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Abstract 

The fission yeast, Schizosaccharomyces pombe is host to the Tf2 family of long 

terminal repeat (LTR) retrotransposons. Uncontrolled propagation of these elements 

is a potential threat to genomic integrity and therefore their expression and 

mobilization is subjected to strict control. To analyse the host factors and 

environmental stimuli that influence the propagation of Tf2 elements, an assay was 

employed that allows the mobilization frequency of a marked endogenous element 

(Tf2-12natAI) to be monitored. Using this assay it was determined that a high copy 

number of Tf1, a related Ty3/gypsy LTR retrotransposon, can stimulate Tf2 

mobilization via a post-transcriptional mechanism that is dependent upon Tf1-encoded 

proteins. Indeed, the data suggest that Tf2 can hijack the propagation mechanisms of 

a Tf1 for its own use. During these studies it was discovered that the composition of 

the growth medium has a major impact upon Tf2 activity.  Cell culture in minimal (EMM) 

medium, instead of rich (YE5S) medium, resulted in increased Tf2 expression and 

mobilization. The increased level of Tf2 activity resulted from some specific 

components of EMM medium, namely ammonium (NH4
+) and phthalate ions. The 

finding that the growth medium influences Tf2 activity also prompted analysis of TORC 

signalling cascades which are master regulators of cellular responses to environment.  

Both the expression and mobilization of Tf2 elements was activated in response to 

exposure to rapamycin, a drug that forms a complex with the FKBP12 protein (Fkh1) 

and inhibits the activity of the TORC1 complex. This suggested that Tf2 activity is 

under the TORC1 control but surprisingly, the inhibition of TORC1 using a tor2 

temperature sensitive allele or a direct chemical inhibitor (Torin1) did not activate the 

expression of Tf2 elements. Therefore, rapamycin influences the expression of Tf2 

elements via a TORC1-independent pathway. This pathway was found to be 

dependent upon the FKBP12 protein Fkh1, the forkhead transcription factor Fhl1, a 

putative co-activator protein Crf1 and the Pka signalling pathway.   
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Chapter 1 Introduction 

1.1 Transposable elements 

Genomes are not entirely static but undergo constant remodelling by mobile genetic 

elements which have the ability to move from one location to another in the genome. 

This was initially discovered by Barbara McClintock though her research in maize 

(McClintock, 1950). Since then, mobile genetic elements, or transposable elements 

(TE) have been found in most organisms. Transposable elements have historically 

been defined as genome parasites or ‘junk DNA’ as their mobilization was believed 

only to benefit their own survival (Doolittle and Sapienza, 1980; Orgel et al., 1980; 

Hickey, 1982). More recently, it has become apparent that transposons have helped 

to shape the structure and function of genetic material. Indeed, there are numerous 

examples where host cells have co-opted transposon DNA or proteins for their own 

use (Voytas, 2008; Mita and Boeke, 2016). 

TEs may comprise significant portions of eukaryotic genomes; more than 50% in some 

plants (SanMiguel et al., 1996), 40% in human (Lander et al., 2001; Deininger and 

Roy-Engel, 2002), 12% of Caenorhabditis elegans (Consortium, 1998), 3.1% in 

Saccharomyces cerevisiae (Kim et al., 1998) and 1.1% in Schizosacchaomyces 

pombe (Bowen et al., 2003). TEs need to locate non-lethal sites for genomic insertion 

in order that they do not kill their host cell. This is relatively easy in complex genomes, 

such as human and other higher organisms, where little of the DNA encodes for protein. 

However, this can be more difficult  in compact genomes, for example, yeast and 

bacteria (Boeke and Devine, 1998). 

Eukaryote TEs are classified into three super families according to their structure and 

transposition mechanism (Slotkin and Martienssen, 2007; Eickbush and 

Jamburuthugoda, 2008) (Fig. 1.1).  
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Figure 1.1 The typical structures of the different classes of eukaryote  transposons. 

DNA transposons encode a transposase enzyme which mediates mobilization through a cut 

and paste mechanism. LTR retrotransposons are functionally similar to retroviruses but lack 

the env gene. Non-LTR retrotransposons can be subdivided into autonomous elements which 

can mediate their own mobilization (e.g. LINEs) and non-autonomous element (e.g. SINEs) 

which rely on expression of a nearby element. Abbreviations: TSD; target-site duplication, TIR; 

terminally inverted repeat; L, left arm region; A, adenosine-rich region; R, right arm region, 

LTR; long terminal repeat; UTR, untranslated region; ORF, open reading frame; NTR, variable 

number tandem repeats; gag, virus-like coat protein; pro, protease; RT; reverse transcriptase; 

IN; integrase; env, envelop coat protein. Adapted from (Beauregard et al., 2008; Goodier and 

Kazazian, 2008; Levin and Moran, 2011) 
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1.2 DNA transposons 

Class II transposons (DNA transposons) mobilize through either single- or double-

stranded DNA intermediates (Craig, 2002). These elements can be divided into three 

subclasses: DNA transposons that use a ‘cut and paste’ mechanism where double 

stranded DNA sequences are excised from the genome (Craig, 2002), Helitrons that 

use a rolling-circle replication (Kapitonov and Jurka, 2001), and finally Mavericks, 

where the transposition mechanism is still unclear but is suspected to use a self-

encoded DNA polymerase for replication (also known as a self-synthesizing 

transposon) (Kapitonov and Jurka, 2006). In contrast to the ‘cut and paste 

transposons’, the latter two classes are believed to mobilise via a single-stranded DNA 

intermediate to achieve a ‘copy and paste’ replication (Feschotte and Pritham, 2007; 

Bourque et al., 2018). DNA transposons preferentially integrate into gene rich regions, 

producing genome instability and leave small remnants behind (Feschotte and Pritham, 

2007; Bourque et al., 2018).  

Although the human genome is dominated by retrotransposons (Lander et al., 2001), 

it is also the host to 120 families of DNA transposons (Lander et al., 2001; Feschotte 

and Pritham, 2007). Although DNA transposons exist in prokaryotes and simple 

eukaryotes, investigation of the genomes and DNA transposons of other mammals 

such as dog, rat and mouse, suggested that DNA transposons have been inactive 

during the past 40-50 million years (Craig, 2002; Feschotte and Pritham, 2007). 

However, the discovery of active DNA transposons in Myotis lucifigus (little brown bat) 

has suggested that DNA transposons have played a great role in mammalian evolution 

(Feschotte and Pritham, 2007). In the budding yeast Saccharomyces cerevisiae and 

the fission yeast Schizosaccharomyces pombe, DNA transposons can no longer be 

found in their genomes but are still present in the pathogenic fungus Candida albicans, 

suggesting that extinction events occurred in the ancestors of these fungi (Daboussi 

and Capy, 2003; Johnson, 2019). C. albicans hosts multiple families of DNA 

transposons however the potential genomic interaction of DNA transposons have not 

been fully characterized (Maxwell, 2020).  
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1.3 Retrotransposons 

Retrotransposons are the second group of mobile elements which relocate within the 

genome via an RNA intermediate and share a similar structural and functional 

homology with retroviruses (Beauregard et al., 2008; Goodier and Kazazian, 2008). 

Basically, retrotransposons replicate themselves by producing a cDNA with reverse 

transcriptase which cDNA is then inserted back into the host genome. Two major 

classes of retrotransposons can be separated by the presence or absence of long 

terminal repeats (LTR) that flank both ends of the coding sequence and play a major 

role in the replication of the element. (Christensen et al., 2006) 

1.3.1 Non-LTR retrotransposons  

This class of retrotransposon is highly abundant and widespread in eukaryotes 

(Lander et al., 2001). The origin of non-LTR retrotransposons can be traced back to 

the existence of multicellular organisms after the metazoan radiation, 500-800 million 

years ago (Eickbush and Jamburuthugoda, 2008; Eickbush and Eickbush, 2015). Non-

LTR retrotransposons are distinct from LTR retrotransposons in that no virus-like 

protein coat is involved in the life cycle. The mobilization of non-LTR retrotransposons 

is believed to be though target-site-primed reverse transcription (TPRT) (Luan et al., 

1993). Non-LTR retrotransposons, either encode a single open reading frame (ORF) 

or two ORFs, which encode the common elements of reverse transcriptase (RT) and 

endonuclease (EN) (Eickbush and Malik, 2002). The retrotransposition mechanism of 

non-LTR retrotransposons is not completely understood as they are often absent in 

model organisms such as Saccharomyces cerevisiae (Eickbush and Malik, 2002). The 

latest models of mobilization are based upon the single ORF R2 element and the two 

ORF L1 element (reviewed in Christensen et al., 2006 and Eickbush and Eickbush, 

2015). First, transcription of template RNA occurs from an internal promoter. 

Endonuclease encoded by the mRNA then cleaves one strand of the target locus and 

a 3’ hydroxyl break is then generated. The mRNA from the retrotransposon associates 

with the nicked DNA and primes reverse transcription to produce a cDNA which is 

inserted into the target site (Fig. 1.2) (Eickbush and Eickbush, 2015).  
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1.3.2 LINEs 

L1 is one of the LINE non-LTR elements and is also the only active element in the 

human genome. The origin of L1 dates to the last 160 million years of the mammalian 

radiation and an active sub-family lineage could be traced from 40 million years ago 

(Khan et al., 2006; Sookdeo et al., 2018). L1 accounts for 17% of human genome with 

around 500,000 copies. The majority of the L1 elements suffer from 5’ truncation, 

rearrangement, or mutation and therefore cannot mobilize, but around 80-100 

elements can still mobilize (Beck et al., 2010).  

The L1 element has a length of ~6 kb, contains a 5’ UTR promoter and ends with a 

short 3’ UTR and poly(A) tail. To facilitate transposition, an RNA binding protein with 

nucleic acid chaperone activity is encoded from open reading frame 1 (ORF1).  Open 

reading frame 2 (ORF2) encodes a apurinic/apyrimidinic (AP)– like endonuclease and 

a reverse transcriptase (RT) (Suarez et al., 2018).  Active L1 elements are observed 

in several human tumours and some specific tissues (e.g. brain), increasing the 

potential linkage with disease.   
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Figure 1.2 Retrotransposition of non-LTR retrotransposons.  

mRNA of an active non-LTR retrotransposons at the donor site is transcribed by host RNA 

polymerase and the endonuclease, reverse transcriptase and RNA binding proteins are 

translated from the mRNA. Endonuclease targets a poly T region at the target site and creates 

a single strand nick. The poly A sequence from the donor mRNA that is complementary with 

poly T region directs the single stranded retrotransposon DNA to target site. cDNA is 

synthesised by reverse transcription. However, the integration process is not fully understood 

but is thought to be completed by host repair machinery (Eickbush and Jamburuthugoda, 2008; 

Eickbush and Eickbush, 2015).  
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1.3.3 SINEs 

SINE (short interspersed nuclear elements) are small (<500 bp) retrotransposons that 

do not encode any proteins. Unlike other retrotransposons, SINE elements are 

transcribed by RNA polymerase III (RNA pol III). The reverse transcriptase and 

integrase activities for SINE retrotransposition are provide by other retrotransposons 

such as LINEs (Tucker and Glaunsinger, 2017). The most abundant SINE in human 

genome is the Alu element which contains an AluI restriction site and also shares 

homology with the 7SL RNA component of signal recognition particle. One derivative 

of SINEs are  SVA (SINE-R VNTR Alu) elements which consist of an antisense 

direction Alu-like sequence, a variable number of tandem repeats (VNTR) and SINE-

R region from 3’ terminus of the env gene and a poly A signal. SVAs are the most 

recently evolved group of active non-LTR elements in the human genome 

(Gianfrancesco et al., 2017). More than 100 heritable diseases such as haemophilia, 

β-thalassaemia, Duchenne muscular dystrophy, cystic fibrosis, Apert syndrome, 

neurofibromatosis are associated with SVAs (Ostertag et al., 2003; Suarez et al., 

2018).   

1.4 LTR retrotransposons 

LTR retrotransposons, which are often known as extra chromosomally-primed 

retrotransposons, were the first class of retrotransposon discovered. They exhibit high 

homology with retroviruses, and propagate in a similar manner (Beauregard et al., 

2008; Maxwell, 2020). This type of retrotransposon is highly abundant in eukaryotes, 

for example, 400 families of LTR retrotransposons make up to 75% of the maize 

genome (Schnable et al., 2009). In contrast LTR retrotransposons only comprise 1% 

of the Drosophila melanogaster genome with 20 different families (Bowen and 

McDonald, 2001). In human, LTR retrotransposons comprise less than 8% of genome 

while the last record of active transposition is suggested to be 59 million years ago 

(Lander et al., 2001).  

The classification and phylogenetic relationship of LTR retrotransposons is basically 

based on the amino acid sequence and arrangement of the reverse transcriptase. All 

members of the LTR retrotransposon superfamily contain ORFs encoding a retroviral-

like structural precursor protein (gag), reverse transcriptase (RT), integrase (IN), 
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protease (PR) and RNase H (RH) activities. However, differences in the arrangement 

of these ORFs separates them into groups, the Ty1/copia family (Pseudoviridae), the 

Ty3/gypsy/Tf family (Metaviridae), the BEL/Pao family and the members of retrovirus 

and endogeneous retrovirus (ERVs) groups. Little is known of the Bel/Pao group, 

which originate from the silk worm Bombyx mori and the giant roundworm Ascaris 

lumbricoides, but this metazoan-only retrotransposon is thought to be the progenitor 

of both Ty3/gypsy/Tf and retroviruses (reviewed in Eickbush and Malik, 2002). The 

structural organisation of Ty1/copia elements, which are absent in vertebrates, is 

different from all other LTR retrotransposons because the IN domain is located 

immediately upstream of the RT domain while in the other elements it is located 

downstream of RT/RH domain (Flavell et al., 1995; Eickbush and Malik, 2002).  

1.4.1 Endogenous retroviruses 

Retrovirus particles contain RNA copies of the viral genome which are reverse 

transcribed into a double-stranded DNA molecule upon entry to the host cell and then 

integrated into the genome. If a retrovirus infects a germline cell then the resulting host 

gamete will contain provirus genetic material as a novel gene. After natural selection 

and random genetic drift, permanently endogenized retroviruses are then named 

endogenous retroviruses (ERV). Many ERVs lose the ability to express their viral 

genes due to accumulation of mutations during evolution (Johnson, 2019). It was 

suggested that ERV sequences undergo mutational decay so that the viral sequences 

no longer encode functional proteins. Frequently, the internal coding sequences are 

completely removed by recombination events between 5’ and 3’ LTRs leaving behind 

a ‘solo LTR’ (Sverdlov, 1998).  

The endogenous retroviruses resident in human genome are termed human 

endogenous retroviruses (HERVs). The classification of HERVs was originally based 

on the differences between the primer binding site (PBS). HERV-K (requires lysine 

tRNA), while HERV-W (requires tryptophan tRNA).  However, a universal classification 

was more recently employed by comparing their similarity to their exogenous 

counterparts: class I (gammaretrovirus- and epsilonretrovirus-like), class II 

(betaretrovirus-like) and class III (spumaretrovirus-like) (Grandi and Tramontano, 

2018). Among these groups, the HERV-K group is the youngest active element 

especially its subgroup HML-2 (Garcia-Montojo et al., 2018). All the proviruses of this 
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young HERV group were found to be defective in at least one gene however, many of 

them contain a complete open reading frame and the proteins encoded were detected 

in tissues (Subramanian et al., 2011; Garcia-Montojo et al., 2018). It was recently 

shown that the expression of HERVs could be triggered by Herpesviridae (herpes 

simplex virus type-1, varicella-zoster virus, human herpes virus type 6), causing 

autoimmune diseases suggesting that such endogenous retroviruses could be 

involved in the pathologies of diseases (Levet et al., 2019). 

1.4.2 LTRs 

LTR retrotransposons were classified as an individual family since all the members 

shared a LTR sequence flanking the both sides. This LTR region contains sequence 

motifs for gene expression such as core promoter elements, enhancers, transcription 

initiation (capping), transcription termination and polyadenylation signals. LTR 

sequences are exclusively recognised by host RNA polymerase II (RNA Pol II) (Bowen 

et al., 2003; Leem et al., 2008; Esnault and Levin, 2015). Each LTR consists of a 

central R region, a downstream located U5 region and an upstream U3 region in the 

order of U3-R-U5. Transcription of LTR retrotransposons is initiated in the 5’ LTR and 

terminates in the 3’ LTR. Transcription initiates at the transcription start site (TSS) in 

the R region from the 5’ LTR towards the 3’ LTR with the assistance of regulatory 

motifs in the U3 region. Since the 3’ LTR is identical to the 5’ LTR it also contains TSS 

and regulatory regions and therefore, can potentially initiate transcription extending 

into any adjacent sequences (Grandbastien, 2015).  

1.5 The life cycle of LTR retrotransposons 

The life cycle of LTR retrotransposons has been extensively studied in S. cerevisiae 

and more lately, also in S. pombe (Fig. 1.3) (Curcio et al., 2015; Esnault and Levin, 

2015). The transposition event is initiated by the transcription of the element by the 

host RNA pol II. Retrotransposon proteins are translated primarily as one or two 

polyproteins. These polyproteins are then processed and matured by the protease (PR) 

activity. The RNA transcript of the element and the proteins encoded are assembled 

into a virus-like particle (VLP). Reverse transcription takes place in the VLP and the 

cDNA transcript is ready for integration into the host genome following import into the 
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nucleus. The integration site preferences are dependent upon the retrotransposon and 

every element has its own integration hot spot.  
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Figure 1.3 The life cycle of LTR retrotransposons.  

Host RNA polymerase II initiates transcription at the 5’ LTR, producing an mRNA which leaves 

the nucleus. After translation and polyprotein cleavage by protease (PR), a viral-like particle is 

assembled by Gag, enclosing mRNA, integrase (IN) and reverse transcriptase (RT). cDNA is 

then produced by RT and enters the nucleus where it inserts into the genome either by IN-

mediated integration or by homologous recombination  (adapted from Esnault and Levin, 2015) 
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1.6 LTR retrotransposon and retroviral encoded proteins 

The completion of the LTR retrotransposon life cycle requires the expression of the 

element as well as the assistance of the proteins encoded by the element’s own 

genome. Moreover, the precursor protein synthesised from retrotransposons is a 

fused product and processing is required to give mature, functional proteins 

(Farabaugh et al., 1993). Finally, additional post-transcriptional, co-translational and 

post-translational mechanisms are required to ensure the correct ratio of proteins is 

produced for the assembly of VLP. 

1.6.1 Protease 

Proteolytic processing of precursor polypeptides is mediated by a protease (PR) 

activity encoded by the pol gene (Park and Morrow, 1991; Kirchner and Sandmeyer, 

1993; Gao et al., 2003). The pol gene is located on the 3’ of gag and often there is no 

independent initiation site for its translation resulting in the production of a Gag-pol 

polyprotein (Gao et al., 2003). The fused Gag-pol polyprotein is cleaved by the PR 

activity in many types of retroelements including HIV-1, Ty and Tf (Hoff et al., 1998; 

Goodenow et al., 2002; Gao et al., 2003).  This dimeric enzyme, whose structure and 

function has been characterised, hydrolyses the peptide bonds at the end of the 

sequences to cleave between Gag and Pol to release them for additional cleavage 

events which results in mature reverse transcriptase (RT) and integrase (IN) 

(Goodenow et al., 2002). However, the order of cleavage of polyprotein varies in 

different retroelements and results in a variety of intermediate proteins (Hoff et al., 

1998). 

1.6.2 Gag 

A virus-like particle (VLP) is formed by proteins which are encoded by the gag gene 

and is similar to the capsid of infectious retroviruses. The VLP is where reverse 

transcription takes place and is essential for transposition. In the human infectious 

retrovirus HIV-1, three proteins are processed from Gag precursor polyproteins 

including the matrix domain (MA) which interacts with the viral membrane for stability 

and is important for transport and viral budding, the Capsid protein (CA) which 

oligomerizes to form the capsid and Nucleocapsid (NC) of which mediates interaction 

between the RNA and forms a scaffold for genome packaging. These three proteins 
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combine together to form a structure which is essential for cDNA reverse transcription 

and facilitates retroviral maturation, budding and infection (Eichinger and Boeke, 1988). 

In the Ty3/Gypsy family retrotransposon, the gag gene encodes CA and NC proteins 

but lacks MA (Sandmeyer et al., 2015) while Ty1 of the Ty1/Copia family does not 

encode NC (Dodonova et al., 2019). The Ty3 NC region is essential for Ty3 mRNA 

targeting and chaperones the annealing of tRNA primers (Sandmeyer and Clemens, 

2010). The latest analysis of the CA protein of Ty3 indicates that the capsid structure 

is highly conserved with HIV-1, suggesting it was already present in an ancestral virus 

or transposon ~1.6 billion years ago (Dodonova et al., 2019). However, the gag region 

is diverse within LTR retrotransposons, and even closely related family members can 

show a great divergence in this region (Levin et al., 1990). Nonetheless, the formation 

of the VLP is thought to be essential for any retroelement to propagate as it provides 

a protective environment for reverse transcription and prevents degradation by 

enzymatic proteins from the host defence mechanisms (Teysset et al., 2003; 

Dodonova et al., 2019).  

For Ty3, the assembly of the VLP requires a ratio of 10- to 20-fold molar excess of CA 

protein compared to the pol-derived proteins (Hansen et al., 1992; Hatfield et al., 1992). 

Full length Gag-pol is produced only after the read though of a frameshift region of the 

termination signal that allows the accumulation of the Gag protein compared to Gag-

pol (Hatfield et al., 1992; Farabaugh et al., 1993). However, how other 

retrotransposons achieve an excess of Gag derived proteins is not clear.  

1.6.3 Reverse transcriptase 

One of the key proteins that LTR retrotransposons and retroviruses encode is reverse 

transcriptase which mediates the conversion of transcript mRNA into cDNA for host 

DNA genome insertion. Even though these proteins are highly divergent in terms of 

sequence, they share remarkable properties. Reverse transcriptase was therefore 

used to classify transposons according to the domain arrangement of gene and the 

sequence of reverse transcriptase (Eickbush and Jamburuthugoda, 2008). Based on 

this, LTR retrotransposons can be divided into three groups: Ty1/copia, Bel and 

Ty3/gypsy.  In both Ty1 and Ty3 classes of LTR retrotransposons, the reverse 

transcriptase (RT) and an RNaseH domains are separated by a tethering domain 
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which shows a three-dimensional structure similarity to an RT RNaseH domain even 

though there is no sequence similarity (Eickbush and Jamburuthugoda, 2008).  

1.6.4 Integrase 

LTR retrotransposons and retroviruses encode an integrase (IN) protein to catalyse 

the insertion of cDNA into host genome once reverse transcription is completed. There 

is a close relationship between RT and IN in both yeast LTR retrotransposons and 

retroviruses. IN consists of three conserved domains, the N-terminal Zn finger-like HH-

CC motifs for LTR sequence binding (Khan et al., 1991), the central core domain that 

contains catalytic site (Nymark-McMahon and Sandmeyer, 1999) and the least well 

conserved DNA binding C-terminus domain (Malik and Eickbush, 1999). The structure 

of reverse transcriptase in Avian Leucosis Virus (ALV) is a heterodimer formed by 

fusing a small subunit (α) RT (RT-RH) and a large subunit (β) RT (RT-RH-IN) while 

the RT of Human T-cell Leukaemia Virus Type-1 (HTLV-1) is in 3α/β formation (Trentin 

et al., 1998). Meanwhile, some retroviruses, such as Murine Leukaemia Virus (MLV) 

and Human immunodeficiency Virus Type 1 (HIV-1) separate RT and IN during the 

maturation process (reviewed by Eickbush and Jamburuthugoda, 2008). Interaction 

between RT and IN is essential for RT function. Only full length, functional and RT-

intact IN supports retrotransposition functions such as initiation of reverse transcription, 

entry into the nucleus, cDNA 3’-end processing, viral endogenous reverse 

transcription, RT activity, and proper folding of RT (Wilhelm and Wilhelm, 2005; 

Wilhelm and Wilhelm, 2006). (Eichinger and Boeke, 1988) 

1.6.5 Retrovirus env  

Retrotransposons were originally identified in S. cerevisiae. Results from sequencing 

of Ty3 elements showed that the amino acid sequence of the proteins (PR RT RH and 

IN) produced from transposon ORFs are highly homologous to those of infectious 

retroviruses (Eichinger and Boeke, 1988 and references therein). Extensive research 

of the phylogeny of vertebrate retroviruses and LTR retrotransposons suggested that 

retrotransposons are the ancestors of retroviruses, which later acquired an envelope 

glycoprotein (env) gene during evolution (Eickbush and Jamburuthugoda, 2008) 

(Figure 1.1) On the other hand, a recent study suggested that the mouse intracisternal 

A particle (IAP) retrotransposons are the off-spring of a retrovirus that infected the 
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germline (Ribet et al., 2008). Nevertheless, the close relationship and homologous 

structure allows LTR retrotransposons to function as models for understanding 

retroviruses. Basically, LTR retrotransposons are regarded as retroviruses without 

cell-to-cell infection ability although artificially overexpressing env can provide 

extracellular budding ability to an env-less VLP (Garoff et al., 1998).  

Three key features are associated with env: (i) the ability to exit the host cell; (ii) 

protection of viral genetic material in extracellular environments; (iii) the ability to infect 

a new cell via cell surface binding and viral-cellular membrane fusion (Kim et al., 2004). 

The origin of env is unclear. The surface component (SU), is different across all viruses 

while, the membrane-anchored trans-membrane component (TM) is, in contrast, 

highly conserved across species (Kim et al., 2004). A possibility for the origin of env 

could be the random recombination of two independent genes which encode a 

receptor-binding protein and membrane fusion protein, respectively to form a de novo 

env gene (Kim et al., 2004 and references therein).  

In some cases the acquisition of env genes by a transposon has been well studied. 

The Gypsy retrotransposon in Drosophila melanogaster (fruit fly) was found to have 

acquired an env-like third ORF, which is suspected to be captured from a double-

stranded DNA insect virus baculovirus (Song et al., 1994; Malik et al., 2000). 

Homologous sequences were identified between env-like genes in Caenorhabditis 

elegans and the gene encoding G2 glycoprotein in Phleobovirus, in terms of the length 

of protein, cleavage sties and C-terminal transmembrane domain (Bowen and 

McDonald, 1999; Malik et al., 2000). The viral-host cell membrane attachment and 

fusion inducting gB glycoprotein encoding sequence are found to be similar between 

the env-like genes of Ascaris lumbricoides and herpesvirus (Malik et al., 2000).  

 

1.7 Yeast LTR retrotransposons 

Both budding yeast, Saccharomyces cerevisiae, and fission yeast, 

Schizosaccharomyces pombe, are employed as model organisms for LTR 

retrotransposon research. The divergence between the two fungi is believed to be 

around 420 million years, the same time point mammals separated from yeast (Berbee 

et al., 1992). At the same time, there are only a few transposons present in both 
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genomes, making them relatively easy to study and the findings can be applied to 

understanding LTR retrotransposons of higher eukaryotes and even retroviruses. 

1.8 The LTR retrotransposons of Saccharomyces cerevisiae 

Five families of LTR retrotransposons were identified in S. cerevisiae, named Ty1-Ty5 

(Transposon of yeast), which are present in variable copy numbers in different 

individual lab strains and ‘natural’ isolates (Borneman et al., 2008). All the Ty elements 

encode PR, IN, RT and RNaseH activities but not env, and are therefore not capable 

of mediating infection. Comparison of the LTR sequences revealed that within a family 

they share an overall >96% identity (Kim et al., 1998). Three out of the five families, 

Ty1, Ty3 and Ty5 are well-studied and are classified into two super-families 

(Ty1/Copia and Ty3/Gypsy). Ty1 and Ty5 retrotransposons are members of the 

Ty1/copia family while Ty3 is part of theTy3/gypsy family.  

Ty1 is the most abundant retroelement in S. cerevisiae, with 32 insertions in the 

sequenced S288C strain and shows a high similarity (~70%) with Ty2 with almost 

identical LTR regions (Jordan and McDonald, 1999b; Garfinkel et al., 2003). A hybrid 

of a Ty1/Ty2 element was identified in S. cerevisiae and was suggested to have 

occurred when two highly related elements were packed into a single VLP and a hybrid 

cDNA was produced by reverse transcriptase jumping from one mRNA to another 

(Jordan and McDonald, 1999b). Ty1 is 5918 bp in length with a 334 bp LTR region on 

the both ends. Ty1 has two partially overlapping open reading frames GAG and Pol 

(TYB1) and they encode a Gag-pol polyprotein using a  +1 frameshift which is 

processed into Gag (CA), PR, IN and reverse transcriptase/RNase H (RT/RH).  

Ty3 is the sole member of the Ty3/Gypsy family in budding yeast, while one element, 

YGRWTy3-1 is considered transpositionally active (Sandmeyer et al., 2015). Full-

length Ty3 elements are 5.4 kb in length with a 340 bp LTR region and two overlapping 

ORFs GAG3 and POL3. Frameshift of the coding region results in a Gag3-pol3 

polyprotein. However, in contrast to Ty1, the POL encodes PR, RT/RH and IN in the 

same order, same as in retroviruses (Gao et al., 2003). 

Ty5 was identified as the smallest element and lacks functional copies in S. cerevisiae. 

Ty5-6p, a full-length functional Ty5 element was identified in the closely related 

species, S. paradoxus and introduced into S. cerevisiae for studies (and named Ty5) 
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(Voytas and Boeke, 2002). Ty5 is 5.4 kb in length with a 251 bp LTR (S. paradoxus 

omega element) and a single ORF that encodes Gag and Pol homologues (Voytas 

and Boeke, 2002). 

Reverse transcription, and thus cDNA production, follows a similar overall scheme to 

that of retroviruses and is described in Figure 1.4. For Ty1, reverse transcription is 

initiated from the 3’ OH of the tRNAi
Met primer that binds to the primer binding 

sequence (PBS) immediately adjacent to the 5’ LTR(Fig. 1.4) (Chapman et al., 1992). 

The minus-strand strong-stop DNA is first reverse transcribed and contains the U5 and 

R regions that link to tRNAi
Met (Muller et al., 1991). The RNA portion of the RNA:DNA 

hybrid is then degraded by RHaseH after RT reaches the 5’ end of the template. This 

degradation event triggers the minus-strand strong-stop cDNA to translocate from the 

5’ end to 3’ end of the RNA template and binds to R region via Crick-Watson base 

pairing. Using the R-U5-tRNA minus strand as the primer, the cDNA minus-strand is 

then extended and synthesized until the PBS region. The retroelement RNA is then 

degraded by RHaseH. Only the polypurine tract (PPT) region is an exception and it 

serves as the primer for the synthesis of the plus-strand until the 5’ end of the minus-

strand (Lauermann and Boeke, 1997). The synthesized plus-strand is then 

translocated to the 3’ end of the minus strand and serves as the primer for itself and 

the template for the minus-strand. Finally, the double-stranded cDNA with complete 

5’-U3-RU5-ORF-U3-R-U5-3’ is synthesized. Although Ty1, Ty3 and retroviruses 

employ polypurine tracts (PPT) for the plus-strand primer site, differences in the PPT 

are observed. Indeed the region of the PPT is specific, and Ty3 RNaseH fails to 

recognise retrovirus PPTs such as HIV-1 (Rausch et al., 2000; Nair et al., 2012).  

