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Abstract

Artificial Intelligence (AI) for Human Action Recognition (HAR) and Hu-

man Activity Anomaly Detection (HAAD) is an active and exciting research

field. Video-based HAR aims to classify human actions and video-based

HAAD aims to detect abnormal human activities within data. However, a

human is an extremely complex subject and a non-rigid object in the video,

which provides great challenges for Computer Vision and Signal Processing.

Relevant applications fields are surveillance and public monitoring, assisted

living, robotics, human-to-robot interaction, prosthetics, gaming, video cap-

tioning, and sports analysis.

The focus of this thesis is on the posture-related HAR and HAAD. The

aim is to design computationally-efficient, machine and deep learning-based

HAR and HAAD methods which can run in multiple humans monitoring

scenarios.

This thesis firstly contributes two novel 3D Histogram of Oriented Gradi-

ent (3D-HOG) driven frameworks for silhouette-based HAR. The 3D-HOG

state-of-the-art limitations, e.g. unweighted local body areas based pro-

cessing and unstable performance over different training rounds, are ad-

dressed. The proposed methods achieve more accurate results than the

baseline, outperforming the state-of-the-art. Experiments are conducted on

publicly available datasets, alongside newly recorded data.

This thesis also contributes a new algorithm for human poses-based

HAR. In particular, the proposed human poses-based HAR is among the
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Abstract v

first, few, simultaneous attempts which have been conducted at the time.

The proposed HAR algorithm, named ActionXPose, is based on Convolu-

tional Neural Networks and Long Short-Term Memory. It turns out to be

more reliable and computationally advantageous when compared to human

silhouette-based approaches. The ActionXPose’s flexibility also allows cross-

datasets processing and more robustness to occlusions scenarios. Extensive

evaluation on publicly available datasets demonstrates the efficacy of Ac-

tionXPose over the state-of-the-art. Moreover, newly recorded data, i.e.

Intelligent Sensing Lab Dataset (ISLD), is also contributed and exploited to

further test ActionXPose in real-world, non-cooperative scenarios.

The last set of contributions in this thesis regards pose-driven, combined

HAR and HAAD algorithms. Motivated by ActionXPose achievements, this

thesis contributes a new algorithm to simultaneously extract deep-learning-

based features from human-poses, RGB Region of Interests (ROIs) and

detected objects positions. The proposed method outperforms the state-

of-the-art in both HAR and HAAD. The HAR performance is extensively

tested on publicly available datasets, including the contributed ISLD data-

set. Moreover, to compensate for the lack of data in the field, this thesis

also contributes three new datasets for human-posture and objects-positions

related HAAD, i.e. BMbD, M-BMdD and JBMOPbD datasets.
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Chapter 1

INTRODUCTION

1.1 Motivations and Challenges

New powerful technologies and disciplines such as intelligent sensing and

machine learning are nowadays pushed forward by both the technological

progress and the needs of modern society, e.g. security, surveillance, and

assisted living (Figure 1.1). The UK recent history reports tragic incidents

Figure 1.1: (Top-left) CCTV security room continuously monitoring several areas,
where automatic surveillance can be crucial [1]. (Top-right) Footage recorded dur-
ing a terrorist attack (Kerch, 2018), where automatic surveillance could have saved
lives [2]. (Bottom-left) Amazon Echo in a living room, where human action recogni-
tion capabilities can greatly improve human-device interaction [3]. (Bottom-right)
Fall and hazard automatic detection can greatly improve elderly life and allow fast
interventions [4].

1
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such as the London and Manchester attacks which highlight the needs of

automatic surveillance systems for public security. From a different per-

spective, the rapid growth of AI-based assisted living systems, such as Alexa

and Amazon Echo, are also opening new fascinating research domains. For

example, it is possible to imagine future versions of these devices able to

interact with humans by interpreting their gestures, movements and even

complex actions, identifying user needs, hazards, or simply understanding

the action the user is performing to better tailor user-device experience. Ap-

plications in healthcare, robotics and IoT would be straightforward and re-

volutionary. Motivated by this vision, several companies, industries and gov-

ernments are investing in these advances. The multinational Thales Group,

which co-funded this thesis project, or the US government-funded DARPA

Agency are two representative examples of the private and public institutions

commitment on following this trend.

This thesis focuses on advancing the state-of-the-art in human action

recognition and anomaly detection, by providing new solutions that can po-

tentially be applied to different domains, such as those mentioned above. In

the following subsections, some of the most important challenges associated

with the focus of this thesis research are provided.

1.1.1 Domain’s Constraints and Non-invasive Sensors

Different applications might restrict the usability of certain types of hard-

ware/software solutions. For example, in gaming, human action recognition

can easily benefit from depth sensors such as Microsoft Kinect. However,

this expensive sensor has strong limitations in outdoor environments and

minimal working range [5]. Therefore, for wider area monitoring, RGB cam-

eras might be the best available sensor, since RGB cameras are generally

more economical than depth sensors, with relatively wider working range

and wider working conditions. In this thesis, other invasive devices such
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as accelerometers and motion trackers are not considered, to minimise the

number of additional constraints to the human target.

1.1.2 Non-cooperative Scenarios

In literature, two extreme cases are normally considered for action recogni-

tion and anomaly detection, i.e. posed and in-the-wild cases. The first case

occurs when human targets perform actions in front of a camera, taking into

account pre-defined motion rules, action viewpoints constrains, and expli-

citly considering that they are monitored. This case normally represents

the test-bed for numerous studies. On the other hand, the in-the-wild case

represents the opposite of the posed case. Targets do not know they are

monitored, they are free to perform any action, regardless any pre-defined

instructions. Moreover, the background might be cluttered, multiple targets

may be present at the time, targets occlusions might drastically reduce the

available information, and recording conditions might be extremely varied.

The in-the-wild case represents the most difficult operative condition to be

studied.

Publicly available datasets for human action recognition and anomaly

detection show a certain degree of spontaneity, which varies between posed

and in-the-wild (Figure 1.2). However, it is practically difficult to quant-

itatively assess spontaneity. Therefore, this thesis, in general, focuses on

Spontaneity

Posed

Non-cooperative

In-the-wild

Figure 1.2: Different spontaneity degrees for considered human action recognition
and anomaly detection problems. This thesis focuses on non-cooperative scenarios.
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non-cooperative scenarios, which can be thought as an half-way between the

posed scenarios and the in-the-wild scenarios. However, in few cases, purely

posed and in-the-wild datasets will be also considered.

The non-cooperative scenario refers to that condition where the target

should not be expected to necessarily collaborate with the model in order

to be correctly interpreted. In particular, the targets are aware of being

monitored but they might not be cooperative with the data acquisition pro-

cess. For example, some targets might perform posed actions while other

targets might be completely spontaneous. Therefore, spontaneous actions

are allowed, leading to action intra-class variations, different action tim-

ing, potential occlusions with other targets and objects, viewpoint changes,

appearance changes, and contextual information dependence. However, a

non-cooperative scenario is still not completely in-the-wild. For example,

in-the-wild videos can have cluttered background, moving cameras, noisy

frames, extremely dark or bright light conditions, human targets can be

severely occluded due to the camera proximity or be undistinguishable from

the background, and the number of targets can be extremely high com-

pared to the video resolution, affecting target detection. In contrast, non-

cooperative scenarios show mitigated video conditions. In particular, the

background is static and not cluttered; the camera is fixed; the video acquis-

ition is not noisy and light condition are ideal; the human targets are fully

included within the video frame, despite occlusions might still be visible,

and the number of human targets is such that all targets can be detected at

all time, except in case of occlusions.

1.1.3 Cross-domain Solutions

A crucial challenge is to define systems that can be applied to different,

unseen working scenarios with limited or even absent re-calibrations. For

example, in object recognition, popular deep learning networks, such as SSD
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[10] and YOLO [11], are able to identify objects represented within an RGB

image with extremely robust performance. In fact, it is possible to deploy

such detectors into domains which are not included within training domains

and still obtain good detection performance. In human action recognition

and human activity anomaly detection, such cross-domains capabilities are

still challenging (Figure 1.3).

1.2 Problem Statements

Formally, Human Action Recognition (HAR) belongs to the machine learn-

ing classification problems. Therefore, given some training data describing

the performed actions, the goal is to design and train a model to be able

to automatically map new input data to a pre-defined set of action labels.

Training Data (Multi-domain)

Testing Data (Target-domain)

Figure 1.3: Example of cross-domain testing. A model is trained by using multi-
domain data [6–9] and tested over a specific domain, depending on the desired
application.
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In general, classification can be supervised (training data is fully labelled),

semi-supervised (some actions in training data are not labelled or not avail-

able), unsupervised (training data is not labelled).

In this thesis, regarding HAR, the major focus is on supervised learning,

despite other unsupervised techniques have also been used as complementary

data processing steps. Regarding the focused human actions, the major focus

throughout this thesis is on posture-related actions, i.e. those human actions

which can be mostly identified by the overall body and limbs movements in

the spatio-temporal domain, such as walking, running, bending, hand-waving,

and sitting. More complex actions, such as drinking, riding-bike or making-

up, where the targets necessarily interact with objects to perform the action,

will play a minor role and will be discussed only in particular experiments.

Similar to HAR, Human Activity Anomaly Detection (HAAD) belongs

to the binary classification problems. In other words, the HAAD goal is

to exploit the trained model to map new input data to a binary label, i.e.

normal/abnormal. In this thesis, HAAD is always performed in a semi-

supervised fashion, i.e. training data only contain normal instances. This

case best simulates the common anomaly detection scenario, where abnormal

data is usually missing due to the meagre rate of abnormal events. There-

fore, training data define what the model expects to be normal and any

variations from this expectation will be considered as an abnormality. Sim-

ilar to HAR, most of the HAAD models will be trained on posture-related

normal activities. Additionally, in some experiments, key objects positions

in the space-time domain will also be considered as complementary HAAD

level of analysis.
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1.3 Aims and Objectives

Given the above-mentioned problems and the challenges discussed in Section

1.1, this thesis firstly focuses on proposing human silhouette-based and hu-

man pose-driven (Figure 1.4) approaches to perform unimodal human action

recognition.

The aim is to obtain robust and computationally-efficient models for

HAR and HAAD, which can potentially be deployed in non-cooperative,

multiple humans monitoring and surveillance scenarios.

On the basis of the literature review performed throughout this pro-

ject, the major attention was firstly driven towards human-silhouette based

HAR. Therefore, to compensate human-silhouette limitations, the main fo-

cus turned on human-poses for HAR and HAAD. Finally, to further com-

pensate for human-poses limitations, advanced models for multimodal RGB-

pose features extraction were studied for HAR and HAAD. In table 1.1, the

1) head 
2) center chest  
    (root) 
3) right shoulder 
4) right elbow 
5) right hand 
6) left shoulder 
7) left elbow 
8) left hand 
9) right hip 
10) right knee 
11) right foot 
12) left hip 
13) left knee 
14) left foot 

1

23

4

5

6 8

7

9 12

10

11

13

14

Figure 1.4: (Left) Human silhouette example. (Right) Human pose example.
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main features for the methods developed in this thesis are summarised.

Table 1.1: Summary for the developed methods in this thesis.

Classification Classes Action Semantic Scenario
HAR supervised multi-class posture-related Posed; Non-cooperative;
HAAD semi-supervised binary posture-related Non-cooperative;

In Figure 1.5, a visual overview of the whole thesis is provided, which

shows the logical connections between chapters and thesis objectives. In

particular, the following objectives have been considered:

Objective 1

In Chapter 3, a mechanism to strengthen state-of-the-art silhouettes and

3D-HOG based HAR is investigated, by exploiting local body parts based

attention mechanisms.

Objective 2

In Chapter 3, performance stability and robustness over different training

rounds is ensured by leveraging cross-actions local gestures data clusters.

Objective 3

In Chapter 3, testing on non-cooperative scenarios is performed, to assess

limitations of the human silhouettes-based HAR in terms of reliability for

real-world problems. New data recording is required.

Objective 4

In Chapter 4, human silhouettes embedding based mechanism, defined in

Chapter 3, are transformed into human pose based embedding, to overcome

the human silhouettes limitations.
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Objective 5

In Chapter 4, human pose generality is exploited to perform cross-datasets

implementations. New data recording is required to test cross-datasets per-

formance.

Objective 6

Chapter 4, based on the human pose detector limitations, i.e. sudden false

negative and missing data due to occlusions, new solutions are proposed.

Objective 1 
 
Objective 2 
 
Objective 3

Objective 4 
 
Objective 5 
 
Objective 6

Objective 7 
 

Objective 8 
 

Objective 9 
 

Objective 10

Human Silhouette 
Domain 
(HAR)

Human Poses 
Domain 
(HAR)

Human RGB-Poses 
Domain 

(HAR+HAAD)

Chapter 1 
"Introduction"

Chapter 2 
"Methodology 
and Literature 

Review"

Chapter 6 
"Conclusions and 

Future Work"

Chapter 3 

"3D-HOG Embedding Frameworks for Single 
and Multi-viewpoint Action Recognition based 

on Human Silhouettes"

Chapter 4 

"2D Pose-based Real-time Human Action 
Recognition With Occlusion-handling"

Chapter 5 

"Pose-driven Human Action Recognition and 
Anomaly Detection"

Figure 1.5: Thesis structure. The objectives defined in Section 1.3 are linked
following a logical order. The diagram also reports the video-based application
domain for each contribution chapter.
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Objective 7

In Chapter 5, a generalisation of the pose-based HAR, defined in Chapter

4, to Joint RGB-pose based HAR is introduced, to leverage the additional

knowledge carried by RGB data and compensate human pose limitations.

Objective 8

In Chapter 5, the HAAD problem is addressed by considering pose-based

and RGB-based deep learning features to train a semi-supervised anomaly

detection system. New data is required for non-cooperative HAAD evalu-

ation.

Objective 9

In Chapter 5, object position related anomalies are considered for bilevel

body-motion/object-position HAAD, by defining proper object-position fea-

tures and replicating the Objective 7 approach. New data is required for

bilevel and non-cooperative HAAD evaluation.

Objective 10

In Chapter 5, multi-target generalisation is proposed for the novel Pose-

driven, bilevel, combined HAR and HAAD. New data recording is required

to collect novel, multi-target, non-cooperative HAAD datasets. New data is

required for multi-target and non-cooperative HAAD evaluation.

1.3.1 Definitions and Notations

HAR

Let L = {li}Li=1 be the set of action labels, where L is the total number

of considered action labels. Let W = {wi}Wi=1 be the set of viewpoints,

where W is the total number of considered viewpoints. Therefore, let D =

{(s, l, w)i}Di=1 be the multi-viewpoints action dataset containing D samples,
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1) head 
2) center chest  
    (root) 
3) right shoulder 
4) right elbow 
5) right hand 
6) left shoulder 
7) left elbow 
8) left hand 
9) right hip 
10) right knee 
11) right foot 
12) left hip 
13) left knee 
14) left foot 

1

23

4

5

6 8

7

9 12

10

11

13

14

Figure 1.6: The human pose is a set of 2D landmarks J , which represents a
non-redundant description of the target posture. (Right) Examples of a human
pose. (Left) Proposed pose nomenclature, for pose landmarks J = {1, . . . , 14}, link
vectors vj1,j2 , for j1, j2 ∈ J , and considered landmark subsets, i.e. Ja, Jb, Jc and Jd.

where s is the RGB video sample, l ∈ L, and w ∈ W.

Let T ⊂ D be the chosen training subset and T∗ = D\T be the testing

subset. In this thesis, HAR aims to extract features from each sequence

si ∈ D to train a model by using T to recognise actions sequences in T∗.

A human pose detector provides a root-centred graph in the form of 2D

coordinates, for example as shown in Figure 1.6, such that

pi(t) = {(xj(t), yj(t))i}j∈J t ∈ {1, . . . , Ti} (1.3.1)

where Ti represents the time length of the i-th video sample and J is the

landmarks set defined by the pose detector mapping. In this thesis, J =

{1, . . . , 14}, since the chosen detector is OpenPose [12], whose implemented

version detects up to 14 different landmarks. Let vj1,j2 be the link vector

between body landmarks j1, j2 ∈ J , as defined in Figure 1.6.

In Chapter 4, the main goal is to exploit pi(t), as well as generate addi-

tional and more robust time sequences, to train a recurrent neural network
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using T and to predict action labels in T∗.

HAAD

In the case of HAAD, let D = N ∪ T a video dataset, where N contains

normal data while T represents testing data, which contains both normal

and abnormal data. In particular, let N = {si}Ni=1 be the normal video data

subset containing N clips of arbitrary time length, where si represents the

i-th RGB video clip. Let

T =
{(

s̄, {gs̄(t|φ)}dφ=1

)
i

}M
i=1

(1.3.2)

be the video testing dataset containing m clips, where s̄ represents the RGB

video clip, gs̄(t|φ) is the anomaly based ground truth given for the target

identity index φ ∈ {1, . . . ,Φ}, where Φ is the number of human targets.

In particular, gs̄(t|φ) is a function that associates each frame t and target

identity φ to a binary response, i.e. normal/abnormal label, and it can be

defined as follows:

gs̄(t|φ) =

 0 if φ performs normal action in t

1 if φ performs abnormal action in t
(1.3.3)

Since D can be a single or a multi-target dataset, the target identity is

provided as discussed in Section 5.2.1 by a tracking mechanism operating

over the target detections.

In this thesis, the goal of HAAD is to propose a strategy to compute

Gs̄(t|φ) ≈ gs̄(t|φ) for all φ, and simultaneously provide an explanation of

the performed action, defined as Ls̄(t|φ), in the form of an action label. In

principle, action anomalies within T might be due to the unexpected target’s

body movements or with an unexpected positioning/usage of contextual ob-

jects. Therefore, the aim of this work is to propose an anomaly detection
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algorithm that can potentially detect both anomalies.

1.4 Contributions

To the best of my knowledge, and on the basis of the above-mentioned aims

and objectives, the main contributions of this thesis to the HAR and HAAD

fields are the following:

• Inspired by 3D-HOG previous studies, in Chapter 3, novel, outper-

forming 3D-HOG frameworks for silhouette-based HAR are contrib-

uted;

• Inspired by 3D skeleton literature, in Chapter 4, for the first time, the

2D pose-based HAR is proposed and investigated as a new research

area;

• Inspired by information fusion, in Chapter 5, novel, joint RGB-pose

based networks are contributed, to simultaneously solve HAR and

HAAD non-cooperative problems.

• This thesis also contributes new video datasets, i.e. ISLD-2018, ISLD,

and ISLD-2019 for posed and non-cooperative, posture-based HAR.

Moreover, this thesis also contributes a novel video dataset ISLD-

A (including BMbD, M-BMbD and JBMOPbD datasets), for non-

cooperative, multi-target, and posture-based HAAD.

In Chapter 2, further insights about this thesis contributions are provided,

including extensive discussions about related works and impact that the

proposed techniques have on the HAR and HAAD literature.

1.5 Thesis Outline

In Chapter 2, the main signal processing and computer vision based meth-

ods exploited in this thesis are firstly introduced. They represent solid and
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well-established methods for classification, clustering, anomaly detection,

based on conventional machine learning techniques and deep learning neural

networks. Therefore, a literature review for HAR and HAAD is presented,

to relate this thesis work to existing works. In Chapter 3, the contributed

method for silhouette based HAR is presented. Based on the background

subtraction limitations which affected the silhouette based HAR, in Chapter

4, contributions related to human pose-based HAR are provided. Therefore,

based on the pose-based HAR limitations, further and conclusive contribu-

tions on joint RGB-pose HAR and HAAD are detailed in Chapter 5. In

Chapter 6, conclusions, critical discussion and future work is provided.



Chapter 2

METHODOLOGY AND

LITERATURE REVIEW

2.1 Methodology Overview

In this thesis, Machine Learning (ML) and Deep Learning (DL) [13] has been

exploited as main tools for HAR and HAAD. Modern Artificial Intelligence

(AI) rely on sophisticated ML and DL algorithms which can explore training

data, finding useful relationships between data features. Such relationships

yield to non-linear rules which, to some extent, might generalise to new

input data. From a different perspective, ML and DL algorithms learn from

training data on how to transform new input data into new representations,

which are relevant to the given purpose.

In Table 2.1, the relevant ML and DL methods exploited in this thesis are

summarised. The purposes of these methods are mainly for dimensionality

reduction, classification, anomaly detection and clustering. Dimensionality

reduction refers to the ability to reduce data dimensionality by, for example,

reducing information redundancy within data or selecting only most relevant

features. The classification refers to the ability to classify input data by

assigning a single label chosen among a pre-defined set of labels. Similarly,

anomaly detection can be considered as a binary classification, where the two

labels are normal or abnormal. Lastly, clustering methods aims to explore

15



Section 2.1. Methodology Overview 16

input data in order to highlight internal grouping structures based on a

pre-defined motion of distance.

All these methods may belong to the supervised, unsupervised or semi-

supervised learning. The supervised learning aims to exploit explicitly la-

belled instances as training data. It is the case of the supervised classi-

fication, where the training aims to learn how extract general rules by ex-

ploiting the known one-to-one assignment between training data and their

labels. Conversely, unsupervised learning does not exploit any additional

knowledge other than input data, e.g. no labels are considered, to train the

model. It is the case of clustering, where the group subdivision, i.e. cluster’s

labels, are the output of the process, instead of part of the input. Lastly,

semi-supervised learning may refer to different meanings. In this thesis,

semi-supervised learning is only referred to anomaly detection, following the

definition given by Goldstein [14]. Semi-supervised anomaly detection is op-

posed to Unsupervised and Supervised anomaly detection, which are both

beyond the scope of this thesis. According to the Goldstein definition, in a

semi-supervised anomaly detection model, training data only provides nor-

mal instances, while abnormal instances are unknown. Thus, the trained

model will only build up expectation related to normal events, supported by

training data. As a consequence, an unseen instance which sufficiently differs

from training data will be considered as abnormal. Similarly, less frequent

actions within training data will also likely to be considered as abnormal

instances in the testing phase.

The literature about these ML and DL algorithms is superbly wide and

extensive. Therefore, to fit the specific purpose of this thesis, only a brief

introduction about relevant methods is provided in the remaining of this

section. However, in each contribution chapter, detailed information about

the proposed ML and DL algorithm and how it has been designed is provided,

including relevant literature references which further support the proposed
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solutions.

Table 2.1: Main methods are summarised for a methodology overview. The pur-
pose can be Dimensionality Reduction (DR), Classification (Class), Anomaly De-
tection (AD) and Clustering (Clus). The training mode can be Supervised (S),
Semi-supervised (S-s) and Unsupervised (U).

Method Purpose Training
Principal Component Analysis (PCA) DR U

Logistic Regression Class S
Support Vector Machine (SVM) Class, AD S, S-s

CNN/RNN Class S
Autoencoders DR, AD U, S-s

Hierarchical Clustering Clus U
Self-organizing Map (SOM) DR, Clus U

2.1.1 Principal Component Analysis (PCA)

Figure 2.1: PCA transformation example. The zero-mean data x = [x1, x2] is
transformed into y = [y1, y2], which are, respectively, the first and second principal
component.

Given a set of zero-mean data in the form of vectors x ∈ Rn, Principal

Component Analysis (PCA) [15] aims to reduce information redundancy

within data by mean of a linear transformation learned from training data.

Since some of the entries of x might be statistically correlated, PCA aims

to linearly transform x into y ∈ Rm such that m < n, variable in y are

uncorrelated to each other and their internal variance is maximised. The

goal is achieved by considering x as a multivariate random vector and the
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entries of y, i.e. yp, are expected to be such that yp =
∑

k wp,kxk = wT
p x for

a given set of parameters wp. Therefore, the first goal is to maximise the

variance V ar(y1) with respect to parameter w1:

V ar(y1) = E{y2
1} −E{y1}2 = E{(wT

1 x)2} =

= wT
1 E{xxT }w1 = wT

1 Cxw1

such that ‖w1‖ = 1 (2.1.1)

where Cx is the covariance matrix of x. This is an optimisation problem

which yields to the following Lagrange multiplier M :

M = wT
1 Cxw1 − λ(wT

1 w1 − 1) (2.1.2)

∂M

∂w1
= 2Cxw1 − 2λw1 = 2(Cx − λI)w1 = 0 (2.1.3)

Thus, the desired parameters vector is w1 = e1, i.e. the eigenvector of Cx

which corresponds to the highest eigenvalue [16]. Moreover, it is desired that

E{ypy1} = 0 for p > 1. Therefore, for p = 2,

E{y2y1} = E{(wT
2 x)(wT

1 x)} = wT
2 Cxw1 = wT

2 Cxe1 = (2.1.4)

= λ1w
T
2 e1 = 0 (2.1.5)

Thus, the second goal is to maximise V ar(y2) looking into the subspace of

vectors which are orthogonal to the first eigenvector of Cx. The solution

is, again, given by w2 = e2. By recursively applying these arguments for

p = 1, . . . , n, it follows that wp = ep, for all p = 1, . . . , n.

Moreover, due to the recursive PCA definition, new variables in y are

ordered depending on the data variance. The first variable (first principal

component) is responsible for the major data variability. The second variable

(second principal component) is responsible for the second major data vari-
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ability, and so on. Therefore, variables in y can be neglected by thresholding

the corresponding variability or according to the ordered cumulative carried

data variability. Often, in practical cases, it turns out that a considerable

number of new variables can be neglected, since the first few principal com-

ponents carry, cumulatively, more than 95% of the whole data variability.

This is particularly useful as dimensionality reduction method to pre-process

data for machine learning, since the new set of transformed data carry almost

the same data variability as the original set of data, with a smaller number of

(uncorrelated) variables. Since it is not required to exploit labelled training

data, PCA can be considered as an Unsupervised (U) method.

2.1.2 L2-Regularised Logistic Regression

The logistic regression [17] is a statical method which establishes a mapping

between input data, i.e. vectors xi, to a categorical label li ∈ L, where L is

a set of predefined labels. Therefore, logistic regression is mainly exploited

in this thesis as a supervised classification method. The method aims to

maximise a likelihood metric L(w) with respect of parameters w as follows:

max
w

L(w) = max
w

log
n∏
i=1

P(L = li|xi,w) (2.1.6)

P(L = li|xi,w) = Logit(S(xi)) =
1

1 + e−S(xi)
(2.1.7)

S(xi) = wTxi (2.1.8)

where L is the predicted class for the sample xi and S is the score function.

Since no closed-form solution is available for (2.1.6), gradient ascent is used

to find the best set of parameters w∗ which maximises the metric. The

regularisation problem aims to limit the so-called overfitting problem, which

arises when a given model perfectly maps training data but fails in mapping

testing data to the expected label. In other words, the model fits the training
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set, but it is not able to extract general rules which can be potentially applied

to correctly classify new data. To achieve this regularisation, it is common

to consider the magnitude (L2-norm) of the parameters as regulariser, i.e.

max
w

(
L(w)− γ ‖w‖22

)
(2.1.9)

where γ ∈ (0,∞) emphasises how much the regularisation term best fits

the problem. In particular, the regularising term penalises large coefficients,

since the regulariser is subtracted from the likelihood metric. Typically, γ

is chosen by using a validation set (for large datasets) or cross-validation

(for small datasets). Since (2.1.7) uses the Logit function, binary classi-

fication can be performed with the model defined above. However, gener-

alisations to multi-class classifications are based on, for example, Softmax

and Cross-Entropy [13] functions. Overall, L2-Regularised Logistic Regres-

sion can provide strongly non-linear mappings between input data and class

labels, which makes it one of the first choices for supervised ML.

