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Abstract 1 

In the UK, various studies have investigated daily extreme precipitation; however, 2 

increases in recent flash flood events indicate the need for improved understanding 3 

and methods associated with sub-daily extremes. This thesis attempts to fill this gap 4 

by examining quality-controlled hourly precipitation data from 1992-2014 at 197 5 

gauges across the UK, and using climatological predictors to develop a regional 6 

statistical model which quantifies the frequency and intensity of hourly extreme 7 

precipitation.  8 

Regional annual exceedance probabilities for sub-daily extreme precipitation were first 9 

estimated using the daily UK extreme regions. Results suggested these regions did 10 

not adequately reflect the spatial variation of sub-daily extreme precipitation. The sub-11 

daily extremes showed clear seasonality with short-duration extremes (1h and 3h) 12 

predominantly in summer, and longer duration extremes (12h and 24h) distributed 13 

throughout late autumn and winter. Moreover, the diurnal cycle of short-duration 14 

extremes centres on the afternoon, with a peak typically between 1400 and 1700, 15 

especially in southern and eastern regions. 16 

Hourly gauges were clustered using a statistical approach, employing the annual 17 

maxima, peak over threshold indices and weather types to develop five new regions, 18 

which reflect the impacts of orography, seasonality, and atmospheric. Regional 19 

frequency analysis with L-Moments was then used to estimate growth curves for the 20 

new homogeneous hourly extreme precipitation regions.  21 

Time-dependent Poisson-GP regional statistical models were developed to simulate 22 

hourly extreme precipitation, using atmospheric circulation, temperature, and moisture 23 

content as predictive covariates. The model indicated a noticeable peak in the 24 

occurrence of hourly extremes in summer, especially in southern regions. A simple 25 

pseudo global warming scenario of 2°C was used to demonstrate the model potential. 26 

It projected an increase in the frequency and intensity of hourly extremes of up to 17%, 27 

which is higher than suggested by Clausius-Clapeyron, highlighting a need to review 28 

design guidelines for future extreme precipitation in the UK.  29 
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Chapter 1. Introduction 1 

Daily and sub-daily extreme precipitation events are major cause of flooding, soil 2 

erosion, pollution and landslides, which have potentially high impacts on urbanised 3 

areas, transportation, human society, and infrastructure (IPCC, 2012). Various studies 4 

of daily observations have indicated an increase in the frequency and intensity of 5 

extreme precipitation across the globe in the last few decades (Alexander et al., 2006; 6 

Westra et al., 2013; Donat et al., 2017). The changing behaviour of the extremes has 7 

attracted researchers from different fields to characterise their patterns, estimate 8 

associated risks, and evaluate their relationship to climate change and related, 9 

potentially driving, climatic variables (e.g. temperature, moisture content). 10 

In the last few decades, significant flood events arising as a consequence of extreme 11 

precipitation have occurred in the UK. Examples include the Boscastle 2004 flood 12 

which was caused by intense convective precipitation (50mm/hr) (Golding et al., 2005) 13 

and the UK 2007 floods which were caused by frontal precipitation associated with 14 

slow moving depressions across the British Isles (Blackburn et al., 2008). The latter 15 

resulted in high insurance claims and a significant hit for infrastructure and critical 16 

services (Chatterton et al., 2010). In 2012, Newcastle experienced a flood caused by 17 

intense precipitation where ~50mm precipitation occurred in 2 hours and affected more 18 

than 1200 properties (Archer and Fowler, 2018). Stern (2006) reported that floods are 19 

among the most costly extreme events in the UK, while the UK environment agency 20 

warned that flood related damages could increase up to 60% more by 2035, unless 21 

prompt actions and adaptation policies are implemented (Chatterton et al., 2010). 22 

However, the response of extremes to ongoing climate change is considered a 23 

challenge for scientists and decision makers due to the numerous, complex physical 24 

and thermodynamic contributions governing extreme events (Herring et al., 2014). 25 

Climate change studies which have investigated daily extremes frequency and return 26 

estimates using physical theory (e.g. O'Gorman and Schneider, 2009), observations 27 

(e.g. Fischer and Knutti, 2016), and model simulations (e.g. Kharin et al., 2007) have 28 

agreed that extremes have intensified and predicted to continue to increase in 29 

response to warming climate especially in wet regions, however, the response to future 30 

climate change is noticeably uncertain with high sensitivity, especially for convective 31 

conditions. Extreme precipitation are generated from various processes, and might be 32 

associated with a range of conditions depending on location and seasonality such as 33 
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the large atmospheric circulation, multitude and tropical cyclones, atmospheric rivers, 34 

and local convective complexes, which makes understanding and predicting changes 35 

difficult (Schumacher and Johnson, 2005; Gosling et al., 2011). Furthermore, the IPCC 36 

(2012) reported strong spatial and temporal variation in extreme precipitation, which 37 

adds more challenges to extremes simulating. 38 

Recently, Donat et al. (2017) reported that existing storm management infrastructure 39 

is inadequate to control the increasing precipitation extremes and totals in different 40 

regions. Policy makers and designers have highlighted the need for adaptation 41 

planning strategies and reliable risk estimates (Stocker et al., 2013). Arnbjerg-Nielsen 42 

et al. (2013), who reviewed current methods for assessing future precipitation changes 43 

and their impacts on urban drainage systems, reported that in spite of the improved 44 

understanding and characterisation of precipitation under climate change, the 45 

estimation of risks remains challenging due to the needed high spatio-temporal 46 

resolution, besides the difficulty in monitoring and quantifying the extremes. Therefore, 47 

investigating the temporal and spatial characteristics of precipitation extremes, in 48 

addition to their related climatological variables is crucial to quantify extremes intensity 49 

and frequency, evaluate the potential risks, and implement adaptation plans. 50 

Theoretically, the physical processes generating precipitation are well established, 51 

especially for mean (climatological) precipitation, however, simulating and describing 52 

the exact interaction between the various processes is not practically possible due to 53 

its complexity and associated uncertainties (Demirdjian et al., 2018). Furthermore, the 54 

relationship between mean and extreme precipitation is not straightforward, particularly 55 

for increasingly extreme precipitation events (Zhou and Lau, 2017), which adds more 56 

ambiguity in understanding extremes, while using general circulation models (GCMs) 57 

and regional climate models (RCMs) to simulate extremes frequency and intensity at 58 

small spatial scales is computationally expensive (Chan et al., 2013). Extremes are 59 

rare by nature, and quantifying their occurrence frequency and intensity is challenging. 60 

Consequently, statistical analysis and modelling have been adopted due to its potential 61 

in characterising extremes patterns without prior knowledge of all complex atmospheric 62 

processes (Rohrbeck et al., 2018).  63 

1.1. UK daily Precipitation 64 

Similar to the trend of globally increasing extremes, various studies have reported 65 

increasing daily and multi-daily precipitation intensity and frequency in the UK (Osborn 66 
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et al., 2000; Fowler and Kilsby, 2003a; Fowler and Kilsby, 2003b; Simpson and Jones, 67 

2014). These increasing trends have been reported for different periods, and durations, 68 

which indicates the consistency of the reported increasing trends.  69 

Daily mean and extreme precipitation have been investigated thoroughly in the UK 70 

taking the advantage of a rich data archive and dense gauge network. The UK 71 

precipitation record goes back to 1766, where the daily, monthly, seasonal, and annual 72 

precipitation data is produced by the Hadley Centre for climate prediction and research 73 

(HadUKP). Originally, the monthly data series was constructed by Wigley et al. (1984), 74 

and was updated by Wigley and Jones (1987), Gregory et al. (1991), Jones and 75 

Conway (1997), and Alexander and Jones (2000). The data series are updated in real 76 

time for all regions and used in various hydrological applications (e.g. calculating 77 

regional totals, estimated return levels). However, Simpson and Jones (2012) indicated 78 

that uncertainties and potential inhomogeneities associated with the HadUKP 79 

datasets, are higher for regions with sparse gauges than dense gauged regions.  80 

Therefore, Wigley et al. (1984) identified 5 regions in England and Wales using mean 81 

daily precipitation, which were subsequently extended to 9 regions for the UK and 82 

Northern Ireland by Gregory et al. (1991). Identifying precipitation regions provides the 83 

ability to pool data from different locations across each region, which provides data for 84 

ungauged locations, and reduce the uncertainties in sparsely gauged regions (Hosking 85 

and Wallis, 2005). The regions have been used to estimate return levels and evaluate 86 

the changes in trends and patterns of mean precipitation (e.g. Jones and Conway, 87 

1997; Simpson and Jones, 2014), extreme precipitation (e.g. Fowler and Kilsby, 88 

2003b; Jones et al., 2013), and future projections of extremes (e.g. Fowler and Wilby, 89 

2010). However, Jones et al. (2014) reported that the HadUKP regions do not 90 

represent the variability of the frequency, magnitude, and seasonality of daily extremes 91 

within each region efficiently.  92 

Thus, a new 14 region classification has been developed using daily extremes between 93 

1961-2009 to provide reliable estimates of return levels, and describing spatial and 94 

temporal characteristics of extremes (Jones et al., 2014). The regions were developed 95 

using regional frequency analysis (RFA) and extreme value theory (EVT) suggested 96 

by Hosking and Wallis (2005), with a focus on different extremes characteristics such 97 

as seasonal timing and magnitude of extremes. The 14 regions showed an improved 98 

performance in estimating return levels compared to the HadUKP regions, especially 99 
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for daily extremes, and indicated clearer upward trends in annual maxima for the 100 

investigated period between 1961-2009 (Jones et al., 2014).  101 

On the other hand, hydrological designs in the UK adopted the Flood Estimation 102 

Handbook (FEH) (Faulkner, 1999) approach as standard practice to estimate return 103 

levels and produce growth curves for anticipated locations. The FEH approach 104 

propose having data that equals to five times the desired event return frequency. For 105 

example, 20-years event requires having data for 100 years. The FEH provides UK-106 

wide growth curves for hourly and daily durations (1h up to 8days), therefore, different 107 

bodies have adopted this approach primarily for flood mapping studies, flood risk 108 

assessments, and the design of flood mitigation (Kjeldsen et al., 2008). However, using 109 

the method to estimate sub-daily events is challenged by the limited and scarce data 110 

availability. Furthermore, the FEH approach recommends using similar catchments to 111 

assess ungauged locations (Faulkner, 1999), which might provide misleading results 112 

for the estimated precipitation levels, especially convective and extreme precipitation, 113 

due to noticeable spatial variation in extreme precipitation (Brunsdon et al., 2001; 114 

Arnbjerg-Nielsen et al., 2013).  115 

Nevertheless, neither the regional estimation approaches (e.g. HadUKP regions), nor 116 

the point of interest estimation approaches (e.g. FEH) consider the climatological 117 

variable in the UK when estimating return levels, even though significant relationships 118 

have been reported between climatological variables (e.g. temperature, atmospheric 119 

rivers, atmospheric pressure) and precipitation in the UK (e.g. Wilby et al., 1997; Kilsby 120 

et al., 1998; Frei et al., 2006; Lavers et al., 2013; Blenkinsop et al., 2015). Furthermore, 121 

the HadUKP regions (Gregory et al., 1991) were defined using precipitation data only 122 

and without incorporating the other related climatological variables.  123 

1.2. UK Sub-daily extreme precipitation 124 

In contrast with longer timescales, few studies have investigated sub-daily extreme 125 

precipitation in the UK due to the scarcity of quality-controlled, long, and homogeneous 126 

observations (Westra et al., 2014; Blenkinsop et al., 2017), despite their relation to 127 

pluvial floods and impact on urbanised areas (Dale et al., 2017; Archer and Fowler, 128 

2018). Recently, Blenkinsop et al. (2017) investigated the UK observed climatology of 129 

sub-daily extreme precipitation and reported noticeable seasonality. Furthermore, 130 

investigating the scaling relationship between observed sub-daily extremes and 131 

temperature in the UK indicated a potential increase in precipitation intensities events 132 
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under warmer climate (Blenkinsop et al., 2015). Climatological studies, using climate 133 

models, projected an increase in sub-daily precipitation, especially in summer (Chan 134 

et al., 2014a; Kendon et al., 2018), while a significant relation with large scale 135 

atmospheric circulation (e.g. mean sea level pressure (MSLP), convective available 136 

potential energy (CAPE)) has been reported (Chan et al., 2017). Moreover, Kendon et 137 

al. (2018) reported a noticeable difference between hourly and daily extremes 138 

predictions in the UK, where the model indicates that hourly extremes would intensify 139 

5-10 years and decades earlier than daily extremes in winter and summer seasons 140 

respectively. Lately, Lewis et al. (2018) produced 1 km resolution gridded hourly 141 

precipitation dataset for the UK, developed using more than 1900 quality controlled 142 

gauges.  143 

Despite the importance of having a regional assessment of sub-daily extremes in the 144 

UK and their potential impacts, none of the studies to date have performed regional 145 

frequency analysis using observational data. Studies which have evaluated extreme 146 

precipitation events in terms of their impacts and potential adaptations have reported 147 

that the lack of thorough choice of statistical distributions and models for extreme 148 

events increases the uncertainty, especially when used for generating design 149 

guidelines (Hailegeorgis et al., 2013; Simpson and Jones, 2014). Existing studies of 150 

sub-daily extremes have focused on individual sites, which is usually challenged by 151 

the limited data record, gauging network density, instrumental and human errors 152 

(Paixao et al., 2011). Regional assessment would benefit stakeholders to evaluate any 153 

location (gauged or ungauged) without limitations related to administrative and 154 

regulatory boundaries, and reduce the impact of data scarcity (Durrans and Kirby, 155 

2004; Dittrich et al., 2016). Therefore, this research attempts to quantify hourly and 156 

multi-hourly extreme precipitation regionally, assess the usage of existing precipitation 157 

regions, define the statistical relationship between hourly extremes and related 158 

(potentially driving) climatological variables.  159 

1.3. Statistical downscaling 160 

Typically, GCMs and RCMs are used to simulate atmospheric circulation and predict 161 

future events. However, the spatial resolution of these is too coarse, and they are 162 

usually used to simulate large scale atmospheric circulation. Moreover, Prudhomme et 163 

al. (2002) reported that GCM/RCM simulations and predictions for short time scale 164 

events (i.e. less than monthly) has a lower confidence compared to longer durations. 165 
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Various studies (e.g. Xu, 1999; Maraun et al., 2010b)  have reported that using 166 

GCMs/RCMs for hydrological assessment might not be suitable due to:  167 

1- The decreasing accuracy of GCMs/RCMs when applied to hydrological 168 

applications of interest, which have fine spatial and temporal scales.  169 

2- The decreasing accuracy of simulated hydrological variables of interest (e.g. 170 

precipitation, potential evapotranspiration) compared to other climatic variables 171 

(e.g. temperature, sea level pressure).  172 

Therefore, convective permitting models (CPMs) are usually used to simulate 173 

atmospheric circulation and climatological events (e.g. precipitation) for small scale 174 

and short duration hydrological applications (i.e. high spatial and temporal resolution). 175 

However, using CPMs is challenged by the need for high computational resources and 176 

long run times (Prein et al., 2015).  177 

Consequently, statistical downscaling approaches have been applied to GCM/RCM 178 

outputs, especially over urbanised areas, where dynamical simulations are 179 

computationally expensive (Maraun et al., 2010b). Statistical downscaling employs the 180 

empirical relation between observed weather variables (e.g. precipitation, 181 

temperature), and the related climatological variables (e.g. sea level pressure (SLP), 182 

surface temperature, dew point temperature (DPT), geopotential height, sea surface 183 

temperature (SST), and North Atlantic oscillation (NAO)) to simulate future 184 

precipitation patterns at a finer resolution (Benestad, 2010; Arnbjerg-Nielsen et al., 185 

2013). Large scale predictors are better represented in models than the variables being 186 

predicted (Maraun et al., 2010b), thus statistical downscaling provides the flexibility of 187 

modelling extremes and ability to determine regression relations using well established 188 

frameworks such as generalized linear modelling (GLM) (e.g. Hertig et al., 2014) and 189 

artificial neural network modelling (e.g. Paulin et al., 2005). However, it should be noted 190 

that statistical downscaling results and performance depends on the reliability of the 191 

defined relationship between the precipitation and climatological predictor variables, 192 

which indicates the importance of having accurate climate model outputs (Maraun et 193 

al., 2010b). 194 

Therefore, this research attempts to quantify the statistical relationship between hourly 195 

extremes and related (potentially driving) climatological variables, and to use this 196 

relationship to develop a reliable statistical model and simulate extreme hourly 197 

precipitation in the UK. This statistical model would provide an alternative to the 198 

computationally expensive RCMs and/or CPMs, employing the statistical downscaling 199 
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approach to estimate extreme precipitation frequency and intensity, and quantify the 200 

characteristics of extremes (i.e. frequency and intensity) under various climatic 201 

scenarios.  202 

1.4. Research aims and objectives 203 

The overall aim of this research is to develop a statistical model employing recently 204 

available quality controlled hourly precipitation data and related climatological 205 

variables to simulate hourly extreme precipitation intensity and frequency. The 206 

outcome of this research would be a methodology to estimate regional return 207 

estimates, quantify extremes frequency and intensity, and evaluate potential behaviour 208 

under future climate change 209 

Therefore, this research will address the following research objectives: 210 

1- To perform an exploratory analysis of hourly and multi-hourly extremes 211 

precipitation, seasonality, diurnal cycle, and return estimates using annual 212 

maximum (AMAX) precipitation data. 213 

2- To assess the efficacy of using existing extreme precipitation regions in the UK 214 

to characterise the sub-daily extremes. 215 

3-  To define potentially new UK extreme precipitation regions based on hourly 216 

data and other climatological variables.  217 

4- To estimate hourly precipitation regional return levels by fitting regional 218 

statistical distributions using extreme value theory (EVT). 219 

5- To investigate the statistical relationships between hourly extremes and 220 

potential climatological drivers such as the North Atlantic Oscillation (NAO), sea 221 

surface temperature (SST), and air temperature. 222 

6- To build a statistical model to simulate extreme hourly precipitation in the UK 223 

using the climatological variables identified in Objective 5.  224 

7- To apply the statistical model developed to meet Objective 6 to evaluate the 225 

frequency and intensity of hourly extreme precipitation under potential climate 226 

changes. 227 

1.5. Thesis structure 228 

Chapter 2 reviews literature relating to daily and sub-daily extreme precipitation in the 229 

UK. The chapter examines trends in the historical mean and extreme daily precipitation 230 

in the UK, and the commonly used methods to analyse precipitation. Furthermore, the 231 

chapter outlines the advancement in UK sub-daily extreme precipitation analysis, 232 
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including a quality controlled hourly precipitation dataset that is used throughout the 233 

thesis. Moreover, the chapter highlights future projections of sub-daily precipitation for 234 

the UK and associated challenges.  235 

Chapter 3 provides an exploratory analysis of hourly and multi-hourly extreme 236 

precipitation in the UK. The diurnal cycle, seasonality, and frequency of extremes 237 

across the UK are investigated regionally. Furthermore, regional estimation of the 238 

return estimates across the UK, and the efficacy of using the existing daily extreme 239 

precipitation regions are introduced in this chapter. The work presented in this chapter 240 

has been published in Darwish et al. (2018), and indicates the need for sub-daily 241 

extreme precipitation regions. 242 

Chapter 4 presents the development of new UK hourly extreme precipitation regions, 243 

which were defined using the quality controlled precipitation dataset, additional 244 

climatological variables, and the novel use of European weather patterns. 245 

Furthermore, the assessment of the new regions’ homogeneity, and their efficacy to 246 

analyse hourly extreme precipitation in the UK and estimate return levels, indicates an 247 

improved performance compared to the existing UK daily extreme precipitation 248 

regions.  249 

Chapter 5 employed the new defined regions to develop a statistical model that is 250 

simple and efficient to quantify hourly extreme precipitation intensity and frequency in 251 

the UK. The model was developed using the extreme value theory and the generalized 252 

linear modelling approach. Furthermore, the model included various climatological 253 

variables to account for the varying nature of extreme precipitation in the UK.  254 

Finally, the main conclusions, summary of results, and the potential future work to 255 

enhance and extend this research are presented in Chapter 6.  256 

 257 

 258 

 259 

 260 

 261 

 262 

 263 
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Chapter 2. Literature Review 264 

This chapter begins with a review of the literature on precipitation trends with a broad, 265 

global context and then a focus on the United Kingdom. It is divided into four main 266 

sections: firstly, it presents an overview of precipitation formation processes, reviewing 267 

global and regional studies (Section 2.1). Second, studies of the climatology and trends 268 

in European sub-daily extreme precipitation are reviewed (Section 2.2). Next, trends 269 

in UK daily and sub-daily precipitation are reviewed (Section 2.3), then, variables which 270 

have an effect on UK precipitation such as atmospheric circulation, oceanic circulation 271 

and temperature, are discussed (Section 2.4). Finally, a summary and identified gaps 272 

in the existing literature are presented (Section 2.5). 273 

2.1.  Precipitation overview  274 

Precipitation usually occurs when moist air rises to higher altitudes where it cools and 275 

condenses due to the lower temperature in high atmospheric layers. The rise of the 276 

moist air forms clouds full of water drops, which in turn grow larger either due to 277 

additional condensation or due to further collision with other droplets. As they grow 278 

larger, the droplets’ own weight eventually overcome the uplifting air forces and fall 279 

due to gravity as precipitation. 280 

The geographical location of the UK is responsible for its rapidly changing and unstable 281 

weather conditions. To illustrate, seven major air masses from both warm (tropical) 282 

regions and cold (polar) regions, each of which has distinctive temperature and 283 

humidity characteristics, may affect the United Kingdom causing different precipitation 284 

and extreme events to occur (Mayes and Wheeler, 2013). Consequently, precipitation 285 

amounts vary significantly across the United Kingdom. The UK Met Office average 286 

annual precipitation maps between 1981-2010, show that generally the further west 287 

and the higher the altitude, the greater the annual precipitation (Met-Office, 2016). 288 

Moreover, the maps show that the mountains of Wales, Scotland, Northern England 289 

and South West England are the wettest parts of the country, compared to the south 290 

and the southeast geographical. This may be attributed to the different precipitation 291 

generating mechanisms in the UK, the varied configuration of the coastline, and the 292 

rain shadow effect, where mountainous parts of the South West and Wales force the 293 

ascent of air to higher altitudes, leading to precipitation occurrence before moving 294 

further towards the southern and southeast regions (Mayes, 2013). 295 

https://en.wikipedia.org/wiki/Wales
https://en.wikipedia.org/wiki/Scotland
https://en.wikipedia.org/wiki/Northern_England
https://en.wikipedia.org/wiki/South_West_England
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Each precipitation type is generated in different temporal and spatial circumstances as 296 

follows: 297 

1- Relief precipitation occurs when warm, moist air is forced to rise over high areas, 298 

cools, and condensation occurs to form precipitation. 299 

2- Frontal precipitation, which is common in the UK (Holt et al., 2001), forms as a 300 

result of warm and cold air masses meeting. As the air masses have different 301 

characteristics, they will not mix and a front will be formed. The warmer air mass, 302 

which is less dense than the cold air mass, is forced to rise and accordingly cool 303 

with condensation leading to precipitation occurrence. 304 

3- Convective precipitation, which is very common in the southern part of the UK 305 

during summer (Holt et al., 2001; Holley et al., 2014; Blenkinsop et al., 2015), is 306 

a result of heating of an air mass over a warm land surface. This process will 307 

cause the air to become warmer and lighter, and be lifted higher, with cooling 308 

and subsequently condensation causing precipitation. 309 

In the UK, relief and frontal precipitation events are due to synoptic scale systems while 310 

convective precipitation is due to local scale events (Mayes, 2000).  311 

In recent decades, daily precipitation has shown increasing frequency/intensity trends 312 

across different areas around the globe (Westra et al., 2013). Extreme precipitation 313 

and climate change with its consequences of increasing, floods, and other 314 

environmental, economic and societal impacts have particularly attracted researchers 315 

from different fields and disciplines to study and understand their occurrence, 316 

frequency, and magnitudes. IPCC (2012) claimed that the impacts of the increasing 317 

frequency and intensity of daily extreme precipitation over vast areas of the globe have 318 

increased, indicating that it is therefore essential to analyse and predict such events.  319 

Recent studies have confirmed that precipitation intensity has increased considerably 320 

over recent decades, for both daily (Westra et al., 2013; Alexander, 2016) and sub-321 

daily precipitation (Westra et al., 2014), while 65% of the studied areas around the 322 

world experienced increasing annual maximum daily intensity and/or frequency (Min 323 

et al., 2011) , which indicates increasing potential for flooding. Lenderink and Van 324 

Meijgaard (2008) reported that sub-daily extremes are more sensitive to climate 325 

change and potential temperature increase, leading to a greater intensification 326 

compared to daily extremes. In the UK, investigating the scaling relationship between 327 

the observed hourly extremes and temperature, suggested that precipitation will 328 

intensify with temperature according to the Clausius–Clapeyron (CC) relationship 329 
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(Blenkinsop et al., 2015; Blenkinsop et al., 2018). The CC relationship explains the 330 

increased capacity of warmer air to hold moisture under constant relative humidity; a 331 

~6–7% increase in precipitation per 1oC increase in temperature. A general agreement 332 

between the studies is that increasing atmospheric temperature could increase 333 

precipitation intensities for daily and sub-daily precipitation events. 334 

The assessment of a range of data in relation to the impacts of climate change 335 

indicates that floods arising as a result of intense precipitation are among the most 336 

costly and critical hazards arising as a consequence of climate change (Stern, 2006). 337 

These may lead to casualties, infrastructure damage, disruption of transportation links 338 

as well as damages to natural ecosystems (Stern, 2006; Gosling et al., 2011; IPCC, 339 

2012; Hallegatte et al., 2013). The UK has one of the most vulnerable economies to 340 

damages from flooding (Ramsbottom et al., 2012). DEFRA (2012) highlights that 341 

insurance claims would increase dramatically in the next decades, which indicates the 342 

importance of characterising and understanding intense precipitation. Moreover, 343 

Chatterton et al. (2010) predict an increase in the UK flooding costs and damages 344 

unless strategic actions and solutions are planted, which makes predicting and 345 

simulating extreme events crucial elements in national and international plans in this 346 

respect. However, sub-daily extremes have not been studied extensively due to the 347 

shortage of the robust data and records that cover long period of time. 348 

2.2.  Sub-daily extremes in Europe 349 

Investigating various studies of changes in sub-daily precipitation regionally suggested 350 

that most focused on individual sites, while fewer considered regional scale 351 

assessment (Westra et al., 2014; Blenkinsop et al., 2018). In Europe, Leahy and Kiely 352 

(2011), studied short extreme precipitation in Ireland using thirteen hourly precipitation 353 

stations extending from 1957 to 2008. They used the general Pareto distribution (GPD) 354 

to fit peaks over threshold (POT) observations for each station, reporting that 355 

significant changes were observed in short duration extreme precipitation, where a 30 356 

year return period storm shifted to be a 10 year return period, though noticeable spatial 357 

variability was observed in the results. The variability and the local variation, which 358 

might occur due to the differences in exposure or orography of the stations (Leahy and 359 

Kiely, 2011), shows the complexity of the short duration extreme precipitation events 360 

and the need for more investigation rather than using traditional statistical methods.  361 
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Furthermore, Arnone et al. (2013) studied hourly and sub-daily annual maxima for 362 

extreme precipitation events (1-, 3-, 6-, 12- and 24 hours) in Sicily using 60 rain gauges 363 

for the period 1956 to 2005. They quantified changes in extreme precipitation, 364 

observing an increasing trend in sub-daily extremes intensity and a significant increase 365 

in their occurrence especially at 1-hour duration, while longer durations (i.e. 12-, and 366 

24 hour) extreme precipitation events showed a negative trend. Moreover, an 367 

increasing trend in the relative contribution and occurrence of heavy precipitation 368 

events occurred, however the total annual precipitation showed a decrease.  369 

Hanel et al. (2016) analysed sub‐daily heavy summer precipitation events for the 370 

Czech Republic, using 17 gauges between 1961–2011. They reported that most of the 371 

investigated gauges showed significantly positive intensity trends, and more frequent 372 

occurrence of extreme events. Furthermore, more than 50% of the gauges 373 

experienced an increasing contribution from extreme precipitation to the total summer 374 

precipitation. 375 

Recently, Forestieri et al. (2018) used regional frequency analysis approach to analyse 376 

the hourly and multi-hourly extremes in Sicily, which helped to identify extremes 377 

homogeneous regions, derive regional growth curves, and provide updated return 378 

estimates. The results showed that, for low return periods, different distribution 379 

performed similarly and accurately, yet for long duration results varied spatially 380 

(Forestieri et al., 2018). This indicates the need of having longer hourly extremes 381 

record, to assure more accurate results.  382 

In concise terms, quantifying sub-daily precipitation is necessary for the management 383 

of urban drainage (Arnbjerg-Nielsen et al., 2013) especially under a changing climate, 384 

while the lack of long hourly precipitation records and spatial variation of extreme 385 

precipitation, makes adaptation to the risk of flash flooding problematic. In particular, 386 

this high spatial variability suggests using regional approaches and other related 387 

climate variables to understand the sub-daily extremes (Leahy and Kiely, 2011; Arnone 388 

et al., 2013; Westra et al., 2014).  389 

2.3.  Historical and future precipitation in the UK 390 

In recent decades the UK has experienced significant extreme precipitation derived 391 

floods such as the 2004 Boscastle floods (Burt, 2005; Golding et al., 2005) and 2007 392 

UK summer floods (Blackburn et al., 2008). UK flood magnitudes and frequency have 393 

increased significantly in recent decades (Pattison and Lane, 2012), and are expected 394 
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to increase in the future (IPCC, 2012), which shed light on the importance of 395 

understanding extreme precipitation patterns in the UK, especially that adapting to 396 

extreme is a national priority as advised by the UK climate change risk assessment 397 

(CCRA, 2017) .  398 

UK daily precipitation has been studied using the rich archive of data to analyse and 399 

describe trends in extremes and their drivers. These have used both instrumental 400 

observations (Alexander and Jones, 2000; Fowler and Kilsby, 2003b; Maraun et al., 401 

2008; Jones et al., 2014; Simpson and Jones, 2014), and climate models (Dale, 2005; 402 

Fowler and Wilby, 2010) across different spatial and temporal scales. These studies 403 

could be used in risk assessment and management to produce the required 404 

recommendations and design guidelines to achieve both adaptation and mitigation of 405 

extreme events impacts (Dale et al., 2017). The evidence showed that it is profoundly 406 

complicated to simulate and understand the behaviour of extreme precipitation events 407 

due to the complex and disproportionate relation between climatological events and 408 

their potential drivers (Dale, 2005; IPCC, 2012; Hulme, 2014).  409 

Relatively few of studies have investigated sub-daily precipitation events either globally 410 

or in in the UK (Westra et al., 2014; Blenkinsop et al., 2018; Darwish et al., 2018), due 411 

to sparse observations (Blenkinsop et al., 2017). Besides, the difficulty and the 412 

computationally demanding simulation of these events using climate models induce 413 

additional challenges to the analysis process (Chan et al., 2014b). Overall, these 414 

studies agreed that UK sub-daily extreme precipitation events show a noticeable 415 

seasonal behaviour, and further investigation is required to quantify sub-daily extremes 416 

frequency, intensity, and future projections (Chan et al., 2014a; Blenkinsop et al., 2015; 417 

Tye et al., 2016; Blenkinsop et al., 2017). 418 

Hence, this chapter will 1) review major studies that have analysed mean and extreme 419 

precipitation including: sub-daily, daily, and multi-daily precipitation, patterns and 420 

behaviour of events during different seasons in the UK; 2) review climate model future 421 

projections; 3) review the relationship between extreme precipitation and related 422 

climatic variables.  423 

2.3.1. UK Mean precipitation  424 

A great deal of literature has investigated precipitation events and their patterns in the 425 

mid-latitude and northern hemisphere regions. These indicate a significant increase in 426 
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the intensity and frequency of precipitation events during the last century (Osborn et 427 

al., 2000; Meehl et al., 2007; Pattison and Lane, 2012; Burt et al., 2014).  428 

One of the benefits of having a long precipitation data archive in the UK is that it has 429 

enabled the study of UK precipitation trends using different methods and techniques 430 

for different periods. These studies showed no significant trend in annual UK 431 

precipitation (Perry, 2006; de Leeuw et al., 2016). Nevertheless, significant long-term 432 

trends and noticeable spatial variations were observed in seasonal precipitation in 433 

particular, during winter and summer (Alexander and Jones, 2000; Osborn et al., 2000; 434 

Mills, 2005; Leeuw et al., 2015). Trends in UK daily precipitation for each season will 435 

be reviewed in this section. 436 

 Winter (Dec-Jan-Feb) 437 

Jones and Conway (1997), who updated the study of Wigley and Jones (1987), studied 438 

UK precipitation using nine spatially coherent precipitation regions, where an 439 

unweighted regional average approach was adopted for each region during the period 440 

between 1767 and 1995. The study found a significant long-term precipitation trend 441 

increase of 67 mm and 139 mm over the whole period in England and Wales, and 442 

Scotland respectively.  443 

Further, Osborn et al. (2000) studied trends in the daily intensity of UK precipitation 444 

using 110 reasonably evenly distributed gauges recording daily observations for the 445 

period between 1961 and 1995. The study categorized total precipitation into ten 446 

categories based on their seasonal contributions. The results showed an upward trend 447 

in mean winter precipitation, where an increasing number and greater intensity of wet 448 

days (day with at least 0.3 mm of precipitation) confirmed this rise. This increase was 449 

linked to an upward trend of the North Atlantic Oscillation (NAO) index during the same 450 

period. Additionally, Alexander and Jones (2000) used the 9 HadUKP spatially 451 

coherent precipitation regions, and average monthly precipitation data for the period 452 

1961 to 2000 to find a significant increase in monthly precipitation over the UK with a 453 

noticeable increase in the western part of Scotland were in line with previous studies. 454 

Extending this study, Mills (2005) tried to model precipitation in the UK using different 455 

trends modelling techniques between the year 1766 and 2002 based on monthly 456 

series. The results showed that the winter precipitation trend increased 12% between 457 

1766 and 2002. Simpson and Jones (2014) also reported an increase in the trend of 458 

the 50th, 90th, 95th, and 99th percentile precipitation between 1931 and 2011, although 459 
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this was not significant in all regions; most of the significant precipitation intensity 460 

increase occurred in northern regions and Scotland. Extending the analysis back up to 461 

1766 showed significant mean increasing trends over the longer term, especially in 462 

England and Wales.  463 

Recently, Leeuw et al. (2015) studied the variability and trends of mean precipitation 464 

in the UK. The study used the daily average of the spatially distributed rain gauges in 465 

the 9 UK precipitation regions which were used by Alexander and Jones (2000) for the 466 

period 1931 to 2014. The results agreed with previous research, detecting a positive 467 

winter precipitation trend. Moreover, a decrease in the contribution of lighter 468 

precipitation events and an increase in the contribution of extreme precipitation events 469 

to the total seasonal precipitation are observed.  470 

 Spring (Mar-April-May) 471 

Generally speaking, spring has shown no significant long term trends (Alexander and 472 

Jones, 2000; Osborn et al., 2000; Mills, 2005; Jones et al., 2013; Leeuw et al., 2015; 473 

de Leeuw et al., 2016). Osborn et al. (2000) reported a weak increase in mean 474 

precipitation in Northern Ireland and Scotland due to an increasing number of wet days, 475 

while England has experienced a decline in the number of wet days resulting in a slight 476 

decrease in mean precipitation.  477 

Using spatially averaged monthly series, Alexander and Jones (2000) found that an 478 

increasing trend is observed in March while a decreasing trend was observed in April 479 

for the period between 1766 and 2000 over England and Wales. On the other hand, 480 

Mills (2005) supported the results of (Osborn et al., 2000), and showed that spring 481 

experienced a fluctuating trend for the period from 1766 to 2002, with a weak 482 

increasing trend. The study showed that a postitve trend was observed in March and 483 

April, while May showed a negative trend. More recently, de Leeuw et al. (2016) who 484 

studied the spring precipitation trend for the period 1931 to 2014 and three sub periods 485 

