
Simulation and Analysis of
Stimulus Evoked and Seizure-like

Activity in an Acute Rat
Neocortical Brain Slice Preparation

Christopher Brian Thornton

Newcastle Univesity
Faculty of Science, Agriculture, and Engineering

School of Computing Science

This thesis is submitted in partial fulfilment of the requirements for the degree of
Doctor of Philosophy

Submitted: March 2020





Acknowledgements

This thesis has built on the work of Richard Tomsett, who created the original VER-

TEX simulator. I am very grateful to him for his thoughtful program design, well

commented code, and very informative thesis. I would also like to acknowledge my

collaborators, Anupam Hazra and Frances Hutchings, they have both been brilliant

to work with, very helpful, thoughtful, hard working, and knowledgeable. Thanks to

Anupam for all the hard work involved in preparing and looking after the rats, de-

signing the experiments, performing experiments, and teaching me the tricks of the

electrophysiology trade. Thanks to Frances for her input on the theory and practise of

non-invasive brain stimulation, as well as her contributions to the VERTEX code base

- particularly the multi-region simulation framework, and the time dependent electric

fields. Thanks to Joachen Spanke for his help and contributions to the seizure detec-

tion and analysis code (both theory and code) - in particular the detection of events by

entropy, and the identification of seizure troughs.Thanks to Georgia Rentesi and Felix

Chan for their company and help in the lab. Thanks to Yujiang Wang for her tutorials

on dynamical systems theory. Special thanks to my supervisors, Marcus Kaiser, for

his many contributions, support, and advice and also to Mark Cunningham for his

ideas for experiments, and help with practical issues in the lab. All members of the

labs of Marcus Kaiser and Mark Cunningham have been of great help, thanks to them

all. Thank you to Connie Mackenzie-Gray Scott for reading through my thesis and

giving lots of great feedback. Finally, I’m really grateful to all the people in Newcastle

(and those no longer in Newcastle) who have provided support, encouragement, and

company over these last few years.





i

Abstract

This thesis aims to provide tools for the simulation and analysis of acute brain slice

experiments that have recorded spontaneous seizure-like activity and activity evoked

using electric field stimulation. The Virtual Electrode Recording Tool for Extracellular

Potentials (VERTEX) (Tomsett et al., 2015) is a simulation framework that can act

as a scaffold for anatomical and physiological knowledge and can be used to test how

interventions affect the dynamics observed in the extracellular potentials. We extend

VERTEX so that one can model a greater range of experimental setups, in particular

those that involve electric field stimulation. We also devise a software pipeline for the

identification and analysis of epileptiform neuronal activity, which we apply to in vitro

recordings from acute neocortical slices from a chronic model of epilepsy in rat.

In Chapter 1 we look at the intersection of electric field stimulation, synaptic plas-

ticity and epilepsy.

In Chapter 2 we look at the implementation of electric field stimulation that we

have added to the VERTEX simulator. We show that our simulation compares well

with simulations using detailed neuron models, and with previously published in vitro

data. We also describe our implementations of short term plasticity and spike-timing

dependent plasticity.

In Chapter 3 we describe some example simulations of focal electric field stimulation

in neocortex, investigating a single pulse of stimulation, a paired pulse of stimulation

and the role of short term plasticity in the response. We also use theta burst stimula-

tion to provoke a potentiation of the response when we apply spike-timing dependent

plasticity to the synapses of the network.

We then look to the experimental context of our framework. Chapter 4 describes

an analysis tool for identifying and evaluating epileptiform activity recorded in vitro

and outlines a method devised to measure the abruptness of seizure build up.

Chapter 5 uses this analysis pipeline to analyse seizure-like events recorded in vitro

from slices of motor cortex prepared from rats with chronic seizures induced by injection

of tetanus toxin. In this chapter we also describe two VERTEX simulations; one that

uses short term plasticity as the vehicle for the breakdown in inhibition and the build

up of activity during a seizure-like event, and another of stimulus evoked activity in a
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seizure-prone neocortical slice. We compare the latter with stimulus evoked potential

in an example in vitro multi-electrode array recording from the chronic epilepsy model.

In Chapter 6 we discuss the future uses of VERTEX in modelling stimulus evoked

activity and epileptiform activity.
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CHAPTER 1

Introduction

In this chapter we review the motivations and context of the work in this thesis.

We begin by describing the biology of the synapse, and the role played by electrical

stimulation in the discovery of various forms of synaptic plasticity. We then review

recent work on the therapeutic use of stimulation to modulate the connectivity of

human brain networks, and its use as a therapy more generally. This leads us to

epilepsy; we first discuss its physiology and the role that electric field stimulation has

played and continues to play in its study, before looking at the role it plays in treatment.

This motivates the contribution of this thesis, which is primarily a modelling framework

to aid in the studying of electrically evoked neural activity. This may be to probe the

properties of a network in diseases such as epilepsy but also as a means to modify

networks through the pathways of synaptic plasticity.

1.1. Synapses and synaptic plasticity

The synapse is the primary means by which neurons communicate. Its role can be

seen as to convey to other neurons that the presynaptic neuron has generated an action

potential. An action potential (also known as a spike, or described as firing) is produced

when the potential difference across the cell membrane (membrane potential) around

the axon hillock (the start of the axon near to the neuron cell body) reaches a threshold,

this results in a sharp increase in the membrane potential propagating down the axon

of the cell. A cartoon of the morphology of a neuron is shown in figure 1.1. When an

action potential reaches the synapse, it causes the release of neurotransmitter across

the synaptic cleft (the gap between the axon and the postsynaptic cell membrane),

this binds to the receptors on the postsynaptic cell, which then causes the opening

of ion channels, resulting in current flowing across the postsynaptic cell membrane.

This current may generate an excitatory postsynaptic potential (EPSP) or inhibitory

postsynaptic potential (IPSP) depending on the synapse type. This is illustrated in

figure 1.2.

1



2 1. INTRODUCTION

Dendrites

Soma

Axon
Terminal

Axon

Figure 1.1. A cartoon of the structure of a typical neuron. Shows the
soma, dendrites, and axon. (Image by Quasar Jarosz, licensed under:
CC BY-SA 4.0)

Functionally, the axon can be seen as the main output of the neuron, conveying

to the cells it synapses on to that the neuron has reached its threshold input. The

dendrites of the neuron (where most excitatory synapses are made) form the input

to the neuron, with the machinery involved in the generation of the action potential

integrating the input over time (EPSPs and IPSPs decay and are only present for a

short time) and space (inputs on dendrites nearer to the soma arrive quicker).

The computational capabilities of a network of neurons connected in this manner

are utilised by artificial neural networks (ANNs), used in machine learning algorithms.

These networks use a simple description of the neuron such as the Threshold Logic

Unit (TLU) introduced by Mcculloch and Pitts (1943). Here the input to each unit is

summed and if it passes a threshold, the unit is activated and all units that it connects

to receive a signal, weighted by the strength of their particular connection. The weights

of the connections define the computation. Single units can be constructed to replicate

logic gates, and many can be connected together in multiple layers to perform pattern

recognition or classification of noisy data. The use of a threshold and an all or none

response makes them quite robust - small fluctuations in input will not affect the output

unless they push it beyond or below threshold (Gurney, 1997). In simple networks the

weights can be set manually, but for the large networks used in applications such as

classification, they must be set automatically. Often, a training set of data is used,

where the correct output given an input is known. The network is trained on this data

https://commons.wikimedia.org/wiki/File:Neuron_Hand-tuned.svg
https://creativecommons.org/licenses/by-sa/4.0/deed.en
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set using an algorithm (such as the backpropagation of errors (Hecht-nielsen, 1989))

to alter the weights of the network until a suitable accuracy has been found. This is

known as supervised learning. If the training data well represents the wider dataset

then the network should be able to generalise and accurately classify unseen data.

Neurotransmitter

Vesicle

Voltage gated
Ca++Channel

Neurotransmitter
Transporter

Receptor

Postsynaptic
Density

Axon 
Terminal

Synaptic Cleft

Postsynaptic
Site 

Figure 1.2. Shows a cartoon of a synapse and the various components
involved in synaptic transmission. When an action potential arrives at
the synapse, the elevated membrane potential opens the voltage gated
Ca2+ channels. This increases the concentration of Ca2+ in the axon
terminal which increases the rate of neurotransmitter release into the
synaptic cleft. (Image by Thomas Splettstoesser, licensed under: CC
BY-SA 4.0)

1.1.1. Synaptic efficacy and short term synaptic plasticity. In biological

neural networks the weights of synapses also change over time - synaptic plasticity -

but here a vast array of processes modify the weight or efficacy of the synapse. The

efficacy is also less clearly defined for biological neurons. Functionally, the efficacy

means the effect of the presynaptic neuron firing on the likelihood of the postsynaptic

neuron firing (as captured by the Mcculloch and Pitts (1943) model). In computa-

tional neuroscience, various abstractions of the synapse are used. If we are using a

current based synapse model then the efficacy may refer to the current input to the

postsynaptic neuron, if we are using a conductance based model it may refer to the

magnitude of the conductance of postsynaptic ion channels. Efficacy may also refer to

the release probability of a synapse, or to the average number of transmitter quanta

released after a presynaptic action potential (London et al., 2002). Changes to these

properties would also be seen as changes in the average conductance or postsynaptic

https://commons.wikimedia.org/wiki/File:SynapseSchematic_unlabeled.svg
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
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potential. More detailed physiological models (e.g those discussed by Hennig (2013))

model the release probability and number of quanta available for release explicitly. The

release probability is a function of calcium concentration in the presynaptic activation

zone (Lou et al., 2005), the number of quanta available is dependent on the rate of

vesicle replenishment as well as the rate of release. The amount of transmitter released

is then a function of the release probability and the quanta available, and the conduc-

tance applied to the postsynaptic neuron a function of this and the peak conductance

of the synapse. Fluctuations in the number of available quanta and in the calcium

concentration in the presynaptic activation zone cause a short term plasticity of the

synaptic efficacy (Hennig, 2013). However, this does not facilitate long term changes

in synaptic weight, analogous to those seen in the training of ANNs.

1.1.2. Electric field stimulation and plasticity. Experimental neuroscientists

began to explore the biological correlates of synaptic plasticity in the 19th century, and

their primary tool was extracellular electrical stimulation and extracellular recording of

the local field potential (Markram et al., 2011). Unlike most pharmacological manip-

ulations, electric field stimulation provides a spatially restricted and time dependent

modulation of neural activity. This specificity allows experimenters to invoke activity

in a localised population of cells, and measure the effect of this on a neighbouring

population. This effect, measured as a response in the local field potential (LFP), can

be interpreted as the synchronised action of synapses from the stimulated population.

Any modulation of the response can therefore be seen as a modulation of the synapses

of the underlying network.

As well as measuring the modulation, stimulation is also used to induce it. The long

term potentiation of synapse efficacy (LTP) was first described using this technique by

Bliss and Lomo (1973). They applied rapid tetanic (repetitive) stimulation to a bundle

of axons connecting to the hippocampus of the rabbit. The amplitude of the response

after the tetanic stimulation was 50% larger than before, with this effect persisting for

many hours. Ito et al. (1982) applied a slower repetitive stimulation in a similar setup,

they found that after this stimulation protocol, the response decreased - long term

depression (LTD). These experiments, and others, contributed to the understanding

that strong postsynaptic depolarisation combined with presynaptic spiking resulted in
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a potentiation of the synapse, while weak postsynaptic depolarisation and presynaptic

spiking produced depression.

1.1.3. spike-timing dependent plasticity. The early LTP and LTD experi-

ments used repetitive stimulation to induced a depolarisation at the postsynaptic site.

Markram et al. (1997) showed that the more subtle depolarisation caused by a sin-

gle action potential in the postsynaptic cell propagating back into the dendrites can

produce long term potentiation or depression depending on the precise timing of the

presynaptic action potential. Presyanptic firing before postsynaptic firing produced a

larger depolarisation and so potentiated the synapse, postsynaptic followed by presy-

naptic produced a smaller depolarisation and so depressed the synapse. The crucial

role played by the precise timing of spikes has led this to be called spike-timing de-

pendent plasticity (STDP) (Song et al., 2000). Figure 1.3 illustrates this relationship

between relative spike timing and the magnitude of synaptic change.

ΔtΔt+50 ms+50 ms -50 ms-50 ms

A

B

LTP

LTD

causal acausal

post

pre

Figure 1.3. Illustrates spike-timing dependent plasticity. (A) Shows a
presynaptic cell connected to a postsynaptic cell. In the causal scenario,
the presynaptic cell fires just before the postsynaptic cell (a positive
delay), contributing to its firing. This leads to a potentiation of the
synapse. In the acausal scenario the presynaptic cell fires after the post-
synaptic cell (a negative delay), this leads to depression of the synapse.
(B) Shows the magnitude of synapse change given a positive delay (green
area), and a negative delay (red area). These are the temporal windows
for LTP and LTD, respectively. Some synapses have an extended LTD
window (dashed line), and during low frequency activity LTP may not
occur (gray line). Adapted from Markram et al. (2011)

This can be described as a form of Hebbian plasticity, because inputs to the neuron

that lead to it producing an action potential will be strengthened, while those that
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do not will be weakened (Feldman, 2012). Hebbian plasticity can be summarised as

follows: when the firing of cell A contributes to the firing of cell B then the strength

of connection from A to B increases (Hebb, 1949). This forms the basis of many un-

supervised learning algorithms for artificial neural networks (Sanger, 1989) and STDP

has since been shown to allow the training of simple networks to do tasks such as digit

recognition (Diehl and Cook, 2015).

1.1.4. Brain stimulation as a treatment for neurological disorders. Many

modern studies of the low level mechanisms of plasticity employ single cell recordings

and stimulate cells using techniques that can target specific cell types such as opto-

genetics (Sciamanna et al., 2015). However, electric field stimulation remains popular

for studying the functional consequences of plasticity at the network level, particularly

in in vivo studies (Fritsch et al., 2010). Clinically, non-invasive electric field stimula-

tion is hoped to provide a way to alter synaptic connections that may be causing a

pathological state (Huerta and Volpe, 2009; Bliss and Cooke, 2011). For example, an

over-excitability of the prefrontal cortex is thought to contribute to the symptoms of

major depressive disorder in some cases (Nitsche et al., 2009). Repetitive Transcra-

nial Magnetic Stimulation (rTMS) at low frequencies, applied to the prefrontal cortex,

has been shown to have a beneficial effect on major depressive disorder symptoms

(Fitzgerald et al., 2006). A possible mechanism for this could be an LTD like reduc-

tion in connectivity strength between regions of the prefrontal cortex. Schizophrenia is

associated with a hyperexcitable sensory cortex. rTMS applied to auditory cortex has

been shown to reduce auditory hallucinations in patients with schizophrenia (Kahn,

2007). Again, a suggested mechanism for this in an LTD like reduction in synaptic

strength within auditory cortex. Computational models that relate the cellular level

processes of synaptic modification, realistic models of the electric field stimulation and

realistic brain connectivity models, with experimentally measurable signals or cognitive

effects offer the potential for better informed stimulation paradigms.

1.2. Epilepsy

One clinical application of electric field stimulation is in the treatment of epilepsy.

Epilepsy is a neurological disorder characterised by recurrent interruptions of normal

brain function, typically caused by periods of excessive and highly synchronous neural
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activity known as seizures (Beghi et al., 2005). An imbalance in the contributions of

excitatory and inhibitory neurons forms the basis of most theoretical and experimental

models of seizures and epilepsy. The precise nature of this imbalance is known for

some experimental models and acute seizure caused by toxicity. However, with regards

to clinical manifestations there are many factors involved and significant variations

between aetiologies of different forms of epilepsy - epilepsy refers more to the symptoms

(excessive synchronous activity) than the causes (Staley, 2015). In the experimental

setting activity resembling that of a seizure (epileptiform activity) can be induced

by blocking inhibitory synapses (Chagnac-Amitai and Connors, 1989), or by inducing

excessive excitatory activity (Perreault and Avoli, 1991). Focal epilepsy is characterised

by a seizure-generating region of tissue known as the focus. This tissue shows excessive

excitability often as a result of an imbalance of excitatory and inhibitory synaptic

currents. It generates waves of hypersynchronous activity that propagate into other

regions, causing seizures. Low frequency rTMS has been shown to reduce the frequency

of seizures when applied at the seizure focus (Rotenberg et al., 2009). The long term

nature of this supression (several weeks) suggests that synaptic depression may form

part of the physiology of the effect (Tergau et al., 1999). While non-invasive electric

field stimulation is showing new promise in epilepsy treatment, electrical stimulation

has been used in epilepsy research for some time.

1.2.1. Electric field stimulation and in vitro epilepsy models. Extracellu-

lar electrical stimulation has been used to investigate various aspects of epileptiform

activity in animal models in vivo and in vitro as well as in the screening of potential

anti epileptic drugs (Castel-Branco et al., 2009). As for investigating synaptic plas-

ticity, it is useful because it allows researchers to probe the network in a way that is

temporally precise and spatially localised. In hyperexcitable tissue, it can be used to

provoke waves of activity that spread across the network. This allows researchers to

study the initiation and propagation of epileptiform events because they know where

and when the events will initiate. This method was used by Chagnac-Amitai and

Connors (1989) to show that in neocortical slices bathed in very low concentrations of

GABAA (gamma-Aminobutyric acid) antagonists, propagating waves of activity could

be evoked by focal electric stimulation to layer 4, even when spontaneous epileptiform

activity was not observed. This provided further evidence that GABAergic inhibition
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constrains the horizontal propagation of activity. Building on the same model, Pinto

et al. (2005) looked at the layer specific initiation of events. Again in a partially dis-

inhibited slice they stimulated in layer 4 of rat neocortex while recording in layers 5 and

2/3. They found that 7/18 of the layer 5 cells recorded from spiked during the delay

between stimulus and wave onset, while the none of the 20 layer 2/3 cells recorded from

spiked at at all before wave onset. From this they propose that the epileptiform activ-

ity evoked by the stimulation in layer 4, is initiated in layer 5. Figure 1.4 illustrates

this finding.

Figure 1.4. Reproduced from Pinto et al. (2005). Rat neocortex was
made hyper-excitable through the application of low doses of picrotoxin
(10µM), stimulation was then applied to layer 4, and the resulting ac-
tivity measured using a multi-electrode array in layer 2/3 and single cell
recordings in layer 2/3 and 5. (a) A table summarising the results of
the single cell recordings. Only layer 5 cells spike during the delay to
wave onset (7/18), layer 2/3 and layer 5 spike during the wave itself.
(b) Shows the propagation of a single wave across the multi electrode
array. The red dot shows the time and location of the electric stimulus.
The red line shows the time recorded as the wave onset time. Below are
some example traces from single cells in layer 2/3 and layer 5, small red
arrows show the stimulus time, the red line shows the wave onset time,
based on the multi-electrode array recording. Beside this we can see a
schematic of the protocol used, with the red dot showing stimulating
electrode location. (c) Shows 5 overlain traces from a single layer 5 cell
during build up to wave onset. The time of wave onset is shown by the
red line.

Focal stimulation has also been used to investigate the properties of synapses in

slices of epileptic tissue, taken from rodent models (Hagemann et al., 1999), and re-

sected from humans during surgery (Koch et al., 2005). As the function of inhibitory



1.2. EPILEPSY 9

synapses is thought to play an important role in the generation of seizures, their short

term dynamics in seizure generating tissue are of interest. Hagemann et al. (1999) use

paired pulses of stimulation to assess the function of inhibitory synapses in various

areas of neocortex from rats injected with tetanus toxin. This toxin is thought to im-

pair the function of inhibitory synapses, they show that the effect is stronger in motor

cortex than in somatosensory cortex. They rely on the inhibitory currents evoked by

the first stimulation to dampen the response to the second and take the ratio as a

measure of the impairment of inhibition. This allows them to use the spatial accuracy

of electric field stimulation to map out the topography of inhibition impairment around

the injection site. Koch et al. (2005) use paired pulse stimulation to measure the prop-

erties of inhibition in human epileptic neocortex and rat non-epileptic neocortex. They

find the paired pulse ratio to be similar in their control slices and epileptic slices for

short inter-stimulus intervals, however for an interval of 100 ms they find the response

to the second stimulus to have recovered in the human epileptic tissue but not the rat

non-epileptic tissue, indicating a more excitable network in the human tissue.

In addition to the work on slices of tissue, electric field stimulation has been used

extensively to explore intact epileptic tissue, again in rodent models and human pa-

tients. The response to stimulation varies during a seizure. Wilson et al. (1998) use

paired pulse stimulation to assess the excitability of the hippocampus in patients with

focal epilepsy. They compared the response in the hemisphere identified as containing

the focus with the contralateral hemisphere. They found that in the focus contain-

ing hemisphere, the paired pulse depression was increased. This has been shown by

Queiroz et al. (2009) who applied paired pulse stimulation to the dentate gyrus of rats

with spontaneous seizures induced by kainate. They find that paired pulse depression

gradually reduces during a seizure and takes some time to recover after its termination.

This can be interpreted as a loss of inhibition during the event, however there are a

complex array of changes to the function of inhibition during seizures, including short

term plasticity, depolarisation block of the interneurons themselves, and even changes

to the reversal potential of GABA, all of which could drastically alter the response to

stimulation (Ellender et al., 2014; Staley, 2015; Trevelyan, 2016).

The specific differences in the networks causing these differences in response are not

clear. This ambiguity comes from the many processes that may contribute to the short
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term dynamics seen through the evoked local field potentials. Both the short term

dynamics of the excitatory and inhibitory synapses, as well as the residual inhibition

from the first stimulation may play a role. Detailed modelling of these processes as well

as explicitly modelling the stimulation and local field potential may help to resolve the

ambiguity in interpreting responses to paired pulse stimulation measured by the local

field potential.

1.2.2. Clinical applications. Despite these ambiguities in interpretation, focal

electric field stimulation does appear to be able to distinguish more excitable tissue

from healthy tissue. This has given it a role in the identification of the seizure onset

zone (SOZ), in patients with focal epilepsies. As well as the paired pulse protocol out-

lined by Wilson et al. (1998), single pulse stimulation has also been used to assist in

the identification of more excitable tissue (Valent́ın et al., 2002, 2005). Valent́ın et al.

(2002) identified a delayed but more complex spike and sharp wave response in the

EEG (electroencephalogram) near the stimulating electrode which associated with the

location of the seizure onset zone. This was in contrast to a single immediate response

seen in healthy tissue. These delayed responses resemble interictal epileptiform events

and have been shown to almost always match with the morphology of interictal epilep-

tiform discharges in observed on electrodes near or in the SOZ in the same patient

(Nayak et al., 2014).

1.3. Simulating local field potentials in neocortex

To inform the interpretation of local field potentials (LFPs) recorded in vitro or

in vivo we can simulate the LFP generated by the activity we would expect to see.

The Virtual Electrode Recording Tool for EXtracellular potentials (VERTEX) is a

MATLAB tool for the simulation of neocortical dynamics and extracellular potentials

(Tomsett et al., 2015). This process of constructing, running, and analysing a VERTEX

simulation is shown in figure 1.5. VERTEX simulates each neuron in the network, using

a series of differential equations to calculate the evolution of each membrane potential,

synaptic conductance and external currents, among other values. Other approaches to

the simulation of neocortical dynamics represent the activity of populations of neurons

with a single set of variables. The choice of model often reflects the mechanisms

under investigation and the biological measurements available for comparison. Neural
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Figure 1.5. Reproduced from Tomsett et al. (2015). (A) Shows the
workflow of the VERTEX simulator, from model initialisation to analysis
of output. (B) Shows example scripts for parameterisation, initialisation,
and running of simulations in VERTEX.

mass models lump the membrane potentials of large ensembles of neurons together

into a single variable representing the mean membrane potential, and replace spiking

dynamics with a firing rate, calculated as a function of the mean membrane potential.

They are particularly suited for studying the dynamics of circuits comprising large areas

of the brain, where signals recorded non-invasively are used for comparison such as EEG

(Costa et al., 2016). Neural field models such as the the Wilson-Cowan model (Wilson

and Cowan, 1973; Coombes, 2006) are similar but introduce a spatial component by

coupling multiple volumes of tissue into a sheet, where the activity in each volume is

modelled by values representing the mean activity of each of the populations present.

This allows simulations of propagating activity, particularly useful in the modelling

of focal seizures (Goodfellow et al., 2012). An advantage of models such as these is

that the number of parameters is significantly reduced, making parametrisation and
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interpretation of results more tractable. Computation is also more tractable and whole

brain simulation becomes feasible. On the other hand, in the more detailed approach

the parameters often more closely match biologically measurable entities, and low level

processes are described. This approach is often more suited to modelling in vitro

experiments, where the local field potential, multi-unit activity, and recordings of the

membrane potentials of individual cells may be available for comparison. VERTEX

allows direct comparison with all of these measures. In particular at this scale the local

field potential can be quite distinct from the multi unit activity.

1.3.1. Simulating neuron dynamics. Simulating the dynamics of a single neu-

ron involves estimating the processes involved in the generation of the action potential.

In the Mcculloch and Pitts (1943) model this involves summing the inputs then the

application of a function such as a step function if there is a hard threshold or a sig-

moid for softer thresholds. When simulating neural tissue as VERTEX does, spiking

neuron models are more commonly used. The integrate and fire model (Burkitt, 2006)

is a simple example of a spiking neuron model. Here the cell is represented by an

electronic circuit consisting of a resistor and capacitor in parallel, reflecting the cell

membrane acting as a capacitor but also allowing current to leak out (illustrated by

one of the compartments in figure 1.6). This represents the passive properties of the

cell, the active properties are represented by a threshold membrane potential, when

this is reached the neuron can be said to fire and its membrane potential is reset. More

detailed models simulate the action potential itself. The action potential is generated

by the opening of voltage gated ion channels, when the threshold voltage is reached,

they open, allowing positively charged ions (mostly Na+) into the cell. The time course

of the conductances of these channels can be simulated using coupled differential equa-

tions. The most well known model of this kind is that described by Hodgkin and

Huxley (1952). However, these models (known as point neuron models) only describe

the membrane potential of the soma or axon, ignoring the dendrites of the neuron.

Multi-compartment neuron models allow a description of the propagation of mem-

brane potential fluctuations through the dendrites of the neuron. By modelling a

branch of dendrite as a passive cable (a spatially extended version of the capacitor and

resistor circuit) Rall (1962) produced equations for neurons with dendritic trees. He

proposed a partial differential equation - the membrane potential varies in space and
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Figure 1.6. Illustration of the compartmental model. Four resistor-
capacitor circuits connected together. (Reproduced from Gerstner et al.
(2014)

time - which can then be discritised over space and solved numerically. This results

in a series of compartments each modelled as the capacitor and resistor circuit, tied

together with an axial conductance (or resistance) that allows current flow between

them, shown in figure 1.6.

C
dV

dt
= −gL(V − EL) + gL∆T exp(

V − VT
∆T

)− w + I (1)

τw
dw

dt
= a(V − EL)− w (2)

VERTEX uses the adaptive exponential integrate and fire model (AdEx), an ex-

tension of the integrate and fire model (Brette and Gerstner, 2005), to model the spike

generation at the soma. It couples this with dendritic compartments modelled with

the passive dynamics described above. Equations 1 and 2 describe the AdEx model.

Equation 1 describes the dynamics of the membrane potential. Like the integrate and

fire model it uses the resistor-capacitor circuit as its base and it has a leak current

(gL(V −EL), where gL is the leak conductance, V is the membrane potential and EL is

the leak reversal potential) proportional to the difference between its membrane poten-

tial and leak reversal potential. It also has a current (described using an exponential

term dependent on the membrane potential) that represents initiation of the spike be-

fore it reaches threshold (gL∆T exp(V−VT
∆T

), where ∆T is the slope factor parameter,

VT is the threshold). I represents external currents - synaptic currents or currents

artificially applied. w is an adaptation current and is an additional variable. It is

updated by an amount b on spike generation, and otherwise described by equation 2.

This allows the AdEx model to describe many different firing patterns in response to



14 1. INTRODUCTION

a given input. It has been shown to be able to reproduce a large repertoire of electro-

physiological features including spike-frequency adaptation, regular and fast spiking,

phasic and tonic bursting, post-inhibitory spiking and bursting, delayed spike initia-

tion and delayed burst initiation (Gerstner and Brette, 2009; Naud et al., 2008). The

parameters can be fit to a specific neuronal recording, by seeking a set of parameters

that minimise the difference between the recorded trace and simulated trace. As a

measurement of error, differences in spike timing may be used, simulated annealing

or evolutionary algorithms may be used to select parameters that minimise the error

(Friedrich et al., 2014). We reproduce some of the electrophysiological profiles captures

using the AdEx model by Naud et al. (2008) in the appendix D.

In VERTEX, this allows users to specify an electrophysiological profile for each

neuron type, by selecting the appropriate parameters.

1.3.2. Types of neocortical neuron. Cortical neurons can be differentiated in

a number of ways. Functionally, one of the most important distinctions between neu-

rons is whether they are excitatory (have depolarising synapses) or inhibitory (have

hyperpolarising synapses). In neocortex, this distinction often amounts to the neuro-

transmitter excreted - glutamate (excitatory) or gamma-aminobutyric acid (GABA,

inhibitory). Morphology is often used to further sub-categorise neuron types (Krieg-

stein and Dichter, 1983). The majority of excitatory neurons in neocortex are also

pyramidal cells, these are characterised by a large apical dendrite that reaches towards

the cortical surface and a pyramidal soma shape. Inhibitory neurons tend to be smaller

and project over a shorter distance (Moore et al., 2010). Neurons can also be classi-

fied according to their electrophysiological profile by injecting current into the cells

and measuring the firing response. Basket cells are a morphologically defined type

of inhibitory neuron found in the neocortex. They also tend to have a fast spiking

electrophysiological profile, and strongly express parvalbumin, a calcium binding pro-

tein. The expression of various calcium binding proteins often overlaps with particular

morphological or electrophysiological subtypes - chemical markers a further means of

classifying cell types. In figure 1.7 we can see a cartoon of a pyramidal cell, with

synapses made onto it from two different inhibitory interneurons. The red cell is a

parvalbumin positive, fast spiking, basket cell. It forms synapses on to the soma of the

pyramidal cell. The blue cell is a Martinotti cell, expressing the calcium binding protein
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Figure 1.7. A cartoon pyramidal cell, with synapses onto its soma from
parvalbumin positive basket cells (red), and synapses on to its dendrites
from somatostatin positive Martinotti cells(blue).

somatostatin. It synapses onto the dendrites of the pyramidal cell. When simulating

the neocortex we wish to include the electrophysiological profiles of as many neuron

types as possible, in VERTEX we can do this by finding AdEx parameter regimes that

match the most common profiles. The location of synapses is another factor in cate-

gorising neuron types, and has important functional consequences (Moore et al., 2010;

Pouille et al., 2013). Dendritic inhibition is less effective at reducing the firing rate of

a cell receiving strong excitatory drive (Pouille et al., 2013). In the context of epilepsy,

this has important consequences. In figure 1.8, I show the seizure restraining properties

of two simple networks generated using VERTEX. They both contain a population of

pyramidal cells and of inhibitory interneurons. The same number of interneurons are

in each but in one there is only dendritic inhibition, in the other only somatic. The

balance of excitation and inhibition in the network is evaluated by injecting current

into a small cluster of pyramidal cell and measuring if it propagates or is restrained.

