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Abstract 

Biofilms are a ubiquitous mode of bacteria proliferation found within aqueous 

environments. The structure and architecture that a biofilm self assembles into 

confers mechanical resistance against shear forces. A characteristic trait of biofilm is 

the production of extra cellular materials which act as the “glue” in the ECM/bacteria 

composite. The myriad physical properties of biofilm systems result in highly variable 

mechanical properties, which are studied using rheology. Previous studies about 

biofilm mechanics were mainly focused on linear viscoelastic regions. However the 

linear region is unable to provide information regarding the dynamics of deformation 

and structural rearrangement. Probing the biofilm nonlinear viscoelastic regime and 

yielding dynamics opens a window to access how the rearrangement behaviour of 

the EPS network and bacterium network are impacted by EPS composition and 

bacterial network topology.     

In addition, to determine the rheological properties of biofilms within the linear 

viscoelastic regime using the rotational rheometer, this thesis sheds light on utilising 

high fidelity non-linear rheological techniques and advanced imaging techniques to 

produce a framework explaining the emergence of characteristic biofilm mechanical 

behaviours across an array of species, chemical environments and genetic 

mutations. I have demonstrated the applicability of three types of large amplitude 

oscillatory shear (LAOS) analysis methodologies to Pseudomonas fluorescens 

biofilms and the rheological effects of divalent cations and a chaotropic compound. It 

was shown that by increasing ionic concentration the characteristic behaviour 

changes from a repulsive glass to an attractive glass. To understand the rheological 

and architectural effects of capsular polysaccharide secretion in biofilms, I selected 

the bacterium Pantoea sp. I revealed how the secretion of amylovoren and stewartin 

causes a characteristic rheological change from viscoelastic liquid to glass and how 

this is primarily driven by changes in EPS polymer concentration and packing 

fraction. Finally, I investigated the yielding behaviours across a range of bacteria with 

different geometries (rods/cocci) and EPS compositions. I identified four different 

types of yielding behaviour across the tested bacterial strains and used a range of 

rheological and microscopy data to identify the extent of short- and long-range 

polymer networks which determine the viscoelastic response of bacterial biofilms. 
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In summary, this thesis demonstrates how contemporary rheological methods and 

soft matter physics can be used in a reductive approach towards linking biofilm 

mechanics, microstructure and phenomenology.  
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Figure 2-18: A phase diagram of colloidal phases against interaction potential 

(𝑉0𝑘𝐵𝑇) and packing fraction (𝜑). At low packing fractions 𝜑𝑐 and interaction 

potential colloids freely move due to thermal brownian motion corresponding to 

disordered fluid behaviour (𝛼). At an intermediate packing fraction, below the glass 

transition point 𝜑𝑔 particles are increasingly constricted, limiting free motion causing 

increases to viscosity (𝛽). Belond the glass transition point particle motion is 

suppressed entirly which results in a frustrated state and formation of a glass. The 

mechanical properties of glasses are purely due to constriction of nearest 

neighbours, known phenomologically as cages and the rearrangment/relaxation of 

these cages underflow (𝜖). Increasing the interaction potential of the system results in 

the formation of bonded space spanning structures at low packing fractions. This 

state is known as gelation, where the attractive interparticle bonds determine the 

mechanical response of the system 𝛾2. The space spanning network morphology is 

influenced by interaction potential and packing faction. The density of the clusters 

and network connectivity reduces with lower interaction potential whilst particle 

crowding increases with an increasaing packing fractions (𝛾1 and 𝛿). The mechanical 

response of these conformations is a confluence of the interparticle bonding strength 

and the constriction of motion within the interparticle cages. Adapted from (Roth, 

2012). ........................................................................................................................ 40 

Figure 3-1: Representative CLSM images of a single slice of P. fluorescens after 60 

mins chemical treatment. Slices were taken 10 µ𝑚 above the coverslip. Urea treated 
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P. fluorescens displayed a structure which appeared to exhibit increased void regions 

in comparison to CaCl2 and FeCl2. The differences between cation treatments CaCl2 

and FeCl2 appeared minimal. .................................................................................... 54 

Figure 3-2: Packing fraction calculated from CLSM z slices for each chemically 

treated P. fluorescens biofilm, cells were stained with cell permeable DNA stain Syto 

63. Error bars represent the standard deviation (n=3). ............................................. 55 

Figure 3-3: Frequency sweeps of chemically treated P. fluorescens  biofilm. 𝜔 = 0.1 – 

50 Hz and the strain 𝛾 =1 %. Circular symbols represent the elastic moduli G’, 

triangle symbols represent the viscous moduli G’’. The dashed lines signify the 

frequency dependence of the control and urea biofilms. The mean of three biological 

replicates ± standard deviation is shown. ................................................................. 56 

Figure 3-4: Nonlinear parameter ratio of third harmonic to the first. 𝛾 represents 

strain. The yellow box denotes the linear viscoelastic region. Inset, is a log-log plot 

showing the MAOS region which fell between 𝛾 =1 % and 10 %. The results shown 

are the mean ± standard deviation. .......................................................................... 57 

Figure 3-5: Amplitude sweeps of DDH2O and Urea treated P. fluorescens biofilm, 𝜔 

= 1 Hz, 𝛾 = 0-250 %. The pink dots represent the yielding (crossover) point 𝛾𝐶 of the 

biofilm where 𝐺′ > 𝐺′′. Both the Control and Urea treated biofilms exhibit a viscous 

overshoot before the crossover point. The mean of three biological replicates ± 

standard deviation is shown. ..................................................................................... 58 

Figure 3-6: Amplitude sweeps of FeCl2 and CaCl2 treated P. fluorescens biofilm, 𝜔 = 

1 Hz, 𝛾 = 0-250 %. The pink dots represent the yielding (crossover) point 𝛾𝐶 of the 

biofilm where 𝐺′ > 𝐺′′. The CaCl2 treated biofilm didn’t display an obvious stress 

overshoot before the crossover point. Treatment with FeCl2 resulted in an increased 

strengthening effect in comparison to CaCl2. The FeCl2 treatment caused the viscous 

moduli to drop before the crossover point. The mean of three biological replicates ± 

standard deviation is shown. ..................................................................................... 59 

Figure 3-7: Plot of Viscous moduli 𝐺′′ normalised by 𝐺′′ from the linear viscoelastic 

region. Treatment with urea resulted in a reduced viscous overshoot in comparison to 

the control, the stress overshoot peak also occurred at a lower strain. Treatment with 

divalent cations eliminated the viscous stress overshoot behaviour. Treatment with 

FeCl2 resulted in the appearance of a shouldered decrease in 𝐺′′. CaCl2 treated P. 

fluorescens biofilms exhibited behaviour intermediate to the control and FeCl2 

treatments. The mean of three biological replicates ± standard deviation is shown. 60 
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Figure 3-8: Four types of yielding featured in soft materials. (a) Type I - Strain 

thinning, (b) Type II - Strain hardening, (c) Type III - Weak strain overshoot, and (d) 

Type IV - strong strain overshoot. 𝐺’ is the elastic moduli and 𝐺’’ is the viscous 

moduli. 𝐺’0 is the linear viscoelastic elastic moduli and 𝐺’’0 is the linear viscoelastic 

viscous moduli. 𝛾𝛾0 is imposed strain 𝛾 normalised by the lowest imposed strain 𝛾0 

in the strain sweep. This figure was adapted from (Hyun et al., 2002). ..................... 61 

Figure 3-9: Lissajous Bowditch (LB) curves, showing strains from 0.1 to 250%.Left 

column: Elastic Lissajous curves, Right column viscous Lissajous curves. (A,D): 

Control, (B,E): urea, (C,F): CaCl2, (D,G): FeCl2. LB curves represent the strain, strain 

rate and stress behaviour of the chemically treated biofilms through a single period of 

oscillation. Colour from blue to purple represents low to high strain amplitude values. 

The shear strain values are represented by 𝛾 and the shear strain rate values are 

represented by 𝛾.  Red arrows in D and E highlight the presence of secondary loops.

 .................................................................................................................................. 63 

Figure 3-10: Stiffening ratio (𝑆) for each chemically treated P. fluorescens biofilm. 𝑆 <

0 denotes shear softening, 𝑆 > 0 denotes shear stiffening. Inset plot focuses upon 

CaCl2 and FeCl2 stiffening. The black arrows represent the intracycle averaged 

yielding point of the urea treated and control biofilms. The mean of three biological 

replicates ± standard deviation is shown. ................................................................. 64 

Figure 3-11: The minimum strain rate dynamic viscosity 𝜂𝑀 (blue) and the large 

strain-rate viscosity 𝜂𝐿 (red) are plotted against strain amplitude 𝛾 for each 

chemically treated biofilm. Strain rate thickening occurs when  𝜂𝐿 > 𝜂𝑀, whilst strain 

rate thinning occurs when 𝜂𝐿 < 𝜂𝑀. Addition of divalent cations CaCl2 and FeCl2 

eliminated strain rate thickening behaviour which was exhibited in the control and 

urea biofilm. Treatment with FeCl2 caused the emergence of strain rate thinning. The 

mean of three biological replicates ± standard deviation is shown. .......................... 65 

Figure 3-12: Thickening ratio (𝑇) for each chemically treated P. fluorescens biofilm. 

𝑇 <0 denotes shear thinning, 𝑇 >0 denotes shear thickening. Chemical treatment with 

CaCl2 and Urea resulted in a respective decrease and increase in the thickening ratio 

in comparison to the control (DDH2O). Treatment with FeCl2 however resulted in the 

emergence of shear thinning behaviour.  The mean of three biological replicates ± 

standard deviation are shown. ................................................................................... 66 

Figure 3-13: (A) Plot of 𝐺𝑐𝑎𝑔𝑒 against strain, dashed lines represent the respective 

elastic modulus values. (B) Plot of accumulated strain at the point of maximum 
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stress, dashed lines represent ideal elastic and ideal viscous accumulated strain 

gradients. Dotted lines represent the gradient of control and urea accumulated strain 

≈ 0.2. Strain amplitude is represented by 𝛾0, and the absolute strain accumulated at 

the point of maximum stress during an oscillation cycle is represented by  

𝛾𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑 . For an elastically dominated system the maximum stress value is found 

at 2𝛾0, while for viscously dominated systems the maximum stress value is found at 

𝛾0. Plotted is the mean± standard deviation from 3- 5 biological replicates…………67 

Figure 3-14: SPP transient phase angle plots for (A) Control, (B) Urea, (C) CaCl2 and 

(D) FeCl2 where the red box denotes the 1st first yield step region. The colour bar is 

representative of the magnitude of the transient phase angle 𝛿𝑡. The control 

(DDH2O) and urea treatments resulted in similar transient plot signatures. In both 

biofilms the dominant yielding mechanism was strain dependent. This is illustrated by 

the intense yellow bands centred around t = 𝜋2 and t = 3𝜋2, the point of maximum 

strain during a cycle of strain amplitude 𝛾. When treated with divalent cations the 

presence of this yellow band reduced which is indicative of a more elastic response. 

This change is reflective of the increased elastic and viscous moduli of both CaCl2 

and FeCl2. For FeCl2 an additional region of yielding was prominent at low strains 

<100 %. This region is centred around t = 0 and t = 𝜋 corresponding to where strain 

rate is at a maximum................................................................................................. 69 

Figure 4-1: Representative growth of Pantoea sp. WT and UDP mutants on SOBG 

agar. The morphology of the wild type stain is swelled in comparision to the UDP 

mutant strain, which appears compact. The morphological difference is suggestive 

that reduced production of the hydrophilic polysaachride amylovoran alters the 

equilibrium swelling point of the mutant strain. ......................................................... 77 

Figure 4-2: Representative bright-field time lapses of Pantoea WT, Pantoea UDP and 

mixtures of Pantoea UDP and WT at a ratio of 5:1. Time starts at 0 mins and 

increases in Pantoea WT initially grows in tight clusters and at around 300 mins into 

the experiment amylovoran EPS is secreted causing an increase in EPS volume 

surrounding each bacteria and a global reduction in packing fraction. UDP remains 

tightly packed throughout the experiment. 5:1 Mixtures of WT: UDP result in tightly 

packed clusters which have regions of low packing fraction due to the expression of 

amylovoran from the WT strain. ................................................................................ 78 

Figure 4-3: Representative CLSM of Pantoea WT, 50:1 UDP:WT mixtures, 250:1 

UDP:WT mixtures and UDP mixtures. Cells were stained using Syto63 and FM-64 to 

stain the cell cytoplasm and cellular membrane. Images were taken 15 µm above the 
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coverslip. Increase in the ratio of UDP resulted in an increase to the biofilm packing 

fraction. The WT displayed many smaller clusters, as UDP concentration increased, 

the EPS between the clusters reduced and cell density increased. The scale bar is 

20 µm. ....................................................................................................................... 79 

Figure 4-4: Plot of packing fraction against Pantoea WT and UDP and UDP:WT 

mixtures. The packing fraction is calculated from CLSM images of Pantoea WT, 

Pantoea mixtures 10:1, 50:1, 250:1 and Pantoea UDP. Presented is the mean± 

standard deviation from 8 fields of view per sample. ................................................. 80 

Figure 4-5: Amplitude sweep of Pantoea WT and Pantoea UDP at 𝜔 = 0.5 Hz and 

𝛾 = 0.1 % - 1000 %. Pantoea UDP features a prominent viscous moduli overshoot 

after exceeding the linear viscoelastic region. Pantoea WT features no such 

overshoots. Presented is the mean± standard deviation (n=5). ................................ 80 

Figure 4-6: Frequency sweeps of Pantoea WT and Pantoea UDP, performed at 0.1 

% strain probing a frequency range of 𝜔 = 0.1 - 12.5 Hz. Plotted is the mean ± 

standard deviation from biological replicates (n = 5). ................................................ 81 

Figure 4-7: Amplitude sweeps depicting the elastic modulus of Pantoea UDP: WT 

mixtures from 10:1 to 250:1. The amplitude sweeps were performed at a frequency = 

0.5 Hz through a strain range of 0.1-1000 %. Points plotted are the mean± standard 

deviation (n=5) from biological replicates. ................................................................. 82 

Figure 4-8: Plotted is the viscous modulus of Pantoea UDP: WT mixtures from a 

series of amplitude sweep performed at frequency = 0.5 Hz from strain 0.1-1000%. 

The cross over point 𝛾𝑐 for each ratio is represented by a pink dot. The pink dashed 

line represents the intermediate power law gradient before the yield stress. The black 

dashed line represents power law behaviour after the yield strain. The exponents 

values can be found in Table 4-1. Points plotted are the mean± standard deviation 

(n=5) from biological replicates.................................................................................. 83 

Figure 4-9: (a) Stress strain plots of Pantoea mixtures UDP: WT, dashed line 

represents the stress selected for subsequent creep tests. Plotted is the mean ± 

standard deviation (n=5) biological replicates. The legend represents the UDP: WT 

ratio. (b) Creep plots of Pantoea Mixtures. Creep curves were performed at a stress 

of 30 Pa. 10:1 exhibits yielding, which can be seen by the increase in gradient after 

an initial plateau. Plotted is the mean ± standard deviation (n=5) biological replicates.
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Figure 4-10: Intrinsic non- linear parameter plot of the ratio of the third Fourier 

harmonic to the first Fourier harmonic as a function of strain for Pantoea mixtures 
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(UDP: WT). Black lines denote the MAOS gradients. MAOS gradients are taken from 

when 𝐼3/1 initially begins to increase. ...................................................................... 87 

Figure 4-11: Thickening fingerprint for Pantoea mixtures (UDP:WT). Measurements 

were performed at a frequency of 0.5 Hz and at strains 𝛾 = 0.1 -1000%. The colour 

bar represents the magnitude of the thickening ratio 𝑇. WT represents pure Pantoea 

WT biofilms and UDP represents pure Pantoea UDP biofilms. ................................. 88 

Figure 4-12: The stiffening ratio for Pantoea mixtures (UDP:WT), the measurements 

were performed at a frequency of 0.5 Hz from a strain of 0.1 – 1000 %. The colour 

bar represents the magnitude of the stiffening ratio 𝑆. Displayed are the mean values 

from 5 biological replicates. ...................................................................................... 89 

Figure 4-13: Transient Phase angle plot of Pantoea WT performed at 0.5 Hz. In this 

plot the time point during a complete oscillation cycle between 0 and 2𝜋 where the 

transient phase angle 𝛿𝑡 is measured at 𝑡. The strain amplitude of each oscillatory 

cycle is represented by 𝛾. The colourbar represents the transient phase angle 𝛿𝑡. 

The transient phase angle is measured from 0 to 𝜋. A 𝛿𝑡 of 0 represents a fully 

elastic Hookean response, a 𝛿𝑡 of 𝜋 represents a fully viscous response and 

complete structural yielding. The dashed boxes highlight the regions where the 

biofilm begins to exhibit yielding. The solid boxes represent regions where the biofilm 

is nearing a completely fluidised state within a strain cycle. ..................................... 91 

Figure 4-14: Transient Phase angle plot of Pantoea. sp at increasing UDP: WT ratios. 

In this plot the thick dash line boxes in the top left of each plot represent the region 

where strain 𝛾  for the respective strain amplitude is largest during an oscillation 

cycle. This region for each biofilm is elastically dominated. By reducing the 

amylovoran quantity in the biofilm this region grew increasingly elastically dominated. 

The dash box in each plot represents the region where strain rate was highest during 

the respective oscillation cycle. This region reduced in prominence as amylovoran 

concentration was reduced, signifying an increase in elasticity. The solid line box’s 

represent the region during an oscillation cycle at the respective strains where the 

material was completely yielded. With a reduction in amylovan this region grew to 

occur at lower strains. At high amylovoran concentration 50:1 the region of complete 

yielding grew to occur over a larger proportion of the oscillation. ............................. 92 

Figure 5-1: Amplitude Sweep of Comamonas denitrificans biofilm grown for 48 hr, the 

amplitude sweep is performed at a frequency of 0.5 Hz. The elastic modulus G’ 

exhibits a shoulder as the viscous stress overshoot begins, this characteristic has 
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been seen in attractive colloidal gels. Presented is the mean and standard deviation 

from n = 3 biological replicates. ............................................................................... 102 

Figure 5-2: Amplitude Sweep of Pseudomonas fluorescens biofilm grown for 48 hr, 

the amplitude sweep is performed at a frequency of 0.5 Hz. Presented is the mean 

and standard deviation from n = 5 biological replicates. .......................................... 103 

Figure 5-3: Amplitude Sweep of Neisseria polysaccharea biofilm grown for 48 hr, the 

amplitude sweep is performed at a frequency of 0.5 Hz. Presented is the mean and 

standard deviation from n = 5 biological replicates .................................................. 103 

Figure 5-4: Amplitude Sweep of Staphylococcus epidermidis biofilm grown for 48 hr, 

the amplitude sweep is performed at a frequency of 0.5 Hz. Presented is the mean 

and standard deviation from n = 3 biological replicates ........................................... 104 

Figure 5-5: (A) Elastic stress vs strain curves for Comamonas denitrificans, 

Pseudomonas fluorescens, Staphylococcus epidermidis and Neisseria 

polysaccharea. The black labelled arrows denote the yielding points of each biofilm. 

(B) Plot of the corresponding phase angles for each biofilm with increasing strain. C. 

denitrificans displays a plateau region at intermediate strains. ................................ 105 

Figure 5-6: Thickening ratio (T) for tested 48 hr grown biofilms. Black arrows 

represent yielding points from stress strain curve for C. denitrificans, pink arrows, S. 

epidermidis, green arrows, N. polysaacharea and red arrows P. fluorescens. Dashed 

lines signify the first yielding point and solid lines represent the second yielding point. 

Presented is the mean± standard deviation from n= 3- 6 biological replicates. ...... 107 

Figure 5-7: Gcage plot for each biofilm, C. denitrificans displays a significant drop as 

strain increases and converges around the plateau values of S. epidermidis and P. 

fluorescens. Shown are the mean± standard deviation from 3- 5 biological repeats.

 ................................................................................................................................ 108 

Figure 5-8: Transient phase angle plots from amplitude sweeps performed at 0.5 Hz 

at strain amplitudes ranging from 𝛾 of 0.1 % to 1000%. The instantaneous phase 

angle 𝛿𝑡 was continuously measured throughout each amplitude cycle at time 𝑡 (a) C. 

denitrificians, the red dashed boxes denote a strain dependent 1st stage yielding 

process whilst the cyan boxes denote a strain/strain rate dependent 1st stage yielding 

process. The green boxes denote 2nd stage yielding processes (b) S. epidermidis, the 

red dashed boxes denote a strain rate dependent 1st stage yielding process whilst 

the cyan boxes denote a strain/strain rate dependent 1st stage yielding process. The 

green boxes denote a 2nd stage yielding process (c) N. polysaccharea, the red boxes 

denote the faint emergence of a 1st stage yielding behaviour. The green boxes 
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Chapter 1 Introduction 

Bacteria along with archaea are the foundational forms of life (Hug et al., 2016). 

Estimated to number in the range of 1030, bacteria play a predominant role in the 

global ecosystem (Kallmeyer et al., 2012). Bacteria drive the biogeochemical cycling 

of nutrients such as carbon, nitrogen and sulphur (Hofer, 2018; Kuypers et al., 2018). 

Bacteria have evolved to thrive in almost all environmental conditions. For example, 

extremophiles can survive extremes in temperature, pH and salinity. Until the 1970’s 

it was believed that bacteria primarily lived in a planktonic state. However, over the 

past few decades this assumption has been replaced by the framework that most 

bacteria (40-80%) live communally through symbiotic, antagonistic and consummate 

interactions within structures termed biofilms (Donlan, 2002; Flemming & Wuertz, 

2019).  

The biofilm mode of growth confers bacteria various biological advantages over 

planktonic growth: increased resistance to chemical challenges such as antibiotics 

(Høiby et al., 2010) and pH fluctuations (Tasaki et al., 2017), closer intracellular 

proximity increasing the transfer rate of genetic information through horizontal gene 

transfer (Madsen et al., 2012), division of labour strategies (Dragoš, Kiesewalter, et 

al., 2018), symbiotic interspecies interactions (M. Cao & Goodrich-Blair, 2017; Meera 

et al., 2009), resistance to shear forces (A. Park et al., 2011) and increased 

protection from bacteriophage attack (Meera et al., 2009; Vidakovic et al., 2018). The 

chemical, biological and physical interactions occurring within a biofilm are complex 

and myriad. Therefore, biofilm research requires a multidisciplinary approach to 

reveal the rich physical, chemical and biological interactions which govern the biofilm 

lifestyle.  

Biofilm formation has widespread consequences from both the medical and 

environmental perspective. Biofilms are the leading cause of hospital infections and 

contribute to antibiotic resistance in harmful pathogens, reducing antibiotic efficacy. 

Mutation rates in biofilm bacteria selecting for antibiotic resistance occur at an 

increased rate through horizontal gene transfer. Biofilms also cause persistent 

infections in burn victims and cystic fibrosis sufferers and are responsible for surgical 

site infections and catheter associated urinary tract infections. In the environment 

biofilm formation on ship hulls and within pumping systems increases hydrodynamic 

drag, resulting in increased carbon emissions and economic expense (Schultz et al., 

2011). Biofilms are also a major cause of corrosion and membrane biofouling in 
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reverse osmosis water treatment (Maddah & Chogle, 2017). Thus, a greater 

understanding of biofilm mechanical properties is a necessary in the design and 

evaluation of disruption and dispersal strategies, to assist in combatting antibiotic 

resistance and reducing global emissions.  

An improved understanding of the biofilm lifecycle can be beneficially harnessed and 

applied within various industries. For decades biofilm formation has been exploited in 

biological wastewater treatment filters to remove excessive nutrients and micro 

pollutants. Electroactive biofilms are used within biological fuel cells, taking 

advantage of bacterial electrocatalytic reactions to produce electricity (Angelaalincy 

et al., 2018). The increasing sophistication and availability of synthetic biology 

techniques is now enabling biofilm to be viewed as a programmable material (C. 

Zhang et al., 2019). Potential promising applications for biofilm based living materials 

include the construction of responsive materials, environmental detoxification and 

materials processing (Balasubramanian et al., 2019; Schaffner et al., 2017). 

The resistance of a biofilm to physical forces is determined by its architecture and 

EPS composition, which are described using rheology (William N. Findley, 1989). 

Rheology is the study of how matter deforms and flows and investigates how micro 

and macro interactions within material structures influence multiscale mechanical 

behaviour (Tanner, 2000). Biofilm rheology is transient and varies from species to 

species and with environmental physicochemical conditions. The adaptability of 

biofilm rheology to specific environments is increasingly being recognised as a 

potential virulence factor for pathogenic biofilms and is one of the governing factors 

affecting the stable operation of wastewater treatment filters (Gloag et al., 2018). 

Therefore, an understanding of the structure function relationships which govern 

biofilm rheology is an important step in understanding how biological function, 

physical arrangement and chemical conditions link together to determine the 

mechanical properties of a biofilm. 

In this project I propose to investigate multiple single species biofilms using 

advanced rheological characterisation and mathematical analysis. To better 

understand the mechanisms underpinning different rheological properties of biofilms, 

the biofilm structures have been studied by high-resolution imaging techniques 

(brightfield and confocal laser scanning microscopes). Furthermore, the key 

principles of soft matter physics have been adopted to better understand the nature 

of different biofilm rheological fingerprints.  
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1.1 Aim and objectives of the project 

This project aims to explore biofilm mechanics and structure relationships across a 

range of bacterial species and physicochemical environments by using high fidelity 

non-linear rheological characterisation and advanced imaging techniques. The 

specific objectives are:  

• Develop a methodology for testing the rheology of bacterial biofilms with high 

fidelity non-linear rheological techniques.  

• Study how physicochemical environments affect biofilm rheology. 

• Investigate how the secretion of hydrophilic polysaccharides within the 

extracellular polymeric substances (EPS) impacts biofilm rheology. 

• Explore how different cell morphologies and EPS compositions influence 

biofilm rheology and microstructure. 

• Determine how the nonlinear rheological behaviour of bacterial biofilms can 

be used to characterise the presence of long- and short-range interactions 

within a biofilm structure. 

 

1.2 Thesis structure 

In order to achieve the aims of this project this thesis is split into seven chapters:  

In Chapter 1 a brief introduction to the motivation behind this project is provided. The 

aims and objective are also stated.  

Chapter 2 provides a comprehensive literature review. It provides background 

information into the biofilm lifecycle and provides an overview of the mechanical 

interactions involved in biofilm formation. It then moves onto focus on the EPS 

matrix. I then describe our current understanding of biofilm rheology and the different 

multiscale techniques which can be adopted to study biofilm rheology. Finally, I move 

on to explaining the concepts behind linear rheology, rheometers and I provide 

mathematical background for the non-linear rheological techniques which will be 

used throughout this thesis.  

Chapter 3 presents a proof of concept study demonstrating the applicability of 

nonlinear rheological techniques towards the characterisation of bacterial biofilms. 

This study investigates the rheology of P. fluorescens and effect of chemical 

treatment with; urea, CaCl2 and FeCl2. I show that addition of divalent cations causes 
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P. fluorescens to change from a repulsive glassy system to an attractive glassy 

system.  

In Chapter 4 I investigate the non-linear rheology of Pantoea sp. and Pantoea sp. 

UDP, a genetic mutant which has reduced production of amylovaroan and stewartin, 

EPS polysaccharides. I show how EPS secretion can drive changes in cellular 

packing causing a transition from viscoelastic liquid behaviour to glassy behaviour. 

To investigate the effect of EPS volume on biofilm rheology I combine Pantoea sp. 

and Pantoea sp. UDP in different ratios to control biofilm packing fraction. This 

system is then used to investigate the transitionary regime between viscoelastic 

liquid and glassy behaviour.  

In Chapter 5 I investigate the rheology of 4 different biofilm forming strains, C. 

denitrificans, P. fluorescens, S. epidermidis and N. polysaccharea. I compare the 

rheology of rod and cocci strains and show how cocci biofilm strains consistently 

exhibit two-step yielding, a property known to occur in attractive glassy materials. I 

also investigate the unusual rheology of C. denitrificans, a bacterial strain which 

displays short range attractive behaviour and autoaggregates to produce a large 

interconnected fractal network.  

In Chapter 6 I discuss the findings from this work and position the significance of this 

work towards assisting biofilm computational modelling and how rheological finger 

printing could be used in the future with genomic sequencing in order to construct a 

rheology – genotype database. I also discuss how biofilm non-linear rheology could 

be used to assist in the processing of artificial functional biofilm structures and how 

bacterial systems be used to answer fundamental soft matter physics questions.    
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Chapter 2 Literature review 
 

2.1 The biofilm lifecycle 

For aqueous environments within the natural ecosystem bacteria predominantly exist 

as a biofilm, a complex three dimensional structured community of single or multi 

species cells bound within a hydrated extra polymeric substance (EPS) secreted by 

cells and attached to exposed surfaces (Flemming, 2011). Principally the mechanistic 

aspects of biofilm growth can be reduced to four fundamental stages: reversible and 

irreversible attachment, maturation and detachment, Figure 2-1.  

 

Figure 2-1: The biofilm life cycle begins with reversable attachment of planktonic 
bacteria to a solid-liquid interface. In this regime bacteria explore the surface through 
surface motility and remove attached bacteria are removed by shear forces. In the 
next stage strongly attached bacteria switch to the biofilm phenotype and begin to 
secrete EPS substances. The secretion of EPS substances and cellular growth leads 
to formation of mature biofilm structures such as mushrooms and towers. Dispersion 
is the final stage of a biofilm, here bacteria are released due to the self-induced 
breakdown of the EPS structure.  

Surface attachment is the first stage of biofilm formation and a crucial step for a 

bacterium to transition from planktonic to a sessile biofilm forming phenotype. 

Bacteria interact with surfaces through a range of different biophysical and chemical 

pathways. The decision for a bacterium to adhere or reject a surface is regulated 

through feedback from sensing mechanisms. Bacteria can mechanosense surfaces 

using appendages such as flagella and pili and through contact stress using 

periplasmic stress pathways (Belas, 2014; Ellison et al., 2017; Otto & Silhavy, 2002). 

For example, type IV pili are bacterial motors which mediate twitching motility in 

bacteria such as Pseudomonas aeruginosa by extending, binding to the surface and 

then retracting (Burrows, 2012). Crawling bacterial motility facilitates surface 

exploration and migration towards regions of higher nutrient concentration (Ni et al., 

2016; Yi Shen et al., 2012). Adhesion occurs through activation of EPS secretion 
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pathways which are activated through signalling chemicals, the most widely studied 

being cyclic diguanylate (C-di-GMP) (Hengge, 2009). Certain species use EPS 

substances, such as eDNA and specific proteins such as Bap (Biofilm associated 

protein), to condition surface for attachment (Cucarella et al., 2001; Pakkulnan et al., 

2019). The process of initial adhesion is adaptive. Recent studies have shown how 

bacteria sense and adapt to abiotic surfaces, retaining an integrated memory of 

previous adhesion events (C. K. Lee et al., 2018). Irreversible attachment occurs 

when attached bacteria can no longer be easily removed by shear forces and provide 

an initial layer of bacteria conditioning the surface for further aggregation. 

Aggregation and attraction of planktonic bacteria is controlled through quorum 

sensing; which involves the release of chemical messengers called autoinducers, 

creating chemotactic gradients (Humphries et al., 2017; Miller et al., 2002). After 

initial colonisation and aggregation, biofilm structures begin to form through a series 

of physical interactions mediated by the secretion of EPS. Bacterial colonies display 

a wide array or morphologies and arrangements, Figure 2-2. Depending upon the 

bacterial strain and environmental conditions, various complex patterned structures 

Figure 2-2: The morphology and microstructure of biofilm is influenced by a variety 
of parameters such as the cellular packing, nutrient conditions, EPS secretion and 
bacterium shape. (A) When biofilm growth enters the irreversible attachment stage 
the initial bacteria monolayers buckles this causes the verticalization of some 
bacteria within the monolayer (red arrow). (B) Deletion of cell-cell attachment 
proteins leads to less dense biofilm structures (J Yan et al., 2016). (C) Matured 
biofilm morphology is influenced by the nutrients bacteria consume, here 
Pseudomonas aeruginosa biofilms produce mushroom features with the addition of 
sucrose (Xiao et al., 2017). (D) The volume of secreted EPS has been shown 
computationally to induce phase separation in biofilm monolayers (Ghosh et al., 
2015). (E) Bacteria cell shape has been computationally shown to influence the 
packing and population distribution within bacterial colonies (Smith et al., 2017). 
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can form (Kundukad et al., 2016). During early stage maturation when still only a few 

cell layers are attached, colony morphology is driven by mechanical instabilities, such 

as buckling, which can result in verticalisation (Beroz et al., 2018). At this early stage, 

cell orientations have a reduced nematic order, and preferential patterns can form 

due to differences in cell shape and aspect ratio (Boyer, Mather et al. 2011). The 

order and orientation of rod-shaped bacteria colonies, for instance, varies as a 

function of growth and stage of division. Early cellular organisation is also controlled 

via the production of EPS. High levels of non-absorbent EPS increase aggregation 

through the depletion interaction resulting in phase separation (Ghosh et al., 2015). 

Verticalisation results in cellular alignment as daughter cells orient with mother cells. 

This leads to higher cellular packing as the biofilm grows away from the surface 

(Drescher et al., 2016). Beside mechanical contact forces, the specific types of EPS 

secreted during biofilm formation have a large impact on how bacteria self-assemble, 

deletion of cell-cell adhesion proteins can lead to swollen structures with reduced 

packing density (Genovese, 2012; J Yan et al., 2016). As the biofilm community 

matures, increased cell number and biofilm thickness cause diffusion fluxes from the 

surface of the biofilm to the substratum. This results in the formation of chemical, 

nutrient, pH and O2  gradients, Figure 2-3. The presence of gradients through the 

depth of biofilm results in the formation of heterogeneous microenviroments and 

causes the emergence of distinct subpopulations in multispecies biofilms. 

Subpopulations within biofilms can display antagonistic or consummate relationships, 

where production of secreted compounds, such as siderophores or enzymes, are 

used to harm or benefit other species (Nadell et al., 2016; Orazi & O’Toole, 2017). 

Biofilms exhibit long range collective dynamics with increasing biofilm size. Bacillus. 

subtilis coordinates fluctuations in growth rate to minimise the formation of nutrient 

poor regions, a process known as nutrient time sharing (Martinez-Corral et al., 2018). 

The production of EPS has also been demonstrated to be influenced by collective 

behaviour, where division of labour strategies reduce the metabolic burden on 

bacteria (Dragoš, Kiesewalter, et al., 2018; Dragoš, Martin, et al., 2018). 
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Dispersion and detachment are the final process in the biofilm lifecycle. Dispersion is 

regulated through several different molecular mechanisms activated in response to 

various environmental stimuli. Dispersion can occur in nutrient and O2 depleted 

conditions where a transition to the planktonic state enables recolonization in more 

favourable regions (Gjermansen et al., 2010; Sauer et al., 2004). Dispersion is also a 

reaction to variations in cell density, which can be a major cause of virulence in 

pathogenic species (Rutherford & Bassler, 2012). The main molecular mechanisms 

currently known to control dispersion relate to quorum sensing pathways and 

reductions in concentration of cyclic diguanylate (C- di –GMP), which results in a 

reduction in the production of biofilm related matrix polysaccharides (Ha & O’Toole, 

2015). To enable biofilm dispersion, bacteria disrupt the extracellular matrix, this is 

achieved through the production of various nucleases, glycosides and proteases 

(Beenken et al., 2012; Fleming et al., 2017; Mitrofanova et al., 2017). In some cases, 

dispersion can be controlled through cell autolysis of bacteria subpopulations 

resulting in the formation of cavities which disrupts the biofilm architecture and 

provide neighbouring live cells with additional nutrients which may be used for 

growth. Autolysis has also been shown to result in increased metabolic activity of 

Figure 2-3: The EPS matrix has a lower diffusion coefficient in comparison to water 
which results in the formation of physicochemical gradients with increasing depth. 
Within multispecies biofilms localised gradients can result in the formation of 
microenviroments with distinct community compositions. Nutrients absorbed at the 
biofilm liquid interface which are consumed by proximate bacteria cause nutrient 
gradients, starving deeply imbedded bacteria of resources. The sorption of antibiotic 
molecules in the upper portion of the biofilms and slow diffusion through the biofilm 
protect bacteria towards the base of the biofilm from antibiotic attack. The gradient 
is signified by the transition from dark brown to light brown (Flemming & Wingender, 
2010). 
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dispersed cells which may confer an advantage upon recolonization (Guilhen et al., 

2016). 

Mature biofilms can also be disrupted mechanically through hydrodynamic shear 

forces, The morphological structures which occur due to hydrodynamic shear include 

streamer formation, sloughing, rolling and rippling (B. N. Anderson et al., 2007; Rupp 

et al., 2005), Figure 2-4. Streamer formation has been noted to occur in several 

biofilm strains. In the presence of secondary flows, streamers nucleate from the bulk 

biofilm surface and extend away, forming fine filaments of bacteria and EPS (Rusconi 

et al., 2011; X. Wang et al., 2016). Post formation, streamer morphology and 

distribution are influenced by a combination of surface geometry, chemistry and flow 

conditions (Jayathilake et al., 2017; Kevin Kim et al., 2014; Valiei et al., 2012). The 

rapid growth of streamers causes the clogging of pipe systems and are also 

hypothesised to assist in the spreading and recolonization of new surfaces (Drescher 

et al., 2013; Sherman et al., 2019). Besides large-scale detachment mechanisms, 

small scale detachment mechanisms also occur at the biofilm fluid boundary. 

