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Abstract 

Nephrotoxicity is a serious side effect of many drugs due to the kidney being one of the major 

sites for their excretion. In vitro models of nephrotoxicity are therefore paramount in drug 

development process, which would be used to detect early stages of drug-induced toxicity. 

Most current proximal tubule models have their limitation, not only due to the lack of 

expression of some of the major drugs transporters, but also the lack of species-specific 

properties. This study investigates the use of human and rat primary proximal tubule cells as 

in vitro models of nephrotoxicity.   

Human and rat proximal tubule cells (PTCs) were isolated and cultured from cortical tissues of 

the kidney. The cells form highly polarised monolayers that were exposed to polymyxin B, 

gentamicin and cisplatin – all well-known nephrotoxins. Cell viability and LDH-based cell death 

were measured, alongside the production of renal toxicity biomarkers, KIM-1, NGAL and 

clusterin.  

As expected, cell viability of the monolayers after polymyxin B, gentamicin and cisplatin 

challenge deceased. The proportion of cells alive was dependent on the concentration and 

period of exposure of the nephrotoxin. For example, the cell viability of rat PTCs treated with 

gentamicin for 48h decreased by 41% than control cells (P < 0.01). Similarly, human PTCs 

treated with cisplatin showed a significant decrease (39%, P < 0.01) in cell viability when 

compared with non-treated cells. This relationship was also observed in LDH-based cell 

viability. Higher levels of KIM-1, NGAL and clusterin secretion were detected when human and 

rat PTCs were treated with nephrotoxins. All three biomarkers were predominately secreted 

across the apical membrane of the PTCs monolayers. For instance, KIM-1 level across the apical 

membrane was 5.25±1.01 ng/ml after polymyxin B treatment for just 24h, which was 

significantly higher than across the basolateral membrane at 0.81±0.31 ng/ml. The levels of 

biomarkers secretion were also found to be dependent on concentrations of nephrotoxin and 

period of exposure. For example, rat PTCs treated with 250 µg/ml polymyxin B for 24h 

produced 9.8±1.2 ng/ml of KIM-1, which increased to 25.8±2.5 ng/ml with 48h challenge, an 

increase of more than 2-fold (P <0.01).  
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The mechanisms of toxicity were also investigated by pre-treating the PTCs with supposedly 

nephron-protectant, rosuvastatin, cilastatin and cimetidine, prior to nephrotoxin exposure. 

While 50 µM rosuvastatin did not change the cell viability nor KIM-1 expression levels in human 

and rat PTCs, the pre-treatment of rosuvastatin with polymyxin B increased cell viability by 15 

% when compared to polymyxin-B only treatment. Similarly rat PTCs treated with 250 µg/ml 

gentamicin and 40 µM cilastatin for 48h showed KIM-1 at levels of 28.8±0.27 ng/ml, compared 

with 28.7±0.5 ng/ml in cells treated with only gentamicin, giving a decrease of 29 % (P < 0.001). 

Another instance showed human PTCs treated with 250 µg/ml polymyxin B and 50 µM 

rosuvastatin for 24h produced clusterin at significantly lower level than cells treated with 

polymyxin B alone (42.3±12.2 ng/ml and 95.6±18.1 ng/ml, P < 0.001, respectively). These data 

suggest mechanisms of the aminoglycoside uptake could be via megalin/cubilin receptors, 

which were inhibited by rosuvastatin and cilastatin.  

Another goal of this project was to investigate the influence of cisplatin treatment on p53, 

caspase 3, caspase 8 and caspase 9 in human and rat PTCs. These factors are important in the 

induction of apoptosis and would provide mechanistic data of nephrotoxicity. The activity and 

mRNA levels of the caspases in PTCs were increased after cisplatin treatment. For example, 

human PTCs treated with cisplatin, mRNA level of caspase 3 appeared to be increased 

significantly (P< 0.01) with the treatment of cisplatin (3.51±0.34%) compared to control. The 

co-treatment of cimetidine with cisplatin did decrease caspase 3 mRNA levels significantly to 

(2.45±0.32, P< 0.05) when compared only cisplatin treatment. These data revealed the 

mechanism of how cisplatin may cause nephtoxocitiy in these PTCs.  

Taken together, these data show the utility of human and rat PTCs as in vitro models for the 

study of nephrotoxicity, and their potential in elucidating the mechanisms of action of 

polymyxin-B, gentamicin and cisplatin induced toxicity.  
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1 Introduction 

1.1 The kidney 

The kidney is an organ that carries out several important functions, such as the clearance of 

metabolites and drugs. A pair is located towards the back of the abdomen of many mammals 

and the tissue can be divided into three regions; the cortex, the medulla, and the renal pelvis. 

The anatomy of a human kidney can be seen in Figure 1.1. The functional unit of the kidney is 

the nephron [1], each beginning with the glomerulus, which carries out the infiltration of the 

blood [2], and continues as tubule where reabsorption and active secretion occurs. The tubules 

of the nephron and their contents then open up to the bladder via the collecting duct, where 

waste product is stored temporally before expelled [3].  

The importance of the kidney in drug clearance is illustrated in a study which identified that, 

out of a sample of 330 clinically relevant drug molecules, around 30 % undergo renal clearance 

[4]. With such high proportion of drugs cleared by the kidneys, and the increase in use of 

prescription drugs, it is not surprising that the incidence of chronic and acute kidney injury are 

spiking [5, 6].  

The process of renal clearance is a result of three mechanisms: glomerular filtration, tubular 

secretion and tubular reabsorption. Filtration is the movement of fluid from blood into the 

lumen of the nephron. Reabsorption is the process of moving substances in the filtrate from 

lumen of the tubule back into the blood. Secretion removes selected molecules from the bold 

and adds them to the filtrate in the tubule lumen [7]. Secretion is a more selective process that 

usually uses membrane proteins to move molecules across the tubule epithelium. It is 

considered a two-step process consisting of uptake of the molecule across the basolateral 

membrane into the cell followed by exit across the apical membrane [8]. This uptake process 

is often mediated by the solute carrier (SLC) transporter superfamily, of which members 

include organic cation transporters (OCT) and organic cation transporters (OAT). The efflux of 

molecules across the apical membrane of proximal tubule cells is typically mediated by the ATP 

binding cassette (ABC) superfamily of transporters, such as breast cancer resistance protein 

(BCRP), multidrug resistance protein 1 (MDR1), and multidrug-resistance associated protein, 

although SLC transporters may also be involved.  
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These transporters undoubtedly play an important role in the clearance of drugs. However, 

they also contribute to the accumulation of the drugs in the proximal tubule, which can lead 

to nephrotoxicity [9, 10]. Indeed, approximately 20% of nephrotoxicity incident is induced by 

drugs, and some potent medicine such as those used in chemotherapy or cancer treatment 

medicine has been limited due to their nephrotoxic effects [11, 12].   

 

 

 

Figure 1.1: Anatomy of the human kidney. 

On the surface of a bisected human kidney the cortex and medulla are distinct. The pyramids' 

apexes have little openings leading into the calyzes of the renal pelvis which drains the urine 

that is produced through the ureter into the bladder. For rat, only single renal pyramids are 

found in the medulla of their kidneys.   



3 
 

1.2 Drug transporters 

The renal proximal tubule plays a vital role in the excretion of a wide range of xenobiotics and 

endogenous metabolites. Tubular secretion can be regarded as a two-stage process consisting 

of xenobiotic absorption across the basolateral membrane into the cell followed by exit across 

the apical membrane[13]. The uptake of molecules from circulation across the basolateral 

membranes of proximal tubular cells is often mediated by the members of the solute carrier 

(SLC) superfamily, whereas the efflux of molecules across proximal tubule cells apical 

membrane is typically mediated by both ABC and SLC transporters. A summary of most of the 

characterised transporters of human and rat PTCs are shown in Figure 1.2 and Figure 1.3. 

1.2.1 MATE  

Multidrug and MATE proteins are widely distributed across mammalian tissues[14]. Bacterial 

MATE transporters were well known as cationic / H+ or Na+ exchangers, but mammalian MATE 

proteins were only described in recent years [15]. There are two highly expressed MATE 

proteins found in the human kidneys–MATE1 and MATE2-K [14, 16]. MATE2-K is an isoform of 

MATE2 that is unique to the human kidney. Another MATE2 isoform is found in the brain 

exclusively and is referred to as MATE2-B[16] . In rat tissues, rat Mate1 is also abundantly 

expressed, but curiously not in the liver [17, 18]. There is also no Mate2 mRNA detected while 

rat Mate1 is found in the kidney[19]. Human MATE1, MATE2-K and rat Mate1 are located on 

the apical membrane of the proximal tubular cells [14, 18]and are therefore considered to be 

significant toxicity barriers. Human MATE1 and MATE2-K, and rat Mate1 are H+-coupled 

organic cation transporters found in the proximal tubular cell apical membrane. They can 

transport a variety of organic cations and share substrate close to OCT including TEA, MPP+, 

metformin, and cimetidine [20, 21]. These also bear certain organic anions, including estrone 

sulphate [22]. 

Affinities of MATE1 and MATE2-K for cationic substrates also vary from those of OCTs. For 

example, when metformin was introduced to MDCK cells transfected with OCT2 only, 

metformin accumulation was higher when compared with OCT2 and MATE1 doubly-

transfected cells. However, metformin was not saturated in transfected cellsOCT2/MATE1 

over a variety of concentrations, indicating efflux capacity by MATE1 [23]. Cimetidine was also 

shown to be a more active metformin transport receptor by MATE1 compared with OCT2 [24]. 
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This drug interaction with cimetidine may result in metformin uptake in proximal tubular cells, 

since drug use by OCT2 inhibits MATE less efficiently than efflux throughout the apical 

membrane. Therefore, OCTs and MATE's in renal proximal tubules are believed to form organic 

cation transport systems. 

1.2.2 MRP 

The multidrug resistance-associated protein (MRP) family is another subgroup of the ABC 

family involved in substrate efflux in the proximal tubule. Members of this family include nine 

structurally-related (MRP1-9) proteins with a wide distribution [25]. Every member works as 

lipophilic anion efflux conveyor and is expressed either on the epithelial apical or basolateral 

membrane[26]. In the drug-resistant lung cancer cell line H69AR, MRP1 was first identified, 

suggesting that this carrier has a role in drug resistance in cancer cell. MRP1 was found in the 

basolateral membrane of the distal and collecting tubular cells in the mouse kidney but not in 

the proximal tubule cells [27]. Subsequently MRP2, MRP3, MRP4 and MRP5 were identified in 

several cancer cell lines and tissue samples, and many medicines including anticancer and 

antiviral agents have demonstrated as substrates of MRPs [28]. 

1.2.3 MDR1 

Another member of the ABC superfamily is the multidrug resistance protein 1 (MDR1). It 

carries a wide variety of substrates including drug molecules and, like BCRP, MDR1 expression 

in the cells gives multidrug resistance[29]. In humans, one gene encodes MDR1[30, 31], 

whereas in rats there are two gene isoforms; Mdr1a and Mdr1b[32]. Human MDR1 can be 

found in different tissues, including the kidney in the apical surface of the proximal tubular 

cells [33]. Likewise, Mdr1a and b rats are widespread in all tissues.  

1.2.4 OCT 

Transport in a kidney of the OCT family's organic cations is an important way of removing blood 

from the urine. Like several OATs, rats Oct1 and Oct2 were initially identified and cloned from 

rat kidneys prior to the identification of human versions. Human OCT1 is mainly present in 

liver, while rat Oct1 is omnipresent in both liver and kidney and low in other tissues. In the 

human kidney, another member of the transport family (OCT3). The basolateral membrane of 
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the proximal tubules is located in all three transporters[34]. OCT3 is found in the kidney of 

humans and transport cations; but its role in nephrotoxicity is still unknown[35].  

1.2.5 OAT 

The main movement for organic anions (OAs) is happening the proximal tubule, which are 

extracted from the blood and passed into the urine[36]. OAs are secreted in at least two stages 

in PTCs, namely exogenous substrates (e.g. drugs) and endogenous substrates (e.g. urate)[37]. 

A well-known group of uptake transporter is that of the organic anion transport (OAT) family, 

which is focused on basolateral membranes in human proximal tube cells, including OAT1, 

OAT2 and OAT3[38]. 

1.2.6 Megalin/Cubilin  

Megalin is a transmembrane protein of (600 kDa) from the family of low density lipoprotein 

receptors[39]. The extracellular domain of megalin consists of four clusters of repeats rich in 

cysteine, which are thought to be involved in ligand binding, and a variety of ligands have been 

identified. Megalin contains a single domain of transmembrane (23 amino acids), and the 

receptor has a cytoplasmic tail of 209 amino acids intracellular C-terminal. Megalin cytoplasmic 

domain regulates the trafficking of receptors and endocytosis [40]. Megalin is highly expressed 

on the apical membrane of PTCs. 

In particular, it is located in the brush border, endocytic vesicles, dense apical tubules and in 

lysosomes to some extent[41]. Clinical markers for the endocytic function of megalin are 

glomerular-filtered low-molecular weight proteins, such as α1-microglobulin, β2- 

macroglobulin and liver-type fatty acid binding protein[42]. Megalin also mediates the 

absorption of nephrotoxic substances by PTCs, which lead to the development of chronic 

kidney disease and acute kidney injury[43]. 

Cubilin is a large extracellular 460 kDa glycosylated protein composed of 27 C-terminal CUB 

domains (C1r/C1s complement, and bone morphogenic protein 1), which is thought to be 

responsible for ligand binding[39].The cubilin N-terminal part consists of eight repeats of the 

epidermal growth factor and a stretch of 110 amino acids. Cubilin is an extracellular protein 

and interacts for membrane localization and endocytosis with other membrane proteins[44]. 
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It is believed that the proximal tubule cubilin interacts with megalin and forms a multireceptor 

complex with the internalization of the complex and bound ligands by megalin driving. 
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Figure 1.2: A summary of the uptake and efflux transporters expressed within human renal 
proximal tubule cells.  



8 
 

 

Figure 1.3: A summary of the uptake and efflux transporters expressed within rat renal 
proximal tubule cells. 
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1.3 Nephrotoxicity 

Nephrotoxicity refers to the continuous accumulation of the toxin concentration inside the 

kidney, and as a result affects the normal functioning of the kidney renal[7]. While medications 

generate approximately 20% of nephrotoxicity, older medicine raises the incidence of 

nephrotoxicity to 66% as the average lifetime increases. It is therefore imperative noting that 

nephrotoxicity may take place as a result of various forms of drug intake as the excessive 

accumulation of drugs without creating an effective path for eliminating them may affect the 

normal functioning of the renal in one way or another. It is worth noting that nephrotoxicity is 

caused by substances known as the nephrotoxins[7]. The level of the nephrotoxicity advances 

or worsens with the stage of any form of kidney failure. General nephrotoxicity pathways 

include changes in glomerular hemodynamics, toxicity of tubular cells, inflammation, crystal 

nephropathy, rhabdomyolysis, and thrombotic microangiopathy [45]. In concentration and 

reabsorption by glomerulus, PTCs are exposed to drugs and are affected by drug Toxicity[46]. 

Drug include one of the major substances that may lead to the occurrence of the 

nephrotoxicity. For instance, heroine, as well as pamidronate are famous for leading to the 

glomerulosclerosis focal segmentation.    

1.4 Kidney biomarkers 

Due to the limitation of serum creatinine, it is important to develop and establish new 

biomarkers to detect early stages of kidney injuries. A biomarker is a characteristic that is 

measured and evaluated as an indicator of normal biological or pathogenic processes, or 

pharmacologic response. Biomarkers should show the relationship and differences between 

diseases state [10]. An example of a class of kidney injury biomarkers is the urinary enzymes. 

These enzymes are normally found in the tubular epithelial cells and released into urine during 

cellular stress, which may be an indication of nephrotoxicity. Thus, enzyme detection in the 

urine provides valuable information not only to the site of tubular injury (proximal or distal 

tubule) but also the severity of injury [45]. These enzymes include alanine aminopeptidase, 

alkaline phosphatase, α-glutathione-S-transferase, γ-glutamyl transpeptidase, π-glutathione-

S-transferase, and N-acetyl-D-glucosaminidase [12]. Alongside the enzymes, high molecular 

weight protein also can be detected in urine, which is a sign of damaged glomerulus and can 

be construed as kidney injury [45].  
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1.4.1 KIM-1 

Kidney injury molecule-1(KIM-1 also named TIM-1 and HAVCR-1) is a glycoprotein (104 kDa) 

cell membrane type I, which is highly preserved in rodents, dogs, primates and humans[47]. 

KIM-1 is also a receptor of phosphatidylserine found in renal epithelial cells, which recognizes 

apoptotic cells and enables phagocytosis to clear them[48]. In normal kidney tissue, KIM-1 is 

not detectable, but is inducible by ischemic and toxic insult[49]. KIM-1 expresses in high 

amounts in the apical membrane of surviving proximal tubule epithelial cells and is detectable 

in the urine[50]. KIM-1 mRNA is up-regulated during proximal tubular injury and the 

ectodomain of KIM-1 protein (90 kDa) is transferred from the membrane of the brush border 

into the urine[51]. Many studies have shown that patients with subclinical AKI show an 

increase in urinary KIM-1 levels depending on time. However, the clinical relevance of changes 

in subclinical AKI in KIM-1 is not entirely clear[48]. 

1.4.2 NGAL  

The NGAL gene encodes a small protein (25 kDa) linked to gelatinase from human neutrophils 

and a lipocalin superfamily member with different immunological functions[52]. It is expressed 

in inflammatory responses, but it is also expressed in different tissue epithelial cells[53]. NGAL 

was significantly induced in the mice's kidneys in a transcriptomic study to identify ischemia- 

related genes[53]. Plasma NGAL was found to be an accurate marker of AKI in human patients 

undergoing cardiac surgery[54]. Usually, urinary NGAL is expressed in low concentrations, but 

renal tubular epithelial injury induces its expression[55]. Further work has shown that NGAL is 

up- regulated and enriched in proliferating mouse proximal tubule cells after ischemia[56]. 

Recently, the secretion of NGAL protein in the urine has gained interest in the use of AKI as a 

biomarker[55]. In patients already affected by chronic nephropathies, NGAL may eventually 

have prognostic value in predicting not only acute but also chronic deterioration in renal 

function[57].  

1.4.3 Clusterin 

Clusterin is also another glycoprotein that is useful in the assessment of nephrotoxicity. 

Clusterin was first isolated from rat testes fluid by Blaschuk, Burdzy, and Fritz in 1983. It is 

found in the proximal convoluted tubule, as well as towards the end of the distal convoluted 

tubule. As such, it can be used as an important biomarker as it can be detected in the patients’ 
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urine, especially those suffering from acute injury of their kidneys. Clusterin had been 

measured using radioimmunoassay, and it’s had been correlated with the increase of serum 

creatinine in a gentamicin-induced renal injury model in rats [58], although in another study 

clusterin mRNA and protein level did not rise until day 5 of treatment with cisplatin in some 

renal models [59].  

1.4.4 Cystatin C 

Cystatin C (Cys C) is one of the all nuclear cells within the cystine proteinase inhibitor family. 

Cystatin C was proposed as an alternative filtration marker to creatinine, a small non-

glycosylated 13 kDa basic protein. All nuclear cells and proximal tubule cells secrete CysC and 

98% of this protein is absorbed by renal tubules. Cys C has been reported as an early kidney 

injury marker. Cys C has no influence on muscle mass or diet and can thus better correlate than 

creatinine to GFR measured. It is believed that Cys C is less affected by age, sex and race than 

creatinine.  

1.5 Nephrotoxins drugs  

Nephrotoxic drugs are kidney-harming compounds that could cause renal damage. In this 

study 3 nephrotoxins drugs used (gentamicin, polymyxin B and cisplatin).  

1.5.1 Cisplatin 

Cisplatin, an effective chemotherapeutic drug, used in the treatment of many solid tumors, 

such as testicular, ovaries, esophageal, head and throat, and bladder tumors[60]. Because of 

its side effects, especially nephrotoxicity, it has limited use in medical practice[61]. About 25 

% -40% of patients in clinical practice have renal dysfunction following cisplatin 

treatment[62].The mechanisms involved in cisplatin are still unclear, cellular damages, renal 

tubular cell apoptosis, vascular dysfunction, inflammatory response and oxidative damage may 

be causing them[60]. The first animal study report of nephrotoxicity in 1971 showed 

histopathological changes of acute necrosis and azotemia. In 14% to 100% of the cumulative 

doses, early clinical usage cisplatin saw dose-related acute renal failure in 14% to 100% of the 

patients[63]. Cisplatin clearance occurs primarily in the kidney through both glomerular and 

tubular filtration. Cisplatin concentration in the kidney exceeds its plasma concentration, 

indicating that the drug is accumulated in renal cells[64]. Two different transporters have been 
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identified in recent years, namely copper transporter 1 (Ctr1) and organic cation transporter 2 

(OCT2), as responsible for the active transport of cisplatin to mammalian cells[65]. 

Downregulation of Ctr1 in kidney cells attenuates the accumulation and subsequent toxicity of 

the cisplatin which indicates that Ctr1 partially at least mediates the accumulation of the 

cisplatin to the kidney cells[66]. However, it has not been studied whether Ctr1 plays a role in 

cisplatin - induced nephrotoxicity in vivo. OCT2 is mainly located in renal proximal tubular cells, 

as opposed to the universal expression of Ctr1. Initially the transport of other OCT2 substrate 

into kidney cells was suppressed by cisplatin[67]. Some OCT2 gene mutations are associated 

with a reduced risk of nephrotoxicity caused by cisplatin in patients [68]. 

1.5.2 Polymyxin B  

Polymyxin B were discovered 1950s from Paenibacillus polymyxa (Bacillus 

polymyxa), however their toxicity has restricted their use[69]. Polymyxin B was prescribed for 

life-threatening gram-negative bacterial infections on its own or in combination with other 

antimicrobials[70]. Polymyxin B is classified as an antibiotic cyclic lipopeptide and includes a 

decapeptide sequence containing a polycationic heptapeptide ring and a fatty acyl tail. 

Polymyxin B amphipathic chemistry for antibacterial activity is essential[71]. The nephrotoxic 

effects of polymyxin B include mechanisms that kill bacteria through lipid an interactions, 

disrupting the Ca2+ and Mg2 + bridges, which destabilize the molecules of lipopolysaccharide 

in the bacterial membrane[70]. The nephrotoxicity of polymyxin B therefore appears to be due 

to effects on the content of D-amino and fatty acid components that increase membrane 

permeability and cation influx[69]. Recent in vitro and in vivo studies showed at least three 

main pathways of apoptosis — mitochondrial, endoplasmic reticulum and death receptor— 

which play key roles in polymyxin B induced nephrotoxicity[72]. A study showed, 73 patients 

used polymyxin B, almost 60% developed acute renal injury (AKI). The acute tubular necrosis 

or tubular epithelial cell apoptosis has been characterized by polymyxin B nephrotoxicity[70]. 

In vitro, polymyxin B intake into proximal tubular epithelial cells was demonstrated to be 

saturable and showed a strong affinity to megalin, a low- density lipoprotein receptor, 

expressed on the proximal tubules apical membrane. Therefore, megalin is assumed to play 

an important role in the absorption of polymyxin B into renal tubular cells; the identification 
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of an effective antagonist off megalin will be a new direction in preventing polymyxin B 

nephrotoxicity [73]. 

1.5.3 Gentamicin  

Gentamicin is a widely used and highly effective antibiotic of aminoglycosides[74]. It is usually 

used to treat patients with gram-negative bacterial infections[75]. Gentamicin effectively links 

to prokaryotic ribosomes and mistranslates the inhibition of protein synthesis leading to 

bacterial death[74]. The clinical use of gentamicin is limited because of it is serious 

complications such as nephrotoxicity and ototoxicity. Gentamicin nephrotoxicity clinical 

symptoms are renal tubular injury and glomerular filtration dysfunction[76]. Approximately 

10-25% of patients with a single dose of gentamicin show signs of nephrotoxicity. Gentamicin 

causes tubular damage by necrosis of tubular epithelial cells, mainly in the proximal tubule, 

and changes in the function of the main cellular components involved in water transport and 

solutes[76]. Treatment of animals with gentamicin is associated with apoptosis and tubular 

epithelial cell necrosis. The increased accumulation of gentamicin in proximal tubules is 

associated with the expression of protein and cation (megalin and cubilin complex) transport 

molecules in apical membrane of the proximal tubules[75]. This complex is known to be 

responsible for the transportation of gentamicin by endocytosis[75]. The glomerular filtration 

actively eliminates gentamicin. Approximately 3 to 5% of the entered gentamicin is actively 

reabsorbed in proximal tubules and cause necrosis of the proximal tubules segmentS1-S2[77]. 

The accumulation of undigested phospholipids in lysosomes is closely linked to genetically 

modified nephrotoxicity. Gentamicin acts directly and indirectly on mitochondria in cytoplasm 

and activates the intrinsic apoptosis pathway, breaks the respiratory chain, reduces the 

synthesis of ATP and leads to oxidative stress by creating superoxide anion and hydroxyl 

radical, which leads to cell death. The indirect mitochondrial effect is mediated by increased 

levels of protein X (Bax) associated with Bcl-2 by inhibiting proteasomal degradation. In vitro 

studies have shown that the main aspect of gentamicin cytotoxicity is its cytoplasm 

concentration, not the accumulation of lysosomes as previously thought[75].  

1.6 Limitation of current clinical methods to measure nephrotoxicity 

Current clinical method to access renal function or nephrotoxicity is to measure the creatinine 

levels in the serum and/or urine. Creatinine is a waste product from the body that comes from 



14 
 

muscle activity. It is normally removed from blood by kidneys, but when kidney function 

decreases, the creatinine level in the blood increases. The Glomerular Filtrate Rate (GFR) is 

another important assessment method of the level of effectiveness of the kidney in filtering 

the blood [1]. The blood urea nitrogen (BUN) level is also deemed another important method 

for measuring the level of waste in the blood. Higher level of BUN is a clear indication of low 

level of functioning of the kidney while the reverse means the vice versa [78], as the kidney is 

expected to regulate the amount of nitrogen or urea in the blood.  

Whilst serum creatinine level and BUN are established methods to measure renal function, 

they are limited in providing early signs of chronic kidney diseases. For instance, the level of 

creatinine production is corresponding to body weight, and it reduces with age and is slower 

in females than in males, meaning there is no physiologically normal level to be used as a 

baseline [79]. Kidney damage can be found with small rise or no change in serum creatinine 

because of the instability of the normal response to protein change; tubular secretion of 

creatinine rises after a protein meal healthy people, but not in patients with renal diseases 

[80]. Also, Tomlanovich et al. found heart transplant patients receiving cyclosporine (CsA), a 

known nephrotoxin had their creatinine level increased only after GFR has become depressed 

below normal values by two thirds or more [81].  

1.7 Project aims 

There is a pressing challenge for the pharmaceutical industry to develop less nephrotoxic drugs 

in recent years. However, assessment of nephrotoxicity remains difficult and usually detected 

late in the development pipeline due to lack of good pre-clinical models. Therefore, it is 

important to find a model that can be more physiologically relevant in terms of drug handling 

and nephrotoxicity. Most models of transporters in the kidney have been used are from human 

and animal cells. However, they have several limitations, one of which is that they lose the 

expression of many inherent renal transporters. For example, HK-2 proximal tubule cells do 

not express SLC22 transporters (e.g. OAT1, OAT3, and OCT2) at the mRNA level, which are 

ubiquitous in the proximal tubule. Similarly, ABCG1 (BCRP) is also not detected. This suggests 

HK-2 cells are limited in vitro model of drug transporter expression in the human proximal 

tubule [82]. In contrast, primary PTCs has been shown to be a good renal model for xenobiotic 

handling, due to the cells maintaining their full complement of endogenous renal transporters 
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at the protein levels (reference). The cells appear to be more physiologically relevant and 

better indicator of what happens in vivo. The renal PT is therefore could be an ideal in vitro 

model for nephrotoxicity tests.  

With that in mind, the purpose of this study is to characterise and validate primary proximal 

tubule cells from human and rat kidney as in vitro models for drug safety and nephrotoxicity 

studies. Proximal tubule cells will be isolated from human and rat kidneys as outlined in Brown 

et al. (2008), and characterise the cells in the presence of various nephrotoxins. Firstly, to 

ensure the models retain their differentiated functions, the treated monolayers will be 

assessed at the mRNA and functional expression levels for important transporters of the ABC 

and SLC families. Secondly, the expression of several nephrotoxicity biomarkers (KIM-1, NGAL 

and clusterin), along with cell viability, will be measured in the models when they are exposed 

to the nephrotoxins to determine their use in predicting nephrotoxicity. In addition to the 

above mentioned, it is also necessary to highlight the differences in human and rat proximal 

tubular cells on renal drug handling, which could be useful in extrapolating inter-species data.  
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2 Materials and Methods  

2.1 Materials 

Cell culture reagents used in this project included high-glucose Dulbecco’s modified eagles 

medium (HG-DMEM), Ham’s F-12 nutrient mixture, Roswell Park Memorial Institute (RPMI)-

1640 medium, foetal calf serum (FCS), penicillin, streptomycin, L-glutamine, trypsin with 0.02% 

ethylenediaminetetraacetic acid (EDTA), collagen, Dulbecco’s phosphate-buffered saline (PBS) 

and mouse epidermal growth factor (EGF) purchased from Sigma-Aldrich (UK). Percoll was 

bought from GE Healthcare Life Sciences (UK), type 2 collagenase from Worthington 

Biochemicals (USA), and 10X Hanks’ balanced salt solution (HBSS) from Invitrogen (USA). Renal 

epithelial cell growth medium (REGM) SingleQuot kit supplements and growth factors 

(containing insulin, hydrocortisone, gentamycin amphotericin-B (GA) - 1000, adrenaline, tri-

iodothyronine (T3), transferrin, FCS and human EGF) were procured from Lonza (Switzerland). 