1961-2006, 1961-2014, and 1979-2014,reported that large interannual variability were 486 

observed in spring, and no significant trend can be determined. 487 

 Summer (June-July-August) 488 

A great deal of literature has reported that long term mean summer precipitation has 489 

shown a negative trend (Wigley and Jones, 1987; Jones and Conway, 1997; Alexander 490 

and Jones, 2000; Osborn et al., 2000; Mills, 2005; Simpson and Jones, 2014); 491 

nevertheless, some recent research has shown that recent decades experienced a 492 
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positive trend in summer precipitation in the UK (Simpson and Jones, 2014; de Leeuw 493 

et al., 2016). Osborn et al. (2000), using daily observations between 1961 and 1995 494 

from 110 gauges, reported a weak decline in seasonal summer precipitation totals at 495 

most UK gauges, with a reduction in the contribution of heavy precipitation categories. 496 

Addtionally, the study found that the number of wet days decreased in 90% of the 497 

gauges during the same period, which in turn results in a decline in mean seasonal 498 

precipitation levels. These results were confirmed by Alexander and Jones (2000) who 499 

reported a significant decrease in the total precipitation amount in every region during 500 

July and August between 1873 and 2000 across England and Wales. Alexander and 501 

Jones (2000) explained that the precipitation decrease could be due to an increase in 502 

anticyclonic conditions which might be the reason for the negative trend . Mills (2005) 503 

used monthly data extended back to 1766, reporting consistent results with the 504 

previous research and confirmed a negative trend in summer precipitation, specifically, 505 

during June and July.  506 

Later, Simpson and Jones (2014) reported a similar pattern for daily precipitation over 507 

the period 1931 to 2011 with mostly negative intensity trends in the 9 regions except 508 

in North East England, though the researchers argued that this negative trend is within 509 

the range of natural variability. Most recently, de Leeuw et al. (2016) analysed daily 510 

precipitaton over a similar period and reported that the seasonal precipitation trend 511 

showed a decrease up to the end of the last century, changing to become postive 512 

between 2007 and 2012. The study attributed this change to the fact that these years 513 

had greater total precipitation than the long term average (1931 to 2014), and both 514 

2007 and 2012 were the wettest summer season in the record. 515 

 Autumn (Sep-Oct-Nov) 516 

Mean autumn precipitation in the UK has generally shown no significant long-term 517 

trend. Osborn et al. (2000) reported a weak decrease in the number of wet days (days 518 

with at least 0.3 mm of precipitation) in England, although the mean wet days 519 

precipitation total increased in 91 out of 110 gauges. This increased the seasonal mean 520 

precipitation especially in North Scotland and Southwest England, though no 521 

significant trend was observed. Nevertheless, Alexander and Jones (2000) found an 522 

increase in the precipitation amount in Scotland and North Ireland during October and 523 

November between 1931 and 2000, though not enough evidence for a significant long-524 

term trend in autumn mean precipitation.  525 
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Mills (2005) supported the preceding argument and pointed out that observing a 526 

significant and a clear trend for autumn precipitation in the UK is relatively difficult to 527 

identify due to annual and seasonal variability. Mills (2005) reported that different 528 

trends were found throughout the record (1766-2002), and no significant trend can be 529 

determined. This result was validated by Simpson and Jones (2014), who extended 530 

the precipitation data record period to 2011, reporting that the monthly mean record 531 

revealed a significant increasing trend only in Scotland, and a decreasing trend in 532 

England and Wales, though both are within the bounds of natural variability.  533 

2.3.2. UK daily extreme precipitation  534 

Different studies have attempted to identify, describe and characterise extreme 535 

precipitation events in the UK using various methods and techniques (e.g. Fowler and 536 

Kilsby, 2003b; Maraun et al., 2008; Fowler and Wilby, 2010; Burt and Ferranti, 2012; 537 

Simpson and Jones, 2014). The studies agree on significant seasonal behaviour in the 538 

trends of extreme precipitation events in recent decades, with a noticeable spatial 539 

variation (Fowler and Kilsby, 2003a; Jones et al., 2014; Simpson and Jones, 2014). 540 

The UKCP18 reported an increase about 17% in the total precipitation from extremely 541 

wet days in the last decade compared to the 1961-1990 period, especially in northern 542 

regions (i.e. Scotland), while a non-significant increase occurred in southern regions 543 

(Lowe et al., 2018). The increases in extremes is likely to result in increased flooding 544 

(Fowler and Wilby, 2010; Westra et al., 2014). Trends in UK daily extreme precipitation 545 

in each season will be discussed and presented in this section. 546 

 Winter (Dec-Jan-Feb) 547 

Generally speaking, the analysis of winter daily extremes has used different indices to 548 

characterise trends in precipitation such as the annual maxima precipitation 549 

accumulation, multi-daily precipitation extremes, 90th-, 95th-, and 99th- percentile, 550 

indicated a significant increase in winter precipitation intensity trends.  551 

Simpson and Jones (2014), extracted daily precipitation data from the Met Office 552 

Hadley Centre 5km gridded dataset extending from 1931 to 2011. Using the HadUKP 553 

regions (Alexander and Jones, 2000), they adopted different indices for each season 554 

such as, the 50th, 90th, 99th percentiles, maximum 5-day precipitation total and the 555 

consecutive dry day index (longest number of consecutive days with less than 1 mm 556 

precipitation) to evaluate extreme precipitations trends. The results showed an 557 
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increase in trends in daily extremes in all UK regions and for all indices, especially, in 558 

the Scottish and northern regions.  559 

Similarly, Jones et al. (2013), who extended the Fowler and Kilsby (2003b) extreme 560 

precipitation analysis, and used 223 gauges covering the UK, reported a significant 561 

increase in the intensity of the 1-day extremes in all regions with an inter-decadal 562 

behaviour. Furthermore, long duration events (5- and 10 days) showed an increasing 563 

trend in northern parts of the UK. In addition, Fowler and Kilsby (2003b) who studied 564 

204 rain gauges using the regionalization method and HadUKP regions, reported that 565 

most regions showed a significant increase in the daily and multi-daily (2-, 5-, 10 day) 566 

extreme precipitation intensity, especially in Scotland, though some regions in England 567 

only showed a slight increase.  568 

Burt and Ferranti (2012), who used precipitation data between 1961 and 2006, adopted 569 

the analysis method used by Osborn et al. (2000) and Maraun et al. (2008), studying 570 

percentiles of extreme precipitation events across regions using different indices, and 571 

focusing on the top category of each gauge, contributing 10% of the total precipitation. 572 

They also analysed the daily total that is equalled or exceeded on 0.25% of all days (1 573 

in 400 years), the results agreeing with the earlier results of Osborn et al. (2000) and 574 

Maraun et al. (2008), indicating extreme precipitation intensity has increased 575 

significantly, especially in northern and western parts of the UK. 576 

 Finally, Brown et al. (2008) analysing daily precipitation data for 1958 to 2004 reported 577 

that return level estimates for 1-day extremes show wetter winters with higher intensity, 578 

yet less frequent extreme events, especially in the west of the UK. 579 

 Spring (March-April-May) 580 

Extreme spring precipitation has shown fluctuating results. Simpson and Jones (2014), 581 

used a range of indices to identify upward trends, especially in Scotland, though few 582 

of these were statistically significant. Jones et al. (2013) reported similar results, with 583 

the regional median seasonal maxima for the spring between 1961 and 2009 showing 584 

an increase across most UK regions, though the results are significant in northern 585 

regions only. They attributed the increasing trend in these regions to the exceptionally 586 

heavy long duration events which dominanted the 1991-2000 decade. Furthermore, 587 

eastern regions in the UK had a “marginal increase” in the 1-day precipitation 10 year 588 

return period totals, while varying trends were observed at longer return periods (25 589 



19 
 

and 50 years). In addition, the most significant return estimate increases were 590 

observed for long duration accumulations (5- and 10-days).  591 

Maraun et al. (2008) reported positive trends and a higher contribution from extreme 592 

precipitation events to the total precipitation in Scotland, North Ireland, and Southwest 593 

England, while, other regions displayed either little or marginal negative trends. These 594 

results agree with Osborn et al. (2000), who observed high spatial variability in the 595 

results with an increasing contribution of heavy precipitation events to total spring 596 

precipitation in Scotland and central and eastern England, while the opposite was 597 

observed in Wales, North and Southwest England.  598 

Finally, Fowler and Kilsby (2003a) found that the greatest changes and the most 599 

regionally varying trends in HadUKP regions (Alexander and Jones, 2000) occurred in 600 

spring and autumn, in agreement with Osborn et al. (2000), who reported an increasing 601 

contribution of heavy precipitation to total precipitation in Scotland and central and 602 

eastern England, while the opposite occurred in Wales, North and Southwestern 603 

England.  604 

 Summer (June-July-August) 605 

Studies that considered summer precipitation trends have consistently identified 606 

decreasing trends in most UK regions, especially the southern part of the UK. Simpson 607 

and Jones (2014) observed that extreme summer precipitation intensity trends 608 

declined (not statistically significant) across most UK regions for daily extremes, except 609 

in eastern England. 610 

The findings of Jones et al. (2013), using precipitation data between 1961 and 2009, 611 

were in line with those of Fowler and Kilsby (2003b) and reported significant decrease 612 

in estimated summer extreme precipitation return levels and median seasonal 613 

maximum event , especially for 1-day events in southern regions. In addition, Jones et 614 

al. (2013) and Burt and Ferranti (2012) agreed that the percentage contribution of the 615 

heaviest precipitation to total summer amount has decreased.  616 

Maraun et al. (2008) and Osborn et al. (2000) reported that UK summer precipitation 617 

intensity time series shows an inter-annual behaviour, which was evidenced by a 618 

distinct maximum in the late 1960s followed by a downward and varying behaviour. 619 
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 Autumn (September-October-November) 620 

Spatially and temporally varying trends have been identified in autumn extreme 621 

precipitation. Recently, Tye et al. (2016) simulated the spatial and temporal patterns of 622 

extreme daily precipitation occurrence using a generalized additive model, and 623 

reported that autumn extreme daily precipitation has a higher likelihood across the UK 624 

than in the previous century. Moreover, autumn extreme daily precipitation events are 625 

mostly associated with a higher probability of occurrence during either early autumn in 626 

the north and west, or later in the season in the south and east(Tye et al., 2016).  627 

Simpson and Jones (2014) observed that trends in autumn 1-day extreme precipitation 628 

over the past century were weak and showed mixed signals. On the other hand, the 629 

authors agreed with previous results in which a positive trend was observed in the 630 

intensity during autumn multi-day (5- and 10-days) extreme precipitation in several 631 

regions, especially Scotland (Fowler and Kilsby, 2003a; Maraun et al., 2008; Jones et 632 

al., 2013; Jones et al., 2014). These trends were though statistically insignificant in 633 

most regions, with no clear evidence to discern the trends from naturally short-term 634 

variability. 635 

Furthermore, Maraun et al. (2008) confirmed earlier results by Osborn et al. (2000), 636 

and reported spatially varying results, where a significant rise in the contribution of 637 

autumn heavy precipitation events to total precipitation across the UK was identified, 638 

with the exception of Northern Ireland and Northwest England, which showed 639 

insignificant decreasing contribution trends.  640 

Allan et al. (2009) also found that autumn trends were within the limits of natural and 641 

decadal variability and thus, in the absence of definitive evidence contrary to that 642 

reviewed from the literature, it may be assumed that no long-term trend can be 643 

identified during autumn. 644 

2.3.3. UK sub-daily precipitation 645 

As discussed earlier, long-term sub-daily data observations are scarce in both: globally 646 

and in the UK. Therefore, climatological analysis of sub-daily (including hourly) UK 647 

extremes are limited in the literature (Westra et al., 2014; Blenkinsop et al., 2018; 648 

Kendon et al., 2018). Extreme short precipitation is the major source for pluvial 649 

flooding, which is expected to increase under different climate change scenarios, and 650 

add more challenges to adaptation plans (Murray and Ebi, 2012). Hand et al. (2004) 651 

analysing 50 UK precipitation events identified as extreme by the Flood Studies Report 652 
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(NERC, 1975) showed that among the investigated events, all those of less than 5 hr 653 

duration were convective, which indicates the importance of characterising short 654 

intense precipitation.  655 

The Flood Estimation Handbook (FEH) provides UK-wide estimates of annual 656 

maximum median (RMed) precipitation for hourly and daily durations (1h up to 8 days), 657 

and is used to produce design precipitation estimates (Faulkner, 1999). However, the 658 

AMAX gauges data average record length is less than 23 years (22.7 years), while 659 

some gauges have a record length of 2 years only, and further data is needed to assure 660 

reliable estimates (Kjeldsen et al., 2008). Furthermore, Dale et al. (2017), using a 661 

climate analogue approach and a very high-resolution (1.5 km) climate model, reported 662 

that new hourly precipitation projections are higher than existing UK climate change 663 

allowances for intense precipitation, while flood volume and pollution events are 664 

expected to increase in the future. Therefore, characterising hourly extremes in the UK 665 

is essential to update the precipitation estimates, design guidelines, and to implement 666 

adaptation plans.  667 

Blenkinsop et al. (2017) reported that when investigating hourly precipitation totals in 668 

the UK, 1-, 3-, and 6 hour totals show a similar spatial intensity behaviour, where 669 

precipitation is more intense to the west of the UK. Moreover, these short duration 670 

totals are mainly a function of local scale events, while events of periods longer than 671 

12 hours are usually mediated by synoptic scale features. Blenkinsop and Fowler 672 

(2013) also drew attention to the importance of assessing hourly precipitation events 673 

using different approaches such as seasonal maxima and POT seasonal data to 674 

ensure having reliable results.  675 

Thus, Blenkinsop et al. (2017) produced precipitation dataset, which were collated from 676 

precipitation gauges spanning across the UK between 1949 and 2011, and subjected 677 

to a series of strict quality-control (QC) procedures to identify potentially suspect 678 

values, and assure having a reliable dataset. Moreover, Lewis et al. (2018) extended 679 

the work up to 2014 and developed a sub-daily gridded dataset. 680 

Blenkinsop et al. (2017) investigated hourly precipitation extremes in the UK using the 681 

annual maxima, and reported that during summer, southern parts experience the 682 

greatest intensity and frequency of hourly precipitation, while the diurnal cycle peaks 683 

in late afternoon to early evening. This is indicative of the generating mechanism of 684 

extremes during summer, where sub-daily events are generated with a significant 685 
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contribution of convection occurring due to the relatively high temperatures, in contrast 686 

with extremes occurring at other times of the year through other mechanisms (e.g. 687 

frontal or orographic precipitation). 688 

Recently, Xiao et al. (2018), who analysed mean hourly precipitation intensities 689 

collected from 90 stations in the UK for the period 1998 to 2015 to characterise UK 690 

hourly precipitation, reported that UK precipitation frequency and intensity peaks in the 691 

early morning and the late afternoon respectively. A noticeable relationship between 692 

the peak time and both the location and the duration of the precipitation event was 693 

observed, with most of the long duration events (i.e. lasting > 6h) occurring in the early 694 

morning and along the western coast, and short precipitation events (i.e. lasting < 6 695 

hr) occurring in the late afternoon. They also reported noticeable spatial variation in 696 

frequency especially during summer and spring, which is consistent with Blenkinsop et 697 

al. (2017) who used hourly extremes, though a larger dataset was used.  698 

2.3.4. Future Projections 699 

Climate model projections show an increase in precipitation frequency and intensity 700 

over the northern regions of the hemisphere and northern Europe, which highlights the 701 

potential related hazards such as increasing flooding and the need of reliable future 702 

estimates (Hartmann et al., 2013). 703 

In the UK, daily and multi-daily extremes have been studied and simulated using 704 

climate models, where projections have shown that the frequency of extreme 705 

precipitation events are projected to increase during winter, whereas, in summer less 706 

intense extreme precipitation is likely to occur (Fowler and Ekström, 2009; Murphy et 707 

al., 2009; Fowler and Wilby, 2010). The recently released UKCP18 (Lowe et al., 2018) 708 

projections indicate reductions in summer precipitation intensity trends, especially over 709 

England and Wales, while a gradual increase is projected in winter. Climate model 710 

projections show broad agreement with observational studies (Osborn et al., 2000; 711 

Burt and Ferranti, 2012; Simpson and Jones, 2014), though daily and multi-daily 712 

extremes are well simulated by regional climate models in all seasons except in 713 

summer (Lean et al., 2008; Hanel et al., 2009; Chan et al., 2013). 714 

However, to date few studies have examined projections of changes in sub-daily 715 

precipitation extremes because of the inability of coarse-resolution dynamical models 716 

to reliably simulate sub-daily precipitation and in particular extremes (Chan et al., 717 

2018b; Kendon et al., 2018). 718 
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Kendon et al. (2014) investigated hourly extreme precipitation with climate change in 719 

the UK using a high resolution model, and reported that the model simulations indicate 720 

an increase in hourly extremes intensity in winter, while a significantly intensification 721 

and increasing number of extreme events in summer leading to flash floodings. 722 

Recently, Kendon et al. (2018), using the 1.5 km climate model to assess southern UK 723 

region, confirmed the projected intensification, and projected hourly extremes would 724 

intensify 5-10 years and decades earlier than daily extremes in winter and summer 725 

seasons respectively. Therefore, reliable observational and statistical studies are 726 

required to improve future simulations and enhance our return estimates and 727 

hydrological design guidelines. 728 

2.4.  Extreme precipitation related climatic variables 729 

Hydrological and climatological studies have constantly indicated a strong relation 730 

between the extreme precipitation and various climatic variables. The studies 731 

emphasised on the climate variability and extreme precipitation caused by the oceanic-732 

atmospheric across the UK. Thus, this section will present the associated climatic 733 

circulation with extreme precipitation in the UK.  734 

2.4.1. Atmospheric Circulation 735 

European climate is highly variable and affected by wide range of large-scale 736 

circulations, which are produced by atmospheric and oceanic conditions. The impact 737 

of these large circulations is obvious in Europe due to its location in mid and high-738 

latitudes, bounded by the North Atlantic and Arctic Oceans (Jones and Conway, 1997; 739 

Hurrell and Deser, 2010; Woollings, 2010). These large-scale circulations affect winds, 740 

precipitation and temperature in Europe.  741 

The uneven solar heating of the planet causes differences of atmospheric pressure 742 

which controls the movement of airflow (Woollings, 2010). In Europe, the irregular 743 

fluctuation of atmospheric pressure over the North Atlantic Ocean has a strong effect 744 

on the atmospheric circulation pattern especially over Western Europe and it is 745 

considered as the dominant mode of northern hemisphere atmospheric variability 746 

(Scaife et al., 2008; Hurrell and Deser, 2010; Woollings, 2010). This fluctuation of 747 

atmospheric pressure called the North Atlantic Oscillation (NAO), is characterised by 748 

the pressure difference between high pressure centred over the Azores islands and 749 

low pressure centred over Iceland (Hurrell and Deser, 2010). The NAO has two phases 750 

representing the pressure gradient between the Azores and Iceland, where the positive 751 

http://www.britannica.com/science/atmospheric-pressure
http://www.britannica.com/place/Atlantic-Ocean
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phase denotes strong and higher than usual pressure difference, and the negative 752 

phase denotes weak and lower than usual pressure difference (Osborn et al., 1999).  753 

This atmospheric pressure gradient between the two locations (i.e. Azores islands and 754 

Iceland) controls the westerly winds, which flow from North America towards Europe, 755 

particularly, during winter (Jones and Conway, 1997; Trenberth et al., 2007). The 756 

westerly winds control the transport of heat and moisture, which in turn have impacts 757 

on both temperature and precipitation over western Europe (Uvo, 2003). 758 

During the positive NAO mode, the westerly winds become stronger and convey more 759 

moist air over northern Europe. This contributes to a rise in temperature and 760 

precipitation over northern parts of Europe and the opposite over southern parts 761 

(Guerreiro et al., 2014). Conversely, the negative NAO mode creates weaker westerly 762 

winds, consequently, the temperature decreases along with precipitation over northern 763 

Europe; with the opposite over southern Europe.  764 

In the UK, precipitation tends to be inversely correlated with atmospheric pressure, and 765 

highly influenced by the NAO phase, therefore the NAO index has been used to study 766 

UK weather (Murphy and Washington, 2001). Osborn et al. (2000) reported that during 767 

UK winter, the positive NAO phase generates strong westerly winds, leading to more 768 

intense and frequent precipitation events, especially in west and north parts of the UK. 769 

Furthermore, observed increases in the total amount of precipitation and the number 770 

of wet days are associated with a positive NAO (Osborn et al., 2000). 771 

In the previous century, the NAO showed significant variability. During the first four 772 

decades (1900-1940), the NAO showed a strong positive and increasing trend, which 773 

was followed by a downward trend for the period between 1940 and 1970, and an 774 

increasing trend from 1970 until the end of the century. This increasing trend in recent 775 

decades might explain the observed increasing precipitation and intensity in northern 776 

and western parts of the UK (Gillett, 2005; Simpson and Jones, 2014). This variability 777 

in the NAO has been attributed to different variables and processes. Osborn (2004) 778 

claimed that this upward trend is associated with a stratospheric cooling and deeper 779 

polar vortex. However, the IPCC (2007) suggested that NAO decadal variability might 780 

be due to extratropical ocean influences, land surface forcing and other external 781 

factors. Yet, no solid scientific agreement or explanation for NAO variability during the 782 

last century has been established (Woollings, 2010).  783 
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Recently, Brown (2018) reported that positive NAO would reduce the extreme 784 

precipitation during spring and autumn, however, increasing the likelihood during 785 

winter. Positive NAO phase during winter would increase both: intensity and frequency 786 

of extremes, which is similar to the NAO driven changes in extra‐tropical cyclones 787 

Alternatively, other studies have found that in the UK, airflow strength, direction and 788 

vorticity may be used as covariates to represent atmospheric circulation (Jenkinson 789 

and Collison, 1977; Jones et al., 1993; Maraun et al., 2010a). Airflow strength 790 

represents the air mass speed over a specific area and it is highly likely to be related 791 

to the NAO, while airflow direction signifies its source (Marshall et al., 2001). Moreover, 792 

the airflow vorticity indicates whether a cyclonic or an anticyclonic airflow is dominant. 793 

Maraun et al. (2010a) reported that for the western coast of the UK, especially in 794 

Scotland, using the airflow strength only as a covariate would provide a better 795 

prediction for the 90% quantile precipitation compared to the base model. These 796 

results are consistent with the previous results (Osborn et al., 2000) in which a 797 

significant relation between the NAO phase and precipitation in the western part of the 798 

UK was found.  799 

Maraun et al. (2010a) reported that airflow direction is a crucial covariate in predicting 800 

precipitation in the UK except in Scotland and the western coast, while airflow vorticity 801 

is a better predictor in Scotland and the northern parts of the UK. Conway et al. (1996), 802 

using the airflow indices (i.e. strength, direction and vorticity) in GCMs, found that 803 

vorticity has a strong influence on the probability of precipitation and the mean wet day 804 

amount in all regions of the UK, especially in winter. On the other hand, the influence 805 

of flow strength and the direction indices is weaker than the vorticity, and is regionally 806 

dependent. These results were confirmed by Osborn et al. (1999) who found that 807 

vorticity has a higher correlation with the precipitation amount compared to other 808 

indices. However, the studies agreed that airflow indices predict the wet day probability 809 

more precisely than the mean wet day amount (Conway et al., 1996; Osborn et al., 810 

1999).  811 

2.4.2. Oceanic circulation  812 

Oceanic circulation has a significant Impact on our climate and weather globally. It has 813 

a key role in transferring heat, water mass movement, cycling and storage of chemical 814 

species, and nutrient content of the oceans (Kuhlbrodt et al., 2007). The oceanic 815 

circulation is a result of the combined oceanic current that moves the seawater in the 816 
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oceans, forming a global conveyer belt which moves due to winds, heat and density 817 

difference (Trenberth and Caron, 2001). In the mid to high-latitude, the Atlantic 818 

Meridional Overturning Circulation (AMOC) is the dominant current which affects the 819 

Atlantic Ocean and the climate of the northern and western countries in Europe.  820 

The Atlantic Meridional Overturning Circulation (AMOC) conveys the salty and warm 821 

water in its upper layer toward the northern parts of the Atlantic ocean while colder 822 

water is transferred to the southern parts of the Atlantic by deep water layers (U.S. 823 

Geological Survey, 2012). This movement of warm water toward the northern parts of 824 

the Atlantic Ocean brings heat (up to 105W) from the tropics and southern hemisphere 825 

toward the North Atlantic, which maintains the mild climate in northwestern Europe 826 

(Trenberth and Caron, 2001; Kuhlbrodt et al., 2007).  827 

In recent decades, there has been a concern about the AMOC response to climate 828 

change and its impacts. This concern is raised due to the melting of the Greenland ice 829 

sheet and the increasing precipitation events at high-latitudes which cause a 830 

weakening of the AMOC (Allen and Ingram, 2002). A reduction of the AMOC could 831 

affect the El Nino Southern Oscillation (ENSO), the position of the intertropical 832 

convergence zone, Atlantic Ocean fauna and flora, Atlantic ocean sea surface 833 

temperature, and sea level, resulting in more severe winters in north and western 834 

Europe (Trenberth and Caron, 2001; Vellinga and Wood, 2002; Levermann et al., 835 

2005; Schmittner, 2005; Timmermann et al., 2005). In contrast, other researchers 836 

reported that a weakening of the AMOC could counterbalance the effect of the globally 837 

increasing temperature (Meehl et al., 2007).  838 

However, studies agree that despite uncertainties in the AMOC behaviour, it is unlikely 839 

for the AMOC to have unforeseen significant weakening or a complete shutdown, and 840 

an abrupt change or shutdown of the AMOC would need a long duration to take place, 841 

while the expected maximum reduction is 30% (Meehl et al., 2007; Clark et al., 2008). 842 

The occurrence of such an event would have a significantly severe effect on north 843 

western Europe winter, temperature levels and precipitation events, and it is highly 844 

unlikely to happen in the 21st century (Meehl et al., 2007; Clark et al., 2008). 845 

2.4.3. Temperature 846 

The global mean temperature has increased significantly in the last century mostly due 847 

to anthropogenic activities which increased the concentration of greenhouse gases in 848 

the atmosphere (IPCC, 2013). Based on different climate models, using different 849 
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emission scenarios, this increase is projected to escalate during the current century to 850 

between 2oC to 4oC (IPCC, 2012). The increase in mean global temperature would be 851 

accompanied by changes in atmospheric and oceanic circulation, which in turn would 852 

impact on precipitation globally, while substantial changes in the mid and high-latitude 853 

precipitation will be observed (Collins et al., 2013; IPCC, 2013). 854 

The Clausius-Clapeyron (C-C) equation describes the thermodynamic response of the 855 

atmosphere to a change in temperature, indicating that under constant relative 856 

humidity an increase of the moisture holding capacity of the atmosphere at a rate of 6-857 

7% per 1°C increase in temperature would occur, leading to a corresponding increase 858 

in precipitation (Trenberth et al., 2003). However, increases in precipitation in different 859 

places globally might not follow the C-C equation due to two main reasons: the 860 

nonlinearity in the C-C equation, and the dependency of precipitation on other factors 861 

such as the relative humidity, the atmospheric circulation, and the ability of the 862 

troposphere to radiate away latent heat released by precipitation (Allen and Ingram, 863 

2002).  864 

Furthermore, different models have suggested that a latitudinal dependence is 865 

expected in the increasing precipitation, with a higher increase expected closer to the 866 

higher-latitudes (Trenberth, 2011; Utsumi et al., 2011; O’Gorman, 2015). Further, the 867 

mid-latitudes precipitation increases would be the most consistent with the C-C 868 

equation, while low-latitudes and high-latitudes are suggested to have an increase of 869 

3-4%/°C and 7%/°C consecutively (Allen and Ingram, 2002; Huntington, 2006; Pall et 870 

al., 2007). Recently, Westra et al. (2014) have shown that an increase at a rate 871 

between 5.9%-7.7%/°C in the median intensity of the annual global maximum has been 872 

observed. 873 

Observational studies, which have investigated daily precipitation events, indicated an 874 

increase following the C-C relation. Liu and Allan (2012) using global satellite 875 

observations reported a precipitation increase of 6%/oC. Haerter et al. (2010), 876 

investigated daily extreme precipitation in Germany and its relation to other variables 877 

using the C-C equation, and reported that there is an increasing trend, though less 878 

than expected according to the C-C relation. 879 

On the other hand, sub-daily extreme precipitation events have shown markedly 880 

varying results. Berg and Haerter (2013) reported that hourly precipitation intensity in 881 

Germany has increased at a rate higher than the C-C relation for convective 882 
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precipitation events only, which emphasize the impact of seasonal dependence as 883 

convective precipitation primarily occurs in summer. In the Netherlands, western 884 

Europe and Hong Kong, the precipitation relationship with temperature was double the 885 

C-C rate for the temperature range between 12oC to 20oC (Lenderink and Van 886 

Meijgaard, 2008; Lenderink et al., 2011). Hardwick Jones et al. (2010) found that the 887 

rise on the hourly precipitation intensity rate exceeds the C-C relation in Australia for 888 

the for temperatures between 20oC to 26oC. Contrary, hourly extreme precipitation 889 

intensity in the UK, showed an increase following the C-C scaling rate, with marginal 890 

seasonal differences (Blenkinsop et al., 2015; Chan et al., 2016).  891 

2.4.4. Atmospheric moisture  892 

Atmospheric moisture availability, which has a significant relation with temperature and 893 

evapotranspiration levels, plays a crucial role in determining precipitation occurrence 894 

and intensity (Barry and Chorley, 2009). The moisture cycle begins with oceans, in 895 

which the water vapour enters the atmosphere by evaporation from the oceans and 896 

returns to the surface as a precipitation through the condensation process (Barry and 897 

Chorley, 2009). This moisture is responsible for 60% of global terrestrial precipitation 898 

(Trenberth et al., 2007; Gimeno et al., 2012). Recent decades showed an increase in 899 

the oceanic evaporation due to climate change, which lead to the occurrence of 900 

extreme events including, heavy precipitation, floods, and droughts (Galarneau et al., 901 

2010; Knippertz and Wernli, 2010; Chang et al., 2012; Xu et al., 2015).  902 

The literature suggests that the change in the atmospheric moisture capacity might 903 

affect the nature of precipitation events, causing increased occurrence of heavy 904 

precipitation, with no change or even a decrease in mean precipitation (Allen and 905 

Ingram, 2002; Trenberth et al., 2003; Frei et al., 2006). In recent decades, over the 906 

northern hemisphere regions, human anthropogenic activities were the main reason 907 

for the increasing atmospheric moisture capacity (Gabriele et al., 2015), where an 908 

increase at a rate consistent with the C-C relation has been observed (Santer et al., 909 

2007; Durre et al., 2009; Trenberth, 2011). This is consistent with observations of 910 

change over the ocean (e.g. Trenberth and Shea, 2005; Chung et al., 2014), land (e.g. 911 

Willett et al., 2010), and future projections (e.g. Allen and Ingram, 2002). Furthermore, 912 

studies have linked the change in the atmospheric moisture capacity over oceans to 913 

the C-C relationship, while the increases are somewhat less over land, especially 914 

where water availability is limited (Allen and Ingram, 2002; Trenberth et al., 2003).  915 
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Trenberth et al. (2007) reported that an increase in cloud cover and atmospheric 916 

moisture over oceanic areas since 1970 has been observed, which lead to an 917 

increasing frequency of intense precipitation events. These results are consistent with 918 

(Labat et al., 2004), who used reanalyses of the world continental runoff from major 919 

rivers between 1920 and 1995, where it was found that a more intense hydrological 920 

cycle of evapotranspiration and intense precipitation globally has occurred. This 921 

increase in the moisture capacity could affect both the greenhouse effect and the 922 

hydrological cycle by providing positive feedback to the climate change and more 923 

atmospheric moisture which would be condensed and turned into heavy precipitation 924 

(Huntington, 2006; Trenberth, 2011; Gabriele et al., 2015).  925 

2.5.  Summary 926 

Intense precipitation has increased noticeably in the last few decades both globally 927 

and in the UK, leading to economic, infrastructure, urbanisation, and health challenges. 928 

Different plans and design guidelines are required to adapt to extreme precipitation, 929 

yet, further analysis is required to characterise and simulate these extremes. In the 930 

UK, studies have analysed extremes on different time scales (i.e. multi-daily, daily, and 931 

sub-daily) using both observational and modelling analyses.  932 

Daily and multi-daily extreme precipitation have been studied thoroughly in the UK 933 

using the advantage of having a rich archive of rain gauge data. Observational studies, 934 

using different metrics and indices, have agreed that precipitation trends show wetter 935 

winters and drier summers. These are accompanied by trends indicating a higher 936 

contribution of extremes to the total seasonal precipitation, which indicates the 937 

importance of characterising extremes in the UK (Jones and Conway, 1997; Alexander 938 

and Jones, 2000; Fowler and Kilsby, 2003b; Maraun et al., 2008; Jones et al., 2013). 939 

Furthermore, autumn and spring showed a spatial and temporal varying trend through 940 

the last few decades, though no significant trends were observed in these seasons 941 

(Alexander and Jones, 2000; Simpson and Jones, 2014). These results are consistent 942 

with projected future changes, and indicate that general circulation models (GCM) and 943 

regional climate models (RCM) can simulate daily and multi-daily precipitation reliably 944 

(Fowler and Wilby, 2010; Maraun et al., 2010b).  945 

Relatively few studies have characterised sub-daily extremes in the UK due to the 946 

limited data availability, though they have a strong association with flash flooding, 947 

especially in urbanised areas and fast responding catchments (Dale et al., 2017; Prein 948 
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et al., 2017). Observations of UK hourly extremes show spatial and seasonal variation, 949 

with a higher frequency in summer, especially in southern regions (Blenkinsop et al., 950 

2017). On the other hand, modelling studies agreed that using RCMs to simulate hourly 951 

extremes is computationally expensive, while return estimates don’t agree with 952 

observational studies, especially in summer (Chan et al., 2018a; Kendon et al., 2018). 953 

Thus, convective permitting models (CPMs) are used to simulate sub-daily extremes 954 

with high resolution, due to its potential of providing dynamical representation of 955 

convective conditions. Studies indicated that CPM simulates the sub-daily extremes 956 

better than standard climate models, and might be used to provide improved 957 

precipitation projections (Prein et al., 2017; Blenkinsop et al., 2018; Chan et al., 2018a; 958 

Kendon et al., 2018). Therefore, further observational studies are of importance to 959 

validate and calibrate modelling performance (Blenkinsop et al., 2018).  960 

Observational and modelling studies in the UK agree that hourly extremes are mostly 961 

generated by convective mechanisms, while daily extremes might be caused by 962 

different precipitation generating mechanisms (Blenkinsop et al., 2017; Chan et al., 963 

2017). However, a noticeable relation with large-scale circulation systems such as 964 

atmospheric and oceanic circulations including the NAO, and with temperature, have 965 

been observed for both hourly and daily extremes (Jones et al., 1997; Blenkinsop et 966 

al., 2015; Hofstätter et al., 2018), therefore, quantifying their relationship would 967 

enhance our future projections and simulation.  968 

Currently, the flood estimation handbook (FEH) (Faulkner, 1999), provides design 969 

growth curves to estimate hourly precipitation, yet, the data used has short record 970 

length. Therefore, statistical regional analysis for hourly extremes, where extreme 971 

regions are delineated based on climatological characteristics is required to enhance 972 

estimations of sub-daily precipitation, especially for ungauged locations. Regional 973 

analysis pools climatologically similar data, increases data availability, and produces 974 

statistically homogeneous and reliable estimates. Furthermore, most existing studies, 975 

which investigated return estimates, growth curves, and precipitation changes for 976 

extremes have used on-site analysis rather than regional analysis approach.  977 

 978 

 979 

 980 
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Chapter 3. regional frequency analysis of UK hourly and multi-981 

hourly extreme precipitation 982 

 The material in this chapter has been published in the following journal article:  983 
 984 

Darwish, M., Fowler, H.J., Blenkinsop, S. and Tye, M.R. (2018) 'A regional frequency 985 

analysis of UK sub-daily extreme precipitation and assessment of their seasonality', 986 

International Journal of Climatology, 38(13), pp. 4758–4776. doi.org/10.1002/joc.5694 987 