Individual cells on the periphery of the biofilm can detach through abrasion and 

Figure 2-4: Biofilm mechanically induced detachment and deformation 
mechanisms (A) Overview of main deformation mechanisms, each mechanism 
is dependent upon the local environmental conditions, rippling, rolling and 
streaming generally occur under elevated levels of shear stress. Seeding 
dispersal is triggered via quorum sensing (P. Dirckx, Center for Biofilm 
Engineering, Montana State University, 2003) (B) P. aeruginosa can form 
streamers under elevated levels of shear stress microfluidic chambers, P. 
aeruginosa streamers show a high content of EPS substances and eDNA 
(Drescher et al., 2013) (C) Video images depict the rolling migration of a 
Staphlococcus. aureus biofilm, the tether of the structure is pointed out by the 
white arrow (Rupp et al., 2005).                  
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erosion. Abrasion involves the collision of particles in the bulk flow with loosely 

adhered cells, which results in detachment (Rochex et al., 2009). Biofilm erosion 

occurs when fluid frictional forces detach weakly adhered cells which are not 

enmeshed within the EPS matrix (Klotz et al., 2019).      

2.2 Biofilm EPS and microstructure 

The production of extrapolymeric substance (EPS) is one of the signature features of 

the biofilm phenotype. After initial bacterial adhesion, EPS is produced through 

cellular metabolic activity signalled by changes to cell membrane stress which is a 

function the of adhesion force between the cell and the substrate (Busscher & van 

der Mei, 2012). The secretion of EPS modifies the substrate surface chemistry 

creating a surface conditioning layer reducing repulsive forces and creating more 

favourable hydrophobic conditions (Smith-Palmer et al., 2016). EPS is a biopolymer 

composite composed of carbohydrates, proteins, humic substances, lipids, nucleic 

acids, and uronic acids. The composition of EPS is highly varied and dependent 

upon a wide array of physicochemical and genotypic variables. The EPS matrix is 

structured in a series of channels and pores containing water. This keeps the biofilm 

hydrated and determines the diffusion rate and transport of nutrients and organic 

substances to the encapsulated bacteria (Sutherland, 2001; Wilking et al., 2013). The 

structure of these channel networks results in density heterogeneities and affects the 

overall viscoelastic properties of the biofilm aggregate (Flemming et al., 2007). 

Nutrients diffuse through the matrix from the biofilm/ fluid boundary to the 

encapsulated cells fuelling growth. Thick densely populated biofilms experience 

oxygen and nutrient starvation (a vital component involved in the respiration of cells) 

for cells deep inside the biofilm away from the liquid interface, causing cell lysis in 

aerobic bacteria and creating anoxic microenviroments. The EPS structure can be 

digested by their own producer cells and other microorganisms when starved (Costa 

Oliveira et al., 2017; X. Zhang & Bishop, 2003). Other EPS molecules, such as 

phenol-soluble modulins, are influenced post secretion by the presence of eDNA, 

which causes a reduction in local pH resulting in an increased rate of amyloid 

polymerisation (Schwartz et al., 2016).  

Due to heterogeneities in both composition and structure, EPS is amphiphilic. EPS 

substances, such as Bap (biofilm associated protein) in Staphylococcus aureus 

strains, have been shown to alter cell surface hydrophobicity to improve the 

favourability of adhesion and develop stronger bonds with the substrate over time 
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(Perera-Costa et al., 2014; Schiffer et al., 2019; Vadillo-Rodrıǵuez et al., 2004). The 

hydrophobicity of Pseudomonas is affected by the secretion of Fap (Functional 

amyloid in Pseudomonas), which also influences stiffness (Zeng et al., 2015). In 

Bacillus strains, surface cell hydrophobicity controlled by the secretion of BslA 

(biofilm surface layer protein A), an amphiphilic protein which polymerizes into 

different conformations depending upon the air- water interfacial area (Kobayashi & 

Iwano, 2012).      

Carbohydrates and proteins are key EPS components which control biofilm 

architecture and viscoelastic response. Carbohydrates are long chain polymers 

which increase mechanical rigidity of the microstructure through entanglements. The 

ratio of proteins to carbohydrates in multispecies biofilms is dependent on biofilm 

maturity (Frølund et al., 1996), hydrodynamic and nutrient conditions and exposure to 

chemical challenges (Fish et al., 2015). Within multispecies biofilms in drinking water 

distribution systems the protein to carbohydrate ratio in EPS increased by a factor of 

6-13 x over a period of 3 months. Such a polymeric compositional change led to a 2-

3 x increase in biofilm stiffness in response to disinfectant exposure (Yun Shen et al., 

2016). The biofilm growth rate influences the EPS: bacteria ratio, in nutrient rich 

environments EPS: bacteria increases in comparison to nutrient poor conditions 

(Staudt et al., 2004). EPS production can be affected by mechanical stresses. For 

example, high shear stress can lead to increased polysaccharide production in S. 

aureus biofilms (Hou et al., 2018). The possibility of evolutionary adaptation of EPS 

composition to specific environments was recently postulated in the P. aeruginosa 

system. Clinical isolates of P. aeruginosa initially produce a high amount of alginate, 

a polysaccharide secreted during surface colonisation, before transitioning into 

secretion of architectural crosslinking polysaccharides Pel (pellicle) and Psl 

(polysaccharide synthesis locus) at later stages of growth (Kovach et al., 2017).  

Perhaps the most widely acknowledged role of EPS is in providing shape and 

passive structure to biofilms, Figure 2-5. Our understanding of the organisation of 

structural polymers which confer biofilm mechanical stability is still in its infancy and 

the physical response of these polymers due to large forces is rarely investigated 

(Gordon et al., 2017). For model microbes, like P. aeruginosa, the polysaccharides 

Pel, Psl and alginate modulate the biofilm stiffness. Psl and Pel crosslink with 

additional matrix components such as e-DNA (extracellular DNA) and Cdr-A (cyclic 

diguanylate regulate TSP partner A) which increases biofilm stability and packing 
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density (Jennings et al., 2015; Reichhardt et al., 2018). In E. coli biofilms, cellulose is 

a major EPS component contributing to EPS elasticity and cohesion (Serra et al., 

2013). Amyloid curli fibers have been demonstrated to produce a protective 

scaffolding network which protects against bacteriophage penetration (Vidakovic et 

al., 2018). In Vibrio cholerae biofilms VPS (Vibrio polysaccharide) is the major 

architectural polysaccharide, while a protein RbmA (Rugosity and biofilm structure 

modulator A) crosslinks cells, and two homologous proteins Bap (Biofilm associated 

protein) and RbmC (Rugosity and biofilm structure modulator C) support the 

functions of cell-surface adhesion and cross-linking with VPS (Jing Yan et al., 2018).

 

Figure 2-5: Schematic of a generic biofilm structure and parameters which are 
influence by EPS composition and specific EPS components. The resulting cellular 
arrangement and polymer interactions confluent to determine biofilm rheology and 
microstructure (Charlton et al., 2019). 

Advances in single cell resolution microscopy have enabled improved 

characterisation of the biofilm microstructure from initial colonisation through to 

mature growth. Height dependence on viscoelasticity has also recently been 

exhibited in S. aureus biofilms where elasticity correlated with local packing and 

height (Hart et al., 2019). Studies upon the model Vibrio cholerae system offer an 

insight into the transitional stages which determine microstructural parameters and 

architectural evolution. Timelapse analysis and quantification of parameters, such as 

volume fraction, cell alignment and nematic order, appear to be segmented into 4 

distinct phases. In the first phase cells are attached to the substratum as a 

monolayer, as adhesion to the substratum is stronger than intercellular bonds. The 
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second phase is entered as the number of cells increases above ~ 6, here alignment 

is locally disordered, and the colony retains a flat 2D structure. The third phase is 

entered as the colony size increases to 200 – 1000 cells. In this regime the 2D 

colonies buckle, causing growth to be directed away from the substratum and the 

formation of low cell density 3D colonies. In the fourth phase long range alignment 

and the 3D nematic order of the bacteria increase with cellular density. This results in 

a biofilm with highly aligned cells in the centre and alignment decreasing as a 

function of cell density away from the colony centre (Drescher et al., 2016).  

2.3 Typical mechanical characterisation approaches  

Owing to the multiscale nature of biofilms, there are many techniques which can be 

used to investigate the mechanical properties of biofilms, Figure 2-6. The 

characterisation of the material properties of biofilm are performed using a mixture of 

direct and indirect quantitative techniques using both in situ and ex situ growth 

conditions.  

Figure 2-6: A variety of multiscale methods can be used to characterise biofilm 
rheology. (A) Strain and force sensors are used to measure the yield stress and 
moduli of liquid gas interface biofilms (pellicles). Uniaxial tension setups typically 
involve custom made growth cells which provide a platform to test agar grown 
biofilms. (B) Rheometers are the standard tool used to measure the bulk properties 
of agar grown and biofilms grown directly on the rheometer plates. These setups 
typically involve the use of parallel plate and cone plate geometries. Rheometers 
are also used to measure the interfacial rheology of pellicle biofilms. (C) Microscale 
microcantilever methods typically probe agar grown biofilms, this method calculates 
stress based upon knowing the spring constant of the cantilever. Cantilever 
methods allow increased control in determining the local region which is probed. 
Microfluidic chambers are platform to grow and probe submerged biofilms. 
Mechanical characterisation is performed using flow rate ramps and imaging the 
resulting biofilm deformation. (D) Microrheological techniques include both passive 
and active methods which enable highly localised measurements of biofilm 
rheology. Passive microrheology is performed using particle tracking, where moduli 
can be calculated based upon the mean squared displacement of beads trapped in 
the biofilm. Active microrheology includes techniques such as optical and magnetic 
tweezers which actively control the movement of embedded beads (Charlton et al., 
2019). 
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2.3.1 Microscale mechanical characterisation techniques 

Direct in situ visualisation of biofilm growth as well as mechanical characterisation is 

commonly performed using microfluidics flow cells in combination with high speed 

imaging techniques. Biofilm deformation in flow cells is a function of hydrodynamic 

shear. Images of biofilm deformation can be captured using a high-speed camera 

with conventional brightfield microscopes or at a slower speed using optical 

coherence tomography or confocal microscopy (Blauert et al., 2015; Paul Stoodley, 

John D. Boyle & Lappin-Scott, 1999; Picioreanu et al., 2018; Rupp et al., 2005). From 

these imaging datasets shear strain and shear stress can be calculated using image 

analysis, where biofilm deformation is tracked with time, enabling the calculation of 

elastic modulus (Mathias & Stoodley, 2009).   

Biofilm flow cell experiments have revealed insights into biofilm structural 

deformation, biofilm ripple migration (Paul Stoodley, John D. Boyle & Lappin-Scott, 

1999; Rupp et al., 2005), detachment (Stoodley et al., 2002; Walter et al., 2013) and 

streamer formation (Biswas et al., 2016). The controlled hydrodynamic conditions 

within flow cells enables testing of environmental parameters, such as nutrient 

concentration, temperature and pH. Flow cells have been used to study the effects of 

different chemicals (Eric et al., 2011; Kundukad et al., 2017), ionic concentration 

(Paquet-Mercier et al., 2016), turbulence (Teodósio et al., 2011), interactions 

between different species (W. Zhang et al., 2013) and the impact of nutrient and 

chemical gradients on biofilm morphology (J. L. Song et al., 2014; W. Zhang et al., 

2011). Complex flow cell geometries can be manufactured to study the effects of 

hydrodynamics on matrix organisation, colonisation, competition (Aufrecht et al., 

2019; Jing Yan et al., 2017) and have been used to study upstream twitching in 

Pseudomonas aeruginosa (Kyrylyuk et al., 2009; Yi Shen et al., 2012).  

Microrheology is a commonly used in technique used in combination with microfluidic 

flow cells to measure biofilm mechanics and heterogeneity. Microrheological analysis 

in combination with confocal laser scanning microscopy enables the correlation of 

local mechanics to structural parameters such as the radial distribution function 

(Stewart et al., 2013). Microrheological methods are classified as either passive or 

active. Passive particle tracking micro-rheology is based upon the Brownian motion 

of micro-beads (typically 0.2 – 2 µm diameter). Using the generalised Stokes-Einstein 

equation the mean squared displacement of the tracer particles is used to calculate 

material compliance. Passive micro-rheology studies of biofilms have revealed how 
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elasticity varies with biofilm height and varies dependent upon morphological 

features, such as voids and clusters (H. Cao et al., 2016). Passive microrheology has 

also been used to evaluate how growth, shear rate, EPS composition, starvation and 

chemicals targeting different components in the EPS matrix modify biofilm 

viscoelasticity (Birjiniuk et al., 2014; Chew et al., 2014; Hart et al., 2019; S. S. Rogers 

et al., 2008). The predominant active micro-rheological technique applied to biofilms 

is magnetic tweezing, where paramagnetic beads are driven by a magnetic actuator. 

Magnetic tweezing has been used to assess the effect of shear stress on E. coli 

biofilm viscoelasticity during growth (Galy et al., 2012).      

Cantilever methods of assessing biofilm mechanics can be performed at both the 

microscale and nanoscale. The setup is imaged using a microscope and the 

deformation of the cantilever is analysed using video analysis to calculate biofilm 

elastic modulus, toughness and failure strain (Aggarwal & Hozalski, 2010). To assess 

nanoscale variations in biofilm viscoelasticity and viscoelastic changes with 

morphology Atomic force microscopes (AFM) are commonly used. Two approaches 

are used with this method, the first involves growing the biofilm directly onto 

microbeads which are attached to AFM cantilever tips. The mechanics of the biofilm 

are then tested by compressing the biofilm on the surface of the microbead against a 

flat surface. This method has been used to measure biofilm elasticity and biofilm 

adhesion strength as a function of growth time, loading time, contact time and 

retraction velocity (Lau et al., 2009; Ziemba et al., 2016). An alternative method is to 

grow the biofilm in a flow chamber, then remove the chamber to allow access for the 

AFM cantilever tip or in culture dishes which can be transferred to the AFM stage 

(Mosier et al., 2012). This method has been used to measure the variations in elastic 

modulus as a function of micro-colony diameter and to evaluate the effect of 

oligosaccharides on biofilm elasticity (Kundukad et al., 2016; Powell et al., 2013). 

AFM studies have also measured environmental samples, such a drinking water 

distribution biofilm, to assess the effect of disinfectant on Young’s modulus and 

wastewater biofilms (Safari et al., 2016; Yun Shen et al., 2016). In addition to 

mechanical nano-indentation tests, AFM also allows measurement of biofilm 

roughness, which has been used to assess the effect of specific EPS components in 

B. subtilis (Kesel et al., 2016).        
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2.3.2 Macroscale mechanical characterisation techniques    

Macroscale biofilm mechanics can be measured using compression and tensile tests. 

Compression tests are generally performed on dynamic mechanical analyzers (DMA)  

(Körstgens et al., 2001). Recently however custom glass plunger setups and 

compression application using permeate flux have been used in combination with 

optical coherence tomography (OCT) devices to image biofilm compression and 

recovery (He et al., 2013; Hou et al., 2018). Compression tests are typically used to 

measure biofilm viscoelastic properties during creep or stress relaxation. The elastic 

and viscous constants can be determined using phenomenological spring dashpot 

models (Peterson et al., 2013). This quantitative approach has been used to assess 

the effects of nutrient composition and antimicrobial peptides on P. aeruginosa 

viscoelasticity and used to determine how polysaccharides, eDNA and water 

contributed to the viscoelastic response (Rozenbaum et al., 2019). Compression 

tests have also been used to assess the effects of osmotic pressure and sucrose 

concentration on the elasticity of Streptococcus mutans biofilms (Rmaile et al., 2013).  

To investigate biofilm viscoelastic response to tensile strain, custom setups are 

primarily used. Each design shares fundamental similarities. Typically, the biofilm is 

grown on an agar surface which is poured directly into a mould attached to a load 

cell. The agar surface is positioned over a microscope setup to visualise deformation, 

where particle imaging velocimetry (PIV) can be used to track the deformation field. 

Tensile tests have been used to investigate biofilm growth induced compressive 

stresses, while PIV analysis enables the visualisation of non-affine deformations 

(Hollenbeck et al., 2016). Tensile tests have also revealed strain rate dependence 

and provide a suitable platform for assessing the effect of chemical treatment on 

tensile stress and rupture energy (Grumbein et al., 2016).    

Rheometers are typically favoured for biofilm macroscale analysis. Rheometers 

enable direct measurement of viscoelastic material parameters through application of 

rotational oscillatory shear tests, stress relaxation and creep tests. (Houari et al., 

2008; Pavlovsky et al., 2013; Vinogradov et al., 2004). The study of biofilm 

mechanics via rheometers is predominantly performed using three methods:  

1) In situ interfacial rheology, where biofilm pellicles are grown at the liquid gas 

interface.  
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2)  In situ grown biofilms, where a growth reactor is integrated onto a rheometer or 

biofilm is grown on filter paper on an agar pad and then transferred to a rheometer.  

3) Ex situ growth on agar plates and transferred to the rheometer via scrapping.  

The interfacial rheology method allows the growth conditions of the biofilm to be 

altered while simultaneously measuring the changes to elastic and viscous modulus 

of the biofilm surface. The effects of pH, nutrient concentration and surfactants on 

biofilm viscoelasticity have been investigated using this method (P A Rühs et al., 

2014; Patrick A Rühs et al., 2013; Wu et al., 2012). More recently interfacial rheology 

was chosen to access the competition between cocultures of Bacillus licheniformis 

and Pseudomonas fluorescens over a period of 48 hrs (Abriat et al., 2019).  

In situ biofilm reactors enable biofilm to be grown directly onto the rheometer 

geometries. Typically, agarose pads are directly attached to the bottom rheometer 

plate, with inlet and outlet tubing to provide nutrients or alter environmental 

parameters, such as pH. This method enables in situ biofilm growth in direct contact 

with rheometer plates where temperature is controlled using a Peltier plate. In situ 

reactors have been used to reveal the effect of temperature and salt concentration on 

the elastic stiffness of S. epidermidis biofilms (Pavlovsky et al., 2013, 2015) and to 

assess the effect of sucrose concentration on S. mutans (Waters et al., 2014). An 

unanswered element of these agarose pad experiments is the question of separating 

the viscoelastic contributions of the biofilm and agarose pad. However, generally 

there’s a large difference between the stiffness of biofilm samples and agar. Another 

in situ approach, involved transfer of yeast biofilms grown on a removable disk, which 

could be attached to the bottom rheometer plate (Brugnoni et al., 2014).  

The most used method for biofilm rheological characterisation using a rheometer is 

the ex situ growth and transfer method. Here biofilms are grown ex situ on agar 

plates or collected from the study specific environment to be tested ex vivo. This 

method is commonly used to assess environmental samples, such as wastewater 

biofilms, biofilms from cystic fibrosis patients or contaminant biofilms from food 

processing plants (Abbà et al., 2017; Kovach et al., 2017; Meera et al., 2009; Safari 

et al., 2014, 2016). For biofilms cultured on agar plates, osmotic pressure and 

nutrient composition can be modulated through agar concentration (Daalkhaijav et 

al., 2019; Jing Yan et al., 2018). This method has been used extensively to study the 

rheology of a wide range of biofilms, such as P. aeruginosa, V. cholera and B. subtilis 



18 
 

biofilms (Gloag et al., 2018; Huang et al., 2019; Kesel et al., 2016; Jing Yan et al., 

2018).  

As rheology is the primary technique adopted in this study, in the following section, I 

focus on rheological concepts which can be measured using a rheometer. It will 

cover creep and stress relaxation under shear using the rheometer using both small 

and large amplitude measurements.  

2.4 Fundamental concepts of viscoelasticity 

The recalcitrant nature of biofilm to mechanical removal treatments, such as washout 

and fluctuating levels of hydrodynamic shear, has been attributed to the viscoelastic 

behaviour of the biofilm matrix. Viscoelasticity is a combination of elastic and viscous 

behaviour. An elastic material deforms instantaneously to relieve stress and will 

reversibly return to its initial state when the force is removed; a viscous material 

relieves stress over time by continuous irreversible deformation. Viscoelastic 

materials thus exhibit a time dependent relationship between stress, 𝜎 and strain, 𝜀, 

and can be characterised by two material relationships; stress relaxation and creep.   

2.4.1 Stress relaxation 

Stress relaxation describes the time dependent decrease of stress within a material 

when acted upon by a unit step strain 𝜀0 at time 𝑡0. At 𝑡0 the material is deformed by 

the unit step strain and stress increases until it reaches 𝜎0, the maximal stress. 

Stress then decays at a rate depending upon the viscoelastic materials stress 

relaxation properties until a limiting value (plateau) is reached. Relaxation is 

described using the relaxation modulus 𝐺(𝑡). A viscoelastic solid is defined as when 

the residual stress remaining within the material is nonzero (𝐺∞ > 0). A viscous fluid 

exhibits a residual stress decaying to zero (𝐺∞ = 0). A viscous fluid is able 

completely dissipate stress. While a viscoelastic solid may conserve stress. 

The rate at which stress decays in a viscoelastic material can be described in terms 

of the relaxation time 𝜆. Relaxation time is an estimation of the time taken for a 

material to fully relax. Materials with small relaxation times are fluid-like and dissipate 

stress quickly, whereas large relaxation times correspond to solid behaviour. The 

Deborah number is a dimensionless value used to describe the apparent fluidity of 

materials. The Deborah number describes the ratio of relaxation time 𝜆 to the 

observation time of an experiment 𝜆𝑡,  

        𝐷𝑒 = 
𝜆

𝜆𝑡
                                                                   [1] 
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The stress relaxation time is an important value to consider when performing 

oscillatory experimental work. If the period of observation is much shorter than the 

relaxation time, a material will display pure elastic behaviour which leads to 

unrepresentative results.  

2.4.2 Creep 

Creep is the time dependent increase in strain when a step stress is applied to a 

material. Creep tests are described using compliance 𝐽(𝑡), where 𝜀(𝑡) is the strain, 𝑡 

is time and 𝜎0 is the step stress applied at 𝑡0,  

𝐽(𝑡) =
𝜀(𝑡)

𝜎0
.     .                                                           [2]      

For a viscoelastic solid the strain will increase at first and then plateau at a non-zero 

equilibrium limiting value
𝑙𝑖𝑚𝑖𝑡
𝑡 → ∞

𝐽(𝑡) =  𝐽∞. For a viscoelastic fluid, the material strain 

will increase without any limit (Harvey Thomas Banks, 2010).  

2.4.3 Representative mechanical models  

In order to produce a constitutive law describing biofilm material properties, methods 

of modelling material deformation are required. Stress/ strain relationships in linear 

viscoelastic materials can be phenomenologically described using combinations of 

linear springs and linear dashpots. Elasticity is represented by a Hookean spring with 

spring constant 𝐺 , Figure 2-7. While viscous behaviour is represented by a dashpot 

with viscosity 𝜂, Figure 2-8. Both elements can be configured in series and parallel, 

known respectively as the Kelvin-Voigt and Maxwell models. The Kelvin-Voigt and 

Maxwell models are the most simplistic models used to represent viscoelastic 

behaviour. For a linear spring, representing instantaneous elasticity and recovery, 

𝜎 = 𝐺𝜀.                                                                  [3] 

Figure 2-7: A linear elastic spring element, where 𝜎 is stress, 𝜖 is strain and 𝐺 is the 
spring constant.  

For the viscous dashpot element, the strain rate 𝜀̇ is proportional to stress 𝜎. When a 

constant strain is applied, stress has an infinite value before quickly decaying to 0, 

𝜎 = 𝜂
𝑑𝜀

𝑑𝑡
.                                                                [4] 
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Figure 2-8: A viscous dashpot element, where 𝜎 is stress, 𝜖 is strain and 𝜂 is 
viscosity.  

The two element Maxwell model features a linear spring and linear dashpot in series 

Figure 2-9. Although simple, this model is important to represent unrecoverable strain 

in a material after a stress is removed, describing stress relaxation. The strain can be 

calculated in series as,    

𝜀 =  𝜀1 + 𝜀2,                                                          [5] 

which implies, 

𝜀 =  
𝜎0

𝐺
+ 

𝜎0

𝜂
𝑡.                                                         [6] 

 

Figure 2-9: The Maxwell model is composed of a singular spring element with string 
constant 𝐺 and singular dashpot element with viscosity 𝜂 in series. The summation of 

the strain from the spring 𝜖1 and dashpot 𝜖2 equals the overall strain 𝜖 when a stress 

𝜎 is applied.  

The Kelvin Voigt model features a linear spring and linear dashpot in parallel, Figure 

2-10. The Kelvin Voigt model represents delayed elasticity. Here stress from an 

applied strain is initially supported by the viscous element. As time increases the 

elastic spring slowly becomes more dominant in supporting stress, describing creep. 

The stress can be calculated as, 

𝜎 = 𝜎1 + 𝜎2,                                                       [7] 

which can be expressed as, 

    𝜎 = 𝐺𝜀 + 𝜂
𝑑𝜀

𝑑𝑡
.                                                      [8] 
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Figure 2-10: The Kelvin Voigt model is composed of a spring element with a spring 
constant 𝐺 and a dashpot element of viscosity 𝜂 in parallel. The summation of the 

stress from the spring 𝜎1 and dashpot 𝜎2 equals the total stress 𝜎 when a strain of 𝜖 
is applied.    

Due to the complex behaviour of biofilm, two element models are too simplistic to 

accurately model the time dependent stress/stain response to an imposed 

strain/stress. The most common material models used to describe a biofilm are the 

three element Jefferies model (Pavlovsky et al., 2013) and the four element Burger 

model (Towler et al., 2007), Figure 2-11. Creep tests have generally been used in 

biofilm literature in comparative studies focusing upon the effects of chemical 

treatment and temperature on biofilm mechanics. Creep models can also be applied 

to microscale step strain tests which can be performed with magnetic tweezers (Galy 

et al., 2012). The Burger model is the summation of a Kelvin Voigt element and a 

Maxwell element in a series configuration which results in a constitutive equation of 

the form, 

                                     𝜎 + 𝑝1�̇� + 𝑝2�̈� = 𝑞1𝜀̇ + 𝑞2�̈�,                                             [9] 

where  

                𝑝1 =
𝜂1

𝐺1
+

𝜂1

𝐺2
+

𝜂2

𝐺2
,                                                      [10] 

𝑝2 =
𝜂1𝜂2

𝐺1𝐺2
,                                                           [11] 

𝑞1 = 𝜂1,                                                           [12] 

and 

                                                   𝑞2 =
𝜂1𝜂2

𝐺2
.                                                          [13]   
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Figure 2-11: A four element Burgers model is composed of a Maxwell element and a 
Kelvin-Voigt element in series. Where 𝐺1 and 𝜂1 are the spring constant and viscosity 

of the Maxwell element and 𝐺2 and 𝜂1 are the spring constant and viscosity of the 

Kelvin Voigt element. The strain of each of these elements when under stress 𝜎 is 

represented by 𝜀1, 𝜀2 and 𝜀3.  

At high frequencies, the burger model describes a material as a stiff elastic solid, with 

elastic modulus 𝐺1, while at lower frequency the material acts viscoelastic with a 

much lower elastic modulus (William N. Findley, 1989). This model was used in 

tandem with experimental data from rheometer creep experiments with a data fitting 

algorithm to obtain the parameters featured within the model (Towler et al., 2003; 

Vinogradov et al., 2004). From the extraction of the Burger coefficients some groups 

have conducted computational experimentation on simple biofilm geometries within 

fluid solid interaction simulations, which have opened up the possibility of estimating 

the hydrodynamic forces through the bulk of a mature biofilm (Towler et al., 2007). 

2.5 Principles of oscillatory shear rheology: data collection and analysis  

Rheology focuses upon the flow properties of complex materials. A complex 

viscoelastic material displays neither ideal elastic behaviour, where deformation 

energy is completely recoverable, nor pure viscous behaviour where energy is 

completely dissipated. Due to the combination of elastic and viscous behaviours, 

viscoelastic materials don’t display constant material values of elasticity or viscosity 

but are described through material functions. Material functions, such as the dynamic 

moduli 𝐺 and the dynamic viscosity 𝜂, change as a function of imposed loading 

conditions, shear strain 𝛾, shear strain rate �̇� and stress 𝜎, and environmental 

parameters, such as the temperature 𝑇. Material functions are universally applicable 

regardless of the material class. Once acquired, material functions can be related to 

the structure of specific material classes, forming what is known as structure function 

relationships. The structure function relationships can then be used to explain how 

changes in material microstructure affects macroscale rheological function. One of 
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the most used pieces of equipment to characterise a material’s macroscale rheology 

is the rheometer. Principally a rheometer consists of two plates, a lower loading 

plate, which is generally a temperature-controlled Peltier plate, and an upper plate, 

which is connected to a torque transducer. The material of interest is loaded on the 

lower plate and the upper plate is then brought into contact. The sample is then left to 

relax and equilibrate before being deformed with user defined shear stresses 𝜎 and 

shear strains 𝛾. The measured parameters are then typically the torque 𝜏, the 

displacement 𝜃 and the rotational velocity �̇�. Depending upon the type of material 

being tested, a number of different geometries can be selected, the most common of 

which are the parallel plate, the cone and plate and the bob and cup, otherwise 

known as a Couette cell, which is used to measure fluid viscosity. The parallel plate 

(PP) geometry consists of two flat plates and has a radially inhomogeneous flow 

field. The main advantage of the PP is the flexibility in selecting gap heights. This 

enables testing of a wide range of materials. The cone and plate (CP) geometry 

features a flat bottom plate and an upper plate with a cone angle 𝛼. In contrast to the 

PP, the CP geometry has a radially homogeneous flow field, however tests need to 

be performed at a predetermined gap size in order to produce a homogenous flow 

field. Equations for calculating torque and stress for both PP and CP can be seen in  

 

  

 

 

 

 

 

 The differences in measured torque between the PP and CP measurements are 

negligible within the linear viscoelastic region. However, within the non-linear LAOS 

range PP measurements tend to underestimate the measured stress. In order to fit 

Parameter Parallel Plate Cone and Plate 

Torque  
𝜏 =  

𝜋�̇�𝜂𝑅4

2ℎ
 𝜏 =  

2𝜋�̇�𝜂𝑅3

3 tan 𝜃
 

Stress  
𝜎 =  

𝜏

2𝜋𝑅3
[3 + 

𝑑𝑙𝑛𝜏

𝑑𝑙𝑛𝛾�̇�
] 𝜎 =  

3𝜏

2𝜋𝑅3
 

Strain 
𝜃
𝑅

ℎ
 𝜃

1

𝜑
 

Table 2-1: Torque, stress and strain conversions for Parallel plate and Cone and 

plate rheometer geometries. The angular displacement is 𝜃, �̇� is the angular 
velocity, 𝜂 is the viscosity, 𝑅 is the geometry radius, ℎ is the gap height, 𝛾�̇�  is the 

strain rate and 𝜑 is the cone angle. 
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measured LAOS data from PP to equivalent CP geometries vertical and horizontal 

shift factors are used (H. Y. Song et al., 2017).   

2.5.1 Rheometer nuisance factors 

Several nuisance factors need to be taken into consideration during the operation of 

a rheometer in order to obtain reliable material functions (Ewoldt et al., 2015). The 

torque 𝜏 measured during a rheometer test is a function of material deformation, but 

also features inertial artefacts from the acceleration of the rheometer motor and 

geometry (Klemuk & Titze, 2009). Inertial artefacts are particularly important to 

consider when measuring soft biological materials with elastic moduli below 100 Pa 

and at high frequencies. Soft biological materials have a low material torque, so 

above a material specific frequency inertial effects can dominate over the stress 

response of the material, resulting in unrepresentative data. The magnitude of inertial 

effects is also influenced by a rheometer’s operating design. Combined motor 

transducer (CMT) and Separate motor transducer (SMT) setups produce different 

magnitudes of inertial torque when measuring low elasticity fluids, Figure 2-12. SMT’s 

produces an inertial torque which acts in the same direction as the sample torque. 

CMT’s in contrast produce a comparatively higher inertial torque acting in the 

opposite direction to the sample torque (Genovese, 2012; Läuger & Stettin, 2016).  

The impact of instrument inertia can become critical when testing a soft biomaterial at 

high frequencies or studying the gelling point in sol gel systems (Hudson et al., 

Figure 2-12: Illustrated is a representation of the separate motor transducer (SMT) 
and Combined motor transducer (CMT) rheometer configurations. The two 
featured rheometer configurations vary primarily by where torque is sensed and 
applied. In the SMT configuration the motor and torque transducer are separate, 
which enables separate control over each element. Whereas in the CMT system 
both motor and transducer are combined. The advantage of the SMT layout is that 
the effect of instrument inertia on the measured torque is reduced in comparison to 
CMT.    
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2017). Therefore, before performing oscillatory tests it is prudent to identify the 

frequency limit where inertial effects begin to dominate. An example of the instrument 

inertial effect at high frequencies is presented in Figure 2-13. 

Figure 2-13: An example frequency sweep of a Pantoea sp. biofilm grown for 48 hr 
on an agar plate. The elasticity of the biofilm is represented by G’, the storage 
modulus, whilst the viscous behaviour is represented by G’’, the viscous modulus. 
The elastic and viscous moduli are in a plateau region until inertia effects begin to 
dominate the sample response. The dashed back line signifies the beginning of the 
region where instrument inertia torque dominates over sample torque. Within this 
region the apparent elastic and viscous moduli increase dramatically which is 
unrepresentative of the actual sample’s response.  

A key parameter associated with a rheometer test is the gap height ℎ, the distance 

between the upper and lower geometries. The occurrence and magnitude of 

secondary flows are a key nuisance factor which are influenced by gap height. 

Secondary flows occur due to elastic shear wave propagation, viscous diffusion and 

when high shear rates are used due to fluid inertia (Yosick et al., 1998). The wave 

speed of secondary flows governs the wave propagation length 𝑙. If the gap height is 

10 x lower than the wave propagation length, secondary flows will affect the 

measured rheology. The occurrence of secondary flows disturbs the uniform velocity 

gradient assumed during steady flow in an oscillatory test and cause 

unrepresentative increases to the measured viscosity. To avoid the presence of 

secondary flows the wave propagation length is calculated using,  

𝑙 =  
1

cos (
𝛿

2
)

|𝐺∗|

𝜌

1

2 2𝜋

𝜔
,                                                   [14] 

where 𝛿 is the phase angle 𝐺∗is the complex modulus, 𝜌 is the density and 𝜔 is the 

oscillation frequency (Schrag, 1977).    

The presence of secondary flows is of importance when performing LAOS tests on 

biofilms, which exhibit shear thinning behaviour. For a shear thinning material as the 

shear strain amplitude increases, the complex modulus 𝐺∗ decreases and the phase 
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angle 𝛿 increases, resulting in a reduction of the wave propagation length 𝑙. A 

reduction in 𝑙 below the critical gap height results in non-representative nonlinear 

behaviour, leading to misinterpretation of LAOS data.  

Rheometers typically function under the assumption of rotationally symmetric 

geometries; however this condition can be violated as a result of under/over filling, 

evaporation and poorly matched geometry alignment. Breaking of rotational 

symmetry or non-constant contact angle results in a surface tension torque which 

can be misinterpreted as a material response (Johnston & Ewoldt, 2013). To reduce 

or eliminate the effects of surface tension in rheology measurements, solvent traps 

can be used to eliminate sample evaporation. To ensure a constant contact line, a 

sample should be properly filled, Figure 2-14. Else significant errors in measured 

viscosity occur in both under and over filled scenarios (Hellström et al., 2014).   

 

Figure 2-14: Schematic of the rheometer filling conditions. Ideally filled samples will 
have a contact line with constant contact angle 𝜃 and radius 𝑟. Under-filled and 
overfilled samples have a non-equal contact radius and non-equal contact angle. 
This leads to the occurrence of surface tension torques, which increase the 
measured torque, resulting in an overestimation elasticity and viscosity. 

Rheological functions are calculated based on the assumption of a no slip boundary 

at the upper and lower geometries. However, this boundary condition can be violated 

by the occurrence of slip. Slip can cause significant artefacts at both low and high 

shear rates and strains (Ballesta et al., 2013). Presence of slip artefacts result in 

underestimation of yield stress and misinterpretation of non-linear behaviour in LAOS 

tests (Ozkan et al., 2012; Walls et al., 2003). To eliminate slip, roughened grit tape 

can be adhered to upper and lower geometries, geometries can be grit blasted, or 

adhesive bonding can be used to fix samples to each geometry. In some cases, 

custom geometries have been fabricated to alter material surface energy in order to 

combat hydrophobicity induced slip. Another factor which causes the violation of the 

no slip condition is shear banding. Shear banding occurs when strain is localised to a 
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narrow region within the sample height. This results in the sample being separated 

into two or more regions of differing flow velocity despite the same applied shear 

rate, resulting in large inhomogeneity to the flow field (Voigtmann, 2014).       

2.5.2 Linear rheology theory  

Creep and stress relaxation tests enable the characterisation of a viscoelastic 

material over extended periods of time. However, the response of a viscoelastic 

material to strain is also dependent upon strain rate. To fully describe the properties 

of a viscoelastic material on short time scales oscillatory tests are used. By imposing 

a continuous oscillatory stress/strain, multiple length and time scales can be probed 

enabling the quantification of elastic and viscous components. Oscillatory shear tests 

are performed by imposing a sinusoidal strain or stress. To probe the time 

dependency of a material, the frequency of the imposed wave is controlled, known as 

a frequency sweep. When yielding is of interest, strain/stress amplitude sweeps are 

performed, where the strain/stress amplitude of the sine wave is the controlling 

parameter. The oscillatory sin wave is described as,       

                                                     𝛾(𝑡) = 𝛾0sin (𝜔𝑡)                                                  [15]                    

where the shear strain amplitude is denoted by 𝛾0 and the frequency by 𝜔. 