2.1.3 Support Vector Machine (SVM)

Support Vector Machine (SVM) [17] is acknowledged as one of the most

performing methods for supervised classifications [18]. It is based on the

simple idea of maximising the geometrical margin between two classes in a

simple binary classification problem for linearly separable data. In this case,

SVM aims to find those two parallel hyperplanes (normal to the vector of

parameters ‖w‖) such that their mutual distance is the highest and data

points lie in the right side of them. In formulas, given a set of data point

xi and binary categorical labels li = {1,−1}, the aim is to find two parallel

hyperplanes wTx−b = 1 and wTx−b = −1 such that their distance (which

turns out to be equal to 2
‖w‖) is maximised. Therefore, with some algebra,
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the problem can be formulated as

min‖w‖ subject to li(wxi − b) ≥ 1, ∀i (2.1.10)

The values w∗ which solves (2.1.10) defines an hard-margin classifier such

that

xi ← sgn(wxi − b) (2.1.11)

It can be shown that, in order to obtain a soft-margin classifier for non-

linearly separable data, the problem can be re-written as

min

 1

n

n∑
i=1

max{0, 1− li(wxi − b)}︸ ︷︷ ︸
A

+ γ‖w‖2︸ ︷︷ ︸
B

 (2.1.12)

where the term A ensures that data points lie in the right side of the decision

boundary wx− b = 0, while the term B ensures that the size of the margin

increases as much as required to reach an optimal trade-off. This method

can also be generalised for multi-class problems and for non-linear supervised

classification by replacing the dot product in the above-mentioned equations

with kernel functions [13]. In this thesis, SVM is only exploited for semi-

supervised anomaly detection. Therefore, non-linear binary classification is

considered, with training data which includes normal instances only. The

idea behind this so-called one-class SVM is to a priori define a percentage p

of training data that is expected to be an outlier. During the training, the

algorithm tries to train the bias term b in (2.1.10) such that p observations

in training data have a negative score. Such standard method is common

for semi-supervised anomaly detection [14], and it has been widely exploited

in Chapter 5.
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2.1.4 Deep Neural Networks

Deep Neural Networks are widely studied and exploited in several fields

nowadays [13]. A Deep Network is made by connecting several layers of

interconnected processing units called neurons. A neuron receives numer-

ical inputs from previous neurons and then processes it by using linear and

non-linear operations, before sending it to the next layer with which it is

connected. A deep network which includes a sufficient number of neurons

and layers is, in principle, able to map input data to output data of any sort,

e.g. labels in the classification case, replicating a wide-range of non-linear

functions. However, the advantage of Deep Networks is that it is possible

to automatically and implicitly establish such complex mappings by using

backpropagation algorithm [13]. In short, given a certain loss function which

measures the difference between the expected output, e.g. a pre-defined

classification label, and the actual network output, e.g. the predicted label,

it is possible to repeatedly adjust internal network parameters in order to

minimise the loss function, i.e. minimise the errors between expected and

predicted output. At each iteration, the network’s performance is measured,

e.g. by testing it on a pre-defined validation dataset. Thus, when a trained

network reaches a validation performance which is acceptable for the given

application, the iterative process is stopped, and a conclusive performance

evaluation is conducted on a pre-defined testing dataset. As a result, this

iterative process requires consistent amount of data due to: 1) separated

training, validation and testing data are required; 2) if testing data is well

defined including as general instances as possible, high testing performance

is the result of high network’s generalisation abilities, which in turn are most

likely to be obtained by consistently increasing training and validation data

samples. Overall, the network internal parameters definition is performed

implicitly by showing several input examples and expected outputs to the

network during the training phase. In Fig. 2.2-(a), an example of a simple,
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Figure 2.2: (a) Multi-class Logistic Regression via neural network layers, with no
kernels. (b) Example of Feed Forward Neural Network (FFNN) with one hidden
layer and a read-out layer, which in turn is made by using fundamental blocks
for Logistic Regression. (c) Example of Convolutional Neural Network, where an
FFNN is following the convolutional and pooling layers. The convolutional layer is
further expanded to see the basic convolutional operations based on kernels. (d)
Example of basic Recurrent Neural Network, where the input x is a time-sequence
x = [x1, x2, x3].
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logistic regression implemented via neural networks for multi-class classific-

ation is shown. This processing core is normally exploited as a read-out

layer in any neural network. For example, in Fig. 2.2-(b), a simple feed

forward neural network is depicted, which uses the above-mentioned core

after a single hidden processing layer.

Remarkable examples of Deep Networks are the Convolutional Neural

Networks, which are specifically designed to efficiently deal with images as

input. As shown in Fig. 2.2-(c), the input is given to the first network

layers to performs multiple convolutions and pooling operations, followed by

non-linear steps in which activation function introduce non-linearity. In this

case, typically, the convolutional layers are followed by a feed forward-like

structure, to transform feature maps (tensors) provided by the convolutional

layers into class labels (vectors).

Further evolution of the feed forward neural network is provided by the

Recurrent Neural Network (RNN), which are a particular class of Deep Net-

works which are designed to deal with temporal input sequences, e.g. time-

steps based input data. As shown in Fig. 2.2-(d), the basic idea is that, at

each time-step, the output of the recurrent layer is provided as input again

to the same layer, alongside the current time-step sequence element. There-

fore, the output of the previous time-step acts as a memory and it affects the

computation of the current time-step. It turned out that the major draw-

back for RNNs was the vanishing gradient [13]. In short, the conventional

RNN suffers from losing the information from the previous time-steps, i.e.

the memory, pretty quickly. Therefore, the Long Short-Term Neural Net-

work (LSTM) was designed to overcome the problems occurring in the classic

RNN. This network has the advantage to allow more flexibility in the way

the memory from the previous time-steps is managed. This advance yields

to a network which is able to keep in memory information for a long or short

time, avoiding memory corruption.
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Interestingly, combinations of CNNs and LSTMs have been exploited

for video-based classification, since a video is naturally defined as a time

sequence of subsequent images. Therefore, the CNN structure can be ex-

ploited as a feature extraction method on the spatial domain (frames), and

the LSTM can be exploited for modelling temporal dependencies between

extracted spatial features. However, several other structures have been stud-

ies, achieving different performance depending on the domain [19].

2.1.5 Autoencoders

The autoencoders are special cases of Deep Networks, particularly useful for

dimensionality reduction, de-noising and anomaly detection [13]. The main

concept is based on jointly training a neural network-based encoder and a

decoder, with the goal of obtaining an output which is as close as possible to

the correspondent input. The idea is that the encoder maps input data to a

more compact representation, which is expected to contain only information

which is relevant to the task. As opposite, the purpose of the decoder is

to reconstruct the original input starting from the compact representation

provided by the encoder. By training both encoder and decoder simultan-

eously, a trade-off between encoding and decoding performance is achieved,

and a tool to provide compact transformations of data is provided.

Autoencoders are used in this thesis as baselines for performance com-

parisons in Chapter 5 regarding HAAD. In fact, CNN-based autoencoders

are acknowledged as effective tools for video-based semi-supervised anomaly

detection. The idea is that, once the autoencoder is trained on normal data,

new data which resembles training data are expected to be reconstructed

with low error. In contrast, outliers are expected to be reconstructed with

higher error, since the network is not optimised to reconstruct such data. As

discussed in Chapter 5, building upon this idea, numerous approaches have

been designed, with a specific focus on video-based anomaly detection.
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2.1.6 Hierarchical Clustering (HC)

Hierarchical Clustering (HC) is a simple and well-known algorithm that aims

to explore data points in a multidimensional space x ∈ Rn looking for local

groups, i.e. clusters. HC is based on an exhaustive search within data based

on mutual distance, e.g. Euclidean distance. The algorithm starts consider-

ing all data points as separated clusters. Therefore, it finds the two closest

clusters, merging them into a single cluster. Thus, it repeats this operation

until only one cluster is defined, containing all data points. Typically, HC

output consists of a dendrogram, i.e. a tree diagram which represents the

mutual connections established by the algorithm. Therefore, by setting an

initial parameter p as the number of data clusters are expected in the data-

set, the dendrogram can be used to find the unique cluster configuration

which corresponds to the requested number of clusters p (Fig. 2.3). HC per-

Data points
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e

Figure 2.3: (Left) Example of 2-dimensional data points, numbered from 1 to
15 for illustration purpose. (Right) Correspondent dendrogram based on mutual
distances between data points. In this example, p = 2; thus, 2 clusters are identified
by using the dendrogram, i.e. yellow and green dendrogram leafs.

forms unsupervised clustering, since no internal descriptions of data points,

i.e. labels, are required to set the clusters. In contrast, clusters are defined

on the basis of the mutual similarity in terms of distance. However, prior

knowledge is required or multiple thresholding parameters p are required to

find the best number of expected clusters [20].
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2.1.7 Self-Organising Maps (SOM)

The Self-Organising Maps (SOM) is a popular artificial neural network-based

unsupervised features selection method for clustering and dimensionality

reduction. The goal is to find optimum mappings between high-dimensional

input data points and a low-dimensional predefined discrete representation

based on graph-like nodes [21]. SOM is based on competitive learning, in

contrast with back-propagation with gradient descent based optimisation

commonly used for training CNN and RNN networks.

The basic idea behind SOM is to mesh a predefined uniform lattice on top

of a multidimensional data point distribution. In practical implementation,

SOM requires to input the predefined lattice, which is expected to be an

overestimated set of clusters. The lattice is normally a two-dimensional,

regular, rectangular or hexagonal. However, in principle, lattices of any

dimension and shape are allowed. Once the mapping is produced, each data

points can be mapped to one of the lattice nodes, which effectively represents

a first clustering abstraction level. Subsequently, HC or other methods such

as K-means can be further applied to further reduce the number of clusters

and create the second clustering abstraction level. SOM can be particularly

effective as dimensionality reduction for subsequently applying HC since HC

tends to be particularly computational expensive when high-dimension and

high-number of data points are considered [22].

2.2 Human Action Recognition and Activity Detection

2.2.1 Overview

Video-based Human Action Recognition is a vast field. It comprises several

subdomains, depending on the source input, the main used techniques and

the desired application. In this section, a general overview of the field is

provided, with major attention on silhouette and pose based HAR, which is
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Figure 2.4: (a) HAR input data overview and areas contributed by this thesis. (b)
HAR features extraction approaches overview. (c) Depth point cloud (Kinect) and
estimated human skeletons, where human body silhouettes are visible. (d) Human
silhouette detected from RGB data via background subtraction. (e) Human pose
detected via RGB-based human pose detectors.

the focus of this thesis.

As depicted in Fig. 2.4-(a), the two major types of input data for HAR

are conventional RGB videos and depth data [23]. Human action informa-

tion can be stored as RGB-based data or as point clouds (3D data points)

provided by depth sensors, e.g. Structured-light cameras such as Kinect (Fig.

2.4-(b)) or Time-of-flight cameras. The major difference between RGB and

depth data is that the latter is a 3D spatial representation of the scene,

including the human targets, while the RGB data are a 2D three-channels-
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based representation. Therefore, in the RGB case, information about the

depth is mostly lost. This has several negative impacts, for example: 1)

actions that involve body movements toward the camera are more difficult

to be taken into consideration; 2) the 3D volumetric body shape is lost; 3)

distinctions between targets in partial occlusion each other are more chal-

lenging. Therefore, despite depth data advantages, RGB data is collected by

a conventional camera instead of more expensive depth devices. Moreover,

depth cameras working range is short, and they suffer from outdoor light

negative effect [5], while RGB cameras can still provide useful information

from a further distance and in a wider range of illumination conditions.

From the human perspective, raw RGB data represents a superb source

of human action information, since the sight is the sense that humans typ-

ically use to gather information about the outside world. However, as a

matter of fact, the human body is an extraordinarily complex and vari-

able object, which we, as humans, require years of learning and training

to master and understand. Therefore, from the artificial intelligence point

of view, RGB data often comprises a multitude of cluttered and irrelevant

information which hides human action information. For example, the first

non-trivial task for an AI is to detect a human target, before trying to un-

derstand what the target is doing in terms of actions. Such detection is

instead trivial for human beings. Moreover, light condition changes and oc-

clusions might compromise the detection very easily, while, for humans, it

is quite obvious to figure out which is the target and what is doing even in

the presence of challenging conditions. Furthermore, appearance and body

shape changes, attitude, viewpoint changes, spatio-temporal complex and

unexpected movements might quickly compromise the recognition and clas-

sification if no specific solutions are adopted [23]. Last but not least, the

quality of the data might further exacerbate the problem. In contrast, the

human brain can easily exclude these disturbing factors and reach the kernel
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of the desired information.

As a useful refinement of RGB data, the shape of the body can be ex-

tracted and exploited for HAR. In this sense, the body silhouette is defined

as the semantic area/volume, which refers to the body of the human target.

The human silhouettes have been investigated for years as input for HAR

algorithms, since they convey important features regarding the type of per-

formed action, without the disturbing effect of other irrelevant information.

From a simple visual comparison between Fig. 2.4-(c) and Fig. 2.4-(d), it

can be seen that human silhouettes can be effectively be retrieved from both

depth and RGB data [24]. However, in this thesis, only silhouettes retrieved

from RGB data will be considered. In Section 2.2.2, an overview of the

silhouette-based state-of-the-art is provided.

Despite the above-mentioned depth data limitations, Fig. 2.4-(a) shows

that depth data are generally the precursor of the 3D poses or skeletons,

which is a compact representation of the human body as a list of 3D co-

ordinates. Skeleton-based HAR is an important subdomain, which inspired

this thesis contributions. A human skeleton representation is provided as

a set of 3D coordinates, i.e. landmarks, which locate key points of the

body, such as head, neck, torso, left-hand etc., within the 3D space. Until a

few years ago, landmark-based HAR corresponded to skeleton-based HAR,

because the only reliable device for collecting body landmarks was a depth

camera. However, with the advent of deep learning-based human body limbs

detectors such as OpenPose [12], it became also possible to collect body land-

marks from RGB data, i.e. 2D poses. Similarly to a skeleton, 2D poses are

provided as a list of 2D coordinates identifying the body limbs position in the

frame. Despite skeleton and pose are similar representations, they mainly

differ from the fact that human poses do not allow 3D computation, e.g.

rotations in the 3D space, therefore the camera viewpoint is fundamental;

in contrast, skeleton are embedded within a 3D space which allows more
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computation flexibility and a certain degree of viewpoint insensitivity. In

Section 2.2.3, an overview of the pose-based state-of-the-art is provided.

Overall, once the desired input data has been selected, e.g. human sil-

houettes, skeleton or poses, it is crucial to extract meaningful features from

it. Such features are numerical quantities which are expected to be highly

informative regards the performed action. In other words, a complex map-

ping between input data and tensors (features) is required. Therefore, once

the mapping is provided, features-based classification can be performed. The

classification is generally as much easy to be performed as much the data-to-

features mapping is informative. In other words, if dissimilar action samples

are mapped to similar or identical features, then the classification is destined

to fail. Thus, it is crucial to design mapping systems that are highly descript-

ive, to ensure the classification step success.

Narrowing on RGB-based HAR, state-of-the-art algorithms can be di-

vided into three main categories (Fig. 2.4-(b)), depending on how such a

mapping is defined:

• Hand-crafted features extraction. In this category, the mapping is

strongly based on human insights regards HAR problems, while ma-

chine abilities are not fully exploited and are often limited to conven-

tional machine learning tasks. In other words, the solutions included

in this category are based on local representations, which tries to focus

on input details which are expected to be highly informative from the

human perspective [25]. It is the case of the approach suggested by

Weinland [26] and discussed Section 2.2.2.

• Deep-learning features extraction. In this category, Convolutional Neural

Networks (CNNs), generative models, 3D-CNNs and Recurrent Neural

Networks (RNNs) [27] are used to explore data without any or with

very limited human insights. Therefore, the input-to-features mapping
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is efficiently and automatically created during the network training, in

a way that might not be any longer interpretable by humans. Despite

clear advantages in terms of performance, processing explainability

becomes an issue [28].

• Hybrid features extraction. The algorithms in this category attempt

to combine the most promising results from both the above mentioned

hand-crafted and deep learning-based approaches, providing a useful

trade-off between them [25]. This thesis contributions mostly belong

to this category.

Despite the variety of available techniques mentioned above, generating

a good mapping between input data and features is always extremely dif-

ficult. In particular, the challenges which often compromise the mapping

effectiveness are:

1. Human appearance changes. The system is expected to be robust

to body size, body shape, gender, ethnicity and other appearance

changes; therefore, the mapping must take into account that the same

action might be performed by different human targets with different

body appearance;

2. Intra-class variations. Humans have different attitudes due to different

level of ability or experience with the performed action, e.g. an athlete

jumps or runs differently compared to a sedentary person; the mapping

has to take into account this additional effect;

3. Action timing, speed, contextual changes. Different subjects can per-

form the same action with different timing or speed. Even contextual

differences affect the performed action, resulting in a huge variety of

action styles;

4. Occlusions, self-occlusions, missing data. Occlusions occur when the
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human target is partially or completely covered by contextual objects.

Similarly, self-occlusions occur when the human target partially oc-

cludes itself due to the assumed position with respect to the camera.

Missing data occur when the human target is partially out from the

camera field of view.

5. Viewpoints changes. Human actions might look extremely different

from different camera viewpoints, resulting in a severe drop of inform-

ation when the viewpoint is not the best possible; therefore, proposed

solutions are required to take into account this variability;

6. Camera moving and zooming. Movements of the camera, including

zooming, can easily drop down performance;

7. Background clutter. This issue occurs when the subject is not clearly

distinguishable from the background or when the background is mov-

ing, generating false positive subjects/targets; in this case, input data

might be noised or corrupted, compromising further processing;

8. Generalisation. Several trained models are scenario-specific or data-

type specific. Thus, generalised models which can be tested over dif-

ferent scenarios/datasets are desirable for effective applications;

9. Models explainability. Deep learning methods, which are predominant

in the current literature, have great performance at the expenses of

understandability of the learning process itself. On the contrary, hand-

crafted learning, which has been very popular until a few years ago,

in general, can be considered less generalisable and more data-type

specific. However, they are better understandable from the human

side. What is the best trade-off approach is still an open question;

10. Time localisation. In a continuous data stream where targets might

perform multiple actions, it is crucial to identify the extent of the
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action, i.e. when it starts and when it ends.

Despite the efforts to address these challenges, no definitive solution has

been presented to address HAR. However, extensive studies suggests that

multimodal data improves performance [25]. For this reason, this thesis fo-

cuses on extracting multi-semantic data from RGB data, e.g. human silhou-

ettes, human poses, and relevant objects bounding boxes, to be processed

alongside RGB data itself in a multimodal approach, to improve HAR and

HAAD performance.

With the recent advances of Deep Learning, research in HAR started

exploring these techniques for digging into raw RGB data, leveraging the su-

perb abstraction power of neural networks. In a recent and famous advance

from Carreira et al. [19], existing deep learning techniques are reviewed, and

new advances are presented. These methods work in wild and cluttered scen-

arios. RGB-based deep learning architectures are based on combinations of

Convolutional Neural Networks (CNNs), 3D-Convolutional Neural Networks

(3DCNNs) and Long Short-Term Memory neural networks (LSTMs), often

exploiting pre-training as beneficial warming up method [29]. These net-

works are trained on large datasets, such as Kinetics [30] and UCF101 [31],

containing hundreds of complex actions with a consistent amount of con-

textual information, with different camera proximity and a variable number

of targets. Despite such challenging scenarios, the performed HAR prac-

tically consists of video clip captioning [28]. Therefore, the trained model

can, in principle, detect if one of the trained action has been performed in

the video, providing additional descriptions about the context. However,

using the whole frame as a unimodal source of information does not provide

hints on how the system can discriminate between different human targets

actions. In contrast, if human detections are available and human tracking

is performed, as in surveilled environments, in principle the bounding-boxes

RGB data can be exploited as input instead of the whole frame [32]. How-
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ever, this thesis provides evidence that this approach is suboptimal to detect

human posture-related actions, compared to the pose-based approach. RGB

data might be a too complex and cluttered source of information. Therefore,

posture-related information extracted from it, such as human silhouettes

and human poses, might be a better source of information, since disturbing

factors are mostly neglected. However, RGB data can still carry additional

knowledge that can be potentially be further exploited to compensate what

silhouette and poses might involuntarily neglect. Therefore, hybrid solutions

between existing hand-crafted techniques and recent deep learning advances

can be leveraged, to reach those levels of multimodal understanding which

is desired, for example, in surveillance scenarios. For this reason, one of the

final goals of this thesis is to explore raw RGB data combined with pose-

based data for posture-related HAR, to take the most from both modalities

in a multi-target monitored environment.

The importance of human postures is well-known in literature and is

deeply rooted in other fields of computer vision. In [33] the authors used

gesture cues to recognise who is talking in a scene. However, using gestures

and postures, we can reveal more complicated social behaviours and even

attitudes, even recognising an extrovert or introvert individual [34]. Posture

and gestures are social cues which are able to carry information about how

we relate to the environment and how we feel in a particular situation [35].

In [36] the authors dealt with gestures and postures to determine if a group of

people is interacting with each other, also considering when the visual focus

of attention for different individuals are intersecting, people are considered

in interaction. In [37, 38] studies related to groups of interacting people

are explained, exploiting their attitude in occupying the common 3D space:

it turns out that interacting people are recognisable through the shape of

the area between them and how they stand in that area, i.e. the mutual

silhouette.
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In the following sub-sections, the silhouette-based and pose-based HAR

state-of-the-art is further discussed.

2.2.2 Silhouette-based HAR

Silhouettes have been repeatedly exploited for HAR, since they carry a con-

siderable amount of information related to the body shape, and therefore,

to the posture-related action performed by the target. Generally, human

silhouettes can be extracted by using background subtraction algorithms,

such as the patented ViBe [39]. Modern background subtraction methods

generally distinguish foreground from background as a pixel-based classific-

ation problem. However, as already discussed in the previous section, depth

data can also be the precursor of human silhouettes. Moreover, Batchuluun

et al. [40], demonstrated that human silhouettes could also be effectively re-

trieved from infrared and thermal cameras for effective HAR in surveillance

environments.

In a multimodal-data based interesting work, Tang et al. [41,42] proposed

a borrowing information method to share knowledge across modalities. In

particular, depth-skeleton information stored in an offline action database

was leveraged to improve the accuracy of RGB based HAR. The idea was to

exploit depth and skeleton data stored in the offline dataset to support the

RGB based processing. Despite the multiple sparkling points behind this

work, it is crucial to highlight that the RGB based HAR was performed by

using human silhouettes, following the well-established framework previously

provided by Weinland et al. [26, 43, 44]. Tang et al. effort was motivated

by the fact that, despite Weinland et al.’s method was effective, it provided

consistent room for improvements. The Weinland et al. method was one of

the most interesting outcomes for 2D RGB based HAR before the advent

of deep learning as a trending technique for HAR [45]. It was specifically

designed to be robust to occlusions and viewpoint changes. The core idea was
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Motion-History 
(2D)

Space-Time-Volumes 
(3D)

Figure 2.5: (Left) Motion-History maps obtained by piling up human silhouettes
at different time steps and averaging on the temporal dimension. (Right) Space-
Time Volumes (STV) obtained by piling up human silhouette at different time
steps.

to implement local 3D Histogram of Oriented Gradients features (3D-HOG)

deployed in a framework with multiple classification models, depending on

the body location. Despite the claimed robustness of this approach, my

implementation of this system highlighted limitations in attributing adaptive

weights for the local gesture contribution to the overall decision. In Chapter

3, these limitations are discussed, and alternative solutions are proposed.

3D-HOG features are the 3D extension of their 2D counterpart, Histo-

gram of Oriented Gradient (HOG) [46], developed by Klaser et al. [47]. The

original version of HOG as been widely used in literature for 2D black-white

image features extraction [48–51]. In all these works, the action is represen-

ted as a Motion-History maps (Fig. 2.5-(Left)), which encodes the temporal

changes of the body silhouettes with colour shades to encode the movements.

Therefore, the main idea of HOG features is to encode local colour shades

changes by projecting local gradients onto pre-defined circular directions,

and defining histograms which cumulates local projection magnitudes.
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As opposite, 3D-HOG features, can be used to extract features from tar-

get Space-Time Volumes (STV) [52] (Fig. 2.5-(Right)). Silhouette-based

STV is a 3D human action representation made by piling up target silhou-

ettes at consecutive frames. Therefore, the resulting STV represents a 3D

data volume, and 3D-HOG features can be computed to extract features

related to the STV local shape. However, 3D-HOG have also been used in

literature for different computer vision problems. For example, an object

detector has been developed based on 3D-HOG features applied to depth

volume voxels [53]. An evolution of this method was presented by Dupre et

al. [54], who designed a method for risk estimation in the presence of sharp

objects. Furthermore, since depth-based action data are represented as a

4D-tensor, where the fourth dimension represents the time, straightforward

generalisations of the 3D-HOG theory are possible. For example, a 3D-HOG

generalisation to deal with the fourth dimension was proposed by Oreifej et

al., who proposed the so-called HON4D [55].

One of the advantages of 3D-HOG features for HAR is related to the ro-

bustness to multi-viewpoint actions [26]. In general, multi-viewpoint action

recognition relies on finding common features among videos from a different

point of views [56]. However, 3D-HOG features can be exploited to extract

peculiar features from each viewpoint data and to train a general classifier on

multi-viewpoint extracted features, as described in Chapter 3. In contrast,

Iosifidis et al. [57], exploited human silhouette to propose a multi-viewpoint

framework which separately learns from each viewpoint data. Therefore, to

classify a new sample recorded from a specific viewpoint, a voting strategy

between multiple models was required. Differently, Azary et al. [58], pro-

posed a sparse representation which was able to train a single model with

samples from for up to 8 viewpoints, obtaining competitive accuracies. The

approach proposed in Chapter 3 follows the same idea but obtains outper-

forming results. In very recent work, Chou et al. [59], developed a hybrid
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approach considering again human silhouettes alongside points of interest

within RGB data to train a multi-viewpoint model for HAR. Points of in-

terest are another powerful, view-invariant features which can be useful to

provide RGB-based, multi-viewpoint models. However, the points of interest

are beyond the scope of this thesis.

Another notable approach exploiting human silhouettes was provided by

Chaaraoui et al. [60] who proposed a coevolutionary algorithm for HAR. In

this work, bags of silhouette were defined for each action classes, in order to

select a few key silhouettes out from training data and reduce the overfitting

problem. This technique was also at the core of the Weinland et al. approach,

and it is further exploited in the proposed technique in Chapter 3.

Recently, Jin et al. [61], exploited deep learning to deal with silhouette

based sub-action HAR. Jin et al. highlighted that human actions could be

actually seen as combinations of stratified effects due to the posture, the

locomotion and the semantic gesture levels. Therefore, Jin et al. proposed a

framework to assign multiple labels to each testing action, defining a sort of

complex caption of the target actions. Despite the effectiveness of this work,

it was not possible to further explore this interesting idea due to lack of multi-

labelled data. However, Jin et al. system was based on human tracking, to

allow multiple target HAR in CCTV environments. This approach links

with the solutions discussed in Chapters 4 and 5, since similar frameworks

are exploited to deal with multiple target data.

2.2.3 Pose-based HAR

Pose-based HAR is strongly related to skeleton-based HAR, which in turn is

related to depth-based HAR. In the recent past, several contributions have

been made by depth-based HAR community [62–64]. However, despite the

significant advantages provided by the 3D depth data and human skeletons,

such as viewpoints robustness and generalisation, insensitivity to light con-
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dition changes and the clear benefits provided by the third dimension [62],

depth devices, e.g. Kinect, have critical drawbacks. For example, Kinect

does not work well in outdoor environments and has a minimal working

range (up to 5-6 meters), which limits its ability to be implemented in sur-

veillance scenarios [5]. Motivated by the limitations of depth-based devices,

researchers started developing new techniques that can provide 2D poses

from RGB data. Poses are qualitatively similar to skeleton data, although

the third dimension is lost. Therefore, highly promising body pose detectors

have been published in recent years, such as DeeperCut [65] and Open-

Pose [12]. In particular, OpenPose achieves the best performance, opening

new research directions for HAR. As a matter of fact, human poses repres-

ent an effective way to extract posture-related information from RGB data,

exactly as 3D skeleton do from depth data (Fig. 2.6). However, it is worth

emphasising that 2D poses have limitations compared to skeletons. For ex-

ample, 2D poses do not allow any rotation in the 3D space, which in contrast

are allowed for skeleton data [67]. Thus, many skeleton-based algorithms,

which are explicitly or implicitly based on the advantageous properties of the

3D space, cannot be directly applied to the 2D case. Furthermore, no depth

data, i.e. Kinect points cloud, is available in the 2D case. Therefore, depth-

based feature extraction theory cannot be directly applied to the RGB-based

case. Despite these problems, some of the fundamental skeleton processing

can still be lent to pose-based HAR. For example, landmarks normalisation

is commonly used to remove target size and location dependency from skel-

eton data, and it can be easily replicated in the pose-based case. Wang et

al. [68] proposed to extract Local Occupancy Pattern (LOP) features from

depth data and Invariant Features from skeleton data and depth data, where

skeleton normalisation was used. Similarly, Taha et al. [69] suggested im-

plementing Hidden Markov Models (HMMs) to process skeleton data where

normalisation was performed as a pre-processing step.
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OpenPose

Kinect

Figure 2.6: (Top) Kinect data (point cloud) and estimated 3D skeletons for three
human targets. (Bottom) 2D human poses estimated from RGB data by OpenPose
[12,66].

