
Anonymous and Confidential

Communication using PDAs

10 Carlos Molina-Jimenez

Ph. D. Thesis

UNIVERSITY OF
NEWCASTLE

Department of Computing Science
The University of Newcastle upon Tyne

May 2000
NEWCASTLE UNIVERSITY LIBRARY %4 ER

TYNE

NEWCASTLE 200 10026 3 CASTLE

---------------------------- UPON T-SY, OE
L- L

R A;

ýý

Abstract

Anonymizers based on an intermediate computer (a set of them) located between the sender and
the receiver of an e-mail message have been used for several years by senders of e-mail messages
who do not wish to disclose their identity to the receivers. The job of the computer in the middle
(the mediator) is to receive the message from the sender, delete the sender's address and other
personal data from the header of the message, and forward the message to its final destination.

In this paradigm, there are no means to hide the identity of the user from the mediator simple
because the message sent arrives in the middle computer, with information that easily leads to the
identity of the sender.

The origin of this problem is that the sender uses a computer identified by an IP-address that
unambiguously leads to the identity of its user. In fact, the sender discloses his identity to the
mediator computer from the very moment lie sends his message in the hope that the mediator will
protect it.

Because of this, in this paradigm the strength of the system for protecting the identity of the
sender depends on the ability and willingness of the mediator to keep the secret.

In this dissertation we propose a novel approach to sending truly anonymous and confidential
messages over the Internet which does not depend on a third party. Our idea departs from the
mediator approach in that we do not use an IP-addressed computer to send anonymous messages,
we use an IP-addressless computer instead, to be specific, we use a Personal Digital Assistant
(PDA) which is IP-addresslessly connected to the Internet with the support of a Mobile Support
Station (MSS).

The PDA is identified by the MSS by a temporary, non-personal, random identifier (TmpId)
which is assigned by the MSS and is valid only for one communication session. Thanks to the use
of the TmpId, the sender of the anonymous messages does not need to disclose his identity to the
MSS or to anybody else; thus, the strength of the system does not depend on any mediator.

Having observed that a public telephone box provides complete anonymity when operated by
coins, we took its functionality as a paradigm for our system. Thus, the main idea of our approach
is to make the PDA, the MSS, and the Internet communication infrastructure imitate the work of
a public telephone box connected to the telephone network. For this to be possible the PDA user
uses anonymous electronic cash to pay for his anonymous message.

To prove the feasibility of our approach and its correctness, the protocol of the proposed system
was designed, specified in Promela specification language, and its basic safety properties and proper
end-states were validated using the Spin validator.

iv

V

mi madre
por haberme ensefiado a leer ya escribir

A Cubeito
por haberme ensefiado a ver en la obscuridad

A mi tfa Maye
por esperarme siempre

A mi maestro
Ramiro Veldzquez Bustamantes

vi

Acknowledgement s

Financial support for this work was provided by the National Autonomous
University of Mexico (UNAM).

I am grateful to the UNAM community, specially to Dr. Jorge Ize and Dr. David Rosenblueth
for reading, and evaluating my annual reports and supporting my applications to extend my grant
annually. Thanks also to Victor Germdn SAnchez and Sergio Rajsbaum.

I would like to thank Dr. Lindsay Marshall, my supervisor, for his valuable scientific advice
and encouragement throughout the course of this work; his support in technical and administrative
aspect made my student life in Newcastle a pleasant experience.

I would also like to thank Professor Santosh Shrivastava who patiently followed the slow progress
of my research and never lost confidence in my naIve attempts to formulate and present my Thesis
Proposal; He never ran out of encouragements even during this most difficult and vulnerable part
of my stay in Newcastle.

My internal and external examiners Professor Santosh Shrivastava and Professor Gordon Blair,
respectively, read my thesis with critical eye; their comments and suggestions improved the thesis.

I am also sincerely grateful to Dr. Steve Caughey who was alway there not only to read and
comment on my Thesis Proposal drafts but also to listen to my vague ideas and to give me feedback.
For reading and commenting on one of the earlier drafts of my Thesis Proposal I am indebt with
Professor Larry Hughes as well. Richard Achmatowicz read some of the chapters and made helpful
comments.

I thank A. M. P. Barcellos, Avelino Francisco Zorzo, Martin Beet and Richard Achmatowicz, my
PhD colleagues, for having invited me to their Fault Tolerance discussion group. Thanks to them
my understanding of fault tolerant systems has improved.

Further thanks go to Shirley Craig, as the librarian for the Computing Science Department, her
ability to trace missing references is invaluable and her endless willingness to help will always be
remembered.

My English friends Louise Wellington, Nick Brennan, John Sutton, Clare Stubbs, Terry Keane
and Pauline Urry read chapters of my thesis and corrected subtle English mistakes. Many thanks
to you all.

The pursuit of a PhD is a long and difficult task that involves more than pure academic research;
love, encouragement and support from friends also contribute to success. In this respect, I express
my gratitude to my international friends. Many thanks to Eligio HernAndez Garcia, Celso Mora
Nava, Braulio and Flora. I also owe considerable debts of thanks to my friends Mercedes Albors,
Emily, Sylvia, Gary, Carla, Jorge, Julio, Eli, Haydi, Janet, Paul, Mario, Mercedes De Grado, Carlos
Zamora and John Holland. I also thank Elia Rend6n, Liuda Nosova, Serguei Shevchenko, Margarito
VAzquez, Juin Manuel Jim6nez, and Martin Flores.

viii

Contents

I Introduction 1
1.1 Internet security 1

1.1.1 Wireless computers and their vulnerability 2
1.2 Protection of identity and other personal data

...................... 3
1.3 A new approach to protecting identity

.......................... 3
1.4 Understanding confidentiality, privacy and anonymity 5

1.4.1 Confidentiality
................................... 5

1.4.2 Anonymity
..................................... 5

1.4.3 Confidentiality and privacy 6
1.4.4 Confidentiality in computer networks 7

1.5 Summary
.. 7

2 Global, ubiquitous communication for the new millennium 9
2.1 Introduction 9
2.2 . User mobility and ubiquity 9

2.2.1 Aspects of mobility 10
2.2.2 Ubiquity 10

2.3 Cordless telephone networks 10
2.4 The Personal Communication Networks and its evolution 11 2.4.1 First-generation mobile phone systems 11

2.4.2 Second-generation mobile phone systems 12
2.4.3 Third-generation mobile phone systems 14

2.5 Mobile data networks 15
2.5.1 Advantages of mobile data networks 15
2.5.2 MOBITEX 16

2.6 Satellite networks 16
2.6.1 Satellite communications 16
2.6.2 Satellite altitudes 17
2.6.3 Transparent repeaters and on-board processing 18

2.7 Integration of wired and wireless networks 20
2.7.1 WAP protocol 21

2.8 Personal Digital Assistants
................................ 24

2.8.1 Technical specifications 24
2.8.2 Operating system 25
2.8.3 Storage 25
2.8.4 Power consumption and management 26
2.8.5 Wireless communication interface 26

CONTENTS

2.8.6 Comparison of infrared and radio communications 27
2.8.7 WLANs standards 28

2.9 Summary .. 30

3 Anonymity in the World Wide Web 31
3.1 Introduction ... 31
3.2 Web servers and personal data collection 31
3.3 Enforcement of regulations 33

3.3.1 The P3P project 33
3.3.2 TRUSTe privacy programme 34
3.3.3 Limitations of P3P and TRUSTe 34

3.4 Technical solutions 35
3.4.1 The Anonymizer 35
3.4.2 The Lucent Personalized Web Assistant 37
3.4.3 Crowds 38

3.5 Summary .. 39

4 Cryptography and message encryption 41
4.1 Introduction ... 41

4.1.1 Message encryption 42
4.1.2 Secret-key cryptosystems 43
4.1.3 Public-key cryptosystems
4.1.4 The RSA algorithm

44
44

4.1.5 Digital signatures 45
4.1.6 Blind signatures 46

4.2 Combination of secret-key and public-key cryptosystems 47
4.2.1 Key management 48
4.2.2 Authentication of key owners 49
4.2.3 Key escrow 51

4.3 Cryptographic co-processors and smart cards 52
4.4 Summary .. 52

5A new approach to confidentiality and anonymity protection 53
5.1 Introduction ... 53
5.2 Design characteristics 53
5.3 Anonymous calls from a public telephone box 54
5.4 Concealment of identity behind a public terminal 55
5.5 Anonymous payment 55

5.5.1 Anonymity in cash payments 55
5.5.2 Physical surveillance 56
5.5.3 Anonymity from the merchants and the buyer's side 56
5.5.4 Counterfeits 57
5.5.5 Transaction reporting to governments 57

5.6 Anonymity in e-cash payments 58
5.6.1 Advantages of e-cash over cash payments 58
5.6.2 DigiCash anonymous payment 59

5.7 The public telephone box paradigm 60
5.8 E-cash payment for a MSS communication session 62

CONTENTS xi

5.9 Mobile hosts without home IP addresses 64
5.10 An algorithm for anonymous and confidential calls 65

5.10.1 Learning the public key of the MSS 65
5.10.2 Session keys 66
5.10.3 The algorithm 66
5.10.4 Discussion of the algorithm 68
5.10.5 Equipping a PDA with a smart card 70

5.11 Summary .. 71

6 Protocol specification of the system 73
6.1 Introduction ... 73
6.2 Service specification 73
6.3 Assumptions about the environment 74
6.4 Protocol vocabulary

76
6.4.1 Basic components of the protocol 76
6.4.2 Processes and messages 77
6.4.3 Messages 79

6.5 Format of messages used 80
6.6 Procedure rules 81

6.6.1 Finite state machine 81
6.6.2 A brief introduction to Promela 82
6.6.3 The user layer 85
6.6.4 The PDA session layer 89
6.6.5 The session keys and TmpId manager 95
6.6.6 The anonymous session 97
6.6.7 The bank process 103
6.6.8 The mail server process 104
6.6.9 The tcp layer 106

6.7 Summary 108

7 Validation of the model 109
7.1 Introduction ... 109
7.2 The Spin simulator 109
7.3 The Spin validator 110
7.4 Full state space search 112
7.5 Controlled partial search 113
7.6 Supertrace controlled partial search 113
7.7 Hash conflicts .. 115
7.8 Sequential multihash 116
7.9 Correctness requirements 116

7.9.1 Assertions and system invariants 116
7.9.2 Deadlocks 117
7.9.3 Progress cycles and livelocks 117
7.9.4 Temporal claims 117
7.9.5 Safety and liveness properties 118
7.9.6 Cost of correctness requirements 118

7.10 Validation platform 119
7.11 An estimation of the size of our system 120

xii CONTENTS

7.12 Avoiding paging 120
7.13 Reduction of complexity of the systems 121

7.13.1 Separate and monolithic validation 121
7.14 Selection of correctness requirements 122
7.15 Validation of the public key manager module 123

7.15.1 Simulation results 124
7.15.2 Validation results 124

7.16 Validation of the mail server 125
7.16.1 Simulation results 125
7.16.2 Validation results 126

7.17 Validation of the bank server 127
7.17.1 Simulation results 127
7.17.2 Validation results 128

7.18 Validation of the backbone of system 128
7.18.1 Simulation results 129
7.18.2 Validation results 131

7.19 Simulation of the whole system 135
7.20 Coverage of the validation 135
7.21 Spin limitations 136
7.22 Summary .. 137

8 Enhancing the basic system 139
8.1 Introduction ... 139
8.2 Traffic analysis 139
8.3 Coexistence of physical and electronic cash 140
8.4 Text analysis .. 141
8.5 Potential risks of e-cash payment 141
8.6 Cheating with e-cash 142
8.7 Use smart cards to pay anonymously 143
8.8 Loss of payment in incomplete transactions 144
8.9 Anonymous debit bank accounts 144
8.10 Anonymous credit bank accounts 145
8.11 An improvement to e-voting schemes 146
8.12 Coexistence of key escrow and non-key escrowed cryptosystems 148
8.13 Key escrow confidentiality and anonymity 148
8.14 Summary .. 149

9 Conclusions 151
9.1 Introduction ... 151
9.2 Contribution .. 151
9.3 The model .. 152
9.4 The validation 153
9.5 Limitations of the work and suggestions for future research 153
9.6 Social issues ... 154

CONTENTS xiii

A Promela specification of the system IL57
A. 1 Promela code for validating the public key manager 157
A. 2 Promela code for validating the mail server process 159
A. 3 Promela code for validating the bank process 163
A. 4 Promela code for validating the backbone of the system 166
A. 5 Promela specification of the whole system 189

xiv CONTENTS

List of Figures

2.1 The global ubiquitous communication network 21
2.2 The global ubiquitous communication network and its services 22
2.3 WAP architecture 23
2.4 WLAN standard and its relationship to the OSI model 29
2.5 WLAN standards 29

4.1 Secret-key encryption and decryption 43
4.2 Public-key encryption and decryption 44

5.1 An anonymous call made from a public telephone box 54
5.2 Anonymous call made from a public telephone box 60
5.3 Ioannidis paradigm for integrating PDAs to the Internet 61
5.4 Anonymous call from a PDA 61
5.5 Parties involved in an anonymous call from a PDA 62
5.6 A PDA without a home IP address 65
5.7 Anonymous and confidential call from a PDA 67

6.1 Wireless LAN standard protocols 75
6.2 Software representation of a MSS serving a set of PDAs 77
6.3 Protocol hierarchy 78
6.4 The PDA user layer 85
6.5 Payment for an anonymous call 86
6.6 Bob's e-mail message to Alice and Alice's reply 87
6.7 Tile MSS broadcasts its public key 89
6.8 Getting the public key of the MSS 90
6.9 The PDA session layer 92
6.10 The KsTmpIdMan process manages the Ks and Tmpld of PDAs 95
6.11 Finite state diagram of the KsTmpIdMan process 96
6.12 Tile anonymous session process and its connections to other processes 98
6.13 The session layer of the MSS 98
6.14 Change of session key initiated at PDA 100
6.15 Change of session key initiated at key and Tmpld manager 101
6.16 Validation of e-cash at bank work station 103
6.17 Validation of e-cash 103
6.18 The mail server process 104
6.19 Finite state diagram of the mail server process 105
6.20 Connection of the PDA and MSS tcp processes 107

8.1 Prevention of traffic analysis 140

xvi LIST OF FIGURES

List of Tables

2.1 Comparison of infrared and radio frequency communications 28

xviii
LIST OF TABLES

Chapter I

Introduction

Recently, as the Internet and specially the World Wide Web, its most popular application, grows
beyond academic and scientific environments to reach the masses (about 100 million hosts located
in business and domestic buildings) concern about the use and abuse of the Internet information
is growing. This issue is currently the subject of hot debates that involve academic, scientific,
business, government, civil, and human rights organizations, and individuals. Several papers, books,
and Web pages have been written to discuss this topic which is normally addressed as security,
confidentiality, privacy, and anonymity in the Internet [1,2,3,4,5,6,7,8,9,10]. Although there
is still disagreement about the terminology, it is generally accepted that security is the concept
that encompasses all the others.

Due to space and time constraints in this work we will limit our ambitions to the study of
confidentiality and anonymity only, yet the concept of security in the Internet will be always
around. For this reason it makes sense to devote a few lines to this issue and to understand why
the Internet is considered vulnerable to hackers' attacks.

1.1 Internet security
The design and creation of the Internet dates back to the late 1960s, when its purpose was research.
At that time nobody could have predicted what the Internet would look like 30 years later and
what applications would be running on top of it. Among other things, no concern was taken to
protect Internet information as it relied on the trust, respect, lionour, and appropriate behaviour
of its users (11]. Consequently, the original TCP/IP protocols have serious security flaws. The
most obvious of them have been reported and countermeasures against potential attacks have been
suggested [12].

Among the most serious problems concerning Internet security is the lack of protection for
Internet communications lines. When a bit of information leaves the sender's computer and travels
to its destination it travels through rather exposed channels (open backbones), consequently, the
message itself is exposed to all the dangers (both unintentional and malicious) of the outside world.
A message should be readable only to its sender and recipient. Yet because the Internet designers did
not consider encryption an important part of the Internet protocols, most of information travelling
through the Internet is not encrypted and readily available to hackers [13,14].

Besides the efforts to fix the problems, Internet applications still suffer from security flaws.
Further, legal regulations to protect the personal data of Internet users are still in their infancy.

By Internet information we have in mind every single bit stored on Internet files or travelling
through Internet channels, for example, databases, electronic libraries, payroll and control systems,

2 Introduction

electronic transactions, e-mail and so on. On the other hand, personal data is a subset of the
whole of Internet information and encompasses only data related to individuals as human beings
and members of the society, i. e. their personal information, for example, their electronic and post
addresses; geographical location of their desktop personal computer, and their current locations;
IP address, operating system, browser, and the hardware of their personal computers. Likewise,
personal e-mail, shopping preferences, bank card numbers, medical records, etc.

To see how the personal data of an Internet user might be abused, let us discuss how it is
exposed in two of the currently most popular Internet application, namely, in the e-mail and the
Web systems.

In terms of security the e-mail system represents a high risk; it is very common to receive
e-mails from people we have not heard of before and from people we do not want to hear from;
without being asked for agreement our e-mail address may appear in an e-mail list or end up in the
hands of a friend's friend just because our friend decided to send a group message to everybody in
his or her addressbook. It may also travel around the whole world in the headers of a chain letter.

Although most Web surfers ignore it, Web servers gather (for technical and commercial pur-
poses) personal data about their visitors. As explained in [8,3] due to the nature of the HTTP
protocols Web servers create log files where the name of the Web client, its IP address, operating
system, and browser are stored as well as the day, month, year, minute and second of the visit; and
the name of the files copied.

1.1.1 Wireless computers and their vulnerability

Although radio communication has been around for nearly 100 years, most remote communication
is currently performed over wire lines. Tapping a wired communication line is relatively easy, to tap
a telephone line for example is it sufficient to locate the line, then find or make a hole in the plastic
shield and make direct contact or put in place an induction device for capture; in other cases,
a micro-pastille is introduced in the capsule for the receiver handset. Having the line tapped,
the conversation can be listened, recorded or broadcast with a quartz transmitter microphone
over hundreds of meters. With the advent of wireless communications networks, the problem of
information eavesdropping has become more serious since air tapping does not leave behind any
trace of the crime as with wireline tapping. Also, to tap a wire the intruder has to make a Physical
contact with the line which puts him at risk of being discovered, while with wireless tapping the
tap can be performed at a distance; for example a conventional analog wireless telephone handset
emits over a distance of 200 to 400 meters; to overhear a conversation the only thing an intruder
needs is a receiver adapted to the wireless set frequency, for example a scanner able to work at
410 to 520 MHz [15,14]. However, even with the increased security risks presented by wireless
communications the use of wireless computers continues to develop.

Taking into account the latest achievements in microelectronic, computer communication and
wireless communication technology one can safely bet on two things. First, that today's poorly
integrated wired and wireless communication networks like telephone, Internet, cableTV, cordless,
cellular telephone, mobile data, satellite and wireless LAN networks are going to be interconnected

and integrated into a single global, ubiquitous communication network. Second, that cheap pocket
size wireless computers, will invade the whole world in the near future, there will be millions of
them, nearly everybody will carry one in her pocket and use it as a personal day planner computer
and pocket communicator to access the global communication network currently under development
[16,17,18,19,20,21]. In fact a reasonable number of such computers are already around, the
Personal Digital Assistants (PDAs) being the most representative ones[22,23,24,25].

1.2 Protection of identity and other personal data 3

1.2 Protection of identity and other personal data

There are law abiding situations, where it is essential for an individual not to disclose his identity
(for a while or forever) after interacting with somebody else, i. e. not to disclose a particular piece
of personal data or none at all [26,27,28,29). Some health services, such as assistance with
embarrassing diseases, do not work unless the identity of the caller is protected; in today's societies
people need indentity protection to express something that, according to some groups, should not
be illegal but it is; for example, in some countries expression of political and religion views are
rather limited unless the identity of the speaker is not disclosed.

As explained later in detail, this modus operandi is called anonymity. The early Internet did
not provide this facility; for example, the recipient of an e-mail message can easily, by reading the
e-mail headers, find out the sender's e-mail address; currently only with the help of non-standard
e-mail services senders of messages can, with a certain degree of confidence, hide their identity. In
the same way a facility to access and publish information anonymously is needed.

The growing interest in personal data protection goes far beyond the academic community
-the real pressure to find a solution to the problem comes from the business sector. It has
been widely discussed and accepted that security and privacy are the most significant barriers
to implementing electronic commerce in the Internet; concern about the collection and use of
the personal data of Internet buyers disclosed during transactions has been expressed; experts in
the field believe that electronic business in the Internet will not take-off unless personal data of
customers is satisfactorily protected [30,31,32,33,34,35,9]. In this direction the anonymity of
the buyer and the confidentiality of information she sends and receives during a transaction are
two of the most important aspects of personal data protection.

As the above discussed issues become more evident, projects are being launched to research the
answer to the questions raised. For instance in the middle 90s Philip Zimmermann wrote the PGP
program (Pretty Good Privacy) which allows people to exchange e-mail messages with privacy,
authentication and digital signatures [36,37]. PGP is largely based on public key cryptography.

An early attempt to protect the indentity of the senders of electronic messages over the Internet
was the proliferation of free-of-cliarge electronic remailers in the middle of the 90's [38]. The basic
principle of these systems was to hide the identity of the sender with the help of an intermediate
computer which receives the e-mail, changes the headers of the message and forwards it to its final
destination.

With the advent of the Web, remailers evolved into anonymizers which attempt to protect not
only the identity of e-mail senders but also the identity of Web surfers as well. On-going projects
in this direction are The Anonymizer [39], The Lucent Personalized Web Assistant [40], and the
Crowds project launched by AT&T [41]. More recent and ambitious is the work being carried on
by the TRUSTe organization and the W3C consortium under the TRUSTe privacy programme [42]
and the Privacy Preferences Project [43], respectively. TRUSTe and P3P are different from the first
mentioned project in that they attempt to give a general solution to the issue by the introduction
of standard protocols and practices.

1.3 A new approach to protecting identity

As can be seen from section 1.2, much work has been done to protect the personal data of Internet
users and much work is still in progress; with different approaches and solutions being suggested.
However, despite this massive amount of publication and implementation, the aim of protecting the
identity of Internet e-mail senders and Web surfers has not been satisfactorily achieved. As will

4 Introduction

be discussed later in detail in chapter 3, the proposed solutions suffer from serious flaws that make
them unsuitable for certain applications. The common, and weakest aspect of all the approaches
suggested so far is their insistence on trusting a third party, i. e. somebody placed between the
sender and the receiver.

In this work, we propose a radically different approach to protecting the identity of the sender of
an electronic message over the Internet. We argue that it is not possible to send a truly anonymous
message through the Internet from a wired desktop computer unless the sender unconditionally
trusts the Internet communication infrastructure (computers, software, and human beings) that
work as a third party between him and the receiver. Strictly speaking there are no reasons to trust
such a third party since computers and software might succumb to hackers' attacks and human
beings might be bribed and forced by legal orders to disclose the vital information for tracing the
sender of the supposedly anonymous message.

Trying to send an anonymous message from a wired desktop computer with the help of an
anonymizer based on the mediator approach is similar to making an anonymous telephone call
from a home telephone using the well-known caller's number protected mechanisms. The degree
of anonymity of his message heavily depends on the willingness of the communication network
owner to keep it, and is reduced to zero if the latter fails to keep his promise. We claim that for an
electronic message to be truly anonymous it has to be sent from a wireless IP-addressless computer,
just as truly anonymous telephone calls are made from public telephone boxes or mobile phones
that can be bought from electronic shops and are operated using pre-paid cards.

Having in mind the arguments discussed above, we propose a novel approach for sending anony-
mous and confidential messages which is inspired by the functionality of the coin operated public
telephone box. A distinguishing characteristic of our approach is that we use a PDA to send the
anonymous messages, which is connected to the Internet with the support of a Mobile Support Sta-
tion (MSS) and without using any IP-address. Instead of using an IP-address to identified itself
to the MSS, the PDA uses a temporary non-personal, random identifier (TmpId) which is assigned
by the MSS and is valid only for the duration of a single communication session. To pay for the
anonymous communication session the PDA uses anonymous electronic cash (e-cash). To prove
that our novel approach is feasible, we design the system, specify it in the Promela specification
language and validate its basic safety properties and proper end-states, by using the Spin validator.

The reason why we use a PDA as a communicating device is that PDAs fit smoothly in our
paradigm and because we believe PDAs (or something similar) will be the most popular computers
in the years to come. This is briefly discussed in section 1.1.1 and in detail in chapter 2.8.

The idea of considering a wireless IP-addressless computer as the ideal computer to make an
anonymous call might sound rather unusual as normally computers connected to the Internet, both
desktop and wireless, are assigned an Internet address which helps identify them within the Internet
world and is used by them to send and receive messages [44,45,46].

However, it can be argued that a computer might not possess an Internet address and still be
able to communicate with other Internet computers. Also, the assignment of an Internet address
to a computer is a long and painful process as it involves registration with Internet authorities; this
registration might takes days to complete. There are situations where the user does not want to
go through a registration process because she does not know how to do it, she wants her computer
to work immediately after purchasing it, or because what she has bought is a personal, small and
cheap disposable one and it does not make sense to register it today and dispose of it three weeks
later.

1.4 Understanding confidentiality, privacy and anonymity 5

1.4 Understanding confidentiality, privacy and anonymity
Up until now we have assumed that the reader's understanding of the legal concepts we are talking
about matches ours. Frequently this assumption is false. To avoid making this mistake we will stop
to define precisely what we have in mind when talking about the core concepts of our work.

1.4.1 Confidentiality

Confidentiality is a complex legal concept whose origins in Great Britain can be traced back at
least to 1848 when the Prince Albert v. Strange case of breach of confidence was taken to court[47).
Obviously, the definition of confidentiality has changed since it was first defined as the right to
keep secrets. Because its main concern is information protection its definition has evolved to meet
new developments in information technology. The intensive use of computer and communication
technology for storing, processing and exchanging enormous amounts of information has changed
not only the way confidentiality is protected but its definition as well.

Confidentiality is a requirement aimed at keeping sensitive information stored in any form from
being disclosed to an unauthorized recipient.

It is noteworthy that by any form we mean any known form of storing information like the
human brain, or mechanical, optical, magnetic and electronic media. Also, it is important to
mention that a recipient may be an individual, a group, an institution or any combination of these.

From the above definition of confidentiality it follows that information of a confidential nature
should be kept secret. In fact the essence of confidentiality is to protect secrecy. Although the
purists will argue that confidentiality and secrecy are two different concepts[48] we will take them as
synonymous on the ground that for the purpose of this work the subtle differences are unimportant.
So, for the rest of this work we will use confidential and secret as interchangeable terms.

Confidentiality exists in everyday life. A society without any guarantee of confidentiality is
difficult to think of. Confidentiality is necessary to protect secrets ranging from secrets of state to
husband-wife relationships.

It is perfectly understandable that ordinary people would like to keep information about their
private life, political preferences, hobbies, spending habits and so on, under confidentiality. On the
other hand business people would like to keep information away from the eyes of their competitors;
of particular interest to others is information about new technological developments, manufacturing
costs, bidding plans and so on.

It follows that any innovative technology aimed at helping people with both everyday and busi-
ness activities has to guarantee an acceptable level of confidentiality. Computer and communication
technology is no exception. Confidentiality is a matter of major concern in the computer and com-
munication world. Particularly interested in this problem are those whose services offer to the user
exchange of confidential information over computer networks.

1.4.2 Anonymity

Anonymity is a condition in where an individual, group or institution interacts with others without
disclosing his, her, or its identity.

The right to confidentiality protects the individual (group or institution) and gives him the
right to decide when and under what circumstances to disclose his identity. Another option is to
remain anonymous forever.

Anonymity plays an essential r6le in modern societies. There are many legitimate reasons,
ranging from the trivial to business and political, why a law abiding individual, might wish to
remain anonymous after interacting with a second party.

6 Introduction

Counselling services for people needing assistance with diseases such as alcoholism, drug
addiction, AIDS, and so on are provided under anonymity, otherwise they would not be
viable. Not surprisingly these services have been traditionally provided anonymously over
telephone lines. The Alcoholics anonymous helpline may serve as a good example.

Freedom of expression is greatly helped by anonymity. To feel free from any repression an
individual may wish to express his personal convictions (political or religious views) against
his employer or government under anonymity.

Anonymous advertisements in the Internet are welcome by those who are seeking a new em-
ployment or a new partner. In the first case anonymity protects the seeker from jeopardizing
his current job. In the second it protects him from bothering his current wife.

e Computerised voting would be useless without a guarantee of anonymity.

1.4.3 Confidentiality and privacy
It is worth noting that confidentiality and privacy are two concepts of major concern to those
interested in computer and network security. Confidentiality and privacy protection have been
addressed by several authors [49,27,28,29,50,26,10,51,52]. Unfortunately, most of them have
failed to define clearly these two closely related concepts, to such an extent that they are used
synonymously.

According to Munro [48] confidentiality and privacy are distinct concepts and should be carefully
distinguished.

Privacy may be defined as a condition in which an individual can determine for himself when,
how and to what extent information about his personal life, stored in any medium, is disclosed to
others.

Rom the above definition it follows that the right to privacy concerns the right to protect
personal information, i. e. information about personal affairs of individuals. For example, about
wife-husband relationship, romantic affairs, sexual preferences, diseases, and so on.

On the other hand, as has been defined in 1.4.1, confidentiality encompasses any information
an owner wants to keep secret whether it be about his personal life or not. One of the few author
who has paid attention to the difference between confidentiality and privacy is Simson Garfinkel
[53].

It follows that the right to confidentiality may apply to information of a private nature but not
necessarily.

To make it clearer, it is worth noting that information of private nature may or may not be
confidential.

For example, personal information like the age and marital status of an individual are tradi-
tionally disclosed to the public. In the same way, at the individual's discretion, information about
his sexual preferences may be disclosed to the public. Obviously any personal information disclosed
to the public is no longer regarded as a subject of confidence.

The above discussion gives rise to the following conclusion: Although confidentiality and privacy
are not the same, they are strongly related. In fact, confidentiality is a wider concept than privacy;
the first concept encompasses the latter, consequently, confidentiality is regarded as the first step
towards privacy protection. Grounded on this understanding of concepts we have decided to address
the issue of information protection from the view of confidentiality rather than privacy. Again, the
reader has to keep in mind that most authors do not make a distinction between the two concepts
and treat them as synonymous.

1.5 Summary

1.4.4 Confidentiality in computer networks

7

Following the Janson [10] approach to confidentiality, we will consider that confidentiality in com-
munication networks encompasses two aspects.

Confidentiality of content of messages The content of a message travelling through the net-
work must be protected against the threat of disclosure to unauthorized individuals.

Traffic confidentiality The origin and the destination of a travelling message must be protected
against the threat of unauthorized observers finding out between whom messages are ex-
changed.

It follows that there are three aspects in this game that may become a target of attack: the
source of the message, the destination, and the content of the message. An Internet user may
require protection for one only or for any sensible combination of all of them.

Confidentiality in computer networks is not a new topic. Many works have been devoted to it,
particularly to confidentiality of the content of messages. This level of confidentiality can usually
be achieved by means of cryptographic mechanisms (see chapter 4). The introduction of wireless
networks and its applications are demanding reconsideration of the issue about confidentiality
not only because this new technology is more vulnerable to intruders (see section 1.1.1), but also
because it opens possibilities for new applications not available with previous technologies. Needless
to say many of these applications demand confidentiality of the content of messages and traffic
confidentiality.

Traffic confidentiality is of major concern, to such an extent that many emerging and potential
applications will not find their way into practical use unless users are guaranteed a mechanism
to keep their identities secret. Electronic commerce is perhaps one of the most appealing of the
applications that are waiting for confidentiality, cashless payment, for example, is heavily dependent
on anonymity.

1.5 Summary

The original Internet was designed for use in the academic field where users' behaviour is normally
appropriate. Consequently, the original TCP/IP protocols suffer from serious security flaws. As
growth of the Internet escalates and it reaches the masses, assumptions about users' appropriate
behaviour becomes unrealistic. Thus, countermeasures to prevent or reduce the risk of abusing
Internet information must be implemented. Information sent, received and stored on the Internet
must be disclosed only to authorized parties. The issue of information protection is strongly related
to the concepts of confidentiality, privacy, and anonymity.

Confidentiality is a requirement whose aim is to keep sensitive information (personal, business,
medical, etc.) stored in any form, from being disclosed to an unauthorized recipient. Privacy is
defined as a condition in which an individual can determine for himself when, how and to what
extent, information about his personal life, stored in any medium, is disclosed to others. Anonymity
is a condition in where an individual, group or institution interacts with others without disclosing
his, her, or its identity.

There are several applications (Alcoholics' Anonymous Internet helpline for example) whose
success depends on the provision of a mechanism for sending and receiving confidential and anony-
mous messages. Fortunately, thanks to cryptographic techniques and the use of mobile devices, it
is possible to send confidential and anonymous messages over the Internet.

Introduction

Chapter 2

Global, ubiquitous communication for
the new millennium

2.1 Introduction

Since the invention of the commercial telegraph by Samuel Morse in the late 1830's it has been
recognised that remote communication is one of the key factors in the development of modern
societies. Nevertheless for many years, due to technological constraints, remote communication
has been restricted to the use of stationary terminals (transmitters/receivers), i. e. to the use of
equipment that works wire-tethered to a well-known and non-mobile physical location. To this
category belong the today's mature and widely deployed wired telephone network and the wired
Internet.

It is true that for years airplane pilots have been using radio systems for communication with
terrestrial control stations while in the air, however, these kind of systems serve specific purposes
and are not available to the general public. Only recently (in the 80s) and thanks to the appearance
in the commercial arena, cordless telephones, analogue and digital cellular telephones, mobile data
networks, and satellite networks, and wireless LANs, mobile communication is becoming available
to everybody.

As can be seen several wired and wireless networks are widespread while others are emerging;
unfortunately, they are not well integrated yet. In this chapter we study how these networks
are being interconnected to each other (wireless LANs are discussed in section 2.8.7) to form a
global ubiquitous communication infrastructure. Also discussed are existing and potential services
provided by the interconnected network, and how they are going to be accessed. There are two
crucial concepts we will use intensively in this chapter and in the rest of this work, namely user
mobility and ubiquity; to avoid any confusion about what we mean, we start this chapter discussing
them.

2.2 User mobility and ubiquity

A crucial question in the context of the global ubiquitous communication network is mobility.
Mobility is important because it is the basis on which ubiquity is grounded. What follows is a
definition and discussion of these two basic concepts.

10 Global, ubiquitous communication for the new millenniurn

2.2.1 Aspects of mobility
Following Mohan's [54] approach, mobility involves two aspects: computer mobility and personal
mobility.

A mobile computer is one that, after being identified by the network, is capable of performing its
everyday functions -hopefully without any substantial degradation- independently of the point
of connection to the network and regardless of whether its user is static or on the move and inside
the area of coverage. For example, e-mail messages can still be delivered to the computer regardless
of where it happens to be connected to the network. It is worthwhile pointing out that connected
to the network does not necessarily imply a wired connection, a mobile computer connects to the
network through a wireless interface. In addition mobile computers are normally small and light,
therefore, easy to carry.

A closely related concept is that of personal mobility which implies that the user is provided
with facilities for performing his computation and communication functions independently of both
the terminal lie uses and the network point of connection. It is based upon a dynamic association
between a user and his current terminal (the computer lie is using to get into the network).

In the context of this work we assume that, while on the move, a network user always carries
his mobile computer with him, consequently, he never uses other computers but his own; on this
basis we do not consider aspects of personal mobility.

2.2.2 Ubiquity

One of the main advantages of having a globally integrated network with support for mobile users,
is the possibility of ubiquitous communication; meaning that regardless of where geographically
(within the area of coverage of the communication network) the communicating parts are located,
they can exchange messages, even if the transmitter, the receiver or both are on the move.

The notion of ubiquitous communication has generated a great excitement in the 1nternet
community. Probably the most enthusiastic is the business community (banks and retailers for
example) that see ubiquitous communication as an attractive complementing -and even alternative-
platform to run their business on.

2.3 Cordless telephone networks
Cordless telephones were introduced in the late 1970s to allow users to roam around their houses
while talking over the telephone. The first generation uses analogue technology and is known as
the CT1 (Cordless Telephone) standard in the United States. In Europe it is known as the CEPT1
standard because it is supported by the CEPT (Conference for European Post and telecommuni-
cations). The system consist of a telephone handset and a base station, both of them equipped
with a radio frequency communication interface (see section 2.8.5). The base station is connected
to the wired telephone network and serves as a bridge between the cordless handset and the wire
telephone network. Also the base station serves only a single telephone number. In the United
States the base station transmits in the band of 46.6-47.0 MHz, and the handset in the 49.6-50.00
MHz band. The coverage of the base station is typically 100 to 300 meters [55,56,21].

Because mobility is essential in several applications, the CT1 analogue cordless telephones

evolved to the second generation cordless telephone standard known as the CT2 standard in 1985
which works in the range of 864-868 Mliz and uses digital technology. This system was introduced
in the United Kingdom for residential, business and Telepoint applications. The communication
architecture is similar to that of CT1, but users had a wider area of mobility as Telepoint base

2.4 The Personal Communication Networks and its evolution 11

stations were deployed in railway stations, airports and shopping centers to provide cordless com-
munication to users. A base station serves several handsets and supports the transmission of data
up to 2.4 Kb/s. Unfortunately, user location was not implemented and Telepoint services were
limited to outgoing calls only [13,55,56,21]. The system was quickly redesigned.

To replace the CT2 standard the CT3 appeared in 1992. In Europe it is known as the DECT
(Digital European Cordless Telecommunications Standard) and is supported by the ETSI (Euro-
pean Telecommunication Standard Institute). The DECT standard is digital and works in the
1880-199OMHz. It was designed to work inside buildings and campuses. In a way it resembles
a PBAX (Private Branch Exchange) network but with a wireless interface, hence it is sometimes
regarded as a wireless PBAX. Communication support to cordless handsets is provided by a set
of base stations which are connected to each other and to the wired telephone network; each base
station is responsible for one communication cell. Since the base stations offer user location and
handoff, consequently the user has full mobility among the area of coverage. DECT was designed
to handle high capacity, it can transmit voice and data up to 1.152 Kbs. Although the mobility it
offers is limited to a relatively small area, it is suitable for a great deal of applications; certainly it
cannot compete with cellular systems outside its area of coverage but it is cheaper in applications
inside buildings. On the other hand the DECT standard specifies the requirements for interconnec-
tion with ISDN and GSM networks. In this way a DECT user located inside his company building
may route a call through the local DECT network if the recipient is within the area of coverage
or through the GSM network if the latter is outside, in both cases dialing the same number. This
result in greater economy and efficiency as most of the calls made from a business company target
numbers inside the company building. Similarly, the same DECT handset is used a communicator
device to gain access to the local DECT network, to ISDN and to GMS, in other words, the DECT
handset is a sort of universal communicator.

2.4 The Personal Communication Networks and its evolution

The Personal Communication Network(PCN) is known as the Personal Communication Services
(PCS) in North America[57] and is the result of the evolution of a mobile phone system whose first
deployments can be traced back to the early 1980s. In order to understand why the PCN is now
emerging it is worth going through the different stages of its evolution.

2.4.1 First-generation mobile phone systems

Tile first-generation of mobile wireless phone systems were analogue and invented by Bell Labora-
tories about 1982. They were deployed in several countries: in the USA AMPS (Advanced Mobile
Phone Systems) standardized was widely used; in England TACS (Total Access Communication
System) was deployed; while in Japan the NTT (Nippon Telephone and Telegraph) was used [13].
It is worth mentioning that although the voice channels were analogue, these systems used digital
control links between tile mobile phone and tile base stations.

The only service provided by these system was voice communication transmitted using frequency
modulation techniques using two bands of frequencies; one for base station to mobile phone and
another for mobile phone to base station transmission. The AMPS used tile 870-890 and 825-845
MHz bands, TACS transmitted at 935-960 and 890-915 MHz, and NNT at 870-825 and 925-940
MHz.

In tile late 1980s these systems evolved to use digital technology for both control and voice
channels; as a result of this, the second-generation of mobile phone systems came to the scene.

12 Global, ubiquitous communication for the new millenniurn

2.4.2 Second-generation mobile phone systems
The second-generation of mobile phone systems is characterized by the use of digital technology.
They have been in use in several countries since the early 1980s. Currently there are three inter-
national standards [131:

GSM The Global System for Mobile Communications used in European countries.

IS-54 The North American Electronic Industry Association system used in the USA, Canada and
Mexico. In contrast with the GSM and Japanese Personal Digital Cellular (PDC) systems
which are fully digital, this system is digital-analogue, i. e. it enhances rather than replaces
the old AMPS analogue system.

PDC The Personal Digital Cellular system used in Japan.

Second-generation systems offer advanced transmission techniques like speech coding, error
correcting channel codes, and bandwidth modulation techniques. As with the first-generation
systems, they use one band of frequency for transmission from the base station and another for
transmission from the mobile phones. Another goal of these systems was provision of roaming
and handoff capabilities across several countries; GSM for example supports roaming and handoff
in most European countries; while 1S-54 supports roaming and handoff across the three North
American countries (USA, Canada and Mexico); unfortunately they only cover a limited region of
the world, none of them supports these facilities worldwide; and none of them is recognized as a
worldwide standard.

The three standards use TDMA/FDMA transmission techniques but they differ in the trans-
mission bands: 935-960 and 890-915 MHz for the GSM, 869-894 and 824-849 MHz for the IS-54
and 810-826 and 940-956 MHz for the PDC. The PDC has also been assigned the bands 1429-1453
and 1477-1501 MHz for future use [13,55].

Although these system were mainly designed for voice communication they also offer data
communication facilities. For example the European GSM offers a transparent data service at 9.6
kbits/s [58]. The GSM system is considered one of the most advanced of its generation and better
documented; hence we will discuss it further.

The Global System for Mobile Communication

The Global System for Mobile Communication (GSM) is the European mobile telephone system.
It was developed by the ETSI (European Telecommunication Standard Institute). Having been
designed from scratch it is a fully digital transmission system based on cellular infrastructure. The
first GSM specification was finished in 1990 and joined by 17 Western European countries.

The current version of the standard is called The Digital Cellular System 1800 (DCS1800) [59]
and is considered a successful attempt of of the ETSI toward the standardization of mobile com-
munication systems. It is currently a working technology in use in over 50 countries, both inside
and outside Europe (in Africa, Asia, Australia, and New Zealand).

Thanks to a successful standardization, a GSM subscriber can travel to any of the GSM countries
with his GSM terminal in his pockets enjoying continuity of communication; regardless of where
he goes his GSM terminal responds to the same number with a single bill to be paid at home.

Being a digital system, it belongs to the so called second generation of communication systems
together with the Americans IS-54 and Qualcomm CDMA and the Japanese TDMA systems.

The DCS800 provides telecommunication voice, data (9.6 kbit/s) and a message service for
delivering messages (up to 160 characters) both to and from a mobile device in a connectionless
mode (while the mobile device is unavailable).

2.4 The Personal Communication Networks and its evolution 13

GSM radio channel structure

In GSM a geographical region is divided up into cells (I to several kilometers). Each cell is served
by a base station. Mobile terminals communicate with their current base stations through radio
frequency waves. For this to happen the GSM has been allocated two frequency bands: 890-
915MHz for transmission from mobile terminals to base stations and; 935-960 for transmission
from the base stations to the mobile terminals. These bands are divided into 124 pairs of carriers
spaced by 200 KHz. For example, the first pair of carriers consists of the frequency channels 890.2

and 935.2 MHz (for communication from the mobile terminal to the base station, and from the
base station to the mobile terminal, respectively) [60,61]. Each cell is assigned from one to 15 pairs
of carriers.

The medium access scheme used by the GSM is based on a Time Division Multiple Access
(TDMA) protocol. On this account the assigned spectrum to each channel is segmented in eight
time slots of 0.577 ms to be shared by eight mobile terminals, this means that eight mobile terminals

may be connected to the base station through each channel (one in each slot). Since each time
slot is 0.577 ms the duration of a frame is 4.615 ms, consequently, a transmitter may transmit
once every 4.615 ms. In terms of bps, each transmitter may send 9600 bps of data[61]. The reader
interested in TDMA in wireless LANs should refers to [62].

Identification in the GSM

The Global System for Mobile Communication (GSM) uses smart cards for subscriber identification.
The smart card serves as a Subscriber Identity Module (SIM) and is plugged into the GMS device
(a mobile or fixed one) to associate the user with the latter [63]. It contains a serial number and
the telephone number. The subscriber is identified through the information stored in his smart
card. This means that the smart card is strictly personal, while the GSM device is not. Therefore,
the subscriber can take his smart card from the GSM device he is using and insert it into another
one that offers GSM services (in taxis, and airplanes for example).

When the card is inserted and the GSM device turned on, the system ask for a PIN number.
Provided that he types the PIN number that the system expects (in agreement with the information

stored in the smart card), the system identifies the current device as being used by a subscriber it

recognizes who is then identified by an international subscriber identity.
The international subscriber identity is used for forwarding calls to the subscriber's current

geographical location and also for billing him.

Subscribers and users in the GSM

Before going further it is useful mentioning that when it comes to talking about identification in

mobile communication systems some authors make a distinction between subscribers and users [64].
In these terms a subscriber is an organization or a person that has a contact with the service
provider, with a telephone service provider for example, for use of the service. A user is the person
that uses the service on behalf of the subscriber. It is commonplace that a big company has a
contract with the telephone service provider for use of several lines. In this case the company is the
subscriber and its employees -the users of the lines- are the users. Needless to say the telephone
service provider makes business with the subscriber, it does not care about the users. It is up to
the subscriber to set internal policies about the use of the lines. To the telephone service provider
this situation looks like a single person, to whom several lines have been assigned.

To make our discussion simple we will, assume that each subscriber has only one subscriber
identity module. On this account from now on we will not make any distinction between subscribers

14 Global, ubiquitous communication for the new millenniurn

and users and will use these two concepts as synonymous.

2.4.3 Third-generation mobile phone systems

As second-generation mobile phone networks are still being deployed a third generation is emerging.
This system is a digital one and expected to integrate existing and future wire and wireless phone
systems and called the PCN (Personal Communication Network) in Europe and PCS (Personal
Communication Systems) in North America. Briefly, the PCN can be described as a system with
enhanced capabilities for worldwide ubiquitous multimedia communication.

The PCN

The PCN is aimed not only at supporting the existing services provided by existing second-
generation mobile systems but also to provide services not previously implemented [13].

ubiquitous communication: based on personal and terminal mobility the PCS will provide
facilities for communication between two parties anywhere at any time i. e. regardless of the
terminal they use two parties will be able to communicate at any time independently of their
geographical location even when one of the or both are on the move.

single universal phone number: Users will have a mobile handset which will respond to the
same number regardless of where in the world the user is located; naturally, users will get a
single bill.

customized set of services: independent of location a user will have the services she is used
to.

high-functionality handset: The mobile user handset is expected to evolve towards a mobile
device with multimedia data communication and computation capabilities; among those ca-
pabilities are: voice telephony, voice e-mail, fax, video telephony, teleconferences, database
access, navigation, location, etc.

As can be appreciated most of the services are wireless version of today's services offered by
wired networks (PSTN, Internet) while others come from existing wireless isolated networks like
paging systems and GPS (General Positioning System). The PCN is envisioned as a system that
will integrate all these wire and wireless networks.

In a system like this it certainly hard to tell whether the handset will be a mobile phone or a mo-
bile computer of the size of a PDA (Personal Digital Assistant). Not surprisingly the PCS is being
leveraged by both communication and computer companies among them AT&T, Motorola, IBM,
Apple and DEC. It follows that the development of any wire or wireless computer expected to oper-
ate beyond 2000 has to match the goals of the PCN. Thanks to this leverage in 1992 the WARC-92
(World Administrative radio Conference 1992) of the ITU identified global bands 1885-2025 MHZ
and 1210-2200 MHz for the PCN under the banner of International Mobile Telecommunications-
2000 (IMT-2000) -formerly known as Future Public Land Mobile Telecommunication Systems
(FPLMTS), those bands include 1980-2010 MHz and 2170-2200 MHz for satellite communica-
tions [65]. In response in 1995 the FCC of the USA allocated the band 1700-2300 MHz to the PCN
under the name of Personal Communication Systems [61].

The development of a standard for this system is at its early stage, however, more than one
proposal has been made [13]:

2.5 Mobile data networks 15

Internationally the International Telecommunication Union (ITU) is currently developing
standards for wireless personal communications under the name of Universal Personal Telecom-
munication (UPT). The task has been assigned to the Radio communication Sector (ITU-R)

-formerly known as the CCIR (Comit6 Consultatif International des Radio-Communications)-
supported by the Telecommunication Standardization Sector (ITU-T) -formerly known as
the CCITT (Comit6 Consultatif International des T61egraphes et T616phones [65].

In Europe the ETSI (European Telecommunications Standard Institute) has created a spe-
cial group to prepare standards for what they call the Universal Mobile Telecommunication
System (UMTS).

In the USA the ATIS (Alliance for Telecommunications Industry Solutions) has assigned the
task of developing standards for PCS to its subcommittees T1E1, TIM1, and TISL The
same task is being done by the committee TR46 of the TIA (Telecommunications Industry
Association) and by the committee 802 of the IEEE (Institute of Electrical and Electronics
Engineers).

2.5 Mobile data networks
Mobile cellular phone networks like the European GPS, the North American IS-54, ýand the
Japanese PDC were designed mainly for voice communication [55,13]. Although they can also
transmit data messages at 9.6 Kbps, they have to compete against mobile data networks in this
field.

Mobile data networks have been designed specifically to provide data services in urban regions
and offer data rates of 8 to 19.2 kbps. They offer wireless data transmission upon which several
applications can be built; among the most important are: Internet access, e-mail, remote database
and file access, wireless bank card verification, and real time vehicle (taxis, trucks) location.

Currently MOBITEX (developed by Ericsson), ARDIS (developed and run by Motorola), and
CDPD (the Cellular Digital Packet Network introduced by IBM) dominate the market.

In an attempt to reduce implementation costs, CDPD shares base stations with the existing
analogue AMPS cellular phone network; it has been designed as an overlay to the cellular phone
network and uses idle voice channels of the latter [66,13,67].

In contrast, MOBITEX and ARDIS have deployed their own dedicated networks using the SMR
(Specialized Mobile Radio) frequency near 800-900 MHz [13].

So far, the mobile data network that has been widely accepted all over the world and considered
the de facto standard is MOBITEX.

2.5.1 Advantages of mobile data networks
In contrast with cellular networks which use circuit-switching mode, mobile data networks are de-
signed for packet switching mode. This approach gives mobile data networks remarkable advantages
in data transmission; which explains their wide acceptance in certain applications [68].

For the transmission of small quantities of data, a mobile data network offers higher perfor-
mance and lower cost than a cellular network.

A mobile data network provides its users with store-and-forward capabilities. This helps the
mobile terminal save energy since the user may switch off his mobile terminal knowing that
any message that might come during the so called saving-power mode will be stored by the

16 Global, ubiquitous communication for the new millenniurn

MOBITEX system in a mailbox until he switches his mobile terminal on and connects to
the system to open his mailbox. Similarly messages are stored when the user is unreachable
(perhaps going through a tunnel).

2.5.2 MOBITEX

In the USA MOBITEX has been deployed in 7700 cities and towns covering over 90 % of the USA
business population and about 17600 Km of interstate highways with roaming support across all
covered areas; also, MOBITEX networks have been deployed in 16 countries including Canada,
United Kingdom, France, Sweden, Finland, Norway, Belgium, the Netherlands and Australia [68).
The radio frequencies used depend on the country. Yet in North America it operates at 900 MHz
using a bandwidth of 935 to 940 for downlink channels and 896 to 901 KHz for uplink channels.
In other countries it normally operates in the 450 MHz band [68]. Although currently MOBITEX
transmits at 8 kbps, it is expected to be increased to 19.2 kbps in the near future [56].

The mobile terminal the user uses to connect to the MOBITEX network consists of a portable
computer and a radio modem. Physically the radio modem interfaces with the portable computer
through an RS-232 interface at one side and with the MOBITEX network at the other using an air
interface protocol. Optionally the portable computer and the radio modem may be implemented
in the same physical unit [68].

2.6 - Satellite networks
It is believed that personal communications are going to evolve from location-dependent into uni-
versally ubiquitous in the first decade of the 21st century [211.

Pocked-sized personal electronic devices with communication and computational power (similar
to mobile phone handset and PDAs) will be used to access remote information over a web of wire and
wireless networks. It's expected that those devices will be able to send/receive real time multimedia
information retrived with the help of software tools similar to current World-Wide-Web browsers.

To be able to provide those services a wire and a wireless communication infrastructure is
needed. Besides their current bandwidth limitations the already deployed PSTN and Internet
network can serve as wire backbones for many of the potential applications. The issue about a
similar worldwide wireless communication infrastructure remains open. It's true that present-time
cellular telephone and paging companies offer rather useful services, yet their systems are far fron,
having a worldwide coverage; at the most, they offer continental coverage. Another limitation of
these systems is that they are economically attractive for crowded urban areas only; lience they
normally do not cover rural communities; nor do they cover deserted areas where occasionally
someone might appear to carry on a research, to have a holiday, be lost, or for some other reason.

It seems obvious that a worldwide wireless network infrastructure is needed to complement the
wired one and to interconnect the already deployed and emerging wireless systems; also, such a
network has to cater for currently uncovered services like worldwide message (paging and telephone,
for example) and data services for mobile users. A possible answer to this question is the use of
satellite communication systems.

2.6.1 Satellite communications

Thanks to their high location (thousands of kilometres up in the sky) and their wireless commu-
nication medium satellites can offer unique features that can certainly complement both wire and
wireless terrestrial communications [69,70,61].

2.6 Satellite networks 17

Wide coverage A single geostationary satellite (see 2.6.2) can cover 1/3 of the earth's surface.
In other words, a constellation (a group of satellites working for the same purpose) of three
of them can cover the whole surface of the earth (the polar regions excluded). Needless to
say, communication takes place regardless ofthe distance and obstacles between the commu-
nicating points.

Wide mobility support Worldwide communication is guaranteed for everyone located under the
satellite communication umbrella, even for users on the move walking, driving, sailing and
flying.

Independence of geographical impediments A satellite communication infrastructure is a suit-
able solution for hostile terrains (archipelagos for example).

Flexibility Having the satellite in orbit it is relatively easy and quick to deploy a communication
network over a wide geographical area and to reconfigure it according to changes in user
location and traffic requirements; this facility could be the answer to the problem of casual
concentrations of mobile users for short periods of time (at football stadiums for example);
moreover, in cases of terrestrial catastrophes when terrestrial networks are normally damaged
a satellite link might be of great use.

Broadcast capability A satellite beam is inherently a broadcast medium; for applications of
broadcast nature like remote conferences satellite communications might offer advantages
over terrestrial ones.

The use of satellite in commercial communications has experienced substantial progress since
the morning bird (the first commercial communication satellite) was launched by INTELSAL (Inter-
national Telecommunications Satellite Organization) in 1965 [69,71]; based on analogue techniques
it was capable of carrying a total of 240 telephone circuits or one television channel between Europe
and North America. Since then, satellite communications have evolved in different directions; of
special interest for the designer of mobile computer applications is the evolution in satellite orbits
and in on-board processing power.

2.6.2 Satellite altitudes
The capabilities and limitations of communication satellites heavily depend on the altitude of their
orbits; on this basis they are grouped into geostationary and non-stationary satellites.

Geostationary

The first commercial satellites orbit the earth at an altitude of about 36000 Km; at that altitude and
being the orbit in the equatorial plane the satellite looks to a terrestrial observer like a motionless
point in the sky; i. e. the satellite period is equal to one sideral day; consequently they are known
as geostationary equatorial orbit (GEO) satellites. Geostationary satellites usually operate at the
4/6 GHz frequency band for some applications, like TV broadcasting, geostationary satellites are
attractive because they cover large geographical areas and -thanks to their fixed position relative
to their terrestrial stations- they do not need additional tracking equipment; unfortunately due
to their high position they suffer for serious drawbacks:

For transmissions of the order of 19.2 kbps, they require terrestrial stations with high transmit-
ting power (about 1 W) and large antennas (of the order of 1-2.4 m of diameter) [72,61,73).

18 Global, ubiquitous communication for the new millenniurn

Rotating in an orbit located in the equatorial plane they cannot cover high latitude regions
of the earth.

Again, due to the altitude it takes a half-second to transmit a data packet between two
terrestrial point. such a delay is too long and rather annoying for voice communications [74].

On this account it follows that GEO satellites are unsuitable for personal communication appli-
cations to be run in small pocket-size devices like current PDAs and mobile phone handsets which
have strong constraints on power consumption and antenna size.

A possible answer to this question is bringing the satellite closer to the terrestrial terminals.
This approach is taken in the so called Low Earth Orbit (LEO) satellites and by the Medium Earth
Orbits (MEO) satellites.

Non-stationary satellites

LEOs and MEOs orbit the earth at about 200-3000 Km and 18500 Km respectively. Being out of
the equatorial orbit both LEOs and MEOs are non-stationary. At the price of additional tracking
equipment and by deploying them in constellations (dozens of satellites) to cover the whole earth
surface they can overcome the problem of propagation delay inherent in GEOs. Also, some of
them operate at frequencies between I and 3 GHz (at 1.6 GHz for example 1) making it Possible
to communicate with cheap (hundreds of dollars) battery-powered handset devices with small
antennas (similar to those used by current mobile phone handsets).

2.6.3 Transparent repeaters and on-board processing

The on-board communication subsystem of satellites consists of a number (12 for example) of
transponders (receiver-to-transmitter). The job of a transponder is to receive the uplink signal sent
by the terrestrial station, convert it, and transmit it on the downlink to the terrestrial recipient
station. Depending on the converting operation performed on the signal, transponders are divided
into transparent repeaters and on-board processing.

Mransparent repeaters

aansparent repeaters are also known as non-regenerative and bent-pipe repeaters [69]. As their
name implies, a transponder of this type is basically a repeater which receives the uplink signal fron,
the emitter terrestrial station (in the uplink frequency), translates it into the down-link frequency
(to avoid possible uplink/downlink interference), amplifies it, and sends the amplified signal back
to the recipient workstation (one or many). In terms of the OSI reference model, transparent

repeaters focus on the physical and data-link layers (73]. The main advantage of transparent

repeaters is that they offer a high degree of flexibility when it comes to integrating the satellite
into a wide communication network; for example, they are transparent to different modulation
methods, whether they be analogue or digital like FM (frequency modulation) and M-PSK (M-
Phase Shift Key) respectively [69] (modulation methods are described in [75,62]); however, they
cannot perform any processing on the received signal.

'The FCC has allocated the so called L-band (1.6465-1.66 GHz for uplink and 1.545-1.5585 GHz for downlink

communications [75].

2.6 Satellite networks

On-board processing satellites

19

Thanks to technology innovations satellites with on-board processing transponders are becoming
popular. Having more sophisticated electronics, these transponders are able to perform opera-
tions on the received signal like demodulation, decoding, error correction on bit-streams, recoding,
remodulation, and retransmission; also on-board processing may include buffering, compression,
transponder and beam switching, routing, intersatellite traffic, and so on [76]; as can be seen, these
transponders are suitable for digital communication techniques.

The result of this is that new satellites will support a variety of packet-oriented services similar
to those available at terrestrial computers connected to networks. In other words, satellites with
on-board processing transponders will perform functions belonging to layers 1,2 and higher, of
the OSI reference model [73]. However, these on-board processing facilities do not come for free.
The on-board protocols place a rigid constraints on the terrestrial stations in terms of bit rates,
packet formats, communication protocols, and so on; consequently, satellite access is restricted to
those terrestrial stations that understand the satellite protocols; these constraints lead to difficulties
in integrating satellites into large internetworks. Nevertheless, since digital communication is the
communication technology of the future, new satellites are currently being designed with processing
transponders on board [73].

Satellite-based personal communication services

Satellite communication systems will certainly play a fundamental r6le as platform for the personal
communication services (PCS) of the 21st century; LEOs, MEOs and GEOs are expected to be
integrated into the global communication network; hence, work is being carried on to test their
suitability, and towards their standarization [77,201. Besides the advantages mentioned in section
2.6.1, satellites will not come to conquer the whole communication market; if they dared, they
would face strong competition offered by terrestrial communication systems; it is unlikely that
satellites will compete favourably against optical fibre networks and cellular phones in big cities
since in populated regions-these systems offer better parameters in terms of costs and performance.
Because of this, it should be understood that satellites will enter the communication business not to
compete against but to complement the existing terrestrial communication systems in those regions
where the latter are technically or economically unsuitable. At the risk of being proven mistaken
by practice; we guess that terrestrial and satellite communication networks will be integrated into
a universal one where populated regions will be dominated by terrestrial networks and satellite
networks will cover the rest. Additionally satellites may take advantage of their broadcast inherent
facility to provide broadcast-natured services in populated regions; emergency and advertising
messages, and time setting are just two examples of services suitables for satellite transmission.

Bearing this in mind investors in the PCS are currently designing satellite communication
networks of LEOs in the hope of attracting the attention of mobile phones and mobile computer
users. Perhaps the best known technology in this direction is the Iridium headed by Motorola
[78,61,73,79]. The Iridium satellite system has been operational since November 1998 and
consists of 66 LEOs with on-board processing functions and is integrated into a constellation to
provide worldwide coverage of communication services to mobile users in possession of handset
devices with communication and computation abilities. Among the services provided are global
voice phone messages, fax and paging [80).

Another promising satellite network offering similar services is the Teledesic constellation [73]
which will consist of 840 LEOs orbiting the earth at 700 Km of altitude and with powerful on-board
processing functions to support packet-switching asynchronous transfer mode communications.

20 Global, ubiquitous communication for the new millenniurn

Teledesic will support a wide variety of terrestrial terminals and bit rates ranging from 16 kbps to
2.048 Mbps.

Based on the previous facts, it makes sense to speculate that for PDA (and other personal
communicators) to be fully integrated into the ubiquitous universal communication network, they
have to be able to interact with both terrestrial and satellite communication networks.

2.7 Integration of wired and wireless networks
In most industrialized countries people are familiar with services provided by the communication
networks we have studied.

In the future the number of these communication networks and their services is expected to be
even larger. If this is true, we are on the way to ending up with a mess of incompatible networks
offering similar services unless some work is conducted toward their integration. The purpose
of this integration is to ensure that a user, be he indoors or on the move, is provided with the
communication services he demands, no matter what terminal he is using or what computers or
networks his information travels through on its way to its final destination.

For this to be possible it is necessary to integrate all the individual networks together into what
we foresee as a global ubiquitous communication network (we will call it a global Communication
network for short) i. e. a network made up of multiple interconnected local and wide area networks
with the already well established wired telephone and Internet networks serving as backbones.

Projects aimed at the integration of these networks are currently under way. The International
Telecommunication Union (ITU) is supporting the so-called Future Public Mobile Land Telecom-
munication System (FPLMTS) project that will provide a world-wide Personal Communication
Network (PCN). In Europe The RACE programme was lunched in 1987 and include projects to
identify the enabling techniques for what would be the Universal Mobile Telecommunication Sys-
tem (UMTS)[81]; it concluded its activities in 1995; more exactly its activities were continued by
the R&D into Advanced Communications Technologies and Services (ACTS) programme [16,19].

In the USA the Defence Advanced Research Agency (DARPA) initiated the Global Mobile Infor-
mation System (GloMo) programme in 1994. The GloMo aimes to conduct research on new oppor-
tunities for advancing the state of the art in mobile, wireless, multimedia system technologies [20].

The essential goals of FPLMTS[65], UMTS[59], and GloMo[20] are the same. The system
everybody has in mind is in fact the global worldwide universal ubiquitous communication
network expected to be at least partially operational in 2000. In order that this goal be met the
following must be achieved:

Integration of existing wired and wireless networks. The PSTN, ISDN, B-ISDN, Internet and
cellular telephone network to mention some of them.

Deployment of services for delivering voice, video, and data communication between ubiq-
uitous communicating counterparts, be they people or computers. Among these services
are[57]:

- dialogue (eg., speech, video telephony)

- messaging (email, fax, paging voice)

- information retrieval (eg., multimedia WWW documents, voice, music, video on demand,
newspapers)

- access to electronic libraries

2.7 Integration. of wired and wireless networks 21

9 When applicable the quality of wireless services should match that of wired networks.

9 Support of unlimited mobility for both computers and users.

e Development of new computing techniques supporting mobile computing.

A picture of how the global ubiquitous communication network will probably look in the near
future in presented in figure 2.1. In this figure a computer equipped with a wireless antenna and
called a mobile support station plays the r6le of a bridge between the wireless PDA and the wired
world. This will be explained below in section 2.7.1.

y -11ý-Y . User User
Satellite network accounting location

A
D13 D13 ISDN/B-ISDN network

NISS:
CelljjjF phone network

S
Global

PDA ubiquitous Cable TV network

00 U communication Co. r. d. l. ess phone network network

Bob
Internet netwgrk.

Mpbjle data network
" MSS. "

.. MSS

Future etwork

mss,. * Y
Legend: PDA-- Personal Digital Assistant

MSS-- Mobile Support Station

Figure 2.1: The global ubiquitous communication network.

As illustrated in figure 2.2 there are many existing and potential services that make our predic-
tions appealing to both ordinary individuals and business oriented people, an individual will use
this global ubiquitous communication network to access several facilities:

4, to exchange information (e-mailing) with his wife who is home and with his son who is on
his way to the cinema.

4, to retrieve information from his office, from a central database for example.

" to access publicly available databases; for example, databases of job vacancies, tourist attrac-
tions, etc.

" to access remote available services like bank transactions, Internet shopping, train booking,
weather forecasts, financial news, and so on.

2.7.1 WAP protocol
An essential component of the global ubiquitous communication network is the mobile computer
represented in figures 2.1 and 2.2 by Bob's PDA. Although in the figure is called a PDA, it can be
any electronic device equipped with a wireless antenna to send and receive messages and, in most

22 Global, ubiquitous communication for the new millenniun,

station
10 mum

PDA BX7s home B wkd- t.. k
Mobile support station V support s ýt'uo n a-mmBoss

Bob's office I
Bob

Wired network One-way broadcast information services:
weatherand news reports; timetables,

q

classified adverstisements, consumer
advices, etc.

...........
Information retrieval services: databases of
antiques, catalogs, library references, encyclo-,
paedias, yellow pages, etc.

N
Interactive services: bank transactions, ý

I shopping; hotels, planes, trains and
Ali Bb'-ý, -rlf. cnd icn

t
restaurants reservations, etc.

Figure 2.2: The global ubiquitous communication network and its services.

cases, with computational power to process information. Good examples of such electronic device
are: PDAs, mobile telephones, pagers, and other handlield communicators.