The stress response of a linear viscoelastic material to the imposed oscillation is a 

sine wave of the form: 

                                                𝜎(𝑡) = 𝜎𝑜 sin(𝑤𝑡 + 𝛿).                                               [16]                                

For a purely elastic Hookean material the stress response is in phase with the 

loading strain, whereas for a purely viscous material the stress lags the strain by a 

phase angle of 90˚ . A viscoelastic material has elastic and viscous contributions to 

its stress response, so it exhibits a phase  0˚ < 𝛿 < 90˚. Transforming [16] into its 

complex analogue we gain a relationship 𝜎∗ = 𝐺∗𝜀∗ in which 𝐺∗ is defined as the 

complex dynamic modulus, 

                                                                   𝐺∗ = 𝐺′ + 𝑖𝐺′′.                                                     [17]               

𝐺∗ is the summation of both the elastic and viscous behaviour, where 𝐺′ is the storage 

modulus representing the stored energy and thus the recovered elastic energy per 

cycle in phase with the applied strain, and the loss modulus 𝐺′′ describes the viscous 

behaviour of a material and thus the amount of energy dissipated due to viscous 

damping. The ratio of the storage modulus to the loss modulus gives the phase angle 
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and describes the amount of energy dissipated versus the amount of energy stored 

during a singular oscillatory cycle,  

𝛿 =  tan−1
𝐺′′

𝐺′
 .                                                          [18] 

The linear regime of a viscoelastic material is defined as when the storage and loss 

moduli are independent of the imposed amplitude, Figure 2-15. This region is known 

as the linear viscoelastic regime (LVER). In the small amplitude oscillatory shear 

(SAOS) region the quiescent structure is probed, and negligible structural 

rearrangements occur. However, as the imposed strain increases the material elastic 

and viscous response become a function of strain amplitude. The region above 

SAOS is composed of the medium amplitude oscillatory shear (MAOS) and large 

amplitude oscillatory shear (LAOS) regions. In the MAOS and LAOS regimes the 

stress response function is no longer sinusoidal due to the presence of higher 

harmonics. The presence of these higher harmonics isn’t considered within the linear 

viscoelasticity theoretical framework, so the storage and loss moduli fail to fully 

capture nonlinear viscoelastic behaviour.    

2.5.3 Origins of LAOS 

The presence of higher harmonics within stress response in the non-linear regime 

have been acknowledged since the 1960’s (Philippoff, 1966). However due to 

technological constraints, such as a low sampling rate and the presence of low to 

noise due to mechanical and electrical noise, investigators could only conduct 

Figure 2-15: Generic schematic of an amplitude sweep plot. The red curve 
denotes the linear storage moduli G' and the blue line denotes the linear viscous 
moduli G’’, in the small amplitude oscillatory shear (SAOS) region both moduli are 
independent of strain amplitude. When the linear viscoelastic regime is exceeded 
both G’ and G’’ become a function of strain amplitude which is defined as the 
large amplitude oscillatory shear (LAOS) region. 
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qualitative analysis using analogue stress response signals (Komatsu et al., 1973). 

However, the advent of analogue to digital converters (ADC) and increasingly 

sophisticated rheometers with lower noise enabled investigators to substantially 

increase the stress response sampling rate. The first quantitative approach to 

analysing LAOS data was Fourier transform rheology (FT-rheology) (Wilhelm, 2002). 

This methodology performed a Fourier transform on the stress response signal using,  

𝜎(𝑡) =  ∑ 𝜎𝑛sin (𝑛𝜔1𝑡 + 𝛿𝑛)𝑛=1,𝑜𝑑𝑑 .                                            [19] 

Performing a Fourier transform over multiple periods resulted in a higher S/N ratio 

and enabled non-linear rheological analysis based on the Fourier harmonics (Hyun et 

al., 2003). Materials were analysed based upon the magnitude of Fourier harmonics 

to compliment qualitative analysis of the raw output stress waveforms, Figure 2-16. 

Non-linearity was quantified using the relative intensity of the third Fourier harmonic 

𝐼3/1, 

𝐼3/1 =  
𝐼3

𝐼1
=  

𝜎3

𝜎1
= 

√(𝜎3cos 𝛿3)
2+(𝜎3𝑠𝑖𝑛𝛿3)

2 

√(𝜎1cos 𝛿1)
2+(𝜎1𝑠𝑖𝑛𝛿1)

2
.                                             [20] 

Within the medium amplitude oscillatory region 𝐼3/1 behaviour is typically 

characterised through the exponent 𝑛 which is calculated using, 

  log (
𝐼3

𝐼1
) = 𝑎 + 𝑛 log 𝛾0,                                                  [21] 

where 𝑎 is an arbitrary constant and 𝛾0 is the strain amplitude. In early investigations 

using linear polymer solutions the exponent 𝑛 was found to scale quadratically with 

strain. This relation had first been predicted using Doi- Edwards theory and has 

Figure 2-16: Different types of LAOS stress waveforms with their corresponding 
relative phase angle of the third Fourier harmonic for 4 different types of soft and hard 
polymer gels. The different waveform shapes correspond to different polymer 
microstructures. The plateau waveform was displayed for diblock copolymer gels. The 
backward tilted shoulder was displayed for soft gels. The forward tilted shoulder was 
displayed for polysaccharides xanthan gum and hyaluronic acid (Roth, 2012). 
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subsequently been demonstrated using the pom pom model (Hyun et al., 2012; 

Pearson & Rochefort, 1982). However, the precise physical reason which causes this 

exponent value is still not understood. Subsequent experimental investigations have 

demonstrated that the gradient of 𝐼3/1 varies with dependent upon polymer topology. 

The gradient of 𝐼3/1 is known to be sensitive in detecting the amount of branching 

within polymer melts. For example, a highly branched high-density polyethylene melt 

has a 𝐼3/1 gradient of 𝑛 ≈ 1.6 (Hyun et al., 2006, 2007).      

2.5.4 Analysis of LAOS waveforms – theoretical background 

This thesis focuses upon the nonlinear rheology of bacteria biofilms and uses a 

range of LAOS techniques to interpret rheometer data and understand the 

rheological signatures experimentally obtained. Therefore, I find it logical to spend 

some time introducing the foundational mathematical principles of each technique. 

2.5.5 Stress symmetry  

The total stress generated within a material is dependent upon the magnitude of 

strain (𝛾) and its derivative, strain rate (�̇�). For a viscoelastic material the total stress 

(𝜎) is separated into an elastic response 𝐺′(𝜔)𝛾(𝜔𝑡), which is dependent upon the 

strain (𝛾),  and the viscous response 𝐺′′(𝜔)
�̇�(𝜔𝑡)

𝜔
, which is dependent upon strain rate 

�̇�(𝜔𝑡)

𝜔
. The three time dependent variables 𝛾, �̇�/𝜔 𝑎𝑛𝑑 𝜎 can be represented as vectors 

𝑖, 𝑗, 𝑘  within a (𝛾,
�̇�

𝜔
, 𝜎) coordinate system. These vectors map the path of a time 

dependent plane known as the stress surface, which represents the dynamic 

response of a material through an oscillatory cycle. The total stress response of a 

material is thus a function of frequency, strain and time which is assumed continuous 

and differentiable. By substituting 𝛾 = 𝑥(𝑡) and 
�̇�

𝜔
= 𝑦(𝑡), the total stress can be 

represented as,  

𝜎(𝜔, 𝛾0, 𝑡) = 𝜎(𝑥, 𝑦),                                               [22] 

where 𝛾0 is the strain amplitude of the oscillation cycle. Inverting strain and strain rate 

produces a negative stress,   

𝜎(−𝑥,−𝑦) =  −𝜎(𝑥, 𝑦),                                               [23] 

which makes stress 𝜎 an odd function as 𝑓(−𝑥) =  −𝑓(𝑥). This property of stress is 

applicable to most soft materials (Kwang Soo et al., 2005). As both 𝑥 and 𝑦 are odd 

functions of their arguments, the total stress can be decomposed into  
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𝜎(𝑥, 𝑦) =  
𝜎(𝑥,𝑦)−𝜎(−𝑥,𝑦)

2
+ 

𝜎(𝑥,𝑦)−𝜎(𝑥,−𝑦)

2
,                                 [24] 

since 

𝜎(−𝑥, 𝑦) =  −𝜎(𝑥,−𝑦).                                                   [25] 

The first and second components of [24] represent an odd even and even odd 

contribution of total stress respectively,   

𝜎𝑂𝐸 = 
𝜎(𝑥,𝑦)−𝜎(−𝑥,𝑦)

2
,                                                        [26] 

𝜎𝐸𝑂 = 
𝜎(𝑥,𝑦)−𝜎(𝑥,−𝑦)

2
.                                                        [27] 

 

Taking the contour integral over one period of oscillation [26] and [27] with respect to 

the odd component yields zero, a characteristic property of odd functions,     

∮𝜎𝑂𝐸𝑑𝑥 = 0,                                                          [28] 

∮𝜎𝐸𝑂𝑑𝑦 = 0.                                                          [29] 

 

Which means that the total stress in the system is the contour integral of the even 

functions over one period of oscillation,   

∮𝜎𝑑𝑥 = ∮ 𝜎𝐸𝑂𝑑𝑥 ,                                                      [30] 

∮𝜎𝑑𝑦 = ∮𝜎𝑂𝐸𝑑𝑦.                                                       [31] 

Proving that the decomposition of [24] is unique and satisfies [28] and [29] means 

that [26] and [27] are true and that total stress can be geometrically decomposed into 

elastic and viscous parts 𝜎′ and 𝜎′′. This decomposition is valid as in the linear 

viscoelastic region we can show that:  

𝜎(𝑥, 𝑦) = 𝜎′(𝑥, 𝛾) + 𝜎′′(𝑦, γ),                                             [32] 

where  

𝜎′ = 𝐺′𝑥(𝑡)                                                           [33] 

and  

𝜎′′ = 𝐺′′𝑦(𝑡).                                                         [34] 
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where 𝜎′ is an odd function of 𝑥 and 𝜎′′ is an odd function of 𝑦, meaning they are in 

the linear viscoelastic regime, so, 

 

∮𝜎′𝑑𝑥 = 0,                                                                            [35] 

∮𝜎′′𝑑𝑦 = 0,                                                            [36] 

And  

∮𝜎𝑑𝑥 = ∮ 𝜎′′𝑑𝑥,                                                       [37] 

∮𝜎𝑑𝑦 = ∮𝜎′𝑑𝑦 .                                                       [38] 

Which leads us to show the equivalency in decomposing LAOS stress into elastic 

and viscous components as with linear viscoelasticity,  

𝜎′ = 𝜎𝑂𝐸,                                                             [39] 

𝜎′′ = 𝜎𝐸𝑂,                                                             [40] 

𝜎′(𝑥, 𝑦) = 𝜎′(𝑥, γ),                                                     [41] 

𝜎′′(𝑥, 𝑦) = 𝜎′′(𝑦, γ),                                                    [42] 

This then allows the interpretation of LAOS signal as an extension of the linear 

regime where Γ′ and Γ′′ are used as the dynamic moduli in the nonlinear region,  

𝜎′ = Γ′(𝑥, γ)𝑥,                                                          [43] 

𝜎′′ =  Γ′′(𝑦, γ),                                                          [44] 

which in the linear viscoelastic limit can also be used to represent the linear 

storage 𝐺′ and loss modulus 𝐺′′,   

 lim
γ→0

Γ′(𝑥, γ) = 𝐺′(𝜔),                                                     [45] 

lim
γ→0

Γ′′(𝑦, γ)  = 𝐺′′(𝜔).                                                  [46] 

2.5.6 Fundamentals of Ewoldt Chebyshev method  
Traditionally FT rheology involved the analysis of the stress response signal by 

performing a Fourier transform, from which the overall stress 𝜎 could be analysed in 

terms of the higher order shear moduli  𝐺𝑛
′  and 𝐺𝑛

′′ and the higher order viscosities 𝜂𝑛
′  

and 𝜂𝑛
′′,  
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𝜎(𝑡; 𝜔, 𝛾0) =  𝛾0  ∑ {𝐺𝑛
′ (𝜔, 𝛾0)sin 𝑛𝜔𝑡𝑛 𝑜𝑑𝑑 + 𝐺n

′′(𝜔, 𝛾0)𝑐𝑜𝑠𝑛𝜔𝑡},                      [47] 

𝜎(𝑡; 𝜔, 𝛾0) =  �̇�0  ∑ {𝜂𝑛
′′(𝜔, 𝛾0)sin 𝑛𝜔𝑡𝑛 𝑜𝑑𝑑 + 𝜂𝑛

′ (𝜔, 𝛾0) cos 𝑛𝜔𝑡},                     [48] 

where 𝛾0 is the strain amplitude and �̇�0 is the strain rate amplitude.  

However, this method suffers from a series of drawbacks: 

1. The physical interpretation of higher harmonics is unclear. 

2. Characterising non-linear behaviour using 𝐺1
′  and 𝐺1

′′ generally is not sensitive 

enough to provide an accurate representation of the non-linear behaviour. 

To eliminate these weaknesses and construct a repeatable, consistent, physically 

interpretable framework, Ewoldt (Randy et al., 2008) took Cho’s stress decomposition 

proof and argued that the Fourier transform of the total stress could be decomposed 

into elastic and viscous stresses:  

𝜎′ ≡
𝜎(𝛾,�̇�)−𝜎(−𝛾,�̇�)

2
= 𝛾0  ∑ 𝐺𝑛

′ (𝜔, 𝛾0) sin 𝑛𝜔𝑡 ,𝑛 𝑜𝑑𝑑                                   [49] 

𝜎′′ ≡
𝜎(𝛾,�̇�)−𝜎(𝛾,−�̇�)

2
= 𝛾0  ∑ 𝐺𝑛

′′(𝜔, 𝛾0) cos𝑛𝜔𝑡 .𝑛 𝑜𝑑𝑑                                  [50] 

Plotting the Fourier transformed signal 𝜎′ and 𝜎′′ with respect to 𝑥 and 𝑦 results in a 

single valued curve.This approach captures the full Fourier transformed signal, 

including higher harmonics, which partially solves drawback 1. To characterise the 

curves Cho suggested using a polynomial regression analysis which is of the general 

form,  

𝐹 = 𝑎0𝑓0(𝑥) + 𝑎1𝑓1(𝑥) + 𝑎2𝑓2(𝑥) +⋯+ an𝑓𝑛(𝑥),                                        [51] 

where 𝑎n are the weighting coefficients on the fitting polynomials 𝑓𝑛(𝑥).However, 

polynomial analysis features an arbitrary user choice of the number of higher order 

terms used to represent each curve, which has a feedback effect in influencing the 

value of the lower order terms. To solve this issue Ewoldt proposed the adoption of 

Chebyshev polynomial basis functions, which determine the fitting points used during 

polynomial analysis. Chebyshev polynomials are suited towards describing LAOS 

due to their orthogonality in the domain [-1 1] which corresponds to [−𝛾, 𝛾] and are 

defined by,  

𝜎′(𝑥) =  𝛾0  ∑ 𝑒𝑛(𝜔, 𝛾0)𝑇𝑛(𝑥),𝑛:𝑜𝑑𝑑                                          [52] 

𝜎′′(𝑦) =  𝛾0̇  ∑ 𝑣𝑛(𝜔, 𝛾0)𝑇𝑛(𝑦).𝑛:𝑜𝑑𝑑                                          [53] 
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Here 𝑒𝑛 is representative of the elastic Chebyshev harmonic and 𝑣𝑛  is representative 

of the viscous Chebyshev harmonic. Only odd harmonic contributions are considered 

due to the flow symmetry assumption from FT rheology. The Chebyshev coefficients 

in the strain or strain rate domain are represented by,   

𝑒𝑛 = 𝐺𝑛
′ (−1)

𝑛−1

2          𝑛: 𝑜𝑑𝑑,                                              [54] 

𝑣𝑛 =
𝐺𝑛
′′

𝜔
= 𝜂𝑛

′               𝑛: 𝑜𝑑𝑑.                                              [55] 

Both 𝑒𝑛 and 𝑣𝑛 can be physically interpreted by considering the phase angle 𝛿𝑛 of the 

complex modulus 𝐺𝑛
∗,  

𝜎 =  𝛾0 ∑ |𝐺𝑛
∗|sin (𝑛𝜔𝑡 + 𝛿𝑛𝑛:𝑜𝑑𝑑 ).                                          [56] 

For the third harmonic the magnitude of 𝑒3 and 𝑣3 can be related to a physical 

behaviour using the third order phase angle 𝛿𝑛,    

𝑒3 = −|𝐺3
∗|cos 𝛿3

{
 
 

 
  > 0     𝑓𝑜𝑟 

𝜋

2
< 𝛿3 <

3𝜋

2
,

= 0     𝑓𝑜𝑟 𝛿3 =
𝜋

2
,
3𝜋

2
,             

< 0     𝑓𝑜𝑟 −
𝜋

2
< 𝛿3 <

𝜋

2
,

                                       [57] 

 

𝑣3 = − |
𝐺3
∗

𝜔
| sin 𝛿3 {

> 0     𝑓𝑜𝑟    0 < 𝛿3 < 𝜋,      
= 0     𝑓𝑜𝑟     𝛿3 = 0, 𝜋,               
< 0     𝑓𝑜𝑟     𝜋 < 𝛿3 < 2𝜋.    

                        [58] 

Ewoldt also constructed geometrically derived moduli from the elastic and viscous 

Lissajous Bowditch plots, in order to capture the contribution of higher harmonics. In 

the elastic LB plots, local elastic response at zero strain is represented by the 

minimum strain modulus 𝐺𝑀
′  and at large strains by 𝐺𝐿

′ , the large strain modulus. In 

the linear region 𝐺𝑀
′  and 𝐺𝐿

′  converge to 𝐺′,  

𝐺𝑀
′ ≡

𝑑𝜎

𝑑𝛾
|
𝛾=0

=  ∑ 𝑛𝐺𝑛
′ = 𝑒1 − 3𝑒3 +⋯ ,𝑛 𝑜𝑑𝑑                                      [59] 

𝐺𝐿
′ ≡

𝜎

𝛾
|
𝛾=±𝛾0

= ∑ 𝐺𝑛
′ (−1)

𝑛−1

2 = 𝑒1 + 𝑒3 +⋯ .𝑛 𝑜𝑑𝑑                             [60] 

From the viscous LB plots, local viscous response at zero strain is represented by the 

minimum viscosity modulus ηM
′  and at large strains by ηL

′  the large viscosity modulus. 

In the linear region ηM
′ and ηL

′  converge with G′′, 

Strain stiffening 

Linear elastic 

Strain softening 

Strain thickening 

Linear viscous  

Strain thinning 
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𝜂𝑀
′ ≡

𝑑𝜎

𝑑�̇�
|
�̇�=0

=
1

𝜔𝑛
 ∑ 𝑛𝐺𝑛

′′(−1)
𝑛−1

2 = 𝑣1 − 3𝑣3 +⋯ ,𝑛 𝑜𝑑𝑑                  [61] 

𝜂𝐿
′ ≡

𝜎

�̇�
|
�̇�=±�̇�0

=
1

𝜔𝑛
 ∑ 𝐺𝑛

′′ = 𝑣1 + 𝑣3 +⋯ .𝑛 𝑜𝑑𝑑                                 [62] 

The rate of change of the large viscosity modulus in comparison to the minimum 

viscosity modulus is indicative of the non-linear behaviours described in [59] and [60]. 

To represent these using the geometric measures the dimensionless numbers based 

on the strain, the stiffening ratio 𝑆 and the shear thickening ratio 𝑇, are constructed. 

With a 𝑆 value of zero, the gradients of the large elastic modulus and minimum 

elastic modulus are equivalent. This signifies a linear behaviour, in the limit where 𝐺𝑀
′  

and 𝐺𝐿
′  converge to 𝐺′. A value of 𝑆 > 0 corresponds to strain stiffening, which occurs 

when the gradient of  𝐺𝐿
′  is steeper than 𝐺𝑀

′ , signifying that at high strain the 

intercycle moduli of the material has increased.  When 𝑆 < 0 the material is exhibiting 

a strain softening response, and 𝐺𝑀
′  has a larger gradient than 𝐺𝐿

′ ,  

𝑆 ≡
𝐺𝐿
′−𝐺𝑀

′

𝐺𝐿
′ =

4𝑒3+⋯

𝑒1+𝑒3+⋯
 .                                                 [63] 

The 𝑇 ratio follows the same logic as the 𝑆 ratio, with 𝑇 = 0 signifying a linear 

response and 𝑇 > 0 a shear thickening response and 𝑇< 0 a shear thinning response,  

𝑇 ≡
𝜂𝐿
′−𝜂𝑀

′

𝜂𝐿
′ =

4𝑣3+⋯

𝑣1+𝑣3+⋯
.                                                 [64] 

2.5.7 Series of physical processes 

Chebyshev analysis is a mathematically rigorous approach to analysing LAOS data 

using a static approach. However, the formulation of 𝑆 and 𝑇 ratios is inherently an 

intercycle averaged property. Since they are intercycle averaged metrics, 𝑆 and 𝑇 

cannot fully describe the instantaneous response of a material, thus neglecting the 

transient material response to imposed strain. Additionally, the validity of stress 

symmetries which underlie the mathematics of the Chebyshev analysis cannot be 

experimentally guaranteed. Materials can exhibit even harmonics due to the 

occurrence of nuisance factors, such as secondary flows and slip. In order to 

circumvent these issues Rogers proposed a mathematical approach which relies 

upon differential geometry to characterise the trajectory of stress in the (𝛾,
�̇�

𝜔
, 𝜎) 

coordinate system (Donley et al., 2019; C.-W. Lee & Rogers, 2017; S. A. Rogers, 

2017; S. A. Rogers & Lettinga, 2011). The series of physical processes (SPP) 

approach considers the change in material response in relation to a change in 
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instantaneous strain, as opposed to selecting the material moduli based upon total 

strain. This framework enables the interpretation of non-steady state oscillatory 

waves in addition to instantaneous material response and considers all data points 

sampled by a rheometer. In doing so a complete picture of the response of a material 

to strain and strain rate can be constructed, whereby the processes of extension, 

yielding, flow and deformation behaviour can be mapped through a singular 

oscillatory cycle.  

As seen in the stress symmetry and Chebychev method derivation oscillatory strain 𝛾 

and strain rate �̇� can be represented by, 

𝛾(𝑡) =  𝛾0 sin𝜔𝑡,                                                      [65] 

and 

�̇�(𝑡) = 𝛾0𝜔 cos𝜔𝑡,                                                     [66] 

and the stress is, 

𝜎(𝑡) =  𝛾0(𝐺
′(𝜔) sin 𝜔𝑡 + 𝐺′′(𝜔) cos𝜔𝑡).                                   [67] 

SPP differs from static approaches, which use stress symmetry arguments, by 

showing that [65] can be rearranged to give,   

𝐺′(𝜔)𝛾0𝑠𝑖𝑛𝜔𝑡 + 𝐺
′′(𝜔)𝛾0𝑐𝑜𝑠𝜔𝑡 − 𝜎(𝑡) + 0 = 0,                              [68] 

which is reminiscent in structure of the general description of a plane, 

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0.                                                  [69] 

As the material is driven externally by oscillations, the plane motion is set along a 

fixed path. To fully describe the trajectory of the plane the Frenet Serret TNB 

reference frame is used, Figure 2-17.  

A continuous differentiable trajectory travelling through ℝ3 space can be described by 

a series of coordinates 𝐴, with positions 𝑥, 𝑦, 𝑧,  

𝐴 = [𝐴𝑥  𝐴𝑦 𝐴𝑧] = [𝑥 𝑦 𝑧].                                              [70] 

The tangent 𝑇 of the curve represents the unit vector travelling tangentially in the 

direction of motion, which is calculated using,  
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𝑇 = 
�̇�

|�̇�|
,                                                             [71] 

where �̇� is the first order derivative of 𝐴 and |�̇�| is the magnitude of the first order 

derivative of 𝐴. From 𝑇 the normal unit vector 𝑁 of the curve can be calculated which 

is the derivative of the tangent vector,  

𝑁 = 
�̇�

|�̇�|
= 

�̇� ×(�̈�×�̇�)

|�̇�||�̈�×�̇�|
.                                                     [72] 

Finally, 𝐵 is the binormal unit vector which points perpendicularly to both 𝑇 and 𝑁, 

and defines the orientation, 

𝐵 = 𝑇 × 𝑁 = 
�̇�×�̈�

|�̈�×�̇�|
.                                                     [73] 

By calculating the TNB unit vectors, trajectories through (𝛾,
�̇�

𝜔
, 𝜎) space can be fully 

described. By substituting the coordinate system (𝛾,
�̇�

𝜔
, 𝜎) into 𝐴 we can show that a 

LAOS trajectory can be described by a series of points 𝐴,   

                          𝐴 = [𝐴𝛾  𝐴𝛾

𝜔

̇  𝐴𝜎] = [𝛾0𝑠𝑖𝑛𝜔𝑡 𝛾0𝑐𝑜𝑠𝜔𝑡 𝜎(𝑡)] = [ 𝛾(𝑡)
𝛾(𝑡)

𝜔
𝜎(𝑡)]
̇

.           [74]                                             

To describe the displacement of the stress plane in terms of the points within a 

trajectory and the associated binormal vector we use,  

𝜎 = 𝐺𝑡
′(𝑡)𝛾(𝑡) + 𝐺𝑡

′′(𝑡)
�̇�(𝑡)

𝜔
+

𝐵𝛾(𝑡)

𝐵𝜎(𝑡)
𝐴𝛾(𝑡) +

𝐵 �̇�
𝜔

(𝑡)

𝐵𝜎(𝑡)
𝐴𝛾

𝜔

(𝑡) + 𝐴𝜎(𝑡),                   [75] 

Figure 2-17: Schematic of the Fernet Serret TNB reference frame. The tangent 
(T), normal (N) and binormal (B) are unit vectors used to fully describe the 
trajectory of a path through strain 𝛾, strain rate �̇� and stress 𝜎 coordinate space. 
The trajectory is formed of experimentally acquired discrete data points taken at 

time 𝑡 in an oscillation period. The resolution of sampling is dependent upon the 
rheometer sampling frequency.  
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where 𝐵𝛾 is the binormal vector of strain and 𝐵𝜎 the binormal vector of stress and 𝐵 �̇�

𝜔

 

is the binormal vector of strain rate over frequency and 𝐺𝑡
′(𝑡) and 𝐺𝑡

′′(𝑡) are the 

transient storage and transient loss moduli. Substituting [72] into [73] produces, 

𝜎 = 𝐺𝑡
′𝛾 + 𝐺𝑡

′′ 𝛾

𝜔
+

𝐵𝛾

𝐵𝜎
𝛾 +

𝐵 �̇�
𝜔

𝐵𝜎

𝛾

𝜔
+ 𝜎,                                        [76] 

which can then be rearranged to yield,  

[𝐺𝑡
′ +

𝐵𝛾

𝐵𝜎
] 𝛾 + [𝐺𝑡

′′ + 
𝐵 �̇�
𝜔

𝐵𝜎
]
�̇�

𝜔
= 0,                                       [77] 

which can be solved by processing 𝛾, �̇� and 𝜎 data through the TNB reference frame 

using [74]. Solving [77] results in the transient measures of viscoelasticity, the 

transient storage modulus,  

𝐺𝑡
′(𝑡) =  − 

𝐵𝛾(𝑡)

𝐵𝜎(𝑡)
,                                                       [78] 

and the transient loss modulus,  

𝐺𝑡
′′(𝑡) =  − 

𝐵 �̇�
𝜔

(𝑡)

𝐵𝜎(𝑡)
.                                                      [79] 

2.5.8 Transient phase angle  

In linear rheology the elastic and viscous components can be defined geometrically 

through the complex modulus 𝐺∗ and the phase angle 𝛿. The transient moduli can be 

described analogously in this way. This results in what is termed the complex 

transient modulus, 

|𝐺𝑡
∗| =  √𝐺𝑡

′2 + 𝐺𝑡
′′2,                                                   [80] 

and the transient phase angle,  

𝛿𝑡 = tan
−1 𝐺𝑡

′′

𝐺𝑡
′ ,                                                         [81] 

which describes the state of instantaneous yielding within a material. 

2.6 Viscoelastic liquids, glasses and gels 

The field of soft matter physics concerns the study of physical systems assembled 

through weak interactions which are easily deformed with thermal fluctuations or 

physical stresses (Likos, 2001). A spectrum of materials fall into this category 

including: foams, emulsions, gels, biological materials and colloids. These systems 



39 
 

are commonly heterogeneous and complex due to the transient nature of the 

material’s microstructure and are classified as either passive or active. An active 

system is constantly out of equilibrium as constituents consume energy to convert 

into active mechanical processes, such as bacterial swimming or in mammalian 

systems where molecular protein motors drive spontaneous self-organisation of 

microtubule filaments (Lushi et al., 2014; Sanchez et al., 2012). A biofilm can be 

considered an active system whereby bacteria consume energy for cell division and 

EPS secretion. Within this field a primary aim is the formulation and dissection of 

structure – function relationships. Determining these relationships enables engineers 

to carefully design soft matter materials for practical applications. Soft matter systems 

exhibit self-organisation, where local interactions cause large scale ordering to 

emerge (Secor et al., 2015). The structure of these systems determines the materials 

mechanical properties.  

The transitions between colloidal phases is a confluence of physical and chemical 

parameters, which can be simplified into two variables: packing fraction and 

interaction potential (V. J. Anderson & Lekkerkerker, 2002). The dynamics of each of 

these categories is driven by the diffusive motion of particle constituents, which range 

from fully diffusive in liquids to amorphous arrested states in glasses and gels. 

Packing fraction is simply the ratio of the solid particles volume to filler in the solution, 

while pairwise interaction potential describes the strength of particle – particle 

attraction. Varying each of these parameters results in different behaviours. In liquids 

packing fraction is low < 0.1, increasing the packing fraction results in increased 

elastic behaviour. As stiffer filler particles begin to interact with each other, the 

material becomes viscoelastic. Increasing the packing fraction further > 0.3 causes 

crowding and results in glassy and gel rheology (Laurati et al., 2011). The random 

packing limit (𝜑𝑟𝑝𝑙) of 0.64 for spheres results in complete dynamic arrest while 𝜑𝑟𝑝𝑙 

in rod systems is dependent upon rod aspect ratio (Kyrylyuk et al., 2009). The 

interaction potentials differentiate glassy and gel dynamics. 
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Glasses are non-bonded systems whereas gels are bonded (Zaccarelli & Poon, 

2009). In repulsive glassy system particle – particle interactions are weak/repulsive, 

less than a few kT. This non ergodic state structure is formed due to topological 

caging, constriction of movement by nearest neighbours driven by inter-particle 

repulsion. The transient nature of this non-crystalline structure is due to the 

stochastic Brownian diffusion of particles, in and out of cages. Gels and attractive 

glasses however, form percolated fractal network structures at low packing fractions, 

due to strong short-range attractive particle interactions (Tanaka et al., 2004). Such 

short-range forces include Van de Waals, attractive electrostatic interactions and 

depletion attraction. Gelation occurs when the packing fraction or interaction strength 

increases to a point where inter-particle clusters join to form a stress bearing space 

spanning network. 

Figure 2-18: A phase diagram of colloidal phases against interaction potential (
𝑉0

𝑘𝐵𝑇
) 

and packing fraction (𝜑). At low packing fractions 𝜑𝑐 and interaction potential colloids 
freely move due to thermal brownian motion corresponding to disordered fluid 
behaviour (𝛼). At an intermediate packing fraction, below the glass transition point 𝜑𝑔 

particles are increasingly constricted, limiting free motion causing increases to 
viscosity (𝛽). Belond the glass transition point particle motion is suppressed entirly 
which results in a frustrated state and formation of a glass. The mechanical 
properties of glasses are purely due to constriction of nearest neighbours, known 
phenomologically as cages and the rearrangment/relaxation of these cages 
underflow (𝜖). Increasing the interaction potential of the system results in the 
formation of bonded space spanning structures at low packing fractions. This state is 
known as gelation, where the attractive interparticle bonds determine the mechanical 

response of the system 𝛾2. The space spanning network morphology is influenced by 
interaction potential and packing faction. The density of the clusters and network 
connectivity reduces with lower interaction potential whilst particle crowding increases 
with an increasaing packing fractions (𝛾1 and 𝛿). The mechanical response of these 
conformations is a confluence of the interparticle bonding strength and the 
constriction of motion within the interparticle cages. Adapted from (Roth, 2012).       
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The transition between gel and glassy rheology is determined by the interplay 

between caging and bonding dynamics (Jia et al., 2018). As a consequence of the 

different length scales associated with bonding and caging, materials which feature 

both display different yielding dynamics, depicted in Figure 2-18.    

2.7 Colloidal polymer gels 

Colloidal polymer gel networks are self-supporting networks, composed of mixtures 

of colloids and polymers. The interactions which govern colloidal gel self-assembly 

are dependent upon the enthalpic interactions between polymers and colloidal 

(Zaccarelli, 2007). When enthalpic interaction is high enough this leads to permanent 

polymer absorption on the colloid surface. However, where enthalpic interaction isn’t 

high enough this leads to a non-absorbing state, where the polymer isn’t absorbed on 

the colloidal surface. In colloidal gels with a high non absorbing polymer 

concentration the entropic depletion attraction governs self-assembly (Eckert & 

Bartsch, 2002). Depletion attraction occurs when the non-absorbing polymer within 

the system is excluded from the surface at the colloid excluded volume layer. This 

leads to regions between proximate colloids where polymer is excluded, known as 

the overlap layer. The formation of the overlap layer induces an osmotic pressure 

and effective attractive force between the colloids, leading to contact aggregation 

(Marenduzzo et al., 2006). This type of attraction leads to an increase in the entropy 

of the colloidal polymer system. The magnitude of the depletion attraction is 

dependent upon the molecular weight of the polymer. Longer polymer chains result in 

a larger depletion layer, which causes an increase the effective attractive force and 

influences the structure of depletion induced aggregates (Burns et al., 2002).  

For polymer colloids mixtures where polymer is absorbed onto a colloidal surface, 

two enthalpic interaction processes can occur. The thickness of the absorbed layer is 

determined by the solvent properties, such as ionic concentration and pH and the 

polymer chain length and concentration (Cohen Stuart et al., 1985). For instance, in 

solutes with high ionic strengths bridging flocculation is reduced as the polymer 

chains compress onto the colloidal surface. Regions on the colloid unsaturated with 

polymer may bond through polymer bridging (Swenson et al., 1998). Polymer 

bridging results in the formation of aggregated structures and can lead to gelation. 

The extent of aggregation is dependent upon the affinity of the polymer to the 

colloidal surface, for weakly adhesive polymers where interaction strength is below 

that of the system thermal energy bonding will be reversible (F. Yan et al., 2018). The 
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extent of bonding is also dependent upon the polymer weight, or chain length. Long 

chain polymers have been shown computationally to result in the formation of loops 

or double bonds (multiple colloidal polymer bonds on the same colloid), wasting 

potential bonds with neighboring colloids and increasing interstitial space (Howard et 

al., 2019). Polymer bridging interaction strength increases with polymer 

concentration, until a maximum bridging interaction point. Beyond this concentration 

point for thermodynamically stable bound polymer steric effects induce a repulsive 

interaction and excess polymer addition results in an increase in steric repulsion, and 

the emergence of steric stabilization, which prevents colloidal contact aggregation 

(Weeks et al., 2000). However colloidal/polymer mixtures can also display spectrums 

of these interaction behaviors. In mixtures where absorbed layers and a non-

absorbed polymer a combination of short-range repulsion and long-range attraction is 

present, a behavior known as tele bridging (Hooper & Schweizer, 2005).  

The structure of polymer colloidal gel mixtures can be decomposed into two 

networks, the colloidal network, which is mediated through the aforementioned 

entropic and enthalpic processes and the polymer network with forms between 

interacting polymer chains in the solvent phase. Polymer networks are mediated by a 

combination of physical, ionic and covalent interactions which vary as a function of 

the polymer chains properties. Physical interactions between long linear polymer 

chains are mediated through the polymer molecular weight and relaxation behavior. 

These characteristics are described using tube models such as the Doi Edward 

model (Linnes et al., 2013). In tube-based models polymer chain dynamics are 

described based upon the extent of topological constriction by neighboring polymer 

chains otherwise known as entanglement. In dense polymer solutions the thermal 

motion of the chains, known as reptation determines the relaxation behavior of the 

network. Increased constriction causes a reduction to chain relaxation time resulting 

in increased network strength. Ionic crosslinking between polymer chains is 

dependent upon the charge and protonated state of the polymer. Polymers can be 

cationic or anionic depending on the polymer chain chemistry and the pH of the bulk 

solvent. The extent of polymer ionic crosslinking is therefore dynamic and 

controllable, a trait which is harnessed in the production of responsive polymer 

materials with switchable mechanical properties such as ionically responsive 

elastomers (Miwa et al., 2018). The crosslinking of proteins and polysaccharides is 

primarily driven by electrostatic, hydrogen bonding and hydrophobic interactions and 



43 
 

enzymatic crosslinking (Gentile, 2020). Covalently crosslinked polymer networks are 

a function of the functional groups of the polymer and the concentration and valence 

of the related ionic moiety or ion. Alginate for example is a polymer network which 

requires the addition of calcium ions to form a gelated crosslinked structure (K. Y. 

