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Abstract 

With transportation volumes continuously increasing, railway networks are now facing 

problems of greater axle loads and increasing vehicle speeds. The most direct consequence is 

the initiation of rolling contact fatigue (RCF) defects in rails, which have become safety 

issues for all types of railway systems and received more attention due to lack of timely 

examination and management. Among different RCF defects, the RCF crack probably 

presents the biggest hazard in rails. Detection and characterisation of RCF cracks aim to 

provide detailed guidelines for safety management and preventative grinding. Unfortunately, 

current nondestructive testing and evaluation techniques are still facing several challenges and 

research gaps. One outstanding challenge is the characterisation of RCF cracks under their 

complex geometries and clustered distributions. One major research gap is how to evaluate 

the probabilistic performance in crack characterisation via a proper framework. 

By combining the advantages of eddy current pulse excitation and infrared thermography, this 

thesis proposes the use of eddy current pulsed thermography (ECPT) technique to address the 

detection and characterisation of RCF cracks in rails. To quantitatively investigate the ECPT’s 

performance in crack characterisation, a performance evaluation framework based on 

probability of detection (POD) analysis is proposed. 

The major contributions of the thesis are summarised as follows: (1) implementations of 

three-dimensional FEM models and a lab-based ECPT system for investigating the 

characterisation of RCF cracks under clustered distributions and geometric influences; (2) 

temporal/spatial-thermal-feature-based ECPT for angular slots and RCF cracks detection and 

characterisation; (3) investigations into the capability and the performance of ECPT for 

characterising angular slots and natural RCF cracks via a POD analysis framework. 

The thesis concludes that the proposed feature-based ECPT system can characterise RCF 

cracks in both light and moderate stages. Based on feature comparison and POD evaluation, 

tempo-spatial-based patterns are better fits for pocket length characterisation. Temporal 

domain-based features show better performances for inclination angle characterisation. A 

spatial domain-based feature, SST, can characterise vertical depths with reasonable POD 

values. One tempo-spatial-based pattern at the early heating stage, IET-PCA, gives the best 

performance for characterising surface lengths. Still, several issues need to be further 

investigated in future work, such as feature selection for crack characterisation, 

three-dimensional reconstruction of RCF cracks, model-assisted POD frameworks for 

improving the effectiveness of POD analysis with a limited number of physical specimens.  
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Chapter 1. Introduction 

This chapter briefly provides the background to rolling contact fatigue (RCF) defect detection 

and the motivations for proposing eddy current pulsed thermography (ECPT) technique for 

the detection and characterisation of RCF cracks in rails, and investigating the performance of 

crack characterisation via the probability of detection (POD) analysis. Research methods are 

determined to achieve the proposed aim and objectives. Accordingly, the overall structure of 

this thesis is outlined. 

1.1 Background 

Nowadays, with transportation volumes continuously increasing, railway networks are facing 

the challenges of continuously increasing axle loads and vehicle speeds [1]. Since the railway 

accident at Hatfield, UK, in 2000, RCF defects in rails have become a safety challenge for all 

types of railway systems and received more attention due to short examination times [2, 3]. 

RCF defects removal has already been the major reason to carry out rail grinding and 

polishing in Europe [4]. Among types of RCF defects, the RCF crack probably presents the 

biggest hazard in rails. To minimise the possible in-service failures of rails and provide 

detailed guidelines for preventative grinding, it is important to conduct regular inspections via 

nondestructive testing and evaluation (NDT&E) techniques. Up to date, different types of 

NDT&E techniques, such as ultrasonic testing (UT), eddy current testing (ECT), alternating 

current field measurement (ACMF), magnetic flux leakage (MFL) testing, radiography, visual 

inspection (VI), have been developed to detect and characterise RCF cracks. Although these 

techniques have been accepted as common tools, they have own limitations for RCF crack 

characterisation. For instance, it is difficult for UT to detect shallow surface cracks and the 

testing results of the high-speed inspection usually need to be verified by manual inspections. 

ECT is prone to overestimating the depth because the complex geometries and the clusters of 

small RCF cracks can lead to large defect signals. Additionally, it is difficult for ECT to 

detect defects deeper than the eddy current penetration depth. The capability of ACFM to 

characterise natural RCF cracks with short surface lengths still needs to be further verified. 

Performances of MFL sensors are limited at lower inspection speeds due to rapid decreasing 

of magnetic flux density. Radiography involves potential health risks and the 

three-dimensional reconstruction of defects using computed tomography always needs 

defective samples cut off from rails, which is time-consuming and not applicable to in-situ 

inspections. VI can achieve high-speed inspection relying on a high lift-off distance to the rail 

surface but it is impossible for VI to provide any information about subsurface defects. As a 

promising candidate, ECPT, as known as induction thermography and electromagnetic 
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thermography, exploits electromagnetic excitation and thermal diffusion. These enable ECPT 

to easily heat clustered cracks and characterise their geometric parameters. On the other hand, 

in crack characterisation using ECPT, material factor, geometry factor, equipment factor and 

human factor, can influence whether the inspection will result in the correct decision as to the 

absence or presence of a defect. All these factors contribute to the inspection uncertainty, 

which leads to a probabilistic performance in crack characterisation. This probabilistic 

performance can be expressed by the probability of detection, which describes the likelihood 

of correctly characterising cracks. 

By utilising the ECPT technique, the thesis carries out two in-depth investigations. One aspect 

is investigating temporal/spatial features and patterns for angular defect and RCF crack 

characterisation. Another aspect is investigating the performance of feature-based 

characterisation. 

1.2 Aim and Objectives 

The aim of the thesis is to systematically study the characterisation of RCF cracks in rails via 

ECPT technique and carry out the POD analysis for evaluating the performance of crack 

characterisation, which lays emphases on the following main objectives: 

⚫ To undertake a systematic review of RCF defects in rails and their detection, identify 

major challenges of current NDT&E techniques for characterising RCF cracks, and 

propose the use of ECPT and POD analysis; 

⚫ To build three-dimensional finite element modelling (FEM) models and a laboratory 

ECPT setup for numerically and experimentally investigating the characterisation of 

RCF cracks under the clustered distributions and geometric influences; 

⚫ To prepare dedicated man-made specimens with angular slots and cut-off specimens 

containing natural RCF cracks for the studies of investigating the capability of ECPT 

system for characterising idealised defects and RCF cracks; 

⚫ To propose and compare types of temporal/spatial thermal features and patterns for RCF 

crack detection and characterisation; 

⚫ To develop a POD analysis framework of guiding the performance evaluation of 

feature-based characterisation. 
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1.3 Research Methodology 

To achieve the above aim and objectives, this work combines both numerical and 

experimental studies. Specifically, the FEM-based numerical studies and the lab-based 

experimental studies are carried out. 

FEM aims to gain a deep understanding of the whole induction heating process (the 

electromagnetic field coupling between the coil and the specimen, induced eddy currents, 

Joule heating, and heat diffusion) before conducting the experimental studies. This makes it 

possible to use models for designing and optimising experimental procedures. In addition, 

after model calibration, the simulated results can be further used for feature extraction. 

COMSOL Multiphysics is selected for FEM because of its ability to easily couple numbers of 

physics phenomena or user-defined physics descriptions together by using partial differential 

equations. 

For the experimental studies, a lab-based ECPT system is built to investigate the 

characterisation and POD analysis of angular defects and RCF cracks. Experimental studies 

begin with carefully configuring ECPT setups for testing different specimens. Various 

features are introduced and their capabilities of characterising angular defects and RCF cracks 

are experimentally investigated. Based on the proposed POD analysis framework, these 

features’ performances are further evaluated and compared by using POD curves. Finally, the 

best features for characterising a specific parameter, e.g., pocket length, inclination angle, 

vertical depth or surface length, are obtained. 

Figure 1.1 presents the overall diagram of the methods used to fulfil the objectives. 

Specimens 

preparation

ECPT 

configuration

Objectives

FEM studies

Experimental studies

Field distributions under the 

geometric influences of defects

Thermal feature/ 

pattern extraction

Angular defect and RCF 

crack characterisation 
FEM models

POD analysis 

frameworkCharacterisation and POD 

analysis of RCF cracks in 

rails using ECPT

 
Figure 1.1 Overall diagram of the research methodology. 
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1.4 Thesis Overview 

Figure 1.2 presents the structure of this thesis. It starts by introducing the thesis background 

and presenting a thorough review to identify current challenges for RCF cracks detection. 

Then, fundamentals of ECPT technique, POD analysis, as well as various thermal features are 

discussed. Greater details are presented in two case studies to test the capabilities of these 

features for angular defect and RCF crack characterisation. Lastly, based on the findings of 

the case studies, the conclusions and future investigations are summarised and their 

importance to modern railway industry is highlighted. 

Chapter 1

Introduction

Chapter 2

Literature Review

Challenges for RCF Crack Detection

Chapter 3

Fundamentals of ECPT, 

POD, and Thermal 

Features for NDT&E

Chapter 4

Angular Defect Characterisation 

& Performance Evaluation via 

POD Analysis

Case studies of angular defects & RCF cracks

Chapter 5

RCF Crack Characterisation and 

Performance Evaluation via 

POD Analysis

Chapter 6

Conclusions, Future Work & 

Importance to Railway Industry

 
Figure 1.2 Thesis structure. 

 

Each chapter of this thesis is briefly described below. 

Chapter 1 introduces the research background of this thesis, which highlights the requirement 

for proposing a new NDT&E technique to handle the challenges in characterising geometric 

parameters of RCF cracks and introducing POD analysis to address the challenges in 

evaluating the characterisation performance. The aim and objectives of the thesis are 

determined. The structure of the thesis is presented with a brief description of each chapter. 

Chapter 2 presents a literature review on RCF defects in rails and their detection. It starts by 

finding out the RCF induced hazards threatening railway transportation. Special attention is 

paid to the challenges of RCF crack characterisation using current NDT&E techniques. To 

overcome the problem of characterising RCF cracks when they are clustered as fish scales, 

ECPT with its advantages of high heating efficiency and fast testing speed is proposed. The 

challenges facing ECPT for RCF crack characterisation are summarised at the last of this 

chapter. 

Chapter 3 briefly describes the theoretical backgrounds to ECPT technique and POD analysis. 

Based on these backgrounds, types of thermal features/patterns for defect characterisation and 

POD analysis are proposed, which are thoroughly discussed in case-study chapters. 

Chapter 4 shows a case study of angular defect characterisation and performance evaluation 

by using POD analysis. It starts by proposing a POD analysis framework to quantitatively 
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evaluate thermal features/patterns performances for defect characterisation. Then, the ECPT 

configuration and three dedicated specimens that contain artificial angular slots are introduced. 

Features/patterns for characterising three main parameters, i.e., pocket length, inclination 

angle, and vertical depth, of angular defects are discussed and compared. Lastly, based on the 

proposed POD analysis framework, the performances of angular defect characterisation using 

these features are evaluated. 

Chapter 5 provides another important case study focusing on RCF crack characterisation and 

performance evaluation via POD Analysis. The detailed descriptions of the ECPT 

configuration and the cut-off specimens from rails are presented. Four main parameters of 

RCF cracks, i.e., pocket length, inclination angle, and surface length, are characterised by 

different thermal features/patterns. The POD analyses are conducted to evaluate the 

performances of RCF crack characterisation using these features. 

Chapter 6 summarises the conclusions and the main contributions of this thesis. In addition, 

further work and the importance to the railway industry are suggested. 

1.5 Chapter Summary 

This chapter briefly outlines an introduction to the thesis. The background shows that the 

initiation of RCF defects in rails is the most direct consequence of the increasing 

transportation volume and these defects have become one major safety concern of railway 

networks. The research gaps are summarised focusing on the characterisation of RCF cracks 

and the evaluation of the probabilistic performance in crack characterisation. Lastly, the 

research methodology and the thesis structure are present. 

The next chapter presents a thorough review of RCF defect detection and characterisation by 

using various NDT&E methods. 
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Chapter 2. Literature Review 

2.1 Introduction 

This chapter presents a literature review of RCF defects in rails and their detection through 

NDT&E techniques. Based on the identified problems of current NDT&E techniques for 

detecting RCF cracks and the comparison of three active infrared thermography techniques, 

the use of ECPT for characterising RCF cracks is proposed. Importantly, this chapter 

highlights the challenges facing ECPT for RCF crack characterisation that need to be 

carefully investigated with research studies. The flow chart of this chapter is shown in figure 

2.1. 

Chapter 1

Introduction

Chapter 2

Literature Review

Challenges for RCF Crack Detection

Chapter 3
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POD, and Thermal 

Features for NDT&E

Chapter 4
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Crack Characterisation

2.5 
Chapter Summary

 
Figure 2.1 Flow chart of Chapter 2.  

 

2.2 RCF Defects in Rails and Their Detection 

As introduced in the background, rail grinding has become an important maintenance method 

for controlling RCF in Europe [4]. Rail grinding can be categorised into corrective and 

preventative maintenance. Corrective grinding needs to be carried out if a rail’s condition has 

sufficiently deteriorated, e.g., excessive corrugation, severe fatigue defects. Preventative 

grinding is undertaken with predetermined intervals and procedures to reduce the probability 

of rail degradation, which is considered as a good practice to remove longitudinal 

irregularities and surface-initiated cracks, as well as restore rail’s transverse profile. Indeed, 

the frequency of preventative grinding highly depends on the condition of rail degradation. 

Figure 2.2 shows two cut-off specimens containing RCF cracks in the light stage (left one) 

and the moderate stage (right one). The ability to detect RCF cracks at their early propagation 

stages is a priority for planning routine preventative grinding. Greater details of RCF cracks 

are given in Section 2.2.3.1. 
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Figure 2.2 Two cut-off specimens containing RCF cracks. 

The left one and the right one show cracks in the light and the moderate stages, respectively. 

 

2.2.1 Rail/Wheel damages by high contact stresses 

Rails are inevitably facing very high contact stresses from wheel-rail contact, which mainly 

determines the condition of rail degradation. Considering economic benefits, the wheel-rail 

contact should build a strong connection with the costs, which needs to be operated at the 

optimal condition with the minimum cost [4]. As shown in figure 2.3, four main aspects of 

wheel-rail contact are considered, i.e., rail/wheel materials, rail/wheel dynamics, contact 

mechanics, and friction management. These critical aspects are all linked by rail/wheel 

damage modes. Taking special care of these aspects contributes to the increase of rail-wheel 

life and profits, and the decrease of spending and maintenance costs. If any of these aspects is 

not treated seriously, rail/wheel damages may exist, such as wear [5], RCF [6, 7], plastic 

deformation [8], etc. Most of them are interlinked, such as wear and RCF. If wear is reduced, 

RCF defects may initiate. However, if the propagation of defects is truncated, wear failures 

are likely to occur. 
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Figure 2.3 Main aspects of wheel-rail contact and their contributions to rail/wheel life and 

economic costs. Adapted from Ref [9]. 

 

Different damages are likely to occur at specific positions of wheel-rail contact. The position 

of the wheel-rail contact may continuously vary when a train is running along different 
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sections of a track. For example, in a straight track, the wheel tread and the rail head are likely 

to contact, whereas, in a curved track, a contact position probably occurs at the wheel flange 

and the rail gauge corner contact. Three possible regions of the wheel-rail contact are shown 

in figure 2.4. 

Region A is the wheel-rail contact close to the field side. Contact rarely occurs in this region. 

If it happens, high contact stresses are induced, which leads to undesirable wear behaviour. 

Region B is the wheel tread-rail head contact, i.e., the running band. Normally, wheel-rail 

contact often occurs in this region when a train is running on straight tracks or large-radius 

curves. Compared with other regions, the contact stress and the lateral force are the lowest in 

this region. Region C is the wheel flange-rail gauge corner contact at the gauge side. 

Compared with Region B, this contact region is much smaller, which yields much higher 

contact stresses and wear rates. 

Region BRegion A Region C
Field side Gauge side

 
Figure 2.4 Possible regions of wheel-rail contact. Adapted from Ref [10]. 

 

Because of wear and material flow, contact regions and profile shapes of the wheel and rail 

will change as time progresses. Therefore, a good understanding of wheel-rail contact 

contributes to predicting how profiles may evolve [11]. In the wheel-rail contact, 

rolling/sliding behaviour often exists. Because of the rolling/sliding behaviour, a 

repeated-cycle of plastic deformation may occur beneath the material surfaces [12]. It is this 

behaviour that leads to wear and rolling contact fatigue occurring. Normally, rail wear results 

from sliding, whereas rail rolling contact fatigue dominates in rolling situations although 

some micro-sliding may occur. 

2.2.2 Rail surface wear and fatigue 

It can be seen from the discussions above that wear and fatigue are two common results of the 

rolling/sliding behaviour of wheel-rail contact. The following sections give descriptions of 

wear, fatigue and their interactions. 
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2.2.2.1 Rail wear and fatigue 

A mild degree of wear can remove initial defects from the surface of the rail. However, 

excessive wear may shorten rail in-service life. Problems resulting from excessive wear 

mainly includes loss of rail profile, poor wheel-rail dynamics and, in extreme cases, a loss of 

rail cross-section. Sliding may result in types of wear [13], such as adhesive wear, abrasive 

wear, corrosive wear, thermal wear. Among them, abrasive wear accounts for approximately 

50 % of wear problems [10]. 

With a rolling motion, the principal mechanism is rail fatigue. Surface fatigue mechanisms 

involve the initiation and propagation of cracks, which lead to particle loss from the rail 

surface, a process also known as ratcheting [14]. In severe cases, these cracks can turn down 

via bending moments in rails, which may eventually lead to rail breakages [15]. Types of 

defects caused by rail fatigue are described in detail in Section 2.2.3. 

2.2.2.2 Interaction of wear and fatigue 

As discussed above, wear and fatigue coexist in the rolling/sliding behaviour. Figure 2.5 

shows the relationship between the crack growth rate and the crack pocket length under two 

different wear rates. For a high wear rate, the wear rate is higher than the maximum crack 

growth rate in Phase I and cracks are probably worn away within Phase I. There is no crack 

growth in Phases II and III. Instead, if the wear rate is lower than the minimum crack growth 

rate in Phase I, the crack pocket length may enter to Phase II and then continue propagating. 

In Phase II, the crack grows at a high rate until it extends through the depth of maximum 

shear stress rate and then at a relatively slow rate as it grows outside the region influenced by 

rolling contact stresses [16]. If the wear rate is still lower than the intersection point of Phase 

II and Phase III, the crack will enter Phase III, which may lead to rail branching. 
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High wear rate

Low wear rate

Crack pocket length

C
ra

ck
 g

ro
w

th
 r

a
te

 
Figure 2.5 Crack growth rate vs. crack pocket length. Adapted from Ref [15]. 
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2.2.3 Types of RCF defects in rails 

As discussed in the aforementioned sections, high wheel-rail contact stresses, arising from 

traction, braking, or steering, lead to the deformation of the surface material and the 

development of RCF defects. There is a wide range of terms to describe different types of 

RCF defects [3, 17-21]. In the UK, railhead defects usually categorised as RCF cracks, squats, 

and tongue lipping [10], as illustrated in figure 2.6. 

Gauge si
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RCF cracks

Region C

 
(a) 

Squats

Region B
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de
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(b) 

Tongue lipping
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(c) 

Figure 2.6 Schematic illustrations of common RCF defects in rails. 

(a) RCF cracks in gauge corner. (b) Squats in rail crown. (c) Tongue lipping in gauge face. 

Adapted from Ref [10]. 

 

2.2.3.1 RCF cracks 

RCF cracks, also known as head checks or gauge corner cracking when it occurs at the rail 

gauge corner (Region C in figure 2.4), probably present the biggest problem in rails. RCF 

cracks often appear as a group of tightly spaced cracks of similar shapes [10], and the 

previous figure 2.2(a) shows two typical surface appearances of them. It also can be seen that 

these cracks are not vertical to the train running direction and their inclined angles show 

possible high lateral forces of the rail-wheel contact in curves. 

As mentioned in Section 2.2.2.2, the propagation phases of a RCF crack in the railhead 

consist of three stages: crack initiation (Phase I), crack propagation under a constant angle 

(Phase II), and crack propagation with potential of vertical or horizontal branching (Phase III) 

[15]. These three stages are also illustrated in figure 2.7. Phase I is driven by ratcheting in the 

plastically deformed layer with up to hundreds of microns in size [10]. Phase II is mainly 

controlled by applied stresses. Phase III is driven by bending stresses in rails. At this stage, if 

a crack reaches a critical length, there is a high possibility of a rail breakage. Usually, this 

stage of crack propagation is rapid since the crack becomes very large. In both Phases I and II, 

rail grinding can be used as an artificial wear process to remove small cracks. In addition, 

driving stresses for any remaining defects can also be reduced [10]. In Phases III, cracks are 
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too large to be removed by grinding, and the only way is replacing the defective rails. Thus, 

the ability to detect cracks and estimate their propagation stages is a priority for planning 

routine preventative grinding. 

Initiation stage
Propagation 

under a flat angle

Propagation with 

vertical/horizontal branching

Vertical plane

Vertical planeRCF crack

Phase I Phase II Phase III

 
Figure 2.7 Illustration of a RCF crack propagation broken into three main stages [22]. 

 

2.2.3.2 Squats 

Squats are another type of RCF defects [23]. Squats often occur at the running band in 

straight track and large curves (Region B in figure 2.4). Now it has become one of the major 

sources of RCF damages on many railways [24, 25]. 

A squat can be identified by the darkening area of rail surfaces, as illustrated in figure 2.6(b). 

This appearance is because of a surface depression which collects dirt and becomes corroded 

[10]. Typically, a squat starts from a horizontal subsurface crack which allows the 

near-surface material to flow sideways, thereby widening the running band, and produces a 

surface depression. Squats can initiate as a result of ratcheting and fluid pressurisation and 

also from white etching layers [26]. 

2.2.3.3 Tongue lipping 

Tongue lipping is also a form of plastic deformation initiated by surface cracks. These cracks 

partially separate a layer of material from the bulk of rail. Tongue lipping can be 

distinguished by the extrusion of thin slivers or tongues of material from the running band, 

often extending down the rail gauge face by several millimetres [10]. Cracks form below the 

extruded region and grow into the railhead in a near-horizontal plane. Branches can then form 

running either up or down, leading to a rail breakage. 

Among different RCF defects, the RCF crack appears to be the most frequent and biggest 

problem in rails, which has become the problem of greater interest [3]. The next section 

discusses current NDT&E techniques for detecting RCF cracks. 
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2.2.4 Detection of RCF cracks 

Up to now, lots of research has been focused on different areas of the RCF management 

[27-29], e.g., RCF damage model building [30-32], wheel-rail profile management [33-35], 

friction management [36, 37], rail grinding [38, 39], nondestructive rail inspection [40-43], 

etc. Among them, NDT&E of rails is of critical importance to control risks and minimising 

catastrophic accidents. On the other hand, rail grinding is a well-established method to 

remove surface defects and profile rails. However, decisions on economical or optimal rail 

grinding interval should take vehicle track interaction, rail defect, and rail wear data into 

consideration. If a NDT&E testing technique can accurately measure rail profiles and quantify 

geometries of cracks, it will provide great values in the effectiveness of rail grinding practices 

and achieve condition-based rail grinding. 

Nowadays, many NDT&E techniques have been developed for inspecting rails, such as UT, 

ECT, ACFM, MFL testing, radiography, VI, etc. In the following sections, six representative 

techniques for detecting RCF defects are briefly introduced and reviewed. Special attention is 

focused on their capabilities of detecting RCF cracks. 

2.2.4.1 Ultrasonic testing 

UT is one of the commercialised and traditional techniques for rail inspection. UT can be 

either manually [44] or automatically deployed [45]. During rail inspection, ultrasonic energy 

generated by a transducer is introduced into the rail. When defects exist in the ultrasonic wave 

path, part of the energy will be reflected back. The reflected signals together with their 

occurring times can provide useful information about the location and type of defects [46]. 

UT for rail inspection can be deployed by using test trains, the inspection speeds achieved 

varies from 40 to 80 km/h [47]. Inspection speeds can be much lower if any suspicious results 

need to be further verified by manual inspection. Recent developments of UT facilitate a new 

generation of test trains that can achieve inspection speeds as high as 100 km/h [47, 48]. 

However, their performances are very limited at such speeds [40]. Rail defects may locate in 

various positions, to avoid missing some critical defects, multiple transducers can be used to 

transmit ultrasonic energy at different incident angles [41]. 

Although UT has been proved to be a practical and effective technique for detecting internal 

flaws in rails, the main disadvantage is that it is difficult for UT to find surface and subsurface 

defects. It is because near-surface signals are always influenced by high-level noises and 

complex scattering. It is reported that conventional UT could be used to detect larger (>4 mm) 

surface defects such as deep head checks and gauge corner cracking [40]. 
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Recently, phased array UT has been used for rail inspection [49-52]. Phased array UT is 

another advanced technique of UT since the beam produced from a phased array can be 

electronically focused, swept, and steered without moving the probe. Due to the possibility of 

controlling beam angles and focal distances, phased array UT can efficiently detect 

discontinuities, such as cracks, porosity, and lack of fusion in rails. Unfortunately, because the 

data volume generated during inspections is quite large, data processing of phased array UT 

takes much time compared to conventional UT. It is reported that the maximum inspection 

speeds achieved by phased array UT systems are around 5-6 km/h [40]. Recently, more 

research attention has been paid to developing novel software of signal processing and 

optimising the hardware of phased array UT to increase inspection speeds. To address the data 

processing issue, a new concept is looking for the coherence between signals without 

presuming a defect response, also known as the fast automated angle scan technique, which 

has been recently developed by SOCOMATE [53]. 

Guided wave UT is another method to inspect rails. This technique can employ various modes 

of acoustic waves, such as Lamb and Rayleigh waves, propagating along the boundaries of 

rails. This kind of propagation allows waves to travel a long distance with little loss in energy. 

Based on the arrival times of reflected echoes and the speeds of wave modes, cracks or 

corrosion in rails can be detected. Several studies have shown the results of using guided 

wave UT in the field test of rail inspection [54-60]. A commercial hi-rail vehicle equipped 

with guided wave UT, as known as Prism, has been developed by Wavesinsolids LLC [61]. It 

is reported that Prism can detect large transverse defects in the rail head with the maximum 

inspection speed of 15 km/h [61]. However, guided wave UT is likely to miss some 

surface-initiated cracks unless they have already reached critical sizes. 

Laser/air hybrid UT has been recently used for rail inspection to address the coupled contact 

problem. It combines the generation of ultrasonic waves using pulsed lasers and the detection 

using air-coupled acoustic transducers [62-64]. A laser/air hybrid UT prototype installed in a 

hi-rail vehicle has been developed by Tecnogamma SPA and evaluated by Transportation 

Technology Centre Inc. [65]. Early tests show that this prototype can be used for detecting 

transverse defects, horizontal and vertical splits, and shelling in the rail head with the 

inspection speed up to 32 km/h [65]. 