The question about how a mobile computer like a PDA may be connected to the Internet has
been the subject of several papers published in the early 90s [46,82,83,84]. A paradigm that
became widely accepted was proposed by Ioannidis [46] in 1991. In this paradigm the mobile
support stations depicted in figures 2.1 and 2.2 are ancillary computers whose work is to receive
messages originated at PDAs, locate the recipients (one or many) of the message either in the
wired or wireless network, and route the message to its final destination. Similarly, a MSS delivers
messages addressed to PDAs currently located within its area of coverage. Needless to say such
messages may be originated at the MSS itself or come from a remote computer. A critical issue of
mobile networking is that of mobile host location and routing of messages to them. This issue has
received attention in published papers [85,86].

The idea of using MSS to connect wireless devices to the Internet has found an application ii,
the Wireless Application Protocol (WAP) which was proposed by the WAP ForUM2 in April 1998
[87,88].

As its name and the name of its promoters imply, the WAP protocol is an industrial standard
for integrating mobile communicators and the Internet. It primarily aims at providing access to
Web information and services to mobile telephone users. Consequently, it is designed to run on top
of already deployed wireless transports (called bearers) like GSM, IS-54, PDC, CDPD, MOBITEX,
DECT, etc.). The WAP designers decided to include IP as a separate bearer to leave room for
integrating wireless devices with any IP-based network, for example a wireless LAN.

Rather than inventing new technology, the designer of the WAP protocol made intensive use
of already proven technology, in particular, they based their design on the Web technologies and
philosophies. To gain access to the large amount of information stored on Web pages from a device
with power, energy, communication bandwidth, and screen-size limitations they proposed a proxy
architecture shown in figure 2.3 [89,90].

The WAE User Agent that runs on the wireless client on top of its WAP protocol stack is a
micro browser specially designed to run on a small screen and manipulated by a mobile telephone
notepad. The Gateway is a proxy server that translates requests from the WAP protocol stack to

2 Founded by Ericsson, Nokia, Motorola, and Unwired Planet in mid-1997.

2.7 Integration of wired and wireless networks

Mobile client Gateway Origin server

00 Encoded Request
-IN-

Do- Request
Do-

CGI

't

WA]E Scripts.
Ucr

Agent Wireless Intemet CLC.
Network Encoders

WSP OA and
wwrp
WTLS

DP Decoders
Bearers

_Encoded
Response 00 Respose(content)

WAE: Wireless Application Environment
WSP: Wireless Session Protocol
WTP: Wireless Transaction Protocol
WTI. S: Wireless Transport Uyer Security
WDP. Wireless Datagram Protocol
Bearers: bearer services: short messages,

circuit-switched and packet data,
for example GSM, IS-54, PDC. CDPD,
MOBITEX, DECT, etc

CGI: Common Gateway Interface
OA: Other Services and Applications

Figure 2.3: WAP architecture.

23

the WWW protocol stack. To reduce the size of data over the network and the size of the data

received from a Web server (Origin Server in WAP terminology) Encoders and Decoders are used
in the gateway. The latest news about the WAP protocol and complete specification of each layer

of its protocol stack can be found in the Web page Forum [88].
Based on the latest tendencies in wireless communications we are positive that the WAP protocol

will be well established in the market in about three to five years time.
If our prognosis about the WAP success and the massive proliferation of PDAs in'the future is

correct, PDAs and similar devices will serve as the most popular outdoor interface to gain access
to the global ubiquitous communication network. For this to be possible, MSS have to be widely
geographically available and handy.

We assume that in the near future the earth will be crowded by thousands of MSS; some of
them will belong to private LANs and be located indoors; others will belong to communication
providers (WAP bearers for example) and be located outdoors.

A private MSS will be run by a private company and provide access solely to PDAs belonging
to its company.

A public MSS will be run by a public communication provider and serve any PDA user willing
to pay for the communication service.

* Optionally, a private MSS may serve visitors.

If the above assumption proves to be true in the future, a PDA user located inside a building will
gain access to network services through his MAN mobile support stations, if he decides to leave
the building then his connection will switch to a public mobile support station, then if lie drives his

24 Global, ubiquitous communication for the new millenniuM

car to an area of sparse population where no public MSSs are available, his mobile terminal should
be able to switch to a satellite network and remain connected to the world.

2.8 Personal Digital Assistants

A Personal Digital Assistant (PDA) is a pocket-size computer belonging to the generation of so-
called mobile wireless computers. There is not yet an agreement on terms; other authors call them
portable, nomadic, untethered, and roaming computers. We call them mobile wireless computers
to emphasize that they are able to communicate while on the move. For this to be possible, these
computer are equipped with a wireless communication interface based on radio frequency or infrared
technology.

2.8.1 Technical specifications

There is a growing range of mobile wireless computers, however, among them PDAs are special ill
that they are cheap and tiny. Their low prices make them accessible to a great number of people.
Being tiny means being more portable (than a laptop for example). It is true that a laptop is more
powerful, however, computational power is not always a need, while on the move most of the time a
computer user needs only to send/receive email; to take notes and telephone numbers at meetings
or conferences, and to edit, send or receive short documents. In situations like these a Powerful
laptop would be a hassle while a PDA a plus. In other words, a PDA is a personal computer for
storing personal temporary information and for interfacing to the communication world.

Todays commercial PDAs looks as follows:

e 400-500 USA dollars

4, pocket-size dimension

* about 5x2 inclies screen

ip about 10-30 ounces

o 5-7 Mliz CPU

* no disks

e about 1-2 Mbyte of RAM and slots for SRAM and flash memory cards.

9 10-100 hours of battery life

9 radio frequency or Infrared transmitter/receiver

For concrete examples of commercial PDAs refer to [23,24], where the Magic Link, the Psion
3A, the ZR-5800 and the Z-7000 PDAs are described.

The first five entries in the above list should be self-explanatory. However, the last four probably
need further discussion. We will come back to them later, after discussing the most important
software component of any computer, the operating system.

2.8 Personal Digital Assistants -

2.8.2 Operating system

25

The functions performed by a mobile operating systems (OS) and a desktop one are rather similar.
Yet the environments where they operate are significantly different. The need to economise in
storage and electric power consumption makes the design and implementation of an operating
system for a mobile device like a PDA a challenging experience.

At the moment, there is not a well-established standard operating system for PDAs, but there
are several ones struggling for dominance in the market, the most popular being: Palm Computing's
PalmOS, Microsoft's Windows CE, Microware's OS-9 and Symbian's Epoch.

So far the leader is PalmOS which has managed to gain about two-thirds of handlield devices
currently on the market [91]. The strongest competitor of PalmOS is Windows CE which is a version
of the standard desktop Windows. A promising alternative is Epoch which is being commercialised
by Symbian which is a joint venture formed by Ericsson, Motorola, Nokia and Psion [92,93]. The
potential commercial impact of Epoch is rather promising if one takes into account that Ericsson,
Motorola and Nokia are the owners of 60% of the worldwide market for GSM-based smart phones
and similar communicators.

1 2.8.3 Storage

M-aditionally, thanks to their high storage capacity and low media cost, magnetic disks have been
used as the standard read-write permanent (non-volatile) memory in notebooks and bigger com-
puters. However, the mechanical nature of magnetic disks makes them unsuitable for PDAs, even
though there are disks of 1.3-in diameter holding 40 Mb available in the market.

Due to the rotational inertia of the disk-platter, its spindle motor dissipates a great deal of
power (2.2 W for a 2.3-in disk) at start-up (acceleration from rest to rated speed).

Disk access time is low compared against the speeds achieved by non-mechanical components
like CPUs.

* Disks are bulky, and'sensitive to mechanical disturbances.

Based on the aboveTactors, disks have not been used in PDAs. PDA designers have opted to
use semiconductor memories not only for read-only and volatile read-write but for non-volatile
read-write.

Because non-volatile read-write memories are a relatively new technology it might be helpful
to discuss it further. Currently, they come in two technologies, namely, NV-SRAM and flash:

NV-SRAM A NV-SRAM is a Non- Volatile SRAM. A SRAM chip is provided with a battery to
preserve the data stored in it after the main energy supply is switched off. In practice, Nv-
RAM comes in PCMCIA memory cards with a dual battery design (a self-contained battery
system) to ensure data integrity and to avoid drain on the computer's main battery. It is
worth mentioning that a PCMCIA card is approximately the size of a bank card (85.6 long,
54 mm wide, 3.3 mm heigh and about 40 g); likewise, NV-SRAM cards come in 641(b up to
4Mb at approximately 35 and 300 USA dollars respectively. Data retention is in the range of
one to two years and the backup battery is either disposable or rechargeable; a rechargeable
one lasts about 10 years.

Flash Flash memory is made up of solid-state chips that store data that can be read and written
during normal operation and do not need backup batteries to keep the data valid when the

26 Global, ubiquitous communication for the new millennium

main computer power is switched offi In other words, Flash memory is a read-write, non-
volatile, low-power memory. Unfortunately, because of the flash technology, flash chips do
not support writing of individual addresses. This means that to update the contents of a cell a
whole block of cells (around 64 Kb) must be updated (erased and re-written). Also, althougil
the number of times a cell can be read is unlimited, the number of writings is not. When the
limit is reached the chip becomes slower to write operations till eventually it refuses to update
the required address. However, the existing data remains readable [94]. Flash memories are
becoming popular in applications where power is at a premium, and access speed and high
density is required. In practice they are used to emulate magnetic disks in portable computers.
In the market it is presented as PCMCIA cards of 4 up to 16 Mb at approximately 50 and
157 USA dollars, and with a write cycle of 1 million times.

2.8.4 Power consumption and management
There is no doubt that the number of portable computer-like devices will increase dramatically
in the years to come. There will be a great number of them ranging from the familiar notebooks
to tiny ones tile size of a wrist-watch, all of them powered by batteries. Besides the significalit
advances in battery technology tile time scale for battery improvements is long compared to the
doubling time of computer microelectronics [95]. Lifetime of batteries is expected to increase only
20% between 1994 and 2004 [96,25]. It follows that the success of portable computers, PDAS
included, heavily depends on tile economy, in terms of energy dissipation, of tile hardware of these
computers and their applications [25,97,22]. According to [98], power dissipation is affected by
both hardware and software design.

Hardware reduction of power dissipation can be approached at microelectronic and system
levels. In the former case the designer can either reduce tile voltage that feeds'the chip (from 5.0
V to 3.3 V for example) or decrease the switching frequency of the circuit. In the latter case, tile
computer works in five different modes of operation: full-on, standby, suspend, hibernation, and
off [25].

Power. optimization by means of software is a topic still under exploration, yet some techniques
have already been proposed; in [98] these techniques are grouped into three categories: minimizatioll
of RAM access, optimal selection of and sequencing of machine instructions, and exploitation ()f low power features of some processors. The reader interested in a real life implementation of these
techniques is advised to refer to [99].

2.8.5 Wireless communication interface

PDAs use a wireless communication interface to exchange information with the external world.
Through their wireless antenna PDAs send and receive messages to and from other computers ill
possession of a wireless communication interface. Having a wireless communication interface is
necessary but not enough for two computers to talk to each other directly. For this to happens it is
essential that the communicating parties follow the same wireless communication protocol. TO find
somebody who speaks the same communication protocol is a simple task when a standard protocol
is widely accepted and deployed. Unfortunately this is not yet the case for wireless LANs. At
the time of writing no consensus on wireless protocols exist in the market, different vendors offer
different products based on different technologies. However, it seems that two technologies, namely
radio frequency and infrared technologies, will dominate the market. The reason for this is that
both of them have proved to be the most suitable for transmitting data at high speed in indoor
wireless local networks (WLANs).

2.8 Personal Pigital Assistants

Radio frbquen6y technology

27

Radio frequency (RF) systems present four important problems that must be solved, namely fre-
quency allocation, interference, security, and bandwidth.

FYequency allocation Frequencies are regulated by the Federal Communications Commission
(FCC). There are not too many frequencies free for developing RF WLAMs. High-speed
data communication is a newcomer to the radio spectrum market, so it has to use spectra
that other, older applications are not using.

Interference If several WLANs are working in the same building, interference must be avoided.
RF signals can penetrate walls, so a data cell is not restricted to a single room, however, this
can cause problems if the neighbouring offices have their own networks that perhaps belong
to other companies.

Security As RF signals propagate through walls, data security is an important subject to be
considered, and so encryption is mandatory to avoid information linkage.

Bandwidth Modern RF technology has managed to transmit data at a rate of 2 Mbps. Unfortu-
nately RIF equipment is more expensive than IR equipment.

Infrared Technology

As a medium to short-range, indoor communication, infraxed (IR) offers several significant ad-
vantages over radio frequency. The behaviour of IR signals is similar to that of visible light. IR
signals are absorbed by dark objects, diffusely reflected by light-coloured objects and directionally
reflected from shiny surfaces. IR signals penetrate through glass but not through walls or other
opaque barriers. In other words, IR signals are restricted to a room. Thus, there is less problem
with data eavesdropping and several IR WLANs can be placed in neighbouring offices without
interference among them. A frequency assignment plan to avoid crosstalk is not needed, so IR

wireless transmission is free from the FCC and other regulations, that means that a virtually un-
limited spectral region is available. IR WLANs are recommended for those environments with a
high degree of electromagnetic interference.

IR medium is not without drawbacks. The main problem that arises with IR WLANs is how
to get enough power to the receivers scattered around the room. The power consumption of IR
transmitters can be rather high [100]. Another problem is that in many indoor environments there
exists an intense infrared ambient background, arising from sunlight, incandescent lighting, and
fluorescent lighting, and shadows from moving people, which induces noise in an infrared receiver.

Modern IR technology allows build WLANs that transmit at 1 Mps composed of portable base
terminals (Palmtops computers for example) served by wired based stations. Small rooms are
served by a single base station, while rooms larger than about lOxIO m may require more than one
base station.

An example of a wireless network that transmits over an IR medium at 9.6kbps and 19.2kbps
is described in [101]. A deep theoretical analysis of wireless LAN systems is given in [102]. The
advantages of IR technology over RF are described in [103].

2.8.6 Comparison of infrared and radio communications
A comparison of the most important properties and technical parameters of radio frequency tech-
nology against infrared is presented in table 2.1

28 Global, ubiquitous communication for the new millenniuM

Property Radio Frequency Infrared

recommedable env. outdoors indoors

interferences with other WLANs high low

security low high

dominant noise interference from other users ambient light and shadows

bandwidth limitation regulatory light-emitting diode Power
bandwidth transmission 2 Mbps 1 Mbps

price high low

Table 2.1: Comparison of infrared and radio frequency communications

2.8.7 WLANs standards
WLANs have evolved from laboratory implementation to commercial products; at present a great
variety of WLANs are offered in the market [56,104]. Yet none of them has gained the status of de facto international standard. Hence, each vendor designs and implements its proprietary staii-
dard. Although nearly all the existing WLANs operate at the ISM (Industrial Scientific Medical)
frequency bands (2400-2484 MHz anywhere in the world and 902-928 MHz, 2400-2484 MHz, and
5725-5850 MHz in the USA) WLANs from different vendors are incompatible; for example, data.
rates range from 34.8 kbps to 10 Mbps (and even more) transmitted either over infrared or radio
frequency technology. Soncerning WLAN topology, there are those vendors that support or do not
support ad-hoc infrastructured networks; also, some of them use the CSMA/CA (Carrier Sense
Multiple Access with Collision Avoidance) as access control protocol but others do not.

In order to help the evolution process towards an international standard, international standard
organizations are currently working on the specification of what will be an international standard
for WLANs. So far it seams that two standards will set order in the market: One of then is the
IEEE 802.11 being developed by the (Institute of Electrical and Electronics Engineers) and the
other is the HIPERLAN (High Performance Radio Local Area Network) being developed by tile
ETSI (European Telecommunications Standards Institute).

Although there are some differences between the IEEE 802.11 and the HIPERLAN proposals
there are many similarities. The two of them address the issues a user would expect from his
wireless WLAN outlined in [105].

The protocols completely define the physical layer and partly -up to the MAC (Medium
Access Control) sublayer- the data link one (see figure 2.4).

In terms of IEEE 802 standards a WLAN should appear to the logical link control and above
protocols just like another 802. x protocol (see figure 2.5).

e As illustrated in figure 2.5 infrared and radio frequency transmission are supported.

In addition to ordinary data services, time-bounded services for multimedia applications
(voice, video, etc.) are available.

9 To economize energy in battery-powered mobile terminals sleep mode is considered.

2.8 Personal Digital Assistants

Application

Presentation

Sesion

Transport

Network

'Data Link

Physical

Logical Link Control
--- 7 ------------- I Medium ; ýccess Control WLAN

PhYsical standard

Figure 2.4: WLAN standard and its relationship to the OSI model.

802.2 Logical Link
Data

- Link - ------------------------------------- Token Token
CSMA/CD Bus Ring CSMA/CD

Twisted pair Coaxial cable Twisted pair Infrared

Physical < and and and and

coaxial cable optical fiber coaxial cable radio fre-

II I quency

802.3 802.4 802.5 802.11
and

HIPERLAN

29

Figure 2.5: WLAN standards.

30 Global, ubiquitous communication for the new millennium

4, Both, WLANs with an infrastructure and ad lioc connections are supported.

However, tliere are substantial differences between tlic protocols IEEE 802.11 and HIPERLAN,
ainong the most iinportant are:

" The initial focus of the standard IEEE 802.11 is to operate in the ISM band (2400 to 2483.5
MHz for example) and to provide data rates of I to 10 Mbps.

" The HIPERLAN standard is focusing higher data rates. For this purpose, it is expected
to operate out of the ISM band, namely at 5150 to 5300 MHz and at 17.1 to 17.3 C'Hz.
Operating in the first band it expects to provide data rates of 1 to 25 Mbps. In the future it
might provide data rates comparable to wired ATM networks (100 to 150 Mbps) operating
in the second band.

" Support of forwarding mechanisms for ad hoc networks has been envisioned in HIPERLAN
but not in IEEE 802.11.

41 Generally speaking HIPERLAN basically covers the functionalities of IEEE 802.11.

Additional details about the IEEE 802.11 and HIPERLAN protocols are described in [105,106]
and [107] respectively. A comparative description of thern is provided in (102,55,56,21].

2.9 Summary

Currently effort put into network development focuses not only on the development of new network
technology (WLANs, home LANs, body LANs, etc.) but on the integration of existing networks
(phone, Internet, mobile phone, cordless, satellite and mobile data) as well.

To ensure that the existing network infrastructure is used efficiently, all networks should be
reachable regardless of the user's terminal and his geographical location. For this to be possi-
ble, existing and future networks must be integrated into a single, global, universal, ubiquitous
communication network.

At present, this global network is already partially operational. Thanks to the integration of
the Internet and cellular networks, mobile phone users can send/receive e-mail messages from their
mobile handsets. It is expected that in the next five years most networks will be integrated; thus, all
services offered in the integrated network will be reachable by thousands of users of fixed terminals
and by millions of users equipped with mobile, pocket-size and cheap devices with computational
and wireless communication power. A good example of these devices is the PDA. Because of its
low price, it is expected that in five years time everybody will be in possession of a PDA. PDAs
and similar devices will be used to send voice and data and, of course, to retrieve Web pages.

Chapter 3

Anonymity in the World Wide Web

3.1 Introduction

The World Wide Web is one of the most useful applications available in the Internet. But it has
been categorized as one of the most potentially dangerous in terms of confidentiality and anonymity
protection.

Million of users surf the thousands of Web pages available on hundreds of Web servers every
day, however, the vast majority of them are unaware that their actions are being monitored and
consequently, their right to confidentiality and anonymity are at risk. How and why Web servers
collect personal data from their visitors is discussed in this chapter. Later a review of policies,
working software and on-going projects concerning protection of surfers' personal data is presented.
Special attention is paid to the limitations of the different proposals.

3.2 Web servers and personal data collection
As explained in [8,3] due to the nature of the HTTP protocols Web servers normally create log files
that record (for technical and commercial purposes) considerable amounts of information that may
be examined with the help of standard free software (getstats for example) to reveal the identity of
users visiting their pages. A typical Web server keeps an access-log file which can store the following
fields:

Name or address of the client's host, i. e. the name of the computer where the user is logged
in running his browser.

If supplied by the browser, the login name and the actual name of the user.

" The time (day, month, year, hour, minute, second, and time zone offset) that the transfer
was initiated.

" The HTTP command that was executed (get filename for example).

" The status code that was returned.

0 The number of bytes that were transferred.

Additionally, Web servers normally keep an agent-log file which lists the programs that have
been used to access the server; from this file the Web server can learn about the operating system
and the Window interface of the client and the browser.

32 Anonymity in the World Wide Web

As if the access-log and agent-log files would not be enough to violate the right to anonymity
and confidentiality of the users, Web servers keep a refer-log file which tells the last place (URL
address) the browser previously visited and the URL that it is currently viewing.

Since it is commonplace for users to browse the Web from single-users computers, the above
information with or without the user's login and real names, is enough to associate a download with
an individual. If the login and real names are not provided by the browser they can still be found
out by using the finger command provided it has not been disallowed by the system administrator.

Simply put, Web servers, most of the time without the surfer's consent, collect enough infor-
ination to learn, who is your Internet Service Provider (ISP), where are you, what hardware and
software you use, the name of your computer, what sort of information you are after, your login
and real name and even your e-mail address. Once the information is in the hard disk of the owner
of the Web server, it is no longer under the surfer's control; hence the former might use it at his
own discretion. This issue gives room for several questions:

What information the Web server owner gathers about the Web surfer with and without the
surfer's consent?

" What does lie or she does with this information?

" Does lie have the right to store (how long for?), read, and update the information?

" Who does this information belong to?

With whom does lie share the information?

Is the Web server owner entitled to use it?

* Can the surfers stop Web servers from gathering information they do not want to give away?

Should governments appear on the scene to bring order or should we rely on self-regulation
leveraged by technology vendors?

So far none of the above questions has been given a definitive answer, the issue isýstill not well
understood and under debate. This list of questions is by no means exhaustive, without any doubt
other similar questions not envisaged yet are still to come.

Based on the universally accepted fact that Web surfing puts the right to anonymity and
confidentiality of the surfers at high risk, several academic, business, technology, Political and
government organizations have launched efforts to develop software products, strategies, laws and
recommendations to address this issue. The result of this is that recently several publications and
implemented software products have appeared in papers and on the Web itself According to their
approach and without taking into account their particularities these proposals may be divided into
two groups

9 enforcement of regulations

o technical solutions

As can be guessed, the first approach to protecting the right to anonymity and confidentiality
of Web surfers is to force things to happen either by ethical rules or legal actions. In its turn) the
second approach relies on technology rather than human interaction.

3.3 Enforcement of regulations

3.3 Enforcement of regulations

33

The most recent work in this direction is currently being carried on by the World Wide Web
Consortium (W3C) and the TRUSTe organization.

It is perhaps worth diverting from the main discussion to mention that the W3C consortium is
an international organization founded in October 1994 with the intention to lead the Web to its full
potential by developing common protocols that promote its evolution and ensure its interoperability
[43,108]; it is hosted by The Massachusetts Institute of Technology (MIT), Institut National de
Recherche en Informatique et en Automatique (INRIA), and the Keio University. Its members
are only companies (currently over 230) the size of AT&T, British Telecom, Boeing, Citibank,
Hewlett-Packard, IBM, Matsushita, Siemens-Nixdorf, Sun Microsystems, Xerox, Microsoft and
Netscape. On the other hand TRUSTe promotes itself as an independent, non-profit privacy
initiative created with the intention of accelerating the growth of the Internet Industry by building
trust and confidence among Internet users[109]. Currently it has 121 members, among them IBM,
Tandem, Lycos, Yahoo, American Online, The Anonymizer and TRUSTO itself.

Currently the W3C consortium is working on the Platform for Privacy Preferences Project
(P3P) while TRUSTe is involved on what is known as the privacy programme. The goal of both
projects is to develop strategies and software products to force Web servers to observe confidentiality
practices; in contrast with technical solution approaches (see 3.4) the P3P project and TRUSTe
rely on regulations and their approaches are similar to the one followed by traditional legal systems:
there are participants, rules to be observed, a police body, and punishments. By signing the rules,
the participants promise not to do something unless they want to be punished; however, if somebody
breachs his promise, he can still get away with it so long as neither the victim nor the police detects
him. A system like this is corrective rather than preventive, i. e. it reacts only when the damage is
already done, certainly, in some cases, the damage can be repaired in others it is too late.

The P3P project and TRUSTe fall into this category of systems and they might complement
each other. Tile main idea of both of them is for a Web server to publish the rules of the game
about their privacy policies and for the Web surfer to read them before downloading any page from
the Web server and proceed only if the privacy policies offered suit him.

A privacy pledge is expected to contain sentences like the following:

4, This site will NEVER sell or exchange your name, e-mail and post address to anyone

" This site does not use cookies to monitor surfers' activities

" We do not monitor 1P address activity for Web site

" This Web server will not share information collected from our site with any other individuals,
companies or organizations

" Information collected at this site will be shared only with member companies

" If you would like to delete the data we have collected about you please contact our Web master,
we will delete it in less than 48 hours

3.3.1 The P3P project
The first public working draft of the P31? protocols was released in May 1998 and the last one in
February 2000 [110]. According to its specifications a Web browser is equipped with a facility to
set its user preferences over privacy practices; while Web servers come with their own to express

34 Anonymity in the World Wide Web

their privacy practices [1,2,111]. Both facilities are able to talk and negotiate so that a Web
server provides access to its files only after a mutual agreement is reached between itself and the
surfer. The Web browser performs negotiation automatically and on the fly; in this manner, if a
negotiation with a Web server fails, it moves away and tries another one.

3.3.2 TRUSTe privacy programme

As with the P31? project, the TRUSTe privacy programme encourages Web servers to make their
privacy policies available to their surfers; however, instead of relying on Web browsers to find out
about the privacy policies of Web servers and negotiating about them, the TRUSTe organization
encourage its members to make their privacy policies available at the click of the mouse in Web pages
so that the surfer can read them before downloading any page [42,111]. Members of TRUSTe are
easily identified by the TRUSTe logo. The TRUSTe logo is a green rectangle (3xI cm approximately)
with the word TRUSTe inside it. By clicking on the logo, the surfer is taken to a privacy pledge
text file where she can read all about the risks of downloading further information from the Web
server.

3.3.3 Limitations of P3P and TRUSTe

Without any doubts P3P and TRUSTe help to fill tile gap in Internet confidentiality and privacy;
for applications where legal action may be taken and the damage repaired after a breach of promise
they work fine; a Web surfer, for example, might sue a Web server after discovering that tile Web
server owner has given away the surfer's home address to an ice-cream company. In this case,
apart from being annoyed by junk mail advertisement and wasting time in her legal claim nothing
serious happens to the surfer. However, there are many applications where the sole intention of
downloading information from a server reveals a great deal of information about tile surfer; in other
cases, taking legal actions does not make sense. For example, for a Web surfer in a country with
a military regime it might be compromising to read tile privacy pledge of a Web server containing
antigovernment information. Similarly, it is unthinkable that a married man will take legal action
against a Web dating service after discovering that tile Web server has abused his personal data.

In summary, the weak side of P31? and TRUSTe is that tile surfer has to give away his personal
data before finding out if lie has hit tile right Web site. Next if lie accepts the privacy Policies
of the Web site, lie will give away even more information about himselL Not having the given
information under his control tile surfer can do nothing but to trust the Web server owner and in
cases where legal actions are suitable, hope that lie or the police body will detect the crime and
punish the offender. Another limitation of this approach is that in case of a legal prosecution7 the
court inenibers or its equivalent get to know everything about tile surfer and his Web preferences,
so for the surfer they are just another body to be trusted no wonder tile TRUSTe home page bears
the TRUSTe logo as well. A serious limitation of the TRUSTe privacy programme is that, at tile
present stage of development, it expects the surfer to go beyond the green TRUSTe logo to read tile
acknowledgement and acceptance of term of services file which might contain two or three pages of
text full of not easy to understand (for a lay user) law terminology; except for few exceptions, it is
unlikely that surfers will go through this painful, and timewasting task; it is clear that something
must be done to relieve the surfer from this load, otherwise, tile TRUSTe programme will remain
of little practical use; perhaps the P31? protocols might be a good complement.

Rom this discussion it follows that neither P3P nor TRUSTe give a satisfactory answer to tile
question; it seems that for some applications a different approach is needed.

3.4 Technical solutions

3.4 Technical solutions

35

Instead of relying on enforcement of regulations, technical solutions address the question about
Web surfing security by relying only on technical strategies. In this approach, instead of giving
away data about Web surfers, and believing in promises and police bodies, data is not given away
to the Web server, it is hidden behind a wall, consequently the confidentiality and privacy of the
surfer depend on the strength of the wall. If the Web server owner cannot see who is behind the
wall it cannot know who is visiting his site, neither can he know to whom the requested pages
are going. There are several systems available in the Internet that provide this kind of services
and are known as anonymizers. All of them are based on a mediating computer (one of several)
interposed between the sender and the receiver. The computers in the middle are called mixes and
are there to process the message before it is delivered to another mix in the chain or to the receiver.
Obviously, the aim of the process is to hide the sender's identity, her IP-address and e-mail address
for example.

3.4.1 The Anonymizer

As advertised in its Web page [39] this system offers a set of services aimed at protecting the
anonymity of the user while surfing and publishing Web pages.

Anonymizer Surfing

The anonymizer surfing is aimed at preventing Web servers from learning sensitive data about
their visitors. The core of the service is a computer located somewhere in the Internet and called
the anonymizer which acts as an agent between the Web surfer and the Web server and hides the
identity of the former. In fact the anonymizer is a proxy server [1121 whose job is to receive requests
from the Web surfer's browser, remove sensitive data (what a Web server would like to store in
its log files) from them, forward them to the Web server, receive the reply and return them to the
Web surfer. To the Web server, requests from a Web surfer coming from his office computer look
as though they are coming from the anonymizer.

To use anonymizer surfing the user can go either for free or paid accounts. In the first case
the only thing the surfers have to do is to go with their browsers to the service address [113] and
type the address of the Web server he wants to visit. After about 30 to 60 seconds of delay the
anonymized page appears on screen.

In terms of functionality the paid service is exactly the same as the free one, except that it
works without delays and can be instructed not to display advertisements on the anonymized page.
Before using it, the surfer must sign up for her account, where apart from $ 15.00 per three months
she must give away her e-mail address. In return she receives a user identifier, and a password.
Any time she wants to surf anonymously she connects to the service address [114] where she is
asked for her user identifier and her password.

Anonymizer servers and network licences

This service works under the same principle as the anonymizer surfing but is intended to protect the
anonymity of people belonging to a single organization (Internet Service Provider, Universities, and
businesses organizations for example); thus, the anonymizer is a computer, sold by Anonymizer Inc.
and under the control of the owner of the organization. Thanks to the anonymizer, the anonymity
of Web surfers is protected against the Web servers.

36

Anonymizer Email

Anonymity in the World Wide Web

This allows the sending of anonymous e-mail messages. Again, there is a computer, the e-mail
anonymizer, between the sender and the receiver, which acts as an agent and hides the sender's
name and address by changing the original ones for its own. To the receiver, an anonymous e-mail
looks as though it is coming from the e-mail anonymizer.

To send anonymous e-mail, connect to the Anonymizer Email page [115], type the destinatioll
address, and the body of the message and send it. The anonymizer email hides your address frorn
the receiver. Unfortunately, there is no way to receive a reply.

Anonymous Web publishing

As its name implies, anonymous Web publishing offers Web publishers anonymous Web publishilla
accounts (also called Cyberpass accounts). Any individual interested in publishing anything (polit-
ical and religion views, personal profiles, and others) on the Web without disclosing her identity
may contact Infonex Internet, Inc. (the owner of this service) who for a charge will provide her with
an anonymous Web publishing space. For this to be possible, first she submits a Web publisher
name and a password to the Infonex's Web server (the one which stores the anonymous pages),
and next she sends cash or a money order to Infonex in connection with her Cyberpass account;
upon receiving the payment, Infonex activates the account. By means of the ftp command tile
anonymous Web publisher can now upload her Web pages to the Infonex's Web server from her
office computer. The readers of the anonymously published Web pages have no clue about the
identity of the publishers.

Limitations

The main r6le in the Anonymizer Surfer, Anonymizer servers, network licences, and Anonymizer
Email services offered by the anonymizer system is played by a third party (the anonymizer Web
proxy in the first and second service and the anonymizer remailer in the last) which sits between
the surfer and the Web server and works as a middlecomputer between the two interacting parties
hiding the identity of the former. The problem with this approach is that the middlecomputer knows
everything about the surfer; since in practice this computer is a standard one (a Unix Workstation
for example), the information it receives, manipulate and stores is available to its manager. if
for some reason (a liacker breaks the root password or the manager is bribed, for example) the
iniddlecoinputer fails to bide the secret identity of the surfer, the whole system will collapse. In
other words, the third computer is the most important one and the most vulnerable as well. only
users who trust the third party (both computer and manager) will use this system.

In the case of the Anonymous Web publishing service the dependence on the third party is even
worse as the user now uses the middlecomputer to publish her own information; consequently she
is completely exposed to public and

*
government censorship. In case of troubles her one and only

hope is the iniddlecomputer and its manager. As stated by this service's owners [1161, "the content
of anonymously published pages must be legal in California... " otherwise, they could receive a
court order requesting the identity of the anonymous Web publisher, information from access log
riles (her office computer IP address and timestamps of her ftp connections to the middlecomputer)
will be revealed. In the same way a million dollars -and even a threat- might be offered to tile
manager by anybody from the public.

Another limitation of the whole system is that its services were conceived for a free Web, i. e.
to surf and publish Web pages free of charge and to anonymously e-mail people or institutions
from which no reply is expected, lience no charge is assumed. Although there are many sites in

3.4 Technical solutions 37

the Internet that fall into this category, there are many others-those that provide serious and
professional services- that do not. Moreover, it is expected that in the future when the Internet
become more commercialized, the number of paid sites will increase.

3.4.2 The Lucent Personalized Web Assistant

Homed at [40) and owned by Lucent Technologies, the Lucent Personalized Web Assistant offers
Web surfers with a service to prevent their sensitive data being given away by Web browsers and
stored in the log files of Web servers. It was designed to serve those Web surfers who for any reason
need to surf Web servers which require online registration before one can access their Web pages.
In fact the core of the service is a computer called the LPWA server which acts as an anonymous
proxy server located between the surfer's computer and the Web server she wants to visit. The job
of the LPWA server is to hide the identity of the surfer by replacing the real identity of the surfer
in the HTTP request with an alias identity computed as a function of a universal password (also
called the secret), the surfer's e-mail address, and the Internet address of the Web server the surfer
intends to visit.

The LPWA server accepts three different configurations. In the so-called central proxy con-
figuration the LPWA server is a computer at Lucent Technologies headquarters which works as a
central LPWA server for anybody willing to use it. At the other extreme, the LPWA server can
be run on a local computer, i. e. on the same one as the browser runs -local proxy configuration.
Lastly, in a the firewall proxy configuration the LPWA server runs inside a corporate Intranet on a
firewall computer.

Thanks to the universal password which in fact is a key used as a parameter for a cryptographic
function and the surfer's e-mail address, the LPWA computes a different, but consistent, alias
identity for each visited Web server. Hence, all responses sent by a Web server to the alias identity
are forwarded by the LPWA to the surfer. The LPWA keeps the surfer's data for the duration
of a browsing session, consequently, the surfer provides her data only once (when the browser is
started) regardless of the number of Web servers she visits during her browsing session. In order
to be recognized as the same person by a Web server visited during different browsing sessions, the
surfer must start all her browsing sessions with the same universal password. Briefly, the operation
of this anonymizer can be described as follows.

1. Configure your browser to use the LPWA as a proxy.

2. Open a browsing session which takes you to LPWA login form.

3. Fill up the login form by providing your universal password and e-mail address.

4. Visit as many Web servers as you want, the LPWA server will hide your real identity by
providing the Web servers you visit with alias identities.

5. Log off from your LPWA after visiting your last Web server. If you start another browsing
session in the future, make sure you fill up the LPWA login session with the same universal
password and e-mail address.

Limitations

Since the LPWA is a system grounded on a proxy approach it suffers from the same limitations as
the Anonymizer (see 3.4.1); its security heavily depends on the security of the proxy server.

38 Anonymity in the World Wide Web

Currently the central proxy configuration is the only one available. Regardless of their linji-
tations, this configuration together with the firewall proxy configuration are the only ones which
make sense in terms of anonymous surfing. The local proxy configuration is of dubious practical use
as in this case there is a direct TCP connection between the surfer's office computer and the Web
server, i. e. exactly what we are trying to avoid to stop the Web server identifying the identity of
the surfer.

Once again, the service is oriented to helping the surfer visit free Web pages. It does not work
when the Web server asks for bank card numbers.

3.4.3 Crowds

Crowds is a system for protecting the privacy of Web surfers. It is currently being developed by
AT&T and is available (beta release) in the Internet [41]. The main idea of the system is to blend
the Web surfer into a crowd (a group of surfers) so that his requests are hidden among the requests
of other members of tile crowd. Once the surfer is integrated into the crowd any request made by
him is randomly submitted to tile Web server or to another member of tile crowd; in the latter case
tile procedure is repeated until eventually the requests is submitted to tile Web server; tile result
of this is that the Web server cannot tell if the party it received the request from is the initiator of
the request or just the last member in tile chain. Even more, no member in the chain, except for
the true initiator, can identify the initiator of tile request, since the initiator is indistinguishable
from a member that simply forwards a request from another (117].

In the crowd a surfer is represented by a process on her local computer called a iondo. A jondo
is a process started by the surfer or by the administrator of the surfer's computer which executes
the crowd protocol and works (previous browser configuration) as a Web proxy for the local surfer.

When the jondo is started it tries to join a crowd membership list by contacting a process called
the blender. The blender is run by the crowd administrator somewhere in a computer connected to
tile Internet. To be accepted as a member of the blender's crowd, a jondo must have an account
with the blender, i. e. name and password stored by the blender and verified each time tile jondo
tries to join the crowd. If the jondo is accepted tile blender adds the jondo's IP address, port
number and account name to the membership list of jondos and reports tile updated list to all tile
members of the crowd (the new member included). Needless to say, the membership list is updated
and reported to tile jondos each time a jondo joins or leaves tile crowd.

With the membership list of jondos in its hand a jondo is ready to accept requests from the
browser it is working for as a Web proxy, and blend the surfer into the crowd by randomly forwarding
her requests as explained above. Naturally, Web server replies traverse the same random path of
jondos as tile requests, but in reverse.

In few lines, the crowd anonymizer can be summarized as follows.

1. Download and install the free beta version of crowd available at [41]. By default, your jondo
will join a crowd whose blender is run by AT&T. You can run your own blender as well and
instruct your jondo to join it.

2. Run your jondo and open all account with the blender you want to use.

3. Configure your browser so that it uses your running jondo as a Web proxy.

4. Start your browser and wait until a message specifying that you are a member of tile crowd
arrives.

3.5 Summary 39

5. From now on and till the end of your browsing session you can surfer the Web anonymously.
Repeat the previous points any time you restart your browser.

Limitations

Crowds overcomes the drawbacks of the proxy oriented systems, however, it suffers from serious
limitations as well. Instead of depending on a third party (the middle computer) it depends on the
chain of jondos sitting between the surfer and the Web server. Depending on a single party is bad
but depending on several of them might be even worse since this means that everybody must work
properly.

The updating of the membership list depends on the communication of the blender with the
jondos, the longer the membership list the better in terms of anonymity but the more difficult to
maintain it up-to-date.

Another problem with the jondo list is that in may include jondos running on different hardware
and with different communication links to each other (some of them might have high-speed con-
nections and other modems), to the blender and to the Web server, this implies that the response
time of a request no longer depends only on the resources of the initiator only but on the resources
of the whole crowd.

The main problem is that once a request is sent to the Web server through a chain of jondos, the
reply must follow the same path (in reverse). Because the chain is composed of several computers,
one or more of them might fail while the request or the reply is on its way, or any of their owners
might decide to leave the membership list or just to break the chain (by intentionally killing his
jondo process).

Also it may sound unrealistic but possible that the Web server might offer a thousand dollars to
each member of the crowd who proves (showing a copy of the answer or the reply) to be a member
of a chain of jondos; this would lead to identifying the jondo that received the request from the
initiator of the request and automatically to the initiator itself.

Another problem with the crowd chains is that once a jondo becomes a member of a chain the
owner of the jondo becomes involved in a sort of gossip; this means thai lie might be asked to
forward a degrading, compromising, or dangerous request; if lie forwards it, lie becomes a potential
initiator of the request. This might encourage a member of the chain to drop the request instead
of forwarding it; and discourage him from joining the Crowd in the future.

Another serious limitation of crowds is that its chain of jondos makes it difficult to be used to
surf paid Web servers. The breaking of the chain might imply losing the request, the payment for
the service or the purchase. In any way the initiator has no way to complain to the Web server
unless he is supported by the whole chain of jondos.

3.5 Summary

Current Web protocols do not protect Web surfers' personal data from the Web servers. It is
common practice for Web servers to keep records about their visitors. Thanks to the information
given away by browsers a Web server can extract the personal data of the surfer, the software
and hardware of his computer and the Web pages lie is downloading. This information can have
commercial, political, or personal value and can be used locally or sold to third parties without the
surfer being aware of it.

To alleviate this situation, two approaches have been proposed: enforcement of regulations and
technical solutions.

40 Anonymity in the World Wide Web

The P3P project and the TRUSTe program are well-known examples of the first approach. The
goal of both projects is to develop strategies and software products to force Web servers to observe
confidentiality regulations.

Technical solutions are based on the use of anonymizers. To prevent Web servers from extracting
sensitive data about their visitors and to help Internet users sending e-mail messages anonymously,
anonymizers have been deployed in the Internet. There are several anonymizers available in the
Internet (The anonymizer, The lucent personalized Web Assistant, Crowds and other) that offer
anonyinizing services for free or for a fee. However, all of them are based on the use of mixes,
i. e. computers (one or several) interposed between the sender and the receiver. Consequently, the
anonymity provided by them is fragile and depends on the ability and willingness of the 'nixes
to keep the secret. Likewise, the degree of anonymity is limited since one of the mixes, at least,
will always know the sender's identity. For applications requiring true anonymity, mixes-based
anonyinizers are unsuitable. Hence, a different approach must be taken.

Chapter 4

Cryptography and message encryption

4.1 Introduction

If Alice and Bob are two people separated by some distance but linked together by a computer
communication network, they can send information to each other by means of messages that travel
through the network.

The usual assumption made in computer networks is that anybody might read and copy (either

accidentally or deliberately) any message that passes between any pair of nodes. In other words,
the risk of being overheard or caught when talking over a network is high, and inherent in the
system.

Because of this the mere fact that a message is sent by Alice and received by Bob reveals
several things about the communicating parties to those who accidentally or maliciously overheard
the transmitted message. As discussed later, an intruder might find out about whom Alice is
communicating with, the contents of the message, and even change the message, or impersonate
Alice or Bob. Most of the time, this is not exactly what the communicating parties want, hence
protection against these threats has to be implemented and made available so that a user can use
it in accordance with the nature of his messages. In other words, a mechanism is needed to provide
the user with the following facilities:

confidentiality the data cannot be read by unintended recipients.

authenticity the data is attributed to the correct originator, who cannot disown it.

anonymity the recipient has no way to identify the sender of the message.

pseudonymity the sender has a way to sign two or more messages with the same pen name.

integrity after being signed, nobody, the receiver included, can alter the contents of the document.

So far the most successful approaches to addressing these issues come from Cryptography.
Cryptography is a science with a wide range of topics for study and research with a variety of
., applications in computer science[118,119]. A deep discussion of cryptography is beyond the scope
of this work, however, a brief introduction to its basic principles is given in this chapter with the
intention that it will lielp to understand the cryptographic techniques used in chapter 5.

42 Cryptography and message encryptioll

4.1.1 Message encryption
Message encryption is the cornerstone of Cryptography and it helps to address the issues mentioned
above about the risk of giving away information a communicating party does not want to when
sending or receiving messages over insecure channels.

Encryption involves the scrambling of a message by applying a key-driven algorithm to the
message, so that it can only be understood after decrypting it. The message decryption involves
a dcscranibling process and can be performed by someone who knows both the key and the al-
gorithin. Before going further it is worth noting that some authors prefer the terms encypher-
7nent/Acypherment instead of encryptionldecryption and that the terms encodingldecoding are
frequently misused as synonymous with encryption/decryption. The difference between them is
that encoding/decoding may or may not involve a scrambling process while encryption/decryption
always does.

Mathematically an encrypted message is the result of applying to the original message (usually
a plaintext message) an encrypting function parametrized by a key.

E(ki, M)

where C is the encrypted message; E is the encrypting function; ki is the encrypting key, and
Al is the plaintext message.

Likewise, the original message can be recovered by applying to the encrypted message a de-
crypting function parameterized by a decrypting key.

M= D(k27 C) (4-2)

where Al is the original message (usually a plain text message); D is the decrypting function; and
k2 is the decrypting key.

It then follows that
D(k2) E(ki, M)) =M (4.3)

Rom equation 4.3 it follows that a pair of keys is involved in the encryption/decryption process.
If ki ---ý k2 or if one key is easily derived from the other, tile cryptosystem is called symmetric and
ki and k2 are called symmetric keys, otherwise it is called asymmetric and k, and k2 are called
asymmetric keys [119].

Since it syninietric key must be kept secret from everybody else except tile sender and tile
receiver of the message, symmetric cryptosystems are also known as secret-key cryptosystems.
Conversely, asymmetric cryptosystems are called public-key cryptosystems because in these cases
one of the keys is kept secret by his owner while the other one is known by the public.

Both secret-key and public-key cryptosystenis are grounded on the use of tile so-called trapdoor

one-way functions.
A one-way function is one that maps a domain into a range such that every function value lias

one and only one inverse. Also, it should be feasible to compute f (x) for any x ill the domain of f
while, for almost all y in the range of f it is computationally infeasible to compute f -1 (y) even if
f is known. A one-way function is called a trapdoor one way function if it is feasible to coinputL,
f -I (y) given certain additional information. This additional information is the decryption key.
Given the decryption key f -I (y) call be computed in polynomial time.

It follows that equation 4.1 is it trapdoor one-way function that can be computed in a Polynomial
time and equation 4.2 -its inverse- can be computed in polynomial time as well when K2, tile
decryption key, is known.

4.1 Introduction

4.1.2 Secret-key cryptosystems

43

In secret-key cryptosystems the encryption and decryption processes involve the same key, i. e.
they are symmetric. A single key, called the secret key, is shared and kept secret by the two parts
involved in the encryption/decryption process (see figure 4.1).

Shared secret kcv: Ks

Plaintext:
.

Encryption Ciphertext: [Decryption Plaintext:

M=[X,,..., xm] algorithm C=
I algorithm M= VM) =[Y"..., yn] . DAQ =[xl,..., xm]

Figure 4.1: Secret-key encryption and decryption.

The encryption and decryption algorithms are normally based on principles of modular arith-
metic, in particular on properties of the operation called modulo 2 addition or Exclusive OR defined
in the binary digits a and b as follows:

(a + b) mod 2=a ED b0 if a=b
1 if a: A b

. It can be proved that if a ED b=c, then a=c E) b. In other words, this means that XORing b
twice to a restores the original value of a. In terms of Cryptography one can think of a as a plain
text message, c as an encrypted message and, b as a secret-key.

The Data Encryption Standard (DES) is the most widely used secret-key encryption system
and is based on these properties of XOR arithmetic. It encrypts data in 64-bit blocks into 64-bit
blocks of cyphertext under the control of a 56-bit secret-key, which is used to generate a series
of other keys to be used during the encryption process. The algorithm is symmetric; the same
algorithm and secret-key are used for encryption and decryption; however, during decryption the
series of keys generated from the secret one are used in reverse order. Thanks to this symmetry,
nothing distinguishes Alice from Bob, either of them can be a sender and a receiver, the same
secret-key is used to encrypt messages in both directions.

The DES algorithm is widely discussed in literature [120,118]. For those interested in exploring
the DES weakness and cracking it, the book [121] recently written by the Electronic Rontier
Foundation is a good reference.

One of the most serious difficulties with secret-key cryptosystems -DES for instance-- is the
distribution and sharing of the secret key. Before any secret-key encrypted communication can take
place the secret key must be distributed to the sender and the receiver of the encrypted message,
i. e. two individuals can exchange secret-key encrypted messages only if they have communicated

,
before. In practice the sender is normally the secret-key generator; hence a private courier or
registered mail is used to carry the secret-key from the sender to the receiver. On the other hand,
experience shows that keeping a secret is extremely difficult when more than one individual is
involved, in secret-key cryptosystems at least two parties (one sender and one receiver) share the
secret-key; however, there are situations where more people are entitled to know the secret key;
then the chances of losing secrecy increase dramatically.

_
Besides this notorious drawback secret-key cryptosystems provide for very fast (they are sig-

nificantly faster than public-key algorithms) and efficient encryption.

44 Cryptography and message enerypt'ion

4.1.3 Public-key cryptosystems

As was stated in section 4.1.2 two of the major difficulties of secret-key cryptosystems are the
distribution and sharing of the secret-key. To attack this problem Diffie and Hellman introduced
what they called public-key cryptosystems in 1976 [122). In public-key cryptosystems encryp-
tion/decryption of messages is performed using a pair of asymmetric keys, more exactly a key
which is divided into two subkeys (counterparts). The first part of the key, called the private key,
is known only to the receiver. While the second, called the public key, is know to the sender and to
anybody else interested in sending messages to the receiver. The pair two keys are mutually depeii-
dent, one is useless without the other. The public key is made available to the world by placing it ill
a public directory, in a sort of public-key directory for example, similar to those used by telephone
companies to make telephone numbers available to the public. Thanks to this revolutionary ap-
proach Alice and Bob can swap encrypted messages over an insecure computer communication line
from the very beginning of their interaction. The need to send or receive a confidential message,
from somebody one has not had prior acquaintance with, is a common practice in modern societies,
particularly in business.

Public-key cryptosystems are asymmetric. The public key is used to encrypt messages to be sent
to the receiver who decrypts the messages using his private key. Data encrypted with the public
key can only be decrypted with the corresponding private key. The encryption and decryptioll
algorithms might be different, but it is possible that they are the same.

A simplified diagram of public-key cryptosystem is shown in figure 4.2.

Bob's public key Bob's private key Bob /s, ý PU Tv

Plaintcxt: Encryption Ciphcrtcxt: Decryption Plaintext:

if
ec i o]n p

M=Ixl...., xml algorithm C=EPýM)=[yl,..., yn, algorithm M= CS=

!a

gorithm DKPýC) =[xl,..., xml

Figure 4.2: Public-key encryption and decryption.

So far the best studied and widely accepted public-key algoritlim has been the one proposed
by Rivest, Shamir, and Adleinan in 1978 [123). It is known simply as the RSA (Rivest-Slianiir-
Adleinan) algorithin.

4.1.4 The RSA algoritlim

The RSA algorithin was conceived by its authors to solve the drawbacks of secret-key cryptosystenIs
in the distribution and sharing of secret keys and for implementing digital signatures [123].

The security of public-key cryptosystems published so far relies on the difficulty of solving well_
known niatheniatic problems. The RSA is based on the fact that the factorization of composite
numbers with large prime factors involves large computations. So far nobody has succeeded iii
rinding in efficient algorithin to factor a 150-digit number in a reasonable amount of time; t1jus,
factorization is considered a well-known intractable problem. As will be discussed later, a RSA key
is derived from a large composite number, lience, in computational terms, breaking an RSA key is
equivalent to finding the factors of a large composite number.

The RSA encryption and decryption algorithms are based on exponentiation in modular arith-
nietic. Given it plain text message Al the encrypting processes mentioned in equation 4.1 and 4.2

4.1 Introduction 45

and shown in figure 4.2 are mathematically represented by equations 4.4 and 4.5 respectively, where
C represents the result of encrypting M.

M'mod n (4.4)

M= Cd mod n= (M' mod n)d mod n= Med mod n (4.5)

As can be appreciated from equations 4.4 and 4.5 both encrypter and decrypter must know the
value of n. In addition, the encrypter must know the value of e and the decrypter the value of d.
Thus, in terms of public-key cryptosystems, the pair je, n} can be thought of as the public key
and the pair In, d} as the private key. e, d, and n are positive integers and are chosen as follows.

Because in practical applications the encrypter and decrypter are geographically separated and
linked by a computer communication line it is common to talk of a sender and a receiver in published
works or to make it less technical, of Alice and Bob.

The fact that the original plain text M can be recovered at the decrypter's side is based on e
and d being multiplicative inverses and can be mathematically proved [123,124].

In practice the RSA cryptosystem works as follows:

1. The sender generates two large prime numbers p and q and keep both of them private.

2. The sender generates a composite large number n= pq.

3. The sender chooses a large random integer d which is relative prime to (p - 1)(q - 1) ; i. e.
ged (d, (p - 1) (q - 1)) = 1; gcd means greatest common divisor; d is kept private.

4. The sender computes an integer e which is the multiplicative inverse of d. Thus, e and d
satisfies the equation ed mod (p - 1)(q - 1) = 1.

5. The pair In, e} is called the public key and is published in a well-known directory of public
keys. I n, e} is used to encrypt messages (see equation 4.4).

6. The pair In, d} is called the private key. In, d} is used to decrypt messages (see equation
4.5).

, Since e cannot be computed without knowing tile value of (p - 1)(q - 1) or what is equivalent,
tile value of p and q, tile security of an RSA cryptosystem depends oil tile difficulty of factoring n
into its two factors p and q. For real life applications it is suggested using 100-bit numbers for p
and q so that n results in a 200-bit number. With numbers like these, it would take several million
years at a rate of one step per microsecond to factor n using tile fastest known algorithms.

Both encryption and decryption in RSA cryptosystems involve raising an integer to an integer
power modulo n. These exponential operation call be performed using well-known fast expoilen-
tiation algorithms [124]. Similarly, there are well-known algorithms to find large prime numbers
which are obviously not based on factorization but on tests for primality [125,123,124,120].

4.1.5 Digital signatures
As was mentioned at the beginning of the discussion of the RSA scheme, the RSA encrypting and
decrypting algorithms were conceived for implementing digital signatures which are the basis for
authentication of users, and the non-repudiation and integrity of messages. A digital signature is
an electronic equivalent to a handwritten one.

46 Cryptography and message encryptior,

To implement a digital signature with the RSA cryptosystem the encrypting and decryptina
algorithins must satisfy the following property:

(Md mod n)' mod n= Mde modn=M (4-6)

What equations 4.6 and 4.5 state is that the encrypting and decrypting algorithms are comrnu-
tative and mutual inverses. Because of this property, the algorithms can be applied in any order)
the original plain text M is always recovered. This is what RSA signatures are grounded on, since
Alice can sign a message M by decrypting it with her private key in, dj and then send it to Bob
who, upon receiving it, encrypts the decrypted message with Alice's public key In, e} to recover
M. Bob is sure the message comes from Alice as only Alice knows the pair In, d}.

4.1.6 Blind signatures
As with traditional cash money, e-cash money must bear tile signature of a financial authority
to be accepted as a token in commercial transactions. In tile former case, a financial authority
creates notes of given values, signs them, and somehow puts them in circulation. The acceptance
of the notes by the public is backed up by tile signer, whose signature is well-known and in theory
impossible to forge. Ill tile latter case, it is the user herself, Alice for example, who creates notes
of given value and sends them to a financial authority to sign them; having tile signature of tile
financial authority the note call be used to pay for commodities. In contrast with traditional cash,
the physical appearance of a note and a coin are exactly the same in the electronic world, both are
represented by electronic bits and are called e-notes and e-coins respectively. Thus, if we ignore tile
monetary value of ail c-coin and e-ilote which normally is higher in notes, there is no substantial
difference between them, consequently we will freely switch between the two terms.

Current implementations represent ail e-note as a pair of integers; the first one is tile monetary
value of the note and the second is an identity string, i. e. a sort of serial number that uniquely
identifies the note and prevents users from spending it more than one time.

The problem with bringing or sending an e-note to a bank and requesting a signature is that
the bank call keep records that associate Alice with tile value and serial number of the e-note; and
later when the e-note is brought back to the bank by a merchant, find out when, where, to wholn,
and]low tile note was spent, this possibility would reduce tile anonymity of tile e-note to nothing.
Fortunately, several protocols have been devised to deal with the problem, although they differ ill
details, all of them are centered around what is known as blind signatures.

Tile main idea behind a blind signature is that the signer signs a document with a satisfactory
degree of knowledge about the content of tile document but without knowing exactly what lie is
signing. In the e-note case, tile banker knows that lie is signing a note of ýC5.00, for example, that
belongs to Alice but does not know the identity string. Hence, the banker knows that lie has to
deduct JC5.00 from Alice's account and deposit them into the merchant's account when the latter
brings back the e-note. Yet since the name Alice is not written on the e-note and lie signs thousand
of notes everyday, the banker lias no way of associating Alice with the note; tile Only thing lie call
learn from the note lie is presented with is that it has his signature on it, has not been spent,
and that it is worth C5.00. Rom this information lie deduces that its holder is entitled to Z5.00
regardless of the origin of the e-note, it might come from Pat, Ted, Katy, Alice or somebody else,
in terins of nioney transfer it does not make any difference to tile bank.

As explained in detail by Bruce Sclincier [118] the blind signature protocol is based on a tecil-
nique called cut-and-choose which relies oil probability to ensure that a blindly signed document
contains what its signer expects. The protocol works as follows:

4.2 Combination of secret-keyand public-key cryptosysterns 47

1. Alice makes n copies of the document, an e-note for example, she wants signed.

2. She blinds each of the n copies by multiplying each of them by a different integer called a
blinding factor.

3. She puts each copy inside an envelope and brings the n envelopes to the signer.

4. The signer chooses and opens n-1 documents at random and asks Alice for the blinding
factors to verify that each of the chosen n-I documents contain what Alice claims.

5. If the signer is satisfied with the contents of the n-I documents, he signs the only document
left unopened by writing on the unopened envelope.

6. Alice goes home and there she removes the blinding factor from the signed document by
dividing its contents by the blinding factor.

Mathematically, in an RSA cryptosystem where e is Alice's private key and d the private key of
Alice's banker, Alice can make the banker blindly sign a document whose contents is x, as follows:

1. Alice chooses a blinding factor r and blinds x by computing

xr' mod n (4.7)

2. The banker signs the blind document by computing

(xr')d mod n (4.8)

3. Alice removes the blinding factor by dividing equation 4.8 by r

td (Xre)d Xdred Xdr d s=-modn=-modn=-modn=-modn=x modn (4.9)
rrrr

4. Alice has her document S= Xd mod n signed.

There are a few things that merit additional comments. Since r is random, the banker can
never determine x -the contents of the document. If s is an e-note, now Alice has a valuable
e-note she can use to anonymously buy a box of chocolates or anything else.

This protocol is a simplified version of the one presented by Sclineier [118] where additional
data is included in the e-note to discover Alice's identity in case she cheats by spending her e-note
more than one time, and to catch the chocolate seller if lie intends to present Alice's e-note twice
to the banker. An overview of blind signature protocols is presented in [126,127); for a detailed
discussion we encourage the reader to refer to [118].

4.2 Combination of secret-key and public-key cryptosystems

, The drawback of public-key cryptosystems is that they are significantly slower (about 100 to 1000
times) in comparison with secret-key ones [61,128]. For this reason they are not suitable for
encrypting large amounts of data (files and pictures for example). Another drawback of a public

,
key is that since it is managed by key infrastructure its renewal is a comparatively cumbersome
process; hence it is meant to be a long term key; incidentally, the more it is used and exposed the

48 Cryptography and message encryptioll

higher the risk of being caught by a meddler. Because of these reasons, experts in CryptograpIly
recommend using a public key as little as possible.

In practice, cryptographic systems are based on a combination of secret and public-key cryp- tosystems, so they combine the speed of the first with the key management conveniences of tlie
second.

The main idea is to encrypt large amount of data with a secret-key algorithm and then encrypt
only the secret key with a public-key one. Assuming that the receiver Bob and the originator Alice
of a message are in possession of a pair of keys (private and public keys) the following procedure
takes place.

1. Alice has a large inessage (several Mbytes for example) to send to Bob.

2. Alice generates a secret key.

3. Alice encrypts the secret key with his public key and sends it to Bob.

4. Bob receives and decrypts the secret key using his private key.

5. Alice encrypts a message slie. wants to send to Bob with the secret key and sends it to Bob.

6. Bob decrypts the inessage using the secret key.

7. The shared secret key remains valid for the duration of the session.

A well-known implementation that follows this approach is the Pretty Good Privacy (PCp)
software for secure c-inai][128].

4.2.1 Key management
Key management is the hardest part of any cryptosystem. This comes from the fact that in moderil
Cryptology the tendency is to open to the public all components of a cryptosystem (encrypting
and decrypting algorithms included) but the keys, so they rely on the infeasibility of breaking til,
system without knowing a key. The result of this is that if the key management fails, tile, w1lole
cryptosystein is down regardless of how secure the encrypting algorithms is and Ilow long the keys
are.

Key management is similar to bank card management. Somebody (a trusted authority) is ill
charge for issuing cards to users, recognizing the user's handwritten signature, assigning, renewing
and cancelling personal identification numbers, and in some cases renewing and cancelling cards.

Key management has to do with a set of key management procedure.

key space management if keys are integer nunibers, what is the range of valid keys?

key generation are keys generated from scratch or froin previous ones (updating)?

weak key exclusimi if there is a key that is easy to guess, it should not be used.

key renewal to reduce the risk of key compromising, keys should expire and be renewed regularly.
key invaliclation compromised and stolen keys inust be invalidated as soon as possible.

news propagation news about invalid keys and new ones should be spread widely and as soon
as possible.

, 4ý2 Combination of secret-key and public-key cryptosystems 49

key storage where are secret and private keys to be safely kept? In the owner's brain?, on a piece
of papers? on disk?, on a card with read only memory?

key usage policies how many sessions or how long is a key valid? How many keys can a user
have? On what computer is a key to be used?

old keys storage expired and cancelled keys cannot be shredded and send to a dustbin. How
long must they be kept for and who will store them?

authentication of key holders how does Bob know the holder of Alice's key is the Alice lie
thinks she is.

key escrow should my neighbour keep a copy of my private key in case I lose it or the government
needsit?

As can be seen from the issues raised above, though public-key cryptosystems give an elegant
answer to the question about key distribution and sharing in secret-key cryptosystems, management
of public keys is not an easy task at all. It encompasses several issues ranging from technical to
political ones. To a great extent the standardization of public-key cryptosystems in public networks
like the Internet, much depends on the solution to these questions. So far the most difficult
ones, due to their political and social implications, have been the last two in the list, namely,
user authentication, and key escrow. These two issues have been the objects of discussion in one
of the hottest and longest debates ever witnessed in the field of computer science. The debate
started in 1993 with the government proposal to introduce the now infamous Clipper chip as a
government standard for encrypting unclassified communications [52,118]; and nobody knows when
a consensus is going to be reached. Without any intention of joining this debate, a brief discussion
on authentication of key holders and key escrow is presented in the following sections. The reader
interested in more details about this debate should refer to [129,130,118,131,132,52,133,134,135].

4.2.2 Authentication of key owners
The question to answer here is, when Bob receives Alice's public key from a public key directory
or from somebody else, how does he knows that the key is definitely Alice's public key and not
somebody's else? It seems logical that Bob will be reluctant to encrypt messages using Alice's
public key unless lie is completely sure about the authenticity of the key. For this to be true, Bob
must receive Alice's public key directly from Alice or indirectly from somebody Bob trusts. In
either case the key must be handed in person or sent over a secure medium, an encrypted channel
for example or a private courier.

In practice two different approaches have been taken to addressing this issue: the distributed
and the centralized authentication of key holders.

Distributed and centralized user authentication

In the distributed approach there is no central key distribution center, there is no need for it
since every user generates and distributes his own public key. There is no central key certification
authority either. Key certificates are issued by the users themselves by signing each other's public
keys [118,61]. The meaning and contents of key certificates and the r6le key certification authorities
play are discussed below in this section.

A well-known example of cryptosystem that follows the distributed approach is the Pretty Good
Privacy (PGP)-an e-mail security programme designed by Philip Zimmermann [118] to provide

50 Cryptography and message encryptioll

privacy, user authentication, digital signatures and compression. However, in practice most Pep
users rely oil trusted PGP Internet servers (see [136] for example) to advertise their public keys and
obtain others. It is worth mentioning that the PGP cryptosystem is considered to be a de facto
standard among the Internet community.

The centralized approach to key authentication has been supported by the Internet Architecture
Board (IAB). It is based oil a protocol known as tile X. 509 where a trusted body, called the
Certification Authority or just CA [137] assigns a unique name to each key user and issues a digital signed certificate containing tile user's public key and user's name and additional personal
data (to be discussed below). Certification authorities are also called trusted third parties and
are organized in a hierarchical tree rooted by tile Internet Policy Registration Authority (IPRA)
-whom everybody has to trust.

Ali implementation that supports the centralized key authentication approach is the Privacy-
Enhanced Mail (PEM). The PEM is tile official Internet standard for private e-mails over tile
Internet. It provides confidentiality, user authentication, and message integrity (138,118,61,139].
It is worth pointing out that at the moment of this writing, version X. 509 v3 is considered the
Web standard, and is being used by popular applications like tile Netscape Communication Secure
Socket Layer (SSL) [53,140,141] and PEM [138].

Several schemes for distribution of public-keys are presented by Stallings [142].

Certification authorities and public-key certificates

A public-key certificate is a digital document issued and signed by a certification authority that
binds a public key to its owner. The certificate attests that a particular public-key belongs to a
particular individual. A Certification Authority (CA) is a trusted authority that issues public-key
certificates and whose digital signature is recognized among the community where the public-key
certificate is valid.

A publie-key certificate contains data about the public key owner, the key distribution center (if any) that issued the public key and about the key certification authority itself, It also contains
control information.

The actual content of the public-key certificate depends on the issuer's taste, but in general it
has the following fields [141,118,139].

9 key owner's data: name, address, age, sex, and so on.

a the public key being certified.

41 validity period (interval over which the certificate is valid).

e naine of the key distribution center that issued the public key.

4, name of the key certification authority.

a control information concerning the certificate (version, serial number, and so on)

* digital signature of the certification authority

4.2 Combination of secret-key and public-key cryptosystems 51

The controversial differences between the distributed and centralized approaches become ap-
parent when one takes into account that the distributed approach based purely on trust and it has
a flat structure where everybody is equal. It is feasible for friendly communications, say within
the academic environment, but infeasible for more sensitive applications where legal issues and
money are involved. It seems that for these applications the centralized approach is more realistic.
The problem with this is that the body on top of the hierarchy of certificate authorities is given
absolute power and is indeed converted into a sort of guard. Critics of the centralized approach
have raised the question about who can be trusted to be the maximum trusted entity at the top of
the certification chain. Another way of putting it is to say, who will guard the guard himself? The
government is the right body for those who trust the government, yet not everybody does.

4.2.3 Key escrow

The central idea of encrypting data is to make it available to the body entitled to read it; normally
this person is the owner of the encrypting key. The owner of the data might encrypt all the
electronic documents she has collected through her entire life (school homeworks, personal letters,
books and poems, address book, jotters, e-mails, medical records, financial records, and other legal
documents) and rest assured that nobody else but her can read her files. However, the person in
this example would not sleep at all knowing that her life story depends only on the availability of
an electronic key that might be lost. Likewise, she might unexpectedly die and leave her family
without the key to open relevant information such as her last will and testament for example; a
similar problem would face the company where she was employed as she might be the holder of
the key for decrypting important information. One might argue that the death of a person is an
extreme case, yet the same problems would appear if the person is unconscious or away and not
reachable from her company.

