
 

 

 
 

Microbial Source Tracking for the UK Water 
Industry 

 

 

 

 

 

 

 

 

 

Aidan Francis Frederick Robson 

 

 

 

 

Thesis submitted to Newcastle University in partial fulfilment of the requirements for the 

degree of Doctor of Engineering 

 

 

17th December 2019 

 



 

 

 

 



 

 

Abstract 

This thesis evaluates the suitability of two emerging microbial source tracking (MST) 

techniques, host-associated E. coli biomarkers and community-based MST.  

Previous human-associated E.coli markers (H8, H12, H14, H24) were evaluated for the first 

time in the UK; the sensitivity of H8 (10%) was lower than previously reported (50% (Gomi 

et al., 2014)) and if analysed through regulatory culture-based approaches alone, would have 

resulted in a high false negative rate (90%). In light of this, the Hu100 marker, with the 

highest abundance (2.64 x 106 gene copies/100 mL) across 14 wastewater treatment plants, 

was developed through interrogation of 263 E.coli genomes. The abundance of Hu100 was 

not significantly different to other markers, which, could be due to the large variability in the 

proportion of E.coli containing biomarkers. Due to this variation, it is recommend that the 

total marker abundance is used to compare different sites. 

Community-based MST uses high-throughput sequencing to compare bacterial communities 

of environmental samples, such as sea water, faecal taxon libraries (FTLs) which contain 

bacterial communities from known sources. Simulated microbial communities were used to 

evaluate how the composition of FTLs affected the accuracy and sensitivity of community-

based MST. The inclusion of local samples appears to be more important than the size of the 

FTL to the accuracy of community-based MST. Furthermore, the inclusion of a river water 

sample as a ‘background sample’, improved method sensitivity from a 5% mixture of the 

sewage bacterial community in river waste to a 2% contribution of sewage.  

Two catchment studies highlighted the ubiquity of urban diffuse pollution, largely from septic 

tanks and misconnections, in rural and semi-rural catchments. Community-based MST 

showed a good correlation with human-associated markers and (rs >0.467, p <4.45x10-06), but 

only when human sources were dominant. Findings suggest that community-based MST is 

more useful than marker-based MST to survey catchments for a range of potential pollution 

sources. 

Investing ~£230k to perform MST in-house is the best option for Northumbrian Water, and 

other water companies, to incorporate qPCR and sequencing into their workflows. While 

>3000 samples need to be processed to achieve a return on investment, the business risk 

remains small, and other areas of the business will benefit from this investment. 
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Chapter 1 Introduction 

 Environmental water quality 

Water quality describes the suitability of water to sustain various uses or processes 

(Maybeck et al., 1996) and is described through a set of distinct parameters that depend 

on the intended use or process. For example, general inland and estuarine water quality 

requires consideration of chemical and ecological parameters whereas bathing, or 

recreational, water quality is described using largely microbiological parameters, since 

these present an immediate threat to human health. 

Across Europe, a number of key pieces of legislation define and drive improvements to 

environmental water quality. The Urban Wastewater Treatment Directive (UWWTD, 

91/271/EC) is concerned with reducing the impact of wastewater on environmental 

waters, the requirements of which include:  

 The prevention of leaks from sewers;  

 The limitation of pollution from combined sewer overflows (CSOs); and  

 The addition of secondary treatment for all wastewater treatment plants > 2,000 

population equivalents (PE) discharging to fresh and estuarine waters.   

The Water Framework Directive (WFD, 2000/60/EC) established a systems-based 

approach to protect and improve the quality of inland surface, transitional (estuarine), 

coastal, and ground waters. The aim of the WFD was for water bodies to achieve “good 

status” by 2015. At the end of the first 6-year management cycle, however, the UK have 

elected to extend this deadline to the end of the third management cycle, 2027. The WFD 

requires management of systems on a catchment scale (Voulvoulis et al., 2017) to achieve 

‘good ecological status’, which is defined as:  

“The state of a system in the absence of anthropogenic influences” 

(Voulvoulis et al., 2017) 

As such, there are no absolute standards to define good ecological status, rather, what is 

the ecological potential of individual water bodies if we removed human influences. 

There is an assumption then that humans can use these waters for reservoirs or 
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hydroelectricity, for example, as long as the ecology of the water system meets its full 

potential. It is therefore vital that all unwanted anthropogenic impacts on all waterbodies 

are removed or at least reduced to a minimum to achieve the WFD’s aim. 

The European Bathing Water Directive (BWD, 2006/7/EC), which compliments the WFD 

(2000/60/EC), serves two main purposes:  

1) To provide a framework for monitoring, reporting and regulating microbial water 

quality; and  

2) To reduce the public health risk from microbial contamination of recreational 

waters (Oliver et al., 2014).  

These policy drivers are responsible, at least in part, for the improvements and drive to 

continuously improve the quality of environmental water in the UK.  

 

1.1.1 Current state of water quality in the UK 

The quality of surface and recreational water quality has improved significantly since the 

implementation of the UWWTD (91/271/EC), WFD (2000/60/EC) and BWD 

(2006/7/EC), although further mitigations are required to improve water quality. Of the 

626 designated bathing water sites in the UK, only 62% are classified as ‘Excellent’, 

significantly less than the European average of 85% (EEA, 2015).  

Improvements to recreational water quality have largely been achieved through 

investment in infrastructure assets. The most notable improvements in water quality came 

after the year 2000 when secondary treatment became a requirement for wastewater 

treatment plants with a population equivalent (PE) > 2,000 according to the UWWTD 

(91/271/EC) (Figure 1.1). 
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Figure 1.1 Percentage of North East bathing waters which achieved each classification according to the 1976 (Top) 

and 2006 (Bottom) Bathing Water Directives. Data from Environment Agency bathing water data explorer (EA, 2018) 

taking all bathing waters in the areas supplied for water and wastewater by Northumbrian Water 

 

However, diminishing returns on investment in terms of water quality are expected as 

pollution from obvious point-source wastewater discharges is mitigated. The impacts of 

diffuse pollution sources may increase pressures on water bodies through: continued 

urbanisation; an increase in the frequency and intensity of rainfall events; population 

growth; and intensification of agriculture (Jalliffier-Verne et al., 2016). While there is a 

desire to move all bathing waters to excellent water quality, the impact of diffuse 
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pollution (See 1.3 Threats to water quality and public health) means that moving from 

good to excellent is likely to be much more difficult than from poor to sufficient. 

The quality of UK surface waters, graded by the WFD (2000/60/EC), remains concerning 

since only 36% of UK rivers achieve good ecological status (Priestley, 2015), a figure 

which has remained stagnant for around nine years. Although, the ‘one out, all out rule’, 

whereby a failure on a single parameter results in an overall failure of the water body, 

does not reflect  improvements in other quality elements such as those observed in 

chemical water quality parameters (Voulvoulis et al., 2017). 

New methods to inform investment decisions are required to cost-effectively improve the 

quality of environmental waters in the UK. While an estimated £26 billion of investment 

is required to improve 80% of England’s surface water to good status (Environment 

Agency, 2014), the EA maintains an aspiration of having 60% of English surface waters 

achieve good status by 2021. Unfortunately, the latest river basin management plans 

(RBMPs) predict that only 27% and 25% of surface waters would achieve good status by 

2021, for the Northumbria region (Environment Agency, 2016) and whole of England 

(Salvidge, 2016), respectively. For the Northumbria river-basin area alone, the required 

investment in surface-water is predicted to be around £820m over the next 37 years, with 

the Northumbrian Water taking £440m of this financial burden. It is, therefore, important 

that these investments are made into mitigation efforts that will have the largest impact on 

water quality and are economically justified. Methods to direct investment decisions 

towards the largest sources of pollution are, therefore, becoming increasingly important 

and paramount to delivering cost-effective water quality improvements. 

 

1.1.2 Benefits of improving water quality 

Determining the benefits of improving water quality for individuals is difficult, though 

most studies attempt to monetize the reduced risks of poor water quality on bathers. 

Recreational use of faecal contaminated water is most commonly associated with risk of 

gastrointestinal illnesses, ear, eye and upper respiratory tract infections (Prüss, 1998; 

Napier et al., 2017). While few observational studies exist, the health burden of these 

swimming-related illnesses could be large. At two California beaches this health burden 

was estimated to cost > $3.3 million per year (Dwight et al., 2005). The numbers of users 

and the cost of healthcare are likely to be less in the North East of the UK, however, this 
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burden will be felt by local economies and the National Health Service. Indeed, the 

global-annual cost of thalassogenic diseases (those associated with wastewater in the 

marine environment) was estimated at $12bn or 3-million disability-adjusted life years 

(DALYs) (Shuval, 2003).  

There are also a number of positive health benefits for users of recreational waters such 

as: the physiological and psychological benefits of exercise; physical and psychological 

restorative-ness and calming (Straughan, 2012; Phillips et al., 2018); and the alleviation 

of symptoms of chronic conditions such as depression (Denton, 2017); although these 

benefits are difficult to quantify in monetary terms.  

Recreational water quality also brings a number of benefits to the local economy with 

increased revenue from tourism and marketing opportunities. An economic assessment 

estimated visits to five Scottish beaches at bathing water sites to be worth between 

£0.8million and £4 million (Phillips et al., 2018). While the quality of bathing water did 

not seem to affect the frequency of beach visits, visitors reported that it did diminish the 

quality of their visit. The Blue Flag award is desired by many local authorities as a 

marketing tool and assurance of quality to bolster tourism (Phillips et al., 2018). Blue 

Flag (2014) report that 61% of people across Europe check bathing water quality before 

visiting a beach. While such statistics seem unlikely, Blue Flag status is only available to 

sites with excellent water quality and, therefore, provides an economic driver to improve 

water quality.   

Improving recreational water quality reduces the reputational risk to local authorities and 

water and sewerage companies, who are often looked to first when there is a water quality 

issue. Mass participation events, such as swimming or triathlons, present reputational 

risks especially where water quality is not excellent or subject to rapid decline. For 

example, epidemiology studies at some events have reported gastrointestinal illness in 

around half of all participants (Hall et al., 2017; Parkkali et al., 2017; Van Asperen et al., 

1998) and often make the local and national media leading to reputational damage. Non-

governmental organisations (NGOs) take advantage of media campaigns, using 

reputational risk as levers to drive water quality improvements. For example, Surfers 

Against Sewage (SAS) saw success with media campaigns to install secondary treatment 

for all wastewater discharges by The States of Guernsey in 2009 (Surfers Against 
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Sewage, 2009). Ensuring that water quality remains excellent is also therefore important 

to maintaining and improving corporate reputations.  

 

 Monitoring the quality of recreational waters 

In the UK, weekly samples are collected from the 623 designated bathing waters between 

May and September, inclusive, as stipulated in the BWD (2006/7/EC). Regular analysis 

for two faecal indicator organisms (FIO), E.coli and enterococci, takes place on all 

samples, which are used to generate classifications for each bathing water and inform the 

public of water quality issues. In England, all regulatory testing occurs at a central 

laboratory facility, Starcross National Laboratory Service, in Exeter, UK. This is 

approximately 430 miles from the furthest northerly bathing water (Spittal, Berwick-

Upon-Tweed, UK) and, as such, bathing waters are currently analysed up to 24 hours 

after collection (Oliver et al., 2016). Due to the nature of the analytical methods (see 

section 2.4 Methods to enumerate faecal indicator organisms) which take 24-48 hours to 

produce a result, the public could potentially use poor quality water for up to three days 

before they are informed. The emphasis for managing bathing waters and health risk 

should therefore be on the long-term improvements of water quality, rather than reliance 

on a single sample.  

 

1.2.1 Faecal indicator organisms (FIO) 

FIO are used as a proxy for the presence of pathogens to indicate faecal contamination 

and a risk to public health. Ideally, monitoring would be in the form of routine monitoring 

for all pathogens of concern, however, this is currently unfeasible given: the diversity of 

potential pathogens; the episodic nature and low environmental concentrations of 

pathogens; the difficulty in culturing some pathogens; and the diverse analytical methods 

required to detect and quantify them (Field & Samadpour, 2007). The concept of using 

faeces-associated organisms to identify contamination of water was first proposed in 1891 

by Mr and Mrs Frankland, six years after Theodor Escherichia (1885) described Bacillus 

coli (later renamed Escherichia coli (Castellani and Chalmers, 1919), who sought to 

provide evidence of sewage pollution (Hutchinson and Ridgway, 1977, Ashbolt et al,. 

2001). 
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While the detection of FIOs is preferable to pathogen detection, there is an on-going 

debate about the suitability of current FIOs and the methods of their detection to 

determine the quality of recreational waters (Oliver et al., 2014). The ideal FIO should: 

be present in the intestinal tracts of warm-blooded mammals; reflect the presence and 

absence of pathogens; be present in greater concentrations than pathogens; have similar 

environmental survival profiles as pathogens (Field & Samadpour, 2007); be incapable of 

regrowth in the environment; be easily, rapidly and inexpensively detected in the 

environment; and be non-pathogenic (Ishii & Sadowsky, 2008). In Europe the BWD 

(2006/7/EC) uses both Escherichia coli and intestinal enterococci, to monitor and assess 

the quality of recreational water quality.  

 

1.2.2 E.coli as a faecal indicator 

E.coli are Gram-negative, lactose-fermenting, rod-shaped gamma proteobacteria which 

are facultative anaerobes, have high growth rates and are ubiquitous in the gastrointestinal 

tracts of most vertebrates (Clermont et al., 2008). Since 1891, when the concept of using 

sewage-associated organisms to identify dangerous contamination was first proposed 

(Hutchinson and Ridgway, 1977, Ashbolt et al,. 2001), these characteristics have made 

environmental monitoring of E.coli relatively quick, easy, inexpensive (McLellan & Eren, 

2014) and a useful indicator of recent faecal contamination. However, due to monitoring 

limitations, the total coliform group, which includes E.coli, were originally used as 

regulatory indicators. The realisation that many total coliforms are common 

environmental inhabitants (Edberg et al., 2000) resulted in the use of faecal coliforms, 

and subsequently E.coli, as an FIO. 

Once E.coli leave the nutrient-rich gut environment they may: die-off (or decay) through 

nutrient deficiency, dessecation, or predation (Wanjugi et al., 2016); enter a viable but 

non-culturable (VBNC) state (Ding et al., 2017; Oliver, 2010); or persist and grow in the 

environment (Solo-Gabriele et al., 2000; Ishii & Sadowsky, 2008). While most studies 

report E.coli die-off in the natural environment, some studies have observed E.coli to be 

persistent in a range of natural environments. These so-called ‘naturalised strains’ of 

E.coli are phenotypically and taxonomically indistinguishable from enteric strains (Walk 

et al., 2009; Deng et al., 2014). This may limit the efficacy of E.coli as a FIO by 

complicating our understanding of pollution sources and health risk. These naturalized 
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strains, have been observed in soils (M N Byappanahalli et al., 2012), sands (Beversdorf 

et al., 2007; Vogel et al., 2016; Staley et al., 2016; Ishii et al., 2007), cladophora (a green 

algae) mats (B D Badgley et al., 2011; Verhougstraete et al., 2010), and surface waters 

(Tymensen et al., 2015a). Stress tolerant strains have also recently been noted in 

wastewater treatment plants (Zhi, et al., 2016a) which may persist after UV or 

chlorination treatment. Some Escherichia strains have been assigned to five cryptic 

Escherichia lineages (CI to CV) which may be more prevalent in environments than 

mammalian guts (Walk et al., 2009). Whilst phenotypically indistinguishable, naturalized 

strains do differ genetically from enteric strains (Luo et al., 2011; M N Byappanahalli et 

al., 2012; Oh et al., 2012; Deng et al., 2014; Tymensen et al., 2015b), Luo et al. (2011) 

identified 120 and 84 genes highly associated with either enteric or environmental stains, 

respectively, although naturalized and enteric strains likely share a common ancestry 

(Tymensen, 2016). Interestingly, although clade V are most commonly isolated from 

environmental sources (Walk et al., 2009; Vignaroli et al., 2015), they also possess genes 

and adhesion properties associated with host gut persistence and virulence suggesting a 

potential for growth in both enteric and environmental systems (Vignaroli et al., 2015). It 

is worth noting that not all E.coli considered to be naturalized belong to a cryptic clade. 

Non-cryptic isolates possessing an environmentally associated gene have been noted, 

although further research is required to establish whether they are persistent in the 

environment (Deng et al. 2014). The effect of these naturalised strains on the efficacy of 

E.coli as an FIO is unclear, differentiation between these strains may be important, 

although long-term water quality monitoring largely overcomes this issue since increased 

numbers of E.coli, above baseline concentrations, can be used to indicate faecal 

contamination.   

  

1.2.3 Enterococci as faecal indicators 

The term ‘enterococci’ is used interchangeably with ‘intestinal enterococci’, the latter 

describing FIOs used in the European Union for water quality testing and defined by 

biochemical characteristics outlined by ISO 7899-1 (International Organisation for 

Standardisation (ISO), 1999). Enterococci were previously classified in group D of the 

genus Streptococcus (Lancefield, 1933) based upon physiological characteristics and later 

given a separate genus (Entrococcus) based on genetic evidence; DNA-DNA and DNA 
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rRNA hybridisation studies showed that many species in group D were only distantly 

related to other groups (Schleifer & Kilpper-Balz, 1984).  

Enterococci are Gram-positive, facultative anaerobes and are suggested to be better FIO 

than E.coli, particular in marine waters with enterococci showing a stronger relationship 

with swimmer gastrointestinal illness  (Ostrolenk et al., 1947; Wade et al., 2003a). 

Enterococci are largely commensal, although some common strains such as E. 

faecalis and E. faecium are opportunistic pathogens which increasingly harbour antibiotic 

resistance mechanisms (Murray, 1990; Fisher & Phillips, 2009) and are a leading cause of 

nosocomial infections (Wilson et al., 2018). Ostrolenk, et al. (1947) were among the first 

to suggest enterococci as a better FIO than to E.coli. While E.coli was present in greater 

concentrations in 63% of faecal samples, the authors argue that lower concentrations 

could make enterococci a more reliable indicator of faecal contamination. In Europe, 

enterococci concentrations are used alongside E.coli to monitor both fresh and sea-water 

quality (BWD, 2006/7/EC), whereas in the US, E.coli is used solely for freshwater and 

enterococci for seawater due to the differential responses of these FIOs in environmental 

waters (Brooks & Field, 2016).  

In environmental waters enterococci populations typically decrease over time 

(Byappanahalli et al., 2012) due to the actions of environmental stressors, such as 

sunlight (Fujioka & Narikawa, 1982), although persistent populations have been 

observed. Enterococci generally have a greater salt tolerance than E.coli (Anderson et al., 

2005a; Sinton et al., 2002), which likely leads to a better performance as an FIO in 

seawater. A range of other abiotic factors appear to contribute to the degradation of 

enterococci populations in environmental waters and are summarized in a recent review 

(Byappanahalli et al., 2012). While many abiotic factors contribute to the decrease enteric 

enterococci populations, a number of studies have shown the persistence and potential 

growth of enterococci in extra-enteric environments. Whitman et al. (2003) identified 

both E.coli and enterococci in 97% of samples of Cladophora (a genus of filamentous 

green algae) from 10 beaches across four states, suggesting that Cladophora mats may act 

as a protective reservoir for FIO. There is also evidence that Cladophora provide enough 

nutrients to enable enterococci growth, although the evidence to date is limited to an 

experiment at 35 oC using algal leachate (Byappanahalli et al. 2003). This growth may 

therefore be limited to tropical climates. A range of other environmental reservoirs have 

been noted in studies including: 



10 

 

 Submerged aquatic vegetation (Badgley et al., 2011); 

 Beach sand, soil and sediments (Obiri-Danso & Jones, 2000; Yamahara et al., 

2009; Halliday & Gast, 2011); and 

 Forage crops (Muller et al., 2001; Ott et al., 2001). 

It is worth noting that whilst persistence of enterococci has been observed in these 

reservoirs, the evidence of growth in these environments is more sporadic. The evidence 

for growth stems from the high bacterial densities observed in tropical soils and 

sediments, typically moist, beach sand and sediments as well as in vegetation where high 

bacterial densities have been attributed to growth. As with E.coli, the effect of these 

reservoirs, and potentially naturalised populations, on the efficacy of enterococci as an 

FIO remains largely unknown. 

 

1.2.4 Methods to enumerate faecal indicator organisms 

 Current culture-based techniques 

The BWD (2006/7/EC, CEU, 2006) uses culture-based techniques, either membrane 

filtration or most probable number (MPN), to enumerate E.coli and enterococci in bathing 

waters. The membrane filtration methods (ISO 7899-2 (ISO, 2000), ISO 9308-1 (ISO 

2014)) used by the Environment Agency require an incubation step of either 24 or 48 

hours for E.coli and intestinal enterococci, respectively. 

Culture-based approaches are associated with a number of limitations, particularly their 

slow speed due to the required incubation step (24-48 hours). This limits the ability of 

FIO monitoring to communicate short-term pollution events to the public in a timely 

manner (Ashbolt, Grabow and Snozzi, 2001). In addition, studies have shown temporal 

changes in FIO concentrations on times-scales of a day or less (Leecaster & Weisberg, 

2001; Boehm et al., 2002), which could result in beaches remaining open, while 

contaminated, during laboratory processing, and the same beaches being closed after the 

contamination has passed, or being closed while contaminated. Culture-based methods 

also fail to identify the VBNC fraction of FIO, although, the understanding of the 

importance of the VBNC on regulatory monitoring and public health estimates is poor 

(Hassard et al., 2017). 
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 Rapid techniques 

Rapid techniques overcome the major limitation of conventional culture-based methods, 

the incubation step, through the detection of cell properties. In a review of rapid methods, 

Noble and Weisberg (2005) note nucleic-acid-detection and enzyme/substrate methods to 

be the most common in water quality monitoring, particularly in the US. The US 

Environmental Protection Agency (USEPA) currently approves an enzyme/substrate test 

to quantify E.coli (Fricker et al., 1997), although this is still culture-based and requires an 

incubation step, and has recently approved a nucleic-acid-based method, quantitative PCR 

(qPCR), to quantify enterococci.  

A lawsuit against the USEPA to stimulate the use of a qPCR method has led to global 

debate regarding the use of rapid techniques in a regulatory context (Gooch-Moore et al., 

2011; Oliver et al., 2016). However, it remains uncertain as to whether qPCR will be 

adopted as a rapid method for European regulatory use due to:   

 A lack of robust epidemiological evidence linking genetic targets to human health 

risk;  

 limited studies addressing the wider costs and benefits of adopting qPCR; and  

 a lack of case-studies into the use of qPCR techniques, evidence base compared to 

culture-based techniques (Oliver et al., 2016).  

The use of rapid techniques in England is largely negated by the centralised nature of the 

Environment Agency’s (EAs) laboratory service; additionally, the World Health 

Organisation (WHO) have not recommended their inclusion in the Bathing Water 

Directive at this time due to a lack of epidemiological evidence in Europe linking more 

rapid, molecular techniques to the risk to human health from bathing, and concerns over 

reported poor correlation with culture-based techniques (WHO, 2018). Nevertheless, 

there is a desire among regulators to gain more insight into the use of rapid methods and 

DNA based techniques, particularly for environmental and ecological monitoring (Walsh 

and Rhodes, 2016). 

The polymerase chain reaction (PCR), now over 30 years old (Saiki et al., 1985), is an 

enzymatic process for the amplification of DNA. Purified DNA (template) from the 

microbial community of an environmental sample is introduced into a reaction mixture 
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containing; DNA polymerase, nucleotides, magnesium chloride, and primers specific to 

the DNA fragment to be amplified, and is cycled through a program of temperatures 

which make up the steps of DNA denaturation, primer annealing, and DNA extension 

(Kralik & Ricchi, 2017). Each temperature cycle will, in theory, double the number of 

DNA molecules until the constituents become limited, and after successive cycles 

produce a DNA fragment of a specified known length, which can be visualised using 

fluorescent stains. The fragment is usually a gene or part of a gene that is a marker 

specific for the organism(s) requiring detection. 

Quantitative-PCR (qPCR) takes advantage of the theoretical exponential increase in DNA 

between each cycle. A fluorophore is added to the PCR-reaction and the intensity of 

fluorescence, representing DNA concentration, is measured after each cycle. The absolute 

gene abundance in a test sample can be calculated by comparing it to a standard curve 

using known concentrations of the DNA target.  

PCR techniques do not require an incubation step, which is both useful and limiting. 

Without an incubation step PCR assays are: rapid (~3 h); not limited to easily cultured 

organisms; and are able to quantify multiple targets simultaneously in a single reaction. 

However, the removal of an incubation step reduces the detection limit of the assay. 

Environmental waters often contain low and varying levels of FIOs and substances, 

which act as inhibitors, reducing the efficiency of a PCR reaction. This is a two-sided 

dilemma. To remove problems of inhibition, samples are often diluted, however, this can 

reduce the already low target concentrations below the limit of detection (LOD). 

Conversely, increasing the concentration of bacterial numbers from samples compounds 

the problem of inhibition. A further limitation to their regulatory use is the need to use a 

standard curve to calculate absolute abundance. How this standard curve is generated can 

greatly affect the estimated abundance. Hou et al. (2010) found a 3-4 log overestimation 

when using un-linearized plasmid preparation as standards compared to linearized, or 

PCR products. However, this limitation could be overcome by having a single set of 

standards made by a single laboratory distributed to all other laboratories undertaking this 

analysis, or through the use of digital PCR which does not require a standard curve (Cao 

et al., 2015).  In addition, qPCR does not differentiate between viable and non-viable 

cells, which can lead to an overestimation of FIO numbers with overestimations of around 

0.8 log10 being reported (Raith et al., 2014). This overestimation could also be due to the 

choice of DNA target as some targets have multiple copies within the bacterial genome 
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(See Sequencing below). Nevertheless, these overestimations must be explored if qPCR is 

to be incorporated into regulatory methods.  

There are few studies (Hassard et al., 2017) which have explored the potential of qPCR 

for monitoring regulatory organisms in the UK, and few evaluating the impact of these 

techniques on management decisions (Kinzelman and McLellan, 2009; Walker et al., 

2015; Goodwin et al., 2016). For beach management decisions Raith et al. (2014) 

compared the use of qPCR and culture-based techniques noting that 87% of the samples 

resulted in the same beach management decision, although, in 12 % of samples, qPCR 

would result in management action, such as posting signs, when culture-based techniques 

would not.  

 

1.2.5 Classification of bathing waters in the UK 

Bathing waters in Europe are classified as Excellent, Good, 

Sufficient, or Poor, based on the concentrations of E.coli and 

enterococci in weekly samples across a 4-year rolling data set 

(Table 1.1). The collection of microbiological data over long 

periods allows assessments of the general ‘state of the 

environment’, and efficacy of management practices and 

policies in achieving their environmental outcomes (Oliver et 

al., 2014). The classifications (Table 1.1) are easier for the 

public to interpret than those in the previous BWD (76/160/ 

EEC), “Mandatory” and “Guideline”, to better inform the 

public of water quality. Information is disseminated to the 

public through signage (Figure 1.2) at each designated bathing 

water showing the classification and any additional 

information, such as the susceptibility of a bathing water to 

short-term pollution events.   

 

 

 

 

Figure 1.2.Example of a bathing 

water classification sign at 

Seaton Sluice beach (Chapter 6) 
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Table 1.1 Bathing water classifications used in the previous (76/160/ EEC) and revised 

(2006/7/EC) bathing water directives for coastal and transitional waters 

Classification Requirements 

Excellent 

Intestinal enterococci 100 CFU/100 mL* 

Escherichia coli 250 CFU/100 mL* 

Good 

Intestinal enterococci 200 CFU/100 mL* 

Escherichia coli 500 CFU/100 mL* 

Sufficient 

Intestinal enterococci 185 CFU/100 mL** 

Escherichia coli 500 CFU/100 mL** 

Poor 
If the percentile values for the last assessment 

period are worse than ‘Sufficient values’. 

CFU – Colony forming unit 

* Based upon 95-percentile of samples taken through the bathing water season. 

** Based upon 90-percentile of samples taken through the bathing water season. 

 

The prediction, management and communication of short-term pollution events to the 

public is particularly important to the classification of bathing waters. A maximum of 1 

sample each year, or 15% of the total samples with high numbers of FIOs may be 

removed from the four-year rolling data set on the conditions that: 1) warning signs are 

present when the sample is taken (and the sampling team has seen the signage) and 2) 

attempts have been made to monitor or mitigate sources of short-term pollution. This can 

improve the classification of a bathing water for a long time due to the 4-year data set 

used. As a result Northumbrian Water has invested in automatic signage for willing local 

authorities to warn water users when water quality may be impaired due to short-term 

pollution events. 

While the classification of bathing waters is maintained, the efficacy of this signage in 

reducing public health risk in the UK is unclear. A recent survey noted that many people 

overestimated the quality of water, 40% of those surveyed did not know or incorrectly 

stated the notified bathing water quality and 70% of respondents said they had seen the 

bathing water signage when there was no signage (Phillips et al., 2018). So whilst signs 
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may maintain the classification of a bathing water, they may do little to protect public 

health, suggesting that policy should be directed at reducing short-term pollution events 

and increasing the resilience of bathing waters rather than limiting use during pollution 

events. 

 

1.2.6 Faecal indicator organisms and health risk 

The density of faecal indicator organisms has been shown to have some relationship to 

the health risk to swimmers (Kay et al., 1994a). This relationship allows regulators and 

beach managers to govern health risk by monitoring water quality and taking action such 

as closing beaches when FIO concentrations rise above a risk level.  

The European bathing water classification system (Table 1.1) is based on the relationship 

between FIO density and health risk according to the World Health Organization’s 

(WHO) Guidelines for Safe Recreational Water Environment (WHO, 2003). The WHO 

guidelines were based on epidemiological studies conducted in the UK in the 1990’s 

(Fleisher et al., 1996; Kay et al., 1994). Good and excellent water quality approximately 

correspond to a 10% and 3.9% risk of gastrointestinal illness (WHO, 2003), respectively. 

Unfortunately, the relationship between FIO concentrations and health risk is 

questionable. Evidence for this relationship is typically derived from epidemiology 

studies which rarely show a definitive relationship between FIO and health risk (Fewtrell 

& Kay, 2015). Two reviews summarise pre-2003 (Wade et al., 2003b) and post-2003 

(King et al., 2015) epidemiological studies. Wade et al. (2003) noted that E.coli was a 

more consistent predictor of health risk whereas in marine waters enterococci showed a 

better relationship with health risk. The post-2003 evidence suggests a significant 

relationship between FIO in freshwater, but not in marine waters, although the review 

only considered 16 studies. Both reviews found significant heterogeneity between study 

protocols and severe methodological limitations in many papers. In addition, King et al. 

(2015) note that few studies were conducted in “Poor” quality water and none in 

“Sufficient” quality waters. Clearly, more epidemiological evidence is needed to support 

or refute the findings of the original studies on which the classifications (Table 1.1) are 

based. 
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The uncertainty in the FIO-health risk relationship could be due to different sources of 

pollution exhibiting a different level of health risk. Fewtrell and Kay (2015) noted that the 

poor FIO-health risk relationship was especially true where non-point sources of pollution 

were prevalent (See 4. Threats to water quality and public health). The studies at the 

foundation of the WHO guidelines (2003) were conducted in marine waters impacted by 

sewage (Kay et al., 1994; Fleisher et al., 1996), since then, only a handful of studies have 

considered the source of pollution. A summary of the epidemiological evidence linking 

non-human faecal pollution and health risk to bathers concluded that none of the studies 

used provided conclusive evidence for a relationship between non-human faecal 

contamination and gastrointestinal illness (Dufour et al., 2012). The authors note, 

however, that other studies have shown a logical link between human infections and 

zoonotic pathogens, although, links between bathing in contaminated water and specific 

non-human sources are missing. More recently, studies using quantitative microbial risk 

assessment (QMRA) techniques have been used to support epidemiological evidence 

(Fewtrell & Kay, 2015).  

Quantitative Microbial Risk Assessment (QMRA) takes a modelling approach to assess 

the risk of adverse outcomes from microbial agents using information about the spread, 

exposure to and dose-response model of specific microbial agents (Hass et al., 1999). 

Soller et al. (2015) used a QMRA approach, taking published pathogen and FIO 

concentrations in faeces, to compare the risks of gastrointestinal illness (GI) from 

exposure to non-human and human sources of pollution. Risks were compared by 

normalizing the concentration of faecal matter to a known concentration of FIO. This 

analysis suggested that exposure to faecal contamination from gull, chicken and pig 

faeces presented a substantially lower risk of GI to bathers. Cattle faeces, however, 

presented a similar risk to human sources. While only six pathogens were used in this 

analysis, it highlights the importance of understanding the different sources of pollution 

that may affect a water body. The analysis also does not take into account the persistence 

of pathogens compared to FIO.  We might therefore expect the relative risk from sewage 

to increase over time since FIO generally die-off faster than viruses and protozoa, the 

main purveyors of risk in sewage (Soller et al., 2015). Nevertheless, an understanding of 

the potential health-risks associated with bathing waters and how best to mitigate these 

risks requires an understanding of the sources of pollution. It is worth noting that 

currently, management decisions are based on FIO concentrations, which are unlikely to 
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reflect health risk when a mixture of pollutant sources are involved since identical FIO 

concentrations resulting from contamination with different sources present a different risk 

to health (Soller, et al., 2010). 

 

 Threats to water quality and public health 

Despite the range of policy and economic drivers, improvements to water quality are 

often difficult to achieve due to the difficulty in identifying, apportioning and mitigating 

threats to water quality. The origin of pollution can be described as point or diffuse 

source. Point sources have a definitive point-of-entry to a watercourse, e.g. the discharge 

point of a wastewater treatment plant. Diffuse pollution sources are often regarded only as 

agricultural sources of pollution (Oliver et al., 2014), however, urban diffuse sources 

exist. Pollution is considered diffuse when there is no single point of discharge (European 

Environment Agency, 2018) and urban when it originates directly from anthropogenic 

activities, such as, driving cars, or sewage discharging into streams (Lundy & Wade, 

2013). Urban diffuse pollution is often overlooked and/or poorly understood; this may be 

due to the difficulty in applying modelling approaches to spatially and temporally 

sporadic events, the difficulty in remediating urban diffuse pollution, or the perception 

that agricultural pollution is that most problematic to water bodies.  

 

1.3.1 Urban pollution 

The realisation that water plays a major role in the transmission of certain diseases 

revolutionised our understanding of epidemiology and changed our sanitation practices. 

Before the link between the spread of cholera and drinking sewage-contaminated water, 

posited by Drs John Snow and William Budd, really gained acceptance (Cooper, 2001), 

the Report on the Sanitary Conditions of the Labouring Population of Great Britain 

(Chadwick and Flinn, 1842) was published. The resulting 1848 Public Health Act paved 

the way for local authorities to develop the combined sewer systems (Figure 1.3), many 

of which are still in use today across much of the UK (Cooper, 2001). 
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Figure 1.3 Diagram of combined sewer overflow operation in dry weather (top) and during rainfall (bottom), adapted 

from (USEPA, 2004) 

 

The UK’s sanitation requirements are today served by a variety of sewer systems, which 

include combined sewers, separate sewers or private treatment systems such as a septic 
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tank. Combined sewers (Figure 1.3) collect greywater from showers and sinks, 

blackwater from toilets, and surface run-off from rainfall in a single pipe where it is 

taken, ideally, for treatment before discharge to a water body. In separate systems, surface 

run-off enters a drain, running off directly to a watercourse, and is separated from black 

and greywater, which enters sewer systems.  

Sewer systems present risks to water quality through both point and diffuse sources of 

pollution. Combined Sewer Overflows (CSOs, Figure 1.3) and Sewage Pumping Stations 

(SPSs) are infrastructure assets designed to relieve pressure on sewage systems by 

overflowing sewers filling beyond their design capacity in the event of blockages or 

during heavy rainfall events. This prevents sewers from backing up and sewerage 

flooding homes and streets. While discharges from CSOs are usually permitted, 

discharges often occur too frequently and these point sources of pollution present risks to 

public and environmental health (WWF, 2017). To tackle this, telemetry has been 

installed on all CSOs discharging to a bathing water. CSOs which discharge frequently, 

and to watercourses with a high amenity value, and which CSOs to monitor is determined 

by the EA, although, individual water companies are likely to install additional 

monitoring on CSOs which they believe will impact bathing water quality. Northumbrian 

Water currently monitor 1152 CSOs across the North East, recording the time and 

duration that a spill occurs (Snape, 2019). This telemetry is currently used to good effect 

to reduce public health risk via the Safer Seas app (SAS, 2018). When CSOs have 

overflowed for 30 minutes, the telemetry monitoring CSOs alerts the public via an app, 

highlighting areas of higher risk. In this sense, telemetry has reduced the risk to public 

health which CSOs pose, and allows maintenance to be carried out immediately if a CSO 

is overflowing too frequently, or unexpectedly.  

Misconnections in separate systems, where the foul sewer pipe carrying black and grey 

water is connected to the surface water drain are common, difficult and expensive to 

detect and rectify, and have impacts on water quality which are often difficult to 

determine (Ellis & Butler, 2015). A government-commissioned review (Royal 

Haskoning, 2007) estimated that up to 1.25 million properties across the UK had 

misconnections, although Revitt and Ellis (2016) note reported rates to vary considerably 

with an average misconnection rate of from 3% up to 30% in some hotspot areas, the 

identification of which should be a priority (Ellis & Butler, 2015). Identifying 

misconnections is tedious and expensive. Misconnections have been estimated to cost the 
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UK water industry around £235 million/year in terms of asset management and 

maintenance (Royal Haskoning, 2007). While the estimated cost of identifying, repairing 

and rectifying misconnections varies considerably, for 500,000 homes this may cost 

between £393 million and £1.3 billion (Ellis & Butler, 2015). The exceptional costs of 

identifying misconnections, particularly those presenting a threat to public health, and the 

current lack of data (Ellis & Butler, 2015) makes methods to prioritise search areas 

paramount to reducing these issues in an economically efficient manner. 

Leaking sewers should be classified as diffuse sources of pollution and are increasingly 

common with ageing sewer infrastructure that has exceeded original life expectancy 

across much of the UK. Sewers are likely to get older still with only 1% of sewer assets 

replaced between 2000 and 2008 (DEFRA, 2011), due to the high cost and disruption 

associated with sewer replacement. Failing sewer assets are therefore likely to become 

increasingly problematic. The timely detection and location of points of failure will be 

critical to cost-effective improvements and maintenance of sewers. 

Septic tanks serve a large number of rural areas in the UK where connections to 

centralised sewer systems are not available (May et al., 2015a). Septic tanks typically 

consist of a two chambered tank where solids are removed through settlement and 

clarified effluent soaks away into the surrounding soil which is thought to be treated as it 

percolates through the soil (Wood et al., 2005). However, many older septic tanks are in 

use and may be undersized or receive rainwater causing them to overflow regularly. In 

addition, many older septic tanks discharge directly to water courses. Older, poorly 

functioning, or leaking septic tanks are major sources of nutrients, particularly 

phosphorus, in freshwater systems (May et al., 2015b). For example, (Aitken et al., 2001) 

found the 82% of septic tanks in a Scottish catchment discharged directly to water 

courses. These problematic septic tanks are likely sources of urban diffuse pollution in 

rural catchments. 

 

1.3.2 Agricultural pollution 

Agriculture covers around three-quarters of land use in England and Wales (DEFRA, 

2018a). Both arable and livestock farming continue to impact the aquatic environment 

through routine agricultural processes; the use of pesticides, such as metaldehyde, and 

medicines, such as antibiotics and endocrine disrupting compounds, can release micro-
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pollutants, while slurry and fertilizer spreading and animal defection can lead to the 

leaching of nutrients, as well as potentially zoonotic microorganisms, into watercourses 

(DEFRA, 2018a). The well-known phenomenon, eutrophication, arises from excess 

nitrogen (N), phosphate (P) and potassium (K) and leads to the deterioration in the 

ecological quality of water. An estimated 50% of the phosphorus entering surface waters 

can be attributed to livestock and fertilizer (Morse et al., 1993). In the UK poultry, sheep, 

cattle and pigs comprise the majority of livestock. Sheep and cattle make-up the majority 

of grazing stock (Figure 1.4), although by head of population, poultry has the highest 

number (~180,000,000 in 2017, (DEFRA, 2018b)). 