Electromagnetic acoustic transmission technique (EMAT) is another non-contact way of 

deploying UT for rail inspection. This technique generates ultrasonic waves through magnetic 

field interaction, which is achieved by passing an alternating current through an inductive coil 

in the presence of a strong static or a quasi-static magnetic field [66]. Via the magnetic field 
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interaction, electromagnetic acoustic transmission transducers can generate ultrasonic waves 

within the skin depth without any physical contact [66]. A commercial hi-rail inspection 

vehicle using EMAT, as known as RailPro, has been developed by Tektrend in Canada [67, 

68]. RailPro can use different configurations of transducers to generate surface or bulk 

ultrasonic waves, which can detect several types of defects, such as horizontal and vertical 

head splits, split webs, bolt hole cracking, and RCF defects at inspection speeds between 5-9 

km/h [67, 68]. EMAT for high-speed rail inspection and quantification of RCF defects has 

been reported by several studies [69-76]. However, it is reported that in principle it is difficult 

for EMAT to find defects with their depths smaller than 2 mm [40]. Therefore, the 

combination of EMAT with ECT is a possible way to increase the detectability of shallow 

cracks [77]. 

2.2.4.2 Eddy current testing 

ECT has been successfully applied in many industries [78-86], e.g., pipeline, nuclear, aircraft, 

etc. For rail inspection, several studies have been carried out [87-89]. A surface or subsurface 

defect in the rail head will divert eddy currents, which leads to fluctuations in the secondary 

magnetic field and the impedance changes are measured. Based on this principle, ECT is 

suitable for detecting RCF cracks. 

The combination of ECT with UT is reported for high-speed measurements of rail defects [47, 

90]. This combined system utilises ten ultrasonic probes with different incident angles and 

four eddy current probes, which can not only detect internal flaws but also surface cracks. 

Another practical application of ECT for rail inspection is optimising the grinding process by 

real-time monitoring depths of defects. HC Grinding Scanner developed by SPENO 

International SA is a good example of using ECT to provide information on the location and 

depth of head-check-type defects during the grinding process [91]. 

Because the density of eddy currents only concentrates within the skin depth, only the surface 

and near-surface cracks can be detected [92]. In addition, the result of eddy current testing is 

very sensitive to the distance between the coil and the material, i.e., lift-off distance. Typically, 

the lift-off distance is set to 1-2 mm, which is difficult to keep consistent at high speeds with 

continually varying rail head shapes. 

2.2.4.3 Alternating current field measurement 

ACFM is another electromagnetic technique with good potential for rail inspection. Its 

working principle is remotely inducing uniform alternating currents, which flow in a thin skin 

near the surface of the rail. Defects in the rail surface distort current paths which are reflected 
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by the magnetic field change above the surface. Any changes in the magnetic field can be 

measured by a sensor array located across the rail head. Several studies have verified the 

capabilities of using ACFM to detect RCF cracks [93-98]. Compared to ECT, a maximum 5 

mm lift-off distance is possible without significant loss of signal when using ACFM [93]. 

This is due to the fact that the signal strength diminishes with the square of lift-off, not with 

its third power which is the case for eddy current sensors. This enables the ACFM technique 

to cope with much larger lift-off distances [93]. Additionally, ACFM does not suffer from the 

problems of conventional UT where clustered defects can render a rail untestable [17]. 

One commercial ACFM walking stick is developed by Technical Software Consultants Ltd. 

[17]. To improve the reliability of this ACFM walking stick, the empirical corrections to the 

sizing models have been incorporated for the use on the UK rail network [99, 100]. However, 

most of the sizing models are based on the assumption of isolated cracks. Although one recent 

publication reports the characterisation of clustered cracks via an ACFM sensor [98], its 

capabilities of characterising natural RCF cracks with short surface lengths still needs to be 

further verified. 

2.2.4.4 Magnetic flux leakage testing 

MFL testing has been widely used for NDT&E of ferromagnetic components in many 

industries [101-106]. In rail inspection with MFL, permanent magnets or DC electromagnets 

are first used to magnetise the rail letting the magnetic flux lines couple into it. Magnetic field 

sensors are placed at a constant distance from the rail head to detect any leakage in the 

magnetic field [41]. MFL sensors are particularly good at detecting subsurface or surface 

transverse defects [107], such as RCF cracks. For the low-speed inspection by using 

MFL-based walking stick system, MRX-RSCM is an example used for rail inspection in 

London Underground [108]. 

Unfortunately, MFL is affected by high inspection speeds since the magnetic flux density in 

the rail head will be largely reduced [109]. Thus, MFL is commonly used as a complementary 

technique to ultrasonic inspection. It is reported that the maximum inspection speed achieved 

by a combined ultrasonic-MFL system is limited by 35 km/h [41]. Additionally, if cracks run 

parallel to the magnetic flux lines, they can hardly be detected by MFL because of insufficient 

flux leakage. 

2.2.4.5 Radiography 

Radiography testing of rails can be implemented by using either gamma or X-ray sources [40]. 

This technique is particularly powerful for inspecting internal flaws via computed tomography 
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[110-115]. X-ray images taken from different angles can reproduce the three-dimensional 

crack shapes while avoiding the inaccuracy in detecting shallow or overlapped cracks [110]. 

X-ray or neutron diffraction results can also be used to evaluate residual stresses near the 

surface of the rail head [116-118]. However, radiography testing inherently involves health 

and safety drawbacks. Furthermore, since the inspection is time-consuming and costly, 

radiography testing is usually applied as a verification method in places where defects have 

already been detected by other NDT&E techniques or in rail areas where inspection with 

other NDT&E methods is unreliable [119]. 

2.2.4.6 Visual inspection 

VI is probably the most direct and widely used NDT&E method. Previously, VI is manually 

carried out by railway engineers. Recently, via machine vision, automated visual 

camera-based systems for railway networks have been implemented [120]. Automated VI 

systems can operate at a high speed and are typically used to measure track profiles [121, 122], 

inspect fastening bolts/clips [123-126], and detect RCF defects [127-129]. Recently, a 

commercial track inspection system (V-CUBE) has been developed by MERMEC [130]. It is 

advertised that through the use of V-CUBE, more than 50 different types of defects on rail 

surface, fastenings, sleepers and trackbed can be automatically identified. 

However, another report concluded that although VI systems can be used for scanning and 

recording various track features, none appear to provide a quantitative assessment of RCF 

cracks since they are an order-of-magnitude more difficult to distinguish than spalls [131]. In 

addition, the capability of VI highly depends on the illumination condition. Moreover, 

automated vision systems do not provide any information with regards to the presence of 

internal defects and therefore cannot be used to substitute ultrasonic inspection [40]. It is 

suggested that VI combined with ECT is probably an effective way for inspection rails [132]. 

2.2.5 Challenges of RCF cracks detection 

From the discussions above, challenges of detecting RCF cracks can be summarised as 

follows: 

(1) Conventional UT is still the most practical rail inspection method. However, the coupled 

contact of conventional UT is inevitable. Improved ultrasonic systems can be achieved by 

using the laser pulse excitation, the phased array, and the electromagnetic acoustic 

transmission. Still, it is difficult for UT to detect surface and subsurface defects because of 

strong noises and complex near-surface signals. 
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(2) ECT shows potential to not only detect but also quantify RCF cracks. Unfortunately, 

limited by the concentrated skin depth, it can only measure the surface and near-surface 

defects. Apart from this, the testing results of ECT highly depends on the lift-off distance, 

which is difficult to keep constant with the rail profile changing. 

(3) ACFM shows good potential of detecting clustered cracks. However, the capability of 

ACFM to characterise natural RCF cracks with short surface lengths still needs to be further 

verified. 

(4) MFL testing is good at detecting surface and subsurface transverse cracks. However, it is 

challenging for MFL testing for high-speed inspection. Moreover, it is difficult for MFL 

testing to detect cracks that are parallel to the magnetic flux lines because of insufficient flux 

leakage. 

(5) Radiography is normally used to verify the testing results of other NDT&E techniques. 

But radiography testing is time-consuming and costly. Also, for three-dimensional 

characterisation, specimens need to be cut off from rails, which means it is impossible to 

conduct the in-situ testing. In addition, radiography involves health and safety drawbacks. 

(5) VI is probably the most direct and widely used NDT&E method. However, its capability 

highly depends on the illumination condition and the experience of the inspector. In addition, 

VI can only obtain the surface information and it is impossible to measure the subsurface 

distributions of cracks. 

As shown above, only a solo technique alone cannot successfully achieve the detection and 

characterisation of RCF cracks in rails. A better way is integrating two or more techniques to 

maximise their strengths and minimum their deficiencies. In other words, a 

multi-physics-based system, such as the previously mentioned UT plus ECT, is more suitable 

to achieve RCF cracks detection and characterisation. From this point of view, ECPT, an 

emerging multi-physics-based technique for detecting fine surface-breaking cracks, is 

introduced to address the aforementioned challenges in the following section. 

2.3 ECPT for NDT&E 

In the recent few decades, infrared thermography (IRT) has become a rapidly growing area in 

both science and industry [133]. Compared with the above-mentioned NDT&E techniques, 

IRT has the advantage of non-contact sensing and easy visualisation of tiny thermal variations 

that are invisible to the human eye [134-139]. IRT methods can be divided into active IRT 

and passive IRT depending on whether they are external stimulated or self-radiating. With the 
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advantage of fast testing and high signal-to-noise-ratio (SNR), active IRT is increasingly used 

in a wide range of applications [140-145]. Active IRT can be used for quick detection of 

surface and subsurface defects in materials with a large inspection area. Based on different 

excitation sources, excitation waveforms, modes, and states, figure 2.8 illustrates some main 

branches and working principles of active IRT. 

From figure 2.8, it can be seen that active IRT requires an external excitation with a specific 

waveform to provide thermal contrasts between the defective area and the sound area. 

External excitation sources may vary from optical heating, laser heating, vibration-induced 

heating, microwave heating, to induction heating. In the following, based on the excitation 

source, five main branches of active IRT are briefly discussed. By comparing these five 

techniques, the use of eddy current pulsed thermography to detect and characterise RCF 

cracks is clarified. 

Excitation source

Laser heating

Optical heating Vibration Induction heating

Microwave heating

Mode

Transmission

Reflection

State

Static

Dynamic

Excitation waveform

Short pulse

Step pulseLong pulse

t

tt

Chirp

t

Active infrared thermography

Lock-in

t

 
Figure 2.8 Main branches and working principles of active IRT. 

 

Optical thermography (OT) is probably the most widely-used branch of active IRT. It is based 

on using three main optical stimulation devices, i.e., Xenon flashes, halogen lamps, and power 

light emitting diode (LED) arrays. Excitation principles of these devices determine the 

excitation waveforms can be deployed. Normally, high-energy and short heat pulses are used 

by Xenon flashes [146-152]. On the other hand, although the output energy of halogen lamps 

and LED arrays are much lower than Xenon flashes, various excitation waveforms can be 

applied, such as long pulse [153-156], lock in [157-160], step pulse [161-164], chirp 
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[165-168], etc. Up to date, OT has been used for various applications [169-179]. Among them, 

more attention is paid to characterising thermal properties of composite materials and their 

defects, such as impact damages, delamination, etc. 

Laser thermography (LT) can be considered as a variation of OT, which mainly uses a 

high-power laser source to heat the material under test [180,181]. The advantage of laser 

excitation is that almost all types of excitation waveforms can be applied. In addition, the 

detection area of LT can be expanded by using a focused lens array, i.e., the laser spot heating 

becomes the laser array heating [182]. Compared with OT, the research and applications of 

LT are wider-ranging from metallic materials to biological samples [183-190] and LT is more 

suitable for the detection of defects perpendicular to the surface [142]. However, laser spots 

may result in non-uniform heating. Additionally, compared with OT, high power lasers used 

by LT are expensive and it can be difficult to direct the laser beam if the wavelength is long 

and an optical fibre cannot be used [187]. 

Vibrothermography is based on the frictional, plastic, and viscoelastic heating at the defect 

vicinity by employing high power excitation to vibrate the material under test [191-193]. The 

major advantage of vibrothermography is finding barely visible and closed defects with high 

contrasts since only the defect vicinity has the strongest thermal response. With this 

advantage, vibrothermography can be applied to detect fatigue flaws in most materials 

[194-202]. However, vibrothermography always needs a direct/indirect contact with the test 

material and its performance is hindered by poor repeatability [203]. 

Microwave thermography (MT) is a recent technique of active IRT [204-206]. This technique 

mainly based on the dielectric loss of medium, i.e., in a varying electric field, loss of energy 

dissipates into heat. Although MT has the advantage of controlled microwave energy and 

noncontact heating, an improved thermal contrast for defect detection in composites needs 

much longer heating time than pulsed excitation used in LT [205]. 

Eddy current pulsed thermography (ECPT), also known as induction thermography and 

electromagnetic thermography, is another branch of active IRT, which enjoys the capabilities 

of combining the responses from electromagnetic induction and heat diffusion [207-211]. 

Defects such as RCF cracks within the range of effective skin depth disturb the eddy current 

density distribution, where higher levels of Joule heating are achieved in the regions of 

increased current density and thereby influence the temperature distribution. Thus, the defect 

can be detected from thermal images [212]. Relying on this specific principle, ECPT has been 

found to detect the smallest cracks, i.e. sensitivity, with higher reliability and reproducibility 
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compared to vibrothermography and LT [213]. In addition to these, the superior performance 

of ECPT, e.g., pulse excitation, robust to lift-off variations and effective for defect orientation 

and depth estimation, significantly leads it for fast quantitative evaluation [214]. Up to now, 

ECPT has been deployed to various applications [215-228]. 

Further, table 2.1 briefly summarises the advantages and limitations of these five techniques. 

As can be seen, although limited for detecting subsurface defects and testing non-conductive 

materials, ECPT is the most suitable way to detect small and fine surface-breaking cracks 

with high repeatability and heating efficiency, which reasonably clarifies the use of ECPT in 

this thesis to achieve the RCF crack characterisation. 

Table 2.1 Summary of five main branches of active IRT 

Active IRT based on  

excitation source 

Advantages Limitations 

OT - Various waveforms 

- More suitable for voids and 

delamination 

- Non-uniform heating 

- Limited for surface-breaking 

cracks 

LT - Various waveforms 

- Suitable for surface-breaking 

cracks 

- Non-uniform heating 

- Longer scanning time in the 

absence of a focused lens array 

Vibrothermography - Various waveforms 

- Suitable for all types of 

closed natural defects 

- Uniform heating 

- Low repeatability 

- Frictional faces are needed 

- Contact excitation is required 

- May introduce further damages 

MT - Relatively uniform heating 

- Adjustable excitation 

frequency and polarisation 

- Limited for subsurface defects in 

metallic materials 

- Longer heating time 

ECPT - More suitable for small and 

fine surface-breaking cracks 

- High repeatability 

- High heating efficiency 

- High SNR 

- Limited for subsurface defects. 

- Non-uniform heating 

- Limited for non-conductive 

materials 

- Relatively expensive 

 

2.4 Challenges of ECPT for RCF Crack Characterisation 

It can be seen from the above section that ECPT shows the best capability of detecting and 

characterising RCF cracks. However, there are still several challenges and research gaps need 

to be addressed before this technique is further applied to the in-situ testing. 

One outstanding challenge is that under the clustered distribution of RCF cracks, it is difficult 

to characterise the geometric parameters, i.e., pocket length, inclination angle, vertical depth, 

and surface length, of RCF cracks. It is because that the clustered cracks with narrow spacings 
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may lead to complex eddy current and thermal distributions. In this situation, it is more 

difficult to extract useful thermal features for RCF crack characterisation. 

One major research gap is how to quantitatively evaluate the probabilistic performance in 

crack characterisation. Repeated tests of a specific crack can produce different feature 

responses because of variations in the excitation setup, infrared camera, background 

environment, etc. All these variations contribute to feature uncertainty and lead to 

probabilistic performances in crack characterisation. It is important to propose a proper 

framework to evaluate these probabilistic performances. 

To address these two aspects, i.e., the quantitative characterisation of RCF cracks under their 

clustered distributions and the performance evaluation of crack characterisation, this thesis 

proposes the use of the feature-based ECPT technique to achieve the detection and 

characterisation of RCF cracks. Additionally, a POD analysis framework is proposed to 

evaluate the ECPT’s performance in crack characterisation. 

2.5 Chapter Summary 

A literature review of modern NDT&E techniques for rail inspection is presented in this 

chapter. Specifically, RCF defects in rails and their detection by different NDT&E techniques 

are first reviewed and compared. Based on the identified challenges of current NDT&E 

techniques and a brief review of active IRT for NDT&E, ECPT is proposed as a promising 

candidate for characterising RCF cracks inspection. Lastly, the challenges of ECPT for RCF 

crack characterisation are highlighted. 

The next chapter will provide the fundamentals of ECPT technique, POD analysis, and 

thermal features. Based on the proposed features, the challenges pointed out in Section 2.4 

will be addressed and discussed in the case study chapters. Greater details can be found in 

Chapter 4 and Chapter 5. 
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Chapter 3. Fundamentals of ECPT, POD, and Thermal Features for 

NDT&E 

3.1 Introduction 

In this chapter, theoretical backgrounds related to ECPT technique and POD analysis are first 

introduced. Based on these backgrounds, types of thermal features/patterns for further defect 

characterisation and POD analysis are discussed. The last section presents the chapter 

summary. The flow chart of this chapter is shown in figure 3.1. 

3.2 
Fundamentals of ECPT

3.3 
Fundamentals of 

POD Analysis

3.4 
Thermal Features/Patterns of ECPT for 

Defects Characterisation and POD Analysis

3.5 
Chapter Summary

Chapter 1
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Chapter 2
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Chapter 3
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Chapter 4

Angular Defect Characterisation 

& Performance Evaluation via 

POD Analysis
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Conclusions, Future Work & 
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Figure 3.1 Flow chart of Chapter 3. 

 

3.2 Fundamentals of ECPT 

Briefly, ECPT technique takes the advantages of induction heating and infrared thermal 

imaging to achieve defect/flaw detection. Induction heating has the advantage of heating 

conductive materials without any direct contact via the electromagnetic induction. Figure 3.2 

illustrates the basic idea of induction heating by using FEM. The blue arrows show currents 

running in a linear coil. The cyan arrows show the magnetic field induced by the coil. 

Electromagnetic induction leads to inductive heat generation and diffusion in the conductive 

specimen under test. An angular slot is simulated as a defect resulting in abnormal heat 

distributions. Greater simulation results of inclination angle characterisation are given in 

Section 4.4.2. 

During the induction heating, four physical phenomena coexist, i.e., electromagnetic field 

formation, electromagnetic induction, heat generation, and heat diffusion. The coupled effects 

of these phenomena make up the whole heating process. In electromagnetic field formation, 

Ampère’s law can mathematically describe this phenomenon. Electromagnetic induction can 

be described by Faraday-Lenz law. Heat generation mainly considers the Joule heating effect. 

As for heat diffusion, it can be described by Fourier’s law. 
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Figure 3.2 Illustration of induction heating using FEM. 

 

Apart from induction heating, in real applications of ECPT, infrared thermal imaging is 

required to image temperature by sensing the infrared thermal radiation emitted from the 

material surface. The main advantage of infrared thermal imaging is that by using focal plane 

array it can easily visualise temperature effects which are impossible to be “seen” by human 

eyes. 

Based on induction heating and infrared thermal imaging, ECPT becomes a fast and 

high-resolution method for defect detection and characterisation over a relatively large area. 

Defects such as RCF cracks within the range of effective skin depth disturb the eddy current 

density distribution, where higher levels of Joule heating are achieved in the regions of 

increased current density and thus influence the temperature distribution. Thus, defects can be 

detected from thermal images. 

In addition, ECPT can exploit both induction heating and heat diffusion. At the start of the 

heating stage (normally shorter than 50 ms), induction/Joule heating plays a dominant role 

with its advantage of surface flaw detection. In the later heating and cooling stages (longer 

than 50 ms), heat diffusion takes over with the benefit of detecting subsurface and deeper 

flaws. Additionally, induction coils, excitation parameters (heating pulse duration, frequency, 

and intensity), and morphological parameters of defects (length, width, orientation, etc.) can 

also lead to various thermal distributions and patterns. Thus, thermal features based on 

various temporal- and spatial-thermal patterns can be used for defect detection and 

characterisation, as later discussed in Section 3.4. 

3.2.1 Electromagnetic wave propagation 

The electromagnetic wave propagation problem can be addressed by solving Maxwell’s 

equations with specific boundary conditions. Maxwell’s equations link six fundamental 

electromagnetic quantities together. These quantities are electric field (E), electric 
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displacement (D), magnetic field (H), magnetic induction (B), current density (J), and electric 

charge density (ρ). Maxwell’s equations can be expressed either in integral form or 

differential form. Since in this work, all the simulation results are based on finite element 

modelling, only the differential forms of Maxwell’s equations presented here. For the 

time-varying situation, they are generally expressed as [229] 

=   +
D

H  J 


 
t

 (3.1) 

=  
B

E  


  −
t

 (3.2) 

=  D     (3.3) 

=  0B     (3.4) 

Equations 3.1 and 3.2 show the Maxwell-Ampère’s law and the Faraday’s law, respectively. 

These two equations together express the evolution of coupled electromagnetic wave. 

Equations 3.3 and 3.4 are the electric and magnetic form of Gauss’s law, respectively. These 

two equations together show the flux conservation. By combining Equations 3.1 and 3.3, 

another important equation showing the electric charge conservation law can be obtained 

[229] 

=  J  


  −
t

 (3.5) 

The above five equations give the general Maxwell’s equations in differential form. To 

describe the electromagnetic wave propagation in materials or a closed system, these 

equations should be added with constitutive relations that specify the macroscopic properties 

of materials. Typically, these relations are given as 

=  J  E  (3.6) 

=  D  E  (3.7) 

=  B  H  (3.8) 

where, σ is the electrical conductivity. ε denotes the electrical permittivity. μ represents the 

magnetic permeability. 
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Maxwell’s equations can be simplified and represented in terms of B field and E field by 

introducing potentials. The most used potentials are the magnetic vector potential (A), the 

electric scalar potential (V), and the magnetic scalar potential (ψ).  

For magnetic vector potential, it should be well-defined and continues to satisfy that no 

magnetic monopoles exist. It is well known that divergence of the curl of a vector field is zero. 

Thus, for magnetic vector potential, this relation is expressed as 

=  0A      （ ）  (3.9) 

Via using this equation, equation 3.4, e.g., the magnetic form of Gauss’s law, is rewritten as 

=  =  0B  A        （ ）  (3.10) 

Then, magnetic induction can be expressed as a function of A 

B A=    (3.11) 

By combining equations 3.11 and 3.2, and introducing the electric scalar potential, equation 

3.2, e.g., Faraday’s law, is rewritten as 

= = = 
A B

E   A  
  

  −  − −  −
  

（ ） （ ）V
t t t

 (3.12) 

where,   V  is zero since the curl of the gradient of a scalar field is zero. 

Then, the electric field can be expressed as a function of A and V 

=  
A

E  


−  −


V
t

 (3.13) 

Under certain circumstances, e.g., the magnetostatic condition where the electric charge 

density ρ is zero or is time-invariant, equation 3.1, e.g., Maxwell-Ampère’s law, reduces to 

=   0H     (3.14) 

Similar to electric scalar potential, the magnetic scalar potential is introduced and the 

magnetic field can be expressed as 

H == −  (3.15) 
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3.2.2 Time-harmonic electromagnetic field and induction heating source 

3.2.2.1 Time-harmonic electromagnetic field 

In the previous section, the general equations for calculating B field and E field are given by 

using potentials. As for ECPT technique, the time-harmonic case needs to be considered. 

Under this condition, the electromagnetic field harmonically oscillates with a specific 

sinusoidal function. In this section, the specific form describing the time-harmonic 

electromagnetic field is derived. 

By using the vector phasor notation, any first-order partial differential of the phasor with 

respect to time can be easily represented by multiplying jω. Thus, equations 3.1 and 3.2 can 

be rewritten as 

=   +H  J  D  j  (3.16) 

=  E  B  − j  (3.17) 

Where,   is the angular frequency. j is the imaginary unit. 

Then, by substituting constitutive relations of equations 3.6-3.8 into 3.16, it can be obtained 

as 

 
1

=   +B  E  E 


 j  (3.18) 

Next, by substituting the magnetic vector potential (A), the electric scalar potential (V), 

equation 3.18 is expressed as 

 
1

( ) =   ( ) + ( )A   A   A   


  − − −  −V j j V j  (3.19) 

After rearranging the terms, it is written as 

2
 

1
 ( ) ( )+ (  ) =  0 A A        


− +   + j j V  (3.20) 

It is evident that equation 3.20 is a function of A and V, which means that A and V are coupled. 

In the following, the gauge transformation is introduced. By using a particular gauge, V can 

be vanished and equation 3.20 is reduced to the function of A. 

The gauge transformation is conducted by introducing two new potentials (  A and V ) defined 

as 
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 =  +A A   (3.21) 

=   


−


V V
t

 (3.22) 

These two transformations keep B and E fields unchanged, which can be verified by 

(  ) ( )
 =   =  ( )  = 

A A  A 
E   +  

   −  
−  − −  − −  −

   
V V V

t t t t
 (3.23) 

( )B A A A =   =   −  =    (3.24) 

To vanish  V ,  is chosen as 


 = −

jV
 (3.25) 

Then, equations 3.21 and 3.22 are updated as 

 =  +A A


− 
j

V  (3.26) 

( / )
=  = 0 





 − 
− + − =

 

jV j V
V V V

t t
 (3.27) 

By substituting these two potentials into equation 3.20, it can be obtained as 

2 1
 ( ) ( )=  0 A A   


− +  j  (3.28) 

It is evident that equation 3.27 is the only function of A . In addition, if A  is known, the B 

field and E field can be calculated by 

B A=    (3.29) 

=  E  A− j  (3.30) 

3.2.2.2 Induction heating source 

During the electromagnetic wave propagation, it carries electromagnetic power. Based on curl 

equations 3.1 and 3.2 and Poynting’s theorem, in the following, different types of energies 

existing in the wave propagation will be derived. In addition, the induction heating source is 

specified as Ohmic/Joule power density. 
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Multiplying equation 3.2 by H, equation 3.1 by E and subtracting former with latter, it can be 

obtained as 

( ) ( ) =  
B D

H E E H    H E J E
 

   −    −  −  − 
 t t

 (3.31) 

Based on the identity of vector operation, the left side of equation 3.31 can be written as 

( ) ( ) = ( )=H E E H     E H   S   −          (3.32) 

where, S is the Poynting vector. 