 988 

Floods related to extreme precipitation events, especially intense, short duration 989 

precipitation, may cause significant damage in urbanised areas, including transport 990 

infrastructure, electricity networks, and property. These events are expected to 991 

increase in frequency with climate change but their characteristics, at either hourly or 992 

multi-hourly timescales, have been little studied compared with daily timescales due to 993 

short and poor quality data records. A central objective of this research is to quantify 994 

hourly and multi-hourly extreme precipitation, its seasonality, and diurnal cycle using 995 

annual maximum (AMAX) precipitation data. 996 

In this chapter, AMAX hourly and multi-hourly (3-, 6-, 12-, and 24h) precipitation 997 

accumulations in the UK are investigated using a recently available, quality controlled 998 

hourly precipitation dataset for the period 1992-2014. This includes the seasonality and 999 

diurnal cycle, and the use of the regional frequency analysis (RFA) approach with L-1000 

moments to produce at-site return level estimates. Existing extreme precipitation 1001 

regions are used to provide regional-scale return levels. The chapter concludes with a 1002 

new, subjectively defined regionalisation for hourly extremes based on the results 1003 

presented. 1004 

Moreover, the research also shows that the existing UK extreme precipitation regions 1005 

may not appropriately reflect regional differences in sub-daily extreme precipitation 1006 

behaviour 1007 

3.1.  Introduction 1008 

An increased understanding of extreme weather events is essential given that climate 1009 

change will likely lead to an increase in the occurrence and magnitude of some types 1010 

of events. The IPCC Special Report on Extremes IPCC (2012) stated that the 1011 

frequency and intensity of extreme weather events have increased over large parts of 1012 
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the globe and extreme precipitation events on daily timescales are observed to have 1013 

increased in frequency and intensity in some parts of the world (Alexander et al., 2006; 1014 

Alexander, 2016; Donat et al., 2017). This is consistent with research by Min et al. 1015 

(2011) who reported increasing trends in the annual maxima of daily precipitation for 1016 

65% of the data-covered land area over the period 1951-1999. Moreover, Arnell and 1017 

Gosling (2016) reported that the frequency of floods with a 1% annual exceedance 1018 

probability (100 year return period) will be doubled across 40% of the globe by 2050. 1019 

According to Tye (2015) and Arnell and Gosling (2016), such increases will affect man-1020 

made infrastructure mostly through increases in surface water runoff, leading to 1021 

flooding and other destructive events. 1022 

In the UK, several studies have reported significant increasing trends in daily and multi-1023 

day extreme precipitation events (Osborn et al., 2000; Fowler and Kilsby, 2003a; 1024 

Maraun et al., 2008; Simpson and Jones, 2014). Osborn et al. (2000) reported an 1025 

increased contribution of heavy precipitation events to total precipitation, especially in 1026 

winter. Moreover, Fowler and Kilsby (2003b) reported increasing intensity of heavy 1027 

multi-day (5 and 10 day) precipitation events in northern and western parts of the UK, 1028 

particularly in autumn and winter. Maraun et al. (2008) confirmed an increasing 1029 

contribution of daily heavy precipitation events in the UK and identified an increasing 1030 

trend in the intensity of winter daily events in northern and western parts of the UK, 1031 

and a negative trend in summer intensities in most UK regions. Recently, Jones et al. 1032 

(2013) confirmed an increasing frequency of extreme daily precipitation events in the 1033 

UK during spring, autumn, and winter, contrary to a recognised a decrease in summer. 1034 

Moreover, Tye (2015) reported a statistically significant increase in the probability of 1035 

multi-day extreme precipitation events during the late summer and autumn, when most 1036 

UK daily precipitation extremes occur. Simpson and Jones (2014) analysed extreme 1037 

precipitation events and found a similar, statistically significant, pattern of wetter 1038 

winters, and drier summers in the UK, though they reported a recent succession of wet 1039 

summers and dry winters. 1040 

Although daily and multi-day extreme precipitation events have been studied 1041 

extensively, relatively little research has analysed sub-daily precipitation due to the 1042 

scarcity of quality-controlled, long, and homogeneous observations (Westra et al., 1043 

2014; Blenkinsop et al., 2017). However, such events are important because they 1044 

produce pluvial floods which especially affect urban areas and small steep catchments, 1045 

and can be very flashy in nature (Archer et al., 2017; Archer and Fowler, 2018). The 1046 
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Stern Review (Stern, 2006) suggested that, globally and in the UK, intense 1047 

precipitation derived floods are among the costliest and most critical of climate change 1048 

impacts, leading to the loss of human life, infrastructure damage, water resource and 1049 

transportation disruption, as well as considerable damage to ecosystems. 1050 

The relationship between intense precipitation and pluvial floods suggests that both 1051 

the intensity and frequency of pluvial floods in urbanised areas will be significantly 1052 

affected by any change in extreme sub-daily precipitation events (Westra et al., 2014). 1053 

Their significance was demonstrated by the UK summer floods of 2007, where two-1054 

thirds of affected properties were inundated by pluvial flooding (Pitt, 2008), and it is 1055 

currently estimated that ~3 million properties are at risk from surface water flooding in 1056 

England (Environment Agency, 2014). There is therefore a clear need for a better 1057 

understanding of likely future changes in extreme sub-daily precipitation event 1058 

intensities to enhance adaptation potential capabilities (Westra et al., 2014). 1059 

Relatively few studies have investigated changes in observed sub-daily extreme 1060 

precipitation events around the world, but those undertaken to date have generally 1061 

indicated increasing intensities (Westra et al., 2014) albeit generally at local to regional 1062 

scales. Madsen et al. (2009) reported an intensification in Denmark extreme sub-daily 1063 

precipitation events, consistent with results from Sicily (Arnone et al., 2013), Canada 1064 

and the United States (Burn et al., 2011; Kunkel et al., 2013; Muschinski and Katz, 1065 

2013; Barbero et al., 2017) and South Africa (Roy and Rouault, 2013). Kendon et al. 1066 

(2018) provide evidence of an increase in the intensity of UK summer hourly extremes 1067 

over the last 30 years but suggest that this (and recent variability in winter trends) may 1068 

be strongly influenced by large-scale modes of variability such as the Atlantic 1069 

Meridional Oscillation (AMO) and North Atlantic Oscillation (NAO). The most extensive 1070 

analyses of sub-daily precipitation have focussed on the relationship between extreme 1071 

precipitation intensity and temperature (Lenderink and Van Meijgaard, 2008; Hardwick 1072 

Jones et al., 2010; Utsumi et al., 2011; Berg and Haerter, 2013), including for the UK 1073 

(Blenkinsop et al., 2015), known as Clausius-Clapeyron (CC) scaling. The CC 1074 

relationship explains the increased capacity of warmer air to hold moisture under 1075 

constant relative humidity; a ~6-7% increase in precipitation per 1°C increase in 1076 

temperature. A general agreement between the studies is that increasing atmospheric 1077 

temperature could increase precipitation intensities for daily and sub-daily precipitation 1078 

events, with enhanced scaling (super-CC) for the latter (Westra et al., 2014) though 1079 

this is not the case in UK observations (Blenkinsop et al., 2015). 1080 
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Recently, Blenkinsop et al. (2017) summarised the climatology of UK hourly extremes, 1081 

noting that the highest frequency and intensity of hourly extreme precipitation events 1082 

occur in summer, with most events (excluding winter) during late afternoon as might 1083 

be expected from convective precipitation. Hand et al. (2004) analysed 50 UK 1084 

precipitation events identified as extreme by the Flood Studies Report (NERC, 1975) 1085 

and reported that among the investigated events, all extreme events of less than 5 1086 

hours duration were convective; while events of up to 12 hours had at least a 1087 

convective component. In addition, Hand et al. (2004) reported that extreme 1088 

precipitation events are unlikely to occur in February, March and April, while convective 1089 

events are most likely in June, July, and August. A key point to note however is that 1090 

short duration, intense precipitation is poorly simulated by regional climate models, 1091 

typically at resolutions of 12-25km (Chan et al., 2014b; Westra et al., 2014) due to the 1092 

use of convection parameterisation schemes. Very high-resolution, convection-1093 

permitting models offer improved simulation of these events (Chan et al., 2014b; 1094 

Kendon et al., 2014; Prein et al., 2015), but are computationally demanding and have 1095 

so far been run for only limited regions (Kendon et al., 2017). This emphasises the 1096 

importance of observational-based research to enhance understanding of sub-daily 1097 

precipitation event characteristics, drivers and processes, in addition to providing the 1098 

means for climate model validation. 1099 

Most studies of sub-daily extreme precipitation so far have focused on individual sites 1100 

(Westra et al., 2014). However, in this research, we investigate the spatial and 1101 

temporal distribution of UK hourly and multi-hourly (3-, 6-, 12-, and 24h) extreme 1102 

precipitation using regions identified for daily extreme precipitation by Jones et al. 1103 

(2014). Annual maxima (AMAX) are used to examine the seasonal and diurnal cycles 1104 

of sub-daily extremes and to estimate the at-site and regional intensities of low 1105 

probability events using a regional frequency analysis (RFA) approach with L-Moments 1106 

estimation. RFA has been applied in hydrological and climatological studies in different 1107 

countries across the world (Fowler and Kilsby, 2003b; Lee and Maeng, 2003; Trefry et 1108 

al., 2005; Norbiato et al., 2007; Wallis et al., 2007) and provides advantages over at-1109 

site estimation, including the assessment of ungauged areas, reduced impact of 1110 

instrumental or human error, and therefore enhanced capacity for planning, designing, 1111 

and managing infrastructure in a changing climate (Paixao et al., 2011). 1112 

This research is the first to examine both hourly and multi-hourly AMAX precipitation 1113 

events and assess the appropriateness of the existing UK extreme precipitation 1114 
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regions (Jones et al., 2014) for sub-daily extremes. We also describe the first 1115 

application of RFA to the UK hourly precipitation dataset. The chapter is presented as 1116 

follows. In Section 3.2 we describe the datasets used in the research, then, in Section 1117 

3.3, we present the methods and statistical tools used to explore and analyse the data. 1118 

Next, the spatial and temporal distribution of UK hourly and multi-hourly AMAX are 1119 

described and return level estimates of AMAX are presented in Section 3.4. 1120 

Subsequently, the results and their implications for urban drainage design are 1121 

discussed in Section 3.5. Finally, we present our conclusions and recommendations in 1122 

Section 3.6.  1123 

3.2.  Data 1124 

This research uses an hourly precipitation dataset for the UK derived from rain gauges 1125 

spanning different periods between 1949 and 2014 (Blenkinsop et al., 2017; Lewis et 1126 

al., 2018). The dataset (up to 2011) was collected by Blenkinsop et al. (2017) from 1127 

three sources: the UK Met Office Integrated Data Archive System (MIDAS), the 1128 

Scottish Environmental Protection Agency (SEPA), and the UK Environment Agency 1129 

(EA). Blenkinsop et al. (2017) performed a series of site-specific quality control (QC) 1130 

procedures on the data to detect accumulated totals, malfunctioning gauges and 1131 

unfeasible extreme precipitation totals including a comparison with a gridded daily 1132 

precipitation dataset. This was subsequently extended to 2014 and subjected to 1133 

additional quality control checks against neighbouring gauges (Lewis et al., 2018). 1134 

Blenkinsop et al. (2017) reported that the rain gauges’ coverage increase noticeably 1135 

from the mid- 1980s, while most of the gauges started functioning in the early- to mid-1136 

1990s. Furthermore, implementing the QC procedure on the gauges reduces data 1137 

availability and capacity for a meaningful analysis (Blenkinsop et al., 2017; Lewis et 1138 

al., 2018). Previous analyses considered a gauge to be suitable for climatological 1139 

analysis and have a “complete” record if no more than 15% of hourly data are missing 1140 

in a given year/ season, and selected the data between 1992-2014 for the analysis as 1141 

a trade-off between having a long records and data availability (Blenkinsop et al., 2017; 1142 

Lewis et al., 2018).  1143 

Hence, to facilitate the comparison with other researchers, and to ensure the use of a 1144 

reliable dataset that reflect the climatology of extremes well, the same gauge selection 1145 

criteria were adopted in this research. Consequently, gauges which have more than 1146 

85% of their record complete (i.e. non-missing and data not flagged by the QC process) 1147 
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for each year in the period 1992-2014 are used in this research. In total, 197 gauges 1148 

fulfilled these criteria (Figure 1) and have been selected for further analysis. 1149 

Finally, the 14 UK daily extreme precipitation regions (Figure 1), created by Jones et 1150 

al. (2014), are used to assess the temporal and spatial characteristics of extreme 1151 

hourly and multi-hourly precipitation. Although these regions are defined from extreme 1152 

daily precipitation for the period 1961-2009, it is the only UK regional precipitation 1153 

classification based on extremes and is a reasonable first basis by which to assess 1154 

sub-daily extremes. However, we modify this slightly as the “Mid Wales” region 1155 

contained only two gauges, merging this with the “South West” to create a modified 1156 

“Mid Wales and South West” region (MSW). Both regions are located on the west coast 1157 

of the UK and are highly influenced by north-westerly frontal systems (Lapworth and 1158 

McGregor, 2008). Figure 1 shows the regions pre- and post-modification, with 1159 

subsequent analyses presented using the 13 ‘post-modification’ UK extreme 1160 

precipitation regions. 1161 

 1162 

Figure 1: Distribution of 197 hourly rain gauges (blue dots) and UK extreme 1163 

precipitation regions as defined by Jones et al (2014). Boundary and text in red denote 1164 

merged regions (MW and SW were merged to form MSW due to limited gauge data in 1165 

MW). Numbers in brackets denote the total number of gauges in each region. 1166 

 1167 
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3.3.  Methodology  1168 

3.3.1. Exploratory data analysis 1169 

Multi-hour accumulations for 3-, 6-, 12-, and 24h periods were calculated for each 1170 

gauge meeting the record completeness criterion presented in the data section. The 1171 

3-, 6-, and 12h accumulations were calculated using a rolling window, while the 24h 1172 

accumulation was calculated using both a 24h rolling window and a fixed window 1173 

starting at 09:00 to be comparable with existing analyses using daily records (e.g. 1174 

Maraun et al., 2008; Jones et al., 2014; Simpson and Jones, 2014) Analysis showed 1175 

similar results for accumulations derived using both approaches (Figure A1, Appendix 1176 

A) and so only a 24h fixed window is presented here to facilitate the comparison with 1177 

other studies. An individual 3-, 6-, 12-, and 24h accumulation was treated as missing 1178 

if at least 1, 2, 3, or 4 values respectively were absent in each accumulation window. 1179 

For multi-hourly precipitation, the n hour accumulation is obtained as the sum of the 1180 

accumulation at a given hour and the preceding n-1 hours, for example, a 3h 1181 

accumulation at 15:00 is derived from the 1h accumulated total at 13:00, 14:00, and 1182 

15:00. Annual maxima (AMAX) were then extracted for each gauge. Subsequently, the 1183 

AMAX for all gauges in each region were pooled, and regional frequency density plots 1184 

(for 1h and 3h AMAX) were constructed to show the diurnal cycle of extreme 1185 

occurrence. The 3h AMAX diurnal cycle was constructed by counting each 3h AMAX 1186 

at the end of the measuring window hour n, and fitting a smoothed diurnal profile using 1187 

a kernel density estimation. The resulting diurnal profile of AMAX in each region was 1188 

assessed for 1h and 3h accumulations only as most of the convective and intense 1189 

precipitation events in the UK have a short duration (Hand et al., 2004), 1190 

notwithstanding the trivial value of deriving the diurnal cycle for 6h and 12h 1191 

accumulations. 1192 

Multi-hour accumulations for 3-, 6-, 12-, and 24h periods were calculated for each 1193 

gauge meeting the record completeness criterion presented in the data section. The 1194 

3-, 6-, and 12h accumulations were calculated using a rolling window, while the 24h 1195 

accumulation was calculated using both a 24h rolling window and a fixed window 1196 

starting at 09:00 to be comparable with existing analyses using daily records (e.g. 1197 

Maraun et al., 2008; Jones et al., 2014; Simpson and Jones, 2014) Analysis showed 1198 

similar results for accumulations derived using both approaches (Figure A1, Appendix 1199 

A) and so only a 24h fixed window is presented here to facilitate the comparison with 1200 
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other studies. An individual 3-, 6-, 12-, and 24h accumulation was treated as missing 1201 

if at least 1, 2, 3, or 4 values respectively were absent in each accumulation window. 1202 

For multi-hourly precipitation, the n hour accumulation is obtained as the sum of the 1203 

accumulation at a given hour and the preceding n-1 hours, for example, a 3h 1204 

accumulation at 15:00 is derived from the 1h accumulated total at 13:00, 14:00, and 1205 

15:00. Annual maxima (AMAX) were then extracted for each gauge. Subsequently, the 1206 

AMAX for all gauges in each region were pooled, and regional frequency density plots 1207 

(for 1h and 3h AMAX) were constructed to show the diurnal cycle of extreme 1208 

occurrence. The 3h AMAX diurnal cycle was constructed by counting each 3h AMAX 1209 

at the end of the measuring window hour n, and fitting a smoothed diurnal profile using 1210 

a kernel density estimation. The resulting diurnal profile of AMAX in each region was 1211 

assessed for 1h and 3h accumulations only as most of the convective and intense 1212 

precipitation events in the UK have a short duration (Hand et al., 2004), 1213 

notwithstanding the trivial value of deriving the diurnal cycle for 6h and 12h 1214 

accumulations. 1215 

In contrast, the seasonality was examined for all accumulation periods, for both the 1216 

frequency and magnitude of AMAX. The AMAX seasonality for each accumulation 1217 

period was investigated using circular statistics (Reed and Robson, 1999). Circular 1218 

statistics convert the angular position of the calendar day at noon, θ, (also called Julian 1219 

day in this research, which is the number of elapsed days since the beginning of a 1220 

particular calendar year) in radians, to a vector based quantity of mean direction, �̅�, 1221 

and centroid of action, �̅�. Thus, for n events at i stations, the mean day of the year for 1222 

events, �̅�, and the concentration of the seasonal distribution, �̅�. are calculated with 1223 

event dates represented by the angle 𝜃 on a circle of unit radius, and are calculated 1224 

from the number of days since the start of the calendar year: 1225 

𝜃 = (day no. )
2𝜋

𝑛𝑜.  𝑜𝑓 𝑑𝑎𝑦𝑠 𝑖𝑛 𝑦𝑒𝑎𝑟
                                          (1) 1226 

Then the centroid of the events is determined by the coordinates: 1227 

�̅� =
1

𝑛
∑ 𝑐𝑜𝑠 (𝜃𝑖)
𝑛
𝑖=1  and �̅� =

1

𝑛
∑ 𝑠𝑖𝑛 (𝜃𝑖)
𝑛
𝑖=1                               (2) 1228 

while the values of the mean day of the year for event occurrence, 𝛳 ,̅̅̅̅  and the overall 1229 

dispersion of events (�̅�) around the mean day are calculated by: 1230 

 1231 
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�̅� =  

{
 
 

 
 tan

−1 �̅�
𝑥
𝜊
̅ ,                    𝑤ℎ𝑒𝑛 �̅�  ≥ 0,  �̅� ≥ 0

tan−1
�̅�
�̅�
𝜊
+  𝜋,                         𝑤ℎ𝑒𝑛 �̅�  < 0 

tan−1
�̅�

�̅�
+ 2𝜋,          𝑤ℎ𝑒𝑛 �̅�   ≥ 0,  �̅� ≤ 0}

 
 

 
 

                                   (3) 1232 

�̅� = √�̅�2 + �̅�2                                                       (4) 1233 

Values of �̅� closer to 1 indicate a higher concentration of occurrence around �̅�, and 1234 

therefore a stronger seasonal signal. Conversely, values of �̅� closer to 0 indicate large 1235 

dispersion and a less clear seasonal signal. 1236 

3.3.2. Extreme value theory (EVT) 1237 

The extreme value theory (EVT) statistical approach has been adopted widely in 1238 

hydrological applications to analyse and model extremes where precipitation data are 1239 

assumed to represent a random draw from an underlying probability distribution, and 1240 

characterising extreme values corresponds to defining the upper tail of the distribution 1241 

(Coles et al., 2001; Katz et al., 2002). The EVT approach fits a probability distribution 1242 

to the data, estimates the distribution parameters, and estimates the hydrological event 1243 

return levels (Davison and Huser, 2015). EVT, unlike the standard statistical 1244 

approaches which are concerned with mean data behaviour, are designed to reflect 1245 

the behaviour of rare extreme events (Coles et al., 2001).  1246 

EVT results thus provide the recurrence average of each event, which may be 1247 

expressed as annual exceedance probability (AEP), and are used in practical 1248 

applications such as drainage system design. For instance, an event with a specific 1249 

magnitude that occurs on average once every 25 years, has an annual exceedance 1250 

probability (probability of annual recurrence for a similar or greater event magnitude) 1251 

of 4% (i.e. 1/25), while the corresponding intensity of the event is referred to as the 25-1252 

year return level. However, it should be noted that the AEP is the probability of a similar 1253 

event occurrence in each year, while the occurrence of an event in any year does not 1254 

affect the occurrence probability in any subsequent year. Therefore, for the 1255 

aforementioned example (i.e. an event of magnitude X and AEP of 4%) the probability 1256 

of having an event of magnitude X or greater in each year is 4%, regardless of the 1257 

occurrence of such an event in any other year. 1258 

To determine the behaviour of extremes using EVT, general extreme value (GEV) and 1259 

general Pareto (GP) distributions have been used often for hydrological and 1260 
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climatological data. The GEV distribution usually employs the high (or low) values of a 1261 

dataset, where the datasets are defined as block maxima, while the GP distribution 1262 

employs the data over a predefined threshold (Coles et al., 2001). Generally speaking, 1263 

GEV is commonly used for large datasets, whereas, GP is used when data availability 1264 

is limited (Katz et al., 2002). For instance, You et al. (2011) employed EVT to evaluate 1265 

changes in precipitation and temperature extremes across China and their relation to 1266 

large scale circulation, while Fowler and Kilsby (2003a) investigated the implications 1267 

of changes in seasonal and annual extreme precipitation in the UK. Furthermore, 1268 

Durrans and Kirby (2004) employed EVT to analyse extreme frequencies either on-site 1269 

or regionally, while Jones et al. (2014) adopted the EVT approach to define new daily 1270 

extreme precipitation regions in the UK. Schindler et al. (2012) also used it to validate 1271 

RCM simulations over the UK.  1272 

The cumulative distribution function (CDF) for the GEV distribution F, is expressed as 1273 

follows: 1274 

𝐹 (𝑥; 𝜃) = exp {− [1 + ξ (
𝑥−𝜇

𝜎
) ]

−1
ξ⁄
}                                     (5) 1275 

where x is the event maxima value of interest and θ is the parameter set (µ, σ, ξ ) used 1276 

to specify the distribution, while the centre is given by the location (µ), the spread by 1277 

the scale (σ) and the behaviour of the upper tail by the shape (ξ ). Based on the shape 1278 

parameter, the GEV can take one of three forms: Gumbel, or light tailed, when ξ is 1279 

zero; Fréchet, or heavy tailed, if ξ is positive; and Weibull, or bounded, when ξ is 1280 

negative.  1281 

On the other hand, the cumulative distribution function (CDF) for the GP distribution F, 1282 

is expressed as follows:  1283 

                       𝐹 (𝑥; 𝜃) = 1 − [1 + ξ (
𝑥

𝜎
) ]

−1
ξ⁄
                                      (6) 1284 

where x is the event maxima value of interest and θ is the parameter set (σ, ξ) used to 1285 

specify the distribution, while the spread is given by the scale (σ) and the behaviour of 1286 

the upper tail by the shape (ξ). The two distributions are directly related through the 1287 

shape parameter (Coles et al., 2001; Katz, 2010) 1288 

 1289 
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In this chapter, the traditional stationary extreme precipitation frequency analysis 1290 

approach, where the observations are assumed to be independent and identically 1291 

distributed (i.i.d.), is adopted. Recently, Serinaldi and Kilsby (2015) reported that the 1292 

common used length of AMAX data is usually insufficient to provide reliable return 1293 

estimates for both stationarity and nonstationary cases, while using a nonstationary 1294 

model would add unavoidable uncertainties due to the unknown evolution of the 1295 

process dynamics. Serinaldi and Kilsby (2015) suggested that additional information 1296 

will be needed to reduce the nonstationary model uncertainties including hydroclimatic, 1297 

socio-economic, and historical data. Moreover, they concluded that due to the multiple 1298 

interacting factors in hydrometerological data sets, inferring non-stationarity of data 1299 

might not be easy, and stationarity should remain the default assumption. It has been 1300 

suggested that using non-stationarity should be accompanied by socio-economic, 1301 

technical, and legislation considerations (Serinaldi and Kilsby, 2015). Therefore, model 1302 

parameters (µ, σ, ξ) derived from the observed precipitation record in this chapter are 1303 

assumed to remain constant across the period of record and into the future.  1304 

3.3.3. Regional Frequency Analysis (RFA) 1305 

A regional frequency analysis (RFA) using L-Moments estimation (Hosking and Wallis, 1306 

2005) was adopted to represent and characterise hourly extreme precipitation. 1307 

According to Sarhadi and Heydarizadeh (2014), the main benefits of RFA compared 1308 

to at-site estimation are improved estimates of the distribution tails, and the ability to 1309 

estimate events in ungauged locations. Furthermore, L-moments parameter estimation 1310 

is more robust to outliers compared with conventional moments or Maximum 1311 

Likelihood Estimation (Hosking and Wallis, 2005). Following Hosking and Wallis 1312 

(2005), we applied RFA using L-Moments by first assessing region homogeneity using 1313 

the heterogeneity measure (H), screening each region’s data using the discordancy 1314 

measure (D), then fitting a regional distribution and constructing growth curves, 1315 

enabling the estimation of regional and at-site return levels. 1316 

Hosking and Wallis (2005) derived D and H by calculating different L-moment ratios 1317 

relations and combinations. The value D assesses the similarity between each 1318 

station’s L-moment ratios and the average L-moment ratios of the other stations in the 1319 

region. Accordingly, D is calculated as: 1320 

 1321 
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𝐷𝑖 =  
1

3
[(𝑢𝑖 − 𝑢)

𝑇  (𝑢𝑖 − 𝑢)𝑆
−1]                                            (7) 1322 

where ui is a vector containing three L-moment ratios (i.e., L-variation, L-skewness and 1323 

L-kurtosis) for site i, u is the vector containing the simple average L-moment ratios, 1324 

S is the sample covariance matrix of L-moments of all sites, and T denotes 1325 

transposition of a vector or matrix. The site is considered non discordant if the Di value 1326 

does not exceed the Dcritical value. Hosking and Wallis (2005) have provided guidelines 1327 

to determine Dcritical value in each region based on the number of gauges used.  1328 

The heterogeneity measure (H), compares the between-site variability of L-moments 1329 

with what would be expected for a homogeneous region. The between site-variability 1330 

is compared with repeated Monte-Carlo simulations of a homogeneous region with the 1331 

same site’s record length. Accordingly, H is calculated as: 1332 

𝐻 = 
(𝑉−𝜇𝑣)

𝜎𝑣
                                                          (8) 1333 

where µv and σv are the mean and standard deviation of Nsim values of V (Nsim is the 1334 

number of simulation data). V is calculated from the regional data as follows: 1335 

𝑉 =  {
  ∑ 𝑛𝑖[𝑡

𝑖−𝑡𝑅]
2𝑁

𝑖=1  

 ∑ 𝑛𝑖
𝑁
𝑖=1  

}

 
1

2

                                                   (9) 1336 

Where n stands for record length of site i, 𝑡𝑖 is L-moment ratios (i.e., L-variation, L-1337 

skewness and L-kurtosis) for site i, and 𝑡𝑅 is the regional average of L-moment ratios; 1338 

Hosking and Wallis (2005) consider the region as "acceptably homogeneous" if H < 1, 1339 

“possibly heterogeneous" if 1 ≤ H < 2, and “definitely heterogeneous” if H ≥ 2. 1340 

To minimise the impact of localised extreme precipitation events and variations 1341 

between gauge locations, we take the standard RFA approach and first standardise 1342 

AMAX data for each gauge by dividing by the gauge’s median AMAX (RMed). Then, a 1343 

regional mean RMed weighted by each gauge record length was calculated for each 1344 

region. This regional RMed was used to estimate regional return levels, while individual 1345 

gauge RMed were used to estimate the return levels at each location. Regional return 1346 

level estimates were derived from generalized extreme value (GEV) distributions fitted 1347 

to the regionally pooled AMAX. Further details on this approach can be found in Jones 1348 

et al. (2013). The fitted distributions were used to estimate the individual gauge and 1349 

regional precipitation intensities corresponding to defined annual exceedance 1350 

probabilities (20%, 10%, 4%, 2%) or return periods (5-, 10-, 25-, and 50 years) by 1351 
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multiplying the standardised return level estimates by the gauge RMed or weighted 1352 

regional RMed for the gauge and regional estimates respectively. 1353 

Finally, independence and stationarity are important underlying assumptions for 1354 

regional frequency analysis. In this research, using AMAX at each gauge assures the 1355 

use of independent events, with only one event selected per calendar year. On the 1356 

other hand, it has been noted that the typically used length of AMAX data is insufficient 1357 

to detect trends, and therefore using a nonstationary model would add unavoidable 1358 

uncertainties (Serinaldi and Kilsby, 2015). Moreover, Madsen et al. (2013) reviewed 1359 

European design guidelines and reported that all existing design guidelines are based 1360 

on stationary data analysis and it has been suggested that stationarity should remain 1361 

the default assumption in the absence of longer observation records (Madsen et al., 1362 

2013; Serinaldi and Kilsby, 2015), which is presumed in this research. 1363 

3.4. Results 1364 

3.4.1. Diurnal cycle and seasonality of AMAX events 1365 

The diurnal profiles in Figure 2 show that most 1h AMAX occur during the afternoon 1366 

between 12:00 and 18:00, with a peak typically between 14:00 and 17:00, especially 1367 

in south-eastern and eastern regions such as the North East, Humber, East Anglia, 1368 

and South East. However, the profile in northern regions (e.g. South Scotland) is 1369 

relatively flat, indicating a weaker diurnal cycle. Blenkinsop et al. (2017) also describe 1370 

the diurnal cycle for summer mean wet hour intensities with over half of the regions 1371 

possessing a clear diurnal cycle, also peaking in the mid- to late afternoon though with 1372 

lower amplitude cycles in the west. This spatial variation is likely associated with 1373 

different mechanisms generating extreme 1h precipitation, as convective processes 1374 

become less dominant to the north and west of the UK where AMAX are also more 1375 

likely to occur outside summer. The diurnal profile for 3h AMAX shows that in most UK 1376 

regions the frequency density also peaks during the afternoon but over a longer period 1377 

compared to the 1h AMAX and with a smaller amplitude. It is possible that this 1378 

difference could arise as the 3h AMAX accumulation reduces the influence of very 1379 

short, heavy events by including other more moderate events occurring across three 1380 

successive hours, but is also likely to arise partially as an artefact of the rolling window 1381 

approach to calculate 3h accumulations. 1382 
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 1383 

Figure 2: Regional hourly frequency density plots and diurnal profiles of 1h and 3h 1384 

AMAX for selected regions. The smoothed diurnal profiles were fitted using kernel 1385 

density estimations. The 3h AMAX is calculated as the accumulation of the hourly 1386 

record for hour n, n-1, and n-2, and plotted at hour n. For example, an accumulation at 1387 

15:00 is the total of precipitation at 13:00, 14:00, and 15:00. N denotes the number of 1388 

gauges in each region. Frequency density of event (y-axis), and hours of the day (x-1389 

axis). 1390 

The annual distribution of AMAX for all durations is summarised in Figure 3 for eight 1391 

regions (NHI, SS, SOL, NW, NE, HUM, SE, and EA). All demonstrate distinct 1392 
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seasonality in hourly and multi-hourly AMAX – notably 1h AMAX occurrence is highly 1393 

concentrated in summer (JJA) in most regions. In the most northerly regions (NHI, SS, 1394 

SOL) 1h AMAX are concentrated mostly from late summer (July, August) through to 1395 

mid-autumn (and for NHI, to winter) whilst in other regions these occur most frequently 1396 

during the period from June to September, with a strong August peak. Comparing the 1397 

distributions of multi-hourly AMAX indicates for northerly regions (NHI, SS, SOL, NW) 1398 

a gradual shift in the peak frequency from the summer months to later in the year as 1399 

the accumulation period increases (Figure 3). However, in southern and eastern 1400 

regions (NE, HUM, EA, SE) there is less difference between accumulation periods 1401 

which may suggest that in these areas AMAX are predominantly produced by the same 1402 

mechanism regardless of accumulation period. In these regions the timing of 1h and 1403 

3h AMAX (short duration) peak frequencies are similar whilst the timing of 12h and 24h 1404 

AMAX (longer duration) are very similar across all regions. For 6h AMAX, the timing is 1405 

similar to longer durations in some regions but in others the monthly distributions are 1406 

intermediate between those of short and longer durations. Finally, we note that the 1407 

seasonality of 24h AMAX derived using a rolling window accumulation is similar to that 1408 

derived using a fixed window at 09:00 (Figure A1, Appendix A), thus we focus on 1409 

results using the latter to allow comparison with previous studies of daily precipitation. 1410 
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 1411 

Figure 3: Regional monthly frequency densities of 1-, 3-, 6-, 12- and 24h AMAX in the 1412 

UK. Red (italicised) values denote the frequency density scale. 1413 

The seasonality of hourly/multi-hourly AMAX was further quantified using circular 1414 

statistics (Reed and Robson, 1999). Blenkinsop et al. (2017) assessed the n-largest 1415 

1h accumulations in the UK during 1992-2011, but hourly and multi-hourly AMAX have 1416 

not yet been assessed. Figure 4 (quantified in Table B1, Appendix B) shows that the 1417 

mean occurrence of 1h AMAX is in summer (Julian day 200 to 244) for most regions, 1418 



47 
 

with a mean occurrence day (θ) in August for 11 of the 13 regions, and in July and 1419 

October for HUM and NHI respectively. Moreover, r values are higher in eastern and 1420 

southern regions compared to western and northern regions, increasing from 0.24 1421 

(NHI) to 0.74 (EA). High r values indicate that AMAX occurrence is more strongly 1422 

clustered around θ, confirming a summer dominance for 1h AMAX in the southern and 1423 

eastern UK. The weaker seasonality in northern regions could be attributable to either 1424 

within gauge or between gauge variability in the occurrence of AMAX and indicates 1425 

that gauges across individual regions could be characterised by significantly variable 1426 

seasonality. Figure 4 also indicates increasing θ values (i.e. mean occurrence later in 1427 

the year) and decreasing r values (i.e. greater dispersion) for multi-hourly AMAX 1428 

compared to hourly. For example, for SE, θ shifts from early-August (1h) to late-1429 

September (24h) whilst the dispersion increases, as r decreases from 0.64 to 0.35. 1430 

This is consistent with Figure 3, which shows that longer duration AMAX (12h and 24h) 1431 

occur later in the year and display weaker seasonality compared with 1h AMAX. These 1432 

results are also consistent with those obtained by Blenkinsop et al. (2017) using the 1433 

same dataset but using an n-largest approach, finding greater 1h dispersion in northern 1434 

regions (i.e. NHI, ES, SS) compared to southern and eastern regions (i.e. NE, HUM, 1435 

EA, SE). They also showed that the seasonality of the largest events broadly reflects 1436 

that of mean wet hour intensities and that spatial patterns in seasonal 99th quantile 1437 

intensities were consistent with those for mean intensities across the UK. Similarly, 1438 

Jones et al. (2013) showed a summer seasonality for 1d (24h) AMAX in eastern 1439 

regions, especially late summer, while other regions tended to experience 24h AMAX 1440 

in late autumn. Figure 4 therefore suggests a stronger seasonality at all accumulation 1441 

periods in eastern regions (NE, HUM and EA) compared with other parts of the country 1442 

though this becomes much weaker as the period increases. 1443 
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 1444 

Figure 4: Regional circular statistics representing seasonality of occurrence of hourly 1445 

and multi-hourly AMAX. Figure (A), mean AMAX occurrence day (Julian day, θ); Figure 1446 

(B), degree of dispersion (r) indicating the degree to which AMAX are seasonally 1447 

concentrated, ranging from 0 to 1, with higher values indicating greater concentration 1448 

around θ. Refer to Figure 1 for region abbreviations. 1449 

Figure 5 shows the frequency density of 1h AMAX per month (black), and the 1450 

magnitude of the standardised AMAX (red). This reveals that in Scotland (e.g. NHI, 1451 