 

Figure 1.4. Trends in grazing stock numbers in the UK in 2017 (DEFRA, 2018b) 

 

Algal blooms and the release of, potentially zoonotic, microorganisms into the 

environment are of concern for human health. Almost two-thirds of human pathogens and 

60% of emerging pathogens have animal origins (Penakalapati et al., 2017).  

 

1.3.3 Other threats 

Wildlife such as birds, deer and rabbits can carry a number of human pathogens such as 

Campylobacter spp. (Lévesque et al., 2000) and therefore may present a threat to public 

health. While the risks to human health from animal sources are thought to be small, the 
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presence of faeces from other sources may confound analysis of water quality by 

providing high numbers of FIO.  

Pets are also potential reservoirs of FIOs and human pathogens. Many beaches (both 

globally and locally) restrict access to dogs and/or horses during bathing water season to 

reduce the risk to bathers and beach users. Justifying the banning of pets from beaches is 

rarely supported by with evidence. However, some studies have attempted try to 

determine potential loading of FIO by assessing the shedding of E.coli from the faeces of 

birds and dogs (Meerburg et al., 2011; Wright et al., 2009), or of faecal matter from 

bather themselves (Elmir et al., 2007). It is difficult to determine the accuracy of methods 

using the shedding rate of FIOs in faeces, although they provide a quick method of 

assessing the likely risks.    

 

 Microbial source tracking (MST) 

Understanding the sources of pollution is vital to effective bathing and surface water 

management, however, the ubiquity of E.coli and enterococci in the mammalian gut 

limits their use in determining the sources of pollution (Hagedorm et al., 2011). Despite 

the discussions regarding the poor efficacy of E.coli and enterococci as FIO, a recent 

World Health Organisation (WHO) review recommends their continued use within the 

Bathing Water Directive (WHO, 2018). This review (WHO, 2018) also highlights the 

potential for emerging techniques such as microbial source tracking (MST), which has 

developed as a useful tool for decision-makers, particularly in the US, and has influenced 

regulatory decisions (Nguyen et al., 2018).   

It is important to note that a range of chemical source tracking techniques have proven 

useful in identifying sewage contamination. A range of chemicals, typically 

pharmaceuticals and personal care products, have been used as markers of sewage 

contamination. Chemicals such as caffeine, acetaminophen, and acesulfame have been 

noted to be useful as sewage markers and correlate well with FIO in sewage or 

environmental samples, while others such as carbamazepine have been less useful 

(Cantwell et al., 2016; Sauvé et al., 2012; Nödler et al., 2016). However, some of these 

chemicals may be less useful for detecting sewage from smaller scale decentralised 

works, due to the lower likelihood of members of the community, those contributing to 

the sewage, using medication such as acetaminophen and carbamazepine or using 
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artificial sweeteners such as acesulfame. Differences in the environmental persistence of 

chemicals and FIOs may reduce their usefulness for microbial risk assessments, however, 

they are likely to represent the potential risks from some micro-pollutants better than 

microbiological agents. Advances in the use of chemical markers for the detection and 

monitoring of sewage contamination has been recently reviewed (Lim, et al., 2017). 

MST describes a range of techniques that use microbes and their communities to identify 

and sometimes apportion the sources of faecal contamination in a receiving environment. 

There are two general approaches to microbial source tracking (MST). Library-dependent 

approaches compare the phenotypic or genotypic traits of a particular group of organisms 

isolated from impacted sites with pre-constructed libraries consisting of a large number of 

these organisms from likely sources of pollution (Simpson et al., 2002). In contrast, 

library-independent approaches use previously identified genetic (often host-specific) 

targets, using the concentration of these as a proxy for the level of faecal contamination 

from a particular source (Harwood et al., 2014). 

Figure 1.5. The percentage of published papers in Environmental Science and Technology (n=28), Water Research 

(n=84), and Applied and Environmental Microbiology (n=48), using either a library-dependent or independent 

approaches. Data was obtained through Web of Science and Scopus searches using the key term 'Microbial Source 

Tracking' on 6 Feb. 2017 
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The majority of MST research involves the use of library-independent methods (Figure 

1.5), which may be due to the more rapid nature of library-independent methods  

compared to library-dependent ones (Griffith et al., 2003), the additional labour 

requirements of library-dependent methods, and the consistency in the performance of 

these approaches in different geographical areas (Ebdon & Taylor, 2006). Whether this 

trend will continue is unclear and may depend on how MST investigations are conducted, 

the purpose of the investigation and the expense, suitability and availability of techniques 

in the future. With new technologies, library-dependent approaches are becoming less 

labour intensive and may be able to distinguish between similar sources such as the faecal 

and non-faecal components of sewage (Newton et al., 2013). 

Although a wide range of methods exist, most recent research uses a narrow range of 

molecular techniques (Figure 1.5). The general dominance of PCR-based techniques is 

evident, and the transition from end-point PCR to quantitative PCR (qPCR) highlights the 

desire for MST to be more quantitative and rapid in nature. The increase in the popularity 

of sequencing (Figure 1.5) is due to both use in MST studies (Newton et al., 2013; Neave 

et al., 2014; Samarajeewa et al., 2015) and in biomarker discovery (Gomi et al., 2014; 

McLellan & Eren, 2014). 

1.4.1 Library-dependent methods  

The first attempts to link bacteria to sources involved building libraries of organisms from 

a single species, using techniques (Simpson et al., 2002) such as; antibiotic resistance 

assays (ARA), ribotyping, and repetitive-sequence PCR. These techniques were quickly 

replaced by Pulsed Field Gel Electrophoresis (PFGE) and terminal restriction fragment 

length polymorphism (TRFLP) (figure 1.5). These methods generally target E.coli and 

enterococci which are easily isolated from environmental samples.  
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Figure 1.6. The proportion of molecular techniques used in studies published in each year between 2005 and 2016 in 

Water Research (n= 84), Environmental Science and Technology (n=28), and Applied and Environmental 

Microbiology (n=48) which use molecular techniques. Data was obtained through Web of Science and Scopus searches 

using the key term 'Microbial Source Tracking' on 6 Feb. 2017 

 

Antibiotic resistance assays (ARA) compare the resistance profiles of E.coli (Parveen et 

al., 1997) or enterococci (Wiggins et al., 2003) isolated from different sources. However, 

when classifying bacteria by source, ARA can have variable and potentially low average 

rates of correct classification (57% - 94% (Wiggins et al., 2003; Scott et al., 2002)), with 

higher rates of correct classification generally occurring when library sizes are small and 

not representative of all sources. Wiggins et al. (2003) considered a representative library 

to consist of 6,587 isolates. In addition, factors such as gain or loss of a plasmid 

containing a resistance gene can complicate analysis (Scott et al., 2002) and resistance 

patterns are unlikely to be stable over time. In comparing seven different protocols to 

classify E.coli by source, Stoeckel et al. (2004) noted that ARA, carbon source utilization 

(CSU) and a ribotyping assay (RT-HindIII) classified less than 25% of blinded isolates 

that were already in the library, while CSU and RT-HindIII did not perform better than 

random at assigning a further 150 isolates to their known sources. In practice, false 

positive results would inhibit most protocols and larger libraries would be required to 

improve accuracy, reproducibility and geographical stability.  

Pulsed-field gel electrophoresis (PFGE) is a DNA fingerprinting method used to infer 

relatedness between the genomes of organisms in epidemiology studies. While PFGE has 
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been found useful in some studies, Parveen et al. (2001) found no association between the 

PFGE profile and source of an isolate. Repetitive-sequence PCR uses primers which 

target interspaced repetitive sequences in the bacterial genome to differentiate between 

similar strains of a single species, especially using the BOX primers (Versalovic et al., 

1994). The BOX primers have been reported to correctly identified the source of 78-90% 

of isolates to sources (Dombek et al., 2000), and (Araújo et al., 2014) was able to 

correctly classify 78% of isolates between human and gull faeces, although this required a 

library of 592 isolates between the two sources. Unfortunately, the reproducibility of this 

technique and the fact that variability increases with library size means these techniques 

are generally unreliable (Meays et al., 2004; Dombek et al., 2000).   

Between 2009 and 2014, TRFLP was a common method for community profiling (Figure 

1.6). TRFLP involves the enzyme digestion of a single gene, amplified from a community 

and comparing the length and relative intensity of digested fragments. TRFLP targets a 

single gene possibly due to the volume of available literature and the inexpensive nature 

of the analysis (Cao et al., 2013). However, comparisons against emerging next 

generation sequencing techniques allow a greater phylogenetic resolution and can identify 

a greater proportion of the microbial diversity than TRFLP methods (Cao et al., 2013; 

Samarajeewa et al., 2015).  

 

1.4.2 Sequencing for water quality monitoring and MST 

The progress in high throughput sequencing (HTS) technology, which has historically 

outpaced Moore’s law (Muers, 2011), means that tens or hundreds of samples can be 

processed simultaneously (multiplexed) and rapidly (< 24 hours). This progress has led to 

initial explorations in the use of HTS technology for water quality monitoring and MST. 

By targeting the 16S rRNA gene, HTS allows for the identification of multiple bacteria to 

generate community-fingerprints. The 16S rRNA gene encodes the 16S ribosomal RNA, 

a structural component of the ribosome. Since ribosomes are a critical component in the 

production of proteins, vital to all life, the parts of the 16S gene are highly-conserved 

(Woese et al., 1975) across living organisms. The 16S gene is ideal for bacterial species 

identification since it contains nine hypervariable regions, separated by conserved 

regions. Differences in the hypervariable regions allow differentiation between bacteria 

while the conserved regions allow for the use of universal primers (Chakravorty et al., 
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2007). It is important to note, however, that there is currently a trade-off between the rate 

of errors introduced by sequencing and the length of DNA it is possible to sequence 

(read-length). Therefore most studies choose one or two hypervariable regions only. 

However, this is often insufficient identify and differentiate between all bacteria to 

species level, since each region varies in sequence diversity between different bacteria 

(Chakravorty et al., 2007).  Importantly, Kumar et al. (2011) noted variations in the 

reported relative abundance of bacteria when different hypervariable regions were 

targeted in 16S rRNA sequencing, finding that the apparent dominant species changed 

when different hypervariable regions were targeted. Interestingly, averaging the results of 

the V1-V3 and V7-V9 regions gave communities similar to the result of Sanger 

sequencing of the whole 16S rRNA gene. Differences in bacterial communities was also 

observed when using different HTS technologies (Samarajeewa et al., 2015). Exploration 

of MST using different technologies may be beneficial in understanding these differences, 

and assessing how much differences in the perceived microbial community influences 

MST conclusions.  

 

Identifying faecal associated bacteria and bacterial communities 

Detection and comparison of bacterial communities has informed library-independent 

approaches in the development of new markers (Gomi et al., 2014; McLellan & Eren, 

2014) and allows direct identification of source-associated bacteria and their 

communities. Iceton (2018) used a database and BLAST searches to identify host-

associated bacteria in the communities of potential sources and sinks. This approach, 

however, was limited by the low sensitivity of the assay coupled with the low abundance 

of these bacteria and the low number of samples used in the study. A similar approach is 

occasionally taken in the simultaneous detection of putative pathogens (Tan et al., 2015; 

Batista et al., 2018). The efficacy of this approach is seriously limited by the sequencing 

methods’ ability to reliably classify and identify taxa. Sequencing technologies are 

currently limited by the read length, the length of DNA it is possible to sequence with a 

high degree of certainty, which limits the taxonomic-level at which bacteria can be 

classified. Currently, it is accepted that genus-level classification is possible while 

species-level may be possible for some species depending on which gene and which 

region of a gene is sequenced. However, Tan et al. (2015) note that even if species-level 
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classification is possible using the 16S rRNA gene, it would be insufficient to assess risk 

from pathogens with strain-specific virulence.  

A more successful strategy for MST has been the identification of bacterial signatures, 

associated with faeces. Newton et al. (2013) identified faecal and non-faecal bacterial 

signatures within sewage by identifying three genera (Acinetobacter, Arcobacter and 

Trichococcus) and five families (Porphyromonadaceae, Clostridiaceae, Lachnospiracea 

and Ruminococcaceae) to represent sewer and faecal contamination respectively. These 

community signatures were successfully used to track the proportions of faecal and 

sewage communities during a combined sewer outfall event, sewage blending and the 

following four days of dry weather. While this approach was useful in determining sewer 

as opposed to faecal communities, the sharing of operational taxonomic units (OTUs) in 

the faecal signature between human and animal faeces limited this approach to defining a 

human signature. To differentiate human and non-human sources the SourceTracker 

software (Knights et al., 2011) was used. 

 

Computation methods for source identification and source apportionment 

Computational methods used to predict the relative contribution of sources of bacterial 

communities are popular. However, predicting the contribution of these sources to the 

overall bacterial community is difficult; while some bacterial taxa are host-associated, a 

number of taxa are shared between hosts. Random forests algorithms and the 

SourceTracker (Knights et al., 2011) are the most common methods to identify distinct 

sources and predict their relative contributions. The SourceTracker software takes a 

Bayesian approach to identify the sources and their relative contribution to ‘sink’ 

samples. This approach is discussed by Knights et al. (2011). Briefly, sink samples are 

considered as n sequences assigned to any one of the source samples or an unknown 

source. All possible assignments of sequences to each source are considered through the 

use of Gibbs sampling to integrate over the posterior distributions of taxa in the source 

environment and sources in the test samples, which are both Dirichlet distributions. Gibbs 

sampling works by firstly randomly assigning each sequence to a source, and estimating 

the current proportion of each source in the sink. A single sequence is reassigned to a new 

source with the probability of observing the sequence in the source. Each iteration of this 

procedure gives a representation of a single sample from the distribution of all possible 
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sequence-source assignments. Large numbers of these iterations allows the variability of 

this distribution and mixing proportions to be estimated (Knights et al., 2011). Knights et 

al. (2011) evaluated SourceTracker against naïve Bayes and random forests approaches 

by mixing two simulated source communities and concluding that SourceTracker was 

superior to both, particularly when the communities of two source samples were very 

similar. Neave et al. (2014) used 454-pyrosequencing with SourceTracker to identify 

human pollution in receiving waters. SourceTracker results generally agreed with and 

were more sensitive than other source tracking methods (DGGE of enterococci and PCR 

for faecal markers), despite the predicted proportion of faecal contamination being 

extremely low. False positive results are a concern when using SourceTracker, 

particularly for low proportions of bacteria. A separate evaluation of SourceTracker 

recommended running the algorithm five-times with default settings to identify false 

positive results with relative standard deviations > 100% (Henry et al., 2016), following 

an analysis of simulated microbial communities. However, this analysis did not include 

potentially similar sources, such as cow and sheep, which are important for MST in the 

UK (See 3.2 Agricultural pollution).  

The ability of SourceTracker to identify and differentiate sources of pollution depends on 

the similarity of microbiomes from the same host environment and dissimilarity of those 

from different source environments. Staley et al. (2018) found that source assignments 

were only accurate when the library was composed of samples considered local to the test 

samples. However, how local these samples are required to be is unclear since the tested 

samples were from Australia and the USA (Staley et al. 2018). It would be useful to 

know, for example, whether a single library would be representative of the whole of the 

North East of England. In addition, it has been suggested that SourceTracker may 

artificially conflate the background community with the faecal source community 

overestimating the relative contribution of a source (Staley et al. 2017). However, this 

appears to have little effect on the conclusions drawn from the results, though this may 

become an increasingly important consideration with decreasing levels of contaminations. 

However, when the background community is omitted as a source, considerably greater 

contamination from inlet and outfall samples was found. Thus, when SourceTracker is 

evaluated without controlling for the environmental context of faecal pollution, in this 

case open ocean microbiota, the algorithm may artificially conflate the environmental 

signature with the faecal source and overestimate the burden of pollution from the source. 
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While large library-sizes were a requirement and a limitation of previous library-

dependent methods, the number of samples required to be representative of source 

microbiomes is unclear. A number of studies have successfully used libraries composed 

of a single sample, and while Brown et al. (2017) suggested the potential of false 

negatives in their study when using less than 13 samples, the same authors later suggest 

that <10 samples are likely to be sufficient (Staley et al. 2018). A better understanding of 

how library size affects the accuracy of predictions is required, since accuracy may 

decrease with library size, especially when comparing similar sources (Staley et al. 2018).  

Staley et al. (2018) note that several questions remain regarding the temporal stability of 

libraries, understanding of the decay of faecal communities and an understanding of how 

SourceTracker predictions relate to regulatory FIO concentrations. In addition, validation 

of more recent techniques for the analysis of sequence data and generation of bacterial 

community fingerprints are required since the composition of these fingerprints is 

affected by changes in: the sequencing platform used (Samarajeewa et al., 2015); the 

quality controls used in processing the sequencing data; and the bioinformatics 

approaches used to define an OTU. Currently, no study has described the effect of these 

upstream choices on the SourceTracker output, which may be important in long-term 

adoption of these techniques for water quality or catchment monitoring. A further 

consideration for MST is that SourceTracker may underestimate the contributions of 

highly diverse sources, such as soils due to the lack of overlap between the source 

community and the sources which may contain rare taxa (Flores et al., 2011).  

Using the entire bacterial community, like in SourceTracker, may make analysis 

susceptible to changes in the composition of microbial communities introduced through 

DNA extraction, PCR and sequencing protocols (Roguet et al., 2018). In this light, a 

random forests classifier using a narrow taxonomic focus, for the orders Bacteroidales 

and Clostridiales, was recently tested. Random forests models consist of numerous 

decision trees generated using a random subset of the training data, in this case the source 

communities of Bacteroidales and Clostridiales. When classifying samples into sources, 

the classifier reports averages of classifications from each of the decision trees. In 

evaluating this approach, using pet (cat and dog) and ruminant (sheep and cow) groupings 

gave lower error rates than using individual sources, possibly due to similarities in their 

Bacteroidales and Clostridiales communities. The classifiers appears to be largely 

specific, although the Cat, Dog and Pet classifiers had the lowest prediction accuracy 
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giving some false positive results and were only identified in samples with higher levels 

of contamination (>10% of source sequences). 

The random forests approach may allow for more rapid identification of pollution 

sources, but fails to identify the magnitude of contamination easily. Once random forest 

classifiers are generated, they can be used later to rapidly analyse pollution sources. In 

comparison, SourceTracker often requires the entire library to be analysed simultaneously 

(Roguet et al., 2018), although, new bioinformatics approaches which use closed-

reference techniques are overcoming this limitation. Roguet et al. (2018) overcame the 

inability of random forests to predict the magnitude of contamination by using the 

relationship between known proportions of contamination from test samples and the 

relative proportion of sequences matching all classifiers as a proxy. However, this 

approach was not tested at low levels of contamination expected from environmental 

waters (Neave et al., 2014), nor compared to the SourceTracker algorithm.  

A number of MST investigations have successfully used HTS to generate community 

signatures from pollution sources and identified these in receiving waters (Newton et al., 

2013; Neave et al., 2014). Newton et al. (2013) used the V6V4 and V6 region to produce 

community signatures, with a signature being composed of the relative abundance and the 

taxa distribution.  

A further limitation of using SourceTracker in MST studies may be in the stability of 

faecal communities. Sassoubre et al., (2015) note that the HTS approach to MST relies on 

the temporal stability of the microbial communities contributing to the pollution and it is 

therefore important to understand the factors affecting these communities. Indeed, in their 

study Sassoubre et al., (2015) showed that the microbiota of sewage changed significantly 

with as little as 3% of the OTUs being identified by SourceTracker as originating as 

sewage after 48h. This is a limitation in the use of HTS in MST, although a community 

signature approach, such as that used by Newton et al. (2013) may overcome this. A 

signature is a number of OTUs specific to a source and the relative abundance of these 

OTUs; if the most persistent OTUs with similar persistence patterns are used the 

reliability of HTS as an MST method may be improved. A number of studies have 

identified microbial communities from humans and/or sewage (Newton et al., 2013, 

Koskey et al., 2014, Sassoubre et al., 2015), few have explored the degradation of these 

communities (Sassoubre et al., 2015) and no studies have explored the degradation of 
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communities of faecal material from other animals which may also contribute to bathing 

water pollution such as dog, cow, horse and sheep etc.  

 

1.4.3 Library-independent methods 

Library-independent methods are based on the observation that some organisms (or 

genetic markers within the DNA of those organisms) exhibit a preference for a particular 

environment or host. Currently, the perfect host-specific organisms i.e. one that occurs in 

just a single host species but in every individual of that species, has not been identified 

(McLellan & Eren, 2014). However, a range of genetic targets which appear to be more 

prevalent in a particular host species, and are present in enough individuals of that species 

to be useful, have been identified.  

Library-independent methods still dominate MST research and investigations. Compared 

to library-dependent techniques, library- independent techniques are generally less labour 

intensive, more cost-efficient, and more rapid in their implementation and analysis. One 

issue which reduces this rapidity, and adds to costs, is that the performance of library-

independent markers varies depending on the geographical location, potential sources of 

pollution, and environmental conditions (Wuertz et al., 2011). Validation of marker 

performance is therefore required in each new location they are used, reducing the 

rapidity with which these techniques can be deployed (Wuertz et al., 2011; Harwood et 

al., 2014). 

 

Validation of marker performance 

Currently, there are a wide range of MST markers, although, the selection of markers is 

difficult as few have been thoroughly validated. Selection of markers is further 

complicated as marker performance indicators can hold a range of values, changing with; 

the environment, geographical location (Gawler et al., 2007; Wuertz et al., 2011), assay 

used, and combination of markers selected (Caldwell et al., 2007; Gomi et al., 2014). 

Wuertz, et al., (2011) suggests preliminary studies are necessary for marker validation 

even though this detracts from the rapidity of library-independent approaches.  

The ideal validation of markers should include an evaluation of their: host-specificity, 

distribution in host population, temporal and geographical stability, environmental 
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persistence, their correlation to public health risks, and the limits of their detection and 

quantification sensitivity of the methods of detection (Hagedorm et al., 2011; Harwood et 

al., 2014). However, these are not always possible due to time, cost and sampling 

limitations. 

The host-specificity of a marker describes the extent the marker may be found in a single 

host and not found in faecal matter from non-target hosts. Specificity is evaluated by 

examining faecal matter from non-target hosts and calculating one minus the false 

positive rate (Stoeckel and Harwood 2007). The sensitivity of a marker is determined by 

evaluating the proportion of faecal samples from target-hosts that are confirmed as 

positive (Stoeckel and Harwood 2007).  

In evaluating the specificity and sensitivity the USEPA (2005) suggest that ten samples 

per host type are used. It is worth noting that reported values often use different numbers 

and/or types of non-target hosts, depending on the likely sources of faecal pollution. The 

temporal and geographical stability of the specificity and sensitivity of a marker, as well 

as its environmental persistence and correlation to pathogens are less often tested prior to 

MST studies. The stability of markers refers to whether the specificity, sensitivity and 

presence of the marker are consistent over time and geographic location. Many 

persistence studies have been undertaken, however, it is important that new markers are 

evaluated for persistence particularly since this could allow the development of catchment 

models, which may move MST techniques from risk identification to risk prediction.  

Currently, comparing marker performance is difficult, due to the vast range of markers 

and validation methods available, as well as the use of different units in performance 

measures, make it difficult to choose between markers (Harwood et al., 2014). If MST is 

to be deployed in the water industry, a cost-effective approach may be to validate markers 

across the catchment served by a particular water company, although there is little 

knowledge on the variability of marker performance on local scales. 

 

Current markers for MST investigations 

As mentioned, the 16S rRNA gene is the genetic target for the organisms most commonly 

used in MST studies including: a number of organisms in the order Bacteroidales; 

Bifidobacteria spp.; Firmicutes; and archaea such as Methanobrevibacter smithii 
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(McLellan & Eren, 2014). Although the 16S rRNA gene is most commonly used, others 

genetic markers such as: The α-1,6-mannanase gene of B. thetaiotaomicron; the 

E.faecium surface protein gene (ESP) and mitochondrial DNA have been used (Yampara-

Iquise et al., 2008; Harwood et al., 2014; McLellan & Eren, 2014).  

 

Bacteroidales 

Bacterioidales are the most common target for library-independent MST. Bacteroidales 

are obligate anaerobes which are abundant in the mammalian intestinal tract (Harwood et 

al., 2014) and whilst difficult to culture, they are not environmentally persistent; their 

presence therefore indicates recent faecal pollution (Bernhard & Field, 2000).   

Bernhard and Field (2000) developed the human-specific marker, HF183 which, having 

received many field tests, has a reported specificity of 60 to 100% and sensitivity of 58.3 

to 68% for human faeces and 100% for sewage. It is also worth noting that the 

concentration of HF183 is generally an order of magnitude higher than that of faecal 

coliforms (Bernhard & Field, 2000). Many more Bacteroidales-based human-faecal 

markers have been and continue to be developed. Harwood et al. (2014) gives a summary 

of 10 further Bacteroidales markers using the 16S rRNA gene target and 4 using other 

gene targets. However, only five 16S rRNA markers and three other markers have been 

field tested and only two 16S rRNA markers (HF183 and BacHUM-UCD) have been 

correlated with pathogen presence (Harwood et al., 2014). A number of Bacteroidales 

markers for animals other than humans have been identified and assays developed for 

their detection, including markers for; canine (BacCAN), bovine (BacCOW) and 

ruminant (BacR) hosts (Kildare et al., 2007; Reischer et al., 2006).  

 

Bifidobacterium 

Bifidobacterium is a genus of enteric anaerobes abundant in humans (Bonjoch et al., 

2004). B. adolescentis have been suggested to be specific to the human intestinal tract and 

therefore potentially useful to track human pollution (Ballesté & Blanch, 2011). A 

Taqman qPCR assay targeting B.adolescentis was developed and although the specificity 

of this assay was slightly less than the H183 assay (95%), with cross-reactivity occurring 

in agricultural wastes, this organism may be a useful MST target (Gourmelon et al., 
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2010). Unfortunately, few studies have currently further evaluated this assay so little is 

known about its geographical or temporal stability. 

 

Methanobrevibacter smithii 

A range of qPCR assays for human markers have also been developed to target the 

archaeon Methanobrevibacter smithii (Johnston et al., 2010). The nifH methanogen-

specific gene, is unique among this group and it does not code for a functional 

nitrogenase group (Ohkuma et al., 1999). The nifH gene is reported to be present in 

around 30% of individuals and in 93% of sewage and absent from non-human sources 

(Specificity = 100%) (Ufnar et al., 2006). Subsequent studies have reported some 

limitations with M. smithii. In a comparison of markers, the nifH gene appears to have 

low abundance in sewage and appears insensitive, particularly when compared to other 

markers (Ahmed et al., 2012; McQuaig et al., 2012). This led to the conclusion that M. 

smithii may have limited use as a sole marker, although the high specificity may give it 

some use as part of a multi-marker study (Ahmed et al., 2012; Harwood et al., 2014). 

However, subsequent studies have also observed M. smithii in porcine guts (Federici et 

al., 2015) and as part of the core methanogen community in bovine samples (Cersosimo 

et al., 2016). In addition, a recent survey of 16S rRNA gene sequences in faecal samples 

revealed sequences highly similar to M. smithii in bovine, ovine and equine samples 

(Iceton, 2018). While this may suggest the unsuitability of M. smithii as a marker (Iceton, 

2018), studies reporting cross-reactivity did not target the nifH gene which may prove to 

represent a human-specific strain. Nevertheless, caution would be advised before using 

this marker. 

 

Lachnospiraceae 

Bacteria of the family Lachnospiraceae are anaerobes. These have been of recent interest 

in MST. A phylotype of Lachnospiraceace, Lachno2, looks to be a promising marker, 

concentrations correlated well with enterococci (r = 0.86) and adenovirus (r = 0.91) 

suggesting that Lachnospiraceae may be as environmentally persistent as enterococci and 

represent some pathogens well (Newton et al., 2011). While the specificity of Lachno 2 

was not evaluated, a previous study found no sequences of the genus Blautia (a member 
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of the Lachnospiraceae) in cattle faeces. However, a comparison of five human-

associated markers found Lachno 2 to have the lowest specificity, cross-reacting with 

52% of animal faecal samples (Mayer et al., 2018). The Lachno 2 assay did, however, 

have the highest mean concentration in human faecal samples (6.0 Log10(gene copies/100 

mL)), supporting the development of other Lachnospiraceae based markers. Validation of 

a Lachno 3 and Lachno 12 are underway which appear to be more specific, although still 

showed low-levels of cross-reactivity (Feng et al., 2018).   

 Lachnospiraceae were also recently highlighted as potential faecal markers using 

oligotyping, a computational method which can discriminate between similar strains 

(Eren et al., 2013). Eren et al. (2014) analysed the V6 region of the 16S rRNA genes of 

bacteria of genus Blautia, to identify high-resolution OTUs termed oligotypes. Whilst 

most (86%) oligotypes identified were not present in all host faecal matter, 13 oligotypes 

specific to humans, swine, chicken, deer and cattle were identified. Although these are yet 

to be tested in MST investigations Blautia oligotypes are potential indicators and 

oligotyping a promising technique to identify further indicators. 

 

Mitochondrial DNA 

A number of laboratory and field studies (Martellini et al., 2005; Schill and Mathes, 

2008; Baker-Austin et al., 2010; He et al., 2015, 2016; Stea et al., 2015; Villemur et al., 

2015) have reported the potential of eukaryotic mitochondrial DNA (mtDNA) as an MST 

marker. Mitochondrial-DNA can be isolated from faeces of animals, likely a result of the 

shedding of colonic epithelial cells (Iyengar et al., 1991). An advantage of mtDNA is that 

host DNA is detected directly, rather than using a microbial proxy (Caldwell et al., 2007). 

This may be particularly useful where no microbial markers exist, e.g. pigeons (Waso et 

al., 2018). In addition, the utility of mtDNA has been compared to 16S rRNA genes 

having regions of both highly-conserved and variable sequences, with multiple copies per 

cell thereby allowing differentiation between sources (Martellini et al., 2005). 

In laboratory and field trials mtDNA has achieved mixed results. Martellini et al., (2005) 

designed PCR assays to differentiate human, bovine, ovine and porcine faecal pollution, 

no cross-reactivity was found suggesting high specificity of markers. Baker-Austin et al. 

(2010) reported sensitivity to sewage of 85%, lower than that of bacterial markers. This 

was similar to the performance of mtDNA in other studies. Schill and Mathes (2008) 
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blind tested 20 faecal samples using mtDNA markers from nine pollution sources. The 

average sensitivity and specificity was 85% and 99% respectively. Field trails generally 

agree, with human mtDNA marker concentrations being at least one order of magnitude 

lower than HF183 (Villemur et al., 2015; Stea et al., 2015). 

Aside from low sensitivity, a number of other limitations exist for the use of mtDNA 

markers, in particular, the presence and concentration of mtDNA may not be indicative or 

proportional to health risk. Recreational water users may increase the human mtDNA 

concentration in pristine waters through the shedding of skin epithelial cells. In addition, 

the gene copies per cell of mtDNA can vary by three orders of magnitude and little is 

understood about the shedding rates of epithelial cells from the colon. Despite limitations 

mtDNA markers may be useful in their application alongside bacterial markers due to 

their high specificities to their hosts. 

 

Viral indicators 

The relationship between FIO and health risk is a topic of much debate, and has led to the 

call for reliable viral indicators, which may better represent health risk from viruses 

(Marion et al., 2014; Shah et al., 2011); to monitor the efficiency of wastewater treatment 

processes and indicate faecal contamination of food and water.  Harwood et al., (2013) 

suggest that non-pathogenic viruses may be useful MST indicators since many are host-

specific (McQuaig et al., 2012), have environmental decay rates (Walters et al., 2009), 

and wastewater treatment removal rates more similar to viral pathogens than culturable 

FIOs (Symonds et al., 2018).  

However, viruses are typically present in low concentrations (Kitajima et al., 2014; 

Harwood et al., 2013) which can make enumeration difficult, expensive (McQuaig et al. 

2009), and lead to false negative results (Harwood et al., 2013). Nevertheless, the low 

concentrations may be overcome using concentration techniques (Ahmed, Harwood, et 

al., 2015), and metagenomics analyses (Aw et al., 2014) may identify viruses with higher 

concentrations.  Recently, the pepper mild mottle virus (PMMoV), with high mean 

abundance and low seasonal variation, has been proposed and tested as an indicator of 

faecal pollution and treatment process indicator (Rosario et al., 2009) and although less 

abundant than HF183, may better represent viral health risk in environmental waters 

(Hughes et al., 2017).  
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A large amount of research has been dedicated to the use of bacteriophages as indicators 

of faecal pollution and a recent review suggests F-specific RNA (FRNAPH) and somatic 

coliphages are better indicators of viral contamination than current FIOs (USEPA, 2015). 

Bacteriophage are viruses which use bacteria as hosts and can be measured at low cost 

using culture-based assays. FRNAPH RNA bacteriophages have been suggested as a 

model organism for enteric viruses, exhibiting a correlation with viral concentrations in 

freshwater (Havelaar et al., 1993). Among four classifications of FRNAPH group II and 

group I appear to be the most promising groups as indicators of human and animal 

pollution respectively (Table 1.3). 
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Table 1.2 Examples of some viral indicators used for MST and their relationship to host environments 
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FRNAPH (Group 

II) 

Wastewater  94.3 

 

57.9 

89.6 

Avian 

69.3 

Cow 

(Gourmelon et al., 

2010) 

(Harwood et al., 2013) 

FRNAPH (Group 

III) 

Wastewater  17.4 NA 

 

67 

(Gourmelon et al., 

2010) 

(Blanch et al., 2006) 

FRNAPH (Group 

I) 

Animal 

faeces 

 52.1 – 

100 

94.1 (Gourmelon et al., 

2010) 

Bacteriophage 

infecting 

Bacteroides  

fragilis GB124 

Wastewater 

 

Faeces 

2.5 x 103 – 5 x 
104 

 

1.0×101 to 

1.0×102 

(PFU/g) 

100% 

 

4% 

100% 

 

100% 

(Payan et al., 2005; 

Ebdon et al., 2012) 

 

(Diston & Wicki, 

2015) 

Bacteriophage 

infecting 

Bacteroides  

thetaiotaomicron 

GA17 

Wastewater 3.2 x 103 – 1.2 
x 105.5 

100%  (Payan et al., 2005) 

 

Adenoviruses Wastewater  

 

1.4 x 106 

91.6  (Kitajima et al., 2014) 

(Hughes et al., 2017) 

polyomaviruses Wastewater 2.6 x 107 58-79  (Kitajima et al., 2014) 

Enteroviruses Wastewater 1.8 x 105   (Hughes et al., 2017) 

Noroviruses Wastewater 9.7 x 104 75  (Kitajima et al., 2014)  

Pepper Mild 

Mottle Virus 

(PMMoV) 

Wastewater 

Human 

faeces 

3.7 - 4.4 x 105 

5.7 x 106 

98 

11.3 

 (Kitajima et al., 2014) 

(Hughes et al., 2017) 

CrAssphage Wastewater 6.4 - 9 Log10 100   

59 

 

92.7                       

98 

(García-Aljaro et al., 

2017) 

(Ahmed et al., 2018) 

(Stachler et al., 2018) 
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Other phage targets, such as bacteriophage infecting Bacteroides spp. (Tartera et al., 

1989; Payan et al., 2005; Jofre et al., 2014; Diston & Wicki, 2015) and Enterococcus spp. 

(Purnell et al., 2011) are also promising MST targets. While different Bacteroides host 

strains may be required for MST in different regions, two host strains, B. 

thetaiotaomicron GA17 and B. fragilis GB124 (Table 1.2), have shown promise in the 

UK and Southern Europe (Payan et al., 2005; Blanch et al., 2006; Ebdon et al., 2012). 

Blanch et al., (2006) found bacteriophage infecting B. thetaiotaomicron GA17 to have 

greater specificity to wastewater than somatic coliphages, FRNAPH, and bacteriophages 

infecting Bacteroides fragilis RYC2056. Enterococcus hosts, susceptible to lysis from 

bacteriophage from specific hosts, have been identified, using a tiered approach (Purnell 

et al., 2011). Interestingly, Purnell et al. (2011) noted a negative correlation (R = -0.480, 

p < 0.01) between the sensitivity and specificity of Enterococcus hosts. Strains 100% 

specific to cattle and pig faeces were only 33% and 20% sensitive, respectively, and an E. 

faecium isolate, MW47, had a specificity of 100% and sensitivity to raw and treated 

wastewater of 100% and 25% respectively.  This suggests that a trade-off between these 

performance parameters may be necessary when selecting MST markers. Wangkahad et 

al. (2017) also isolated two strains of E. faecalis, which appear to be 100% specific and 

90% sensitive to sewage. Further work to understand the environmental survival of 

MW47 suggests that caution is required when using phage-based MST due to differential 

die-off between different phage families (Purnell et al. 2018). 

Recent metagenomic monitoring of wastewater suggests that there is an array of 

uncharacterized viruses which may provide better human and/or animal specific markers 

in the future (Aw et al., 2014).  While metagenomic detection and monitoring of viromes 

are in their infancy, metagenomics approaches have produced new viral indicators. 

Metagenomic assembly of virus genomes led to the recent discovery of crAssphage, a 

bacteriophage which appears to be 6-times more abundant in metagenomes than all other 

phages together (Dutilh et al., 2014). Stachler and Bibby, (2014) first suggested the utility 

of crAssphage as an MST marker, following an evaluation of 86 publically available 

metagenome data sets. CrAssphage appeared to be more abundant in sewage from the US 

and Europe, compared with that from Asia and Africa and had low cross-reactivity with 

other samples, with the exception of bat guano. The development of two new primer pairs 

targeting crAssphage appear to be better than previous markers, although still show cross-

reactivity with dog and gull faeces through qPCR assays (Stachler et al., 2017). It is 
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important to note that crAssphage was also observed in 41% of animal faecal samples 

tested which is likely to limit its efficacy as a human MST marker (García-Aljaro et al., 

2017). 

 

Relating MST outcomes to regulatory indicators 

It is important that conclusions drawn by MST assays relate to regulatory FIO 

concentrations, since in bathing water catchments FIO compliance is the main 

management objective, although this rarely occurs. Difficulties in relating MST marker 

and FIO concentration are well appreciated. Whilst library-independent genetic markers 

give indications of FIO sources they only occasionally explain a high proportion of E.coli 

variation (Reischer et al., 2008; Heaney et al., 2015), and drawing FIO source 

conclusions from marker data remains difficult (Wang et al., 2013). These difficulties are 

to be expected since genetic markers and FIO differ in many respects: their initial faecal 

concentrations; transport and attenuation mechanisms (Johnston et al., 2010); their 

environmental decay rates both within faeces (Oladeinde et al., 2014) and in 

environmental waters (Brown & Boehm, 2015; Wanjugi et al., 2016; Korajkic et al., 

2014); the assays used for their detection (Ahmed et al., 2015); and the ubiquity of FIO 

and possible environmental persistence as opposed to the host-specificity of genetic 

markers.  

Modelling efforts to relate FIO and MST marker concentrations, so far, are not applicable 

for a range of environmental conditions. Wang et al., (2013) developed a ratio model to 

determine the proportion of FIO originating from sewage (F) using genetic marker 

concentrations,  

                                                     𝐹 = [
𝑅𝑎𝑤

𝑅𝑠𝑒𝑤𝑎𝑔𝑒
] ∗  𝑒(𝑡∗ ∆𝑘)    Equation 1.1 

Where Raw is the ratio of genetic-marker to FIO (e.g., enterococci) concentrations in 

ambient water, Rsewage is the same ratio in raw sewage, Δk is the difference in first order 

decay rate constants between the genetic-marker and FIO of choice, and t is the time 

spent in environmental waters. Determining the correct values of Δk and t is, however, 

challenging. The age of the faecal contamination is often impossible to determine 

(Mattioli et al., 2016) and estimates of decay rate constants show a large variation, only 

some of which is explained by different environmental conditions (Brooks & Field, 
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2016). Nevertheless, Mattioli et al. (2016), note that where ΔK = 0, the model simplifies 

to: 

                                                          F=[Rw/Rsewage]                                        Equation 1.2 

However, Mattioli et al., (2016) note that when determining the fraction of culturable FIO 

(F) from sewage, ΔK ≈ 0 only occurs when light intensity is adequately low. The authors 

estimated that at a latitude of 37.50 degrees low light conditions only occurred at depths 

of >100 m or >1 m in mixed and unmixed water columns, respectively. While these 

depths may be less in temperate climates, Equation 2 is unlikely to be applicable in the 

majority of circumstances.  