Cells were grown on various cell culture vessels bought from Corning (UK). These included 24-

well Transwell® permeable insert cell culture plates (with a surface area of 0.33 cm2 per insert 

and polycarbonate filter pore size of 0.4 µm), plastic 96-well plates (0.33 cm2 surface area), 

plastic 12-well plates (3.8 cm2 surface area), T25 flasks (surface area 25 cm2) and T75 flasks 

(surface area 75 cm2).  

Direct-zol RNA MiniPrep kit by Zymo Research Ltd, USA was used to isolate total cell RNA. 

Moloney murine leukaemia virus (M-MLV) reverse transcriptase, M-MLV 5x reaction buffer, 

RNasin, magnesium chloride, deoxyribonucleotide triphosphate (dNTP) mix, 5x Green GoTaq® 

reaction buffer, GoTaq polymerase, and pGem-T-easy cloning vector kit (consisting of T4 DNA 

ligase, pGem®-T vector, 2x ligation buffers) were procured from Promega (UK). Random 

hexamers were obtained from GE Healthcare Life Sciences, and MiniElute PCR purification kit 

from Qiagen. Agarose, EDTA, boric acid, ethidium bromide were bought from Sigma Aldrich, 

UK. Bespoke primers were ordered from IDT DNA (Belgium). 

2.2 Isolation of proximal tubule cells 

Human primary proximal tubule cells (PTCs) were isolated from healthy, transplant quality 

human kidneys with at least a glomerular filtration rate of 60 ml/min, supplied by a UK licensed 

Tissue Bank with full ethical approval for commercial use for drug development and safety 
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screening. Rat PTCs were isolated from kidneys of 8 to 12-week-old male Sprague-Dawley rats 

after they had been humanely euthanised. All cell culture work was performed in a class II 

vertical laminar flow hood to ensure sterility. All kidneys were first decapsulated before thin 

cortical slices were taken with a sharp scalpel. This process was repeated until the medulla was 

reached, and the cortical slices finely chopped to around 1 mm3 pieces. 25 ml of isolation 

medium was used to suspend every 1 g of minced tissue. The composition of the isolation 

medium can be found in Table 1. Type 2 collagenase (activity of ≈300 units/mg, working 

concentration of 1 μg/ml) was added to the suspension to initiate the digestion of the tissue. 

The suspension was kept shaken for 2 hours at 37 °C before cell separation. To separate the 

cells, the suspension was passed through a 40 μm nylon sieve to remove undigested material 

and then centrifuged gently at 240 relative centrifugal force (RCF) for 10 minutes. In this and 

all subsequent centrifugation steps the temperature was maintained at 4 ˚C. The resulting cell 

pellet was resuspended in fresh isolation medium before the cells were pelleted again by 

centrifugation (this is considered the wash step). The cell pellet was then loosened and gently 

resuspended again in fresh isolation medium. 

 

Supplements Final concentration 

RPMI-1640 Medium - 

FCS 5 % 

Penicillin/Streptomycin 200 units/mL, 200 

µg/mL respectively. 

Table 1: Composition of isolation medium used in the isolation of human and rat PTC. 

 

To isolate the proximal tubule cells, the cell suspension was loaded on top of discontinuous 

Percoll gradients with densities of 1.04 g/ml and 1.07 g/ml, and centrifuged at 1500 RCF for 25 

minutes. After centrifugation, PTCs at the intersection of the gradients were aspirated and 

washed as previously described. The cells were resuspended in warm renal epithelial growth 

medium (REGM). The compositions of human and rat REGM are shown in Table. The cell yield 

was estimated using Cellometer Auto T4 Cell Counter (Nexcelom Bioscience LLC, USA) after 
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passing the cell suspension through a large bore needle three times to separate aggregated 

cells. 

Isolated cells were seeded on to 24-well Transwell inserts (surface area of 0.33 cm2), at a 

density of 75,000 cells in 200 µl of REGM per insert, and the inserts submerged in 700 µl of 

REGM. PTCs were also seeded on to 24-well cell culture plates at 18,000 cells per well with 500 

µl of REGM, 96-well cell culture plates at 7200 cells per well with 200 µl of REGM, and T25 cell 

culture flasks at a density of 1.875 million cells in 5 ml of REGM. The medium was refreshed 

after 24 hours of initial seeding, and thereafter every two days. PTCs were maintained in a 

humidified incubator at 37 ˚C with 5 % CO2 and 95 % air.  

Monolayers were then used for experiment as and when they achieve confluency as 

determined by their TEER values. This usually was around 5-6 days after culture for rat, and 6-

7 days for human. The monolayers used within these days did not show donor to donor 

variations in previous studies. 
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Ingredient Amount 

DMEM/Ham’s F-12 (1:1) 500 mL 

Supplements  

L-Glutamine 2.5 mL 

Mouse EGF 0.5 mL 

Insulin 0.5mL 

Hydrocortisone 0.5 mL 

GA 0.5 mL 

FCS 2.5 mL 

Adrenaline 0.5 mL 

T3 0.5 mL 

Transferrin 0.5 mL 

Penicillin/Streptomycin 2.5 mL 

Table 2: The composition of rat REGM. 

 

2.3 Transepithelial electrical resistance (TEER)  

Confluency of the cells was determined by visual inspection of the cell culture flask under a 

phase contrast microscope. Growing PTCs on uncoated Transwell plates improve the 

differentiated status with an expression of a variety of functional drugs transporters. A study 

showed improved protein expression and functionality of many drug transporters when 

primary human PTCs were grown on Transwell filter plates. The polycarbonate philtre is 

calculated to allow the cells to be polarised and bathed in a medium from the apical and 

basolateral sides, to replicate the physiology of the in vivo cells and thus to maintain their 

differentiated state. In our project, PTCs growth was monitored by microscopic examination 

and also TEERs value was measured as well. In other studies, to characterize PTCs, examination 

of alkaline phosphatase activity (the proximal tubule brush border enzyme) and AGT mRNA 

expression was used to proof of growing PTCs [83]. The transepithelial electrical resistance 

(TEER) was used as an indicator of monolayer confluency on the Transwell inserts. The 

monolayer resistance, which comprises the resistance of the filter and cell monolayer, was 
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measured using an electric voltohmmeter (EVOM, World Precision Instruments, UK). The TEER 

of the monolayers, with the unit of Ω.cm2, was calculated by subtracting the base resistance 

created by the filter submerged in culture medium (90 Ω) and then multiplying it by the surface 

area (0.33 cm2) of the filter. Only monolayers with TEERs greater than 80 Ω.cm2 were used in 

experiments.  

2.4 CellTiter 96® AQueous One Solution Cell Proliferation Assay (MTS) 

We used cellTiter 96® AQueous One solution cell proliferation assay to quantify the live cells 

(Promega, Madison, WI, USA; #G3582). The MTS tetrazolium compound is reduced by cells to 

a coloured formazan product that is soluble in the tissue culture medium. This conversion is 

carried out by NADPH or NADH in metabolically active cells produced by dehydrogenase 

enzymes. Human and rat PTCs were treated with different nephrotoxins to quantify the cell 

viability. Confluent PTCs seeded onto 96-well plates were cultured with a concentration of the 

nephrotoxins in the REGM for a period of 24 or 48 hours. Spent media were collected and the 

cells were washed with warmed modified-Krebs buffer three times before equilibrated with 

100 µl of modified-Krebs buffer for 30 minutes. The composition of the modified-Krebs buffer 

used is shown in  Table 3. After equilibration of the cells to the buffer, 20 µl of MTS was added 

and the plates covered to prevent photo-bleaching of the compounds. The entire set-up was 

maintained at 37 °C by placing the plates on thermostat-controlled heated platforms. The 

change in colour of MTS was monitored spectrophotometrically by taking absorbance readings 

at 490 nm using a microplate reader (BMG Labtech, Germany).  
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Salt Concentration (mM) 

NaCl 140 

KCl 5.4 

MgSO4 1.2 

NaH2PO4 0.3 

KH2PO4 0.3 

Glucose 5 

CaCl2 2 

HEPES 10 

Tris Base ad hoc to pH 7.4 

                                         Table 3: Composition of modified-Krebs buffer. 

 

2.5 CellTiter-Glo® Luminescent Cell Viability Assay 

Cell viability was measured using CellTiter-Glo Luminescent Cell Viability Kit (Promega, 

Madison, WI, USA; #G7570) by measurement of intracellular adenosine triphosphate (ATP), an 

indicator of metabolically active cells. Human and rat PTCs were treated with nephrotoxins for 

24h and 48h. Cells were cultured in white 96-well plate to decrease luminescence loss. We 

added equal volume of CellTiter-Glo® Reagent to the volume of cell culture medium present 

in each well (50µl of reagent to 50µl of medium). Incubated for 10 min at room temperature. 

The luminescence signal were recorded using a microplate reader (BMG Labtech, Germany).  

2.6 Lactate dehydrogenase (LDH) Cytotoxicity Assay 

The amount of LDH released from human and rat PTCs after nephrotoxins treatment were 

quantify damaged cells as a biomarker for cellular cytotoxicity  by using Pierce™ LDH 

Cytotoxicity Assay Kit (Thermo fisher,IL, USA;TG267605). Release of LDH in the cell culture 

medium, it reduces NAD+ to NADH and H+ through the oxidation of lactate to pyruvate. Later, 

the catalyst (diaphorase) then transfers H/H+ from NADH + H+ to the tetrazolium salt INT to 

form the red colored formazan salt. According to the kit protocol (absorbance at 450 nm, 

background absorbance at the reference wavelength of 600 nm). The average absorbance 
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values of the control and samples, each in 3 repeats, were calculated by subtraction of the 

background absorbance from the measured absorbance.  The cytotoxicity (% of LDH release) 

was calculated as: (treated cells – mean of lysis control cells) × 100.  

2.7 Enzyme-Linked Immunosorbent Assay (ELISA) 

The amount of KIM-1 and NGAL produced by rat PTCs after nephrotoxins treatments were 

quantified. In addition, the amount of KIM-1, NGAL and clusterin were quantified after treated 

human PTCs with different nephrotoxins.  The spent media collected from the above section 

were used in KIM-1, NGAL and clusterin ELISA kits sourced from R&D Systems, USA. The 

protocol for the assay was followed as recommended by the manufacturer.  A 96 well plate 

was coated with a 1/100 solution of capture antibody. The plate was incubated overnight at 

room temperature (RT). The contents of the plate were discarded and wells were washed three 

times using 200µl wash buffer per well (0.05% Tween 20 in 1X phosphate buffer solution (PBS), 

pH 7.2-7.4). Then blocked with 1.0% bovine serum albumin (BSA) solution in 1X PBS for one 

hour at RT.  The plate contents was aspirated and washed three, 100µl of standards diluted in 

100µl of PBS or 100µl of cell culture media were added in duplicate. The plate was incubated 

for two hours at RT and the washing stage was repeated. 100µl of detection antibody was 

added to each well and the plate was incubated for two hours at RT. After another washing 

step was done, 100μl of streptavidin horseradish peroxidase (HRP) diluted in 1.0% BSA was 

added to each well and incubated for 20 minutes out of direct light at RT. A substrate solution 

(1:1 mixture of reagent A (H202) and reagent B (tetramethylbenzidine)) was added to each 

well (100µl) and the plate was incubated away from direct light for a further 20 minutes at RT. 

The addition of 50µl stop solution (2N H2 SO4) was required for each well for 20 minutes. The 

optical density (OD) of the contents was determined was taken using a microplate reader (BMG 

Labtech, Germany) set at 540 nm. The biomarkers levels were normalised to amount of live 

cells based on MTS data. 

2.8 Caspase-Glo 3/7 assay. 

The Caspase-Glo 3/7 assay reagent (Promega, Madison, WI) was used for caspase 3/7 

measurement in treated human PTCs with different nephrotoxins.  The kit provides a 

proluminescent caspase-3/7 substrate, which contains the tetrapeptide sequence DEVD, in 
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addition to a luciferase and a cell-lysing agent. The addition of the Caspase-Glo 3/7 reagent 

directly to the cells well results in cell lysis, followed by caspase cleavage of the DEVD 

substrate, and the generation of luminescence. The level of luminescence is proportional to 

the amount of caspase activity in the PTCs after nephrotoxins treatment and apoptotic renal 

cell death. Luminescence readings were recorded with a microplate reader (BMG Labtech, 

Germany). 

2.9 Quantification of RNA 

Key drug transporters were detected at the mRNA level in human and rat PTC monolayers by 

using endpoint PCR. In addition, the effects of cisplatin on caspas3, caspase8, caspase9 and 

p53in human and rat PTCs were assessed at the mRNA level by using qPCR. Nephrotoxins 

treated PTCs, were washed with PBS before lysed with TRI-reagent and cell total RNA extracted 

using column-based Direct-zol RNA MiniPrep kit by Zymo Research Ltd, USA. The 

manufacturer’s protocol was followed to ensure maximum yield. RNA yield was quantified 

using NanoDrop (Thermofisher, UK), which also provided the A260/280 and A260/230 ratios. 

Only samples with ratios of 1.8-2.2 were used for downstream applications.  

Prior to the start of endpoint PCR and qPCR, the RNA samples were reversed transcribed to 

cDNA. Briefly, this involved incubating 1 µg of cell total RNA with of 0.5 mg/ml random 

hexamers to a total volume of 13 µl at 65 for 5 minutes to ensure denaturing of RNA and 

annealing of primers. A reaction mixture of 12 µl comprising MMLT-RT at 200 units/µl, reaction 

buffer, 2 mM dNTPs and RNasin at 40 units/µl, were added to the RNA samples and incubated 

at 42 ˚C for 2 hours followed by 10 minutes at 90 ˚C for 3 minutes. 

Endpoint PCRs were carried out for genes of interest using GoTaq DNA polymerase (Promega, 

UK). A typical endpoint PCR consisted of 0.25 µl GoTaq DNA polymerase at activity of 5 units/µl, 

2 µl 2 mM dNTPs, 0.5 µM of each primer of the gene of interest, 4 µl of 5X Green GoTaq buffer, 

1.5 µl of cDNA template and molecular grade water to make up to a volume of 20 µl. The 

amplification protocol was as follows: 95 ˚C for 2 minutes, 35 cycles of 95 ˚C for 30 seconds, Ta 

˚C for 30 seconds and 72 ˚C degree for 30 seconds, then an end stage of 72 ˚C for 10 minutes. 

The PCR products were separated by size on a 1.5% agarose gel and visualized with safe view 
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and an UV-transilluminator and verified by sequence analyses. The sequences of the primers 

are listed in Table 4.  
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Gene Accession 

Number 

Sequences Annealing 

Temperature 

Amplic

on Size 

(bp) 

Human 

Megalin 

NM_004525.

2 

F: ATT GAT GGC ACA GGA AGA GA 

R: GCT AGC CTC ATG ACA CTG AT 

57 134 

Human 

Cubilin 

NM_001081.

3 

F:TGA AGG TGT GGG CAG GAA C 

R:GAG ACT GGA AGA CGG CAG TG 

57 120 

Human 

OCT2 

NM_003058.

3 

F:ACC TGG TGA TCT ACA ATG GCT 

R:TGA GGA ACA GAT GTG GAC GC 

58 145 

Human 

OAT1 

NM_004790.

4 

F:ACCAGTCCATTGTCCGAACC 

R:TGTCTGCCGGATCATTGTGG 

56 116 

Human 

MRP2 

NM_000392.

4 

F: CAC CAT CAT GGA CAG TGACAA GG 

R: CCG CAC TCT ATA ATC TTC CCG 

60 60 

Human 

PGP1 

NM_018850.

2 

F:TTCACTTCAGTTACCCTC 

R:GTCTGCCCACTCTGCACCTTC 

58 76 

Rat 

Megalin 

NM_030827.

1 

F:CTACACAGTTTCGGTGCCCT 

R:CAGTTTAACACACAGCCCGC 

57  109 

Rat 

Cubilin 

NM_053332.

2 

F:TGGAGATTCGAGACGGTCCT 

R:GTCCAGATCCGACTGTGTGG 

57  179 

Rat OCT2 NM_031584.

2 

F:ATC CCT GAT GAT CTA CAG TGG 

R:CAA GAT TCC TGA TGT ATG TGG 

57 127 

Rat OAT1 NM_017224.

2 

F:ATG CTG TGG TTT GCC ACT AGC 

R:AAC TTG GCA GGC AGG TCC AC 

59 119 

Rat 

Mdr1a/b 

NM81855.1 F:GTC AAG GAA GCC AAT GCC 

R:AAG GAT CTT GGG GTT GCG GAC 

59 147 

Rat 

MRP2 

NM_012833.

2 

F:GTT CTC GTC CTG GAA GAA GC 

R:TTC AGC AGC TGA GGA TTC AG 

57 170 

Table 4: Sequences of primers used in endpoint PCR for the amplification of human and rat 
PTCs drug transporters.  

  

https://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&id=112380624
https://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&id=112380624
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2.10 Quantitative PCR 

The effects of cisplatin on caspas3, caspase8, caspase9 and p53in human and rat PTCs were 

assessed at the mRNA level by using qPCR. Diluted cDNA produced earlier was mixed with 

SYBR-green Master Mix, 10 µM primer mix of gene of interest and molecular grade water to a 

volume of 10 µl in a well of a 96-well format qPCR plate. PCR has run in a Roche LightCycler 

480 (Roche, UK) with the following protocol: 95 ˚C for 10 minutes, 45 cycles of 95 ˚C for 10 

seconds, Ta ˚C for 20 seconds and 72 ˚C for 10 seconds, followed by melt curve step (cooling 

to 65 ˚C followed by heating to 97 ˚C), and a cooling step. Ta represents the annealing 

temperature of the primers used in the reaction. The primers for the genes of interest were 

designed using the Primer-Blast tool on the National Centre for Biotechnology Information 

website (www.ncbi.nlm.nih.gov). Either forward or reverse primer is intron spanning.  The 

primer sequences are summarised in Table 5. 

The PCR cycle and its corresponding fluorescence from each sample were logged by the 

software LightCycler 480 (version 1.5, Roche, UK). The software calculated the fluorescence 

baseline during the first 15 cycles of the PCR to create a common starting fluorescence 

intensity for all the samples. A threshold level of fluorescence intensity was also defined by an 

algorithm where it was significantly above the background fluorescence but still within the 

linear phase of amplification. The cycle at which a sample produces fluorescence intensity that 

crosses the threshold is termed the threshold cycle (Ct), and is correlated to the starting 

concentration of the cDNA template; the greater the amount of starting cDNA, the earlier the 

Ct. As such, for the purpose of analysis, samples that produced Ct of 35 and above were 

disregarded.  

  

http://www.ncbi.nlm.nih.gov/
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Gene Accession 

Number 

Sequences Annealing 

Temperature 

Amplico

n Size 

(bp) 

Human 

caspase 3 

NM_004346.3 F:ACTCCACAGCACCTGGTTAT 

R:TCTGTTGCCACCTTTCGGTT 

58 148 

Human 

caspase 8 

NM_001080125

.1 

 

F:AAGGAGGAGATGGAAAGGGAAC 

R: AGAGCATGACCCTGTAGGCA 

59 70 

Human 

Caspase 9 

NM_032996.3 

 

F: CAAGAAAATGGTGCTGGCTT 

R: TCCATCTGTGCCGTAGACAG 

58 139 

Human 

P53 

NM_001126118

.1 

 

F: CTGAGGTTGGCTCTGACTGTA 

R: AGCTGTTCCGTCCCAGTAGA 

59 141 

Rat 

Caspase 3 

NM_012922.2 

 

F: GAGCTGGACTGCGGTATTGA 

R: TAGTAACCGGGTGCGGTAGA 

59 113 

Rat 

caspase 8 

NM_012922.2 

 

F: TCTGTTTTGGATGAGGTGACCA 

R: CCCCGAGGTTTGCTCTTCAT 

59 116 

Rat 

caspase 9 

NM_031632.1 

 

F: AGATGGATGCTCTGTGTCCA 

R: AGTGAAGGCCACCTCAAAGC 

58 145 

Rat P53 NM_030989.3 

 

F: GGGAGTGCAAAGAGAGCACTG 

R: CAGCTCTCGGAACATCTCGAA 

60 129 

Table 5: Sequences of primers used in qPCR for the amplification of human and rat PTCs 
caspase3, 8, 9 and p53.  

 

2.11 Transport of Albumin–fluorescein isothiocyanate conjugate (FITC)-albumin 

Human and rat PTCs cultured on 24-well Transwell filter support were used to investigate the 

functional expression of megalin and cubilin using FITC-albumin as the fluorescence substrate 

probe. Culture medium was first aspirated from the insert wells and washed three times with 

warm modified-Krebs buffer. The inserts were then placed in a clean 24-well plate and we 

added 200µl of modified-Krebs buffer to each insert well and 500µl of modified-Krebs were 



28 
 

added to each plate well from the original plate to equilibrate the cells for an hour. For the 

objective of this experiment, the insert wells are referred to as the apical membrane and the 

plate wells are referred to as the basolateral membrane. We used a thermostatically controlled 

heated platform to keep the temperature at 37 ˚C. Experiment was started when apical and 

basolateral solutions were replaced with 30µg/ml albumin in three wells, 30 µg/ml albumin 

and 250µg/ml polymyxin B in another three wells and 30 µg/ml albumin plus 50µM of 

rosuvastatin in three wells too, and incubated for two hours. After that, we washed the inserts 

and plate wells with cold modified- Krebs buffer. We added 0.01% SDS to lysis the cells in both 

side (apical and basolateral) and incubated for 30 min and transferred into a clean 96-well 

plate. The FITC- albumin was measured by using a microplate reader. The raw values are 

expressed as absorbance unit (AU). 

2.12 Transepithelial flux of creatinine and PAH 

The rate of movement of a substrate through a membrane can be measured, and is termed 

flux. When conducted under certain controlled environments, a flux experiment can be used 

to determine the mechanisms upon which the substrate moves across the membrane. In this 

study, the movement of creatinine and PAH from the extracellular environment through the 

apical or basolateral membranes of human and rat PTC monolayers into the cells and vice versa 

under a series of conditions over a period of time was conducted. This would allow the 

identification of the membrane transporters responsible for its movement. 

The flux of creatinine and PAH in the apical-to-basolateral direction is referred to as the 

absorptive flux (JA-B). The movement of creatinine in the opposite direction of basolateral-to-

apical is referred to as the secretory flux (JB-A). In addition to the fluxes, the movement of 

creatinine and PAH from the extracellular environment across either the apical membrane or 

basolateral membrane into the cells in a fixed period of time was also investigated, and 

referred to as the uptake of the substrate.  
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Figure 2.1: Schematics of transepithelial flux of creatinine and PAH by PTC monolayers.  

JA-B denotes the movement of a substrate in the absorptive direction of apical to basolateral, 
whereas JB-A denotes the movement of a substrate in the secretory direction of basolateral to 
apical. In this instance, the brush-border membrane of the PTC monolayers faces the apical 
chamber, which is the equivalent of the tubule lumen in vivo, and the basolateral membrane 
faces the interstitial space/blood.  

 

Culture media were first aspirated from the insert wells before sequential transfer of the 

inserts into three beakers of around 100 ml warm modified-Krebs buffer. The monolayers were 

then equilibrated with differential pH across the apical and basolateral membrane. The inserts 

were placed in a clean 24-well plate, each well containing 1000 µl warm modified-Krebs buffer 

of pH 7.4, and 200 µl of pH 6.8 was added to the insert’s well. For the purpose of this study, 

the insert wells are referred to as the apical chamber and the plate wells are referred to as the 

basolateral chamber. The temperature of the whole set up was kept at 37 °C by placing the 

plates on a thermostat-controlled heated platform. 

Prior to the initiation of flux of creatinine and PAH, monolayers were pre-incubated for at least 

30 minutes with Krebs buffer containing a specified concentration of the TA or inhibitor in one 

or both chambers. This was to investigate potential drug-drug interactions of the TA or 

inhibitors with creatinine. Control monolayers were pre-incubated with Krebs buffer with no 

inhibitor. Master stocks of all TAs or inhibitors were reconstituted with DMSO. The amount of 

solvent incorporated into the final working solutions were not more than 0.5 %.  

At the end of the pre-incubation period, flux was initiated when the Krebs buffer was aspirated 

from the apical or basolateral chambers and replaced with equal volume of 10 µM creatinine 

and PAH. This flux solution also contained the TA/inhibitor at the concentration used during 
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the pre-incubation step, and mannitol at the same concentration of creatinine. The presence 

of the inhibitor during creatinine flux ensured sustained interaction of the membrane 

transporters with the inhibitor. The addition of mannitol at the same time and solution with 

creatinine allowed the measurement of paracellular flux. The chambers with the flux solutions 

are referred to as the donor chamber. Radiolabelled creatinine (with 14C isotope) was included 

in the flux solutions at activity of 0.5 µCi/ml to trace the movement of the substrate. Mannitol 

movement was traced with 3H isotope at 0.1 µCi/ml.  

Sampling of 50 µl from the contralateral chamber (referred to as the receiver chamber) at 

predetermined time points of 120 minutes after experiment initiation was carried out. After 

each sampling, equal amount of fresh Krebs with the appropriate pH and substrate was 

replaced. At the last sampling, the reaction terminated by sequentially transferring the inserts 

into four beakers of ice-cold Krebs buffer and left to dry. The samples from the receiver 

chambers were placed into scintillation vials. The filters of the inserts, on which the 

monolayers were adhered, were then excised out and also transferred to scintillation vials. The 

filter samples provided the amount of creatinine accumulated at over the 120 minutes flux 

period, which was indicative of the uptake of the substrates from across either the apical or 

basolateral membrane of the monolayers. 

Radioactivity in all samples was determined by liquid scintillation spectrophotometry after 2 

ml of Optiphase Hisafe 2 scintillation solvent (Perkin Elmer, UK) was added. Radioactivity in 

terms of disintegration per minute was detected using TriCarb 2910 liquid scintillation counter 

(Perkin Elmer, UK). The liquid scintillation counter was serviced annually, with the last service 

and calibration performed in August 2018 by Isocount ltd, UK. 5 µl of donor samples at flux 

initiation were also put through the scintillation counter to be used as the reference. 

Background activity was counted using a vial containing only 2 ml scintillation fluid and this 

value was automatically deducted from the counts. 

The raw data provided by the liquid scintillation counter were expressed in disintegration per 

minute (DPM) and was able to distinguish between 14C-labelled and 3H-labelled substrates. To 

convert the counts to flux or paracellular flux of a substrate (i.e. amount of radiolabeled 

substrate moving from the donor to the receiving chamber), the following equation was used: 
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Amount of substrate =  
𝚨𝚨STD

DPMSTD
× 𝟑𝟑 × DPMSPL 

where ASTD represents the amount of substrate in 5 μl in the donor chamber, DPMSTD 

represents the DPM of the radiolabeled substrate in 5 µl of the dosing solution, and DPMSPL 

represents the DPM of 50 µl from the receiver chamber. The constant 3 was used to express 

the result in cm2 (surface area of a Transwell insert was 0.33 cm2). All calculations were 

performed using Microsoft Excel for Office 365. The corrected flux of the substrate was 

determined by subtracting the mannitol paracellular flux from the calculated flux and 

expressed as nmol/cm2/hr or pmol/cm2/hr.  

2.13 Data analysis 

All data presented in the results are expressed as mean ± standard error of mean (SEM) of 

three technical replicates. One-way Analysis of Variance (ANOVA) statistical test was 

performed to compare significance of difference in data conditions. This test was used because 

we are comparing between different conditions within the same cells. GraphPad Prism 8.0 

(GraphPad software Inc, USA) was used to perform the analysis. 
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3 Characterising renal proximal tubule cells model 

3.1 Introduction  

The absence of a decent model of the human proximal tubule has impaired the understanding 

of kidney drug handling in human. Current in vitro drug screens depend on immortalized renal 

epithelial cells, which poorly predict in vivo setting. Several studies on characterization of renal 

epithelial cells lines have also noted that these cells lack drug and metabolic enzyme 

expressions, fail to maintain microvilli at the brush border or cannot create confluent 

monolayers with tight junctions, although the cells can be transfected steadily to express 

missing transporters. The expression of the transporters in these cell lines however does not 

represent the physiological level of expression of the transporters as they are powered by the 

transmission machinery and vector promoters.  

An alternative is to use primary proximal tubule cells. The protocol most frequently used to 

isolate fresh proximal tubule cell cultures involves the enzyme dispersion of tubular cells from 

the kidney cortex, followed by differential sieving (via Percoll gradients centrifugation), and 

fluorescent surface marker antibody labelling and cell sorting via FACS [8, 84]. Cells are also 

chosen using cultured growth medium that encourages interest cell growth compared to other 

cell types after isolation.  

The acquisition of tissues from which the primary cells are isolated is a challenge. The supply 

of human kidney cortex is far a few in between, not least due to the short fall in organ donation 

and the lengthy waiting list for transplants. It is therefore vital that an effective isolation 

protocol is carried out to maximize the primary cell yield, when tissues are available. Rat 

kidneys are more accessible, on the other hand.  

This chapter highlights the results from the characterisation of human and rat proximal tubule 

cells (PTCs). Freshly isolated PTCs are seeded on to Transwell inserts, which allow for the 

formation of monolayers. Transepithelial electrical resistance (TEER) measurement is used to 

assess the barrier function and properties of filter-grown PTCs. The expression of several key 

transporters is investigated using endpoint PCR. The functional expressions of several 

transporters are investigated by examining creatinine and PAH flux, and also the uptake of 

FITC-albumin.  
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3.2 Cell culture and morphology of rat PTCs 

PTCs have been isolated from rat kidney cortex and seeded onto multiple platforms of cell 

culture. Figure 3.1 shows the cells cultured over a 5-day period on a T75 cell culture flask. 