ES, and SS), the peak magnitude of maxima does not necessarily coincide with the 1452 
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peak frequency. Many of the most intense 1h AMAX occur in winter through to early 1453 

spring (Dec - Mar). In contrast, the most intense 1h AMAX in southern or eastern 1454 

regions (e.g. NE and EA) generally occur during summer, consistent with the period of 1455 

peak frequency. The coincidence of peak AMAX occurrence and frequency in these 1456 

regions may be attributable to the dominance of one precipitation mechanism 1457 

producing most of the AMAX. As these occur mostly in summer, precipitation in 1458 

southern and eastern regions are likely to be generated primarily by convection. In 1459 

contrast, in regions where peak AMAX frequency and intensity do not coincide, 1460 

different mechanisms are likely to be responsible for AMAX occurring at different times 1461 

of the year. Results for 3h and 12h AMAX are presented in Figures A2 and A3 1462 

respectively for comparison given their representativeness of other durations noted 1463 

above. 1464 
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 1465 

Figure 5: Monthly 1h AMAX regional frequency density (black), and hourly AMAX 1466 

standardised by the regional median (red) for selected regions. The regional median 1467 

(mm) is stated for each region, and radial lines denote 1st day of each month. 1468 
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3.4.2. Regional frequency analysis  1469 

Regional frequency analysis (Hosking and Wallis, 2005) was used to estimate return 1470 

levels for different durations. The homogeneity assessment (Table 1) shows that most 1471 

of the existing extreme precipitation regions are homogeneous (H < 1) whilst the West 1472 

Country marginally exceeds the homogeneity test (H=1.01), North West (NW) is 1473 

classified as possibly heterogeneous (H=1.62), and Solway (SOL) is definitely 1474 

heterogeneous (H=2.71). The discordancy measure, D, for the gauges in each region 1475 

showed that none of the gauges is discordant. A region is homogenous if H < 1, 1476 

including negative H values, possibly heterogeneous if 1≤H<2, and definitely 1477 

heterogeneous if H ≥ 2, and the gauges are not discordant if the maximum gauge 1478 

discordancy value is less than Dcritical (Dmax < Dcritical). Hosking and Wallis (2005) provide 1479 

guidelines to determine Dcritical based on the number of gauges used.  1480 

Region name 
Homogeneity 

(H) 

No. of 

gauges 

Max. gauge discordancy 

value/ max. allowed value 

(Dcritical)  

East Anglia 0.02 8 1.78 / (2.14) 

East Scotland 0.99 20 2.21 / (3.00) 

Forth 0.27 12 2.24 / (2.63) 

Humber -0.40 9 1.77 / (2.33) 

Mid South West 0.13 11 1.68 / (2.63) 

North East 0.82 9 1.89 / (2.33)  

North Highland and Islands 0.39 22 2.97 / (3.00) 

North Ireland 0.94 4 1.00 / (1.00)  

North West 1.62 13 2.31 / (2.87) 

Solway 2.71 23 2.56 / (3.00) 

South East 0.73 12 1.76 / (2.76) 

South Scotland -0.63 27 2.70 / (3.00) 

West Country 1.01 27 2.25 / (3.00) 

Table 1: Extreme precipitation regional homogeneity assessment for 1h AMAX and the 1481 

gauge discordancy assessment (Hosking and Wallis, 2005). Region is homogenous if 1482 

H < 1, possibly heterogeneous if 1≤H<2, and definitely heterogeneous if H ≥ 2, and the 1483 

gauges are not discordant if the maximum gauge discordancy test value < Dcritical. 1484 

The two non-homogeneous regions (NW and SOL) were also reported as such for 1485 

daily extreme precipitation by Jones et al. (2014). Further investigation of AMAX data 1486 
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for these regions showed that in NW just two gauges provide four of the five highest 1487 

recorded AMAX, with both located on the region borders. However, since these gauges 1488 

were non-discordant they were retained within the NW region analysis. For SOL, one 1489 

gauge recorded a 1h AMAX of 82mm h-1 which is 20mm greater than the next ranked 1490 

AMAX and more than double the 3rd ranked value in the region. This gauge has the 1491 

highest D value, but is not discordant. This gauge is also located on the region borders 1492 

and is one of only two gauges located at an elevation exceeding 350m (all other 21 1493 

gauges in the region are located at elevations < 250m). Since the AMAX have been 1494 

verified against neighbouring gauges, this gauge was retained for analysis within the 1495 

SOL region. We therefore retained the 13 extreme precipitation regions to estimate 1496 

regional hourly and multi-hour return levels. This also facilitates comparison with the 1497 

1d AMAX return levels estimated by Jones et al. (2014) using daily gauge data. 1498 

The regional return level estimates for 1h, 24h, and daily AMAX (Jones et al., 2014) 1499 

are presented in Figure 6. We also compared the results for 24h AMAX using the fixed 1500 

09:00 accumulation period with those using rolling 24h windows to test for 1501 

underestimation of AMAX due to aggregation at constant time intervals (e.g. Morbidelli 1502 

et al., 2017) but this produced comparable results (see Figure A4 Appendix A). The 1h 1503 

AMAX (Figure 6, red line) return levels have a similar distributional shape across the 1504 

UK, with heavy tails since the shape parameter, ξ, is greater than 0 (ξ>0). A Q-Q plot 1505 

(Figure 7) assesses the method and assumptions, showing that the fitted model and 1506 

the observed data are a good match, and the assumptions of independence and 1507 

stationarity do not affect the quality the fitted distributions. On the other hand, the 24h 1508 

AMAX (Figure 6, black line) and daily AMAX return level estimates by Jones et al. 1509 

(2014) (green line), are generally slightly flatter indicating that ξ is closer to 0. The 1510 

results for 24h and daily AMAX are similar for all regions except NI, FOR and NW. The 1511 

differences in North Ireland (NI) are likely due to differences in the number of gauges 1512 

used in both studies: daily gauges (25) and sub-daily gauges (4). In Forth (FOR) the 1513 

difference is due to the occurrence of 24h AMAX exceeding 150mm and 200mm in 1514 

May 2006 and August 2007 respectively, while daily AMAX in Jones et al. (2014) did 1515 

not exceed 85mm. This is because the hourly data used here is derived from a different 1516 

set of rain gauges to those of Jones et al. (2014) which only provided precipitation 1517 

accumulations at 09:00 and at different locations over a different period (1961-2009). 1518 

For the North West (NW), it is uncertain what is causing the difference, but is again 1519 

likely due to the different gauges and periods used. For most regions the fitted 1520 
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distributions for both 24h AMAX accumulations and daily AMAX are similar despite 1521 

these differences. Figure 6 (and growth curves in Figure A5) show that the fitted GEV 1522 

of the daily precipitation return level estimates by Jones et al. (2014) and the 24h 1523 

accumulation used in this research are similar in most regions, especially for return 1524 

periods of up to 100 years (i.e. annual exceedance probability ≥1%), providing 1525 

confidence in the data used in this study. We note though that as the daily precipitation 1526 

records used in Jones et al. (2014) have a longer duration (1960-2009) and a larger 1527 

sample size compared to the 24h accumulation record length used in this research 1528 

(1992-2014), the confidence intervals for the daily return estimates are narrower than 1529 

those for the 24h accumulations. Moreover, the results in Figure 6 show that the 1hr 1530 

AMAX return levels and confidence intervals show some similarity across regions with 1531 

no significant difference, which suggests the need for new and potentially fewer 1532 

representative regions to reflect the spatial differences between gauges. This similarity 1533 

across regions is confirmed by the fitted growth curves in Figure A6. 1534 
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 1535 

Figure 6: Return level plots of fitted regional GEV distributions for 1h AMAX (red) and 1536 

95% confidence interval (grey shaded), 24h AMAX (black), and daily AMAX (from 1537 

Jones et al. 2014) (green). Return level estimates in mm (y-axis), return periods in 1538 

years (upper x-axis) and Gumbel reduced variate (lower x-axis). The 1h AMAX GEV 1539 

distribution parameters µ, σ and ξ are also shown. 1540 
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 1541 

Figure 7: Q-Q plots for the AMAX fitted GEV distributions. Sample (observed) growth 1542 

curve quantiles (y-axis) and theoretical growth curve quantiles (x-axis). The growth 1543 

curve represents the multiple increase of a given return level over an index value, in 1544 

this case the 2-year return level. 1545 
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The hourly return level estimates for each gauge in Figure 8 are derived from the 1546 

regional fitted GEV distributions multiplied by the site-scaling factor (the gauge RMed). 1547 

The return level estimates indicate higher values for central and southern UK regions 1548 

compared to northern regions for all return periods (5-, 10-, 25-, and 50-years) but 1549 

especially for shorter return periods. For example, the 5- and 25-year return level 1550 

estimates are less than 13mm and 19mm respectively for many gauges in northern 1551 

regions, while for the same return periods, only one gauge in central and southern UK 1552 

has a similar return estimate, with all other gauges exceeding these values. This is 1553 

consistent with results from Figure 5, and confirms that 1h AMAX typically tend to be 1554 

lowest in the most northern regions although the largest absolute magnitudes do not 1555 

follow this pattern. Further results for multi-hourly (3h and 12h) return level estimates 1556 

are presented in Figures A7 and A8 in Appendix A. 1557 
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 1558 

Figure 8: Return level estimates (mm h-1) for UK 1h AMAX precipitation at each gauge 1559 

for return periods of 5-, 10-, 25- and 50 years (20%, 10%, 4%, 2% annual exceedance 1560 

probabilities (AEPs)). Estimates for each gauge are calculated from the fitted regional 1561 

GEV growth curve multiplied by the site scaling factor (gauge RMed). 1562 
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3.5.  Discussion 1563 

Growing evidence of intensifying extreme precipitation and its associated impacts has 1564 

created a need to better characterise sub-daily precipitation events. Such events are 1565 

associated with flash flooding and adversely affect urban areas and fast responding 1566 

catchments. In this research, we have examined the temporal and spatial patterns of 1567 

hourly and multi-hourly extreme precipitation events in the UK.  1568 

Our results in Figures 3-5 show that 1h AMAX are most likely to occur in summer 1569 

compared to other, longer durations, typically extending from early summer through to 1570 

early autumn (June-September) with a peak in August for most regions, extending later 1571 

in the year in northern and western regions. We observe that 1h and 3h AMAX have 1572 

similar seasonality in southern and eastern regions in terms of mean and most frequent 1573 

occurrence although 3h AMAX are slightly more widely distributed throughout the year. 1574 

We also show that 12h and 24h AMAX are less likely to occur in summer than other 1575 

seasons, apart from in southeast and eastern regions of England (e.g. NE, HUM, SE, 1576 

EA). 6h AMAX were found to have a seasonal occurrence and intensity pattern broadly 1577 

transitional between short and longer accumulation periods. These differences in the 1578 

characteristics and seasonality of precipitation at different accumulations demonstrate 1579 

that using a scaling factor or regression relationship to estimate 1h extremes from 1580 

those on daily timescales will likely produce misleading results, as they occur at 1581 

different times of the year in some regions and are therefore likely to be caused by 1582 

different processes. Consequently, many of our current tools for climate adaptation, 1583 

such as uplifts used for drainage system design or sustainable drainage systems 1584 

(National Suds Working Group, 2004; Dale et al., 2017) may need to be revised using 1585 

new 1h AMAX information.  1586 

Seasonal patterns in 24h and 1h AMAX occurrence are similar to previously published 1587 

results for daily and hourly extreme precipitation (Jones et al., 2013; Blenkinsop et al., 1588 

2017). Jones et al. (2013) found that UK 1d to 10d AMAX in HadUKP northern regions 1589 

(e.g. South Scotland, North Scotland, East Scotland, which are analogous but not 1590 

identical to NHI, ES, SS, and parts of FOR and SOL in this research) mostly occur in 1591 

late autumn and winter, which is similar to results presented here for 24h AMAX in 1592 

northern regions (e.g. NHI, SS, SOL, and NW). In contrast, results showing that for 1593 

most regions (e.g. SS, NW, SE, HUM, EA, NE) 1h AMAX mainly occur between 1594 

summer and early autumn are consistent with the seasonal distributions of n-largest 1595 
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events identified by Blenkinsop et al. (2017). Results presented here also demonstrate 1596 

that the mean occurrence day, calculated from circular statistics, tends towards 1597 

autumn and winter as event duration increases from 1h to 24h (most noticeably in 1598 

northern regions) which is consistent with the seasonality presented by Jones et al. 1599 

(2013) for daily precipitation accumulations. 1600 

These results also indicate some similarity between the 1h and 3h (short duration) 1601 

AMAX, and between the 12h and 24h (longer duration) AMAX. For short duration 1602 

AMAX, mean occurrence day (θ) mostly occurs in summer (Figure 4A) between mid-1603 

July and September (Julian day 200 to 273). In contrast, for longer duration AMAX θ 1604 

is generally between September and December (Julian day 244 to 365). In particular, 1605 

12h and 24h AMAX behave similarly to each other in terms of their mean day of 1606 

occurrence and dispersion throughout the year regardless of region. For 1h and 3h 1607 

AMAX though the similarity is confined to mean (summer) occurrence in southern and 1608 

eastern regions whilst for northern and western regions there are greater differences 1609 

between these two accumulation periods. For example, the difference in 1h and 3h θ 1610 

is less than 2 weeks for central and southern regions, reaching up to 6 weeks for 1611 

northern regions (e.g. NHI), whilst for longer durations the difference in θ between 12h 1612 

and 24h AMAX is less than 3 weeks across all regions. The consistency at longer 1613 

durations might be expected as both 12h and 24h extremes are less sensitive to short, 1614 

very intense events and are both likely to be more strongly influenced by large-scale 1615 

weather systems that affect large areas of the UK and produce less intense but more 1616 

persistent precipitation throughout the year and particularly in autumn and winter which 1617 

may also contribute to the greater dispersion (lower r) observed as duration increases. 1618 

This is particularly the case in northern and western regions, which are less influenced 1619 

by convective precipitation and where larger differences between 1h and 3h AMAX 1620 

occurrence could be due to the reduced influence of short, heavy events in 3h AMAX 1621 

and the greater contribution of moderate precipitation sustained over 3 hours with 1622 

orographic enhancement of precipitation from weather systems across upland areas. 1623 

The similarity of the mean occurrence of 1h and 3h AMAX in central and southern 1624 

regions meanwhile could conversely be in part related to the dominance of 1625 

convectively driven short, intense events which will produce a 1h AMAX and contribute 1626 

significantly to the 3h accumulation, leading to a 3h AMAX in the same day. The future 1627 

availability of a sub-hourly dataset for the UK could enable the role of short, convective 1628 

events to be explored in more detail. 1629 
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Collectively therefore the circular statistics and seasonality plots reflect the principal 1630 

precipitation generation mechanisms throughout the year. That is, short duration 1631 

extremes, shown to mainly occur from summer through to early autumn, predominantly 1632 

arise from convective processes (Hand et al., 2004), particularly in the south and east 1633 

of the UK (e.g. van Delden, 2001) where there is least variability in the timing of AMAX 1634 

(generally higher r values). This is consistent with the high convective available 1635 

potential energy (CAPE) in this region (Holley et al., 2014) and with thunderstorm 1636 

climatologies for the UK (Holt et al., 2001). The relationship between UK hourly and 1637 

daily extremes and temperature has also been shown to be stronger in summer 1638 

(approximate CC scaling) compared with winter (Blenkinsop et al., 2015; Chan et al., 1639 

2016) which also points to local thermodynamics as a significant driver of these 1640 

extremes. In contrast, longer duration AMAX are more likely to occur either in autumn 1641 

or winter in some regions and with a noticeably lower frequency in summer compared 1642 

to short duration extremes in all regions. This suggests that longer duration extremes 1643 

are less strongly influenced by convective processes and, as discussed above, are 1644 

more likely caused by mid-latitude cyclonic systems which dominate throughout 1645 

autumn and winter. Synoptic scale circulation systems have been shown to play a 1646 

strong role in daily precipitation intensity across the UK with strong, cyclonic flow 1647 

producing higher intensities throughout the year and westerly flow producing higher 1648 

intensities in the north west of the UK (Osborn et al., 1999; Tye et al., 2016). This is 1649 

partly associated with the North Atlantic Oscillation which has particularly strong 1650 

correlations with precipitation over this region in winter (Murphy and Washington, 1651 

2001). Recent research suggests that atmospheric rivers also have a role in the 1652 

development of winter floods over the UK but have little influence over summer 1653 

extreme precipitation (Lavers et al., 2011; Champion et al., 2015). Local factors may 1654 

also modify large-scale behaviour; Svensson and Jakob (2002) identified the 1655 

importance of orographic enhancement and land-sea contrasts in producing a morning 1656 

peak in the occurrence of heavy precipitation at a site in southern Scotland. A greater 1657 

understanding however is needed of the various drivers of sub-daily precipitation and 1658 

the interactions between them. The investigation of drivers of sub-daily extremes is 1659 

part of ongoing work in the INTENSE (INTElligent use of climate models for adaptatioN 1660 

to non-Stationary hydrological Extremes) project (Blenkinsop et al., 2018). 1661 

Applying the homogeneity assessment approach by Hosking and Wallis (2005), we 1662 

demonstrated that most of the existing extreme daily precipitation regions (Jones et 1663 
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al., 2014) are homogeneous for 1h AMAX. Fitted GEV distributions for the 24h AMAX 1664 

between 1992-2014 show close results to the fitted distributions for daily AMAX 1665 

precipitation between 1961-2009 by Jones et al. (2014). The similarity of these results 1666 

indicates that the data used in this research has an adequate record length, when 1667 

pooled regionally, to analyse UK precipitation extremes. Moreover, this provides 1668 

evidence that the quality control approach adopted by Blenkinsop et al. (2017) and 1669 

Lewis et al. (2018), has produced a reliable precipitation dataset. The 1h AMAX return 1670 

level estimates derived here showed a similar pattern and magnitude in neighbouring 1671 

regions which indicates the potential for reshaping or merging the existing regions into 1672 

fewer regions for future 1h extreme precipitation analysis.  1673 

In an attempt to rationalise these regions into fewer, more representative regions for 1674 

hourly precipitation, an initial examination is presented here as a precursor to a more 1675 

extensive new regionalisation for hourly precipitation. Combining the existing regions 1676 

into new regions is a simple approach that offers the potential to enhance statistical 1677 

estimates through providing more gauges per region, thus improving results for 1678 

ungauged areas. To illustrate the potential for redefining regions for sub-daily 1679 

precipitation, the whole UK as a single region was examined and the heterogeneity 1680 

test results showed a high value (H= 2.61), indicating a definitely heterogeneous 1681 

region. Since some of the return level plots in Figure 6 (and growth curves in Figure 1682 

A6) were so similar, the existing regions were then subjectively merged into 3 regions 1683 

(Figure 9), defined as North, West, and East. These were created using the simple 1684 

approach of subjectively grouping the existing regions based on the return levels of the 1685 

individual gauges for the 1h AMAX return periods shown in Figure 8 (5-, 10-, 25-, and 1686 

50 years). Different combinations of regions were examined using the same approach, 1687 

yet this grouping resulted in the best homogeneity results. Indeed, the homogeneity 1688 

measure (H) (Hosking and Wallis, 2005) for each region suggests that the proposed 1689 

regions are homogeneous. Further improvements may be achieved by using statistical 1690 

analyses of hourly precipitation variables and associated metrics in a more formal 1691 

methodology such as that of Jones et al. (2014). This will be undertaken in the 1692 

subsequent chapter. 1693 
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 1694 

Figure 9: Potential rationalisation of precipitation regions based on subjective 1695 

assessment of the 1h AMAX fitted GEV distributions. H denotes the heterogeneity 1696 

measure for each region using Hosking and Wallis (1998). 1697 

3.6.  Conclusion 1698 

The results presented in this paper have implications for a number of aspects of 1699 

research into sub-daily extreme precipitation. Significantly, they demonstrate the 1700 

reliability of the hourly data used in this research, which could be used to provide better 1701 

guidance for practitioners in the UK water sector by updating and improving the Flood 1702 

Estimation Handbook (FEH) (Faulkner, 1999) design precipitation depths generated 1703 

by the Depth-Duration-Frequency (DDF) model. The FEH approach uses historical 1704 

data, hence, having updated, robust, and quality controlled hourly datasets up to 2014 1705 

(Blenkinsop et al., 2017; Lewis et al., 2018) would enhance the FEH estimations.  1706 

The analysis of hourly and multi-hourly AMAX has demonstrated that 1h AMAX in the 1707 

UK show a different seasonality to that of daily AMAX and that the relationship between 1708 
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the two durations varies spatially. This suggests that using existing approaches to 1709 

design and assess drainage systems which use a weather generator (e.g. UKCP09) 1710 

to simulate hourly resolution data might produce misleading results. The climate model 1711 

output, precipitation estimates, and other variables in the UKCP09 weather generator 1712 

are primarily estimated at the daily level, with simple disaggregation methods to 1713 

generate hourly resolution data (Jones et al., 2009; Kellagher et al., 2009; CIWEM, 1714 

2016). Our research suggests that disaggregation methodologies that use this spatially 1715 

extensive dataset and better reflect the differences between daily and sub-daily 1716 

extremes (and their spatial variability) could be used to produce more reliable 1717 

estimates of sub-daily extremes. 1718 

Our research also shows that the existing UK extreme precipitation regions may not 1719 

appropriately reflect regional differences in sub-daily extreme precipitation behaviour, 1720 

as return level estimates show similarity across neighbouring regions. The 1721 

development of new regions is recommended, based on the characteristics of hourly 1722 

extreme precipitation events and allowing for the limited availability of data. It is likely, 1723 

however, that the number of regions needed to describe variability in sub-daily extreme 1724 

precipitation across the UK is significantly smaller than that needed for daily extremes. 1725 

One of the major challenges in implementing plans and guidelines to manage pluvial 1726 

flooding in the UK is the ability to predict potential changes in short, intense 1727 

precipitation events. These challenges have impacts on urban drainage design 1728 

guidelines, precipitation event risk assessments, and infrastructure management. 1729 

However, as regional climate models (RCMs) use convection parameterisation 1730 

schemes, they are generally unable to reproduce the small-scale convective systems 1731 

that produce short duration events (Fowler and Ekström, 2009) such as the 1h and 3h 1732 

AMAX examined here and which dominate summer UK extremes. Although, very high 1733 

resolution convection-permitting models are able to better simulate convective 1734 

precipitation events (e.g. Chan et al., 2014b; Chan et al., 2018a; Kendon et al., 2018) 1735 

they are computationally intensive and have, so far, only been run over small domains 1736 

(see Prein et al. (2015) and Kendon et al. (2017) for review). Recent advances have 1737 

been made in connecting hourly extreme precipitation simulated by convection-1738 

permitting models to synoptic-scale predictors in coarser resolution RCMs, and 1739 

producing simple downscaling relationships (Chan et al., 2018b). Further, statistical 1740 

analysis of observed sub-daily extreme precipitation and its relation with climatological 1741 

variables (e.g. temperature, sea level pressure, vertical velocity, humidity) will allow us 1742 
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to build observation-based statistical models for hourly and multi-hourly precipitation 1743 

events. Such models could improve our understanding of short duration precipitation 1744 

extremes and their potential future behaviour by validating the outputs of climate 1745 

models and potentially providing a statistical downscaling short-cut (e.g. Fowler and 1746 

Kilsby, 2007; Chan et al., 2018b) to convection-permitting modelling. This research 1747 

also has further implications for how such analyses of model projections are 1748 

undertaken. Although the most frequent occurrence of short duration precipitation 1749 

extremes is during summer, many hourly and multi-hourly AMAX occur between May 1750 

and October depending on the region. The traditional seasonal division (summer: JJA) 1751 

may therefore not be appropriate for the analysis of changes in such events if warming 1752 

extends the ‘convective season’. 1753 

Finally, the difference in seasonality between sub-daily and daily extreme precipitation 1754 

in the UK highlights the challenges in simulating and understanding extreme events 1755 

using current statistical scaling and modelling approaches, particularly across 1756 

durations. Better understanding of the characteristics of extreme precipitation and its 1757 

drivers (Pfahl et al., 2017), including at sub-daily timescales would help in exploiting 1758 

and delivering the synergies between observational and modelling studies to reduce 1759 

the uncertainties in our future predictions, guidelines and adaptation plans. 1760 

 1761 
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 1767 

 1768 

 1769 
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Chapter 4. New hourly extreme precipitation regions and regional 1770 

annual probability estimates for the UK 1771 

Existing UK extreme precipitation regions and urban drainage design guidelines are 1772 

based on daily datasets, while various studies predict noticeable differences in the 1773 

response of daily and sub-daily extremes in the UK to potential climate change. Recent 1774 

flooding related to extreme precipitation in the UK has highlighted the importance of 1775 

characterising these events, therefore, defining new hourly extreme precipitation 1776 

regions would enhance our understanding of extremes, and provide a more 1777 

appropriate tool to analyse sub-daily extremes. 1778 

In this chapter, the quality controlled hourly precipitation dataset from 1992-2014, 1779 

geographical and topographical characteristics (e.g. latitude, elevation), and other 1780 

climatological variables (e.g. temperature) are used to characterise the hourly extreme 1781 

precipitation climatology in the UK, and to define five new, homogeneous hourly 1782 

extreme regions. Furthermore, this chapter demonstrates the novel use of a European 1783 

weather patterns classification to reflect the role of the large scale circulation, and 1784 

provide a dynamical basis for the hourly extreme regions.  1785 

In meeting a central objective of this research by defining UK extreme precipitation 1786 

regions based on hourly data and related climatological variables, this chapter 1787 

concludes by employing these regions to quantify return estimates of hourly extreme 1788 

precipitation across the UK. 1789 

4.1.  Introduction 1790 

Recent decades have seen increases in the frequency and intensity of extreme 1791 

precipitation in different regions which lead to increases in pluvial and fluvial flooding 1792 

(Alexander et al., 2006; Min et al., 2011; IPCC, 2012; Westra et al., 2014). Such 1793 

increases impose challenges for wastewater and flood risk management, including the 1794 

planning and designing of hydraulic structures, storm water drainage systems, and 1795 

flood control structures, where accurate and reliable precipitation estimates are 1796 

paramount (Durrans and Kirby, 2004; Madsen et al., 2009). Furthermore, potential 1797 

hazards of intense precipitation and associated flash floods in the UK can have 1798 

significant effects on infrastructure, transportation, society and urbanized areas (Stern, 1799 

2006). However, most observational based studies to date have examined historic 1800 

changes in precipitation only at daily and multi-day timescales due, in part, to the 1801 
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limited availability of high-resolution precipitation observations and the statistical 1802 

challenges of accurately determining sub-daily precipitation probability. These 1803 

challenges are due to the lack of high quality long hourly precipitation records and to 1804 

sparsely distributed gauge networks (Westra et al., 2014). The latter is particularly 1805 

important due to the highly variable nature of hourly extreme precipitation reflecting the 1806 

localised nature of intense storms and their relationship to location and climatological 1807 

factors (e.g. latitude, temperature gradient) (Alexander and Arblaster, 2009; Mishra et 1808 

al., 2012; Westra et al., 2014; Forestieri et al., 2018). 1809 

Globally, most analyses of sub-daily precipitation extremes have reported increasing 1810 

intensities (Westra et al., 2014). In Europe, Madsen et al. (2009) reported an 1811 

intensification in Denmark, lending support to results from the Netherlands (Lenderink 1812 

et al., 2011), Italy (Arnone et al., 2013; Vallebona et al., 2015), and the Czech Republic 1813 

(Hanel et al., 2016). Researchers on the other side of the Atlantic have reported similar 1814 

increasing intensities in Canada and the USA (Burn et al., 2011; Kunkel et al., 2013; 1815 

Muschinski and Katz, 2013; Barbero et al., 2017). Recently, similar increases have 1816 

also been reported in Australia (Zheng et al., 2015; Hajani et al., 2017; Guerreiro et al., 1817 

2018). Such increases in intensity have been linked to the enhanced moisture holding 1818 

capacity of the atmosphere as described by the Clausius-Clapeyron relationship. 1819 

Whether the increases are more closely related to air temperature or dew point 1820 

temperature has been the subject of debate (e.g. Lenderink and Van Meijgaard, 2010; 1821 

Ali and Mishra, 2017), with more recent research favouring the latter as less dependent 1822 

on a constant relative humidity assumption (Ali et al., 2018). The relationship between 1823 

temperature and sub-daily extremes has been investigated in numerous observational 1824 

analyses (Hardwick Jones et al., 2010; Lenderink et al., 2011; Mishra et al., 2012; 1825 

Blenkinsop et al., 2015; Barbero et al., 2017). 1826 

While historical precipitation events are often used to estimate structural design 1827 

capacity (Smithers and Schulze, 2001), extreme precipitation analysis based on 1828 

observational data is strongly influenced by data quality, record length, and the spatial 1829 

and temporal distribution of data (Westra et al., 2014). Thus, regional frequency 1830 

analysis (RFA), or region of influence approaches (ROI), are often used to supplement 1831 

and improve extreme hydrological analyses where there is limited temporal or spatial 1832 

data availability (Hosking and Wallis, 2005; Sarhadi and Heydarizadeh, 2014). The 1833 

RFA methodology has also been used successfully in different locations to estimate 1834 

the annual exceedance probability (AEP) of extremes (Fowler and Kilsby, 2003a; 1835 
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Fowler and Kilsby, 2003b; Lee and Maeng, 2003; Trefry et al., 2005; Norbiato et al., 1836 

2007; Jones et al., 2014). AEPs are more commonly referred to as “return periods” or 1837 

“recurrence intervals”. In keeping with recent research on the communication of risks 1838 

(e.g. Grounds et al., 2018) and for clarity, we use the term AEP throughout this chapter. 1839 

A requirement of the RFA approach, employed widely to examine UK precipitation 1840 

data, is the pooling of data within homogeneous regions. Previously, Wigley et al. 1841 

(1984) identified 5 regions in England and Wales using mean daily precipitation, which 1842 

were subsequently extended to 9 regions for the UK and Northern Ireland by Gregory 1843 

et al. (1991). Alexander and Jones (2000) used these regions to develop the Hadley 1844 

UK precipitation (HadUKP) regional daily observation series which is updated in near 1845 

real-time. These regions have been widely used, including for the analysis of UK 1846 

precipitation trends (Osborn et al., 2000; Simpson and Jones, 2014) and to perform 1847 

RFA (Fowler and Kilsby, 2003a; Fowler and Kilsby, 2003b; Jones et al., 2013; Jones 1848 

et al., 2014). 1849 

Jones et al. (2014) reported that the HadUKP regions do not reflect regional variations 1850 

in the frequency, magnitude and seasonality of UK daily extreme precipitation and 1851 

therefore derived 14 regions that are more appropriate to analyse daily extremes. 1852 

However, Darwish et al. (2018) presented a similar argument that neither the HadUKP 1853 

regions nor those of Jones et al. (2014) are suitable for analysing sub-daily 1854 

precipitation extremes, motivating the current research.  1855 

In this chapter, we use an objective clustering of rain gauges and a regional frequency 1856 

analysis of extreme precipitation as in Jones et al. (2014) to identify new, statistically 1857 

homogeneous regions for UK hourly precipitation extremes, which reflect spatial 1858 

variation and improve AEP estimates for hourly precipitation extremes. These new 1859 

regions are identified from different climatological and site characteristics, including 1860 

extreme precipitation intensity and frequency, seasonality measures, and prevailing 1861 

weather types.  1862 

The chapter is organised into four further sections; Section 4.2 describes the datasets 1863 

used in the research whilst Section 4.3 presents the methods and statistical tools used 1864 

to explore and analyse the data and to identify the new homogeneous regions. Section 1865 

4.4 presents the new UK hourly extreme precipitation regions and the estimated annual 1866 

exceedance probabilities derived from the RFA. Section 4.5 discusses the practical 1867 

implications of the new regions as well as the research conclusions. 1868 
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4.2.  Data 1869 

This chapter uses a range of variables describing at-site characteristics (precipitation, 1870 

temperature), site characteristics (location, elevation), as well as large-scale conditions 1871 

(atmospheric circulation patterns) across the UK to identify homogeneous regions and 1872 

characterise hourly extreme precipitation. 1873 

The primary at-site characteristics were derived from the UK hourly precipitation 1874 

dataset, comprising rain gauges from three sources: the UK Met Office Integrated Data 1875 

Archive System (MIDAS), the Scottish Environmental Protection Agency (SEPA), and 1876 

the UK Environment Agency (EA). The dataset (up to 2011) was collected by 1877 

Blenkinsop et al. (2017) who performed a series of site-specific quality control (QC) 1878 

procedures on the data, with additional QC checks against neighbouring gauges 1879 

undertaken by Lewis et al. (2018) while extending the dataset to 2014. To ensure a 1880 

reliable dataset of sufficient record length, and to facilitate comparison with other 1881 

research, only gauges with more than 85% of their record complete (i.e. non-missing 1882 

and data not flagged by the QC process) for each year is used here. These criteria 1883 

were selected as a trade-off between having long records and data completeness. 1884 

Further details on the adoption of these criteria can be found in Section 3.2.  1885 

Moreover, site characteristics including the longitude and latitude of each rain gauge 1886 

were derived from rain gauge metadata. However, not all gauges were accompanied 1887 

by elevation data; absent data were derived from a global digital elevation model 1888 

(DEM) with a horizontal grid spacing of approximately 250 metres (Jarvis et al., 2008). 1889 

For each rain gauge, corresponding series of daily maximum, minimum and mean 1890 

temperature between 1992 and 2014 were obtained from the UKCP09 gridded dataset 1891 

at a resolution of 5x5 km, and based on surface observations from 1960 to 2014 1892 

covering the whole of the UK (Hollis and McCarthy, 2017). Consequently, a total of 197 1893 

rain gauges distributed across the UK covering the period 1992-2014 were used in this 1894 

study alongside the gridded daily temperature series.  1895 

 Atmospheric circulation over the North Atlantic ocean has a strong effect on Western 1896 

European weather, affecting air flow, moisture content, and other characteristics which 1897 

in turn control precipitation patterns (Scaife et al., 2008; Hurrell and Deser, 2010; 1898 

Woollings, 2010). WTs developed from climatic variables (i.e. mean sea level pressure 1899 

(MSLP), wind speed, and wind direction) have long been used both in Europe (e.g. 1900 

Lamb, 1991; Bissolli and Dittmann, 2001) for different purposes including: assessing 1901 

http://www.britannica.com/place/Atlantic-Ocean


69 
 

UK precipitation and global meteorological relationships (Knight et al., 2017), 1902 

investigating future European precipitation (Fereday et al., 2018), forecasting coastal 1903 

floods around the UK (Neal et al., 2018), and in the construction of a precipitation and 1904 

drought climatology for the UK (Richardson et al., 2018). Thus, the final dataset used 1905 

here is that of Neal et al. (2016) who classified large-scale atmospheric circulation 1906 

conditions over Europe into 30 Weather Types (WTs), deriving a smaller set of 8 WTs 1907 

(Table 2), using K-means clustering, for the purposes of evaluating forecasts.  1908 

Here, the subset of 8 WTs between 1992-2014 are used to provide additional 1909 

understanding of the physical processes of UK hourly extreme precipitation, 1910 

underpinning the new precipitation regions and associated AEP estimates. The final 1911 

investigated hourly extremes dataset is relatively limited, therefore, using the 8 WTs 1912 

provides a balance to reflect the relationship between WTs and hourly extremes, 1913 

providing a reasonable sample of events across the types. Using the classification of 1914 

30 WTs would split the extremes across too large a number of WTs which is impractical 1915 

for further analysis, and makes the relationship indistinguishable. Thus, the 8 WTs 1916 

were selected for the analysis in this research. 1917 

  1918 
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Weather type 

(WT) 

Description 

1. NAO- All sub-types going into this type in general have positive MSLP 

anomalies to the north of the UK and negative MSLP anomalies 

to the south of the UK, resulting in a negative NAO pattern. 

2. NAO+ All sub-types going into this type in general have negative MSLP 

anomalies to the north of the UK and positive MSLP anomalies 

to the south of the UK, resulting in a zonal (positive NAO) type. 

3. Northwesterly All sub-types going into this type in general have negative MSLP 

anomalies to the northeast of the UK and positive MSLP 

anomalies to the southwest of the UK, resulting in a north-

westerly flow. Sub-patterns going into this type vary between 

being cyclonic and anticyclonic, but the direction of flow is the 

same. 

4. Southwesterly All sub-types going into this type in general have negative MSLP 

anomalies to the northwest of the UK and positive MSLP 

anomalies to the southeast of the UK, resulting in a 

southwesterly flow. Sub-types going into this type vary between 

being cyclonic and anticyclonic but the direction of flow is the 

same. 

5. Scandinavian 

high 

All sub-patterns going into this type in general have negative 

MSLP anomalies to the west of the UK and positive MSLP 

anomalies to the east of the UK, resulting in a south to 

southeasterly flow. Most sub-patterns in this type are 

anticyclonic. 