 

E.coli as a source indicator 

A range of approaches and techniques has been used to attempt to apportion E.coli by 

source. Library-dependent methods were the first developed and field tested, although 

these methods have been noted to be overly complex, preventing source identification 

(Neave et al., 2014). This is possibly due to the large diversity in E.coli a result of large 

variations in genome size (Bergthorsson & Ochman, 1998).  

The distribution of E.coli phylogenetic groups is not identical between different host 

species or environments. Whilst E.coli typically belong to phylogenetic groups A, B1, 

B2, D, E or F, studies suggest an affinity of B2 E.coli strains to the human intestinal tract 

(Bailey et al., 2010). Further analysis of E.coli phylogenetic group and subgroup 

distributions among animal faeces also found the B23 subgroup to be human-preferred; 

unfortunately this subgroup showed a low sensitivity with only 7% of human E.coli 

clones analysed belonging to this subgroup (Carlos et al., 2010). Whilst some host 

preference can be inferred from the phylogenetic grouping of E.coli strains, the sensitivity 

and specificity are too low to be useful for source tracking studies. 

While library-dependent approaches rely on identifying genotypes occupying different 

hosts or environments, highly similar genotypes may occupy different hosts (Naziri et al., 

2016) and environments (Byappanahalli et al., 2012). Subtle variations in the E.coli 

genome allow highly similar strains to exist in the differing conditions (such as nutrient 

concentrations, pH, temperature, predation, UV) and therefore hosts and environments.  

Recently, with improvements in molecular methods, a number of studies (Gomi et al. 
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2014; Warish et al. 2015; Deng et al. 2015; Zhi et al. 2015) have made use of these 

variations in the E.coli genome to identify specific genes or variants which allow E. coli 

to survive in a range of mammalian intestinal tracts. There have been two main 

approaches to identifying host-specific E.coli: i) using genes in the accessory genome 

(Gomi et al., 2014), and ii) using single nucleotide polymorphisms (Deng et al., 2015; 

Zhi et al., 2015).  

The E.coli core genome may be composed of as little as 10% of the 15,741 to 16,373 

gene families which make up the pan-genome (Rasko et al., 2008; Lukjancenko et al., 

2010). DNA acquisition is therefore a likely strategy for E.coli to occupy a host-specific 

niche. Two studies have identified host-associated genes in the accessory genome (Luo et 

al., 2011; Gomi et al., 2014) both using whole genome sequencing (WGS) of E.coli 

isolates through high throughput sequencing (HTS). Gomi et al. (2014) identified host-

associated and preferred genes in human, bovine, porcine and chicken derived E.coli in 

Japan. Four human-associated E.coli markers H8, H12, H14 and H24 appeared useful for 

MST (Table 1.3). In a catchment study, 47.9% of E. coli isolates were allocated a source, 

although, 4.4% of isolates contained 2 marker genes from different sources. Whilst this is 

a promising approach, 52% of environmental E. coli isolates remained unclassified. This 

could be due to: the limited number of sources originally tested; the unclassified samples 

being of environmental origin or naturalised; or that a limited proportion of the E.coli 

diversity from each source was sampled (Gomi et al., 2014). To improve the number of 

isolates classified it may be necessary to sample a greater number of sources as well as a 

greater number of isolates to sample a greater diversity of each strain and explore the 

genomes of environmental E.coli. These human markers (H8, H12, H14, H24) were 

subsequently tested in Australia and only H8 and H12 had specificities >85%, although, 

the authors note the possibility of human contamination in cow runoff leading to reduced 

predicted specificities(Ahmed, et al., 2015). 

The identification of single nucleotide polymorphisms (SNPs) may also prove to be a 

rapid and effective method of determining sources of host-specific E.coli host origins. 

Luo et al. (2011) identified 84 and 120 genes more prevalent in environmentally derived 

and enteric E.coli strains, respectively. Targeting the enteric specific glucosyltransferase 

gene (ycjM) Deng et al., (2014) identified local sequence changes within the ycjM gene, 

allowed the identification of a human preferred genotype H-yjcM (Deng et al. 2015). The 

H-yjcM genotype was found be present in ~50% of E.coli  (Deng et al. 2015), although 
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the single study using this marker suggests it is much less prevalent (Kataržytė et al., 

2018). 
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Table 1.3. Summary of performance of current E.coli biomarkers from recent studies. 

Host Biomarker(s) Sensitivity Specificity 

Identification/ 

validation 

method 

Reference 

Human 

H8 

 

H12 

 

H14 

 

H24 

 

At least one marker 

50% 

45%¥ 

30% 

14%¥ 

30% 

 

37% 

 

66.7% 

99% 

94%¥ 

100% 

85%¥ 

98.% 

72%¥ 

99% 

57%¥ 

97% 

WGS/ 

Multiplex PCR 

Japan 

(Gomi et 

al., 2014) 

 

¥Australia 

(Warish et 

al., 2015) 

 

 

Human human-ycjM marker 53% 99.7% 
PCR and 

qPCR 

(Deng et al. 

2015) 

Human 

SNP pattern in asnS-ompF, uspC-

flhDC, csgBAC-csgDEFG intergenic 

regions. 

60% 98% 
PCR and 

Sequencing 

(Zhi, et al., 

2016b) 

Human ydeR-yedS 56% 99% 

Predicted 

using E.coli 

Database 

(Zhi, et al., 

2016b) 
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Sewage IS30 

100% - Chlorine treated 

wastewater (59% of 

chlorine treated 

isolates) 

94% - secondary treated 

wastewater 

75% - UV-treated 

wastewater 

97% - Surface water 

95% Groundwater 
PCR 

(Zhi, et al., 

2016a) 

Cow 

 

Co2 

Co3 

Both Markers 

 

20% 

23.3% 

30% 

100% 

100% 

100% 

Multiplex PCR 
(Gomi et 

al., 2014) 

Cow 

SNP pattern in asnS-ompF, uspC-

flhDC, csgBAC-csgDEFG intergenic 

regions. 

40% 100% 

Predicted from 

E.coli 

Database 

(Zhi et al., 

2015) 

Cow cutC-torYZ 30% 98% 

Predicted from 

E.coli 

Database 

(Zhi, et al., 

2016b) 

Cow ydeR-yedS 92% 98% 

Predicted from 

E.coli 

Database 

(Zhi, et al., 

2016b) 

Chicken 
Ch7 

Ch9 

76.7% 

70% 

100% 

98.9% 
Multiplex PCR 

 

(Gomi et 

al., 2014) 
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Ch12 

Ch13 

All markers 

66.7% 

56.7% 

80% 

96.7% 

95.6% 

73.3% 

 

Chicken 

SNP pattern in asnS-ompF, uspC-

flhDC, csgBAC-csgDEFG intergenic 

regions. 

54% 99% 

Predicted from 

E.coli 

Database 

(Zhi et al., 

2015) 

Pig 

P1 

P3 

P4 

All Markers 

16.7% 

13.3% 

13.3% 

30% 

100% 

100% 

100% 

100% 

Multiplex PCR 

 

(Gomi et 

al., 2014) 

 

Pig 

SNP pattern in asnS-ompF, uspC-

flhDC, csgBAC-csgDEFG intergenic 

regions  

79% 97% 

Predicted from 

E.coli 

Database 

(Zhi et al., 

2015) 

Pig uspC-flhDC 74% 97% 

Predicted from 

E.coli 

Database 

 (Zhi et al., 

2015) 

Dog uspC-flhDC 60% 95% 

Predicted from 

E.coli 

Database 

(Zhi et al., 

2015) 

Dog 

SNP pattern in asnS-ompF, uspC-

flhDC, csgBAC-csgDEFG intergenic 

regions 

63% 93% 

Predicted from 

E.coli 

Database 

(Zhi et al., 

2016b) 
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Horse 

SNP pattern in asnS-ompF, uspC-

flhDC, csgBAC-csgDEFG intergenic 

regions 

36% 99% 

Predicted from 

E.coli 

Database 

(Zhi et al., 

2016b) 

Sheep 

SNP pattern in asnS-ompF, uspC-

flhDC, csgBAC-csgDEFG intergenic 

regions. 

46% 99% 

Predicted from 

E.coli 

Database 

(Zhi et al. 

2016b) 

Gull 

SNP pattern in asnS-ompF, uspC-

flhDC, csgBAC-csgDEFG intergenic 

regions 

5% 99% 

Predicted from 

E.coli 

Database 

(Zhi et al., 

2016b) 
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Zhi et al. (2015) hypothesised that evolution of the regulatory transcriptome is a likely 

mechanism for host-speciation; since regulation of core genes allows phenotypic 

adaptation to adverse environments (Ziebuhr et al., 1999; Prüß et al., 2006), and gene 

regulation can be altered through mutations in promoter sequences (Ando et al., 2011). 

Host-associated SNPs patterns were identified using logic regression analysis in the 

sequenced and concatenated intergenic regions (ITGRs) between the uspC and flhDC, 

csgBAC and csgDEFG, and asnS and ompF genes (Zhi et al., 2015) and later between the 

cutC-torYZ, metQ-rcsF and araH-otsB (Zhi, et al., 2016) (Table 1.3). This logistic 

regression approach was subsequently applied to a database compiled from publically 

available E.coli genomes, allowing the rapid assessment of ninety ITGRs and 

identification of ITGRs harbouring host-specific information (Zhi, et al., 2016). The logic 

regression method was noted as highlighting more robust associations with E.coli isolates 

than phylogeny based approaches did. This approach identified a human-specific SNP 

pattern present in 53% of E.coli isolates contained. The sensitivities for SNP patterns for 

other host animals ranged from 31 to 94%, although, all patterns showed a very high 

specificity (>96%). This variation in sensitivity may be explained by host specialist 

strains co-existing alongside generalist strains, and hosts, which share the same ecological 

niche, increasing the potential to share generalist strains. There is also the possibility that 

other genetic regions may hold more host-specific variations (Zhi et al., 2015). With 

increasing access to complete and draft genomes on public databases, the use of genomic 

databases may be a key approach to future biomarker discovery.  

While a logical regression approach highlights host-specific patterns, the results are not 

applicable for the current suite of more rapid assays used in MST. The requirement to 

isolate and sequence multiple intergenic regions from every E.coli would be highly labour 

intensive and costly. The logistic-regression derived markers may therefore be more 

useful in a clinical setting, however, other biomarkers such as H8-H24 may be useful in 

MST, although Gomi et al. (2014) reported difficulties in the use of qPCR to identify 

markers from environmental waters. 
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1.4.4 Limitations of library-independent MST 

There are a number of limitations to library-independent MST. As yet, no truly host-

specific genetic marker has been identified (McLellan & Eren, 2014). There must always, 

therefore, be a disclaimer associated with conclusions drawn from genetic markers. 

Correlation with FIO and pathogen presence may be low (Kildare et al., 2007), specificity 

of markers can vary (Gawler et al., 2007; Wuertz et al., 2011) and evidence of extra-

intestinal growth of Bacteroidales in poultry litter has been observed (Weidhaas et al., 

2015). Therefore combinations of other markers, or MST approaches may be required.  

 

 MST method selection and application 

After almost three decades of research and field testing, there is no consensus on the most 

appropriate approach or microbial target for MST applications (Hagedorm et al., 2011). 

This could be due to: the range of potential applications and MST approaches available; 

the use of individual techniques to try and solve a problem; the limited field testing of 

MST methods; different performance criteria used in separate studies (Hagedorn et al., 

2011); or, the lack of data on the costs and benefits associated with MST. A further 

limitation is the differences in the protocols and data-analysis techniques, such as how to 

deal with samples below the limit of quantification, led to different outcomes between 

laboratories using the same MST approach (Stewart et al., 2013; Cao et al., 2018).  

This lack of consensus may go some way to explain why the use of MST has been limited 

in the UK, particularly for public health and water quality monitoring and management. 

Indeed, a review of techniques to identify, monitor and control urban diffuse pollution in 

the UK fails to even mention MST as a potential option (Lundy & Wade, 2013). For the 

UK water industry in particular it is, therefore, paramount that methods are robustly 

tested using similar performance criteria, tested in ‘real-world’ studies and evaluated for 

their economic and business related outputs. 

MST investigations typically involve either a tiered or toolbox approach, or a 

combination of both. A toolbox approach involves the use of a range of techniques on the 

same set of samples, such as a mixture of single-markers and/or whole community-based 

approaches. A number of studies have used a tiered approach, which has minimised costs 

through the use of inexpensive assays to determine sites where more expensive assays 
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could then be applied (Griffith et al. 2013; Ahmed  et al. 2015). A toolbox approach may 

be necessary where cross-reactivity with other sources or low levels of pollution are 

expected as marker concentrations may be below the limit of detection in environmental 

samples. However, a balance is required since uncertainty in metrics may lead to a 

Box 1. Tiered approach to microbial source tracking (Griffith et al., 2013). 

1) Develop a list of potential faecal contamination sources through: Maps, 

interviewing relevant local experts, and visual inspections.  

2) Analyse available FIO monitoring data for spatial and temporal trends to help 

identify conditions that result in elevated FIO levels and determine linkages to the 

greatest potential sources of faecal contamination.  

3) Where leakage from a sanitary system is a potential source, investigate it using 

traditional tools such as smoke testing, dye testing, or camera inspection.  

4) Where human sources are a potential contributor, test ambient waters for human 

source specific genetic markers (even if traditional tools have not identified a leaking 

sanitary system). Place high priority on either detecting or confirming a human faecal 

source, as this source may pose the greatest relative health risk.  

5) Where human sources have been accounted for and the relative human loadings are 

better understood, and/or a likely animal faecal pollution source (e.g., runoff from a 

horse farm) has been identified, test ambient waters using non-human (animal) 

source-specific genetic markers.  

6) Where source-specific genetic markers have yet to be developed for the suspected 

source(s), consider testing ambient waters using genetic community analysis 

methods.  



52 

 

toolbox approach, which over-compensates by using unnecessary methods and becomes 

inefficient and costly. A tiered approach can be less costly since methods are employed in 

stages, starting with the lowest cost methods. Enough information to draw robust 

conclusions may, therefore, be gleaned from low cost methods and negate the need for 

further analysis (Cao et al., 2013; Walker et al., 2015). 

An example of a tiered approach is suggested by Griffith et al. (2013) (Box 1). While this 

exact framework is unlikely to work for all situations in the UK, an evaluation of forty-

one MST assays highlighted the importance of establishing such frameworks for MST 

methods and risk assessments to establish consistent methods and methodologies (Boehm 

et al., 2013).  

 

 Aims and objectives 

The overall aim of this research is to evaluate the performance of two emerging MST 

techniques, E. coli biomarkers and community analysis, and assess the feasibility of their 

incorporation into workflows for Northumbrian Water to carry out MST investigations, 

with a particular focus on diffuse and low levels of human pollution, through case studies.  

 

Objective 1. Compare the performance of E.coli biomarkers and community 

analysis using high-throughput sequencing to identify sources of human pollution. 

The performance of the E.coli biomarkers with the most potential for MST (H8, H12, 

H14 and H24) have not been evaluated outside of the Indo-Australasian region, nor have 

their results been compared to other source tracking methods. Northumbrian Water are 

particularly interested in linking the high throughput nature of new community-analysis 

techniques with regulatory methods. 

Research questions: 

1a. Are the H8, H12, H14 and H24 E.coli biomarkers suitable for the detection of human 

pollution in the North of England? (Chapter 3 and 4) 

1b. Can we use current regulatory methods that assess water quality to detect E.coli 

biomarkers for MST? (Chapters 3 and 4) 
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1c. Does community-based MST sequencing support the results and conclusions drawn 

by E.coli analysis? (This objective will be answered through case studies in chapter 3 and 

6) 

 

Objective 2: Assess the performance of E.coli biomarkers in the North East of 

England. 

The performance of the E.coli biomarkers developed by Gomi et al., (2014) during the 

first catchment study (Chapter 3) was markedly different to previous studies (Gomi et al., 

2014; Warish et al., 2015). A database was curated and interrogated to elucidate the 

expected performance of these biomarkers and develop new E.coli biomarkers in a cost-

effective manner. This tried to answer the following questions, which arose as a result of 

the initial catchment study. 

Research questions: 

2a. Do better markers exist which are specific to E.coli to track sewage pollution in the 

North East of England? (Chapter 4) 

2b. Does the concentration of markers in sewage vary between different communities? Is 

marker concentration representative of total E.coli concentration? I.e. is the sensitivity 

stable between communities? (Chapter 4) 

 

Objective 3: Evaluate the performance of HTS community analysis to discriminate 

between common sources of pollution in UK catchments and develop a robust 

method for Northumbrian Water to carry out MST using HTS community analysis 

in the North East of England. 

As yet no studies have assessed the ability of HTS to distinguish between similar sources, 

which affect UK water quality such as that from ruminants like cows, horses and sheep. 

This is particularly important since currently no suitable markers exist for some of these 

individual sources (Boehm et al., 2013). There also remain questions as to the appropriate 

size of the library and whether it is possible to use a generalised library of the whole of a 

particular region, like North East England.  
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Research questions: 

3a. Can a single database of faecal sources for a particular region be built? (Chapter 6) 

3b. Can current methods distinguish between sources that share similar taxa? (Chapter 5) 

 

Objective 4: Identify the most cost-effective way to integrate MST methods into 

Northumbrian Water operations. 

Northumbrian Water have expressed an interest in undertaking MST studies as a result of 

the case studies undertaken during this project. Identifying the socio-economic and 

environmental opportunities and benefits of MST studies can help to build and evaluate 

the business case to establish MST as a routine technique used by the wider UK water 

industry. 

Research questions: 

5a. What is the most cost-effective way to implement MST methods into Northumbrian 

Water’s current operations? (Chapter 7 using case studies in chapter 3 and 6) 

5b. What economic and environmental benefits can MST bring? (Chapter 6) 

5c. What are the areas where MST will have the largest benefit in the future? (Chapter 6) 
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Chapter 2 Methods 

 

 Sample collection  

2.1.1 Sample preservation and transport 

Following the collection of all environmental (river and sea water) and faecal samples, 

samples were kept on ice in a cool box during transportation and always arrived at the lab 

in less than 3 hours but usually in less than 1 hour. This was deemed acceptable since the 

storage duration (1 to 14 days) and temperature (between 20 oC and -80 oC) was found to 

have little effect on the microbial composition analysed by 16S rRNA gene sequencing 

(Lauber et al., 2010; Tedjo et al., 2015). Once at the laboratory, samples were kept at 4 

oC until processing, which occurred in under 3 hours.  

 

2.1.2 Faecal samples 

Individual faecal samples were collected using a sterile spatula in a 250 mL sterile 

container. Care was taken to take the sample from the part of the faeces not in contact 

with the soil, although this was particularly difficult with some types of faeces; cow 

faeces often have a low solids content and are therefore difficult to collect without 

disturbing the ground, horse and pig faeces (when indoors) are difficult to separate from 

hay used as bedding in the stables or paddocks. Samples were transported back to the lab 

and stored at 4 oC and DNA was extracted within 24 hours of sample collection. 

Faecal swabs, for the culture of E.coli, were taken from the centre of each faeces to 

minimize the likelihood of contamination. It should be noted that gull faeces were 

particularly difficult to collect without contact of the surface from which it was collected. 

 

2.1.3 Raw sewage 

All sewage samples were collected post-screen from municipal wastewater treatment 

plants (WWTPs) and septic tanks using a 1 L sampling bucket. The bucket was rinsed 

three times prior to sampling and 2 x 2.5 L samples were taken 15 minutes apart and 

mixed to make a composite sample.   
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2.1.4 Environmental water samples 

All river, sea, CSO and land surface drain (LSD) samples were collected in 1 L pre-

sterilised polyethylene containers which were acid-washed with a 1% HCl solution and 

autoclaved prior to sample collection according to the Bathing Water Directive Annex V 

(BWD, 2006/7/EC). A single 750 mL river water sample was collected without disturbing 

the sediment using a telescopic sampling pole. When possible, samples were taken from 

~30 cm below the surface, in the centre of the river, by inserting the sampling pot 

inverted into the water.  

Seawater samples collected during the bathing water season were collected by the EA’s 

sampling team, at the same time as their own regulatory sample, according to Annex V of 

the BWD (2006/7/EC). Briefly, one litre of water was collected from a depth of ~30 cm 

below the surface of the water at a point that is at least one metre deep, using pre-

sterilized, 1 L disposable polyethylene sample bottles. For samples taken outside of the 

bathing water season, I took seawater samples using an identical process. 

Bathing water samples collected by the EA were transported and stored at 4 oC at the 

Newcastle EA site (Tyneside House, Newcastle, UK). These were collected within 2 h 

and transported to Newcastle University (< 15 minutes) and usually processed within 30 

minutes. 

 

 Enumeration of faecal indicator organisms 

E.coli were enumerated through membrane filtration according to the bathing water 

directive (2006/7/EC, CEU, 2006) and international standard ISO 7899-2 (ISO, 2000). 

After discussion with the EA these protocols were updated to be identical to EA protocols 

which use tryptone bile x-glucuronide (TBX) chromogenic agar (Oxoid, UK) as the 

culture media for E.coli.  

Four volumes of river and seawater sample, 0.1 mL, 1 mL, 10 mL and 100 mL were 

filtered with 10 mL of PBS solution for the 0.1 and 1 mL volumes, at least in duplicate, 

through hydrophilic mixed cellulose ester membrane filters with a 0.45 μm pore size (Pall 

Laboratories, UK). For enumeration of E.coli, following filtration, membrane filters were 

incubated on TBX agar (Oxoid, UK) at 37 oC for 4-6 h and 44 oC for 18-20 h. Plates with 

between 5 and 100 colony forming unit (CFU) were counted and recorded.   
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 DNA extraction, storage and quality control 

2.3.1 E.coli isolates suspended in lysogeny broth 

Individual E.coli were isolated from faeces by spreading faecal swabs onto tryptone bile 

x-glucuronide (TBX) agar (Oxoid, UK) and incubating at 37 oC overnight. A single, 

green colony was picked from the incubated plate using a sterile needle and spread again 

onto TBX agar and incubated at 37 oC. This was repeated 2 more times before a sterile 

needle was used to inoculate 8 mL of lysogeny broth (Thermo Fisher, UK). The 

inoculated broth was incubated at 37 oC.  DNA was extracted from 0.2 mL of an 

overnight (16-18 h) cell culture using the Wizard Genomic DNA Purification Kit 

(Promega, UK) according to the manufacturer’s instructions for Gram-negative bacteria.  

For storage, 1 mL of overnight culture was added to 1 mL of autoclaved, 30% glycerol 

(v/v) solution, vortexed and stored at -80 oC. 

 

2.3.2 Direct extraction from E.coli isolated from plate counts 

E.coli colonies were picked and placed in 50 μL of DNA/RNA free water (Thermo 

Fisher, UK) and incubated at 95 oC for 15 minutes. Solutions were then centrifuged at 

14,000 × g for 5 minutes at 21 oC, and the supernatant recovered to remove any cell 

debris. The recovered DNA was stored at -80 oC until further use.  

 

2.3.3 Extraction of DNA from faecal samples 

DNA was extracted directly from 150 – 300 mg of fresh faecal samples using the 

FastSpin kit for faeces (MP Biomedicals, USA), with a modification to include 4 cycles at 

60 m s-1 for 40 seconds, suggested to increase the DNA yield (Albertsen et al., 2015). 

This kit was used as this was the current method used in the laboratory; additionally, it 

was used by a previous study (Iceton, 2018) that may provide a useful comparison to 

some analysis in this thesis. It was therefore beneficial to keep the methods as consistent 

as possible. 

DNA was extracted from between 10 mL and 100 mL of post-screen sewage, depending 

on the concentration, and filtered through hydrophilic mixed cellulose esters membrane 

filters with a 0.22 μLm pore size (Pall Laboratories, UK). Filters were folded 5-times and 
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stored in 2 mL Eppendorf tubes at -80 oC until use. DNA was extracted directly from torn 

membrane filters using the DNA FastSpin kit for soil (MP Biomedicals, USA) as per the 

manufacturer’s instructions with the following modifications. Torn filters were placed 

into the E-lysis tube with 898 μL and 110 μL of sodium phosphate buffer and MT buffer 

and subject to 4 cycles at 60 m s-1 for 40 seconds. To avoid contamination of the final 

DNA, an additional ethanol wash-step was included as recommended by the manufacture 

for samples with a high organic content. 

 

2.3.4 DNA extraction from environmental waters 

The volumes of river and seawater samples processed were typically 250 mL for river and 

800 mL for seawater, however, it was necessary to reduce this for very turbid samples to 

100 mL and 500 mL, respectively. These volumes are larger than those typically taken 

(Mattioli et al., 2016; Iceton, 2018), however, larger volume sizes may reduce uncertainty 

in downstream analysis used in community analysis (Mattioli et al., 2016).  

Sea and river water samples were filtered through hydrophilic mixed cellulose esters 

membrane filters with a 0.22 μL pore size (Pall Laboratories, UK) and folded in half five 

times and stored in a 2 mL Eppendorf tube at -80 oC until use. DNA was extracted using 

the DNA FastSpin kit for soil as per the manufacturer’s instructions with the following 

modifications. Filters were torn and placed into the E-lysis tube with 898 μL and 110 μL 

of sodium phosphate buffer and MT buffer added to the E-lysis tube. For environmental 

samples, 5 μL of 10 μg μL-1 Salmon Sperm DNA was added to the lysis buffer to act as 

an internal control for DNA extraction and qPCR (Haugland et al., 2005). The lysis steps 

were modified to include four cycles at 60 m s-1 for 40 seconds, suggested to increase the 

DNA yield (Albertsen et al., 2015). The recovered DNA was stored at -80 oC until used. 

 

2.3.5 DNA quality control 

DNA quality was assessed using a Nanodrop 1000 (Thermo Fisher, UK) according to the 

manufacturer’s instructions. DNA quantity was also assessed using the Qubit high 

sensitivity, double-stranded DNA kit (Thermo Fisher, UK) without modification to the 

manufacturer’s instructions using a Qubit 2.0 fluorimeter (Life Technologies, Carlsbad 

USA). 
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 PCR and qPCR assays 

2.4.1 Polymerase Chain Reaction (PCR)  

Amplification of DNA fragments was carried out using the Fast Start High Fidelity PCR 

System (Sigma-Aldrich, UK) according to the manufacturer’s protocol. Briefly, each 25 

μL reaction contained: 1.8 mM MgCl2, 0.2 – 0.4 μM of each primer, 200 μM of each 

dNTP, 2.5 U of high fidelity enzyme blend, and 5-15 ng of DNA. PCR reactions were 

carried out in a PCR Max AC1 thermo-cycler (PCR Max, UK) using the protocol in table 

2.1. 

 

Table 2.1. PCR cycling conditions used throughout this study. 

Step Number of cycles Time Temperature 

Initial Denaturation 1 2 minutes 95 oC 

Denaturation 

Annealing 

Elongation 

35 

30 seconds 

30 seconds 

1 minute 

95 oC 

Variable 53-60  oC 

72 oC 

Final elongation 1 7 minutes 72 oC 

Cooling 1 No limit 4 oC 

 

 

2.4.2 Identification of E.coli biomarkers using multiplex PCR 

A multiplex PCR of human-specific E. coli 

markers H8, H12, H14 and H24 using the primers 

designed for them (Gomi et al., 2014) was 

optimised by altering the annealing temperature 

and MgCl2 concentration. The reaction mixture 

for the FastStart, High Fidelity PCR kit (Sigma-

Aldrich) was modified from that above to contain 

2.8 mM MgCl2 and 0.2 μM of each primer. DNA 

was replaced with water in the negative control 

and standards kindly supplied by Gomi et al. 

(2014) in the positive controls (H8, H12, H14 in one control and H24 in another) (Figure 

Figure 2.1. End-point PCR and visualization by 

agarose electrophoresis  
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2.1). Reactions were performed as described above (Table 2.1) with an annealing 

temperature of 60 oC. DNA in the reaction was added at amounts of less than 30 ng, as 

amounts greater than 30 ng resulted in unwanted amplification, which was difficult to 

differentiate from the H8 and H14 markers. PCR products were run on a 1.5% agarose 

gel, stained with Nancy-520 DNA stain (SigmaAldrich, Bumbleby, Ukraine) and 

visualized using a Dual-Intensity Transilluminator (UVP, USA). 

PCR reactions which were positive for a human marker were assumed to be inhibition 

free. All isolates negative for human markers were subject to a further PCR targeting the 

RodA gene (Primers in table 2.4), as described above (1.1 Polymerase Chain Reaction 

(PCR)), present in most E.coli, as described previously (Chern, et al., 2011) to ensure that 

a negative result was not due to problems with DNA extraction or inhibition of the PCR 

reaction. 

 

2.4.3 Quantitative PCR (qPCR) 

Quantitative PCR reactions were carried out using the SsoAdvanced universal SYBR 

green supermix (Bio-Rad, UK) chemistry according to the manufacturer’s instructions. 

Each 10 μL reaction contained 300-500 nM of forward and reverse primers, 1 Unit of 

SsoAdvanced universal SYBR Green supermix. All reactions were carried out in clear-

welled, 96-well plates (Bio-Rad, UK) on a CFX96 Real-Time PCR Detection System 

(Bio-Rad, UK) and cycled through the following conditions: 95 oC for 30 seconds 

followed by 37 cycles of 95 oC for 10 seconds, and 30 seconds at 60 oC (all markers used 

for qPCR had the same annealing temperature). A melt-curve analysis was undertaken 

after each qPCR run by increasing the temperature from 65 oC to 95 oC in 0.5 oC 

increments for 5 seconds per step.   

Primer concentrations were optimized by performing qPCR reactions with varied 

mixtures of forward and reverse primer concentrations of: 300 nM, 500 nM, 900 nM. 

Standard curves ranging from 2 x 100 – 2 x 106 gene copies per reaction, and a negative 

control comprising DNA-free water, were run in triplicate for each qPCR run. Standards 

were made from stock solutions prior to each qPCR run. Standards were constructed by 

extracting DNA from an overnight culture of E.coli in LB broth (1.3.1 E.coli isolates 

suspended in LB broth), determining DNA concentration (1.3.5 DNA quality control) and 

using equation 1 to calculate the number of gene copies (gc). For E.coli associated genes, 
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the total weight of DNA was assumed to be 5.51 x 10-15 g, the average length of an E.coli 

genome, 5.4 x 106 base pairs multiplied by the average weight of a base 1.02 x 10-21 

g/molecule. 

       Equation 2.1                                    𝑔𝑒𝑛𝑒 𝑐𝑜𝑝𝑖𝑒𝑠 =
𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 𝑔𝑒𝑛𝑜𝑚𝑖𝑐 𝐷𝑁𝐴 (

𝑔

𝜇𝑙
)

𝑇𝑜𝑡𝑎𝑙 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑔𝑒𝑛𝑜𝑚𝑖𝑐 𝐷𝑁𝐴 (
𝑔

𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒
)

 

 

The estimates of the gene copies in the stock solution (Equation 2.1) were checked by 

enumeration of the E.coli culture prior to DNA extraction (1.1 Enumeration of faecal 

indicator bacteria). Stock solutions of standards were made by diluting the DNA to 1x108 

gc RodA μL-1. Multiple stock concentrations were stored at -80oC and one working stock 

solution was stored at -20 oC. 

As a processing control 50 ng of salmon DNA 

(Thermo Fisher, UK) was added to the lysis buffer 

prior to DNA extraction of environmental samples 

(1.3.4). 50 ng was added as this was easily 

detectable through PCR based assays (Figure 2.2) 

and any reduction would likely be from 

inefficiencies in DNA extraction methods. A 

salmon DNA blank sample was prepared using 

DNA- free water and processed using the same 

method as the environmental samples. QPCR reactions using the sketa primers (Table 

2.2) targeting the salmon DNA were used as an internal control (Haugland et al., 2005).  

 

Table 2.2. Sketa primers for the detection of Salmon DNA used as an internal control in qPCR 

Primer Sequence 
GenBank 

reference 
Reference 

Sketa forward GGTTTCCGCAGCTGGG AF170538 (23–38) (Haugland 

et al., 2005) Sketa reverse AGTCGCAGGCGGCCACCGT AF170538 (41–59) 

 

A qPCR result where the cycle threshold value was three units greater than that of the 

salmon DNA blank sample indicated a problem with either the DNA extraction procedure 

or the presence of inhibitory substances (Chern et al., 2011; Haugland et al., 2005, 2010). 

Figure 2.2. Sketa test with salmon sperm approximate 

concentrations (from left to right) of 50 ng, 5 ng, 0.5 ng, 

0.05 ng 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&db=Nucleotide&dopt=GenBank&term=AF170538
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&db=Nucleotide&dopt=GenBank&term=AF170538
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Where a problem was indicated, samples were checked for inhibition by dilution as 

described above. Samples where inhibition was not resolved through dilution, are 

normally removed from further analysis, although this did not occur in this study.  

Due to previously reported inconsistencies in how quality controls are used in the 

interpretation of qPCR data, generally, the most stringent quality controls were taken 

from literature, all of which exceeded recommendations in the minimum required 

information for publication of quantitative real-time PCR experiment’s (MIQEs) 

guidelines (Bustin et al., 2009). A number of quality control measures were implemented 

to ensure consistency in the analysis of qPCR data, these are outlined in Table 2.3.   

 

Table 2.3. Quality control measures used in the analysis of qPCR data. 

Control measure Control value Action Reference 

Standard Curve R2 > 0.99 

If standard curve values 

remain below control value 

after removing outliers, 

repeat qPCR run. 

(Broeders et al., 

2014) 

PCR amplification 

efficiency, estimated 

from the standard curve 

using - Amplification 

efficiency = [10(-

1/slope)] - 1 

Between 90% - 110% 

Repeat run if efficiency is 

outside control values when 

outliers of the standard 

curve are removed. 

(Broeders et al., 

2014) 

Relative standard 

deviation 
< 25% 

Remove sample from 

analysis. 

(Broeders et al., 

2014) 

Limit of detection 

(LOD) 

At least 2 out of 3 positive 

reactions, or > calculated 

LOD 

If less than control value, 

report as “Below limit of 

detection”. Do not use value 

in further analysis. 

(Symonds et al., 

2016; Hughes et 

al., 2017; 

Forootan et al., 

2017) 

Limit of quantification 

At least 2 out of 3 positive 

reactions with Cq values 

within ±0.5 of each other, 

or estimated for each assay. 

Report as “below limit of 

quantification”. Use in 

further analysis, but note 

limitations. 

(Symonds et al., 

2016; Hughes et 

al., 2017; 

Forootan et al., 

2017) 

Test for inhibition 

a) Change of Ct value < 1 

with a 1:10 dilution of 

DNA. 

b) Difference of < 3 cycles 

between Sketa assay for 

blank DNA extraction 

and sample 

a) Test with further 

dilution. If inhibition still 

a problem remove 

samples from further 

analysis. 

b) If difference in Ct is > 3 

after further dilution, 

remove sample from 

further analysis. 

 

(Chern et al., 

2011; Haugland 

et al., 2005, 

2010)  

Melt curve analysis 

Peak melting temperature 

with 1 oC of expected 

melting temperature. 

Remove sample 

from analysis. 
 

 



63 

 

The limit of detection (LOD) is defined as the lowest number of gene copies which can be 

detected with a definite probability (Forootan et al., 2017). No standard method for 

determining the LOD exists. The LOD has previously been identified by: Simply 

choosing a threshold cycle (Ct) value as a cut-off (Odagiri et al., 2015; Schriewer et al., 

2013); the lowest gene copy number where 2 out of 3 reactions are positive (Symonds et 

al., 2016; Hughes et al., 2017); or simply assumed to be a single molecular target 

(Hassard et al., 2017). Forootan et al. (2017) suggest that LOD is assessed by taking 

replicates and defining a confidence level, for example a LOD at 80% confidence is the 

genetic target is positive in 80% of samples. While qPCR practitioners in the medical 

fields often chose a 95% confidence interval for their limit of detection (Forootan et al., 

2017), genetic targets within environmental samples are often at much lower 

concentrations than in medical samples; this may explain why there are a number of ways 

used to define the LOD of an assay in environmental studies, and may justify the lower 

level of confidence. Here, where a single run was used (Chapter 4, Finding Host Specific 

Biomarkers), the LOD was defined as 2/3 positive reactions. However, estimating the 

LOD using 2/3 positive reactions was noted to often result in a very low LOD (< 1 gene 

copy per reaction) which may be difficult to differentiate from machine noise (Forootan 

et al., 2017). For the catchment study then, the probability of detection of the RodA, 

Hu100 and HF183 assays was estimated by combining the standard curves for 9 (RodA) 

or 10 (Hu100 and HF183) qPCR runs. For all assays, 2 gene copies per reaction was used 

as the LOD, this was deemed reasonable since this gave a probability of detection of 

>68% for all assays, but is more stringent than previous studies (Hassard et al., 2017; 

Symonds et al., 2016).  

The limit of quantification (LOQ) of an assay defines the lowest gene copy number that 

can be determined with stated and acceptable precision and accuracy (Forootan et al., 

2017). Similarly to the LOD, in environmental studies the LOQ is either overlooked, 

taken to be the sample as the LOD (Hassard et al., 2017), estimated from a single run 

(Symonds et al., 2016), or determined from a standard curve made from multiple runs 

(Forootan et al., 2017). For assays only using a limited number of runs (e.g., Chapter 4, 

Finding Host Specific E.coli Biomarkers), the approach taken by Symonds et al., (2016), 

using the gene copy number having 2/3 positive reactions with quantification cycle (Cq) 

values within ± 0.5 was used to define the LOQ. However, this often resulted in the LOQ 

and LOD being the same or very similar values. To approximate the LOQ for assays used 
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in the Seaton Sluice catchment study (Chapter 7), replicate reactions from 9 or 10 qPCR 

runs were aggregated to form a single standard curve with the range 2 – 2 x 105 gc/ 

reaction. Outliers were identified using Grubbs’ test (Grubbs, 1969) in the outliers 

package version 0.14 (Komsta, 2011) and the standard curve was used to calculate the 

coefficient of variation (CV) for each concentration. For log-normally distributed data, 

Forootan et al., (2017) describe the CV value as: 

Equation 2.2                                             𝐶𝑉 =  √(1 + 𝐸)((𝑆𝐷(𝐶𝑞))
2

∗𝑙𝑛 (1+𝐸) − 1 

Where: E is the qPCR efficiency of all replicates plotted together and SD(Cq) is the 

standard deviation of replicate Cq values across all runs (Table 2.4).  

While no guidelines on what CV values are appropriate (Forootan et al., 2017), The 

TATAA  Biocentre (TATAA Biocentre, 2018 ) use a CV value of 35% for medical 

samples (Forootan et al., 2017). Here that approximately corresponds to 20 gc/sample 

(Table 2.4). The CV values in Table 2.4 may be higher than expected since they are an 

amalgamation of 9 or 10 runs completed over one year whereas studies often use a single 

run, some run-to-run variation is therefore expected. A LOQ of 5 gc was used for all 

assays, which means accepting a slightly higher CV value than the 35% recommended in 

medical settings (Forootan et al., 2017). This seems appropriate since the aim of the study 

was MST where low levels of pollution are expected, and the quality control measure of 

an RSD of <25% (Table 2.3) for sample replicates is likely to reduce variation among 

study samples since samples which are a high variance will be removed. Moreover, this 

appears to be more stringent than previous definitions of the LOD in environmental 

studies.   
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Table 2.4. Characteristics of the standard curves composed of 9 (RodA) and 10 (Hu100 and HF183) qPCR runs. 
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RodA 200000 27 1.00 17.01 0.2667 18.47 0.9871 

0.9952 

RodA 20000 27 1.00 20.47 0.2525 17.47 0.9871 

RodA 2000 27 1.00 23.93 0.3221 22.39 0.9871 

RodA 200 27 1.00 27.34 0.4300 30.19 0.9871 

RodA 20 27 1.00 30.67 0.4936 34.89 0.9871 

RodA 2 28 0.68 33.53 0.7332 53.72 0.9871 
 

Hu100 200000 30 1.00 16.40 0.3642 25.24 0.9783 

0.9952 

Hu100 20000 30 1.00 19.69 0.4293 29.93 0.9783 

Hu100 2000 33 1.00 23.11 0.4703 32.93 0.9783 

Hu100 200 33 1.00 26.37 0.3611 25.01 0.9783 

Hu100 20 30 1.00 29.66 0.5216 36.75 0.9783 

Hu100 2 25 0.68 32.77 0.5255 37.04 0.9783 
 

HF183 200000 30 1.00 12.92 0.3382 22.92 0.9521 

0.9942 

 

HF183 20000 30 0.97 16.29 0.3231 21.87 0.9521 

HF183 2000 33 0.94 19.76 0.3927 26.73 0.9521 

HF183 200 33 1.00 23.09 0.4155 28.34 0.9521 

HF183 20 33 1.00 26.65 0.5031 34.63 0.9521 

HF183 2 32 0.97 29.94 0.6576 46.20 0.9521 

 

 Enumeration of E.coli and related biomarkers. 