The morphology for freshly isolated PTCs of rat showed single cells not more than 40 μm in 

diameter, although depending on the isolation efficiency, clumps of cells (tubules) were still 

identifiable. Rat PTCs appeared to adhere within the first 24 hours of seeding, with visible 

lamellipodia at the cell edges. By day 3, (Figure 3.1C) defined regions of flattened cells in loose 

contact can be seen. Clusters of cuboidal forms or islets of rounded cells were seen at day 4 

and 5 of culture (Figure 3.1D and E). The cells were seen proliferating and the typical 

morphology of an almost confluent monolayer could be observed. 
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Figure 3.1: Phase contrast images of T75 cell culture flask seeded with rat PTCs over 5 days 
of culture. 

Phase contrast images of rat PTCs seeded onto T75 cell culture flask with initial seeding density 
of 300,000 cells per ml on (A) day 1, (B) day 2, (C) day 3, (D) day 4, and (E) day 5 of culture. 
Cells appeared to adhere to the flask within the first 24 hours of seeding, and formed confluent 
monolayer by day 4/5. Confluent monolayer of rat PTCs was observed at day 5 of culture. 
Images were taken with a phase contrast microscope at 200 X magnification. This is a 
representative of 12 experiments.   
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3.3 Cell culture and morphology of human PTCs 

PTCs were isolated from human kidney cortex and seeded onto multiple platforms of cell 

culture. Figure 3.2 shows the cells cultured over a 6-day period on a T75 cell culture flask. 

Similar to the rat, the morphology for isolated human PTCs was primarily individual cells with 

a diameter of not more than 40 μm. Most cells can be recognized with lamellipodia at the 

edges of the cell within the first 24 hours. On day 4 to 6 of culture, clusters of cuboidal forms 

or islets of rounded cells were observed. The cells then spread, and it was possible to observe 

the typical morphology of an almost confluent monolayer.  
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Figure 3.2: Phase contrast images of T75 cell culture flask seeded with human PTCs over 5 
days of culture.  

Phase contrast images of human PTCs seeded onto T75 cell culture flask with initial seeding 
density of 300,000 cells per ml on (A) day 1, (B) day 2, (C) day 3, (D) day 4, (E) day 5, and (F) 
day 6 of culture. Cells appeared to adhere to the flask within the first 24 hours of seeding, and 
formed confluent monolayer by day 6.  Images were taken with a phase contrast microscope 
at 200 X magnification. This is a representative of 12 experiments.   
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3.4 Transepithelial electrical resistance of rat PTC monolayers 

Isolated rat PTCs were also cultured on Transwell semi permeable filter inserts to recapitulate 

the formation of a monolayer with distinct apical and basolateral differentiation. The 

resistance of the monolayers were evaluated throughout the culture period, and the 

transepithelial electrical resistance calculated (the average basal resistance of the filter inserts 

was 90 Ω), which are summarised in Figure 3.3.  

On day 1 of culture (data not shown) produced negligible TEER. An average TEER of 28.9 ± 7.4 

Ω.cm2 was measured on day 2, however. The TEER rose to 72.7 ± 8.3 Ω.cm2 on day 3, 96.4 ± 

17.3 on day 4 and peaked at 100.9 ± 14.5 Ω.cm2 on day 5. Thereafter, the TEER declined to 

80.9 ± 11.1 on Day 6. The TEER reduced further to 40.8 ± 15.6 Ω.cm2 and 23.2 ± 5.7 Ω.cm2 on 

day 7 and 8, respectively.  
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Figure 3.3: TEERs of rat PTC monolayer cultured on Transwell filter support. 

The rat PTC monolayers TEER was negligible on day 1, and peaked to 100.8 ± 14.5 Ω.cm2 on 
day 5. Thereafter, the TEER reduced to 23.2 ± 5.7 Ω.cm2 on day 8. Each bar represents the 
mean ± SEM of 9 replicates.   
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3.5 Transepithelial electrical resistance of human PTC monolayers 

Human PTCs were also cultured on Transwell filter inserts to recapitulate monolayer 

formation. During the culture period, the resistances of the monolayers were measured and 

TEERs calculated. Figure 3.4 shows the TEERs of the human PTC monolayers over their culture 

period. 

The resistance on day 1 of culture was negligible (the outcome not shown), but an average 

TEER of 42.1 ± 8.2 ± Ω.cm2 was measured on day 2. The TEER increased to 73.6 ± 10.7 Ω.cm2 

on day 3, and 97.9 ± 11.5 Ω.cm2 on day 4, and 126.3 ± 14.2 Ω.cm2 on day 5. The TEER was 136.3 

± 16.7 on Day 6, with the highest TEERs observed at 139.8 ± 20.1 Ω.cm2 and 137.7 ± 17.9 Ω.cm2 

on day 7 and 8, respectively. In contrast to the rat PTC monolayers, subsequent days of culture 

did not see a significant decrease in TEERs. For example, on day 9 and 10, the TEER was 139.55 

± 15.39 Ω.cm2 and 123 ± 17.1 Ω.cm2, respectively.   
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Figure 3.4: TEERs of human PTC monolayer cultured on Transwell filter support.  

The resistance of the human PTC monolayers was negligible at day 1 of culture (result not 
shown). However, an average of 42.1 ± 8.2 ± Ω.cm2 was measured on day 2. The TEER increased 
to a high of 139.77 ± 20.14 Ω.cm2 on day 7, with no significant change in TEERs over the 
subsequent days. Each bar represents the mean ± SEM of 9 replicates.  
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3.6 mRNA expression of small and large molecule transporters in rat and human 

PTCs 

Several key transporters expression at the mRNA level were investigated using endpoint PCR. 

Total cells RNA from freshly isolated rat and human PTCs were isolated and reverse transcribed 

before used in end-point PCRs. The PCR products were then visualised on 1.5 % agarose gels 

stained with ethidium bromide. A negative control was used no confirm there is no 

contamination in the master mix. Figure 3.5 shows the separation of PCR products on the gels, 

with clear bands in the lanes where megalin, cubilin, OCT2, OAT1 MRP2 and MDR1 primers 

were used. This signified the expression of these key transporters in the PTCs of rat and human. 

The amplicon size of all primers are found in Table 4.   
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Figure 3.5: 1.5 % agarose gel showing separation of PCR products.  

Clear bands in the agarose gel from (A) rat and (B) human PTC samples demonstrated the 
expression of megalin, cubilin, OCT2, OAT1, MRP2 and MDR1 in the PTCs. 
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3.7 FITC-albumin concentration range uptake by human and rat PTCs  

The functional expressions of megalin and cubilin in rat and human PTCs were investigated 

using FITC-albumin as the fluorescence substrate probe. It will show the importance of these 

surface receptors in the PTCs as they provide the mechanism of movement of larger molecules 

in the kidney. Rat and human PTC monolayers were incubated with a range of concentrations 

of FITC-albumin (10, 30, 60 and 90 μg/ml) for a period of 1, 2, 4 or 5 hours. Figure 3.6 shows 

the uptake of FITC-albumin over this time period. The uptake of FITC-albumin had been 

normalised to the amount of protein (relative number of cells). 

The cells waited to be confluence and incubated with albumin and polymyxin B at the same 

time. For rat the experiment started at day 5 and human at day 7.  Both rat and human PTC 

monolayers showed a concentration dependent uptake of FITC-albumin – uptake of FITC-

albumin increased in greater dosing concentration of FITC-albumin. For examples, rat PTC 

monolayers saw an uptake of 73,662.1 ± 7,597.1 AU with 10 µg/ml dosing concentration of 

albumin but increased to 128,890.7 ± 17,532.7 AU with 60 µg/ml dosing concentration the 2-

hour time point. 

Interestingly, both rat and human PTC monolayers did not exhibit a time dependent increase 

in FITC-albumin uptake. Uptake was significantly higher at the 2 hour time point when FITC-

albumin dosing concentration was above 60 µg/ml for rat PTC monolayers, and when FITC-

albumin dosing concentration was above 30 µg/ml for human PTC monolayers. 
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Figure 3.6: Uptake of FITC albumin by rat and human PTC monolayers.  

Albumin uptake by (A) rat PTC monolayers and (B) human PTC monolayers were measured over 
time and dosing concentrations, normalised to protein concentrations. Both species saw 
concentration dependent uptake of albumin. Interesting, uptake was not time-dependent, as 
both species saw significantly more uptake at 2-hour time point than any other periods. Graphs 
are representatives of three independent experiments (N = 3). Each point represents the mean 
± S.E.M of the 3 experiments. AU is absorbance unit.  
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3.8 FITC-albumin uptake by rat and human PTC monolayers in the presence of 

polymyxin B or rosuvastatin 

The uptake of FITC-albumin by rat and human PTCs in presence of 250 µg/ml polymyxin B or 

50 µM rosuvastatin was investigated, to demonstrate the potential interaction of large 

molecules with megalin/cubilin mediated-uptake (FITC-albumin) in the kidney. Polymyxin B 

dose was the same dose used for biomarkers levels measurement. Based on previous results 

(Figure 3.6), the uptake of 50 µg/ml FITC-albumin in the presence of the two large molecules 

over a period of 2 hours. The uptake of FITC-albumin was normalised to the respective protein 

concentration, and summarised in Figure 3.7.  

In rat PTC monolayers, the amount of FITC-albumin decreased significantly in the presence of 

polymyxin B, from 633,501.1 ± 82,995.3 to 498,337.9 ± 122,370.7 AU (P < 0.05). The presence 

of rosuvastatin also caused a significant decrease in FITC-albumin uptake to 381,585.8 ± 

95,978.1 AU (P < 0.001). 

Similarly, the amount of FITC-albumin taken up by human PTC monolayers also changed 

significantly in the presence of polymyxin B, which decreased from 758,277.7 ± 170,859 to 

482,451.1 ± 62,023.9 AU (P <0.001) when compared to the control alone. The presence of 

rosuvastatin also caused a significant decrease in FITC-albumin level when compared to the 

control, which was determined as 429,857.1 ± 84,947.6 AU (P < 0.001). 
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Figure 3.7: Uptake of FITC-albumin by rat and human PTCs in the presence of polymyxin B or 
rosuvastatin.  

Uptake of albumin by (A) rat PTC monolayers and (B) human PTC monolayers saw significant 
decrease in the presence of polymyxin B or rosuvastatin. For example, a 20 % decrease in 
albumin uptake was observed compared to control cells. Each bar represents the mean ± SEM 
of 3 replicates. One-way ANOVA test was performed to determine statistical significance. * P < 
0.5, ** P < 0.1, ***, P < 0.01. AU is absorbance unit.  
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3.9 Creatinine uptake by rat and human PTCs monolayers  

To investigate the differential functional expression of OCT2 across the apical and basolateral 

membrane, creatinine uptake was performed using rat and human PTC monolayers. Uptake of 

creatinine across the apical and basolateral membranes was determined from the amount of 

intracellular accumulation of creatinine in the PTC monolayers after a period of time, and also 

in the presence of OCT2 specific inhibitor, dolutegravir. The results are showed in Figure 3.8.   

Uptake of creatinine across the basolateral membrane was higher than across the apical 

membrane in both species of monolayers. For instance, uptake of creatinine by rat PTC 

monolayers were (1.10 ± 0.19 pmol/cm2/hr) across the basolateral membrane, almost 2 times 

more than across the apical membrane at 0.56 ± 0.05 pmol/cm2/hr. Similarly, uptake of 

creatinine by human PTC monolayers were 4.59 ± 0.58 pmol/cm2/hr across the basolateral 

membrane, a 3 times higher than across the apical membrane at 1.73 ± 0.11 pmol/cm2/hr. 

However, monolayers treated with 100 µM dolutegravir saw significantly inhibition of uptake. 

For example, 60.0 % decrease in uptake across the basolateral membrane (from 4.6 ± 0.3 

pmol/cm2/hr to 1.9 ± 0.2 pmol/cm2/hr, P < 0.01) when compared to control cells was seen in 

human PTC monolayers. In rat PTC monolayers, creatinine uptake across the basolateral 

membrane was also decreased from 1.1 ± 0.1 pmol/cm2/hr to 0.6 ± 0.2 pmol/cm2/hr in the 

presence of dolutegravir. 
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Figure 3.8: Creatinine uptake by rat and human PTC monolayers. 

Apical and basolateral uptake of creatinine by (A) rat and (B) human PTC monolayers, in the 
presence and absence of 100 µM dolutegravir. Uptake of creatinine were significantly higher 
across the basolateral membrane then across the apical membrane in both species of 
monolayers. Basolateral uptake was significantly decreased in the presence of dolutegravir. For 
instance, human PTC monolayers saw a 60.0 % decrease (4.6 ± 0.3 pmol/cm2/hr to 1.9 ± 0.2 
pmol/cm2/hr). Each bar represents the mean ± SEM of 3 replicates. One-way ANOVA test was 
performed to determine statistical significance. * P < 0.5, ** P < 0.1, ***, P < 0.01.  
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3.10 PAH uptake by rat and human PTCs monolayers 

To investigate the functional expression of OAT1 in rat and human PTC monolayers, the uptake 

of PAH by the monolayers were performed. The differences in apical and basolateral PAH 

uptake magnitudes were also compared to PAH uptake in the presence of OAT1 inhibitor, 

probenecid. Figure 3.9 shows the results. 

As expected, the basolateral uptake of PAH was greater in magnitude across the basolateral 

membrane of both species of monolayers. For example, uptake of PAH by rat PTC monolayers 

were (1.69 ± 0.28 pmol/cm2/hr) across the basolateral membrane, and the apical membrane 

at 1.15 ± 0.39 pmol/cm2/hr. Similarly, uptake of PAH by human PTC monolayers were 7.65 ± 

0.82 pmol/cm2/hr across the basolateral membrane, which was 2 times higher than across the 

apical membrane at 3.04 ± 0.62 pmol/cm2/hr. 

PAH uptake measured in the presence of 200 µM probenecid saw significant decrease in 

uptake across the basolateral membrane of human PTC monolayers, which went from 7.65 ± 

0.48 pmol/cm2/hr to 4.14 ± 0.54 pmol/cm2/hr (P < 0.01). Similarly in rat PTCs, PAH uptake 

across the basolateral membrane with 200 µM probenecid treatment declined compared to 

control cells from 1.7 ± 0.2 pmol/cm2/hr to 1.1 ± 0.1 pmol/cm2/hr (P < 0.01). 
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Figure 3.9: PAH uptake by human PTC monolayers in the presence of 200 µM probenecid.  

Apical and basolateral uptake of PAH by (A) rat and (B) human PTC monolayers, in the presence 
and absence of 200 µM probenecid. Uptake of PAH was significantly higher across the 
basolateral membrane then across the apical membrane in both species of monolayers. 
Basolateral uptake was significantly decreased in the presence of probenecid. For instance, 
human PTC monolayers saw a 40 % decrease in uptake from 7.65 ± 0.48 pmol/cm2/hr to 4.14 
± 0.54 pmol/cm2/hr. Each bar represents the mean ± SEM of 3 replicates. One-way ANOVA test 
was performed to determine statistical significance. * P < 0.5, ** P < 0.1, ***, P < 0.01.  
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3.11 Discussion: 

One key property of the primary renal cell model is its ability to express transport proteins 

located in the basolateral and apical membranes of the cells. This makes the model more 

physiologically relevant and therefore better in renal handling. In this chapter, human and rat 

PTCs were cultured on Transwell filter inserts for the initial characterisation of the cells, which 

focused on expression of a range of key proximal tubule transporters at the mRNA level. This 

was followed by a study of the functional expression of some transporters expressed in the 

human and rat proximal tubule. 

3.11.1  Measurements of TEERs value 

Numerous in vitro models for studying molecular transport across barrier tissues consisting 

mainly of epithelial and endothelial layers were developed[85]. There is no concern about 

changing in phenotypic stability over time in culture is because fresh cells were used each time 

and no passaging is done. In addition, the time of culture is short and the chance of the PTC 

differentiating to another cell type is low. One of the advantages of growing PTCs on Transwells 

plates is the ability to allow PTC monolayers to differentiate wth apical and basolateral 

membranes. However, it requires an effective monitoring technique to determine their 

cultural quality. The TEERs measurement was in consistent with morphological features of 

PTCs grown in this project. Primary proximal tubule cells TEER value are between (120–

150 Ω*cm2 in 24-Transwell plates). Low TEER is widely assumed to imply poor growth of PTCs. 

When PTCs are treated with nephrotoxins drugs, the TEERs value is decreasing because the 

effect of those drugs to the integrity of the PTCs. The PTCs are leaking and after that die.      

3.11.2 mRNA expression of transporters in human and rat PTCs 

The mRNA detection of several transporters in human and rat PTCs were examined. The 

expression of all tested transporters has been identified by endpoint PCRs conducted with a 

cDNA template that was transcribed from RNA isolated from human and rats PTC cultures. 

Visualization of the PCR products on the agarose gels showed that in each of the lanes there 

was only one product. This showed the specificity of the primers used because only the interest 

gene was amplified. An agarose gel band intensity is a qualitative measure of PCR product 

quantity. For a quantitative measure of the amount of mRNA level, real-time quantitative PCR 

is a better technique.  
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There is consensus that primary tubular cells are better at retention of drug transporter 

expressions than other renal cell lines [86, 87].  Caki-1 cells, for instance, do not have mRNA 

from various organic transporters of anion and organic cation, including OAT1, OAT2, OCT1 

and OCT2[88]. Rat cell line NRK-52E, and swine cell line LLC-PK1 lack mRNA expression of these 

transporters as well [89, 90].  In addition, LLC-PK1, which is often used to evaluate renal drug 

transport, also lack proximal brush-border enzymes compared with those in primary cultured 

PTCs[86].  

It has been demonstrated that the preservation of the differentiated condition of primary cells 

and incidentally their brush-bound enzyme activity is largely affected by the composition of 

the culture medium [91, 92].  Furthermore, it has been demonstrated that bathing epithelial 

cells on both the apical and basolateral sides improves their capacity to stay differentiated, 

thus repeating in vivo physiology[93]. The data from section 1.6 showed expression of drug 

transporters in culture primary PTCs. However, the results do not show the location of those 

drugs transporters and further investigation is needed.   

3.11.3 Functional expression of megalin and cubilin using FITC-albumin: 

The experiments mentioned had been performed on human and rat PTCs cultured on 

Transwell filter inserts and demonstrated the functional expression of megalin and cubilin 

receptors by using albumin-FITC as a tracer substrate. Uptake was also carried out in the 

presence of polymyxin B and rosuvastatin to identify megalin and cubilin mediated uptake.  

The results showed that the uptake of FITC-albumin was concentration dependent, but not 

time dependent. For instance, in both species of monolayers, 2 hours of incubation appeared 

to give significantly higher uptake of FITC-albumin than 3 or 4 hours.   

The presence of polymyxin B, and to an extend rosuvatstain, decreased the ability of PTCs in 

albumin uptake.  Our data is compatible with another study done with OK cells line, the 

observation of albumin uptake was noticed after the incubation of OK cells with 3 different 

statins (rosuvastatin, pravastatin, and simvastatin). In addition, ATP levels was measured and 

normalised to protein levels. The levels of ATP were stable even with high concentration of 

statins. That is mean the reduction of albumin uptake was not because the toxicity of the 

statins[94].   
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3.11.4  Functional expression of OCT2/MATE1 and OAT1/3 using creatinine and PAH  

Creatinine is excreted primarily in urine through glomerular filtration and partially secreted via 

transport, which, depending on the renal function, account for 10–40 % of the complete 

creatinine clearance[95]. Creatinine is a substrate for OCT2 and MATE1.  Genome-wide 

association studies show that OCT2 and MATE1 genetic mutations influence the clearance of 

creatinine [96]. Dolutegravir is an OCT2 clinically appropriate inhibitor that causes serum level 

increases by inhibition the tubular secretion, and therefore used as an inhibitor of OCT2 in this 

study [97].  

For most anionic drugs, the urinary excretion mechanism includes active tubular secretion and 

glomerular filtration in the kidney[98].  The main kidney transporters responsible for 

basolateral uptake of multiple organic anions, including pharmaceuticals and uremic toxins, 

are regarded to be organic anion carriers OAT1 and OAT3[99]. OAT1 plays a significant part in 

uptake of  hydrophilic and small organic anions such as PAH, 2,4 dichlorophenoxyacetate and 

acyclic nucleotide phosphonate while OAT3 is more specific in substrate than OAT1 and 

accepts organic anions and even organic cations (cimetidine) and zwitterion 

(fexofenadine)[100]. The urinary excretion mechanisms of drugs have been characterized by 

probenecid. Probenecid is both a powerful inhibitor of OAT1 and OAT3 and probenecid co-

administration at a therapeutic dose leads to significant inhibition of OAT1 and OAT3 

substrates tubular secretion [101].  

Our data showed that creatinine uptake was reduced significantly after incubation with 

dolutegravir in human PTC, but it didn’t change in rat PTC. This may be because creatinine 

handling by the kidneys is different between human and rat. It has also been shown that OCT2 

may not be the only transporter responsible for creatinine uptake in human [102]. Similarly, 

PAH uptake was reduced in the basolateral membrane after treatment with probenecid but 

this time the change was notice in both human and rat PTCs.        

This chapter has shown the expression of several significant drug transporters by human and 

rat PTCs at mRNA level. Also, the functional expression and location of some of the 

transporters on polarized human and rat PTC monolayers. These data highlight the capacity of 
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human and rat PTCs to reflect proximal tubules in vivo, it would be necessary to investigate 

their ability as an in vitro template for kidney drug handling. 
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4 Human Biomarkers 

4.1 Introduction  

The kidneys are responsible for maintaining circulatory fluid homeostasis and serve as the 

main organ for xenobiotic elimination and detoxification and receive approximately 25% of all 

heart blood flow[103]. The nephron with about 1 million nephrons per kidney is the functional 

filtration unit of the kidney[104]. The nephron has three key functional components, namely 

the passive blood filtration by the glomeruli and the active absorption and secretion by tubular 

epithelia. PTCs are enriched by membrane proteins that facilitate and activate the transport of 

compounds within a cell at significantly higher concentration rates than those observed in 

circulation[103]. The main driver behind xenobiotic nephropathy, leading to observable acute 

kidney damage (AKI), was considered to be intracellular accumulation.  

The ability to accurately predict toxic kidney damage, for both existing and new 

pharmaceutical prescription medicines or for risk assessment due to environmental exposures 

of xenobiotics is a major current challenge[103]. To respond to this concern, new, more 

sensitive, biomarkers of nephrotoxicity have been identified. One of the biomarkers have been 

used in this chapter is KIM-1. In 2002, the first KIM-1 human subjects studies  were 

released[105]. The study indicated that a significant enhanced expression of KIM-1 in patients 

with acute tubular necrosis from renal biopsy samples. Another study detected KIM-1 protein 

by staining after taking kidney biopsy from 102 patients with different kidney diseases and 

showed that positive KIM-1 staining was associated with tubulo-interstitial fibrosis and 

inflammation in dedifferentiated proximal tubular cells[106].  

Another biomarker used in this study was NGAL. A study done showed NGAL measurements is 

an early AKI biomarker in paediatric intensive care environment that can be predicted about 2 

days prior to serum creatinine increase [107]. In adult intensive care patient research, 

measuring plasma NGAL levels were a very useful biomarker for AKI extension within the next 

2 days [108]. 

Clusterin, another biomarker was investigated in this chapter. A study discovered that the 

expression of clusterin mRNA levels in damaged rat renal tubular epithelial cells of unilateral 
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ureteral obstruction was considerably enhanced while its urination content decreased 

simultaneously, indicating clusterin could act as an early biomarker of AKI [109]. 

One of the nephrotoxic drugs we used is Cisplatin. Cisplatin accumulates in the kidney during 

glomerular filtration and tubular secretion[110]. Nephrotoxicity caused by cisplatin is dose-

dependent and includes kidney cell necrosis, apoptosis and necroptosis [111]. Cisplatin is 

transported by OCT2 [112] this is why it is a good nephrotoxic molecule to test in our PTCs 

model.  

Another drug used in this study is gentamicin, causing tubular injury by: 1) tubular epithelial 

cell necrosis, predominantly in the proximal segment, and 2) altering the function of the 

primary cellular components engaged in water and solute transport [113].  Tubular cytotoxicity 

is the key element of gentamicin nephrotoxicity. The enhanced accumulation of gentamicin in 

PTCs is linked to (megalin/cubilin) receptors in the apical membrane of PTCs [114]. These two 

receptors transports gentamicin by endocytosis. The drug is then transferred into lysosomes, 

Golgi and endoplasmic reticulum[115]. 

This study’s purpose is therefore to identify and substantiate the use of human primary 

proximal tubule cells (PTCs), from the kidney, as suitable models in the study of nephrotoxicity 

and to further the cause of drug related nephrotoxicity. The cells would be isolated from the 

kidneys, as Brown et al. (2008) described, and subsequently characterised on exposure to 

different nephrotoxins, namely polymyxin B, gentamicin and cisplatin. These three compounds 

were chosen as they represent prototypic large (polymyxin B and gentamicin) and small 

(cisplatin) molecules the kidney would encounter. Measuring the expression of different 

biomarkers of nephrotoxicity, such as KIM-1, NGAL and clusterin, upon exposure to those 

nephrotoxins has done. 
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4.2 Large molecule nephrotoxin – Gentamicin 

Before the biomarker expression was quantified by ELISA, human PTCs were treated with 

gentamicin, a recognized nephrotoxin. Because of the well characterized and related toxicities 

of gentamicin in vivo, Gentamicin's monolayer PTC impacts are important. 

4.2.1 MTS cell viability after treatment in presence of range of concentration of gentamicin 

To determine the nephrotoxicity of gentamicin, human PTCs were treated with a range of 

concentration of gentamicin for 24, 48 and 72 hours. The viability of the human PTCs was 

determined by measuring the mitochondrial activity using MTS assay. The obtained results are 

presented Figure 4.1 

The results of the MTS assay showed the effect of gentamicin on cell viability in human PTCs. 

With a rise in gentamicin concentration, cell viability reduced continuously. For example, after 

24h treatment with 100 µg/ml gentamicin the cell viability was 23% less than the nonrated 

cells. The percentage of live cells was less than 50% after 250 µg/ml gentamicin treatment for 

24h. 

 The percentage of live cells decreased with the rise of the gentamicin dose after 48h 

incubations.  For instance, after 300 µg/ml gentamicin the percentage of live cells was 44%. 

The live was less more than 40% after 400 µg/ml gentamicin treatment.   

After 72h treatment with a range of gentamicin concentrations, cell viability decreased 

significantly. After 100 µg/ml gentamicin treatment, live cells reduced was 71%. In addition, 

after 500 µg/ml gentamicin incubation the cell viability was only 29%.  
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Figure 4.1: Cell viability in human PTCs treated with range concentrations of gentamicin for 
24, 48 and 72 hours.  

MTS assay was used to measure the cell viability. Gentamicin showed a time and 
concentrations dependent after 24, 48 and 72 hours treatment. For example, the cell viability 
after 250 µg/ml gentamicin for 24h was 56.5% and the percentage dropped to 47% after 48h. 
In addition, cell viability after 300 µg/ml gentamicin treatment for 72h was 39% and after 500 
µg/ml gentamicin the cell viability decreased to 21%. Each point represent mean ± S.E.M values 
of each gentamicin concentration. Each data point is expressed as a percentage of the negative 
control of no gentamicin treatment. 

  



59 
 

4.2.2 KIM-1 production after treatment of human PTCs in presence of a range 

concentration of gentamicin  

The effects of a range of gentamicin concentrations on KIM-1 levels produced by human PTCs 

were investigated. The level of the biomarker was normalised to the cell viability. The results 

are shown in Figure 4.2. 

The KIM-1 levels after 24h treatment of gentamicin increased significantly compared to non-

treated cells. For instance, the level of KIM-1 production was 24.11±7.21 ng/ml at 250 μg/ml 

gentamicin, compared with the control 1.60±0.28 ng/ml. The level of KIM-1 increased   as the 

concentration of gentamicin increased up to 600 μg/ml. 

The levels of KIM-1 also increased significantly in comparison with the non-treated cells after 

48h of gentamicin treatment. The level of KIM-1 was 14.70±2.53 ng/ml after 100 μg/ml 

gentamicin treatment, and increased further to 55.43±17.72 ng/ml with 300 μg/ml gentamicin 

treatment. 

The KIM-1 levels after 72h treatment of gentamicin increased significantly compared to non-

treated cells.  For instance, KIM-1 levels were elevated significantly by 250 μg/ml gentamicin 

concentrations (62.15±14.30 ng/ml). The level of KIM-1 production reached the peak at 500 

μg/ml gentamicin treatment to 235.66±12.85 ng/ml. 
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Figure 4.2: Measurement of KIM-1 production by human PTCs treated with gentamicin for 
24, 48 and 72 hours.  