6. High pressure 

center over 

UK 

Both sub-types going into this type have positive MSLP 

anomalies over the UK and to the south of the UK, with weak 

negative MSLP anomalies to the north of the UK. This results in 

an anticyclonic westerly or southwesterly flow. 

7. Low close to 

UK 

Both sub-types going into this type extend a trough over the UK. 

Negative MSLP anomalies are centred just to the west of the UK 

resulting in a cyclonic southwesterly flow. 
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8. Azores high Only one of the 30 types goes into this type which shows an 

anticyclonic westerly flow over the UK, with an Azores high 

extension. 

Table 2: Descriptions of the eight weather patterns from the European and North 1920 

Atlantic Daily to Multi-decadal Climate Variability (EMULATE) MSLP (EMSLP) data 1921 

(1850–2003) as derived in Neal et al, 2016. Weather type names and descriptions are 1922 

relevant to the UK. MSLP and NAO denote mean sea level pressure and North Atlantic 1923 

Oscillation respectively.  1924 

4.3. Methodology  1925 

We apply a statistical approach to cluster gauges with similar characteristics together 1926 

and create homogeneous regions for assessing the spatial pattern of hydrological 1927 

processes. This method has been used widely in the literature (Wigley et al., 1984; 1928 

Dales and Reed, 1989; Jones et al., 2014; Sarhadi and Heydarizadeh, 2014; Forestieri 1929 

et al., 2018). In addition, the frequency of occurrence of UK weather types is 1930 

incorporated into the analysis, and used to delineate the new regions, to ensure that 1931 

the new regions reflect both the statistical and physical behaviour of hourly extreme 1932 

precipitation.  1933 

The following sections describe the process of selecting appropriate variables (Section 1934 

4.3.1), identification of new homogeneous regions (Section 4.3.2), an estimation of 1935 

regional AEP for UK hourly extreme precipitation (Section 4.3.3), data independence 1936 

(Section 4.3.4), and goodness of fit (Section 4.3.5). 1937 

4.3.1. Variable Selection 1938 

The UK is located downstream of the Atlantic storm track, which produces a strong 1939 

temporal variation in precipitation (de Leeuw et al., 2016). Furthermore, extreme hourly 1940 

UK precipitation displays geographical and seasonal variability, with most hourly 1941 

extremes occurring in summer, especially in the southern and eastern UK (Blenkinsop 1942 

et al., 2017; Darwish et al., 2018). This seasonality is associated with different daily 1943 

and sub-daily extreme precipitation generating mechanisms. North-western areas are 1944 

more strongly influenced by extreme precipitation arising from large scale circulation 1945 

and frontal systems occurring in autumn and winter than in the south and southeastern 1946 

parts of the UK where extremes tend to be dominated by short duration, convective 1947 

precipitation occurring in summer (Jones et al., 2014; Darwish et al., 2018). Previous 1948 

studies at daily timescales have selected variables which reflect these topographical 1949 
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and climatological variations (Wigley et al., 1984; Dales and Reed, 1989; Reed and 1950 

Robson, 1999; Maraun et al., 2008; Jones et al., 2014). 1951 

In this research, statistics for different climatological variables are investigated and the 1952 

extent to which they reflect variability in hourly extreme precipitation frequency and 1953 

intensity patterns in the UK were assessed before selecting the most relevant variables 1954 

for further analysis. Data availability, possible correlation between variables, the 1955 

relevance to hourly precipitation extremes and their generating processes were 1956 

considered prior to further analysis. 1957 

Firstly, the geographical and topographical characteristics, latitude (Lat), longitude 1958 

(Lon) and elevation (Elev), were allocated for each gauge as detailed in Section 4.2 1959 

(see also Table 3). Previous examination of UK hourly and daily extremes used annual 1960 

maxima (AMAX), the 0.99 wet day/hour quantiles (Q99) (Alexander and Jones, 2000; 1961 

Jones et al., 2014; Simpson and Jones, 2014; Darwish et al., 2018), or N maximum 1962 

events per year to define extremes (Blenkinsop et al., 2017). Here, the median AMAX 1963 

(RMed) and the 0.99 wet hour quantile for annual (Q99), summer half year (April-1964 

September) (SQ99), and winter half year (October-March) (WQ99) hourly precipitation 1965 

were calculated for each gauge to capture the variability in regional annual and 1966 

seasonal precipitation intensity. As an approximation to the regional and seasonal 1967 

differences in extreme frequency, the number of hours exceeding SQ99 in summer 1968 

and WQ99 in winter were derived (denoted as N-SQ99, and N-WQ99 respectively). In 1969 

reality, this value will be skewed by the number of complete record years as well as 1970 

the wet hour frequency; however, this offers a characterisation of the spatial 1971 

differences in the number of wet hours. We calculated these statistics using hourly 1972 

declustered precipitation (the highest hourly value per day) for each gauge to ensure 1973 

independent precipitation values. 1974 

Precipitation seasonality was then quantified using circular statistics (Reed and 1975 

Robson, 1999) to represent the mean occurrence day of hourly precipitation extremes 1976 

(𝛳 ̅), and the overall dispersion (�̅�) of the events around 𝛳 ̅. The circular statistics were 1977 

calculated for each gauge using hourly precipitation greater than Q99, using the 1978 

method stated in Section 3.3.1. Values of r closer to 1 (0) indicate a higher (lower) 1979 

concentration of events around 𝜃, and therefore a stronger (weaker) seasonal signal. 1980 

Furthermore, the median of maximum and minimum recorded temperature values 1981 

(Tmax, Tmin) on the Q99 precipitation days was extracted for each gauge. The relation 1982 
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between UK extreme hourly precipitation and temperature has been investigated by 1983 

Blenkinsop et al. (2015) who showed that UK hourly extremes scale with temperature 1984 

according to the thermodynamic Clausius-Clapeyron (CC) relation, which states a 6-1985 

7% increase in atmospheric moisture holding capacity per 1°C increase in 1986 

temperature, under constant relative humidity. Table 3 provides a summary of the 1987 

selected variables and their description. 1988 

Variable Description 

Lat Latitude of rain gauge 

Lon Longitude of rain gauge 

Elev Elevation of rain gauge 

Q99 Precipitation 0.99 quantile (wet hours) 

SQ99 
Summer (April-September) precipitation 0.99 quantile (wet 

hours) 

WQ99 Winter (October-March) precipitation 0.99 quantile (wet hours)  

RMed Median of AMAX precipitation 1992-2014 

�̅� 
Average day of occurrence of events exceeding Q99 (rotated 

seasonal statistics) 

�̅� 
Dispersion of events exceeding Q99 around  

�̅� (rotated seasonal statistics) 

N-SQ99 Number of summer (April-September) events exceeding SQ99  

N-WQ99 Number of winter (October-March) events exceeding WQ99  

Tmax Median of maximum temperature on Q99 days 

Tmin Median of minimum temperature on Q99 days 

Table 3: Variables used to identify homogeneous regions for hourly extreme 1989 

precipitation using principal components analysis. Each variable’s contribution to the 1990 

PCA results were assessed, and the most representative variables (shaded) were 1991 

retained. 1992 

To reduce the number of variables used for each gauge, and to identify the most 1993 

meaningful variables from those chosen for the analysis, principal component analysis 1994 

(PCA) was performed. PCA reduces large multivariate statistical datasets to smaller 1995 

and equally descriptive datasets that capture their similarities by creating linear 1996 

combinations of the original data (Wilks, 2011). Each combination describes a 1997 

proportion of the original data, called a principal component (PC). Hosking and Wallis 1998 

(2005) reported the sensitivity of clustering algorithms to the Euclidean distance or 1999 

scale of the variables used, and suggested rescaling the input variables before 2000 
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performing the clustering, to avoid the dominance of variables with large absolute 2001 

values (e.g. altitude). Hence, all the variables in Table 3 were rescaled by dividing each 2002 

variable value by its corresponding median before analysing the PCs.  2003 

Finally, different combinations of the variables in Table 3 were investigated using the 2004 

variable loadings and variance, to determine the most representative combination of 2005 

variables. The loadings, shown in Table 4, indicate the association between the original 2006 

variables and the new linear combinations, while the proportion of variance explained 2007 

by each PC indicates the importance of the PC. Combinations which achieved the 2008 

highest explained variance, and variables showing high loadings were chosen for 2009 

further analysis. 2010 

4.3.2. Clustering Analysis 2011 

To identify homogeneous regions for UK hourly extreme precipitation, a cluster 2012 

analysis was undertaken on the final PC scores for each gauge. Cluster analysis (CA) 2013 

using PC scores has been widely adopted in the literature (e.g. Gottschalk, 1985; 2014 

Jones et al., 2014; Sarhadi and Heydarizadeh, 2014; Forestieri et al., 2018). Sarhadi 2015 

and Heydarizadeh (2014) reported that CA is the most practical method to assess and 2016 

pool similar hydrological and climatological data in homogeneous regions using their 2017 

geographical, physical and statistical characteristics. It is assumed that all stations 2018 

within the homogeneous regions identified by the CA will have similar distributions and 2019 

characteristics, facilitating reliable probability estimates at data scarce or ungauged 2020 

sites (Hosking and Wallis, 2005). 2021 

Generally, cluster analysis (CA) methods for hydrological studies adopt either a 2022 

hierarchical clustering approach such as average and complete linkage (Jackson and 2023 

Weinand, 1995; Ramos, 2001), and Wards method (Jackson and Weinand, 1995; 2024 

Ramos, 2001; Sarhadi and Heydarizadeh, 2014), or a non- hierarchical clustering 2025 

approach such as K-means method (Jones et al., 2014). 2026 

The hierarchical approach clusters the two most similar objects together and continue 2027 

to combine until all objects are in the same cluster. This approach has the advantage 2028 

of visualising the clusters using a tree structure (i.e. dendrogram), and providing 2029 

different groups based on the level of resolution being examined, without the need of 2030 

determining the targeted number of clusters as an input (Tan, 2018). On the other 2031 

hand, the non-hierarchical approach (e.g. K-means) clusters the data in independent 2032 

groups, where the objects within each group are similar to each other and dissimilar to 2033 
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other groups (Tan, 2018). Furthermore, the K-means approach is sensitive to 2034 

erroneous values, and requires the identification of the targeted number of clusters as 2035 

an input, which requires a priori knowledge to avoid clustering the objects inaccurately 2036 

(Ferro and Segers, 2003).  2037 

Therefore, Wards method was used in this study, which employs dendrograms to 2038 

assess and visualise the correlation between input and output dissimilarities between 2039 

different clusters. In addition, Wards method achieved the highest “Cophenetic 2040 

correlation” coefficient values compared to both: K-mean and average and complete 2041 

linkage, which measure how faithfully a dendrogram preserves the pairwise distances 2042 

between the original unmodelled data points (Rao and Srinivas, 2006; Isik and Singh, 2043 

2008). The spatial and topographical contiguity of the regions were also reviewed to 2044 

ensure coherency and relevancy to UK geographical and climatological conditions.  2045 

Rather than rely solely on a statistical estimation of hourly extreme precipitation 2046 

regions, a dynamical approach was also employed by using the 8 European weather 2047 

types (WTs) defined by Neal et al. (2016). The WTs indicate the prevalent circulation 2048 

patterns over Europe and the UK each day. By assigning the appropriate WT to each 2049 

gauge record of Q99, WQ99 or SQ99, it was possible to analyse the proportion of time 2050 

each WT generated an extreme hourly precipitation. Mapping these proportions for 2051 

each station, hence, provided insight into the atmospheric circulation patterns and 2052 

physical processes associated with short-duration extreme precipitation and enabled 2053 

dynamical confirmation of the statistically-derived regional clusters. 2054 

4.3.3. Regional Frequency Analysis (RFA) 2055 

The new regions’ homogeneity and the gauges’ discordancy within each region were 2056 

assessed with respect to RFA guidelines as in Section 3.3.3 (see also Darwish et al. 2057 

(2018)). Furthermore, the precipitation data in each gauge were standardised by 2058 

dividing on the corresponding median to reduce the impact of potential spatial variation 2059 

caused by imprecise recorded values. Then regional Generalised Extreme Value 2060 

(GEV) and Generalised Pareto (GP) distributions were fitted to standardised annual 2061 

maxima (AMAX) and wet hours exceeding the 0.99 quantile (Q99), respectively, to 2062 

estimate AEPs for different durations as in Section 3.3.3 (see also Darwish et al. 2063 

(2018)).  2064 
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4.3.4. Data independence 2065 

Independence and stationarity are important underlying assumptions for regional 2066 

frequency analysis. Therefore, the AMAX at each gauge was used to ensure having 2067 

independent extremes for the fitted GEV distribution. Additionally, further steps were 2068 

performed to ensure independent data for the GP distribution, where multiple 2069 

observations might occur at the same time within each region.  2070 

Initially, the 0.99 quantile (Q99) for each gauge was calculated, then observations 2071 

above Q99 were declustered and retained for further analysis. Subsequently, the Q99 2072 

observation from all the gauges within each region were grouped, and only the highest 2073 

hourly precipitation value per day in each region was selected. 2074 

In this chapter, the ‘‘runs declustering’’ approach by Leadbetter et al. (1989), has been 2075 

adopted to ensure Q99 data independence. The approach considers exceedances to 2076 

belong to the same cluster if they are separated by less than a fixed number of 2077 

occurrences r called “run length” (Tc). However, choosing the “run length” is arbitrary, 2078 

and depends on investigated datasets (Acero et al., 2011). Therefore, the improved 2079 

and automated “run length” technique by Ferro and Segers (2003) was employed in 2080 

the analysis which uses an extremal index variable (Eϴ) to measure the degree of 2081 

clustering of extremes instead of the arbitrary choice of the “run length”. This technique 2082 

allows the assessment of the independence of each gauge data, using a different ‘‘run 2083 

length’’, that is determined automatically as a function of the degree of clustering of 2084 

extremes instead of using the same “run length” across the whole region.  2085 

Therefore, to find the suitable (Tc) for each gauge, an automated approach is used 2086 

that only depends on the extremal index (Eθ), which is calculated from the N 2087 

exceedances of the threshold considering the interexceedance times Ti expressed as 2088 

following (Ferro and Segers, 2003):  2089 

 𝐸𝜃(𝑢) =
2[∑ (𝑇𝑖 − 1)

𝑁−1
𝑖=1 ]2

(𝑁 − 1)∑ (𝑇𝑖 − 1)
𝑁−1
𝑖=1 (𝑇𝑖 − 2)

 (10) 

where N is the exceedances of the threshold (u) considering the interexceedance times 2090 

T.  2091 

The extremal index (Eϴ) takes a value in the interval [0, 1], where independent data, 2092 

Eϴ = 1, while Eϴ =0 indicates full data dependence (clustering). The analysed gauges 2093 

in this research have values higher than 0.7, indicating generally independent values.  2094 
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4.3.5. Goodness of fit measure (Zdist) 2095 

Hosking and Wallis (2005) suggested using the Zdist  measure to assess the goodness 2096 

of fit for a potential fitted distribution. Zdist assesses the goodness-of-fit by comparing 2097 

the difference between the L− kurtosis of the potential distribution and the regional 2098 

average L- kurtosis of the region of interest, weighted proportionally to the sites’ record 2099 

lengths. The L− kurtosis of the potential distribution is estimated by simulating a large 2100 

number of regions having the potential distribution, with L-moments ratios (i.e. L-2101 

variation, L-skewness, and L- Kurtosis) equal to the average regional L-moments ratios 2102 

of the region of interest, besides having the same number of sites and record lengths. 2103 

Therefore, Hosking and Wallis (2005) suggested that for each distribution, the 2104 

goodness-of-fit measure is calculated as: 2105 

Zdist = (𝜏4
𝐷𝐼𝑆𝑇  - 𝜏4

𝑅  + B4) / σ4                                                                      (11) 2106 

Where 𝜏4
𝐷𝐼𝑆𝑇 is the L-kurtosis of the fitted distribution, and DIST can be any distribution 2107 

( e.g. GEV, GPD), 𝜏4
𝑅is the regional average L-kurtosis , B4 is the bias of 𝜏4

𝑅, and σ4 is 2108 

the standard deviation of L- Kurtosis values from simulation. The bias (B4) is calculated 2109 

as:  2110 

𝐵4 =
1

𝑁𝑠𝑖𝑚
∑ 𝜏4

𝑚̅̅ ̅̅ −
𝑁𝑠𝑖𝑚
𝑚=1 𝜏4

𝑅̅̅ ̅                                             (12) 2111 

while the standard deviation of L- Kurtosis values from simulation (σ4) is calculated as: 2112 

𝜎4 = √{(
1

𝑁𝑠𝑖𝑚
) [∑ (𝜏4

𝑚̅̅ ̅̅ − 𝜏4
𝑅̅̅ ̅)

2𝑁𝑠𝑖𝑚
𝑖=1 − (𝑁𝑠𝑖𝑚𝐵4)

2]   }
2

                             (13) 2113 

where Nsim is a large simulation of data sets for a region with N sites, each having the 2114 

potential distribution as its frequency distribution, and 𝜏4
𝑚 is the mth simulated region 2115 

average L-kurtosis value. 2116 

Hosking and Wallis (2005) declare the fit to be adequate if Zdist is sufficiently close to 2117 

zero, while a reasonable criterion is having | Zdist | ≤ 1.64, at an approximate 2118 

confidence level of 90%. 2119 

4.4.  Results 2120 

4.4.1. Principal Components Analysis 2121 

The variables presented in Table 3 were selected to capture the hydro-climatological 2122 

characteristics of the UK hourly extremes, specifically spatial and temporal differences 2123 
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in frequency and intensity as reported in the literature (Blenkinsop et al., 2017; Darwish 2124 

et al., 2018). PCA was carried out for different combinations of the rescaled variables 2125 

to confirm their efficacy in describing and explaining the data patterns, and to identify 2126 

repetitive variables that could be dropped. For instance, the PCA results (i.e. PC 2127 

loadings and total explained variance) showed that including seasonal quantiles (SQ99 2128 

and WQ99) might repeat information from the annual quantiles and did not increase 2129 

the explained variance. Therefore, only the explanatory variables shaded in grey in 2130 

Table 3 were retained for use.  2131 

PCA results for the selected variables (Table 4) show the variation explained by each 2132 

principal component and the loading of each variable. PC1 explains 49% of the total 2133 

variance and is related to temperature, emphasising temperature’s strong association 2134 

with hourly extreme precipitation. PC2 explains 19% of the variance and is related to 2135 

hourly extreme precipitation intensity, with the highest loadings associated with RMed 2136 

and Q99. The absolute loadings of extreme precipitation intensity variables in PC2 are 2137 

noticeably higher than for other variables. PC3 explains 11% of the variance and is 2138 

related to the spatial seasonality and frequency of extreme hourly precipitation, in 2139 

addition to orography. Finally, PC4 (not shown) explains less than 5% of the variance, 2140 

with the highest loading variables similar to those of PC3 (elevation, N-SQ99, and �̅�).  2141 

  2142 
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 2143 

 Variable PC1 PC2 PC3 

LAT 0.318 0.329 0.133 

LON -0.317   -0.276 

Elevation 0.229 -0.248 -0.459 

Q99   -0.636 0.256 

RMed   -0.619   

�̅� 0.366 -0.151   

�̅� -0.255   0.541 

N-SQ99 0.259   0.544 

N-WQ99 0.383   0.138 

Tmax -0.406     

Tmin -0.404     

Proportional contribution  

(explained variance) 49% 19% 11% 

Table 4: Loadings of each variable in the first three principal components and 2144 

proportional contribution to the explained variance. Values in bold are the 2 most 2145 

significant contributing variables for each principal component. Loadings smaller than 2146 

±0.1 are not reported for clarity.  2147 

Selecting the adequate number of components to reflect the data characteristics is 2148 

subjective, and may be based on various factors such as the scree plot, which 2149 

measures the variance (i.e. eigenvalues) associated with each component, the total 2150 

explained variance, and the component eigenvalue. Jolliffe (2002) suggested using the 2151 

number of components on the scree plot where the slope of the curve shows a levelling 2152 

off (elbow). Other researchers have suggested using standard approaches such as 2153 

selecting components with eigenvalues > 1 (Eder, 1989), or using components that 2154 

explain most of the variability (i.e. greater than 70%) (Jolliffe, 1990).  2155 

The scree plot (Figure 10) indicates that the variance curve (red line) decreases slightly 2156 

after the 3rd principal component, while the total explained variance (blue line) indicates 2157 

that the first three components capture 79% of the data variance. Moreover, the 4th 2158 

principal component (Comp.4) explains less than 5%. Additionally, only the 2159 

eigenvalues of the first three components are greater than 1 and therefore only these 2160 

(1-3) were retained for subsequent use in the clustering analysis. 2161 
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 2162 

Figure 10: Scree plot of the principle component analysis (PCA) for the various 2163 

climatological variables in Table 4. Eigenvalue of each component (left Y-axis) (Blue 2164 

line), cumulative explained variance (right Y-axis) (Red line), and component number 2165 

(X-axis). 2166 

4.4.2. Regional Clustering Analysis 2167 

As outlined in Section 4.3.2, three different clustering approaches were assessed 2168 

(Wards, K-means, and average and complete linkage), with Wards method achieving 2169 

the highest “Cophenetic correlation” value (0.78) and most successfully delineating 2170 

spatially-contiguous homogeneous regions. Wards method has been used in other 2171 

hydro-climatic research (Jackson and Weinand, 1995; Ramos, 2001), and is 2172 

recommended as a robust method for variable classification (Modarres and Sarhadi, 2173 

2011). 2174 

PC scores for the three components were calculated for each gauge. These scores 2175 

were then spatially clustered individually (i.e. PC1, PC2, and PC3) and jointly (i.e. PC 2176 

1-3) using Wards method for a range of 3 to 9 target clusters. Comparison of the 2177 

clusters from the individual component scores were assessed for their conformity to 2178 

the physical interpretations described above; while the cumulative scores helped to 2179 

visualise the best regional configuration. Figure 11 illustrates that clustering the gauges 2180 

into 4, 5, or 6 regions best captures the seasonal and locational differences in hourly 2181 

precipitation extremes. Using only three regions did not delineate orographic behaviour 2182 

sufficiently, while using greater than six regions subdivided the southernmost regions 2183 

with little physical justification. The results indicated that four regions (Figure 11a, PC1-2184 

3 and PC2) were able to capture the east-west precipitation difference caused by 2185 
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orographic effects in the north and central UK, though it was not able to capture the 2186 

variation in the south and south-eastern regions. On the other hand, 6 regions (Figure 2187 

11c, PC1-3, PC1, and PC3) begin to subdivide parts of the south and south west UK, 2188 

and clustered climatologically different regions together such as Northern Ireland and 2189 

north-east England (Figure 11c, PC1-3, PC1, and PC2). Using 5 clusters (Figure 11b), 2190 

best captured the east-west and north-south patterns, and reflected the orographic 2191 

effects and seasonal drivers. 2192 
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 2193 

Figure 11: PCA clustering results for UK hourly precipitation using Wards clustering 2194 

approach for (a) 4 regions; (b) 5 regions; and (c) 6 regions. Kernel-smoothed PCA 2195 

scores for all components PC1 to 3 (left column) and individually (i.e. PC1, PC2, and 2196 

PC3) (right three columns) are illustrated. Yellow line are the existing daily extreme 2197 

regions by Jones et al, (2014), and presented here for reference only. 2198 
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As the choice of five regions rather than four or six is relatively subjective, a physical 2199 

reasoning approach was also adopted to assess whether the statistically derived 2200 

regions adequately encompass known weather patterns. Physical reasoning for the 2201 

clusters was assessed by comparing the proportion of events exceeding Q99 at each 2202 

gauge corresponding with each of the 8 daily WTs (Neal et al., 2016) for the period 2203 

1992-2014 (Figure 12). This was repeated for the winter half-year (N-WQ99) and 2204 

summer half-year (N-SQ99) (Figures A9 and A10 respectively). The main WTs 2205 

associated with extreme precipitation are WT2 (i.e. NAO+ pattern) and WT4 (i.e. 2206 

Southwesterly pattern), which are associated with 51% (WT2: 32%, WT4: 19%) of 2207 

precipitation exceeding Q99 (Figure 12). Both weather types are characterised by 2208 

southwesterly flow, bringing warm, moist air, and more frequent stormy weather, 2209 

especially in winter (Figure A9). WT2 contributes a similar proportion of events 2210 

exceeding Q99 precipitation to most gauges, and affects the whole country, noticeably 2211 

in winter where the UK is affected by westerly storms (Figure A9). However, in summer 2212 

(Figure A10), the total contribution of WT2 (22%), is reduced compared to annual 2213 

(32%) or winter (40%), and occurs mostly in the north-western UK. In contrast, WT4 2214 

shows a high occurrence only in the north-western UK annually (Figure 12), and 2215 

seasonally (Figures A9 and A10), which agrees with the direction and track of the 2216 

dominant south-westerly flow characterising this WT. 2217 

Conversely, WTs 6 and 8 (i.e. high pressure centred over UK and Azores high, 2218 

respectively in Neal et al. (2016) are associated with only 5% of events exceeding Q99 2219 

annually across the UK. Both WTs 6 and 8 are characterised by anticyclonic high 2220 

pressure areas over the UK, leading to dry conditions and warm weather in summer, 2221 

and clear skies and cold nights in winter, consistent with low precipitation frequency. 2222 
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 2223 

Figure 12: Proportion of days exceeding Q99 hourly precipitation for each gauge 2224 

across the 8 weather types identified by Neal et al. (2016) over the period 1992-2014. 2225 

Numbers in brackets represent the percentage of all days on which each weather type 2226 

occurs. Circle diameter indicates the proportion of Q99 events within each weather 2227 

type for each gauge. 2228 

 2229 

Figures 12, A9 and A10 all show a clear east-west pattern in WTs 1, 3, and 4 caused 2230 

by the northeasterly, northwesterly, and southwesterly flow respectively, with a weaker 2231 

north-south precipitation pattern (e.g. WTs 3, and 4). While a formal cluster analysis of 2232 

the WT occurrence patterns was not carried out, visual comparison of Figures 13a and 2233 

13b indicates that the main regions of influence for each WT are broadly similar to 2234 

those derived from a statistical analysis. The WT results (Figure 12 and 13b) also 2235 

confirm that either 4 or 5 regions best accommodate the spatial characteristics of 2236 

extreme hourly precipitation. Based on the occurrence patterns and events exceeding 2237 

the annual and seasonal Q99 extremes in each gauge associated with WTs 1-4 2238 

(Figures 12, A9, and A10), the clustered PCA (Figure 11b), and the comparison 2239 

between WTs and PCA clusters in Figure 13, five regions were finally selected to 2240 

represent hourly precipitation extremes in the UK. 2241 
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 2242 

Figure 13: Comparison between (a) the PCA clustering results for UK hourly 2243 

precipitation using Wards clustering approach for 5 regions; and (b) the proportion of 2244 

days exceeding Q99 hourly precipitation for each gauge across weather types 1 to 4 2245 

identified by Neal et al. (2016) over the period 1992-2014. Yellow line (Figure 13a) are 2246 

the existing daily extreme regions by Jones et al, (2014), and presented here for 2247 

reference only. Numbers in brackets represent the percentage of all days on which 2248 

each weather type occurs. Circle diameter indicates the proportion of Q99 events 2249 

within each weather type for each gauge.  2250 

 2251 

The final selection of 5-regions and the defined boundaries are set to reflect the hourly 2252 

extremes spatial variation across the UK based on the PCs and WTs (Figures 13a and 2253 

13b). For instance, Figure 13a indicates that PC1 reflects the southeast and southwest 2254 

boundaries, while PC2 indicates northern regions east-west divide, which highlights 2255 

the orography and the role of the highlands. Furthermore, the east-west divide in PC2 2256 



86 
 

(Figure 13a) is in line with the existing daily regions (e.g. Alexander and Jones, 2000; 2257 

Jones et al., 2014), and the WT 4 (Figure 13b) occurrence patterns. In addition, both: 2258 

PC 1 and PC 3 (Figure 13a) indicates the existence of a transitional region and 2259 

separation between northern and southern regions, which is apparent in WT2 (Figure 2260 

13b) frequency pattern, as it decreases from north to south. The final boundaries were 2261 

selected based on visual inspection, the PCs results, and basic clustering of the WTs 2262 

occurrence frequency pattern. 2263 

4.4.3. Regional homogeneity 2264 

Following the approximate delineation of five regions from the clustering analysis and 2265 

subsequent visual confirmation that these are physically representative (Figure 13), 2266 

formal regional boundaries draw on the extreme daily precipitation regions (Jones et 2267 

al., 2014) with refinements from statistical analyses, below, and geographical 2268 

knowledge. Each region was tested for homogeneity, using regional discordancy and 2269 

homogeneity tests (Hosking and Wallis, 2005). Where gauges appeared to be 2270 

inconsistent with the remaining region, we tested whether to place the gauge in an 2271 

alternative region, remove it, or whether there was a justification for the discordancy. 2272 

This resulted in no modifications or changes as described in further details below, since 2273 

the investigations showed no physical reason or relocation possibility. The final five 2274 

new regions are shown in Figure 14: North West (NW), North East (NE), South East 2275 

(SE), Mid East (ME), and South West (SW). These contain 70, 51, 49, 7, and 20 hourly 2276 

gauges respectively and satisfy the minimum station density and homogeneity criteria 2277 

for RFA (Hosking and Wallis, 2005).  2278 

The results illustrate that the new regions reflect the impact of UK orography, proximity 2279 

to the sea, and large-scale atmospheric drivers, capturing the west-east precipitation 2280 

gradient (demonstrated by NE-NW and SW-SE regions), as well as the north-south 2281 

precipitation extremes variation along the eastern side of the country (regions SE-ME-2282 

NE).  2283 
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 2284 

Figure 14: Final delineation of UK extreme hourly precipitation regions. Regions are: 2285 

South East (SE), South West, Mid-East (ME), North West (NW), and North West (NW). 2286 

The value in parentheses denotes the number of hourly gauges in each region. 2287 

Table 5 contains homogeneity measures (H1, H2, and H3) and maximum gauge 2288 

discordancy measures (D) (Hosking and Wallis, 2005) for each region. The results 2289 

confirm that gauges in the regions SE, SW, NE and ME are not discordant (Dmax < Dcrit), 2290 

and that the SE, SW, and NW regions are “homogeneous” with (H1) values of 0.83, 2291 

0.94, and 0.56 respectively. The results for ME show that the region is possibly 2292 

heterogeneous, with a H1 value of 1.13, but no alterations were made as the gauges 2293 

are not discordant and the limited number of gauges (7) increases uncertainty 2294 

associated with this analysis (Jones et al., 2010).  2295 

 2296 
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Region 

Homogeneity 

measures (H) 

Goodness of 

fit measure 

(Zdist ) 

GEV/GP 

No. of 

gauges 

Max 

discordant 

gauge 

(Dmax) 

Dcrit 

H1 H2 H3 

SE 0.83 0.32 0.04 -0.22/0.31 49 2.63 3.00 

SW 0.94 0.96 0.89 -0.17/-0.43 20 1.84 3.00 

ME 1.13 0.75 0.72 0.18/0.36 7 1.45 1.92 

NW 0.56 -0.57 -0.06 -1.57/0.62 70 3.7 3.00 

NE 2.71 0.87 0.23 1.18/-0.23 51 4.49 3.00 

Table 5: Gauge discordancy (D), region homogeneity (H) and goodness of fit (Z) 2301 

assessment for the UK hourly extreme precipitation regions (SE, SW, ME, NW, and 2302 

NE) shown in Figure 14. The table shows the number of gauges in each region and 2303 

the maximum recommended gauge discordant value (Dcrit) for each region. 2304 

For NW, only one gauge is discordant (D= 3.7 > Dcrit= 3), though the region is 2305 

homogeneous, and removing it from the region only improves the homogeneity value 2306 

slightly. Relocating the gauge to another region is not possible due to its location, but 2307 

as the gauge observations match neighbouring gauges on the same day, we decided 2308 

to retain the gauge within this region. For the NE region, one discordant gauge (D= 2309 

4.49 > Dcrit= 3) also makes the region heterogeneous (H= 2.71). The gauge has a very 2310 

high 1h AMAX value in August 2007 (51.2mm, the highest of any gauge in that year), 2311 

but there is no evidence that this is erroneous or the result of a malfunctioning gauge 2312 

and it is in keeping with the observed weather during that period (Met Office, 2007). 2313 

Relocating the gauge to other regions affected the homogeneity of the neighbouring 2314 

regions, while subdividing the NE region also did not improve the results. While 2315 

removing the gauge improved the homogeneity of the region noticeably (H=1.2), 2316 

Hosking and Wallis (2005) recommend retaining discordant sites unless a physical 2317 

reason justifies removing it. Thus, we decided to retain the gauge in the NE region. 2318 

The other homogeneity measures (i.e. H2 and H3), though having less power to 2319 

discriminate between homogeneous and heterogeneous regions, indicate that all 2320 

regions are definitely homogeneous (H2,3 <=1), including NW, which confirms the 2321 

suitability of 5 regions for further analysis. 2322 

Due to the nature of extremes and the limited availability of 1h precipitation 2323 

observations, having definitively homogeneous regions for the RFA is challenging in 2324 

practice, even after performing subjective modification, relocation, and elimination of 2325 

discordant gauges to improve clustering results (Hosking and Wallis, 2005; Yang et 2326 
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al., 2010; Sarhadi and Heydarizadeh, 2014). Thus, we believe that our results reflect 2327 

the highest practical extent, considering the limited data availability and the spatially 2328 

varying nature of hourly extremes in the UK.  2329 

4.4.4. Regional Frequency Analysis and AEP Estimates 2330 

The goodness of fit measure (Zdist) for the GEV and GP distributions were assessed 2331 

for AMAX and Q99 hourly precipitation, respectively, for each region. The results in 2332 

Table 5 show that both distributions’ Zdist values are within the recommended guideline 2333 

(|Zdist|<1.64) (Hosking and Wallis, 2005) and therefore should be able to reflect the 2334 

spatial patterns in the AMAX and Q99 hourly precipitation in the UK. 2335 

The fitted growth curves for each region in Figure 15 show that both distributions have 2336 

similar shapes and growth factors with overlapping confidence intervals, although the 2337 

GEV growth curves are marginally steeper, in all regions. GEV confidence intervals 2338 

are wider than those for the GP distribution due to the hourly Q99 having 2 to 3 times 2339 

as many observations as those for hourly AMAX for the same period (1992- 2014), and 2340 

less variance in the series. Growth curves are steeper for both distributions in northern 2341 

regions (i.e. NE and NW), where the highest hourly extremes were recorded and 2342 

precipitation generated by large-scale circulation dominates, than for southern regions 2343 

(i.e. SE and SW), where convective precipitation mostly dominates extremes, reflecting 2344 

the role of large synoptic circulation in producing high hourly extremes. Confidence 2345 

intervals for the fitted distributions in ME are wide due to limited gauges (only 7) in the 2346 

region, which increases the sensitivity to extreme values (Hosking and Wallis, 2005; 2347 

Jones et al., 2010).  2348 
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 2349 

Figure 15: Fitted regional GEV and GP growth curves for 1h standardized AMAX (blue) 2350 

and Q99 (red) respectively, and confidence intervals for the fitted GEV distribution 2351 

(blue shading) and GP distribution (red shading). Growth factor (y‐axis), Annual 2352 

Exceedance Probability (AEP) in % (upper x‐axis), and Gumbel reduced variate (lower 2353 

x‐axis). The growth curve represents the multiple increase of a given AEP over an 2354 

index value, here the 50% AEP. 2355 

Probability estimates were calculated for both regional distributions for 20%, 4%, and 2356 

2% AEPs across the UK by multiplying the regional GEV or GP growth factor by the 2357 

gauge specific RMed or median Q99, respectively. We produce a spatial estimate of 2358 

the AEPs through a kernel estimation smoothing on the gauge estimates. Figures 16a 2359 

and 16b highlight the increasing gradient of intensity from the northwest to southeast 2360 

UK for both the GEV and GP distributions for all AEP estimates. However, it should be 2361 

noted that differences between the RMed and median Q99 estimates can lead to 2362 

marginal differences in the AEP estimates even though the growth curves appear 2363 

similar in Figure 15. The GP estimates suggest smoother and more continuous 2364 

patterns, with a slightly lower precipitation intensity, compared to the GEV estimates. 2365 
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 2366 

