowed in the propagating direction which siginificantly increases the

number of waveforms which may be modelled. In an elastic medium these are LSAWs, the

methods developed in Chapter 3 allow for the search of these solutions in the complex plane of

wavenumber or frequency. Modelling these LSAWs is required for characterisation of SAWs

within layered anisotropic media, which may also lead to insight on novel sensor designs, as

stated in the objectives.

In this chapter the interaction between differing anisotropic symmetries, namely quasi-6-fold

Z-cut quartz on 4-fold (100) cubic, was investigated close to leaky transition regions. For the

non-leaky range, the interaction of the 2-dimensional dispersion of the waveguide and anisotropy

was presented. The resulting variation in solution surfaces, with angle, was increased by the

leaky transition, which occurs at particular propagation angles. This rapid shifting of the solution
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surfaces could prove useful for sensor design, this will be discussed further in the limitations and

further work section.

As stated in one of the objectives, the cyclic variation of solutions due to anisotropic

dispersion is of interest for application to clyindrical sensor design. In this chapter multiple

mechanisms that impact the cyclic symmetry and their interaction have been presented for the

fixed velocity case. For biosensor application, the velocity surfaces for a fixed real frequency

value, have been computed for the same problem. The same leaky dispersive structure is also

present in these curves, along with the waveguide and anisotropic dispersions.

8.2.3 Chapter 5

Viscoelastic materials such as SU-8 epxoy or Polymethyl methacrylate (PMMA) are used

for components of biosensors, additionally many biological substances are also viscoelastic.

Viscoelastic elements of multilayered biosensor designs have reporterly been the main source of

energy loss in layered SAW devices. The formulation of this loss mechanism is a key step in the

comparison of multiple forms of attenuation, stated as a biosensor objective. As a secondary

objective, the cyclic symmetry of the wavenumber solutions is studied in this chapter, but now

with viscoelastic loss.

The existence of attenuated solutions was expected and shown to exist; the attenuation, as

expected from the literature, is frequency dependent in the partial wave solutions. The focus was

placed on isotropic SU-8 layered on Z-cut trigonal lithium niobate, unlike in Chapter 4, this is a

currently feasible combination. The viscoelastic loss has been shown to rotate the wavenumber

surfaces into the complex plane, which may be uniformal or variable with angle.

The velocity surfaces for a fixed real frequency value have been computed for the half-space

and SU-8 layered problem of lithium niobate. As with the previous chapter, the cyclic symmetry

of solutions is of interest for application, stated in the objectives. Using the approximate Green’s

function method, the shaped annular transducer for the half-space problem has been designed.

For the SU-8 layered case, an investigation into the character of the fixed frequency surfaces was

presented instead of a design outline. This is due to the number of possibilities resulting from

dispersion and viscosity, along with the significantly lower cyclic variation of this problem.

8.2.4 Chapter 6

Attenuation due to fluid loading is one of the earliest problems to be faced by mechanical sensors

used in biosensing applications. As with the previous chapter, stated in the objectives, the focus is
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the formulation of the energy loss and the resulting cyclic symmetry. For fluid loading, the extra

objectives of isotropic verse anisotropic, and Rayleigh verse Love type displacements was of

interest. In addition, in this chapter, the generalised displacements for anisotropic combinations

was investigated in the mechanical case for the prediction of fluid attenuation.

The linearised fluid loading model has been developed using the small signal approximation,

the viscoelastic tensor is used to capture shear horizontal coupling. The starting point of

this formulation was the 3-dimensional equations, methods in the literature typically use 3-

dimensional extensions of 1-dimensional equations. The resulting set of equations must be

solved together, a coupled eigenvalue problem, to determine the unknown displacements. This

novel approach allows the fluid formulation to be integrated into the current formulation as a

module. Therefore, the fluid can be easily introduced into the boundary condition problem,

allowing the efficient generation of code for a large number of cases.

The attenuation of Rayleigh type displacements in an isotropic layered medium is shown to

be larger than the Love wave attenuation for large layer thicknesses. The attenuation of the Love

wave remains small and within a similar range, over large change in magnitude of the thickness,

while the Rayleigh wave attenuation decreases as thickness decreases. For small thicknesses

within typical MEMS biosensor ranges, the attenuation of the Rayleigh wave approaches the

same range as the Love wave attenuation.

A focus of this chapter, in addition to fluid loading, was the compatiblity between layer and

substrate materials, briefly outlined in Chapter 2. For the mechanical case the lower compatibility

resulted in increased averaged out-of-plane displacements at the surface of the material. An

interesting point for both cases, the cyclic symmetry was 2-fold with a dominant 6-fold shape,

dependent on the mode. Therefore, with the loading of the fluid, the cyclic symmetry of all

modes was altered by the attenuation. The attenuation is larger than the isotropic case, with

significantly higher attenuation for the incompatible combination.