To enumerate E.coli from environmental samples and sewage, the RodA gene was used. 

The RodA gene was chosen over the UidA gene used by Gomi et al. (2014) or 23S rRNA 

gene (Warish et al., 2015). Due to concerns over the specificity of the UidA gene (Sabat 

et al., 2000) and the better reliability of RodA as a single copy gene (Chern et al., 2011), 

the RodA gene is a better proxy for E.coli cell counts than the 16S or 23S rRNA genes, 

which typically have multiple copies.  
 

Table 2.5.Primers and fragment details for qPCR analysis of E.coli and associated biomarkers 
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Standards for the H8, H12, H14 and H24 biomarkers were kindly supplied by Gomi et al. 

(2014) and shipped from Kyoto University, using the FedEX priority service (2 days). 

Standards for the RodA gene and human markers identified in Chapter 5 were made as 

described above (2.4.3 Quantitative PCR (qPCR)). Primer sequences and primer 

concentrations of commonly used targets are given in Table 2.5. 
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RodA984 

(RodA) 

Forward GCAAACCACCTTTGGTCG 

158 60 85.0 

(Chern 

et al., 

2011) 
Reverse CTGTGGGTGTGGATTGACAT 

H8 

Forward ACAGTCAGCGAGATTCTTC 

117 60 93.0 

(Gomi 

et al., 

2014) 
Reverse GAACGTCAGCACCACCAA 

H12 

Forward GTAAAAGGACTGCCGGGAAA 

213 60 87.0 

(Gomi 

et al., 

2014) 
Reverse TCAGATCGTCCTTTACCAG 

H14 

Forward CAGCCTGAGCGTCTTTTAC 

271 60 86.0 

(Gomi 

et al., 

2014) 
Reverse CGGTGGGAAAAGAAGTTGAA 

H24 

Forward CTGGTCTGGCTTTATAACAC 

229 60 82.0 

(Gomi 

et al., 

2014) 
Reverse ATCATTTCCACTTGTCGGG 

Hu100 

Forward ACGGTTATCAGCTCACGTCG 

98 60 82.0 
Chapter 

4 Reverse TCGCCCCTCGAAAAGCATTA 

Hu9 

Forward AAGCCAATGATGATGTGGGC 

163 60 80.5 
Chapter 

4 Reverse TAGGCCAACTTTCTACCGCA 
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2.5.1 Enumeration of HF183 

The most commonly used human marker for MST targets the HF183 16S rRNA gene 

cluster within Bacterodes spp. (Bernhard & Field, 2000; Green et al., 2014; Harwood et 

al., 2014). While a range of primer sets have been tested, the HF183/BacR287 primer set 

(Table 2.6) has been shown to be superior to the HF183/BFDrev primer set, with no 

spurious nonspecific amplification, greater precision and a lower limit of detection (Green 

et al., 2014; Haugland et al., 2010). Stock, linearized standards were kindly received from 

Bunce et al., (In prep) and stored at -20oC.  

 

Table 2.6. Primers used for the detection of the HF183 marker gene 

Primer Sequence 
Genbank 

Accession 

Melting 

Temperature 

(oC) 

Reference 

HF183 ATCATGAGTTCACATGTCCG AB242142 

(179 to 346 

bases) 

78.5 
(Green et 

al., 2014) BacR287 CTTCCTCTCAGAACCCCTATCC 

 

 DNA Sequencing and data analysis 

2.6.1 Whole genome sequencing and analysis of E.coli isolates 

To prevent the sequencing of identical genotypes of E.coli, repetitive element PCR was 

performed, using the BOX-A1R primers, on selected isolates to aid selection for 

sequencing. Repetitive element PCR targets highly conserved, repetitive elements that 

occur at different intervals within individual bacterial genomes. The BOX repetitive 

elements are comprised of three subunit sequences, boxA, boxB and boxC, located in 

intergenic sequences (Koeuth et al., 1995). Here, the 59 base-pair boxA sequence was 

targeted using a single primer; PCR of this repetitive element produces fragments of 

different lengths, allowing individual bacteria to be distinguished to sub-species level. 

BOX-PCR was performed as previously described (Mohapatra et al., 2007), using the 

Fast Start, High Fidelity PCR kit (Sigma-Aldrich, UK). The gel was run at 50 V for 10 

minutes and then at 80 V (4 V cm-1) at 4 oC until the marker reached the end of the gel (c. 
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4.5 h). Gels were visualized using a Dual-Intensity Transilluminator (UVP, USA). Analysis 

of the BOX-PCR images was conducted using Bionumerics Version 4 (ApplidMaths). 

The Pearson’s product-moment coefficient was used to create a similarity matrix of E.coli 

isolates for individual hosts  (Mohapatra & Mazumder, 2008).  

DNA was extracted (2.3.1 E.coli isolates suspended in lysogenic broth) and the quality 

and quantity of DNA checked using a Nanodrop 1000 and qubit (3.5 DNA quality 

control) as described above. Library preparation and sequencing were performed using a 

TruSeq DNA HT library preparation kit (Illumina, US), on an Illumina MiSeq using a 

250 bp paired-end metric, respectively, according to the manufacturer’s instructions at the 

Earlham Institute, UK. The genomic data was quality trimmed with Trimmomatic (Bolger 

et al., 2014) using a 4 bp sliding window with an average quality score of 20. Reads less 

than 150 bp in length were removed from further analysis. Read quality was assessed 

using FastQC (Andrews, 2010). Unpaired reads were concatenated into a single fasta file 

and both paired and unpaired reads were used to assemble contigs using SPAdes 

(Bankevich et al., 2012), all commands are given in Appendix A.1. De novo assembly 

was chosen over mapping to a reference to ensure all of the accessory genome was 

captured. The quality of each assembly was evaluated using QUAST (Gurevich et al., 

2013). 

 

2.6.2 16S rRNA amplicon sequencing by Ion Torrent 

To prepare DNA for 16S rRNA gene sequencing, extracted DNA, stored at -80 oC, was 

defrosted on-ice. A PCR amplification targeting the V4 and V5 regions was performed 

using the defrosted DNA, as described above (4.1 Polymerase Chain Reaction (PCR)) 

with the following modifications. One of fifty unique, Golay error-correcting barcoded 

primers, incorporated onto fusion primers containing the forward primer (Table 2.6) and 

Ion Torrent sequencing adapters were placed in each PCR reaction, as recommended by 

the manufacturer (Life Technologies, UK). A reverse primer (Table 2.7) was added to 

each reaction, and PCR amplification was performed with an annealing temperature of 56 

oC.  

Table 2.7. Primers used in the preparation of Ion Torrent 16S rRNA gene libraries for Ion Torrent sequencing 

Primer Direction Sequence Reference 
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V4 (515f) Forward GTGNCAGCMGCCGCGGTAA (Quince et al., 2011) 

V5 (926r) Reverse CTTCCTCTCAGAACCCCTATCC (Quince et al., 2011) 

 

PCR products were visualized through gel electrophoresis on a 1.5% agarose gel stained 

with Nancy-520 DNA stain (SigmaAldrich, Bumbleby, Ukraine) and visualized using a 

Dual-Intensity Transilluminator (UVP, USA). PCR fragments were cleaned to remove 

unwanted products such as primer-dimer, where primer molecules hybridise to each other 

instead of their DNA target, using Ampure XP beads (Beckman Coulter, Brea USA), 

according to the manufacturers instruction. The cleaned PCR products were then 

quantified using the high sensitivity DNA kit for Qubit (Life Technologies, Carlsbad 

USA) as described above (3.5 DNA quality control). An equimolar pool with a 

concentration of 100 pM was created from all samples. The equimolar pool was enriched 

using emulsion PCR with an OneTouch V2 machine with 400 base-pair chemistry (Life 

Technologies, Carlsbad USA), according to the manufacturer’s instructions. The enriched 

library was sequenced on an Ion Torrent Personal Genome Machine (Life Technologies, 

Carlsbad USA), according to the manufacturer’s instructions. 

 

2.6.3 Analysis of data from Ion Torrent sequencing 

The Quantitative Insights Into Microbial Ecology (QIIME) package v1.9.1 (Caporaso et 

al., 2010) was used to analyse all Ion Torrent data.  The raw data file (BAM format) was 

converted to fastq format, required by QIIME, using the Torrent Suite software v4.4.2. A 

generalised QIIME script is given in Appendix A.2. Briefly, sequences were 

simultaneously demultiplexed and quality filtered to remove sequences less than 100 bp 

in length or with a mean quality score below 20. OTU were picked using an open 

reference method. OTUs are clustered at the 97% similarity level using the UCLUST 

package (Edgar, 2010) against the SILVA 138 database (Pruesse et al., 2007); sequences 

that are not aligned to any in the SILVA database are clustered de novo.  Representative 

sequences, defined as the first sequence in an OTU cluster, were aligned using PyNAST 

(Caporaso et al., 2010) and filtered to remove chimeric sequences using the 

ChimeraSlayer package (Haas et al., 2011). A phylogenetic tree was constructed from the 

remaining phylogenetic sequences using the FastTree package (Price et al., 2010). 
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It should be noted that open reference OTU picking methods, while still used widely, are 

becoming less common due to their propensity to overinflate the number of OTUs 

(Callahan et al., 2016). These methods are being replaced by methods such as Divisive 

Amplicon Denoising Algorithm (DADA) 2 (Callahan et al., 2016) and Deblur (Amir et 

al., 2017), which attempt to correct for errors incurred during PCR and sequencing and 

allow for a higher resolution analysis of sequences (See below). However, I used these 

methods since they are standard methods in 16S rRNA gene sequencing analysis and 

previous work in MST has used these methods. In addition, the DADA2 and Deblur 

packages were developed to deal with Illumina data and are often unsuccessful with other 

data types, such as Ion Torrent.  

 

2.6.4 16S rRNA amplicon sequencing by Illumina 

During the project I decided to move from sequencing using the Ion Torrent PGM 

sequencing platform to the Illumina Miseq platform. This decision was made because: 

 The environmental microbiology field has largely moved to Illumina platforms. 

 The Illumina platforms are less prone to error and can deal better with 

homopolymers (Shokralla et al., 2014). 

 The larger data producing capacity of the Illumina Miseq machine allowed 150 

samples to be processed per run, achieving a similar sequencing depth as using 50 

samples per run on the Ion Torrent PGM. This resulted in a lower cost per sample.  

The quality and quantity of DNA was determined as described above, and Illumina 

sequencing was undertaken using the NU-OMICS sequencing service (NU-OMICS, 

2018). Illumina sequencing was performed on an Illumina Miseq, using the 515F 

(GTGCCAGCMGCCGCGGTAA) and 806R (GGACTACHVGGGTWTCTAAT) 

primers (Caporaso et al. 2011) targeting the V4 region of the 16S rRNA gene, with the 

V2 500 chemistry. 
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2.6.5 Analysis of data from Illumina sequencing 

Illumina data was received as separate fastq files for the forward and reverse reads which 

were imported into QIIME2 (Caporaso et al. 2010; Caporaso, 2018) and demultiplexed. 

The quality of the imported reads was assessed using the summarize feature of QIIME2 

and the Qiime2View software (Caporaso, 2018). The demultiplexed reads were then 

error-corrected and filtered to remove chimeric sequences, sequences shorter than 100 bp, 

and phix reads, used as an internal control, using the DADA2 pipeline (Callahan et al., 

2016). The DADA2 pipeline was chosen since it has been shown to be more accurate and 

less prone to including spurious sequences than other common methods such as UCLUST 

(Edgar, 2010) used in QIIME1, and average linkage used in Mothur (Schloss et al., 

2009). The DADA is reference and cluster free and is therefore capable of classifying 

sequences to a higher resolution than the typical classification of an OTU of 97% 

similarity. Instead of the OTU table produced by QIIME1 (Caporaso et al., 2010), an 

amplicon sequence variants (ASV) table is produced. A multiple sequence alignment was 

then conducted using the mafft (Katoh et al., 2002) program to remove highly variable 

base positions from the ASVs before construction of a phylogenetic tree using the 

FastTree package (Price et al., 2010). 

 

2.6.6 Analysis with SourceTracker 

The SourceTracker program (Knights et al., 2011) was used to estimate the contribution 

of potential faecal sources to sinks. OTU tables or ASVs, were converted from BIOM 

format to tab-separated files and mapping (QIIME1) or metadata (QIIME2) files were 

prepared for SourceTracker by adding “Env” and “sourcesink” columns to describe the 

sample environment and whether it is a source or a sink, respectively. SourceTracker was 

run using default settings as recommended by Henry et al. (2016). Henry et al. (2016) 

also recommend that, for microbial source tracking, SourceTracker is run five times and 

sources with a relative standard deviation >100% adjusted to zero contribution.  
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 General statistical analysis 

2.7.1 Summary statistics 

All statistical analyses were performed in R (R Core Team, 2017) using the Rstudio 

graphical user interface (R Studio Team, 2015). All figures were made using ggplot2  

(Wickham, 2016),  supported by the gridExtra package, version 2.3 (Auguie, 2017). 

To allow comparison of bacteria and gene copy concentrations between sample sites the 

geometric mean and geometric standard deviation were calculated using equations 2 and 

3, respectively. The geometric mean was chosen as it accounts for the potentially large 

variation and zero skew in bacteria data better than the arithmetic mean. 

Equation 2.3                                                                      𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑚𝑒𝑎𝑛 =  𝑒
𝛴𝑙𝑜𝑔 (𝑥)

𝑛  

 

Equation 2.4                                     𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = 𝑒
1

𝑛
 𝛴 (𝑙𝑜𝑔𝑥−𝑙𝑜𝑔 (𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑚𝑒𝑎𝑛))2

  

Linear regression was performed using the lm function in R (R Core Team, 2017). The 

measure of influence of data points on linear regression models was assessed using 

Cook’s distance and DFFITS analyses conducted using the “olsrr” package, version 0.5.1 

(Hebbali, 2018). To determine if the slope of a linear regression model was significantly 

different to 1 an analysis of variance (ANOVA) test was used.  

The normality of count data was evaluated statistically using the Shapiro-Wilk normality 

test and visually through histograms, quartile-quartile (Q-Q) and residual plots. The 

homoscedasticity of the data was evaluated using the Bartlett and the Fligner-Killeen 

tests. 

While the vast majority of studies use a log-transformation to normalise bacterial and 

gene-copy count data, log-transformations have been shown to perform poorly, except 

where mean counts are large and dispersion is small (O’Hara and Kotze, 2010).  To 

normalise data, a box-cox transformation was conducted using the MASS package 

(Venables and Ripley, 2002) to evaluate lambda values between -6 and 6 at 0.1 intervals 

and values were transformed using Equation 2.5. 

Equation 2.5                                                               𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑 𝑥 =  𝑥
𝜆−1

𝜆   

 



73 

 

To compare mean bacterial concentrations at each site, analysis of variance (ANOVA) 

was conducted using the ANOVA function in base R (R Core Team, 2017). 

 

2.7.2 Sensitivity and specificity of faecal markers 

The sensitivity of biomarkers, synonymous with the true positive rate, of E.coli 

biomarkers was by: 

 

Equation 2.6                                       𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 100 ×
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑖𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
                            

 

The specificity of biomarkers, or one minus the rate of false negatives, was calculated 

using Equation 2.7.  

 

Equation 2.7                                           𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 100 × (1 −
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
)             
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Chapter 3 Human-associated E.coli genetic markers and community 

analysis to identify pollution from decentralized systems 

 

 Introduction 

Faecal pollution contributes greatly to reduced water quality through nutrient loading and 

can present significant public health risks through pathogen loading. In the UK, only 36% 

of rivers were classified as good or excellent water quality in 2015 (Priestley, 2015) 

according to the Water Framework Directive (2000/60/EC, European Commission, 2000). 

The economic burden of surface water pollution in England and Wales is estimated to be 

£1.3 billion per annum, largely to the issues of identifying and mitigating diffuse 

pollution sources (National Audit Office, 2010). Methods to establish the occurrence, 

location and sources of pollution are therefore invaluable in making informed investment 

decisions to ensure efficient improvements to water quality and quantity. 

The microbiological quality of water is monitored and regulated using the faecal indicator 

organisms (FIOs) E.coli and enterococci. While FIO presence indicates recent faecal 

contamination their ubiquity in the intestinal tract of most warm-blooded mammals 

means current, culture-based enumeration methods fail to identify or differentiate the 

source(s) of FIO (Reischer et al., 2008). Modelling approaches are promising in 

estimating agricultural contributions to FIOs (Whitehead et al., 2016; Dymond et al., 

2016), although, contributions from misconnections, leaking sewers and poorly 

positioning of malfunctioning septic systems can be difficult or impossible to model and 

delineate from agricultural sources. 

Microbial source tracking (MST) describes techniques which attempt to identify and 

apportion sources of pollution. Whilst a plethora of MST approaches exist (Scott et al., 

2002; Harwood et al., 2014), identifying relationships between MST results and 

regulatory FIOs is difficult (Marti et al., 2013; Ridley, et al., 2014) due, in part, to the 

differing behaviour of distinct bacteria in environmental waters. The suitability of E.coli 

and enterococci as indicator organisms is well debated (Wade et al., 2003b; Marion et al., 

2010; Lamparelli et al., 2015). Nevertheless, their current regulatory role increases the 

desire to link MST conclusions to FIO concentrations. Recently, four human-associated 

E.coli genes (H8, H12, H14, H24) have shown promise as library-independent 
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biomarkers in Japan (Gomi et al., 2014) and Australia (Warish et al., 2015) to link human 

pollution to E.coli concentrations. Lower sensitivities and specificities, however, were 

noted in Australia (Warish et al., 2015) compared to Japan, highlighting the necessity to 

assess marker performance prior to use in new locations using likely sources of pollution 

(Stoeckel & Harwood, 2007). The applicability of these markers outside of the Indo-

Australian region has never been evaluated previously.  

Decentralized wastewater treatment systems, which are common in rural catchments 

throughout the UK, present particular difficulties for library-independent MST 

approaches. The problem that MST approaches are not 100% sensitive to human faeces is 

often not important since sewage often contains faeces from a large population. However, 

in decentralized systems, this will not always be the case. The use of biomarkers where 

small decentralized treatment is prevalent may result in false negative results. The 

increasing speed and accuracy of high throughput sequencing (HTS), coupled with 

reducing costs which have historically outpaced Moore’s Law (Muers, 2011), and the 

ability to characterize bacterial communities from environmental samples using the 16S 

rRNA gene, may lend this technology to water quality monitoring (Vierheilig et al., 2015; 

Schang et al., 2016) and MST (Unno et al., 2018). The SourceTracker software (Knights 

et al., 2011) widens the applications of HTS to MST, allowing the contribution of 

microbial communities from possible sources to environmental samples to be estimated. 

A number of MST investigations (Newton et al., 2013; Neave et al., 2014; Ahmed, et al., 

2015) have used both marker and community-based approaches, generally finding a 

consensus between conclusions drawn from host-associated markers and SourceTracker 

outputs, albeit with poor correlation between the two (Ahmed, et al., 2015). No studies, 

however, have investigated relatively small catchments consisting of decentralized 

treatment systems nor compared community analysis and human-associated E. coli 

marker approaches.  

The aims of this study were two-fold. Firstly, to evaluate the performance of the human-

derived E.coli markers, H8, H12, H14 and H14, discovered in Japan, for their ability to 

detect human-associated E.coli in the UK. Secondly, to identify and assess human 

pollution in a Northern England catchment potentially impacted by agriculture and small 

decentralized wastewater treatment systems using the human-associated marker assay in 

conjunction with community analysis. 
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 Methods 

We first assessed marker sensitivity and specificity using a multiplex-PCR assay to 

identify markers in target (sewage) and non-target (non-human) hosts (chicken, cow, 

horse, dog, pig and sheep) collected from Northern England. This ensured the suitability 

of markers for use in the catchment study. Following communications with the 

Environment Agency and Northumbrian Water Ltd., we attempted to streamline the 

detection of markers from regulatory plate-counts, since picking individual E.coli from 

non-regulatory plates to test marker presence/absence would limit their regulatory and 

industrial application. A qPCR method was therefore tested and used to estimate the 

proportion of colonies on a plate which contained a human-associated biomarker.   

 

3.2.1 Assessing marker performance 

3.2.1.1 Sample collection 

As recommended by the U.S. Environmental Protection Agency (USEPA, 2005), ten 

faecal samples from each non-human source: chicken, cow, horse, dog, pig and sheep 

were collected as previously described (2.1.2 Faecal samples). Nine sewage samples were 

collected from five sewage treatment works (< 2,000 PE) and directly from a septic tank 

(Appendix B.1) and transported to the lab as previously described (2.1.3 Raw sewage) 

Some of the sources used to assess biomarker performance in this study were located 

outside of the catchment, for three reasons: access to septic tanks within the catchment 

was limited; samples from a single household may not be representative of all septic tanks 

in the area, and to assess biomarker distribution across the North of England. 

 

3.2.1.2 Faecal DNA extraction 

DNA was extracted (2.3.3 Extraction of DNA from faecal samples) and quality checked 

as previously described (2.3.5 DNA quality control). 
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3.2.1.3 E.coli culturing, isolation and DNA extraction 

Thirty E.coli were cultured from sewage samples and twenty from each non-human 

source (Appendix B.1), using different faeces from those above (3.2.1.2 Faecal DNA 

extraction) as previously described (2.3.1 E.coli isolates suspended in lysogenic broth). 

To reduce the likelihood of re-sampling identical E.coli, only 1-3 colonies were selected 

from each initial plate and samples were collected from five different small (< 2,000 PE), 

decentralized WWTPs (Appendix B.1). 

 

3.2.1.4 Multiplex-PCR 

A multiplex PCR method (2.4.2 Identification of E.coli biomarkers using multiplex PCR) 

was developed and used for the detection of H8, H12, H14 and H24 (Gomi et al., 2014).  

 

3.2.1.5 Data analysis 

The sensitivity and specificity of each human marker was evaluated and reported as the 

percentage of E.coli from sewage possessing a marker gene (Warish et al., 2015; Gomi et 

al., 2014), as described above (2.7.2 Sensitivity and specificity of faecal markers). The 

specificity was determined using  E.coli isolates (n = 120) (Gomi et al., 2014) and faecal 

sources (n = 60) (Warish et al., 2015) from non-human sources using Equation 2.7. 

 

3.2.2 Catchment study  

Catchment area and sampling strategy 

A full description of the catchment can be found in Appendix B.2. Briefly, the Newby 

catchment is a sub-catchment of a larger catchment management program (Eden 

Demonstration Test Catchment). The Newby catchment is comprised of agricultural land 

interspersed with small settlements, typically farms and villages which are served either 

individually or communally by septic tanks. 

River water samples (n=36) were collected on 6 days over two months (May to July) 

targeting different flow conditions in the catchment. Sampling locations were targeted 
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above and below farm settlements in two sub-catchments and at the catchment outlet 

(Figure 3.1).  

                      
Figure 3.1. Map of the Newby catchment in the Eden Valley, Northern England. Created using open source data 

(Ordinance Survey, 2017).  
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Environmental sample processing 

River water samples were collected and transported as described above (2.1.4 

Environmental water samples). E.coli were enumerated (2.2 Enumeration of faecal 

indicator bacteria) and the plates were frozen at -20 oC until further use (c. eight weeks).  

All colonies were picked from a single plate and combined for DNA extraction (2.3.2 

Direct extraction from E.coli isolated from plate counts) and identification of marker 

genes ( Multiplex-PCR and inhibition control) was performed on the DNA. In addition, 

colonies from eleven sets of duplicate plates were picked individually and processed in 

the same way. These eleven plates were chosen as they gave the largest range of 

proportions where both duplicate plates had > 5 colonies on each plate. QPCR was 

carried out on samples that were PCR-positive for human marker genes. 

 

QPCR 

QPCR was carried out in triplicate for each human marker and the RodA gene as 

described above (2.4.3 Quantitative PCR (qPCR)). The RodA gene was chosen over the 

UidA gene used by (Gomi et al., 2014) or 23S rRNA gene (Warish et al., 2015) due to its 

reliability as a single-copy gene (Chern et al., 2011), providing a closer relationship with 

cell counts compared with multi-copy genes. While no inhibition was noted a 1:10 

dilution was used to keep sample values within the range of the standard curve (102 – 108 

gene copies).  

 

Data analysis and reporting 

The proportion of E.coli containing marker genes was estimated using the ratio of all 

marker gene copies to RodA gene copies. Whilst it is possible that a single isolate may 

contain more than one marker gene, it was assumed that this overestimate would impact 

results less than the variability in sensitivities of individual markers between different 

septic systems. The absolute abundance of E.coli containing a marker was calculated by 

multiplying the mean E.coli concentration with the proportion of E.coli containing a 

marker gene at each site. All statistical analysis was conducted in R (R Core Team, 2017), 

DFFITS analyses were performed with the ‘olsrr’ package version 0.5.2 (Hebbali, 2018). 

ANOVA and determination of Pearson’s correlation coefficient was performed using the 
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‘Hmisc’ package version 4.1-1 (Harrell & Dupont, 2018) to assess the correlation 

between the PCR and qPCR assays. For the catchment study, the geometric mean was 

used to summarize the data since the data set was relatively small (n=36), ranged across 5 

orders of magnitude and was skewed towards 0. To determine if there was a significant 

difference between human E.coli concentrations at each site, a Box-Cox transformation 

(Box & Cox, 1964) was performed (2.7.1 Summary statistics). 

 

16S rRNA gene sequencing and SourceTracker analysis 

16S rRNA gene sequencing was performed (2.6.2 16S rRNA amplicon sequencing by Ion 

Torrent) and analysed as described above (Analysis of data from Ion Torrent sequencing).  

SourceTracker (Knights et al. 2011) was run (2.6.6 Statistical analysis) using a faecal 

taxon library (FTL) consisting of three human (one septic tank and two raw influent), one 

ovine, two bovine, two equine and two avian (chicken) samples. Human samples were 

split into septic tank and sewage samples to run the SourceTracker analysis, and the 

contribution of each source, estimated by SourceTracker, was added together to give a 

human contribution. All commands and parameters are given in Appendix A.1, 

SourceTracker outputs are given in Appendix B.3.  

 

 Results 

3.3.1 Human marker performance in rural catchments 

All markers had a 100% sensitivity to sewage (n =9). The H24 marker had the highest 

sensitivity when using isolates from sewage (50%, Figure 3.2), slightly higher than in 

Japan (37%, Figure 3.2; Gomi et al., 2014), although all other markers had lower 

sensitivities than in Japan, namely 17%, 10% and 3% for H14, H8 and H12, respectively. 

The sensitivities for H14 and H24 were not tested in Australia due to their poor 

specificities (Warish et al., 2015). The aggregated sensitivity of all the markers was 69%, 

which is marginally higher than that in Japan (67%). 
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Figure 3.2. The sensitivity of the H8, H12, H14 and H24 markers determined by laboratory tests in the UK (this study), 

Japan (Gomi et al., 2014) and Australia (Warish et al., 2015). It should be noted that the sensitivity of H14 and H24 

was not tested in Australia due to the low specificity of these markers there (Warish et al., 2015) 

 

The specificity, determined by testing faecal samples, was 100%, 100%, 93% and 93% 

for H8, H12, H14 and H24, respectively (Table 3.1). Interestingly, while the specificities 

when testing E. coli colonies isolated from faeces largely agree, 99%, 100%, 93% and 

96%, respectively, some cross-reactivity with Sheep (H8) horse (H14), pig (H14 and 

H24) and dog (H24 and H14) was noted that was not identified through faecal sampling 

alone. The high specificities of markers noted via both methods justified their use in the 

field trial.  
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Table 3.1. The number of each faecal source positive for each marker detected through PCR in studies using these markers so far. Only host sources tested in this 

study are shown, Warish et al. (2015) also tested faeces from emu, deer, cat, kangaroo and possum  

  Number of samples/isolates PCR positive for each marker 

Study 

Location 
UK (This Study) UK (This Study) 

Japan 

(Gomi et al., 2014) 

Australia 

(Warish et al., 2015) 

Marker H8 H12 H14 H24 H8 H12 H14 H24 H8 
H1

2 
H14 H24 H8 H12 H14 H24 

Cow 0 0 0 1 0 0 1 1 2 0 2 0 5 5 7 8 

Chicken 0 0 2 3 0 0 0 1 0 0 0 0 ND ND ND ND 

Pig 0 0 0 0 0 1 4 1 1 0 0 1 ND ND ND ND 

Sheep 0 0 2 0 1 0 1 2 ND ND ND ND ND ND ND ND 

Dog 0 0 0 0 0 1 1 0 ND ND ND ND 0 0 4 2 

Horse 0 0 0 0 0 0 1 0 ND ND ND ND 0 0 4 0 

Sample 

size 
60 120 90 90 

Specificit

y (%) 
100 100 93.3 93.3 99 98.3 93.3 95.8 97 100 97.8 98.9 94 94.4 83.3 88.9 

Sample 

type 
Faecal Isolates Isolates Faecal 

*The total number of samples and total specificity observed in the study are shown here, even though for other studies only the sources which were the same as 

those tested in this study are shown above. 



83 

 

3.3.2 Estimating the proportion of human E.coli using qPCR 

The proportion of E.coli on a given plate containing human marker genes was estimated 

from the ratio of gene copy numbers of markers to RodA gene copies determined by 

qPCR. To attempt to verify this method, 270 individual colonies were picked from 

duplicate plates of eleven samples covering a range of predicted percentage contributions; 

human markers were identified in individual colonies using end-point PCR. The 

percentage of E.coli containing human markers as estimated by qPCR was compared to 

that identified by end-point PCR. One set of duplicate plates was removed from further 

analysis since one plate contained 26% of E.coli with a human marker and the duplicate 

plate contained none. This could be due to the duplicate plate only containing 13 isolates. 

Three plates which had < 20 isolates were unavoidably used in the comparison since 

plates obtained from lower or greater dilutions had too few (<10) or too many (>100) 

isolates. 

 

Figure 3.3. Comparison of qPCR and multiplex end-point PCR methods to estimate proportion of human-derived E.coli 

in environmental samples 
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The qPCR assay gave a good agreement of the proportion of marker genes among 

cultured E.coli identified through end-point PCR (r2 = 0.937, p = 4.434e-06, Figure 3.3). 

Two points were noted as highly influential to the fit and intercept of the graph (0.64, 

0.60 and 0.4, 0.29, Figure 3.3) using Cooks distance and DFFITS analysis. When these 

points were removed, the fit of the regression line changed little (r2 = 0.914) and the 

intercept and slope were not significantly different to 1 and 0, respectively (y = 0.011 + 

0.94x).  

Although the between-plate variability was expected to be high, when a low number of 

isolates possess markers, the relationship observed in figure 3.3 was strong. For example 

here, a difference of a single marker between duplicate plates with 20 colonies would 

account for a 5% difference between plates. The maximum difference between the two 

assays was 8% when comparing the PCR and qPCR assays for the two most abundant 

markers (Appendix B.4). The low error and strong relationship (Figure 3.3 and Appendix 

B.4) justified the use of the qPCR data in the field trial to estimate the proportion of 

E.coli containing a human-associated marker, hereon in termed the proportion of human 

E. coli, with which it is synonymous. 

 

3.3.3 Catchment study 

3.3.3.1Human pollution 

The H24 and H14 were most commonly detected, in 28 and 14 of the 36 samples, 

respectively, while H8 and H12 were only present in 3 samples (Table 3.2).  
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Table 3.2. Number of samples at each sampling location PCR positive for 

each E.coli marker in the Morland catchment 

Sample 

Location 
H8 H12 H14 H24 

At least 

one 

marker 

Outlet 0 1 3 4 5 

Dedra lower 1 0 5 6 6 

Dedra upper 0 0 2 3 4 

Towcett 0 0 0 5 5 

Sleagill lower 1 1 2 6 6 

Sleagill upper 1 1 2 4 5 

Total 3 3 14 28 31 (/36) 

Percentage 8.3 8.3 38.9 77.8 86.1 

 

E.coli concentrations in the catchment ranged between 20 and 8300 CFU/100 mL, with 

the exception of a single sample with 21,000 CFU/100 mL. Up to 65% of the E.coli, 

although typically between 10 and 20%, contained a human marker. Human E.coli 

marker data are summarized in figure 3.4 and broken down by sample day and location 

(Appendix B.2). 

The abundance of E.coli containing human markers increased following each of the farm 

settlements at Dedra (p = 0.0183, Figure 3.4 (Top)) and Sleagill (p = 0.0565, Figure 3.4 

(Top)). The increase in abundance of E.coli containing human markers at Sleagill was not 

statistically significant (marginally), which was attributable to the large ranges in E.coli 

concentrations.  However, the human-associated E.coli concentration increased in all 

except a single sample (Sleagill upper – Sleagill lower Day 4, Appendix B.2).   
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Figure 3.4. Top – Back-transformed means of Box-Cox transformed data (lambda value of 0.2) of human-associated 

E.coli. Significance values determined using one-way ANOVA. Bottom – Geometric mean values of the human 

proportion of the microbial community at each location predicted by SourceTracker 

 

The ubiquity of human pollution was evident from both MST methods. Human sources 

were identified in all samples by community analysis and 86% (31/36) of these samples 

also contained human E.coli markers (Table 3.2). Community analysis also showed an 

increase in the human proportion of pollution at Dedra and Sleagill (Figure 3.4). While 

this increased the confidence in conclusions drawn from the human E.coli marker studies, 

there was a weak, non-significant (marginally) correlation between the human E.coli 

contribution and the reported contribution of the sewage microbial community (ρ = 0.32, 

p = 0.0577, Appendix B.5).  
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At the catchment outlet, community analysis showed an increasing human contribution, 

while the human proportion of E.coli appeared to decrease (Figure 3.4).  The human-

associated E.coli loading rate was calculated using flow rates from within the catchment. 

The E.coli loading rates from each of the two streams (Figure 3.5) suggest that the 

Sleagill sub-catchment contributes a greater human-associated E.coli load to the 

catchment outlet.  

 

Figure 3.5. Loading rates (Log-transformed) of human-associated E.coli on each sample day in the two streams and at 

the catchment outlet of the Morland catchment 

 

 Discussion 

3.4.1 E.coli biomarkers 

An ideal marker for MST should be present only in the target host, abundant in the target 

host and present in every individual of the target host species. Aligning the results of 

microbial source tracking and regulatory microbial monitoring techniques is also 

desirable since MST investigations are often undertaken as a result of high counts of 

faecal indicator organisms and typically form the basis for catchment management and 

investment decisions. Unfortunately, no marker that is entirely specific to a host has been 

previously identified (McLellan et al., 2013). Moreover, relating MST markers to E.coli 
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and enterococci concentrations remains challenging. Recently identified host-specific 

E.coli markers (Gomi et al., 2014) may, therefore, provide an invaluable link between 

MST approaches and regulatory parameters. While these markers have been tested in 

Japan and Australia, little was known about their suitability as MST markers in the UK. It 

would appear that the human-associated E. coli markers investigated here are not ideal 

sole candidates when used individually to apportion faecal contamination to humans in 

the UK. While they showed high specificity (>93%), their sensitivities varied between 

3% and 50% in E.coli isolated from sewage samples. This was similar to sensitivities of 

14 to 50% reported elsewhere (Gomi et al., 2014; Warish et al., 2015) and when 

aggregated, the sensitivity of all markers increased to 69%, very similar to the 67% 

previously reported (Gomi et al., 2014).  

The specificity of E.coli biomarkers varies between studies. Here, the specificities of H8, 

H12, H14 and H24 (99%, 98%, 93% and 96%, respectively) were more similar to those 

observed in Japan (97%, 100 %, 98%, and 99%, respectively) based on isolates, rather 

than those based on faecal samples (100%, 100%, 93%, and 93%, respectively in this 

study) compared to those in Australia (94%, 85%, 57%, and 72%, respectively). This 

could be due to the range of potential pollution sources tested, since some pollution 

sources important to Australia (Warish et al., 2015), such as emu faeces, are not a 

concern in the UK. It may also be due to the manner of sample collection. Warish et al., 

(2015) observed a relatively high level of cross-reactivity with cow faeces when using 

composite faecal samples, compared to those obtained from individual faecal samples 

used in this study (Table 3.1). Here, we evaluated specificity through two methods, either 

using 10 faecal samples or 20 E.coli isolates from 6 non-human faecal sources, which are 

likely to be prevalent in the UK.  

Interestingly, a greater number of non-human targets were positive for the four human 

markers when using E.coli isolated from faeces compared with DNA directly extracted 

from faeces. This may be due to the fact that different samples, from different locations, 

were used for DNA extraction and E.coli culturing; an uneven distribution of marker 

genes throughout non-human populations would lead to animals in some areas possessing 

a greater proportion of marker genes. The higher number of non-human hosts positive for 

a marker gene when using isolates may also be due to human-associated isolates being 

present in <10% of non-human hosts. For example, only a single horse faeces, from the 

twenty tested, was positive for the H14 marker. The difference observed between these 
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methods may also be due to inhibition in the PCR reaction, or the low abundance of 

markers in non-human faeces. However, all faeces were PCR positive for the RodA gene, 

a gene highly associated with E.coli spp. (Chern et al., 2011), suggesting that no 

significant inhibition took place. E.coli markers may be below the limit of detection for 

faeces, and only present when identified through the culture-based approach. It seems 

more likely that the disagreement between the two methods was due to the low 

prevalence of these markers across non-human populations, and the general agreement of 

high specificities for all markers by both methods suggest they are suitable markers for 

MST in the UK.  

The proportions of E.coli containing the H8 and H12 markers (10% and 3%) were 

markedly different to those observed in Japan (50% and 30%, Gomi et al., (2014)) and 

Australia (45% and 15%, Warish et al., (2015)), but were similar to the 16.3% of E.coli 

isolates containing H8 reported in Bangladesh (Harada et al., 2018). Variation in 

sensitivity between studies could be due to different sampling methodologies or 

geographical distributions of markers between different communities. Such variation 

could reduce the efficacy of these markers in decision making, particularly if this 

variation occurs on a localized scale. It is convenient to report the proportion of E.coli 

containing a marker for catchment studies (Gomi et al., 2014; Warish et al., 2015; Harada 

et al., 2018), however, if the proportion of E.coli containing markers differs widely 

between local sources of human pollution, comparing the amount of human pollution 

between sampling points becomes difficult using this metric. A number of examples of 

where this variation may confound MST results are available. (Warish et al., 2015) 

observed a much greater proportion of E.coli containing the H12 marker (>20%) 

compared to the H8 marker (<~8%) in four out of six sites, even though the proportion of 

E.coli containing the H8 and H12 marker in sewage was 45% and 14%, respectively. 

Here, on one occasion, H24 accounted for ~60% of E.coli (estimated with both qPCR and 

end-point PCR methods, Dedra Lower Sample Day 1, Appendix B.2 Figure 2), greater 

than the expected sensitivity (50%), but on other occasions, the value was much lower. In 

both examples we cannot discount the possibility that these markers had non-human 

origins, however, the between-study variation in sensitivity warrants further investigation 

into the variation in sensitivity on a local scale, before these markers can be 

recommended for quantitative use in decision making. 
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The identification of E.coli biomarkers through culturing, picking individual cultures and 

end-point PCR is laborious. While enumeration directly from water samples with qPCR 

would be more rapid and less labour intensive, it does not currently fit in with EU 

regulations and previous difficulties have been reported (Gomi et al., 2014). As a 

compromise, the proportion of E.coli containing biomarkers was estimated using qPCR 

on all isolates simultaneously removed from a plate. This qPCR “compromise” gave a 

good estimate of the ratio of E.coli containing human-associated markers, although there 

are limitations. The precision of this method was limited by the number of isolates of 

E.coli on a plate - a plate with only 20 isolates yields a precision of only ±5%. 