Lee & Mooney, 2012). The interaction of ligands and ionic metals mediates 

crosslinking density and gelation through chelation, where cationic metals covalently 

bind with ligand polymer networks (Magami & Williams, 2019).  

Combinations of different types of polymer network lead to the formation of 

interpenetrating polymer networks (Myung et al., 2008). Networks of this type have 

combined properties from the individual networks which results in a confluence of the 

mechanical attributes of each network, such in the construction of double network 

hydrogels (Sun et al., 2016). The formation of a double network hydrogel can result 

in enhanced hydrogel mechanical properties such as increased strength and 

emergence of seal healing properties (Lei et al., 2020). The collective interacts 

between colloidal and polymer networks are complex. Colloidal and matrix networks 

are generally bonded through weak intermolecular forces. When sheared colloidal 

motion induces hydrodynamic many body forces upon the polymer network structure, 

resulting in the emergence of complex mechanical behaviors. For example, inclusion 

of colloids into a polymer network can influence the stiffening and softening behavior 

by influencing the relaxation dynamics of the polymer network (van Oosten et al., 

2019). One of the most well-known effects is the Payne or Fletcher-Gant effect which 

was first seen in particle filled rubber polymer networks. The effect emerges as the 

polymer particle filled material is sheared. The storage modulus of the material drops 

rapidly with increasing strain and at a material dependent strain the viscous modulus 

of the material increases, the magnitude of which is dependent upon the filler 

concentration (Drozdov & Dorfmann, 2002). The precise mechanism governing this 

effect is still debated however a number of possible mechanisms have been 

proposed such as; the breakdown/ reformation of the filler network, molecular 

disentanglement, agglomeration/deagglomeration of filler aggregates and desorption 

of the polymer chain bridges from the colloidal phase of the mixture (Heinrich & 

Klüppel, 2002).  
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2.8 Bacteria used within this thesis 

In this thesis a variety of bacteria are used, this section provides background 

information of each strain and the motivation behind their selection for rheological 

analysis.   

2.8.1 Pseudomonas fluorescens 

Pseudomonas fluorescens is a rod-shaped, gram-negative bacterium commonly 

found in soil and water environments. In soils P. fluorescens has been shown to 

influence the mechanical properties of vermiculite and clays (Genovese, 2012). The 

EPS of P. fluorescens is known to be composed of functional amyloids which confer 

protection from desiccation and controls hydrophobicity and stiffness (Zeng et al., 

2015). P. fluorescens biofilms have also been shown to have a high content of uronic 

acid, where uronic acid content in EPS was found to be between 32.8 – 39.3% when 

grown on glass and stainless steel (Kives et al., 2006). A major biofilm component of 

P. fluorescens is the adhesive protein LapA (large protein A), which is required for 

biofilm formation and cell surface localization. LapA is a large repeat surface protein 

and has an estimated molecular weight of ~520 kDa (Boyd et al., 2014). When 

knockout strains of LapA were compared to wild type, the cellular adhesive force was 

found to drop by a factor of 2 (Ivanov et al., 2012). The rheology of P. fluorescens 

has been studied using several different techniques. Interfacial rheology was used to 

characterise the time dependent mechanical properties of P. fluorescens pellicle 

(Patrick A Rühs et al., 2013), while CLSM microrheology was used to map local 

mechanical properties of statically grown P. fluorescens, revealing heterogeneities 

between the bacterial clusters and the void spaces (H. Cao et al., 2016). Recently P. 

fluorescens was used in a co-culture experiment with Bacillus licheniformis and the 

rheology of singular and mixed agar grown biofilms was compared. P. fluorescens 

was seen to dominate the co-culture population, and the resulting mechanical 

properties of the biofilm tended towards the properties of monoculture P. fluorescens 

(Abriat et al., 2019).  

Pseudomonas fluorescens was selected as the model species for the experiments in 

chapter 1 due to the notable effect of chemical treatments on a bacterium found in 

the same genus Pseudomonas aeruginosa. Pseudomonas fluorescens was selected 

as a strain which was anticipated to respond to treatments with divalent cations and 

urea. I wanted to demonstrate the applicability of LAOS rheological techniques in 

characterising biofilm and detecting changes (in this case chemical composition) to 
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the biofilm microstructure. Pseudomonas fluorescens is also a soil dwelling strain 

which may encounter elevated concentrations of CaCl2 and FeCl2 and urea. However, 

the concentrations used within this chapter were increased beyond what would be 

expected to be found in nature. This was done to maximise the putative effect on the 

biofilm rheology. This is a commonly used method for chemical treatment studies on 

biofilm, as will be discussed in the chapter introduction.    

2.8.2 Pantoea sp.  

Pantoea sp. YR343 is a rod shaped, gram negative, motile bacterium, originally 

isolated from the rhiziosphere of Populus deltoides (Bible et al., 2016). Pantoea sp. 

YR343 is a nonpathogenic root and a plant leaf coloniser. It can promote plant 

growth through the biosynthesis of indole 3 acetic acid (IAA). IAA synthesis also 

results in the upregulation of EPS substances. When grown under flow, Pantoea sp. 

YR343 forms compact multicellular structures which can cause blockages in complex 

porous geometries (Aufrecht et al., 2019). Pantoea YR343 UDP is a deletion mutant 

of YR343 which is defective in EPS biosynthesis of amylovoran and stewartin, and 

forms linked cellular structures in flow (Aufrecht et al., 2019). Stewartin and 

amylovoran are both anionic polysaccharides; composed of glucose, galactose and 

gluconic acid (Bellemann et al., 1994). Functional divergence between the two is 

thought to have occurred at a protein level (Carlier et al., 2009). UDP is a gene that is 

also found in both Pantoea stewartin and Pantoea amylovran. Pantoea stewartii and 

Erwinia amylovora are known to agglomerate into structures known as symplasmata 

(Tecon & Leveau, 2016; Jing Yang et al., 2017)  

Symplasmata clusters form from single cells and grow to contain several hundred 

densely aggregated cells, independent of the adhering surfaces, differentiating this 

phenotype from a biofilm (Cindy & Jean-Michel, 2003). This phenotype can be 

comparable to autoaggregation which occurs in a variety of different bacteria such as 

Escherichia. coli and Staphylococcus aureus. Autoaggregation is typically mediated 

by EPS surface molecules called autoagglutinins (Trunk et al., 2018). Autoagglutinins 

are a broad term encompassing surface proteins, eDNA and exopolysaachrides 

which promote aggregation and flocculation. Symplasmata formation has been 

postulated to be a protective mode of bacterial growth formed in response to 

environmental conditions, such as limited carbon sources and low pH. Typical 

characteristics of symplasmata clusters include dense cell-cell packing, a reduced 
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metabolic rate and oxygen level, and a reduction in transmembrane protein 

expression (Achouak et al., 1994; Feng et al., 2003; Yu et al., 2016). Various genes 

linked with uptake or degradation of carbon sources and phase variation have been 

linked to symplasmata (Duan et al., 2007; Jing Yang et al., 2017). In P. agglomerans 

symplasmata formation is linked to the LysR – type transcription regulator lrhA. The 

IrhA (LysRhomologue A) protein controls flagella motility and has been linked to 

regulation of EPS production in Pantoea alhagi. Symplasmata formation has been 

shown to be dependent upon c-di-GMP in Erwinia amylovora (Edmunds et al., 2013; 

Jiang et al., 2015). An omnipresent feature of symplasmata is the production of 

extracellular capsular polysaccharides (CPS) commonly associated with adhesion, 

biofilm proliferation and virulence towards plants (Minogue et al., 2002).  

Pantoea sp. YR343 was selected for experimentation to look into the effect of EPS 

secretion on biofilm rheology and microstructure due to the large difference in EPS 

production between the wild type and selected UDP mutant, which has a reduced 

production of amylovoran, a capsular polysaccharide (details of mutation found 

4.2.1). Pantoea sp. YR343 is also a plant root colonizer which is a plant growth 

promoting rhizobacteria (PGPR). A comprehensive understanding the rheology of 

Pantoea sp. YR343 may help to inform understanding of how soil networks are 

affected by inclusion of Pantoea sp. YR343.    

2.8.3 Neisseria polysaccharea 

Neisseria polysaccharea is a diplococcus, gram negative bacterium closely related to 

Neisseria meningitidis, and was originally isolated from the throats of healthy children 

from Europe and Africa (J. Y. Riou et al., 1983). The EPS of N. polysaccharea is 

known to be composed of NpAS (Neisseria polysaccharea amylosucrase), which can 

synthesis an amylosucrose type polymer at high sucrose concentration (Daudé et al., 

2013; Potocki de Montalk et al., 2000). This exopolysaccharide is produced in 

copious amounts in the presence of sucrose on agar plates and is composed of D-

glucose (J.-Y. Riou et al., 1986). This bacterium was selected for comparison against 

P. fluorescens, Streptococcus epidermidis and Comamonas denitrificans due to its 

diplococcus shape and predominant polysaccharide EPS matrix.     

2.8.4 Staphylococcus epidermidis 

Staphylococcus epidermidis is a cocci, gram positive bacterium which is commonly 

found on the human skin and in infections associated with contaminated medical 

equipment, such as catheters (Otto & Silhavy, 2002). The EPS of S. epidermidis is 
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mainly comprised of PIA (Polysaccharide intercellular adhesion) a 210 kDa 

polysaccharide composed of repeating units of N- acetylglucosamine (chitosan) 

which is deposited on the cell wall surface (Cramton et al., 1999; M Ganesan et al., 

2013). The network structure of PIA in S. epidermidis is thought to be predominantly 

structured through associative mechanisms of PIA, as opposed to entanglements (M 

Ganesan et al., 2013). The EPS of S. epidermidis also I known to be composed of a 

large repeat surface protein and surface adhesion protein Bap (Biofilm associated 

protein), which is a predominant component found in S. epidermidis biofilms isolated 

from human infections (Piessens et al., 2012). Certain strains of S. epidermidis are 

known to have large quantities of Embp (Extracellular matrix binding protein) a 1 

MDa protein which promotes intercellular bonding and binds to the EPS matrix 

(Christner et al., 2010). The viscoelasticity of S. epidermidis has been shown to vary 

depending upon NaCl concentration; 86 and 135 mM NaCl results in increases to the 

elastic and viscous moduli, whereas at high concentrations of 770 mM the moduli 

decrease by an order of magnitude (Pavlovsky et al., 2013). The cause of this 

rheological change is possibly explained by a separate experiment on S. epidermidis, 

which used identical concentrations of NaCl, but focused upon microstructural 

changes. Here local number density was used to identify distinct density structural 

phenotypes. It was found that increasing NaCl resulted in lower packing fractions. 

Interestingly the presence of vancomycin also resulted in a lower packing fraction 

(Mahesh Ganesan et al., 2016; Stewart et al., 2015). S. epidermidis has been used 

to test the hypothesis that biofilms behave and self-assembly like a colloidal polymer 

gels. In this experiment S. epidermidis biofilms were compared with cultures of S. 

epidermidis mixed with isolated PIA and a colloids - PIA mixture. The resulting 

colloidal – PIA gel had a comparable microstructure and rheology to the S. 

epidermidis biofilm. The rate of self-assembly of the colloid - PIA and S. epidermidis 

biofilm was controlled by pH (Stewart et al., 2015).  

S. epidermidis was selected for comparison against P. fluorescens, Neisseria 

polysaccharea and Comamonas denitrificans due to its commonality with P. 

fluorescens in having a major EPS component as a large repeat surface protein. Also 

since S. epidermidis is a cocci strain it would be a suitable analogue to a sphere 

colloidal gel system, which have an extensive literature regarding LAOS behavior. 

This characteristic would provide a way of accessing how the cocci shape influences 

breakdown in comparison to the rod-shaped strains. It was also selected due to the 
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known presence of intracellular adhesins within its EPS matrix, which were expected 

to contribute to short range bonding.  

2.8.5 Comamonas denitrificans 

Comamonas denitrificans is a rod shaped, gram negative bacterium originally 

isolated from activated sludge and commonly used as a biomarker for denitrification 

in wastewater treatment plates due to its efficient denitrifying activity (Andersson et 

al., 2008). C. denitrificans is a motile bacterium with a polar flagellum which forms 

filamentous chains in liquid culture (Gumaelius et al., 2001). The EPS of C. 

denitrificans is composed of proteins, polysaccharides and has a high content of 

eDNA. A thick layer of polysaccharide is produced around cell chains when grown in 

liquid, and the polysaccharide fraction is mainly composed of glucose and mannose 

(Andersson et al., 2009). C. denitrificans is also known to be a dominant 

exoelectrogenic bacterium (Xing et al., 2010) and have been detected as an anode 

populating bacterium in a constructed wetland microbial fuel cell system (F. Xu et al., 

2019). This bacterium was selected for experimentation due to its filamentous 

growth, which I hypothesized would involve a short-range bonding. This contrasted 

with the other selected strains which were not filamentous. Additionally, it was 

selected due to its increasingly apparent industrial relevance in wastewater systems 

and application within microbial fuel cells.         
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Chapter 3 Rheology of P. fluorescens in different chemical environments  

3.1 Introduction 

Biofilms are a communal form of bacterial growth, which attach to and colonise 

aqueous surfaces (Flemming & Wingender, 2010). A defining feature of biofilm 

proliferation is the production of self-secreted extracellular polymeric substances 

(EPS), which confer the encapsulated bacteria protection from external challenges 

and determine biofilm architecture (Hobley et al., 2015). EPS is composed of 

polysaccharides, eDNA, lipids and a multitude of proteins. The EPS/bacterial 

composite material is a heterogeneous non equilibrium system, where structural 

properties evolve with time and in response to environmental conditions (Nadell et 

al., 2016). The dynamic combination of phenotypic responses and physicochemical 

interactions within the EPS results in large inter and intra species structural 

variability. The spatial organisation of biofilm contributes to specific biological 

functions, such as protection from bacteriophage attack and antibiotic challenges 

(Vidakovic et al., 2018). It has also been hypothesised that biofilms adapt the EPS 

composition to their local environment to improve mechanical resistance to removal 

(Kovach et al., 2017). It is therefore important to understand how EPS composition 

and the chemical environment influence the microstructure and mechanics of 

biofilms. 

Biofilms characteristically exhibit viscoelastic mechanical behaviour, a time 

dependent response to applied stresses. Viscoelastic behaviour confers mechanical 

benefits to biofilm, such as resistance to erosion and the formation of complex 

structures, such as streamers (Kundukad et al., 2016). Due to the species - species 

variation in EPS matrix composition biofilms form a wide array of structures with 

different mechanical characteristics. These characteristics are also influenced by 

environmental physiochemical conditions. Microfluidic grown biofilms are highly 

hydrated, while biofilms grown at the liquid/air interface result in highly packed 

structures. Biofilms typically have viscoelastic properties akin to frustrated state 

materials like glasses or gels. Self- assembly of these frustrated states within a 

biofilm features numerous physicochemical interactions. EPS structure is determined 

by the secretion of species dependent polymers and physicochemical interactions 

between polymer chains, such as branching, crosslinking, protein aggregation and 

folding. While interparticle interactions are mediated by ionic concentration, hydrogen 

bonding, van de Waals forces and cell-cell mechanical interactions (Jing Yan et al., 

2019).  
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Biofilms grow in diverse chemical environments. In natural environments, such as 

pipe systems, chemicals such as iron and calcium may be found in high 

concentrations. In environments where biofilm formation has damaging 

consequences, exogenous addition of metal salts can be used to disrupt the biofilm 

structure. Therefore, it is important to understand how metal salts modify biofilm 

rheology. Both Fe and Ca ions can be commonly found in the biofilms from different 

environments (Das et al., 2014). The presence of metal ions within polymer solutions 

can cause ionic crosslinking between the polymer chains within polymer networks 

resulting in altered mechanical properties (Mccoy & Muthukumar, 2010). In B. subtilis 

metal ions Fe2+ and Cu2+ have a fortification effect, due to effective crosslinking, 

resulting in increased elasticity (Grumbein et al., 2014). Typically, rheological studies 

investigating the effects of ion salts on biofilm viscoelasticity use higher molar 

concentrations than typically found in nature in order to maximise the putative effect 

on rheology. Studies applying chemical treatment using a 30-60 minutes soak in the 

selected metal ions have ranged between 50 mM up to 1 M in B. subtilis (Grumbein 

et al., 2016; Klotz et al., 2019). Metal ion studies on P. aeruginosa and S. epidermidis 

used a concentration of 0.2 M for a soak of 60 minutes (Jones et al., 2011), whilst a 

similar study on P. aeruginosa used concentrations ranging from 50 mM to 250 mM 

for a 60 minutes soak (Lieleg et al., 2011). A concentration of 0.25 M was used for 

various divalent cations for a 300 minutes soak of Azotobacter vinelandii (Kretschmer 

& Lieleg, 2020a).  

Urea is an organic compound and known ‘chaotropic agent’ used in the treatment of 

biofilm and known to effect electrostatic interactions within polymer solutions through 

disruption of hydrogen bonds. Urea reduces the quality of water as a solvent 

reducing the solubility of polymer in water. S. epidermidis and P. aeruginosa biofilms 

have both been shown to weaken when treated with urea (Brindle et al., 2011). The 

treatment of flow cell grown S. epidermidis with 0.5 M urea was shown to cause 

swelling of 53% and an increase in compliance which coincided with significant 

biofilm removal. However, the effect of urea treatment on the rheology of P. 

fluorescens biofilm is presently unknown.            

Viscoelastic behaviour can be decomposed into two regions, the linear viscoelastic 

region (LVER) and the non-linear region. Measurements in the linear region quantify 

the quiescent structure of a system, whilst in the nonlinear region the elastic and 

viscous properties of a material are a function of the applied strain. Typically, biofilms 
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are measured within the LVER however in the real-world biofilms experience large 

shear forces, in which a biofilm will deform within the nonlinear regime. Therefore, to 

understand this understudied rheological regime I propose to use large amplitude 

oscillatory shear (LAOS).  

Large amplitude oscillatory shear (LAOS) tests investigate the non-linear viscoelastic 

behaviour of soft materials. Three main analytical techniques are used with LAOS 

data, each approach; Fourier transform rheology, Chebychev analysis and the series 

of physical processes (SPP) quantifies the nonlinear viscoelastic response at 

different temporal scales within an oscillatory cycle. These respective approaches 

can be categorised as; intercycle, intracycle and instantaneous methods of analysing 

oscillatory shear data recorded by a rheometer. LAOS tests have been performed on 

various colloidal, gel and polymer melt systems to investigate structure - property 

relationship. Experiments using model materials mediate viscoelastic response and 

material microstructure by varying physicochemical parameters such as ionic 

concentration and packing fraction (Juntae et al., 2014; Kim et al., 2014). Adopting a 

similar parametric approach for biofilms may help to improve the interpretation of 

biofilm rheological studies. This may enable researchers to answer questions 

regarding the range and strength of mechanical interactions within biofilms as well as 

introducing an improved technique over conventional methods to access how 

chemical treatments, polymer expression and environmental conditions effect biofilm 

nonlinear viscoelastic behaviour. 

In this chapter I establish protocols designed to investigate the non-linear viscoelastic 

behaviour of biofilm using a model bacterium, P. fluorescens. I employed several 

LAOS analytical methods to explain how the non-linear rheology of P. fluorescens 

biofilms is affected by treatment with different chemical compounds. The chemical 

concentrations used in this chapter are typically greater than seen in nature. This 

was a conscious decision used to increase the putative effect of the chemical 

treatment on the biofilm rheology as a proof of concept of applicability of LAOS 

techniques.    

3.2 Materials and Methods 

3.2.1 Bacterial culture and sample collection 

P. fluorescens (Migula 1895) was grown overnight in LB broth (Lennox, Sigma) from 

glycerol stocks at 24 oC with shaking (150 rpm). Overnight cultures of P. fluorescens 

(250 µL) was spread onto 1.5 % nutrient broth (24 g/L) agar plates with an L-shaped 
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spreader. The cultured agar plates were then incubated at 24 oC for 3 days. Before 

rheological characterisation, biofilms were incubated with 2 ml of 100 mM of FeCl2, 

CaCl2, urea or DDH2O for 60 mins. A concentration of 100mM was selected to 

maximise the putative effect on biofilm rheology. The biofilm incubated with 2 ml 

DDH2O was considered the control sample. After 60 mins the supernatant was 

discarded and the was biofilm left for 15 mins before testing. Biofilm was collected 

from the agar plates by scraping with a ground edge microscope slide. Biofilm was 

collected from 3 plates and transferred to the rheometer. Approximately 0.3 ml of 

biofilm was used for each test.  

3.2.2 Linear rheological measurement 

Rheological measurements were performed using a rheometer (Malvern Kinexus 

Pro+,UK) mounted on a passive isolation plate. The rheometer was operated in a 

strain-controlled mode. A 20 mm parallel plate geometry was used for all tests. To 

minimise slip between the biofilm and the parallel plates, 120 grade waterproof grit 

paper was attached to both the top and bottom plates. Biofilms were tested using a 

gap height of 0.8-1.2 mm. Each sample was trimmed using a razor blade and the gap 

height was adjusted to a normal force of 0.1 N. To prevent desiccation during 

measurements a solvent trap was used. The temperature of the biofilm was 

maintained at 25 oC using a Peltier plate which was built into the lower plate. 

Frequency sweeps were performed from 0.1 Hz to 50 Hz at a strain amplitude (𝛾) of 

1 %.  

3.2.3 Non-linear rheological measurement 

Samples were transferred to the rheometer as previously described and left to relax 

for 5 minutes. Strain controlled LAOS measurements where performed for 24 strain 𝛾 

amplitudes logarithmically spaced between 0.1 % and 250 %. All LAOS 

measurements were performed at 1 Hz. Raw data for the time, the angular 

displacement and the torque were sampled. For each strain 17 oscillatory cycles 

were sampled to ensure steady state oscillations.The raw data was processed using 

a custom matlab routine, found in appendix A. The Chebychev analysis was 

performed using a matlab routine MITlaos, kindly provided by Prof Randy Ewoldt. For 

each chemical treatment at least 3 biological replicate measurements were 

performed to ensure the trends sampled were reproducible.   
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3.2.4 CLSM of chemically treated P. fluorescens biofilm 

After respective treatments, biofilm samples were stained in situ with 10 µM Syto63 

(Sigma, UK), a cell permeable DNA stain and incubated for 30 minutes. After 

incubation biofilms were transferred from the agar surface to a 25 µL geneframe 

(Sigma, UK) via scraping. The geneframe was sealed with a #1.5 coverslip. Imaging 

was performed using a Leica SP8 confocal laser scanning microscopy (CLSM). Syto 

63 was excited at a wavelength of 660 nm and an emission filter was set at 670-750 

nm. A 100x oil immersion objective N/A 1.4 was used to image each biofilm. Random 

fields of view (FOV) were selected for each treatment with a window size 101 µm 

x101 µm. The pinhole was set at 1 airy units (AU). A total of n = 5 FOV were taken 

for each treatment. An Image J and MATlab code was written for image analysis, 

which are found in appendix B and C. Images were pre-processed by first applying a 

contrast limited adaptive histogram equalization (CLAHE) filter with a box size of 127 

for denoising and contract enhancement. The image was then further smoothed 

using a Gaussian filter of radius 2. Then a Mexican hat filter of radius 3 was applied 

to each image and result was thresholded using an Otsu threshold. Mexican hat 

filtering, otherwise known as Laplacian of Gaussian filter (LoG), is a second 

derivative filter used to filter areas of rapid change (Sotak & Boyer, 1989). This 

method enables clear localisation of sharp edges and was the parameter with the 

highest sensitivity effecting the packing fraction. Mexican hat kernel sizes of pixel 

radius 2, 3 and 4 were compared. A radius of 4 resulted in an over estimation of 

packing fraction, as 𝜙 > 0.68, above the random packing limit for rods with an aspect 

ratio over 3 (Kyrylyuk et al., 2009). The kernel size was set at 3, as this had 

substantially less noise than a kernel size of 2. To account for the cell membrane 

after thresholding was completed a dilation step was performed, which corresponded 

to an increase in cell width and cell length of 0.2 μm (Drescher et al., 2016). A 

comparison of the different imaging parameters tested can be found in appendix D. 

The packing fraction was then calculated as the ratio of cells to void space. 
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3.3 Results  

3.3.1 Microstructure analysis   

To compare the effects of DDH2O, CaCl2, FeCl2 and Urea on the microstructure of P. 

fluorescens, CLSM images were taken of each biofilm after each respective chemical 

treatment as shown in Figure 3-1. To quantify the fraction of space filled by bacteria I 

calculated the packing fraction 𝜙, Figure 3-2. The packing fraction of chemically 

treated P. fluorescens biofilms ranged between 0.46 - 0.63. Urea had the lowest 

packing fraction of 0.48 ± 0.03, its microstructure featured regions of void space 

which surrounded dense clusters of bacteria. DDH2O had a packing fraction of 0.55 ± 

0.03, its microstructure featured small regions of void space within a continuous mat 

of bacteria. CaCl2 and FeCl2 had respective packing fractions of 0.58 ± 0.03 and 0.61 

DDH2O Urea 

CaCl2 FeCl2 

Figure 3-1: Representative CLSM images of a single slice of P. fluorescens after 
60 mins chemical treatment. Slices were taken 10 µ𝑚 above the coverslip. Urea 
treated P. fluorescens displayed a structure which appeared to exhibit increased 
void regions in comparison to CaCl2 and FeCl2. The differences between cation 
treatments CaCl2 and FeCl2 appeared minimal.    
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± 0.02. Both microstructures appeared absent of noticeable voids. The phase regime 

of colloidal rod packings depends on two main microstructural parameters, the 

packing fraction 𝜙 and the aspect ratio of P. fluorescens 𝑟. The average aspect ratio 

of P. fluorescens taken from CLSM images was 𝑟  = 5.5± 0.4. Using a rod phase 

diagram constructed by Solomon the microstructure of each treated P. fluorescens 

can be categorised (Solomon & Spicer, 2010). Here the maximum packing limit for 

rods can be calculated using 𝜙𝑚𝑎𝑥 ≈
5.4

𝑟
 and the minimum percolation volume fraction 

for glasses is 𝜙𝑔𝑙𝑎𝑠𝑠 =
0.7

𝑟
. This results in packing fraction bounds of 0.124 < 𝜙 < 

0.982 for which P. fluorescens cellular packing can be considered in the rod glass 

regime. This relation provided by Soloman neglects the presence of an EPS matrix, 

however it provides context for the cellular packing regime. In a glassy regime each 

particle is constricted in its movement by its nearest neighbours’, phenomenologically 

known as a cage. Energy is stored and dissipated through rearrangement of the 

phenomenological cages. High packing fractions 𝜙 reduce cage size leading to 

construction and reduced inner cage particle mobility. However, the presence of an 

interstitial EPS matrix between the P. fluorescens cells composed of major structural 

EPS components LapA and alginate increases the complexity of these cage 

interactions. In the presence of a polymeric matrix cage constriction will also be 

influenced by the EPS mediated intercellular bonding forces, which are mediated by 

the polymeric components.         

Figure 3-2: Packing fraction calculated from CLSM z slices for each chemically 
treated P. fluorescens biofilm, cells were stained with cell permeable DNA stain 
Syto 63. Error bars represent the standard deviation (n=3).   
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3.3.2 Frequency sweeps of the chemically treated P. fluorescens biofilms  

To measure the effect of each treatment on the viscoelastic properties of P. 

fluorescens biofilms linear and non-linear rheology measurements are performed. 

Each treatment will be compared to DDH2O treated P. fluorescens, which will act as 

a control. To access the frequency dependence of each treated biofilm frequency 

sweeps are performed at a strain of 1%, Figure 3-3. The control treatment with 

DDH2O had a 𝐺’ equal to 582± 54 Pa. Treatment with divalent cations CaCl2 and 

FeCl2 resulted in a strengthening effect with 𝐺’ increasing to 1107± 186 Pa and 

1641± 129 Pa respectively at 𝜔 = 0.1 Hz. The urea treatment resulted in softening 

effect, reducing 𝐺’ to 248.2± 48 Pa. For each treatment 𝐺’ exhibited negligible 

frequency dependence, known as plateau behaviour. Plateau behaviour is indicative 

of an elastically dominant response (𝐺’ >  𝐺’’) and is a typical characteristic of soft 

glassy gels and dense suspensions. However, for DDH2O and urea treatments the 

viscous moduli 𝐺’’ displayed a frequency dependence. For the control treatment 𝐺’’ 

increased from 58± 5 Pa to 90.96± 8 Pa between 𝜔 = 10 – 50 Hz, while the urea 

treatment resulted in an increase from 34± 4 Pa to 53.92± 6 Pa. The increase in 𝐺’’ 

at higher frequencies indicates the EPS network of DDH2O and urea had longer time 

scale response in comparison to FeCl2 and CaCl2. Similar increased frequency 

dependence is known to occur in hydrogels with a reduced polymer crosslinking 

density (Gil & Hudson, 2007). This may lead to an increase in the equilibrium swelling 

point of the biofilm and explain the increased dissipation from the solvent phase at 

high frequencies (Parmar et al., 2013; van der Sman, 2015). This behaviour was 

Figure 3-3: Frequency sweeps of chemically treated P. fluorescens  biofilm. 𝜔 = 0.1 – 

50 Hz and the strain 𝛾 =1 %. Circular symbols represent the elastic moduli G’, 
triangle symbols represent the viscous moduli G’’. The dashed lines signify the 
frequency dependence of the control and urea biofilms. The mean of three biological 

replicates ± standard deviation is shown.    
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absent for divalent cation treatment with FeCl2, which resulted in a 𝐺’’ curve which 

exhibited a minimum at 6.28 Hz of 218± 32 Pa. The presence of a 𝐺’’ minimum is 

commonly seen in attractive glass/ gel systems suggesting that FeCl2 addition 

strengthened the EPS network structure. The viscous modulus 𝐺’’ minimum has been 

explained using mode coupling theory (MCT) for glassy colloidal systems near the 

glass transition point. The minimum emerges due to the transitioning of cage 

relaxation modes from 𝛼 to 𝛽. 𝛽 mode relaxation describes the diffusive motion of a 

particle within its surrounding cages and occurs over short times. 𝛼 relaxation 

describes the particle escape from surrounding cages, which requires the 

coordination of several particle rearrangements, so occurs over longer times (Carrier 

& Petekidis, 2009). The results from these frequency sweeps suggest that urea 

treatment softens P. fluorescens biofilms by weakening the polymer EPS phase. The 

addition of CaCl2 had a mild strengthening effect while FeCl2 had a more noticeable 

strengthening effect. The minimum in 𝐺’’ in FeCl2 suggests the possibility that the 

strengthening effect of FeCl2 originates from modification to the EPS structure, 

possible through ionic crosslinking with charged functional groups in the EPS matrix.  

3.3.3 Chemically treated P. fluorescens biofilms display changes in yielding 

behaviour  

To quantify the effect of each chemical treatment on the yielding behaviour of P. 

fluorescens biofilm amplitude sweeps were performed. An amplitude sweep 

measures the viscoelastic response to increasing strains and captures the yielding 

behaviour. Amplitude sweeps started in the LVER (𝛾 < 1 %) through to the nonlinear 

Figure 3-4: Nonlinear parameter ratio of third harmonic to the first. 𝛾 represents 
strain. The yellow box denotes the linear viscoelastic region. Inset, is a log-log plot 
showing the MAOS region which fell between 𝛾 =1 % and 10 %. The results shown 

are the mean ± standard deviation.  
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LAOS region (𝛾 < 250 %). The nonlinear parameter 𝐼3
1

 is used as a quantitative 

method for identifying the transition from linear to non- linear behaviour, Figure 3-4. 𝐼3
1

 

is used in combination with amplitude sweep measurements to determine the Linear 

viscoelastic region (LVER) and the medium amplitude oscillatory shear region 

(MAOS). The LVER probes the quiescent structure of each biofilm. In this region 

there is minimal structural rearrangement, and 𝐺’ and 𝐺’’ are independent of strain. A 

lack of structural rearrangement means the Fourier transform of the stress signal is 

dominated by the fundamental harmonic and 𝐼3
1

 is small. The MAOS region in ideal 

polymer melts is identified from 𝐼3
1

 plots by the near quadratic increase of 𝐼3
1

 with 

strain above the noise floor of the rheometer. The onset of nonlinearity begun at 0.5 

%, 1.39 %, 1.92 % and 1.92 % for FeCl2, DDH2O, CaCl2 and urea respectively. 𝐼3
1

  

initially increased fastest in urea and FeCl2 samples. FeCl2 peaked at 0.11± 0.01 at 𝛾 

= 100% and urea peaked at 0.17± 0.02 at 𝛾 = 140%. The drop after the peak in 𝐼3
1

 is 

due to the increase of harmonics higher than 𝐼3. This can be attributed to fluidisation. 

At the point of fluidisation the non-linearities reduce as the stress response is 

dominated by liquidlike behaviour (Craciun et al., 2003). Amplitude sweeps enable 

the identification of the crossover strain 𝛾𝐶  (𝐺’ = 𝐺’’). The cross over strain is the 

point where the biofilm viscoelasticity becomes viscously dominated. DDH2O  and 

urea biofilms had a 𝛾𝐶  of ~80 % and ~72 %, Figure 3-5. FeCl2 and CaCl2 had a 𝛾𝐶  of 

Figure 3-5: Amplitude sweeps of DDH2O and Urea treated P. fluorescens biofilm, 𝜔 

= 1 Hz, 𝛾 = 0-250 %. The pink dots represent the yielding (crossover) point 𝛾𝐶  of the 
biofilm where 𝐺′ > 𝐺′′. Both the Control and Urea treated biofilms exhibit a viscous 
overshoot before the crossover point. The mean of three biological replicates ± 
standard deviation is shown.    
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~120 % and ~140 %, Figure 3-6. Each treatment exhibited the power law decrease 

after the cross over strain was exceeded, Table 3-1. The shear thinning response of 

the elastic and viscous modulus is theoretically known to exhibit a power law 

dependence on the strain of 𝐺′~ 𝛾−2𝑛 and 𝐺′′~ 𝛾−𝑛, where 𝑛 is the power law 

gradient . This occurs with Maxwell type models and has also been seen  

 𝑛′ 𝑛′′ 𝑛′

𝑛′′
 

DDH2

O 

-1.10± 0.11 -0.63± 0.02 1.75± 0.08 

Urea -1.23± 0.09 -0.73± 0.11 1.68± 0.22 

CaCl2 -1.10± 0.02 

d

Type equation here. 

-0.54± 0.03 2.27± 0.05 

FeCl2 -1.41± 0.06 -0.64± 0.04 2.28± 0.09 

Figure 3-6: Amplitude sweeps of FeCl2 and CaCl2 treated P. fluorescens biofilm, 𝜔 = 
1 Hz, 𝛾 = 0-250 %. The pink dots represent the yielding (crossover) point 𝛾𝐶  of the 
biofilm where 𝐺′ > 𝐺′′. The CaCl2 treated biofilm didn’t display an obvious stress 
overshoot before the crossover point. Treatment with FeCl2 resulted in an increased 
strengthening effect in comparison to CaCl2. The FeCl2 treatment caused the viscous 

moduli to drop before the crossover point. The mean of three biological replicates ± 
standard deviation is shown. 

Table 3-1: Power Law exponents for each chemically treated biofilm, 𝑛′ is the 
elastic  power law exponent and 𝑛′ is the viscous power law exponent after the 

cross over strain 𝛾𝐶. Measurements are presented as an average ± standard 
deviation from three biological replicates.    
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experimentally in a range of soft glassy materials (Hyun et al., 2003). DDH2O and 

urea treatments resulted in an exponent ratio 
𝑛′

𝑛′′
 < 2. An exponent ratio below 2 has 

been demonstrated theoretically using Mode coupling theory (MCT) simulations 

(Poulos et al., 2013). Modifications to the dissipative behaviour of each treated 

biofilms were observed as the cross over strain was approached. Alterations in 

dissipative behaviour can be interpreted from shape of the viscous modulus 𝐺’’. To 

clearly illustrate the alterations in 𝐺’’ as a result of each treatment the viscous moduli 

𝐺” at each tested strain is normalized by the viscous moduli from the LVER 𝐺′′𝐿𝑉𝐸𝑅 to 

produce 𝐺′′𝑁𝑂𝑅𝑀  , Figure 3-7. Treatment with DDH2O and urea resulted in similar 

dissipative behaviour, 𝐺′′𝑁𝑂𝑅𝑀  increased with strain and reached at peak of 1.84± 

0.11 and 1.57± 0.02 at 𝛾 = 37.43 % and 𝛾 = 19.37 % respectively for DDH2O and 

urea. This behaviour is characteristic of the type III class of viscoelastic material. 