8.2.5 Chapter 7

Several types of attenuated behaviour has been investigated throughout the course of this thesis,

in this chapter these loss mechansims are compared in a common case. The objective is to

indentify the major form of attenuation and to optimise these in relation to biosensor design.

The optimisation is a significant undertaking, due to the many variables and design parameters

that may be considered for SAW sensors. In this chapter, the focus is placed on the comparison

between forms of attenuation, and development of methology. The additonal formulation of

116



8.3 Scope and Limitations

thermoelastic loss is undertaken in this chapter, along with the piezoelectric formulation, required

to model the piezoelectric coupling.

The comparison of loss mechanisms was undertaken for SU-8 on Z-cut lithium niobate, the

same case covered in Chapter 5, and on Z-cut quartz for comparison. For both the total Q-factor

was dominated by the viscoelastic loss of the layer, with identical mechanical structures implying

dominant isotropic layer propagation. For quartz, some additional contributions are present due

to thermoelastic loss and piezoelectric propagation requiring a complex wavenumber. The fluid

loss, for both cases, is insignificant due to the use of an isotropic layer, as suggested in Chapter 6.

For SU-8 on lithium niobate, the dispersion structure with piezoelectric coupling matches the

mechanical slowness.

8.3 Scope and Limitations

For each chapter the relevance of the limitations and scope of the work is reviewed in the context

of the application of MEMS biosensors, and the physical understanding of SAW mode behaviour.

8.3.1 Chapter 3

The numerical models that have been developed can be applied to any complex holomorphic

function. When compared to grid based methods, the numerical model suffers increased compu-

tation time with an increase in the number of solutions, within the search range. Although grid

methods can also increase in computation times, dependent on the method, location of solutions

and initial conditions. This is not an issue for the partial wave problem, which only has six to

eight solutions in the cases presented. For the boundary condition determinant, only the first few

modes of a problem are relevant for biosensor application and so this is acceptable in the context

of this application.

8.3.2 Chapter 4

The material combination that has been investigated is quartz on silicon; these anisotropic

combinations are uncommon in biosensing technology. Literature of the bonding or growth of

these materials, using an intermediate layer, exist to a limited extent. The major limitation is

the state of technology for bonding of different types of anisotropic substrate. Another problem

could arise is the bonding approach, if it makes use of a viscoelastic layer, which has been

shown to attenuate energy, in this case as constrained layer damping. Many possible material

117



Conclusion

combinations exist in which symmetric leaky behaviour may be introduced for rapid shifting

of slowness structure. The methods developed in this thesis may be used to test the feasibility,

along with other possible materials to be used in such a device. The commercial viability of such

research may generate the motivation required to further research crystal bonding.

8.3.3 Chapter 5

Modelling of 3-dimensional wave based viscoelastic behaviour is used for a wide range of

applications including MEMS devices and vibrational control. Allowing the material to have

anisotropic properties, expands the number of cases this can be used for biosensor application,

such as SU-8 or biological elements on the quartz on silicon problem. The methods are based on

plane wave formulation, this means that they can also be readily applied to optimise traditional

linear devices.

8.3.4 Chapter 6

A model that captures the shear and out-of-plane coupling between a fluid and solid interface

has been developed, this linearised fluid model has been built for just the interface problem. A

wide scope of cases have been presented, the effect of mutliple wave types has been investigated

along with isotropic and anisotropic layers. The results can hint at the behaviours for a wide

range of interface cases, although it is most reliable at small amplitude ranges for applications

in MEMS devices. Additionally, the numerical method can be readily used for many more

multilayered cases and anisotropic material properties due to the modularity. This means that it

is also compatible with the piezoelectric and viscoelastic formulations, for the study of interface

wave types.

The scope of the investigation was, unfortunately, limited to modelling only water for fluid

loading of SAW solutions. Other fluids may be modelled, provided that the input region in the

partial wave tracker is sufficiently coded for large variations in magnitude. The properties of

these fluids need to be representable in the form of a viscosity tensor, which for this work must

remains constant. Another mechanism which is not fully explored in this chapter is change due

to dispersion, though this is investigated in Chapter 7 it is only for a single case of an isotropic

layer. The work provides a good overview of the expected attenuation range for isotropic and

anisotropic layers on a substrate.
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8.3.5 Chapter 7

The Q-factor comparison is limited to two particular cases of SU-8 on lithium niobate and quartz

substrates, even so these provide insight in many relevant biosensor cases. Firstly, the cases in

which the layer can be assumed to be isotropic and secondly, when the layer is viscoelastic or

a sensor has viscoelastic elements loaded onto the surface. A case in which these results can

not yield much insight, is the leaky concept in Chapter 4 of 3-fold (quasi-6-fold) Z-cut quartz

on 4-fold silicon. This case combines an anisotropic layer with directionally dependent leaky

behaviour and is currently beyond the scope of this investigation. It is important to state that even

though these results have not been presented for this case, the methods developed can readily

generate the required data. In fact the general approach to modelling these different forms of

attenuation, means that this Q-factor model can represent a large number of systems, not just in

MEMS sensors.