If the constitutive constants (σ, ε, μ) do not change with time, based on equations 3.6-3.8, the 

right side of equation 3.31 can then be written as 

2 2 2

1 1
( ) ( )

2 2

1 1
= ( + )

2 2

H H E E E J 

  

 
−  −  − 

 


− −



t t

H E E
t

 (3.33) 

Then, equation 3.31 updates as 

2 2 21 1
= ( + )

2 2
S    


  − −


H E E

t
 (3.34) 

Then, the integral of equation 3.34 over an enclosed volume (Vol) can be expressed as 

2 2 21 1
= ( + )

2 2
S     


  − −

  Vol Vol Vol
dv H E dv E dv

t
 (3.35) 

Via the divergence theorem (Gauss’s theorem), equation 3.34 can be written as 

2 2 21 1
= ( + ) +

2 2
 S s      


− 

  Sur Vol Vol
d H E dv E dv

t
 (3.36) 

where, Sur is the closed surface of Vol. 

This equation is known as Poynting’s theorem, which states that the surface integral of the 

Poynting vector S over a closed surface equals the power entering the enclosed volume. 

If a time-harmonic electromagnetic field is described, equation 3.35 can be simplified as 

2 2 21 1
= ( + ) +

2 2
 S s       −   Sur Vol Vol

d j H E dv E dv  (3.37) 

And it is convenient to introduce the following quantities 
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21
 = ( )

2
  m

Vol
W H dv  (3.38) 

21
 = ( )

2
 e

Vol
W E dv  (3.39) 

2 =  Vol
P E dv  (3.40) 

where, Wm and We denote the magnetic energy density and electric energy within the enclosed 

volume, respectively. Pσ denotes the ohmic power of the enclosed volume. 

Based on these equations, Poynting’s theorem can also specifically state as the power flowing 

into the surface of an enclosed volume equals to the changing rates of the stored magnetic 

energy and the electric energy, together with ohmic power within the enclosed volume. 

It should be noted that Pσ will transform into Joule heat by eddy losses and this dissipated 

power is considered as the main induction heating source. 

3.2.3 Heat diffusion with induction heating source 

As is known to all, the heat transfer in solids is generally governed by 

 =  v q 


+  +  


p p s

T
C C T p

t
 (3.41) 

where, ρ and Cp are the density and thermal capacity, respectively. T is the temperature as a 

function of both space and time. v is the velocity vector describing translational moving. q is 

the heat flux vector. ps denotes the heating power per unit volume. 

By introducing thermal conductivity λ, the relation between q and T is expressed as 

 =  q − T  (3.42) 

This equation is Fourier’s law of heat conduction. Since, in this work, all the relative positions 

between the tested specimens and the ECPT setup/coil are fixed, the translational motion term 

can be ignored. In addition, the major type of heat transfer is conduction without much 

considering other types, such as convection, and radiation. Based on the above concerns and 

by substituting equation 3.42 into equation 3.41, the heat transfer equation is reduced to the 

heat conduction/diffusion equation with the form of 

2  =   


− 


p s

T
C T p

t
 (3.43) 

where, 2 T  means the divergence of the temperature gradient T . 
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In the previous section, it is concluded that Pσ is the ohmic power of the enclosed volume 

which eventually transforms into Joule heat by eddy losses and is considered as the main 

induction heating source. For a point-function relation, this heating source is written as 

2 = =   sp E p  (3.44) 

Finally, by substituting equation 3.44 into equation 3.43, the heat diffusion equation with 

induction heating source can be then written as 

2 2 =    


− 


p

T
C T E

t
 (3.45) 

3.2.4 Infrared imaging via uncooled infrared camera 

One key process of ECPT technique is using an infrared camera to capture infrared radiation, 

i.e., convert infrared radiation into readable signals. An infrared detector plays as the core of 

an infrared imaging system/camera. Its capability mainly determines the performance of an 

infrared camera. 

Generally, infrared detectors can be divided into two types, i.e., photon detectors and thermal 

detectors. The basic principle of photon detectors is that the absorption of photons causes 

changes in the mobility/concentration of free charge carriers [230]. These changes generate 

the electrical resistance changes or photocurrent changes which is proportional to the number 

of photons absorbed [231]. In thermal detectors, the absorbed radiation changes the physical 

property of the detector, e.g., the changes of electrical resistance in a resistive bolometer. 

Compared with photon detectors, although thermal detectors are characterised by lower 

sensitivities or time resolutions, they can satisfy most practical applications with much lower 

costs [231]. Additionally, thermal detectors can work at the ambient temperature without 

employing any type of cryogenic system [232]. Benefiting from these two advantages, 

nowadays uncooled infrared cameras equipped with the thermal detector take the leading 

position in most applications. 

The performance of uncooled infrared cameras is assessed by a number of parameters, such as 

temperature accuracy, temperature resolution, spatial resolution, time resolution, etc. The 

temperature accuracy describes the absolute temperature measurement error of blackbody 

temperature measurement. The noise equivalent temperature difference (NETD) shows the 

temperature resolution of an infrared camera, which gives the minimum temperature 

difference between a blackbody object and blackbody background when the SNR of the 

infrared camera equals to one. The spatial resolution defines the total pixel number of a focal 
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plane array. The field of view (FOV) gives the angular extent of the observable object field. 

The frame rate shows the frequency at which consecutive images/frames are recorded by an 

infrared camera. The detector pitch is the pixel size of a detector array which is typically 

measured in microns. It is an important parameter to predict the spatial resolution and range 

performance of an infrared camera. A smaller detector pitch gets more image details (spatial 

resolution and FOV) if the area of the focal plane array is fixed. For instance, the infrared 

camera used in the work is FLIR A655sc, which is based on the uncooled microbolometer. Its 

main parameters are listed in table 3.1. 

Table 3.1 Main parameters of FLIR A655sc 

Parameters Value Unit 

Temperature accuracy ± 2 ℃ 

NETD < 0.03 ℃ 

HFOV/VFOV 25/19 ° 

Spatial resolution 640×480 Pixels 

Maximum frame rate 200 Hz 

Detector pitch 17 μm 

Spectral range 7.5-14 μm 

Detector time constant ~8 ms 

 

3.3 Fundamentals of POD Analysis 

POD analysis is a common and widely-accepted statistical tool, which can provide a 

quantitative assessment to evaluate the detectability of almost any NDT&E technique. POD 

analysis has been widely used for the detection capabilities of current NDT&E techniques, 

such as ultrasonic testing, eddy current testing. In this thesis, the aim of POD analysis is to 

quantitatively evaluate the performance of feature-based ECPT. In the following sections, 

some fundamentals of POD Analysis are introduced. 

3.3.1 POD curves 

Generally, POD curves are the direct results of POD analysis, which is normally a function of 

a chosen defect parameter (length, width, or depth) and presents some critical information to 

quantitatively characterise the detection capability and reliability [233-236]. Figure 3.3(a) 

illustrates three examples including a50 (the minimum defect size of 50% POD), a90 (the 

minimum defect size of 90% POD), and a90/95 (the minimum defect size of 90% POD with a 

95% degree of confidence). POD curves can be calculated from either experimental or 

simulated data. The inspection data can be recorded as two common types, i.e., binary data or 

signal response (â). For the first one, the inspection results are denoted binary data by 1 

indicating a defect is found or 0 indicating a defect is missed. Data of this type is called 
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hit/miss data. The data is called signal response data if the recorded response can be 

quantified and correlated with the flaw size, such as the maximum thermal response vs. the 

crack depth in ECPT testing. 

a90/95

Defect size

P
O

D

a90

a50

POD curve

95% confidence bound

(lower)

95% confidence bound

(upper)

 
(a) 

Defect size

P
O

D

POD curve


1

0
POD( )=  ( ) dp f p paa

a

POD( )a

 
(b) 

Figure 3.3 Schematic of a POD curve. 

(a) POD curve with the 95% confidence bounds, a50, a90, and a90/95. (b) Schematic of a 

probability density function and POD calculation. 

 

The POD(a) function is defined as the proportion of all defects of size a that will be detected 

in a particular application of a NDT&E system, such as cracks detection by using ECPT 

technique. If a crack of size a has its own crack detection probability (p), the probability 

density function is given by fa(p), which is illustrated in figure 3.3(b). The conditional 

probability of a randomly selected crack detected at the inspection is given by p fa(p) dp. The 

unconditional probability of a randomly selected and detected crack is the sum of the 

conditional probabilities over p, which is: 

1

0
POD( )  ( ) d aa p f p p=   (3.46) 

Equation 3.46 suggests that the POD(a) function is the curve through the averages of 

individual density functions of the detection probabilities. This curve provides the basis for 

testing assumptions about the applicability of various POD(a) models. 

3.3.2 Hit/Miss data-based POD analysis 

For the hit/miss data, the recorded results are discrete and only have two possible outcomes, 1 

or 0. The distribution of random errors between outcomes and predicted values is not 

Gaussian (normal) but binomial. Thus, generalised linear models are needed first to transform 

hit/miss data into a linear domain, where the transformed probability can be modelled as an 

ordinary polynomial function. Usually, four transform functions are used. They are 

log-logistics function (also called log-odds or logit function), log-normal function (also called 
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probit function), loglog function, and complementary log-log function (also called Weibull 

function), which are expressed as 

log-logistics (log-odds or logit) function: 
POD( )

ln ( )
1 POD( )

a
f a

a

 
= 

− 
 (3.47) 

log-normal (probit) function: ( )-1 POD( ) ( )a f a =  (3.48) 

loglog funcrtion: ( )( )-ln -ln POD( ) ( )a f a=  (3.49) 

cloglog funcrtion: ( )( )ln -ln 1 POD( ) ( )a f a− =  (3.50) 

where, f(a) is any linear function of a and the most common forms are f(a) = α + β a and f(a) 

= α + β ln(a). POD(a) is the POD of defect with size of a. ( )  is normal cumulative density 

function. 

Among these four functions, the logit function is commonly used in analysing the hit/miss 

data because of its analytical tractability and close agreement with the cumulative log-normal 

distribution [233, 237]. The term on the left-hand side of equation 3.47 is called the log of the 

‘odds’, i.e., odds equals to POD/(1-POD). This equation shows that the log of the odds of the 

POD is expressed as a linear function f(a), which is the name of the log-odds model. 

From the above four transform functions, their POD(a) models, as link functions to a, can be 

obtained as: 

log-logistics (log-odds or logit) link: 
( )

( )

exp ( )
POD( )

1 exp ( )

f a
a

f a
=

+
 (3.51) 

log-normal (probit) link: ( )POD( ) 1 ( )a f a= −   (3.52) 

loglog link: ( )( )POD( ) -exp -exp - ( )a f a=  (3.53) 

cloglog link: ( )( )POD( ) 1-exp -exp ( )a f a=  (3.54) 

It should be noted that choosing the link function and using the logarithmic form of a may 

have a large influence on the value for a90/95. For the symmetric data set, the POD link 

functions should be symmetric, either logit or probit. In the many situations when the data are 

skewed to the right, taking the log of size will produce a nearly symmetric data set. Thus, the 

use of a right-skewed link (the loglog link) is uncommon. In some situations, the data are 

left-skewed and using a symmetric link function penalises the inspection performance for 
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larger cracks due to lack-of-fit for the smaller cracks. In those situations, the left-skewed 

complementary loglog link function, cloglog, can provide adequate results [236]. 

3.3.3 Signal response data-based POD analysis 

Apart from recording the inspection results as hit/miss data, flaw indications also can be 

interpreted as continuous responses to stimuli. For instance, the thermal response in active 

IRT. Assume the response can be quantified and recorded which is correlated with flaw size. 

If the response exceeds a defined decision threshold, a positive flaw indication can be given 

by the POD function. 

The POD(a) function can be obtained from the relationship between the signal response (â) 

and a. If ˆ( )ag a represents the probability density of the values for fixed flaw size a, then: 

+

ˆ
ˆ ˆPOD( ) ( ) d 

dec
a

a
a g a a



=   (3.55) 

This calculation is illustrated in figure 3.4, in which the shaded area under the density 

functions represents the probability of detection. 
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2POD( )a

a1 a2

Decision threshold

 
Figure 3.4 Schematic of POD calculation from â vs. a relationship. 

 

It can be seen that the POD (a) function is derived from the relationship between â and a. 

Generally, the relationship between â and a defines the mean of ˆ( )ag a , which is: 

ˆ ˆ( ) ( )aa g a a  = + = +  (3.56) 

where μ(a) is the mean of ˆ( )ag a  and δ is a random error term accounting for the differences 

between â and μ(a). The distributional property of δ determines the probability density ˆ( )ag a  

about μ(a). It is an acceptable assumption that δ is normally distributed with zero mean and 

constant standard deviation if the decision threshold is properly set. 
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For different kinds of the response data, there are always four â vs. a relationships, i.e., â vs. a, 

â vs. ln(a), ln(â) vs. a, ln(â) vs. ln(a). The following POD calculation process takes the â vs. a 

relationship as an example. Based on equation 3.56, this relationship is updated as: 

â a  = + +  (3.57) 

Equation 3.57 shows that â is normally distributed with mean a +  and constant standard 

deviation σδ. 

The POD(a) can be rewritten as: 

ˆ ˆPOD( ) { }deca P a a=   (3.58) 

It is the area under ˆ( )ag a  and above the threshold âdec. By using the notation of the standard 

normal distribution, equation 3.58 can be written as: 

ˆ ( )
POD( ) 1 deca a

a


 



 − +
= −  

 
 (3.59) 

Based on the symmetry of normal distribution, equation 3.59 can be rewritten as: 

ˆ( ) /
POD( )

/

deca a
a



 

 

 − −
=  

 
 (3.60) 

Equation 3.60 is a cumulative normal distribution function with its mean μ and standard 

deviation σ of the following forms: 

ˆ( ) /deca  = −  (3.61) 

/  =  (3.62) 

For estimating α, β, and σδ from â vs. a relationship can be achieved by using the maximum 

likelihood method. 

3.3.4 Parameter estimation and confidence bound calculation 

3.3.4.1 Parameter estimation 

As a standard statistical technique, maximum likelihood estimates (MLE) analysis is widely 

used for parameter estimation based on the principle of choosing estimated values that are 

most likely to have produced the observed outcome, i.e., maximising the probability of the 

recorded data [238]. The following briefly shows how the MLE is used to estimate the model 

parameters from the recorded data. 
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Suppose Yi represents the result of the ith inspection and f(yi;θ) gives the probability of 

obtaining Yi, where θ=(θ1, θ2,…, θk)' is the vector of the k parameters in the probability model. 

For the hit/miss data, Yi can only be 0 or 1. For the signal response data as defined by 

equation 3.56, Yi is the signal response, and f(yi;θ) is a normal density function with mean and 

standard deviation given by θ=(α + β a, σ)'. Let Y1,…, Yn represent the results of independent 

inspections of n defects. Given a group of the test results Y, the likelihood function of θ is 

equivalent to the joint probability function of Y, which is expressed as: 

1

( ; ) ( ; )
n

i

i

L f y
=

=  y  (3.63) 

For a given result, Yi is known and equation 3.63 is only a function of θ. For the models 

considered, it is more convenient to work with the natural log form and the log-likelihood 

function is: 

1

ln{ ( )} ln{ ( ; )}
n

i

i

L f y
=

=    (3.64) 

The maximum likelihood estimate is denoted ̂ , which maximises ln {L(θ)}. The maximum 

likelihood estimate ̂  can be obtained by solving the likelihood equation, also known as the 

score equation: 

1

ln{ ( ; )}ln{ ( )}
0,      1,  ... ,

n
i

i

f yL
i k

=


= = =

 




 
  (3.65) 

Usually, Newton-Raphson method is used to find ̂ . 

3.3.4.2 Confidence bound calculation 

Because the POD(a) function is equivalent to a cumulative distribution function and the 

parameters are estimated by using the maximum likelihood, a method developed by Cheng 

and Iles [239, 240] can be used to calculate lower confidence bounds. These bounds are 

calculated from the variance-covariance matrix of the estimates, which reflect the sensitivity 

to the number and sizes of flaws in the tested specimens. 

The maximum likelihood estimates, ˆ
i , are asymptotically joint normally distributed with 

means given by the true parameter values, θi, and the variance-covariance matrix defined by: 

1−=V  I  (3.66) 

where, I is the information matrix with its elements Iij are the expected values: 
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2

E( ln ( ; )),      , 1,  ... ,ij i

i j

I f y i j k
 


= − =

 
  (3.67) 

In many cases, the assumed models will be the logit and cumulative log-normal distribution 

functions. However, other models can also be used if the evidence is available to support their 

selection. If the POD(a) model is a cumulative log-normal distribution function with the 

parameter vector θ=(μ,σ)'. The information matrix, I, can be written in the form: 

0 1

2

1 2

ˆ ˆ( , )
k kn

k k
 



− 
=  

− 
I  (3.68) 

where, n is the number of tests. 

The lower one-sided confidence bound of the POD(a) function is given by: 

ˆPOD ( ) ( )a z h =  −  (3.69) 

where, α is the significance level. ( )   is the standard cumulative normal distribution. 

ˆln
ˆ

ˆ

a
z





−
=  (3.70) 

1

2 2

0 1

2

0 0 2 1

ˆ( )
1

k z k
h

nk k k k

  +
= +    −  

 (3.71) 

where is   obtained from table 3.2 for the number of cracks in the experiment and the 

desired confidence level. 

Table 3.2 Values of   for lower confidence bounds on the POD(a) function [233] 

Sample size  20 25 30 40 50 60 80 100 ∞ 

  
90 % 3.903 3.884 3.871 3.855 3.846 3.839 3.831 3.827 3.808 

95 % 5.243 5.222 5.208 5.191 5.180 5.173 5.165 5.159 5.138 

 

3.3.4.3 Estimation of hit/miss data 

Estimation of the parameters of any POD(a) model for hit/miss data is based directly on the 

probability of each 0 or 1 result of an inspection. Assume that a balanced experiment has 

produced k inspections on each of n cracks. For this application, the likelihood function is 

given by: 
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1 1

( , ) (1 )ij ij

n k
Z Z

i i

i j

L p p 
= =

= −  (3.72) 

where Zij denotes the jth inspection of the ith flaw with a find (1) or a miss (0). The previous 

equations 3.51-3.54 define the probability of detecting a flaw of size a. 

The log-likelihood form of equation 3.72 is: 

1 1

ln ( , ) ( ln( ) (1 ) ln(1 ))
n k

ij i ij i

i j

L Z p Z p 
= =

= + − −  (3.73) 

The parameters to be estimated is μ and σ. Their maximum likelihood estimates, ̂  and ̂ , 

are the solutions to: 

1 1

1ln ( , )
0

1

n k
ij iji i

i j i i

Z Zp pL

p p

 

  = =

−  
= + = 

  −  
  (3.74) 

1 1

1ln ( , )
0

1

n k
ij iji i

i j i i

Z Zp pL

p p

 

  = =

−  
= + = 

  −  
  (3.75) 

Here, suppose the logit function (equation 3.47) is selected since it is the most commonly 

used model. If this model has a linear relationship with ln(a), it can be expressed as: 

POD( )
ln ln

1 POD( )

a
a

a
 

 
= + 

− 
 (3.76) 

Further, the logit link (equation 3.51) is updated as: 

( )

( )

exp ln
POD( )

1 exp ln

a
a

a

 

 

+
=

+ +
 (3.77) 

Since α and β in equation 3.77 are not interpretable in the physical meaning, a mathematically 

equivalent form is given by [237]: 

( )
POD( )

1 ( )

h a
a

h a
=

+
 (3.78) 

where, h(a) has the form of: 

ln
( ) exp

3

a
h a

 



 − 
=   

  
 (3.79) 

where, μ and σ have the forms of: 
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/  = −  (3.80) 

/ ( 3 )  =  (3.81) 

By substituting equations 3.78 into equations 3.74 and 3.75 and taking the derivatives, they 

become: 

1 1 1

( )
0

1 ( )

n k n
ij i

i j i i

Z h a

k h a= = =

− =
+

   (3.82) 

1 1 1

ln( ) ( )
ln( ) 0

1 ( )

n k n
ij i i

i

i j i i

Z a h a
a

k h a= = =

− =
+

   (3.83) 

Any standard computational method, such as the Newton-Raphson iterative procedure can be 

used to find the solutions to equations 3.82 and 3.83. After obtaining the estimated parameters 

( ˆ ˆ,  ), the logit POD(a) can be easily calculated by: 

ˆln( )
POD( ) ( )

ˆ

a
a





−
=   (3.84) 

where, ( )   is the standard cumulative normal distribution. 

For the confidence bound calculation in hit/miss data, the information matrix is estimated 

from equation 3.67, using estimated ( )ˆ ˆ ˆ, ' =  for θ. For this POD(a) model, the elements 

of the information matrix are given by: 

2

0
11 2 2 2

1

( )1

3 (1 ( ))

n
i

i i

h a nk
I

h a



 =

= =
+

  (3.85) 

2

1
12 21 2 2 2

1

ln( ) ( )1

3 (1 ( ))

n
i i

i i

a h a nk
I I

h a



  =

= = = −
+

  (3.86) 

22

2
22 2 2 2 2

1

ln( ) ( )1

3 (1 ( ))

n
i i

i i

a h a nk
I

h a



  =

= =
+

  (3.87) 

̂  together with the above equations gives all the parameters ( ̂ , ̂ ,
0k ,

1k , and 
2k ) required by 

equations 3.85-3.87 to calculate the lower confidence bound on the POD(a) function are 

available. 

For other model functions (equations 3.48-3.50), the parameter estimation and confidence 

bound calculation can be achieved by following the similar steps above. 



Chapter 3. Fundamentals of ECPT, POD, and Thermal Features for NDT&E 

40 

3.3.4.4 Estimation of signal response data 

In the signal response data analysis, the parameter vector of the POD(a) function is calculated 

from the â versus a relationship. If all the â values are between the threshold value and the 

saturation limit, a simple regression analysis yields the necessary information to estimate the 

POD curve and its lower confidence bound. In this situation, the least-square estimates from 

the regression analysis also happen to be the maximum likelihood estimates. If the â values 

are censored below the threshold or above the saturation limit, a more general analysis will 

give answers identical to those of the regression analysis if all values are available for all the 

flaws [241]. 

In the response signal analysis, it is assumed that the â values for a flaw of size a have a 

normal distribution with mean ln a +  and constant standard deviation σδ. To simplify the 

notation, let Y=ln(â) and X=ln(a). The random variable has a standard normal distribution: 

( )Y X
Z



 



− +
=  (3.88) 

Let ( )z  represent the density function of the standard normal distribution: 

21

2
1

( )
2

z

z e


−

=  (3.89) 

and ( )z  represent the cumulative normal distribution: 

-

( ) ( )

z

z d  


 =   (3.90) 

The likelihood function is partitioned into three regions: (1) Region R, for which values are 

recorded; (2) Region T, for which only a maximum value is known (the values fall below the 

recording signal threshold and cannot be recorded); (3) Region S, for which only a minimum 

value is known (the values fall above the saturation limit and cannot be recorded). 

The likelihood function for the entire sample is the product of the likelihood functions for the 

three regions: 

( , , ) R T S

R T S

L L L L   =     (3.91) 

By suppressing the dependency of L on α, β, and σδ: 
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1

1
( )

r

R i

i

L Z



=

=   (3.92) 

1

( )
t

T i th

i

L a
=

=   (3.93) 

1

(1 ( ))
s

S i sat

i

L a
=

= −   (3.94) 

where, 
1

( )iZ


  is the probability of observing ln(â) for the ith flaw in R. ( )i tha  is the 

probability of obtaining a ln(â) value below the recording threshold for the ith flaw in T. 

1 ( )i sata−   is the probability of obtaining a ln(â) value above the saturation limit for the ith 

flaw in S. r is the number of flaws in R. t is the number of the flaws with ln(â) below the 

recording threshold, ath. s is the number of the flaws with ln(â) above the saturation limit, asat.  

By substituting equations 3.92-3.94, the log form of the likelihood function is: 

2

2

ln ( , , )

1
ln( ) ( ( )) ln ( ) ln(1 ( ))

2
i th i sat

R T S

L

r Y X a a







  

  


=

− − − + +  + −   
 (3.95) 

The parameters to be estimated is α, β, and σδ. Their maximum likelihood estimates are the 

solutions to: 

ln 1
( ) ( ) 0i i i

R S T

L
Z V Z W Z

 


= + + =


  （ ）  (3.96) 

ln 1
( ) ( ) 0i i i i i i

R S T

L
X Z X V Z X W Z




= + + =


  （ ）  (3.97) 

2ln 1
( ) ( ) 0i i i i i

R S T

L
r Z Z V Z Z W Z

  


= + + + =


  （- ）  (3.98) 

where,  

( )
( )

1 ( )

i
i

i

Z
V Z

Z


=

− 
 (3.99) 
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( )
( )

( )

i
i

i

Z
W Z

Z


=


 (3.100) 

Similarly, the Newton-Raphson iterative procedure can be used to find the solutions to 

equations 3.96-3.98. 

The calculation of the lower confidence bound consists of five steps: 

(1) The information matrix ˆˆ ˆ( , , )a  I  is obtained using equation 3.67; 

(2) The variance-covariance matrix ˆˆ ˆ( , , )a  V  is obtained by inverting the information 

matrix I (equation 3.66); 

(3) The variance-covariance matrix ˆ ˆ( , ) V  is calculated based on a first-order Taylor 

series expansion of the equations 3.61 and 3.62; 

(4) The information matrix ˆ ˆ( , ) I  (equation 3.68) is obtained by inverting the 

variance-covariance matrix ˆ ˆ( , ) V ; 

(5) The calculated values are substituted into equations 3.69-3.71 to obtain the lower 

confidence bound. 

The elements of the information matrix ˆˆ ˆ( , , )a  I  are given by: 

2

11 2 2

ln( ) 1
( ( ) ( ))

S T

L
I r Z Z



 
 


= − = + −


   (3.101) 

2

12 21

2

ln( )

 

1
( ( ) ( ))

R S T

L
I I

X X Z X Z


 

 


= = −

 

= + −  
 (3.102) 
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13 31
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ln( )

 

1
(2 ( ) ( ) ( ) ( ))

R S S T T

L
I I

Z V Z Z Z W Z Z Z


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where, 

( ) ( ) ( ( ) )Z V Z V Z Z = −  (3.107) 

( ) ( ) (W( ) )Z W Z Z Z = +  (3.108) 

Let ˆˆ ˆ( , , )a  V  represent the variance-covariance matrix of the maximum likelihood 

estimates and its elements are defined as: 
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The Delta method is used for determining the asymptotic properties of ˆ ˆ( , ) V  from 

ˆˆ ˆ( , , )a  V . Using a Taylor series approximation to linearize the relationships expressed by 

equations 3.61 and 3.62, ˆ ˆ( , ) V  is given by: 

2

ˆ ˆ ˆ

2

ˆˆ ˆ

ˆˆ ˆ ˆ ˆ( , ) ( , , )T a
 



 

 
   

 

 
= =   

 

V T V T  (3.110) 

where, T is the transformation matrix defined as: 
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The elements of ˆ ˆ( , ) V  are: 
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Inverting ˆ ˆ( , ) V  yields ˆ ˆ( , ) I  and the values of k0, k1, and k2 can be obtained. These 

values are required in equation 3.71 to calculate the lower confidence bound on the POD(a) 

function. 