The work presented in this thesis regarded pose-based HAR is among the

few more other parallel attempts of exploring this new research opportun-
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ity. For example, Yan et al. [70] have implemented graph convolutional net-

works to process pose data provided by OpenPose, which achieves promising

results. This approach considers temporal information alongside spatial in-

formation embedded in a common structure. However, this method requires

a fixed number of frames for each action sample in order to build the action

graph, which may affect system flexibility. In contrast, the proposed solu-

tion in Chapters 4 and 5 focuses on exploiting LSTM based networks to deal

with time-based sequences. This approach is specifically designed to deal

with multivariate temporal sequences, with no restrictions on the number of

time steps, allowing full flexibility with respect to space and time.

Regarding the classification step, RNN and LSTM have already been ex-

ploited in many recent papers related to skeleton-based HAR. Liu et al. [71]

proposed the 3D skeleton-based action recognition using LSTM networks.

Their major focus was on implementing trusting gates on the LSTM ar-

chitecture to allow better action representation. Yong et al. [72] focused on

developing a hierarchical RNN approach to focus on several 3D skeleton sub-

parts, in order to better discriminate which body sub-part is related to the

performed action. Veeriah et al. [73], authors focused on new gate strategies

for LSTM, in order to emphasise salient motion from learning data. Zhu

et al. [74], new regularisation term for LSTM was used in order to learn

co-occurrences within skeleton data. Most of these above-mentioned studies

focused on modifying the LSTM network architectures to process the raw

3D skeleton data more effectively. In contrast, in Chapter 4, the proposed

work aims to extract more meaningful and robust input features based on

the 2D body landmark coordinates, to be provided as input for a pre-defined

LSTM architecture.

Other approaches relevant to the Chapter 4 for performance comparison

over the same datasets are [75–83]. In these works, the learning sources was

mainly raw RGB data, motion history maps and body silhouettes. Compared
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with human poses, these data are generally heavier, redundant and affected

by noise. In particular, despite data redundancy can be advantageous for

HAR, more processing time is required. In this sense, 2D pose data are

extremely efficient to be processed for classification. Moreover, in the above-

mentioned works, no explicit link with human tracking was given. In Section

2.2.5, a brief overview of multiple human tracking is provided. In contrast

to the above-mentioned baselines, the approach proposed in Chapter 4 is

specifically designed for tracking-based frameworks, allowing straightforward

implementation in multi-target scenarios.

2.2.4 RGB vs Silhouette vs 2D Pose

On the basis of the arguments discussed in Sections 2.2.1, 2.2.2 and 2.2.3,

a direct comparison between the mentioned modalities, i.e. RGB, human

silhouettes and 2D poses, is provided. In particular, in this section, the ra-

tionale followed during this thesis exploration is summarised. Since RGB

data are assumed to contain the whole available information, it is expected

that a model trained on RGB can potentially reach the best performance

for posture-based HAR. However, as this thesis demonstrates in Chapter 5,

RGB-based posture-based feature extraction mostly end up being a deep

learning-based body shapes/edges/silhouette detector, with the addition of

a classification layer. Therefore, it is reasonable to argue that performing an

explicit body silhouette detection, e.g. background subtraction, is conveni-

ent since the system is explicitly directed towards posture-related important

data. Explored silhouette based feature extraction, i.e. 3D-HOG computed

on STVs, was practically looking at body shapes changes. Such changes

are in turn due to body limbs positions changes in the space-time domain.

The experienced drawback of this approach was related to the background

subtraction method, which was unreliable in practical scenarios. Therefore,

a replacement for body silhouette was required, which was expected to solve
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background subtraction limitations and still able to carry information about

the body limbs movements. Therefore, since 2D pose is able to track body

limbs position changes from RGB data, it was natural to argue that 2D

pose might have been a good replacement of body silhouettes. In fact, this

thesis proves that 2D poses based classification can obtain similar or outper-

forming performance compared to body silhouettes, yet providing a direct

solution to the background subtraction limitations. Last but not least, by

using RGB-based detectors, it was possible to extract poses from RGB data

rather than from depth data as commonly performed by other state-of-the-

art methods. Furthermore, once a robust method for pose-based HAR was

defined (Chapter 4), it was reasonable to argue that RGB data might be

further exploited to compensate information which is missing in 2D poses,

e.g. finer details, appearance changes, and contextual information. There-

fore, this thesis exploration closed the path where it began, by combining

RGB and pose data, for combined HAR and HAAD.

2.2.5 Human Poses and Multiple Target Tracking

As already mentioned in the previous sections, Chapters 4 and 5 contribu-

tions rely on popular pose detectors such as OpenPose [12], to extract human

pose data from RGB videos. Similarly, the popular object detector SSD [10]

is an object detector which provides bounding boxes, i.e. Region Of Interest

(ROI), and labels for a wide range of objects. SSD is exploited in Chapter 5

to extract the key object position from RGB data, to be fed into the learning

process for object position anomaly detection.

The above-mentioned detectors provide frame-by-frame data for a variety

of human targets and objects. However, humans and objects need to be

tracked frame-by-frame [84–86], to obtain consistent target’s identities. This

step makes sure that data from two or more similar targets, e.g. two chairs

or multiple humans, are correctly grouped over time, on the basis of the
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tracked identity.

Although multiple human tracking is not the core of the proposed work,

it is fundamental to allow preliminary steps when multiple human poses are

detected in the scene. To the purpose of this work, it is worth mentioning

a simple and effective tracker proposed by Bewley [87], based on Kalman’s

Filter and Hungarian algorithm. This algorithm will serve the proposed

work, providing real-time and computationally light tracking.

Overall, it is worth mentioning that human poses are a good source of

information to perform multiple human tracking [84, 85]. As further dis-

cussed in Chapter 5, tracking is a required pre-processing step for poses.

Tracking allows long-time pose-based HAR since it is able to provide con-

sistent targets identities and correctly assign multiple human poses to the

corresponding target, frame-by-frame.

2.2.6 Other Advantages of Human Poses

In this section, additional advantages of using human poses as a source of

information are provided. In particular, this section aims to further highlight

the importance that human poses might play in other contexts, i.e. face/gaze

recognition and social/group activities recognition.

Face and gaze are among the most efficient social cues for human in-

tentions [88], many works have been done on recognising them [89–93]. In

all cases these works, the authors have applied their techniques in a well-

constrained scenario, where the resolution of the acquired images is large

enough to see clearly the face, the expressions, even the eyes of the subjects.

The latter can be useful in recognising where the target is pointing its atten-

tion and can be a predictor of its intention [88]. This is exactly the purpose

of visual focus attention field [36,89–91]. However, since the scenario is not

well-constrained in video surveillance applications, e.g. the resolution of the

video is not so rich in detail, many works were focused on getting an ap-
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proximation of gaze direction by using head and body poses. Among those,

the work in [94] is noteworthy because it is based on surveillance video in a

public scenario, where the proposed algorithm infers casual events such as

the meeting of people in the street. In that work, gaze direction approxim-

ation is performed to reason about the intentions of the subject. Following

this topic, an interesting system aimed to recognise head and body position

was the one in [95], where the position and the orientation in the 3D space

of head and body are estimated by exploiting the correlation between body

orientation and head orientation. Other improvements have been presen-

ted in [96, 97]. The first one is a joint probabilistic approach for pedestrian

head and body orientation recognition, taking into account anatomical con-

straints, applied to realistic traffic settings. The second is a very recent

approach for joint estimation of head and body orientations for interaction

purposes, exploiting cues regarding temporal consistency and taking into

account occlusions, applied to low-resolution videos of public areas. In prin-

ciple, all the above-mentioned problems can be nowadays tackled by using

human poses. In fact, modern detectors are able to detect face and body

landmarks which can clearly inform about face and gaze directions (Fig.

2.7). Therefore, by using human poses in place of old-fashioned approaches,

multiple tasks can be performed with very high efficiency. For example, in

principle, it is possible to simultaneously perform HAR, face/gaze recogni-

tion, body orientation estimation and tracking by exploiting the lightness of

human poses data.

Another interesting approach from the past is the one firstly proposed

by Vaswani et al. [100] to recognise odd activities in video surveillance using

real-world data. It was based on statistical shape theory and shape analysis

[101,102]. This approach could be considered as a variant of the most general

techniques regarding gait recognition [103], although it opens more general

applications since it is closely connected to the concept of activity recognition
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in video surveillance. Vaswani et al. shown in [100, 104–107] that a group

of people performing a specific task separately (for example, people getting

off an aeroplane and walking to reach the terminal) can be observed by a

stand camera and their positions in the time-space domain can be modelled

as a unique shape. Instead of considering each person as a different object

and tracking them separately, Vaswani suggested tracing a shape using each

person like a landmark. Then, the authors considered how the shape changes

in the time-space domain (following the changes of mutual position between

people) to estimate how much the observed configuration of landmarks is

odd.

Again, the Vaswani et al. ideas can be replicated by using human poses.

In principle, it is possible to integrate their solutions into a common frame-

work based on human pose detection as the first step. Therefore, tracking,

(a) (b)

(c) (d)

Figure 2.7: (a) Human targets and head/body orientation estimation [95]. (b)
Gaze orientation recognition [89]. (c) OpenPose face and body landmarks can on
two subjects, looking towards different directions [98]. (d) OpenPose body land-
marks include nose and hears landmarks which can straightforwardly provide the
gaze direction [99].
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group activity recognition, and other above-mentioned tasks can be simul-

taneously performed by exploiting the efficiency of human poses.

These additional links have been not explicitly explored in this thesis.

However, it has been worth mentioning them to further highlight the huge

potentiality provided by human poses and to fully motivate this thesis work.

2.2.7 Human Activity Anomaly Detection

State-of-the-art HAAD methods mainly rely on RGB raw data to perform

the task. In very recent work, Sultani et al. [108] presented a fully super-

vised RGB-based anomaly detection system. The authors defined multiple

instances learning to estimate scores for each video frame, i.e. measuring the

abnormality rate. Thus, in these methods, only frame-level anomalies are

considered, neglecting any other semantic level, i.e. pixel-level and target-

level. In semi-supervised learning, an important role is played by autoen-

coder based methods. Hasan et al. [109] proposed combination of CNN-based

autoencoders to model the temporal evolution of both HOG and Histogram

of Oriented Flows (HOF) features. Autoencoder-based approaches are based

on the idea that once the autoencoder is trained on normal data only, test-

ing data that resembles training data will be reconstructed with low error,

while testing abnormalities are expected to be reconstructed with higher

error. Thus, by analysing reconstruction error, it is possible to identify ab-

normalities. Hasan’s et al. work also provide pixel-level anomaly detection.

However, it still does not provide any insights of what the abnormal pixel

would represent, whether a human target performing unexpected actions or

a car crashing, explosions or other abnormal events. Chong et al. [110] pro-

posed a similar approach but opting for combinations of CNN and LSTM

for both spatio-temporal encoding and decoding. However, this work does

not provide insights into the detected anomaly nature. Another recent ap-

proach is provided by Amraee et al. [111], where background subtraction
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methods are used as a pre-processing step of raw data. This ensures that

the system can focus only on moving objects. However, background sub-

traction methods fail on cluttered background scenes, as well as in the case

of pan-tilt-zoom recording. As opposite, human pose detection is robust to

these challenges. Other remarkable works [112–115] do not provide insights

on how to combine HAR and HAAD and share similar common limitations

such as the anomaly detection is performed at the pixel level, failing to

consider which semantic region contains the pixel.

In this work, the above-mentioned autoencoder-based methods in [109]

and [110] have been implemented as a state-of-the-art baseline for semi-

supervised HAAD, to allow performance comparison on the proposed data-

sets. We demonstrate in Section 5.4.3 that these methods fail in detecting

the anomalies contained in the proposed datasets.

2.3 Relevant Existing Datasets

As already mentioned throughout this thesis, HAR and HAAD challenges

are closely related to the type of data is available for training, validating

and test proposed solutions. In other words, different dataset proposes dif-

ferent challenges, which in turn encourage researches to explore HAR and

HAAD from a different perspective. For this reason, in the last few decades,

a considerable amount of datasets has been released. The nowadays trend

is pushed by Computer Vision Community towards massive video datasets

such as Kinetics [30], which includes hundreds of action classes and hun-

dreds of thousands of video clips, showing heavily cluttered human actions.

Since DL algorithms are particularly data-hungry, massive datasets are the

first solution to improve performance. However, dealing with massive data-

sets is extremely time-consuming and power-inefficient, requiring powerful

hardware platforms implementing multiple-GPU settings and parallel com-
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putation, to design and optimise DL models with billions of parameters.

Therefore, in recent literature, it is common to find other interesting data-

sets from the recent past used as benchmark [116].

Table 2.2: Relevant HAR datasets summary.

Dataset Weizmann KTH i3DPost IXMAS UCF101 HMDB51
Actions 10 6 13 11 101 51
Samples 90 2391 832 15840 13320 6766
Targets 9 25 8 12 variable variable

Viewpoints 1 6 8 5 undefined undefined
Camera
Motion

no yes no no yes yes

Moving
Objects

no no no no yes yes

Cluttered
Background

no no no no yes yes

Occlusions no no no no yes yes
Self

Occlusions
yes yes yes yes yes yes

Channels RGB Mono RGB RGB RGB RGB
Resolution 180x144 160x120 960x540 390x291 342x256 352x240

FPS 25 25 25 19 variable variable
Spontaneity posed posed posed posed in-the-wild in-the-wild

This thesis aims to leverage existing, famous and relevant datasets, which

fits the considered problem of posture-related HAR and HAAD. In particu-

lar, this thesis focused on Weizmann [6], KTH [7], i3DPost [8], IXMAS [9],

UCF101 [31] and HDMB51 [117]. In Table 2.2, a summary of the relevant

dataset is provided. From a simple visual inspection of the considered data-

sets, it turns out that Weizmann, KTH, i3DPost and IXMAS seems to be

specifically designed for posture-related HAR. In fact, the full human body is

always visible and the action semantic only regards body postures, e.g. walk-

ing, running, checking-watch, and bending. Moreover, actions do not require

an object to be performed. In contrast, UCF101 and HMDB51 show more

complex semantic actions, which are not necessarily always performed with

the same body posture. For example, the action playing-violin, available on

UCF101, can be in principle performed sitting on a chair or standing. Table

2.2 shows that these datasets differ in terms of several aspects. In particular,

as opposed to Weizmann, KTH, IXMAS and i3DPost, it is worth mention-

ing that: 1) UCF101 and HMDB51 present multi-target data with a single
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action label for each video clip; 2) UCF101 and HMBD51 presents video

clips where the camera proximity partially occludes the human bodies. In

Chapter 4, these drawbacks have been detailedly explored, and quantitative

comparisons between all the above-mentioned datasets have been performed,

to assess each dataset suitability for posture-related HAR.

Furthermore, to properly challenge the methods proposed in this thesis,

Weizmann KTH

i3DPost IXMAS

HMDB51

UCF101

Figure 2.8: Relevant HAR dataset examples. Weizmann [6], KTH [7], i3DPost [8]
and IXMAS [9] are particularly useful for posture-based HAR, since the full human
body is always visible and the action classes do not involve any object. In contrast,
UCF101 [31] and HMDB51 [117] are suitable for more contextually challenging
HAR.
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the Intelligent Sensing Lab that hosted this project has also been exploited

for extensive new data recordings. In the contribution chapters, details about

newly recorded data are provided.

Regarding HAAD, the literature provided several dataset which can be

potentially used for HAAD, e.g. UMN [118], UCSD Ped 1&2 [114], Avenue

[119], Subway Entrance and Exit [120], BOSS [121], and UCF-Crime [108].

Table 2.3 compares these datasets in terms of the number of video clips,

time length, crowd activity, proposed normal and abnormal activities and

events. To the best of the knowledge, these datasets are the most relevant

for this project. However, as summarised in the last column of Table 2.3,

from qualitative analysis, it turns out that these datasets cannot be used

for this project, mainly due to semantic drawbacks. In particular, UCSD,

Avenue, and Subway do not present anomalies in terms of body postures. In

contrast, regarding UMN, despite it proposes normal data showing people

walking and abnormal data showing people running, the video resolution is

extremely low, which compromises the pose detectors functioning. Similarly,

the BOSS dataset could have been potentially used, because the proposed

human actions and anomalies are more similar to those considered in this

thesis. However, the provided multi-target annotations are not referred to

standard tracking-based ground truth. This limits BOSS applicability, unless

extremely time expensive further annotation is performed to analytically

assess which target, with which tracking identity, performs which action

and which normal/abnormal activity. Last but not least, UCF-Crime is

a popular and recent dataset which is the standard nowadays for RGB-

based anomaly detection. However, most of the proposed anomalies are not

posture-based, and a considerable amount of non-human abnormal events

are also considered, such as explosions and car crashes. For the above-

mentioned reasons, new data was required as a benchmark for the challenging

HAAD considered in this project. In Chapter 5, details about the novel data
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recording is provided. However, the lack of data availability demonstrates,

once again, that this project addresses novel HAAD challenges, which, to

the best of knowledge, are not addressed by other works in literature.
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2.4 Performance Measures

In this section, standard methods to measure classification and anomaly

detection performance are summarised. These metrics are used to assess

the performance of the proposed algorithms, and to compare the obtained

results with the state-of-the-art.

Let consider a binary classifier, which can only return a Positive (P) and

a Negative (N) output. Therefore, as shown in Table 2.4, the most common

quantities which can be computed are the following:

• True Positive (TP): number of P testing samples which are correctly

classified;

• False Negative (FN): number of P testing samples which are incor-

rectly classified;

• True Negative (TN): number of N testing samples which are correctly

classified;

• False Positive (FP): number of N testing samples which are incor-

rectly classified;

The standard metric for a binary classifier is the accuracy A, which is

defined as

A =
TP + TN

TP + FN + TN + FP
=

TP + TN

Total Testing Samples
(2.4.1)

Table 2.4: Confusion matrix for a binary classifier.

Predicted
P N

Ground Truth
P TP FN
N FP TN
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Confusion Matrix

In the case of multi-class classification, let suppose that a classifier is trained

on classes L = {l1, . . . , lm}. The common generalisation for the above-

mentioned binary metric is provided by the multi-class confusion matrix C.

An example of C is provided in Table 2.5-(a). By definition, entries ci,j ∈ C

correspond to the number of testing samples of class li have been classified as

lj . Therefore, as in Table 2.4, the rows of C correspond to the ground truth

classes and the columns correspond to the labels predicted by the classifier.

In particular, the confusion matrix C in Table 2.5-(a) is absolute, in the sense

that reported numbers are not scaled to the total number of testing samples

for each class. Conversely, in Table 2.5-(b), the relative confusion matrix C̄

is computed by dividing each entry of the absolute confusion matrix by the

total number of testing sample in the corresponding class.

Therefore, the C̄ can give normalised information in the case of unbal-

anced class, i.e. the number of total samples for each class is uneven.

Given the multi-class confusion matrix, the accuracy in (2.4.1) can be

generalised as follows:

A =

∑m
i=1 ci,i∑m,m

i=1,j=1 ci,j︸ ︷︷ ︸
defined by using C

=
1

m

m∑
i=1

c̄i,i︸ ︷︷ ︸
defined by using C̄

(2.4.2)

ROC Plot

The ROC Plot is graphical method to illustrate binary classifiers perform-

ance. Typically, in case of binary classification, the predicted class l1 or l2 is

provided in terms of probabilities of score functions, as already discussed, for

example, in (2.1.7) for the logistic regression. In particular, given a sample

xi, its predicted class label L(xi) normally depends on a threshold T , as
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follows:

L(xi) =


l1 if P(L = li|xi,w) > T,

l2 otherwise

(2.4.3)

Therefore, by varying the threshold T , the performance of the classifier

changes. Let suppose that TPR(T ) and FPR(T ) are, respectively, the true

positive and the false positive rates for the given binary classifier, with re-

spect to the threshold T . By definition, TPR = TP
TP+FN and FPR = FP

FP+TN .

Therefore, the ROC curve is obtained by plotting TPR(T ) against FPR(T ).

An example of ROC curve is provided in Fig. 2.9. ROC curves are effective

tools to compare multiple classifiers. In general, the more the ROC curve is

close to the upper left corner, i.e. TPR = 1 and FPT = 0, the better.

Table 2.5: Confusion matrix for a multi-class classifier. (a) Absolute confusion
matrix C, reporting the absolute number of samples predicted for each class, where
the total number of testing samples for each class is set to be, for example, 20. (b)
Relative confusion matrix C̄, reporting the prediction rate for each class, obtained
by dividing each entry of C by 10.

(a) C Predicted
l1 l2 . . . lm−1 lm

l1 20 0 . . . 0 0
l2 0 20 . . . 0 0
. . . . . . . . . . . . . . . . . .
lm−1 0 0 . . . 17 3

Ground Truth

lm 0 2 . . . 5 13
↓

(b) C̄ Predicted
l1 l2 . . . lm−1 lm

l1 1 0 . . . 0 0
l2 0 1 . . . 0 0
. . . . . . . . . . . . . . . . . .
lm−1 0 0 . . . .85 .15

Ground Truth

lm 0 .1 . . . .25 .65
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0 0.2 0.4 0.6 0.8 1
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ROC curves

Classifier 1 
Classifier 2 
Random Classifier

Figure 2.9: ROC curves for two classifiers, i.e. Classifier 1 and Classifier 2.
The Classifier 1 outperforms the Classifier 2. The Random classifier is the worse
possible binary classifier, which predict classes following a Bernoulli distribution
with parameter p = 0.5.



Chapter 3

3D-HOG EMBEDDING

FRAMEWORKS FOR

SILHOUETTES-BASED HAR

3.1 Introduction

Human silhouette plays a key role in posture-based HAR since it carries

the major part of the posture-related information. Human silhouettes are

normally provided in the form of binary masks, as shown in Figure 3.1-

(a), where the background is represented by 0, while the foreground target

(human) is represented by 1. Therefore, only information about the human

body shape is preserved. However, considering that multiple action frames

might be available, it is possible to stack multiple masks and obtain a spatio-

temporal action representation based on human silhouettes, i.e. Space-Time

Volume (STV), as defined in Section 2.2.2. Therefore, the STV can be

formally represented as a 3D binary matrix, where the first two dimensions

represents the width and height of the target ROI, while the third dimension

represents the time, as shown in Figure 3.1-(b).

As already discussed in Section 2.2.2, STVs are common action repres-

entations for silhouette based HAR, among other representations, such as

motion-history maps. Moreover, when STVs are used, 3D-HOG features can

59
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(a) (b)

Figure 3.1: (a) Examples of human silhouettes obtained via background sub-
traction. (b) Space-Time Volumes examples obtained by piling up several action
frames.

be extracted from each local region of the STV. In this chapter, the Wein-

land et al. framework [26] for 3D-HOG based HAR has been implemented

as a baseline. Since no public code was available, the baseline has been rep-

licated following the original paper instructions [26, 43, 44]. Regarding the

3D-HOG features extraction implementation, it has been reproduced by fol-

lowing instructions in [47,122]. Therefore, results published in [26] regarding

Weizmann dataset have been successfully replicated.

The above-mentioned work allowed to highlight limitations of the Wein-

land et al. framework, which motivated this chapter contribution. In partic-

ular, this chapter contribution is twofold: 1) the proposed frameworks are

more accurate and stable over different training rounds than the baseline;

2) the proposed frameworks also outperforms other state-of-art methods in

terms of recognition accuracies and robustness to appearance changes over

the tested datasets. These results have been obtained by addressing Object-

ives 1 and 2 mentioned in Section 1.3.

The remaining of this chapter is organised as follows. In Section 3.2, the

problem, the 3D-HOG feature extraction, the baseline embedding algorithm

and its limitations, are discussed. In Section 3.3, the proposed frameworks

are presented. In Section 3.4, simulations and results obtained on Weizmann

and i3DPost datasets are reported, showing that the proposed frameworks

outperform the baseline and other approaches. In Section 3.5, Objective 3
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in Section 1.3 is also addressed, providing a critical evaluation on the 3D-

HOG frameworks effectiveness in real-world applications and on potentially

disruptive issues that might affect practical implementation. Finally, in Sec-

tion 3.6, the conclusions of this chapter are drawn.

3.2 Preliminaries

3.2.1 3D-HOG Feature Extraction

Let us consider s as defined in Section 1.3.1 and be in the form of a STVs. a

STV partition made by defining overlapping blocks of a fixed dimension. Bin-

ary data within each block is then used to compute the 3D-HOG descriptor

as suggested in [26], exploiting the 3D vectorial gradients field. The 3D-HOG

feature extraction is summarised in Figure 3.2. Each STV block is further

partitioned into non-overlapping cubic cells C. Therefore, the mean gradient

is computed over the binary field contained within each cell. In particular,

the mean gradient ḡ is computed as ḡ = 1
|C|
∑

x,y,t gx,y,t, where |C| is the car-

dinality of the each cubic cell and gx,y,t is the punctual gradient computed in

the position (x, y, t). Therefore, the magnitude of ḡ is quantised according to

a pre-defined Platonic solid. In particular, ḡ is projected onto the solid faces

unit vectors and the projection magnitude is computed. Thus, the obtained

magnitudes are considered in a pre-defined and fixed order and represented

as an histogram. Finally, cell histograms are concatenated, i.e. histograms

are listed as a series following a SIFT-like [122] approach, to obtain a robust

block descriptor. Following the above-mentioned procedure, let b be the 3D-

HOG block descriptor. This descriptor can be considered highly informative

with respect to the 3D-shape defined by binary data within the block [26],

as well as robust to noise and small data deformations.



Section 3.2. Preliminaries 62

Blocks Cells Mean 
Gradient

Gradient 
Quantization

Cell 
Histogram

Block 
(Concatenated) 

Histogram

3D-HOG

Figure 3.2: 3D-HOG feature extraction pipeline. STV overlapping blocks are fur-
ther partitioned into non-overlapping cells. Therefore, the mean gradient is com-
puted within each cell and quantised according to a pre-defined solid. Obtained
quantisation is represented as histogram. Thus, cell histograms are concatenated
to obtain the block 3D-HOG descriptor.

3.2.2 Prototypes Library Embedding

The block descriptors b obtained in the previous section are organised as

follows. In this chapter, let p = (r0, c0) be a space position in the STV. Thus,

the flow at location p is defined as Bp = {b1,p,b2,p, . . . ,bK,p}, where bi,p is

the ith block descriptor at location p and K is the total number of block

descriptors in the time dimension. Different locations p can be considered,

depending on the chosen space partition. Without loss of generality, let

p ∈ {p1, . . . , pP }, where P is the number of considered location in the (r, c)

plane. In Figure 3.3, an overview of the STV and the blocks partitioning is

shown.

Following the strategy in [26], for each fixed label l and point of view w, n

block descriptors are randomly chosen with respect to time and space within

Figure 3.3: STV and its overlapped blocks partitioning. The flow Bp is depicted,
for a generic position p = (r0, c0).



Section 3.2. Preliminaries 63

...

...

...

...

... ... .........

Training STVs Training Flows 
(fixed action, fixed viewpoint)

Training Flows 
(Randomly Shuffled)

Random Selection 
of prototypes

Figure 3.4: Random library selection process, as suggested by Weinland et al.
in [26].

the training STVs. This yields to a descriptors library V such that |V | =

nLW . Figure 3.4 visually shows this strategy. Without loss of generality,

V = {v1, . . . ,vnLW }, where it is specified that V contains n descriptor

prototypes for each action and each point of view included in the dataset.