The Q-factors are modelled independently, due to a combination of computational time and

required level of detail. The Q-factor provides a suitable view of the sources of energy loss for

biosensor technology and the magnitude of attenuation. The limitation is that it does not provide

insight into how these loss mechanisms interact with each other. Therefore, this model remains

an approximation tool only and should not be used to further infer the complicated behaviour of

these interactions, which is beyond the scope of this thesis.

In the review section of this chapter, it was stated that the optimisation problem was also

dependent on the SAW mode selected, with the in-plane SAW being a suitable option. The major

problem is the technological limitations in exciting a radial propagating Love wave using linear

polarised piezoelectric materials, due to the coupling coefficients. A possibility beyond the scope

of this research is to make use of generalised displacements of anisotropic materials. These

displacement forms will be some combination of Rayleigh and shear horizontal displacements,

briefly explored in Chapter 6. The optimisation problem would then become a balance between

the attenuation of these generalised displacements and the ability to excite, also known as the

coupling factor.
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8.4 Review of Research Questions

1. In the layered half-space problem, the wavelength may vary from small to large values,

due to the interaction of waveguide dispersion and SAW decay behaviour. How does the

symmetry of the solution relate to the symmetry of the material? How do the symmetries

of the contributing materials interact to give rise to the symmetry of the multilayered

solution? And does the solution symmetry smoothly transition between that of the layer

and of the substrate, dependent on the layer thickness?

Comment: Solution surfaces are some combination of the symmetries of the individual

contributing materials, dependent on the waveguide dispersion. For particular modes,

the structure is a smooth transiton between the symmetries of the contributing materials

with change in wavelength. These cases are believed to be dominated by shear horizontal

displacements, whereas the out-of-plane displacements would couple the layers together.

In these out-of-plane cases, the 2-fold symmetry is always present, but is dominated by

either the layer or substrate symmetries.

2. What are the most significant forms of energy loss for mechanical SAW biosensors using

anisotropic multilayered waveforms? How can these forms be mitigated from a design and

material perspective?

Comment: For the case of an isotropic viscoelastic layer, the attenuation is dominated by

the viscoelasitc layer. This case was conducted for a low value of shear viscosity, for SU-8

photoresist from the literature. For an anisotropic layer, evidence is presented for a high

coupling to a loaded fluid layer which is expected to be the dominant source of attenuaton.

3. For the pure isotropic case, the loss due to fluid loading is assumed to be small in Love

waves, compared to Rayleigh waves. To what degree is this true? And how does this differ

in an anisotropic case?

Comment: Rayleigh waves have a higher attenuation than Love waves in isotropic media,

although at small layer thicknesses in the range of MEMS design the attenuation is within

a similar range. The half-space Rayleigh wave and layered Love wave comparison remains

untested, but it is expected that the Rayleigh loss is comparible to large thicknesses of

multilayered Rayleigh type displacements. In the anisotropic cases explored the differences

are much more significant.
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4. For multilayered SAW modes within a layered medium, comprised of confliciting symme-

tries, how do the generalised displacements lead to increased or decreased energy loss?

And how does the energy loss now vary with the propagation angle?

Comment: For incompatible symmetries, the attenuation due to fluid loading has been

shown to be higher, due to the larger variation in generalised mode displacement. The

attenuation can either be an uniform rotation of the solution surface into the complex plane,

or the attenuation can be directional dependent. This is based on the symmetries of the

contributing anisotropic materials and the loss mechanism being investigated.

5. What will the form of the displacement be for the generalised versions of the well-known

isotropic wave types in different layered anisotropic media? And how will this impact

the piezoelectric coupling of these modes? Is it possible to produce and detect a shear

dominated waveform by out-of-plane transducer coupling?

Comment: This remains an open question, the generalised displacements have been

shown to be combinations of the Rayleigh and shear horizontal displacements. Due to this,

it would be reasonable to assume that a generalised in-plane shear dominant modes may

be excited by out-of-plane coupling. The degree of this coupling has not been explored in

the course of this investigation, but could be approximated by comparing the piezoelectric

and mechanical solutions. Note this would have to be considered when taking advantage

of these anisotropic concepts for sensor design, discussed in further work.
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8.5 Recommendations and Further Work

The following is a brief summary of several recommended research routes or projects that can

further develop on the research conducted in this thesis.

1. Continue the development of the layered lithium niobate cylindrical device, using shaped

annular transducers. The starting points for this work should be the half-space case and

the SU-8 waveguide case. Some of the following steps maybe be considered for this route.

• Develop and test a number of devices for the half-space lithium niobate and the SU-8

layered variant, using circular or shaped annular transducers.