As the excitatory and inhibitory synapse strength is varied, the network with somatic

inhibition can restrain propagation in networks with a much greater ratio of excitatory

synapse strength to inhibitory synapse strength. VERTEX is set up to simulate a pop-

ulation of neurons positioned in three dimensional space, with simplified morphologies

containing around 10 compartments. This allows users to specify the synapse location
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Figure 1.8. In networks with somatic inhibition, far higher excitatory
synapse strength to inhibitory synapse strength is required to propagate
activity. Further details of these simulations are provided in appendix
F.

when constructing the synapses for a cell type. The number and weight of synapses

between cell types is also needed to construct the simulation. Comprehensive data

sets of this nature are rare. Tomsett et al. (2015) use VERTEX to simulate a gamma

oscillation in macaque neocortex. They use the cell-type specific connectivity provided

by Binzegger et al. (2004). We wished to use VERTEX to simulate stimulus evoked

activity and seizure-like activity in rat neocortex. The Neorcortical collaborative por-

tal provides a detailed map of rat somatosensory cortex (Ramaswamy et al., 2015).

As part of the human brain project, they have used it to produce incredibly detailed

simulations of the cortical column (Markram et al., 2015). While we have not sought

to replicate the level of detail of this project, we have used the data they provide on

neuron types, neuron numbers, cell type and layer specific connectivity and synaptic

efficacy, as well as time constants for synaptic facilitation and depression, to construct

our model of rat somatosensory cortex.

We sought to build upon the VERTEX simulator by adding functionality for in-

corporating a stimulating extracellular electric field and synaptic plasticity, so that it

could be used to inform the interpretation of electrophysiology experiments that involve

electric field stimulation and/or synaptic plasticity.

1.4. Simulations of electric field stimulation

The theory regarding the extracellular stimulation of neurons is very well estab-

lished. It was touched upon by Rall (1962) when he was outlining his cable equations

to describe the biophysics of the neuronal dendrites. It was further built upon by
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Frank Rattay (Rattay, 1986, 1989, 1998, 1999) who more explicitly described the the-

ory along with strategies to simulate the effects of arbitrary fields on neuron membrane

potentials. A method for finding the steady state membrane potential produced by an

electric field on a neuron of complex morphology was outlined by Joucla and Yvert

(2009). Much of the current work on electric field stimulation focusses on the accurate

estimation of electric potentials produced by more complex electrode-tissue configura-

tions using finite element models (Joucla et al., 2014) or how various aspects of neuron

morphology affect its response to stimulation (Yi et al., 2017). Accurately predicting

the immediate effect of electric field stimulation at the cellular level requires detailed

knowledge and modelling of the cellular properties of the target tissue. This requires

a suitable simulation environment that models the morphology of neurons using multi

compartment models (Joucla et al., 2014; Yi et al., 2017). This can be computation-

ally costly for large networks and so most simulations focus either on simulations of

single neurons using a detailed morphology and compartmental modelling approach,

small networks of detailed neurons, or investigate the stimulation applied to large scale

networks using an approximation of the stimulation effect and point neuron models

or neural fields. The choice of model reflects the studied phenomenon; morphological

models tend to be used when studying solely the patterns of polarisation produced by

particular stimulation setups on particular cells, while more abstract models are used

to study the effect of stimulation on the ongoing intrinsic dynamics of a network of

neurons. The scale of the phenomena measured also plays a role, as does the data

used for comparison. For example, studies of whole brain networks using electroen-

cephalogram (EEG) or functional magnetic resonance imaging (fMRI) data will likely

use a neural field or mass model, while studies that measure single cell dynamics using

patch clamp, or intracellular recording techniques would use a morphological model.

The tools available for simulation also reflect these two approaches. The NEURON

simulator is the only widely available neural simulation tool that provides an extracel-

lular stimulation mechanism that accurately reflects the biology (Hines and Carnevale,

1997, 2000). Its use is mainly in simulating single cells or small networks of neurons

(Markram et al., 2015). While NEURON provides an efficient simulation environment

that can capture most paradigms and neuronal mechanisms, it is a complex program,

and creating simulations of large neocortical networks with many neuron types may
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take a long time for someone new to the tool. In spiking neural network simulation tools

that specialise in point neuron models (Goodman et al., 2009; Gewaltig and Diesmann,

2007) the effects of stimulation is often approximated by current injection (Brody and

Korngreen, 2013; Hall and Kuhlmann, 2013). This does not capture the morphology

specific effects of electric field stimulation, or allow one to predict the spatial effects of

a specific electrode setup.

1.5. Thesis structure

Electric field stimulation is used extensively in the study and treatment of epilepsy,

experimentally in in vitro slice preparations and in vivo models, clinically to identify

seizure onset zones, and as a treatment using non-invasive techniques. It is also used

extensively in the study of synaptic plasticity, in particular in evaluating the short term

dynamics of synaptic efficacy or in provoking long term changes in networks. However

predicting its effects, both short term effects (the immediate changes in neuronal dy-

namics) and long term effects (long term changes in synaptic efficacy) are difficult. So

too is interpreting the field potential response to stimulation. We propose simulations

at the cellular and microcircuit level as a partial solution to these challenges.

This thesis contributes an extension to the VERTEX simulator, creating a frame-

work suited to simulating the effects of an applied electric field on the activity of

neocortical tissue. In particular we look at focal electric field stimulation in the acute

rat neocortical brain slice preparation, in physiological conditions to provoke network

changes through synaptic plasticity, and in epileptogenic conditions.

In chapter 2 we present the incorporation of electric field stimulation, short term

plasticity, and spike-timing dependent plasticity into VERTEX. This provides a frame-

work for the simulation of the field potentials evoked by electric field stimulation, as well

as a framework for simulating networks with dynamic synapses. Chapter 3 presents

example simulations of electric field stimulation inducing network changes via short

term plasticity and spike-timing dependent plasticity, as well as describing our virtual

rat neocortical brain slice.

Placing this in the context of epilepsy, we look to the identification, analysis, and

simulation of epileptiform events recorded extracellularly in the in vitro brain slice

preparation. Chapter 4 describes an analysis tool for identifying and quantifying epilep-

tiform events. Chapter 5 applies this analysis to epileptiform events recorded from slices
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taken from rats with chronic epilepsy induced by tetanus toxin injection. We consider

the effect of tetanus toxin on events that occur spontaneously after applying an altered

bathing solution, and those that are evoked by electric field stimulation.

We then present a VERTEX simulation of the response to stimulation in the epilep-

togenic conditions, as well as a simulation of epileptiform events mediated by short term

synaptic plasticity.

We hope this framework will be found useful by those studying seizure-like ac-

tivity and stimulus evoked activity in vitro, as well as those evaluating various brain

stimulation protocols as a treatment for neurological and psychiatric disorders.





CHAPTER 2

Adding Electric Field Stimulation and Synaptic Plasticity to

the VERTEX Simulator

2.1. Introduction

As an investigatory tool, electric field stimulation has facilitated many important

experiments in neurophysiology and is still widely used. This makes it a valuable

addition to a simulation framework such as VERTEX (Tomsett et al., 2015). Electric

fields applied to the scalp - such as transcranial direct current stimulation (tDCS)

and transcranial alternating current stimulation (tACS) - are growing in popularity.

Making full use of them will be aided by accurate simulation of the effect of their electric

fields on dynamic neural networks incorporating the morphology and physiology of a

variety of neuron types.

As discussed in chapter 1 the theory describing the effect of extracellular electric

fields on the membrane potential of the neuron is well established (Rattay, 1986, 1989;

Joucla and Yvert, 2012). However, due to the large computational resources it would

require this is rarely translated into large scale simulations of hundreds of thousands of

neurons (Seo et al., 2016). Often simulations of large networks reduce the morphological

neurons to a point neuron model (such as the integrate and fire model) in order to

make the computation tractable. However, the effect of the electric field is heavily

influenced by the morphology, orientation and location of the neuron (Yi et al., 2017).

By simulating neurons with a defined morphology, all be it one reduced in complexity,

we provide a compromise solution. This allows simulations of tens of thousands of

neurons (e.g. a cortical column) on modest hardware or hundreds of thousands (e.g. an

in vitro brain slice preparation) on a high performance computer, while still capturing

the morphology specific effects of the electric fields. However, reducing the detail of

the model (simplifying the structure) and reducing the fidelity (reducing the number

of compartments) is likely to introduce some discrepancies. In this chapter we seek to

quantify these discrepancies by comparing the response to stimulation in our reduced

21
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model with that in higher fidelity versions, detailed reconstructions of the morphology,

and in vitro results.

We will also detail the methods used to incorporate electric field stimulation into

VERTEX and describe the two phenomenological models of synaptic plasticity that

have also been added.

2.2. Simulating the effect of electric fields on neuronal fibers:

Simulating electric field stimulation involves two steps: the first is to calculate the

electric potential caused by the field we are interested in modelling, the second is to cal-

culate how this affects the neuronal activity. The first step can be done analytically for

simple electrode-tissue geometries but for more complicated geometries must be solved

numerically. We have provided an interface to models constructed using the MATLAB

Partial Differential Equation toolbox (The MathWorks, Inc., Natick, Massachusetts,

2016). These can be built to model a wide range of electrode-tissue setups, from bipolar

penetrating electrodes used in vitro (illustrated in section 3.3) to non-invasive setups

that include the skull and cerebrospinal fluid. VERTEX allows users to easily link to

a model created using the PDE toolbox or to define an electrode setup analytically, by

specifying an electrode location and equation to use. From these, an electric potential

is calculated at the mid point of each neuron compartment which is then used in the

second step of the process. When modelling neurons using the multicompartmental

approach first outlined by Rall (1962), the second step involves considering this extra-

cellular electric potential when calculating the neuron membrane potential change of

each compartment using the cable equation shown in Equation 2.2.1.

d(Vi,n − Ve,n)

dt
· Cm,n + Iion,n +

Vi,n − Vi,n−1

Rn/2 +Rn−1/2
+

Vi,n − Vi,n+1

Rn/2 +Rn+1/2
= 0 (2.2.1)

Where Vi,n is the intracellular potential at compartment n, Ve,n is the extracellular

potential caused by the stimulating electrode at the midpoint compartment n (this

can be calculated using an analytic approach such as in equation 2.3.2 or by a finite

element approach as we describe in the next chapter). Rn is the resistance between

compartment n and its neighbour, Cm,n is the membrane capacitance at n, and Iion,n

is the synaptic currents or other ion channel currents. The cable equation describes

the flow of charge from one compartment to the other when their membrane potential
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differs. It is derived from Kirchoff’s current law which states that current flowing in to

a particular node in a circuit must equal the current flowing out of that node.

Normally when solving this we consider the extracellular potential to be constant

across all compartments allowing us to ignore it. When it is not constant, it can

be considered to contribute to the change in membrane potential. To do this we

follow previous work (Rattay, 1999) by introducing a reduced membrane potential

V = Vi − Ve − Vrest, to take into consideration the non-zero extracellular potential.

Substituting this into equation 2.2.1 and rearranging, we get equation 2.2.2.

dVn
dt

= [Iion+
Vn−1 − Vn

Rn−1/2 +Rn/2
+

Vn+1 − Vn
Rn+1/2 +Rn/2

+
Ve,n−1 − Ve,n
Rn−1/2 +Rn/2

+
Ve,n+1 − Ve,n
Rn+1/2 +Rn/2

]/Cm,n

(2.2.2)

Equations 2.2.1 and 2.2.2 are taken from Rattay (1999). In VERTEX we incorporate

equation 2.2.2 as an additional step during the calculation of the axial currents when

stimulation is turned on.

2.3. Evaluating the accuracy of the reduced compartment model

2.3.1. The fidelity of the model. When modelling neurons using compartments

and the cable equation, the size of compartments must be considered. VERTEX uses

simple neuron geometries, carricatures of the structure of each neuron type that capture

synapse location dependent effects (Bush and Sejnowski, 1993) and produce accurate

local field potentials (LFPs) (Tomsett et al., 2015), without the detail of a specific

neuron reconstruction. However, because we are representing the membrane potential

and extracellular potential across the whole compartment by a single value, larger

compartment sizes will introduce more error. The acceptable size of the compartment

depends on the intracellular proporties and the extent to which the field varies in

space. Rattay (1999) calculates a space constant (λ, SC) for each of the compartments,

equation 2.3.1, where d is the diameter ρi is the intracellular resistivity, and gm the

membrane conductance. They show that if the compartment length is less than λ
4

then

the error compared to the solution to the continuous equation should be of the order

of 1%.

λ =

√
d

4ρigm
(2.3.1)
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In VERTEX, when specifying the simulation parameters the user may request that

compartment sizes are readjusted so that they are of length less than a specified fraction

of the space constant. To investigate the effect of fidelity on our reduced compartmental

models we constructed a model with a maximum compartment size of less than λ
4

and

took this as our baseline model. We then incrementally increased the fraction of λ that

compartment lengths were required to be below and measured the discrepancy in their

response to stimulation with respect to the baseline model.

We first sought to quantify the accuracy of our models when it comes to captur-

ing stimulation by a focal monopolar electrode. We modelled the electric potential

generated by the electrode using equation 2.3.2.

Ve,n =
ρI

4πr
(2.3.2)

Where ρ is the conductivity, I is the stimulus amplitude, and r is the distance from

the electrode.

Figure 2.1 shows a comparison of three neuron types: the pyramidal cell from lay-

ers 2 and 3 (L23 PY), the Martinotti cell from layer 4 (L4 MC), and a thick tufted

pyramidal cell from layer 5 (L5 TTPC). These are a representative sample of the neu-

ron types in the model described in section 3.2. For each neuron type we show the

steady state membrane potential after stimulation with a monopolar electrode in the

reduced model (with 3 different compartment sizes) compared with that in the detailed

one. We can see a qualitative similarity in between the membrane polarisation in the

reduced models and the detailed model both in terms of the locations of depolarisation

and hyperpolarisation, as well as in the magnitude. However, it can also be seen that

as the compartment size of the reduced model increases, its accuracy decreases. To

investigate whether the error introduced by increasing the compartment size (relative

to the space constant) is merely a reduction in fidelity or a qualitative error we took

the high fidelity reduced model (0.25 x SC) as our baseline and compared the mem-

brane potential with that of the lower fidelity models. We used the compartments of

the lowest fidelity model as the sites of comparison, calculating an average membrane

potential across the equivalent compartments of the higher fidelity models. Compart-

ments in the higher fidelity models are mapped to the lowest fidelity model by location.
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Figure 2.1. The steady state membrane potential of the detailed and
reduced neuron models as a result of a monopolar stimulation at 500 uA
(calculated using equation 2.3.2 with I = 500uA and ρ = 0.3S/m). The
location of the stimulating electrode is shown as the black dot. Three
reduced models are shown with increasing compartment sizes. Compart-
ment sizes are factors of the space constant (SC), calculated individually
for each model. The reduced models show qualitatively similar patterns
of polarisation to the detailed ones, with the overall similarity increasing
as the compartment size decreases.

This can be done because the process used to increase the fidelity of the models in-

volves dividing each compartment that is larger than the space constant in half, into

two smaller compartments (the children of the initial compartments). This means that

each compartment of a higher fidelity model will have a compartment in the lowest fi-

delity model onto which it can be mapped directly without having to consider whether
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it lies on the boundary between two of the larger compartments. So for the higher fi-

delity models the values used for comparison are the averaged membrane polarisations

of the children of each of the initial compartments. At each time point of interest, we

calculated a Mean Absolute Percentage Error (MAPE) across the cell (equation 2.3.3),

where n is the number of compartments being compared, V is the membrane potential

of the high fidelity model at that compartment, and V̂ is the membrane potential of

the lower fidelity model at that compartment.

MAPE = 100

∑n
c=1 |Vc − V̂c|∑n

c=1 |Vc|
(2.3.3)
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Figure 2.2. Shows the locations of the 100 electrode locations ran-
domly sampled from the area around the neuron. The bounds of the
sampling space were: Interneuron - z=(-600,600), x=(-400,400); Layer
2/3 Pyramidal Cell - z=(-300, 600), x=(-300,300); Layer 5 Pyramidal
Cell - z=(-400,1200), x=(-400, 400). The bounds in the y plane were
(-40, 40) for neuron types.

We use a measure of relative error because with each repeat we are stimulating

in a different location, resulting in a different magnitude of response. The stimulus

amplitude is 100 µA in all cases. We repeat the simulation for 100 electrode locations

(shown in figure 2.2) running the simulation with stimulation applied until the mem-

brane polarisation reaches a steady state. We take a snapshot of the error at a range

of time points (0.25ms, 0.5ms, 0.75ms, 1ms, 1.25ms, 1.5ms, 1.75ms) to capture the

error observed for a range of stimulus durations. We plot the median and interquartile

range of errors for the layer 2/3 pyramidal cell, interneuron, and layer 5 thick tufted

pyramidal cell in figures 2.3, 2.4, and 2.5 respectively. Increasing the size of compart-

ments introduces an error in all morphologies and at all time points. Errors are most

pronounced during the short stimulus durations (50-100% error), while at the steady
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state we find errors of 10-15% for the larger compartment sizes. From this, we can

conclude that increasing the size of compartments in our model introduces qualitative

errors above those that can be removed by averaging over the compartments of the

higher fidelity model, particularly for shorter stimulus durations. Of note are the dis-

continuities present in all three figures. These occur as a result of the process used

to reduce the compartment sizes which splits in two all compartments that are larger

than the required size until all are below the required size. As this guarantees that all

compartments will be of size smaller than the space constant, rather than of the exact

size of the space constant, a model altered to be below 2 SC for example may also be

below 1.5 SC.
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Figure 2.3. The effect of compartment size on the response to stim-
ulation in the Layer 2/3 pyramidal cell model. Shows the median and
interquartile range of the Mean Absolute Percentage Error (MAPE) cal-
culated on the difference between the membrane potential of the high
fidelity reduced model (0.25 x SC) and a range of lower fidelity models.
We calculate an error at a range of stimulus durations, each plot shows
the MAPE (y axis) for the range of lower fidelity models (x axis) for a
given stimulus duration as well as at the steady state.

2.3.2. Comparing the reduced model with a detailed reconstruction. As

well as the reduction in fidelity, the reduction in the complexity of the morphology,
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Figure 2.4. The effect of compartment size on the response to stim-
ulation in the interneuron model. Shows the median and interquartile
range of the Mean Absolute Percentage Error (MAPE) calculated on the
difference between the membrane potential of the high fidelity reduced
model (0.25 x SC) and a range of lower fidelity models. We calculate
an error at a range of stimulus durations, each plot shows the MAPE (y
axis) for the range of lower fidelity models (x axis) for a given stimulus
duration as well as at the steady state.

may also introduce errors. To quantify how well our reduced neuron morphologies cap-

ture the response of real neurons to stimulation, we simulated stimulation of detailed

reconstructions of the equivalent cells. We again compare our layer 2/3 pyramidal cell,

interneuron, and layer 5 pyramidal cell (the morphologies of these cells are shown in

figure 2.1). As there is not a direct mapping between the compartments of the detailed

reconstruction and the reduced model, comparing the membrane potential at each com-

partment is not possible. We have therefore used the membrane potential at the soma

to calculate our error, calculating the MAPE across the whole timecourse of stimulation

until reaching the steady state. We use equation 2.3.3 to calculate the MAPE, but this

time n is the number of time points being compared, y is the soma membrane potential

of the detailed model at that time point, and ŷ is the soma membrane potential of the

reduced model at that time point. The MAPE for each neuron type at a range of
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Figure 2.5. The effect of compartment size on the response to stim-
ulation in the Layer 5 pyramidal cell model. Shows the median and
interquartile range of the Mean Absolute Percentage Error (MAPE) cal-
culated on the difference between the membrane potential of the high
fidelity reduced model (0.25 x SC) and a range of lower fidelity models.
We calculate an error at a range of stimulus durations, each plot shows
the MAPE (y axis) for the range of lower fidelity models (x axis) for a
given stimulus duration as well as at the steady state.

compartment sizes is shown in figure 2.6 (right), we can see that all neuron types show

a poor fit to their detailed equivalents and that improving the fidelity of the model

does not reduce the error. In figure 2.6 (left) we see that a large overestimation of the

response polarisation in the two pyramidal cell models is responsible for much of the

error. As increasing the fidelity of the models did not reduce the error we considered

that simplified morphologies were a possible source of the error. The reduced models

were constructed to reproduce the response to synaptic input and current injection,

and so the process used to generate them does not preserve the spatial profile of the

neuron or aspects such as dendrite diameter (Bush and Sejnowski, 1993). The dendrite

diameter is scaled up in the reduced model so that each compartment has an axial

resistance to match that of all those it is representing. Unlike the response to synap-

tic stimulation or current injection, the response to focal electrical stimulation is very
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Figure 2.6. Comparing the response to stimulation in detailed recon-
structions of the morphology to our reduced models. Both plots show
median values and interquartile range for all 100 stimulating electrode
locations shown in figure 2.2. (Right) Shows the Mean Absolute Percent-
age Error (MAPE) calculated on the membrane potential at the soma of
each cell, for the duration of stimulation. On the x axis is the proportion
of the space constant for which the compartment sizes are smaller. The
error bars indicate the interquartile range. (Left) Shows the absolute po-
larisation at the soma for the reduced (blue) and detailed (red) models.
For the two pyramidal cells there is a significant overestimation, for the
interneuron there is an underestimation.

sensitive to the angle of the compartments. Lumping together the axial conductances

of many compartments with various angles (many of which are likely to have coun-

teracting responses to the stimulus) into a single large conductance could introduce

an overestimation of the response. We investigated the effect of dendrite size on the

response of the layer 5 pyramidal cell (the one with the greatest error), by constructing

neuron models with a range of average dendrite diameters. These were built by scaling

the dendrite diameters of the original model by a range of factors (0.05 in steps of 0.05

to 1). Again, 100 electrode locations were selected, this time from the area around

the apical dendrite (shown in figure 2.8), and stimulus applied (100 µA monopolar).

The polarisation of the soma (the difference between the resting membrane potential

and that reached as a result of stimulation - Vrest − V ) was measured at several time

points, including at the steady state. Figure 2.7 shows the polarisation of the soma

at the range of dendrite diameters, and a range of time points. As we increase the

diameter of the dendrite we see an increase in the polarisation at all time points. The

detailed reconstruction of the layer 5 pyramidal cell that we have used has a average
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dendrite compartment length of 0.89 µm, while our reduced model has a average den-

drite compartment length of 4.22 µm. Reducing the dendrite diameter of the reduced

model to that of the detailed model reduces the median error, as can be seen in figure

2.8. While further reduction in the diameter past that of the detailed model further

reduces the error, the error climbs again when the dendrite diameter reaches 0.21 µm.

This indicates that while fitting the dendrite diameter exactly to that of the detailed

model may not be the best approach, it is an important factor and can in part account

for the large overestimation seen in our reduced model of the layer 5 pyramidal cell.
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Figure 2.7. Shows the relationship between the mean dendrite width
and the soma polarisation for the L5 pyramidal cell. The polarisation
at 5 time points and the steady state is shown. Points indicate the
median and interquartile range of the soma polarisation produced by
a monopolar electrode placed at 100 locations randomly sampled from
a uniform distribution bounded by the vicinity of the apical dendrite
(shown in figure 2.8).

2.3.3. Uniform field stimulation. For focal electric field stimulation, compari-

son with in vitro experimental studies is difficult due to the variability caused by slight

changes to electrode position. However, for uniform fields the systematic study of the

effect of morphology and orientation on the extent of polarisation is possible. Radman
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Figure 2.8. Reducing the mean diamter of the dendrites brings the
response of the reduced model closer to that of the detailed model when
presented with dendritic stimulation. On the right we can see the ran-
domly selected locations of the stimulating electrode relative to the re-
duced model. On the left we can see the Mean Absolute Percentage
Error (MAPE) of the response soma polarisation of the reduced model
compared to the detailed model. Each data point shows the median er-
ror of all stimulus locations, and error bars show the interquartile range.
The red line indicates the mean diameter of the detailed model.
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Figure 2.9. The extent of polarisation at the soma with increasing
electric field strength in cortical pyramidal cells (black) and interneurons
(red). (Left) Shows the polarisation found by Radman et al. (2009) in a
layer 5 pyramidal cell and interneuron in rat neocortex. (Right) Shows
the polarisation of a layer 5 pyramidal cell and interneuron in our rat
neocortex model.

et al. (2009) have described the effect of uniform fields on a variety of cortical neuron

morphologies. We reproduce some of their key findings with our in silico equivalent.

Following their procedure we applied a uniform field, positive at the cortical surface

and negative towards the white matter, at strengths ranging from -30 mV/mm to 30

mV/mm at steps of 5 mV/mm. We applied the field to the models illustrated in figure

2.1, an interneuron, a layer 2/3 pyramidal cell, and a thick tufted layer 5 pyramidal

cell. All cells had compartment sizes smaller than 2 SC. Figure 2.9 shows how the
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Figure 2.10. Shows the polarisation rate (or polarisation length as
described by Radman et al. (2009)), a measure of the increase in steady
state soma membrane polarisation with an increase in field strength.

This is calculated as pr = cellpolarisation(mV )
fieldstrength(mV/mm)

. (Left) Reproduced from

Radman et al. (2009), shows the mean plus standard error of polarisation
rates of interneurons, layer 2/3 pyramidal cells, and layer 5 or 6 pyramidal
cells. Circles indicate the value found for individual cells, crosses show
cells that had a severed dendritic tree. There is a significant difference
between the interneurons and deep layer pyramidal cells (t test, p=0.06)
(Right) Shows the polarisation rate of interneurons, layer 2/3 pyramidal
cells, and layer 5 thick tufted pyramidal cells in our model.

steady state polarisation of a single pyramidal cell and interneuron changes as the field

strength varies. We can see that in the experimental results and in the simulated results

that the polarisation increases or decreases linearly with the field strength, the gradient

of this line can be used to summarise the sensitivity of the cell to the electric field as it

indicates the cell polarisation achieved for every mV per mm increase in strength of the

electric field. Here, we use the term polarisation rate and the units mV per mV/mm,

however Radman et al. (2009) have reduced this to polarisation length (in mm). The

field has negligible effects on the interneuron in our model, some of the interneurons

measured by Radman et al. (2009) were sensitive to the field, including the one used

to create the figure we reproduce in figure 2.9. The orientation of our model leads

it to be exactly symmetrical to the field, resulting in the field having little effect on

the membrane potential of the soma. As the interneurons measured by Radman et al.

(2009) will not have this exact symmetry they will be affected by the field to some

extent, however, we can see from figure 2.10 that on average they undergo very little
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Figure 2.11. Shows the error (simulated - experimental) and 95% con-
fidence interval of the polarisation rates of our reduced models compared
with the in vitro results of Radman et al. (2009). The mean and standard
deviation of the experimental results were derived from the chart. The

confidence interval was calculated as Ci = 1.645
√

σ2
e

Ne
+ σ2

s

Ns
, where σe and

Ne are the variance and number of samples of the experimental result
and σs and Ns are the variance and number of samples of the simulated
result.

polarisation in comparison to the other neuron types sampled. To compare our mod-

els to the results of Radman et al. (2009) we calculated a polarisation length for 100

samples of each cell type. The orientation of the cell relative to the field was selected

at random from a uniform distribution between −π
4

rad and π
4

rad for the pyramidal

cells and between −2π rad and 2π rad for the interneuron. We show the polarisation

rates of our reduced models compared with that of the experiments in figure 2.10. As

can be seen our results compare well with the results of Radman et al. (2009) in terms

of the magnitude of response and the relative effects on each cell type. We can see

that on average the interneurons they measured have a polarisation rate of just below

zero, of 0.08 mV per mV/mm for layer 2/3 pyramidal cells and of around 0.14 mV per

mV/mm for the layer 5 pyramidal cell. We show the 90% confidence interval on the

discrepancy between our models and the experimental results in figure 2.11. We can

see that we are 90% confident that the error on the layer 2/3 pyramidal cell is between

-0.05 and 0.05, indicating a good match. The interneuron is overestimated slightly, as

they found a slightly negative polarisation rate, while our model has a polarisation rate
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of zero. The layer 5 pyramidal cell is also over estimated, this could be because they

have included neurons with severed dendritic trees in their analysis. Nevertheless, the

polarisation rates of all three of our models fall within the range of values found by

Radman et al. (2009) for their in vitro equivalents.

2.3.4. Including stimulation in a VERTEX simulation. We have described

how electric field stimulation affects the neuron models used in VERTEX, comparing

this to what we would expect from more detailed models, and from the effects recorded

in vitro. To include electric field stimulation in a VERTEX simulation, one must pro-

vide a model of the electric field. Essentially this must be able to describe the electric

potential at the compartments of each neuron in the model. This can be achieved for

fields which can be described analytically by passing the name of a function. This user

defined function should be able to take a set of 3D coordinates and return a value for

each of them describing the electric potential at that point. The suggested option is to

use 3D modelling software such as Blender to build a 3D model of the tissue and elec-

trode. This can then be imported into MATLAB as an STL (STereoLithography) file.