It is crucial to mention that, in [26], the random selection of prototypes

is performed across the whole STV, without considering the position p.

Therefore, each prototype in V belongs randomly to any flow Bp provided

by training data.

As illustrated in Figure 3.5, the scalar embedding Di(Bp) of each block

flow Bp against the library V is defined as follows:

Di(Bp) = min
j=1,...,K

d(bj,p,vi) i = 1, . . . , nLW (3.2.1)

where d represents the Euclidean distance. Thus, the embedded vector Dp

at location p is defined as

Dp = [D1(Bp), . . . , DnLW (Bp)] (3.2.2)

It is worth underlining that, since the library V explicitly contains some

block descriptors selected from training data, the embedded vector in equa-

tion (3.2.2) might contain some zero-entries. This occurs when the flow

Bp, which is going to be embedded, actually contains at least one of the
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Figure 3.5: 3D-HOG prototypes embedding, as suggested by Weinland et al.
in [26].

prototypes in V .

3.2.3 Final Flow-based Decision

For each location p, a classification model Θp is learned by using embed-

ded vectors Dp obtained with training data. In particular, following the

approach in [26], L2-Regularised Logistic Regression model is trained. Thus,

the probability P(l∗p = l|D∗p,Θp), of a testing embedded vector D∗p to belong

to one of the considered action classes l is obtained.

Depending on the chosen space partition, this strategy leads to flow-based

independent decisions in the number of P . To combine all these decisions

to classify the action in the STV, the Sum Rule has been considered, as

in [26], since it is easy to implement and effective. Moreover, the Sum Rule

is claimed to be more rewarding in terms of accuracy [26]. Formally, the

Sum Rule consists of selecting the final label l∗ such that

l∗ = max
l∈L

P∑
p=1

P(l∗p = l|D∗p,Θp) (3.2.3)

In Figure 3.6, the pipeline of the baseline is provided.
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Figure 3.6: Baseline pipeline. A cross-location library is created by randomly
sampling the training 3D-HOG prototypes. Thus, for each location, the corres-
pondent block flow is embedded by using the library. Training embedded vectors
are used to train a local classifier. Therefore, testing local embedded vectors are
classified accordingly. A non-trainable combination rule is used to combine the local
confidences in order to obtain the final action label.

3.2.4 Baseline Limitations

The implementation of the baseline highlighted important limitations which

motivated the contributions of this chapters. In particular, two major lim-

itations are discussed in this section.

one-hand-wave two-hands-wave

Figure 3.7: The baseline performs independent, location-based classifications,
which are later combined with a simple combination rule based on posterior prob-
abilities. Therefore, in case of similar actions such as one-hand-wave and two-
hands-wave, the local classifiers might make mistakes in those locations where the
two actions look very similar (grey squares). As opposed, only in discriminative
locations (red/blue squares) there are high chances to obtain good outcomes.
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Action Label-based, Independent, and Local Classifiers

The baseline performs several independent, location-based classifications,

depending on the number of chosen locations in the STV. In the testing

phase, the output of these classifiers (posterior probabilities) are combined

with a simple combination rule, e.g. Sum Rule, which does not depend on

trainable parameters. To highlight how this represents a limitation, let us

consider two similar actions such as one-hand-waving and two-hands-waving

as in Figure 3.7. Let us also consider classifiers trained on positions where

the two actions appear similar (grey squares in Figure 3.7). It is reasonable

to argue that these classifiers will output unreliable responses. Therefore,

since several positions are affected by this problem, there might be a high

number of unreliable contributions which can compromise performance. The

only classifier responses which are reasonably reliable are those obtained in

highly discriminative locations (red/blue squares in Figure 3.7). However,

since there might be few discriminative positions, their impact on the final

output is limited when non-trainable combination rules are adopted. In

other words, independently trained classifiers and the untrainable decision

rule which combines them all, make the baseline suboptimal.

Performance Instability

The definition of V is based on a random selection of prototypes. This choice

introduces consistent variability in the training phase. In fact, different ran-

dom choices might change the trained model. Thus, different training round

might end up with different models, which, in turn, might show different test-

ing performance. This instability can be potentially mitigated by increasing

the number of prototypes in V , i.e. increasing n. However, in Section 3.4, it

is shown that this is not necessarily the case, and other strategies are needed

to avoid the random selection prototypes.
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3.3 Proposed Frameworks

The goal of this section is to describe the proposed modifications to the

baseline, to overcome the above-mentioned limitations. In Section 3.4, it is

demonstrated that not only these limitations are resolved, but also that the

proposed methods yield to more accurate and robust performance.

3.3.1 Robust Prototypes Selection

The first modification regards the definition of the prototype library V . In

this section, the cross-location random selection of prototypes is replaced

with a location-based selection strategy. Let H = H(p, l, w) be the total

number of descriptors with the same labels l and w in T at location p.

Therefore, the set of training block descriptors corresponding to the given

p, w and l are {bj,p}Hj=1, where subscripts l and w have been omitted for

simplicity. Since each block descriptor can be seen as a point within a

multidimensional cartesian space, the Hierarchical Clustering algorithm can

be deployed to seek the internal cluster structure of training blocks {bj,p}Hj=1.

Therefore, n clusters of descriptors can be computed such that:

{bj,p}Hj=1 = {bj,p}S1
j=1 ∪ {bj,p}

S2
j=S1

∪ · · · ∪ {bj,p}Sn
j=Sn−1

(3.3.1)

where S1 is the cardinality of the first cluster, S2−S1 the cardinality of the

second cluster and similarly Sn − Sn−1 is the cardinality of the last cluster.

In (3.3.1), action and point of view symbols are implicit, since all descriptors

have fixed l and w. Thus, by computing the cluster centre, i.e. by averaging

elements within the same cluster, n new prototypes remain defined.

By varying all labels l and w, this definition leads to a new library V̄ such

that |V̄ | = nLW prototypes. Due to the proposed definition, prototypes in V̄

are no longer included within the training subsequences. As a consequence,

the embedded vectors, defined by using (3.2.1) and (3.2.2), will not have zero-
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entries, which helps in preventing overfitting. In Section 3.5, further details

about this topic are provided. Moreover, as experiments presented in Section

3.4 show, this deterministic strategy stabilises the training process, since the

random selection is replaced by a deterministic process. Moreover, as shown

in Figure 3.8, it is reasonable to argue that clusters-based prototypes tend

to be more informative and exhaustive than prototypes chosen by random

selection.

3D-HOG block descritors space3D-HOG block descritors space
Prototype Selected Prototype

Random Selection Proposed Cluster-based Selection

Prototype Selected Prototype

Figure 3.8: Comparison between the baseline, random-based, 3D-HOG prototype
selection and the proposed, clusters-based, 3D-HOG prototype selection for V . Due
to the random selection, internal cluster distributions are not be taken into account
by the baseline method. Moreover, different random selection might lead to con-
siderably different prototype libraries. In contrast, the proposed method considers
internal clusters to compute new prototypes, providing a deterministic strategy that
does not change over training rounds.

3.3.2 Overcoming Flow-based Decisions Rules

In this section, two novel approaches for combining local embedded vectors

for a cross-position classification are proposed.

Proposed Framework A

Given a fixed location p, the training embedded vectors can be seen as points

within a multidimensional space. Thus, by exploiting only training data

labels l, the following training process is proposed:

1. Exploiting training embedded vectors {Dp,i}|T|i=1, L2-Regularised Lo-

gistic Regression can learn a positional model Θp. Therefore, Θp maps

testing data to a temporary label l̃Dp ;
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2. Exploiting training embedded vectors {Dp,i}|T|i=1, PCA can simultan-

eously reduce the dimensionality of {Dp,i}|T|i=1. Thus, by averaging

the PCA-transformed vectors according to their class label, the cen-

ter class points C̄p = {c̄p,l}l∈L can be computed. Therefore, C̄p is

made by vectors with a small and fixed number of components which

corresponds to an explained variance α1.

3. Let Dp be a specific training vector and l̃Dp be the temporary label

provided by model Θp by performing the step 1. Therefore, Dp can be

associated with c̄p,l̃Dp
. Thus, by varying the position p, each training

sample si can be associated with a single vector by concatenating

vectors c̄p,l̃Dp
for all p, that is C̄ = {[c̄1,l̃D1

, . . . , c̄P,l̃DP
]}l∈L. Therefore,

a new L2-Regularised Logistic Regression model can be trained, to get

a cross-locations model Θ.

Training    Testing
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Clustering

Clustering

Clustering

Local PCA + Centering

Local ClassifierEmbedding

Local PCA + Centering

Local ClassifierEmbedding

Local PCA + Centering

Local ClassifierEmbedding
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Framework A

Framework B

Figure 3.9: Framework A and B pipelines. Both frameworks share the same
pre-processing, i.e. clustering followed by embedding. Similarly, both frameworks
concatenate local features to train a cross-location gestures model. However, they
differ on the way the local features are computed.

A testing embedded vector D∗p is labelled with a positional label l̃D∗p by

using the learnt model Θp and associated with c̄p,l̃D∗p
. Thus, the testing

sample will be associated with a single vector given by concatenating c̄p,l̃D∗p

for all p, that is D̄∗ = [c̄1,l̃D∗1
, . . . , c̄P,l̃D∗P

].
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The final label l∗ is obtained by using Θ to map D̄∗ to l∗. In Figure 3.9,

the training and testing pipeline for this case is shown. It is worth specifying

that the parameter α1 in the training process can be experimentally be

established. Normally, α1 can be set to 95% or 99%. However, the higher

the parameter, the heavier the training of the model Θ, since the higher the

number of considered features. However, since not necessarily more features

correspond to better results as overfitting and curse of dimensionality might

occur, α1 is requested to be the smallest that ensures good performance.

Proposed Framework B

In this section, the above-mentioned framework pipeline is simplified.

For a given location p, the training process defined in the previous section

can be reduced to a PCA over the training embedded vectors {Dp,i}|T|i=1, con-

sidering the number of principal components that reaches the cumulative α2

percentage of explained variance. Let {D̄p,i}|T|i=1 be the transformed training

embedded vectors and Ap the transformation matrix. Therefore, each train-

ing sample si will be associated with a single vector given by concatenating

D̄p,i, for all p.

In the testing phase, the testing embedded vector D∗p can be centred and

transformed by using Ap, according to

Ap

D∗p − 1

|T|

|T|∑
i=1

Dp,i

 = D̄∗p (3.3.2)

Therefore, testing samples are associated with a single vector given by con-

catenating D̄∗p for all p. Training and testing data can finally supply an

L2-Regularised Logistic Regression, which in turn provide the final label l∗

for testing data. In Figure 3.9, the training and testing pipeline for this case

is shown.

Similarly to α1, the parameter α2 is requested to be sufficiently small
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to avoid the curse of dimensionality, but sufficiently high to allow adequate

data description.

3.4 Experiments

walk run jump gallop-sideways bend

one-hand-wave two-hands-wave jump-in-place jumping-jack skip

Figure 3.10: The Weizmann dataset action classes [6].

The single-viewpoint Weizmann dataset consists of video samples of 10

actions performed by 9 actors recorded from the single action-related point

of views. Figure 3.10 shows Weizmann examples for the considered actions.

Binary masks are publicly available in the requested STV form. Regarding

the multi-viewpoints i3DPost dataset, it consists of video clips recording 6

single-actor actions, 2 multi-actors actions videos, 4 multi-action single-actor

videos and facial-expressions data. The actions are performed by 8 actors

and simultaneously recorded from 8 different points of view. The whole

dataset was considered, ignoring video clips containing multiple-actions and

facial-expressions. Figure 3.11 shows i3DPost examples for the considered

actions and viewpoints. ViBE algorithm [123] was used for background

subtraction, to get the binary masks of the scene. Then, the ROIs around

the subjects were hand-picked exploiting the human shape centroid. As

in [26], for both datasets, the STVs were rescaled from the original video

size to 64 × 48 × t pixels. The block dimension was fixed to 16 × 16 × 16

pixels, with overlapping of 8 pixels. For the 3D-HOG feature extraction, the
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Figure 3.11: The i3DPost dataset action classes and viewpoints [8].

same setting as in [26] was used.

In Section 3.4.1, the baseline limitations are shown by explicitly de-

picting some samples output as an example. Therefore, in Sections 3.4.2

and 3.4.3, the main results for the proposed methods are presented, mak-

ing comparison with the baseline and the state-of-the-art. In these sections,

the robustness to human appearance changes was tested with the leave-one-

actor-out (LOAO) experimental setting. Thus, one actor samples were kept

out from the training and used for testing. Accuracy results are given on av-
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erage over all possible LOAO configurations. The averaged accuracy results

for my implementation of the baseline are provided with standard deviation

σ, over ten different choices of the random prototypes in V . Regarding the

proposed method, since it is based on a deterministic strategy for choosing

prototypes in V , the results are fixed for each n, without any variation. In

Section 3.4.4, the computational complexity of the proposed frameworks is

discussed. In Section 3.4.5, interesting examples are shown and discussed to

highlight how different time windows can affect performance.

3.4.1 Baseline Limitations Evidences

In this section, four samples from the i3DPost dataset are studied to high-

light and confirm the expected baseline limitation discussed in Section 3.2.4.

In particular, it is shown that the baseline outputs might be potentially

impacted by no-weighted local classifiers outputs.

In Figure 3.12, two very similar samples are considered, i.e. jump and

jump-in-place. The only visual difference between these two samples is that

the jumping action is performed moving forward, while the jumping-in-place

is performed remaining in the same position. Therefore, from a mechanical

point of view, the two actions are almost identical, although the vertical axes

of the two targets are slightly different.

The first set of mistakes it is possible to identify are related to zero-data.

An empty position (zero-data) is expected not to provide any information.

As opposed, the local classifier trained by the baseline provides an output.

This output can be unreliable (if that position is never or always expected

to be empty), biased (if zero-data is expected for a certain subset of action).

Therefore, it would be preferable to assign a dynamic weight to zero-data

positions. The dynamic weight depends on which information the other

positions are carrying. However, the baseline assigns the same importance

to every location, including locations that have zero data.
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The second set of mistakes regards positions where the baseline simply

misinterpret the performed action. For example, in both sample in Figure

3.12, in the upper-left corner of the STVs, the baseline consistently assign

to hand-wave high scores. These mistakes lead to a wrong final estimated

label in the jump-in-place sample. However, the local classifiers correctly

recognise the actions in the region of targets’ legs and backs. Therefore,

for example, it would be preferable to assign a low weight to the upper-left

corner decisions when the jump and jump-in-place actions are detected on

the legs and back related positions.

In Figure 3.13, additional examples are depicted, to further show that the

local classifiers are not performing well due to the above-mentioned mistake

types. In these examples, the mistakes do not compromise the final output.

However, the correctness of the estimated label is only guaranteed by the

fact that the number and the confidence of correct local decisions is higher

than the number and the confidence of the mistaken local decision.

I conclude that the Sum Decision Rule, which the baseline exploits to

combine the local classifiers decisions, is unreliable and might lead to unpre-

dictable outcomes. It is evident from these pictures that different positions

may carry different information, which in turn is required to be weighted in

the process of making the overall decision. This requirement motivates the

proposed methods, which introduces a classifier that combines information

coming from different locations and assigns a weight to each of them by using

Logistic Regression. In this way, the assigned weights clearly dynamically

depends to each other.

3.4.2 Weizmann and i3DPost (Single-Viewpoint) Results

In this section, single-viewpoint experiments are performed to compare the

proposed frameworks results with the baseline and other state-of-the-art

approaches in the simplest scenario.
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Figure 3.12: Comparison of local classifiers responses, in the case of two similar
samples, i.e. jump and jump-in-place. The confidences in the same positions sum up
to one. In the jump sample, the estimated label is correct, while in the jump-in-place
case, the baseline outputs hand-wave.
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Figure 3.13: Comparison of local classifiers responses, in the case of two similar
samples, i.e. run and walk. The confidences in the same positions sum up to one.
In both cases, the estimated label is correct. However, in numerous positions, the
classifiers make mistakes.
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Regarding Weizmann dataset, my implementation of the baseline method

has confirmed the perfect result (accuracy 100%) reported in [26] for 9 ac-

tions over 10 (two-hands-wave action out), by using n = 30 prototypes per

action in the baseline random library. This result suggests that my imple-

mentation of [26] is correct. However, [26] does not provide results for the

whole set of actions of the Weizmann dataset. My implementation of [26]

shows an accuracy of at most 98.66% in this case, achieved with n = 30 and

with a standard deviation σ = 0.61 (over 10 different training rounds). In

contrast, in this case, the proposed Framework A is able to achieve stably

100% of accuracy with n = 20 and α1 = 95%. Regarding Framework B, it

stably achieves 98.88% by setting n = 30. The results for Weizmann datasets

are summarised in Table 3.1, which also reports other state-of-the-art res-

ults. It is evident that the proposed frameworks are among the best results

reported for the Weizmann dataset.

Additionally, Figure 3.14-(a) provides comparisons between the proposed

Framework A and the baseline performance related to different n settings.

Weizmann datasets, with 10-actions, is used as a test case. It can be seen

that the proposed Framework A achieves superior and stable performance

than the baseline, by using smaller values of n.

Regarding i3DPost, despite it is a multi-viewpoints dataset, it can also be

used for single-viewpoint experiments. Therefore, by passing to the training

and testing process only samples from a fixed point of views, single-viewpoint

experiments can be performed and obtained results can be averaged. Thus,

the following results are given on average over the eight points of view.

My implementation of the baseline achieves 97.46% accuracy with n = 40.

Instead, with only n = 10 (α1 = 95%), the proposed framework achieves

98.24% accuracy. Figure 3.14-(b) shows comparisons between the proposed

Framework A and the baseline results in the 8-actions setting for different

values of n. It is evident that, in this case, the proposed Framework is able
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to outperform the baseline for all considered values of n. Since i3DPost is

mainly a multi-viewpoint dataset, it was not possible to find other state-

of-the-art approaches which were considering single-viewpoint experiments

based on this dataset. Therefore, the comparison with the state-of-the-art

is not possible.

Method L Accuracy n α1

Proposed Framework A 10 100% 20 95%

Proposed Framework B 10 98.88% 30 99%

Baseline 10 98.66% 30 -

Gorelick et al. [6] 10 100% - -
Jiang et al. [82] 10 100% - -
C.Li et al. [48] 9 97.53% - -

Ahsan et al. [124] 9 97.5% - -
Ahsan et al. [124] 10 94.26% - -

Table 3.1: Comparisons for Weizmann dataset (LOAO).
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Figure 3.14: Comparison between baseline and proposed pipeline for the small
dataset pipeline in Section 3.3.2. In particular, the graphs depict n against accuracy
in the LOAO setting, with α1 = 95%. (a) Results for Weizmann dataset with 10
actions. (b) Results for i3DPost dataset with 8 actions. In this case, only single
viewpoint setting is considered. Thus, results are reported on average over the 8
viewpoints included in i3DPost. The proposed Framework saturates at n = 10,
suggesting that the remaining incorrectly classified action samples contains body
movements that 3D-HOG fails in discriminating.
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3.4.3 i3DPost (Multi-Viewpoints) Results

In this section, multi-viewpoints experiments are performed to compare the

proposed frameworks results with the baseline and other state-of-the-art

approaches in a more challenging scenario.

8-actions/8-viewpoints

In this sub section, all actions are considered, including the two multi-targets

actions. My implementation of the baseline achieves 98.86% accuracy by

setting n = 30, with a standard deviation σ = 0.17. However, the proposed

Framework B achieves higher and stable accuracy of 99.60% by setting n =

30 and α2 = 95%. As opposed, the proposed Framework A only reaches

98.04%.

Comparisons with other state-of-the-art results on the i3DPost dataset

under the LOAO setting can be rigorously performed as long as the same

pre-processing steps are considered, such as ROI detection and background

subtraction. However, no standard evaluation protocol has been fixed for this

dataset in the literature. Nevertheless, following the comparison suggested

by Hilsenbeck et al. [125], Table 3.2 reports the best results reported in

the literature with LOAO setting to the best of our knowledge. Methods,

where the pre-processing steps are entirely entrusted to the machine, are

also highlighted. As can be seen from Table 3.2, the proposed Framework B

outperforms the baseline and all other reported methods.

6-actions/8-viewpoints

In this sub section, the two multi-targets actions were removed and only

the single-target actions were considered. As summarised in Table 3.2, the

proposed Framework B achieved 99.73% accuracy, with n = 30 and α2 =

99%, outperforming the baseline and all other reported methods.
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Method L W Accuracy n α2

Proposed Framework B ~ 8 8 99.60% 30 95%
Proposed Framework B ~ 6 8 99.73% 30 99%
Proposed Framework A ~ 8 8 98.04% 30 99%
Proposed Framework A ~ 6 8 99.47% 30 99%

Baseline ~ 8 8 98.82% 30 -
Baseline ~ 6 8 99.47% 30 -

Castro et al. [126] } 6 2 99.00% - -
Iosifidis et al. [57] 6 8 98.16% - -
Iosifidis et al. [57] 8 8 96.34% - -
Azary et al. [58] 6 8 92.97% - -

Hilsenbeck et al. [125] }~ 6 8 92.42% - -

Table 3.2: Accuracy results for i3DPost dataset (LOAO). The } highlights meth-
ods with automatic selection of ROIs, while ~ highlights methods with automatic
background subtraction without prior knowledge.
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3.4.4 Computational Cost and Complexity

In this section, the computational complexity of the most expensive step

of the methods discussed in this chapter is firstly discussed. Moreover, the

execution times for the baseline, the Framework A and B are compared.

In the baseline and the proposed frameworks, the embedding procedure is

the most expensive step in terms of computational effort. In fact, it depends

on the time-length K of the samples, the number of actions L and on the

size n of the library V . Moreover, it is required in both the training and

testing phases. For this reason, only this step computational complexity is

analysed in this section.

For each location p, the embedding vector Dp in (3.2.2) is composed of

nLW entries, each of them computed in (3.2.1) as a minimum among one-to-

many comparisons. In formulas, the complexity of the embedding procedure

can be expressed with respect to n as

f(n) = (c1 +Kc2 +O(K))nLW = O(n) (3.4.1)

where c1 and c2 are positive constants and where it is assumed that the com-

plexity for the minimisation over array problem in (3.2.1) is, in the worst

case, O(K). Clearly, high number of actions L, high number of viewpoints

W and high time-length K worsen performance. However, L, W and K

are structural parameters which are fixed for the considered dataset. The

only parameter which can be potentially optimised is n. Therefore, equa-

tion (3.4.1) shows that choosing n as low as possible is important for fast-

computation applications. Results in Sections 3.4.2 and 3.4.3 show that the

proposed frameworks achieve better performance in terms of accuracy for

equivalent n than the baseline. Thus, proposed frameworks are preferable

to the baseline in computationally-efficient implementations.

In Figure 3.15, the testing phase the execution time for the baseline,
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Framework A and B is reported. It can be seen that the three methods

have the same execution time for the first three steps, i.e. background sub-

traction, 3D-HOG and embedding. This is due to the fact that: 1) the

background subtraction processing is the same for all methods; 2) the 3D-

HOG computation is performed with the same parameters, to allow results

comparisons; 3) the embedding step is performed by setting n = 30 in all

cases. However, it can be seen that the baseline and Framework A last step,

i.e. classification, is considerably slower than the Framework B classification

step. This is due to the fact that the baseline and Framework A perform 48

local classifications. In contrast, Framework B replaces the 48 classifications

with 48 matrix-to-vector multiplications (to perform the PCA transforma-

tion computed in the training phase), and performs a single classification

step. Overall, since the real-time threshold for video-based processing can

be reasonably set to 19 FPS, both the baseline and the proposed approaches

do not perform within real-time performance.
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Figure 3.15: Execution time comparison for the baseline, Frameworks A and B.
Each processing component execution time is independently measured in Seconds-
Per-Frame (SPF). The cumulative SPF is computed for each method, and trans-
formed in Frame-Per-Second (FPS). There results have been obtained by Matlab
code implementations running on a Windows 7 workstation, 64-bit, with a CPU
Intel Core i5-6600 @ 3.30GHz 3.30GHz, 16 GB of RAM, running Matlab imple-
mentations.
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3.4.5 Time Windows Examples

In this section, a representative sample from i3DPost dataset is considered to

study how Framework B performance changes according to the time window

position. The sample consists of 56 frames showing two targets performing

a pull action. The first half of the clip consists of action preparation, i.e.

the two targets join their hands. In the second half of the clip, one of the

two targets actually starts pulling the other target.

In Figures 3.16 to 3.20, the Framework B output is shown for different

time windows. The considered time windows increase in length from 1st

to 8th frames up to the 1st to 40th frame. The reported output is always,

mistakenly, hands-shake. This is due because the performed action in the

considered time windows strongly resemble shaking hands.

The output changes when the time window starts including the most

representative part of the pulling action, i.e. from 40th to 58th frame. In

Figures 3.21 to 3.27, it is shown that Framework B correctly classify the

pulling action when the considered time window includes the most repres-

entative action part.

It is interesting to notice that, despite the considered viewpoint induced

one target’s body to occlude the other target’s body, no viewpoint-related

issues on the classifications are noticeable.

This study confirms what it was reasonable to expect. When the pulling

action is actually covered by the considered time window, the classification

is performed correctly. If the time window does not adequately cover the

pulling action, there is a high chance of misclassification.

3.5 Critical Analysis

The purpose of this section is to critically analyse the proposed methods,

and evaluate their performance with respect to the aims and objectives set
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Figure 3.16: pull action (frames 1-8). Framework B mistakenly outputs hand-
shake with high confidence. This is due to the fact that, so far, the performed
action looks like an hand shaking.
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Figure 3.17: pull action (frames 1-16). Framework B mistakenly outputs hand-
shake. However, additional 8 frames made the previous confidence to drop. This
is due because the performed action started look slightly different than an hand
shaking.
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Figure 3.18: pull action (frames 1-24). Framework B mistakenly outputs hand-
shake. The confidence is still the same than the previous case.
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Figure 3.19: pull action (frames 1-32). Framework B outputs hand-shake . How-
ever, the confidence of pull is getting closer to the confidence of hand-shake.
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Figure 3.20: pull action (frames 1-40). Framework B still outputs hand-shake .
However, the confidence of pull is similar.
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Figure 3.21: pull action (frames 1-48). Framework B correctly outputs pull.
However, the output confidence is low.
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Figure 3.22: pull action (frames 1-56). Framework B correctly outputs pull with
high confidence.
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Figure 3.23: pull action (frames 9-56). Framework B correctly outputs pull with
high confidence.
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Figure 3.24: pull action (frames 17-56). Framework B correctly outputs pull with
high confidence.
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Figure 3.25: pull action (frames 25-56). Framework B correctly outputs pull with
high confidence.
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Figure 3.26: pull action (frames 33-56). Framework B correctly outputs pull with
high confidence.
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Figure 3.27: pull action (frames 41-56). Framework B correctly outputs pull with
high confidence.
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Figure 3.28: pull action (frames 48-56). Framework B correctly outputs pull with
high confidence. However, the hand-shake confidence increased.
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in Section 1.3.

Objective 1 is achieved, since the proposed frameworks outperform the

state-of-the-art on the tested datasets. In particular, this chapter studies

made evident that, although the Framework B is a simplification of Frame-

work A, it seems to perform better on datasets with a considerably high

number of samples, i.e. i3DPost. This is probably due to the fact that

the PCA step is more reliable when training data is sufficiently numerous.

However, further studies on other datasets would be required to confirm this

statement.

Objective 2 is achieved, since the proposed frameworks are based on a

non-random process, which ensures stability over different training rounds.

Overall, the promising results obtained by the proposed Frameworks A

and B rely on a more sophisticated method to manage flows information.

The baseline method is based only on flows and action labels l, on the as-

sumption that each flow carries the same amount of information. However,

within a certain flow at location p, not all the actions are distinguishable, im-

plying mistakes and misclassifications in the learning stage. This drawback

motivated the proposed frameworks development.

