
Latency Measurement, Modelling and
Management for Interactive Remote

Rendering

Richard Cloete

Supervisor: Prof. N.J. Holliman

School of Computing

Newcastle University

This dissertation is submitted for the degree of

Doctor of Philosophy

Abstract

Interactive Remote Rendering (IRR) systems enable computationally intensive rendering tasks
to be offloaded to powerful remote servers, while permitting real-time user interaction. By
streaming only images from the server to the client, these systems solve many issues, but can be
adversely affected by Interaction Latency (IL). This thesis explores the use of keyboard-based
user interaction prediction as a potential method for reducing IL. Specifically, the following
questions are addressed: What is the effect of prediction on IL? How can we model and simulate
latency? How can we measure IL when prediction is used? What is the optimal number of
predictions ahead required to minimise latency? On which side of the network should prediction
be performed? The literature describes a few cases of prediction being used in IRR systems but
there exists a lack of knowledge pertaining to the development, integration and measurement of
prediction into such systems. Initial investigation identified a lack of robust techniques for
simulating and measuring latency in IRR systems, especially those employing prediction. A
latency model is introduced, and a simulator is developed, demonstrating results comparable to
the real-world. Latency simulation is shown to be accurate and is integrated into a “IRR
simulator platform”, permitting the exploration of the above research questions. As a result, two
novel latency measurement techniques are presented. A prediction module is then developed and
used in conjunction with the simulator platform. Results show that IL can be substantially
reduced but predicting too far ahead negatively impacts IL, while less interaction history is
found to result in lower mean IL. Finally, Client-Side Prediction was found to be more
favourable for IL with respect to the amount of interaction history used, while Server-Side
Prediction is shown to facilitate lower IL when predicting more than one step ahead. The results
and tools presented in this thesis should prove useful for future exploration of PIRR systems.

Declaration

I hereby declare that except where specific reference is made to the work of others, the contents
of this dissertation are original and have not been submitted in whole or in part for consideration
for any other degree or qualification in this, or any other university. This dissertation is my own
work and contains nothing which is the outcome of work done in collaboration with others,
except as specified in the text and Acknowledgements.

Richard Cloete

Acknowledgements & Dedication

I’d like to thank Professor Nick Holliman for supervising my PhD. Nick’s guidance and support
has been invaluable. His help in shaping my research and writing has been immeasurable and I
am deeply grateful for all the time he has given to me. I’d also like to thank Professor Paul
Watson and Professor Darren Wilkinson for the incredible opportunity they provided me with.
Paul’s counsel and openness with me is truly appreciated. I am also immensely grateful to my
wife, Dr. Evgeniya Shmeleva, to whom I dedicate this work and my life, for her patience with
me over the past 4 years, for listening to me ramble on about ideas, for supporting me
emotionally and for being there for me when I needed her most. Broadly, I’d like to thank the
entire CDT team and students for the teaching, support and friendships and kindness shown to
me over the last 4 years. Finally, I’d like to thank the EPSRC for funding my PhD for without
their generosity, I would not be where I am today.
Thank you everyone!

Table of Contents

List of Figures xiii

List of Tables xvii

1 Introduction 1
1.1 Motivation . 1
1.2 Aims and Objectives . 2
1.3 Methodology . 3
1.4 Contributions . 4
1.5 Thesis Outline . 4

2 Background literature 7
2.1 Local rendering vs Interactive Remote Rendering 9

2.1.1 Local rendering: advantages and disadvantages 9
2.1.2 Interactive remote rendering: advantages and disadvantages 9

2.2 Remote rendering approaches in literature . 10
2.2.1 Model streaming . 10
2.2.2 Mesh streaming . 12
2.2.3 Command streaming . 12
2.2.4 In-situ approach . 13
2.2.5 Hybrid approaches . 14
2.2.6 Image streaming approach . 14
2.2.7 Summary of approaches . 16

2.3 Managing Latency . 17
2.3.1 Level of detail (LOD) management 19
2.3.2 Image warping . 20
2.3.3 Prefetch . 22
2.3.4 Brute force based prefetch . 23
2.3.5 Prediction . 24

2.4 Summary . 26

3 Measuring and Simulating Latency in Interactive Remote Rendering Systems 27
3.1 Overview . 27
3.2 Modelling latency . 27

Table of Contents

3.3 Simulating Latency . 30
3.3.1 Implementation . 31

3.4 Measurement Approaches . 32
3.4.1 Observer . 32
3.4.2 Hardware . 33
3.4.3 Integrated . 34

3.5 A Software-Based Interaction Latency Measurement Tool (LMT) 35
3.5.1 Implementation . 36

3.6 Experimental setup . 38
3.6.1 The client application . 39
3.6.2 The server application . 39

3.7 Experiments and Results . 40
3.7.1 IRR Measurements . 40
3.7.2 LMT Testing and Evaluation . 44

3.8 Discussion . 47
3.8.1 On simulating latency . 47
3.8.2 On the IRR system . 48
3.8.3 On the Latency Measurement Tool . 48
3.8.4 Summary . 49

4 N-Grams for predicting keyboard-based user interactions 51
4.1 Overview . 51
4.2 N-Grams and their suitability for IRR systems 51
4.3 Assumptions and Constraints . 52

4.3.1 Keyboard-only interaction prediction 52
4.3.2 Interaction types . 52

4.4 Definitions . 52
4.5 Experimental setup . 52

4.5.1 Limitations . 53
4.6 The model . 54
4.7 Implementation and performance . 55

4.7.1 Buffer-based . 55
4.7.2 Dictionary-based . 57

4.8 Summary . 60

5 Simulating a Predictive Interactive Remote Rendering System 61
5.1 Overview . 61
5.2 Definitions . 62
5.3 Architecture . 62

5.3.1 Client application . 63
5.3.2 Interaction-Result matching . 65

x

Table of Contents

5.3.3 Prediction module . 66
5.3.4 Server application . 67

5.4 Latency simulation module . 68
5.5 Implementation of single-track prediction . 69
5.6 Summary . 70

6 Exploring the Effect of N-Gram Prediction on Interaction Latency Using the Sim-
ulator 71
6.1 Overview . 71
6.2 Experiments . 72

6.2.1 Base IL . 72
6.3 The effect of user interaction prediction on IL using the simulator 76

6.3.1 The effect of N-Gram Order on IL . 79
6.3.2 The effect of MPA on IL . 81
6.3.3 Measuring system rate of recovery from incorrect predictions 85

6.4 Summary . 90

7 Exploring the effect of N-Gram prediction on interaction latency using a real-world
PIRR system 93
7.1 Overview . 93
7.2 Architecture . 93

7.2.1 Client application . 93
7.2.2 Prediction module . 95
7.2.3 Server application . 95

7.3 Interacting with scene objects . 96
7.4 Experiments . 98

7.4.1 Base IL . 98
7.4.2 The effect of user interaction prediction on IL using the IRR system . . 100
7.4.3 The effect of N-Gram Order on IL . 103
7.4.4 The effect of MPA on IL . 104

7.5 Summary . 106

8 Managing incorrect predictions 107
8.1 Overview . 107
8.2 Approaches for managing incorrect prediction 107

8.2.1 Local rendering . 107
8.2.2 Image warping . 108
8.2.3 Prediction . 108
8.2.4 Panoramas . 108
8.2.5 Multi-track prediction . 108

8.3 The effect of a multi-track prediction strategy on IL due to misprediction 110

xi

Table of Contents

8.4 Summary . 114

9 Client-Side Prediction vs Server-Side Prediction 117
9.1 Overview . 117

9.1.1 Client-side prediction and server-side prediction 117
9.2 Experimental setup . 119
9.3 N-Grams . 120

9.3.1 Simulator CSP vs SSP . 121
9.3.2 Unity3D CSP vs SSP . 123
9.3.3 Simulator CSP vs Unity3D CSP . 126
9.3.4 Simulator SSP vs Unity SSP . 128

9.4 MPA . 129
9.4.1 Simulator CSP vs SSP . 130
9.4.2 Unity3D CSP vs SSP . 133
9.4.3 Simulator CSP vs Unity3D CSP . 135
9.4.4 Simulator SSP vs Unity3D SSP . 137
9.4.5 Summary . 139

10 Discussion and Conclusions 141
10.1 Discussion . 141
10.2 Conclusions . 146

10.2.1 Research questions . 146
10.3 Future work . 148

10.3.1 Real-time Operating Systems . 148
10.3.2 Context Awareness . 149
10.3.3 Foveated Rendering . 149

Appendix A Measuring recovery times 151

References 155

xii

List of Figures

2.1 Remote Rendering architecture . 8
2.2 Simple IRR system architecture . 8
2.3 Progressive model streaming . 11
2.4 Complex client and server communication . 11
2.5 A sphere presented at various Level of Detail (LOD). 20
2.6 An example of image warping. 20
2.7 Hole artefact example . 22

3.1 Interactive Remote Rendering latency points 29
3.2 Simulating latency: Synchronous vs asynchronous processing processing . . . 30
3.3 A tool built to measure the baseline performance of our latency measurement tool 38
3.4 Client application scene view . 39
3.5 Server application scene view . 40
3.6 Base interaction latency measurements with integrated measurement approach . 41
3.7 Interaction latency measured using integrated approach with 50ms simulated

latency . 41
3.8 Interaction latency measured using integrated approach with 100ms simulated

latency . 42
3.9 Simulated vs non-simulated interaction latency measured using the integrated

approach . 42
3.10 Boxplots of means of simulated vs non-simulated Interaction Latency measure-

ments. 43
3.11 Distribution of Interaction Latency measurements collected when latency is

simulated. 43
3.12 Distribution of Interaction Latency measurements collected when latency is

produced by a real-world network. 44
3.13 Latency measurement tool base results collected using a test-application 45
3.14 Peak Signal to Noise Ratio indicates interaction events 46
3.15 Peak Signal to Noise Ratio interaction events; a closer look 46
3.16 A comparison of measurements between Latency Measurement Tool and inte-

grated approach . 47

4.1 Randomly generated mazes for user interaction collection 53
4.2 Trained vs untrained N-Gram model . 56

xiii

List of Figures

4.3 Computation timings for N-Gram prediction using a buffer 57
4.4 Dictionary-based data structure used for N-Gram prediction model 59
4.5 Computation timings for N-Gram predictions using a dictionary-based approach 59

5.1 simulatorArchitecure . 63
5.2 Various prediction module integration configurations 66
5.3 Positions (red circles) of the latency module within the Predictive Interactive

Remote Rendering system. 68
5.4 Example of single-track prediction. 69

6.1 Base interaction latency of simulator . 73
6.2 Simulator mean base Interaction Latency at various simulated latencies 74
6.3 Base simulator interaction latency measured over the Internet 74
6.4 Simulator Interaction Latency boxplots: LAN vs WAN 75
6.5 WAN Interaction Latency (IL) vs LAN IL using simulator. 76
6.6 Effect of prediction on Interaction Latency using the simulator. 77
6.7 Raw data from a single run of the simulator 78
6.8 Simulator with no prediction, run over WAN 79
6.9 Simulator with 1-step ahead prediction and N-Gram Order = 1, run over WAN 79
6.10 Effect of N-Gram Order on Interaction Latency at various degrees of Network

Latency. 80
6.11 Effect of N-Gram Order on Interaction Latency using the simulator over the

internet . 81
6.12 Effect of Multiple Predictions Ahead on Interaction Latency using the simulator 82
6.13 Effect of Multiple Predictions Ahead on Interaction Latency using the simulator

over WAN . 83
6.14 Example flow of interaction events through simulator. 84
6.15 N-Gram prediction recovery periods . 86
6.16 Simulator recovery times measured at various simulated Network Latency values:

N-Grams . 88
6.17 Simulator recovery times over WAN: N-Grams 88
6.18 Recovery times of simulator at various Network Latency and prediction distance:

Multiple predictions ahead . 89
6.19 Recovery times of simulator running over WAN: Multiple predictions ahead . . 90

7.1 Client vs server views of Predictive Interactive Remote Rendering system . . . 97
7.2 Baseline Interaction Latency measurements collected from Interactive Remote

Rendering system . 98
7.3 Unity3D vs Simulator base Interaction Latencies 99
7.4 Unity3D Interactive Remote Rendering system vs Simulator over Internet with-

out prediction . 99

xiv

List of Figures

7.5 Unity3D Interactive Remote Rendering system vs Simulator over Internet with-
out prediction: box plots . 100

7.6 Effect of prediction on Interaction Latency at various simulated Network Laten-
cies: Unity3D Interactive Remote Rendering system vs Simulator 101

7.7 Effect of prediction on Interaction Latency at various simulated Network Laten-
cies: Unity3D Interactive Remote Rendering system vs Simulator: Box plots . 102

7.8 Unity3D Interactive Remote Rendering system vs Simulator, with 50m simulated
Network Latency . 102

7.9 Unity3D Interactive Remote Rendering system: effect of N-Gram Order on
Interaction Latency at various Network Latency values. 103

7.10 Unity3D Interactive Remote Rendering system: effect of N-Gram Order on
Interaction Latency with 1-step ahead prediction 104

7.11 Unity3D Interactive Remote Rendering system: effect of Multiple Steps Ahead
prediction on Interaction Latency at various simulated Network Latencies . . . 105

7.12 Unity3D Interactive Remote Rendering system over Internet: the effect of
Multiple Predictions Ahead on Interaction Latency 105

8.1 Multi-track prediction scheme . 109
8.2 Multi-track prediction scheme with 2-steps ahead prediction 110
8.3 Modified Interactive Remote Rendering Unity3D system to use multiple server

applications . 112
8.4 Interactive Remote Rendering Unity3D system with multi-track prediction failure113
8.5 Interactive Remote Rendering Unity3D system comparison of single-track and

multi-track prediction scheme results . 113

9.1 Client-Side Prediction (CSP) vs Server-Side Prediction (SSP). 119
9.2 Effect of N-Gram Order on Interaction Latency using the Simulator: Client-Side

Prediction vs Server-Side Prediction . 121
9.3 Simulator CSP vs SSP. Mean differences at various N-Gram Orders and Network

Latencies. MPA = 1. 122
9.4 Simulator CSP vs SSP using WAN and the effect of N-Gram Order on IL. . . . 123
9.5 Unity3D CSP vs SSP using WAN and the effect of N-Gram Order on IL. . . . 124
9.6 Unity3D CSP vs SSP ∆ mean IL differences at various NL and N-Gram Orders. 125
9.7 Unity3D system CSP vs SSP. Effect of N-Gram Order on IL over WAN. 126
9.8 Simulator vs Unity3D CSP. The effect of N-Gram Order on IL at various NL. . 127
9.9 Simulator vs Unity3D CSP ∆ mean differences. N-Gram Orders. 127
9.10 Simulator vs Unity3D SSP: Effect of N-Gram Order on IL at various NL. . . . 128
9.11 Simulator vs Unity3D SSP. ∆ Mean differences. N-Gram Orders. 129
9.12 Simulator CSP vs SSP: The effect of MPA on IL at various NL. 131
9.13 Simulator CSP vs SSP: ∆ Mean IL differences at various NL and MPAs 132
9.14 Simulator CSP vs SSP over WAN comparison. 133

xv

List of Figures

9.15 A comparison of Unity CSP vs SSP. MPA. 134
9.16 Unity CSP vs SSP. ∆ Mean IL differences at various NL and MPAs 135
9.17 Simulator vs Unity3D CSP: Mean IL various NL and MPA values. 136
9.18 Simulator vs Unity3D CSP: ∆ Mean IL at various NL and MPA values. 137
9.19 Simulator vs Unity SSP. Mean IL measured at simulated NL’s. MPA. 138
9.20 Unity vs simulator SSP. ∆ Mean IL differences at various NL and MPAs. 139

xvi

List of Tables

2.1 IRR Approaches and their pros and cons. 17

3.1 Latency simulator measurements . 32
3.2 Simulated model parameter measurements (ms) 32
3.3 Advantages and disadvantages of Interactive Remote Rendering approaches . . 35

4.1 Example corpus of user interaction events . 54

5.1 Example configuration file for system initialisation 64

6.1 Simulated latencies used in all experiments, and the reasons for being chosen. . 71
6.2 Config file modification for Maximum Predictions Ahead and N-Gram Order

control. 72

8.1 Multi-track prediction: Unity3D mean IL measurements 114

9.1 Config modification for client-side and server-side prediction 119
9.2 Client-Side and Server-Side Prediction experiments and parameters 120
9.3 CSP vs SSP over WAN with various N-Gram Orders 123
9.4 Unity CSP vs SSP over WAN at various N-Gram Orders 126
9.5 Client-Side and Server-Side Prediction experiments and parameters 130
9.6 Simulator over WAN: mean IL difference between CSP and SSP 133

xvii

Acronyms

CFB Client Frame Buffer. 65, 66, 94, 95

CIB Client Interaction Buffer. 63–66

CL Client Latency. 18, 28, 32

CSP Client-Side Prediction. 117–126, 129, 130, 132–135, 138–140, 142, 143, 145, 147, 148

DL Display Latency. 28, 29, 49

IDL Input Device Latency. 28, 49

IL Interaction Latency. 1–5, 15, 17–20, 22–30, 32–38, 40–42, 44–50, 52, 55, 60, 61, 63, 65,
70–73, 75–82, 85–87, 89–91, 93, 96–98, 100, 101, 103, 104, 106, 107, 109, 111–115, 117,
118, 120–126, 128–149

IRR Interactive Remote Rendering. 1–5, 8, 9, 14, 16, 17, 21, 22, 25–28, 30, 32–36, 38, 40–42,
44, 47–51, 55, 60, 61, 71, 78, 85, 91, 94, 95, 106–108, 114, 141, 142, 146–148

LMT Latency Measurement Tool. 27, 35, 36, 38–40, 44, 45, 47–50, 142

LOD Levels of Detail. 10

MPA Maximum Predictions Ahead. 69–72, 76–78, 80–83, 85, 86, 89–91, 93, 101, 103, 104,
106, 109–115, 119, 120, 125, 129, 130, 132–140, 143–145, 148

NL Network Latency. 3, 18, 22–24, 28, 32, 34, 40, 68, 69, 72–74, 76, 77, 82, 83, 85, 88–91, 98,
101, 103–106, 111–115, 117, 120–122, 124–126, 129, 130, 132, 133, 136–140, 145

OoO Out-of-Order. 48

OS Operating System. 43, 48, 49

PIRR Predictive Interaction Remote Rendering. 5, 61, 62, 64, 67, 68, 70, 71, 76, 83, 85–87,
89–91, 93, 96, 98, 100, 103, 106, 111, 112, 114, 115, 118, 120, 123–125, 128–130,
134–136, 139, 142, 144, 145, 148, 149

PSNR Peak Signal to Noise Ratio. 27, 35, 37, 45, 46, 49, 141, 149

xix

Acronyms

RTT Round-Trip Time. 69, 77, 80, 85, 90, 107

SD Send Delay. 30, 40, 65, 85, 90, 114

SL Server Latency. 18, 28, 29, 32

SSP Server-Side Prediction. 117–122, 124, 125, 128–130, 132–135, 137, 139, 140, 143, 145,
147, 148

VE Virtual Environment. 52, 53, 60, 66, 107, 149

xx

Chapter 1. Introduction

Rendering, a computationally intensive task, is the process of automatically generating images
from models (geometric representations of objects) or data sets, using computer programs. The
addition of interaction allows an operator to manipulate and control/steer rendering using input
devices such as a keyboard or mouse. Typical examples of these “interactive visualisation
applications” are video games or visualisation software (e.g. Blender, MAYA, 3DS Max).
Commonly, such applications are executed on a laptop, tablet, smartphone, etc. However, in
some cases, the application resource requirements of rendering means that this is not always
possible and a more powerful device is required. For example, a device may not have enough
memory or compute power to perform rendering at a sufficient rate, leading users to perform
worse [1, 2], experience nausea [3, 4] and lose interest [5, 2].

To mitigate the issue of resources, rendering can be offloaded to the cloud, where powerful
servers receive interaction commands (e.g. from a mouse or keyboard) from a client device
(laptop, tablet, smartphone, etc.), process them, perform rendering and return results (images,
models, etc.) back to the client requesting them Rendering. The vast resource availability and
scalability of the cloud makes Interactive Remote Rendering (IRR) systems a promising
research direction, as it offers an alternative to traditional local rendering and may open markets
to users and devices currently not suitable for certain tasks.

Nevertheless, IRR systems introduce some critical issues. One such issue is that of Interaction
Latency (IL), which is the delay experienced, by a user, between performing an action and
seeing an on-screen response/change. Although IL is present in all rendering systems, IRR
systems tend to experience higher IL due to the client and rendering application being separated
by a network, which introduces a delay not present where rendering is performed locally. This
has led many researchers [6, 7, 5, 8, 9] to identify IL as a significant challenge.

1.1. Motivation

The last decade has seen rapid and enormous growth in the mobile device sectors, both
technologically and commercially with laptops, tablets and smartphones increasingly becoming
part of the average UK adult life. Smartphone ownership has grown by 61% since 2008, laptop
ownership by 19% since 2009 and tablet devices by 56% since 2011. Conversely, desktop
computer ownership declined from 69% in 2008 to just 28% in 2018. This 41% decrease is a

1

Introduction

clear indication that consumers are embracing mobile technology and moving away from the
traditional desktop computing environment.

Although our ability to render highly detailed scenes is increasing, 3D models are becoming
more intricate as designers strive for realism and scene complexity [10]. While high quality
rendering is possible with some mobile devices, smooth interaction with complex scenes
consisting of millions of textured polygons is not yet possible [11]. Further, the challenges of
deploying complex 3D rendering systems to mobile devices is undesirable and can lead to high
energy consumption during operation [10], thereby draining batteries, generating heat and
leading to other complexities.

Mobile devices, referred to as “thin clients” because of their limited resource availability
(compared with “fat” desktop computers), may one day reach the same level of capability as
modern desktop computers, consoles and beyond: Moore’s Law dictates that computing power
will double approximately every two years as transistors shrink, allowing for more to fit on a
microprocessor. However, this law may be coming to an end [12], meaning that the pace at
which computing power is increasing is slowing. Regardless of which device one owns, they are
all, and always will be, limited in the amount of storage, memory, energy and compute power
they have available. The growing scale and complexity of data and models means that mobile
devices will constantly need upgrading and updating, playing a perpetual catch-up. This
widening gap means that there is therefore a pressing need to find alternative solutions to
visualizing and interacting with large complex sets of data and models, which are increasing in
terms of dimensionality, parameter space and size [13].

The vast resource availability and scalability of the cloud makes IRR systems a promising
research direction, as they offer an alternative to traditional local rendering and may open
markets to users and devices currently not suitable for certain tasks.

1.2. Aims and Objectives

The aim of this thesis is to explore the challenge of IL in IRR systems, and to investigate its
measurement, modelling and management.
Strategies for mitigating IL cannot be properly evaluated without the ability to accurately
measure IL and the impacts of compensation techniques. The ability to accurately measure IL is
therefore a crucial task. It is also important that easy-to-use techniques are developed, allowing
non-experts to perform robust measurement taking and to do so with minimal impact on the
wider system. Measurement techniques are investigated and developed, with focus also given to
IRR systems performing interaction prediction - a scenario that introduces new complexities.
However, before developing techniques for measuring latency, the ability to simulate
fine-grained latency, in a controllable way, is required. This is achieved by developing a bespoke
latency simulator as investigation has identified that existing solutions are not suitable.

2

1.3 Methodology

With the ability to simulate and measure IL, a novel mitigating strategy is explored. Specifically,
N-Grams, a statistical model borrowed from computational linguistics, is employed and
evaluated in terms of suitability and performance. The developed model is integrated into a
prediction module, which functions to predict keyboard-based user interactions ahead of time,
with the overall aim being to have results delivered to the client device as near to or before the
corresponding interaction has been performed. Mis-prediction will be an issue and mitigation
strategies for incorrect predictions are explored.
Further, an IRR simulator platform is developed and used as a test-bed on which further
experimentation is conducted. This allows for reproducible experiments in a controllable
environment. A real-world IRR is then built using Unity3D with the aim of further exploring
interaction prediction and its effects on IL. Towards this, the following research questions are
addressed:

• RQ1. How can IL be modelled, measured and simulated? (§3)

• RQ2. Are N-Grams suitable for keyboard-based user interaction prediction? (§4)

• RQ3. How can prediction be integrated into an IRR system and what is the impact of
prediction on IL? This is done with both a simulated IRR system (described in §6) and a
purpose-built IRR system (described in §7).

• RQ4. Should predictions be generated on the client or on the remote server? (§9)

1.3. Methodology

Measurement approaches to IL and simulation are developed as existing tools and methods are
identified to not be suitable when prediction is used. Evaluation of latency measurement is
performed by comparing results with known/expected IL values. Latency simulation is validated
against real-world network delays, 3 times a day (to counter broadband throttling introduced
during peak-hours). An N-Gram model for predicting keyboard-based user interactions is then
introduced. An IRR simulator is then developed so as to provide a stable, controllable
environment for experimentation. A prediction module, designed to be separate from other
system components so that it can be executed either on the client device or the server, is then
developed and used to explore the effect of prediction on IL. Next, a real-world system, built
using Unity3D, is introduced, where prediction is explored further. For experiments involving
prediction in either the simulator or the real world IRR system, the number of steps ahead to
predict ranges from 1 to 10 and the amount of interaction history used ranges from 1 to 5.
Network Latency (NL) values used are 0ms, 50ms, 100ms, 200ms, 300ms and 400ms, and were
chosen based on findings from literature. Managing incorrect predictions is then explored by
using multiple server applications in an attempt to process additional predictions. Experiments
are then performed with the prediction module on both the client and server side of the network,
in an attempt to understand the differences between client-side and server-side prediction.

3

Introduction

In the context of this research, “network latency” refers to the delay introduced, by a network, to
the IRR system due to the separation of the client and server components. “Interaction latency”
or simply “latency”, unless otherwise stated, refers to the total delay experienced by the user of
an IRR system between performing an interaction and seeing an on-screen response.

1.4. Contributions

This thesis explores latency measurement, modelling and management in IRR systems and
makes the following contributions:

1. A novel approach to measuring IL.

2. An exploration on the suitability of N-Grams for predicting keyboard-based user
interactions in IRR systems.

3. A methodology for integrating prediction into IRR systems.

4. A method for calculating the time taken for IL to return to normal following an incorrect
prediction.

5. An investigation into the placement of the prediction module (client-side or server-side of
the network).

These contributions serve to provide developers and designers of IRR systems a robust,
non-invasive method for measuring IL; help to inform as to whether N-Grams might be an
appropriate prediction model; describe how prediction can be integrated into IRR systems and
how to measure IL when prediction is used.

Ultimately, these contributions can be used as a framework for prediction-based IRR systems
and to build more responsive IRR systems.

1.5. Thesis Outline

This thesis is organised as follows:

Chapter 2 provides some background to IRR systems. It starts off with a brief history and then
describes the advantages and disadvantages of local vs remote rendering. Various Remote
Rendering techniques are then introduced. Afterwards, the chapter discusses a number of
latency management strategies.

Chapter 3 introduces the issue of modelling and measuring IL in IRR systems. It then describes
a solution to simulating latency and how to perform measurement capture, followed by the
introduction of a novel software approach to measuring IL for any IRR system. This chapter
concludes with a discussion and a summary.

4

1.5 Thesis Outline

Chapter 4 introduces N-Grams as a potential solution to the high IL experienced in IRR
systems. Assumptions and constraints are explained, as is the experimental set up and model.
Two N-Gram implementations are described and evaluated and finally, a summary is presented.

Chapter 5 introduces the notion of a predictive IRR system simulator referred to as a Predictive
Interaction Remote Rendering (PIRR) system. This system investigates the potential to simulate
a PIRR system so as to provide an experimental test-bed for building a real-world PIRR system,
and to integrate prediction.

Chapter 6 uses the PIRR simulator platform described in Chapter 5 to explore N-Gram
prediction and its effect on IL with respect to how much history should be used in predictions
and how far ahead prediction should be made. This chapter also describes a method for
measuring the recovery rate of a PIRR system. The chapter concludes with a summary.

Chapter 7 builds on the discoveries of Chapter 6 and describes how to build a real world PIRR
system using Unity3D, a popular games engine. The same experiments conducted in Chapter 6
are performed in this chapter using the Unity PIRR system, and results are compared with the
simulator. Finally, a summary is provided for this chapter.

Chapter 8 looks at managing mis-predictions, which will invariably occur in a system
attempting to make predictions of the future. A number of approaches are described and a
potential answer to lowering the impact of incorrect predictions is proposed and investigated. A
summary is then provided.

Chapter 9 introduces the notion of client-side prediction (CSP) and server-side prediction (SSP)
and explores which mode benefits IL more with respect to the amount of history used in
predictions and how far ahead the system predicts. A summary is provided at the end of this
chapter.

Chapter 10 provides a discussion, conclusions and suggestions for future work.

5

Chapter 2. Background literature

Interactive computer graphics first appeared in 1963 when Ivan Sutherland (credited with being
the “father of computer graphics”) submitted his PhD thesis. His thesis, titled “Sketchpad: A
man-machine graphical communication system”, contributed many fundamental graphical
computing concepts such as specialized memory structures for storing objects, the ability to
zoom into images for “detailed examination” and the ability to draw straight lines [14]. This
marked a turning point in human computer interaction and in 1967, Wylie et al. contributed an
algorithm for hiding surfaces, giving the illusion of a three-dimensional object (a 3D model)
[15]. George Romney, one of Wylie’s colleagues, made significant contributions and produced
the first ever render of a complex non-square object [16]. By 1982, 3D rendering was being used
in film and animation and in 1989, Pixar released version one of its commercial rendering
software, RenderMan, which was used to create the world’s first computer animated film, Toy
Story [17]. Toy Story required 117 Sun Microsystems computers, 80,0000 machine hours and
produced 114,240 rendered images [18]. This was achieved using a new-at-the-time technique
known as Remote Rendering (RR), where render tasks are distributed across an array of servers.
For example, in Figure 2.1, animators submit render tasks to a database hosted remotely on a
separate network. A collection of specialized machines (nodes) retrieve render tasks from the
database, process them and produce render results in the form of images (frames). The render
results are then sent to a file server where they are stored. Animators then access and retrieve the
results of the render tasks from the file server. However, this feat was not possible without
another emerging technology known as Cloud Computing.

Cloud Computing, the history of which can be traced back to the 1950’s, is a computing
paradigm enabling users to remotely access and utilize vast arrays of configurable computer
system resources such as storage, memory, CPU. The term “cloud computing” was first used in
1996, in an internal document at Compaq, authored by George Favaloro [19]. Indeed, entire
machines can be remotely controlled, but this was not until the 1970’s when virtual machines
were first conceptualized [20]. The combination of these two new technologies (distributed
rendering and cloud computing) meant that for the first time, the computational complexity and
resource constraints could be offloaded from local client machines to a cluster of remotely
managed (and more powerful) machines.

7

Background

Animators submit render
tasks to database.

Render nodes retrieve
tasks from the database.

Render results (frames) are sent
to a file server and stored.

Animators retrieve render
results from file server.

Remote Rendering system
architecture overview

Figure 2.1 A typical non-interactive Remote Rendering system architecture.

Today, interactive computer graphics are ubiquitous, found in everything from smart watches
and mobile phones, to computer games and scientific visualization. The years that followed
Remote Rendering resulted in the emergence a new class of systems which have attracted a lot
of attention in the last 10 years [21–24]: IRR systems enable users to interact with extremely
large, complex data-sets, using a thin client device such as a smartphone, tablet or laptop. As
illustrated by Figure 2.2 This is achieved by offloading the computation and resource demands
from the client to the server in the Cloud. On the client, interactions from the mouse and
keyboard are transmitted over a network to a remote server in the cloud. The cloud server,
running a rendering application, processes received interactions, maps and applies them to the
rendering engine, which produces a render result, compresses it and delivers it to the client
where it is decompressed and displayed to the user.

Network /
WAN

interactions

Figure 2.2 A simplistic IRR system architecture.

8

2.1 Local rendering vs Interactive Remote Rendering

2.1. Local rendering vs Interactive Remote Rendering

While both local and remote visualization systems share the common goal of enabling the user
to explore and interact with data, each approach has advantages and disadvantages.

2.1.1. Local rendering: advantages and disadvantages

Local interactive rendering, where all rendering and processing happens on the device local to
the user, enables users to enjoy a highly responsive experience, but only when the device on
which rendering is performed is sufficiently powerful enough. In these systems, a constant
internet connection may not be required (for example, offline games). There is also less potential
for accidentally capturing private user data since there is no need to record user interaction –
they are fed directly into the rendering engine and not transmitted over a network.

However, it is difficult to test, deploy and maintain applications, especially when multiple
versions are built to run on different operating systems, varying (and unknown) hardware
capabilities of devices, etc. This means that diagnosing problems is very challenging, as issues
may arise only on a specific device configuration. Local rendering may also consume excessive
amounts of energy when in operation and devices are limited in compute power, storage capacity
and rendering capabilities. All model data, 2D or 3D, is stored locally, on the device, which risks
infringement of copyright laws by malicious users. Finally, hardware is expensive and therefore
may limit the market reach of a rendering application.

2.1.2. Interactive remote rendering: advantages and disadvantages

IRR systems can protect sensitive and or copyright resources (model data, textures, etc.) by
storing them in the cloud and not on a user device. In doing so, and by performing all rendering
and processing remotely, devices can be truly thin and potentially not even require a graphics
card. Users may experience state-of-the-are in rendering quality and potentially perform
visualization tasks not possible on a local machine. Another advantage is that the system may be
platform agnostic, not requiring different builds for different operating systems. Further, it may
be easier to maintain and update the IRR system as simple client applications may only require
slight modifications, while the complexity is based on a remote server.

Nevertheless, IRR systems do have their drawbacks. For instance, these systems require a
constant internet connection and the reliability and broadband capacity affect user experience.
The introduction of a network (the internet) increases latency, which means that systems need to
be deployed as near to target users as possible. However, this may not always be possible (e.g.
for geographic or legal reasons). In addition, user interactions may be unintentionally captured
and transmitted over the internet, risking privacy. If the remote rendering system experiences
issues (resource, power, scaling, etc.) the user experience might be affected and if the remote

9

Background

server is down, the user will be unable to access applications for which they have potentially
paid.

2.2. Remote rendering approaches in literature

Literature describes various Interactive Remote Rendering approaches. The following sections
describe a few of the most well-known of these.

2.2.1. Model streaming

A model is a set of geometric features (mesh, textures, vertex weights, etc.) which together form
a 3D representation of an object. Fundamentally, a 3D model is a digital representation of a
three-dimensional object (sometimes physical and sometimes virtual). In the model streaming
approach, all processing and model construction is performed on a remote machine, in the cloud.
When needed, a server transmits all 3D data to the connected client for rendering.

Transmitting the entire model should only be done when a) the client has sufficient resources for
storage and rendering; b) when the rendering start time is not an issue and c), when bandwidth is
sufficient [8]. If the model is to be transmitted in its entirety, the client must wait until all data is
received before rendering can begin. To reduce rendering start times on the client, the model can
be transmitted in chunks; it may be partitioned and streamed, as demonstrated in [25] and [26].
This technique allows rendering to start on the client as soon as the first chunk is received and
can offer a solution to the client not having sufficient resources, since out-dated chunks may be
discarded and their memory occupied, freed.

Tang et al. assert that the transmission of models over the network increases the delay between
user actions and the on-screen update, which is due to network latency and model data size [27].
The authors encountered this issue in their research and proposed a progressive streaming (see
Figure 2.3) algorithm which defines two categories for interactions: 1) local browsing and 2)
rotation and deformation operations. For rotation and deformation activities, the interaction is
transmitted to the server as well as the local renderer. The local render computes a coarse result
and displays it to the user, while the server produces a deformation at a higher Levels of Detail
(LOD); The model updates are then streamed back to the client.

The fundamental issue with this approach is that rendering is performed on the client and
therefore in some situations, this may not be a viable solution (e.g. the client does not have
enough resources or compute power) [8]. This approach is also wasteful in terms of energy,
since both the client and the server perform rendering. Another issue is that this will likely add
system complexity, especially if the server needs to know the capabilities of the client requesting
the model in advance. Further, if the client begins to consume additional resources, the change
in resource availability may result the client no longer being capable of performing the 3D

10

2.2 Remote rendering approaches in literature

Renderer

Client device

Network

Remote server
renderer

refined
model

Low
resolution

result

Figure 2.3 Interactive Remote Rendering system with progressive streaming.

rendering operations at interactive frame rates and in the worst-case scenario, the client may not
have sufficient resources to store the 3D model. Therefore, it is likely that any such resource
changes on the client need to be communicated with the server.

Available resources
& interaction
command

Resource availability
change

Available resources &
interaction commandTransmit data

Transmit data

Frame displayed

Adapt and
restart model
construction

Server Client

Network

Time

Frame displayed

Adapt, begin
model

construction

Normal operation
Abnormal operation due to
client capability change

Render scene
Normal interaction latency

Reconstruct model to meet
new requirements

Additional interaction latency
due to server adapting

Figure 2.4 Interactive Remote Rendering system with progressive streaming.