The MATLAB PDE toolbox can then be used to calculate the electric field and poten-

tial across the tissue using geometry provided, and user input regarding the boundary

conditions and volume conductor equation. We describe how to do this for a bipolar

electrode in chapter 3. The solution provided can then be passed to VERTEX as a

StationarySolution object for static electric fields or a TimeDependentSolution object

for time varying fields. This requires MATLAB 2016b or later and the PDE Toolbox,

both are typically available at most universities. However, other more powerful and

flexible software solutions for constructing finite element models of electric fields exist,

such as ANSYS (2017) or COMSOL (Pryor, 2009). Interface to these can be achieved

by the user defined function described above, or by providing a grid of pre-calculated

electric potentials at sufficient resolution so that MATLAB can interpolate from this

to the midpoints of each neuron compartment. Ideally, users wishing to import from

external tools should investigate the possibility of interfacing between their tool and

MATLAB to allow their tool to calculate the values precisely at the compartment mid-

points. Figure 2.12 shows the workflow involved in creating a VERTEX simulation with

electric field stimulation. When the field has been calculated, VERTEX will calculate

the electric potential at the midpoint of the compartment of each neuron. Users must
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also specify when the stimulation field is turned on and off. For stationary fields, they

will be applied for the duration of their on time. Time-varying fields will be applied

by looping through their time series at the same rate as the rest of the simulation, so

that if they reach the end of their timecourse before they have been turned off they

will continue again. This may save users time and memory as oscillating fields only

need to be calculated for one full cycle.
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Figure 2.12. Illustrates how one would include a stimulating field into
a VERTEX simulation. We show the three possible routes: a model
described analytically by passing a MATLAB function with the equation,
a model build with Blender and the MATLAB PDE toolbox, or a model
built with external finite element modelling software such as ANSYS.

2.4. Adding synaptic plasticity to VERTEX

The efficacy of synaptic connections varies over time. Often these changes can

be attributed to use-dependent plasticity - where the activity of the synapse and its

constituent neurons determines the change. In VERTEX we take the synaptic efficacy

to be the magnitude of the conductance or current depending on the synapse model

type. So synaptic plasticity concerns the activity dependent changes in the conductance

or current applied by a synapse. We have added phenomenological models of short

term plasticity (STP) and spike-timing dependent plasticity (STDP) to the VERTEX

simulator, and describe their implementation here.

2.4.1. Short term plasticity.
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2.4.1.1. Biology. Short term plasticity has two components, facilitation (a short

term increase in the efficacy of the synapse) and depression (a short term decrease).

Both components are often present on the same synapse but the strength of one may

mask the other (Wang et al., 2006). Short term depression occurs when the rate of

replenishment of transmitter quanta is less than the rate of release; when a neuron

endures sustained activation the replenishment of the transmitter-containing vesicles

cannot keep up with their release, there is then less transmitter released and the post-

synaptic response decreases (Hennig, 2013). Short term facilitation has been attributed

to a facilitation of the release probability caused by a build up of calcium ions in the

presynaptic terminal (Zucker and Regehr, 2002), which then positively modulates local

calcium channels (Mochida et al., 2008). We have included two commonly used models

of short term plasticity in the VERTEX simulator.

2.4.1.2. The Abbott Model. The first, which we refer to as the Abbott model, has

been previously described and extensively used (Varela et al., 1997; Abbott and Regehr,

2004; Brody and Korngreen, 2013). It is a phenomenological model and unlike more

detailed models of STP, such as those described by Hennig (2013), it does not di-

rectly follow any biological mechanisms. However, it does reproduce key aspects of

STP observed in neocortex, can be parametrized by widely available measures, and

implemented to run efficiently. It models feedforward (Abbott and Regehr, 2004) short

term plasticity and so does not take in to account postsynaptic activity. The model

contains two variables: F (the facilitation effect) and D (the depression effect) and four

parameters: f the facilitation rate, d the depression rate, tF the facilitation decay rate,

and tD the depression decay rate. F and D are both initially set to one, f should be

greater than zero, and d should be between zero and one. When the presynaptic neuron

generates an action potential each variable is updated according to the following rules:

F → F + f (2.4.1)

D → D · d (2.4.2)

The facilitation effect is increased by the facilitation rate (equation 2.4.1), and the

depression effect is multiplied by the depression rate (equation 2.4.2). Like Brody and

Korngreen (2013) we add rather than multiply the facilitation rate to avoid unrealistic

facilitation during high frequency activity. At each time step, F and D are both subject
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to exponential decay (equations 2.4.3 and 2.4.4).

F → F +
(1− F )

tF
· dt (2.4.3)

D → D +
(1−D)

tD
· dt (2.4.4)

The facilitation and depression effects multiply the synaptic weight as it is applied

(equation 2.4.5, where Wbaseline is the initial weight). This allows synapse weights to

depress to zero or to increase indefinitely under sustained firing and with the right

conditions. D should always be one or less and decay back to one. F should always

be one or more and decay back to one. The efficacy of the synapse at any given time

is the original synaptic weight (a fixed conductance or current) multiplied by F and D

(equation 2.4.5). F could be said to represent the level of calcium in the presynaptic

terminal and D could represent the available quanta.

W → F ·D ·Wbaseline (2.4.5)

2.4.1.3. The Markram and Tsodyks model. The second model is known as the

Markram and Tsodyks model (Markram et al., 1997; Tsodyks et al., 1998). It uses four

variables. x, y, and z represent the fraction of resources available in recovered, active,

and inactive states, with the resources available in the active state (y) determining the

instantaneous strength of the synapses when a spike occurs. The fourth variable, u,

represents the proportion of resources that will actually be used during an event (the

proportion of resources moving from x to y). The variables update at each timestep

according to equations 2.4.6 to 2.4.9. These are parametrised by τI (the time constant

of the post synaptic current), τrec (the time constant for recovery from synaptic de-

pression), τfac (the time constant for facilitation), and U the utilization of synaptic

efficacy which is considered analogous to the release probability of the synapse.

x→ x+
z

τrec
· dt (2.4.6)

y → y − y

τI
· dt (2.4.7)

z → z + (
y

τI
− z

τrec
) · dt (2.4.8)

u→ u− u

τfac
· dt (2.4.9)
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As in the Abbott model there are also instantaneous updates that occur after a presy-

naptic spike. These are described in equations 2.4.10 to 2.4.12, with equation 2.4.13

describing the synaptic weight applied. This weight will either be a conductance or a

current depending on the model type.

u→ u+ U · (1− u) (2.4.10)

y → y + u · x (2.4.11)

x→ x− u · x (2.4.12)

Wapplied → y ·Wbaseline (2.4.13)

2.4.1.4. Implementation. Although variables relating to short term plasticity are

notionally synapse specific, they are dependent only on the activity of the presynaptic

cell. This allows us to save computational space and time by storing a single value for

all synapses of a given type from each neuron.

In VERTEX, synapse types are defined on a cell type to cell type basis using a class

which inherits from the synapse base class. A synapse class must provide a current

to all neurons in its postsynaptic group in each iteration of the simulation loop. All

variables and parameters needed to describe the state of the synapses from all neurons

of one cell type to all neurons of another are stored as matrices in the synapse object.

When updated with a spike, typical synapse models must be given the ID number

of the neurons postsynaptic to the one that produced the spike, so that the correct

currents or conductances can be added to the spike effect accumulator. This is then

processed to provide a current to each of the postsynaptic neurons. More details on

the implementation of the synapse models is provided in appendix E.

2.4.2. Spike-timing dependent plasticity. As discussed in the introduction,

spike-timing dependent plasticity (STDP) is dependent on the recent activity of the pre

and postsynaptic neuron. It allows Hebbian-like learning to occur, whereby synapses

that contribute to the firing of a neuron are strengthened while those that do not

are weakened. To the VERTEX simulator we have added a class of synapses that

implements a common form of STDP. Here we describe the biology that this model

seeks to represent and the implementation within VERTEX.
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2.4.2.1. Biology. The cellular mechanisms of spike-timing dependent plasticity are

specific to the synapse type. For many glutamatergic synapses the NMDA receptor

and calcium signalling play a key role. The NMDA receptor is an ionotropic glutamate

receptor which is normally blocked by Mg2+ ions preventing presynaptic glutamate

release from causing an influx of ions. When the postsynaptic cell is depolarised the

Mg2+ ions are repelled from the channel. Activation of the NMDA receptor under

physiological conditions then acts a detection of presynaptic firing and postsynaptic

depolarisation caused by action potentials propagating down the dendrites. The open-

ing of the NMDA receptor without the Mg2+ block allows an influx of Ca2+ (Feldman,

2012). Large fast rises in Ca2+ caused by combination of the removal of Mg2+ and

presynaptic glutamate release provoke a signalling pathway that leads to LTP, while

a steady lower amplitude rise in Ca2+ leads to LTD (Yang et al., 1999). In the presy-

naptic spike followed by postsynaptic spike scenario, the Ca2+ influx is large because

the EPSP caused by the activation of the AMPA receptors coincides with the back

propagating action potential. In the postsynaptic spike followed by presynaptic spike

scenario, the depolarisation caused by the back propagating action potential has al-

ready decayed significantly by the arrival of the EPSP, and so there are smaller currents

produced by NMDA receptor activation, and so only modest calcium influx (Feldman,

2012).

2.4.2.2. Model. To model the spike timing dependent plasticity, we look only to

the relative spike timing, rather than modelling the process explicitly. The logic of

the model can be described as follows: For each synapse if the postsynaptic neuron

fires a short time after the presynaptic neuron (indicating that the presynaptic neuron

contributed to it firing) then the synapse will strengthen. If the opposite occurs - a

presynaptic neuron fires shortly after the postsynaptic neuron - then the synapse will

weaken (Feldman, 2012). Each synapse is specified by a pair of time windows, one for

the postsynaptic neuron firing, one for the presynaptic neuron firing. These define the

extent of the weight change given how much time has passed when the second spike

occurs after the first one. Equations 2.4.14 and 2.4.15 describe how the trace variables

Apre and Apost are updated after a presynaptic and postsynaptic spike respectively.

∆Apre is the maximum change in synaptic weight for a pre before post spike pair, and

∆Apost is the maximum change in synaptic weight for a post before pre spike pair. To
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implement typical STDP rules ∆Apre would be positive and ∆Apost would be negative.

Apre → Apre + ∆Apre (2.4.14)

Apost → Apost + ∆Apost (2.4.15)

Equations 2.4.16 and 2.4.17 are applied at each time step and show how Apre and Apost

decay to zero according to their respective decay rates, tPre and tPost.

Apre → Apre +
−Apre
tPre

· dt (2.4.16)

Apost → Apost +
−Apost
tPost

· dt (2.4.17)

When a postsynaptic spike occurs the synaptic weight is modified by equation 2.4.18:

w → w + Apre (2.4.18)

When a presynaptic spike occurs the synaptic weight is modified by equation 2.4.19:

w → w + Apost (2.4.19)

2.4.2.3. Implementation. As VERTEX is written in an interpreted language (MAT-

LAB), its execution speed is greatly aided by vectorised code. We have utilised the

techniques described by Brette and Goodman (2011) to vectorise our implementation

and keep memory usage minimal. Our implementation has two variables. Apre is up-

dated (equation 2.4.14) when a presynaptic spike occurs and describes the magnitude

of the weight change that would occur if the postsynaptic neuron were to fire at any

point in time. Apost is updated (equation 2.4.15) when a postsynaptic spike occurs

and represents the magnitude of the weight change that would occur if the presynap-

tic neuron were to spike at any time. The rate at which each changes is typically

equal but opposite with Apost being negative, and their magnitude specified by a single

parameter.

2.4.2.4. Delays. When modelling STDP it is important to consider delays - between

the presynaptic neuron firing and the action potential reaching the synapse (axonal

delay), and between the post synaptic neuron firing and the backpropagating action
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potential reaching the relevant part of the dendrite (dendritic delay) (Morrison and

Diesmann, 2008). As there is no vectorised solution to introduce dendritic delays, and

as the axonal delay will dominate in most scenarios (Brette and Goodman, 2011), we

consider only the axonal delay. To incorporate this, we introduce a delay into the

update rules for the weight change (equations 2.4.18 and 2.4.19 become 2.4.20 and

2.4.21 ), equations 2.4.14 and 2.4.15 remain the same.

w(tpost)→ w(tpost) + Apre(tpost − d) (2.4.20)

w(tpre + d)→ w(tpre + d) + Apost(tpre + d) (2.4.21)

Where tpost is the time of the postsynaptic spike and tpre is the time of the presynaptic

spike. To implement 2.4.20 we require access to past values of Apre, and so Apre becomes

a two-dimensional array, so that each entry for each presynaptic neuron contains a

circular array which stores a trace of Apre values. This is illustrated in figure 2.13.

Equation 2.4.21 cannot be vectorised over all postsynaptic neurons because the delay

is inhomogeneous. Instead, we record a snapshot of activated synapses in a circular

array. A buffer count points to the current location and the pre and post IDs of the

activated synapse are placed into the array at tpre + delay. We can then vectorise the

operation over all postsynaptic neurons that are receiving a spike at each time step. As

including delays requires additional resources and is not always required we incorporate

it in an additional STDP delays class.

2.5. Discussion

We have added a mechanism for simulating the effects of electric field stimulation

on neocortical networks created using the Virtual Electrode Recording Tool for EX-

tracellular potentials (VERTEX). Electric fields described analytically or calculated

numerically using MATLAB’s partial differential equation toolbox (or an external tool

that can export to MATLAB) can be incorporated into the simulation. We have looked

at the effects of monopolar and uniform field stimulation on interneurons, layer 2/3

pyramidal cells and layer 5 thick tufted pyramidal cells. For uniform field stimulation

we replicated the in vitro data of Radman et al. (2009), showing that our reduced

neuron models produce similar rates of polarisation to varying strengths of uniform

field stimulation. This gives us confidence in our reduced models for simulating the
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Figure 2.13. The data structure storing the Apre variable for the STDP
model with delays. The first dimension of the array has an entry for each
presynaptic neuron (N1 to Nn) the entry points to a unique circular array
(buffer) with an entry for each delay step (S1 to the max delay steps,
specified as a parameter). This stores the value of Apre for present and
past time points. There is a buffer count that points to the location in
the buffer that corresponds to the present.

effects of uniform electric fields in vitro but also for simulating non-invasive electric

field stimulation. For monopolar stimulation we compared the response of a detailed

model to that of reduced models with varying compartment sizes. We find that reduc-

ing the fidelity of the model introduces errors of between 5 and 10 % at the steady

state but errors of up to 60 % for shorter stimulus durations. We have also evaluated

the effect of using a simplified morphology in our model. This was found to introduce

a significant overestimation of the response in the pyramidal cells when compared with

the response in detailed reconstructions of the equivalent cells. Adjusting the dendrite

diameter to better match that of the detailed model was shown to reduce the error

and the dendrite diameter has been previously shown to have a significant influence

on the response to electric field stimulation through its effect on the axial resistance of

the cell (Yi et al., 2017). An issue with simply reducing the diameter is that this will

alter the processing of synaptic inputs (Bush and Sejnowski, 1993) and LFP generation

(Tomsett et al., 2015). One solution to this would be to use two models. For one model

we could fit the passive properties so that it best captures the response of the detailed

cell to the type of stimulation we are interested in modelling. This model could be used
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to capture the effect of stimulation, while the original model would be used for pro-

cessing synaptic inputs and generating the LFP. If the altered model was constrained

to having the same compartments, just with alternative passive properties, then this

would result in simply two sets of axial resistances, one of which would only be used

for calculating the axial currents produced by stimulation (the final two expressions

in equation 2.2.2). We have also added two models of synaptic plasticity: short term

plasticity and spike timing dependent plasticity. The VERTEX simulator now has the

infrastructure so that it can be extended to include other models of plasticity by the

addition of a new synapse class that extends the STP class for plasticity dependent

only on presynaptic activity or on the STDP class for plasticity dependent on both pre

and postsynaptic activity. VERTEX can now be used to simulate electric field evoked

potentials and incorporate the effects of synaptic plasticity, as we demonstrate in the

following chapter.



CHAPTER 3

A Model Of stimulus-evoked Activity In Rat Somatosensory

Cortex

3.1. Introduction

In this chapter we outline a model of stimulus evoked activity in rat somatosensory

cortex created using the VERTEX simulator. In doing so, we illustrate how one can

create and incorporate a finite element model of the electric field created by a bipo-

lar stimulating electrode into the VERTEX simulator to produce simulations of two

experimental paradigms. Much work has been done creating realistic finite element

models of electric field stimulation in resected tissue (Joucla et al., 2014, 2012b) and

models of transcranial stimulation in the living brain (Seo et al., 2016). This allows

more complex geometries to be modelled in comparison to the analytic solution used

in section 2.3 to model monopolar stimulation. We have added support to the VER-

TEX simulator to allow models of this nature to be easily incorporated and applied.

Here we illustrate this in an example model of a bipolar stimulating electrode in a rat

neocortical brain slice. We describe in detail the immediately evoked activity (directly

comparing with published experimental data) as well as the synaptic dynamics that

result from repetitive stimulation, both in the short term (short term plasticity) and

long term (spike-timing dependent plasticity). We show how the tool may be used

to aid in the interpretation of the response to stimulation by revealing the cells and

currents that contribute to the initial field potential, the changes to synaptic weights

induced by repetitive stimulation, and how both residual inhibition and short term

plasticity both contribute to paired pulse depression.

3.1.1. Long term potentiation and theta burst stimulation. Long term po-

tentiation (LTP) usually describes a stable change in the efficacy of synapses after a

brief tetanic stimulation. It was first shown to occur in the hippocampus (Bliss and

Lomo, 1973) but has since been observed in vitro and in vivo in a range of brain areas

including the neocortex (Bliss and Lomo, 1973; Teyler and DiScenna, 1987; Tsumoto,

45
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1990). The order and timing of input has been shown to be of critical importance when

inducing LTP in a particular connection. The connection must be activated within a

time window (usually around 20 ms) before the postsynaptic site has been activated.

Long term depression (LTD) occurs when the connection is activated after the post-

synaptic site and manifests as a decrease in synaptic efficacy. Although it does not

capture all processes that lead to LTP or LTD (Clopath et al., 2010) it is thought that

the spike-timing dependent plasticity rule described in chapter 2 does capture some of

the conditions which lead to long term synaptic changes (Dan and Poo, 2004). The

tetanic stimulation used to induce LTP varies, however theta burst stimulation (TBS)

has been shown to induce LTP in hippocampus and neocortex (Walcott and Langdon,

2002). Its mechanism of action in the hippocampus has been thoroughly characterised

(Larson and Munkácsy, 2016) however, in neocortex it can not be so reliably induced,

and the its mechanism of action is not as clear(Walcott and Langdon, 2002). We pro-

pose using a VERTEX simulation of TBS in rat neocortex as a step towards a greater

understanding of this mechanism.

3.1.2. Paired pulse stimulation and ambiguities in the paired pulse ratio.

Applying paired pulses of stimulation and measuring the respective responses as a

function of the interval is a common technique for characterising dynamical systems

(Bouteiller et al., 2014). It has often been used to study the dynamics of synapse

strength, usually to quantify the effect of previous synaptic activation on the synapse

strength in the short term (Zucker and Regehr, 2002; Regehr, 2012). To this end it

has been applied via the electrical field stimulation (Varela et al., 1997) of populations

of neurons with the output measured via the field potential response, and intracellular

stimulation of a single neuron while recording from cells on which it forms synapses

(Reyes et al., 1998; Beierlein, 2003). When studying the neocortex the latter has

become more popular because it allows individual connections to be more precisely

targetted - field stimulation targets a multitude of cell types, and field potentials relate

to the postsynaptic currents but this relationship is complex (Einevoll et al., 2013).

On the other hand the field potential represents the sum of currents arriving at many

thousands of cells (Einevoll et al., 2013) averaging out the neuron level variance, and are

easier to record in vivo. As well as measuring short term synaptic dynamics, paired

pulse stimulation is also often applied to measure the overall strength of inhibition
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present in a network (Waldbaum and Dudek, 2009; Queiroz et al., 2009; David et al.,

2010; Mesgari et al., 2015). Here, the suppression of response to the test stimulus

(second pulse), compared with the response to the conditioning stimulus (first pulse)

acts as a proxy for the strength of inhibition in the network. In a network with

stronger inhibition the residual inhibitory currents present when the second stimulus

is applied will be stronger, and so reduce the recruitment. This inhibitory strength

is usually loosely defined, and a number of mechanisms could influence the strength

of suppression, including the efficacy of inhibitory synapses, the efficacy of excitatory

synapses onto inhibitory cells, or the firing properties of inhibitory cells. The time

scale of this suppression can extend to 200 ms after the first stimulation (Waldbaum

and Dudek, 2009) and so will overlap with the effects of the synaptic dynamics. To

properly interpret the field potential response we will have to untangle the effect of

synapse dynamics from that of residual inhibition. In this chapter we aim to show

that simulating a paired pulse experiment using the forward modelling approach of

VERTEX can firstly give us an estimate of the source of the field potential. It can also

give us an estimate of the strength of those synapses that contribute most to the field

potential and the strength of the inhibitory suppression during the test stimulus. This

will allow us to break down the paired pulse ratio into a component contributed by the

synapse dynamics and a component contributed by the inhibitory suppression.

3.2. Rat Neocortical Microcircuit

We build the network used in our simulation using knowledge of the local cortical

microcircuit. Local circuit connectivity can be defined in terms of the cell-type and

layer specific connection probabilities. These patterns influence the nature of spon-

taneous and evoked activity. Several studies have sought to reveal the local circuit

connectivity by using anatomical or electrophysiological measures to create a map of

connectivity probabilities between cell types and layers (Binzegger et al., 2004; Thom-

son, 2002; Ramaswamy et al., 2015). These maps allow simulations of cortical dynamics

to be embedded in an estimation of the anatomy of the cortical circuit. The implica-

tions that this measured anatomy has for the simulated dynamics can be seen in the

activity within in each layer and each cell-type. It has been shown that the anatomy

measured by Binzegger et al. (2004) and Thomson (2002) implies the same flow of

activity through cortex as that measured in vivo after transient thalamic stimulation
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(Potjans and Diesmann, 2014) . In vitro results have also been replicated, with Tomsett

et al. (2015) showing similarities in the properties of their model of gamma oscillations

in macaque neocortex when compared with those measured in neocortical slices bathed

in kainate to induce gamma oscillations.

L23

L1

L4

L5

L6

0

700

1225

2082

1917

1415

Figure 3.1. The structure of the neocortical slice model. The layer
boundaries are shown as the dashed lines with the distance from the
white matter given in µm on the left. The rat somatosensory cortex
has 6 layers, layer 1 contains no neurons and layers 2 and 3 have been
combined. The position in the x and z planes of each neuron soma
is shown, pink signifies inhibitory cells, grey signifies excitatory. The
triangles are various types of pyramidal cell, stars are spiny stellate cells,
circles are basket cells, and squares Martinotti cells. The full geometry
of a selection of cell types are also shown.

3.2.1. Parameterising the model. We take an approach similar to Tomsett

et al. (2015), constructing a model of rat somatosensory cortex in VERTEX using the

data from the the Neocortical Microcircuit Collaborative Portal (NMCP) (Ramaswamy

et al., 2015). From here we adapt the neuron density, the neuron group types present

and their proportions, the number of connections between the neuron groups, and

their synaptic properties. We use the Markram and Tsodyks model of short term

plasticity described in chapter 2 to capture the short term dynamics of the synapses.

All parameters for this are taken from the NMCP, these include a mean and standard

deviation for each allowing us to draw our synaptic parameters from a experimentally
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300 ms 100 ms300 ms

100 ms300 ms300 ms

L23 PY L4 SS LBC

L5 TTPC L6 BPC MC

20 mv

20 mv

Figure 3.2. The response of a selection of neuron types to current
injection. The amplitudes of injected current were: 500 pA for the L23
PY, 300 pA for the L4 SS, 400 for the LBC, 1000 pA for the L5 TTPC,
500 for the L6 BPC, and 400 for the MC. The apaptive exponential
integrate and fire model resets at a given threshold Vt, we have extended
the trace to 30 mV for illustrative purposes.

measured distribution of values. Following the approach of Markram et al. (2015)

we construct a normal distribution for each synaptic parameter based on the mean

and standard deviation provided. This distribution is truncated for those parameters

(such as synaptic conductance and time constant) that must be positive. For each

new connection formed as the network is built, a set of parameters are drawn from

these distributions. The time constants used for facilitation and depression of synapses

are shown in figures 3.4 and 3.5 respectively. We model a typical in vitro neocortical

slice preparation measuring 2000 µm horizontally, 2082 µm vertically x 400 µm deep.

It contains layers 1 - 6 but with layer one containing no neurons and layers 2 and 3

combined. The full slice model has a density of 103730 cells per mm3 giving a total of

172773 neurons in the simulation. Figure 3.1 shows the layout of the slice, with sample

geometries and the soma positions of 5 % of neurons. 29 neuron types are included,

defined by their layer of location, morphology, intrinsic dynamics, and connectivity.

Table 3.1 shows the proportion of each neuron type within the model. Figure 3.2

shows the response of a selection of neuron types to current injections. We can see

regular-spiking pyramidal cells (L23 PY, L5 TTPC, L6 BPC), low threshold-firing

Martinotti cells (MC), and fast-firing basket cells (LBC). The number of connections

between neuron groups is shown in figure 3.3, we can see the strong connectivity from
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layer 2/3 pyramidal cells to all cells in layers 2 to 5. We can also see that other neuron

types tend to preferentially synapse onto and receive synapses from neurons in their

own layer. Like Tomsett et al. (2015) and Hellwig (2000) we use a 2D Gaussian spatial

profile to calculate the probability of connection with increasing distance from the

presynaptic neuron in the X and Z planes. In the Y plane, the connection probability

is constant. The mean and standard deviation are set using estimates of the axonal

arbourisation adapted from Schnepel et al. (2015).
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Figure 3.3. The expected number of connections from the population
of presynaptic neurons in the presynaptic group to a single neuron in the
postsynaptic group. Based on the data from Ramaswamy et al. (2015)
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Figure 3.4. The time constant for facilitation of synapses between the
cell types of rat somatosensory cortex. Based on the data from Ra-
maswamy et al. (2015)

3.3. Creating a finite element model of a bipolar electrode and brain slice

The modelling process requires us to specify a 3D model of the tissue and electrode,

as well as their electrical properties. These include the conductivity of the tissue and

the electrical potential at either electrode when the stimulation is turned on.

3.3.1. Creating the 3D model: Using the Blender 3D modelling tool we have

created a 3D model of the tissue and extracellular medium and the electrode, seen in

figure 3.6. The tissue and extracellular medium was modelled as a cuboid, 3000 µm x

2700 µm x 500 µm, and the electrode as two 40 µm x 40 µm cuboidal indents into the

tissue separated by a space of 80 µm. The model of the extracellular medium extends

beyond that of the tissue, in particular it extends 100 µm deeper than the tissue would,

allowing for the flow of current through the bathing solution below the tissue. This is

shown in figure 3.7. We then used the MATLAB Partial Differential Equation toolbox
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Figure 3.5. The time constant for depression of synapses between the
cell types of rat somatosensory cortex. Based on the data from Ra-
maswamy et al. (2015)

(The MathWorks, Inc., Natick, Massachusetts, 2016) to calculate the electric potential

across the slice as a result of applying a potential difference at the two electrodes.

3.3.2. The volume conductor equation: Following Joucla et al. (2012a) we

model our system as a direct current between two dipoles in a conductive media. This

begins with Ohm’s law generalised for a field σ ~E = ~J , where ~E is the electric field (a

vector field), ~J is the current density (a vector field), and σ is the conductivity (a scalar

field). We then use the relationship between the electric field and the electric potential

(V , a scaler field) ~E = −∇V , and the relationship between current density and current

source (Q, a scalar field) ∇ · ~J = Q to get the Poisson equation (equation 3.3.1) for

our volume conductor equation. Using the vector calculus notation used by Feynman

(1963), ∇ is the vector operator which when applied to a scalar field will produce a

vector field by calculating the gradient in each dimension (e.g. ∇T = (∂T
∂x
, ∂T
∂y
, ∂T
∂z

),

where T is some scalar field). The vector operator combined with the dot product is

known as the divergence (∇·), this can be applied to a vector field to produce a scalar



3.3. BIPOLAR ELECTRODE MODEL 53

A B

Figure 3.6. (A) The 3D mesh. The initial geometry was built us-
ing Blender (essentially a cuboid representing the tissue with the two
cuboidal electrodes cut out). The geometry is then meshed using the
PDE toolbox. (B) The potential field calculated using the PDE tool-
box. The equations used for this are shown in the figure, here σ is the
conductivity, and V is the electrical potential. The Poisson equation is
used as the volume conductor equation, Neumann boundary condition
(representing no current flowing) has been used for the boundary of the
tissue/extracellular fluid with the air or recording chamber, here n is
the outermost vector normal to the boundary. The Dirichlet boundary
condition (V = A) has been used for the electrodes. Where A is the
amplitude of the stimulation in mV and will be positive at one electrode
and negative at the other.

Figure 3.7. Shows the tissue placed within the electric field. The vol-
ume used to model the electric field encompasses the tissue and its sur-
rounding bathing solution. The bathing solution has a conductivity in
the same range as that of the grey matter and so we assume a homoge-
neous conductivity in the volume.
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Table 3.1. The 29 neuron types present in the model, along with their
layer, their synaptic reversal potential (RP) indicating whether they are
excitatory or inhibitory, and the proportion of the model they compose.