Objective 3 is addressed in this section. On the basis of the above-

mentioned achievements, the reliability for real-world problems was assessed

by conducting a conclusive set of experiments on KTH, IXMAS and new

video dataset, named ISLD-2017, recorded in the Intelligent Sensing Lab.

ISLD-2017 consists of multi-targets video recordings, where the targets per-

form simple posture based actions such as walking, standing, sitting, opening

doors and pulling. The purpose of ISLD-2017 was only to serve as a prelim-

inary working platform for future recordings and to assess the reliability of

silhouette based methods in a non-cooperative scenario. In particular, the

goal was to identify additional challenges that real-world applications pro-

pose, and that tested datasets did not highlight. In Figures 3.29 and 3.30,
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Figure 3.29: Frames from KTH Dataset [7] processed with ViBe for background
subtraction. Ghost and shadows effects are visible, which strongly corrupt the
detected silhouettes.

three background subtraction masks obtained from the KTH and IXMAS

datasets are provided. In Figures 3.31 to 3.35, five background subtraction

masks obtained from ISLD-2017 are shown.

The examples shown in this section reveal the the following unexpected,

real-world related issues that were encountered:

• Despite ViBE is claimed as a state-of-the-art method for background

subtraction, it is far from being as robust as required. In particular,

ghost effects [39] strongly affect the final output, despite the intense

ViBE hyper-parameters selection performed to compensate for this
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Figure 3.30: Frames from IXMAS Dataset [9] processed with ViBe for back-
ground subtraction. Ghost effects are visible, which strongly corrupt the detected
silhouettes.
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Figure 3.31: Frame from ISLD-2017 Dataset processed with ViBe for background
subtraction. In the right bottom corner, it is visible the shape of a laptop. Therefore,
a detector to distinguish the target from the laptop would be required as further
processing step.

Figure 3.32: Frame from ISLD-2017 Dataset processed with ViBe for background
subtraction. Since two targets are present in the scene, a detector would be re-
quired to distinguish from each other, other than distinguish them from other visible
shapes, e.g. the chairs, the doors and the laptop.



Section 3.5. Critical Analysis 95

Figure 3.33: Frame from ISLD-2017 Dataset processed with ViBe for background
subtraction. Two targets are clearly visible, while a third sitting target shape is
disturbed by the chairs shape. A ghost effect is also visible behind the door on the
left upper corner. Therefore, a detector would be required to help in distinguish
the targets data from other disturbing factors.

Figure 3.34: Frame from ISLD-2017 Dataset processed with ViBe for background
subtraction. Two targets are clearly visible, while a third target is moving from the
sitting to the standing position. This movement produces artefacts which heavily
compromises data clarity. In fact, the third target shape is barely recognisable.
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Figure 3.35: Frame from ISLD-2017 Dataset processed with ViBe for background
subtraction. Three targets are clearly visible since no other nearby potentially
moving objects are visible. However, a detector would be required in any case, since
the three targets data needs to be distinguished from each other and from other
objects, including the human ghost persistently visible on the left upper corner.

problem.

• It seems difficult to obtain homogenous silhouettes from different data-

sets. Due to the above-mentioned ViBE-related issues, since different

datasets have different light and background conditions, the obtained

mask are qualitatively dissimilar to each other. This issue suggests

that a silhouette-based method is hard to be generalised or to be

tested in cross-dataset settings, unless plenty of data is available for

training.

• Background subtraction methods are sensitive to any moving objects,

regardless of their semantic. Therefore, it turns out that multiple

objects shapes and humans silhouettes can simultaneously be present

on the same mask. Therefore, additional processing is required to

perform detection, to properly distinguish the human targets from

other objects and to draw the target ROIs.

Therefore, it is reasonable to expect that additional computational band-
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width would be required to further pre-process RGB data or silhouettes,

to overcome the above-mentioned issues. However, as discussed in Section

3.4.4, the processing time that it has been possible to achieve in these sim-

ulations do not seems to leave much room for further processing. In other

words, it seems reasonable to argue that silhouette-based HAR, in the form

discussed in this Figure 3.15, is slowed down by mainly the background sub-

traction method and the embedding step. Therefore, the silhouette-based

HAR, as studied in this thesis, does not seem to be a promising direction

for computationally-efficient implementations.

To overcome the above-mentioned problems, it might be more computa-

tionally efficient to prefer another input data for HAR, in place of human

silhouettes, for computationally-efficient applications. Other possible altern-

atives are the following:

• Deep learning-based human pose detectors such as OpenPose can,

jointly, provide human detection and human poses. Therefore, the

above-mentioned issues would be solved if human poses would be a re-

liable source of information for HAR, compared to human silhouettes.

This option is investigated in Chapter 4.

• Deep learning-based human detectors, such as YoLo [11] or SSD [10]

can effectively and efficiently draw a bounding box around the human

target, frame-by-frame, at the RGB level. Therefore, the human RGB-

based ROI can be provided as input for subsequent HAR processing.

This option is investigated in Chapter 5.

3.6 Chapter Summary

In this chapter, Objectives 1-3 of this thesis have been achieved. In par-

ticular, a silhouette-based method for HAR has been replicated and imple-

mented as a baseline. Therefore, two frameworks for silhouette-based HAR
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have been proposed. As extensive experiments have revealed, both proposed

methods outperform the baseline and the state-of-the-art on the tested data-

sets for silhouette-based HAR. The results showed that the advantages of

the proposed frameworks are in terms of accuracy and performance stability

over different training rounds. A critical analysis of the proposed frameworks

was also performed, based on the results achieved on publicly available data-

sets and new data recorded in the Intelligent Sensing Lab. The conclusion

was that despite the proposed methods are effective for HAR, they might be

not the best approach for computationally-efficient implementations. This

conclusion motivates the further conducted studies, which are the objective

of the following chapters.



Chapter 4

2D POSE-BASED REAL-TIME

HUMAN ACTION

RECOGNITION WITH

OCCLUSION-HANDLING

4.1 Introduction

In Chapter 3, the accuracy results obtained by the proposed silhouette-

based approaches were encouraging. However, the experiments conducted

on the ISLD-2018 dataset highlighted limitations regarding computational

efficiency and practical implementation in non-cooperative scenarios.

In this chapter, the idea is to overcome silhouette related limitations dis-

cussed in Chapter 3 by exploiting 2D human-poses provided by a popular

detector, i.e. OpenPose [12]. As already discussed in Chapter 2, human-

poses carry, frame-by-frame, body posture-related information in the form

of 2D landmarks. Moreover, human-poses are explicitly providing human-

target detection. Thus, by using human-poses, the detection step, which

was missing in the proposed methods in Chapter 3, and the posture-based

information retrieval are fused into the same step. Additionally, the human

target detections allows easy-to-implement tracking for multiple-target test-

99
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HARTargets Detection

Labels

Tracking

Video

Figure 4.1: Overall HAR framework. CCTV-like videos are pre-processed with
a human pose detector, such as OpenPose, to estimate the positions of the targets
(bounding box) and their body limb positions (landmarks). Subsequently, tracking
algorithms provide targets identities, allowing consistent grouping of detected tar-
gets data for HAR. Finally, for each detected target, the action label is estimated
by using the tracked data.

ing. For these reasons, 2D human-poses are investigated in this chapter as a

new source of information for HAR. It is important to remark that the results

shown in this chapter represent one of the first, few, simultaneous attempts

to perform HAR by using 2D human-poses. This makes the contributions

of this chapter of breakthrough importance in the literature.

This chapter contributions are based on the detection and tracking shown

in Figure 4.1, which has been already explored for tracking-related prob-

lems [84–86, 127, 128]. In the case of multi-target analysis based on CCTV-

like recordings, the first step generally consists of the detection of human

targets by using RGB data. This step requires significant computational

effort. Subsequently, the tracking retrieves the identities of the targets and

allow consistent time-wise data association based on targets identities. The

tracking relies on detected bounding boxes or body landmarks coordinates

rather than on the RGB data. Thus, this step is computationally efficient

and each tracked target RGB data can be further processed for HAR.

As shown in this chapter, OpenPose is relatively prone to false-detections

due to target occlusions or cluttered data. This problem has been already

explored and documented in a recent work for tracking applications [84].

Thus, this chapter also focuses on new HAR strategies which are robust

to occlusion and missing data problems. The proposed algorithm is named
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ActionXPose, and it is based on robust handcrafted features extracted from

landmark time-sequences. The proposed features are further processed by

Multivariate Long Short-Time Memory and Fully Convolutional Network

(MLSTM-FCN) for classification.

Moreover, this chapter proposes a new dataset, namely the Intelligent

Sensing Lab Dataset (ISLD), which is specifically designed for posture-based

HAR. However, existing datasets are also explored to perform extensive

evaluation. To evaluate ActionXPose performance, single-dataset, multi-

datasets and cross-datasets testings are performed. Moreover, this chapter

includes the ablation study, the occlusions study and the video quality study.

Results show that ActionXPose outperforms existing methods in most of the

tests and shows greater robustness to occlusion and missing data problems.

In conclusion, the main contribution of this chapter is threefold: 1) a

new, real-time algorithm for posed-based HAR; 2) new occlusion-handling

techniques for robust pose-based HAR; 3) a new dataset, named ISLD, for

pose-based HAR. These contributions were obtained by addressing Object-

ives 4-6 introduced in Section 1.3.

The rest of this chapter is organised as follows. In Section 4.2, the

baselines and the ActionXPose algorithm are introduced, with emphasis on

the proposed low-level features extraction, the proposed high-level features

computation and proposed occlusion-handling strategies. In Section 4.4,

several experiments are presented to extensively evaluate the performance

of ActionXPose. Finally, in Section 4.5, conclusions are drawn, and the links

with the next chapter are provided.
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4.2 Methodology

4.2.1 Baseline Methods

In this section, three baseline methods are defined. The baselines are defined

by borrowing techniques from the 3D skeleton-based HAR field, due to its

similarities with the proposed 2D pose-based HAR.

The sequence pi(t) provided by OpenPose are location and body size

dependent [69]. Thus, translation and scaling are required in order to nor-

malise data across different samples. Specifically, the location dependency

problem can be addressed by transforming pi(t) from the absolute to the

root-centred coordinate reference system. The transformed pose coordinates

are defined as:

(x̄j , ȳj)i = (xj , yj)i − (x2, y2)i ∀j ∈ J, (4.2.1)

where the (̄.) operator denotes the centring transformation and where the

dependence of t has been conveniently omitted. Thus,

p̄i = {(x̄j , ȳj)i}j∈J , (4.2.2)

is the set of root-centred coordinates defined by (4.2.1).

Furthermore, let (̄̄.) be the scaling operator, defined as follows:

¯̄pi = {(¯̄xj , ¯̄yj)i}j∈J (4.2.3)

where ¯̄pi is obtained by scaling p̄i(t) coordinates by using the following con-

straint

¯̄vj1,j2 =
v̄j1,j2
‖v̄2,9‖2

∀j1, j2 ∈ J (4.2.4)

where v̄2,9 is the vector link between the root and the right hip landmarks

and ‖∗‖2 is the Euclidean norm operator. Due to (4.2.1) and (4.2.4), the
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target position and the size information are discarded.

According to the proposed definition for pi(t), these sequences mostly

contain spatial information about the motion. To obtain temporal inform-

ation, p′i(t) = pi(t + 1) − pi(t) can be defined. For the rest of this chapter,

pi(t) denotes the transformed poses in (4.2.3).

Inspired by existing literature related to 3D skeleton-based HAR, three

baseline methods has been defined as follows.

Baseline A: [69] + [129]

Baseline A consists of a simple learning step based on normalised Open-

Pose coordinates sequences pi(t) and p′i(t). A Multivariate LSTM-FCN ar-

chitecture with a time-based attention mechanism (MLSTM-FCN) [129] is

used for the classification step. This algorithm takes as input the coordin-

ate sequences obtained from training data T, including action labels li, to

train a supervised classification model to be tested on T∗. MSLTM-FCN has

been chosen as a time sequences-based classification method due to its state-

of-the-art performance on several datasets for different problems including

HAR.

Baseline B: [68] + [129]

Baseline B consists of computing mutual OpenPose landmarks distances [68]

and exploiting the obtained time-sequences for classification. The classific-

ation step is again performed by using the above-mentioned MLSMT-FCN

architecture.

Baseline C: [68] + [69] + [129]

Baseline C consists of a hybrid approach obtained by merging the previous

two baselines. Thus, pi(t), p
′
i(t) and mutual distances between landmarks

are considered for classification. The classification step is again performed
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by using the MLSMT-FCN architecture.

Formally, pi(t) and p′i(t) represent low-level features, which can be provided

to the MLSTM-FCN for classification. In particular, by using pi(t) and p′i(t),

the MLSTM-FCN performs landmark-based attention due to its architec-

ture. However, such levels of detail can be confusing in some cases, due

to high intra-class similarities or within-class variations. Moreover, when

some landmarks are persistently missing due to occlusions, the correspond-

ing sequences will be completely lost, compromising the robustness against

unexpected occlusions. For example, in the cases of Baseline B and C, a

single, persistent missing landmark (xj , yj)i not only neglects two xj and yj

sequences, but also compromises the calculation of mutual distances.

Therefore, the next section provide novel high-level features, that are

designed to be robust to missing data, and additional occlusion-handling

methods, providing an effective solution to this problem.

4.3 Proposed ActionXPose

4.3.1 Defining Poses Libraries

The main goal of this section is to exploit training data T to learn general

poses that best represent each action, from each viewpoint. In other words,

the output of this step is a pose library.

Since root coordinates in pi(t) were set to zero in the previous section,

let ui(t) = (x1, y1, x3, y3, . . . , xJ , yJ) ∈ R2J−2 be the vector obtained by

unrolling pi(t) and skipping the root coordinates (x2, y2)i. The unsuper-

vised clustering method Self-Organizing Map (SOM) [21] is used in a semi-

supervised fashion, to explore natural clusters in R2J−2. Since the SOM al-

gorithm expects no missing data, in this stage, body left/right symmetry was

exploited for dealing with possible persistent occlusions occurred in training
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data, mostly due to target self-occlusions. In particular, persistently missing

landmarks were estimated by mirroring available data. For example, if the

left-shoulder was missing, data was filled with the transformed right-shoulder

obtained by mirroring it with respect to the root landmark.

Additionally, SOM requires a cluster topology to be defined. Since prior-

information about the distribution of pose data is not provided, the homo-

geneous topology, [q, . . . , q] ∈ Rm, is set for a given integer q and a given

space dimension m. This choice forces the SOM architecture to have qm

neurons linked each other with a homogenous rectangular topology, defining

qm clusters. Since the SOM computational time is affected by either the

number of considered vectors ui(t), the q topology parameter and the space

dimension 2J − 2, a trade-off between these parameters is required.

To solve this problem, let ũi(t) be the vector containing the first m

principal components of ui(t) obtained through the PCA, i.e. ũi(t) ∈ Rm.

Simulations suggest that the best values for m and q are m = 3 and q = 4,

which balance the SOM computational cost while producing a reasonable

number of prototypes. In Figure 4.2, comparisons of SOM computational

times are provided. Therefore, the whole process can be summarised as

follows

R2J−2 PCA−−−→ Rm SOM−−−→ qm clusters (4.3.1)

Thus, for a fixed action label l and a fixed point of view w, the SOM is

trained over

{ũi(t) | li = l, wi = w} ⊂ T. (4.3.2)

This provides an additional cluster label ki for each training pose ũi(t),

as follows:

{ũi(t) | li = l, wi = w} SOM−−−→ {ũi(t) | li = l, wi = w, ki = k}

∀ l ∈ L, ∀ w ∈ W, k ∈ {1, . . . , qm}. (4.3.3)
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Figure 4.2: SOM time computation comparison. Different values for m and q have
been set for the SOM computation. Reported times refer to entire library creation
process for the MPOSE dataset. In the graph, qm values are also reported. As
shown, qm = 43 = 64 is chosen as trade-off between computation time and number
of prototypes in the libraries.
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Thus, qm pose prototypes are defined by averaging cluster labels ki as follows:

Ul,w,k =
1

nk

∑
i,t

{ui(t) | li = l, wi = w, ki = k}

∀ l ∈ L, ∀ w ∈ W, k ∈ {1, . . . , qm}, (4.3.4)

where nk represents the number of poses within cluster k. In conclusion

of this step, the libraries of prototypes are collected from training data as

follows:

Vl =
{
{Ul,1,k}q

m

k=1, . . . , {Ul,|W|,k}
qm

k=1

}
∀ l ∈ L. (4.3.5)

Thus, Vl contains pose prototypes in the form of points in a multidimensional

space R2J−2, which are able to cover all variation of considered viewpoints.

For a visual example of the Vl set, see Figure 4.3.

Libraries for the temporal information can be similarly defined as follows:

Sl =
{
{U ′l,1,k}

qm

k=1, . . . , {U
′
l,W,k}

qm

k=1

}
∀ l ∈ L, (4.3.6)

where U ′l,w,k represents prototypes obtained by clustering temporal vectors

u′i(t).

4.3.2 Strategies for Occlusion-Handling

Occlusions, self-occlusions or ambiguous RGB data can affect OpenPose per-

formance, resulting in persistent or short-time missing data. In this section,

we propose four complementary strategies to deal with these problems.

High-level Features

In this section, the problem of persistent occlusions is addressed. A persist-

ent occlusion occur when one or more landmarks are missing for the entire

sequence. To address this problem, the idea is to exploit the Spatio-temporal

libraries Vl and Sl for l ∈ L defined in the previous section, to generate high-
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check-watch
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hands-clap

one-hand-wave

two-hands-wave

jog

jumpkick stand

jump-in-place

point

run

sit-down

walk

head-scratch

Figure 4.3: Spatial library prototype examples. Three prototypes are randomly
selected from Vl, for all l ∈ L.

level features in the form of time sequences. Inspired by [72], since different

body parts carry different information, the idea is to exploit full-body and

local-limb attention.

Given J = {1, . . . , 14}, let Ja, Jb, Jc, Jd be the landmark subsets as
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defined in Figure 1.6; namely,

Ja = {3, 4, 5} ⊂ J Jb = {6, 7, 8} ⊂ J

Jc = {9, 10, 11} ⊂ J Jd = {12, 13, 14} ⊂ J. (4.3.7)

Let dJ∗(pi(t), v) be the average distance between the generic pose pi(t)

and the generic prototypes v ∈ Vl, computed for landmarks J∗, where J∗

represents either Ja, Jb, Jc, Jd or J , and it is defined as follows:

dJ∗(t)(pi(t), v) =
1

|J̄∗(t)|
∑
j∈J̄∗

‖(xj , yj)i − (xj , yj)v‖2 , (4.3.8)

where (xj , yj)v are the j-th landmark coordinates of v and J̄∗(t) represents

either Ja, Jb, Jc, Jd or J at time t, where missing coordinates are excluded.

Therefore, given a library of prototypes Vl for action l, the embedding se-

quence is defined as follows:

DVl,J∗(t) = min
v∈Vl

dJ∗(t)(pi(t), v), (4.3.9)

where it is clearly shown the time dependentancy of DVl,J∗ .

Given a set of actions L and the set of landmarks in (4.3.7), the mean-

ingful sequences that can be extracted from pi(t) are defined as follows:

Seqi(Vl) = {DVl,J(t), DVl,Ja(t), . . .

. . . , DVl,Jb(t), DVl,Jc(t), DVl,Jd(t)} ∀l ∈ L, (4.3.10)

Similarly, sequences for temporal information can be embedded as fol-

lows:

Seqi(Sl) = {DSl,J(t), DSl,Ja(t), . . .

. . . , DSl,Jb(t), DSl,Jc(t), DSl,Jd(t)} ∀l ∈ L (4.3.11)
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where the term Vl in (4.3.10) is replaced by Sl. This leads to two sets of

sequences, Seqi(Vl) and Seqi(Sl), for all l ∈ L.

It is worth mentioning that (4.3.8) allows the embedding to run and

provide numerical results, even in presence of persistent missing data, due

to the presence of J̄∗. In other words, when missing data occurs, the se-

quences provided by (4.3.10) and (4.3.11) are lost only when all landmarks

in the selected landmarks set are missing. In all other cases, i.e. at least one

landmark is available for the selected landmarks set, the distance computa-

tion is successfully performed and the corresponding sequence is obtained.

In Section 4.4.6, it is proven that this approach not only preserves the

classification integrity in case of occlusions, but also improves baseline per-

formance.

Landmark Borrowing

In this section, a strategy to improve low-level features in case of persistent

occlusions is provided. Equation (4.3.8) is based on J̄∗, which only contains

non missing landmarks. Thus, the resulting sequences in equation (4.3.10)

and (4.3.11) are well-defined even in presence of missing landmarks. How-

ever, low-level sequences pi(t) and p′(t) might still show missing values when

an occlusion occur. To solve this problem, it is proposed to further exploit

equations (4.3.8) and (4.3.9) to fill the missing values in pi(t) by using the

knowledge contained in the pose libraries. Therefore, for a given time step

t,

v†(t) = arg min
v∈Vl,l∈L

dJ(pi(t), v), (4.3.12)

is the closest prototype to the pose pi(t). Thus, the coordinates of the miss-

ing landmarks in pi(t) can be borrowed from v†(t). Subsequently, p′(t) is

computed according to the usual definition. This strategy ensures to fill

missing data in the low-level sequences. Moreover, no extra cost is required

to perform equation (4.3.12), since the calculation can be embedded within
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the one required by equation (4.3.9).

Short-time Interpolation

In this section, the problem of short-time occlusion is addressed. This prob-

lem occur when, within the considered sequence, landmarks coordinates are

missing for only few frames. Although Kalman filter [130] can be applied

to the detected landmarks, further processing is required to ensure that

the Gaussian property holds for the considered data. Thus, the proposed

strategy consists of interpolating available data, exploiting temporal con-

sistency. In formulas, let x(t) and y(t) be the landmark coordinates with

respect to time t, where some entries are occasionally missing (short-time),

such that:

x : A −→ R, y : A −→ R, A ⊂ {1, . . . , T}, (4.3.13)

where A represents the set of frames when the landmark is detected. Then,

the missing values for t∗ ∈ {1, . . . , T}\A are defined by the nearest-neighbour

as follows:

x(t∗) = x
(
t̂
)
, y(t∗) = y

(
t̂
)
, s.t. t̂ = arg min

t∈A
‖t∗ − t‖2. (4.3.14)

Given the simplicity of this solutions, it has been implemented in all proposed

methods, including the baseline, as a simple and reasonable quick solution

for short-time missing data.

Occlusions Augmentation

As a final strategy for occlusion-handling, synthetically occluded sequences

are added in the training phase. Specifically, training sample can be per-

sistently occluded by randomly removing some landmarks according to a

binary Bernoulli distribution B(p) where p = 0.5. This strategy has been
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implemented right after landmark detection. To preserve the integrity of the

system, landmarks 2 and 9 have been not occluded to allow equation (4.2.4)

to be well defined. This strategy aims to train resulting network with data

that present random occlusions, enabling the network to learn a more general

representation. It turns out that this strategy provides additional robustness

to occlusions. In fact, despite the implementation of the other strategies, it

is crucial to also effectively learn how the low and high-level features might

change when different occlusions occur.

4.3.3 Classification Step

For fair comparisons with the proposed baseline methods, MSTLM-FCN is

again used for the classification step. Depending on the input features, the

classification step can focus on different motion aspects. Specifically, three

sets of sequences are defined by using the proposed low-level and high-level

features, as follows:

1. Spatial-attention sequences: these are formed by combining pi(t),

p′i(t) and Seqi(Vl).

2. Temporal-attention sequences: these are formed by combining

pi(t), p
′
i(t) and Seqi(Sl).

3. Spatio-temporal-attention sequences: these are formed by com-

bining pi(t), p
′
i(t), Seqi(Vl) and Seqi(Sl).

For an overview of the ActionXPose processing, in Figure 4.4 the general

pipeline of the proposed algorithm is provided.
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Figure 4.4: Proposed training and testing ActionXPose pipelines. The occlusions-
handling steps are depicted in blue.

4.4 Experiments

4.4.1 ISLD Dataset

In this section, a new dataset for the pose-based HAR, named ISLD, is

proposed. This dataset was recorded within the Intelligent Sensing Lab.

Single-target CCTV-like clips, according to 18 predefined posture-related

action classes, were collected. Participants were free to perform the ac-

tions according to their understanding of the class labels and no example

clips were provided. Recording viewpoints were predefined, to ensure that

enough viewpoints were covered. Specifically, samples were recorded from

up to 5 different viewpoints, namely front, front-left, front-right, left and

right. The 18 proposed actions, performed multiple times by 10 actors, were

recorded with a static RGB camera. Overall, ISLD contains 907 different

time windows. For each time window, only one target is visible, performing

a single action. 10 examples from the ISLD dataset are shown in Figure 4.5.

ISLD samples has been pre-processed by OpenPose to extract human
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Figure 4.5: Examples from the proposed ISLD dataset. Human actions of 10
subjects are recorded using a static camera, from different viewpoints.

poses. To increase the number of samples for the classification requirements,

data augmentation was also performed on training data. In fact, deep learn-

ing methods usually require a great amount of training data to perform

well. For example, in image recognition, cropping or rotating images are

common practice to augment dataset samples in order to meet deep learning

algorithms conditions [131]. In speech recognition, it is also common to add

noise to training samples for the same purpose [132].

Inspired by the above-mentioned methods, the first proposed data aug-

mentation technique is named pose-flipping. It consists of flipping poses

along the vertical axis passing through the root landmark. This causes that

the performed action looks mirrored, exploiting the left/right body sym-

metry. In Figure 4.6, viewpoint composition rates for the ISLD dataset are

provided, showing that pose-flipping balances the left/right viewpoint rates.

The second proposed method for data augmentation is named pose-
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Figure 4.6: ISLD viewpoints composition rates in the cases of no pose-flipping and
pose-flipping data augmentation. Pose-flipping is useful for doubling the number of
samples and balancing viewpoints composition.

noising, which consists of adding Gaussian noise to the landmark coordin-

ates, i.e. N (0, σ2) with 0 mean and σ standard deviation. In this work,

σ = 0.2 is empirically chosen for all experiments unless otherwise specified.

Specifically, let z be the number of times that training data are used to cre-

ate additional noisy samples. Thus, if z = 0, no noisy samples were created.

If z = 1, all training samples were used once to create noisy samples.

In conclusion, after applying the proposed data augmentation, the ISLD

dataset consists of up to 5598 samples, as shown in Table 4.1. Figure 4.6

shows that pose-flipping not only doubles the available data, but also bal-

ances left/right viewpoint rates.

4.4.2 Experimental Settings

Traditional Setting

In this setting, the training and testing phases are entirely based on the

ISLD dataset. In particular, ActionXPose was trained on actors [1, 2, 3, 4],

validated on actors [5, 6, 7] and tested on actors [8, 9, 10]. Regarding hyper-

parameters, σ = 0.2 and z = 1 for augmenting training data.
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Table 4.1: ISLD action composition. The number of samples for each action are
provided in the cases of no/yes data augmentation, by setting z = 2.

Data Aug. Data Aug.

Label No Yes Label No Yes

bend 40 240 jump 40 240

box 80 480 kick 42 252

check-watch 40 240 jump-in-place 48 288

cross-arms 40 240 point 40 240

get-up 40 240 run 40 240

hand-clap 40 240 head-scratch 40 240

one-hand-wave 40 240 sit-down 40 240

two-hands-wave 40 240 stand 350 1050

jog 36 216 walk 72 432

Multi-Datasets Augmentation Setting

In this setting, ISLD training data was considered alongside additional data-

sets to better leverage the deep learning generalisation ability. Since the

stand action is already well covered by ISLD, no further data augmentation

was required for this action. However, other classes are not so well represen-

ted and additional data can be helpful. Because data collection for HAR is

often expensive and time-consuming, other available datasets were revised,

starting from the popular UCF101 [31] and HDMB51 [117] datasets. For

these two datasets, most of the video samples were collected from YouTube

and movies. The camera was often too close to the target, capturing only the

target’s face or hands. Moreover, most samples in these datasets show low-

resolution, unlabelled, multiple-target frames where the subjects perform

different actions. Furthermore, most of the actions are strongly related to

the context rather than to the human posture. Last but not least, as shown

in Figure 4.7-(Top), if OpenPose is used to pre-process these datasets, the

overall performance is too low to be a reliable source for the proposed 2D

pose-based HAR. Figure 4.7-(Bottom), shows the OpenPose detection rate

for UCF101 and HDMB51, supporting these conclusions.