As an example of the client-server complexities of a model streaming approach, consider Figure
2.4. The client begins by telling the server its available resources and the desired interaction
command. When the server receives this information, it starts processing and model
construction. When complete, model data is then transmitted to the client where it is rendered
and displayed to the user (normal operation). However, if the server receives an update from the
client with new constraints while model construction is taking place, the server may need to
abandon the current process and restart (abnormal operation) model construction. The server

11

Background

will eventually finish model construction and transmit the data to the client for rendering and
display, but with added IL due to additional time spent on the server.

2.2.2. Mesh streaming

A 3D mesh is a graph: it is a collection of polygons (vertices, edges and faces) and is the surface
representation of a 3D object or model. In the mesh streaming approach, the general technique is
to stream data for each vertex in a predefined order to the client, where it is rendered locally on
the client, while textures and other model data are streamed separately [28]. 3D meshes are
commonplace in mobile games, virtual reality and many other sectors [29], however, just as in
the model streaming approach, mobile devices may lack the resources required to perform
certain rendering tasks [26].

Park and Lee [26] chose to focus their study on the mesh streaming approach. The authors
developed a hierarchical framework for streaming large 3D meshes to mobile systems and their
technique takes advantage of the fact that users cannot see the entire mesh at one time (for
example, it is impossible to see all sides of a cube at the same time). Instead of streaming the
entire mesh, Park and Lee partition the mesh into equally sized portions. Mesh simplification is
performed on each of the partitions, which are then streamed to the client where they are
rendered locally. The results of Park and Lee’s study found that for the lowest resolution model,
users would experience at least 120ms of IL. The bulk of this time results from transmission
time of 690 vertices: 50ms.

In another example, Lin et al. demonstrate a technique for streaming meshes over a network
utilizing the JPEG 2000 image compression format and for constructing a 2D representation of a
static mesh [30]. For deformable meshes, such as those used in animation, Motion JPEG 2000 is
used. In either case, the client initially receives a low-resolution version of the mesh to render
and then receives refinement updates. Depending on the size of the complexity of the mesh,
transmitting mesh data may consume large amounts of bandwidth. To reduce the amount of data
to be streamed (and therefore the amount of bandwidth required), compression can be used to
reduce the number of vertices on the mesh. Lossy and lossless coding techniques exist for 3D
mesh compression and a good review of compression methods can be found in [31]. Other
techniques such as sharing vertices [32, 26] and progressive mesh [33] streaming can also be
used to reduce bandwidth, however, some techniques are only suitable for 3D meshes of low
complexity [32].

2.2.3. Command streaming

In the command streaming approach, interactions are transmitted to a remote server running a
3D rendering application. When the interactions arrive on the server, the server performs
processing and model transformation calculations. Once this is complete, rendering commands
are generated and are then transmitted to the client where rendering is performed locally. In

12

2.2 Remote rendering approaches in literature

order to access which rendering commands are required, they can be intercepted using a
technique known as API hooking. For DirectX and OpenGL, this can be achieved with a well-
known library called Detours [34].

Eisert and Fechteler describe such a framework in [35]. The authors point out that the encoding
of commands is independent from image resolution, which means that high-resolution output
can be achieved on the client. However, they also report that bit rates are not very predictable
and high data rate peaks can be expected. They further state that, crucially, some graphics
command calls require feedback. Since there is no way of knowing what must be done with the
return values, and the authors admit that this approach can introduce unacceptable round-trip
delays. To mitigate this issue, Eisert and Fechteler simulated the graphics card state of the client
on the server so that they can reply directly within the server environment, rather than having to
communicate feedback from the client. Of course, as the authors indicate, with this approach,
rendering is still performed locally, and so not all applications can be supported.

2.2.4. In-situ approach

In the scientific community, data visualization plays a crucial role in the discovery process.
Typically, post-processing techniques are employed where a simulation is performed (often on
remote servers or a supercomputer) and the data results are written to disk. When required, data
results can be retrieved by being read from disk into a visualization program for exploration.
Unfortunately, scientific data from simulations (used here to describe the process of performing
a computer experiment which results in a data set(s)) is growing in quantity, quality, and with
some data sets hundreds or in millions of Gigabytes in size [36]. Our ability to process,
manipulate and visualize these data sets is being challenged, because the gap between being able
to produce data, and perform IO (Input Output) operations is widening [21, 37, 38]. Reducing
the need to read and write from disk is highly desirable as it is a known bottleneck to High
Performance Computing (HPC) [37, 39].

The in-situ approach attempts to eliminate the need for expensive (energy, time/speed) disk
operations as it aims to enable the operator to visualize the data as it is produced by the running
simulation [40]. Simulations can take days, weeks or months to complete and be ready for
visualization. The in-situ approach mitigates the risk of having to restart a simulation (either
during its execution or after completion due to errors) and allows the researcher to “steer” the
simulation as it develops. Researchers can query, visualize and watch the simulation evolve,
giving the added advantage of making “accidental” discoveries or steer it in a different direction
when and if needed [36].

The results of a simulation can be stored on the file system which can be used for visualization at
a later point in time. However, as explained earlier, disk I/O operations are expensive and slow.
Ahrens et al. [21] developed an image-based framework for in-situ visualization on top of a

13

Background

well-known open source project called ParaView. To reduce the cost of disk I/O operations the
authors developed a custom image database which is fed image results as the simulation
executes. The end user can access the image database through a user interface that allows for
two modes of interaction (animation and selection). To enable querying, the authors saved meta
data describing how and when images were generated. The meta data and images are stored in
the custom image database. Using meta data, queries can be constructed for image compositing,
which can be performed to produce new visualizations. The authors managed to achieve frame
rates of 12 fps. While impressive given the scale of the data (approximately 24TBs), frame rates
still fall well below the desirable 30fps for smooth interaction. Unfortunately, their approach
was based on local network conditions and so network latency, a critical factor in IRR systems,
was not considered. Finally, often, due to the size and volume of the output images, storage on
local devices is simply impossible and requires distributed image servers. Many techniques such
as co-processing, concurrent processing and a hybrid mix combining both co and concurrent
processing exist for in-situ visualization approaches and for a more in-depth look,
see [36, 21, 38].

2.2.5. Hybrid approaches

The hybrid approach is a mix of local and cloud server rendering. There are a number of hybrid
approaches available in the public domain. For example, a well-known open source project,
VirtualGL uses this technique, and was started in the 2000’s as a solution to the growing demand
of running complex 3D applications on thin client devices. VirtualGL uses the command
streaming approach, allowing for 3D operations to be redirected to a remote server hosting
GPUs and other resources. All 2D operations are allowed to continue as normal on the client.
VirtualGL dubbed this technique “GLX Forking” [41]. VisIt, which is now over 14 years old, is
another example [38]. It has grown to be adaptable in that it can utilize either the model or
image streaming (discussed in the next section) approach: if the client has insufficient resources
or graphics capabilities, the image streaming approach is employed, otherwise, the model
streaming approach is adopted to increase interactivity performance. VisIt is also highly scalable
and extensible. Lastly, Visapult is another example of a hybrid approach. Visapult performs
partial rendering on a remote server and then transmits the partial results to the client, where
rendering is completed. Its main focus is on “remote and distributed, high performance direct
volume rendering” [42].

2.2.6. Image streaming approach

The image streaming approach has been around since the 1990s [43]. Contrary to other
approaches, such as command or model streaming, this approach transmits only images to the
client [22]. All processing, model construction and rendering is performed on a remote server in
the cloud. When a user performs an action, such as a mouse click, that action is sent to the
remote server which maps the received command to a model, applies a transformation and

14

2.2 Remote rendering approaches in literature

renders the scene. Once rendering is complete, the resulting image is then transmitted back to
the client where it is displayed to the user (see 2.2).

Moreland et al. explored a technique for remote rendering of ultra-scale data in [44]. They
proposed a simple client-server architecture: the server performs all rendering and delivers the
rendering results to an image cache on the client. When interactions are performed on the client,
camera coordinates are sent over the network to the server. Meanwhile, a lookup is performed in
the cache. The cached images are used to synthesize images at novel viewpoints. The authors
state that their technique “will provide an interactive rendering experience regardless of network
performance”, although they do not provide any measurements regarding IL or frame rate.

Sterk and Palacio described a remote rendering solution for terrain visualization on mobile
devices where the authors compared the remote rendering approach with local rendering, but in
order to do so, they had to scale down the geographical data [7]. Their findings lead to the
conclusion that rendering remotely provides the best visual quality and is “probably the only
option for GPU-less devices”. However, the authors also note that the remote rendering system
requires a constant internet connection and is less responsive than local rendering, resulting in IL
of 4.5 seconds (IL for local rendering is not reported).

Wessels et al. proposed a framework for remote rendering using websockets [13]. Their
framework consisted of a server, visualization engine, a daemon and a client. With the
visualization located on the server, interactions are received from the client and processed via
the daemon. In addition to acting as the communications gateway between the client and the
server, the daemon is also responsible for launching the visualization process and managing
client connections. On the client, frames received are unencoded from base64 and displayed to
the user. No IL measurements are reported.

Transmitting images over the network is expensive in terms of bandwidth. The higher the
resolution of the image, the larger the transmission times – which results in larger IL. As such,
scheduling and rate control mechanisms may be used to adjust the server to match the client’s
ability to download and display images [22, 8]. Fortunately, this is facilitated by the fact that
bandwidth usage is predictable and bounded for the image based approach, as image dimensions,
data size and frame rate can be communicated in advance [40].

The image streaming approach can be far less complex than others such as the model streaming
approach. The reason for this is that only images are ever transmitted to clients: thin client
devices may enjoy the experience of complex, resource-hungry (GPU, CPU, RAM, HDD)
applications without the need for specialized hardware and/or software [13, 7]. No rendering
needs to take place and so the client does not even need a GPU; only the ability to display an
image and communicate with the server is required. Collaboration may be easier to implement

15

Background

since updates sent to connected clients are images; no scene updates, positional data or states
need to be synchronised. Additionally, this approach provides a cross-platform remote rendering
solution as they do not have to be programmed for specific operating systems, such as Windows
or Android. Maintenance is likely to be easier too: client devices need only a web browser,
which is already available from multiple vendors; there are no drivers or software updates to
consider on the client device (unless a specially designed client-viewer is required, otherwise a
browser is sufficient), and end users do not have to constantly upgrade their devices to meet the
demanding specifications of the applications that they wish to run. The IRR provider only needs
to maintain the software and hardware of the server. Finally, Intellectual Property Rights (IPR)
are protected and data as models remain safely on the cloud server as was demonstrated in [45]
and in [46].

2.2.7. Summary of approaches

The model, mesh and command streaming approaches are well suited to situations where the
client has sufficient resources to render at interactive frame rates. The downside with these
approaches is that rendering is performed locally, on the client. In addition, they are complex in
that they require the server to know the resource and compute capabilities of the client [8], and
need to receive periodic updates from the client in case of resource availability changes. In
addition to this, potentially copyrighted material (3D models, textures, meta, etc.) must be sent
across the internet to possibly unknown and untrusted clients.

The in-situ approach is typically used when visualizing the output from scientific simulations.
As the simulation executes, images are generated and presented to the user. Image results can be
written to disk, or saved to a database, but disk space and IO must be considered. With some
simulations, the output results or images may require too much diskspace for this approach to be
practical. Further, when performed over a network, latency will impact responsiveness and
depending on image resolution, may consume excessive bandwidth.

Of all the approaches to IRR, the image streaming approach has the potential to have the greatest
impact on visualization. However, the large amount of bandwidth required as well as the long
network latency delays are potential issues. To reduce the burden of multiple images being
streamed to the client, a panorama can be constructed and streamed to the connected client.
Alternately, a single virtual camera can be used and transformed to different viewing angles or,
multiple virtual cameras can be used, as shown in [22]. Nevertheless, techniques such as the
image streaming approach offer a potentially compelling research direction, providing issues
surrounding latency are addressed. The ability to interact with complex 3D rendering
applications on any thin, internet connected device, is an attractive proposition. The approach
offers end users the ability to play the latest games, run the most computationally and resource
demanding 3D rendering applications and interact with the most complex visualizations without
the need to constantly upgrade their devices. Developers will find that maintaining 3D rendering

16

2.3 Managing Latency

applications for a single, known system environment is far easier than the current situation
where client devices are unknown with different OS’s, different CPU’s, RAM, GPU’s and
storage capabilities.

Table 2.1 IRR Approaches and their pros and cons.
Model streaming

Pros + Low interaction latency

Cons

- Client may not have sufficient storage capacity to accommodate model data.
- Client needs specialized hardware (GPU).
- Client must be capable of rendering at interactive frame rates (30FPS)
- Potential for data theft.
- Difficult to load balance in terms of bandwidth.
- Difficult to update clients which require different updates for different operating systems.

Command streaming

Pros
+ Low interaction latency.
+ Adaptable for almost any application (closed or open source)

Cons

- system may be unstable as API hooking can result in application crashes.
- Client may not have sufficient storage capacity to accommodate model data.
- Client needs specialized hardware (GPU).
- Client must be capable of rendering at interactive frame rates (30FPS).
- Potential for data theft.
- Difficult to load balance in terms of bandwidth.
- Difficult to update clients which require different updates for different operating systems.

In-situ

Pros

+ Well suited to big complex data sets such as those in scientific simulations.
+ Allows “steering” of the simulation.
+ Removes need for expensive disk I/O operations.

Cons

- Requires close collaboration between application developers, visualization scientists and researchers; not general
purpose.
- Produces large volumes of output data.

Image based

Pros

+ Client can be truly thin with no specialize hardware.
+ Data not,exposed to client and is therefore safe from theft.
+ Bandwidth usage is, predictable and bounded, making load balancing easy.
easy to update, clients.
+ Platform agnostic.

Cons
- High interaction latency.
- High bandwidth consumption.

Hybrid
Pros + Potentially low interaction latency.

Cons

- Complex application.
- Difficult to maintain.
- Usually not general-purpose solution.

2.3. Managing Latency

Interaction Latency (IL) is the difference in time between the moment an interaction is registered
by the client device, and the point at which the corresponding frame result is displayed to the
user. Latency can occur at various locations within an IRR system; for example, on the client
device such as during the decoding stage, within the rendering pipeline on the server, or during
client-server communication. IL is the primary issue of IRR systems [5]. It is defined by:

IL = SL+CL+2NL (2.1)

17

Background

Where Server Latency (SL) is the total delay on the server, Client Latency (CL) the total delay
on the client and NL is the Network Latency.

Studies have shown that users are able to detect latency as low as 2.38ms [47] and that users will
interpret an action as the cause of an event, when latency is less than 70ms. When latency
exceeds 160ms, users experience a disconnect between the event and the action that caused it
[48], possibly leading the user to become confused. High latency also results in less engagement:
players of online games have been shown to play far less when experiencing delays in excess of
250ms, compared to those who experienced latency of 150ms [49]. Thus, as little as 100ms
latency can be responsible for a loss of up to 75% user engagement; a significant figure for
companies such as Blizzard who own the Massively Multiplayer Online (MMO) franchise,
World of Warcraft.

Importantly, not all systems share the same sensitivity to latency. For example, in the popular
first-person shooter game “Unreal Tournament 2003”, latency less that 75ms is acceptable, while
latency above that can result in user accuracy and score reducing by up to 50% [50]. Claypool
[51] analysed the effect of latency on a real-time strategy game, Warcraft 3, and concludes that
delays ranging from hundreds of seconds to several seconds do not significantly affect user
performance and the same would apply to turn-based games. Interestingly, Claypool also
highlights the fact that different tasks in games such as combat or building are more sensitive to
latency than other tasks; this is likely to be true for other 3D rendering applications such as
virtual environment navigation or training simulators.

Virtual Reality (VR) and Mixed Reality (MR) are highly sensitive to latency. Zheng et al. [21]
notes that a NASA study concludes that latencies need to be less than 2.5ms for head movements
of more than 100 degrees in Head Mounted Displays (HMD). Latencies exceeding certain
thresholds can also lead users to experience nausea, commonly called simulator sickness in VR
systems. Presently, VR/MR devices are designed as specialized platforms with special attention
given to latency. Reducing this latency is critical if interaction with large, complex data sets in a
VR/MR environment is desired. Additionally, since VR and MR are predicted to generate a
combined revenue of $120 billion by 2020 [52] and that high latency severely affects user
engagement, there is great value in paying close attention to latency concerns when designing
systems sensitive to it. Further, IL is also a concern for exploratory visual analysis. For example,
Liu et al. show that an IL greater than 500ms results in decreased user activity, poorer data set
coverage and reduces rates of observation, generalization and hypothesis formation [5].

A combination of factors impact IL, with NL, being one of the most significant contributors.
Networks are not always stable and can cause available bandwidth to drop, reducing the rate at
which data is downloaded to the client. Similarly, wireless networks may lose signal, causing
significant delays. Unfortunately, NL is inherent in all network distributed applications and is

18

2.3 Managing Latency

dictated by various factors such as the physical distance between the client and server machines,
and the type of material (i.e. copper vs fibre) used to transfer data across the network [53]. The
most common approach to dealing with IL is to simply have servers located as near to their
target users as possible. Unfortunately, this is not always possible as geographic, economic and
ethical constraints may be prohibitive. The next sections describe various ways of managing IL.

2.3.1. Level of detail (LOD) management

Despite massive advances in graphics hardware, our ability to render complex 3D models at
interactive frame rates is still a significant challenge to graphics programmers. The growth in
terms of size and complexity of 3D models appears to outpace our development of faster, more
powerful rendering hardware. Thus, graphics programmers have to constantly make choices of
trade-off between realism (complex, detailed models) and performance (interactive frame rates,
smoothness of movements and responsiveness).

LOD management is a technique for controlling the complexity of a 3D model by generating a
visual approximation and is performed after user input is sampled. By reducing the vertex count,
items further away from the scene camera can be rendered with a lower resolution, as much
detail is not visible from large distances. Conversely, LOD management can also be used to
increase the level of detail so that as a scene camera moves closer to an object, higher resolution
models are generated. A simple example of this is looking at a mountain from the window: you
cannot see the leaves on the trees until you get closer. Figure 2.5 illustrates a simple example of
different LODs: (A) 9,902 vertices for maximum detail close- ups; (B) 2,452 vertices; (C) 602
vertices; (D) 134 vertices for low detail objects far away. As such, LOD management is an
excellent technique for reducing model complexity and rendering time, as well as increasing
frame rates [54]. Additionally, by reducing model complexity, the physical storage size of the
model is reduced too, making transmission of such models require less bandwidth.

In systems where latency is critical, model fidelity can be sacrificed so that the transmission
payload is reduced, resulting in lower IL in cases where the entire model must be transmitted
before rendering can commence. The side effect is that by reducing the LOD of a model, the
resulting rendered image quality is reduced. However, such effects are unlikely to be noticed or
cause discomfort when viewed from sufficient distances, or when moving at sufficient speeds
through a 3D scene.

For an excellent and in-depth discussion, see Level of Detail for 3D Graphics [54].

19

Background

Figure 2.5 A sphere presented at various Level of Detail (LOD).

2.3.2. Image warping

3D Image warping is an Image Based Rendering (IBR) algorithm that uses one or more images
with depth information at a given viewing angle to synthesize the same scene from a different
point of view [55]. Once an interaction occurs, the image warping algorithm executes and
produces the newly warped image. The result is the decoupling of rendering from interaction
and can be used for latency reduction because it reduces IL to the time it takes for the algorithm
to execute. An example is shown in Figure 2.6, where the image of a hedgehog (left) has been
warped to a new perspective of approximately 30 degrees (right) and as a result, information has
been lost and areas are therefore void of data (blue)

Figure 2.6 An example of image warping. Approximately 30 degrees warp.

Image warping seems to have first appeared more than 30 years ago and an early example of its
use is when researchers at Carnegie Mellon, USA, built a machine called “WARP”, which was
designed as a “programmable systolic array machine” and was used to perform mapping
operations [56]. In one example, WARP was used to remap a distorted perspective projection
from a camera mounted on the roof a robot driving down a road, to a flat, 2D perspective (aerial
view) so that image processing techniques could be applied, and the road edges identified.

Since then, 3D image warping techniques have been proposed with the aim of being able to
generate images at novel viewpoints with depth. As such, 3D image warping is often referred to

20

2.3 Managing Latency

as Depth Image Based Rendering (DIBR) in literature. The algorithm takes the following input
parameters:

1. Source viewpoint consisting of camera position, orientation, focal distance, horizontal and
vertical field of views

2. A colour buffer, depth buffer and a combined model-view-projection matrix.

3. Target viewpoint consisting of camera position, orientation, focal distance, horizontal and
vertical field of views

The algorithm output result is a single image, warped to a novel view (the target view) . Used in
an IRR context, this algorithm can execute on the client and be used to synthesise images (in
response to interactions) between frames arriving from the server and therefore compensates
system latency [55], although literature does not describe to which extent this is possible.

Shi [57] proposed an IRR platform for mobile clients using 3D image warping. On the server,
multiple depth images are generated from user input arriving from the client. The depth images
are sent across the network to the client which then runs the 3D image warping algorithm. An
issue he found was that generating a depth image at multiple viewpoints is computationally
expensive and time consuming. Additionally, each reference image needs to be transmitted with
its corresponding colour and depth information, requiring extra bandwidth. To reduce the
workload and required bandwidth, viewpoint selection is performed by selecting those reference
images that are most similar to the desired target viewpoint. The reference images which most
closely match the desired output image can then be computed by iterating over each of them and
for each one, compute the viewpoint similarity between the reference viewpoint and the target
viewpoint. Further information on the algorithm can be obtained in and [58, 55, 59].

A common problem with 3D image warping is that of hole artefacts [60] (also known as
exposure): regions normally hidden by foreground objects (in the reference image) are made
visible in the new synthesized view. Hole artefacts arise because there is not enough knowledge
of the scene contained in the reference images to completely synthesize the scene for a new
viewpoint. Double warping [9, 55], where two reference images are warped and then
composited, can be used to compensate for the hole artefacts, but does not always yield
satisfactory results. An example of how hole artefacts arise is illustrated in Figure 2.7.

21

Background

Hole Background

Foreground

Left reference view Virtual view Right reference view

3D Scene

Figure 2.7 An explanation of hole artefact caused by image warping. Image source [61]

At first, 3D image warping might appear to be an excellent way to reduce interaction latency, but
serious problems exist. As noted by Shi [9, 57], 3D image warping not only results in hole
artefacts, but fails for certain special effects such as shadows and animation; it is not suited for
scenes with “moving foreground objects that are not controlled by the rendering viewpoint”.
Thus, [57] recommends that 3D image warping be designed and integrated with the original
application to mitigate such situations.

2.3.3. Prefetch

In IRR systems, data (image data, model data, etc.) are transmitted from the server to the client
where they are presented to the user. The transmission of this data from the server to the client
results in NL, adding to the overall IL. In video streaming services such as YouTube and Netflix,
buffering techniques are used because the stream consists of sequential known images, known as
a priori [22]. Buffering allows the streaming service to deliver content to the client before it is
needed. Not only does buffering provide smooth playback, but it also compensates for unstable
network connections by acting as a sort of “suspension” where a sufficient number of buffered
frames provides time for the system to recover from network delays. Additionally, since the
stream consists of images, network requirements are predictable and bounded: the framerate and
size of the data can be used to inform how much data must be downloaded and at which rate.

In IRR systems, the user controls the direction of the visualisation or simulation. Typically, a
user will perform an action on the client and sometime later, the client will receive data

22

2.3 Managing Latency

corresponding to the action performed from the server. Instead of the server waiting for the
interaction commands from the client, the server can produce the data required ahead of time
and send that data to the client. Therefore, the client does not need to wait for a response from
the server, reducing perceived NL and IL.

As an example of prefetch, consider a virtual walkthrough hosted on a remote server, such as in
Google Street View, where a user controls the virtual camera from a client device (his/her
laptop). In this example, the interaction and environment are constrained such that the user can
only move in three directions: forward, left and right. As the user navigates forwards through
the virtual walkthrough, the server generates the data (image, model, etc.) for not just one
viewpoint, but several (three in this example) viewpoints. That data is transmitted to the client
where it is stored in a buffer or a local cache. If the user turns to the left, to the right or forward,
the client does not need to request data from the server as the required data has been already
been acquired.

One attempt to take advantage of the properties of buffering can be found in [22], where
Boukerche et. al. propose using a remote rendering solution for interacting with virtual
environment (VE) applications, and contribute a scheduling and buffering mechanism [22]
combined with a simple look-ahead strategy. In [62], Higgins et al introduce a prototype called
“IMP”, which aims to hide the complexities of prefetching decisions on mobile devices. An
obvious problem with prefetch is that if the transmitted viewpoint data does not accurately
match the corresponding interaction issued by the client, the user will be displayed a frame that
does not depict the expected scene transformation. One could argue that the server could
generate and transmit data for many more viewpoints to the client and that the client could then
select the appropriate viewpoint data to display to the user. However, blindly sending data for an
arbitrary number of viewpoints is inefficient as out of all the viewpoints transmitted, only one
will be used, which would result in large bandwidth consumption.

There are two approaches to prefetch: brute force, where data for multiple viewpoints are
transmitted to the client, and prediction, where historic interaction data is modelled so that only
the most likely required viewpoint data is transmitted.

2.3.4. Brute force based prefetch

In the brute force approach, the server sends data corresponding to multiple viewpoints to the
client. If bandwidth was unlimited, the brute force approach would seem appealing at first
because the data for every possible viewpoint could be transmitted to the client. However, even
if the client has data for every possible viewpoint there is still a problem: selection. The larger
the number of viewpoints for the client to choose from, the longer the selection process.
Reducing the number of prefetched viewpoint data is an option, but if the prefetched data does

23

Background

not contain the viewpoint required by the client, IL will be experienced while waiting for the
server to transmit further viewpoint data.

2.3.5. Prediction

Prediction can be a powerful tool for latency hiding. For instance, user interactions can be
modelled and predicted, which can then be used to generate future frames that can be
transmitted to the client before the user requires them.

In [63, 22] Boukerche and Pazzi use a client-server architecture where they first construct (on
the server) a set of 12 images based on user position and direction in a virtual environment. The
server then warps the images to cylindrical coordinates. Next, a simple prediction technique is
employed to assign priorities to the images. The images are then inserted into a buffer according
to their priority (highest priority first) and are then transmitted to the client. The client receives
the 12 images from the server which it uses to construct a panoramic view of the virtual world.
As the user moves forward within the virtual scene, the panorama being displayed is zoomed to
a threshold [63], allowing the user to perceive motion without visible image quality degradation.
As this happens, the next panorama is constructed and pushed into the buffer, ready to be
streamed to the client. The design proposed by Boukerche and Pazzi is limited in that user
movements have been severely constrained so as to reduce bandwidth and to simplify the
prediction process. Further, no IL measurements are provided.

Zhou et al. [64] propose an algorithm for prefetching content within a 3D scene based on user
access patterns. The authors argue that by studying the access patterns of scene content,
inference can be made as to which resources will be required in the near future, and that they can
be fetched from the server, delivered to the client and pre-rendered, before the user client devices
requires them.

Dead Reckoning (DR), a technique born out of the Distributed Interactive Simulation (DIS)
protocol, which was developed by the U.S military [65], has been used to hide NL and to reduce
bandwidth: To hide latency, all connected clients agree in advance upon a set of algorithms that
will be used to predict the future state of in-application entities. Clients apply the predicted
states when required, rather than waiting for updates from the server. When predictions errors
cross a threshold, a correction is issued. To reduce bandwidth, DR can be used to minimize the
number of messages required to be sent between the connected clients and server [66].

P = Po +Vo∆t +
1
2

A∆t2 (2.2)

Where P is the predicted position, Vo is the velocity, A is acceleration and ∆t2 is time difference ,
between the present and the last update.

24

2.3 Managing Latency

DR is often used in “Authorative server” architectures, where the client performs prediction and
rendering locally. Rather than wait for results from the server, the client application processes
local inputs and generates “predicted” future states, effectively running ahead of the server
application. This is achieved by allowing the client to assume that its inputs will be accepted by
the server. However, when the server rejects an input, the client is “reset” to the last know
correct state. This is challenging to correct as the client is running a future state of the
simulation, and any corrections received from the server are for a past state, meaning that the
client application must calculate the correct state from the correction point, up to the present
point in time. This causes undesirable “jerks” of the image on-screen and is sometimes referred
to as “rubber banding” by the video game community. Nevertheless, this negative effect can be
lessened by smoothing errors [67].

While DR works well for small latencies, large latencies can result is significant errors. Another
issue is that the prediction is linear, which is well suited to predicting positions along a straight
trajectory but fails to predict changes in direction.

Lazem et al. proposed an prediction-based prefetching scheme for VE’s [68]. The authors
proposed a linear model for movement prediction, predicting one step ahead since any
prediction errors would propagate with further prediction. Unfortunately, the authors did not
report on IL measurements. Similarly, Chan et al. proposed a “hybrid motion prediction method
for caching and prefetching” algorithm for distributed VE’s [66]. The authors report that their
technique works well for predicting mouse movements with both single and multiple steps ahead
and that in some “typical navigation patterns”, performance is increased significantly. Again, the
authors failed to describe IL measurements.

Although previous user actions can be modelled and applied to the prediction algorithm, it can
be very difficult to do so given the number of possible key/mouse inputs. Exactly which actions
should be modelled depends on the purpose of the IRR system. For example, in a virtual
walk-through environment, user movements such as forward, back, left and right can be
modelled easily. In a flight simulator, the movements can be increased from 4 possible directions
to 6 as the user cannot move backwards, but can control pitch (up and down), yaw (left and
right) and roll (rotation along the longitudinal axis). Yet, in more dynamic environments such as
in video games, user movements are unconstrained: the user can control movements for forward,
back, left, right, pitch and yaw. Moreover, in video games such as a first-person shooter, users
have a range of interactions that can be performed (e.g. firing a weapon). As noted by Chu et al.
[24], modelling all possible actions can lead to excessive IL due to a state space explosion. The
authors identify two main interaction classes and builds “speculation engines” for each of them.
The first is navigation (forward, left, right, etc.) and the second is impulse (e.g. firing a weapon).
To compensate for the many combinations of user actions, they used state space sub-sampling
and event stream time shifting. To forecast future user inputs, a discrete Markov chain was

25

Background

selected for use, as the results were comparable to that of neural networks, linear and polynomial
regression models. Chu et al. demonstrated that with their technique, IL can be halved.
However, while the authors claim that their system is capable of masking up to 250ms of IL,
their approach was tested only on video games and so it remains to be seen if their method can
be adopted for other IRR systems, such as those designed to visualize large data sets.

2.4. Summary

This chapter has explored the various approaches to IRR and managing IL, as described in
literature. While there are a number of approaches to performing IRR, they all suffer IL larger
than would normally be experienced during local rendering. As described, there are a number of
strategies with which IL can be reduced. However, current approaches are not sufficient as they
either require the transmission of (potentially sensitive/valuable) model data over a network,
require that all model data be received by the client before rendering can be performed, are
overly complex, result in significant image artefacts, cause “jerking motion” to be experienced
by the user of the client and many other issues. In addition, it is frequent that IL measurements
are not provided by the described literature, making it difficult to compare approaches.
From the literature, it is also clear that there is a lack of discussion on the modelling and
simulation of IL in IRR systems, as well as on its measurement. In the next chapter, these topics
are explored further.

26

Chapter 3. Measuring and Simulating Latency in Interactive Remote
Rendering Systems

3.1. Overview

Measuring IL in IRR systems [40], is a crucial yet challenging task. IL is typically not
controllable, making it difficult to study compensation techniques, their effects on user
performance and their impact on user experience. Additionally, current measurement techniques
are not general-purpose enough, which further complicates system performance bench-marking.
In the literature, most results presented fail to describe a) how IL is measured and b) what the
measured IL is (if measured). There therefore appears to be a lack of understanding of how best
to perform IL measurement in IRR systems. Moreover, before IL can be measured, it must be
modelled and a controllable delay must be present.

This chapter therefore aims to address RQ1:

1. How is IL modelled and simulated?

2. How can IL be measured?

Towards this, IL is first modelled (§3.2) so as to understand its sources. A latency simulator is
then built so that controllable delays can be inserted into future experiments which aim to
mitigate the effects of IL (§3.3). Afterwards, a new Latency Measurement Tool (LMT) is
developed (§3.5), which captures the image output of applications and uses the Peak Signal to
Noise Ratio (PSNR) between image-pairs to determine when an interaction has occurred.
A rudimentary IRR system is developed and the latency simulator is integrated into it. This

provided a platform on which to evaluate both the latency simulator and the introduced approach
to IL measurement. To evaluate the latency simulator, results are compared with measurements
collected from a real-world network. To validate the introduced measurement approach, a simple
Windows Form application (§3.5.1) is initially developed to determine base-line measurements
of the introduced measurement technique. Results are then collected from the IRR system by
using the LMT, while running both over WAN and using varying degrees of simulated latency.

3.2. Modelling latency

The main challenge in measuring IL is the need to identify the exact moment an interaction
occurs, as well as when the corresponding frame update is visible to the user. This is difficult

27

Measuring and Simulating Latency in Interactive Remote Rendering Systems

since in rendering systems, frame updates are typically the result of both user interaction and
scene mechanics. For example, in a 3D racing game, an AI-controlled car may overtake a player
independently of the user interactions; despite performing no action, frames independent of user
input will continue to arrive from the server and be displayed on the client. In order to develop
techniques to measure IL, latency sources must be identified.

Towards this, we identify five main sources of IL in typical IRR systems:

Input Device Latency (IDL) is the delay contributed by the input device, usually an external
controller. This delay is the difference in time taken between an electronic signal (due to a
button being pressed, for example) being generated on the hardware and having the input
processed (memory updated in the OS event buffer). This delay may increase due to poor
wireless connectivity, poorly charged batteries, etc.

Client Latency (CL) is the total delay experienced on the client device. Since CL is the result
of latency introduced both before interactions leave the client and after image results arrive, we
identify that CL is composed of two sub-latencies: CL1 and CL2. CL1 is the delay from the point
at which an interaction is received on the client, until that interaction exits the client, while CL2

is the delay between the client receiving a response from the server and processing (e.g. image
decompression, client state updates) it, up to the point at which the pixels are pushed to the
display.

Network Latency (NL) is the total delay caused by the transmission of a message between the
client and the server. NL occurs in two directions: from the client to the server (NLup) and from
the server back to the client (NLdown). The physical distance between the client and server is the
primary source of NL. However, network routing, congestion and delivery (copper wire vs fibre
optic, for example) all impact NL.

Server Latency (SL) is the total delay experienced on the server, from the point at which the
interaction message is received, until a response message is generated and has left the server. SL
will always be present, however, poor rendering speeds, coding inefficiencies, image
compression, low-end hardware, etc., will add to the total SL and therefore negatively impact IL.

Display Latency (DL) exists in all monitors. It is the delay experienced between the display
system receiving an input signal and the image being displayed on the screen. DL varies across
display systems and is a combination of video input latency (time taken to perform up-scaling
and smoothing and double buffer switching, if any) and pixel response time (the time taken for a
physical pixel to update).
A general IRR pipeline model of the above latency sources is illustrated in Figure 3.1. To
illustrate further, consider an interaction occurring at t0. At t1 the interaction event is raised by

28

3.2 Modelling latency

t0 t1 t2 t3 t4 t5 t6
Time (ms)

CL (1) CL (2)NLup SL DLIDL NLdown

t7

Latency measurement points in an IRR pipeline

Figure 3.1 Interactive remote rendering latency model with measurement points. Interactions flow from
left to right: input device to client to server, back to client and to the display. The sources of latency
modelled are: Input Display Latency (IL), Client Latency (CL), Network Latency (NL), Server Latency
(SL) and Display Latency (DL).

the input device (such as a keyboard). The interaction signal is processed by the client
application where at t2, its transfer across a network is started. At t3, the server receives the
interaction message from the client and begins to process it. After a period of time, the
processed and rendered results from the server are transmitted across the network; this begins at
t4 and ends at t5, where it arrives on the client device. The client software then processes
(decodes, verifies, warps, etc.) the results received from the server and at t6, initiates the display
process and passes the pixels to the monitor. Finally, at t7, the pixels are presented on the display
to the user. From this information, we can compute the end-to-end by with IL = t7 − t0 or with:

IL = IDL+CL1 +NLup +SL+NLdown +CL2 +DL (3.1)

Interestingly, we can also calculate latency for various components. For example, we can
determine SL by:

SL = IL− (IDL+CL+NL+DL) (3.2)

or with the following if DL is not known:

SL = (t5 − t0 − .5∗NL)− (t2 − t0 + .5∗NL) (3.3)

Manufacturers do not publish DL information and instead, only supply response times.
Nevertheless, we can estimate the maximum DL from the monitor update frequency as a single
frame time. NVIDIA’s G-SYNC [69] technology aims to synch the GPU with the monitor
refresh rate and will therefore significantly reduce DL. Nevertheless, the total IL, rather than the
individual components of it, is typically the most important as this value is indicative of whether
or not compensation techniques are required and what, if any, effects they have once
implemented. It is therefore this end-to-end IL to which we refer for the rest of this paper.