Neuron Group Neuron Type Layer RP (mV) Proportion
L23PC Pyramidal Cell 2/3 0 0.1849

L23NBC Nest Basket Cell 2/3 -70 0.0084
L23LBC Large Basket Cell 2/3 -70 0.0143
L23SBC Small Basket Cell 2/3 -70 0.0052
L23MC Martinotti Cell 2/3 -70 0.0105
L4SS Spiny Stellate 4 0 0.0128
L4SP Star Pyramid 4 0 0.0345
L4PY Pyramidal Cell 4 0 0.0841

L4NBC Nest Basket Cell 4 -70 0.0030
L4LBC Large Basket Cell 4 -70 0.0038
L4SBC Small Basket Cell 4 -70 0.0019
L4MC Martinotti Cell 4 -70 0.0037

L5TTPC1 Thick Tufted Pyramidal Cell 5 0 0.0630
L5TTPC2 Thick Tufted Pyramidal Cell 5 0 0.0765
L5UTPC Untufted Pyramidal Cell 5 0 0.0108
L5STPC Slender Tufted Pyramidal Cell 5 0 0.0630
L5NBC Nest Basket Cell 5 -70 0.0063
L5LBC Large Basket Cell 5 -70 0.0066
L5SBC Small Basket Cell 5 -70 0.0007
L5MC Martinotti Cell 5 -70 0.0124

L6TPC L1 Tufted Pyramidal To Layer 1 6 0 0.0515
L6TPC L4 Tufted Pyramidal To Layer 4 6 0 0.0453
L6UTPC Untufted Pyramidal Cell 6 0 0.0546
L6IPC Inverted Pyramidal Cell 6 0 0.1094
L6BPC Bitufted Pyramidal Cell 6 0 0.0999
L6NBC Nest Basket Cell 6 -70 0.0062
L6LBC Large Basket Cell 6 -70 0.0146
L6SBC Small Basket Cell 6 -70 0.0021
L6MC Martinotti Cell 6 -70 0.0106

field (e.g. ∇ · ~H = (∂Hx

∂x
+ ∂Hy

∂y
+ ∂Hz

∂z
), where ~H is some vector field). As there is no

current source (other than at the boundary with the electrode) in our scenario Q is

zero, giving equation 3.3.2. Estimates for the conductivity of the extracellular medium

(the grey matter or cerebrospinal fluid) range from 0.1 S/m to 0.3 S/m (Joucla and

Yvert, 2012; Latikka et al., 2001; Gabriel et al., 2009), we have used a value of 0.3 S/m.

−∇ · (σ∇V ) = Q (3.3.1)

−∇ · (σ∇V ) = 0 (3.3.2)

3.3.3. The boundary conditions: We assume that the outer edges of the model,

where the slice comes into contact with the media in the recording chamber, are in-

sulating boundaries where no current flows. These are represented by the Neumann
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boundary condition (equation 3.3.3).

σ∇V · n = 0 (3.3.3)

Where σ is again the conductivity of the medium, n is the outermost vector normal to

the boundary, and V is the potential.

With the volume conductor equation and boundary conditions set the electric po-

tential within the tissue when stimulation is turned on can be calculated.

The partial differential equation (PDE) solution describing the extracellular po-

tential throughout the tissue can then be passed into VERTEX when we specify our

simulation parameters. Having received the solution VERTEX will calculate the value

of the field at the midpoint of each neuron compartment (Ve, as described in chapter

2) and store these for simulation. For time dependent solutions this value will be cal-

culated and stored for each point in its cycle at the resolution defined by the timestep

of the simulation. When stimulation is turned on the extracellular potential will be

incorporated into the solving of the cable equation, according to equation 2.2.2.

3.4. Response To Stimulation

In this section we explore the activity generated in the network as a result of

stimulation using the bipolar electrode. We first look in detail at the response to a

single pulse of stimulation, before moving on to look at how this stimulation can create

long term changes in the network through spike-timing dependent plasticity, and how

short term synaptic plasticity alters the response in the short term.

3.4.1. Single Pulse Stimulation. We began by investigating how our network

responded to a single pulse of stimulating current delivered to layer 4. This is a common

paradigm, and responses are expected in both superficial layers and deep layers (Kirk-

wood et al., 1993). The response to stimulation was characterised at several stages, the

initial recruitment (the cells directly recruited by stimulation), the subsequent synaptic

currents and the LFPs they generate, and finally the secondary recruitment (the cells

recruited by these currents). We took the results of Walcott and Langdon (2002) for

comparison, as they provide a detailed description of the field waveforms recorded in

layer 2/3 after stimulation in layer 4, as well as descriptions of multi-unit activity. They
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also provide descriptions of the waveform with the stimulus artefact subtracted so that

we can see early currents important in identifying the pattern of activity invoked.

3.4.1.1. Direct recruitment. Figure 3.8 illustrates the direct response to stimulation

for a stimulus strength of 54 µA and pulse width of 0.5 ms. We can see strong recruit-

ment of cells in layer 4 and 5, but minimal recruitment in layer 2/3 or 6. Cells in layer

4 are most strongly recruited with around 6 - 8 % of cells recruited. There are several

parameters that can alter the recruitment, the stimulus amplitude, the pulse width

or shape, and the position of the electrode. Here we have kept the electrode position

constant but investigated the effects of an increasing stimulus amplitude and pulse

width. Figure 3.9 shows how these parameters alter the recruitment of the excitatory

and inhibitory cells in layers 2 - 4. We can see that, as we would expect, increasing the

amplitude or width of the stimulus increases the proportion of cells recruited. Of note

is that layer 2/3 excitatory cells do not show any significant recruitment until stimulus

amplitudes of 161 µA or higher, meaning we can exclusively target layers 4 and 5 with

lower amplitude stimulus. Limiting the pathways contributing to the response to those

from layers 4 and 5 simplifies the interpretation of the response potential and is more

reflective of the pathways activated by in vitro experiments such as those by Walcott

and Langdon (2002). For this reason we choose to use an amplitude of 54 µA and a

pulse width of 0.5ms for the subsequent simulations.

3.4.1.2. Response LFP. In our model the initial response measured by the local field

potential is generated by the synaptic currents of those cells directly recruited by the

stimulus. We can begin investigating the source of these currents by first isolating the

cell types that contribute most significantly to the generation of the LFP. We can then

isolate the specific synaptic currents that contribute to the transmembrane currents

in these cells. To remove the stimulus artefact and other non synaptic currents from

the LFP we rerun the simulations, using the spike times from the initial simulation to

generate the same synaptic currents without the need for a spiking mechanism or any

currents from stimulation. The LFP is generated primarily (exclusively in VERTEX)

by transmembrane currents. In compartmental models such as those used in VERTEX

the transmembrane currents can be calculated for each compartment. The change

in membrane potential for a given compartment is calculated using equation 3.4.1,

where Cm,j is the membrane capacitance and Vj its membrane potential. gl,j is its
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Figure 3.8. Shows the cells recruited directly by bipolar stimulation
with a pulse amplitude of 54 µA and a pulse width of 0.5 ms. (Left)
shows an example of the location of cells directly recruited by stimulation.
Grey triangles are excitatory cells that are not directly recruited, light
pink circles are inhibitory cells not directly recruited. Black triangles
show excitatory cells that spike during stimulus, dark pink circles show
inhibitory cells that spike during stimulus. The blue circle shows the
location of the recording electrode, the red circle shows the location of
the stimulating electrode. (Right) shows the percentage of cells of each
type that fire during stimulus. Bars show the mean, and error bars the
standard deviation of 5 networks.

leak conductance, El its leakage potential and gl,j(Vj − El) is the leakage current.∑K
k=1 gj,k(Vj − vk) is the axial current (the current from neighbouring compartments)

where K is the number of neighbouring compartments to j, gj,k is the axial conductance

between j and k, and Vk is membrane potential of compartment k. Iion,j are the

currents from active ion channels, and Isyn,j the synaptic currents. As Kirchoff’s law

states that all transmembrane current entering and exiting a compartment must sum

to zero, and current can enter a compartment only across the membrane or from

neighbouring compartments we can assume that the transmembrane current is equal

to the negation of the axial current. This relationship is described in equation 3.4.2,

which is a rearrangement of 3.4.1. To calculate the transmembrane currents, which are

then used to calculate the LFP, we use equation 3.4.3.

Cm,j
dVj
dt

= −gl,j(Vj − El)−
K∑
k=1

gj,k(Vj − vk) + Iion,j + Isyn,j (3.4.1)
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Figure 3.9. Increasing the stimulus amplitude (left) and pulse width
(right) increases the recruitment of cell in layers 2-5. Bars show the
mean percentage of each cell group recruited by stimulus, errorbars show
the standard deviation of 5 networks. The colour of the bar indicates
the stimulus amplitude (left) or the pulse width (right). A neuron was
determined to have been recruited if it spiked during the stimulus period.
The pulse width for the simulations of various amplitudes was 0.5ms, the
amplitude for those testing the widths was 54 µA.

K∑
k=1

gj,k(Vj − Vk) = −Cm,j
dvj
dt
− gl,j(Vj − El) + Iion,j + Isyn,j (3.4.2)

Imem,j = −Iax,j =
K∑
k=1

gj,k(Vj − Vk) (3.4.3)

The LFP is then calculated using the transmembrane current of each compartment

as the current source and using a line current source model for dendrites and a point

current source model for the soma. The potential generated by each compartment can

then be combined through linear summation to produce the total LFP. As the contri-

bution of all cells is summed to produce the total, we can calculate the contribution

that each cell or group of cells makes by comparing the LFP they produce on their

own with that generated by the whole network. To do this we calculate the power of

the LFP generated by each group of cells on their own and combine this to get a total

power. The contribution of each group is then the percentage that it makes up of this
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total power (equation 3.4.4).

Contributiongroup = 100
Powergroup
Powertotal

(3.4.4)
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Figure 3.10. Shows the LFP recorded by an electrode in layer 2 and
generated by the 5 cell types that contribute the most. The left panel
shows the waveform of the contributed signal from each cell type, the each
line shows the mean of 5 networks, the standard deviation is indicated
by the shading surrounding each line. The black line at 1500ms indicates
the moment of stimulation. The right panel shows the contribution of
each cell type as a percentage of the entire signal.

Figure 3.10 shows the LFP recorded at an electrode in layer 2/3 (shown in figure

3.8) and generated by the stimulation described above. It has been broken down into

the contributions from the 5 neuron groups that contribute the greatest. We can see

that the layer 5 thick tufted pyramidal cells contribute the majority of the signal. As

the LFP generated by these groups makes up the majority of the signal we will first

focus on revealing the synaptic source of the currents that generate them. The L5

TTPC generated LFP has two distinct components, an early positive inflection, and

then a subsequent trough. An obvious place to start would be to look at the synaptic

currents arriving at L5TTPCs during the response to stimulus. Figure 3.11 A shows

the presynaptic source of the largest currents arriving at the cell. Here the largest

currents are calculated as those with the largest area under the trace. We can see that

layer 4 and 5 pyramidal cells contribute the strongest excitatory currents while layer

5 Martinotti cells, large basket cells, and nest basket cells all contribute significant
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inhibitory currents. The excitatory currents peak immediately after stimulation while

the inhibitory currents peak after a slight delay. From this we can show a correlation

between the peak of the excitatory current and the initial response, and the peak of

the inhibitory current and the second response. However, as the LFP is determined by

the spatial distribution of currents, and is generated by transmembrane currents, not

just synaptic currents, we should look at the spatial distribution of currents arriving

at the TTPCs as well as how these translate into transmembrane currents. In figure

3.11 B we can see the currents arriving at each compartment grouping. These are

colour matched to the compartments in the illustration of a TTPC in figure 3.11 E.

Here we also show the compartments on to which three classifications of cell synapse.

The basket cell (BC, red circle) represent LBCs, NBCs, and SBCs, and synapse onto

the soma. The Martinotti cell (MC, blue circle) represents only Martinotti cells and

synapse onto the dendrites. The pyramidal cell (PC, green triangle) represents all

excitatory cells and synapses onto the dendrites. The dendrites all show an initial

depolarisation, this translates into a positive transmembrane current, and so a negative

LFP, the compartments not receiving this depolarising current (the tuft, and the soma)

respond with a negative transmembrane current as a result of axial currents from their

depolarised neighbours. All transmembrane currents should cancel out across the cell

(all traces in C sum to zero), but the contribution of each membrane current to the

LFP is weighted by its distance to the recording electrode. In this case, currents from

the soma or basal dendrites will be reduced while those from the apical dendrites or

the tuft will be amplified. We can see this in figure 3.11 D , which shows the LFP

contributed by each section of the cell. It is the transmembrane current inverted and

weighted by the distance to the recording electrode.

The initial positive inflection of the LFP can be attributed to the transmembrane

current at the tuft. These are caused by the excitatory synaptic currents arriving at the

apical, oblique, and trunk dendritic compartments, which become heavily depolarised.

These synaptic currents can be seen as the main peak just after 1500 ms in figure 3.11

B. The depolarisation of the apical dendrite causes a potential difference between it and

the tuft, which then according to equation 3.4.3 receives a positive axial current. This

positive axial current translates to the negative transmembrane current (again following

from equation 3.4.3), which then results in a positive contribution to the LFP (the light
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blue line in figure 3.11 D). The negative inflection in the LFP can be attributed to the

positive transmembrane current at the apical dendrite (purple line in figure 3.11 D).

This is caused by the strong hyperpolarising currents arriving at the soma from the

synapses of the basket cells. We can see the strong inhibitory current in the dark

blue trace in figure 3.11 B, and the corresponding negative transmembrane current at

the soma and then the positive transmembrane current at the apical dendrite (purple

trace) in panel C. The positive apical transmembrane current is again a result of the

axial currents arising from a difference in membrane potential between compartments.

As the currents from apical dendrites are closer to the electrode they are amplified

enough to overcome the opposing contribution from the soma.

We now have a mechanistic explanation for how the excitatory potential and in-

hibitory potential are generated. This is particularly useful in this case, as the positive

LFP is often associated with inhibitory currents because a negative current source

would produce a positive LFP. This is one discrepancy between our model and the

results of Walcott and Langdon (2002). In their waveforms an excitatory potential

manifests as a negative deflection in the LFP. This is interpreted as an overall depolar-

isation of the layer 2/3 pyramidal cells which is also in contrast to our model where the

layer 5 pyramidal cells contribute the majority of the signal. Other features, such as the

halfwidth and latency of the excitatory potential show similarity between experiments

and simulations. We summarise these in table 3.2.

Now that we have identified the excitatory potential and inhibitory potential com-

ponents of the response we can observe how they are each affected by the changing

stimulus parameters. Figure 3.12 shows the effect of the stimulus amplitude on the

response amplitude. The threshold for producing any response was found to be around

7 µA while the excitatory extracellular potential reaches a maximum amplitude of

around 0.8 mV at an stimulus amplitude of 200 µA. The data from Walcott and Lang-

don (2002) reaches an average maximum of 5.74 mV at a range of stimulus amplitudes

between 160 and 400 µA.

3.4.1.3. Response activity. Having described the number of neurons directly re-

cruited by stimulation of a range of amplitudes, and having described the response

LFP generated by this, we can now look at the response activity in terms of the post

synaptic recruitment. To measure the level of postsynaptic recruitment Walcott and
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Figure 3.11. Shows the synaptic currents arriving at and local field
potential generated by the 100 layer 5 TTPCs nearest to the recording
electrode after a 54 µA, 0.5 ms pulse of stimulation applied at time 1500
ms. Each line indicates the mean across all sampled cells. The illustra-
tion to the right shows the cell-type specific locations of synapses arriving
onto the TTPC. We can see that pyramidal cells (PC) and Martinotti
cells (MC) synapse at the dendrites, while the basket cells (BC) synapse
at the soma. The top panel shows the synaptic currents arriving at the
cell with each line corresponding to the presynaptic neuron type. We
show traces for the 5 largest contributors. The second panel shows the
synaptic currents but this time grouped by the compartment they arrive
at. We can see that the dendrites are depolarised by the initial currents
(mostly from layer 4 and 5 pyramidal cells), while the soma is hyperpo-
larised by the basket cells. The third panel shows the transmembrane
currents for each compartment. These currents are generated in response
to synaptic current in order to fulfil Kirchoff’s law that the sum of all
currents entering an exiting a compartment of a cell must be equal to
zero. They are proportional to the difference in membrane potential be-
tween neighbouring compartments and are the source of the LFP. In the
final panel we can see the LFP generated by each compartment.
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Table 3.2. Shows the mean±standard deviation of the latency,
halfwidth and amplitude of the response in the simulation, in the lit-
erature survey done by Walcott and Langdon (2002), and in the exper-
iments of Walcott and Langdon (2002). The stimulus parameters for
the simulation were 54 µA and 0.5 ms. The stimulus amplitudes used
in the experiments ranged from 8 to 100 µA with a mean of 35.1 µA
and standard deviation of 21.1 µA. Those from the literature survey are
described by Walcott and Langdon (2002) as similar.

Simulation Literature Survey Experimental
Latency (ms) 7.0± 0.85 6.0± 1.9 5.3± 1.0

Halfwidth (ms) 6.13± 0.46 4.5± 2.2 4.7± 1.8
Amplitude (mV) 0.07± 0.01 0.64± 0.38 0.83± 0.37
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Figure 3.12. The amplitude of the response increases with increasing
stimulus amplitude. The left panel shows the mean amplitude of the
maximum of the response signal (blue) and the minimum of the response
signal (red). Error bars indicate standard deviation. The maximum and
minimum amplitude are calculated by taking the maximum or minimum
of the signal from 2 ms after stimulation to 150 ms after stimulation.
The right panel shows some example traces of the response to stimulus
at 7µA, 80µA, 201µA, and 362µA.

Langdon (2002) performed cell attached recordings of layer 2/3 pyramidal cells within

200 µm horizontally of the stimulating electrode. They calculate an estimate of the

total recruitment within their sampling volume of 16 - 22 % of all pyramidal cells there.

In our simulations we measure the total recruitment of pyramidal cells in an equivalent

sampling volume spanning all of layer 2/3 vertically and 200 µm horizontally from the
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Figure 3.13. The response amplitude increases as the pulse width in-
creases. The left panel shows the amplitude of the response measured
both as the peak (the maximum value of the response) and the trough
(the minimum value of the response). The peak is calculated as the
maximum value of the trace in the time window between 1505 ms and
1515 ms. The trough is calculated as the negation minimum value of the
trace between 1515 ms and 1600 ms (to achieve larger values for deeper
troughs). We can see that the trend is for the amplitude to increase with
the pulse width, however at 0.2ms pulse width we see a larger peak than
at 0.4ms. We see a negative amplitude for the troughs at short stimulus
widths, this is because they do not go below zero during the trough win-
dow. This is illustrated in the panel on the right, where we can see the
response traces for stimulus widths: 0.2ms, 0.4ms, 0.6ms, 0.8ms, 1ms.

stimulating electrode. We find a significantly lower rate of recruitment, with an average

of 0.287±0.06%. This corresponds with the lack of synaptic currents arriving at layer

2/3 cells during stimulation, which also results in a smaller contribution to the LFP.

Given that the main connection expected to contribute to the recruitment of layer 2/3

(and generate the field potentials recorded there) comes from excitatory cells in layer

4, we considered that perhaps this connection was not strong enough in our model.

Looking at figure 3.3 we can see that the number of connections between principle

cells in layer 4 and layer 2/3 (4.9,1 and 5.5 connections per postsynaptic neuron) is

relatively low compared with the layer 4 to layer 5 connection (6,13.4 and 38.3 con-

nections per postsynaptic neuron). The number of connections from layer 5 principle

cells to layer 2/3 is also relatively low (0.3 - 1.6 connections per postsynaptic neuron)
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Figure 3.14. Increasing the number of synapses from layer 4 spiny
stellate cells to layer 2/3 pyramidal cells causes significant increase in
the number of spikes seen in layer 2/3. The right panel shows a peri-
stimulus time histogram of the number of spikes per bin per network,
for 5 networks. The shading around each line indicates the standard
deviation of the 5 networks, and the bin size was 10 ms. The bar chart
on the left shows the total spikes recorded during the window outlined
by the dotted lines (100 ms post stimulus). Error bars indicate standard
deviation.

compared to their recurrent connections (29.4, 33 connections per neuron). Our con-

nectivity is based solely on data from Ramaswamy et al. (2015), so we compared the

connectivity data for the layer 4 to layer 2/3 connection with other major studies of

neocortical connectivity. Layer 4 principle cells are generally thought to act as a hub

that distributes thalamocortical excitation to other areas of the cortex, with layer 2/3

considered the most prominently innervated (Feldmeyer, 2012). In cat neocortex it has

been shown that spiny stellate cells form the largest proportion of their synapses in

either layer 3 or layer 4, with all showing strong connections to layer 3 (Binzegger et al.,

2004). Morphologically, their axons tend to project vertically and often terminate in

layer 2/3 (Lübke and Feldmeyer, 2007). In summary, the literature on this describes

layer 4 stellate cells forming numerous synapses onto layer 2/3 (Binzegger et al., 2004;

Lübke and Feldmeyer, 2007; Thomson and Lamy, 2007; Feldmeyer, 2012).
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Figure 3.15. Shows the peri-stimulus time histogram for a range of
stimulus amplitudes (A) and pulse widths (B). Cells are grouped into
excitatory and inhibitory for each layer. Each trace shows the number
of spikes per bin per network, where the bin size is 10 ms and we have
simulated 5 networks for each stimulus amplitude. The time relative to
the stimulus time is shown on the x axis. The spikes per bin for pulse
widths of 0.2ms, 0.5ms and 1ms are shown.
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Lübke et al. (2003) describe a convergent and divergent connectivity between L4SS

and L23PC of between 300 and 400. To test the influence of this on the postsynaptic

recruitment in layer 2/3 and the field potential contribution of L23PCs we tested our

network with 110 (the default), 200, 300, and 400 connections from each L4SS to

all L23PCs. From figure 3.14 we can see that increasing the number of connections

increases the spike incidence, up to 2.3 % for 400 connections. This is still an order

of magnitude short on the estimate of Walcott and Langdon (2002) of 16- 22 %. The

LFP contribution is also not significantly affected. To test the effect of the stimulus

parameters on the postsynaptic recruitment in each layer we use the estimate of 300

connections per postsynaptic neuron. In figure 3.15a we show the peri-stimulus time

histogram of the spiking response in each layer to 7, 80, and 362 µA stimulation (with

a pulse width of 0.5ms). In figure 3.15b we show the peri-stimulus time histogram of

the response in each layer to stimulation of 54 µA with a pulse width of 0.2ms, 0.5ms

and 1ms. The histograms are calculated as averages of recordings from 5 networks.

Figure 3.16 summarises the spiking response seen in each layer to the range of stimulus

parameters. Here we calculate a z score - the number of standard deviations the

response is away from the baseline mean - to quantify the level of response. A stimulus

amplitude of 54µA generates a significant response in all layers, stimulus amplitudes

greater than this increase the response. A further considerations is the pattern of

activity after the initial response. Experimentally, we tend to see a suppression of

activity after the initial response. In our current simulations we have a very low

baseline firing rate, and so we cannot discern any post stimulus suppression from the

firing rates. However, we do see strong delayed inhibitory currents that would be

expected to suppress activity, if the baseline was high enough.

3.4.2. Theta burst stimulation. Having described the response of our network

to a single pulse of stimulation, we then wished to investigate how this stimulation,

when applied repetitively, would modify the synaptic weights of the network according

to the spike-timing dependent plasticity rule. We add STDP to all excitatory synapses

in the network, the parameters used are described in table 3.3. Values for τpre and τpost

are based on estimates taken from Larsen et al. (2010), while the learning rate is based

on that used by (Hiratani and Fukai, 2017) and is typical of rates used by others when

modelling cortical networks (Song et al., 2000; Rubin et al., 2001).
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Figure 3.16. Shows the strength of spiking response for each of the
neuron types (excitatory and inhibitory types for layer 2/3 to 5) in terms
of a zscore for a range of pulse widths (A) and a range of stimulus

amplitudes (B). The zscore is calculated as z = mean(Sr−Sb)
std(Sb)

where Sr is

spikes per bin during the response window (1 to 100 ms after stimulus)
and Sb is the baseline spikes per bin.

Table 3.3. The STDP parameters and VERTEX synapse model used
during the theta burst stimulation simulation.

Presynaptic Group Synapse Type Rate (nS) τpre (ms) τpost (ms)
Superficial Excitatory (L2-4) g exp mt stdp 0.001 25 75

Deep Excitatory (L5-6) g exp mt stdp 0.001 25 25
Inhibitory g exp mt NA NA NA

We investigated the response of the unmodified network (Default Network), based

purely on the NMCP data, the Modified Network (with the number of connections

between L4SS and L23PC increased to 400) and the Reduced Inhibition Network (the

same as the Modified Network but with the number of L5MC to L23PC connections

halved). The data from Ramaswamy et al. (2015) imply a large number of connections

from layer 5 Martinotti cells to layer 2/3 pyramidal cells, while others such as Naka and

Adesnik (2016) describe Martinotti cells projecting to layer 2/3 but synapsing onto the

apical dendrites of layer 5 pyramidal cells, without mentioning any synapses onto layer

2/3 cells. As L5MCs are strongly recruited by TBS, we hypothesised that a strong

connection here is likely dampen the activity of L23PCs during TBS and therefore

reduce any potentiation of the connection. We therefore reduced the strength of this

connection as described above to test whether this would result in a greater potentiation

of the connection. Figure 3.17 shows the activity of the default network under theta

burst stimulation. We apply the same protocol as Walcott and Langdon (2002) with
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Figure 3.17. Shows the neural activity of L23PYs, L4SSs, L4PYs,
L5TTPCs, and L5MCs, during the theta burst stimulation in the De-
fault network. Each trace indicates the average spikes per bin for 5
networks. The bin size is 2 ms. We can see that the principle excitatory
cells in layers 4 and 5 are actively recruited during the stimulus, while the
L23PYs show a slight positive modulation during the first stimulus (0.76
standard deviations above baseline) but none during subsequent bursts
(-0.03, -0.24, -0.13, -0.002, -0.11 standard deviations from baseline). MCs
are strongly recruited postsynaptically.

six 100 Hz bursts at an interval of 200 ms, with a stimulating current of 54 µA and

a pulse width of 0.5 ms. Like for the single pulse, the stimulation directly recruits

mainly the layer 4 and 5 pyramidal cells, which then recruit large parts of the rest

of the network, in particular local interneurons. In the default network L23PCs show

minimal recruitment either directly by the stimulus or postsynaptic recruitment. The

activity of the modified network in layers 4 and 5 is broadly the same as for the default

connectivity, while the L23PCs show stronger recruitment during the first burst, but no
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Figure 3.18. Top: Shows the per-stimulus time histogram of L23PC
firing during TBS, for the three networks tested. The vertical bars below
the trace indicate the timings of the stimulus. Each trace indicates the
spikes per bin per simulation for 5 simulations, and with a bin size of 10
ms. The Default network is based on the NMCP data with no changes,
the Modified network has the number of L4SS to L23PC connections in-
creased to 400, and the Reduced Inhibition network is the same as the
Modified network but also has the number of L5MC to L23PC connec-
tions reduced to half of that specified by the NMCP data. Bottom:
Shows the fraction of synaptic resources in the active and inactive states
on synapses between L5TTPCs and L23PCs during TBS. The active re-
source is currently being applied (generating current) and corresponds to
the y variable in equations 2.4.7 and 2.4.11, the inactive has been applied
and is currently not available to be applied (it corresponds to variable
z in equations 2.4.6 and 2.4.8). There is a third state not shown here,
the recovered state, of resource that is available, corresponding to the x
variable in equations 2.4.6 and 2.4.12, which is why the two traces on
their own do not sum to one.

recruitment during subsequent bursts. Figure 3.18 shows the activity of the L23PCs

during TBS in the default, modified, and reduced inhibition networks. We can see

that increasing the L4SS to L23PC connection numbers increases the response and

that decreasing the L5MC to L23PC connection increases it further. While the initial

response increases in both of the altered networks, the response to the subsequent burst
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(a) Default Network

(b) Modified Network

Figure 3.19. Shows the extent of the synaptic weight change for each
neuron in a single network. The colour indicates the weight change of
all of a neurons synapses, the location of the dot indicates the soma
position of the cell in the X and Z plane. The default network uses the
unmodified connectivity provided by the NMCP, the modified network
has the same connectivity but the number of connections between L4SS
and L23PC cells has been increased to 400. In the modified network we
can see that as well as a potentiation of the synapses directly recruited,
there is also a depression of the synapses of the L23PCs not directly
recruited by stimulation.
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(b) Modified Network
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Figure 3.20. Shows the extent of the synaptic weight change on the
connection between each neuron group. The colour of each box indicates
the total weight change summed over each synapse in the connection,
and averaged over 5 networks. The default network uses the unmodified
connectivity provided by the NMCP, the modified network has the same
connectivity but the number of connections between L4SS and L23PC
cells has been increased to 400.
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Figure 3.21. Shows the change in synapse strength on the L4SS to
L23PC connection as a result of TBS in the default, modified, and re-
duced inhibition networks. Shows the mean and standard deviation of
simulations run on 5 networks of each type. * indicates p < 0.05 (Stu-
dent’s t test).

remains suppressed. Figure 3.18 also shows the dynamics of the synaptic resource on

the L4SS to L23PC connection. We can see here that during the initial TBS burst a

significant proportion of the synaptic resource shifts into the inactive state, resulting

in a smaller proportion moving to the active state during subsequent bursts, reducing

the excitatory postsynaptic currents arriving at the L23PCs. We suggest that this

synaptic depression makes a significant contribution to the suppression of the response

to subsequent TBS bursts. Figure 3.19 shows the spatial extent of any weight change in

the default and modified networks, with the neurons closest to the stimulation electrode

those that undergo the most synaptic change. Figure 3.20 shows the weight change

on each neuron group to neuron group connection for both the default and modified

network. In both networks we can see here that there is a potentiation of the connection
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between L4 and L5 pyramidal cells and L5 Martinotti cells. In the default network

synapses to or from L23PCs show little change (which is expected as the L23PCs show

little activity), but in the modified network the L23PCs show a depression of their

synapse strength, particularly to the pyramidal cells in layer 4 and 5, and there is

a potentiation of the connection from L4SS to L23PC. The depression follows from

the pattern of activity we see in figures 3.17 and 3.18, with layers 4 and 5 active

during the stimulus and layer 2/3 active after the stimulus. This results in strong

postsynaptic activation before presynaptic activation on the connection from L23PC

to L4PCs and L5PCs, and so LTD. We also see a moderate and significant (p < 0.05,

paired t test) potentiation of the L4SS to L23PC connection in the modified network

and in the reduced inhibition network. We can see in figure 3.21 that increasing the

number of L4SS to L23PC connections increases the potentiation of the connection, and

that decreasing the number of L5MC to L23PC connections increases this potentiation

further.

3.4.3. Paired Pulse Stimulation. Having looked at the response of the network

to a single pulse of stimulation and to theta burst stimulation we wished to perform a

virtual paired pulse stimulation experiment. This experimental paradigm presents two

pulses separated by an interval, known as the paired pulse interval.