It seems that there are personal and business reasons for given a copy of our private key to
our neighbour or somebody we trust, i. e. for using a sort of key backup. The idea behind a key
back up does not necessarily mean keeping a real copy of the key, a mechanism to recover the lost
key would serve the same purpose. In the literature the terms key recove'ry, key backup, and key
archive are used to refer to the same concept.

At first glance key escrow looks like a sensible service to have, however, the questions about
whether it will be voluntary or compulsory may be raised; and about who is honest enough to be
trusted as a key escrower.

Under the cover that it needs a key escrow mechanism to catch drug dealers, terrorists and
similar criminals, the US government has proposed that key escrow should be compulsory; it claims
the right to have access to encrypted information without the knowledge or consent -just after
the release of a court order- of the owner of the encrypted data. . In this direction, government
supporters have proposed several ideas for building key escrow mechanisms [131,143,144,145,146,
1471.

Critics of the government scheme claim that key escrow has serious disadvantages, the main
one being that cryptousers have to trust the key escrower and his escrowing procedures. Strong
arguments have been made against the government proposal [132,133,52,118] by those who do
not trust the government and who are well aware that the security of the key escrow mechanism
might be broken and then the whole escrow cryptosystem will fail. They claim that key escrow is a
threat to privacy, that it is expensive and difficult to deploy, less secure, and that it puts into risk
the acceptance of digital signatures. Unfortunately no acceptable solutions to this issue have been
proposed yet.

52 Cryptography and message encryptioll

4.3 Cryptographic co-processors and smart cards
One of the concerns when designing a cryptosystem is the speed loss due to the time wasted during
the encryption and decryption of messages sent over the communication lines and encryption and
decryption of files before storing them on disk and before bringing them back to main memory. Re-
gardless of the encryption/decryption algorithms used, the speed loss of a system with cryptographic
facilities may be significant compared to a plain-text one. Most of the time in a cryptosystern is
spent performing modular arithmetic operations. If this is true, one can dramatically reduce this
time by using specialized hardware to perform modular arithmetic operations. This hardware is
known as a cryptographic co-processor and is normally a card attached to the main CPU. A simple
way of providing a computer (a PDA for example) with a powerful cryptographic co-processor is
the insertion of a smart card equipped with an embedded cryptographic co-processor.

A smart card is a plastic card quite similar in size and shape to the familiar bank card witil
a magnetic stripe. The main distinction between a smart card and a magnetic stripe one is that
the former has an integrated circuit (often called the smart card microcontroller or just controller)
inserted in the plastic that pr ovides the card with computation capabilities. Thanks to this new
feature it is capable of performing digital signatures, user authentication, message encryption and
inside data protection. The physical and electric characteristics of a smart card are specified by
the 7816 ISO standard. The smart card controller is a single chip computer without keyboard
and display embedded in a piece of plastic. It has, like any other computer, a CPU, memory,
and input/output interface. The type of smart card controllers we are interested in here are the
cryptology oriented ones which come with an arithmetic coprocessor.

4.4 Summary

Cryptographic techniques have been extensively used to protect both data stored in Internet conj-
puters and messages travelling through Internet channels. To prevent un-authorized parties fro, n
understanding the content of a message sent from Bob to Alice, the message is encrypted at Bob's
computer and decrypted at Alice's computer. A message is encrypted by using an encryption key
and decrypted by using a decryption key. In accordance with the keys used, cryptographic systems
fall into two classes: secret-key (e. g., DES) and public-key (e. g., RSA).

Secret-key cryptosystenis use the same key for encryption and decryption and are also called
symmetric cryptosysteins. Conversely, in public-key cryptosystems the keys used for encryption
and decryption are different. Thus, these cryptosystems are called asymmetric.

One of the main attractions of public key crypto-systems is that they can be used to implement
digital signatures. Digital signatures are necessary to sign electronic money and other documents.

Public-key cryptosysteins are significantly slower (about 100 to 1000 times) compared to secret-
key ones. Because of this, practical cryptosystems use both public and secret keys.

Key management is the hardest part of any cryptosystem. It has been recognised that among
the issues that key management has to address, key escrow is the most difficult and controversial.

Chapter 5

A new approach to confidentiality and
anonymity protection

5.1 Introduction

Although it is certainly risky to bet on how computer and communication technologies are going to
develop in the future, in tile previous chapters we dared, based on recent tendencies and on-going
research projects, to predict that a global ubiquitous communication network will be deployed in
the years to come. We also studied the main components of such a network, identified some of
its services and stated that PDAs will be tile most popular communication devices used to gain
access to these services. Similarly, we introduced the concepts of confidentiality and anonymity
and have identified them as one of tile main lacks in tile current Internet infrastructure and as one
of the main issues to be addressed to make tile ubiquitous communication network of tile future
commercially successful. We also explored recently deployed systems aimed at protecting tile right
to confidentiality and anonymity of Internet users, and identified their limitations. Finally we
introduced some concepts of cryptography in tile belief that they would serve as a background for
the discussion of this chapter.

It is time now to put all the pieces together and present the main object of our research, i. e.
our proposal for sending truly anonymous and confidential Internet messages which we believe
addresses the flaws identified in the anonymizers reported so far in tile literature.

5.2 Design characteristics

Our system is based on end-to-end encryption. In end-to-end encryption systems encryption and
decryption are performed by the applications; data never appears in clear at intermediate nodes.
Each user of a node has one or more encryption and decryption keys; let us say one key for each
application or session. When Alice's application wants to send an encrypted message to Bob, it
selects the proper key, encrypts the message body, leaving the message header in clear format, and
sends it to Bob through the communication networks. The message travels from node to node till
eventually it reaches Bob's computer, only at that end is Alice's message body decrypted.

The only part of Alice's message intermediate nodes between Alice and Bob need to read and
understand is the message header; it contains the final destination address and other relevant
information; the contents of its body is irrelevant, consequently, intermediate nodes do not need to
know about encryption matters between Alice and Bob [148,1201.

54 A new approach to confidentiality and anonymity protectiox,

Public phone box

123
. 156 Fixed home phone

Bob 799

Phone 123
456
789 Network
*0#

Alice

Figure 5.1: An anonymous call made from a public telephone box.

It is widely accepted that for a system to be successfully designed, implemented, understood,
debugged, and extended it has to be based on simple ideas. The explanation for this is that simple
designs are easier to understand and verify than complex ones. In computer literature this is know,,
as the principle of simplicity and is highly recommended for cryptosystem implementations where
a single flaw renders the whole system useless. Hence, to reduce the risk of having a hidden flaw
in the design or implementation and to increase the chance that a cryptosystem can be verified
and correctly implemented complicated ideas and large codes have to be avoided. Being aware of this, we have made a special effort to present a simple solution to the problem of anonymous and
confidential communications and to keep our design as simple as possible under the assumption
that it can be easily extended and used in real life applications.

5.3 Anonymous calls from a public telephone box

As was stated ill section 1.4.2, anonymity is a necessary condition for several services to work it,
modern societies; it is used in everyday life intensively, most of the time unconsciously. yet in
certain cases it is used deliberately. In tile latter case there are only a few mechanisms providing
true anonymous communication, specially when on-line two-way communication is needed. So far,
the only one readily available in most urbanized areas is tile public telephone box.

As simple as it is, a public telephone box provides for true anonymity when operated by coil-,
prepaid telephone cards or when the user dials a free of charge number. Tile only thing a person
has to do to initiate all anonymous telephone call is to go to tile public telephone box7 make tile
call and fade away from tile site immediately, i. e. before the telephone company may trace tile call
back, flnd out where tile telephone box is located and send someone there to identify tile caller.
It might also be that all the public telephone boxes the user might use are continuously under
surveillance by satellite cameras, so that pictures of all callers are taken to associate them witll
the anonymous call made at a given time. Although in theory this is possible, currently deployed
technology cannot afford it, consequently, we will not consider this as a serious threat in tile near
future. The use of a public telephone box is illustrated in figure 5.1 where an unknown Person
makes in anonymous call to Alice.

In addition to its unbreakable anonymity, tile public telephone box possesses another essential
characteristic that makes it suitable for making an anonymous call; namely its simplicity. The
mechanisms operating a public telephone box are rather simple, familiar to everybody who lives ill
it urbanized area and well understood by both designers and users.

This observation has inspired us to take it as a paradigm for designing a mechanisin for making

5.4 Concealment of identity behind a public terminal 55

anonymous calls from PDAs. The basic idea is to equip a PDA with all the necessary compo-
nents present in a public telephone box that make anonymous calls feasible. How many and what
components are they? Fortunately, there are only two of them:

e the public telephone box is a public terminal

* the caller uses an anonymous method of payment to operate it

5.4 Concealment of identity behind a public terminal

Because a public telephone box belongs to a telephone company and not to its users, there is no
connection between the number of the public telephone box (its identifier) and the caller. Likewise,
since it is there to be used by anybody, a call coming from it, could be initiated by any member of the
public. Consequently, the identity of the actual caller is blended into the crowd and automatically
hidden. Needless to say, for an anonymous call to be successful the caller has to use a public
telephone which is handily available to as many passers-by as possible. In brief, the incognito
caller hides himself in the crowd and not from the crowd.

5.5 Anonymous payment
While paying for an anonymous phone call made from a public telephone box the caller uses coins
to pay anonymously for his call. Anonymous payments are performed not only in public telephone
boxes but in several other situations as well. Because anonymous payment is a crucial concept in
our approach to confidentiality and anonymity protection we will devote a considerable amount of
space to discussing how it works and what risks it exposes the participating parties to.

5.5.1 Anonymity in cash payments
As metallic coins and prepaid telephone cards are the most common method of payment for oper-
ating public telephone box they were mentioned in section 5.3 to pay for an anonymous call. It is
time to generalize and discuss what is behind this concepts.

Following Camp's terminology [149] the most common form of money that modern societies use
at present time can be classified into two categories: physical token money and notational money.

physical token money at present time it is represented as bank notes and metallic coins (coins for
short) issued by a central financial authority, the Bank of England for example, and recognized
as a legal document (at least within the limits of a country) for performing payments. It is
also called cash and token currency.

notational money it is money represented as notations (numbers) in the ledgers of financial in-
stitutions such as banks. Notational money does not have a three-dimensional representation
unless it is converted into physical token money.

The particularity of cash money is that unlike, cheques and bank cards the name of the payer is
never written on it. In addition, when a transaction paid by cash is completed there are no bank or
law enforcement records left in the hands of the merchant where the buyer's name appears. Thanks
to this practice the buyer's identity is not disclosed. It is worth anticipating that there are some
exceptions to this assumption, which are discussed in section 5.5.5.

56 A new approach to confidentiality and anonymity protection

Take a one pound coin for example (or a one dollar note if you prefer) and use it to pay for
a newspaper, the payment is performed under strict anonymity as the coin left in the newspaper
seller's hands does not contain any information that can be used to determine its transaction history,
nobody can find out what goods were given in exchange for the coin. Obviously, the newsagency
is just an example of several business that accept physical token money as a method of Payment,
many others work in a similar way, supermarkets, book stores, hardware stores, etc.

nýom the above definition and discussion it follows that the coins we use to operate a public
telephone box belong to the physical token money category; consequently, they provide anonymity.
In fact bank notes may be used for the same purpose but it is not very practical as bank notes are
normally of higher value than the cost of a telephone call.

On the other hand a prepaid telephone card may be regarded as a special kind of physical tokell
money, one that is issued by the telephone company and accepted as a method of payment only
within its organization. For the purposes of telephone calls coins and prepaid telephone cards are functionally equivalent. For a person willing to make a telephone call from a public telephone box
there is no difference between finding three coins of one pound each and an unused three-pound
prepaid telephone card.

Although cash money is widely accepted as an anonymous method of payment in numerous
applications, it has serious drawbacks that make it unsuitable in many cases. We will discuss the
drawbacks relevant to our system in the following section.

5.5.2 Physical surveillance

The prospect of complete anonymity provided by physical token money is limited by the Potential
of physical observation i. e. by the possibility of somebody (an accidental or malicious observer)
observing revealing details of the transaction. In this case tile observer may be anybody located
at a privileged location with respect to tile place of the transaction. Any shop assistant, bank
employee or officer is a potential observer.

This issue is an inherent weakness of physical token money transactions as the buyer has 110
choice but to expose herself to the public nearby tile place of purchase to hand the payment in and
to collect her goods. Put in cryptographic terms, in traditional commercial transactions paid by
physical token money information travels in plain text format and is exposed to tile public (to well_
located observers); consequently, an observer can learn both about tile identity of tile buyer and tile
details of the transaction. Consequently, not only anonymity is at risk but also confidentiality. It
seems that if we need a higher degree of anonymity and confidentiality in commercial transactions,
a different way of performing commercial transactions has to be devised.

5.5.3 Anonymity from the merchants and the buyer's side

One of the limitations of cash money is that it provides anonymity to the buyer but not to tile
seller. This is due to the fact that merchants usually give away a printed statement (a receipt)
where the name and address of the shop, tile date and time, the name of tile purchased goods, tileir
quantities and prices appear; hence, the buyer has full evidence in written form of the transaction
that might be used at tile buyer's discretion, to complain in case of dissatisfaction with tile purchase
for example.

For a commercial transaction to be truly anonymous from both the seller's and tile buyer's side
it is necessary that cash is used as a inetbod of payment but it is not sufficient; it is also necessary
that the merchant does not hand receipt to the buyer. The problem with this approach is that
most of buyers will feel unprotected against potential dishonest retailers. In this scheme tile buyer

ý
5.5 Anonymous payment 57

has no choice but to take the merchant on trust about the quality of his service and goods. It
might happen for example that the can delivered by a vending machine is half-empty, that it is
not delivered by the machine or even worse, that it does not comply with the best before date; in
any case, the buyer simply loses his money.

This is not as dramatic as it sounds at first glance, after all, in a similar way, merchants have
to trust buyers about the genuineness of the physical token money used as a payment (see section
5.5.4).

Besides this risk, this approach works in traditional commerce and works pretty well for low-
value (few pennies to a few pounds) commercial transactions. There are thousands of goods and
services that fall in this category (newspapers, video games, vending machines, telephone calls,
etc.)-

, Another way to provide total anonymity is by introducing a third party into the scenario
through which the merchant and the buyer interact; although this approach might be suitable for
some applications it falls outside our interest as its level of anonymity entirely depends on the
trustworthiness of the third party to keep it.

5.5.4 Counterfeits

One of the major problems faced by merchants who accept anonymous payments performed by
physical token money is the risk of counterfeit. The merchant is at high risk of receiving counterfeit
notes, foreign coins, old notes whose printed-on value has been changed by the issuing financial
authority; and old coins and notes declared out of circulation.

While accepting anonymous payments the merchant relies on his ability to detect and refuse
fake physical token money by a quick visual inspection. Because most merchants are not experts in
forgery detection the acceptance of this method of payment is grounded on trust from the side of
the merchant. If lie fails to detect a forgery at the moment the transaction takes place, his failure
is not compensated. It might be possible to accurately verify coins and notes during transactions,
yet this would dramatically slow down the speed of the transaction. After all, receiving counterfeit
money is an exception rather than a norm since money forgery is an offense severely punished by
governments. In addition, this method of payment is normally used for low-value transactions only.
Hence in the case of receiving fake money the impact on the merchant's finances is not significant.

5.5.5 Transaction reporting to governments

In most countries governments enforce policies that require that financial transactions over a certain
amount of money are recorded and documented to the government. In the USA for example, to
discourage money laundering, the government requires reporting all cash transactions above $ 10
000.00. It follows that cash money can provide anonymity only in low-value transactions. It is likely
that when e-commerce becomes widely accepted a similar policy will be enforced by international
organizations.

-
Rom the above discussion it can be concluded that though cash money suffers from several

inconveniences, the degree of anonymity it guarantees is a highly valued property. This is why it
is used as a method of payment to pay for anonymous calls in the public telephone box introduced
in-section 5.3.

.
In the near future, it is likely that most payments in commercial transactions are going to be

performed electronically; if our bet is correct and we agree that anonymous payments are essential

58 A new approach to confidentiality and anonymity protectiola

for certain transactions, it seems that the notion of traditional cash has to be extended to its
electronic version.

If fact, although still in its infancy, this kind of money is already circulating the Internet and is known as electronic token money, digital cash, electronic currency, electronic cash and e-cash.

5.6 Anonymity in e-cash payments

E-cash is regarded as an extension of traditional cash, the main idea behind it is to have all
electronic equivalent of traditional cash that preserves all the valuable properties of its ancestor,
anonymity for instance; and if possible that solve or improve at least some of the drawbacks inherent
in traditional cash due to its physical nature; namely, the risk of physical surveillance, anonymity
from the merchant's side and risk of counterfeiting.

Although the use of e-cash as a method of payment is not widespread yet in real life, theoretical
results converted into working products prove that it is perfectly feasible to do business with support
for anonymous e-cash as a method of payment.

A payment system that accepts e-cash as a method of payment is called an anonymous Payment
system. Ail anonymous payment system brings together a spender, a merchant, and a bank where
both the spender and the merchant are account-holders; its aim is to help the spender to pay the
merchant for services or goods without disclosing her identity to the latter and without leaving
any tracks at the bank to find out how and where the spender spends his money. A well-known
implementation of an anonymous payment system is DigiCash [149,127,150,1511. Anonymous
payment systems (DigiCasli for instance) are based on the use of a technique known as blind
signatures where the spender uses a sort of electronic notes validated by the blind signature of his
bank to pay the merchant (see 4.1-6).

As a side comment it is worth mentioning that e-cash is not tile only method of payment
proposed for electronic commerce transactions. Other mechanisms are currently being tested in
the Internet.

According to tile mechanism by which money goes from the buyer to the merchant, tile different
proposals can be grouped into five broad models: system supporting secure presentation of credit
card numbers, e-cash, credit-debit systems, direct transfer, and collection agents [152,150,9]. Each
of the models has its own advantages and disadvantages and its suitability depends on the specific
application, tile amount of money to be paid for example, may be determinant; for the particular
case of our work, the e-cash model is tile most suitable, since it is tile only one that protects tile
anonymity of the payer.

5.6.1 Advantages of e-cash over cash payments

The functional characteristics of e-cash are quite similar to those of its physical equivalent- cash
money, tile most important to us being the support of anonymity. It is time now to study how
e-cash inherits tile limitation of cash mentioned in section 5.5.1 and how to reduce their impact.

Due to the fact that Internet commercial transactions can be performed remotely instead of face-
to-face, electronic commerce transactions offer a stronger anonymity protection than traditional
transactions paid by physical token money. In addition, as the information exchanged between tile
inerchant and the buyer call be easily encrypted confidentiality protection can be improved a great
deal. The potential risk of physical surveillance in this case is non-existent.

ý,
5.6 Anonymity in e-cash payments 59

In cases when the goods (electronic newspapers for example) can be digitized and sent over the
communication links the level of anonymity and confidentiality offered by an electronic commerce
system is nearly perfect, at least in theory, in practice it is limited by potential flaws in the design
of the system and the risk of disclosing its security keys to the wrong person.

If merchants and buyers are happy making business under the anonymity provided by cash
money, there are good reasons to think that a similar approach can be used in Internet commerce
where anonymity from both the merchant's and buyer's side is a requirement. For this to be
possible, e-cash must be used as a method of payment. A mechanism like this may be suitable
for implementing Internet vending machines to sell newspapers, documents and other pieces of
information.

Taking into account current social behaviour, it seems inevitable that counterfeit money will be
present in electronic commerce as well; also it seems that for the sake of anonymity and simplicity
it is worth following a similar approach as traditional commerce, i. e. the acceptance of anonymous
electronic token money as a method of payment for low-value goods. However, as face-to-face
shopping is no longer necessary, the inspection of the electronic money received as payment has to
be performed more accurately than in traditional transactions, but at the same time it has to be
light enough, at the price of some risk, to keep the efficiency of electronic commerce transactions
acceptable.

If by law cash transactions over certain amount of money have to be reported to the government,
there are reasons to think that e-cash transactions will fall into the same scheme, except that in
this case the government will need to improve its audit methods as e-cash opens new possibilities
for

,
making fraudulent transactions appear legal; big transactions, for example might be divided

into hundreds of small payments (performed at electronic speed) to comply with the government
policies and mislead the government.

5.6.2 DigiCash anonymous payment
Digicash uses public-key cryptography to perform anonymous payments. Thanks to this mechanism
it is impossible to link a payment to a payer. However, a payer can prove that lie or she did or did
not make a particular payment. For anonymous payments to be possible, the DigiCash systems
needs the help of a banker who hides the payer's identity by blindly signing e-notes. Obviously,
both the payer and merchant are the banker's customers. Briefly the algorithm is as follows[153]:

1. The bank, Bob (the buyer) and the merchant hold a private key and advertise their public
counterparts.

2. Messages encrypted with the bank's private key can come only from the bank.

3. Similarly, messages encrypted with Bob's private key can come only from Bob.

4. Again, messages encrypted with the merchant's private key can come only from the merchant.

5. Whenever Bob wants to pay for something, lie generates a note for the due amount and blinds
the note number with random number (a blinding factor).

6. For the note to be accepted by the merchant it has to be signed by the bank, so Bob sends
. the note to the bank in order to be blindly signed.

I.; Knowing Bob's public key, the bank verifies that the note comes from Bob, signs it and
returns it to Bob.

60 A new approach to confidentiality and anonymity protectic)II

Public phone box

ý "1 23

Bob 1.16 9
-no

Fixed home

Phone 456
Network 789

)--d

*n 41
Alice

Figure 5.2: Anonymous call made from a public telephone box.

8. Ail amount of money equivalent to the value of the signed note is transferred from I3ob7, s
account into the bank's account.

9. Bob divides out the blinding factor and sends the note to the merchant.

10. Knowing the bank's public key, the merchant verifies that the note has been signed by t1le
bank and accepts it as a payinent.

11. Latter on (at the end of the day, for example) the merchant sends the note to the bank.

12. Knowing the merchant's public key tile bank verifies that it comes from the merchant, tile,,
ail amount of money equivalent to tile value of tile note is transferred from the bank accoullt
into the merchant's account.

5.7 The public telephone box paradigm

The hardware components for making an anonymous call from a public telephone box were silowl,
in figure 5.1; to make the discussion that follows easier, tile same figure appears in this section as figure 5.2.

As briefly discussed in section 2.7.1 one of the most widely accepted approaclies for Supporting
host mobility in the Internet is the Ioannidis paradigm [46].

In this paradigm a mobile host (while connected to tile network) is always located in Some cell
controlled by a so-called Mobile Support Station (MSS). The MSS serves as tile current lionle for
the mobile host and is responsible for communication between the mobile host and tile rest of tile
network.

loannidis' paradigm assumes that each mobile host owns a home IP address by wilicil it is
identified within the Internet domain. This home IP address uniquely identifies the mobile llost,
and remains constant regardless of the mobile host physical and logical location. In figure 5.3
for example this is illustrated by Bob's PDA which has been registered to tile Internet witll tile
132.248.51.6 IP address.

By looking at figures 5.2 and 5.3 it is not difficult to realize that there are close similarities
between them. For a start, both tile Internet and the telephone network are there to transnJit
wessages between the communicating parties; to transmit messages from an anonymous caller to
Alice, for instance.

Secondly, one call think of the public telephone box depicted in figure 5.2 as tile MSS being
used by Bob in figure 5.3; tile two of them play play a similar r8le.

5.7 The public telephone, box paradigm

Boh's WS

32
all . 160

BOWS PDA

-,
71132.248.51.,

61ý. ̀ -. Alice's WS eý,

IIS -I Internet

Ixgcnd: PDA- Pcrsonal Digital Assistant
NISS- Mobile Support Station
WS- Work Station

MSSn
128.240.2.80

Figure 5.3: Ioarmidis paradigm for integrating PDAs to the Internet.

PDA

Bob
mss ixed WS Alice Internet

Network

Figure 5.4: Anonymous call from a PDA.

61

Finally, Alice's fixed home telephone in figure 5.2 is analogous to Alice's WS shown in figure
5.3, they are there to be used by Alice to send and receive calls while she is home.

If this analogy makes sense, then it is reasonable to take figure 5.2 as a paradigm for designing
and implementing a system for making anonymous calls like the one shown in figure 5.4.

An anonymous call initiated from a public telephone box is possible only if the caller uses cash
to pay anonymously for the service and that caller uses a public terminal rather than a personal one.
These two crucial components have to be present in figure 5.4 as well if we want the anonymous
calls made from the incognito PDA holder to be truly anonymous.

Suppose that the PDA user in figure 5.4 wants to make an anonymous call and that lie has
some e-cash in his PDA memory to operate the MSS. The procedure for opening the anonymous
session between the PDA and the MSS works as follows:

1. Mirn on the PDA.

2. Make contact with the MSS.

3. Slip a couple of e-coins as an advance payment for a communication session of an agreed
period.

4. Tile MSS responds by creating a non-personal random temporary identifier for the incognito
, PDA user and sends it to him.

5. The PDA and the MSS use the temporary identifier as the PDA's address to talk to each
other. Additionally the MSS uses it to time out the PDA session.

62 A new approach to confidentiality and anonymity protectiol,

PDA

Callcr

Bank WS 19ýf Clare
1ý F

mss

Do. gý

Internet
Network

Fixed WS Alice
f::]

Figure 5.5: Parties involved in an anonymous call from a PDA.

It is now time to study how the anonymous e-cash payment is performed and how the no,, -
personal random temporary identifiers are created.

5.8 E-cash payment for a MSS communication session

While the market for ubiquitous communication services to PDA is still small, it is projected to
increase dramatically in the years to come, hence it makes sense to assume that public MSSS will
be widely deployed and run by communication companies on a free-for-service basis tile same way
public telephone boxes are run by telephone companies; if this holds true, it is likely that, as Public
telephone boxes do, MSS will offer free of charge services, that is, electronic address a PDA user will
be allow to communicate with without any charge, example of these addresses might be Police, fire
brigade, national drugs lielpline, and other services equivalent to the usual free-lielpline services
offered by telephone companies.

In terms of payment, there is nothing to discuss here if tile PDA user wants to anonymously call
to one of tile free-of-cliarge services offered by tile MSS. In this case the MSS owner either does
not got paid at all, or gets paid at the end of tile month by tile government; this is not relevant
here; the PDA user call just take it as a free call. However, tile matter becomes more complicated
when the PDA user wants to call a non-free address since this situation brings into the scene a
bank or a similar financial body. Tile need to address this issue, motivated us to make figure 5.4
slightly more complicated by bringing more players into the scene, tile result of this is show,,
flgure 5.5.

Now we have included Doug, the owner of tile MSS and who offers communication services
return for a charge oil a pay-for-used-time basis. He is an account holder at Clare's bank and
accepts electronic cash as long as it is signed by Clare. Obviously, Clare is a bank owner who is
linked to the Internet through her bank workstation. Among other services, Clare offers support
for anonymous electronic payments in transactions between her account holders. That is to say, oil
request she writes blind signatures oil electronic notes presented by her account holders as long as
the e-notes comply with the blind signature protocol discussed in section 4.1.6.

Now we have all the participants that take part in the opening of an anonymous session with a
MSS. Let us now see how they interact.

For simplicity of exposition we assume that the anonymous caller knows what e-notes are
accepted by the MSS as payment and tile minimum charge for opening an anonymous session.

Assuming that the anonymous caller knows the cost of an anonymous call in his local tow,,
seenis to be reasonable since we expect that ill the future MSS are likely to become all everyday

',
5.8 E-cash payment for a MSS communication session 63

public facility just as public telephone boxes are at present time. In any case, the anonymous caller
can always inquire of the MSS about these details before the anonymous call transaction begins.
The inquire process is not an essential part of the main protocol, thus, we will not discuss it here,
but later in section 8.

Again, to make a clear distinction between the main protocol for opening an anonymous session
and other details, let us assume that prior to opening an anonymous session with the MSS, the
anonymous caller ensures that he has e-coins in his PDA memory to pay for the service. To make
the e-coins, the anonymous caller creates them and sends them to Clare for a blind signature. The
routine for a blind signature is discussed in section 4.1.6. Therefore, we can assume that prior to
requesting an anonymous session, the anonymous caller is in possession of enough e-coins to pay
for it.

The assumption about the endless supply of e-notes in the memory of the PDA is grounded on
the fact that there is no price to pay for keeping e-cash in the memory of the PDA. Furthermore,
unlike coins, e-coins are weightless and do not represent any physical burden to carry. After all,
should the endless supply of e-coins come to an end in the middle of an anonymous session, the
PDA user can always divert momentarily from the main protocol and contact his bank for more
e-coins; the only thing lie has to do is'to follow exactly the same routine as lie did to obtain. the
e-coins lie followed prior to the anonymous call.

Taking into account the previous discussion we can now summarize how the anonymous caller,
let us say Bob, opens an anonymous session with the MSS. The participants in the algorithm are
the ones depicted in figure 5.5.

Bob, the anonymous caller, turns on his PDA to contact the MSS.

2. Bob sends an e-coin previously blindly signed by Clare to Doug as a payment for the service.

3. Upon receiving the e-coin, Doug forwards it to Clare to verify that the e-coin is valid.

4. Doug waits for Clare's response, if the response is satisfactory, lie opens the anonymous session
for Bob.

Note that the advantages of e-casli over traditional cash discussed in sections 5.5.1 and 5.6
significantly strengthen the degree of anonymity of the caller.

Firstly, since the PDA and the MSS communicate with each other at a certain distance ranging
from several metres to few kilometres, nobody can learn what Bob is doing with his PDA and
whom and under what conditions lie is communicating with; that is to say, the risks of physical
surveillance is no longer a concern.

Secondly, the anonymity of payment is guaranteed by Clare's blind signature.
Thirdly, the risk of money counterfeiting is reduced by taking advantage of the speed of comput-

ers to perform thousands of comparisons and looks-up to find out whether all e-coin is a forgery
or has already been spent. This risk can be reduced as much as Possible by strengthening the
validation algorithm, of course at the price of losing speed in the process.

Finally, though it seems obvious, it is worth noting that we expect no government will be
interested in receiving reports from commercial transactions involving small amounts of money as
payment for communication services requested by a PDA. Hence, it is reasonable to take for granted
that Doug will have no problems with the government from accepting anonymous e-cash.

64 A new approach to confidentiality and anonymity protectiola

5.9 Mobile hosts without home IP addresses
The traditional Ioannidis paradigm for integrating mobile hosts into the Internet was shown ill
figure 5.3. This paradigm is grounded on tile assumption that when a mobile host, a PDA for
example, is away from its home network it still needs to access data (personal files, local data
bases, local Web pages, etc.) and services (name, file, Web, mail, billing servers, etc.) normally
used oil its]ionic network. Consequently, a PDA must be assigned a permanent IP address in its
local network which uniquely identifies it and remains constant regardless of current Physical and logical location of tile PDA.

This assumption is certainly justifiably, however, there are applications where a PDA can work
perfectly well without using its home data and services, i. e. without contacting its home network.
For simplicity let us assume for the moment that a MSS offers free communication services to PDAs
in its area. If this is true, a PDA does not need any support from its home network to download
Web pages from a free Web server for example, nor to post information to an e-mail list or listen
to the news. The main idea here is that a PDA can still use the Internet without using its home
IP address. It might even not have any IP address nor a home network.

Ill contrast with tile loannidis paradigm we suggest a new approach to integrating PDAs into
the Internet where a PDA does not need a home IP address to send and receive information to and from other PDAs and computers reachable through tile Internet.

Our IP addressless approach has two main advantages. First, by not using an IP address we
are providing the basis for true anonymity as we will see later on. Second, a PDA is a tiny cheap
computer for personal use. There will be millions of them carried by people who would like them
to be operational as soon as they buy them. Also, they will be a kind of disposable computers-a
user will buy a PDA, use it, and throw it away if it fails or change it for a new one if she is not
satisfied with its performance. Because of this, it seems impractical to assign IP addresses to then,.
What is needed is a simpler way of addressing them.

Our approach is based oil tile assumption that in the future tile world will have many thousands
of MSSs. Some of them will belong to private LANs and be located indoors; others will belolla
to communication providers and be located outdoor and provide communication services to PDA
users for a payment just as public telephone boxes do nowadays. PDAs will act as clients (to MSSs)
for network services and never as servers.

In this scheme, as illustrated in figure 5.6, a PDA user may have a home workstation (or all
office one or both); just as a user of a public telephone box may have an office and home telephone
number. PDA users are known to tile world by their home workstation address, this is where they
normally receive messages; if a message arrives while a PDA user is roaming it is kept unread on a local disk until they come back or retrieve it remotely. Thinking of a home workstation as a home
telephone equipped with all answering machine illustrates its r6le.

Whilst oil the move, a PDA user call communicate with the world with tile help of a MSS. 11,
order to send a niessage to a computer connected to tile Internet or to establish an on-line two-way
communication the PDA user must first register with a MSS. After a successful registration tile
MSS assigns the PDA a temporary, random identification number which is valid for tile duration of
it session. We will call this number a TrnpId from now oil. Being a random and temporary number ' the Tinpld is non-personal, as a result it does not lead to the identity of tile anonymous caller.
The TinpId call be any number, such as a dynamic and temporary IP address assigned by means
of the Dynamic Host Configuration Protocol (DHCP) [154] for example.

The combination of the PDA's Tnipld and the MSS's Internet address, gives the PDA user a
unique non-personal identifier within the Internet, therefore, with tile help of this unique identifier
, ille can exchange information with other PDA users and with any computer connected to the

5.10 An algorithm for anonymous and confidential calls

Bob-& Wb

'ISS&
192.10

Bob's PDA 148.204.211.160 t

TmpId
%

ý

MSSI 'IS Internet N; IiSSn
192.100.158.254 132.248.51-5

t'd slant Legend: PDA- Pers? nal Digital Ass istant
. htss- Mobile Support Station g n

WS- Work Station o
L

ndom, non-pcrmsonall Tmpld- Tcmpor ary ra
Identifier NIS

128.2402.80

181.232

Figure 5.6: A PDA without a home IP address.

Internet.

65

The MSS serves as a bridge between the PDA and its counterpart. Messages sent to the PDA
user are addressed to the MSS which, upon receiving them forwards them to the PDA user identified
by her TmpId within the MSS's domain. Needless to say, the MSS will only be able to deliver the
message to the PDA user as long as she still is in session and within the area of coverage of the
wireless communication device of the MSS.

Once again, there is a close similarity between a PDA user and a user of the telephone system
in the sense that while the latter is outdoors and near a public telephone box she can receive
calls directly instead of through her answering machine, if she advertises to her potential callers
the number of the public telephone box she is near. Similarly, a PDA user can receive Messages
directly, instead of through her home work station, if she opens a session with a MSS and advertises
the Internet address of her current MSS and her TmpId to her potential callers.

If the session time runs out, the PDA user can either pay for an extension of the session or lose
the TmpId and stop sending and receiving messages through the MSS. It may also happen that the
PDA user moves to another MSS while a session is in progress (hand-off). Although interesting,
this question falls in the field of host location and routing strategies [85,13], and we will not address
the issue here.

5.10 An algorithm for anonymous and confidential calls
After learning how to open ail anonymous session with a MSS and how a non-personal identifier
can be assigned to a PDA it is time to introduce more specific details of the main algoritlim to
make an anonymous call and to present and discuss it.

5.10.1 Learning the public key of the MSS

So far we have been assuming that Bob, the anonymous caller, is the only PDA user at the MSS
and that nobody but him and the MSS can read the contents of the messages sent to and received
from the MSS. This might not be true because a MSS is a public facility, hence Bob might clash
with Ebe, another PDA user whose PDA might overhear the conversation between Bob's PDA and
the MSS. The answer to this problem comes from public-key cryptography. To prevent Ebe from
reading the content of the message Bob sends to the MSS asking for an anonymous session, Bob

66 A new approach to confidentiality and anonymity protectioya

can encrypt it with the public key of the MSS, so that only the MSS can read it (see section 4.1-3).
Yet this approach raises the question about how the PDA obtains the public key of the MSS.

The crucial point here is to ensure that the public key the PDA user uses to encrypt the first
message lie sends to the MSS belongs to the MSS and not to somebody else, to Ebe the intruder
for example, who might be there to intercept the PDA message to impersonate the MSS.

Possible solutions to this question were presented in section 4.2.2, namely the distributed and
centralized approaches. It seems that for our system, the centralized approach is simpler than the
distributed one; the only thing the MSS has to do is to advertise its public key upon detectilla
the presence of the PDA within its area of coverage. Naturally, the MSS public key has to cOnie
with its public-key certificate signed by a certification authority so that the PDA can verify the
signature and be sure of the authenticity of the public key.

Although with some extra hassle, the distributed approach might work as well, the trouble llqre
is that the PDA user might receive from the MSS a public-key vouched by somebody unknowl,
to him, so lie might refuse an authentic key advertised by the MSS. A possible solution to this
problem is for the MSS to advertise several keys or the same key signed by as many well-know,,
people as possible so that eventually the PDA user receives one that satisfies him.

5.10.2 Session keys

In section 4.2 some reasons not to use public and private keys intensively were pointed out; to
comply with experts' recommendations, we use public keys only to exchange session keys, between
the PDA and the MSS and between Bob, the anonymous caller, and Alice, the recipient of t1le
anonymous message.

A session key may be used to encrypt one message only or to encrypt messages for the wl, C)le
session; the more frequently we renew them the more secure is the whole system, unfortunately,
one pays for it in terms of speed and complexity. To keep the presentation of our system silnple
we opted to go for the latter approach- one key for the whole session.

It is worth recalling that private keys are used to digitally sign messages; in this case their use
is unavoidable, hence when a message is digitally signed, the private key of the signer is always
involved.

The above procedure seems to work fine, but, it has two serious drawbacks. For a start, it does
not protect the content of messages from being heard by unwanted recipients; messages betweell
the PDA and MSS are plain text, that is to say, there is no confidentiality protection.

5.10.3 The algoritlim

Once again tile actors in our algoritlim are Bob, a PDA owner wishing to make an anonymous call
to Alice; Alice, the recipient of the anonymous call who owns a desktop workstation; Doug, tile
owner of the MSS; Clare tile bank owner; and Ebe, another PDA owner that happened to be at tile
same MSS as Bob. All these actors and their computers are depicted in figure 5.7. Tile algorith for
, sending anonymous and confidential messages ushig PDAs was first published in [155] and reads as
follows:

1. Bob turns on his the PDA.

2. The PDA makes contact with the MSS and learns its public key by listening to its advertise-
ment. It checks for the authenticity of the key by checking the digital signatures attached to
the key.

5.10 An algorithm for anonymous and confidential calls

Bob's2, ýIV,,
msg encrypted

Bobj I with MSS Kpu
proposed Ks

Ebeý_PDY,
SS

Ebe

ms

msg encrypted
Bob's Ks -ýýýSrn.

rt Card a)

Bob's PW.

Bob ms encrypted with Bob's
SC

e-$
MSS

Ebe's P e-$ acce

Ebe
((R)O SC Dou

b)

Bob's PDA(,

Bob
sc

/sg encrypted with Bob's

4k r
Ni Alice, how ... IVISS

Ebe sPDA/

Ebe
Do

SC
C)

alp WglýNClare
I If

Internet-
Network

Alice

I Oternet -
t4etwork

WS Auce

bank lare

Internet -
Network

AUce

67

Figure 5.7: Anonymous and confidential call from a PDA.

68 A new approach to confidentiality and anonymity protectioia

3. The PDA creates and sends the MSS a session secret key.

4. The MSS checks that the session key suggested by Bob's PDA is not in use by another PDA
and Bob's PDA waits for a reply for t units of time. The MSS replies by sending a Trnpjd
only if the key is accepted otherwise if the suggested key is incorrect or already in use it does
not reply. The MSS silence is taken by the PDA as an invitation to suggest another sessioll
key. To ensure confidentiality, the PDA encrypts the message before sending it using t1le
public key of the MSS. The MSS reply is encrypted with the suggested session key and sellt
to the air.

5. Roin now until the end of the session messages exchanged between the PDA and the MSS
are encrypted and decrypted with the session key. Since only Bob and the MSS know the
session key, only they can make a sense of them, other potential recipients, Ebe for example,
ignore them.

6. Bob sends an anonymous e-coin blindly signed by Clare, to Doug to pay for the communica-
tion session. Doug contacts Clare to check that the e-coin is valid. The MSS responds witil
a EcashAccepted message if Doug is satisfied or with a EcashRejected message in the Opposite
case.

7. Though not shown in picture 5.7 Bob attaclis his TmpId to the messages sent to the MSS, so that the latter can tell where a message is coming from.

8. If Bob wishes to send an anonymous message, to Alice for example, he edits the body of the
message, concatenates it with the recipient's address and sends it to the MSS.

9. Upon receiving each message from the PDA the MSS decrypts it, finds out the intended
final destination (Alice's address in this case) and forwards it to the specified address. The
forwarded message contains Bob's TmpId.

10. To Alice the received message appears as coming from the MSS. To be precise, from someone
who identifies himself as TmpId within the MSS area of coverage. However, she has no way of discovering who is the original sender; nevertheless, if she wishes, she can reply by addressing
her response to the MSS; the latter will forward the message to Bob.

11. Bob's session ends when lie turns off his PDA, leaves his current MSS or his MSS times-out
his session.

5.10.4 Discussion of the algorithm

In the algorithin just presented, we made a deliberate effort to keep the discussion as simple as
possible at the price of omitting details of secondary importance, it is time now to discuss present
these issues to the reader.

Bob hits somebody's session key

One of the crucial steps in the algorithin is that the MSS assigns a TmpId to Bob's PDA witliout
knowing anything about it and about its owner except that it has succeeded in providing a correct
session key which is not being used by anybody else. A correct session key is a key that is witl1in
the doinain of the keys accepted by the MSS and has not been identified as a weak key [118j. If
Bob's suggests in incorrect key the MSS does not reply. Nor does it reply if Bob's key is correct

5.10 An algorithm for anonymous and confidential calls 69

but being used by somebody else, by Frank for example. In this case we say that Rank's session
key has been hit and spoilt by Bob. Although the MSS says nothing to Bob, it has bad news to tell
to Frank, namely that his current key has been ruined and that lie cannot continue his anonymous
session till he gets a new session key.

The reason for bothering Frank about this is to stop Bob using this strategy for finding other
PDA user's session keys: if Bob knows that lie has suggested a correct key and no reply comes
Bob knows that lie in possession of somebody's else session key and can abuse it unless the MSS
informs Frank about it.

Double encryption of Bob's messages

As shown at the bottom of figure 5.7 upon the message received from the PDA, the MSS discovers
Alice's address followed by the body of the message Bob wants to transmit to Alice; since both
the address and the message are in plain text the MSS can read what Bob's is saying to Alice,
consequently, Bob's right to confidentiality is not observed. The only thing the MSS needs to know
to convey the message to Alice is Alice's address; if Bob wishes to stop the MSS from reading
the body of his message, he may double encrypt it. First lie encrypts the body of his message lie
is sending to Alice using Alice's public key. Secondly, lie appends the encrypted text to Alice's
address. Finally, lie encrypts the result of his concatenation using the session secret key lie shares
with the MSS.

Again, Bob is faced with the question about how lie learns Alice's public key.

Learning the recipient's public key

In a centralized key management system Bob can contact a certification authority to obtain Alice's
public key, to save anonymous session time, he should have the key in his PDA memory before
opening the anonymous session.

In a distributed key management system learning Alice's key may be slightly more complicated
since there is no central authority who knows exactly where Alice's public key is, because of this, it is
strongly recommended that Bob is in possession of Alice's public key before opening the anonymous
session. Alice's public key can be obtained from a public key directory or Internet public key server
as in the PGP system (see section 4.2.2). It is also possible that Bob obtains Alice's public key
directly from her or from a common friend. However, this approach puts Bob at risk since Alice
might guess who is anonymously e-mailing her by checking to whom she has given away her public
key.

Upon receiving the anonymous message Alice decrypts it using her private key, however, she
does not know who is writing to her so she cannot encrypt her response with Bob's public key. A
simple answer to this is that if Bob is expecting any reply from Alice lie must create a secret key
and send it to Alice, attached to the end of the body of his message for example. If for some reason
Bob does not send to Alice a session key, Alice have no choice but to encrypt her response with the
public key of the MSS. However, the confidentiality of her response is broken at the MSS who can
read her message before forwarding it to Bob.

E-coin verification

Before opening an anonymous session for Bob, Doug makes sure that the e-coin lie has received
from Bob is a valid one. Put in other way, Doug has to send the e-coin to Clare for inspection. For
the sake of confidentiality Doug has to encrypt his message with Clare public key. Clare responds
with a message encrypted with the MSS public key or with a secret session key if Doug cared to

70 A new approach to confidentiality and anonymity protectior,

create and send it to her attached to the e-coin. The public keys used here can be obtained the
same way Bob obtains Alice's (see the above discussion).

5.10.5 Equipping a PDA with a smart card

Message encryption and decryption as well as blind signatures depend heavily on CPU-consuinin,
arithmetic operations (mainly modular arithmetic). Owing to this, they are normally performed oil dedicated hardware known as cryptographic controllers or cryptographic co-processors [156]. To
improve the response time of PDAs expected to engage in these cryptographic operations, it seeins
sensible to provide them with cryptographic co-processors.

A practical solution for providing a PDA with a cryptographic co-processor is the insertion
of smart cards into PDAs. A smart card is a tamp er-resistant single-chip microcomputer witl,
CPU, 1/0 operations and memory, inserted in plastic tile size and shape of the familiar bank caýrd
[1571. Depending oil the smart card model it may also contain, in tile same chip, a cryptographic
co-processor and specialized algorithms to compute and manipulate any necessary keys [158,156].
More details about smart cards and their computational and storage capabilities were presented in
section 4.3.

Note that we are not arguing that the smart card is required for our algorithm to work. Yet it
is recommended to increase the speed of tile system and strengthen its security [148]. Any cryp-
tographic algorithm call be implemented in both hardware and software, ours is not an exception.
However, a hardware implementation is always faster than a software one. To give an example) a
software implementation of the DES algorithm is one thousand times slower than an implementa-
tion in dedicated hardware. Concerning, security, software implementations are more vulnerable to
intruders since, the encryption key might be retrieved from the disk where is it stored or fron, the
main memory during execution time. This is significantly riskier than executing all computational
operations inside a tamper-resistant module, where both tile cryptographic algorithm and the key
are stored.

Another advantage of having a smart card in a PDA is that the former can be used to store
the private and public key of the user. So that tile former is never disclosed and the latter never
forgotten.

The best keys are those generated randomly (by a random key generator for example), Yet a
truly random key is uneasy to remember, so it ought to be stored in some place other than tile
owner's brain. This is where a smart card can offer a solution. The PDA user can command his
random key generator to generate his pair of private and public key inside tile smart card chip,
store the former inside tile chip, i. e. in the EEPROM and distribute tile latter.

The great advantage of this approach is the private key never leaves tile smart card chip. It does
need to, since cryptographic operations are performed inside the chip, exactly where tile private
key is.

It is worth observing that a good cryptosystem will provide its users with several keys[118].
IF-or instance, for reasons of security and key management a user should have one private key for
encryption and another one for digital signatures. In addition, it is likely that if a person is involved
in more that one activity, lie or she will be happy to use different digital signatures, one for signing
documents at his workplace and another to sign documents at as a member of the antigovernment
political party, to give one example. Because of this, it sounds unfeasible for tile PDA user to
inanage his keys with the lielp of tile smart card and not by hand.

5.11 Summary

5.11 Summary

71

Mixes-based anonymizers assume that the anonymous message is sent from a computer which uses
a permanent and personal IP-address to connect to the Internet.

Anonymous messages sent by using anonymizers based on mixes are not truly anonymous but

pseudo-anonymous because one of the mixes, at least, always know the sender's IP-address. Also,
the anonymity offered by these anonymizers is fragile since it can always be broken by subversion
or conspiracy of all mixes.

Týying to send an anonymous message from an IP-addressed computer is analogous to trying
to make an anonymous call from a home telephone line by using the Calling Line Identification
Blocking service (the 141 number in the U. K.), the calling number is hidden from the receiver by

preceding the dialed number with the digits 141, but it is not hidden from the carrier, neither from

anybody who has the means for persuading the carrier to disclose it nor from a miscreant with
enough knowledge and resources to break the carrier's computer where the number is stored.

auly anonymous calls cannot be made from home phone lines but only from public phone boxes
operated by coins. The anonymity is guaranteed because the public phone box is a public terminal
(not related to the caller) and because the caller uses anonymous payment to pay for the call.

The idea of the public phone box can be implemented by using a PDA bridged to the Internet by
a mobile support station. To communicate with the mobile support station the PDA does not use
an IP-address but a non-personal, temporary, random identifier (TmpId) assigned by the MSS on
a per-communication session basis. The caller pays for the call by anonymous e-cash. Confidential
communication is ensured by the use of the public-key and secret-key cryptotechniques.

To relieve the PDA from the burden of cryptographic operations it can be provided with a
smart card.

72 A new approach to confidentiality and anonymity protectio]tj

Chapter 6

Protocol specification of the system

6.1 Introduction

This chapter is devoted to the protocol specification of our system, i. e. to the specification of an
unambiguous set of rules to be strictly followed by the PDA and MSS during their interaction in

order to initiate, maintain, and complete reliable information exchange. These rules govern the
format, contents, order, and meaning of the messages exchanged between the PDA and MSS.

According to [159] for a protocol specification to be complete it should explicitly specify five

elements, namely: the service provided by the protocol, the assumptions about the environment
where the protocol is used, the protocol vocabulary, the format of messages, and procedure rules.
Each of these requirements is specified and discussed below.

Our discussion is based on the algorithm introduced in chapter 5 and illustrated in figure 5.7

where a PDA owner called Bob wishes to make an anonymous call to Alice, who owns a desktop

workstation; Doug is the owner of the MSS; Clare the owner of a bank where Bob and Doug are
account holders; and Ebe, another PDA owner that happened to be at the same MSS as Bob. '

6.2 Service specification

The purpose of the protocol is to provide Bob's PDA, with a mechanism to send one or more e-mail
messages to Alice's WS and to receive responses to his messages if Alice decides to reply; all of this

without Bob disclosing his identity neither to Alice, nor to anybody else.
, The protocol protects the contents of messages exchanged between Bob and Alice by encrypting

them with a secret session key which is negotiated between the PDA and the MSS through messages
encrypted with the public key of the MSS. Bob's PDA learns the public key by listening to the air
where the MSS broadcasts its public key periodically.

Messages from Bob to Alice and vice versa are sent through a MSS and from there to a com-
munication network until they reach Alice's WS. The MSS charges the sender of the message for
the use of the communication service. The protocol allows Bob to open an anonymous coinniuni-
cation session for a certain amount of money, and then it deducts n units of money from the initial

payment for each message sent by Bob. Bob is alerted by the MSS m units of money before his

credit runs out; if he wishes, he can send additional payments to the MSS. The MSS finishes Bob's

session when no money is left. To protect Bob's anonymity, the payment is made by anonymous
e-cash. Before Bob's payment is accepted by the MSS, a bank is contacted to verify that the e-coin
received from Bob is genuine.

If not a single message is received from Bob after a certain period of time, either no message the

74 Protocol specification of the sYsteril

MSS aborts the PDA session under the assumption that PDA has abandoned its communicatic)II
session without logging out properly or it has crashed.

Oil the other hand, if no messages can be sent to the MSS (the channel is full) the PDA aborýs
its session under the assumption that the MSS has aborted the session at the other end.

Ali unexpected termination of a communication session raises the issue about what happens to
the money that Bob has paid for his communication session. As discussed in section 8.8, this is a topic that needs to be studied.

6.3 Assumptions about the environment

The protocol is expected to work in tile Internet environment. It is assumed that Bob's PDA
the MSS that supports Bob's wireless communication and Alice's computer are connected to the
Internet and support standard TCP/IP protocols [154]. Likewise, we take for granted that tile mail
server computer and Clare's bank work station which also participate in the system, run TCP/IP
protocols and are Internet connected.

A major issue of concern about the working environment of our protocol is the assumption ()f
all open transmission channel. That is to say, all messages that leave a computer to travel to their
final destination are at risk of being accidentally or maliciously overheard by anybody equipped
with tile necessary hardware and software and legally or illegally connected to the channel.

In figure 5.7 the risk of eavesdropping is represented by the presence of Ebe located in tile area
of coverage of the MSS currently being used by Bob. Yet nothing prevents Ebe from appearilia
connected to any other part of the network that links Bob and Alice. Similarly nothing stops the
evil Ebe from having a gang of bad fellows', Mata-Hari and Tom for example, whose job or hobby
is to meddle with the network.

To cope with this hostile environment, messages exchanged between Bob's PDA and tile MSS
tire protected by encrypting then with a session secret key known only to Bob and tile MSS. At his
discretion Bob call either encrypt the messages lie sends to Alice with Alice's public key or send
plain text. In the former case only Alice can understand the messages, while in the later, everybody
call, the MSS included.

The session key to encrypt messages is negotiated between the PDA and tile MSS. For this to be
possible the PDA must learn first the public key of the MSS. This is done by tile MSS broadcasting
its key and the PDA listening for it.

The support of Internet protocols is of crucial importance for us because the protocol we are
designing is mounted oil top of the services offered by the user datagram protocol (UDP) and tile
Transmission Control Protocol (TCP).

The UDP protocol and in particular its broadcast services are used by the MSS to advertise
its public key to all PDA within the area of coverage of tile MSS. The fact that tile receiver of a datagrain message does not need to know the identity of the sender is crucial here since at this
stage of the PDA-MSS interaction the PDA is not yet in possession yet of its TmpId. Similarly,
the connectionless nature of the UDP and the property that an UDP server can accept messages
tit a well-known port are used by tile PDA to negotiate its first session key (see below) with tile
MSS.

Once the public key of the MSS is known by tile PDA and a session key is agreed upon betweell

'Ebe coines froin Ebenezer Scrooge, a inean character in A Christmas Carol by Charles Dickens. Mata-liari is
probably the inost fainous feniale spy who worked as a double agent during the World War I. Toin coines frotu Ton,
Quitro- the villain of El 17npostor inverosirril included in Historia Universal de to Infamia by Jorge Luis Borges.

6.3 Assumptions about the environment

Application

Presentation

Session

Transport

Network

Data Unk

Physical

Logical Link Control
-;, Wýu-Trj; ýcjcssj:;

j;
ý70l-

WLAN

Physical standard

a) Location of WLAN standards in the 7-layer architecture

Data
Link

Physical

802.2 Logical Link

---------- ---------- Token ---------- Token ------ ---
CSMAICD Bus Ring CSNIA/CD

Twisted pair Coaxial cable Twisted pair Infrared

and and and and

coaxial cable optical fiber coaxial cable radio fre-
quency

802.3 802.4 802.5 802.11
and

HIPERLAN

b) The 802.11 and HIPERLAN WLAN standards compared to the 802.3,802.4
and 802.5 international LAN standards.

Figure 6.1: Wireless LAN standard protocols.

75

the former and the latter, the services of the TCP protocol are used to establish a connection-
oriented communication between the PDA and the MSS.

-_ It is worth noting that our protocol is independent of the TCP/IP protocol; it can be built on
top of any other protocol that offers similar services; we focus on the TCP/IP protocols because
so far they are the most widely used.

'
Bob's PDA communicates over a wireless communication interface, lience to communicate with

other computers (both wired and wireless) connected to the Internet, it needs the support of a
mobile support station [46] (see sections 2.7.1 and 5.7).

The MSS serves as a bridge between the PDA and the rest of the Internet and forms together
with the PDA, a wireless LAN on which TCP/IP protocols are mounted. The bottom layers
(Data Link and Physical) of the wireless LAN can be any international standard for wireless LANs,
for example, the 802.11 of the IEEE or the HIPERLAND of the ETSI. Both the 802.11 and the
HI PERLAND protocol are currently under the study of international stalidarizatioll bodies, with
the intention of adopting them as international standards.

For
, more information about these protocols refer to section 2.8.7 and references [105,56,21,

55,1061 160,161]. The place of the wireless standard within the ISO protocol stack is illustrated
in figure 6.1.

ýA
MSS serves as the current home for the mobile host and is responsible for two jobs. It

receives messages coming from Bob's PDA and routes them to their destination. Oil the other

76 Protocol specification of the sYstern

hand, assuming that the PDA is switched on, it conveys to Bob's PDA, messages addressed to
it. In this case, by messages, we have in mind both control messages exchanged between the
communicating computers and e-mail messages exchanged between Bob and Alice.

It is obvious that the problem can be divided into two subproblems or protocols and make it
easier to attack. The first protocol has to do with the communication between Bob's PDA and the
MSS and the second with the communication between the MSS and Alice's computer. The f1rSt
part of the problem is the hardest one and the one we will concentrate on. Once Bob's e-niail
messages are in the MSS, they are, after undergoing some local processing, delivered to its final
destination by means of standard e-mail protocols. Thus, the second part is mainly a probleni ()f
routing over the Internet, a topic which has been extensively studied (refer to [154,61] for exarnple
and not to be addressed in this work.

In this protocol we assume that Alice has a desktop e-mail address (Alice @ncl. ac. uk for exainple)
in a desktop computer permanently connected to the Internet. Alice sends and receives e-niail
messages in the traditional way, thus, we consider that the receiving peer of the protocol does not
need further discussion.

As an aside comment, it is worth mentioning that, apart from having a PDA, Bob can have
a desktop e-mail address as well (Bobftoli. mx for example) and use it to send and receive noil-
anonymous L-mail messages. Anybody interested in e-mailing Bob, sends their message to
Bobftoli. mx, the message travels to Bob's mailbox computer where it is stored for later retrieval
or automatically forwarded to Bob's current MSS. While at home or in office, Bob retrieves his
messages with the help of his personal workstation, but when lie is outdoors he uses his PDA.

6.4 Protocol vocabulary
The protocol vocabulary defines wliat messages are used to implement tile protocol. It is importalit
to mention that at this level of abstraction tile focus is on tile semantic of tile messages rather than
on tlicir precise syntax. Tile inclusion of tiny details liere would make the model unnecessarily
more complicated and would blur the semantics of tile protocol, i. e. the main target at t1lis stage.

6.4.1 Basic components of the protocol

According to the functions performed by the PDA and the MSS, and the messages exclianged
between tlicin, the whole protocol call be represented by a set of processes linked by communicatioll
cliannels as illustrated in figure 6.2.

In tile figure tliere is a set of n PDAs currently located witliin the area of coverage of tile MSS
and interested in sending anonymous messages. For simplicity at this stage we represent eacli PDA
by a single process, later oil (see section 6.4.2) we will see t1lat tliere are more process involved ill
eacii PDA.

Tliere are two permanent processes at the MSS, namely, the KsTmpIdMan and the IýPuMall
wliicli run permanently ill the MSS regardless of wliether there is a PDA in the area of coverage of
the MSS or not.

The licart of tlic protocol is the KsTmpldMan process. As its name implies its main task is to
take care of the session keys used to encrypt messages exclianged between the PDAs and the MSS.
Also, it is in cliarge of the TiiipId assigned to the PDAs. It guarantees that botli the session keys
and tlie TinpId are correct and unique. Wlien the KsTmpldMan process is initiated, it comes witll
well-known bidirectional cliannels wliicli are used during tile negotiation of session keys.

Togetlier witli the KqTinpIdMan process works the IfpuMan. The latter is in charge of period-
ically broadcasting the public key of the MSS to tile air (through a well-known broadcast cliaiiiiel)

6.4 Protocol vocabulary

....................... bmk (). ýntmd
NISS

PDAI U)

Intemet
ol

4ý

b-k (1) lntCMCt

PDAn ý))

PDA: personal digital as*sit*a*nt*
MSS: mobile support station
KsTmpldNlan: session key and Tmpld manager
Kpu: MSS public key manager
MSSscs: anonymous session at the IASS
bank: bank work station
MailSvr: mA server

Figure 6.2: Software representation of a MSS serving a set of PDAs.

77

so that PDAs interested in, can read it.
At a given moment there can be any number of PDAs from none to n. The value of n is limited

by the resources (memory, bandwidth, etc.) available in the MSS and depends on the specific
hardware where the system is implemented. When a PDA arrives at the MSS it creates its PDAj
process which will be in charge for communication with the MSS.

Once a PDA opens an anonymous session in the MSS a MSSsesj process is created for it. The
job of the MSSsesj process is to take care of the communication with its corresponding PDAj
counterpart once a session and a Tmpld is assigned to PD&

A PDAj and its corresponding MSSsesj process are linked by bidirectional communication chan-
nels; so are the MSSses and the KsTmpIdMan processes.

To do their jobs each MSSsesj process is linked by bidirectional communication channels to
the bank and MailSvr processes. The bank process is contacted by the AnoSes processes through
the' bidirectional channel that links them any time the latter wants to verify that an e-coin it has
received as a payment is genuine. As can be seen from the figure, the bank is not in the MSS, it can

'be
in any computer connected to the Internet as long as it is reachable from the MSSses processes.

The MailSvr process serves as a bridge between the MSSses process when it comes to exchanging
e-mail messages between the MSS and other computers connected to the Internet. The Mailsvr
process is linked to each of the MSSsesj processes by a bidirectional channel and is located either
inside the MSS or in another computer provided it is reachable from the MSSses processes.

6.4.2 Processes and messages

A more detailed representation of the system is shown in figure 6.3, As can be appreciated from
the figure, the whole system in composed of nine processes. The PDAuser, PDAses and PDAtcp

78 Protocol specification of the systerl,

..............

Figure 6.3: 'Protocol hierardly.

form a layered hierarchy at tile PDA side. So do tile KsTmpIdMan, MSSses, and MSStcp at tile
MSS side. For this reason we use the words process and layer interchangeably. A brief descriptiDll
of each of tile nine processes of the system and the meaning of the messages they send each other
are presented next. Ali extended discussion of them is presented in section 6.6.

It is shown in tile figure that Bob's PDA process is divided into the PDAuser, PDAses alld
PDAtcp layer which are defined as follows:

PDAuser The PDA user represents the interface between the PDA user and the MSS.

PDAses The PDA session is in charge of managing the anonymous communication session of t1le,
PDA user. It is there to hide all details of little interest to the user.

PDAtcp The PDA tcp layer is there to transmit messages from the PDA to the MSS and vice
versa. It establishes a connection With its MSS peer and informs the PDAses layer if t1lis
connection fails i. e. when it discovers that its MSS peer is not reading a message sent to it.

On the other liand, the anonymous session in the MSS that serves Bob's PDA is divided into
the MSSscs and the MSStcp layer. The functions performed by these layers are defined as follows:

MSSses The main function of the MSS session layer is to manage the anonymous COMMunicatiol,
at tli(ý MSS side.

MSStcp The MSStcp layer is there to transmit message from the MSS to the PDA and vice
versa. It establislies a connection with its peer (PDAtcP) and informs the MSSses layer if
this connection fails i. e. if it discovers that its PDA peer is not reading messages sent to it.

It can be seen froin the figure that the MSS session layer interacts with two processes, namely,
with the batik and the MailSrv. The description of these processes is as follows:

6.4, Protocol vocabulary 79

bank This process runs in a bank WS where after several verification tests it is decided whether
an e-coin sent by Bob to the MSS is genuine or a fake.

MaiISrv The main function this process performs is to provide standard e-mail protocols to
forward Bob's messages to Alice and to receive Alice's responses.

6.4.3 Messages

The layers of the system described in section 6.4 communicate with each other by means of sending
and receiving messages. The protocol vocabulary is made up of 18 messages whose semantics are
discussed next.

Kpu A message broadcast by the KpuMan process. It contains the public key of the MSS.

KpuRcvd A message sent from the PDAses to the PDAuser layer to indicate that the Kpu has
been received.

Ks A message sent by the PDAses to the KsTmpIdMan process. It contains a suggested Ks. If
Ks is accepted by the KsTmpIdMan process the latter sends a Tmpld message and then the
accepted Ks is used for the anonymous communication session between the PDA and the
MSS.

TmpIdRcvd A message sent from the PDAses to the PDAuser layer to indicate that the TmpId
has been received.

TmpId A message sent by the MSSses layer to the PDAses to indicate that the suggested session
key has been accepted.

Ecash A message sent by the PDAuser to the PDAses and from there to the PDAtcp until it
reaches the MSSses layer. The contents of this message is irrelevant to the functionality of
the protocol, thus, its is not reflected in the validation model. However, if the protocol is
implementated this message contains a certain amount of electronic cash to pay for a new
anonymous session or to extend an expiring one. Upon receiving this message, the MSSSes
forwards the e-coin found in it to the bank.

GenuineEcash A message sent by the bank to the MSSses to indicate that the e-coin just received

ý,
is genuine.

FýakeEcash A message sent by the bank to the MSSses to indicate that the e-coin just received is
a fake.

EcashAccepted A message originated at the MSSses layer and sent to the PDAuser (through
the stack of protocols) to indicate that the e-cash the user had sent to the MSS has been
accepted as a payment to open an anonymous session or to extend one in progress.

EcashRejected A message originated at the MSSses layer and sent to the PDAuser (through the
stack of protocols) to indicate that the e-cash the user had sent to the MSS has been rejected.

EaddrAndTxt A message originated at the PDAuser and containing an e-mail address (Alice's
for example) and a text body. It travels from the PDAuser through the stack protocol until
it reaches the MailSvr process from where it is forwarded to its final destination.

80 Protocol specification of the systeri,

YouHaveMail A message originated at the MailSvr as a result of receiving Alice's response to
one of Bob's messages. This message is sent through the stack protocol until it eventually
reaches tile PDAuser process. Upon the arrival of this message, Bob is signalled so that he
can open from his mail box and read it. Next, Bob has the choice of deleting or saving it.
How, and when all of this this happens is not a matter of concern to tile semantics of tile
communication protocol.

ChangeMyKs This message is originated at tile PDAuser and travels through the stack protocol
until it reaches the KsTmpldMan. It indicates that the PDA user wishes to change his current
session key, probably after suspecting that his current session key has been compromised.

YourNewKs A message sent by tile Ks TmpIdMan to the PDA user as a response to a Changemws
message. It contains a new Ks for tile PDA user.

TirneExpAlert This message is originated at tile MSSses when N units of time before tile anony-
mous session time the PDA user has paid for expires. It travels through tile protocol stack
till eventually it reaches the PDAuser. It is intended to be an invitation for the user to send
more e-cash to the MSS in order to extend his anonymous communication time.

TirneFin The Timerin message is originated at tile MSSses and sent through tile protocol stack
until eventually it reaches tile PDAuser. It is meant to interrupt tile communication session
immediately after tile session time the PDA user has paid for expires. It is an informative
message since by the time it reaches the PDA screen, everything related to the anonyinous
session, both in tile MSS and tile PDA, is being cleared up.

abort This message can be originated at any of thr processes in the system whenever there is a
need to interrupt the anonymous communication session. It is always sent down the protocol
stack till it reaches the corresponding tcp layer. From there, it is forwarded to the remote
peer; at the same time tile message aborted is propagated up the protocol stacks at both tile
PDA and MSS side.

aborted A message originated at tile PDAtcp and MSStcp layer. The layer that receives it
forwards it up the protocol stack and terminates. It causes a cascade abort starting at tile
lowest layer.