Levels were normalised to MTS absorbance value to account for cell numbers after nephrotoxin 
treatments. Human PTCs were treated with a range of gentamicin concentration (50 to 600 
µg/ml). For example, KIM-1 production after 100 µg/ml gentamicin treatment for 24h was 
3.1±0.3 ng/ml and after 250 µg/ml the level of KIM-1 increased to 7.6±1.5 ng/ml. The level of 
KIM-1 after 400 µg/ml gentamicin treatment for 48h was 43.9±10.1 ng/ml and after 72h the 
level increased to 74.5±26.1 ng/ml. Statistical analysis was conducted using repeated-
measures-paired-one-way ANOVA the data are representative of three independent 
experiments (n=3). Each point mean ± S.E.M values of each group. (*p < 0.05, **p < 0.01, ***p 
< 0.001).  
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4.2.3 NGAL production after treatment of human PTCs in presence of a range concentration 

of gentamicin  

The effects of a range of gentamicin concentrations on NGAL levels produced by human PTCs 

were investigated. The biomarker levels were normalised to cell viability. The results are 

showed in Figure 4.3. 

There was a significant increase in NGAL levels after 24h treatment of gentamicin compared 

to non-treated cells. NGAL levels were elevated significantly by 50 to 600 μg/ml gentamicin 

concentrations. The level of NGAL production at 300 μg/ml gentamicin was 65.81±4.89 ng/ml 

compared with the control 8.45±2.66 ng/ml and then the level of NGAL increased as the 

concentration of gentamicin increases up to 600 μg/ml.  

In comparison to non-treated cells, the levels of NGAL increased significantly after gentamicin 

treatment for 48h. For example, the level of NGAL after 250 μg/ml gentamicin treatment was 

180.49±43.59 ng/ml. The level of NGAL after 400 μg/ml gentamicin treatment was 

230.86±60.42 ng/ml.  

NGAL concentrations rose considerably relative to non-treated cells after 72 hours of 

gentamicin treatment.  For example, NGAL level was 153.31±29.97 ng/ml after 100 μg/ml 

gentamicin treatment. The level of NGAL production after 500 μg/ml gentamicin treatment 

was 709.58±126.68 ng/ml  
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Figure 4.3: Measurement of NGAL production from human PTCs treated with gentamicin for 
24, 48 and 72 hours. 

Levels were normalised to MTS absorbance value to account for cell numbers after nephrotoxin 
treatments. Human PTCs were treated with a range of gentamicin concentration (50 to 600 
µg/ml). For example, NGAL production after 300 µg/ml gentamicin treatment for 24h was 
65.8±4.7 ng/ml and after 500 µg/ml the level of NGAL increased to 131.4±19.5 ng/ml. The level 
of NGAL after 250 µg/ml gentamicin treatment for 48h was 180.4±43.5 ng/ml and after 72h 
the level increased to 307.8±35.7 ng/ml. Statistical analysis was conducted using repeated-
measures-paired-one-way ANOVA the data are representative of three independent 
experiments (n=3). Each point mean ± S.E.M values of each group. (*p < 0.05, **p < 0.01, ***p 
< 0.001). 
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4.2.4 Clusterin production after treatment of human PTCs in presence of a range 

concentration of gentamicin  

The impacts of a range of gentamicin concentrations generated by human PTCs on clusterin 

levels were studied. The biomarker levels were normalised to cell viability. The results are 

shown in Figure 4.4. 

Clusterin concentrations rose considerably relative to non-treated cells after 24h incubation 

with range of gentamicin concentrations. The level of clusterin production after 250 μg/ml 

gentamicin was 53.67±23.58 ng/ml compared with the control 8.85±2.94 ng/ml and then the 

level of clusterin increased as the concentration of gentamicin increases up to 600 μg/ml. 

The levels of clusterin increased significantly in comparison with non-treated cells after 48h of 

gentamicin treatment. The clusterin levels increased by 50 to 600 μg/ml gentamicin treatment. 

The highest level of clusterin, compared to control 25.84±1.1 ng/ml, was after 600 μg/ml 

gentamicin treatment at 380.40±55.44 ng/ml.  

After 72h of gentamicin treatment, clusterin levels considerably increased relative to non-

treated cells. For instance, the level of clusterin after 100 μg/ml gentamicin treatment to 

118.1±23.36 ng/ml compared with the control 82.78±15.93 ng/ml and then the production of 

clusterin increased as the concentration of gentamicin increases up to 600 μg/ml. 
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Figure 4.4: Measurement of clusterin production from human PTCs treated with gentamicin 
for 24, 48 and 72 hours.  

Levels were normalised to MTS absorbance value to account for cell numbers after nephrotoxin 
treatments. Human PTCs were treated with a range of gentamicin concentrations (50 to 600 
µg/ml). For example, clusterin production after exposure to 250 µg/ml gentamicin for 24h was 
53.6±23.5 ng/ml and after 500 µg/ml the level of clusterin increased to 142.7±28.8 ng/ml. The 
level of clusterin after 300 µg/ml gentamicin treatment for 48h was 207.7±19.8 ng/ml and after 
72h the level increased to 316.2±38.6 ng/ml. Statistical analysis was conducted using repeated-
measures-paired-one-way ANOVA the data are representative of three independent 
experiments (n=3). Each point mean ± S.E.M values of each group. (*p < 0.05, **p < 0.01, ***p 
< 0.001).  
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4.2.5 MTS and ATP cells viability assays 

The cell viability was measured after treatment of human PTCs for 24 and 48 hours with 250 

µg/ml gentamicin. The cell viability was also measured in the presence of cilastatin co-

treatments. Both CellTiter 96® AQueous Non-Radioactive Cell Proliferation Assay (MTS) and 

RealTime-Glo™ MT Cell Viability Assay (ATP) were used to assess cell viability. Both the MTS 

and ATP assays were used to calculate viability from the same plate. The results revealed no 

significant difference between the two assessment methods. The results are shown in Figure 

4.5. 

After 24h, the results revealed that cell viability reduced significantly in response to exposure 

to gentamicin to (65±3.4%, P < 0.01) of control. The cilastatin co treatment did not affect the 

cell viability (95.71±3.44% live cells). The treatment of gentamicin with cilastatin increased the 

live cells compared to only gentamicin (76.1±3%).  

The cell viability was reduced significantly by gentamicin (56.90±5%, P < 0.01) after 

48h.However, the cell viability did not change with cilastatin (95±3.70%). The cell viability after 

gentamicin with cilastatin was higher than only gentamicin (74±5.25% viable cells). 
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Figure 4.5: Cells Viability of human PTCs after treatment of gentamicin for 24 and 48 hours. 

 MTS and ATP assays were used to measure the cell viability. Viability is measured as a 
percentage of the control. For example, MTS percentage after gentamicin treatment for 24h 
was 65% and ATP percentage was 68.3%. In addition, the co-treatment of cilastatin with 
gentamicin for 48h showed, the percentage of MTS was 74.1% and ATP percentage was 76.3%.      
Statistical analysis was conducted using repeated-measures-paired-one-way ANOVA the data 
are representative of three independent experiments (n=3). Bars represent mean ± S.E.M values 
of each group. (*p < 0.05, **p < 0.01, ***p < 0.001).  
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4.2.6 Lactate dehydrogenase (LDH) cytotoxic assay 

The measurement of cytoplasmic enzymes released by damaged cells is a common method for 

determining cytotoxicity. Lactate dehydrogenase (LDH) is a stable enzyme found in all cellular 

systems. In this experiment, we treated human PTCs for 24 and 48 hours with 250 µg/ml 

gentamicin and LDH was measured. In addition, we measured the LDH after cilastatin co 

treatment. The results is consistent with cell viability data. Result shown in Figure 4.6 

After 24h, the results revealed that LDH increased significantly in response to exposure to 

gentamicin to 32.28±2.8%. The cilastatin co treatment did not change the LDH (13.74±1.41%). 

The treatment of gentamicin with cilastatin decreased the LDH compared to only gentamicin 

(27.38±2.21%). 

The LDH was increased significantly by gentamicin (45.58±5.47%) after 48h.However, the LDH 

did not change with cilastatin (14±1.29%). The LDH after gentamicin with cilastatin was lower 

than only gentamicin (30.37±5=2.26%). 
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Figure 4.6: LDH of human PTCs after treatment of gentamicin for 24 and 48 hours. 

 LDH is measured as a percentage of the control. LDH percentage after gentamicin treatment 
for 24h was 36.2% and after 48h the percentage increased to 45.5%. In addition, LDH 
percentage decreased after cilastatin co-treatment with gentamicin for 48h to 30.7% Statistical 
analysis was conducted using repeated-measures-paired-one-way ANOVA the data are 
representative of three independent experiments (n=3). Bars represent mean ± S.E.M values of 
each group. (*p < 0.05, **p < 0.01, ***p < 0.001). 
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4.2.7 KIM-1 production after treatment of human PTCs in the presence of gentamicin +/- 

cilastatin 

The amount of KIM-1 produced after treatment of human PTCs for 24 and 48 hours in the 

presence of gentamicin was measured, and also PTCs co-treated with cilastatin. The 

concentrations of KIM-1 was normalised to the cell viability as determined from their MTS 

absorbance, results of which were therefore expressed as ng/ml. The results are shown in 

Figure 4.7. 

With 24h treatment of gentamicin, the amount of KIM-1 in the apical membrane change 

significantly from the control (12.19±1.93 ng/ml, P < 0.01). However, the presence of cilastatin 

did not change KIM-1 level 4.73±1.05 ng/ml compared to control (4.71±1.11 ng/ml). The co-

treatment of gentamicin with cilastatin caused a significant decrease in KIM-1 in the apical 

membrane (8.16±1.39 ng/ml, P < 0.0001) compared to only gentamicin. KIM-1 levels in the 

basolateral membrane were low compared to apical membrane.  

With 48h treatment of gentamicin, the amount of KIM-1 in the apical membrane did change 

significantly from the control (30.49±5.69 ng/ml, P < 0.01). However, when we added   

cilastatin did not change KIM-1 level 13.45±3.71 ng/ml compared to control 13.32±3.21 ng/ml. 

The co-treatment of gentamicin with cilastatin caused a significant decrease in KIM-1 in the 

apical membrane (24.1±5.28 ng/ml, P < 0.0001) compare to only gentamicin. KIM-1 levels in 

the basolateral membrane were low compared to apical membrane. 
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Figure 4.7: The amount of KIM-1 produced after treatment of human PTCs for 24 and 48 
hours in presence of gentamicin +/- cilastatin. 

ELISA was used to measure KIM-1 production. For example, KIM-1 production in the apical 
membrane is significantly higher than basolateral membrane. The amount of KIM-1 in the 
apical membrane change significantly from the control (12.19±1.93 ng/ml, P < 0.01) after 24h 
gentamicin treatment. After co-treatment with cilastatin, KIM-1 level decreased to (8.16±1.39 
ng/ml, P < 0.0001) compared to only gentamicin. The level of KIM-1 after 48h treatment was 
more than 1 fold compared to 24h. Statistical analysis was conducted using repeated-
measures-paired-one-way ANOVA the data are representative of three independent 
experiments (n=3). Bars represent mean ± S.E.M values of each group. (*p < 0.05, **p < 0.01, 
***p < 0.001, ++++p < 0.0001).  
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4.2.8 NGAL production after treatment of human PTCs in the presence of gentamicin +/- 

cilastatin 

NGAL production for 24 and 48 hours in the presence of gentamicin following treatment of 

human PTCs. In the presence of cilastatin co-treatment, levels of NGAL were also measured. 

NGAL concentrations had been normalized to cell viability based on the MTS absorption of the 

PTCs, resulting in ng/ml. The results are shown in Figure 4.8. 

With 24h treatment of gentamicin, the amount of NGAL in the apical membrane did increase 

significantly from the control (230.49±85.20 ng/ml, P < 0.01). However, the presence of 

cilastatin did not change NGAL level 30.39±6.1 ng/ml compared to control 23.72±3.32 ng/ml 

in the apical membrane. The co-treatment of gentamicin with cilastatin caused a significant 

decrease in NGAL in the apical membrane (125.79±28.1 ng/ml, P < 0.0001) compared to only 

gentamicin. Compared to apical membrane, NGAL levels in the basolateral membrane were 

low.  

After 48 hour treatment of gentamicin, the amount of NGAL in the apical membrane did 

increase significantly from the control (439.69±109.81 ng/ml, P < 0.01). However, the presence 

of cilastatin did not change NGAL level 89.18±27.90 ng/ml compared to control 90.43±31.21 

ng/ml in the apical membrane. The co-treatment of gentamicin with cilastatin caused a 

significant decrease in NGAL in the apical membrane (303.32±81.99 ng/ml, P < 0.0001) 

compared to only gentamicin. Compared to apical membrane, NGAL levels in the basolateral 

membrane were low. 
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Figure 4.8: The amount of NGAL produced after treatment of human PTCs for24 and 48 hours 
in presence of gentamicin +/- cilastatin. 

ELISA was used to measure NGAL production. For example, NGAL production in the apical 
membrane is significantly higher than basolateral membrane. The amount of NGAL in the 
apical membrane change significantly from the control (230.49±85.20 ng/ml, P < 0.01) after 
24h gentamicin treatment. After co-treatment with cilastatin, NGAL level decreased to 
(125.79±28.1 ng/ml, P < 0.0001) compared to only gentamicin. The level of NGAL after 48h 
treatment was more than 1 fold compared to 24h. Statistical analysis was conducted using 
repeated-measures-paired-one-way ANOVA the data are representative of three independent 
experiments (n=3). Bars represent mean ± S.E.M values of each group. (*p < 0.05, **p < 0.01, 
***p < 0.001, ++++p < 0.0001).  



73 
 

4.2.9 Clusterin production after treatment of human PTCs with gentamicin +/- cilastatin 

Clusterin production 24 and 48 hours after treatment of human PTCs in the presence of 

gentamicin. In the presence of cilastatin co-treatment, levels of clusterin were also measured. 

Clusterin concentrations had been normalized to cell viability based on the MTS absorption of 

the PTCs, resulting in ng / ml. The results are shown in Figure 4.9.   

With 24h treatment of gentamicin, the amount of clusterin in the apical membrane did 

increase significantly from the control (277.40±100.63 ng/ml, P < 0.01). However, the presence 

of cilastatin did not change clusterin level 35.52±8.94 ng/ml compared to control 35.87±10.92 

ng/ml. The co-treatment of gentamicin with cilastatin caused a significant decrease in clusterin 

in the apical membrane (135.70±25.03 ng/ml, P < 0.0001) compared to only gentamicin. 

Compared to apical membrane, clusterin levels in the basolateral membrane were low.  

With 48h treatment of gentamicin, the amount of clusterin in the apical membrane did change 

significantly from the control (476.16±143.1 ng/ml, P < 0.01). However, when we added 

cilastatin did not change clusterin level 79.26±12.89 ng/ml compared to control 79.20±23.29 

ng/ml. The co-treatment of gentamicin with cilastatin caused a significant decrease in clusterin 

in the apical membrane (316.75±82.60 ng/ml, P < 0.0001) compare to only gentamicin. 

Clusterin levels in the basolateral membrane were low compared to apical membrane. 
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Figure 4.9: The amount of clusterin produced after treatment of human PTCs for 24 and 48 
hours in presence of gentamicin +/- cilastatin. 

ELISA was used to measure clusterin production. For example, clusterin production in the apical 
membrane is significantly higher than basolateral membrane. The amount of clusterin in the 
apical membrane change significantly from the control (35.87±10.9 to 277.40±100.63 ng/ml, P 
< 0.01) after 24h gentamicin treatment. After co-treatment with cilastatin, clusterin level 
decreased to (135.70±25.03 ng/ml, P < 0.0001) compared to only gentamicin. The level of 
clusterin after 48h treatment was more than doubled compared to 24h. Statistical analysis was 
conducted using repeated-measures-paired-one-way ANOVA the data are representative of 
three independent experiments (n=3). Bars represent mean ± S.E.M values of each group. (*p 
< 0.05, **p < 0.01, ***p < 0.001, ++++p < 0.0001).  
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4.3 Large molecule nephrotoxin – Polymyxin B 

Human PTCs were treated with polymyxin B before biomarker expression was quantified by 

using ELISA. The effects of polymyxin B on PTCs were important as the toxicity of polymyxin B 

was already nephrotoxic in vivo. 

4.3.1 MTS cell viability after treatment in presence of range of concentrations of polymyxin 

B 

The cell viability was measured after treatment of human PTCs with a range of concentration 

of polymyxin B (50 to 600 µg/ml) for 24, 48 and 72 hours.  CellTiter 96® AQueous Non-

Radioactive Cell Proliferation Assay (MTS) was used to assess cell viability. The MTS absorbance 

show as a percentage normalised to non-treated cells. The results are shown in Figure 4.10. 

The impact of polymyxin B on cell viability in human PTCs was found in the outcome of the 

MTS assay.  The cell viability decreased steadily with an increase in polymyxin B concentration. 

For example, after 24h treatment with 250 µg/ml polymyxin B the cell viability was 17% less 

than the nonrated cells. The percentage of live cells was less than 50% after 300 µg/ml 

polymyxin B treatment. 

 After 48h incubation with polymyxin B the percentage of live cells decrease as the dose of 

polymyxin B increase.  For instance, at 300 µg/ml polymyxin B the percentage of live cells was 

40%. The live was less more than 70% after 400 µg/ml polymyxin B.   

There were a major drop in cell viability after 72h treatment with a range of concentration of 

polymyxin B. after 100 µg/ml polymyxin B treatment, live cells reduced more than 35%. In 

addition, after 400 µg/ml polymyxin B incubation the cell viability was only 13%. 
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Figure 4.10: Cell viability in human PTCs treated with range concentrations of polymyxin B 
for 24, 48 and 72 hours.   

MTS assay was used to measure the cell viability. Polymyxin B showed a time and 
concentrations dependent. For example, the cell viability after 250 µg/ml polymyxin B 
treatment for 24h was 58.6% and the percentage dropped to 43.1% after 48h. In addition, cell 
viability after 300 µg/ml polymyxin B treatment for 72h was 31.7% and after 500 µg/ml 
polymyxin B the cell viability decreased to 7.7%.  Each point represent mean ± S.E.M values of 
each polymyxin B concentration. 
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4.3.2 KIM-1 produced after treatment of human PTCs in presence of a range concentration 

of polymyxin B 

The effect on human PTCs treated with a range concentration of polymyxin B were 

investigated. The level of KIM-1 was normalised to the cell viability. The results are shown in 

Figure 4.11. 

 KIM-1 concentrations increased significantly relative to non-treated cells after 24h polymyxin 

B treatment. KIM-1 levels were elevated significantly and gradually by 50 to 600 μg/ml 

polymyxin B concentrations. The production of KIM-1 after 250 μg/ml polymyxin B treatment 

was 24.11±7.21 ng/ml compared with the control 1.59±0.28 ng/ml and then the level of KIM-

1 was the same as the concentration of polymyxin B increases up to 600 μg/ml. 

 KIM-1 concentrations rose considerably after 48h of polymyxin B treatment compared to non-

treated cells. The level of KIM-1, compared to control 3.47±0.47 ng / ml, was after 300 μg / ml 

polymyxin B treatment at 55.43±17.72 ng / ml, and then the KIM-1 level, with the polymyxin B 

treatment rising up to 600 μg / ml, increased significantly. 

The levels of KIM-1 after 72h treatment of polymyxin B increased significantly compared to 

non-treated cells.  For instance, KIM-1 production after 250 μg/ml polymyxin B treatment was 

62.15±14.30 ng/ml compared with the control 9.81±1.1 ng/ml and then the level of KIM-1 

increased as the concentration of polymyxin B increases up to 600 μg/ml. 
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Figure 4.11: Measurement of KIM-1 production from human PTCs treated with range 
concentrations of polymyxin B for 24, 48 and 72 hours.  

Levels were normalised to MTS absorbance value to account for cell numbers after nephrotoxin 
treatments. Human PTCs were treated with a range of polymyxin B concentration (50 to 600 
µg/ml). The levels of KIM-1 showed, polymyxin B is time and concertation dependent. For 
example, KIM-1 production after 100 µg/ml polymyxin B treatment for 24h was 7.7±1.7 ng/ml 
and after 250 µg/ml the level of KIM-1 increased to 24.1±7.2 ng/ml. The level of KIM-1 after 
400 µg/ml polymyxin B treatment for 48h was 73.6±14.1 ng/ml and after 72h the level 
increased to 129.3±24.4 ng/ml.  Statistical analysis was conducted using repeated-measures-
paired-one-way ANOVA the data are representative of three independent experiments (n=3). 
Each point mean ± S.E.M values of each group. (*p < 0.05, **p < 0.01, ***p < 0.001). 
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4.3.3 NGAL produced after treatment of human PTCs in presence of a range concentration 

of polymyxin B  

The NGAL production after treated human PTCs with a range concentration of polymyxin B 

were investigated. The concentrations of NGAL was normalised to the cell viability. The results 

are shown in Figure 4.12.  

There were a significant increase in NGAL levels after 24h treatment of polymyxin B compared 

to non-treated cells. NGAL levels were elevated significantly by (50 to 600) μg/ml polymyxin B 

concentrations. For example, the level of NGAL production was at 100 μg/ml polymyxin B to 

16.37±2.96 ng/ml compared with the control 6.1±0.45 ng/ml and then the level of NGAL 

remained the same as the concentration of polymyxin B increases up to 600 μg/ml.  

The levels of NGAL increased significantly in comparison with non-treated cells after 48h of 

gentamicin treatment. The maximum level of NGAL was after 600 μg / ml polymyxin B 

treatment 426.18±130.72 ng / ml compared to the control 18.78±3.1 ng / ml.  

The NGAL levels after 72h treatment of polymyxin B increased significantly compared to non-

treated cells.  For example, the level of NGAL production after 250 μg/ml polymyxin B 

treatment was 306.19±65.39 ng/ml compared with the control 40.95±3.84 ng/ml and then the 

level of NGAL increased as the concentration of polymyxin B increases up to 600 μg/ml. 
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Figure 4.12: Measurement of NGAL production from human PTCs treated with range 
concentrations of polymyxin B for 24, 48 and 72 hours.  

Levels were normalised to MTS absorbance value to account for cell numbers after nephrotoxin 
treatments. Human PTCs were treated with a range of polymyxin B concentration (50 to 600 
µg/ml). For example, NGAL production after 300 µg/ml polymyxin B treatment for 24h was 
50.7±0.3 ng/ml and after 500 µg/ml the level of NGAL increased to 68.7±15.4 ng/ml. The level 
of NGAL after 250 µg/ml polymyxin B treatment for 48h was 195.32±24.4 ng/ml and after 72h 
the level increased to 306.1±65.3 ng/ml.  Statistical analysis was conducted using repeated-
measures-paired-one-way ANOVA the data are representative of three independent 
experiments (n=3). Each point mean ± S.E.M values of each group. (*p < 0.05, **p < 0.01, ***p 
< 0.001).  
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4.3.4 Clusterin produced after treatment of human PTCs in presence of a range 

concentration of polymyxin B  

The impact of a range of polymyxin B concentrations on clusterin levels produced by human 

PTCs were investigated. The concentrations of the biomarker was normalised to the cell 

viability. The results are shown in Figure 4.13. 

Clusterin concentrations rose considerably in comparison with non-treated cells 

concentrations after 24 h polymyxin B incubation. Clusterin levels were increased gradually 

and significantly by 50 to 600 μg/ml polymyxin B concentrations treatment. The level of 

clusterin after 300 μg/ml gentamicin treatment was 64.92±5.30 ng/ml compared with the non-

treated cells 6.43±0.49 ng/ml and then the level of clusterin remained at stable as the 

concentration of polymyxin B increases up to 600 μg/ml. 

After 48h of polymyxin B incubation, clusterin concentrations significantly increased compared 

with non-treated cells. The highest production of clusterin, compared to control 26.52±2.82 

ng / ml, was after 250 μg / ml polymyxin B treatment at 203.25±30.81 ng / ml, and then the 

clusterin level, with the polymyxin B rising up to 600 μg / ml, remained almost the same.  

The clusterin production after 72h treatment of polymyxin B increased significantly compared 

to non-treated cells.  For instance, clusterin levels were gradually elevated by 50, 100, 250 and 

300 μg/ml polymyxin B concentrations. The level of clusterin after 300 μg/ml polymyxin B 

treatment was 332.53±72.1 ng/ml compared with the control 44.57±1.1 ng/ml. 
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Figure 4.13: Measurement of clusterin production from human PTCs treated with a range of 
concentrations of polymyxin B for 24, 48 and 72 hours.  

Levels were normalised to MTS absorbance value to account for cell numbers after nephrotoxin 
treatments. Human PTCs were treated with a range of polymyxin B concentration (50 to 600 
µg/ml). For example, clusterin production after 250 µg/ml polymyxin B treatment for 24h was 
54.8±2.3 ng/ml and after 500 µg/ml the level of clusterin increased to 85.6±19.7 ng/ml. The 
level of clusterin after 300 µg/ml polymyxin B treatment for 48h was 223.7±30.8 ng/ml and 
after 72h the level increased to 307.8±69.4 ng/ml. Statistical analysis was conducted using 
repeated-measures-paired-one-way ANOVA the data are representative of three independent 
experiments (n=3). Each point mean ± S.E.M values of each group. (*p < 0.05, **p < 0.01, ***p 
< 0.001).  
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4.3.5 MTS and ATP cell viability assays 

After 24 and 48 hours treatment with 250 μg / ml polymyxin B, cell viability was measured. 

The cell viability was also measured in the presence of rosuvastatin co-treatments. The cell 

viability from the same plate was assessed using both MTS and ATP assays. The results showed 

no significant difference between the two methods used for cell viability. The results are 

shown in Figure 4.14. 

After 24h of treatment, the results revealed that cell viability decreased significantly in 

response to exposure to polymyxin B to 74.52±4.88% of control. The rosuvastatin co treatment 

did not change the cell viability (96.16±2.85% live cells). The treatment of polymyxin B with 

rosuvastatin increased the live cells compared to only polymyxin B (87.25±4.26%).  

The cell viability was reduced significantly by polymyxin B (65.55±8.1%) after 48h of treatment. 

However, the cell viability did not change with rosuvastatin (94.99±2.94 %). The cell viability 

after polymyxin B with rosuvastatin was higher than only polymyxin B (77.65±5.17% viable 

cells). 
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Figure 4.14: Cells Viability of human PTCs after treatment of polymyxin B for 24 and 48 hours.  

MTS and ATP assays were used to measure the cell viability. Viability is measured as a 
percentage of the control. For example, MTS percentage after polymyxin B treatment for 24h 
was 74.5% and ATP percentage was 69.2%. In addition, the co-treatment of  rosuvastatin  with 
polymyxin B for 48h showed, the percentage of MTS was 77.6% and ATP percentage was 74.1%.      
Statistical analysis was conducted using repeated-measures-paired-one-way ANOVA the data 
are representative of three independent experiments (n=3). Bars represent mean ± S.E.M values 
of each group. (*p < 0.05, **p < 0.01, ***p < 0.001).  
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4.3.6 Lactate dehydrogenase (LDH) cytotixicy assay 

LDH released by damaged cells was measured.  In this experiment, we treated human PTCs for 

24 and 48 hours with 250 µg/ml polymyxin B and LDH was measured. In addition, we measured 

the LDH after rosuvastatin co treatment. The results are consistent with cell viability data. 

Result is shown in Figure 4.15 

After 24h, the results revealed that LDH increased significantly in response to exposure to 

polymyxin B to 40.62±4.17%. The rosuvastatin co treatment did not change the LDH 

(12.1±0.27%). The treatment of polymyxin B with cilastatin decreased the LDH compared to 

only polymyxin B (27.38±2.21%). 

The LDH was increased significantly by polymyxin B (47.91±5.1%) after 48h treatment. 

However, the LDH did not change with rosuvastatin (12.41±0.95%). The LDH after polymyxin B 

with cilastatin was lower than only polymyxin B (33.01±3.49%). 
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Figure 4.15: LDH of human PTCs after treatment of polymyxin B for 24 and 48 hours.  

LDH is measured as a percentage of the control. LDH percentage after polymyxin B treatment 
for 24h was 40.6% and after 48h the percentage increased to 47.9%. In addition, LDH 
percentage decreased after rosuvastatin co-treatment with polymyxin B for 48h to 33.1% 
Statistical analysis was conducted using repeated-measures-paired-one-way ANOVA the data 
are representative of three independent experiments (n=3). Bars represent mean ± S.E.M values 
of each group. (*p < 0.05, **p < 0.01, ***p < 0.001). 
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4.3.7 KIM-1 production after treatment of human PTCs in presence of polymyxin B +/- 

rosuvastatin 

The quantity of KIM-1 produced after human PTCs were exposed for 24 and 48 hours with 250 

μg / ml polymyxin B were investigated. The levels of KIM-1 was also measured in the presence 

rosuvastatin co-treatments. The concentrations of KIM-1 was normalised to the cell viability 

as determined from their MTS absorbance’s, expressed as ng/ml. The results are shown in 

Figure 4.16. 

After 24h treatment of polymyxin B, the amount of KIM-1 in the apical membrane did change 

significantly from the control (1.73±0.51 to 5.25±1.01 ng/ml, P < 0.01). However, the presence 

of rosuvastatin did not change KIM-1 level to 1.71±0.55 ng/ml compared to control 1.73±0.51 

ng/ml. The co-treatment of polymyxin B with rosuvastatin caused a significant decrease in KIM-

1 in the apical membrane (2.44±0.81 ng/ml, P < 0.0001) compared to only polymyxin B. In 

comparison with apical membrane, basolateral membrane levels of KIM-1 were undetectable. 

The amount of KIM-1 on the apical membrane changed significantly from the control after 48h 

of treatment with polymyxin B (20.80±5.08 ng/ml, P < 0.01). However, when we added   

rosuvastatin did not change KIM-1 level 6.98±1.28 ng/ml compared to control 6.77±1.18 

ng/ml. The co-treatment of polymyxin B with rosuvastatin caused a significant decline in KIM-

1 in the apical membrane (13.01±3.55 ng/ml, P < 0.0001) compare to only polymyxin B. In 

comparison with apical membrane, the basolateral membrane levels of KIM-1 were small. 