When we consider the LFP produced by the network in response to the extracellular

stimulation, the second response may be greater than the first (known as paired pulse

facilitation) or less than (known as paired pulse depression). The ratio between first

and second response is known as the paired pulse ratio, and can vary depending on

the interval between the stimuli. We use the same network as that described above

with the default connectivity parameters provided by Ramaswamy et al. (2015) rather

than the altered network used for the long term potentiation experiment. As we can

see in figures 3.4 and 3.5 the time constants for synaptic facilitation and depression

(taken from Ramaswamy et al. (2015)) show the rat neocortex tends to be depressing

(the time constant for depression is larger than for facilitation) with the exemption of

excitatory synapses on to Martinotti cells. This cell-type specific short term plasticity

is a prominent characteristic of neocortical function and is well explored in vitro (Reyes

et al., 1998; Beierlein, 2003). Given the time constants for facilitation and depression

we would expect most of the synapses in neocortex to show depression (other than for
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Figure 3.22. The proportion of cells recruited by the second stimu-
lus increases and the mean inhibitory currents arriving at these cells
decreases as we increase the interval from 50 ms to 300 ms. The top
panel shows the proportion of L5TTPC cells recruited during the first
pulse and then the second pulse for paired pulse intervals of 50 to 300ms.
The bottom panel shows the mean inhibitory current arriving at the re-
cruited cells at the moment of stimulation. All bars indicate the mean
of 15 networks, and errorbars indicate standard deviation.

very high stimulation frequencies or very low stimulation frequencies). As a result we

would expect most responses to be depressing and this is what we see in most in vitro

studies (Casto-Alamancos and Connors, 1997).

However, it is also known that inhibitory currents from cells directly recruited by

the stimulus or recruited by the resulting response, are still present after the initial

stimulus (Margineanu and Wülfert, 2000; Leung et al., 2008; Queiroz et al., 2009).

These can cause a depression of the response to the second pulse by hyperpolarising
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Figure 3.23. Shows the relative synapse strength on synapses from
L5TTPCs to other L5TTPCs. The synapse strength is shown as a pro-
portion of the baseline synapse strength, measured before any stimulus
has been applied. We show the change in synapse strength in response
to the first stimulus in black, and in response to the second stimulus in
a range of colours corresponding to the pulse interval. All traces are the
mean of the response in 15 networks.
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Figure 3.24. The paired pulse ratio measured from the amplitude of
the excitatory component (as identified in figure 3.11) of the LFP is
shown in black. The paired pulse ratio measured as the product of the
recruitment ratio and synaptic ratio. The recruitment ratio is defined
as rr = R2nd

R1st
where R1st is the number of L5TTPC cells recruited by

the first pulse, and R2nd is the number of L5TTPC cells recruited by
the second pulse. The synaptic ratio is defined as sr = S2nd

S1st
, where S1st

and S2nd are the mean synapse strengths of the recruited L5TTPC cells
at the time of the first pulse and second pulse. Error bars indicate the
standard deviation of 15 networks. The difference between the estimate
and the LFP ratio is shown in figure 3.25.



3.4. RESPONSE TO STIMULATION 77

0 50 100 150 200 250 300 350

Paired pulse interval (ms)

-0.2

-0.1

0

0.1

P
P

R
 E

rr
o

r 

Figure 3.25. Shows the error and 95% confidence interval between our
estimate of the PPR using the recruitment and synapse ratios and the
PPR measured via the LFP.

50 100 150 200 250 300

Pulse Interval (ms)

0.2

0.4

0.6

0.8

1

P
a

ir
e

d
 P

u
ls

e
 R

a
ti
o

Paired Pulse Ratio

Recruitment

Recruitment Estimate

Synaptic

Synaptic Estimate

Figure 3.26. Shows the paired pulse ratio of the recruitment, reflecting
the levels of residual inhibition, (the solid red line) and the paired pulse
ratio of the synapse strength (the solid blue line). We can also see the
paired pulse ratio as measured by the LFP in black. The dashed lines
show the estimated recruitment ratio (red) based on the LFP ratio and
the simulated synaptic ratio, and the estimated synaptic ratio based on
the LFP ratio and the simulated recruitment ratio. Error bars have been
omitted from this plot to avoid clutter but each point shows the mean of
15 networks, the standard deviation of the LFP measured ratio is shown
in figure 3.24 and the confidence interval on the difference between the
estimates and the simulated values are shown in figure 3.27.

their neighbouring cells, reducing their susceptibility to stimulation. In the experi-

mental setting, distinguishing between these effects can only be achieved by recording
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Figure 3.27. For each paired pulse interval we can estimate the paired
pulse depression shown by the synapses given the paired pulse patio
measured from the LFP and the paired pulse ratio of the rate of recruit-
ment. Here we show the error on that estimation and its 95% confidence
interval.

postsynaptic currents intracellularly. In silico, we can estimate the relative contribu-

tions of the recruitment component and the synaptic component of the paired pulse

ratio as measured by the field potential response. Our estimate of the residual in-

hibition will be based on our prediction of the recruitment of the various cell types

and our knowledge of the strength and decay time of their synapses. Our prediction

of the synaptic component will rest on an accurate model of short term plasticity. As

L5TTPCs are the main source of the LFP and make the greatest contribution to the ex-

citatory current they receive, we focus on the recurrent connections between L5TTPCs

between them when considering the level of excitatory recruitment. Figure 3.22 shows

that the propotion of L5TTPC cells recruited at 50 ms drops to around 1.5% compared

with 4% during the first pulse. It takes until around 300 ms after the first pulse for

the second pulse to recruit this 4 % again. We can see below (in the bottom panel

of figure 3.22) that a strong residual inhibitory current contributes to this reduction

in recruitment. In figure 3.23 we can see how the strength of the recurrent L5TTPC

synapses weakens after the first pulse, and subsequent pulses weaken them further. The

overall reduction is small (a maximum of 86 % reduction after one stimulus) but it does

linger longer than the reduction in recruitment, suggesting that the effect of residual

inhibition will dominate the measured PPR at shorter stimulus intervals and the short

term plasticity dominate at longer intervals. We can compute a paired pulse ratio for

the synaptic component and the recruitment component by taking a snapshot of the
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relative synapse strength or proportion of cell recruited immediately before the deliv-

ery of the stimuli. If we assume that the post synaptic currents will be proportional

to the total number of synapses activated multipied by the total synaptic strength,

then we can combine the synapse ratio and recruitment ratio to get an estimate of

the PPR recorded by the LFP. In figure 3.26 we show our estimate (the product of

the synaptic and recruitment ratios) compared with the paired pulse ratio measured

from the amplitude of the excitatory component. Our estimate remains within 0.15 of

the LFP ratio (a shown in figure 3.25) and shows a consistent underestimation of the

paired pulse depression. This suggests that there is a further process contributing to

the paired pulse depression, but that it contributes a relatively minor component. In

figure 3.26 we show the PPR broken down into its synaptic component (solid blue), its

recruitment component (solid red), and as measured by the LFP (solid black). Using

our model, we can isolate the contribution of the synaptic or recruitment component

by subtracting our estimate of the other component from the PPR measured in the

LFP. The dashed lines in figure 3.24 show these estimates, and figure 3.27 shows the

error on the estimated synaptic component.

3.5. Discussion

We have constructed a detailed biophysical model of the activity of rat somatosen-

sory cortex during focal electric field stimulation. Using this, we have made predictions

of the cellular source of the response potential, and from this the synaptic source. Un-

expectedly, layer 5 thick tufted pyramidal cells made the largest contribution to the

response potential, despite the recording electrode being placed in layer 2/3. This

goes against the conventional interpretation of this field potential as being generated

by synaptic currents onto layer 2/3 cells and is an indication that our model does not

fully capture all the aspects of the system. We find that the currents contributing to the

L5TTPC generated excitatory extracellular potential come mainly from the synapses

of L5TTPCs themselves, but also L4SPCs. This follows from their susceptibility to

electrical stimulation, and strong connections to the L5TTPCs (a result of the NMCP

data, but also in agreement with other literature (Feldmeyer, 2012)). We found that

other aspects of the NMCP data were not in agreement with the anatomical litera-

ture and limit the ability of the network to respond to stimulation in agreement with

the experimental data of Walcott and Langdon (2002). The number of connections
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from L4SS to L23PCs is relatively low in the NMCP data, while other studies have

found it to be relatively high (Lübke and Feldmeyer, 2007), and as L4SS are one of

the principle cells of layer 4 (our layer of stimulation) it is likely that any reduction

in their connectivity to layer 2/3 will reduce the recruitment of the layer 2/3 cells.

We found that it was necessary to increase the number of L4SS to L23PC connections

to within the range described by Lübke and Feldmeyer (2007) to achieve recruitment

of layer 2/3 cells after stimulation. This did not have any significant impact on the

excitatory potential, however, and further work will be required to produce a response

potential that matches with the experimental data. Possible areas to investigate here

are the distribution of synapse locations on dendritic compartments, as well as the

overall patterns of connectivity onto the L5TTPCs. To illustrate two potential use

cases for this tool we constructed a simulation of theta burst stimulation (utilising the

spike timing dependent plasticity described in chapter 2) and paired pulse stimulation.

Theta burst stimulation is known to reliably induce LTP in the hippocampus (Larson

and Munkácsy, 2016) but do so less reliably in the neocortex (Walcott and Langdon,

2002). We applied theta burst stimulation to both our default network and the mod-

ified network, as well as an additional network with a reduced number of connections

from L5MCs to L23PCs. This modification was motivated by the suggestion that in-

hibition can impede LTP in this protocol (Walcott and Langdon, 2002; Varela et al.,

1997), and the possibility that the NMCP data may be overestimating the strength

of this particular connection. The NMCP data suggests a relatively strong connec-

tion between L5MCs and L23PCs (36 connections per presynaptic cell, compared with

5.4 for L5LBCs), while other literature suggests that L5MCs axons project to L2/3

but synapse onto the apical dendrites of L5TTPCs rather than L23PCs. Additionally,

Walcott and Langdon (2002) have used regular artificial cerebral spinal fluid as their

cutting solution, while the NMCP data (Ramaswamy et al., 2015), was measured in

slices cut using a neuroprotective solution. As interneurons and their synapses are

particularly sensitive to the cutting solution used (Yang et al., 2015) this could have

led to greater preservation of interneurons and their connections, and so a stronger

inhibitory network than would exist in the slices of Walcott and Langdon (2002). Un-

surprisingly the default network did not show any potentiation of the synapses onto

L23PCs because there was limited postsynaptic recruitment. In the modified networks
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we do see an initial recruitment of L23PCs during the first burst, but not in subsequent

bursts. This is due to the weakening of the L4SS to L23PC connection under sustained

activation as a result of the short term plasticity rules. This leads to a prediction from

our model that a single burst of TBS may be just as effective as the 5 bursts. The

response to the initial burst is also stronger in the network with a reduced L5MC to

L23PC connection leading to greater potentiation of the L4SS to L23PC connection.

This indicates that the strength of the L5MC to L23PC connection and the strength

of the inhibitory network in general may have a strong influence TBS induced LTP in

neocortex. Through our paired pulse simulations we wished to show how VERTEX

can be used to predict the contributions of residual inhibition and short term synaptic

plasticity to the paired pulse ratio as measured through the excitatory field potential.

We found that, in our model, they have a significant temporal overlap so that one

cannot be measured without the influence of the other until the effect of the residual

inhibition has worn off at around 300 ms after the initial stimulus. We have then

shown how VERTEX can be used to remove the predicted effect of one process (e.g.

residual inhibition) from the paired pulse ratio measured by the LFP response to get

an estimate of the paired pulse ratio of the second process (e.g. synaptic depression).





CHAPTER 4

Analysis of Epileptiform Activity Recorded in vitro

4.1. Introduction

In the previous chapters we have described our additions to the VERTEX simu-

lator as well as example simulations of stimulus evoked activity in vitro. As well as

simulating stimulus evoked activity in physiological conditions, we are also interested

in simulations of pathological conditions such as epilepsy. In this chapter we describe

a simple analysis tool, created to identify and quantify epileptiform activity recorded

in vitro.

The analysis of in vitro electrophysiology data is often done using either off-the-

shelf commercial software or with scripts written in-house specifically for each task.

Commercial software often lacks flexibility, it only provides a given set of measures and

cannot be modified or built upon by the user. Only those familiar with programming

and signal analysis can write their own scripts. Several open source general purpose

platforms for analysing neural signals are also available (Hazan et al., 2006; Bokil et al.,

2010; Lidierth, 2009) . These provide a wide range of measures and tools for all sorts

of neural signal. This flexibility however, means that they can still be daunting to use

for those researchers not experienced in programming or signal processing.

This toolbox aims to provide an analysis platform specifically for extracellular po-

tentials recorded during in vitro seizure-like events and late recurrent discharges. It

provides a simple graphical interface for isolating events, and then processing each

event to extract several measures from them. These are saved as a table of results with

an entry for each event, easily readable and processed by any statistical software. Most

of the measures included are well established and widely used in the identification or

analysis of seizure-like events, however we also include a measure of seizure abruptness,

which we believe has not been described before.

4.1.1. Experimental models of epilepsy. Epilepsy is a disease characterised

by recurrent seizures - events of excessive and hypersynchronous activity, that can be

seen on the EEG of patients (Beghi et al., 2005). Electrophysiologically similar events

83
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can be recreated in the in vitro brain slice. Slices of tissue resected from patients with

epilepsy have been found to show spontaneous epileptiform activity when recorded in

an interface chamber. (Cunningham et al., 2012; Jones et al., 2016). Slices of tissue

from healthy rodents show epileptiform activity when subject to various manipulations

(Whittington et al., 1995; Trevelyan et al., 2006; Zelmann et al., 2013). Manipula-

tions usually concern a change in the ion concentrations of the bathing solution or the

addition of a pharmacological agent. Removing magnesium (Mg2+) from the bathing

solution is a robust method for the induction of seizure-like events in rodent tissue. Re-

moval of the Mg2+ causes seizure-like events through a number of mechanisms. Firstly,

it significantly increases the amplitude and duration of EPSPs by removing the block

of the NMDA-receptor (Whittington et al., 1995). Secondly, removal of Mg2+ ions im-

pairs inhibition by removing a substrate (Mg-ATP) required for the phosphorylation

of the GABAA receptor (Stelzer et al., 1987; Whittington et al., 1995). Increasing the

concentration of extracellular potassium (K+) is also considered ictotogenic. It reduces

the magnitude of the after hyperpolarisation, mediated by K+ flowing back out of the

cell after the action potential has been generated. (Feng and Durand, 2006). It is

often combined with lowering the concentration of Mg2+, as we have done in the ex-

periments described in chapter 5. These models rely on both an increase in excitation,

and a partial weakening of inhibition to increase the likelihood of seizure-like events.

Pharmacological manipulations may also increase the excitability of cells, or weaken

in the effects of inhibition. 4-aminopyridine (4-AP) is a potassium channel blocker.

By blocking potassium channels it prevents the rectifying currents that repolarise the

cell after action potential. This keeps the cell depolarised, increasing its firing rate sig-

nificantly (Perreault and Avoli, 1991). Blocking the function of GABAergic synapses

also induces epileptiform activity. Gabazine, picrotoxin, and bicuculline all disrupt the

function of GABAergic synapses, inducing epileptiform activity. This activity is often

described as interictal discharges, and is of shorter duration than the seizure-like events

induced by 4-AP or zero magnesium ACSF. This is attributed to the more complete

blockade of GABAergic synapses, which have been shown necessary for more complex

forms of epileptiform activity (Pitkänen et al., 2017). The tool presented here has

been developed to identify and quantify the longer complex events induced by pro-

convulsant ACSF solutions or 4-AP - referred to as seizure-like events (SLEs) - and
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those induced by disinhibition - referred to as late recurrent discharges (LRDs). The

late recurrent discharge refers to the late events induced in some models of SLEs. It is

used here to refer to all short, large amplitude, spike wave events, which may or may

not follow SLEs.

Experiment

Data

Event_times.csv

Extract Event Times Annotate SLEs

SLE_Annotations.csv

Annotate LRDs

LRD_Annotations.csv

LRD Analysis

SLE Analysis

Figure 4.1. Schematic showing the workflow of the event isolation tool,
the SLE annotation tool and the LRD analysis scripts. The full lines
show inputs and next steps in the process, the dashed lines indicate the
saving of data.

4.2. Event Isolation

One of the most arduous tasks in analysing seizure-like events or late recurrent

discharges is isolating them from the rest of the trace. This has often involved manual

annotation, whereby the researcher notes down the time at the beginning and end of

each event, which can take some time and reduce the reproducibility of results because

of individual variances in how one might annotate seizures. Automated annotation has

been the solution to this, using metrics such as signal entropy or amplitude to identify

seizure onset and termination. However, the variability inherent in biological data as

well as artefacts and noise mean that human input is still needed for accurate results.

We have taken a combined approach with an interface that allows the user to supervise

the results, alter the parameters used to isolate events, select the time frame to be

annotated, and remove or alter incorrectly labelled events.
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4.2.1. Isolating events: The event isolation tool uses the power of the low fre-

quency component of the signal as an estimate of where the seizure-like events start

and stop. The process for isolating the events is described below:

If using a threshold on signal power:

• The signal is low pass filtered at 40 Hz using a 5th order Butterworth filter

then segmented into a number of non-overlapping segments (the size of these

is specified by the user) and the power of each segment is calculated as:

P =
m∑
i=n

S2
i

Where n is the starting index of the segment and m is the ending index of the

segment and S[i] is the segment at index i.

If using a threshold on the entropy:

• The signal is segmented into a number of non-overlapping segments (the size

of these is specified by the user) and the Shannon entropy of each segment is

calculated using MATLAB’s wentropy function, which performs the following

computation:

E = −
m∑
i=n

S2
i log(S2

i )

Where n is the starting index of the segment and m is the ending index of the

segment and S[i] is the segment at index i. We call this the derived signal.

And then for both approaches (We refer to either the entropy or signal power as the

derived signal):

• We interpolate (using MATLAB’s interp function) the derived signal so that

we have a derived signal with a sampling frequency of 200 Hz, regardless of the

window size. This helps prevent the windowing of the signal from introducing

inaccuracies.

• The derived signal is then displayed to the user and the user requested to

select a threshold (as can be seen in the lower pane of the tool shown in figure

4.2, the red line is the selected threshold).

• The tool then takes all points of the derived signal above the threshold, it

combines any that are separated by less than the minimum distance between
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events parameter (default is 5 seconds), then discards any that are shorter

than the minimum event length parameter (default is 10 seconds).

• The events are annotated on the trace using a red bar positioned above the

trace and extending for the length of the event.

Figure 4.2. The graphical interface to the event isolation tool showing
seizure-like events automatically isolated from the rest of the trace using
the power of the low frequency component of the signal. The top trace
shows the recorded SLEs, the bottom trace shows the power of the signal,
the red line across the bottom trace shows the threshold power selected
by the user. The maroon bars show the isolated events.

4.2.2. Isolating late recurrent discharges. In some in vitro seizure models the

events may present as recurrent discharges (Pitkänen et al., 2017) that are not collated

into easily identifiable longer events. These present late on in the zero magnesium

model, and so in this context are known as late recurrent discharges (LRDs). Epilepti-

form activity described as interictal epileptiform discharges (IEDs) often shows similar

characteristics, and can be identified using the same method. In analysing these we

may wish to isolate each discharge individually, the tool provides some additional fea-

tures for doing this. There is a parameter set especially for shorter events, with a

shorter minimum event length and distance apart.

4.2.3. Altering and saving event times. The events are shown as the purple

bars for long events and green bars for short events above the trace, the user can select

any of these and either alter the start or end point of them, or delete them. The user
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Table 4.1. The parameters used to generate the artificial traces. Shows
the mean and standard deviation in parenthesis. Duration and interval
were sampled from normal distribution, the frequency was constant.

Parameter Mean (SD)
Duration 40 (5) seconds
Interval 100 (50) seconds

Frequency 1 Hz

can also add a new event by selecting the create event button and clicking where they

would like it to start. Saving the event times can be done at any time by pressing the

save results button. This will save the event times in a comma separated value format

that can be opened using any spreadsheet software.

4.2.4. The accuracy of the tool. To evaluate the accuracy of this tool we ap-

plied it to an artificially generated dataset representing seizure-like events recorded

with various levels of noise. Each artificial signal was generated by combining a num-

ber of event signals (1 Hz sine wave) separated by intervals of silence. The duration of

events and intervals were randomly selected from a normal distribution, the parameters

of which are described in table 4.1.

The noise was generated by randomly sampling from a normal distribution, and

then scaled to the desired amplitude. The signal to noise ratio (SNR) was then calcu-

lated using the snr function in MATLAB. For each level of noise amplitude we generated

5 traces. We then used the tool to annotate each trace, to get a mean accuracy for each

amplitude of noise. The accuracy was calculated as two measures, the amount of time

wrongly assumed to be an event (as a proportion of the total amount of event time),

and the proportion of the total event time correctly detected. We can see how the

accuracy of the tool begins to decrease as the signal to noise ratio worsens in figure 4.3.

We see similar levels of performance using both entropy and signal power and find the

tool is quite robust until the SNR crosses the -20 dB threshold, at which point parts

of events begin to be missed, and areas of noise mistaken for events. At lower levels

of noise there is a persistent mis-attribution error using either method, indicating that

the tool may be overestimating the duration of events.

4.3. Event Analysis

When the events have been isolated from the rest of the trace one can then extract

a range of measures from them.
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(a) The accuracy of the tool using signal power.
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(b) The accuracy of the tool using entropy.
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Figure 4.3. Higher amplitude noise results in a lower signal to noise

ratio. The SNR is calculated as snr = 10log10(power(signal)
power(noise)

), with units in

decibels (dB). As the SNR decreases, the tool begins to struggle with an-
notating the events. The left (blue) axis shows the proportion of the total
event time in the signal correctly identified by the tool. The right (red)
axis shows the amount of time misattributed to events, as a proportion
of the overall event time.

4.3.1. Automatic annotation. From within the event isolation tool, having

saved the event times of those just isolated, the user can select the Analyse Events
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button. This will open the trace most recently saved for further analysis in a new win-

dow. This analysis will involve extracting several features, with each feature having its

own tab on the main control panel. Table 4.2 summarises the measures taken of each

event. Each tab contains some controls that allow the user to modify the parameters

used for this part of the analysis. This can be useful to allow for the variance found

in electrophysiological recordings. Users can also specify the experimental conditions

and experiment date. If an experiment is recorded over multiple traces, then the user

may specify the trace number and the offset to apply to the time course of the trace.

When the user saves the analysis all measurements and parameters used for the mea-

surements are saved in a comma separated value file. Figure 4.4 shows the interface of

the event analysis tool.

Figure 4.4. The tool used to do further analysis of the event signals.
All isolated events are shown in the top panel, with the one currently
selected highlighted by a red line above. Events can be selected from the
drop down menu at the top left. The panel on the left shows the controls
for the currently selected analysis. Trough identification is currently
shown, the user can adjust the extent of smoothing on the signal, the
minimum trough prominance, and the coefficient of variance, used in
determining the troughs. The graph will update automatically as the
user adjusts the dial.

4.3.2. Seizure-like events.
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Table 4.2. Description of the main features currently extracted from
the seizure-like event signal

SLE Features Explanation
Number of troughs Total number of troughs identified in the signal

Inter trough interval Mean of the intervals between trough peak times
Trough mean width The duration of the trough (time from

when the signal drops below baseline to when it returns)
Average trough amplitude The average of the distances from the baseline

of the peak of the troughs
Max trough amplitude The maximum of the distances from the baseline

of the peak of the troughs
Trough abruptness Steepness of logistic function fit to the troughs peaks

Trough rate The rate of trough amplitude increase
MUA abruptness Steepness of logistic function fit to the multi-unit activity

MUA rate The rate of MUA increase during the event
LFP abruptness Steepness of logistic function fit to the LFP

LFP rate The rate of LFP increase during the event
Power in frequency bands The normalised power of the

signal in the standard range of frequency bands
Coastline The sum of variation in the signal

(Corresponds to a subjective measure of burst strength )
Intermittency The concentration of the coastline

within segments of the signal

4.3.2.1. Trough identification. In analysing each event, the first step is to identify

the individual troughs in the LFP. The steps taken to do this are as follows:

• The signal is downsampled to a sampling frequency of 1000 Hz and then

smoothed using the MATLAB smooth function (where the span parameter

can be set by the user adjusting the corresponding dial).

• The MATLAB findpeaks function is then applied. The MINPEAKPROMI-

NENCE parameter is specified by the user as a percentage of the range of the

signal (minimum of signal - maximum of the signal). The MinPeakDistance

parameter is fixed at 200 ms.

• From the findpeaks function we get a selection of troughs along with their

heights and widths.

• Troughs with a width shorter than 50 ms classified as fine troughs (these are

used for the abruptness analysis but considered separately for the other trough

based metrics).

• Troughs with a width greater than 2 seconds are considered to be spreading

depression like events and are not included in the analysis.
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Figure 4.5 shows an example SLE with troughs identified as yellow circles and fine

troughs as red circles.
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Figure 4.5. Shows an example SLE with troughs identified using the
method outlined in this chapter. The major troughs are shown in yellow,
the fine troughs shown in red.

4.3.2.2. Calculating the coastline and intermittency. The coastline is defined as the

sum of the absolute value of the distance between subsequent data points in a signal.

It can be calculated using equation 4.3.1, where Si is the signal at point i, and N is

the total number of points in the signal.

coastline =
N∑
i=2

|Si − Si−1| (4.3.1)

We then normalise the coastline by dividing by the coastline of the baseline signal

(the signal before SLEs begin). The intermittency can be calculated by sorting the

absolute signal deviation (|Si − Si−1|) in descending order before summing it. Then

calculating the ratio of the sum of the first 20 % of the sorted coastline to the sum of

the entire coastline. This gives a measure of how concentrated the signal is within its

strongest segments. So SLEs that show strong bursts followed by silences, will show

high intermittency.

4.3.2.3. Measures of abruptness. We compute several measures of seizure abrupt-

ness to quantify the rate at which the seizure signal reaches its maximum. This signal

can either be the local field potential or the multi-unit activity. When measuring the

abruptness of the local field potential, we can use either the trough peak amplitudes as
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our data points, or we can bin the signal, calculate the power of the LFP during each

bin, and use these as our data points. For the abruptness of the multi-unit activity this

binning approach is used. We then take these data points and calculate a cumulative

maximum(starting at the beggining of the event) of them. This signal is then used as

the basis of our abruptness measures. Our first measure is based on the steepness of a

logistic function fit to this cumulative maximum. To calculate the abruptess based on

the fit of a logistic function we take the following steps:

• The signal is extended by 5 seconds at the beginning of the event to give it a

baseline. The value used for the baseline of the multi-unit activity or the LFP

power is its initial value, the baseline for the troughs is zero.

• To prepare the signal for fitting, it is normalised to between 0 and 1.

• We then fit the logistic function to these and use the logarithm of the k co-

efficient (the steepness of the fit), as the abruptness measure. Equation 4.3.2

shows the logistic function, where L is the curve’s maximum value, e is the

natural logarithm base, and x0 is the x value at which the curve crosses the

midpoint.

f(x) =
L

1 + e−k(x−x0)
(4.3.2)

A second approach to measuring the abruptness is to measure the rate of change

of the cumulative maximum of the signal. We measure the mean rate of change of the

cumulative maximum of the LFP or MUA over the course of the event. Equation 4.3.3

shows the calculation of this rate, where x is the cumulative maximum of the signal

(either the MUA power or the LFP power) and m is the index of the maximum point of

the event. This results in a measure of the rate of change of the cumulative maximum,

that will have units mV/bin, where the bin is the time window specified by the user

(default is 1 second). This rate can then be normalised by the maximum amplitude

of the cumulative maximum (as it is for the results presented here), however the tool

provides the rate before the normalisation along with the maximum amplitude of each

event.

∆x =

∑i=m−1
i=1 xi+1 − xi

m
(4.3.3)

This results in 5 measures of abruptness, three based on the steepness of the logistic

function - described as Trough Abruptness, LFP Abruptness, and MUA Abruptness -

and two based on the average rate of change - described as LFP Rate and MUA Rate.
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Table 4.3. Shows the results of applying the three techniques used
to measure the abruptness to 124 SLEs. Shows the abruptness value
(log(k), where k is the coefficient of the logistic function), the median
fitting error (R2), and the percentage of events that have an R2 greater
than 0.95. The standard deviation (SD) is shown for the mean value,
and inter quartile range (IQR) shown for the fitting error.

Measure Mean Value (±SD) Median R2 (±IQR) R2 above 0.9
Trough Abruptness 2.05±1.27 0.97±0.05 92 %
MUA Abruptness 2.13±1.25 0.98±0.04 95 %
LFP Abruptness 1.8±0.94 0.98±0.03 97 %

We test our measures on a dataset of seizure-like events described in more detail in

Chapter 5. The tool described above has been used to identify SLEs and then calculate

the abruptness measures on them using the method just described. In figure 4.6 we

show an example SLE, with its cumulative trough amplitude overlain in purple, and

the logistic function shown in green. Figure 4.7 shows the example cumulative multi-

unit activity and the LFP power fit to the logistic function. In table 4.3 we summarise

the goodness of fit of the SLEs to the logistic function. Over the whole dataset of 154

SLEs we find that the logistic function provides a good fit, with over 90% of events

having an r2 value of more than 0.9 for each of the measures, and median r2 values of

0.97, 0.98, and 0.98 for the Trough Abruptness, LFP Abruptness, and MUA Abruptness

respectively.

4.3.3. Correlations between SLE measures. To test whether measures were

contributing unique information we applied a pairwise correlation test across a range of

the metrics calculated on the SLEs. As not all measures were normally distributed we

used Spearman’s rank correlation coefficient to measure the correlation. The strength

of correlation between each of the measures is shown in figure 4.8. Only correlations

calculated to be statistically significant are shown (white cells have p > 0.05). We

find some expected correlations, for example the number of troughs in an event cor-

relates with the duration of the event (rho = 0.72). The peak MUA amplitude also

correlates strongly with the trough amplitude, again this is expected because we would

expect that deeper troughs would indicate greater recruitment of cells. The abrupt-

ness measured from the LFP power (using the logistic function method) also correlates

with the abruptness measured by trough amplitude (rho = 0.55), which is unsurprising

because the power of the LFP will largely be determined by the size of the troughs.