29

Measuring and Simulating Latency in Interactive Remote Rendering Systems

3.3. Simulating Latency

Measuring and ensuring minimal IL is a critical task when building IRR systems. However, it is
not practical to perform measurements over WAN as there is no control over the amount of
latency introduced (making it difficult to repeat experiments), and measurements may be
influenced by various factors that are outside of our control. Existing latency simulation tools
(e.g. Clumsy [70] and TMnetSim Network Simulator [71]) yielded highly inaccurate results
during testing and the majority of them cannot be integrated into our test applications, nor
operate between two targeted applications. Therefore, in order provide a suitable and stable
environment for measuring and testing IL, we built a latency simulator.

Simulating interaction latency is not as straightforward as inserting a delay either before or after
an interaction has occurred, even though some authors appear to suggest that this is exactly what
they did (for example [72, 5]). Instead, it is critical that interactions are delayed in an
asynchronous manner. Figure 3.2 illustrates how asynchronous processing of interactions results
in their inter-arrival times remaining constant. This is important because future interactions must
not take longer to complete than previous ones, unless specifically designed to do so. If
interactions are delayed synchronously, the amount of delay each interaction experiences will
start to increase after the first interaction. However, this can only occur when the Send Delay
(SD) (the delay between interactions) is less than IL. If SD > IL, synchronous processing may
be used as a backlog of to-be-processed interactions will never occur. Consider the synchronous
example of Figure 3.2.

0 10 20 30 40 50 60

0
1
2

Time (ms)

as
yn

c

0
1
2

sy
nc

Synchronous (sync) vs asynchronous
(async) processing of interactions

Figure 3.2 Synchronous vs asynchronous processing of interaction messages. Synchronous processing
results in a backlog, while with asynchronous processing, the inter-arrival rate of interaction messages is
constant and no backlog forms.

In the synchronous example, each interaction will be delayed sequentially, thereby adding an
additional delay to future interactions and resulting in a backlog. This additional delay is
represented by the dashed line in Figure 3.2. With each interaction talking longer than the
previous (due to a growing backlog), we can calculate the expected delay for a given interaction
(i) entering the latency simulator with:

30

3.3 Simulating Latency

IexpectedDelay = NL+n(NL−SD) (3.4)

where n is the interaction number. Therefore, the delay experienced by each interaction will
increase by NL−SD, per interaction.

The solution to this issue is to process the incoming messages asynchronously. Asynchronous
programming is not easy to implement and can lead to concurrency issues such as interaction
in+1 being delayed and processed before interaction in. The reason for this is that there is no
guarantee when a task will be started, only that it will be started.

To ensure that interactions will be processed, and their results delivered to the client (from the
server) in the order in which they were created and sent, we built a latency simulator which
delays messages and keeps track of how many have been received (Mr) and how many have
been processed/released (Mp).

3.3.1. Implementation

The latency simulator has an input Delay(message,duration), which delays a message for a
specified duration, and an output MessageReady(r), which is an event raised when a message
has been delayed. Delay creates an object called LatencySimulatorResult, r, which has two
properties: message and messageNumber. The incoming message is assigned to r.message and
Mr to r.messageNumber. Mr is then incremented. If duration = 0, the MessageReady(r) event
is immediately fired signaling to any subscribers that a result is ready. If duration > 0, a thread
is created and r is passed to it. When the thread starts, it immediately sleeps for the specified
duration. Next, the thread waits until Mp +1 = r.messageNumber. The MessageReady(r) event
is then raised and finally, Mp is incremented. The pseudo code for the latency simulator is as
follows:

Algorithm 1 Latency simulation
1: Mr = 0, Mp = 0
2: procedure DELAY(message,duration)
3: LatencySimulatorResultr
4: r.message = message
5: r.messageNumber = Mr
6: if (duration == 0) then
7: raise event MessageReady(r)
8: else if (duration > 0) then RunT hread(r,duration)
9: procedure RUNTHREAD(r,duration)

10: sleep(duration)
11: while r.messageNumber! = Mp +1 do sleep(1)

12: raise event MessageReady(r)
13: increment Mp

31

Measuring and Simulating Latency in Interactive Remote Rendering Systems

To test the latency simulator, we performed 5 experiments, each with a different latency value:
50ms, 100ms, 200ms, 300ms and 400ms. Later (see §3.7.1), we test this simulator in an IRR
system. For each experiment, we collected 1000 measurements with a 100ms pause between
each. Measurements were collected by using a .NET Stopwatch, timing the delays between
adding a dummy message to the latency simulator and the point at which it exited – indicated
with the triggering of an event. Table 3.1 presents the results of these experiments, and
demonstrates that the simulator produces delays very similar to those intended.

Table 3.1 Latency simulator measurements
50ms 100ms 200ms 300ms 400ms

mean 50.99 101.02 200.89 300.99 401.02
σ 0.72 0.73 0.70 0.65 0.69
σ2 0.52 0.54 0.49 0.43 0.47

A very simple testing environment was then developed where a “client” and a “server” were
emulated on separate threads. On the “server”, rendering was simulated by sleeping a thread for
30ms. The latency simulator was integrated into this environment and repeated the above
experiment 5 times, each time measuring the CL, NL and SL parameters as described in Figure
3.1. Table 3.2 shows the mean of each experiment performed with injected latencies of 50ms
(other latencies produced similar results).

Table 3.2 Simulated model parameter measurements (ms)
CL1 NLup SL NLdown CL2 sum IL
0.47 50.97 38.01 50.00 5.46 144.93 146.53
0.92 50.00 36.77 50.03 6.90 144.63 148.00
0.89 50.00 39.59 50.03 7.07 147.60 146.12
0.62 50.53 38.96 50.35 5.96 146.45 147.02
0.50 50.32 37.33 50.03 6.22 144.42 145.77

3.4. Measurement Approaches

From the literature, it can be said that there are two main approaches to measuring IL. We first
describe these approaches in detail and briefly discuss another approach (§3.4.3) that we have
identified. Although we were unable to find this approach is in the literature, it is straightforward
enough and therefore assume that we are not the first to describe it.

3.4.1. Observer

Observer approaches involve writing software that “hooks” into the IRR system in order to take
measurements. This is different from the integrated approach in that access to the source code is
not required. No potentially expensive hardware is required and the process can be automated
with simulated interactions.

32

3.4 Measurement Approaches

Employing this approach, Chen et al. [34] attempt to measure the IL of a cloud gaming system,
which consists of a client application and a remote server. To achieve this, they selected a game
with a built-in menu screen which is activated by pressing the escape (ESC) key. To avoid the
need for human input, the authors simulate the press of the ESC key with the expectation that
after some period of time, a result from the server will arrive on the client and the client
application will publish an on-screen update, thereby displaying the menu. When the ESC key is
simulated, a time measurement (t1) is taken. To measure the moment the response from the
server arrives (t5), the authors hook into the recvfrom() function, which is called when the client
attempts to retrieve data from the socket. The authors then measure the time between data
arriving on the client and the frame being presented on-screen. To do this, a library called
Detours is used to hook into the underlying graphics API. Specifically, the authors intercept the
IDirect3dDevice9::EndScene() function, which is a function from the Direct3D library that is
called just before graphics are about to be presented on-screen, and measure t6. For each frame
that arrives on the client, the colors of a chosen set of pixels are inspected. When a change in
pixels is detected, they conclude that the screen has been updated and then record the time (t7).
The difference in time between user input and identifying the change in pixels yields an IL
measurement.

One potential issue with the approach taken by Chen et. al. is that their technique relies on there
being an in-game menu. If the IRR system is not a games-based one, or if there is no screen
update specific to a certain interaction, there is no way to determine whether or not the screen
update is a result of an interaction or in-application mechanics. This issue may lead to incorrect
measurements and potentially, make measurement impossible. Further, the authors did not
compare their results with a system with known IL and therefore it is not clear how accurate or
reasonable their results are. A more general disadvantage of this approach is that hooking will
change the system behavior, even if in a small way. Hooking is not straightforward and in order
to obtain their measurements, the authors had to perform complicated hooking techniques which
may result in instability of the IRR system and also requires expert knowledge to perform.
Finally, it is unclear how frames resulting from actual interactions (rather than background
scenery updates) are identified.

3.4.2. Hardware

Hardware approaches are those that aim to measure IL using hardware and/or external devices.
For example, Steed in [73], uses a high-speed camera positioned in front of a monitor on which
simulated frames of a 3D object will be displayed. A pendulum is then set between the monitor
and the camera. The pendulum, fitted with a light-emitting diode (LED), is tracked and its
position information is sent to and used by a rendering application to “drive” the simulated
frame. Using the camera, the operator video-records the scene and analyzes the resulting
footage. IL is estimated by “counting the number of frames between pendulum and the
simulated image”. While counting frames is a manual process, performed by the operator, and is

33

Measuring and Simulating Latency in Interactive Remote Rendering Systems

therefore prone to human error, this was later addressed by Friston and Steed [74], where they
introduced an automatic frame counting algorithm.

An advantage of this approach is that there is potentially no impact on the IRR system, and
provides full end-to-end latency measurements. However, the operator needs access to possibly
expensive equipment (high-speed camera, tracker, LED, etc.), which needs to be set up and
calibrated. Domain-specific knowledge may also be required to configure the hardware and the
need for human intervention may lead to unreliable measurements.

3.4.3. Integrated

This approach involves writing IL measurement features alongside the IRR system, directly
integrating measurement taking into system source-code. With the integrated approach, IL can
be measured from t1 to t6 (see Figure 3.1), and is therefore not only capable of measuring
end-to-end IL, but is also useful for debugging system bottle-necks as measurements can be
taken at various points in the system, at the source of latency, giving more control to the
developer over where and when IL is measured.

Measuring delays across a network will typically involve time synchronisation between all
machines, and is challenging to perform [75]. However, when measuring end-to-end IL, this can
be avoided by performing all measurements locally, on the client. To achieve this, when an
interaction is registered on the client application of the IRR system, a GUID and stopwatch must
be created, and the stopwatch started. The GUID and stopwatch must be stored in a data
structure such as a dictionary.

The same GUID should be included in the interaction message sent to the rendering server and
the result message from the server must include the GUID when sent back to the client. On the
client, any arriving messages from the server should be inspected and the associated GUID can
then be matched against the dictionary storing the stopwatches. The corresponding stopwatch
should be extracted from the dictionary and stopped. IL can then be measured as the total
number of milliseconds elapsed on the stopwatch. In order to measure at specific points,
multiple stopwatches can be used and their results added to each message as it passes through
the system components. The sum of these delays could then be subtracted from the total IL in
order to calculate NL.

While this approach is robust and flexible, it does require access to source code, potentially
making it unavailable to many. In addition, bandwidth usage will be increased (even just a little),
and since the system will require modification, it will be affected by the implementation of this
approach. There is also a development cost as well as the requirement to have expert knowledge
of the IRR system and of technical programming.

34

3.5 A Software-Based Interaction Latency Measurement Tool (LMT)

Table 3.3 Interactive Remote Rendering measurement approaches: their advantages and disad-
vantages

Measurement Approach
Observer

Advantages
+ Can be automated with simulated interactions and automated logging.
Might be cheaper than hardware approach as no expensive hardware is required. + Provides full event-to-result latency
measurements, including Display Latency (DL)

.

Disadvantages

- IRR system will be impacted, even if slightly (due to hooking the Graphics API).
- Difficult to associate an action with a particular frame update.
- Has measurement resolution equal to the display refresh rate.
- Ignores Input Device Latency (IDL).

Hardware

Advantages
+ Potentially no impact on the IRR system.
+ Provides full event-to-result latency, measurements, including IDL and DL.

Disadvantages

- Not easy to automate.
- Requires human intervention, which may lead to unreliable measurements.
- Requires hardware which may be expensive and difficult to set up.
- Domain-specific knowledge is required to install, configure and use the needed hardware.

Integrated

Advantages

+ Useful for debugging system bottle-necks as measurements can be taken at various points in the system.
+ Doesn’t require complex OS input event stream hooking.
+ Provides accurate IL measurements if IDL and DL are not important.
+ No expensive hardware required.
+ Allows for more control and the ability to take measurements at specific system locations.

Disadvantages

- Requires access to source-code.
- Will increase bandwidth usage, even if just a little.
- Will require modification to IRR system and affect it in some way.
- Ignores IDL and DL.
- Technical programming knowledge is required.

Later, in §3.6, this method is implemented so that we can measure IL and use those
measurements as a comparison with results from our new technique described in §3.5.
A summary of the advantages and disadvantages of the above approaches can be seen in 3.3. In
the next section, we describe the simulation of IL, which we later integrate into an IRR platform
purpose-built for exploring end-to-end latency and measurement approaches.

3.5. A Software-Based Interaction Latency Measurement Tool (LMT)

Existing approaches to measuring end-to-end IL are not generic enough for use on a wide variety
of IRR systems, and indeed, typical rendering applications. As previously mentioned, it is a
common requirement for source code to be accessible (e.g to tag messages), to hook into the
system, etc., and the need for specialised system knowledge and possible overhead costs for
hardware and configuration make measuring IL all the more challenging.

In this section we introduce our LMT, which avoids such issues.

To achieve this, we can monitor the images/frames generated by an application and identify the
moment an interaction event occurs when two consecutive frames are significantly different. To
calculate how different one frame is from another, we determine the PSNR. We built this
approach into a simple tool, which is placed over the target application. The tool captures the
screen as quickly as possible, time-stamping each image captured. Captured images are then
analysed and the PSNR is calculated for consecutive images. In addition to this, interactions and
the time that they occurred are recorded. When a significant drop in PSNR is detected, we can
calculate IL as the difference in time between the moment an interaction was registered and the
point at which a large drop in PSNR is detected.

35

Measuring and Simulating Latency in Interactive Remote Rendering Systems

To evaluate our tool, we developed a very simple Windows Form application. The background
of this application changes color, from green to blue and back from blue to green. Color changes
are triggered by keypress. The purpose of this application is to provide a test application, where
there is no (or as close to zero as possible) IL.

An IRR simple system is then built and the integrated approach to measuring IL is built into the
system, enabling us to measure its baseline IL. Afterwards, the LMT is used on the IRR system
and results are presented.

3.5.1. Implementation

The proposed tool is a single Windows Form application which displays a red capture box (Cbox)
of 50x50 pixels, with a transparent background. The Cbox must be placed over the display
window of a target application (e.g. video game, video, etc.). A key, bound and used to initiate
capturing of frames within the Cbox, must then pressed. Captured frames are timestamped and
stored in memory. During this period, the user must perform an action on the IRR system (e.g.
press a key to move a character in a game, or “seek” through a video). The interaction, as well as
the time of its occurrence, are both recorded. We trigger the capturing of frames separately so
that the first frame associated with an interaction has a previous frame to compare with. Frame
capturing results in a set of captures C = c1...cn where c is a single capture of 50x50 pixels.
After an interaction has been performed, the timestamps of the captured frames are searched for
a time that corresponds with when the interaction occurred. When the corresponding frame is
identified, IL is calculated as the difference in time between the timestamp of the frame and that
of the interaction.

On start up of the LMT, we hook into the OS-level keyboard event stream and raise an event
when an input is detected. A global stopwatch is also created and started. The Cbox must be
positioned over a target application which on keypress, causes some interaction to occur.
Capturing is manually initiated and each capture is tagged with a timestamp from the global
stopwatch.

When an interaction I is detected, the time of the interaction It is recorded from the global
stopwatch. When measurement taking is complete (we terminate this via another key), the
interaction times are matched with capture times. To do this, each image is compared with the
previous on. In other words, Cn is compared with Cn−1 on a per-pixel basis. If Cn[i, j] ̸=Cn−1[i, j],
where [i, j] represent pixel coordinates, we record IL:

IL =Cnt − It (3.5)

Where Cnt is the nth capture at time t and It is the interaction at t.

36

3.5 A Software-Based Interaction Latency Measurement Tool (LMT)

Since this approach directly compares two frames for differences between them, the Cbox must
be carefully positioned such that no pixel changes occur unless caused by an interaction. We can
consider this environment to be “static” since frame updates are a direct consequence to an
interaction. However, in typical environments (e.g. games, visualisations, etc.), frames may
change due to the 3D engine mechanics (swaying grass, particles, Artificial Intelligence actions,
etc.). This results in an issue where each capture is different to the previous and therefore
determining which frame is a result of an interaction is impossible. To circumvent this problem,
we calculate a PSNR for each captured image by comparing it with the one before it.

In a static environment where frames do not change unless caused by an interaction, Cn will
have a PSNR of 100 when it is identical to Cn−1. In a non-static environment, every image will
be different than the previous and therefore the PSNR will vary according to how similar the
images are (no two images will be identical due to small scene variations). When an interaction
occurs, the difference between frames should be more pronounced (unless large changes are
occurring due to cinematics such, for example), and should therefore manifest as a dramatic and
abrupt drop in PSNR, making detecting interaction-responsible frames possible. However, given
that multiple frames can occur before an interaction-responsible frame is available, we need to
find the first frame where a large change to PSNR is observable.

Therefore, for each capture, we calculate PSNR (equation 3.6) by considering each image and
the one before it such that:

psnr(Cn) =

100, if n = 0

PSNR(Cn,Cn−1), otherwise
(3.6)

Where the PSNR is a function which returns a psnr calculated with:

PSNR(Cn,Cn−1) =

100, if ε = 0

20∗ log10 ∗ 255√
ε
, otherwise

(3.7)

and ε is the Mean Squared Error between captures Cn and Cn−1.

Using the timestamp associated with the capture, IL can be measured as the difference in time
between an interaction timestamp and the timestamp associated with the first detected drop in
PSNR for a given capture:

ILn =Ct − It ,when|Cpsnr −Cpsnr−1|> θ (3.8)

Above, It is the timestamp of the interaction and Ct is the timestamp of the of the first capture
which drops below some threshold θ , which we set as the mean PSNR at rest, without
interaction; this captures the “ambient” noise between captures.

37

Measuring and Simulating Latency in Interactive Remote Rendering Systems

Figure 3.3 shows the LMT positioned over a simple, and separate, Windows Form application
built to test the maximum rate at which frames can be captured. This works by pressing a key,
which causes the background of the Windows Form application to change color from green to
blue. Since there are no background or rendering processes, the color change should be
near-immediate and therefore have as close to zero IL as possible. We used this tool to measure
the baseline of our LMT, finding that it can detect latency as low as the refresh rate of our
monitor, which is ≈ 16ms (60Hz).

Figure 3.3 A tool built to measure the baseline performance of our latency measurement tool. The Cbox
(red bounding box) is used to select pixels for monitoring. The Cbox is placed over the green window
(center) which changes to blue (right) when an action is performed. Interaction Latency is measured as
the delay between performing the action and the window changing from green to blue.

3.6. Experimental setup

In this section we describe an IRR system built to provide a platform from which IL
measurements can be collected using the introduced LMT in §3.5. In addition, the IRR platform
affords us three benefits: i) Latency simulation can be tested more vigorously; ii) IL
measurements can be collected in both remote (rendering performed remotely) and local-only
modes (all components on the same machine); iii) The LMT can be evaluated on both a
local-only and remote rendering application. The aim of the experiments is to validate the LMT
and to demonstrate that it is able to reasonably measure IL.

All development and testing (including that of the LMT) was conducted on a 15” MacBook Pro
2017 with a dedicated Radeon Pro 560 (4GB DDR5 RAM) graphics card, running Windows 10
in Bootcamp mode.

The IRR system is composed of a simple client/server architecture and has the latency simulator
integrated into it. In order to ameliorate cross-platform compatibility issues and to allow us more
control, we used Unity3D for both the client and server applications. Further, this allows us to
leverage not just the rapid prototyping capabilities of Unity3D, but also those of certain features
such as data types and compression/decompression utilities. Communications between the client
and server applications are performed using TCP1. We measure the end-to-end IL of the IRR

1While UDP would provide lower latencies, complications such as packets being out of order or being dropped,
may occur. TCP was therefore chosen for its reliability at the expense of delay.

38

3.6 Experimental setup

platform using the integrated approach described in §3.4.3 so that we can compare the collected
measurements with those of the LMT.

3.6.1. The client application

Figure 3.4 The scene view of the client application. The frame data received from the server is converted
to a texture and applied to the plane, which the user observes through the camera.

The client application consists of a simple scene with a camera and a plane (Figure 3.4). The
plane is used to display the images from the server, which are mapped onto the plane before
being rendered by the camera. Interactions are fed to the system via a template which consist of
either an “a” or a “d” per line. The interactions are loaded into a queue when the application
starts up and messages are then sent to the server application at a rate of 10 messages per second.
Messages arriving on the client (from the server application) are first fed through the latency
simulator, delaying arriving messages for a specific amount of time.

3.6.2. The server application

The server application has a scene consisting of a camera and a 3D cube. When a message
arrives from the client, it is put into the latency simulator and delayed for a specific amount of
time. Next, it is deserialized and an event is raised, signaling that the scene must be updated. To
update the scene, the interaction of the arrived message is inspected. If the interaction is an “a”,
the cube is rotated left. If the interaction is a “d”, the cube is rotated right. Once a transformation
to the cube is complete, the render result is captured (the game view, shown in Figure 3.5) and
compressed to JPG at 75% compression ratio, which is the default value supplied by Unity3D.
The message is then serialized and sent back to the client. While the rendering scene is simple

39

Measuring and Simulating Latency in Interactive Remote Rendering Systems

(just a rotating cube), it is sufficient – the primary purpose is to perform rendering and thus add a
variable rendering delay to system, as well as to produce render results/frames.

Figure 3.5 A scene view of the server application shows a 3D cube with a camera positioned above it.

3.7. Experiments and Results

In this section, we present a number of experiments and their results. First, we measure the base
operating IL of the IRR platform, as well as when used with simulated latencies of 50ms and
100ms. We do this to get an understanding of the expected amount of latency to be measured,
and to be able to compare those results with ones collected using the LMT. We also perform
measurements of IL over WAN and compare the results with a similar – but simulated – amount
of latency. This allows us to validate that the system is able to operate correctly in an
environment where NL is non-simulated. We then perform measurements with the LMT before
comparing the results of the LMT with those of the IRR system. Note that all measurements of
the IRR system were captured using the integrated approach (see §3.4.3).

3.7.1. IRR Measurements

We measured the base latency (without simulated NL) of the IRR system by taking
measurements at t1 and t6 (as described in Figure 3.1). Here, the client and server applications
were run on our local system (located in Cambridge, UK) by feeding into it 1000 predefined
actions at an arbitrary interaction rate (SD) of 10 interaction per second (or 1 interaction every
100ms). The mean measured base IL (ILbase) was measured to be 15.19ms (Figure 3.6).
After establishing a baseline latency for the IRR system, a further 3 (again, locally) experiments
were performed on our local machine, each time injecting a different amount of latency into the
system: 50ms, 100ms and 174ms (this value was measured between Cambridge and Northern

40

3.7 Experiments and Results

0 20000 40000 60000 80000 100000

run time (ms)

15

20

25

30

35

40

In
te

ra
ct

io
n

la
te

nc
y

(m
s)

Base IRR IL: integrated approach, local

IL

IL, , 2: 15.19ms, 2.2ms, 4.83

Figure 3.6 Base interaction latency measured with the integrated approach. Simulation was run on a local
machine.

0 20000 40000 60000 80000 100000

run time (ms)

60

65

70

75

80

85

90

In
te

ra
ct

io
n

la
te

nc
y

(m
s)

IRR with 50ms of simulated network latency

IL

IL, , 2: 65.91ms, 2.2ms, 4.86

Figure 3.7 Interaction latency measured using the integrated approach with an additional 50ms simulated
latency.

California, using the Ping utility). Our expectation was for the results to show that
IL = NL+ ILbase

In both Figure 3.7 and Figure 3.8 it can be noticed that the mean IL measured is ≈ 16ms more
than the simulated NL, which is a further indication that the latency simulator is performing as
expected since our measured base latency is ≈ 15ms. The IRR system was then run over WAN,
with the server application hosted remotely on an Amazon EC2 instance located in Northern
California. We did this three times: one early morning, one in the afternoon and one at night.

41

Measuring and Simulating Latency in Interactive Remote Rendering Systems

0 20000 40000 60000 80000 100000

run time (ms)

115

120

125

130

135

140

In
te

ra
ct

io
n

la
te

nc
y

(m
s)

IRR with 100ms of simulated network latency

IL

IL, , 2: 116.46ms, 2.39ms, 5.72

Figure 3.8 Interaction latency measured using the integrated approach with an additional 100ms simulated
latency.

We did this to counter variation in broadband speeds commonly experienced as “throttling”,
most often encountered during peak traffic hours. The mean IL measured during these
experiments was 191.72ms, which we compare with the previous experiment where we
introduced 174ms of simulated latency.

0 200 400 600 800 1000
Measurement number

190

200

210

220

In
te

ra
ct

io
n

la
te

nc
y

(m
s)

Simulated vs non-simulated IL measurements

IL (non-simulated)
IL, , 2: 191.72ms, 2.15ms, 4.63
IL (simulated)
IL, , 2: 191.04ms, 2.46ms, 6.07

Figure 3.9 Simulated vs non-simulated (WAN) Interaction latency measured using the integrated approach.
Zoomed-in view as signals are nearly identical and overlap otherwise.

Figures 3.9 and 3.10 show that the latency simulator, combined withe the IRR system, produces
a delay similar to that of a real-world network, with the difference in signals being, on average,
less than 1 millisecond. This is a clear indication that the latency simulator performs as expected,

42

3.7 Experiments and Results

simulated non-simulated
185.0

187.5

190.0

192.5

195.0

197.5

200.0

202.5

205.0

In
te

ra
ct

io
n

la
te

nc
y

(m
s)

Simulated vs non-simulated IL measurements

Figure 3.10 Boxplots showing means of simulated vs non-simulated Interaction Latency measurements.

which is further illustrated by Figure 3.11 and Figure 3.12, where it can be seen that both sets of
measurements come from the same distribution. Note that there is no emulated jitter: the
variation in the simulated latency is a result of threading and the testing on a non-realtime
Operating System (OS) (Windows).

180 185 190 195 200 205 210 215 220
Interaction Latency (ms)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Fr
eq

ue
nc

y

Simulated IL measurements distribution

Figure 3.11 Distribution of Interaction Latency measurements collected when latency is simulated.

43

Measuring and Simulating Latency in Interactive Remote Rendering Systems

180 185 190 195 200 205 210 215 220
Interaction Latency (ms)

0.00

0.05

0.10

0.15

0.20

0.25
Fr

eq
ue

nc
y

Real-world IL measurements distribution

Figure 3.12 Distribution of Interaction Latency measurements collected when latency is produced by a
real-world network.

3.7.2. LMT Testing and Evaluation

In order to determine the lowest amount of latency measurable (resolution) by the LMT, we built
a simple Windows Form application, which we described in §3.5.1 (see Figure 3.3). We built the
application so that we can test the baseline latency of the application without additional delays
such as rendering time or network latency. There were no other tasks or applications in
operation during experimentation and the color change should therefore have been immediate.

On a local machine, Cbox (the red bounding box) of the LMT was placed over the green
background of the test application and performed 50 manual key presses, with the expectation
that our measurement results should indicate that IL ≈Ct (our display has a refresh rate of
60Hz).

Our results show that the LMT measured an average IL of 15.92ms, as can be seen in Figure
3.13, which is very close to the expected Ct of 16ms (+- 1ms). The discrepancy of 1ms is due
fluctuations in the timing of thread-starts and stops. We then repeated the experiment and
collected 10 new measurements but used the IRR system (described in §3.6) rather than the test
application.

44

3.7 Experiments and Results

Figure 3.13 Latency measurement tool base results collected using a test-application which simply
changes a Windows Form background color from green to blue, when a key is pressed.

During the analysis of the results obtained with the LMT, we found clear visual indications that
PSNR does indeed drop enough to enable the positive identification of frames resulting from
interaction, and therefore the calculation of IL. For instance, Figure 3.14 shows pronounced
drops in PSNR values for the 10 interactions collected over 20 seconds, dropping dramatically
from 100 to ≈ 27 when a frame is significantly different from the one before it (due to
interaction).

45

Measuring and Simulating Latency in Interactive Remote Rendering Systems

Figure 3.14 10 interactions performed over 20 seconds. Drops in PSNR shows that a significant difference
between consecutive frames has been registered, indicating that an interaction has occurred.

When zooming into the data of Figure 3.14, it can be seen that there is a visible delay between
when an interaction is performed and when the on-screen image is updated. For instance, in
Figure 3.15, an interaction is performed at t1, which occurs just before a frame is captured. At t2,
which in this case is the next frame, we detect a large drop in PSNR. Using the timestamp of the
image associated with t2, we can calculate IL = t2 − t1.

Interaction
registered (t1)

Sharp drop in calculated PSNR, (t2)

t2 - t1 = IL
—> 9184ms - 9167ms = 17ms

Figure 3.15 Peak Signal to Noise Ratio (PSNR) used to identify change in scene from interaction. An
interaction is performed and 17ms later, a drop in PSNR is detected.

46

3.8 Discussion

Having validated the expected operation of the LMT, it was then tested on the IRR system with
simulated latencies of 50ms, 100ms and 174ms. Since the LMT does not simulate interactions
(and therefore requires manual input), only 10 measurements per experiment were collected.
During these experiments, we also collected measurements using the integrated approach so that
we can compare them with those obtained using the LMT. Figure 3.16 shows these results. Both
the integrated and LMT measurement pairs were collected from the same experiment, however
due to the measurements being collected via different applications, it is not possible to present
the results along a unified timeline. From the figure, the LMT is shown to capture more latency
than the integrated approach, and the delta (difference in IL measured between the LMT and
integrated approach) remains relatively consistent across all latencies, whether simulated or not.

IL (ms)

Figure 3.16 A comparison of measurements between Latency Measurement Tool and integrated approach.
Measurements reported are averages of 10 measurements per experiment, repeated 3 times each. Delta is
the difference between the two measurement approaches.

In all, the LMT has been demonstrated to be able to measure IL reasonably well. In the next
section, we present a discussion.

3.8. Discussion

We modelled and developed a method for simulating latency and integrated it into a
purpose-built IRR system so that we could test and evaluate a novel method for measuring the
end-to-end IL of IRR systems. This section discusses our work from a high-level, indicates
some of the potential issues with our work and proposes future work.

3.8.1. On simulating latency

In order to test latency measurement techniques, we needed a controlled environment with the
ability to "inject" arbitrary amounts of latency. The tools available for simulating latency were

47

Measuring and Simulating Latency in Interactive Remote Rendering Systems

found to be inconsistent and unreliable during testing, and being a standalone application,
unable to be integrated directly into our IRR system. Therefore, a purpose-built latency
simulator was developed (see §3.2).

We measured our latency simulator and are confident that it behaves reasonably well when
compared with our WAN experiments. In all experiments measured using the integrated
approach, the mean IL was ≈ 15ms to 18ms above the introduced latency (see Figures 3.7 and
3.8). This is the expected result as our IRR system has a similar mean baseline (Figure 3.6). It is
clear, though, that there is noise in our results. We do not simulate any jitter, dropped or
otherwise Out-of-Order (OoO) packets. Therefore, we suspect this variability is due to the 15ms
time-slice limitation of the Windows OS (described in §3.8.2), and the fact that the OS does not
guarantee when a thread will begin, only that it will. In going forward, options to control jitter,
OoO and the dropping of network packets would lend well to testing the robustness of the LMT
tool and the system as a whole. We suspect that only the OoO packets will present an issue for
the LMT, resulting in the incorrect frames being detected as “corresponding to an interaction”.

3.8.2. On the IRR system

While simple, the IRR system described performs real rendering (and therefore introduces the
variable rendering delay). We do not believe that a more complex scene (e.g. a video game) is
required to test latency measurement approaches.

We built the integrated IL measurement technique into the IRR system to (i) measure IL as
“close to the source” as possible, as well as to provide a baseline measurement of the system
from which we could test and evaluate our introduced end-to-end IL measurement software tool.
During measurement collecting, it was found that in addition to the noise generated by latency
simulation, the IRR system introduces additional noise. For example, in Figure 3.6 and others,
there is a large amount of variability in the data. While rendering latency is not consistent and
will therefore add variability to the measurement, there may be an underlying process which is
causing instability in our IRR system. If there is, the most likely cause is our chosen method for
“pausing” a thread (we use the standard .NET Thread.Sleep() function). Windows-based
machines are not real-time OS and provide a thread time-slice of 15ms, meaning that the sleep
function has a resolution of 15ms, too. It has been noted that the time-slice can be configured to
1ms by using timeBeginPeriod and timeEndPeriod, however, we were reluctant to do this as it
would affect the thread time-slice OS-wide and may have unexpected consequences. While we
believe that this system noise is of little concern, we would like to reproduce and further verify
our approach with a real-time OS.

3.8.3. On the Latency Measurement Tool

Our aim in developing the software-based LMT was to enable researchers and developers to
measure IL without any hardware or configuration, while limiting the impact of measurement

48

3.8 Discussion

taking on the IRR system. Latency measurement can be challenging to perform, especially if the
application source code is inaccessible. The LMT expands on and improves the observer
approach (such as in the example of Chen; described in §3.4.1), which is useful, but has a
number of issues such as being unable to consider measurements of applications consisting of
moving entities which are not coupled to user interaction (e.g. grass blowing in the wind) and
the requirement to have expert coding knowledge. We expanded on this approach by capturing
screen pixels within a user-controlled Cbox and by monitoring a subset of frame pixels and using
the PNSR between images to identify a frame resulting from interaction.

This approach means that the IL of potentially any rendering system can be measured, without
any setup, expensive equipment, calibration, access to source code or expert knowledge.
However, it is important to note that this approach will only capture end-to-end latency and
therefore is unsuitable for scenarios in which specific parts of an IRR system need to be
measured. Another limitation is that the LMT has a mean capture time Ct dictated by the
monitor refresh rate (60Hz), which in our case was ≈ 16ms. There is therefore a risk that a
measurement will be out by at least Ct (if pixel change occurs before or after the capture). The
bounds in which pixels were captured was arbitrarily set to be 50x50 pixels in size, which raises
the question: would a smaller bounds (e.g. 10x10 pixels) result in similar measurements and
how would this impact the performance and/or resolution of the LMT? Further, we did not test
our LMT on a scene with moving background entities, however we believe that doing so would
not impact the validity of our results: the drop in PSNR would be less pronounced, but the drop
would still be evident - unless drastic scene changes occur such as an explosion in a video game.
We therefore leave such an experiment to future work, too.

At present, performing measurements with the LMT is a very manual and slow process,
requiring the operator to physically initiate capturing and then perform interactions. However, it
should be possible to automate this process by simulating key presses.

It should be noted that IDL and DL were not measured during our experiments: comparing
measurements from our LMT (and indeed the integrated approach) with those captured when
using the hardware approach would help to further evaluate both techniques. Finally, multiple
inputs can contribute to a single frame. Since we hook into the underlying OS event stream, we
capture all inputs and for each, consider the first detected image response. In this way, all
previous inputs are considered in our measurement, regardless of how many were used in
generating a given frame.

3.8.4. Summary

The ability to easily and accurately measure IL is important but current methods are complex,
often requiring expert knowledge, calibration, potentially expensive equipment and in some
cases, access to source code. Towards this, our contribution is two-fold.

49

Measuring and Simulating Latency in Interactive Remote Rendering Systems

A method for simulating interaction latency

Being able to simulate IL with controllable latency parameters is important for assisting
researchers and developers during the design and implementation phase of IRR systems, as well
as when investigating potential latency compensation techniques. This research has therefore
introduced, tested and validated a method for simulating latency. It was found simulating latency
in IRR systems is a non-straightforward process and therefore a technique which provides
fine-grained control over latency within less than 1ms of a real-world signal (see 3.9) was
developed, with measurement results appearing to come from similar (normal) distributions 3.11.
Additionally, it was found that asynchronous processing of interactions within the latency
simulator is a critical factor. To validate the introduced latency simulation approach, multiple
experiments were conducted using simulator-generated latencies and their results were
compared with real-world latency measurements.

A novel framework for measuring interaction latency using a software-based observer ap-
proach

Three latency measurement technique categories were introduced: integrated, observer,
hardware. Additionally, it was described in detail how to apply the integrated approach for
measuring IL, which to the best of our knowledge has not been presented in literature. During
measurement experimentation, it was found that existing approaches are sufficient when access
to source code is available. However, all approaches lack generality and are often complicated to
configure and use, limiting applicability. Therefore, these concerns were addressed by
developing a novel general-purpose software-based method (LMT) for measuring end-to-end IL.
In fact, LMT appears to be suitable for measuring the IL of any display system (local or remote)
and can even be used on web applications such as YouTube and Netflix.