The synthesized cDNA is required to integrate into the host genome in order to 

complete the LTR retrotransposon life cycle, however, the selection preference of 

each individual retroelement and retrovirus are different. Since retrotransposons 

cannot horizontally spread from cell to cell, it is especially crucial for a retroelement to 

integrate into a new location to avoid harming the host. Therefore, integration of these 

elements is not completely random but exhibits a strong bias towards specific genomic 

regions to prevent disruption of essential genes or control/regulation regions (Goodier 

and Kazazian, 2008). Studies in S. cerevisiae showed that each of the element (Ty1, 

Ty3 and Ty5) has employed different mechanisms to target genomic regions that are 

non-essential/gene-poor (Bushman, 2003; Sandmeyer, 2003).(Wilhelm et al., 2005) 
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Ty1 retrotransposon targets an integration window of between 80-700 bp upstream of 

RNA pol III transcribed genes (Devine and Boeke, 1996; Bachman et al., 2004). The 

mechanism of Ty1 integration has not been extensively studied, however, the site 

selection was demonstrated in vivo and showed that the integration machinery 

recognizes as little as 4 bp of the conserved inverted dinucleotides 5’-TG…CG-3’ at 

the ends of the double stranded cDNA (Friedl et al., 2010; Cheung et al., 2018). 

Meanwhile, the integration process was described as a strand transfer step (reviewed 

by Wilhelm et al., 2005). Integrase cleaves phosphodiester bonds near the ends of the 

cDNA to produce staggered ends. IN then cuts the chromosomal target DNA and the 

joins both cDNA ends to target DNA 5'-phosphates. Gap repair is not carried out by 

Ty1 IN but an unidentified host protein and creates a target site duplication (TSD) that 

flanks the integrated Ty1 cDNA.  

In contrast, integration site selection of Ty3 is not dependent on genetic sequences 

but transcription factors. Ty3 targets the specific transcription factors TFIIIB and TFIIIC 

that are required for transcriptional initiation by RNA pol III of tRNA genes (Chalker 

and Sandmeyer, 1992; Sandmeyer et al., 2015). TFIIIC associates with the 10 bp 

region of the tRNA gene promoter elements box A and box B which are located 20 bp 

and ~100 bp downstream of transcription start site (TSS). TFIIIC directs the assembly 

of TFIIIB to a region upstream of the transcription initiation site which in turn recruits 

RNA pol III. The subunits of TFIIIB, Brf1 and Bdp1 are responsible for the recognition 

of Ty3 IN and the TFIIIC-TFIIIB-IN complex targets the 3’ end of the cDNA into the 

TSS region in the presence of Mn2+ (Qi and Sandmeyer, 2012).  

The Ty5 element shows a different insertion preference in that ~95% of the 

transposition events are carried out in either telomeres or at the silent mating HM loci 

(Zou et al., 1996). These loci are associated with a heterochromatic structure, and it 

was suggested that the biochemical signal recognised by Ty5 is chromatin structure 

(Boeke and Devine, 1998). The targeting domain (TD) of Ty5 IN interacts with a protein 

component of heterochromatin called, Sir4 (silent information regulator 4). This 

interaction is dependent upon phosphorylation of the TD by host kinase(s). 

Interestingly, under stress conditions (such as low nitrogen) phosphorylation is 

reduced allowing Ty5 IN to target cDNA integration throughout the genome (Dai et al., 

2007). Therefore post-translational modification by the host determines the effect of 

Ty5 towards the integrity of its genome.  
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1.9 The LTR retrotransposons of Schizosaccharomyces pombe 

Following the discovery of the Ty family, LTR retrotransposons were identified in S. 

pombe, a yeast that diverged from S. cerevisiae 109 years ago. A repeat DNA 

sequence isolated from S. pombe, was later found to be a LTR and was used to 

identify two retrotransposons, Tf1 (transposon of fission yeast 1) and Tf2 (Levin et al., 

1990). Both Tf1 and Tf2 families belong to the Metaviridae family and are closely 

related to animal retroviruses (Levin et al., 1990; Esnault and Levin, 2015).  

1.9.1 The architecture of Tf elements 

Tf1 and Tf2 elements are 4.9 kb in length and consists of a single ORF that encodes 

Gag (CA), Pol (PR, RT/RNaseH, IN) flanked by 358 and 349 bp LTR regions in Tf1 

and Tf2 respectively (Levin et al., 1990; Weaver et al., 1993). Analysis of the LTRs of 

Tf1 and Tf2 showed that the TATA box regions are identical to the TATA box of other 

S. pombe genes such as housekeeping alcohol dehydrogenase adh1 (Levin et al., 

1990). The structure of Tf LTRs are also conserved with other retrotransposons and 

retroviruses and contain U3, R, and U5 regions (Levin et al., 1990; Weaver et al., 

1993). However, the Tf1 and Tf2 LTR sequences are less than 30% identical and the 

region extending from just the downstream of 5’ LTR to the middle of the CA domain 

in the gag gene is drastically different (Levin et al., 1990). Indeed, the gag regions of 

Tf1 and Tf2 are only 36% identical while the other regions have a 98% homology 

(Teysset et al., 2003). Initial searches for retrotransposons in the common laboratory 

strains, Leupold strain 972 (h-) and 975 (h+) were unsuccessful. However, both Tf1 

and Tf2 were subsequently identified in an alternative wild type isolate, NCYC132 

(Levin et al., 1990). This wild-type strain contains between 30-40 active Tf1 elements. 

In contrast, no full length Tf1 elements are present in the 972 background but there 

are 13 full length copies of Tf2 (Wood et al., 2002). Analysis of the 972 strain revealed 

that there are also 249 solo LTR or LTR fragments (>200 bp) derived from nine clades 

of LTR retrotransposons (Wood et al., 2002). Solo LTRs are the remains of previous 

insertions that have been lost through homologous recombination. Some solo LTRs 

have been reported to be transcriptionally active and can influence the transcription 

level of neighbouring genes (Sehgal et al., 2007; Anderson et al., 2009).  
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1.9.2 Tf1 and Tf2 polyprotein processing 

The Tf family contains only a single open reading frame which is translated as single 

polyprotein and then processed. This polyprotein contains Gag (CA), PR, RT/RNaseH 

and IN activities. The order of these proteins is conserved within the Metaviridae family 

and processing is mediated by the encoded PR activity. The major steps in polyprotein 

processing for Tf1 and Tf2 are outlined in Fig. 1.5.  The order of the proteolytic 

processes is different between the two elements, resulting in an accumulation of PR-

RT fused species for Tf2 and a lower level of mature CA (Gag), IN and thus cDNA 

(Fig. 1.5) (Levin et al., 1993; Atwood et al., 1996; Hoff et al., 1998). The differences in 

processing has been suggested to result from the divergence in the sequence of the 

CA (gag) and PR proteins (Weaver et al., 1993; Dodonova et al., 2019) .  
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1.9.3 Reverse transcription of Tf elements  

The reverse transcription of the Tf1 mRNA into full-length cDNA follows the same 

overall scheme as other retroelements (Esnault and Levin, 2015). However, unlike 

other LTR retroelements, Tf1 does not use a tRNA to prime cDNA synthesis as the 

PBS region lacks the conserved UGG motif that is required for association with tRNA. 

Instead, Tf1 reverse transcription initiates by a self-priming process. The first 11 bp of 

the Tf1 mRNA acts as the primer by folding back and annealing to the PBS region 

though complementary, based pairing. This represents a novel mechanism that is 

called ‘self-primed’ reverse transcription (Levin, 1995). Following the formation of the 

looped mRNA, the loop is cleaved by the RNaseH activity of the Tf encoded RT which 

produces a 3’ end competent for extension by the RT polymerase activity (Levin, 1996).  

The Tf1 retrotransposon is not the only retroelement species that employs self-priming 

mechanisms in the Metaviridae family, other LTR retrotransposons (including the 

closely related Tf2 of S. pombe, Maggy elements of the rice infectious fungus 

Magnaporthe grisea, Skippy elements of the plant pathogenic fungus Fusarium 

oxysporum, Cft-1 elements of the mold fungi Cladosporium fulvum, Boty elements of 

the plant necrotrophic fungus Botrytis cinerea , and sushi elements of the Japanese 

puffer fish Fufu rubipes) are all now known to do so (Malik and Eickbush, 1999; Butler 

et al., 2001; Craig, 2002). It was therefore proposed that the above elements belong 

to a single lineage of Metaviridae. In contrast, in retroviruses and Ty retrotransposons 

in S.cerevisiae, reverse transcription initiates by the binding of tRNA primer anticodon 

domain to the complementary viral PBS and the cleavage of the primer to expose a 

3’-OH for DNA synthesis.  

1.9.4 Insertion of Tf elements into host genome 

As mentioned above, the two retrotransposons Tf1 and Tf2 in S. pombe show 

similarities and differences in the genomic architecture, suggesting they share some 

biochemical processes while others are different. Tf1 employs IN and performs cDNA 

integration into the S. pombe genome in a similar manner to the S. cerevisiae Ty 

elements. However, the mechanisms by which Tf1 avoids integrating into essential 

coding regions is different to Ty elements. Mapping studies revealed that Tf1 prefers 

insertion sites in a window of 100-400 bp upstream of RNA Pol II transcribed genes, 
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generally upstream of the TATA box (Behrens et al., 2000; Singleton and Levin, 2002; 

Bowen et al., 2003). Insertion upstream of TATA box reflects a strategic advantage 

that reduces the possibility of disrupting the transcription of genes (Kelly and Levin, 

2005). It was observed that the targeting of Tf1 integration is dependent on the 

recognition of the RNA pol II promoter without IN binding directly to DNA (Ebina et al., 

2008; Leem et al., 2008). In addition, Tf1 has a strong bias for in integration into stress-

responsive genes as IN interacts with the stress activated transcription activator, Atf1 

as a navigator (Leem et al., 2008). Nonetheless, insertion site location and selection 

of Tf1 occurs throughout the S. pome genome but clusters in promoter regions 

upstream of ORFs (Singleton and Levin, 2002; Cherry et al., 2014). 

For Tf2 a decreased level of cDNA and IN is produced relative to Tf1 (Hoff et al., 1998). 

Furthermore, unlike Tf1, the majority of integration events of Tf2 (~70%) are IN-

independent and occur via homologous recombination (HR) with an already existing 

elements (a process which has been termed integration site recycling) (Hoff et al., 

1998). The frequency of mobilization via HR varies between elements and species but 

is usually relatively low (<10%) compared with IN-dependent mobilization events 

(Hansen and Sandmeyer, 1990; Levin, 1995; Zou et al., 1995). This unique strategy 

not only recycles integration sites maintaining their integrity but also ensures host 

encoding genes are not being disrupted. Experimental results revealed that the IN of 

Tf2 is functionally active and accounts for the remaining 30% of mobilization events in 

a new integration site (Hoff et al., 1998). The reasons that Tf2 utilizes HR instead of 

integration is not well understood since the IN of Tf2 is fully functional. Furthermore 

swapping Tf2 IN with the Tf1 sequence does not change the preference for HR 

mediated integration (Hoff et al., 1998). It has therefore been suggested that the low 

frequency of Tf2 integration results from the sequence differences in CA (gag) and PR.  

Regardless, both Tf elements in S. pombe showed a unique phenomenon in that either 

solo LTRs or new integration sites are close to RNA pol II promoters that are stimulated 

by environmental stress and are potentially capable of influencing nearby gene 

expression (Leem et al., 2008; Esnault et al., 2019). As discussed below, it is possible 

that the retrotransposition of retrotransposons helps to improve host fitness for survival 

in stress conditions. 
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1.10 The impact of retroelements on host genome and evolution 

Retrotransposons have developed strategies to integrate into gene poor or gene free 

regions in order to minimize harmful effects on the host genome. However, 

unrestricted mobilization can result in over-accumulation, potentially reducing genome 

stability. Before the discovery of the regulatory effects of host genes, retroelements 

were classified as selfish parasites in the host genome without any function or 

evolutionary role (Doolittle and Sapienza, 1980; Orgel et al., 1980; Hickey, 1982). 

However it was later suggested that transposons may have a role in responses to 

stress and shaping the genome of organisms (McClintock, 1984). It is now accepted 

that retrotransposons have been involved in changing the genomes in many 

multicellular eukaryotes including plants (Bennetzen et al., 2005; Vitte and Bennetzen, 

2006), fruit fly Drosophila family (Boulesteix et al., 2006), salamanders (Marracci et al., 

1996), avian species (Organ et al., 2007), primates (Liu et al., 2003) and humans (Sen 

et al., 2006).  

In addition to changing the size of genome, retroelements are also suggested to 

mutate the host genome by insertions where 50-80% of mutations in fruit flies are due 

to insertion of transposable elements (Biemont and Vieira, 2006). Transposons affect 

host genome evolution in various ways including the breakage and re-joining of 

different chromosomes, gene and segmental duplication, functional domain shuffling 

in exons (Fig. 1.6). An example is the Mammalian L1 element that affects human and 

other mammals in adverse ways. Human, mouse and gorilla all suffer from disease-

producing mutations due to L1 insertions into the genome. Indeed haemophilia B in 

dogs is caused by the disruption of factor IX caused by a L1 insertion (Ostertag and 

Kazazian, 2001; Brooks et al., 2003; Kazazian, 2004).  

By moving across chromosomes, transposons can reshuffle the genome and alter 

gene expression in a number of different ways (Fig. 1.6) (Kazazian, 2004; Goodier 

and Kazazian, 2008; Rebollo et al., 2012). Insertion of mobile elements into novel sites 

in the genome can lead to disruption of host gene or genetic region. Elements either 

full-length or truncated carry novel sequences and so can introduce regulatory 

sequences at new loci. Similarly, transposon insertions can also leads to deletions in 

the host genome and cause disease. Indeed, removal of part of a gene was identified 

to be the cause of pyruvate dehydrogenase complex deficiency and leukaemia in 
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human (Mine et al., 2007; Takasu et al., 2007). Retroelements insertions either side 

or within a gene can also result in the production of novel transcripts (thus proteins).  

As such, the transposition into a new position can shuffle exons and potentially create 

a new gene, and this process is known as 3’ or 5’ transduction. For instance, the 

transduction of SVA in humans resulted in multiple copies of the gene encoding acyl-

malonyl condensing enzyme 1 (AMAC1) (Moran et al., 1999). The similarity between 

the genomes of mobile elements allows homologous recombination events and mis-

alignment and mis-pairing causes rearrangement events of the retrotransposons and 

in-turn, affects the host genome. Retrotransposons can provide regulatory sequences 

(e.g. enhancers, promoters and terminators) that can influence the expression level of 

adjacent genes, alter the splicing of introns or the induction of antisense transcripts.  

An examples is the B1 element in mouse where binding of transcription factors to 

retrotransposon sequences affects the transcription of nearby genes (Roman et al., 

2008).  

Retrotransposons can also influence higher order genome architecture. 

Retrotransposons can contribute to heterochromatin formation, and therefore alter 

nearby gene expression and the physical structure of chromosomes (Grewal and Jia, 

2007; Slotkin and Martienssen, 2007). Tf2 elements in S. pombe are clustered in the 

nucleus into structures called ‘Tf bodies’ therefore retrotransposons can influence the 

spatial organisation of the genome (Cam et al., 2008; Mikheyeva et al., 2014). Another 

important property of retroelements is that the reverse transcriptase of an active 

autonomous element such as human L1 can mobilize non-autonomous elements such 

as Alu and SVAs. In fact, L1 reverse transcriptase can also mobilize other mRNAs and 

small non-coding RNAs in the host (Ohms et al., 2014).  

The LTRs of retrotransposons provide a source of repeated sequences for 

homologous recombination which can reshape the chromosome, depending on 

crossovers events (Fig. 1.7) (Mieczkowski et al., 2006). There are a few factors 

governing the chance of chromosome recombination including the number of repeats, 

the location of the repeats, the length of the repeats and the degree of sequence 

divergence between repeats (Mieczkowski et al., 2006). It is likely that the chance for 

recombination is proportional to the number of repeats (Wilson et al., 1994). The 

geographical location of the repeated gene also greatly affects the rate of 

recombination. Two leu2 heteroalleles located 20kb apart in the same chromosome 
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have a 10-fold higher rate of recombination than distant  loci on the same chromosome 

or repeats located on non-homologous chromosomes (Lichten and Haber, 1989). In 

yeast, the rate of recombination showed a sharp decline when repeats were less than 

250 bp and increased linearly above 250 bp (Jinks-Robertson et al., 1993). Notably 

the LTR regions of the Ty and Tf families are larger than the minimum sequence length 

required for a homologous recombination. Therefore, retroelements are possibly one 

of the forces driving genome restructuring. In support of this, three genes CYC1, 

OSM1 and RAD7 that are flanked by two Ty1 elements have a high chance to be 

removed through homologous recombination in S. cerevisiae (Liebman et al., 1981). 

In addition, such recombination events are one of the events that create solo LTRs 

where the retroelements are excluded from the genome (Roeder and Fink, 1980). In 

S. pombe, a homologous recombination (HR) event was observed when replication 

forks were arrested in at the 5’ end of an LTR. The replication fork barrier was bound 

with the DNA-binding protein Sap1 (Zaratiegui et al., 2011; Jacobs et al., 2015). This 

blockage to triggered DNA double strand breaks, driving HR. 
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Figure 1.6 Transposable elements may affect the host genome in different ways.  

(1) Insertion mutagenesis. (2) A random insertion may perform deletion at the new insertion 

site. (3) Either the adjacent sequence at 5’ or 3’ position of TE may be carried alone with during 

retrotransposition. (4) Recombination of two different TE could lead to TE removal or mispairing 

and crossing over. (5) Transcription may be terminated or truncated within TE sequence (red 

arrow). An antisense promoter may initiate production of transcript of opposite strand (green 

arrow). (6) Splicing of intron may be altered by TE, creating new exon. (7) TE may alter 

chromosomal architecture, changing nearby gene expression. Adapted from Kazazian, (2004) 
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1.11 Retroelements and disease 

The rearrangements of chromosomes and gene mutations described above resulting 

from transposable elements as well as endogenous retroviruses may damage the 

fitness of the host and can result in the development of disease states. In humans, 

there are at least 96 single-gene diseases associated with retrotransposon 

mobilization and it is predicted that more will be discovered (Kazazian, 2004; Hancks 

and Kazazian, 2012). A study of Neurofibromatosis type I characterised 18 

independent L1 retrotransposon insertions which cluster in three hotspot sites 

(Wimmer et al., 2011).  L1 site-specific mutation is also observed in leukaemia (Kaiser, 

2003). The other potentially harmful retroelements in human are Human endogenous 

retroviruses (HERVs), which integrated themselves into the host germline cell 

genomes to perform vertical infection. Increased levels of HERV proteins has been 

observed under a variety of conditions such as diabetes, schizophrenia, leukaemia, 

multiple sclerosis and teratocarcinoma (Biemont and Vieira, 2006). However, there is 

no definitive proof that HERVs contribute to the pathology of these diseases. 

Nonetheless, HERVs which have lost their ability to complete cell-to-cell infection or 

transposition life cycles, have been linked to azoospermia, a disease caused by the 

deletion of one of the three regions in the human Y chromosome. This causes, 

spermatogenic failure and infertility because the AZF-1 gene is removed by a non-

reciprocal recombination event involving HERV-1 (Kamp et al., 2000; Sun et al., 2000). 

Recombination between Alu elements in humans is also responsible for a whole range 

of human genetic disorders (Kim et al., 2016) (Feschotte, 2008) 

Uncontrollable gene expression that leads to cancer could also potentially be brought 

about by transposons (Hughes and Coffin, 2005; Feinberg et al., 2006). In mouse, the 

regulatory sequence of an ERV LTR can upregulate a high level of transcription in 

ageing tissue and cell lines that is associated cancer in mice (Maksakova et al., 2011). 

Also, expression of L1 elements promotes double-strand chromosome breaks (DSB) 

and a greater number of L1-induced DSBs than the number of successful insertions 

is observed (Gasior et al., 2006). Moreover, a high level of L1 expression is also linked 

to DNA damage, apoptosis signalling and senescence induction in some cell lines 

(Belgnaoui et al., 2006; Wallace et al., 2008; Rodriguez-Martin et al., 2020). 
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1.12 Host benefits from retroelements  

Although retroelements are potentially hazardous they have also assisted the 

restructuring and reorganisation of eukaryotic genomes and have contributed to 

evolution. This suggests that the host may have been received some benefits from 

these elements and therefore maintained their existence under neutral or positive 

selection. Theoretically, retroelements without infectious ability act only as parasites 

should be eliminated from the genome during evolution. However, that most 

organisms discovered have not excluded mobile elements from their genome, 

suggests that retrotransposons may also be of benefit to their host (Capy et al., 2000). 

Detailed analysis has revealed that in some cases transposon DNA and proteins have 

been domesticated by their host (McClintock, 1984). This process has been termed 

“exaptation” (Volff, 2006). Indeed, retroelements have been suggested to play a role 

in assisting the host cell respond to external environmental signals (reviewed by 

Feschotte, 2008). Transposons also showed a significant impact to host genome in 

germ-line cells. A transcriptional derepression event occurred during specific stages 

of development of germline of animals and plants by a programmed TE reactivation 

mechanisms to desilencing precision development of TE (Maupetit-Mehouas and 

Vaury, 2020).  

As discussed further below, the expression of transposons is commonly upregulated 

under stress conditions. For example the expression of the Tnt1 element in tobacco 

Nicotiana tabacum is induced after various biotic and abiotic stresses (Grandbastien 

et al., 1997). In Drosophila, both the 412 element and mariner element are induced in 

expression after a change of temperature (Giraud and Capy, 1996; Vieira and Biemont, 

1996). SINE and LINE expression was reported to be upregulated by genotoxic 

poisons, radiation, heat shock, viral infection, and heavy metals (Farkash and Luning 

Prak, 2006). Later, studies have illustrated numerous ways that retroelements can 

directly influence the regulation of neighbouring gene expression (Feschotte, 2008). 

An example in human suggested that HERVs assist the expression of host genes by 

recruiting p53 with their p53 binding sites within the LTR and thereby influence the 

transcriptional activation of the closest adjacent gene (Wang et al., 2007).  In S. pombe 

the upregulation of some genes in response to hypoxia is controlled by binding of the 

Sre1 transcription factor to a nearby Tf2 LTR (Sehgal et al., 2007). Furthermore, the 

Tf1 LTR element acts as transcriptional enhancer which is activated by heat shock 
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and oxidative stress and has been suggested to increase transcription of adjacent 

genes in some contexts (Feng et al., 2013). Although the L1 retrotransposon creates 

double-strand breaks when integrating into the genome, they also provide DNA repair 

mechanisms after integration (Morrish et al., 2002; Goodier and Kazazian, 2008; 

Stribinskis and Romos, 2010). 

1.13 The regulation of transposons in host genome 

Although transposons can benefit their host, uncontrolled retrotransposition can also 

be harmful. Therefore, host cells have evolved many diverse mechanisms and 

marshalled various forces to regulate retrotransposons activity (Fig. 1.8). Feschotte, 

2008 

1.13.1 DNA methylation 

Methylation of cytosine residues in DNA plays an important role  in suppressing gene 

expression, especially retrotransposons in some eukaryotes. This DNA modification 

mechanism is employed in some eukaryotes including vertebrates, flowering plants 

and some fungi (Levin and Moran, 2011). In these organisms, retrotransposons are 

often directly methylated to repress transcription and the demethylation of the genome 

re-activates retroelement transcription. (Goll and Bestor, 2005; Maksakova et al., 2008; 

Tsukahara et al., 2009). In mice, the maintenance DNA methyltransferases Dnmt1, 

and de novo methyltransferases Dnmt3a and Dnmt3b form a defence by methylating 

the intracisternal A particle (IAP) retrotransposons in embryos and germ cells (Walsh 

et al., 1998; Kato et al., 2007). The loss of Dnmt3L, a Dnmt3a/b homologue without a 

catalytic domain, results in to the loss of de novo cytosine methylation across all types 

of retrotransposons in mice and their transcription level is induced in spermatocytes 

and spermatogonia (Bourc'his and Bestor, 2004). In plants, 24 nt RNAs target 

particular sequences with  homology to retroelements for cytosine methylation (Levin 

and Moran, 2011). In human, hypomethylation has been linked to activation of L1 in 

cancer cells (Daskalos et al., 2009). Despite the difference in methylation status 

between different tumours, hypomethylation was showed to be associated with both 

cancer progression and development (Wilson et al., 2007). In addition, DNA 

methylation and the downstream RNAi machinery has been proposed to play a 
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germline-specific role in regulating transposons in mice and human (Aravin et al., 2008; 

Kuramochi-Miyagawa et al., 2008; Mugat et al., 2020).  

1.13.2 RNAi 

RNA silencing mechanisms are commonly employed to regulate endogenous gene 

expression (Du and Zamore, 2005) and contribute to viral defence in Drosophila 

(Galiana-Arnoux et al., 2006; Wang et al., 2006), insects (Kolliopoulou et al., 2019), 

plants (Zhu et al., 2019) and humans (Schuster et al., 2019). This RNA mediated 

silencing has also been shown to regulate repetitive DNA and retroelements. RNA 

interference (RNAi) uses short RNAs to bind target homologous RNA sequences and 

direct their degradation or translation suppression. There are a few RNAi pathways 

including micro-RNAs (miRNA), small-interfering RNAs (siRNA), repeat-associated 

small interfering RNAs (rasiRNAs), piwi-interacting RNAs (piRNAs) and endogenous 

siRNA (endo-siRNA) (Vasselon et al., 2013).  

miRNAs gene are transcribed by RNA Pol II to produce long pre-miRNAs and is 

maturated by cleavage to form double-stranded hairpin-loop pre-miRNA. This pre-

miRNA is then translocated to cytoplasm for further processing by the ribonuclease 

Dicer in the cytoplasm to form mature miRNAs (Church et al., 2017). These miRNA 

are bound by Argonaute proteins in a large multiprotein RNA induced silencing 

complex (RISC) complex.  RISC is then targeted to cellular RNA sequences that are 

homologous to the miRNAs (Du and Zamore, 2005). Degradation of cellular RNA is 

directed by Argonaute-miRNA activity cluster mRNA processing bodies (P-bodies) 

and the disruption of P-bodies is linked to a reduction in RNAi mediated 

degradation.(Sen and Blau, 2005).  

siRNA can be of endogenous or exogenous origin and commonly functions in the 

cellular defence against molecular parasites such as viruses and retroelements. After 

infection by, viral dsRNA is processed as a part of viral defence system. siRNAs can 

also be employed by cells to modulate gene expression in a tissue- or development-

stage specific manner. In some organisms such as fission yeast siRNA can also play 

a role in maintaining genome structure and organisation by establishing and 

maintaining histone marks (Martienssen et al., 2005; Okazaki et al., 2018).  
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siRNAs from repeat sequences have been termed rasiRNAs. In eukaryotes, the 

development of 24-27 nt long sense and antisense rasiRNA was suggested to be one 

of the major class of RNAi mechanisms that plays a role in repressing both LTR and 

non-LTR retrotransposons from yeast to plant and mamml (Aravin and Tuschl, 2005; 

Vagin et al., 2006; Ruiz-Ferrer et al., 2018). In plant, rasiRNA participates as the first 

line of defence against transposons through a RNA-directed DNA methylation (RdDM) 

that directs the precise methylation of retroelements (Xie and Yu, 2015). To perform 

target gene silencing, RNA polymerase IV (Pol IV) is recruited to the silenced 

transposon by identification of the transcription repressing H3 lysine 9 methylation 

mark. The transposon transcript is converted into double-stranded RNA and then 

processed by Dicer cleavage into 24 nt rasiRNA. Associated with Argonaute 4 and 6 

protein, the rasiRNA-protein complex then directs chromatin modification (Ruiz-Ferrer 

et al., 2018).  

piRNAs are a unique type of RNA that are expressed in the germline (Wang et al., 

2019). This special form of RNAi is expressed by genomic loci (piRNA clusters) that 

encode precursor RNAs of transposons and are processed into 24-32 nt length single-

stranded RNA without the requirement of Dicer. This precursor RNA is then bound to 

an Argonaute protein subfamily called PIWI and undergoes a  primary processing 

pathway and then is specifically amplified through a ‘ping-pong’ cycle which amplifies 

the complementary sequence that targets the active transposon (Siomi et al., 2011). 

Studies in Drosophila revealed that a large proportion of the piRNAs are generated a 

derived from transposon sequences and target transposon mRNA (Vagin et al., 2006; 

Huang et al., 2017; Czech et al., 2018). 

1.13.3 Chromatin  

A range of chromosomal modification and remodelling events can suppress the 

transcription of transposons. It has been reported that histone deacetylation is 

essential for transcriptional suppression of human LINE-1 elements in embryonic 

carcinoma cells (Garcia-Perez et al., 2010). Furthermore, chromatin 

immunoprecipitation (ChIP) experiments in mice (Martens et al., 2005; Mikkelsen et 

al., 2007; Karimi et al., 2011) have revealed that a range of elements, including, class 

I (e.g. MLV), class II (e.g. IAP and ETn/MusD) and endogenous retroviruses (ERVs) 

are enriched with methylation of lysine 9 on histone H3 (H3K9me) which is a classic 
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mark of heterochromatin. This modification promotes the recruitment of binding 

proteins such as HP1 homologues that mediate silencing of gene expression 

(Vermaak and Malik, 2009; Kwon and Workman, 2011b; Kwon and Workman, 2011a). 

Consistent with this, upregulation of transposon transcription was observed following 

mutation of the H3K9 methyltransferase suv39 in mouse ES cells (Martens et al., 

2005). Histone H3 lysine 27 methyltransferases and the polycomb repressive complex 

have been also been identified as being required for retroviral LTR silencing in 

mammalian somatic tissues (Matsui et al., 2010; Macfarlan et al., 2011; Rowe and 

Trono, 2011). 
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1.14 Regulation of Ty element in S. cerevisiae 

Expression of Ty1 mRNA accounts for ~0.1-0.8% of the total polyadenylated RNA in 

S. cerevisiae, but despite this,  the transposition frequency is relatively low (~1 event 

in every 107-108 cells) and VLPs and Ty1 cDNA can hardly be detected (Curcio et al., 

1988). Sequence analysis reveals that majority of the Ty1 elements are intact and with 

no mutations that should render them inactive (Curcio and Garfinkel, 1994) indicating 

that these elements are regulated at, a post-transcriptional level  (Conte et al., 1998; 

Lee et al., 1998). At least five genetic screens have been carried out in S. cerevisiae, 

employing different approaches and identifying up to 130 factors that affect the 

mobilization of the Ty1 or Ty3 retrotransposons (Scholes et al., 2001; Griffith et al., 

2003; Aye et al., 2004; Irwin et al., 2005; Risler et al., 2012).  

A Ty1 mobilization assay with a mTn3 lacZ/LEU2 bacterial transposon mutation library 

was used to identify genes that restrict Ty1 retrotransposition (Scholes et al., 2001). 

Twenty genes involved in DNA damage response, telomere maintenance and 

components of the MRX genome maintenance pathways were identified with mutants 

showing at least a 5-fold increase in Ty1 mobilization (Scholes et al., 2001). In addition, 

all these genes identified were suggested to involve post-transcriptional regulation of 

Ty1 element since only a minimal impact on mRNA and cDNA levels was observed in 

these mutants (Scholes et al., 2001). 

Another screen was carried out by using the S. cerevisiae gene deletion library to 

search for Ty1 regulators (Griffith et al., 2003). In contrast to the previous screen using 

a natural genomic loci, a donor plasmid harbouring a Ty1 element under the control of 

the GAL1 promoter was introduced into deletion strains for the retrotransposition 

assay. In this screen, 101 mutants were identified that had altered levels of 

retrotransposition. Furthermore, among the 101 mutants identified, only 2 induced TE 

transposition while the remaining 99 repressed Ty1 mobility (Griffith et al., 2003). It is 

worth noting that the Ty1 element expressed by the GAL1 promoter overrides a post-

translational repression of Ty1 mobility (called copy number control) and results in 

~1000 fold increase in retrotransposition. This explains why, mainly mutants that 

reduce retrotransposition, (which correspond to genes encoding activation factors of 

Ty1 mobilization) were identified. This screen revealed that chromatin mutants had no 

effect on Ty1 targeting but rather they are altering a different retrotransposition 



38 
 

process. (Griffith et al., 2003). Half of the mutants showed no alteration in cDNA level 

while the other half showed an decreased Ty1 cDNA (Griffith et al., 2003). 