Type III viscoelastic materials feature weak strain overshoots (Voigtmann, 2014), 

Figure 3-8. The increase in 𝐺′′𝑁𝑂𝑅𝑀  for this type of material occurs as the 

microstructure and polymeric network initially resists flow. At a critical strain the 

bonds within the polymeric matrix yield and the colloidal filler particles align with the 

Figure 3-7: Plot of Viscous moduli 𝐺′′ normalised by 𝐺′′ from the linear viscoelastic 
region. Treatment with urea resulted in a reduced viscous overshoot in comparison 
to the control, the stress overshoot peak also occurred at a lower strain. Treatment 
with divalent cations eliminated the viscous stress overshoot behaviour. Treatment 
with FeCl2 resulted in the appearance of a shouldered decrease in 𝐺′′. CaCl2 treated 
P. fluorescens biofilms exhibited behaviour intermediate to the control and FeCl2 

treatments. The mean of three biological replicates ± standard deviation is shown. 
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flow direction and resulting in thinning (Vaart et al., 2013). Type III behaviour is 

commonly seen in a multitude of repulsive glassy gel systems, such as hard sphere 

suspensions, colloidal polymer gels, polymer melts and hydrogels (Koumakis et al., 

2012; J. D. Park et al., 2016; Zuidema et al., 2014). Type III yielding has been seen 

in several different biofilm species, such as rod-shaped V. cholerae, B. subtilis and P. 

aeruginosa (Huang et al., 2019; Kovach et al., 2017; Jing Yan et al., 2018). The 

difference in magnitude of 𝐺′′𝑁𝑂𝑅𝑀   between DDH2O and urea is reflective of the 

reduced resistance to alignment in the flow of the urea treated biofilm structure in 

comparison to DDH2O treatment. FeCl2 treatment resulted in a structural modification 

distinct from urea and DDH2O. 𝐺′′𝑁𝑂𝑅𝑀  exhibited a shoulder drop which begun at 𝛾 = 

1 % and plateaued at 𝛾 = 37 % with a 𝐺′′𝑁𝑂𝑅𝑀  value of  0.56± 0.12, before 

decreasing again at 𝛾 = 72 %. This type of dissipative behaviour is reminiscent of an 

attractive gel/glass system (AG). Attractive glasses are materials which have 

microstructures mediated by short range interparticle interactions. AG materials 

characteristically exhibit two distinct yielding regimes, known as two step yielding. 

The characteristic curve of an attractive glass features a two-step decrease in 𝐺′, and 

a shouldered decrease in 𝐺′′. Phenomenologically the two-step yielding process is 

separated into two relaxation mechanisms. The first step is known as α relaxation 

and is attributed to a reduction in bond rigidity and breakup of the large structure into 

clusters. The second step is known as β relaxation, here the clusters formed in the 

first step begin to breakdown. Experimenters commonly induce two-step yielding in 

 
Figure 3-8: Four types of yielding featured in soft materials. (a) Type I - Strain 
thinning, (b) Type II - Strain hardening, (c) Type III - Weak strain overshoot, and (d) 
Type IV - strong strain overshoot. 𝐺’ is the elastic moduli and 𝐺’’ is the viscous 
moduli. 𝐺’0 is the linear viscoelastic elastic moduli and 𝐺’’0 is the linear viscoelastic 

viscous moduli. 
𝛾

𝛾0
 is imposed strain 𝛾 normalised by the lowest imposed strain 𝛾0 in 

the strain sweep. This figure was adapted from (Hyun et al., 2002). 
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colloidal glasses/gels by increasing the solvent ionic concentration to screen 

electrostatic repulsion. AG’s have been studied experimentally using PMMA colloids, 

silica nanoparticles, deformable microgels and in surfactant suspension pastes 

(Ewoldt et al., 2010; Shukla et al., 2015; H. Zhang et al., 2016; Zhou et al., 2014). 

The 𝐺′′𝑁𝑂𝑅𝑀  curve for CaCl2 displayed a reduced stress overshoot in comparison to 

DDH2O and urea peaking at 1.15± 0.23. However, CaCl2 didn’t result in the distinct 

two step yielding seen due to addition of FeCl2. 

3.3.4 Chemical treatments cause a transition to both nonlinear thickening and 

softening behaviours  

To visualise the transition from linear to non-linear behaviour, representative elastic 

(𝜎 vs 𝛾) and viscous (𝜎 vs �̇�) Lissajous – Bowditch plots (LB) are presented in Figure 

3-9. Within the linear viscoelastic regime, the elastic LB curves are approximated by 

an ellipse. The ellipse shape indicates linear recoverable deformation. Here the LB 

plot reflects the fundamental harmonics 𝐺′1 and 𝐺′′1 which are equivalent to the linear 

moduli 𝐺′ and 𝐺′′ in the LVER. As the imposed shear strain 𝛾 increases and enters 

the non-linear region the elastic LB plots deviate from an elliptical shape. The 

distortion from an ellipse is caused by the increased magnitude of higher Fourier 

harmonics. The enclosed area of the Lissajous loops increases with strain amplitude 

as the contribution of the higher energy storing harmonics increases. The enclosed 

Lissajous area represents the energy dissipation through each LAOS cycle (Kuczera 

et al., 2018). The shapes of the LB curves give a qualitative indication of the yield 

response of a material (Tao et al., 2019). Each of the chemically treated biofilms 

displayed elastic LB plots which became more rectangular at higher strains. The 

emergence of rectangular LB plots has been seeing in elastoplastic materials which 

have fully yielded (Ewoldt & McKinley, 2010). The viscous LB plots for DDH2O and 

urea displayed self-intersections and secondary loops, Figure 3-9d and Figure 3-9e. 

Secondary loops occur due to stress overshoots, which can be described 

phenomenologically as when structural breakdown lags the instantaneous shear rate. 

Which is indicative of stress being dissipated at a faster rate than strain is 

accumulated (Armstrong et al., 2016). This results in simultaneous structural 

reformation and breakdown. The presence of secondary or “thixotrophic loops” are 

typically seen in materials exhibiting high nonlinearity. Secondary loops have been 

seen experimentally in thixotropic suspensions, food suspensions and micelles 

(Duvarci et al., 2017; Khandavalli et al., 2016; S. A. Rogers et al., 2011).  
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To obtain quantitative metrics from the LB plots the thickening ratio (𝑇) [63] and the 

softening ratio (𝑆) [62] are used. The thickening ratio represents viscous 

thickening/thinning and the stiffening ratio (𝑆) represents elastic stiffening/softening. 

Within the LVER both 𝑇 and 𝑆 are expected to be zero, when 𝑆 > 0 the material is 

strain softening. Each treatment exhibited strain rate softening behaviour which 

increased with increasing strain, Figure 3-10. Biofilms treated with DDH2O and urea 

displayed rapid increases of 𝑆 with DDH2O biofilms peaking at 𝑆 = 2.95± 1.25 and 

urea treated biofilms peaking at 𝑆 = 3.7± 1.9. After the respective peaks, the 𝑆 ratio 

for DDH2O and urea both dropped below 0. The strain at which the 𝑆 drop occurred 

Figure 3-9: Lissajous Bowditch (LB) curves, showing strains from 0.1 to 250%.Left 
column: Elastic Lissajous curves, Right column viscous Lissajous curves. (A,D): 
Control, (B,E): urea, (C,F): CaCl2, (D,G): FeCl2. LB curves represent the strain, strain 
rate and stress behaviour of the chemically treated biofilms through a single period of 
oscillation. Colour from blue to purple represents low to high strain amplitude values. 
The shear strain values are represented by 𝛾 and the shear strain rate values are 

represented by �̇�.  Red arrows in D and E highlight the presence of secondary loops.  
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were 139 % and 72.5 % respectively which matched the strains at which LB 

secondary loops emerged. The drop in 𝑆 could therefore be interpreted as the point 

of elastic stress overshoot for DDH2O and urea biofilms. The 𝑆 ratio for CaCl2 and 

FeCl2 treatments peaked at 0.97± 0.23 and 0.68± 0.12 respectively. The 𝑆 ratio for 

FeCl2 featured a plateau in 𝑆 of 0.46± 0.09, Figure 3-10 inset. This indicates that 

divalent treatment causes a reduction in strain softening within P. fluorescens biofilm.  

The 𝑇 ratio is the ratio of the minimum strain-rate dynamic viscosity 𝜂𝑀 and the large 

strain-rate dynamic viscosity 𝜂𝐿, Figure 3-11. DDH2O and urea biofilms exhibited 

shear thickening (𝑇 > 0) which increased with strain. Both 𝜂𝑀 and  𝜂𝐿 increased, with 

𝜂𝐿 increasing at a faster rate, which is indicative of strain-rate thickening behaviour. 

𝜂𝐿 increased at a faster rate compared to 𝜂𝑀 for urea treated biofilms in comparison 

to DDH2O treated biofilms. This could be a result of faster breakdown of the urea 

structure and formation of clusters. This observation would agree with the reduced 

magnitude of the 𝐺’’ overshoot in urea treated biofilms in comparison to DDH2O. 

Faster breakdown of the urea treated biofilm structure would result in a lower 𝐺’’ 

overshoot as the microstructure has a lower stress bearing capacity, so rearranges to 

align with the flow-field at a faster rate, reducing the peak averaged viscous moduli 

𝐺’’. For the CaCl2 treated biofilm 𝜂𝑀 and  𝜂𝐿 increased at the same rate. This 

behaviour indicates that the structure thickened with an equal contribution from the 

Figure 3-10: Stiffening ratio (𝑆) for each chemically treated P. fluorescens biofilm. 

𝑆 < 0 denotes shear softening, 𝑆 > 0 denotes shear stiffening. Inset plot focuses 
upon CaCl2 and FeCl2 stiffening. The black arrows represent the intracycle averaged 
yielding point of the urea treated and control biofilms. The mean of three biological 

replicates ± standard deviation is shown. 
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strain thickening and the strain-rate thickening. This could be representative of the 

increased elasticity within the microstructure due to the addition of CaCl2. For FeCl2 

treated biofilms 𝜂𝑀 and  𝜂𝐿 initially increased at a similar rate. However at 𝛾 ~1 % 𝜂𝐿 

peaked at 27.84± 1.97 Pa.s and began to drop. The drop in 𝜂𝐿 represents a 

transitioning from strain rate thickening to strain rate thinning behaviour, thus the 

thinning of the FeCl2 structure was predominantly driven by strain rate. Interestingly, 

𝜂𝐿 exhibited a plateau region between 𝜂𝐿 = 21.20± 2.05 Pa.s, which coincided with a 

peak in 𝜂𝑀 of 29.15± 1.20 Pa.s. This is representative of strain thickening where 

strain rate thinning remained constant. This could be attributed to a second 

breakdown mechanism in the FeCl2 structure. After the plateau region both 𝜂𝑀 and 

 𝜂𝐿 declined, indicating both strain and strain-rate thinning. The behaviours of 𝜂𝑀  and 

 𝜂𝐿 are represented using the 𝑇 ratio, found in Figure 3-12. Biofilms treated with urea 

peaked at 𝑇 = 0.44± 0.04 and DDH2O treatment at 𝑇 = 0.25± 0.02. The 𝑇 ratio of the 

FeCl2 treated biofilm displayed a minimum of -0.39± 0.08, after this point the ratio 

Figure 3-11: The minimum strain rate dynamic viscosity 𝜂𝑀 (blue) and the large 
strain-rate viscosity 𝜂𝐿 (red) are plotted against strain amplitude 𝛾 for each 

chemically treated biofilm. Strain rate thickening occurs when  𝜂𝐿 > 𝜂𝑀, whilst 

strain rate thinning occurs when 𝜂𝐿 < 𝜂𝑀. Addition of divalent cations CaCl2 and 
FeCl2 eliminated strain rate thickening behaviour which was exhibited in the 
control and urea biofilm. Treatment with FeCl2 caused the emergence of strain 
rate thinning. The mean of three biological replicates ± standard deviation is 
shown.  
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increased towards zero. As shown using 𝜂𝑀  and  𝜂𝐿 this thinning behaviour was due 

primarily to strain dependent thinning.  

Using the Chebychev framework I have been able to illustrate the transitions in 

nonlinear behaviour of P. fluorescens biofilm in response to different chemical 

treatments. I have shown that treatment with divalent cations causes increases the 

prominence of strain thinning in comparison to DDH2O and urea treated biofilms. The 

addition of FeCl2 resulted in an earlier onset of strain thinning in comparison CaCl2 

and had a 𝜂𝐿 plateau. Each treated biofilm displayed rheology consistent with glassy 

dynamics. To describe the breakdown in the EPS cell structure I move on to quantify 

the cage strength.           

3.3.5 Sequence of physical processes analysis 

To evaluate the stiffness of nearest neighbour cages in P. fluorescens biofilm the 

residual or cage modulus is used Figure 3-13a. The strength of the cage is 

determined by the components in a material system, in biofilm these components are 

the EPS network and cells. In this context the EPS matrix determines the intercellular 

bonding between cells and the long-range structure cells are embedded within. 

Whilst the packing of the bacteria determines the topological constraints of the cage. 

(Zaccarelli & Poon, 2009). The cage modulus is used to quantify the biofilm residual 

Figure 3-12: Thickening ratio (𝑇) for each chemically treated P. fluorescens biofilm. 
𝑇 <0 denotes shear thinning, 𝑇 >0 denotes shear thickening. Chemical treatment with 
CaCl2 and Urea resulted in a respective decrease and increase in the thickening ratio 
in comparison to the control (DDH2O). Treatment with FeCl2 however resulted in the 
emergence of shear thinning behaviour.  The mean of three biological replicates ± 
standard deviation are shown. 
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elasticity,  𝐺𝑐𝑎𝑔𝑒 = 
𝑑𝜎

𝑑𝛾
|
(𝜎= 0)

. 𝐺𝑐𝑎𝑔𝑒 provides an indication of the EPS cell material 

strength after experiencing a complete oscillation of amplitude 𝛾0 (S. A. Rogers et al., 

2011). For each chemical treatment 𝐺𝑐𝑎𝑔𝑒 and 𝐺’  were equivalent in the LVER, this is 

expected as within the LVER no significant structural rearrangements occur. 𝐺𝑐𝑎𝑔𝑒 

reduces with increasing strain for all treatments which is attributed to rearrangement 

of nearest neighbours and a reduction in the EPS strength as polysaccharide chains 

disentangle and protein bonds break. Rearrangements viscously dissipate energy 

altering the EPS bacteria structure and causing the reduction in 𝐺𝑐𝑎𝑔𝑒. Each biofilm 

displayed a 𝐺𝑐𝑎𝑔𝑒 plateau at 𝛾~ 75%. The similarities in 𝐺𝑐𝑎𝑔𝑒 plateau across each 

chemical treatment are reflective of the differences in residual cage strength. For 

typical hard sphere and soft sphere glassy systems 𝐺𝑐𝑎𝑔𝑒 decreases slightly and then 

stays reasonably constant at large strains e.g. 10-100 % as reported in (Vaart et al., 

2013). However, the presence of an EPS matrix causes a larger respective drop in 

Figure 3-13: (A) Plot of 𝐺𝑐𝑎𝑔𝑒 against strain, dashed lines represent the respective 

elastic modulus values. (B) Plot of accumulated strain at the point of maximum 
stress, dashed lines represent ideal elastic and ideal viscous accumulated strain 
gradients. Dotted lines represent the gradient of control and urea accumulated 
strain ≈ 0.2. Strain amplitude is represented by 𝛾0, and the absolute strain 
accumulated at the point of maximum stress during an oscillation cycle is 
represented by  𝛾𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑 . For an elastically dominated system the maximum 

stress value is found at 2𝛾0, while for viscously dominated systems the maximum 
stress value is found at 𝛾0. Plotted is the mean± standard deviation from 3- 5 
biological replicates. 
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𝐺𝑐𝑎𝑔𝑒 in comparison to previous studies on model colloids which used spherical 

particles in the absence of a polymer matrix. This is due to the breakdown of the EPS 

polymer structure through each cycle. The difference in 𝐺𝑐𝑎𝑔𝑒 value between each 

treatment was consistent with the differences in LVER 𝐺’ for each treatment. 

However, treatment with FeCl2 resulted in 𝐺𝑐𝑎𝑔𝑒 converging with CaCl2 treatments at 

𝛾= 10 %. The plateau values were 357± 13 Pa and 336± 32 Pa respectively. The 

convergence to similar plateau values can be explained in terms of the strain thinning 

behaviour of FeCl2. FeCl2 initially has stronger cages, however the cages are 

weakened at a faster rate than CaCl2 due to strain thinning. 𝛾𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑  is the 

cumulative intercycle strain from the lower reversal point (the minimum point in a 

strain sin wave) to the point of maximum stress, Figure 3-13b. The gradient of the 

𝛾𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑  curve is used to identify the dominant mode of stress accumulation. A 

material is deforming elastically when it has a gradient of 2𝛾0 and viscously flowing at 

a gradient of 𝛾0, with 𝛾0 being the strain amplitude. 𝛾𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑  is analogous to a 

yielding curve.  Divalent cation treatments FeCl2 and CaCl2 displayed similar 

behaviour when transitioning from elastically to viscously dominated stress 

accumulation, an indication that the chemical mechanism resulting in the stiffening of 

P. fluorescens biofilm is similar. Both urea and DDH2O treated biofilms displayed an 

increased viscous contribution to peak stress in comparison to FeCl2 and CaCl2. Our 

present observations have indicated that DDH2O and Urea alter the rheological 

response of P. fluorescens through distinctly different mechanisms to chemical 

modification with divalent cations FeCl2 and CaCl2.  

To build upon the intercyle averaged representation of non-linear behaviour and map 

the instantaneous yielding behaviour of the treated P. fluorescens biofilm, the 

transient moduli from the sequence of physical processes (SPP) is used, Figure 

3-134. The SPP method calculates the time dependent elastic 𝐺𝑡
′ and viscous 𝐺𝑡

′′  

moduli during a strain cycle of amplitude 𝛾. To provide a more intuitive metric which 

describes the ratio of the elastic 𝐺𝑡
′  to viscous 𝐺𝑡

′′ contributions, the transient phase 

angle 𝛿𝑡 is presented, where 𝛿𝑡 =  
𝐺′𝑡(𝑡)

𝐺′′𝑡(𝑡)
. The transient phase angel 𝛿𝑡  can be 

identified continuously at time 𝑡 during each strain cycle of amplitude 𝛾. The SPP plot 

of urea treatments resulted in a similar 𝛿𝑡 signature to the control. This signature 

featured two prominent yielding bands where 𝛿𝑡 >
𝜋

4
, which corresponds to viscously 

dominated incomplete yielding. These bands had a maximum value of 𝛿𝑡 ≈
𝜋

2
 , 
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corresponding to a fully yielded viscously dominated response. These yielding bands 

were centred around 𝑡 =
𝜋

2
 and 𝑡 =

3𝜋

2
 , where strain is at its largest. Therefore, 

yielding for the control and urea treatments was primarily strain dependent. The 

magnitude of 𝛿𝑡 was marginally higher at 𝛾 ≈ 25% for the urea treatment, Figure 

3-134b, indicating an earlier onset of yielding. The transition in yielding mechanism 

due to treatment with divalent cations CaCl2 and FeCl2 is illustrated in Figure 3-134c 

and Figure 3-134d. The transient phase angle plots of CaCl2 and FeCl2 show the 

emergence of a 1st yield zone between ≈ 2 – 100 %, where the 1st yielding step of 

FeCl2 is highlighted by the red boxes. 𝛿𝑡 in this zone was higher in magnitude for 

FeCl2 treatment than CaCl2, this indicates the stronger effect of FeCl2 on 

microstructural modification than CaCl2. The first yielding zone for FeCl2 occurred 

Figure 3-134: SPP transient phase angle plots for (A) Control, (B) urea, (C) CaCl2 and 
(D) FeCl2 where the red box denotes the 1st first yield step region. The colour bar is 
representative of the magnitude of the transient phase angle 𝛿𝑡. The control (DDH2O) 
and urea treatments resulted in similar transient plot signatures. In both biofilms the 
dominant yielding mechanism was strain dependent. This is illustrated by the intense 

yellow bands centred around t = 
𝜋

2
 and t = 

3𝜋

2
, the point of maximum strain during a cycle 

of strain amplitude 𝛾. When treated with divalent cations the presence of this yellow 
band reduced which is indicative of a more elastic response. This change is reflective of 
the increased elastic and viscous moduli of both CaCl2 and FeCl2. For FeCl2 an 
additional region of yielding was prominent at low strains <100 %. This region is centred 

around t = 0 and t = 𝜋 corresponding to where strain rate is at a maximum.  



70 
 

when 𝑡 centred around 0 and 𝜋. These two regions are where strain rate is largest 

during the oscillation cycle. Therefore, the first yielding zone was predominantly 

strain rate dependent. The 2nd yield zone occurred at 𝑡 =
𝜋

2
 and 𝑡 =

3𝜋

2
  indicating the 

second yielding step in FeCl2 treated biofilm was predominantly strain dependent, 

which was constant with where CaCl2 also yielded. This behaviour agreed with 

Chebyshev intercycle analysis of 𝜂𝑀 and 𝜂𝐿.   

 

3.4 Discussion and Conclusions      

In this chapter I adopted LAOS analysis techniques and applied them to 

quantitatively analyse the effects of chemical treatment, on the nonlinear viscoelastic 

response of P. fluorescens biofilms. Previous studies have investigated the effect of 

chemical treatment on biofilm viscoelasticity (Brindle et al., 2011). However, these 

studies used linear viscoelastic techniques which mainly enabled changes in stiffness 

to be quantified (Klotz et al., 2019; Kovach et al., 2017; Kretschmer & Lieleg, 2020b). 

These methods therefore neglect the non-linear regime. Analysing both the linear 

and nonlinear regimes therefore provides a more complete assessment of biofilm 

mechanical behaviour. The dynamics within the nonlinear regime lend themselves to 

phenomenological arguments which can be compared to analogous systems such as 

colloidal and polymer gels. Biofilms have been compared to double hydrogels, 

however arguments applied to the field of glassy colloidal gel rheology are rarely fully 

adopted to explain biofilm rheology (Jing Yan et al., 2018). In the following paragraph 

I will summarise the effect of each chemical treatment in the context of non-linear 

parameters.  

P. fluorescens treated with urea displayed a reduction in packing fraction which 

correlated with a reduction in elastic and viscous modulus. Urea caused an elastic 

weakening of the microstructure as indicated by the increased magnitude of strain 

softening and strain-rate dependent thickening. The increase in non-linear thickening 

was reflected in the increase to of the 𝐺’’ overshoot. The EPS of P. fluorescens is 

known to have a high uronic acid content, a component found in xanthan gum, which 

also displays type III overshoot. Urea has been shown to cause swelling in several 

types of biofilms such as S. epidermidis (Jones et al., 2011) and weakening effects to 

P. aeruginosa (X. Chen & Stewart, 2002). Urea is a chaotropic compound which 

interferes with hydrogen bonding, reducing the stability of proteins. The presence of 
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urea as a co solute can lead to an effect termed “cononsolvency”. Cononsolvency 

has been demonstrated to occur in PNIPAm polymer colloidal gels when treated with 

water/urea (Sagle et al., 2009). The presence of the co solute urea causes the 

collapse of polymer chains, which then reswell at higher osmotic concentration. 

Swelling results due to a reduction in network crosslinking which changes in the 

equilibrium swelling point. This results in an increased solvent concentration which 

increases polymer chain mobility and mobility of filler particles. The cage strength is 

determined by the strength of the EPS matrix and the cellular network topology, 

which was quantified using the packing fraction 𝜙. Within P. fluorescens this effect 

could cause a reduction in the cohesiveness of the EPS, the bonding strength of 

interparticle cages and reduced compaction of the bacterial topological network. This 

effect could occur in P. fluorscens by reducing hydrogen bonding of the uronic acid 

polysaccharide component. The cononsolvency effect may explain why the strain 

thickening ratio 𝑇 was higher in urea than DDH2O, as increased mobility within the 

polymer colloid system would result in higher energy dissipation due to the increased 

alignment of polymer chains and bacteria with the flow.   

Treatment with CaCl2 and FeCl2 caused an increased 𝜙 for both treatments in 

comparison to DDH2O. The packing fractions of CaCl2 and FeCl2 were equivalent. 

This indicated that the difference in linear and nonlinear behaviour of CaCl2 and 

FeCl2 was predominantly caused by FeCl2 having a greater stiffening effect on EPS 

elasticity. The major adhesin protein of P. fluorescens is LapA, which is a part of a 

family of large repeat surface proteins known to bind calcium. The addition of CaCl2 

may have increased the crosslinking between LapA proteins or increased the 

stiffness of the protein (Boyd et al., 2014). The LapA polysaccharide is known to 

contain calcium binding motif on its C terminal region (Fuqua, 2010). A stiffer EPS 

structure through LapA crosslinking would result in stiffer interparticle cages. The 

difference in action between CaCl2 and FeCl2 could further be explained by the 

difference in the ionic radii of the two ions. This theory was recently posed after 

Bacillus subtilis B-1 and Azotobacter vinelandii where shown to respond with different 

degrees of stiffening to an array of metal ions (Kretschmer & Lieleg, 2020a). The 

differences in stiffening behaviour between the strains and metal ion treatments were 

postulated as being due to the differences in alginate conformation in the 

aforementioned bacteria. Alginate has been shown to be present in the EPS certain 

strains of P. fluorescens, however is known to be secreted only under certain 
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physiological conditions (Marshall et al., 2019). Non the less the probability of a 

stiffing effect increases with a reduction in ion size which corresponds with the 

increased stiffening effect, which is seen with FeCl2, where the ionic radii of FeCl2 is 

small than CaCl2.   

The rheology of FeCl2 treated P. fluorescens biofilms displayed thinning behaviour 

which was mainly caused by strain-rate dependent thinning as indicated by the 

relative drop in 𝜂𝐿 and coincided with the emergence of two step yielding. The 

presence of two step yielding was depicted using the SPP framework, through the 

emergence of an additional yielding band. The emergence of two yielding zones is a 

characteristic of attractive glassy/colloidal gel systems. Yielding in attractive 

glassy/colloidal gel systems occurs in two steps. The first step is densification which 

occurs when short range interparticle bonds within the nearest neighbour cages 

breakdown. The second step involves the breakdown of the topological constraints, 

in a biofilms, the bacteria/bacteria jamming and breakdown of the longer-range EPS 

matrix structure (Pham et al., 2006). The stiffening effect of FeCl2 has been seen 

across several biofilm rheological studies (Grumbein et al., 2014; Klotz et al., 2019). 

Addition of FeCl2 and FeCl3 have been shown to increase the erosion stability of B. 

subtilis biofilms (Grumbein et al., 2014). These experiments test erosion detachment 

at a constant shear stress. The work presented here has demonstrated shear rate 

thinning behaviour in FeCl2 and that shear rate is the predominant cause of yielding 

in FeCl2 treated biofilms. This behaviour could be due to ionic crosslinking of FeCl2 to 

the side branches of polyanionic EPS polysaccharides such as alginate. Ionic 

crosslinking would increase the elastic and viscous modulus in the linear regime but 

reduce viscous dissipation in the non-linear regime due to reduced polymer chain 

flexibility.  

In this chapter I implemented a LAOS rheological framework towards the analysis of 

P. fluorescens biofilms treated with divalent metal cations and a chaotropic 

compound. By adopting LAOS techniques an in-depth characterisation of the 

nonlinear rheological effects of these chemicals on biofilm was achieved. The 

techniques applied provided increasingly sensitive measurements of the 

thickening/thinning and stiffening/softening dynamics within each biofilm. The 

intracycle (Chebychev method) and instantaneous (SPP) techniques enabled the 

strain and strain rate dependence of these nonlinear behaviours to be revealed. The 

improved sensitivity of these methods in comparison to solely using the elastic moduli 
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𝐺′ and viscous moduli 𝐺′′ meant that subtle differences in shear thinning behaviour 

were detected between the divalent cation treatments. The difference in shear 

thinning behaviour between CaCl2 and FeCl2 was due to increased strain rate 

dependent thinning depicted by a relative change in 𝜂𝐿. The action of the chaotropic 

compound urea resulted in modification to the shear thickening behaviour of P. 

fluorescens. The main action of modification was reflected by the increase to the 𝑇 

ratio in comparison to the control. The increased thickening is suggestive of 

increased bacterial and EPS network rearrangement, which would result in increased 

energy dissipation. The increase to EPS network mobility is due to increased mobility 

of the polysaccharide chains and protein components such as alginate and LapA, 

which could be due to the cononsolvency effect.  

Unravelling the polymeric interactions occurring within the EPS structure of biofilm 

which determine intercellular bonding strength and bacterial organisation requires the 

subtle detection of changes to rheology. This work provides a demonstration of an 

enhanced macroscale rheological characterisation platform for biofilms. The LAOS 

framework used here increases the resolution of biofilm rheological characterisation 

from cycle averaged properties to analysis using intercycle and instantaneous 

properties. This framework could be applied to improving rheological diagnostics of 

medically related biofilms such as CF sputum potentially providing a method of 

detecting specific protein/ polymer rheological signatures. For fundamental studies 

focused on accessing polysaccharide/ protein interactions the LAOS framework 

developed here could helpful in quantifying alterations in stiffening/softening, 

thickening/thinning behaviour assisting to improve interpretations of modified EPS 

network interactions.       

Chapter 4 Effect of the production of polysaccharides amylovoran and 

stewartin on the microstructure and rheology of Pantoea sp. . 

4.1 Introduction 

In this chapter the rheological framework described in chapter 3 is applied to a plant 

growth promoting rhizo bacteria (PGPR) called Pantoea sp. YR343. The rationale 

behind this chapter is to demonstrate how the LAOS platform can be applied to 

access biofilm rheological phase transitions as a function of a change in EPS 

composition. In this case the EPS component which is modified is a capsular 

polysaccharide closely related to amylovoran and stewartin. The LAOS principles and 

framework are used to enhance the quantitative description of how polysaccharide 
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concentration impacts the phase behavior of this biofilm and the resulting rheology.   

Plant growth promoting rhizo-bacteria (PGPR) are used as biocontrol agents and can 

increase resilience against pathogens in suboptimal soil conditions (Allison & Martiny, 

2008). These biofilms act as facilitators of biocontrol within the plant root rhizosphere 

and an environment of elevated microbial density where bacterial ecology is actively 

influenced by plant root exudates (Beauregard et al., 2013; Sasse et al., 2018; 

Zhalnina et al., 2018). Root exudates drive symbiotic interactions between biofilm 

and roots, triggering biofilm formation and producing chemotactic secretions resulting 

in preferential, localised biofilm colonization (Y. Chen et al., 2012; Massalha et al., 

2017; N. Zhang et al., 2014). EPS is a characteristic component of biofilm formation, 

excreted by bacterial cells and is composed of polysaccharides, proteins and DNA. 

The composition of EPS is phenotypically dependent and highly heterogeneous in 

mixed environments. The regulation of specific functional EPS components has been 

demonstrated to improve plant fitness in response to increases in salinity (Kasim et 

al., 2016), toxic soil contaminants (Mallick et al., 2018), plant - microbe adhesion 

(Zhao et al., 2015), species - species interaction (Z. Xu et al., 2013) and resistance to 

pathogenic attack (Molina-Santiago et al., 2019). Modulating specific EPS 

components can result in productivity fluctuations (Dragoš, Kiesewalter, et al., 2018) 

and changes to biofilm architecture (Hartmann et al., 2019).  

In this chapter a combination of genetic modification, microscopy and rheometry is 

applied to understand the structural composition and rheology of an EPS defective 

strain Pantoea sp. YR343 UDP and an EPS producing strain Pantoea sp. YR343. 

Using a combination of confocal microscopy and fluorescent staining, changes in 

packing fraction and packing morphology caused by the deletion of amylovran and 

stewartin are investigated. Small and Large Amplitude Oscillatory shear rheometry is 

used to quantify the variations in the rheological characteristics of wild type and 

mutant Pantoea sp. YR343 biofilms. The study demonstrates that changes in the 

volume of secreted EPS has a drastic effect on the viscoelasticity and morphology of 

biofilms. It is demonstrated that cellular packing fraction and polysaccharide 

concentration can be controlled by varying the mixture ratio of Pantoea sp. YR343 

and Pantoea sp. YR343 UDP, enabling the investigation of rheological phase 

transitions. 
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4.2 Materials and methods 

4.2.1 Bacteria growth in liquid cultures and agar plates 

Salt optimized broth plus glycerol (SOBG) medium was prepared by dissolving 20 g 

tryptone, 5 g yeast extract, 0.5 g NaCl, 2.4 g MgSO4, 0.186 g KCl, 50 ml of 40% v/v 

glycerol (Sigma, UK) in 1 L of milli-Q water. SOBG agar had similar composition and 

in addition contained 15 g of agar. The Pantoea strains used within this experiment 

were kindly provided by the Oakridge national lab, Washington, USA. Pantoea sp. 

UDP is a mutant strain of Pantoea sp. YR343 with a transposon insertion in the gene 

PMI39_01848 which encodes UDP – galactose- lipid carrier transferase. This gene is 

the first gene in an operon that is responsible for synthesizing a type of EPS closely 

related to amylovoran and stewartin. This mutant has corresponding defects in 

biofilm formation, pellicle formation and root colonization (Aufrecht et al., 2019). 

Pantoea sp. YR 343 and the Pantoea sp. UDP mutant were grown overnight in 

SOBG medium at 24 °C with shaking (150 rpm). 150 µL of the overnight culture was 

pipetted on the sterile agar plates and was spread uniformly using a L shaped 

spreader. The bacteria were then allowed to grow for 24 hrs and subsequently 

scraped off from the surface of the agar using a glass slide.  

4.2.2 Time lapse microscopy 

Pantoea sp. YR343 and Pantoea sp. YR343 UDP were grown for 3 hrs in SOBG 

medium at 24 oC with shaking (150 rpm). 1.5 % agarose pads replete with M9 

minimal media and 0.5 % glucose were prepared using 25 µL gene frames (Sigma, 

UK). Once the agarose had solidified, two strips were cut out to increase the air 

volume in the sealed frame. Timelapses were performed with monocultures of 

Pantoea sp. YR343 and Pantoea sp. YR343 UDP. For monocultures 1 µL of culture 

adjusted to OD = 0.2 was pipetted onto the agarose pad. Dual cultures were 

performed at a ratio of 10:1, Pantoea sp. YR343: Pantoea sp. YR343 UDP. Overnight 

cultures were independently corrected to an OD = 0.2 before being combined, 1 µL of 

dual culture was then pipetted onto the agarose pad. A #1.5 coverslip (Sigma, UK) 

was used to seal the Gene frame. A razor blade was used to seal the coverslip being 

careful to press outside the perimeter of the Gene frame so to avoid excessive 

pressure on the agarose. Time lapse imaging was performed using a Nikon Eclipse 

Ti-S microscope (Nikon, Japan) fitted with a CoolLED pE-4000 light source 

(CoolLED, UK). A perfect focus system (Nikon Perfect Focus System (PFS)) was 

used to minimize Z drift. The microscope was used in phase contrast mode. The 
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temperature was controlled using an environmental chamber which surrounded the 

microscope and was set at 24 oC. Images (1024 x 1024) were taken with a 63x 

objective oil immersion lens and acquired every 10 mins for 12 hrs. Fields of view 

(FOV) were selected at random. For each condition timelapses were repeated 3 

times.  

4.2.3 Rheometry 

A 20 mm plate-plate geometry and a Kinexus Pro+ rheometer as described in the 

previous chapter were used for rheometric measurements. Circular adhesive backed 

120 grit paper were adhered to both the plates to reduce the instances of slip. Biofilm 

was scraped from agar plates using a ground edged microscope slides and (1 plate 

per run) were placed onto the grit paper. The top plate was moved into contact with 

the biofilm to ensure a uniformly loaded configuration. The plate gap was set at 1 mm 

and samples were trimmed with a razor blade. A solvent trap was used to prevent 

desiccation. Strain controlled frequency sweeps were performed at a strain of 𝛾 = 1% 

and a frequency range of 𝜔 = 0.1 – 15 Hz was used for both the wild type and the 

mutant. For large amplitude oscillatory shear (LAOS) experiments the rheometer was 

operated in a strain-controlled mode and amplitude sweeps were performed from γ = 

1 – 1000%. LAOS tests were performed at constant frequencies (0.15, 0.375, 0.5, 

0.75, 1 Hz). A decimator setting of 5 was used for the UDP mutant and a decimator 

setting of 30 was used for the WT. The decimator is an internal PID controller in the 

Malvern Kinexus which can be adjusted to obtain distortion free sinusoidal input 

strain waveforms. Internal details of the decimator haven’t been provided by Malvern.  

Creep measurements were performed using the aforementioned rheometer with 20 

mm grit paper and a plate-plate geometry at 𝜎 = 30 Pa for 300 seconds. Creep 

curves were then fitted with the Burger model using a curve fitting code in MATlab. 

Least squares regression was used for curve fitting. Creep curves were averaged 

from n= 3 measurements.  

4.2.4 Packing fraction calculation 

The packing fraction for the WT, UDP and the respective mixture ratios was 

calculated using the same method as chapter 1 with one modification. The dilation 

step was eliminated as the cell membranes were stained with 1µg/ml of FM 1-43, a 

lipophilic styryl compound which targets the plasma membrane of a cell. FM 1-43 has 

an excitation wavelength of 488 nm (Thermofisher, UK) was used at a concentration 
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of 1 µM. The stain was incubated for 15 mins prior to addition of Syto 63, a nucleic 

acid stain. FM 1-43 was excited at 488 nm an excitation separation distance of 172 

nm from Syto 63 to ensure blead through was negligible. Syto 63 and FM 1-43 were 

acquired in separate channels with emission filters of 498 – 630 nm for FM 1-43 and 

670-750 nm for Syto 63. Images were then preprocessed using the protocol from 

chapter 3 (without the dilation step). The Syto 63 and FM 1-43 channels were 

combined resulting in a micrograph representing both intercellular DNA and the 

bacterial membrane. Packing fraction was calculated based upon the ratio of 

cells/membrane signal to void space.   

4.3 Results 

4.3.1 Pantoea sp. macrostructure is drastically different to Pantoea sp. UDP 

To compare the macrostructure of Pantoea sp. and Pantoea sp. UDP, each strain 

was cultured on SOBG agar plates. Stark differences in colony morphology after 72 

hr were seen, Pantoea sp. produced large colonies with a diameter of 21.5 mm, while 

UDP colonies were smaller, with a diameter of 8.05 mm, Figure 4-1. The structure of 

the Pantoea sp. appeared to be significantly less viscous than the Pantoea sp. UDP 

when scraped with a glass slide after 72 hrs.   