50

Chapter 4. N-Grams for predicting keyboard-based user interactions

4.1. Overview

The aim of this chapter is to introduce and explore N-Grams as a means for predicting keyboard-
based user interactions. After briefly mentioning assumptions and constraints, the experimental
setup is discussed. Next, the model is introduced, evaluated for accuracy and two
implementations are explored and measured, followed by the presentation of results. Later, in §5
this prediction method is integrated into a simulator test bed and then into a real-world IRR
system. Finally, a summary is provided.

4.2. N-Grams and their suitability for IRR systems

N-Grams are statistical models used in computational linguistics and probability, and are well
known for their use in predictive text [76, 77] and sentiment analysis [78, 79]. Essentially, N-
grams are adjacent n-tuples (gram) of words or characters which collectively describe the
frequency of a “gram” (pattern) within a text or speech corpus, the results of which may be used
to derive probabilities of observing a pattern, given some history. They are well suited to many
tasks, including player goal prediction [80] and user actions modelling [81] in computer games.
According to Rabin [82] N-Grams are powerful & computationally inexpensive, which provides
the ability to model user actions with high accuracy. In fighting games such as Tekken, Mortal
Kombat and Street Fighter, N-Grams are used [83] by Artificial Intelligence (AI) opponents to
model user actions and offer counter moves. So successful are N-Grams at predicting which
move the player will perform next, that error must be introduced to the model so that players
have a chance at winning. N-grams may be used in either offline mode, where the training data
is static, or in online mode, where the training data changes over time and therefore allows the
model to adapt to changing patterns in user behavior during execution- time. The low
computational requirements, accuracy and speed of N-Gram statistical models should make
them well suited to predicting future user interactions, without significantly impacting IRR
systems. The use of N-Grams for user interaction prediction in IRR systems does not appear to
have been investigated in literature. For this reason and the benefits listed above, N-Grams were
chosen as the primary method for predicting keyboard-based user interactions.

51

N-Grams for predicting keyboard-based user interactions

4.3. Assumptions and Constraints

4.3.1. Keyboard-only interaction prediction

While some work has been done on predicting mouse movements [84], albeit not specifically for
interactive visualizations, keyboard interactions were chosen as the focus of this research due to
time constraints and the added complexity of having to design two models, rather than one.
Additionally, a number of issues were observed with mouse simulation (discussed later),
contributing to this decision.

4.3.2. Interaction types

In a Virtual Environment (VE) such as an open-world games, city simulation or urban
visualization (e.g. Google Street View), users can navigate using the keyboard. For example, by
pressing the keys W, A, S or D, the player/camera can be moved forwards, left, backwards or
right. Similarly, other keys, or combinations of keys, may be used: a “W, A” could signify a
“forward-left” movement, or the user might rebind interactions to any of the standard keys at
their disposal. Therefore, the N-Gram model must be able to cater for unknown keyboard
interactions and their possible combinations.

4.4. Definitions

This chapter introduces the idea of predicting user interactions. User interaction prediction is
later used to mitigate IL and as such, it is worth briefly describing some of the notation used in
this chapter as the same notation will be used later on.

Prefix: This represents the interaction “history” used when making a prediction. In our case, a
prefix is an array of the last N interactions or keys pressed.

N-Gram Order or just “Order”: This is the length of the history used.
N: In this chapter and throughout the thesis, N is used to denote an integer. For example, we
might say that an N-Gram Order has a length N = 5.

Corpus: A corpus is a collection of words or letters. In this thesis, we use individual letters to
represent interactions.
C: This represents the number of times (“count”) the prefix is observed within the corpus.

4.5. Experimental setup

In order to build, train and test an N-Gram model for keyboard-based user interaction prediction,
data is required. Unfortunately, no user interaction databases appear to be available online and
so there is no readily available source of data on which an N-Gram model can be trained and
tested. Therefore, a simple application from which interactions could be collected was built.

52

4.5 Experimental setup

While a user will likely only be aware of pressing the key and then releasing it, the operating
system (OS) will repeatedly raise the “KeyDown” event while the key is held down; this will
happen at a rate of about 30 times a second [36]. This stream of interactions will be used as the
data for model training and testing and should make it possible to infer likely future interactions.

Using the Unity3D game engine and a free tool (Maze Generator) available on Unity’s Asset
Store, 5 randomly generated VEmazes were constructed. In order to prevent random wandering
and make interactions more purpose-like, ten collectable items were put into each generated
maze at random locations. A sphere, representing the player, is controlled and allows the user to
navigate the environment with the forward (W), left (A), backward (S) and right (D) keys. When
the sphere collides with a collectable item, it is removed from the maze. Each maze was played
and the first one thousand interactions from each attempt were recorded. Only keyboard
interactions were recorded for use as an input data source to the N-Gram learning model. All
five thousand interactions were then merged into one dataset. Finally, the dataset is divided into
a training and test set.

Randomly generated mazes for user interaction collection

Figure 4.1 Randomly generated mazes used for gathering interaction data.

4.5.1. Limitations

Since there is no publically available data set of user interactions, one had to be created
manually. This means that the data collected and used to test and train the N-Gram model may
not be representative of the interaction style of the population at large. Additionally, the number
of interactions allowed has been restricted to 4 (W, A, S and D), and no mouse input is modelled.
Nevertheless, these limitations do not invalidate the performed experiments or their results. This
is because N-Gram models adapt quickly to new input and their learning rate can be controlled
by adjusting the amount of history used for training.

53

N-Grams for predicting keyboard-based user interactions

Table 4.1 Example corpus of user interaction events

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Event A A A W W W D D A S S S S W W A

4.6. The model

The primary data off which the N-Gram model works is a set of events. This set of events is
known as a “corpus” where each event is either performed by a user or simulated. For the
purposes of predicting user keyboard interactions, they can be stored as a FIFO (First-In-First-
Out) queue of keypresses such as “w”, “a”, etc. These events can be referred to as “interactions”
or “interaction events”.
The immediate last n interactions of the corpus are known as a “prefix” and the length of the
prefix is known as the order.

pre f ix = In−1
n−N+1 (4.1)

where In an interaction or element within the corpus, N is the order and n is the total number of
elements within the corpus. The first step in predicting with N-Grams is to scan the corpus and
count the number of times the prefix occurs. For each prefix match, the immediate next
interaction is inspected and a count of how many times a particular interaction event follows a
given prefix, is maintained. The interaction which occurs most frequently following the matched
prefix is the most probable interaction to occur next. In other words, given a set of interactions,
predict the next interaction (Ii+1) given some history and a frequency distribution:

Ii+1 = P(Ii|Ii−1, ..., Ii−N) (4.2)

As an example, if a user has been interacting with the system, the corpus has grown to consists
of 10 interactions and we consider just the last two interactions (N = 2) for predicting the next:

Number of elements in corpus n = 10
N = 2
Corpus = “W,A′′,“W ′′,“W ′′,“A′′,“W ′′,“W ′′,“A′′,“S′′,“W ′′,“W ′′

Pre f ix = “W ′′,“W ′′

From this, bigrams can be constructed, which are tuples of adjacent elements. For example, the
resulting set of bigrams (Since N=2), excluding the prefix, from the above would be:

bigrams =

{(“W,A′′,“W ′′),(“W ′′,“W ′′),(“W ′′,“A′′),(“A′′,“W ′′),(“W ′′,“W ′′),(“W ′′,“A′′),(“A′′,“S′′),(“S′′,“W ′′)}

54

4.7 Implementation and performance

From the above, it can be seen that the number of times the prefix “W”, “W” occurs is two. The
number of times each interaction has occurred immediately following the prefix is then counted.
Since only interactions of type “W”, “A”, “S” and “D” have been observed, then:

“W ′′ : 0,“A′′ : 2,“S′′ : 0,“D′′ : 0

The “2” in {“A”: 2} is represented by

C(In−1
n−N+1In) (4.3)

and denotes the number of times “A” has occurred following the prefix “W”, “W”. The
probability of the next interaction, given some history, is therefore defined by:

P(Ii|In−1
n−N+1) =

C(In−1
n−N+1In)

In−1
n−N+1

(4.4)

4.7. Implementation and performance

It is conceivable that, depending on the complexity of the prediction algorithm, an excessive
amount of time to compute predictions may be expected. This delay, no matter how small or
great, will introduce and contribute to the overall IL experienced by the user. It is therefore
critical that prediction modules be carefully evaluated for performance before they are integrated
into an IRR system.

This section describes two implementations which were evaluated for N-Gram storage and
performance: buffer-based and a custom dictionary-based. For each approach, performance was
evaluated by generating 10,000 random interactions and timing how long each prediction took to
be produced.

4.7.1. Buffer-based

In the buffer-based implementation of the N-Gram model, each new observed interaction was
appended to the corpus, which were stored in a list data structure. With this approach, the
pseudo code for the prediction algorithm is as follows:

For each interaction:

1. Get the last N interactions (prefix)

2. C(X) = Count number of times prefix occurs within corpus

3. C(Y) = Count number of times prefix + latest interaction occurs within corpus

4. P(Ii|In−1
n−N+1) =

C(X)
C(Y)

55

N-Grams for predicting keyboard-based user interactions

5. Add interaction to corpus

The model was evaluated in two different modes: trained and untrained. In the trained mode, the
training data is added to the corpus. However, in the untrained mode, this process is skipped, and
the corpus is empty at the time of the first prediction. When an interaction is performed, a prefix
is generated. The corpus is then searched for the prefix and each occurrence is counted. In
addition to this, the immediate-next interaction after the matched prefix is noted and counted.

After training the model on 4000 of the total 5000 interactions, the remaining 1000 interactions
were used as testing data. They were fed into the application one at a time and before each
interaction, a prediction was made. The model was then updated with the interaction and the
result of the prediction (correct/incorrect) was recorded.

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Trained 82.6 81.3 80.1 77.5 73.5 69.1 64.2 59.4 54.2 49.7 44.5 41.3 38.7 35.6 33.3 31.1 29.3 27.8 26.6 26.3
Untrained 82.5 81.1 79.8 77.1 73.1 68.6 63.8 58.9 53.7 49.1 43.9 40.9 38.4 35.4 33.0 30.8 29.1 27.7 26.6 26.3

Pe
rc

en
ta

ge
 (%

)

N-Gram Order

Percentage of correct predictions per N-Gram Order: untrained vs
trained model

Trained Untrained

OrderOrder

Figure 4.2 Trained vs untrained N-Gram model.

The trained model was evaluated 20 times and with each run, the order was increased. The
results were logged at the end of each experiment. The same set of experiments were then
repeated using the untrained model. Figure 4.2 shows that as the N-Gram Order, or the amount
of history used, increases, the number of correct predictions decreases, regardless of whether or
not the model is trained. It can also be seen from the figure that there is very little difference
between the trained and untrained model in terms of the percentage of correct predictions: the
untrained model performs slightly (a fraction of a percent) better, which is likely due to bias in
the training data.

During development, it was noticed that after extended periods of use, the length of time
required to compute predictions increased. After investigating, the problem was found to be with
the design of the model storage: with each new interaction, the corpus list grew longer and
continued to do so for as long as the user used the system. In turn, this caused the time required
to perform pattern-matching to increase (as the model had to regenerate the N-Grams for each

56

4.7 Implementation and performance

prediction), which was therefore ultimately impacting latency. Of course, the length of
interactions collected could be limited such that new observations cause old observations to be
removed. However, removing previous interactions from the corpus would result in less
observational data and would likely negatively impact the ability of the model to match new
patterns. Figure 4.3 illustrates the increasing computation time using the approach just described.
Note that the two pronounced “dips” are the result of using shared instances on AWS, where for
a short period of time, Amazon instances were prone to sudden spikes in CPU utilisation.
Nevertheless, the dips are minimal, measuring less than 2 milliseconds in magnitude.

0 2000 4000 6000 8000 10000
Measurment number

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Ti
m

e
(m

s)

N-Gram prediction computation time: buffer-based

Measurement

Figure 4.3 Computation timings for N-Gram prediction using a buffer.

4.7.2. Dictionary-based

In order to improve the performance of the prediction model, a new data structure was chosen.
Dictionaries are highly efficient data structures and according to Microsoft, “Retrieving a value

by using its key is very fast, close to O(1), because the Dictionary<TKey, TValue> class is

implemented as a hash table” [85].

The data structure was redesigned such that the model itself is a dictionary, whose “key” is the
prefix, and “value” is a class object called “Gram”. The Gram class contains a dictionary called
“Observations”, whose “key” is an “observation” and “value” which is a count of the number of
times that observation has been encountered. An “observation” is an interaction recognized
immediately following a prefix. In other words, if the corpus was “w”, “w”, “a” and the prefix
was “w”, “w”, the observation would be “a”. The Gram class has a function named “Results”,
which calculates the total number of Observations for its parent prefix and then returns a new

57

N-Grams for predicting keyboard-based user interactions

dictionary of with the same keys as Observations, but with probabilities as values and with the
results ordered descending-wise.

When an observation (interaction) is added to Observations, it is used as a key and its value is set
to 1. One is used since probabilities for future interactions must be calculated, and to do that,
prefix counts must be divisible by observation counts, which cannot be done if the value were to
be set to 0. If the observation already exists in Observations, its value is incremented by 1.

The pseudo code for the model training algorithm is as follows:

Algorithm 2 Training and predicting user N-Gram model
1: procedure TRAIN

2: Get unique interactions
3: for i = 0; i < length(training data - Order); i++ do:
4: Create a Key
5: if (key not in model<key,prediction>) then
6: Create empty Gram object and initialise Observations with unique interactions

(keys) and the (value) 1
7: Add a new {Predict : gram} pair to the dictionary model
8: Get interaction immediately after key (e.g. trainingData[count + Order])
9: Find prediction in model and increment corresponding interaction value

10: procedure PREDICT

11: Get Prefix
12: if model does not contain Prefix then
13: Create empty Gram object and initialize Observations with unique interactions (keys)

and the (value) 1
14: Add a new {Predict : gram} pair to the dictionary model
15: Retrieve prediction object from model with matching Prefix
16: for all Observation do
17: Calculate probability with: observationvalue

sum(allobservationvalues) ∗100

18: Order observations according to their probability (in descending order)
19: Return observation with highest probability

Figure 4.4 explains the model structure.

58

4.7 Implementation and performance

Figure 4.4 Dictionary-based data structure used for N-Gram prediction model.

The same random data used in the previous experiment and shown in Figure 4.3 was used to
evaluate the new data structure implementation, the results of which are shown in Figure 4.5. As
can be seen, the new dictionary-based data structure significantly improves performance and
prediction computation times no longer increase with use. On average just 0.1ms is required to
generate a prediction.

0 2000 4000 6000 8000 10000
Measurment number

0.0

0.5

1.0

1.5

2.0

Ti
m

e
(m

s)

N-Gram prediction computation time: dictionary-based

Measurement

Figure 4.5 Computation timings for N-Gram predictions using a dictionary-based approach.

59

N-Grams for predicting keyboard-based user interactions

4.8. Summary

As described earlier, N-Grams have been used by AI opponents in video games for predicting
user interactions and providing counter moves with a lot of success. However, it remains to be
seen whether those previous successes can be realised in the context of IRR systems, and
whether or not N-Grams can be used to aid in the reduction of IL. This chapter has introduced
N-Grams, described a model for predicting user interactions as well as demonstrated and
evaluated two implementations.

Prediction accuracy was evaluated at different orders on both trained and untrained models using
data collected from 5 randomly generated VE mazes. The results of these experiments indicate
that there is very little difference between trained and untrained models, at least in this context.
Two implementations were described and investigated for prediction: buffer-based and custom
dictionary-based. The two implementations were evaluated for performance by randomly
generating a set of 10,000 interactions and recording how much time was required for each
prediction to be produced. The results indicate that the dictionary-based approach provides
significant performance benefits, requiring approximately 0.1ms per prediction.

During testing, it was found that the more frequent consecutive interactions changed, the greater
number of incorrect predictions to occur. For example, if a sequence of interactions is
“w,a,w,d,s,a,d,a,w”, both models struggle to accurately predict the next action, whereas with a
sequence such as “w,w,w,w,a,a,a,a,a”, the models produce fewer incorrect predictions. This is
because N-Grams match patterns within the data and the more erratic the data, the more difficult
it is to predict. Indeed, with just 4 possible interaction types, a random set of interactions would
reveal an accuracy of just 25%. As the order is increased and more information is used to
identify patterns, the model performs worse and worse because its ability to capture patterns is
diminished.

60

Chapter 5. Simulating a Predictive Interactive Remote Rendering System

5.1. Overview

Designing and building an IRR system is a challenging and time-consuming task. Due to their
use of Wide Area Networks (WAN), a critical issue, IL, is present in all IRR systems. However,
user interaction prediction might offer a way to lower overall IL. This may be achieved by
performing rendering ahead of time, and delivering interaction results to the client before, or as
close to when, the corresponding interaction has been performed on the client device.
In the previous chapters, we have described how to model and measure (§3) IL, as well as how
to predict keyboard-based interactions (§4).

In this chapter, a framework for a PIRR simulator system is described with the purpose of
providing a testbed for reproducible experiments, hypothesis testing and evaluation. In addition,
this chapter seeks to understand how to integrate prediction into an IRR system and the
implications of doing so.

Towards this, the prediction model presented in §4 was built into a separate application (referred
to as the prediction module) so that updates and modifications to the model and prediction
algorithm could be more managed easily, as well as to enable the prediction module to be
experimented with at different locations on the network. The addition of a prediction module
into the IRR system introduced various complications, however. For example, raised questions
include: how is IL measured when prediction frames are not a direct result of interaction? How
are communications between all the components managed? How are correct/incorrect
predictions identified by the client application so that a failed prediction frame is not displayed
to the user? How should results arriving on the client application (from the server application)
be stored and managed, since some results may arrive before their corresponding interaction has
been performed? The ability to simulate such a system would make experimentation with
system design and prediction modelling simpler, as it would enable developers and researchers
to quickly test new or updated system components in a controlled environment and without a
large investment of time. Therefore, this chapter focus on introducing a PIRR system simulator
and describing its architecture. In subsequent chapters, this simulator is used to evaluate the
effects of N-Gram prediction on IL. Later, in §7, a real PIRR system is introduced, evaluated and
then compared with this simulator.

61

Simulating a Predictive Interactive Remote Rendering System

5.2. Definitions

1. Interaction template: a text file containing interactions – one per line.

2. Interaction queue<string>: a FIFO queue used to store interactions read from the
interaction template.

3. Interaction number (integer): the number for the current interaction.

4. ID (string): The ID is a unique string representation of the current interaction number,
action performed and location. The scheme used is:
ID =< interactionnumber >< action >< pos.x >< pos.y >< pos.z >

5. Interaction (string): This represents the action performed, simulated or otherwise. Only
the character representations of the keys pressed as a string, are stored. An interaction can
be either W (forward), A (left), S (backwards) or D (right). At the end of each interaction,
an interaction number, initially set to 0, is incremented. This approach was chosen so that
each interaction can be uniquely represented with the scheme defined above in ID. In the
event of an interaction resulting in a previously “visited” location/position, the interaction
number will differentiate the past interactions from the new, allowing for the
differentiation of otherwise identical interactions.

6. Position (Vector3: x,y,z): The Vector3 is a custom object modelled on the Unity3D class of
the same name. It is essentially an object with three float properties, x, y and z which
represents the position of the “player”. Each interaction effects this property. For example,
the position is initially set to 0,0,0 and if a forward interaction is performed, the position
will change to 0,0,1.

7. Mc: A message constructed on the client and sent to the prediction module. This message.

8. Mpending: A “pending” message representing an interaction which has yet to have a result
arrive back on the client. This message is identical to Mc except that it contains a
Stopwatch.

9. Mp: A message with a predicted interaction and position. This message is sent from the
prediction module to the server application.

10. Ms: A message from the server to the client application. This message is identical to Mp

however, the Frame property has been updated with frame data and the frame number has
been incremented.

5.3. Architecture

The PIRR system consists of three programs, all of which are console applications written in C#:
client application, prediction module and server application. Two configurable modes are

62

5.3 Architecture

available: local and remote. In local mode, the system runs entirely on a single machine. In
remote mode, the system executes with the client and server applications on different machines,
separated by a network. In all experiments using a live network, the client application is based in
Cambridge, UK, while the server application is hosted remotely on an Amazon EC2 instance
located in Northern California, USA. Communication between all clients is maintained using
RabbitMQ, a popular open-source message broker software. RabbitMQ was chosen due to its
easy to use API, the availability of C# bindings (Unity3D uses C#, so integration of RabbitMQ
is far easier), the large support community, its maturity and its low-latency message overhead.

ClientToPredictor queue

Latency module

delay

Server

PredictorToServer queue

ServerToClient queue
Latency module

delay

Send Task

Receive Task

Client

Prediction module

Latency module

delay

Prediction
Task

RabbitMQ

RabbitMQ

RabbitMQ

Figure 5.1 Predictive Interactive Remote Rendering (PIRR) simulator architecture.

5.3.1. Client application

The client application is responsible for simulating user interactions, sending them to the
prediction module, and for receiving and processing messages from the server application. The
client is also responsible for matching received result messages (Ms) with Mpending messages
stored in the Client Interaction Buffer (CIB) as well as measuring IL.

When the client application starts up, a queue of interactions (referred to as the interaction
queue) to be simulated is populated by reading into memory a predefined template, which
consists of a single interaction per line. Interactions are performed automatically, and the use of
the template ensure repeatable and reproducible experiments. To match the N-Gram model,
interactions are constrained to four directions: forward, backward, left and right. However, the
system is capable of managing a wider range of (keyboard only) interaction events. These four
interaction types are represented by “w”, “s”, “a” and “d” respectively.

63

Simulating a Predictive Interactive Remote Rendering System

Table 5.1 An example of the configuration file used in initialising the system.
[General]
client_ip = xxx.xxx.xxx.xxx
server_ip = xxx.xxx.xxx.xxx
predictor_ip = xxx.xxx.xxx.xxx

[Experiment]
run_locally = true
Interactions can be performed manually or automatically, for experiments.
auto_interactions = true
experimentName = a_description_of_the_experiment
Latency in one direction
latency = 50
In some experiments, prediction is disabled.
usePrediction = true
The Send Delay (SD) of the system
delay_between_interactions = 100

After populating the interaction queue, a configuration file is loaded into memory; this
configuration file allows for various properties to be set such as whether or not to enable
prediction, how much latency to simulate, the delay between interactions and what order
N-Gram is to be used. Table 5.1 is an example of a configuration file used to communicate
experiment parameters to the PIRR simulator.

Three RabbitMQ queues are then created: clientToPredictor, predictorToServer and
serverToClient. The client then establishes connections with the clientToPredictor and
serverToClient queues. To ensure all applications within the PIRR system are ready and
configured, a temporary task is created and waits for an initialization message to be passed
through the system. Once the client application has received the original initialization message,
the system is in the ready state and a simulation can begin. The temporary task shuts down and
new three tasks are created and started: Send Task, Receive Task and Process Task.

The Send task loops continuously, until shut down. With each iteration of the loop, the
following takes place:

An interaction is dequeued from the interaction queue originally created, initialized and
populated at application start-up. A position property, representing a “player” or “camera”,
is then updated according to the dequeued interaction. In other words, if the dequeued
interaction is an “A”, the position property is updated to reflect a left movement:
0,0,0 7→ −1,0,0. An ID is then created using the scheme defined in §5.2 and assigned to
a new Mpending message. A stopwatch on Mpending is then started. The Mpending is then
added to the CIB, where the created ID is used as the key and Mpending is the value. A
message object used for communicating interactions to the prediction module (Mc) is

64

5.3 Architecture

created using Mpending. Mpending and Mc are identical, except that Mc does not contain a
stopwatch. Mc is then serialized and sent to the prediction module via the
clientToPredictor queue. After transmitting Mc to the prediction module, this process then
sleeps for 100ms. 100ms was chosen arbitrarily, however this can be set in the
configuration file; this delay represents the SD of the system.

The Receive task, like the send task, loops until shut down. The purpose of this task is to
receive result messages (Ms) from the server application and make them available to the process
task. When a result message Ms arrives on the client application, it is immediately passed to the
latency module, which delays the message a specific amount of time before allowing it to be
processed. As soon as the message has been delayed the required amount of time, an event is
raised and Ms is deserialized and added to a dictionary where the “key” is Ms.ID and the “value”
is Ms. This dictionary is known as the Client Frame Buffer (CFB) and is used to store results
arriving from the server application. The CFB is a crucial component: if predictions arrive on
the client before their corresponding interactions have been performed, they must be stored for
use at a later point in time. Without the CFB, predicted interaction results may be lost (if not
stored) or displayed before any action has been performed (if shown immediately).

The Process task is executed when a new Ms message arrives on the client application.
Immediately after arriving, a check is performed to determine if Ms has an ID (no ID for non-
interaction generated frames). If Ms does have a valid ID, the corresponding Mpending is
extracted from the CIB using this ID. The dummy frame from Ms is then presented and the
stopwatch associated with the Mpending message is stopped. IL can then be measured. It is
possible, however, that no corresponding Mpending exists in the CIB. The reason for this is that if
prediction is enabled, the a predicted Ms may have arrived before the corresponding interaction
has been performed. The frame from Ms is not displayed in the simulator system.

5.3.2. Interaction-Result matching

Initially, it was expected that a simple integer would be sufficient for identifying which Ms is a
direct result of Mc. However, it was soon determined that the approach is not suitable for
measuring IL when a prediction module is used. This is because the prediction module will
generate n possible future results and deliver them to the client, hopefully before the
corresponding interactions have been performed. As a result, the prediction module would
produce predictions but would be unable to assign a valid ID to them, since that ID must come
from the client. Additionally, when an interaction arrives on the prediction module, it would be
impossible to determine whether or not a previous and correct prediction has already been
transmitted to the server application. This is important because without this knowledge, the
prediction module would send duplicate messages to the server application, which would result
in wasted bandwidth as well as critical server render time and system resources.

65

Simulating a Predictive Interactive Remote Rendering System

In order to solve the problem of interaction-result matching introduced by the addition of a
prediction module, the prediction module must be able to generate an ID (described in §5.2) that
will exist in the CIB in the future. Following an example of VE systems, the user can navigate
and therefore has a “position” attribute. This position attribute, as well as the interaction
performed and the interaction number, can therefore be used to define a unique and predictable
ID which can be generated by the prediction module in advance. Additionally, the interaction
number serves as a useful property for discerning past and future results: if the interaction
number is less than the current one, the message is old and can be discarded, whereas if is
identical or greater than the current interaction number, the message must be consumed either
now or possibly in the future (if the prediction is correct). Once a Ms has been matched with a
Mpending, both are removed from their respective dictionaries: CIB, CFB. If no corresponding
Mpending exists in the CIB, Ms may be required in the future and is therefore left in the CFB. A
cleanup process ensures that all expired messages in the CFB are discarded.

5.3.3. Prediction module

The responsibility of the prediction module is to accept incoming Mp messages from the client
application, use the associated interaction to predict future interactions, and forward those
predictions (Mp) to the server application where they can be processed, rendered and sent to the
client application. The prediction module can be either integrated into the client application,
integrated into the server application, or stand as a separate application, as depicted in Figure 5.2

Predicted
interactions

Prediction
module

Client

Actual
interactions

Display

Predicted
frame

Input

General PIRR system architecture (A)

PM

Client

Actual
interactions

Display

Predicted
frame

Input

General PIRR system architecture (B)

R

PI

Predicted
interactions

Display

Predicted
frame

Input

General PIRR system architecture (C)

PM

Server

Client

R

R

Server

Server

Figure 5.2 Various prediction module integration configurations.

66

5.3 Architecture

By integrating the prediction module into either the server or client application, a number of
issues might arise. For example, the prediction module will itself consume resources and may
need a dedicated machine; if the prediction module crashes or slows down, the PIRR system
may become slow and in the worst case, unresponsive. Another, more restrictive issue is that by
integrating the prediction module into an application, it becomes difficult to modify and maintain.
The prediction module was therefore designed as a separate application for two main reasons:

Scalability. The prediction module will itself consume resources. The more sophisticated the
prediction algorithm, the more resources it will consume. Having a separate prediction module
allows for it to be hosted on a server different to the one hosting the renderer or the client,
thereby preventing it from impacting other PIRR system components.

Portability. If the prediction module is built into the server or client applications, there is no
way to change or move the prediction algorithm without modifying the application it is built into.
Having a separate prediction module means that the prediction algorithm can be measured
without impacting the host application. If the rendering software is closed-source, the prediction
module must be separate.

On startup, connections to two RabbitMQ queues are established: clientToPredictor and
predictorToServer. Messages from the client arrive in the clientToPredictor queue. The
prediction module listens for a system initialization message and when received, processes it and
forwards it to the server application. Two tasks are then created and started: Receive Task and
Process Task.

The receive task simply loops and listens for the arrival of Mc messages. When a message
arrives, it is added to a FIFO queue for processing. This task loops until shut down.

The Process task loops until shut down. On each iteration, a FIFO queue (into which Mc

messages are added by the receive task), is inspected. If a message exists, it is dequeued, one or
more predictions are created, and those predictions are sent to the server application via the
RabbitMQ predictorToServer queue. Prediction integration is described in further detail in §5.5.

5.3.4. Server application

The server application is very lightweight in that its only purpose is to receive Mp messages
from the prediction module, simulate rendering and transmit the resulting Ms message to the
client application.

On startup, connections to two RabbitMQ queues are established: predictorToServer and
serverToClient. As with the prediction module, the server application awaits an initialization
message, which, once received, is used to set some local properties. Specifically, the amount of

67

Simulating a Predictive Interactive Remote Rendering System

NL to simulate, the server application ID (a simple integer) and the amount of rendering time to
simulate are configured. Since actual rendering is not performed, a dummy image (size: 640 x
480) is read from disk to memory. When a message Mp arrives from the prediction module it
arrives in the RabbitMQ predictorToServer queue. An event is then raised, and the message is
passed to a separate task, called Process.

The Process task loops continuously until a shutdown message is received. When a message is
received, the server application simulates rendering by sleeping for some amount of time, which
is set to 30ms. When 30ms has elapsed, a new message Ms is created. The message is identical
to Mp except for the frame property, which is has the dummy frame set. Finally, Ms is serialized
and sent to the client application.

5.4. Latency simulation module

In order to allow for controllable and reproducible experiments with the PIRR simulator a
latency module was packaged into a Dynamic Linked Library (DLL). The latency module is
used by each of the three applications in the PIRR system and in each case, is only placed at the
point at which the messages arrive. Figure 5.3 illustrates the positions of the latency simulator
for each of these applications.

Server
application

Prediction
module

Client
appliation

Positions of latency simulator
in PIRR system

Figure 5.3 Positions (red circles) of the latency module within the PIRR system.

To use the latency module a single method is exposed: “Delay(message, delay)”. This method is
used to delay a specific message for a certain duration and an event binding called
“MessageReady” is exposed. The application using the latency module must bind to this event:
when it is raised, the now-delayed message will be available for further processing.

68

5.5 Implementation of single-track prediction

5.5. Implementation of single-track prediction

Prediction of user interactions takes place in the Process task on the prediction module. Within
this loop, the first step is to determine whether or not an interaction message has arrived. When a
message Mc from the client application is received by the prediction module, a test is performed
to determine if a prediction for Mc has previously been made and sent to the server application.
This test involves maintaining a dictionary (simply called “History”) of all previously generated
and sent messages. If the History dictionary contains a key with an identical ID to that of Mc, a
correct previously predicted message has already been generated and sent to the server
application. On the other hand, if the test fails, Mc is converted to a Mp without modification (i.e.
this is not a prediction – it is simply forwarding the message) and is immediately transmitted to
the server application. This ensures that in the event of an incorrect prediction, the client will
experience at the worst the full Round-Trip Time (RTT), as if there were no prediction module.
The N-Gram model is then updated to incorporate the latest interaction information from Mc for
use in future predictions.

While the prediction module waits for a message from the client, the available idle time is used
to continue to predict ahead, sending the predictions to the server application and eventually, to
the client. Crucially, this enables the system to take advantage of NL between the client and the
server, as well as idle time between user interactions. If no message from the client is available,
the module determines whether it is able to predict ahead. How far the module can predict ahead
is defined as the Maximum Predictions Ahead (MPA), which is set during system initialization.
The number of remaining predictions is initially set to equal MPA, decreases with each
prediction transmitted and increments with each Mc received, allowing the system to
continuously maintain MPA steps ahead of the client application.

This approach can be thought of as a single-track prediction scheme, where previous predictions
and interactions drive the model down a single “trajectory”, illustrated by Figure 5.4

1 2 3 4 5

Current position
Prediction ahead (1-step, 2-step, …)

Number of predictions ahead

Single-track prediction scheme

Figure 5.4 Example of single-track prediction.

Since it is likely that, on occasion, the N-Gram model will fail to predict correctly, there is a
danger that incorrect predictions may corrupt the model. This is because in order to predict more

69

Simulating a Predictive Interactive Remote Rendering System

than one step ahead, the model must be updated with predictions. If a prediction is incorrect,
future predictions will be based off incorrect data. Therefore, in order to remedy this issue, a
second “dummy” model is used. The dummy model mimics the main model and is updated with
predictions, whereas the real model is only ever updated with real interactions from the client
application.

When an incorrect prediction is found to have been made, the dummy model is reset to match
the main model, which prevents incorrect predictions from corrupting the main model.
Additionally, the number of remaining predictions is reset to equal MPA. If MPA > 0, a
prediction is made, and a check is performed to test if an identical prediction has previously
been sent. If it has not, a new prediction message Mp is created, serialized and sent to the server
application. Once a prediction has been sent, the dummy model is then updated with the
prediction, which is then added to the History dictionary.

Finally, it is important to note that by keeping track of all sent messages, the History dictionary
serves two purposes: it provides a mechanism for determining whether a correct prediction for
Mc has been sent, and to prevent duplicate messages from being sent to the server application
which in-turn prevents the wasting of valuable render time (or in this case, simulated rendering
time), since Unity3D is only able to produce one rendering at a time.

5.6. Summary

This chapter has introduced a framework for simulating a PIRR system, made of three
components: client application, prediction module and server application.

The use of RabbitMQ to manage communications between the applications significantly sped up
the development process, as well as opens the possibility for the system to be modified later for
multiple rendering simulators, prediction modules or client applications.

The introduction of the prediction module complicated the process of measuring IL. When the
prediction module is not in operation, messages can simply be tagged with a GUID or random
ID so that they can be linked to render results from the server and easily identified on the client
application. However, the introduction of the prediction module results in a situation where, in
some cases, responses to interactions are generated before the interaction has been performed.
This means that the ability to easily identify the moment a result of an interaction has arrived on
the client, is lost. Nevertheless, as described, this can be remedied by applying a carefully
considered scheme to the ID of messages being passed through the system. Additionally, a
single-track prediction scheme has been described and demonstrates how the prediction module
can be used to predict one or more steps into the future. This design is used as the foundation on
which future experiments and implementations are built. An overview diagram of this
architecture can be seen in Figure 5.1.

70

Chapter 6. Exploring the Effect of N-Gram Prediction on Interaction
Latency Using the Simulator

6.1. Overview

This chapter aims to explore how the use of the implemented N-Gram prediction module
impacts IL when using the PIRR simulator described in Chapter 5. The hypothesis is that by
predicting user interactions, future results (with frame data) can be generated on a remote server
and delivered to the client before, or very nearly after, the corresponding user interaction has
occurred. Using the PIRR simulator, the following topics are addressed:

1. How does the introduction of the prediction module affect IL?

2. Does the prefix length N (Order), or the “amount of history to include”, impact prediction
and ultimately, IL?

3. How far ahead should predictions be made and what is the optimal MPA?

Each experiment consists of 634 interactions. These interactions were collected from the IRR
system after manually playing the maze as described in §4.5. The number of interactions is
arbitrary as they are simply a result of the number of interactions it takes to complete the maze.
Six latency levels were chosen for simulation experiments: 0ms, 50ms, 100ms, 200ms, 300ms
and 400ms. These latency values were chosen for the following reasons:

Table 6.1 Simulated latencies used in all experiments, and the reasons for being chosen.
Latency (ms) Reason for choice
0 For testing base latency of system.
50
100

Suitable IL ranges for IRR systems.

200 Upper limit of IRR system usability with regards to IL.
300
400

Excessive IL – unacceptable for most IRR systems.

Each simulation runs for approximately 60 seconds and each is run five times. All IL
measurements were collected using the approach described in §3.4.3. The results presented in
graphs are averages of those five runs, unless otherwise stated. In all experiment runs, the
simulated render delay was set to 30ms. A separate program was created to set system
configuration parameters, launch the PIRR simulator and to deposit results in a suitable location

71

Exploring the Effect of N-Gram Prediction on Interaction Latency Using the Simulator

Table 6.2 Config file modification for Maximum Predictions Ahead and N-Gram Order control.
[Experiment]
Previously described properties
ngram_order = 1
MPA = 1

on disk. Finally, the configuration used at system startup was modified such that the N-Gram
Order and MPA could be adjusted for each simulation experiment:
Finally, in some plots, a rate of increase line is shown. This line is also referred to as the best- fit
regression line and is given by the equation:

line = mx+b (6.1)

where m, the slope, is calculated with:

m =
x∗ y− xy

x2 − x2
(6.2)

and b (the y-intercept) is calculated by:

b = y−m∗ x (6.3)

6.2. Experiments

6.2.1. Base IL

It is important to know what the base IL of the simulator is so that the proportion of any latency
due to factors such as poor system design choices and/or coding inefficiencies can be identified.
To measure the base IL of the system, the simulator was run without simulated NL and without
prediction. Results from all simulations were then averaged horizontally (grouped according to
interaction number) to form a final dataset which showed that the mean base IL for the simulator
is 32.28ms, which is depicted in Figure 6.1.