Figure 16: Estimates for the UK 1h extreme precipitation in mm for 20%, 4%, 2% 2367 

annual exceedance probabilities (AEPs)) using the GEV distribution (a) and GP 2368 

distribution (b). Estimates for each gauge are calculated from the fitted regional growth 2369 

curve multiplied by the site scaling factor (gauge RMed). 2370 

Assessing the frequencies of each WT (Table 6) shows that for WTs 1 to 4, which are 2371 

associated with more than 75% of hourly extremes exceeding Q99, WT2 (i.e. NAO+ 2372 

pattern) and WT4 (i.e. south-westerly flow pattern) are associated with most of the 2373 

annual extremes (i.e. 51%) in the UK. Moreover, WT2 alone is associated with 40% of 2374 

extremes in winter, which is approximately double its summer frequency (22%). In 2375 

contrast, WT1 (i.e. NAO- pattern) and WT3 (i.e. north-westerly pattern) frequency in 2376 

summer increase noticeably compared to winter. Furthermore, the results indicate that 2377 

summer extreme precipitation is associated with a wider range of WTs (i.e. WTs 1 to 2378 

4), with comparable frequencies, while winter extremes are dominated by WT2.  2379 

The WTs frequencies in Figures 13, A9, A10, and Table 6 indicate that WTs 1 and 3 2380 

are mostly associated with heavy showers over eastern England especially during 2381 

summer (Figure A10), suggesting the role of convective conditions in generating 2382 

precipitation. In contrast, WTs 2 and 4 are associated with more frequent stormy 2383 

weather, especially in winter (Figure A9), indicating the role of large-scale precipitation.  2384 

 2385 
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 2386 

  Weather Type 

  WT1 WT2 WT 3 WT 4 WT 5 WT 6 WT 7 WT 8 
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Annual 

(Figure 12) 
12% 32% 14% 19% 9% 3% 9% 2% 

Winter 

(Figure A9) 
9% 40% 11% 21% 7% 2% 8% 2% 

Summer 

(Figure 

A10) 

17% 22% 16% 18% 11% 4% 10% 2% 

Table 6: Proportion of Weather types (WT) 1 to 8 (Neal et al, 2016) across all the 2387 

proposed UK 5 regions annually, in winter, and in summer (underlined).  2388 

We also assessed the median of Q99 hourly precipitation for each weather pattern in 2389 

each region, where the median of each region and weather type relative to the region 2390 

mean was calculated, to evaluate the regional relation between the hourly extremes’ 2391 

magnitudes and the weather types. The results in Figure 17 show that the Q99 hourly 2392 

precipitation median of WTs 3 and 2 are lower than for most of the other weather types, 2393 

whilst the highest median values occur for WTs 5 and 1. This contrasts with the results 2394 

for hourly extreme event frequencies presented in Figure 12 where those for WTs 3 2395 

and 2 were noticeably higher than for WT5. This indicates that the highest hourly 2396 

precipitation extremes might not be associated with the weather types that produce the 2397 

most frequent Q99 hourly extremes.  2398 

 2399 
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 2400 

Figure 17: Median of hourly Q99 precipitation 1992–2014 for each region (SE, SE, ME, 2401 

NW, and NE) and for each of the 8 weather patterns (Neal et al., 2016) (X-Axis), 2402 

expressed as the median of each region and weather type relative to the region mean 2403 

(Y-axis). The weather types are ordered left to right from the lowest UK relative median 2404 

precipitation to the highest. Y-axis (after Richardson et al., 2018 Figure 5). 2405 

4.5.  Discussion and conclusions 2406 

This study aimed to provide a reliable regional characterisation of hourly extremes 2407 

which could lead to improved estimates for various applications in different engineering 2408 

and climatological areas. Using the regional approach would reduce the impact of 2409 

hourly precipitation data scarcity and erroneous recorded data, while the existing daily 2410 

precipitation regions were not able to capture the spatial variation of hourly extremes 2411 

across the UK 2412 

A principal component analysis and clustering approach was adopted to identify five 2413 

new, homogeneous extreme precipitation regions to reflect hourly extreme 2414 

precipitation variations across the UK. These were then adopted in a regional 2415 

frequency analysis to estimate precipitation annual exceedance probabilities for each 2416 

region. The study used a new, quality controlled hourly precipitation dataset 2417 

(Blenkinsop et al., 2017; Lewis et al., 2018) together with associated site 2418 

characteristics (e.g. elevation) and different at-site hydro-climatological characteristics 2419 

(i.e. temperature, precipitation seasonality) to identify the regions. Further, using 2420 

weather types as an auxiliary variable ensured characterising large-scale atmospheric 2421 

circulation systems, and representing important precipitation-generating processes, 2422 

which provided physical plausibility for the regional definition. Previous work in the UK 2423 
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identified precipitation regions using either daily mean (Wigley et al., 1984; Gregory et 2424 

al., 1991), or extreme daily precipitation (Jones et al., 2014). This research presents 2425 

physically plausible regions to improve the characterisation and estimation of short-2426 

duration precipitation extremes. 2427 

Orographic characteristics and large-scale atmospheric circulation patterns showed a 2428 

noticeable role in delineating the extreme precipitation regions, which is consistent with 2429 

daily extreme precipitation studies in the UK and elsewhere (e.g. Jones et al., 2014; 2430 

Johnson et al., 2016). The impact of the Pennines and Southern Uplands and the 2431 

Cambrian mountains is reflected in the east-west delineation, coupled with the most 2432 

frequent weather types (i.e. WTs 2, 3, and 4) characterised by NAO+, south westerly, 2433 

and north westerly circulation flows. This corroborates the northwest-southeast 2434 

precipitation patterns reported in previous studies of daily (Jones et al., 2014) and 2435 

hourly precipitation extremes (Blenkinsop et al., 2017). 2436 

The new regions were assessed for homogeneity (Hosking and Wallis, 2005). The 2437 

results showed that the most robust homogeneity measure, is either homogeneous or 2438 

marginally exceeds the limit in all regions except NW. The heterogeneity in NW is 2439 

caused by a single gauge which recorded a verified hourly observation of 51.2 mm in 2440 

August 2007, and so was retained. The validity of subjective relocation or removal of 2441 

gauges was confirmed with additional homogeneity measures and no further changes 2442 

made. 2443 

Growth curve estimates for regional GEV and GP distributions show similar results, 2444 

with steeper curves for the GEV and overlapping confidence intervals. Wider 2445 

confidence intervals in ME compared to other regions, arising from data scarcity, 2446 

highlights the importance of having dense gauging networks. The growth curves 2447 

estimates show a noticeable difference between northern and southern regions, with 2448 

a steeper GEV curves in northern regions, contrasting with estimates made by Darwish 2449 

et al. (2018) using the existing daily UK extreme regions (Jones et al., 2014), where 2450 

the growth curves indicated similar results across northern and southern regions. This 2451 

indicates that the new proposed regions could capture the spatial variation and the 2452 

hourly extremes patterns across the UK more precisely.  2453 

The annual exceedance probability (AEP) maps for probabilities of 20%, 4%, and 2% 2454 

concur with previous findings of an increasing pattern of hourly and daily extremes 2455 

from the northwest to the southeast (Jones et al., 2014; Blenkinsop et al., 2017). While 2456 
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GP distribution probability estimates are marginally smoother and less sensitive to 2457 

outliers compared with the GEV, estimates for both distributions are comparable 2458 

across the UK. 2459 

Finally, the relationship between hourly extremes and weather types showed that WTs 2460 

5 and 1 have the highest relative median Q99 precipitation intensity, while WT2 has 2461 

the highest frequency of Q99 precipitation events but a lower corresponding relative 2462 

median intensity. These WTs are characterised by southeasterly and northeasterly 2463 

flows that travel across southeast England. Although WT5 is not associated with a high 2464 

frequency of hourly extremes, its dominance as a summer weather type influences the 2465 

higher intensity of those precipitation events which do occur. Recent analysis of daily 2466 

mean precipitation by Richardson et al. (2018) found a stronger relationship for the 2467 

lower intensity results with WTs 2 and 7. While this may seem counterintuitive, it is 2468 

corroborated by recent research indicating that changes in mean precipitation are not 2469 

necessarily matched by those in the extremes (Swain et al., 2018), and that the most 2470 

intense precipitation occurs in fewer events (Westra et al., 2014; Prein et al., 2017; 2471 

Pendergrass, 2018). The results also indicate a difference between weather types 2472 

associated with mean daily and hourly extreme precipitation within the UK, and their 2473 

different generating mechanisms. This confirms the inadequacy of the existing daily 2474 

mean precipitation regions (Alexander and Jones, 2000) and daily extreme 2475 

precipitation regions (Jones et al., 2014) to assess hourly extreme precipitation in the 2476 

UK, which was reported in Darwish et al. (2018).  2477 

In conclusion, this chapter has analysed hourly extreme precipitation and associated 2478 

climatological variables to identify new, homogeneous regions which facilitate the 2479 

analysis and estimation of hourly extreme precipitation in the UK. The developed 2480 

regions capture the hourly extremes spatial variation across the UK, and could be used 2481 

to perform further regional investigation and statistical modelling of extreme 2482 

precipitation.  2483 

 2484 

 2485 
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Chapter 5. Statistical modelling of UK extreme hourly precipitation 2486 

and future climate change responses 2487 

Quantifying extreme precipitation has always been a major challenge for both 2488 

scientists and decision makers. Extreme precipitation is among the most destructive 2489 

climatological events, is highly associated with flash floods, and poses a 2490 

multidimensional threat to urbanised areas. Moreover, simulating extreme precipitation 2491 

using climate models is highly associated with uncertainties, due to scarce data, high 2492 

variability, coarse resolution, and interaction with different climatological variables. 2493 

Typically, statistical analysis assuming stationary processes is used to assess extreme 2494 

precipitation and implement urban drainage design guidelines, however, it is 2495 

increasingly being observed that extreme precipitation is a non-stationary process due 2496 

to both natural and anthropogenically induced climate variability.  2497 

In this chapter the hourly precipitation dataset from 1992-2014, and other 2498 

climatological variables (e.g. temperature, atmospheric pressure) acting as covariates, 2499 

are employed to develop a statistical model that can simulate extreme precipitation 2500 

frequency and intensity, and account for the non-stationary behaviour of extremes. 2501 

This would provide an alternative to the computationally expensive climate models, 2502 

and facilitate the assessment of hourly extremes across the UK.  2503 

Among the objectives of this research is the quantification of the intensity and 2504 

frequency of extreme hourly precipitation under potential climate change using the 2505 

developed statistical model. Therefore, in this chapter extreme value theory and the 2506 

newly developed regions for hourly extremes (Chapter 4) are used to simulate the 2507 

response of future extreme precipitation to potential climate change. 2508 

The chapter concludes with a skilful statistical model that simulates hourly extremes 2509 

intensity and frequency in the UK. Furthermore, the statistical model indicated 2510 

noticeable increase in the UK hourly extreme precipitation intensity and frequency 2511 

during summer, as a response to potential climate change.  2512 

5.1.  Introduction 2513 

Providing reliable precipitation simulations is of importance for many different 2514 

applications, as they are used as basic input into precipitation-runoff, groundwater, 2515 

agricultural and water-usage models (Yunus et al., 2017). This is of particular 2516 

importance as many studies have reported global increases in the frequency and 2517 
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intensity of extreme precipitation (Trenberth et al., 2003; Alexander et al., 2006; Fowler 2518 

and Ekström, 2009; Maraun et al., 2010b; Jones et al., 2013; Simpson and Jones, 2519 

2014) while the second UK Climate Change Risk Assessment (Defra, 2017) suggests 2520 

that climate change will increase fluvial and surface flooding in the UK and related risks 2521 

(e.g. coastal erosion, marine and fresh water ecosystems pollution). However, sub-2522 

daily extremes have so far received limited attention, mainly due to the limited 2523 

availability of high-resolution precipitation observations, the statistical challenges of 2524 

accurately determining sub-daily precipitation probabilities and the challenge of 2525 

simulating the intensity and frequency of precipitation events in physically-based 2526 

models (Westra et al., 2014; Blenkinsop et al., 2017).  2527 

Convection-permitting models (CPMs) are now commonly used as powerful tools to 2528 

simulate hourly extreme precipitation (Westra et al., 2014; Chan et al., 2016). However, 2529 

achieving accurate and reliable simulations from CPMs is computationally-expensive 2530 

and time-demanding (Chan et al., 2014a). Therefore, statistical downscaling of climate 2531 

model output is commonly used to provide a reliable, computationally inexpensive, and 2532 

flexible approach to simulate and estimate extreme precipitation from coarse-2533 

resolution climate model outputs (Fowler et al., 2007). Statistical downscaling has been 2534 

employed to project changes in future precipitation (Dobler et al., 2013; Shashikanth 2535 

et al., 2016), to derive extreme projections under climate change (Hertig et al., 2014; 2536 

Ning et al., 2015), and to improve the statistical distribution of daily precipitation 2537 

amounts (Benestad, 2010). Maraun et al. (2010b), who reviewed the use of 2538 

precipitation downscaling methods for climate change projections, reported that the 2539 

statistical downscaling of precipitation enhances the outputs from coarse-resolution 2540 

climate models, adds considerable value to their projections, and facilitates end users’ 2541 

assessment of climate change and its hydrological impacts. Furthermore, Vrac and 2542 

Naveau (2007) suggest that statistical downscaling approaches can incorporate 2543 

different flexible statistical modelling such as generalized linear modelling (GLM) and 2544 

extreme value theory (EVT), which are computationally efficient and practical, to 2545 

improve estimation of extremes.  2546 

The GLM has been used widely to simulate and characterise the frequency of intense 2547 

precipitation in different locations (Chandler and Wheater, 2002; Benestad, 2010; 2548 

Hertig et al., 2014). Yang et al. (2005) and Benestad (2007) used the GLM to model 2549 

station-based daily precipitation data in southern England and extreme precipitation 2550 

over northern Europe respectively. Recently, Hertig et al. (2014) adopted a GLM 2551 
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approach to perform statistical modelling of extreme precipitation indices for the 2552 

Mediterranean area under future climate conditions. 2553 

Extreme value theory (EVT) has also been used widely to characterise extreme 2554 

precipitation in different locations and for different durations. Vrac and Naveau (2007) 2555 

used EVT to improve the representation of local daily extreme precipitation in Illinois, 2556 

USA, while Wi et al. (2016) adopted EVT to perform frequency analysis of extreme 2557 

precipitation in South Korea for sub-daily durations (1-, 6-, 12-, and 24-hours). In the 2558 

UK, Jones et al. (2013) employed EVT to assess changes in seasonal and annual daily 2559 

extreme precipitation. Jones et al. (2014) further extended this approach to 2560 

characterise daily extremes and identify extreme precipitation regions for the UK, 2561 

before developing a Generalised Additive Model for UK daily precipitation extreme 2562 

frequency (Tye et al., 2016). 2563 

UK extreme precipitation is influenced by both large scale atmospheric circulation 2564 

patterns such as synoptic weather systems and atmospheric rivers, besides local 2565 

weather such as convective instability (Cyril et al., 2007; Champion et al., 2015). 2566 

Therefore, it is important to consider both as potential drivers of changes in sub-daily 2567 

extreme precipitation. Recently, various studies investigated subdaily precipitation in 2568 

the UK (e.g. Blenkinsop et al., 2017; Darwish et al., 2018; Lewis et al., 2018; Xiao et 2569 

al., 2018) Blenkinsop et al. (2017) developed a new quality controlled dataset for UK 2570 

hourly precipitation, and examined its seasonal and diurnal climatology; Lewis et al. 2571 

(2018) used this to produce a new 1 km resolution gridded hourly precipitation dataset 2572 

for the UK. Additional analysis of average hourly precipitation over the UK by Xiao et 2573 

al. (2018) reported noticeable peaks in early morning and afternoon, with apparent 2574 

regional variation in spring and summer. Subsequently, as detailed in Chapter 3 of this 2575 

thesis, Darwish et al. (2018) assessed sub-daily extreme precipitation patterns, their 2576 

diurnal cycle, and produced annual probability estimates using regional frequency 2577 

analysis (RFA) for the daily extreme precipitation regions developed by (Jones et al., 2578 

2014). This showed the need for new regions to capture spatial and temporal 2579 

characteristics of hourly extremes, performed in Chapter 4. As detailed in Chapter 4 of 2580 

this thesis, EVT, climatological clustering, and regional frequency analysis (RFA) 2581 

approach are used to identify hourly extreme precipitation regions in the UK.  2582 

Here, our goal is to develop a simple and reliable statistical model that can simulate 2583 

hourly extreme precipitation patterns in the UK, using relevant climatological predictors 2584 

reflecting large-scale and local conditions. This should provide a practical alternative 2585 
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to high-resolution climate modelling to simulate realistic frequencies and intensities of 2586 

hourly precipitation extremes, as well as to assess the potential impact of climate 2587 

change scenarios. We use a GLM embedded in EVT distributions to model hourly 2588 

precipitation extremes across the UK, at 197 UK gauges using the hourly extreme 2589 

precipitations regions established in Chapter 4. Although existing regulations and 2590 

design guidelines for flood infrastructure assume stationary conditions (Madsen et al., 2591 

2013), this assumption in EVT is questionable, due to non-stationary caused by 2592 

anthropogenic warming as well as natural climatic variability (Salas and Obeysekera, 2593 

2013). Therefore, several studies recommend the adoption of non-stationary analyses 2594 

(Renard et al., 2006; Katz, 2010; Rootzén and Katz, 2013). 2595 

In recent decades, various studies have adopted non-stationarity in the analysis of 2596 

trends in observed hydrological events (e.g.Franks, 2002; Vogel et al., 2011), 2597 

estimation of frequency distribution (e.g. Katz et al., 2002; Raff et al., 2009), and 2598 

determination of risk and design guidelines for hydrological structures within a non-2599 

stationary framework (e.g. Mailhot and Duchesne, 2009; Rootzén and Katz, 2013; 2600 

Salas and Obeysekera, 2013). 2601 

In this chapter, GLM and EVT non-stationary distributions coupled with downscaled 2602 

climate variables and observed NAO datasets are adopted to quantify the UK hourly 2603 

extreme precipitation (i.e. frequency and intensity). This is the first study to investigate 2604 

hourly extreme precipitation in the UK, build a statistical model that employ various 2605 

climatic variables to quantify hourly extreme precipitation characteristics (i.e. frequency 2606 

and intensity) while considering for the non-stationary nature of the hydrological 2607 

events, and evaluate potential changes under climate change scenario.  2608 

The Chapter is structured as follows. Following a description of hourly precipitation 2609 

data, and the potential climatological predictors in Section 2, the methodology, 2610 

probability distributions, statistical model selection and validation process outlined in 2611 

Section 3. The results of correlations between hourly extremes and related 2612 

climatological variables (e.g. Temperature, Sea level pressure), selection of 2613 

covariates, statistical model performance, and a pseudo-global warming approach to 2614 

analyse future behaviour are presented in Section 4. Finally, Section 5 discusses the 2615 

results, the potential implications from the statistical modelling, and future research. 2616 
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5.2.  Data 2617 

5.2.1. Precipitation data 2618 

This research uses an hourly precipitation dataset for the UK derived from precipitation 2619 

gauges covering the years from 1992 - 2014 (Blenkinsop et al., 2017; Lewis et al., 2620 

2018). The dataset (up to 2011) was collected by Blenkinsop et al. (2017) from three 2621 

sources: the UK Met Office Integrated Data Archive System (MIDAS), the Scottish 2622 

Environmental Protection Agency (SEPA), and the UK Environment Agency (EA). 2623 

Blenkinsop et al. (2017) performed a series of site‐specific quality control (QC) 2624 

procedures on the data to detect accumulated totals, malfunctioning gauges and 2625 

unfeasible extreme precipitation totals. This was subsequently extended to 2014 and 2626 

subjected to additional QC checks against neighbouring gauges (Lewis et al., 2018). 2627 

Here we apply the additional criteria of having at least 85% of the gauge record 2628 

complete (i.e., non-missing and data not flagged by the QC process) for each year in 2629 

the period 1992–2014. In total, 197 gauges distributed across the UK (shown in Figure 2630 

1) fulfilled the criteria. These criteria were selected as a trade-off between having long 2631 

records and data completeness. Further details on the adoption of these criteria can 2632 

be found in Section 3.2.  2633 

Moreover, the UK hourly extreme precipitation regions (Figure 14) developed in 2634 

Chapter 4, which were identified from a principal components analysis of extreme 2635 

precipitation statistics, climatological variables (e.g. temperature), location 2636 

characteristics, and the spatial analysis of predominant weather types (Neal et al., 2637 

2016), are used to analyse the hourly extremes, as well as to build and validate the 2638 

statistical model.  2639 

5.2.2. Predictors 2640 

In the UK, hourly extreme precipitation is related to both large-scale circulation patterns 2641 

(Cyril et al., 2007; Champion et al., 2015) as well as to local, convective-scale 2642 

processes (Blenkinsop et al., 2015; Chan et al., 2018b). There is a lack of 2643 

understanding of conditions driving extreme hourly precipitation in the UK (Holley et 2644 

al., 2014; Blenkinsop et al., 2015). Therefore, a range of traditional and novel climatic 2645 

variables associated with hourly precipitation extremes in the UK were investigated as 2646 

potential predictors to build the statistical model (see Table 7 and further detailed 2647 

below). These variables were selected to reflect both local conditions and large-scale 2648 
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circulation associated with extremes. They represent the convective potential, 2649 

temperature, atmospheric pressure, and moisture content conditions.  2650 

A simple sinusoidal formula premised on the Julian day (number of elapsed days since 2651 

the beginning of a particular year) of occurrence, and often adopted to simulate regular 2652 

annual fluctuations (Rust et al., 2009), was also used as a predictor to reflect the 2653 

seasonality of the hourly extremes with all potential predictors. However, using the 2654 

sinusoidal formula alone does not represent hydrological extreme (i.e. precipitation and 2655 

floods) seasonality in the UK adequately, due to the fluctuations caused by 2656 

atmospheric oscillations (Huntingford et al., 2014; Tye et al., 2016)  2657 

All potential predictors and climatic variables except the NAO are based on 0.75° × 2658 

0.75° gridded daily averaged output (Figure 18) for the period 1992–2015 from the 2659 

European Center for Medium-Range Weather Forecasts (ECMWF) Interim reanalysis 2660 

dataset (Dee et al., 2011). For each variable, a daily area average of each grid cell 2661 

was calculated, thereafter, the value was assigned to the gauges within the grid cell. 2662 

The NAO index, which is defined as the normalized pressure difference between 2663 

Azores and Iceland, was derived from a monthly pressure observational dataset 2664 

between 1992-2015 (Jones et al., 1997). 2665 

  2666 
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 2667 

Variable Measured phenomenon  Acronym  

Seasonality   

𝑆𝑖𝑛𝑒 (
2𝜋 ∗ 𝐽𝑢𝑙𝑖𝑎𝑛 𝑑𝑎𝑦

365.25
)  

Seasonality Sin (ϴ) 

𝐶𝑜𝑠𝑖𝑛𝑒 (
2𝜋 ∗ 𝐽𝑢𝑙𝑖𝑎𝑛 𝑑𝑎𝑦

365.25
) 

Seasonality Cos (ϴ) 

Convective variables  

Convective available 

potential energy  

Availability of convective conditions CAPE 

Convective inhibition Energy needed to initiate convective 

precipitation 

CIN 

Temperature variables  

Temperature at 2m level Temperature near the surface ~2m 

above the ground 

T-2m 

Dew point temperature Temperature to which air must be 

cooled to become saturated with 

water vapour 

DPT 

Sea surface temperature Water temperature close to the 

ocean surface 

SST 

Atmospheric variables  

North Atlantic Oscillation Normalized sea-level pressure 

difference between predefined 

locations 

NAO 

Sea level pressure Atmospheric pressure at sea level SLP 

Atmospheric pressure 850-, 

700-, 500hPa height 

Actual height of a pressure surface 

above mean sea-level 

Z850,Z700,and 

Z500 

Moisture variables   

Total column water vapour  Total gaseous water contained in a 

vertical column of atmosphere 

TCWV 

Table 7: Potential predictors used to develop a statistical model of the frequency and 2668 

intensity of hourly precipitation extremes.  2669 

 2670 
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 2671 

Figure 18: The 0.75° × 0.75° grid, where the daily average of all potential climatic 2672 

variables (except the NAO) over the UK are extracted from European Center for 2673 

Medium-Range Weather Forecasts (ECMWF) Interim reanalysis dataset between 2674 

1990-2015 (Dee et al., 2011). For each variable, a daily area average of each grid cell 2675 

was calculated (red dots), thereafter, the value was assigned to the gauges within the 2676 

grid cell 2677 

 North Atlantic Oscillation (NAO) 2678 

The NAO is defined as the normalized sea-level pressure (SLP) difference between 2679 

the subtropical high (i.e. Azores) and polar low (i.e. Iceland), and is the dominant mode 2680 

of climate variability around the North Atlantic (Hurrell, 1995; Hall and Hanna, 2018). 2681 

The NAO has positive and negative phases. In winter, a positive NAO phase is 2682 

associated with increasing storm activity over the UK and northern Europe, while in 2683 

summer, a negative NAO phase is associated with higher precipitation intensity (Hall 2684 

and Hanna, 2018). Recent improvements in seasonal NAO predictability have the 2685 

potential to improve precipitation predictability in the UK (Hanna and Cropper, 2017; 2686 

Hall and Hanna, 2018).  2687 

Several studies have reported on the importance of the NAO in modulating 2688 

precipitation over Europe (e.g. Hurrell, 1995; Jones et al., 1997; Cropper et al., 2015). 2689 
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Hanna and Cropper (2017) reported a significant relation between the NAO and 2690 

climate variability over the North Atlantic. In addition, Sutton and Dong (2012), 2691 

analysing European climate using mean temperature, pressure, and precipitation, 2692 

showed that during the 1990s, a substantial shift in the European climate coincided 2693 

with a significant warming of the North Atlantic Ocean. This climate shift was 2694 

characterised by anomalously wet summers in northern Europe, and hot, dry, summers 2695 

in southern Europe, emphasising the important role of the North Atlantic Ocean for 2696 

European weather. In the UK, the NAO index can be used as a proxy for north Atlantic 2697 

jet streams and storm track variability and, hence, UK precipitation (Vallis and Gerber, 2698 

2008; Hanna and Cropper, 2017). Therefore, the NAO index (Jones et al., 1997) is 2699 

examined for use as a covariate in the statistical modelling to characterise the 2700 

frequency and intensity of extremes. 2701 

 Convection parameters (CAPE and CIN)  2702 

In the UK, different studies have reported that extreme precipitation events in the UK, 2703 

especially in summer, mostly occur due to convective conditions (Bennett et al., 2006; 2704 

Kendon et al., 2014; Blenkinsop et al., 2017; Darwish et al., 2018). A significant 2705 

proportion of UK precipitation is produced by convective clouds associated with both 2706 

frontal activity and air-mass cumulonimbus clouds (Bennett et al., 2006). The coastline, 2707 

the topography, and the wind direction across the UK all have a significant influence 2708 

on the initiation of convection (Hand, 2005; Bennett et al., 2006); The UK is also often 2709 

subject to convection that has initiated on the European continent (Flack et al., 2016). 2710 

Moreover, convective conditions are highly variable in the UK, both spatially and 2711 

temporally, with maximum activity during summer (Holley et al., 2014).  2712 

The initiation of convective precipitation conditions requires three components: 2713 

atmospheric instability, moisture availability, and lifting forces (Johns and Doswell, 2714 

1992). Two related parameters are used here that represent these components - 2715 

convective available potential energy (CAPE) and convective inhibition (CIN).  2716 

CAPE denotes the potential available energy to form cumulus convection which leads 2717 

to convective precipitation. It is characterised by a positive virtual temperature 2718 

difference between an idealised rising air parcel and its environment, vertically 2719 

integrated with respect to the natural logarithm of pressure (p) between the level of 2720 

free convection (LFC) and equilibrium level (EL) (Riemann‐Campe et al., 2011). Parcel 2721 

theory defines CAPE as a thermodynamic parameter reflecting atmospheric instability 2722 
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and moisture, which measures the potential buoyancy of a theoretical rising air parcel 2723 

and its environment. CIN denotes the energy needed by the parcel to overcome the 2724 

boundary layer to reach the CAPE (Moncrieff and Miller, 1976). For convection to 2725 

occur, a rising air parcel must overcome any available convective inhibition (CIN). 2726 

CAPE can be calculated as: 2727 

 𝐶𝐴𝑃𝐸 = ∫ 𝑅𝑑  (𝑇𝑣𝑝 − 𝑇𝑣𝑒) 𝑑ln (𝑝)
𝐸𝐿

𝐿𝐹𝐶

 (14) 

while CIN is calculated as: 2728 

 𝐶𝐼𝑁 = ∫ 𝑅𝑑  (𝑇𝑣𝑒 − 𝑇𝑣𝑝) 𝑑ln (𝑝)
𝐿𝐹𝐶

𝑆𝐹𝐶

 (15) 

Where LFC is the pressure of the level of free convection, SFC is level of the surface 2729 

or beginning of parcel path, EL is pressure of the equilibrium level, Rd is the gas 2730 

constant, p is the atmospheric pressure, Tvp and Tve are parcel and environmental 2731 

virtual temperatures respectively. 2732 

Accordingly, the higher the value of CAPE, the greater the potential for severe 2733 

convection. However, the ascent of air should also overcome any stable boundary 2734 

layer (i.e. where the boundary layer has a high CIN value) to generate severe 2735 

convection (Holley et al., 2014). Thus CAPE and CIN are explored for inclusion as 2736 

covariates. 2737 

  Temperature (T-2m and DPT) 2738 

Temperature has a significant physical and climatological relation with precipitation, 2739 

and is considered as one of the defining controls on precipitation intensity. It should be 2740 

noted that the relationship with precipitation occurrence is far more complicated and 2741 

can vary both by season and location (e.g. Cong and Brady, 2012; Tencer et al., 2014). 2742 

The relation between temperature and extreme precipitation are governed by the 2743 

Clausius–Clapeyron (C-C) relation, which explains the increased capacity of warmer 2744 

air to hold moisture under constant relative humidity. Trenberth et al. (2003) 2745 

hypothesised that under the C-C relation a 6–7% increase in the intensity of extreme 2746 

precipitation is expected per 1°C increase in temperature if relative humidity remains 2747 

constant. This rate has been confirmed for daily precipitation intensities by a number 2748 

of studies including Fischer and Knutti (2016) and Westra et al. (2013). However, the 2749 

intensity relation with temperature is also complicated by other factors such as 2750 

changes in large-scale circulation (Trenberth and Shea, 2005; Trenberth, 2011), event 2751 
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type (Wasko and Sharma, 2014), and moisture content (Lenderink and Van Meijgaard, 2752 

2008). 2753 

Climate models suggest that increasing temperature would increase the capacity of 2754 

warm air to hold more moisture, leading to an increase in daily and hourly extreme 2755 

precipitation (Allan and Soden, 2008; Arnbjerg-Nielsen et al., 2013; Kendon et al., 2756 

2014). Observational studies support this result, and report increasingly intense 2757 

precipitation extremes due to increasing temperature (Alexander et al., 2006; 2758 

Trenberth, 2011; Alexander, 2016). 2759 

Recent studies of sub-daily extreme precipitation have confirmed the C-C relation and 2760 

indicated an increase in intense precipitation on short observational timescales with 2761 

temperature increase (Lenderink and Van Meijgaard, 2008; Hardwick Jones et al., 2762 

2010; Lenderink et al., 2011; Barbero et al., 2017; Blenkinsop et al., 2018; Kendon et 2763 

al., 2018). In the UK, Blenkinsop et al. (2015) confirmed that hourly extremes follow 2764 

approximately the C-C relation, and the increase is centred around 6.9% °C-1, although 2765 

the relation varies seasonally. Other studies have shown super C-C scaling for hourly 2766 

precipitation intensities (e.g. Lenderink and Van Meijgaard, 2008). 2767 

Lenderink and Van Meijgaard (2008) reported that highest sub-daily precipitation 2768 

intensities are associated with convective showers, which are highly related to surface 2769 

temperature and moisture availability. Therefore, 2m surface air temperature and dew 2770 

point temperature (DPT) are investigated as potential covariates for the statistical 2771 

modelling. Dew point temperature (DPT) reflects the temperature to which air must be 2772 

cooled to become saturated with water vapour, which will be condensed into the liquid 2773 

state, forming precipitation once air temperature cools further (Wallace and Hobbs, 2774 

2006). 2775 

Both of these variables have been used in previous research, and can be used to scale 2776 

the relation between extreme precipitation and temperature, though using the dew 2777 

point temperature is preferable as it has less spatial and temporal variation, and it 2778 

quantifies explicit information on both temperature and near-surface humidity (Kürbis 2779 

et al., 2009; Lochbihler et al., 2017; Ali et al., 2018). 2780 

 Sea surface temperature (SST) 2781 

The North Atlantic plays a major role in determining the climatology of Europe and the 2782 

UK. Gastineau and Frankignoul (2015) reported that summer atmospheric circulation 2783 

and sea level pressure over the Atlantic are highly affected by the preceding spring 2784 
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Atlantic sea surface temperature (SST), and this affects European summer weather. 2785 

The hydrological cycle, moisture content, and atmospheric circulation over the UK are 2786 

largely affected by North Atlantic climatology (Colman, 1997; Sutton and Hodson, 2787 

2005). Wang and Dong (2010) indicated that increased North Atlantic SSTs would 2788 

increase oceanic evaporation, generating positive moisture anomalies moving over the 2789 

UK. Moreover, Sutton and Dong (2012), analysing European climate change patterns 2790 

in the 1990s, reported that North Atlantic Ocean warming is a key driver in determining 2791 

European summer climate and precipitation patterns.  2792 

Recently, Ossó et al. (2018) confirmed the SST relation with south east Atlantic 2793 

summer precipitation, especially in the UK, and reported that summer precipitation 2794 

patterns can be predicted using the preceding spring Atlantic SST index. In addition, 2795 

SST patterns control the position of the jet stream over the North Atlantic, which affects 2796 

UK precipitation in all seasons (Ossó et al., 2018). Similarly, Wilby et al. (2004) and 2797 

Neal and Phillips (2009) reported robust relationships between summer precipitation 2798 

in the UK south and southeast regions and preceding North Atlantic SSTs. 2799 

Furthermore, Lavers et al. (2013), reported that transferred moisture from the North 2800 

Atlantic, which has a directly proportional relationship with SSTs, contributes 2801 

noticeably to winter extreme precipitation in the UK.  2802 

Here, coincident and lagged SST values are considered as potential predictors. We 2803 

examine the relation between hourly extremes in the UK and both SSTs and an SST 2804 

index (Ossó et al., 2018). The SST mean over the domains located in the north west 2805 

(42°N–52°N, 52°W–40°W) (Domain 1) and south east (35°N–42°N, 35° W–20°W) 2806 

(Domain 2) of the North Atlantic on the day of the extreme (SST-Avg), and 4 months 2807 

earlier (SST-Avg-lag) are investigated (Figure 19). The SST index, which is the 2808 

difference in average SST between the two domains, is investigated over the same 2809 

time frames (SST-Index and SST-Index-4lag).  2810 

http://context.reverso.net/translation/english-arabic/a+directly+proportional+relationship
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 2811 

Figure 19: The domains located in the north west (42°N–52°N, 52°W–40°W) (Domain 2812 

1) and south east (35°N–42°N, 35°W–20°W) (Domain 2) of the North Atlantic, where 2813 

the sea surface temperature (SST) between 1990-2015 was extracted, to investigate 2814 

its relation with hourly extremes in the UK. Longitude (x-axis) and latitude (y-axis)  2815 

 Atmospheric pressure  2816 

Atmospheric pressure, and its derived indices, play a significant role in the climatology 2817 

of the UK. High and low pressure systems have a significant role in determining airflow 2818 

directions and consequently influence heavy precipitation (Barry and Chorley, 2009).  2819 

Hofstätter et al. (2018), who analysed large-scale, heavy precipitation over Europe and 2820 

the role of atmospheric cyclones, reported significant relations with the geopotential 2821 

height at different levels such as: 850-hPa (Z-850), 700-hPa (Z-700), and 500-hPa (Z-2822 

500). Esteban et al. (2006) analysed the daily atmospheric circulation over western 2823 

Europe using reanalysis data and found that using Z-500 characterizes well enough 2824 

the complex circulation variability. Moreover, Kilsby et al. (1998) confirmed the benefit 2825 

of using mean sea level pressure (MSLP) to predict precipitation statistics in the UK, 2826 

suggesting that using other circulation data, such as upper air circulation (e.g. Z-750 2827 

or Z-500) would improve the physical basis of regression models.  2828 
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Tye et al. (2016) reported a strong significant seasonal relationship between daily 2829 

precipitation extremes and MSLP, especially in the north and west of the UK. This 2830 

supported prior research by Lavers et al. (2013) on the role of atmospheric rivers over 2831 

the UK in transferring moisture from the Atlantic, and their dependence on MSLP. 2832 