 

4.3.2 Agarose pad timelapses reveal different packing structures in Pantoea sp. 

and Pantoea sp. UDP 

To visualize the differences in colony morphology on a single cell level Pantoea sp. 

YR343 wild type (WT) was grown on M9 agarose pads, Figure 4-2. Early stage 

colonies (< 240 mins) grew with a compact structure, with daughter cell positioning 

dependent upon cell shoving. At a time 𝑡 ranging from 300 - 370 mins WT continued 

 
Figure 4-1: Representative growth of Pantoea sp. WT and UDP mutants on SOBG 
agar. The morphology of the wild type stain is swelled in comparison to the UDP 
mutant strain, which appears compact. The morphological difference is suggestive 
that reduced production of the hydrophilic polysaccharide amylovoran alters the 
equilibrium swelling point of the mutant strain.  
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to secrete EPS. Secretion of EPS resulted in a reduction of the local packing fraction 

and increased cell- cell distances. For Pantoea sp. YR343 UDP (UDP) colony 

topology remained tightly packed, with colony geometry determined through bacteria 

- bacteria shoving. After visualizing the stark differences in the packing of the WT and 

UDP strains I sort to access the topology of mixtures of the EPS secreting sparsely 

packed WT and tightly packed UDP. As with pure WT and UDP cultures, the mixtures 

exhibited a similar packing structure until 𝑡 = 240 mins. At 𝑡 = 240 mins the WT strain 

began secreting amylovran from within tightly packed clusters. The EPS secretion 

resulted in a reduction to the packing at the center of the WT/UDP cluster at 𝑡 = 300- 

370 mins and dramatically reorganized the colony topology. After the EPS secretion 

event, the cluster shrank in size as UDP grew into the secreted amylovoran.  

 

4.3.3 Packing fraction of Pantoea sp. can be controlled by mixing different 

ratios of Pantoea sp. and Pantoea sp. UDP 

To access the effect of modulation of the packing fraction of Pantoea sp. YR343 on 

rheology, 4 different mixture ratios were selected UDP:WT; 10:1, 50:1, 100:1 and 

Figure 4-2: Representative bright-field time lapses of Pantoea WT, Pantoea UDP 
and mixtures of Pantoea UDP and WT at a ratio of 5:1. Time starts at 0 mins and 
increases in Pantoea WT initially grows in tight clusters and at around 300 mins 
into the experiment amylovoran EPS is secreted causing an increase in EPS 
volume surrounding each bacteria and a global reduction in packing fraction. UDP 
remains tightly packed throughout the experiment. 5:1 Mixtures of WT: UDP result 
in tightly packed clusters which have regions of low packing fraction due to the 
expression of amylovoran from the WT strain. 
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250:1. CLSM was used to image each mixture, this enables thin Z slice imaging by 

removing out of plane structures and quantitative imaging at different depths in the 

biofilm structure, Figure 4-3. Each imaging slice was then used to compute the 

packing fraction 𝜙 of each mixture, Figure 4-4. As expected, there was a noticeable 

contrast in packing between WT and UDP, the packing fraction of WT averaged 𝜙= 

0.16± 0.04. Increasing the ratio of UDP caused increases to the packing fraction. 

UDP biofilms had a packing fraction of 𝜙= 0.64± 0.08 close to the random packing 

limit for rods. The morphology of WT was defined by the presence of dispersed 

bacterial clusters. As the concentration of UDP increased, the size of the bacterial 

clusters increased, resembling the morphology of polymer-colloid depletion gels. In 

polymer-colloid systems, aggregation of clusters is dependent upon polymer 

concentration. High concentrations of non-absorbing polymer can cause depletion 

attraction, a short-range attractive force, causes phase separation of the polymer and 

filler particles, resulting in cluster formation (Dibble et al., 2006). The morphology of 

250:1 appeared to feature fewer voids and was increasingly packed with bacteria 

confined by nearest neighbors. This morphology is reminiscent of glasses where 

Figure 4-3: Representative CLSM of Panteoa WT, 50:1 UDP:WT mixtures, 250:1 
UDP:WT mixtures and UDP mixtures. Cells were stained using Syto63 and FM-64 
to stain the cell cytoplasm and cellular membrane. Images were taken 15 µm 
above the coverslip. Increase in the ratio of UDP resulted in an increase to the 
biofilm packing fraction. The WT displayed many smaller clusters, as UDP 
concentration increased, the EPS between the clusters reduced and cell density 
increased. The scale bar is 20 µm. 
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UDP structures were uniformly jammed with an absence of noticeable voids. 

4.3.4 Pantoea sp. WT displays different rheological behaviour to Pantoea sp. 

UDP 

Amplitude sweeps were performed on each pure culture shown in Figure 4-5. 

Pantoea WT exhibited an average linear elastic modulus of 58± 5 Pa, while 𝐺’ for 

UDP was 4450± 550 Pa, ~2 orders higher than WT. The viscous modulus 𝐺’’of WT 

was 12.7± 1.5 Pa whereas UDP was 360± 55 Pa, ~1.25 orders higher in viscosity 

then WT. The linear viscoelastic limit for WT was significantly larger than UDP, at 

37.1 % while UDP was 3.7 %, indicating structural rearrangement at lower strains for 

Figure 4-4: Plot of packing fraction against Pantoea WT and UDP and UDP:WT 
mixtures. The packing fraction is calculated from CLSM images of Pantoea WT, 
Pantoea mixtures 10:1, 50:1, 250:1 and Pantoea UDP. Presented is the mean± 
standard deviation from 8 fields of view per sample.  

Figure 4-5: Amplitude sweep of Pantoea WT and Pantoea UDP at 𝜔 = 0.5 Hz and 

𝛾 = 0.1 % - 1000 %. Pantoea UDP features a prominent viscous moduli overshoot 
after exceeding the linear viscoelastic region. Pantoea WT features no such 
overshoots. Presented is the mean± standard deviation (n=5). 
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UDP. UDP exhibited a single well-defined hump in 𝐺’’ which began to increase at 3.7 

% and peaked at a 𝐺’’ value of 708± 107 Pa. The presence of this hump is 

commonly found in glasses and emulsions when colloid packing fraction is near or 

above the random close packing limit. The hump has been termed type III yielding 

and signifies the occurrence of weak strain overshoots (Hyun et al., 2011). WT 

featured a dissipation mechanism comparable to viscoelastic liquids. Viscoelastic 

liquids are characteristically absent of viscous overshoots in 𝐺’’. Reptating polymer 

networks display this type of behavior. Reptation polymer networks form through the 

overlapping and entanglements of high molecular weight long chain linear 

polysaccharides, like amylovoran and stewartin. The reptation network dynamics 

depend on the polymer molecular weights and chain relaxation time, where 

topological constriction be neighboring polymer chains restrict the chain motion. 

Amylovoran is notably large with a molecular mass of 1 MDa (Nimtz et al., 1996). 

This is also a feature of colloidal gels with packing fractions below the random 

packing limit. Frequency sweeps for WT revealed a mild increase in 𝐺’ and 𝐺’’ with 

increasing frequency, Figure 4-6. This compared to UDP which exhibited frequency 

independence over the range of frequencies probed. The mild frequency 

dependence of WT indicates that the solvent/polymer network contribution was more 

notable in the WT microstructure than UDP. This behavior could be caused by a high 

concentration of amylovoran which is hydrophilic. This would result in increased 

solvent absorption due to the higher equilibrium swelling point in comparison to UDP. 

Similar swelling behavior like this occurs in hydrogels when hydrophilic functional 

Figure 4-6: Frequency sweeps of Pantoea WT and Pantoea UDP, performed at 
0.1 % strain probing a frequency range of 𝜔 = 0.1 - 12.5 Hz. Plotted is the mean ± 
standard deviation from biological replicates (n = 5).  
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groups are added to polysaccharide chains (Kuang et al., 2011). This could explain 

the swelled structure seen in the agar image of Pantoea WT. The contribution of 

water to biofilm mechanics at short time scales has also been quantified using stress 

relaxation experiments (He et al., 2013). The absence of viscous overshoots in the 

amplitude sweep of Pantoea WT support the classification of WT as a viscoelastic 

liquid. The presence of the type III hump and plateau behavior of the UDP frequency 

sweep agree with characteristic repulsive glassy material. As the difference between 

the mutant strain UDP and WT is the expression of amylovoran and stewartin, the 

transition from viscoelastic liquid to glassy behavior could be dependent on the 

volume of secreted EPS. 

4.3.5 Mixtures of Pantoea WT:UDP enable investigation of the transition 

between viscoelastic liquid and viscoelastic glass behavior 

In order to evaluate the effect of differing packing fractions and morphological 

features on the rheological behavior of Pantoea sp. biofilm, a series of oscillatory and 

step strain experiments were performed adopting LAOS techniques to evaluate 

nonlinear viscoelastic behavior. Amplitude sweeps are presented in Figure 4-7 and 

Figure 4-8. For clarity the elastic moduli 𝐺’, Figure 4-7 and the viscous moduli 𝐺’’, 

Figure 4-8 are represented separately. Figure 4-7 depicts the storage modulus of 

10:1, 50:1, 100:1 and 250:1 mixture. As the ratio of Pantoea sp. UDP is increased, 

the elastic moduli increased, 10:1 had a 𝐺’ value of 83± 13  Pa and a 𝐺’’ value of 

Figure 4-7: Amplitude sweeps depicting the elastic modulus of Pantoea UDP: WT 
mixtures from 10:1 to 250:1. The amplitude sweeps were performed at a frequency = 
0.5 Hz through a strain range of 0.1-1000 %. Points plotted are the mean± standard 
deviation (n=5) from biological replicates. 
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28± 4 Pa, a 43 % increase in comparison to the WT. The 50:1 and 100:1 ratio 

exhibited 𝐺’ values of 300± 47 Pa and 882± 104 Pa respectively. 250:1 had an 

elastic modulus of 2572± 585 Pa which remained constant (within <10 %) during the 

LVER range. Increased concentration of UDP resulted in increased viscous moduli 

for each ratio and resulted in changes to the shape of the viscous modulus curve in 

the MAOS and LAOS region. At ratios of 10:1, 50:1 and 100:1, 𝐺’’ exhibited two 

power law gradients, 𝐺𝑀𝐴𝑂𝑆
′′ ~𝛾0

−
1

2
𝜐
  and 𝐺𝐿𝐴𝑂𝑆

′′ ~𝛾0
−𝜐, the first found in the medium 

amplitude oscillatory shear (MAOS) region (𝛾 = 8 - 100%) and the second in the 

LAOS region 𝛾 = 100 -1000%.  𝐺’’ gradients in the MAOS region were approximately 

half the gradient of 𝐺’’ in the LAOS region, Table 4-1. The emergence of power law 

behavior in the MAOS region is particularly interesting, as this signifies the presence 

of multiple relaxation times, a characteristic frequently seen in complex biological 

materials like cells and a property of polymeric gels with multiple relaxation times (de 

Sousa et al., 2020). The behavior of 𝐺’’ transitioned towards type III weak strain 

overshoot yielding, which was previously seen in the pure UDP strains. It is evident 

that the secretion of amylovoran and stewartin influences the packing fraction and 

cluster morphology of UDP: WT ratios causing a transition in behavior from 

viscoelastic liquid (WT) to glassy behavior (UDP). Reducing the relative 

Figure 4-8: Plotted is the viscous modulus of Pantoea UDP: WT mixtures from a 
series of amplitude sweep performed at frequency = 0.5 Hz from strain 0.1-
1000%. The cross over point 𝛾𝑐  for each ratio is represented by a pink dot. The 
pink dashed line represents the intermediate power law gradient before the yield 
stress. The black dashed line represents power law behaviour after the yield 
strain. The exponents values can be found in Table 4-1. Points plotted are the 
mean± standard deviation (n=5) from biological replicates. 
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concentration of amylovoran and stewartin results in a change to the dissipative 

behavior of Pantoea. sp as reflected in the viscous moduli 𝐺’’, which is seen in the 

10:1, 50:1 and 100:1 mixture. The transition point between MAOS and LAOS regions 

is marked by the cross over strain 𝛾𝑐 = (𝐺’ =  𝐺’’). The cross over strain is defined as 

the strain at which viscous dissipative behavior of the material becomes equal to the 

elastic stiffness. The cross over strain was seen to vary between mixture ratios. For 

10:1 mixture 𝛾𝑐 =  199.55 %, for 50:1 𝛾𝑐 =125.88 %, 100:1 𝛾𝑐 = 79.42 % and 250:1 

𝛾𝑐 = 50.11 %. Therefore, it’s apparent that 𝛾𝑐  reduced with increased elastic and 

viscous moduli, increased packing fraction and reduced EPS concentration. The 

decrease in crossover strain with increased packing fraction and emergence of the 

hump at 250:1 is known as the Payne effect (Cassagnau, 2003). This effect was 

discovered in rubber compounds where the cross over strain of rubber decreases 

with increased filler volume. Presently there isn’t a singular proven theory which 

explains the cause behind this phenomenon, there are two main hypotheses which 

may explain this effect. The first is linked to agglomeration and de-agglomeration as 

the filler network breaks down with increasing strain (Meera et al., 2009). The second 

theory concerns the disentanglement of polymer chains (H. Xu et al., 2020).    

Ratio Gradient (MAOS) Gradient (LAOS) 

10:1 -0.40± 0.02 (7.94 - 158 %) -0.99± 0.03 (199 - 1000 %) 

50:1 -0.43± 0.03 (2 - 100 %) -0.91± 0.04 (125 - 1000 %) 

100:1  -0.46± 0.03 (1.25 - 100 %) -0.93± 0.04 (125- 1000 %) 

Table 4-1: Table of the MAOS and LAOS power law gradients for different ratios of 
Pantoea sp. (UDP:WT) . The values in brackets represent the strain range the power 

law gradient correspond to. Presented is the mean± standard deviation from 5 
biological replicates.  

 

4.3.6 Stress strain and creep response of Pantoea. sp mixtures 

To gain insight into the stress response to imposed oscillatory strain, the total stress 

at each strain amplitude was plotted on a stress strain plot, Figure 4-9a. At low strain 

values, within the LVER, stress is proportional to strain and therefore has a linear 

gradient. A deviation from the linear gradient signifies nonlinear material yielding and 

structural breakdown.     
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From stress strain curves, a stress of 30 Pa was selected for step strain creep 

experiments of Pantoea UDP: WT mixtures. A constant stress of 30 Pa was applied 

to each mixture for a period of 300 seconds, over which time the creep behavior of 

the material was measured, Figure 4-9b. The creep curves for each mixture were 

then fitted to the 4-element burger model, a phenological model composed of 

Maxwell and Kelvin Voigt elements in series. The Maxwell and Kelvin Voigt spring 

and dashpot coefficients for each Pantoea mixture are found in Table 4-2. The creep 

tests enable longer time scale characterization of each UDP: WT mixture behavior 

under constant stress in comparison to the SAOS frequency sweeps. The creep 

behavior of each mixture is dependent upon the elastic and viscous properties of 

each biofilm. For 250:1 mixture, and lesser for 100:1 and 50:1, creep ringing was 

evident at start up. Creep ringing occurs due to the inertia of the rheometer motor/ 

geometry and an underdamped oscillatory response. Ringing was less apparent in 

10:1 sample, suggesting a reduction in the biofilm elasticity and viscosity reduced 

biofilm damping resulting in reduced creep ringing oscillations. Creep ringing can in 

principle be used to determine viscoelastic properties of a biofilm (Goudoulas & 

Germann, 2016; Hubert & Ali, 2014; McKinley, 2007). The creep curve of 10:1 

showed an initial stress bearing capacity until ~10 seconds into the test. Here the 

Figure 4-9: (a) Stress strain plots of Pantoea mixtures UDP: WT, dashed line 

represents the stress selected for subsequent creep tests. Plotted is the mean ± 
standard deviation (n=5) biological replicates. The legend represents the UDP: WT 
ratio. (b) Creep plots of Pantoea Mixtures. Creep curves were performed at a stress 
of 30 Pa. 10:1 exhibits yielding, which can be seen by the increase in gradient after 
an initial plateau. Plotted is the mean ± standard deviation (n=5) biological 
replicates.   
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structure began to yield as indicated by the increased gradient of 
𝛾

𝜎
 beyond ~10 

seconds. This result demonstrated that 30 Pa was outside the LVER for 10:1. Ratios 

of 50:1, 100:1 and 250:1 were tested in the linear region and fitted to the Burgers 

model. At short time periods the viscosity 𝜂1 of each mixture was comparable with 

50:1 having a viscous coefficient 𝜂1 of 53.10± 4.21 kPa.s, 100:1 a 𝜂1 of 58.47± 6.32 

kPa.s and 250:1 a 𝜂1 of 59.68± 10.43 kPa.s. The differences into short term behavior 

were reflected within the elastic term 𝐺1. Increasing the UDP ratio effectively 

decreases the amylorvan concentration and resulted in 𝐺1 increasing from 4.58± 

0.57 kPa at 50:1 to 11.89± 2.48 kPa at 100:1 and 32.12± 7.35 kPa at 250:1. Longer 

time behavior is represented by 𝐺2 and 𝜂2. Increasing UDP concentration from 50:1 

to 100:1 to 250:1 resulted in an increase to the long-term elasticity 𝐺2from 0.69± 0.28 

kPa to 2.37± 0.83 kPa and 12.01± 5.82 kPa respectively. This result indicates that 

as the concentration of amylovoran reduces Pantoea biofilms are increasingly elastic 

over short and long-time scales. However, the short time scale viscosity 𝜂1 was 

comparatively insensitive to a reduction in polysaccharide concentration, while the 

long-term viscosity 𝜂2 increased with decreasing amylovoran.  

4.3.7 Increases in UDP concentration reduce the 
𝑰𝟑

𝟏
 gradient 

To quantify the degree of non-linearity within each mixture, the ratio of the 3rd Fourier 

harmonic to the fundamental harmonic from each stress waveform was calculated, 

Figure 4-10. In the linear region the magnitude of the 3rd harmonic is negligible and 

below the floor level of noise in the rheometer system. When linearity is violated the 

stress sinusoidal response distorts. The magnitude of the distortion can be quantified 

Mixture    𝐺1 (kPa) 𝐺2 (kPa) 𝜂1 (kPa.s) 𝜂2(kPa.s) 

50:1 4.58± 0.57 0.69± 0.28 53.10± 4.21 47.69± 5.73 

100:1 11.89± 2.48 2.37± 0.83 58.47± 6.32 141.44± 24.57 

250:1 32.12± 7.35 12.01± 5.82 59.68± 10.43 215.34± 50.25 

Table 4-2: Calculated Burger coefficients from the 4 element Burger model for 

Pantoea Mixtures (UDP:WT). 𝐺1 and 𝜂1are the initial short time response elasticity 
and viscosity, respectively. 𝐺2 and 𝜂2 are the long time elastic and viscous 

responses, respectively. Presented is the mean ± standard deviation (n=5) 
biological replicates.  
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by measuring the magnitude of higher harmonics. The 3rd harmonic is typically used 

from the Fourier transformed stress signal and increases with strain when the LVER 

is exceeded. The region where linearity is initially violated until the cross over strain 

𝛾𝐶  is known as the medium amplitude oscillatory shear (MAOS) region and has 

recently been used to test an array of polymer melts. MAOS test protocols have an 

advantage over LAOS tests in that samples aren’t tested to destruction, allowing 

repeat measurements of expensive/small volume samples. The gradient of the 

Fourier ratio in the MAOS region as a function of strain has been used to interpret the 

crosslinking density and the degree of connectivity in polymer structures. Here the 

ratio of the third to first harmonic is used to characterize the rate of accumulation of 

non-linearity (a proxy for structural rearrangement) in the mixture samples. At low 

concentrations of UDP, the 𝐼3/1 gradient is appreciably higher than at higher UDP 

concentrations. The 𝐼3/1 gradient for the 10:1 mixture was 1.49± 0.02. The 𝐼3/1 

gradient reduced with increasing concentration of UDP, 50:1 was 1.12± 0.06 and 

100:1 was 0.74± 0.04 until a gradient at 250:1 of 0.64± 0.03. Noticeably the initial 

magnitude of 𝐼3/1is higher for more concentrated UDP mixtures, suggesting that a 

higher packing fraction biofilm rearrange at lower strains, in accordance with the 

Payne Effect. In the 50:1 and 100:1 UDP: WT mixtures  𝐼3/1 displayed two distinct 

Figure 4-10: Intrinsic non- linear parameter plot of the ratio of the third Fourier harmonic 
to the first Fourier harmonic as a function of strain for Pantoea mixtures (UDP: WT). 
Black lines denote the MAOS gradients. MAOS gradients are taken from when 𝐼3/1 

initially begins to increase.   
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gradients. This differed from 10:1 and 250:1 mixture which featured less distinct 

changes in gradient as the strain approached the LAOS transition points.    

4.3.8 Intercycle Chebychev method reveals a transition in non-linear thickening 

behavior  

To explain the results from cycle averaged amplitude sweeps, 𝐼3
1

 measures and 

detect the nonlinear behavior contributing to the intermediate power law rheology for 

the 50:1 and 100:1 samples, the intercycle Chebychev method from Ewoldt was 

adopted. Nonlinear thickening and thinning behavior is represented using the 𝑇 ratio 

plot, Figure 4-11. The Pantoea WT exhibited thickening (𝑇 > 0) between  𝛾 = 177 %- 

501 % ranging between 𝑇 = 0.24± 0.01 – 0.29± 0.03. Adding UDP to WT resulted in 

a transition from nonlinear viscoelastic thickening to thinning (𝑇 < 0). Increasing the 

UPD concentration from 50:1 to 100:1 caused the emergence of thinning behavior to 

reduce from 𝛾 = 89.1 % to 𝛾 = 31.6 % a result agreeing with our earlier observation 

linked to the Payne effect. However, as the UDP ratio increased from 100:1 to 250:1, 

the onset of thinning shifted back to 𝛾 = 89.1 %. In addition, thickening was also 

observed which peaked at 0.11± 0.05 at 𝛾 = 8 % before the onset of thinning. The 

change in rheological behavior coincides with the transition from a clustered 

microstructure seen in the 50:1 mixtures to the homogeneously packed structure type 

Figure 4-11: Thickening fingerprint for Pantoea mixtures (UDP:WT). Measurements 
were performed at a frequency of 0.5 Hz and at strains 𝛾 = 0.1 -1000%. The colour 

bar represents the magnitude of the thickening ratio 𝑇. WT represents pure Pantoea 
WT biofilms and UDP represents pure Pantoea UDP biofilms.  
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of 250:1. In UDP monoculture biofilms thickening occurred between 𝛾 = 5.6 %- 44.7 

% peaking at a value of 0.23± 0.04, this was followed by a transition to a thinning 

regime.   

Next, the intercycle stiffening behavior (S) of each mixture is compared. Pantoea WT 

displayed a drop in S from 1.71± 0.48 to -6.07± 1.50 at 𝛾 = 354.8 -501.2 %, 

symptomatic of bulk fluidization, also known as the unjamming point (Perge et al., 

2014). In the 50:1 biofilm the strain value for bulk fluidization increased to 𝛾 = 707.9 

%. The UDP mutant and the 250:1 mixture had comparable stiffening values through 

the strain range, both peaking 𝛾 = 1000 %, where S = 0.67± 0.05 for UDP and S = 

0.65± 0.06 for the 250:1 mixture. This indicates elastic similarity between these 

samples which agrees with the cycle averaged data presented in the previous 

amplitude sweep. The Lissajous bowditch plots for each tested frequency and at 7 

selected strains 𝛾 are found in the appendix F. 

4.3.9 Sequence of physical processes analysis 

In order to measure the changes in instantaneous viscoelastic response caused by 

varying the ratio of Pantoea sp. YR343 to Pantoea sp. YR343 UDP the sequence of 

physical processes (SPP) is used. Plots of transient phase angle 𝛿𝑡 were constructed 

from averaged transient loss 𝐺′′𝑡(𝑡) and transient storage moduli 𝐺′𝑡(𝑡) as defined in 

chapter 2. The SPP method is used to detect the type of deformation behavior for 

Figure 4-12: The stiffening ratio for Pantoea mixtures (UDP:WT), the 
measurements were performed at a frequency of 0.5 Hz from a strain of 0.1 – 
1000 %. The colour bar represents the magnitude of the stiffening ratio 𝑆. 
Displayed are the mean values from 5 biological replicates.  
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each Pantoea sp. mixture occurring during an oscillatory cycle of amplitude 𝛾. 

Deformation events can be elastically dominated, dependent upon strain, or viscously 

dominated, dependent upon strain rate. The balance between elastic and viscous 

behavior is represented using 𝛿𝑡. For 𝛿𝑡< 
𝜋

4
  the material’s response is dominated by 

elastic deformation whereas for 𝛿𝑡 > 
𝜋

4
 viscous dissipation dominates the material 

response. Due to the mathematical construction of the SPP analysis, the balance 

between elastic and viscous contributions (𝛿𝑡) can be tracked through a complete 

sinusoidal oscillation, 0 < 𝑡 < 2𝜋. The maximum strain 𝛾 is therefore found at 𝑡 =
𝜋

2
  

and 𝑡 =
3𝜋

2
 while maximum strain rate is found at 𝑡 = 0 and 𝑡 = 𝜋.   

The pure Pantoea WT biofilm was dominated by reversible elastic deformation at 

strains 𝛾 < 50 %, signified by 𝛿𝑡 being lower than 
𝜋

4
, Figure 4-13. This behavior 

corresponds to the large LVER of the WT biofilm. Between 𝛾 = 50 - 100 % the 

transient phase angle 𝛿𝑡 increased to around 
𝜋

4
,  but remained independent of 𝑡. This 

behavior indicates a parity in recoverable elastic deformation and unrecoverable 

viscous dissipation across the amplitude cycle. Between  𝛾 = 100- 150 % the 

transient phase angle increased to 𝛿𝑡 ≈  
𝜋

2
, Figure 4-13 dashed boxes. The broad 

region of  𝛿𝑡 ≈  
𝜋

2
 is representative of the Pantoea WT biofilm deformation being 

viscously dominated and unrecoverable, indicative of significant microstructural 

rearrangement. This region occupied much of the biofilm response through 𝑡, and 

only reduced in value when 𝑡 centred around 
𝜋

2
 and 

3𝜋

2
. This indicates that Pantoea 

WT yielding and rearrangement was strain rate driven and dominated by the viscous 

component of the biofilm network. When strain 𝛾 increased above 150 % the Pantoea 

WT biofilm completely yielded, as indicated by regions where  𝛿𝑡 >
𝜋

2
. This behavior 

corresponds to complete fluidization and microstructural breakdown. The region 

occurred over a broad range of the oscillatory cycle, however featured a sub region 

where 𝛿𝑡 peaked, Figure 4-13 dotted boxes.  

As previously shown, mixing EPS deficient UDP with WT causes a transition in the 

viscoelastic phase behaviour from viscoelastic liquid to glassy behaviour. The SPP 

analysis enables the visualisation of this phase transition as a function of time. Mixing 

UDP with WT resulted in the appearance of a yielding spike through the strain range 

centred around 𝑡 = 𝜋 in the oscillatory cycle for each of the UDP: WT mixture, Figure 



91 
 

4-14 dashed boxes. The emergence of this yielding region signifies an increase in 

viscous rearrangement events (as strain rate is at a maximum through 𝑡 = 0 and 𝑡 = 

𝜋), which are absent in the pure WT biofilm. The mixtures had an increased 

dependence of 𝛿𝑡 on 𝑡 at small strains. This indicates the mixture structures are more 

responsive to the strain wave than the WT, Figure 4-14 dot-dash box. Compared to 

the WT biofilm in the 50:1 mixtures the sub regions of complete yielding 𝛿𝑡 >
𝜋

2
  

becomes narrower in 𝑡, Figure 4-14a dotted box. This trend continues with the 100:1 

mixture. From 50:1 to 100:1 the yielding spike increases, occurring at higher 

magnitude at lower strains Figure 4-14b dashed box while for the rest of 𝑡, 

deformation is increasingly elastically dominated Figure 4-14b dot dash box. The 

change in low strain behavior is also accompanied by a change to the high strain 

behavior. The subregion of complete yielding 𝛿𝑡 >
𝜋

2
 shifts and extends to lower strain 

regions, Figure 4-14b solid box. When the UDP ratio is increased from 100:1 to 

250:1, the yielding spike reduces. This represents a decrease in strain rate 

dependent yielding in the low strain region. This behavior is accompanied by a 

Figure 4-13: Transient Phase angle plot of Pantoea WT performed at 0.5 Hz. In this 
plot the time point during a complete oscillation cycle between 0 and 2𝜋 where the 
transient phase angle 𝛿𝑡 is measured at 𝑡. The strain amplitude of each oscillatory 

cycle is represented by 𝛾. The colourbar represents the transient phase angle 𝛿𝑡. 
The transient phase angle is measured from 0 to 𝜋. A 𝛿𝑡 of 0 represents a fully 
elastic Hookean response, a 𝛿𝑡 of 𝜋 represents a fully viscous response and 
complete structural yielding. The dashed boxes highlight the regions where the 
biofilm begins to exhibit yielding. The solid boxes represent regions where the biofilm 
is nearing a completely fluidised state within a strain cycle.       
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reduction in 𝛿𝑡 for the rest of 𝑡 through the oscillation cycle, Figure 4-14c dashdot 

dash box. Compared to the 100:1 mixture the subregion of complete yielding for 

250:1 occurred at lower strains, Figure 4-14c dotted box. The trend of a reducing 

yield peak at small strains continued when the packing fraction was increased from 

250:1 to the monoculture of UDP, Figure 4-14d dashed box. The small strain 

behavior of UDP also was increasingly elastic in response of the oscillation cycle, 

Figure 4-14d dashdot box, whist the region of complete yielding remained 

comparable to the 250:1 mixture, Figure 4-14d solid.    

4.4 Discussion and conclusions  

In this chapter I have shown how the rheology of a bacterial biofilm is influenced by 

the secretion of EPS. The EPS composition of Pantoea sp. was manipulated through 

Figure 4-14: Transient Phase angle plot of Pantoea.sp at increasing UDP: WT ratios. 
In this plot the thick dash line boxes in the top left of each plot represent the region 
where strain 𝛾  for the respective strain amplitude is largest during an oscillation 
cycle. This region for each biofilm is elastically dominated. By reducing the 
amylovoran quantity in the biofilm this region grew increasingly elastically dominated. 
The dash box in each plot represents the region where strain rate was highest during 
the respective oscillation cycle. This region reduced in prominence as amylovoran 
concentration was reduced, signifying an increase in elasticity. The solid line box’s 
represent the region during an oscillation cycle at the respective strains where the 
material was completely yielded. With a reduction in amylovan this region grew to 
occur at lower strains. At high amylovoran concentration 50:1 the region of complete 
yielding grew to occur over a larger proportion of the oscillation.   

A B 
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genetic modification by deleting the UDP operon which controls the secretion of 

amylovoran, a capsular acidic polysaccharide. The WT Pantoea sp. had a 

macrostructure which was swelled and had a corresponding microstructure with a low 

packing of 𝜙= 0.16± 0.04. This could be due to the high concentrations of 

amylovoran, a hydrophilic exopolysaachride, which would increase the equilibrium 

swelling point of the biofilm. The bacteria within the microstructure were separated 

into small clusters. These microstructural characteristics are like other strains which 

are known to have amylovoran as an EPS component such as Pantoea stewartii and 

Erwinia pyrifoliae (Tecon & Leveau, 2016).  

Pantoea WT was characteristic of a viscoelastic liquid and reptation polymer network 

by displaying a constant viscous modulus 𝐺’’ until yielding and then shear thinning. 

Repatating entangled polymer networks form in concentrated polymer solutions 

through the constriction of polymer motion by topological constraints by neighboring 

chains. The relaxation time of this network is influenced by polymer molecular weight 

and chain relaxation. The molecular weight of amylovoran is between 1- 5 MDa 

depending upon the culture conditions. When produced from agar plate culture 

conditions amylovroan is known to have a molecular size of 5 MDa (Schollmeyer et 

al., 2012). As the polysaccharide network is sheared entanglements break and 

reform. When the strain rate is above the rate of entanglement formation the material 

shear thins. If the rate of entanglement formation between different regions of the 

chain is above the shear rate the viscosity of the solution remains constant.  

Deletion of UDP which controls amylovoran production resulted in a microstructure 

which tightly packed 𝜙= 0.64± 0.08. The rheological behavior of the UDP deletion 

biofilm was typical of glasses and weak gels, exhibiting a prominent vicious 

overshoot. In repulsive glassy systems, weak bonding interactions and physical 

jamming and caging are primarily responsible for the stress bearing capacity of the 

structure. 

The difference in amylovoran production between WT and UDP meant that by 

culturing mixtures of these two strains the amylovoran concentration and packing 

fraction could be varied in a controlled manner. This framework enabled the study of 

the phase transition between the viscoelastic liquid behavior of WT and glassy 

rheology of the UDP mutant, analogous to the methodology used to study colloidal 

gel phase transitions. In these studies, the control variables are colloid packing 
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fraction and colloidal bonding strength, which can be controlled using polymer 

concentration, ionic concentration and pH (Mendoza et al., 2018).  

The concentration of amylovoran was inversely linked to the packing fraction and 

bacterial cluster size. Bacteria have been shown to aggregate due to various 

mechanisms such as, interactions depletion attraction (Dorken et al., 2012) and 

through autoagglutinins such as Ag43 in E. coli and PIA in S. aureus (Ageorges et 

al., 2019; Haaber et al., 2012). Amylovoran is a cell surface bound capsular 

exopolysaccharide, analogous to an absorbing polymer on a colloidal surface. The 

timelapse images of the WT showed cell – cell repulsion with increasing polymer 

concentration. Increased EPS secretion resulted in increased bacterial separation. 

Computational studies of polymer bound colloidal mixtures have demonstrated that 

colloidal packing density is reduced with an increase in polymer molecular weight and 

concentration (Howard et al., 2019). However, the precise clustering mechanism of 

Pantoea sp. warrants further study. 

When the ratio of UDP in the mixture was increased thus decreasing amylovoran 

concentration the elastic 𝐺’ and viscous moduli 𝐺’’  increased. The increase in 𝐺’ and 

𝐺’’ coincided with an increase to the packing fraction. This is a commonly found 

characteristic of colloidal gel systems, as the relative proportion of stiff (in comparison 

to the polymer chains) colloids increases. In the case of a biofilm, the colloids being 

the bacteria and the polymer chains being the EPS. It was also recently shown that 

gel elasticity is a function of the concentration of interconnected clusters (Whitaker et 

al., 2019). The yield strain of the Pantoea sp. mixtures reduced with increasing 

concentrations of UDP, a phenomenon known as the Payne effect. The dynamics of 

the Payne effect within the Pantoea sp. biofilm was revealed using the intercycle 𝑇 

ratio. The 𝑇 ratio revealed a mild thickening behavior in the pure WT biofilm. The 

magnitude of thickening reduced and the emergence of thinning (𝑇 < 0) occurred at 

lower strains at intermediate packing fractions (50:1 and 100:1 ratios). This effect has 

been seen in a variety of particle filled polymer networks and has been attributed to 

the increasing hydrodynamics effect of the particles on the polymer network whereby 

the associated effect amplifies the local strain of the polymer matrix (Y. Song & Zheng, 

2016). When the packing fraction transitions from intermediate to high (250:1 or pure 

UDP) the onset of thinning (𝑇 < 0) increases to higher strains. Preempting the onset 

of thinning behavior is the emergence of a thickening region (𝑇 < 0). The transition in 
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𝑇 behavior from low, intermediate to high ratios of UDP could potentially be explained 

by the considering the relative contribution of the EPS network against the bacteria 

network at each ratio. The balance between these two networks could be noticed in 

the viscous moduli 𝐺’’ curve of the 10:1, 50:1 and 100:1 mixture. These curves 

exhibited two distinct regions of power law behavior. The first in the MAOS region 

𝐺𝑀𝐴𝑂𝑆
′′ ~𝛾0

−
1

2
𝜐
 and the second in the LAOS region 𝐺𝐿𝐴𝑂𝑆

′′ ~𝛾0
−𝜐 where 𝜐 is the exponent 

for the power law behavior after the cross over point in the LAOS region for ratios. 

The double power law gradient found in 𝐺’’ is symptomatic of a system with two 

distinct processes which each are a confluence of multiple relaxation times. 

Reptating polymer networks feature a spectrum of relaxation times due to the variety 

of entanglement configurations present. The presence of two power law gradients 

may relate to the presence of these two dominant networks within the biofilm. The 

EPS network being predominantly structured through polysaccharide entanglements 

and the second being the bacteria/bacteria jamming interactions. 

The intercellular bonding strength within Pantoea sp. biofilms appears to be low due 

to the repulsive glassy behavior of the UDP pure strain and viscoelastic liquid state of 

the WT specimen. Thus a collision incident between clusters is likely to cause cluster 

breakup, which is reflected through the reduced strain at which thinning behavior is 

exhibited as the concentration of UDP is increased from 50:1 to 100:1. When the 

ratio is increased to 250:1 the rheology becomes dominated by glassy jamming. This 

is reflected by the emergence of the type III hump and an increased strain before the 

crossover point and the onset of thinning. In this phase, thinning is preceded by 

thickening (type III) which is caused by the increased energy required to rearrange 

the jammed rod state.      