  



88 
 

 

Contro
l

250 µg/ml P
olymyxin B

50 µM Rosuvastatin

250 µg/ml P
olymyxin B+50 µM Rosuvastatin

0

10

20

30

Apical
Basolateral

***
++++

Human KIM-1 24h

ng
/m

l
*

***

Contro
l

250 µg/ml P
olymyxin B

50 µM Rosuvastatin

250 µg/ml P
olymyxin B+50 µM Rosuvastatin

0

10

20

30

Apical
Basolateral

***
++++

Human KIM-1 48h

ng
/m

l

***

***

A

B

 

Figure 4.16: The amount of KIM-1 produced after treatment of human PTCs for 24 and 48 
hours in presence of polymyxin B +/- rosuvastatin. 

ELISA was used to measure KIM-1 production. For example, KIM-1 production in the apical 
membrane is significantly higher than basolateral membrane. The amount of KIM-1 in the 
apical membrane change significantly from the control (5.25±1.01 ng/ml, P < 0.01) after 24h 
polymyxin B treatment. After co-treatment with rosuvastatin, KIM-1 level decreased to 
(8.16±1.39 ng/ml, P < 0.0001) compared to only polymyxin B. The level of KIM-1 after 48h 
treatment was more than 3 fold compared to 24h. Statistical analysis was conducted using 
repeated-measures-paired-one-way ANOVA the data are representative of three independent 
experiments (n=3). Bars represent mean ± S.E.M values of each group. (*p < 0.05, **p < 0.01, 
***p < 0.001, ++++p < 0.0001).  
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4.3.8 NGAL production after treatment of human PTCs in presence of polymyxin B +/- 

rosuvastatin 

NGAL production for 24 and 48 hours in the presence of 250 µg/ml polymyxin B following 

treatment of human PTCs. In the presence of rosuvastatin co-treatment, levels of NGAL were 

also measured. NGAL concentrations had been normalized to cell viability based on the MTS 

absorption of the human PTCs, resulting in ng / ml. Figure 4.17 shows the results.  

In 24h treatment of polymyxin B, the amount of NGAL in the apical membrane did increased 

significantly from the control (70.16±18.28 ng/ml, P < 0.01). However, the presence of 

rosuvastatin did not change NGAL level 20.52±5.60 ng/ml compared to control 20.41±5.56 

ng/ml. The co-treatment of polymyxin B with rosuvastatin caused a significant decrease in 

NGAL in the apical membrane (43.75±15.54 ng/ml, P < 0.0001) compared to only polymyxin B. 

NGAL concentrations in the basolateral membrane were very low compared to apical 

membrane. 

After 48h treatment of polymyxin B, the amount of NGAL in the apical membrane did increase 

significantly from the control (178.28±49.36 ng/ml, P < 0.01). However, the presence of 

rosuvastatin did not change NGAL level 38.83±15.78 ng/ml compared to control 38.72±14.58 

ng/ml. The co-treatment of polymyxin B with rosuvastatin caused a significant decrease in 

NGAL in the apical membrane (108.20±9.45 ng/ml, P < 0.0001) compared to only polymyxin B. 

Compared to apical membrane, NGAL levels in the basolateral membrane were low. 
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Figure 4.17: The amount of NGAL produced after treatment of human PTCs for 24 and 48 
hours in presence of polymyxin B +/- rosuvastatin. 

ELISA was used to measure NGAL production. For example, NGAL production in the apical 
membrane is significantly higher than basolateral membrane. The amount of NGAL in the 
apical membrane change significantly from the control (70.16±18.28 ng/ml, P < 0.01) after 24h 
polymyxin B treatment. After co-treatment with rosuvastatin, NGAL level decreased to 
(43.75±15.54 ng/ml, P < 0.0001) compared to only polymyxin B. The level of NGAL after 48h 
treatment was more than 2 fold compared to 24h. Statistical analysis was conducted using 
repeated-measures-paired-one-way ANOVA the data are representative of three independent 
experiments (n=3). Bars represent mean ± S.E.M values of each group. (*p < 0.05, **p < 0.01, 
***p < 0.001, ++++p < 0.0001).  
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4.3.9 Clusterin production after treatment of human PTCs for in presence of polymyxin B 

+/- rosuvastatin 

Clusterin production in the presence of 250 μg / ml of polymyxin B was measured after 24 and 

48 hours of human PTC treatment using ELISA. Clusterin levels were also measured in the 

presence of rosuvastatin co-treatment. Levels of clusterin were normalized to cell viability 

based on the PTCs ' MTS absorption, resulting in ng / ml. The results are shown in Figure 4.18. 

After 24h treatment of polymyxin B, the amount of clusterin in the apical membrane did 

increase significantly from the control (95.63±18.11 ng/ml, P < 0.01). However, the presence 

of rosuvastatin did not change clusterin level 19.22±5.29 ng/ml compared to control 

19.28±8.64 ng/ml. The co-treatment of polymyxin B with rosuvastatin caused a significant 

decrease in clusterin in the apical membrane (42.42±12.12 ng/ml, P < 0.0001) compared to 

only polymyxin B. The levels of clusterin in the basolateral membrane were low compared to 

the apical membrane. 

After 48h of polymyxin B treatment, the amount of clusterin in the apical membrane changed 

significantly from control (411.27±147.69 ng/ml, P < 0.01). However, when we added 

rosuvastatin did not change clusterin level 76.25±10.72 ng/ml compared to control 

76.88±12.14 ng/ml. The co-treatment of polymyxin B with rosuvastatin caused a significant 

decrease in clusterin in the apical membrane (240.29±78.68 ng/ml, P < 0.0001) compare to 

only polymyxin B. Clusterin levels in the basolateral membrane were low compared to apical 

membrane. 
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Figure 4.18: The amount of clusterin produced after treatment of human PTCs for 24 and 48 
hours in presence of polymyxin B +/- rosuvastatin.  

ELISA was used to measure clusterin production. For example, clusterin production in the apical 
membrane is significantly higher than basolateral membrane. The amount of clusterin in the 
apical membrane change significantly from the control (95.63±18.11 ng/ml, P < 0.01) after 24h 
polymyxin B treatment. After co-treatment with rosuvastatin, clusterin level decreased to 
(42.42±12.12 ng/ml, P < 0.0001) compared to only polymyxin B. The level of clusterin after 48h 
treatment was more than 3 fold compared to 24h. Statistical analysis was conducted using 
repeated-measures-paired-one-way ANOVA the data are representative of three independent 
experiments (n=3). Bars represent mean ± S.E.M values of each group. (*p < 0.05, **p < 0.01, 
***p < 0.001, ++++p < 0.0001).  
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4.4 Small molecule nephrotoxin – Cisplatin 

Before quantifying the expression of biomarkers using ELISA, human PTCs were treated with 

cisplatin, a known nephrotoxin. The uptake of cisplatin in human PTC is regulated by OCT2 

transporter in the basolateral membrane. The effects of cisplatin on human PTC monolayers 

were important as toxicity induced by cisplatin is already well characterized and can be 

compared in vivo. 

4.4.1 MTS cell viability after treatment in presence of range of concentrations of cisplatin 

After cisplatin concentration ranges (5 to 40 μM) were used for 24, 48 and 72 hours for human 

PTCs, the cell viability was measured.  MTS assay was used to assess cell viability. The MTS 

absorbance show as a percentage normalised to non-treated cells. The results are shown in 

Figure 4.19.   

The findings from MTS assay show the impact of cisplatin on human PTCs.  With the rise in 

cisplatin concentration, cell viability reduced significantly. For example, after 24h treatment 

with 20 µM cisplatin the cell viability was 67.83% compared to non-treated cells. The 

percentage of live cells was less than 30% after 30 µM cisplatin treatment. 

 After 48h, the cisplatin dose decreases the percentage of live cells. For instance, at 25 µM 

cisplatin the percentage of live cells was 59%. The live cells was less than 55% after 35 µM 

cisplatin.   

There was a major decrease in cell viability after 72h treatment with a range of concentration 

of cisplatin. After 15 µM cisplatin treatment, live cells reduced more than 30%. In addition, 

after 40 µM cisplatin incubation the cell viability was only 11%.  
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Figure 4.19: Cell viability in human PTCs treated with range concentrations of cisplatin for 
24, 48 and 72 hours.   

MTS assay was used to measure the cell viability. Cisplatin showed a time and concentrations 
dependent after 24, 48 and 72 hours treatment. For example, the cell viability after 25 µM 
cisplatin for 24h was 64.5% and the percentage dropped to 59.1% after 48h. In addition, cell 
viability after 10 µM cisplatin treatment for 72h was 80.8% and after 20 µg/ml cisplatin the cell 
viability decreased to 39.3%.  Each point represent mean ± S.E.M values of each cisplatin 
concentration. 
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4.4.2  KIM-1 production after treatment of human PTCs in presence of a range 

concentration of cisplatin 

The effects of a range of cisplatin concentrations on KIM-1 levels produced by human PTCs 

were explored. The concentrations of the biomarker was normalised to the cell viability. The 

results are shown in Figure 4.20. 

KIM-1 concentrations rose considerably after 24h of cisplatin treatment compared to non-

treated cells.  For instance, the level of KIM-1 production at 20 μM cisplatin to 58.11±9.92 

ng/ml compared with the control 2.40±0.83 ng/ml and then the level of KIM-1 increased as the 

concentration of cisplatin increases up to 40 μM. 

The levels of KIM-1 increased significantly in comparison with non-treated cells after 48h of 

cisplatin treatment. The KIM-1 levels have been considerably increased by 5 to 30 μM cisplatin 

treatment. Compared to control 4.21±0.39 ng / ml, the peak level of KIM-1 was at 83.41±9.94 

ng / ml after 30 μM cisplatin treatment, and then the KIM-1 level increased, with cisplatin 

levels rising to 40 μM. 

The KIM-1 levels increased significantly compared to non-treated cells after 72h of cisplatin 

treatment.  For instance, KIM-1 levels were elevated significantly by 5, 10, 15 and 20 μM 

cisplatin concentrations. The level of KIM-1 production reached the peak at 20 μM cisplatin 

treatment to 98.62±10.74 ng/ml compared with the control 19.1±5.13 ng/ml and then the 

level of KIM-1 was increased as the concentration of cisplatin increases up to 40 μM. 
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Figure 4.20: Measurement of KIM-1 production from human PTCs treated with range 
concentrations of cisplatin for 24, 48 and 72 hours.   

Levels of KIM-1 were normalised to MTS absorbance value to account for cell numbers after 
nephrotoxin treatments. Human PTCs were treated with a range of cisplatin concentration (5 
to 40 µM). For example, KIM-1 production after 10 µM cisplatin treatment for 24h was 4.5±0.7 
ng/ml and after 25 µM the level of KIM-1 increased to 7.8±1.1 ng/ml. The level of KIM-1 after 
30 µM cisplatin treatment for 48h was 26.7±7.7 ng/ml and after 72h the level increased to 
114.8±27.6 ng/ml. Statistical analysis was conducted using repeated-measures-paired-one-
way ANOVA the data are representative of three independent experiments (n=3). Each point 
mean ± S.E.M values of each group. (*p < 0.05, **p < 0.01, ***p < 0.001). 
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4.4.3 NGAL production after treatment of human PTCs in presence of a range concentration 

of cisplatin 

After treatment of human PTCs with a range of cisplatin concentrations, NGAL production was 

explored. NGAL concentrations were normalized to the viability of the cell. The results are 

shown in Figure 4.21. 

NGAL concentrations have increased significantly relative to non-treated cells after 24h 

cisplatin treatment. NGAL levels were elevated significantly by (5 to 30) μM cisplatin 

concentrations. The highest level of KIM-1 production was at 30 μM cisplatin to 345.60±93.1 

ng/ml compared with the control 30.22±5.86 ng/ml and then the level of NGAL decreased as 

the concentration of cisplatin increases up to 40 μM.  

NGAL levels increased significantly after 48h of cisplatin treatment compared to non-treated 

cells. The NGAL levels increased by 5 to 35 μM cisplatin. The level of NGAL reached the peak 

after 35 μM cisplatin treatment 460.23±137.88 ng / ml compared to the control 45.45±11.38 

ng / ml. 

The NGAL levels increased significantly in comparison with non-treated cells after 72h of 

cisplatin treatment. For example, the level of NGAL production at 25 μM cisplatin treatment 

was 412.78±143.1 ng/ml compared with the control 83.16±17.40 ng/ml and then the level of 

NGAL increased as the concentration of cisplatin increases up to 40 μM. 
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Figure 4.21: Measurement of NGAL production from human PTCs treated with range 
concentrations of cisplatin for 24, 48 and 72 hours.   

Levels of NGAL were normalised to MTS absorbance value to account for cell numbers after 
nephrotoxin treatments. Human PTCs were treated with a range of cisplatin concentration (5 
to 40 µM). For example, NGAL production after 20 µM cisplatin treatment for 24h was 
207.1±56.1 ng/ml and after 30 µM the level of NGAL increased to 345.6±93.1. The level of NGAL 
after 25 µM cisplatin treatment for 48h was 343.3±24.4 ng/ml and after 72h the level increased 
to 412.7±143.1 ng/ml. Statistical analysis was conducted using repeated-measures-paired-
one-way ANOVA the data are representative of three independent experiments (n=3). Each 
point mean ± S.E.M values of each group. (*p < 0.05, **p < 0.01, ***p < 0.001). 
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4.4.4  Clusterin production after treatment of human PTCs in presence of a range 

concentration of cisplatin  

The effects of a range of cisplatin concentrations on clusterin levels produced by human PTCs 

were investigated. The concentrations of the biomarker was normalised to the cell viability. 

The results are shown in Figure 4.22. 

The level of clusterin considerably increased relative to non-treated cells after 24h cisplatin 

treatment.   The level of clusterin reached the peak at 15 μM cisplatin to 211.23±17.75 ng/ml 

compared with the control 26.56±10.22 ng/ml and then the level of clusterin decreased slightly 

as the concentration of cisplatin increases up to 40 μM. 

The levels of clusterin increased significantly in comparison with non-treated cells after 48h of 

cisplatin treatment. The clusterin levels increased by 5 to 25 μM cisplatin treatment. The 

highest clusterin level compared to 37.63±10.83 ng / ml was at 274.97±56.20 ng / ml after 25 

μM cisplatin treatment, and then the clusterin level slightly decreased with a cisplatin level of 

up to 40 μM. 

The clusterin production after 72h treatment of cisplatin increased significantly compared to 

non-treated cells.  For instance, clusterin levels were gradually elevated by 5 to 25 μM cisplatin 

concentrations. Clusterin production peaked at 25 μM cisplatin to 356.53±59.95 ng / ml in 

comparison with the 72.98±13.41 ng / ml control, and then the clusterin production rose with 

a cisplatin concentration increased up to 40 µM.  
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Figure 4.22: Measurement of clusterin production from human PTCs treated with range 
concentrations of cisplatin for 24, 48 and 72 hours.   

Levels were normalised to MTS absorbance value to account for cell numbers after nephrotoxin 
treatments. Human PTCs were treated with a range of cisplatin concentration (5 to 40 µM). For 
example, clusterin production after 25 µM cisplatin treatment for 24h was 129.4±33.9 ng/ml 
and after 40 µM the level of clusterin decreased to 53.3±9.6 ng/ml. The level of clusterin after 
30 µM cisplatin treatment for 48h was 196.9±6.1 ng/ml and after 72h the level increased to 
621.9±174.1 ng/ml. Statistical analysis was conducted using repeated-measures-paired-one-
way ANOVA the data are representative of three independent experiments (n=3). Each point 
mean ± S.E.M values of each group. (*p < 0.05, **p < 0.01, ***p < 0.001). 
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4.4.5 MTS and ATP cells viability assays 

The cell viability was measured after treatment of human PTCs for 24 and 48 hours with 25 µM 

cisplatin. In the presence of cimetidine co-treatment, cell viability was also measured. Both 

MTS and ATP assays were used to assess cell viability from the same plate. No major difference 

was discovered between the two methods of assessment. The results are shown in Figure 4.23. 

After 24h, the results showed that cell viability was considerably reduced to 71.25±2.98% as a 

result of exposure to cisplatin. The co-treatment with cimetidine hasn't altered cell viability 

(93.79±3.1% live cells). The treatment of cisplatin with cimetidine increased the live cells 

compared to only cisplatin (83.11±1.83%).  

The cell viability was reduced significantly by cisplatin (61.18±3.76%) after 48h treatment. 

However, the cell viability did not change with cimetidine (93.44±1.36%). Cisplatin with 

cimetidine cell viability was higher than cisplatin alone (74.43±2.82% viable cells)  
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Figure 4.23: Cells Viability of human PTCs after treatment of cisplatin for 24 and 48 hours. 

MTS and ATP assays were used to measure the cell viability. Viability is measured as a 
percentage of the control. For example, MTS percentage after cisplatin treatment for 24h was 
71.2% and ATP percentage was 72.5%. In addition, the co-treatment of cimetidine with 
cisplatin for 48h showed, the percentage of MTS was 74.4% and ATP percentage was 75.1%.      
Statistical analysis was conducted using repeated-measures-paired-one-way ANOVA the data 
are representative of three independent experiments (n=3). Bars represent mean ± S.E.M values 
of each group. (*p < 0.05, **p < 0.01, ***p < 0.001).  
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4.4.6  Lactate dehydrogenase (LDH) cytotixicy assay 

A common method for determining cytotoxicity is the measurement of cytoplasmic enzymes 

released by damaged cells. Treatment of human PTCs for 24 and 48 hours with 25 µM cisplatin 

and then LDH was measured. In addition, we measured the LDH after cimetidine co treatment. 

The results is consistent with cell viability data. Result shown in Figure 4.24. 

After 24h, the results revealed that LDH increased significantly in response to cisplatin 

exposure to 34.38±2.72%. The cimetidine co treatment did not change the LDH (14.88±1.58%). 

The treatment of cisplatin with cimetidine decreased the LDH compared to only cisplatin 

(24.49±2.01%). 

The LDH was increased significantly by cisplatin (47.1±1.67%) after 48h.However, the LDH did 

not change with cimetidine (18.89±1.39%). The LDH after cisplatin with cimetidine was lower 

than only cisplatin (32.59±2.33%). 
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Figure 4.24: LDH of human PTCs after treatment of cisplatin for 24 and 48 hours.  

LDH is measured as a percentage of the control. LDH percentage after cisplatin treatment for 
24h was 34.3% and after 48h the percentage increased to 47.1%. In addition, LDH percentage 
decreased after cimetidine co-treatment with cisplatin for 48h to 32.5% Statistical analysis was 
conducted using repeated-measures-paired-one-way ANOVA the data are representative of 
three independent experiments (n=3). Bars represent mean ± S.E.M values of each group. (*p 
< 0.05, **p < 0.01, ***p < 0.001). 
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4.4.7 KIM-1 production after treatment of human PTCs in presence of cisplatin +/- 

cimetidine 

The quantity KIM-1 generated after 24 and 48 hours of human PTC treatment in the presence 

of 25 μM cisplatin were investigated. In presence of cimetidine co-treatments, the levels of 

KIM-1 were also measured. The concentrations of KIM-1 was normalised to the cell viability as 

determined from their MTS absorbance’s, expressed as ng/ml. The results are shown in Figure 

4.25. 

After 24h treatment of cisplatin, the amount of KIM-1 in the apical membrane did change 

significantly from the control (3.55±1.07 ng/ml, P < 0.01). However, the presence of cimetidine 

did not change KIM-1 level 0.074±0.22 ng/ml compared to control 0.077±0.21 ng/ml. The co-

treatment of cisplatin with cimetidine caused a significant decrease in KIM-1 in the apical 

membrane (2.10±0.66 ng/ml, P < 0.0001) compared to only cisplatin. KIM-1 levels in the 

basolateral membrane were undetectable compared to apical membrane. 

After 48h treatment of cisplatin, the amount of KIM-1 in the apical membrane did increase 

significantly from the control (14.61±3.49 ng/ml, P < 0.01). However, when we added   

cimetidine did not change KIM-1 level 4.49±0.61 ng/ml compared to control 4.96±1.48 ng/ml. 

The co-treatment of cisplatin with cimetidine caused a significant decrease in KIM-1 in the 

apical membrane (8.99±1.95 ng/ml, P < 0.0001) compare to only cisplatin. Compared to apical 

membrane, KIM-1 concentrations in the basolateral membrane were low.  
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Figure 4.25: The amount of KIM-1 produced after treatment of human PTCs for 24 and 48 
hours in presence of cisplatin +/- cimetidine.  

ELISA was used to measure KIM-1 production. For example, KIM-1 production in the apical 
membrane is significantly higher than basolateral membrane. The amount of KIM-1 in the 
apical membrane change significantly from the control (3.55±1.07 ng/ml, P < 0.01) after 24h 
cisplatin treatment. After co-treatment with cimetidine, KIM-1 level decreased to (2.10±0.66 
ng/ml, P < 0.0001) compared to only cisplatin. The level of KIM-1 after 48h treatment was 
almost 4 fold compared to 24h. Statistical analysis was conducted using repeated-measures-
paired-one-way ANOVA the data are representative of three independent experiments (n=3). 
Bars represent mean ± S.E.M values of each group. (*p < 0.05, **p < 0.01, ***p < 0.001, ++++p 
< 0.0001). 
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4.4.8 NGAL production after treatment of human PTCs in presence of cisplatin +/- 

cimetidine 

NGAL production for 24 and 48 hours in the presence of cisplatin following treatment of human 

PTCs. In the presence of cimetidine co-treatment, levels of NGAL were also measured. NGAL 

concentrations had been normalized to cell viability based on the MTS absorption of the PTCs, 

resulting in ng / ml. The results are shown in Figure 4.26. 

In 24h treatment of cisplatin, the amount of NGAL in the apical membrane did increase 

significantly from the control (489.77±120.25 ng/ml, P < 0.01). In contrast, the presence of 

cimetidine did not change NGAL level 172.32±59.59 ng/ml compared to control 170.14±5.32 

ng/ml. The co-treatment of cisplatin with cimetidine caused a significant decrease in NGAL in 

the apical membrane (254.28±82.1 ng/ml, P < 0.0001) compared to only cisplatin. Compared 

to apical membrane, NGAL levels in the basolateral membrane were low. 

After 48h treatment of cisplatin, the amount of NGAL in the apical membrane did rise 

significantly from the control (3936.2±1828.69 ng/ml, P < 0.01). However, the presence of 

cimetidine did not change NGAL level 702.46±133.38 ng/ml compared to control 

735.12±180.97 ng/ml. The co-treatment of cisplatin with cimetidine caused a significant 

decline in NGAL in the apical membrane (1207.11±442.01 ng/ml, P < 0.0001) compared to only 

cisplatin NGAL concentrations were low in the basolateral membrane compared to apical 

membrane. 
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Figure 4.26: The amount of NGAL produced after treatment of human PTCs for 24 and 48 
hours in presence of cisplatin +/- cimetidine. 

ELISA was used to measure NGAL production. For example, NGAL production in the apical 
membrane is significantly higher than basolateral membrane. The amount of NGAL in the 
apical membrane change significantly from the control (489.77±120.25 ng/ml, P < 0.01) after 
24h cisplatin treatment. After co-treatment with cimetidine, NGAL level decreased to 
(254.28±82.1 ng/ml, P < 0.0001) compared to only cisplatin. The level of NGAL after 48h 
treatment was more than 8 fold compared to 24h. Statistical analysis was conducted using 
repeated-measures-paired-one-way ANOVA the data are representative of three independent 
experiments (n=3). Bars represent mean ± S.E.M values of each group. (*p < 0.05, **p < 0.01, 
***p < 0.001, ++++p < 0.0001).  
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4.4.9 Clusterin production after treatment of human PTCs in presence of cisplatin +/- 

cimetidine 

Human PTCs were treated for 24 and 48 hours with 25 µM cisplatin and clusterin production 

was measured. In the presence of cimetidine co-treatment, levels of clusterin were also 

measured. Clusterin concentrations had been normalized to cell viability based on the MTS 

absorption of the PTCs, resulting in ng / ml. The result is shown in Figure 4.27. 

After 24h treatment of cisplatin, the amount of clusterin in the apical membrane did elevate 

significantly compared the untreated cells (200.05±67.43 ng/ml, P < 0.01). In contrast, the 

presence of cimetidine did not change clusterin level 40.23±15.71 ng/ml compared to control 

39.62±14.27 ng/ml. The co-treatment of cisplatin with cimetidine caused a significant decline 

in clusterin in the apical membrane (119.34±23.60 ng/ml, P < 0.0001) compared to only 

cisplatin. Compared to apical membrane, clusterin levels in the basolateral membrane were 

low. 

After 48h treatment of cisplatin, the amount of clusterin in the apical membrane did increase 

significantly compared the untreated cells (613.90±286.48 ng/ml, P < 0.01). However, the 

presence of cimetidine did not change clusterin level 80.38±18.57 ng/ml compared to control 

79.57±18.16 ng/ml. The co-treatment of cisplatin with cimetidine caused a significant decrease 

in clusterin in the apical membrane (274.60±160.79 ng/ml, P < 0.0001) compared to only 

cisplatin. Compared to apical membrane, clusterin levels in the basolateral membrane were 

low. 
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Figure 4.27: The amount of clusterin produced after treatment of human PTCs for 24 and 48 
hours in presence of cisplatin +/- cimetidine.  

ELISA was used to measure clusterin production. For example, clusterin production in the apical 
membrane is significantly higher than basolateral membrane. The amount of clusterin in the 
apical membrane change significantly from the control (200.05±67.43 ng/ml, P < 0.01) after 
24h cisplatin treatment. After co-treatment with cimetidine, clusterin level decreased to 
(119.34±23.60 ng/ml, P < 0.0001) compared to only cisplatin. The level of clusterin after 48h 
treatment was more than 3 fold compared to 24h. Statistical analysis was conducted using 
repeated-measures-paired-one-way ANOVA the data are representative of three independent 
experiments (n=3). Bars represent mean ± S.E.M values of each group. (*p < 0.05, **p < 0.01, 
***p < 0.001, ++++p < 0.0001).  
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4.5 Discussion  

This chapter aims to explore how primary human PTCs might serve as in-vitro models for 

nephrotoxicity. Monolayers were subjected to established nephrotoxins - cisplatin, gentamicin 

and polymyxin B, and the expression of KIM-1, NGAL and clusterin was also determined. The 

effects of the co-administration of rosuvastatin, cilastatin and cimetidine with polymyxin B, 

gentamicin and cisplatin were invest aged in this chapter. Using primary cultured cells carries 

several benefits. Compared to some established cell lines, The primary cells kept their full array 

of expression of drug transporters, much more than many established cell lines [116]. In 

exploring the effect of toxic xenobiotics on the kidneys, primary cells are thus thought to be 

more stable.  

4.5.1 Cell viability of human PTCs  

 The MTS and ATP assays were used to assess the number of live cells. The mechanism of MTS 

assay by metabolically active mitochondria to reduce a tetrazolium salt to formazan, which is 

spectrophotometrically distinguishable from the former. On the other hand, the ATP Cell 

Viability Assay is a homogeneous method for determining the number of viable cells in culture 

based on the quantity of the present ATP, which indicates the presence of metabolically active 

cells. The first step was to evaluate the viability of cells after being treated by nephrotoxins. 

Three types of nephrotoxins were employed: cisplatin, gentamicin and polymyxin B. Those are 

known nephrotoxins and they use different transporters to cause nephrotoxicity to human 

PTCs. The result was as predicted.   

Our results observed a time and concentrations dependent after treatment human PTCs with 

gentamicin, polymyxin B and cisplatin, indicating that our in vitro model is an ideal tool to study 

renal toxicity caused by different nephrotoxins. For example, after exposure of human PTCs 

with a range concentration of cisplatin, the cell viability after 15 µM cisplatin treatment for 

24h was 82.1% and after 48h the percentage of live cells dropped to 71%. At the same time for 

example, the percentage of live cells after 72h treatment with 25 and 30 µM cisplatin were 

39% and 16% respectively.     

Another goal was to compare MTS and ATP assays results for cells that came into contact with 

nephrotoxins in similar conditions. Human PTCs following exposure to nephrotoxins, 
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similarities in the viability data from both assays were found. The effect of treating human PTC 

monolayers with cisplatin, a commonly used nephrotoxin, was then observed, with regard to 

the monolayer production of KIM-1, NGAL and clusterin. Given the identical conditions of the 

controlled experiment, similar results were expected as mitochondrial enzymes reduce the 

reagents from both MTS and ATP. These results show the reproducible of the model we are 

using to predict nephrotoxicity. We can use any assay to measure the cell viability and the 

results will be the same.    

4.5.2 LDH 

In this study, LDH assay was used to measure the cytotoxicity of human PTCs after 

nephrotoxins exposure.  The results were consistent with cell viability data. The data showed 

as the human PTCs exposed to different nephrotoxins the release of LDH is increased. A study 

used LLC-PK1 cells to measure the LDH release after treatment with 375 µM polymyxin B for 

24 and 72 hours. They found a significant increase in LDH release after exposure, indicating the 

time dependent of polymyxin B by using LDH release in LLc-PK1 cells [117].      

4.5.3 Human Biomarkers   

The monolayer production of KIM-1, NGAL and clusterin was significantly higher when treated 

with polymyxin B over 24, 48 and 72 hours, than when not subjected to this treatment in the 

control samples. The release of KIM-1 was dependent on the concentration of the polymyxin 

B, and the same was found to be true with cisplatin and gentamicin. 

NGAL concentrations after a range concentrations treatment of polymyxin B is increasing in 

very high amount compared to 24 and 48 hours treatment. This might due to polymyxin B 

needing more time to invoke the release NGAL from the apical membrane of the PTCs.        