Recently, Chan et al. (2018b) used MSLP and Z-850 relative vorticity as predictors, 2833 

among other large-scale variables, to assess convection-permitting climate simulations 2834 

in the southern UK, demonstrating that their inclusion in a statistical model well 2835 

enhance the simulation of hourly extreme precipitation.  2836 

 Therefore, the correlation of MSLP and geopotential height at different levels (i.e. Z-2837 

850, Z-700, and Z-500) with hourly extreme precipitation is also investigated for use 2838 

as predictors in the statistical model. 2839 

 Total column of water vapour (TCWV) 2840 

Total column water vapour (TCWV) is a measure of the total gaseous water contained 2841 

in a vertical column of the atmosphere. It represents over 99% of the atmospheric 2842 

moisture, and comprises the major source of atmospheric energy governing the 2843 

process of cloud formation, energy exchange within a system, and the development of 2844 

weather systems on short time scales (Wypych et al., 2018). 2845 

Trenberth (2011) indicated that the strong correlation between TCWV and SSTs, could 2846 

lead to more extremes in the future under different climate change scenarios. Wypych 2847 

et al. (2018) confirmed the importance of TCWV over Europe and the North Atlantic, 2848 

besides the significance of atmospheric circulation in forming the moisture content, 2849 

especially in winter. Furthermore, Beckmann and Adri Buishand (2002) used TCWV to 2850 

statistically downscale and simulate precipitation occurrence and frequency in Europe 2851 

(i.e. Germany and the Netherlands) from a GLM, and reported that TCWV is among 2852 

the most powerful predictors of wet-day precipitation amounts. Blackburn et al. (2008) 2853 

reported that during the UK 2007 floods, a similar weather system could not have 2854 

produced the same floods without the available TCWV over the UK, which was much 2855 

higher than the average. Therefore, the TCWV over the UK is also considered as a 2856 

predictor for hourly extreme precipitation.  2857 

5.3. Methodology 2858 

Hourly precipitation across the UK is investigated and modelled using GLM and EVT 2859 

to simulate both the occurrence and intensity at extreme levels. Extreme events are 2860 

rare and infrequent by definition, which incorporates a noticeable uncertainty in 2861 
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estimating the underlying distribution parameters (Naveau et al., 2005). Here we use 2862 

peak over threshold (POT) data to identify the parameters of a Poisson process. 2863 

5.3.1. Generalized linear model (GLM) 2864 

Adopting a stochastic weather generator approach (e.g. Furrer and Katz, 2008) we 2865 

assume that the processes governing extreme precipitation occurrence and the 2866 

extremity of the intensity are similar but not necessarily the same. Thus, we adopted 2867 

the Poisson distribution to simulate the arrival rate, or occurrence, of an extreme event. 2868 

Given that an event has occurred, its intensity is then described by the GPD.  2869 

GLMs are a flexible generalization of ordinary linear regression that allow for response 2870 

variables that have error distribution models other than a normal distribution (Olsson, 2871 

2002). The GLM uses a link function to relate the linear model to the response variable 2872 

and generalizes the linear regression, which allows the magnitude of the variance of 2873 

each measurement to be a function of its predicted value. 2874 

The Y outcome of the dependent variables is assumed to be generated from a 2875 

particular distribution in the exponential family, such as normal, binomial, Poisson or 2876 

gamma distributions (Madsen and Thyregod, 2010). The mean, μ, of the distribution 2877 

depends on the independent variables, X, through: 2878 

Ε(𝐘) = 𝜇 = 𝑔−1(𝐗𝜷)                                                    (16) 2879 

where E(Y) is the expected value of Y; Xβ is the linear predictor, a linear combination 2880 

of unknown parameters β; and g is the link function.  2881 

 Poisson distribution 2882 

The Poisson distribution is a discrete probability distribution that expresses the 2883 

probability of a given number of events occurring in a fixed interval of time or space at 2884 

a known constant rate (λ); each event is assumed independent of the previous 2885 

(Madsen and Thyregod, 2010). For an average number of events in time interval (t), 2886 

the Poisson probability density function (pdf) is:  2887 

𝕡(Y = y) =
𝑒−𝜆𝜆𝑦

𝑦!
, 𝑦 = 0,1,2,3, …                                            (17) 2888 

Where λ is the average number of events occurring in time t, and y any positive number 2889 

of events.  2890 

Rearranging the proper functional form to solve for λ provides a construct for the log 2891 

likelihood function and the parameter estimation. The resultant statistical model, 2892 

https://en.wikipedia.org/wiki/Expected_value
https://en.wikipedia.org/wiki/Discrete_probability_distribution
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referred to as the Poisson regression model, can then be used to predict the probability 2893 

occurrence of extreme precipitation. 2894 

The Poisson distribution assumes equality in the variance (Vi) and mean (Ei) of the 2895 

data, both of which equal the event rate (λi), also referred to as equidispersion. 2896 

Variance greater than mean of the data implies overdispersion, and a negative 2897 

binomial distribution would be more appropriate. Contrary, estimated variance smaller 2898 

than the mean of the data, underdispersion, indicates that events arrive at a rate which 2899 

is more regular or uniform than expected from a Poisson process. 2900 

 Link function g(µ) 2901 

The link function g(µ) is used to establish a relationship between the count response 2902 

Y and the linear predictors X1,…,Xn in a GLM. It is chosen based upon the type of data 2903 

in the model. The general form of the link function is  2904 

g(µ) =Xß                                                                (18) 2905 

In this research, the precipitation occurrence data is discrete count data; therefore, for 2906 

Poisson distributed data, the link function is 2907 

g(µ) = log(λ)                                                             (19) 2908 

5.3.2. Extreme Value Theory (EVT) 2909 

Extreme value theory describes a family of distributions which characterise the tail of 2910 

the distribution of a series of maximum values without a priori knowledge of the 2911 

underlying behaviour (Coles et al., 2001). When considering the maxima within a 2912 

certain period, the two main approaches used are either block maxima (BM) where 2913 

data are grouped into blocks of the same duration, or peaks over threshold (POT), 2914 

where the values exceeding a specified threshold are selected for the analysis. 2915 

Hourly precipitation data are limited and scarce, therefore, the POT approach is 2916 

adopted here to maximise the available data. The POT approach utilizes additional 2917 

information about the extreme upper tail, which provides more accurate parameter and 2918 

quantile estimates (e.g. Katz et al., 2002). It has been widely used to estimate climatic 2919 

extreme variables such as extreme precipitation (e.g. Francisco Javier et al., 2011; 2920 

Thiombiano et al., 2017), temperature (e.g. Cheng et al., 2014), and wind velocity (e.g. 2921 

Pandey et al., 2003). 2922 
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An adequate asymptotic distribution to describe the behaviour of events over a 2923 

threshold is the Generalized Pareto Distribution (GPD) defined by Coles et al. (2001) 2924 

with the following cumulative distribution function (CDF): 2925 

H(y) = 1 − (1 +
ξy

σ̃
)
−1

ξ⁄                                                       (20) 2926 

where ξ and σ̃ are the shape and scale parameters respectively, while y are the 2927 

excesses over a selected threshold u. At a sufficiently high threshold, the Generalized 2928 

Extreme Value (GEV) distribution (describing BM) and the GPD become 2929 

mathematically equivalent, sharing a common shape parameter and with easily 2930 

interpretable definitions of the GEV’s location, and GP’s threshold and scale 2931 

parameters (Coles et al., 2001). 2932 

Specifying the threshold in the POT approach is essential to achieve the balance 2933 

between bias and the variance of the distributions (Coles et al., 2001; May, 2004). 2934 

Generally speaking, defining the threshold will control the sample size and distribution 2935 

behaviour. Having a low threshold would violate the GPD asymptotic and data 2936 

independence assumptions. While having too high a threshold would eliminate some 2937 

of the extreme values, and retain few values for the analysis (Coles et al., 2001). 2938 

Previous examination of daily precipitation over Europe examined different thresholds 2939 

such as the 0.95 and 0.99 quantiles, reporting better results for the 0.99 quantile 2940 

(Anagnostopoulou and Tolika, 2012; Jones et al., 2014). Moreover, Anagnostopoulou 2941 

and Tolika (2012) reported that this threshold is the most appropriate for extreme 2942 

precipitation over Europe, and provides more coherent results compared to other 2943 

thresholds and facilitates better comparison with a GEV analysis. In this research, the 2944 

0.99 threshold was used since it achieves a balance between having a high threshold 2945 

and sufficient sample size. 2946 

The GPD density functions assume stationarity, therefore, it can capture the temporal 2947 

behaviour of extremes within the analysis period given that the extreme mechanisms 2948 

are stationary. However, assuming a stationary climate might not be valid due to both 2949 

naturally occurring climate oscillations or anthropogenic activities. Therefore, a non-2950 

stationary approach is adopted in this chapter to account for climate variation, where 2951 

time-dependent variables are incorporated in parameter (i.e. shape and scale 2952 

parameters) estimation. 2953 
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 Accordingly, different climatological predictors (Table 7) were employed to estimate 2954 

the GPD parameters (i.e. shape and scale) in this chapter, with the most suitable 2955 

predictors retained to account for the parameter estimation. This would allow the 2956 

parameters to vary with time based on the combination of climatological variables such 2957 

as temperature and atmospheric pressure. However, the shape parameter (ξ), which 2958 

is the most complex to be estimated, was considered constant due to its noisy pattern, 2959 

and to keep in line with previous similar studies (e.g. Haagenson et al., 2013; Jones et 2960 

al., 2014; Condon et al., 2015; Wi et al., 2016). Therefore, the GPD parameters are 2961 

introduced to the GPD distribution as following:  2962 

 2963 

 𝑙𝑜𝑔[𝜎(𝑥)] =  𝛽0,𝜎 + 𝛽1,𝜎𝑥1 +⋯⋯⋯⋯⋯⋯+  𝛽𝑛,𝜎𝑥𝑛  (21) 

 2964 

 ξ(t𝑥) =  ξ (22) 

where (𝜎) is the scale parameter, (ξ) is the shape parameter, variables x1, x2, …, xn are 2965 

the covariates (which can include time as a covariate to consider a temporal trend), 2966 

and 𝛽0, 𝛽1, …, 𝛽𝑛 are the coefficients, at time t. 2967 

Meanwhile, most of the existing metrics and design guidelines in Europe are based on 2968 

stationary data analysis (Madsen et al., 2013). The existing design guidelines account 2969 

for hydrological risks (e.g. pluvial and fluvial floods, extreme precipitation) using the 2970 

“return period” variable, where the designed structures (e.g. dams, sewers) are able to 2971 

cope with hydrological events of a specified return period (e.g., the 100-year flood), 2972 

and the event frequency distribution remains stationary through time (e.g. from 20 up 2973 

to 100 years).  2974 

However, while using the non-stationary approach it should be noted that the 2975 

distribution frequency reflects the probability of a given event (e.g. flood, extreme 2976 

precipitation) magnitude occurring over a specified time period (e.g. 20 year). A similar 2977 

concept was introduced for hydrological analysis purposes by various researchers, 2978 

using “design life level” instead of “return period” to reflect the risk associated with a 2979 

specific magnitude event (e.g.  Rootzén and Katz, 2013; Salas and Obeysekera, 2013; 2980 

Condon et al., 2015). 2981 

In this research, the non-stationary GPD distribution along with the NAO observational 2982 

dataset (Jones et al., 1997) and downscaled climatic variables from the European 2983 
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Center for Medium-Range Weather Forecasts (ECMWF) Interim reanalysis dataset 2984 

(Dee et al., 2011) were adopted to characterise hourly extreme precipitation intensity 2985 

in the UK.  2986 

5.3.3. Poisson-GPD Distribution relation 2987 

The GPD is used to assess the magnitude of hourly precipitation events exceeding the 2988 

predefined threshold, while the Poisson distribution is used to model the occurrence of 2989 

extreme precipitation exceeding the threshold u in any given year. Therefore, the 2990 

combined Poisson-GPD relationship can be defined using the following probability 2991 

distribution function (PDF) (Wi et al., 2016): 2992 

 𝐻(𝑦) = 𝑒𝑥𝑝 {−𝜆(1 +
𝜉𝑦

�̃�
)
−1

𝜉⁄ } (23) 

 2993 

where λ is the arrival rate of excesses over the threshold. 2994 

5.3.4. Data independence 2995 

The Poisson distribution and EVT assume observations above the defined threshold 2996 

to be statistically independent (Coles et al., 2001), which is hard to achieve in real 2997 

climatological applications. Furthermore, since the data has a short time-scale (i.e. 2998 

hourly), dependence may occur frequently, even if only values above a very high 2999 

threshold are selected. Hourly extreme precipitation in UK northern regions are often 3000 

generated by large-scale mechanisms (Blenkinsop et al., 2017; Darwish et al., 2018), 3001 

which can lead to a temporal dependence.  3002 

Therefore, the 0.99 quantile (Q99) for each gauge was calculated, and observations 3003 

above Q99 were declustered and retained for further analysis. Subsequently, the Q99 3004 

observations from all the gauges within each region was grouped, and only the highest 3005 

hourly precipitation value per day in each region was selected. The “run decluster” 3006 

approach detailed in section 4.3.4 was adopted to perform the declustering, with the 3007 

independence of each gauge data assessed using the extremal index (Eϴ). This 3008 

measures the degree of local dependence in the extremes of a stationary process 3009 

(Northrop, 2015). For independent data, Eϴ = 1, while Eϴ =0 indicates full data 3010 

dependence (clustering). The results showed that most of the gauges have values 3011 

higher than 0.7, indicating generally independent values.  3012 



115 
 

5.3.5. Regional Data Pooling 3013 

Here, we aim to characterise hourly extreme precipitation regionally, using the new 3014 

homogeneous extreme precipitation regions developed from the Q99 precipitation 3015 

extremes in Chapter 4. Therefore, a predefined location for each region, at which the 3016 

model will be built and validated, is required, and for which the geometric centres of 3017 

the hourly extreme regions shown in Figure 14 are used. 3018 

Finally, to overcome any residual regional dependence, as extremes will likely be 3019 

observed at more than one station in a region (Khaliq et al., 2006; Sugahara et al., 3020 

2009; AghaKouchak and Nasrollahi, 2010), the retained data in the previous step 3021 

(Section 5.3.4) (i.e. the highest Q99 hourly precipitation value per day in each region) 3022 

will be used to develop the model.  3023 

5.3.6. Parameter Estimation 3024 

To facilitate the inclusion of time-dependent parameters that account for seasonality, 3025 

,the maximum likelihood estimation (MLE) method (Coles et al., 2001), is used in this 3026 

research to estimate the GPD parameters. MLE is asymptotically normally distributed 3027 

and the variance is asymptotically minimal, which facilitates the derivation of 3028 

confidence intervals for the distribution quantiles. Millar (2011) described the MLE as 3029 

following: 3030 

Let x1, x2, x3, . . . , xn be n observations of a random sequence with probability density 3031 

function f (x|θ) , where θ is the vector of parameters of this function. If one considers 3032 

that the observations xi is statistically independent, the joint probability density function 3033 

for this sample is the product of the individual densities, called the likelihood function:  3034 

 𝐿 (𝜃|𝑥) =  ∏𝑓 (𝑥𝑖|𝜃)

𝑛

𝑖

 (24) 

 3035 

In general, this function is written as:  3036 

 𝐿𝑜𝑔 𝐿 (𝑥|𝜃) =  ∑𝐿𝑜𝑔 𝑓 (𝑥𝑖|𝜃)

𝑛

𝑖=1

 (25) 

 3037 
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In the process of the inference of θ, the MLE aims that all the relevant information in 3038 

the observed data is contained in the likelihood function, to determine the best 3039 

probability density functions that produce the given sample.  3040 

Katz et al. (2002) indicated that MLE outperform other approaches in having 3041 

consistency parameters estimates, and flexibility of incorporating non-stationary 3042 

features into the distribution parameters as covariates. Moreover, MLE performance 3043 

has been reported to be better than other approaches (e.g. L-Moments) in the 3044 

presence of time-varying climatic variables and for adequate sample sizes (Zhang et 3045 

al., 2005; White et al., 2008; Jones et al., 2014; Wi et al., 2016) 3046 

5.3.7. Model selection 3047 

Model assessment is essential to validate the proposed statistical model, thus the 3048 

predictive ability, model consistency, and model structure are evaluated using 3049 

statistical and graphical approaches. The literature on extreme precipitation modelling 3050 

using either GLM or EVT suggests different methods to assess model efficacy such as 3051 

parameter significance, quantile plots, the Akaike Information Criterion (AIC), 3052 

distribution plotting, or likelihood ratio tests (Coles et al., 2001; Chatterton et al., 2010; 3053 

Davison and Huser, 2015). 3054 

The AIC, which estimates the relative quality and predictive power of statistical models 3055 

for a given set of data (Akaike, 1981), is used to select the best model and predictive 3056 

variables. The AIC estimates the likelihood of a model to predict the future values, and 3057 

the number of used variables in each model, where a trade-off between the model 3058 

goodness of fit and complexity is evaluated (Burnham and Anderson, 2003). The AIC 3059 

model selection criteria recommends choosing the model with the lowest AIC value; 3060 

however, further investigation should be performed before choosing the model with the 3061 

lowest AIC value, especially when the difference between models is small (Akaike, 3062 

1992) as the method penalises more complex models. AIC is a relative measure of 3063 

goodness of fit, and does not assess the absolute model quality or the null model, 3064 

hence, it should be used in combination with other statistical tests (Akaike, 1992).  3065 

An alternative statistical measure, the likelihood-ratio test (LRT) is also used to 3066 

compare the goodness of fit between models. LRT compares a relatively more 3067 

complex model to a simpler model, and reports the significance of adding more 3068 

parameters to the model (Nogaj et al., 2006). Therefore, the method is valid when 3069 

https://en.wikipedia.org/wiki/Statistical_model
https://en.wikipedia.org/wiki/Goodness_of_fit
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analysing nested models, where the complex model has one or more additional 3070 

variables. 3071 

Visual comparison of the fitted models’ performance is achieved with quantile-quantile 3072 

(Q-Q) plots, which assess the similarity between observed and predicted quantiles. If 3073 

the model fits the data perfectly, the plotted points will approximately lie on the line 3074 

y=x, while a large deviation is evidence of the opposite. Confidence estimates of the 3075 

model fit are developed from 500 bootstrapped samples.  3076 

5.3.8. Model predictions 3077 

Finally, the statistical model is used to assess the potential impact of climate change 3078 

and temperature increase in the UK. Significant increases in temperature and 3079 

precipitation in recent decades have been reported and confirmed globally (Rahmstorf 3080 

and Coumou, 2011; Donat et al., 2013), while climate models project a further increase 3081 

either in temperature or in precipitation frequency and intensity across northern Europe 3082 

(Fischer and Knutti, 2015). Using the statistical model to identify the nature of future 3083 

changes is a robust alternative to support future adaptation plans and design 3084 

guidelines where complex dynamical models are not affordable or achievable. 3085 

In this research, the pseudo global warming (PGW) method (Kimura and Kitoh, 2007) 3086 

for a scenario that restricts global warming to 2 degrees Celsius or lower, as suggested 3087 

by the Paris climate agreement (Paris agreement, 2015), is adopted to assess future 3088 

extreme precipitation patterns. The gridded daily averaged data between 1990-2015 3089 

from the European Center for Medium-Range Weather Forecast Interim reanalysis 3090 

(ECMWF) dataset (Dee et al., 2011), will be used to establish a control climate (CTL), 3091 

and the 2oC degrees increase will be relative to this period. Dynamical models 3092 

premised on PGW use the sum of observations (reanalysis data) as the initial and 3093 

boundary conditions for regional model integrations, with the global warming increment 3094 

is estimated from simulations with global coupled climate models (Kimura and Kitoh, 3095 

2007). The statistical equivalent adopts predictive parameters that are broadly dictated 3096 

by their physical response to an increase in global mean temperature of 2° C. 3097 

5.4. Results 3098 

As discussed in previous sections, pooled hourly Q99 were declustered to ensure 3099 

higher probability of independence. Extremal index Eϴ values of 0.79, 0.74, 0.77, 0.73, 3100 

and 0.71 for the regions SE, SW, ME, NE, and NW, respectively, indicate that the 3101 
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remaining data in each region can be considered to be independent. All subsequent 3102 

analyses presented below use the declustered data. 3103 

5.4.1. Climatic predictor initial selection 3104 

Before developing the statistical model to simulate UK hourly extreme precipitation, an 3105 

exploratory analysis of the correlation between hourly extreme intensity and the 3106 

proposed variables (Table 7) was performed. Some of these variables are physically 3107 

related (e.g. temperature, CAPE), therefore, collinearity should be considered when 3108 

choosing the best statistical predictors. The correlation analyses shown in Figures 20 3109 

and 21 are derived from simple linear models of precipitation intensity against the 3110 

relevant time-dependent variable. Regressions for precipitation occurrence are not 3111 

shown as the results are broadly similar. 3112 

The results in Figures 20 and 21 show that a majority of the potential variables are 3113 

significantly correlated with hourly extreme precipitation intensity across the UK, while 3114 

most of the non-significantly correlated gauges are in the north west region (NW). For 3115 

instance, CAPE and CIN are known to drive short duration convective events, which 3116 

are more common in the warmer southern regions. In contrast, air flow (represented 3117 

by geopotential height), NAO and SLP are more frequently associated with large-scale 3118 

frontal systems over the north and west of the UK; such events may have embedded 3119 

convective cells, making these variables more significant in NW rather than the south. 3120 

Thus, all variables in Table 7 are explored further in deriving the statistical models for 3121 

hourly extreme precipitation occurrence and intensity. 3122 
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 3123 

Figure 20: The Spearman correlation between hourly extreme intensities above the 3124 

Q99 and potential climatological predictors. The assessed predictors are: convective 3125 

available potential energy (CAPE), convective inhibition (CIN), dew point temperature 3126 

(DPT), sea level pressure (SLP), pressure level height 700-, 850hPa (Z700-, Z850), 3127 

and North Atlantic oscillation (NAO). The positive and negative significantly correlated 3128 

gauges are indicated by red and blue colour respectively. Moreover, positive and 3129 

negative non-significantly correlated gauges are indicated by black upward and 3130 

downward arrows respectively. 3131 
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 3132 

Figure 21: As for Figure 20 but assessed predictors are: sea surface temperature 3133 

average over NW (42°N–52°N, 52°W–40°W), and SE (35°N–42°N, 35° W–20°W) 3134 

domains of the North Atlantic on Q99 days (SST-Avg), 4-month lagged sea surface 3135 

temperature average (SST-Avg-lag), sea surface temperature difference between NW 3136 

and SE domains on Q99 days (SST index), 4-month lagged sea surface temperature 3137 

difference between NW and SE domains (SST-index-lag), near-surface air 3138 

temperature (T-2m), and total column water vapour (TCWV). The positive and negative 3139 

significantly correlated gauges are indicated by red and blue colour respectively. 3140 

Moreover, positive and negative non-significantly correlated gauges are indicated by 3141 

black upward and downward arrows respectively.  3142 

5.4.2. Poisson model 3143 

The statistical models use climatic variable measurements between 1992 and 2014 in 3144 

each regions’ geometric centroid. The period 1992-2011 was used for parameter 3145 

estimation and model fitting, while the period 2012-2014 was used for model validation. 3146 

Potential climatic variables were used as predictors in the GLM, and a backward model 3147 

selection approach was adopted to determine the most significant predictors. The initial 3148 

GLM (for each of the estimated parameter sets of the Poisson and the GPD) included 3149 

all the candidate variables. Then the variables’ significance was assessed, to remove 3150 

the least significant variable. The process was then repeated until only significant 3151 
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variables remained and deleting further variables would reduce the models’ adequacy. 3152 

Furthermore, model fit criterion (AIC), histograms, Q-Q plots, and Likelihood-ratio test 3153 

(LRT) of the model before and after removing each variable was checked after each 3154 

iteration, to ensure statistical improvement at each stage. Additionally, variables with 3155 

potential interaction such as: convective variables (i.e. CAPE and CIN), atmospheric 3156 

pressure (i.e. Z-850 and Z-700), and temperature (i.e. T-2m and DPT) were assessed 3157 

separately and simultaneously.  3158 

 Poisson 3159 

The Poisson model utilises the GLM to predict a time-varying arrival rate (λ) for hourly 3160 

extreme precipitation occurrences. The final selection of covariates includes the North 3161 

Atlantic Oscillation (NAO), dew point temperature (DPT), atmospheric pressure at 700-3162 

hPa (Z-700), and the sinusoidal values of the Julian day of occurrence (Sin (ϴ), Cos 3163 

(ϴ)) in the form: 3164 

Logλ(x)= β0+β1(Sin(Θt))+β2 (Cos(Θt))+β3(NAOt)+β4(DPTt)+ β5(Z-700t)             (26) 3165 

Figure 22 shows the Q-Q plots for each region, and indicate a similar agreement 3166 

between the observed and statistically simulated data for hourly extremes between 3167 

1992-2011. 3168 

 3169 

 3170 
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 3171 

Figure 22: Q-Q plots for Q99 hourly extreme frequency predicted by the Poisson GLM 3172 

for the years 1992-2011 in each region. Q99 hourly extreme occurrence by 3173 

Julian day for observed quantiles (x-axis), and Poisson predicted quantiles 3174 

using NAO, Z-700, DPT, and sine/cosine Julian day as predictors (y-axis). 3175 

Confidence bands are developed from 500 bootstrapped samples. The 3176 

continuous solid line is the prediction regression line, while the dotted line is 3177 

the 1-1 reference line. 3178 

 3179 

Figure 23 shows the model validation results for each region, using the observed and 3180 

statistically simulated Q-Q plots for years 2012-2014. The results again show 3181 

concordance between the regression line and 1-1 line, indicating reliable simulation. 3182 
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 3183 

Figure 23: Validation Q-Q plots for the Q99 hourly extremes frequency predicted by 3184 

the Poisson model for years 2012-2014 in each region. Q99 hourly extremes 3185 

occurrence by Julian day for observed quantiles (x-axis), and Poisson 3186 

predicted quantiles (y-axis). Details as for Figure 22. 3187 

 Generalized Pareto distribution (GPD)  3188 

The statistical model development utilises the observed precipitation intensity and the 3189 

corresponding time-dependent covariates – as for the Poisson model. Initial GPD 3190 

parameter estimates are obtained from a stationary model fit to the observed pooled 3191 

precipitation data. Climatic variables are then only incorporated in the GPD scale 3192 

parameter to account for non-stationarity; the shape parameter and threshold are both 3193 

assumed to remain constant (e.g. Katz et al., 2002; Cheng et al., 2014).  3194 

The final model includes the sine and cosine terms for Julian day (Sin (ϴ), Cos (ϴ)), 3195 

combined with CAPE. The statistical model takes the relationship: 3196 

log ̃σ = β 0+ β 1(Sin(Θt))+ β 2 (CosΘt))+ β 3(CAPEt)                              (27) 3197 

log(ξ + ½) = β0                                                                                             (28) 3198 

This produced the most predictive model, with the lowest AIC value. Assessing the 3199 

likelihood ratio test between the base model and the final model shows a very 3200 

significant improvement in the time-dependent model at a 5% level.  3201 
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The Q-Q plots in Figure 24 show the statistically predicted vs observed hourly extreme 3202 

quantiles for each region between 1992-2011. Subsequently, the proposed GPD 3203 

model was validated using data between 2012-2014 (Figure 25). For a meaningful 3204 

comparison and interpretation of the two statistical models, precipitation intensities are 3205 

estimated utilising covariates for the days of occurrence predicted by the Poisson 3206 

model. As with the Poisson model, the results show concordance between the y=x and 3207 

regression lines, indicating reliable performance for the statistical model. 3208 

 3209 

Figure 24: Q-Q plots for Q99 hourly extremes predicted intensity by the GPD for the 3210 

years 1992-2011 in each region. Q99 hourly extreme intensity for observed 3211 

quantiles in mm/hr (x-axis), and GPD predicted extreme intensity quantiles in 3212 

mm/hr (y-axis). The continuous solid line is the prediction regression line, while 3213 

the dotted line is the 1-1 reference line. 3214 
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 3215 

Figure 25: Validation Q-Q plots for the Q99 hourly predicted intensities by the GPD for 3216 

the years 2011-2014 in each region. Q99 hourly extreme intensity for observed 3217 

quantiles in mm/hr (x-axis), and GPD predicted extreme intensity quantiles in 3218 

mm/hr (y-axis). The continuous solid line is the prediction regression line, while 3219 

the dotted line is the 1-1 reference line.  3220 

5.4.3. Pseudo Global Warming Method 3221 

Finally, the statistical model is used to assess the potential impact of a simple scenario 3222 

of 2oC warming in the UK using a PGW approach. DPT (in the Poisson model) was 3223 

increased by a corresponding 2oC. The relation between the T-2m and DPT is 3224 

controlled by the relative humidity equation, which reflects the ratio between available 3225 

moisture in the air (i.e. vapour pressure, E) and the air moisture capacity (i.e. saturation 3226 

humidity, Es). The RH equation formula is:  3227 

RH = 100% x (E/Es)                                             (29) 3228 

as stated in Stull (2018) for which, according to an approximation of the Clausius-3229 

Clapeyron equation: 3230 

E = E0 x exp[(L/Rv) x ((1/T0) - (1/DPT))]                             (30) 3231 

and 3232 
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Es = E0 x exp[(L/Rv) x ((1/T0) - (1/T))]                           (31) 3233 

where E0 = 0.611 kPa, L is a latent-heat parameter and Rv is water-vapor gas constant 3234 

where (L/Rv) = 5423 K (in Kelvin, over a flat surface of water), T0 = 273 K (Kelvin), T 3235 

is temperature (in Kelvin), and DPT is dew point temperature (also in Kelvin). 3236 

Accordingly, for T-2m (T in Equation 31) between 5 -25oC, and under constant relative 3237 

humidity, the DPT ranges between 1.8oC and 21.4oC respectively. The difference 3238 

between T-2m and DPT is relatively constant and varies slightly between 3.2 oC-3.6oC. 3239 

Thus, in this research the difference between T-2m and DPT is assumed constant, and 3240 

DPT was increased by 2oC, to match the adopted climate warming scenario (i.e. 2oC 3241 

increase according to Paris agreement).  3242 

On the other hand, large-scale atmospheric variables (i.e. Z-700 and NAO), were 3243 

retained without modification. Gastineau and Frankignoul (2015) reported that Z-700 3244 

and NAO are related to large-scale atmospheric circulation rather than atmospheric 3245 

temperature. Moreover, though SST has a noticeable relation with the NAO and might 3246 

increase due to global warming, no significant causal effect of SST anomalies on the 3247 

NAO has been identified (Weile et al., 2004). Furthermore, Rind, D. et al. (2005) 3248 

suggested that no sufficient information and research are available to evaluate impact 3249 

of potential climate change on the NAO, while available research and model 3250 

simulations reported an inconsistent prediction. Finally, SST is not used as a predictor 3251 

neither in the statistical model nor in the PGW. Thus Z-700 and NAO were used without 3252 

adjustment.  3253 

Thereafter, CAPE (in the GPD model) was increased using the relationship between 3254 

temperature and precipitation quantiles identified by North and Erukhimova (2009): 3255 

lnIp = C + 0.068 DPT + 0.5ln CAPE                                     (32) 3256 

where C is a constant value of 0.2, equals to slope coefficients of simple lnIp and ln 3257 

CAPE regression as suggested by Lepore et al. (2015). 3258 

The probability of extreme precipitation, and associated intensity, on each calendar 3259 

day for the base climatology (derived from control years 1990-2015) and with the 3260 

effects of 2oC PGW were assessed for each region. As with the model development 3261 

and validation, the Poisson model simulates the most likely days of extreme 3262 

precipitation occurrence, and the GPD simulates the range of probable precipitation 3263 

intensities on those days. As the Poisson model can only simulate the probability of an 3264 
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event, given that climatological rather than observed variables are used, we consider 3265 

the extreme precipitation days to be days with the highest 1% probability of occurrence, 3266 

defined by region. The Poisson model uses unchanged climatologically averaged 3267 

values for NAO, and climatologically averaged DPT uplifted by 2°C. While the GPD 3268 

uses climatologically averaged CAPE as modified by the relationship in Equation 32.  3269 

The results in Figure 26 (a and b) show the probability of extreme precipitation for each 3270 

calendar day in the NW and SE regions. A similar pattern is apparent across all UK 3271 

regions, where the highest probability of Q99 occurring is in summer. The PGW results 3272 

show that the probability of occurrence of hourly extreme precipitation would increase 3273 

up to 60% due to the temperature increase in all seasons, while the highest increase 3274 

would occur in summer. Results for the regions NE, ME, and SW are very similar and 3275 

not presented. 3276 

 3277 

Figure 26: Comparison of daily probability of Q99 occurrence under current climate 3278 

(solid line) and predicted global temperature increase of 2C (dotted line) in a) NW and 3279 

b) SE. Julian days of occurrence (X-axis), and the probability of occurrence (Y-axis). 3280 

The GPD model results in Figure 27 show estimated precipitation intensity with an 3281 

annual exceedance probability (AEP) of 5% (20-year return level equivalent) for each 3282 

calendar day under current and PGW climate conditions. However, it should be noted 3283 

that these results should be interpreted in conjunction with the Poisson model where 3284 

approximately 30 days would actually occur. The result is similar for all seasons, with 3285 

slight variations in northern regions (e.g. NW), while the annual probability estimates 3286 

in southern regions (e.g. SE) noticeably peak in summer. Furthermore, the response 3287 

to the 2oC warming shows a predicted intensity increase of between 13% and 17%, at 3288 

or just above C-C scaling. The highest increase occurs in SE during summer. The 3289 
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results indicate clearly that the intensity of hourly precipitation extremes in southern 3290 

regions (e.g. SE) are more sensitive to convective conditions, which are reflected by 3291 

the CAPE variable.  3292 

 3293 

Figure 27: Comparison of extreme precipitation intensity under current climate (solid 3294 

line) and predicted global temperature increase of 2C (dotted line) according to Paris 3295 

agreement in a) NW and b) SE. Julian days of occurrence (X-axis), and the intensity 3296 

in mm/hr (Y-axis). 3297 

 3298 

5.5. Discussion and Conclusion 3299 

This research presents non-stationary Poisson-GPD models to simulate the frequency 3300 

and intensity of hourly precipitation extremes in the UK. Large-scale atmospheric 3301 

variables, local conditions, and seasonality including NAO, CAPE, Dew point 3302 

temperature and sine/cosine Julian day, were incorporated in GLMs to estimate the 3303 

statistical model parameters. Each climatic variable was selected on the basis of its 3304 

physical plausibility and knowledge of atmospheric processes, then examined for 3305 

statistical significance before being confirmed as a predictor. However, the statistical 3306 

model results also highlighted that a longer hourly precipitation record is necessary to 3307 

generate more robust results and reduce uncertainty. 3308 

Resultant Poisson and GPD statistical models generally performed well across the UK. 3309 

However, greater uncertainty surrounds the predictions for northern regions (e.g. NW), 3310 

where there was less significance in the correlations between hourly precipitation 3311 

extremes and the selected covariates. As expected, the Poisson model across 3312 

southern regions (i.e. SW and SE) identifies a noticeable peak in summer precipitation 3313 

probability and intensity compared to other seasons. Seasonal extreme precipitation 3314 



129 
 

occurrence is similar in other regions, but there is less seasonal variability in extreme 3315 

precipitation intensity. The differences between northern and southern regions are 3316 

likely attributable to the different precipitation generating mechanisms in across the 3317 

UK, as summarised by previous research (Blenkinsop et al., 2017; Darwish et al., 3318 