• Investigate the fluid loading loss for both cases, based on the finding in this thesis, the

loss for the generalised anisotropic half-space Rayleigh wave should be significantly

larger than the isotropic layered case.

• Conduct optimisation of the Q-factor and sensing mechanism, as the start of the

development of a commerical device, making use of the automated slowness and

transducer design tools. This may involve expanding the material selection for more

suitable layer options.

2. An expanded numerical investigation into the layered anisotropic stiffness problem close

to transition regions. This may involve some of the following steps.

• Increasing the number of materials and standard cuts of these materials. Starting

with the case of isotropic on anisotropic materials.

• Investigate the feasibility of activating embedded layers, as part of the n-layers

problem. Compare the differences between SAW and LSAW modes when lower

layers are present. These layers will have lower bulk velocities than higher layers.

• For particular cases, investigate the Q-factor and frequency shift behaviour under

mass loading.

• Investigate the variation in electromagnetic coupling and generalised displacements

pattern around the multilayered cut.

If a potential candiate is identified for a cylindrical geometry biosensor, then investigate

the feasibility of material bonding or crystal growth. Design the shaped annular transduers
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for the particular mode of interest, and excited a multilayered polar form SAW mode, close

to an anisotropic leaky transiton point. Note that the results shown in Chapter 4 is for

initial data, for only two materials, without optimisation for improved frequency shift.

3. Investigate the behaviour of generalised modes in materials with anisotropic stiffness,

along with the relative out-of-plane to in-plane shears displacements. The objective is

to excited dominate in-plane shears by piezoelectric coupling through the out-of-plane

component and to enchance this coupling. An extra note, the further development of

annular transducer manufacturing techniques will allow for sophisticated design such as

adjustable IDT grids. This may be important for anisotropic combination in which the

relative displacement types vary with propagation angle. With the constant improvement

in the state of technology may come the ability to regional adjust piezoelectric coupling

and develop adjustable MEMS based metamaterials. Biosensor designs that make use of

annular transducers and anisotropic dispersive structures could prove to be a motivation for

the development of advanced MEMS manufacturing and material polarisation techniques.

8.6 Concluding Remarks

The central focus of this thesis has been on the physical mechanisms that effect the cyclic

symmetry of SAW modes in multilayered combinations. The goal of this investigation has

been to develop the required numerical framework to investigate these problems in the context

of MEMS biosensor applications. It has been shown that the effects of waveguide dispersion,

anisotropy and a number of energy loss mechanisms can alter the slowness structure of various

material combinations. Additionally, a comparison between these sources of energy loss in a

dispersive, and anisotropic feasible SAW biosensor example has been conducted. To build on the

research conducted in this thesis, it is recommended that the anisotropic structure be explored for

a greater range of materials. The physical behaviours that may be used in novel sensor design

requires the further development of MEMS manufacturing techniques.
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[10] P. Kielczyński, M. Szalewski, and A. Balcerzak. Effect of a viscous liquid loading on

Love wave propagation. International Journal of Solids and Structures, 2012, 49(17), pp.

2314-2319.

146



References

Chapter 7

[1] P. Mohanty, D.A. Harrington, K.L. Ekinci, Y.T. Yang, M.J. Murphy, and M.L. Roukes.

Intrinsic dissipation in high-frequency micromechanical resonators. Physical Review B,

2002, 66(8), 085416 pp.1-15.

[2] A. Granato, and K. Lücke. Theory of Mechanical Damping Due to Dislocations. Journal of

Applied Physics, 1956, 27(6), pp. 583-593.

[3] R.B. Thompson, F.J. Margetan, P. Haldipur, L. Yu, A. Li, P. Panetta, and H. Wasan.

Scattering of elastic waves in simple and complex polycrystal. Wave Motion, 2008, 45(5),

pp. 655-674.

[4] B. Kim, M.A. Hopcroft, R.N. Candler, C.M. Jha, M. Agarwal, R. Melamud, S.A. Chan-

dorkar, G. Yama, and T.W. Kenny. Temperature Dependence of Quality Factor in MEMS

Resonators. Journal of Microelectromechanical Systems, 2008, 17(3), pp. 755-766.

[5] B.L. Foulgoc, T. Bourouina, O.L. Traon, A. Bosseboeuf, F. Marty, C. Breluzeau, J-P.

Granchamp, and S. Masson. Highly decoupled single-crystal silicon resonators: an approach

for the intrinic quality factor. Journal of Micromechanics and Microengineering, 2006, 16,

pp. S45-S53.

[6] I. Voiculescu, and A.N. Nordin. Acoustic wave based MEMS devices for biosensing

applications. Biosensors and Bioelectronics, 2012, 33, pp. 1-9.

[7] B.P. Harrington, and R. Abdolvand. In-plane acoustic reflectors for reducing effective

anchor loss in lateral-extensional MEMS resonators. Journal of Micromechanics and

Microengineering, 2011, 21(8), 085021 pp. 1-11.