A third screen employed a different approach to search through the haploid gene 

deletion collection. Instead of using GAL/Ty1, a S. cerevisiae strain either harbouring 

a rtt101Δ or med1Δ allele which confer a hypertransposition phenotype were 

employed. (Risler et al., 2012). RTT101 encodes a cullin-component of an E3 ligase 

and promotes replication fork progression through DNA damage, while MED1 encodes 

a non-essential subunit of the RNA Pol II mediator complex involved in transcriptional 

regulation. The removal of either gene stimulates cDNA production and some 

subsequent step (or steps) in the Ty1 life cycle. (Risler et al., 2012). 275 

retrotransposition host factors (RHF) were identified, where 45 factors were previously 

identified from other screens. 181/275 factors were involved in post cDNA synthesis 

steps while 43/275 RHF genes influenced Ty1 cDNA levels. These included genes 

encoding specific ribosomal and ribosome biogenesis proteins and also RNA 

degradation, modification and transport proteins.  Specially, four ribosome biogenesis 

mutants bud21Δ, hcr1Δ, loc1Δ, and puf6Δ showed reduced levels of Ty1 Gag but not 

RNA (Risler et al., 2012).  

Little overlap was identified between the different Ty1 screens. One possible reason 

is that the objective of the first two screens is quite different. One focused on the 

identification of restriction (repressive) factors (Scholes et al., 2001) while another 

looked for activating factors that are required for the element to complete its life cycle 

(Griffith et al., 2003).  

A screen identifying S. cerevisiae Ty3 regulators was also undertaken using 

aGAL1/Ty3 plasmid based mobilization assay. This screening was conducted by using 

mTn3 insertion mutagenesis (Aye et al., 2004). 25 genes were identified as encoding 

Ty3 regulatory factors but surprisingly, they showed almost no overlap with the 

previously identified regulators of Ty1. This suggests that retroelement specific 

regulation may be in operation, but more likely demonstrates that each screen favours 

the identification of a special area or particular group of regulators.  

Another screen on Ty3 was carried by using a HIS3 marked Ty3 element and the S. 

cerevisiae haploid ORF deletion library (Irwin et al., 2005). Factors involved in 

vesicular trafficking, RNA processing, DNA maintenance and nuclear transport were 
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identified, suggesting that retrotransposition was not limited by the level of Ty3 

proteins. The nuclear pore was identified as one of the key regulators of Ty3 mobility 

and this is possibly related to the control of nucleus access by cDNA (Irwin et al., 2005).  

Further analysis was carried out to identify genes involved in the regulation of Ty1 and 

Ty3 retrotransposons. ATy1-his3AI cassette with a natural Ty1 promoter on plasmid 

and the S. cerevisiae haploid ORF deletion library was employed (Nyswaner et al., 

2008). It was suggested that genes that involved in RNA expression and processing, 

protein translation and folding, and trafficking were all required for Ty1 

retrotransposition while genes involved in chromatin structure, and the DNA damage 

response restrict the mobility of both Ty1 and Ty3 elements. The study suggested that 

some aspects of regulation are conserved between different elements and their hosts 

(Nyswaner et al., 2008) 

1.14.1 Post-transcriptional regulation 

Although S. cerevisiae lacks RNAi machinery, one of the regulatory mechanisms of 

Ty1 elements was shown to involve RNA. Antisense Ty1 transcripts reduce IN and RT 

protein level post-transcriptionally to inhibit Ty1 transposition and the copy number of 

the element (Matsuda and Garfinkel, 2009). 

Human APOBEC3G (hA3G) protein was showed to regulate the Ty1 element life cycle 

when expressed in S. cerevisiae. Interaction between hA3G and the Ty1 Gag protein 

was followed by incorporation into the Ty1 VLP in a similar manner to HIV-1 (Dutko et 

al., 2005; Schumacher et al., 2008). In mammalian cells, the interaction between A3G 

and translation repression proteins and mRNA facilitates co-localization with P-bodies 

and stress granules (Gallois-Montbrun et al., 2007). Previous studies have shown that 

P-bodies are associated with VLP assembly in both Ty1 and Ty3 retroelements. The 

Ty mRNA, and Gag proteins localise to P-bodies (Beliakova-Bethell et al., 2006; Chiu 

and Greene, 2008). In addition, the proteins that associate with P-bodies were shown 

to be required for efficient Ty3 retrotransposition (Irwin et al., 2005; Beliakova-Bethell 

et al., 2006), suggesting that the assembly of VLPs occurs within P-bodies.   

A restriction mechanism called copy number control (CNC) was suggested for Ty1 

elements (Garfinkel et al., 2016).  It was observed that the retrotransposition rate 

decreases as element copy number increases (Garfinkel et al., 2003).  CNC 
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mechanisms which limit the number of elements in a genome have also been identified 

in other organisms such as Drosophila (Chaboissier et al., 1998) and E. coli (Johnson 

and Reznikoff, 1984). Studies that mutated different regions of the Ty1 sequence 

revealed that the 5’ region of Ty1 especially the GAG gene is essential to establish 

CNC in Ty1 (Garfinkel et al., 2003; Saha et al., 2015). Two novel proteins are encoded 

from the C-terminal half of GAG, p22 (22 kDa protein) and p18 (18 kDa protein) both 

of which inhibit retrotransposition. These proteins are initiated from two AUG codons 

halfway into GAG, and were shown to repress Ty1 mobility ~35,000 fold (Saha et al., 

2015). The p22/p18 proteins alter other Ty1 proteins such as IN and RT,  they affect 

VLP assembly, decrease VLP yield, destabilize Pol and its processing, promote 

proteolysis of Gag, disrupt reverse transcriptase activity and prevent IN from 

maturation (Garfinkel et al., 2016). Interestingly, both Ty1 Gag and p22 share a nucleic 

acid chaperone domain while playing opposing roles in retrotransposition. Moreover, 

p18 competes with Gag for the same binding site of Ty1 RNA (Pachulska-Wieczorek 

et al., 2016).  

1.14.2 Stress induced activation of Ty elements 

There is increasing evidence indicating that Ty retroelements are activated under 

particular environmental stress conditions (Wessler, 1996; Capy et al., 2000; 

Todeschini et al., 2005; Nyswaner et al., 2008). A response of retrotransposons to 

stress has been reported in plants and human (Beauregard et al., 2008; Hunter et al., 

2013; Grandbastien, 2015; Negi et al., 2016). In addition, activation of mammalian 

ERVs has been observed in response to infection and injury (Cho et al., 2008). 

Therefore, it is not surprising that Ty1 mobilization is influenced by exposure to 

environmental stresses such as ionising radiation, DNA damage, mating pheromone 

and nitrogen starvation (McClanahan and McEntee, 1984; Bradshaw and McEntee, 

1989; Todeschini et al., 2005; Mieczkowski et al., 2006). The activation of Ty1 

expression and mobility could also upregulate nearby gene transcription by allowing 

differing transcription initiation from cryptic sites in the LTR (Todeschini et al., 2005), 

reflecting that importance of transcription regulation from retrotransposons. In Ty5, 

integration site preference is changed upon the environmental stress. Ty5 targets 

coding regions instead of silenced heterochromatin regions within the host genome 
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under conditions of amino acid, nitrogen or fermentable carbon starvation (Dai et al., 

2007).  

1.15 Regulation of S. pombe Tf elements 

Recently, a genome-wide screen was carried out to locate factors that contribute to 

Tf1 transposition (Rai et al., 2017).  Using a Tf1 element expressed from a multi-copy 

plasmid, 61 genes that promote integration were identified which were involved in   

nuclear transport, transcription, mRNA processing, vesicle transport, chromatin 

structure and DNA repair (Rai et al., 2017). Moreover, a number of the proteins and 

pathways identified were found previously for S. cerevisiae Ty1 and Ty3 

retrotransposons to promote integration, suggesting that the host factors that 

contribute to integration are common in distantly related organisms (Rai et al., 2017).  

It worth noting that in this case the element is overexpressed from the nmt promoter 

which would circumvent native transcriptional controls. As such the screen described 

above is restricted to the identification of factors that contribute to the Tf1 life cycle at 

a posttranscriptional level. 

1.15.1 Transcriptional silencing of Tf2 elements 

A common strategy to restrict retrotransposon is to embed them in repressive 

chromatin in order to restrict their expression and limit their spread. In S. pombe, a 

number of proteins have been implicated in the transcriptional silencing of Tf2 

elements.  Although S. pombe contains an RNAi machinery which is important for 

heteorochromatin silencing (Martienssen and Moazed, 2015), it only plays a very 

minor role in restricting Tf2 expression (Hansen et al., 2005). Furthermore, both H3K9 

methylation and the heterochromatin protein 1 (HP1) homologue Swi6, (typical of 

RNAi-dependent heterochromatin regions), were not found to be associated with Tf2 

elements in genome-wide chromatin immunoprecipitation experiments  (Cam et al., 

2005). Similarly, the mutation of RNAi factors and the H3K9 methyltransferase Clr4 

have only a very mild effects on Tf2 expression (Hansen et al., 2005) and do not effect 

mobilization (Murton, 2012). Interestingly, in another fission yeast 

Schizosaccharomyces japonicus, a close relative of S. pombe, LTR retrotransposons 

do elicit a robust RNAi response and a large portion of LTR retrotransposon mRNAs 

are processed into siRNA for transposon silencing (Rhind et al., 2011). Although RNAi 
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and heterochromatin factors do not play major role in restricting Tf2 mobility in wild 

type cells, in the absence of the exosome a strong RNAi response is observed,Tf2 

mRNA is processed into siRNA and Tf2 sequences become associated with H3K9 

methylation. 

The current evidence suggest that Tf2 elements are subjected to a distinct form of 

transcriptional silencing that is mediated by specific histone chaperones, histone 

modifying enzymes and homologues of human centromere binding protein B (CENP-

B) (Esnault and Levin, 2015). 

CENP-B is thought to have evolved from the ancient Pogo/Tigger Class II transposon 

and is highly conserved from yeast to human (Volff, 2006). In human, CENP-B proteins 

localize to the pericentromeric alpha satellite repeats and bind to 17 bp CENP-B 

sequences for centromere formation (Masumoto et al., 2004). Three CENP-B 

homologues have been identified in S. pombe: autonomously replicating sequence 

binding protein 1 (Abp1), CENP-B homologue 1(Cbh1) and Cbh2 (Murakami et al., 

1996; Lee et al., 1997; Irelan et al., 2001). They are enriched at the centromere region 

and localization of Abp1 and Cbh1 to Tf2 elements has also been shown from genome-

wide analysis (Cam et al., 2005; Lorenz et al., 2012). Deletion of Abp1 and Cbh1 

induces the expression of both Tf1 and Tf2 and in turn, contributes to increased Tf1 

transposition (Cam et al., 2008).  

CENP-B proteins contribute toTf2 silencing by preventing RNA pol II binding to Tf2 

LTRs (Cam et al., 2008; Lorenz et al., 2012; Daulny et al., 2016). Full-length Abp1 

binds to two 10bp-AT-rich domains, which are found at the 3’ end of the Tf2 LTR and 

recruits the class I histone deacetylase (HDAC) Clr6 and the class II HDAC Clr3 (Cam 

et al., 2008; Lorenz et al., 2012). All three domains of Abp1 together, provide functions 

of high-order organisation, DNA sequence recognition and binding, protein 

stabilization and act as a platform for the association of other proteins, such as the 

H3K4 (Histone H3 at lysine 9) methyltransferase Set1 (Lorenz et al., 2012). Together, 

Abp1 and Set1 repress the expression of both sense and antisense strands of Tf2.  

In addition to mediating transcriptional repression, CENP-B proteins are also required 

for the physical clustering of Tf2 elements into subnuclear structures called Tf bodies 

(Cam et al., 2008). The formation of Tf bodies requires the recruitment of the Ku 

heterodimer complex of Ku70 and Ku80 and the condensin complex (Tanaka et al., 
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2012). While Tf body formation is not required for transcriptional silencing, it has been 

proposed to restrict mobilization of Tf elements (Murton et al., 2016).  

The repression of Tf2 elements also requires the HIRA histone chaperone complex, a 

conserved chromatin assembly factor, composed of Hip1, Slm9, Hip3 and Hip4 

(Kanoh and Russell, 2000; Blackwell et al., 2004; Anderson et al., 2009; Anderson et 

al., 2010). The HIRA complex also interacts with another H3-H4 histone chaperone 

Asf1 to mediate chromatin Tf2 silencing. Indeed, loss of any of these proteins results 

in a dramatic increase in Tf2 RNA (Greenall et al., 2006; Anderson et al., 2010; 

Yamane et al., 2011). However, investigation of Tf2 mRNA expression and 

mobilization frequency showed that while the expression of Tf2 retrotransposons is 

increased dramatically only a very modest increase of mobilization was observed in 

HIRA mutants (Murton et al., 2016). It is proposed that this is because Tf bodies are 

not disrupted by loss of HIRA (Murton et al., 2016).  

Interestingly, previous studies have also demonstrated that both HIRA and Asf1 in 

human are required for HIV latency by associating with other chromatin assembly 

factors that represses HIV transcription (Gallastegui et al., 2011).   

In addition, ATP-dependent chromatin remodellers regulate the accessibility of DNA 

by altering the nucleosome positioning and composition and are therefore involved in 

all DNA-dependent processes. In fission yeast, a family of Fun30 chromatin 

remodelers called Fft1, Fft2 and Fft3 have been identified (Stralfors et al., 2011; 

Steglich et al., 2015). Fun30 family members in other organisms have proved to be 

involved in transcription repression (Byeon et al., 2013). Interestingly, the removal of 

Fft2 and Fft3 (fft2Δfft3Δ) or disruption of their catalytic subunits enhances expression 

of Tf2. This results from impaired positioning of nucleosomes over the Tf2 transcription 

start site (Persson et al., 2016). In addition, Fft2 and Fft3 regulate gene expression 

adjacent to solo LTRs by recruiting nucleosomes in stress conditions (Persson et al., 

2016).  

Post transcriptional regulation of Tf2 mRNA has also been identified as both sense 

and antisense Tf2 transcripts are tightly controlled (Mallet et al., 2017). The 

exoribonuclease subunit Rrp6 and the nuclear poly(A)-binding protein Pab2 regulate 

Tf2 expression by preventing Tf2 RNA accumulation via an RNAi-dependent pathway 

(Mallet et al., 2017).  
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1.15.2 Regulation of Tf elements in response to stress  

In S. pombe, transcription of Tf2 elements is known to respond to stress. Microarray 

experiments indicated that Tf2 mRNA levels increase in response to oxidative and 

heat stress (Chen et al., 2003). Furthermore, transcription of Tf2 elements is induced 

in response to hypoxic conditions (Sehgal et al., 2007). This is mediated by a 

homologue of human sterol regulatory element binding protein (SREBP) called Sre1 

(Espenshade and Hughes, 2007). Sre1 in S. pombe is required for growth under 

anaerobic conditions and regulates hypoxia responding genes (Todd et al., 2006). 

Under conditions of oxygen sufficiency, Sre1 is membrane associated, but low oxygen 

results in cleavage of the N-terminal region which is localized to the nucleus and binds 

to the sterol response element (SRE) in target promoter regions which include Tf2 

LTRs. Anaerobic conditions therefore markedly increase Tf2 transcription and 

mobilization and also the transcription of some genes that are adjacent to solo LTRs 

(Sehgal et al., 2007).  

Previous analysis has also linked Tf1 elements to stress responses. While Tf1 

expression is stimulated by heat and oxidative stress, most of the neighbouring genes 

are not activated except for those which also induced by the same stress, suggesting 

a synergized enhancing response to a particular stress (Feng et al., 2013). 

Furthermore, Tf1 targets stress response promoters for integration which, potentially 

improves survival chance of cells (Esnault and Levin, 2015). During the course of this 

study S. pombe Tf1 mobility was shown to be increased when cells are exposed to 

heavy metals, caffeine and the plasticizer phthalate (Esnault et al., 2019). Furthermore, 

255 genes adjacent to the Tf1 insertions were analysed and the results were 

separated into five classes. Importantly, three of the five groups were significantly 

enriched for  genes that are associated with the target of rapamycin (TOR) pathways 

(Esnault et al., 2019). In addition, a recent study revealed that the homologues of the 

human tumour suppressor  TSC genes that encode GTPase RHEB activating proteins 

regulate the expression of Tf2 retrotransposons in S. pombe (Nakase and Matsumoto, 

2018). This is interesting as TSC proteins regulate TOR signalling pathways. The loss 

of TSC1 or TSC2 in mammalian cells leads to constitutive activation of RHEB which 

then targets mTOR for continuous activation (Matsumoto et al., 2002; Nakase et al., 

2006). Loss of either tsc1+ or tsc2+ triggers Tf2 induction upon nitrogen starvation. In 
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addition, Tf2 proteins were found to be degraded via autophagy, which is controlled 

by the Tor2 kinase, (Nakase and Matsumoto, 2018).  
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1.16 Rapamycin and Target of rapamycin (TOR) 

Rapamycin, (also known as Sirolimus) is a natural antibiotic isolated from 

Streptomyces hygroscopicus NRRL 5491 from Easter Island (Rapa Nui) in 1972. It 

was reported to have antifungal activity (Sehgal et al., 1975; Vezina et al., 1975) and 

was later identified as an immunosuppressive drug (Mukherjee and Mukherjee, 2009). 

The activity of rapamycin is brought by binding to a family of intracellular receptors, 

termed FK506 binding proteins (FKBPs) by its effector domain, Rapamycin forms a 

surface with FKBP that interacts with, and inhibits, target of rapamycin (TOR) kinases 

(Koltin et al., 1991; Van Duyne et al., 1991).  
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Figure 1.9 TORC1 and TORC2 subunits and downstream ACG kinases in 

Saccharomyces cerevisiae and Schizosaccharomyces pombe cells.  

TORC1 and TORC2 complexes have shared and unique components. Homologues are 

indicated by colour. The target kinases of TORC1 and TORC2 are represented as green 

rectangles. Adapted from (Weisman, 2016). 
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1.17 The architecture of TOR and TOR complexes 

TOR kinases are highly conserved in eukaryotes. However, unlike higher eukaryotes 

(nematodes, flies, mice, and human) where only one TOR gene is present, early 

studies in yeast revealed two genes, (TOR1 and TOR2) and studies of these yeast 

genes provided the framework to the understanding of the more complex mammalian 

TOR (mTOR) system (Helliwell et al., 1994). TOR kinases are members of the 

phosphatidylinositol 3-kinase-related kinase family. (Keith and Schreiber, 1995; 

Schmelzle and Hall, 2000). TOR kinase possess a number of characteristic sequence 

motifs,  N-terminal HEAT repeats (derived from huntingtin, elongation factor, the A 

subunit of PP2A, and TOR1), a FAT (Focal Adhesion Target) domain, a FPB (FKBP-

Rapamycin Binding) domain, a Serine/Threonine kinase domain and a FACT (FAT 

domain in C-terminal) domain (Loewith and Hall, 2011). Sequence alignment 

suggested that S. cerevisiae TOR1 (ScTor1) and TOR2 (ScTor2) are highly conserved 

in sequence and the structural alignment of their HEAT repeats while in S. pombe, a 

divergence of HEAT repeats arrangements was observed in TOR1 (SpTor1) and 

TOR2 (SpTor2), suggesting that SpTOR1 and SpTOR2 do not shared the same 

structure and may have distinct functions (Weisman et al., 2007; Shertz et al., 2010).  

Besides their known protein kinase function, they also function as evolutionary 

conserved scaffolds with several protein-protein interaction domains that mediate 

multi-protein complex formation (Alvarez-Ponce et al., 2009). The major differences 

between Tor kinases of different species are the N-terminal HEAT repeats that are 

present in various number and function with the C-terminal conserved FATC domain 

as a scaffolding structure for protein-protein interactions (Kobe et al., 1999). The FRP 

domain, is a highly conserved 100 amino acid region of Tor and residue S1975 is 

essential for the binding of the FKBP-rapamycin complex while residues W2041 and 

F2048 are critical for rapamycin interaction (Lorenz and Heitman, 1995; Shertz et al., 

2010). Meanwhile, mutation of L2031, F2309, and Y2105 of mTOR abolish the binding 

of phosphatidic acid, (Shertz et al., 2010).  

TOR kinases are found in two distinct evolutionarily conserved complexes termed 

TOR complex 1 (TORC1) and TOR complex 2 (TORC2) (Fig. 1.9). In both cases a 

TOR acts as the central catalytic subunit and their function is accompanied by TORC1- 

and TORC2-specific subunits as well as protein subunits that are shared between the 
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two complexes. The ScTORC1 complex consists of either ScTor1 or ScTor2, essential 

protein Lst8, essential protein Kog1 and non-essential protein Tco89 while ScTORC2 

consists of scaffolding protein Avo1 and Avo3, Tor2, Lst8 and non-essential Avo2 and 

Bit61 (Loewith et al., 2002; Wullschleger et al., 2005). SpTORC1 is composed of Lst8 

homologue Wat1, SpTor2, Tco89 and the Kog1 homologue, Mip1 while SpTORC2 

consists of the Rictor homologue, Ste20, Sin1, SpTor1, Bit61 and Wat1 (Weisman, 

2016).  

1.18 The molecular mechanism of rapamycin 

The drug-protein interaction between rapamycin and TOR depends on interaction with 

the peptidyl-prolyl cis-trans isomerase FKBP12 (FK506 binding protein 12) which was 

isolated as binding to the immunosuppressive drug FK506 (Kino et al., 1987; Siekierka 

et al., 1989). FKBP12 is a 12-kDa cytosolic protein (FKBP12) with an ability to catalyse 

cis-trans isomerization of peptidyl-prolyl bonds in peptides and proteins and the 

catalytic activity is inhibited by the binding of drug and drug-protein complex (Siekierka 

et al., 1989). The crystal structure of human FKBP12-rapamycin complex showed that 

the pipecolinyl ring of rapamycin interacts with the hydrophobic cavity between the α-

helix and β-sheet of FKBP12 (Abraham and Wiederrecht, 1996). FKBP12 homologues 

were isolated in S. cerevisiae and S. pombe, which are called Fpr1 and Fkh1, 

respectively. The disruption of these proteins confers rapamycin resistance (Koltin et 

al., 1991; Weisman et al., 2001). The Fpr1-rapamycin complex (rapamycin hereafter) 

targets a 196 amino acid fragment (amino acids 1886-2081) of ScTOR2 with the 

critical Ser1975 (Stan et al., 1994). Likewise, rapamycin targets a similar serine-

containing domain in ScTOR1 and any mutations of the serine residue confers 

rapamycin resistance (Zheng et al., 1995). Surprisingly, despite the fact that Tor2 is 

able to bind rapamycin, rapamycin does not inhibit TORC2 in S. cerevisiae and only 

TORC1 is rapamycin-sensitive (Loewith et al., 2002). The rapamycin insensitivity was 

shown to be the Fpr1-rapamycin binding site in TORC2 which is masked by the subunit 

Avo3 (Rictor) and prevents binding of the complex, meanwhile, no evidence suggested 

any role of Fpr1 in TOR signalling (Gaubitz et al., 2015).  

One remarkable feature of S. pombe is that rapamycin does not inhibit cell growth but 

some physiological process such as sexual development and amino acid uptake are 

inhibited (Weisman et al., 1997; Weisman and Choder, 2001; Weisman et al., 2005). 
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Further analysis showed that TORC1 activity is rapamycin sensitive and is inhibited 

by Fkh1-rapamycin complex in the FBP region of Tor2 and mutation of Ser1837 

increases rapamycin resistance (Takahara and Maeda, 2012). The failure of 

rapamycin to inhibit cell growth has been attributed to incomplete inhibition of TORC1 

activity. Also, unlike ScTORC2, only part of the SpTORC2 related function is 

rapamycin sensitive and the sensitivity is suppressed by either deletion of fkh1+ or 

introduction of a rapamycin-binding defective tor1 allele (Weisman et al., 2005) but in 

general, the novel cellular roles of TORC2 are rapamycin insensitive (Schonbrun et 

al., 2009).  

1.19 The signalling cascade of TOR  

The two distinct TOR complexes respond to different cellular conditions. In short, 

TORC1 is the master regulator of growth and starvation responses while non-essential 

TORC2 plays a role in cellular metabolism, growth and survival. Compared with the 

relatively well understood specific signals and mechanisms that operate downstream 

of TOR, the upstream stimuli are poorly understood (Weisman, 2016).  

1.19.1 The downstream signalling of TORC1 

The sensitivity of TORC1 to rapamycin provides an excellent tool for in dissecting the 

cellular functions of this complex. Inhibition of ScTORC1 results in a phenotype that is 

similar to starved cells, including arrest at the G1 phase of the cell cycle, G0-like 

cellular morphology and physiology, repression of ribosomal gene expression, rapid 

drop in protein synthesis, induction of stress- and nutrient-starvation genes, and 

stimulation of autophagy (Barbet et al., 1996; Noda and Ohsumi, 1998; Beck and Hall, 

1999; Cardenas et al., 1999). Similarly, SpTORC1 disruption leads to phenotypes that 

specifically resemble nitrogen-starved cells including growth arrest at the G1, a small 

and round cell morphology, induction of nitrogen-starvation-induced genes, and 

activation of the sexual development pathway (Alvarez and Moreno, 2006; Uritani et 

al., 2006; Hayashi et al., 2007; Matsuo et al., 2007; Weisman et al., 2007). 

A key substrate of TORC1 in S. cerevisiae is the AGC kinase Sch9, a homologue of 

mammalian S6 kinase 1 (S6K1) (Powers, 2007; Urban et al., 2007). Six 

phosphorylation sites in the C terminal of Sch9 were identified to be directly 

phosphorylated by TORC1 resulting in increased stability and a change into an active 
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conformation (Powers, 2007; Loewith and Hall, 2011). Upon nitrogen, carbon, or 

phosphorylation starvation, high salt, high temperature, aberrant redox conditions, 

amino acid starvation or low nitrogen source quality, Sch9 becomes dephosphorylated 

and induces specific responses (Urban et al., 2007; Stracka et al., 2014). Other 

downstream targets of ScTOR1 are the type 2A (Pph21, Pph22 and Pph3) and 2A-

related phosphatases (Sit3, Sit4, Ppg1), which regulate the activity of a family of GATA 

transcription factors (Loewith and Hall, 2011; Weisman, 2016). Exposure to reduced 

quality or quantity of nitrogen source, causes the inactivation of ScTORC1, and 

dissociation of the regulatory subunit Tap42 from the PP2A and PP2A-like 

phosphatases. This activates the phosphatases which in turn dephosphorylate GATA-

transcription factors Gln3 and Gat1 causing translocation into the nucleus (Di Como 

and Arndt, 1996; Beck and Hall, 1999; Cardenas et al., 1999; Jiang and Broach, 1999). 

Gln3 and Gat1 are the transcription factors required for transcription activation of 

genes that are normally repressed in the present of a high quantity/quality nitrogen 

source. Also they are critical regulators of nitrogen catabolite repression, where high-

quality nitrogen sources are imported and assimilated in preference to poor-quality 

nitrogen sources (Weisman, 2016).  

Other non-AGC kinase and PP2A kinase targets of TORC1 were also identified in 

budding yeast including the autophagy regulating serine/threonine kinase Atg1 

(Kamada et al., 2000; Kawamata et al., 2008; Kabeya et al., 2009). Upon nitrogen 

deprivation or rapamycin treatment, Atg13, the essential regulatory unit of the Atg1 

kinase complex, rapidly losses its highly phosphorylated status and promotes the 

formation of the Atg1 complex and results in autophagy induction (Kamada et al., 

2000). In fission yeast, a similar autophagy pathway was identified. The key protein 

Atg13 is also highly phosphorylated under nutrient-rich conditions and loses its 

phosphorylation state after nitrogen starvation, after the inactivation of TORC1 (Kohda 

et al., 2007).  

A total of 78 proteins encoded from 137 genes make up the yeast ribosome and 

TORC1 was identified to coordinate the regulation of these genes via several 

mechanisms (Lempiainen and Shore, 2009; Loewith and Hall, 2011). Transcription of 

ribosomal protein genes was thought to be regulated by the controlled association of 

the activator protein Ifh1 and its constitutively promoter-bound partner protein Fhl1, a 

forkhead-like transcriptional factor (Martin et al., 2004; Schawalder et al., 2004; Wade 



52 
 

et al., 2004; Rudra et al., 2005). The forkhead DNA binding domain of Fhl1, the DNA 

binding protein Rap1 and the high mobility group protein Hmo1 together promote 

constitutive association of Fhl1 to ribosomal protein (RP) gene promoters (Hall et al., 

2006; Berger et al., 2007). TORC1 regulates RP gene transcription by controlling the 

interaction of Fhl1 with two FHB-containing phosphoproteins, the co-activator Ifh1 or 

the co-repressor Crf1 (Loewith and Hall, 2011). When TORC1 is active, Ifh1 is 

phosphorylated and binds to Fhl1 for RP transcription activation. In contrast, the 

inactivation of TORC1 triggers the displacement of Ifh1 with Crf1 to repress RP 

transcription (Loewith and Hall, 2011). The regulation of Ifh1 binding and 

phosphorylation is mediated though the AGC kinase Sch9 and an unknown protein 

because Sch9 does not directly interact with Ifh1 (Fig. 1.10) (Cai et al., 2013; Albert et 

al., 2016).  
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Figure 1.10 Schematic representation of the mechanism of RP gene expression that 

is regulated by TORC1 in Saccharomyces cerevisiae. 

During exponential growth, the Sch9 kinase stimulates the activity of the coactivator Ifh1 to 

promote its binding on RP gene promoters to stimulate transcription. Upon nitrogen stress or 

rapamycin treatment TORC1 is inactive and phosphorylated Crf1 competes with Ifh1 for Fhl1 

binding and represses transcription. Adapted from (Xiao and Grove, 2009; Albert et al., 2016) 
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A Fhl1/Ifh1/Crf1 independent but TORC1-dependent regulation of RP gene 

transcription is also present in budding yeast and employs split zinc finger protein Sfp1 

(Fingerman et al., 2003; Marion et al., 2004; Lempiainen et al., 2009; Singh and Tyers, 

2009). Sfp1 binds with TORC1 and its phosphorylation promotes binding to a subset 

of RP gene promoters regardless of osmotic or nutritional stress, suggesting that 

TORC1 regulates RP gene transcription by two different mechanisms (Lempiainen et 

al., 2009).  

An orthologue of ScFhl1 has been identified in S. pombe which is called Fhl1. Fhl1 

also contains forkhead domains with forkhead associated domains (Szilagyi et al., 

2005). Genetic evidence suggests that SpFhl1 functions downstream of TORC1 and 

regulates al number of ribosomal, meiotic nitrogen-starvation and stress-response 

genes (Pataki et al., 2017) However, the molecular mechanisms of Fhl1 function and 

regulation have not been investigated.   

1.19.2 The upstream signalling of TORC1 

In yeast cells, the activity of TORC1 is sensitive to a wide variety of stresses (high salt, 

redox stress, high temperature) and nutritional starvation, and mTORC1 is also 

sensitive to energy levels (ATP) and growth factors (Chantranupong et al., 2015). To 

date, no direct signals or mechanism for TORC1 activation have been identified, 

however, evidence suggests that nitrogen sources and/or amino acids, which can also 

serve as a nitrogen source are the main stimuli for TORC1 activation (Weisman, 2016). 