Additionally, an error of up to 8% was noted and attributed to between-plate variability, 

which questions whether a single plate is representative of the environmental sample, 

especially where a low percentage of isolates are human-associated. Sampling additional 

plates may be useful, although this becomes increasingly laborious and, therefore, 

expensive. Future studies may be better served using qPCR to directly apportion faecal 

biomarkers without a culture step and accept discrepancies between regulatory culture-

based and MST nucleic-acid based methods; although Gomi et al. (2014) noted 

difficulties in direct enumeration using qPCR due to the low abundance of markers. New 

molecular technologies such as digital PCR (dPCR) (Cao et al., 2015) with a greater 

tolerance to inhibition and improving sensitivities are valuable avenues of research which 

may offer a solution.  

 

3.4.2 Comparison of community analysis and E.coli biomarkers. 

Community analysis complemented E.coli-based MST in the catchment study. The use of 

multiple markers and community analysis was vital to avoid false negative results. Whilst 

H24 was the most commonly detected marker, using H24 alone would have resulted in at 

least one false negative result. The conclusions drawn in the catchment study were based 

primarily on the H14 and H24 markers, those with the lowest specificities (~93%). 

However, it should be noted that without these markers, using only H8 and H12, the rate 

of false negative results would render E.coli based MST unreliable in this catchment. 

Community analysis identified human sources in all samples, whereas, E.coli biomarkers 

were only identified in 81% of samples. The greater sensitivity of community analysis 

compared to E.coli biomarkers is likely to be due to the limitation of the culture-based 
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method compared to community analysis. The culture-based method is limited to the 

detection and analysis of E.coli containing human sources that can selectively grow on 

plates, whereas community analysis can detect a much greater proportion of sewage-

related taxa in an environmental sample. 

The use of both marker and community analysis based approaches may improve 

confidence in MST results and relevance to regulatory monitoring techniques. 

Community analysis is limited by the proportional nature of the data, and the inability to 

relate this to quantitative, regulatory measures. While marker-based approaches appeared 

to be necessary to draw imprecise quantitative conclusions, community analysis provided 

an important role in improving confidence in the conclusions drawn from E.coli markers, 

where the cross-reactivity of markers has the potential to confound MST conclusions. 

However, direct comparison of marker and community analysis data remains difficult. 

The poor correlation between human biomarkers and community analysis (Appendix 

B.5), reflects previous findings (Ahmed, et al., 2015) and highlights the difficulty in 

interpreting community analysis results for governance of FIO. The poor correlation 

between the estimated human contributions from each method is likely to be due to the 

differential die-off, transportation and sedimentation rates (Walters et al., 2009) between 

culturable organisms and DNA since the human contribution to the microbial community 

consistently increases, in contrast to the fluctuating concentrations of E.coli biomarkers 

down the catchment (Figure 3.4, bottom). The poor correlation between the estimated 

human contributions could also be due to the variation in the contributions from other 

sources to the microbial community that can alter the predicted contribution from human 

sources by community analysis. For example, any increase in the proportion of the human 

bacterial community after a farm may be suppressed due to the overall increase in faecal 

sources which increases the density of microbes downstream of a farm (Appendix B.2, 

Figure 3.4).  

The composition of the faecal library input into SourceTracker remains the subject of 

some debate. A number of studies successfully used single samples (Henry et al., 2016; 

Sun et al., 2017) and while one study suggested that larger sample sizes are required to 

avoid false negatives, Staley et al., (2018) suggest that less than 10 individuals may 

suffice if geographically-associated sources are used. Here, three human samples were 

used, and no false negative values were noted.  For the water industry or catchment 

managers, using a large number of samples for all potential hosts in each monitored 



92 

 

catchment is likely to be unfeasible with high associated costs. Further work to 

understand the required library size, and how geographically representative a faecal 

library is, would be valuable to inform further MST studies.   

 

 Conclusions 

Human E.coli markers (H8, H12, H14 and H24) were tested in the North of England. 

Markers with the highest sensitivities, and which were most useful in a catchment study, 

were H24 and H14, although, these also had the lowest specificities. Marker sensitivities 

differed to those reported in Japan (Gomi et al., 2014) and Australia (Warish et al., 2015). 

This variation in marker sensitivity may limit the quantitative application of E.coli 

biomarkers, for example in regulatory monitoring, or comparing two sampling sites, 

particularly if this variation occurs on a local scale. 

A qPCR based assay to estimate the percentage of E.coli isolates containing markers from 

a cultured plate, fitting into regulatory testing of E.coli, was used successfully to reduce 

labour and its associated costs, although, enumeration of gene copies directly from 

environmental samples would reduce labour further.  

A combination of community analysis and multiple human-associated E.coli biomarkers 

improved confidence in MST conclusions and may make community analysis and an 

MST tool more relevant to decision makers. The conclusions drawn from each method 

agreed, although no direct correlation was found between the percentages of human 

contribution predicted by each assay. These differences are most likely due to the 

disparate persistence of culturable E.coli and DNA in a river environment, although, these 

differences provide additional information which would likely be missed without this 

“toolbox” approach.     

The field trial highlighted the importance of MST in rural catchments, where human 

impacts are often overlooked, to disentangle human and agricultural inputs for 

management decisions or improving catchment models.   
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Chapter 4 Identifying human-Specific E.coli biomarkers using a 

database approach for tracking sewage pollution in the UK. 

 

 Introduction 

There is an urgent need to improve the microbiological quality of water on national and 

international scales. The magnitude of the global challenges sanitation engineers face is 

exemplified by global statistics: there are 700,000 annual deaths attributable to diarrheal 

disease (Prüss-Ustün et al., 2014), 1.8 billion people access drinking water contaminated 

with faeces, and 80% of wastewater is discharged to the environment without treatment 

(UNDP, 2018). While many OECD countries have high wastewater treatment rates 

(>99.9%), only 25% of surface waters in England (Salvidge, 2016) are on track to achieve 

the government’s aim to improve 60% of surface waters to their natural state by 2021 

(Priestley, 2015).  

Methods to support investment and management decisions are critical to ensure cost-

effective improvements in water-quality, particularly where urban diffuse pollution is a 

contributing factor to poor water quality. Leaking sewers, faulty combined sewer 

overflows (CSOs) and misconnections are difficult to identify and their contribution to 

pollution often remains unknown or unaccounted for. Misconnections in an estimated 

1.25 million UK properties cost the water industry around £235 million/year (Royal 

Haskoning, 2007). Methods to determine when and where investment in infrastructure is 

necessary, and indeed cost-beneficial, to achieve desired water quality improvements are 

becoming increasingly important in the UK and across the world.  

Microbial source tracking (MST) methods, which attempt to identify and often apportion 

sources of faecal pollution, could inform investment decisions. Currently, the most 

popular MST methods are library independent (Harwood et al., 2014), where genetic 

markers, previously validated as highly associated with a given host, are used to identify 

contamination in environmental waters. The ideal MST marker is often described as 

being highly host-associated, abundant in all members of the target host, similar to FIO 

and/or pathogens in terms of their inactivation rates, and exhibit geographic and temporal 

stability in their sensitivity, specificity and abundance (Stoeckel and Harwood 2007). For 
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industrial applications of MST it is also important that assays are cost-effective and relate 

to current regulatory methods. 

Currently, MST is rarely used in the UK water industry, possibly due to the difficulty in 

relating the current suite of library independent MST markers to regulatory faecal 

indicator organisms (FIO’s) (Reischer et al., 2008; Wang et al., 2013; Mattioli et al., 

2016). Escherichia coli are used across Europe, and much of the world, as an FIO to 

regulate and monitor the quality of recreational water, both fresh (US and Europe) and 

coastal (Europe), and in drinking water according to the Bathing Water (2006/7/EC) and 

Drinking Water (98/83/EC) Directives, respectively.  

Apportionment of E.coli by source is increasingly of interest to direct catchment 

investment decisions, inform epidemiology studies (Fewtrell and Kay, 2015) and 

apportion viable antimicrobial resistant E.coli (Leonard et al., 2018). Relating non-E.coli 

MST marker concentrations to FIO concentrations is complicated since genetic markers 

and FIO differ in several aspects, including: their initial faecal concentrations; transport 

and attenuation mechanisms (Johnston et al., 2010); their environmental decay rates both 

within faeces (Oladeinde et al., 2014) and in environmental waters (Brown and Boehm 

2015; Wanjugi et al. 2016; Korajkic et al. 2014); the assays used for their detection 

(Ahmed et al., 2015); and the ubiquity and possible environmental persistence of FIO as 

opposed to the host-specificity of genetic markers. The use of E.coli as an MST marker is, 

therefore, attractive for MST studies. 

A number of studies have attempted to apportion E.coli to different source. Early studies 

used a variety of DNA fingerprinting methods (Parveen et al., 2001; Versalovic et al., 

1994; Dombek et al., 2000; Araújo et al., 2014). Unfortunately, the poor reproducibility 

and variability that increased with library size, made these methods generally unreliable 

(Meays et al., 2004; Dombek et al., 2000). The rise in popularity, and reduction in costs, 

of sequencing has allowed the exploration and comparison of a large number of E.coli 

genomes. Gomi et al., (2014) used whole genome sequencing of 22 E.coli genomes from 

chickens, cows, humans, and pigs. A comparison of genomes led to the development of a 

number of markers highly-associated with human (H8, H12, H14 and H24), cow, pig and 

chicken faeces. Other methods to detect host-specific markers have also successfully 

identified host specific E.coli associations. Deng et al. (2015) analysed polymorphisms in 

the ycjM gene finding a human-associated genotype. While high sensitivities (34%-86% 
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of E.coli from sewage contained the human-associated ycjM genotype) and specificities 

were reported locally (99%), Kataržytė et al., (2018) found H8 concentrations were 

higher than ycjM gene concentrations in environmental samples. A similar approach, 

using logistical regression to identify host-associated patterns of polymorphisms across 

multiple intergenic regions, revealed a number of host-specific patterns (Zhi et al., 2015). 

This approach, however, requires the sequencing of multiple genomic regions to identify 

these patterns in individually isolated cultured environmental isolates, which could be 

extremely expensive for water quality monitoring where analysis of up to 100 isolates per 

plate may be required (2006/7/EC, CEU, 2006). 

Across all markers, H8 has been favoured due to its apparent high specificity to sewage 

(Gomi et al., 2014; Warish et al., 2015). However, some variations in the sensitivity and 

specificity of markers has been noted which, may limit the usefulness of these markers 

particularly for decision-making. Recently, variation in the sensitivity of E.coli markers 

has been noted, while H8 was highly prevalent in Japan (Gomi et al., 2014) and Australia 

(Warish et al., 2015), with sensitivities of 50% and 45%, respectively, it was less 

prevalent in the UK (10%) and Bangladesh (16.3%, Harada et al., 2018).  Whilst this 

could be due to different sampling methodologies (single septic tank; single wastewater 

treatment plant (WWTP) and multiple small WWTPs), it may also be due to differences 

in the geographic distribution of these markers in the environment. There is also some 

evidence that this geographical variation may occur on a local scale. For example, Warish 

et al., (2015) found H12 to occur more often than H8 in environmental isolates, despite 

the predicted sensitivity of H8 being more than three times that of H12 in DNA extracted 

from sewage samples (45% compared to 14%). Such differences could be attributed to; 

the presence of these markers in non-human sources, differential die-off rates of E.coli 

containing these different markers, and variation in the sensitivities of these markers 

between geographically different host (human) communities.  

Low, and variations in, the sensitivity of human-associated markers, reduces the efficacy 

of markers in identifying sources with low levels of pollution.  For example, in a recent 

catchment study (Chapter 3), the detection of H8 from cultured E. coli isolates alone 

would have resulted in a large number of false negative results. Moreover, variation in 

marker sensitivity between geographically distinct host (human) populations may make it 

difficult to make confident investment and management decisions. It is therefore vital to 

understand whether variation in marker sensitivity occurs at a local level and whether 
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there are better markers for use in some areas. Nevertheless, apportioning E.coli by 

source is desirable for MST since it would allow decision makers to easily determine 

where financial investment will have the largest impact. Using nucleic acid detection 

methods, as opposed to culture-based methods, may overcome the limitation of low 

concentration of E.coli biomarkers. While the proportion of E.coli containing H8 may be 

low, the concentration of this marker in sewage has been found to be similar to HF183 

(Hughes et al., 2017), the most commonly used human associated marker (Harwood et 

al., 2014). However, the direct detection of H8 from environmental DNA has some 

limitations. H8 is not specific to E.coli, highly similar sequences occur in Yersinia and 

Klebsiella sp. which could confound MST results, particularly if their behaviour in the 

environment is different to that of E.coli (Gomi et al., 2014).  

The aims of this study were two-fold: i) to determine if human biomarkers in E .coli, 

other than those previously published (Gomi et al., 2014), exist and ii) to assess variation 

in the sensitivity of markers across the North East of England. This was done by 

identifying likely genetic markers using a database approach, and assessing their 

abundance and sensitivity in small, decentralised treatment plants, which represent small 

communities where urban diffuse pollution is likely to occur.  

 

 Methods 

In this study we assumed that gene recombination is a causative process of host 

specificity in E.coli, although other processes, such as local sequence changes and DNA 

rearrangement all likely influence host-specificity (Arber, 2000). Coding sequences in the 

accessory genome of 221 publicly available and 23 locally assembled E.coli genomes 

were compared using the Large Scale Blast Score Ratio (LS-BSR) software (Sahl et al., 

2014), and ranked according to their specificity and sensitivity to human hosts. The 

sensitivity and specificity of coding sequences were then determined (2.7.2 Sensitivity 

and specificity of faecal markers) using 12 screened sewage samples from wastewater 

treatment plants (WWTPs) and 60 non-human faecal samples. Raw sewage samples were 

collected during the winter from 11 small (< 2,000 population equivalent (PE)), 

decentralised wastewater treatment plants and one medium-sized wastewater treatment 

plant (~30,000 pe). WWTPs were between 2 and 100 miles of where the local human 

derived E.coli were isolated. 
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4.2.1 Database development 

Since biomarker performance has been shown to vary with geographic location, a library 

of genomes was constructed from those available on the National Centre for 

Biotechnology Information (NCBI) database to give a broad indication of their likely 

global performance. An existing database of publically available E.coli genomes (Zhi, Li, 

et al., 2016) was adapted; genomes not definitively of faecal origin, e.g. an isolate found 

on chicken breast meat, were removed and recently available E.coli genomes were added 

along with 23 locally sourced and sequenced E.coli genomes. Details of the 263 genomes 

in the final database are available in Appendix C.1. Table 4.1 shows the number of E.coli 

from each source in the database. 

 

Table 4.1. The number E.coli genomes used to construct the local and global databases. 
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Global 99 33 9 27 8 13 4 29 6 11 141 239 

Local 4 3 3 3 3 3 2 3 0 0 20 24 

Total 103 36 12 30 11 16 6 32 6 11 159 263 

 

 The database consisted of E.coli isolated from the faeces of likely non-human sources of 

pollution in the UK. Eight environmental strains, were also included in the database since 

these are emerging as a potential complication of environmental monitoring using E.coli 

(Luo et al., 2011); these environmental strains are considered non-faecal, naturalised 

strains of E.coli and although they are phenotypically and taxonomically 

indistinguishable from faecal strains, they were isolated from an environment with no 

apparent faecal contamination and have been assigned to one of five cryptic Escherichia 

lineages (Walk et al., 2009). Where raw reads were available, these were assembled as 

described below.  
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4.2.2 Isolation, sequencing assembly of local genomes 

Local E.coli were selected from a previously constructed library (Chapter 1). Table 4.2 

shows the sampling areas and location. All non-human E.coli were isolated from 

individual faeces.  

 

Table 4.2. Dates and areas samples were collected from which E.coli isolated and processed for whole genome 

sequencing. 

 

BOX-PCR (2.6.1 Whole genome sequencing and analysis of E.coli isolates) was used to 

ensure duplicate strains were not sequenced. Genomic DNA was purified from isolates as 

previously described (2.3.2 Direct extraction from E.coli isolated from plate counts). The 

quantity and quality of E.coli gDNA was assessed (2.3.5 DNA quality control) prior to 

sequencing (2.6.1 Whole genome sequencing and analysis of E.coli isolates). Sequencing 

data was processed as previously described (2.6.1 Whole genome sequencing and 

analysis of E.coli isolates). 

 

Host Sample type Area 
Date of 

collection 

Number 

of isolates 

Human WWTP 1 

WWTP 2  

County Durham  

County Durham 

08/2015 

08/2015 

1 

2 

Chicken Free range, individual faeces 

Free range individual faeces 

County Durham  

N. Northumberland 

04/2015 

08/2015 

1 

2 

Cow Beef cow Individual faeces 

Beef cow Individual faeces  

Newcastle 

County Durham 

05/2016 

12/2016 

2 

1 

Horse Individual  faeces 

Individual  faeces 

N. Northumberland 

County Durham 

04/2015 

05/2015 

1 

2 

Pig Individual  faeces 

Individual  faeces 

N. Northumberland 

S. Northumberland 

04/2015 

08/2015 

2 

1 

Sheep Individual faeces S. Northumberland  04/2015 3 

Dog Individual faeces   S. Northumberland 04/2015 3 

Gull Individual faeces   N. Northumberland 04/2015 2 
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4.2.3 Biomarker identification 

The LS-BSR software (Sahl et al., 2014) was used to interrogate the E.coli database, 

comparing the presence of coding sequences (CDSs) from individual genomes (Query 

sequences) in all other genomes. A number of options exist for the use of LS -BSR, here 

we used Prodigal (Hyatt et al., 2010) to predict CDSs from all genomes and USEARCH 

(Edgar, 2010) at a pairwise identify of 0.9 (Sahl et al., 2014) to identify unique CDSs. 

Query CDSs were then aligned against each genome in the database using BLASTN to 

get a query score. The BLAST score ratio (BSR) is calculated by first, generating a query 

score by conducting a BLAST search of the query sequence with itself and then dividing 

this by the reference score, generated by conducting a BLAST search of the query 

sequence with all other sequences in the database. This results in a BSR value between 

0.0 and 1.0 (Sahl et al., 2014), with 1.0 indicating an exact match. The BSR attempts to 

reduce both the bias introduced by short sections of highly similar sequences, which 

artificially deflate E-values, and the variation in the raw BLAST score with length, which 

limits its applicability for comparative analytics (Rasko et al., 2005).  

Two values of BSR score were used to identify the presence of CDSs in query genomes. 

CDSs with a BSR value >0.4 were assumed to be present in non-target organisms, for the 

purpose of specificity; CDSs with a BSR value >0.8 were assumed to be present for the 

purpose of sensitivity (Sahl et al., 2014) i.e., we tried to underestimate CDS presence in 

target hosts and overestimate in non-target hosts to reduce the likelihood of chance 

matches in the BLAST searches affecting the markers selected for lab trials. The output 

spreadsheet from LS-BSR was uploaded into R (R Core Team, 2017) and the BSR values 

change to 1 or 0 to reflect presence or absence of a CDS in each genome, respectively.  

The sensitivityisolates, the proportion of E.coli from humans containing a marker, and the 

specificityisolates, one minus the proportion of E.coli from non-human hosts containing a 

marker, of each CDS were then calculated separately for the the locally sourced E.coli 

isolates only (local database) and then the entire (global) library. 

 

4.2.4 Biomarker selection 

Biomarkers were selected using the process outlined in Figure 4.1. A total of 7930 and 

152 CDSs had a sensitivityisolates > 1% and >10%, respectively, and a specificityisolates > 

95%. Sequences with either a global sensitivity >10% or a local sensitivityisolates > 25% 
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were subject to BLAST searches of the NCBI database. Where sensitivityisolates is defined 

as the proportion of E.coli from the target host containing a marker and specificityisolates is 

one minus the proportion of E.coli form a non-target host containing a marker. CDSs 

which were highly similar to sequences found in more than one organism other than 

E.coli were discarded. Sequences highly similar (97% similarity) to those in E.coli from 

non-target hosts were sense checked, the CDSs were retained if they fulfilled the 

following criteria: i) the number of E.coli from non-target hosts seemed reasonable, given 

the suggested specificityisolates, i.e., less than one non-target host in 20 sequences for a 

95% predicted specificity, and ii) they matched one of the seven non-target hosts 

suggested by the database, all others were discarded. In addition, sequences with no 

matches to the NCBI database were also discarded. From the remaining 81 sequences, 

seven CDS (Table 4.2) that were not tested in a previous study (Gomi et al., 2014) were 

selected for in vitro testing. The selection of the seven CDS was inevitably slightly 

subjective, based on the reasoning in Table 4.3; briefly, the seven sequences were 

selected due to their high sensitivityisolates in either the global (Hu100) or local (Hu9) 

database. Other markers (Hu113, Hu117, Hu112, and Hu42) were selected from a range 

of sensitivities to test whether the concept of a global database was effective at 

identifying useful markers for source tracking, i.e. to test whether the sensitivityisolates and 

specificitiesisolates in the database were reflected in in vitro sensitivitiesisolates and 

specificitiesfaecal.  
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Table 4.3. A summary of the reasons for selecting markers identified computationally, for in vitro testing. 

CDS 

Predicted 

sensitivity* 

in global 

database 

Predicted 

sensitivity* 

in local 

database 

Predicted 

specificity* 
Reasoning 

Hu100 27.9% 0% 97.6% 

Had the highest 

sensitivity* in the global 

database. 

Hu9 9.6% 75% 94.1% 

Had the highest 

sensitivity* and a high 

specificity in the local 

database. 

Hu112 9.9% 0% 99.3% 

Selected as a marker with 

a global sensitivity* 

between those of 

Hu100/Hu117 (~27%), 

and Hu42/Hu56 (~6%) to 

give a range of 

sensitivities to test the 

database approach. 

Hu113 15.8% 0% 97.5% 

Selected as a marker with 

a global sensitivity* 

between those of 

Hu100/Hu117 (~27%), 

and Hu42/Hu56 (~6%) to 

give a range of 

sensitivities* to test 

database approach. 

Hu117 26.7% 50% 94.6% 

This had the highest 

sensitivity* in the global 

database of markers which 

were also present in the 

local database.  

Hu56 5.9% 0% 100.0% 
Had 100% specificity* to 

humans 

Hu42 5.8% 75% 95.8% 

Had the highest sensitivity 

and a high specificity* in 

the local database. 
*Sensitivity and specificity refer to the isolate sensitivities and specificities.  

 

4.2.5 Biomarker validation 

For biomarkers selected through the process outlined in Figure 4.1, PCR Primers were 

designed (Table 4.4) and checked for specificity using primer BLAST (Ye et al., 2012). 

Primers were optimised by varying the annealing temperature between 48 and 65 oC 

using DNA extracted, as previously described (2.3.3 Extraction of DNA from faecal 
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samples), from post-screen raw sewage from a medium-sized (~30,000 pe) WWTP 

(Tudhoe Mill, UK) and choosing the annealing temperature resulting in the brightest 

band, with the expected fragment length and no unwanted amplification. PCR was carried 

out on a further 30 isolates from the same WWTP to determine the sensitivity and test the 

selected annealing temperature. A library of 12 sewage and 60 faecal samples from 6 

non-target organisms, sheep, cow, pig, dog, horse and chicken were interrogated for 

biomarker presence through endpoint-PCR as previously described (2.4.1 Polymerase 

Chain Reaction (PCR)), using the optimised annealing temperature, with a primer 

concentration of 0.4 µM. 
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Figure 4.1 The criteria used for selecting markers to lab test from LS-BSR outputs 

 

 

 



105 

 

4.2.6 Marker abundance in local wastewater treatment plants 

To evaluate the abundance of each marker, SYBR green-based qPCR assays were used to 

evaluate the abundance of markers in locally sourced sewage. QPCR assays were carried 

out as previously described (4.2 Quantitative PCR (qPCR)) and optimised by varying the 

concentration of each primer between 300nM and 900nM, and selecting the concentration 

giving the lowest cycle quantification (Cq) value with no other issues such as unwanted 

amplification.  The limit of detection (LOD) was defined as the lowest gene copy number 

where 2 out of 3 reactions are positive. Similarly, the limit of quantification (LOQ) was 

defined as the gene copy number where 2 out of 3 reactions are positive with Cq values 

within ± 0.5 (Symonds et al., 2016; Hughes et al., 2017).  
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Table 4.4. Details of primers and the target genes used in this study 

Primer 

Name 
Primers 

Primer 

Conc. (nM) 
Fragment 

size (bp) 

Annealing 

Temp. (oC) 

Melt 

Temp. 

(oC) 

Predicted Gene Function Reference 

Hu_56 
Forward GATGCTTGCAGTTGTCCGAA ND 

226 59 ND Hypothetical Protein This Study 
Reverse CCTTTTCGATTGTGTTTCTGACC ND 

Hu_100 
Forward ACGGTTATCAGCTCACGTCG 500 

98 60 82.00 Hypothetical Protein This Study 
Reverse TCGCCCCTCGAAAAGCATTA 500 

Hu_112 
Forward CCCTCAAGCCCCTGATTTCT ND 

155 60 ND Hypothetical Protein This Study 
Reverse ATCTCCCAGTATGCCAGCAG ND 

Hu_113 
Forward GTGACACATCCAGGCTCCAG ND 

177 53 ND Acetylxylan esterase This Study 
Reverse TAGGCCACGGTACATGAGCA ND 

Hu_117 
Forward CTCTGGGAATATCACGTTGGAC ND 

78 60 ND Hypothetical Protein This Study 
Reverse ATTCCAGCGTTCAGGATTCG ND 

Hu_9 
Forward AAGCCAATGATGATGTGGGC 300 

163 60 80.50 MFS* protein This Study 
Reverse TAGGCCAACTTTCTACCGCA 300 

Hu_42 
Forward GGTGGAACAATAGAGGATGA 500 

233 57 79.00 Hypothetical Protein This Study 
Reverse CCGCAAGTTTCTCCTGACTC 500 

H8 
Forward ACAGTCAGCGAGATTCTTC 500 

177 60 93.00 
Sodium/hydrogen exchanger 
precursor 

(Gomi et al., 2014)  
Reverse GAACGTCAGCACCACCAA 500 

H24 
Forward CTGGTCTGGCTTTATAACAC 500 

229 60 82.00 
Methyl-thioribulose-1-
phosphate dehydratase 

(Gomi et al., 2014) 
Reverse ATCATTTCCACTTGTCGGG 500 

RodA 
Forward GCAAACCACCTTTGGTCG 300 

157 60 85.00 shape-determining protein (Chern et al., 2011) 
Reverse CTGTGGGTGTGGATTGACAT 300 

*Major facilitator superfamily. ND = Not determined
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 Results 

4.3.1 Pipeline validation for markers in the UK 

The LS-BSR software can be used to evaluate the presence/absence of known genes in 

contigs, and assembled sections of DNA (Sahl et al., 2014); this feature was used to predict 

the presence of previously identified human markers, H8, H12, H14, H24 (Gomi et al., 2014) 

in the E.coli isolates. LS-BSR correctly identified the presence and absence of markers in 

locally sequenced isolates, in-line with previous observations (Chapter 3). Coding regions for 

H8, H12, H14 and H24 were identified independently by the pipeline (Figure 4.1) as highly 

human associated, and sensitivities and specificities were similar to those previously reported 

(Table 4.5).  

 

Table 4.5. Sensitivityisolates and specificity of markers observed in Japan (Gomi et al., 2014), Australia (Warish et al., 2015), 

the UK (Chapter 3), Bangladesh (Harada et al., 2018) and predicted by the database. 

 

 

4.3.2 Human biomarkers  

The coding sequences (CDSs) were ranked according to their estimated specificity and 

sensitivity to humans. Unfortunately, there appears to be a trade-off between the 

sensitivityisolates and specificityisolates of CDSs (Pearson’s coefficient = -0.752, p < 2.2x10-16) 

with the sensitivity explaining around half of the variability in specificity of coding regions 

(Figure 4.2). Figure 4.2 shows that the ideal human E.coli marker, with 100% specificity and 
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H8 50.0 99.2 45 94.0 10.0 99.2 100.0 16.3 ND 13.0 100.0 

H12 30.0 100.0 14 85.0 3.3 100.0 100.0 ND ND 5.8 99.4 

H14 30.0 98.3 ND 57.0 16.7 93.3 93.3 ND ND 11.5 93.0 

H24 36.7 99.2 ND 72.0 50.0 95.8 93.3 ND ND 25.9 93.0 



108 

 

100% sensitivity does not exist in this database. A low marker sensitivity has been suggested 

to limit the detection of sequences directly from environmental samples and lead to false 

negative results (Gomi et al., 2014; Chapter 3). Therefore, markers with the highest 

sensitivities, with a specificity of > 95% were prioritised. The selection of 95% specificity is 

arbitrary, however, in MST 80% is often used as recommended value for markers (Harwood 

et al., 2014), and 95% was used as a way to whittle down the large number of CDSs with a 

specificity of > 80%.  

 

Figure 4.2. Sensitivity and specificity for each coding sequence, predicted by the LS-BSR software. Red dotted line 

represents a linear regression curve with the equation y=-0.93x + 85.9 

 

Using the process outlined in Figure 4.1, 7 coding sequences were selected (Table 4.4) for 

testing. Of the seven, only three were deemed to show promise as practically usable markers 

after in vitro testing. These were the Hu100, Hu9 and the Hu42 markers. The Hu42 marker 

showed some cross-reactivity with Salmonella, although to a lesser extent than for H8. The 
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Hu56 and Hu112 primer pairs were discarded after initial testing as PCR with Hu56 led to an 

amplified fragment that was not of the expected length, and amplification of Hu112 led to 

two PCR products. The Hu117 was discarded due to low specificity, cross-reacting with dog 

faeces. The Hu113 primer set was removed from further analysis, as melt curve analysis 

revealed a second peak, which would indicate an unwanted amplification product. Two other 

Hu113 primer pairs were tested (data not shown) and both were unsuitable, one resulting in 

an unacceptable melt curve, and producing unwanted amplification during PCR; this marker 

was therefore removed from further analysis.   

All of the selected human markers were noted to have high specificity to sewage. The 

Hu100, Hu9 and Hu42 markers had 95% specificity (Table 4.6). The Hu117 marker was 

removed from further testing as it had a specificity <95%, cross reacting with 40% of dog 

faeces and 10% of sheep faeces. No in vitro cross-reactivity was noted in the Hu113 marker.  

 

Table 4.6. The sensitivity and specificity of markers determined in vitro and from the database. 

Marker 

In vitro 

sensitivity 

(isolate) 

(Global) 

Database 

sensitivity 

(isolate) 

In vitro 

sensitivityfaeca

l (to sewage) 

In vitro 

specificit

y (isolate) 

Global 

Database 

specificity 

(isolate) 

Faecal 

sources of 

cross-

reactivity 

Hu9 6.7% 9.6% 83.3% 95% 94.9% 
Sheep (n=2) 

Dog (n=1) 

Hu42 3.3% 5.8% 100.0% 95% 95.8% 
Chicken 

(n=3) 

Hu100 16.70% 27.9% 100.0% 95% 97.9% 
Sheep (n=1) 

Dog (n=2) 

Hu113 23.3% 15.8% 100.0% 100% 97.5%  

Hu117 23.0% 26.7% 100.0% 92% 94.6% 
Dog (n=4) 

Sheep (n=1) 
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4.3.3 Marker frequency and abundance in local wastewater treatment plants using qPCR  

All markers were present in all sewage samples except the Hu9 marker which was absent 

(below the LOD) from two samples. The geometric means of the markers (Figure 4.3) was in 

the same rank order as the sensitivities derived from the database (Table 4.3), i.e., Hu100 had 

the highest and Hu42 the lowest abundances, respectively, with the exception of H8. There 

was a statistically significant difference in marker abundance between H100 and H9 

(p=0.016). The concentrations of individual markers varied by about an order of magnitude 

between different works. In addition, there was no significant difference between the 

abundance of HF183 and the H8, Hu100 and H24 human markers.  

 

 

Figure 4.3. Abundance of total E.coli (RodA) and human markers in 12 small decentralised and 1 large wastewater 

treatment plants. Numbers at the top of the figure show the geometric mean of each genetic marker. The coloured dots 

represent individual data points. Two Hu9 sample points below the LOD are not shown on the graph. 

 

While both the abundance of markers and total E.coli (RodA copy numbers) varied, the 

marker abundance did not appear to reflect total E.coli abundance between WWTPs. The 

range in sensitivityisolates, the proportion of E.coli containing a marker, of each marker 

spanned an order of magnitude (Table 4.7). The highest relative abundance in the total E.coli 

population from a single WWTP was noted for H8 (81%, WWTP 3, Table 4.4), the Hu100 
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and H24 most commonly had the highest sensitivityisolates in individual treatment plants. On 

average, across all WWTPs, Hu100 had the highest relative abundance. Similarly to the 

absolute abundance (Figure 4.3), the rank order of the geometric means (adjusted R2 = 0.91, 

p = 0.00795 using linear regression) and medians (adjusted R2 = 0.98, p = 0.001188 using 

linear regression), was the same as predicted by the database; geometric means and medians 

are less susceptible to skew than the arithmetic mean (R2 = 0.84, p = 0.01858 using linear 

regression). It should, however, be noted that two data points were excluded from Figure 4.3 

and calculations in Table 4.7 (WWTP 1 and 7); if these points were included, for example as 

half the limit of detection, then this relationship would likely change for Hu9 and Hu42.   

  

Table 4.7. Sensitivities of E.coli markers tested at each wastewater treatment plant (WWTP) 

 Marker relative abundance in E. coli (%) 

WWTP H8 H24 Hu100 Hu9 Hu42 

1 6.49 45.85 11.66 ND 0.07 

2 2.22 17.95 10.12 1.18 0.03 

3 80.91 8.94 2.48 0.50 0.88 

4 4.10 25.02 46.29 1.55 3.90 

5 6.92 11.90 21.79 1.41 0.96 

6 2.50 2.49 19.21 0.61 0.02 

7 5.21 27.86 61.90 ND 0.09 

8 9.90 48.84 5.38 0.49 0.10 

9 12.17 13.11 10.01 1.65 13.79 

10 21.75 37.44 57.58 1.12 2.79 

11 6.13 2.17 20.80 1.33 1.02 

12 14.39 3.70 16.10 0.38 0.50 

Mean 14.39±21.68 20.44±16.57 23.61±20.25 1.022±0.48 2.01±3.90 

Geometric 

mean 
8.25±2.68 13.25±2.59 16.35±1.74 0.903±1.73 0.413±7.84 

Median 6.71 15.53 17.66 1.15 0.69 

 ND = Not Determined, due to marker concentrations being below the assay limit of detection. 
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The large range in relative proportions of markers is also reflected in Figure 4.4, which 

compares the marker against the total marker abundance. Human E.coli markers explained as 

little as 1.3% (H24) and up to 73.3% (Hu9) of the variance in the abundance of total E.coli, 

measured through RodA gene copy numbers (Figure 4.4). The HF183 marker explained a 

greater proportion of the variation in total E.coli than all of the E.coli markers, except Hu9 

(Figure 4.4). 
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Figure 4.4. The relationship between the concentration of each marker and the total E.coli concentration in sewage samples 

- measured through RodA gene copy numbers. 
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 Discussion 

4.4.1 An E.coli biomarker for North East England 

The motivation in undertaking this study was to identify new human-associated biomarkers, 

particularly those most suitable for use in North-East England. While there was no significant 

difference in the abundance of the Hu100, H8 and H24 E.coli biomarkers, the Hu100 marker, 

most often, had the highest sensitivityisolate, i.e. represented the largest proportion of E.coli, 

across all 12 WWTPs and had a high specificityfaecal (95%, Table 4.6), Hu100 may, therefore, 

be considered the best marker for MST in the North East of England. The abundance of the 

Hu9 marker explained the greatest variation in total E.coli abundance (R2 =0.778), than other 

markers (R2 ≈0.500) and might, therefore, represent total E.coli better; however, the 

abundance of Hu9 was approximately one order of magnitude lower than other markers and 

was absent from two wastewater treatment plants (Sensitivityfaecal = 83.3%, Table 4.6). The 

sensitivityisolates, and absolute abundance of E.coli biomarkers were considered critical in this 

study. They were noted, in a previous study (Chapter 3), to limit their efficacy as MST 

markers, leading to false negative results. Interestingly, while the Hu9 marker had the highest 

specificity in the local database, it had the lowest sensitivityfaecal (Sensitivityfaecal = 83.3%, 

Table 4.6) and a low abundance (Geometric mean = 1.73 x 105, Figure 4.3); conversely, 

Hu100 was not present in the local database, but had a high abundance, highlighting the 

importance of using a large, and ideally, global database where possible.  

The global database suggests that the Hu100 biomarker may be useful on a global scale, as 

opposed to the regional scale evaluated here. The Hu100 biomarkers was found to perform 

well in subsequent studies in Thailand (Mrozik et al., 2019), where it outperformed H8 in 

terms of its prevalence and correlation with bacteria from potentially pathogenic genera in 

waters used for aquaculture. The Hu100 biomarker was also used to identify sewage 

contamination of drinking water sources in Nepal (Acharya et al., In prep). This, and other 

studies (Mrozik et al., 2019; Chapter 6) suggest that Hu100 may be useful on a global scale 

to link MST conclusions to regulatory FIOs. However, more studies assessing the specificity 

of Hu100, across a wider range of faecal sources, such as rabbit faeces in which HF183 was 

recently identified to cross-react (Nshimyimana et al., 2017), are desirable if Hu100 is to be 

used for regulatory and decision making purposes.  
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4.4.2 Comparison with HF183 

The similarity in the mean abundances of H8, H24 and Hu100 to the commonly used, HF183 

marker (Figure 4.3) suggests that the use of E.coli biomarkers for MST studies may have 

utility. The similarity in abundances between H8 and HF183 was also observed in Australia 

(Hughes et al., 2017), although notably, the concentrations of the H8 and HF183 markers in 

this study were around two orders of magnitude lower than those reported in Australia 

(Hughes et al., 2017); this discrepancy is likely due to dilution as a result of different 

climates i.e. winter in a combined sewer system in the UK compared to summer in Brisbane, 

Australia. 

Surprisingly, the abundance of HF183 marker explained a similar amount of the variation in 

total E.coli abundance as the H8 and Hu100 markers. While this may suggest that there is 

little benefit to using E.coli biomarkers over HF183, the dissimilarity in the environmental 

persistence and behaviour of E.coli and Bacteroides spp. may make E.coli biomarkers more 

useful for studies attempting to relate conclusions drawn from MST studies to regulatory 

FIOs. The large amount of variability in the abundance of HF183 is also noteworthy (Figure 

4.3); this was not dissimilar to Hu100, H8 or H24 suggesting that using E.coli biomarkers for 

MST and subsequent decision making is similar to using HF183. It highlights the need to use 

more than a single marker for the detection of sewage-borne contamination to avoid the 

potential of false negative results. Future studies comparing the use of Hu100, or indeed 

other E.coli biomarkers, to other common biomarkers such as HF183 in catchment studies 

are paramount to determining the usefulness of E.coli biomarkers; since a large number of 

markers are rarely tested in real-life applications (Harwood et al., 2014). 

 

4.4.3 The stability of E.coli biomarkers 

The stability of marker performance, both geographically and temporally is an important 

consideration in the performance of markers, particularly for decision making. The 

geographical stability of markers is often highlighted as unknown in MST studies (Harwood 

et al., 2014), although, it is important for regional or national decision making. For example, 

a marker whose sensitivity shows a low geographical stability may be present in a large 
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number of individuals in one region, and absent from a large number in another; an identical 

amount of pollution entering waterbodies from each source would therefore be either 

overestimated or underestimated using that marker, respectively. Here, the sensitivityisolates, 

the proportion of E.coli containing a marker, of all E.coli biomarkers varied greatly (Table 

4.7). This large variation in sensitivityisolates is interesting and could be due to the irregular 

distribution of markers between communities or the influence of non-human faecal sources at 

small decentralised works. The presence of non-human faecal sources is possible given the 

rural nature of decentralised works and may present a challenge for MST in rural areas. 

However, it seems more likely to be due to the distribution of E.coli containing marker genes 

in human populations since the variance of marker abundance between plants appears to be 

slightly larger than that of the RodA gene. However, further research evaluating the 

presence/absence of markers in faeces, rather than sewage, would be required to support this 

hypothesis.  