This chapter demonstrated how the ratio of EPS to bacteria is a main determinant of 

the biofilm rheological response in biofilms which feature an EPS with hydrophilic 

capsular polysaccharides. The Pantoea sp. WT produced large quantities of EPS 

containing amylovoran. The high concentrations of EPS and large molecular weight 

of amylovoran appeared to form an entangled EPS network which dominated the 

rheological response. This resulted in a viscoelastic liquid behavior akin to a reptating 

gel network with a low strength (low 𝐺’ in the LVER) and a high yield strain. The 

rheological response of Pantoea sp. UDP: WT mixtures displayed a two-stage power 

law behavior which was attributed to the interplay between the EPS network and the 
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bacteria network, akin to a double network hydrogel (Jia Yang et al., 2018). The 

balance between which of the two networks dominated the rheological response was 

controlled by the EPS concentration of the biofilm. Reducing the polymer 

concentration coincided with an increased packing fraction and shift in the 𝑇 behavior 

of the biofilm. This shift was related to the Payne effect and hydrodynamic 

interactions between the bacteria and EPS which amplified local strain of the polymer 

matrix. The reduced polymer concentration resulted in an increase to nonlinear strain 

thinning at intermediate packing fractions, which was depicted in the SPP analysis. 

The thinning behavior was then suppressed at lower EPS concentration as 

bacteria/bacteria constriction through increased topological caging increased in 

prominence.  

In this chapter I demonstrated how the secretion of a hydrophilic capsular 

exopolysaccharide influences the microstructural and rheological phases behavior in 

a PGPR bacterial strain. I showed that by controlling EPS through mixing a wild type 

EPS producer with an EPS deficient mutant the controlled study of biofilm phase 

transitions could be performed. The nonlinear techniques of LAOS provided detailed 

information into to the thinning and thickening associated with the rheological phase 

behavior which could be interpreted with reference to EPS network properties and 

the constriction of the bacteria network.  

The framework used here therefore could be relevant towards studying how EPS 

components interact within the EPS network and used to access how changes in 

entanglements and crosslinking between components alters biofilm behavior in high 

shear environments. This frame work could be used to study EPS network modified 

due to polymer/protein interactions, such as LecB and Psl in P. aeruginosa and the 

impact of alginate on phase behavior and large strain deformation (Kovach et al., 

2017; Passos da Silva et al., 2019). The framework may also be relevant for 

investigating how biofilm EPS concentration alters porous media hydrodynamics, 

such as soil, where biofilm fluid interactions can substantially influence flow fields 

(Aufrecht et al., 2018, 2019; Carrel et al., 2018). Conversely the concepts of LAOS 

may have application in tailoring the rheological properties of synthetically modified 

PGPR specifically for a target plant species and specific soil properties. 
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Chapter 5 Results: Multiplicity of yielding in bacterial biofilms  

5.1 Introduction 
Over the previous two chapters it has been demonstrated how LAOS provides 

insights into the yielding dynamics of chemically treated biofilms, where attraction 

and packing influence macroscale rheology, and shown how EPS secretion 

influences phase transitions in Pantoea sp. YR343 resulting in transitions between 

viscoelastic liquid and glassy behavior. In this chapter I compared the rheology of 4 

bacterial strains which exhibit contrasting rheology. I investigated 2 rod-shaped 

bacteria: Comamonas denitrificans and Pseudomonas fluorescens, a cocci 

bacterium, Staphylococcus epidermidis and a diplococcus bacterium, Neisseria 

polysaccharea.  

Biofilms display rheological behavior similar to colloidal glasses and gels. Depending 

upon the culture method, air-solid interface, interfacial liquid-air or submerged liquid 

flow, biofilms exhibit properties ranging from viscoelastic liquid to gel (Pavlovsky et 

al., 2013; P A Rühs et al., 2014). The rheological behavior of a biofilm varies with the 

physicochemical environment and the phenotypic expression of proteins and 

polysaccharides. In corresponding soft matter systems, the rheology is mediated by 

the colloidal packing fraction and the interaction strength. The magnitude of colloid 

/colloid interaction strength and packing fraction determines the viscoelastic 

response of soft matter systems which can be categorised into 3 distinct phases; 

liquid, glass or gel (Y. Xu et al., 2018). These phases are widely studied in well 

characterised colloidal systems where the packing fraction, electrolyte concentration, 

pH and temperature are modulated to control interparticle interaction strength (Y. Xu 

et al., 2018). As the packing density of a structure is increased, the interaction 

strength between the particles becomes of increasing importance (Solomon & Spicer, 

2010). Gels and glasses can be subcategorized as attractive or repulsive (Zaccarelli 

& Poon, 2009). Glassy rheology is primarily driven by the self-confinement of 

particles by their nearest neighbors and this structure is termed a cage. In an 

unperturbed structure, particles remain within their cages, but as the material is 

sheared particles hop and migrate in and out of the cages, resulting in structural 

rearrangement and yielding. Glassy systems are primarily formed by repulsive long-

range interactions (Voigtmann, 2014). Gel systems have comparatively high particle 

interaction strength, which results in the self-assembly of networked structures at low 

packing fractions. Depending upon the strength of interaction, the gel is categorised 
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as either repulsive or attractive. In a repulsive system the attraction between particles 

is weak, and systems display a single yielding process (Shao et al., 2013; Zhi et al., 

2015). With increasing interaction strength an additional yielding process occurs, 

resulting in two step yielding. To fully capture the rich dynamics which occur in each 

viscoelastic phase and construct structure property relationships, both linear and 

nonlinear rheology need to be quantified. The type of rearrangement dynamics which 

cause the transitioning from elastic to viscous dominant behavior can be captured 

using Large amplitude oscillatory shear (LAOS). The LAOS techniques used here 

enable us to quantitatively characterize emergent non-linear behavior, providing a 

platform to compare gel/glassy rearrangement processes.         

 

5.2 Materials and methods  

5.2.1 Bacterial strain and growth 

P. fluorescens Migula 1895 and Comamonas denitrificans 123 ATCC 700936 were 

purchased from the ATCC and Staphylococcus epidermidis 096R was kindly 

provided as a gift from Prof. Grant Burgess, Newcastle University, UK. Neisseria 

polysaccharea 31001 was provided as a gift from Dr. Nick Jakubovics, Newcastle 

University, UK. P. fluorescens Migula, Comamonas denitrificans 123 and 

Staphylococcus epidermidis 096R were cultured overnight in Tryptic soy broth (TSB).  

Cultures were adjusted to an OD of 0.2. 150 µl of culture was distributed over the 

surface of 1 % TSA plates using an L-shaped spreader. P. fluorescens and C. 

denitrificans were incubated at 24 oC for 48 hours. S. epidermidis was incubated at 

37 oC for 48 hours. Neisseria polysaccharea 31001 was cultured in BHI broth 

overnight anaerobically at 37 oC in candle jars and distributed over chocolate agar 

plates in an anaerobic chamber for 48 hr at 37 oC.TSB agar (per 1 L) contained 30 g 

tryptic soy broth (Sigma) and agar concentration dependent upon experiment 

(ranging from 0.5 % - 1.5 %). Blood agar contained 37 g/L brain heart infusion 

(Oxoid), 5 g/L yeast extract (Merck) and 15 g/L agar (Merck). After sterilization, 5 % 

(v/v) defibrinated horse blood (TCS Biosciences) was added. Chocolate agar was 

prepared using the same recipe except that, after the addition of horse blood, the 

medium was heated to 70 °C for 10 min. 

5.2.2 Non-linear rheology - LAOS 

A strain-controlled rheometer (Malvern Kinexus Pro+) was mounted on a passive 

isolation plate with a 20 mm parallel plate geometry. 120 grit paper was adhered to 

the top and bottom geometries to prevent slip. The temperature was controlled at 25 
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oC using a Peltier plate and a solvent trap was used to prevent desiccation. Biofilm 

samples were collected from the agar surface using a ground microscope slide. Tests 

were performed at a gap height of 1 mm. Amplitude sweeps were taken at 𝜔= 0.5 Hz 

at a strain 𝛾  = 0.1 – 1000 %. Samples were pre-sheared at 0.5 Hz for 120 seconds, 

then left for 600 seconds to stabilise before performing amplitude sweeps. Raw data 

was preprocessed using custom MATlab scripts and boxcar averaged with a window 

size of 50. MITlaos, a MATlab based GUI was used to perform Chebychev analysis. 

SPP analysis was performed using the MATlab routine SPP\_v1, kindly provided by 

Dr Simon Rogers.     

5.2.3 CLSM 

48 hr biofilm samples were imaged ex situ. Briefly samples were stained with 0.25 ml 

of 10µM Syto 63, a cell permeable DNA stain in for 30 mins. Biofilms were then 

stained for 30 mins with 1µg/ml FM 1-43, a lipophilic styryl compound which targets 

the plasma membrane of cells (Thermofisher,UK). 25 µL of sample was then 

collected using a ground microscope slide and transferred to a 25 µL geneframe. A 

#1.5 coverslip was used to seal the frame. Imaging was performed using a Leica SP8 

stimulated emission depletion (STED) confocal microscope with 100 x 1.4 N/A oil 

immersion lens. Biofilms were imaged at a depth of 10 µm from the zero position. FM 

1-43 was excited at 488 nm and Syto 63 at 640nm. This corresponds to an excitation 

separation distance of 172 nm to ensure blead through between channels was 

negligible. Syto 63 and FM 1-43 were acquired in separate channels with emission 

filters of 498 – 630 nm for FM 1-43 and 670-750 nm for Syto 63. 

5.2.4 Image analysis 

Images were processed using ImageJ and custom MATlab scripts. Briefly, images 

were bandpass filtered, Mexican hat filtered then median filtered before an Otsu BW 

threshold was applied. The packing fraction was calculated using equation,  

𝜙𝑝𝑎𝑐𝑘 =
𝑁𝑝𝑖𝑥𝑒𝑙=1

𝑁𝑡𝑜𝑡𝑎𝑙 𝑝𝑖𝑥𝑒𝑙𝑠
,                                                       [80] 

using the same method as was applied in chapter 4. 

5.2.5 C. denitrificans flocculation protocol 

C. denitrificans was cultured in TSB for 48 hr at 24 oC with shaking until an OD of 2, 

measured at 595 nm using a photospectrometer (Cary 100 Bio). 4 ml of culture was 

centrifuged for 90 seconds at 1000 g and 3 ml of culture media was discarded. The 

culture was then pipette up and down 10 times with a 1000 µL pipette and vortex 
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mixed for 10 seconds to re-suspend. Cells were stained with 10 µM Syto 9 

(Thermofisher, UK), a cell permeable DNA strain. The stained culture was covered 

with tinfoil to block light and left for 30 mins. After 30 mins the culture was then 

pipette up and down 10 times with a 50 µL pipette and vortex mixed for 10 seconds 

before transfer to a 50 µL geneframe slide which was produced by layering 2 x 25 µL 

(10 mm x 10 mm x 0.25 mm) Geneframes (Thermofisher,UK) and sealed with a no 

1.5 coverslip. Time lapses images of gelation were performed 15 µm above the 

coverslip surface at 40 x to enable imaging of the resultant structure and avoid 

counting bacteria which had sedimented to the coverslip surface. Timelapses were 

performed for 15 mins with imaging every 10 seconds on a fixed field of view (FOV). 

Experiments were repeated with 3 different samples. After the timelapse experiment, 

a Z stack of the structure was acquired from the coverslip (z = 0 µm) to z = 40 µm in 

steps of 0.5 µm using a 40 x objective. Finally, a tilescan of 5 x 5 (n = 25) images 

was taken 15 µm above the coverslip at 40 x.  

5.3 Results  

 

5.3.1 Comamonas denitrificans displays attractive glass/gel rheology  

To compare the short- and long-range attractions of each of the selected strains, the 

rheological signatures were first determined. Comamonas denitrificans exhibited a 

linear elastic modulus of 10000± 500 Pa and a viscous moduli of 3000± 150 Pa, 

Figure 5-1 which corresponded to a phase angle of 16 o± 2 o. 𝐺’ begun to decrease 

above strain values of 0.1 % which coincided with the decrease of the viscous moduli 

at a strain of 0.25 %. Between 37 -100 % strain the elastic moduli 𝐺’ displayed a 

plateau shoulder region. Within the same strain range the viscous moduli 

𝐺’’ crossovers with 𝐺’(𝐺’ = 𝐺’’) and 𝐺’’ increases from 131± 37 Pa to 218± 52 Pa. The 

𝜎 vs 𝛾 curve had two distinct regions; the initial linear gradient transitioned into a 

region of slow stress accumulation between 0.37 -13 %. Between 19 -139 % the 

stress strain gradient increased until a second reduction in stress strain gradient 

event at 139 %, signified by the dashed arrow in Figure 5-1. Similar amplitude 

sweeps have been seen for mixtures of positively and negatively charged 

combinations of colloidal particles with radius 210 nm at a packing fraction of 0.52. 

Here the dominating attractive interactions between particles was electrostatic with a 

strength ~5 kT. The electrostatic strength in this system was controlled by NaCl 
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concentration (Zong et al., 2013). Therefore, it appears that C. denitrificans exhibits 

rheology like an attractive glass/gel, a novel finding in biofilms.   

 

Figure 5-1: Amplitude Sweep of Comamonas denitrificans biofilm grown for 48 hr, the 
amplitude sweep is performed at a frequency of 0.5 Hz. The elastic modulus G’ 
exhibits a shoulder as the viscous stress overshoot begins, this characteristic has 
been seen in attractive colloidal gels. Presented is the mean and standard deviation 
from n = 3 biological replicates. 

5.3.2 Pseudomonas fluorescens displays repulsive glassy rheology 

P. fluorescens exhibited a storage modulus of 1250± 175 Pa with a viscous modulus 

of 100± 17 Pa, corresponding to a phase angle 5 o± 1 o. The LVER extended until a 

strain of 19.8 % and a cross over (𝐺’ = 𝐺’’) occurred at a strain of 26.8 %, Figure 5-2. 

As with chapter 1, P. fluorescens exhibited a type III hump within the MAOS region 

before a yield strain was reached.  
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5.3.2 Rheology of diplococcus and coccus bacteria  

The elastic moduli of the diplococcus strain N. polysaccharea were measured to be 

275± 21 Pa with a viscous moduli of 45± 6 Pa, Figure 5-3, corresponding to a phase 

angle of 10 o± 2o. The LVER extended until 26.8 %, and the cross over (𝐺’ = 𝐺’’) 

occurred at a strain of 71.94 %. The yielding behaviour of N. polysaccharea was 

absence of a stress overshoots, characteristic behaviour of a viscoelastic liquid and 

reptation polymer networks. In addition, a reduction from 𝐺’’ = 43± 5 Pa to 36± 4 Pa 

Figure 5-3: Amplitude Sweep of Neisseria polysaccharea biofilm grown for 48 hr, 
the amplitude sweep is performed at a frequency of 0.5 Hz. Presented is the 
mean and standard deviation from n = 5 biological replicates 

Figure 5-2: Amplitude Sweep of Pseudomonas fluorescens biofilm grown for 48 hr, 
the amplitude sweep is performed at a frequency of 0.5 Hz. Presented is the mean 
and standard deviation from n = 5 biological replicates.  



104 
 

before the crossover point (𝐺’ = 𝐺’’) was noticed. This feature will be discussed in 

more detail using the more sensitive Chebychev analysis approach.  

S. epidermidis exhibited an elastic moduli of 1100± 591 Pa with a viscous modulus 

of 80± 39 Pa, Figure 5-4, corresponding to a phase angle of 5 o± 3 o. The LVER of 

S. epidermidis was exceeded at 1 % and cross over (𝐺’ = 𝐺’’) at a strain of 37.2 %. 

These values are an order of magnitude higher than previously measured rheometer 

values which is attributed to the agar plate grown method used in this study in 

comparison to submerged in-situ grown examples (di Stefano et al., 2009; Pavlovsky 

et al., 2013). S. epidermidis exhibited two noticeable peaks in its viscous moduli, the 

first occurring at 1.9 % and the second at 37 %. The nature the 𝐺’’ curve for S. 

epidermidis is suggestive of two step yielding. In combination with C. denitrificans 

this first time that this two-step yielding has been observed in biofilm. S. epidermidis 

displayed yielding curves reminiscent of rheology from a multitude of attractive 

colloidal gel studies conducted at intermediate to high packing fractions (Koumakis & 

Petekidis, 2011; Shao et al., 2013) and pickering emulsions (Hermes & Clegg, 2013). 

For clarity the values of elastic modulus 𝐺’, viscous modulus 𝐺’’, LVER limit and cross 

over point for each biofilm are presented in Table 5-1. 

 

 

Figure 5-4: Amplitude Sweep of Staphylococcus epidermidis biofilm grown for 48 
hr, the amplitude sweep is performed at a frequency of 0.5 Hz. Presented is the 
mean and standard deviation from n = 3 biological replicates 
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5.3.3 C. denitrificans and S. epidermidis exhibit two step yielding 

The elastic stress 𝛾𝐺′ to strain plot is shown in Figure 5-5a . 𝛾𝐺′ is used instead of 𝜎 

to decompose the elastic stress from the viscous stress contribution to illustrate when 

elastic failure (yielding) occurs in each biofilm. Deviation from a linear 𝛾𝐺′ vs 𝛾 

gradient signifies yielding. C. denitrificans and S. epidermidis exhibit two stages of 

yielding, C. denitrificans yields at 18.43± 7.71 Pa and 124.6± 28.92 Pa whilst S. 

epidermidis yields at 20.97± 12.29 Pa and 63.40± 21.93 Pa. The most notable 

difference between the 𝛾𝐺′ vs 𝛾 behaviour of C. denitrificans and S. epidermidis is 

between the first and second yielding points. After the first yield point in C. 

denitrificans the elastic stress 𝛾𝐺′ plateaus until 40.65± 17.46 Pa after which the 

stress gradient increases rapidly to the second yielding point at 124.6± 28.92 Pa. For 

S. epidermidis biofilms this plateau is absent, instead a second linear gradient is 

Strain 𝐺’ (Pa) 𝐺’’ (Pa) 𝛾𝑐 (𝐺’ = 𝐺’’) LVER 

C. denitrificans 10000± 501 3030± 15 71.94% 0.013% 

P. fluorescens 1277± 179 101± 18 26.8% 7.2% 

S. epidermidis 1098± 591 68± 39 26.8% 1.3% 

N. polysaccharea 276± 22 43± 6 71.94% 26.8 % 

Figure 5-5: (A) Elastic stress vs strain curves for Comamonas denitrificans, 
Pseudomonas fluorescens, Staphylococcus epidermidis and Neisseria 
polysaccharea. The black labelled arrows denote the yielding points of each biofilm. 
(B) Plot of the corresponding phase angles for each biofilm with increasing strain. C. 
denitrificans displays a plateau region at intermediate strains.  

Table 5-1: Linear elastic and viscous modulus values, crossover strain and Linear 

viscoelastic limit values for each tested biofilm. Presented are mean and standard 

deviation from n=3-5 biological replicates  



106 
 

present until the second yielding point at 63.40± 21.93 Pa. After the second yield 

point 𝐺’𝛾 declines linearly, demonstrating both biofilm species follow the Herchel 

Buckley shear thinning relation when fluidised. The elastic stress strain behaviour of 

P. fluorescens exhibited a single yield point material at 50.77± 6.52 Pa. N. 

polysaccharea displayed a yield point at 30.37± 1.10 Pa which outwardly appeared 

like P. fluorescens. However the rate of change in gradient of 𝐺’𝛾 (%) after the first 

yield point in comparison to the rate of change of 𝐺’𝛾 (%) after the second yield 

points of C. denitrificans  and S. epidermidis and the singular yield point of P. 

fluorescens is more gradual. Plots of the phase angle for each bacterial strain are 

found in Figure 5-5b. C. denitrificans exhibited the highest initial phase angle 17.68 

o±1.26 o, signifying that C. denitrificans had a larger viscous component to its total 

viscoelastic response than the other bacterial strains. The phase angle increased at 

low strains before a plateau at approximately 37.35 o±1.88 o, signifying that 

increases in strain in this region resulted in an equal reduction in elastic and viscous 

moduli. Interestingly the phase angle behaviour of P. fluorescens and S. epidermidis 

was highly comparable across the tested strain range. The initial phase angle of P. 

fluorescens was 4.64 o± 0.31 o and S. epidermidis was 3.62 o± 0.19 o. N. 

polysaccharea had a slightly higher phase angle of 8.83 o± 0.81 o.  

5.3.4 Two step yielding mechanism depends on the range of EPS network 

bonding and bacterium topology 

To investigate the apparent differences in yielding behaviour within each biofilm the 

nonlinear intracycle thickening ratio (𝑇) was accessed, Figure 5-6. C. denitrificans 

exhibited rheology akin to an attractive gel/glass structure with short range bonding. 

Interestingly 𝑇 was neutral (≈ 0) before the first yielding point, this behaviour was 

despite an evidential reduction in elastic and viscous moduli between 𝛾 = 0.1 - 1 % in 

the cycled averaged data. This suggests that short length scale 

rearrangements/bond breaking are causing the simultaneous drops in 𝐺’ and 𝐺’’. C. 

denitrificans exhibits two yielding points, as was shown in Figure 5-5. After the first 

yielding point which corresponded to 𝛾 = 2.6 %, thinning occurred. This is signified in 

the (𝑇) ratio plot by the dashed back arrow, Figure 5-6 . The first step in two step 

yielding has been attributed to breakdown in short range bonds. This would occur 

within a biofilm due to the breakdown of intercellular EPS bonds. The second yielding 

point for C. denitrificans is preceded by a 𝑇 minima of -0.30± 0.02, this behaviour is 

like the behaviour exhibited by FeCl2 treated P. fluorescens in chapter 1. After the 

minimum 𝑇 increased to -0.09± 0.01, indicating the contribution of a minor thickening 
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mechanism after the second yield point. S. epidermidis exhibited an increase in 𝑇 to 

0.08± 0.04 before the first yielding point at 𝛾 = 2.6 % after which 𝑇 begins to fall to -

0.04± 0.02 signifying a breakup of biofilm into clusters. The cycle averaged moduli 𝐺’ 

and 𝐺’’ of N. polysaccharea displayed were characteristic to a viscoelastic liquid, 

however the 𝑇 ratio revealed the presence of two step nonlinear thickening. The two-

step process occurred at a first yielding point of 𝛾 = 7.2 % and the second at 𝛾 = 139 

%. The minima of 𝑇 after the first yielding point was -0.08± 0.02 and maxima of the 

second yielding point was 0.15± 0.02. Both S. epidermidis and N. polysaccharea had 

𝑇 curves with a peak – trough – peak shape. However, the difference between the 

minima and maxima of the trough and peak for greater for N. polysaccharea. The 

similarity in curve shape between these two strains maybe due to morphology. Both 

strains have low aspect ratios which were comparable. S. epidermidis is a cocci 

shaped bacterium and had an aspect ratio of 1.03± 0.06. The morphology of N. 

polysaccharea is slightly different due to its diploccous shape, however had a 

comparable aspect ratio of 1.13± 0.08. The packing fractions were also comparable, 

S. epidermidis 𝜙 = 0.48± 0.02 vs N. polysaccharea 𝜙 = 0.47± 0.04. The similarities 

in packing fraction and bacterium aspect ratio suggests that differences in EPS 

network composition and structure are likely responsible for the differences between 

𝑇 peak and trough values and the strains they occurred at. However, the similarities 

in the shape of the 𝑇 curve are more than likely due to similar topology. The 

Figure 5-6: Thickening ratio (T) for tested 48hr grown biofilms. Black arrows 
represent yielding points from stress strain curve for C. denitrificans, pink arrows, 
S. epidermidis, green arrows, N. polysaacharea and red arrows, P. fluorescens. 
Dashed lines signify the first yielding point and solid lines represent the second 
yielding point. Presented is the mean± standard deviation from n= 3- 6 biological 
replicates.  
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representative LB plots of each of the tested bacteria are found in the appendix G. 

The first step in two-step yielding in attractive colloidal glass and microgels systems 

has been attributed to in cage nearest neighbour motion, a process of colloids 

constricted by nearest neighbours locally yielding and the breakdown short range 

interparticle bonds. The second step has been attributed to the breakdown of the 

stress bearing topological constrains of nearest neighbour cages (Genovese, 2012). 

In a biofilm system the first yielding process would be analogous to short range 

intercellular bonds breaking down locally between nearest neighbour cells at small 

strains. The second process would then be due to breakdown of the longer-range 

EPS polymer components which bind the together macrostructure of the nearest 

neighbour cages. The macrostructural breakdown of the longer-range EPS network 

would cause unjamming of the nearest neighbour cages, resulting in flow alignment 

and shear thinning (Zong et al., 2013).      

To compare the breakdown of cage strength the 𝐺𝑐𝑎𝑔𝑒 moduli is used. The cage 

modulus of each biofilm is seen in Figure 5-7. For C. denitrificans, 𝐺𝑐𝑎𝑔𝑒 reduces 

rapidly from 10590± 540 Pa at 𝛾 = 0.15 % to a minimum of 317± 8 Pa at 𝛾 = 37.33 

%. After this point the cage moduli increases from the minimum to a stable value 

centred around 639± 11 Pa. As with the 𝑇 ratio S. epidermidis and N. polysaccharea 

display similar trends in 𝐺𝑐𝑎𝑔𝑒 behaviour. The curves are shifted, reflecting the higher 

Figure 5-7: Gcage plot for each biofilm, C. denitrificans displays a significant drop as 
strain increases and converges around the plateau values of S. epidermidis and P. 
fluorescens. Shown are the mean± standard deviation from 3- 5 biological repeats.  
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strength of S. epidermidis 912± 398 Pa compared to 270± 26 Pa and both feature a 

linear portion at low strains 𝛾 < 1 %. Both curves then decrease in value towards a 

minimum of 282± 108 Pa and 88± 10 Pa before recovering to 382± 80 Pa and 117± 

16 Pa respectively. Interestingly the respective ratio between the starting strength 

and 𝐺𝑐𝑎𝑔𝑒 minimum of the cocci/ diplococcus strains was lower than for the rod 

bacterium strain. S. epidermidis and N. polysaccharea had a reduction ratio of 3.46± 

0.31 and 3.08± 0.15, which compared to 4.37± 0.41 and 33.47± 1.79 for P. 

fluorescens and C. denitrificans. This observation suggests that biofilms with rod 

bacterium lose an increased proportion of their residual strength in comparison to 

cocci/diplococcus bacterium. This is likely due an interplay between the reorientation 

and alignment of the rod geometry under flow. This effect would cause the 

breakdown of topological constrains and bacterial jamming, resulting in a more 

exaggerated reduction in cage strength in comparison to cocci and diplococci 

bacterium. For P. fluorescens biofilms a singular well-defined drop in 𝐺𝑐𝑎𝑔𝑒 was 

present, this suggesting a singular yielding mechanism. The convergence of 𝐺𝑐𝑎𝑔𝑒 

values between C. denitrificans, S. epidermidis and P. fluorescens at high strains is 

suggestive of comparable cage strength. This convergence occured when the short-

range components in the EPS matrix’s of C. denitrificans and S. epidermidis broke 

down.      

As with chapter 1 and 2 each biofilm species was fingerprinted using the SPP 

method. This method is used to build phase maps which can fully describe the 

occurrence of yielding events. Depending upon where yield occurs, we can make 

assumptions as to the range of attraction controlling the rheology of each tested 

bacterium. The phase plot of C. denitrificans highlights how yielding predominantly 

occurs at low strain values Figure 5-8a red and cyan boxes. These two distinct bands 

are present during each half cycle and the first centred around 𝑡 =
𝜋

2
,
3𝜋

2
 where strain 

is largest and between 𝑡 = 0 and 𝑡 = 𝜋 and 𝑡 =
3𝜋

2
 and 2𝜋 denoting the occurrence of 

both strain dependent (red boxes) and strain/strain rate dependent (cyan boxes) 

yielding events. The magnitude of yielding in the cyan region was higher than the 

strain dependent yielding events. These two yielding regions were out of phase with 

each other, suggesting that the first yielding point in C. denitrificans could be a 

confluence of two separate breakdown processes, one strain dependent, the other 

strain/strain-rate dependent. It is possible the strain dependent mechanism (red box) 
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relates to the breakdown of short-range intercellular bonds, and the second (cyan 

box) relates to the reorientation of bacteria. The second stage yielding bands (green 

boxes) for C. denitrificans are significantly less prominent that the first yield zone and 

comparatively against to the other species. This suggesting that the 1st yielding stage 

in C. denitrificans is responsible for most of the microstructural modification and is 

suggestive of an EPS network which is short ranged with a much weak long-range 

structure. For S. epidermidis the SPP phase diagrams clearly shows two separate 

regions of yielding, an initial yielding stage followed by a second stage of yielding, 

Figure 5-8b. The second stage of yielding in S. epidermidis had a higher 𝛿𝑡 than C. 

denitrificans. This suggests that at low strains the macrostructure of S. epidermidis is 

preserved to a greater extent than C. denitrificans, as an increased proportion of 

structural breakdown occurs in the second yielding region. In N. polysaccharea a 

Figure 5-8: Transient phase angle plots from amplitude sweeps performed at 0.5 Hz 
at strain amplitudes ranging from 𝛾 of 0.1 % to 1000%. The instantaneous phase 

angle 𝛿𝑡 was continuously measured throughout each amplitude cycle at time 𝑡 (a) C. 
denitrificians, the red dashed boxes denote a strain dependent 1st stage yielding 
process whilst the cyan boxes denote a strain/strain rate dependent 1st stage yielding 
process. The green boxes denote 2nd stage yielding processes (b) S. epidermidis, the 
red dashed boxes denote a strain rate dependent 1st stage yielding process whilst 
the cyan boxes denote a strain/strain rate dependent 1st stage yielding process. The 
green boxes denote a 2nd stage yielding process (c) N. polysaccharea, the red boxes 
denote the faint emergence of a 1st stage yielding behaviour. The green boxes 
denote strain/strain rate dependent yielding. (d) P. fluorescens, the green boxes and 
red boxes denote strain/strain rate dependent yielding.  
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small region of partial yielding was apparent at low strains, Figure 5-8c. This 

reinforces the observation from the 𝑇 plot that a mild form of two step yielding is 

present, supporting a classification of N. polysaccharea as a weakly attractive glass 

(red boxes). The second yielding phase in N. polysaccharea at higher strains is more 

prominent (green boxes). The phase plot for P. fluorescens as expected from chapter 

1 features a singular dominant region of yielding extending unbroken from strains of 

~ 60 %, Figure 5-8d.  

5.3.5 Microstructural analysis of each biofilm  

To assess the differences in microstructure between each rheologically characterised 

strain CLSM was used to image each of 48 hr grown biofilms, Figure 5-9. P. 

fluorescens had a packing fraction of 0.62± 0.03. The cells were tightly packed, with 

small regions of axially aligned cells. The structure of S. epidermidis had a packing 

fraction of 0.55± 0.02 with an absence of voids, the average diameter of each cell 

was 0.68± 0.05 µm. The structure of N. polysaccharea had a packing fraction of 

0.58± 0.04, however the diplicoccus individual cells have an aspect ratio slightly 

A B 

C D 

Figure 5-9: Representative CLSM images of 48 hr agar plate grown biofilms (A) C. 
denitrificans a morphology of interwoven filamentous networks with an apparent 
nematic ordering and alignment (B) P. fluorescens (C) S. epidermidis (D) N. 
polysaccharea, inset depicts the diplococcus shape.  

D 
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higher than 1 at 1.13± 0.08 with a major axis of 0.73± 0.05 µm. From the similarity in 

packing fractions between each of the tested strains, Figure 5-10 it can be concluded 

that the rheology differences between the strains was the result of differences in EPS 

composition and cell morphology. For spherical colloid glasses/gels the range of 

bonding length can be compared by estimating the localization length 𝑟𝐿, using  

𝐺′ ≈
𝜙

𝑟𝐿
2,                                                              [82] 

where 𝐺′ is the storage modulus and 𝜙 is the packing fraction. This relation was 

predicted using naïve mode coupling theory (NMCT) and has been applied 

experimentally to compare bonding and caging dynamics within binary mixtures of 

colloids (Douglas & Kenneth, 2008; Jia et al., 2015). The localization length 𝑟𝐿 is used 

to compare spherical shaped S. epidermidis and N. polysaccharea. S. epidermidis 

had a 𝑟𝐿 =0.032𝐷 and N. polysaccharea had a 𝑟𝐿 =0.056𝐷, where 𝐷 is the average 

cell diameter. The higher value of 𝑟𝐿 indicates an increased amount of caging in 

comparison to bonding within N. polysaccharea.    

C. denitrificans had a packing fraction of 0.65± 0.02 and a microstructure which was 
composed of aligned filaments of cells. The filaments intertwine and coil in the axial 
direction resulting in alignment. Two types of junction zones can be seen, the axially 
adjacent aligning filaments looked in proximate, which suggests the possibility of 
bonding between aligned filaments. Overlapping filaments were also seen, these two 
types of networks have been theorised to occur in supramolecular assembly of gels 

Figure 5-10: Calculated packing fraction of each bacterial biofilm. The packing 
fraction of the biofilms were broadly comparable. Presented is the mean ± 
standard deviation from 8 FOV.  
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(Raghavan & Douglas, 2012). The occurrence of filamentous growth in C. 
denitrificans has been observed in liquid culture. Filamentous growth is known to 
occur due to several mechanisms. Filaments can form due to physical connection 
preventing disconnection of daughter cells, this can be caused by proteinaceous 
complexes. Additionally, an inability to separate from daughter cells can also be due 
to cells with defects in cell division (Claessen et al., 2014). The averaged dimensions 
and aspect ratio of each strain is summarised in  

Table 5-2.  

Bacteria Length (µm) Width (µm) Aspect Ratio (r)  

C. denitrificans 2.79± 0.21 0.64± 0.08 4.38± 0.35 

P. fluorescens 2.27± 0.19 0.43± 0.04 5.22± 0.17 

S. epidermidis 0.68± 0.05 0.65± 0.04 1.03± 0.06 

N. polysaccharea 0.73± 0.05 0.65± 0.06 1.13± 0.08 

 

Table 5-2: Summary of the length, width and aspect ratio of individual bacteria taken 

from 13 replicate CLSM images. Presented is the mean± standard deviation.     

5.3.6 C. denitrificans forms gel like aggregates in culture 

The striking similarities between the rheology of mixtures of oppositely charged 

colloids with strong short-range attraction and attractive colloidal gels and the LAOS 

behavior of C. denitrificans led me to hypothesis that cell-cell bonding and the 

filamentous growth mode of C. denitrificans was a major contributing mechanism. 

Since C. denitrificans exhibited attractive glassy/gel behaviour I hypothesised that the 

short-range interactions between bacteria would be large in comparison to similarly 

rod-shaped P. fluorescens. Colloidal gels with a high attractive strength form gelated 

space spanning structures at low packing fractions, to test if C. denitrificans behaved 

as an attractive colloidal gel the aggregation dynamics of concentrated cultures of C. 

denitrificans and P. fluorescens (OD = 2 concentrated 3 x) were compared. To test 

for the presence of network formation a series of microscopy experiments to visualise 

aggregation were performed. Figure 5-11 shows representative images of a time-

lapse experiment comparing C. denitrificans and P. fluorescens aggregation. P. 

fluorescens showed a homogeneous distribution of bacteria from T = 0 mins to T = 

15 mins. C. denitrificans had a high initial presence of clusters interspersed with 

single bacteria, after 7.5 mins a space spanning network had developed in length 

and number of junctions (cell-cell attachment). The network densified and formation 

plateaued after 15 mins. Junction formation in C. denitrificans was consistently higher 

than P. fluorescens. After 15 mins tile scan imaging were performed which showed 
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the self-similar fractal like network structure of C. denitrificans. The network was 

structured with cellular clusters jointed by “floppy bridges”, a morphology typically 

seen in colloidal gels (Tsurusawa et al., 2019).   