The observation that the presence of rapamycin, causes yeast phenotypes that 

resemble nutrient starvation (a dramatic decrease in protein synthesis, autophagy 

induction and exit from the cell cycle and entrance into the quiescent G0 state) 

suggests that TORC1 is downstream of nutrient signal (Barbet et al., 1996; Loewith 

and Hall, 2011). Transcription profiling further supports the evidence that TORC1 is 

responsive to the quality as well as the quantity of the nitrogen sources, where the 

activity of ScTORC1 and SpTORC1 are decreased in response to low levels or poor 

quality of the nitrogen source (Nakashima et al., 2010; Laor et al., 2014; Stracka et al., 

2014).  

Nitrogen plays an essential role in the synthesis of amino acids, nucleotides, and other 

cellular components. Any high-quality nitrogen source (ammonium or glutamine) is 

able to promote rapid growth and repress nitrogen catabolite repression genes 
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(Cooper, 2002; Petersen and Russell, 2016). In addition, ScTORC1 and SpTORC1 

also responds to specific amino acids such as leucine, glutamine, asparagine, arginine, 

aspartate, methionine, and cysteine (Bonfils et al., 2012; Valbuena et al., 2012; 

Stracka et al., 2014; Peli-Gulli et al., 2015), raising the possibility that the true nitrogen 

stressing component for TORC1 activation may be amino acids. Although amino acids 

were identified to be one of the stimuli of mTOR signalling (Hara et al., 1998; Wang et 

al., 1998; Jewell et al., 2015), amino acids act through a different mechanism to the 

quantity/quality of the nitrogen sources (Stracka et al., 2014; Davie et al., 2015). 

Moreover, different amino acids seem to activate TORC1 with their unique pathways 

(ScTORC1) (Bonfils et al., 2012; Duran et al., 2012).  

TORC1 and some of its conserved upstream regulators were located at the membrane 

of the vacuole or the lysosome in higher eukaryotes (Eltschinger and Loewith, 2016). 

Residing either at the vacuole or lysosomal membrane, TORC1 is activated by two 

distinct guanosine triphosphate GTPases, Gtr (homologue of Rag in higher eukaryotes) 

and Rhb1 (Rheb in higher eukaryotes). The signalling cascade of Rag/Gtr-TORC1 is 

conserved across mammal, S. cerevisiae and S. pombe while the Rhb1/Rheb-TORC1 

axis is only conserved in mammals and S. pombe but absent in S. cerevisiae (Fig. 

1.11).  

In S. cerevisiae, the Gtr complex is formed by Gtr1 (Rag A/B in mammal) and Gtr2 

(Rag C/D in mammal). Activation of TORC1 by the Gtr complex can only be achieved 

by binding GTP to the Gtr1 or Rag A/B and GDP to the Gtr2 or Rag C/D heterodimer 

(Kim et al., 2008; Sancak et al., 2008; Binda et al., 2009). The Gtr1-Gtr2 GTPase 

complex associates with the Ego (exit from rapamycin-induced growth arrest) complex, 

composed of Ego1, Ego2, and Ego3 which is anchored to the vacuolar membrane and 

tethers ScTORC1 (Binda et al., 2009; Kira et al., 2016). The Ego complex is the 

homologue of the LAMTOR complex in higher eukaryotes that also resides on the 

lysosomal membrane and tethers mTORC1. A separate guanine exchange factor 

Vam6 was isolated in both S. cerevisiae and S. pombe that activates ScTORC1 or 

SpTORC1 in response to amino acids (Binda et al., 2009; Valbuena et al., 2012). 

However, the localization of both TOR complexes to the vacuolar membrane is nutrient 

independent (Binda et al., 2009; Valbuena et al., 2012).  
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Leucine deficiency in S. cerevisiae promotes destabilization between Gtr1 and TORC1 

and in turn, reduced Sch9 phosphorylation (Binda et al., 2009). Similarly, the loss of 

Gtr1 reduces Sch9 phosphorylation with a slow growth and sick phenotype (Binda et 

al., 2009). However, the disruption of grt1/grt2 genes is not lethal in both S. cerevisiae 

and S. pombe, suggesting that they only play a limited role in TORC1 activation 

(Valbuena et al., 2012). In S. pombe, the loss of grt1/grt2/vam6 results in decreased 

TORC1 activity with a hyper-mating phenotype, but TORC1 is still responsive towards 

changes in the quantity or quality of the nitrogen sources (Valbuena et al., 2012). 

In S. cerevisiae, the Gtr complex is negatively regulated by the conserved GAP 

(GTPase activating protein) complex SEACIT (Seh1-associatted subcomplex 

inhibiting TORC1 signalling). This signalling regulation is conserved in higher 

eukaryotes with Rag complexes regulated by GAP GATOR1 (GAP activity towards 

Rag1). Both of the complexes are negatively regulated by additional conserved 

complexes SEACAT (Seh1-associatted subcomplex activating TORC1 signalling) and 

GATOR2 (GAP activity towards Rag2), respectively (Kira et al., 2016). Another GAP 

Lst4-Lst7 complex was recently identified that acts through Gtr2 (Peli-Gulli et al., 2015).  

While in S. pombe, neither of the Lst4-Lst7 nor SEACIT-SEACAT GTPase-activating 

proteins was isolated, a homologue of human Rheb GTPase was identified (Mach et 

al., 2000; Urano et al., 2005; Uritani et al., 2006). Disruption of Rhb1 showed a nitrogen 

starvation phenotype that is highly similar to the phenotype resulting from disruption 

of SpTORC1 (Mach et al., 2000; Yang et al., 2001) Rhb1 is negatively regulated by 

the GAP TSC1-TSC2 (tuberous sclerosis complex) complex, which is conserved in 

humans (Urano et al., 2005), suggesting that Tsc1/Tsc2 complex negatively regulates 

Rhb1. The deletion of the TSC complex caused a reduced transcription of nitrogen-

starvation-induced amino acid permeases, prolonged phosphorylation of ribosomal S6 

under nitrogen (Nakashima et al., 2012), and reduced amino acid uptake (Matsumoto 

et al., 2002; van Slegtenhorst et al., 2004), leading to hyperactivation of SpTORC1. 

The signalling cascade of TSC-Rhb1 acts on several signalling pathways including 

AMPK, a serine/threonine kinase that coordinates cell growth and metabolism (Davie 

et al., 2015). In fission yeast, nitrogen stress stimulates a decreased level of ATP, 

which in turn, increases AMPK activity to repress TORC1 activity though the TSC-

Rhb1 signalling cascade (Davie et al., 2015). A similar AMPK-dependent TSC-Rheb-
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mTORC1 signalling pathway operates in mammalian cells (Inoki et al., 2003; Jewell 

et al., 2013).  

1.19.3 The downstream signalling of TORC2 

The participants in TORC2 pathways are less well understood compared with TORC1 

due to the lack of a specific inhibitor and the finding that the phenotypes resulting from 

loss of TORC2 vary from organism to organism (Weisman et al., 2014).  

There is little overlap between the functions attributed to ScTORC2 and SpTORC2 

ScTORC2 is essential while SpTORC2 is required only in under starvation and other 

stress conditions. The major substrates of ScTORC2 are Ypk1 and Ypk2, an essential 

pair of homologous AGC kinases (Roelants et al., 2004). In S. pombe, the AGC kinase 

substrate of TORC2 is Gad8 and overexpression of Gad8 can suppress a TORC2 

defects (Matsuo et al., 2003).  

SpTORC2 is required to perform two main responses to starvation, sexual 

development and the entry into stationary phase. As a result, cells that lack either 

TORC2 or Gad8 are highly infertile and die soon after exit from the logarithmic growth 

phase (Kawai M et al., 2001; Weisman and Choder, 2001). In addition, the loss of 

TORC2-Gad8 causes sensitivity to a range of stresses such as low or high 

temperature, osmotic or oxidative stress, and DNA damage or replication stresses 

(Weisman and Choder, 2001; Ikeda et al., 2008; Schonbrun et al., 2009). During non-

stress conditions, SpTORC2-Gad8 is required for the G2/M transition and an 

elongated phenotype was observed in cells with disrupted SpTORC2 due to a delay 

in entry into mitosis (Petersen and Nurse, 2007; Ikeda et al., 2008; Ikai et al., 2011). 

The loss of SpTORC2-Gad8 also disables chromatin-mediated gene silencing and 

assembly of heterochromatic domains at subtelomeres, showing a decreased histone 

3 lysine 9 dimethylation (H3K9me2) and histone 4 lysine 20 dimethylation (H4K20me2) 

but increased histone 3 lysine 4 trimethylation (H3K4me3) and histone 4 lysine 16 

acetylation (H4K16Ac)  (Cohen et al., 2018). Similar observations were seen in the 

concerning the roles of ScTORC2 and SpTORC2 towards DNA damage sensitivity 

(Schonbrun et al., 2009; Shimada et al., 2013). In these situations, TORC2 induces 

survivability after DNA damage in a checkpoint independent manner. However, the 

mechanisms are different between budding and fission yeast in that TORC2 supresses 
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the level of DNA damage though actin cytoskeleton pathway in S. cerevisiae while no 

such a linkage was identified in S. pombe (Weisman et al., 2014).  

 

1.19.4 The upstream signalling of TORC2 

Compared with TORC1, the upstream regulation of TORC2 in yeast is poorly 

understood. The loss of ScTORC2 does not confer a starvation-like phenotype, 

suggesting nutrient availability does not regulate ScTORC2 (Loewith and Hall, 2011). 

However, the ribosome maturation factor Nip7, a homologue of mammalian mNip7 is 

required for TORC2 kinase activity (Zinzalla et al., 2011). In mammalian cells, mNip7 

is required for the direct activation of mTORC2 via ribosome maturation. This suggests 

that ribosomes ensure that TORC2 is only active in growing cells. ScTORC2  localizes 

to the plasma membrane and is activated by plasma membrane stress which occurs 

from cell surface expansion or stress on the plasma membrane (Berchtold et al., 2012). 

Therefore, a feedback loop mechanism is proposed that ScTORC2 activity is triggered 

by membrane growth and in turn, regulates membrane biosynthesis (Eltschinger and 

Loewith, 2016). Visualisation of SpTORC2 revealed that it has cytoplasmic and cortical 

localisation (Tatebe et al., 2010). However, biochemical assays suggested that both 

Tor1 (the catalytic subunit of SpTORC2) and Gad8 are found in the nucleus (Cohen 

et al., 2016).  

SpTORC2 is activated by glucose stress but not nitrogen stress (Cohen et al., 2014; 

Hatano et al., 2015). An upstream GTPase Rhy1 is required to activate SpTORC2-

Gad8 in response to glucose (Hatano et al., 2015). However, the regulation of 

SpTORC2-Gad8 in response to glucose availability is rapid and requires no protein 

translation. SpTORC2 activity is also regulated by the mitogen-activated protein 

kinase (MAPK) Sty1 (also known as Spc1, a homologue of Hog1 in S. cerevisiae) 

(Morigasaki et al., 2019). The loss of Sty1 induces metabolites such as purine 

biosynthesis intermediates and nucleotide derivatives and showed a nuclear abnormal 

and viability phenotype which are rescued by rapamycin (Sajiki et al., 2018). This 

indicates that a coordinated action between the SAPK and TORC2 pathways operates 

for fission yeast cells to survive environmental stress. 
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1.19.5 Cross-talk between TORC1 and TORC2  

The differentiation response of fission yeast requires the presence of both mating 

types (h- and h+) and reduced nitrogen in the environment (Yamamoto, 1996). The 

reduced availability of nitrogen represses TORC1 activity which leads to increased 

mating by extension of the G1 phase and the induction of expression of the genes 

required for mating (Alvarez and Moreno, 2006; Uritani et al., 2006). In contrast, 

TORC2 is essential during starvation and stress conditions. In the absence of TORC2-

Gad8 cells are unable to arrest in G1, resulting in sterility (Kawai M et al., 2001; 

Weisman and Choder, 2001). The expression of mating genes is regulated by 

transcription factor Fkh2, which is a substrate of the TORC2-Gad8 signalling cascade 

(Szilagyi et al., 2005; Shimada et al., 2008). The phosphorylation of Ser546 of Gad8 

regulates differentiation responses and is countered by PP2A-B55Pab1. As a result, 

active phosphorylated Gad8 is accumulates after the loss of PP2A-Pab1 repression, 

which is achieved by Ppk18-Igo signalling of the TORC1 pathway (Fig. 1.12) (Martin 

et al., 2017; Martin and Lopez-Aviles, 2018). The loss of Ppk18 and Igo1 results in an 

inability to arrest in G1 in the absence of nitrogen and reduction in sporulation while 

the loss of PP2A-Pab1 leads to a hyperfertile phenotype (Perez-Hidalgo and Moreno, 

2017). The connection between SpTORC1 and SpTORC2 with Ppk18-Igo1-PP2A-

Pab1 explains the opposing roles of the two complexes (Weisman et al., 2007) and 

suggests that the function of both TOR complexes is linked in a certain degree 
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Figure 1.12 Current model of the cross-talk between TORC1 and TORC2 for 

differentiation in S. pombe 

In nitrogen-poor conditions, PP2A-Pab1 is inactivated by the Ppk18-Igo1 pathway due to 

inactivation of TORC1-Sck1-Sck2. The inactivation of PP2A-Pab1s prevent the 

dephosphorylation and inactivation of Gad8, resulting in the extension of the G1 phase and 

sexual differentiation. Adapted from (Perez-Hidalgo and Moreno, 2017) 
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1.20 Aims 

LTR retrotransposons share a similar life cycle to infectious retroviruses and present 

a threat to genomic integrity. Thus, host cells must tightly control of both expression 

and mobilization of retroelements. The molecular mechanisms that regulate these 

elements is only partially understood. Therefore, the aim of this study was to identify 

and characterise the host cell factors and the environmental stimuli that influence the 

activity of the S. pombe Tf2 LTR retrotransposons. The initial aims were to (i) 

investigate the feasibility of a systematic screens to identify genes that regulate Tf2 

mobilization and (ii) to determine whether a copy number control mechanism operates 

in S. pombe. During these studies it was discovered that the composition of the growth 

medium impacts upon activity of Tf2 retrotransposons and this finding this prompted 

an examination of the role of TOR signalling in the control of these elements.  
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Chapter 2 Materials and Methods 

2.1 Strains and media 

2.1.1 Escherichia coli  

E. coli SURE cells (e14- [mcrA-]Δ [mcrB-hsdSMR-mrr] 171 endA1 supE44 thi-1 gyrA96 

relA1 lac recB recJ sbcC umuC::Tn5[kanr] ucrC[F’proAB lacq Δmis Tn10 (TetrO)]) were 

grown in Luria-Bertani (LB) medium (2% [w/v] Bacto-tyrtone, 1% [w/v] Bacto-yeast 

extract. 1% [w/v] NaCl [pH 7.2]. Bacto-agar (2% [w/v]) was added if required for solid 

media. Ampicillin (Sigma) at a concentration of 0.1 mg/ml was added when required. 

2.1.2 S. pombe strains and growth median 

The S. pombe strains used in this study are listed in Table 2.1 and plasmids are listed 

in Table 2.2. S. pombe culture was performed in standard rich (YE5S) medium (0.5% 

[w/v] yeast extract, 3% [w/v] glucose and 225 mg/L adenine, histidine, leucine, uracil 

and lysine hydrochloride). 500 µg/ml Geneticin (G418) / 75 µg/ml ClonNAT / 200 µg/ml 

hygromycin B was added to sterilised media when required. When plasmid selection 

was required, cells were cultured in Edinburgh Minimal Medium (EMM) (5 g/L NH4Cl, 

3 g/L potassium hydrogen phthalate, 2.2 g/L Na2HPO4, 2% [w/v] glucose, 20 m/L salts 

[52.5 g/L MgCl2•6H2O, 50 g/L KCl, 2 g/L NaSO4, 0.735 g/L CaCl2•2H2O], 1 m/L vitamins 

[10 g/L inositol, 10 g/L nicotinic acid, 1 g/L panthothenic acid, 10 mg/L biotin], 0.1 ml/L 

minerals [10 g/L citric acid, 5 g/L boric acid, 4 g/L ZnSO4•7H2O, 4 g/L MnSO4, 2 g/L 

FeCl2•6H2O, 1 g/L KI, 0.4 g/L CuSO4•5H2O, 0.4 g/L molybdic acid] with the required 

amino acid supplements. Media was solidified by the addition of 2% [w/v] bacto-agar. 

For long-term cyrostorage, cells were inoculated into YE5S with 30% glycerol and 

stored at -80°C. Cells were incubated at the required temperature on the relevant solid 

agar plates for ~3 days. Liquid cultures were prepared by inoculating a single colony 

or loop of cells from a fresh agar plate in 5 ml of the appropriate media overnight with 

shaking at the required temperature. Cultures were then diluted to an OD595 0.1-0.2 in 

the appropriate volume. Cell number was estimated by measuring of OD595 where 

OD595 0.1 ≈ 2 x106 cells/ml.   
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Table 2.1 S. pombe strains 

Strain 

Number 

Other Name Genotype Source 

SW5 wt h- ade6-M216 leu1-32 ura4-D18 Lab stock 

SW4 wt h+ ade6-M216 leu1-32 ura4-D18 Lab stock 

HM19 Tf2-12natAI h- ade6-M210 leu1-32 ura4-D18 his3D Tf2-natAI Lab stock 

SW820 Tf2-11natAI h- ade6M216 leu1-32 ura4-D18 Tf2-11-natAI Lab stock 

HM284 rhp51Δ Tf2-12natAI h+ ade6-M210 leu1-32 ura4-D18 rhp51::ura4+ his3D 

Tf2-12natAI 

Lab stock 

HM136 Tf2-6 lacZ h- ade6-M216 leu1-32 ura4-D18 Tf2-6::lacZ(ura4+) Lab stock 

HM137  Tf2-11 lacZ h- ade6-M216 leu1-32 ura4-D18 Tf2-11::lacZ(ura4+) Lab stock 

HM294 sre1-N Tf2-6 lacZ h- ade6* leu1-32 ura4-D18 his* sre1-N(1-440aa)::kan 

Tf2-6::lacZ(ura4+) 

Lab stock 

HM246 sre1-N Tf2-12natAI h- ade6-M210 leu1-32 ura4-D18 Tf2-12natAI 

sre1N(1-440aa)::kan 

Lab stock 

SW822 Prototrophic wt  h+ Lab stock 

SW968 Tf2-12natAI ura4+ h- ade6-M210 leu1-32 ura4-D18 his3D Tf2-natAI 

(ura4+) 

This study 

SW971 sre1-N Tf2-12natAI 

ura4+ 

h- ade6-M210 leu1-32 ura4-D18 Tf2-12natAI 

sre1N(1-440aa)::kan (ura4+) 

This study 

CC1 sre1-N Tf2-12natAI 

ura4+ hph 

h- ade6-M210 leu1-32 ura4-D18 Tf2-12natAI 

sre1N(1-440aa)::hph (ura4+) 

This study 

SW904 set1Δ Tf2-12natAI h? ade6-M210 leu1-32 ura4-D18 his3D? set1::kan 

Tf2-12natAI 

Lab stock 

SW1005 Tf2-12natAI h+ Tf2-12natAI This study 

SW1006 Tf2-6 lacZ h+ Tf2-6 lacZ This study 

CC2 sre1-N Tf2-6 lacZ 

hph 

h? ade6-M216 leu1-32 ura4-D18 Tf2-6::lacZ(hph+) This study 

CC3 hht2Δ h+ hht2::kanMX6 BIONEER v2.0 

CC4 red1Δ h+ red1::kanMX6 BIONEER v2.0 

CC5 cay1Δ h+ cay1::kanMX6 BIONEER v2.0 

CC6 nts1Δ h+ nts1::kanMX6 BIONEER v2.0 

CC7 fft3Δ h+ fft3::kanMX6 BIONEER v2.0 

CC8 xap5Δ h+ xap5::kanMX6 BIONEER v2.0 

CC9 pab2Δ h+ pab2::kanMX6 BIONEER v2.0 

CC10 set1Δ h+ set1::kanMX6 BIONEER v2.0 

CC11 pku80Δ h+ pku80::kanMX6 BIONEER v2.0 

CC12 rhp51Δ h+ rhp51::kanMX6 BIONEER v2.0 

CC13 nup124Δ h+ nup124::kanMX6 BIONEER v2.0 

CC14 clr4Δ h+ clr4::kanMX6 BIONEER v2.0 

CC15 rdp1Δ h+ rdp1::kanMX6 BIONEER v2.0 

CC16 rrl1Δ h+ rrl1::kanMX6 BIONEER v2.0 

CC17 set3Δ h+ set2::kanMX6 BIONEER v2.0 

CC18 exo1Δ h+ exo1::kanMX6 BIONEER v2.0 

CC19 hht2Δ h+ hht2::kanMX6 Tf2-12natAI This study 

CC20 red1Δ h+ red1::kanMX6 Tf2-12natAI This study 

CC21 cay1Δ h+ cay1::kanMX6 Tf2-12natAI This study 

CC22 nts1Δ h+ nts1::kanMX6 Tf2-12natAI This study 

CC23 fft3Δ h+ fft3::kanMX6 Tf2-12natAI This study 

CC24 xap5Δ h+ xap5::kanMX6 Tf2-12natAI This study 
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CC25 pab2Δ h+ pab2::kanMX6 Tf2-12natAI This study 

CC26 set1Δ h+ set1::kanMX6 Tf2-12natAI This study 

CC27 pku80Δ h+ pku80::kanMX6 Tf2-12natAI This study 

CC28 rhp51Δ h+ rhp51::kanMX6 Tf2-12natAI This study 

CC29 nup124Δ h+ nup124::kanMX6 Tf2-12natAI This study 

CC30 clr4Δ h+ clr4::kanMX6 Tf2-12natAI This study 

CC31 rdp1Δ h+ rdp1::kanMX6 Tf2-12natAI This study 

CC32 rrl1Δ h+ rrl1::kanMX6 Tf2-12natAI This study 

CC33 set3Δ h+ set2::kanMX6 Tf2-12natAI This study 

CC34 exo1Δ h+ exo1::kanMX6 Tf2-12natAI This study 

HM31 Tf2 LTR h- ade6-M216 leu1-32 ura4-D18 LTR-lacZ (ura4+):: 

chrm II 

Lab stock 

HM60 Tf1-lacZ h- ade6-M216 leu1-32 ura4-D18 Tf1-lacZ (ura4+):: 

chrm II 

Lab stock 

HM137 Tf2-11 -lacZ h- ade6 M216 leu1-32 ura4-D18 Tf2-11::lacZ(ura4+) Lab stock 

HM369 hip1∆ Tf2-12natAI h- ade6 M? leu1-32 ura4-D18 hip1::??? Tf2-12natAI Lab stock 

CC35 tor2-51 h+ tor2-51:ura4+ ura4-d18 leu1-32 (BA120) Alvarez and 

Moreno, 2006 

CC36 tor1Δ Tf2-12natAI h+ tor1::kanMX6 Tf2-12natAI This study 

CC37 tor1Δ lacZ h+ tor1::kanMX6 Tf2-6::lacZ(ura4+) This study 

CC38 ste1Δ lacZ h+ ste20::kanMX6 Tf2-6::lacZ(ura4+) This study 

CC39 ste1Δ Tf2-12natAI h+ ste20::kanMX6 Tf2-12natAI This study 

CC40 fkh1Δ lacZ h+ fkh1::kanMX6 Tf2-6::lacZ(ura4+) This study 

CC41 fkh1Δ Tf2-12natAI h+ fkh1::kanMX6 Tf2-12natAI This study 

CC42 nfx1Δ lacZ h+ nfx1::kanMX6 Tf2-6::lacZ(ura4+) This study 

CC43 nfx1Δ Tf2-12natAI h+ nfx1::kanMX6 Tf2-12natAI This study 

CC44 gaf1Δ lacZ h+ gaf1::kanMX6 Tf2-6::lacZ(ura4+) This study 

CC45 gaf1Δ Tf2-12natAI h+ gaf1::kanMX6 Tf2-12natAI This study 

CC46 fhl1Δ lacZ h+ fhl1::kanMX6 Tf2-6::lacZ(ura4+) This study 

CC47 fhl1Δ Tf2-12natAI h+ fhl1::kanMX6 Tf2-12natAI This study 

CC48 crf1Δ lacZ h+ crf1::kanMX6 Tf2-6::lacZ(ura4+) This study 

CC49 crf1Δ Tf2-12natAI h+ crf1::kanMX6 Tf2-12natAI This study 

CC50 rap1Δ lacZ h+ rap1::kanMX6 Tf2-6::lacZ(ura4+) This study 

CC51 rap1Δ Tf2-12natAI h+ rap1::kanMX6 Tf2-12natAI This study 

CC52 sfp1Δ lacZ h+ sfp1::kanMX6 Tf2-6::lacZ(ura4+) This study 

CC53 sfp1Δ Tf2-12natAI h+ sfp1::kanMX6 Tf2-12natAI This study 

CC54 hmo1Δ lacZ h+ hmo1::kanMX6 Tf2-6::lacZ(ura4+) This study 

CC55 hmo1Δ Tf2-12natAI h+ hmo1::kanMX6 Tf2-12natAI This study 

CC56 pka1Δ lacZ h+ pka1::kanMX6 Tf2-6::lacZ(ura4+) This study 

CC57 pka1Δ Tf2-12natAI h+ pka1::kanMX6 Tf2-12natAI This study 

CC58 sty1Δ lacZ h+ sty1::kanMX6 Tf2-6::lacZ(ura4+) This study 

CC59 sty1Δ Tf2-12natAI h+ sty1::kanMX6 Tf2-12natAI This study 

 

h? = mating type not determined. ade6* = ade6-M210 or ade6-M216. his* = histidine 

marker not determined.  
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2.2 Genetic crosses and Random Spore Analysis 

S. pombe strains of opposite mating types, h+ and h-, were streaked onto a rich YE5S 

agar plate and incubated overnight at the required temperature. A loop of each strain 

was mixed on an - EMM1/2G agar plate [as with EMM but replacing NH4Cl with 0.5 

g/L sodium glutamate] and incubated for 2-3 days at 25°C to allow conjugation, 

meiosis and the formation of tetrad asci. Sporulation was checked with light 

microscopy. Asci produced after mating were incubated in 1 ml of 0.5% [v/v] glusylase 

(Sigma) and incubated at 25°C overnight. Approximately 5 µl of this solution was 

diluted in 1 ml H2O, mixed and 100 µl was taken and spread over YE5S plate and 

incubated at 30°C until colonies appeared. Genotypes of colonies were determined by 

selection on appropriately supplemented YE5S, or EMM agar. 

2.3 DNA transformation 

2.3.1 Preparation of competent E. coli and transformation with plasmid 

constructs 

To a flask containing 200 ml of 2XLB medium, 2 ml of overnight E. coli SURE 

competent cells (Stratagene) were inoculated and shaken at 30°C for 2 hours. At 

OD595 = 0.2, sterile MgCl2 was added to a final concentration of 20 mM and left to grow 

at 30°C until OD595 = 0.5. The culture was then incubated for 2 hours in an ice water 

bath. The cells were then pelleted by centrifugation at 4°C for 5 minutes at 900 x g. 

The cell pellet was resuspended in 100 ml of ice cold calcium/manganese medium 

(100 mM CaCl2, 70 mM MnCl2, 40 mM C2H3O2Na, [pH 5.5]) and incubated in the cold 

room overnight. The cells were pelleted next day by centrifugation at 4°C for 5 minutes 

at 900 x g. The supernatant was discarded and the cell pellet was resuspended in 20 

ml of ice cold calcium/manganese medium with glycerol (15% v/v). 200 µl aliquots of 

competent cells were transferred to pre-cooled eppendorf tubes, snap frozen in liquid 

nitrogen and stored at -80°C. Competent SURE cells were transformed with plasmid 

DNA by calcium chloride method (Sambrook, 1989). Transformed cells were plated 

on solid LB media (2% [w/v] bacto-tryptone, 1% [w/v] bacto yeast extract, 1% [w/v] 

NaCl pH 7.2) with 0.1 mg/mL ampicillin (Sigma-Aldrich) and incubated at 37°C 

overnight. 
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2.3.2 Transformation of S. pombe 

S. pombe were transformed using the lithium acetate method described (Moreno et 

al., 1991). Cells were cultured in YE5S at 30°C until they had reached exponential 

phase (OD595 0.3-0.5) and then harvested by centrifuged at 3000 rpm (Mistral 2000, 

MSE) for 3 minutes. The cell pellet was washed with nH2O and then washed with 1 ml 

of 1 x LiAc/TE (0.1M lithium acetate pH 7.5, 10 mM Tris-HCl pH 7.5, 1 mM EDTA pH 

8.0) and resuspended in 1 ml 1 x LiAc/TE. Linearized DNA (~1 µg) or plasmid DNA 

(~0.5 µg) and 2 µl sonicated salmon sperm DNA (10 mg/ml) were added to 100 µl of 

competent cells and incubated at room temperature for 10 minutes. 260 µl 

PEG/LiAc/TE (0.1M lithium acetate pH 7.5, 10 mM Tris-HCl pH 7.5, 1 mM EDTA pH 

8.0, 40% PEG-4000 [v/v]) was added to the solution and incubated for 60 minutes in 

30°C. 43 µl 100% DMSO were added to these cells and the solution was subject to 

42°C heat shock for 5 minutes. The mixture was then plated onto the appropriate EMM 

agar plate. For antibiotic selection, those cells were washed with 1 ml of H2O and 

incubated in rich YE5S medium overnight before plating on YE5S plate supplemented 

with the appropriate antibiotic. 

2.4 DNA isolation  

2.4.1 Plasmid isolation from E. coli 

A single colony of E. coli was incubated in 5 ml LB media with ampicillin (100 µM) and 

incubated overnight at 37°C. Isolation of plasmid DNA was achieved using GelElute 

Plasmid Miniprep (Sigma) kit in accordance with the manufacturer’s instructions. 

Saturated overnight E. coli cultures were pelleted and lysed. Plasmid DNA was 

collected with membrane column and washed with ethanol-containing buffer. Plasmid 

DNA was then eluted with 100 µl nH2O.   

2.4.2 S. pombe genomic DNA isolation 

S. pombe genomic DNA was extracted as described previously (Moreno et al., 1991). 

1 ml of cells from an overnight YE5S were pelleted at 9000 rpm in a microcentrifuge. 

The pellet was washed in 1 ml nH2O and resuspended in 200 µl STET DNA breakage 

buffer (100 mM NaCl, 10 mM Tris-HCl pH 8.0, 1 mM EDTA pH 8.0, 2% Triton-X100 

[w/v], 1% SDS [w/v]), 200 µl glass beads (0.5 mm, Biospec Products) and 200 µl 
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phenol:chloroform:isoamyl-alcohol (25:24:1). Cells were lysed with a Biospec mini-

bead beater for 20 seconds at full power. 500 µl STET DNA breakage buffer was 

added to the lysate before centrifugation for 5 minutes at 13000 rpm. The supernatant 

was transferred to a fresh tube with 0.1 x volume 3 M sodium acetate [pH 5.2], and 2 

x volumes of 100% ethanol. The Eppendorf tube was incubated at -20°C for 60 

minutes, the DNA was then pelleted by centrifugation at 13000 rpm for 15 minutes. 

The pellet was then washed with 70% ethanol, allowed to air dry and then 

resuspended in 100 µl H2O. 

2.5 DNA Manipulation and analysis 

2.5.1 Polymerase chain reaction (PCR) 

PCR reaction was performed with Phusion PCR system (New England Biolabs). 

Oligonucleotide primers used in this study are listed in Table 2.3. Each 50 µl reaction 

contained 10 µl Phusion GC buffer, 1 µl DMSO, 20 µM dNTPs (including dATP, dCTP, 

dTTP, dGTP), 0.5 µM of each primers, ~50 ng genomic DNA (described in Section 

2.4.2) or 1 µl of plasmid DNA (described in Section 2.4.1) and 1 unit of Phusion 

polymerase with nH2O to make up to final volume. PCR reaction were performed in a 

T3 Thermocycler (Biometra).  