This experiment was then repeated an additional five times for each of the remaining latencies
from Table 6.1 and the average IL was recorded on each occasion, thus providing insight into the
base operating IL of the system at various levels of introduced latencies. With each experiment,
the NL and render delay were subtracted from the total mean recorded IL, yielding the
remaining average amount of system delay. Figure 6.2 shows that other than the introduced
delays, the base system latency averages 2ms to 4ms.

72

6.2 Experiments

0 10000 20000 30000 40000 50000 60000
Run time (ms)

32

33

34

35

36

37

In
te

ra
ct

io
n

la
te

nc
y

(m
s)

Simulator: No prediction, render delay = 30ms

IL

IL = 32.28, = 0.5, 2 = 0.25

Figure 6.1 Base interaction latency of simulator.

Figure 6.2 confirms that the simulator is operating as expected: the only delays introduced to the
system were the 30ms simulated render time and the simulated NL values described in Table 6.1.
The measured system latency was found to be a negligible 3ms, calculated as the difference
between the measured IL and the sum of the introduced NL and the simulated render delay.

Next, the base IL for the system running over a live network (the internet) was then measured.
Using the Windows Ping utility, it was found that the mean NL between Cambridge, UK and an
Amazon EC2 server located in Northern California, US was 171ms. After running identical
experiments (with no simulated NL, however) the average recorded IL was found to be
216.96ms. Figure 6.3 illustrates raw IL measurements over WAN.

73

Exploring the Effect of N-Gram Prediction on Interaction Latency Using the Simulator

NL = 0ms NL = 50ms NL = 100ms NL = 200ms NL = 300ms NL = 400ms
0

100

200

300

400
M

ea
n

IL
 (m

s)

30ms
2ms 50ms

30ms
4ms

100ms

30ms
4ms

200ms

30ms
3ms

300ms

30ms
4ms

400ms

30ms
4ms

Simulator IL means: No prediction, render delay = 30ms

Simulated NL
Simulated Render latency
System latency

Figure 6.2 Simulator mean base IL at various simulated latencies.

10000 20000 30000 40000 50000 60000
Run time (ms)

200

210

220

230

240

250

In
te

ra
ct

io
n

la
te

nc
y

(m
s)

Simulator over WAN: No prediction, render delay = 30ms

IL (= 2.99, 2 = 8.96)
IL = 216.96ms

Figure 6.3 Base simulator interaction latency measured over the Internet.

To determine the ability of the simulator to emulate the same network conditions when running
over WAN, it was again run five times using LAN but instead of injecting one of the latencies
described in Table 6.1, a proportional amount of latency to WAN was simulated. In this case, NL

74

6.2 Experiments

LAN IL WAN IL
205

210

215

220

225

230

In
te

ra
ct

io
n

la
te

nc
y

(m
s)

Simulator: WAN vs LAN, no prediction, render delay = 30ms

LAN: IL = 216.1, = 0.55, 2 = 0.3

WAN: IL = 216.96, = 2.99, 2 = 8.96

Figure 6.4 Simulator IL boxplots: LAN vs WAN.

was measured (using Ping) to be 171ms between Cambridge and Northern California and
therefore 171ms of latency was simulated. No prediction was used.

When IL measurements collected from the LAN experiment runs are compared with those
collected from WAN, as in Figure 6.4, it can be seen that there is a difference of just 0.35ms
between their means. However, when running over WAN, the data varies a lot more and this is
perhaps better illustrated in Figure 6.5. This variation is likely due to the general WAN
fluctuation. In terms of the simulator, the slight variance is due to the use of Thread.Sleep() for
creating delays, used throughout the system; for example, the latency simulator or to simulate a
rendering delay.

75

Exploring the Effect of N-Gram Prediction on Interaction Latency Using the Simulator

0 100 200 300 400 500 600
200

210

220

230

240

250
In

te
ra

ct
io

n
la

te
nc

y
(m

s)

Simulator WAN vs LAN: No prediction, render delay = 30ms

WAN IL: IL = 216.96, = 2.99, 2 = 8.96

LAN IL: IL = 216.1, = 0.55, 2 = 0.3

Figure 6.5 WAN IL vs LAN IL using simulator.

6.3. The effect of user interaction prediction on IL using the simulator

By enabling the prediction module, the PIRR simulator is expected to deliver results to the client
application before (or very near to when) the corresponding simulated interactions have been
performed. Therefore, the aim of the following set of experiments is to understand whether or
not there is any notable difference between when operating the simulator with prediction vs
without it, and to confirm the expectation that overall IL will be reduced when using prediction.
The simulator was run for each of the latencies stipulated in Table 6.1. For all experiments in
this section, the N-Gram Order was set to 1, only 1-step ahead prediction was used (MPA = 1),
and the model was untrained. Each experiment was performed five times, averaged, and the
collected results were then compared with their corresponding non-predicted results and are
presented below in Figure 6.6.

Figure 6.6 illustrates that in all experiments and regardless of whether or not prediction is
enabled, IL increases proportionally with the amount of simulated NL injected. However, when
prediction is enabled, the effects of the prediction module become clear: IL is lower with
prediction (P) than without prediction (NP). Interestingly, the difference (delta) IL measured
between NP and P experiments increases untilNL = 100ms, at which point the delta remains
relatively constant. This may be an indication that a greater number of steps ahead need to be
predicted in order to offset the substantial NL.

76

6.3 The effect of user interaction prediction on IL using the simulator

NL

Figure 6.6 The effect of prediction on Interaction Latency using the simulator.

Inspecting the data more closely, it can be seen that IL is nearly entirely eliminated. For
repetitive interaction patterns, IL falls to zero and only spikes when an incorrect prediction is
encountered. Take for instance Figure 6.7 where a simulated NL of 50ms was introduced using a
configuration with MPA = 1 and N-Gram order = 1: while the mean IL is 4.59ms, spikes of IL
are observed when an interaction changes from one type to another. For example, if a sequence
of forward (W) interactions are observed, followed by a change of direction (e.g. A, for left), the
prediction algorithm may fail and the full RTT of the system will be exposed to the user. This is
clear when inspecting Figure 6.7: the majority of the IL spikes are around 80ms, which is
expected given the injected 50ms NL and 30ms simulated render delay.

The same experiments were then performed over a real network, between Cambridge and
California. First, the NL between Cambridge and California was measured using the PING
utility, done so at three points in time: morning, afternoon and evening. This was done to
counter network congestion and throttling associated with peak-hour internet traffic. NL for
these experiments was found to be, on average 188ms.

77

Exploring the Effect of N-Gram Prediction on Interaction Latency Using the Simulator

0 10000 20000 30000 40000 50000 60000
Run time (ms)

0

20

40

60

80

100

120

In
te

ra
ct

io
n

la
te

nc
y

(m
s)

Simulator with prediction: NL = 50, MPA = 1,
N-Gram Order = 1, render delay = 30ms

IL (= 18.17, 2 = 330.19)
IL = 4.51ms

Figure 6.7 Raw data from a single run of the simulator.

The server application was then transferred to, and executed on, the remote Amazon EC2
instance located in Northern California USA, while the client and prediction applications
executed locally on a MacBook Pro in Bootcamp mode based in Cambridge, UK. Three
experiments (run morning, day and night) were then run using the IRR system: no prediction
was used in these experiments.

From Figure 6.8 we see that the mean IL when running the IRR system over WAN is 216.96ms.
However, when we enable prediction, setting both N-Gram Order and MPA to 1, and run the
system again, IL drops to an average of 134.35ms. This demonstrates that the positive impact of
prediction on IL, as can be seen in Figure 6.9. However, as can also be seen in Figure 6.9, large
IL spikes occur - again due to mispredictions. Nevertheless, the majority of IL is reduced.

78

6.3 The effect of user interaction prediction on IL using the simulator

10000 20000 30000 40000 50000 60000
Run time (ms)

200

210

220

230

240

250

In
te

ra
ct

io
n

la
te

nc
y

(m
s)

Simulator over WAN: No prediction, render delay = 30ms

IL (= 2.99, 2 = 8.96)
IL = 216.96ms

Figure 6.8 Simulator with no prediction, run over WAN.

0 10000 20000 30000 40000 50000 60000
Run time (ms)

120

140

160

180

200

220

240

260

In
te

ra
ct

io
n

la
te

nc
y

(m
s)

Simulator over WAN: Effect of prediction on IL.
MPA = 1, N-Gram Order = 1, Render delay = 30ms

IL (= 22.95, 2 = 526.9)
IL = 134.35ms

Figure 6.9 Simulator with MPA = 1 and N-Gram Order = 1, run over WAN.

6.3.1. The effect of N-Gram Order on IL

Earlier results (Figure 4.2) showed that prediction accuracy decreases with higher N-Gram
Orders. The hypothesis is therefore that the amount of IL masked by the prediction module will
decrease as the Order increases. To test this assumption N-Gram Orders of 1 to 5 were tested for
each of the latencies presented in Table 6.1. Experiments were conducted locally with simulated

79

Exploring the Effect of N-Gram Prediction on Interaction Latency Using the Simulator

latencies and each experiment was run 5 times. The results of each quintet were averaged, and
the mean IL measured for each experiment group is represented by a single point in Figure 6.10.
For all experiments, MPA = 1.

22

3

Latency: 0ms
IL
Rate: 0.43ms per Order

6
7

9
Latency: 50ms

IL
Rate: 1.12ms per Order

41

43

45
Latency: 100ms

IL
Rate: 1.35ms per Order

139

141
142

144

Latency: 200ms
IL
Rate: 1.32ms per Order

1 2 3 4 5

240
241

243

245
Latency: 300ms

IL
Rate: 1.24ms per Order

1 2 3 4 5

341

343

345
Latency: 400ms

IL
Rate: 1.38ms per Order

N-Gram Order

M
ea

n
in

te
ra

ct
io

n
la

te
nc

y
(m

s)

Simulator: Effect of N-Gram Order on IL at various NL

Figure 6.10 Effect of N-Gram Order on IL at various degrees of NL.

The same experiment was then performed 5 times using a WAN, rather than simulated latencies.
From Figure 6.10 and Figure 6.11, it is clear that increasing the Order does indeed result in
greater IL. The plots also show that on average, IL increases for both simulated and WAN
latencies. The larger the N-Gram Order, the more information used as the prefix when predicting
interactions. Using too much or too little information will affect prediction accuracy and the
algorithms ability to match patterns. The greater the number of incorrect predictions produced,
the more often the system will need to make adjustments: when the prediction module
incorrectly predicts or receives an interaction for which a prediction has yet to be made, that
just-arrived interaction is processed and transmitted to the client and the prediction step is
skipped; this results in at least a full RTT latency exposure, but also ensures that minimum
disruption to IL is caused, since attempting to re-predict the interaction could result in yet
another error, causing further delays.

80

6.3 The effect of user interaction prediction on IL using the simulator

1 2 3 4 5
N-Gram Order

134

135

136

137

138

139
M

ea
n

in
te

ra
ct

io
n

la
te

nc
y

(m
s)

Simulator over WAN: effect of N-Gram Order on IL

IL
Rate: 1.32ms per Order

Figure 6.11 The effect of N-Gram Order on IL using the simulator and a WAN.

6.3.2. The effect of MPA on IL

Until now, all experiments involving prediction have used an MPA of 1; that is, only the very
next interaction was predicted. In the following set of experiments, the relationship between IL
and MPA is explored. It is important to understand this effect because if predicting further ahead
results in increased masking of IL, then is it possible to predict too far ahead and if so, how will
that affect IL? When a prediction is incorrect, all predictions that follow (until an update is
issued) will be incorrect too, since there is no way for the prediction module to know an error
has been made until an update arrives from the client application. The Unity3D rendering
application can only process one message/prediction at a time and therefore develops a backlog
when too many steps ahead are predicted, or when messages from the prediction module arrive
too rapidly at the server. Therefore, by predicting too far ahead, the likelihood of wasting
bandwidth and computation is increased, since incorrect predictions, if not managed, will cause
a backlog to form on the server application as it attempts to process each of the incorrect
prediction message.

To evaluate the effect of MPA on IL, MPA from 1 to 10 were tested for each N-Gram Order level
(1 to 5), and for each of the 6 latencies described in Table 6.1; These experiments were repeated
5 times, resulting in 1500 simulation runs being performed.

81

Exploring the Effect of N-Gram Prediction on Interaction Latency Using the Simulator

5
10
15 IL

Rate: 1.73ms per Order

10
20
30 IL

Rate: 3.24ms per Order

20

40 IL
Rate: 0.36ms per Order

50

100
IL
Rate: -8.65ms per Order

1 2 3 4 5 6 7 8 9 10

100

200 IL
Rate: -17.45ms per Order

1 2 3 4 5 6 7 8 9 10

100

200

300 IL
Rate: -25.86ms per Order

Maximum Predictions Ahead (MPA)

M
ea

n
in

te
ra

ct
io

n
la

te
nc

y
(m

s)

Simulator: Effect of MPA on IL at various NL with N-Gram order 1

Figure 6.12 Effect of MPA on IL using the simulator.

Above, Figure 6.12 illustrates the results of simulations run with N = 1, for MPA’s 1 to 10 at
various simulated latencies. The remaining N-Gram Orders (2 to 5) are not presented here. Each
plot represents the mean IL recorded over 10 simulations (1 for each MPA) for a given NL. In
the first two plots (latencies 0ms and 50ms), IL is at its lowest when MPA = 1. This indicates
that predicting one step ahead is sufficient and that IL has been reduced as much as possible.
Note, however, that in these two plots, mean IL increases with each MPA increase. An identical
situation appears in the remaining plots. For NL values 100ms, 200ms, 300ms and 400ms, IL
continues to decrease with each MPA increase until a certain point. At this point, MPA begins to
increase again.

The reason for this eventual increase is that at a certain point, the number of predictions arriving
from the server application cause local buffers on the client to get congested - a backlog forms.
Messages within the backlog still need to be processed: the client application must check the
message to determine whether or not the predicted result is correct and if so, to apply the
accompanying frame to the display. Each increase in MPA results in an additional prediction
that will be incorrect (since only 1 prediction can be correct), the amount of time “wasted” also
increases per MPA

In addition, as the rendering application processes incoming messages from the prediction
module, its own backlog grows because it is only able to process a single message at a time. The
result is that at some point, predicting too far ahead causes backlogs to form in both of these
places. The same is witnessed with experiments performed over WAN, with a real network - see
Figure 6.13.

82

6.3 The effect of user interaction prediction on IL using the simulator

1 2 3 4 5 6 7 8 9 10
Maximum Predictions Ahead (MPA)

40

60

80

100

120
M

ea
n

in
te

ra
ct

io
n

la
te

nc
y

(m
s)

Simulator over WAN: Effect of MPA on IL

IL
Rate: 4.52ms per MPA

Figure 6.13 Effect of MPA on IL using the simulator over WAN. .

While in a controllable environment, we can test to establish the ideal MPA. However, in a
real-world environment, changing network conditions might mean that the ideal MPA will
change, too. It is therefore important for the PIRR system to know the ideal MPA before
operation and to be able to adjust to changing network conditions.

To understand this, the linear flow of simulator events was modelled and evaluated against sixty
experiments: MPA 1 to 10, for each of the NL values described in Table 6.1. N-Gram Order was
set to 1 for all experiments. When an interaction arrives at the prediction module, the system
will check if the interaction has already been predicted and transmitted to the client. If it has, no
further processing of that interaction needs to take place. Instead, the prediction module is free
to predict ahead until MPA is reached. If the interaction has not been predicted and sent to the
client, it is possible that the previous predictions were incorrect; this causes a backlog on the
server application which grows by the render delay (i.e. 30ms) per prediction. However, when
correct, a portion of the NL is masked. This is dependent on whether the prediction module is
hosted on the client side of the network, or on the server side, which is discussed later in Chapter
9.

83

Exploring the Effect of N-Gram Prediction on Interaction Latency Using the Simulator

Figure 6.14 Example flow of interaction events through simulator.

84

6.3 The effect of user interaction prediction on IL using the simulator

Figure 6.14 describes an example flow of events through the simulator. Initially, some
constraints are set. The render delay (R) is set to 30, NL to 200ms and SD to 100ms. This results
in an RTT (NL + R) of 230ms. The first interaction I0 performed at t0 is 0, w, -2, 1. That is, the
first interaction number is 0, the action is “w” and the position is -2, 1. The interaction takes
100ms to get from the client to the server (0.5 * NL). When it arrives, the renderer is blocked for
30ms (R). Immediately after producing the render result and sending it back to the client, the
next available prediction 1, w, -2, 2 is processed and again blocks the renderer, followed by the
prediction 2, w, -2, 3 and then 3, w, -2, 4. At t1, interaction 1, w, -2, 2 is sent to the prediction
module and then to the renderer. When it arrives at t3:, the system identifies that a correct
prediction has already been made and transmitted to the client. This interaction is then skipped.
The prediction module then attempts to predict ahead from the interaction 1, w, -2, 2 and finds
that 2, w, -2, 3 has already been predicted and sent to the client, and is therefore skipped and the
next prediction, 3, w, -2, 4 is processed. At t4, the interaction 3, a, -3, 3 is performed.
Unfortunately, the prediction 3, w, -2, 4 for this interaction was incorrect and the prediction
module will not know this until t5, when the action performed at t4 arrives. At t5, the prediction
model adapts and begins to make correct predictions, correctly predicting 4, a, -4, 3 and 5, a, -5,
3.

Until now, the system has been predicting just two steps ahead (MPA = 2) with interaction
number 1 and 2 arriving on the client 160ms and 90ms late, respectively. Interaction number 3
was mis-predicted and resulted in the full RTT of 230ms IL. At t6, MPA = 3 is used. As
interaction 4 arrives at t6, it is found that it has been predicted and sent to the client and is
therefore skipped. Predictions 1: 5, a, -5, 3, 2: 6, a, -6, 3 and 3: 7, a, -7, 3 are then made.
Prediction 1 is found to have already been processed and sent to the client, while prediction 2
and 3 have not and are therefore processed as normal. At t7, only 30ms of IL is experienced. At
t8, however, interaction 7 experiences zero IL since it arrived 40ms prior to being performed,
making MPA = 3 ideal. From this, it can be seen that the optimal MPA is:

min(n ∈ Z|n ≥ RT T
SD

) (6.4)

Where n is an integer, RTT is the Round-Trip Time of the IRR system and SD is the Send Delay,
or the delay between interactions. Using this information, MPA can be adjusted dynamically,
taking into account various system delay points such as NL experienced over WAN.

6.3.3. Measuring system rate of recovery from incorrect predictions

When an incorrect prediction is made, the PIRR system experiences a spike in IL. After that
incorrect prediction, the following few predictions will be delayed, too: it takes time for the
PIRR system to recover from that initial incorrect prediction. Each incorrect prediction will
“reset” the length of the “recovery period”.

85

Exploring the Effect of N-Gram Prediction on Interaction Latency Using the Simulator

The time it takes for a PIRR system to recover from incorrect predictions (the “recovery period”)
is defined as the difference in time between the start of an increase in IL due to incorrect
predictions, and the point at which the effect of those incorrect predictions have worn off and the
system IL has returned to its normal IL operating level. Measuring recovery times may be
important in building an understanding of how incorrect predictions impact IL, and are likely to
be an important consideration when choosing and evaluating a prediction model.

Time

Recovery period
Interaction

Normal operating IL

In
te

ra
ct

io
n

la
te

nc
y

Measuring N-Gram prediction recovery periods

Figure 6.15 N-Gram prediction recovery periods.

When an incorrect prediction occurs, a spike in latency is observed and after some period of
time, latency returns to its normal operating level as correct predictions are made. The recovery
period (illustrated in Figure 6.15) is an important metric as it enables one to determine how
quickly a prediction model (and indeed the system as a whole) recovers from incorrect
predictions. When inspecting the raw data (see Figure 6.7, for example), it was noticed that the
system recovery times appeared to increase with Order, as well as with MPA. To test this, the
recovery times for all N-Gram Order and MPA experiments were calculated. Each experiment
run produces an output file with IL measurements and associated timestamps. Each N-Gram
Order and MPA experiment is repeated 5 times and therefore each experiment has 5 associated
measurement files. Each of these files are analysed, their average recovery time is calculated and
then the mean recovery time for those 5 files is determined. To calculate the recovery time for a
single measurement file, the following steps are required:

1. Find all local maxima indices (positions of the peaks).

2. For each peak, find adjacent peaks (one on the left and one on the right) so that you now
have three peaks (left, middle, right).

3. For each triplet of peaks, get all measurements between the middle peak and the left peak
(ille f t) and between the middle peak and right peak (ilright).

4. For each ille f t and ilright, calculate their means: ILle f t , ILright . These means inform us
what the “normal” IL is.

86

6.3 The effect of user interaction prediction on IL using the simulator

5. Iterate over all values in ille f t and record the index startIndex of the first value found to
be equal to or less than ILle f t .

6. Iterate over all values in ilright and record the index endIndex of the first value found to
be equal to or less than ILright .

7. Extract corresponding timestamp for the start and end index.

8. Subtract end time from start time to calculate recovery period.

9. Average all recovery periods for experiment.

Algorithm 3 Latency simulation
1: procedure GETSTARTANDENDINDICIES(int[] ilMeasurements)
2: results = tuple(int, int)[]
3: peakIndicies = getIndiciesOfPeaks(ilMeasurements)
4: for (i = 0; i < length(peakIndicies); i++) do:
5: Pindex = peakIndicies[i];
6: tuple(int, value) [] ILle f t = ILBetweenPeaks(ilMeasurements, Pindex,Pindex −1)
7: ILle f t = mean of ILle f t
8: tuple(int, value) [] ILright = ILBetweenPeaks(ilMeasurements, Pindex,Pindex +1)
9: ILright = mean of ILright

10: for (ILtup in ILle f t) do:
11: if ILtup.value > ILle f t then:
12: startIndex = ILtup.index-1
13: else startIndex = Pindex−1 + ILtup.index

14: for (ILtup in ILright) do: endIndex = Pindex + ILtup.index
15: if a ILtup.value > ILright then:
16: endIndex = ILtup.index+1

return results.Add(tuple(startIndex, endIndex))

Once the start and end indices for a set of IL measurements has been found, they can be used to
extract the corresponding start and end times from the set of IL measurement and recovery
periods can then be calculated. The code for this can be found in A

To test this, the simulator was run first with the various latencies described in Table 6.1 and
N-Gram orders 1 to 5, resulting in 150 experiment runs. The results of those experiments are
shown in Figure 6.16, where it is clear that increasing N-Gram Order does impact the PIRR
simulator given that in all simulated latencies, recovery times increased with Order.

87

Exploring the Effect of N-Gram Prediction on Interaction Latency Using the Simulator

122

158

194

230
Latency: 0ms

Mean recovery time

163

178

194

Latency: 50ms

Mean recovery time

149

171

194

216
Latency: 100ms

Mean recovery time

151

175

198

222
Latency: 200ms

Mean recovery time

1 2 3 4 5
152

170

188

207
Latency: 300ms

Mean recovery time

1 2 3 4 5
151

171

190

Latency: 400ms
Mean recovery time

N-Gram Order

M
ea

n
re

co
ve

ry
 ti

m
e

(m
s)

Simulator mean recovery times at various NL and N-Gram Orders

Figure 6.16 Simulator recovery times measured at various simulated NL values

1 2 3 4 5
N-Gram Order

158

160

162

164

166

168

170

M
ea

n
re

co
ve

ry
 ti

m
e

(m
s)

Simulator over WAN: mean recovery times at various N-Gram Order

Mean recovery time

Figure 6.17 Simulator recovery times over WAN at various N-Gram Orders.

The same set of experiments were then performed over WAN, without any simulated NL. Figure
6.17 presents the results of the experiments run over WAN. Each point represents the mean

88

6.3 The effect of user interaction prediction on IL using the simulator

recovery duration for a single experiment repeated five times at a different N-Gram Order. As
can be seen, the results are similar to when using simulated NL: the amount of time the system
takes to recover from an incorrect prediction increases with Order.

Next, the recovery times of the PIRR simulator were calculated with respect to MPA. 300
simulation runs were performed: a simulation at each latency described in Table 6.1, for MPA’s
1 to 10 and each experiment was repeated 5 times and averaged. Similar to the experiments
performed against N-Gram Order, Figure 6.19 shows that mean recovery periods also increases
with each increase in MPA and performing the experiments over WAN shows similar results.

The reason for the increase in mean recovery time with respect to both N-Gram Order and MPA
is that while both can have a positive impact IL, they can also negatively impact IL - this was
shown in 6.3.1 and 6.3.2. However, upon closer inspection, it can be seen that the effect of MPA
on mean recovery times is greater than that of N-Gram Order. This is because while N-Gram
Order impacts the likelihood of an incorrect prediction, MPA increase the chance of additional
errors following an incorrect prediction. The larger the MPA, the more mispredictions will occur
and as a result, the time the PIRR system takes to recover will increase, too.

123

173

224

275
Latency: 0ms

Mean recovery time

157

219

282

344
Latency: 50ms

Mean recovery time

122

197

272

347
Latency: 100ms

Mean recovery time

152

223

294

Latency: 200ms
Mean recovery time

1 2 3 4 5 6 7 8 9 10
152

233

313

Latency: 300ms
Mean recovery time

1 2 3 4 5 6 7 8 9 10
150

245

341

436
Latency: 400ms

Mean recovery time

Maximum Predictions Ahead (MPA)

M
ea

n
re

co
ve

ry
 ti

m
e

(m
s)

SimulatorMeanRecoveryTimesAtVariousNlAndMpa

Figure 6.18 Recovery times of simulator at various NL and MPA.

89

Exploring the Effect of N-Gram Prediction on Interaction Latency Using the Simulator

1 2 3 4 5 6 7 8 9 10
Maximum Predictions Ahead (MPA)

200

300

400

500

M
ea

n
re

co
ve

ry
 ti

m
e

(m
s)

Simulator mean recovery times over WAN at various MPA

Mean recovery time

Figure 6.19 Recovery times of simulator running over WAN at various MPA.

6.4. Summary

In this chapter, the PIRR simulator described in Chapter 5 was used to examine the effect of
prediction on IL, as well as the effect of N-Gram Order and MPA on IL. In addition, it was
described how the recovery period of a PIRR system can be calculated, and the effect of N-Gram
Order and MPA has on it.
First, base IL measurements were taken and the simulator was found to be operating as expected,
given the 30ms simulated render delay and the introduced simulated latencies. The effect of the
prediction module on IL was then examined in §6.3, where it became clear that the it is able to
lower IL substantially, providing the client application with future results before the
corresponding actions have been performed.

IL was found to increase with N-Gram Order, which after further investigation, it was revealed
that the reason for this increase is due to an increased number of incorrect predictions. The
effect of MPA on IL was inspected next and it was found that as NL increases, a greater number
of predictions must be made in order to mask the introduced IL. By increasing MPA, higher
NL’s can be masked. However, when MPA increases, IL decreases only until a threshold is
reached, at which point IL begins to climb. How far ahead the prediction module must predict is
depended upon the total RTT and the rate at which interactions occur on the client application
(SD). A method for determining the ideal MPA has been introduced and described.

90

6.4 Summary

In addition, a method for calculating system recovery times from incorrect predictions, with
respect to both N-Gram Order and MPA, was introduced. It was shown that for both N-Gram
Order and MPA, mean recovery times increase regardless of simulated NL or whether using a
WAN.
It was also noticed that MPA appears to have more of a negative impact on recovery times than
N-Gram Order. This is likely due to the fact that while N-Gram Order increases the chances of a
misprediction, MPA causes the number of mispredictions to increase proportionally to the value
of MPA, after a misprediction.

It can be concluded that the prediction module can play an important role in reducing IL in IRR
systems and that attention must be given to MPA so as to ensure a backlog does not form on the
client. While an N-Gram model was used here, another model might offer better prediction of
user interactions, however the effect of MPA should remain the same. Finally, using the method
described to calculate recovery times, the system could be monitored so as to further improve
PIRR performance; for example, by adjusting the MPA based on sampled network delay.

91

Chapter 7. Exploring the effect of N-Gram prediction on interaction
latency using a real-world PIRR system

7.1. Overview

Until now and except for when experiments were performed over WAN, all delays have been
simulated using the latency simulator described in §3.3. The PIRR simulator provided a
controllable environment where all aspects of the system could be controlled, measured and
evaluated. While the simulator platform was used to explore the effect of N-Gram Order and
MPA on IL, it is unclear whether those the experiments performed and results gathered are
representative of a real-world PIRR system. Therefore, in this chapter, the effect of N-Gram
Order and MPA are explored using a purpose-built PIRR system.

Towards this, this chapter introduces a real-world PIRR system design using Unity3D, a popular
3D games engine. Using this platform, we investigate the effect of prediction, N-Gram Order
and MPA on IL. Results gathered through experimentation with platform are compared with that
of the simulator. This is important if the simulator platform is to be used as a model for
experimenting with and introducing modifications, before changes are deployed to a live system.
In addition, we describe problems encountered with user action management and interaction
with scene objects, and present approaches to mitigate these issues.

7.2. Architecture

This section describes the architecture of a PIRR system built with Unity3D and modelled on the
simulator. Both the client and server applications were built with Unity3D and communications
were managed exactly as they are described in §5.3, using RabbitMQ. All architecture
definitions are the same as stated in §5.2. An initialization message is also used and is identical
to that described in §5.3.1. User interactions were collected from 5 randomly generated and
navigated 3D mazes (see §4.5) and were used for all experiments in this chapter. Finally, the
prediction module is identical to that described in §5.3.3.

7.2.1. Client application

The client scene consists of a primitive plane object with a camera placed directly above it such
that when in “Play” mode, only the plane is visible. The camera-plane setup is the same as that
described in §3.6.1 and illustrated in Figure 3.4. There are no other scene objects. Besides
reading interactions, transmitting them to the prediction module, receiving frame result

93

Exploring the effect of N-Gram prediction on interaction latency using a real-world
PIRR system

messages from the server application and displaying the received image, the client application is
also responsible for determining whether interactions are valid (i.e. whether the performed
interaction does not result in an illegal move such as one which would allow the user to move
through a wall) – but this is only done when operating in manual mode.

It is relatively straight forward to map interactions into Unity3D. Since Unity3D is a games
engine, it has utility functions for detecting user input built into its API. For example,
Input.GetKey(“A”) will return True if the user has pressed the “A” key. Unfortunately, Unity3D
does not provide a way to feed interactions into its input system. In other words, there is no
mechanism to simulate or create interactions. While this is typical of most game engines, it
presents an issue when automating IRR experiments.

One approach is to simulate interactions. This can be achieved by hooking into the underlying
OS event stream using the User32 library (Windows only) or by using WindowsInputSimulator,
a popular open-source project. Unity’s input system should detect these simulated interactions
and process them as if they were physically performed. Unfortunately, during system testing, it
was found that at times simulated keyboard events were not registered by Unity3D’s input
system and mouse input was not registered at all. For this reason, interaction is not simulated in
the traditional sense where user events are raised at the OS level. Instead, interactions are read
from the same interaction template described in §5.3.

When the client application starts up, it reads in a configurations file and sets various properties
such as experiment parameters and the amount of latency to introduce. As with the simulator, an
initialization message is sent through the system, causing the client application to wait for
confirmation that all system components are ready. When the system is ready, it may begin
processing the interaction queue and results arriving in the CFB.

Unity3D has two useful overridable functions called Update and FixedUpdate. Update executes
once per frame but unfortunately does not provide a way to control exactly when it is called. On
the other hand, the execution of FixedUpdate may be controlled by setting the Fixed Timestep in
the Unity3D Editor and was therefore chosen as the function of choice to process the interaction
queue. This function is executed at some specified interval, is managed entirely by Unity3D and
therefore does not require a separate task to be created and started (as explained in §5.3.1) for
the sending of interaction messages to the prediction module. On each iteration, an interaction is
read from the interaction queue and a new position is calculated given the interaction. If running
in manual mode, the new position is checked to ensure that the action will not result in the player
avatar going out of bounds; this is done before sending the interaction to the prediction module
and therefore prevents the introduction of invalid actions to the system. However, when
operating in automatic mode, this step is skipped since the interaction template contains no
invalid actions. A new Mc is then created and the action, number and position properties are set.

94

7.2 Architecture

Mc is then sent to the prediction module, a Mpending is created, the stopwatch is started and
finally, Mpending is added to a pendingInteractions queue (identical to the one used by the
simulator).

The Receive task, like the one used in the simulator, loops until system shutdown. When a Ms

arrives, it is passed to the latency module where it is delayed for a specific amount of time. When
the delay has expired, the Ms is passed back to the client application and is added to the CFB.

When using the simulator, results arriving from the server application are not displayed because
a simple dummy frame is delivered, and rendering is simulated. However, in this live system,
real render results are transmitted from the server application to the client and therefore need to
be displayed to the user as real-time visual feedback to any interactions performed.
Unfortunately, Unity3D is single-threaded. That is, the engine does not support multi-threading
and is not thread-safe. As a result, all received results must be passed to the main Unity3D
thread so that the render result can be displayed. To display the frame to the user, the byte data
from the received Ms.Frame is converted into a Texture2D and applied to the surface of the Plane.
This happens before the Update function is called so that the delay between receiving a result,
writing it to a Texture2D and having it visible to the user is kept at a minimum.

7.2.2. Prediction module

he prediction module is the same described in §5.3.3; they are identical.

7.2.3. Server application

The Unity3D server application differs from the simulator server application in that it performs
real rendering and transmits actual frame results to the user which are presented by the Unity3D
client application. As a result of real rendering, control over render delay is lost and is at the
mercy of the Unity3D Rendering Engine. Another notable difference is that user interactions
must be processed, mapped to the scene and transformations to the “player” must be made.
Further, the user is able to interact with scene objects. Nevertheless, the server application
behaves in much the same way as that of the simulator version and this section will therefore
describe the overall operation, while §7.3 will describe more broadly the issues that arise from
using prediction in an IRR system and how those difficulties were overcome.

When an interaction message (Mp) arrives on the server application from the prediction module,
it is put into a queue where it waits until the next render loop. If a message is available, it is
dequeued and the predicted (or non-predicted) corresponding action is processed. Processing the
action involves updating a player (a 3D sphere, discussed in the next section) position. The game
output frame is then captured by reading pixels from the frame buffer into a Unity3D
“RenderTexture”. The data from RenderTexture is then encoded to a JPEG using a 70%

95

Exploring the effect of N-Gram prediction on interaction latency using a real-world
PIRR system

compression ratio (Unity3D default). Finally, a message is created and transmitted to the client
application.

7.3. Interacting with scene objects

As mentioned, a fundamental difference between the simulator and the Unity3D server
applications is that real interaction and rendering is taking place. Also mentioned is that the
introduction of the prediction module results in some challenging situations. These issues were
observed while developing the PIRR system and were not anticipated during the development of
the simulator. As a result, the two platforms underwent simultaneous periodic changes, and can
be considered to have been developed concurrently. In the experiments performed using the
simulator, all interactions were read from a template using the automatic mode. Since there was
no scene, there was therefore no need for interaction between the player and the scene objects.
In a real-world PIRR system, however, the user steers the simulation and must be able to interact
with the scene. For visual reference during development, a simple 3D maze scene was
developed: various walls form passages are navigable by a “player” (a 3D sphere) and 10
collectable “coins” scattered around the scene.

The first issue discovered was that while the simulator is simple in that all interactions are
performed automatically; in this system the user must have control. In a typical video game or
interactive visualization, the user must perform interactions on his or her local device. Those
interactions are then detected by the visualization software, processed and a frame displayed.
Since the server application must run remotely and the user therefore does not perform
interactions on the same machine as the rendering application, interactions must be managed
appropriately. Unfortunately, Unity3D does not allow interactions to be fed into its input system,
which means that the Input controller exposed by Unity’s API is of no use. Further, simulating
interactions does not appear to be reliable since during development, it was observed a number
of times that simulated interactions were no detected by Unit3D using this technique would
therefore mean that there could be no guarantee that repeated simulation runs were identical.
Therefore, when an interaction arrives on the server application, it is processed, and the scene is
updated directly, without being simulated. Unfortunately, updating the scene directly causes
another problem and thus does not provide a simple solution. Specifically, the physics engine
built into Unity3D allows for player movement, collisions with game objects, the simulation of
gravity, etc.