[8] M. Weinberg, R. Candler, S. Chandorkar, J. Varsanik, T. Kenny, and A. Duwel. Energy Loss

in MEMS Resonators and the Impact on Intertial and RF Devices. Transducers International

Solid-State Sensors, Actuators and Microsystem Conference, Denver, CO, USA, 21-25

June 2009, pp. 688-695.

[9] Y. Sun, D. Fang, and A.K. Soh. Thermoelastic damping in micro-beam resonators. Interna-

tional Journal of Solids and Structures, 2006, 43, pp. 3213-3229.

[10] R. Lifshitz, and M.L. Roukes. Thermoelastic Damping in Micro- and Nano-Mechanical

Systems. Physical Review B, 2000, 61(8), pp. 5600-5609.

147



References
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Appendix A

Elastic Wave Tensor Form

Formulation based on the tensor calculus notation and theory of [1], the continuum tensor

formulations of [2] and the 3-dimensional wave formulation of [3].

Tensor notation

A vector a may be written in terms of the covariant zi or contravariant zi basis in the following

form,

a = aizi = aiz
i. (A.1)

Where the Einstein summation convention is assumed over upper and lower repeated indices.

The covariant derivative acting on the tensor ai is given by,

∇jui =
∂ui

∂zj
− Γm

ijum, (A.2)

∇ju
i =

∂ui

∂zj
− Γi

jmu
m. (A.3)

The Christoffel symbol Γ is required for partial differentiation, it is used to track of the change

in coordinate system zi. The intrinsic derivative δ
δt

of a contravariant tensor where t denotes time

is given in the following form,

δui

δt
=

dui

dt
+ vjΓi

jku
k. (A.4)
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Coordinate free wave equation

Taking the linear strain tensor ε,

εij =
1

2
(∇iuj +∇jui), (A.5)

and mechanical conservation as,

σij = Cijklεkl. (A.6)

The components of displacements u are denoted ui, σij denotes stress tensor and Cijkl denotes

stiffness tensor. Taking the force balance on a three dimensional elastic body, Fi denotes body

forces, results in th equilibrium equation as,

∇jσ
ij + F i = 0. (A.7)

Substitution in Newton’s second law results in the elastic wave equations,

∇jσ
ij + F i =

δ

δt

(
ρ
δui

δt

)
. (A.8)

Substituting (A.5) and (A.6) into (A.8) results in the form,

∇jC
ijkl 1

2
(∇kul +∇luk) + Cijkl 1

2
∇j(∇kul +∇luk) + F i =

δ

δt

(
ρ
δui

δt

)
. (A.9)

Using the definitions of the covariant derivatives (A.2) and (A.3) the terms on the left hand side

of the equation can be expanded out into the forms,

∇jC
ijkl(∇kul +∇luk) =(

∂Cijkl

∂zj
+ Γi

jmC
mjkl + Γj

jmC
imkl + Γk

jmC
ijml

+ Γl
jmC

ijkm
)(∂ul

∂zk
+

∂uk

∂zl
− 2Γm

lkum

) (A.10)
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∇j(∇kul +∇luk) =(
∂2ul

∂zj∂zk
− Γm

lj

∂um

∂zk
− Γm

kj

∂ul

∂zm
+

∂2uk

∂zj∂zl
− Γm

kj

∂um

∂zl
− Γm

lj

∂uk

∂zm

− 2

[
∂Γm

lk

∂zj
um + Γm

lk

∂um

∂zj
− Γn

ljΓ
m
nkum − Γn

kjΓ
m
lnum

]) (A.11)

Cartesian systems

The change in coordinates in the covariant derivative is captured by the Christoffel symbols

which can be written in terms of the metric tensor zij ,

Γk
ij =

1

2
Zkm

(
∂Zmi

∂Zj
+

∂Zmj

∂Zi
+

∂Zij

∂Zm

)
. (A.12)

For Cartesian coordinates [Z1 Z2 Z3] = [x y z] = xi the Christoffel symbols for all indices

equals zero Γi
jk = 0. The equations of motion reduces to the known Cartesian form,

∂Cijkl

∂xj

1

2

(
∂ul

∂xk
+

∂uk

∂xl

)
+ Cijkl 1

2

(
∂2ul

∂xj∂xk
+

∂2uk

∂xj∂xl

)
+ F i =

∂

∂t

(
ρ
∂ui

∂t

)
. (A.13)
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Appendix B

Linear Piezoelectric and Thermoelastic

Formulation

Linear constitution

These constitution relations are formulated using the laws of thermodynamic by minimising the

total energy relation, see [1] for a full description. The three constitution equations for stress,

electric displacement and entropy density are as follows,

σij = Cijkl(E,T )
εkl − dkij

(T )
Ek − λij(E)

δT, (B.1)

Di = dijk
(T )

εjk + eij
(ε,T )

Ej + P i(ε)δT, (B.2)

S = λij(E)
εij + P i(ε)Ei +

ρC(ε,E)

T0

δT. (B.3)

The bracket superscript quantities are fixed process conditions, for the remainer of the appendix

these will be dropped for the purpose of reduced notation. All constants of proportionality are

assumed to be constant under changes in space xi and time t.