2.5.2 DNA analysis by gel electrophoresis 

DNA analysis was performed by agarose (1% [w/v]) gel electrophoresis in 1x TAE (40 

mM Tris base, 20 mM acetic acid, 1 mM EDTA pH 8.0) with 2.5 µl ethidium bromide 

(Bio-rad, #161-0433) used to stain DNA. DNA ladders (Thermo Scientific, #SM0403) 

was used to illustrate the size of the DNA products. GeneJET Gel Extraction kit 

(Thermo Scientific) was used to extract DNA from agarose gel following the 

manufacturer’s instructions. 

2.6 RNA extraction, manipulation and analysis 

2.6.1 RNA isolation and quantification 

Cells were cultured in appropriate medium (OD595 ≈ 0.3) were harvested by 

centrifugation for 3 minutes at 3000 rpm in microfuge and the resulting pellet was snap 

frozen in liquid nitrogen and stored at -80°C until required. Pellets were resuspended 
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in 750 µl TES (10 mM Tris-HCl, 10 mM EDTA pH 8.0, 0.5% SDS [w/v]) and 750 µl 

acidic phenol:chloroform (25:24:1, pH 5.2), incubated for 1 hour at 65°C with rigorous 

vortexing for 10 seconds every 15 minutes. After incubation, samples were chilled on 

ice, vortexed for 20 seconds and then centrifuged at 4°C for 10 minutes at 13000 rpm 

in microfuge. The supernatant was transferred to a tube containing 750 µl acidic 

phenol:chloroform (25:24:1, pH 5.2), vortexed and centrifuged at 4°C for 10 minutes 

at 13000 rpm. The aqueous layer was collected to anther tube containing 750 µl 

phenol:chloroform:isoamyl alcohol (25:24:1, pH 6.4) and centrifuged at 4°C for 10 

minutes at 13000 rpm in microfuge. The top aqueous layer (400 µl) was then 

transferred to an Eppendorf tube containing 40 µl 3 M sodium acetate pH 5.2 and 1 

ml 100 % ethanol. RNA was precipitated at -20°C overnight. After centrifugation at 

13000 rpm in microfuge for 15 minutes, the resulting pellet was washed once with 70% 

ethanol, air dried, and then finally resuspended in 50 µl nH2O. The integrity of RNA 

extracted was analysed by running 5 µl aliquots on a 50 ml 1x TAE 1% agarose gel 

with 3 µl ethidium bromide and analysed using a UV transilluminator. The 

concentration of RNA was measured with the use of Nanodrop 1000 

spectrophotometer (Thermo Scientific). Equal concentrations of RNA were achieved 

by diluting with nH2O and absorbance was read at 260 nm and 280 nm with 

concentrations calculated in ng/µl. 

2.6.2 DNase treatment of RNA 

RNA extracted as described in Section 2.6.1 was treated with DNase with the 

Primerdesign Precision DNAse kit (DNAse-50, Primer design). DNA removal was 

performed using 45 µl of RNA, 5 µl precision DNase buffer with 1 µl of Precision DNase 

and incubated for 30 minutes at 30°C and the DNase was heat deactivated by 

incubating at 55°C for 5 minutes. 

2.6.3 Reverse transcription and quantitative PCR (RT-qPCR) 

RNA extracted and prepared as described in Sections 2.6.1 and 2.6.2 was used for 

reverse transcription and quantitative PCR. Reverse transcription was performed by 

using Precision Reverse Transcription Premix (Primer design, RT-Premix2-48) in 

accordance to manufacturer’s instructions with 1 ng of RNA, and then diluted 10 fold. 

Quantitative PCR was performed with SYBR Green and was detected by a Rotor Gene 
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6000 Real-Time PCR machine using the following settings: Step 1 (Denaturation) 

95°C for 10 seconds; Step 2 (Data Collection) 60°C for 60 seconds, with both steps 

being repeated 50 times. After the final step, a melt curve was generated in order to 

assess primer specificity. All expression levels displayed was normalised to act1. 

Primers used in qRT-PCR reactions are listed in Table 2.4. 

2.7 Quantitative β-galactosidase assays 

S. pombe cultures were grown in 30 ml of the required media at the required 

temperature until the OD595 = 0.3 - 0.5. 25 ml of each culture was collected by 

centrifugation at 3000 rpm for 3 minutes and the resulting pellet was resuspended in 

600 µl of Z-buffer (60 mM Na2HPO4, 40 mM NaH2PO4, 40 mM KCl, 1 mM MgSO4 pH 

7.5) and snap frozen in liquid nitrogen and stored at -80°C until required. 50 µl of 

chloroform, 50 µl of 0.1% SDS and 600 µl of Z-buffer were added to an Eppendorf 

tube which were then pre-warmed to 30°C in a water bath. 200 µl of thawed cell 

resuspension was added to each tube and cells were permeabilised by vortexing for 

30 seconds. 160 µl of ortho-nitrophenyl-β-D-falactopyranoside (ONPG, Sigma-Aldrich) 

(4 mg/ml in Z-buffer) was added to initiate the reaction. Eppendorf tubes were 

incubated at 30°C until the reaction mixture developed a yellow appearance, at which 

point 400 µl of 1 M Na2CO3 was added to terminate the reaction. Completed reactions 

were centrifuged for 10 minutes at 13000 rpm alongside a control mixture without any 

cells. The OD420 of the supernatant was measured alongside the OD595 of 30 µl of 

thawed cell suspension diluted with 970 µl of water in order to calculate the β-

galactosidase activity as below: 

β-galactosidase (lacZ) Unit = 100,000 x OD420 

          Incubation time (min) x OD595 x volume of the cell used (µl) 

 

2.8 Tf2-12natAI quantitative Mobilisation assays 

A 6 ml aliquot of the required media was inoculated with a small loop of fresh cells and 

the cultures were incubated at 30°C with shaking or rotation for 2 nights, or until 

cultures reached saturation. 30 µl of the culture was used in ten-fold serial dilution and 

100 µl of 10-5 dilutions were spread onto duplicateYE5S agar plates and incubated at 

30°C for 3 days until colonies could be counted. A 5 ml aliquot of the saturated culture 
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was centrifuged for 3 minutes at 3000 rpm and resuspended in 500 µl nH2O before 

being spread between two YE5S plates containing 75 µg/ml ClonNAT (Werner 

BioAgents). Plates were incubated at 30°C for 3-4 days until colonies appeared. The 

frequency of marked element mobilization was determined as the number of colonies 

gaining resistance to ClonNAT as a proportion of the total number of viable cells and 

subjected to fluctuation analysis using the method of the median (Lea and Coulson, 

1949). Median values were calculated from a set of five assays. Mean values were 

calculated from at least 3 median values.  

Table 2.2 Plasmid used in this study (Dang et al., 1999; Teysset et al., 2003) 

Plasmid Description Source 

pRep42 Empty vector control. nmt promoter, ura4+ 

marker 

Lab stock 

pHL449-1 Overexpression of Tf1 from nmt promoter Dang et al., 1999 

pHL473 overexpression of Tf1 allele with integrase 

encoding sequence deleted 

From Henry L. 

Levin 

pHL1260 Tf1-neoA1 with deletion of amino acids 215 to 

224 (ΔA) 

Teysset et al., 

2003 

pHL1262 Tf1-neoA1 with deletion of amino acids 2 to 11, 

(ΔA)  

Teysset et al., 

2003 

pHL1264 Tf1-neoA1 with deletion of amino acids 64 to 73 

(ΔB) 

Teysset et al., 

2003 

pHL1258 Tf1-neoA1 with deletion of amino acids 165 to 

174 (ΔC) 

Teysset et al., 

2003 

pHL490-80 Tf1-neoAI with frameshift in PR Dang et al., 1999 

pHL476-3 Tf1-neoAI with frameshift in IN Dang et al., 1999 

pHL919-3 Tf1-neoAI with frameshift in RT Dang et al., 1999 

pAL0122 ura4 5′ flanking sequence–hphMX4–ura4 3′ 

flanking sequence 

Lorenz. A, 2015 

 

Table 2.3 PCR Oligonucleotide primers (Hentges et al., 2005; Lorenz, 2015) 

Primer name DNA sequence 5’-3’ 

ura4+ 5’ AAA TAG AGC TAC TGC TGG ACC 

ura4+ 3’ GTA AGG GTA CTA TTG CGT TAG 

ura4+ ck#1 TTC ATA CTG TAG TGG TAC GAG 

ura4+ ck#2 CAA GAG ATA TAG AGA AGC TGG 

AL1 fw AGC TAC AAA TCC CAC TGG 

AL1 bk GTG ATA TTG ACG AAA CTT TTT G 

MX4/6cassUP GAC ATG GAG GCC CAG AAT AC 

MX4/6cassDWN TGG ATG GCG GCG TTA GTA TC 

hph diagnosUP CAA TAG GTC AGG CTC TCG CTG 
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hph diagnosDWN CAG AAC CAA CTT GAA CGA CCG 

 

Table 2.4 qRT-PCR Oligonucleotide primers 

Primer name DNA sequence 5’-3’ 

act1 5’ GAA GTA CCC CAT TGA GCA CGG 

act1 3’ CAA TTT CAC GTT CGG CGG TAG 

Tf2 global 5’ GAT GGA ATT CAA ACA TCA GAC 

Tf2 global 3’ CAT TTG TGA GTT TTA CCA TAC 

isp4 5’ CTA GTA TGT TGT GGC CTG TG 

isp4 3’ CAA GTG ACC CAA GCA AAT A  
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Chapter 3 Towards systematic genetic screens for factor that regulate Tf2 

mobilization 

3.1 Introduction  

Previously an assay has been established in the laboratory which allows the 

mobilization frequency of an endogenous Tf2 element (Tf2-12) to be monitored 

(Murton, 2012; Murton et al., 2016). A nourseothricin (ClonNAT) resistance cassette, 

interrupted by an artificial intron (natAI), was inserted into the non-coding region of Tf2 

adjacent to the 3’ LTR (Fig. 3.1). The intron is orientated in the same transcriptional 

direction as that of Tf2-12 (and opposite to that of the nat cassette). Therefore a 

functional nat cassette is generated after successful intron splicing from the Tf2-

12natAI transcript and integration of the processed Tf2 cDNA back into the genome 

(Fig. 3.1). Advantages of the employment of ClonNAT are that it offers a tight selection 

for fission yeast, as the spontaneous resistance frequency is extremely low (<1 x 10-

12 events/cell) and selection is maintained even when cells are plated at high density 

(1 x 108 cells/per plate) (Murton, 2012).  

3.2 Systemic genetic screens for host factors that regulate Tf2 activity 

The assay described above revealed that Tf2 elements mobilize with only a very low 

frequency in wild type cells grown in rich medium (YE5S) under standard conditions 

(~2 mobilization events per 108 cells). This suggests that specific host cell proteins 

restrict Tf2 mobilization. That, the loss of the histone methyl transferase Set1 or 

CENP-B proteins results in significantly increased mobilization is consistent with this 

notion and indicates that chromatin plays an important role in suppressing Tf2 activity 

(Murton et al., 2016). In S. cerevisiae, global genetic screens have been instrumental 

in the identification of factors that control the activity of the Ty1 and Ty3 LTR 

retrotransposons and have provided significant insight into retrotransposon biology 

(Scholes et al., 2001; Griffith et al., 2003; Irwin et al., 2005; Nyswaner et al., 2008). 

Commercial genome-wide mutant library is available for S. pombe from Bioneer (Kim 

et al., 2010). This comprises a collection of more than 3000 haploid gene deletion 

strains. The availability of this library opened up the possibility for a systematic 

identification of factors that restrict Tf2 mobilization. Therefore, an objective of this 
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work was to introduce the Tf2-12natAI reporter into the haploid gene deletion collection 

and isolate mutants with increased Tf2 mobilization frequency (Fig. 3.2A).  
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Figure 3.1 Schematic illustration of the Tf2-12natAI element.  

The principle of the Tf2-12natAI reporter. The nat resistance cassette is disrupted by an 

artificial intron (AI) in the same orientation as the Tf2-12 while in an opposite direction what 

nat. Therefore, the intron can be removed via splicing after mRNA transcription, originating 

from the Tf2-12 LTR promoter. The production of cDNA followed by its integration into the 

genome results in the generation of a functional nat cassette and resistance to ClonNAT. 

Adapted from Murton (2012).  
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Figure 3.2 Schematic illustration of the proposed genetic screens. 

Screen for factors that (A) restrict Tf2 and (B) promote Tf2.  
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Genetic screens to identify cell factors that are required for Tf2 mobilization are also 

of interest. The conservation between LTR retrotransposons and infectious retroviral 

life cycles means that the isolation of host cell factors that promote Tf2 mobilization 

may reveal novel targets for antiretroviral drugs. However, the low frequency of Tf2 

mobilization when wild type cells are grown under standard condition (YE5S, 30°C) 

makes the identification of such mutants difficult.   

A genetic background that provides a high starting level of Tf2 activity would be 

beneficial to identify mutants that promote retrotransposon life cycle. Therefore, a 

sre1-N allele was employed which expresses a constitutively active form of the SREBP 

homologue, Sre1 which actives Tf2 expression. Indeed, in the sre1-N background, Tf2 

mobilization is increased by ~45 fold (Hughes and Espenshade, 2008; Murton et al., 

2016).  
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3.3 Construction of Tf2-12natAI reporter strains compatible with high 

throughput genetic crosses. 

In order for the Tf2-12natAI reporter to be introduced into the haploid gene deletion 

collection, it was first necessary to insert an ura4+ selectable marker adjacent to the 

Tf2-12natAI reporter. A fragment containing the ura4+ cassette flanked by a Tf2 LTR 

and sequences immediately downstream of Tf2-12 was amplified by PCR and 

introduced into Tf2-12natAI reporter strain. Correct integration of the ura4+ marker was 

confirmed by PCR genotyping (Fig. 3.3). The resulting strains allows the cells that 

harbour the reporter to be selected for during automated genetic crosses using uracil 

prototrophy. In order to confirm that the ura4+ marker does not affect the 

retrotransposition frequency of Tf2-12natAI, a mobilization assay was carried out. 

Comparison with the reference strain carrying the unmarked Tf2-12natAI reporter, 

showed no significant changes in retrotransposition frequency, indicating that ura4+ 

marker does not interfere with the function of the Tf2-12 element (Fig. 3.4). 
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Figure 3.3  Construction of ura4+ marked Tf2-12natAI reporters.  

Both wild type Tf2-12natAI and sre1-N Tf2-12natAI was introduced with ura4+ selection 

marker and the marker is confirmed with colonial PCR with a product size of 1 kb. (A) Ten 

transformed colonies of Tf2-12natAI strain were test against PCR reaction with diagnostic 

primer pairs for selection. Five of those (lane 1, 7, 8, 9 and 10) showed a positive result. 

(B) Ten transformed colonies of sre1-N Tf2-12natAI strain were test against PCR reaction 

with diagnostic primer pairs for selection. Four of those (lane 7, 8, 9 and 10) showed a 

positive result. 
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The sre1-N allele was constructed by introducing a marker cassette into one sre1+ 

gene which results in the expression of the N-terminal region (bHLH) which 

continuously actives Tf2 expression (Hughes and Espenshade, 2008). Unfortunately, 

the sre1-N allele is marked with the kanMX cassette (providing resistance to G418) 

which is the same marker employed for haploid gene deletion collection (Hughes and 

Espenshade, 2008). Therefore, in order to introduce the sre1-N allele into the Bioneer 

library, it was necessary to replace the sre1-N(kanMX) marker. An alternative marker, 

hphMX marker which allows selection against hygromycin B (Hentges et al., 2005) 

was chosen for this purpose. 

In order to exchange the kanMX marker, a 1.5 kb hphMX cassette was amplified by 

PCR from plasmid pLA0122 (Lorenz, 2015) and introduced into sre1-N(kanMX) cells. 

The hphMX cassette contains the same TEF promoter and terminator regions as the 

kanMX cassette allowing replacement of kanMX by homologous recombination (Fig. 

3.5A). Cells in which the kanMX marker had been replaced with hphMX were identified 

by isolating hygromycin B resistant/ G418 sensitive colonies (Fig. 3.5B). Correct 

insertion of hphMX was confirmed by PCR genotyping (Fig. 3.5C).  

To check that marker swapping of sre1-N(kanMX) for sre1-N(hphMX) did not affect 

Tf2 activity, mobilization assays were carried out with wild type, sre1-N(kanMX) and 

sre1-N(hphMX) strains containing the Tf2-12natAI reporter. Surprisingly, sre1-

N(hphMX) cells showed a significant decrease in Tf2 mobilization (~10 fold) relative to 

sre1-N(kanMX) (Fig. 3.6A). To further investigate this, an independent sre1-N(kanMX) 

marker swap was performed in another strain harbouring a Tf2-6 lacZ reporter which 

allows Tf2 expression be quantified using β-galactosidase assays. Comparison of Tf2-

6 lacZ expression in both backgrounds confirmed that the hphMX cassette consistently 

had a deleterious impact upon the ability of sre1-N to active Tf2 (Fig. 3.6B). The reason 

for this is not clear and because of the problems in constructing a sre1-N strain that is 

compatible with the gene deletion collection, this screen was not pursued further.     
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Figure 3.5 Marker switch of sre1-N from kanamycin to hygromycin.  

(A) The selection of sre1-N for sre1-N::kanMX Tf2-12natAI strain is replaced with hphMX 

marker which provide hygromycin resistance, expressed with TEF promoter and TEF 

terminator. (B) Transformed cells were tested against hygromycin B and kanamycin for 

selection. (C) The genotyping of hygromycin B resistance colonies are confirmed with 1% 

agarose gel with EB and yield a 1.5 kb PCR fragment. 
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Figure 3.6 Escalated expression and mobilization of Tf element from sre1-N was 

impaired after switch from kan cassette to hph cassette.  

(A) Tf2-12natAI mobilization frequency was determined as the proportion of ClonNAT 

resistance colonies from the total number of viable colonies using the mean of medium 

method. Average values determined by mean of medium analysis with a minimum of 30 

repeats. (B) Strains were grown at 30°C in YE5S to mid-log phase before being collected for 

use in quantitative β-galactosidase assays. Values shown represent the average of 8 

biological repeats assayed in duplicate and error bars indicate ±SEM.   
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3.4 Construction and analysis of a pilot library for systematic screen 

In order to test the feasibility of using a high throughput screen to identify factors 

restricting Tf2 mobilization, a pilot library was constructed by automated genetic 

crosses by Dr Peter Banks (High Throughput Faculty, Newcastle University). The pilot 

library was constructed by introducing the Tf2-12natAI(ura4+) reporter into 16 different 

(kanMX) gene deletion strains. For each different deletion, four replicate strains were 

made. The gene deletion strains selected for the pilot library are detailed in Table 3.1. 

The library was constructed to contain alleles that have been shown to cause a robust 

increase in mobilization (set1Δ and hht2Δ), rhp51Δ which has reduced mobilization 

and clr4Δ and rdp1Δ which do not alter mobilization (Cam et al., 2005; Murton, 2012; 

Murton et al., 2016). Other alleles selected for the pilot library were chosen based 

upon their impact upon Tf2 mRNA levels, Tf body formation, and impact upon Tf1 

retrotransposition or involvement in chromosome biology. 

As a first test of the pilot library, 16 strains were picked at random and their ability to 

generate ClonNAT –resistant colonies was tested. Only 14 strains are viable and could 

produce ClonNAT resistant colonies indicating that the Tf2-12natAI reporter is co-

segregating with the ura4+ marker (data not shown). 

In order to further confirm the validity of the pilot library, the mobilization frequency of 

the four independent replicate set1::kanMX strains from the pilot library was 

determined and compared to mobilization frequency of the laboratory set1::kanMX 

Tf2-12natAI reference strain. No significant change in retrotransposition frequency 

was observed between the pilot library set1Δ strains and the reference strain providing 

validation of the library (Fig. 3.7). The result also suggested that automated crosses 

are functioning as expected and that the strains generated were worthwhile. 

(Sehgal et al., 2007; Sistla et al., 2007; Cam et al., 2008; Suzuki et al., 2011; Murton, 

2012; Lee et al., 2013; Anver et al., 2014; Zilio et al., 2014; Lorenzi et al., 2015; 

Steglich et al., 2015; Murton et al., 2016; Mallet et al., 2017) 
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Figure 3.7 Analysis of Tf2-12natAI activity in pilot library set1Δ strain 

Tf2-12natAI mobilization frequency was determined as the proportion of ClonNAT 

resistance colonies from the total number of viable colonies using the mean of medium 

method. Average values determined by mean of medium analysis with a minimum of 15 

repeats. Error bars indicate ±SEM. The means of the four individual replicated from the 

pilot library was compared with lab reference strains in the lab. 
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The methodology for measuring mobilization frequency is labour intensive and is not 

compatible with a genome-wide screen as it requires determining the proportion of 

ClonNAT resistant colonies from the total number of colonies for at least 15 cultures 

(Fig. 3.7). Therefore, to establish a methodology compatible with a high throughput 

screen, a ‘semi-quantitative’ mobilization assay was tested. Instead of a standard 

mobilization assay determining the proportion of ClonNAT resistant colonies, the total 

number of ClonNAT resistant colonies from five - (5 ml) cultures was determined (Fig. 

3.7). It was planned that two replicates from the library would be analysed for the 

primary screen and the mutants of interest would be further analysed by repeating this 

analysis with the remaining two replicates.   
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Figure 3.8 Illustration of quantitative and semi-quantitative mobilization assay 

(A) Quantitative mobilization assay was carried out with inoculating a loop of cells in 5 ml 

of medium according to the experiment requirement. The culture is allowed to incubate at 

30°C for 2 or more days until saturation. Yeast cells are collected and spread evenly into 

two YE5S plate containing 75 µg/ml nourseothricin ClonNAT. These plates are then 

incubated at 30°C for 4 or more days until colonies appeared. Each experiment was carried 

out in at least three groups of 5 tubes. Mean of each median value is determined for 

mobilization frequency. (B) Semi-quantitative mobilization assay was carried out by 

following the quantitative mobilization assay while only one median value was determined. 
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The strains from the pilot library were analysed in this semi-quantitative manner to 

determine feasibility of this approach (Fig. 3.9). Firstly, in many cases, the results were 

inconsistent between the primary and secondary screen (e.g. set1Δ, set2Δ, pab2Δ, 

nts1Δ and xap5Δ). Furthermore, using this approach, set1Δ would not have been 

identified as a mutant of interest (Fig. 3.9). It was therefore concluded that this 

approach would generate an unacceptable number of both false positives and false 

negatives. To further investigate this three mutants from the pilot library were analysed 

using quantitative mobilization assay. The nup124 strain was analysed because it 

showed a high level of mobilization in both the primary and secondary screen. The 

xap5 and cay1 mutant were also analysed because of the level of mobilization in the 

primary and secondary screen (Fig. 3.10) (Sistla et al., 2007; Anver et al., 2014; 

Lorenzi et al., 2015).  

The result of xap5Δ indicated that the automatic crosses are not generating consistent 

replicates as xap5Δ might be ignored as false negative on the first screen. A similar 

false negative was also be seen in cay1Δ as only one of the two quantitative 

mobilization assay showed an increased mobility with a huge standard deviation value. 

nup124Δ would be taken as a false positive mutant of interest during the screen that 

a constant increase was present yet it is predicted as negative factor from previous 

experiments (Sistla et al., 2007). 
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Figure 3.10 Quantitative mobilization assay of xap5Δ, nup124 and cay1.   

Tf2-12natAI mobilization frequency was determined as the proportion of ClonNAT 

resistance colonies from the total number of viable colonies using the mean of medium 

method. Average values determined by mean of medium analysis with a minimum of 15 

repeats. Error bars indicate ±SEM value indicates significance between each means. The 

means of the four individual replicated from the pilot was compared with the reference 

strain in the lab stock. 
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3.5 Discussion 

At the time of starting this work, genome-wide experiments identifying host factors 

affecting LTR retrotransposons mobility were limited to the budding yeast 

Saccharomyces cerevisiae. Several different reporter systems had been used to 

investigate the activity of the Ty1 (Copia) and Ty3 elements (Scholes et al., 2001; 

Griffith et al., 2003; Aye et al., 2004; Irwin et al., 2005; Nyswaner et al., 2008). Since 

S. pombe is evolutionarily divergent to S. cerevisiae, it was thought that a screen for 

factors affecting Tf2 activity would be valuable. Therefore, the feasibility of performing 

a systemic screen using the Tf2-12natAI reporter was investigated. 

To date, only one large scale genetic screen, has employed an endogenous element 

as the reporter system. Scholes and co-workers used transposon mutagenesis to 

identify 21 genes that suppress Ty1 mobility (Scholes et al., 2001). The majority of 

experiments, and indeed all genome-wide systematic screens, of S. cerevisiae 

retrotransposon mobility have been carried out using plasmid-based elements most of 

which were under the control of heterologous promoter (e.g. GAL) (Griffith et al., 2003; 

Irwin et al., 2005; Nyswaner et al., 2008; Sangesland et al., 2016). This is beneficial 

since the basal transposition rate of endogenous elements is relative low. For example, 

for the Ty1 element the frequency is estimated as 1 event in 107 cells (Nyswaner et 

al., 2008; Esnault et al., 2019). However, overexpressing transposable elements from 

plasmids could circumvent host cell expression controls, and possible evade defence 

/restriction mechanisms. Screens using plasmid heterologous promoters will not be 

able to identify factors that are involved in the transcriptional control of endogenous 

elements. Since this is a major interest in the laboratory, the use of plasmid based Tf2 

reporter under the control of the nmt promoter was discounted (Hoff et al., 1998).  

There are some advantages of employing the Tf2-12natAI reporter as the basis of a 

genome-wide screen. First, Tf2-12natAI uses an endogenous element with a native 

promoter, and thus presumably native chromatin and transcriptional control. Moreover, 

previous experiments have shown that the frequency of spontaneous resistance to 

ClonNAT is extremely low (< 1x10-12 events/cell) and offers an extremely tight 

selection for fission yeast. In addition, this selection is preserved when extremely high 

density cells are plated (1 x 108 cells/plate), allowing large numbers of cells to be 

assayed simultaneously with only a relatively small number of agar plates required 
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(Murton, 2012). The only other mobilization assay that utilises an endogenous Tf2 

element is based upon G418 selection (Rai et al., 2017). The rate of spontaneous 

resistance to G418, means that a low density of cells is necessary and so a large 

number (~50) of plates is required for a measurement of mobilization. This makes 

studies of Tf2 mobilization with multiple mutants or conditions impractical with this 

reporter.  

However, there are disadvantages for the Tf2-12natAI system. The basal mobilization 

rate for Tf2-12natAI is very low (0.4-2 x 10-8 events/cell) when standard growth 

condition (YE5S medium at 30°C) are used. This is around an order of magnitude 

lower that the Ty1 element in S. cerevisiae (Krastanova et al., 2005). The low 

mobilization frequency for Tf2-12natAI creates major difficulties for high throughput 

analyses since it means that a large numbers of cells are required for a single 

experimental measurement. This is then not compatible with the small quantities or 

volumes processed in robotic/automated handling. Furthermore, it prevents the typical 

screening method for Ty elements, which involves replica plating patches of cells to 

selective agar to identify cells in which a mobilization event has occurred (Aye et al., 

2004). Indeed this method was found not to be practical with Tf2-12natAI due to the 

low mobilization rate, as too few colonies could be selected by replica plating. A 

number of attempts were used to reduce culture volume by using concentrated culture 

media (i.e. 5x YE5S and 10x YE5S), as they theoretically should have 5 to 10 times 

more cells relative to the same volume of standard medium. In practice, though the 

mobilization data collected from either of the concentrated cultures gave highly 

variable results (data not shown). 

An alternative to screening the complete set of haploid gene collection is to select a 

subgroup of mutants for assay. Since a major of interest is the role that chromatin 

plays in the regulation of Tf2 element mutants with GO-terms associated with 

chromatin could be screened. Such an approach has been employed to systematically 

map genetic interactions among 550 genes involved in chromosome function (Roguev 

et al., 2008). However, even screening this many mutants with a quantitative assay 

would be extremely labour intensive. The major limiting factor is the requirement to 

perform numerous viable cell counts. Access to spiral plater (Gilchrist et al., 1973) and 

automated colony reader would be required and unfortunately these are not available 

in the laboratory. 
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In addition, an alternative to Tf2-12natAI mobilization reporter could be carried out to 

screen for mutants which have altered Tf2 expression. Integrated Tf2 lacZ reporters 

have been constructed and have been used extensively in the lab (Anderson et al., 

2009). β-galactosidase assays require relatively small numbers of cells and therefore 

could be automated. Indeed, high throughput assays for yeast have been described 

that are based upon Beta-Glo, a commercially-available luminescent β-galactosidase 

substrate (Hook, 2007; de Almeida et al., 2008; Napper et al., 2011). However, one 

possible drawback is that for some mutants, such as hip1Δ, increased Tf2 expression 

does not result in increased mobilization (Murton et al., 2016). This would limit the 

findings, only identifying factors that might only affect expression but not necessarily 

mobilization. 

For selection of the Tf2-12natAI reporter, an ura4+ marker was inserted immediately 

downstream of the 3’ LTR. Initial experiments indicated that this ura4+ marker is 

sufficient to allow reliable selection of the reporter in automated genetic crosses. More 

importantly, it does not affect either expression or mobilization rate of Tf2-12natAI (Fig. 

3.4). For initial examination of the pilot library, the set1Δ strains were selected as 

positive control as this background is known to be associated with increased 

mobilization (Murton et al., 2016). The analysis of set1Δ strains from the pilot library 

suggested that these automated strains behaved properly (Fig. 3.7). Since fully 

quantitative assays are not possible for >3000 strains, a ‘semi quantitative’ 

mobilization assay method was employed for the initial screening (Fig. 3.8). One of 

the significate drawback is that viable cell counts data could not be provided for the 

experiment. A simple alternative would be to estimate cell number in the cultures being 

tested by optical density and this was the initial plan going forward. 

Unfortunately, from the results of semi-quantitative assay showed that the replicates 

of some strains behaved differently. For example, Clr6 histone deacetylase complex 

subunit nts1 mutant strain would be identified as restricting factor from the primary 

screen but would not have been confirmed by the second screen. The only three 

strains that performed consistently were fft3Δ, pku80Δ and nup124Δ. Both fft3Δ and 

pku80Δ showed a modest increase in mobilization while a marked increase was 

observed in the nup124Δ strain. This increase was using a quantitative mobilization 

assay and was surprising because Nup124 has been shown to be necessary for the 

Tf1 life cycle. Nup124 is a nuclear pore complex nucleoporin that is key to the nuclear 
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entry of retrotransposons, affecting their transposition ability (Balasundaram et al., 

1999; Dang and Levin, 2000; Kim et al., 2005; Varadarajan et al., 2005; Sistla et al., 

2007). The C terminus of Nup124 interacts with the N-terminal of nuclear localization 

signals of Gag Protein of Tf1 to facilitate nuclear translocation of Tf1-Gag. A reduced 

Tf1 transposition was observed in the nup124 null mutant (Balasundaram et al., 1999; 

Dang and Levin, 2000; Kim et al., 2005; Varadarajan et al., 2005). Also, the nuclear 

importation action is conserved between Tf1 retrotransposon and retrovirus HIV-1 

where a human nucleoporin homologue Nup153 is essential for HIV-1 infection 

(Varadarajan et al., 2005). It is also suggested that the transposition event of Tf1 

requires two key domains, the FXFC-repeat domain and a conserved C-terminal 

peptide of Nup124 (Sistla et al., 2007). This result suggested that the mode of 

importing Tf2 cDNA may be different from Tf1 as the transposition of Tf2 is increased 

in Nup124 null mutant (Fig. 3.10). Quantitative mobilization assays were also carried 

for xap5Δ and cay1Δ. Previously, the xap5 mutant was shown to have a modest 

upregulation of Tf2 mRNA (Anver et al., 2014) and cay1 mutant was shown to repress 

Tf2 retrotransposons (Lorenzi et al., 2015). Of particular concern was the finding that 

the mobility of Tf2-12natAI differed between the replicates (xap5Δ ~10 fold and cay1Δ 

~3 fold). These findings indicated that the strains generated by automated crosses 

may not be as reliable as suggested by the analysis of the set1Δ replicates. 