By default, physics is enabled, which means that it is possible that an interaction may occur over
multiple frames and would therefore cause a serious issue for measuring IL: the initiation point
of an interaction may be known, but how would the system know when the interaction has
stopped: when the user stops performing an interaction, when the player avatar stops moving?
What if the player avatar moves (i.e. sways) without user interaction? To counter this, physics
was disabled on the server application. Having physics disabled and interactions applied directly

96

7.3 Interacting with scene objects

to the scene makes the server application state-like. For example, when an interaction such as
“W” (representing a forward movement) arrives, the position of the player avatar can be updated
from 0, 0, 0 to 0, 1, 0. While this is limiting in that interactions are made to be discrete, it does
allow for exact measurements of IL because there is no ambiguity about whether or not a frame
result directly corresponds to a specific action. Additionally, this makes prediction easier as it is
possible to identify whether the predicted location exactly matches the actual one that results
from a user action and therefore also makes it easier to identify incorrect predictions.
Unfortunately, disabling physics results yet another issue where collision detection ceases to
function: the player avatar will no longer collide with walls and or other scene objects, and
instead will continue through previously impassable objects.

Figure 7.1 Client application vs server application views.

Figure 7.1 shows the view on the server and on the client at time t0 and t1. At t0 the player has
moved forward and is approaching the top wall. Due to prediction, the server application is
executing ahead of the client application and therefore shows a position closer to the top wall.
At t1 the player has moved closer to the wall and can now only move forward 1 place more.
However, the server application passes through the wall. The client application will never
present those invalid interactions to the user because of the validation check performed. On the
server application, a check is performed to determine whether the player has collided with a coin.
If it has, the coin is removed from the scene and the updated frame is transmitted to the client.

97

Exploring the effect of N-Gram prediction on interaction latency using a real-world
PIRR system

7.4. Experiments

7.4.1. Base IL

The measurement of the base IL of the system is useful for determining any irregularities or
abnormal system behaviour and when compared with the same experiment from the simulator,
should inform whether or not the two systems are comparable, at least in terms of baseline
performance. Therefore, the same set of experiments described in §6.2.1 were conducted (no
prediction, executed 5 times and the results averaged) and identical parameters to those
experiments were used, with the exception that the rendering delay was not simulated and the
resulting frames are displayed on the client. By performing live rendering, it is not possible to
control the rendering delay parameter. Therefore, when comparing base IL across various
introduced NL, it impossible to differentiate processing delay from render delay as presented in
Figure 6.2. Nevertheless, in order to keep render delay as close to that of the simulator, vsynch
was enabled and the “Application.targetFrameRate” property of the Unity3D server application
was set to 30. Figure 7.2 presents the base IL measured in the live PIRR system, run locally and
without any injected NL.

0 10000 20000 30000 40000 50000 60000
Run time (ms)

38

40

42

44

46

48

50

52

In
te

ra
ct

io
n

la
te

nc
y

(m
s)

Unity3D Base IL: No prediction

IL

IL = 42.12, = 1.79, 2 = 3.21

Figure 7.2 Baseline IL measurements collected from Unity IRR system.

The Unity3D system was then run with the six latencies from Table 6.1 (0, 50, 100, 200, 300 and
400ms). Like with the simulator, experiments were repeated 5 times and their results were
averaged. In Figure 7.3, the results from these experiments are compared with those from the
simulator. From the figure, it can be seen that the simulator and Unity3D PIRR system behave
comparatively with a mean delta of 4.83ms between the two platforms. The Unity3D PIRR

98

7.4 Experiments

system was then run over WAN, with each experiment being repeated 5 times, three times a day.
Figure 7.4 compares the results of these experiments with those of the simulator using WAN
(see Figure 6.8).

NL

Figure 7.3 Unity3D vs Simulator base Interaction Latencies.

10000 20000 30000 40000 50000 60000
Run time (ms)

200

210

220

230

240

250

In
te

ra
ct

io
n

la
te

nc
y

(m
s)

Unity vs Simulator: WAN, No prediction

Unity IL: IL = 217.16, = 3.16, 2 = 9.98

Simulator IL: IL = 216.96, = 2.99, 2 = 8.96

Figure 7.4 Unity3D Interactive Remote Rendering system vs Simulator over Internet without prediction].

99

Exploring the effect of N-Gram prediction on interaction latency using a real-world
PIRR system

Simulator WAN IL Unity WAN IL

210

215

220

225

230

235
Simulator vs Unity: WAN, No prediction

Simulator WAN: IL = 216.96, = 2.99, 2 = 8.96

Unity WAN: IL = 217.16, = 3.16, 2 = 9.98

Figure 7.5 Unity3D Interactive Remote Rendering system vs Simulator over Internet without prediction.
Box plots

From Figure 7.4 and Figure 7.5, it can be seen that the Unity3D system operates well and its IL
measurements correspond well with those of the simulator when running over WAN. The
Unity3D system IL varies more than the simulator, but this is likely a combination of various
factors such as rendering being controlled by Unity3D and is therefore out of our control, as well
as the use of Thread.Sleep and the difficulties of performing short delays in an non-real-time OS,
such as Windows.

7.4.2. The effect of user interaction prediction on IL using the IRR system

As with using prediction during the simulator experiments, the hypothesis is that employing the
prediction module will have a positive effect on the IL of the Unity3D PIRR system. The same
set of experiments conducted in §6.2 (see Figure 6.6) were performed here, and Figure 7.6
compares the results collected from the Unity3D system with those from the simulator.

100

7.4 Experiments

NL

Figure 7.6 Effect of prediction on Interaction Latency at various simulated Network Latencies: Unity3D
Interactive Remote Rendering system vs Simulator

As can be seen in Figure 7.6, the simulator and Unity3D measurement values are very similar
across all simulated NL values. The difference between the two platforms (delta) reaches a high
of 3.84ms. The simulator averages slightly above Unity3D. However, IL for the Unity3D system
does vary more than that of the simulator, as can be seen in Figure 7.7 and represented with
boxplots. Figure 7.8 compares raw mean IL (the average of 5 experiment runs) for the Unity3D
system with the simulator running with 50ms simulated NL, MPA = 1 and N-Gram Order = 1.
Similar to Figure 6.7 in §6.3, IL is considerably lower using prediction (although large spikes of
IL are present, indicating incorrect predictions). In this plot it is clear that Unity3D
measurements are more variable than those of the simulator.

101

Exploring the effect of N-Gram prediction on interaction latency using a real-world
PIRR system

0

10
NL = 0ms

Sim: IL = 1.77, = 7.64, 2 = 58.32

Unity: IL = 1.4, = 6.08, 2 = 36.97

0

10
NL = 50ms

Sim: IL = 4.42, = 17.9, 2 = 320.41

Unity: IL = 6.73, = 19.62, 2 = 384.91

0

50
NL = 100ms

Sim: IL = 38.83, = 21.94, 2 = 481.54

Unity: IL = 35.18, = 22.1, 2 = 488.48

120

140

160
NL = 200ms

Sim: IL = 138.07, = 21.9, 2 = 479.68

Unity: IL = 137.62, = 23.1, 2 = 533.51

Simulator Unity
220

240

260
NL = 300ms

Sim: IL = 238.76, = 21.89, 2 = 479.22

Unity: IL = 237.29, = 22.5, 2 = 506.19

Simulator Unity
320

340

NL = 400ms
Sim: IL = 338.55, = 21.89, 2 = 479.2

Unity: IL = 337.71, = 25.02, 2 = 625.93

Unity vs Simulator: The effect of prediction on IL at various NL values
M

ea
n

in
te

ra
ct

io
n

la
te

nc
y

(m
s)

Figure 7.7 Box plots comparing the Simulator with Unity3D system at various Network Latency values.

0 10000 20000 30000 40000 50000 60000
run_time

0

20

40

60

80

100

120

Unity3D vs simulator (with prediction): NL = 50, MPA = 1,
N-Gram Order = 1

Simulator: IL = 4.57, = 17.9, 2 = 320.41

Unity3D: IL = 6.73, = 19.62, 2 = 384.91

Figure 7.8 Unity3D Interactive Remote Rendering system vs Simulator, with 50m simulated Network
Latency.

102

7.4 Experiments

7.4.3. The effect of N-Gram Order on IL

In §6.3.1, the effects of N-Gram Order on IL were examined using the simulator. This section
explores the same set of experiments, but with the real-world PIRR system. As a reminder, 6
latencies are used (0ms, 50ms, 100ms, 200ms, 300ms and 400ms), N-Gram Orders from 1 to 5
are evaluated and in all the following experiments, MPA is set to 1. After performing each N-
Gram Order/NL experiment 5 times (resulting in a total of 150 experiment runs), results were
averaged, and the results were compiled and are presented below in Figure 7.9.

3
4
5

7
Latency: 0ms

IL

15
17

20

23
Latency: 50ms

IL

66
67
68

70
Latency: 100ms

IL

165
167

170
172

Latency: 200ms
IL

2 4
264

266

268

270
Latency: 300ms

IL

2 4
364

366

368

370

Latency: 400ms
IL

N-Gram Order

M
ea

n
in

te
ra

ct
io

n
la

te
nc

y
(m

s)

Unity3DEffectOfNGramOrderOnIlAtVariousNl

Figure 7.9 Unity3D Interactive Remote Rendering system: effect of N-Gram Order on Interaction Latency
at various Network Latency values.

From Figure 7.9 it can be seen that for all simulated latencies, mean IL values increase with N-
Gram Order and the increase in mean IL is between 1 and 2ms per N-Gram Order increase. Next,
the system was run over a WAN for each of the N-Gram orders and again with MPA set to 1. As
can be seen in Figure 7.10, IL increases with N-Gram Order, indicating again that the system
performs better (in terms of IL) with lower amounts of history used for creating predictions.

103

Exploring the effect of N-Gram prediction on interaction latency using a real-world
PIRR system

1 2 3 4 5
N-Gram Order

94

95

96

97

98

99

100
M

ea
n

in
te

ra
ct

io
n

la
te

nc
y

(m
s)

UnityOverWanEffectOfNGramOrderOnIl

IL

Figure 7.10 Unity3D Interactive Remote Rendering system: effect of N-Gram Order on Interaction
Latency with 1-step ahead prediction

7.4.4. The effect of MPA on IL

The same set of experiments performed in §6.3.2 were repeated for the Unity3D system. As a
reminder, the parameters used were: 30ms simulated render delay, MPA values from 1 to 10,
N-Gram Order was set to 1 and simulated NL values of 0ms, 50ms, 100ms, 200ms, 300ms and
400ms. Each MPA/NL experiment was repeated 5 times and the results of those 5 experiment
runs were averaged. Figure 7.11 illustrates the results from these experiments.

From Figure 7.11, it is clear that, like the simulator, MPA has a positive effect on the average IL
of the system. While at lower NL values it is less obvious, the system reaches an “ideal” MPA
which is dependent upon the introduced NL. For example, when NL = 400ms, the ideal MPA is
5 because IL is, on average at its lowest in comparison to other MPA values. Once the ideal
MPA has been reached, increasing MPA further results in the mean IL of the system beginning
to climb.

104

7.4 Experiments

25

50
Latency: 0ms

50

100

Latency: 50ms

50

100

Latency: 100ms

50

100

150
Latency: 200ms

1 2 3 4 5 6 7 8 9 10

100

200

Latency: 300ms

1 2 3 4 5 6 7 8 9 10
100

200

300

Latency: 400ms

Maximum Predictions Ahead (MPA)

M
ea

n
in

te
ra

ct
io

n
la

te
nc

y
(m

s)

Unity3D: Effect of MPA on IL at various NL with N-Gram Order 1

Figure 7.11 Unity3D Interactive Remote Rendering system: effect of Multiple Steps Ahead prediction on
Interaction Latency at various simulated Network Latencies

Next, the system was tested over WAN, with the client application located in Cambridge, UK,
and the server based in Northern California, USA, and hosted on an Amazon EC2 instance. The
same parameters as above were used for this experiment, except for the fact that no NL was
simulated.

1 2 3 4 5 6 7 8 9 10
Maximum Predictions Ahead (MPA)

20

30

40

50

60

70

80

90

100

M
ea

n
in

te
ra

ct
io

n
la

te
nc

y
(m

s)

Unity over WAN: Effect of MPA on IL with N-Gram Order 1

IL

IL = 24.81, = 23.76, 2 = 564.56

Figure 7.12 Unity3D Interactive Remote Rendering system over Internet: the effect of Multiple Predic-
tions Ahead on Interaction Latency. N-Gram Order set to 1.

105

Exploring the effect of N-Gram prediction on interaction latency using a real-world
PIRR system

Figure 7.12 shows that just three predictions ahead is enough to minimise IL when the system is
operated over a WAN. Interestingly, at MPA = 10, there is no sudden increase in mean IL (in
comparison with Figure 7.11). However, this is likely due to the server application (the renderer)
not running locally and therefore more resources are available to the client application, allowing
it to process incoming messages more quickly.

7.5. Summary

This chapter explores the use of Unity3D as a PIRR system, how to interact with scene objects,
how to integrate prediction and its effects on IL. The architecture of this system is similar to that
of the simulator and both platforms consist of client, prediction and server applications. The
fundamental differences between the architecture of this system and that of the simulator are the
following: real rendering is used and results are output to the screen, which makes incorrect
predictions visible to the user; real user interaction may be used and the user may therefore
interact with objects in the scene; there is no control over the how long rendering takes since it is
not simulated.

In a typical IRR system (without prediction), interaction is straightforward in that the user
performs some action and simply waits for a response to be presented on-screen. However, the
introduction of the prediction module led to some complications, specifically in determining
how to match user actions to their correct and corresponding predicted frames, as well as how to
store future prediction frames for when the system is operating ahead of the user. These issues
were overcome by developing a pattern/tag incorporating information which allows future
frames to be easily identified and stored for later use. In doing so, the issue of measuring IL was
also solved, since both IL measurement and the user need action-frame matched pairs. Further,
interacting with scene objects and experiencing situations such as object collision proved to be
challenging, since the client has no knowledge of which actions are permitted. To remedy this,
scene boundary information is transmitted from the server to the client, allowing the client to
prevent the user from performing an illegal move, such as passing through a “wall”. A 3D maze
with collectable “coins” was developed for the scheme to be tested on and is presented.

In terms of experimentation, N-Gram prediction was evaluated in the same way as done for the
simulator. First, the base operating IL is presented, followed by a comparison of IL
measurements between the simulator and the Unity3D system at various simulated NL values.
The results show that the two systems operate comparatively, with just over 11ms difference
when no simulated NL is used and an average of 4.83ms difference across all NL values. The
effect of N-Gram Order was also considered, and results confirm that the system favours lower
Order N-Grams, regardless of whether or not simulated NL or WAN is used. Finally, the effect
of MPA on IL was also looked at and the results confirm that MPA has a positive effect on IL,
but only to a certain value and again, regardless of whether or not simulated NL or WAN is
employed.

106

Chapter 8. Managing incorrect predictions

8.1. Overview

In any system involving prediction, occasionally, a prediction will be incorrect. In the case of
IRR systems, this means that unless an incorrect prediction is managed, the user will experience
the full RTT of the system, as if no prediction were used. Predictions can fail in two key
locations: while the user is performing interactions (such as moving forward, rotating a data set,
etc) or between interaction periods (such as when no interaction is being performed and then
suddenly an interaction is initiated from rest). If prediction fails while the user is interacting
with the system, the user will experience a disruption in whatever task they are attempting to
complete. For example, if navigating a VE or rotating a large set of data, the user will find the
screen appears to “freeze” when an incorrect prediction is experienced, making the application
feel “jerky”. On the other hand, if prediction fails at the start of a sequence of interactions (e.g.
the user begins moving forward or starts to rotate a data set), a large IL delay will be
experienced, making the application appear to be less responsive.

In this chapter, various approaches to mitigating incorrect predictions are discussed. One
approach, the multi-track scheme, is introduced and its effect on IL is investigated. This
approach was chosen in an attempt to reduce the impact of misprediction on IL by predicting not
only multiple steps ahead, but by also predicting multiple alternate interactions. The idea is that
if the first prediction is incorrect, the “next best guess” may be correct and can be used.
However, we first describe some other approaches to managing incorrect predictions.

8.2. Approaches for managing incorrect prediction

8.2.1. Local rendering

In events where prediction has failed and the client has received an invalid message from the
server application, the client could make use of local resources and generate frames until the
IRR system has recovered and correct message begin being received. This would unfortunately
mean that the client device would be required to have sufficient compute and storage resources
available, limiting the suitability of this approach to certain devices, require access to potentially
sensitive data (for rendering) and generally erode the benefits that IRR systems streaming
images afford.

107

Managing incorrect predictions

8.2.2. Image warping

Image Warping may allow for the masking of incorrect predictions: the last known “good”
frame can be warped to a new perspective according to the current user input, resulting in a new
frame representing a scene change due to some action. This synthesized frame could provide the
illusion of responsiveness to the user, while the IRR system attempts to recover from the
incorrect prediction. Any image warping algorithm will require processing and resources to be
available on the client, and as of yet, it is unclear as to how much latency this approach can
mask. Additionally, as mentioned in §2.3.2, image warping suffers from hole artefacts, as well
as from the inability to consider moving foreground and background objects. Therefore, image
warping may only be of benefit when data is static such as in certain data visualizations.

8.2.3. Prediction

Image warping has the unfortunate drawback of not being able to consider the motion of
foreground and background scene objects, severely limiting its role in masking incorrect
predictions. However, neural networks were recently demonstrated to be capable of generating
next-frame in video prediction using an unsupervised approach (i.e. input data was not manually
labelled before being trained on) to learning. PredNet [86], developed by Bill Lotter, Gabriel
Kreiman and David Cox in 2016, employs a convolutional neural network that given a sequence
of frames, can produce a predicted future frame (using both real and synthetic image sequences).
Critically, PredNet is able to consider background and foreground scenery when predicting
future frames, producing realistic results with some reduction in quality. It may therefore be
possible to feed interaction and scene context data into a model similar to PredNet and generate
future frames for an IRR system, masking incorrect predictions. Unfortunately, no work in this
domain exists yet and is therefore a promising research direction.

8.2.4. Panoramas

Panorama images, rendered by the server application, may be an appropriate way to mask
incorrect predictions, as well as make the client feel more responsive and increase the interaction
space available to the user. 360-degree panoramic spheres can be rendered by the server
application and delivered to the client. Rotational movements can easily be managed by the
client and when prediction fails, the illusion of forward and backward movement could be
generated by zooming (in and out of) the image on the client up to a certain threshold [63]. Like
the image warping approach, this would fail for foreground and background objects moving
within the scene and not linked to any interaction.

8.2.5. Multi-track prediction

The prediction module described earlier is only able to identify an incorrect prediction once it
has received an update from the client application, and the server application relies on the
prediction module for instructions and is unconcerned about what happens on the client (from an

108

8.2 Approaches for managing incorrect prediction

interaction perspective). It is critical that the prediction module is informed as soon as possible
of an incorrect prediction, since further mispredictions are likely to follow and will therefore
result in the server application processing and rendering invalid predictions, ultimately
increasing the experienced IL.

The client application (§7.2.1) is able to identify when an incorrect prediction message has been
received by comparing the action performed with the predicted one, but must communicate
errors to the prediction module as well as keep track of received messages and be careful to not
discard those required further in the future.

The multi-track prediction scheme attempts to perform prediction for multiple paths and
therefore minimise the potential for a misprediction. For instance, rather than predicting one
step ahead, the system should predict one step ahead but for multiple possible directions.
Consider Figure 8.1, where four interactions, performed sequentially, arrive on the prediction
module from the client application. The figure shows each of these interactions with a current
interaction position and a possible trajectory.

6 -5 -4 -3 -2 -1 0
5
4
3
2
1
0
-1

b) Forward
6 -5 -4 -3 -2 -1 0
5
4
3
2
1
0
-1

c) Forward
6 -5 -4 -3 -2 -1 0
5
4
3
2
1
0
-1

d) Left
6 -5 -4 -3 -2 -1 0
5
4
3
2
1
0
-1

a) Start position

Current position
Possible future position (using 3 steps-ahead prediction, MPA = 3)

Multi-track prediction scheme

Figure 8.1 Multi-track prediction scheme. 4 possible user actions with MPA = 4.

In Figure 8.1a, the player/camera is at position {1, -2}, and can move either forward, back, left
or right and since MPA = 3, the prediction module must therefore produce twelve predictions
(represented by orange). This tells us that for each interaction performed on the client, the
prediction module must produce MPA∗n predictions, where n is the number of possible
interactions the user can perform. A prediction for the current (blue) position is not required,
since it should have been created and predicted with the previous interaction to arrive on the
prediction module. In b), c) and d) of Figure 8.1, the user has moved the camera forward,
forward and left, to position {2, -}, {3, -2}, and {3, -3}, respectively. For each interaction that
arrives on the prediction module, all MPA∗n predictions must be made; this is because previous
predictions may, at this point, be invalid. For example, if the actions, “forward”, “backward”,
“forward”, were performed, then the scene generated by the first forward action might be
different than that generated on the second: an scene update may have occurred without input
from the user – such as an object moving in a simulation.

109

Managing incorrect predictions

On the other hand, if scene updates do not occur without direct input from the user, then
previously predicted interactions remain valid and their resulting frames may be reused. In this
case, it is not necessary to produce MPA∗n predictions per interaction, but rather:

numbero f predictionstogenerate =
MPA∗n

2
+1 (8.1)

For example:

6 -5 -4 -3 -2 -1 0
5
4
3
2
1
0
-1

b) Forward
6 -5 -4 -3 -2 -1 0
5
4
3
2
1
0
-1

c) Forward
6 -5 -4 -3 -2 -1 0
5
4
3
2
1
0
-1

d) Left
6 -5 -4 -3 -2 -1 0
5
4
3
2
1
0
-1

a) Start position

Current position
Possible future position (using 2 steps-ahead prediction, MPA = 2)
Already processed and rendered position

Multi-track prediction scheme

Figure 8.2 Multi-track prediction scheme with 2-steps ahead prediction. 4 possible user actions.

Figure 8.2 demonstrates how in a system where scene updates are entirely driven by user
interaction, previous results can be reused, thereby lessening the required number of predictions
therefore reducing the burden on the server application. Figure 8.2a shows that an action has just
arrived on the prediction module from the client application, placing the user at the current
(blue) position {1, -2}. From this position, the user might take one of four potential paths, all of
which are predicted and sent to the server application. Next in b), another interaction has arrived,
placing the user at position {2, -2}. In this case, the position has been previously been correctly
predicted in a), and therefore the N-Gram model updates and new potential paths are generated.
Since in this example scene updates are governed entirely by user interaction, previous results
can be used. Positions {3, -2}, {2, -2}, {1, -2}, and {0, -2} were previously (green) predicted
and therefore these predictions do not need to be sent to the prediction module, while positions
{-4, 2}, {-3, 2}, {-2, 4}, {-1, 3} and {0, 3} have yet to be sent to the server and therefore, do
need to be sent. As we can see with c) and d) of Figure 8.2, the number of predictions which
need to be made for each interaction remains constant at 5 (orange). These predictions
eventually arrive on the server application, which then performs rendering and finally forwards
the results to the client.

8.3. The effect of a multi-track prediction strategy on IL due to misprediction

The fundamental idea is that by having the prediction module cover as many possible future
interactions as possible, a correct future-result is likely to have been delivered to the client and

110

8.3 The effect of a multi-track prediction strategy on IL due to misprediction

therefore hopefully lessens the impact of an incorrect prediction on IL. However, this approach
raises a number of questions, such as:

1. Does the multi-track approach help to mitigate the effects of misprediction?

2. How does MPA affect the ability of the prediction module to mask IL?

3. Can the client application manage the large number of messages received from the server
application?

To address these questions, the same client-predictor-server architecture as described in §7.2 was
use, however the prediction module described in §5.3.3 was modified to predict a path for each
of the possible interactions the user can perform, and for each path, predict n (MPA) steps ahead.
This modification entailed the following:

If an interaction has arrived on the prediction module and if a prediction for this
interaction created, this original interaction is forwarded to the server application. A new
set of predictions is then generated for this latest interaction:

• For each step ahead to predict

– For each possible action the user can perform

* Create an empty prediction

* Assign the interaction to the prediction

* Assign the interaction number as being equal to the current interaction
number + the step ahead being predicted + 1

* Generate a position for the new location and assign it

* Create and assign a key as described in §5.3

* Add prediction to queue

After generating a queue of predictions, the queue is filtered such that only predictions which
have not already been sent to the server application remain. If, on the next iteration of the
prediction loop, no interaction has been received, the prediction module sends each of the
predictions, in turn, to the server application for processing, rendering and forwarding to the
client application. After each prediction is transmitted, its key is added to a dictionary of
previously sent predictions, which is used in the described filtering of predictions process.

All experimentation was conducted using the Unity3D PIRR system and as an initial test, the
system was run using Multi-Track prediction with MPA = 1, N-Gram Order = 1 and NL set to 0.
After the first experiment run, it became clear that the approach had a serious issue: IL was
found to increase from the first interaction and continued to do so until all interactions had been
simulated. The reason for this was found to be in relation to the server application: since a path
for each possible action (of which there are four in this instance) is being predicted ahead of
time, the prediction module generates many more messages which eventually arrive on the

111

Managing incorrect predictions

server application for processing and rendering. As a result, the server application blocks all
future messages until rendering is finished for the current one. Therefore, the system
architecture was modified slightly such that multiple server applications could be operating
simultaneously. In addition, the prediction module was modified to distribute the prediction
messages across however many server applications are being used. The client application was
adapted to accommodate results arriving from the various server applications, too. Figure 8.3
provides a high-level illustration of the new architecture.

S3S1 S2

P

C

Mc

Mp

Ms

Mp

Ms

Figure 8.3 Modified Interactive Remote Rendering Unity3D system to use multiple server applications.

Experiments were then conducted using the newly modified Unity3D system with the with N-
Gram Order set to one, various MPA values from 1 to 5 and NL values of 0ms, 50ms, 100ms,
200ms, 300ms and 400ms. All experiments were performed on a local machine (MacBook Pro
running Windows in Bootcamp mode) with CSP prediction mode. The first experiment was
performed with MPA = 1, NL = 0ms and with two server application instances, resulting in
0.08ms measured IL. This was found to be promising, since in previous experiments (for both
simulator and Unity3D platforms) using the same parameters, IL has always been above 0, albeit
below 2ms (see Figure 6.6 and Figure 7.6). The fact that such a near-zero value of IL was
recorded is an indication that mispredictions were being covered and therefore their impact was
being reduced. Further experiments were conducted using the remaining MPA and NL
parameter values and each experiment was repeated five times. All these experiments were
performed first with two server applications, and then repeated each time with a different
number of server applications (2 to 10). With the number of server applications set to two, the
Unity3D system is only able to use MPA = 1. If MPA is set any higher, IL begins to climb
rapidly; the system is clearly unusable (see Figure 8.4), even with 0ms simulated NL, the
Unity3D system fails at with just two MPA. Note that the apparent spike in the figure is an
anomaly. For a period of about two weeks, AWS was experiencing issues where CPU load
would spike at brief intervals, impacting the performance of the PIRR system and any other
applications running on the server. While the spike was not present when running experiments
on another machine, AWS was used regardless due to it ability to host many more server
application instances and therefore allow for more experimentation.

112

8.3 The effect of a multi-track prediction strategy on IL due to misprediction

K

1K

2K

3K

4K

5K

6K

K 2K 4K 6K 8K 9K 11
K

13
K

15
K

17
K

19
K

21
K

22
K

24
K

26
K

28
K

30
K

32
K

34
K

35
K

37
K

39
K

41
K

43
K

45
K

47
K

48
K

50
K

52
K

54
K

56
K

58
K

60
K

62
K

63
K

65
K

67
K

69
K

M
ea

n
in

te
ra

ct
io

n
la

te
nc

y
(m

s)

Run time (ms)

Simulator with multi-track prediction: MPA = 2, S = 2, NL =
0ms

0

0

Figure 8.4 Interactive Remote Rendering Unity3D system with multi-track prediction failure.

The following figure illustrates a configuration of two server applications with MPA = 1 at
various NL values and compares these results to their single-track Unity3D system counterpart
measurements:

1.40 6.73
35.18

137.62

237.29

337.71

0.08 6.36

49.69

150.44

248.76

349.42

0

50

100

150

200

250

300

350

400

0 50 100 200 300 400

M
ea

n
in

te
ra

ct
io

n
la

te
nc

y
(m

s)

Network Latency (ms)

Unity single vs multi-track prediction: MPA = 1, N-Gram
Order = 1 and S = 2

Single-track Multi-track

Figure 8.5 Interactive Remote Rendering Unity3D system comparison of single-track and multi-track
prediction scheme results

As Figure 8.5 shows, single track out-performs the multi-track prediction scheme by about 10 to
15ms. When a greater number of server applications were employed, no change in mean IL was
found. Increasing MPA for higher NL values did produce acceptable mean IL results, but the
system was only able to operate up to 200ms of simulated latency. Increasing simulated NL
would require a higher MPA value to mask IL, and this in turn requires a greater number of
server applications to operate. Unfortunately, the system is not capable of operating the
multi-track prediction scheme (see Table 8.1) with a MPA value greater than 3: too many
messages pass through the system and the client application is unable to cope with the large

113

Managing incorrect predictions

influx of these messages. The result is a rapid increase in IL as the client application struggles to
process an ever-growing backlog of messages. More specifically, if for example the system
generates 10 (SD) interactions per second and if an MPA of 5 is used and just 4 distinct actions
α , can be used, the prediction module will produce up to 200 messages a second.

Numbero f predictedmessagespersecond = MPA∗α ∗SD (8.2)

The client application will receive those 200 messages a second but unfortunately, in this case, it
is unable to process them fast enough due to various delays such as decompression of arrived
frames, and therefore a backlog forms.

Table 8.1 Mean IL measurements recorded from the Unity3D system using multi-track prediction.
Server applications represents the total number of instances of a single server application per
experiment run. In all cases, the system was operated with CSP and on a local machine.

NL (ms) MPA # Server applications Mean IL (ms)
0 3 6 0.08

50 3 6 0.30
100 3 6 2.02
200 3 6 11.87
300 3 7 93.82
400 3 7 268.57

Table 8.1 shows the lowest mean IL results recorded during experimentation at the various NL
values require at least MPA = 3 and between 6 and 7 server applications. Unfortunately, as
mentioned, increasing MPA to 4 resulted in extreme IL. Additionally, it is clear that mean IL
increases dramatically across the simulated NL values. The reasons for these large changes in
mean IL are unknown but is likely due to the instability of the system and the challenges of
precise measurement at such low latencies.

8.4. Summary

This chapter has explored various methods for addressing the issue of misprediction in PIRR
systems. Local rendering, image warping, prediction and panoramas were all briefly introduced
as potential solutions and their issues discussed. However, these approaches do not adequately
address the issues of misprediction, either due to the introduction of artefacts in images, the
introduction of additional complications or the failure to take full advantage of the benefits of
IRR. PredNet is the most promising of these approaches, but the early stage of the research
makes it unclear how suitable it is. In terms of performance, local rendering and image warping
would require significant resources on the client device and performance would therefore be
dependant on the availability of those resources, while the panorama approach would likely also
increase IL and use a significant amount of bandwidth. This is because in order to render the
panorama, multiple virtual cameras would need to perform rendering from different angles. The
resulting images from those virtual cameras would then need to be “stitched” together and then
sent over the network to the client.

114

8.4 Summary

Multi-track prediction was then suggested as a way forward, and a framework and its
implementation into PIRR systems was described. The system was experimented with at various
NL and MPA values, but it was found that the system is unable to yield acceptable IL with a
single server application instance. This was because of a backlog forming on the server
application due to the single-threaded nature of Unity3D. As a result, the system was modified
to utilize multiple server applications, but unfortunately suffers from stability issues, cannot deal
with an MPA greater than 3 and requires between 6 and 7 server applications per experiment in
order to achieve low mean IL measurements. With further experimentation and with server
applications distributed over a number of EC2 instances, the multi-track approach would yield
better results and is therefore worth further investigation.

115

Chapter 9. Client-Side Prediction vs Server-Side Prediction

9.1. Overview

The designing of the prediction module (described in §5.3.3) led to an interesting question: on
which side of the network should the prediction module reside? In literature, this question does
not appear to have been raised and therefore the focus of this chapter is to explore the benefits (if
any, and with respect to IL) of running the prediction module on either the client-side
(Client-Side Prediction (CSP)) or the server-side (Server-Side Prediction (SSP)) of the network.
By having the prediction module and the client application execute on different machines, the
client application will be able to operate without sharing its resources. Performing prediction on
the server-side of the network will enable the prediction module to take advantage of the
resource scalability of the cloud and not be impeded by the background application or processes
running on the client machine. This will in turn result in greater performance of the system and
therefore lower IL. However, CSP may provide lower IL since the prediction module will have
access to interactions from the client sooner than it would have in an SSP configuration: the
prediction module would need to wait 1

2 NL before an interaction from the client arrives when
using SSP, compared to 0ms when using CSP. For these reasons, both CSP and SSP
configurations are explored.

9.1.1. Client-side prediction and server-side prediction

In modern networked video games, a common architecture is the “authoritative server” model.
The primary aim of the authoritative server models is to mitigate cheating, and to reduce the
delay between performing an interaction and seeing on-screen update, and therefore make user
interaction feel as near instantaneous as possible [87]. In this architecture model, the server
manages the true state of all entities within the game/visualization. User interactions performed
on the client application are processed and rendered locally but the interactions are also sent to
the remote server for “verification”. If the server detects a discrepancy or an invalid action, an
update is issued and the client “rolls back” to a previous state – a valid one dictated by the
server; this can sometimes introduce “rubber banding” [88] which is when the client application
is reset to an earlier point in time, leading to irritating and sometimes confusing results. In the
game development world, this technique is known as CSP, since the client application
essentially runs ahead of the server application. In this context, however, the term CSP is
misleading since the client does not actually predict user interactions ahead of time – it merely
allows them to execute locally and has the server validate them.

117

Client-Side Prediction vs Server-Side Prediction

In this research, it is therefore important to make a clear distinction as to what is meant by CSP,
as well as to define SSP:

CSP: The prediction module is located on the same side of the network as the client application
and therefore shares resources available one the client device.

SSP: The prediction module is located on the same side of the network as the server application
and therefore shares resources available on the server. There may be clear benefits to hosting the
prediction module on the server. For example:

• More resources (computation, storage, memory) are likely to be available to the prediction
module on the server, than on a local thin client device.

• A decrease in (or unstable) local resources on the client device will not impact the
prediction module.

• More powerful prediction modules may be employed (or combined) on the server, than on
the client device.

• There could be a feedback link implemented between the rendering application and the
prediction module; this may allow the prediction model to consider geometry, textures,
regions of interest, etc., and therefore raises the possibility of using prediction modules
not possible when operating on the client.

However, there may be benefits to hosting the prediction module on the client, too:

• Incorrect predictions can be realised sooner (on the prediction module), since updates
from the client do not have to travel across a network.

• External hardware, such as eye or gaze tracking might be useful for improving prediction
but produces a significant amount of measurements and therefore may require
unreasonable amounts of bandwidth.

• By having the prediction module on the client, hardware data can be fed directly into the
prediction model and therefore may not be required to be transmitted over the network,
resulting in lower bandwidth requirements.

The main focus of this thesis is IL and therefore in an effort to understand the effect of the two
approaches on IL, the PIRR simulator architecture was modified slightly.
The modifications were made to the prediction module, server application and the initialization
message sent on system start up. When CSP is used, a routine instructs that messages arriving at
the prediction module must bypass the latency simulators, without introducing any delays. On
the server application, arriving messages must be delayed and are therefore passed to the latency

118

9.2 Experimental setup

Table 9.1 The above shows the modification made to the config in order to allow Client-Side
Prediction or Server-Side Prediction mode.
[Experiment]
Previously described properties
use_csp = true

simulator. On the other hand, when SSP is to be used, messages are instructed to pass through
the latency simulator on arrival at the prediction module, introducing a delay, and on the server
application, the latency simulator is bypassed entirely – just as the prediction module is in the
CSP configuration. The initialization message was modified with a simple Boolean flag,
indicating whether CSP or SSP is to be used. Figure 9.1 makes clearer the placement of the
latency module in order to simulate either CSP or SSP.

Client
appliation

Prediction
module

Client
appliation

Server
application

Prediction
module

Client-Side Prediction

Server
application

Server-Side Prediction

Location of latency simulator

Figure 9.1 Client-Side Prediction (CSP) vs Server-Side Prediction (SSP).

In order to tell the system to use either CSP or SSP, the experiment section of the configuration
file was modified with the addition of a “use_csp” property:

9.2. Experimental setup

In the following sections, CSP and SSP are compared. Comparisons are first made with respect
to N-Gram Order, and then for MPA. In each case, four configurations are explored:

• Simulator CSP vs simulator SSP

• Unity3D CSP vs Unity3D SSP

• Simulator CSP vs Unity3D CSP

• Simulator SSP vs Unity3D SSP

119

Client-Side Prediction vs Server-Side Prediction

In all experiments except for when operating over WAN, latencies from Table 6.1 were
simulated and injected. When operating over WAN, the client application was run on a device
located in Cambridge, UK, while the server application was hosted remotely on an Amazon EC2
g2.2xlarge instance located in Northern California, USA. In all experiments where prediction
was used, the interaction template was fed into the client application, and interactions were
performed automatically. Each NL/MPA/Order experiment configuration was repeated 5 times
and in the case of WAN, experiments were repeated 5 times during morning, afternoon and
evening; this was done to counter irregular network conditions as well as peak-hour traffic and
broadband throttling.