3.4 Thermal Features/Patterns of ECPT for Defect Characterisation and POD Analysis 

Based on the fundamentals of ECPT and POD analysis, this section briefly introduces and 

discusses various temporal- and spatial-thermal features/patterns, which will be used in the 

case studies. For a better illustration, the thermal data of testing an angular defect, i.e., Slot S2 

of Specimen 1 in figure 4.4(a), is used as an example to derive all the thermal 

features/patterns. In the case study chapters, the proposed features/patterns are used for 

characterising angular defects and RCF cracks. In this work, the simplest fitting function, 

linear fitting, is used to describe the relationships between various features and geometric 

parameters of defects. The main reason for using linear fitting is that RCF cracks investigated 

are in the light stage and the moderate stage. Geometric parameters of these RCF cracks are 

within narrow ranges and their relationships to features are approximated by linear fitting. 

3.4.1 Spatial domain-based features 

3.4.1.1 Maximum thermal rise/response 

Figure 3.5(a) shows the thermal distribution of Slot S2 in Specimen 1, later introduced in 

Section 4.3.2. This thermal distribution is captured at 100 ms, i.e., at the end of 100 ms 

heating pulse. At this time, the pixel with the highest thermal rise/response is shown by the 

red dot, i.e., maximum thermal pixel which is denoted as Pm. Most of the thermal 

features/patterns introduced later are based on Pm. Figure 3.5(b) illustrates the transient 

response of this pixel within 1000 ms. In this case, its maximum thermal rise (Tmax) is 

10.12℃, which can be used as a simple but very basic feature to build the relationship to 

defect parameters.  
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(a)  (b) 

Figure 3.5 Thermal distribution and response of Slot S2 in Specimen 1. 

(a) Thermal distribution of ROI at 100 ms with background subtraction. (b) Thermal response 

of the pixel denoted by the red dot in (a). 

 

3.4.1.3 Spatial skewness- and kurtosis-based features 

Additionally, five parallel-neighbour lines are plotted on the thermal distribution of Slot S2 in 

Specimen 1, as shown in figure 3.6(a). Each of them contains 41 pixels (covering both sides 

of the inclined slot) and the middle line just goes across the Pm. Figure 3.6(b) shows the 

spatial thermal rise values of along five neighbour lines. Two spatial features, i.e., spatial 

skewness- and kurtosis-based features, are introduced here. These two features are derived 

from the thermal distribution at the end of the heating stage, which are denoted as SST and 

SKT. 

 
(a) 

 
(b) 

Figure 3.6 Thermal distribution and line-scan results of Slot S2 in Specimen 1. 

(a) Thermal distribution of ROI at 100 ms. Five parallel-neighbour lines in different colours are 

plotted with the middle line going across the Pm. (b) Line-scan results from (a). 

 

Skewness measures the asymmetry (or lopsidedness) of a statistical distribution. The 

skewness for any symmetric distribution is zero. The skewness can also be either negative or 

positive to quantitatively show the difference from a symmetric distribution. A negative 

skewness means that a distribution is skewed to the left or the tail is on the left side of the 

distribution. On the other hand, a positive skewness shows a right-skewed distribution or a 

right-side tail. The skewness for a distribution is defined as: 
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where, X represents the spatial (line-scan) thermal data at a specific time, which is 100 ms in 

this case. μ and σ are the mean and the standard deviation of X, respectively. E(⋅) is the 

expectation. 

Different from skewness, kurtosis measures whether a data distribution is heavy-tailed or 

light-tailed compared to a normal distribution. The kurtosis for a standard normal distribution 

is three. Distributions with high kurtosis tend to have heavy tails (outliers), whereas 

distributions with low kurtosis tend to have light tails. The kurtosis is the normalised fourth 

central moment of a distribution: 
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These two features can be used to measure the asymmetry and outlier of the statistically 

spatial thermal distribution shown in figure 3.6(b). 

3.4.1.2 First-order differential imaging 

First-order differential of original thermal data can be used to investigate the distribution and 

the response of heating/cooling rate. Figure 3.7(a) shows the first-order differential image of 

Slot S2. This image is obtained by first sliding (neighbour frame difference) the original 

thermal video and then selecting at the specific time (30 ms). This specific time is when the 

first-order differential of Pm reaches its maximum value. Figure 3.7(b) shows the spatial 

values of the imaging result along five neighbour lines in figure 3.7(a). Each line has 121 

pixels aiming to include the thermal response on both sides of the slot. The sum of the 

average values along the five neighbour lines is denoted by Adiff1. 

 
(a) 

 
(b) 

Figure 3.7 First-order differential imaging of Slot S2 in Specimen 1. 

(a) First-order differential imaging of ROI at 30 ms. Five parallel-neighbour lines are plotted 

with the middle line going across the Pm. (b) Spatial values along five neighbour lines. 
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3.4.2 Temporal domain-based features 

Before introducing several temporal domain-based features, a zero-lag filter is first proposed 

here. Temporal domain-based features depend strongly on the calculation time slot. 

Commonly-used filters will introduce lag and then affect the time slot setting. To accurately 

retain key feature points, e.g., the maximum response time, in filtered data where they occur 

in the original-unfiltered data, a zero-lag filter based on the Hamming window is proposed. 

The idea of zero-lag filtering is processing the input temporal response data in both the 

forward and reverse directions [242]. The filtered data has the characteristics of zero-phase 

distortion. 

Specifically, a 11-point symmetric Hamming window-based finite impulse response lowpass 

filter is used, which is defined as: 

0 0

2
[ ] (1- ) ( ) , 0

n
w n a a cos n N

N


 = +               (3.117) 

where, a0 is 25/46, and N is 10. 

This 11-point window can smooth signals without taking much computing time. Additionally, 

since the maximum frame rate (sample rate) of the FLIR A655sc is 200 Hz and low 

frequencies are of much interest to defect detection, the cut-off frequency is set to 15 Hz. The 

filter coefficients are given by the following equation: 

[ ] [ ] [ ]x n h n w n=     (3.118) 

where, h [n] is the unwindowed impulse response. 

3.4.2.1 Area-based feature 

Figure 3.8 further shows the normalised thermal response and its first-order differential 

response. Since we are more interested in the change rate of thermal response without 

consideration for the sign (+ -), only the absolute value of first-order differential response is 

plotted. Note that all the curves in this figure are normalised to (0,1). The peak of the thermal 

response separates the heating stage and the cooling stage. The first peak of the first-order 

differential response presents the highest heating rate, whereas the second peak gives the 

highest cooling rate. Based on selecting a time slot of the heating stage or the cooling stage, 

the sum-up value of the thermal response curve or the absolute value of first-order differential 

response curve, i.e., area under the curve, can be obtained. The sum-up values from the 

thermal response and the first-order differential response are denoted as SUMT and SUMdiff1, 
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respectively. For the heating stage, the time slot of calculating SUMT or SUMdiff1 can be set as 

any range varying from the start to the end of excitation. For the cooling stage, the time slot 

can be set varying from the end of excitation to the end of the recording time. Furthermore, 

the time slot can be chosen including both the heating and the cooling stages. The time slot 

selection depends on the period of interest to be investigated, e.g., early/later heating slots, 

early/later cooling slots. 

 
Figure 3.8 Normalised thermal response and first-order differential response. 

They are the response of Pm when Slot S2 in Specimen 1 is tested. The heating stage and the 

cooling stage are shown by the red-dashed box and the blue-dashed box, and they are 

separated by the time when Pm reaches to Tmax. 

 

3.4.2.2 Temporal skewness- and kurtosis-based features 

Apart from the area-based features (SUMT and SUMdiff1), the characteristics of thermal 

response and its first-order differential responses in figure 3.8 can also be measured by 

skewness and kurtosis. Here, the skewness (denoted as ST and Sdiff1) is used to measure the 

asymmetry of the histogram derived from either the thermal or first-order differential 

response. The kurtosis (denoted as KT and Kdiff1) is used here to measure whether the 

histogram is heavy-tailed or light-tailed. It can be assumed that slots with different inclination 

angles and pocket lengths have individual thermal responses and further affect skewness and 

kurtosis values. The equation used to calculate the temporal skewness and kurtosis are the 

same as equations 3.115 and 3.116. The only difference is that the X in these two equations 

represents the transient normalised thermal response or first-order differential response within 

a specific time slot. 
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3.4.3 Tempo-spatial-based patterns 

3.4.3.1 Ratio mapping based on first-order differential result 

Figure 3.7(a) shows a spatial distribution at the early heating response (30 ms is about 

one-third of the 100 ms heating pulse). However, this image is based on the specific time 

when the first-order differential result reached to the maximum value and this time apparently 

will vary with different heating pulses. Here, the ratio mapping of the first-order differential 

result is introduced to automatically compress the video information of the ROI into one 

image. Note that the first-order differential data used here is the original data without taking 

normalised or absolute values. Figure 3.9(a) shows the ratio mapping result of Slot S2. The 

ratio equation used here is: 

' '

' '

( ) ( )

( ) ( )

max min

max min

T t T t
R

T t T t

+
==

−
 (3.119) 

where,
'

maxT  and 
'

minT  are the max and min first-order-differential values of each pixel. 

Figure 3.9(b) gives the spatial values of the ratio mapping result along five neighbour lines. 

The sum of the average values along the five neighbour lines is denoted by Aratio. 

 
(a) 

 
(b) 

Figure 3.9 Ratio mapping from first-order differential result of Slot S2. 

(a) Ratio mapping of ROI. (b) Spatial values along five neighbour lines. 

 

3.4.3.2 PCA-based thermal pattern 

Apart from using the ratio mapping to compress the thermal video information, the thermal 

data can also be presented by a set of linearly uncorrelated variables using principal 

component analysis (PCA). These principal components are arranged in order of decreasing 

variance. For the thermal video, the aim of using PCA is to maximise the contrast between 

defective and sound areas. Since the thermal video/sequences are stored as a 

three-dimensional matrix, in order to apply PCA this matrix need to be converted into a 

two-dimensional matrix (T) with the numbers of the columns and rows representing the total 
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pixels and frames, respectively. In this work, singular value decomposition is used to 

decompose the two-dimensional thermal matrix [243]: 

= TT URV  (3.120) 

where, U is a matrix consisting of a set of empirical orthogonal functions (EOFs) as its 

columns. These EOFs characterise the spatial variations of T [244]. Typically, the first two or 

three EOFs can adequately represent the spatial variations of T. R is a diagonal matrix with 

the singular values of T. And V is an orthogonal matrix with its columns as the principal 

components, which describe the time variations of T. 

Figure 3.10(a) shows the spatial distribution of the first EOF, which is manually selected and 

presents the most abnormal thermal pattern. Here, the time slot of calculating EOFs is 1000 

ms. In fact, various time slots in the heating stage or cooling stage can be set for PCA, which 

means that the calculation of EOFs depends on both temporal and spatial inputs. Figure 

3.10(b) shows the spatial values along five neighbour lines. The sum of the average values 

along the five neighbour lines is denoted as AT-PCA. 

 
(a) 

 
(b) 

Figure 3.10 PCA-based thermal pattern of Slot S2. 

(a) PCA-based thermal pattern of ROI (first EOF). (b) Pixel values along five neighbour lines. 

 

3.4.3.3 PCA-based first-order differential pattern 

Similarly, in equation 3.120, if the two-dimensional matrix (T) is converted from the 

first-order differential video/sequences, the calculated EOFs can represent the tempo-spatial 

information of the first-order differential results. Figure 3.11(a) presents the spatial 

distribution of the first EOF and figure 3.11(b) shows the spatial values along five neighbour 

lines. The sum of the average values along the five neighbour lines is denoted by Adiff1-PCA. 
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(a) 

 
(b) 

Figure 3.11 PCA-based first-order differential pattern of Slot S2. 

(a) PCA-based first-order differential pattern of ROI (first EOF). (b) Pixel values along five 

neighbour lines. 

 

From the above description, three types of thermal features/patterns are briefly introduced. 

They are four spatial domain-based features (Tmax, SST, SKT, and Adiff1), four temporal 

domain-based features (SUMT, SUMdiff1, ST, and Sdiff1), and three tempo-spatial-based features 

(Aratio, AT-PCA, and Adiff1-PCA). All these features can be used for angular defect and RCF crack 

characterisation and POD analysis. The detailed discussions can be found in the following 

case study chapters. 

3.5 Chapter Summary 

In this chapter, the theoretical background related to ECPT technique is first introduced. The 

reasons of using ECPT for detecting surface-breaking cracks in metallic materials are 

theoretically explained. Fundamentals of POD analysis is then presented. By referring POD 

curves and some critical information (a50, a90, a90/95), POD analysis can easily provide a 

quantitative assessment to evaluate the performance of ECPT for RCF defect characterisation. 

Based on these backgrounds, types of spatial/temporal domain-based and tempo-spatial-based 

thermal features/patterns are proposed for further defect characterisation and POD analysis. 

By utilising the proposed features, the following two chapters carry out the case studies of 

detecting angular defects and natural RCF cracks, respectively. The capabilities and 

performances of these features are compared by POD analysis. Critical analyses and 

discussions of the experimental results are also provided. 
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Chapter 4. Angular Defect Characterisation and Performance Evaluation 

via POD Analysis 

4.1 Introduction 

Since angular defects are considered as one common representation of idealised RCF cracks, 

this chapter presents a case study of the angular defect characterisation and the evaluation of 

features’ performances via POD analysis. It starts by proposing a POD analysis framework to 

guide the case study, which aims to quantitatively evaluate the performance of feature-based 

defect characterisation. Then, the ECPT configuration and three dedicated specimens that 

contain artificial angular slots are introduced. Types of features/patterns (introduced in 

Section 3.4) are used to characterise three main parameters, i.e., pocket length, inclination 

angle, and vertical depth, of angular defects. Based on the proposed POD analysis framework, 

the performances of angular defect characterisation using these features are evaluated in the 

last section. The flow chart of this chapter is shown in figure 4.1 and the detailed discussions 

are given the following sections. 

4.2 
POD Analysis Framework for Evaluating 

Performance of Defect Characterisation

Angular Defect Characterisation & Performance Evaluation via POD Analysis

4.3 
ECPT Configuration and 

Specimens Preparation 

4.5
 POD Analysis for Angular Defect 

Characterisation

4.6 
Chapter Summary

4.4 
Angular Defect Characterisation

Chapter 1

Introduction

Chapter 2

Literature Review

Challenges for RCF Crack Detection

Chapter 3

Fundamentals of ECPT, 

POD, and Thermal 

Features for NDT&E

Chapter 4

Angular Defect Characterisation 

& Performance Evaluation via 

POD Analysis

Case studies of angular defects & RCF cracks

Chapter 5

RCF Crack Characterisation and 

Performance Evaluation via 

POD Analysis

Chapter 6

Conclusions, Future Work & 

Importance to Railway Industry

 

Figure 4.1 Flow chart of Chapter 4. 

 

4.2 POD Analysis Framework for Evaluating Performance of Defect Characterisation 

Since the probabilistic performance of feature-based characterisation is evaluated by POD 

analysis, here a POD analysis framework for defect characterisation is proposed, as shown in 

figure 4.2. It is initiated by setting the excitation parameters (such as the excitation currents 

and the heating pulse duration), the camera parameters (such as the resolution and the frame 

rate), and choosing the type of coil, to build an ECPT configuration. Then, thermal 

images/videos are preprocessed by choosing the region of interest (ROI), enhancing the 

contrast in ROI using background subtraction and noise filtering. Further, thermal 
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features/patterns are extracted for further characterising the geometric parameters of defects. 

Then, the R-squared (R2), slope, and 2-norm of the residual are compared to evaluate the 

linearity of the relationship between the extracted features and a specific parameter of the 

defect. Finally, the POD curves derived from the test data are compared to evaluate different 

features’ performance. 

Video preprocessing

Choose the ROI

Background subtraction

Feature extraction Performance comparison

R-squared value

ECPT configuration

Select the excitation currents and heating pulse

Choose the type of induction coil

Noise filtering

Maximum thermal response

First-order differential imaging

2-norm of NRRatio mapping

Performance evaluation

POD analysis

Set the resolution, frame rate, and recording time 

PCA-based thermal pattern

PCA-based first-order differential pattern

Area-based features

Skewness- and kurtosis-based features

Spatial skewness- and kurtosis-based features

Slope value

 

Figure 4.2 POD analysis framework for evaluating performance of defect characterisation. 

 

4.3 ECPT Configuration and Specimens Preparation 

In this section, the components and main parameters of ECPT configuration are introduced. 

The manufacturing of specimens and their material properties and geometric parameters are 

presented. 

4.3.1 ECPT configuration 

The ECPT configuration used in experimental studies is shown in figure 4.3. Figure 4.3(a) 

gives its physical layout. It mainly consists of four units, i.e. a heating module with a planar 

rectangular induction coil, a signal generator, an infrared (IR) camera and a personal 

computer. The heating module is Easyheat 224 from Cheltenham Induction Heating with the 

150-400 kHz working frequency range (automatically tuned to the resonant frequency) and 

the maximum RMS current of 400 A. The inner and outer diameters of the rectangular coil are 

4 mm and 6 mm and its bottom side is used for excitation (equivalent to the linear coil), as 

illustrated in figure 4.3(b). The signal generator is Agilent 33500B and it is used to 

synchronously trigger the heating module and the IR camera. The type of IR camera is the 

FLIR A655sc equipped with an uncooled microbolometer, which has the spectral range of 

7.5-14.0 µm and the NETD < 30 mK. 
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(a) 

 
(b) 

Figure 4.3 ECPT configuration for angular defect characterisation. 

(a) Layout of ECPT configuration. (b) Schematic diagram of ECPT configuration. 

 

4.3.2 Specimens preparation 

To avoid complexity in modelling RCF cracks, simplifications of the real crack shapes are 

often required. One common assumption is that the crack shape is semi-elliptical [245, 246], 

or angular slot [247-249], which lies in a single plane at a shallow angle below the rail surface. 

Based on the assumption of angular slots, three metal blocks (named as Specimens 1, 2, and 3) 

made of AISI 1045 medium carbon steel are fabricated as specimens, as shown in figure 4.4. 

Comparing AISI 1045 with PD3 rail steel (see Section 5.2.2), their material properties are 

very similar and only the carbon level of AISI 1045 is slightly lower. Each steel block 

contains a group of artificial angular slots (cut by wire electric discharge machining) to 

simulate RCF cracks, as shown in figures 4.4(a)-(c). Specimens’ material properties can be 

found in table 4.1. Geometric details of Specimens 2 and 3 can be seen in figures 4.4(d) and 

(e). Table 4.2 shows the parameters of angular slots. Specimen 1 is used to simulate RCF 

cracks with a constant inclination angle but different pocket lengths, whereas Specimens 2 

and 3 are used to simulate RCF cracks with different inclination angles and varying pocket 

lengths, which is a more challenge case. 

Before conducting the experimental, the top faces of all specimens are uniformly sprayed with 

the black matt paint to reduce surface reflection. The specimens are placed with the 7 mm 

lift-off under the coil. 

Table 4.1 Material properties of the specimens 

Material properties Value Unit 

Density 7.8×103 kg/m3 

Specific heat capacity  486 J/(kg·K) 

Thermal conductivity 49.8 W/(m·K) 

Conductivity 6.17×106 S/m 

Relative permeability 100 1 
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Computer
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y
z
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

Figure 4.4 Specimens 1-3. 

(a) is the schematic diagram of Specimen 1 with seven angular slots. Angular slots are cut 

with the same angle but different pocket lengths. (b)-(e) are the schematic diagrams of 

Specimens 2 and 3 with nine angular slots in each. Angular slots are cut with different angles 

and pocket lengths. 90° angle simulates the vertical slot and the rest angles cover the common 

angle range of RCF cracks [250]. (f) Photo of Specimen 1. (g) Photo of Specimen 2 and 3. 

 

Table 4.2 Geometric parameters of the slots in Specimens 1-3 

Geometric parameters Specimen Value Unit 

  S1 S2 S3 S4 S5 S6 S7    

Inclination angle Specimen 1 45 45 45 45 45 45 45   ° 

Pocket length Specimen 1*1 0.51 1.02 1.53 2.01 2.54 3.01 3.52   mm 

Opening Specimen 1 0.44 0.43 0.44 0.42 0.43 0.44 0.45   mm 

  S1 S2 S3 S4 S5 S6 S7 S8 S9  

Inclination angle Specimen 2 90 45 40 35 30 25 20 15 10 ° 

Pocket length Specimen 2*1 1.32 1.06 0.91 1.03 0.88 0.90 0.81 0.45 0.38 mm 

Vertical depth Specimen 2 1.32 0.74 0.59 0.58 0.44 0.37 0.27 0.12 0.08 mm 

Opening Specimen 2*2 0.37 0.43 0.44 0.48 0.46 0.51 0.66 0.85 1.13 mm 

  S1 S2 S3 S4 S5 S6 S7 S8 S9  

Inclination angle Specimen 3 30 30 30 30 30 30 20 20 20 ° 

Pocket length Specimen 3*1 1.74 1.41 1.21 1.05 0.75 0.47 1.48 1.08 0.84 mm 

Vertical depth Specimen 3 0.87 0.71 0.61 0.52 0.38 0.23 0.51 0.38 0.29 mm 

Opening Specimen 3*2 0.43 0.42 0.45 0.43 0.41 0.27 0.27 0.26 0.28 mm 
*1: Cut with different pocket lengths and all within 4 mm to simulate cracks in initial and 

propagation stage; *2: Changing openings due to different cutting (inclination) angles. 

 

S1

S2

S3

S4

S5

S6

S7

pock
et 

len
gth

inclination angle

vertical depth

Specimen 1
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4.4 Angular Defect Characterisation 

In this section, the above specimens are tested and features/patterns for the pocket length, the 

inclination angle, and the vertical depth characterisation are studied in detail. For evaluating 

and comparing the fitted relationships between the features and the geometric parameters, R2, 

slope, and 2-norm of the residual are used. It is noteworthy that to eliminate the effects of 

different heating pulses, the residual values are normalised into the range of (-1, 1). Under 

each heating pulse, 2-norm of these normalised residuals (2-norm NR). Through comparisons, 

features’ strengths and limitations are further summarised. 

4.4.1 Pocket length characterisation 

This section tests and compares several features for the pocket length characterisation. The 

main parameters of ECPT configuration used here are shown in table 4.3. The specimen used 

is Specimen 1. Note that for simplicity all the features shown in Sections 4.4.1.1-4.4.1.5 are 

firstly extracted under only one typical heating pulse [251], i.e. 100 ms heating pulse. For 

each angular slot, five features, i.e., Tmax, Adiff1, Aratio, AT-PCA, and Adiff1-PCA, are investigated. 

Features extracted under different heating pulses are further discussed and compared in 

Section 4.4.1.6. 

Table 4.3 Main parameters of ECPT configuration in pocket length characterisation 

Parameters Value Unit 

Excitation frequency 260 Hz 

Excitation currents (RMS) 300 A 

Resolution of IR camera 640×120 pixels 

Frame rate of IR camera 200 Hz 

Recording time 1×103 ms 

 

4.4.1.1 Maximum thermal rise 

Figure 4.5 shows the relationship between Tmax and the pocket length under the 100 ms 

heating pulse. All the Tmax values of Slot S1-S7 are also given in the second row of table 4.4. 

This feature is extracted at pixel level which shows high repeatability with the largest 

standard deviation lower than 0.09 ℃. However, the relationship between this feature and the 

pocket length is nonlinear, which is clearly shown by the data deviation from the linear fitting 

line. In the following sections, four more features are extracted at area level to find a more 

linear relationship with the pocket length. 
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Figure 4.5 Tmax vs. pocket length under the 100ms heating pulse. 

Symmetric error bar gives two standard deviations of six repeated tests for each pocket 

length. The standard deviations for each pocket length are shown at the right bottom. 

 

4.4.1.2 First-order differential imaging 

Figure 4.6(a) shows the first-order differential image of Slot S1 at 35 ms. As introduced in 

Section 3.4.1.2, this specific time is when the first-order differential of the maximum thermal 

pixel (Pm) reached to its maximum. Figure 4.6(b) gives the spatial values of the imaging result 

along the five neighbour lines in figure 4.6(a). Their average is shown by the 

bold-black-dashed curve and the shaded area under this curve is Adiff1. Based on the same 

steps, all the Adiff1 of Slot S2-S7 are calculated and shown in the third row of table 4.4. 

 

(a) 

 

(b) 

Figure 4.6 First-order differential imaging of Slot S1. 

(a) First-order differential imaging of ROI at 35 ms. The red solid line denotes the slot’s 

surface-length direction and red dot shows Pm. Five neighbour lines are plotted with the 

middle one across Pm. (b) Spatial values along five lines. Their average values are plotted by 

the bold-black-dashed curve. 

 

4.4.1.3 Ratio mapping based on first-order differential result 

Based on the first-order differential result, the ratio mapping is used to automatically 

compress the video information of the ROI into one image. Figure 4.7(a) shows the ratio 

mapping result of Slot S1 based on equation 3.119. Figure 4.7(b) shows the spatial values 

along five lines. Their average is shown by the bold-black-dashed curve and the shaded area 
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under this curve is Aratio. In addition, the fourth row of table 4.4 gives all the Aratio of Slot S1- 

S7 from the ratio mapping. 

 

(a) 

 

(b) 

Figure 4.7 Ratio mapping from first-order differential result of Slot S1. 

(a) Ratio mapping of ROI. Five neighbour lines are plotted with the middle one across Pm. (b) 

Spatial values along five lines. Their average values are plotted by the bold-black-dashed 

curve. 

 

4.4.1.4 PCA-based thermal pattern 

Figure 4.8(a) presents the PCA-based thermal pattern of the ROI under the 100 ms heating 

pulse. This image is obtained by applying PCA method (introduced in Section 3.4) to the 

thermal video and then choosing the first empirical orthogonal function (first EOF). Figure 

4.8(b) shows the pixel/spatial values along five neighbour lines and a black-bold-dashed curve 

shows their average. The shaded area under this curve is AT-PCA. Further, the fifth row of table 

4.4 gives the AT-PCA of Slot S1-S7. The strengths of this feature are good linearity (high R2 

values) and high sensitivity (large slopes), as later shown in figure 4.11(b). However, this 

feature is not very sensitive to short pocket length (see figure 4.8(b)). Therefore, in the next 

section, another feature, derived from the PCA-based first-order differential pattern, is 

extracted to find a more sensitive corresponding with a short pocket length. 

 
(a)  

(b) 

Figure 4.8 PCA-based thermal pattern of Slot S1. 

(a) PCA-based thermal pattern of ROI (first EOF). Five neighbour lines are plotted with the 

middle one across Pm. (b) Spatial values along five lines. Their average values are plotted by 

the bold-black-dashed curve. 
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4.4.1.5 PCA-based first-order differential pattern 

The PCA-based first-order differential pattern of ROI is shown in Figure 4.9(a). It is achieved 

by sliding the thermal video and then using PCA method to obtain the first EOF. Figure 4.9(b) 

shows pixel/spatial values along five neighbour lines and their average. The shaded area 

under this curve is Adiff1-PCA. By comparing figure 4.9(b) with figure 4.8(b), the strength of this 

feature is that it can detect a short pocket length with a sharp profile change. Further, the last 

row of table 4.4 gives the Adiff1-PCA of Slot S1-S7. 