The range of interaction between neighbouring cells will be a function of the EPS 

surface and exopolymers. From the CLSM gelation experiments and the rheological 

signature it appears that C. denitrificans is mainly structured by short range 

intercellular bonding which results in the filamentous morphology as seen in Figure 

5-9a. C. denitificans is known to grow in long filamentous chains encased within a 

thick polysaccharide capsule (Andersson et al., 2009). The cell- cell attraction is 

evidently short ranged as can be seen from the CLSM gelation experiment. The 

short-ranged behaviour is seen in SPP data where yielding mainly occurs at low 

strains. The short-range attraction could be the result of proteinaceous bridges or 

autoagglutinins between mother and daughter cells. Aggregation of C. denitrificans 

may also be due to secretion of hydrophobic polysaccharides and the formation of a 

cell capsule as recently seen in Bacillus licheniformis (Z. Wang et al., 2017). Based 

upon the apparent short-range filamentous behaviour of C. denitrificans it is probable 

that the mechanism responsible for the low yield strain and first yielding step is due 

Figure 5-11: (Top row) Micrographs display a 15 mins timelapse of a concentrated C. 
denitrificans culture (OD = 2, 3x concentrated) autoaggregating. After 15 mins a 
space spanning network is formed which is composed of clusters connected by 
floppy bridges. (Bottom row) A liquid culture of P. fluorescens (OD = 2, 3x 
concentrated) does not display autoaggregative behaviour. After 15 mins no space 
spanning network is formed, and the cells are homogeneously distributed within the 
FOV.  
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to the breakdown of bacterial filaments as strain is increased. An additional 

contributing factor behind the strong shear thinning behaviour of C. denitrificans is 

the highly aligned structure of the filaments. Strong alignment in the orientation fields 

of many rod colloidal and disk mixtures results in increased shear thinning (Philippe 

et al., 2013). C. denitrificans begins with a native structure with has high orientation 

order which may explain its shear thinning behaviour at low strains. At low strains the 

rotation and movement of bacterial filaments which lead to structural rearrangement 

and viscous dissipation is minimal. The lack of viscous dissipation was reflected in 

the low in the thickening ratio 𝑇 from 𝛾 = 0.1 - 10 %, which had a maximum at 10% of 

0.05± 0.01. The breaking of the short range bacterial filaments bonds causes a 

corresponding reduction in 𝐺′ from 10000± 502 Pa to 400± 47 Pa and 𝐺′′ from 

3000± 110 Pa to 131± 38 Pa in the 𝛾 = 0.1 - 10 % region. The elastic modulus 

initially reducing at a higher rate than viscous moduli up until a strain of 2 %, as see 

in the initial increase in phase angle. Here the phase angle reaches a plateau value 

of 37°. Similar behaviour of a low linear viscoelastic region (𝛾 < 0.4%) with 

simultaneous declines in viscous and elastic modulus have been seen in systems of 

oppositely charged colloidal particles (Yiwu et al., 2013). Here it was noted that for 

binary mixtures, maintaining a stable cage is challenging due to geometric selection 

where particles can only form bonds with oppositely charged particles when in a 

specific orientation (Meakin & Djordjevic, 1986). C. denitrificans also exhibited weak 

caging behaviour, as was shown in Figure 5-7, which could be due to geometric 

selection of “sticky” regions on the bacterial surface. At low strains short range 

broken bonds would accumulate, causing a reduction in elastic modulus 𝐺’. The low 

strain values in this region preserving the long-range microstructure restricting 

particle rotational mobility. As strain increases the number of bond breaking events 

increases, reducing both 𝐺’ and 𝐺’’. The plateaued phase angle behaviour could be 

due to the simultaneous occurrence of increased bacterial alignment with flow and 

short-range bond breaking. At strains above the phase angle plateau the interaction 

distance for short range bonding is exceeded, causing a rapid decline in 𝐺’ . The 

increased alignment with flow causes intercycle thinning as the networked structure 

of filament chains is destroyed, this is seen in the aforementioned 𝑇 plot. At this point 

phase angle increases from the plateau, with a corresponding reduction in thinning 

behaviour from 𝑇 = -0.30± 0.02 to 0.09± 0.01 and increase in 𝐺𝑐𝑎𝑔𝑒 from a minimum 

of 317± 8 Pa to 632± 6 Pa. This signifies an increase in viscous dissipation and 
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rearrangement of the macrostructure. At this point in accordance with other two step 

yielding phenological concepts the macrostructure will be composed of interspersed 

clusters, with intercluster bacteria bound by short range bonds. The viscous 

overshoot from 𝐺’’ = 131± 33 Pa to 218± 52 Pa could be attributed to the increased 

mobility of clusters. Rearrangement and breakdown of filamentous microstructure 

into clusters would increase dissipation though hydrodynamic interactions causing an 

increase in viscous dissipation and thickening behaviour, seen in the shoulder of 𝐺’ 

and reduction in thinning ratio (𝑇). The simultaneous increase in 𝐺𝑐𝑎𝑔𝑒  could then be 

attributed to cluster aggregation mediated by the depth of intercellular interaction 

potential and sticking probability, which is a function of the depth of the potential well 

and the kinetic energy of cluster – particle and cluster/cluster collisions (Linnes et al., 

2013; Veshchunov, 2015).        

5.4 Discussions and Conclusions  

 

In this chapter it was shown how EPS bonding range and cell morphology drive the 

rheology of 4 different bacterial strains. The packing fraction for each of the biofilms 

were comparable. The nonlinear rheology and mechanisms of stress relief of each 

biofilm displayed geometry dependent characteristics, which was mainly noticeable in 

the 𝑇 ratio. This can be explained by taking into consideration the degrees of 

freedom of the spherical and rod morphologies, and how they orientate under flow. 

The EPS matrix in biofilms suppresses Brownian diffusion by restricting translational 

and rotational degrees of freedom (Drescher et al., 2016). A spheroid particle has 

both rotational and translational degrees of freedom when constraint by nearest 

neighbour cages. As the particle is spheroid stress is relieved through translational 

movement. For the case of S. epidermidis and N. polysaccharea two main 

mechanisms of stress rearrangement are seen. This manifests as two step yielding.  

This type of yielding for spherical particles has been seen in several colloidal 

rheology studies, but not until now within biofilm systems (Kramb & Zukoski, 2011). 

N. polysaccharea exhibited nonlinear thickening behaviour similar S. epidermidis 

which can be classified as an attractive glassy system. N. polysaccharea had an 

aspect ratio of 1.13 which falls into the glass region as calculated by Zhang who 

performed NMCT simulations comparing degrees of freedom in a glassy system 

against particle aspect ratio and packing fraction (R. Zhang & Schweizer, 2009). 

Further, the nonlinear thickening behaviour of N. polysaccharea appeared similar in 
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behaviour to S. epidermidis, but was shifted, which is attributed to a higher 

intercellular bonding strength of the S. epidermidis biofilm. Rod shaped bacteria C. 

denitrificans and P. fluorescens displayed different yielding behaviour in comparison 

to spherical bacteria, this can be related to the increased aspect ratio, which was 

4.38± 0.35 and 5.22± 0.17 respectively. Aspect ratios of this size in systems with 

packing fractions 𝜙~ 0.6 correspond to double glassy systems. In this regime the 

bacterial cages are localized both rotationally and in translation. However, C. 

denitrificans and P. fluorescens have distinct differences between the EPS polymer 

networks and consequently has distinctly different non-linear behaviour. P. 

fluorescens displayed behaviour of a typical repulsive glassy system characterised 

by a singular well-defined hump in viscous modulus before the yield point. The 

singular hump is a consequence of both the breakdown of the EPS network 

supporting the bacterial cages and the rotational and translational breakdown of the 

bacterial cages. The yielding dynamics and similarities to other model repulsive 

glassy materials leads us to believe that EPS network in P. fluorescens is long 

ranged and evenly distributed around the perimeter of each cell, like a colloidal filled 

polymer composite (Genovese, 2012). From this it is assumed that the EPS matrix of 

P. fluorescens may not feature a particularly dominant autoagglutinin and the stress 

bearing mechanism is mediated by polymer interactions within the EPS matrix. On 

the other hand, C. denitrificans appears to have strong short-range intercellular 

bonding, this behaviour was evident from SPP phase plot and in the aggregation 

experiments. The combination of aggregation into a space spanning network at low 

volume fractions and presence of two step yield lead us to classify C. denitrificans as 

an attractive gel system. In comparison to P. fluorescens it seems that the stress 

bearing structure of C. denitrificans is due to surface bound polymers, which controls 

polymer bridging between bacteria. The surface bound polymer maybe linked to the 

polysaccharide C. denitrificans is encapsulated within when grown in liquid cultures 

and on agarose pads (Andersson et al., 2009).           

The occurrence of two step yielding in S. epidermidis also indicated short range 

intercellular bonding. The EPS matrix of S. epidermidis is known to feature two 

autoagglutinins; PIA an exopolysaccharide encoded through the icaADBC 

(intercellular adhesion) operon, Aap (accumulation associated protein) a 220 kDa 

microbial surface components recognising adhesive matrix molecule (MSCRAMM) 

(Rohde et al., 2005). Secretion of Aap has been shown to increase biofilm formation 
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under dynamic flow conditions and produce a more structured biofilm. Aap is 

predominantly localised to the cell surface, causing direct nearest neighbour cell 

bonding, whereas PIA forms longer string like attachments between multiple bacteria 

(Schommer et al., 2011). Since PIA and Aap both contribute to short-range 

intercellular bonding they could be the biofilm components which yield during the first 

step of the two-step yield process. The second step yielding process of S. 

epidermidis was more prominent than C. denitrificans, which could be seen in the 

SPP phase plot. This indicates that S. epidermidis had an EPS network also with 

longer ranged stress bearing components. A possible candidate component is Embp, 

a 1 MDa protein which binds to the extracellular matrix, however, is secreted in low 

volumes unless induced environmental factors such as osmotic stress (Linnes et al., 

2013). The long string like attachment of PIA to multiple cells may also be 

responsible for the second longer range yielding step.      

The work performed within this chapter demonstrated the application of LAOS 

towards the quantification and characterisation of short- and long-range EPS 

bonding. The nonlinear signatures of these biofilms were also used to compare the 

effects of bacteria shape. In colloidal gels the colloid geometry is known to influence 

yielding and breakdown of the macrostructure, the main difference being an increase 

flow alignment effect and nematic ordering in rod systems. This work demonstrated 

the application of the SPP method, where it was applied to detect differences in 

short- and long-range bonding interactions within the EPS matrix of each bacterial 

strain. From the SPP fingerprints it was easily noticeable that C. denitrificans had 

strong short-range interactions, this resulted in a biofilm with a very high strength (𝐺’ 

= 10000 ± 501 Pa) but extensive yielding behaviour at low strain values. The short-

range behaviour of C. denitrificans was reflected by the autoaggregation behaviour in 

liquid culture and the formation of space spanning networks (gelation). SPP analysis 

also revealed that S. epidermidis displayed short range bonding. S. epidermidis is 

also known to autoaggregate in liquid culture through the EPS autoagglutins PIA and 

Aap. Thus, from this work we have shown that SPP analysis maybe a promising 

method to detect the autoaggregation potential of bacterial strains. SPP analysis 

could be used as a macroscale probe for deciphering between short range and 

longer-range EPS network strength. This could be a promising technique to link 

macroscale rheological behaviour to microscale aggregation dynamics.      
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Chapter 6 Conclusions and future work 
 

6.1 Conclusions 

  
In this work I performed a series of rheological studies, using several different 

bacteria each with distinct properties. In addition to performing standard linear 

rheological protocols, I have applied analytical techniques of LAOS to quantify the 

nonlinear behaviour of each biofilm. I was able to relate changes in EPS network 

composition and bacterial arrangement to the yielding behaviour of each biofilm. 

These behaviours where then explained using concepts from model polymer gels 

and colloidal gel studies. I have assessed the effect of bacteria morphology and 

strength and locality of EPS networks on biofilm mechanics and demonstrated how 

biofilm rheology can be explained using analogies to well characterised colloidal soft 

matter systems. In doing so, I have begun to demonstrate an agreement between the 

principles which govern both biofilm and well characterised colloidal soft matter 

systems. 

This thesis has demonstrated that biofilms have a wide spectrum of rheological 

responses characteristic of several different phases. The first bacterium 

experimented upon was P. fluorescens, a rod-shaped bacterium with an EPS matrix 

known to be composed of alginate and LapA. This bacterium demonstrated 

behaviour akin to a soft glass or a filled polymer network. This was characterised by 

the viscous overshoot behaviour the biofilm exhibited in its viscous modulus as the 

cross over strain was approached. The presence of the viscous modulus overshoot 

upon approaching the cross over strain was also seen in the similarity rod shaped 

Pantoea sp. YR343 UDP mutant strain. This bacterium had a mutation to the UDP 

operon, which resulted in the suppression of the production of a major EPS 

polysaccharide component, amylovoran. The emergence of the viscous overshoot is 

commonly seen in repulsive glass systems, where interparticle bonding strength is 

weak. The commonality of nonlinear thickening behaviour of both these strains 

suggest that these two bacteria are absent of EPS components with strong 

intercellular bonding functionalities. This point can be supported when the bacterium 

C. denitrificans is considered. C. denitrificans, like P. fluorescens and Pantoea sp. is 

a rod-shaped bacterium, with a comparable aspect ratio to P. fluorescens, 4.38± 

0.35 vs 5.22± 0.17 respectively. However, C. denitrificans displayed two-step 

yielding behaviour, the first yielding point was at very low strains < 1%, then the 
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second yielding point was at 139 %. This transition in behaviour, from a single 

yielding point with a viscous overshoot, to a two-step yielding behaviour is commonly 

seen in colloidal glasses and gels, when interparticle bonding strength is increased. 

Therefore, it was suspected that C. denitrificans featured an EPS component which 

produced strong short-range intercellular bonds. This hypothesis was supported by 

its rapid autoaggregation dynamics in liquid culture, which resulted in fractal like 

space spanning networks. The presence of autoaggregation suggested that the 

short-ranged EPS component could be a possible autoagglutinin, contributing to the 

attractive glass/gel behaviour. The range and prominence of the single or two step 

yielding processes were precisely mapped using the series of physical processes 

(SPP) method. This analysis technique produced distinct phase maps which clearly 

showed the regions where the “soft repulsive glass” and “soft attractive glass” 

biofilms yielded. The difference between the soft repulsive glass and attractive 

glass/gel therefore appears to due be the range of bonding due to the EPS matrix, as 

the relative packing fractions of Pantoea sp. UDP (𝜙 = 0.64± 0.08), P. fluorescens (𝜙 

= 0.62± 0.03), and C. denitrificans (𝜙 = 0.65± 0.02) are comparable. The range of 

bonding in the EPS matrix was studied in chapter 3 through treatment with two 

different types of chemical compounds: divalent cations and a chaotropic agent to P. 

fluorescens. The divalent cations CaCl2 and FeCl2 produced a stiffening effect. The 

stiffening effect was likely due to ionic crosslinking with negatively charged EPS 

components. However, the two divalent cation compounds increased stiffness to 

different degrees. FeCl2 had a larger stiffening effect. The increase in stiffness was 

accompanied by the presence of strain rate thinning in the nonlinear region and the 

emergence of two-step yielding. The two-step yielding in the FeCl2 treated P. 

fluorescens shared similar nonlinear thinning behaviour with the two-step yielding of 

C. denitrificans. Both biofilms displayed a 𝑇 ratio which featured a drop to a thinning 

minimum and then increased back to neutrality. The 𝑇 minimum of C. denitrificans 

was slightly smaller, -0.30± 0.02 in comparison to FeCl2 treated P. fluorescens, -

0.39± 0.08. However, the dependency of the thinning behaviour on strain and strain 

rate are different. The SPP plots for C. denitrificans show that the first yielding 

process for C. denitrificans is centred around 𝑡 =
𝜋

2
,
3𝜋

2
, where strain is highest. 

Whereas the first yielding process for FeCl2 treated P. fluorescens was centred 

around 𝑡 = 0, 𝜋, where strain rate is highest. The differences between the first 

yielding point between these two biofilms could be due to the way in which the 
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respective EPS networks structure the biofilm. C. denitrificans appears to be 

dominantly structured through intercellular bonding between neighbouring bacteria. A 

polymer network like this would have a small interaction range, meaning that lower 

length scales are required to breakdown the network (Pham et al., 2006). This form 

of structural breakdown would be strain dependent, as when the structure is sheared 

beyond the interaction range, structural breakdown occurs. On the other hand the 

stiffening effect on P. fluorescens treated with FeCl2  is likely dominated by ionic 

crosslinking of the EPS network which supports the cells, instead of intercellular 

bonding.                         

This thesis has also shown that biofilms can transition between viscoelastic liquid 

and viscoelastic glassy phases by mediating the production of specific EPS 

molecules. This was demonstrated using mixtures of Pantoea sp. YR343 and 

Pantoea sp. YR343 UDP, a mutant deficient in production of the capsular acidic 

polysaccharide amylovoran. Biofilm polysaccharide concentration was varied by 

mixing different ratios of wild type and mutant strains. This provided a system in 

which the phase transitions from viscoelastic liquid to soft repulsive glassy rheology 

could be rheologically investigated. This platform was able to highlight the transition 

from a polymer network dominated rheological response to a glassy response which 

was increasingly dominated by bacteria/bacteria jamming. Using the chebychev 

method and the SPP method I was able to reveal in detail how the nonlinear thinning 

and thickening behaviour evolved during the phase transition. This phase transition 

also exhibited behaviour akin to the Payne effect, where the onset of a reduction in 

elasticity occurs at lower strains with increasing packing fraction. The exact 

mechanism behind this yielding mode is still debated. However, the chebychev and 

SPP method revealed the nonlinear dynamics which accompanied this effect. These 

two methods were able to provide extra information, used to decipher the double 

power law behaviour which was detected in the 𝐺′′ curve. This double power law 

behaviour was attributed to the interplay between the polymer network and the 

bacteria network at low, intermediate and high packing fractions. The evolution in the 

nonlinear thickening behaviour was described using the 𝑇 ratio and depicted in the 

phase behaviour plots from the SPP method. These results suggested that the 

transition, from a polymer network dominated response was increasingly dominated 

by the restriction in motion of the bacterial network, as packing fraction increased 

towards the random packing limit. 
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The methodology used throughout this thesis has a series of limitations which need 

to be considered. The biofilms throughout this thesis were cultured ex situ on agar 

plates. They were then transferred to the rheometer via mechanical scrapping. 

Scrapping was carefully performed with ground edge microscope slides to avoid 

cutting and accidently collecting the agar. The action of perturbing the native 

structure of each biofilm may have altered the biofilm mechanical properties. 

However, this is a commonly used method when studying biofilm macroscale 

rheology (Gloag et al., 2018; Kretschmer & Lieleg, 2020a). It is also expected that 

biofilms grown using the agar culture method at the solid gas interface may vary in 

EPS composition and component molecular mass in comparison biofilms grown on 

solid- liquid interfaces (Schollmeyer et al., 2012). This change of environment may 

alter bacteria gene expression, resulting in a change to polymer network composition 

and bacterial arrangement within the biofilm microstructure. The difference between 

being grown on a solid gas interface and solid liquid interface would also be expected 

to result in differences in solvent concentration within the EPS network (Jing Yan et 

al., 2018). Biofilms grown at the solid liquid interface would have an increased 

solvent concentration, which may explain why biofilms grown at solid gas interfaces 

exhibit elasticity and viscosity, values sometimes several magnitudes higher. Biofilms 

throughout this thesis were imaged using CLSM in order to calculate packing 

fraction. In chapter 3 the cytoplasm of the bacteria was stained, this was 

compensated for by applying a dilation step in the image processing pipeline to 

account for the cell membrane. Therefore, there remains a possibility that the 

packing fraction was underestimated. However, the packing fractions in this chapter 

were used to compare the effect of treatment with divalent cations and a chaotropic 

compound. In chapters 4 and 5 a cell membrane stain, FM 1-43 was used in addition 

to Syto 63, a cell permeable DNA stain. These two channels were then combined, 

which provided a more representative estimation of the biofilm packing fractions. 

The approach outlined in this thesis centred around improving our understanding of 

biofilm rheological behaviour by using nonlinear high-fidelity methods. This approach 

enabled rheological fingerprinting, which captured the range and strength of bonding 

within the EPS matrix. This approach has potential applications for both fundamental 

investigations of how matrix components interact to determine structure and as an 

initial characterisation step for environmental isolates. However, the concept of 

mechanically fingerprinting biofilms also has potential applications within medical 
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diagnostics. For instance, biofilms isolated from cystic fibrosis patients show a highly 

variable rheological properties (Kovach et al., 2017). The mechanical properties of 

these biofilms is known to influence the cough clearance index of patients (Gloag et 

al., 2018). The application of the techniques used within this thesis may have 

relevance in fingerprinting these types of biofilms over time, to access how 

treatments effect the range and strength of the EPS matrix. On the other hand, the 

LAOS techniques applied here could also have industrial relevance. For instance, 

rheological fingerprinting be used as a characterisation stage in the tailoring of biofilm 

genetic mutants for use in the 3D printing of functional biofilm materials 

(Balasubramanian et al., 2019).   

6.2 Future work  

To build upon the approach and findings of this thesis and develop our understanding 

of biofilm rheology several future tasks and avenues could be explored.     

1. Apply rheo-optical methods to visualise the yielding mechanisms of C. 

denitrificians and S. epidermidis. Performing simultaneous characterisation of 

structure and viscoelastic response. This experiment would assist in 

understanding how structural properties such as radial distribution function, 

packing, cluster size and porosity correlate with biofilm viscoelastic response. 

Imaging the microstructural behaviour of these biofilms in parallel the non-

linear methods would provide a deeper understanding of two step yielding, 

and the process by which these biofilms breakdown. It would be particularly 

interesting to use EPS deletion mutants of S. epidermidis, as the major 

polymeric components are well characterised and this biofilm displayed two-

step yielding. A catalogue of mutants deficient in PIA, Aap, Embp or Bap 

would provide a set of strains with varying interaction strengths and ranges. 

The fingerprints and microstructural breakdown of these biofilms could then be 

used to understand the bonding range of each EPS component. This 

knowledge could then be applied towards understanding if S. epidermidis 

adapts its matrix composition in response to its mechanical environmental.  

2. Identify the polysaccharide/protein secreted by C. denitrificans which results in 

short range polar attraction and flocculation behaviour. By identifying this EPS 

molecule genetic variants with inducible expression could be constructed. An 

inducible mutant would allow regulation of the intercellular bonding strength of 

C. denitrificans. This mutant could then be used as an analogous rod shaped 

patchy colloidal particle with a controllable pairwise interaction potential. The 
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system of C. denitrificans can be used to investigate the emergence of 

elasticity within colloidal gel networks. The two main questions this system 

could assist in answering would be related to why viscoelastic materials yield 

in a brittle mode and why others yield like a viscoelastic liquid. Using the 

aforementioned mutant would enable the investigation into the effect of short-

range bonding on yielding mode. The second fundamental question which 

could be investigated using C. denitrificans is how the influence of local 

hydrodynamics influences gelation and microstructure of the space spanning 

structure. This is an important fundamental question in understanding how 

active particles influence the mechanical properties of gels and has industrial 

and fundamental importance. This could be studied by tracking the motion of 

C. denitrificans during the formation of the space spanning structure and 

mapping the flow fields using PIV. This data could then be used to investigate 

how fluid structure interactions influence the network microstructure and 

parameters such as nematic order, pairwise correlation function and co-

ordination number.  

3. Perform co- culture experiments with C. denitrificans which is dominated by 

short range interactions and P. fluorescens which is dominated by long range 

interactions. It would be interesting to evaluate the competition between these 

two strains which display contrasting ranges in interaction. Does the short-

range nature of C. denitrificans which has a slower growth rate than P. 

fluorescens confer survival advantages? How would the long-range P. 

fluorescens microstructure interact with C. denitrificans? Would mixing these 

two species at different ratios result in a system in which I can controllably shift 

between two step and one step yielding? If so this system could be evaluated 

using rheo- optical methods mentioned in point 1.   

4. Access the feasibility of using C. denitrificans as a bio- ink for 3D printing 

functional denitrifying wastewater treatment filters and pre seeding filter 

systems. Over the past few years, a couple of groups have experimented with 

using genetically engineered biofilm forming strains such as Pseudomonas 

putida, Acetobacter slinum and E. coli as bio inks within 3d printing systems 

(Balasubramanian et al., 2019; Huang et al., 2019; Schaffner et al., 2017). 

There are two main concepts used to produce these printed functional living 

materials. The first is to mix concentrated bacterial cultures with a synthetic 

hydrogel, where the bacteria produce the functionality, and the hydrogel 
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provides the supporting polymer network (Schaffner et al., 2017). The 

printability of the material is therefore mainly determined by the viscoelastic 

properties of the hydrogel. The second method negates the addition of a 

supporting synthetic hydrogel polymer network and directly prints biofilms 

which have been collected from agar plates (Huang et al., 2019). Printable 

biofilms therefore need to viscously flow during the printing process and have 

enough stiffness to maintain the desired morphology. This technique was 

attempted using various genetic mutants of B. subtilis, where genetic 

manipulation of EPS composition was used to control viscoelasticity and 

subsequent printability. As shown in this thesis C. denitrificans has a very high 

stiffness 𝐺′ ~ 10000 Pa, which is approximately an order of magnitude higher 

than the B. subtilis biofilms used in the aforementioned study. However as 

demonstrated with B. subtilis, the printability of biofilms improves with a 

reduced stiffness. I hypothesise that the first step yield point of C. denitrificans 

at very low strains < 1 % and resulting shear thinning properties would 

mitigate the increased stiffness of C. denitrificans biofilm during printing. This 

rheological characteristic could mean that its feasible to print C. denitrificans 

structures which have a stiffness up to an order of magnitude higher than 

contemporary studies. This could yield benefits in the manufacture of 3d 

printed denitrification filters and microbial fuel cells.      

5. Investigate the applicability of the Flory- Rehner model to calculate the 

crosslinking density within biofilms (van der Sman, 2015). This model is 

applied by calculating the weight difference between a saturated network and 

the network after it has been dried out. The Flory Rehner model is typically 

applied to the swelling of rubber networks. However, I believe this thesis has 

shown that polymer rheology theory for rubber and colloidal systems can be 

closely related to the rheological responses of bacterial biofilms. If I can show 

that the Flory – Rehner model is applicable to biofilms this may be a simple 

way of calculating cross linking and EPS component cross linker affinities in 

biofilm. For example, this theory could be used to investigate the affinity of 

protein – polysaccharide crosslinkers which are already known to interact, but 

quantitative evidence of their affinities is less well known.    
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Appendix 

A) LAOS data pre-processing script  

clear all  

A = dir(''); %This is LAOS raw directory 

B = dir(''); %This is Averaged data 

saveroute = '' %This is your savepath 

  

%% !!!Do not adjust below!!! 

A(1:2,:) = [] 

B(1:2,:) = [] 

A = struct2cell(A)'; 

B = struct2cell(B)'; 

A = sortrows(A,3,'ascend');  

B = sortrows(B,3,'ascend');  

MaxStrain = [] 

cut_mat = [] 

  

for i = 1:length(A) 

%% Import Files  

    flname = strcat(B{i,2},'\',B{i,1}); 

    d = csv2struct(flname); 

    flname = strcat(A{i,2},'\',A{i,1});  

    c = csv2struct(flname); 

    cut_mat = [d.Time__action__s_]; 
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%% Determine Colunm numbers  

    Ang = find(ismember(fieldnames(c),'Angular_displacement_rad_')); 

    Tim = find(ismember(fieldnames(c),'Time__action__s_')); % For stain DOWN 

change to Time__sequence__s_ 

    Torq = find(ismember(fieldnames(c),'Torque_N_m_')); 

  

    A{i,5} = dlmread(flname,',',1,0); 

%% Remove y shift         

    Torque = A{i,5}(:,Torq)-A{i,5}(1,Torq); 

     

    Q_F = [] 

  

%% Segment waves into individual strain events 

  

bg = round(A{i,5}(:,Tim),4); 

col = [1:size(A{i,5},2)]; 

e= 0.2; 

  

    for ii = 1:length(cut_mat)-1 

        cut_val = round(cut_mat(ii),4); 

        if ii == length(cut_mat) 

            Q_F{ii,1} = A{i,5}([find(bg ==cut_val):end],col) ; 

        elseif ii == 1 

            Q_F{ii,1} = A{i,5}([1:find(bg >=cut_val-e & bg <=cut_val+e)],col) ; 

        else 

            seq_begin = find(bg <=round(cut_val,4)+e & bg >=round(cut_val,4)-e); 

            seq_end = find(bg <=round(cut_mat(ii+1),4)+e & bg>= 

round(cut_mat(ii+1),4)-e); 

            Q_F{ii,1} = A{i,5}([seq_begin(1):seq_end(1)],col) ; 

        end 

         

        Displacement = Q_F{ii,1}(:,Ang); 

        Time = Q_F{ii,1}(:,Tim); 

        Torque = Q_F{ii,1}(:,Torq); 
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%% BoxCar average  

        Scale = size(Displacement,1); 

        NoPoints = 4000 %6000 for 2Hz, 4000 for 1Hz, 2000 for 0.5Hz 

        windowSize = 100; %For 0.5Hz 150 for 1Hz 100  

        b = (1/windowSize)*ones(1,windowSize) 

        a = 1  

        TorqueF = filter(b,a,Torque) 

        n = round(Scale/NoPoints) ; 

        M = Scale - mod(Scale,n); 

        Time_Cut = reshape(Time(1:M),n,[]); 

        Time_Cut = transpose(sum(Time_Cut, 1) / n); 

        Time_Cut = Time_Cut([50:end]) 

        Displacement_Cut = reshape(Displacement(1:M),n,[]) 

        Displacement_Cut = transpose(sum(Displacement_Cut, 1) / n); 

        Displacement_Cut =Displacement_Cut([50:end]) 

        Torque_Cut = reshape(TorqueF(1:M),n,[]) 

        Torque_Cut = transpose(sum(Torque_Cut, 1) / n); 

        Torque_Cut = Torque_Cut([50:end]) 

         

                if min(Torque_Cut) < 0 

        Y_Shift_T = max(Torque_Cut) -((max(Torque_Cut) + abs(min(Torque_Cut)))/2) 

        else 

        Y_Shift_T = max(Torque_Cut) -((max(Torque_Cut) - abs(min(Torque_Cut)))/2) 

        end 

         

        if min( Displacement_Cut) < 0 

        Y_Shift_S = max( Displacement_Cut) -((max( Displacement_Cut) + abs(min( 

Displacement_Cut)))/2) 

        else 

        Y_Shift_S = max( Displacement_Cut) -((max( Displacement_Cut) - abs(min( 

Displacement_Cut)))/2) 

        end 

         

        if Y_Shift_T > 0    

            Torque_Cut = Torque_Cut - Y_Shift_T;             
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        else 

            Torque_Cut = Torque_Cut - Y_Shift_T 

        end 

         

        if Y_Shift_S > 0 

            Displacement_Cut = Displacement_Cut - Y_Shift_S; 

        else 

            Displacement_Cut = Displacement_Cut - Y_Shift_S 

        end 

         

        %Torque_Cut = Torque_Cut - Torque_Cut(40) 

        %Displacement_Cut = Displacement_Cut + 3.5e-4 

        [pks,loc]= findpeaks(Torque_Cut,'MinPeakDistance',50,'MinPeakHeight',0) 

%% Filter out low frequencies - if present 

%         if size(pks,1) == 0 

%             Ts = mean(diff(Time_Cut));                                  % Sampling Interval 

%             Fs = 1/Ts;                                                  % Sampling Frequency 

%             Fn = Fs/2;                                                  % Nyquist Frequency 

%             L = size(Time_Cut,1);                                       % Signal Length 

%             FTwle = fft([Displacement_Cut Torque_Cut])/L;               % Fourier 

Transform 

%             Fv = linspace(0, 1, fix(L/2)+1)*Fn;                         % Frequency Vector 

%             Iv = 1:numel(Fv);  

%             Wp = 0.25/Fn;                                               % Stopband Frequency 

(Normalised) 

%             Ws = 0.20/Fn;                                               % Passband Frequency 

(Normalised) 

%             Rp =   1;                                                   % Passband Ripple (dB) 

%             Rs =  50;                                                   % Stopband Ripple (dB) 

%             [n,Ws] = cheb2ord(Wp,Ws,Rp,Rs);                             % Filter Order 

%             [z,p,k] = cheby2(n,Rs,Ws,'high');                           % Filter Design, Sepcify 

Bandstop 

%             [sos,g] = zp2sos(z,p,k);    

%             Dis_Tor_filtered = filtfilt(sos, g, [Displacement_Cut Torque_Cut]);  
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%             [pks,loc]= 

findpeaks(Dis_Tor_filtered(:,1),'MinPeakDistance',100,'MinPeakHeight',0) 

%             Displacement_Cut = Dis_Tor_filtered(:,1) 

%             Torque_Cut = Dis_Tor_filtered(:,2) 

%         end 

  

%% Save Proprocessed Data to Savepath        

        L_loc = length(loc) 

         

        Begin = loc(L_loc-5)%-41 

        Time_Cut = Time_Cut([Begin:loc(L_loc)]) 

        Strain_Cut = Displacement_Cut([Begin:loc(L_loc)]) * (0.01 / 

d.Gap_mm_(1)*0.001); 

        Stress_Cut = Torque_Cut([Begin:loc(L_loc)])*6.3662e+05        

       

        Inputfile = [Time_Cut Strain_Cut Stress_Cut]; 

        file_name = A{i,1}; 

        file_number = ii 

        name = strcat(saveroute,file_name,num2str(file_number),'.mat') 

        savename = char(name) 

        save(savename,'Inputfile') 

  

    Eq = fit(Time_Cut,Strain_Cut, 'sin1'); 

  

    StrainRate_Cut = differentiate(Eq, Time_Cut); 

  

    SPP_In = [Time_Cut Strain_Cut StrainRate_Cut Stress_Cut] 

     

        %% Enter SPP save directory  

    file_name = strcat(saveroute,file_name,num2str(file_number)) 

    fileID = fopen('SPP.txt','w') 

    fprintf(fileID,'%6.8f %12.8f %12.8f %12.8f\n',SPP_In ) 

    save(horzcat(file_name,'SPP','.txt'),'SPP_In','-ascii','-tabs') 

    end 

    end 
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% %% Save Absolute strain for each Proprocessed Dataset 

%         MaxStrain{i,1}(ii,1) = max(Displacement_Cut([loc(5):loc(L_loc-2)])) 

%     end 

B) ImageJ preprocessing macroscript 
path =""; 

output = ""; 

list=getFileList(path);  

 

for(i=1;i<list.length;i++){  

 open(path+list[i]);   

 filename = list[i]; 

 filename_Res = list[i]; 

 run("Enhance Local Contrast (CLAHE)", "blocksize=127 histogram=256   

maximum=3 mask=*None* fast_(less_accurate)"); 

 run("Gaussian Blur...", "sigma=2"); 

 run("Mexican Hat Filter", "radius=2"); 

 run("8-bit"); 

 setAutoThreshold("Otsu dark"); 

        getThreshold(lower,upper); 

        setThreshold(lower,upper); 

 run("Convert to Mask"); 

 setOption("BlackBackground", false); 

 run("Dilate"); 

 saveAs("Tiff", output+filename_Res); 

 close(); 

}  

C) Matlab quantification – packing fraction from ImageJ processed 

images 
A = dir()  %%Input file directory 

A(1:2,:)=[] 

A = struct2cell(A) 

A = A' 

for i = 1:length(A) 
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    flname = strcat(A{i,2},'\',A{i,1}); 

    I = imread(flname); 

    phi(i,1) = sum(BW(:)==1)/(size(BW,1)^2) 

    phi= mean(phi) 

    phi= std(phi,0) 

end 
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D) Comparison of Mexican hat and dilation processing parameters 

E) Representative image slices of Syto 63 and FX 1-43 channels 

Figure E-1: CLSM depicting the double staining method. This is a representative 
image slice of Pantoea sp. UDP (A) Syto 63 which is a cell permeable DNA stain (B) 
FX 1-43 which is a cell membrane strain (C) The combined image of intercellular 
DNA and the cell membrane. 

 

 

 

Figure D-1: Plotted is a comparison of image processing parameters used to 
calculate the packing fraction of P. fluorescens after chemical treatment with 
respective chemicals. Plotted are the three different radius of mexican hat filter (MH) 
ranging from radius of 2 to 4 pixels. The same filters where then applied with a 
dilation step to account for the cell membrane (dilaition). Pink values are the selected 
processing parameters. Plotted are the mean± standard deviation from n = 5 fields of 
view taken from z slices from CLSM images.   
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F) Pantoea sp. Lissajous Bowditch plots  

Figure F-2:Lissajous Bowditch Viscous curves of Pantoea WT. Columns are 
increasing left to right in strain, where as rows are increasing from bottom to top in 
frequency. 

Figure F-1 Figure F 1: Lissajous Bowditch Elastic curves of Pantoea WT. Columns are 
increasing left to right in strain, where as rows are increasing bottom to top in 
frequency. 



174 
 

 

 

Figure F-4: Lissajous Bowditch Viscous curves of 50:1 UDP:WT. Columns are 
increasing left to right in strain, where as rows are increasing bottom to top in 
frequency. 

Figure F-3: Lissajous Bowditch Elastic curves of 50:1 UDP:WT. Columns are 
increasing left to right in strain, where as rows are increasing bottom to top in 
frequency. 
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Figure F-6: Lissajous Bowditch Viscous curves of 100:1 UDP:WT. Columns are 
increasing left to right in strain, where as rows are increasing bottom to top in 
frequency. 

Figure F-5: Lissajous Bowditch Elastic curves of 100:1 UDP:WT. Columns are 
increasing left to right in strain, where as rows are increasing bottom to top in 
frequency. 
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Figure F-8: Lissajous Bowditch Viscous curves of 250:1 UDP:WT. Columns are 
increasing left to right in strain, where as rows are increasing bottom to top in 
frequency. 

Figure F-7: Lissajous Bowditch Elastic curves of 250:1 UDP:WT. Columns are 
increasing left to right in strain, where as rows are increasing bottom to top in 
frequency. 
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Figure F-9: Lissajous Bowditch Viscous curves of Pantoea UDP. Columns are 
increasing left to right in strain, where as rows are increasing bottom to top in 
frequency. 

Figure F-10: Lissajous Bowditch Elastic curves of Pantoea UDP. Columns are 
increasing left to right in strain, where as rows are increasing bottom to top in 
frequency. 
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G) Lissajous Bowditch plots of C. denitrificans, S. epidermidis, N. 

polysaccharea and P. fluorescens 
 

 

Figure G-1: Elastic Lissajous Bowditch plots acquired at a frequency of 0.5 Hz (A) 
Comamonas denitrificans (B) Pseudomonas fluorescens, (C) Staphylococcus 
epidermidis and (D) Neisseria polysaccharea. The strain value starts at 0.1 % 
(Green) to 1000 % (Red) 

Figure G-2: Viscous Lissajous Bowditch plots acquired at a frequency of 0.5 Hz (A) 
Comamonas denitrificans (B) Pseudomonas fluorescens, (C) Staphylococcus 
epidermidis and (D) Neisseria polysaccharea. The strain value starts at 0.1 % 
(Green) to 1000 % (Red) 