As can be appreciated from the figure, communication between neighbouring layers is achieved
by sending/receiving messages through channels; in this way messages sent by the PDAuser layer
to the PDAses layer travel through the PDAuser-to-ses channel and messages travelling in tile
opposite direction go through the PDAses-to-user channel. Communication between other layers
takes place in a similar way, and is self explanatory by reading the name of tile channels.

6.5 Format of messages used

For the purpose of the Promela specification of our system it is enough to represent a message witl,
two fields: format= 1control lay, datal where the first field represents the type of message and
the second one the data being transmitted. In a structure-like form, the messages we use look as
follows:

structj
unsigned char typo; /* type of message
unsigned char data[DATALENGTIII; /* data

)message;

6.6 Procedure rules 81

Note that to implement a flow control discipline (flow layer) it would be necessary to include two
additional fields. One to determine the sequence number of the message and another to implement
checksum field to detect possible transmission errors.

6.6 Procedure rules
A widely used and well-known model for protocol specification is the finite state machine [61,62,
159]. Since its introduction in the early 1950s it has been used for modeling a great number of
systems. Its analytical power and the ease with which the model can be loaded into a computer and
manipulated automatically with the help of software tools makes this method attractive. Similarly,
the graphical nature of this model makes it easy to read and understand the different stages that
the protocol goes through during its execution. Unfortunately, this descriptive clarity holds true
only for systems with a small number of states. For systems with more than 20 to 30 states and a
similar number of transitions, the graphical representation on paper or a computer screen becomes
difficult to follow and understand.

For systems that exceed this limit, it is probably a good alternative to describe them in a
formal or semiformal verification modeling language or to complement the finite state diagram
representation with such code.

While the conversion of a finite state machine into an implementation program is not straight-
forward, a verification modeling program is. Because of this, it is usually helpful to have more
than one representation of a system. On this account, we will present our system in both: its finite
state machine and its verification modeling program. We have chosen Promela language [159] to
represent our system and it will be introduced in section 6.6.2.

6.6.1 Finite state machine

As the finite state machine model-also known as state transition diagrams- is a familiar method,
we will not discuss it in depth, but a few words concerning our particular protocol are worth
mentioning.

In the finite state machine, a state is represented by a circle or an oval, and a transition by a
marked arc. `Iýansition between states take place as a result of an incoming event; for example,
when a message is sent, when a message arrives, when a timer goes off, or when ail interruption
occurs or the user presses a key on her keyboard. A label on the arc represents the name of the
event that triggered the finite state machine. In our case most of the incoming events have to do
with sending and receiving messages and are labeled by the marks ! and ? respectively. In addition
we also have events that have nothing to do with sending and receiving messages but with certain
local conditions. For examples, the waiting time for something to happens has expired, the user
has pressed a key, the results of a computation are ready for use, etc.

Because of their graphic nature, state transition diagrams are easy to read. Oil the other
hand the mathematical theory behind them makes them useful for showing the correct operation
of, a protocol. However, due to space limitations and the two-dimensional nature of paper, it is
not, always easy and practicable to show all possible incoming event possibilities including error
conditions, local state variables and predicates associated with a protocol. A possible way of
simplifying state transition diagrams is by not representing transient states, Le those that lead to
the main ones.

Hence the state transition diagrams we present here, are incomplete specifications. They are
meant to help the reader understand the protocol and make the reading of the Promela code easier.

82 Protocol specification of the sYsterri.

6.6.2 A brief introduction to Promela

Even for relative simple communication system it is certainly difficult to design a correct protocol
and even harder is tile task of validating the correctness its procedure rules. Because of this
the use of verification languages to write the procedures rules and a software tool to verify the
correctness of tile resulting code, called tile validation model, is highly recommended at this'stage
of the development.

So far the most successful software tool used to trace logical design errors in distributed systerns
and in particular in communication protocols is Spin (Simple Promela INterpreter). Spin is a generic
verification system that accepts design specifications written in the verification modeling language
called Promela (PROcess MEta LAnguage) [162]. We will discuss here this modeling language and
leave tile discussion of Spin until section 7.

Promela is Spin's input language and provides a vehicle for making abstractions of protocols so
that details that are unrelated to the communication processes are suppressed. A Promela prograrn
consists of processes, message channels and variables. Tile state of the whole system depends oil
the state of these three components.

Motivated by Promela's power to describe process interactions, we have decided to describe
our procedure rules in Promela. Although Promela is a simple language with a C-like syntax, a
complete Promela code of a middle (more then 50 lines) or large size program is not easy to follolv.
To help the reader not to get lost in dozens of Promela lines and to focus his attention on crucial
aspects of the protocol only, we use a sort of Pseudo-Promela code to describe our procedure rules
here and leave the full Promela code description until section 7. Complete Promela code can triple
the size of tile pseudocode; hence it is significantly harder to read; moreover, the numerous and
tiny details that it includes do not change tile main idea of tile algorithm in a fundamental way;
therefore, we restrict tile discussion in this section mainly to the basic ideas of the algorithm.

Before going further, it is worth mentioning that a validation model is a piece of code that de-
scribes tile procedure rules, i. e. tile interaction between processes. Having the code and a simulator
to execute it, tile verification of the completeness of the protocol and its logical consistency (free
from deadlocks for example) is straightforward and furthermore, tile implementation of tile sYstein
follows from converting the Promela code to a high-level one, C or C++ for example. Tile differ-
ence between a Promela version of tile protocol and tile final high-level language implementation
is that the former deliberately abstracts from issues of protocol design, such as message forinat,
neither does it say how a message is to be transmitted, encoded, decoded, stored, etc. Moreover,
it does not deal with details irrelevant to processes' interaction such as encryption and decryption
of messages and implementation of timers.

The syntax of Promela is described by Holzmann in the appendix C of his book [159], however
to help the reader to understand our Promela code we introduce tile basic Promela statements,
and their semantics here. Promela is a non-deterministic language, it is easy to realize that tile
semantics of Proniela statements comes from Dijkstra's guarded commands introduced in his famous
paper [163] and discussed further by Hoare in his classic article [164].

executability In Promela the execution of a statement is conditional on its executability, Le. at a
given moment of time a statement is either executable or blocked depending on the state of a
variable or channel. Executability is the basic mean of synchronization; hence, as shown below
ill send/receive statements, input and output through a channel allows tllC Communication
between two processes and synchronization as well. For example, the statement

if (a -- b) an a+1 fi

, 6.6 Procedure rules

either increments the value of a or blocks until the condition (a==b) holds.

send The syntax of the send statement is

channel ! msg

where channel is the name of a channel and msg is a message.

re ceive The syntax of the receive statement is

channel ? msg

where channel is the name of a channel and msg is a message.

separators -> and ; are separators.

83

skip skip is a null statement. It is always executable and its execution has no effect. It is normally
used to satisfy syntax requirements.

goto The goto statement works as the infamous goto of high level languages, it transfers control
to any labeled statement. Like the skip statement, goto is always executable. As Promela
pays no attention to the problem of programming techniques it lacks most of the constructs
for writing a well-structured code, as a result goto is intensively used.

if-fi selection A selection statement begins with if and ends with the keyboard fi and contains
a list of one or more options. Every option begins with the flag :: followed by a boolean
expression (a guard). An option can be executed only if its guard is executable. Only one
option from the list is executed. If more than one guard is executable, one of them is selected
at random the corresponding option is executed. If all guards are unexecutable, the process
blocks until at least one of them becomes executable. In the following example the variable
counter is either incremented or decremented depending on the value of a and b

if
(a b) counter= counter +I
(a b) counter= counter

fi

do-od repetition This statements works in a similar way as the if --f i one, but it is repeated
until a break statement is encountered or an unconditional goto jump is performed. In the
example shown the program loops until either the variable counter is decremented to zero
or an error occurs.

do
(counter < 0) goto Error
(counter == 0) break
(counter > 0) counter= counter

od

timeout This statement represents a condition that becomes true is and only if no other statement
in the block of commands is executable. Depending on the timer value, timeout becomes
true sooner or later.

84 Protocol specification of the systerl,

Process synchronization

Promela supports synchronous and asynchronous communication between processes. Synchronous
communication is achieved by conditioning the send and receive events to the states of the output
and input channels. If an input channel is empty, no input messages are available from that queue
and the receiving process cannot move to its next state. On the other hand, if an output channel
is full, no messages can be sent to that channel and the sender process remains in the same state.
In synchronous communication, the move of a process to a new state is conditioned to the state of its communicating peer. To make a move to a new state, both the sender's output queue and tlie
receiver's input queue have to be selected simultaneously. Needless to say, the sender selects the
output queue and the receiver the input one. Neither the sender nor the receiver can move to tlieiir
new states until this match occurs.

In both synchronous arid asynchronous communication the message is removed from the input
channel by the receiver. Also a message can be read from an input channel for one process only. The
argument for this is that most distributed systems can be modelled on this model. Unfortunately
this restriction makes group communication (multicast and broadcast) more complicated to Model.

6.6, Procedure rules

Kpu

C-

Ks,:
__)

7rcmpIdRcccivcd PaySes

? abortcd

I

edlzý
ez

II

Aborted). a
? ahorted 2ý4 AnoSes

ti ýr Cout
'ignorc button'

4E

Kpu: public key

lert
Ks: session key OimeExp

PaySes: payment for anonymous session
Alert

AnoSes: anonymous session in the PDA user layer

TimeExpAlert: time expiration alert

Figure 6.4: The PDA user layer.

6. '6.3 The user layer

85

The user layer is the interface between the PDA user and the anonymizing system; its work consists
in accepting commands from the user and transmitting them to the layer below it, i. e. the presen-
tation layer. In addition, it receives response messages from the presentation layer and displays
them on the PDA screen. In fact the user layer can be regarded as an application which runs in
the PDA and uses the services offered by the session layer.

Finite state diagram

In accordance with the algorithm presented in section 5.10.3, the first thing that the PDA does
upon being switched on is to learn the MSS public key (Ifpu). Since the value and the nature of
this key is irrelevant to the user, this task is carried out by the session layer. The user layer just
waits until the session layer informs it that the lfpu has been learnt.

As illustrated in figure 6.4, when the PDA is activated it enters the KpuNegotiation state where
it waits for the message KpuReceived from the session layer. Such a message indicates that the
public key of the MSS has been successfully learnt, hence the finite state diagram can move to the
KsNegotiation state to negotiate a session key (Ks). During the negotiation of the Ks (see section
6.6.4), the PDA uses the public key of the MSS to encrypt messages sent to the MSS, which contain

86 Protocol specification of the systern

KsTmpIdMan

E-h -----
bank PDAJ

U bid, mctinal Issscsi

,/ EmbA=rAcd -- Gen. -ýEýh---* -

Ks: session key
PDA: personal digital assitant
KsTmpldMan: secret key and Tmpld manager
NISSscs: anonymous session at the MSS

bank: bank work station
Ecash: electronic cash

Figure 6.5: Payment for an anonymous call.

candidates for session keys.
The negotiation of tile session key is another task irrelevant to the user, therefore, this task is

included in the session layer as well. When tile session layer has a session key approved by the MSS
it sends a TmpIdReceivcd message to tile user layer. This event, as depicted in tile state transitioll
diagram, transfers the finite state machine from state KsNegotation to tile PaySes one. If, for aiiy
reason, the session layer cannot negotiate a Ks key, it sends an abort message to tile user layer and
the finite state diagram moves to the Aborted state.

Tile PaySes state is where the PDA user performs his first payment for the anonymous sessioll
which credits the PDA user with a certain amount of time of anonymous communication. In order
to do that, the PDA user selects an e-note blindly signed by Clare from his PDA memory alld
sends it to tile MSS.

In both the finite state machine and the Promela code, we assume that tile PDA user has all
endless supply of e-cash in his PDA memory to pay for tile anonymous communication session wit,,
the MSS. This assumption is grounded on the fact that there is no price to pay for keeping e-casil
in the memory of the PDA. Furthermore, unlike coins, e-coins are weightless and do not represent
any physical burden to carry.

The e-cash sent by Bob call be accepted or refused as a payment depending on whether tile
bank declares it genuine or fake. If the e-coin is declared genuine by the bank, it can still be refused
by the MSS if its value does not fall within the interval limited by tile minimum and maxinjuln
amount of money accepted by the MSS as a payment for call. This is why tile MSS has to send
Bob's e-cash to the bank before accepting it. The path Bob's e-coin follows before it is accepted
as a payment by the MSS is shown in figure 6.5. Indepth discussion about tile validation of tile
e-coin and the bank is presented later on in section 6.6.7.

If tile e-casil sent to the MSS is accepted, the MSS opens an anonymous session for the PDA
and replies with a EcashAccepted message and the finite state diagram moves to the AnoSes state.
Otherwise, it replies with a EcashRejected message (not shown in the figure). When this Message
is displayed oil the PDA screen the PDA user might wish to select a different e-coin and try agaill.
To avoid the risk of being locked in this state forever, a timeout mechanism is activated after
N number of attempts and the finite state diagram moves to the Aborted state where everything
related to the current session key is cleared up. When everything is cleared up tile user can start
a new anonymous session by negotiating a new Ks.

6.6 Procedure rules

KsTmpIdMan

ý« Edd, A�dT. 1 -------ý 4-- EddAdr. 1 -. - Z---a, -- -10-
PDAJ Issý, sj ch- NjaISir bý el Intenba

EaddrAndl'cxt: clectrowc address; and text
PDA: personal dqital assitant
KsNIan: secret key and Tcmpld manager
MSSscs: anonymous session
MailSm mail server

Figure 6.6: Bob's e-mail message to Alice and Alice's reply.

87

Once the anonymous session is opened with the PDA, the PDA user can send as many anony-
mous messages as he wants simply by passing down the protocol stack the message EaddrAndTxt
which contains the recipient's address and the body of the e-mail message. The user is notified of
incoming e-mail messages by the message YbuHaveMail which appears on his PDA screen. The
path Bob's e-mail messages and Alice's replies follow before reaching their destination is shown in
figure 6.6

After a certain amount of time in an anonymous session two things can happen. Either the user
decides to leave his anonymous session or his prepaid time expires. In the first case the PDA user
presses his abort key (EscPressed); this event takes the finite state diagram to the Aborted state.
In the second case it receives a warning message from the PDA (TimeExpAlert). Upon receiving
this message it can ignore it or send more e-cash (Ecash) to the MSS to extend the anonymous
session. If no more e-cash is sent, the finite state diagram returns to the AnoSes state to continue
its work until the prepaid time finish and the message TimeFin is received which indicates that the
prepaid time is over and takes the finite state diagram to the Aborted state.

The Promela code of the user layer shows details deliberately omitted from the finite state
diagram.

The user process: it is the anonymous e-mail application running on PDA

Communication channels connected to this layer:

---- PDAuser-to-ses --- >
PDAuser PDAses

<--- PDAses-to-user ---

proctype PDAuser

KpuNegotiation: /* wait till the public key of the MSS is learnt
PDAses-to-user ? KpuReceived(Kpu) -> goto KsNegotiation;

KsNegotiation: /* negotiate a session key
Ks= NewKs-Fetched;
/* encrypt Ks with Kpu
do

PDA-to-KsPort ! Ks
if

PDAses-to-user ? TmpIdReceived

88 Protocol specification of the systern

/* the last send Ks is the session key
goto FirstPayment;

timeout -> Ks= NewKs-Fetched
if

od;

FirstPayment: /* first payment for the anonymous session */
/* all messages sent and received to and from the session layer
* are encrypted/decrypted with Ks
do

(i <= MaxNumAttempts) -> /* try MaxNum. Attempts times */
PDAuser-to-ses ! Ecash -> /* e-money to pay for an anonymous session
if

PDAses-to-user ? EcashRejected ->
Ecash= NewEcash-Fetched /* fetch a different e--coin and try again

PDAses-to-user ? EcashAccepted goto AnoSes
if
i++

(i > MaxNumAttempts) -> goto Aborted
do;

AnoSes:
do

PDAuser-to-ses ! EaddrAndTxt /* send as many msg as you can before
/* the msg TimeFin arrives

PDAses-to-user ? YouHaveMail
/* display the msg on the screen

PDAuser-to-ses ! ChangeMyKs -> PDAses-to-user ? YourNewKs;
Ks= YourNewKs; /* update Ks

PDAses-to-user 7 TimeAlert->
if

/* the user wishes to extend his session
do

(i =< N); /* try N times to send payment
PDAuser-to-ses ! Ecash ->
if

PDAses-to-user? EcashAccepd -> break
PDAses-to-user ? EcashRejetd ->

Ecash= NewEcash-Fetched; /* fetch a different e--coin and try again
i++

fi
else -> break

od
skip /* the user doesn't wish to extend his session

PDAsos_to-user ? TimoFin goto Aborted
PDAsos_to-usor ? aborted goto Aborted

od;

Aborted:
/* session has boon aborted

. 6.6. Procedure rules

KpuNlan bb

PDA: personal

digital assistant KpuNian: public key manager
Kpu: public key of the mobile support station

Figure 6.7: The MSS broadcasts its public key.

6.6.4 The PDA session layer

89

The main function of the PDA session layer is to open and manage the anonymous communication
session of the PDA user and to hide all the details irrelevant to the lay PDA user, such as learning
the public key of the MSS and the negotiation of the session key and its renewal whenever it is
necessary.

The process of obtaining the public key of the MSS is an independent problem easily sepa-
ýrated from the main protocol; thus, we present it individually, with the help of figure 6.8 and its
corresponding Promela code.

Broadcast the public key of the MSS

To communicate securely with the MSS the PDA needs the MSS public key. Because of this, after
being activated by the PDAuser layer, the first job of the PDA session layer is to contact the MSS
and learn its public key. The PDA listens to the air until a message containing a Ifpu is received.
This message is broadcast through a broadcast channel that the PDA is listening to as illustrated
in figure 6.7.
, The Promela code to simulate the KpuMan process is presented next. For simplicity, in our

simulation we assume that the MSS has only one public key, nevertheless nothing prevents the MSS
from having more than one public key and broadcasting them to the air in a polling scheme so that
if a PDA fails to verify the authenticity of one of them, it can try the next one.

The KpuMam. process: every t units of time a message that contains the public key
of the MSS is broadcast to the air through a well--known port.

PDAses KpuMan
<--- KpuPort-to-ses ---

proctype KpuMan

do
(true)

Kpu-val= NewKpu /* fetch one of your Kpu
KpuPort-to-ses 1 Kpu-val /* send Kpu to air

od
I

90

? incorrcctKpu

Protocol specification of the systern

KpuNegoliatlon)-- ---A-(KsNegotlatlon

m B n

-L
MSS; mobile support station
Kpu: public key of MSS

Aborted Ks: session key

Figure 6.8: Getting the public key of the MSS.

Learning the public key of the MSS

The finite state diagram shown in figure 6.8 shows how tile Kpu is learnt by tile PDA. The diagraill
starts when the PDA is within the area of coverage of the MSS. In this state) called KPuNegotiation,
the PDA reads messages broadcast by the MSS through a well-known port. Upon receiving a
message the PDA proceeds to verify the authenticity of the public key of tile MSS by checking tile
signature of the person or institution who vouches for the key. How tile authenticity of a public
key call be guaranteed is explained in section 5.10.1. If no messages are received within a certain
amount of time the diagram moves to tile Aborted state. This event is an indication for tile user to
locate a new MSS and start again.

Similarly, the diagram moves to tile Aborted state if no correct Kpu is received after N attempts.
If the Aborted state is reached the PDA lias to try a different MSS and start again from tile
1(puNegotiation state. Oil the contrary, the diagram moves to the KsNegotiation state when a
correct Kpu is received.

in the finite state machine and Promela code we suggest that tile MSS broadcasts its public
key periodically. This is only one possible approach, other alternatives are possible, for example
the MSS may broadcast its public key only when it detects the presence of a new PDA witilin its
cell. The crucial issue liere is that the PDA has to get the public key from tile MSS as soon as it
enters the MSS cell and before it sends any message that might reveal tile identity of its user, to
the MSS.

It is conceivable that a PDA may receive Kpu messages from more than one MSS at tile same
time. This is usually the case in urbanised areas where adjacent cells overlap. In case of overlapping,
the PDA selects the MSS with the strongest signal.

The Pronicla code for describing the finite inachine of figure 6.8 is presented below.

GETTING the PUBLIC KEY OF THE MSS: the PDA waits from messages to come
from the nearest MSS, containing the public key of the latter. It checks for the
authenticity of the key until its test is successful or a timeout occurs. In the
latter case it moves to another MSS and starts the process again.
In case of failure the PDA trios one MSS after another until it is turned off by
its user.

Communication channels connected to this layer:

PDAj3os KpuMan
<--- KpuPort-to-sos ---

6.6 Procedure rules

proctype PDAses
f
KpuNegotiation:
do

U <= MAXNUM-ATTEMPTS)
if

MSSbcast-to-PDA ? Kpu /* Kpu rcvd: now check for authenticity
if

(PuKey == CORRECT) goto KsNegotiation
else -> i++

fi
MSSbcast-to-PDA ? bogus -> i++ /* bogus msg rcvd: ignore it
timeout -> goto Aborted /* couldn't hear any msg from this MSS

fi

else -> goto Aborted /* couldn't get a correct Kpu
od;

KsNegotiation:

ý; 'code
to negotiate Ks here

Aborted:

/* clean up

* *1

91

92

The main protocol

Protocol specification of the system

Figure 6.9: The PDA session layer.

The finite state diagram that describes the session layer of tile PDA is shown in figure 6-9. To keep
the diagram readable, ilon-relevant details such as temporary states are not shown in tile figure.
However, they call be found in the Promela code presented at tile end of this section.

Upon obtaining a correct public key from the MSS, the session layer moves to tile KsNegotiation
state where it negotiates a session key with the MSS. Let us assume that PDAj is trying to open
ail anonymous session.

PDAj creates a Ks, encrypts it using the Kpu, sends it to tile MSS for approval and waits wilile
listening to the air (a well-known port). The MSS cliecks that tile Ks suggested by PDAj is correct
and not in use. If so, it creates a TinpId for PDAj, encrypts it using tile Ks, and sends it to PDAj
as a reply in a TinpId message. If the Ks suggested by PDAj is incorrect, tile MSS does not reply.
If it is correct but has been assigned to an existing PDA, say PDAi, the MSS does not reply to
PDAj and additionally asks PDAi to cliange its Ks. After t units of silence, PDAj can try again.
Once a suggested Ks is approved, it is used to encrypt and decrypt messages exchanged between
PDAj and the MSS until either the end of the session or until tile Ks has to be renewed. Messages
encrypted with Ks can be overheard by other PDAs but they will be ignored as only PDAj call
decrypt and make sense of them. Having negotiated tile Ks the finite state diagram moves to tile
PaySes state.

The procedure for performing the first payment for opening an anonymous session is started
when the PDAses layer receives tile Ecash message from the PDAuser layer. Tile PDAses layer
just passes Ecash messages coming from the PDAuser layer to tile PDAtcp layer until either tile
payment is successful or the intention aborted. In tile former case, the finite state diagram moves
to the PDAses state; this means that ail anonymous communication session has been opened for
the PDA and a certain aniount of communication time is credited for the PDA user. In tile later
case, the finite state diagram moves to the Aborted state.

Once the anonymous session is opened, Bob has the right to send anonymous messages to Alice
and to receive Alice's responses. E-mail messages addressed to Alice come from tile PDAuser layer
in the form of EaddrAndTxt, i. e in a message that contains Alice's address and the body of tile
message. Once this message is received, the PDAses layer encrypts it with tile current session key
and forwards it to the MSS through the PDAtcp layer. Conversely, when a message addressed to
Bob (YouffaveAfaio arrives through the PDAtcp layer, it is decrypted with tile session key and
forwarded up to the PDAuser layer.

Once a session key is accepted by tile MSS it becomes the session key used by botil tile PDA

Tmpld: temporary Identifier
K.: key
PayScs: payment it) open an ammyrnow semlon
PDAý: PDA rwmymmt, t wWon
ll. tF. p: time exydrath.

6.6, Procedure rules 93

and the MSS to encrypt and decrypt messages till the session finishes or till Bob decides to change
it for a new one or till the MSS orders the PDA to change it. If for some reason Bob suspects that
his current session key has been compromised he can instruct his PDA to renew it. To do this the
PDAuser layer passes down to the PDAses the ChangeMyIfs message. This message eventually
reaches the KsTmpIdMan who tries to find a new Ks for the PDA, if it does, it sends the message
YburNewKs to the PDA, if for any reason (no more Ks available for example) the KsTmpIdMan
cannot send the PDA a new Ks, the message aborted is sent instead. Also it might happen that
the current session key of PDAj is hit by another PDA. The KsTmprdMan responds to that by
sending the YourNewKs message which contains a new Ks to PDAj.

It might happen that while being in an anonymous mail session, the message TimeExpAlert is
received from the MSS to indicate that the prepaid anonymous time is just about to finish. This
message is passed to the PDA user layer to indicate that Bob has to send more e-cash if lie wishes
to extend his anonymous session. Bob might either ignore the TiMeExpAlert message or reply by
passing some e-cash (Ecash message) to the session layer. As usual, the MSS responds either with
a EcashAccepted or EcashRejected message. The former message indicates that the anonymous
message has been extended in the MSS and the latter indicates that it has not. If Bob does not
extend his anonymous session time, eventually his anonymous session will finish, this is indicated
by the arrival of the TimeFin message from the MSS. Upon receiving this message the PDA session
layer cleans up everything and goes to the Aborted state. Naturally, Bob can finish his anonymous
session before any TimeExp message arrives, to do this lie presses the Esc key on his keyboard; as
a result of this action the abort message is propagated to all layers in the protocol and the finite
state diagram moves to the Aborted state. The Promela code for the user layer is presented below.

PDA ses layer: negotiates the opening of an anonymous session and if successful
it manages it. With the Ks it encrypts msg before sending them to the tcp layer
and decrypts them before passing them to the user layer.

Communication channels connected to this layer:

< --- KpuPort-to-PDA ----
KpuMan

---- PDAuser-to-ses --- > ---- PDA-to-KsPort ---- >
PDAuser PDAses KsTmpIdMan

< --- PDAses-to-user ---- < --- KsPort-to-pda -----

---- PDAses-to-tcp ---- >
PDAtcp

< --- PDAtcp-to-ses -----

pro, ctype PDAses
f

KpuNegotiation: /* learnt the MSS Kpu */

KsNegotiation: /* negotiate a session key */
/* create a random session secret key (Ks), encrypt it with the public
/* key of the MSS and send it to the MSS. Either succeed or give up after
-/* NUMATTEMPTS times

94 Protocol specification of the systenj

do
(i <- MAXNUH-KS-ATTEMPTS)
Ks- NawKs-Fetchad;
/** encrypt Ks with Kpu here
PDA-to-KsPort ! Ks;
if

KsPort-to-PDA ? Ks(TmpId)
/* the last send Ks is the session key
PDAses-to-user ! TmpIdReceived
goto PaySes;

timeout -> Ks= NewKs-Fetched; i++
if
else -> PDAses-to-user ! abort; goto abort

od;

Payses:
All messages sent to the flow control layer are previously
encrypted with Ks. All messages received from the flow control
layer are docrypted with Ks before passing them to the user
layer.

PDAusor-to-sos ? Ecash -> PDAses-to-tcp ! Ecash; /* wait here till Ecash comes
do

PDAtcp-to-ses ? EcashAccepted -> PDAses-to-user EcashAccepted;

goto AnoSes
PDAtcp-to-scs ? EcashRojected -> PDAses-to-user EcashRejected

goto PaySes /* try again */

:: timoout -> goto Aborted
od;

AnoScs:
do /* loop till anonymous session time expires

PDAuner-to-ses ? EaddrAndTxt PDAses-to-tcp 1 EaddrAndTxt

PDAtcp-to-ses ? YoulfaveMail PDAses-to-user ! YouHaveMail

PDAuser-to-sos ? ChangoMyKs PDAses-to-tcp I ChangeMyKs

PDAtcp-to-ses ? YourNowKs Ks= YourNewKs /* update current Ks

PDAuser-to-soa ? Ecash PDAses-to-tcp Ecash /* Ecash >= 0

PDAtcp-to-sos ? EcashAcceptod PDAsos-to-user EcashAccepted

PDAtcp-to-sos ? EcashRojected PDAses-to-user EcashRejected

PDAtcp-to-oos ? TimeExpAlort PDAscs-to-user I TimeExpAlert

PDAtcp-to-sos ? TimoExp PDAsos-to-usor I TimeExp; goto Aborted

:: PDAusor-to-soo ? abort

:: PDAtcp-to-con 7 abortod
od;

-> PDAses-to-tcp I abort

-> PDAscs_to-usor I aborted -> goto Aborted

Abortod:
skip /* cloan overything up

6.6 Procedure rules

PDAI A PD]
t

tsssesl stsss"'I

T.. ld nu d, "**-%d**-
%

% p)p . ., th PDM'. K.

--- Ks- --- Ks ---
Tmpld

..
>--I - -Tmpld - -

4 KsTmpld, %Ian

W

4

.1 d Tml; mk.

Z: % :

PDAn bwýd chmd NISSswcsn

Figure 6.10: The KsTmpIdMan process manages the Ks and TmpId of PDAs.

I

6.6.5 The session keys and TmpId manager

95

The session keys and TmpIds manager (KsTmpIdMan) is tile main process in tile protocol, it runs
in tile MSS and as its name suggests is in charge of managing tile session keys used by PDAs and
tile -temporary identifiers assigned to the PDAs. As shown in figure 6.10, it is linked to AISSSes
and PDA processes by way of bidirectional channels.

Basically, the KsTmpIdMan process is there to perform two crucial functions. First, it guar-
antees that the session keys used by PDAs are correct and unique. Secondly, it assigns a unique
TmpId to each PDA which has succeeded in suggesting the right session key.

To explain how the KsTmpIdMan process works let us assume that PDAi is owned by Bob.
After obtaining the public key of the MSS (see section 6.6.4) Bob's PDA proceeds to negotiate a
session key with the MSS. PDA1 sends its session key proposal to well-known port of the MSS.
When a session key proposed by PDA1 is approved by the key manager, the latter forks a process
(MSSsesl) to be in charge of the anonymous session for PDAL All the details (tile number of
communication channels to talk to for example) about the MSSsesl process together with tile
TmpId assigned to PDA1 are sent to PDA1 in tile Tmpld message which is encrypted with Bob's
session key and broadcast to the air.

As can be appreciated from the finite state diagram shown in figure 6.11, tile KsTmpldMan
process spends most of its time in the WaitingForKs state listening for Ks and ChallgeMyIfs
messages to arrive. A Ks message contains a suggested session key and comes from a newly arrived
PDA that wants to negotiate a session key, it is addressed to a well-known port of the KsTinpIdAfan
process.

When this message arrives, tile finite state diagram moves to the IfsValidation state where it
is decided whether tile proposed Ks is to be accepted or refused.

If tile suggested session key is correct, tile finite state diagram moves to the TnapIdSelection
where a TmpId is selected for tile PDA. It moves to the WaitingrorAs state after the message
TmpId is sent to the PDA.

Conversely, if the suggested Ks is incorrect the KsTmpldMan process does not reply to tile
PDA and the finite state diagram moves to Watingriorlfs state.

96 Protocol specification of the systern

TmpIdSelection

, io, ý
Ks_coffcct

7Ks

NVatingForKs)(KsValidation

Ks: scssion kcy

Figure 6.11: Finite state diagram of the KsTmpIdMan process.

Once all AISSsesl process is assigned to PDA I, tile bidirectional broadcast channel is not longer
needed. This channel is used temporarily by the PDA1 process. This is why it is represented by a dashed line.

Figure 6.10 shows that tile KsTmpIdMan process and tile AISSsesl process are linked together by
a bidirectional channel. It is through this bidirectional channel that the KsTm IdMan and AlSSsesl P
processes inform each other about any problem with session keys. It is conceivable that tile sessioll
key being used by PDAI is hit by a session key proposal coming from PDA2. If this liappelis the
KsTynpldMan sends a YourNewIfs message to PDAI, which contains a now Ks for it. Also, it is
possible that the PDA1's user decides to renew his current Ks, if so, tile ChangeMyKs is received
from PDAI; upon receiving this message, the AISSsesl process informs tile KsTmpIdAfan about
it. Eventually the KsTinpIdAfan creates a new session key for PDA1, puts it in tile YourNewics
message and sends it to PDA1.

6,. 6 Procedure rules

The KsTmpIdMan process: its main task is to ensure that session keys and
TmpId assigned to PDA are correct and unique. It is in charge for receiving
session key suggestions from newly arrived PDA. It verifies the suitability
of the suggested key and if satisfied, forks a child process (MSSses) to ser-**/
ve the PDA in its anonymous session. Once a session key is accepted it re-
plies to the PDA by sending a TmpId.
It receives requests from MSSses to change their current session keys. If a
session key currently in use is hit by another PDA proposal, the KsTmpIdMan
asks the unlucky PDA to change its session key.

---- KsPort-to-pda --- >
PDA

< --- PDA-to-KsPort ----
KsTmpIdMan

---- KsTmpIdMan-to-ses --- >
MSSses

< --- MSSses-to-KsTmpIdMan ----

proctype KsTmpIdMan

WaitingForKs:
do

PDAi-to-KsPort ? Ks /* received from PDAi
if

(Ks == OK)
/* create TmpId
run MSSses(Ks, TmpId, /* fork a child process for PDAi*/
KsTmpIdMan-to-PDAi ! TmpId

(Ks == INUSE) -> /* Ks in use by PDAj
/* send nothing to PDAi */
/** find a new Ks for PDAj
KsTmpIdMan-to-PDAj ! YourNewKs

fi

PDAj-to-KsTmpId ? ChangeMyKs /* PDAj asking its current Ks to be changed
/** find a new Ks for PDAj */
KsTmpId-to-PDAj ! New-Ks-for-PDAj

od;

6.6.6 The anonymous session

97

It was shown in figure 6.10 that each PDA is served by an anonymous session process created
by the KsTmpIdMan process when the PDA succeeds in opening an anonymous session. To each
PDAj process corresponds one MSSsesj process. To serve its PDA the AISSsesj interacts with other
processes through bidirectional channels as illustrated in figure 6.12.

The work of each of the MSSses processes can be described with the help of the finite state
diagram shown in figure 6.13.

The finite state diagram starts in the WaitingForEcash state where it waits until money from
the PDA comes. This is represented by the arrival of the Ecash message which moves the finite
state diagram to the state PaySes where the very first payment for opening an anonymous session is
performed. Upon receiving the e-coin from Bob, the session layer verifies that the money received
is suitable to pay for an anonymous session. If it is suitable it sends the EcashAcceptcd message to

98 Protocol specification of the systern

KsTmplAlan

I

I
D OAI

,
bwk

VDA. r-I -U. '

.1 IW WS
S. AWS bk -. k .. t-

Figure 6.12: The anonyinous session process and its connections to other processes

? abort

WaitingFor) limeout -(Aborted

'N lEcashAcccpted
PaySes) IN

(AnoSes

Ecash: electronic cash
NyScs: payment to open an anonymous session

Exillaymcnt: payment to extend an anonymous session

NISSscs: anonymous session at the NISS

Exillayment

Figure 6.13: The session layer of the MSS.

6.6 Procedure rules 99

the PDA and moves to the MSSses state; this means that an anonymous session is now opened for
Bob.

An e-coin is considered suitable as a payment for an anonymous session when it matches two
conditions. First, it has to be a genuine e-coin (not a fake, already spent or out of circulation) in a
currency -pound sterling for example- accepted by Doug. Second, it has to be at least equal to
the minimum payment that Doug, the owner of the MSS, charges for an anonymous session. Doug
can easily verify the second condition by himself, however, lie needs the help of Clare -the bank
owner- to verify the genuineness of the e-coin. Upon receiving the e-coin, Doug forwards it to
Clare through the bidirectional channel that links Bob's MSSses and the bank process, and waits
for a response telling him either that the e-coin is genuine or fake. Based on Clare's verdict, Doug
accepts or rejects the e-coin. This is explained in more detail later on in section 6.6.7.

If the e-coin is rejected, the MSSses sends an EcashRejected message to Bob and the finite state
diagram moves to the WaitingForEcash state. If no suitable e-coins are received before a tinicout
runs out everything concerning the PDA (its session key and TmpId for instance) is cleared up in
the MSSses and in the KsTmpldMan process as well. If Bob wishes to persist with his anonymous
session, he has to start again from the very beginning with the negotiation of a session key and a
TmPId.

The MSSses state is where the session layer spends most of its time. It stays there as long
as there is credit for Bob. It leaves this state permanently when a timeout mechanism goes off
to indicate that the prepaid communication time has expired, then the finite state diagram moves
to the Aborted state. Being in the MSSses state, the MSS session layer is ready to receive e-mail
messages from Bob in the form of EaddrAndTxt messages. When a message like that is received,
the MSSses decrypts it using the current session key, and forwards it to the AIailSvr process. On
the. other hand, it receives Alice's replies in the form of YouHaveAlail messages coming from the
MailSvr, encrypts them using the current session key, and forwards them to Bob by sending them
down through the protocol stack. More details about how the MailSvr works are in section 6.6.8.

Naturally, we assume that the MSSses process can convert Bob's messages into a standard
e-mail format and send them to the Internet using standard e-mail protocols.

Although it is not shown in the finite state diagram, it may happen that the time Bob is credited
for his first payment is not long enough for Bob to send and receive his messages. To warn Bob
about the expiration of his prepaid credit the TimeExp is sent to him. Rom now on lie has n
seconds to send more e-cash to the MSS unless lie wants his anonymous session to be finished
abruptly.

Once again, as in the payment to open the anonymous session, ally e-coin sent by Bob to the
MSS is subject to a test of acceptance. If the e-coin is accepted, Bob's communication time is
incremented according to the value of the e-coin and the message EcashAccepted is sent back. Oil
the contrary, if the e-coin fails the acceptance test the message EcashRejected is sent and the time
for Bob's anonymous session is left unchanged.

The session key Bob negotiates with the KsTmpldMan process does not necessarily last until
the end of the anonymous session. It can be changed ill the middle of the anonymous session.
There are two situations that leads to the change of the current session key.

First, because Bob suspects that his current session key has been compromised, Bob may
instruct his PDA to negotiate a new session key. As illustrated in figure 6.14 ill this case the
initiative to change the current session key comes from Bob's PDA which solids the CllangeAfylfs
message to the MSSses process which forwards the message to the KsTTnpIdA1a? 1 process. The
KsTmpldMan finds a new session key for Bob and replies with a YourNewlfs message. If for ally
reason (no more session keys are available for example) the IfsTuip1dMan sends all abort message
to the MSSses from where this message is propagated down the stack protocol until eventually it

100 Protocol specification of the systern

KsTmpIdMan

t4

PDAj bidirectional channel MSSsesj (K

--QI Change, ', IyKs --- -7 -\-, -- -ý,

Ks: session key
PDA: personal digital assitant
KsTmpld, %lan: key and Tmpld manager
MSSses: anonymous session at the NISS

Figure 6.14: Change of session key initiated at PDA.

reaches the PDAuserlayer. The result of this is that all layers involved in Bob's PDA communication
are aborted.

Secondly, an order to Bob's PDA to change its current session key can be received fron, the
KsTmpIdMan process in the form of YourNewlfs message as illustrated in figure 6.15. This message
is sent when the KsTmpldMan process detects that Bob's session key has been hit by somebody
else. It might be that Bob's session key is hit and that the KsTmpldMan cannot find a new session
key for him. In such a case, the abort message is propagated to abort Bob's communication session
as explained above.

6.6 Procedure rules

KsTmpIdMan

Ii L-
I. oz

I -= .

YourNewKs

PDAj bidirecdonal channel
(() ý ISSsesj

Ks: session key
PDA: personal digital assitant
KsTmpIdMan: key and Tmpld manager
MSSses: anonymous session at the NISS

Figure 6.15: Change of session key initiated at key and TmpId manager.

MSSses LAYER: it manages the PDAs anonymous communications. It receives
e-mail messages from the PDA and forwards then to the 'MailSvr', conver-
sely it receives e-mail messages from the 'MailSvr' and forwards them to
the PDA.
It is responsible for keeping the session key, updating it, timing out the
end of the anonymous time. It receives the PDA payment for the anonymous co-
mmunication session and with the help of the bank assure that the recei--
ved e-coin is genuine.

---- MSSses-to-MailSvr --- >
MailSvr

--- tcP_to_MSSseS --- > MailSvr_to_MSSses ----

tcp MSSses

---- MSSses-to-bank --- >
bank

<--- MSSses-to-tcp ---- < --- bank-to-MSSses ----

proctype MSSses /** MSS
f

WaitingForEcash:
do

MSStcp-to-ses ? abort got Aborted
timeout goto Aborted
MSStcp-to-ses ? Ecash goto PaySes

od;

PaySes:
MSSses-to-bank ! Ecash /* send Ecash to the banker for validation test
if

bank-to-MSSses ? GenuineEcashEcash
if
:: MINPAYMENT <= Ecash <= MAXPAYMENT)

101

102 Protocol specification of the systern

AnonymousTime= Ecash-to-time(Ecash) /* convert Ecash to time
ses-to-tcp ! EcashAccepted;
goto AnoSes
else -> ses-to-tcp ! EcashRejected; goto WaitingForEcash

fi
bank-to-ses ? FakeEcash -> MSSBes-to-tcp ! EcashRejected; goto WaitingForEcash

ExtPayment:
if

bank-to-MSSses ? GenuineEcashEcash
if

MINPAYMENT <= Ecash <= MAXPAYMENT)
AnonymousTime= AnonymousTime + Ecash-to-time(Ecash)

ses-to-tcp ! EcashAccepted;

goto AnoSes

else -> ses-to-tcp ! EcashRejected; goto AnoSes
fi

/* convert Ecash to time and
/* extend anonymous time

:: bank-to-ses ? FakeEcash -> MSSses-to-tcp ! EcashRejected; goto AnoSes
fi;

AnoSes:
do

MSStcp-to-ses ? EaddrAndTxt -> MSSses-to-MailSvr ! EaddrAndTxt
/* receive the msg, deencrypt with Ks and forward it to MailSvr

MailSvr-to-ses ? YouHaveMail -> MSSses-to-tcp ! YouHaveMail
/* receive the msg, encrypt with Ks and forward it to PDA

MSStcp-to-Sses ? ChangeMyKs -> /* A PDA user requesting a new Ks
MSSses-to-KsTmpIdMan ! ChangeMyKs

KsTmpIdMan-to-ses ? YourNewKs /* Your Ks has been hit update it*/
Ks=YourNowKs;
MSSses-to-tcP YourNeWKS

MSStcp-to-ses ? Ecash -> goto ExtPayment /* additional payment

TimoAlort-timcout -> /* alert the user about the end of his anonymous session
MSSses-to-tcp ! TimeAlert

TimoFin-timeout -> /* finish the anonymous session
MSSses-to-tcp ! TimeFin

goto abort

KsTmpIdMan-to-ses ? abort -> MSSses-to-tcp ! abort
goto Aborted

tcp-to-ses ? abort -> goto Aborted

od;

Aborted:
/* clear everything and finish
skip

6.6 Procedure rules

Figure 6.16: Validation of e-cash at bank work station

WatingForEcash ? Ecash EcashValidation

! FakeEcasb

Ecash: electronic cash

Figure 6.17: Validation of e--casli

6.6.7 The bank process

103

Although we do not include all of the details concerning the verification of the e-coin, we assume
that the e-coin that Bob sends to Doug is an anonymous e-cash previously blindly signed by Clare
(see section 5-8), hence upon receiving the e-coin Clare verifies that it has a valid signature on it
and that the coin has not already been spent. As is shown in figure 6.16, Clare responds either
with a GenuineEcash or FakeEcash message depending on whether she is satisfied with the e-coin
or not. On this basis Doug decides to accept or reject the payment. It is important to recall from
figure 6.12 that the bank process is linked to the MSSses by a bidirectional channel. Ill fact the
bank workstation can be any computer connected to the Internet as long as it call be reached by
the MSSses process.

The finite state diagram that shows how the bank process works is depicted in figure 6.17.
The MSSses and the bank processes are linked by a bidirectional channel. As can be appreciated
from the figure, the bank process keeps waiting in the lVaitingForE, cash state until the message
Ecaýh arrives from the MSSses serving the PDA. When such a messages arrives it moves to the
Ecash Validation where it decides whether the Ecash is genuine or not. In the former ease it replies
with a GenuineEcash; in the latter case it sends the FakeEcash message to the MSSses process.

I
The

'
Promela code for the bank process is shown below. Ili real life the bank workstation would

receive real e-coins and would perform real validation tests oil them. At this stage, all we are
interested in here is the simulation of a validation test. For this purpose we use the nondeterininis tic

Ks: session key
PDA: personal digital assitant
KsTmpIdNIan: secret key and Tmpld manager
MSSscs: anonymous session at the NISS

bank: bank work station
Ecash: electronic cash

104

KsTmpldNIan

Protocol specification of the systern

--ý 10- d, AýTll IL

PDAJ Iss"i
Xý

It, mt I-Is-

E. "A. dTm: cl, m-. c Wd, - .f lat
WA: N-W dlg. t. 1 . I. t
K. M. - uct kq wW T,. pkf -pr
MSS.,: m. y-. .,. km
M. 1sw -1 ". a

Figure 6.18: The mail server process

nature of the Promela guarded commands (: :) by which we arbitrarily decide that an e-coil-I is genuine or fake. Recall that if more than one guarded command is executable, one of t1le
corresponding sequence is selected at random.

/** The bank process: receives Ecash from the anonymous session and tests that **/
the e--coin is acceptable at the bank and has not been spent before.
Depending on the result of the test, it responds to the MSSses with either
a 'GenuineEcashl or 'FakeEcash' msg.

--- MSSses-to-bank --- >
mssses bank

< --- bank-to-MSSses ---

proctype bank

MSSses-to-bank ? Ecash
if

(Ecash GENUINE) bank-to-MSSses GenuineEcash
(Ecash FAKE bank-to-MSSses FakeEcash

if

6.6.8 The mail server process
The MailSvr process serves as a bridge for the MSSses process to send and receive e-mail messages
to and from computers connected to the Internet. As illustrated in figure 6.18, when Bob sends an
anonymous message, the message is originated in Bob's PDA. Secondly, it travels to the MSSses
that serves Bob's PDA and from there it goes to the MailSvr process which is in charge of sending
it to Alice (its final destination) with the lielp of standard e-mail protocols. If Alice replies, lier
response travels in the opposite direction until eventually it reaches Bob's PDA.

It is important to notice from figure 6.18 that the mail server is linked to each anonymous
session serving a PDA by a bidirectional channel. The mail server is located not necessarily ill tlle
MSS, it call be there or in another computer as long as it is reachable by the Msssesj processes
through the bidirectional channels.

The finite state diagram that shows how the mail server process works is depicted ill figure
6.19. The mail server remains in the WaitingrorMsg state until either the EaddrAndTxt message
is received or the MessayeIn event occurs. The arrival of the EaddrAndTxt message fron, t1l,

,,
6. q Procedure rules

. rrSendingEma'il

WatingForMsg

ReceivingReply

Msg: messages
EaddrAndTxt: electronic address and text

Figure 6.19: Finite state diagram of the mail server process

105

MSSses process indicates that the MSSses wants the MailSvr process to forward the message to its
final destination (to Alice's computer for example). This event moves the finite state diagram to
the SendingEmail state where it remains until the message is sent -indicated by the MessageOut
event- and next it returns back to the WaitingForMsg state.
-- The arrival of Alice's reply at the MailSvr process is indicated by the occurrence of the Messageln
event. The occurrence of this event moves the finite state diagram to the ReceivingReply state from
where Alice's reply is sent in the YouHaveMail message to Bob's MSSses process. Upon sending
the YouHaveMail message, the finite state diagram moves to the WaitingForAfsg state.

The Promela code for the MailSvr process is shown below. All we are interested in at this
stage is the simulation of sending and receiving of messages. Thus, the mail server process can be
implemented in Promela code as an endless loop which checks whether there is a message to read
from the MSSses process. If there is any, the message is read and discharged. On the other hand,
the arrival a reply from Alice can be modelled by a timeout mechanisms. The firing of the timer
is taken as the arrival of one of Alice's replies and then the message YouHaveMail is sent to the
MSSses process.

The MailServer process: it receives e-mails from the anonymous session process
and resends them to their final destination using standard e-mail protocols.
Also, it receives e-mail messages addressed to Bob and resends them to the
anonymous session process.

--- MSSses-to-MailSvr --- >
MSSses MailSvr

< --- MailSvr-to-MSSses ---

proctype MailSvr
f

do
MSSses-to-MailSvr ? EaddrAndText

/* resend the message to its final destination
skip

timeout -> MailSvr_to_MSSses ! YouHaveMail
od;

106 Protocol specification of the systern

I

6.6.9 The tcp layer

As with most applications, the protocol we are designing for instance, often needs to send several
messages (both control and data messages) from one process to another. Using a protocol that
offers only connectionless and unreliable delivery of packets such as the user datagrarn protocol
of the TCP/IP set becomes annoying as the designer has to take care of several details to ensure
that messages arrive at their destination safely. What the designer needs in situations like this is a
reliable connection-oriented stream protocol that guarantees that messages sent from one process
to another arrive safely at their destination. Such communication is often called end-to-end and
is provided by the transmission control protocol of the TCP/IP architecture.

A TCP connection between two peers guarantees four important features [165,154]:

1. Explicit initiation and termination of the connection between the two communicating peers.

2. Reliable, in-order, unduplicated delivery of unstructured streams of data.

3. Out-of band indication of urgent data.

4. Flow control to guarantee that the receiving buffer is never overflown.

On top of a protocol with the above characteristics, the difficulties of designing and implement-
ing our protocol are significantly reduced. We can confidently rely on the TCP services to transinit
messages between the PDA and the MSS session layers.

The first feature the TCP service guarantees that a connection between the two session layers is
establislied and terminated. The second feature is necessary to ensure that messages received fro, n
any of the session layers are delivered to the remote peer without partial or total deletions and
reorderings. This must be guaranteed despite the fact that the underlying layer (the UDP protocol)
may delete and reorder messages arbitrarily. During the PDA-MSS interaction, it is feasible that
urgent messages need to be sent to the remote peer to abort an anonymous session for example,
this is exactly what the third feature guarantees. Finally, the flow control guarantees that if any
of the communicating parties, the PDA for example, is slower than its peer, information is not lost
due to buffer overflow.

With the TCP services in mind we can forget about what is underneath the PDA and MSS
TCP processes and connect theni directly as illustrated in figure 6.20.

In the figure, it can be seen that the output channel of the PDA tcp process is connected to
the input channel of the tcp process of the MSS. Conversely, the output channel of the tcp process
of the MSS is connected to the input channel of the tcp process of the PDA. This simplification
is possible because of the semantics of Promela channels. A Promela channel implements flow
control. Promela channels do not lose or duplicate messages; they deliver thein in the right order.
To do that, it passes messages in firs t-iii-first-out order. Also, a send operation on a channel is
executable only when the addressed channel is not full and a receive operation is Only executable
when the cliannel is not enipty.

The Proniela code for the PDA and MSS tcp processes is quite simple and shown next:

6.6, Procedure rules

MSS

tCP 1CP

tCP
I-IR

E Q. E, :
0

E

connectionless
unreliable

- -- --------- --- ---------
packet delivery

........................
PDA: personal digital assistant
MSS-. mobile support station
tcp: transmission control protocol

Figure 6.20: Connection of the PDA and MSS tcp processes.

The PDAtcp process: Implements a Transmission Control Protocol of the
TCP/IP set. It is a reliable connection--oriented stream transport pro-
tocol (no deletions, no duplications, no reorderings of messages) on which
the PDA session layer can rely to send messages to, and receive messages

/**ýfrom, the remote MSS session layer.

--- ses-to-tcp --- > --- pdatcp-to-msstcp --- >
ses pdatcp MSStcP

< --- tcp-to-ses ---- < --- msstcp-to-pdatcp ----

proctype pdatcp

do
ses-to-tcp ? anymsg pdatcp-to-msstcp ! anymsg
msstcp-to-pda-tcp ? anymsg tcp-to-ses ! anymsg

, od,

/** The MSStcp process: Implements a Transmission Control Protocol of the
/**, TCP/IP set. It is a reliable connection--oriented stream transport pro-

tocol (no deletions, no duplications, no reorderings of messages) on which
the MSS session layer can rely to send messages to, and receive messages
from, the remote PDA session layer.

ses-to-tcp --- > --- msstcp-to-pdatcp --- >
ses msstcp pdatcp

< --- tcp-to-ses ---- < --- pdatcp-to-msstcp ----

107

proctype msstcp
f
do

108 Protocol specification of the systern

ses-to-tcp ? anymsg msstcp-to-pdatcp ! anymsg
pdatCp-to-msstcp ? anymsg tcp-to-ses ! anymsg

od
}

The flow layer

What is underneath the TCP layer does not influence the behaviour of our protocol since the TCP
protocol deals with all the difficulties. However, if for any reason the reader is interested in looking
inside the TCP protocol we would recommend him or her to start with the flow control Promela
code offered by Holzmann's book [159] which implements the well-known sliding window protocol.

6.7 Summary

Before any attempt to implement a distributed system is made, its communication protocol must
be specified. It is well accepted that for a protocol specification to be complete it should explicitly
specify five elements, namely: the service provided by the protocol, tile assumptions about tile
environment where the protocol is used, tile protocol vocabulary, the format of messages, and the
procedure rules. Practice shows that the hardest part of this task is the specification of proce-
dure rules as it concerns guarding tile consistency of message exchanges between tile interacting
processes.

To specify procedure rules one can use finite state machines. Thanks to their graphic nature,
finite state machines are casy to read. On tile other hand the mathematical theory behind them
makes them useful for showing the correct operation of a protocol. However, due to space limita-
tions and the two-dimensional nature of paper, it is not always easy and practicable to show all
possible incoming event possibilities including error conditions, local state variables and predicates
associated with a protocol. Because of these limitations it might be useful to use them in combi-
nation with other methods, with C style pseudo-code, or a protocol verification language such as
Proincla, for example.

So far tile most successful software tool used in tile academic environment to trace logical
design errors in distributed systems, and in particular in communication protocols, is Spin (Simple
Proincla INterpreter). ý-)

Promela is Spin's input language and provides a vehicle for making abstractions of protocols so
that details that are unrelated to tile communication processes are suppressed. A Promela prograirl
consists of processes, message channels and variables. The state of tile whole protocol depends oil
the state of these three components.

To take advantage of both finite state machines and Promela, the two techniques were used in
combination to specify the procedure rules of tile anonymizing system introduced in this work: tile
protocol was divided into layers and then finite state machines were used to specify a simplified
version of each layer while a complete specification was presented in Promela. The simplified
specification is easy to read and understand while the Promela specification is ready to validate
using Spin.

Chapter 7

Validation of the model

7.1 Introduction

Informally one can say that a protocol is correct if it behaves as its user expects. However, to prove
that it is correct is a challenging task which involves two strongly connected procedures. Namely

validation
'
and conformance test of the protocol. The aim of the validation is to check that the

formal specification of the protocol is logically consistent. Once the protocol designer is satisfied
with the validation results the protocol can be implemented and tested to see if the implementation

passes a conformance test; i. e. the designer or the user have to check that the external behaviour

of the implementation of the protocol in equivalent to its formal specification.

- Since we are in the very early stages of the development of our system, we will concentrate only
on the validation process. Thus, we are interested only in verifying that the Promela specification
of our system, i. e. our Promela validation model, is logically consistent without having in mind any
particular implementation.

A validation model is an abstraction of the actual system: it simplifies the system by suppressing
irrelevant details but without losing essential features of the system. For a well-modelled system one
can assume that if the behaviour of the model is correct, the real system is correct as well. Because

of -this, system designers talk of validating a system but what they actually mean is validating the
model of the system. The real system cannot be validated yet, simply because it has not been
implemented yet. Strictly speaking, only the implementor or the user of the final system can talk
of validating the system.

As was stated in section 6.6.2, the most widely used software for protocol validation is Spin.
It was developed at Bell Labs in 1980, its source code written in ANSI standard C can be easily
downloaded from the Internet [166] and compiled for Unix, Linux, Windows95 and WindowsNT

platforms.
The Spin package consists of two independent tools: a simulator and a validator that are meant

to be used at different stages of the protocol validation process.

7.2, The Spin simulator
As it names implies, the simulator can simulate the execution of a validation program (a model in
Spin jargon) written in Promela. It simulates Promela code by interpreting its statements on-the-
fly. To do its job the simulator performs a single-pass verification procedure making effort to save
memory and CPU resources; it tries to store in memory just enough information to complete the
verification process and to verify the correctness of the requirements but for the smallest possible

110 Validation of the model

fragment of the whole behaviour of the system. For example, if at a given point during the simu-
lation process the simulator is faced with more than one executable statement (a nondeterministic
choice), it selects just one. This means the simulator does not perform any exhaustive reachability
analysis but goes only through a single sequence of reachable states in the system which is chosen
depending on the value of the seed the random number generator is initialized with; if no seed value
is specified, the simulator performs a random simulation [167).

The advantage of using the simulator at an early stage of the system design is that it can
immediately tell the system designer about simple inconsistences in his protocol, such as deadlocks,
unspecified receptions. It is fast and does not demand a great deal of computer resources since it
does not need to construct a global state for the system. Because of this, systems of arbitrary size
can be easily simulated. However, since it runs a random simulation only, the absence of errors
reported by the simulator does not necessarily mean that the system is error-free. The accurate
verification of a system is performed by the Spin validator (see section 7.3).

In a Unix computer, the simulator is simply executed as 105 spin -options PromelaCode where the
designer can specify different options to tell the simulator to output on the screen what messages
are sent or received and by which processes, what line of the code is executed, the value of local
and global variables, the value of the seed for the random number generator, and so on.

7.3 The Spin validator
The job of tile Spin validator is to validate the correctness requirements, (also called correctness
criteria and properties) of Promela code given at its input.

Spin belongs to tile category of protocol verification systems that are based on tile analysis of
the reachability of system states. Before, going further in our discussion let us define what a state
is in Spill.

In Spin, a state is completely defined by all control flow points of running processes, all values
of local and global variables, and the contents of all local and global channels.

A reachability analysis algorithm tries to generate and inspect all tile states of tile systell,
that are reachable from the initial state; this means that the algorithm will construct all Possible
execution sequences from the initial state to tile final state (possibly more than one). In Other
words and assuming that the system we are analysing is non-deterministic O. e. its Promela code
contains guarded :: commands), the algoritlim must explore all possible moves. For example, if tile
validator is faced with the following code:

Inputquouo ?a
if

(a > 0) statementl
(a - 0) statemont2
(a < 0) statement3

fi

Spin has to explore three possible sequences after reading the from the input queue into variable
a: first it considers that a>0 and executes statemcntl; secondly, it considers that a=0 and
executes statenicint2; and finally, the validator assumes a<0 and executes statemenM

It is worth noting that for a validation to be possible, the Promela specification of tile system
must restrict the number of processes, flow control point, variables, channels and slots of channels
to a finite number so that the number of states of the system remains finite and the system can be
analysed exhaustively by enumerating its reachable states.

7.3, The Spin validator

Depending on the size of the system, the generation and analysis of all possible states can
be computationaly unfeasible. Most of the time the designer of a large system (more than 105
: reachable system states) is faced with the state space explosion problem. To understand this, we
will briefly discuss how Spin works [162].

A system is represented in a Promela model as a set of process. Spin translates each process into

a finite state automaton. Next, the asynchronous interleaving product of automata is computed
and translated into an automaton. This automaton represents the global system behaviour and is
called the state space of the system or the global reachability graph.

A correctness requirement of a system is expressed in a formal notation called Linear Temporal
Logic (LTL for short). LTL can be translated into what is known as the Biichi automaton.

To perform a verification Spin computes the synchronous product of the Biichi automaton and
the automaton that represents the global system behaviour. The result of this computation is
another Biichi automaton and is used by Spin to see what language it accepts. If such a language is
empty, this means that the correctness requirements expressed in the LTL formula are not satisfied
, by the system.

I The thing to keep in mind during the validation is that to tell whether the language accepted
by the Bfichi automaton is empty or not Spin has to generate and verify all possible sequences of
states of the automaton; this can become prohibitively expensive since in the worse case, the state
space of the system has the size of the Cartesian product of all its components: control flow points,
processes, local and global variables, and channels.

,
Once the system is written in Promela code and passed through the simulator, the designer is

encouraged to validate it by performing the following steps:

1. By running 10'5 spin -a PromelaCode we can instruct Spin to generate a standard C program
which is known as the analyser and by default receives the name of panx

2. The pan. c analyser can be compiled by a standard C compiler to produce ail executable
analyser as follows: 1061 cc -o pan pan. c. Several directives can be specified to indicate whether
the analysis of the system is going to be partial or exhaustive; and to optimize memory
resources.

3. By typing % pan -options the program is executed to perform the analysis of the PromelaCode.
Several options are at the designer disposition to indicate memory resources for hash tables;
selection of hash functions, number of errors before termination, and so on.

4. If the analysis is completed without find any errors in the system and without running out of
RAM space the output of pan is a few lines stating that no errors were found.

5. The execution of pan may have an early termination either because there was not not enough
RAM memory in the system or because an error was found.

e Optimization techniques can be used to ideal with shortage of memory.

If an error is detected by the analyser, it outputs the file pan. t containing the error trial,
and stops.

6. The nature and cause of an error detected by pan can be found by instructing Spin to follow
the error trial left in pan. t by typing % spin -t PromelaCode

112

7.4 Full state space search

Validation of the model

As it names implies, the full state space search technique explores all reachable system states of tile
system. Because of this, this method is also known as full exhaustive search and just full search.

The main problem with validators based oil reachability analysis, and Spin is no exception, is
that the number of reachable system states call be prohibitively large in comparison to the amount
of RAM memory available to store it and the CPU time available to compute it. As an aside it is
important to note that since what matters liere is not the total number of system states but only
the reachable ones, in the literature the number of reachable system states is inaccurately referred
simply as the number of the states of the system or simple the state space.

In order that the exhaustion of RAM memory and the length of computational time do not
take us by surprise and in order to use these resources in the most efficient possible way, it is
always advisable to have a rough idea of the size of the system in comparison with the available
computational resources.

In tile following, let R be the number of reachable states of tile system we want to validate
with the lielp of Spin; so if 0<i<R-1 and si is one of those reachable states we can define
A= ISO, 31021 ... , sit-, } as the set that contains all the reachable states of the system. Let S be
the number of bits or bytes necessary to store a single state from the set of reachable states of tile
system. Finally, lot Al be the number of bits or bytes available for Spin use in the RAM memory
of the computer.

Grounded oil his experience, Holzinainni points out that in full exhaustive mode tile values for
S are normally ill the range of 101 to 102 bytes [159,168] or what is approximately equivalent in
the range of 101 to 103 bits.

Assuming that it is true, we call estimate that if we run Spin ill full exhaustive mode tile
maximum number of reachable states that call be stored in a computer with a RAM memory of M
bytes as follows: R,,,.. = A11S = A1/1 X 102. In other words, the designer will run out of memory
if lie attempt to run the Spin validator in full exhaustive mode to validate a system with more that

, A1/1 X 102 reachable system states.
Another serious boundary that the designer has to keep in mind is the length of the CPU tilne

to perform the analysis. It has been observed [159] that in a computer equipped with current
technology the tinie to analyse a system state is of the order Of 10-6 seconds. It follows that for
a system of R= 36 X 108 states, we will need about I liour (i. e. 3600 seconds) of computation:
CPU, i,,,, = 36 X 108 x1x 10-6 = 3600. Likewise, it call be estimated that a system of tile order
of 1030 states will need about 1016 years of CPU time.

When R :5R,,,,,, i. e. when the number of reachable system states of the system we are validating
(1008 not exceeds tile maximum number of reachable system states that the computer call liandie,
and when the R<IX 108 (assuming one hour is the maximum amount of CPU time tile designer
is ready to spend in the validation) tile validation is straightforward; Spin performs all exhaustive
s, ýarch to verify the correctness requirements. The only thing the designer has to do is to follow L
the steps enumerated in section 7.3. When the validation finislies without any errors detected,
tile designer is certain that his system has been validated with 100% coverage. Although it is not
always easy to kiio%v in advance, knowing the number of expected states is llClPftll Since this number
call be used to calculate tile size of tile hash table needed and then instruct Spin (-wN hash table
option) to allocate it hasli table to handle that number of states rather tban using the default one
which is equal to 218 = 262144 entries i. e. it call store 262 144 states. If for a given systell, t1lis
number happens to be too big it will cause 11 waste of ineiriory; conversely, if it is to small, it will
increase tile number of hasil collisions, waste CPU time in resolving them and consequently, Slow
down tile Vorificatioll.

7.5 COntrolled partial search 113

However, it can happen that in the middle of the execution of the ro pan step Spill runs out of
RAM memory. If this happens a message like pan: out of memory appears on the output screen
and the validation stops; the result of this is that what was meant to be an exhaustive search with
a 100% coverage deteriorates into an uncontrolled partial search. Although some results about
detected errors are reported on screen they are not reliable since we do not know what part of the
system has been validated and what has not; there is no guarantee that the critical parts of the
system have been inspected. Hence a pan: out of memory message is in fact an indication that
further memory optimization is needed to validate the system.

From the above estimations it should be clear that the size of systems that can be validated
with the Spin validator is directly determined by memory of the computer or more precisely by
the par ' ameter M and by the computational power of the CPU. Both M and CPU are hardware
dependent and normally cannot be modified by the designer; fortunately if any of these two resource
is exhausted, the designer can still manipulate the parameters S and R which are system dependent
to fit his system to the available resources.

7.5 ' Controlled partial search
From the above discussion one question arises: if an exhaustive search deteriorates into all uncon-
trolled partial search when the RAM memory is exhausted; is there any technique to drive the Spin
validator into a controlled partial search rather than letting it deteriorate into an uncontrolled one?
The'answer is yes, techniques for controlled partial search have been studied and suggested. In
general and in accordance with tile approach to fitting tile system into tile available RAM memory,
controlled partial search methods can be divided into two groups: In tile first group fall those
methods that indicate to the Spin validator what part of the system to inspect. Tile main difficulty
with this technique is that it is not trivial to decide what parts of the system to inspect and what
not. Common sense would suggest to inspect those parts of tile system where we expect to find
errors. '' However, this is a debatable argument since real life practice shows us that errors appear
where tile designer does not expect them to be. Another limitation of this approach is that for
large systems, the RAM memory available might be not enough to handle the parts of the system
we have decided to inspect. The reader interested in a more detailed discussion oil these controlled
partial seýrch methods is encouraged to refer to [159].

'In tile second group fall the methods that instead of trying to predict in which parts of the
system errors can be found, perform a random simulation, i. e. a random walk- through the number
of reachable system states. The main idea here is to organize tile state space of the system so that
it can be randomly simulated using precisely M bytes of RAM memory, i. e. the memory available
for Spin in the target computer. Thanks to this strategy, systems of sizes that would overflow tile
available RAM memory in exhaustive search, can be validated in a comparatively small amounts of
memory. Because of this and because of the difficulties mentioned above about validating methods
that try to guess where errors can be found, Spin focuses on random simulation techniques when
it comes to validating a large system. In particular, Spin implements a method called supertrace
or bit-state hashing.