 
(a)  

(b) 

Figure 4.9 PCA-based first-order differential pattern of Slot S1. 

(a) PCA-based first-order differential pattern of ROI (first EOF). Five neighbour lines are 

plotted with the middle one across Pm. (b) Spatial values along five lines. Their average 

values are plotted by the bold-black-dashed curve. 

 

Table 4.4 The calculated Tmax, Adiff1, Aratio, AT-PCA, Adiff1-PCA of Slot S1-S7. 

Slot number S1 S2 S3 S4 S5 S6 S7 

Tmax (℃) 6.28 10.12 13.03 15.60 17.36 18.45 19.51 

Adiff1 (℃/Frame) 51.42 61.22 66.85 74.23 79.53 85.66 91.76 

Aratio (a.u.) 27.89 29.80 31.56 35.30 36.55 37.52 38.69 

AT-PCA (a.u.) 3354.73 3963.58 4307.79 4945.66 5501.32 6088.82 6573.70 

Adiff1-PCA (a.u.) 165.26 196.21 210.04 233.38 251.81 271.34 287.86 

 

4.4.1.6 Features comparison of pocket length characterisation 

Table 4.4 shows that all five relationships are monotonic. For illustration, values in this 

table only show one test result for each slot. Repeatability uncertainty of the measurement can 

be calculated by conducting repeated tests [252-256]. Typically, at least five repeated tests are 

used to evaluate repeatability uncertainty. Here, each test is repeated six times. After six 

repeated tests for each slot, figure 4.10 presents all the relationships between five features and 

the pocket length. Here, R2 and 2-norm NR (introduced at the start of Section 4.4) are used as 

two criteria to evaluate and compare the fitted relationships. Among these relationships, Tmax 

shows a high reproducibility but a low linear relationship to the pocket length. AT-PCA vs. 

pocket length shows the best linearity with a 99.8 % R2 value. 



Chapter 4. Angular Defect Characterisation and Performance Evaluation via POD Analysis 

60 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 

Figure 4.10 Tmax, Adiff1, Aratio, AT-PCA, and Adiff1-PCA vs. pocket length. 

(a) Tmax vs. pocket length. (b) Adiff1 vs. pocket length. (c) Aratio vs. pocket length. (d) AT-PCA vs. 

pocket length. (e) Adiff1-PCA vs. pocket length. Red lines are the linear fitting lines. 

 

Next, in order to generalise the above results, the same features are extracted under eight 

heating pulses (10, 20, 30, 50, 80, 100, 150, and 200 ms). Specifically, the minimum heating 

pulse is 10 ms which is the shortest value the excitation module can achieve and the 

maximum heating pulse is 200 ms also commonly used in previous work [249]. 
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Figure 4.11(a) shows Tmax vs. the pocket length. It shows that under different heating pulses 

all the results present that the maximum thermal rise monotonically increases with pocket 

length. The reason is that the longer the heating pulse, the more the Joule heat is generated. 

Additionally, the longer the slot, the more heat is trapped at the slanted area. Both of them 

lead to a higher temperature rise at the inclination side than the other side. However, from the 

residuals vs. fitted linear plots shown in figure 4.11(b), their patterns show that residuals do 

not randomly distribute along both sides of the fitted lines which are more obvious under 

longer heating pulses and when pocket length is longer than 2 mm. This result is also 

presented by the decreasing R2 and the increasing 2-norm NR (the Tmax row of table 4.5). 

These patterns indicate the inappropriate linear fitting. In the following, Adiff1 and Aratio 

features are discussed. 

 
(a) 

 

(b) 

Figure 4.11 Tmax vs. pocket length under eight heating pulses. 

(a) Linear fitting plots. (b) Residual plots. Residuals of each result are presented by squares. 

 

Figure 4.12(a) shows Adiff1 vs. the pocket length. This figure also verifies the monotonically 

increasing relationship. Compared with Tmax, figure 4.12(b) shows that Adiff1 has a better linear 

relationship with the pocket length. This relationship is still reasonable even when pocket 

lengths are longer than 2 mm, which is shown by the random pattern of the residuals and 

smaller values of the 2-norm of NR in the Adiff1 row of table 4.5. Specifically, under 20 ms, 30 

ms and 50 ms heating pulses, Adiff1 and pocket length has linear relationships with higher R2 

(＞96%) and smaller 2-norm of NR (＜3.6). 



Chapter 4. Angular Defect Characterisation and Performance Evaluation via POD Analysis 

62 

 
(a) 

 

(b) 

Figure 4.12 Adiff1 vs. pocket length under eight heating pulses. 

(a) Linear fitting plots. (b) Residual plots. 

 

Figure 4.13(a) shows Aratio vs. the pocket length. By comparing figure 4.13(b) with figures 

11(b) and 12(b), this feature has a larger standard deviation than Tmax but the smaller than 

Adiff1. Additionally, when the heating pulse is larger than 50 ms, this feature also has a 

well-fitted linear relationship with the pocket length, as verified by the larger R2 values and 

the random patterns of the residuals shown in the Aratio row of table 4.5. Although the 

minimum 2-norm of NR (2.82) is obtained under the 20 ms heating pulse, the R2 value 

(85.7%) is much lower compared to the values of Tmax and Adiff1. Under longer heating pulses 

(≥80 ms) Aratio and pocket length has linear relationships with higher R2 (＞94%) and lower 

2-norm of NR (＜3.6). 

 
(a) 

 

(b) 

Figure 4.13 Aratio vs. pocket length under eight heating pulses. 

(a) Linear fitting plots. (b) Residual plots. 

 

In addition to Adiff1 and Aratio, two PCA-based features are discussed in the following. AT-PCA vs. 

the pocket length under eight heating pulses are in figure 4.14(a). By comparing figure. 4.14(b) 

with figure 4.11(b), the residuals plots show random patterns when using linear fittings. These 

patterns mean that residuals randomly distribute along both sides of the fitted lines and verify 

the rationality of using linear fitting to present the relationship between AT-PCA and the pocket 
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length. In addition, a longer heating pulse (＞80 ms) contributes a well-fitted linear 

relationship, as indicated by a larger R2 and a smaller 2-norm NR (the AT-PCA rows in table 

4.5). Among eight heating pulses, the 100 ms heating pulse achieve the minimum 2-norm NR 

(3.15) with a 99.9% R2. 

 
(a) 

 

(b) 

Figure 4.14 AT-PCA vs. pocket length under eight heating pulses. 

(a) Linear fitting plots. (b) Residual plots. 

 

Similarly, Adiff1-PCA vs. the pocket length under eight heating pulses are in shown figure 

4.15(a). This figure also confirms the monotonically increasing relationships. Compared with 

figure 4.11(b), figure 4.15(b) shows that Adiff1-PCA also presents a better linear relationship 

with the pocket length, which is indicated by smaller 2-norm NR and random patterns of the 

residuals (the Adiff1-PCA row in table 4.5). However, the 2-norm NR shows an increasing trend 

if a longer heating pulse (＞80 ms) is used. Thus, the 20 ms heating pulse can be found with 

the minimum 2-norm NR (2.95) but a lower R2 of 99.1%. The 80 ms heating pulse can be 

found with the highest R2 value (99.5%) but a larger 2-norm NR of 3.26. 

 
(a) 

 

(b) 

Figure 4.15 Adiff1-PCA vs. pocket length under eight heating pulses. 

(a) Linear fitting plots. (b) Residual plots. 
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Table 4.5 Fitting parameters of Tmax, Adiff1, Aratio, AT-PCA, and Adiff1-PCA under different pulses 

 Pulse duration 10 ms 20 ms 30 ms 50 ms 80 ms 100 ms 150 ms 200 ms 

Tmax 

R2 94.8% 94.4% 95.2% 93.5% 93.7% 94.5% 96.4% 96.9% 

Slope 0.43 1.02 1.60 2.45 3.59 4.31 6.08 7.42 

2-norm of NR 3.07 3.84 3.87 4.48 4.61 4.52 4.51 4.50 

Adiff1 

R2 89.9% 98.5% 97.7% 96.1% 92.1% 96.9% 96.5% 95.1% 

Slope 4.47 9.77 12.50 13.40 12.30 13.30 13.90 13.60 

2-norm of NR 3.90 3.55 3.44 3.47 4.28 3.88 3.74 4.13 

Aratio 

R2 84.6% 85.7% 82.5% 93.5% 94.2% 95.3% 95.4% 95.3% 

Slope 2.74 1.66 1.68 2.83 3.34 3.62 3.40 3.47 

2-norm of NR 4.12 2.82 3.16 3.09 3.58 3.15 3.21 3.25 

AT-PCA 

R2 99.1% 99.7% 99.6% 99.8% 99.8% 99.9% 99.9% 99.9% 

Slope 112.35 246.13 365.88 571.93 863.72 1071.24 1601.08 2078.46 

2-norm of NR 3.41 3.30 3.53 3.34 3.54 3.15 3.49 3.26 

Adiff1-PCA 

R2 97.8% 99.1% 99.4% 99.2% 99.5% 99.1% 99.4% 99.4% 

Slope 9.67 19.42 26.17 31.83 36.58 39.74 46.88 50.79 

2-norm of NR 3.40 2.95 3.57 3.16 3.26 3.54 3.72 4.03 

 

From the above comparisons, the five features, i.e., Tmax, Adiff1, Aratio, AT-PCA, and Adiff1-PCA, 

have their strengths and limitations. The Tmax has the advantage of high repeatability but the 

relationship to the pocket length is nonlinear. Thus, only under shorter heating pulses (10, 20, 

30 ms) and for a shorter pocket length characterisation, Tmax feature can be used for linear 

fitting and it outperforms other features. Although Adiff1 and Aratio have lower repeatability, 

both features show well-fitted linear relationships to pocket length. Comparing both of them, 

Adiff1 has a better linear relationship and higher sensitivity under shorter heating pulses, which 

can benefit the feature extraction of high-speed inspection. However, this feature needs to be 

obtained at a specific time. One the other hand, Aratio has the advantage of taking values from 

automatically compressed video information, although its linear relationship is not as good as 

the first-order differential result under shorter heating pulses. Still, Aratio can be considered 

under longer heating pulses (≥80 ms) when its R2 value is comparable to Tmax and Adiff1. 

AT-PCA and Adiff1-PCA show relatively better linear-fitting relationships to the pocket length but, 

similar to Adiff1 and Aratio, they suffer a low reproducibility. The strength of AT-PCA is that, 

according to the values of R2 and 2-norm NR, it shows a better fitting relationship to the 

pocket length (with R2 > 99% and 2-norm NR < 3.6). On the other hand, Adiff1-PCA has the 

advantage of characterising angular defects with short pocket lengths. 

4.4.2 Inclination angle characterisation 

In this section, features for the inclination angle characterisation are investigated and 

compared by both experimental and simulation studies. 
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The main parameters of ECPT configuration are the same as those shown in table 4.3. The 

specimen used is Specimen 2. In Section 4.4.1, it has been found that most of the relationships 

between different features and the pocket length become clearer by using a longer pulse 

duration. By knowing this, for investigating the temporal domain-based features, i.e., SUMT, 

SUMdiff1, ST, Sdiff1, KT, and Kdiff1, this section selects the 200 ms heating pulse duration and 

investigates influences of different time slots on these features. For spatial-based features, SST 

and SKT, still different heating pulses are used to verify their performances of characterising 

inclination angles. Note that since the simulation models proposed in this work only consider 

the heating stage, the temporal domain-based features depending on both the heating and 

cooling stage cannot be obtained. Therefore, only two spatial-based features are discussed in 

Section 4.4.2.4. The features comparison is further discussed in Section 4.4.2.6. 

It is noteworthy that during the test of Specimen 2, Pm of each slot is changing at different 

frames even in repeated tests, which is different from simulation studies. Figure 4.16(a) shows 

an example of the thermal distribution at 200 ms when S2 of Specimen 2 is tested. Pm is 

marked as the red dot. From this figure, at 200 ms the red dot locates at the 55th row and the 

93rd column. Furthermore, the characteristic location of Pm is statistically found by using 

histograms, as shown in figure 4.16(b). Six repeated tests are selected to obtain these two 

histograms. Specifically, six repeated tests include the first three under the 100 ms heating 

pulse and the additional three tests under the 200 ms heating pulse. For each test, Pm values 

from the 4th (20 ms) to 13th (65 ms) frame, i.e., during the stable heating stage, are recorded 

with their rows and columns. Thus, a total of 60 Pm values are recorded. In figure 4.16(b), the 

counts that fall into the 55th row and the 93rd column are 27 and 60, respectively. Thus, they 

are the dominant row and column of Pm. It is noteworthy that in six repeated tests the 93rd 

column is the only column, which means that the transient location of Pm only moves along 

the surface length direction of S2. This is because heat is trapped at the edge of S2 and the 

main diffusion is along the surface length direction. Further, by bundling these two together, 

the characteristic location, denoted as Pc, can be obtained, i.e., 55th row and the 93rd column, 

as shown in figure 4.16(c). The above steps show an example of how to obtain Pc when S2 of 

Specimen 2 is tested. Following the same procedures, it is easy to get the rest Pc of other slots. 
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(a) 

 
(b)  (c) 

Figure 4.16 Thermal distribution and maximum thermal pixel’s positions. 

(a) Thermal distribution of slot vicinity after a 200 ms heating pulse when S2 of Specimen 2 is 

tested. Pm is marked as the red dot. (b) Histograms of the maximum pixels’ rows and 

columns. (c) Counts of Pm locations. 

 

After obtaining Pc, its thermal response can be extracted from the raw infrared video, as 

shown in figure 4.17. By using the zero-lag filtering, the filtered thermal response is obtained. 

Further, the first-order differential response can be obtained by sliding the filtered thermal 

response. The absolute value of the first-order differential response is also plotted as the bold 

dotted curve in this figure. Note that all the curves in figure 4.17 are normalised to (0,1) or 

(-1,1). Before discussing thermal features, some reference locations and time slots are needed 

since some features are related to the temporal domain. Here, two periods, i.e., the later 

heating stage (shaded in light red), and the whole cooling stage (shaded in light blue), are 

utilised to investigate different features. The reason for using these two stages instead of the 

early heating stage is that even though the video recording and the pulse excitation are 

synchronised, a varying lag of the excitation still exists, as shown in the subfigure. In this case, 

the time lag is around 5 ms (one frame). Thus, a better way is to find the peak time (of the 

thermal response or the first-order differential response) first and then use time slots from its 

either side for further extracting different features. 

 

Figure 4.17 Normalised thermal response and first-order differential response of Pc. 

They are the responses of Pc when S2 of Specimen 2 is tested. 
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4.4.2.1 Area-based features 

Figures 4.18(a) and (b) show the normalised thermal responses and the corresponding 

first-order differential responses for slots S1-S9 in Specimen 2, respectively. 

 
(a) 

 
(b) 

Figure 4.18 Normalised thermal responses and the first-order differential responses. 

(a) Normalised thermal responses. (b) Normalised absolute first-order differential responses. 

 

Based on the time slots of both the later heating and whole cooling stages (in figure 4.17), the 

sum-up values of the curves, i.e., areas under the curves, can be obtained. Figure 4.19(a) gives 

the values from the thermal responses, i.e., SUMT. Similarly, figure 4.19(b) shows the values 

from the first-order differential responses, i.e., SUMdiff1. It is clear that both SUMT and 

SUMdiff1 increase with the time slot and they present the overall decreasing relationships to the 

inclination angle. From figure 4.19(a), the 800 ms time slot leads to the largest decreasing rate 

(slope). However, by selecting this time slot, the relationship between SUMT and the 

inclination angle is nonmonotonic, as shown by the “+” sign on the value when the S9 with the 

10° inclination angle is tested. This is also shown in the SUMT row, the last column of table 

4.6. On the other hand, by selecting the 100 ms or 150 ms time slots, even if the absolute 

value of the slope is less than 0.5, SUMT presents the monotonic relationship to the inclination 

angle with a higher R2 and a smaller 2-norm NR. From figure 4.19(b), both the 200 ms and 

800 ms time slots contribute to the monotonically decreasing relationships (all the SUMdiff1 

values are marked with “-” sign). These two time slots give smaller 2-norm NR and the latter 

gives a larger decreasing rate, as shown in SUMdiff1 row, last two columns of table 4.6. 

Compared with SUMT, it shows that by using the 800 ms time slot, SUMdiff1 shows the best 

monotonically linear relationship to the inclination angle with the R2 and absolute slope value 

of 98.6% and 2.12. 
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(a) 

 
(b) 

Figure 4.19 Area-based (SUMT and SUMdiff1) vs. inclination angle. 

(a) and (b) show the SUMT and SUMdiff1 vs. inclination angle, respectively. Solid lines show 

the linear fitting relationships. “+” and “-” signs marked on the top of feature points show the 

increase or decrease between two neighbour points from left to right. For each inclination 

angle, the test is repeated six times and the average value is used. 

 
4.4.2.2 Skewness-based features 

Apart from the area-based features, the characteristics of thermal responses and their 

first-order differential responses in figure 4.18 can also be measured by some statistical values, 

e.g., skewness and kurtosis. Here, the skewness is used to measure the asymmetry of the 

histogram derived from either the thermal or first-order differential response. It can be 

assumed that the slots with different inclination angles have individual thermal responses and 

further affect the skewness values. By using different time slots, figures 4.20(a) and (b) show 

the skewness values from the thermal responses and first-order differential responses (ST and 

Sdiff1), respectively. It can be seen that the linear fitting relationship can be improved by 

increasing the calculation time slot. However, from figure 4.20(a), none of the five time slots 

can give a monotonic relationship. On the other hand, in figure 4.20(b), only by using the 800 

ms time slot, Sdiff1 shows the monotonic relationship to the inclination angle (all the values are 

marked with “+” sign). By comparing the ST and Sdiff1 rows of table 4.6, it shows that by 

choosing the 800 ms time slot, ST has a higher R2 value and a lager absolute slope value, but 

this relationship is nonmonotonic. Although Sdiff1 has a lower R2 value and a smaller absolute 

slope, it still shows the monotonically increasing relationship to the inclination angle. 

 
(a) 

 
(b) 

Figure 4.20 Skewness-based (ST and Sdiff1) vs. inclination angle. 

(a) ST vs. inclination angle. (b) Sdiff1 vs. inclination angle. 
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4.4.2.3 Kurtosis-based features 

Similar to the previous section, the kurtosis is used here to measure whether the histograms 

from the thermal and first-order differential responses are heavy-tailed or light-tailed. Figures 

4.21(a)-(b) present the kurtosis values from the thermal responses and first-order differential 

responses (KT and Kdiff1), respectively. The same as two skewness-based features, both KT and 

Kdiff1 show better linear relationships by increasing the calculation time slot. Figure 4.21(a) 

shows only by using the 800 ms time slot, KT shows the monotonic relationship to the 

inclination angle (marked with “+” sign). From figure 4.21(b), none of the five time slots can 

give a monotonic relationship. Comparing the KT and Kdiff1 rows of table 4.6, by choosing the 

800 ms time slot, KT the best monotonically linear relationship to the inclination angle with 

the R2 and absolute slope value of 97.5% and 0.45. 

 
(a) 

 
(b) 

Figure 4.21 Kurtosis-based features (KT and Kdiff1) vs. inclination angle. 

(a) KT vs. inclination angle. (b) Kdiff1 vs. inclination angle. 

 

Table 4.6 Fitting parameters under different calculation time slots 

 Time slot (ms) 50 100 150 200 800 

SUMT 

R2 92.7 % 97.2 % 95.6 % 93.7 % 82.9 % 

Abs. slope 0.09 0.30 0.49 0.65 1.57 

2-norm of NR 2.00 1.89 1.85 1.99 2.03 

Mono-relationship × √ √ × × 

SUMdiff1 

R2 64.4 % 81.8 % 87.4 % 94.0 % 98.6 % 

Abs. slope 0.14 0.30 0.40 0.36 2.12 

2-norm of NR 1.90 1.98 1.96 1.67 1.80 

Mono-relationship × × × √ √ 

ST 

R2 23.9 % 77.2 % 91.9 % 95.8 % 95.7 % 

Abs. slope 0.01 0.02 0.03 0.04 0.09 

2-norm of NR 2.14 2.03 1.78 1.71 1.73 

Mono-relationship × × × × × 

Sdiff1 

R2 23.6 % 44.9 % 66.9 % 72.0 % 83.4 % 

Abs. slope 0.02 0.03 0.04 0.02 0.06 

2-norm of NR 1.88 1.88 1.79 1.77 1.73 

Mono-relationship × × × × √ 
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KT 

R2 24.8 % 13.2 % 80.7 % 90.2 % 97.5 % 

Abs. slope 0.01 0 0.03 0.06 0.45 

2-norm NR 2.29 2.23 1.90 1.71 1.84 

Mono-relationship × × × × √ 

Kdiff1 

R2 10.0 % 36.5 % 55.3 % 36.8 % 75.9 % 

Abs. slope 0.01 0.04 0.09 0.02 0.27 

2-norm NR 2.02 1.76 1.76 1.91 1.94 

Mono-relationship × × × × × 

 

4.4.2.4 Spatial skewness- and kurtosis-based features of simulation results 

Figure 4.22(a) shows the FEM model used for the simulation study. Four main parameters, 

e.g., inclination angle, pocket length, vertical depth, and opening, of an angular slot are 

illustrated in the zoomed-in subfigure. The FEM software used is COMSOL Multiphysics via 

the induction heating interface, which couples the magnetic field and the heat transfer. 

Material properties used are the same as those in table 4.1. During the model calculation, the 

parametric sweep function is used to automatically update the geometric parameters of the 

model to those of a specific angular slot in Specimen 2, as shown in table 4.2. After 

calculation, figure 4.22(b) shows four examples of the thermal distributions at the end of a 50 

ms heating. These distributions show two different thermal patterns. The first pattern is the 

very similar thermal distributions at both sides of the slot if its inclination angle is 90°. 

Another one is that the thermal rise at the inclined side is higher than the other side if the 

inclination angle is less than 90°. This is because with the inclination angle decreasing, a 

larger amount of heat is trapped in the inclined tip, which results in a higher thermal rise. 

Figure 4.22(b) also denotes the maximum thermal points by the black dots. Via the maximum 

thermal points of all nine slots, figures 4.22(c) to (g) further show the line-scan results across 

them under five different heating pulses. It can be seen that the slot with the 15° inclination 

angle has the largest values of Tmax under the 10 and 20 ms heating pulses, whereas 20° slot 

gives the largest Tmax under other heating pulses, as also shown in figure 4.23(a). 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 

Figure 4.22 Simulation model and line scan results [257]. 

(a) FEM model. (b) Thermal distributions of the top surface at 50 ms with four different 

angles of the slot (90°, 45°, 20°, and 10°). The white-solid lines show the edges of the coil. 

(c)-(g) shows line-scan results of different inclination angles after 10, 20, 50, 100, and 200 ms 

heating pulses, respectively. 
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Based on the above line scan results, their spatial skewness and kurtosis, i.e., SST and SKT, 

can be calculated. Figures 4.23 (b) and (c) shows the relationships of SST vs. inclination angle 

and SKT vs. inclination angle, respectively. Results show that SST and SKT under the 10 ms 

heating pulse always show the highest values with the asymmetrically-enhanced thermal 

distribution of the line scan. It also can be seen that although SST and SKT have more positive 

correlations to the inclination angle under longer heating pulses (≥ 100 ms), these 

relationships are non-monotonic. 

 
(a) 

 
(b) 

 
(c) 

 

Figure 4.23 Tmax, SST, and SKT vs. inclination angle. 

(a)-(c) gives Tmax, SST, and SKT vs. inclination angle under five different heating pulses, 

respectively. 

 

4.4.2.5 Spatial skewness- and kurtosis-based features 

In the above, SST and SKT for inclination angle characterisation are numerically investigated. 

In the section, SST and SKT, are further verified by experimental studies. 

Figure 4.24 shows the line-scan thermal responses of nine inclination angles. Five different 

heating pulses are used. Figure 4.24(a) shows how to get the line-scan responses. Here, the 

same as figure 4.18, this figure takes S2 of Specimen 2 as an example. Based on the 

previously calculated Pc, five parallel-neighbour line scans (black-dashed lines) are conducted. 
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After calculating the average of five line-scan values, it is shown as the blue-solid curve in 

figure 4.24(f). By using the same procedures, under different heating pulses, figures 4.24(b) to 

(f) give all the line-scan results of different inclination angles. These results verify that the 

thermal responses are increasing with the heating pulse. Additionally, for Specimen 2, S8 (15°) 

has the strongest thermal responses only under the 10 ms heating pulse, whereas S7 (20°) 

gives the strongest thermal responses under longer heating pulses (≥20 ms), which also can 

be seen in figure 4.24(g). These two results are in line with the simulation findings. Further, 

figures 4.24(h) and (i) show the SST and SKT values of all the line-scan plots. It shows that SST 

and SKT under the 10 or 20 ms heating pulse always show the highest value. In addition, these 

two figures show that both SST and SKT have more positive correlations to the inclination 

angle when the heating pulse is longer than 100 ms. However, the same as simulation results, 

none of the five pulse durations can give a monotonic relationship. Comparing the SST and 

SKT rows of table 4.7, it shows that by choosing the 200 ms pulse duration, SST has a better 

fitting relationship to the inclination angle with a higher R2 value of 87.3 % and a smaller 

2-norm NR of 1.73. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 
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(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

 

Figure 4.24 Line-scan results and three different features vs. inclination angle. 

Specimen 2 is tested. (a) Schematic diagram of performing the line scan when S2 of Specimen 

2 is tested. Five parallel-neighbour lines are plotted with the middle line going across Pc. The 

average of five line-scan values is shown as the black-solid curve in (e). (b)-(f) Line-scan 

results of different inclination angles after a 10, 20, 50, 100, 200 ms heating pulse, 

respectively. (g)-(i) Tmax, SST, and SKT vs. inclination angle under five different heating 

pulses, respectively. 

 

Table 4.7 Fitting parameters under different heating pulse durations 

 Pulse duration(ms) 10 20 50 100 200 

SST 

R2 77.4 % 80.2 % 79.4 % 85.5 % 87.3 % 

Abs. slope 0.07 0.07 0.08 0.08 0.09 

2-norm NR 2.23 1.92 1.79 1.81 1.73 

Mono-relationship × × × × × 

SKT 

R2 58.7 % 71.0 % 68.8 % 75.0 % 76.9 % 

Abs. slope 0.24 0.24 0.27 0.27 0.28 

2-norm NR 2.17 1.95 1.93 1.91 1.86 

Mono-relationship × × × × × 
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4.4.2.6 Features comparison of inclination angle characterisation 

From the above sections, six temporal and two spatial features are used for characterising 

inclination angles of angular defects under the influence of changing pocket lengths. In most 

cases, longer time slots or pulse durations can contribute the relationships between the 

proposed features and the inclination angle. SUMT, SUMDiff1, SDiff1, and KT show monotonic 

relationships for longer time slots. Of these four features, SUMDiff1 has the best linear 

relationship to the inclination angle upon using the 800 ms time slot. The relationship 

between Tmax and the inclination angle is non-monotonic under all different heating pulses. 