Our data showed non-saturatable effect of cisplatin treatment to human PTCs on biomarkers 

production. This might due to physiological response to cisplatin. In this study, biomarkers 

levels were measured after 3 days of nephrotoxins treatment. It might need more time to 

reach the saturatable point. This has been shown in another study there the authors measured 

urinary KIM-1 from rat with obstructive AKI. The data showed that KIM-1 was increasing even 

at day 7 of obstruction [118].  
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Our results also showed differences in response in biomarkers concentrations after treatment 

with cisplatin. In contrast to KIM-1, the levels of NGAL and clusterin started to decrease at high 

levels of cisplatin treatment on day 2 and at day 3. This might due to delayed response of the 

biomarkers to the nephrotoxin. For instance, overloading the monolayers the proximal tubular 

cells with cisplatin has been shown to alter cell signaling pathways and gene transcription, and 

as a result the renal transporter expression and function – they are modulated to compensate 

for the loss of nutrients [119]. These changes could explain the stalling of NGAL and clusterin 

production during 24 and 48 hours, but increased significantly at the 72 hour treatment. 

Urinary KIM-1 has been reported to be specific to proximal tubular damage. In preclinical 

biomarker qualification studies, it has proven that it was a sensitive and early diagnostic 

indicator for renal injury, with superior precision and susceptibility to traditional biomarkers 

[120]. Changes of the expression of NGAL were one of the most recent effects seen in kidneys 

of animals treated with 50 or 100 mg / kg body weight gentamicin at times when epithelial 

tubular cells were affected by little histopathological changes[121]. Compared to NGAL, after 

7 days of gentamicin treatment, mRNA level of KIM-1 became more prominent. Both genes 

were considered to be related to proliferation / regeneration and repair, according to the 

histopathological changes observed after gentamicin in response to toxicity and disease[121]. 

A study showed that the excretion of urinary clusterin peaks 2 days after an ischemia insult. 

This is well connected to its production peak of 24h in the damaged of the proximal tubule as 

determined by confocal laser quantitative microscopy. It is believed that most of the excreted 

clusterin is derived from cell debris floating in the lumen so that it can be explained by the time 

it takes to clear the scarcity out of the kidney between the clusterin and the urinary excretion 

of clusterin[122].  

Cisplatin nephrotoxicity has been studied for many years and however, the cisplatin-induced 

kidney injury molecular mechanism has yet to be clarified. Nephrotoxicity results directly from 

the loss of kidney function, including serious decreases in the level of glomerular filtration, 

clearance of Creatinine (CRE) and associated rises in serum creatinine and BUN[123]. The 

effects of cisplatin are seen to be a disruption of DNA replication, and a crosslinking of DNA. It 

induces apoptosis as a result of its accumulation in the mitochondria [124, 125]. The 
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nephrotoxic action of cisplatin is therefore likely to be a result of apoptosis via the intrinsic 

pathway and the mitochondrial release of cytochrome C. This would also account for the PTCs 

being a target site of toxicity that has been induced by cisplatin, as they contain high densities 

of mitochondria [124].  

Cimetidine has been reported to inhibit cisplatin transport via OCT2 on a competitive basis and 

affect cell toxicity [126]. A study showed that, cimetidine inhibited the cytotoxicity of cisplatin 

in renal cells. Cimetidine obviously inhibits cisplatin-induced nephrotoxicity and damage to the 

kidneys without influence over cisplatin in vitro and in vivo antitumor activity. While the 

cimetidine's in vitro activities are mainly due to the injections of ROS production, both 

inhibitory reactive oxygen species(ROS) and OCT2 measures, which are intrinsically expressed 

in the kidney, appear to have an in vivo protection effect on the nephrotoxicity of 

cisplatin[127]. 

One of the aims of this study was therefore to determine whether similar protective effects 

were seen when cilastatin was administered in conjunction with gentamicin. There was seen 

to be a significant difference after 24h in the release of KIM-1 when cells were treated with 

gentamicin on its own. There was a one fold change in KIM-1 release after 48h in cells treated 

with gentamycin, compared to the untreated cells.  This suggests that, when administered with 

gentamicin with cilastatin may have a protective effect. This needs to be confirmed by further 

studies, which should also explore whether this effect is also present when cilastatin is given 

alongside other nephrotoxins.  

This is another study done by using different co-treatment studied the impact of atorvastatin 

on the nephrotoxicity of gentamicin induced rats. Gentamicin infusion significantly reduced 

the function of the kidney, enhanced oxidative stress, and tubular necrosis in the renal cortex 

was associated. The tissue and renal function have normalized the stress parameters, and tube 

necrosis in atorvastatin-treated animals has been attenuated. Atorvastatin reduced 

expressions of kinase, kappa B nuclear factor and synthase of inducible nitric oxide, which 

confirmed an anti-inflammatory and anti-oxidant action caused by statin[128]. Simvastatin has 

been found to improve gentamicin-induced changes in renal histopathology and dose 

dependent function in a similar rodent model[128]. 
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Polymyxin B is nephrotoxic and may cause renal injury. Polymyxin B antimicrobial have a small 

therapeutic window due to the necessary balance between their antibacterial activity and 

nephrotoxicity [129]. The data showed that, the treatment of human PTCs with 250 µg/ml 

polymyxin B for 24 and 48 hours increase the production of KIM-1, NGAL and clusterin. For 

instance, the level of KIM-1 produced after 24h treatment with polymyxin B was 5.2 ng/ml and 

there was a 4 fold increase after 48h treatment. In addition, rosuvastatin was used as a co 

treatment to reduce the nephrotoxicity of polymyxin B. For example, NGAL production after 

48h treatment with polymyxin B was 77.1 ng/ml and co treatment with rosuvastatin the level 

of NGAL reduced to 43.7 ng/ml, suggesting the rosuvastatin of decreasing the nephrotoxicity 

of polymyxin B.  

The protective effects of rosuvastatin have been previously shown. Studies carried out on the 

effects of statins suggest that they decrease albuminuria and oxidative stress and lessen 

epithelial dysfunction; however, it is believed that they do not directly cause the decreased 

GFR associated with nephrotoxicity [130]. In HIV patients, when they are treated with 

combined antiretroviral therapy, there is an increased incidence of nephrotoxicity, thought to 

be caused by the drugs used in the therapy [131]. The results of a study by Longenecker et al. 

(2014) revealed that if HIV patients were also administered rosuvastatin, their circulating 

cystatin C reduced and their GFR was preserved [132]. Furthermore, compared to the controls, 

serum NGAL, cystatin c and creatinine were reduced in patients who were administered a 

contrast media for coronary angiography, when rosuvastatin was given two days before and 

three days after the contrast media was administered [133].  

The biomarkers concentration were more in the apical membrane than the basolateral 

membrane. This results were expecting and reflecting what really happen in vivo. Those renal 

biomarkers are detectible in urine. NGAL is upregulated and can be detected in mice's kidney 

and urine three hours after cisplatin treatment and has been suggested a good biomarker for 

nephrotoxicity[134]. The significant in the basolateral membrane was expecting due to the 

cells leakage and lose their integrity after drugs treatment.   

Our results showed the increase production of the all 3 biomarkers used in this study after 

treatment with 3 known nephrotoxins. In addition, the use of 3 co-treatment showed a decline 
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in biomarkers levels when treated 24h before the nephrotoxins treatment.   Our human PTCs 

model could be a good model for early prediction of nephrotoxicity. It is assumed that early 

detection of nephrotoxicity biomarkers would be available for use in laboratory research and 

clinical studies relatively soon. The development of rapid, dipstick assays for KIM-1, NGAL and 

clusterin could enable a better nephrotoxins associated AKI diagnosis, also improving patients’ 

care.  Urinary biomarkers levels are elevated in nephrotoxins induced AKI and may help in the 

differential diagnosis of PTCs injuries. Although further studies are needed to explore the 

mechanisms behind nephrotoxic drugs and the role of KIM-1, NGAL and clusterin in this 

setting, those biomarkers are showing promise in early diagnosis and prognosis of AKI.   
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5 Rat biomarkers 

5.1 Introduction 

Experimental models are required for essential understanding and the underlying drug action 

mechanisms to define new therapeutic goals and create new therapeutic strategies. In the first 

few stages of drug development, animal models, including both in vivo and in vitro methods, 

are frequently used before human testing in clinical trials. In this chapter, rat PTCs were used 

as in vitro model as an early way to detect nephrotoxicity. These studies will provide an 

indication as to the suitability of human and rat PTC monolayers as in vitro models of 

nephrotoxicity and also possible mechanisms of toxicity. Rats have been selected as a source 

of PTCs because they are often used in drug development preclinical studies[135]. In parallel, 

an animal model, specifically a rat, would provide translation data to what really happen in 

vivo.   

Rat kidney have been revealed to upregulate KIM-1 gene expression and the existence of the 

KIM-1 ectodomain in the urine [136]. Moreover, the KIM-1 protein ectodomain is separated 

and released into the urine in rats and humans, after exposure to chemicals, ischemia, and 

protein overload, in a number of nephrotoxic models [137].   

Preclinical studies found that NGAL in animal models was one of the most upregulated genes 

and proteins in the kidney immediately after AKI[138]. In animal models of AKI, NGAL protein 

was identified in urine and plasma, preceding the rise in plasma creatinine levels [139]. 

In animal models and cultured cells, the majority of gentamicin enter tubular cells 

quantitatively through endocytosis mediated by the (megalin / cubilin ) [140]. Gentamicin 

moves to the endosomal compartment through pinocytosis. The drug mainly builds up in the 

lysosomes, retrogrades through the secretory path to the Golgi and endoplasmic reticula 

(ER)[141]. Gentamicin generates membrane destabilization, lysosomal aggregation, lipid 

metabolism modification, and phospholipidosis connected with cell death in the 

lysosomes[140]. 

Cisplatin movement through the renal tubular cells is from basolateral to apical[142]. It is now 

known that two main transporters are engaged in the transport of cisplatin to the tubular cells, 
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the human copper transport protein 1 (Ctr1) and the organic cation transporter 2 (OCT2)[143]. 

Once cisplatin has entered the cell, many impacts have been observed, leading to apoptosis 

and necrosis of the cell. The frequently recognized objective is to harm nuclear DNA, but about 

1% of cytosolic cisplatin is found in the nucleus [144].  

The purpose of this study is to identify and substantiate the use of rat primary proximal tubular 

cells (PTCs) as appropriate models for nephrotoxicity study. By using polymyxin B, gentamicin 

and cisplatin as a known nephrotoxins to treat our rat PTCs, measuring the expression of 

different nephrotoxicity biomarkers, such as KIM-1 and NGAL were done in this chapter.  
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5.2 Large molecule nephrotoxin – Gentamicin 

Rat PTCs were treated with gentamicin, a known nephrotoxin, before the biomarker 

expression was quantified using ELISA. The use of gentamicin is important because of the well-

characterized and known toxicity caused by gentamicin in vivo. 

5.2.1 MTS Cell viability of rat in gentamicin concentration range 

The results of the MTS assay showed the time and concentration dependent effect of 

gentamicin on cell viability in rat PTCs. With a rise in gentamicin concentration, cell viability 

reduced significantly. For example, after 24h treatment with 100 µg/ml gentamicin the cell 

viability was 23% less than the non-treated cells. The percentage of live cells was less than 50% 

after 250 µg/ml gentamicin treatment. The results are shown in Figure 5.1. 

 The percentage of live cells decreased with the rise of the gentamicin dose after 48h 

incubations.  For instance, after 300 µg/ml gentamicin the percentage of live cells was 44%. 

The live cells were less than 40% after 400 µg/ml gentamicin treatment.   

After 72h treatment with a range of gentamicin concentrations, cell viability decreased 

significantly. After 100 µg/ml gentamicin treatment, live cells was 71%. In addition, after 500 

µg/ml gentamicin incubation the cell viability was only 29%.  
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Figure 5.1: Cell viability in rat PTCs treated with range concentrations of gentamicin for 24, 
48 and 72 hours.   

MTS assay was used to measure the cell viability. For example, the cell viability after 250 µg/ml 
gentamicin for 24h was 82.2% and the percentage dropped to 71.8% after 48h. In addition, cell 
viability after 300 µg/ml gentamicin treatment for 72h was 49.9% and after 500 µg/ml 
gentamicin the cell viability decreased to 20%. Each point represent mean ± S.E.M values of 
each gentamicin concentration. 
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5.2.2  KIM-1 production after treatment of rat PTCs in presence of a range concentration 

of gentamicin:  

The level of KIM-1 produced after rat PTCs were treated with a range of gentamicin 

concentrations were investigated. The concentrations of the biomarker were normalised to 

the cell viability. The results are shown in Figure 5.2. 

The KIM-1 levels after 24h treatment of gentamicin increased significantly compared to non-

treated cells.  For instance, the level of KIM-1 production after 300 μg/ml gentamicin was 

7.75±2.85 ng/ml compared with the control 1.11±0.23 ng/ml and then the level of KIM-1 

started to increase slightly as the concentration of gentamicin increases up to 600 μg/ml. 

The levels of KIM-1 increased significantly in comparison with non-treated cells after 48h of 

gentamicin treatment. The KIM-1 levels increased by 50 to 600 μg/ ml gentamicin treatment. 

The highest level of KIM-1, compared to control 2.90±0.30 ng/ ml, was after 600 μg / ml 

gentamicin treatment at 31.87±936 ng/ ml. 

The KIM-1 concentrations risen considerably compared to non-treated cells after 72h of 

gentamicin treatment.  For instance, the level of KIM-1 production after 250 μg/ml gentamicin 

treatment was 34.80±6.49 ng/ml compared with the control 7.74±1.51 ng/ml and then the 

level of KIM-1 increased as the concentration of gentamicin increases up to 600 μg/ml. 
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Figure 5.2: Measurement of KIM-1 production from rat PTCs treated with range 
concentrations of gentamicin for 24, 48 and 72 hours.  

Levels were normalised to MTS absorbance value to account for cell numbers after nephrotoxin 
treatments. Rat PTCs were treated with a range of gentamicin concentration (50 to 600 µg/ml). 
For example, NGAL production after 300 µg/ml gentamicin treatment for 24h was 65.8±4.7 
ng/ml and after 500 µg/ml the level of KIM-1 increased to 131.4±19.5 ng/ml. The level of KIM-
1 after 250 µg/ml gentamicin treatment for 48h was 180.4±43.5 ng/ml and after 72h the level 
increased to 307.8±35.7 ng/ml.  Statistical analysis was conducted using repeated-measures-
paired-one-way ANOVA the data are representative of three independent experiments (n=3). 
Each point mean ± S.E.M values of each group. (*p < 0.05, **p < 0.01, ***p < 0.001). 
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5.2.3 NGAL production after treatment of rat PTCs in presence of a range concentration of 

gentamicin:  

After a rat PTC had been incubated with a range of gentamicin levels, NGAL production was 

examined. NGAL levels have been normalized to cell viability. The results showed the time and 

concentration dependent effect of gentamicin on rat PTCs. The results are shown in Figure 5.3.  

There were a significant increase in NGAL levels after 24h treatment of gentamicin compared 

to non-treated cells. NGAL levels were elevated significantly by (50 to 600) μg/ml gentamicin 

concentrations. The level of KIM-1 production after 400 μg/ml gentamicin was 114.62±37.32 

ng/ml compared with the control 7.66±2.18 ng/ml and then the level of NGAL remained almost 

the same as the concentration of gentamicin increases up to 600 μg/ml.  

The levels of NGAL increased significantly in comparison with non-treated cells after 48h of 

gentamicin treatment. The maximum level of NGAL was after 500 μg / ml gentamicin 

treatment 193.83±42.23 ng / ml compared to the control 20.30±3.10 ng / ml. 

The NGAL levels after 72h treatment of gentamicin increased significantly compared to non-

treated cells.  For example, the level of NGAL production after 250 μg/ml gentamicin treatment 

was 273.17±47.36 ng/ml compared with the control 47.36±1.95 ng/ml and then the level of 

NGAL increased as the concentration of gentamicin increases up to 600 μg/ml. 
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Figure 5.3: Measurement of NGAL production from rat PTCs treated with range 
concentrations of gentamicin for 24, 48 and 72 hours.   

Levels of NGAL were normalised to MTS absorbance value to account for cell numbers after 
nephrotoxin treatments. Rat PTCs were treated with a range of gentamicin concentration (50 
to 600 µg/ml). For example, NGAL production after 300 µg/ml gentamicin treatment for 24h 
was 82.3±17.4 ng/ml and after 500 µg/ml the level of NGAL increased to 122.1±47.9 ng/ml. 
The level of NGAL after 250 µg/ml gentamicin treatment for 48h was 118.5±14.9 ng/ml and 
after 72h the level increased to 273.1±47.3 ng/ml. Statistical analysis was conducted using 
repeated-measures-paired-one-way ANOVA the data are representative of three independent 
experiments (n=3). Each point mean ± S.E.M values of each group. (*p < 0.05, **p < 0.01, ***p 
< 0.001). 
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5.2.4 MTS and ATP Cells viability assays: 

The cell viability was measured after treatment of rat PTCs for 24 and 48 hours with 250 µg/ml 

gentamicin. The cell viability was also measured in the presence of cilastatin co-treatments. 

Both MTS and ATP assays were used to assess cell viability from the same plate. The results 

revealed no significant difference between the two assessment methods. The results are 

shown in Figure 5.4. 

After 24h, the results revealed that cell viability reduced significantly in response to exposure 

to gentamicin to (65.74±3.29%, P < 0.01) of control. The cilastatin co treatment did not change 

the cell viability (97.98±3.28% live cells). The treatment of gentamicin with cilastatin increased 

the live cells compared to only gentamicin (74.38±4.12%, P < 0.01).  

After 48h, the cell viability was reduced significantly by gentamicin (58.95±3.1%, P < 0.01). 

However, the cell viability did not change with cilastatin (98.66±1.86%). The cell viability after 

gentamicin with cilastatin was higher than only gentamicin (70.37±4.21%, P < 0.01 live cells). 
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Figure 5.4: Cells Viability of rat PTCs after treatment of gentamicin for 24 and 48 hours. 

MTS and ATP assays were used to measure the cell viability. Viability is measured as a 
percentage of the control. For example, MTS percentage after gentamicin treatment for 24h 
was 65.7% and ATP percentage was 75.1%. In addition, the co-treatment of cilastatin with 
gentamicin for 48h showed, the percentage of MTS was 70.3% and ATP percentage was 80.8%.      
Statistical analysis was conducted using repeated-measures-paired-one-way ANOVA the data 
are representative of three independent experiments (n=3). Bars represent mean ± S.E.M values 
of each group. (*p < 0.05, **p < 0.01, ***p < 0.001). 
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5.2.5  Lactate dehydrogenase (LDH) cytotixicy assay: 

The measurement of cytoplasmic enzymes released by damaged cells is a common method for 

determining cytotoxicity. In this experiment, we treated rat PTCs for 24 and 48 hours with 250 

µg/ml gentamicin and LDH was measured. In addition, we measured the LDH after cilastatin 

co treatment. The results are consistent with cell viability data. Result shown in Figure 5.5. 

After 24h, the results revealed that LDH increased significantly in response to exposure to 

gentamicin to (29.26±1.14%, P < 0.01). The cilastatin co treatment did not change the LDH 

(17.1±1.26%). The treatment of gentamicin with cilastatin increased the decreased the LDH 

compared to only gentamicin (26.72±1.23%, P < 0.01). 

After 48h, the LDH was increased significantly by gentamicin (37.91±1.90%, P < 0.01). However, 

the LDH did not change with cilastatin (19.97±0.86%). The LDH after gentamicin with cilastatin 

was lower than only gentamicin (27.60±0.74%, P < 0.01). 
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Figure 5.5: LDH released from rat PTCs after treatment of gentamicin for 24 and 48 hours. 

LDH is measured as a percentage of the control. LDH percentage after gentamicin treatment 
for 24h was 29.6% and after 48h the percentage increased to 37.9%. In addition, LDH 
percentage decreased after cilastatin co-treatment with gentamicin for 48h to 27.6%. 
Statistical analysis was conducted using repeated-measures-paired-one-way ANOVA the data 
are representative of three independent experiments (n=3). Bars represent mean ± S.E.M values 
of each group. (*p < 0.05, **p < 0.01, ***p < 0.001). 
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5.2.6  KIM-1 expression after treatment of rat PTCs in presence of gentamicin +/- cilastatin  

The amount of KIM-1 produced after treatment of rat PTCs for 24 and 48 hours in presence of 

250 µm/ml gentamicin were investigated. The levels of KIM-1 was also measured in the 

presence 40 µM cilastatin co-treatments. The concentrations of KIM-1 was normalised to the 

cell viability as determined from their MTS absorbance, results of which were therefore 

expressed as ng/ml. The results are shown in Figure 5.6. 

After 24h treatment of gentamicin, the amount of KIM-1 in the apical membrane did change 

significantly from the control (3.86±0.28 to 10.31±0.72 ng/ml, P < 0.01). However, the 

presence of cilastatin did not change KIM-1 level 4.31±0.36 ng/ml compared to control 

3.86±0.28 ng/ml. The co-treatment of gentamicin with cilastatin caused a significant decrease 

in KIM-1 in the apical membrane (7.35±0.48 ng/ml, P < 0.0001) compared to only gentamicin.  

After 48h treatment of gentamicin, the amount of KIM-1 in the apical membrane did change 

significantly from the control (28.70±0.48 ng/ml, P < 0.01). However, when we added   

cilastatin did not change KIM-1 level 12.83±0.37 ng/ml compared to control 10.48±0.35 ng/ml. 

A significant reduction in KIM-1 was monitored in apical membrane (20.82±1.11 ng / ml, 

P<0.0001) compared to only gentamicin by co-treatment of cilastatin with gentamicin. 

Basolateral membrane KIM-1 production were undetectable in comparison with apical 

membrane. 
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Figure 5.6: The amount of KIM-1 produced after treatment of rat PTCs for 24 and 48 hours in 
presence of gentamicin +/- cilastatin.  

ELISA was used to measure KIM-1 production. The amount of KIM-1 in the apical membrane 
change significantly from the control (3.86±0.28 to 10.31±0.72 ng/ml, P < 0.01) after 24h 
gentamicin treatment. After co-treatment with cilastatin, KIM-1 level decreased to (7.35±0.48 
ng/ml, P < 0.0001) compared to only gentamicin. The level of KIM-1 after 48h treatment was 
more than 3 fold compared to 24h. Statistical analysis was conducted using repeated-
measures-paired-one-way ANOVA the data are representative of three independent 
experiments (n=3). Bars represent mean ± S.E.M values of each group. (*p < 0.05, **p < 0.01, 
***p < 0.001, ++++p < 0.0001).  
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5.2.7 NGAL production after treatment of rat PTCs in presence of gentamicin +/- cilastatin 

NGAL production for 24 and 48 hours in the presence of gentamicin following treatment of rat 

PTCs. In the presence of cilastatin co-treatment, levels of NGAL were also measured. NGAL 

concentrations had been normalized to cell viability based on the MTS absorption of the PTCs, 

resulting in ng / ml. Figure 5.7 shows the results.  

The quantity of NGAL in the apical membrane increased significantly  after 24h incubation with 

gentamicin (146.38±21.49 ng / ml, P<0.01).However, the presence of cilastatin did not change 

NGAL level 28.42±6.16 ng/ml compared to control 28.52±5.28 ng/ml. The co-treatment of 

gentamicin with cilastatin caused a significant decrease in NGAL in the apical membrane 

(113.09±14.21 ng/ml, P < 0.0001) compared to only gentamicin. Compared to apical 

membrane, NGAL levels in the basolateral membrane were low. 

After 48h treatment of gentamicin, the amount of NGAL in the apical membrane did increase 

significantly from the control (400.65±130.9 ng/ml, P < 0.01). However, the presence of 

cilastatin did not change NGAL level 67.10±3.86 ng/ml compared to control 67.14±13.92 

ng/ml. The co-treatment of gentamicin with cilastatin caused a significant decrease in NGAL in 

the apical membrane (251.34±5.46 ng/ml, P < 0.0001) compared to only gentamicin.  
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Figure 5.7: The amount of NGAL produced after treatment of rat PTCs for 24 and 48 hours in 
presence of gentamicin +/- cilastatin.  

ELISA was used to measure NGAL production. The amount of NGAL in the apical membrane 
change significantly from the control (146.38±21.49 ng / ml, P<0.01) after 24h gentamicin 
treatment. After co-treatment with cilastatin, NGAL level decreased to (113.09±14.21 ng/ml, P 
< 0.0001) compared to only gentamicin. The level of NGAL after 48h treatment was almost 3 
fold higher than 24h. Statistical analysis was conducted using repeated-measures-paired-one-
way ANOVA the data are representative of three independent experiments (n=3). Bars 
represent mean ± S.E.M values of each group. (*p < 0.05, **p < 0.01, ***p < 0.001, ++++p < 
0.0001).  



133 
 

5.3 Large molecule nephrotoxin – Polymyxin B 

Before expression of biomarkers was quantified with ELISA, Rat PTCs were treated with 

polymyxin B. Polymyxin B impacts on PTCs were important because polymyxin B toxicity was 

already well known in vivo. 

5.3.1 MTS Cell viability of rat with polymyxin B concentration range 

The cell viability was measured after treatment of rat PTCs with a range of concentration of 

polymyxin B (50 to 600 µg/ml) for 24, 48 and 72 hours.  MTS assay was used to assess cell 

viability. The MTS absorbance show as a percentage normalised to control cells. The results 

are shown in Figure 5.8.  

The impact of polymyxin B on cell viability in rat PTCs was found in the quantity of the MTS.  

The cell viability decreased steadily with an increase in polymyxin B concentration. For 

example, after 24h treatment with 300 µg/ml polymyxin B the cell viability was 63%. The 

percentage of live cells was less than 48% after 500 µg/ml polymyxin B treatment. 

 After 48h incubation with polymyxin B the percentage of live cells decrease as the dose of 

polymyxin B increase.  For instance, at 250 µg/ml polymyxin B the percentage of live cells was 

61%. The live was less more than 65% after 400 µg/ml polymyxin B.   

There were a major decrease in cell viability after 72h treatment with a range of concentration 

of polymyxin B. after 100 µg/ml polymyxin B treatment, live cells reduced more than 40%. In 

addition, after 500 µg/ml polymyxin B incubation the cell viability was only 28%.  
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Figure 5.8: Cell viability in rat PTCs treated with range concentrations of polymyxin B for 24, 
48 and 72 hours.   

MTS assay was used to measure the cell viability. Polymyxin B showed a time and 
concentrations dependent. For example, the cell viability after 250 µg/ml polymyxin B 
treatment for 24h was 72.5% and the percentage dropped to 60.1% after 48h. In addition, cell 
viability after 300 µg/ml polymyxin B treatment for 72h was 43.1% and after 500 µg/ml 
polymyxin B the cell viability decreased to 28.5%.  Each point represent mean ± S.E.M values of 
each polymyxin B concentration. 
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5.3.2 KIM-1 production after treatment of rat PTCs in presence of a range concentration of 

polymyxin B  

The KIM-1 level was investigated after rat PTCs were treated with a range of polymyxin B 

concentrations. The results were normalised to the cell viability. The results are shown in 

Figure 5.9. 

The KIM-1 levels after 24h treatment of polymyxin B increased significantly compared to non-

treated cells. KIM-1 levels were elevated significantly and gradually by 50 to 250 μg/ml 

polymyxin B concentrations. The level of KIM-1 production at 250 μg/ml polymyxin B 

treatment was 9.79±1.25 ng/ml compared with the control 1.34±0.45 ng/ml and then the level 

of KIM-1 remained almost the same as the concentration of polymyxin B increases up to 600 

μg/ml. 

The levels of KIM-1 increased significantly in comparison with non-treated cells after 48h of 

polymyxin B treatment. The level of KIM-1, compared to control 3.89±0.93 ng / ml, was after 

300 μg / ml polymyxin B treatment at 32.14±10.59 ng / ml, and then the KIM-1 level, with the 

polymyxin B treatment rising up to 600 μg / ml, started to slightly decrease. 

The KIM-1 levels after 72h treatment of polymyxin B increased significantly compared to 

untreated cells.  For instance, KIM-1 levels were elevated significantly by 50 to 400 μg/ml 

gentamicin concentrations. The level of KIM-1 production reached the highest at 400 μg/ml 

polymyxin B treatment to 81.78±36.52 ng/ml compared with the control 10.63±1.02 ng/ml and 

then the level of KIM-1 decreased as the concentration of polymyxin B increases up to 600 

μg/ml. 
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Figure 5.9: Measurement of KIM-1 production from rat PTCs treated with range 
concentration of polymyxin B for 24, 48 and 72 hours.   

Levels of KIM-1 were normalised to MTS absorbance value to account for cell numbers after 
nephrotoxin treatments. Rat PTCs were treated with a range of polymyxin B concentration (50 
to 600 µg/ml). For example, KIM-1 production after 100 µg/ml polymyxin B treatment for 24h 
was 3.3±0.4 ng/ml and after 250 µg/ml the level of KIM-1 increased to 9.7±1.2 ng/ml. The level 
of KIM-1 after 400 µg/ml polymyxin B treatment for 48h was 30.6±2.7 ng/ml and after 72h the 
level increased to 81.7±36.5 ng/ml. Statistical analysis was conducted using repeated-
measures-paired-one-way ANOVA the data are representative of three independent 
experiments (n=3). Each point mean ± S.E.M values of each group. (*p < 0.05, **p < 0.01, ***p 
< 0.001). 
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5.3.3 NGAL production after treatment of rat PTCs in presence of a range concentration of 

polymyxin B  

The production of NGAL after treated rat PTCs with a range concentration of polymyxin B were 

investigated. The NGAL levels were normalized to cell viability. The results are shown in Figure 

5.10.  