In contrast to UCF101 and HDMB51, CCTV-like recordings often show
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HMDB51

UCF101

Figure 4.7: (Top) Screenshots from HMDB51 [117] and UCF101 [31]datasets pro-
cessed by OpenPose. The pictures show false negatives, missing landmarks, false
positives and very limited views of the target body. (Bottom) OpenPose perform-
ance on different datasets. Non-detection frames measures the percentage of frames
in which detections do no occur. False positive targets measures the percentage of
the root landmark confidence below the threshold 0.5. Considering those targets
with the root landmark confidence higher than 0.5, Non-detected landmarks + false
positive landmarks considers the percentage of non detected landmarks (confidence
= 0), plus false positive landmarks (0 < confidence < 0.5).

full-body targets, where OpenPose works well. Figure 4.7-(b) also shows

the performance on a famous dataset for tracking in public environments,

i.e. MOT16 [133], and other traditional datasets, i.e. KTH [7], IXMAS [9],

Weizmann [6] and i3DPost [8]. It turns out that OpenPose performs consid-

erably better on these traditional datasets. Moreover, these datasets include

fully-labelled single-target clips, which simplifies the processing. In fact,
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single-target data does not require tracking as pre-processing step. Motiv-

ated by these considerations, additional training data were collected from

the Weizmann, i3DPost, KTH and IXMAS datasets, defining the four-in-

one MPOSE dataset, by merging them all together. Moreover, the MPOSE

class labels were selected to be consistent with the ISLD’s labels. Overall,

MPOSE contains 4160 single-target video clips, distributed over 17 action

classes (the stand action is excluded) and performed by 53 human actors.

Table 4.2 reports the MPOSE action composition for the default case (no

data augmentation) and the pose-flipping/pose-nosing case. Pose-noising

has the potential to indefinitely raise the total number of samples. How-

ever, for the MPOSE dataset, it turns experimentally out that z = 2 is a

good choice for the pose-noising parameter. It is worth noticing that, when

data augmentation is applied, MPOSE contains a significantly higher num-

ber of samples than UCF101 and HMDB51, which contain 13320 and 6766

samples, respectively. In terms of viewpoints, Figure 4.8 shows the viewpoint

composition and the effect of pose-flipping in balancing left/right viewpoints

rate.

Cross-Dataset Setting

In this setting, the MPOSE dataset was used for training and validation,

while the whole ISLD dataset was used for testing. Therefore, the purpose

of this test was to measure ActionXPose cross-dataset performance. In this

setting, since MPOSE does not contain data for the action stand, the stand

action is neglected from ISLD as well.

4.4.3 Implementation

Simulations were conducted on Ubuntu 16.04 running on a Dell Inspiron 15

5000 with four core Intel i7, and mounting an embedded Nvidia GeForce

GTX 1050. Hyperparameters, such as number of epochs and batch size,
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Table 4.2: MPOSE action composition. The number of samples for each action
are provided in the Default case (no data augmentation) and after applying pose-
flipping and pose-noising.

Data Aug. Data Aug.

Label No Yes Label No Yes

bend 193 1158 jump 73 438

box 517 3102 kick 120 720

check-watch 120 720 jump-in-place 73 438

cross-arms 120 720 point 120 720

get-up 120 720 run 474 2844

hand-clap 396 2376 head-scratch 120 720

one-hand-wave 193 1158 sit-down 120 720

two-hands-wave 407 2442 stand 0 0

jog 400 2400 walk 594 3564
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Figure 4.8: MPOSE viewpoint composition in both cases of no pose-flipping and
pose-flipping.

were chosen by applying the early-stopping method to the validation sets.

For the detection phase, OpenPose model is based on COCO [134], and up-

dated versions of this detector can provide up to 25 body landmarks, 70 face

landmarks, 42 hands landmarks and 6 feet landmarks for each target. How-

ever, only 14 body landmarks were exploited. Specifically, 5 out of 25 body

landmarks represent nose, left eye, right eye and left and right ears. There-

fore, these additional landmarks were averaged by defining a head landmark.

Thus, the set of considered body landmarks is J = {1, . . . , 14}, as described
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in Figure 1.6. Finally, regarding ActionXPose coding, feature computations

were conducted in MATLAB, while the classification was performed using

the Keras implementation of MLSTM-FCN, provided by [129].

4.4.4 Results

In this section, ActionXPose performance on the three set of features defined

in Section 4.3.3, i.e. Spatial-attention, Temporal-attention and Spatio-temporal-

attention are provided. Simulations were conducted for the three experi-

mental settings defined in Section 4.4.2. Obtained results are provided in

Table 4.3 and compared with the baselines and the state-of-the-art. Regard-

ing the Traditional experimental setting, the action classes are unbalanced

due to the presence of the stand action. Thus, results for this setting were

normalised using the total number of clips per action.

Overall, ActionXPose features outperform the baselines in almost all

tests. Moreover, in the Multi-Datasets Augmentation experimental setting,

additional training data improves the results obtained in the Traditional ex-

perimental setting. This is mainly due to the higher generalization degree

obtained by providing additional MPOSE data during the training phase.

In the Cross-Dataset setting, obtained results shows that MPOSE does not

contain enough data variability to fully meet the ISLD requirements. How-

ever, it surprisingly covers most of the actions, confirming to be a good

pre-training source of data. In Figure 4.9, the confusion matrix, as defined

in Section 2.4, obtained in the Cross-Dataset setting is provided.

4.4.5 Ablation Study

In this section, different combinations of low and high-level features are

considered. This ablation study was conducted on the MPOSE dataset.

The goal of this study is to assess the contribution of each considered set

of features. The cross-validation setting was used as standard method to
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Table 4.3: Accuracy results (%) for three experimental settings, i.e. Traditional
(Trad.), Multi-Datasets Augmentation and Cross-Dataset. |L| represents the num-
ber of considered actions.

Settings Traditional

|L| 18 / 17

Baseline A [69] + [129] 92.44 / 88.88

Baseline B [68] + [129] 81.77 / 73.70

Baseline C [68] + [69] + [129] 91.99 / 87.96

Spatial-attention 91.55 / 86.24

Temporal-attention 94.22 / 91.74

Spatio-temporal attention 95.11 / 92.73

Settings Multi-Datasets Augmentation

|L| 18 / 17

Baseline A [69] + [129] 93.77 / 91.07

Baseline B [68] + [129] 79.55 / 75.00

Baseline C [68] + [69] + [129] 84.00 / 80.73

Spatial-attention 96.00 / 96.33

Temporal-attention 92.88 / 89.29

Spatio-temporal attention 96.44 / 95.58

Settings Cross-Dataset

|L| 17

Baseline A [69] + [129] 93.77

Baseline B [68] + [129] 79.55

Baseline C [68] + [69] + [129] 84.00

Spatial-attention 96.00

Temporal-attention 92.88

Spatio-temporal attention 96.44

measure accuracy performance [57, 58, 125, 126, 135–138]. Specifically, Ac-

tionXPose methods were tested by using an action-based cross-validation

setting with 10 foldings. This approach stabilises the number of samples per

action across different foldings, in case of imbalanced classes. Pose-flipping

and pose-noising were applied to training samples, while validation and test-

ing samples were not augmented.
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The following ablated methods were considered:

A p(t)

B p′(t)

C DVl,J(t), ∀l ∈ L

D [DVl,Ja(t), . . . , DVl,Jd(t)], ∀l ∈ L

ABCD [p(t), p′(t), Seq(Vl)], ∀l ∈ L

F DSl,J(t), ∀l ∈ L

G [DSl,Ja(t), . . . , DSl,Jd(t)], ∀l ∈ L

ABFG [p(t), p′(t), Seq(Sl)], ∀l ∈ L

all [p(t), p′(t), Seq(Vl), Seq(Sl)], ∀l ∈ L

(4.4.1)

where the i-subscript has been omitted for convenience. It is remarked

that ABCD and ABFG correspond to the Spatial-attention and Temporal-

attention methods, respectively, defined in Section 4.3.3. Similarly, all cor-

responds to the Spatio-temporal-attention method. The new nomenclature

in (4.4.1) better highlights the method compositions in terms of features.

Cross-validated results for these methods are shown in Table 4.4, includ-

ing standard deviations, for the Default and σ = 0.2, z = 2 cases. It turns

out that, in the latter case, the performance is superior due to the data

augmentation provided by pose-flipping and pose-noising.

In order to measure the significance of the obtained performance, paired

t-tests with α = 0.05 were conducted for the σ = 0.2, z = 2 case. Since

it is expected that the more features involved in the learning process, the

higher the averaged accuracy, a one-tail paired t-test was chosen whenever

possible, e.g. the two methods do not correspond to an equal number of

features. In all other cases, i.e. when the number of features were the same
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for both methods, a two-tail paired t-test was chosen. We report p-values

for all paired methods in Table 4.4.

Overall, this ablation study revealed that the ActionXPose high-level fea-

tures always bring benefits to the learning process when considered alongside

low-level features, i.e. p(t) and p′(t). Moreover, the all method is not ne-

cessarily the best. This might suggests that, when too many features are

involved, it is difficult for the network to effectively extract useful informa-

tion. Indeed, ABCD and ABFG are significantly the best methods. This

could be possibly due to the curse of dimensionality which occur when the

number of features is too high with respect the number of available training

samples [13]. This study highlighted the importance of data augmentation,

which considerably improves the Default case performance. On the other

hand, it turns out that it is advantageous to find a trade-off between num-

ber of features and accuracy, to avoid the curse of dimensionality.

Overall, as expected, this study showed the importance of the low-level

features for carrying most of the action knowledge. In fact, methods A and

B achieve very good performance. On the other hand, as discussed in Section

4.4.6, these methods are less robust than high-level features based methods

with respect to occlusions. Therefore, high-level based methods provide the

required robustness, along with clear advantages in terms of accuracy.

4.4.6 Occlusions Study

In this section, the robustness of ActionXPose features to occlusions and

missing data is evaluated. In particular, the contributions of the strategies

proposed in Section 4.3.2 for occlusion-handling are highlighted.

The short-time occlusions strategy in Section 4.3.2 is always applied.

Moreover, in all experiments, pose-flipping and pose-noising were always

applied to training data, with σ = 0.2 and z = 1.

This study has been conducted on MPOSE dataset by using the cross-
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Table 4.4: ActionXPose ablation study based on MPOSE dataset. Performance
of different methods is provided on average (AVG) for 10 cross-validation foldings,
reporting obtained standard deviations (STD). The Features column reports the
actual number of features available for each method. Regarding hyper-parameters,
Default and σ = 2, z = 2 cases are reported.

Default σ = 0.2, z = 2

Method Features AVG (%) STD AVG (%) STD

A 28 91.47 1.68 93.87 1.26

B 28 91.72 1.20 92.64 1.43

C 17 88.90 1.50 91.88 1.68

D 68 91.31 2.03 92.11 1.44

ABCD 141 92.95 0.89 95.48 1.34

F 17 77.53 3.29 78.47 5.77

G 68 84.28 2.36 86.60 2.05

ABFG 141 93.69 1.61 95.43 1.14

all 226 92.54 1.87 94.44 0.81

Table 4.5: p-values (significance) obtained by conducting a paired T-test on each
pair of methods considered in the ablation study, in the case of σ = 0.2, z = 2.
If the p-value > .05, the two method results are not significantly different to each
other.

p-values (significance) for σ = 0.2, z = 2

B C D ABCD F G ABFG all

A .025 .009 .000 .000 .000 .000 .003 .009

B n/a .139 .211 .000 .000 .000 .000 .001

C n/a n/a .690 .000 .000 .000 .000 .000

D n/a n/a n/a .000 .000 .000 .000 .000

ABCD n/a n/a n/a n/a .000 .000 .919 .030

F n/a n/a n/a n/a n/a .001 .000 .000

G n/a n/a n/a n/a n/a n/a .000 .000

ABFG n/a n/a n/a n/a n/a n/a n/a .001

validation approach already discussed in the previous section. Since MPOSE

data contains only self-occlusions, more challenging occlusions were simu-

lated by explicitly removing landmarks from the testing data. This strategy

is fast and effective, it does not require any time-consuming video editing,

and provides similar results as assumed the occlusions are in the video data.

Inspired by landmark subsets in (4.3.7), 6 different groups of landmarks were
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purposely neglected, i.e.

J∗a = {4, 5} (Right Arm)

J∗b = {7, 8} (Left Arm)

J∗c = {10, 11} (Right Leg)

J∗d = {13, 14} (Left Leg)

J∗a,b = {4, 5, 7, 8} (Both Arms)

J∗c,d = {10, 11, 13, 14} (Both Legs) (4.4.2)

It is worth emphasising that the baseline methods are strongly numer-

ically affected by the proposed occlusions. In other words, such occlusions

create persistent missing data, and thus persistent missing features. On the

other hand, the ActionXPose high-level features are more numerically ro-

bust, due to the definition of the embedding distance in (4.3.8). Specifically,

when such occlusions occur, the proposed high-level features only slightly

change their values, rather than being completely lost.

The first experiment (Figure 4.10-Top) consists of occluding testing data,

without performing neither occlusions augmentation nor landmarks borrow-

ing techniques. Thus, the trained networks were not prepared to face such

occlusions. As expected, the baseline methods are strongly less robust than

ActionXPose features. In contrast, all methods that include high-level fea-

tures achieve much better performance due to the robustness provided by

equations (4.3.8) and (4.3.9). In particular, the proposed Spatio-temporal

attention method remarkably outperforms the baselines in all the occlusion

cases.

In the second experiment (Figure 4.10-Middle), occlusions augmentation

was enabled. In this case, since the training data include synthetically oc-

cluded data, the resulting networks are much more robust to occlusions. In

this case, baseline methods are also expected to be more robust since the
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trained network is prepared to deal with the missing features carried by low-

level sequences. However, again, high-level features outperform the baselines

in all cases.

In the third and last experiment (Figure 4.10-Bottom), both occlusions

augmentation and landmarks borrowing were enabled. While the occlusions

augmentation include synthetically occluded data into training data, the

borrowing landmark technique is able to fill the gaps due to occlusions in

the baseline features. To perform this experiment, training and validation

data were firstly occluded by the occlusions augmentation technique, while

testing data were occluded with the proposed equation (4.4.2). Then, all

low-level and high-level features for training, validation and testing data

were computed considering the borrowing landmarks technique. The first

effect of this processing is that performance and robustness globally further

increase. However, again, the proposed ActionXPose features outperform

the baselines in all occlusion cases.

In conclusion, the results of this study showed that the proposed occlusion-

handling techniques are advantageous and provide complementary improve-

ments over the baselines in terms of robustness to occlusions.

4.4.7 Performance on Traditional Datasets

In this section, ActionXPose results on the KTH and i3DPost datasets are

provided. These tests were conducted to allow comparisons between the pro-

posed method and other state-of-the-art methods. Since KTH and i3DPost

include specific challenges, such as multiple viewpoints, zooming in/out,

moving cameras, and variable target-camera proximity, this test can also

show ActionXPose robustness against these challenging conditions.

The tests on the KTH dataset were performed under two experimental

settings. The first is the Split setting, where training, validation and testing

samples are predefined by the original author in [7]. The second is the
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Figure 4.10: Occlusion Study results, provided on average over 10 cross-validation
foldings. AVG represents the averaged results over the six occlusion cases. (Top)
Performance with no data-augmentation nor borrowing landmarks. (Middle) Per-
formance with data-augmentation but no borrowing landmarks. (Bottom) Perform-
ance with data-augmentation and borrowing landmarks.

Leave-One-Actor-Out (LOAO) setting, where multiple tests are conducted

by using each actor as testing actor and averaging obtained results. Table 4.6

shows the results for both these experimental settings. Data augmentation

parameters were empirically chosen and fixed for all tests as z = 0 and

σ = 0.2.
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Table 4.6: Accuracy results (%) for KTH and i3DPost. For KTH dataset, two
settings are reported, namely Split and LOAO. For i3DPost dataset, LOAO results
are obtained for |W| = 8, where |W| represents the number of considered viewpoints.
The (◦) denotes the case |W| = 2.

KTH i3DPost

Method Split LOAO LOAO

Spatial-attention 90.50 99.04 98.95
Temporal-attention 90.15 98.03 98.95

Spatio-temporal attention 89.80 98.26 99.47

Baseline A [69] + [129] 88.06 98.91 97.39
Baseline B [68] + [129] 83.19 96.29 95.30

Baseline C [69] + [68] + [129] 86.44 96.67 99.47

Kovashka et al. [75] 94.50 n/a n/a
Zhang et al. [76] 94.10 n/a n/a

Ji et al. [77] 90.20 n/a n/a
Almeida et al. [78] n/a 98.00 n/a
Vrigkas et al. [79] n/a 98.30 n/a

Liu et al. [80] n/a 93.80 n/a
Raptis and Soatto [81] n/a 94.50 n/a

Jiang et al. [82] n/a 95.77 n/a
Gilbert et al. [83] n/a 95.70 n/a

Chapter 3, Framework B n/a n/a 99.60
Castro et al. [126] n/a n/a 99.00(◦)
Iosifidis et al. [57] n/a n/a 98.16
Azary et al. [58] n/a n/a 92.97

Hilsenbeck et al. [125] n/a n/a 92.42

The ActionXPose high-level features outperform the baseline methods

in all settings. Moreover, in the Split setting, ActionXPose performance is

among the state-of-the-art. In the case of the LOAO setting, ActionXPose

outperforms other state-of-the-art methods.

Regarding i3DPost, this dataset is usually tested under the LOAO set-

ting. i3DPost is specifically designed to perform multi-viewpoints HAR. In

fact, it includes video clips recorded from 8 different viewpoints. The results

are given in the challenging multi-viewpoints case, i.e. training and testing

data include all viewpoints data. ActionXPose results are summarised in

Table 4.6 and compared with the state-of-the-art. In this test, ActionXPose

outperforms the baseline methods, achieving performance which are among

the state-of-the-art.
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In conclusion, these tests are particularly suitable for highlighting the

effectiveness of pose-based HAR in comparison with the traditional meth-

ods. In fact, such excellent results were obtained by using 2D human poses

only, while the other state-of-the-art methods exploited RGB data or other

sophisticated data sources such as human silhouette. In particular, it turns

out that 2D pose-based HAR can achieve similar, and sometimes superior,

performance than traditional RGB based methods.

4.4.8 Computational Effort and Execution Time

In this section, the computational speed evaluation is provided for each of

the most important step required by ActionXPose.

The first, computationally expensive step is due to the pose detector.

The performed simulations showed that the body pose detector is the bot-

tleneck for the entire processing. However, it is claimed to be a real-time

detector [12] when hardware requirements are properly satisfied. This state-

ment is supported by the performed experiments.

Moreover, let separately consider the training and testing phases.

Training phase

In the training phase, the most intense step (excluding the body pose de-

tection) is the library creation step, where the SOM clustering method is

performed. Following the same notation as in Section 4.3.1, the SOM com-

putational complexity can be estimated as O(N2m2) [139], where N is the

number of considered samples and m is the input dimensionality. This ar-

gument shows the importance of considering the PCA as a dimensionality

reduction technique before running the SOM, in reducing the m value.

Another important step is sequence embedding step, which has a complex-

ity of O(n), where n is the number of prototypes in the considered library

(see Section 3.4.4). Thus, for the considered n = 64, as discussed in Section
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4.3.1, the embedding process is remarkably fast, i.e. ≈ 9× 10−5 SPF, which

corresponds to around 104 FPS. Even considering that ActionXPose needs

to run two embedding processes (for the spatial and temporal libraries), the

embedding process is still very fast.

Testing phase

The testing phase is less complex and faster than the training phase. In

this phase, the most complex step (excluding the body pose detection) is

the embedding step for computing high-level features and performing the

landmark borrowing. As already discussed in the training phase, the com-

plexity of this operation is O(n), where n is the number of prototypes in the

considered library. In Figure 4.11, the testing phase pipeline is depicted, re-

porting the obtained performance in terms of SPF and FPS for each required

step. These results have been obtained by ActionXPose all method. It can

be seen that, excluding the body pose detection step (performed by Open-

Pose), the proposed processing is remarkably fast. In fact, the processing

time magnitude varies between 10−5 and 10−4 SPF. However, OpenPose is

the bottleneck of the entire processing, running at a time magnitude of 10−2

SPF. Overall, ActionXPose can produce an output in around 3.2 × 10−2

SPF, which corresponds to 31.23 FPS.

4.4.9 Varying Video Quality Study

In this section, additional insights about the proposed method robustness to

different frame resolutions, colour channels, number of frames per second,

mega-bits-per-second (mbits/s), actual body size and frame quality rate. In

fact, it is reasonable to expect that different video qualities, in terms of the

above-mentioned indicators, might result in different OpenPose performance,

which in turn can affect ActionXPose performance.
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Figure 4.11: Execution time for each ActionXPose step. The execution time for
each processing step is independently measured in Seconds-Per-Frame (SPF). The
cumulative SPF is computed and transformed in Frame-Per-Second (FPS). The
CPU/Matlab platform is a Windows 7 workstation, 64-bit, with a CPU Intel Core
i5-6600 @ 3.30GHz 3.30GHz, 16 GB of RAM, running Matlab implementations. The
GPU/Python platform is a Linux Ubuntu 16.04 workstation, 64-bit, with a CPU
processor Intel i7 @ 3.1GHz 3.1GHz, 8 GB of RAM, hosting a NVIDIA GEFORCE
GTX 1050 graphics card with 4GB GDDR5, running Python implementations.
GPU/Python* represent the workstation suggested by [12] to achieve 32 FPS.

As first insight, in Table 4.7, the datasets used in this chapter are com-

pared in terms of these common video indicators. The variety of conditions

shown in Table 4.7, compared with the performance presented in previous

sections, demonstrates that ActionXPose performance is stable across dif-

ferent conditions.

As an additional study, further experiments on ISLD were conducted,

under the Dataset Augmentation Setting presented in Section 4.4.2.

The first goal was to assess the impact of varying frame sizes and body

sizes on ActionXPose performance. To this purpose, the original ISLD frame
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Table 4.7: Video quality comparison, reporting for each used dataset, colour chan-
nels (Chan.), frame-per-second (FPS), mega-bits-per-second (mbits/s), Frame Size
and averaged Body Size.

Dataset Chan. FPS mbits/s Frame Size Body Size

Weizmann RGB 25 15.55 180×144 65×93

i3DPost RGB 25 5.18 960×540 384×408

IXMAS RGB 19 1.9 390×291 136×73

KTH mono 25 0.89 160×120 82×106

ISLD RGB 25 47.97 1920×1080 403×557

size was repeatedly reduced by a factor of 5. Each time, the resulting clips

were saved in AVI format with the Motion JPEG 2000 encoder provided by

MATLAB, with a quality threshold of 95%. Obtained results are reported

in Figure 4.12-Top.

The second goal was to assess the impact of varying Motion JPEG quality

rates on ActionXPose performance. Therefore, the frame size was set to

a reasonable value, i.e. 192x108 pixels, and then repeatedly reduced the

quality threshold from 95% to 35%. Obtained results are reported in Figure

4.12-Bottom.

Overall, conducted tests showed that the body size reduction is slightly

related to a reduction of OpenPose performance. Similarly, ActionXPose

performance slightly reduces. However, the loss in performance is limited

(around 3%). Similarly, the frame quality rate slightly worsens OpenPose

performance. However, this further false negative increment seems to have

a limited impact on ActionXPose performance.

In conclusion, these results suggest that ActionXPose is robust to the

studied working conditions changes.

4.4.10 Critical Analysis

In this section, the results presented in this chapter are critically analysed

and compared to the aims and objectives set in Section 1.3.

Objective 4 and 5 have been successfully achieved. In fact, the method
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Figure 4.12: Frame size, body size and quality rate impact on OpenPose in terms
of False Negative Rate (FNR), compared with ActionXPose performance in terms
of accuracy. (Top) Impact of the frame size and body size changes on OpenPose and
ActionXPose methods. (Bottom) Impact of the frame quality changes on OpenPose
and ActionXPose methods.

proposed in this chapter is based on high-level features which are computed

following the embedding approach already exploited in Chapter 3. Therefore,

the effective approach explored in Chapter 3 has been transformed into a

solution to effectively extract features from human poses. Moreover, human

poses showed the following advantages compared to human silhouettes: 1)

Despite different video datasets visually show different light and background

conditions, OpenPose can effectively extract homogenous pose data, allowing

multi-datasets and cross-datasets experiments; moreover, poses are more



Section 4.4. Experiments 135

reliably extracted from different data than silhouettes; 2) human poses are

much faster to be processed, once they are detected, compared to human-

silhouettes; 3) human poses can be also effectively exploited for tracking,

allowing the proposed method to generalise to multiple-targets. Thus, the

limitations reported in Chapter 3 can be effectively solved by using human-

poses.

Objective 6 has also been effectively achieved. The main limitation of

using the human poses is the relatively high false-negative rate, due to ad-

verse video conditions that, occasionally or persistently, might compromise

the landmark detection. Moreover, human-poses are naturally prone to self

occlusions, similarly to human-silhouettes, due to its intrinsic 2D nature. In

other words, both human-poses and human-silhouettes are strongly viewpoint-

dependent. Therefore, it was required to propose effective solutions to the

high false-negative rate and self-occlusion issues. The occlusion-handling

strategies discussed in this chapter effectively address these problems. In

particular, as shown in Figure 4.10, the baseline methods are not suitable to

face body limbs occlusions. In contrast, the proposed method shows greater

robustness when body limbs occlusions or false detection occur.

Despite the advantages mentioned above, the experiments presented in

this chapter also showed OpenPose limitations. In fact, in the case of

UCF101 and HMDB51 datasets, OpenPose’s low performance was one of

the causes that compromised the proposed processing. As shown in Table

4.7 and Figure 4.12, frame resolution and frame quality are not a major

problem themselves. In contrast, as the UCF101 and HMDB51 results sug-

gest, the major issues were due to strong ambiguity between the target and

the background. Moreover, the very small ratio between the target size and

the frame resolution also compromised the detection.

The above mentioned OpenPose limitations have an impact on Action-

XPose. In fact, when the link vectors v2,9 and v2,12 are both persistently
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missing, the strategy in Section 4.2.1 is no longer well-posed. However, this

case occurs only when the body trunk is persistently occluded or undetect-

able. In this case, even human eyes might fail in classifying posture-related

actions such as those studied in this work. Such disruptive cases require

ad-hoc studies which are beyond the scope of this thesis.

Another problem occurs when more semantically challenging action classes

are considered for HAR; for example, those provided by UCF101 and HMDB51

datasets. Since the UCF101 and HMDB51 are not posture-related datasets,

colour contextual information is crucial, and the poses are not informative

enough to fully describe the performed action. However, non-posture-related

HAR is beyond the purpose of this thesis.

Finally, two questions regarding the usage of human-poses are necessarily

raised.

The first question is related to the computational effort required to pre-

process data to extract posture-related information. In the case of silhouette-

based HAR, in Chapter 3, the background subtraction algorithm ViBE was

exploited. In this chapter, the proposed HAR method uses OpenPose to

detect human poses. OpenPose requires powerful GPUs to run within a

real-time performance. On the contrary, ViBE can achieve the same per-

formance by using a simple CPU. On the other hand, as already discussed in

Section 3.5, ViBE does not perform any semantic detection, while OpenPose

performs human detection (classification), body limbs detection (classifica-

tion), and allows multiple-human tracking. Therefore, the more powerful

hardware required by OpenPose is justified by the more complete and in-

forming outputs. For these reasons, in this thesis, OpenPose is considered

more advantageous than ViBE.

The second question is related to privacy issues. On one hand, hu-

man poses-based processing increases the privacy of the monitored subjects,

since RGB data can be promptly discarded right after the detection and
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not memorised at any stage. On the other hand, human poses still may

contain privacy-related information that can be indirectly used to identify

human subjects. Nevertheless, in case of less restrictive approaches regard-

ing privacy protection, further studies can be conducted to consider colours

alongside poses, to jointly extract useful information in a multimodal system.