While the variation in sensitivities may be dampened in sewage from large communities 

(e.g., at large WWTPs), the large variation in sensitivities (Table 4.7) highlights the need for 

caution when using the proportion of E.coli from humans to compare sampling sites, 

particularly where small communities or small decentralised WWTPs contribute to the 

pollution load. For priority catchments, long-term monitoring of the proportion of E.coli 

containing a biomarker could help decision-makers overcome the variability in marker 

sensitivity, although this could be expensive. Future MST studies are advised to use the total 

abundance of different E.coli biomarkers to compare sample sites or catchments.  

 

4.4.4 Monitoring E.coli biomarkers in environmental samples 

Previously, E.coli biomarkers have been enumerated through culture-based techniques (Gomi 

et al., 2014; Warish et al., 2015) and PCR; while this is in-line with regulatory techniques 

(e.g., the BWD (2006/7/EC)), enumeration of E.coli biomarkers in this fashion is very 

expensive, due to the labour required (Chapter 7), and could not be feasibly adopted by the 

Environment Agency (Porter, 2016). The combined use of culturing and qPCR enumeration 

of E.coli biomarkers reduces the labour somewhat (Chapter 3), however, culturing may limit 

the detection of E.coli biomarkers especially where human sources are not the main source of 
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pollution. Enumeration of E.coli by culture-based methods is limited to 100 isolates per plate 

and the geometric mean values of the sensitivityisolates of the H8, H24 and Hu100 markers was 

8.25±2.68%, 13.25±2.59% and 16.35±1.74% respectively; therefore, if sewage contributes 

only 10% of the total E.coli to a water body, only a single isolate per 100 E.coli on each plate 

may be expected. Since 100 E.coli are rarely cultured on each plate, there is potential for 

false negative results. Direct enumeration of markers, using qPCR for example, may 

overcome these sensitivityisolates issues, especially since the H8, H24, and Hu100 markers had 

a similar abundance to HF183, currently the most commonly used MST marker (Harwood et 

al., 2014).  

 

4.4.5 A database approach to biomarker identification 

The interrogation of a database of E.coli genomes from known hosts was valuable in 

choosing which of the ~15,000 CDS to test in the laboratory. The rank-order of the 

sensitivityisolates for markers predicted by the database was the same as the geometric mean 

and median vales observed in vitro. However, lab based validation was essential to identify 

those regions which were most useful as MST markers, due to the variation in sensitivity 

between WWTPs, and the low availability of E.coli genomes from non-human hosts. 

Laboratory testing using faecal samples, as opposed to E.coli isolates, was also valuable to 

screen a large number of E.coli and identify unwanted amplification from non-target 

sequences. As the number of publically available sequencing projects increased, due to 

reducing sequencing costs, database approaches, for example, using LS-LSB (Sahl et al., 

2014) to compare large numbers of genomes rapidly, are likely to become increasingly 

important in biomarker discovery. Recently, the interrogation of metagenomics datasets led 

to the discovery of crAssphagh (Dutilh et al., 2014), and subsequent marker genes which are 

potentially human-associated (Stachler et al., 2017); however, this involved the in vitro 

testing of 57 primer pairs to identify two potential markers, a database approach may, 

therefore, have reduced the costs and labour involved in laboratory testing. It is noteworthy 

that the poor metadata associated with many publically available genomes on NCBI genbank 

database (Benson et al., 2013) may limit the usefulness of publically available data. For 

example, a common issue for this study was a lack of accurate information of the host 
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organism from which the bacterium was isolated, with a number of genomes isolated from 

“genomic DNA”. Nonetheless, this database style approach may lend itself to identifying 

host-associated genes for MST in other organisms, such as Acinetobacter or Enterococcus 

spp., a common faecal indicator which has previously been noted to show host-specificity.  

 

 Conclusions 

A database approach using 241 publicly available and 23 locally assembled E.coli genomes 

allowed efficient identification and evaluation of human-associated coding sequences. These 

CDSs included the identification of previously identified markers (H8, H12, H14 and H24) 

which supports their use as human associated markers.  

A new human-associated marker, Hu100, was identified. While the Hu100 marker was not 

significantly more abundant than the H8 and H24 markers, it represented the largest 

proportion of E.coli in rural, decentralised treatment system in the North East of England, 

most often. 

There was a large variability in the proportion of E.coli containing human-associated markers 

between geographically close communities which limits the usefulness of human-associated 

markers for decision-making. We strongly recommend that future studies do not use the 

marker/total-E.coli ratio, rather, use the total abundance of different markers since this may 

be more comparable between different locations. 

Taking a database approach may become invaluable for identifying further markers in a cost-

efficient manner. It allowed tens of thousands of potential sequences to be rapidly screened 

and a small number selected for laboratory validation. The further use of this approach using 

the genomes of other regulatory faecal indicator organisms or difficult to culture organisms 

which have been assembled from metagenomics data would be exciting. 
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Chapter 5 Evaluating the effect of library composition on community-

based MST  

 Introduction 

Microbial source tracking (MST) describes a range of methods which use microbes and their 

communities to identify, and often apportion, the sources of faecal pollution contaminating 

water bodies or food produce. Currently, the majority of MST techniques take advantage of 

the rapid nature of qPCR to detect genetic markers which have been shown to be highly-

associated to the faeces of a particular host (Figure 1.4). Advancements and reductions in 

costs of high throughput sequencing (HTS) technology now allow large-scale interrogation 

of microbial communities in different environments. MST researchers have started to take 

advantage of advancements in HTS, and the dissimilarity between faecal bacterial 

communities of different hosts to differentiate sources of faecal pollution based on such 

differences (Brown et al., 2017; Henry et al., 2016). These methods have been collectively 

termed community-based MST (Unno et al., 2018).  

The most common method of community-based MST involves the use of SourceTracker 

(Knights et al., 2011), a software which takes a Bayesian approach to estimate the proportion 

of taxa from ‘source’ communities (e.g., in faecal sources) contributing to ‘sink’ 

communities (e.g., in lake water). To make these estimations, SourceTracker requires the 

input of samples from known sources to build the sink community; these source samples are 

collectively termed the faecal taxon library (FTL) (Brown et al., 2018), a throwback to 

traditional MST methods which required a large library of organisms from likely faecal 

sources of pollution. (1.4.1 Library-dependent methods). Studies have begun to explore how 

the composition of the FTL can affect SourceTracker source predictions (Hägglund et al., 

2018; Staley et al., 2018), although a number of aspects remain unclear or have yet to be 

explored.  

As with previous library-dependent approaches, the number of samples required for each 

source of faecal pollution (i.e., the size of the FTL) remains unclear. Previous suggestions, 

that more than ~10 samples of each source are required to avoid false negatives (Brown et al. 

2017) have been largely ignored, even by the same authors (Staley et al., 2018). Moreover, 
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the claim that more than ~10 samples is required does not reflect other studies which have 

used a single sample successfully (Henry et al., 2016), and the same authors later suggest that 

fewer samples would be adequate for community-based MST (Staley et al., 2018). Currently 

there is no consensus on the number of samples required to define each source (e.g., cow 

faeces, sewage etc.) in a FTL; although this may depend on the variability of the microbial 

community within a single source since SourceTracker averages the relative abundance of 

OTUs in all samples from a single source prior to analysis. Indeed, SourceTracker 

predictions were shown to be more reliable when sources showed low intragroup variability 

(Brown et al. 2018). 

In addition to the size, the appropriate composition of the FTL (i.e., the number of different 

sources of faecal pollution) is also unclear. Previous studies have demonstrated the ability of 

SourceTracker to accurately identify pollution sources when the FTL contains known sources 

of pollution (Henry et al., 2016; Staley et al., 2018). Brown et al., (2018) also noted 

improved reliability when FTLs contained only sources known to be contaminants in sink 

samples; however, this rather negates the purpose of MST - where pollution sources are 

known, there is unlikely to be a need for MST. The inclusion of sources in the FTL which are 

not contaminating sources in the sink samples can cause false positive results (Henry et al., 

2016; Unno et al., 2018). False negative results have previously been identified by 

calculating the relative standard deviation (RSD) of the predicted contribution of each source 

to each sink sample across 5 runs of SourceTracker, with samples with an RSD greater than 

100% considered false positives (Henry et al., 2016). In addition, reporting only predicted 

source contributions above a cut-off of 1% reduces the chance of false positive results (Unno 

et al., 2018). Nevertheless, there is still a concern that sources of pollution which have 

similar microbial communities (i.e., share a large proportion of taxa), for example sheep and 

cattle faeces, may cause false positive results. Currently, there is no way to evaluate the 

effect of using different faecal sources with similar microbial communities; as a result, 

studies have either combined sources with similar communities (Staley et al., 2018), or just 

accept that the possibility of conflation of sources by SourceTracker exists (Hägglund et al., 

2018). The conflation of the faecal sources included in the FTL and background sources has 

been recently highlighted as a concern (Hägglund et al., 2018). Hägglund et al. (2018) 

described a range of methods to take account of indigenous taxa, leading to an improved 
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correlation between SourceTracker predictions with culturable E.coli counts, while Unno et 

al. (2018) simply recommend the inclusion of an environmental source in the FTL. This, 

however, may be impractical in the UK since it is often impossible to obtain an unpolluted 

environmental sample (Chapter 3). Gaining a better understanding of the impacts of this 

background microbiota is important to better appreciate the limitations of community-based 

MST, or specific FTLs. 

The geographical locality of samples selected for the FTL is also of concern. Using only non-

local samples in the FTL has been observed to result in either false negative results or an 

underestimation of the relative contribution from a source (Staley et al., 2018). Staley et al., 

(2018) used local samples of sewage obtained from Australia, and non-local samples 

obtained from the USA. Though little is understood about the biogeography and variability of 

microbial communities in sewage, the microbial composition of sewage has been observed to 

vary between cities in the USA (Shanks et al., 2011). Interestingly, Staley et al., (2018) 

found that the inclusion of non-local sewage samples in the FTL did not significantly (P > 

0.79) impact the reliability of SourceTracker predictions when local sewage samples were 

included in the FTL. For regional water companies such as Northumbrian Water, this is 

important, since a single library that which can be used across a particular region, such as the 

North East, would reduce future MST costs greatly and allow comparison of source 

contributions across catchments and studies.  

To evaluate SourceTracker, previous studies have focused on laboratory prepared samples 

(Henry et al. 2016; Staley et al. 2018). While this approach is valuable in understanding the 

outputs of SourceTracker for real world applications, it is difficult to assess the ability of 

SourceTracker to identify and quantify different sources for MST purposes; for example, to 

assess the suitability of an FTL. This is due to the costs associated with sequencing sources 

and the difficulty in mixing sources to the desired relative contributions from individual 

sources as bacterial cell densities may vary greatly between different sources (Staley et al. 

2018). Furthermore, the use of laboratory prepared samples is not conducive to testing new 

sources rapidly, since this would require sources to be mixed in different proportions, and the 

DNA extracted and sequenced before these determinations could be made. This goes 

someway to explain why few studies have examined the ability of SourceTracker to identify 
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different mixtures of faecal sources, particularly at low levels of contamination, commonly 

contributing to the pollution of environmental waters.  

Understanding the behaviour of SourceTracker with different configurations of FTLs (in 

terms of size, composition, and locality of samples), when identifying low levels of pollution 

are particularly critical since it may be difficult to discriminate low levels of pollution from 

false positive events. A rapid and repeatable method is, therefore, required to assess the 

composition of FTLs, assess the ability of SourceTracker to distinguish between sources, and 

assess the potential for cross-reactivity between sources included in the FTL. This study aims 

to answer three questions: 

1. Is there a discernible effect to using a background sample (e.g. sea water with no 

faecal contamination) as a source? (Experiment 1)  

2. Can a single faecal library of sewage represent a single region (e.g., the North East of 

England) for use in community-based MST? (Experiment 1) 

3. What is the best strategy of incorporating samples from different hosts which have 

similar bacterial communities? (Experiment 2) 

4. Is there potential for cross reactivity between sources when using the entire FTL? In 

the Morland case study (Chapter 3), chicken faecal contamination was identified in a 

larger number of samples than expected. (Experiment 3) 

 

 Methods 

5.2.1 Sample collection 

Samples were collected (Methods and Methodology, 1.3 Raw sewage) and transported 

(Methods and Methodology, 1.1 Sample preservation and transport), from 15 wastewater 

treatment plants (WWTPs) in the North East of England (Table 5.1). Smaller (< 2000 PE), 

decentralized treatment plants were prioritized in sampling since these are likely to have the 

greatest variability and better reflect the problems with identifying urban diffuse pollution in 

catchments than larger WWTPs would.  

 



123 

 

Table 5.5.1. Size and location of wastewater treatment plants (WWTPs) sampled for experiment 1. 

WWTP code 

Size            

(Population 

Equivalent) 

Area 

A 2,211 Northumberland 

B 89 Northumberland 

C 199 Newcastle 

D 72 Newcastle 

E 262 Newcastle 

F 7,148 Durham 

G 79 Durham 

H 128 Durham 

Q 110 Durham 

J 161 Durham 

K 1,003,785 Newcastle 

L 8,707 Northumberland 

M 184 Northumberland 

O 2,080 Northumberland 

P 22,493 Durham 

 

In addition to the human source, 62 potential sources of non-human pollution (Table 5.2) 

were collected as previously described (2.1.2 Faecal samples). 
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Table 5.2. Number and location of the non-human faecal sources used in this study. 

Host Area 
Number of 

samples 

Chicken 
Northumberland 

Durham 

5 

5 

Cow 
Northumberland 

Durham 

5 

6 

Sheep 
Northumberland 

Newcastle 

5 

6 

Pig 
Northumberland 

Newcastle 

5 

5 

Horse 

Northumberland 

Newcastle 

Durham 

4 

3 

3 

Dog 
Northumberland 

Newcastle 

5 

5 

 

Two water samples, one sea water and a fresh water sample, were collected as previously 

described (2.1.4 Environmental water samples) from the Seaton Sluice catchment (Chapter 

6). These water samples were selected for this experiment as both showed little faecal 

pollution; the sea and river water samples contained 0 and 1 E.coli per 100 ml, respectively, 

and both samples were below the limit of detection for RodA (total E.coli) and the human 

markers (HF183 and Hu100), and an initial SourceTracker run predicted a source 

contribution of less than 0.05% when SourceTracker was run with an FTL using all faecal 

samples from the Seaton Sluice study (Table 5.2). 

 

5.2.2 DNA extraction and sequencing 

For sewage samples, DNA was extracted as previously described (2.3.4 DNA extraction 

from environmental waters), with the following modifications. Between 25 and 100 mL of 

WWTP post-screened influent was filtered, depending on the dilution due to previous 

rainfall. 

For faecal matter collected from non-human sources, DNA was extracted from 150-300 mg 

of fresh faeces as previously described (2.3.3 Extraction of DNA from faecal samples). 

 



125 

 

5.2.3 Bioinformatics 

Sequence processing 

Sequences were processed using the DADA2 plugin (Callahan et al., 2016) to the QIIME2 

package (Caporaso et al., 2010; Caporaso, 2018) as previously described (2.6.5 Analysis of 

data from Illumina sequencing). To prepare data for statistical analysis in the Phyloseq 

package (McMurdie & Holmes, 2013), the following modifications were made to the OTU 

and taxa tables exported from QIIME2. The heading in the OTU column of the OTU-table 

was changed from “#OTUID” to “OTUID”. The heading in the feature column in the taxa-

table was changed from “Feature ID” to “OTUID”. The OTU-table and taxa-table were 

merged by the OTUID column in the R software (R Team, 2017) to produce an OTU-table 

similar to that output given by QIIME1. The new OTU-table was then imported to the 

Phyloseq package in R, according to the manual (McMurdie & Holmes, 2013). Two faecal 

samples, a single pig and cow sample were removed from analysis because they were 

dominated by a single OTU.   

In all instances, SourceTracker was run five times and the relative standard deviation was 

calculated (Henry et al., 2016) to indicate the level of confidence in SourceTracker estimates 

(Brown et al. 2018). 

 

5.2.4 Simulating sink samples 

To evaluate SourceTracker, simulated-samples were made by mixing samples from faecal 

sources with either seawater or river water at known proportions. The code to make the 

simulated-samples is available in Appendix D.1. Briefly, the processed reads were imported 

into the Phyloseq package (McMurdie & Holmes, 2013) in R, and the selected faecal and 

water samples were subsampled using a probability weighting equal to the desired mixing 

proportions (e.g., 5% sewage sample #1, 5% sewage sample #2, 5% cow faecal sample #1, 

and 85% seawater sample). Samples were subsampled with replacement to a total depth of 

50,000 reads. Three simulated samples were created for each desired mixing proportion to 

account for variation in the random sampling technique, and the potential influence of rare 

OTUs on the SourceTracker analysis.  
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5.2.5 Experiment 1 – Is a single sewage FTL adequate to represent sewage from a 

particular region? 

Firstly, to determine whether the inclusion of a background sample, such as seawater or river 

water, in the FTL significantly changes SourceTracker predictions when sewage is the 

contaminating source, the procedure outlined in Figure 5.1 was followed. Simulated-samples 

were created in triplicate by mixing a sewage sample with either a sea or river water sample, 

at proportions of sewage between 95% to 5% sewage in 5% intervals, and 4%, 3%, 2%, 1%, 

0.1%, 0.01% and 0.001% contributions of sewage to the simulated-samples. SourceTracker 

was then run five times using these simulated samples as the sink communities with an FTL 

containing only the sewage sample as a source. SourceTracker was then run another five 

times using the same simulated samples with an FTL containing both the sewage and the 

seawater or river water sample as sources. The mean predicted values of sewage contribution 

were calculated for each simulated sample and compared to the expected (real) proportional 

contribution of sewage in the simulated sink community. A pair-wise t-test was used to 

determine if there was a difference between the means achieved when a background sample 

is included in the FTL and when it is not.  
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Figure 5.1. Outline of the source-sink experiment when seawater was used as the environmental background. 

 

To determine if an FTL could represent a region (e.g., the North East England) the Jenson-

Shannon index was, firstly, used to assess the dissimilarity between samples from different 

faecal sources, and those from the same host. A similarity matrix was created, using taxa in 

the 5 most abundant phyla (12078 OTUs), using the Jensen-Shannon divergence with the 

Phyloseq package in R (McMurdie & Holmes, 2013). The adonis and betadisper functions in 

the Vegan package (Oksanen et al., 2018) were used to test whether faecal communities from 

different hosts shared a common centroid (i.e. distance to a notional centroid of each faecal 

community type) and to evaluate whether intragroup variability was similar between 

communities from different hosts, respectively. The level of significance was assessed by 

performing permutation tests.  
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Two sets of simulated-samples were created, one using taxa from the sewage sample with the 

greatest dissimilarity to the other samples (Q, Table 5.1) and one set using taxa from a 

sewage sample which was identified as similar to most other sewage samples (A, Table 5.1) 

using the Jensen-Shannon divergence analysis. Simulated-samples were created in triplicate 

by mixing the taxa from one of these sewage samples (Q or A (Table 5.1)) with taxa from 

either the sea or river water sample at varying proportions between 95% sewage and 0.001% 

sewage (the rest of the microbial community was made up of river or sea water taxa). 

SourceTracker was then run five times using these simulated-samples as the sink 

communities with a FTL containing the background sample (sea or river water) and either i) 

only the sewage sample used to make the simulated-samples, ii) between two and 14 sewage 

samples (i.e., 13 different FTLs were tested using n = 14, 13, 12 etc. sewage samples), not 

including the sample used to make the simulated-samples, or iii) all 15 sewage samples 

(Table 5.1). The mean predicted values of the contribution of sewage for each scenario was 

calculated for each simulated sample, across the five runs of SourceTracker. These were 

compared to the expected contribution (i.e., known contribution) in the simulated sink 

community. A t-test was used to evaluate the differences between the means.  
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Figure 5.2. Outline of an example library size experiment using the taxa from sewage sample A (Table 5.1) and the seawater 

sample. 

 

 

5.2.6 Experiment 2 – How to incorporate similar bacterial communities from different 

hosts into the FTL? 

To determine the best approach to incorporate faecal sources with similar microbial 

communities (those which share a number of taxa) into an FTL, two sets of similar sources 

were selected for this experiment: i) sheep and cow faecal sources, which were identified as 

being similar in experiment 1 in this study and a previous study (Hägglund et al., 2018), and 

ii) sewage samples, where a single sewage sample was observed to be dissimilar to all other 

sewage samples in experiment 1.  
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Sheep and cow sources 

Simulated-samples were built using either three cow or three sheep faecal samples and river 

water at proportions between 95% and 0.001% of faecal contributions. Firstly, simulated-

samples were made, to represent sink samples, using river water and only cow sources. 

SourceTracker was run five times with an FTL containing river water and either i) the three 

cow samples used to make the simulated-samples, or ii) both the three cow samples (as a cow 

source) and three sheep samples (as a sheep source).  

Secondly, simulated-samples were made using river water and three sheep faecal samples. 

SourceTracker was run five times with an FTL containing river water and either i) the three 

sheep samples used to make the simulated-samples, or ii) both the three sheep samples (as a 

sheep source) and three cow samples (as a cow source).   

Finally, the simulated-samples made of either taxa from cow or sheep faeces with those from 

river water, were input into SourceTracker as a sink. SourceTracker was run five times with 

an FTL containing river water as a source and either i) the three contaminating cow or sheep 

samples as cow or sheep sources, respectively, or ii) all of the cow and sheep samples as a 

single ‘ruminant’ source. In SourceTracker, combining the sheep and cow communities into 

a single ruminant source within the FTL means that the OTU abundances from all sheep and 

cow sources were averaged together, before these source samples were used to make 

predictions.   

 

Sewage samples 

One sewage sample (Q, Table 5.1) was identified as having a bacterial community dissimilar 

to other sewage samples in experiment 1. To evaluate how best to incorporate this sample 

into the FTL, simulated-samples were made by either mixing taxa from sewage sample Q 

(Table 5.1) with those from river water, or using taxa from three sewage samples (A, B, and 

C, Table 5.1), with more similar bacterial communities, with taxa from river water. 

SourceTracker was run five times using an FTL containing either i) the three similar sewage 

samples (A, B, and C, Table 5.1) only, ii) the single dissimilar sample only (Q, Table 5.1), or 
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iii) both the three similar sewage samples (A, B, and C, Table 5.1) as a single source, and the 

single dissimilar sample (Q, Table 5.1) as a second, separate source. 

 

5.2.7 Experiment 3 – Is it reasonable to use the range of faecal sources in the same FTL or 

is there cross-reactivity between sources? 

Once the best approach to dealing with sets of samples with similar bacterial communities 

was determined, it was necessary to assess whether using cow, sheep, chicken, horse, pig, 

and sewage sources in an FTL was reasonable. To do this, separate simulated-samples were 

made for each faecal source; taxa from three samples from each faecal source were combined 

with those from river water at concentrations of 0.001%, 0.01%, 0.1%, 1%, 2%, 3%, and 4%, 

and at 5% intervals between 5 and 95%. Each simulated-sample contained only a single 

faecal source (made up of three samples) at each of the above concentrations. SourceTracker 

was run with a FTL which contained all available sources and samples, keeping cow and 

sheep sources separate. This allowed a comparison between the predicted values for each 

source to be evaluated, and the potential for cross-reactivity between sources, to be assessed.  

 

 Statistical analysis 

The significance of the difference between SourceTracker predictions made on different 

samples was determined using a two sided, t-test. Where SourceTracker was run multiple 

times on identical samples with different configurations of FTL, a pairwise t-test was used. 

The alpha diversity of samples was calculated by removing OTUs not present in any sample, 

using the Phyloseq package in R (McMurdie & Holmes, 2013). Cohen’s D was used as a 

measure of standardized effect size of the difference between the means for each t-test. Effect 

sizes are commonly described as small (Cohen’s d = 0.2), medium (Cohen’s d = 0.5), and 

large (Cohen’s d = 0.8), very large (Cohen’s d = 1.2) and huge (Cohen’s d = 2.0) (Cohen, 

1988; Sawilowsky, 2009). However, these are arbitrary values, and only used as an indicator 

of the effect size. 
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 Results and discussion 

5.4.1 Experiment 1 

The effect of using a background sample as an additional source 

Two studies have suggested that taking autochthonous taxa into account by including a 

background sample, such as river or sea water free of faecal contamination, in the FTL may 

improve the accuracy of SourceTracker (Brown et al. 2018; Hägglund et al. 2018). Here, 

simulated-samples, made using taxa from a single sewage sample and those from either a 

river or sea water sample, also suggest that including a background sample, where possible, 

improves the predictive accuracy of SourceTracker. Figure 5.1 shows just the simulated 

samples containing river water taxa, however, the same effect was observed in sea water 

(Appendix D.2). Including either a background sample (seawater or river water) as a source 

in the FTL resulted in significantly higher predictions (p < 2.2 x 10-16) than those made 

without a background source. The effect sizes were large with Cohen’s D values of 1.38 and 

1.36 for the inclusion of seawater and river water as background sources, respectively. The 

differences in SourceTracker predictions when using a background sample as a source in the 

FTL increased with the expected contribution (i.e., the proportions used to create the 

simulated-samples) of sewage increased, with a maximum difference of 6.5% occurring at an 

expected contribution of 30% for both seawater and river water (Figure 5.1 and Appendix 

D.2). At expected contributions of sewage greater than 30%, the difference between the 

predictions made with and without a background source decreased (Figure 5.1). In addition, 

if a source prediction cut-off of 1% contribution is used as a level with which to accept 

predicted values (Hägglund et al. 2018; Brown et al. 2017), using river as a background 

source in the FTL improved the sensitivity (taken here to be the expected value above the 1% 

predicted value used as a cut-off) of the technique. Thus, the lowest predicted contribution of 

0.99% equated to an expected (true) sewage contribution from sewage of ~5% (a 4.01% 

difference between the true and predicted value) when a river source was not included in the 

FTL. This was improved to ~2% (expected contribution) when a background river source 

was used in the FTL (predicted contribution of 1.29%, a 0.79% difference with the true 

value), (Appendix D.2). 
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Figure 5.3. The effect of using an environmental water sample only as a sink or by including it also as a source on SourceTracker predictions when sewage is mixed with 

river water at proportions between 0 and 100 % (top). Proportions between 0 and 50% are shown (bottom-left) to highlight divergence of predictions at lower 

concentrations. The mean difference between SourceTracker predictions with river water as an additional source and as a sink only are shown (bottom-right) 
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This is similar to the detected range of sewage contamination reported in previous studies 

that has ranged between 1% and 7% (Figure B.1.3, Appendix B), and 1% and 10% 

(Hägglund et al., 2018). In addition, using a background sample to account for 

autochthonous taxa improved the linear relationship between the expected and predicted 

samples slightly (p= 0.999 compared to p = 0.989 without a background sample, Figure 5.3). 

The improved linearity of the predictions may explain why Hägglund et al., (2018) observed 

a better correlation between culturable E.coli and SourceTracker predictions after accounting 

for autochthonous taxa. The propensity of SourceTracker to assign reads to unknown 

sources, which has been previously observed (Henry et al., 2016), appears to be greater at 

larger contributions of contamination (slope of regression line = 0.989 Figure 5.3). 

Nevertheless, the linear relationship demonstrates that SourceTracker predictions are valid 

over a wide range of contamination levels from a particular source. Cases in which pristine 

samples cannot be obtained should be interpreted cautiously as the possibility of false 

negative results may be high (Unno et al., 2018). For all further analyses a background 

sample was used as a source in the FTL. 

 

Can we build an FTL using sewage samples to adequately represent the North East of 

England? 

The diversity of the faecal microbial communities within different chickens and dogs was 

less than those of cow, horse, sheep, pig, and sewage (Table 5.3). 

Table 5.3. Mean Shannon diversity (± standard deviation) of faecal communities from different host environments. 

Host Chicken Cow Horse Dog Pig Sheep Sewage 

Shannon 

Diversity 

3.63 ± 

0.99 

6.08 ± 

0.23 

5.73 ± 

0.36 

3.24 ± 

0.80 

5.16 ± 

0.23 

5.60 ± 

0.33 

5.04 ± 

0.18 

 

Using the Jensen-Shannon distance as a metric for dissimilarity, samples from each faecal 

host source were more similar to each other, than to samples from other hosts (Figure 5.4). 

An adonis test showed that communities from different faecal host sources did not share the 

same centroid (p=0.001), suggesting that it may be possible to differentiate different host 
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communities using SourceTracker. However, the beta dispersion (a measure of variance) is 

not homogenous at an alpha value of 0.01 (p = 0.043, Figure 5.4), suggesting that the results 

of the adonis test should be interpreted cautiously. 

 

 

Figure 5.4. An NMDS plot visualizing the dissimilarity between bacterial communities in different faecal samples, 

determined using the Jensen-Shannon divergence. 

 

Bacterial communities from the faeces of different hosts may be highly similar with a large 

number of shared taxa, particularly cow and sheep, and possibly sewage and dog (Figure 

5.4). Interestingly, Hägglund et al. (2018) observed bacterial community similarities between 

sheep, cow and calf faeces, and also noted a large number of shared OTUs between sewage 

and dog bacterial communities. A single WWTP had a bacteria community that was 

dissimilar to all other WWTPs (Figure 5.4) and had the greatest distance to the centroid 

(Figure 5.5 (0.43)) compared to all other WWTPs. 
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Figure 5.5. Boxplot showing the distance to centroid, a measure of the dispersion of bacterial communities between 

individuals within each host-type and sewage. Note the single outlying data point showing a large distance (0.43) to the 

centroid of all the sewage samples. 

 

To explore whether the presence or absence of a sample in the FTL would affect 

SourceTracker predictions, simulated-samples were constructed using taxa from the WWTP 

sample (Q, Table 5.2) with the greatest distance from the centroid (Figure 5.5 (0.43)) and 

river water. SourceTracker was run with source FTLs, consisting of either: only the 

contaminating sample; all sewage samples (n = 15); or between 2 and 14 sewage samples, 

excluding the contaminating sample, as outlined in Figure 5.2. 
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Figure 5.6. SourceTracker predictions from sewage and river water communities mixed at different proportions as a sink 

community, with SourceTracker runs with a FTL composed of either the single contaminating sample used to create source 

mixture, 14 sewage samples but excluding the contaminating sample, or all 15 sewage samples. River water was used as a 

contributing background source in all SourceTracker runs 

 

Figure 5.6 shows that the predictions which were closest to those expected were achieved 

when the sewage FTL was comprised of only the contaminating sample (i.e., the sample used 

to create the simulated-samples). The addition of other sewage samples into the FTL led to a 

greater underestimation in the predicted proportions, compared to using only the single 

sample, (p= 2.57 x 10-16, Cohen’s D = 1.15). Removing the contaminating sample (that from 

which the taxa was used to make the simulated-samples) from the FTL had the largest impact 

on source predictions (Figure 5.6). The size of the faecal library (i.e., the number of sewage 

samples) had little effect when the contaminating sample was not included in the library 

(Figure 5.6). Exclusion of the contaminating source (that from which the taxa was used to 

make the simulated-samples) from the FTL reduced the assay sensitivity from 2% expected 
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sewage contamination (1.54% predicted with source only) to between 10% and 5% expected 

sewage contamination (1.70% predicted with all sources except the contaminating sample in 

the FTL) when using a reporting cut-off of 1% predicted contributions. Inclusion of all 

sewage samples in the FTL resulted in an underestimation of pollution; however, this 

underestimation increases with the expected proportion of sewage contamination and, 

therefore, only led to a small reduction in sensitivity when all sewage samples were included 

in the FTL (reduced from 2% to 3% expected sewage contamination (1.5% predicted 

contamination)).  

This experiment was repeated using taxa from a sewage sample with a microbial community 

that was highly similar to those from other sewage samples in the FTL as the contaminating 

sample in the simulated sink communities to evaluate whether this phenomenon was due to 

the high degree of dissimilarity between the contaminating sewage sample and the FTL. 

Figure 5.7 shows that the effect observed in Figure 5.6 is still apparent, although to a lesser 

extent when the contaminating sewage sample (that from which taxa was used to make the 

simulated-samples) is similar to other sewage samples in the FTL. Using the single 

contaminating sample in the FTL is significantly better than using an FTL with all other 

sewage samples (excluding the sample used to make the simulated-samples) (p = 5.681x10-

16, Cohen’s D = 1.5) and when all sewage samples are included in the FTL (p = 6.841x10-16, 

Cohen’s D = 1.14). However, when the contaminating sample is excluded, including a 

greater number of sewage samples in the FTL always improved the SourceTracker 

predictions compared to those with fewer sources (an FTL where n = 2 is shown in Figure 

5.6 for clarity).  
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Figure 5.7. SourceTracker predictions from sewage and river water communities mixed at different proportions to create 

simulated-samples using a sewage sample with a similar microbial community to most other samples in the FTL.  FTL 

libraries included with SourceTracker run with a FTL composed of either the single contaminating sample used to create 

simulate- samples, all sources (FTL including contaminating source), 14 sewage samples but excluding the contaminating 

sample (FTL all excluding contaminating source), or with fewer sewage samples – only the run containing 2 sewage 

samples (FTL n=2 excluding contaminating source) is shown for clarity. 

 

Historically, the large library sizes required by library dependent microbial source tracking 

methods has been a limiting factor in their wide spread use. Figure 5.6 and 5.7 suggest that, 

where possible, using a sample from the likely contaminating source (such as a specific 

WWTP or farm) as a single sample in the FTL is preferable to using the entire source library. 

Under most circumstances, using an FTL with more samples appears to be advantageous 

(Figures 5.6 and 5.7), although, caution must be taken since this will lead to a slight 

underestimation of the contribution of faecal sources, particularly if the contaminating source 

community is highly dissimilar to other sources in the FTL. Brown et al., (2017) previously 

reported, following a power analyses, that more than 13 sewage samples were required to 

prevent false negative results. However, in practice this seems unlikely given the propensity 
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for community analysis to produce false positive rather than false negative results, and 

success has been reported with fewer, or single samples (Henry et al., 2016; Iceton, 2018; 

Chapter 3). Nevertheless, the use of power analysis to inform library size requirements 

continue to be recommended and not used (Brown et al. 2018).  

The inclusion of non-local samples in the FTL has previously been observed to have no 

impact on SourceTracker predictions using faecal samples mixed in-vitro (Staley et al., 

2018). In contrast, the inclusion of sewage samples in the FTL which were not present in the 

sink sample led to significantly different SourceTracker predictions (p = 1.459x10-15); 

although, in practical terms this may have little impact on MST conclusions since the mean 

of the differences was less than 1% (0.661), and this would be lower still at lower levels of 

contamination (Figure 5.6). When the contaminating sewage sample is similar to the majority 

of sewage samples in the FTL, but is not necessarily in the FTL, it is unlikely to impact MST 

investigations (Figure 5.6). However, when the contaminating sewage sample is dissimilar to 

sewage samples in the FTL (having a greater distance to the centroid (Figure 5.6) then there 

is likely to be a large underestimation in SourceTracker predictions (Figure 5.7). 

Nevertheless, including non-local (potentially dissimilar) samples in the FTL is still 

recommended when the source of sewage is unknown (e.g., from a leaky sewer) since the 

exclusion of these samples is likely to reduce the sensitivity of their detection. It does, 

however, pose the question of how best to incorporate dissimilar samples from the same 

host-source into an FTL (see Experiment 2).  

It appears in most cases, an FTL composed of multiple sewage samples is suitable for a 

particular region (in this case the North East of England). For MST studies, researchers 

should be aware that contamination of water bodies by sewage that has a dissimilar bacterial 

community to sewage samples in the FTL could lead to an underestimate of the amount of 

contamination, although, I found no evidence that this could lead to false negative results. 

One solution to prevent such underestimation would be to perform multiple SourceTracker 

runs with each single source sample to determine if the FTL significantly affects source 

predictions. In all trails conducted here, excluding the contaminating sample led to a greater 

reduction in predicted values, compared to adding more sources.  
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Repeating the analysis conducted here would be valuable for MST researchers who are 

developing an FTL for use across a region, particularly where small communities or 

decentralized WWTPs may contribute to the degradation of water quality. Moreover, 

repeating this analysis with other faecal sources, if these are important in a particular study, 

may be vital since other faecal sources such as dog and chicken samples had a greater 

variation in the distance to the centroid (Figure 5.5), suggesting that if dog and chicken 

samples are a concern, building a representative library may require greater care. 

In all instances, SourceTracker was able to identify an expected sewage contamination of 

1%. Below an expected contribution of 1% the RSD increased above 100% suggesting a low 

confidence in SourceTracker predictions (Henry et al., 2016), although, SourceTracker 

consistently identified an expected contribution of 0.1%. At 0.01%, SourceTracker reported 

no contribution in at least one out of three samples, suggesting that the RSD is a suitable, and 

potentially conservative, metric to prevent false positive results (Henry et al., 2016). Two 

recent papers have also used a 1% predicted contribution as a cut-off for reporting 

SourceTracker results, in addition to an RSD >100% (Brown et al. 2018; Hägglund et al. 

2018). Again this is reasonable, if not slightly conservative, as an expected sewage 

contribution of ~2% resulted in a predicted sewage contribution of ~1%, while an expected 

sewage contribution of 1% yielded SourceTracker predictions between 0.2 and 0.7%. The 

ability to identify lower contributions does, however, depend on the level of cross-reactivity 

between the different sources included in the FTL (Experiment 2 and Experiment 3).  

 

 Experiment 2 – How to incorporate sources with similar bacterial communities into 

an FTL? 

It has been suggested that host sources with similar bacterial communities could cause 

SourceTracker to report false positive results. Here, samples from different hosts which have 

been observed to be similar (Figure 5.4) were used to create simulated-samples. 

SourceTracker was run using these simulated sink samples and an FTL in which different 

host sources were either separated by source (e.g., cow and sheep), or combined into a single 

source (e.g., ruminants).  
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5.5.1 Cow and sheep sources 

 

Figure 5.8. Results of SourceTracker with a simulated sink community contaminated with either cow only (A), or sheep only 

(B) in river water using either just the known source or both cow and sheep sources in the faecal taxon library. 

 

Figure 5.8 shows that the presence of false positive signals at all expected contributions in 

river water when taxa from either cow or sheep faecal samples are not present in the sink 

samples, but both are present as separate sources in the FLT. However, false positive results 

only exceeded 1% when the contribution of sheep faeces was greater than 15%. While a large 

effect size (Sheep - CohensD = 0.848, p = 5.985x10-10, Fig. 5.8b) was observed when using 

the whole dataset, when a subset of the dataset below a predicted contribution of 30% the 

effect size reduced (Sheep - CohensD = 0.461, P = 0.0086, Fig. 5.8 B).  

Combining samples from sources with similar bacterial communities into a single source in 

the FTL has been suggested as a way to overcome problems arising from sources with 

similar bacterial communities (Staley et al., 2018). Figure 5.9 shows the effect of having cow 

and sheep faecal samples as either separate or combined (as ruminants) in the FTL. 

Combining sheep and cow faecal samples into a ruminant source in the FTL leads to a 
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consistent underestimation of the contribution of cow (p = 2.029x10-12, Cohen’s D = 0.93, 

Figure 5.9) and sheep faeces (p = 1.347x10-15, Cohen’s D = 1.12, Figure 5.8), compared to 

having separate sources in the FTL. This was expected given the effect of combining 

dissimilar samples into an FTL (Experiment 1), although, this effect is larger for sheep faeces 

compared to cow (figure 5.9). Importantly, combining sources had no effect on the sensitivity 

of the assay when using a cut-off of 1% predicted contaminant contribution. 

 

 

Figure 5.9. The effect on the detection of cow (top) and sheep (bottom) faeces in river water when the faecal taxon library 

contains both cow and sheep sources, or the cow and sheep samples are combined into a ruminant source. 
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Combining sources with similar bacterial communities, such as ruminants, may make the 

predictions between these sources more comparable. Predictions for the proportion of cow 

faeces in river water made by SourceTracker were consistently lower than those for sheep in 

river water for the same expected concentrations (Figures 5.8 and 5.9). This, and the lower 

predicted values of sheep and cow, compared to that of sewage, is discussed more below 

(Experiment 3); however, it is noteworthy that where contamination from both cow and 

sheep sources is expected, combining these sources in the FTL may make conclusions more 

useful, although sheep pollution may be significantly underestimated, particularly compared 

to other sources (see experiment 3).  