2018). Northern regions are mostly dominated by large-scale forcing, while central and 3319 

southern regions are dominated by convective precipitation. Initial examination of other 3320 

large-scale predictors (i.e. NAO, SLP, SST) indicated that there is a more important 3321 

role for local conditions compared to large-scale climatic variables in the prediction of 3322 

hourly extreme precipitation across the UK.  3323 

The Poisson model, which simulates the occurrence of hourly precipitation extremes, 3324 

highlights that extreme hourly events have a strong dependence on both large-scale 3325 

circulation (i.e. NAO and Z-700), and local-scale thermodynamic conditions reflected 3326 

by the dew point temperature (DPT). This agrees with Chan et al. (2018b) who reported 3327 

that large-scale predictors from regional climate models demonstrate skill in predicting 3328 

the occurrence of extreme hourly events in convective permitting models (CPMs) for 3329 

the southern UK. Furthermore, Ali et al. (2018) indicated a strong linkage between 3330 

hourly precipitation extremes intensity and DPT, and the suitability of using DPT as an 3331 

indicator of thermodynamically-driven future changes. 3332 

Simulating the intensity of hourly extremes using the GPD distribution indicates that 3333 

local conditions play a major role in determining the intensity of extremes, more so than 3334 

large-scale atmospheric processes. The statistical model shows that convective 3335 

available potential energy (CAPE), is the best potential predictor in combination with 3336 

seasonality for the intensity of UK precipitation extremes. This is consistent with the 3337 

identified important role of CAPE in generating extreme precipitation over the UK 3338 

(Holley et al., 2014; Blenkinsop et al., 2015). While convective inhibition (CIN) could 3339 

also be used, CAPE and CIN are related, which would lead to collinearity within a 3340 

statistical model. Using a non-stationary GPD with CAPE as a covariate to characterise 3341 

extreme precipitation intensity, is a flexible and appropriate method to incorporate the 3342 

complex relationship between precipitation and temperature (Lenderink and Van 3343 

Meijgaard, 2008; Blenkinsop et al., 2015).  3344 

The utility of the statistical model is demonstrated by examining changes in the 3345 

probability and intensity of hourly extreme precipitation, at the geometric centre of each 3346 

region, under a pseudo-global warming scenario of 2oC utilising ECMWF reanalysis 3347 

data (Dee et al., 2011) from 1990-2015, to simulate hourly extreme precipitation. The 3348 
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PGW approach indicates increasing probability of hourly extreme occurrence in 3349 

summer up to 60%, especially in southern regions (e.g. SE). Associated annual 3350 

probability estimates of hourly extreme intensity also increase; the increases are 3351 

noticeably higher in the summer across southern regions. The transition from the 3352 

dominance of large-scale frontal systems to localized convective rain with higher 3353 

temperatures across the UK in summer and spring (Blenkinsop et al., 2015), means 3354 

that the seasonal peak in intensity is not as important in other regions. However, all 3355 

regions indicated an increase in intensity of between 13% and 17% in response to a 3356 

potential 2°C climate change scenario in the UK. This increase is consistent with the 3357 

C-C scaling of observed hourly extremes across the UK, with a slight super C-C scaling 3358 

during summer, especially in the south of the UK (Champion et al., 2015) 3359 

Running the statistical models presented here is considerably less computer intensive 3360 

than developing and running convection permitting models (CPMs). Thus, for 3361 

applications where knowledge of the full dynamical processes is not essential, or 3362 

where time and resources do not permit, these models could be used to downscale 3363 

and simulate hourly extremes in the UK. Changes to sub-daily extremes have 3364 

previously been assessed either by disaggregating daily precipitation from coarse 3365 

resolution regional climate models (RCMs) or directly from regional climate models 3366 

(RCMs). However, both methods are computationally expensive, and the former can 3367 

introduce additional high uncertainty in disaggregating the data. A further benefit of the 3368 

statistical models developed in this research is that they confirm hypotheses that were 3369 

previously only tested dynamically, providing decision-makers with a general direction 3370 

of future changes.  3371 

Madsen et al. (2013) reported that most of the existing guidelines in Europe on design 3372 

floods and design precipitation are based on frequency analyses assuming stationary 3373 

conditions in a certain time window. Using GLMs within the Poisson and GP 3374 

distributions allows for flexible incorporation of temporally and spatially varying external 3375 

predictors to account for non-stationarity in hourly extreme precipitation.  3376 

The statistical model can be used for different hydrological applications, such as 3377 

estimating the future intensity or frequency of hourly extremes at a regional or site 3378 

specific scale. For instance, other reanalysis datasets or PGW scenarios, or indeed 3379 

model predicted values of CAPE, NAO, and DPT from coarse resolution model results, 3380 

could be used to estimate future precipitation in specific regions. Alternatively, these 3381 

same data and statistical relationships could be used in conjunction with regional and 3382 
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site specific growth curve relationships to estimate future at-site precipitation 3383 

conditions, and hence likely flood impacts. 3384 

This chapter demonstrates that large-scale dynamics as well as local thermodynamic 3385 

processes exert an influence over UK hourly extremes, but further understanding of 3386 

these and their spatial variability is required. The results confirm the importance of 3387 

seasonality, where the models suggested including the Julian day sine and cosine to 3388 

simulate extremes, while the model predictions showed peaks in summer intensity and 3389 

frequency compared to other seasons. Design assumptions are often made based on 3390 

pre-determined seasons; decision-makers would welcome planning information where 3391 

there is strong evidence for changes that might affect water resource operations (e.g. 3392 

Morss et al., 2018). The main challenges in this research would be having a longer 3393 

quality controlled hourly data record, better characterising hourly extremes in terms of 3394 

their spatial and temporal variance across the UK, and determining the best approach 3395 

to modify the statistical model to account for each site specific characteristics. In 3396 

particular, the spatial coverage within some regions, e.g. MW, is weak and would 3397 

benefit from additional observational records. Ongoing research in Newcastle 3398 

University is investigating these issues with the INTENSE project (Blenkinsop et al., 3399 

2018), and will be addressed in future research. 3400 

Design guidance and adaptation plans in the UK adopt the estimates and approaches 3401 

provided by Defra (Defra, 2017) and the Environment Agency (Environment Agency, 3402 

2014), where an increase in precipitation intensity (referred to in practice as an uplift) 3403 

of around 10% for the period 2025-2055 is estimated relative to the 1961-90 baseline. 3404 

However, these estimates are based on daily precipitation data. The results in our 3405 

research show that for a 20 year return period (5% AEP), an increase of up to ~17% 3406 

could occur due to 2°C global warming, suggesting that the existing guidance may not 3407 

be valid for sub-daily extremes. Using output from a convection permitting climate 3408 

model, Kendon et al. (2018) also reported that changes in hourly precipitation extremes 3409 

in the UK would occur before changes in daily precipitation. 3410 

Similarly, Dale et al. (2017) suggest the importance of having updated and dedicated 3411 

allowance estimates to account for sub-daily extreme precipitation changes, especially 3412 

to reduce the risk for vulnerable locations to flash flooding and short intense 3413 

precipitation such as urbanised areas. Moreover, Madsen et al. (2013) reported that 3414 

the existing regulations and design guidelines for flood infrastructure assume 3415 

stationary conditions, which is questionable in the EVT. Therefore, developing a 3416 
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statistical model while adopting non-stationary analyses would enhance the simulation 3417 

of precipitation events and designing guidelines. 3418 
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Chapter 6. Conclusion 3444 

6.1 Summary of results 3445 

This thesis has investigated sub-daily extreme precipitation in the UK to develop a 3446 

statistical model which simulates the frequency and intensity patterns of hourly 3447 

extreme precipitation. The thesis used a recently collated and quality controlled hourly 3448 

precipitation dataset collected from 1900 gauges covering the period 1949 - 2014, 3449 

distributed across the UK (Blenkinsop et al., 2017; Lewis et al., 2018). This is the first 3450 

observed hourly precipitation dataset in the UK to have gone through an extensive 3451 

series of site-specific, quality control procedures and a comparison with a gridded daily 3452 

precipitation dataset to identify malfunctioning gauges and erroneously recorded 3453 

readings, in particular to exclude suspect extreme precipitation totals. Furthermore, an 3454 

additional criterion of having less than 15% missing or excluded data per year was 3455 

implemented, as detailed in section 3.2, to ensure use of reliable and representative 3456 

data. In total, the data from 197 gauges, which fulfilled the quality control procedure 3457 

(Blenkinsop et al., 2017; Lewis et al., 2018) and the additional record completion 3458 

criteria (i.e. having less than 15% missing or excluded data per year) between 1992 – 3459 

2014, have been employed in this research.  3460 

The thesis motivations, aims, and objectives were discussed in Chapter 1, and 3461 

indicated a substantial need to quantify the frequency and intensity of sub-daily 3462 

extreme precipitation in the UK. This was justified by the recent short, intense 3463 

precipitation generated floods and the contrasting characteristics of sub-daily and daily 3464 

precipitation extremes (e.g. in terms of frequency, seasonality, processes). 3465 

Furthermore, the existing urban drainage design guidelines are based on daily and 3466 

multi-day precipitation extremes, and using these guidelines to assess the short 3467 

intense events might provide imprecise results. Moreover, climate models expect sub-3468 

daily precipitation extremes to increase at a rate exceeding that for daily extremes. 3469 

This could lead to increased flooding, especially in urbanised areas.  3470 

However, and despite the importance of investigating sub-daily extreme events, 3471 

relatively few studies have investigated observed sub-daily extremes compared to 3472 

daily extremes due to data scarcity, while using climate models to derive projections of 3473 

sub-daily extremes is computationally expensive. Thus, statistical downscaling and 3474 

modelling of hourly precipitation extremes in the UK are suggested as alternatives to 3475 
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characterise sub-daily extremes and estimate return levels, providing the information 3476 

necessary to update infrastructure design guidelines, and implement adaptation plans.  3477 

 In Chapter 2, a comprehensive review of the existing literature and the latest studies 3478 

related to daily and sub-daily extreme precipitation were reported. The chapter 3479 

reviewed a wide range of studies which employed various approaches to investigate 3480 

mean and extreme precipitation characteristics on daily timescales, and related 3481 

climatic drivers in the UK. Daily mean precipitation has shown seasonally varying 3482 

trends, with an increasing trend in winter, decreasing in summer, and mixed non-3483 

significant trends in autumn and spring (Gregory et al., 1991; Alexander and Jones, 3484 

2000; Osborn et al., 2000; Jones et al., 2013). Furthermore, studies on daily timescales 3485 

have indicated increases in the intensity of winter precipitation extremes, while 3486 

increasing frequencies of summer extreme precipitation have been observed (Fowler 3487 

and Kilsby, 2003b; Jones et al., 2013; Simpson and Jones, 2014). In addition, 3488 

analysing daily precipitation in the UK indicated a noticeable seasonality, especially for 3489 

extremes.  3490 

Daily extremes have been investigated using point of interest and regional approaches. 3491 

In the UK, the Flood Studies Report (FSR) (NERC, 1975) followed by the Flood 3492 

Estimation Handbook (FEH) (Faulkner, 1999) have been used to estimate precipitation 3493 

and flood frequency on-site, while the HadUKP regions (Alexander and Jones, 2000) 3494 

have been used for regional analysis. On-site approaches provide a reliable estimate 3495 

for mean precipitation, whereas, the regional frequency approach provides a more 3496 

accurate estimate for extremes, with the benefit of using regionally pooled data, 3497 

reducing the impact of missing and erroneous values, and facilitating the evaluation of 3498 

ungauged locations (Alexander and Jones, 2000). Nevertheless, a recent investigation 3499 

of the efficacy of the HadUKP regions by Jones et al. (2014), indicated that these 3500 

regions are not appropriate for use with extremes even, on daily timescales. Thus, new 3501 

regions were developed to assess daily extreme precipitation in the UK (Jones et al., 3502 

2014). In contrast, relatively few studies have investigated sub-daily precipitation 3503 

extremes in the UK, due to short and poor quality data records (Westra et al., 2013; 3504 

Blenkinsop et al., 2018), although there is a strong association with flash floods (Dale 3505 

et al., 2017). 3506 

Thus, an exploratory analysis of annual maxima (AMAX) of hourly and multi-hourly (i.e. 3507 

3-, 6-, 12-, and 24-hr) extreme precipitation accumulations in the UK was carried out 3508 

in Chapter 3. Using the regional frequency analysis approach, the seasonality and 3509 
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diurnal cycle were investigated. The findings indicated a noticeable peak in the 3510 

frequency of short-duration extremes (i.e. 1- and 3-hr) between 1400 and 1700, 3511 

especially in the southern UK, which is in line with results from (Xiao et al., 2018). This 3512 

peak indicates a strong relation with convection-generating mechanisms, especially in 3513 

southern UK regions. Furthermore, the results showed a difference in the seasonality 3514 

of short-duration (i.e. 1- and 3-hr) and long-duration precipitation extremes (i.e. 12- and 3515 

24-hr). Short-duration extremes occur mostly in summer, while long-duration extremes 3516 

occur throughout late autumn and winter. This study is the first to quantify and compare 3517 

the seasonality of hourly, multi-hourly, and daily (i.e. 3-, 6-, 12-, and 24-hr) extreme 3518 

precipitation accumulations in the UK, and to extend the limited analysis of subdaily 3519 

extremes by Blenkinsop et al. (2017) (Objective 1). Further, regional hourly return level 3520 

estimates across the UK were calculated by fitting both the Generalized Extreme Value 3521 

(GEV) and Generalized Pareto (GP) distributions, using the existing daily extreme 3522 

regions of Jones et al. (2014). The results showed higher return level estimates for 3523 

southern regions compared with other parts of the UK. In addition, the return estimates 3524 

for the 24-hr extremes and daily extremes from (Jones et al., 2013) showed similar 3525 

results, which indicates the accuracy and reliability of the hourly used data. However, 3526 

the hourly return level estimates indicated some similarity across regions with no 3527 

significant differences. Moreover, hourly and daily precipitation extremes in the UK 3528 

demonstrate a noticeable spatial variation in occurrence patterns and frequency. 3529 

Combined, these suggest that new and potentially fewer representative regions would 3530 

adequately reflect the spatial variation of UK short-duration precipitation extremes. 3531 

This study is the first to introduce a formal assessment of hourly UK extreme 3532 

precipitation using extreme value theory (EVT) and the existing daily extreme regions 3533 

(Objectives 2 and 4). 3534 

Accordingly, new hourly UK extreme precipitation regions were defined in Chapter 4. 3535 

The new regions were developed using the quality controlled hourly dataset and 3536 

various extreme precipitation indices (e.g. annual 0.99 quantile, median of AMAX 3537 

precipitation), geographical and topographical characteristics (i.e. latitude, longitude, 3538 

elevation), rotated seasonal statistics, temperature, and weather types reflecting 3539 

atmospheric and large circulations.  3540 

The five new hourly extreme precipitation regions fulfil the regional homogeneity 3541 

requirements (Hosking and Wallis, 2005), while the regional delineation indicates a 3542 

strong relation with the large-scale atmospheric circulation and local conditions. In 3543 
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addition to that, the developed regions show a clear east-west delineation in the UK, 3544 

which is in line with the daily extreme precipitation regions reported by Jones et al. 3545 

(2014) and indicate the important role of orography and the prevailing westerly winds 3546 

in also characterising hourly precipitation extremes. The new regions are the first to be 3547 

developed based on hourly extreme precipitation in the UK, and to reflect their spatial 3548 

variation. In addition, they can serve hydrologists, climatologists, and policy makers 3549 

either for formal or indicative assessment of extreme precipitation return estimates and 3550 

design guidelines (Objective 3). Thereafter, the new extreme regions were employed 3551 

to quantify regional hourly precipitation extremes by estimating return levels across the 3552 

UK regions using the GEV and GP distributions (i.e. EVT distributions). The return level 3553 

maps indicated an increasing pattern from northwest towards southeast, which 3554 

supports the reported UK hourly extreme precipitation climatology published in 3555 

Blenkinsop et al. (2017). 3556 

Moreover, the new hourly extreme precipitation regions were better able to capture 3557 

variations in hourly extreme precipitation across the UK compared to the existing 3558 

regions. For example, the fitted GEV and GP growth curves for the new regions 3559 

indicated steeper curves in northern regions compared to southern regions. This is in 3560 

contrast to growth curves for hourly precipitation extremes developed using the daily 3561 

UK extreme regions (Jones et al., 2014), which showed similar estimates of return level 3562 

for all regions. Moreover, the results indicate the efficacy and potential capabilities of 3563 

using the new regions for investigating extremes in the UK.  3564 

Accordingly, the new hourly extreme precipitation regions were used in Chapter 5 to 3565 

develop a statistical model simulating the frequency and intensity of UK hourly 3566 

precipitation extremes. To start with, the statistical correlation between different 3567 

climatological variables and hourly extremes were explored, where the results showed 3568 

that local condition variables (e.g. Convective Available Potential Energy (CAPE), dew 3569 

point temperature (DPT)) have a higher correlation compared to large-scale variables 3570 

(e.g. North Atlantic oscillation (NAO), sea surface temperature (SST)) across the UK. 3571 

Moreover, the results confirmed the role of local climatic variables, especially the 3572 

hypothesised strong relation between hourly precipitation extremes and convection-3573 

generating mechanisms (Blenkinsop et al., 2017; Darwish et al., 2018). Furthermore, 3574 

the correlation between hourly extremes and climatic variables in southern regions is 3575 

higher than in northern regions, especially for temperature, convection (e.g. CAPE), 3576 

and water vapour content (e.g. total column water vapour (TCWV)) variables, which 3577 
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indicates the strong relation between hourly extremes and local scale processes in 3578 

southern parts of the UK.  3579 

Thereafter, a statistical model was developed using the Poisson-GPD distribution 3580 

approach, employing different potential driving climatological variables representing 3581 

both the large-scale climatic circulation and local conditions. Investigating the 3582 

correlation of hourly rainfall extremes with various climatological variables and 3583 

employing them in the development of the model was an essential part of quantifying 3584 

the behaviour of UK hourly extremes (Objectives 5 and 6). 3585 

Using various model selection and evaluation techniques (e.g. Q-Q plots, AIC) to 3586 

determine the best predictors, the results showed that employing the Julian day sine 3587 

and cosine, the NAO, atmospheric pressure at 700hPa height (Z-700), and DPT in the 3588 

Poisson model would best simulate hourly extreme precipitation frequency. In contrast, 3589 

the GPD approach employing the Julian day sine and cosine, and the convective 3590 

available potential energy (CAPE) best simulates hourly extreme precipitation 3591 

intensity. This indicates that the occurrence of extremes has a strong relation to both 3592 

large-scale circulation (i.e. NAO and Z-700) and local conditions (i.e. DPT), while 3593 

intensity is controlled by local conditions of instability (i.e. CAPE). However, including 3594 

the seasonality as a predictor is essential to simulate both the frequency and intensity, 3595 

which is in line with the observed seasonality in UK hourly precipitation extremes. The 3596 

resultant model is the first to simulate hourly extreme frequency and intensity reliably, 3597 

and could serve as an indicative alternative to dynamical climate models, with 3598 

noticeably lower computational demand (Objectives 4 and 6). 3599 

Thereafter, the Poisson-GP statistical model was used to simulate hourly precipitation 3600 

extremes in the UK under a simple scenario of potential climate change. The pseudo 3601 

global warming (PGW) method (Kimura and Kitoh, 2007), and a scenario of 2°C 3602 

increase in mean temperature as agreed in the Paris Agreement (Paris agreement, 3603 

2015) was adopted to evaluate change to the 20-yr return level estimate. The results 3604 

indicated that this scenario would lead to an increase in both the frequency and the 3605 

intensity of hourly precipitation extremes across the UK (e.g. NW and SE regions). 3606 

Moreover, the change in the frequency of hourly extremes showed that the increase in 3607 

summer is higher than other seasons across the UK.  3608 

However, intensity changes showed that the highest increase would occur in summer 3609 

across the southern regions only, while the increase in northern regions would be 3610 
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comparable in all seasons. The future scenario indicated an increase between 13%-3611 

17% in the 20-yr return level estimates under a 2oC warming across the UK regions 3612 

(e.g. NW and SE regions), which is slightly higher than the C-C scaling rate. On the 3613 

other hand, existing urban drainage guidelines in the UK (e.g. DEFRA, 2012), which 3614 

are based on daily precipitation data, suggest a climate uplift of 10% for 2025-2055. 3615 

Thus, the results in this research suggest that existing guidelines for hourly 3616 

precipitation extremes should be reviewed. This is in line with recent research by 3617 

Kendon et al. (2018), where CPMs were used to project changes to future hourly 3618 

precipitation extremes. The results suggested that hourly precipitation extremes will 3619 

intensify at a rate higher than both the rate of increase of daily precipitation extremes 3620 

and the suggested rates for existing guidelines in the UK.  3621 

The results indicate that the developed model can capture the seasonality and spatial 3622 

variation across the UK, and indicates comparable results to CPM projections, without 3623 

the need for high computational requirements, through the demonstration of a very 3624 

simple scenario approach. This model can be used to provide drainage authorities with 3625 

a scenario or probabilistic decision making approach to address the potential changes 3626 

in future precipitation.  3627 

This research 3stationary EVT methods coupled with regional frequency analysis 3628 

(RFA) and downscaled climatic variables to simulate hourly extreme precipitation 3629 

frequency and intensity in the UK. In addition, a demonstration of its potential 3630 

application to project potential changes under a climate warming scenario is presented 3631 

(Objective 4 and 7). 3632 

6.2 Results in the context of the existing literature 3633 

Statistical modelling and downscaling have been adopted widely to simulate extreme 3634 

precipitation characteristics. In this research, we aimed to quantify hourly extreme 3635 

precipitation intensity and frequency in the UK to enhance the existing literature, and 3636 

develop a model that is predictive but simple.  3637 

The results in Chapter 3 presented the noticeable difference between hourly and daily 3638 

precipitation extremes in terms of frequency and intensity patterns. These results 3639 

indicate that existing approaches of using the scaling relation or simple disaggregation 3640 

to simulate sub-daily extremes from daily extremes (e.g. UKCP09) might be 3641 

misleading, while updated hourly extreme precipitation return estimates and urban 3642 

drainage design guidelines should be developed for sub-daily precipitation. Similarly, 3643 
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Kendon et al. (2018) indicated that changes in sub-daily precipitation extremes would 3644 

emerge sooner than daily extremes, while sub-daily precipitation rates (i.e. intensity) 3645 

rather than daily accumulations should be evaluated to determine the impacts of 3646 

extremes. Moreover, Dale et al. (2017) reported similar results, and indicated that 3647 

existing guidelines are not designed to be applied to sub-daily precipitation. The results 3648 

presented in Chapter 3 support the fact that quantifying the nature of hourly and multi-3649 

hourly extremes in the UK enhances our understanding of current extreme patterns, 3650 

diurnal cycle, and seasonality in the UK. All these are within the scope of the INTENSE 3651 

project (Blenkinsop et al., 2018) that is currently investigating sub-daily extremes to 3652 

quantify observed historical changes and characterise sub-daily extremes on a 3653 

broader, global scale.  3654 

 Importantly, the newly defined hourly extreme regions in Chapter 4 are the first to 3655 

employ the weather patterns of (Neal et al., 2016), besides extreme precipitation 3656 

indices, to delineate precipitation regions in the UK. The new regions outperform the 3657 

existing daily mean (Alexander and Jones, 2000) and extreme (Jones et al., 2014) 3658 

regions in evaluating the return estimates and growth curves for hourly extremes. 3659 

Additionally, they can be employed to estimate growth curves either using the single 3660 

largest event per year (AMAX) or using precipitation over a selected threshold (POT). 3661 

Moreover, existing urban drainage design guidelines focus on the single largest event 3662 

per year, which might not be adequate for planning in regions under multiple 3663 

consecutive intense events, particularly with climate change. Thus using the new 3664 

regions provides the capability of using and comparing both approaches: AMAX and 3665 

POT. It is paramount that policy makers should consider embedding both approaches 3666 

in practice. Additionally, employing weather patterns in the prediction of hydrological 3667 

events is well established in the literature (Vuillaume and Herath, 2017), and in this 3668 

research we showed the potential of using these to reflect the relationship between 3669 

large-scale atmospheric variables and hourly extreme precipitation in the UK.  3670 

 Thereafter, the statistical model developed in Chapter 5, which simulates the 3671 

frequency and intensity of hourly extreme precipitation in the UK could enhance 3672 

ongoing research by helping to evaluate the performance of convection-permitting 3673 

models (CPMs). The statistical model indicated the potential of simulating the 3674 

frequency of extremes using large-scale variables (e.g. NAO, Z-700), which would 3675 

allow effective targeting of CPM downscaling simulations. Recently, Chan et al. 3676 

(2018b) employed large-scale and other variables to quantify the regression 3677 
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relationship between the occurrence of extreme hourly precipitation events and vertical 3678 

stability and circulation predictors in the southern UK 1.5km resolution CPM, finding 3679 

similar predictors were of importance in model simulations.  3680 

However, the results presented in this thesis are based on a limited precipitation record 3681 

(i.e. 23 years). Providing robust quantitative estimates of the future frequency of such 3682 

extremes are essential to implement adaptation planning. Thus, the statistical model 3683 

developed in this study can be employed alongside the improvements in CPM 3684 

simulations to, for example, create an ensemble of observational and modelling based 3685 

predictions. Additionally, it could be employed to improve existing UK climate 3686 

projections (e.g. as part of UKCP18), as part of improving sub-daily modelling 3687 

capabilities (e.g. in projects such as INTENSE), or more widely as part of coordinated 3688 

regional climate multi-model downscaling projects (e.g. CORDEX-FPS).  3689 

Moreover, the statistical model showed a strong relation between convective 3690 

conditions and hourly precipitation extremes with CAPE employed to simulate extreme 3691 

precipitation intensities. These results can be incorporated into ongoing research into 3692 

the roles of local thermodynamics and large-scale atmospheric circulation as drivers 3693 

of changes in intense precipitation through linking observational analyses with those 3694 

based on CPMs. The statistical model, using CAPE among other predictors, estimated 3695 

an intensity increase of between 13%-17% under a simple 2°C warming scenario, 3696 

which slightly exceeds the C-C relationship and agrees with the approximate C-C 3697 

scaling found by Blenkinsop et al. (2015) for UK hourly observations and the scaling 3698 

rate obtained from a CPM by Chan et al. (2016) for the southern UK.  3699 

In meeting each of the objectives outlined in Chapter 1 of this thesis, the results 3700 

presented here add to our knowledge of extreme precipitation in the UK. The observed 3701 

hourly extreme precipitation climatology, regional growth curves, and statistical model 3702 

indicate a noticeable seasonality and an increase in summer extremes with 3703 

thermodynamic warming, which are consistent with future projections from dynamical 3704 

climate models. Importantly, the statistical model did not assume stationarity when 3705 

estimating the model parameters which is a common assumption with methods used 3706 

to create the current hydrological and drainage guidelines in Europe. Thus, the 3707 

statistical model could be used together with estimates of change in the model 3708 

predictors from climate models to help provide robust quantitative estimates and 3709 

enhance the existing literature to implement and develop the required adaptation and 3710 

design guidelines under a warming climate.  3711 
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6.3 Future work 3712 

Considering the nature of extreme precipitation, and the wide range of uncertainties 3713 

associated with their patterns and behaviour, this research could be enhanced in 3714 

several ways, to achieve a better understanding of sub-daily precipitation extremes 3715 

and to employ the results further to improve the existing literature and hydrological 3716 

application in practice.  3717 

6.3.1 Data collection  3718 

In this research, hourly extreme precipitation was investigated using 197 gauges 3719 

across the UK representing extremes between 1992 and 2014 (i.e. only 23 years). The 3720 

limited data range was necessary to ensure having a complete and representative 3721 

record of hourly extremes. However, this short record was reflected in the relatively 3722 

wide confidence intervals in the estimated regional growth curves, especially in regions 3723 

with limited rain gauges. Furthermore, most of the hourly precipitation data in the UK 3724 

is accumulated from tipping bucket data, thus, future work could include improvements 3725 

in data collection and exploring the use of different datasets (e.g. gauges, radar, and 3726 

satellite data). The analysis should then be expanded to include the newly collected 3727 

data, which would add further value to the hourly extreme precipitation analysis. 3728 

Recent research has achieved a notable advance in sub-daily precipitation data 3729 

collection and quality control across the UK (e.g. Blenkinsop et al., 2017; Lewis et al., 3730 

2018), and future plans would suggest the use of the gridded dataset (Lewis et al., 3731 

2018) and historical UK precipitation archive (Rodda et al., 2009) , which would 3732 

facilitate the assessment of ungauged locations.  3733 

6.3.2 Seasonal assessment  3734 

This study found noticeable seasonality in hourly extreme precipitation, which is in line 3735 

with the existing literature that has studied extremes, either using observations or 3736 

climate models. The results illustrated a visible peak in occurrence for hourly extremes 3737 

in summer, in particular for the southern UK. Investigating extreme precipitation in each 3738 

season using the same dataset used in this research would limit the data availability 3739 

per season. Thus, future research should take the advantage of the advancement in 3740 

data collection to investigate hourly precipitation extremes seasonally using both 3741 

AMAX and POT approaches, which may reflect the characteristics of extremes more 3742 

closely.  3743 
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6.3.3 Statistical model transferability  3744 

The statistical model in this research (Chapter 5) was developed at the centroid of the 3745 

defined homogeneous regions (Chapter 4), to facilitate the consideration of different 3746 

climatological variables (e.g. NAO, DPT, CAPE), which were used as predictors. The 3747 

regions homogeneity was tested and indicated similar hourly extreme precipitation 3748 

patterns across each region, with marginal spatial variation. The model used regionally 3749 

pooled hourly precipitation data, which increases the reliability of the model and 3750 

reduces the impact of spatial variation but does not necessarily allow robust local 3751 

estimates. Therefore, further investigation could include determining the scaling 3752 

relation between hourly precipitation extremes and the predictor variables at individual 3753 

locations, to implement and transfer the model in various locations across each region.  3754 

6.3.4 Comparison with existing approaches 3755 

In this research, developing new hourly extreme precipitation regions was motivated 3756 

by the inadequacy of the existing daily extreme precipitation regions to capture the 3757 

spatial and temporal variation in hourly extremes across the UK. The new regions 3758 

employed different extremes and indices in their construction than their daily 3759 

counterparts, with the novel use of European weather patterns to delineate the new 3760 

regions and provided more reliable estimates compared to existing regional 3761 

assessment approaches in the UK (e.g. Alexander and Jones, 2000; Jones et al., 3762 

2014). However, future work could include a comparison with existing on-site, station-3763 

centred return level estimate approaches (e.g. FEH) to augment our understanding 3764 

about the impact of data scarcity in the regionalisation approach, and to provide a tool 3765 

to improve and validate the current hourly extreme precipitation regions. 3766 

6.3.5 Urbanised area adaptation plans  3767 

The defined extreme regions reflect hourly extreme precipitation on a regional scale 3768 

and can be used to estimate growth curves at different locations by using the scaling 3769 

relation between the hourly extreme precipitation regional median (RMed) and the 3770 

gauge median as described in Chapter 4. However, in urbanised areas, where short, 3771 

intense precipitation is associated with flash flooding which poses a significant threat 3772 

to lives and infrastructure, further investigation should be conducted to feed this 3773 

information into effective adaptation plans. Future research could build on this study to 3774 

assess the impact of climate change on return level estimates for different durations 3775 

and return periods using the outputs of current state-of-the-art climate models to 3776 



143 
 

provide the predictors. Moreover, this research might be used in conjunction with the 3777 

UK future projections (e.g. UKCP18) to provide decision makers an insight of potential 3778 

impact across the urbanised areas.  3779 
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Appendices 4612 

Appendix A: Supporting figures 4613 

 4614 

Figure A 1: Regional monthly frequency densities of 24h AMAX rolling window 4615 

accumulation (dark blue) and 24h AMAX fixed window accumulation at 09:00 (cyan) in 4616 

the UK. Values in red denote the frequency density scale. 4617 
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 4618 

Figure A 2: Monthly 3h AMAX frequency density (blue), and 3h AMAX standardised by 4619 

the regional median (red). The regional median (mm) is stated for each region, and 4620 

radial lines denote 1st day of each month. Selected regions shown as in main paper. 4621 

 4622 
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 4623 

Figure A 3: Monthly 12h AMAX frequency density (blue), and 12h AMAX standardised 4624 

by the regional median (red). The regional median (mm) is stated for each region, and 4625 

radial lines denote 1st day of each month. Selected regions shown as in main paper. 4626 

 4627 
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 4628 

Figure A 4:  Return level plots of fitted regional GEV distributions for daily AMAX (from 4629 

Jones et al. 2014) (green), 24h AMAX fixed window accumulation at 09:00 (dashed 4630 

black), 24h AMAX rolling window accumulation (red), and 1h AMAX (cyan). Return 4631 

level estimates in mm (left y-axis), return periods in years (upper x-axis) and Gumbel 4632 

reduced variate (lower x-axis).  The 1h AMAX GEV distribution parameters µ, σ, and ξ 4633 

are also shown.  4634 
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 4635 

Figure A 5: Fitted growth curves for 24h standardized AMAX accumulation (black), and 4636 

daily AMAX (from Jones et al. 2014) (green), and confidence interval for each 4637 

distribution (dashed lines). Growth factor (y-axis), return periods in years (upper x-axis) 4638 

and Gumbel reduced variate (lower x-axis). The growth curve represents the multiple 4639 

increase of a given return level over an index value, here the 2-year return level. 4640 
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 4641 

Figure A 6: Fitted growth curves for standardized 1h AMAX (red), 24h AMAX (black), 4642 

and daily AMAX (from Jones et al. 2014) (green). Growth factor (left y-axis), return 4643 

periods in years (upper x-axis) and Gumbel reduced variate (lower x-axis). The 1h 4644 

AMAX GEV distribution parameters µ, σ, and ξ are also shown. The growth curve 4645 

represents the multiple increase of a given return level over an index value, here the 4646 

2-year return level. 4647 
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 4648 

Figure A 7: Return level estimates (mm h-1) for UK 3h AMAX precipitation at each 4649 

gauge for return periods of 5-, 10-, 25- and 50 years (20%, 10%, 4%, 2% annual 4650 

exceedance probabilities (AEPs)). Estimates for each gauge are calculated from the 4651 

fitted regional GEV growth curve multiplied by the site scaling factor (gauge RMed). 4652 

 4653 
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 4654 

Figure A 8: Return level estimates (mm h-1) for UK 12h AMAX precipitation at each 4655 

gauge for return periods of 5-, 10-, 25- and 50 years (20%, 10%, 4%, 2% annual 4656 

exceedance probabilities (AEPs)). Estimates for each gauge are calculated from the 4657 

fitted regional GEV growth curve multiplied by the site scaling factor (gauge RMed). 4658 
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 4659 

Figure A 9: Occurrence proportion of days exceeding the Q99 hourly precipitation for 4660 

each gauge across the 8 weather types identified by Neal et al. (2016) in the winter 4661 

half year (Oct-March, N-WQ99) over the period 1992-2014. Circle diameter indicates 4662 

the proportion of events within each weather type for each gauge. 4663 
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 4664 

Figure A 10: Occurrence proportion of days exceeding the Q99 hourly precipitation for 4665 

each gauge across the 8 weather types identified by Neal et al. (2016) in the summer 4666 

half year (Apr-Sept, N-SQ99) over the period 1992-2014. Circle diameter indicates the 4667 

proportion of events within each weather type for each gauge. 4668 
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Appendix B: Supporting tables 4682 

 4683 

 (θ) r 

Region 1h 3h 6h 12h 24h 1h 3h 6h 12h 24h 

North Highland 

and Islands 

277 310 327 333 342 0.24 0.31 0.4 0.39 0.42 

South Scotland 236 278 306 324 326 0.4 0.28 0.32 0.37 0.34 

East Scotland 229 248 266 278 284 0.42 0.37 0.33 0.32 0.35 

Forth 224 243 247 263 276 0.56 0.46 0.36 0.35 0.36 

Solway 229 259 287 300 304 0.5 0.41 0.41 0.42 0.43 

North West 216 223 243 260 281 0.48 0.35 0.28 0.24 0.24 

North East 215 219 217 221 230 0.72 0.64 0.56 0.54 0.5 

Humber 205 213 219 221 225 0.68 0.64 0.53 0.48 0.44 

West Country 220 234 251 255 257 0.55 0.49 0.41 0.36 0.36 

Mid South West 236 238 250 251 269 0.51 0.39 0.34 0.32 0.27 

South East 222 235 252 266 264 0.64 0.5 0.4 0.36 0.35 

East Anglia 217 220 225 230 225 0.74 0.66 0.59 0.49 0.42 

North Ireland 235 244 255 269 276 0.49 0.41 0.38 0.36 0.34 

Table B 1: Regional circular statistics representing seasonality of occurrence of hourly 4684 

and multi-hourly AMAX events.  Statistic 𝜃 denotes mean occurrence day (Julian day); 4685 

r indicates the degree to which events are seasonally concentrated, ranging from 0 to 4686 

1, with higher values indicating greater concentration around 𝜃.  4687 
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