A genetic background with a high level of Tf2 mobilization would be advantageous to 

isolate mutants with reduced mobility and thereby identify factors required for the Tf2 

life-cycle. Therefore, a strain (sre1-N) that constitutively expresses an active form of 

Sre1 was employed (Hughes and Espenshade, 2008; Murton et al., 2016). 

Unexpectedly, the replacement of kanMX cassette associated with the sre1-N allele 

with hphMX, resulted in a severe reduction in Tf2 expression and mobilization (Fig. 

3.6). An alternative sre1-N to stimulate Tf2 elements would be carry out the 

experiments in hypoxic conditions which induces high levels of mobilization (Hughes 

and Espenshade, 2008; Murton et al., 2016). This would have disadvantages though 

as access to a dedicated anaerobic cabinet would be required or a large number of 

anaerobe jars. 

Ultimately, an alternative to the sre1-N allele was not pursued as during this research, 

the Levin lab published a systematic analysis of factors required for mobilization of a 

plasmid encoded Tf1 element (Rai et al., 2017). By utilizing screens and immunoblot 
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measurements of Tf1 protein, 61 genes that promote integration was identified. The 

candidate factors participate in a range of non-chromatin process including nuclear 

transport, protein synthesis, mRNA processing, vesicle transport, ubiquitin-mediated 

proteolysis, signal transduction, metabolism, kinetochore, cytoskeleton and 

chromatin-associated factors, ranging chromatin structure, transcription, splicing and 

DNA repair (Rai et al., 2017). It is noted that a significant portion of these factors 

identified overlap with functional homologue with host factors that promote 

transposition of Ty1 and Ty3 (Rai et al., 2017). It would be interesting to further analyse 

whether mutants identified by the Levin lab also affect Tf2 activity, especially since Tf1 

relies on integrase-dependent insertion while T2 predominantly integrates its cDNA 

into the host genome via homologues recombination (Esnault and Levin, 2015).  

Finally, it is also important to note that although systematic screens are useful tool, 

they do have limitations. An analysis of the S. cerevisiae Ty screens revealed that 

there is only limited overlap in the factors identified (Rai et al., 2017). Also, the Levin 

lab screen failed to identify the nucleoporin Nup124 in their screen, which mentioned 

before, is essential for Tf1 integration (Rai et al., 2017). This suggested that there are 

some inherent limitations on library screening and the factors identified are highly 

dependent on the method used to monitor retroelement activity (Sangesland et al., 

2016).  
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Chapter 4 Impact of Tf1 copy number on the activity of Tf2  

4.1 Introduction 

Retrotransposons transpose via an RNA intermediate and the insertion of a new cDNA 

copy into the genome. This additive method of replication can potentially lead to large 

increases in element copy number which can threaten the host genome. 

Understanding the controls that prevent the over amplification of transposons is 

therefore important and has been studied in detail in the budding yeast S. cerevisiae. 

Most laboratory strains of S. cerevisiae contain between 30 and 35 Ty1 elements and 

while natural isolates exhibit wider variation in copy number, no strains have more 

than 40 complete elements. Indeed, many natural isolates contain just a few copies of 

Ty1 (Wilke and Adams, 1992; Wilke et al., 1992), suggesting the existence of 

mechanisms which limit element spread. However, S. cerevisiae lacks RNAi 

machinery and APOBEC proteins which are used by other eukaryotic organisms to 

restrict retroelements (Drinnenberg et al., 2011; Garfinkel et al., 2016). Instead in S. 

cerevisiae, the frequency of mobilization of the Ty1 LTR retrotransposon is subject to 

post-transcriptional co-suppression, which has also be call copy number control (CNC) 

(Saha et al., 2015; Garfinkel et al., 2016). This was discovered through the observation  

that increased Ty1 element number results in a decrease in Ty1 mobility (Garfinkel et 

al., 2003). As the number of Ty1 elements increases from 1 to 20 the transposition 

frequency of a marked Ty1 element decreases over a 4800-fold range (Garfinkel et 

al., 2003). This is because the Ty1 retrotransposon is regulated by a small protein 

called p22 (22-kDa protein) which is produced from within the C-terminal half of the 

capsid gene gag. The p22 protein is encoded from a truncated Ty1 transcript call Ty1i 

and inhibits several steps in the mobilization process before reverse transcription 

including the assembly of the virus like particle (Matsuda and Garfinkel, 2009; Nishida 

et al., 2015; Saha et al., 2015; Garfinkel et al., 2016; Ahn et al., 2017).  

CNC-like mechanisms have been shown to regulate transposons in some other 

organisms such as Drosophila and E. coli (Simons and Kleckner, 1983; Chaboissier 

et al., 1998), but currently, it is not known whether a CNC mechanism exists in S. 

pombe. It is known that in some mutant backgrounds (i.e. hip1Δ) the expression of Tf2 

elements is not directly proportional to mobilization frequency (Murton et al., 2016). 

Therefore, the possibility that Tf2 is also regulated by CNC was tested. 
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4.2 A high copy number of the Tf1 element activates the mobilization of Tf2. 

The study of the CNC mechanism in S. cerevisiae has been helped greatly by the 

availability of a range of laboratory strains with variations in Ty1 copy number, 

including Ty-less strains which have no full length elements (Wilke et al., 1992). 

Unfortunately, for S. pombe there are only few alternatives to the standard lab strain 

(972) and Tf2-less strains are not readily available. Therefore, as an initial test of 

whether a CNC inhibitor mechanism is present in fission yeast, a plasmid (pHL449-1) 

expressing the full-length Tf1 element under the control of the nmt1 promoter (Levin 

et al., 1993) was transformed into the Tf2-12natAI reporter strain (Fig. 4.1A). The 

plasmid pHL449-1 is a multicopy vector that contains the ars1 replication origin 

allowing between 15-80 copies per cell (Losson and Lacroute, 1983; Maundrell et al., 

1988). The standard lab strain contains no full length Tf1 elements and as a result, 

this experimental system allows the impact of a massive increase in Tf1 copy number 

upon Tf2 activity to be determined. Importantly, the Tf1 element is closely related to 

Tf2 and in S. cerevisiae it has been demonstrated that a Ty2 element can exert CNC 

upon the closely related Ty1 element (Matsuda and Garfinkel, 2009).  

The signature of CNC is that transposition rate is reduced after the retroelement is 

highly expressed (Matsuda and Garfinkel, 2009). Surprisingly, rather that inhibiting Tf2 

mobilization, high Tf1 copy number dramatically increased Tf2 mobilization frequency 

(~30 fold) compared to the control containing an empty plasmid (Fig. 4.1B), supported 

by the thiamine conditions used (data not shown). This indicates that a high copy 

number of one LTR retrotransposon can lead to the activation of a related element. 

The expression of Tf2 elements is subjected to a form of transcriptional silencing that 

is dependent upon specific histone deacetylases, CENB-P proteins, histone 

methyltransferases, histone chaperones and ATP-dependent chromatin remodelling 

complexes (Esnault and Levin, 2015). One possibility is that a multiple copies of the 

Tf1 LTR element titrate away an important component of the silencing machinery 

which leads to de-repression of Tf2 transcription. Therefore, the influence of high copy 

Tf1 on Tf2 expression levels was investigated by transforming empty vector and Tf1 

expressing plasmids into the Tf2-6::lacZ background of a distinct strain. Quantitative 

β-galactosidase assays showed that high copy Tf1 resulted in only a very small 

increase in Tf2 expression. The experiment of Tf2 expression and mobilization was 
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carried out in different strains, this suggests high copy Tf1 stimulates Tf2 mobilization 

predominantly via a post transcriptional mechanism (Fig. 4.2). Unfortunately, due to 

the time constrain, experiment with the employment of Thiamine should be carried out 

to test whether the inhibition of plasmid expression could influence the result.  
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Figure 4.1 The impact of high Tf1 copy number on Tf2 mobilization 

(A)  Diagram showing the experimental scheme. The Tf2-12natAI reporter strain was 

transformed with either pRep42 (empty vector) or pHL449-1 (pTf1-fl) which has a full length 

Tf1 element under the control of nmt promoter. 

(B) Frequency of mobilization is defined as the proportion of ClonNAT resistance colonies 

from the total number of viable colonies using the mean of medium method. Average values 

determined by mean of medium analysis (±SEM) with a minimum of 30 repeats.  
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Figure 4.2 Increased Tf1 copy number does not affect Tf2 expression 

The activity of a Tf2-6 lacZ reporter was determined in cells harbouring either empty vector 

or pTf1-fl. Strains were grown at 30°C in EMM to mid-log phase before being collected for 

use in quantitative β-galactosidase assays. Values shown represent the average of 8 

biological repeats assayed in duplicate. Error bars indicate ±SEM and p value was 

calculated using a t-test. 
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4.3 Role of Tf1 integrase in the stimulation of Tf2 mobilization 

Tf2 and Tf1 have major differences when it comes to the mechanism of cDNA insertion 

back into the genome. Tf1 cDNA is inserted upstream of Pol II transcribed genes in an 

integrase-dependent manner. In contrast, Tf2 cDNA preferentially inserts into an 

existing Tf2 element via homologous recombination (HR) (Levin et al., 1990; Behrens 

et al., 2000; Esnault and Levin, 2015). To investigate whether the function of Tf1 

integrase (IN) is required for the stimulation of Tf2 mobilization, a plasmid harbouring 

a Tf1 element with a frame shift mutation in the integrase gene (pTf1-IN ft) was 

employed (Levin, 1995). Compared to wild type Tf1 expression of the Tf1 IN frame 

shift mutant resulted in a ~4 fold reduction in Tf2 mobilization. This indicates that the 

function of Tf1 IN is required for full stimulation of Tf2 mobilization and suggested that 

Tf1 IN is capable of mediating the integration of Tf2 cDNA into genome (Fig. 4.3).  
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Figure 4.3 Tf1 IN is required for full stimulation of Tf2 mobilization 

Tf12-12natAI mobilization frequency was determined in cells harbouring the indicated 

plasmids. Frequency of mobilization is defined as the proportion of ClonNAT resistance 

colonies from the total number of viable colonies using the mean of medium method. 

Average values determined by mean of medium analysis with a minimum of 30 repeats. 

Error bars indicate ±SEM value. p values were calculated using t test. 
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To further investigate this, an rhp51Δ deletion strain was employed which lacks 

homologous recombination (HR) ability. (Prudden et al., 2003). In this strain, the ability 

of Tf1 to stimulate Tf2 mobilization should be completely dependent upon Tf1 IN 

function because the alternative pathway of integration Tf2 cDNA into an existing Tf2 

element via HR is not available. Mobilizations confirmed that in the rhp51Δ background 

the plasmid expressing Tf1 IN ft had no ability to stimulate Tf2 mobilization relative to 

the empty vector control (Fig. 4.4). 
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Figure 4.4 Tf1 IN is required to stimulate Tf2 mobilization in the absence of 

homologous recombination 

Tf2-12natAI mobilization frequency was determined in rhp51Δ cells harbouring the 

indicated plasmids. Frequency of mobilization is defined as the proportion of ClonNAT 

resistance colonies from the total number of viable colonies using the mean of medium 

method. Average values determined by mean of medium analysis with a minimum of 30 

repeats. Error bars indicate ±SEM value. 
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4.4 The Tf1 protease (PR) and Gag proteins are required to stimulate Tf2 

mobilization 

The previous results suggests that Tf1 IN is mediating the integration of Tf2 cDNA into 

the genome. To determine whether Tf1 proteins are likely to be stimulating the 

production of Tf2 cDNA as well as its integration, a plasmid containing a frame shift 

(ft) mutant in the Tf1 reverse transcriptase gene (RT) and protease (PR) were 

employed (Dang et al., 1999). Mobilization assay results indicate that the RT activity 

of Tf1 is absolutely required for the increased mobility of Tf2 (Fig. 4.5). Furthermore, 

a frameshift mutation in PR resulted in a reduction in mobilization relative to the empty 

vector control. This mutation will block the production of not only PR but also RT and 

IN and presumably leads to the production of a mutant (and unprocessed) poly-protein. 

The results indicate that this mutant polyprotein has an inhibitory impact on Tf2 activity. 

The Gag protein is essential for the life cycle of LTR retrotransposons. Analysis of S. 

cerevisiae Ty1 has shown that the Gag protein is required for the formation of a virus 

like particle (VLP) and it is within this particle that LTR retrotransposon mRNA is 

converted to cDNA. Furthermore, some essential protein processing occurs in VLPs 

which is mediated by an element encoded protease (PR) (Leis et al., 1988; Hansen et 

al., 1992; You and McHenry, 1994). Teysset and co-workers have also demonstrated 

the essential nature of Gag for Tf1 retrotransposition (Fig. 4.6A) (Teysset et al., 2003). 

Experimental characterisation of the Tf1 Gag protein has identified some functionally 

important domains (termed A, B, C and D) (Fig. 4.6A). The deletion of regions B (ΔB) 

and C (ΔC) which are in the centre of Gag destabilize the protein and result in no virus-

like particle (Teysset et al., 2003). As a result, the ΔB and ΔC mutations abolish the 

transposition of Tf1. To investigate the role of the Tf1 Gag protein in stimulating Tf2 

mobilization, Tf1 plasmids with the ΔB and ΔC partial deletions of the Gag gene were 

transformed in to the Tf2-12natAI reporter strain. Relative to the empty vector control 

the ΔB and ΔC expressing plasmids showed no ability to stimulate mobilization of Tf2, 

demonstrating that the Tf1 Gag is necessary for this process (Fig. 4.6B).  

Two separation of function Gag mutants, ΔA and ΔD were then examined. The ΔA 

mutation does not hinder the production of Tf1 cDNA but is defective in Tf1 

transposition because nuclear transport of the cDNA is impaired (Teysset et al., 2003). 

Consistent with this the ΔA Tf1 Gag mutant had a reduced ability to stimulate Tf2 
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mobilization relative to wild type Tf1 (Fig. 4.6C). Finally a mutant that is defective for 

Tf1 RNA packaging (ΔD) was examined (Fig. 4.6D). This mutant impairs (but does not 

abolish) the production of Tf1 cDNA and transposition. Surprisingly, a Tf1 plasmid with 

the ΔD Gag mutation resulted in massive increase in Tf2 mobility relative to the wild 

type Tf1 (Fig. 4.6D). This suggests that this mutant form of Tf1 Gag has increased 

ability to bring about either the processing of Tf2 mRNA into cDNA and or its 

integration into the genome. Taken together, the results suggest that the mobilization 

of Tf2 is limited at a post-transcriptional level and that Tf2 mRNA can be packaged 

successfully into Tf1 VLPs converted into cDNA and integrated into the genome using 

Tf1 IN. As such Tf2 can take advantage of the proteins from a related LTR 

retrotransposon to complete its life cycle.  
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Figure 4.5 Tf1 RT is required to stimulate Tf2 mobilization 

Tf2-12natAI mobilization frequency was determined in cells harbouring the indicated 

plasmids. Frequency of mobilization is defined as the proportion of ClonNAT resistance 

colonies from the total number of viable colonies using the mean of medium method. 

Average values determined by mean of medium analysis with a minimum of 30 repeats. 

Error bars indicate ±SEM value. 
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Figure 4.6 The Tf1 Gag protein is required to stimulate Tf2 mobilization 

(A) Sequence alignment of the Gag proteins from Tf1 and Tf2. The dark blue boxes with 

yellow letters highlight identical amino acids, while the light blue boxes with black letters 

highlight similar amino acids. The four amino acid regions which are deleted in the ΔA, ΔB, 

ΔC and ΔD mutant respectively are indicated by boxes. Taken from (Teysset et al., 2003). 

(B) Table summarising the properties of the mutant Gag proteins for Tf1 function (Teysset et 

al., 2003). 

(C-E) Tf2-12natAI mobilization frequency was determined in cells harbouring the indicated 

plasmids. Mobilization frequency is the proportion of ClonNAT resistant colonies in the total 

number of viable colonies. Values were determined using the mean of the median with a 

minimum of 30 repeats. Error bars indicate ±SEM value.  
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4.5 Multiple copies of the Schizosaccharomyces japonicas Tj1 LTR 

retrotransposon does not stimulate Tf2 mobilization. 

To see if a high copy number of other LTR retrotransposons could also stimulate Tf2 

mobility, the Tj1 LTR retrotransposon from S. japonicus was investigated (Guo et al., 

2015). The Tj1 element is related to both S. pombe Tf1 and Tf2 and belongs to the 

same Gypsy/Ty3 family. Furthermore, expression of Tj1 from a plasmid from a nmt 

promoter has shown that this S. japonicus retroelement is capable of transposition 

within S. pombe (Guo et al., 2015). Therefore, a multicopy plasmid containing Tj1 was 

transformed into the Tf2-12natAI reporter background. Mobilization assays indicated 

that a high copy number of this exogenous retroelement did not influence Tf2 mobility 

relative to the empty vector control (Fig. 4.7B). This suggests that the ability to 

stimulate Tf2 mobilization is limited to very closely related LTR retrotransposons. 
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Figure 4.7  Tj1 does not induces Tf2 mobilization 

Tf2-12natAI mobilization was determined in cells harbouring the indicated plasmids. 

Frequency of mobilization is defined as the proportion of ClonNAT resistance colonies from 

the total number of viable colonies using the mean of medium method. Average values 

determined by mean of medium analysis with a minimum of 30 repeats. Error bars indicate 

±SEM value indicates significance between each means and p value is calculated by t-test.  
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4.6 Discussion 

The evolution of host defence mechanisms for repressing retrotransposon activity is 

linked to the maintenance of genome integrity and fitness. One of the main reasons to 

limit the frequency at which an element can transpose is to avoid a significant increase 

in the copy number which can cause various mutations and gross chromosome 

rearrangements. Copy number control (CNC) has been discovered in S. cerevisiae to 

limit the spread of Ty1 elements (Saha et al., 2015; Garfinkel et al., 2016). CNC-like 

mechanisms have also been shown to operate in other organisms suggesting that this 

self-restricting mechanism may be a widespread way for retroelements to limit their 

copies in the host cells (Johnson and Reznikoff, 1984; Lohe and Hartl, 1996; 

Chaboissier et al., 1998). However, in S. cerevisiae, a CNC mechanism limits the 

copia family retroelement Ty1, but not the Ty3 or Ty5 elements (Saha et al., 2015; 

Garfinkel et al., 2016; Ahn et al., 2017). Furthermore, to date, there is no evidence for 

the existence of CNC mechanisms that limit S. pombe Tf1 and Tf2 elements. This is 

possibly because unrestricted mobilization of these elements is controlled at other 

levels.  

Ty1 of S. cerevisiae is highly expressed, and in fact, 30 copies of the Ty1 can 

contribute as much as 10% of the total mRNA in yeast cells (Jiang, 2002). Therefore, 

Ty1 elements are not subjected to transcriptional silencing which is a common host 

restriction mechanism (Jiang, 2002). CNC appears to be an alternative mechanism for 

preventing uncontrolled spread of Ty1 retroelements. On the other hand, S. pombe 

Tf2 elements are subjected to transcriptional repression which is proposed to limit 

mobility of the element (Murton et al., 2016). Repression of Tf2 expression requires 

the recruitment of histone deacetylases to Tf2 loci by CENP-B proteins, which repress 

transcriptional at LTRs and Tf2 internal cryptic promoters (Cam et al., 2008; Lorenz et 

al., 2012). The repression of Tf2 expression is also dependent upon Set1 (histone H3 

K4 methyltransferase), HIRA (histone chaperone) and Fun 30 ATP-dependent 

chromatin modellers (Lorenz et al., 2012; Steglich et al., 2015; Murton et al., 2016). 

Furthermore, Tf2 mRNA transcripts are promoted to undergo rapid degradation (Mallet 

et al., 2017). Tf elements are physically clustered in the nucleus into structures called 

Tf bodies (Cam et al., 2008; Lorenz et al., 2012). While Tf bodies are not required for 

transcription silencing after cluster removal in Ku mutants, it has been suggested that 
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Tf bodies help to limit mobilization (Murton et al., 2016). The control of Tf2 activity at 

the transcriptional level may therefore make CNC mechanisms unnecessary.  

The way that Tf2 integrates into the genome may be another reason why CNC might 

not be required for these elements. The majority of the integration events for Tf2 

(~70%) occur via HR and are IN (integrase) independent (Hoff et al., 1998). This HR 

strategy is thought to avoid disrupting the host genome coding sequence by recycling 

of integration sties (Hoff et al., 1998). In contrast the Tf1 mobilizes primarily via IN-

dependent integration. Interestingly, this difference in transposition method is not 

determined by the 2% difference between the amino acid sequence of Tf1 and Tf2 IN 

proteins but may result from the sequence difference of Tf1 and Tf2 Gag (capsid) and 

PR (protease) proteins which, as discussed below, have an impact on proteolytic 

processing of precursor proteins (Esnault and Levin, 2015). The HR method of cDNA 

integration means that mobilization of the T2 element does not increase copy number. 

As a result, the cell might not require a CNC to repress the mobility of Tf2 as they will 

not threaten genome integrity. Also, it is worth noting that both Tf1 and Tf2 are member 

of the Ty3/gypsy transposon family and therefore, are more closely related to the S. 

cerevisiae Ty3 retrotransposon rather than Ty1 which is a member of the copia 

transposon family. Currently, no CNC mechanisms have been reported in Ty3 

regulation (Curcio et al., 2015).  

Multicopy expression of a marked Ty1 element is known to swamp the CNC 

mechanism in S. cerevisiae (Saha et al., 2015). Therefore, a multicopy expression 

system is not the best way to examine copy number control. Ultimately, proper 

investigation requires the construction of strains with alternative numbers of Tf2 

elements. There are 13 full-length Tf2 elements present in the standard lab S. pombe 

strain with 249 solos LTRs (Bowen et al., 2003; Esnault and Levin, 2015). Construction 

of a lab strain lacking Tf2 elements would therefore be time consuming. However, it 

may be possible to identify natural isolates of S. pombe that lack full length Tf2 

elements. 

It is possible that CNC does exists in S. pombe but high copy Tf1 is not capable of 

exerting an effect on Tf2 or vice versa. It is worth noting that for S. cerevisiae Ty1 CNC 

is regulated by an alternative protein produced from the gag gene (Saha et al., 2015; 

Garfinkel et al., 2016). Interestingly, Tf1 and Tf2 sequences are almost identical for 
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RT and IN gene while a major difference is located in the gag region (Levin et al., 1990; 

Weaver et al., 1993). Therefore, a CNC protein produced from Tf1 gag may not 

function on Tf2 or vice versa. 

The data in this chapter instead suggest that Tf2 mRNA can be packaged into Tf1 

virus-like particles and take advantage of Tf1 proteins to complete its life cycle (Fig. 

4.3). As the Tf2 mRNA level does not increase in response to high Tf1 copy number 

(Fig. 4.2), the large stimulation of Tf2 mobilization is believed to operate at a post-

transcriptional level. This suggests that despite the mechanisms that ‘silence’ Tf2 

expression, the mRNA level of Tf2 is not the limiting factor for mobilization bur instead 

the production or activity of the Tf2 proteins. Tf2 proteins are made first as a long 

polyprotein which is then processed into mature protein activities by PR. Previous 

studies suggests that Tf2 polyprotein processing is less efficient than Tf1 (Levin et al., 

1993; Hoff et al., 1998). The polyprotein processing pathway is suggested to be 

different between Tf1 and Tf2 (Hoff et al., 1998). PR of Tf1 polyprotein is first cleaved 

and generates an RT-IN intermediate while IN of Tf2 is cleaved first and leaves behind 

a PR-RT intermediate (Atwood et al., 1996; Hoff et al., 1998). The significance of the 

difference between Tf1 and Tf2 polyprotein processing is that for Tf2 there is an 

accumulation of PR-RT species while no detectable RT is observed (Hoff et al., 1998).  

It is interesting that Tf1 can mediate integration of Tf2 cDNA via an IN-dependent 

mechanism (Hoff et al., 1998). The reason why Tf2 and Tf1 prefer different modes of 

integration is not really understood, particularly as the IN proteins from Tf1 and Tf2 are 

almost identical (Levin et al., 1990; Hoff et al., 1998). In fact, the Tf1 and Tf2 share a 

greater than 90% homology between RT, IN and the C-terminal regions of PR. The N-

terminal regions of Tf1 and Tf2 PR share 80-90% homology but less than 50% 

homology is found between the two transposons in the gag region (Levin et al., 1990; 

Lin and Levin, 1997). Differences in the Tf1 and Tf2 life cycles may be related to 

differences in protein processing, which in turn, may ultimately result from differences 

in the PR and Gag proteins of Tf1 and Tf2. 

From the results, the stimulation of Tf2 activity by high copy Tf1 is dependent upon the 

RT, Gag and IN proteins produced from Tf1. The importance of IN was confirmed by 

employing the HR-deficient mutant rhp51Δ. Increased transposition Tf2 rates were 

abolished by removing functional Tf1 RT and a Tf1 PR frame shift mutant (PR ft), 
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results in a Tf2 mobilization rate that is lower than the negative control (vector alone). 

The frameshift mutation of PR would also block RT and IN expression and the mutated 

polyprotein may have a dominant negative impact. Furthermore, activation of Tf2 

events requires Tf1 Gag. In the mutants that cannot produce a functional Gag protein 

(pTf1-ΔB and pTf1-ΔC), the rate of Tf2 mobilization is decreased compared to the wild 

type Tf1 control. In the case of the pTf1-ΔD (ΔD) construct, the production of mutant 

Gag proteins stimulates the mobilization rate of Tf2 relative to the wild type control. 

There may a competition between Tf1 and Tf2 mRNAs for incorporation into Tf1 VLPs 

and in the ΔD mutant incorporation of Tf2 mRNA may be favoured.  

In contrast to Tf1, a Tj1 retroelement from S. japonicas, could not stimulate the activity 

of Tf2, suggesting that only closely related elements can provide their proteins for co-

activation. An interaction between different retroelements was observed in S. 

cerevisiae Ty1 and Ty2 for the co-suppression in CNC. Transposition of Ty1 is 

suppressed by overexpressing the Ty2 element  but not the Ty3 and Ty5 elements 

(Garfinkel et al., 2003). The sequences of Ty1 and Ty2 share ~70 % identity and the 

LTR regions are closely related (Jordan and McDonald, 1999a), suggesting that CNC 

could be triggered between closely related retroelements. 

The results indicate that, instead of co-suppression as seen in Ty1 and Ty2, a co-

activation mechanism for Tf1 and Tf2 is present. A hypothesis could be drawn that the 

ability of Tf1 to stimulate the mobilization of Tf2 is reminiscent of the situation for 

transforming replication-defective retroviruses. Such retroviruses have had part of 

their native viral sequences replaced with an oncogene (v-onc). Many such viruses 

produces a Gag-v-onc fusion protein instead of the Gag-pol and Env proteins and so 

are not themselves replication competent. These viruses depend upon proteins 

produced from replication competent helper retroviruses to produce their cDNA and 

converse their life cycle (Coffin JM et al., 1997). Furthermore, infection of mice with an 

exogenous retrovirus results in mobilization of an endogenous retrovirus, 

demonstrating that the activation of one retroelement can have a big impact on the 

spread of other retroelements (Evans et al., 2009).  

It was also argued that overexpression has influenced the ability for splicing to have 

occurred, which alter the expression and mobility of Tf2 element. Further experiments 

could be carried out in testing the mRNA level could possible evaluate in this area. 
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In conclusion the results of this Chapter suggest that a CNC mechanism might not 

present for Tf1 and Tf2. However, a relationship between the two closely related Tf1 

and Tf2 was identified, where the activation of one element could stimulate the 

activation of the other element. 
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Chapter 5 Growth medium affects Tf2 activity 

5.1 Introduction 

Cells are exposed to a wide range of natural stresses that can lead to growth restriction 

or even death. In response to extracellular stress, cells not only active expression of 

networks of genes that together increase resistance but also mobilize 

retrotransposons (Esnault et al., 2019). For example plant retrotransposons are largely 

quiescent during development but are activated in response to diverse stresses such 

as temperature, wounding and pathogen attack (Hou et al., 2019). It has been 

proposed that this may be a survival strategy and or a generator of genomic diversity 

(Huang et al., 2012). Nutrient deficiency is one of the stresses that induces 

retrotransposon activity and ‘cross-talk’ with other genes in budding yeast S. 

cerevisiae and also in plants (Dai et al., 2007; Negi et al., 2016). The Ty1 retroelement 

was found to be activated by growth in low-nitrogen medium both at the level of 

transcription and retrotransposition (Morillon et al., 2000). Furthermore, severe 

adenine deficiency is also known to activate Ty1 (Varadarajan et al., 2005). Dai and 

co-workers showed that the restriction of Ty5 retrotransposon integration to 

heterochromatic domains was lifted under conditions of amino acid, nitrogen or 

fermentable carbon starvation (Dai et al., 2007). In fission yeast, Tf2 retrotransposons 

are known to be induced in response to hypoxic conditions (Sehgal et al., 2007) but 

the impact of nutrient stress on retrotransposition is not well understood. Under low 

glucose conditions, Tf2 elements become associated with elevated levels of the 

heterochromatic chromatin mark histone H3 lysine 9 dimethylation (Yamanaka et al., 

2013; Esnault and Levin, 2015), however no impact of low glucose on mobilization 

rate has been reported. Furthermore, the impact of the growth medium on Tf2 activity 

has received little attention. Indeed, all previous experiments using an integrated Tf2 

mobilization reporters have utilised rich (YE5S) medium (Sehgal et al., 2007; Murton, 

2012). It was therefore surprising that the experiments reported in the previous chapter 

indicated that the growth medium can affect Tf2 mobilization frequency. Cells 

transformed with an empty vector (pRep42) and grown in Edinburgh minimal medium 

(EMM), were found to have a Tf2-12natAI mobilization frequency of 2.46 x 10-7 (Fig. 

4.3). In comparison wild type cells grown in rich YE5S medium at 30C have a 

mobilization frequency of ~0.5-2.0 x 10-8.  
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Therefore, the aim of this chapter was to characterise the impact of growth media and 

nutrient conditions on the activity of the Tf2 retrotransposon. 

5.2 Growth in minimal (EMM) medium induces Tf2 expression and 

mobilization. 

In order to investigate whether the high level of Tf2 mobilization observed in Fig. 4.3 

is due to the presence of the pRep42 plasmid or the EMM growth medium, Tf2-12natAI 

cells lacking pRep42 were inoculated into minimal EMM medium. This showed that 

when compared to YE5S, growth in EMM results in a ~100 fold increase in the mobility 

of the Tf2 element. Furthermore, experiments using the Tf2-6 lacZ reporter revealed 

that growth in EMM results in ~6 fold increase in expression relative to YE5S, 

confirming that minimal growth medium induces Tf2 activity (Fig. 5.1). The results 

suggest that either a component of YE5S medium is resulting in repression of the Tf2 

element or alternatively a component of EMM is activating Tf2.  