 

Non-local sewage samples 

To assess the best way to incorporate a single sewage sample with a bacterial community 

which is dissimilar to that of other sewage samples (Figure 5.5) into an FTL, a similar 

procedure as above (cow and sheep) was followed. Two sets of simulated communities were 

made (Table 5.4). For the first set (numbers 1 – 4, Table 5.4) simulated-samples were made 

by mixing taxa from sewage sample Q (dissimilar bacterial community) with those from 

river water at proportions between 0.001% -100% Q, with the addition of either 0%, 1%, 

10%, or 20% taxa from other sewage samples with similar bacterial communities (A, B, and 

C, Table 5.4). For the second set (numbers 5 – 8, Table 5.4) simulated-samples were made by 

mixing taxa from sewage samples A, B & C (similar bacterial communities) with those from 

river water at proportions between 0.001% -100% sewage, with the addition of either 0%, 

1%, 10%, or 20% taxa from sewage sample Q (Table 5.4). SourceTracker was run on all sets 

of simulated-samples with an FTL with sample Q separated from the other sources (i.e., the 

FTL contained a “sewage” source (A, B, and C) and a “Q” source). For clarity, only samples 

containing 0% and 20% of additional sources (numbers 1, 4, 5, and 8, Table 5.4) are shown 

in Figure 5.10. 
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Table 5.4 The mixtures of samples (percentages given in brackets) used to construct simulated-samples for experiment 2. 

Simulated

- sample 

number 

Samples (Proportion contained in simulated-sample) 

1 

2 

3 

4 

River (0% - 99.999%) 

River (0% - 98.999%) 

River (0% - 94.999%) 

River (0% - 79.999%) 

Q (100% - 0.001%) 

Q (99% - 0.001%) 

Q (95% - 0.001%) 

Q (80% - 0.001%) 

A, B, & C (0%) 

A, B, & C (1%) 

A, B, & C (10%) 

A, B, & C (20%) 

5 

6 

7 

8 

River (0% - 99.999%) 

River (0% - 98.999%) 

River (0% - 94.999%) 

River (0% - 79.999%) 

Q (0%) 

Q (1%) 

Q (10%) 

Q (20%) 

A, B, & C (100% - 0.001%) 

A, B, & C (99% - 0.001%) 

A, B, & C (95% - 0.001%) 

A, B, & C (20%) 

 

The addition of up to 20% sewage with similar bacterial communities in the simulated-

samples had no significant effect on the predicted value of Q (p = 0.1839) when 

SourceTracker was used to identify Q in river water (Figure 5.10, left). However, when 

sewage was the contaminating source and 20% of Q was added in the simulated-sample, 

there appears to be some conflation of taxa from these sources (Figure 5.10). In addition, the 

expected and predicted contributions of sewage were significantly different (p = 0.03539) at 

expected sewage concentrations above 25%. Exclusion of sources from the FTL that have 

dissimilar communities to others (e.g., Q), or their inclusion with sewage sources as a single 

source, could lead to a severe underestimation of any sewage sources that may be similar to 

the dissimilar source (Q) which may be present in a given environmental sink. A 

recommended approach then could be to separate Q and other sewage sources in the FTL and 

add these together to give a “human” source following analysis by SourceTracker. This 

seems sensible since sewage contributions above 25% are generally not expected, except for 

in highly polluted waters. This reflects and validates the approach taken in Chapter 3 in 

dealing with sewage and septic tank samples.  
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Figure 5.10. Left – The detection of a sewage source Q with a bacterial community dissimilar to other sewage sources. “Q 

only” represents simulated-samples containing taxa from the Q and river water samples (simulated-sample number 1, Table 

5.4). “Q with 20% other sewage” represents simulated-sample number 4 (Table 5.4). Right - The detection of a sewage 

source that has a bacterial community similar to other sewage sources. “Sewage only” represents simulated-samples made 

from taxa from the A, B, C, and river water sample (simulated-sample number 5, Table 5.4). “Sewage with 20% Q” 

represents simulated-sample number 8 (Table 5.4). The FTL used in all instances contained river water as a background 

source, sewage (Samples A, B and C), and Sample Q as separate sources. 

 

 Experiment 3  

Sets of simulated-samples were created, representing contamination from each single host 

source (e.g., cow), using taxa from individual sources with those from river water. These 

simulated samples were input into SourceTracker with the entire FTL (i.e., containing all 

available samples of cow, sheep, dog, horse, pig, and sewage sources). Cow and sheep were 

kept as separate sources in the FTL, since only one source was in each set of simulated-

samples. Figure 5.11 shows that the predicted values for a given expected value were 

different depending on the source. The cow and horse sources showed the greatest 

underestimation. This is due to the larger proportion of taxa that were assigned to the 
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‘unknown’ source for cow and horse faecal sources, compared to other sources. The horse 

faecal bacterial community did not appear to be highly similar to bacterial communities from 

other sources (Figure 5.5), and no cross-reactivity was observed between horse and sheep or 

cow host sources (Table 5.4). It is difficult to determine a cause for this underestimation, 

although, it could be related to the mean diversity observed in the samples (Table 5.3), with 

the greatest underestimation observed in samples which have the largest diversity. 

Overcoming the disparity between predictions related to sources may be difficult for MST 

researchers, however, gaining an understanding of this disparity by conducting similar 

investigations is recommended and will help to inform conclusions drawn from MST studies.  

 

 

Figure 5.11. Comparison of multiple source tracker runs to predict individual faecal source contributions to simulated sinks 

of each source type in river water using a FTL containing all sources. Error bars represent the standard deviation of 3 sets 

of simulated sink microbial communities at each expected contribution, although standard deviations are very small 

compared to the means.  

.  
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These underestimates only reduced the sensitivity of cow assays slightly compared to other 

faecal sources (3%, Table 5.4). The sensitivity of sheep and horse sources was not affected. 

Cross-reactivity between dog and sewage, and sheep and cow sources was observed, 

although, at a slightly lower level of contamination (10%, Table 5.4), than reported above. 

This could be a result of the variation in random sampling of microbial communities, or an 

effect of using an FTL containing a larger number of sources. An important note is that only 

using an RSD of 100% to identify false positive results would result in false positives being 

observed at lower concentrations. A 1% cut-off, therefore, is important to prevent false 

positive results. 

The FTL comprised of all sources seems suitable for use in the UK, particularly with an 

awareness of the potential for false positives. However, caution is required when comparing 

chicken, pig, or sewage predictions with those from cow, sheep or horse, particularly at 

higher concentrations.  

Table 5.5. The sensitivity and observed cross-reactivity when using the entire FTL. 

 Chicken Cow Dog Horse Pig Sewage Sheep 

Sensitivity* 2% 3% 2% 2% 2% 2% 2% 

Cross-

reactivity** 

None Sheep > 

10% 

None None None Dog > 

25% 

Sheep > 

10% 
*The percentage of expected contributions where all three simulated microbial communities had a predicted percentage 
contribution >1%. 

**Defined as at least 1 out of 3 samples containing unexpected sources at concentrations > 1%. 

 

5.6.1 Summary 

This study supports the use of community-based MST using the SourceTracker software 

(Knights et al., 2011) for MST investigations. Community-based MST was able to 

consistently identify expected sources and differentiate these from other sources.  

Building the FTL has been highlighted as one of the most important factors, which, can 

affect SourceTracker predictions and therefore MST investigations. Here, simulated-samples 

were used to inform the development of an FTL. A key finding of this study was that a 

change in the approach of MST researchers is necessary when using community-based MST. 
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Library size is not the best predictor of accuracy, the similarity of the samples in the FTL to 

those contributing to the contamination of environmental samples is more important.  

Here, the FTL composed of 14 sewage samples from across North East England appears to 

be suitable for the source tracking of most sewage sources. However, caution is required. 

Separating one sewage source which was dissimilar to other sewage sources (Figure 5.3) in 

the FTL was recommended. By creating simulated-samples of sink microbial communities, 

differences in the predicted contributions of human sources to the microbial community 

when the FTL consisted of the dissimilar sewage source grouped with all other WWTP 

samples, and when this source was separate from other sewage sources (Figure 5.9). Previous 

suggestions to combine similar sources should be approached with caution; combining 

samples from different host-sources may increase the diversity of these sources, and lead to 

greater underestimation in SourceTracker predictions. Here, combining cow and sheep 

sources led to the underestimation of sheep contribution, although, combining cow and sheep 

faecal sources led to more comparable SourceTracker predictions. When sheep and cow 

faecal sources were used in the FTL alone, the predicted values for cow faeces were less than 

that for sheep, for the same expected values.  

 

 Conclusions and recommendations 

The FTL has the potential to contribute significant bias in community-based MST. 

Researchers using community-based MST should focus their efforts on developing local, 

source targeted FTLs, rather than concentrate efforts on increasing the size of the FTL. The 

use of the script provided (Appendix D.1) allows researchers to evaluate the composition of 

their FTL either prospectively, or retrospectively to support conclusions drawn from 

community-based MST investigations. When building an FTL, care is required when 

deciding whether to combine sources with similar bacterial communities since the effects of 

separating or combining sources vary depending on the faecal sources. The potential for 

cross-reactivity was noted between sheep and cattle faeces, combining these sources in the 

FTL could allow for a better comparison of these sources, although, may reduce the 

sensitivity of detection for sheep faeces. Previous reports of conflation of sewage and dog 

samples (Hägglund et al., 2018) does not appear to be a major issue in the FTL used in this 
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study, although some cross-reactivity was observed when high concentrations of dog faeces 

was present. Using a cut-off of 1% was useful in reducing the false positive results, however, 

some false positives still remained at higher expected contributions (>10% for cow and 

sheep). It is recommended, therefore, that future studies repeat this, or similar analyses with 

their own datasets and FTL to inform future studies, since the predictions made by 

SourceTracker will depend greatly on the background samples (if provided), and the 

composition of the FTL.  

An important and unexpected observation here was that the SourceTracker predicted values 

of cow and horse faecal sources were less than those from other sources, using the FTL built 

here. The difference between the expected and predicted proportions of the microbial 

community appear to differ with different faecal sources. This could be an issue for MST 

researchers when attempting to compare the relative contribution of faecal sources, although, 

the differences are larger at higher contributions (Figure 5.10). Further studies into why the 

predictions for some sources are under estimated would be worthwhile for MST studies. In 

addition, comparing FTLs for sources to cover wider geographical regions would be useful, 

particularly if community-based MST is going to gain wide spread acceptance in the water 

industry.  
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Chapter 6 Seaton Sluice case study 

 

 Introduction 

Despite improvements in water quality over the past 30 years, the quality of environmental 

waters across Europe remains a concern (EEA, 2018b). Our ability to cost-effectively 

improve environmental water quality are limited by difficulties in identifying pressures on a 

catchment and applying a suitable programme of measures to monitor and reduce these 

pressures (Voulvoulis et al., 2017), which are primarily due to diffuse pollution sources 

(EEA, 2018a). Microbial source tracking (MST) has the potential to identify and, to some 

extent, apportion sources of faecal contamination. While numerous methods exists, there are 

few examples of ‘real-life’ MST investigations (Harwood et al., 2014), particularly on a 

catchment scale. For example, community-based MST and E.coli biomarkers have only been 

used in four (Brown et al., 2017; Hägglund et al., 2018; McCarthy et al., 2017, Chapter 3), 

and three catchment investigations (Gomi et al., 2014; Kataržytė et al., 2018; Chapter 3), 

respectively. Those studies have typically been conducted in the USA or Australia where 

MST has been more widely adopted compared to the UK. Conducting catchment-wide MST 

investigations is, therefore, not only useful on a local scale for informing investment and 

management decisions, it is useful on national and international scales to inform future 

studies into the use of these MST techniques.  

 

6.1.1 Selection of the Seaton Sluice catchment  

The Bathing Water (BWD, 2006/7/EC) and Water Framework (WFD, 2000/60/EC) 

Directives are two key drivers for the improvement of environmental water quality. Under 

the BWD, all bathing waters must meet the “Sufficient” standard, and Northumbrian Water 

aims for all bathing waters to be classified by at least “Good” by 2020, and “Excellent” by 

2029. the Seaton Sluice bathing water was classified as a “Good”, although given a 93.60% 

chance of not achieving the “Excellent” classification in future bathing water seasons 

following an assessment by the Environment Agency (EA) to establish the likelihood of 

bathing waters achieving each BWD classification (Table 1.1; (Pinner, 2014)). An initial 
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desk-study, undertaken in 2013 (Pinner, 2014), observed that regulatory bathing water 

samples that failed to achieve “Good” status, coincided with permitted discharges from 

combined sewer overflows (CSOs) some of the time. However, several failures also occurred 

when discharges from CSOs were not occurring. While development of the sewer 

infrastructure assets could improve the bathing water quality, there is a historic lack of 

support from customers to spend money on bathing water quality improvements (Pinner, 

2014). A different approach to improving the robustness of the bathing water classification at 

Seaton Sluice, and indeed, all bathing waters is required. Pinner’s (2014) initial investigation 

recommended further research to identify the sources of pollution entering a bathing water 

site); this presented an opportunity to undertake a novel case study, to identify opportunities 

to improve water quality and improve the robustness of the ‘Excellent’ classification. 

Improving waters of good quality is likely to become increasingly important as water quality 

slowly improves and the ‘easy wins’ of problematic infrastructure assets are mitigated.  It 

also provides an opportunity to test the potential limitations of MST methods, since a high 

sensitivity may be required to identify lower levels of pollution in environmental waters.   

Investigation of the Seaton Sluice catchment also gave an opportunity to use MST to 

investigate a number of the pressures leading to low classifications under the WFD (WFD, 

2000/60/EC). Several waterbodies in the Seaton Sluice catchment fail to achieve “Good” 

status, although the EA aim to improve them to “Good” status by 2027 (Environment 

Agency, 2018a). The EA highlights reasons why water bodies in the Seaton Sluice catchment 

fail to achieve “Good” status (Table 6.1); among these reasons, pollution from wastewater is 

presumed to impact multiple elements of the WFD classification. Urban diffuse pollution is 

emerging as a serious obstacle to water bodies achieving good status since it is often difficult 

to detect and difficult to differentiate from rural diffuse pollution sources. Many pressures on 

waterbodies therefore remain “suspected” (Table 6.1), which limits the remediation of these 

sources, although the RBMP for the Northumbria region suggests that mitigation of urban 

diffuse pollution could lead to improvements in water quality in the Seaton Sluice catchment, 

and three other catchments in the district (Environment Agency, 2016). Moreover, selection 

of the Seaton Sluice catchment gave an excellent opportunity to investigate the pressures 

leading to WFD failures in the catchment.
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Table 6.1. Classifications and reasons for not achieving good status of water bodies in the Seaton Sluice catchment. Data from the EA data explorer (Environment Agency, 

2018a). 

Waterbody Type 
Classification 

status 

Classification 

element 
Category Certainty Activity Issue 

Seaton 

Burn 

 

River 

Moderate Invertebrates Water Industry Probable 
Sewage discharge 

(intermittent) 

Pollution from 

wastewater 

Moderate or less 

Mitigation 

Measures 

Assessment 

Urban and transport Confirmed Not in the list 
Physical 

modifications 

Moderate Invertebrates Urban and transport Probable Drainage - mixed 

Pollution from 

towns, cities and 

transport 

Moderate Fish 
Sector under 

investigation 

Not 

applicable 
Unknown  Unknown  

Big Waters 

Reservoir 
Lake 

Poor 
Total 

Phosphorus 

Agriculture and rural 

land management 
Suspected 

Mixed 

agricultural 

Pollution from 

rural areas 

Moderate Phytoplankton 
Domestic General 

Public 
Suspected 

Un-sewered 

domestic sewage 

Pollution from 

wastewater 

Moderate or 

lower 

Mitigation 

Measures 

Assessment 

Recreation Confirmed Other 
Physical 

modifications 

Poor 
Total 

Phosphorus 

Domestic General 

Public 
Suspected 

Un-sewered 

domestic sewage 

Pollution from 

wastewater 

Moderate Phytoplankton 
Sector under 

investigation 
NA Unknown  Unknown  

Poor 
Total 

Phosphorus 

Sector under 

investigation 
NA Unknown  Unknown  

Moderate Phytoplankton 
Agriculture and rural 

land management 
Suspected 

Mixed 

agricultural 

Pollution from 

rural areas 
NA – Not applicable
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6.1.2 Catchment background 

The Seaton Sluice catchment is located on the coast of North East of England, bordering two 

counties: Northumberland and Tyne and Wear. The catchment covers an area of 51 km2 

(Figure 6.1) and is primarily rural with over 65% of land used for arable (53%) and livestock 

farming (15%) (Table 6.2).  

 

Table 6.2. Summary of land use in the Seaton Sluice catchment (2015). 

Land use 
Total area 

(m2) 

Percentage 

land use 

Arable and 

horticulture 
27229947 52.97 

Suburban 9653288 18.78 

Improved grassland 7631841 14.85 

Broadleaf woodland 4016425 7.81 

Urban 1269445 2.47 

Inland rock 563785 1.10 

Coniferous woodland 414442 0.81 

Freshwater 221508 0.43 

Neutral grassland 204987 0.40 

Acid grassland 82171 0.16 

Supralittoral sediment 47829 0.09 

Saltmarsh 38026 0.07 

Littoral sediment 24610 0.05 

Littoral rock 5218 0.01 

Total 51403522 100 
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Suburban and urban land makes up over 20% of land use in the catchment. The catchment 

drains the Seaton Valley, which contains roughly five areas of urbanised land: Seaton Sluice, 

Seaton Delaval, Holywell, Seghill and Dinnington (Figure 6.1). While Dinnington is outside 

the catchment drainage area, housing developments are currently ongoing there, and the land 

surface drains and sewers drain to, and run through the catchment, respectively. A combined 

sewer system drains the majority of the catchment (~75%), while more recently developed 

areas have a separate system (Figure 6.1). The land surface drains discharge into a 

watercourse which changes name throughout the length of the catchment; however, the 

watercourse is known locally in its entirety as Seaton Burn. Figure 6.1 shows the extent of 

the catchment which feeds into the Seaton Sluice bathing water. 
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Figure 6.1. Open street map (A) and digital elevation map (B) of the Seaton Sluice catchment showing sampling points and combined sewer overflows (CSOs) (B 

only) in the areas. 

B 
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There are a variety of potential sources of pollution throughout the Seaton Sluice 

catchment. There are 26 CSOs, which may impact water quality in the Seaton Burn and 

the bathing water quality at Seaton Sluice, 19 CSOs discharge directly into the Seaton 

Burn, and eight into tributaries entering the Seaton Burn (Figure 6.2). All CSOs are 

equipped with monitoring equipment to warn Northumbrian Water when a CSO is 

discharging and the duration of each discharge > 15 minutes (an example of this data is 

available in Appendix E.5). There are also two consented, trade effluent discharges, 

which arise from landfill sites in the Seghill area. These are consented as intermittent 

discharges and should only discharge at periods of heavy rainfall. Since bathing water 

failures also occurred when CSOs were not discharging, the role of diffuse pollution 

cannot be discounted. Sheep and cattle graze at the top and towards the bottom of the 

catchment, respectively and there are five stables within the catchment and others that are 

close to the catchment that exercise their horses throughout the catchment and along 

Seaton Sluice beach throughout the year. In addition, there is a public bridleway/path that 

runs almost the length of the Seaton Burn, which attracts horse riders and dog walkers, 

and a nature reserve containing some migratory birds, rabbits and deer, which could also 

contribute to sources of pollution. In addition, there are 38 surface water outfalls, which 

carry surface water directly into the Seaton Burn or its tributaries (Figure 6.1). There is, 

therefore, the potential for misconnections, where household wastewater plumbing is 

incorrectly connected to a land surface drain carrying sewage directly to a watercourse.  

 

6.1.3 Selection of MST techniques 

While a range of MST techniques are available, community-based MST has only 

previously been tested once in the UK (Chapter 3) and was noted to be more sensitive 

than certain marker-based methods using culturable organisms. It was therefore 

hypothesised that community-based MST would be useful where low levels of pollution 

are expected. One limitation of MST methods is their poor relationship with regulatory 

faecal indicator organisms (FIOs), which may limit the applicability of MST methods to 

regulatory frameworks such as the BWD (BWD, 2006/7/EC). A poor relationship 

between the human proportion of the bacterial community predicted by community-based 

MST and culturable E.coli was observed in a previous case study (Chapter 3). This could 

be due to the differential die-off of culturable organisms compared to DNA (Wanjugi et 
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al., 2016). Using qPCR to target the RodA gene may overcome some of these limitations 

and improve the relationship between MST methods using nucleic acid detection methods 

and regulatory FIOs; this also supports the Environment Agency’s (EA’s) call for more 

evidence on the use of DNA-based techniques (Rhodes, 2016). In addition, the recently 

developed human-associated markers in the genomes of E.coli (Gomi et al., 2014; 

Chapter 4) may link MST methods to regulatory parameters. The Hu100 marker had the 

highest average abundance among sewage in the UK (Chapter 4), and was selected, as it 

has never been used in a catchment investigation. The HF183 marker was also selected 

for use in the Seaton Sluice catchment since it is the most common human-associated 

marker (Harwood et al., 2014), and therefore forms a reasonable baseline on which to 

compare the performance of the Hu100 marker and community-based MST.  

 

 Aims of the study 

This investigation aimed to identify the likely sources and areas of pollution that are 

reducing river and bathing water quality in the Seaton Sluice catchment, ideally when 

CSOs were not discharging to the river. In doing so, the objectives set out were: 

1. Conduct a sampling campaign of the catchment to identify areas with high 

concentrations of FIOs. 

2. Compare the use of the RodA gene to the enumeration of E.coli using regulatory, 

culture-based methods to give a more rapid method to monitor E.coli 

concentrations in river and sea-water samples.   

3. To use community analysis techniques to identify potential sources of pollution 

throughout the catchment. 

4. Compare community analysis to library dependent approached using the Hu100 

E.coli biomarker and HF183 marker or human pollution. 
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 Methods 

6.3.1 Study design 

The sampling regime followed the EA’s bathing water sampling regime (Appendix E.1) 

to align results from the MST investigation with regulatory bathing water results. The 

weekly sampling day is randomly assigned, reducing any unintentional bias in the 

sampling regime. In addition, sampling was conducted on two extra days (07/11/2016 and 

22/11/2016) to capture two rainfall events (Appendix E.3), when CSOs were overflowing 

since no significant rainfall events were captured during the sampling regime above. 

Fifteen sample locations were identified throughout the catchment (Figure 6.1) including 

the EA’s bathing water sampling location. Sampling locations were chosen to be 

upstream and downstream of urban areas and river confluences. In addition, a sampling 

location just above the tidal limit (Sample location 2, Figure 6.1 and Figure 6.3) was 

chosen to define the output from the catchment, and a sample location at the harbour 

(sample location 1, Figure 6.1) was chosen to capture all land surface drains and CSOs 

between sample location 2 (Figure 6.1) and the harbour entrance. Sample locations 10, 9 

and 6 (Figure 6.2) represent streams entering the main river (Seaton Burn), which is made 

up of sample locations 14, 13, 12, 8, 7, 5, 4, 3, and 2 with sample location 1 at the harbour 

entrance.  

In total, sampling took place on 18 different days during the bathing water season, 

between 4 May 2016 and 

20 September 2016. In 

addition, two additional 

sampling days were 

collected during rainfall 

events on the 7 and 22 

November 2016. A total 

of 299 samples (20 

bathing and 279 river 

water) were collected 

and used for faecal 

indicator organism Figure 6.2. Sample location 2, at the bottom of the catchment above the tidal limit. 
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analysis. One sample (22/11/2016, sample location 2) could not be collected as high river 

levels prevented safe access to this location.  

 

6.3.2 Overall microbial source tracking strategy 

A tiered approach to MST was taken whereby the lower cost methods were conducted 

first on a large number of samples before more costly methods were conducted on a 

targeted subset of samples. The concentration of culturable E.coli in all samples (n = 299) 

was used to select twelve sample days (n = 179) for analysis of the RodA gene and the 

Hu100 and HF183 human markers by qPCR. From these twelve sample days, six (n = 92) 

were then selected for community analysis. Sample days were selected to give a mixture 

of days when samples had higher or lower levels of E.coli, and across different levels of 

rainfall (Appendix E.3) and which were either impacted or not impacted by CSO 

discharges (Appendix E.4).  

 

6.3.3 Sample collection and transport 

Catchment samples (Sample locations 1-14, Figure 6.1) were collected in three 250 mL, 

autoclaved, and acid washed bottles. Samples were collected using a sampling pole from 

30 cm below the surface, where possible, of flowing water without disturbing the bed of 

the river. The EA sampling team kindly collected duplicate seawater samples during 

regulatory sampling at the Seaton Sluice bathing water. On two occasions, not on bathing 

water sampling days, seawater samples were collected in the same manner (2.1.4 

Environmental water samples) to capture high-rainfall events that would be otherwise 

missed. One sample was not collected (Sample location 2, 22/11/2016) when the river 

was in flood, as the sample location was not safely accessible. Sediment samples were not 

collected as the river-bed is mostly rocky and it would be difficult to collect enough 

sediment to get a representative sample.  

 

6.3.4 Enumeration of faecal indicator organisms 

Samples were transported on ice, returned to the laboratory within 3 hours of collection 

and once at the laboratory, stored at 4 oC until processed (< 3 hours). E.coli was 
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enumerated using membrane filtration (2.2 Enumeration of faecal indicator organisms). A 

single sample was not reported (Sample location 10, 07/11/2016) as all plates appeared 

un-readable, producing no distinct colonies. 

 

6.3.5 Isolation of DNA for qPCR and sequencing 

DNA was isolated from 250 mL and 800 mL of river and seawater, respectively. On one 

occasion (22/11/2016), 100 mL of river water was used due to high turbidity in the 

samples.  These volumes are greater than previously used as it was suggested that this 

could improve the accuracy of SourceTracker analysis (Sassoubre, et al., 2015) and 

higher volumes improve the assay sensitivity of qPCR.  

 

6.3.6 Quantitative PCR (qPCR) 

QPCR was carried out as previously described (2.4.2 Quantitative PCR (qPCR)). The 

HF183 marker was chosen because it is the most commonly used MST marker for human 

sources and therefore is useful as a comparator for other source tracking markers and 

methods. For river and seawater samples the limit of detection (LOD) and limit of 

quantification (LOQ) correspond to theoretical values of 24 and 8, and 60 and 19 gene 

copies (gc)/100 mL, respectively (2.4.2 Quantitative PCR (qPCR)). However, in practice, 

LOD and LOQ values are likely to be higher than these due to other quality controls 

(Table 2.3). For example, at low concentrations the relative standard deviation of gene 

copy numbers is more likely to exceed 25% than at higher concentrations. Moreover, this 

value relies on all processes, such as DNA extraction and PCR amplification being 100% 

efficient which is unlikely (Kralik & Ricchi, 2017). Salmon DNA and the Sketa primers 

were used to test for low DNA extraction efficiency and PCR inhibition (Chapter 2.4.2 

Quantitative PCR (qPCR)). No tested samples exceeded the control for DNA extraction 

efficiency (>3 Ct difference between standard, Table 2.3); however, a single sample 

(Sample location 14, 12/08/16) was removed from testing as the concentrations of the 

RodA, HF183 and Hu100 markers all appeared to be inhibited and dilution resulted in 

gene copy values below the limit of detection.   
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6.3.7 Bioinformatics  

Bioinformatics analysis was conducted as previously described (2.6.5 Analysis of  data 

from Illumina sequencing) using the DADA2 algorithm (Callahan et al., 2016). Two 

faecal samples (one cow and one pig) were removed from the analysis as the entire 

sample was composed of a single taxon. A single environmental sample (14/07/2016, 

sample location 14) was removed from analysis due to a low read count (64). The final 

faecal taxon library (FTL) used as input into SourceTracker, was composed of 10 pig, 10 

cow, 10 sheep, 10 dog, 10 horse, 10 chicken, and 14 Sewage samples (Chapter 5). The 

FTL was run by combining all sewage sources as previously recommended and 

separating cow and sheep into individual sources. Separating cow and sheep sources was 

reasonable as all cow or sheep contamination was less than 10%, the proportion at which 

no false positives were observed (Chapter 5). SourceTracker was run five times, sources 

with a relative standard deviation greater than 100% were considered false positive results 

and removed (Henry et al., 2016). Sources with a predicted contribution of less than 1% 

were removed to reduce the likelihood of false positives, as previously recommended 

(Chapter 5).  

 

6.3.8 Rainfall and GIS data 

Daily rainfall data was obtained from the Met-office integrated data archive system 

(MIDAS) land and marine surface stations dataset (Met-office, 2012). The dataset was 

subset for rainfall data from a weather station located at Blyth (Latitude: 55060, 

Longitude: -1611), which is slightly outside of the catchment, but is the closest Met-

office weather station.  

Land use data was extracted from the most recent (2015) land cover map (Rowland et al., 

2017). 

 

6.3.9 Statistical analysis 

Seventeen and four percent of samples analysed for Hu100 and HF183 by qPCR, 

respectively, had values between the LOD and LOQ (Appendix E.4). These values were 

included in further quantitative statistical analysis since using zero values or half the LOQ 

would under-represent the level of human pollution, and using an RSD of 25% (2.4.2 
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Quantitative PCR (qPCR)) improves confidence in these values. Nonetheless, it should be 

appreciated that the gene copy number quoted for these values has a lower level of 

confidence associated with it. All assays below the limit of detection were reported as 0 

gc/ 100 mL, since this reflects how the EA report regulatory E.coli counts for the bathing 

water directive (BWD, 2006/7/EC). 

The normality of each dataset was assessed visually though histograms and quantitatively 

using the Shapiro-Wilk test for normality (Wilk & Shapiro, 1965). Log-transformation of 

the data reduced skewness, however, all datasets; the culturable E.coli, RodA gene, 

HF183 marker, and Hu100 marker concentrations, remained significantly different to a 

normal distribution (p <0.01), due to a large number of zero values in the datasets. The 

data were log-transformed for linear regression since normality is not an assumption of 

linear regression and to provide a comparison with other studies (Hassard et al., 2017; 

Noble et al., 2010), some of which use linear regression on non-normal data. However, 

all hypothesis testing was conducted using non-parametric tests. All correlations were 

evaluated by determination of the Spearman’s rank correlation coefficient (rs) (Spearman, 

1904) and the Wilcoxon rank-sum test (Wilcoxon, 1945) was used to determine whether 

groups of data arise from the same population, i.e. to evaluate the difference between 

groups. The Wilcoxon rank-sum test was chosen since it does not assume independence 

between samples, which cannot be guaranteed in the catchment study.  

 

 Results 

6.4.1 E.coli and RodA concentrations 

6.4.2 Relationship between culturable E.coli and RodA gene concentrations 

Culturable E.coli concentrations were significantly correlated with RodA gene copy 

concentrations (rs = 0.843, p = <2.2x10-16) and Figure 6.3 shows a strong, positive linear 

relationship between these variables (adjusted r2 = 0.666, p = <2.2x10-16). The RodA gene 

could be expected to be close or below the LOD for 12/14 samples, where the RodA gene 

is below the LOD and culturable E.coli (> 1 CFU/100 mL) are observed (Figure 6.3). 
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 Figure 6.6.3. Relationship between culturable E.coli and RodA gene concentrations in 180 seawater (n= 12) and 

river water (n = 168) samples. Zero values are shown here. Removing these values changes the fit of the regression to 

y=0.12+0.86x with an r2 =0.665. 

On one occasion (14/07/2016), no culturable E.coli were detected, however, 370 ± 12 

gc/100 mL of RodA gene were noted in a bathing water sample (Appendix E.4). This was 

the single seawater sample where culturable E.coli and the RodA gene did not fall within 

the same BWD classification (Appendix E.4). For 96% of samples analysed, using the 

RodA gene would result in the same or a lower level of classification according to the 

BWD (Table 6.2). On 4% of occasions, the RodA gene resulted in a lower classification. 

It should be noted that the standards for transitional (marine) and coastal waters were 

used, as these are more stringent than those for inland waters (<500 and <1000 for 

‘Excellent’ and ‘Good’ status, respectively), and are closer in value, making it more likely 

that any difference between the culturable E.coli and RodA concentrations will result in a 

difference in classification.  
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Table 6.2. The number and percentage of water samples in which the culturable E.coli 

and RodA gene concentrations would result in the same or different bathing water 

classification, according to the BWD 

 
Number Percentage  

Total number of samples 177 100% 

Samples with identical classifications  137 77.4% 

Samples with different classifications 40 22.6% 

E.coli classification more stringent than 

RodA 

7 4.0% 

RodA classification more stringent than 

E.coli 

33 18.6% 

BWD classifications for E.coli concentrations determined from a single sample are 0 – 249 

CFU/100 mL “Excellent”, 250 – 499 CFU/100 mL “Good”, and >499 “Poor”. The “Sufficient 

classification was not assigned since differentiation between this and the “Poor” classification is 

based on the percentile values of a four year data set.  

 

6.4.3 E.coli concentrations in the catchment 

The concentration of culturable E.coli and RodA genes in the catchment ranged between 0 

(< 24 and 8 gc/100 mL for river and sea water, respectively) and 0 (< 24 and 8 gc/100 mL 

for river and sea water, respectively) and 86,572 gc/100 mL, respectively (Figures 6.4 and 

6.5).  

 



167 

 

 

Figure 6.6.4.  Culturable E.coli (Top) and RodA gene (Bottom) concentration at each sample location down the 

catchment (from left to right). Blue and red lines indicate the concentrations relating to the classification of bathing 

waters as Excellent and Good, respectively for marine and coastal waters. Culturable E.coli data is from 22 sampling 

days (n=328), and RodA data is from a subset of 12 of those sampling days (n=178). Colours used to identify individual 

sampling locations. 

 

Sample locations 14 and 13, at the top of the catchment were consistently high (Figure 

6.4). While there was a significant increase in the culturable E.coli between sample 

location 14 and 13 (p = 0.001209), There was no significant difference between the RodA 

gene concentrations (p = 0.8501). There was a significant decrease in the culturable E.coli 

(p = 1.335x10-05) and RodA (p = 0.0093) concentrations between sample locations 13 and 

12; this is likely due to the Big Waters nature reserve (Figure 6.1), which contains a large 

subsidence pond. The concentrations of culturable E.coli and RodA in the Bathing Water 

(BW, Figure 6.4) are significantly lower than at the harbour entrance (Sample location 1, 

Figure 1) (rs = 1.907 x10-06 and p = 0.0002, respectively), likely due to the effect of 

dilution.  
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6.4.4 Human pollution sources 

Relationship between E.coli, human markers, and community analysis. 

At least one human marker was found in 68% of samples tested (Table 6.3). In 79% of 

samples, both human markers were in agreement, i.e., both HF183 and Hu100 were 

present or absent which provides strong evidence for the presence of human pollution in 

the catchment. The HF183 marker was identified more often compared than the Hu100 

marker, and in samples when both markers were identified; HF183 was significantly 

more abundant (p = 9.406e-14). 

Table 6.3. Comparison of the presence/ absence of HF183 and 

Hu100 among river and sea-water samples detected through qPCR.  

  Number Percentage 

Number of samples 179 100 

At least one marker 

present 

122 68 

Both present or absent 142 79 

Just HF183 present 20 11 

Just Hu100 present 18 10 

 

Culturable E.coli concentrations were positively correlated with HF183 (rs = 0.603, p < 

2.2e-16) and Hu100 (rs = 0.656, p < 2.2e-16) marker concentrations (Table 6.4), suggesting 

that human sources are, at least in part, responsible for the elevated concentrations of 

E.coli in the catchment. Surprisingly, the correlation between the RodA gene and human 

markers appears to be slightly weaker than that between culturable E.coli and human 

markers (Table 6.4). Nevertheless, all of the relationships between measures of E.coli and 

human markers are positive and highly statistically significant (Table 6.4). 

The contribution of human sources to the microbial community was estimated using 

SourceTracker (D Knights et al., 2011). There was a stronger correlation between the 

predicted contribution of human sources, culturable E.coli and the RodA gene, compared 

to the human (HF183 and Hu100) markers with culturable E.coli and RodA (Table 6.4), 

which, may be due to the higher sensitivity of SourceTracker compared to qPCR (Table 

6.5). 
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Table 6.4. Spearman’s rank correlation coefficients for the relationship between culturable E.coli, the RodA gene, 

HF183 and Hu100 human marker concentrations and the proportion of the microbial community arising from human 

sources as predicted by SourceTracker. 

 Culturable 

E.coli 

RodA gene* 0.843 

(p < 2.20x10-16) 
RodA gene 

HF183 marker* 0.603 

(p < 2.20x10-16) 

0.554 

(p = 1.27x10-15) 
HF183 marker 

Hu100 marker* 0.656 

(p < 2.20x10-16) 

0.613 

(p < 2.20x10-16) 

0.695 

(p < 2.20x10-16) 
Hu100 marker 

SourceTracker 

predicted human 

contribution** 

0.693 

(p = 9.91x10-14) 

0.665 

(p = 1.65x10-12) 

0.686 

(p = 1.70x10-13) 

0.467 

(p = 4.45x10-06) 

*n = 178, **n=89 

SourceTracker identified human pollution in 95% of samples tested compared to human 

markers; for which at least one marker was detected in 82% of the same samples (Table 

6.5). There were no occasions where markers detected human pollution and 

SourceTracker did not detect human pollution (Table 6.5). The weaker correlation 

between SourceTracker human predictions and the Hu100 marker compared to the HF183 

marker concentrations is likely to be due to the greater number of samples that Hu100 

was below the LOD, compared to that of HF183 (29 compared to 19, respectively) in the 

dataset used for community analysis.  
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Table 6.5. Indicating the co-occurrence of human pollution indicated by SourceTracker and human markers determined 

through qPCR. 

 Number Percentage 

Number of samples 88 100% 

SourceTracker positive for human sources 84  95% 

At least one marker and SourceTracker in agreement (present 

or absent) 
72 82% 

Only SourceTracker positive 16 18% 

Only markers positive 0 0% 

 

Human sources in the catchment 

Due to the considerable variation in marker concentrations and SourceTracker predictions 

at each sample location between sampling days (Figure 6.5 and Figure 6.6), determining 

significant differences between sample locations across the entire dataset was difficult. 

Nevertheless, SourceTracker predictions of human faecal contamination for the bathing 

water sampling location (BW, Figure 6.5) were significantly lower than that for sample 

location 1 (p = 0.02), and sample location 12 had significantly lower human contributions 

than sample location 13 (p = 0.001). The SourceTracker predictions at sampling locations 

13 and 14 were not significantly different to each other (p > 0.05), although on 4 of 5 

occasions SourceTracker predictions increased between sample locations 13 and 14 

(Figure 6.5). 

The HF183 and Hu100 markers show a similar pattern to the SourceTracker human 

pollution predictions, indicating high human pollution at the top of the catchment. There 

was a significant decrease in HF183 and Hu100 between sample locations 13 and 12 (p = 

0.0003), although, there was only a significant decrease in the HF183 concentration 

between sample location 1 and the bathing water samples (BW) (p = 0.03, Figure 5). 

Differences between other, adjacent sampling locations were not significant (p >0.05). 
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Figure 6.6.5. SourceTracker predictions of the human contribution to the microbial community for each sampling 

location over six days. Colours used to identify individual sampling locations.  
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Figure 6.6. SourceTracker predictions of human contribution to the microbial community at each location on each sampling day 

(Top). HF183 concentrations at each location on each sampling day for which community analysis was undertaken (Bottom). NB 

Sample 14, 17/05/2016 (Top) was removed due to low read counts following sequencing, and sample 2 22/11/2016 was not collected 

due to inaccessibility of the sampling location. Colours used to identify individual sampling locations. 
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Combined sewer overflows or misconnections? 

To differentiate between samples which are potentially impacted by discharging CSOs 

and those which are not, the dates and durations of CSO spills were obtained from 

telemetry data from Northumbrian Water Ltd. Three days were impacted (07/11/2016 and 

22/11/2016), or partially impacted (27/07/2016) by CSO spills within 12 hours before 

sampling. Notably, there is no CSO above sample location 14 in the catchment (Figure 

6.1) although human pollution was identified in all samples by community analysis at 

sample location 14, and in 92% (11/12) of samples for at least one marker.  