However the abruptness measured by the MUA does not have a significant correlation
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with either. The LFP rate weakly correlates with the trough and LFP abruptness (rho

= 0.17), but not with the MUA abruptness or MUA rate. The MUA rate correlates

strongly with the coastline (rho = 0.73) and intermittancy (rho = 0.77), but not with

any other abruptness measures. The coastline and intermittancy themselves are also

very strongly correlated (rho = 0.92). The strong correlation here indicates that events

that have a large coastline do so because they contain powerful bursts of activity rather

than peristently high activity. The strong correlation between coastline and the MUA

rate (rho = 0.73) and the MUA peak amplitude (rho = 0.43), indicate that it may be

dominated by the MUA when this is high. The coastline is also strongly correlated

with the trough amplitude (rho = 0.65).
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Figure 4.6. Shows an example SLE with the cumulative maximum of
its trough amplitudes shown in purple. A baseline has been created by
extending the cumulative maximum by 5 units before the first trough,
where each unit is the mean inter trough interval of the event, and the
baseline has a value of 0. The logistic function (defined in equation 4.3.2)
has then been fitted to this, the fitted curve is shown as the green line.

4.3.4. Quantifying Repetitive Short Events. Late recurrent discharges (LRDs)

are repetitive short events with a large amplitude. They occur late on in the zero mag-

nesium model or with the application of gabazine (Pitkänen et al., 2017). They are

characterised by an initial hyperpolarisation, which then decays back to the baseline

level. This decay phase often contains an oscillating afterhyperpolarisation, which may

contain up to ten troughs. Figure 4.9 illustrates an example LRD. While our analysis



96 4. ANALYSIS OF EPILEPTIFORM ACTIVITY

0 5 10 15 20 25 30

Time (s)

3

3.1

3.2

3.3

3.4
M

U
A

 (
m

V
)

10
-3

0 5 10 15 20 25 30

Time (s)

0.05

0.1

0.15

0.2

0.25

L
F

P
 (

m
V

)

r
2
 = 0.97

r
2
 =0.95

Figure 4.7. (Top) Shows the cumulative maximum of the multi unit
activity from the example trace as the solid green line. A baseline has
been created by extending the cumulative maximum by 5 units before the
start of the signal, where a unit is the time window over which the MUA
power is calculated. The logistic function (defined in equation 4.3.2) has
then been fitted to this, the fitted curve is shown as the dashed reen line.
(Bottom) Shows the cumulative maximum of the LFP power as the solid
red line. The baseline has been calculated in the same manner as for the
MUA, the logistic function fit is shown as the dashed red line.

tool does not analyse LRDs, we provide a series of MATLAB scripts to measure the

amplitude of the initial hyperpolarisation, and the amplitude of the after hyperpo-

larisation (the decay phase oscillation). Two measurements are taken for the initial

hyperpolarisation, one taken from the raw signal and one using the smoothed signal to

avoid sampling any sharp spikes (like the one seen in figure 4.9). This then allows the

user to obtain a measure of the initial sharp spike if it exists, and of the slower initial

hyperpolarisation. We also fit a single exponential function to the signal, between the

minimum point of the initial hyperpolarisation (from the smoothed signal) to the start

of the oscillation, to get a rate of decay of the signal amplitude. We can then create a



4.4. DISCUSSION 97

N
o. T

ro
ughs

D
ura

t i
on

Tro
ugh A

m
p it

ude

M
U
A
 P

eak 
A
m

p it
ude

C
oast

 in
e

In
te

rm
it
ta

ncy

Tro
ugh In

te
rv

a 

Tro
ugh W

id
th

M
U
A
 A

br

Tro
ugh A

br

LF
P A

br

LF
P r

ate

M
U
A
 r
ate

Event  
N
o.

N
o. T

ro
ughs

D
ura

t i
on

Tro
ugh A

m
p it

ude

M
U
A
 P

eak 
A
m

p it
ude

C
oast

 in
e

In
te

rm
it
ta

ncy

Tro
ugh In

te
rv

a 

Tro
ugh W

id
th

M
U
A
 A

br

Tro
ugh A

br

LF
P A

br

LF
P r

ate

M
U
A
 r
ate

Event  
N
o.

� 1.0

� 0.8

� 0.6

� 0.4

� 0.2

0.0

0.2

0.4

0.6

0.8

1.0

S
p

e
a

rm
a

n
s
 R

h
o

Figure 4.8. Shows the correlation between the major features of the
events. Spearman’s rank correlation coefficient has been used, as some
features are not normally distributed. Only shown are correlations of
statistical significance (p>0.05) which have been corrected through the
false discovery rate correction for multiple comparisons.

residual signal by subtracting our exponential fit from the decay phase. The peaks and

troughs of this residual can then be found using the Matlab findpeaks function. Their

amplitude then provides a measure of the decay phase oscillation amplitude which

indicates the size of currents contributing to this phase. We can also calculate the

frequency of this oscillation by finding the interval between peaks.

4.4. Discussion

This tool firstly provides an easy to use interface for the identification of SLEs

(seizure-like events) and LRDs (late recurrent discharges) using a threshold based ap-

proach. These event times can be saved in a spreadsheet format, which serves as the

input to the next part of the tool. We have found that these times can be identified with

good accuracy (identifying more than 95% of the signal, and misidentifying less than



98 4. ANALYSIS OF EPILEPTIFORM ACTIVITY

Initial 
Hyperpolarisation
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Decay Phase
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Figure 4.9. A late recurrent discharge, with an after hyperpolarisation
oscillation. Shows the areas referred to as the initial hyperpolarisation
and after hyperpolarisation and the measure referred to by their ampli-
tude. The initial hyperpolarisation measures the amplitude of the first
major trough, the amplitude of the sharp spike is measured separately
as not all events show a sharp spike. The after hyperpolarisation is mea-
sured as the amplitude of the subsequent troughs.

5%) up until a signal to noise ratio of -20 dB. At low levels of noise the proportion of

the signal identified approaches 100%, however, the proportion of the signal incorrectly

identified remains at around 2%. This indicates that we are consistently overestimating

the duration of the events, which is likely caused by the averaging approach used to

construct the signal used for taking the threshold. We use an averaged signal because

the oscillatory nature of SLEs leads to periods where the power or entropy will be below

threshold, resulting in the segmentation of the event. Averaging using a window intro-

duces an error because unless the window happens to fall at the event onset and offset,

it will encompass time within the event and outwith the event, so if the window average

is above threshold it will misidentify the portion of this window that lies outwith the

event as being part of the event. To minimise this effect we have used interpolation

to resample our averaged signal at 100 Hz. This does not completely remove the error

because the sharp increase in the signal at event onset will not be matched by such a

sharp increase in the interpolated averaged signal. Future work to remove this error

should look for a windowing function that will allow a sharp onset without following

the oscillation of the event. As well as event isolation, for SLEs we provide another

interface from which the user can observe the annotations made on each event and

adjust the parameters used. This tool extracts the heights and widths of the event
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troughs, the coastline and intermittency of the event and measures the abruptness of

the event. We have compared the abruptness measured using the LFP, MUA, and

trough amplitude on 154 example SLEs. We found that the abruptness measured via

LFP and trough amplitude have similar mean values across the all events (2.05 and 1.8

respectively), and are correlated with a Spearman’s rho of 0.55. Abruptness measured

by the MUA has a mean of 2.13 and does not correlate with the LFP and trough based

measures. It is unsurprising that the LFP and trough based measures correlate because

the size of the troughs will correlate with the power of the LFP over their sampling

window. The lack of correlation between the abruptness of the MUA and LFP may be

due to the spatial extent over which they sample. The MUA is a very local measure,

recording the magnitude of activity within the immediate proximity of the electrode.

The LFP on the other hand can measure recurrent synaptic activity reflective of the

activity in the local network, but it can also measure feed-forward synaptic activity

reflective of neural activity in tissue upstream of the recording electrode (Mattia et al.,

2010). Distinct patterns of MUA and LFP activity during seizure onset are also well

documented (Schevon et al., 2012) with LFP build up being observed before MUA

build up, or LFP build up observed without any subsequent MUA build up (Wagner

et al., 2015). This presence of LFP without MUA has been hypothesised to represent

the attempted recruitment of the area under the electrode, with a subsequent peak in

MUA representing eventual recruitment, and no subsequent MUA peak representing

failed recruitment. This could be the case here, with some events possibly being quite

abrupt but failing to recruit the tissue directly under the electrode and so limiting the

abruptness measured there. This analysis pipeline provides a complete solution for

electrophysiologists who wish to isolate and obtain an initial set of measures describing

their SLEs or LRDs. It may also be easily built upon to provide any additional specific

measures the user may wish. Chapter 5 shows how this tool can be used to analyse in

vitro recordings from a chronic model of epilepsy in rat.





CHAPTER 5

An Analysis of Ex Vivo Recordings From A Chronic Model of

Epilepsy In Rats

5.1. Introduction

Focal epilepsy is characterised by a region of hyper-excitability, which transiently

recruits the rest of the brain into its pathological regime, causing seizures. This hyper-

excitable region, known as the focus, is often identified and removed to stop seizures

when pharmacological intervention does not work (Wiebe et al., 2001). Identifying the

focal region however, is not a trivial task (Valent́ın et al., 2002). In this chapter we

wished to investigate whether we could identify the focus in ex vivo brain slices taken

from rats subject to the tetanus toxin model of chronic focal epilepsy, using either

the abruptness measures described in chapter 4 or using the response to single pulse

stimulation. It has been shown that single pulses of electrical stimulation, applied

intracranially can identify regions of hyper-excitability in patients with focal epilepsy,

with more complex responses more likely to occur in or near to the focus (Valent́ın

et al., 2002; Nayak et al., 2014). Characterising a comparable phenomenon in vitro

would provide a more accessible system with an output that can be readily compared

to clinical data. We propose that our measures of seizure abruptness may also help to

distinguish the focal region (or slice) from the non-focal. Theoretical work has linked

excitable tissue to high amplitude onset patterns, while healthy tissue has been linked

to lower amplitude onset patterns (Wang et al., 2017). If the focal slices in our model

are more excitable then we would expect a higher amplitude onset pattern which would

translate to a more abrupt onset. This chapter begins by looking at the abruptness

(as well as some typical measures of seizure intensity) of seizures recorded in slices

contralateral and ipsilateral to the tetanus toxin injection site. We then look at the

response to single pulsed stimulation, first looking for differences in the immediate

response to stimulation, and then in looking at the likelihood of more complex late

responses occurring. We end the chapter by looking at simulations of stimulus evoked

activity, comparable to that recorded in experiments, and simulations of epileptiform

101
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activity which we compare with our recordings of non-evoked activity. The preparation

and monitoring of the rats, the preparation of the brain slices, and the experiments

recording the activity induced purely by pro-convulsant medium or pharmacological

manipulation were performed by Anupam Hazra. The experiments involving stimulus

evoked activity and multi-electrode array recordings were performed by the author as

well as the analysis of all data presented here. The pipeline described in the previous

chapter has been used for the analysis.

5.2. The Tetanus Toxin Model of Chronic Epilepsy

The tetanus toxin model has been used in the study of epilepsy since the early

1990s and is one of the most commonly used models of chronic focal epilepsy (Nilsen

et al., 2005). Usually applied to rats, it involves the injection of the tetanus toxin di-

rectly into the neural tissue, which then causes a decrease in the function of inhibitory

synapses, leading to focal and secondarily generalising seizures (Jefferys and Whitting-

ton, 1996). Although the injection causes an impairment of the inhibitory synapses,

this is temporary and has been shown to reverse when the toxin is cleared from the

system with seizures persisting in the animal for a long time after this. Injections into

both hippocampus and neocortex have been studied, with both producing a chronic

epileptic focus, but with injections to neocortex causing an epileptic condition that is

more severe and that persists for longer (Nilsen et al., 2005).

5.2.1. Mechanism of action. Tetanus toxin (TeNT) is known to bind to Vesicle

Associated Membrane Protein (VAMP) which it then breaks down. VAMP is present at

synaptic terminals where it is essential for synaptic transmission (Schiavo et al., 1993).

TeNT’s ictogenic action is hypothesized to be a result of its selectivity for inhibitory

synapses. Although it has been shown that over its active period TeNT selectively

impairs inhibition, there is no conclusive agreement on the mechanism by which it

does this (Ferecsko et al., 2015). One hypothesis is that greater uptake of TeNT by

interneurons is a result of their higher firing rate. This is supported by the evidence

that synaptic transmission is required for uptake. Another hypothesis is that it binds

differentially to various VAMP isoforms. In neocortex VAMP2 has been seen to be

predominantly expressed at excitatory synapses, while VAMP1 is expressed equally at

both excitatory and inhibitory (Bragina et al., 2010). While in hippocampus, VAMP1
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is more prevalent at inhibitory synapses (Ferecsko et al., 2015). However, there is no

agreement as to whether TeNT preferentially binds to or breaks down VAMP1 more

than VAMP2 (Schiavo et al., 1993; Ferecsko et al., 2015), and functionally, while it does

show a preference for inhibitory synapses, excitatory synapses are also significantly

impaired (Ferecsko et al., 2015).

5.2.2. Resected neocortical slices from rats injected with tetanus toxin.

Although the tetanus toxin model of chronic epilepsy is primarily studied in vivo much

can be gained from ex vivo slices prepared from the injected rats. The slice preparation

provides a reduced, more accessible system, that may be easier to interpret than the

larger and more complex in vivo system. Carter et al. (2011) use ex vivo slices from the

pilocarpine model of chronic epilepsy to characterise the different spontaneous recurrent

epileptiform discharges found in multiple regions of the hippocampus. Serafini et al.

(2016) use the ex vivo preparation of somatosensory cortex slices, from tetanus toxin

injected rats, invoking seizure-like events by exposing the slices to zero magnesium

ACSF and 4-aminopyridine. They use a high density 60 channel electrode array to

sample across the cortex around the injection site, identifying patterns of seizure spread

that differ between control and injected animals. They find that seizures in injected

animals have higher voltages and wider spreads than in controls. In control slices

several small local foci appear on the recording simultaneously, while in injected slices,

one large focus appears that has a wide spread. They also compare the primary focus

(ipsilateral to injection site) with the secondary focus (contralateral to injection site),

with the primary focus showing larger amplitude events among other differences.

5.3. Experimental Setup

In the experiments described here, slices have been prepared from rats injected with

tetanus toxin in the motor cortex of the right hemisphere. Eight to 20 days after the

TeNT injection rats were euthanised by non-recovery general anaesthesia followed by

intracardial injection of a sucrose based artificial cerebrospinal fluid (sACSF). Coronal

slices are cut, with the preparation kept in oxygenated ice cold sACSF at all times. The

motor cortex (M1 and M2) at Bregma 1.60 mm and interaural 10.60 mm is then isolated

from subcortical structures and the neighbouring somatosensory cortex. These slices

are then placed into a holding chamber with oxygenated regular ACSF for at least one
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hour before being transferred to an interface recording chamber. Here they are allowed

to rest for 30 minutes before being washed through with a pro-convulsant artificial

cerebrospinal fluid (ACSF) containing no magnesium and elevated potassium (6mM)

to induce seizure-like activity. The slice is kept like this for 1.5 hours, most slices

then show spontaneous seizure-like events (SLEs) during this time. Gabazine (10µM)

is then added to the bath. This provokes the slice to show late recurrent discharges

(LRDs) usually within 15 minutes. We record the extracellular potential throughout,

using a glass micropipette in layer 2/3, sampling at 5 KHz.

5.4. Experimental Results

The software described in chapter 4 has been used to identify and quantify the

events described here. We used the automated seizure detection, counting only SLEs

that persist longer than 10 seconds. The experimental results presented here concern

the differences found in in vitro recordings from neocortical slices taken from hemi-

spheres ipsilateral and contralateral to the tetanus toxin injection site. We first look

at differences in the characteristics of SLEs produced by the pro-convulsant medium

(the zero magnesium, high potassium ACSF, referred to in figures as zero magnesium)

which accounts for the majority of SLEs. We then look at the LRDs provoked by

the application of gabazine. Finally we look at events evoked by bipolar electric field

stimulation in slices also bathed in the pro-convulsant medium.

5.4.0.1. Statistical methods: For each measurement we calculate a mean for each

slice - two or four slices were taken from each animal (one or two from each hemisphere).

We show a box plot for each measure, illustrating the distribution of slice means. In

these, the midline represents the median value, the box shows the first to third quartiles,

whiskers show the range of values within 1.5 of the interquartile range. All other points

are shown as outliers.

5.4.1. Interhemispheric differences in seizure-like events. The following fig-

ures show the interhemispheric differences in the properties of seizure-like events gener-

ated after switching to the pro-convulsant medium. Figure 5.1 compares the properties

of seizure-like event troughs. We find no significant difference in the number of troughs,

the frequency of the troughs, or the width of the troughs between hemispheres. We do

find a significant difference (p < 0.05, Student’s t test) in the amplitude of the troughs.
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Figure 5.1. Shows a comparison of the trough characteristics of events
contralateral (blue) and ipsilateral (orange) to the TeNT injection site.
The distributions presented are based on slice averages from 11 con-
tralateral slices and 9 ipsilateral slices. * indicates a significant difference
between the means (p < 0.05, Student’s t test), ** indicates that it re-
mains significant when corrected for multiple comparisons, ns indicates
no significance. Boxplot midline indicates the median, and the whiskers
indicate 150% of the interquartile range, with values outwith this shown
as outliers.
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Figure 5.2. Shows a comparison of the duration, mult-iunit activ-
ity peak amplitude, coastline, and intermittancy of events contralateral
(blue) and ipsilateral (orange) to the TeNT injection site. The distribu-
tions presented are based on slice averages from 11 contralateral slices
and 9 ipsilateral slices. * indicates a significant difference between the
means (p < 0.05, Student’s t test), ** indicates that it remains significant
when corrected for multiple comparisons, ns indicates no significance.
Boxplot midline indicates the median, and the whiskers indicate 150%
of the interquartile range, with values outwith this shown as outliers.

This indicates that while events from each hemisphere evolve over a similar timescale,

there are significantly larger synaptic currents at play during the troughs of the events

in the contralateral slices. This is surprising, given that tetanus toxin is known to

be ictogenic and Serafini et al. (2016) report finding increased amplitudes in the site
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ipsilateral to injection. Figure 5.2 compares the duration, multi-unit activity (MUA)

peak amplitude, the coastline, and the intermittency of events in each hemisphere. We

see a median duration in contralateral slices of 54 seconds and in ipsilateral slices of

42 seconds, however this difference is not significant (p = 0.36). We do see a signif-

icant difference between the peak MUA amplitude, with contralateral slices showing

a larger peak amplitude. This indicates that at the peak of the seizure there is more

recruitment of local cells in contralateral slices. We find no significant difference in

the coastline or intermittency between hemispheres. Figure 5.3 compares the three

abruptness measures based on the logistic fit to the trough amplitudes, LFP power,

and MUA power. We find no significant difference for any of these measures but the

median LFP abruptness measure is higher in ipsilateral events (p = 0.2). Figure 5.4

compares the rate at which events reach their maximum amplitude either of LFP or

of MUA. We find that the ipsilateral hemisphere approaches its maximum LFP faster

than that of the contralateral, but that there is no difference between how fast each

approaches its maximum MUA. As there is no difference in the MUA rate or MUA

abruptness measure between hemispheres it appears unlikely that the pattern of MUA

build up can be used to differentiate between the area of the injection site and the

area contralateral to it. The build up of the LFP may do a better job of distinguishing

between regions, there is a clear difference between the LFP rates, and it is possible

that with more repeats we would see a difference in the LFP abruptness measure. As

they are correlated (rho=0.17, shown in figure 4.8), it is possible that the abruptness

measured by fitting the logistic function is less sensitive than that measured by the

rate, but that they capture similar patterns of activity. We should also consider that

the LFP rate is normalised by the maximum LFP amplitude, and so while they are

reaching their maximum amplitude at different rates, the absolute rate may not be

any different. We find no difference between hemispheres in the non-normalised rate,

indicating that the rate of ipsilateral events is not scaled down to reflect their lower

overall amplitudes as we might expect. This is despite the non-normalised rate corre-

lating strongly (rho=0.7) with the event amplitude across all events, indicating that we

should expect a group of events with consistently lower amplitudes to have lower rates

of increase. Figure 5.5 shows the relative power of events in a range of frequency bands,

we find that there is no significant difference between hemispheres for any bands.
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Figure 5.3. Shows a comparison of the abruptness measurements ap-
plied to events recorded from slices contralateral (blue) and ipsilateral
(orange) to the injection site. The abruptness measure is the steepness of
the logistic function fit to the build up of seizure-like activity measured in
three different ways. The multi-unit activity abruptness (MUA Abr) fits
the logistic function to the cumulative maximum of the multi-unit activ-
ity power, the trough abruptness (Trough Abr) fits the logistic function to
the cumulative maximum of the trough amplitudes, and the LFP abrupt-
ness (LFP Abr) fits the logistic function to the power of the LFP. These
measures are described in more detail in chapter 4. The distributions
presented are based on slice averages from 11 contralateral slices and 9
ipsilateral slices.* indicates a significant difference between the means
(p < 0.05, Student’s t test), ** indicates that it remains significant when
corrected for multiple comparisons, ns indicates no significance. Box-
plot midline indicates the median, and the wiskers indicate 150% of the
interquartile range, with values outwith this shown as outliers.

5.4.1.1. Interhemispheric differences in late recurrent discharges. We add gabazine

to the slices after one hour in the pro-convulsant ACSF. This firstly transforms the

SLEs, which become shorter and sharper, before quickly becoming what many refer to

as a late recurrent discharge - a short event with a relatively large amplitude initial

hyperpolarisation, which is then often followed by an oscillation as the extracellular

potential decays back to the baseline. By applying gabazine at 10 µM, we nullify

the inhibitory synapses, and so we can attribute interhemispheric differences to the

excitatory network. Figure 5.6 shows the inter-event intervals for slices from contralat-

eral and ipsilateral hemispheres when exposed to gabazine. We can see a significantly

larger interval for events in ipsilateral slices, which implies a lower frequency of events.
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Figure 5.4. Shows the rate at which the event LFP and MUA ap-
proaches its maximum. This is calculated on the cumulative maximum
of the signal, and then normalised by dividing by the signal maximum
so that the units would be the proportion of the maximum gained per
second. The calculation of the rate is described in more detail in chap-
ter 4. * indicates a significant difference between the means (p < 0.05,
Student’s t test), ** indicates that it remains significant when corrected
for multiple comparisons, ns indicates no significance. Boxplot midline
indicates the median, and the whiskers indicate 150% of the interquartile
range, with values outwith this shown as outliers.

When we look at the amplitudes of LRDs we also see a significant difference, both

the initial hyperpolarisation and the decay phase oscillation, contralateral events are

larger. Initial hyperpolarisation amplitudes are between 0.1 and 1.2 mV and decay

phase oscillations have amplitudes in the range of 0.05 to 0.5 mV.

With the inhibitory network nullified, a reduction in the frequency of events may be

a result of the impaired excitatory synapse function that is seen with TeNT injections

(Ferecsko et al., 2015). The difference in event amplitude could also be the result of

an impaired excitatory network in ipsilateral slices.

5.4.1.2. Correction for multiple comparisons. As multiple comparisons have been

made on various aspects of the same data - we have performed 21 tests for statistical

significance in total - it is important to consider the possibility of type 1 errors as a

result of apparently significant results appearing by chance. To account for this we have
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Figure 5.6. Shows the inter-event interval and amplitude of LRDs
recorded in slices either contralateral or ipsilateral to the injection site.
The trough amplitude is the amplitude of the major trough, not the ini-
tial sharp spike or the troughs that occur during the decay phase. The
decay phase amplitude is the mean amplitude of the troughs identified
during the decay phase. * indicates a significant difference between the
means (p < 0.05, Student’s t test), ** indicates that it remains significant
when corrected for multiple comparisons, ns indicates no significance.
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Table 5.1. Shows the p values of measures with a statistically signifi-
cant difference before multiple comparisons correction and after.

Measure Un-corrected P Corrected P
Trough Amplitude 0.006 0.041
MUA Amplitude 0.029 0.101

LFP Rate 0.022 0.09
LRD Interval 0.018 0.09

LRD Trough Amplitude 0.00005 0.0006
LRD Decay Phase Amplitude 0.00006 0.0006

adjusted the p-values for all measures to account for the multiple comparisons. To do

this we have used the false discovery rate procedure. (Benjamini and Hochberg, 1995)

The corrected p values for those measures that were found to be statistically significant

before correction are shown in table 5.1. We find that after applying this correction,

three of the differences found can no longer be considered statistically significant. This

indicates that further experiments would be needed to show with confidence that these

differences exist.

5.4.2. Response to stimulation. As well as testing the ability of the abruptness

measures to discriminate between ipsilateral and contralateral slices we also wished to

test whether the response to electric field stimulation could discriminate. We replicated

the conditions used to induce the SLEs described above, while also stimulating each

slice near to the recording electrode. We first compared the initial response to stimu-

lation. This would tell us whether there was any difference in the direct recruitment

between hemispheres. We then wished to look at the secondary response, in particular

whether the stimulation provoked any complex epileptiform activity. As human studies

have shown that the response to stimulation is more likely to be more complex when

stimulating in the focus (Valent́ın et al., 2002) our initial hypothesis was that we would

be more likely to see an epileptiform response in the ipsilateral slices. However, as we

have seen the ipsilateral slices produce weaker SLEs, and less frequent LRDs, indicat-

ing a reduced functioning of the seizure generating network. We therefore hypothesised

that artificial stimulation, while not compensating for any loss in seizure power, may

aid in seizure initiation by synchronising a large population of pyramidal cells that

struggle to reach this synchronised state as frequently as those in the contralateral

slices. This would indicate that while the level of activity is lower in ipsilateral slices,
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the barrier to synchronised activity spreading is not any different, or possibly reduced

in ipsilateral slices.

Figure 5.7. Shows the two setups used for stimulating and recording
the rat motor cortex slices. The multi-electrode array can be seen in
layer 2/3 (left) and layer 6 (right). The bipolar stimulating electrode
can also be seen.

5.4.2.1. Methods. As for the experiments described above, slices were placed into an

interface chamber and, initially, continuously perfused with fully oxygenated regular

ACSF. After 15 minutes, this solution was swapped for the pro-convulsant solution

containing 6 mM K+ and 0 Mg2+. The slice was allowed to be perfused with this

solution for 30 minutes before we began stimulation. The electric field stimulation

took the form of focal stimulation applied by a bipolar electrode. We applied a 10 ms,

200 µA monophasic pulse, with the cathode always towards the white matter. The

stimulation was applied every 60 seconds. This was first delivered to layer 2/3 for 30

minutes (while we recorded the extracellular potential with a linear multi-electrode

array in the same layer). We then applied the same stimulation to layer 5 of the motor

cortex slices for one hour while recording below the stimulating electrode in either

the lower half of layer 5 or layer 6. The recording setup can be seen in figure 5.7.

In almost all slices stimulation produced an initial synaptic response measured in the

LFP, in some slices the response took the form of epileptiform activity. Many slices also

show spontaneous epileptiform activity. Example spontaneous and evoked epileptiform

activity are shown in figure 5.11.

5.4.2.2. Results. The full data set includes slices from 8 injected animals and two

control animals (injected with saline), with 4 slices (two from each hemisphere) taken

from each animal resulting in 30 slices (in one animal we took only two slices). We

first look at the immediate response to stimulation in layer 2/3, in particular at the
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amplitude and decay of the response as we move away from the stimulating electrode.

Here two slices from the ipsilateral hemisphere and three slices from the contralateral

hemisphere did not show any response to stimulation and so were not included in the

analysis. Figure 5.8 shows the averaged waveforms of the response in layer 2/3 to stim-

ulus, we can see that the averaged waveforms are similar in response amplitude and

in response width, however, there is significant variability in the response amplitude

within groups. We can see this in figure 5.10 with response amplitudes ranging from

0.1 mV to 6 mV. Here we also see that the control slices have a significantly lower am-

plitude than those from the ipsilateral hemisphere, the larger variance in the response

in contralateral slices means we do not have enough statistical power to say that there

is a difference between them and controls. Figure 5.9b shows the 90 % confidence

interval on the difference between response amplitudes in contralateral and ipsilateral

slices. We find a mean difference of around zero and can be 90 % confident that this

difference is between -1.1 and 1.1 mV. Figure 5.9a shows how the response amplitude

decays with the distance from the stimulating electrode. This decay fits well to a single

exponential (r2 = 0.93 ± 0.08) and so we can calculate a space constant for decay for

each response. We compare the distributions of this space constant for all three condi-

tions in figure 5.10, we can see that they all overlap. In figure 5.9b we see that we can

be 90 % confident that the difference between contralateral and ipsilateral is between

-200 and 600 µm. Having established that there was no difference in the immediate

response to stimulation, we then wished to look at the response to stimulation after the

immediate response, to determine whether any more complex secondary activity was

evoked. For this analysis we looked at the recordings in layer 5. These recordings were

longer (1 hour) and took place after the layer 2/3 recordings. The slices, having been

in the pro-convulsant ACSF for longer were more prone to show seizure-like events and

epileptiform responses to stimulation. We found that in slices from both hemispheres

stimulation could evoke a response but that these responses were not reliably invoked.

To quantify the likelihood of evoking an epileptiform response we counted the number

of events (spontaneous and evoked) over the hour of the recording. We then classified

them as either spontaneous or evoked. Only events that progressed immediately (less

than one second) after the stimulation artefact and which showed no epileptiform ac-

tivity before the stimulation artefact were counted as evoked. All others counted as
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Table 5.2. Contralateral slices are more likely to show spontaneous
events during the hour of stimulation and recording in layer 5. Applying
the N-1 Chi-Square we find that there is a 85% chance that the proportion
of slices showing spontaneous events is different between ipsilateral and
contralateral slices (two tailed p value = 0.15).

Shows Spontaneous Events Total Number
Contralateral 10 slices 15 slices

Ipsilateral 6 slices 15 slices

Table 5.3. Shows the number of evoked events in each hemisphere.
Applying the N-1 Chi-Square test we get a 53% chance that there is a
difference in the proportion of slices that show evoked events, with a two
tailed p value of 0.47.

Shows Evoked Events Total Number
Contralateral 9 slices 15 slices

Ipsilateral 7 slices 15 slices

spontaneous. The frequency of events (less than 25 over one hour), means that the

chances of an event occurring spontaneously one second after stimulation are very low.