In S. pombe, the LTR sequences of Tf1 and Tf2 differ significantly, especially the 

central portions of the LTRs (Fig. 5.2A) (Levin et al., 1990). These differences mean 

that the transcriptional regulation of Tf1 and Tf2 is distinct. For example Tf2 expression 

is induced in response to low oxygen via Sre1 but Tf1 is not (Sehgal et al., 2007; 

Murton et al., 2016). Furthermore while 12 of the 13 Tf2 elements exhibit very high 

levels of identity in their LTR regions, Tf2-11 has a ‘hybrid’ 5’ LTR that contains a 

region of homology to Tf1 which is likely due to the recombination event between a 

pre-existing Tf1 LTR (or LTR fragment) and theTf2-11 element (Bowen et al., 2003). 

Previous experimental data has shown that Tf2-11 has a different pattern of 

expression to the other Tf2 elements (Sehgal et al., 2007; Anderson et al., 2009). 

To investigate the LTR region responsible for high activity when cells are grown in 

EMM, reporter strains were used, where the lacZ gene is under the control of a 

endogenous ‘typical’ Tf2 LTR, a Tf1 LTR or the ‘hybrid’ Tf2-11 LTR (Fig. 5.2B). β-

galactosidase assays revealed that expression from neither Tf1 nor Tf2-11 was 

stimulated by growth EMM. Therefore, the sequences that allow high expression when 

cells are grown in minimal medium are absent from Tf1 and Tf2-11 LTRs.  
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Figure 5.1 Tf2 retrotransposon activity is induced in minimal (EMM) medium. 

 (A) Tf2-6 lacZ strains were grown at 30°C in YE5S or EMM to mid-log phase before being 

collected for use in quantitative β-galactosidase assays. Values shown represent the 

average of 8 biological repeats assayed in duplicate and error bars indicate ±SEM.  

(B) ATf2-12natAI reporter strain was cultured in either YE5S or EMM medium for 2 days at 

30°C. Mobilization frequency was determined as the proportion of ClonNAT resistant 

colonies in the total number of viable colonies using the mean of medium method. Average 

values determined by mean of medium analysis with a minimum of 30 repeats are shown. 

Error bars indicate ±SEM. 
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Figure 5.2 The expression of neither Tf1 nor Tf2-11 is induced by EMM 

(A) The 5’ LTR sequences of Tf1-107, Tf2-6 and Tf2-11 were aligned using ClustalW 

alignment (www.ch.ebnmet.org). Box shading with 1.0 fraction shading is shown. Note Tf2-

6 is included as an example of a ‘typical’ Tf2 LTR. Putative TATA box highlighted in blue 

and transcription start site indicated by arrow. 

(B) Tf2-LTR- lacZ, Tf1-lacZ, Tf2-11-lacZ strains were grown at 30°C in either YE5S or EMM 

to mid-log phase before being collected for use in quantitative β-galactosidase assays. 

Values shown represent the average of 8 biological repeats assayed in duplicate and error 

bars indicate ±SEM.   
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Tf2 expression is also limited by the HIRA histone chaperone complex (Murton et al., 

2016). Previous data demonstrated that the loss of the HIRA complex subunits (hip1Δ) 

induces a very large increase in Tf2-lacZ expression when cells are grown in YE5S 

(Murton et al., 2016). Therefore, Tf2 expression was also measured in the hip1Δ 

background when cells were grown in EMM. In this background (hip1Δ), similar levels 

of expression were observed irrespective of whether cells were grown in EMM or 

YE5S.  One explanation of these results would be that growth in EMM overcomes the 

repressive effects of HIRA on Tf2 expression. Another explanation would be that in 

the hip1Δ background the expression of Tf2 has reached its maximum level and 

cannot be further upregulated.  Although, loss of HIRA leads to high level of Tf2 

expression, a corresponding increase in mobilization was not observed. Indeed, when 

cells are grown in EMM the deletion of hip1+ led to a (~2.5 fold) decrease in the 

frequency of Tf2 mobilization. It is not clear why this is the case but it is possible that 

while HIRA may repress Tf2 transcription, it may promote later stages in the lifecycle, 

such as cDNA integration. 
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5.3 Impact of nitrogen source on Tf2 activity 

Edinburgh minimal media (EMM) was first developed by Murdoch Mitchison for his cell 

cycle analyses as a synthetic defined media (Mitchison, 1970) and changes to the 

nitrogen or carbon sources of the media are commonly used to manipulate growth and 

cell cycle controls and promote sexual differentiation (Petersen and Russell, 2016).  

The data described above demonstrate that a switch of the growth medium is sufficient 

to induce Tf2 mobilization and indicate that differences in one or more of the 

components of EMM and YE5S influence Tf2 activity. A key candidate for one of these 

factors is the nitrogen source. YE5S is known as a rich medium, made up from yeast 

extract and glucose with amino acids (lysine, leucine and histidine) and nucleobase 

supplements (adenine and uracil) and supports a fast growth rate as a general use 

media (Petersen and Russell, 2016). The nitrogen source of YE5S is not precisely 

defined but yeast extract contains a complex mixture of peptides ranging from 6 to 

more 30 amino acids in length (Proust et al., 2019). In contrast, EMM employs 

ammonium chloride, which is defined as a good nitrogen source for S. pombe. 

Therefore, the impact of changing nitrogen source from ammonium chloride to an 

alternative ‘good’ nitrogen source, glutamate and also a ‘poor’ nitrogen source in 

proline was determined. 

Quantitative β-Galactosidase assay results indicated that changing the nitrogen 

source to glutamate or proline had only a small effect on Tf2 expression.  Also the 

actual mobility of Tf2-12natAI did not change when glutamate was swapped for 

ammonium (Fig. 5.4). Unfortunately, with proline being a poor nitrogen source, the 

growth of Tf2-12natAI strains was severely restricted and no mobility data was 

collected in for cells inoculated in proline medium. Nonetheless, the results suggest 

that the nitrogen source per se has only a minor impact on Tf2 activity. 
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Figure 5.4 Quality of nitrogen source has only a modest effect on Tf2 activity. 

(A) Tf2-6 lacZ strains were grown at 30°C in EMM with either ammonium chloride, 3.75 g/L 

glutamate or 0.1% proline as nitrogen source before being collected for use in quantitative 

β-galactosidase assays. Values shown represent the average of 8 biological repeats 

assayed in duplicate and error bars indicate ±SEM. (B) Tf2-12natAI mobilization frequency 

was determined as the proportion of ClonNAT resistant colonies in the total number of 

viable colonies using the mean of medium method. Average values determined by mean 

of medium analysis with a minimum of 30 repeats. Error bars indicate ±SEM. 
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5.4 Impact of amino acid and nucleobase supplements on Tf2 activity 

One of the big differences between rich (YE5S) and minimal medium (EMM) is the 

abundance of amino acids and other important compounds such as nucleobases. It 

was hypothesized that the low activity of Tf2 in YE5S medium may be due to the 

abundance of amino acids which may change cell physiology and cell signalling 

(Weisman et al., 2005; Bonfils et al., 2012; Han et al., 2012; Kim et al., 2013; Petersen 

and Russell, 2016). Many of the fission yeast cell strains used during the study are 

auxotrophic (e.g. ade- leu- ura- his-). Therefore, to be able to manipulate amino acid 

and nucleobase levels properly, prototrophic strains harbouring the Tf2-6 lacZ and 

Tf2-natAI reporter were employed. Analysis revealed that prototrophic strains did not 

differ from the auxotrophic strains with respect to Tf2 expression and Tf2-12natAI 

mobilization frequency in EMM (Fig. 5.5). 
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Figure 5.5 Tf2 activity is not changed in prototrophic strain. 

(A) Tf2-6 lacZ auxotroph and prototroph strains were grown at 30°C in the indicated 

medium to mid-log phase before being collected for use in quantitative β-galactosidase 

assays. Values shown represent the average of 8 biological repeats assayed in duplicate 

and error bars indicate ±SEM. (B) Tf2-12natAI mobilization frequency was determined as 

the proportion of ClonNAT resistant colonies in the total number of viable colonies using 

the mean of medium method. Average values determined by mean of medium analysis 

with a minimum of 30 repeats. Error bars indicate ±SEM. p value (t-test). 
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Excess levels of leucine and histidine amino acids and also the nucleobase adenine, 

were used in different combinations to determine their effect on the activity of Tf2.  A 

two-fold decrease in lacZ expression was observed when leucine, histidine and 

adenine were added to the medium (Fig. 5.6A), suggesting that these supplements 

slightly repressTf2 expression. Further investigation into which of these plays a major 

role in this repression was approached by removing one from the medium each time. 

The removal of adenine or histidine has no significant effect on the activity of Tf2-6 

lacZ while the removal of leucine increased the expression of Tf2 (Fig. 5.6A), 

suggesting that leucine is important for the activity of Tf2. A fivefold increase in leucine 

concentration (to 500 mg/L) did not repress expression, indicating that repression 

requires also requires the addition of either adenine or histidine. Overall, although the 

addition of amino acids and nucleobases does not reduce Tf2 expression to the level 

observed in rich YE5S medium.  

The same experiment was repeated in the Tf2-12natAI strain to determine the effect 

on the mobility of Tf2. There was no significant difference of the mobility of Tf2 between 

cells inoculated with and without (Ade, Leu and His) supplements (Fig. 5.6B). This 

suggests that high levels of amino acids and nucleobases is unlikely to be the basis 

for the low activity of Tf2 retrotransposons when cells are grown in rich YE5S medium. 

Media that utilise yeast extract are also rich in B vitamins such as thiamine (Proust et 

al., 2019). Therefore, the potential role of thiamine was also investigated. β-

galactosidase and mobilization assays revealed the addition of thiamine to EMM 

medium did not influence on Tf2 activity (Fig. 5.6AB). 

Excess supplements do suppress Tf2 expression, but do not lower the expression and 

mobilization to the YE5S level. Therefore, amino acid/nucleobase levels do not seem 

to be the source of the difference between YE5S and EMM.   
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To further investigate the impact of the medium on expression, Tf2-6 lacZ cells were 

grown in YE5S with increasing amounts of EMM in the medium (Fig. 5.7). An increase 

in β-galactosidase activity was observed when EMM content increased from 10% to 

90%. This suggests that rather that some compounds in YE5S repressing Tf2 

expression, EMM contains one or more ingredients that stimulates Tf2.  
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Figure 5.7 The addition of EMM to YE5S increases Tf2 expression. 

Tf2-6 lacZ strains were grown at 30°C in YE5S and EMM amino acids supplement in 

different mixture to mid-log phase before being collected for use in quantitative β-

galactosidase assays. Values shown represent the average of 8 biological repeats assayed 

in duplicate and error bars indicate ±SEM  
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5.5 Ammonium ions and phthalate are the key ingredient in EMM that activate 

Tf2  

As previously discussed, EMM is a defined medium developed in the 1970s (Mitchison, 

1970; Nurse, 1975). The composition of EMM is listed in Table 2.2. To determine what 

is responsible for the high activity of Tf2 elements when cells are grown in this medium, 

individual components of EMM were added to YE5S medium and the expression of 

Tf2 was monitored using a lacZ reporter. Unsurprisingly, majority of the ingredients 

(e.g. salts, vitamins, minerals) had no impact on Tf2 expression while cells inoculated 

in YE5S with sodium phosphate (Na2HPO4) showed a modest increase in Tf2 

expression (Fig. 5.8A). There were two components, ammonium chloride (NH4Cl) and 

potassium hydrogen phthalate (C8H5KO4) from EMM that resulted in a significant 

increase in Tf2 expression (~10 fold and ~8 fold, respectively) (Fig. 5.8A). Potassium 

hydrogen phthalate is a buffering agent and replaced sodium acetate in the original 

EMM formulation in order to grow cdc5 mutant cells (Nurse, 1975). Therefore, the 

impact of sodium acetate on Tf2 induction was also examined (Fig. 5.8A).  The addition 

of sodium acetate resulted in only a modest increase (~2 fold) of Tf2 expression, 

suggesting that the presence of a pH buffering agent per se does not account for the 

increase inTf2 expression but instead the chemical property of phthalate stimulates 

Tf2 expression.  

To determine if either ammonium ions or chloride ions were required for the activation 

of Tf2, ammonium sulphate (NH4SO4) and sodium chloride (NaCl) were added to the 

rich media. Unsurprisingly, the exchange from ammonium chloride (NH4Cl) to sodium 

chloride (NaCl) abolished the induction of Tf2 expression while ammonium sulphate 

(NH4SO4) activated Tf2 expression to a similar level as ammonium chloride (NH4Cl). 

This suggests that ammonium ions and phthalate are the two major ingredients in 

EMM that activate Tf2 expression (Fig. 5.8B). The addition of both ammonium chloride 

and potassium hydrogen phthalate did not result in a further increase in expression 

suggesting that the two compounds activate Tf2 expression via the same signalling 

pathway or there is an upper limit of Tf2 expression (Fig. 5.8B). 

The same experiment was repeated using the Tf2-12natAI reporter to analyse mobility 

in these conditions. Mobilization of the Tf2-12natAI cassette significantly increased 

following the addition of ammonium chloride or potassium hydrogen phthalate to YE5S 
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(Fig. 5.9). Again the addition of both did not result in a further increase. Therefore it is 

the presence of ammonium ions and potassium hydrogen phthalate that stimulates 

the activity of Tf2 when cells are grown in EMM.  
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Figure 5.8 Tf2 activity is increased by ammonium and phthalate. 

Tf2-6 lacZ strains were grown at 30°C in YE5S medium with the addition of the indicated 

selected components to mid-log phase before being collected for use in quantitative β-

galactosidase assays. When present ammonium chloride was added at 93.5 mM, 

ammonium sulphate at 61.7 mM, sodium chloride at 27.3 mM, potassium hydrogen 

phthalate at 14.7 mM and sodium acetate at 12.2 mM. Values shown represent the average 

of 8 biological repeats assayed in duplicate and error bars indicate ±SEM.  
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Figure 5.9 Tf2 mobility is induced by ammonium and phthalate. 

Cells were grown in YE5S medium with the indicated additions, ammonium chloride was 

added at 93.5 mM, and potassium hydrogen phthalate at 14.7 mM. Tf2-12natAI 

mobilization frequency was determined as the proportion of ClonNAT resistant colonies 

from the total number of viable colonies using the mean of medium method. Average values 

determined by mean of medium analysis with a minimum of 30 repeats. Error bars indicate 

±SEM. 
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5.6 Discussion  

The activity of retrotransposons is commonly upregulated in response to 

environmental changes (Hunter et al., 2013; Grandbastien, 2015; Negi et al., 2016). 

One natural stress is a shortage of nutrients, such as sources of carbon and nitrogen. 

In budding yeast S. cerevisiae, nutrient deficiency was shown to activate Ty elements 

at both transcriptional and post-transcriptional levels (Morillon et al., 2000; Dai et al., 

2007). However, the impact of changes in nutrient availability on the activity of S. 

pombe Tf retrotransposons has not been well studied.  

Previous research has demonstrated that environmental factors such as temperature, 

oxidative stress, and hypoxia affect the expression of Tf2 elements. Glucose 

concentration has also been shown to influence the modification state of the chromatin 

associated with Tf2 elements (Chen et al., 2003; Sehgal et al., 2007; Yamanaka et al., 

2013; Murton et al., 2016). However, the impact of culture media on Tf2 has not been 

reported. EMM has been used for four decades and has been used in many plasmid-

based assays of Tf1/2 activity. (Hickey et al., 2015; Sangesland et al., 2016; Rai et al., 

2017). However an assessment of the impact of EMM medium upon the activity of an 

integrated Tf2 mobilization reporter has not been performed. Interestingly, a 

quantitative analysis of the transcriptome in proliferating cells grown in EMM indicated 

that Tf2 mRNA is present at ~1 copy per cell (Marguerat et al., 2012). Under these 

conditions protein encoding genes produce a median of 2.4 transcripts per cell 

(Marguerat et al., 2012). This suggests that when cells are cultured in EMM Tf2 

elements are not silenced. 

The constitutive activation of the Sre1 transcription factor (sre1-N) increases Tf2 

expression and mobilization to a similar degree (~12 fold and ~20 fold respectively) 

(Murton et al., 2016). In contrast, cell culture in EMM (as opposed to YE5S) increases 

expression ~6 fold while mobilization increases ~100 fold. This suggests that culture 

in EMM influences Tf2 activity at both transcriptional and post-transcriptional levels. 

The expression of Tf1 and Tf2-11 was not induced by culture in EMM suggesting that 

these elements lack the necessary response element(s) in their LTRs. LTR sequence 

comparisons suggest that this element is most likely located between base pairs ~60 

and ~136 in the Tf2 LTR just upstream of the TATA box (Fig. 5.2). It would be 

interesting to perform a mutational analysis of this region in order to see whether an 
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‘EMM’ response element could be located. The data also suggested that the 

mechanism may involve the loss of HIRA mediated repression. However, more 

experiments on other HIRA complex proteins (Slm9, Hip3 and Hip4) are needed to 

reveal how the activity of the HIRA complex is regulated in response to culture of cells 

in EMM.  

A major difference between YE5S and EMM is the availability of amino acids in the 

culture medium. YE5S is composed of yeast extract (YE), glucose, and five 

nucleobase and amino acid supplements. Commercial YE corresponds to the soluble 

fraction of molecules released after either yeast autolysis or controlled enzymatic lysis 

and contains about 4,600 different oligopeptides stretching from 6 to greater than 30 

amino acids in length (Proust et al., 2019). Therefore, it was hypothesized that high 

level of amino acids would repress Tf2 expression particularly as amino acid starvation 

induces Tf2 expression (Duncan et al., 2018). However, amino acids (leucine and 

histidine) levels seemed only to have a modest effect on Tf2 expression and none on 

mobility (Fig. 5.6AB). Also, changing the nitrogen source from ammonium to glutamate 

(another good nitrogen source) or proline (a poor source) had only little impact on both 

transcription and mobility. However, the discovery that phthalate has a great impact 

on Tf2 overshadows the results of the swapping of nitrogen sources since the EMM 

medium used with different nitrogen sources contains potassium phthalate as a pH 

buffering agent. To confirm the effects of nitrogen sources on Tf2, the EMM medium 

with phthalate replaced by sodium acetate should be used. 

Ammonium ions were shown to be important for the increased activity of Tf2 when 

cells are cultured in EMM. In S. cerevisiae, the ammonium transporter Mep2, which is 

a member of the Amt/Mep/Rh family of transporters is responsible for the uptake and 

signal transduction of ammonium (van den Berg et al., 2016). The low-capacity, high-

affinity receptor/sensor Mep2, but not other ammonium transporters (Mep1 and 3), 

functions in fungal development and initiates a signaling cascade that leads to 

morphology changes to filamentous (pseudohyphal) growth under nitrogen limitation 

conditions (Lorenz and Heitman, 1998; van den Berg et al., 2016). The same 

ammonium transporter/methylammonium permease (Amt/Mep) family was identified 

in S. pombe and is comprised of Amt1, Amt2 and Amt3 (Mitsuzawa, 2006). The 

characteristics of the three Amt proteins were briefly analysed and Amt1 is required 

for ammonium limitation-induced filamentous invasive growth (Mitsuzawa, 2006). 
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However, it is not clear whether Amt1 is the S. pombe ammonium transceptor. Tf2-6 

lacZ expression and Tf2-12natAI mobilization assays revealed that the loss of amt1+ 

had no effect on expression but slightly reduced mobilization (data not shown). Given 

the effect of ammonium ions on activity, it would be interesting to analyse Tf2 

expression and mobilization in amt1Δ amt2Δ amt3Δ double and triple mutants, but 

again the EMM medium in which phthalate is replaced by sodium acetate should be 

used to avoid the confounding effects of phthalate.   

Potassium phthalate, is used as a pH buffering agent in EMM and replaced sodium 

acetate (Nurse, 1975). However, how phthalate induces Tf2 expression is unclear as 

little is known about its impact on intracellular signaling pathways. Phthalates are 

widely used as plasticizers to soften vinyl and PVC compounds (Li and Suh, 2019). 

Because of their clear syrupy consistency, low water solubility, high oil solubility and 

low volatility, phthalates are present in a wide range of products such as household 

cleaners, food packaging, cosmetics and the enteric coatings of pharmaceutical pills 

and nutritional supplements. The use of phthalates is currently under debate due to 

the potential risk to health through environmental pollution (Esnault et al., 2019; Li and 

Suh, 2019). Phthalates are classified as endocrine disruptors that interfere with normal 

hormonal mechanisms in humans and are linked to problems with male fertility, such 

as reduced quality of semen, DNA damage in sperm, decreased sperm motility and 

semen volume (Bansal et al., 2018; Zamkowska et al., 2018; Li and Suh, 2019). 

Phthalates have also been shown to be associated with DNA damage and oxidative 

stress in humans and earthworms (Zhao et al., 2015; Huen et al., 2016; Huang et al., 

2018; Song et al., 2019). The impact of phthalates on retroelements is poorly 

understood but maternal exposure to phthalates influences the DNA methylation levels 

of LINE-1 and Alu retroelements (Zhao et al., 2015; Huen et al., 2016; Zhao et al., 

2016; Huang et al., 2018). The hypomethylation of LINE-1 and Alu elements may 

potentially link phthalates to genome instability (Huang et al., 2018).  

The processes of DNA damage and oxidative stress signalling are well characterized 

in fission yeast, and so it would be interesting to determine how phthalate impacts on 

these processes. Furthermore, during this study, Levin and co-workers reported that 

phthalate along with other stress inducing agents such as caffeine and the heavy metal 

cobalt increased the mobilization of Tf1 elements (Esnault et al., 2019). It is clear that 
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phthalate induces the Tf retroelements in fission yeast, however the mechanisms 

remain to be determined.  



140 
 

Chapter 6 TOR system and retrotransposon 

6.1 Introduction 

Target of rapamycin (TOR) was first discovered as the target of the 

immunosuppressive and anticancer drug rapamycin (Heitman et al., 1991). TOR 

proteins are serine/threonine protein kinases which are structurally and functionally 

conserved from yeasts to human (Wullschleger et al., 2006). Rapamycin inhibits TOR 

activity by forming a complex with FKBP12 which binds to and inhibits its activity 

(Harris and Lawrence, 2003). TOR proteins function as master regulators of cell 

growth in all eukaryotes, including worms, flies and plants, and mediate responses to 

changes environmental nutrient availability (Chiu et al., 1994; Oldham et al., 2000; 

Long et al., 2002; Menand et al., 2002; Alvarez and Moreno, 2006). In budding yeast 

S. cerevisiae and fission yeast S. pombe, there are two TOR proteins (Tor1 and Tor2) 

different from other eukaryotes that generally have only one TOR. Nonetheless, TOR 

proteins forms two multiprotein complexes which are structurally and functionally 

distinct: TOR complex 1 (TORC1) and TOR complex 2 (TORC2) (Wullschleger et al., 

2006; Avruch et al., 2009). In S. pombe, TORC1 contains the essential catalytic 

subunit, Tor2, along with Mip1 (homolog of Kog1) and Wat1 (Lst8 homolog) while 

TORC2 contains Tor1, Sin1 (Avo1 homolog), Ste20 (Tsc1/Avo3 homolog) and Wat1 

(Hayashi et al., 2007; Matsuo et al., 2007; Otsubo and Yamamato, 2008). As in other 

eukaryotes, TORC1 is the key sensor that in integrates environmental nutrient status 

with cell growth and proliferation. Fission yeast TORC2 is not essential for growth and 

is involved in the regulation of a range of processes including sexual differentiation, 

actin organization and heterochromatin (Otsubo and Yamamato, 2008) 
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6.2 Rapamycin stimulates Tf2 expression and mobilization.  

The TOR network is central to the co-ordination of growth and proliferation with the 

nutrient environment (Weisman, 2016). The finding that the activity of Tf2 

retrotransposons is markedly influenced by the culture medium prompted the 

examination of the impact of TOR signalling on these retrotransposons. To investigate 

whether Tf2 retrotransposons are regulated by TOR, cells harbouring the Tf2-12natAI 

mobilization reporter were grown in rich medium YE5S either in the presence or 

absence of the drug, rapamycin.  Rapamycin specifically reduces the activity of the 

TORC1 complex, which in all eukaryotes functions as the major nutrient sensor 

(Weisman, 2016). Strikingly, a huge increase in the frequency of ClonNAT resistant 

colonies was observed when cells were grown in the presence of rapamycin (100 nM) 

(Fig. 6.1), indicating that the activity of Tf2 retrotransposons is upregulated following 

exposure to this drug.  
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Figure 6.1 Rapamycin increases the activity of the Tf2-12natAI mobilization reporter. 

Cells containing Tf2-12natAI were grown in 5 ml YE5S with or without rapamycin (100 nM) for 

2 nights at 30°C.  The indicated volumes of these saturated cultures was then harvested, 

resuspended in H2O and spread onto YE5S agar containing 75 µg/ml ClonNAT. Plates were 

incubated at 30°C until colonies appeared. 
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The data described above demonstrate that rapamycin stimulates the activity of Tf2 

retrotransposons. In order to further investigate this the expression of Tf2 elements 

was examined following the addition of rapamycin to the medium (Fig. 6.2A, B). β-

galactosidase assays revealed that rapamycin resulted in a ~10 fold increase in 

expression from a Tf2-6 lacZ reporter. Furthermore, qRT-PCR assays demonstrated 

that Tf2 mRNA levels increased ~3 fold, when rapamycin was present in the culture 

medium. Next, a fully quantitative mobilization assay was carried out using the Tf2-

12natAI reporter (Fig. 6.2C). A huge increase in Tf2 mobilization (~1000 fold) was 

observed in the presence of rapamycin (Fig. 6.2C). Indeed, growth in rich (YE5S) 

medium containing rapamycin results in a mobilization frequency that is even higher 

than when cells are grown in minimal (EMM) medium (Fig. 6.2D).   
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Figure 6.2 Rapamycin induces Tf2 expression and mobilization 

(A) Tf2-6 lacZ strains were grown at 30°C in YE5S either with or without 100 nM rapamycin 

to mid-log phase before being collected for use in quantitative β-galactosidase assays. 

Values shown represent the average of 8 biological repeats assayed in duplicate and error 

bars indicate ±SEM.  

(B) RNA was extracted from cells cultured to mid log phase at 30°C in YE5S either with or 

without 100 nM rapamycin. Tf2 mRNA levels were determined by RT-qPCR to detect 

transcripts from the 13 full length Tf2 elements and normalised to act1+ mRNA. Data is the 

mean of at least 3 biological repeats and error bars indicate ±SEM. 

(C) Tf2-12natAI mobilization frequency was determined as the proportion of ClonNAT 

resistance colonies from the total number of viable colonies using the mean of medium 

method with a minimum of 30 repeats. Error bars indicate ±SEM.  

(D) A table showing Tf2 mobilization frequencies in the indicated growth medium.  
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6.3 Inhibition of TORC1 using caffeine does not induce the expression of Tf2 

Although rapamycin inhibits the activity of the S. pombe TORC1 complex, this 

inhibition is incomplete (Takahara and Maeda, 2012). The addition of rapamycin in 

combination with caffeine was suggested to result in a more complete inhibition of 

TORC1 signalling that results in the induction of nitrogen starvation-responsive gene 

expression and autophagy (Takahara and Maeda, 2012). Moreover, caffeine was 

suggested to affect TORC1-dependent processes differently to rapamycin and 

augment the phenotypes associated with rapamycin (Rallis et al., 2013). Interestingly, 

caffeine was also recently identified as one of the stresses that induces Tf1 mobility in 

S. pombe, suggesting that caffeine is also a potential candidate to influence Tf2 activity 

(Esnault et al., 2019). However, quantitative β-galactosidase assays indicated that 

caffeine did not increase expression of a Tf2-6 lacZ reporter and moreover, the 

combination of caffeine and rapamycin in the growth medium actually reduced Tf2 

expression relative to the rapamycin alone condition (Fig. 6.3). This suggests that the 

‘partial’ inhibition of TORC1 by rapamycin is sufficient to fully induce Tf2 expression. 
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Figure 6.3 Caffeine does not influence Tf2 activity 

Tf2-6 lacZ strains were grown at 30°C in YE5S with the either 100 nM rapamycin, 10 mM 

caffeine or both to mid-log phase before being collected for use in quantitative β-

galactosidase assays. Values shown represent the average of 8 biological repeats assayed 

in duplicate and error bars indicate ±SEM.  
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6.4 Rapamycin does not stimulate Tf2 activity when cells are cultured in EMM 

Since culture medium has big influence upon the activity of Tf2 retrotransposons the 

impact of adding rapamycin to cells cultured in minimal EMM medium was determined. 

As EMM contains a good nitrogen source (ammonium) the TORC1 complex is active 

when cells are grown in this medium. Therefore it was surprising that the addition of 

rapamycin to EMM medium did not significantly increase the expression of a Tf2-6 

lacZ reporter. One explanation could be an upper limit of Tf2 expression has already 

been achieved when cells are grown in EMM.  Another reason could be that the activity 

of the TORC1 complex is lower when cells are grown in EMM and that this is sufficient 

to induce Tf2 retrotransposons. Consistent with the analysis of Tf2 expression, there 

is almost no changes in mobilization frequency was observed when rapamycin was 

added to EMM, when compared to the ~ 1,000 fold increase by addition of rapamycin 

in rich medium (Fig. 6.4B). Therefore the effect of rapamycin seems to be limited to 

rich media. 
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Figure 6.4 Rapamycin cannot stimulate Tf2 activity when cells are grown in EMM. 

(A) Tf2-6 lacZ strains were grown at 30°C in EMM with or without 100 nM rapamycin to 

mid-log phase before being collected for use in quantitative β-galactosidase assays. 

Values shown represent the average of 8 biological repeats assayed in duplicate and error 

bars indicate ±SEM. p value was calculated using t test.  

(B) Tf2-12natAI mobilization frequency was determined as the proportion of ClonNAT 

resistant colonies from the total number of viable colonies using the mean of medium 

method. Average values determined by mean of medium analysis with a minimum of 30 

repeats. Error bars indicate ±SEM. p value was calculated using t test.  
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6.5 Rapamycin does not activate the expression of Tf1 and Tf2-11 

As described previously (Chapter 5), portions of the LTR (promoter) regions differ 

between the majority of the Tf2 elements and the Tf2-11 and Tf1 elements (Fig. 5.2). 

To determine whether the expression of Tf1 and Tf2-11 is also rapamycin-responsive, 

β-galactosidase assays were carried out on strains containing integrated Tf1 and Tf2-

11 lacZ reporters (Fig. 6.5). Expression from the Tf1 reporter was only slightly 

increased by the presence rapamycin and no increase in expression from Tf2-11 was 

observed. Therefore the Tf family of elements are differentially expressed in the 

presence of rapamycin. Furthermore, the data suggest that the DNA elements in the 

Tf2 LTR that mediate the response to rapamycin are likely to be located between base 

pairs 60 and 160 (Fig. 5.2A).  
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Figure 6.5 Rapamycin strongly activates Tf2, but not Tf1 or Tf2-11. 