There was a significant increase in NGAL levels after 24h treatment of polymyxin B compared 

to non-treated cells. NGAL levels were elevated significantly by (50 to 600) μg/ml polymyxin B 

concentrations. For example, the level of NGAL production was at 400 μg/ml polymyxin B to 

79.1±56.1 ng/ml compared with the control 8.53±3.60 ng/ml and then the level of NGAL 

remained stable as the concentration of polymyxin B increases up to 600 μg/ml.  

The levels of NGAL increased in comparison with non-treated cells after 48h of gentamicin 

treatment. The maximum level of NGAL was after 600 μg / ml polymyxin B treatment 

332.18±76.95ng / ml compared to the control 20.79±2.58 ng / ml. 

The NGAL levels after 72h treatment of polymyxin B increased significantly compared to non-

treated cells.  For example, the level of NGAL production reached the first peak at 250 μg/ml 

polymyxin B treatment to 203.04±45.67 ng/ml compared with the control 37.98±3.26 ng/ml 

and then the level of NGAL increased as the concentration of polymyxin B increases up to 600 

μg/ml. 
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Figure 5.10: Measurement of NGAL production from rat PTCs treated with rang 
concentrations of polymyxin B for 24, 48 and 72 hours.   

Levels of NGAL were normalised to MTS absorbance value to account for cell numbers after 
nephrotoxin treatments. Rat PTCs were treated with a range of polymyxin B concentration (50 
to 600 µg/ml). For example, NGAL production after 300 µg/ml polymyxin B treatment for 24h 
was 53.4±27.2 ng/ml and after 400 µg/ml the level of NGAL increased to 79.1±56 ng/ml. The 
level of NGAL after 250 µg/ml polymyxin B treatment for 48h was 143.9±30.1 ng/ml and after 
72h the level increased to 203.1±45.6 ng/ml.  Statistical analysis was conducted using 
repeated-measures-paired-one-way ANOVA the data are representative of three independent 
experiments (n=3). Each point mean ± S.E.M values of each group. (*p < 0.05, **p < 0.01, ***p 
< 0.001). 
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5.3.4 MTS and ATP Cells viability assays  

After 24 and 48 hours treatment with 250 μg / ml polymyxin B, the cell viability was measured. 

Cell viability was also evaluated with 50 μM of rosuvastatin co-treatment. The cell viability 

from the same plate was measured using MTS and ATP assays. The outcomes of the two cell 

viability techniques had no difference. The results are shown in Figure 5.11.  

After 24h of treatment, the results revealed that cell viability reduced significantly in response 

to exposure to polymyxin B to (74.7±4.9%, P < 0.01) of control. The rosuvastatin co treatment 

did not change the cell viability (96.2±1.9%, P < 0.01 live cells). The treatment of polymyxin B 

with rosuvastatin increased the live cells compared to only gentamicin (87.3±4.5%).  

The cell viability was reduced significantly by polymyxin B (68.3±5.8%, P < 0.01) after 48h of 

treatment. However, the cell viability did not change with rosuvastatin (94.1±2.6 %). The cell 

viability after polymyxin B with rosuvastatin was higher than only polymyxin B (76.9±4%, P < 

0.01 viable cells). 
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Figure 5.11: Cells Viability of rat PTCs after treatment of polymyxin B for 24 and 48 hours.  

MTS and ATP assays were used to measure the cell viability. Viability is measured as a 
percentage of the control. For example, MTS percentage after polymyxin B treatment for 24h 
was 74.7% and ATP percentage was 71.2%. In addition, the co-treatment of  rosuvastatin  with 
polymyxin B for 48h showed, the percentage of MTS was 76.9% and ATP percentage was 73.8%.      
Statistical analysis was conducted using repeated-measures-paired-one-way ANOVA the data 
are representative of three independent experiments (n=3). Bars represent mean ± S.E.M values 
of each group. (*p < 0.05, **p < 0.01, ***p < 0.001).  
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5.3.5  Lactate dehydrogenase (LDH) cytotoxic assay 

In this experiment, rat PTCs treated for 24 and 48 hours with 250 µg/ml polymyxin B and LDH 

was measured. In addition, LDH was measured after rosuvastatin co treatment. The results is 

typically with cell viability data. Result shown in Figure 5.12. 

After 24h, the results revealed that LDH increased significantly in response to exposure to 

polymyxin B to 41.6±3.3%. The rosuvastatin co treatment did not change the LDH (10.7±1.2%). 

The treatment of polymyxin B with cilastatin increased the decreased the LDH compared to 

only polymyxin B (28.3±3.7%). 

The LDH was increased significantly by polymyxin B (49.1±4.6%) after 48h treatment. However, 

the LDH did not change with rosuvastatin (12.2±0.84%). The LDH after polymyxin B with 

cilastatin was lower than only polymyxin B (33.8±3.6%). 
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Figure 5.12: LDH released from rat PTCs after treatment of polymyxin B for 24 and 48 hours. 

 LDH is measured as a percentage of the control. LDH percentage after polymyxin B treatment 
for 24h was 41.6% and after 48h the percentage increased to 49.1%. In addition, LDH 
percentage decreased after rosuvastatin co-treatment with polymyxin B for 48h to 33.8% 
Statistical analysis was conducted using repeated-measures-paired-one-way ANOVA the data 
are representative of three independent experiments (n=3). Bars represent mean ± S.E.M values 
of each group. (*p < 0.05, **p < 0.01, ***p < 0.001). 
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5.3.6  KIM-1production after treatment of rat PTCs in presence of polymyxin B +/- 

rosuvastatin 

The level of KIM-1 produced after rat PTCs have been treated with 250 µg/ml polymyxin B for 

24 and 48 hours. KIM-1 production was also measured in the presence rosuvastatin co-

treatments. The concentrations of KIM-1 was normalised to the cell viability as determined 

from their MTS absorbance’s, expressed as ng/ml. The results are shown in Figure 5.13. 

After 24h treatment of polymyxin B, the amount of KIM-1 in the apical membrane did change 

significantly from the control (5.42±1.19 ng/ml, P < 0.01). However, the presence of 

rosuvastatin did not change KIM-1 level to 1.53±0.44 ng/ml compared to control 1.58±0.56 

ng/ml. The co-treatment of polymyxin B with rosuvastatin caused a significant decrease in KIM-

1 in the apical membrane (2.76±0.73 ng/ml, P < 0.0001) compared to only polymyxin B. In 

comparison with apical membrane, basolateral membrane levels of KIM-1 were low. 

The amount of KIM-1 on the apical membrane changed significantly from the control after 48h 

of treatment with polymyxin B (24.84±8.65 ng/ml, P < 0.01). However, when we added   

rosuvastatin did not change KIM-1 level 6.46±1.14 ng/ml compared to control 6.15±1.18 

ng/ml. The co-treatment of polymyxin B with rosuvastatin caused a significant decline in KIM-

1 in the apical membrane (13.69±3.03 ng/ml, P < 0.0001) compare to only polymyxin B.   
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Figure 5.13: The amount of KIM-1 produced after treatment of rat PTCs for 24 and 48 hours 
in presence of polymyxin B +/- rosuvastatin.  

ELISA was used to measure KIM-1 production. The amount of KIM-1 in the apical membrane 
change significantly from the control (5.42±1.19 ng/ml, P < 0.01) after 24h polymyxin B 
treatment. After co-treatment with rosuvastatin, KIM-1 level decreased to (2.76±0.73 ng/ml, P 
< 0.0001) compared to only polymyxin B. The level of KIM-1 after 48h treatment was more than 
4 fold compared to 24h. Statistical analysis was conducted using repeated-measures-paired-
one-way ANOVA the data are representative of three independent experiments (n=3). Bars 
represent mean ± S.E.M values of each group. (*p < 0.05, **p < 0.01, ***p < 0.001, ++++p < 
0.0001). 
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5.3.7  NGAL production after treatment of rat PTCs in presence of polymyxin B +/- 

rosuvastatin 

The NGAL production in 24 and 48 hours treatment of rat PTCs with 250 µg/ml polymyxin B. In 

the presence of rosuvastatin co-treatment, levels of NGAL were also measured. NGAL level 

had been normalized to cell viability based on the MTS absorption of the rat PTCs, resulting in 

ng / ml. The results are shown in Figure 5.14.  

After 24h treatment of 250 µg/ml polymyxin B, the amount of NGAL in the apical membrane 

did elevated significantly from the control (76.62±14.25 ng/ml, P < 0.01). However, the 

presence of rosuvastatin did not change NGAL level 19.18±6.28 ng/ml compared to control 

19.10±5.74 ng/ml. The co-treatment of polymyxin B with rosuvastatin caused a significant 

decrease in NGAL in the apical membrane (42.42±11.94 ng/ml, P < 0.0001) compared to only 

polymyxin B. NGAL levels were low in the basolateral membrane compared to apical 

membrane. 

After 48h treatment of polymyxin B, the amount of NGAL in the apical membrane did increase 

significantly from the control (324.28±65.52 ng/ml, P < 0.01). However, the presence of 

rosuvastatin did not change NGAL level 94.26±13.76 ng/ml compared to control 94.85±11.36 

ng/ml. The co-treatment of polymyxin B with rosuvastatin caused a significant decrease in 

NGAL in the apical membrane (220.95±47.97 ng/ml, P < 0.0001) compared to only polymyxin 

B.  
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Figure 5.14: The amount of NGAL produced after treatment of rat PTCs for 24 and 48 hours 
in presence of polymyxin B +/- rosuvastatin.  

ELISA was used to measure NGAL production. The amount of NGAL in the apical membrane 
change significantly from the control (76.62±14.25 ng/ml, P < 0.01) after 24h polymyxin B 
treatment. After co-treatment with rosuvastatin, NGAL level decreased to (42.42±11.94 ng/ml, 
P < 0.0001) compared to only polymyxin B. The level of NGAL after 48h treatment was more 
than 4 fold compared to 24h. Statistical analysis was conducted using repeated-measures-
paired-one-way ANOVA the data are representative of three independent experiments (n=3). 
Bars represent mean ± S.E.M values of each group. (*p < 0.05, **p < 0.01, ***p < 0.001, ++++p 
< 0.0001).  
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5.4 Small molecule nephrotoxin – Cisplatin 

Rat PTCs were treated with cisplatin, a known nephrotoxin before the expression of KIM-1 and 

NGAL biomarkers were quantified using ELISA. Cisplatin's effects on rat PTC monolayers have 

been significant since cisplatin-induced toxicity is already well characterized and can be 

compared in vivo. 

5.4.1  MTS cell viability after treatment in presence of range of concentrations of cisplatin 

After cisplatin concentration ranges (5 to 40 μM) were used for 24, 48 and 72 hours with rat 

PTCs, the cell viability was measured.  CellTiter 96® AQueous Non-Radioactive Cell Proliferation 

Assay (MTS) was used to assess cell viability. The MTS absorbance show as a percentage 

normalised to control cells. The results are shown in Figure 5.15.  

The MTS assay results showed the effect of cisplatin treatment on the cell viability of rat PTCs.  

With the rise in cisplatin concentration, cell viability decreased significantly. For example, after 

24h treatment with 15 µM cisplatin the cell viability was 80.92% compared to non-treated 

cells. The percentage of live cells was less than 64% after 30 µM cisplatin treatment. 

After 48h, the quantity of live cells reduces after cisplatin treatment. For example, the 

percentage of live cells in 20 μM cisplatin was 60%. After 35 μM cisplatin, the live was less than 

45%. 

There was a major decrease in cell viability after 72h treatment with a range of concentration 

of cisplatin. After 20 µM cisplatin treatment, live cells was 44%. In addition, after 35 µM 

cisplatin incubation the cell viability was only 15%.  
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Figure 5.15: Cell viability in rat PTCs treated with range concentrations of cisplatin for 24, 48 
and 72 hours.  

MTS assay was used to measure the cell viability. For example, the cell viability after 25 µM 
cisplatin for 24h was 65.3% and the percentage dropped to 53.6% after 48h. In addition, cell 
viability after 10 µM cisplatin treatment for 72h was 69.3% and after 20 µg/ml cisplatin the cell 
viability decreased to 41%.  Each point represent mean ± S.E.M values of each cisplatin 
concentration. 
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5.4.2 KIM-1 production after treatment of rat PTCs in presence of a range concentration of 

cisplatin:  

The production of KIM-1 from rat PTCs after treatment with a range of concentrations   of 

cisplatin were examined. The concentrations of the biomarker was normalised to the cell 

viability. The results are shown in Figure 5.16. 

The KIM-1 levels after 24h treatment of cisplatin increased significantly compared to control.  

For instance, KIM-1 levels were elevated gradually and significantly by 5 to 20 μM cisplatin 

concentrations. The level of KIM-1 after 25 μM cisplatin treatment was 42.28±5.88 ng/ml 

compared with the control 2.57±0.41 ng/ml and then the level of KIM-1 increased slightly as 

the concentration of cisplatin increases up to 40 μM. 

The levels of KIM-1 increased significantly in comparison with the control after 48h of cisplatin 

treatment. Compared to control 7.22±2.53 ng / ml, the level of KIM-1 after 20 μM cisplatin 

treatment was 62.84±0.99 ng / ml, and then the KIM-1 level remained the same, with cisplatin 

levels rising to 40 μM. 

The KIM-1 levels after 72h treatment of cisplatin increased significantly compared to control.  

For instance, the level of KIM-1 production reached the first peak at 20 μM cisplatin treatment 

to 51.13±5.82 ng/ml compared with the control 7.29±1.53 ng/ml and then the level of KIM-1 

was stable as the concentration of cisplatin increases up to 40 μM. 
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Figure 5.16: Measurement of KIM-1 production from rat PTCs treated with range 
concentrations of cisplatin for 24, 48 and 72 hours.   

Levels of KIM-1 were normalised to MTS absorbance value to account for cell numbers after 
nephrotoxin treatments. Rat PTCs were treated with a range of cisplatin concentration (5 to 40 
µM). The levels of KIM-1 showed, cisplatin is time and concertation dependent. For example, 
KIM-1 production after 10 µM cisplatin treatment for 24h was 11.8±3.6 ng/ml and after 25 µM 
the level of KIM-1 increased to 42.2±5.8 ng/ml. The level of KIM-1 after 30 µM cisplatin 
treatment for 48h was 127.7±28.2 ng/ml and after 72h the level increased to 360.1±113.9 
ng/ml. Statistical analysis was conducted using repeated-measures-paired-one-way ANOVA 
the data are representative of three independent experiments (n=3). Each point mean ± S.E.M 
values of each group. (*p < 0.05, **p < 0.01, ***p < 0.001). 
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5.4.3 NGAL production after treatment of rat PTCs in presence of a range concentration of 

cisplatin: 

The production of NGAL was investigated after treating the rat PTCs with a concentration range 

of cisplatin. NGAL concentrations were normalized to the viability of the cell. The results are 

shown in Figure 5.17. 

There was a significant increase in NGAL levels after 24h treatment of cisplatin compared to 

control. NGAL levels were elevated significantly by (20 to 40) μM cisplatin concentrations. The 

level of NGAL production after 30 μM cisplatin was 144.76±33.1 ng/ml compared with the 

control 9.64±2.1 ng/ml and then the level of NGAL increased as the concentration of cisplatin 

increases up to 40 μM.  

NGAL levels increased significantly after 48h of cisplatin treatment compared to control. The 

level of NGAL reached the peak after 25 μM cisplatin treatment 292.42±53.31 ng / ml 

compared to the control 33.55±4.77 ng / ml, and then the NGAL level remained the same, with 

the level of cisplatin rising to 40 μM. 

The NGAL levels increased in comparison with control after 72h of cisplatin treatment. For 

example, the level of NGAL production after 30 μM cisplatin treatment was 336.73±112.34 

ng/ml compared with the control 82.63±12.82 ng/ml and then the level of NGAL increased as 

the concentration of cisplatin increases up to 40 μM. 
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Figure 5.17: Measurement of NGAL production from rat PTCs treated with range 
concentrations of cisplatin for 24, 48 and 72 hours.   

Levels of NGAL were normalised to MTS absorbance value to account for cell numbers after 
nephrotoxin treatments. Rat PTCs were treated with a range of cisplatin concentration (5 to 40 
µM). The levels of NGAL showed, cisplatin is time and concertation dependent. For example, 
NGAL production after 20 µM cisplatin treatment for 24h was 36.1±4.1 ng/ml and after 30 µM 
the level of NGAL increased to 144.7±33.1. The level of NGAL after 25 µM cisplatin treatment 
for 48h was 292.4±53.3 ng/ml and after 72h the level increased to 413.2±39.1 ng/ml. Statistical 
analysis was conducted using repeated-measures-paired-one-way ANOVA the data are 
representative of three independent experiments (n=3). Each point mean ± S.E.M values of each 
group. (*p < 0.05, **p < 0.01, ***p < 0.001). 
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5.4.4 MTS and ATP cell viability assays: 

After 24 and 48 hours treatment of rat PTCs with 25 μM cisplatin, cell viability was measured. 

The cell viability was also measured in the presence of cimetidine co-treatments. Both MTS 

and ATP assays were used to assess cell viability from the same plate. No major difference was 

discovered between the two methods. The results are shown in Figure 5.18. 

After 24h, the results showed that cell viability was considerably reduced to 73.29±1.43% as a 

result of exposure to cisplatin. The co-treatment with cimetidine hasn't altered cell viability 

(94.82±1.27% live cells). The treatment of cisplatin with cimetidine increased the live cells 

compared to only cisplatin (82.41±1.46%).  

The cell viability was reduced significantly by cisplatin (65.17±4.47%) after 48h treatment. 

However, the cell viability did not change with cimetidine (94.11±4.16%). Cisplatin with 

cimetidine cell viability was higher than cisplatin alone (73.77±3.26% viable cells). 
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Figure 5.18: Cells Viability of rat PTCs after treatment of cisplatin for 24 and 48 hours. 

 MTS and ATP assays were used to measure the cell viability. Viability is measured as a 
percentage of the control. For example, MTS percentage after cisplatin treatment for 24h was 
73.2% and ATP percentage was 75.6%. In addition, the co-treatment of cimetidine with 
cisplatin for 48h showed, the percentage of MTS was 73.7% and ATP percentage was 74.4%.      
Statistical analysis was conducted using repeated-measures-paired-one-way ANOVA the data 
are representative of three independent experiments (n=3). Bars represent mean ± S.E.M values 
of each group. (*p < 0.05, **p < 0.01, ***p < 0.001).  
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5.4.5  Lactate dehydrogenase (LDH) cytotixicy assay: 

Measuring cytoplasmic enzymes released by damaged cells is a common method for 

determining cytotoxicity. In this experiment, we treated rat PTCs for 24 and 48 hours with 25 

µM cisplatin and LDH was measured. In addition, we measured the LDH after cimetidine co 

treatment. The results are consistent with cell viability data. Result shown in Figure 5.19. 

After 24hour, the results revealed that LDH increased significantly in response to cisplatin 

exposure to 34.72±3.51%. The cimetidine co treatment did not change the LDH (14.74±2.98%) 

compared to control. The treatment of cisplatin with cimetidine increased the LDH compared 

to only cisplatin (27.15±1.15%). 

The LDH was increased significantly by cisplatin (50.72±0.40%) after treatment for 48h 

.However, the LDH did not change with cimetidine (16.85±1.58%). The LDH after cisplatin with 

cimetidine was lower than only cisplatin (32.92±2.50%). 
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Figure 5.19: LDH of rat PTCs after treatment of cisplatin for 24 and 48 hours. 

 LDH is measured as a percentage of the control. LDH percentage after cisplatin treatment for 
24h was 34.7% and after 48h the percentage increased to 50.7%. In addition, LDH percentage 
decreased after cimetidine co-treatment with cisplatin for 48h to 33.1% Statistical analysis was 
conducted using repeated-measures-paired-one-way ANOVA the data are representative of 
three independent experiments (n=3). Bars represent mean ± S.E.M values of each group. (*p 
< 0.05, **p < 0.01, ***p < 0.001). 
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5.4.6  KIM-1 production after treatment of rat PTCs in presence of cisplatin +/- cimetidine 

The amount of KIM-1 produced after 24 and 48 hours treatment of rat PTCs in the presence of 

25 μM cisplatin. The KIM-1 levels were also measured in the presence of cimetidine co-

treatments. The concentrations of KIM-1 was normalised to the cell viability as determined 

from their MTS absorbance’s, expressed as ng/ml. The results are shown in Figure 5.20. 

After 24h treatment of cisplatin, the amount of KIM-1 in the apical membrane did change 

significantly from the control (2.51±0.18 ng/ml, P < 0.01). However, the presence of cimetidine 

did not change KIM-1 level 0.59±0.12 ng/ml compared to control 0.58±0.11 ng/ml. The co-

treatment of cisplatin with cimetidine caused a significant decrease in KIM-1 in the apical 

membrane (1.34±0.24 ng/ml, P < 0.0001) compared to only cisplatin. KIM-1 levels in the 

basolateral membrane were low compared to apical membrane. 

After 48h treatment of cisplatin, the amount of KIM-1 in the apical membrane did increase 

significantly from the control (14.25±0.46 ng/ml, P < 0.01). However, when we added   

cimetidine did not change KIM-1 level 4.03±1.03 ng/ml compared to control 4.18±0.36 ng/ml. 

The co-treatment of cisplatin with cimetidine caused a significant decrease in KIM-1 in the 

apical membrane (7.53±1.99 ng/ml, P < 0.0001) compare to only cisplatin. KIM-1 levels in the 

basolateral membrane were low compared to apical membrane. 
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Figure 5.20: The amount of KIM-1 produced after treatment of rat PTCs for 24 and 48 hours 
in presence of cisplatin +/- cimetidine.  

ELISA was used to measure KIM-1 production. The amount of KIM-1 in the apical membrane 
change significantly from the control (0.58±0.11 to 2.51±0.18 ng/ml, P < 0.01) after 24h 
cisplatin treatment. After co-treatment with cimetidine, KIM-1 level decreased to (1.34±0.24 
ng/ml, P < 0.0001) compared to only cisplatin. The level of KIM-1 after 48h treatment was 
almost 5 fold higher than 24h. Statistical analysis was conducted using repeated-measures-
paired-one-way ANOVA the data are representative of three independent experiments (n=3). 
Bars represent mean ± S.E.M values of each group. (*p < 0.05, **p < 0.01, ***p < 0.001, ++++p 
< 0.0001). 
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5.4.7  NGAL production after treatment of rat PTCs in presence of cisplatin +/- cimetidine 

NGAL production for 24 and 48 hours after treatment of rat PTCs in the presence of 25 μM of 

cisplatin. In the presence of cimetidine co-treatment, levels of NGAL were also measured. 

NGAL concentrations had been normalized to cell viability based on the MTS absorption of the 

rat PTCs, resulting in ng / ml. The results are shown in Figure 5.21.  

After 24h treatment of cisplatin, the amount of NGAL in the apical membrane did increase 

significantly from the control (330.61±22.37 ng/ml, P < 0.01). However, the presence of 

cimetidine did not change NGAL level 117.41±5.35 ng/ml compared to control 114.12±5.83 

ng/ml. The co-treatment of cisplatin with cimetidine caused a significant decrease in NGAL in 

the apical membrane (178.31±9.58 ng/ml, P < 0.001) compared to only cisplatin. Compared to 

apical membrane, NGAL levels in the basolateral membrane were low. 

After 48h treatment of cisplatin, the amount of NGAL in the apical membrane did rise 

significantly from the control (1910.42±205.1 ng/ml, P < 0.01). However, the presence of 

cimetidine did not change NGAL level 407.16±33.67 ng/ml compared to control 406.88±91.31 

ng/ml. The co-treatment of cisplatin with cimetidine caused a significant decline in NGAL in 

the apical membrane (890.28±126.72 ng/ml, P < 0.001) compared to only cisplatin NGAL 

concentrations were low in the basolateral membrane compared to apical membrane. 
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Figure 5.21: The amount of NGAL produced after treatment of rat PTCs for 24 and 48 hours 
in presence of cisplatin +/- cimetidine. 

ELISA was used to measure NGAL production. For example, NGAL production in the apical 
membrane is significantly higher than basolateral membrane. The amount of NGAL in the 
apical membrane change significantly from the control (114.12±5.83 to 330.61±22.37 ng/ml, P 
< 0.01) after 24h cisplatin treatment. After co-treatment with cimetidine, NGAL level decreased 
to (178.31±9.58 ng/ml, P < 0.001) compared to only cisplatin. The level of NGAL after 48h 
treatment was more than 6 fold compared to 24h. Statistical analysis was conducted using 
repeated-measures-paired-one-way ANOVA the data are representative of three independent 
experiments (n=3). Bars represent mean ± S.E.M values of each group. (*p < 0.05, **p < 0.01, 
***p < 0.001, ++++p < 0.0001).  
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5.5 Discussion  

Nephrotoxicity is a major adverse effect of many drugs on the market. Multiple toxic 

compound tests are used in vivo, cost-effective, practical and expedient in vitro tests that 

support the predictive early toxicity of the big amounts of compounds ahead of in vivo 

tests.[145] while many nephrotoxicity biomarkers have been assessed and implemented in 

preclinical and clinical studies, at an early screening point, they are rarely examined in vitro. 

We explored the potential of nephrotoxicity biomarkers in rat PTCs an in vitro screening model 

in this chapter and compared the predictive results of nephrotoxicity biomarkers. KIM-1 and 

NGAL were further investigated in PTCs, which were freshly isolated from rat kidney. High 

doses of gentamicin, polymyxin B and cisplatin-induced significant upregulation of KIM-1 and 

NGAL levels within 24h and 48h.  

5.5.1 MTS and ATP 

In this study, one further goal was to compare MTS and ATP assay results from rat PTCS treated 

with different nephrotoxins. Similarities in the viability data from both assays were found, 

similar results were expected as mitochondrial enzymes reduce the reagents from both MTS 

and ATP. For example, percentage of live cells using MTS assay after 250 µg/ml polymyxin B 

treatment for 24h was 74.52% and after using APT assay was 69.7%. There were only 5% 

difference between the two assays, suggesting the reproducible of our in vitro rat PTCs model 

by using different types of cell viability assays.  

5.5.2 LDH 

On the other hand, percentage of dead cells were quantified by measuring the LDH release 

from rat PTCs after nephrotoxins treatment for 24 and 48 hours. A study done showed, LDH 

release from mice primary PTCs after 50 µM cisplatin treatment was 40% compared to only 

8% of control cells and the co treatment with caspase inhibitor reduce the LHD percentage to 

13.5%[146].    

In this chapter, the viability of rat PTCS was analysed during exposure to different nephrotoxins 

for 24, 48 and 72 hours. Using our rat PTCs model, our data shows that nephrotoxins used are 

cytotoxic in vitro in a dose-and time-dependent manner and this was directly proportional to 

drug accumulation.    In the dose-response study, KIM-1 and NGAL produced from rat PTCs are 
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very sensitive to the renal injury produced by different nephrotoxins (gentamicin, polymyxin 

and cisplatin).  Gentamicin accumulates in rat PTCs, resulting in structural modifications and 

functional impairment of the plasma membrane, mitochondria and lysosome [147]. Compared 

with a recent study observing increases of KIM-1/urinary creatinine levels in patients after 72h 

of Polymyxin B exposure, they observed significant accumulation of KIM-1 and NGAL at both 

24 and 48 hours of exposure, demonstrating the sensitivity of the rat PTCs model to detect 

early injury [148]. Our results demonstrate the potential of KIM-1 as well as NGAL to be 

significantly induced for detection of nephrotoxicity in a sensitive and timely manner.  

5.5.3 Rat Biomarkers 

The cellular toxicity of gentamicin was monitor after treated rat PTCs for 24 and 48 hours. For 

example, after treatment with 250 µg/ml gentamicin for 24h, the level of KIM-1 significantly 

increased (10.31±0.72 ng/ml, P < 0.001) compared to control (3.86±0.28 ng/ml). In addition, 

after 48h the level of KIM-1 increased to 28.70±0.50 ng/ml.     

Around 80% of the gentamicin dose is excreted by glomerular filtration into the urine within 

24h. However, accumulation within the kidney cortex continues high relative to other bodies, 

particularly in the proximal tubule epithelial cells (5–10% dose)[149]. In the pathogenesis of 

nephrotoxicity, this is considered significant[150]. It has been shown that receptor-mediated 

endocytosis binding of gentamicin to the multi-ligand receptor, megalin, and cellular uptake is 

the main pathway for accumulation. The abundant adverse charges on the extracellular 

receptor domain facilitate interactions among polybasic substances like gentamicin[151]. 

After therapy with gentamicin, a study noted upregulation of mRNA expression of KIM-1 and 

NGAL in rats in the lack of impacts of nephrotoxicity on traditional clinical chemistry markers. 

These rise were apparent 1 day after gentamicin was handled and lasted 3 to 7 days. The timing 

and degree of reaction were well associated with the severity of tissue injury. 

Immunohistochemistry subsequently verified changes in protein expression. They found that 

KIM-1 and NGAL expressions occur within 1 day of gentaimcin's treatment acknowledge that 

these two biomarkers reflected renal injury quicker and more precisely than SCr and BUN[121].  