Tmax increases initially with the inclination angle, then reach a peak, and decreases afterwards. 

Under the condition that the pocket length is constant, this relationship is supposed to be 

monotonic. The main cause of the non-monotonic relationship is the changing pocket length. 

Consequently, it is difficult for Tmax itself to characterise the inclination angle under the 

influence of the pocket length. The relationship between SST (or SKT) and the inclination 

angle is still non-monotonic. But compared with Tmax, SST (or SKT) has more positive 

correlations to the inclination angle when longer heating pulses are used. 

4.4.3 Vertical depth characterisation 

In the above sections, different features for characterising pocket lengths and inclination 

angles are discussed. This section investigates a more challenge task, i.e., the vertical depth 

characterisation. The vertical depth can be considered as a function of both the pocket length 

and the inclination angle. All the proposed features are investigated to test their capabilities of 

characterising vertical depths. The parameters of ECPT configuration are the same as those 

used in Section 4.4.2. The only difference is that Specimen 3 is also tested. After the same 

calculation procedures, figure 4.25 shows the relationships of the features vs. the vertical 

depth. Note that, in figures 4.25(a)-(e), there is no linear fitting line plotted since it is hard to 

see any relationships (R2 values are below 10%). Table 4.8 further shows the fitting 

parameters of the relationships between the eight effective features and the vertical depth. 

From this table, it can be seen that SST shows the best performance of characterising vertical 

depths, which has the highest R2 value (82.8%) and smallest 2-norm of NR (2.14) compared with 

other features. In addition, SUMT, SUMdiff1, ST, and SKT tend to have linear relationships to the 

vertical depth. But compared with SST, they have relatively lower R2 values and larger 2-norm of 

NR. 
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(m) 

 

Figure 4.25 All the proposed features vs. vertical depth. 

(a), (b), (l) and (m) show the spatial domain-based features vs. vertical depth. (c)-(e) give the 

tempo-spatial-based patterns vs. vertical depth. (f)-(k) show the temporal domain-based 

features vs. vertical depth. (a) Tmax vs. vertical depth. (b) Adiff1 vs. vertical depth. (c) Aratio vs. 

vertical depth. (d) AT-PCA vs. vertical depth. (e) Adiff1-PCA vs. vertical depth. (f) SUMT vs. 

vertical depth. (g) SUMdiff1 vs. vertical depth. (h) ST vs. vertical depth. (i) Sdiff1 vs. vertical 

depth. (j) KT vs. vertical depth. (k) Kdiff1 vs. vertical depth. (l) SST vs. vertical depth. (m) SKT 

vs. vertical depth. Solid lines show the linear fitting relationships. 

 

Table 4.8 Fitting parameters of different relationships 

 SUMT SUMdiff1 ST Sdiff1 KT Kdiff1 SST SKT 

Time slot 150ms 800ms 800ms 800ms 800ms 800ms - - 

Pulse duration - - - - - - 200ms 200ms 

R2 75.8% 77.4% 74.8% 31.3% 72.4% 28.3% 82.8% 58.2% 

Abs. slope 3.96 19.49 0.74 0.51 3.52 2.22 0.84 2.09 

2-norm of NR 2.58 2.80 2.54 2.35 2.62 2.40 2.14 2.32 

 

4.5 POD Analysis for Angular Defect Characterisation 

Based on the proposed POD analysis framework, Sections 4.3 and 4.4 have finished the first 

four steps, i.e., ECPT configuration, video preprocessing, feature extraction, and performance 

comparison. This section carries out the last step, performance evaluation of defect 

characterisation via POD analysis. Note that not all the features/patterns but those presenting 

clear relationships (to the pocket length and the vertical depth) are chosen for POD analysis. 

POD analysis for evaluating features of inclination angle characterisation is not considered. 

The reason is that even several features (SUMT, SUMdiff1, Sdiff1, KT) can be used to characterise 

inclination angles, there are no ready-made rules to decide the severity of the inclination angle, 

which is different from the severity of the pocket length (the longer the severer). In addition, 

since these features can be interpreted as continuous responses to the induction heating, in the 

following the signal response data is used for POD analysis. 

4.5.1 POD analysis for evaluating performance of pocket length characterisation 

According to equation 3.58, for Tmax, Adiff1, Aratio, AT-PCA, and Adiff1-PCA, the calculated POD 

curves as functions of the pocket length are shown in figure 4.26. Note that these POD curves 
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are based on equation 3.56 with the Cartesian relationship, i.e., â vs. a relationship. The 

decision threshold is set as the maximum feature value of repeated tests when S1 of Specimen 

1 is tested, i.e., it is assumed that detecting an angular slot with its pocket length shorter than 

0.5 mm is at 50% POD. Still, the decision threshold can be set by other assumptions. 

It is found that POD curves increase with pocket length under all heating pulses. For different 

features, optimal heating pulses can be found to achieve high POD value. Specifically, from 

the POD curves in figure 4.26(a), it can be seen that when using Tmax, the 50 ms heating pulse 

achieved the highest POD value. However, it is unrealistic to detect a zero pocket length with 

40% POD. The reason is that if pocket lengths jump outside the minimum value (0.51 mm) of 

the slots used for experiments, its corresponding POD value is extrapolated based on the 

linear relationship, which is no more valid under the 50 ms heating pulse. Figure 4.26(b) 

shows that when using Adiff1, the 20 ms heating pulse benefits a longer slot (＞0.5 mm) 

detection and has a narrower transition area. This advantage is in line with the previous 

discussion in Section 4.4.1.6. From figure 4.26(c), when using Aratio for a longer slot (＞0.3 

mm) detection, the 50 ms or 80 ms heating pulse is preferred. Compared with other features, 

the POD curve of AT-PCA has the narrowest transition area even different heating pulses are 

used and longer heating pulses contribute to higher POD values, as shown in figure 4.26(d). 

By comparing figure 4.26(d) and 4.26(e), Adiff1-PCA shows better detectability compared with 

AT-PCA and longer heating pulses are preferred to get higher POD values. However, in Section 

4.4.1.6, it is found that the 2-norm NR shows an increasing trend if a longer heating pulse (＞

80 ms) is used. Thus, for Adiff1-PCA, there is a trade-off between the increase of detectability 

and the goodness of the linear relationship when selecting the heating pulse. Additionally, 

table 4.9 shows the pocket length with 90% POD (L90) of different features under eight 

heating pulses. L90 means there is a 90% chance of detecting a defect longer than this value. 

For Tmax, the optimal heating pulse is 50 ms with the L90 of 0.41 mm. However, this length is 

suspicious because the well-fitted linear relationship is satisfied only under shorter heating 

pulses (10, 20, 30 ms) as discussed in Section 4.4.1.6. For the Adiff1, the optimal heating pulse 

is 20 ms with the L90 of 0.66 mm. For the Aratio, the optimal heating pulse is 80 ms with the L90 

of 0.95 mm. For the AT-PCA, the optimal heating pulse is 200 ms with the L90 of 0.54 mm. For 

the Adiff1-PCA, by considering a trade-off and taking the priority of the linear relationship, the 

80 ms heating pulse is preferred with the L90 of 0.51 mm. From the above discussions, it can 

be concluded that by using any of eight heating pulses, Adiff1-PCA has the best performance of 

characterising pocket lengths, which is demonstrated by the shortest L90 shown in last row of 

table 4.9. 
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(c) 

 
(d) 

 
(e) 

 

Figure 4.26 POD curve vs. pocket length under eight heating pulses. 

(a) Based on Tmax. (b) Based on Adiff1. (c) Based on Aratio. (d) Based on AT-PCA. (e) Based on 

Adiff1-PCA. 

 

Table 4.9 Calculated results of L90 for different features and heating pulses 

Feature Heating pulse  Unit 

 10 20 30 50 80 100 150 200 ms 

Tmax 0.56 0.47 0.43 0.41 0.47 0.47 0.51 0.54 mm 

Adiff1 1.05 0.66 0.68 0.82 0.88 0.68 0.80 0.82 mm 

Aratio 1.56 1.32 1.57 0.98 0.95 1.05 1.10 1.19 mm 

AT-PCA 0.75 0.68 0.65 0.59 0.58 0.58 0.59 0.54 mm 

Adiff1-PCA 0.73 0.61 0.56 0.51 0.51 0.50 0.51 0.48 mm 

 

4.5.2 POD analysis for evaluating performance of vertical depth characterisation 

For SUMT, SUMdiff1, ST, Sdiff1, KT, Kdiff1, SST, and SKT, the calculated POD curves as functions 

of the vertical depth are shown in figure 4.27. These POD curves are also based on equation 

3.57. Similar to Section 4.5.1, the decision threshold is set as the maximum feature value of 
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repeated tests when S9 of Specimen 2 is tested, i.e., it is a fifty-fifty chance to detect an 

angular slot with its vertical depth shorter than 0.08 mm. One problem is that by using ST, 

Sdiff1, KT, Kdiff1, SST, and SKT for vertical depth characterisation, all the relationships present 

the decreasing trend, as shown in figures 4.25(h)-(m). To correctly conduct the POD analysis, 

the increasing trend is needed and the reciprocals of the feature values in these figures are 

used. Additionally, based on table 4.8 in Section 4.4.3, only the features calculated under a 

specific time slot or a pulse duration (presenting better linear relationships to the vertical 

depth) are discussed here. With more feature data collected, the 95% lower confidence bound 

is also estimated. 

It can be seen that SUMT, SUMdiff1, ST, and KT present similar POD curves. It is because the 

linear relationships between these features and the vertical depth are quite same, which are 

presented by similar R2 values (around 75%) in the previous table 4.8. For Sdiff1, Kdiff1, and 

SKT, their POD curves show unrealistic values for detecting slots with shallow vertical depths 

since if a vertical depth is shallower than the minimum depth (0.08 mm) used in the 

experiments, its corresponding POD value is extrapolated based on the assumption of a linear 

relationship. However, these features have poor linear relationships to the vertical depth. 

Compared with the above features, SST presents a reasonable curve with POD tending to zero 

for shallow vertical depths and to one for deep vertical depths. The reason is that SST enjoys a 

more linear relationship to the vertical depth. Further, table 4.10 gives the D90 and D90/95 

values for different features. D90/95 means the minimum vertical depth of 90% POD with a 95% 

degree of confidence. It can be seen that SKT gives the smallest values of D90 (0.14 mm) and 

D90/95 (0.21 mm). Still, SKT presents a poor linear relationship to the vertical depth. Although 

D90 and D90/95 of SUMT, SUMdiff1, ST, KT, and SST are larger than them of SKT, these values 

are based on more linear relationships which are indicated by higher R2 values in table 4.8. 

From the above discussions, it can be concluded that by choosing the 800 ms time slot, 

SUMdiff1 has the best performance of characterising vertical depths, which is presented by the 

smallest D90 and D90/95. On the other hand, SST can characterise vertical depths smaller than 

them used in experiments with reasonable POD values. 
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Figure 4.27 POD curve vs. pocket length under eight heating pulses. 

(a) Based on SUMT. (b) Based on SUMdiff1. (c) Based on ST. (d) Based on Sdiff1. (e) Based on 

KT. (f) Based on Kdiff1. (g) Based on SST. (h) Based on SKT. 

 

Table 4.10 Calculated results of D90 and D90/95 for different features 

 SUMT SUMdiff1 ST Sdiff1 KT Kdiff1 SST SKT Unit 

Time slot 150 800 800 800 800 800 - - ms 

Pulse duration - - - - - - 200 200 ms 

D90 0.24 0.22 0.27 0.36 0.26 0.37 0.28 0.14 mm 

D90/95 0.30 0.28 0.32 0.51 0.31 0.54 0.33 0.21 mm 
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4.6 Chapter Summary 

This chapter carries out a case study of features for angular defect characterisation and their 

performances evaluation based on POD analysis. A POD analysis framework is proposed to 

provide a guide on the performance evaluation of feature-based defect characterisation. The 

ECPT configuration and three specimens with artificial angular slots are introduced. Types of 

features/patterns are utilised to characterise three main parameters, i.e., pocket length, 

inclination angle, and vertical depth, of angular defects. The performances of different 

features are compared and evaluated by POD analysis. Results show that Tmax has the 

advantage of high repeatability but its relationships to all three main parameters are nonlinear, 

especially under longer heating pulses. Although Adiff1, Aratio, AT-PCA, and Adiff1-PCA have lower 

repeatability compared with Tmax, these features show well-fitted linear relationships to pocket 

length. Among them, Adiff1-PCA has the best performance of characterising pocket lengths, 

which is demonstrated by the shortest L90. However, for Adiff1-PCA, special cares of the 

trade-off between increasing the POD and increasing the goodness of the â vs. a relationship 

needs to be taken. In the inclination angle characterisation, SUMT presents the monotonic 

relationship by selecting specific time slots. Compared with SUMT, SUMdiff1 has a better 

monotonical relationship by using longer time slots. Sdiff1 and KT show the monotonically 

increasing relationships to the inclination angle only by using 800ms time slot. Among these 

features, SUMdiff1 shows the best linear relationship to the inclination angle. In the vertical 

depth characterisation, SUMdiff1 has the best performance of characterising vertical depths, 

which is presented by the smallest D90 and D90/95. On the other hand, SST has the highest R2 

value and the smallest 2-norm of NR and presents reasonable POD values for vertical depths 

outside the range used in experiments. 
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Chapter 5. RCF Crack Characterisation and Performance Evaluation via 

POD Analysis 

5.1 Introduction 

The previous chapter investigates the angular defect characterisation and the evaluation of the 

feature performance by POD analysis. In this chapter, another case study of RCF crack 

characterisation and performance evaluation via POD analysis is explored. Similar to the 

previous chapter, this chapter begins by configuring the ECPT setup and preparing three 

cut-off specimens containing natural RCF cracks. Then, the capabilities of the proposed 

features/patterns are further verified to characterise four main parameters, i.e., pocket length, 

inclination angle, vertical depth, and surface length, of RCF cracks. Lastly, based on the 

previously proposed POD analysis framework, the performances of RCF crack 

characterisation using these features are evaluated. The flow chart of this chapter is shown in 

figure 5.1 and detailed discussions will be given the following sections. 
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Figure 5.1 Flow chart of Chapter 5. 

 

5.2 ECPT Configuration and Specimen Preparation 

5.2.1 ECPT configuration 

Figure 5.2(a) shows the four main units of the ECPT configuration, which are the same as 

those shown in figure 4.3. The only difference is that in characterising inclination angles 

using the first cut-off specimen (Specimen N1 latter introduced), to capture the detailed spatial 

thermal patterns, a 2.9× close-up lens is mounted onto the standard lens of the IR camera, as 

shown in figure 5.2(b). The operational current and excitation frequency of the heating 

module are adjusted when testing different specimens. The frame rate and the spatial 
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resolution of the IR camera are set to 200 Hz, 640×120 pixels, respectively. The recording 

duration is 1000 ms for all the IR videos. 

 
(a) 

 
(b) 

Figure 5.2 ECPT configuration for RCF crack characterisation. 

(a) Layout of ECPT configuration. (b) Zoom-in figure showing the close-up lens. 
 

5.2.2 Specimen preparation 

Three RCF specimens are carefully selected to further verify the features introduced in 

Section 3.4. Figure 5.3 shows the first cut-off specimen (Specimen N1) from a PD3 (60 kg/m) 

rail removed from service. Compared with the AISI 1045 steel, its carbon level is slightly 

different within the range of 0.7 % to 0.8 % [258]. This specimen contains nine RCF cracks 

with different inclination angles and pocket lengths (penetration depths). Here, only eight RCF 

cracks (denoted as C1-C8) are marked and the reason will be later explained in Section 5.3. The 

inclination angles, pocket lengths (L), vertical depth (D) are estimated by the side view profile 

and 3D profile from X-ray tomography, as shown in figures 5.3(b)-(d). Note that all the 

vertical depths decrease along the y direction of the specimen and the deepest value of each 

crack is provided. Some cracks (C2-C5) have varying angles along the surface length direction 

and the estimated angles are considered as their effective values denoted by ̂ . This specimen 

is used for investigating the pocket length, the inclination angle, and the vertical depth 

characterisation. 
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(c) 

 

(d) 

Figure 5.3 Cut-off Specimen N1 containing natural RCF cracks. 

(a) Photos of the specimen. Bottom subfigure is the top view of the zoom-in RCF crack area 

from optical microscopy. (b) Side view of the specimen from optical microscopy. Cracks are 

delineated by white curves. (c)-(d) 3D profile from X-ray tomography. 

 

Figure 5.4 shows another two cut-off specimens (Specimens N2 and N3) contain RCF cracks. 

These two specimens are used for investigating the surface length characterisation. They are 

selected because the RCF cracks in them are in the light stage and the moderate stage, 

respectively. And their clustered distributions are more complex than them of Specimen N1. 

Surface lengths (SL) to be investigated are alternatively delineated by white and yellow curves, 

as shown in figures 5.4(c) and (d). Additionally, tables 5.1 and 5.2 give the roughly measured 

SL values from optical microscopy. Note that for Specimen N3, the clustered distribution of 

cracks is severer, which leads to several cracks connected with each other. In figures 5.4(d), 

the connected cracks are delineated and considered as one clustered crack, e.g., SL10 and SL16. 

In table 5.2, the SL value is the total lengths of the cracks if they are connected. 

Table 5.1 Surface lengths of the cracks in Specimen N2 

Surface length number Value (mm) 

SL1 - SL10  5.8  2.9  7.7  7.1  2.0 16.4 13.2  2.6 17.2 19.6 

SL11 - SL20 14.1  8.7 13.3 11.5 10.6  2.1  5.1 13.2 22.3  1.3 

SL21 - SL30  8.3 23.7  7.8  8.2 11.6  6.6  5.3 13.4  9.5  2.2 

SL31 - SL39 15.3  1.7  9.6  3.4  5.6  5.4  2.1  1.9  3.2  

 

Table 5.2 Surface lengths of the cracks in Specimen N3 

Surface length number Value (mm) 

SL1 - SL10  2.8 12.8* 14.6* 17.7* 14.3  6.2 17.4 10.7 14.1 64.3* 

SL11 - SL20 31.7*  6.1 13.2 27.3 12.8 38.8* 23.2 13.7* 16.3  9.7 
*: Total lengths of the connected cracks. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5.4 Cut-off Specimens N2 and N3. 

(a) Photos of the Specimen N2. (b) Photos of the Specimen N3. (c) Zoom-in RCF crack area of 

Specimen N2. (d) Zoom-in RCF crack area of Specimen N3. Cracks to be investigated are 

alternatively delineated by yellow and white dashed curves. 

 

Similarly, before carrying out experiments, all the top surfaces of three cut-off specimens are 

uniformly sprayed with the black matt paint to reduce the surface reflection. For the first 

specimen, a 7 mm lift-off distance between the bottom of the coil and the top face is kept. For 

the remaining two specimens, since the cracks are much longer, to avoid coil blocking the IR 

camera view, a 12 mm lift-off distance is used, which provides a good view of covering all 

the surface lengths of the cracks. In addition, to heat a clustered area of cracks, the previous 

coil is replaced by a larger rectangular coil. 
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5.3 RCF Crack Characterisation 

In this section, the above RCF specimens are used for crack characterisation. At the beginning 

of this section, two crack reconstructors are designed to obtain the complex surface shapes of 

cracks. Features/patterns characterising for the pocket length, the inclination angle, the 

vertical depth, and the surface length are investigated in detail. For evaluating and comparing 

the fitted relationships between the features and the geometric parameters, the same criteria, 

i.e., R2 and 2-norm NR, are used. Through comparisons, features’ strengths and limitations are 

summarised. 

5.3.1 Design of crack shape reconstructors 

In this work, all three specimens contain natural RCF cracks. Due to the complex surface 

shapes of these cracks, the proposed features cannot be directly applied to characterise pocket 

lengths or inclination angles. Thus, two crack reconstructors are proposed to first reveal and 

highlight the surface shapes of cracks, and further obtain the characteristic pixels around the 

reconstructed shapes. Figures 5.5 shows the detailed reconstruction process and the method 

used in each step of the reconstructors and the example output of each step. 

The crack reconstructor of Specimen N1 is shown in figure 5.5(a). In the video preprocessing 

step, the previously introduced zero-lag filtering is used. In the crack response enhancement 

step, the PCA method is used to produce highly compressed descriptions of thermal responses. 

In Specimen N1, since the crack distribution is simpler with larger crack spacings, the side 

effect of thermal diffusion is limited. Thus, both the heating and the cooling stages are used in 

this step. By properly choosing an empirical orthogonal function (EOF), underlying crack 

responses can be further revealed. For Specimen N1, in the heating stage, the third EOF is 

selected (EOF3,h). The further improved crack responses can be revealed by combining 

EOF3,h with EOF3,c, which is another EOF3 from the cooling stage. Here, the 200ms heating 

slot and 300ms cooling slot are found to achieve the expected result. In the crack shape 

reconstruction step, a set of image-processing procedures are used to reconstruct the shapes of 

the cracks, which include normalisation, Otsu-based binarization, linear element-based 

morphological opening, Euclidean distance transform, etc. Note that in the last procedure the 

right edges are extracted to obtain the crack shapes. It is because that all the cracks in 

Specimen N1 incline to the left side as shown in figure 5.3(b) and the horizontal direction of 

heat propagation is from right to left. Based on the reconstruct shapes, the next step finds 

characteristic pixels via the histograms of local maxima at different frames. The results of this 

step then can be used to calculate the proposed features. The last step checks whether the 
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results are expected. If not, the process will return to the crack response enhancement step and 

update EOFs by using a new window/span of heating and cooling stages. A detailed 

discussion of this reconstructor will be given in Section 5.3.2. 

The crack reconstructor of Specimens N2 and N3 is shown in figure 5.5(b). More complex and 

clustered distributions need to be properly addressed. In the crack response extraction step, 

different methods can be used, from simply choosing the thermogram or the first-order 

differential imaging at a specific time to utilising PCA-based patterns. In the crack shape 

reconstruction step, a set of image-processing procedures are used to reconstruct the shapes of 

the cracks. One of the key procedures is using a customised Frangi filter [259] to detection the 

crack shapes under complex and clustered distributions. The characteristic pixel extraction 

step is not considered since Specimens N2 and N3 are only used for investigating the surface 

length characterisation and the crack shapes are obtained in the third step. However, if needed, 

this step can be easily included. The last step checks whether the results are expected. If not, 

the process will return to the crack response extraction step by choosing another method and 

the crack shape reconstruction step by updating the parameters of the Frangi filter. A detailed 

application of this reconstructor will be given in Section 5.3.4. 

Step 1: Video preprocessing

ROI selection

Background subtraction

Step 2: Crack response enhancement 

Zero-lag noise filtering

EOF3 of PCA (specific heating stage) 

EOF3 of PCA (specific cooling stage) 

EOF3,h+EOF3,c

Step 3: Crack shape reconstruction

EOF result normalization

Image binarization by Otsu's method

Morphological opening by a linear element 

Euclidean distance transform

Distance normalization 

End

Expected results

YES

NO

Step 4: Characteristic pixel extraction

Horizontally local maxima of reconstructed shapes   

Histograms of local maxima at different frames

Image binarization

Shapes reconstructed by extracting right edges 

 

Step 1: Video preprocessing

ROI selection

Background subtraction

Step 2: Crack response extraction 

Step 3: Crack shape reconstruction

Result normalization

Zero-lag noise filtering

Thermogram /

1st-order differential imaging /

Ratio mapping /

PCA-based thermal pattern /

PCA-based first-order differential pattern

Contrast enhancement using

 histogram equalization

Shapes detection using Frangi filter

Image binarization by Otsu's method

Shapes reconstructed by extracting lower edges 

End

Expected results

YES

NO

 
(a) (b) 
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(c) 

 
(d) 

Figure 5.5 Crack reconstructors consisting of different steps. 

(a) Crack reconstructor of Specimen N1. (b) Crack reconstructor of Specimens N2 and N3. 

(c) and (d) show examples of output from each step by using these reconstructors, 

respectively. Note that the output of step 1 is thermal video. Here, only a thermogram at 

200 ms is shown. 

 

5.3.2 Pocket length characterisation 

This section verifies and compares Tmax, Adiff1, Aratio, AT-PCA, and Adiff1-PCA for characterising 

pocket lengths of RCF cracks. Specimen N1 is used. The heating module works with the 

operational RMS current of 300 A and the frequency of 262 kHz. From Chapter 4, it is found 

that shorter heating pulses contribute to the performance of Tmax and Adiff1, whereas longer 

heating pulses benefits the performance of Aratio, AT-PCA, and Adiff1-PCA. Thus, five specific 

heating pulses (10 ms, 20 ms, 50ms, 100 ms, 200 ms) are selected. 

Before extracting the above features, the first step is utilising a crack reconstructor to reveal 

and highlight the surface shapes of cracks. Figure 5.6(a) shows the optical image of the RCF 

crack area and its thermal distribution after a 200 ms heating pulse. For better observation, the 

red-dashed boxes show the relative positions of ROIs from the optical and thermal images. 

Note that the view angles of them are different. The optical one is almost vertical and the 

latter is around 40°-angled to avoid the view blocking from the coil. Then, via the crack 

reconstructor introduced in figure 5.5(a), the output of each step is shown in figures 5.6(b)-(d), 

respectively. By comparing the bottom subfigures of figures 5.6(a) and (b), it clearly shows 

that the PCA-based can effectively extract and enhance the defective areas. As previously 

mentioned, this study only focuses on eight RCF cracks (denoted as C1-C8) and the crack at the 
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left of C4 is excluded. In figure 5.6(b), the response of this crack is not obvious. The reason is 

that this crack is at the bottom edge of the specimen and it locates outside the effective heating 

area of the coil. Consequently, in the crack shape reconstruction step, this crack disappeared 

from the reconstructed results, as shown in the bottom of figure 5.6(c). It is noteworthy that 

although this crack is missed in this study, an optimised coil design, e.g., using a larger 

diameter or multiple turns, can easily address this problem. The maximum thermal pixels 

around the reconstructed crack shapes are needed as the base points to calculate the proposed 

features. These maximum thermal pixels are changing at different frames due to measurement 

errors and uncertainty. In the characteristic pixel extraction step, the characteristic locations of 

these maximum thermal pixels of eight cracks are obtained by finding horizontally local 

maxima around the reconstructed shapes and their histograms at different frames, as shown in 

figure 5.6(d). 

 
(a) 

 
(c) 

 
(d) 

 

(b) 

Figure 5.6 Reconstructed crack shapes and extracted characteristic pixels. 