7.6 , Supertrace controlled partial search
The supertrace technique was introduced into Spin to validate systems that cannot be validated in
full verification mode because R>i. e. when the RAM memory requirements are beyond
what is available in the target computer.

114 Validation of the model

Let us say that we have a computer with M bytes of RAM memory which is not enougli. to
store R and analyse the system in full exhaustive mode; what Spin does in supertrace mode is
to organize the memory and system state space in such a way that it uses precisely M bytes of
memory, no more and no less; them from the total system space state, Spin randomly selects tile
maximum number of states that can be analysed in M bytes of memory so that the coverage of
the analysis is as large as possible.

If in full veriflcation mode S bits of memory are required for storing a single state si, where S
is normally between 101 and 103 bits, in supertrace mode a single bit can be used to manage the
set of reachable states.

A crucial idea behind the supertrace mode is to save RAM memory by not storing each visited
state si but storing only enough information to tell whether tile state lias or has not been analysed
before. Because of the technique used to store the information about each visited state (explained
below), this nictliod is called bit-state hashing as well.

Although one bit is enotigh, in practice Spin uses two bits with tile sole purpose of reducing
hash conflicts. In fact though it call be set to 1-bit by manipulating tile 1-bit or 2-bit hashing
option of Spin, the default is set to 2-bit; this implies two crucial things: First, that a pair of
independent liash functions are used (one for each bit); and second, that a liash collision requires
a collision oil both bits; it is note worthing that this technique is known as multi-bit hashing [168].

For simplicity let us assume that we use Spin in 1-bit hashing mode, then tile information
for managing the set A= ISOiShS2i

... sR- I} of the reachable states of tile system is the array
Ahash : -- U0, fl, f2,

... '
fit- I} of R-1 bi ts where each fi = 110 is a binary flag. The address (tile

position in the array) of each fi uniquely identifies a state. To access Ahash efficiently a liasil
function is implemented which for a given state si locates the corresponding fi flag in A fl hash to ind
out whether the flag is oil or off. Ill the former case the state si is considered redundant, (i. e. it
has been analysed before) and discarded. In the latter case, the state si is considered new; it is
analysed and its corresponding bit in Ahasi, is switched oil. The array Al,

ash is called the hash table
and its size is normally equal to the maximum amount of RAM memory available in tile target
computer, i. e. R is normally equal to M expressed in bits. It is in fact the memory arena where
tile system is to be analysed.

Note that in supertrace mode Spin does not have a constraint oil the number of reachable
system states that call be validated since it attempts to select all optimal fraction of the full state
space that call be searched using theavailable RAM resources. However, to use theavailable RAM
and CPU efficiently it is always useful to)lave in idea about the number of reachable system states
we are expecting as this tells the designer how many bytes of memory are needed to store the liasll
table. By efficiency liere we have in mind that the maximum available RAM is used to store tile
hash table and without asking the target computer to validate a number of reachable system states
that is beyond a reasonable computational time.

In practice the value of R is normally unknown, however, we call have a rough idea about it by
running the validator just to learn from the output the number of states analysed and the value
of tile hash factor (explained below). The number of states analysed is reported as transitions. if
tile hash factor is high (over 100) the number of states analysed should be a good approximation
of Clio actual number of reachable system states. Let us assinne, that we roughly know tile value
of R; if we run Spin in 1-bit mode we will need at least Al =RXI bits of memory to store Ahasi,
and at least Al =RX2 bits if we run Spin in 2-bit mode.

Spin provides the option -ivN to set the size of the liash table as 2N bits, i. e 2N entries in tile
11IL411 table. By default this value is set to 2 22 i. e. it allocates a hash table of 2 22 = 4194304 entries.
This nicans that is we use tile algorithin in 1-bit mode that table call liandle up to 4 194 304 states;
Wid 111) to 4194304/2 = 2097152 if we use it in 2-bit mode. For this to be possible, Spin needs a

,
7.7, Hash conflicts 115

computer with at least 222 bits of RAM memory, which is about 219 = 524288 bytes.
To estimate the coverage of a supertrace run, Spin introduces the notion of hash factor. The

hash factor is defined as the size of the hash-table divided by the number of states stored [159,168].
It is calculated by the validator after each run and displayed at the output as an indication of the
coverage of the run. For example, is the size of the hash table is 2 24 = 16777216 bits and the number
of states stored by Spin in the hash table is Ill 553, the hash factor is 16777216/111553 = 150-395.

As the number of stored states approaches the size of the hash-table the hash factor approaches
1. A hash factor equal or greater than 100 implies good coverage; conversely, a hash factor near
1ý implies poor coverage. The explanation for this is that as the number of stored states in the
hash-table increased th number of hash collisions increases as well, this result in parts of the state
space not being analysed (this is discussed in section 7.7).

As in exhaustive search (see section 7.4), CPU time is a serious constraint in supertrace mode.
Empirically, we have learnt that in the Silicon Graphics computer we use to run Spin (see section
7.10) it takes about 8.0 x 10-5 seconds to analyse a state. For simplicity let us say the CPU time
to analyse a single state is of the order Of 10-5. If that holds true it will take about one hour (i. e.
3600 seconds) of CPU time to analyse 3.6 X 108 states as 3.6 x 108 XIX 10-5 = 3600 seconds.
Similarly, it will take about one year of CPU time to analyse 3.1 X 1012 states.

7.7 Hash conflicts

To allow for state comparison each system state analysed by Spin must be stored in memory where
it can be retrieved efficiently and where new states are stored.

Spin uses (in both exhaustive and controlled partial search) a hash table to maintain the state
space of the system being analysed. By applying a hash function to a given state, Spin tries to
fi. nd out whether the state has or has not been analysed. If the state is found to be a new one (not
pr eviously analysed) it is analysed and included in the hash table. In the opposite case, the state
is considered an old one (previously analysed) and it is discarded.

One of the most serious flaws encountered in the use of hash methods for constructing search
tables is that although in theory it is possible to find one-to-one functions that assign one element
and only one to each storage cell, in practice this has been shown to be impossible since normally
the elements to be stored are seldom known a priori. Consequently, it is conceivable that the hash
function eventually will attempt to assign more than one element to the same cell store; in the
literature this issue is called a hash collision, hash clash, or hash conflict and has been well studied.
Hash algorithms just accept that collisions are inevitable and rather than attempting to eliminate
them entirely, they treat collisions as special case by calling a special procedure which will find an
alternative cell store for the current element. This is what is called resolving hash conflicts and
several techniques has been suggested to deal with the problem [169,170,171); a widely used one
is to include the clashing elements in a linked list in the hash table.

The hash algorithm used by Spin is not an exception, therefore, hash conflicts occur during the
validation, however, hash conflicts here have a particularity: In a exhaustive full verification where
each reached system state is fully stored in the hash table, Spin resolves hash collisions by resorting
to a linked list.

Conversely, since the actual contents of reached states are not stored in supertrace mode, hash
collisions cannot be corrected. When Spin finds a bit turned on, it cannot tell whether the current
state has been analysed or its hash function has clashed. Because of this, Spin can erroneously
believe that a state has been analysed, this result in the discard of the state and the failure to visit
it and its successors. If this happens pieces of the code might be left unexplored and possible errors

116 Validation of the model

not detected. In other words, in supertrace mode, Spin cannot guarantee 100% coverage due to the
possibility of unresolved hash collisions. To reduce the effect of hash conflicts it is recommended
to a technique called sequential multihash and multiple hashing [159,168].

7.8 Sequential multihash
When due to hash collisions the designer is not satisfied with the coverage of his supertrace run let us say when the hash factor is below 100, the designer can resort to sequential multillash. This'
technique consists of repeating the validation with alternate and independent hash functions. Tile
main idea here is to move hash conflicts to a different part of tile state space so that Spin call
recover the fractions of tile state space missed in tile previous run.

As explained in detail in [1681, by resorting to sequential multillash tile level of coverage of
supertrace validations call be as high as the designer wants it to be regardless of the size of tile
system. By continuously repeating the process (each time with a different pair of hash functions)
the designer call got as arbitrarily close to 100% coverage as lie wishes to [159,168,167].

Spin includes the runtime option -RN to allow the designer to specify that tile supertrace run is
to be repeated N times, each time with a different pair of hash functions (see section 7.6); current
versions of Spin support up to 32 pairs of such functions. To give one example; the designer call instruct Spin to perform 16 independent supertrace runs by typing Z pan -R16. This strategy will
probably satisfy the most demanding designer regardless of the size of the system; tile only problem
here being CPU time, for large systems it might take hours to complete tile run.

7.9 Correctness requirements
A crucial decision the designer of a protocol lias to make is what correctness requirements (absence
of deadlocks, mutual exclusion, temporal claims, etc.) to clieck his system on. This is extremely
important not only because this will guarantee that the system is free of a particular kind of error
but also because the inclusion or exclusion of one of these requirements can have significant impact'
on the number of reachable states of the system and for instance on RAM memory and CPU tilne
demand to validate them.

Although the correctness requirements that are usually validated in protocols are well-known
[172], the list of correctness requirements the protocol designer tests lier protocol on, depends on two
factors: the particular characteristics of the system and the stage of development. The termination
correctness requirement for example, can be important for one protocol but not required for other.
Similarly, temporal claims are not normally tested in early stages of development, but at the final
stages, when the protocol is free of the basic errors.

Proniela provides well defined means of expressing different correctness criteria; namely, t1j,
designer can include in his Promela specification statements to prompt the Spin validator to clierk
for the following correctness criteria of his system: assertions, system invariants, deadlocks, 11011-
progress cycles, livelocks, and temporal claims.

7.9.1 Assertions and system invariants

An assertion is often expressed as a boolean condition inserted somewhere in the Promela code. It
has the form of ass ertio it (booL condition) and is expected to be true whenever a process reached a
given state. The assert statement hwq no effect if the boolean condition holds true; conversely, it
generates an error message if the boolean condition becomes false.

71.91 Correctness requirements 117

-, If the designer wants a boolean condition to remain true in all reachable system states lie call
express this as system invariant. A system invariant is just a generalization of an assertion, it has
the same form, assertion (bool-condition), and is placed in a separate process that runs concurrently
with the one the designer wants to validate; the assert statement is executed precisely once for
every state of the system.

7.9.2 Deadlocks

Since Spin expects only systems with a finite number of states; it expects that the one it is validating
either terminates after a finite number of state transitions or it goes back to a previously visited
state. Both alternatives are considered a valid end to a process. Although the second alternative is
not the final state of the system, it is considered and called a proper end state in Spin. If the system
does not match this correctness criterion it is said to have a deadlock. In Promela, a proper end
state is'identified by a three-character prefix end-state label which has the form of endsomething,
where something is any sequences of characters accepted by Promela in names used as identifiers.
Example of end-state labels are: end, endcycle, endO, endl and so on.

7.9.3 Progress cycles and livelocks

In Prome, la (and other programming languages) infinite cycles are considered correct behaviour for
a process as long as the process goes through the states the designer expects.

To express that a process cannot cycle infinitely without visiting certain states Proniela provides
the statement progresssomething to mark such states. States marked by such labels are called
progress-states since the system must go through them to make any progress. Ail execution sequence
that violates this claim is called a non-progress cycle.

To express that it is incorrect to cycle infinitely through a given state, Promela provides the
statement acceptsomething to mark the state. Such state is called an acceptance-state. The name
is a bit misleading and comes from the fact that a sequence of statements that contains acceptance-
state'labels is named an acceptance cycle. What we are saying here is that we want a system without
any acceptance cycles. The job of Spin is to detect these acceptance cycles if there are any in the
system.

As before something is any sequences of characters accepted by Promela in names used as
identifiers. For example, progress-svr, progressClt, acceptO, acceptl, etc.

Acceptance cycles are also known as livelock since a process that goes infinitely often through
states marked by acceptance lables is still doing something but trapped in a looop. It cannot escape
from there and go through the states the designer wants it to go through.

7.9.4 Temporal claims
In some cases it is necessary to express that a state in which a certain condition is true cannot be
followed by a state in which that condition or a different one is false. For example, the designer
might want to express that if it is true that a channel with a single slot is full, it cannot remain full
after reading a message from it. In Spin these correctness requirements are called temporal claims
and in ýPromela are expressed with the help of the statement

never(Prom-statementl, Prom-statement2, Prom-statement3,

I where each Prom-statement is a Promela statement that contains the details of the claim; for
example assertions, progress-states and acceptance-states labels.

118 Validation of the model

7.9.5 Safety and liveness properties

In protocol validation, properties are grouped into two major classes: safety properties and liveness

properties. Informallly, a safety property states that nothing bad never happens. Let us take a lift

as an example. A safety property will state that if the lift is travelling or stopped between two
levels its door will never open. On the other hand, a simple liveness property states that something
good will eventually happen. Again, let us take a lift as an example. A simple liveness property
will state that if a user has arrived at the intended floor, the door will eventually open. In other
words, the passenger will eventually terminate his journey.

Another way of explaining safety and liveness properties is by saying that a safety property
states what we do not want the system to do. Conversely, a liveness property states what we want
the system to do.

These two concepts have been widely used in the literature devoted to correctness of concurrent
programs since they were introduced by Lamport [173].

In Spin the concept of safety properties is used to group together assertions and system in"-
variants, deadlocks, and unspecified receptions. On the other hand, non-progress cycles, livelocks

and temporal claims fall in the class of liveness properties [159]. As explained in section 7.9.. 6, the
designer can use Spin directives to instruct the validator to validate the properties lie is interested
in.

It is a well-known fact that it is always simpler specifying what we do not want from a systern
than specifying what we want, thus, it makes sense to begin the validation of a protocol by validating
safety properties first and leave liveness properties for the last stages of the validation.

The reader interested in more details about safety and liveness properties is encouraged to refer
to [173,174,175,176] where these concepts are studied in depth.

7.9.6 Cost of correctness requirements

We have just discussed what correctness criteria can be specified in Promela to be validated by
Spin; the order in which we introduced them reflects the level of sophistication in the validation
and at the same time the cost of performing the validation in terms of RAM memory and CPU

time demands.
Holzmann reports ([159,162]) that it is comparatively cheap to validate assertions and absence

of deadlocks. The computational cost for this is linear in tile number of reachable states (R)

of tile system both in RAM memory space and CPU time. To check on progress cycles and
livelocks can be twice as hard in terms of CPU time but there is not a noticeable increase in
RAM memory requirements. The most expensive correctness criterion to validate is temporal

claims. Compared to assertions and absence of deadlocks validation, the cost can be 2N times as
hard, where N is the number of reachable states in the sequence of statements contained in tile

neverlProm-statementl, Prom-statement2, Prom-statement3,... } claim.
It is important to notice that Spin allows us to validate these correctness criteria separately (for

example check tile system for non-progress cycles only, or for acceptance cycles only) so that tile

simpler requirements do not contribute to the cost of the more sophisticated ones.
The selection of tile correctness criteria to validate is made with the help of Spin directives

and options before running the validator: At compilation the designer can specify tile -DSAFETY
directive to indicate that he is interested only in validating safety properties, the definition of safety
is explained in section 7.9.5. Similarly, the directive -DNP indicates that the designer wants to

check on non-progress cycles.
Once the validator is compiled with the appropriate directives, runtime options are used to

7.10 Validation platform 119

check the desired correctness criteria: The execution of Zo pan will explore safety properties of the
system. Likewise, the execution of Zo pan -a checks the system on acceptance cycles. Finally, the
execution of 76 pan -1 will find non-progress cycles.

7.10 Validation platform
To validate our system Spin Version 3.3.5 -28 September 1999 was downloaded from the Internet
[177], gec-compiled, and installed in the following platform:

Computer Silicon Graphic

Model Octane

CPU 2 175MHz MIPS R100OO(IP30) Processors with MIPS R10010 FPUs

RAM memory 512 Mbytes

Operating system IRIX64 Release 6.5

gcc compiler gcc version 2.8.1

According to the terminology introduced in section 7.4, we have a computer with M= 512000000
bytes. Let us make an estimation of the RAM resources we have at our disposition to validate a
system using Spin in full exhaustive and supertrace mode.

In full exhaustive mode and considering that for middle size system the number of bytes to store
a single state is of the order of S=1X 102 (see section 7.4); we can say that in our Silicon Graphic
platform we can validate systems with R = MIS = 512000000/1 X 102 = 512 X 104 states.
Naturally, if the system is extremely large (with S=1X 103) we can analyse only Rmax = 512 x 103
states.

By default, in supertrace mode each state occupies only two bits, so S=2; it follows that
in a memory of M= 512000000byteý = 512000000 x 8bits = 4096000000 bits we can store up to
Rm,, x = MIS = 4096000000/2 = 2048000000 states. To store information about these states we
need to allocate a hash table of 4096000000 bits; since it is common practice to express the size of
the hash table as 2N and 231 = 2147843648 and 232 = 4295687926 we can say that the largest hash
table we can allocate in our computer is 232.

This is where the CPU time constraint discussed in sections 7.4 and 7.6 have to be taken into

account. The available RAM memory allows us to store up to 2048000000 states; however; before

any attempt to allocate a hash table for such a number of states it is advisable to have a rough
idea about the CPU time needed to analyse them; accordingly with our empirical observations, it
take about 8x 10-5 seconds to analyse a single state (see section 7.6); it follows that the CPU time
to analyse 2048000000 states amounts to CPUti,,, e = 2.8 x 109 x8x 10-5 = 2.24 x 105 seconds;
which is about 61 hours.

Similarly, we can estimate that if the designer does not want to spend more than one hour

waiting for his results he can analyse only about 3600/8 x 10-5 = 4.5 x 107 states; to analyse such
a number of states in 2-bit mode Spin needs a hash table of 4.5 x 107 x2= 90000000 bits; since
226 = 67108864 and 227 = 134217728; we have to set the size of the hash table equal to 226 to ensure

,a computation time equal or less that one hour. A supertrace analysis with a hash table larger than
226 becomes prohibitively expensive and has to be avoided even though it provides higher coverage.
From this discussion it should be clear that there is a trade-off between run-time and coverage in

supertrace mode. Also, it should be clear that we are not able to take full advantage of the 512 000

120 Validation of the model

000 bytes of RAM memory available in our target computer. If only we had a more powerful CPU
(say a CPU with as many processors as possible) the story of the coverage would be different.

7.11 An estimation of the size of our system
As can be appreciated from the Promela specification of the system, a special effort was made to
keep the size of the system as small as possible in terms of reachable number of states. With the
sole purpose of reaching this crucial goal, the number of variables, channels, slots in channels and
processes was reduced to the absolute minimum without losing the generality of the validation. In
particular, except for two exceptions, all global channels were initialized with a single slot; as for
local channels, they were initialized either with a single slot or with three. Similarly, the number
of PDAs in the system in the area of coverage of the MSS was set to three. We believe that the
interaction of three PDAs with the MSS is enough to explore the whole system and bring to light
any possible error in the protocol; moreover, three PDAs is still a reasonable number if we intend to
validate the system on a desktop workstation equipped with standard current technology resources.

Besides the effort to keep the system small the resulting system can be easily categorized as a large one. Including comments, the whole of the Promela specification of the system is about 1500
lines long.

Perhaps more relevant than the number of Promela lines is the amount of RAM memory needed
to validate such a system and how long it will take to run the Spin validator.

For the moment, let us assume that we want to validate by running the Spin validator in
full exhaustive search mode. As we discussed in section 7.4 the amount of RAM needed can be
estimated by multiplying R (the number of reachable states of the system) by S (the number of bytes required to store each state). Both S and R are unknown, yet they can be roughly estimated
from the Spin output.

With the sole intention of estimating the size of the system and without any attempt at detecting
any possible errors in the system, one can run the Spin validator in full search mode and observe its
output, 'even if the validation is not complete due to lack of memory, the designer can still learn the
value of S from the output where it is reported as the size in bytes of the State-vector or something
similar, depending on the Spin version. By this approach we estimated that our system requires
about 1600 bytes to store each reachable state.

Similarly, R can be estimated by running the Spin validator in supertrace mode and observe
the hash factor and the number of stored states at the output. Following this strategy we learnt
that in one supertrace run Spin stored 1.81351 X 1007; let us assume momentarily that this is the
true number of reachable system states. Then M (the amount of memory to analyse the system in
full exhaustive mode) will be M=RXS=1.81351 X 1007 x 1.600 x 103 = 2.901616 X 1010, i. e. we
are talking of a RAM memory of the order of 30 Gbytes. Moreover, a low hash factor shown in the
output indicates that not all reachable states were stored, some of them were missed due to hash
conflicts (see section 7.7); thus, R=1.81351 X 1007 is just a poor approximation that tell us that
to analyse our system in full exhaustive mode we need at least 30 Gbytes of RAM memory.

7.12 Avoiding paging

In [168,178] Holzmann shows why it is not recommended to use disk memory to store the systen,
state. In theory it is possible, however, in practice it is strongly not recommended as the validatioll
will dramatically slow down due to read/write operations on the disk any time a new state is
generated. In fact even if the designer has no intentions of using disk memory it is strongly

7.13 Reduction of complexity of the systems 121

recommended to avoid paging so that the speed of the verification is maintained within acceptable
limits. By default (see the pan. h header file created by Spin) Spin sets the memory bound to run the
validator to 225 = 33554432 or 2 28 = 268435456 bytes, depending on whether the target computer
is a PC or not; if the default is too small Spin will waste memory, conversely, if the default is too
big, the computer will endlessly page. If the designer knows an exact memory bound, lie can set
it by using either the -DMEMCNT=N Mbytes or -DMEMLIM= N Mbytes directive during the
compilation of the Promela code. The latter directive is supported by Spin 3.3.0 and more recent
versions.

In section 7.10 we learnt that M= 512000000 for the computer we are using; accordingly, it is
advisable to set our bank of memory at 500 Mbytes in order to avoid paging. We can use either
the -DMEMLIM or -DMEMCNT compile directives as follow: -DMEMLIM = 500 Mbytes or
-DMEMCNT=2 28 bytes. Note that 2 28 = 268435456 and 2 29 = 536870912. As can be seen the
former directive gives a more precise control of the memory.

7.13 Reduction of complexity of the systems
Regardless of how much RAM memory and CPU power the designer has available in his computer,
there always will be a system that will exhaust his computational resources. In situation like this lie
can try to validate correctness criteria sepaxately as recommended in section 7.9.6; likewise, lie can
try to reduce the number of reachable states of his system by decreasing the number of processes,
variables and slots in channels; if this does not help he has to resort to a rather different approach;
namely, to divide his system into modules (protocol layers) and validate the modules separately.

The flaw of this approach is that it works well when the system can be relatively easily separated
into independent modules so that the correctness of each module validated separately holds when
all of the modules are put to work together. Except for extremely well defined protocol layers, the
separation of a system into modules is not trivial. Also, a separate module is tested with a module
tester that plays the r6le of the upper and lower layer of the module being tested. Normally, the
module tester is in charge of injecting inputs to the module, receiving its outputs and possible
feedbacking some of the outputs. Because of this, there is always a risk that the module tester
can introduce spurious errors to the system or hide real ones. Other techniques to reduce the
complexity of a system are discussed by Holzmann in [159]; we do not discuss them because they
are not relevant for the validation of our system.

7.13.1 Separate and monolithic validation
From the discussion presented in sections 7.11 and the technical information presented in section
7.10 it is clear that the size of our system clearly overflows our computational resources.

For a large system like ours, a full exhaustive search validation is infeasible. Consequently,

,
the designer has to resort to other techniques; namely, to supertrace search (see section 7.6) and
modular validation (see section 7.13).

One particular characteristic of our system is that its processes are tightly interrelated; for
example, to truly see how PDAi behaves while sending anonymous messages, all of the processes
(the public key manager, the secret and TmpId manager, the bank, the mail server, and other
PDAs) must be active because the PDAi needs the public key manager, the secret and TmpId
manager, the bank and the mail server to perform its work and because other PDAs might have

. an impact (hit its secret key for example) on PDAi

,
It can be argued that our system can be separated into independent modules and validate

each module separately; we certainly considered this possibility, however, we found that due to the

122 Validation of the model

strong interrelation of the component processes, the validation of one of them independently of the
others oversimplified the work of the process and rendered the model and the validation almost
meaningless. After all, if there is an error in the protocol, we believe that it is likely to be in the
interaction of the processes all together rather than in the interaction of two of then or inside the
code of one of them.

Because of this we make a special effort not to indiscriminately divide the system into modules;
in fact the only modules we believe that can be safely separated and validated independently of
the rest of the system without losing the essential features of the validation are: the public key
manager, the bank, and the mail server.

7.14 Selection of correctness requirements
As it can be appreciated from the discussion presented in section 7.10, checking the correctness of
a system of middle to large size on all the correctness criteria might be extremely expensive and
infeasible due to lack of computational resources. However, in most cases this level of sophistication
is not required, particularly at an early stage in the development of a system, the validation of basic
safety properties (assertion and system invariants, absence of deadlocks) and proper end-states is
more than enough [162,159].

It is time now to consider what correctness requirements we would like to impose on our
anonymizing system. In accordance with our computer resources and stage of development we
assume that it is enough to validate our system on the following list of requirements:

"t units of time after arriving at the MSS a PDA must either learn the public key of the MSS
or terminate.

"t units of time after learning the public key of the MSS a PDA must obtain a session key and
a TmpId or terminate.

" At any time, each PDA in session with the MSS must have a unique session key and unique
TnipId.

"A TnipId must last for the duration of the anonymous session.

"A session key can be changed at any time by initiative of the MSS or the PDA.

" Having finislied its anonymous session (voluntarily, forced by the MSS or due to an unexpected
interruption of the communication channel) a PDA must terminate.

"A server processes (public key manager, mail server, bank server and the XsTmpId manager)
must never terminate.

"A payment must be accepted only if the e-cash is genuine and its value is within a certain
range (minimum and maximum accepted payment).

Having provided the appropriate payment a PDA must be credited with an anonymous and
finite session time.

The anonymous session must be terminated by the MSS when the credit for a PDA expires.

Replies to anonymous messages sent by the PDA are optional. If at the end of an anonymous
session some messages are left unanswered the PDA must not block but terminate and the
resources allocated to it at the MSS's side must be released.

7.15 Validation of the public key manager module IL23

From the list of correctness requirements one can see that at this stage the emphasis of the
validation is on creating the basis for the anonymous communication. Our main aim is to guarantee
that each PDA has the right Tmpld and the right session key. To put it in abstract words, we can
say that we are dealing with a problem of mutual exclusion which can be validated by using safety
properties. On the other hand we put emphasis on process termination. More precisely, on avoiding
invalid end-states. Process termination belongs to the class of liveness property, however, in Spin
it can be validating by using its safety properties directive (see section 7.9.6), since this directive
instructs Spin to check that each process terminates in what is considered a proper end-state (see

section 7.9.2). In our case, PDAs must always terminate and disappear and servers must always
stay and wait for new clients to arrive.

Notice that the validation process has been simplified. At this stage we are not interested in
validating non-progress cycles and temporal claims. Our aim is to validate only basic correctness
properties. This simplification inevitably reduces the strength of our validation and leaves some
windows where potential errors might appear. This is discussed later on in section 7.20.

7.15 Validation of the public key manager module

Recall from the discussion presented in section 6.6.4 that the goal of the public key manager
process is to broadcast periodically to the air through a well-known (to the PDAs) port a message
containing the public key of the MSS. On the other hand, PDAs interested in learning the MSS
public key of the MSS receive the message and verify that the Kpu is correct by checking the
signature of the person or institution who vouches for the key. If the Kpu received happens to be
incorrect, the PDA waits for the next broadcast till eventually it gets a correct key or a timeout
mechanism forces it to terminate. It is worth mentioning that in our Promela code a counter that
counts the number of attempt is used instead of a timeout, if the maximum number of attempts is
reached the process terminates.

To claim that the Promela code that describes this protocol is correct we have to show two
things: First, we have to show that after a certain amount of time each PDA involved is in
pI ossession of a certified Kpu or it gives up and terminates. Second, we have to show that the
protocol complies with the correctness requirements discussed in section 7.9.

To show that a PDA is in possession of a certified Kpu we use output messages to announce that
a PDA is in possession of a Kpu key. To show that the Promela code is correct is more complicated;
it is done by analysing the Spin output.

The interaction between the PDA and the MSS is relatively simple; to prove that the protocol
is correct it is enough to prove that after a certain amount of time each initialized PDA terminates.
By termination we have in mind that each PDA process either finishes its execution or it remains
in a valid end state (see section 7.9.2). Also we want to be certain that the value of the Kpu learnt
by PDAs belong to the domain of certified Kpu. On the other hand, we have to prove that the
KpuMan process cycles back to a valid end state each time after a Kpu is broadcast. To validate
a system like this it is more than enough to check its safety properties (see section 7.9.6).

The Promela specification of the KpuMan is relatively simple, however, there is one issue that
deserves a few lines of comments here: As it was discussed in section 6.6.2, Promela support
only one-to-one communication, neither multicast nor broadcast communication is supported in
Promela; for this reason the broadcast of the Kpu key to the air has to be simplified. To get around
the problem we do not actually broadcast the Kpu key, it is just placed by the KpuMan in the
output channel, where it is eventually read by a PDA, when the Kpu is read, the KpuMan places
another one, to be read possible by another PDA, and so on.

124 Validation of the model

The Promela specification of the XpuMan can be categorized as a small system. As can be seen
in appendix A. 1, the whole code (comment lines included) is about 120 lines.

7.15.1 Simulation results
The results of the KpuMan simulation validation are shown below. Note that the line numbers are
not part of the Spin output; they are there to simplify the discussion.

7. spin -n19 KpuMan /* feed random generator with n=19 to run Spin simulator
01: PDAnum=2 GOT CERTIFIED Kpu= 12 at the NumAttempts==lth
02: PDAnum=O GOT CERTIFIED Kpu= 12 at the NumAttempts==3th
03: PDAnum=1 Failed to get Kpu after NumAttempts= 5; going to ... Aborted...
04: PDAnum--1 ... ABORTED+++ BYE-BYE-BYE

As can be appreciated from the above lines, at the end of an arbitrary run of the Spin simulator
each PDA is either in possession of a certified Kpu key or aborted. In this case, PDA with numbers
2 and 0 managed to get a certified Xpu, while PDA with number 1 fails and terminates in abortion
(line 04).

To support the results of the Spin simulator, we will validate the system using the Spin validator.

7.15.2 Validation results
By following the approach presented in section 7.11 we can learn that the number of reachable
states in the system to check safety properties is approximately R= 140415 and that the number
of bytes needed for each state is about S= 84. It follows that the memory needed to validate
this system is RxS= 11797380 bytes, i. e. only about 12 Mbytes. We can certainly validate the
KpuMan in full exhaustive mode using our platform with 512 Mbytes.

By compilingthe KpuMan codeby Z cc -DMEMLIM=16 -DSAFETY-opan pan. cwe obtained
the executable file called pan. Since we expect about R= 140415 states, and R is between 217 =
131072 and 218 = 262144) it is recommendable to execute Ilo pan -w18; this means a hash table
with 262144 entries. Recall from section 7.4 that the option -wNspecifies the size of the hash table
as 2N states to be stored.

Needless to say that there is no risk of exhausting our RAM memory since 262144 X 84
22020096 bytes is less than our M of 512 000 000 bytes. In regard to CPU time, it takes only about
5 seconds to complete the validation.
% spin -a KpuMan /* generate an analyser for the Promela specification

/* of KpuMan and store it in pan. c

% gcc -DMEMLIM=16 -DSAFETY -o pan pan. c /* compile the pan. c verifier into the pan file
/* analyse SAFETY properties only, use no 'more
/* than 16 Mbytes

% pan -08 /* allocate a hash table for 2^18= 262144 states and run the Spin validator
01: (Spin Version 3.3.5 -- 28 September 1999)
02: + Partial Order Reduction
03:
04: Full statespace search for:
05: never-claim - (none specified)
06: assertion violations +
07: cycle checks - (disabled by -DSAFETY)
08: invalid ondstatos +

7.16 Valiclation of the mail server 125

09:
10: State-vector 84 byte, depth reached 123, errors: 0
11: 140415 states, stored
12: 47624 states, matched
13: 188039 transitions (= stored+matched)
14: 16 atomic steps

'15: hash conflicts: 26215 (resolved)
16: (max size 2-18 states)
17:

The above lines show that after an exhaustive search no errors concerning safety properties were
detected. Spin printed the number of states stored and matched (lines 11 and 12 respectively).
Stored states are the states that were stored in the hash table. Finally, matched states are states
that were analysed and stored in the hash table and later revisited and discarded. The output also
shows (line 15) that during the search 26215 hash conflicts were resolved (see section 7.7).

7.16 Validation of the mail server
From the discussion presented in section 6.6.8 we learnt that the MailSvr process is linked to each
MSSses process serving a PDA who has successfully opened an anonymous session. Rom each
MSSses process the MailSvr receives messages Bob want to send to Alice. When a message arrives
the MailSvr forwards it to its final destination. Also the MailSvr process receives Alice's replies to
Bob. When an Alice's reply arrives, it forwards it to the corresponding MSSses in order that the
MSSses forwards it to Bob.

7.16.1 Simulation results
To show that the Promela specification of the MailSvr is correct the output of have to show that the
MailSvr receives messages coming from MSSses processes and that the MSSses processes receives
replies to some of the messages. Note that replies to Bob messages are at Alice's discretion. She is
not expected to reply to all of the messages she receives.

% spin -n12 MailSvr /* feed random generator with n=12 to run Spin simulator
01 MailSvr: has rcvd a msg from PDA tmpId=l

02 MailSvr: has rcvd a msg from PDA tmpId=2
03 Mssses: rcvd reply for PDA tmpId= 2

04 MailSvr: has rcvd a msg from PDA tmpId=l
05 MSSses: rcvd reply for PDA tmpId= 1

06 MailSvr: has rcvd a msg from PDA tmpId=2

07 MailSvr: has rcvd a msg from PDA tmpId=O
08 MSSses: rcvd reply for PDA tmpId= 0

21
22 MSSses: tmpId=O has finished: HAPPY END BYE-BYE-BYE

26 MSSses: tmpId=l has finished: HAPPY END BYE-BYE-BYE

30 MSSses: tmpId=2 has finished: HAPPY END BYE-BYE-BYE
31
32

126 Validation of the model

From the above output lines we can see that in line 01 the MailSvr receives a messages from
the PDA with tmpId=l. Yet there is no reply for it. In line 02 the MailSvr receives a messages
from the PDA with tmpld=2 and in line 03 the MSSses receives a reply to that messages. Lines 04
to 08 show similar information. In lines 22,26, and 30 the output shows the termination of PDA
sessions with tmpId=O, tmpId=l, and tmpId=2 respectively.

The output of the Spin simulator is not enough to claim that the Promela specification for the
MailSvr complies with the correctness requirements; to prove this we have to validate it using the
Spin validator and prove safety properties.

7.16.2 Validation results

By following the approach presented in section 7.11 we empirically learnt that the number of
reachable states expected for this system is about R= 293934 and that the number of bytes needed
to store each state is S= 240. It follows that we need about RxS= 300000 x 240 = 70544160
bytes of RAM memory. Naturally, we can validate this system in full exhaustive mode in our
platform omputer with 512 Mbytes. If 218 = 262144 and 219 = 524288 We need a hash table with
219 = 524288 entries only. As to the CPU time, it takes only about 20 seconds to complete the
validation.

spin -a MailSvr /* generate an analyser for the Promela specification
/* of MailSvr and store it in pan. c

gcc -DMEMLIM=500 -DSAFETY -DVECTORSZ=512 -DPC -o pan pan. c /* compile the
/* validator in pan. c into the executable pan file

pan -w19 /* allocate a hash table for 2^19= 524288 states and run the Spin
/* validator

01 (Spin Version 3.3.5 -- 28 September 1999)
02 + Partial Order Reduction
03
04 Full statespace search for:
05 never-claim - (none specified)
06 assertion violations +
07 cycle checks - (disabled by -DSAFETY)
08 invalid endstates +
09
09 State-vector 240 byte, depth reached 192, errors: 0
10 293934 states, stored
11 158380 states, matched
12 452314 transitions (= stored+matched)
13 0 atomic steps
14 hash conflicts: 57500 (resolved)
15 (max size 2-19 states)
16

The output lines above show that 293934 states were stored, that 57500 hash conflicts were
resolved and that no errors were detected by the validator.

. 7.17 Validation of the bank server

7.17 Validation of the bank server

127

From the discussion presented in section 6.6.7 we already know that the job of the bank process
is to, verify the genuineness of e-cash sent by PDAs to the MSS as payment for an anonymous
session. It is the MSSses process who forwards the e-cash. received from a PDA to the bank and
then wait for a reply. The reply is either GenuineEcash or FakeEcash; naturally, in the former case
the payment is accepted by the MSS and in the later refused.

-
To prove that the Promela specification of the bank process is correct we have to show that the

bank indeed receives and e-cash and replies to the MSS. Note that for the sole purpose of validating
the bank Promela specification the e-cash sent by the MSSses process to the bank is created by
the MSSses itself; in the whole system this e-cash comes from a PDA.

7.17.1 Simulation results
The following lines show the output lines of the Promela simulator when its random number genera-
tor is initiated with the value of 100. Note that the following assumption were made in the Promela
specification: First, e-cash of value -1 are considered a fake; second, cash of value greater than 0
are considered genuine; finally, the number of attempt to send a valid payment is restricted to 3;
in no more that three attempts the PDA either succeeds and goes to a state where the anonymous
session is supposed to begin and block, or terminates in abortion,

% spin -n1OO bank /* feed random generator with n=100 to run Spin simulator
01 BANK: rcvd FakeCash payment=-1 from PDA with tmpId=O
02 BANK: rcvd FakeCash payment=-I from PDA with tmpId=l
03 BANK: rcvd FakeCash payment=-1 from PDA with tmpId=O

04 BANK: rcvd GenuineEcash payment=15 from PDA with tmpId=2
05
06 MSSses: AnoSes opened for PDA with tmpld=2 (payment=15)

07 BANK: rcvd FakeCash payment=-1 from PDA with tmpId=O

10 MSSses: PDA with tmpId=O failed to pay: ... ABORTED.... BYE-BYE-BYE

11 BANK: rcvd FakeCash payment=-l from PDA with tmpId=l
12 BANK: rcvd GenuineEcash payment=20 from PDA with tmpId=l
13
14 MSSses: AnoSes opened for PDA with tmpId=l (payment=20
15

I As can be appreciated from the above lines, the PDA with tmpId=O sends fake e-cash to the
bank in its three attempts (lines 01,03, and 07); consequently, it fails to pay for the anonymous
session and terminates in abortion (line 10).

The bank receives a fake payment from the PDA with tmpId=l on lines 02 and 11; however,
on line 12 it receives a genuine e-cash from the PDA, thus, an anonymous session is opened for it
in line 14.

The PDA with tmpId=2 is the most efficient of the PDA group, it succeeds in sending genuine
cash in its first attempt (line 04), thus, an anonymous session is opened for it in line 06.

-
According with the results, we can argue that the Promela specification of the bank does what

we expect, however, to claim that the system is correct we have to verify that the correctness
criteria we include in the code, namely, safety properties, hold true by validating it with the Spin
validator.

128

7.17.2 Validation results

Validation of the model

As can be appreciated from the Promela code presented in section A. 3, the bank process contains
(comment lines included) 197 lines. Following the strategies introduced in section 7.11 we learnt
that the expected state space for the system is about 764346 states and that we need 232 bytes to
store each state. It follows that we need roughly 764346 x 232 = 177328200 bytes to analyse the
system in full exhaustive mode. We can certainly analyse it in our platform of 512 Mbytes. To use
the RAM memory efficiently we can instruct Spin to allocate a hash table for 764346 states (see
section 7.4. Since 219 = 524288 and 2 20 = 1048576, we need to set the -wN Spin option as -w20.
From the point of view of CPU time, the system can be considered small, it takes only about 47
seconds for the validation to complete.

spin -a bank /* generate an analyser for the Promela specification
/* of bank and store it in pan. c

gcc -DMEMLIM=500 -DSAFETY -DPC -DVECTORSZ=256 -o pan pan. c /* compile the
/* verifier stored in pan. c and generate an executable file in pan

% pan -w20 /* allocate a hash table for 2-20= 104857 entries and run the Spin validator
01 Fri Dec 3 17: 33: 53 GMT 1999
02 (Spin Version 3.3.5 -- 28 September 1999)
03 + Partial Order Reduction
04
05 Full statespace search for:
06 never-claim - (none specified)
07 assertion violations +
08 cycle checks - (disabled by -DSAFETY)
09 invalid endstates +
10
11 State-vector 232 byte, depth reached 148, errors: 0
12 764346 states, stored
13 281699 states, matched
14 1.04604e+06 transitions (= stored+matched)
15 0 atomic steps
16 hash conflicts: 115543 (resolved)
17 (max size 2^20 states)
18

The above output lines show that the Spin validator stored 764346 states, that the space
occupied for each state was 232 bytes. Spin analysed a total of 1046040 states (transition states),
281699

'
of them are reported as matched, i. e. visited more than one time. Next, in line 16 Spin

reports 115543 hash conflicts resolved (see section 7.7). Finally, and the most important, Spin
reports in line 11 that no errors were detected during the validation, thus, we can claim that the
system is correct.

7.18 Validation of the backbone of system
]A -om the discussions presented in sections 7.9.6 and the technical information about available
memory resources presented in 7.10 we learnt that it is infeasible to validate our system by full

exhaustive search. In section 7.13.1 we argued why it is not recommended to separate tile systell,
indiscriminately into modules and validate each module separately. Because of these reasons we

7.18 Validation of the backbone of system
ýI

129

decided to validate together as many modules as possible. From the whole Promela specification
we have separated the KpuMan, the bank and the mail server and nothing else. What is left is
what we call the backbone of the system since it includes the main components, namely, the three
PDAs, the Xs and TmpId manager, and the three MSS session process.

7.18.1 Simulation results
To prove that these processes do what the designer expects, we have run the Spin simulator and
analysed its output lines. Since we are dealing with the main components of the system, the output
lines here have to show the main aspects of the algorithm we presented in section 5.10.3. Once

again, here Bob is a PDA user and Alice is the destination of Bob's messages.

Each PDA arriving at the MSS either registers with the MSS and is given a Ks key and a
TmpId or terminates. In addition, we have to show that a Xs key can be renewed during the
anonymous communication session.

In an actual implementation of the system the Ks key is used to encrypt/decrypt messages
travelling from the PDA to the MSS and in the opposite direction. Since the encryption and
decryption of messages are arithmetic operations and irrelevant to the communication they
are not shown here.

We show that Bob can send an e-coin as a payment to the MSS and that the e-coin can
be accepted or rejected by the MSS. In addition, we show that after certain amount of time
the prepaid time expires and Bob either extends it by sending another e-coin or accepts the
abrupt termination of his session. N seconds before the prepaid time expires, Bob receives a
warning message.
In an actual implementation; the time to warn the PDA user and the time to terminate the
session are measured by a timeout mechanism; in our validation model, and for the sake of
simplicity, we use a counter that decrements one unit of time for every message sent by Bob
to Alice. We consider that this does not affect the behaviour of our system.

Note that Alice's replies are not shown in the output of the backbone of the system because
the mail server module is out of the validation, this output will be shown is section 7.19 where the
whole system is simulated.

Before analysing the output of the simulator it is important to mention that the PDA Promela
code is composed of three layers (the PDAuser, PDAses, and PDAtcp), hence, when a PDA finishes
it interaction with the MSS, all of these three processes must terminate and the resource (the
channels and the TmpIds for example) they use must be released.

This observation, however, immediately leads to an obvious question, call these resources be
reused? In theory the answer is yes; they can be reused by new PDAs, however, for this to be
safe, we would need a mechanism to recycle the identifiers used to name them. Not to be involved
with additional complexity irrelevant to the communication protocol, we decided not to reuse any
resource.

Another restriction to keep in mind is that in the Promela specification we restricted the values
of valid session keys to 1,2,3, and 4; other values are considered invalid. Similarly, valid values
for TmpId are: 0,1,2,3, and 4; other values are considered out of domain. Finally, the minimum
amount of money accepted for opening or extending an anonymous session is 15 and the maximum
accepted is 100. Values less than 0 are considered a fake.

I,
What follows are the output lines of a single run of the simulator whose random number

generator was initialized with the arbitrary value of 3456.

130 Validation of the model

spin -n3456 SysBackBone /* feed the random generator with 3456
/* and run Spin simulator

001 PDAses: PDAnum=l; pid=4 RgTED Ks=3 (tmpId= 0) after i=l attpt
002 MSSses: rcvd FakeEcash I too little or to big money=l from PDA-tmpId=O

003 PDAses: PDAn==2; pid=7 RgTED Ks=l (tmpId= 1) after i= I attps
004 MSSses: rcvd GenuineEcash=20 from PDA-tmpId=l

005 MSSses: rcvd FakeEcash I too little or to big money=l from PDA-tmpId=O

006 PDAses: PDAnum=O; pid=5 RgTED Ks=2 (tmpId= 2) after i= 1 attps
007 MSSses: rcvd GenuineEcash=20 from PDA-tmpId=2

008 MSSses: credit=10 CreditLeft=10 for PDA-tmpId=l

010 PDAses: PDA-tmpId=l ASKING to change DldKs=l

Oil MSSses: rcvd GenuineEcash=20 from PDA-tmpId=O

042 PDAses: tmpId=l GOT new Ks DldKs=l NewKs= 4

083 MSSses: credit=O CreditLeft=7 for PDA-tmpId=l

085 PDAuser: PDA-tmpId=l has been TimeAlerted
086 PDAuser: PDA-tmpId=l has sent EXTRA payment=20

093 MSSses: credit=O CreditLeft=5 for PDA-tmpId=l

099 MSSses: PDA-tmpId=l SENT extra payment=20 to bank

102 MSSses: credit=O CreditLeft=8 for PDA-tmpId=2

109 PDAusor: PDA-tmpId=O has been TimeAlerted

Ill PDAuser: PDA-tmpId=O has sent EXTRA payment=20

115 PDAuser: tmpId=l AnoTime INCRTED

118 PDAuser: PDA-tmpId=2 has been TimeAlerted
119 PDAuser: PDA-tmpId=2 has sent EXTRA payment=O

124 MSSses: credit=O CreditLeft=5 for PDA-tmpId=O

126 MSSses: PDA-tmpId=2 SENT extra payment=O to bank

128 MSSses: PDA-tmpId=O SENT extra payment=20 to bank

129 MSSses: credit=14 CreditLeft=10 for PDA-tmpId=l

134 PDAusar: AnoTime NOT incremented for PDA-tmpId= 2

135 PDAuser: tmpId=O AnoTime INCRTED

As can be seen from the output lines. There are three PDAs interacting with the MSS. To
be able to tell thein apart before they are given a proper tmpld by the MSS we called then,
PDAnum=O, PDAmin1=1 and PDAnuzn=2.

7.18 Validation of the backbone of system 131

On line 001 the PDAnum=I manages to register a Ks=3 with the MSS and in return it is

given a tmpld=O. Likewise, on line 003 the PDAnum=2 registers a Ks=1 and receives the
Finally, on line 006 the PDAnum=O is assigned the tmpId=2 after registering

Ks=2. Note that both the session keys and the tmpIds are unique. From now on we will refer
to PDAs by they tmpIds.

On line 002 the PDA with tmpId=O tries to open an anonymous session with the MSS,
unfortunately the money it sends is below the minimum payment accepted by the MSS,
consequently the payment is refused. On line 005, it fails again. Finally, it manages to pay
for the anonymous session on line 011 where it sends 20 units of genuine money.

On line 004 the PDA with tmpId=l successfully pays for opening an anonymous session. It
sends 20 units of genuine money to the MSS. From the total payment, 10 units of money
are reserved as Creditleft and the rest as credit (see line 008). The credit part of the money
is immediately used to charge the PDA user for every single message lie sends to the MSS.
The CreditLeft money is used after the credit is run out and the PDA user is alerted about
his communication time being about to finish. When the CreditLeft money runs out, the
communication session is abruptly terminated.

On line 083 we can see that the credit money for PDA with tmpId=l has run out. Thus, on
line 085 the PDA is time-alerted; as a result, it sends 20 units of money to the MSS to extend
its communication session on line 086. The time extension takes place on line 115. Note that
after the PDA is time-alerted and before the money to pay for an extension arrives, the MSS
is still serving the PDA and charging it from the CreditLeft money (line 093) until it runs out
or new money arrives. The result of the extension can be seen on line 129, where the PDA
shows credit=14 and CreditLeft=10.

On line 118 the PDA with tmpId=2 is time-alerted. Thus, it tries to extend its anonymous
session by sending a payment=O to the MSS (line 119), although the payment is genuine for
the bank, it is not within the rank of accepted values for the for the MSS, consequently, the
payment is refused by the MSS on line 134 and the anonymous time is not incremented..

The PDA with tmpld=O is time-alerted on line 109, thus, it sends 20 units of money on line
111; the payment is accepted and the anonymous time incremented on line 135 for the PDA.

Each PDA can ask the KsTmpId process to change the PDA's Ks key any time during the
anonymous communication session. The PDA with tmpld=l decides to ask for a Ks change
on line 010; as a result, it receives a new Ks on line 042.

The output of the Spin simulator is not enough to claim that the backbone of the system is
correct; to prove that the system complies with the correctness criteria included in its Promela
specification it has to be explored by the Spin validator.

7.18.2 Validation results
The Promela specification of the system backbone is shown in appendix A. 4. In terins of number of
lines, the size of the system is about 1300 lines (with comment lines included). The precise number of
reachable system states and Mbytes of memory needed to validate this system is impossible to know.
Yet by following the approach presented in section 7.11 it can be estimated that the system has at
least 4.14323 X 107 states and each state occupies about 1780 bytes. The amount of RAM memory to

132 Validation of the model

validate this system in full exhaustive mode would be 4.14323 x 107 x 1.780 x 103 = 7.374949 x 1010
7

which is approximately 73 Gbytes of memory. It is clear that we cannot validate such a system in
our platform using Spin in full exhaustive mode. We have to resort to supertrace mode and take
tile best of it.

From section 7.10 we learilt that there is a trade-off between run-time and coverage in supertrace
mode. Also, we estimated that the CPU time to analyse 4.5 x 107 states is about one hour and
that the size of tile hash table for such a number of states is 2 26

'
We decided that CPU times longer than one hour for a single run are beyond the limits, for this

reason, we validated tile backbone of tile system using a hash table of 2 25 entries. Unfortunately,
the hash factor of the validation is only about 2.0, which means a poor coverage. Recall from
section 7.6 that the hash factor measures tile coverage of tile run and that hash factors near 1.0
imply low coverage and hash factor over 100.0 mean high coverage.

In tile last resort not to separate tile whole system indiscriminately into modules and to improve
the coverage of the validation we used sequential multiliash techniques (see section 7.8). We ran
tile Spin validator with 16 different pairs of hash functions (pan -w25 -R16).

Before analysing tile results of tile validation it it worth commenting that to prove that tile
backbone of the system is correct we focused only on checking safety properties. We believe that
at this stage of tile development it is enough to claim that the system complains to correctness
requirements. Safety property were included in the Promela specification in the form of assertion
statements to guarantee several conditions:

" To guarantee that a Ks key is within a certain domain and that each Ks is unique.

" To guarantee that TmpId are within a certain domain and that they are unique.

" To guarantee that the payment for the anonymous session is within the limits accepted by
the MSS.

" To guarantee that, after the expiration of Bob's prepaid time, t. lie MSS does no forward any
message from Bob to Alice and from Alice to Bob.

" To guarantee that after a certain time all the instantiated processes reach a valid end state.
In this case, all the instantiated processes, except for the KsTmpId process which remains
blocked in valid end state waiting for the arrival of a new PDA, terminate.

The results of the validation are shown in the following lines:

spin -a SysBackBone /* generate an analyser for the Promela specification
/* of SysBackBon and store it in pan. c

gcc -DMEMLIM=500 -DVECTORSZ=2048 -DBITSTATE -DSAFETY -DPC -o pan pan. c
/* generate an executable spin validator in the pan file

pan -w25 -R16 /* run the spin validator using 16 different pair of hash
/* functions

Run 1:
1.81076e+07 states, stored
2.221e+07 states, matched
4.03176e+07 transitions (= storcd+matched)
6.87069o+06 atomic steps
hash factor: 1.85306 (best coVerage if >100)

7.18 Validation of the backbone of system

Run 2:
1.85122e+07 states, stored
2.0463e+07 states, matched
3.89753e+07 transitions (= stored+matched)
8.30765e+06 atomic steps
hash factor: 1.81255 (best coverage if >100)

Run 3:
1.78501e+07 states, stored
2.2038e+07 states, matched
3.98881e+07 transitions (= stored+matched)
6.22926e+06 atomic steps
hash factor: 1.87979 (best coverage if >100)

Run 4:
1.73915e+07 states, stored
2.10173e+07 states, matched
3.84088e+07 transitions (= stored+matched)
6.81976e+06 atomic steps
hash factor: 1.92936 (best coverage if >100)

Run 5:
1.859e+07 states, stored
2.00003e+07 states, matched
3.85903e+07 transitions (= stored+matched)
1.41714e+07 atomic steps
hash factor: 1.80497 (best coverage if >100)

Run 6:
1.83468e+07 states, stored
2.30855e+07 states, matched
4.14323e+07 transitions (= stored+matched)
6.24582e+06 atomic steps
hash factor: 1.8289 (best coverage if >100)

Run 8:
1.86209e+07 states, stored
2.04937e+07 states, matched
3.91146e+07 transitions (= stored+matched)
8.51168e+06 atomic steps
hash factor: 1.80198 (best coverage if >100)

Run 9:
1.83666e+07 states, stored
2.28473e+07 states, matched
4.12139e+07 transitions (= stored+matched)
6.62465e+06 atomic steps
hash factor: 1.82693 (best coverage if >100)

Run 10:
1.85906e+07 states, stored
2.05512e+07 states, matched
3.91417e+07 transitions (= stored+matched)
8.32099e+06 atomic steps
hash factor: 1.80492 (best coverage if >100)

133

, Run It:
1.81843e+07 states, stored

134

1.929e+07 states, matched
3.74743e+07 transitions (= stored+matched)
1.36091e+07 atomic steps
hash factor: 1.84524 (best coverage if >100)

Run 12:
1.77686e+07 states, stored
2.1414e+07 states, matched
3.91826e+07 transitions (= stored+matched)
6.5271e+06 atomic steps
hash factor: 1.88841 (best coverage if >100)

Run 13:
1.79687e+07 states, stored
2.23608e+07 states, matched
4.03296e+07 transitions (= stored+matched)
6.6289e+06 atomic steps
hash factor: 1.86738 (best coverage if >100)

Run 15:
1.80276e+07 states, stored
2.20338e+07 states, matched
4.00614e+07 transitions (= stored+matched)
6.37275e+06 atomic steps
hash factor: 1.86128 (best coverage if >100)

Run 16:
(Spin Version 3.3.5 -- 28 September 1999)

+ Partial Order Reduction

Bit statespace search for:
never-claim - (none specified)
assertion violations +
cycle checks - (disabled by -DSAFETY)
invalid endstates +

State-vector 1780 byte, depth reached 2972, errors: 0
1.7194e+07 states, stored
1.76727e+07 states, matched
3.48667c+07 transitions (= stored+matched)
8.49598e+06 atomic steps
hash factor: 1.95152 (best coverage if >100)
(max size 2-25 states)

Validation of the model

Rom tile output of tile Spin validator we have learnt that the system consists of more that
4x 107 states, that 1780 bytes are needed to store each state, and tile best, that after exploring tile
system with 16 different hash functions no errors were detected. It is perhaps worth mentioning
that it takes roughly less than 16 hours of CPU time to complete that validation.

The result also show that the hash factor of each run is only about 2.0. We pointed out ill
section 7.6 that hash factors greater that 100.0 are recommended because theY imply a coverage
close to 100% of the total number of reacliable system states. However, a hash factor lower than
100.0 should not be underestimated. Holzmann has shown [168] that in some cases a hash factor
of 4.0 corresponds to a coverage of 93%.

Grounded oil this empirical knowledge we argue that although tile hash factor of our validation
is only about 2.0 for a run with a single pair of hash functions, by running the validator witil 16

749 Simulation of the whole system IL35

different pairs of independent hash functions we readied a coverage closer to 100%. On this account
we can safely claim that the backbone of the system is correct.

7.19 Simulation of the whole system
Having validated the public key manager, the mail server, the bank, and the backbone of the
system, there should be a high degree of confidence about the correctness of the whole system.
Although it is computationaly impossible to validate it, we can still run a single simulator to see
how the different components of the system interact. To make the output lines clearer, we decided
to simulate it for a single PDA only. The result of the simulation are shown next and are aimed to
show that Bob can send anonymous messages to Alice and that if Alice decides to reply, Bob can
receive Alice's reply.

spin -n3456 AnoConComm-1PDA /* feed random generator with= 3456
/* and run Spin simulator

01 PDAses: PDAnum--O; pid=5 HAS RgTED Ks=5 (tmpId= 0) after i= I attps

02 BANK: GenuineEcash payment= 20 rcvd from PDA-tmpId= 0

06 MSSses: tmpId=O credit=9 CreditLeft=10

12 MSSses: tmpId=O credit=5 CreditLeft=10

13 ===+++>PDAuser tmpId= 0 chnum= 0 GOT E-MAIL addr= XX txt= YY

14 MSSses: tmpId=O credit=4 CreditLeft=10

15 === ... >PDAuser tmpId= 0 chnum= 0 GOT E-MAIL addr= XX txt= YY

19 MSSses: tmpId=O credit=O CreditLeft=10

20 PDAuser tmpId=O has been TimeAlerted

21 PDAuser tmpId=O has sent EXTRA payment=20

On line 01 Bob's PDA succeeds in registering a session key with the MSS and in return lie
receives a tmpld=O. Next, on line 02, the PDA pays for its anonymous session. Line 06 shows that
the amount of money Bob was credited for is being used. On line 06 lie has 19 units of time while
on line 12 he has only 15. On line 13 Bob receives an answer to one of the anonymous messages
he sent to Alice. The same happens on line 15. On line 19 Bob is running out of session time (lie
is left only with 10 units of money), therefore, his PDA is time-alerted by the MSS (line 20). Oil
line 21 Bob sends 20 units of money to extend his anonymous session.

7.20 Coverage of the validation
In section 7.14 we specified what correctness requirements our anonyinizer systems must meet at
this stage to be considered correct. Even though we focused only on safety properties and process
termination Spin helped detect several errors:

136 Validation of the model

" Unexpected messages and messages sent to incorrect receivers, which would have cause dead-
locks.

" Subtle deadlocks between processes running on the PDA and the MSS.

" Incorrect termination of processes at the MSS after unexpected termination of the communi-
cation session at the PDA side. This causes unnecessary hold of resources.

" Subtle errors in the session key and TpmId tables stored by the MSS which were easily
detected by assertion violations.

At this stage we significantly reduced the correctness requirements of our system. Except for
process termination, we did not validate its liveness properties. Because of this simplification we
cannot claim yet that our system complies with correct liveness properties. Consequently, we cannot
claim yet that our system, our PDAs for example, does not suffer from service starvation. Moreover,
without validating temporal claims we cannot guarantee that contentions in our system are fairly
resolved. Likewise, we cannot claim yet that messages sent over the Promela reliable channels (see
section 6.6.9) arrive safe, not duplicated and in first-in-first-out order. A brief introduction to
service starvation and fairness requirements is presented in [179].

7.21 Spin limitations

Spin is a protocol validator based on exhaustive global state generation. Hence, in theory Spin can
validate any system provided that its number of reachable states is finite [172]. Promela does not
restrict the number of processes, message queues, length of message queues and variables that can
be created. This number can be arbitrarily large as long as it is finite. At first glance the problem
seems easy and one can get the impression that the only two things the designer needs to validate
large systems are a large memory and plenty of CPU time. However, the point not to be missed is
that a large memory can easily mean several Gigabytes. Similarly, plenty of CPU time can easily
mean millions of years. Due to the space explosion problem, in practice it is extremely important
that the number of processes, message queues, length of message queues and variables be restricted
as much as possible, but without losing important features of the system. Failure to keep this
number small results in systems with prohibitively large number of reachable system states that
can be validated only with poor coverage.

Because of these restrictions Spin does not perform well when it comes to validating protocols
with random inputs within a wide range. In our particular case for example, what was supposed to
be a key randomly selected from a large domain had to be selected from a random choice between
six values. This limitation caused some difficulties in reusing session keys.

Another limitation of Spin validation is that communication in Promela is one-to-one. It does
not support either multicast or broadcast. This limitation becomes apparent when the designer
wishes to simulate a MSS broadcasting to the air its public key and other messages addressed to
the public or to anybody who can understand them.

In Promela, timeouts are intensively used to escape hang states. Interestingly enough, Promela
does not have a mean of specifying timeout intervals. Timeout is just a timeout possibility, somL,
thing that will eventually happen. This abstraction is justified [159,180] on the basis that if an
untimed Proincla model is correct, it guarantees to preserve its correctness under all Possible real
time constraints. However, there are situations where the designer wishes to timeout two or more
event in a certain order (event p before event q for example). In cases like this the power of Promela
clearly weakens.

ý ý7.. 22 Summary 137

A possible way of getting around the lack of time intervals of Promela timeouts is by specifying
timeouts in terms of numbers of attempts to do something. For example, to rescue a PDA from
hanging at a MSS while trying to learn its public one can restrict the number of incorrect MSS
public keys received instead of restricting the trying time to t units of time. Obviously, we are
assuming that the MSS never fails to deliver either correct or incorrect keys.

7.22 Summary

To ensure that a distributed system is correct, its communication protocol must be specified and
validated. State-of-the-art validation techniques involve the use of software tools which are called
protocol validators, or just validators.

In the academic environment, the most successful protocol validator is Spin. It can be down-
loaded for free from the Internet. Spin is a generic verification system that accepts design specifica-
tion written in Promela. Spin's validation of correctness is based on the analysis of the reachability
of system states.

Small systems can be validated in a full exhaustive search which guarantees 100% coverage as
Spin explores all reachable states. However, it can happen that the computer runs out of memory
and the full search deteriorates into an uncontrolled partial search. In cases like this, one can resort
to a controlled partial search (or supertrace controlled partial search) where Spin makes the best
use of the available memory to validate the system regardless of its number of states. Naturally,
100% coverage is not guaranteed but the results are still of practical use. Also, it is feasible that
the memory is large enough to store the states of the system but the CPU time to validate it is
prohibitively large. CPU time can be reduced by reducing the number of states to validate. The
designer can reduce this number simply by limiting the memory allocated to Spin to a certain
number of megabytes.

The anonymizing system introduced in this work can be considered large; consequently, to
validate it, it was separated into independent modules. Next, each module was validated separately
either by full exhaustive search or supertrace controlled partial search.

At early stages of the development of a system it is normally enough to validate only safety
properties (deadlocks, unspecified receptions, assertions and system invariants) and process ter-
mination. Having passed the safety property tests, the designer can move oil to validate liveness
properties (progress cycles, livelocks and temporal claims). Since the anonyinizing system proposed
in this work is at an early stage in of development, is was tested on safety properties only. Re-
gardless of some limitations present in the Spin validator, Spin is certainly helpful to detect design
errors. According to the Spin's outputs, the system is error free at this stage.

138 Validation of the model

Chapter 8

Enhancing the basic system

8.1 Introduction

In chapter 5 we introduced a system to make anonymous calls from a PDA based on the public
telephone box paradigm. The protocols, in finite state diagrams and Promela, language to implement
the our proposal were presented in chapter 6. As was stated, our strategy was to keep the system
as simple as possible so that its central ideas were easy to explain and understand. This forced
us to leave out issues that have to be considered in a real life implementation and usage of the
resulting system. In this chapter this issues are discussed and some refinements to the system are
suggested. Due to space and time constraints we do not go in to detail in our discussion; our sole
intention is to make the reader aware of problems that need further attention. This chapter is
therefore tentative.

8.2 Traffic analysis
Message encryption prevents Ebe, an intruder, from understanding the contents of messages ex-
changed between Bob to Alice. Yet it does not prevent him from overhearing that something is
being transmitted through the network.

Though Ebe, cannot extract the contents of the message, lie can observe the pattern of the
messages and determine the location of the hosts involved in the communication, the frequency
and length of messages being transmitted. This type of attack is known as traffic analysis and is
something we have not taken into account in our system.

In an extreme case, Bob and Alice might be the only two persons connected to the network
or to the segment that links them, if this is true, traffic analysis would leave Ebe without ally
doubt that Bob is e-mailing Alice and the anonymity of Bob would be considerable reduced. To
meddle in Bob's affairs Ebe can just e-mail Alice, anonymously if lie wishes to, and tell her that
the anonymous message she has just received was sent by Bob.

,,
The risk of traffic analysis in our system can be prevented easily -at the expense of efficiency

and complexity- by deliberately keeping the communication lines active with bogus message traffic.
The MSSs for example may be equipped with a mechanism for sending bogus messages to each

'other,
at random intervals of time and of different length. A snapshot of the network loaded with

bogus messages is shown in figure 8.1.
The idea behind this is that if Ebe is meddling with the lines that connect the anonymous

cal ,I- er's current MSS and Alice's WS to the network lie can never find out whether the traffic lie
detects was originated at MSSI, is a bogus message or is a meaningful one. Neither can lie tell if

140 Enhancing the basic systern

NISS2-"

bo us messages

Caller's PDA

?
NISS NISS3ý,

ws

Alice

NISSn

Legend: PDA-- Personal Digital Assistant
MSS-- Mobile Support Station
WS-- Work Station

Figure 8.1: Prevention of traffic analysis.

a meaningful message reaching MSS3 from a bogus one.

8.3 Coexistence of physical and electronic cash

The main motivations we had for founding our system on the use of electronic cash were the
advantages of e-casli over physical cash discussed in sections 5.5.1 and 5-6. Tile possibility for the
anonymous caller to send his e-coin to tile MSS remotely from tile park bench where lie can be
sitting down while sending his anonymous message certainly contributes to hiding his identity.

Another motivation we had in mind when we decided in favour of e-casli against physical casil
was the assumption that in the early years of tile 21st century e-cash will be widely accepted and
available. Note that we are only saying that e-cash will be widely used and not saying that physical
cash will disappear as many authors have predicted.

Predicting that physical cash will disappear from tile business world is not a safe bet at all but
a debatable claim. To please both contentious parties one can say that in the future there will be
as imich e-casli as physical, i. e. they will coexist and complement each other rather than compete.
Though this may sound as an easy way of avoiding confrontations, our last guess makes sense wilen
one goes beyond the boundaries of computer technology to see how new technologies are normally
accepted by human beings. With few exceptions, old technologies do not disappear completely
from tile scene when now ones are deployed, some of them share the space on equal terms, other
lose importance and stay behind, however, still in existence. To support this with real life examples
we call mention that although cars outperform liorses in terms of power and speed, liorses are still
used, police forces find thein appropriate in more than one situation; there are only a few of t1lem
but they are still there. Similarly, airplanes are quicker than cars and can fly, notwithstanding,
they have not replaced the latter and they never will. Last example, television brings not only
sound but pictures as well, yet it peacefully shares the audience with the old-fashioned radio.