Set of governing equations

The following formulation are based on work by [2, 3]. The mechanical wave equation, heat

equation and Gauss law in a region with zero charge are as follows,
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Linear Piezoelectric and Thermoelastic Formulation

∂σij

∂xj

= ρ
∂2ui

∂t2
, (B.4)

∂qi
∂xi

= −T0
∂S

∂t
, (B.5)

∂Di

∂xi

= 0. (B.6)

The equations for strain, electric field and heat flux are as follows,

εij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
, (B.7)

Ei = − ∂ϕ

∂xi

, (B.8)

qi = −Kij
∂δT

∂xj

. (B.9)

Combined system of equations

Differentiate (B.1) with respect to xj and substitute (B.7) and (B.8),

∂σij

∂xj
= Cijkl ∂2ul

∂xj∂xk
+ dkij

∂2ϕ

∂xj∂xk
− λij ∂δT

∂xj
. (B.10)

Differentiate (B.2) with respect to xi and substitute (B.7) and (B.8),

∂Di

∂xi
= dijk

∂2uk

∂xi∂xj
− eij

∂2ϕ

∂xi∂xj
+ P i∂δT

∂xi
. (B.11)

Differentiate (B.3) with respect to t and substitute (B.7) and (B.8),

∂S

∂t
= λij ∂

2uj

∂t∂xi
− P i ∂2ϕ

∂t∂xi
+

ρC

T0

∂δT

∂t
. (B.12)

Differentiate (B.9) with respect to xi,

∂qi

∂xi
= −Kij ∂2δT

∂xi∂xj
. (B.13)

Substituting (B.10) into (B.4), (B.12) and (B.13) into (B.5) and (B.11) into (B.6) results in the

combined equations of motions,
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Cijkl ∂ul

∂xj∂xk
+ dkij

∂2ϕ

∂xj∂xk
− λij ∂δT

∂xj
= ρ

∂2ui

∂t2
, (B.14)

−Kij ∂2δT

∂xi∂xj
= −T0λ

ij ∂
2uj

∂t∂xi
+ T0P

i ∂2ϕ

∂t∂xi
− ρC

∂δT

∂t
, (B.15)

dijk
∂2uk

∂xi∂xj
− eij

∂2ϕ

∂xi∂xj
+ P i∂δT

∂xi
= 0. (B.16)
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Appendix C

MATLAB Codes

Curves of constant phase procedure

Example MATLAB codes for the curves of constant phase tracking procedure. The following

codes are for the partial wave determinant function, therefore the centre of the initial procedure

is zero, and the number of solutions is predefined.

Listing C.1 Main function for curves of constand phase.

1 % Partial root tracking by curve of constant phase

2 function out = phaseTrackPartialRoots(func,realStartRange,

imagStartRange,rangeSteps,setAngle,numRoots,circleSteps,

trackStep,converge)

3

4 % Initial procedure

5 % call phaseStartSearch function

6 startPoints = phaseStartSearch(func,realStartRange,

imagStartRange,rangeSteps,setAngle,numRoots);

7

8 % Main procedure

9 % for each start point run the phase tracking

10 out = zeros([1,numRoots]);

11 for i = 1:length(startPoints)

12 startPoint = startPoints(i);

13 % call phaseTracker function

14 z = phaseTracker(func,startPoint,circleSteps,trackStep,

converge);

15 out(i) = z;

16 end

17 end
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Curves of constant phase procedure

Listing C.2 Initial procedure of curves of constant phase.

1 % Four searchs around zero to create a rectangle in complex

plane

2 % Minimise the difference between phase and setAngle

3 function out = phaseStartSearch(func,realRange,imagRange,steps,

setAngle,numRoots)

4

5 % Length is expected number of outcomes

6 out = zeros([numRoots,1]);

7

8 % Step size from search range

9 rStep = realRange/(steps-1);

10 iStep = imagRange/(steps-1);

11

12 % Root counter

13 q = 0;

14

15 % Setting corners of the rectangle

16 R1 = -(realRange/2) + (imagRange/2)*1i;

17 R2 = (realRange/2) - (imagRange/2)*1i;

18 I1 = -(realRange/2) - (imagRange/2)*1i;

19 I2 = (realRange/2) + (imagRange/2)*1i;

20

21 % First real axis search

22 Xc = R1;

23 Xm = R1 - rStep;

24 Dc = func(Xc);

25 Dm = func(Xm);

26

27 if angle(Dc) > setAngle

28 Pc = setAngle - (angle(Dc)-setAngle);

29 else

30 Pc = angle(Dc);

31 end

32

33 if angle(Dm) > setAngle

34 Pm = setAngle - (angle(Dm)-setAngle);

35 else

36 Pm = angle(Dm);

37 end
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38

39 for n = 1:steps-1

40 X = R1 + rStep*n;

41 Dn = func(X);

42

43 if angle(Dn) > setAngle

44 Pn = setAngle - (angle(Dn)-setAngle);

45 else

46 Pn = angle(Dn);

47 end

48

49 if Pn < Pc && Pm < Pc

50 q = q + 1;