These studies are conducted in the next chapter.

4.5 Chapter Summary

In this chapter, the proposed ActionXPose algorithm for 2D pose-based HAR

has been presented, which achieves state-of-the-art performance and out-

perform the baselines. Proposed high-level features improve accuracy and

robustness to occlusions and missing data in comparison with the baselines,

which in turn are based on low-level features. In addition, this chapter pro-

posed a new dataset for posture-related HAR in CCTV-like environment,

namely ISLD dataset. This dataset was used to extensively test several

variations of the proposed method, under different experimental conditions,

including the interesting Dataset Augmentation and Cross-Dataset settings.



Chapter 5

POSE-DRIVEN HUMAN

ACTION RECOGNITION AND

ANOMALY DETECTION

5.1 Introduction

In this Chapter, the contributions discussed in Chapter 4 are extended and

exploited for non-cooperative, simultaneous HAR and HAAD. Particularly,

Objectives 7-9 introduced in Section 1.3 are addressed.

Similar to Chapters 3 and 4, the focus of this chapter is on posture-level

HAR. In particular, the ActionXPose algorithm, which has been contributed

in the previous chapter, intentionally, neglects RGB data for pose-based

HAR. Thus, in this chapter, deep-learning-based HAR methods are studied,

which jointly extract hidden-features from RGB and poses data. Moreover,

in this chapter, the anomaly detection problem is addressed. The focus in on

the normal/abnormal body posture and object-position related events. For

example, a person falling, running or fighting in a scene where these events

do not normally happen, it is considered as an abnormality. Similarly, a key

object unexpectedly positioned or manoeuvred is considered as an abnormal

event.

Therefore, in this chapter, a novel system to simultaneously perform

138
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HAR and HAAD on posture-level human activity is contributed. It is based

on pose-driven deep learning networks that rely on human pose detections

and RGB data within target bounding boxes to perform Joint RGB-poses

based features extraction, classification and anomaly detection.

HAR and HAAD are, conventionally, two distinct video processing stages

that require different solutions. However, in this chapter, it is demon-

strated that they can be performed simultaneously as two steps of a com-

mon pipeline. In other words, the proposed system is able to simultan-

eously detect anomalies related to the body movements and object positions

while providing human action labels, to serve as an explanation of the nor-

mal/abnormal detected action. Moreover, the resulting system is easily gen-

eralisable to multiple human targets and multiple objects. The methodology

followed in this chapter is threefold:

1. The ActionXPose algorithm proposed in Chapter 4 is transformed

from poses to joint RGB-poses. To this end, different deep-learning

architectures are proposed, and their performance in terms of HAR

are studied. It is shown that joint RGB-poses networks outperform

their single modality counterparts, in terms of HAR accuracy.

2. The best joint RGB-poses architecture is further studied in the con-

text of HAAD. Particularly, the multimodal hidden features that the

network can extract are exploited for semi-supervised posture-related

HAAD. The contribution of RGB and pose data is compared in terms

of anomaly detection accuracy. It is shown that RGB-based and joint

RGB-poses based features are suboptimal for HAAD when compared

to the poses-based features. In other words, poses-based features excel

for HAAD, while joint RGB-poses based features excel for HAR. Thus,

an effective method to train both the HAAD and HAR architectures is

proposed, which aims to maximise the efficacy of RGB-poses features
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for HAR and poses-based features for HAAD.

3. The role of contextual objects in the scene is also considered as an

additional level of HAAD analysis. Thus, in this chapter, a method to

combine objects-positions related anomaly detection with the above-

mentioned posture-related HAAD is also proposed.

Extensive simulations are provided to highlight the efficacy and robust-

ness of the proposed joint RGB-poses based HAR. In particular, three novel

models for Joint RGB-poses deep-learning networks for HAR are defined,

and their performance evaluated on UCF101 and MPOSE datasets. The

goal is to demonstrate that joint RGB-poses based networks are more effect-

ive for HAR than their single RGB or pose counterparts. Therefore, the best

model is further exploited as a deep learning feature extraction for combined

HAR-HAAD.

Extensive HAAD performance evaluation is carried out on three novel

datasets recorded in the Intelligent Sensing Lab, i.e. the Body Movements

based Dataset (BMbD), the Multi-target Body Movements based Data-

set (M-BMbD) and the Joint Body Movements and Object Position based

Dataset (JBMOPbD), specifically designed for the above-mentioned prob-

lem. In particular, BMbD proposes single-target posture-related based an-

omalies; M-BMbD considers multi-target posture-related based anomalies;

JBMOPbD further considers single-target posture-related anomalies along-

side multi-object position based anomalies. Comparative results over the

state-of-the-art are also provided to highlight the efficacy of the proposed

method.

As already mentioned, this chapter studies are entirely based on pose-

driven networks, as human poses contain most of the useful information

for posture-based HAR and HAAD. However, it is shown that RGB data-

based networks are less effective for HAR compared to the joint RGB-poses
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ones. However, regarding HAAD, RGB data allows the resulting system

to detect, in principle, abnormal activities coming from any source, such

as people, cars, explosions and traffic. Moreover, RGB based methods can

work in cluttered, in-the-wild and low-resolution situations. However, in the

case of posture-level HAR and HAAD, this chapter provides evidence that

RGB based methods are suboptimal. Moreover, when the scene semantic

is given and known, i.e. human posture-level actions in an indoor scene,

RGB-based methods do not explicitly consider this additional contextual

knowledge. In particular, taking into account the limited availability of

published implementations of state-of-the-art anomaly detection algorithms,

in this chapter, two state-of-the art methods [109, 110] for autoencoders-

based anomaly detections were chosen as baseline. This particular choice was

motivated by: 1) autoencoders represent a well-studied and general methods

to perform video-based anomaly detection; in particular, [110] is claimed to

be domain free, suggesting that the method was developed to be a rightful

choice for video-based anomaly detection from any video source; 2) [109,110]

offer a ready-to-use implementation of their methods. However, despite their

promising results presented in in-the-wild anomaly detection, it is shown

that these architectures are not the best choice to address the challenges

considered in this chapter. In contrast, a joint RGB-poses algorithm is

proposed, which simultaneously perform HAR and HAAD, outperforming

the state-of-the-art in terms of HAAD performance.

This chapter focuses on semi-supervised HAAD [14]. In other words,

during the training phase, no abnormal instances are presented to the al-

gorithm to build up abnormal expectations. Therefore, the anomaly detec-

tion algorithm is trained on the most challenging case where only normal

data is available for training.

In summary, the contributions of this chapter are mainly threefold:

• A novel HAR algorithm which exploits both human poses and RGB
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data;

• A novel pose-driven, bi-level, i.e. Body-Movements (BM) and Object-

Position (OP), HAAD algorithm, which is integrated with the above-

mentioned HAR algorithm for simultaneous HAR and HAAD;

• Three novel datasets for challenging human posture-related and object

position HAAD, i.e. BMbD, M-BMbD and JBMOPbD.

The rest of this chapter is organised as follows. Section 5.2 presents

the novel RGB-poses based networks for HAR. In Section 5.3, the strategy

to simultaneously perform HAR and HAAD is proposed. Simulations and

results are provided in Section 5.4 and conclusions are summarised in Section

5.6.

5.2 Joint RGB-poses Networks for HAR

The goal of this section is to propose the Joint RGB-poses networks for

HAR. In particular, supervised learning-based structures are proposed for

end-to-end recognition tasks. Therefore, the output of these networks is an

action label and confidences over a pre-defined set of labels.

5.2.1 Pose Features Extraction

The first step consists of extracting pose-related information from RGB data.

To this purpose, OpenPose [12] is exploited to detect body landmarks of

visible targets. This detector is able to provide up to 25 body landmarks,

detection confidence for each landmark. The target bounding box can be

simply retrieved by the detected landmarks set.

In principle, since multiple targets can be visible in each frame, for sim-

plicity, a Kalman’s Filter based tracking systems is used to track detected

poses and RGB ROIs accordingly [87].
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Therefore, the tracked poses, i.e. landmark time sequences, are treated

with ActionXPose with spatio-temporal-attention, as described in Chapter

4. Therefore, the output of this step consists of features in the form of multi-

variate time sequences, encoding different aspect of the motion, including the

mutual relation between sub-body parts and full-body similarities with the

learned libraries.

5.2.2 Proposed Joint RGB-poses Models

This section aims to propose three models for Joint RGB-poses based HAR.

The main idea is to jointly learn from both RGB data and pose-related

features extracted in Section 5.2.1, imposing a collaborative deep learning

structure.

Theoretically, let I represents the aggregate information contained within

RGB data, then the pose-related information P is such that P ⊂ I (Figure

5.1), because poses are in turn obtained from RGB data. Therefore, it is

reasonable to argue that learning from RGB data (which contains the whole

information I) is expected to give similar, if not superior, results compared

to learning from poses. However, as shown in this chapter, this is not the

case, due to the deep learning limitations, e.g. it does not allow to expli-

citly point the network’s attention over the right image regions according

to a human-like perspective. Therefore, the challenge is to learn from P by

using the pose-branch and from I \P by using the RGB-branch, maximising

performance.

To adequately investigate the joint RGB-poses learning process more

independently from a given deep learning structure and obtain more general

conclusions, three Joint RGB-poses models, named Model A, B and C, are

proposed.

Model A, B and C share a common parallel-learning structure [19],

where poses-based and RGB-based information flow in two deep learning
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I

P

Figure 5.1: Aggregate information I provided by RGB data, including the pose-
related information P .

branches. However, as opposed to the famous parallel learning approach

Two-stream [140], the proposed structure is not based on two completely

independent branches. Generally, independent branches are those where the

final decision is made by fusing the information at the score level. However,

this approach prevents from considering dependency between modalities.

For example, it is reasonable to expect that poses-based learning is par-

ticularly effective for posture-related actions, while RGB data can describe

finer appearance-related details, supporting the action recognition especially

when poses are not enough informative. Moreover, challenging viewpoints

can produce incomplete or corrupted poses that RGB data can compensate.

Therefore, in these particular cases, it might be convenient to trust more

RGB data than poses. In contrast, when target appearance is cluttered or

unexpected, poses might be the best modality to rely on. Therefore, it is

required to dependently discriminate data sources. Inspired by information

fusion in [141], this inter-dependency is modelled by firstly process RGB

data and poses separately. Subsequently, features vectors are concatenated,

followed by a Fully Connected layer (FC) to learn dependency between fea-

ture vectors. Due to the back-propagation, the network can jointly optimise

its weight according to the contribution of both modalities depending on the

conditions.

Given the above-mentioned common learning structure, it is necessary

to specify how to extract feature vectors from each modality. Regarding the
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pose-branch, Models A, B and C are based on the Multivariate Long Short-

Term Memory and Fully Convolutional Network (MLSTM-FCN) network

[129], as discussed in Chapter 4. In contrast, regarding the RGB-branches,

inspired by [19], three different networks are considered:

CRNN

RGB data is processed through four CNN and two Fully Connected (FC)

layers to extract frame-level features. Subsequently, the LSTM is used to

model the time dependencies of the features across frames.

ResNetCRNN

RGB data is processed by using ResNet152 [142], pre-trained on ILSVRC-

2012-CLS dataset [143], to extract frame-level features. Subsequently, LSTM

is used to model the time dependencies of the features across frames.

3DCNN

RGB data is processed by using two 3DCNN and 2 FC layers to both extract

frame-level features and model time dependencies.

Therefore, Model A, B and C are defined as in Figures 5.2, combining the

above-mentioned RGB-branches with the Pose-branch based on MLSTM-

FCN.

All models concatenate the features provided by the two parallel branches,

followed by the usual FC layer to transform the combined feature vector into

a class-based binary vector. Therefore, the loss computes the error between

predicted classes and the ground truth.

5.2.3 Training Modes

The aim of this section is to define two training modes for the Joint RGB-

poses models. The goal is to make the most from the two available modal-
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Figure 5.2: Proposed Models A, B, and C pipelines for joint RGB-poses HAR.
Video RGB data is firstly pre-processed with OpenPose and ActionXPose to extract
pose-related features to feed the poses-based learning branch performed by the
MLSTM-FCN. In parallel, raw RGB data feeds the RGB-branch. Model A is based
on a simple Convolutional Neural Network (CNN) structure, to separately extract
visual features from each ROIs. Similarly, Model B exploits the same approach
but using a pre-trained ResNet152 network. Thus, an additional LSTM layer is
exploited to model temporal dependences between ROIs visual features vectors.
As opposite, Model C RGB-branch is based on 3D Convolutional Neural Networks
(3DCNN) and Fully Connected (FC) layers, to separately extract spatio-temporal
visual features from each ROIs. For all models, resulting feature vectors extracted
by both branches are concatenated and subsequently transformed by an FC layer,
followed by the loss computation.
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ities, i.e. RGB and pose.

Parallel Learning (PL)

In this mode, the two parallel learning branches are trained simultaneously.

Nevertheless, the whole information I is available for the RGB-branch, while

only P is available for the pose-branch. Therefore, while the training curve

raises and the network weight are adjusted, some of the knowledge extracted

by the RGB-branch might be the same potentially available in the Pose

branch. This is because, while the pose-branch is learning how to exploit

information in P , the RGB-branch might be faster in exploiting the same

information. Therefore, in the subsequent learning iteration, the pose-branch

might be discouraged to consider again information already exploited by the

RGB-branch (Figure 5.3-Left). The result is that the whole, potentially,

available knowledge in P might not be fully exploited.

Hierarchical Learning (HL)

To overcome the potential problem mentioned above, inspired by transfer

learning [13], it is proposed to split the training phase into steps as follows:

a) Network inizialisation: random initialisation of the layers’ weights;

b) RGB-branch freezing : RGB-branch layers cannot be optimised;

c) Model training : the training starts but the RGB-branch is kept frozen;

d) When the training curve starts overfitting the training stops and the

best validation model is loaded;

e) Unfreezing of the RGB-branch and freezing the pose-branch: therefore,

the pose-branch is kept as it is and we allow the RGB-branch to the

updated. The FC layer is randomly re-initialised;
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RGB-based branch 
exploited 
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Unexploited or 
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information

Figure 5.3: Training modes information coverage illustration. (Left) In the PL
case, the RGB-branch might override P , which is the area of competence of the
pose-branch, resulting in suboptimal usage of the two modalities. (Right) In the
HL case, the PL potential problem is mitigated due to the separated usage of the
two information sets P and I \ P .

f) Model training : the training starts again, but the pose-branch is no

longer learnable;

g) When the training curve starts overfitting again, stop training and

select the best validation model.

The idea behind HL is shown in Figure 5.3-Right. The HL training firstly

takes the most from information P provided by pose data. Subsequently,

once the pose-branch has solved the problem at its best, the RGB-branch is

activated to explore information I \ P and improve the obtained results. In

practice, this strategy allows the RGB-branch to only solve the part of the

problem that poses cannot solve, driven by the optimisation of the common

loss function.

5.3 Proposed Combined HAR and HAAD

In this section, the strategy to combine HAR and HAAD is proposed, by

exploiting the Models A, B and C defined in Section 5.2. The proposed,

combined approach is bi-level, which means that it is able to detect two

types of anomalies, i.e. abnormal body movements and abnormal object
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positions.

5.3.1 Body Movements Based Combined HAR-HAAD

In this section, the models in Section 5.2.2 are exploited for combined Body

Movements (BM) based combined HAR-HAAD. Let suppose that a joint

RGB-models (A, B or C) has been trained for HAR on a pre-defined data-

set (different than D), with the unique restriction to consider k frames

length action sequences. Let Mk be this model. Let also consider that

RGB data associated with the action sequences consist only on the target’s

ROIs. Therefore, it is assumed that, to some extent, the model Mk can

also perform HAR on unseen datasets. In particular, let us assume that

D is the unseen dataset. Therefore, as shown in Figure 5.4, clips in N can

be processed in the training phase to extract pose-branch features (PBB).

Thus, PBB features are exploited to train an SVM one-class model for semi-

supervised anomaly detection [144]. Similarly, T clips are processed in the

testing phase to extract PBB features, to be injected into the trained SVM

model, to determine whether the testing sequence should be considered as

normal or abnormal. Since each PBB feature vector corresponds to a certain

time window [t1, . . . , tk] for a given target φ, therefore GBMs̄ ([t1, . . . , tk]|φ)

is computed. The superscript BM denotes that G is obtained considering

poses-based body movements related features only. In principle, RGB-Based

features (RBB) can also be exploited for the same task. Similarly, combin-

ations between PBB and RBB, i.e. PBB+RBB, can be also exploited for

HAAD. However, in Section 5.4.3, it is proven that PBB features outper-

forms both RBB and PBB+RBB features for HAAD.

It is worth mentioning that, regardless the human action labels included

in the training of Mk, Mk is always able to extract features from any and

unseen k frames-length action sequence. If the unseen sequence resembles

to one of the Mk training sequences, the resulting feature vector is such
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Figure 5.4: Proposed pipeline for bi-level, combined HAR and HAAD. Video
data is processed by the pose-branch, RGB-based branch and the OP-based branch,
obtaining, respectively, PBB, RBB and OBB features. PBB and RBB features are
concatenated for joint RGB-poses HAR. In parallel, PBB features and OBB features
feeds separately two SVM one-class model for anomaly detection. The final anomaly
detection output is given by combining BM and OP based HAAD outputs.

that the read-out FC layer can reasonably provide the expected action la-

bel Ls̄([t1, . . . , tk]|φ). As opposite, if the unseen sequence does not resemble

training data forMk, the resulting action label will be not necessarily a cor-

rect description of the performed action. Nevertheless, the SVM model can

still be trained on those features, regardless of the action-related knowledge

they are carrying.

In this work, as first important approximation, it is assumed that posture-

related HAAD is mostly independent from the object position. Therefore,

in the next section, object position based HAAD is proposed as additional,

independent level of HAAD.

5.3.2 Object Position Based HAAD

In this section, the goal is to perform anomaly detection based on the relative

position between the target φ and the contextual Objects Position (OP). Let

us assume that the dataset D contain a given set of w key objects O (objects
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under monitoring, including the human target). For each given frame t, let

h = 1 −→ (φx, φy) Human target

h = 2, . . . , w −→ {(x, y)h,1, . . . , (x, y)h,Jh} Other objects (5.3.1)

be the positions for the objects in O, where Jh is the number of occurrences of

the h-th object in O. Therefore, anomalies might come from the unexpected

mutual positions between different objects in O. Thus, for each human

target φ and for each frame t, multiple position-based q(t, φ) ⊂ R2w feature

vectors can be defined, one for each occurrence, as follows:

q(t, φ) = {[φx, φy, x2,j2 , y2,j2 , . . . , xw,jw , yw,jw ]}

∀j2 ∈ [1, . . . , J1] , . . . , ∀jw ∈ [1, . . . , Jw] (5.3.2)

The advantage of this approach is that it allows straightforward generaliza-

tion to multiple human targets and multiple occurrences of the same object

type in the scene. Let the Object Position-based Branch (OBB) be the set

of OP feature vectors, as in Figure 5.4, i.e. q(t, φ) ⊂ OBB for a given frame

t and target φ. Similarly to the previous section, a one-class SVM model

can be trained by using normal features OBB extracted from N and tested

OBB features extracted from T. However, as opposed to the previous section

where k frames where considered at a time, the abnormality estimation is

based on single frames by using multiple feature vectors as follows:

GOPs̄ (t|φ) =

 0 if SVM(q(t, φ)) = 0 ∀q(t, φ)

1 if ∃ q ∈ Q(t, φ) s.t. SVM(q(t, φ)) = 1
(5.3.3)

where SVM(q(t, φ)) denotes the trained SVM model tested on the vectors

q(t, φ).
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5.3.3 Bi-level BM-OP Activity Anomaly Detection

In Section 5.3.1, it has been assumed that BM and OP anomalies are inde-

pendent. In this section, this assumption is exploited to combine anomaly

detections GBMs̄ (t|φ) and GOPs̄ (t|φ). Therefore, the combination can be ob-

tained by using a Logic OR, as follows:

Gs̄(t|φ) ≈

 0 if GBMs̄ (t|φ) = 0 ∧ GOPs̄ (t|φ) = 0

1 otherwise
(5.3.4)

where Gs̄(t|φ) is the aimed estimation of the anomaly detection ground truth

for the s̄ video clip. See Figure 5.4 for a general overview of the proposed

bi-level approach.

5.3.4 ROC curves for SVM one-class models

In this section, a simple solution to obtain ROC curves for SVM one-class

models is proposed. To the best of the knowledge, there are no standard

methods to provide ROC curves for SVM one-class based anomaly detection

models. However, the ROC curve is a common metric for anomaly detection

systems and allows effective comparisons between different models perform-

ance. A smooth (not binary) decision surface, e.g. based on a Logistic

function, is required to compute ROC curves. However, it is impossible to

fit a Logistic function by using only one-class data properly. Therefore, it is

proposed to weaken this requirement by imposing the logistic function to be

part of the anomaly detection model, fixing a-priori its parameters.

Let s ∈ [−∞,∞] be the obtained SVM score for testing data. It is

proposed to simply transform s by using a logistic function as follows:

f(s) =
1

1 + e−k0(s−s0)
(5.3.5)

where s0 is the sigmoid midpoint and k0 is the curve steepness. Samples



Section 5.4. Simulations and Results 153

such that s = 0 lay on the edge of the SVM decision boundary. Conversely,

samples such that s > 0 or s < 0 lay, respectively, inside or outside the

normal region. Therefore, it is natural to set s0 = 0, in order to obtain

f(s = 0) = 0.5, f(s > 0) > 0.5 and f(s < 0) < 0.5. The parameter k is

inversely proportional to the confidence of the model and can be fixed a-

priori. The defined f(s) represents the new score function which allows the

ROC curve computation. This definition of f(s) requires to experimentally

set the parameter k0. However, it does not include any learnable parameter

and, once the parameter k0 is fixed, it can be merged as part of the SVM

model when ROC curves are required.

5.4 Simulations and Results

In this section, experiments for supporting the Joint RGB-poses method-

ology for HAR in Section 5.2 are reported in Sections 5.4.1. The bi-level

combined HAR-HAAD methodology discussed in Section 5.3 is supported

by experiments in Section 5.4.3.

5.4.1 Joint RGB-poses Simulations for HAR

UCF101 Dataset

In this section, Model A, B and C are tested on the popular UCF101 dataset

for HAR. UCF101 include 101 action classes related to daily life activities.

These actions are considerably determined by contextual information which

are not carried by the body poses. For example, the playing-cello action is

strongly determined by the played instrument RGB data. Therefore, despite

the body pose data might be informative in some extent, RGB data is crucial

to dispel any doubt. In Figure 5.5-(Top), four examples from UCF101 are

depicted.

Since UCF101 shows multi-target video clips, it is likely that multiple
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UCF101

MPOSE-2019

Figure 5.5: (Top) Examples from UCF101 dataset [31]. (Bottom) Examples from
MPOSE-2019 dataset, which includes Weizmann [6], KTH [7], i3DPost [8], IXMAS
[9] and the proposed ISLD datasets.
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targets are detected in the same frame. However, this dataset includes nu-

merous low-quality and low-resolution video samples where OpenPose fails,

as already discussed in detail in Section 4.4.2. Due to these limitations, in

this section the ActionXPose step is skipped. Therefore, in the pose-branch,

OpenPose directly input detected poses to the MLSTM-FCN, regardless

the pose landmarks quality. Furthermore, this dataset includes single and

multi-target video clips. However, each video clip is provided with a single

label that refers to the whole clip rather than to a label for each single tar-

get. Therefore, pose data is passed through the pose-branch frame-by-frame

alongside the target identity as additional input feature, to allow MLSTM-

FCN do potentially discriminate between different target data. Moreover, for

the same reason, the whole frame is passed through the RGB-based branch.

In Table 5.1, Model A, B and C results are compared with those obtained

by the MLSTM-FCN (pose-branch alone) and the CRNN, ResNetCRNN and

3DCNN (RGB-based branch alone). Since MLSTM-FCN reaches 60.9% ac-

curacy, the body poses knowledge is not enough to effectively describe the

actions. On the other hand, despite RGB data is expected to be fully inform-

ative, the knowledge extracted from RGB-based models varies depending on

the considered structure. In particular, RGB-based models reach respect-

ively 56.1%, 79.9% and 50.8%. As expected, despite full information is

available, the knowledge extracted depends on the model. Nevertheless, the

Joint RGB-poses approaches always outperform both the RGB-based models

and the poses-based model, demonstrating that the proposed multimodality

is effective and beneficial. Moreover, the PL training mode is outperformed

by the HL training mode, which supports the arguments in Section 5.2.3.

MPOSE-2019 Dataset

In this section, Model A, B and C are tested on a challenging dataset called

MPOSE-2019. MPOSE-2019 is the extension of the MPOSE dataset, which
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Table 5.1: UCF101 dataset (HAR) performance. Accuracies (Acc) for different
and different training modes, i.e. PL and HL, depending on the data modalities.

Modalities Acc Acc (PL) Acc (HL)

MLSTM-FCN Poses 60.9% n/a n/a

CRNN RGB 56.1% n/a n/a
Model A RGB-Poses n/a 63.0% 78.1%

ResNetCRNN RGB 79.9% n/a n/a
Model B RGB-Poses n/a 84.4% 91.1%

3DCNN RGB 50.8% n/a n/a
Model C RGB-Poses n/a 61.2% 67.12%

has been presented in Chapter 4. In particular, the ISLD dataset, which

was part of MPOSE, is extended to ISLD-2019. This extension include

additional sequences for some actions, i.e. walking, hand-waving, boxing,

pointing, bending, hands-clapping, hands-waving and running, to extend the

viewpoints variability. Additional sequences were recorded in the Intelligent

Sensing Lab. Thus, in this chapter, MPOSE-2019 is defined by fusing Weiz-

mann, IXMAS, i3DPost, KTH and ISLD-2019. In Figure 5.6, a summary of

the action composition of MPOSE-2019 is provided.

As discussed in Chapter 4 for MPOSE, MPOSE-2019 represents the best

scenario where ActionXPose can be effectively used, since the target body is

potentially fully visible. Therefore, as opposed to the previous section, in this

section ActionXPose is used to transform pose data provided by OpenPose

into meaningful temporal-motion features, as discussed in Section 5.2.1.

It is worth underlining that actions into MPOSE-2019 are mainly posture-

related and unrelated to the background. For the purpose of this chapter,

background information have been further decreased by considering only tar-

get’s ROIs, neglecting the rest of the frame background. Figure 5.5-Bottom

shows some examples of ROIs provided by MPOSE-2019. Therefore, as op-

posed to the previous section, in this section target’s ROIs are provided to

the RGB-branch in Model A, B and C.

The MPOSE-2019 results reported in Table 5.2 follows the same trend
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Figure 5.6: MPOSE-2019 actions statistics. MPOSE-2019 contains 7850 video
clips collected from famous posture-based HAR datasets. Video clips contains 21
posture-related actions performed by 72 human targets.

Table 5.2: MPOSE-2019 dataset (HAR) performance. Baseline models, i.e. the
poses-based MLSTM-FCN and the RGB-based models, are compared with the pro-
posed Joint RGB-poses models, i.e. Model A, B and C.

Modalities Acc Acc (PL) Acc (HL)

MLSTM-FCN Poses 90.3% n/a n/a

CRNN RGB 90.4% n/a n/a
Model A RGB-Poses n/a 90.8% 94.9%

ResNetCRNN RGB 80.8% n/a n/a
Model B RGB-Poses n/a 89.4% 95.8%

3DCNN RGB 77.3% n/a n/a
Model C RGB-Poses n/a 76.3% 90.4%

already seen in Section 5.4.1. In fact, the poses-based and RGB-based models

are outperformed by the Joint RGB-poses models, especially in the case of

HL training mode. This results further confirm the multimodal approach

validity.
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Activation Maps for HAR

The goal of this section is to explore how CNN activation maps [145] changes

in the case of Joint RGB-poses HAR. To this purpose, for simplicity, let

us consider models CRNN and Model A, trained on MPOSE-2019, since

the RGB branch consists of only four CNN layers. In Figure 5.7, each

layer activation map is depicted in the CRNN case, i.e. no pose data was

available during training, and Model A, i.e. pose data was available during

training. In particular, Model A has been trained with the HL training mode

proposed in Section 5.2.3. Therefore, it is expected that Model A’s RGB-

branch focuses on different areas, since poses are providing information that

the RGB-branch can avoid to extract. This expectation is confirmed by a

visual inspection of the obtained activation maps.