(a) Preprocessed thermal frame after a 200 ms heating pulse by cropping ROI, background 

subtraction, and filtering. (b) Enhanced crack responses by PCA. (c) Reconstructed crack 

shapes by a set of image-processing procedures. (d) Extracted characteristic pixels by local 

maxima around the reconstructed shapes and their histograms at different frames. 

 

Based on the above characteristic pixels, all the five features under different heating pulse 

durations can be calculated. Considering the complex geometry of each RCF crack, some 

C1
C2

C4

C5

C6

1 mm

C8C3
C7

C1 C2
C4 C5 C6

C8
C3 C7



Chapter 5. RCF Crack Characterisation and Performance Evaluation via POD Analysis 

91 

different procedures are used compared with the calculation of features for angular defect 

characterisation. Take the feature calculation of C1 as an example. Tmax is the average value of 

all the characteristic pixels from C1. For Adiff1, Aratio, AT-PCA, and Adiff1-PCA, the line-scan 

responses are needed. Based on the characteristic pixels, horizontal-neighbour line scans are 

conducted. For each characteristic pixel (Pc), a 21-pixel line scan (going across it) is 

conducted and the middle point of this line scan is Pc. Compared with the pixel length (121 

pixels) used in Section 4.4.1, it is much shorter. The reason is that a longer pixel length may 

reach to C2. To avoid this, the line scan with 21 pixels is used here. After obtaining all the line 

scan results from first-order differential imaging, their average value is considered as Adiff1. 

Similarly, the average value of line scan results from ratio mapping, PCA-based thermal 

pattern, and PCA-based first-order differential pattern are considered as Aratio, AT-PCA, and 

Adiff1-PCA, respectively. 

After all the calculation, figure 5.7 shows the relationships of these features vs. the pocket 

length. Figures 5.7(a) and (b) show that Tmax and Adiff1 tend to have positive correlations with 

the pocket length but neither can give a monotonic relationship. In figures 5.7(c), there is no 

linear fitting line plotted since it is hard to see any relationships (R2 values are below 10%). 

From figures 5.7(d) and (e), it can be seen that both AT-PCA and Adiff1-PCA increase with the 

pocket length and the relationships are more obvious under longer heating pulses. In addition, 

AT-PCA has monotonically increasing relationships to the pocket length under the 100 ms and 

the 200 ms heating pulse, whereas Adiff1-PCA show the monotonical relationship to the pocket 

length only under the 200 ms heating pulse. Table 5.3 gives the fitting parameters of the 

relationships. From this table, it can be seen that for Tmax and Adiff1, all the R2 values are below 

70% and it is difficult for them to present a clear relationship to pocket length. Compared with 

Tmax and Adiff1, AT-PCA and Adiff1-PCA have higher R2 values by using longer heating pulses. In 

addition, longer heating pulses significantly increase their slope values and keep their 2-norm 

of NR values low. Thus, AT-PCA and Adiff1-PCA show well-fitted linear relationships to pocket 

length. Comparing both, under longer heating pulses, AT-PCA shows better linear relationships 

to the pocket length (with R2 > 93% and 2-norm NR < 1.7). On the other hand, Adiff1-PCA 

shows better fitting relationships to the pocket length (with R2 > 75% and 2-norm NR < 1.8) 

under shorter heating pulses. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 

Figure 5.7 Tmax, Adiff1, Aratio, AT-PCA, and Adiff1-PCA vs. pocket length.  

“+” and “-” marked on the top of feature points show the increase or decrease between two 

neighbour points from left to right. (a) Tmax vs. pocket length. (b) Adiff1 vs. pocket length. (c) 

Aratio vs. pocket length. (d) AT-PCA vs. pocket length (e) Adiff1-PCA vs. pocket length. 

 

Table 5.3 Fitting parameters of Tmax, Adiff1, AT-PCA, and Adiff1-PCA under different pulses 

 Pulse duration 10 ms 20 ms 50 ms 100 ms 200 ms 

Tmax 

R2 52.1% 65.0% 68.0% 68.4% 63.7% 

Slope 0.02 0.07 0.17 0.25 0.30 

2-norm of NR 1.94 2.02 1.82 1.80 1.88 

Mono-relationship × × × × × 

Adiff1 

R2 34.5% 50.0% 61.3% 63.1% 61.3% 

Slope 0.06 0.17 0.33 0.34 0.33 

2-norm of NR 2.11 2.11 1.94 1.98 2.00 

Mono-relationship × × × × × 
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AT-PCA 

R2 19.1% 56.2% 88.9% 93.2% 97.4% 

Slope 1.90 5.69 13.95 27.22 44.97 

2-norm of NR 1.92 1.98 1.87 1.63 1.65 

Mono-relationship × × × √ × 

Adiff1-PCA 

R2 75.1% 85.3% 90.7% 89.2% 90.3% 

Slope 0.20 0.60 1.37 1.83 2.12 

2-norm of NR 1.65 1.73 1.87 1.74 1.76 

Mono-relationship × × × × √ 

 

5.3.3 Inclination angle characterisation 

This section verifies and compares SUMT, SUMdiff1, ST, Sdiff1, KT, Kdiff1, SST, and SKT for 

characterising inclination angles of RCF cracks. The specimen and main parameters of ECPT 

configuration are the same as Section 5.3.2. 

Similarly, based on the characteristic pixels of each crack, the average of them is used to 

calculate all the eight features under different time slots and pulse durations. Figure 5.8 gives 

the relationships between these features and the pocket length. From figure 5.8(a), an 

unexpected outcome can be seen that the SUMT of C1-C3, as shown by the circles, are much 

larger than others, which deviate from the decreasing trend. It probably results from the 

varying thickness in the left side of Specimen N1. Under the condition, heat is easily trapped 

in this area and cannot diffuse through the z direction, which inevitably affects the responses 

of thermal features. To avoid this, the feature values of C1-C3 are excluded from the fitting 

points. The fitting results show that for SUMT, SUMdiff1, ST, Sdiff1, KT, Kdiff1, longer time slots 

lead to clearer relationships. However, SST and SKT can hardly show any relationships to the 

inclination angle. Additionally, table 5.4 gives the fitting parameters and monotonic 

relationships. Only the best fitting results are shown this table, i.e., SUMT, SUMdiff1, ST, Sdiff1, 

KT, Kdiff1 are calculated by using the 800 ms time slot, and SST, SKT are calculated by using 

the 200 ms pulse duration. Among different features, SUMT, SUMdiff1, ST, and KT have better 

fitting relationships, which is in line with the results discussed in Section 4.4.2. However, for 

the Sdiff1, Kdiff1, SST, and SKT, even under the 800 ms time slot or 200 ms pulse duration, the R2 

values lie below 35% and the absolute values of slopes are less than 0.1. Together these 

results provide that in testing natural RCF cracks, SUMT, SUMdiff1, ST, and KT are more fit for 

the inclination angle characterisation. 
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(b) 

 
(c) 

 
(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

Figure 5.8 SUMT, SUMdiff1, ST, Sdiff1, KT, Kdiff1, SST, and SKT vs. inclination angle.  

Circles show the feature values of C1-C3,which are excluded from the fitting points. (a) and 

(b) show the SUMT and SUMdiff1 vs. inclination angle, respectively. (c) and (d) show the ST 

and Sdiff1 vs. inclination angle, respectively. (e) and (f) show the KT and Kdiff1 vs. inclination 

angle, respectively. (g) and (h) show SST and SKT vs. inclination angle. 
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Table 5.4 Fitting parameters of different relationships 

 SUMT SUMdiff1 ST Sdiff1 KT Kdiff1 SST SKT 

R2 92.4 % 74.5 % 83.0 % 7.6 % 67.6 % 30.2 % 15 % 20.2 % 

Abs. slope 1.08 0.78 0.03 0.00 0.12 0.04 0.03 0.06 

2-norm NR 1.76 1.65 1.59 1.73 1.56 1.76 1.44 1.47 

Mono-relationship √ × × × × × × × 

 

5.3.4 Vertical depth characterisation 

In addition to characterising pocket lengths and inclination angles, this section further 

investigates and verifies the capabilities of all the proposed features for the vertical depth 

characterisation. After the same calculation procedures, figure 5.9 shows the relationships of 

the features vs. the vertical depth. It can be seen that only Tmax, Adiff1, Aratio, AT-PCA, and 

Adiff1-PCA show positive correlations with the vertical depth. For other features, it is hard to 

find any clear relationships and there is no linear fitting line plotted (R2 values are below 

10%). Considering the findings in the vertical depth characterisation of angular defects, it is 

expected that SUMT, SUMdiff1, ST, Sdiff1, KT, Kdiff1, SST, and SKT should present clear 

relationships to the vertical depth. The outcomes are just opposite to those in Section 4.4.3. 

One possible reason is that the pocket length dominates the feature response. This explains 

why Tmax, Adiff1, Aratio, AT-PCA, and Adiff1-PCA have positive correlations with the vertical depth 

since these features should be more correlated to the pocket length. In fact, the average pocket 

length of this specimen is 1.47 mm, which is much longer than the average value (0.99 mm) 

of Specimens 2 and 3. Another possible reason is that the feature responses are affected by the 

varying thickness in the left side of Specimen N1, as mentioned in the previous section. Table 

5.5 further shows the fitting parameters of the relationships. From this table, it can be seen 

that the best linear relationship to the vertical depth is obtained by using AT-PCA. Still, the 

relationship probably results from the pocket length. 

Table 5.5 Fitting parameters of different relationships 

 Tmax Adiff1 AT-PCA Adiff1-PCA 

Pulse duration 100ms 100ms 200ms 200ms 

R2 54.0% 49.5% 88.9% 78.8% 

Slope 0.34 0.46 66.54 3.07 

2-norm of NR 1.90 2.08 2.06 1.94 

Mono-relationship × × × × 

 



Chapter 5. RCF Crack Characterisation and Performance Evaluation via POD Analysis 

96 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 



Chapter 5. RCF Crack Characterisation and Performance Evaluation via POD Analysis 

97 
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(j) 

 
(k) 
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(m) 

 

Figure 5.9 All the proposed features vs. vertical depth of testing Specimen N1. 

(a), (b), (l) and (m) show the spatial domain-based features vs. vertical depth. (c)-(e) give the 

tempo-spatial-based patterns vs. vertical depth. (f)-(k) show the temporal domain-based 

features vs. vertical depth. (a) Tmax vs. vertical depth. (b) Adiff1 vs. vertical depth. (c) Aratio vs. 

vertical depth. (d) AT-PCA vs. vertical depth. (e) Adiff1-PCA vs. vertical depth. (f) SUMT vs. 

vertical depth. (g) SUMdiff1 vs. vertical depth. (h) ST vs. vertical depth. (i) Sdiff1 vs. vertical 

depth. (j) KT vs. vertical depth. (k) Kdiff1 vs. vertical depth. (l) SST vs. vertical depth. (m) SKT 

vs. vertical depth. For each vertical depth, the test is repeated six times and the average value 

is shown as a feature point in the figures. “+” and “-” marked on the top of feature points 

show the increase or decrease between two neighbour points from left to right. Solid lines 

show the linear fitting relationships.  
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5.3.5 Surface length characterisation 

Another important aspect for RCF crack characterisation is the surface length characterisation 

since the severity of a crack is strongly linked to its surface length. This section investigates 

the surface length characterisation by using the second crack reconstructor introduced Section 

5.3.1. Here, Specimens N2 and N3 are used. Compared with Specimen N1, Specimens N2 and 

N3 contain more cracks and their clustered distributions are more complex. Additionally, since 

a high lift-off distance is used, the operational current of the heating module is adjusted to a 

higher value of 350 A for testing Specimens N2 and N3. 

From the crack reconstructor shown in figure 5.5(b), different methods can be used in the 

crack response extraction step, including simple thermograms, first-order differential imaging, 

ratio mapping, PCA-based thermal pattern, and PCA-based first-order differential pattern. 

These methods have been introduced in Section 3.4 and the features derived from them have 

been used for the pocket length and the inclination angle characterisation. Here, 

two-dimensional images instead of the proposed features from these methods are considered 

as the outputs of the crack response extraction step. These images are taken as the inputs of 

the crack shape reconstruction step, as shown in figure 5.10. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 5.10 Crack response extraction of Specimen N2. 

(a) Thermogram at 200 ms, IT-200. (b) First-order differential imaging at 30 ms, Idiff1-30. (c) 

Ratio mapping under 200 ms heating pulse, Iratio. (d) PCA-based thermal pattern under 200 ms 

heating pulse, IT-PCA. (e) PCA-based first-order differential pattern under 200 ms heating 

pulse, Idiff1-PCA. (f) Refined PCA-based thermal pattern in the early heating stage, IET-PCA. 

 

Specifically, figure 5.10(a) shows the thermogram at the end of the 200 ms heating pulse, 

denoted as IT-200. Figure 5.10(b) gives the first-order differential imaging at the 30 ms, when 
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an averaged first-order differential response of 100 selected pixels in the defective areas reach 

to its maximum, and it is denoted as Idiff1-30. Figure 5.10(c) presents the ratio mapping based 

on the first-order differential result, denoted as Iratio. Figures 5.10(d)-(e) show the PCA-based 

thermal pattern and first-order differential pattern under the 200ms heating pulse, denoted as 

IT-PCA, Idiff1-PCA, respectively. From the above figures, all of them can give the 

two-dimensional presentations of the cracks’ clustered distributions. Among them, Iratio shows 

the lowest contrast of the defective areas. The remaining four images have higher contrasts, 

but they suffer from the edge effect, i.e., trapping heat from diffusion, in the left side of the 

specimen, which is especially obvious in figures 5.10(a) and (d). In addition, it is difficult to 

identify some small cracks, such as SL30, SL37. To avoid the edge effect and missing small 

cracks, a refined PCA-based thermal pattern is proposed here (denoted as IET-PCA) to 

strengthen the crack response extraction step. For the refined one, two early heating stages 

with different time slots are considered. EOF1,h1 is obtained by selecting EOF1 from the first 

heating stage (EOF1,h1) and a further improvement is conducted by combining EOF1,h1 with 

another EOF1,h2, which the EOF1 from the second heating stage. It is found that the expected 

results are achieved by using the heating stages with the 0-15ms and the 15-30ms time slots, 

respectively. The result of IET-PCA is shown in figures 5.10(f). 

By individually inputting the above two-dimensional images into the crack shape 

reconstruction step, the reconstructed shapes are shown in figures 5.11(a)-(f), respectively. 

Note that in each subfigure, the top one is the result by using the customised Frangi filter with 

its parameter σ (the standard deviation) ranging from 0.2 to 2.0. The middle one is the final 

reconstructed shapes. The bottom one gives the automatically labelled crack shapes by 

different colours. By comparing these figures, the worst case is the result of using Iratio as the 

input data, as shown in figure 5.11(c). For the remaining figures, most of the crack shapes can 

be successfully revealed. Better results are obtained by using Idiff1-30 and IET-PCA, as shown in 

figures 5.11(b) and (f). Even the shapes of small cracks can be reconstructed. By comparing 

these two, IET-PCA outperforms Idiff1-30, which is shown by the reconstructed shapes of SL2, 

SL30, and SL37. 
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(e) (f) 

Figure 5.11 Crack shape reconstruction of Specimen N2. 

In each subfigure, the top, middle, and bottom show the result of Frangi filter, the final 

reconstructed shapes and the automatically labelled crack shapes, respectively. (a) 

Reconstructed results by using IT-200. (b) Reconstructed results by using Idiff1-30. (c) 

Reconstructed results by using Iratio. (d) Reconstructed results by using IT-PCA. (e) 

Reconstructed results by using Idiff1-PCA. (f) Reconstructed results by using IET-PCA. 

 

Based on the reconstructed crack shapes, the pixel length (PL) of each crack shape can be 

calculated, as shown in table 5.6. Note that some of the reconstructed shapes are connected 

and they are considered as one crack. For instance, in figure 5.11(a), PL15, PL17, and PL18 

cannot be separated and they are considered as one crack with the length of 115 pixels, which 
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is corresponding to the sum of SL15, SL17, and SL18, i.e., 28.9 mm. Based on this rule, the 

relationships between PL and SL (see table 5.1) of Specimen N2 are shown in figure 5.12. 

Here, only non-null values in table 5.6 are used as the fitting data. In addition, table 5.7 shows 

the fitting parameters of these relationships. It shows that by using IT-200, Idiff1-30, IT-PCA, 

Idiff1-PCA, IET-PCA, PL positively correlates with SL. Among these crack response extraction 

methods, IET-PCA provides the best PL vs. SL relationship, with the highest R2 (92.8 %) and 

smallest 2-norm of NR (2.24). 

Table 5.6 Pixel lengths of the cracks in Specimen N2 

 Surface length 

number 

Value (pixels) 

IT-200 

PL1 - PL10 30 null 37 null null 89 65 null 77 111 

PL11 - PL20 70 null 76 48 115*1 null 115*1 115*1 87 null 

PL21 - PL30 21 105 36 null 61 23 null 111*2 111*2 null 

PL31 - PL39 69 null 39 null 22 null null null null  

Idiff1-30 

PL1 - PL10 36 null 47 21 null 94 62 null 87 121 

PL11 - PL20 87 null 81 49 149*1 null 149*1 149*1 89 null 

PL21 - PL30 36 140*3 46 null 71 25 22 48 87 null 

PL31 - PL39 164*4 null 164*4 null 33 18 null 28 140*3  

IT-PCA 

PL1 - PL10 20 null 38 null null 70 47 null 81 113 

PL11 - PL20 74 null 72 45 100*1 null 100*1 100*1 82 null 

PL21 - PL30 16 107 35 null 65 23 null 93*2 93*2 null 

PL31 - PL39 75 null null null 22 null null null null  

Idiff1-PCA 

PL1 - PL10 36 null 40 null null 90 62 null 82 114 

PL11 - PL20 78 null 85 44 130*1 null 130*1 130*1 89 null 

PL21 - PL30 26 106 44 null 72 24 15 46 91 null 

PL31 - PL39 81 null 64 null 24 13 null 22 null  

IET-PCA 

PL1 - PL10 36 8 46 8 null 102 63 null 86 128 

PL11 - PL20 79 null 78 50 151*1 null 151*1 151*1 94 null 

PL21 - PL30 39 184*5 47 null 47 62 18 126*2 126*2 8 

PL31 - PL39 173*6 null 173*6 173*6 30 26 8 184*5 184*5  
*1: PL15, PL17, and PL18 are connected and they are considered as one crack. 
*2: PL28 and PL29 are connected and they are considered as one crack. 
*3: PL22 and PL39 are connected and they are considered as one crack. 
*4: PL31 and PL33 are connected and they are considered as one crack. 
*5: PL22, PL38, and PL39 are connected and they are considered as one crack. 
*6: PL31, PL33, and PL34 are connected and they are considered as one crack. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 

Figure 5.12 PL vs. SL of Specimen N2 in the crack response extraction step. 

(a) PL vs. SL by using IT-200. (b) PL vs. SL by using Idiff1-30. (c) PL vs. SL by using IT-PCA. (d) 

PL vs. SL by using Idiff1-PCA. (e) PL vs. SL by using IET-PCA. 

 

Table 5.7 Fitting parameters of different relationships 

 IT-200 Idiff1-30 IT-PCA Idiff1-PCA IET-PCA 

R2 89.6 % 86.3 % 82.6 % 79.6 % 92.8 % 

Slope 4.49 5.32 4.13 4.50 5.91 

2-norm of NR 2.31 2.31 2.40 2.84 2.24 

 

Following the same steps, figure 5.13 shows IT-200, Idiff1-30, Iratio, IT-PCA, Idiff1-PCA, and IET-PCA of 

RCF crack area in Specimen N3. From this figure, it can be seen that all the results are 

affected by the clustered distribution of the cracks. Among these methods, Iratio still shows the 
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lowest contrasts of defective areas. IT-200 and IT-PCA suffer from the side effect of thermal 

diffusion and some cracks cannot be clearly distinguished, such as SL2 and SL6. For Idiff1-30, 

Idiff1-PCA, and IET-PCA, they present higher contrasts of the cracks. Since Idiff1-30, and IET-PCA are 

obtained by using the early heating stage, they are less influenced by the thermal diffusion, 

thereby revealing more distinct crack shapes, e.g., SL2, SL10, and SL12. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f)  

Figure 5.13 Crack response extraction of Specimen N3. 

(a) Thermogram at 200 ms, IT-200. (b) First-order differential imaging at 30 ms, Idiff1-30. (c) 

Ratio mapping under 200 ms heating pulse, Iratio. (d) PCA-based thermal pattern under 200 ms 

heating pulse, IT-PCA. (e) PCA-based first-order differential pattern under 200 ms heating 

pulse, Idiff1-PCA. (f) Refined PCA-based thermal pattern in the early heating stage, IET-PCA. 

 

Figures 5.14 show the reconstructed shapes by using the above results in the crack shape 

reconstruction step. As shown in figures 5.14(b) and (f), better results revealing more crack 

shapes are obtained by using Idiff1-30 and IET-PCA. Based on the reconstructed crack shapes, PL 

of each crack shape is calculated, as shown in table 5.8. Similarly, if the reconstructed crack 

shapes are connected, they are considered as one crack. Further, the relationships between PL 

and SL of Specimen N3 are shown in figure 5.15. Table 5.9 gives the fitting parameters of 

these relationships. Results show that by using IT-200, Idiff1-30, IT-PCA, Idiff1-PCA, IET-PCA, PL 

presents positive correlations with SL. Among these crack response extraction methods, 

Idiff1-30, Idiff1-PCA, and IET-PCA provide better fitting relationships. Different from the results 

from Specimen N2, the best PL vs. SL relationship is obtained by using Idiff1-30, which has a R2 

and a 2-norm of NR of 85.8 % and 2.24, respectively. 
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(c) (d) 

 

 

 

 

 

 
(e) (f) 

Figure 5.14 Crack shape reconstruction of Specimen N3. 

In each subfigure, the top, middle, and bottom show the result of Frangi filter, the final 

reconstructed shapes and the automatically labelled crack shapes, respectively. (a) 

Reconstructed results by using IT-200. (b) Reconstructed results by using Idiff1-30. (c) 

Reconstructed results by using Iratio. (d) Reconstructed results by using IT-PCA. (e) 

Reconstructed results by using Idiff1-PCA. (f) Reconstructed results by using IET-PCA. 

 

Table 5.8 Pixel lengths of the cracks in Specimen N3 

 Surface length number Value (pixels) 

IT-200 
PL1 - PL10 10 27 84 23 102 null 71 78 47 259 

PL11 - PL20 121 null 62 92 50 95 121 54 33 22 

Idiff1-30 
PL1 - PL10 16 45 null 42 104 15 98 74 61 267 

PL11 - PL20 129 27 88 100 61 131 147 57 61 28 

IT-PCA 
PL1 - PL10 10 12 82 24 104 null 85 76 23 207 

PL11 - PL20 112 25 64 83 50 79 98 53 27 null 

Idiff1-PCA 
PL1 - PL10 11 41 82 33 112 null 70 86 44 261 

PL11 - PL20 128 22 61 91 55 132 125 56 42 22 

IET-PCA 
PL1 - PL10 17 45 66 97 75 39 149 58 55 257 

PL11 - PL20 121 29 96 152 66 134 152 59 97 49 
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Table 5.9 Fitting parameters of different relationships 

 IT-200 Idiff1-30 IT-PCA Idiff1-PCA IET-PCA 

R2 77.9 % 85.8 % 67.5 % 83.8 % 84.5 % 

Slope 3.61 3.88 2.78 3.81 3.75 

2-norm of NR 2.32 2.24 2.45 2.36 2.58 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 

Figure 5.15 PL vs. SL of Specimen N3 in crack response extraction step. 

(a) PL vs. SL by using IT-200. (b) PL vs. SL by using Idiff1-30. (c) PL vs. SL by using IT-PCA. (d) 

PL vs. SL by using Idiff1-PCA. (e) PL vs. SL by using IET-PCA. 
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Since the camera view and the objective distance are fixed during the tests of Specimens N2 

and N3, PL values from the reconstructed results of these two should be on the same scale. 

Thus, by combining these values together, the relationships between PL and SL of both 

specimens are shown in figure 5.16. Table 5.10 gives the fitting parameters of these 

relationships. In summary, the surface length can be characterised by using the crack 

reconstructor introduced in figure 5.5(b). In the crack response extraction step, different 

methods can be used to generate two-dimensional images as the inputs of the crack shape 

reconstruction step. Better reconstructed results are achieved by using Idiff1-30, Idiff1-PCA, and 

IET-PCA, which further contribute to the surface length characterisation. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 

Figure 5.16 PL vs. SL of Specimens N2 and N3 in the crack response extraction step. 

(a) PL vs. SL by using IT-200. (b) PL vs. SL by using Idiff1-30. (c) PL vs. SL by using IT-PCA. (d) 

PL vs. SL by using Idiff1-PCA. (e) PL vs. SL by using IET-PCA. 
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Table 5.10 Fitting parameters of different relationships 

 IT-200 Idiff1-30 IT-PCA Idiff1-PCA IET-PCA 

R2 79.1 % 83.1 % 68.4 % 81.4 % 84.2 % 

Slope 3.66 4.11 2.93 3.81 4.40 

2-norm of NR 2.75 2.97 2.76 2.80 2.67 

 

5.4 POD Analysis for RCF Crack Characterisation 

The above section has investigated and compared various features/patterns for RCF crack 

characterisation. To evaluate the probabilistic performance of these features, this section 

carries out the POD analysis. Specifically, based on the signal response data, Sections 5.4.1 

and 5.4.2 provide the POD analysis for the features of characterising pocket lengths and 

vertical depths, respectively. Section 5.4.3 presents the POD analysis for the features of 

characterising surface lengths. The signal response data is first used for POD analysis. In 

addition, the reconstruction results of the surface lengths can be also considered as two 

possible outcomes, i.e., a surface length is reconstructed or a surface length is missed. Thus, 

the hit/miss data is also used for POD analysis. 