51 out(q) = Xc;

52 end

53

54 Xc = X;

55 Pm = Pc;

56 Pc = Pn;

57 end

58

59 % Second real axis search

60 Xc = R2;

61 Xm = R2 + rStep;

62 Dc = func(Xc);

63 Dm = func(Xm);

64

65 if angle(Dc) > setAngle

66 Pc = setAngle - (angle(Dc)-setAngle);

67 else

68 Pc = angle(Dc);

69 end

70

71 if angle(Dm) > setAngle

72 Pm = setAngle - (angle(Dm)-setAngle);

73 else

74 Pm = angle(Dm);

75 end

76

77 % Find all minimums between current and setAngle
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Curves of constant phase procedure

78 for n = 1:steps-1

79 X = R2 - rStep*n;

80 Dn = func(X);

81

82 if angle(Dn) > setAngle

83 Pn = setAngle - (angle(Dn)-setAngle);

84 else

85 Pn = angle(Dn);

86 end

87

88 if Pn < Pc && Pm < Pc

89 q = q + 1;

90 out(q) = Xc;

91 end

92

93 Xc = X;

94 Pm = Pc;

95 Pc = Pn;

96 end

97

98 % First imag axis search

99 Xc = I1;

100 Xm = I1 - iStep*1i;

101 Dc = func(Xc);

102 Dm = func(Xm);

103

104 if angle(Dc) > setAngle

105 Pc = setAngle - (angle(Dc)-setAngle);

106 else

107 Pc = angle(Dc);

108 end

109

110 if angle(Dm) > setAngle

111 Pm = setAngle - (angle(Dm)-setAngle);

112 else

113 Pm = angle(Dm);

114 end

115

116 % Find all minimums between current and setAngle

117 for n = 1:steps-1
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118 X = I1 + iStep*n*1i;

119 Dn = func(X);

120

121 if angle(Dn) > setAngle

122 Pn = setAngle - (angle(Dn)-setAngle);

123 else

124 Pn = angle(Dn);

125 end

126

127 if Pn < Pc && Pm < Pc

128 q = q + 1;

129 out(q) = Xc;

130 end

131

132 Xc = X;

133 Pm = Pc;

134 Pc = Pn;

135 end

136

137 % Second imag axis search

138 Xc = I2;

139 Xm = I2 + iStep*1i;

140 Dc = func(Xc);

141 Dm = func(Xm);

142

143 if angle(Dc) > setAngle

144 Pc = setAngle - (angle(Dc)-setAngle);

145 else

146 Pc = angle(Dc);

147 end

148

149 if angle(Dm) > setAngle

150 Pm = setAngle - (angle(Dm)-setAngle);

151 else

152 Pm = angle(Dm);

153 end

154

155 % Find all minimums between current and setAngle

156 for n = 1:steps-1

157 X = I2 - iStep*n*1i;
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Curves of constant phase procedure

158 Dn = func(X);

159

160 if angle(Dn) > setAngle

161 Pn = setAngle - (angle(Dn)-setAngle);

162 else

163 Pn = angle(Dn);

164 end

165

166 if Pn < Pc && Pm < Pc

167 q = q + 1;

168 out(q) = Xc;

169 end

170

171 Xc = X;

172 Pm = Pc;

173 Pc = Pn;

174 end

175

176 chr = int2str(numRoots);

177 if q ~= numRoots

178 error(['Length of initial search vector is not ',chr])

179 end

180 end
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Listing C.3 Main procedure of curves of constant phase.

1 % Main procedure of curves of constant phase

2 function out = phaseTracker(func,startPoint,circleSteps,

trackStep,magCon)

3

4 radius = 10^trackStep; % Search step size

5 p = startPoint;

6 setAngle = angle(func(p)); % Redefine setAngle

7 circleStep = (2*pi)/circleSteps;

8

9 % 1. First step of main procedure

10 % Call circleAngleOutputLowest

11 [xi,theta] = circleAngleOutputLowest(func,real(p),imag(p),

radius,circleSteps,setAngle);

12 Di = func(xi);

13

14 th = theta;

15

16 whileCon = 0;

17 while whileCon == 0

18

19 % 2. Tracker step of main procedure

20 th1 = th + circleStep;

21 th2 = th - circleStep;

22

23 xunit = radius * cos(th) + real(xi);

24 yunit = radius * sin(th) + imag(xi);

25 xA0 = xunit + yunit*1i;