Strains with the indicated lacZ reporters were grown at 30°C in YE5S with or without 

rapamycin (100 nM) to mid-log phase before being collected for use in quantitative β-

galactosidase assays. Values shown represent the average of 8 biological repeats assayed 

in duplicate and error bars indicate ±SEM. p values were calculated using a t test. 
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6.6 The inactivation of Tor2 using a conditional allele or a direct chemical 

inhibitor does not induce Tf2 expression 

Rapamycin binds to the cellular protein FKBP12 in S. cerevisiae and this FKBP12-

drug complex inhibits TORC1 (Heitman et al., 1991). In fission yeast, rapamycin binds 

to the FKBP12 homologue, Fkh1 to form a protein-drug complex that inhibits the 

activity of Tor2 in TORC1 (Weisman and Choder, 2001; Weisman et al., 2001; Ikai et 

al., 2011). The results described above suggest that inhibiting TORC1 signaling using 

rapamycin results in increased activity of Tf2 retrotransposons. To further investigate 

this, alternative methods for inactivating Tor2 (and thus TORC1 signalling) were 

employed. As tor2+ is an essential gene in S. pombe, a temperature sensitive mutant 

allele (tor2-51) (Alvarez and Moreno, 2006; Matsuo et al., 2007) was used. Wild type 

and tor2-ts cells containing the Tf2-6 lacZ reporter were grown to mid log phase at a 

permissive temperature and then shifted to a restrictive temperature (34C). The 

expression of Tf2-6 lacZ in the tor2-ts mutant did not increase even after 8 hours at 

the restrictive temperature (Fig. 6.6A).  This was surprising as this treatment has 

previously been shown to result in the increased expression of genes that are 

repressed by TORC1 (Matsuo et al., 2007). One possible explanation is that β-

galactosidase is not stable at higher temperatures in the absence of functional Tor2. 

Therefore, the global level of Tf2 mRNA was monitored by RT-qPCR (Fig. 6.6B). 

Consistent with the lacZ assays, Tf2 mRNA levels did not increase following the 

inactivation of Tor2 protein using the temperature sensitive allele. 

In order to confirm that the temperature shift of the tor2 ts strain was sufficient to 

inactivate Tor2, isp4+ mRNA levels were measured by RT-qPCR. The isp4+ gene 

encodes an OPT oligopeptide transmembrane transporter and expression of this gene 

is known to be induced by inactivation of Tor2 (Fig. 6.6C) (Matsuo et al., 2007). This 

analysis clearly showed that in the tor2-ts background isp4 mRNA levels were 

massively increased by incubation at the restrictive temperature (Fig. 6.6C). As 

expected, the growth of the tor2-ts strain was severely inhibited by incubation at the 

restrictive temperature and as a result Tf2 mobilization assays following Tor2 

inactivation were not possible. Nonetheless, the results suggest that the loss of Tor2 

function does not result in the increased expression of Tf2. Given the impact of 

rapamycin on Tf2 elements this was very surprising.    
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Figure 6.6 Inactivation of Tor2 does not affect Tf2 expression 

(A) Tf2-6 lacZ strains were grown at 25°C in YE5S to mid-log phase before being collected 

and resuspended in fresh YE5S medium prewarmed to 34°C for the indicated times (0, 4 

and 8 hours). Samples were then processed for quantitative β-galactosidase assays. 

Values shown represent the average of 8 biological repeats assayed in duplicate. Error 

bars indicate ±SEM 

(B-C) RNA was extracted from cells treated as described in (A). RNA samples were 

analysed by RT-qPCR. Tf2 and isp4 mRNA levels were normalised using act1+ mRNA and 

are expressed relative to the wt time 0 control. Data is the mean of at least three biological 

repeats and error bars indicate ±SEM. 
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Next, an alternative chemical inhibitor of Tor kinases called Torin1 (Torin) was 

employed to inhibit TORC signalling. Unlike rapamycin, Torin1 is a direct inhibitor and 

blocks the active site of Tor kinases. High concentrations of this drug completely 

arrests growth without cell death in S. pombe (Atkin et al., 2014). Torin1 binds to the 

glycine at position 2040 within the ATP-binding pocket of the kinase domain of Tor2 

to inhibit its activity which provides an FKBP12 protein independent mode of inhibition 

towards TORC1 (Atkin et al., 2014).  

As expected the addition of Torin, resulted in increased levels of isp4+ mRNA levels 

consistent with the inhibition of TORC1 (Fig. 6.7). However, the expression of a Tf2-

lacZ reporter was not induced by the addition of Torin1 to the culture medium (Fig. 

6.7). Also, there was a no significant increase in Tf2 mRNA levels as measured by 

RT-qPCR. Therefore, neither the inactivation of Tor2 using a ts allele or a direct 

chemical inhibitor induces the expression of Tf2 retrotransposons. 

The mobility of Tf2 was also investigated. Surprisingly, the mobilization frequency was 

massively (~500 fold) increased when Torin was added to the culture medium (Fig. 

6.8). This suggests that TORC signalling suppresses steps in the lifecycle of Tf2 

retrotransposons at a post-transcriptional level. 
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Figure 6.8 Torin stimulates the mobility of Tf2 elements. 

Cells with the Tf2-12natAI mobilization reporter were grown in YE5S for two days at 30C 

either in the absence or presence of Torin (25 nM). Mobilization frequency was determined 

as the proportion of ClonNAT resistant colonies in the total number of viable colonies using 

the mean of medium method with a minimum of 30 repeats. Error bars indicate ±SEM. 
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6.7 Expression of Tf2 is not TORC2 dependent 

Studies of global gene expression indicated that Torin1 inhibits the function of both 

TORC1 and TORC2 complexes (Lie et al., 2018). The rapamycin insensitive TORC2 

complex is composed of the kinase Tor1, the homologue of mammalian Rictor, Ste20, 

Sin1 and Wat1/Pop3 and functions in opposition to TORC1 (Wullschleger et al., 2006; 

Matsuo et al., 2007; Ikai et al., 2011; Rallis et al., 2013).  To investigate the influence 

of TORC2 on the activity Tf2 retrotransposons, strains with mutations in genes 

encoding the Tor1 kinase (tor1Δ) and Rictor Ste20 (ste20Δ) were employed. Relative 

to wild type no change in was observed in tor1Δ and ste20Δ mutant strains (Fig. 6.9A) 

suggesting that the removal of TORC2 protein has no influence on rapamycin induced 

Tf2 expression. However, the frequency of mobilization of Tf2 in the presence of 

rapamycin was reduced in tor1Δ and ste20Δ relative to wild type with a slight increased 

base mobility rate (Fig. 6.9B). This indicates that the stimulation of Tf2 mobilization 

that occurs after the addition of rapamycin is partially dependent upon TORC2.  
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Figure 6.9 Influence of TORC2 on Tf2 activity. 

(A) Tf2-6 lacZ strains were grown at 30°C in YE5S with or without rapamycin (100 nM) to 

mid-log phase before being collected for use in quantitative β-galactosidase assays. 

Values shown represent the average of 8 biological repeats assayed in duplicate and error 

bars indicate ±SEM.  

(B) Tf2-12natAI mobilization frequency was determined as the proportion of ClonNAT 

resistance colonies from the total number of viable colonies using the mean of medium 

method. Average values determined by mean of medium analysis with a minimum of 30 

repeats. Error bars indicate ±SEM.  
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6.8 The FKBP12 homologue, Fkh1 is required for the transcriptional response 

to rapamycin 

The results described above indicate that while rapamycin induces the expression of 

Tf2 retrotransposons, other methods of inhibiting TORC1 do not. Rapamycin functions 

by binding to FKBP12, which in S. pombe is called Fkh1 (Weisman et al 2001 ref). To 

investigate the role of FKBP12 the expression of a Tf2-6 lacZ reporter was analysed 

in an fkh1Δ background. This revealed that the loss of Fkh1 abolished the induction of 

Tf2 expression in response to rapamycin (Fig. 6.10A). To confirm that the loss of Tf2 

induction under rapamycin conditions is not due to instability of β-galactosidase, Tf2 

mRNA levels were analysed by RT-qPCR (6.10B). No increase of Tf2 mRNA was 

observed in fkh1Δ confirming that the induction of Tf2 expression in response to 

rapamycin is FKBP12 dependent. 

In S. cerevisiae, screening for rapamycin resistance identified a novel yeast gene 

FAP1, which encodes a homologue of human transcription factor NFX1 (Kunz et al., 

2000). Kunz and co-workers also showed that Fap1 interacts physically with FKBP12 

and this interaction was abolished by rapamycin or by mutation that alter the drug 

binding/active site of FKBP12 or surface residues (Kunz et al., 2000).  In S. pombe, 

the homologue of S. cerevisiae Fap1 and human NFX1 has not been characterised. 

However BLAST searches identified an ORF (SPCC18.03) that encodes a homologue 

of these proteins which was named nfx1+ with a low degree of sequence homology.  

Based on the data from S. cerevisiae it was hypothesized that rapamycin binding to 

the FKBP12 protein would release the putative Nfx1 transcription factor which could 

then activate Tf2 expression (Fig. 6.10C) However, analysis of an nfx1Δ strain showed 

no defect in the induction of Tf2 expression in response to rapamycin.  

The mobility of Tf2 in fkh1Δ was also investigated using the Tf2-12natAI reporter (Fig. 

6.10D). Unsurprisingly, the loss of rapamycin binding protein Fkh1 abolished the 

stimulatory effect of rapamycin on mobilization. Overall, these results indicate that the 

effect of rapamycin on both expression and mobilization Tf2 is dependent upon the 

FKBP12 protein Fkh1. 
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Figure 6.10 Role of the FKBP12 protein, Fkh1 on Tf2 activity 

(A) A hypothetical model for the interaction of Fkh1-Nfx1 in the presence of rapamycin.  

(B) Tf2-6 lacZ strains were grown at 30°C in YE5S with or without rapamycin (100 nM) to 

mid-log phase before being collected for use in quantitative β-galactosidase assays. Values 

shown represent the average of 8 biological repeats assayed in duplicate and error bars 

indicate ±SEM.  

(C) RNA was extracted from cells cultured at 30°C in YE5S with or without rapamycin (100 

nM) to mid log phase and subjected to qRT-PCR to detect Tf2 transcripts. Values shown 

represent at least three biological repeats and error bars indicate ±SEM. 

(D) Tf2-12natAI mobilization frequency was determined as the proportion of ClonNAT 

resistance colonies from the total number of viable colonies using the mean of medium 

method with a minimum of 30 repeats. Error bars indicate ±SEM.  
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6.9 The GATA transcription factor Gaf1 does not activate Tf2 expression in 

response to rapamycin. 

In order to identify proteins that mediate the rapamycin-dependent increase in Tf2 

expression transcription factors that function downstream of TORC1 were analysed. 

In nitrogen-rich conditions, TORC1 positively regulates the phosphorylation and 

maintains the cytoplasmic status of the GATA transcriptional factor Gaf1 (Laor et al., 

2015). When TORC1 is inactivated, Gaf1 undergoes dephosphorylation and 

translocates into nucleus (Laor et al., 2015). However, the rapamycin dependent 

increase in expression of Tf2 was not affected by the loss of Gaf1 (Fig. 6.11). 
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Figure 6.11 The loss of Gaf1 does not influence Tf2 expression 

(A) Tf2-6 lacZ strains were grown at 30°C in YE5S with or without rapamycin (100 nM) to 

mid-log phase before being collected for use in quantitative β-galactosidase assays. 

Values shown represent the average of 8 biological repeats assayed in duplicate and error 

bars indicate ±SEM.  

(B) Tf2-12natAI mobilization frequency was determined as the proportion of ClonNAT 

resistance colonies from the total number of viable colonies using the mean of medium 

method with a minimum of 30 repeats. Error bars indicate ±SEM.  
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6.10 Forkhead transcription factor Fhl1 and its putative co-activator Crf1 are 

essential for Tf2 activity 

Four forkhead type proteins called Sep1, Mei4, Fkh2 and Fhl1 have been identified in 

S. pombe (Pataki et al., 2017). Although S. pombe Fhl1 is a homologue of S. 

cerevisiae Fhl1 that controls ribosomal gene expression, its function is relatively poorly 

understood. Nonetheless, Pataki and co-workers have suggested that Fhl1 lies 

downstream of TORC1 (Tor2) in S. pombe because the expression of fhl1+ from a 

strong promoter can suppress the rapamycin and temperature sensitivity of tor2-ts 

mutant cells (Pataki et al., 2017), Therefore, a fhl1Δ strain was employed to investigate 

whether Fhl1 is involved in regulating Tf2 activity in response to rapamycin. 

Interestingly, the expression of Tf2 elements was not induced after rapamycin addition 

in an fhl1Δ strain (Fig. 6.12A and B) suggesting that Tf2 expression is under the either 

direct or indirect control of Fhl1, supported by the positive control of isp4 (Fig. 6.12C).  

A high level of Tf2 expression is observed when rapamycin is present and also when 

cells are cultured in minimal medium (Chapter 5). To determine whether this is the 

result of a common mechanism, Tf2-6 lacZ expression was determined in an fhl1Δ 

mutant grown in EMM. No difference in expression relative to wild type cells was 

observed suggesting that the transcriptional response of Tf2 to rapamycin and EMM 

is mediated by distinct mechanisms (Fig. 6.12D). 
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Figure 6.12 The forkhead transcription factor, Fhl1 is required for Tf2 activity 

(A) Tf2-6 lacZ strains were grown at 30°C in YE5S with or without rapamycin (100 nM) to 

mid-log phase before being collected for use in quantitative β-galactosidase assays. Values 

shown represent the average of 8 biological repeats assayed in duplicate and error bars 

indicate ±SEM.  

 (B-C) RNA was extracted from cells cultured at 30°C in YE5S with or without rapamycin 

(100 nM) to mid log phase and subjected to qRT-PCR to detect the indicated transcripts. 

Values shown represent at least three biological repeats and error bars indicate ±SEM.  

(D) Tf2-6 lacZ strains were grown at 30°C in EMM to mid-log phase before being collected 

for use in quantitative β-galactosidase assays. Values shown represent the average of 8 

biological repeats assayed in duplicate and error bars indicate ±SEM. p value was 

calculated using a t test.  
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In budding yeast S. cerevisiae, both TORC1 and Fhl1 participate in the regulation of 

ribosomal protein gene (RPG) transcription (Fig. 6.13) (Lempiainen and Shore, 2009; 

Albert et al., 2016). When TORC1 is active, Fhl1 forms a complex with Rap1, the split 

finger protein Sfp1 and the co-activator, Ifh1 and activates RPG expression. When 

TORC1 is inactive a co-repressor protein called Crf1 (which is an Ifh1 paralogue) 

translocates to the nucleus, competes with Ifh1 and represses transcription (Fig. 6.13) 

(Xiao and Grove, 2009; Albert et al., 2016).  Counterparts of Ifh1 and Crf1 in S. pombe 

have not been functionally characterized, however an ORF (SPAC22H10.11c) has 

been designated crf1+ in Pombase based on its similarity to S. cerevisiae CRF1/IFH1. 

Therefore, the expression of a Tf2-6 lacZ reporter was monitored in crf1Δ background 

(Fig. 6.14A). This showed that the increase in Tf2 expression in response to rapamycin 

is dependent upon Crf1. This suggests that Crf1 functions as co-activator with Fhl1.  

To further investigate the roles of other proteins that are part of the RP gene 

transcription pathway that has been defined in S. cerevisiae, the function of Rap1 

(SPBC1778.02) and Sfp1 (SPAC16.05c) homologues was characterized. Loss of 

Rap1 had only a very minor effect on Tf2 expression while loss of Sfp1 resulted in an 

increase in Tf2 expression both in the absence and presence of rapamycin (Fig. 

6.14A).  

In S. cerevisiae the HMG protein Hmo1 binds to the FKBP12 protein Fpr1 (Dolinski 

and Heitman, 1999) and is also involved in the regulation of RP genes with Fhl1 (Xiao 

and Grove, 2009). Therefore the impact of deleting the S. pombe Hmo1 homologue 

was also investigated. The hmo1Δ mutant showed increased in Tf2 expression in the 

absence of rapamycin and decreased expression in the presence of rapamycin. This 

suggests that this HMG protein is required for the proper regulation of Tf2 

retrotransposons (Fig. 6.14B). 

The mobilization of Tf2 elements was also monitored in both fhl1∆ and crf1∆ mutants. 

Surprisingly, when cells were grown in the absence of rapamycin no mobilization of 

the Tf2-12natAI reporter was detectable in either mutant. Mobilization was also 

undetectable in a crf1Δ mutant when rapamycin was present. In the fhl1Δ mutant 

rapamycin did increase mobilization to a detectable level, however the observed 

frequency was around 500-fold lower than in wild type cells (Fig. 6.14C). These results 

indicate that both Fhl1 and Crf1 are critical for the life cycle of Tf2 elements. 



167 
 

 

Figure 6.13 A schematic representation of the regulation of RP genes by Fhl1 and 

TORC1 signalling in S. cerevisiae 

(A) In S. cerevisiae, during exponential growth, Sch9 kinase activity promotes Ifh1 binding 

on RP gene promoters to stimulate transcription. The association of Rap1 was suggested 

to be required for the subsequent cooperative binding of Hmo1 and Fhl1 at the IFHL site. 

(B) When TORC1 is active, the coactivator Ifh1 binds to Fhl1 to activate RP gene 

expression. Phosphorylated co-repressor, Crf1 translocates into the nucleus and competes 

with Ifh1 for binding to Fhl1 to repress gene transcription when TORC1 is inactive.  

(Adapted from Xiao and Grove, 2009; Albert et al., 2016). 
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Figure 6.14 The putative co-activator, Crf1 is essential for Tf2 activity. 

(A&B) Tf2-6 lacZ strains were grown at 30°C in YE5S with or without rapamycin (100 nM) 

to mid-log phase before being collected for use in quantitative β-galactosidase assays. 

Values shown represent the average of 8 biological repeats assayed in duplicate and error 

bars indicate ±SEM.  

(C) Tf2-12natAI mobilization frequency was determined as the proportion of ClonNAT 

resistance colonies from the total number of viable colonies using the mean of medium 

method with a minimum of 30 repeats. Error bars indicate ±SEM.  
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6.11. The Pka pathway is critical for the transcriptional response of Tf2 

retrotransposons to rapamycin. 

In S. cerevisiae the activity of Fhl1 is under the control of the Pka signalling pathway 

(Martin et al., 2004). Therefore, the impact of deletion of pka1+ upon Tf2 lacZ 

expression was investigated. In the pka1Δ strain no increase in expression was 

observed in the presence of rapamycin. Therefore, the induction of Tf2 transcription in 

response to rapamycin is dependent upon the Pka signalling pathway (Fig. 6.15A). 

Next, the potential role of the Sty1 stress activated MAPK kinase pathway was 

assessed (Fig. 6.15B). This revealed that Sty1 was not required for the upregulation 

of Tf2 expression in response to rapamycin.  The mobility of Tf2 elements was also 

determined in a pka1Δ background and when rapamycin was present in the medium 

an approximately 2 fold reduction in Tf2-12natAI mobilization frequency was observed. 

Therefore, although the Pka pathway is required for the rapamycin-dependent 

transcriptional upregulation of Tf2, it is only partially required for the stimulation of 

posttranscriptional step(s) in the life cycle (Fig. 6.15C). 
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6.12 Discussion  

In the course of this study, rapamycin was identified as a drug which activates both 

the expression and mobilization of Tf2 elements. Rapamycin inhibits TORC signalling 

cascades but only TORC1 is rapamycin-sensitive while TORC2 is rapamycin-

insensitive (Zheng et al., 1995). Therefore, the results described in this chapter initially 

suggested that the activity of Tf2 elements is suppressed by the TORC1 signalling 

cascade. However, the inactivation of TORC1 using a temperature sensitive tor2 allele 

(tor2-51) (Alvarez and Moreno, 2006) did not result in increased Tf2 expression. 

Furthermore the use of the direct inhibitor, Torin1 also did not activate Tf2 expression. 

This suggested that rapamycin increases Tf2 expression in a TORC1-independent 

manner. This was unexpected as the cellular effects of rapamycin are believed to 

operate through inhibition of TORC1 signalling (Nakashima et al., 2010; Ikai et al., 

2011). However TORC1-independent effects of rapamycin are not without precedent. 

Rapamycin has been shown to have a TORC-independent function in S. cerevisiae. 

While transcription-coupled nucleotide excision repair (TC-NER) is inhibited by 

rapamycin, a tor1∆ tor2ts mutant grown at the non-permissive temperature (which 

essentially lacks both TORC1 and TORC2) has wild-type rates of repair. The inhibitory 

influence of rapamycin on TC-NER was abolished in cells lacking the FKBP12 

homologue, Fpr1 (Limson and Sweder, 2010). Similarly, the influence of rapamycin on 

Tf2 expression was found to be dependent upon the S. pombe FKBP12 homologue, 

Fkh1. 

Several lines of evidence suggest that, in addition to increasing expression, rapamycin 

also stimulates other steps in the Tf2 life cycle.  Firstly, rapamycin increases Tf2 

expression by ~10 fold, but increases mobilization frequency by about three orders of 

magnitude. Secondly, while treatment with the direct inhibitor Torin1 does not increase 

expression, it does increase Tf2 mobilization. Taken together, the results suggest 

rapamycin induces Tf2 expression through a TORC1-independent mechanism but its 

influence on mobilization is at least partly dependent upon its inhibitory effect on 

TORC1 (Fig. 6.16).  

Deletion of the TORC2 genes, tor1+ and ste20+ had no impact on the expression of 

Tf2 elements following the addition of rapamycin. However, the tor1Δ and ste20Δ 

mutants showed a significant decrease in the induction of Tf2 mobilization relative to 
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wild type cells after rapamycin. Thus the high level of retrotransposon mobility in the 

presence of rapamycin is at least partly dependent upon the integrity of the TORC2 

pathway. These findings are in good agreement with the results of the mobility assays 

using the drug Torin1. This drug inhibits both Tor1 and Tor2 kinase activities by direct 

binding (Atkin et al., 2014) and would therefore be predicted to inhibit both TORC1 

and TORC2 signalling pathways. Consistent with this finding Torin1 increases Tf2 

mobilization but not to the same degree as rapamycin (which would only inhibit TORC1) 

(Fig. 6.16)  

In S. cerevisiae, rapamycin resistance can be conferred by overexpressing a FKBP12 

(Fpr1) binding protein called Fap1, which competes with rapamycin for Fpr1 binding 

(Kunz et al., 2000). Fap1 is an evolutionarily conserved protein which physically 

interacts with Fpr1 and blocks the drug-binding/active site of Fpr1 (Kunz et al., 2000). 

Fap1 contains a cysteine-rich DNA-binding motif and the mammalian homologue 

NFX1 functions as a transcription factor. Interestingly, the TORC1-independent effect 

of rapamycin on TC-NER in S. cerevisiae requires Fap1. This prompted the 

examination of the fission yeast homologue of S. cerevisiae Fap1 and mammalian 

NFX1 which is encoded by an uncharacterised ORF, SPCC18.03 (herein named 

nfx1+). However the results showed that the loss of Fkh1 but not Nfx1 abolished the 

effects of rapamycin on Tf2 transcription. Therefore, therefore there is no evidence at 

the moment to indicate that Nfx1 either acts as a transcriptional regulator or interacts 

with the FKBP12 protein Fkh1.  

FKBP12 proteins such as (ScFpr1 and SpFkh1) are peptidyl-prolyl cis-trans 

isomerases. These proteins were isolated in mammalian cells in a drug screen for 

factors that bind FK506 (Kino et al., 1987; Tanaka et al., 1987). Although FKBP12 and 

rapamycin form a complex with Tor kinases there is no strong evidence that FKBP12 

proteins are natural regulators of TORC signalling. Indeed very little is understood 

about the normal in vivo function of FKBP12 proteins. ScFpr1 interacts with calcineurin 

even in the absence of FK506, and there is some genetic evidence that it is a negative 

regulator of calcineurin function (Cardenas et al., 1994).  In mammalian cells FKBP12 

interacts with several intracellular signal transduction proteins such as type I TGF-β 

receptors and calcium release channels such as the skeletal muscle ryanodine 

receptor (Siekierka et al., 1989; Michnick et al., 1991; Van Duyne et al., 1991). 

However functional information is lacking.  
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In this work the forkhead transcription factor Fhl1 was identified as a regulator of Tf2 

activity. Fhl1 is a homologue of S. cerevisiae Fhl1 and was recently identified in S. 

pombe as a transcription factor downstream of the TORC1 signalling cascade (Pataki 

et al., 2017). Fhl1 targets ~75 genes in S. pombe cells and mainly regulates genes 

that are responsible for the starvation responses, mating and sporulation (Pataki et al., 

2017). Whether SpFhl1 is directly phosphorylated by the TORC1 pathway remains to 

be determined. Furthermore, the in vivo binding sites of SpFhl1 are also yet to be 

characterised and no genome-wide or gene-specific chromatin immunoprecipitation 

(ChIP) experiments have been performed. As a result it is not clear whether SpFhl1 

binds directly to Tf2 LTRs. To address this issue epitope tagging experiments were 

initiated, however due to time constraints no ChIP experiments were completed. 

Therefore it remains possible that Fhl1 indirectly regulates Tf2 expression, particularly 

as no obvious forkhead transcription factor binding sites are located in Tf2 LTRs (data 

no shown). It is very likely that Fhl1 influences Tf2 activity at multiple levels because 

loss of Fhl1 totally abolished Tf2-12natAI mobilization when cells are grown in rich 

(YE5S) medium in the absence of rapamycin (Fig. 6.14C). This may reflect a role for 

SpFhl1 in the regulation of ribosomal protein genes, which could in turn impact upon 

ribosomes and thus Tf2 protein levels. 

In budding yeast, ScFhl1 regulates ribosomal protein (RP) genes and forms a complex 

with Ifh1 or Crf1. Although these proteins are share sequence similarity, Ifhl1 functions 

as a co-activator protein while Crf1 is a co-repressor (Albert et al., 2016). After 

rapamycin treatment, Ifhl1 is replaced with Crf1 and removed from ribosomal protein 

gene promoters (Schawalder et al., 2004). Prior to this work, co-activator/co-

repressors of SpFhl1 had not been identified.  BLAST searches of the S. pombe 

genome database revealed a single uncharacterised ORF (SPAC22H10.11c) with 

homology to ScIfh1/Crf1 which was named SpCrf1. The results strongly suggest that 

SpCrf1 acts as a co-activator for SpFhl1. No rapamycin dependent increase in Tf2 

expression was observed in a crf1Δ background. Furthermore, like loss of SpFhl1, the 

loss of SpCrf1 abolished Tf2 mobilization when cells were cultured in YE5S (Fig. 

6.14C). It will be interesting to determine if there is a direct physical interaction 

between SpFhl1 and SpCrf1 and if this interaction is regulated by TORC1 signalling. 
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While both the forkhead transcription factor, Fhl1 and the FKBP12 protein, Fkh1 are 

required for the rapamycin dependent increase in Tf2 expression the nature of 

connection between these proteins remains to be determined. Interestingly, in S. 

cerevisiae Berger and co-workers showed an interaction between Fpr1 (FKBP12) and 

the high mobility group (HMG) protein, Hmo1 (Berger et al., 2007). This is interesting 

as Hmo1also interacts with transcription factor Fhl1 and functions in the regulation of 

RP genes in S. cerevisiae (Hall et al., 2006).  The connections between Fhl1, Hmo1 

and Fpr1 (FKBP12) in S. cerevisiae prompted an examination of the role of the S. 

pombe homologue of Hmo1. Loss of SpHmo1 had a distinct impact on Tf2 expression: 

relative to wild type, expression was increased in the absence of rapamycin and 

decreased in its presence. These results suggest that it would be important to 

determine whether Hmo1 physically interacts with Fhl1, Fkh1 and Tf2 LTRs. 

During the course of this work, another study that connected the expression of Tf2 

elements to TORC signalling was published (Nakase and Matsumoto, 2018). In this 

study the authors demonstrated that Tf2 mRNA was induced after nitrogen starvation 

in tsc2Δ mutants or in cells harbouring an up-mutant of the RHEB GTPase (Nakase 

and Matsumoto, 2018). This indicates that the constitutive activation of TORC1 under 

nitrogen starvation induces the expression of Tf2. This induction could be suppressed 

by overexpression of members of the cAMP/glucose signalling pathway Pka1 and the 

TORC2 pathway (Nakase and Matsumoto, 2018).  

The main finding is that the loss of the Tsc1-Tsc2 complex constitutively activates 

TORC1, inhibits autophagy and induces Tf2s expression even in nitrogen poor-

conditions (Nakase and Matsumoto, 2018).  The results are difficult to reconcile with 

the findings of this study which essentially indicate that the TORC1 complex represses 

Tf2 mobilization. However, it is important to note that the experiments of Nakase and 

co-workers were performed using minimal (EMM) medium and under conditions of 

nitrogen starvation. Interestingly, the work in this thesis indicates that the composition 

of the growth medium has a marked influence on Tf2 retrotransposons. Relative to 

rich medium, Tf2 activity is significantly higher when cells are cultured in EMM and 

rapamycin addition to EMM has no effect on Tf2 expression. It is worth noting that the 

high level of Tf2 expression that is observed when cells are cultured in EMM is not 

dependent upon Fhl1. As such the signalling pathways that stimulate Tf2 expression 

in response to ‘rapamycin’ and ‘EMM’ are likely to be distinct. Nonetheless, the results 
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in this thesis indicate that both expression and mobilization of Tf2 LTR 

retrotransposons is subject to control by multiple environment sensing signalling 

pathways. 
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Figure 6.16 Model for the control of Tf2 expression and mobilization via TOR 

signalling cascade. 

The expression of Tf2 highly relayed by the activity of Fkh1-Fhl1 signal. The inhibition effect 

of rapamycin showed a significant induction of Tf2 mobility. High level of Tf2 mobility 

requires the activity of TORC2 for post-transcriptional regulation. 
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Chapter 7 Final Discussion 

The aim of this study was to identify new host and environmental factors that contribute 

to the regulation of the Tf2 LTR retrotransposons of S. pombe. Such studies are 

important as retrotransposons have helped shape the structure and function of 

eukaryotic genomes. LTR retrotransposons also provide a useful model for 

understanding the propagation of infectious retroviruses. Indeed, the analysis of Tf2 

could reveal novel host factors that are essential for retroelement propagation and 

may provide new targets for therapeutic intervention. Furthermore, comparison of the 

Tf family with the Ty elements of S. cerevisiae is insightful as it allows conserved and 

species-specific controls to be elucidated. 

Systematic screens in S. cerevisiae have proved highly informative for identifying the 

host cell machinery that control Ty elements. Unfortunately, the basal mobilization 

frequency of the Tf2-12natAI element proved to be too low to allow high throughput 

screening (Chapter 4). However, the findings outlined in Chapter 5 indicate that the 

basal level of Tf2 mobilization is greatly increased in minimal (EMM) medium. This 

suggests that it may be worth investigating the feasibility of systematic screens using 

EMM as the growth medium. Alternatively, a smaller scale targeted screen could be 

undertaken. For example and Rai and co-workers have identified a set of 61 factors 

that are required for completion of the Tf1 lifecycle (Rai et al., 2017) and so it would 

be informative to determine how many of these are also required for successful Tf2 

propagation.  

The results of Chapter 5 suggest a copy number control (CNC) mechanism is not 

present in S. pombe for Tf elements. However, the results in this Chapter clearly 

demonstrate that Tf2 can ‘highjack’ another retroelement to replicate itself. The results 

also show the potential for crosstalk between retrotransposons. This is potentially 

advantageous for the element because it expands the repertoire of signals that it can 

respond to. Such crosstalk may help explain why a particular stress can lead to a 

global upregulation of retrotransposable elements in certain cases (Negi et al., 2016).  

Analysis of the composition of EMM identified two components (ammonium and 

phthalate ions) that can stimulate the expression and mobilization of Tf2 elements. It 

will be interesting to determine to what extent the signalling pathways for these stimuli 

overlap. The discovery of phthalates stimuli towards retrotransposon activity is 
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important that we convey the relevance of our work on health, well-being and 

economic development. 

Finally, the work in Chapter 6 identified rapamycin as drug that can activate Tf2 

elements. Drugs that activate retroviral elements are potentially useful for ‘flushing out’ 

reservoirs of latent virus (Marsden and Zack, 2013). The results in this chapter indicate 

that rapamycin acts upon Tf2 activity via TORC-independent and –dependent 

mechanisms. Further characterisation of these mechanisms will be important for a 

detailed understanding of the biology of Tf LTR retrotransposons and their impact on 

the genome. 
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