All experiments using the simulator were performed using 30ms simulated render delay, while
when using Unity3D, rendering was managed entirely by Unity and therefore is less controllable
and more variable.

9.3. N-Grams

Earlier (§6.3.1), an increase in N-Gram Order (interaction history), when used to make
predictions, was shown to be associated with higher IL: the greater the Order, the larger the
mean IL, which is due to extended recovery times from incorrect predictions and the increased
likelihood of an incorrect prediction due to too much history being used.
However in all those experiments, the CSP was used and it remains to be seen if the same results
can be expected when running the PIRR system using a SSP configuration and therefore, the
various experiments were performd and the system was evaluated.

The following table (Table 9.2) describes four groups of experiment configurations. Each
mode/NL/N-Gram Order configuration was repeated 5 times, bringing the total number of
experiments performed to 700. After completing all experiment runs, the results were grouped
by repeat experiment, then by NL, followed by N-Gram Order and then averaged.

Table 9.2 Experiment parameters used for comparing CSP and SSP. Each configuration is
composed of 150 experiment runs: 6 different latencies, 5 N-Gram Orders, repeated 5 times
each.

Group Platform Mode Network Latency (ms)
N-Gram
Order Repeats Total

A Simulator CSP 0, 50, 100, 200, 300, 400, WAN 1, 2, 3, 4, 5 5 175
B Simulator SSP 0, 50, 100, 200, 300, 400, WAN 1, 2, 3, 4, 5 5 175
C Unity3D CSP 0, 50, 100, 200, 300, 400, WAN 1, 2, 3, 4, 5 5 175
D Unity3D SSP 0, 50, 100, 200, 300, 400, WAN 1, 2, 3, 4, 5 5 175

In all experiments, MPA was set to 1 and when simulated, rendering was set to 30ms.

120

9.3 N-Grams

9.3.1. Simulator CSP vs SSP

The aim of the following experiments was to determine if there is any difference between CSP
and SSP modes using the simulator, with respect the N-Gram Order. After performing the
experiments described in groups A and B of Table 9.2, results were collected and analysed. For
each NL/Order group, all repeat experiments were grouped and averaged to produce a single set
of mean IL measurements. In each latency group (Figure 9.2), the results of the experiments
show that IL increases with N-Gram Order, regardless of which side of the network the
prediction module is hosted on. Across all latencies, when the simulator is run with a CSP mode,
IL is shown to be fractionally less than when run with SSP: the largest difference was found to
be just over 1 millisecond.

00

1

2

3

Latency: 0ms

0
2
4
6

9
Latency: 50ms

0
11
23
34
46

Latency: 100ms

0
36
72

109
145

Latency: 200ms

1 2 3 4 5
0

61
123
184
246

Latency: 300ms

1 2 3 4 5
0

86
173
259
346

Latency: 400ms

N-Gram Order

M
ea

n
in

te
ra

ct
io

n
la

te
nc

y
(m

s)

Simulator CSP vs SSP: effect of N-Gram Order on IL at various NL
CSP SSP

Figure 9.2 Effect of N-Gram Order on Interaction Latency using the Simulator: Client-Side Prediction vs
Server-Side Prediction

On inspection, the results of both CSP and SSP experiments look very similar. However, it
would be interesting to determine whether or not any difference between the two configurations
is constant, or changes according to N-Gram Order as well as NL. In order to understand this,
the results described in Figure 9.2 were compared at each N-Gram Order and NL. For instance,
the mean IL measured at N-Gram Order = 1 and NL = 0ms for CSP is subtracted with the same
measurement for SSP. This difference is represented by ∆IL.

121

Client-Side Prediction vs Server-Side Prediction

Figure 9.3, describes the ∆IL values (in milliseconds) for N-Gram Orders 1 to 5. In all cases,
CSP measurements were found to be lower than their SSP counterparts. However, from the plot,
it can be seen that the maximum difference between CSP and SSP measurements was just over
1ms, a negligible value. This observation was found in all NL groups.

1
2
3
4
5

Latency: 0ms

1
2
3
4
5

Latency: 50ms

1
2
3
4
5

Latency: 100ms

1
2
3
4
5

Latency: 200ms

0 1 2

1
2
3
4
5

Latency: 300ms

0 1 2

1
2
3
4
5

Latency: 400ms

Mean interaction latency (ms)

N
-G

ra
m

 O
rd

er

Simulator CSP vs SSP: Mean IL differences at various NL

CSP IL is less SSP IL is less

Figure 9.3 Simulator CSP vs SSP. Mean differences at various N-Gram Orders and Network Latencies.
MPA = 1.

The same set of experiments were then repeated, but instead of simulating latency, the simulator
was run over a WAN. Similarly, each experiment used a different N-Gram Order, was repeated 5
times. This was repeated morning, afternoon and evening and after collecting all results, they o
were averaged. As can be seen in Figure 9.4, CSP again performs better over WAN, this time by
a more pronounced margin. While the ∆IL between CSP and SSP for these experiments,
presented in Table 9.3, vary across N-Gram Orders, it is clear that on average, IL can be more
than 10ms higher when running a SSP configuration. The sporadic ∆IL is likely due to the
instability of the network connection between Cambridge and Northern California, and the
challenges of performing such small measurements.

122

9.3 N-Grams

Figure 9.4 Simulator CSP vs SSP using WAN and the effect of N-Gram Order on IL.

Table 9.3 CSP vs SSP over WAN. The table shows the various N-Gram orders tested (1 to 5)
and their effect on IL in either a CSP or SSP configuration. In all cases, CSP is lower than SSP.
Numbers represent the mean IL difference (∆IL) between CSP and SSP.

Order 1 2 3 4 5

∆IL 8.196 12.212 9.123 3.148 10.894
Configuration with lowest IL CSP CSP CSP CSP CSP

9.3.2. Unity3D CSP vs SSP

All of the experiments in §9.3.1 were repeated using the Unity3D PIRR system, rather than the
simulator (see Table 9.2 Groups C and D for experiments and parameters). Results were
processed identically to those in §9.3.1 and Figure 9.5 presents the results of the experiments.

123

Client-Side Prediction vs Server-Side Prediction

0
3
6
9

12
Latency: 0ms

0
5

10
15
21

Latency: 50ms

0
13
26
39
52

Latency: 100ms

0
38
76

114
153

Latency: 200ms

1 2 3 4 5
0

63
126
189
252

Latency: 300ms

1 2 3 4 5
0

87
175
262
350

Latency: 400ms

N-Gram Order

M
ea

n
in

te
ra

ct
io

n
la

te
nc

y
(m

s)
Unity, CSP vs SSP: effect of N-Gram Order on IL at various NL

CSP SSP

Figure 9.5 Unity3D CSP vs SSP using WAN and the effect of N-Gram Order on IL.

Similar to the results from the simulator (Figure 9.2), Figure 9.5 shows that when using the
real-world PIRR system, CSP also offers lower IL than when using SSP. As can be seen, IL
increases with both NL and N-Gram Order for each NL group. The mean differences between
CSP and SSP experiment results were calculated for each N-Gram Order presented in Figure 9.5
and when inspecting the data, ∆IL is shown to increase with NL and this is illustrated in Figure
9.6. For these experiments, the smallest ∆IL occurs when NL = 0ms and Order = 1 with a value
of 0.852ms. On the other hand, the largest value of 4.742ms occurs at Order = 5 and NL =
400ms, suggesting that ∆IL increases with NL when using the Unity3D platform.

124

9.3 N-Grams

1
2
3
4
5

Latency: 0ms

1
2
3
4
5

Latency: 50ms

1
2
3
4
5

Latency: 100ms

1
2
3
4
5

Latency: 200ms

0 1 2 3 4 5

1
2
3
4
5

Latency: 300ms

0 1 2 3 4 5

1
2
3
4
5

Latency: 400ms

 Mean interaction latency (ms)

N
-G

ra
m

 O
rd

er

Unity CSP vs SSP: Mean IL differences at various NL

SSP IL is less CSP IL is less

Figure 9.6 Unity3D CSP vs SSP ∆ mean IL differences at various NL and N-Gram Orders.

The same N-Gram Orders, MPA and rendering delay were used in additional experiments run
using a WAN. The results indicate that again, like the simulator, the Unity3D PIRR system also
operates with lower IL when using the CSP mode, show in Figure 9.7.

In terms of ∆IL between CSP and SSP modes using WAN, measurements surprisingly appear
unaffected by N-Gram Order (Table 9.4). However, this may well be due to the variation in NL
when using WAN, compounded by the fact that there is more variance in render delay when
using Unity3D compared with the simulator.

125

Client-Side Prediction vs Server-Side Prediction

Figure 9.7 Unity3D system CSP vs SSP. Effect of N-Gram Order on IL over WAN.

Table 9.4 Unity CSP vs SSP over WAN. The table shows the various N-Gram orders tested (1 to
5) and their effect on IL in either a CSP or SSP configuration. In all cases, CSP is lower than
SSP. Numbers represent the mean IL difference (∆IL) between CSP and SSP.

Order 1 2 3 4 5

∆IL 0.615 1.919 1.855 0.769 1.877
Configuration with lowest IL CSP CSP CSP CSP CSP

9.3.3. Simulator CSP vs Unity3D CSP

The CSP experiment results gathered from experiments (Groups A and C, Table 9.2) conducted
in §9.3.1 and §9.3.2 were reused so that the simulator and Unity3D could be compared. These
comparisons (for each latency and N-Gram Order) are illustrated in Figure 9.8. In all
experiments, the simulator yielded lower IL. IL also increased with both NL and N-Gram order.
∆IL was then calculated for each N-Gram Order and NL. Figure 9.9 illustrates these results.
Curiously, it was found that ∆IL appears to be inversely proportional to NL. In other words, as
NL increases, ∆IL appears to decrease. However, this is likely due to a combination of
fluctuations in rendering time (on Unity3D) and the difficulty of accurately simulating delays
when using Thread.Sleep() (due to time-slicing on the CPU having a resolution of approximately
15m, as mentioned earlier). The highest ∆IL was registered at 11.67ms for NL = 50ms and
N-Gram Order = 1, while the lowest ∆IL was 0.49ms, measured at NL = 400ms and N-Gram
Order = 5.

126

9.3 N-Grams

0
3
6
9

12
Latency: 0ms

0
5

10
15
20

Latency: 50ms

0
12
25
38
51

Latency: 100ms

0
37
74

112
149

Latency: 200ms

1 2 3 4 5
0

61
123
185
247

Latency: 300ms

1 2 3 4 5
0

86
172
259
345

Latency: 400ms

N-Gram Order

M
ea

n
in

te
ra

ct
io

n
la

te
nc

y
(m

s)

Simulator CSP vs Unity CSP: effect of N-Gram Order on IL at various NL
Sim Unity3D

Figure 9.8 Simulator vs Unity3D CSP. The effect of N-Gram Order on IL at various NL.

Figure 9.9 Simulator vs Unity3D CSP ∆ mean differences. N-Gram Orders.

127

Client-Side Prediction vs Server-Side Prediction

9.3.4. Simulator SSP vs Unity SSP

In this section, results obtained from SSP experiments when using the simulator and the
Unity3D PIRR system are compared. The relevant configurations for these results can be found
in Table 9.2 Groups B and D. After compiling the respective results and analysing the data,
Figure 9.10 was generated. Just as with §9.3.3, the plot shows that the simulator produces lower
mean IL values than the Unity3D PIRR system, when using SSP.

0
1
3
5
7

Latency: 0ms

0
5

11
17
22

Latency: 50ms

0
17
34
52
69

Latency: 100ms

0
42
85

128
171

Latency: 200ms

1 2 3 4 5
0

67
135
203
271

Latency: 300ms

1 2 3 4 5
0

93
187
281
375

Latency: 400ms

N-Gram Order

M
ea

n
in

te
ra

ct
io

n
la

te
nc

y
(m

s)

Simulator SSP vs Unity SSP: effect of N-Gram Order on IL at various NL
Sim Unity3D

Figure 9.10 Simulator vs Unity3D SSP: Effect of N-Gram Order on IL at various NL.

128

9.4 MPA

Figure 9.11 Simulator vs Unity3D SSP. ∆ Mean differences. N-Gram Orders.

Figure 9.11 shows the ∆IL values for the above experiment. From the figure, it can be seen that
in all experiment, the simulator resulted in lower mean IL. The minimum ∆IL was measured at
NL = 0ms and N-Gram Order = 1, with a recorded value of 1.66ms, while the maximum
measured ∆IL was found to be 29.14ms at NL = 400ms and N-Gram Order = 5. This is
interesting as is shows that the ∆IL measured using SSP is higher than when using CSP,
potentially further indicating that CSP results in slightly lower mean IL.

9.4. MPA

Using the simulator, MPA was earlier found to positively impact IL up to a certain point relative
to a simulated NL. However, it is unknown whether CSP or SSP provides any benefits to IL with
respect to MPA. In order to evaluate this in both the simulator and Unity3D PIRR system, the
experiments in §9.3 were repeated with MPA parameters being updated, rather than N-Gram
Order.

First, experiments were performed using the simulator. One set of experiments used a CSP and
another set used the SSP configuration. The results from these experiments were then compared.
The same experiments were then performed using the Unity3D PIRR system. Next, the results
collected though experiments with the simulator and the Unity3D platforms are compared. In all
cases, MPA’s 1 to 10 were evaluated at the 6 different latencies from Table 6.1. In all

129

Client-Side Prediction vs Server-Side Prediction

experiments, N-Gram Order was set to 1 and as indicated in §9.2, render delay was set to 30ms
for simulator experiments.

Table 9.5 describes the same four groups of experiment configurations as presented in 9.2, but
with N-Gram Order replaced by MPA. Each mode/NL/MPA configuration was repeated 5 times,
bringing the total number of experiments performed to 1400. After completing the all
experiment runs, the results were grouped according to repeat experiment, NL and MPA. Results
were then averaged. In addition, difference between CSP and SSP results are calculated in order
to determine whether or not the effect of either configuration grows or diminishes according to
NL and/or MPA. This difference is represented by ∆IL.

Table 9.5 This table describes the various experiments conducted using the simulator and the
Unity3D PIRR system. Various latencies and MPAs were evaluated in both CSP and SSP modes
and each experiment was repeated 5 times.

Group Platform Mode
Network Latency
(ms)

MPA Repeats Total

A Simulator CSP
0, 50, 100, 200,
300, 400, WAN

1, 2, 3, 4, 5, 6, 7,
8, 9, 10

5 350

B Simulator SSP
0, 50, 100, 200,
300, 400, WAN

1, 2, 3, 4, 5, 6, 7,
8, 9, 10

5 350

C Unity3D CSP
0, 50, 100, 200,
300, 400, WAN

1, 2, 3, 4, 5, 6, 7,
8, 9, 10

5 350

D Unity3D SSP
0, 50, 100, 200,
300, 400, WAN

1, 2, 3, 4, 5, 6, 7,
8, 9, 10

5 350

The following sub-sections explore configurations for:

• Simulator CSP vs Simulator SSP

• Unity3D CSP vs Unity3D SSP

• Simulator CSP vs Unity3D CSP

• Simulator SSP vs Unity3D SSP

9.4.1. Simulator CSP vs SSP

For the following experiments, the simulator was run with the parameters described in Table 9.5
groups A and B. In a Figure 9.12, it can be seen that CSP and SSP modes yield nearly identical
results. In all subplots except for where NL = 0ms, SSP appears to offer slightly lower IL
towards higher MPA. However, when inspecting the ∆IL between CSP and SSP measurements
for the various NL, it can be seen that a) ∆IL increases with MPA, b) ∆IL remain roughly the
same across NL and c), SSP provides lower IL from about MPA = 5 upwards, where

130

9.4 MPA

measurements range from less than 1ms to approximately 11ms. Figure 9.13 presents the ∆IL

measurements of IL.

4
8

13
17

Latency: 0ms

8
16

25
33

Latency: 50ms

10

21

32
42

Latency: 100ms

34
69

104
139

Latency: 200ms

1 2 3 4 5 6 7 8 9 10

60
120
180
240

Latency: 300ms

1 2 3 4 5 6 7 8 9 10

85

170

255

340
Latency: 400ms

Maximum Predictions Ahead (MPA)

M
ea

n
in

te
ra

ct
io

n
la

te
nc

y
(m

s)

Simulator CSP vs SSP: effect of MPA on IL at various NL with N-Gram Order 1
CSP SSP

Figure 9.12 Simulator CSP vs SSP: The effect of MPA on IL at various NL.

131

Client-Side Prediction vs Server-Side Prediction

1
2
3
4
5
6
7
8
9

10
Latency: 0ms

1
2
3
4
5
6
7
8
9

10
Latency: 50ms

1
2
3
4
5
6
7
8
9

10
Latency: 100ms

1
2
3
4
5
6
7
8
9

10
Latency: 200ms

0 2 4 6 8 10

1
2
3
4
5
6
7
8
9

10
Latency: 300ms

0 2 4 6 8 10

1
2
3
4
5
6
7
8
9

10
Latency: 400ms

 Mean interaction latency (ms)

M
PA

Simulator CSP vs SSP: Mean IL differences at various NL and MPAs

SSP is less CSP is less

Figure 9.13 Simulator CSP vs SSP: ∆ Mean IL differences at various NL and MPAs

SSP appears to demonstrate an advantage over CSP: with each increase of MPA, an increasingly
lower IL is observed. This is likely because in SSP mode, where there is no network delay
between the prediction module and server application, the server application is provided with
predictions for processing without a delay. On the other hand, with the CSP mode (where there
is a delay between the prediction module and the server application) the server application must
wait for 1⁄2 NL before receiving results from the prediction module. This difference is important,
since when operating in CSP mode, the client device struggles to cope with the large volume of
messages arriving for processing and the burden of running the prediction module further strains
local compute resources.

After running the simulator using simulated latencies, the same experiments described here were
instead performed over WAN, between Cambridge, UK and Northern California, USA.

132

9.4 MPA

1 2 3 4 5 6 7 8 9 10
Maximum Predictions Ahead (MPA)

40

60

80

100

120

140
M

ea
n

in
te

ra
ct

io
n

la
te

nc
y

(m
s)

Simulator CSP vs SSP over WAN: effect of MPA on IL with N-Gram Order 1

CSP
SSP

Figure 9.14 Simulator CSP vs SSP over WAN comparison.

Table 9.6 This table shows the mean IL difference (∆IL) between CSP and SSP modes using the
simulator and running over WAN.

Order 1 2 3 4 5 6 7 8 9 10

∆IL 6.16 5.14 5.64 0.09 9.18 2.47 3.84 2.04 1.42 2.15
Configuration
with lowest IL

CSP CSP CSP SSP CSP CSP CSP CSP SSP CSP

In Figure 9.14 and Table 9.6, the results for the experiments performed with the configuration
described in Table 9.5 Groups A and B are presented. However, only WAN was used in these
experiments. As can be seen in Figure 9.14, both CSP and SSP, IL falls from MPA = 1 until a
certain point: MPA reaches the ideal value for the NL being experienced. Once reaching the
ideal MPA, IL beings to gradually climb, which is observed, again, in both CSP and SSP.
Interestingly, though, CSP appears to provide lower IL. This is contrast with the results using the
simulated NL where SSP is shown to yield lower IL. Unfortunately, WAN conditions are not
stable, and ping fluctuates (sometimes with latency spikes of 10s of ms) and is therefore likely
responsible for the contradictory measurements.

9.4.2. Unity3D CSP vs SSP

Using the configuration parameters described in Table 9.5 Groups C and D, 700 experiments
were performed, the results of which are presented below in Figure 9.15.

133

Client-Side Prediction vs Server-Side Prediction

12

18

25
Latency: 0ms

21

28
Latency: 50ms

25

37

50
Latency: 100ms

36
73

110
147

Latency: 200ms

1 2 3 4 5 6 7 8 9 10

62
124
186
248

Latency: 300ms

1 2 3 4 5 6 7 8 9 10

86
173
260
346

Latency: 400ms

Maximum Predictions Ahead (MPA)

M
ea

n
in

te
ra

ct
io

n
la

te
nc

y
(m

s)
Unity3D CSP vs SSP: effect of MPA on IL at various NL with N-Gram Order 1

CSP SSP

Figure 9.15 A comparison of Unity CSP vs SSP. MPA.

Figure 9.15 shows that mean IL decreases with MPA until an ideal value is reached, at which
point, mean IL begins to climb. This is true for all experiments evaluating MPA. Like
measurements comparing CSP and SSP for the simulator, the CSP mode IL results are higher
than those taken using SSP for the Unity3D PIRR system. When inspecting ∆IL, the simulator
does not show clearly the same increase over MPA.

134

9.4 MPA

1
2
3
4
5
6
7
8
9

10
Latency: 0ms

1
2
3
4
5
6
7
8
9

10
Latency: 50ms

1
2
3
4
5
6
7
8
9

10
Latency: 100ms

1
2
3
4
5
6
7
8
9

10
Latency: 200ms

0 2 4 6 8

1
2
3
4
5
6
7
8
9

10
Latency: 300ms

0 2 4 6 8

1
2
3
4
5
6
7
8
9

10
Latency: 400ms

 Mean interaction latency (ms)

M
PA

Unity3D CSP vs SSP: Mean IL differences at various NL and MPAs

SSP is less CSP is less

Figure 9.16 Unity CSP vs SSP. ∆ Mean IL differences at various NL and MPAs

9.4.3. Simulator CSP vs Unity3D CSP

In all cases thus far, SSP has been shown to yield slightly lower mean IL, particularly at higher
MPA levels; this was demonstrated for both the simulator and Unity3D platform. However, in
order to understand how closely the simulator mimics the Unity3D PIRR system, it is necessary
to compare the simulator CSP with that of Unity3D; this comparison is illustrated in Figure 9.17.
No additional experiments were performed here and instead, the results from previous runs are
used.

135

Client-Side Prediction vs Server-Side Prediction

6
12
18
25

Latency: 0ms

8
16
25
33

Latency: 50ms

11
22

34
45

Latency: 100ms

36
73

110
146

Latency: 200ms

1 2 3 4 5 6 7 8 9 10

61
123
184
246

Latency: 300ms

1 2 3 4 5 6 7 8 9 10

86
172
258
344

Latency: 400ms

MPA

M
ea

n
in

te
ra

ct
io

n
la

te
nc

y
(m

s)
Simulator CSP vs Unity CSP: effect of MPA on IL at various NL

Sim Unity3D

Figure 9.17 Simulator vs Unity3D CSP: Mean IL various NL and MPA values.

From the figure, Unity3D tends to provide higher mean IL at lower latencies and at smaller MPA
values. As NL and MPA increase, however, the Unity3D PIRR system and the simulator
produce more comparable results and at higher MPA values, the Unity3D platform tends to
produce lower IL.

136

9.4 MPA

Figure 9.18 Simulator vs Unity3D CSP: ∆ Mean IL at various NL and MPA values.

The mean difference between the simulator and Unity3D platforms were then calculated across
MPA levels for each NL, and the results plotted in Figure 9.18, which shows that in most cases,
the simulator produced lower mean IL. Why the simulator produced lower mean IL is not clear,
however it is likely due to the simulator having less variability than Unity3D, which itself is
likely caused by rendering delays and background processes of Unity3D.

9.4.4. Simulator SSP vs Unity3D SSP

In this section, SSP modes were compared between the simulator and Unity3D platforms. No
new experiments were performed; rather, previously recorded results were used to identify the
differences between the platforms running in SSP mode. The results illustrated in Figure 9.19
show nearly identical plots to those of Figure 9.17.

137

Client-Side Prediction vs Server-Side Prediction

5
11
17
23

Latency: 0ms

7
14
21
28

Latency: 50ms

12
25
37
50

Latency: 100ms

36
73

110
147

Latency: 200ms

1 2 3 4 5 6 7 8 9 10

62
124
186
248

Latency: 300ms

1 2 3 4 5 6 7 8 9 10

86
173
260
346

Latency: 400ms

MPA

M
ea

n
in

te
ra

ct
io

n
la

te
nc

y
(m

s)
Simulator SSP vs Unity SSP: effect of MPA on IL at various NL

Sim Unity3D

Figure 9.19 Simulator vs Unity SSP. Mean IL measured at simulated NL’s. MPA.

As can be seen from the figure, the simulator and Unity3D platforms produce similar mean IL
across all simulated NL. Additionally, like with the CSP comparison in Figure 9.17, IL
generated by Unity3D is higher at lower NL values. However, as NL and MPA increase, the IL
experienced by Unity3D gradually decreases until it is lower than that produced by the simulator.
Looking at the ∆IL values in Figure 9.20, the simulator consistently produces lower mean IL at
all MPA values, until NL is increased to 200ms. At this point, the Unity3D begins to result in
lower mean IL, but only at higher MPA values. This indicates that if MPA or NL were to
increase, the unity3D platform would continue to provide lower mean IL. In all, these results
indicate that while the simulator is able to behave in a comparative manner at lower NL, a
discrepancy between the simulator and Unity3D does grow at higher NL and as such, would
need investigating before considering measurements at higher NL reliable.

138

9.4 MPA

Figure 9.20 Unity vs simulator SSP. ∆ Mean IL differences at various NL and MPAs.

9.4.5. Summary

In this chapter, CSP and SSP configurations are described, and how they are implemented in
both the simulator and Unity3D PIRR systems is explained. The focus of this chapter was to
determine if there is any noticeable difference between CSP and SSP configurations, as well as
between the simulator and Unity3D platforms when operating in these modes. CSP and SSP
configurations were therefore examined with respect to the effect of N-Gram Orders as well as
MPA’s on IL. In addition, the simulator and Unity3D platforms were compared.

In the first group of experiments involving N-Grams (see in §9.3), CSP was found to provide
lower mean IL in all cases, however, the differences are negligible. While CSP vs SSP
differences are shown to be very low with a maximum of approximately 5ms, the simulator and
Unity3D comparisons show larger discrepancies. For example, in the CSP experiments
comparing the two platforms, the largest difference was found to be about 12ms at NL = 0ms,
which decreased to less than 1ms at NL = 400ms. This is in contradiction to the same

139

Client-Side Prediction vs Server-Side Prediction

comparison for SSP, where the differences were seen to increase with NL, starting at
approximately 1ms for NL = 0ms, and climbing to nearly 30ms for NL = 400ms.

In terms of MPA (see §9.4), SSP was shown to yield lower mean IL in many cases, but this
mostly occurred at higher MPA levels. The advantage shown by SSP mode is likely due to the
prediction module not impacting the client device in terms of compute resource, compared with
CSP.

When comparing the simulator and Unity3D platforms with regards to CSP and SSP modes, the
simulator consistently yielded lower IL at lower MPA levels as well as at lower NL. However, as
MPA and NL increases, the difference between the two platforms diminishes; this can be seen in
Figure 9.18 and Figure 9.20. The exact cause of these observations is not clear, but it is likely
due to an issue with the simulator: thread synchronisation or perhaps CPU time slicing causes
the simulator to lose a few milliseconds per experiment.

140

Chapter 10. Discussion and Conclusions

10.1. Discussion

Chapter 3 examined the modelling, simulation and measuring of latency in IRR systems.
Latency points were mapped out and the main sources of latency were identified. Techniques to
measure IL were then introduced and, given the flexibility in being able to measure at various
locations in the IRR pipeline, the integrated approach was selected as the most suited for IRR
systems. In order to experiment with latency measurement, a simple client-server IRR system
was developed with Unity3D. However, it was soon identified that measuring over WAN is not
reliable since latency is outside of the operators control and therefore will prevent the ability for
reproducible experiments to be performed. As such, a latency simulator was developed and after
evaluation it was found to behave reasonably well when compared with WAN experiments. In
all experiments measuring IL using the integrated approach, the mean IL was found to be ≈
16ms to 18ms (Figure 3.9) above the introduced latency. This was the expected result as the IRR
system had a similar mean baseline. The experiment using WAN and the integrated approach
again confirmed that the latency simulator operates well (Figure 3.9), with a mean difference of
just 0.68ms – a negligible amount considering a system latency of 170ms. It is clear, though,
that there is noise in the results. However, it is suspected the noise is due to the 15ms time-slice
limitation of the Windows OS, as well as the challenges of multi-threading applications and the
lack of control over thread execution.

The integrated approach to latency measurement was described and explored and found to be
suitable for measuring IL in IRR systems, but required being tightly woven into the codebase,
making it unsuitable for general use. The approach is robust in that the developer has complete
control over where measurements are performed and can collect measurements at various points
in the pipeline. However, in the case where source code access is not available, the hardware
approach is a suitable alternative so long as the correct hardware (high-speed camera, tracker,
LED, etc.) is available to the operator and care is taken to set up and perform measurements
accurately. The observer approach (such as in the example of Chen; described in §3.4.1), is
useful but has a number of issues and lacks the ability to consider measurements of applications
consisting of moving entities which are not coupled to user interaction (e.g. grass blowing in the
wind). This approach was expanded on by capturing screen pixels (by reading from the
framebuffer) within a user-controlled reticule and by monitoring PSNR values for the
identification of interaction results arriving from the server.

141

Discussion and Conclusions

In general, latency measurement can be challenging to preform, especially if there is no access
to the source code of the application. Therefore, a new approach was developed and is referred
to as the Latency Measurement Tool (LMT) in this research. It was found that by recording both
the application of interests window and user interactions and timestamping both activities, the
Peak Signal to Noise Ratio can be used to detect interactions from captured frames, whose
timestamps can be cross-referenced with logged interactions and therefore enables the
measurement of IL. The new tool is able to measure IL for virtually any application, whether
operating over a network or not. It was evaluated against the integrated mode and found to be
comparable, but a comparison with other approaches such as the hardware technique will further
verify this new tool. In addition, it was hoped that the tool would be suitable for measuring IL in
PIRR systems, but unfortunately the measurement process is still rather manual requiring the
operator to physically initiate capturing and then perform interactions and therefore is not yet
ready for use in automated experiments. However, it should be possible to automate this process.
Further, there are some notable limitations. For example, the LMT developed has mean capture
time (Ct) dictated by the monitor refresh rate (60Hz), which in the described case was ≈ 16ms.
There is therefore a risk that a measurement will be out by at least Ct (if pixel change occurs
before or after the capture). Nevertheless, the results when comparing the LMT with the
integrated approach indicate that the tool does indeed capture IL with reasonable accuracy.
Interestingly, the fact that the LMT captures a consistent amount of latency more than the
integrated approach suggests that it may be capable of capturing latency which the integrated
approach is not. Nevertheless, more exploration and perhaps a comparison with the hardware
approach is required.

Chapter 4 looked at developing an N-Gram model so that keyboard user interactions could be
predicted. Only keyboard interactions were chosen for modelling, because the focus of this
thesis was on developing a framework for using prediction in IRR systems and evaluating its
effect on IL, meaning that a comprehensive approach to user interaction prediction is not
required. Initially, a buffer-based approach to the storage and retrieval of predictions was
implemented. This was found to perform well initially, but with usage, it became clear that
latency was building up between predictions. The issue was the growing size of the buffer and
the increase in search time. Therefore, a dictionary-based data structure was developed and
introduced, solving the issue of latency growth.

Chapter 5 aimed to develop an IRR simulator framework with prediction (PIRR). To this end, a
client and server application were created, as well as a prediction module which incorporated the
model described in Chapter 3. Additionally, the latency simulator from Chapter 2 was packaged
into a module and integrated into the simulator in a CSP configuration.

RabbitMQ was used for communications between the different applications. TCP was initially
implemented manually but after encountering issues such as managing multiple simultaneous

142

10.1 Discussion

connections, it was decided that a ready-made, “battle-tested” solution such as RabbitMQ was
chosen. RabbitMQ was selected over other options due to its easy integration with Unity3D as
well as its C# bindings. This choice made it easy to experiment with different configurations,
CSP and SSP modes, as well as with the multi-track prediction described in Chapter 8. In
hindsight, ZeroMQ would likely have been a better choice of messaging library since it is well
known for its unmatched performance [89]. UDP was not considered, despite being a faster
protocol, because of the mandatory requirements that system messages must arrive at and be
sent from the relative applications in the order in which they are sent, and without fail. In
hindsight, had everything been developed natively with TCP, bandwidth usage could have been
monitored and reported – something this research lacks.

A single-track prediction scheme was implemented with the N-Gram model allowing predictions
along a single trajectory to be made, with the prediction module taking advantage of network
delay between the client application and itself. It was found that integration of the prediction
model was not straightforward, since in order to perform IL measurements using the integrated
approach, there needs to be a link between actions performed/simulated on the client application,
predictions generated, and the results produced by the server application. Further, some
prediction results may arrive on the client before any corresponding action has been
performed/simulated and as a result, these “future” predictions need to be stored for possible use
at a later time. As such, a special “key” was devised for ensuring that prediction results could
easily be identified as expired or whether being required for the future. In addition, the unique
key allows for prediction results to be matched with actions arising on the client application and
makes it easy to identify whether the prediction result is correct or not.

In Chapter 6, the simulator was used to perform experimentation with prediction and IL. The
primary goal of this chapter was to determine whether or not prediction had any effect on IL and
if it did:

1. What is the effect of prediction on IL?

2. How much prediction “history” should be used in performing predictions?

3. What is the effect of using more prediction history?

4. How far ahead should predictions be performed at various latencies?

5. How can system recovery times (increased due to incorrect predictions) be calculated?

Various latencies were chosen for simulation and WAN was also used for experimentation. The
results indicate that the immediate last interaction performed is the best indicator of the next
likely prediction: IL is lowest when N-Gram Order = 1 and this is true for both simulated
latencies and WAN. Additionally, it was found that how far ahead to predict is dependent upon
network latency as well as the rate at which interactions are performed or simulated. MPA was

143

Discussion and Conclusions

also found to cause issues when too high, since valuable render time is blocked. To measure
system recovery time after an incorrect prediction, local maxima (peaks in the IL signal) where
located and the delay between peak base points was calculated. With this method, it was found
that recovery times increased with N-Gram Order as well as with MPA, indicating that an
incorrectly chosen MPA has more of an effect (negative) on IL than on an incorrectly chosen
N-Gram Order.

In Chapter 7, a real-world PIRR system was built with Unity3D. A game engine was chosen due
to the rendering, interaction, compression and scene building capabilities; this saved a lot of
development time. The development of the Unity3D PIRR system aided, in part, the design if
the simulator platform. Indeed, the two platforms were developed concurrently. This was mostly
due to the way in which interaction is managed by a games engine and the intention to have the
simulator mimic the real-world one as closely as possible. Nevertheless, complications arose
with the introduction of the prediction module. For instance, physics had to be disabled so that
prediction would be permitted to produce results well ahead of the present position of the player
avatar, which resulted in the loss of ability for collision detection between scene objects and
caused the avatar to pass through walls and other objects. This was fixed by transmitting to the
client a list of bounds for which the user is not allowed to cross. However, this solution does
break the aim of image-based PIRR systems in that pure image-only results were no longer
being transmitted. This is not of serious concern, however, since the data is not believed to be
sufficient to recreate any models, nor is it thought that collision detection is used in data
visualization. Further complications arose with scene background objects and the current system
is not suitable for such objects. This is because when predicting ahead, results quickly become
out of date which limits severely how far ahead usable prediction can be made. It is thought that
this issue can be addressed by building into the rendering system a manageable state where the
scene can be “rewound” to an earlier point in time. If the rendering engine was able to produce
multiple renders simultaneously, valuable render time would not be blocked, especially when
mispredictions occur and that time is wasted. Unfortunately, Unity3D does not allow this
operation.

Once the system had been developed, experimentation began. The same experiments conducted
with the simulator were performed with the Untiy3D system and results were compared. It was
found that base operating IL measurements were comparable to the simulator, both when using
simulated latencies as well as over WAN, with results often indicating less than 1ms difference.
However, the system did produce more variable data than the simulator. This is due to the nature
of the rendering engine and the fact that rendering delay is not controlled and therefore
fluctuates quite often. This variance is clearly presented by Figure 7.7. A potential improvement
would be to make the server application simulate rendering by waiting random amounts of time
according to the distribution of delays produced by the real renderer. When prediction is
enabled, it is clear that it has as positive effect on IL and like the simulator, IL increased with

144

10.1 Discussion

N-Gram Order and an Order of 1 was found to be the most suited. Similarly, it was found that
the Unity3D system exabits the same characteristics as the simulator in terms of MPA: IL
decreases up until a point (depending on NL) with MPA increase, but then begins to climb.
However, the results produced by this platform produce significantly higher values indicating
that the effect of MPA is different on the Unity3D system than it is on the simulator; more
investigation is required to determine the source of this discrepancy.