5.4.1 POD for evaluating performance of pocket length characterisation 

For Tmax, Adiff1, AT-PCA, and Adiff1-PCA, the calculated POD curves as functions of the pocket 

length are shown in figure 5.17. Additionally, table 5.11 shows L90 of these features under 

eight heating pulses. These POD curves are based on equation 3.57. Similar to Section 4.5.1, 

the decision threshold is set as the maximum feature value of six repeated tests when L2 of 

Specimen N1 is tested, i.e., it is assumed that detecting a RCF crack with its pocket length 

shorter than 0.74 mm is fifty-fifty chance. However, the decision threshold can be set by other 

assumptions. Note that only the relationships with R2 higher than 60% are investigated here 

(see table 5.3). Figure 5.17(a) shows that for characterising a specific pocket length, Tmax 

achieves higher POD values under the 20 ms and 50 ms heating pulses, which verifies that 

under shorter heating pulses, Tmax has better performances. By using the 20 ms heating pulse, 

Tmax gives the shortest L90. Figure 5.17(b) shows that when a pocket length is longer than 0.7 

mm, Adiff1 gives similar POD values even under different heating pulses. Compared with Tmax, 

Adiff1 has shorter L90, which is not in line with the findings in Section 4.5.1. In addition, both 

figures show that a zero pocket length can still be detected with the POD value higher than 10% 

which is unrealistic. The reason is that the fitting relationships of the two features to the 

pocket length are inadequate. Especially, for Adiff1, the R2 values are all lower than 65%, 

which may result in unrealistic values for L90. If pocket lengths are outside the minimum 

value (0.74 mm) used in experiments, its corresponding POD value is no more valid. 
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Compared with other features, the POD curve of AT-PCA has the narrowest transition area even 

under different heating pulses and longer heating pulses contribute to smaller L90 values, as 

shown in figure 5.17(c). By comparing figures 5.17(c) and (d), it shows that Adiff1-PCA has 

shorter L90 compared with AT-PCA and longer heating pulses are preferred to get higher POD 

values. These results are in line with the previous results in Section 4.5.1. From the above 

discussions, it can be concluded that by using longer heating pulses, Adiff1-PCA has the best 

performance of characterising pocket lengths, which is demonstrated by the shortest L90. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5.17 POD curve vs. pocket length under different heating pulses. 

(a) Based on Tmax. (b) Based on Adiff1. (c) Based on AT-PCA. (d) Based on Adiff1-PCA. 

 

Table 5.11 Calculated results of L90 for different features and heating pulses 

Feature Heating pulse  Unit 

 10 20 50 100 200 ms 

Tmax - 0.69 0.76 0.93 0.98 mm 

Adiff1 - - 0.67 0.70 0.67 mm 

AT-PCA - - 0.88 0.78 0.67 mm 

Adiff1-PCA 0.93 0.84 0.77 0.72 0.61 mm 

 

5.4.2 POD for evaluating performance of vertical depth characterisation 

From the discussions in Section 5.3.4, only AT-PCA and Adiff1-PCA show positive correlations 

with the vertical depth, which requires the use of the 200ms heating pulse. For these two 

features, the calculated POD curves as functions of the vertical depth are shown in figure 5.18. 

These POD curves are based on equation 3.57. Similarly, the decision threshold is set as the 

maximum feature value of six repeated tests when D2 of Specimen N1 is tested, i.e., it has a  

50% probability of detecting a crack with its vertical depth shorter than 0.37 mm. 
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Additionally, D90 of these features are shown in figures 5.18(a) and (b). Comparing these 

figures, the POD curve of AT-PCA has a narrower transition area and a shorter D90. However, as 

mentioned before, the relationship of AT-PCA/Adiff1-PCA vs. the vertical depth probably results from 

the pocket length, which dominates the responses of these two features. 

 
(a) 

 
(b) 

Figure 5.18 POD curve vs. vertical depth. 

(a) Based on AT-PCA. (b) Based on Adiff1-PCA. 

 

5.4.3 POD for evaluating performance of surface length characterisation 

For evaluating the performances of characterising surface lengths by using IT-200, Idiff1-30, 

Idiff1-PCA, and IET-PCA. Both the signal response and the hit/miss data-based POD analyses are 

conducted here. The 95% lower confidence bound is also estimated since the number of 

surface lengths in Specimens N2 and N3 is around 60, which can provide reasonable estimates 

of confidence bounds for both signal response and hit/miss data. 

Figure 5.19 shows the signal response data-based POD curves by using IT-200, Idiff1-30, Idiff1-PCA, 

and IET-PCA. Note that IT-PCA is not considered here since its R2 (68.4%) is much lower than 

others. These curves are derived from the relationships between PL and SL discussed in 

Section 5.3.5. For IT-200, the decision threshold is set as the maximum PL of six repeated tests 

when SL1 of Specimen N3 is tested since SL38 of Specimen N2 cannot be successfully 

reconstructed by using IT-200. For Idiff1-30, Idiff1-PCA, and IET-PCA, the decision threshold is 

individually set as the maximum PL of six repeated tests when SL38 of Specimen N2 is tested. 

By comparing figures 5.19(a)-(d), IET-PCA gives the best performance of characterising surface 

lengths, which is shown by the shortest SL90 and SL90/95. These values are also listed in table 

5.12. 

Table 5.12 Calculated results of SL90 and SL90/95 based on different methods 

 IT-200 Idiff1-30 Idiff1-PCA IET-PCA 

SL90 (mm) 8.36 10.80 10.05 6.99 

SL90/95 (mm) 10.78 12.54 11.93 8.79 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5.19 POD curve vs. surface length. 

(a) Based on IT-200. (b) Based on Idiff1-30. (c) Based on Idiff1-PCA. (d) Based on IET-PCA. 

 

From the above, the signal response data is used for POD analysis. In addition, the 

reconstruction results of the surface lengths can be also considered as hit/miss data. Based on 

tables 5.6 and 5.8, the signal response data can be converted into binary data with 1 indicating 

a reconstructed surface length and 0 indicating a missed surface length. The converted results 

are shown in table 5.13. Since the surface lengths are uniformly distributed providing a 

symmetrical data set, the POD link functions used should also be symmetrical. Two typical 

links, i.e., logit link and probit link, are used to transform hit/miss data into the generalised 

linear domain. Based on these links and the binary data in table 5.13, hit/miss data-based POD 

curves can be derived, as shown in figure 5.20. Additionally, table 5.14 shows SL90 and SL90/95 

of the POD curves by using IT-200, Idiff1-30, Idiff1-PCA, and IET-PCA. It can be seen that the POD 

curves based the logit link always have narrower transition area and lower SL90 and SL90/95 no 

matter which method is used. By comparing figures 5.20(a)-(d), it can be seen that IET-PCA has 

the shortest SL90 by using the logit link. However, its SL90/95 is a little bit larger than Idiff1-PCA. 

From the discussions of both the signal response and the hit/miss data, it can be concluded 

IET-PCA has the best performance of characterising surface lengths, which is shown by the 

shortest SL90 and SL90/95 of the signal response data and the shortest SL90 of the hit/miss data. 
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Table 5.13 Hit/miss results of surface lengths in Specimens N2 and N3 

 Surface length number Value (pixels) 

IT-200 

(Specimen N2) 

PL1 - PL10 1 0 1 0 0 1 1 0 1 1 

PL11 - PL20 1 0 1 1 1 0 1 1 1 0 

PL21 - PL30 1 1 1 0 1 1 0 1 1 0 

PL31 - PL39 1 0 1 0 1 0 0 0 0  

IT-200 

(Specimen N3) 

PL1 - PL10 1 1 1 1 1 0 1 1  1 1 

PL11 - PL20 1 0 1 1 1 1 1 1 1 1 

Idiff1-30 

(Specimen N2) 

PL1 - PL10 1 0 1 1 0 1 1 0 1 1 

PL11 - PL20 1 0 1 1 1 0 1 1 1 0 

PL21 - PL30 1 1 1 0 1 1 1 1 1 0 

PL31 - PL39 1 0 1 0 1 1 0 1 1  

Idiff1-30 

(Specimen N3) 

PL1 - PL10 1 1 0 1 1 1 1 1 1 1 

PL11 - PL20 1 1 1 1 1 1 1 1 1 1 

Idiff1-PCA 

(Specimen N2) 

PL1 - PL10 1 0 1 0 0 1 1 0 1 1 

PL11 - PL20 1 0 1 1 1 0 1 1 1 0 

PL21 - PL30 1 1 1 0 1 1 1 1 1 0 

PL31 - PL39 1 0 1 0 1 1 0 1 0  

Idiff1-PCA 

(Specimen N3) 

PL1 - PL10 1 1 1 1 1 0 1 1 1 1 

PL11 - PL20 1 1 1 1 1 1 1 1 1 1 

IET-PCA 

(Specimen N2) 

PL1 - PL10 1 1 1 1 0 1 1 0 1 1 

PL11 - PL20 1 0 1 1 1 0 1 1 1 0 

PL21 - PL30 1 1 1 0 1 1 1 1 1 1 

PL31 - PL39 1 0 1 1 1 1 1 1 1 1 

IET-PCA 

(Specimen N3) 

PL1 - PL10 1 1 1 1 1 1 1 1 1 1 

PL11 - PL20 1 1 1 1 1 1 1 1 1 1 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5.20 POD curve vs. surface length by hit/miss data. 

Black dots represent hit/miss data with 1 indicating a reconstructed surface length and 0 

indicating a missed surface length. (a) Based on IT-200. (b) Based on Idiff1-30. (c) Based on 

Idiff1-PCA. (d) Based on IET-PCA. 
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Table 5.14 Calculated results of SL90 and SL90/95 based on different methods 

 POD link functions IT-200 Idiff1-30 Idiff1-PCA IET-PCA 

SL90 (mm) 
logit link 10.17 10.40  9.46  7.98 

probit link 12.70 15.93 12.64 12.64 

SL90/95 (mm) 
logit link 13.56 15.84 13.34 13.65 

probit link 15.35 20.80 15.42 17.55 

 

5.5 Chapter Summary 

In this chapter, three specimens containing natural cracks are used to further verify the 

capabilities of different features for RCF crack characterisation and their performances are 

evaluated by POD analysis. Results show that it is difficult for Tmax and Adiff1 to build a clear 

relationship to pocket length. AT-PCA and Adiff1-PCA show well-fitted linear relationships to 

pocket length. Under longer heating pulses AT-PCA has the best performance of characterising 

pocket lengths, which is demonstrated by the shortest L90. In the inclination angle 

characterisation, SUMT, SUMdiff1, ST, and KT shows better performances. However, only 

SUMT presents the monotonic relationship by using 800 ms time slot. In the vertical depth 

characterisation, it is unexpected that AT-PCA, instead of SST, shows the best linear relationship 

to the vertical depth. The most possible reason is that the pocket length dominates the feature 

response since the average pocket length of the RCF cracks is much longer than the average 

value of the angular slots used in the first case study. Limited by this, it is difficult to use the 

current specimen, i.e., Specimens N1, to verify different features. Future work will carry out 

the X-ray tomography scan for both Specimens N2 and N3 and take the reconstructed 

inclination angles and pocket lengths of RCF crack as the ground truth to justify the proposed 

features. In the surface length characterisation, Idiff1-30, Idiff1-PCA, IET-PCA shows better 

performances. Via POD analysis, IET-PCA gives the best performance of characterising surface 

lengths, which is shown by the shortest SL90. 
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Chapter 6. Conclusions, Future Work and Importance to Railway Industry 

This final chapter summarises the whole work of this thesis and draws the conclusions of 

using ECPT technique with quantitatively describable detectability as a promising candidate 

for RCF cracks detection and characterisation. Future work is briefly outlined which includes 

feature selection for crack characterisation, three-dimensional heating source/crack 

reconstruction, and model-assisted POD frameworks for improving the effectiveness of POD 

analysis. 

6.1 Conclusions 

With transportation volumes continuously increasing, the railway networks are now facing the 

problems of greater axle loads and increasing vehicle speeds, which may pose significant 

risks to the safe operation of railway transportation. 

From the literature review chapter, the most direct consequence of increasing transportation 

volumes is the initiation of RCF defects in rails, which have become a severe safety issue for 

all types of railway networks and received more attention due to lack of examination and 

management. Among different RCF defects, the RCF crack probably presents the biggest 

hazard in rails. Up to date, different types of NDT&E techniques, e.g., ultrasonic testing, eddy 

current testing, alternating current field measurement, magnetic flux leakage testing, 

radiography, visual inspection, have been developed to detect and characterise RCF cracks. 

The main goal of detecting RCF cracks is to provide detailed guidelines for safety 

management and preventative grinding. Unfortunately, most of the current NDT&E 

techniques are still facing several challenges. One of the challenges is the characterisation of 

RCF cracks under their clustered distributions. Another one is the evaluation of the 

probabilistic performance in crack characterisation. By combining the advantages of eddy 

current pulse excitation and infrared thermography, the use of ECPT technique for the 

detection and characterisation of RCF cracks in rails has been proposed in this thesis. The 

probabilistic performance in crack characterisation has been investigated by utilising POD 

analysis. 

In Chapter 3, this research work starts by describing and understanding the fundamentals of 

ECPT technique and POD analysis in NDT&E, and proposing thermal features/pattern for 

defect characterisation. Particular attention has been paid to the theoretical feasibility of 

ECPT for detecting and characterising surface-breaking cracks in metallic materials. For the 

theoretical background of ECPT, a three-dimensional model for conductive materials has 

been introduced to describe the transient thermal distribution with an induction heating source. 
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In the theoretical background of POD analysis, two types, hit/miss data-based and signal 

response data-based, of POD analysis have been discussed. The parameter estimation and 

confidence bound calculation of these two data types have been introduced, respectively. 

Based on understanding the fundamentals of ECPT and the requirements of POD analysis, 

types of spatial/temporal domain-based and tempo-spatial-based thermal features/patterns 

have been proposed. Via the proposed features and the evaluation of their performances by 

POD analysis, the experimental studies of characterising angular defects and natural RCF 

cracks can be accordingly carried out. 

Major work of this thesis is detailed in Chapter 4 and Chapter 5. Since angular defects are 

considered as one common representation of idealised RCF cracks, Chapter 4 conducts a case 

study of angular defect characterisation and the evaluation of different features via POD 

analysis. Main considerations for angular defect characterisation using ECPT include 

experimental setup configuration, dedicated specimen preparation, thermal feature extraction, 

and features’ performance evaluation. This chapter starts by proposing a POD analysis 

framework to guide the performance evaluation of feature-based defect characterisation. The 

ECPT setup (camera frame rate and resolution, coil shape, excitation pulse duration and 

current, etc.) is carefully configured and three dedicated specimens with artificial angular 

slots are prepared. Then, the proposed features/patterns have been used to characterise three 

main geometric parameters, i.e., pocket length, inclination angle, and vertical depth, of the 

angular defect. Further, the POD analysis has been carried out to evaluate the probabilistic 

performance of these features. Specifically, five features, i.e. Tmax, Adiff1, Aratio, AT-PCA, and 

Adiff1-PCA, have been used to characterise the pocket length. Eight features, i.e., SUMT, 

SUMdiff1, ST, Sdiff1, KT, Kdiff1, SST and SKT, have been used for characterising the inclination 

angle. Additionally, the vertical depth can be considered as a function of both the pocket 

length and the inclination angle. All the above features have been investigated to test their 

capabilities of characterising vertical depths. Results show that Tmax has the advantage of high 

repeatability. Adiff1, Aratio, AT-PCA, and Adiff1-PCA show well-fitted linear relationships to pocket 

length. Among them, Adiff1-PCA has the best performance of characterising pocket lengths. For 

Adiff1-PCA, the trade-off between increasing the POD and the goodness of the â vs. a 

relationship needs to be taken. In the inclination angle characterisation, SUMT presents the 

monotonic relationship by selecting specific time slots. SUMdiff1 has a better monotonical 

relationship by using longer time slots. Sdiff1 and KT show the monotonically increasing 

relationships to the inclination angle only by using 800ms time slot. Among these features, 

SUMdiff1 shows the best linear relationship to the inclination angle. In the vertical depth 

characterisation, SUMdiff1 has the best performance of characterising vertical depths. SST has 
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the highest R2 value and the smallest 2-norm of NR and presents reasonable POD values for 

vertical depths outside the range used in experiments. 

In Chapter 5, to further verify the capabilities of different features for RCF crack 

characterisation, another case study of RCF crack characterisation and performance 

evaluation via POD analysis has been carried out. Similar to the previous chapter, this chapter 

starts by configuring the ECPT setup and preparing three cut-off specimens contains natural 

RCF cracks. Different from angular defect characterisation, the major challenges for RCF 

crack characterisation are their complex geometries and clustered distributions. For the ECPT 

setup, the solution is that a 2.9× close-up lens is mounted onto the standard lens to capture the 

detailed transient-spatial thermal patterns. For the specimen preparation, three typical cut-off 

specimens have been carefully selected. Among them, a small cut-off specimen contains nine 

RCF cracks with intermediate spacings, which consist of a relatively simple clustered 

distribution. This specimen is used for investigating the characterisation of the pocket length, 

the inclination angle, and the vertical depth. In addition, this specimen is scanned by X-ray 

computed tomography, which provides the three-dimensional profiles of all the cracks as the 

ground truth data. The remaining two cut-off specimens are used for investigating the surface 

length characterisation. These two specimens are selected because the RCF cracks in them are 

in different stages (light stage and moderate stage) and their clustered distributions are more 

complex. After these preparations and the thermal data collection, the proposed 

features/patterns have been verified by characterising four main parameters, i.e., pocket length, 

inclination angle, vertical depth, and surface length, of RCF cracks. Results show that it is 

difficult for Tmax and Adiff1 to build a clear relationship to pocket length. AT-PCA and Adiff1-PCA 

show well-fitted linear relationships to pocket length. In the inclination angle characterisation, 

SUMT, SUMdiff1, ST, and KT show better performances. However, only SUMT presents the 

monotonic relationship by using 800 ms time slot. In the vertical depth characterisation, it is 

unexpected that AT-PCA, instead of SST, shows the best linear relationship to the vertical depth. 

The most possible reason is that the pocket length dominates the feature response since the 

average pocket length of RCF cracks is much longer than the average value of angular slot 

used in the first case study. In the surface length characterisation, Idiff1-30, Idiff1-PCA, IET-PCA 

shows better performance. Via POD analysis, IET-PCA gives the best performance of 

characterising surface lengths. 

6.2 Main Contributions 

The main contributions of this thesis are detailed into five salient parts as follows:  
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(1) A thorough review of NDT&E techniques for detecting RCF defects in rails has been 

carried out. Based on the existing problems of current NDT&E techniques, the use of 

multi-physics-based ECPT method for RCF crack characterisation has been proposed. The 

challenges of ECPT for RCF crack characterisation are presented and two of them are 

particularly addressed throughout this thesis, i.e., the influences of clustered distributions on 

crack characterisation and probabilistic performance in crack characterisation. 

(2) Implementations of three-dimensional FEM models and a lab-based ECPT system have 

been fulfilled for numerically and experimentally investigating the characterisation of RCF 

cracks under the clustered distributions and geometric influences: 

⚫ The FEM models are built in the COMSOL Multiphysics environment by considering 

the transient-time-harmonic induction heating process, which couples the 

electromagnetic field and the heat transfer together. The advantage of these models is 

that the electromagnetic field distribution is computed in the frequency domain, which 

makes the model-solving more time-efficient. Additionally, via these FEM models, a 

better understanding of the electromagnetic and the thermal distributions inside the 

modelled specimen can be achieved; 

⚫ The lab-based ECPT system together with dedicated specimens is used to experimentally 

verify the FEM models and investigate the probabilistic performance in crack 

characterisation since it is difficult for the FEM models to consider material factor, 

geometry factor, equipment factor and human factor without any prior knowledge. 

These contributions are parts of the work published in Infrared Physics & Technology (vol. 

100, pp. 73-81, 2019) and IEEE Transactions on Industrial Informatics (vol. 14, pp. 

5658-5666, 2018). 

(3) Three dedicated man-made specimens with angular slots and three cut-off specimens 

containing natural RCF cracks have been prepared for the case studies to investigate the 

capability of ECPT system for characterising idealised defects and RCF cracks: 

⚫ Three man-made specimens are made of AISI 1045 medium carbon steel. Each steel 

block contains a group of artificial angular cracks with different pocket lengths and 

inclination angles to simulate simplified RCF cracks. These man-made specimens are 

tested by the proposed ECPT system to verify the FEM models, and investigate the 

proposed features for angular defect characterisation and the evaluation of the features’ 

performances via POD Analysis. 
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⚫ Another three specimens cut off from PD3 (60 kg/m) rails removed from service are 

carefully selected for studying natural RCF crack characterisation. A challenge is that 

only the surface profiles of these RCF cracks are known and it is difficult to obtain their 

inner profiles. To provide the three-dimensional profiles of the cracks, one specimen with 

simple clustered distributions of cracks is fully scanned by X-ray computed tomography. 

This specimen is used for investigating the characterisation of the pocket length, the 

inclination angle, as well as the vertical depth. The remaining two cut-off specimens are 

selected because the RCF cracks in them are in the light stage and the moderate stage, 

respectively. And their clustered distributions are more complex. These two specimens 

are used for investigating the surface length characterisation. 

These contributions are parts of the work published in IEEE Transactions on Industrial 

Informatics (vol. 14, pp. 5658-5666, 2018), IEEE Transactions on Instrumentation and 

Measurement (vol. 68, pp. 1373-1381, 2019), and Infrared Physics & Technology (vol. 100, 

pp. 73-81, 2019). 

(4) Types of temporal/spatial thermal features for angular slots and RCF cracks localization 

and characterisation have been proposed and compared: 

For the pocket length characterisation, AT-PCA and Adiff1-PCA show well-fitted linear 

relationships to pocket length. For the inclination angle characterisation, SUMT shows the best 

performances. For the vertical depth characterisation, AT-PCA shows the best linear relationship 

to the vertical depth. The most possible reason is that the pocket length dominates the feature 

response since the average pocket length of the RCF cracks is much longer than the average 

value of the angular slot. For the surface length characterisation, IET-PCA gives the best 

performance of characterising surface lengths. 

These contributions are parts of the work published in IEEE Transactions on Industrial 

Informatics (vol. 14, pp. 5658-5666, 2018), IEEE Transactions on Instrumentation and 

Measurement (vol. 68, pp. 1373-1381, 2019), and Infrared Physics & Technology (vol. 100, 

pp. 73-81, 2019) and a detailed features comparison is discussed in another paper to be 

published in IEEE Transactions on Industrial Informatics. 

(5) A POD analysis framework has been proposed to guide the evaluation of the performance 

of feature-based characterisation. 

This contribution is part of the work published in IEEE Transactions on Industrial 

Informatics (vol. 14, pp. 5658-5666, 2018). 
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6.3 Future Work 

Although the thesis shows promising outcomes of using ECPT for RCF crack characterisation, 

there are still several issues need to be further addressed in future work. They are discussed as 

follows: 

(1) Feature selection for crack characterisation is required for future investigations. 

Although many features, as well as their capabilities of characterising different parameters of 

RCF cracks, have been investigated, the contributions of each parameter to these features are 

not fully understood. By using different machine learning algorithms, such as sparse 

regression, least absolute shrinkage and selection operator (LASSO), decision tree, 

autoencoder, manifold learning, feature selection can provide a better understanding of the 

underlying connects between the features and the crack parameters, and identify and remove 

irrelevant features. 

(2) Three-dimensional RCF crack reconstruction based on direct and inverse problems is also 

essential for future research. 

This thesis uses the feature-based method for crack characterisation. One limitation is that the 

performance of characterisation depends on the correlation of the proposed features to the 

crack parameters. A higher correlation ensures a better characterisation performance. 

However, any features with low correlations cannot be used for crack characterisation. Thus, 

loads of investigations need to conduct until a proper feature is obtained, which is 

time-consuming and somehow depends on experiences. A better way is proposing proper 

three-dimensional models to describe the thermal distribution under the influences of RCF 

cracks. By using idealised representations of RCF cracks [22, 247-249], it is possible to 

model the heat source distribution and the thermal distribution under induction heating. By 

inverting the thermal distribution, the shape and size of the heat source can be reconstructed. 

By investigating the relationships between the shapes and sizes of the cracks and the heat 

sources, RCF crack reconstruction can be further achieved. 

(3) Model-assisted POD (MAPOD) frameworks for evaluating the performance of crack 

characterisation should be implemented in the future. 

The idea of MAPOD is reducing the physical specimens by using the simulation results to 

evaluate performances of the inspection [260-264]. The core of a MAPOD framework is 

proposing a physical-based model, which can properly simulate the behaviour of the defect. A 

recent study has applied MAPOD to evaluating the performance of induction thermography 
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[265]. However, this study only uses a thin open crack to simulate crack in reactor vessel 

shells, which is too idealised to be used in the real situation. For RCF cracks with their 

complex and cluttered distributions, proper physical-based models are of urgent needs. They 

are left for future investigations since loads of simulation studies are needed to validate their 

performances, which is beyond the scope of the thesis. 

(4) To increase cracks detectability and achieve high-speed inspection, potential future 

improvements of the ECPT setup, and developments of automated and integrated crack 

characterisation programs are required: 

⚫ The rectangular coil used in this thesis can provide a relatively uniform, simple, and 

rectangular heating region by using its bottom side. Its limitation is also obvious that the 

heating region is limited to the diameter and direction of the coil. Because of this 

limitation, the crack at the left of C4 in Specimen N1 is missed after applying the crack 

shape reconstructor. Thus, an optimised coil design by using a larger diameter or 

multiple turns can address this problem. Additionally, different coil types and 

ferrite-yoke based coil can also be used to cover a larger heating region [214]. 

⚫ As used in the thesis, the single pulse excitation with a specific duration is a fast and 

effective way to characterise RCF cracks. However, the vertical depth, i.e., subsurface 

structures and discontinuities, is not very well characterised. In this case, a 

depth-resolved excitation is needed to visualise three-dimensional subsurface features 

[184]. Additionally, for ferromagnetic materials, such as rail steels, the DC-biased 

magnetisation can be used to extend the ECPT’s detectable depth range, which relies on 

the nonlinear μ-H relation and the permeability distortion in the skin-depth layer [266]. 

⚫ It is deemed that rail test trains will, within the foreseeable future, include the onboard 

ECPT for high-speed inspection. Future consideration ought to be given to video 

deblurring, fast video processing and crack characterisation, quantitative assessment, 

automated performance evaluation, and big data management. 

6.4 Importance to Railway Transportation 

For railway transportation, the first priority is ensuring safe and reliable railway networks. 

Currently, this priority is ensured by on-line monitoring and off-line inspections. As the key 

component of the railway network, rails are facing very high contact stresses from the 

wheel-rail contact, which inevitably leads to rail degradation and induces rail flaws. The 

investigations carried out in this thesis have shown the potential of ECPT as a promising 

NDT&E technique for RCF crack characterisation. One of its future developments is on 
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high-speed and machine-mounted systems with the combination of other NDT&E techniques, 

e.g., ultrasonic testing, to provide the ability of scanning both surface and subsurface defects. 

Research gaps before commercialisation needs to include integration and optimisation of 

techniques, fast video processing, automated performance evaluation, and big data 

management. Another foreseeable trend is developing portable and intelligent ECPT walking 

sticks/trolleys to provide an efficient way of verifying the results obtained by 

machine-mounted systems. This is because machine-mounted systems usually generate lots of 

false alarms at high speeds and this problem can be addressed by carrying out on-site checks 

using walking sticks/ trolleys. Addressing this main research gap requires the design of 

user-friendly operating systems with fully automated evaluation procedures, which can 

minimise manual intervention. It seems to be a matter of time before these two types of 

systems become commercially available. Such systems will provide more powerful and 

efficient ways to monitor and assess the integrity of railway networks, and detailed guidelines 

for preventative grinding. The aim of proposing these systems is to elevate the automation 

level of railway networks maintenance, improve the maintenance procedure, and reduce the 

maintenance time and cost, which contributes to a safe and reliable running environment. 
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