In this chapter demonstrating that cilastatin, a particular tubular brush-border DHP-I inhibitor, 

attenuates in vitro nephrotoxicity caused by gentamicin. The pre-treatment of 40 µM cilastatin 
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before treated the rat PTCs with gentamicin decrease the production of nephrotoxins 

biomarkers (KIM-1 and NGAL). For instance, NGAL production after gentamicin treatment for 

48h was 400.6 ng/ml and after co-treatment with cilastatin NGAL level decrease to 251.3 ng/ml 

suggesting the role of cilastatin of preventing the nephrotoxicity of gentamicin.   The results 

are consistent with another study suggest cilastatin inhibit the binding of megalin with 

polymyxin B and gentamicin. The same study showed that cilastatin suppresses colistin-

induced nephrotoxicity through competition for binding to megalin [73].   

Polymyxin B used as a nephrotoxic drug and the levels of KIM-1 and NGAL were measured after 

the exposure rat PTCs.  Our results showed a significant increase in biomarkers levels after 

polymyxin B treatment compared to non-treated cells. In addition, rosuvastatin used as co 

treatment against polymyxin B nephrotoxicity and the data showed the reduction in the levels 

of biomarkers production in comparison to only polymyxin B incubation. KIM-1 level after 250 

µg/ml polymyxin B treatment for 24h was 5.42 ng/ml compare to 1.58 ng/ml for control cells. 

However, after the co-treatment with rosuvastatin the production of KIM-1 reduce to 2.76 

ng/ml showing a possible protective process against polymyxin B nephrotoxicity.   

   Our hypothesis that statins, are inhibiting megalin-mediated endocytosis, would inhibit 

uptake of polymyxin B, and therefore decrease nephrotoxicity in PTCs. This hypothesis was 

tested in vitro study using an OK cell model but with gentamicin not polymyxin B[152]. The 

synthesis of cholesterol in OK cell was shown to be inhibited by statins (simvastatin, 

pravastatin, and rosuvastatin).They also led to dose dependent inhibition of gentamicin 

accumulation and cytotoxicity, which were related to the degree of GTP-binding protein 

unprenylation[152].  

One of the nephrotoxic drugs used in this study is cisplatin. Rat PTCs treated with 25 µM 

cisplatin for 24 and 48 hours and KIM-1 and NGAL biomarkers were measured. The production 

of KIM-1 after 24h treatment with cisplatin was 2.51±0.18 ng/ml and the NGAL production was 

330.6±22.3 ng/ml. Furthermore, co treatment with cimetidine was measured. The results 

showed a reduction of biomarkers production after cisplatin treated with cimetidine compared 

to only cisplatin. For example, NGAL level after cisplatin treatment for 48h was 1910.4±205.1 
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ng/ml and the level dropped significantly to 890.2±126.7 ng/ml after the co treatment with 

cimetidine.        

In the original clinical trials of cisplatin chemotherapy, nephrotoxicity was reported. The 

intracellular transport mechanism of cisplatin is not evident and vary between cells. A research 

showed that removal of Ctr1, a highly affinity copper transporter, reduces cisplatin 

intracellular accumulation in yeasts, which is linked to enhanced cisplatin toxicity 

resistance[65]. The same findings show that copper transporters are allowed for cisplatin in 

mouse cell lines, lacking either one or two Ctr1 alleles. In the renal system, however, cisplatin 

is taken by organic cation transporters (OCTs)[153]. OCTs mediate the transport of several 

cationic compounds into renal tubular cells from basolateral to apical compounds. A research 

showed that cisplatin caused greater toxicity in MDCK cells  in apical side implementation when 

applied on the basolateral side[67]. These findings show that tubular cell injury caused by 

cisplatin may be linked with OCT2. In particular, cimetidine, an OCT inhibitor, could partly stop 

cytotoxicity caused by cisplatin by decreasing transepithelial electrical resistance[110]. 

Another study showed, cimetidine obviously inhibits cisplatin-induced nephrotoxicity or 

kidney cell damage with no impact on cisplatin in vitro or in vivo antitumor activities [154]. 

Although cimetidine's in vitro actions were mainly due to inhibition the production of ROS, the 

in vivo protective impact of cimetidine on cisplatin's nephrotoxicity seems to be due to both 

inhibitory actions in ROS manufacturing and OCT2 expressed intrinsically in the kidney[127].  

The concentration of the biomarkers was more in the apical membrane than in the basolateral 

membrane. Such findings predicted and represented what's really happening in vivo. Those 

biomarkers are detectable in urine. NGAL is upregulated and can be detected in the kidney and 

urine of mice three hours after treatment with cisplatin, and a good nephrotoxicity biomarker 

has been suggested [133]. Due to the leakage of the cells, the significant in the basolateral 

membrane was expected and lost their integrity after treatment with drugs. 

These findings may reflect what is really happen in vivo. The findings suggest new possibilities 

for early prediction of nephrotoxicity by measuring the production of KIM-1 and NGAL when 

the kidney exposed to different drugs. The rat data is almost consistent with human data, this 

may show the possibility of using rat PTCs model in to investigate nephrotoxic drugs. However, 
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more drugs are still need to examine and more biomarker need to screen to confirm this 

finding. Our data showed cilastatin, rosuvastatin and cimetidine could be a good co-treatment 

for kidney from damaging because of using different drugs by using our rat PTCs model. 
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6 Measurement of cisplatin apoptosis activity 

6.1 Introduction  

Nephrotoxicity of cisplatin may occur in a variety of forms, for example, distal renal tubular 

acidosis, renal concentrating defect and chronic renal failure. However, the most severe and 

frequent occurrence in 20–30 % of patients is acute renal injury (AKI) [63]. Evidence of 

basolateral to apical transportation of cisplatin has been provided in previous studies using 

kidney slices, cultures of renal epithelial cells and isolated perfuse proximal tubule 

segments[155]. The nephrotoxicity mechanisms of cisplatin are complicated and require many 

pathways and molecules. Using newly isolated or cultured renal tubular epithelial cells, cellular 

pathways of cisplatin injury to kidney cells were mainly examined in vitro [156].  In vitro, low 

cisplatin levels preferably lead to apoptotic death, whereas necrosis occurs at greater 

concentrations [111]. In vivo administration of nephrotoxic cisplatin doses results in a 

significant rise in necrosis and apoptosis in the kidney [63].  

Apoptosis is programmed cell death, includes the regulated dismantling of the intracellular 

elements while the adjacent cells are prevented from inflammation and harm[157]. Cisplatin 

has been found to cause cancer cell death by apoptosis as well as many chemical agents and 

it is interesting to determine if apoptosis is also the mechanism of cell death in a nephrotoxic 

injury[158]. Strategies can be created to minimize or stop nephrotoxicity by increasing a 

knowledge of the particular mechanisms responsible for nephrotoxic cell injury. 

P53 can be one of the pathways for cell killing triggered by cisplatin [159]. P53 can induce 

apoptosis by transcription of proapoptotic genes or by direct interaction and activation of 

existing proapoptotic molecules, as a tumour suppressing protein[160]. P53 is activated by 

cisplatin in cultured renal tubular cells[161]. P53 can upregulate proapoptotic genes including 

apoptosis-α modulator p53-upregulator, resulting in the permeability of mitochondrial outer 

membrane and release of apoptogenic factors, including cytochrome c and inducing apoptosis 

factor[162]. However, it is not clear yet how is p53 cause nephrotoxicity in vivo.   

Caspase activation is considered important in apoptosis, and a large number of stimuli activate 

caspases, including plasma membrane death receptors (caspase8) and mitochondrial 

dysfunction (caspase9)[161]. Initiator caspases include caspases 8 and 9, and activation of 
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those caspases results in activation of downstream and executioner caspases such as caspases 

3 and 7[163]. 

The goal of this chapter is the quantification of a variety of proteins that influence apoptosis 

(p53, caspase 3, caspase 8 and caspase 9) after treatment of human and rat PTCs with cisplatin. 

The expressions will be quantified at the protein and mRNA levels, using caspase-Glo® 3/7 

Assay and qPCR respectively. The results will provide an indication of the molecular mechanism 

of apoptosis in PTCs after cisplatin treatment. The purpose of this chapter is to use human and 

rat primary proximal tubule cells (PTCs) as suitable models for cisplatin apoptosis mechanisms.  
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6.2 Caspase-Glo® 3/7 Assay 

Caspase-3/7 activity was detected using a Caspase-Glo 3/7 assay system after treated human 

PTCs with different nephrotoxins (cisplatin, polymyxin B and gentamicin) for 48h. The results 

are shown in Figure 6.1.  

The results revealed that caspase 3/7 activity increased significantly in response to exposure 

to cisplatin to 5.64±0.63% of control. The polymyxin B treatment did increase but not 

significantly the 3/7 activity (1.55±0.29%). The treatment of gentamicin increased the 3/7 

activity cells compared control (3.35±0.77%).  
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Figure 6.1: Caspase 3/7 activity after treated human PTCs with cisplatin, polymyxin B and 
gentamicin for 48h.  

Caspase-Glo 3/7 assay system was used to measure the caspase activity. Activity is measured 
as a percentage of the control. Caspase 3/7 activity increased significantly in response to 
exposure to cisplatin to 5.64±0.63% of control. The treatment of gentamicin increased the 3/7 
activity cells compared control (3.35±0.77%). Statistical analysis was conducted using 
repeated-measures-paired-one-way ANOVA the data are representative of three independent 
experiments (n=3). Bars represent mean ± S.E.M values of each group. (*p < 0.05, **p < 0.01, 
***p < 0.001). 
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6.3 The mRNA level of caspase 3, 8, 9 and p53 after treatment of human PTCs with 

cisplatin +/- cimetidine 

To investigate the mRNA levels of caspase 3 in the presence of cisplatin, the cell total RNA of 

human PTCs were isolated and screened. The results are shown in Figure 6.2, which are 

normalised to the reference gene GAPDH.  

mRNA level of caspase 3 appeared to be increased significantly (P< 0.01) with the treatment 

of cisplatin (3.51±0.34%) compared to control. In addition, cimetidine did not change caspase 

3 mRNA levels significantly, its co-treatment with cisplatin did decrease caspase 3 mRNA levels 

significantly to (2.45±0.32, P< 0.05) when compared only cisplatin treatment. 

mRNA level of caspase 8 increased significantly with the treatment of cisplatin compared to 

control (3.06±1%, P< 0.01). In addition, cimetidine did not change caspase 8 mRNA levels 

significantly, its co-treatment with cisplatin did decrease caspase 8 mRNA levels significantly 

to (1.76±0.48, P< 0.05) when compared to cisplatin alone. 

mRNA level of caspase 9 increased significantly with the treatment of cisplatin compared to 

control (2.47±0.30%, P< 0.01). Furthermore, cimetidine has not changed caspase 9 mRNA level, 

its co-treatment with cisplatin has considerably reduced caspase 9 mRNA level to (1.90±0.36, 

P<0.05) compared to cisplatin alone. 

After cisplatin treatment, the mRNA level of p53 increased significantly compared to control 

(7.30±1.25%, P< 0.01). Furthermore, cimetidine has not changed p53 mRNA level, its co-

treatment with cisplatin has considerably reduced p53 mRNA level to (3.99±1.75, P<0.05) 

compared to only cisplatin treatment. 

  



171 
 

 

Figure 6.2: The mRNA level after treatment of human PTCs in presence of cisplatin +/- 
cimetidine.  

(A)  (B) Caspase 8 (C) Caspase 9 (D) p53.mRNA is measured as a percentage of the control. For 
example, after cisplatin treatment, the mRNA level of p53 increased significantly compared to 
control (7.30±1.25%, P< 0.01). Furthermore, cimetidine has not changed p53 mRNA level, its 
co-treatment with cisplatin has considerably reduced p53 mRNA level to (3.99±1.75, P<0.05) 
compared to only cisplatin treatment. Statistical analysis was conducted using repeated-
measures-paired-one-way ANOVA the data are representative of three independent 
experiments (n=3). Bars represent mean ± S.E.M values of each group. (*p < 0.05, **p < 0.01, 
+++p < 0.001).  
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6.4  The mRNA level of caspase 3, 8, 9 and p53 after treatment of rat PTCs with 

cisplatin +/- cimetidine 

The total RNA from rat PTCs was separated and screened in order to explore the mRNA 

expression of caspase 3 after cisplatin treatment. The results are shown in Figure 6.3, which 

are normalised to the reference gene GAPDH.   

mRNA level of caspase 3 appeared to be increased significantly (P< 0.001) with the treatment 

of cisplatin (3.35±0.12%) compared to control. In addition, cimetidine did not change caspase 

3 mRNA levels significantly, its co-treatment with cisplatin did decrease caspase 3 mRNA levels 

significantly to (2.19±0.51, P< 0.001) when compared to only cisplatin treatment. 

mRNA level of caspase 8 increased significantly with the treatment of cisplatin compared to 

control (4.40±1.03%, P< 0.001). In addition, cimetidine did not change caspase 8 mRNA levels 

significantly, its co-treatment with cisplatin did decrease caspase 8 mRNA levels significantly 

to (2.67±0.65, P< 0.001) when compared to cisplatin alone. 

mRNA level of caspase 9 increased significantly with the treatment of cisplatin compared to 

control (3.35±0.58%, P< 0.001). Furthermore, cimetidine has not changed caspase 9 mRNA 

level, its co-treatment with cisplatin has considerably reduced caspase 9 mRNA level to 

(1.92±0.48, P<0.01) compared to only cisplatin. 

After cisplatin treatment, the mRNA level of p53 increased significantly compared to control 

(3.19±0.44%, P< 0.001). Furthermore, cimetidine has not changed p53 mRNA level, its co-

treatment with cisplatin has considerably reduced p53 mRNA level to (2.25±0.61, P<0.05) 

compared to cisplatin alone. 
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Figure 6.3: The mRNA level after treatment of rat PTCs in presence of cisplatin +/- cimetidine.  

(A) Caspase 3 (B) Caspase 8 (C) Caspase 9 (D) p53. mRNA is measured as a percentage of the 
control. For example, mRNA level of caspase 3 appeared to be increased significantly (P< 0.001) 
with the treatment of cisplatin (3.35±0.12%) compared to control. In addition, cimetidine did 
not change caspase 3 mRNA levels significantly, its co-treatment with cisplatin did decrease 
caspase 3 mRNA levels significantly to (2.19±0.51, P< 0.001) when compared to only cisplatin 
treatment.  Statistical analysis was conducted using repeated-measures-paired-one-way 
ANOVA the data are representative of three independent experiments (n=3). Bars represent 
mean ± S.E.M values of each group. (*p < 0.05, **p < 0.01, +++p < 0.001).  
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6.5 Discussion  

Cisplatin is one of the most common chemotherapeutic agents to treat testes and bladder, 

head and neck, ovarian, breast, pulmonary cancers, and refractory lymphoma non-

Hodgkin[164]. Nephrotoxicity is the significant adverse effect of cisplatin use in which proximal 

cells in the kidney are particularly susceptible. Its anticancer activity is likely to depend on the 

formation of intrinsic DNA links [63].  A number of different mechanisms for kidney tubule 

cisplatin cytotoxicity were suggested, including direct DNA damage, caspase activation, 

mitochondrial dysfunction, reactive oxygen formation species, effects on the endoplasmic 

reticulum, and TNF-α apoptotic pathway activating[165]. The purpose of this chapter was to 

determine the cisplatin apoptosis mechanism by using our human and rat proximal tubule 

models.  

In this chapter, caspase 3/7 was measured after human PTCs treated with different 

nephrotoxins. Our results significant increase in caspase 3/7 activity compared to control cells 

after cisplatin and gentamicin treatments. However, there was increase after polymyxin B 

treatment. It might suggest gentamicin has the same apoptosis mechanism like cisplatin. A 

study used NRK-52E cells (rat renal proximal tubular cell line) showed after, a significant 

increase in caspase 3 and caspase 8 after gentamicin treatment, indicting  gentamicin trigger 

the apoptosis mechanism in PTCs[166].      

In order to evaluate the cisplatin apoptosis mechanism in PTCs, this chapter results detected 

the expression of caspase-3, 8, 9 and p53 at the mRNA levels after treated human and rat PTCs 

with cisplatin and we used cimetidine as a co treatment. After cisplatin exposure, the mRNA 

levels of caspase 3, 8, 9 and p53 were increased compared to no treated cells. For instance, 

mRNA expression of caspase 3 after rat PTCs treated with cisplatin was 3.35% and after the co 

treatment with cimetidine the level reduced to 2.19%. Furthermore, human PTCs cells treated 

with cisplatin and mRNA level p53 was 7.30% and with cimetidine co-treatment the mRNA 

level dropped to 3.99%.           

A study showed p53 activation by cisplatin in cultured renal tubular cells[161]. DNA damage is 

induced by cisplatin and then enzymes like telangiectasis-mutated ataxia (ATM) are activated 

to cause p53 phosphorylation[167]. Cisplatin has been discovered to reduce taurine 
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transporter gene (TauT) expression in proximal tubular kidney cells by activating p53[162]. 

TauT's overexpression also has been shown to prevent transgenic TauT's cisplatin-related 

apoptosis and renal dysfunction. By attenuating the p53-dependent pathway, functional TauT 

can stop cisplatin-induced nephrotoxicity[168]. Activated p53 is present for cisplatin-induced 

AKI and cisplatin-induced AKI for p53 inhibition may decrease. The inhibition of p53, however, 

may also boost cancer cell survival and thereby reduce cisplatin therapeutic 

effectiveness[165].  

Inhibition of caspase prevents the cultured cells from apoptosis caused by cisplatin. In vitro 

cisplatin-induced AKI, the function of caspase-3 and apoptosis is more complicated. In vivo, 

besides tubular apoptosis, cisplatin causes comprehensive acute tubular necrosis (ATN). The 

absence of a direct role of caspase- 3 mediated apoptosis as a cause of functioning disruptions 

of AKI has not been noted to protect against cisplatin-induced AKI[169].  

Recently, cisplatin therapy in kidney proximal tubular cells has shown that caspase-3 is 

activated. However, no data is provided regarding the particular functions and the underlying 

signalling pathway processes responsible for regulating downstream caspase-3 and other 

upstream caspases that may be activated in renal tubular epithelial cells during cisplatin-

induced injury. A research showed that cisplatin leads to selective and differential activation 

of caspase, not proinflammatory caspase-1, but including the executioner caspase-3 and the 

initiator caspase-8 and -9[170]. The selective activation of these caspases was significantly 

affected by their corresponding peptide inhibiting agents and suggests that these caspases 

play a significant role in a renal tubular epithelial cell injury caused by cisplatin [171]. 

Therefore, the amount of cell injury induced by the toxic agent depends on how well the toxic 

agent activates caspases and on the induction of signals of survival that block the caspase 

activation. The data presented in this chapter demonstrate that cisplatin treatment triggers 

caspase activation, but also causes increase of p53 mRNA levels in both human and rat PTCs. 

In addition, the co-treatment with cimetidine showed a reduction in mRNA levels of caspases 

and p53 in both species, suggesting the role of cimetidine for decreasing the nephrotoxicity of 

cisplatin.     
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7 Final discussion and Conclusion  

The kidney is an essential organ which the body needs to perform many important functions, 

including homeostasis sustaining, extracellular environment control, such as detoxification, 

and toxic metabolism and drugs excretion [165, 172]. The kidney can therefore be treated as 

a major target site for exogenous toxicants. Drug transporters expressed in the PTCs are 

identified as one of the key factors in the organ's ability to perform its function 

successfully[173]. There are numerous renal drug transport models in vitro, but mostly do not 

express the width of transporters to establish good correlations with in vivo [174]. In 

recognition of this issue, regulatory authorities demanded that alternative in-vitro-cell-based 

testing be established to minimize or replace existing animal testing. Nephrotoxicity is 

estimated to be 8% of pre-clinical safety failures and 9% of safety failures in the drugs clinical 

trials [175]. The aim of my PhD project is the development of rat and human primary proximal 

tubule cell models as predictive in-vitro models of proximal tubule drug handling.  

The results from chapter 3 showed, human and rat PTCs were successfully isolated and 

cultured. The mRNA and functional expressions of drug transporters, such as OCT2, Mrp2, Oat1 

and mdr1a/b, found in the native tissue were retained in the cells. In addition, the expression 

of megalin and cubilin receptors were also detected in both human and rat PTCs. This is 

important as these transporters influence renal drug disposition [176], and their expression 

would enhance the utility of the human and rat PTC as an in vitro model of renal drug transport. 

Furthermore, in chapter 3 albumin uptake was measured in human and rat PTCs to show the 

functional expression of megalin and cubilin receptors by using albumin-FITC as a tracer 

substrate. In addition FITC-albumin was measured after polymyxin B incubated for the time as 

albumin. The data showed, polymyxin B is may enter the PTCs by megalin/cubilin endocytosis 

process. The amount of FITC- albumin is significantly less after polymyxin B treatment 

compared to control cells. This results were shown in both human and rat PTCs. This may be 

due to the competitive between albumin and polymyxin B to enter the PTCs by using megalin 

and cubilin receptors. The proximal tubular re absorption of gentamicin is linked to megalin, a 

study with megalin deficient mice[177]. Another study also showed that colistin (structural 

similar to polymyxin B) is a megalin ligand and that megalin plays a major role in the uptake of 

colistin [178].   Further characterisation of the human and rat PTCs model was also performed. 
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Results of the handling of creatinine by rat PTCs monolayer. The uptake was more in the 

basolateral membrane than apical membrane, and the same was human PTCs monolayer. This 

indicated the suitability of both species as models for renal creatinine transport. However, 

after adding dolutegravir (OCT2 inhibitor), creatinine was significant in rat PTCs but not in 

human PTCs.     

Chapter 4 showed the results of exposure of human PTCs to nephrotoxins. There were two 

types of drugs used in this chapter. Large molecules include, gentamicin and polymyxin B and 

cisplatin as a small molecule. The purpose of using different sizes is to show the ability of our 

in vitro model to detect the nephrotoxicity of any drug. Furthermore, 3 biomarkers (KIM-1, 

NGAL and clusterin) were measured successfully after nephrotoxins treatment. Those 

biomarkers gives us an early prediction of nephrotoxicity. The results showed the time and 

concentrations dependant of the all 3 drugs used in this chapter. For example, after 100 µg/ml 

gentamicin for 24h the KIM-1 level was 7.7±1.7 ng/ml and after 48h incubation the level rose 

to 14.8±2.5 ng/ml. In addition, KIM-1 production after 300 µg/ml gentamicin for 72h was 

63.6±15.4 ng/ml and after 500 µg/ml gentamicin treatment increased to 235.66±12.8 ng/ml. 

To show the reproducibility of the human PTCs model, two cell viability assay (MTS and ATP) 

were used to measure the percentage of live cells after nephrotoxins treatment. When 

comparing between the results, we can see how similar the data is. For example, MTS 

percentage after 25 µM cisplatin treatment for 48h was 61.1% and ATP was 58.1%. The 

similarity between the two assays indicate that we could use any cell viability assay to measure 

number of live cells after nephrotoxins treatment. In chapter4, results showed after the use of 

co-treatment (cilastatin, rosuvastatin and cimetidine) our in vitro model could be a good model 

for finding ways to reduce the nephrotoxicity of some drugs. The results showed the reduction 

of all 3 biomarkers production after the co-treatment compared to only nephrotoxins. This 

suggest the role of these co-treatment for protecting the human PTCs from damaging by drugs. 

However, even the actual mechanism of preventing the nephrotoxicity is not clear and more 

investigation is needed.  

In chapter 5, rat PTCs were isolated and grown successfully. Gentamicin, polymyxin B and 

cisplatin used to treat our rat PTCs.  After exposure to those nephrotoxins, measuring the 

expression of different nephrotoxicity biomarkers, such as KIM-1 and NGAL were done. All 
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nephrotoxins were treated in a range of concentrations to monitor the time and concentration 

of those drugs by using our in vitro model. An example, confluent monolayers of rat PTCs were 

treated with a range concentrations of polymyxin B (50 to 600 µg/ml). After 24h of treatment 

with 250 µg/ml polymyxin B the percentage of live cells was 72.5% and after 400 µg/ml 

polymyxin B exposure the percentage dropped to 48.1%. In addition, after 100 µg/ml 

polymyxin B treatment for 48 and 72 hours the cell viability were 71.2% and 60.8% 

respectively. In addition, the measurement of KIM-1 and NGAL were quantified after 

nephrotoxins were treated for 24, 48 and 72 hours with a range of concentrations. MTS and 

ATP were measured after nephrotoxins treatment and normalised to control cells. The results 

showed the similarity between the 2 assays. This determine the reproducibility of our rat PTCs 

by using any cell viability assay. In addition, LHD were measured after nephrotoxins incubation 

to quantify the damage PTCs. The data was consistent with cell viability data. This is a good 

indication of our in vitro model, the ability of grow the rat PTCs and treat the PTC monolayers 

with different nephrotoxins and measure the live cells and the damage cells as well. In rat PTCs, 

KIM-1 and NGAL were measured but not clusterin like human PTCs. This is due to the high cost 

of rat clusterin kit and it is hard to afford it.   

The study of cisplatin nephrotoxicity mechanism has been studied in chapter 6.  The cisplatin 

concentration decides if the cells die from necrosis and apoptosis [111]. High concentrations 

of cisplatin in cell culture experiments induce necrotic cell death while lower doses result in 

apoptosis[165]. Cisplatin triggered p53 in cultured renal tubular cells[161]. mRNA were 

isolated from human and rat PTCs and expression of p53 were done after cisplatin treatment. 

Our results showed the increase expression of p53 after cisplatin treatment compared to 

control cells.  In addition, co-treatment with cimetidine showed a reduction in p53 expression, 

may suggesting the role of p53 in cisplatin apoptosis in both human and rat PTCs. Activation 

of caspases is considered a key phase in apoptosis mechanism. A research in renal cell lines 

undergoing cisplatin induced apoptosis has shown that the release of cytochromes from 

mitochondria activate the caspase 3 by caspase 9 [179]. Our data showed caspases 3, 8 and 9 

mRNA levels were significantly high compared to control cells. P53 and caspases may have a 

role in cisplatin apoptosis in human and rat PTCs and further investigation is needed.      
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  Rat and human PTC are not limited only to work on the transport of drugs and drugs 

interactions. Different studies have confirmed the suitability of rat and humans as in-vitro 

models of nephrotoxicity proximal tubular cell cultures [180, 181]. Nevertheless, the limited 

life cycle of human and rat PTCs is a drawback of their use in nephrotoxicity studies. In our 

project human and rat PTCs were grown successfully. Nephrotoxicity biomarkers were 

measured in both species. The biomarkers data is almost identical in both human and rat PTCs. 

However, this is does not mean both human and have the interaction to nephrotoxins drugs. 

In this study, only 3 drugs were used and only 3 biomarkers were measured. Further work on 

the use of human and rat PTCs in other areas of drug development is also needed. 

There are some challenges in our in vitro model in order to quantify the production of 

nephrotoxicity biomarkers. The short time life of PTCs were grown does not give us enough 

time to test out nephrotoxins drugs for longer time. The levels of biomarkers were normalised 

to the amount percentage change of live cells in compared to control cells. This is was done to 

show the production of biomarkers is based on numbers of live cells. Cell viability data were 

measure to determine the compatible with biomarkers data. The level of biomarkers produced 

after nephrotoxins exposure is different based on the physiological condition of the kidney 

used and biomarkers are produce as an immune response to a harmful. So, there is a need to 

use an internal control in each kidney used to quantify the biomarkers levels.   Equally 

important, reference values of biomarkers has to be identified for routine use in clinical 

practice, especially in the early stage of kidney damage. 

Culture cells in a 3D setting are becoming more and more involved and have been found in rat 

and human PTC culture. This includes using the flow medium to replicate what happen in vivo, 

the motion of basolateral and apical fluid. This provides an interesting expansion of the model 

for more drug transporters and drug interaction studies. Research group designed human 3D 

PTCs. There data showed that, 3D PTCs tissues could have a positive impact on the pre-clinical 

drug discovery process and help prevent costly failures in late-stage clinical trials. Treatment 

of 3D proximal tubular tissue with cisplatin resulted in dose-dependent loss of live cells and 

epithelial cells, and cimetidine rescued these results, confirming the role of the OCT2 

transporter in the nephrotoxicity caused by cisplatin. The tissue also displayed a fibrotic 
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response to TGFβ as determined by increased gene expression associated with human fibrosis 

and histological analysis of excess matrix deposition in extracellular cells [182]. 

Developing in vitro models to reliably predict the nephrotoxicity of potential pharmacological 

agents requires a solid understanding of the basic cellular targets and consequences of 

nephrotoxicants, as well as robust and reliable nephrotoxicity mechanistic biomarkers[183]. 

A golden in vitro model for nephrotoxicant evaluation has historically been represented by 

two-dimensional cultures of primary or conditionally immortalised renal epithelial cells. 

Pharmaceutical researchers have for many years concentrated on pharmaceutical metabolism 

pathways research for new molecular entities (NMEs) as a framework for studying 

pharmacokinetic processes and causes of inter-individual variation in pharmacokinetics and 

pharmacodynamics. It has recently become apparent that transporters play a major role in 

pharmacokinetics and are, together with drug-metabolizing enzymes, the main determinants 

of both the degradation of hepatic and renal drugs[184].  In our PTCs model we are be able to 

detect drugs transporters and we did some functional experiments to those transporters. Our 

model may be useful for drugs companies to test for nephrotoxicity of drugs and their 

molecular cause of cell deaths to renal epithelial cells.   Nephrotoxicants cause injuries by 

choosing specific cell types or, depending on the mechanism of their action, by intentionally 

injuring several cell types within the kidney[185].  

Human and rat PTCs are validated as physiologically relevant proximal tubular models in the 

kidney and demonstrated as predictive methods for the handling of renal drugs. KIM-1, NGAL 

and clusterin were increased to response to nephrotoxins drugs treatment and they can used 

as a predictive biomarkers for nephrotoxicity.  The implications of these findings should be 

explored further in a longer follow-up.  
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