26 DA0 = func(xA0);

27 if angle(DA0) > setAngle

28 PA0 = setAngle - (angle(DA0)-setAngle);

29 else

30 PA0 = angle(DA0);

31 end

32

33 xunit = radius * cos(th1) + real(xi);

34 yunit = radius * sin(th1) + imag(xi);

35 xA1 = xunit + yunit*1i;

36 DA1 = func(xA1);

37 if angle(DA1) > setAngle
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38 PA1 = setAngle - (angle(DA1)-setAngle);

39 else

40 PA1 = angle(DA1);

41 end

42

43 xunit = radius * cos(th2) + real(xi);

44 yunit = radius * sin(th2) + imag(xi);

45 xA2 = xunit + yunit*1i;

46 DA2 = func(xA2);

47 if angle(DA2) > setAngle

48 PA2 = setAngle - (angle(DA2)-setAngle);

49 else

50 PA2 = angle(DA2);

51 end

52

53 if PA0 > PA1 && PA0 > PA2

54 xf = xA0;

55 thf = th;

56 whileCon2 = 1;

57 elseif PA1 > PA2 && PA1 > PA0

58 P1 = PA0;

59 P2 = PA1;

60 thN = th1;

61 Df = DA1;

62 whileCon2 = 0;

63 elseif PA2 > PA1 && PA2 > PA0

64 P1 = PA0;

65 P2 = PA2;

66 thN = th2;

67 Df = DA2;

68 circleStep = circleStep*-1;

69 whileCon2 = 0;

70 end

71

72 % 3. Correction step of main procedure

73 r = 0;

74 while whileCon2 == 0

75 r = r + 1;

76 thN = thN + circleStep;

77
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78 xunit = radius * cos(thN) + real(xi);

79 yunit = radius * sin(thN) + imag(xi);

80 xA = xunit + yunit*1i;

81 DA = func(xA);

82 if angle(DA) > setAngle

83 P3 = setAngle - (angle(DA)-setAngle);

84 else

85 P3 = angle(DA);

86 end

87

88 if P2 > P1 && P2 > P3

89 if abs(Df) < abs(Di)

90 xunit = radius * cos(thN-circleStep) + real

(xi);

91 yunit = radius * sin(thN-circleStep) + imag

(xi);

92 thf = thN;

93 xf = xunit + yunit*1i;

94 whileCon2 = 1;

95 continue

96 end

97 end

98

99 P1 = P2;

100 P2 = P3;

101 Df = DA;

102 end

103

104 % Has the solution been lost?

105 if abs(func(xf)) > abs(func(xi))

106 % 4. Reduce magnitude of step

107 if trackStep <= magCon

108 whileCon = 1;

109 out = xi;

110 elseif trackStep > magCon

111 trackStep = trackStep - 1;

112 radius = 10^trackStep;

113 end

114

115 continue
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116 else

117 xi = xf;

118 th = thf;

119 end

120 end

121 end

122

123 % circleAngleOutputLowest to be used in phaseTracker

124 function [out,thetaOut] = circleAngleOutputLowest(func,y1,y2,

radius,circleSteps,setAngle)

125

126 out = [];

127 thetaOut = [];

128

129 % Create circle of points in complex plane

130 da = (2*pi)/(circleSteps);

131 th = 0:da:2*pi;

132 xunit = radius * cos(th) + y1;

133 yunit = radius * sin(th) + y2;

134 circleDataSet = xunit + yunit*1i;

135

136 x = circleDataSet;

137

138 for i = 1:length(x)

139 p = x(i);

140 z = func(p);

141 if angle(z) > setAngle

142 ANG(i) = setAngle - (angle(z)-setAngle);

143 else

144 ANG(i) = angle(z);

145 end

146 end

147

148 % Find all minimums between phase and setAngle

149 r = 0;

150 vect = [];

151 for i = 1:(length(ANG)-1)

152 ANG(i);

153 if i == 1
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154 % last and first point are the same so length-1 is

used here

155 if (ANG(length(ANG)-1) < ANG(i)) && (ANG(i) > ANG(i

+1))

156 r = r + 1;

157 vect(r) = x(i);

158 theta(r) = th(i);

159 tANG(r) = ANG(i);

160 end

161 else

162 if (ANG(i-1) < ANG(i)) && (ANG(i) > ANG(i+1))

163 r = r + 1;

164 vect(r) = x(i);

165 theta(r) = th(i);

166 tANG(r) = ANG(i);

167 end

168 end

169 end

170

171 % Select complex point with lowest output magnitude

172 if length(vect) == 2

173 D1 = func(vect(1));

174 D2 = func(vect(2));

175 if abs(D1) < abs(D2)

176 out = vect(1);

177 thetaOut = theta(1);

178 elseif abs(D2) < abs(D1)

179 out = vect(2);

180 thetaOut = theta(2);

181 end

182 end

183 end
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