In Chapter 8, CSP and SSP were introduced. The results gathered from the simulator and
Unity3D platforms were reused and their results were compared in both CSP and SSP modes.
CSP and SSP for individual platforms was also investigated. For N-Grams, it was found that in
all cases and regardless of what platform was used, CSP yielded lower IL results. It is thought
that this is due to fact that in CSP mode, the prediction module is “closer” to the client
application, which allows for incorrect predictions to be detected sooner than in SSP mode. In
terms of MPA, SSP was found to be more beneficial for IL at higher MPA values. At lower
levels, both CSP and SSP produce similar results, with CSP sometime producing lower IL.
However, as NL increases and as a higher MPA is required to mask the incurred latency, SSP
begins to demonstrate lower IL measurements. Why this happens is not exactly clear, but it is
thought that the client application performs better when the computer on which it is operating is
unburdened by the additional processing requirements of the prediction module. Before either
CSP or SSP can be declared as “better” for IL, more work is required, however. For example,
this research has not investigated the scalability of the system, nor of the potential for ensemble
prediction models or more computationally expensive once, both of which will consume more
resources than the proposed approach and likely impact the client application further.

Chapter 9 investigated how PIRR system mispredictions can be managed. Various approaches
were described but ultimately, the presented multi-track approach introduced as a possible
solution. During early stages of experimentation, it was found that a single instance of the server
application was not sufficient for the number of prediction messages being generated and
needing to be processed. As a response, the PIRR architecture was modified to allow for
multiple server application instances. While initial experiments looked promising, successfully
eliminating the IL cost incurred from misprediction and resulting in zero IL when the system
was run with no introduced simulated NL, later experiments found complications. For instance,
despite distributing the predictions to be processed over a number of server applications, the
client application was unable to process the large influx of server responses fast enough to
prevent a backlog from forming. Further, it was identified that a maximum of MPA = 3 could be
used, since the client application is unable to cope with a higher number. It was also identified
that between 6 and 7 server applications is required in order to prevent a backlog forming on the
server. All together, these results indicate that multi-track prediction is unlikely to be a viable
solution to misprediction compensation, and a new approach is required. The only situation in

145

Discussion and Conclusions

which this scheme may be useful is when rendering of some predictions can be skipped since
previously visited areas have already been processed.

10.2. Conclusions

The aim of this research was to explore the measurement, modelling and management of IL in
IRR systems, with a focus on the following key questions: What is the effect of prediction on
IL? How can we model and simulate latency? How can we measure IL when prediction is used?
What is the optimal number of predictions ahead required to minimize latency? On which side
of the network should prediction be performed?

In an attempt to answer the research questions, set out in this work, additional ones were raised,
resulting in a set of questions describing an end-to-end solution for the simulation and
construction of prediction-enabled IRR systems. The following section addresses these
additional questions as well as the main thesis ones.

10.2.1. Research questions

RQ1. How can IL be modelled, measured and simulated?

Latency is present in all distributed systems and IRR systems are no exception. It is therefore
important to be able to model and simulate this latency so that experiments can be performed in
controlled and reproducible conditions. Due to the variability and not-in-our-control nature of
WAN’s, they are not suitable for experiments in which fine-grained control over latency is
required. How to model and simulate latency was addressed by first constructing a latency
model and then by developing a latency simulator capable of being integrated into any IRR
system components. The latency simulator was validated and found to be capable of simulating
latency comparable to that of real world WAN. Before validating, a method for consistently and
accurately measuring IL had to be addressed, which is answered in the next question.

To measure IL, the latency model developed was used to identify key IL measurement locations.
An integrated approach to IL measurement was introduced and then built into a simple
client-server application using Unity3D. It was found that in order to perform measurements, it
is necessary to correctly identify which arriving results correspond with the performed
interactions. This was overcome with a simple stopwatch and ID approach. With the ability to
simulate and measure IL, validation on the simulator was performed (Figure 3.9) and it was
found that the difference in IL between measurements collected when using a live network and
those of a simulated one were less than 1ms on average. It was identified that there are no
generic, easy to use IL measurement tools available and those that do exist, require unreal
expectations of general users wishing to perform measurement themselves. As such, a novel
software-based approach to measurement was introduced and validated, demonstrating a robust

146

10.2 Conclusions

method for measuring IL suitable for a range of applications. This new approach was validated
using a simple Windows application and then on the earlier used client-server application.

RQ2. Are N-Grams suitable for keyboard-based user interaction prediction?

An N-Gram model was developed and tested in order to predict keyboard-based user
interactions. The idea is that if interactions can be predicted, corresponding rendering can be
performed in advance (on a remote server), and the render results can be delievered to a client
application ahead of time. Correctly predicted results can then be displayed to the user at the
time of interaction and therefore mask the delays introduced by a network.
An initial implementation used a simple buffer to store predictions, but this approach was found
to be flawed, resulting in an ever-increasing prediction computation time. As such, a new
dictionary-based model was developed which produced predictions with less than a millisecond
of computation delay. The model was evaluated in trained and untrained modes, and it was
found that accuracy was approximately 83%, regardless of whether or not the model was trained
beforehand. It was also identified that the very last interaction is the best indicator of the
immediate next interaction.

RQ3. How can prediction be integrated into an IRR system and what is the impact ofpredic-
tion on IL?

To answer this question, an IRR simulator platform with an integrated prediction module was
developed. This was done so that a experiments could take place in a more controllable
environment and so that the system was “open”, without any constraints or limitations
potentially imposed by using a real rendering engine. Results showed that using prediction does
indeed lower IL, but the introduction of prediction complicates the process of performing IL
measurements, and ultimately required a modification to the integrated IL measurement
approach. A real-world IRR system using Unity3D was then developed and the prediction
module from the simulator was integrated. The IRR system provided insight into some of the
remaining issues this topic faces. For example, the current implementation does not allow for
background scenery to move independently of user interaction due to the state-like approach
taken. Another issue found was that incorrect predictions cause a visible delay to the system,
raising the question of how to manage incorrect predictions, which is discussed in Chapter 8.
Finally, the use of a games engine did, in addition to the increase in productivity, provide a
valuable means for validating the simulator platform, which has been shown to be representative
of a real-world system.

Should predictions be generated on the client or on the remote server?

During experimentation it was identified that the prediction module could be placed either on the
same side of the network as the client application, or on that of the server application. A final
contribution that this work makes is that of the investigation of CSP and SSP modes.

147

Discussion and Conclusions

Experimentation found that with both the simulator and Unity3D platforms, CSP is always lower
than SSP, irrespective of how many historical interactions are used for prediction. In terms of
MPA, it was found that SSP is beneficial for larger MPA levels than CSP and that CSP is more
suitable for lower MPA levels.

In conclusion, this thesis contributes to the understanding of how to model, simulate and
measure interaction latency; introduces a PIRR simulator platform; describes how to predict and
integrate keyboard-based interaction prediction into PIRR systems; explores how far head to
predict and how much history to use; evaluates the effect of prediction on IL and which side of
the network prediction should be made; and describes how to calculate the time IL takes to
return to normal within PIRR systems after an incorrect prediction is experienced.

The proposed methods may help towards the challenges presented by IL, especially for
application such as Google Street View, where the 3D environment is static. The methods for
measuring IL are generic and are not specific to a certain configuration or system environment.
Further, the approach described to calculate the recovery time of PIRR systems following an
incorrect prediction can be applied to generalised to any system in which the duration of
abnormal events need to be calculated. Although the results presented here are not yet ready for
use in production systems and more research is required, the work helps to lay the foundations
of prediction in future PIRR systems and provides new tools and methods to assist future
exploration of these systems.

10.3. Future work

10.3.1. Real-time Operating Systems

IL in the IRR system was measured using the integrated approach and while the obtained
measurements are reliable, there is always noise present in IRR systems (e.g. rendering delays)
and the system described is no exception. For example, in Figure 3.6 and others, there is a large
amount of variability in the data. This suggests that there is an underlying process which is
causing instability in the IRR system. The most likely cause is the chosen method for “pausing”
a thread. To do this, the standard .NET Thread.Sleep() function was used. Unfortunately,
Windows-based machines are not real-time operating systems (OS), providing a thread time-
slice of 15ms. As a result, the sleep function has a resolution of 15ms. It has been noted that the
time-slice can be configured to 1ms by using timeBeginPeriod and timeEndPeriod, however,
there was reluctance to do this as it would affect the thread time-slice OS-wide and may have
unexpected consequences. While the apparent system noise is likely of little concern, it would
interesting reproduce and further verify the introduced approach with a real-time OS.

Finally, while the use of a 3D rendering engine such as Unity3D contributes significantly
towards the rapid development of IRR systems, the introduction of prediction results in some

148

10.3 Future work

severe limitations. The first and most critical issue is that rendering engines are generally single-
threaded, meaning that there is a single “render loop” and that all data transformations and
procedures must eventually execute on this “main” thread. In PIRR systems, the ability to render
multiple predictions simultaneously would be extremely advantageous, since unfortunately, it is
not possible to identify incorrect predictions until the client has either received the incorrect
result or the prediction module has received an update from the client, at which point incorrect
predictions will be have been (or be in the process of) rendered, blocking the rendering engine
and wasting critical milliseconds which ultimately impacts IL.

10.3.2. Context Awareness

Context-aware prediction models may be useful in predicting not only what interaction will be
performed, but also when that interaction will occur. For example, in situations where a user
responds to onscreen stimuli, a context-aware prediction model may be able to assist in
predicting when an interaction is about to be performed by monitoring the distance of a player to
a wall and providing probabilities as to how likely the user is to take action given historical
situations. Similarly, context-aware models could monitor the PSNR between frames and detect
significant scene changes in simulations of time-varying data, potentially helping the model in
identifying the likeliness of an interaction event. The type of interaction to be performed can also
be narrowed-down with context-aware prediction models, since certain events can be filtered out.
For instance, in returning to the VE wall example, moving forward could be filtered out as it is
more likely that the user would want to either change direction or stop than walk into the wall.

10.3.3. Foveated Rendering

Foveated rendering is a state-of-the-art graphics rendering technique which aims to use eye-
tracking technology to determine what a user is looking at within a scene. Using that
information, content laying within the peripheral vision of the user is rendered at much reduced
image quality, while the part of the scene the user is focused on is rendered in full quality. The
result is that a significant portion of the number of pixels required to be rendered is reduced. In
fact, a study in 2016 [90] demonstrated that this degradation of peripheral pixels is invisible to
users. At present, the focus of this is primarily aimed at Virtual and Augmented reality
technologies. However, this same approach may prove beneficial for reducing IL in PIRR
systems and therefore is a promising direction for future research.

149

Appendix A. Measuring recovery times

from scipy.signal import find_peaks

import numpy as np

import pandas as pd

def get_mean_recovery_period(data):

il = data[’interaction_latency’]

peaks, _ = find_peaks(il, height= np.mean(il))

peaks = np.insert(peaks, 0, 0)

index_tuples = get_recovery_period_indices(peaks, il)

results = []

for start, end in index_tuples:

delay = data.iloc[end][’run_time’] - data.iloc[start][’run_time’]

results.append(delay)

return np.array(results).mean()

def get_adjacent_peaks(peaks):

results = []

for i, peak in enumerate(peaks):

if i < len(peaks)-1:

if i == 0:

left_peak = 0

right_peak = peaks[1]

else:

left_peak = peaks[i-1]

right_peak = peaks[i+1]

results.append({’left’: left_peak, ’mid’: peak, ’right’: right_peak})

return results

151

Measuring recovery times

def get_recovery_period_indices(peaks, data):

data =data.values

parts = get_adjacent_peaks(peaks)

results = []

for i, part in enumerate(parts):

left = part[’left’]

mid = part[’mid’]

right = part[’right’]

left_il = data[left: mid]

right_il = data[mid: right]

if len(left_il) == 0: left_mean = 0

else: left_mean = np.array(left_il).mean()

right_mean = np.array(right_il).mean()

left_idx = 0

right_idx = 0

for x in range(len(left_il), 0, -1):

if len(left_il) > 0:

value = left_il[x-1]

if value > left_mean:

left_idx = x-1

else:

left_idx = left + x

break

for y in range(0, len(right_il)):

if len(right_il) > 0:

value = right_il[y]

right_idx = mid + y

if value > right_mean:

pass

else:

break

tup = (left_idx,right_idx)

results.append(tup)

152

return results

153

References

[1] R. Jota, A. Ng, P. Dietz, and D. Wigdor, “How fast is fast enough? a study of the effects of
latency in direct-touch pointing tasks,” in Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, CHI ’13, (New York, NY, USA), p. 2291–2300,
Association for Computing Machinery, 2013.

[2] M. Claypool, K. Claypool, and F. Damaa, “The effects of frame rate and resolution on
users playing first person shooter games,” in Multimedia Computing and Networking
2006 (S. Chandra and C. Griwodz, eds.), vol. 6071, pp. 1 – 11, International Society for
Optics and Photonics, SPIE, 2006.

[3] R. S. Allison, L. R. Harris, M. Jenkin, U. Jasiobedzka, and J. E. Zacher, “Tolerance of
temporal delay in virtual environments,” in Proceedings IEEE Virtual Reality 2001,
pp. 247–254, March 2001.

[4] J.-R. Wu and M. Ouhyoung, “Reducing the latency in head-mounted displays by a novel
prediction method using grey system theory,” Computer Graphics Forum, vol. 13, no. 3,
pp. 503–512, 1994.

[5] Z. Liu and J. Heer, “The effects of interactive latency on exploratory visual analysis,” IEEE
Transactions on Visualization and Computer Graphics, vol. 20, pp. 2122–2131, Dec 2014.

[6] N. Holliman and P. Watson, “Scalable real-time visualization using the cloud,” IEEE
Cloud Computing, vol. 2, pp. 90–96, Nov 2015.

[7] M. Šterk, M. Agustín, and C. Palacio, “Virtual globe on the android - remote vs. local
rendering,” ITNG 2009 - 6th International Conference on Information Technology: New
Generations, p. 634–639, 2009.

[8] F. W. B. Li, R. W. H. Lau, D. Kilis, and L. W. F. Li, “Game-on-demand:: An online game
engine based on geometry streaming,” ACM Trans. Multimedia Comput. Commun. Appl.,
vol. 7, Sept. 2011.

[9] S. Shi, K. Nahrstedt, and R. Campbell, “A real-time remote rendering system for interactive
mobile graphics,” ACM Trans. Multimedia Comput. Commun. Appl., vol. 8, Oct. 2012.

[10] J. Doellner, B. Hagedorn, and J. Klimke, “Server-based rendering of large 3d scenes for
mobile devices using g-buffer cube maps,” in Proceedings of the 17th International
Conference on 3D Web Technology, Web3D ’12, (New York, NY, USA), p. 97–100,
Association for Computing Machinery, 2012.

[11] F. Lamberti and A. Sanna, “A streaming-based solution for remote visualization of 3d
graphics on mobile devices,” IEEE Transactions on Visualization and Computer Graphics,
vol. 13, pp. 247–260, March 2007.

[12] C.-H. Chu, Y.-H. Chan, and P. H. Wu, “3d streaming based on multi-lod models for
networked collaborative design,” Computers in Industry, vol. 59, no. 9, pp. 863 – 872,
2008. S.I. Advances in Collaborative Engineering: From Concurrent.

155

References

[13] A. Wessels, M. Purvis, J. Jackson, and S. Rahman, “Remote data visualization through
websockets,” in 2011 Eighth International Conference on Information Technology: New
Generations, pp. 1050–1051, April 2011.

[14] I. E. Sutherland, “Sketch pad a man-machine graphical communication system,” in
Proceedings of the SHARE Design Automation Workshop, DAC ’64, (New York, NY,
USA), p. 6.329–6.346, Association for Computing Machinery, 1964.

[15] C. Wylie, G. Romney, D. Evans, and A. Erdahl, “Half-tone perspective drawings by
computer,” in Proceedings of the November 14-16, 1967, Fall Joint Computer
Conference, AFIPS ’67 (Fall), (New York, NY, USA), p. 49–58, Association for
Computing Machinery, 1967.

[16] “First rendering: Very first complex 3d rendered object now rendered in html5.”
https://firstrender.net. online.

[17] “Our story.” https://www.pixar.com/our-story-pixar. online.

[18] D. A. Price, The Pixar touch: the making of a company. Vintage Books, 2009.

[19] M. Oppitz and P. Tomsu, Inventing the Cloud Century: How Cloudiness Keeps Changing
Our Life, Economy and Technology. Springer International Publishing, 2018.

[20] “A brief history of cloud computing.” https://www.ibm.com/blogs/cloud-computing/2014/
03/18/a-brief-history-of-cloud-computing-3/, Aug 2019. online.

[21] J. Ahrens, S. Jourdain, P. O’Leary, J. Patchett, D. H. Rogers, and M. Petersen, “An
image-based approach to extreme scale in situ visualization and analysis,” in Proceedings
of the International Conference for High Performance Computing, Networking, Storage
and Analysis, SC ’14, p. 424–434, IEEE Press, 2014.

[22] A. Boukerche and R. Pazzi, “Scheduling and buffering mechanisms for remote rendering
streaming in virtual walkthrough class of applications,” pp. 53–60, 01 2006.

[23] A. Boukerche, R. Werner, and N. Pazzi, “A peer-to-peer approach for remote rendering and
image streaming in walkthrough applications,” IEEE International Conference on
Communications, p. 1692–1697, 2007.

[24] K. Lee, D. Chu, E. Cuervo, J. Kopf, Y. Degtyarev, S. Grizan, A. Wolman, and J. Flinn,
“Outatime: Using speculation to enable low-latency continuous interaction for mobile
cloud gaming,” in Proceedings of the 13th Annual International Conference on Mobile
Systems, Applications, and Services, MobiSys ’15, (New York, NY, USA), p. 151–165,
Association for Computing Machinery, 2015.

[25] C.-H. Chu, Y.-H. Chan, and P. H. Wu, “3d streaming based on multi-lod models for
networked collaborative design,” Computers in Industry, vol. 59, no. 9, pp. 863 – 872,
2008. S.I. Advances in Collaborative Engineering: From Concurrent.

[26] J. Park and H. Lee, “A hierarchical framework for large 3d mesh streaming on mobile
systems,” Multimedia Tools and Applications, vol. 75, pp. 1983–2004, Feb 2016.

[27] Z. Tang, O. Ozbek, and X. Guo, “Real-time 3d interaction with deformable model on
mobile devices,” pp. 1009–1012, 11 2011.

[28] C. D. Hansen and C. R. Johnson, The visualization handbook. Elsevier-Butterworth
Heinemann, 2005.

[29] S.-C. Cheng, C.-T. Kuo, and D.-C. Wu, “A novel 3d mesh compression using mesh
segmentation with multiple principal plane analysis,” Pattern Recognition, vol. 43, no. 1,
pp. 267 – 279, 2010.

156

https://firstrender.net
https://www.pixar.com/our-story-pixar
https://www.ibm.com/blogs/cloud-computing/2014/03/18/a-brief-history-of-cloud-computing-3/
https://www.ibm.com/blogs/cloud-computing/2014/03/18/a-brief-history-of-cloud-computing-3/

References

[30] N. hsien Lin, T. hao Huang, and B. yu Chen, “3d model streaming based on jpeg 2000,”
IEEE TCE, p. 2007.

[31] J. Peng, C.-S. Kim, and C.-C. J. Kuo, “Technologies for 3d mesh compression: A survey,”
Journal of Visual Communication and Image Representation, vol. 16, no. 6, pp. 688 – 733,
2005.

[32] E. Jang, S. Lee, B. Koo, D. Kim, and K. Son, “Fast 3d mesh compression using shared
vertex analysis,” Etri Journal - ETRI J, vol. 32, 02 2010.

[33] A. Maglo, H. Lee, G. Lavoué, C. Mouton, C. Hudelot, and F. Dupont, “Remote scientific
visualization of progressive 3d meshes with x3d,” in Proceedings of the 15th International
Conference on Web 3D Technology, Web3D ’10, (New York, NY, USA), p. 109–116,
Association for Computing Machinery, 2010.

[34] K. T. Chen, Y. C. Chang, P. H. Tseng, C. Y. Huang, and C. L. Lei, “Measuring the latency
of cloud gaming systems,” p. 1269–1272, 2011.

[35] P. Eisert and P. Fechteler, Remote Rendering of Computer Games. 01 2007. In
proceedings. International Conference on Signal Processing and Multimedia Applications
(SIGMAP).

[36] M. Rivi, L. Calori, G. Muscianisi, and V. Slavnić, “In-situ visualization: State-of-the-art
and some use cases,” 01 2012.

[37] A. Padyana, D. Sudheer, P. K. Baruah, and A. Srinivasan, “Reducing the disk io bandwidth
bottleneck through fast floating point compression using accelerators,” International
Journal of Advanced Computer Research (IJACR), 2014.

[38] E. W. BETHEL, HIGH PERFORMANCE VISUALIZATION. CRC Press, 2016.

[39] J. Bent, S. Faibish, J. Ahrens, G. Grider, J. Patchett, P. Tzelnic, and J. Woodring,
“Jitter-free co-processing on a prototype exascale storage stack,” in 2012 IEEE 28th
Symposium on Mass Storage Systems and Technologies (MSST), pp. 1–5, April 2012.

[40] S. Shi and C.-H. Hsu, “A survey of interactive remote rendering systems,” ACM Comput.
Surv., vol. 47, May 2015.

[41] “Virtualgl background.” https://www.virtualgl.org/About/Background. online.

[42] “Visapult-2 info pages.” https://dav.lbl.gov/archive/Research/visapult2/index.html. online.

[43] L. McMillan and G. Bishop, “Plenoptic modeling: An image-based rendering system,” in
Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH ’95, (New York, NY, USA), p. 39–46, Association for
Computing Machinery, 1995.

[44] K. Moreland, D. Lepage, D. Koller, and G. Humphreys, “Remote rendering for ultrascale
data,” Journal of Physics: Conference Series, vol. 125, p. 012096, 08 2008.

[45] D. Koller, M. Turitzin, M. Levoy, M. Tarini, G. Croccia, P. Cignoni, and R. Scopigno,
“Protected interactive 3d graphics via remote rendering,” in ACM SIGGRAPH 2004
Papers, SIGGRAPH ’04, (New York, NY, USA), p. 695–703, Association for Computing
Machinery, 2004.

[46] D. Abate, R. Ciavarella, G. Furini, G. Guarnieri, S. Migliori, and S. Pierattini, “3d
modeling and remote rendering technique of a high definition cultural heritage artefact,”
Procedia Computer Science, vol. 3, pp. 848 – 852, 2011. World Conference on
Information Technology.

157

https://www.virtualgl.org/About/Background
https://dav.lbl.gov/archive/Research/visapult2/index.html

References

[47] A. Ng, J. Lepinski, D. Wigdor, S. Sanders, and P. Dietz, “Designing for low-latency
direct-touch input,” in Proceedings of the 25th Annual ACM Symposium on User
Interface Software and Technology, UIST ’12, (New York, NY, USA), p. 453–464,
Association for Computing Machinery, 2012.

[48] Z. Liu and J. Stasko, “Mental models, visual reasoning and interaction in information
visualization: A top-down perspective,” IEEE Transactions on Visualization and
Computer Graphics, vol. 16, pp. 999–1008, Nov 2010.

[49] K.-T. Chen, P. Huang, and C.-L. Lei, “How sensitive are online gamers to network
quality?,” Commun. ACM, vol. 49, p. 34–38, Nov. 2006.

[50] T. Beigbeder, R. Coughlan, C. Lusher, J. Plunkett, E. Agu, and M. Claypool, “The effects
of loss and latency on user performance in unreal tournament 2003®,” in Proceedings of
3rd ACM SIGCOMM Workshop on Network and System Support for Games, NetGames
’04, (New York, NY, USA), p. 144–151, Association for Computing Machinery, 2004.

[51] M. Claypool, “The effect of latency on user performance in real-time strategy games,”
Computer Networks, vol. 49, no. 1, pp. 52 – 70, 2005. Networking Issue in Entertainment
Computing.

[52] “Augmented/virtual reality revenue forecast revised to hit $120 billion by 2020.”
https://www.digi-capital.com/news/2016/01/
augmentedvirtual-reality-revenue-forecast-revised-to-hit-120-billion-by-2020/. online.

[53] I. Grigorik, High-Performance Browser Networking. Beijing ; Sebastopol, CA: O’Reilly,
2013. OCLC: ocn827951729.

[54] D. P. Luebke, Level of detail for 3D graphics. Morgan Kaufmann.

[55] W. R. Mark, L. McMillan, and G. Bishop, “Post-rendering 3d warping,” in Proceedings of
the 1997 Symposium on Interactive 3D Graphics, I3D ’97, (New York, NY, USA),
p. 7–ff., Association for Computing Machinery, 1997.

[56] H. T. Kung and J. A. Webb, “Mapping image processing operations onto a linear systolic
machine,” Distributed Computing, vol. 1, pp. 246–257, 1986.

[57] S. Shi, K. Nahrstedt, and R. Campbell, “A real-time remote rendering system for interactive
mobile graphics,” ACM Trans. Multimedia Comput. Commun. Appl., vol. 8, Oct. 2012.

[58] Y. Mori, N. Fukushima, T. Yendo, T. Fujii, and M. Tanimoto, “View generation with 3d
warping using depth information for ftv,” Signal Processing: Image Communication,
vol. 24, no. 1, pp. 65 – 72, 2009. Special issue on advances in three-dimensional television
and video.

[59] G. Bishop and W. R. Mark, “Post-rendering 3d image warping: Visibility, reconstruction,
and performance for depth-image warping,” 1999.

[60] N. Plath, S. Knorr, L. Goldmann, and T. Sikora, “Adaptive image warping for hole
prevention in 3d view synthesis,” IEEE Transactions on Image Processing, vol. 22,
pp. 3420–3432, Sep. 2013.

[61] C. Zhu and S. Li, “Depth image based view synthesis: New insights and perspectives on
hole generation and filling,” IEEE Transactions on Broadcasting, vol. 62, pp. 82–93,
March 2016.

[62] B. D. Higgins, J. Flinn, T. J. Giuli, B. Noble, C. Peplin, and D. Watson, “Informed mobile
prefetching,” in Proceedings of the 10th International Conference on Mobile Systems,
Applications, and Services, MobiSys ’12, (New York, NY, USA), p. 155–168, Association
for Computing Machinery, 2012.

158

https://www.digi-capital.com/news/2016/01/augmentedvirtual-reality-revenue-forecast-revised-to-hit-120-billion-by-2020/
https://www.digi-capital.com/news/2016/01/augmentedvirtual-reality-revenue-forecast-revised-to-hit-120-billion-by-2020/

References

[63] A. Boukerche and R. W. N. Pazzi, “Remote rendering and streaming of progressive
panoramas for mobile devices,” in Proceedings of the 14th ACM International Conference
on Multimedia, MM ’06, (New York, NY, USA), p. 691–694, Association for Computing
Machinery, 2006.

[64] Z. Zhou, K. Chen, and J. Zhang, “Efficient 3-d scene prefetching from learning user access
patterns,” IEEE Transactions on Multimedia, vol. 17, pp. 1–1, 07 2015.

[65] “Ieee standard for distributed interactive simulation–application protocols,” IEEE Std
1278.1-2012 (Revision of IEEE Std 1278.1-1995), pp. 1–747, Dec 2012.

[66] A. Chan, R. W. H. Lau, and B. Ng, “A hybrid motion prediction method for caching and
prefetching in distributed virtual environments,” in Proceedings of the ACM Symposium
on Virtual Reality Software and Technology, VRST ’01, (New York, NY, USA),
p. 135–142, Association for Computing Machinery, 2001.

[67] “Source multiplayer networking.”
https://developer.valvesoftware.com/wiki/Source_Multiplayer_Networking. online.

[68] S. Lazem, M. Elteir, A. Abdel-Hamid, and D. Gracanin, “Prediction-based prefetching for
remote rendering streaming in mobile virtual environments,” in 2007 IEEE International
Symposium on Signal Processing and Information Technology, pp. 760–765, Dec 2007.

[69] “@NVIDIAGeForce”, “G-sync monitors: Best gaming pc ever built.”
https://www.nvidia.com/en-gb/geforce/products/g-sync-monitors/. online.

[70] “clumsy 0.2, an utility for simulating broken network for windows vista / windows 7 and a.”
https://jagt.github.io/clumsy/index.html. online.

[71] M. Pietroforte, “Free: Tmnetsim network simulator - simulate network latency and packet
loss,” 4sysops, Jun 2016.

[72] B. F. Janzen and R. J. Teather, “Is 60 fps better than 30? the impact of frame rate and
latency on moving target selection,” Conference on Human Factors in Computing
Systems - Proceedings, p. 1477–1482, 2014.

[73] A. Steed, “A simple method for estimating the latency of interactive, real-time graphics
simulations,” Proceedings of the ACM Symposium on Virtual Reality Software and
Technology, VRST, p. 123–129, 2008.

[74] S. Friston and A. Steed, “Measuring latency in virtual environments,” IEEE Transactions
on Visualization and Computer Graphics, vol. 20, no. 4, p. 616–625, 2014.

[75] S. Friston, E. Griffith, D. Swapp, A. Marshall, and A. Steed, “Profiling distributed virtual
environments by tracing causality,” 2018 IEEE Conference on Virtual Reality and 3D
User Interfaces (VR), 2018.

[76] P. F. Brown, P. V. Desouza, R. L. Mercer, V. J. D. Pietra, and J. C. Lai, “Class-based n-gram
models of natural language,” Computational linguistics, vol. 18, no. 4, pp. 467–479, 1992.

[77] A. Vlasblom, “Text prediction using n-grams.” https://rstudio-pubs-static.s3.amazonaws.
com/96252_bd61a0777ad44d04b619ce95ca44219c.html. online.

[78] E. Kouloumpis, T. Wilson, and J. Moore, “Twitter sentiment analysis: The good the bad
and the omg,” in In The International AAAI Conference on Weblogs and Social, 2011.

[79] A. Pak and P. Paroubek, “Twitter as a corpus for sentiment analysis and opinion mining.,”
in LREc, vol. 10, pp. 1320–1326, 2010.

159

https://developer.valvesoftware.com/wiki/Source_Multiplayer_Networking
https://www.nvidia.com/en-gb/geforce/products/g-sync-monitors/
https://jagt.github.io/clumsy/index.html
https://rstudio-pubs-static.s3.amazonaws.com/96252_bd61a0777ad44d04b619ce95ca44219c.html
https://rstudio-pubs-static.s3.amazonaws.com/96252_bd61a0777ad44d04b619ce95ca44219c.html

References

[80] E. Y. Ha, J. P. Rowe, B. W. Mott, and J. C. Lester, “Goal recognition with markov logic
networks for player-adaptive games,” in Seventh Artificial Intelligence and Interactive
Digital Entertainment Conference, 2011.

[81] S. C. Bakkes, P. H. Spronck, and H. J. Van Den Herik, “Opponent modelling for
case-based adaptive game ai,” Entertainment Computing, vol. 1, no. 1, pp. 27–37, 2009.

[82] S. Rabin, AI Game Programming Wisdom 4. Course Technology, 2014.

[83] I. Millington, Artificial intelligence for games. CRC Press, 2019.

[84] A. Majumdar, “Lstm network to predict mouse movements: training, prediction and
interactive dataset generation.”
https://github.com/abhijitmajumdar/Mouse_tracking_predictor. online.

[85] “Dictionary class (system.collections.generic).”
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.dictionary-2?
redirectedfrom=MSDN&view=netframework-4.8#Remarks. online.

[86] “Prednet.” https://coxlab.github.io/prednet/. online.

[87] “Fast-paced multiplayer (part i): Client-server game architecture.”

[88] A. Streicher and J. D. Smeddinck, Personalized and Adaptive Serious Games,
pp. 332–377. Cham: Springer International Publishing, 2016.

[89] M. Hadlow, “Message queue shootout!,” Jan 1970.

[90] A. Patney, J. Kim, M. Salvi, A. Kaplanyan, C. Wyman, N. Benty, A. Lefohn, and
D. Luebke, “Perceptually-based foveated virtual reality,” in ACM SIGGRAPH 2016
Emerging Technologies, SIGGRAPH ’16, (New York, NY, USA), Association for
Computing Machinery, 2016.

160

https://github.com/abhijitmajumdar/Mouse_tracking_predictor
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.dictionary-2?redirectedfrom=MSDN&view=netframework-4.8#Remarks
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.dictionary-2?redirectedfrom=MSDN&view=netframework-4.8#Remarks
https://coxlab.github.io/prednet/

	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Aims and Objectives
	1.3 Methodology
	1.4 Contributions
	1.5 Thesis Outline

	2 Background literature
	2.1 Local rendering vs Interactive Remote Rendering
	2.1.1 Local rendering: advantages and disadvantages
	2.1.2 Interactive remote rendering: advantages and disadvantages

	2.2 Remote rendering approaches in literature
	2.2.1 Model streaming
	2.2.2 Mesh streaming
	2.2.3 Command streaming
	2.2.4 In-situ approach
	2.2.5 Hybrid approaches
	2.2.6 Image streaming approach
	2.2.7 Summary of approaches

	2.3 Managing Latency
	2.3.1 Level of detail (LOD) management
	2.3.2 Image warping
	2.3.3 Prefetch
	2.3.4 Brute force based prefetch
	2.3.5 Prediction

	2.4 Summary

	3 Measuring and Simulating Latency in Interactive Remote Rendering Systems
	3.1 Overview
	3.2 Modelling latency
	3.3 Simulating Latency
	3.3.1 Implementation

	3.4 Measurement Approaches
	3.4.1 Observer
	3.4.2 Hardware
	3.4.3 Integrated

	3.5 A Software-Based Interaction Latency Measurement Tool (LMT)
	3.5.1 Implementation

	3.6 Experimental setup
	3.6.1 The client application
	3.6.2 The server application

	3.7 Experiments and Results
	3.7.1 IRR Measurements
	3.7.2 LMT Testing and Evaluation

	3.8 Discussion
	3.8.1 On simulating latency
	3.8.2 On the IRR system
	3.8.3 On the Latency Measurement Tool
	3.8.4 Summary

	4 N-Grams for predicting keyboard-based user interactions
	4.1 Overview
	4.2 N-Grams and their suitability for IRR systems
	4.3 Assumptions and Constraints
	4.3.1 Keyboard-only interaction prediction
	4.3.2 Interaction types

	4.4 Definitions
	4.5 Experimental setup
	4.5.1 Limitations

	4.6 The model
	4.7 Implementation and performance
	4.7.1 Buffer-based
	4.7.2 Dictionary-based

	4.8 Summary

	5 Simulating a Predictive Interactive Remote Rendering System
	5.1 Overview
	5.2 Definitions
	5.3 Architecture
	5.3.1 Client application
	5.3.2 Interaction-Result matching
	5.3.3 Prediction module
	5.3.4 Server application

	5.4 Latency simulation module
	5.5 Implementation of single-track prediction
	5.6 Summary

	6 Exploring the Effect of N-Gram Prediction on Interaction Latency Using the Simulator
	6.1 Overview
	6.2 Experiments
	6.2.1 Base IL

	6.3 The effect of user interaction prediction on IL using the simulator
	6.3.1 The effect of N-Gram Order on IL
	6.3.2 The effect of MPA on IL
	6.3.3 Measuring system rate of recovery from incorrect predictions

	6.4 Summary

	7 Exploring the effect of N-Gram prediction on interaction latency using a real-world PIRR system
	7.1 Overview
	7.2 Architecture
	7.2.1 Client application
	7.2.2 Prediction module
	7.2.3 Server application

	7.3 Interacting with scene objects
	7.4 Experiments
	7.4.1 Base IL
	7.4.2 The effect of user interaction prediction on IL using the IRR system
	7.4.3 The effect of N-Gram Order on IL
	7.4.4 The effect of MPA on IL

	7.5 Summary

	8 Managing incorrect predictions
	8.1 Overview
	8.2 Approaches for managing incorrect prediction
	8.2.1 Local rendering
	8.2.2 Image warping
	8.2.3 Prediction
	8.2.4 Panoramas
	8.2.5 Multi-track prediction

	8.3 The effect of a multi-track prediction strategy on IL due to misprediction
	8.4 Summary

	9 Client-Side Prediction vs Server-Side Prediction
	9.1 Overview
	9.1.1 Client-side prediction and server-side prediction

	9.2 Experimental setup
	9.3 N-Grams
	9.3.1 Simulator CSP vs SSP
	9.3.2 Unity3D CSP vs SSP
	9.3.3 Simulator CSP vs Unity3D CSP
	9.3.4 Simulator SSP vs Unity SSP

	9.4 MPA
	9.4.1 Simulator CSP vs SSP
	9.4.2 Unity3D CSP vs SSP
	9.4.3 Simulator CSP vs Unity3D CSP
	9.4.4 Simulator SSP vs Unity3D SSP
	9.4.5 Summary

	10 Discussion and Conclusions
	10.1 Discussion
	10.2 Conclusions
	10.2.1 Research questions

	10.3 Future work
	10.3.1 Real-time Operating Systems
	10.3.2 Context Awareness
	10.3.3 Foveated Rendering

	Appendix A Measuring recovery times
	References