Not all slices produced events (either spontaneous or evoked). Of the 15 ipsilateral

slices tested we found 6 that produced spontaneous events and 7 that produced evoked

events. Of the 15 contralateral slices tested we found 10 produced spontaneous events

and 9 produced evoked events. Of the 10 control slices tested 5 produced spontaneous

events, but only 2 produced evoked events. Tables 5.2 and 5.3 summarise the number

of contralateral and ipsilateral slices showing epileptiform responses and spontaneous

SLEs. Tables 5.4 and 5.5 compare the number of spontaneous and evoked events

in control and TeNT injected slices. To test whether the slices from the injected

hemisphere were more prone to generating a complex response to stimulation we wished

to measure the likelihood of an evoked event with each stimulation applied to slices that

do generate evoked responses. As only two control slices produced evoked events, they

have not been included in this analysis. Overall the likelihood is low with a range of

ratios (events/stimulus) of between 0.01 and 0.35 (figure 5.12). We find no significant

difference between hemispheres but on average the contralateral side is more likely to

show an epileptiform response. We also looked at the ratio of spontaneous events to

evoked events, as this may show whether the stimulus is simply evoking events that

would still occur without stimulation, or whether it is generating events in tissue that

would be unable to generate events on its own. Again we find no significant difference

between hemispheres.
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Figure 5.8. Shows the averaged waveforms of responses in layer 2/3
to stimulation in layer 2/3. The response shown is that recorded in the
electrode closest to the stimulating electrode.
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Figure 5.9. (A) shows how the amplitude of the averaged response
potential decays as we move away from the stimulating electrode - the
x axis shows the distance from the stimulating electrode. (B) Shows
the 95% confidence interval on the difference between the space constant
measured in the slices ipsilateral and contralateral to the injection site.
Below we show the 95 % confidence interval on the difference between
the amplitude of the response in slices from each hemisphere. We can
be 95% confident that the absolute amplitude difference is less than 1.5
mV.

5.4.3. Discussion and summary of experimental results. We have analysed

the seizure-like events produced by slices of rat motor cortex prepared from rats injected

with tetanus toxin. Slices have been taken from the injected hemisphere (ipsilateral)
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Figure 5.10. (Left) Shows the distribution of the spatial decay con-
stant of the response potential in slices contralateral and ipsilateral to
the injection site. (Right) Shows the amplitude of the response potential
at the electrode closest to the stimulating electrode in slices contralateral
and ipsilateral to the injection site.

Table 5.4. Shows the proportion of spontaneous SLEs found in slices
from rats with TeNT injection and rats with saline injection (control).
Both hemispheres have been grouped together. Applying the N-1 Chi-
Square we find that there is a 14% chance that the proportion of slices
showing spontaneous events is different between TeNT and control slices
(two tailed p value = 0.86).

Shows Spontaneous Events Total Number
TeNT 16 slices 30 slices

Control 5 slices 10 slices

Table 5.5. Shows the proportion of evoked SLEs found in slices from
rats with TeNT injection and rats with saline injection (control). Both
hemispheres have been grouped together. Applying the N-1 Chi-Square
we find that there is a 93% chance that the proportion of slices showing
spontaneous events is different between TeNT and control slices (two
tailed p value = 0.07).

Shows Evoked Events Total Number
TeNT 16 slices 30 slices

Control 2 slices 10 slices

where we would expect the toxin to have been present at greater concentrations and the

contralateral hemisphere where due to the proximity and strong connectivity between

the two regions we would expect the toxin to be present but to a lesser extent. As

the slices were prepared from animals 8 to 20 weeks after injection, we would expect

the primary action of the toxin to still be in effect (Ferecsko et al., 2015) and so the
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Figure 5.11. Shows an example of a spontaneous events (A), and an
evoked event (B).

injected hemisphere to be more excitable. We compared the characteristics of the

events recorded in each hemisphere and the abruptness of events in each hemisphere.



5.4. EXPERIMENTAL RESULTS 117

Contra Ipsi
Hemisphere

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

(e
ve

nt
s/
st
im

ul
us

)

p=0.39

Contra Ipsi
Hemisphere

0

1

2

3

4

5

6

(e
vo

ke
d/
sp

on
ta
ne

ou
s)

p=0.43

Figure 5.12. (Left) Shows the number of events evoked per stimulus
applied. The stimulus was applied every minute of a 60 minute period.
(Right) Shows the ratio of evoked events to spontaneous events.

We also compared the characteristics of events evoked by the application of the GABAA

antagonist gabazine, and of events evoked by electrical stimulation.

5.4.3.1. Lower amplitude events in ipsilateral slices. We record lower amplitude

events in the injected (ipsilateral) hemisphere. Lower amplitude events may be a

consequence of the reduced EPSPs and IPSPs produced by TeNT injection (Ferecsko

et al., 2015). However, lower amplitude events contrasts with the results of Serafini

et al. (2016), who show events in the primary focus (ipsilateral site) to be of a greater

voltage. They apply 4-AP as well as using zero magnesium ACSF to induce SLEs,

and study somatosensory cortex instead of motor cortex. The different model used

to induce SLEs (Perreault and Avoli, 1991) or the different network studied could

contribute to this difference.

5.4.3.2. The abruptness of events. If we consider a slowly propagating seizure,

abruptness may be related to the time constant for the failure of inhibitory restraint.

Theoretically, seizure onset patterns have been linked to the dynamics of network
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recruitment. In particular, a high amplitude onset has been linked with focal pertur-

bation or permanent oscillation within an area that is surrounded by excitable tissue.

Low amplitude onset is associated with focal perturbation or intrinsic oscillation when

the surrounding area is less excitable (Wang et al., 2014, 2017). Serafini et al. (2016)

use a large 2 dimensional multi-electrode array to record at multiple sites in their neo-

cortical slices. They show that when slices from rats injected with TeNT are placed

into pro-convulsant medium one large focus occurs recruiting all recording areas within

a short time. While in slices from healthy rats, small localised foci occurred, which

then coalesced slowly to form an SLE. This could indicate that the area around the

injection site (ipsilateral slices) is one of increased excitability, where events spread

rapidly, seen from a single electrode recording as an abrupt onset. We hoped to cap-

ture a similar phenomena here using the abruptness of seizure onset. To make this

measure we tried several approaches, either fitting the logistic function to the build up

of amplitude at the onset of the event, or calculating the rate of amplitude build up.

The amplitude was either that of the LFP or that of the MUA. We found no difference

between hemispheres for the abruptness of the MUA by either measure, but we did

find a significant difference in the abruptness as measured by the rate of LFP build

up. However, this difference did not survive correction for multiple comparisons and

so further evidence is required to be confident in this result. The difference measured

by the logistic function fit to the LFP was not statistically significant, which could

indicate that the rate is a more sensitive measure.

5.4.3.3. LRDs are larger and more frequent in contralateral slices. Late recurrent

discharges begin when gabazine has been added to the bathing solution, abolishing

synaptic inhibition. In slices contralateral to injection site, the amplitude and frequency

of these events is higher. This indicates that while there may be differences in the

inhibitory synaptic function between contralateral and ipsilateral slices, there is also a

significant difference in the function of excitatory synapses. This supports the work of

(Ferecsko et al., 2015) who show that EPSPs as well as IPSPs are reduced by TeNT

injection.

5.4.3.4. The response to stimulation. When comparing slices ipsilateral and con-

tralateral to the TeNT injection site we did not find any differences in the immediate

response amplitude to electrical stimulation, or in the decay of the response amplitude
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with distance from the stimulating electrode. As the TeNT injection is expected to

reduce synaptic function (Ferecsko et al., 2015) we might have expected to see a re-

duction in the amplitude of responses in the injected slices. That we didn’t detect any

difference could be down to the small sample size and large variance of the response

amplitudes in both hemispheres. It could also be that the action of the TeNT on the

contralateral hemisphere is great enough that any effect it does induce is present to a

similar extent in either hemisphere. We do see a difference between the response am-

plitude in controls and in slices from TeNT injected animals (ipsilateral only). Again,

this goes against the expectation that TeNT reduces synaptic function, which would

reduce the amplitude of the field potential. On the other hand, TeNT may increase the

overall excitability of the cortex, and so allow stimulation to recruit a greater number

of cells, producing a larger field potential.

5.5. Simulating evoked potentials and epileptiform discharges in rat

neocortex

In the experiments described above we have induced epileptiform activity in rat

neocortex using a pro-convulsant medium, and evoked responses measured in the LFP

using electric field stimulation. In this section we outline two simulations produced

using the VERTEX simulator that represent initial work towards producing detailed

biophysical simulations of these conditions.

5.5.1. A simulation of the response to bipolar stimulation in rat neocor-

tex bathed in magnesium-free ACSF. As described in chapter 1 the local field

potential response to electric field stimulation can be used to infer dynamic proper-

ties of the network. However, the field potential is notoriously difficult to interpret

(Herreras, 2016). Detailed simulations have been shown to aid in interpretation (Tom-

sett et al., 2015). Here we outline a simulation of the response to bipolar stimulation

in rat neocortex bathed in magnesium-free ACSF, and compare it directly with that

recorded in vitro. We use a similar rat neocortex model to the one outlined above

but have also introduced an NMDA (N-methyl-D-aspartate) receptor-mediated cur-

rent. Under physiological conditions, the contribution of this current is often ignored

because it is only open when the cell is depolarised enough to push the Mg2+ away

from the channel. When Mg2+ is washed out of the solution, its contribution becomes



120 5. A MODEL OF CHRONIC FOCAL EPILEPSY

significant. We include an additional NMDA receptor mediated conductance to reflect

this. This is modelled as a single exponential with a peak conductance that is equal to

that of the original synapse (effectively doubling the peak conductance of the synapse

as a whole) and a decay time constant of 66 ms (Perouansky and Yaari, 1993). We

have set the synaptic strength and random input currents so that the network is ac-

tive but not showing any seizure-like activity, and simulate stimulation in 5 networks.

In both the simulation and experiment we applied bipolar stimulation to layer 2/3,

the stimulation had a duration of 10 ms and amplitude of 200 µA. We compare the

experimental and simulated field potential response at the nearest electrode in figure

5.13. The simulation captures the amplitude of the response as well as the polarity of

the deflection. We quantify this in figure 5.15 where we see that the mean difference

between the simulation and experiment is just above 0 mV but that the large variance

of the experiment amplitudes gives us a 90 % confidence interval of between -0.5 and

0.5 mV. The simulated response also shows a second deflection around 400 ms after

the stimulus has been applied, which is not present in the averaged responses from the

experiments. This second deflection shows that the tissue is excitable enough that the

synaptic activation of the initial activity can provoke an additional response. Figure

5.14 shows the amplitude of the response recorded by the linear multi-electrode array

placed next to the stimulating electrode in layer 2/3 (figure 5.16 shows the location

of the recording electrode (black circles) and stimulating electrode (red circle) in the

tissue). We have already seen how the decay of the experiment response amplitude is

well fit by a single exponential, this is also true for the simulation response amplitude.

We find that the simulation response decays faster than that of the experiment, again

we quantify this in figure 5.15 and find that the simulated response decays significantly

faster. Figure 5.16 shows the neuronal response of simulated tissue to stimulation. We

can see that the activity spreads strongly vertically towards the white matter, and hor-

izontally away from the stimulation electrode. The activity in layer 2/3 is suppressed

before it reaches the slice boundary, the layer 4 and layer 6 activity reaches the slice

boundary nearest to the stimulating electrode. This indicates that although the slice

is excitable, inhibition is intact and can suppress the response.

While this immediate response is a relatively simple scenario, accurately capturing

this baseline is the first step towards simulating more complex responses to electric field
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Figure 5.13. Comparing the response in the experiment to the re-
sponse in the simulation. The stimulation was a 10 ms, 200 µA pulse
of applied to layer 2 with the recording electrode placed approximately
200 µm away on the horizontal axis. Here we show the mean response
from the experiment (n=6), compared with the mean simulation response
(n=5). We show the standard error of the mean of the experiment in
light blue, the variance of the simulation is much smaller (the mean stan-
dard deviation across the response is 0.02 mV), we have not shown this
to improve the clarity of the plot.

stimulation. In particular we capture the long NMDA receptor mediated synaptic cur-

rents and their contribution to the local field potential. As this current is the primary

driver for more complex evoked responses, accurate simulation of this is important

when we seek to model them. This model also helps us to interpret our experimental

results, as we can now say with more confidence that the LFP response represents an

excitatory current mediated by the NMDA receptor. We hope to use combine this with

simulations of epileptiform activity to investigate evoked epileptiform activity, and the

effect of stimulation on ongoing epileptiform activity. One difference between the aver-

aged recorded response and the simulated response is the second deflection. This arises

as a result of a second recruitment of cells, as can be seen in figure 5.17. Here we can

see the in the top panel the number of cells spiking peaks again during the downward

phase of the second deflection. In the bottom panel of the same figure we can see that

the net current arriving at the cells becomes excitatory again after around 200 ms, just
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Figure 5.14. Shows the amplitude of the simulated and experiment
response against the distance from the stimulating electrode. Again we
show the standard error of the mean of the experimental data, and the
mean of the simulated data.
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Figure 5.15. Shows the difference in amplitude and decay space con-
stant between the simulated response and the experiment. The confi-
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, where σe and Ne

are the variance and number of samples of the experimental result and σs
and Ns are the variance and number of samples of the simulated result.
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Figure 5.16. Shows the neuronal response of the tissue to stimulation.
Here, each box represents a square of tissue (50 x 50 µm) and the colour
shows the mean number of spikes generated by the 5 networks, within this
box over the time course specified above the plot. If fewer than 1 spikes
occurs during the time period then the cell is coloured grey, otherwise
the colour reflects the number of spikes that occur. The number of spikes
per box is saturated at 50, the only squares to show more than 50 spikes
are the 4 directly under the stimulating electrode in the time interval of
0 - 5 ms.

as the activity begins to build again. This come about because the inhibitory current

has decayed faster than the excitatory, and so although it dominated initially after

the stimulus (suppressing the activity) it has decayed sufficiently that by 200 ms after

the stimulus the net current becomes excitatory again. Although we do not see this

secondary deflection in the averaged response, it is present in some individual traces.

Figure 5.18 shows an example typical of one of these traces. Here we see a second

deflection around 1500 ms after the stimulus. These second deflections are rare (5 out

of the 10 control slices show them at least once, their occurance rate in those that do
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Figure 5.17. Top: Shows the LFP recorded in layer 2/3 (blue trace)
and the peri-stimulus time histogram of layer 2/3 pyramidal cells. The
spikes that occur while the stimulus is applied have not been included
to emphasise the spiking activity seen in immediately after the stimulus.
Bottom: Shows the currents arriving at layer 2/3 pyramidal cells (the
average of the 100 cells nearest to the stimulating electrode). We can see
that the net current becomes excitatory at around 200 ms, just as the
secondary spiking response begins in the top panel.

is 14 %). The delay between stimulus and second deflection shown in figure 5.18 is

typical of the data set where we see an average delay between stimulus applied and the

second deflection of 1467 ms with a standard deviation of 702 ms.

5.5.2. A model of epileptiform activity. Most models of epileptiform activity

involve a breakdown in the balance of excitation and inhibition. Even in in vitro models

such as the zero magnesium model, this breakdown occurs through multiple mecha-

nisms and across a wide range of timescales (Jirsa et al., 2014). Very slow processes

such as the fluctuations in extracellular potassium (Fröhlich et al., 2008) and calcium

(DeLorenzo et al., 2005) concentration, or the availability of ATP and regulation of

energy (Wei et al., 2014) in the tissue, are thought to play a role in the frequency of

events and the long term build up in excitability needed for an event to occur. Short

term plasticity has been suggested as a mechanism for ictogenisis at a shorter time
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Figure 5.18. Shows a response to stimulation that includes a second
deflection. Five out of the 10 control slices show a second deflection
in at least one response. When considering only those slices that do
show a second deflection, the proportion of responses showing a second
deflection is 14 % with a standard deviation of 5 %. The average delay
between stimulus applied and the second deflection is 1467 ms with a
standard deviation of 702 ms.

scale (Staley, 2015). As it fluctuates over seconds, it fits well with the time scale for

the initial build up of activity that culminates with the paroxysmal depolarising shift.

Here we describe a simulation of the field potential of epileptiform discharges in rat

neocortex. We use the model described in chapter 3, simulating a slice of tissue in three

dimensions, with realistic neuron density, 4 layers (layers 1-6, with 2 and 3 combined

and 1 containing no cells), and 29 different cell types. Values for the time constants

for facilitation and depression (also shown in chapter 3) are experimentally measured

and taken from Ramaswamy et al. (2015). However, in contrast to the model described

in chapter 3 we use the Abbott model (Abbott and Regehr, 2004) as this provides a

simpler and easier to interpret description of synaptic depression. We induce activity

by increasing the strength of excitatory synapses and/or increasing the rate at which

inhibitory synapses depress. Figure 5.19 shows our exploration of these two param-

eters. We find that to evoke events when the rate of inhibitory synaptic depression

is a 50% (synapses are reduced to 50% of their value after each spike) we must in-

crease the strength of excitation to 250% of its original value. If we increase the rate

of synapse depression to 40%, then we find we can evoke events with an excitatory

synapse strength of 225%. The resulting network generates spontaneous discharges of

synchronous activity at a frequency of 1 Hz. The LFP generated by these events,

recorded in layer 2/3, is shown in figure 5.20A. We can also see the firing rates of
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Figure 5.19. We increase the synapse strength in increments of 25%
until the model begins to generate epileptiform activity, indicated by the
blue patches in (B). We do this for networks with an inhibitory synaptic
depression rate of 40% and 50%. We find that increasing the rate at
which the inhibitory synapses depression, decreases the threshold exci-
tatory synapse strength required to illicit activity. (A) shows example
LFP traces of activity with synapse strengths of 125%, 175% and 225%
and the inhibitory synaptic depression rate at 40%.

L5 pyramidal cells and interneurons during each event and the build up to the event.

The firing rates of both cell types build gradually before the event, but rapidly increase

during the initiation of the event (the downswing of the LFP). Their firing rate reduces

substantially for around 50 to 100 ms, before recovering and beginning to build again.

The build up of activity is caused by the recovery of strong recurrent excitation which

is initially held back by feedback inhibition from basket cells and Martinotti cells.
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Figure 5.20. (A) Shows the firing rate and LFP of the events. (B)
Shows the relative synapse strengths (fraction of full synapse strength)
of layer 5 pyramidal cells, basket cells, and Martinotti cells, during a sim-
ulated epileptiform discharge. We can see that in the run up to the event
the basket cell synapse strength is decreasing and inhibitory synapses are
more depressed than the excitatory. During the event all synapses de-
crease in strength but there is a dramatic decrease in excitatory synapses
strength brining it into line with the inhibitory synapses. As we leave
the event the excitatory synapse strength begins to diverge from the
inhibitory strength again.
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The eventual failure and subsequent spike in activity is caused by a failure of

the inhibitory synapses, which under the short term plasticity rules used, gradually

weaken as the firing rates of their cells increase. This time course of inhibitory synapse

strengths can be seen in figure 5.20. The lower firing rates of the pyramidal cells ensure

that they maintain synaptic efficacy for longer than the interneurons, only weakening

significantly during the spike itself. As excitatory synapses onto Martinotti cells tend

to facilitate, when the network is undergoing excessive excitation they will receive

stronger excitatory drive (compared to baseline) than basket cells therefore reaching a

higher normal firing rate. This may then depresses their synapses even further, leading

them to lose efficacy completely, allowing the dendritic excitation to dominate, causing

the synchronous activity.

5.5.2.1. Comparison with experimental data. To investigate the similarity between

our simulated events and events recorded in vitro we compare them with the troughs

of a particular subset of events recorded in TeNT injected slices. As our model does

not show the full evolution of epileptiform activity expected of a seizure-like event, we

looked for similar events within the experiment recordings. We found that in some slices

activity occasionally transitioned to spike wave discharges without the high frequency

activity typically seen at the start of events in the zero magnesium model in vitro

(Trevelyan et al., 2007). We therefore chose these for comparison, because as regular

and repetitive events, they could be directly compared with the simulated results.

Figure 5.21 compares the experimental recordings with the simulated. We find that

the simulated events repeat on a similar timescale to those in experiments, but are

much sharper events - they have a much shorter trough width and a much larger peak

amplitude. We also find that the experiment traces tend to show an after-polarisation

peak in the LFP after the main trough. This forms part of the wave of the spike-wave

discharge, and so it would traditionally be interpreted as being caused by currents

re-polarising the cells after their extensive depolarisation during the main spike, and

as occurring during a time of neuronal silence. In our simulations, this period of

neuronal silence appears to be confined mostly to the main trough. It may be that

in the experiment, this re-polarising phase occurs later and lasts for longer causing

the peak we see after the main trough. In the simulated discharges we also see an

initial sharp peak before the main trough. In our model this initial peak comes from
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Figure 5.21. Comparing simulated epileptiform discharges with those
recorded in experiments. (A) Shows an example trace of epileptiform
discharges recorded in the in vitro model described above. We overlay
the simulated events in red (note the separate scale on the right). (B)
Compares the interspike interval, the trough width, and the trough am-
plitude, of simulated activity with that recorded in 8 slices of the in vitro
model. Events were not full seizure-like events that display an evolution
of activity, but were rather events that manifest as repetitive spike wave
discharges that begin and end gradually. These events were identified
in recording from the TeNT injected animals described above, the data
described here is from both ipsilateral and contralateral slices.
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the initial barrage of excessive excitatory currents arriving at layer 5/6 pyramidal cells

(figure 5.22) with the positive inflection a result of strong depolarising currents arriving

at the apical dendrite causing negative transmembrane current at the tuft which is

the closest compartment to the electrode (a mechanism similar to that described in

chapter 3, figure 3.11). This initial inflection is not present in many of the traces

examined (including that shown in figure 5.21) but is present in a subset (an example

is given in figure 5.23), indicating that this can occur in vitro under specific conditions

and possibly depending on electrode location (in our simulation the initial peak is no

longer present when the recording electrode is moved to the bottom of layer 2/3, 1500

µm from the white matter). A final discrepancy between our model and the data is

an occasional notch that appears on the rising phase of the trough in experimental

recordings. This notch indicates that the experiment discharge may be generating

more prolonged activity (perhaps in a subset of cells) than the simulated discharge.
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Figure 5.22. Shows the local field potential (blue trace) during a sim-
ulated epileptiform discharge, along with the excitatory and inhibitory
currents arriving at layer 5 pyramidal cells (the mean recorded from 100
cells). We can see that the main excitatory barrage coincides with the
initial peak in the LFP. The inhibitory current briefly becomes positive
(and so excitatory), this is possible because synapses are conductance
based, and so if the membrane potential of the compartment onto which
they synapse polarises beyond their reversal potential they will provide
an depolarising current.

5.5.3. Discussion of simulations. Although our model of an epileptiform dis-

charge does not produce an LFP timecourse that resembles that of a full ictal discharge,
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Figure 5.23. Shows an example epileptiform discharge recorded in
vitro which shows an initial peak before the main trough. (A) Shows
a sequence of discharges. (B) Shows a single discharge.

it does resemble some epileptiform activity seen in vitro. Interictal epileptiform dis-

charges (IEDs) are often recorded in the EEG of epilepsy patients during periods

between seizures. They are short events, described as a spike and wave discharge, that

do not cause the symptoms associated with a full ictal event (seizure) (de Curtis et al.,

2012). A spectrum of events with similar morphologies are also recorded in many in

vitro preparations that mimic epileptic activity (Zelmann et al., 2013). Although the

mechanisms of initiation and the currents that contribute to the LFP may be very

different to those involved in the interictal events of patients, these are often still de-

scribed as IEDs. The morphology (spike and wave) and timecourse (200 ms events at

1 Hz) of the events in our model are similar to some events described as IEDs in these

in vitro models.

From our model we can also say that, according to our current knowledge of the

neocortical microcircuit in rats, the power of the excitatory circuit is such that it can

drive the inhibitory population to the extent that they lose synaptic efficacy, before

the excitatory cells lose theirs, resulting in the synchronised activity seen in the spike.

This gives a timescale and more specific description to the role that may be played by

short term synaptic plasticity in the generation of epileptiform discharges. A major

discrepancy between the activity seen in our model and that seen in in vitro models

is the amplitude of the spike. The large amplitude reflects the fact that during the

peak of activity in our model all cells are recruited (the set difference between all cells

and cells recruited in the 30 ms of the event peak is zero in all simulations). This is

in sharp contrast to what is seen in in vitro seizure models, where events manifest as



132 5. A MODEL OF CHRONIC FOCAL EPILEPSY

the synchronous activity of a subset of neurons (Feldt Muldoon et al., 2013). This

clustering of neuronal activity is likely down to the heterogeneous nature the tissue,

in particular patterns of local connectivity which can result in clusters of spatially lo-

calised and highly connected cells, and of hub cells (Bui et al., 2015). In our model,

while synaptic properties for each neuron are selected from a distribution, the overall

number of connections between neurons is fixed and so does not allow the formation of

hub neurons, or for clusters of cells to form particularly strong connectivity. One pos-

sible consequence of this is that when we push the model towards epileptiform activity

by increasing the synaptic weight, we have an all or nothing scenario, where excitation

overcomes inhibition across all of the tissue at once or it does not. Introducing het-

erogeneity into the model may allow for inhibition to break down in spatially localised

clusters of cells, while leaving other cells out of the event, producing a far lower field

potential more similar to those seen in vitro.

We have also simulated the LFP generated by bipolar stimulation in layer 2/3 of

rat neocortex when magnesium has been removed from the ACSF. We find that by

including an additional NMDA receptor mediated current we can reproduce the am-

plitude of the response recorded in vitro. This highlights the role of these currents in

the generation of the local field potential measured in the equivalent setting in vitro.

Simulating the response to stimulation in this manner can also help to parameterise

the model, as we have a well controlled and directly comparable output. So for ex-

ample, by ensuring that the amplitude of the response to stimulation matches with

that recorded in vitro we could be more confident that we are not overestimating or

underestimating the strength of NMDA receptor mediated currents in the generation

of seizure-like events. This approach compliments the approach of taking our param-

eters from the experimental literature and can compensate for the variability found

there and for the effect of the particular conditions of the experiments we are trying to

replicate (e.g. temperature, strain of animal). Future work should also look to apply

stimulation to the model of an epileptiform discharge with the aim of investigating

whether electrical stimulation could suppress events by disrupting the slow breakdown

in inhibitory synapse strength in the run up to the event. Multi-channel asynchronous

stimulation (Desai et al., 2016) may be a promising approach to investigate.



CHAPTER 6

Discussion and Outlook

Electric field stimulation has a wide range of applications in neuroscience research

and in the treatment of neurological disorders. For many of these applications, accu-

rate prediction of the immediate or long term effects of stimulation using computational

modelling could aid in the design of experiments or interpretation of results. Applied

focally to neural tissue, such as an in vitro brain slice preparation, electric field stimula-

tion can directly evoke action potentials in nearby cells. Previous work has established

the theory of how extracellular electric field stimulation generates action potentials in

individual neurons (Rall, 1962; Tranchina and Nicholsont, 1977; Rattay, 1986, 1989,

1998, 1999; Joucla et al., 2014; Yi et al., 2017). Electric field stimulation can temporar-

ily alter the membrane potential of neurons, directly causing them to generate action

potentials. The response to stimulation (measured in the LFP) can reveal properties

of the network. Applying specific patterns of stimulation can modify the synaptic con-

nections between cells, with many of the pioneering studies of synaptic plasticity using

electric field stimulation (Bliss and Lomo, 1973; Ito et al., 1982).

However, current simulation frameworks are not suited to modelling these evoked

local field potentials. This thesis contributes an addition to the VERTEX simulator,

allowing one to easily model the response to electric field stimulation in neocortical net-

works generating intrinsic dynamics. These networks can consist of multiple cortical

layers, with accurate cell and synapse properties. This allows simulations to be embed-

ded in a network generated using our current knowledge of the neocortical microcircuit

(Ramaswamy et al., 2015).

6.1. Contributions

6.1.1. Interpreting field potential responses to electric field stimulation.

The VERTEX simulator can compute an accurate local field potential (LFP) from the

dynamics of the neural compartments (Tomsett et al., 2015). As the LFP is relatively

easy to record in the in vitro setting, this facilitates direct comparison between ex-

periment and simulation, allowing a tighter coupling of theory and experiment. Many

133



134 6. DISCUSSION AND OUTLOOK

experiments that make use of electric field stimulation, record the response as an LFP.

However, the notorious difficulty in interpreting the LFP (Herreras, 2016) requires the

evoked potential to be either well characterised or for the researcher to justify their

interpretation using knowledge of the underlying circuit (Einevoll et al., 2013).

VERTEX has already been shown to aid in the interpretation of intrinsic dynam-

ics of neocortex (Tomsett et al., 2015), we have extended it to allow interpretation

of evoked potentials, as well as changes in evoked potentials as a result of synaptic

plasticity. We have illustrated this by simulating the response to bipolar stimulation

in the rat neocortex. We first looked at the initial synaptic response and have com-

pared the response charateristics to that recorded in vitro in previous described work

(Walcott and Langdon, 2002), and in our own experiments with slices bathed in pro-

convulsant media. Additionally, we have provided an explanation of the individual

synaptic currents which contribute to these recorded potentials.

6.1.2. Predicting the effects of electric field stimulation on large scale

dynamic networks. As well interpreting the initial response, we have also simulated

the response to multiple stimulations, in networks with dynamic synapses. We have

added short term plasticity and spike-timing dependent plasticity to the VERTEX

simulator. This allows us to simulate stimulus evoked changes to the network. These

changes can be combined with the changes seen in the simulated evoked response to

aid in interpreting the changes in synaptic properties seen through changes in the ex-

perimentally recorded evoked response. We show this in a simulation of paired pulse

stimulation, where we can attribute the reduced amplitude of subsequent responses to

a combination of the reduced synaptic efficacy due to the depression of the synapse,

and reduced neuronal recruitment caused by the inhibitory currents evoked by the first

stimulation. In this scenario, by simulating the short term synaptic dynamics (and

parameterising our synapse model using experimentally measured values) we can make

a prediction of the relative contributions of these components. This has applications

in interpreting experiments that use the field potential response to paired pulse stim-

ulation as a measure of the synaptic properties of the network (Wilson et al., 1998;

Tamura et al., 2011). Building a model such as this allows one to more easily keep

track of, and check the consistency of, the assumptions made in the interpretation. In

particular, the assumptions involved in the interpretation of the response LFP.
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6.1.3. Validating maps of neocortical microcircuits: The construction of

maps of the neocortical microcircuit is an ongoing field of study (Thomson, 2002;

Binzegger et al., 2004; Potjans and Diesmann, 2014; Ramaswamy et al., 2015; Markram

et al., 2015). Constructing accurate maps is seen as a vital step towards facilitating in

silico research in a variety of areas of neocortex research. From understanding the in-

formation processing abilities of healthy neocortex, to understanding its role in various

neurological disorders. Validation of these maps must be done in the specific context

of their use. We have found that to replicate the response to stimulation applied in

vitro in a particular study (Walcott and Langdon, 2002), we needed to modify the

network generated with data from the Neocortical Microcircuit Collaborative Portal

(Ramaswamy et al., 2015). This does not necessarily invalidate the map, differences in

cortical region, preparation methods, and animal age, as well as unknown sources of

variability mean that further experimental work would be required for validation. How-

ever, simulations built using VERTEX could aid in validation of microcircuit maps.