In Figure 5.7-(a,b,c), three video clips are passed through CRNN and

Model A and the activation maps for each layer is shown (first video clip

frame only). The CRNN is clearly focusing on the most of the ROI (see ALL

column), revealing that contextual information as well as target details are

needed to take the final decision. On the other hand, Model A’s RGB-branch

is clearly only using target fine details to take the final decision, since com-

plementary information is provided by the poses. These examples suggest

that when the poses-based branch undoubtedly detect the right action, the

RGB-branch is requested to focus on contextual details to support the other

branch or at least on regions that to not contradict the pose-branch.

Nevertheless, it is interesting to note that, for some examples, the above-

mentioned behaviour is reversed. As shown in the examples in Figure 5.7-

(d,e,f), the CRNN is clearly relying on finer target details, while the Model A

considers more contextual information. This is again due to the contribution

of the poses. However, as opposed to the previous case, these examples seems

to suggest that when the pose-branch information is unreliable, the RGB-

based branch is encouraged to focus on any useful detail that allows the
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cost function to drop. Alternatively, if the pose-branch is reliable, the RGB-

branch is encouraged to focus on regions that confirm (or not contradict) the

pose-branch information. In both cases, the multimodal approach activation

maps considerably change compared to the RGB-based case, supporting the

theoretical ideas discussed in Section 5.2.2.

5.4.2 BMbD, M-BMbD and JBMOPbD Datasets

In literature, there is a multitude of datasets for video-based anomaly detec-

tion. UCF-Crime [108] is a huge and challenging dataset which includes mul-

tiple abnormal instances from several and different semantic events. How-

ever, the proposed human actions abnormal classes are limited and not re-

lated to posture. Therefore, this dataset is not suitable as a benchmark

for a poses-based method. Other datasets such as Hockey Fight, Sub-

way, UMN, Violence in Crowds (VIC), Violence in Movies (VIM) and BE-

HAVE [31, 48, 117, 146] are also not suitable for highlighting the efficacy of

the proposed pose-driven HAR and HAAD. The first limitation regards the

lack of explicit human posture based anomalies. Targets bodies are mostly

out from the camera field of view or, even if fully visible, the targets are

not performing abnormal actions in terms of postures. The second limita-

tion is related to objects. Indeed, visible objects positions do not explicitly

define an anomaly detection problem which can be used to show the efficacy

of the proposed method and the limitations of state-of-the-art approaches.

For these reasons, novel, non-collaborative, challenging datasets, BMbD, M-

BMbD and JBMOPbD were recorded in the Intelligent Sensing Lab, focusing

on posture-related and object position-related anomalies.

The recording set up includes two standard RGB cameras mounted in a

fixed position on two top-corner of the Intelligent Sensing Lab. The dataset

includes spontaneous actions performed by up to 3 actors, wearing differ-

ent clothes to include appearance change challenges. Additionally, three key
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Figure 5.7: Comparison between first-frame activation maps for CRNN and Model
A. The four CNN levels activation maps are depicted (1, 2, 3 and 4), alongside the
cumulative activation map (ALL) obtained by summing up the others. It is evident
that when pose information are available (Model A) the RGB-branch is encouraged
to focus on different areas than those considered when pose information is not
available (CRNN). In cases (a), (b) and (c), CRNN is more activated by contextual
information, while Model A RGB-branch is more activated by finer target details.
In the (d), (e) and (f) cases, CRNN is more activated by finer target details, while
the Model A RGB-branch is more activated by contextual information and/or target
details.
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objects types were considered, i.e. human target, chair and a bike, to the

purpose of OP based anomaly detection. The human targets are also free

to interact with other environmental objects, such as drawers, tables, pc

monitors, and other human targets. Video data within the dataset is di-

vided into normal and testing, to allow semi-supervised anomaly detection,

as mentioned in Section 1.3.1. Regarding the performed action anomalies,

they consist of: 1) unexpected body movements, not necessarily among a

pre-defined set of actions; 2) key object position anomalies. In particular, re-

garding JBMOPbD normal dataset, the key objects position was constrained

to be within rectangular marks on the floor. As opposed, in the JBMOPbD

testing subset, the targets were free to move the objects in any position.

Table 5.3 summarizes the abnormal semantic domains for each proposed

dataset, to independently/jointly evaluate BM, OP, single and multi-target

performance. The ground truth for testing videos in ISLD-A has been manu-

Table 5.3: ISLD-A splits features summary. Total training/testing time is repor-
ted. HAAD targeted levels BM/OP are checked accordingly. Single, multi and not
considered (n/c) human target mode is also reported.

Split Training Time Testing Time BM OP Target

BMbD 21m:34s 19m:42s n/a single

M-BMbD 21m:34s 05m:28s n/a multi

JBMOPbD 21m:38s 12m:44s single

ally set for HAAD. Therefore, for each tracked human target, a binary label

normal/abnormal has been fixed for each target bounding box, frame-by-

frame. Regarding HAR, no ground truth has been set, since the performed

actions were spontaneous and difficult to be always clearly classified accord-

ing to a pre-defined set of actions.

As evaluation metric for HAAD, it is suggested to consider the overall

frame-level average accuracy, which measures the following ratio

1

N

N∑
t=1

TP(t) + TN(t)

P(t) + N(t)
(5.4.1)
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where TP(t) and TN(t) represent respectively the true positive (abnormal)

and true negative (normal) detections at frame t, P(t) and N(t) represent

the real positive (abnormal) and real negative (normal) detections at frame

t, for all available frames N . When multiple human targets are available on

the same frame t, thus TP(t), TN(t), P(t) and T(t) are cumulative over

visible targets. As additional metric, ROC curves are considered to allow

effective state-of-the-art comparisons.

BMbD

JBMOPbD

M-BMbD

Normal Abnormal

Figure 5.8: BMbD, M-BMbD and JBMOPbD datasets examples. Green bound-
ing boxes depict the normal events, while the strikethrough red bounding boxes
represent abnormal events.

5.4.3 Bi-level Combined HAR-HAAD Evaluations

As mentioned in Section 5.3, the combined HAR-HAAD model trains its

HAR abilities on a different dataset. MPOSE-2019 is used to this purpose,

since it best fits the criteria for combined HAR-HAAD on the novel datasets

introduced in the previous section. Moreover, as seen in Section 5.4.1, Model

B achieves the best HAR results on MPOSE-2019. Therefore, Model B
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is chosen as main architecture to test the bi-level combined HAR-HAAD

strategy.

State-of-the-art Comparisons

In this section, comparisons between Model B, ResNetCRNN and official

implementation of available algorithms [109, 110] for video-based anomaly

detection is provided. The chosen benchmarks are BMbD and JBMOPbD

splits. [109, 110] provide ROC curves as standard performance evaluation

metric. The best ROC curve for the proposed SVM one-class models is

computed as proposed in Section 5.3.4 by experimentally fixing k0 = .2.

Obtained results are depicted in Figure 5.9. The graph shows the ROC

curves for Model B, ResNetCRNN and [109, 110]. Regarding Model B and

ResNetCRNN, curves for α = [.01, .04, .07, .1, .13, .16, .19, .22] and k0 =

[.1, .2, .3, .4, .5, .6, .7, .8] are drawn to show the performance impact of dif-

ferent parameters. In the case of JBMOPbD, BM and OP based HAAD are

selectively enabled/disabled, to highlight the importance of both levels of

analysis.

Overall, the graph shows that the proposed Model B greatly improve

performance over both ResNetCRNN and the state-of-the-art models based

on autoencoders. In particular, autoencoders failure is likely due to the fact

that the abnormality is not merely related to strong changes on the RGB

content. In fact, when the human target starts performing an abnormal

action, the target appearance remains mostly preserved, preventing the au-

toencoder to fail in reconstructing the RGB data. In contrast, the proposed

approach relies on contextual and pre-trained knowledge which is effectively

transferred to the HAAD problem.
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Figure 5.9: Model B, ResNetCRNN and state-of-the-art methods performance
comparison. (Left) ROC curves for the BMbD dataset obtained by varying
parameter α = [.01, .04, .07, .1, .13, .16, .19, .22] and k0 = [.1, .2, .3, .4, .5, .6, .7, .8].
(Right) ROC curves for the BMbD dataset obtained by varying parameter
α = [.01, .04, .07, .1, .13, .16, .19, .22] and k0 = [.1, .2, .3, .4, .5, .6, .7, .8], and en-
abling/disabling BM/OP anomaly detection.

HAAD Performance Study

In this section, details on how to train the combined HAR-HAAD model

are provided. Let Model B be the chosen architecture, denoted as Mk, and

trained on MPOSE-2019 by using the HL training mode. The knowledge

learned from MPOSE-2019 for HAR is exploited to perform HAAD on other

datasets, e.g. BMbD, M-BMbD and JBMOPbD. As discussed in Section

5.3.1, in this section it is imposed MPOSE-2019 training/validation data do

be randomly cropped by using an experimentally set 30-frames time win-

dow, i.e. k = 30. Therefore, at each training epoch, training samples are

randomly cropped to increase generalisation. As opposed, validation samples

are randomly cropped only at the beginning of the training, to keep stable

validation data over different epochs and obtain consistent improvements

for the validation curve. Figure 5.10-(a) shows the validation curve obtained

during the pose-branch HAR training. Only epochs E ⊂ {1, . . . , 100} where

the validation score increased are reported on the x-axis. The status of the

network has been saved at each epoch e ∈ E , progressively obtaining mod-
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els Me
30, for all e ∈ E . Therefore, for all Me

30, the HAAD corresponding

accuracy on the HAAD datasets are reported on Figure 5.10-b)-e), for all

dataset splits. Since BM related HAAD is based on a SVM one-class model

which requires to set an additional parameter α, i.e. the outlier fraction,

the accuracy obtained for α = {.01, .04, .07, .10, .13, .16, .19, .22} is reported.

Regarding the outlier fraction parameter β required for OP based HAAD,

it has been experimentally set to β = .01.

It can be seen that optimum HAAD performance are not necessarily

reached in correspondence to the best epoch in terms of HAR performance.

In fact, for BMbD and M-BMbD, the peak in at, respectively, the 23th and

24th epochs. For the JBMPObD, the peak in on the 17th epoch when OP

based HAAD is not considered and on the 18th epoch when OP based HAAD

is considered. This surprising behaviour might be due to the concurrence

of two major causes. First, the BM features are not designed to optimise

the SVM performance but to optimise the HAR-based loss function. There-

fore, while the HAR performance follows an increasing monotonic curve,

the HAAD performance might be not necessarily monotonic. Second, there

might be a slightly overfitting effect, due to the chosen training strategy

which randomly crops training sequences. In fact, as the HAR validation

score on MPOSE-2019 increases, the sequence random cropping might force

completely different sequences to have the same output in terms of features.

For example, data that resemble a standing action often surrounds other

actions in the same sequence. Therefore, randomly cropping the sequence

around it forces data resembling the standing action to be labelled differ-

ently. This strategy improves generalisation for HAR, but might reduces the

HAAD features sensitivity.

Regarding α, as expected, the parameter plays a role in optimising per-

formance and needs to be chosen according to the tested dataset split for

best performance.
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Figure 5.10: Cross-datasets (MPOSE-2019 to ISLD-A) HAAD and HAR epoch-
based study for switching epoch ( ) research (a) Model B pose-branch best valid-
ation scores (HL mode). (b) Corresponding HAAD accuracy for BMbD. (c) Cor-
responding HAAD accuracy for M-BMbD. (d) Corresponding HAAD accuracy for
JBMOPbD, in the case of disabled OP based HAAD. (e) Corresponding HAAD
accuracy for JBMOPbD, in the case of enabled OP based HAAD.
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Figure 5.11: Joint RGB-poses Training Process optimised for HAAD for the
BMbD dataset BMbD.

So far, the epoch e which optimises the HAAD performance using the

pose-branch trained for HAR has been found. Therefore, in order to perform

the RGB-branch training by using the HL training mode, the best epoch ē

in terms of HAAD is set as switching epoch, i.e. the epoch where the RGB-

based branch training starts and the pose-branch training ends. An example

of the resulting training/validation curve obtained for the HL training mode

is shown in Figure 5.11. The HL mode ensures that the pose-branch is frozen

on the state Mē
30, therefore HAAD performance are preserved. Since the

pose-branch status inMē
30 might not be optimal for HAR, the RGB-branch

training is used to compensate HAR performance.

In summary, when the HL training is complete, the pose-branch is able

to extract features which are optimal for HAAD, suboptimal for HAR and

compensated by RGB-based features for best HAR performance.

HAAD Ablation Study

In this section, the ablation study for HAAD is provided. This study aims to

highlight the contribution of different features to the overall HAAD accur-

acy. In particular, all relevant combinations of features are systematically

exploited following the methodology presented in Section 5.4.3. Therefore,
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for each dataset, combinations of pose-branch features, i.e. PBB, and RGB-

based branch features, i.e. RBB, are considered for the BM based HAAD.

Moreover, for JBMOPbD dataset, BM based features are considered along-

side OP based features, i.e. OBB, in all possible setups.

The best accuracy over epochs E is reported in Table 5.4 for each case,

including relative α and β parameters.

As a useful comparison, in this study the ResNetCRNN performance

as HAAD features extraction method is also reported. To this purpose,

ResNetCRNN has been trained on MPOSE-2019 using the same 30-frames

random time cropping already used for the Model B training. The obtained

training process is depicted in Figure 5.12. Following the same approach

already used for the Model B, several network status are saved by using the

best validation scores. Therefore, resulting networks are used for HAAD

features extraction.

The overall conclusion of this study is that RGB related features (RBB)

are always worsening the HAAD results and should not be considered, sup-

porting the study reported in Section 5.4.3. On the other hand, consider-

ing OP related features (OBB) is always beneficial, as expected, since the

JBMOPbD dataset includes significant anomalies from the unexpected key

object positions.

5.5 Critical Analysis

The Objective 7 introduced in Section 1.3 has been achieved by proposing

Model A, B and C for joint RGB-poses HAR, which represents a generalisa-

tion of pose-based HAR to joint RGB-pose based HAR. In particular, it is

shown that HAR performance can be improved by using multimodal pose-

driven approaches instead of single RGB-based or poses-based deep learning.

Moreover, Objectives 8, 9 and 10 have been also achieved, by proposing
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Table 5.4: HAAD Performance Ablation Study. Model B best accuracy and α
parameter are reported for relevant combinations features, i.e. PBB, RBB and OBB
for HAAD. Results are compared with those obtained by the model ResNetCRNN,
which is the precursor of the Model B.

BMbD Features

Model BM Best Accuracy α

Model B
PBB 79.86% .16
RBB 57.84% .13

PBB+RBB 78.06% .16

ResNetCRNN RBB 66.68% .16

M-BMbD Features

Model BM Best Accuracy α

Model B
PBB 89.45% .04
RBB 74.10% .04

PBB+RBB 88.50 .07

ResNetCRNN RBB 86.17% .07

JBMOPbD Features

Model BM OP Best Accuracy α β

Model B

n/a OBB 81.80% n/a .01
PBB n/a 66.48% .16 n/a
PBB OBB 85.46% .01 .01
RBB n/a 56.41% .19 n/a
RBB OBB 81.46% .01 .01

PBB+RBB n/a 65.20% .13 n/a
PBB+RBB OBB 85.11% .04 .01

ResNetCRNN
RBB n/a 57.31% .13 n/a
RBB OBB 82.76% .01 .01

a combined HAR and HAAD approach based on SVM models to simul-

taneously output: 1) body-movements anomaly detection labels; 2) object

position anomaly detection labels; 3) action recognition labels for single and

multi-target video data.

In this chapter, it has been also demonstrated that state-of-the-art ap-

proaches based on autoencoders for semi-supervised anomaly detection are

not capable to effectively detect human posture-related anomalies, and they

fail in detecting objects positions related anomalies. In contrast, the pro-

posed method greatly outperforms the state-of-the-art, as the ROC curve

comparison in Figure 5.9 demonstrates.
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Figure 5.12: Training process for ResNetCRNN based on MPOSE-2019 using the
30-frames random time windows. The best validation network status is saved for
HAAD features extraction. Best results obtained over those status are reported in
Table 5.4.

Despite the achievements discussed in this chapter, some points can be

raised, which set up possible future works.

The first point regards the state-of-the-art network I3D [19]. In [19], it

has been shown that massive pre-training on huge datasets and multimodal

video processing (RGB + optical flows) is beneficial for HAR. Therefore, in

principle, I3D can be used as a standard for the RGB-branch, in place of the

more general models considered in this thesis, i.e. CRNN, ResNetCRNN and

3DCNN. This can be done as part of future development, where the video

processing can include RGB, optical flows and human poses in a three-way

multimodal approach.

The second point regards the link between HAR and HAAD presented in

this chapter. It has been shown that HAR performance growth during train-

ing is not necessarily linked with the HAAD performance growth. In other

words, optimising HAR performance does not necessarily improve HAAD

performance accordingly. This limitation is due to the fact that the HAR

and HAAD model optimisations are not linked by a common loss function.

Future work can further investigate this interesting point, proposing novel
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fusion techniques to jointly optimise the model for the two distinct tasks.

The third and last point regards the fact that the proposed datasets, i.e.

BMbD, M-BMbD and JBMOPbD, are not provided with HAR ground truth.

As discussed in Section 5.4.2, it was difficult to categorise the performed ac-

tion according to any predefined set of labels, particularly the action labels

included in MPOSE-2019. This lack of ground truth made it impossible to

explicitly quantify the advantage of joint RGB-poses HAR on these data-

sets over the unimodal HAR. However, it is possible to compare the results

of RGB-based and joint RGB-poses based HAR on BMbD, M-BMbD and

JBMOPbD, by visioning the output videos. By making this qualitative com-

parison, the advantages of the proposed method over the RGB-based one are

evident. This result suggests that using pose-driven data is beneficial with

respect to only using RGB data, i.e. target ROIs, to the purpose of more

accurate HAR.

5.6 Chapter Summary

In this chapter, pose-driven approaches have been extensively studied in

the context of HAR and HAAD. First, it is shown that joint RGB-poses

approaches can improve RGB-based and poses-based methods efficacy for

HAR. Second, novel datasets for posture-based, multi-target, non-cooperative

HAAD are proposed. It is shown that autoencoder-based state-of-the-art

method are suboptimal on the proposed datasets. Therefore, a novel and

more effective solutions was proposed, which is based on joint RGB-posed

networks. The proposed method is designed to simultaneously perform HAR

and HAAD.



Chapter 6

CONCLUSIONS AND

FUTURE WORK

Video-based Human Action Recognition (HAR) and Human Activity Anom-

aly detection (HAAD) offer great challenges in several applications domains.

In this thesis, the posture-based HAR and HAAD have been considered.

The goal was to achieve robust and computationally-efficient models which

can be potentially used in non-cooperative, multiple human monitoring and

surveillance. To achieve this goal, in Section 1.3, ten interlinked object-

ives were identified. Therefore, in Chapters 3, 4 and 5, the objectives were

successfully addressed. Overall, this thesis contributed algorithms in the

fields of silhouette-based HAR, pose-based HAR and pose-driven HAR and

HAAD. Moreover, to support the experimental evaluation, novel posture-

related, non-cooperative and multi-target datasets were also contributed,

namely ISLD-2018, ISLD, ISLD-2019, BMbD, M-BMbD and JBMOPbD.

Further and extensive evaluation was also conducted on publicly available

and popular datasets.

In Chapter 3, the posture-related HAR problem was addressed by con-

tributing new frameworks for silhouetted-based HAR. A popular method

proposed by Weinland et al. [26] based on 3D-HOG and background sub-

traction was successfully replicated to serve as a baseline for further devel-

opment. Thus, the limitations of the baseline were highlighted. Therefore,

172
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the baseline limitations inspired the development of new algorithms, namely

Framework A and B, for silhouette-based 3D-HOG based HAR. The pro-

posed frameworks not only outperformed the baseline in terms of accuracy

on public datasets but also overcame the baseline limitations. Despite these

achievements, questions related to the background subtraction method were

raised. The conducted experiment on ISLD-2018 highlighted that, in real-

world recordings, the state-of-the-art ViBE algorithm for background sub-

traction requires to be intensively tuned. Moreover, it must be supported by

an additional human detector, to distinguish the human targets from other

objects and artefacts such as ghosts. Furthermore, the minimum computa-

tional effort which was possible to achieve was not encouraging. Overall,

despite the obtained achievements, it was concluded that silhouette-based

HAR, in the form discussed in this thesis, is not as promising as originally

wished to achieve the goals of this thesis. However, this study allowed to ac-

quire useful competencies in HAR and imagine other potentially disruptive

solutions.

In Chapter 4, the expertise developed in the previous chapter was capit-

alised by driving the focus from silhouette-based HAR to pose-based HAR.

The key step was to cast aside ViBE and prefer OpenPose as a posture-

based data collector. The advantages of OpenPose with respect to ViBE

are: 1) OpenPose performs human detection and posture-related data col-

lection in one shot; 2) OpenPose consistently provides human-poses despite

the considered dataset; 3) OpenPose does not require any intense parameter

selection. Therefore, a novel algorithm was proposed to perform robust HAR

on the basis of 2D human-poses. After extensive performance evaluation, the

proposed algorithm, named ActionXPose, demonstrated to be as effective as

those based on human-silhouettes in terms of accuracy. Moreover, the pro-

posed solutions for dealing with body occlusions made ActionXPose more ro-

bust compared to the baselines. Overall, ActionXPose achieved performance
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among the state-of-the-art over the tested datasets. Its generality also allows

performing cross-datasets experiments. The definition of ActionXPose made

a considerable step forward towards the goal of this thesis. In fact, despite

the OpenPose limitations on in-the-wild scenarios, ActionXPose showed high

robustness and computational-efficiency in several, posed, multi-viewpoint

and publicly available datasets. However, it was still necessary to test it on

non-cooperative scenarios. Moreover, since human-poses lack of semantic

information other than the body limbs position, combinations between col-

ours and poses were considered as a further research direction. Furthermore,

HAAD problems were still not considered.

In Chapter 5, the conclusive studies regarding pose-driven HAR and

HAAD were conducted. The first goal was to define and study novel models

for joint RGB-poses based HAR. This study provided evidence that mul-

timodal data based on human colours and poses are generally beneficial

compared to the unimodal data for HAR. Therefore, the most performing

model, among those proposed for HAR, was selected to conduct further

studies on HAAD. Thus, the joint RGB-pose based Model B was considered

as a multimodal feature extraction method to simultaneously perform HAR

and semi-supervised HAAD. The experimentation was conducted on newly

recorded multi-target datasets, to compensate for the lack of datasets in

the literature regarding posture-related HAAD problems. This experiment-

ation also provided evidence that ActionXPose, as well as its multimodal

extension, i.e. Model B, are effective in non-cooperative scenarios for HAR

and HAAD. Furthermore, the HAAD considered problem included objects

position-related anomalies alongside human posture-related anomalies. The

proposed model outperformed state-of-the-art, autoencoder-based baselines

on tested datasets. Overall, the proposed model can perform combined joint

RGB-pose HAR and, simultaneously, pose-driven and object-positions based

HAAD in multi-target, non-cooperative scenarios. To the best of the know-
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ledge, this algorithm constitutes a unique example in the literature with such

characteristics. The effectiveness of the proposed model is also showed in

this video examples1,2.

Overall, Model B for HAR, proposed in Section 5.2, deployed as part

of the bilevel HAAD model proposed in Section 5.3, thoroughly achieve the

goals of this thesis.

6.1 Future Work

This thesis’s work spanned three years. During this time, OpenPose was

not the only main breakthrough advance in the state-of-the-art. Other sub-

sequent and very recent advances suggest exciting research directions which

might lead to this thesis further development.

For example, it is evident that OpenPose has limitations, particularly

in in-the-wild scenarios. OpenPose’s authors are actively developing their

algorithm to make it progressively more effective and robust. However, it

could be potentially more effective to consider the recent algorithms for

image-segmentation, in place or in collaboration with OpenPose. As a mat-

ter of fact, image-segmentation detectors can provide human-silhouettes

for posture-related HAR and HAAD. Therefore, modern approaches for

silhouette-based HAR and HAAD can be studied based on image-segmentation

data. Thus, the approaches and the conclusions drawn in Chapter 3 will be

necessarily reconsidered.

Another example of future work direction could be extending Action-

XPose results on 3D human-skeleton HAR and HAAD based on stereo cam-

eras. In fact, new and very recent stereo cameras can interpolate depth

information from a pair of 2D coloured images, providing the third dimen-

sion to human poses. Thus, straightforward 3D extensions of ActionXPose

1https://www.youtube.com/watch?v=7 mcWCB76Ps
2https://www.youtube.com/watch?v=VJD9tYPzHPQ

https://www.youtube.com/watch?v=7_mcWCB76Ps
https://www.youtube.com/watch?v=VJD9tYPzHPQ
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Figure 6.1: This thesis focuses on multi-semantic RGB-based data such as target
bounding boxes, object bounding boxes and labels, human silhouettes and human
poses.

are suggested.

Future work might also concentrate on testing the proposed approaches

on a variety of additional contexts for healthcare and surveillance applic-

ations. Furthermore, this thesis raises attention over the current trend in

deep learning research, i.e. multi-tasking network training strategies and

fusion mechanisms. Therefore, future work might be upon exploring novel

fusion mechanism for multi-tasking learning.

It is well known that multimodality is, in principle, advantageous for

HAR and HAAD. The idea behind the multimodality is that different sensors,

e.g. RGB, depth sensors, and accelerometers, can potentially be deployed

to compensate to each other limitations, providing robust and effective in-

formation. However, multimodal data can be difficult to be obtained due to

the non-invasive constraints.

On the other hand, as suggested by Hampapur et al. [147] and Porter et

al. [148], multimodality can also be in terms of multi-scale or multi-semantic

data. Multi-semantic processing is performed by humans subconsciously

while solving complex tasks such as human action recognition or behaviour
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analysis. For example, a human operator observing a hall entrance, not only

controls where people are positioned in time and space, i.e. human tracking,

but also what they are doing, what is their appearance, facial expressions

and overall behaviour coherence. This information is retrieved from a single

source, i.e. visual data. Therefore, the challenge is how to mimic such mul-

timodal human ability? The problem is further exacerbated by the so-called

semantic gap. While the data acquisition is a very physical phenomenon, the

object of interest is defined in very abstract terms, and it is related to a subset

of the full carried information (what the human operator considers interest-

ing). Therefore, we would need to integrate different methods considering

them as components of a more general hierarchy model [148]. Following this

purpose, this thesis exploited RGB data to extract multi-semantic informa-

tion, e.g. target bounding boxes, object bounding boxes and labels, human sil-

houettes and human poses (Figure 6.1). However, multimodal generalisation

of the models proposed in this thesis for multimodal implementations can be

further explored. Last but not least, since RGB cameras were the main in-

Figure 6.2: Example of privacy-preserving data. Human poses and bounding
boxes are the only stored and processed data, while RGB data are discarded and
neglected from the processing.

put source in this thesis, privacy issues need to be considered. In fact, RGB

data contains sensitive information, such as target’s identity, that might

compromise the applicability of the proposed methods. Consequently, the
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above-mentioned multi-semantics data acquisition must take into account

that the target’s privacy might be not questioned, depending on the desired

application. Thus, a trade-off between information and data protection is

required. In other words, it is desirable to find RGB-based solutions which

are still effective even if the privacy of the target is preserved. In this thesis,

preliminary approaches for privacy-preserving processing has been explored

by considering human poses and discarding RGB data right after target de-

tection (Figure 6.2). However, still target identification can be, in principle,

performed by using human poses. Therefore, more sophisticated solutions

for privacy-preserving HAR and HAAD can be further studied.
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