The main reason why now teclinologics coexist with new ones is that it is hard, if not impossible,
to create a new technology that outperforms the old one in entirely all aspects. For example, all

8.4 Text analysis ý IL41

airplane outperforms a car when it comes to travelling long distances (thousands of kilometers),
yet a car is better for travelling short ones.

Another factor of major importance regarding the resistance to the acceptance of new tech-
nologies is inertia. Once a technology becomes entrenched, it is very difficult to change it. Social,
cultural, organizational, and emotional factors resists the change.

Humans are sentimental creatures. Thus, after certain time, they fall in love with what they use
and find it difficult to depart from it. Consequently, sometimes they would preserve old technologies
for the sole pleasure of having it and doing things the old traditional way. Though car lovers will
claim the opposite, horse riders will offer convincing arguments to prove that the pleasure of riding
a car is nothing compared to riding a horse. Let us mention an example from the electronic world.
Only by taking into account the pleasure and the prestige that an old-fashionable mechanical
wristwatch gives to his holder one can explain why digital wristwatches have not replaced the
mechanical ones when everybody knows that a digital wristwatch is cheaper, more accurate, and
practical than a mechanical one.

The introduction of electronic money is not an exception, it complies with the rules we have
just discussed. In terms of pleasure, more that one person would claim that one thousand pounds
in e-cash is a nice thing to have in your PDA memory. Yet one thousand pounds in five, ten, and
twenty pounds notes in your pockets makes them feel better (rich and prestigious). The fact that
physical money can be seen, weighed, touched and smelled is bonus to the monetary value of the
money, a bonus that counts a great deal for many people. It follows that it is likely that physical
cash is going to be around sharing space with electronic cash for a long time.

The reader interested in more details about the stages a new technology goes through before it
is widely accepted by the masses is encouraged to refer to [181].

8.4 Text analysis

The most elementary thing the receiver of an anonymous message would do in order guess who is
the sender of the anonymous message is to have a look at the text in search for patterns that might
lead to the identity of the sender. Patterns like spelling and grammar mistakes, favourite words
and sentences, blank spaces, length of lines and others, can provide a great deal of information
about the writer of a text. For example, an obvious English mistake would tell Alice that Bob is
not a native English speaker.

A simple approach to preventing the analysis of Bob's messages in our system is to make the
MSS translate them before sending them to Alice. By translation here we mean converting the text
from Bob's writing style into a different one, say, a flat, robot-like style. This translation can be
performed by changing words in the original text by their synonyms and by reformatting the text.

A potential problem with text translation is that if words and format are changed arbitrarily,
the result of the translation might lose its original meaning. It seems that Bob lias to make a choice
between the risk of being caught by text analysis and conveying a meaningless message to Alice.
To give Bob the chance to decide by himself the MSS can be provided with a selection switch so
that Bob can choose between translated and non-translated text.

8.5 Potential risks of e-cash payment
In regards to performance and other practical issues, it is time to discuss the potential danger
that e-cash brings to its users. The crucial issue to keep in mind is that e-cash is electronic,

142 Enhancing the basic system

consequently, it is stored, managed, and transmitted by electronic computers and networks, i. e. by
systems that are:

9 prone to failures due to hardware and software design errors, and

e exposed to security attacks from malicious amateur and professional intruders.

One thousand pounds of e-casli stored in a PDA is worth nothing if tile PDA on tile network
is broken when the PDA user needs to purchase something. So far, we have not been capable of
designing unbreakable systems. If this is true it sounds reasonable for a PDA user to have both,
c-cash in his PDA memory and physical cash in his pockets.

In tile same way, the security of eýcasll stored in the PDA memory heavily depends on tile secu-
rity of the PDA, the network, and other computers involved in the e-cash management. Regardless
of how strong cryptosysteins are, their security will be broken sooner or later.

To talk precisely about the system we propose for sending anonymous and confidential ines-
sages from a PDA, we have to adinit that the anonymity of tile anonymous caller depends oil tile
anonymity of the e-cash used as payment, if the latter is not observed, if the anonymous payment
system fails due to a flaw in the protocol or tile implementation for example, the anonymity of tile
caller is seriously compromised. The existence of potential flaws in tile protocol or implementation
is all inherent weakness of any cryptosysteni, something its user should be aware of. Real life lias
taught us that unbrcakable cryptosystems do not last for long, sooner or later somebody will ilit
their point of vulnerability and find a sort of electronic finger prints left on the L-note sent by
the PDA; this fact lias been admitted by cryptographers long time ago. Thus, if tile anonymous
caller is really concerned about this issue and does not want to take any risk, lie perhaps would
prefer using a couple of twenty pence coins to pay for his anonymous call instead of using L-casli.
Obviously, lie whis in terms of cryptographic security but loses in terms of physical surveillance
since lie will need to go personally to the MSS to insert his twenty pence into tile MSS slot. There
lie might be observed by somebody and Iiis anonymity compromised.

Another problem with the anonymous payment protocol is that the anonymity of the e-note
Bob solids to Clare the banker to be blindly signed is based on the assumption that Clare signs a
great deal of c-notes everyday, so that Bob's L-note blends into the wad of notes signed by Clare.
The fewer notes Clare signs, the more vulnerable is the system. Again, the use of coins would work
better in this situation.

One of the problems of having two equivalent technologies working at the same time is that a
double infrastructure is needed to support theiii, this may be regarded as a luxury since it migIlt
double tile cost of the system. A public teleplione box for example that accepts both coins and
credit cards is considerable more expensive that one that supports only one method of payment.
The saine applies to a MSS that supports coins and e-coins. Doug, the owner of the MSS of our
hypothetical network will need to equip thein both with all wireless antenna to receive e-cash and
it slot to receive coins.

8.6 Cheating with e-casli
In section 4.1.6 the protocol for writing blind signatures on electronic notes was presented. It was
mentioned also that this protocol allows Clare the banker not only to detect forgery C-notes but
also to find out the identity of the cheater. It detects if Doug, the MSS owner, is preseliting an
e-note to Clare for it second time. Moreover, it leads to the identity of Bob, the anonymous caller,
if lie is trying to spend an e-note twice.

8.. 7, Use smart cards to pay anonymously 143

In our system no action is taken if Clare detects that Bob is cheating. Bob's forged C-note
is refused and nothing else happens. In a real life system legal actions have to be taken again
the deceiver, perhaps a sort of Internet police should be informed to investigate and sort out the
problem between Bob and Doug.

In our system e-cash is either accepted of refused by Clare, she does not make any distinction
between invalid e-cash and forgery. By invalid cash we mean, e-cash that is not recognized by
Clare as a legal payment, the use of dollars in the United Kingdom for example. The payment is
simply refused, there is no crime to prosecute in this case. On the contrary, by forgery me mean
the use of illegal e-cash with the conscious intention of deceiving Clare. For example, the use of
hand-made forgery or the use of e-cash that has already been spent.

8.7 Use smart cards to pay anonymously

The need to contact Clare the banker to check for the validity of Bob's e-cash sent to Doug as a
payment for an anonymous communication session with the MSS stems from the freedom Bob has
to make his own money in his PDA. This might result in Bob double-spending an e-coin either
accidentally or maliciously. To prevent Bob from doing this, we had to bring Clare in to the game
and consequently make our system slightly more complicated. There is a way of going around
this question which consists in decreasing Bob's power to create the e-coins lie uses to pay for his
anomymous calls.

The essential idea here is for Bob to pay for his anonymous communication sessions with a sort
of prepaid telephone magnetic card. The property of the prepaid we are interested in her is that it
stores money units (Z5.00 for example), that are retrieved from the card by the card reader. Once
a money unit is spent, it is permanently deleted from the magnetic band of the card. Consequently,
there is no hope of reusing it.

A smart card (see section 4.3) can be used to implement this method to pay for MSS services.
Bob can buy a smart card and without writing any personal information in its memory or oil its
surface, he brings it to Clare the banker to charge it with e-money. To pay, Bob can present Clare
with physical cash. The smart card is charged by converting Bob's physical cash into e-notes signed
by Clare and loading them into the card memory.

As long as Clare gets paid, she does not care who the card owner is or where the e-coins she
signed are going to, thus, she is happy charging a card without asking Bob for any identification.
Neither is she interested to know how the e-coins are going to be spent. If this holds true, Bob's
identity is protected and the card can be used for anonymous payment to merchants who recognize
Clare's signature.

,
Money is put in and out of the smart card by a program stored by the smart card inicrocontroller.

The program is activated by inserting the card into a card reader and typing the propers commands
, from the card reader keyboard. Bob does not have any access to the program which is in control
of the e-coins stored in memory. Once an e-coin is spent, it is deleted from memory or marked as
spent. In this manner, there is no chance for double spending.
, Smart card readers might be deployed inside PDAs or connected to them, this way Bob can

transfer payment for anonymous communications to Doug from his PDA. Upon receiving Bob's

, payment, Doug sees Clare's signature and knowing that money coming from smart cards is not
prone to double spending and forgery, accepts it immediately.

As a side comment, it is worth mentioning that money stored in a smart card might be used to
pay for any goods and commodities (at vending machines for example) as long as the merchant has
the hardware and software to communicate with the smart card and recognizes Clare's signature.

142 Enhancing the basic syst'en,

consequently, it is stored, managed, and transmitted by electronic computers and networks, i. e. by
systems that are:

* prone to failures due to hardware and software design errors, and

e exposed to security attacks from malicious amateur and professional intruders.

One thousand pounds of e-cash stored in a PDA is worth nothing if the PDA on the network
is broken when the PDA user needs to purchase something. So far, we have not been capable of designing unbreakable systems. If this is true it sounds reasonable for a PDA user to have botli,
e-cash in his PDA memory and physical cash in his pockets.

In the same way, the security of e-cash stored in the PDA memory heavily depends on the secu-
rity of the PDA, the network, and other computers involved in the e-cash management. Regardless
of how strong cryptosystems are, their security will be broken sooner or later.

To talk precisely about the system we propose for sending anonymous and confidential ines-
sages from a PDA, we have to admit that the anonymity of the anonymous caller depends oil the
anonymity of the e-cash used as payment, if the latter is not observed, if the anonymous Payment
system fails due to a flaNv in the protocol or the implementation for example, the anonymity of the
caller is seriously compromised. The existence of potential flaws in the protocol or implementation
is an inherent weakness of any cryptosystem, something its user should be aware OL Real life has
taught us that unbreakable cryptosystems do not last for long, sooner or later somebody will hit
their point of vulnerability and find a sort of electronic finger prints left on the e-note sent by
the PDA; this fact has been admitted by cryptographers long time ago. Thus, if the anonymous
caller is really concerned about this issue and does not want to take any risk, lie perhaps would
prefer using a couple of twenty pence coins to pay for his anonymous call instead of using e-cash.
Obviously, lie wins in terms of cryptographic security but loses in terms of Physical surveillance
since lie will need to go personally to the MSS to insert his twenty pence into the MSS slot. There
lie might be observed by somebody and his anonymity compromised.

Another problem with the anonymous payment protocol is that the anonymity of the e-not,
Bob sends to Clare the banker to be blindly signed is based on the assumption that Clare signs a
great deal of e-notes everyday, so that Bob's e-note blends into the wad of notes signed by Clare.
The fewer notes Clare signs, the more vulnerable is the system. Again, the use of coins would work
better in this situation.

One of the problems of having two equivalent technologies working at the same time is that a double i nfras truct tire is needed to support them, this may be regarded as a luxury since it might
double the cost of the system. A public telephone box for example that accepts both coins and
credit cards is considerable more expensive that one that supports only one method of payment.
The same applies to a MSS that supports coins and e-coins. Doug, the owner of the MSS Of our
hypothetical network will need to equip them both with an wireless antenna to receive e-cash and
a slot to receive coins.

8.6 Cheating with e-cash
In section 4.1.6 the protocol for writing blind signatures on electronic notes was presented. it Was
mentioned also that this protocol allows Clare the banker not only to detect forgery e-notes but
also to find out the identity of the cheater. It detects if Doug, the MSS owner, is presenting . 1,
e-note to Clare for it second time. Moreover, it leads to the identity of Bob, the anonyinous calle'
if he is trying to spend an e-note twice. r,

8.7 Use smart cards to pay anonymously 143

In our system no action is taken if Clare detects that Bob is cheating. Bob's forged e-ilote
is refused and nothing else happens. In a real life system legal actions have to be taken again
the deceiver, perhaps a sort of Internet police should be informed to investigate and sort out the
problem between Bob and Doug.

In our system e-cash is either accepted of refused by Clare, she does not make any distinction
between invalid e-cash and forgery. By invalid cash we mean, e: --cash that is not recognized by
Clare as a legal payment, the use of dollars in the United Kingdom for example. The payment is
simply refused, there is no crime to prosecute in this case. Oil the contrary, by forgery me mean
the use of illegal e-cash with the conscious intention of deceiving Clare. For example, the use of
liand-made forgery or the use of e-cash that has already been spent.

8.7 Use smart cards to pay anonymously
The need to contact Clare the banker to clieck for the validity of Bob's e-cash sent to Doug as a
payment for an anonymous communication session with the MSS steins from the freedom Bob has
to make his own money in his PDA. This might result in Bob double-spending an e-coin either
accidentally or maliciously. To prevent Bob from doing this, we had to bring Clare in to the game
and consequently make our system slightly more complicated. There is a way of going around
this question which consists in decreasing Bob's power to create the e-coins lie uses to pay for his

anomymous calls.
The essential idea liere is for Bob to pay for his anonymous communication sessions with a sort

of prepaid teleplione magnetic card. The property of the prepaid we are interested in lier is that it

stores money units (ýMOO for example), that are retrieved from the card by the card reader. Once

a money unit is spent, it is permanently deleted from the magnetic band of the card. Consequently,
there is no hope of reusing it.

A sinart card (see section 4.3) can be used to implement this method to pay for MSS services.
Bob can buy a smart card and without writing any personal information in its memory or on its
surface, lie brings it to Clare the banker to charge it with e-nioney. To pay, Bob can present Clare

with physical cash. The smart card is charged by converting Bob's physical cash into e-notes signed
by Clare and loading theiii into the card memory.

As long as Clare gets paid, she does not care who the card owner is or where the e-coins She
signed are going to, thus, she is happy charging a card without asking Bob for any identification.
Neither is she interested to know how the e-coins are going to be spent. If this holds true, Bob's
identity is protected and the card can be used for anonymous payment to merchants who recognize
Clare's signature.

Money is put in and out of the sinart card by a program stored by the sinart card inicrocontroller.
The program is activated by inserting the card into a card reader an(] typing the propers commands
from the card reader keyboard. Bob does not have any access to the program which is in control
of the e-coins stored in memory. Once an e-coin is spent, it is deleted from memory or inarked Is
spent. In this manner, there is no chance for double spending.

Sinart card readers might be deployed inside PDAs or connected to thein, this way Bob can
transfer payment for anonyinous communications to Doug from his PDA. Upon receiving Bob's
payment, Doug sees Clare's signature and knowing that nioney coming from sinart cards is not
prone to double spending and forgery, accepts it immediately.

As a side comment, it is worth mentioning that money stored in a sinart card inight be used to
pay for any goods and commodities (at vending inachine-s for example) its long as the merchant])as
the hardware and software to communicate with the smart card and recognizes Clares signature.

144 Enhancing the basic system

It is worth closing this section by mentioning that the selection of a smart card as our hardware
platform to store and manage Bob's e-cash is just a technological decision based on the fact that a
smart card suits our computational and memory needs, and matches nicely current PDA parameters
in terms of size, energy, weight, price, and so on. Yet it should be kept in mind that a smart card
is just one example of what are known as secure coprocessors, Le tamp er-resistant modules that
perform computational operations on data stored inside them and destroy it in response to any
unauthorise attempt to read or write the data.

We are assuming that data stored in a tamp er-resistant module like a smart card is secure.
No intruders can access it. To be precise, one should say no intruders without the proper equip-
ment can read it since Bruce Sclincier [182] argues that tamp er-resistant techniques do not work.
Sophisticated attacks based on time spent in cryptographic operations, power consumption, and
radiation emissions against a smart card can be devastating.

8.8 Loss of payment in incomplete transactions

In the finite state diagram presented in section 6.6.3 which concerns the interaction between tile
user and his PDA through the PDA keyboard, there is an entry (EscPressed) to allow the user to
abort his anonymous session with the PDA any time during tile anonymous mailing session. It is
conceivable that tile abort occurs when a considerable amount of prepaid anonymous communica-
tion time is left. No actions is taken to return to the PDA user his unspent e-money, tile system
just imitates a public telephone box which does not give change. The unspent e-cash goes to Doug.
A refinement of the algorithm would be appropriate in order that Bob is given his change.

Likewise, it is possible that the system crashes any time after tile payment has been performed,
while the e-cash is travelling through the network to Doug or to Clare for example, from tile
protocol we are proposing, the fate of the unspent or partially spent e-note is not clear, tile e-note
if left in the limbo. In general the problem we are facing here comes from the fact that our system
does not support atomic e-cash transactions [1831.

Again, further research in this direction is necessary to trace tile e-cash and decide to whom
it belongs. In a public telephone box, it always goes to the owner of tile telephone Box, regardless
of the user's anger. In our anonymizing system a different and fairer approach can be taken; if
the anonymous caller does not want his e-note back not to compromise his identity, tile e-cash in
dispute may go to a charity organization instead of Doug's account.

8.9 Anonymous debit bank accounts
A question that inevitably come to the reader's mind after learning about anonymous casli is
whether it is possible to have all anonymous debit bank account. That is to say, an account opened
by Bob at Clare's bank without Clare knowing the name of the account owner and with a Possibility
to withdraw and deposit money anonymously. In terms of technology, the answer is yes. Technically

speaking, the only thing we need to open all anonymous account is a pair of public and private
keys and all anonymous e-inail system like the one we are presenting in this work. Althougll tile
affirinative answer to the question looks like a solution to some problems Bob may have, it is ill
fact the raising of several issues that have not been researched. There are legal and financial issues
that have to be studied before the idea of anonymous debit accounts can be put into practice.

Roughly speaking, tile procedure to open all anonymous debit account is as follows.

Bob brings to Clare a certain amount of money is physical cash -say X1000-00- and a smart
card.

8.10 Anoýiymous credit bank accounts 145

Clare generates a pair of public and private keys for Bob. She stores the private one in the

smart card so that nobody sees it and Bob does not forget or lose it.

Clare opens a record in her computer where she puts Bob's L1000.00 and identifies it with an
account number, no names or any personal date, just a unique string of digits. The number
is stored in the smart card.

In public key cryptosystems, the public key is known by everybody, in this case it is kept

secret by Clare so that only she can decrypt messages encrypted with Bob's private key.

To withdraw or deposit money from and to his account Bob sends Clare messages that contains
his account number and encrypted with his private key.

Upon receiving a message from Bob asking for some money, Clare knows that the message is

coming from Bob and not from somebody else as only Bob knows the private key.

To prevent an intruder from linking Bob to his anonymous account, Bob sends his messages
to Clare anonymously. He can use the our anonymous system for example.

@ Deposits to and withdrawals from Bob's account are made by anonymous e-cash.

It should be clear that the purpose of this section is not to discuss this issue at large but to

raise the question. Several problems are hidden behind the algorithm we suggest. For example,
once Bob leaves the bank he has no evidence but his private key that the L1000.00 is his money. If
the key is lost, damaged or if Clare dellies that Bob has an anonymous account with her, Bob loses
his money. In practice, bankers are prone to billing mistakes which are normally favourable to their

accounts and seldom favourable to their customers. If Clare makes accidentally or intentionally

a billing mistake, Bob will need a mechanism to recover his money, ideally without disclosing his
identity.

, Another problem is what would happen if an e-note sent to Clare (a deposit) or to Bob (a

withdrawal) does not reach its destination; will it be lost?, is there any way for Bob to recover his

money?.
It seems that there are more questions than answers in our attempt to create anonymous credit

accounts, one may wonder what do we need this for when payments call be performed by e-cash
and smart cards as was discussed in sections 5.6.2 and 8.7 respectively. The justification for going
through all this hassle is Bob's money safety. An e-coin in a smart card or in PDA memory is
lost if the smart card or the PDA is damaged or stolen. Both the smart card and the PDA call
be replaced but the e-coin cannot. An e-coin in the bank computer is safer for several reasons.
For a start, bank computers are stationary, secondly, they have stronger security measures than
mobile devices like smart cards and PDAs have, and after all, if something goes wrong with the
bank computer it is not Bob's concern, he is guaranteed that Ills bank will give his money back

when he needs it.

8.10 Anonymous credit bank accounts
jt seems that anonymous debit account are feasible, yet it remains to be seen how it works in
commercial applications. If this is feasible, one might wonder whether there is a way to open ail

,
anonymous credit bank account. That is to say, we want Clare to lend Bob some money without
knowing Bob's identity. Though this would be a marvellous thing to have, we argue that there is

146 Enhancing the basic system

no way to open an anonymous credit bank account without putting Clare at the risk of losing soine
money, something bankers are not keen on, or without putting Bob's anonymity into risk.

Our position is based on the fact that no banker will lend money without being certain that
she will be able to catch the credit account owner in case the later fails to pay.

However, one can think of a fairly close approximation to an anonymous credit account. The
approach is based on the use of secret splitting techniques [184,118]. The core idea is to take data
D and divide it up into n pieces D1, D2, D3) D,, in such a way that the knowledge of 0<k<n
Di pieces makes D easily computable. The knowledge of k-I or fewer Di pieces is absolutely
worthless to recover D.

We can assume that Bob's personal data (name, address, and so on) is D, i. e. a string of bits.
Clare is happy to open an anonymous credit account for Bob as long as she is allowed to split D
into two pieces: DI for herself and D2 for a government financial authority. If Bob fails to pay his
debt before the agreed date she calls the government financial authority, puts D, and D2 together
to reconstruct D and rings the police to prosecute Bob. The weak side of this approach is that
Bob's identity depends on the willingness of Clare and the government financial authority to keep
it; there is a risk that the two

-of
them can get together to conspire against Bob at any time and

without a legal reason for it. This risk can be significantly decreased by involving more people into
the game, i. e. by splitting D into more than two pieces so that a conspiracy is more difficult to
achieve. Nevertheless, regardless of how big the number of pieces is, the risk of conspiracy never
disappears. One has to admit that the system is not truly anonymous.

8.11 An improvement to e-voting schemes
One of the most appealing applications of anonymous e-mails is electronic voting. The topic is not
new, it has been extensively studied. It is now well understood that a voting protocol has to satisfy
the following basic requirements [118]:

" Only authorised voters can vote and only once.

" Votes are anonymous. No one can determine for whom anyone else voted.

" Votes are personal. No one can duplicate anyone else's vote.

" Neither the voters nor the election board can cheat without being discovered.

The election board is not allowed to change the choice of a voter, neither is a voter
allowed to change anyone else's choice.
The election board cannot present a false tally.

a Each valid vote is counted. -No one can be excluded from the final tabulation.

Several protocols have been proposed that, to a satisfactory degree, match the previous require-
ments [118,185,186]. Unfortunately, all of the proposed protocols, share a common drawback:
they fail when it comes to providing true anonymity. The common failure stems from the fact
that they assume the existence of a secure, untraceable electronic mail system to send the votes to
the election board, that they do not provide. They are based on anonymizing schemes Composed
of a set of intermediate computers called mixes. The r6le of the mixes is not distinct from the
one performed by the e-mail anonymizer we criticized in chapter 3. A mix computer receives an
electronic ballot (e-ballot) from a previous one, suppress the voter's name and address and sends

8.11 An improvement to e-voting schemes 147

the vote to the next mix computer; the process is repeated till eventually the vote reaches the
computer of the election board [187].

As can be seen, the anonymity of the voter can be violated if the mixes collude in disclosing the
identity of the voters. A collusion of all mixes might sound unthinkable in a democratic country
but not in a totalitarian regime where the whole of the mixes may be under the control of the
totalitarian oppressor. Even worse, if a key escrowed cryptosystem is in use, the oppressor can
easily gain access to the escrowed keys and reduce the anonymous election to a mere illusion.

We believe that the danger of collusion and key escrow can be sorted out by grounding the
proposed electronic voting algorithms on the untraceable anonymous e-mail facilities of our system.

By looking closely at an electronic note and an electronic ballot-paper one can realize that the
similarities between them are striking. Both have to be signed by a trusted authority. By a banker
in the former case and, in the latter, by a central ballot legitimization agency before the vote is
accepted by the election board. In the same manner, both can be used only once. The difference
being that the user can make as many e-notes as he wish but it is allowed to make one e-ballot
only.

Let us say Bob, is an anonymous voter, Clare a central ballot legitimization agency, and Alice
the election board. Likewise, let us assume that Clare has a list of all PDA owners who are entitled
to vote. The following is the sketch of an algorithm which with some refinements can lead to a
powerful electronic voting scheme that matches the requirements presented at the beginning of
this section. It is based on the blind signature protocol presented in section 4.1.6. The reader is
encouraged to familiarize with that in order to understand what follows.

" Bob generates n sets of e-ballot each containing a valid vote for each possible outcome, Le if
the vote is a yes or no question , each set contains two votes, the firsts is marked yes and the
second-no. As with e-notes, each vote contains additional information to ensure that Bob
is not cheating.

" Bob sends the set of e-ballot to Clare for a blind signature in a similar was as lie sends O-notes
to her (see section 5.6.2).

" Clare checks her database to see that Bob is entitled to vote and if she is satisfied, she blindly
sings Bob's e-ballot.

4, Bob unblinds the signed e-ballot received from Clare and chooses one of the votes (a yes or
a no according to his preferences) and discard the second.

" Now Bob holds a valid e-ballot readily accepted by Alice since it has Clare's signature on it.

" To send his e-ballot to Alice, Bob opens an anonymous session with the MSS. He uses e-notes
to pay for it (see section 5.8).

" Upon receiving Bob's e-ballot Alice verifies that it has not been received before; if so she
counts it, otherwise the e-ballot is discarded.

It is worth insisting that it is not our intention to present a complete voting algorithm but
to show how existing ones can be greatly improved by using the anonymous facilities offered by
our system. This make electronic voting schemes more robust against dishonest vote delivery and
immune to dishonest key escrowers. A key escrower might learn who is supporting a giving vote
but never the identity of the voter.

In theory electronic voting schemes work and work well, yet it remains to be seen how they
work in practice. One of the major concerns is that they make it easier to buy and sell votes. Ebe

148 Enhancing the basic system

the intruder for example, can know that Bob is over 18 and entitled to vote, contact him and offer a
L1000.00 for the pair of signed votes that Bob has just unblinded after receiving them from Clare.
To avoid being detected by the police, Ebe, can negotiate with Bob anonymously, using our own
anonymizing system and pay him a L1000.00 in e-cash. A pair of votes in Ebe's hands is just like
a coin, lie can choice the yes or the no one and send his choice to Alice, sell the pair or destroy it.

Regardless of the potential danger and not yet studied issues, electronic voting is a useful
application, a well implemented scheme makes electronic election more anonymous than traditional
ones where due to physical elements involved in the process (physical ballot-boxes) the winner of
an election can always know whether a village voted him or his political opponent. This question
is answered by electronic voting since nobody can learn which part of the country or city e-ballots
are coming from to the electronic ballot-boxes.

8.12 Coexistence of key escrow and non-key escrowed cryptosys-
tems

The core idea behind key escrow mechanisms and their debatable arguments for and against their
suitability were discussed in section 4.2.3. We bring it back to this section to make some additional
comments about this issue because key escrow significantly plays a fundamental part in our system.

It is not clear yet when this intellectual battle will end and who will win it, if there is a winner,
probably not. We argue that since it is difficult to come up with a single system that suits the
demands of different applications, in the future it is likely that key escrowed and non-key escrowed
cryptosystems will coexist and the user will choose the more suitable for her as long as her choice
complies with legal regulation enforced by governments; for example, the use of encryption keys no
larger than ii-bits, communication restricted to the boundaries of a corporation, etc.

It has been admitted that key escrow is an open door that can easily lead to Internet censorship.
Hence, if key escrow is enforced by law, it is likely that there will be a sort of key escrow immunity
for trusted users by which they may not be key escrowed. For example, diplomats may be given
diplomatic key escrow immunity. Likewise, world wide known scientists, academics, writers and
other figures of unquestionable intellect may be given the privilege of not having their key escrowed
if they do not wish to. If the reason to enforce key escrow if the catch of terrorists, narcotic dealers
and other dangerous criminals, governments will find it difficult to present solid arguments in favour
of escrowing the key of a well-known peace activist, a Nobel prize winner or a famous writer.

8.13 Key escrow confidentiality and anonymity
Non-key escrowed cryptosystems have the inherent risk that if for any reason tile encrypting key
is lost, forgotten or damaged the encrypted data is not recoverable. It is lost for ever or in the
best case, till tile encryption is broken by means of brute force. Depending on the length of tile
lost key and the power of the computer used, a brute force procedure may take seconds, hours

3 day, or years to break all encryption. Most of tile times this is unacceptable, so it follows that key
escrow makes sense. However, it renders tile confidentiality of the messages encrypted with tile
escrowed key seriously compromised. We cannot talk of a truly confidential cryptosystem wher, tile
encryption key is available to somebody else, apart from its owner, and can be used without tile
owner knowing about it. This holds true for our system as well. The confidentiality of the messages
exchanged between Bob's PDA and tile MSS cannot be guaranteed if tile public key of tile MSS
is escrowed, neither the confidentiality of messages exchanged between the MSS and Alice can be
guaranteed. Having the public key of the MSS the government can easily open tile message sent

8.14 Summary
.

149

by Bob that contains the session key, having the session key (see 6.6.4) means being able to open
every single message in the session, read the contains of the message and find out that the message
is addressed to Alice. Again, if Alice responds to Bob by sending her response encrypted with the
public key of the MSS or with a session key sent to her by Bob, the government can decrypt Alice's
message, read its contents, and find out that it is addressed to somebody, who is currently at the
MSS with a given TmpId, fortunately, nothing else is revealed to the government. If the aim of the
government was to know the identity of Bob, the former will be certainly frustrated. This is where
the power of using TmpId becomes apparent.

A TmpId protects the identity of the PDA user against, the recipient, the MSS and against
key escrower as well. This is equivalent to tapping a call from a public telephone box, the meddler
can understand the whole of the conversation, can learn the called number and the name of the
called person, however, he cannot learn the identity of the caller. This is exactly what our system
is imitating, hence, we claim that it is truly anonymous.

8.14 Summary

Simple ideas are easy to understand and extend. It has been proven in practice that simplicity is
good and complexity is bad. Simple ideas can work well. Complex ideas can only fail. If the basic
idea is simple and good it can serve as the ground for building another system on top of it. If the
second system is good and simple, it can serve as the basis for building a third good and simple
system; and so on. The Unix operating system is grounded on a simple idea, so are the Internet and
the Web. The three of them work and work well. This explain why they have been used successfully
to support a great variety of applications. Surprisingly, this lesson is frequently forgotten by the
computer science community which is frequently enchanted and diverted by complexity.

The principle of simplicity was not forgotten in this work. The idea of building an anonymizer
based on the paradigm of the public phone box is remarkably simple; therefore, it can be enhanced.
It can be extended in different directions and useful applications can be built on top of it. Some of
these potential applications were briefly discussed in this chapter.

150 Enhancing the basic system

Chapter 9

Conclusions

9.1 Introduction

In this thesis, we have introduced a novel approach to addressing the problem of sending anonymous
and confidential messages through the Internet. A system was proposed, described, designed,
specified, and validated, and the results of the validation presented. It is time now to describe
the experience learnt from this research, to assess our results, to admit their limitations, and to
comment on issues related to this topic that would benefit from further investigation.

9.2 Contribution

The necessity of sending confidential and anonymous messages over the Internet was identified
about a decade ago when the Internet changed from being an exclusively academic network into a
universal network widely and intensively used by the masses, where people from different countries
and culture and with different backgrounds, profiles, ideas, and interests, coexist. That was the
time when experts in the field raised the issue. Since then, due to the many Internet applications
that heavily depend on confidentiality and anonymity, the importance of the issue has now become
more apparent. Electronic commerce is probably one of the best examples of an Internet application
that will not find a wide acceptance until a satisfactory answer to this problem is found.

A great deal of effort and resources have been devoted to the investigation of confidentiality
and anonymity. Several implementations of anonymizers have been proposed and deployed in the
Internet. However, none of them has so far given a satisfactory solution to providing true anonymity
because the degree of anonymity achieved entirely depends on and is limited by the ability and
desire of a third party (a computer or set of computers located between the sender and the receiver
of the anonymous message).

This thesis has set out to demonstrate that it is possible to send confidential and anonymous
messages without depending on properties of the computer (or computers) located between the
sender and the receiver of the anonymous message. To demonstrate our claim, we not only proposed
a new approach to providing confidentiality and anonymity, but also designed a protocol based on
the approach, specified it in a validation language (Promela) and validated it using a validating
software (Spin).

Because we believe that PDAs and other similar, wireless, portable, pocket-sized computers
equipped with wireless communication antennae, are going to be widespread in the years to come,
and because PDAs fit smoothly into our paradigm, the senders of the anonymous messages are in
possession of PDAs. We also assumed that there is a set of MSSs that for a fee provides Internet

152

access to PDAs.
The main contributions of this research are:

Conclusions

The proposal of a novel approach to sending confidential and truly anonymous Internet mes-
sages from a PDA.

The specification of a protocol based on the approach and its validation to prove that the
protocol satisfies a set of basic correctness criteria.

im Another contribution of this thesis is the introduction IP-addressless computers in the Inter-
net.

9.3 The model
One of the guiding aims of our approach was simplicity. Knowing that complicated systems are
difficult to understand, manage and scale, we grounded our approach on a rather simple idea: Our
approach to sending anonymous messages is inspired by an old and well-known idea, namely, tile
paradigm of a public telephone box. We did not try to create something new to solve tile problem
of sending anonymous messages through tile Internet, but instead introduced an existing paradigm
from the public telephone network and brought it into the Internet. Similarly, to validate our
protocol we tried to keep the validation model as simple as possible but without losing tile essential
features of tile protocol. We believe that after proving that tile main modules of ithe system are
correct, the system can have additional components added to transform it into a working practical
implementation.

To bring tile functionality of a public telephone box into the Internet, we needed only to find a
functionally equivalent element in the Internet to the elements of tile public telephone box. In this
way, the telephone communication infrastructure is equivalent to tile Internet one: the MSS is a
sort of public telephone box used by the general public; and finally, the coins used to operate tile
public telephone box are replaced by anonymous electronic cash to operate tile MSS.

In our paradigm, Bob (the anonymous caller in possession of a PDA) uses tile communication
services of an MSS to send messages to users reachable through the Internet (Alice for example) and
to receive messages while his PDA is switched on and registered with tile MSS. Not to give away
any information about his identity, Bob connects to tile MSS by using a temporary, non-personal,
random, identifier (TinpId for short). The TmpId is assigned by tile MSS and is valid only for the
duration of a session.

To provide confidentiality, we used both public key and secret key cryptographic techniques.
In this way, public key encryption is used by the MSS and the PDA to negotiate a TmpId, and a
secret key is used later to encrypt messages exchanged between the PDA and the MSS.

Surprisingly, the translation of the paradigm from one network into another was straightforward
and the resulting system is remarkably simple. Also, it provides new, valuable features not found
in its original environment; namely, the fact that in our paradigm tile caller does not need to
physically go to the public telephone box to dial tile callee's number and make her call, but can do
tile same remotely using the wireless antenna of her PDA.

The outstanding feature of our approach is that although the MSS is interposed between Bob
and Alice, the MSS has no means of finding out about Bob's identity, simply because Bob is not
using a personal IP address but rather a TmpId that does not belong to him, just as a public
telephone box does not belong to its user. The result of this is that tile degree of anonymity
achieved by this approach does not depend of the willingness nor strength of the intermediary (the
MSS) to keep secrets.

9.4 The validation

9.4 The validation

153

We believe that the only reliable way of determining that an idea is of any practical use is to
implement it, and put it into practice so that it is exposed to as many users, critics, and unexpected
working conditions as possible. To increase the chances that an idea will work correctly, it is
advisable to validate its design before implementing it.

We have followed this strategy: we designed the protocol of our system, specified it in the
Promela language and validated its basic safety properties (deadlocks, unspecified receptions of
messages, and assertion violations) and proper end-states, by using the Spin validator.

From the validation of the protocol we have learnt the following:

Although we made efforts to keep the Promela validation model simple, its size in terms of
CPU and memory used to validate it exhaustively is exceptionally large for current computer
technology. The exhaustive validation of the whole model would have required of the order
of several Gbytes of RAM memory to store the system states and of the order of several days
of CPU time.

This observation encouraged us to resort to modular validation (separation of the whole
Promela validation model into modules to validate them separately) and to supertrace val-
idation (random selection of the maximum number of states that can be validated in the
available memory).
In modular validation the risk of leaving out important features of the protocol is always
latent. Similarly, the random nature of the supertrace technique introduces the risk of not
exploring the part of the protocol where an error exists. Hence, compared to exhaustive
validation, these techniques techniques do not give the most accurate results, yet it is the
best we can do for a system of the size of ours. In addition, the results are good enough for
practical purposes and reliable enough to claim that the system is correct.

Our protocol is free from errors related to basic safety properties and improper end-states.
We are aware that by checking correctness of basic safety properties we checked only for basic
errors. We did not check our protocol for subtler safety properties, nor did we check it for
liveness properties. Thus, we cannot claim that our validation is complete. It can easily
be enhanced. However, we believe that at this stage of development, proving correctness of
safety properties gives a significant degree of confidence about its correctness.
This is probably enough at this stage to appreciate the feasibility or our idea. On the other
hand, the main aim of this work was to propose a new paradigm for sending anonymous and
confidential messages over the Internet. Exhaustive validation of the protocol fells outside of
our interests.

9.5 Limitations of the work and suggestions for future research
In accordance with the results of the validation our protocol is free from basic safety properties and
improper end-states. From this stage the designer can step further: it would have been useful to
have more time at our disposition to validate liveness properties or convert the Proniela specification
of the protocol into a working implementation (say C++ code), test its behaviour and then later
migrate the C++ code into a real PDA and MSS. This would give the opportunity to see how the
performance of the system is affected by the numerous cryptographic operations involved in the

154 Conclusions

communication which were not included in the Promela specification as cryptographic operation
are pure arithmetic operations that are not relevant to the communication protocol.

A minor limitation of our protocol is that it relies on a PDA to send its anonymous and
confidential messages. This might not be a serious drawback as we expect that in future PDAs
will be widely available. However, if this is not the case, it is an open question as to whether it
is possible to send truly anonymous messages from a desktop IP-addressed computer. We suspect
that the answer is no. Research in this direction would be useful.

Another minor limitation of our protocol is that it does not support user handoff: once the
anonymous caller opens an anonymous session with the MSS, he has to terminate his call at that
MSS. We deliberately left this feature out of the protocol, because we consider that even though it
would be certainly useful to have support for user handoff, this topic has to be addressed from the
point of view of user location and message routing, rather than from the point of view of anonymity
and confidentiality. More research is needed to investigate what impact the mobility of the sender
of the anonymous messages could have on our protocol.

A more serious limitation of our system is that it does not offer any protection against potential
abuse of anonymous messages. The danger lies in Bob's ability to send as many anonymous messages
to Alice as lie wishes to. One of Bob's messages can contain a virus for example. Alice has no way
to prevent Bob from annoying her other than instructing her computer to drop any anonymous
message coming to its door. Unfortunately, this approach seems too costly as it prevents Alice
from receiving any anonymous message, those coming from Bob as well as other PDA users. This
raises the question whether it is possible to provide Alice's computer with protection against Bob's
abusive anonymous messages. So far, this problem has not been investigated.

Care should be taken not to think that the system for sending anonymous and confidential
messages that we propose is unbreakable. Having in mind that, in practice, the design of all
unbreakable system based on cryptographic techniques in arguably an intractable problem, we did
not attempt to design an unbreakable system. In theory, unbreakable systems can be designed but
they are not practical because they demand significant amounts of computer resources and are too
complex to use.

Rom the cryptographic point of view the security of our system totally depends on the strength
of the cryptographic technology we use. If we admit that a cryptographic system sooner or later
will be broken, we have to admit that our system sooner or later will be broken as well. Said in a
few words, our system is unbreakable for lay users equipped with current technology (i. e. for most
people but not for users with strong background in cryptography and sophisticated equipment).
]For example, we do not have any hope that our system will survive the attack of users equipped
with quantum computers of the twenty-first century, which promise to demolish DES and RSA
keys in few minutes [188,189].

We hope that this thesis contributes to the problem of finding a satisfactory solution to the
issue of confidentiality and anonymity. We would dare to argue that our system gives a satisfactory
answer most applications will be happy with.

Perhaps the field that needs urgently to be researched is the social impact of anonymity.

9.6 Social issues

The main motivation to research the field of confidentiality and anonymity was the Potential of
its applications. For instance, we realized that the provision of a mechanism to send anonymous
messages will encourage PDA users to use their PDAs to perform business transactions, among
other attractive applications. Anonymity protects buyers against intrusive merchants by preventing

9.6 Social issues 155

them from sending the buyer unwanted advertisements. In everyday life, anonymity has other
valuable applications which include personal love affairs, medical assistance and freedom to express
political opinions. In general, it can be said that anonymity provides protection against intrusion,
embarrassment and retaliation. Aside from these advantages, anonymity has several serious and
negative side effects that make its deployment in the Internet a controversial issue. The potential
danger that might result from its misuse could outweigh its benefits. It would not be difficult to
write at length about the pros and cons of anonymity; there are strong arguments for and against
it. Because of this, we believe, that before saying that it is a good or bad thing to have in the
Internet and before saying that it should be legal or illegal, we have to bring it into practice to test
it. Therefore, our position on the issue is that anonymity in the Internet should not be prohibited
but regulated so that its potential danger is diminished.

Conclusions 156

Appendix A

Promela specification of the system

In this appendix we present a complete listing of the set of Promela modules we validated in chapter
7 and we present also the Promela specification of the whole system.

A. 1 Promela code for validating the public key manager

* PROGRAMME: Promela validation model for the public key manager.
* AUTHOR: Carlos Molina Jimenez;
* ADDRESS: The University of Newcastle upon Tyne
* DATE OF CREATION: 27 Jul 1999
* DATE OF LAST UPDATE: 11 Nov 1999

#define CERTIFIED-Kpu 12 /* Kpu certified by a certification authority
#define UNCERTIFIED-Kpu 10 /* Kpu not certified by a certification authority
#define INVALID-Kpu 00 /* Kpu out of domain
#define MAXNUM-Kpu-ATTEMPTS 5 /* max number of attempts to receive valid Kpu

#define YES
#define NO
#define ANYINT
#define NEGINT
#define MAXNUMPDA

mtype= fKpu, BogusKpul

1
0
1 /* any integer

-1 /* any negative integer
3 /* max number of PDAs in the MSS

chan KpuPort-to-PDA=[Il of 1byte, intj /* broadcast channel from MSS to PDAs */

KpuMan process: it places a msg in KpuPort-to-PDA channel. The msg is read by
PDAs. It contains certified Kpu key, uncertified Kpu key or bogus

message. When the msg is read, the KpuMan places another one, waits until
it is read and so on.

proctype KpuManO

int Kpu-val;

do

158

(true)
if

Kpu-val= CERTIFIED-Kpu
Kpu-val= UNCERTIFIED-Kpu

fi;

end-cyc:
if

KpuPort-to-PDA Kpu(Kpu-val)
KpuPort-to-PDA BogusKpu(INVALID-Kpu)

fi
od

}

Promela specification of the system

PDAses process: This code is the part the PDAses process and deals with
the Kpu negotiation between the PDA and the MSS.

If the Kpu is learnt successfully by the PDA, it moves to the KsNegotiation
state where it tries to obtain a Ks key. The Ks negotiation and the rest of
the PDAses code is provided in this appendix in "Promela specification of

* the backbone of the system". So, this code just blocks when it reaches the
* negotiation state. The PDAses ends in 'Aborted' if it fails to get the Kpu
* after MAXNUM-Kpu-ATTEMPTS.

proctype PDAses(int PDAnum)

int PuKey; /* public key of the MSS
int Ks= ANYINT; /* session key suggested by PDA to MSS after a successful

/* Kpu negotiation

int i; /* count num of attempts */

KpuNegotiation:
PuKey= 0;
i= 1;
do

(i <= MAXNUM-Kpu-ATTEMPTS)
if

KpuPort-to-PDA ? Kpu(PuKey)
if
:: (PuKey == CERTIFIED-Kpu)

:: else
fi

-> /* Kpu rcvd: now check for authenticity */

-> goto KsNegotiation

:: KpuPort-to-PDA ? BogusKpu(PuKey) -> i++ /* bogus msg rcvd: ignore it */

timeout -> /* couldn't hear any msg from this MSS: move to new MSS */
printf("PDAnum=%d Failed to hear from MSS, going to ... Aborted ... \n", PDAnum);
goto Aborted

fi
also
printf("PDAn==%d Failed to get Kpu after N= %d attempts;

going to ... Aborted+++\n", PDAnum, i-1);
goto Aborted

od;

KsNogotiation:

A. 2 Promela code for validating the mail server process

printf("PDAnum=%d GOT CERTIFIED Kpu= %d after N=%d attempts\n", PDAnum, PuKey. i-1);

assert(PuKey == CERTIFIED-Kpu);

end: if

:: (false) -> skip
fi;

Aborted:

printf("PDAnum= %d ... ABORTED... BYE-BYE-BYE\n", PDAnum)

I

* Initiate the KpuMan process and MAXNUMPDA processes attempting
* to get a certified Kpu

init
f

byte PDAnum; /* number given to a PDA */

run KpuManO ; /* create Kpu manager process */

atomicý /* create MAXNUMPDA processes, one for each PDA */
PDAnum= 0;
do

PDAnum < MAXNUMPDA -> run PDAses(PDAnum); PDAnum++
PDAnum >= MAXNUMPDA -> break

od
I

I

A. 2 Promela code for validating the mail server process

* PROGRAMME: Promela validation model for validating the mail server process.
* AUTHOR: Carlos Molina Jimenez;
* ADDRESS: The University of Newcastle upon Tyne
* DATE OF CREATION: 27 Jul 1999
* DATE OF LAST UPDATE: 11 Nov 1999

#def ine YES 1
#define NO 0
#define ANYINT 1 /* any integer
#define NEGINT -1 /* any negative integer
#define MAXNUMPDA 3 /* max num of PDA in the MSS
#define NUMofPDA 3 /* num of PDA visiting the MSS
#define QSZ 1 /* num of msg stored in a channel

#define MAXNUMEMAILS-SENT 4 /* max num of msg sent by a PDA. This's a temporary
/* restriction to set a finite boundary for the model

mtype= ýaborted, EaddrAndTxt, YouHaveMail);

159

chan MSSses-to-MailSvr(MAXNUMPDAI=[QSZI of fbyte, int, intl;
chan MailSvr-to-MSSses(MAXNUMPDAI=[QSZI of ýbyte, int, jntj;

160 Promela specification of the system

MSSses process: receives messages from PDAs and replies from MailSvr.
When a msg is rcvd it is forwarded to the MailSvr process.

Replies are forwarded to the corresponding PDA. Messages from PDAs and
replies from MailSvr are not actually received here but simulated.

proctype MSSses(int tmpId, chnum)

int addr; /* store msg address
int txt; /* store msg body
int NumM; /* num of msg

NumM=MAXNUMEMAILS-SENT;

do
(NumM >= 1 && nfull(MSSses-to-MailSvr[chnuml))

MSSses-to-MailSvr[chnum] ! EaddrAndTxt(-pid,
-pid); NumM--

MailSvr-to-MSSses(chnuml ? YouHaveMail(addr, txt) ->
printf("MSSses: rcvd reply for PDA tmpId= %d \n", tmpId)

(NumM <1 kk empty(MailSvr-to-MSSses(chnuml) && timeout)
if

nfull(MSSses-to-MailSvr[chnuml)
MSSses-to-MailSvr[chnuml H aborted(tmpId, chn=)

:: full(MSSses-to-MailSvr[chnuml) && timeout
fi;
goto End

od;

End:
printf("\n\nMSSses: tmpId=%d has finished: HAPPY END BYE-BYE-BYE \n", tmpId)

MailSvr process: receives messages from the MSSsos and pretends to deliver
them to their final destination. If there is a reply to a

delivered message (randomly decided) the MailSvr forwards the reply to the
Mssses.

proctype MailSvro
f
int RoplyVac[MAXNUMPDA]; /* reply vector
int tmpId; /* temporary Id
int chnum; /* channel num
int addr; /* store msg address
int txt; /* store msg body
byte msgtype; /* type of msg received
int fl; /* field for receiving the first field of a msg
int f2; /* field for receiving the second field of a msg

f
A. 2 Promela code for validating the mail server process

int i; /* counter

i=O;
do
:: i< MAXNUMPDA

ReplyVec[il= 0;
i++

else -> break

od;

chnum= -1;

do
(true)

end-cyc: if
MSSses-to-MailSvr[Ol ? msgtype(fl, f2)

assert(msgtype == EaddrAndTxt 11 msgtype == aborted);
if

(msgtype == EaddrAndTxt)
addr= fl; txt= f2; ReplyVec[01= ReplyVec[Ol + 1;
printf(I'MailSvr: has rcvd a msg from PDA tmpId=O \n");
goto MailRcvd

:: (msgtype == aborted) -> tmpId= 0; chnum-- 0; goto ClearChan
fi

MSSses-to-MailSvr[l] ? msgtype(fl, f2) ->
assert(msgtype == EaddrAndTxt 11 msgtype == aborted);
if

(msgtype == EaddrAndTxt)
addr= fl; txt= f2; ReplyVec[lj= ReplyVec[l] + 1;
printf(I'MailSvr: has rcvd a msg from PDA tmpId=l \n");
goto MailRcvd

:: (Msgtype == aborted) -> tmpId= 1; chnum-- 1; goto ClearChan
fi

MSSses-to-MailSvr[21 ? msgtype(fl, f2) ->
assert(msgtype == EaddrAndTxt 11 msgtype == aborted);
if

(msgtype == EaddrAndTxt)
addr= fl; txt= f2; ReplyVec[21= ReplyVec[21 + 1;
printf(I'MailSvr: has rcvd a msg from PDA tmpId=2 \n");
goto MailRcvd

:: (msgtype == aborted) -> tmpId= 2; chnum= 2; goto ClearChan
fi

fi;

MailRcvd:
if

(ReplyVec[O] >= 1)
if /* Alice doesn't reply to Bob: discharge a msg

ReplyVec[01= ReplyVec[01 -1
skip

fi;
if /* make chnum=O if there's a reply for channel 0

(ReplyVec[Ol >= 1) -> chnum= 0
else -> chnum-- -1 /* no replies for channel 0

161

162

fi
(ReplyVec[l] >= 1)

if
ReplyVec[13= ReplyVec[l) -1
skip

fi ;
if

(ReplyVec[l] >= 1) -> chn== I
else chn== -1

fi
(ReplyVec[21 >= 1)

if
ReplyVec[21= ReplyVec(21 -1
skip

fi;
if

(ReplyVec[21 >= 1) -> chnum-- 2
else -> chnum= -1

fi

Promela specification of the systern

if
(chnum >= 0 && chnum < NUMofPDA)

if
MailSvr-to-MSSses(chnuml ! YouHaveMail(chnum,

-pid)
progress-replySent: skip
timeout-> skip /* PDA is off or has left the MSS

fi;
ReplyVec[chnuml= ReplyVec[chnum] -1;

else-> skip
fi;

chnum= -1;
goto end-cyc;

ClearChan:
do

nempty(MailSvr-to-MSSses[chnuml)
MailSvr-to-MSSses[chnuml ? msgtype(fl, f2) /* drop this msg

empty(MailSvr-to-MSSses[chnuml) -> break
od;
goto end-cyc

od
I

init process: it instantiates MailSvr process and three PDA
processes.

init
f

int PDAnum; /* PDA number
int tmpId; /* temporary Id
int chnum; /* channel number

,
A. 3 Promela code for validating the bank process

atomicf
run MailSvrO; /* instantiate MailSvr process

PDAnum-- 0;
do

PDAnum < NUMofPDA -> /* instantiate MailSvr process
if

:: (PDAnum == 0) -> tmpId=O; chnum--O
(PDAnum 1) tmpld=l; chnum--l
(PDAnum 2) tmpId=2; chnum=2

fi;
run MSSses(tmpId, chnum);
PDAnum++

PDAnum >= NUMofPDA -> break

od
I

A. 3 Promela code for validating the bank process

PROGRAMME: Promela validation model for the bank process.
AUTHOR: Carlos Molina Jimenez;
ADDRESS: The University of Newcastle upon Tyne
DATE OF CREATION: 27 Jul 1999
DATE OF LAST UPDATE: 11 Nov 1999

#define MAXNUMPAYATTEMPTS
#define MAXMONEY
#define GOLDENMONEY
#define MINMONEY
#define TOOLITTLEMONEY
#define NOMONEY
#define FAKEMONEY
#define MAXEXTPAY

#define YES
#define NO
#define MAXNUMPDA
#define NUMofPDA
#define QSZ
#define MAX-Ks
#define MIN-Ks

3 /* max num of attempts to pay for an anonymous session
100 /* max money accepted for opening an anonymous call
20 /* golden is considered genuine and enough
15 /* min money accepted for opening an anonymous call

1 /* genuine money but not enough
0 /* no money

-1 /* fake money
40 /* max amount of money for extra payment: the user can

/* extend his call twice: 20+20 or 15+15 or 20+15

1
0
3 /* max num of PDA in the MSS
3 /* num of PDA visiting the MSS
I /* num of msg stored in a channel
5 /* Valid Ks domain [1 ... 51
1 /*

mtype= ýaborted, abort, Ecash, EcashRejetd, EcashAccepd, GenuineEcash, FakeEcashl;

chan MSSses-to-bank(MAXNUMPDAI=(QSZ1 of ýbyte, int, intj;
chan bank-to-MSSses[MAXNUMPDAI=(QSZ] of fbyte, int, intl;

163

164 Promela specification of the system

MSSses process: simulates to receive a Ecash from a PDA (in fact
the Ecash is created locally); upon receiving it, the

Ecash is forwarded to the bank for verification of genuineness while
the MSSses waits for a reply. If the reply is 'FakeCash', it fetches a
different e-coin and tries again until it receives a 'GenuineEcash'
answer or MAXNUMPAYATTEMPTS is exhausted. In the former case the

* MSSses enters the anonymous session state. In the latter case, the MSSses
* terminates in abortion.
* This piece of code helps validate the bank process ONLY, so it blocks
* when it reaches the anonymous session state.

proctype MSSses(int tmpId, chnum)

byte msgtype; /* type of msg received
int fl; /* field for receiving the first field of a msg
int f2; /* field for receiving the second field of a msg
int payment;
int i;
bool flag;

f lag= YES;
i= 1;

FirstPayment: do
(i <= MAXNUMPAYATTEMPTS)
if

payment= FAKEMONEY

payment= MINMONEY

payment= GOLDENMDNEY
fi;

MSSses-to-bank[chnuml ! Ecash(payment, tmpld)
bank-to-MSSses[chnuml ? msgtype(fi, f2);

if
(msgtype - FakeEcash)

i++ /* go back and fetch another coin from PDA memory

(msgtype - GenuineEcash) -> payment= fl;
goto end-AnoSes /* Ecash has been accepted by bank, go and

fi; /* open an anonymous session for PDA

else -> MSSses-to-bank[chnuml H aborted(tmpId, chnum);
goto Aborted

od;

end-AnoSes:
do

(flag - YES)
printf("\nMSSses: AnoSes opened for PDA with tmpld=%d (payment=%d An", tmpId, payment);
flag - NO;

od;

Aborted:
printf("\n\nMSSacs: PDA with tmpId=%d failed to pay: ... ABORTED.... BYE-BYE-BYE \n", tmpId)

A. 3 Promela code for validating the bank process

bank process: receives Ecash from the MSS and checks for genuineness;
if it is satisfied with the Ecash it replies by sending an

'GenuineEcash' msg, in the opposite case, it replies with 'FakeEcash'
msg. Upon sending a reply, it goes back to wait for the next 'Ecash,
msg to arrive. For the purpose of the validation, Ecash of value -1
is considered to be fake money.

proctype banko
f

int tmpId; /* temporary Id
int chnum; /* channel number
int payment;
byte msgtype; /* type of msg received
int fl; /* field for receiving the first field of a msg
int f2; /* field for receiving the second field of a msg

chn== -1;

do
(true)

end-cyc: if
MSSses-to-bank[Ol ? msgtype(fl, f2)

assert(msgtype == Ecash msgtype == aborted);
if

:: (msgtype == aborted) chnum-- 0; tmpId=O; goto ClearChan

:: (msgtype == Ecash) -> payment=fl; chnum= 0; tmpId=O; goto EcashTocheck
fi

:: MSSses-to-bank[l] ? msgtype(fi, f2) ->
assert(msgtype == Ecash msgtype == aborted);
if

(msgtype aborted) chnum= 1; tmpId=l; goto ClearChan
(msgtype Ecash) payment=fl; chnum-- 1; tmpId=l; goto EcashTocheck

fi

MSSses-to-bank[21 ? msgtype(fl, f2)
assert(msgtype == Ecash msgtype == aborted);
if

(msgtype aborted) chnum= 2; tmpId=2; goto ClearChan
(msgtype Ecash) payment=fl; chnum-- 2; tmpId=2; goto EcashTocheck

fi
fi;

EcashTocheck: skip;
/* proc with tmpId= 0 has chnum=O, proc with tmpId=l has chnum=2, etc
assert(O <= chnum && chnum < NUMofPDA && 0 <= tmpId && tmpId < NuMofPDA);
if

(payment == FAKEMONEY) -> bank-to-MSSses[chnuml ! FakeEcash(payment, f2);
printf("BANK: rcvd FakeCash payment=%d from PDA with tmpId=%d \n", payment, tmpId)

else -> bank-to-MSSses[chnuml ! GenuineEcash(payment, f2) ->
printf("BANK: rcvd GenuineEcash payment=%d from PDA with tmpId=7. d \n", payment, tmpId)

fi;
goto end-cyc;

165

ClearChan:
do

166 Promela. specification of the system

nempty(bank-to-MSSses[chnuml) ->
baLnk-to-MSSses[chnuml ? msgtype(fl, f2) -> skip /* drop this msg

:: empty (bank-to-MSSses [chnuml break
od;
goto end-cyc

od

init process: instantiates the bank process and
three PDA processes

init

int PDAnum; /* namber given to PDA
int tmpId; /* temporary Id
int chnum; /* channel number

atomic(
run banko; /* instantiate the bank process

PDAnum= 0;
do

PDAnum < NUMofPDA -> /* instantiate 3 PDA processes
if
:: (PDAnum == 0) -> tmpId=O; chnum=O

(PDAnum 1) tmpId=l; chnum=l
(PDAnum 2) tmpId=2; chnum=2

fi;

run MSSses(tmpId, chnum);
PDAnum++

PDAnum >= NUMofPDA -> break

od

A. 4 Promela code for validating the backbone of the system

* PROGRAMME: Promela validation model for the backbone of the system
* AUTHOR: Carlos Molina Jimenez;
* ADDRESS: The University of Newcastle upon Tyne

DATE OF CREATION: 27 Jul 1999
DATE OF LAST UPDATE: 11 Nov 1999

#dofine MAXNUMPAYATTEMPTS 3 /* max num of attempts to pay for an anonymous session
#defino MAXMDNEY 100 /* max money accepted for opening an anonymous call
#dofino GOLDENMONEY 20 /* golden, is considered genuine

A. 4 Promela code for validating the backbone of the system

#define MINMONEY 15 /* min money accepted for opening an anonymous call
#define TOOLITTLEMONEY 1 /* genuine money but not enough
#define NOMONEY 0 /* no money
#define FAKEMONEY -1 /* fake money
#define MAXEXTPAY 40 /* max amount of money for extra payment: the user can

/* extend his call twice: 20+20 or 15+15 or 20+15

#define LAST-MSGS 10 /* Num of msg left after TimeExp alarm goes off

#define YES 1
#define NO 0
#define ANYINT I /* any integer, the value is not important
#define NEGINT -1 /* any negative integer, the value is not important
#define MAXNWDA 3 /* max number of PDA in the MSS
#define NUMofPDA 3 /* num of PDA visiting the MSS
#define QSZ 1 /* num of msgs that a channel can store
#define LOCALQSZ 3 /* num of msgs that local chan can store
#define MAX-Ks 5 /* Valid Ks domain [1 ... 51
#define MIN-Ks 1 /*
#define MAXNUM-Ks-ATTEMPTS 3 /* max num of attempt to register Ks
#define MAXNUMMSGREAD 4 /* max num of attempt to receive an

/* answer from the MSS encrypted with
/* the suggested Ks and containing a tmpId

#define MAXNUMEMAILS-SENT 16 /* temporary restriction for validation purposes */

#define KsBlack 1
#define KsBlue 2
#define KsGreen 3
#define KsPink 4
#define KsWhite 6 /* <-- invalid key */

mtype= ýaborted, abort, TimeFin, TimeAlert, YourNewKs, ChangeMyKs,
tmpIdRcvd, Ecash. EcashRejetd, EcashAccepd, GenuineEcash,
FakeEcash, EaddrAndTxt, YouHaveMaill;
/* This is equiv. to YouHaveMail=l, EaddrAndTxt=2, FakeECash=3,...

" The MSS receives Ks proposals from PDAs at its PDA-to-KsPort channel
" the PDA read the MSS reply from KsPort-to-PDA channel which can

chan PDA-to-KsPort=[13 of fintl;

chan KsPort-to-PDA=[NUMofPDA] of fint, int, int)

chan KsTmpIdMan-to-MSSses[MAXNUMPDAI=[QSZI of ibyte, int, intl;
chan MSSses-to-KsTmpIdMan[MAXNUMPDAI=[QSZI of ýbyte, int, intj;

chan PDAses-to-tcp[MAXNUMPDAI=[QSZ] of fbyte, int, int);
chan PDAtcp-to-ses(MAXNUMPDAI=EQSZ] of fbyte, int, intl;

chan MSSses-to-tcp[MAXNUMPDAI=[QSZ] of fbyte, int, int);
chan MSStcp-to-ses[MAXNUMPDAI=[QSZ] of fbyte, int, intl;

chan MSStcp-to-PDAtcp[MAXNUMPDAI=[QSZI of fbyte, int, intl;
chan PDAtcp-to-MSStcp[MAXNUMPDAI=[QSZI of fbyte, int. intl;

chan PDAuser-to-ses[MAXNUMPDAI=[QSZ] of fbyte, int, int);
chan PDAses-to-user(MAXNUMPDAI=EQSZ] of fbyte, int, intl;

167

168 Promela specification of the systern.

KsTmpIdMan process: is in charge of managing session keys and temporary
Id assigned to PDAs. It guarantees that tmpIds assigned

to PDAs are unique. Also, it guarantees that session keys are unique and
secret. It asks a PDA to change its Ks when it detects that is has been
hit by another PDA. Also, upon request, it provides a PDA with a new Ks.

proctype KsTmpIdManO
f
int tmpIdVec[MAXNUMPDA]; /* vector for storing TmpIds
int KsVec[MAXNUMPDA]; /* vector for storing Ks
int Ks; /* session key
int tmpId; /* temporary Id
int chnum; /* channel number

int OldestKs; /* oldest Ks accepted by MSS and sent to KsPort-to-PDA */

byte msgtype; /* type of msg received
int fl; /* field for receiving the first field of a msg
int f2; /* field for receiving the second field of a msg
int fhl; /* scratch field for receiving the first field of a msg
int fh2; /* scratch field for receiving the second field of a msg
int NewKey; /* new Ks key
int count; /* counter
int n; /* counter
int i; /* counter
int j; /* counter

i=O; /* initialize to 0 and -1 the valid cells in vectors KsVec
do /* and tmpIdVec, respectively

i< NUMofPDA ->
assert(O <= i && i< MAXNUMPDA);
KsVoc[il= 0;
tmpIdVec[il= -1;
i++
else -> break

od;

i= NUMofPDA; /* initialize to -3 the ununed cells in the vectors'
do /* KsVec and tmpIdVec respectively

i< MAXNUMPDA ->
assert(NUMofPDA <= i && i< MAXNUMPDA);
KsVoc[il= -3;
tmpIdVec[i]= -3;

i++
else -> break

od;

TestTmpIdKs:

test that tmpId assigned to PDA are unique

atomic(

A. 4 Promela code for validating the backbone of the system 169

i=O;
do

(i < MAXNUMPDA)
if

:: (tmpIdVec[il >= 0) -> assert(tmpIdVec[i] < NUMofPDA);
j=O;
do

Q< MAXNUMPDA)
if

(i P j++

else ->
assert(tmpIdVec[i] != tmpIdVec[jl);
j++

fi
else -> break /* move to next i

od

:: else -> skip /* tmpIdVec[il <0 are unused elements
fi;
i++

else -> break /* comparison finished
odj;

test that Ks held by PDA are unique

atomicl
i=O;
do

(i < MAXNUMPDA)
if

:: (KsVec[i] > 0) -> assert(KsVec[il <= MAX-Ks);
j=O;
do

Q< MAXNUMPDA)
if

(i == j) j++

else ->
assert(KsVec[il != KsVec[jD;
j++

fi
else -> break /* move to next i

od

:: else -> skip /* KsVec[i] <0 are unused elements
fi;
i++

else -> break /* comparison finished
odl;

tmpIdKsOK: /* tmpId and Ks are all right, continue */
Ks= 0;

end: do /* valid endstate of this server process
:: PDA_to-KsPort ? Ks -> goto KsVerification

:: MSSses-to-KsTmpIdMan[Ol ? msgtype(fl, f2)->

170 Promela specification of the system

chnum=0; tmpId= 0; goto MSSsesCare

MSSses-to-KsTmpIdMan(l] ? msgtype(fi, f2)->
chnum=l; tmpId= 1; goto MSSsesCare

MSSses-to-KsTmpIdMan[21 ? msgtype(fl, f2)->
chnum=2; tmpId= 2; goto MSSsesCare

od;

KsVerification:
if
:: (Ks <= MAX-Ks && Ks >= MIN-Ks) -> /* Is Ks within the valid domain?

i=O;
do /* is Ks already in use by another PDA?