Its ease of use and more directly comparable recording outputs (LFP) and stimulating

inputs (electric field stimulation), may make constructing comparison simulations more

appealing to experimentalists.

6.2. Current limitations and avenues for future research

6.2.1. The effect of electric fields on axons. Our neuron models contain only

dendrites and soma, without explicitly modelling the axon. In VERTEX the propa-

gation of the action potential is modelled as a delay in the arrival of the spike at the

postsynaptic cell. This allows for a more efficient simulation as simulating the propa-

gation of the action potential would be computationally costly. However, stimulating

the white matter (axon tracts) is a common stimulation paradigm, and exclusively

axonal stimulation in the grey matter has been shown to produce significant responses

(Rattay, 1986; Nowak and Bullier, 1998). For white matter stimulation it is a more

consistent paradigm, and so previous detailed theoretical and experimental studies can

provide an accurate estimation of the spike trains to given levels of stimuli. However,

for grey matter stimulation, the contribution of electric field evoked action potentials

generated exclusively in the axons is a factor lacking in our simulations. In particular,

the intracortical microstimulation technique has been shown by number of studies to

induce its effect through the activation of axon terminals. For example Boychuk et al.



136 6. DISCUSSION AND OUTLOOK

(2015) show that a pharmacological block of synaptic transmission reduces the spiking

response to stimulation by 85%, indicating that synaptic currents induced via the acti-

vation of local axon terminals may have a significant role. Similarly Histed et al. (2009)

also indicate that axonal recruitment contributes significantly to the response to stim-

ulation in layer 2/3. These results are also corroborated by work that indicates that

axons have a lower threshold for excitation (Rattay and Wenger, 2010), and are more

likely to be the site of action potential initiationas a result of extracellular stimulation

Stuart et al. (1997). It is therefore likely that, particularly at close to threshold levels

of stimulation, a simulation without axons may overestimate the current required to

induce a response.

6.2.1.1. Implementing axons in VERTEX. Future development of the simulator

should involve the addition of explicitly modelled axonal compartments. This should

build on the work of Aberra et al. (2018) who have constructed a set of axonal morpho-

logical models for rat neocortex, that have been validated in the context of electrical

stimulation. Incorporating large and detailed axonal models will have a significant

computational cost, limiting the volume of tissue that be modelled. A possible solu-

tion to this can be to take advantage of the short duration over which most stimulation

is applied, by only including the axon model during stimulation. As an action potential

in the axon will propagate both ways, if an action potential is generated in the axon,

this can be processed in the same way as it would if it had been generated in the soma.

6.2.2. More accurate models of plasticity. The plasticity models currently

implemented for the VERTEX simulator represent only two of the established models

for short term plasticity and one of the established models for spike-timing dependent

plasticity. While these are useful for some applications, other plasticity models have

been suggested that may be more valid biologically, or for modelling particular scenar-

ios. For example, the implemented model of STP contains only a single component

for facilitation and depression, allowing only a single time constant for the decay of

each. Adding a second depression component to this model has been shown to produce

a better fit to experimental data (Varela et al., 1997). There are also alternatives to

the implemented model of STDP, many of which may be more biologically plausible.

We implement classical Hebbian STDP with exponential decays but STDP has been
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shown to depend on many factors other than spike-timing. The spike-timing com-

ponent forms just one part of the plasticity process along with pre and postsynaptic

firing rates and dendritic depolarisation (Feldman, 2012). Models based on the instan-

taneous and averaged membrane potential of the postsynaptic cell and spike-timing of

the presynaptic cell better capture this multifaceted plasticity and have been shown to

produce connectivity patterns that better reflect those seen in cortex (Clopath et al.,

2010). Models of this nature may also be useful in predicting electric field induced en-

hancement of plasticity, particularly that induced by transcranial stimulation devices

(Fritsch et al., 2010), as these devices often produce subthreshold effects to induce or

augment NMDA-receptor mediated plasticity. Adding models such as that described

by Clopath et al. (2010) to the VERTEX simulator would be relatively straightforward

and should form part of the continued development of VERTEX.

6.2.3. Extending to model human or mouse tissue. In this thesis we have

described a VERTEX model of rat neocortex, in previous work Tomsett et al. (2015)

described a model of macaque neocortex. While rat is a common model animal for in

vitro and in vivo electrophysiology, models of mouse or human tissue would increase

the scope of the tool. As a model animal, the mouse is commonly used when gene

alterations are required. This has made its use in neuroscience research into epilepsy

(Buckmaster et al., 2002; Chu et al., 2010) and the functional consequences of synaptic

plasticity (Bostrom et al., 2015), routine. Although of a different nature to the maps

describing the rat microcircuit (Ramaswamy et al., 2015), there are sufficient resources

describing the mouse neocortex to construct a suitable VERTEX model (O’Connor

et al., 2009; Belgard et al., 2011; Cocas et al., 2016). In particular the Allen brain atlas

contains significant resources on the cells of the mouse neocortex (Sunkin et al., 2013).

Building a human neocortex model is also desirable. Tissue resected from patients

is also increasingly being used in epilepsy research. Constructing a model of human

neocortex will aid in the interpretation of local field potentials recorded from these ex

vivo slices. It will also serve to aid in predicting the effects of non-invasive stimulation in

humans, explored further in the following section. Data on human neocortical circuits

is less extensive than that on rat and mouse. However, there significant overlap in cell

types between mammals, including rodents and humans (Nieuwenhuys et al., 2007).

Data on the additional cells types found in humans - such as the von Economo neurons
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(Semendeferi et al., 2010), and the variations in layer thicknesses and cell densities,

can be combined with the cell-type specific connectivity of the rat to produce an

approximation of the human neocortex.

6.2.4. Modifying neuronal circuits with brain stimulation. We have shown

an initial simulation of the modification of a neocortical network using theta burst

stimulation in the in vitro setting. There is the potential to use a similar approach

to model the therapeutic modification of neural circuits in humans using transcra-

nial electric field stimulation techniques such as transcranial direct current stimulation

(tDCS) or transcranial magnetic stimulation (TMS). Non-invasive brain stimulation

has shown promise or been suggested for the treatment of diseases such as depression

(Nitsche et al., 2009), tinnitus (Rabau et al., 2017), epilepsy (Theodore, 2003), stroke

(Hong et al., 2017), and general improvement in cognition (Chrysikou et al., 2017).

The therapeutic effects are often attributed to mechanisms of plasticity, particularly

NMDA-receptor/Ca2+ mediated synaptic plasticity (Fritsch et al., 2010). Much work

has gone into building accurate predictions of the distribution of current and associ-

ated electric field produced by these stimulation devices (Kim et al., 2009; Krieg et al.,

2015). However, interpretation of its effects are often limited to single neuron models

(Yi et al., 2015; Seo et al., 2016), or abstract models that do not include neuron mor-

phologies and so miss morphology specific, or location specific effects of the induced

fields Esser et al. (2005). Simulations of these effects using VERTEX would be at

the level of the neocortical microcircuit, and could take into account the morphology

and location of cell types, the ongoing dynamics of the network, and realistic synaptic

plasticity rules.

6.2.5. A full biophysical model of ictal activity. We have described epilepti-

form activity generated by our rat neocortical model with short term plasticity. In this

model the network is in a chronically hyperexcitable state due to a large increase in

the strength of excitatory synapses. The network restrains activity until the activity

dependent depression of inhibitory synapses causes them to lose efficacy and recurrent

excitatory activity takes hold, resulting in the rapid recruitment of most of the network

in a synchronised discharge. Although previously described computational models of

epileptiform activity have included short term plasticity (Hall and Kuhlmann, 2013),
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ours is a novel contribution in that it includes the full detail of a reconstructed neo-

cortical slice, with realistic spiking dynamics and short term plasticity time constants.

It also focuses on the cell type specific synaptic dynamics involved in the initiation of

the event, and the contributions to the LFP generated.

The extent to which this mechanism interacts with other mechanisms suspected

to contribute to the failure of inhibition during epileptiform activity, as well as the

possible roles they would play in extending this model of a single spike into a full ictal

event, should be the subject of future research.

Mechanisms of interest could include the depolarisation block of interneurons (Kim

and Nykamp, 2017) and the changing reversal potential of GABA as a result of chloride

loading (Alfonsa et al., 2015), both influenced by slow fluctuations in K+ concentration.

Depolarisation block occurs when neurons receive overwhelming excitatory drive. We

illustrate this in a NEURON simulation of a single pyramidal cell receiving a large exci-

tatory current (figure 6.1). Instead of increasing its firing rate linearly with increasing

input, a typical real neuron initially increases rapidly but then decreases rapidly after

the input begins to overwhelm the cell. The AdEx model currently used in VERTEX

does not capture the depolarisation block. The Hodgkin-Huxley type equations do, but

so too do the Morris-Lecar equations, a more reduced model that can be fitted to model

the spiking properties of most types of neurons (Meijer et al., 2015; Kim and Nykamp,

2017). Applying this to model inhibitory neurons may be sufficient for studying its

role in seizure initiation, while the role of depolarisation block of excitatory neurons

may be involved in seizure termination.

6.2.6. Controlling epileptiform activity with stimulation. Future applica-

tions of a full ictal model in VERTEX could include testing stimulation paradigms

for potential in controlling seizures. Closed loop stimulation (where measurements of

ongoing activity are used to inform the timing and intensity of stimulation) have shown

promise in controlling seizures (Nelson et al., 2011; Belluscio and Mao, 2016). As VER-

TEX allows explicit modelling of the means of recording, stimulation, and dynamics,

it provides an ideal environment for the testing of such devices.

6.2.7. Measuring the properties of epileptic networks with stimulation.

Electrical stimulation has also shown promise in measuring the properties of epileptic
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Figure 6.1. Depolarisation block induced by injection of a large exci-
tatory current into a pyramidal cell. Modelled using Hodgkin Huxley
like equations in the NEURON simulator.

networks, particularly dynamic properties. Measuring changes in the state of the net-

work during a seizure may help uncover the changes in network function that allow

seizures to take hold and to persist. Queiroz et al. (2009) take this approach in their

analysis of spontaneous seizures recorded in the rat hippocampus in vivo. They show

how the response to paired pulse stimulation varies throughout the seizure, and find

that the depression of the second pulse decreases as the seizure progresses, indicating

that the inhibitory neurons have become less effective. The direct interpretation of this

change to the depression of evoked local field potentials, would be aided by building

a comparable simulation in VERTEX. This would allow a direct link to be drawn be-

tween the mechanisms thought to be involved in the progression of a seizure, and the

measured response.



APPENDIX A

Adding Electric Field Stimulation to a VERTEX Simulation

In this chapter we will describe how to add a stimulating electrode to a VERTEX

simulation. We will simulate bipolar stimulation to an isolated slice of layers 1 and 2/3

in rat neocortex. Our slice will be 1500µm x 600µm x 400µm.

A.1. Creating the 3D model in Blender

To build the 3D mesh of the slice and tissue we will use the Blender 3D modelling

tool. We have chosen this because it is easy to use, free, open source, and can export

the mesh as an STL (STereoLithography) file, which can be read by the MATLAB

PDE toolbox. To download Blender visit their website (https://www.blender.org/]).

1

2

3

Figure A.1. Shows the Blender environment. The location of the tools
required at each step are circled in green and numbered.

When you open Blender there is usually a cube, we will resize this to the dimen-

sions of our slice. Press n to bring up the dimension controls (circle 1). Change the

dimensions to 4, 15, 6 (X, Y, Z). We will scale the mesh up when we export. Move

the cuboid so that its far right corner is at the origin, this will ensure that it is in the

correct location when we import into MATLAB. We then need to create the electrode,

from the Add menu (circle 2) at the bottom right of the panel, select cube. This will

add an additional cube to the scene. Resize this to 5, 0.05, 0.05, and duplicate it (Cntrl

+ C, Cntrl + V). Move the second electrode prong slightly to one side of the other

141



142 A. ADDING ELECTRIC FIELD STIMULATION TO A VERTEX SIMULATION

and join them (select both with Cntrl + right click, the Cntrl +J). Place the electrode

about half way in to the slice. As the boundary conditions in the PDE model are

Figure A.2. Shows the electrode placed into the slice.

applied at the faces of a single box (more complicated setups are possible but this is

the easiest way for two charged conductors in a homogeneous conductive media). We

then wish to cut out the shape of the electrode from the tissue. To do this, select the

tissue cuboid, then select the spanner on the toolbar to the top right. Then select the

Figure A.3.

Add modifier button, then add a boolean difference modifier, selecting the electrode

(probably Cube.001) as the modifier (figure A.3), then click Apply. We then wish to

export, select the tissue cube, select file→ export→ Stl. This will bring up the export

dialogue, enter the filename for your export file, then in the panal at the bottom left,

select selection only, and scale by 100 % (figure A.4).
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Figure A.4. Exporting the STL file.

A.2. Calculating the electric field

With our 3D model saved as an STL file, we can now import it into the PDE tool-

box and apply the conditions to calculate the electric field and electric potential. This

involves assigning boundary conditions to each of the faces of the imported geometry.

As the PDE toolbox does this in an unpredictable fashion, one must load in the ge-

ometry and assign the conditions manually for each geometry. The volume conductor

equation used is implicit in the coefficients that we provide.

Figure A.5. The mesh and electric potential calculated.



144 A. ADDING ELECTRIC FIELD STIMULATION TO A VERTEX SIMULATION

%% Load the geomtry as an stl file.

geometryloc = ’~/Dropbox/layer23.stl’;

model = createpde;

%load the file

importGeometry(model,geometryloc);

%plot the geometry with

figure(1)

pdegplot(model,’FaceLabels’, ’on’,’FaceAlpha’,0.3)

%% Apply the boundary conditions and specify the coefficients.

%insulating boundary - edge of the tissue

applyBoundaryCondition(model,’face’,7:12,’g’,0.0,’q’,0.0);

%conductive boundary - tissue/electrode interface

%positive electrode

applyBoundaryCondition(model,’face’,[2,3,14,1,16],’h’,1.0,’r’,1000);

%negative electrode

applyBoundaryCondition(model,’face’,[4,13,5,6,15],’h’,1.0,’r’,-1000);

%conductivity of brain tissue is around 0.3 S m^-1

%As vertex is in units of micrometers c --> 0.3/1000000

specifyCoefficients(model,’m’,0, ’d’,0, ’c’,0.3/1e6, ’a’,0, ’f’,0);

%% Generate mesh and calculate the electric potential across the tissue.

generateMesh(model);

result = solvepde(model);

figure(2)

pdeplot3D(model,’ColorMapData’, result.NodalSolution);

Figure A.6. The above code will import the geometry and plot it, the
specific face numbers may need to be altered for the specific geometry.
Then apply the boundary conditions and coefficients to produce the elec-
tric field.

A.3. Running the simulation

We can run the stimulation a simplified layer 2/3 model. The MATLAB code to

do this is in figure A.7. To do this we first load the geometry and model the field

using the code from figure A.6. We then set the stimulation on and off times, then call

tutorial 2 g, a typical script for running a VERTEX simulation.
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%load and build pde model (calls the code in figure A.6)

loadgeometryandapplyconditions

%Assign the StationaryResult object representing the field to the

%TissueParameters.

TissueParams.StimulationField = result;

%Set the stimulation on and off times.

TissueParams.StimulationOn = [500 900];

TissueParams.StimulationOff = [502 902];

%%

%Run the tutorial as normal

tutorial_2_g

Figure A.7. Code for calling the first script to load the geometry and
create the electric field model. Then we assign the stimulation on and
off times. Then we call the tutorial 2 file. This is a typical tutorial to
run a simple network simulation in VERTEX.
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Tutorial 2: LFP at all electrodes

Figure A.8. The result of stimulation on the tutorial 2 output.





APPENDIX B

Adding Synaptic Plasticity to a VERTEX Simulation

To show how to add synaptic plasticity to a VERTEX simulation, we will take

the tutorial 2 g program used above and show how to convert it to have short term

plasticity or spike-timing dependent plasticity.

B.1. Adding short term plasticity

To add short term plasticity, a rate of facilitation and depression must be specified,

each between 0 and 1. Here we specify 0.5 for both. We also must specify a time

constant for the decay of the effect of the facilitation or depression.

%The connection parameters for synapses from pyramidal cells to pyramidal

%cells

ConnectionParams(1).numConnectionsToAllFromOne{1} = 1700;

%Here we specify the synapse type, g_stp is the type for exponential

%conductance based synapses with short term plasticity.

%g_exp is for the same synapses without plasticity.

ConnectionParams(1).synapseType{1} = ’g_stp’;

%Specify the target compartments of the synapses

ConnectionParams(1).targetCompartments{1} = [NeuronParams(1).basalID, ...

NeuronParams(1).apicalID];

ConnectionParams(1).weights{1} = 0.05; %The baseline synaptic weight

ConnectionParams(1).tau{1} = 1;% The time constant for the decay

%Here we specify the parameters for the plasticity,

%facilitation is a unitless parameter that

%indicates the rate at which facilitation occurs. It should be a value

%between 0 and 1, at 0 there will be no facilitation at 1 strong

%facilitation. The depression value should also be between 1 and

%greater than 0 with 1

%being no depression and small values being strong depression.

%Depressing

ConnectionParams(1).facilitation{1} = 0.5;

ConnectionParams(1).depression{1} = 0.5;

% The time constants for facilitation and depression, a longer time

% constant indicates that the effect will persist for longer.

ConnectionParams(1).tD{1} = 670;

ConnectionParams(1).tF{1} = 17;

Figure B.1. Shows the code required to specify a synaptic connection
between two neuron groups (here connections from one group to itself)
with short term synaptic plasticity.
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B.2. Adding spike-timing dependent plasticity

Here we need add a time constant for Apre and Apost, as well as maximum and

minimum weights, and a rate that applies both to increases in weight and decreases.

ConnectionParams(1).numConnectionsToAllFromOne{2} = 600;

ConnectionParams(1).synapseType{2} = ’g_stdp’;

ConnectionParams(1).targetCompartments{2} = NeuronParams(2).dendritesID;

ConnectionParams(1).weights{2} = 0.1;

ConnectionParams(1).tau{2} = 1;

ConnectionParams(1).rate{2} = 0.001;

ConnectionParams(1).tPre{2} = 2;

ConnectionParams(1).tPost{2} = 10;

ConnectionParams(1).wmin{2} = 0;

ConnectionParams(1).wmax{2} = 100;

Figure B.2. Shows the code required to add spike-timing dependent
plasticity to a synaptic connection.



APPENDIX C

Simulating the effect of an electric field

We incorporate the effect of the electric field when calculating the axial currents

(the current flowing from compartment to compartment). The effect is incorporated

as an additional axial current, proportional to the difference in extracellular poten-

tial between compartments. This follows from the theory described by Rall (1962)

and Rattay (1999). The equation describing the membrane potential change caused

by the electric field (and any endogenous differences in membrane potential between

compartments) at any compartment n, is reproduced below (equation C.0.1).

dVn
dt

= [Iion +
Vn−1 − Vn

Rn−1/2 +Rn/2
+

Vn+1 − Vn
Rn+1/2 +Rn/2

...

+
V en−1 − V en
Rn−1/2 +Rn/2

+
V en+1 − V en
Rn+1/2 +Rn/2

]/Cm,n

(C.0.1)

In VERTEX, we incorporate this as an additional set in the calculation of axial currents,

performed in the abstract Neuron Model class, from which other types of neuron model

- adaptive exponential integrate and fire, Morris-Lecar, etc, inherit. Below is the

code used to calculate the axial currents contributed by differences in extracellular

potential across compartments. This corresponds to the second part of equation C.0.1

- V en−1−V en
Rn−1/2+Rn/2

+ V en+1−V en
Rn+1/2+Rn/2

the first part of the equation Vn−1−Vn
Rn−1/2+Rn/2

+ Vn+1−Vn
Rn+1/2+Rn/2

has

already been added to I ax. The ionic current I ion is incorporated into the membrane

potential separately, as is the capacitance term.
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if NM.incorporate_vext

%tree children is max number of children (neighbours) a node can have

%so vectorised over all compartments for each connecting neighbour

for iTree = 1:NM.treeChildren

%Additional Axial current caused by

%temporary v_ext change is proportional to the difference between the

%external potential in adjacent compartments

NM.I_ax(:, N.adjCompart{iTree}(1, :)) = ...

NM.I_ax(:, N.adjCompart{iTree}(1, :)) + ...

bsxfun(@times, N.g_ax{iTree}, ...

(NM.v_ext(:, N.adjCompart{iTree}(1, :)) - ...

NM.v_ext(:, N.adjCompart{iTree}(2, :))));

end

end

Figure C.1. Code for incorporating external potentials. NM is the
Neuron Model object, incorporate vext is a boolean, set to 1 when the
stimulation is to be incorporated, v ext is the extracellular potential at
each compartment location of each neuron in the group, treeChildren is
the maximum number of neighbours a compartment can have,I ax is the
axial current, which will contribute to the membrane potential change of
each compartment when it is next integrated. N is an object containing
invariant parameters for a neuron type, adjCompart contains the IDs of
adjacent compartments of each compartment, g ax is the conductance
between comparments. The computation is vectorised across all neurons
in the group and across comparments. We loop through the possible
neighbouring compartments to calculate the addition axial current con-
tributed by the extracellular potential.



APPENDIX D

The Adaptive Exponential Integrate And Fire Model

The adaptive exponential integrate and fire (AdEx) model (Brette and Gerstner,

2005) is the main model used by the VERTEX simulator. In the table here we show

the parameters used to generate a range of neuronal dynamics. These parameters are

taken from Naud et al. (2008). We show the neuronal dynamics in figure D.1.
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Table D.1. Show the parameters used to generate a range of neuronal
dynamics with the AdEx model.
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Figure D.1. Shows the neuronal dynamics of a VERTEX AdEx neuron
with the parameters described in table D.1.





APPENDIX E

Implementation of the Synapse Models and Spike Processing

VERTEX is built using MATLAB, and makes use of the object-orientated and par-

allel programming support it provides. The core VERTEX program has been described

previously (Tomsett et al., 2015), the changes made to VERTEX for this release com-

prise the addition of a mechanism to incorporate an extracellular stimulating field,

and various forms of synaptic plasticity. This section will describe the various data

structures used to store the properties and variables of the synapses and neurons, as

well as the methods used to update the synaptic variables and weights during the main

simulation loop.

E.1. Class hierarchy:

Neuron and synapse types are described using inheritance to avoid the duplication

of functionality. The abstract NeuronModel class describes the functionality provided

by all multi-compartment neurons. It contains the membrane potential, external po-

tential, and axial current (the currents that flow between compartments as a result of

the difference between their membrane potentials) properties, as well as the function-

ality required to integrate these. The integration of equation 2.2.2 is included as an

additional step during the calculation of the axial currents and is performed at each

time step when the stimulation is turned on. It is part of the core functionality of the

abstract Neuron class. Classes with specific mechanisms then inherit from this, e.g.

the NeuronModel passive class provides a simple wrapper on top to allow a neuron

with no active channels. The NeuronModel adex adds the adaptive exponential inte-

grate and fire mechanism to the soma, allowing the cell to generate action potentials.

Here each instance of a class would represent a group of neurons in the same layer and

of the same type. This allows us to ultilise MATLAB’s vectorised operations when

updating variables so that for example: the membrane potential variable (v m) holds

the membrane potentials of all neurons in this group as a matrix. This also allows us

to utilise the object oriented design advantages without the overhead that would come

from storing each neuron or synapse as its own object. The integration of the axial
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SynapseModel

I_syn : double matrix

getI_syn()

SynapseModel_g_exp

E_reversal : double

tau : double

g_exp : double matrix

g_expEventBu�er : double matrix

bu�erCount : Integer

bu�erMax : Integer

updateBu�er()

updateSynapses()

bu�erIncomingSpikes()

STDPModel

tPre : double vector

tPost : double vector

wmax : double

wmin : double

Apre : double vector

Apost : double vector

updateSynapses()

updateweightsaspostsynspike()

updateweightsaspresynspike()

processAsPreSynSpike()

processAsPostSynSpike()

STPModel

applySpikes2STPVars()

STPModel_mt

x : double vector

y : double vector

z : double vector

u : double vector

tau : double vector

fac_tau : double vector

rec_tau : double vector

U : double vector

updateSynapses()

applySpikes2STPVars()

newOperation()

STPModel_ab

facilitation : double vector

F : double vector

tF : double vector

depression : double vector

D : double vector

tD : double vector

updateSynapses()

applySpikes2STPVars()

SynapseModel_g_exp_mt

updateSynapses()

bu�erIncomingSpikes()

SynapseModel_g_exp_mt_stdp

updateSynapses()

PlasticityModel

preGroupIDs : integer vector

preGroupBoundaryArr : integer vector

SynapseModel_g_exp_ab

updateSynapses()

bu�erIncomingSpikes()

SynapseModel_g_exp_ab_stdp

updateSynapses()

SynapseModel_g_exp_stdp

updateSynapses()

Figure E.1. Using multiple inheritance to represent multiple types of
synapse. The hierarchy of classes representing single exponential conduc-
tance based synapses, with and without spike timing dependant plastic-
ity and short term plasticity. Other base synapse models (current based
exponential, alpha, etc) are not shown here but fit in exactly as the
SynapseModel g exp does.

current involves a loop over all possible neighbouring compartments with an operation

vectorised for each compartment. The class hierarchy relevant to conductance based

exponential synapses (SynapseModel g exp) is shown in figureE.1. Here, we have used

multiple inheritance to allow us to efficiently define many combinations of synapse

types. Synapse models have a base synapse type (defining how the synapse operates

without plasticity, e.g. g exp will be a conductance based exponential synapse), it can

then also have short term plasticity (ab for the Abbott model or mt for the Markram

and Tsodyks), spike timing dependent plasticity (stdp), or both. The plasticity models

are defined as separate classes from which the synapse model can inherit from.
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E.2. Data structures for synapse variables:

Synapse models are required to provide a current to be applied to each neuron in the

postsynaptic group. As such they store variables relevant to this calculation as vectors

with an entry for each postsynaptic neuron. As STP model variables are dependent

on the presynaptic firing we store these as vectors with an entry for each presynatpic

neuron. This allows operations to be vectorised over all presynaptic neurons. In the

STDP model Apre is a vector with an entry for each presynaptic neuron, and Apost with

an entry for each post synaptic cell, operations on these can be vectorised over all pre

and post synaptic neurons respectively. Weight updates (equations 2.4.18 and 2.4.19)

can also be vectorised across either the postsynaptic or presynaptic neurons.





APPENDIX F

Inhibitory Synapse Location and the Propagation of Activity

F.1. Introduction

Many clinical and experimental manifestations of epilepsy show alterations in par-

ticular microcircuit motifs which are thought to contribute to the increased propensity

for seizures to occur (Paz and Huguenard, 2015). One such motif is the feedforward

and feedback inhibition provided by parvalbumin-positive fast spiking interneurons.

This subclass of interneuron provides inhibition exclusively to the perisomatic region

of pyramidal cells. This is in contrast to somatostatin positive interneurons which tar-

get more distal areas of the dentritic tree. The aim of this work is to investigate how

the location of inhibitory synaptic input on the post-synaptic cell affects the ability of

a neuronal network to restrain the spread of activity.

F.2. Methods

We used the Virtual Electrode Recording Tool for EXtracellular potentials (VER-

TEX) Tomsett et al. (2015), a Matlab tool, to simulate a network of 5000 multi-

compartmental adaptive exponential integrate and fire neurons. Our simulation con-

tained:

• Excitatory (81.6% of total) and inhibitory populations (18.4% of total).

• Conductance based synapses.

• Excitatory and recurrent inhibitory synapses were located on the dendrites.

• Inhibitory synapses were located either at the soma or the dendrites of the

post-synaptic excitatory neurons.

• A current injection of 800 pAs for 10 ms to a spatially defined subset of the

excitatory population provided a seizure-like event.

Figure F.1 shows the activity after activity has been initiated by the brief current

injection.
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Figure F.1. Spatially arranged spike raster after stimulation of subset
of neurons. Magenta dots indicate an excitatory neuron firing, blue dots
represent an inhibitory neuron firing. This figure illustrates the simula-
tions we performed, a seizure focus is created in the centre of network by
applying current injection. If this, and recurrent excitatory connections,
are strong enough then activity will begin to spread. Depending on the
network this activity may or may not be restrained by inhibition. In this
case it is restrained by strong somatic inhibition.

F.3. The Firing Rate Of A Single Neuron

Previous results have shown the different effects of inhibition when applied at the

soma or dendrites (Pouille et al., 2013). We reproduced these by presenting our exci-

tatory neuron with increasingly large depolarising inputs at the dendrites and hyper-

polarising input at either the soma or dendrites. This is shown in figure F.2.

F.4. Somatic Inhibition Provides a More Powerful Restraint

We produced simulations with a range of excitatory and inhibitory synapse strengths.

We found that somatic inhibition better restrains the spread of activity, allowing a

higher ratio of excitatory to inhibitory synapse strength before activity propagates to

the edge of our network. This is shown in Figure F.3.
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Figure F.2. The firing rate of the neuron increases most rapidly with-
out inhibition, less rapidly with dendritic inhibition and less rapidly still
when somatic inhibition is present. With dendritic inhibition the same
maximum firing rate is still achievable, but somatic inhibition reduces
this by a half.
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