(i < NUMofPDA) -> /* valid Ks are [1,2,3,41
if

(Ks == KsVec[i])
printf("KsTmpIdMan: Ks=%d KsVec[%dl=%d is in use by tmpId[%dl=%d \n",
Ks, i, KsVec[il, i, tmpIdVec[il);
goto KsInuse

:: (Ks 1= KsVec[iD -> i++
fi;
else -> goto KsNotInuse

od;
else -> /* suggested Ks is incorrect
printf("KsTmpIdMan: Ks= %d is incorrect no reply\n", Ks);
goto TestTmpIdKs

fi;

KsNotInuse:
/* Find a free tmpId in tmpIdVec and assign it to PDA
/* The values of valid tmpId are (0,1,2,3,41
/* tmpIdVec[01= 011121314 means tmpId=O already being used by some PDA
/* tmpIdvec[01= -1 means tmpId=O is free
/* tmpIdvec[01= -2 means tmpId=O has been used and can't be recycled yet
/* tmpIdvec[01= -3 means tmpId=O is not in use at all
/* tmpIdVec[ll= 011121314 means tmpId=l already being used by some PDA
/* tmpIdvec[ll= -1 means tmpId=l is free
/* tmpIdvec[lj= -2 means tmpId=l has been used and can't be recycled yet
/* tmpIdvec[ll= -3 means tmpId=l is not in use at all
/* tmpIdVec[21= 011121314 means tmpId=2 already being used by some PDA
/* tmpIdvec[21= -1 means tmpId=2 is free
/* tmpIdvec[21= -2 means tmpId=2 has been used and can't be recycled yet
/* tmpIdvec[21= -3 means tmpId=2 is not in use at all

i=O;
do

(i < NUMofPDA) -> /* tmpId= -3 not in use at all
if /* tmpId= -2 not in use: to be recycled later

(tmpIdVec[il I= -1) -> i++ /* tmpId is already in use, try next one
else -> break /* tmpId is free, use it

fi

else -> /* no more tmpId to be assigned: take this as KsINUSE= YES
/* and don't reply no anybody

A. 4 Promela code for validating the backbone of the system 171

goto TestTmpIdKs

od;
tmpId= i; chnum--i; /* tmpId & chnum assigned to new PDA with session key= Ks
if

atomicfnfull(KsPort-to-PDA) -> /* there's space in ch for key(tmpId, chnum)
KsPort-to-PDA ! Ks(tmpId, chn=);
tmpIdVec[il= i;
KsVec(i]= Ks;

run MSSses(tmpId, chnum, Ks)l /* initiate MSS session to take care of new PDA

atomicffull(KsPort-to-PDA) -> /* no space in ch, discharge oldest msg
KsPort-to-PDA ? OldestKs(fl, f2);
tmpIdVec[fll= -2; /* empty PDAj from your tables
KsVec(fll= -2; /* and terminate MSSses assigned to PDAj
KsTmpIdMan-to-MSSses[fI1 1! abort(fl, f2);
MSSses-to-KsTmpIdMan[fI1 ? aborted(fhl, fh2); /* fhl, fh2 scratch var
chnum-- fl;
do

nempty(KsTmpIdMan-to-MSSses[chnuml)
KsTmpIdMan-to-MSSses[chnum.] ? msgtype(fl, f2) /* drop this msg

empty(KsTmpIdMan-to-MSSses[chnuml) -> break

od;
printf("KsTmpIdMan: removed from ch: Ks=%d tmpId=%d chnum--%d \n",

OldestKs, fl, f2)1
fi;
goto TestTmpIdKs;

" Ks suggested by the new PDA is already in use by PDA with tmpId=i and
" chnum=i. KsMan has to get a new Ks for this PDA and send it to new PDA

KsInuse:
printf("KsTmpIdMan: suggested Ks=%d is already in use by PDA with tmpId=%d

chnum=%d\nII, Ks, i, i);
count= 1;
do

(count <= MAXNUM-Ks-ATTEMPTS)
if

NewKey= KsBlack
NewKey= KsBlue
NewKey= KsGreen
NewKey= KsPink

/* :: NewKey= KsWhite is out, we assume KsTmpIdMan generates correct Ks only
fi;
n=O;
do

(n < KUMofPDA)
assert(0 <= nn< NUMofPDA);
if

(KsVec[n] NewKey) count++; break
(KsVec(n] NewKey) n++

fi;
else -> goto NewKsFoundl

od;
else -> /* couldn't find any available Ks

atomicý
KsTmpIdMan-to-MSSses[il !! abort(i, Ks) -> /* order the MSSses to abort
MSSses-to-KsTmpIdMan[il ? aborted(fl, f2);
tmpIdVec(i]= -2;

172 Prornela specification of the system

KsVec[i]= -2;
chnum= tmpId;
do

nempty(KsTmpIdMan-to-MSSses[chnuml)
KsTmpIdMan-to-MSSses(chnuml ? msgtype(fl, f2) /* drop this msg

empty(KsTmpIdMan-to-MSSses[chnuml) -> break
od;
printf("KsTmpIdMan: has SENT ABORT to tmpId= %d \n", i);

goto TestTmpIdKsj

od;

NewKsFoundl:
assert((MIN-Ks <= NewKey)&&(NewKey <= MAX_Ks)&&(O <= i)&&(i < NumofPDA));
if

atomic(KsTmpIdMan_to_MSSses[il 1 YourNewKs(NewKey, Ks)
KsVec[il= NewKeyl

timeout -> printf(IlKsTmpIdMan: tmpId=Y. d chnum--%d Ks=Yd NOT THERE,
ignore it\n", i, i, Ks)

fi;
goto TestTmpIdKs;

MSSsesCare:
if

(msgtype == ChangeMyKs)
printf("KsTmpIdMan: rcvd ChangeMyKs from PDA-tmpld=%d chnum=%d\n", tmpId, chnum);
count= 1;
do

(count <= MAXNUM-Ks-ATTEMPTS)
if

NewKey= KsBlack
NewKey= KsBlue
NewKey= KsGreen
NewKey= KsPink

/* :: NewKey= KsWhite is out, we assume KsTmpIdMan generates correct Ks only
fi;
n=O;
do

(n < NUHofPDA)
assert(0 <= nn< NUHofPDA);
if

(KsVoc[n] NewKey) count++; break
(KsVoc[n) NewKey) n++

fi;
else -> goto NewKsFound2

od;
else -> /* couldn't find any available Ks

atomic(
KsTmpIdMan-to-MSSses(chnuml 11 abort(tmpId, chnum); /* order HSSses to abort
do

MSSsos-to-KsTmpIdMan[chnuml ? msgtype(fl, f2)->
if

(msgtype I- aborted) -> skip
(msgtype - aborted) ->

tmpIdVocEtmpIdl= -2;
KsVec[tmPId]= -2;
chnum- tmpId;

A. 4 Promela code for validating the backbone of the system 173

do

nempty(KsTmpIdman-to-MSSses[chnuml)
KsTmpIdMan-to-MSSses[chnuml ? msgtype(fl, f2) /* drop this msg

empty(KsTmpIdMan-to-MSSses[chnuml) -> break

od;
printf("KsTmpIdMan: has SENT ABORT to tmpId= %d \n", tmpId);
goto TestTmpIdKs

odl
od;

fi

NewKsFound2:
/* assert((MIN-Ks <= NewKey)&&(NewKey <= MAX-Ks)&&(O <= tmpId)&&(tmpId < NuMofPDA));

assert(MIN_Ks <= NewKey && NewKey <= MAX-Ks);

assert(O <= tmpId && tmpId < NUMofPDA && tmpId == chnum);

if

atomicfKsTmpIdMan-to-MSSses[tmpIdI ! YourNewKs(NewKey, fl)
KsVec[tmpIdl= NewKeyl

timeout -> printf("KsTmpIdMan: tmpId=%d with chnum=%d Ks=%d NOT THERE,
ignore it\n", tmpId, chnum, fl)

fi;

(msgtype == aborted) -> /* PDA or MSSses want abort the ano. ses.
atomicf
printf("KsTmpIdMan: going to send ABORT to tmpld= %d \n'l, tmpId);
tmpIdVec[tmpIdl= -2;
KsVec[tmpIdl= -2;
chnum-- tmpld;
do

nempty(KsTmpIdMan-to-MSSses[chnuml)
KsTmpIdMan-to-MSSses[chnuml ? msgtype(fl, f2) /* drop this msg

empty(KsTmpIdMan-to-MSSses[chnuml) -> break
od;
printf("KsTmpIdMan: ABORT FOR tmpld= %d \n", tmpId)l

:: else -> skip /* UNKNOWN msg: transient failure? */
fi;
goto TestTmpIdKs

I

MSSses process: is in charge of managing the anonymous communication session of
the PDA. It charges the PDA for the communication, receives the

payment, forwards it to the bank for verification, accepts or rejects the payment,
warns the PDA user about the prepaid time expiration and abruptly finishes the
communication session when the prepaid time expires. Also, it is the link between
the PDA and the session and TmpId manager; and the link between the PDA and the
mail server.

proctype MSSses(int tmpId, chnum, Ks)
f

174

chan q-to-MSStcp=[LOCALQSZ] of fbyte, int, intl;
chan q-to-KsTmpIdMan=[LOCALQSZ] of fbyte, int, intl;
chan q-to-MailSvr=[LOCALQSZ] of fbyte, int, intl;
chan q-to-bank=[LOCALQSZ] of fbyte, int, intl;

Prornela specification of the system

byte msgtype; /* type of msg received
int fl; /* field for receiving the first field of a msg
int f2; /* field for receiving the second field of a msg
int MyKs; /* a session key
int addr; /* e-mail address
int txt; /* text in an e-amil msg
int payment; /* payment for anonymous session: one unit of money is converted

/* to one msg to be sent
int credit; /* prepaid payment: num. of msg the PDA user has prepaid for
int CreditLeft; /* prepaid payment before warning msg: number of msg the user can

/* send after the expiration time warning and termination of the
/* session

run MSStcp(tmpId, chnum, Ks);

FirstPayment:
do

MSStcp-to-ses[chnuml ? msgtype(fl, f2)
if

(msgtype == Ecash)
payment= fl; tmpId= f2;
if

(payment == FAKEMONEY 11 payment < MINMONEY 11 payment > MAXMONEY) ->
printf(I'MSSses: rcvd FakeEcash I too little or to big money=%d from

PDA-tmpId=%d\n", payment, tmpI d);
if

(nfull(MSSses-to-tcp[chnuml))
MSSses-to-tcp[chnum] ! EcashRejetd(payment, tmpId)

timeout -> skip /* MSStcp is sending aborted go and read it
fi

(payment != FAKEMONEY U MINMONEY <= payment && payment <= MAXMONEY)
printf("MSSses: rcvd GenuineEcash=%d from PDA-tmpId=%d\n", Payment, tmpld);
if

(nfull(MSSses-to-tcp[chnuml)) ->
MSSses-to-tcp[chnuml ! EcashAccepd(payment, tmpId);
assert(payment > LAST-MSGS);
credit= payment - LAST-MSGS;
CreditLeft= LAST-MSGS;
goto AnoSes

timeout -> skip /* MSStcp is sending aborted, go read it
fi

fi
(msgtype - aborted) -> goto AbortBank

fi

KsTmpIdMan-to-MSSses[chnuml ? abort(fl, f2) MSSses-to-tcp[chnuml !! abort(tmpId, chnum)
do

MSStcP_to-ses[chnuml ? msgtype(fl, f2)
if

(msgtype aborted) skip /* discard the msg
(msgtype aborted)
printf("MSSses PDA-tmpId=%d aborted by KsTmpIdMan; going ... Aborted ... \n", tmpId);
goto AbortBank

A. 4 Promela code for validating the backbone of the system 175

od
od;

fi

assert(O<= chnum && chnum <= NUMofPDA);

AnoSes:
do

/* to msstcp
KsTmpIdMan-to-MSSses[chnuml ? [abort(fl, f2)] && nfull(q-to-MSStcp)

KsTmpIdMan-to-MSSses[chnuml ? abort(fl, f2) -> q-to-MSStcp H abort(fl, f2)

/* to KsTmpIdMan */
MSStcp_to-ses[chnum] ? [aborted(fl, f2)] && nfull(q-to-KsTmpIdMan)

MSStcp_to_ses(chnum] ? aborted(fl, f2) -> q-to-KsTmpIdMan !! aborted(fl, f2)

/* to msstcp */
KsTmpIdMan-to-MSSses[chnum] ? [YourNewKs(fl, f2)] && nfull(q-to-MSStcp)

KsTmpIdMan-to-MSSses[chnuml ? YourNewKs(fl, f2) -> q-to-MSStcp 1 YourNewKs(fl, f2)

/* to KsTmpIdMan */
MSStcp_to_ses[chnum] ? [ChangeMyKs(fl, f2)] && nfull(q-to-KsTmpIdMan)

MSStcp-to-ses[chnuml ? ChangeMyKs(fl, f2) -> q-to-KsTmpIdMan ! ChangeMyKs(fl, f2)

/* to MailSvr */
MSStcp_to_ses[chnum] ? [EaddrAndTxt(fl, f2)] && nfull(q-to-MailSvr)

MSStcp-to-ses[chnum3 ? EaddrAndTxt(fl, f2) -> q-to-MailSvr EaddrAndTxt(fl, f2)

/* to bank */
MSStcp-to-ses[chnuml ? [Ecash(fl, f2)] && nfull(q-to-bank)

MSStcp-to-ses[chnuml ? Ecash(fl, f2) -> q-to-bank ! Ecash(fl, f2)

/* send to MSStcp */
nempty(q-to-MSStcp) && nfull(MSSses-to-tcp[chnuml)

q-to-MSStcp ? msgtype(fl, f2);
if

:: (msgtype == abort) -> MSSses-to-tcp[chnuml !! abort(fl, f2)

(msgtype YourNewKs) -> MSSses_to_tcp[chnuml ! YourNewKs(fl, f2);
MyKs= fl;

(msgtype GenuineEcash)
payment= fl;
if

(payment < MINMONEY 11 payment > MAXMONEY)
MSSses-to-tcp[chnum] ! EcashRejetd(payment, f2)

else ->
atomicfMSSses-to-tcp[chnuml ! EcashAccepd(payment, f2)

assert(payment > LAST-MSGS);
credit= payment + credit + CreditLeft;
credit= credit - LAST-MSGS;
CreditLeft= LAST-MSGSI

fi
(msgtype FakeEcash) MSSses-to-tcp[chnum] ! EcashRejetd(fl, f2)

(msgtype TimeAlert) MSSses_to_tcp[chnum) H TimeAlert(fl, f2)

176 Promela specification of the system

:: (msgtype == TimeFin) -> MSSses-to-tcp[chnum] H TimeFin(fl, f2)

:: else -> printf("MSSses: tmpId=Yd UNKNOWN msg: PANIC-PANIC-PANIC\n\n", tmpId)
fi

/* send to KsTmpIdMan */
nempty(q-to-KsTmpIdMan) && nfull(MSSses-to-KsTmpIdMan[chnuml)

q-to-KsTmpIdMan ? msgtype(fl, f2);
if

:: (msgtype == aborted) -> goto Aborted

:: (msgtype == ChangeMyKs) -> MSSses-to-KsTmpIdMan(chnuml ! ChangeMyKs(fl, f2)

fi

:: nempty(q-to-MailSvr) && /* pretend to send msg to MailSvr
nfull(q-to-MSStcp) && (credit >=1 11 CreditLeft >= 1)
q-to-MailSvr ? msgtype(fl, f2);
if

(msgtype == EaddrAndTxt)
/* if necessary process the msg
assert(credit >= 0 &k CreditLeft >= 0);
printf("MSSses: credit=%d CreditLeft=%d for PDA-tmpId=%d\n\n", credit,

CreditLeft, tmpId);
if

(credit >= 1) -> /* charge to 'credit' account
/* MSSses_to_MailSvr[chnum] ! EaddrAndTxt(fI, f2); */ skip;
credit--;
if

(credit == 0) -> q-to-MSStcp! TimeAlert(fl, f2);

else -> skip
fi

(credit == 0 && CreditLeft >= 1) -> /* charge to CreditLeft' account
/* MSSses-to-MailSvr[chnuml ! EaddrAndTxt(fl, f2); */ skip;
CreditLeft--;

if

:: (CreditLeft == 0) -> q-to-MSStcp ! TimeFin(fl, f2)

:: else -> skip
fi

fi
fi

nempty(q-to-bank) && nfull(q-to-MSStcp) -> q-to-bank ? msgtype(fl, f2);
if

(msgtype -- Ecash)
payment= fl;
printf("MSSses: PDA-tmpId=%d has SNT extra payment=Y. d to bank \n",

tmpId, payment);
assert(O <= chnum && chnum < NUMofPDA && 0 <= tmpId && tmpId < NUMofPDA);
if

(payment - FAKEMONEY) -> q-to-MSStcp ! FakeEcash(payment, f2);
printf("BANK: PDA-tmpId=%d chnum= %d SENT FakeCash payment=%d \n",

tmpId, chnum, payment)

also -> q-to-MSStcp ! GenuineEcash(payment, f2) ->
printf("BANK: PDA-tmpId=%d chnum= %d SENT GenuineEcash payment=%d \n",

tmpId, chnum, payment)
fi;

A. 4 Promela code for validating the backbone of the system 177

else ->
printf("MSSses: tmpId=%d has SENT UNKNOWN msg, ignore it \n", tmpId)

fi
od;

Aborted:
skip;

AbortBank:

skip;

send abort to KsTmpIdMan

MSSses-to-KsTmpIdMan[chnuml H aborted(fl, f2);

clear chan to MSStcp

do

atomicfnempty(MSSses-to-tcp[chnuml) ->
MSSses_to_tcp[chnuml ? msgtype(fl, f2)1 /* drop this msg

empty(MSSses-to-tcp[chnuml) -> break
od;

printf("MSSAnoSes tmpId=%d MyKs=%d ... ABORTED.... BYE-BYE-BYE by KsTmpIdMan \n\n".
tmpId, MyKs)

I

MSStcp process: connection-oriented reliable link between the MSS

and the PDA. It forwards msg up the protocol stack
and to the PDA side. The MSStcp initiates an abort procedure that
propagates up the stack protocol whenever it detects that its remote
peer (the PDAtcp) is unreachable.

proctype MSStcp(int tmpId, chnum, Ks)
f

chan q-to-PDAtcp= (LOCALQSZ) of fbyte, int, intj;

chan q-to-MSSses= [LOCALQSZ] of fbyte, int, intj;

byte msgtype; /* type of msg received
int fl; /* field for receiving the first field of a msg
int f2; /* field for receiving the second field of a msg

assert(O <= chnum && chnum <= NUMofPDA && tmpId == chnum);

do
nfull(q-to-PDAtcp) && nempty(MSSses-to-tcp[chnuml) -> /* recv from MSS

MSSses-to-tcp[chnuml ? msgtype(fl, f2) -> q-to-PDAtcp ! msgtype(fl, f2)

:: nfull(q-to-MSSses) && nempty(PDAtcp-to-MSStcp[chnuml) -> /* recv from PDA */

178 Promela specification of the system

PDAtcp-to-MSStcp[chnuml ? msgtype(fi, f2) -> q-to-MSSses ! msgtype(fl, f2)

nempty(q-to-MSSses) && nfull(MSStcp-to-ses[chnuml) -> /* send to MSS
q-to-MSSses ? msgtype(fl, f2);
if

(msgtype == abort) -> /* abort initiated at PDA site
MSStcp-to-ses[chnuml H aborted(fl, f2);
printf("MSStcp: tmpId=%d initiated at PDA site going ... Aborted ... \n", tmpId);
goto Aborted

(msgtype == aborted) -> /* abort initiated at MSS
MSStcp-to-ses[chnum] H aborted(fl, f2);

printf("MSStcp: tmpId=%d initiated at MSS site going ... Aborted ... \n'l, tmpId);
goto Aborted

else -> /* PDA sending a routine msg */
MSStcp-to-ses[chnum] ! msgtype(fl, f2)

fi

/* send to PDA site */
nempty(q-to-PDAtcp) && nfull(MSStcp-to-PDAtcp[chn=]) && nfull(q-to-MSSses)
q-to-PDAtcp ? msgtype(fl, f2);

if
(msgtype - abort) -> /* abort initiated by MSS or KsTmpIdMan

MSStcp-to-PDAtcp(chnuml 1! abort(fl, f2);
q-to-MSSses H aborted(fl, f2);
printf("MSStcp: tmpld=%d aborted by MSS going to ... Aborted... soon \n", tmpId);

(msgtype == TimeFin) -> /* End of AnosSes initiated by MSS or KsTmpIdMan
MSStcp-to-PDAtcp[chnuml H TimeFin(fl, f2);
q-to-MSSses H aborted(fl, f2);
printf("MSStcp: tmpId=%d TimeFin by MSS going to ... Aborted... soon \n", tmpId);

(msgtype == YourNewKs) -> /* MSSman has changed Ks
Ks= fl;
MSStcP-to-PDAtcp[chnuml ! YourNewKs(fl, f2)

:: else -> MSStcp-to-PDAtcp[chnuml ! msgtype(fl, f2) /* MSS sent ordinary msg
fi

full(MSStcp-to-PDAtcp[chnuml) &&
timeout -> /* PDA not receiving: assume PDA has aborted its session

if

nfull(MSStcp-to-ses[chnuml) -> MSStcp-to-ses(chnuml !! aborted(fl, f2);

goto Aborted

:: full(MSStcp_to-ses[chnuml) U timeout -> goto ForceAbort
fi

ampty(PDAtcp-to-MSStcp[chnuml) &&
timeout -> /* PDA not sending: ass=e PDA has aborted its session

if
nfull(MSStcp-to-ses[chnuml) -> MSStcp-to-ses[chnuml H aborted(fl, f2);

goto Aborted

:: full(MSStcp-to-ses[chnuml) U timeout -> goto ForceAbort
fi

A. 4 Promela code for validating the backbone of the system 179

od;

ForceAbort: /* force MSSses to abort (to read 'aborted') from it chan
do

MSStcp-to-ses[chnuml 1! aborted(tmpId, chnum) -> break
timeout -> MSSses-to-tcp[chnuml ? msgtype(fl, f2) /* drop this msg

od;
printf(I'MSStcp tmpId= %d going to ... Aborted ... by KsTmpIdMan \n", tmpId, chnum);

Aborted:
if

atomicýnempty(MSStcp-to-PDAtcp[chnuml) && timeout
do

nempty(MSStcp-to-PDAtcp[chnuml)
MSStcp-to-PDAtcp[chnuml ? msgtype(fl, f2) /* drop this msg

empty(MSStcp-to-PDAtcp[chnuml) -> break

odl
empty(MSStcp-to-PDAtcp[chnuml) -> skip

fi;

printf("MSStcp: tmpId= %d chanum-- %d ... ABORTED... BYE-BYE-BYE\n\n", tmpId, chnum)
I

" EscKey process:
" -the fact that the PDA user can press the ESC keyboard at any time to
" interrupt his anonymous session is simulated by a Itimeout'
" which can go off at any time.
" -interruption of the PDA user anonymous session can be originated at
" the PDAuser, PDAses, PDAtcp or at the MSS site, if this happens
" an 'abort' message is received which lead to abort the keyboard pro-

cess.

proctype EscKey(chan user-to-EscKey, EscKey-to-user; int tmpId, chnum)

int fl; /* field for receiving the first field of a msg
int f2; /* field for receiving the second field of a msg
if

user-to-EscKey ? aborted(fi, f2) -> /* abort from PDA or MSS site
goto Aborted

timeout -> EscKey-to-user !! abort(tmpId, chn=)
goto Aborted /* simulates the user pressing ESC

/* to interrupt his anonymous session
fi;

Aborted:
printf("EscKey: tmpId=%d aborted at PDA or MSS site BYE-BYE-BYE\n\n", tmpId);

I

180 Promela specification of the systern

PDAuser proce ss: is the interface between the PDA user and the
anonymous and confidential communication system.

It receives PDA user's commands typed on the keyboard and display
messages on the PDA screen.

proctype PDAuser (int PDAnum)
f

byte msgtype; /* type of msg received
int fl; /* field for receiving the first field of a msg
int f2; /* field for receiving the second field of a msg
int tmpId; /* temporary Id
int chnum; /* channel number
bool KsChanged; /* flag to stop the PDA changing its Ks more than once
int payment; /* payment for opening or extending an anonymous session
int MaxExtPay; /* max amount of money a user is allowed to spend in calls
int ExtPay; /* max amount of money a user hast spent in calls
int addr; /* e-mail address
int txt; /* text in e-mail msg

bool AbortFlag; /* was the process forced to abort YES/NO ? */

int i; /* counter of attempts */
int NumM; /* number of e-mails to send

chan ses-to-user-localch=Ell of ýbyte, int, intj;
chan user-to-esckey=[ll of fbyte, int, intl;
chan esckey-to-user=[ll of fbyte, int, intl;

KsChanged= NO;
AbortFlag= NO;

* run PDAses process: ses-to-user-localch is used by PDAuser to
* receive tmpId and from PDAses

run PDAses(PDAnum, ses-to-user-localch);

KsNegotiation:
do

ses-to-user-localch ? tmpIdRcvd(tmpId, chnum) -> break
ses-to-user-localch ? aborted(fl, f2) ->

printf("PDAuser: PDAn==%d pid=%d : My PDAses couldn't get a Ks;
going ... Aborted ... \n", PDAnum, -pid);

goto Aborted
od;

MaxExtPay- MAXEXTPAY;
ExtPay= 0;

FirstPayment: do
(i <= MAXNUMPAYATTEMPTS)
if

payment= FAXEMONEY
payment- TOOLITTLEMONEY
payment= GOLDENMONEY

A. 4 Promela code for validating the backbone of the system 18JL

fi;

PDAuser-to-ses[chnuml ! Ecash(payment, tmpId) ->

PDAses-to-user[chnuml ? msgtype(payment, f2)
if

(msgtype == EcashRejetd)
i++ /* go back and fetch another coin from PDA memory

:: (msgtype == EcashAccepd) ->
NumM=MAXNUMEMAILS_SENT;

run the EscKey process

run EscKey(user-to-esckey, esckey-to-user, tmpld, chnum);
goto AnoSes

(msgtype == aborted) ->
printf("PDAuser: tmpId=%d couldn't PAY; aborted by PDAsesIPDAtcpIMSS

going ... Aborted ... \n", tmpId);
goto Aborted

fi

else -> PDAuser-to-ses[chnuml H abort(tmpId. chnum)
do

PDAses-to-user[chnuml ? msgtype(fl, f2)
if

:: (msgtype != aborted) -> skip /* discard this msg

(msgtype == aborted) ->
printf("PDAuser: tmpId=%d couldn't PAY; going ... Aborted ... \n", tmpId);
goto Aborted

fi
od

od;

AnoSes:
do

(NumM >= 1 && nfull(PDAuser-to-ses[chnuml))
PDAuser-to-ses[chnum] ! EaddrAndTxt(-pid,

-pid);
NumM--

PDAses-to-user[chnuml ? YouHaveMail(addr, txt) ->
printf("PDAuser tmpId= %d chnum-- %d GOT E-MAIL addr= XX txt= YY\n", tmpId. chnum)

(KsChanged==ND) -> PDAuser-to-ses(chnural ChangeMyKs(tmpId, chnum); KsChanged= YES
/* Ks can be changed only once

PDAses-to-user(chnuml ? YourNewKs(fl, f2)
printf("PDAuser tmpId= %d has got a new Ks \n", tmpId)

PDAses-to-user[chnuml ? TimeAlert(fl, f2) ->
printf("PDAuser: PDA-tmpld=%d has been TimeAlerted\n", tmpId);
if

(ExtPay <= MaxExtPay)
if

payment= FAKEMONEY

payment= TOOLITTLEMONEY

payment= GOLDENMONEY

182 Promela specification of the system

:: payment= NOMONEY
fi;
PDAuser-to-ses[chnuml ! Ecash(payment, tmpId);
printf("PDAuser: PDA-tmpId=%d has sent EXTRA payment=7. d\n", tmpId, payment)

else -> skip /* no more extensions allowed
fi

PDAses-to-user[chnuml ? TimeFin(fl, f2) ->
printf("PDAuser: PDA-tmpId=%d TimeFin going ... Abort... \n", tmpId);
user-to-esckey!! aborted(tmpId, chnum);
goto Aborted

PDAses-to-user[chnuml ? EcashAccepd(fl, f2)
ExtPay= ExtPay + payment;
NumM= MAXNUMEMAILS-SENT;
printf("PDAuser: tmpId=%d AnoTime INCRTED msg to send=%d\n", tmpId, NumM);

PDAses-to-user[chnuml ? EcashRejetd(fl, f2) ->
printf("PDAuser: AnoTime NOT incremented for PDA-tmpId= %d chnum= %d \n", tmpId, chnum)

PDAses-to-user[chnuml ? aborted(fl, f2) ->
user-to-esckey!! aborted(tmpld, chnum);
printf("PDAuser: PDA-tmpId=%d aborted initiated by PDAses I PDAtct

MSS going ... Abort ... \n", tmpId);
goto Aborted

esckey-to-user ? abort(fl, f2) -> /* user pressed ESC key to interrupt session
PDAuser-to-ses[chnuml H abort(chnum, tmpId)

od;

Aborted:
AbortFlag= YES;

printf("PDAuser: +++ABORTED... BYE-BYE-BYE\n\n", tmpId, chnum);

End:
do

nempty(PDAuser-to-ses[chnuml)
PDAuser-to-ses[chn=l ? msgtype(fl, f2) /* drop this msg

empty(PDAuser-to-ses[chnuml) -> break
od;

if
(AbortFlag - NO)

printf("PDAuser: PDA-tmpId=%d chnum= %d HAPPY END BYE-BYE-BYE\n\n", tmpId, chnum)
else -> skip

fi
I

PDAses process: is in charge of learning the Kpu key and negotiating
a Ks key. It encrypts PDAuser msg before forwarding

them down the protocol stack; conversely, it decrypts msg coming from
the underneath layer and forward them to the PDAuser layer.

A. 4 Promela code for validating the backbone of the system

proctype PDAses(byte MyPDAnum; chan ses-to-user-localch)
f
chan q-to-tcp=[LOCALQSZ] of fbyte, int, intl;
chan q-to-user=[LOCALQSZ] of fbyte, int, intl;

int Ks; /* session key of the PDA
int tmpId; /* temporary Id
int chnum; /* channel number
int payment; /* payment for an anonymous session
byte msgtype; /* type of msg received
int fl; /* field for receiving the first field of a msg
int f2; /* field for receiving the second field of a msg
int addr; /* e-mail address
int txt; /* text in e-mail msg
int i; /* i <= MAXNUM-Ks-ATTEMPTS: counter number of attempt

/* to register a session key
bool AbortFlag; /* was the process forced to abort YESAO ?
bool KsAccepd; /* The suggested Ks was accepted YES/NO ?

KsNegotiation:
Ks= 0;
tmpId= 0;

AbortFlag= NO;
KsAccepd= NO;

i= 1;
do

(i <= MAXNUM-Ks-ATTEMPTS)
if /* random selection of Ks

Ks = KsBlack ->
PDA-to-KsPort ! Ks;
if

" There may be up to 5 msg in the channel buffer. If there is one
" (not necessarily at the head of the buffer) with mtype= KsBlack
" retrieve it. Otherwise block until such a msg appears in the
" channel or timeout goes off

KsPort-to-PDA ?? KsBlack(tmpld, chnum)
KsAccepd = YES;
break

timeout
printf("PDAses: PDAnum= %d; sent Ks= %d i= %d NO answer

TIMEOUT \n", MyPDAnum, Ks, i);
i++

fi

Ks = KsBlue ->
PDA-to-KsPort ! Ks;
if

KsPort-to-PDA ?? KsBlue(tmpId, chnum)
KsAccepd = YES;
break

183

timeout ->
printf("PDAses: PDAnum= %d; sent Ks= %d i= %d NO answer

184

TIMEOUT \n", MYPDAnum, Ks, i);
i++

fi

Ks = KsGreen ->
PDA-to-KsPort 1 Ks;
if

KsPort-to-PDA ?? KsGreen(tmpId, chn=)
KsAccepd = YES;
break

Promela specification of the system

timeout ->
printf("PDAses: PDAnum= %d; sent Ks= %d i= %d NO answer

TIMEOUT \n", MyPDAnum, Ks, i);
i++

fi

Ks = KsPink ->
PDA-to-KsPort ! Ks;
if

KsPort-to-PDA ?? KsPink(tmpId, chnum)
KsAccepd = YES;
break

timeout ->
printf("PDAses: PDAnum= %d; sent Ks= %d i= %d NO answer

TIMEOUT \n", MYPDAnum, Ks, i);
i++

fi

Ks = KsWhite ->
printf("PDAses: PDAnum= %d is going to send Ks= %d \n", MyPDAnum, Ks);
PDA-to-KsPort ! Ks;
if

KsPort-to-PDA ?? KsWhite(tmpId, chn=)
KsAccepd = YES; /* this should never happen
break /* this should never happen

timeout
printf("PDAses: PDAnum= %d; sent Ks= %d i= %d NO answer

TIMEOUT \n", MYPDAnum, Ks, i);
i++

fi

fi

(i > MAXNUM-Ks-ATTEMPTS) ->
break /* give up registering a Ks

od;

communication between the PDAuser and the PDAses

if
(KsAccepd == NO)
printf("PDAses: PDAnum=%d failed to register Ks after i=%d attempts:

going ... Aborted+++\n", MyPDAnum, i-I);
ses-to-user-localch H aborted(NEGINT, NEGINT);
goto Aborted

else ->
ses-to-user-localch I tmpIdRcvd(tmpId, chnum);

A. 4 Promela code for validating the backbone of the system 185

printf("PDAses: PDAnum=%d; pid=%d RgTED Ks=%d (tmpId= %d) after the %dth

attempts \n", MyPDAnum,
-pid,

Ks, tmpId,
i);

i;

initiating the underneath layer

run PDAtcp(tmpId, chnum, Ks)

FirstPayment:
do

PDAuser-to-ses[chnuml ? msgtype(fl, f2)
if

(msgtype == Ecash)
/* if necessary do anything to the msg

PDAses-to-tcp[chnuml ! msgtype(fl, f2)

(msgtype == abort) -> PDAses_to_tcp[chnuml !! abort(fl, f2)
do

PDAtcp-to-ses[chnuml ? msgtype(fl, f2);
if

(msgtype aborted) skip /* discard the msg
(msgtype aborted) PDAses-to-user[chnuml !! aborted(fl, f2);

goto Aborted
fi

od
fi;

PDAtcp-to-ses[chnuml ? msgtype(fl, f2)
if

(msgtype == EcashRejetd)
/* if necessary do anything to the msg
PDAses-to-user[chnuml ! msgtype(fl, f2)

:: (msgtype == EcashAccepd) ->

od;

skip; /* if necessary do anything to the msg
payment= fl;
PDAses-to-user[chnuml ! EcashAccepd(payment, tmpId);
goto AnoSes

(msgtype == aborted) ->
PDAses-to-user[chnum] H aborted(fl, f2);
goto Aborted

fi

AnoSes:
do

/* from user to ses to tcp
nfull(q-to-tcp) && nempty(PDAuser-to-ses[chnuml)
PDAuser-to-ses[chnuml ? msgtype(fi, f2) -> q-to-tcp ! msgtype(fl, f2)

/* from tcp to ses to user */
nfull(q-to-user) && nempty(PDAtcp-to-ses(chnuml)

PDAtcp-to-ses[chnuml ? msgtype(fl, f2) -> q-to-user ! msgtype(fi, f2)

186 Promela specification of the system

/* send to user */
nempty(q-to-user) && nfull(PDAses-to-user(chnuml)

q-to-user ? msgtype(fl, f2);
if

(msgtype == YourNewKs)
printf("PDAses: tmpId=%d GOT new Ks OldKs=%d

NewKs= %d\n", tmpId, Ks, fl);
Ks= f 1;
/* if necessary process the msg
PDAses-to-user[chnuml ! YourNewKs(fl, f2)

:: (msgtype == TimeAlert) ->
/* if necessary process the msg */
PDAses-to-user[chnuml ! TimeAlert(fl, f2)

(msgtype EcashAccepd) ->
/* if necessary process the msg
PDAses-to-user[chnuml ! EcashAccepd(fl, f2)

(msgtype EcashRejetd) ->
/* if necessary process the msg
PDAses-to-user[chnuml ! EcashRejetd(fl, f2)

(msgtype YouHaveMail) ->
/* if necessary process the msg
PDAses-to-user[chnum] ! YouHaveMail(fl, f2)

(msgtype == aborted) ->
/* if necessary process the msg
PDAses-to-user[chnuml !! aborted(fl, f2);
printf("PDAses: tmpId=%d abort initiated by PDAtcp

or MSS going ... Aborted... \n", tmpId);
goto Aborted

:: (msgtype == TimeFin) ->
/* if necessary process the msg */
PDAses-to-user[chnuml ! TimeFin(fl, f2);
printf("PDAses: tmpId=%d TimeFin MSS going ... Aborted... \n", tmpId);
goto Aborted

fi;

nempty(q-to-tcp) && nfull(PDAses_to_tcp[chnuml) -> /* send to tcp
q-to-tcp ? msgtype(fl, f2);
if

(msgtype == ChangeMyKs)
printf("PDAses: PDA-tmpId=%d ASKING to change OldKs=7. d \n", tmpId, Ks);
/* if necessary process the msg */
PDAses-to-tcp[chnuml ! ChangeMyKs(fl, f2)

(msgtype - EaddrAndTxt) ->
/* if necessary process the msg
PDAses-to-tcp[chnuml I EaddrAndTxt(fl, f2)

(msgtype -- Ecash) ->
/* if necessary process the msg
PDAses-to-tcp[chnuml ! Ecash(fl, f2)

A. 4 Promela code for validating the backbone of the system 187

(msgtype == abort) ->
/* if necessary process the msg
PDAses-to-tcp[chnuml !! abort(fl, f2)

fi

od;

Aborted:
AbortFlag= YES;

printf("PDAses: ... ABORTED... BYE-BYE-BYE\n\n");

End:
do

atomicfnempty(PDAses-to-tcp[chnuml)
PDAses-to-tcp[chnuml ? msgtype(fl, f2)1 /* drop this msg

empty(PDAses-to-tcp[chnuml) -> break
od;

if
(AbortFlag== NO) -> printf("PDAses: HAPPY END BYE-BYE-BYE\n\n")
else-> skip

fi
I

PDAtcp process: connection-oriented reliable link between the PDA
and the MSS. It forwards msg up the protocol stack

and to the MSS side. The PDAtcp initiates an abort procedure that
propagates up the stack protocol whenever it detects that its remote
peer (the MSStcp) is unreachable.

proctype PDAtcp(int tmpId, chnum, Ks)
f

chan q-to-PDAses= (LOCALQSZ] of fbyte, int, intj;
chan q-to-MSStcp= [LOCALQSZ] of fbyte, int, intj;

byte msgtype; /* type of msg received
int fl; /* field for receiving the first field of a msg
int f2; /* field for receiving the second field of a msg

assert(O <= chnum && chnum <= NUMofPDA && tmpId == chnum);

do
/* from PDAtcp to PDAses
nfull(q-to-PDAses) && nempty(MSStcp-to-PDAtcp[chnuml)

MSStcp-to-PDAtcp[chnuml ? msgtype(fi, f2) -> q-to-PDAses ! msgtype(fl, f2)

/* PDAses to PDAtcp */
nfull(q-to-MSStcp) && nempty(PDAses-to-tcp[chnum])

PDAses-to-tcp[chnuml ? msgtype(fl, f2) -> q-to-MSStcp ! msgtype(fl, f2)

/* send to PDAses */
nempty(q-to-PDAses) && nfull(PDAtcp-to_ses[chnuml)

q-to-PDAses ? msgtype(fl, f2);

188 Promela specification of the system

if
(msgtype == abort) -> /* abort initiated by MSS

PDAtcp-to-ses[chnum] H aborted(fl, f2);
printf("PDAtcp: tmpId=%d initiated by MSS going

... Aborted+++\n", tmpId, chnum);
goto Aborted

(msgtype == TimeFin) -> /* TimeFin initiated by MSS
PDAtcp-to-ses[chn=l H TimeFin(fl, f2);
printf("PDAtcp: tmpId=%d TimeFin initiated by MSS going

... Aborted ... \n", tmpId);
goto Aborted

(msgtype == aborted) -> /* abort initiated by PDAuser or PDAses or PDAtcp
PDAtcp-to-ses[chnuml H aborted(fl, f2);

printf("PDAtcp: tmpId=%d initiated at PDA side going
+++Aborted+++\n", tmpId);

goto Aborted

(msgtype == YourNewKs) -> /* MSSman has changed Ks
Ks= fl;
PDAtcp-to-ses[chnuml ! YourNewKs(fl, f2)

else -> /* MSS sending a routine msg */
PDAtcp-to-ses[chnuml 1 msgtype(fl, f2)

fi

/* send to MSStcP */
nempty(q-to-MSStcp) && nfull(PDAtcp-to-MSStcp[chn=])

&& nfull(q-to-PDAses)
q-to-MSStcp ? msgtype(fl, f2);
if /* PDA sent ordinary msg */
:: (msgtype != abort) -> PDAtcp-to-MSStcp[chnuml ! msgtype(fi, f2)

(msgtype == abort) -> /* abort initiated by PDA
PDAtcp-to-MSStcp[chnuml H abort(fl, f2);
q-to-PDAses H aborted(fl, f2);
printf("PDAtcp: tmpId=%d aborted by PDA going to

... Aborted... soon \n", tmpId)
fi

full(PDAtcp-to-MSStcp[chnuml) U
timeout -> /* MSS not reading: ass=e MSS aborted session

if
nfull(q-to-PDAses) -> q-to-PDAses H aborted(fl, f2)
full(q-to-PDAses) && timeout -> goto ForceAbort

fi

od;

ForceAbort:
do

PDAtcp-to-ses[chnuml H aborted(tmpId, chn=) -> break
timeout -> PDAses-to-tcp[chnuml ? msgtype(fl, f2) /* drop this msg

od;

Aborted:
if
:: atomicfnempty(PDAtcp-to-MSStcp[chnuml) && timeout

A. 5 Promela specification of the whole system

do
nempty(PDAtcp-to-MSStcp[chnuml)

PDAtcp-to-MSStcp[chnuml ? msgtype(fl, f2) /* drop this msg
empty(PDAtcp-to-MSStcp[chnural) -> break

odl
empty(PDAtcp-to-MSStcp[chnuml) -> skip

fi;

printf("PDAtcp: tmpId= %d chanum= %d ... Aborted... BYE-BYE-BYE\n\n", tmpId, chnum)
I

instantiates the participants processes

init
f

int PDAnum; /* number of PDA

atomicf
run KsTmpIdManO ; /* instantiate the tmpId and Ks manager process
1;

PDAnum-- 0;

do /* instantiate NUMofPDA processes, one for each PDA
PDAnum < NUMofPDA ->

run PDAuser(PDAnum);
PDAnum++

PDAnum >= NUMofPDA -> break
od

I

A. 5 Promela specification of the whole system

PROGRAMME: Promela validation model for the anonymous and confidential communicator
AUTHOR: Carlos Molina Jimenez;
ADDRESS: The University of Newcastle upon Tyne
DATE OF CREATION: 27 Jul 1999
DATE OF LAST UPDATE: 11 Nov 1999

* This code assumes that the Ks negotiation has been verified, so lines related to
* KpuMan process have been commented

/* #define CERTIFIED-Kpu 12 Kpu certified by a certification authority
/* #define UNCERTIFIED-Kpu 10 Kpu not certified by a certification authority
/* #define INVALID-Kpu 00 Kpu out of domain
/* #define MAXNUM-Kpu-ATTEMPTS 10 max number of attempts to receive the right Kpu

189

190

#define MAXNUMPAYATTEMPTS
#define MAXMDNEY
#define GOLDENMONEY
#define SILVERMONEY
#define MINMONEY
#define TOOLITTLEMONEY
#define NOMONEY
#define FAKEMONEY
#define MAXEXTPAY

#define LAST-MSGS

#define YES I
#define NO 0
#define ANYINT 1
#define NEGINT -1
#define MAXNUMPDA 3
#define NUMofPDA 3
#define QSZ 1
#define LOCALQSZ 3
#define MAX-Ks 5
#define MIN-Ks I
#define MAXNUM-Ks-ATTEMPTS
#define MAXNUMMSGREAD

Promela specification of the system

3 /* max num of attempts to pay for an anonymous session
100 /* max money accepted for opening an anonymous call
20 /* golden, silver, are genuine and
15 /* enough money for opening an anonymous call
15 /* min money accepted for opening an anonymous call
I /* genuine money but not enough
0 /* no money

-1 /* fake money
40 /* max amount of money for extra payment: the user can

/* extend his call twice: 20+20 or 15+15 or 20+15

10 /* Num of msg left after TimeExp alarm goes off

/* any integer
/* any negative integer
/* max number of PDA in the MSS
/* num of PDA visiting the MSS
/* num of msgs stored by a channel
/* num of msgs store by a channel
/* Valid Ks domain (1... 51

3 /* max num of attempt to registe r Ks
4 /* max num of attempt to receive an

/* answer from the MSS encrypted with
/* the suggested Ks and containi ng a tmpId

#define MAXNUMEMAILS-SENT 16 /* temporary restriction for validation purposes */

#define KsBlack 1
#define KsBlue 2
#define KsGreen 3
#define KsPink 4
#define KsRed 5
#define KsWhite 6 /* <-- invalid key

mtype= faborted, abort, TimeFin, TimeAlert, YourNewKs, ChangeMyKs,
tmpIdRcvd, Ecash, EcashRejotd, EcashAccepd, GenuineEcash,
FakeEcash, EaddrAndTxt, YouHaveMaill;
/* This is equiv. to YouHaveMail=l, EaddrAndTxt=2, FakeECash=3

This code assumes that the Ks negotiation has been verified, so lines related to
KpuMan process have been commented

/* mtype=fKpu, BogusKpu, KpuRcvdl *//* msg type used by KpuMan
/* chan KpuPort-to-PDA=[I3 of fbyte, intl; *//* Kpu broadcast channel from MSS to PDAs

The MSS receives Ks proposals from PDAs at its PDA-to-KsPort channel
the PDA read the MSS reply from KsPort-to-PDA channel which can

chan PDA-to-KsPort=[Il of (int);

chan KsPort-to-PDA=ENUMofPDA] of fint, int, intl

chan KsTmpIdMan-to-MSSses[MAXNUMPDAI=[QSZI of ýbyte, int, intl;

chan MSSses-to-KsTmpIdMan[MAXNUMPDAI=[QSZI of ýbyte, int, intl;

A. 5 Promela specification of the whole system

chan PDAses-to-tcp[MAXNUMPDAI=[QSZ] of fbyte. int, intl;
chan PDAtcp-to-ses[MAXNUMPDAI=[QSZ] of lbyte. int. intl;

chan MSSses-to-tcp[MAXNUMPDAI=EQSZ] of fbyte, int, int);
chan MSStcp-to-ses[MAXNUMPDAI=[QSZ] of fbyte, int, intl;

chan MSStcp-to-PDAtcp[MAXNUMPDAI=[QSZI of fbyte, int, intl;
chan PDAtcp-to-MSStcp[MAXNUMPDAI=EQSZI of fbyte, int, intl;

chan PDAuser-to-ses[MAXNUMPDAI=[QSZ] of fbyte, int, intl;
chan PDAses-to-user[MAXNUMPDAI=[QSZ] of fbyte, int, intl;

chan MSSses-to-bank[MAXNUMPDAI=[QSZ] of fbyte, int, intl;

chan bank-to-MSSses[MAXNUMPDAI=[QSZ1 of fbyte, int, intl;

chan MSSses-to-MailSvr[MAXNUMPDAI=[QSZI of fbyte, int, intl;
chan MailSvr-to-MSSses[MAXNUMPDAI=[QSZI of fbyte, int, intl;

* This code assumes that the Ks negotiation has been verified, so lines related to
* KpuMan process have been commented

KpuMan process: it places a msg in KpuPort-to-PDA channel. The msg is read by
PDAs. It contains certified Kpu key, uncertified Kpu key or bogus

message. When the msg is read, the KpuMan places another one, waits until
it is read and so on.

/* proctype KpuManO

int Kpu-val;

do
:: (true)
if

Kpu-val= CERTIFIED-Kpu
Kpu-val= UNCERTIFIED-Kpu

fi;

end-cyc:
if

KpuPort-to-PDA Kpu(Kpu-val)
KpuPort-to-PDA BogusKpu(INVALID-Kpu)

fi
od

KsTmpIdMan process: it is in charge of managing session keys and temporary
Id assigned to PDA. It guarantees that tmpIds assigned

to PDA are unique. Also, it guarantees that session keys are unique and

191

192 Promela specification of the system

* secret. It asks the PDA to change its Ks when it detects that is has been
* hit by another PDA. Also, upon request, it provides the PDA with a new Ks.

proctype KsTmpIdManO
f
int tmpIdVec[MAXNUMPDA]; /* vector for storing TmpIds
int KsVec[MAXNUMPDA], /* vector for storing Ks
int Ks; /* session key
int tmpId; /* temporary Id
int chnum; /* channel number

int OldestKs; /* oldest Ks accepted by MSS and sent to KsPort-to-PDA */

byte msgtype; /* type of msg received
int fl; /* field for receiving the first field of a msg
int f2; /* field for receiving the second field of a msg
int fhI; /* scratch field for receiving the first field of a msg
int fh2; /* scratch field for receiving the second field of a msg
int NewKey; /* new Ks key
int count; /* counter
int n; /* counter
int i; /* counter
int j; /* counter

i=O; /* initialize to 0 and -1 the valid cells in vectors KsVec
do /* and tmpIdVec, respectively

i< NUMofPDA ->
assert(O <= i && i< MAXNUMPDA);
KsVec[il= 0;

tmpIdVec[il= -1;
i++
else -> break

od;

i= NUMofPDA; /* initialize to -3 the unused cells in the vectors
do /* KsVec and tmpIdVec respectively

i< MAXNUMPDA ->
assert(NUMofPDA <= i && i< MAXNUMPDA);
KsVec[il= -3;
tmpIdVec[i]= -3;

i++
else -> break

od;

TestTmpIdKs:

test that tmpId assigned to PDA are unique

atomicf
i=0;
do

(i < MAXNUMPDA)
if
:: (tmpIdVoc[il >= 0) -> assert(tmpIdVec[il < NUMofPDA);

j=O;
do
:: < MAXNUMPDA) ->

A. 5 Promela specification of the whole system

if
(i P -> j++

else ->
assert(tmpIdVec[i] != tmpIdVec[il);
j++

else -> break /* move to next i

od

:: else -> skip /* tmpIdVec[i] <0 are unused elements
fi;
i++

else -> break /* comparison finished
odj;

test that Ks held by PDA are unique

atomic(
i=O;
do

U< MAXNUMPDA)
if

:: (KsVec[i] > 0) -> assert(KsVec[i] <= MAX-Ks);
j=O;
do

Q< MAXNUMPDA)
if

U == j) j++

else ->
assert(KsVec[i] != KsVec[jl);
j++

fi

else -> break /* move to next i

od

:: else -> skip /* KsVec(i] <0 are unused elements
fi;
i++

else -> break /* comparison finished

odj;

progress-tmpIdKsOK: skip; /* tmpId and Ks are all right, continue */
Ks= 0;

end: do /* valid endstate of this server process
PDA-to-KsPort ? Ks -> goto KsVerification

MSSses-to-KsTmpIdMan[Ol ? msgtype(ft, f2)->
chnum=O; tmpId= 0; goto MSSsesCare

MSSses-to-KsTmpIdMan[l] ? msgtype(fl, f2)->
chnum=1; tmpId= 1; goto MSSsesCare

MSSses-to-KsTmpIdMan[21 ? msgtype(fl, f2)->
chnum--2; tmpId= 2; goto MSSsesCare

193

194

od;

Promela specification of the system

KsVerification:
if
:: (Ks <= MAX-Ks && Ks >= MIN_Ks) -> /* Is Ks within the valid domain?

i=O;
do /* is Ks already in use by another PDA?

(i < NUMofPDA) -> /* valid Ks are (1,2,3,4,51
if

(Ks == KsVec[i])
printf("KsMan: Ks=%d KsVec[%dl=%d is in use by tmpId[Xdl=%d \n",

Ks, i, KsVec[il, i, tmpIdVec[il);
goto KsInuse

:: (Ks != KsVec[iD -> i++
fi;
else -> goto KsNotInuse

od;
else -> /* suggested Ks is incorrect
printf("KsMan: Ks= %d is incorrect I didn't reply\n", Ks);
goto TestTmpldKs

fi;

XsNotInuse:
/* Find a free tmpId in the tmpIdVec and assign it to the PDA
/* The values of valid tmpId are [0,1,2,3,41
/* tmpIdVec[01= 011121314 means tmpld=O already being used by some PDA
/* tmpIdvec[01= -1 means tmpId=O is free
/* tmpIdvec[01= -2 means tmpId=O has been used and can't be recycled yet
/* tmpIdvec[01= -3 means tmpId=O is not in use at all
/* tmpIdVec[ll= 011121314 means tmpId=l already being used by some PDA
/* tmpIdvec[ll= -1 means tmpId=l is free
/* tmpIdvec[ll= -2 means tmpId=l has been used and can't be recycled yet
/* tmpIdvec[ll= -3 means tmpId=l is not in use at all
/* tmpIdVec[21- 011121314 means tmpId=2 already being used by some PDA
/* tmpIdvec[21= -1 means tmpId=2 is free
/* tmpIdvec[2]= -2 means tmpId=2 has been used and can't be recycled yet
/* tmpIdvec[21= -3 means tmpId=2 is not in use at all

i-0;
do

(i < NUMofPDA) /* tmpId= -3 not in use at all
if /* tmpId= -2 not in use: to be recycled later

(tmpIdVoc[i] -i) -> i++ /* this tmpId already in use, try next one
else -> break /* this tmpId free, use it

fi
else -> /* no more tmpId to be assigned: take this as KsINUSE= YES

/* and don't reply no anybody
goto TestTmpIdKs

od;
tmpld= i; chnum-i; /* tmpId k chnum assigned to new PDA with session key= Ks
if

atomic(nfull(KsPort. to. PDA) -> /* there's space in cha for key(tmpId, chnum)
KsPort-to-PDA I Ks(tmpId, chnum);
tmpIdVoc[il= i;
KsVoc(il- Ks;

A. 5 Promela specification of the whole system

run MSSses(tmpId, chnum, Ks)l /* initiate MSS session to take care of new PDA */

atomicýfull(KsPort-to-PDA) -> /* no space in cha, discharge oldest msg
KsPort-to-PDA ? OldestKs(fl, f2);
tmpIdVec[fll= -2; /* empty PDAj from your tables
KsVec[fl]= -2; /* and terminate MSSses assigned to PDAj
KsTmpIdMan-to-MSSses[fl] H abort(fl, f2);
MSSses-to-KsTmpIdMan[fl] ? aborted(fhl, fh2); /* fhl, fh2 scratch var
chnum= fl;
do

nempty(KsTmpIdMan-to-MSSses(chnuml)
KsTmpIdMan-to-MSSses[chnuml ? msgtype(fl, f2) /* drop this msg

empty(KsTmpIdMan-to-MSSses[chnuml) -> break

od;
printf("KsMan: removed from ch: Ks=%d tmpId=%d chnum=%d \n", OldestKs, fl, f2)1

fi;

goto TestTmpIdKs;

* The Ks suggested by the new PDA is already in use by PDAi with tmpId= i and
* chnum=i. KsMan has to get a new Ks for PDAi.

KsInuse:

printf("KsMan: suggested Ks=%d is already in use by PDA with
tmpId=%d chnum--%d\nII, Ks, i, i);

count= 1;
do

(count <= MAXNUM-Ks_ATTEMPTS)
if

NewKey= KsBlack
NewKey= KsBlue
NewKey= KsGreen
NewKey= KsPink
NewKey= KsRed

/* :: NewKey= KsWhite is out, we assume KsMan generates correct Ks only
fi;

n=O;
do

(n < NUMofPDA)

assert(0 <= n && n< NUMofPDA);
if

(KsVec[n] NewKey) count++; break
(KsVec[n] NewKey) n++

fi;

else -> goto NewKsFoundl

od;
else -> /* couldn't find any available Ks

atomicf
KsTmpIdMan-to-MSSses[il H abort(i, Ks) -> /* order MSSses to abort
MSSses-to-KsTmpIdMan[il ? aborted(fl, f2);
tmpIdVec[il= -2;
KsVec[il= -2;
chnum-- tmpId;
do

nempty(KsTmpIdMan-to-MSSses[chnuml)
KsTmpIdMan-to-MSSses[chnuml ? msgtype(fl, f2) /* drop this msg

empty(KsTmpIdMan-to-MSSses[chnuml) -> break

od;
printf("KsMan: has SENT ABORT to tmpId= %d \n", i);

195

196 Promela specification of the system

goto TestTmpIdKsj
od;

NewKsFoundl:
assert((MIN-Ks <= NewKey)&&(NewKey <= MAX_Ks)&&(O <= i)&&(i < NUMofPDA));
if

atomic(KsTmpIdMan-to-MSSses(il 1 YourNewKs(NewKey, Ks)
KsVec[il= NewKey)

timeout -> printf("KsMan: tmpId=%d chnum--Yd Ks=%d NOT THERE, ignore it\n",
i, i, Ks)

fi;
goto TestTmpIdKs;

MSSsesCare:
if

(msgtype == ChangeMyKs)
printf("KsMan: tmpId=%d chnum=%d has rcvd ChangeMyKs\n", tmpId, chnum);
count= 1;
do

(count <= MAXNUM_Ks_ATTEMPTS)
if

NewKeY= KsBlack
NewKey= KsBlue
NewKey= KsGreen
NewKeY= KsPink
NewKey= KsRed

/* :: NewKey= KsWhite is out, we assume KsMan generates correct Ks only
fi;
n=O;
do

(n < NUMofPDA)
assert(0 <= nn< NUMofPDA);
if

(KsVec[n] NewKey) count++; break
(KsVec[n] NewKey) n++

fi;
else -> goto NewKsFound2

od;
else -> /* couldn't find any available Ks

atomicý
KsTmpIdMan-to-MSSses[chnuml H abort(tmpId, chnum); /* order MSSses to abort
do

MSSses-to-KsTmpIdMan[chnuml ? msgtype(fl, f2)->
if

(msgtype aborted) -> skip
(msgtype aborted) ->

tmpIdVec[tmpIdl= -2;
KsVec[tmpIdl= -2;
chnum= tmpId;
do

nempty(KsTmpIdMan-to-MSSses[chnuml) ->
KsTmpIdMan-to-MSSses[chnuml ? msgtype(fl, f2) /* drop this msg

empty(KsTmpIdMan-to-MSSses[chn=]) -> break

od;
printf(IlKsMan: has SENT ABORT to tmpId= 7, d \n", tmpId);
goto TestTmpIdKs

A. 5 Promela specification of the whole system

odl
od;

fi

NewKsFound2:

assert(MIN_Ks <= NewKey && NewKey <= MAX-Ks);

assert(O <= tmpId && tmpId < NUMofPDA && tmpId == chnum);

if
atomicfKsTmpIdMan-to-MSSses[tmpIdI ! YourNewKs(NewKey, fl)

KsVec[tmpId]= NewKeyj

timeout -> printf("KsMan: tmpId=%d with chnum--%d Ks=%d NOT THERE,
ignore it\n", tmpId, chnum, fl)

i;

(msgtype == aborted) -> /* the PDA side or MSSses wants abort the ano. ses.
atomicl
printf("KsMan: going to send ABORT to tmpId= %d \n", tmpId);
tmpIdVec[tmpIdl= -2;
KsVec[tmpIdl= -2;
chnum-- tmpId;
do

nempty(KsTmpIdMan-to-MSSses[chnuml)
KsTmpIdMan-to-MSSses(chnuml ? msgtype(fl, f2) /* drop this msg

empty(KsTmpIdMan-to-MSSses[chnuml) -> break

od;
printf("KsMan: ABORT FOR tmpId= %d \n", tmpId)l

:: else -> skip /* UNKNOWN msg: transient failure?
fi;

goto TestTmpIdKs

I

MSSses process: is in charge of managing the anonymous communication session of
the PDA. It charges the PDA for the communication, receives the

payment, forwards it to the bank for verification, accepts or rejects the payment,
warns the PDA user about the prepaid time expiration and abruptly finishes the
communication session when the prepaid time expires. Also, it is the link between
the PDA and the KsTmpIdMan; and the link between the PDA and the mail server.

proctype MSSses(int tmpId, chnum, Ks)

chan q-to-MSStcp=[LOCALQSZ] of fbyte, int, intl;
chan q-to-KsTmpIdMan=[LOCALQSZ) of fbyte, int, intl;
chan q-to-MailSvr=[LOCALQSZ] of fbyte, int, int);
chan q-to-bank=[LOCALQSZ) of fbyte, int, intl;

197

byte msgtype; /* type of msg received
int fl; /* field for receiving the first field of a msg

198 Promela specification of the system

int f2; /* field for receiving the second field of a msg
int MYKS; /* a session key
int addr; /* e-mail address
int txt; /* text in an e-amil msg
int payment; /* payment for anonymous session: one unit of money is converted to

/* one msg to be sent
int credit; /* prepaid payment: num of msg the PDA user has prepaid for
int CreditLeft; /* prepaid payment before warning msg: num of msg the user can

/* send after the expiration time warning and termination of the
/* session

run MSStcp(tmpId, chnurn, Ks);

progress-FirstPayment: do
MSStcp-to-ses[chnuml ? msgtype(fl, f2)

if
(msgtype == Ecash)
payment= fl; tmpId= f2;
MSSses-to-bank[chnuml ! Ecash(payment, tmpId);
if

bank-to-MSSses[chnum] ? GenuineEcash(payment, f2)
if

(payment < MINMONEY 11 payment > MAXMONEY)
MSSses-to-tcp[chnuml ! EcashRejetd(payment, tmpId)

else -> MSSses-to-tcp[chnum] ! EcashAccepd(payment, tmpId)
assert(payment > LAST-MSGS);
credit= payment - LAST-MSGS;
CreditLeft= LAST-MSGS;
goto progress-AnoSes

fi
bank-to-MSSses(chnuml ? FakeEcash(payment, f2)

MSSses-to-tcp[chnum] ! EcashRejetd(payment, tmpId)
fi

(msgtype == aborted) -> goto AbortBank
fi

KsTmpIdMan-to-MSSses[chnum] ? abort(fl, f2) ->
MSSses-to-tcp[chnuml 11 abort(tmpId, chn=)
do

MSStcp-to-ses(chnuml ? msgtype(fl, f2)
if

(msgtype 1= aborted) skip /* discard the msg
(msgtype - aborted)

printf("MSSses tmpId= %d aborted by KsTmpIdMan; going
... Aborted ... \n", tmpId);

goto AbortBank
fi

od
od;

assert(O<= chnum && chn= <= NUMofPDA);

progress-AnoSes: do
/* to msstcp */
KsTmpIdMan-to-MSSses[chnuml ? Eabort(fl, f2)] && nfull(q-to-MSStcp)

, A. 5 Promela specification of the whole system

KsTmpIdMan-to-MSSses[chnuml ? abort(fl, f2) -> q-to-MSStcp H abort(fl, f2)

/* to KsTmpIdMan */
MSStcp-to-ses[chnuml ? [aborted(fl, f4l && nfull(q-to-KsTmpIdMan)

MSStcp-to-ses[chnuml ? aborted(fl, f2) -> q-to-KsTmpIdMan H aborted(fl, f2)

/* to msstcp */
KsTmpIdMan-to-MSSses[chnuml ? [YourNewKs(fl, f2)] && nfull(q-to-MSStcp)

KsTmpIdMan-to-MSSses[chnum3 ? YourNewKs(fl, f2) -> q-to-MSStcp ! YourNewKs(fl, f2)

/* to msstcp */
MailSvr-to-MSSses[chnuml ? [YouHaveMail(fl, f2)] && nfull(q-to-MSStcp)
MailSvr-to-MSSses[chnuml ? YouHaveMail(fl, f2) q-to-MSStcp ! YouHaveMail(fl, f2)

/* to msstcp */
bank-to_MSSses[chnuml ? [GenuineEcash(fl, f2)] nfull(q-to-MSStcp)

bank-to-MSSses[chnuml ? GenuineEcash(fl, f2) -> q-to-MSStcp ! GenuineEcash(fl, f2)

/* to msstcp */
bank-to-MSSses[chnuml

bank-to-MSSses[chnuml

/* to KsTmpIdMan */
MSStcp-to-ses[chnuml

MSStcp-to-ses [chnwrj

/* to MailSvr */
MSStcp_to_ses[chnum)

MSStcp-to-ses[chnuml

/* to bank */
MSStcp_to-ses[chnuml

MSStcp-to-ses(chnum3

? [FakeEcash(fl, f2)] && nfull(q-to-MSStcp) ->
? FakeEcash(fl, f2) -> q-to-MSStcp ! FakeEcash(fl, f2)

? [ChangeMyKs(fl, f2)1 && nfull(q-to-KsTmpIdMan) ->
? ChangeMyKs(fl, f2) -> q-to-KsTmpIdMan ! ChangeMyKs(fl, f2)

? (EaddrAndTxt(fl, f2)] && nfull(q-to-MailSvr) ->
? EaddrAndTxt(fl, f2) -> q-to-MailSvr ! EaddrAndTxt(fl, f2)

? [Ecash(fl, f2)] && nfull(q-to-bank) ->
? Ecash(fl, f2) -> q-to-bank ! Ecash(fl, f2)

/* send to MSStcp */
nempty(q-to-MSStcp) && nfull(MSSses-to-tcp[chnuml)

q-to-MSStcp ? msgtype(fl, f2);
if

:: (msgtype == abort) -> MSSses-to-tcp[chnuml !! abort(fl, f2)

(msgtype == YourNewKs) -> MSSses-to-tcp[chnum) ! YourNewKs(fl, f2);
MyKs= fl;

:: (msgtype == YouHaveMail) -> MSSses-to-tcp[chnuml ! YouHaveMail(fl, f2)

(msgtype == GenuineEcash)
payment= fl;
if

(payment < MINMONEY 11 payment > MAXMONEY) ->
MSSses-to-tcp[chnuml ! EcashRej etd (payment, f 2)

else ->
atomicfMSSses-to-tcp[chnum] ! EcashAccepd(payment, f2)

assert(payment > LAST-MSGS);
credit= payment + credit + CreditLeft;
credit= credit - LAST-MSGS;
CreditLeft= LAST-MSGSI

199

fi
(msgtype == FakeEcash) -> MSSses-to-tcp[chnuml ! EcashRejetd(fl, f2)

200 Promela specification of the system

:: (msgtype == TimeAlert) -> MSSses-to-tcp[chnuml !! TimeAlert(fl, f2)

:: (msgtype == TimeFin) -> MSSses_to_tcp[chnuml H TimeFin(fl, f2)

:: else -> printf("MSSses: tmpId=%d UNKNOWN msg: PANIC-PANIC-PANIC\n\n", tmpId)
fi

/* send to KsTmpIdMan */
nempty(q-to-KsTmpIdMan) && nfull(MSSses-to-KsTmpIdMan[chnuml)
q-to-KsTmpIdMan ? msgtype(fl, f2);
if
:: (msgtype == aborted) -> goto Aborted

:: (msgtype == ChangeMyKs) -> MSSses-to-KsTmpIdMan[chnuml 1 ChangeMyKs(fl, f2)

fi

/* send to MailSvr */
nempty(q-to-MailSvr) && nfull(MSSses-to-MailSvr[chnuml) &&

nfull(q-to-MSStcp) && (credit >=1 11 CreditLeft >= 1)

q-to-MailSvr ? msgtype(fl, f2);
if

(msgtype == EaddrAndTxt)
/* if necessary process the msg
assert(credit >= 0 && CreditLeft >= 0);

printf("MSSses: tmpId=%d credit=%d CreditLeft=%d Wn",
tmpId, credit, CreditLeft);

if
(credit >= 1) -> /* charge to 'credit' account

MSSses-to-MailSvr[chnuml ! EaddrAndTxt(fl, f2);
credit--;
if

(credit == 0) -> q-to-MSStcp! TimeAlert(fl, f2);
else -> skip

fi
(credit == 0 && CreditLeft >= 1) -> /* charge to CreditLeftl account

MSSses-to-MailSvr[chnum] ! EaddrAndTxt(fl, f2);
CreditLeft--;
if
:: (CreditLeft == 0) -> q-to-MSStcp ! TimeFin(fl, f2)
:: else -> skip
fi

fi
fi

/* send to bank */
nempty(q-to-bank) && nfull(MSSses-to-bank[chnuml)
q-to-bank ? msgtype(fl, f2);
if

(msgtype -- Ecash)
MSSses-to-bank(chnuml ! Ecash(fl, f2);
payment= fl;
printf("MSSses: tmpId=%d has SNT extra payment=%d to bank \n",

tmpId, payment)
fi

od;

A. 5 Promela specification of the whole system

Aborted:

send abort to MailSvr

do
nfull(MSSses-to-MailSvr[chnuml)

MSSses-to-MailSvr[chnuml
full(MSSses-to-MailSvr[chrLuml)

MailSvr-to-MSSses[chnuml
od;

AbortBank:

send abort to bank

do

H aborted(fl, f2); break
&& full(MailSvr-to-MSSses[chnuml)
? msgtype(fl, f2) /* drop this msg

atomicýnfull(MSSses-to-bank[chnuml) ->
MSSses-to-bank[chnuml H aborted(fl, f2); breakl

full(MSSses_to_bank[chnum]) kk full(bank-to-MSSses[chnuml)
MSSses-to-bank[chnuml ? msgtype(fl, f2) /* drop this msg

od;

send abort to KsTmpIdMan

MSSses-to-KsTmpIdMan[chnuml

clear chan to MSStcp

!! aborted(fl, f2);

do
atomic(nempty(MSSses-to-tcp[chnuml)

MSSses-to-tcp[chnuml ? msgtype(fl, f2)1 /* drop this msg
empty(MSSses_to_tcp[chnuml) -> break

od;

printf("MSSAnoSes tmpId=%d MyKs=%d ... ABORTED.... BYE-BYE-BYE
by KsTmpIdMan \n\n", tmpld, MyKs)

I

MSStcp process: connection-oriented reliable link between the MSS
and the PDA. It forwards msg up the protocol stack

and to the PDA side. The MSStcp initiates an abort procedure that
propagates up the stack protocol whenever it detects that its remote
peer (the PDAtcp) is unreachable.

proctype MSStcp(int tmpId, chnum, Ks)
f

chan q-to-PDAtcp= ELOCALQSZ] of (byte, int, intl;
chan q-to-MSSses= CLCCALqSZ] of ýbyte, int, intl;

byte msgtype; /* type of msg received
int fl; /* field for receiving the first field of a msg
int f2; /* field for receiving the second field of a msg

201

202 Promela specification 'of the systern

assert(O <= chnum && chnum <= NUMofPDA && tmpId == chnum);

do
/* recv from MSS site
nfull(q-to-PDAtcp) && nempty(MSSses-to-tcp(chnum])

MSSses-to-tcp[chnuml ? msgtype(fl, f2) -> q-to-PDAtcp ! msgtype(fl, f2)

/* recv from PDA site */
nfull(q-to-MSSses) && nempty(PDAtcp-to-MSStcp[chnum])

PDAtcp-to-MSStcp[chnuml ? msgtype(fl, f2) -> q-to-MSSses ! msgtype(fl, f2)

/* send to MSS site */
nempty(q-to-MSSses) && nfull(MSStcp-to-ses[chnum])

q-to-MSSses ? msgtype(fl, f2);
if

(msgtype == abort) -> /* abort initiated at PDA site
MSStcp-to-ses[chnuml H aborted(fl, f2);
printf("MSStcp: tmpId=%d initiated at PDA site going

... Aborted ... \n", tmpId);
goto Aborted

(msgtype == aborted) -> /* abort initiated at MSS
MSStcp-to-ses[chnuml H aborted(fl, f2);
printf("MSStcp: tmpId=%d initiated at MSS site going

... Aborted ... \n", tmpId);
goto Aborted

else -> /* PDA sending an ordinary msg
MSStcp-to-ses[chnum] ! msgtype(fi, f2)

fi

/* send to PDA site */
nempty(q-to-PDAtcp) && nfull(MSStcp-to-PDAtcp[chn=]) && nfull(q-to-MSSses)
q-to-PDAtcp ? msgtype(fl, f2);

if
(msgtype == abort) -> /* abort initiated by MSS or MSSksMan

MSStcp-to-PDAtcp[chnuml 1! abort(fl, f2);
q-to-MSSses H aborted(fl, f2);
printf("MSStcp: tmpId=%d aborted by MSS going to

... Aborted... soon \n", tmpId);

(msgtype == TimeFin) -> /* end of AnosSes: initiated by MSS or KsTmpIdMan
MSStcp-to-PDAtcp[chnuml H TimeFin(fl, f2);
q-to-MSSses H aborted(fl, f2);
printf("MSStcp: tmpId=%d TimeFin by MSS going to

... Aborted... soon \n", tmpId);

(msgtype == YourNewKs) -> /* MSSman has changed Ks
Ks= fl;
MSStcp-to-PDAtcp[chnuml ! YourNewKs(fl, f2)

:: else -> MSStcp-to-PDAtcp[chnuml 1 msgtype(fi, f2) /* MSS sent routine msg
fi

full(MSStcp-to-PDAtcp[chn=]) kk
timeout -> /* PDA not receiving: ass=e PDA has aborted its session

A. 5 Promela specification of the whole system

if
nfull(MSStcp-to-ses[chnuml) -> MSStcp-to-ses[chnuml H aborted(fl, f2);

goto Aborted

:: full(MSStcp-to-ses[chnuml) && timeout -> goto ForceAbort
fi

empty(PDAtcp-to-MSStcp[chnuml) &&
timeout -> /* PDA not sending: assume PDA has aborted its session

if
nfull(MSStcp_to_ses[chnuml) -> MSStcp-to-ses[chnum3 !! aborted(fl, f2);

goto Aborted

:: full(MSStcp-to-ses[chnuml) && timeout -> goto ForceAbort
fi

od;

ForceAbort: /* force MSSses to abort (to read 'aborted') from it chan
do

MSStcp-to-ses[chnuml H aborted(tmpId, chnum) -> break
timeout -> MSSses-to-tcp[chnuml ? msgtype(fl, f2) /* drop this msg

od;
printf("MSStcp tmpId= %d going to ... Aborted ... by KsTmpIdM&n \n", tmpId, chnum);

Aborted:
if

atomicfnempty(MSStcp-to-PDAtcp[chnuml) && timeout
do

nempty(MSStcp-to-PDAtcp[chnuml) ->
MSStcp-to-PDAtcp(chnuml ? msgtype(fl, f2) /* drop this msg

empty(MSStcp-to-PDAtcp[chnuml) -> break
odl

empty(MSStcp-to-PDAtcp[chnuml) -> skip
fi;

printf("MSStcp: tmpId= Yd chanum= 7. d ... ABORTED+++
BYE-BYE-BYE\n\n", tmpId, chnum)

I

bank process: receives an e-coin and verify that it is
genuine and that it has not been spent.

proctype bankO
f

int tmpId; /* temporary Id
int chnum; /* channel number
int payment; /* e-coin
byte msgtype; /* type of msg received
int fl; /* field for receiving the first field of a msg
int f2; /* field for receiving the second field of a msg

203

chnum= -1;

204 Promela specification of the system

do
(true)
end-cyc: if

MSSses-to-bank(Ol ? msgtype(fl, f2)
assert(msgtype == Ecash msgtype == aborted);
if
:: (msgtype == aborted)

chnum= 0; tmpId=O; goto ClearChan
:: (msgtype == Ecash) ->

payment=fl; chnum= 0; tmpId=O; goto progress-ecashTocheck
fi

MSSses-to-bank[l] ? msgtype(fl, f2) ->
assert(msgtype == Ecash 11 msgtype == aborted);
if

(msgtype aborted) chnum= 1; tmpId=l; goto ClearChan
(msgtype Ecash)

payment=fl; chnum= 1; tmpId=l; goto progress-ecashTocheck
fi

MSSses-to-bank[21 ? msgtype(fl, f2) ->
assert(msgtype == Ecash msgtype == aborted);
if

(msgtype == aborted)
chnum= 2; tmpId=2; goto ClearChan

(msgtype == Ecash) ->
payment=fl; chnum= 2; tmpId=2; goto progress-ecashTocheck

fi
fi;

progress-ecashTocheck: skip;
/* proc with tmpId= 0 has chnum=O, proc with tmpId=l has chnum=2, etc
assert(O <= chnum && chnum < NUMofPDA && 0 <= tmpId && tmpId < NUMofPDA);
if

(payment == FAKEMONEY) -> bank-to-MSSses[chn=l ! FakeEcash(payment, f2);
printf("BANK: tmpId= %d chnum= %d SENT FakeCash payment= U to PDA \n",

tmpId, chnum, payment)

else -> bank-to-MSSses[chnuml ! GenuineEcash(payment, f2) ->
printf("BANK: tmpId= %d chnum= %d SENT GenuineEcash payment= %d to PDA \n",

tmpId, chnum, payment)
fi;
goto end-cyc;

ClearChan:
do

nempty(bank-to-MSSses[chnuml)
bank-to-MSSses[chnum] ? msgtype(fl, f2) /* drop this msg

empty(bank-to-MSSses[chnuml)
break

od;
goto end-cyc

od

A. 5 Promela specification of the whole system

MailSvr process: receives msg coming from Bob's PDA and simulates that
they are sent to Alice's (their final destination)

e-mail address. Alice's computer is connected somewhere to the Internet.
Similarly, it simulates that it receives replies to Bob's msgs and for-

wards them to Bob. The decision about replying or not to an e-mail is ta-
ken randomly.

proctype MailSvrO

int ReplyVec[MAXNUMPDA]; /* msg awaiting for replies
int tmpId; /* temporary Id
int chnum; /* channel number
int addr; /* e-mail address
int txt; /* text in e-mail msg
byte msgtype; /* type of msg received
int fl; /* field for receiving the first field of a msg
int f2; /* field for receiving the second field of a msg
int i; /* counter

i=O;
do

:: i< MAXNUMPDA
ReplyVec[il= 0;
i++

else -> break
od;

chnum= -1;

do
(true)
end-cyc: if

MSSses-to-MailSvr[Ol ? msgtype(fl, f2)
assert(msgtype == EaddrAndTxt 11 msgtype == aborted);
if

(msgtype == EaddrAndTxt)
addr= fl; txt= f2; ReplyVec[01= ReplyVec[Ol + 1; goto progress-mailRcvd

:: (msgtype == aborted) -> tmpId= 0; chnum= 0; goto ClearChan
fi

MSSses-to-MailSvr[l] ? msgtype(fl, f2) ->
assert(msgtype == EaddrAndTxt 11 msgtype == aborted);
if

(msgtype == EaddrAndTxt)
addr= fl; txt= f2; ReplyVec[ll= ReplyVec(l] + 1; goto progress-mailRcvd

:: (msgtype == aborted) -> tmpId= 1; chn== 1; goto ClearChan
fi

MSSses-to-MailSvr[21 ? msgtype(fl, f2) ->
assert(msgtype == EaddrAndTxt 11 msgtype == aborted);
if

(msgtype == EaddrAndTxt)
addr= f 1; txt= f 2; ReplyVec [21 = ReplyVec [21 + 1; goto progress-mailRcvd

205

206 Promela specification of the systern

(msgtype == aborted) -> tmpId= 2; chnum-- 2; goto ClearChan
fi

fi;

progress-mailRcvd: skip;
if

(ReplyVec[O] >= i)
if /* Alice doesn't reply to Bob: discharge a msg

ReplyVec[01= ReplyVec[01 -1
skip

fi;
if /* make chnum--O if there're any reply for channel 0

(ReplyVec[O] >= 1) -> chnum= 0
else chnum= -1 /* no replies for channel 0

fi
(ReplyVec[l] >= 1)

if
ReplyVec[ll= ReplyVec[II -1
skip

fi;
if

(ReplyVec[l] >= 1) -> chnum= 1
else chnum= -1

fi
(ReplyVec(21 >= 1)

if
ReplyVec[21= ReplyVec[21 -1
skip

fi;
if

(ReplyVec[21 >= 1) -> chnum= 2
else -> chnum= -1

fi
fi;

(chnum >= 0 && chnum < NUMofPDA)
if

MailSvr-to-MSSses[chnum] ! YouHaveMail(chnum, pid)
progress-replySent: skip
timeout-> skip /* PDA is off or has gone away from MSS

fi;
ReplyVec[chnuml= ReplyVec[chnum] -1;

else-> skip
fi;

chn=- -1;
goto end-cyc;

ClearChan:
do

nempty(MailSvr-to-MSSses[chnuml)
MailSvr-to-MSSses[chnuml ? msgtype(fl, f2) /* drop this msg

empty(MailSvr-to-MSSses[chnuml)
break

od;
goto end-cyc

A. 5 Promela specification of the whole system

od
I

" EscKey process:
" -the fact that the PDA user can press the ESC keyboard at any time to
" interrupt his anonymous session is simulated by a Itimeout'
" which can go off at any time.
" -interruption of the PDA user anonymous session can be originated at
" the PDAuser, PDAses, PDAtcp or at the MSS site, if this happens
" an 'abort' message is received which lead to abort the keyboard pro-

cess.

proctype EscKey(chan user-to-EscKey, EscKey-to-user; int tmpId, chnum)

int fl; /* field for receiving the first field of a msg
int f2; /* field for receiving the second field of a msg
if

user-to-EscKey ? aborted(fl, f2) -> /* abort from PDA or MSS site
goto Aborted

timeout -> EscKey-to-user H abort(tmpId, chnum)
goto Aborted /* simulates the user pressing ESC

/* to interrupt his anonymous session
fi;

Aborted:

printf("EscKey: tmpId=%d aborted at PDA or MSS site BYE-BYE-BYE\n\n", tmpId);
I

PDAuser proc ess: is the interface between the PDA user and the
anonymous and confidential conmunications system.

It receives PDA user's commands typed on the keyboard and display
messages on the PDA screen.

proctype PDAuser(int PDAnum)

byte msgtype; /* type of msg received
int fl; /* field for receiving the first field of a msg
int f2; /* field for receiving the second field of a msg
int tmpld; /* temporary Id
int chnum; /* channel number
/* int PuKey; *//* public key of the MSS
bool KsChanged; /* flag to stop the PDA changing its Ks more than once
int payment; /* payment for opening or extending an anonymous session
int MaxExtPay; /* max amount of money a user is allowed to spend in calls
int ExtPay; /* max amount of money a user hast spent in calls
int addr; /* e-mail address
int txt; /* text in e-mail msg

207

bool AbortFlag; /* was the process forced to abort YES/No ? */

208

int i; /* counter of attempts */
int NumM; /* number of e-mails to send

chan ses-to-user-localch=Ell of fbyte, int, intl;
chan user-to-esckey=[Il of fbyte, int, intl;
chan esckey-to-user=Cll of fbyte, int, intl;

KsChanged= NO;
AbortFlag= NO;

Promeld specification of the system

" run PDAses process: ses-to-user-localch is used by PDAuser to
" receive tmpId and from PDAses

run PDAses(PDAnum, ses-to-user-localch);

* This code assumes that the Ks-negotiation-has been verified, so lines related to
* Ks negotiation have been commented

progress-KpuNegotiation:

/* do

ses-to-user-localch ? KpuRcvd(fi, f2)

printf("PDAuser: PDAnum--%d pid=%d : Kpu learnt \n", PDAnum,
-pid); break

ses-to-user-localch ? aborted(fl, f2)

printf("PDAuser: PDAnum--%d pid=%d : My PDAses couldn't get a Ks; going
... Aborted ... \n", PDAnum,

-pid);
goto Aborted

od;

progress-KsNegotiation:
do

ses-to-user-localch ? tmpIdRcvd(tmpId, chnum) -> break
ses-to-user-localch ? aborted(fl, f2) ->

printf("PDAuser: PDAnum=%d pid=%d : My PDAses couldn't get a Ks; going
... Aborted ... \n", PDAnum, -pid);

goto Aborted
od;

MaxExtPay= MAXEXTPAY;
ExtPay= 0;

progress-FirstPayment: do
(i <= MAXNUMPAYATTEMPTS)
if

payment= FAKEMONEY
payment- TOOLITTLEMONEY
payment= GOLDENMONEY
payment= SILVERMONEY

fi;

PDAuser-to-ses(chnuml I Ecash(payment, tmpId) ->

,,
A. 5 Promela specification of the whole system

PDAses-to-user[chnuml ? msgtype(payment, f2)
if

(msgtype == EcashRejetd)
i++ /* go back and fetch another coin from PDA memory

:: (msgtype == EcashAccepd) ->
NumM=MAXNUMEMAILS-SENT;

run the EscKey process

run EscKey(user-to-esckey, esckey-to-user, tmpId, chnum);
goto progress-AnoSes

(msgtype == aborted) ->
printf("PDAuser: tmpId=%d couldn't PAY; aborted by PDAsesIPDAtcpIMSS going

... Aborted ... \n", tmpId);
goto Aborted

fi

else -> PDAuser_to-ses[chnum] !! abort(tmpId, chnum)
do

PDAses-to-user[chnuml ? msgtype(fl, f2)
if

:: (msgtype != aborted) -> skip /* discard this msg

(msgtype == aborted) ->
printf("PDAuser: tmpId=%d couldn't PAY; going ... Aborted ... \n", tmpId);
goto Aborted

fi

od;
od

progress-AnoSes: do
(NumM >= I && nfull(PDAuser_to-ses(chnuml))

PDAuser-to-ses(chnuml 1 EaddrAndTxt(-pid, -pid); NumM--

PDAses-to-user[chnuml ? YouHaveMail(addr, txt) ->
printf("=== ... >PDAuser tmpId= %d chnum-- %d GOT E-MAIL

addr= %d txt= %d\n", tmpId, chnum, addr, txt)

(KsChanged==ND) -> PDAuser-to-ses[chnuml ChangeMyKs(tmpId. chn=); KsChanged= YES
/* Ks can be changed only once

PDAses-to-user[chnum] ? YourNewXs(fI, f2)
printf("PDAuser tmpId= %d has got a new Ks \n", tmpId)

PDAses-to-user[chnuml ? TimeAlert(fl, f2) ->
printf ("$$$>PDAuser tmpId=%d has been TimeAlerted\n", tmpId)
if

(ExtPay <= MaxExtPay) ->
if

payment= FAKEMONEY
payment= TOOLITTLEMONEY
payment= GOLDENMONEY
payment= SILVERMONEY
payment= NOMONEY

fi;
PDAuser-to-ses(chnuml ! Ecash(payment, tmpId);

209

210 Promela specification of the system

printf("$$$>PDAuser tmpId=%d has sent EXTRA
payment=%d\n", tmpId, payment)

else -> skip /* no more extensions allowed
fi

PDAses-to-user[chnuml ? TimeFin(fl, f2) ->
printf("PDAuser: tmpId=%d TimeFin going ... Abort... \n", tmpId);
user-to-esckey!! aborted(tmpId, chnum);
goto Aborted

PDAses-to-user[chnuml ? EcashAccepd(fl, f2) ->
ExtPay= ExtPay + payment;
NumM= MAXNUMEMAILS-SENT;

printf("PDAuser: tmpId=%d AnoTime INCRTED msg to send=7. d\n", tmpId, NumM);

PDAses-to-user[chnuml ? EcashRejetd(fl, f2) ->
printf("PDAuser: tmpId= %d chnum-- %d AnoTime NOT incremented\n", tmpId, chnum)

PDAses-to-user[chnuml ? aborted(fl, f2) ->
user-to-esckey!! aborted(tmpId, chnum);
printf("PDAuser: tmpId=%d aborted initiated by PDAses I PDAtct I MSS going

... Abort ... \n", tmpId);
goto Aborted

esckey-to-user ? abort(fl, f2) -> /* user pressed ESC key to interrupt session
PDAuser-to-ses(chnuml H abort(chnum, tmpId)

od;

Aborted:
AbortFlag= YES;
printf("PDAuser: ... ABORTED... BYE-BYE-BYE\n\n", tmpId, chn=);

End:
do

nempty(PDAuser-to-ses(chnuml)
PDAuser-to-ses[chnuml ? msgtype(fl, f2) /* drop this msg

empty(PDAuser-to-ses[chnuml)
break

od;

if
(AbortFlag == NO)

printf("PDAuser: tmpId= %d chnum= %d HAPPY END BYE-BYE-BYE\n\n", tmpId, chnum)
else -> skip

fi
I

PDAses process: is in charge of learning the Kpu key and negotiating
a Ks key. It encrypts PDAuser msg before forwarding

them down the protocol stack; conversely, it decrypts msg coming from
the underneath layer and forward them to the PDAuser layer.

A. 5 Promela specification of the whole system

proctype PDAses(byte MyPDAnum; chan ses-to-user-localch)
f

chan q-to-tcp=[LOCALQSZ] of (byte, int, intl;
chan q-to-user=[LOCALQSZ] of fbyte, int, intl;

/* int PuKey; */
int Ks; /* session key of the PDA
int tmpId; /* temporary Id
int chnum; /* channel number
int payment; /* payment for an anonymous session
byte msgtype; /* type of msg received
int fl; / * field for receiving the first field of a msg
int f2; / * field for receiving the second field of a msg
int addr; /* e-mail address
int txt; /* text in e-mail msg
int i; /* i <= MAXNUM-Ks-ATTEMPTS: counter number of attempt

/* to register a session key
bool AbortFlag; /* was the process forced to abort YES/NO ?
bool KsAccepd; /* The suggested Ks was accepted YESAO ?

" This code assumes that the Ks negotiation has been verified, so lines related to
" Ks negotiation have been commented

/* KpuNegotiation:

* Part of the PDAses process that deals with the Kpu negotiation between the
* PDA and the MSS.
* Both the PDAuser and the PDAses end in 'Aborted' if the PDAses fails to
* get the Kpu after MAXNUM-Kpu-ATTEMPTS.

/* PuKey= 0;
* i= 1;

do

:: (i <= MAXNUM-Kpu_ATTEMPTS)
if

KpuPort-to-PDA ? Kpu(PuKey) Kpu rcvd: now check for authenticity
if

(PuKey == CERTIFIED-Kpu) ->
ses-to-user-localch ! KpuRcvd(ANYINT, ANYINT);
printf(I'MyPDAnum=%d has learnt Kpu after N= %d; going to

KsNegotiation\n", MyPDAnum, i-I);
goto KsNegotiation

else -> i++
fi

KpuPort-to-PDA ? BogusKpu(PuKey) -> i++ // bogus msg rcvd: ignore it

timeout couldn't hear any msg from this MSS: move to a new one
ses-to-user-localch ! aborted(ANYINT, ANYINT);
goto Aborted

fi

:: else
printf(I'MyPDAnum=%d Failed to get Kpu after N= %d; going to

... Aborted ... W1, MyPDAnum, i-I);

ses-to-user_localch ! aborted(ANYINT, ANYINT);

goto Aborted

od;

211

212

*

*1

KsNegotiation:
Ks= 0;
tmpId= 0;

AbortFlag= NO;
KsAccepd= NO;

i= 1;
do

U <= MAXNUM-Ks-ATTEMPTS)
if /* random selection of Ks

Promela specification of the system

Ks = KsBlack ->
PDA-to-KsPort ! Ks;
if

* There may be up to 5 msg in the channel buffer. If there is one
* (not necessarily at the head of the buffer) with mtype= KsBlack
* retrieve it. Otherwise block until such a msg appears in the
* channel or timeout goes off

KsPort-to-PDA ?? KsBIack(tmpId, chnum)
KsAccepd = YES;
break

timeout
printf("PDAses: PDAnum-- %d; sent Ks= %d i= %d NO answer

TIMEOUT \n", MYPDAnum, Ks, i);
i++

fi

Ks = KsBlue ->
PDA-to-KsPort ! Ks;
if

KsPort-to-PDA ?? KsBlue(tmpId. chnum)
KsAccepd = YES;
break

timeout ->
printf("PDAses: PDAnum= %d; sent Ks= %d i= %d NO answer

TIMEOUT \n", MyPDAnum, Ks, i);
i++

fi

Ks = KsGreen ->
PDA-to-KsPort ! Ks;
if

KsPort-to-PDA ?? KsGreen(tmpId, chnum)
KsAccepd = YES;
break

timeout ->
printf("PDAses: PDAnum= %d; sent Ks= %d i= %d NO answer

TIMEOUT \n", MYPDAnum, Ks, i);
i++

fi

:: Ks = KsPink ->

A. 5 Promela specification of the whole system

PDA-to-KsPort ! Ks;
if

KsPort-to-PDA ?? KsPink(tmpId, chnum)
KsAccepd = YES;
break

timeout ->
printf("PDAses: PDAnum= %d; sent Ks= %d i= Xd NO answer

TIMEOUT \n", MyPDAnum, Ks, i);
i++

fi
Ks = KsRed

PDA-to-KsPort ! Ks;
if

KsPort-to-PDA ?? KsRed(tmpId, chnum)
KsAccepd = YES;
break

timeout ->
printf("PDAses: PDAnum= %d; sent Ks= %d i= %d NO answer

TIMEOUT \n", MyPDAnum, Ks, i);
i++

fi

Ks = KsWhite ->
printf("PDAses: PDAnum= %d is going to send Ks= %d \n", MyPDAnum, Ks);
PDA-to-KsPort ! Ks;
if

KsPort-to-PDA ?? KsWhite(tmpId. chnum)
KsAccepd = YES; /* this should never happens
break /* this should never happens

timeout ->
printf("PDAses: PDAnum= %d; sent Ks= %d i= %d NO answer

TIMEOUT \n", MYPDAnum, Ks, i);
i++

fi

fi

U> MAXNUM-Ks-ATTEMPTS) ->
break /* give up registering a Ks

od;

communication between the PDAuser and the PDAses

if
(KsAccepd == NO)

printf("PDAses: PDAnum=%d failed to register Ks after i=%d attempts: going
... Aborted ... \n", MyPDAnum, i-1);

ses-to-user-localch aborted(NEGINT, NEGINT);
goto Aborted

else ->
ses-to-user-localch tmpIdRcvd(tmpId, chnum);
printf("PDAses: PDAnum=%d; pid=%d HAS RgTED Ks=%d (tmpId= %d) after i= %d

attempts \n", MyPDAnum.
-pid,

Ks, tmpId, i);

initiating the underneath layer

run PDAtcp(tmpId, chnum, Ks)

213

214

fi;

Promela specification of the system

progress-FirstPayment: do /* progress of PDAses proc to FirstPayment state
PDAuser-to-ses[chnuml ? msgtype(fl, f2)

if
(msgtype == Ecash)

skip /* if necessary do anything to the msg

(msgtype == abort) -> PDAses_to_tcp[chnuml H abort(fl, f2)
do

PDAtcp-to-ses[chnuml ? msgtype(fl, f2);
if

(msgtype aborted) skip /* discard the msg
(msgtype aborted) PDAses-to-user[chnum] H aborted(fl, f2);

goto Aborted
fi

od
fi;

if
:: PDAses-to-tcp[chnum] ! msgtype(fl, f2)
fi

PDAtcp_to_ses[chn=l ? msgtype(fl, f2)
if

(msgtype == EcashRejetd)
skip /* if necessary do anything to the msg

:: (msgtype == EcashAccepd) ->
skip; /* if necessary do anything to the msg
payment= fl;
PDAses-to-user[chnuml ! EcashAccepd(payment, tmpId);
goto progress-AnoSes

(msgtype == aborted) ->
PDAses-to-user[chnuml H aborted(fl, f2);
goto Aborted

fi;

if
:: PDAses-to-user[chnuml 1 msgtype(fi, f2)
fi

od;

progress-AnoSes: do
/* from user to ses to tcp
nfull(q-to-tcp) && nempty(PDAuser-to-ses[chnuml)

PDAuser-to-ses(chnuml ? msgtype(fl, f2) -> q-to-tcp ! msgtype(fi, f2)

/* from tcp to ses to user */
nfull(q-to-user) && nempty(PDAtcp-to-ses[chnuml)
PDAtcp-to-ses[chnuml ? msgtype(fl, f2) -> q-to-user ! msgtype(fl, f2)

/* send to user */
nempty(q-to-user) && nfull(PDAses_to_user[chnuml)

A. 5 Promela specification of the whole system

q-to-user ? msgtype(fl, f2);
if

(msgtype == YourNewKs)
printf("PDAses: tmpId=%d GOT new Ks DldKs=%d NewKs= %d\n",

tmpId, Ks, fl);
Ks= fl;
/* if necessary process the msg
PDAses-to-user[chnuml ! YourNewKs(fl, f2)

(msgtype == TimeAlert) ->
/* if necessary process the msg
PDAses-to-user[chnuml ! TimeAlert(fl, f2)

(msgtype == EcashAccepd) ->
/* if necessary process the msg
PDAses-to-user[chnuml ! EcashAccepd(fl, f2)

(msgtype == EcashRejetd) ->
/* if necessary process the msg
PDAses-to-user[chnuml ! EcashRejetd(fl, f2)

(msgtype == YouHaveMail) ->
/* if necessary process the msg
PDAses-to-user[chnuml ! YouHaveMail(fl, f2)

:: (msgtype == aborted) ->
/* if necessary process the msg */
PDAses-to-user[chnuml !! aborted(fl, f2);
printf("PDAses: tmpId=%d abort initiated by PDAtcp or MSS going

... Aborted... \n", tmpId);
goto Aborted

:: (msgtype == TimeFin) ->
/* if necessary process the msg */
PDAses-to-user[chnuml ! TimeFin(fl, f2);
printf("PDAses: tmpId=%d TimeFin MSS going

... Aborted... \n", tmpId);
goto Aborted

fi;

/* send to tcp */
nempty(q-to-tcp) && nfull(PDAses-to-tcp[chnuml)
q-to-tcp ? msgtype(fl, f2);
if

(msgtype == ChangeMyKs) ->
printf("PDAses: tmpId=%d user ASKING to change OldKs=%d \n", tmpId, Ks);
/* if necessary process the msg */
PDAses-to-tcp[chnum3 ! ChangeMyKs(fl, f2)

(msgtype == EaddrAndTxt) ->
/* if necessary process the msg
PDAses-to-tcp[chnuml ! EaddrAndTxt(fl, f2)

(msgtype == Ecash) ->
/* if necessary process the msg
PDAses-to-tcp[chnuml ! Ecash(fl, f2)

215

:: (msgtype - abort) ->

216

/* if necessary process the msg */
PDAses-to-tcp[chnuml H abort(fl, f2)

fi

od;

Aborted:
AbortFlag= YES;
printf("PDAses: ... ABORTED... BYE-BYE-BYE\n\n");

Promela specification of the system

End:
do

atomic(nempty(PDAses-to-tcp[chnuml)
PDAses-to-tcp[chnuml ? msgtype(fl, f2)) /* drop this msg

empty(PDAses-to-tcp[chnuml)
break

od;

if
(AbortFlag== NO) -> printf("PDAses: HAPPY END BYE-BYE-BYE\n\n")
else-> skip

fi
I

PDAtcp process: connection-oriented reliable link between the PDA

and the MSS. It forwards msg up the protocol stack
and to the MSS side. The PDAtcp initiates an abort procedure that
propagates up the stack protocol whenever it detects that its remote
peer (the MSStcp) is unreachable.

proctype PDAtcp(int tmpId, chnum, Ks)
f

chan q-to-PDAses= [LOCALQSZ] of fbyte, int, intj;

chan q-to-MSStcp= [LOCALQSZ] of fbyte, int, intl;

byte msgtype; /* type of msg received
int fl; /* field for receiving the first field of a msg
int f2; /* field for receiving the second field of a msg

assert(O <= chnum && chnum <= NUMofPDA && tmpId == chnum);

do
/* from PDAtcp to PDAses
nfull(q-to-PDAses) && nempty(MSStcp-to-PDAtcp[chnuml)

MSStcp-to-PDAtcp[chnuml ? msgtype(fl, f2) -> q-to-PDAses ! msgtype(fi, f2)

/* PDAses to PDAtcp */
nfull(q-to-MSStcp) && nempty(PDAses-to-tcp[chnuml)

PDAses-to-tcp[chnum] ? msgtype(fl, f2) -> q-to-MSStcp ! msgtype(fl, f2)

/* send to PDAses */
nempty(q-to-PDAses) && nfull(PDAtcp-to-ses[chnuml)

q-to-PDAses ? msgtype(fl, f2);
if

A. 5 Promela specification of the whole system

(msgtype == abort) -> /* abort initiated by MSS */
PDAtcp_to_ses[chnuml H aborted(fl, f2);
printf("PDAtcp: tmpId=%d initiated by MSS going

... Aborted ... \n", tmpId, chnum);
goto Aborted

(msgtype == TimeFin) -> /* TimeFin initiated by MSS
PDAtcp-to-ses[chnuml H TimeFin(fl, f2);
printf("PDAtcp: tmpId=%d TimeFin initiated by MSS going

... Aborted ... \n", tmpId);
goto Aborted

(msgtype == aborted) -> /* abort initiated by PDAuser or PDAses or PDAtcp
PDAtcp-to-ses[chnuml !! aborted(fl, f2);
printf("PDAtcp: tmpId=%d initiated at PDA side going

... Aborted ... %n", tmpId);
goto Aborted

(msgtype == YourNewKs) -> /* MSSman has changed Ks
Ks= fl;
PDAtcp-to_ses[chnuml ! YourNewKs(fl, f2)

else -> /* MSS sending a routine msg */
PDAtcp-to-ses[chnuml ! msgtype(fl, f2)

fi

/* send to MSStcp */
nempty(q-to-MSStcp) && nfull(PDAtcp-to-MSStcp[chnuml)

&& nfull(q-to-PDAses)
q-to-MSStcp ? msgtype(fl, f2);
if /* PDA sent ordinary msg
:: (msgtype != abort) -> PDAtcp_to_MSStcp[chnuml ! msgtype(fl, f2)

(msgtype == abort) -> /* abort initiated by PDA
PDAtcp-to_MSStcp[chnum] !! abort(fi, f2);
q-to-PDAses H aborted(fl, f2);
printf("PDAtcp: tmpId=%d aborted by PDA going to ... Aborted

soon \n", tmpId)
fi

full(PDAtcp-to-MSStcp[chnuml) &&
timeout -> /* MSS not reading: assume MSS aborted session

if

nfull(q-to-PDAses) -> q-to-PDAses H aborted(fl, f2)
full(q-to-PDAses) && timeout -> goto ForceAbort

fi

od;

ForceAbort:
do

PDAtcp-to-ses[chnuml H aborted(tmpId. chnum) -> break
timeout -> PDAses-to-tcp[chnuml ? msgtype(fl, f2) /* drop this msg

od;

217

Aborted:
if
:: atomicfnempty(PDAtcp-to-MSStcp[chnuml) && timeout

218 Promela specification of the system

do

nempty(PDAtcp-to-MSStcp[chnuml)
PDAtcp-to-MSStcp[chnuml ? msgtype(fl, f2) /* drop this msg

empty(PDAtcp-to-MSStcp[chnuml)
break

odl
empty(PDAtcp-to-MSStcp[chnuml) -> skip

fi;

printf("PDAtcp: tmpId= Y. d chanum= 7. d ... Aborted... BYE-BYE-BYE\n\n", tmpId, chnum)
I

instantiates the participants processes

init
I

int PDAnum; /* n=ber of PDA

* This code assumes that the Ks negotiation has been verified, so lines related to
* Ks negotiation have been commented

/* run KpuManO create the Kpu manager process

atomicf
run KsTmpIdManO; /* instantiate the tmpId and Ks manager process
run banko; /* instantiate the bank process
run MailSvrO /* instantiate the MailSvr process
1;

PDAnum= 0;

do /* instantiate NUMofPDA processes, one for each PDA

:: PDAnum < NUMofPDA ->
run PDAuser(PDAnum);
PDAnum++

PDAnum >= KUMofPDA -> break

od
I

Bibliography

[1] George Lawton. The Internet's challenge to privacy. Computer, 31(6), June 1998.

[2] Lorrie Faith Cranor, Roger Clarke, Josef Dietl, Daniel Jaye, and Yves Le Roux. Laws,
self-regulation, and p3p: Will w3c's privacy platform help make the web safe for privacy.
Computer Networks and ISDN Systems, 30(1-7): 751-753, April 1998. Proceedings of the
Seventh International World Wide Web Conference 14-18 April 1998, Brisbane Australia.

[3] Lincoln D. Stein. The world wide web security faq.
http: //www. w3. org/Security/Faq/www-security-faq. litm, April 1998.

[4] Chris Pounder. Security and the new data protection law. Computers & Security, 17(2),
1998.

[5] UX Parliament. Data protection act 1998.
littp: //www. hmso. gov. uk/acts/actsl998/19980029. lltm, July 1998.

[6] Charles P. Pfleeger and Deborath M. Cooper. Security and privacy: Promising advances.
IEEE Software, sep-oct 1997.

[7] World Wide Web Journal, 2(3), Summer 1997.

[81 Simson Garfinkel and Gene Spafford. Practical Unix and Internet Security. O'Reilly
Associates, Inc., second edition, 1996.

[9] B. ý, lifford Neuman. Security, payment, and privacy for network commerce. IEEE Journal on
Selected Areas in Communications, 13(8), October 1995.

[10] Philippe A. Janson. Security mangement and management of security. In Morris Sloman,
editor, Network and Distributed System Management, chapter 15, pages 403-429. Addison-
Wesley Publishing Company, Great Britain, 1994.

[11] Anish Bhimani. Securing the commercial Internet. In Dorothy E. Denning and Peter J.
Denning, editors, Internet besieged. Countering Cyberspace Scofflaws, chapter 24, pages 407-
419. Addison-Wesley, 1998. Published also in Communications of the ACM V. 39 N. 6 1996.

[12] S. M. Bellovin. Security problems in the TCP/IP protocol suite. Computer Communication
Review, 19(2), April 1998.

[13] Vijay K. Garg and Joseph E. Wilkes. Wireless and Personal Communications Systems.
Prentice Hall PTR, Upper Saddle River, NJ, 1996.

[14] Joseph E. Wilkes. Privacy and authentication needs of PCS. IEEE Personal Communications,
2(4), August 1995.

220 BIBLIOGRAPHY

[15] Daniel Guinier. Fýom eavesdropping to security on the cellular telephone system GSM. SIG
Security Audit & Control Review, acm Press, 15(2), April 1997.

[16] Donal O'Mahony. UMTS: The fusion of fixed and mobile networks. IEEE Internet Computing,
2(l), January-February 1998.

[17] Ioannis N. Kriakas, Andr6 W. Jarvis, Vincent E. Phillips, and Derek J. Richards. Third-
generation mobile network architectures for the universal mobile telecommunications systems
(UMTS). Bell Labs Technical Journal, 2(3), Summer 1998.

[18] Ken Buchanan, Rodger Fudge, David McFarlane, Tim Phillips, Akio Sasaki, and Howard
Xia. Imt-2000: Service provider's perspective. IEEE Personal Communications, 4(4), August
1997.

[19] Joao Schwartz Dasilva, Demosthenes Ikonomou, and Heiko Erben. European R&D program
on third-generation mobile communication systems. IEEE Personal Communications, 4(l),
February 1997.

[20] Barry M. Leiner, Robert J. Ruth, and Ambatipudi R. Sastry. Golas and challenges of the
DARPA GloMo program. IEEE Personal Communications, 3(6), December 1996.

[21] Otto Spaniol, Andreas Fasbender, Simon Hoff, Josef Kaltwasser, and Jurgen Kassubek. Im-
pacts on mobility on telecommunication and data communication networks. IEEE Personal
Communications, 5(2), October 1995.

[22] David J. Rank. Application and technology forecast. In Wolfgang Nebel and Jean Mermet,
editors, Low Power Design in Deep Submicron Electronics, chapter 2, pages 9-44. Kluwer
Academic Publishers, The Netherlands, 1997.

[23] Noah Davis. Personal digital assistants: Part 1. Computer, 29(9), September 1996.

[241 Noah Davis. Personal digital assistants: Part 2. Computer, 29(11), November 1996.

[25] Erik P., Steven W. Depp, William E. Pence, Scott Kirkpatrick, M. Sri-Jayantha, and
Ronald R. Troutman. Technology directions for portabIr computers. Proceedings of the
IEEE, 83(4), 1995.

[26] R. M. Needham. Computers and communications. In Robin Milner, editor, Computing Tomor-
row. Future Research Direction in Computer Science, chapter 14, pages 284-294. Cambridge
University Press, Great Britain, 1996.

[27] Marc Rotenberg. Communications privacy: Implications for network design. Communications
of the ACM, 36(8), August 1993.

[28] Rank M. Tuerkheimer. The underpinnings of privacy protection. Communications of the
ACM, 36(8), August 1993.

[29] Jeff Smith. Privacy policies and practices: Inside the organizational maze H. Communications

of the ACM, 36(12), December 1993.

[30] Gerald Kovacich. Electronic-internet business and security. Computers & Security, 17(2),
1998.

BIBLIOGRAPHY 221

[31] The European Commission of the European Union. Electronic commerce -an introduction.
http: //www. ispo. cec. be/ecommerce/introduc. htm, July 1998.

[32] Charles Cresson Wood. A management view of Internet electronic commerce security. Com-
puters & Security, 16(4), 1997.

[33] Charles Petrie. The edge of e-cash. IEEE Internet Computing, 1(6), 1997.

[34] David Chaum. How much do you trust big brothers. IEEE Internet Computing, 1(6), 1997.

[35] Anish Bhimani. Securing the commercial Internet. Communications of the A CM, 39(6), June
1996.

[36] Philip R. Zimmermann. The Official PGP User's Guide. The MIT Press, USA, 1995.

[37] Philip Zimmermann. Pgp user's guide, Volume 1: Essential topics.
http: //www. cl. cam. ac. uk/PGP/#pks, October 1994.

[38] Andre Bacard. Anonymous remailers.
http: //www. well. com/user/abacard/remail. litml, November 1996.

[39] Inc. Anonymizer. Anonymizer.
http: //www. anonymizer. com/main. html, April 1998.

[40] Lucent Technologies. The lucent personalized web assistant.
http: //www. bell-labs. com/project/lpwa/index. html, April 1998.

[41] Mike Reiter and Avi Rubin. Crowds: Anonymity loves company.
http: //www. research. att. com/projects/crowds/, April 1998.

[42] TRUSTe. TRUST home page.
http: //www. truste. org/, July 1998.

[43] W3C. About the world wide web consortium.
http: //www. w3. org/Consortium/, July 1998.

[44] John F. Shoch. Inter-network naming, addressing, and routing. In Proceedings. Computer
Communications Networks. Compcon78. September 5-8,1978. IEEE Computer Society, 1978.

[451 Zaw-Sing Su. Identification in computer networks. In Proceedings of the 8th Data Communi-
cations Symposium, N. Falmouth, Massachusetts, October 1983. ACM SIGCOMM Computer
Communication Review, Vol. 13, No. 4.

[46] John Ioannidis, Dan Duchamp, and Jr. Gerald Q. Maguire. IP-based protocols for mobile
internetworking. In SIGCOM'91 Conference. Communications Architecture and Protocols,
Zurich, Swizerland, September 3-6 1991. ACM.

[471 R. G. Toulson and C. M. Phipps. Confidentiality. Sweet & Maxwell, Great Britain, 1996.

[48] Colin Munro. Confidence in government. In Linda Clarke, editor, Confidentiality and the
law, chapter 1, pages 1-21. Lloyd's of London press LTD., Great Britain, 1990.

[491 System Security Study Committee, Computer Science and Telecommunication Board, Com-
mission on Physical Sciences, Mathematical, and Applications, and National Research Coun-
cil. Computer at Risk. National Academic Press, Washington D. C., U. S. A., 1996.

222 BIBLIOGRAPHY

[50] William Stallings. Simple network management protocol. In Morris Sloman, editor, Network
and Distributed System Management, chapter 7, pages 165-196. Addison-Wesley Publishing
Company, Great Britain, 1994.

[51] Arnoud Galactus Engelfriet. Anonymity and privacy on the Internet.
URL: http: //www. stack. nl/ galactus/remailers/index. html, December 1996.

[52] Sara Baase. A Gift of Fire: Social, Legal and Ethical Issues in Computing. Prentice Hall,
1987.

[53] Simson Garfinkel with Gene Spafford. Cryptography and the web. World Wide Web Journal,
2(3), Summer 1997.

[54] Sesshadri Molian and Ravi Jain. Two user location strategies for personal communication
services. IEEE Personal Communications, 1(1), First Quarter 1994.

[55] Jay E. Padgett, Christoph G. Gunther, and Takeshi Hattori. Overview of wireless personal
communications. IEEE Communications Magazine, 33(l), January 1995.

[56] Donald C. Cox. Wireless personal communications: What is it? IEEE Personal Communi-
cations, 2(2), April 1995.

[57] Raymond Steele. The evolution of personal communications. IEEE Personal Communica-
tions, 1(2), Second Quarter 1994.

(58] A. Schill and S. Kummel. Design and implementation of a support platform for distributed
mobile computing. Distributed Systems Engineering, 2(3), September 1995.

[59] Stanley Chia. The universal mobile telecommunication system- IEEE Communications Mag-
azine, 30(12), December 1992.

[60] Moe Ralinema. Overview of the GSM system and protocol architecture. IEEE Communica-
tions Magazine, 31(4), April 1993.

(61] Andrew S. Tanenbaum. Computer Networks. Prentice-Hall, Inc., third edition, 1996.

[62] Fred Halsall. Data Communications, Computer Networks and Open Systems. Addison-Wesley
Publishing Company, USA, fourth edition, 1996.

[63] A. Robin Potter. Implementation of PCNs using DCS1800. IEEE Communications Magazine,
30(12), December 1992.

[64] Barry Varley. User administration and accounting. In Morris Sloman, editor, Network and
Distributed System Management, chapter 14, pages 381-402. Addison-Wesley Publishing
Company, Great Britain, 1994.

[65] Michael H. Callendar. Future public land mobile telecommunication systems. IEEE Personal
Communications, Fourth Quarter 1994.

[66] Kenneth C. Budka, Hong Jiang, and Steven E. Sommars. Cellular digital packet data net-
works. Bell Labs Technical Journal, 2(3), Summer 1997.

[67] Yair ITrankel, Amir Herzberg, paul A. Rarger, Hugo Krawcyk, Charles A. Kunzinger, and Moti
Yung. Security issues in a CDPD wireless network. IEEE Personal Communications, 2(4),
August 1995.

BIBLIOGRAPHY 223

[68] Apostolis K. Salkintzis and Christodoulos Chamzas. Mobile packet data technology: An
insight into MOBITEX architecture. IEEE Personal Communications, 4(l), February 1997.

[69] Michael Miller. Introduction to satellite communications. In Michael J. Miller, Branka
Vucetic, and Less Berry, editors, Satellite Communications, chapter 1, pages 1-56. Kluwer
Academic Publisher, Norwell Massachusetts USA, 1993.

[70] Michael Miller. Mobile satellite system design. In Michael J. Miller, Branka Vucetic, and
Less Berry, editors, Satellite Communications, chapter 3, pages 103-143. Kluwer Academic
Publisher, Norwell Massachusetts USA, 1993.

[71] Ana Luz Ruelas. Mdxice y Estados Unidos en la Revolucidn Mundial de las Telecomunica-
ciones. UNAM, Mdxico, 1995. Disponible en:
littp: //www. lanic. utexas. edu/la/Mexico/telecom/.

[72] G. Maral. VSAT Networks. John Willey & Sons, Great Britain, 1995.

[73] Gary Comparetto and Rafols Ramirez. Trends in mobile satellite technology. Computer,
30(2), February 1997.

[74] Lee Goldberg. The Internet in space: Problems and'solutions. Computer, 30(2), February
1997.

[751 Willian Stallings. Data and Computer Communications. Macmillan Publishing Company,
USA, fourth edition, 1994.

[761 Zoran M. Markovic. Satellites in non-geostationary orbits. In Michael J. Miller, Branka
Vucetic, and Less Berry, editors, Satellite Communications, chapter 9, pages 345-391. Kluwer
Academic Publisher, Norwell Massachusetts USA, 1993.

[77] Peter Dondl. Standardization of the satellite component of the UMTS. IEEE, Personal
Communications, 2(5), October 1995.

[78] Udo Flohr. Electric money. BYTE, 21(6), June 1996.

[79] ComLinks. com. Iridium.
http: //www. comlinks. com/sys/iridium. litm, 1999.

[80] Motorola. Iridium global satellite communications.
http: //www. satplione. net/iridmain. litm, 2000.

[811 Hans De Boer. RACE mobile communications. Electronic & Communication Engineering
Journal, 5(3), June 1993.

[821 Fumio Teraoka, Yasulliko Yokote, and Mario Tokoro. A network architecture providing host
migration transparency. In SIGCOM'91 Conference. Communications Architecture and Pro-
tocols, Zurich, Swizerland, September 3-6 1991. ACM.

[83] Charles Perkins. Providing continuous network access to mobile hosts using TCP/IP. Com-
puter Networks and ISDN Systems, 26(3), 1993.

[84] Hiromi Wada, Takashi Yozawa, Tatsuya Olmishi, and Yasunori Tanaka. Mobile computing
environment based on internet packet forwarding. In Proceeding of urinter Usenix, San Diego
CA, January 25-29 1993. USENIX Association.

224 BIBLIOGRAPHY

[85] Gihwan Clio and Lindsay Marshall. An efficient location and routing scheme for mobile
computing environments. IEEE Journal on Selected Areas in Communications, 13(5), June
1995.

[86] Baruch Awerbuch and David Peleg. Concurrent online tracking of mobile users. Computer
Communications Review, 21(4), September 1991.

[87] Andreas Fasbender, Frank Reichert, Eckhard Geulen, Johan Hjelm, and Thomas Wierlemann.
Any network, any terminal, anywhere. IEEE Personal Communications, 6(2), April 1999.

[88] WAP Forum. Wap forum specifications.
http: //www. wapforum. org/what/technical. htm, 2000.

[89) WAP Forum. Wap forum specifications: Wireless application protocol architecture specifica-
tion. version 30-apr-1998.
littp: //www. wapforum. org/what/technical. litm, 2000.

[90] WAP Forum. Wap, forum specifications: Wireless application protocol wireless application
environment overview. version 04-nov-1999.
littp: //www. wapforum. org/what/teclinical. htm, 2000.

[91] Anne C. Lear. Palmos gains upper hand in handheld market. Computer, 33(l), January 2000.

[92] George Lawton. Vendors battle over Mobile-OS market. Computer, 32(2), February 1999.

[93] John Bates. The state of the art in distributed and dependable computing. A
cabernet-sponsored report, University of Cambridge, UK, October 1998. Also available at
littp: //www. newcastle. research. ec. org/cabernet/sota/index. html.

[94] Michael Wu and Willy Zwaenepoel. eNVy: A non-volatile, main memory storage system.
ACM SIG PLAN NOTICES, 29(11), November 1994. ASPLOS-VI Proceedings Sixth In-
ternational Conference on Architectural Support for programming languages and Operating
Systems.

[95] Robert A. Powers. Batteries for low power electronics. Proceedings of the IEEE, 83(4), 1995.

[96] Imielinski Tomasz and B. R. Badrinath. Wireless computing challenges in data management.
Communications of the ACM, 37(10), October 1994.

[97] Wolfgang Nebel. Introduction. In Wolfgang Nebel and Jean Mermet, editors, Low Power
Design in Deep Submicron Electronics, chapter Introduction, pages 1-8. Kluwer Academic
Publishers, The Netherlands, 1997.

[98] Kaushik Roy and Mark C. Johnson. Software design for lower power. In Wolfgang Nebel and
Jean Mermet, editors, Low Power Design in Deep Submicron Electronics, chapter 6.3) pages
533-460. Kluwer Academic Publishers, The Netherlands, 1997.

[99] Tim Lich and Jeff Slaton. Strongarming portable communications. IEEE Micro, 18(2),
March-April 1998.

[100] Luc Claesen, Hans de Kuyper, and Ronny Tits. Lower power applications at system level. In
Wolfgang Nebel and Jean Mermet, editors, Low Power Design in Deep Submicron Electronics,
chapter 2, pages 9-43. Kluwer Academic Publishers, Tile Netherlands, 1997.

BIBLIOGRAPHY 225

[101] Norman Adams, Rich Gold, Bill N. Schilit, and Michael M. Tso. An infrared network for
mobile computers. In Mobile and Location-Independent Computing Symposium, Cambridge
Massachusetts, August 2-3 1993. Usenix Association.

[102] Francisco J. L6pez-HernAndez and A. Santamarfa. Wireless LANs: An overview. In A. San-
tamaria and F. J. I, 6pez-Hernidez, editors, Wireless LAN Systems, chapter 1, pages 1-21.
Artech House, 1994.

[1031 Joseph M. Kahn, John R. Barry, Malik D. Audeh, Jeffrey B. Carruthers, William J. Krause,
and Gene W. Mars. Non-directed infrared links for high-capacity wireless LANs. IEEE
Personal Communications, 1(2), Second Quarter 1994.

[1041 Departmental. Radio LANs. LAN Magazine, March 1996.

[1051 Kwang-Cheng Chen. Medium access control of wireless LANs for mobile computing. IEEE
Network, 8(5), September-October 1994.

[106] Harshal S. Chhaya and Sanajy Gupta. Performance of asynchronous data transfer methods
of IEEE 802.11 MAC protocol. IEEE Personal Communications, 3(5), October 1996.

[107] Bernard Bourin. High performance radio mobility in LANs. In Mark Harrington, editor,
European Telecommunications Standardization and the Information Society. Atalink Ltd on
behalf of the ETSI, 1995. Available at
http-//www. etsi. fr: 80/ecs/reports/stateart/bourin. litm.

[108] Roy Rada, Carl Cargill, and John Klensin. Consensus and the web. Communications of the
ACM, 41(7), July 1998.

[109] TRUSTe. Who is TRUSTe.
http: //www. truste. org/webpublishers/aboutus. html, July 1998.

[1101 Lorrie Cranor. Platform for privacy preferences (p3p) project.
littp: //www. w3. org/P3P/, 2000.

[111] Christine Varney. Talks about advancing commerce and protecting consumers. World Wide
Web Journal, 2(3), Summer 1997.

[1121 A. Luotonen and K. Altis. World wide web proxies. Computer Networks and ISDN Systems,
27: 147-154, November 1994.

[113) Inc. Anonymizer. Use anonymizer for free.
littp: //www. anonymizer. com/surf-free-litml, April 1998.

[114] Inc. Anonymizer. Access your paid account.
littp: //www. anonymizer. com/surLaccess. litml, April 1998.

[1151 Inc. Anonymizer. Send anonymous e-mail.
http: //www. anonymizer. com/email/remailer-simple. cgi, April 1998.

[116] Inc. Anonymizer. Anonymous web publishing.
littp: //www. anonymizer. coin/publisliing. litml, April 1998.

226 BIBLIOGRAPHY

[117] Michael K. Reiter and Aviel D. Rubin. Crowds: Anonymity for web transactions. Technical
Report DIMACS Technical Report 97-15, AT&T Labs-Research, Murray Hill, New Jersey,
USA, August 1997. Available at
littp: //www. research. att. com/projects/crowds/.

[118] Bruce Schneier. Applied Cryptography. John Wiley & Sons, Inc., second edition, 1996.

[119] Roger M. Needham. Cryptography and secure channels. In Sape Mullender, editor, Dis-
tributed Systems, chapter 20, pages 531-541. Addison-Wesley, acm PRESS, second edition,
1993.

[120] Carl H. Mayer and Stephen M. Matyas. Cryptography: A new Dimension in Computer Data
Security. John Wiley & Sons, 1982.

[121] Electronic Frontier Foundation. Cracking DES. Secrets of Encryption Research, Wiretap
Politics & Chip Design. O'Really, 1998.

[122] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE 7ý-ansactions
on Information Theory, IT-22(6), November 1976.

[123] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and
public-key cryptosystems. Communications of the ACM, 21(2), February 1978.

[124] Dorothy Elizabeth Robling Denning. Cryptography and Data Security. Addison-Wesley
Publishing Company, 1982.

[125] Solovay R. and Strassen V. A fast monte-carlo test for primality. SIAM Journal on Com-
puting, 6, March 1977.

[126] David Chaum. Security without identification: aansaction systems to make big brother
obsolete. Communications of the ACM, 28(10), October 1985.

ýI
[127] Daniel C. Lynch and Leslie Lundquist. Digital Money. John Willey & Sons, Inc., 1996.

[128] Thierry Moreau. A probabilistic flaw in PGP design? Computing & Security, 15(l), 1996.

[129] Communications of the ACM, 36(3), March 1993.

[130] Communications of the ACM, 37(11), November 1994.

[131] Clint N. Smith. Government promotion of key recovery encryption. World Wide Web Journal,
2(3), Summer 1997.

[132] Hal Abelson, Ross Anderson, Steven M. Bellovin, Josh Benaloh, Matt Blaze, Whitfield Diffie,
John Gilmore, Peter G. Neumann, Ronald L. Rivest, Jeffrey 1. Schiller, and Bruce Schneier.
The risks of key recovery, key escrow, and trusted third-party encryption. World Wide Web
Journal, 2(3), Summer 1997.

[133] John Browning. The netizen: I encrypt, therefore I am. WIRED, 5(11), November 1997.

[134] Janet Reno (The United Stated Attorney General). Law enforcement in cyberspace address.
In Dorothy E. Denning and Peter J. Denning, editors, Internet besieged. Countering Cy-
berspace Scofflaws, chapter 27, pages 439-447. Addison-Wesley, 1998. Speech presented to
the Commonwealth Club of california, Jun 1996.

BIBLIOGRAPHY 227

[135] Bruce Sterling. Remarks at computers, freedom, and privacy conference IV, Chicago. In
Dorothy E. Denning and Peter J. Denning, editors, Internet besieged. Countering Cyberspace
Scofflaws, chapter 29, pages 475-480. Addison-Wesley, 1998.

[136] Brian A. LaMacchia. Bal's PGP public key server.
http: //pgp5. ai. mit. edu/, July 1999.

[137] Simson Garfinkel and Gene Spafford. Web Security & Commerce. O'Reilly & Associates,
Inc., 1997.

[1381 Stephen T. Kent. Internet privacy enhanced mail. In Dorothy E. Denning and Peter J.
Denning, editors, Internet besieged. Countering Cyberspace Scofflaws, chapter 19, pages 295-
318. Addison-Wesley, 1998.

[1391 Stephen T. Kent. Internet privacy enhanced mail. Communications of the ACM, 36(8),
August 1993.

[140] Aviel D. Rubin and Daniel E. &eer Jr. A survey of web security. Computer, 31(9), September
1998.

[1411 Frederick J. Hirsch. Introducing SSL and certificates using SSLeay. World Wide Web Journal,
2(3), Summer 1997.

[1421 William Stallings. Network and Internetwork- Security Principles and Practice. Prentice Hall,
1995.

[143]. Dorothy E. Denning. International encryption policy. In Ravi Kalakota and Andrew B.
Whinston, editors, Reading in Electronic Commerce, chapter 9, pages 105-118. Addison-
Wesley, 1997.

[144] Dorothy E. Denning and Dennis K. Branstad. A taxonomy for key escrow encryption systems.
Communications of the ACM, 39(3), March 1996.

[145] Stephen T. Walkers, Steven B. Lipner, Carl M. Ellison, and David M. Balenson. Commercial
key recovery. Communications of the ACM, 39(3), March 1996.

[1461 David Paul Maher. Cryptobackup and key escrow. Communications of the ACAT, 39(3),
March 1996.

[147] Ravi Ganesan. The yakslia security system. Communications of the ACM, 39(3), March
1996.

[148] Per Christoffersson, editor. Cryto User's Handbook. A guide for Implementors of Crypto-
graphic Protection In Computer Systems. North-Holland, The Netherland, 1988.

[149] L. Jean Camp, Marvin Sirbu, and J. D. Tygar. Token and national money in electronic com-
merce. In Conference Proceedings: The First USENIX Work-shop on Electronic Commerce,
New York, New York, July 11-12,1995. USENIX Association.

[1501 N. Asokan, Phillipe A. Janson, Michael Steiner, and Michael Waidner. The state of the art
in electronic payment systems. Computer, 30(9), September 1997.

[151] Digicash Company. Digicash web page.
littp*//www. digicasli. com/, 1997.

228 - BIBLIOGRAPHY

(152] B. 61ifford Neuman. A flexible framework for network payment. In Ravi Kalakota and
Andrew B. Whinston, editors, Reading in Electronic Commerce, chapter 9, pages 229-243.
Addison-Wesley, 1997.

[153] Digicash Publications (Company information). Digicash-numbers that are money.
http: //www. digicash. com/publish/digibro. html, 1996.

[154] Douglas E. Comer. Internetworking with TCP11P. Principles, Protocols, and Architecture,
volume 1. PRENTICE HALL, third edition, 1995.

[155] Carlos Molina-Jim6nez and Lindsay Marshall. Anonymous and confidential communications
from an IP addressless computer. In Handheld and Ubiquitous Computing, Proceedings of the
First International Symposium, HUC'99, Karlsruhe, Germany, Sep 1999. Springer. Lecture
Notes in Computer Science, 1707.

[156] David Naccache and David M'Raihi. Cryptographic smart cards. IEEE Micro, 16(3), June
1996.

[157] Jos6 Luis Zoreda and Jos6 Manuel Ot6n. Smart Cards. Artech House, 1994.

[158] Malidi Abdelguerfi, Burton S. Kaliski Jr, and Wayne Patterson. Public-key security systems.
IEEE Micro, 16(3), June 1996.

[159] Gerard J. Holzmann. Design and Validation of Computer Protocols. Prentice Hall, 1991.

[160] Raouf Boutaba, Karim El Guemhioui, and Petre Dini. An outlook on intranet management.
1EEE Communications magazine, 35(10), October 1996.

[161] Jost Weinmiller, Morten Schliger, Andreas Festag, and Adam Wolisz. Performance study of
access control in wireless LAN-IEEE DFWMAC and ETSI 10 hiperland. Mobile Networks
and Applications, 2(l), June 1997.

[162] Gerard J. Holzmann. The model checker Spin. IEEE Transactions on Software Engineering,
23(5), May 1997. also available at:
littp: //netlib. bell-labs. com/netlib/spin/wllatispin. litml.

[163] Edsger W. Dijkstra. Guarded commands, nodeterminacy and formal derivation of programs.
Communications of the ACM, 18(8), August 1975.

[164) C. A. R. Hoare. Communicating sequential processes. Communications of the ACM, 21(8),
August 1978.

(165] Samuel J. Leffler, Marshall Kirk McKusick, Michael J. Karels, and John S. Quaterman.
The Design and Implementation of the 4.3BSD Unix Operating System. Addison-Wesley
Publishing Company, United States of America, 1989.

[166] Bell labs: Spin Web Home Page. On-the-fly, LTL model checking with spin.
http: //netlib. bell-labs. com/netlib/spin/wllatispin. litml, June 1999.

[167] Bell labs: Spin Web Home Page. What's new in spin versions 2.0 and 3.0 (updated for version
3.0, july 1997).
littp: //cm. bell-labs-com/cm/cs/wliat/spin/Man/WllatsNew. litml, August 1997.

BIBLIOGRAPHY 229

[168] Gerard J. Holzmann. An analysis of bitstate hashing. In'Proc. IFIPIPSTV95, Conf. on
Protocol Specification, Testing, and Verification, Warsaw, Poland, June 13-66 1995.

[1691 M. J. ft. Shave. Data Structures. McGraw-Hill, Inc., 1975.

[170] Herman A. Maurer. Data Structures and Programming Techniques. Prentice Hall, Inc., 1997.

[171] Lawrence H. Miller. Advanced Programming. Design and Structure Using Pascal. Addison
Wesley Publishing Company, 1986.

t172] P. M. Merlin. Specification and validation of protocols. IEEE Ransactions on Communica-
tions, 27(11), November 1979.

[173] Leslie Lamport. Proving the correctness of multiprocess programs. IEEE Ransactions on
Software Engineering, SE-3(2), March 1977.

[174] Leslie Lamport and Fred B. Schneider. Formal foundation for specification and verification.
In Distributed Systems. Methods and Tools for Specification. An Advanced Course, Lecture
Notes in Computer Science, Volume 190. Springer-Verlag, 1985.

[1751 William E. Weilil. Specifications of concurrent and distributed systems. In Sape Mullender,
editor, Distributed Systems, chapter 3, pages 27-53. Addison-Wesley, acm PRESS, second
edition, 1993.

[176] Felix C. Gartner. Fundamentals of fault-tolerant distributed computing in asynchronous
environments. ACM Computing Surveys, 31(l), March 99.

[1771 Bell labs: Spin Web Home Page. Spin readme: Downloading and installation unix systems.
http: //ftp. cit. gu. edu. au/ sliiv/#S2, October 1999.

[178] Gerard J. Holzmann. An improved protocol reachability analysis technique. IEEE Ransac-
tions on Software-Practice and Experience, 18(2), May 1998.

[1791 M. Ben-Ari. Principles of Concurrent and Distributed Programming. Prentice-Hall, Inc.,
1990.

[180] PROM97. Spin version 3.0: Language reference.
littp: //cs. uwp. edu/staff/fossum/Classes/CS477/spin/HTML/promela. litml, December 1997.

[181] Donald A. Norman. The Invisible Computer. The MIT Press, 1998.

[182] Bruce Schneier. Cryptographic design vulnerabilities. Computer, 31(9), September 1998.

[183) J. D. Tygar. Atomicity in electronic commerce. In Dorothy E. Denning and Peter J. Den-
ning, editors, Internet besieged. Countering Cyberspace Scofflaws, chapter 23, pages 389-405.
Addison-Wesley, 1998.

[184] Adi Shamir. How to share a secret. Communications of the A CM, 22(11), November 1979.

[185] Wen-Shenq Juang and Chin-Laung Lei. A collision-free secret ballot protocol for computer-
ized general elections. Computer & Security, 15(4), 1996.

[186] Joan Borrel and Josep Rifii. An implementable secure voting scheme. Computer & Security,
15(4), 1996.

230 BIBLIOGRAPHY

[187] David L. Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms.
Communications of the ACM, 24(2), 1981.

[188] Simon Singh. The Code Book: The Science of Secrecy from Ancient Egypt to Quantum
Cryptography. Fourth Estate, 1999.

[189] Andrew M. Steane and Eleanor G. Rieffel. Beyond bits: The future of quantum information
processing. Computer, 33(l), January 2000.