Figure 6.7 shows the HF183 data split into samples which were potentially impacted by 

CSOs (n = 3) and those not impacted by CSOs (n = 9). The concentrations of HF183 on 

sample days which are potentially impacted by CSOs are significantly higher (p = 6.719 x 

10-12), typically by an order of magnitude, than those for non-impacted sample days. The 

Hu100 marker concentrations (Appendix D.5) and community analysis predications 

(Figure 6, Sample days not impacted by CSOs are 04/05/2016, 17/05/2016 and 

20/09/2016) also reflect the difference between samples potentially impacted and not 

impacted by CSO discharges; days impacted by CSOs having significantly higher 

concentrations of Hu100 (p = 1.113 x 10-07). 
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Figure 6.6.7. From top to bottom, 1) The E.coli concentration at each sample location while CSOs were overflowing, 2) 

E.coli  concentration at each sample location while CSOs were not overflowing, 3) HF183 marker concentrations at 

sample locations when CSOs were overflowing and 4) HF183 marker concentrations at sample locations when CSOs 

were not overflowing. Colours used to identify individual sampling locations. 
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There appears to be a base concentration of human pollution in the catchment, 

particularly around sample location 13, 7, and 4 (Figure 6.6). Between sample location 14 

and 13 there is a land surface drain and a CSO, and four of five occasions sample location 

13 had a higher human proportion of the microbial community (Figures 6.6 and 6.7). The 

land surface drain and CSO were sampled on 07/11/2016 when both were flowing. As 

expected, the microbial community of the  CSO effluent was composed of around 50% 

human while the land surface drain was composed of ~10% human (Figure 6.8). 

 

 

Figure 6.6.8. The human proportion of microbial community identified in a land surface drain (LSD 14) and combined 

sewer overflow (CSO 13) on the 7/11/16. 
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6.4.5 Other sources of pollution 

SourceTracker was run twice with sheep and cow as separate sources, or as a combined 

ruminant source in the FTL. Due to the low level of ruminant pollution, the FTL with 

separate sources was more appropriate (Chapter 5).  

 

Chicken sources were the most commonly detected animal faecal source in the catchment 

(36% of samples, Figure 6.9), followed by sheep (12% of samples, Figure 6.9) and dog 

(8% of samples, Figure 6.9). Dog faecal sources in some samples (17/05/2016 and 

20/09/2016, sample location 13, Figure 6.9) are potentially false positive results since the 

proportion of sewage is greater than 25% (Figure 6.6), previously identified as the 

contribution at which there is potential for false positive results (Table 5.3). Cow faeces 

was identified as a source in only a single sample (07/11/2016, location 11, Figure 6.9). 

In all samples, the predicted human contribution was larger than animal contributions 

(Figure 6.6 and 6.9). Animal faecal sources were identified in one of six bathing water 

samples (22/11/2016, figure 6.9) where chicken faeces accounted for ~ 4% of the 

microbial community (sewage accounted for 14%).  

 

Figure 6.9. Proportion of the microbial community attributed to animal sources by SourceTracker. The human 

contribution is not shown since it is generally much larger, and prevents comparison between samples for animal 

sources. NB Sample 14, 17/05/2016 was removed due to low read counts following sequencing, and sample 2 

22/11/2016 was not collected due to inaccessibility of the sampling location. 
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 Discussion 

6.5.1 Identification of E.coli with the RodA gene 

Current culture-based regulatory assays to determine the microbiological quality of water 

require a 24-48 hour incubation step, limiting the timely communication of health risk 

and pollution events (Korajkic et al., 2014). As such, the EA asked for additional 

evidence into the use of DNA techniques to monitor water quality (Rhodes, 2016). While 

the USEPA accept the use of qPCR, targeting the 23S rRNA gene (23S gene) of 

enterococci, to monitor bathing water quality, no regulatory assays exist for the 

enumeration of E.coli.  This was the first time the RodA gene has been used to monitor 

the quality of environmental waters in a catchment study. The good relationship (rs = 

0.843, p = <2.2x10-16) between culturable E.coli and RodA gene concentrations (Figure 

6.3) suggests that qPCR may be a useful technique to monitor E.coli and is similar, in 

terms of the strength of correlation, to relationships between culturable enterococci and 

the 23S gene in water samples (Noble et al., 2010) and culturable E.coli and the UidA 

gene in cattle faeces (Oliver, et al., 2016) and river and sea water samples during the 

summer. Interestingly, the relationship between culturable E.coli and qPCR targeting the 

UidA gene have shown a seasonal effect in previous studies (Oliver et al. 2016; Hassard 

et al. 2017), with an improved relationship in the UK summer in water samples (Hassard 

et al., 2017). 

The high proportion of samples (96%) where the water quality classifications were the 

same or more stringent for the RodA gene compared to culturable E.coli would indicate 

that it is a conservative marker, which may be more acceptable in terms of risk for 

regulators. The disparity in classification may be due to the presence of viable but non-

culturable organisms, the differential decay of culturable organisms and DNA, and 

differences in the specificity of DNA-based and culture-based assays (Hassard et al., 

2017), or differences in sample processing. Previous studies, targeting either the 23S or 

UidA genes (Hassard et al., 2017; Oliver et al., 2016) also observed an over-estimation of 

E.coli determined through qPCR, compared to culture-based methods. While using the 

23S gene may overestimate due to its multi-copy nature and lower specificity, the RodA 

gene has been suggested to be single copy and highly specific to E.coli (Chern et al., 

2011). The overestimation is, therefore, likely to be due to the differential decay, and the 

presence of viable but non-culturable organisms. The higher (better) classification from 



178 

 

the resulting analysis of the RodA gene, observed in 4% of samples, may be a concern for 

public health if monitoring with qPCR replaces culture-based monitoring. This 

overestimation may be due to the high specificity of the RodA gene, since the RodA gene 

can differentiate E.coli from other species of Escherichia (Chern et al., 2011), it is 

possible that other Escherichia spp. or other coliforms may be cultured; for example, a 

previous study observed that 9% of cultured isolates on a selective media were not E.coli 

(Perkins et al., 2014), leading to an overestimation by culture-based methods. A previous 

study using qPCR to target the UidA gene also reported a higher concentration of UidA 

gene copies than culturable E.coli in 29% (8/27) of the summer samples, although none of 

these were across a BWD classification boundary (Table 6.2) (Hassard et al., 2017). The 

possibility that differences in culture-based and DNA-based assays are due to 

discrepancies in the sampling and preparation procedures cannot be discounted. Samples 

used for culture-based analysis and DNA-based analysis were collected in separate 

collection bottles, there is the potential for conditions to change between these samples 

being collected, for example, if the river or sea bed is disturbed between each sample 

being taken. It may also be due to a loss of DNA during DNA extraction. While addition 

of salmon DNA to the lysis buffer (2.4.1 Polymerase Chain Reaction (PCR)) is used to 

determine the efficiency of DNA extraction, it only measures loss of material, rather than 

lysis efficiency, since raw DNA is added. So while DNA extraction passed quality control 

(within three cycle threshold values of salmon DNA), the lysis step may be inefficient, 

resulting in reduced RodA gene copies being observed. However, this is unlikely as since 

E. coli is a Gram-negative planktonic organism that is easily lysed. 

The good relationship between culturable E.coli and RodA gene concentrations may also 

make MST conclusions draw from nucleic-acid-detection-methods more applicable to the 

water industry.  

  

6.5.2 Human marker and community analysis based MST 

This was the first catchment study using Hu100 in the UK. The good correlation between 

Hu100 and HF183 (rs = 0.695, p < 2.20x10-16, Table 6.4), and Hu100 and the predicted 

human proportion of the microbial community (rs = 0.467, p = 4.45x10-06, Table 6.4) 

supports the use of the Hu100 marker for future MST studies. The higher correlation 

between Hu100 and culturable E.coli and the RodA gene compared to that of HF183 
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could indicate that using an E.coli biomarker gives a better prediction of the total E.coli 

coming from human sources than the HF183 gene. Despite the better correlation 

exhibited by Hu100 with E.coli assays, both markers were necessary to identify sources 

of pollution in the catchment and HF183 had a significantly higher concentration when 

both markers were detected. The use of both markers was particularly important higher in 

the catchment (Sample locations 13 and 14), when Hu100 showed very low 

concentrations (Appendix E.6) compared to HF183 (Figure 6.8); 4 out of 24 Hu100 

samples were below the LOD, and a further 7 were below the LOQ, when both HF183 

and SourceTracker showed a large amount of human pollution. This is likely due to the 

variation in this marker between different human populations (Chapter 5), which is likely 

to be exacerbated since there is only likely to be a single septic tank (Sample location 14) 

or misconnection (Sample location 13) at this location in the catchment (there are no 

conurbations – see Figure 6.1).  

Community-based MST was valuable in the detection of human sources of pollution, 

particularly at low concentrations, and improved confidence in conclusions drawn from 

the Hu100 and HF183 marker data. The greater sensitivity of community-based MST 

over qPCR, noted previously (Neave et al., 2014; Chapter 3), was evident with a greater 

proportion of samples being positive for human sources (18%, Table 6.5) where markers 

were likely to be below the LOD. The strong, significant correlation between the 

predicted human proportion of the microbial community and human-associated markers 

(rs = 0.686, p < 2.20x10-16, and rs =0.467, p = 4.45x10-06, for HF183 and Hu100, 

respectively, Table 6.4) is essential in building confidence in MST results since the 

marker concentrations were often close to or below the LOQ. This highlights the potential 

of community-based MST in future MST studies where low levels of pollution are 

problematic, which, may become increasingly relevant to the UK water industry as water 

quality improves and identifying and tackling low-levels of diffuse sources of pollution 

becomes increasingly important (Figure 1.1). The strong correlation between community-

based and marker-based MST was not observed in previous studies (Ahmed et al., 2015; 

Chapter 3) and may be a reflection of the dominance of human pollution in this catchment 

compared to non-human sources in other studies such as ruminant (Chapter 3) and bird 

sources (Ahmed, et al., 2015). Interpretation of results from community-based MST must, 

therefore, be approached with caution. For example, it may not be fair to compare the 

human proportion between two samples where one contains only human sources and the 
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other contains high levels of non-human sources. Where additional sources are present, 

the relative proportion of human pollution, as reported by SourceTracker, will be 

artificially compressed, reducing any correlation between the predicted human proportion 

and human markers. The stronger correlation observed here, may also be due to a more 

accurate FTL, for which the effect of including samples had been previously tested 

(Chapter 5). In Chapter 3, the human sources in the FTL included a single, separate septic 

tank and sewage from three small treatment works located outside the catchment, which 

may not reflect the human inputs from other septic tanks or human inputs in the 

catchment. In comparison, this FTL consisted of a larger number of sources so is more 

likely to reflect the human inputs. A different bioinformatics approach may also explain 

the better correlation. Error correcting algorithms such as DADA2 used here, produce less 

noise and erroneous sequences compared with cluster-based algorithms, such as QIIME 

1, used in Chapter 3, and does not call singletons (Callahan et al., 2016); a lower level of 

noise in the outputs may lead to less shared OTUs, also observed elsewhere (Coello-

Garcia, 2018), and reduce conflation between sources. In addition, in this study a sea 

water and river water sample was used as a background sample. Previous studies have 

reported improvements in SourceTracker predictions (Brown, et al., 2018; Chapter 4), 

and correlations with FIO (Hägglund et al., 2018) when indigenous microbiota were input 

into SourceTracker as a source. In Chapter 3, there were no samples free of pollution to 

be used as background samples, and (Ahmed et al., 2015) conducted their study before 

this advice was available. These differences in the methods used may also account for 

improved correlations observed in this study compared to previous studies. 

 

6.5.3 Seaton catchment 

All three MST methods highlighted widespread human pollution throughout the 

catchment, both during permitted overflow of CSOs and when no CSO overflows were 

recorded or observed (Figure 6.7 and Appendix E.5). The good correlation observed 

between both markers, community-based MST and E.coli assays support human pollution 

as the primary source of pollution driving high levels of E.coli in the catchment.  

Human source of pollution contribute greatly to the poor and moderate WFD 

classifications for total phosphorus and phytoplankton (Table 6.1), likely leading to algal 

blooms in the Big Waters reservoir. The Big Waters reservoir mediates the high levels of 
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pollution observed higher in the catchment (Sample location 12, Figure 6.6). The high 

level of human pollution at the top of the catchment (Sample locations 14 and 13, Figures 

6.4, 6.5, and 6.6) was unexpected, particularly at sample location 14 where there were no 

known inputs. It is highly likely that the pollution at sample location 14 was due to a 

septic tank discharging into the Seaton Burn above sample location 14. There is also 

human pollution entering the Seaton Burn between sample location 13 and 14 from a 

CSO when overflowing, and a land surface drain. While dog, sheep, and chicken faeces 

were identified in some of the samples from these locations, they were at much lower 

proportions than human sources (Figures 6.9 and 6.6) suggesting that mitigation measures 

should focus on reducing human inputs through the identification and, ideally, removal of 

the septic tank and reduction in the number of misconnections from housing in 

Dinnington. This is likely to prove difficult due to the current development of new 

housing estates in this area, which could increase the number of misconnections.  

Misconnections also likely contribute human pollution further down the catchment. On 

days when no CSOs were overflowing (04/05/2016, 17/05/2016 and 20/09/2016), human 

pollution was identified by community-based MST at all sample locations, except for the 

bathing water sampling location. The Hu100 (Appendix E.5) and HF183 (Figure 6.7), 

human-associated marker data support this finding. These misconnections will 

unquestionably contribute to WFD failures in the Seaton Burn for three measures: 

Invertebrates, mitigation measures assessment, and fish; although misconnections are not 

currently considered a potential pressure (Table 6.1). The identification and mitigation of 

misconnections are burdensome and cost the UK water industry around £235 million 

year-1 (Royal Haskoning, 2007), largely due to the difficulty in locating possible areas 

with high levels of misconnection. In the Seaton Sluice catchment, urban areas account 

for only 2.5% of land use (Table 6.1) but contribute almost all faecal contamination 

observed in the catchment. Being able to identify priority areas is, therefore, valuable to 

the UK water industry. In the Seaton Sluice catchment, Dinnington and Seghill (Figure 

6.1) are two priority areas where misconnection mitigation efforts should be directed. At 

Dinnington, new developments are likely to worsen the human pollution entering the 

catchment above sample location 13, and the frequency of algal blooms at Big Waters 

reservoir may be reduced if misconnections at Dinnington are mitigated. At Seghill 

(Sample locations 7, 6 and 5), both human-associated markers show a general, although 

not statistically significant, increase between sample location 8 and 7 (Figure 6.7) and the 
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median marker concentrations decrease between sample location 7 and the bottom of the 

catchment (Sample location 1, Figure 6.7). 

While bathing water failures were only observed while CSOs were discharging in heavy 

rainfall, the wide-spread human pollution in the catchment suggest that any bathing water 

failures occurring when CSOs were not overflowing must be due to either urban diffuse 

pollution sources (misconnections) or animals, such as dogs and horses which are 

exercised regularly, defecating directly on the beach. Although misconnections are 

unlikely to lead to a failure according to the BWD on a given day, a ‘perfect storm’ 

scenario where FIOs from misconnections survive for a prolonged period in sediments 

(Craig, et al., 2004; Anderson, et al., 2005), and when a rainfall event which is not large 

enough to cause CSOs to discharge, but could mobilize sediments and transport FIOs 

associated with those sediments to the bathing water sampling location. Reducing the 

number of misconnections entering the Seaton Burn may, in addition to improving river 

water quality, increase the robustness of the bathing water classification.  Further work to 

understand the survival and transportation of E.coli and pathogens in sediments would be 

beneficial. This would allow future studies to apply modelling efforts to determine the 

potential for misconnections to contribute to bathing water failures in this manner.   

 

 Conclusions and recommendations 

The RodA gene gave a reasonable correlation to the culturable E.coli counts. Further 

testing of this gene in environmental samples is necessary before it could be considered as 

a regulatory replacement for culturable counts. Nevertheless, it appears to be a good 

target for MST studies looking to relate MST methods to FIOs rapidly.   

Future studies using marker-based MST should consider the use of human-associated 

biomarkers alongside other markers, such as HF183, particularly where low levels of 

pollution are expected since the use of a single marker resulted in 10% more false 

positive results. 

Community-based MST using SourceTracker (Knights et al. 2011) was noted to be more 

sensitive than marker-based MST methods and the proportion of the microbial 

community attributed to human sources showed a good correlation with E.coli assays 

(cultured E.coli rs = 0.693, p = 9.91x10-14, and RodA gene rs = 0.665, p = 1.65x10-12). The 
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good, significant correlation between both HF183 and Hu100 and community-based MST 

(rs = 0.686, p = 1.70x10-13, and, rs = 0.467, p = 4.45x10-06, respectively) supports the use 

of community-based MST in future studies, particularly where low levels of pollution 

may limit the usefulness of markers.  

Although urban areas account for only 2.5% of land use, urban pollution accounted for 

almost all of the faecal pollution observed. Misconnections were identified as being wide-

spread in the Seaton Sluice catchment. Community-based and marker-based MST was 

used with CSO monitoring data to identify human pollution throughout the catchment 

when no inputs were expected. Misconnections should be added to the list of pressures in 

the Seaton Sluice catchment, and river basin management plans should be updated 

accordingly.  
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Chapter 7 Embedding MST in the UK water industry 

 

 Introduction 

The UK water industry is in need of tools to inform decisions about the investment and 

management of environmental waters. The quality of environmental waters has improved 

significantly since the implementation of the Water Framework (2000/60/EC, European 

Commission, 2000) and Bathing Water Directives (2006/7/EC (CEU, 2006)). However, 

there is still work to be done. Only 62% of bathing waters are classified as ‘Excellent’, 

significantly less than the European average of 85% (EEA, 2015). Similarly, the quality 

of UK surface waters, graded by the WFD (2000/60/EC), remains concerning with only 

36% of UK rivers achieving good status (Priestley, 2015), a figure which has remained 

stagnant for ~ nine years. On the part of the water industry, previous improvements to 

water quality have largely been achieved through capital investment in sewage 

infrastructure (Figure 1.1) for example: diverting sewage away from smaller, problematic 

treatment plants; installing increased storage to prevent spillages from combined sewer 

outfalls (CSOs) and pumping stations; and maintaining of CSOs. Investing in capital 

assets, however, is likely to result in diminishing returns on investment. As we remove 

the major problems, other more diffuse sources such as septic tanks and misconnections 

are likely to present greater challenges. Identifying and mitigating diffuse pollution 

remains difficult, and could exacerbate the level of investment required to achieve water 

quality improvements. 

Microbial source tracking could be an important tool to help inform investment decisions 

and more clearly determine the pressures on a waterbody to efficiently improve water 

quality. However, microbial source tracking is currently used little in the water industry, 

and MST with sequencing not at all. There may be a number of reasons for this. The 

technology and expertise required to conduct MST, such as qPCR and DNA sequencing, 

are not readily available to the water industry, expertise is required to interpret MST data 

correctly, and little is known about the economic costs and benefits of MST making it 

difficult to build a business case or understand how best to integrate MST into daily 

workflows.  
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The aims of this chapter are to: 

 Evaluate the options and costs associated with integrating MST into the daily 

operations of Northumbrian Water (NWL).  

 Identify the market opportunities for MST to help build a business case for the use 

of MST in the water industry. 

 Consider how the water industry could take full advantage of MST methods in the 

future. 

To achieve these aims the market opportunities for MST are discussed. The costs of using 

the MST techniques developed and evaluated during this thesis are then used to compare 

options to integrate MST into Northumbrian Water’s operations.  

 

 Methods 

Options for and costs associated with the integration of MST methods into Northumbrian 

Water operations.  

Three options to integrate MST methods into NWL were explored (Table 7.1), each with 

a different degree of internalisation into NWL operations. While there are a large number 

of options to export different techniques to outside laboratories, the three options which 

represent full internalisation of methods, exporting all methods and partially outsourcing 

methods were explored.  
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Table 7.1 The three options considered in this study to integrate MST into Northumbrian Water workflows 

Option Description Requirements 

Fully internalize 

all MST methods 

This would involve NWL carrying 

out all aspects of an MST 

investigation including planning, 

sampling, sample processing, MST 

techniques and analysis and 

reporting of results. 

Capital investment in 

laboratory equipment 

Increased operational costs 

from labour and equipment 

maintenance. 

Investment in training of 

staff in laboratory 

techniques and MST 

analysis/reporting. 

Partially 

outsource MST 

methods 

This would allow NWL to 

undertake the planning, sampling 

and sample preparation before 

exporting the sequencing and 

qPCR/ PCR methods to a 

commercial laboratory. NWL 

would then maintain responsibility 

for analysis and reporting of data. 

Capital for the necessary 

equipment for sample 

preparation is currently 

owned by NWL   

Investment in training and 

expertise in MST analysis 

and reporting. 

Fully outsource 

MST methods 

This would either involve NWL 

completing sampling and a 

contractor completing the rest of 

the MST investigation. All 

laboratory, analysis and reporting 

are undertaken by an external 

service provider. 

No additional capital or 

operational requirements. 

 

 

For each option, the costs were estimated for three MST methods used during this thesis 

(Figure 7.1). The culturing and gene detection method is not recommended for the water 

industry due to the large variation in marker sensitivity (Chapters 4 and 5)  This method 

requires considerable labour to culture and pick a large number of isolates prior 
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to screening for markers. In addition, it was difficult to find any commercial laboratories 

who would offer this service. The culturing and picking technique was, therefore, not 

considered in the costing of options involving outsourcing of techniques. 

The capital costs of integrating each technique, laboratory consumable costs and the costs 

of exporting laboratory techniques to service providers were estimated from quotes or 

supplier/provider websites. The actual quotes are not disclosed since they may contain 

business sensitive and/or client specific information, however, a cost sheet (downloadable 

here) is available which can be easily updated from quotes, allowing anyone planning an 

Figure 7.1 Three possible routes to identify sources of faecal pollution in river and seawater samples: Community 

Analysis; qPCR detection of markers; culturing and detection of E.coli markers. 

https://drive.google.com/file/d/1N4EZ_s5P099Z-I-ZnS9sOndUOIAv_pFm/view?usp=sharing
https://drive.google.com/file/d/1N4EZ_s5P099Z-I-ZnS9sOndUOIAv_pFm/view?usp=sharing
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MST investigation, or considering integrating MST into their own workflows to quickly 

repeat this analysis.  

Consumable costs were estimated, taking into account the number of samples which 

could be processed by each consumable item. For example, during qPCR 24 samples can 

be processed simultaneously on a single 96 well plate. The cost of the plate remains the 

same, even if only 4 samples are processed simultaneously. The optimum number of 

samples for each consumable and the costs per sample calculated.  Figure 7.2 shows how 

the consumable cost per sample (Figure 7.2, top) and total consumables cost (Figure 7.2, 

bottom) vary with sample size for qPCR based MST methods.  

 

 

Figure 7.2 Variation in the cost per sample (top) and total consumable cost (bottom) with sample size for 

consumables required to perform qPCR based MST. 
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To calculate labour costs, the staff time required to undertake each technique were 

conservatively estimated based on personal experience gained during this project. An 

hourly wage of £10 h-1 (~£18,000) was assumed. The optimum number of samples was 

estimated by considering the maximum number of samples which could be 

simultaneously processed during a rate-limiting step in each MST protocol. This was used 

to estimate the staff cost with varying sample size. For example, in DNA extraction only 

24 samples can be inserted into a machine which takes 25 minutes to run, and little else 

can be achieved during that time. Batches of 24 samples was assumed to be the optimal 

number of DNA extractions. 

The options were considered based on the cost of implementing each option with each 

technique where possible. This approach was chosen since there may be little 

commercialisation value for the research and the selection of which techniques to use will 

vary depending on the aims of individual projects and the logistics of sampling. A 

number of assumptions were necessary for costing and comparing the options in Table 

7.1. These include: 

 The additional sampling required to undertake MST investigations is constant 

between all three. While the actual cost of sampling will vary with the scope and 

scale of each project and the selection of MST techniques, these costs will be 

reasonably consistent across different options. 

 The laboratory staff-time is valued at £10 h-1, approximately £18,000 yr-1. 

 There is no automation of laboratory processes. Many of the laboratory processes 

can be automated with greater capital expenditure. It was assumed that sample 

processing was all done by hand where possible.  

 Additional personnel and training requirements were not taken into account since 

there may be staff with previous expertise in these techniques, and it would be 

difficult to evaluate the current staff capacity to undertake these techniques, 

particularly on an ad hoc, project by project basis.  
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 That 150 samples per sequencing run on an Illumina Miseq would give adequate 

sequencing depth (This represented the sample sizes used during this project 

(Chapter 6).   

 The staff training required to interpret these results were not taken into account 

since no one offers this training in the UK, and there may already be in-house 

expertise which remains unknown. 

 

7.2.1 Market opportunities 

To evaluate market opportunities, willingness to pay descriptors were taken from a recent 

survey and the predicted value of water quality to the local economy was used.  

 

 Results and discussion 

7.3.1 Option 1 

To carry out all MST methods internally, Northumbrian Water would require ~£230,000 

of capital investment in additional laboratory equipment (Table 7.2). The required capital 

was estimated based on the additional equipment required. For example, the laboratory 

already possesses incubators and a vacuum system, the costs of these items are therefore 

excluded.  

 Table.7.2. Summary of the capital costs required for each technique in option 1 -  to fully internalize all MST methods 

Technique Capital cost 

(£) 

qPCR 59,272 

Sequencing 180,608 

qPCR and Sequencing 210,452 

Culture E.coli and identify human markers using PCR 17,727 

Total (Three techniques) 228,180 

 

It is worth noting that this does not include the additional training requirements, nor the 

cost of additional auditing required by the United Kingdom Accreditation Service 

(UKAS), to maintain these standards across Northumbrian water laboratory facilities. The 
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addition of new methods will likely result in the need for a reassessment. Case studies 

provided by UKAS suggest that an initial assessment can cost between £7,000 and 

£15,000 (UKAS, 2018). 

QPCR has the lowest operational costs independent of sample size, requiring the least 

staff time to run. At smaller sample sizes (< 33) E.coli culturing methods are less 

expensive than sequencing, however, if sample sizes exceed 33 the high throughput 

nature of sequencing makes it cheaper than the relatively low throughput culturing 

methods.  

 

Figure 7.3 Operational costs for each source tracking technique if methods are fully internalised 

 

  

While qPCR is the least expensive technique on a per sample basis, further consideration 

is required. A single qPCR run will only identify a single source, or up to three sources if 

a multiplex reaction is used, although a decrease in sensitivity can be expected. 

Sequencing can be used to identify multiple sources simultaneously and therefore if more 
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than 80-100 samples are to be processed to identify three different sources of pollution, 

sequencing may be comparable to qPCR in terms of operational cost. It is worth noting 

that using a single qPCR marker, or even a single technique, is rarely advisable and 

sequencing alongside qPCR may be particularly useful. 

Identifying human pollution with E.coli biomarkers by traditional culture-based 

techniques (as opposed to qPCR) is a lot more expensive than qPCR, and when 

processing >40 samples is comparable in cost to sequencing. This is due to the laborious 

nature of this technique.  

This option, where Northumbrian Water conducts all analysis in-house, carries the largest 

business risk since it requires the largest capital investment. There is also business risk 

with the current rapid development of sequencing technology since the technology may 

be outdated quickly.  It would also require the largest investment in personnel in terms of 

training and the additional time required.  

 

7.3.2 Option 2 

In order to outsource the sequencing and qPCR/ PCR techniques, Northumbrian Water 

would conduct filtration and DNA extraction steps (Figure 7.1), before sending the 

extracted DNA for analysis. There would be some capital costs associated with the 

equipment required for DNA extraction and additional filtration equipment.  

              Table 7.3. Summary of the capital requirements of option 2 – to partially outsource MST methods 

Technique Capital cost 

(£) 

Membrane filtration 2,826 

DNA extraction and quantification 26,601 

Total 29,427 

 

The capital costs of option 2 (Table 7.3) are much lower than internalising all laboratory 

processing (Table 7.2), the operational costs are higher (Figure 7.4). It is worth noting 

that the additional transport costs to ship samples from Northumbrian Water to the 

commercial laboratory are not taken into account here, although these are likely to be 

nominal relative to the cost of laboratory testing.   
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Figure 7.4 Operational expenditure (including staff time) of each technique if the main analysis is outsourced to a 

commercial laboratory. 

  

 

7.3.3 Option 3 

To fully outsource all microbial source tracking techniques, Northumbrian Water would 

only be responsible for the membrane filtration of samples, which is currently supported 

at the moment, and transport of samples to a commercial laboratory. The total 

expenditure (totex) costs, are shown per sample in Figure 7.5, although it is important to 

note that while commercial laboratories can carry out the techniques, it is unlikely that 

they will have expertise in conducting microbial source tracking investigations. It is also 

worth noting that few commercial laboratories are familiar with environmental samples, 

most commercial laboratories are optimized to process medical samples (blood, tissues, 

etc.). Only a single laboratory (Environment Agency, 2018b) employs MST in England, 
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and currently only use qPCR. It is also worth noting that they also do not provide any 

advice on their reported results. Northumbrian water will, therefore, still require some in-

house expertise to interpret the results to inform decision-making.  

 

 

Figure 7.5 Operational expenditure (opex), including staff time, of option 3, with different sample sizes  

 

7.3.4 Comparison of options 

To compare options, the variation in totex, capital plus operational expenditure, of each 

option was calculated. The variation in totex with sample size was used to compare 

options. Sample size was chosen as the comparator, as opposed to time since this a 

reasonable proxy for the amount of MST work which may be undertaken by 

Northumbrian Water. Additionally, the cost of MST work depends directly on the size 

and number of projects which are undertaken and is reasonably easy to estimate. 

If using only qPCR based techniques, option 2 appears the most cost-effective. After 

processing 374 samples, option 2 is more cost-effective than option 3 (Figure 7.6). 
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However, internalising all techniques (option 1) only becomes more cost-effective than 

option 2 when >1,300 samples are processed. This is due to the large costs associated 

with the staff time required to undertake DNA extraction which NWL staff undertake in 

both options 1 and 2.  

 

Figure 7.6 Comparison of the total expenditure (totex) for each option only using qPCR and sequencing-based 

techniques (top) and only qPCR techniques (bottom). 

  

When both qPCR and sequencing techniques are considered, 618 samples are required to 

make option 2 more cost-effective than option 3, i.e., if Northumbrian Water will process 

more than 618 samples for sequencing and qPCR, 3,000 samples would need to be 

processed before option 1 was more cost-effective than option 2. This is due to the costs 

of the large amount of staff time required to undertake DNA extraction it is worth 

investing in DNA extraction equipment.  

Internalising operations (option 1) becomes more cost-effective than options 2 and 3 

when more than 4200 and 3000 samples have been processed, respectively. This is due to 

the higher capital investment required in option 1 (Tables 7.2 and 7.3).   
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7.3.5 Comparison of options in case studies 

As a comparison, Table 7.4 shows the costs of conducting the Morland (Chapter 3) and 

Seaton (Chapter 6) case studies using each option.  

Table.7.4. Estimated operational costs of the case studies undertaken in this thesis for each option to integrate MST 

into Northumbrian Water’s workflows 

Case 

Study 
MST Methods 

Number 

of 

Samples 

Option 

1 Cost 

(£) 

Option 

2 Cost 

(£) 

Option 

3 Cost 

(£) 

NLS* 

Cost 

(£) 

Morland 

(Chapter 3) 

Culturing and 

PCR 

 

Sequencing 

36 

 

46 

2,190 

 

2,140 

ND 

 

4,470 

ND 

 

5,600 

ND 

 

NA** 

Seaton 

Sluice 

(Chapter 6) 

qPCR single 

marker 

 

Sequencing 

168 

 

169 

2,500 

 

5,790 

3,280 

 

11,850 

9,940 

 

15,992 

25,200 

 

NA** 

*National Laboratory Service 

**Sequencing is not available as a service through the National Laboratory Service 

ND Not determined as no providers could be found which offer this service. 

 

While the costs shown in Table 7.4 show clear operational savings from internalising 

MST methods, it does not include capital investment. It does, however, highlight how 

after an initial capital investment, making business cases for the use of MST becomes 

much easier.  

 

 Summary 

The most appropriate MST methods to use depend on the intended use. However, the 

techniques considered here are established (qPCR) or emerging (Sequencing and E.coli 

biomarker) versatile techniques for most MST situations. The use of both qPCR and 

sequencing is recommended for MST studies. Using only qPCR risks false positive 

results since an entirely host-specific marker has not been identified. Additionally, the 

variability of markers between communities reduces the confidence in their use. 

Sequencing is able to detect a greater range of potential pollution sources without the 

development of new methods and may be more sensitive to pollution sources. However, 
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using sequencing alone only gives us a qualitative understanding of the contribution of 

faecal sources, when a quantitative value is often required to make investment and 

management decisions. Using both sequencing and qPCR, therefore, appears to be a 

better option, particularly since using qPCR in addition to sequencing results in a 

relatively small increase in operational costs. 

Determining the best option for Northumbrian Water to integrate MST into their 

operations is difficult and depends on the scale and scope of future projects. If MST is to 

be used only occasionally, for example when a bathing water sample has failed (only 

three samples in 2018), then option 3, outsourcing all laboratory techniques, is likely to 

be the most suitable option. If larger, catchment characterisation style projects are 

foreseen then option one or two will be most valuable.  

Table 7.5. Other risks and benefits associated with each option to integrate MST into Northumbrian Waster’s 

workflows 

Option Capital Costs Opportunities Risks 

1 £228,180 

Opens new 

technology to other 

areas of the business 

Staff development 

Commercialisation 

opportunities 

Rapid advancement in sequencing 

technology can make investments 

out of date quickly.  

Potentially unexpected costs from 

increase laboratory inspections.  

2 £29,427 

Staff development Difficult to maintain knowledge 

level in staff if techniques are not 

used regularly. 

3 £0* 

 Lack of consultancies offering MST 

reduces the choice of service and 

could lead to poor quality/ expensive 

service. 

Difficult to maintain knowledge 

level in staff if techniques are not 

used regularly. 
*This does not include the necessary staff time. 

Considering totex, Northumbrian Water would need to process more than 3,000 samples 

to make investing in qPCR and sequencing equipment cost-effective (i.e., selecting option 

1). MST investigations involve a range of sample sizes of 24 (Hughes et al., 2017) to over 

400 (Nguyen et al., 2018), depending on the type of MST investigation, the size of the 

water body or catchment and the resources available. Northumbrian Water would, 

therefore, need to conduct roughly between 10 and 100 MST projects before option 1 

becomes cost-effective. However, there are a number of factors other than cost to 

consider (Table 7.5).  While option 1 carries the largest business risk, requiring the largest 
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capital investment, this risk is small due to the small level of capital investment required 

(£228,180, Table 7.5). Investing in laboratory techniques such as qPCR and sequencing 

makes this technology available to other areas of the business, not just for MST. Other 

areas of NWL could benefit from qPCR and sequencing technology, for example, using 

these techniques to compliment flow cytometry in assessing the quality of drinking water 

or to assess the ability of activated sludge plants to effectively remove nutrients. In 

addition, regulatory monitoring of bathing and drinking water may make use of PCR 

based methods in the future, for example, the USEPA has accepted the use of qPCR to 

enumerate enterococci in environmental waters since 2012 (USEPA, 2012). Having 

expertise in these areas prior to changes in regulation could be invaluable to 

Northumbrian Water, giving Northumbrian Water greater insight and sway in any 

consultations. This could also be an opportunity for Northumbrian Water to establish 

themselves as industry leaders in the use of MST and molecular techniques would bring 

reputational advantages and fit well with the NWL vision of being the leading provider of 

water and wastewater services (NWL, 2018). 

Although option three presents the lowest financial risk, this option becomes less 

appealing when considering which subcontractor could do the work. Currently, only the 

National Laboratory Service (National Laboratory Service, 2018) offer MST using qPCR 

as a commercial service in the UK. This service gives a report for the total abundance of a 

marker in each sample and no advice is given regarding what these values mean. In 

addition, option 3 has the highest operational costs (Figure 7.5) and no sequencing service 

is offered. It would, therefore, be difficult to conduct meaningful MST investigations 

through option three at present. This highlights the potential of option 1 to develop MST 

as a commercial service within Northumbrian Water.  

 

 Market Opportunities for MST 

7.5.1 Market Opportunities for the water industry (wastewater) 

Evaluating the market opportunities for MST is challenging. MST techniques are often 

used to inform decision making and, therefore, some of the benefits of MST come from 

money not invested as much as money invested. Challenges to value MST also stem from 

the difficulty in valuing any environmental improvements which occur from decisions 

taken as a result of MST. Approaches to value environmental improvements, such as 



199 

 

ecosystem service approaches, are often limited since they depend on assessing 

stakeholder’s perception of the value of environmental improvements for example, 

through willingness to pay surveys.  

For recreational waters, studies have taken a health-based approach, estimating the 

disease burden in terms of healthcare costs and lost work days, however, there is a lack of 

these studies in the UK. A disease burden of > $3.3 million per year (Dwight et al., 2005) 

was estimated for users of two California beaches, although visitor numbers and the cost 

of healthcare are likely to be much less in the North East of the UK. These studies also 

fail to take into account the positive health benefits of using recreational waters (1.2 

Benefits of improving water quality) which could increase the value of bathing waters. 

What is possibly the most comprehensive economic evaluation in the UK (Phillips et al., 

2018), reported beaches in Scotland to be worth between £0.8 million and £4 million per 

year to the local economy (Phillips et al., 2018) and while the quality of bathing water did 

not seem to affect the frequency of beach visits, poor water quality did diminish the 

quality of a beach visit. A previous willingness to pay study seems to support this value. 

Southern Water customers, both household and business, valued an improvement in a 

single bathing water site to good or excellent as between £642,000 and £1,048,000 per 

year (Accent, 2013).  In the UK, of the 626 designated bathing water sites, only 62% 

achieve excellent, while 20 sites remain poor. This suggests that there are around 238 

sites which could benefit from the use of MST which may be worth more than £190 

million yr-1 to local economies, assuming a worth of £0.8 million yr-1.  

The value of surface water is more difficult to ascertain. Across Europe, over 50% of 

water bodies failed to achieve good status by 2015, a key milestone of the Water 

Framework Directive (WFD). An assessment of the implementation of the WFD 

highlighted the importance of correctly identifying the correct pressures on a water body 

(EC, 2015). Voulvoulis et al., (2017) report that 21 out of 27 Member States showed no 

clear links between pressures suggested to be impacting a waterbody and the programme 

of measures to monitor and alleviate these pressures. A poor understanding of the 

pressures on a water body could lead to wasted investment in attempts to remediate these 

pressures. For the Northumbria river-basin area alone, this investment is predicted to be 

around £820 million over the next 37 years, with the Northumbrian Water taking £440m 

of this financial burden. The efficient identification of pollution and its source is, 

therefore, critical to ensure that investment and management decisions are economically 
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justified and evidence-based. The 79% of surface waters failing to achieve good status, 

therefore, also provide a market opportunity for MST. Southern Water customers valued 

an improvement in river water quality to good or high status between £14,500 and 

£23,110 per km of river (Accent, 2013).  

For local water and wastewater companies, the use of MST techniques to improve water 

quality also provides opportunities to improve their reputation. Water companies are 

intricately linked to water quality, and often blamed, fairly or otherwise, for poor 

environmental water quality.  There is, therefore, an opportunity to improve the 

reputation of Northumbrian Water by improving environmental water quality. Although 

sufficient water quality is adequate on a regulatory level and the fines are typically low 

where bathing water quality fails due to sewage pollution, poor or sufficient bathing water 

quality presents a risk to water companies’ reputation. 

For the water industry, justifying the use of MST to target bathing water quality 

improvements appears to be easier than river water quality improvements. Customers 

value the quality of bathing waters much more than river waters. However, typically, 

complex catchments discharge to bathing water sites, and the use of MST investigations 

will identify sources which affect both bathing and river water quality. Justifying the use 

of MST to improve bathing water quality from poor/satisfactory to good/excellent 

appears to be straight forward. However, customer willingness to pay for maintaining 

water quality, or improving the resilience of water quality is less certain.  

 

7.5.2 Other markets for MST 

There appears to be a large, currently untapped, potential for the use of MST to reduce the 

load on drinking water abstraction points or identify the sources of pollution entering 

groundwater sites. This could be through the management of catchments feeding 

abstraction points of the identification of leaky sewers, for example. 

A variety of market opportunities exist, outside of the water industry, for MST including 

surveying food items for faecal contamination (Li, 2014), identifying the source of 

contamination of marine waters with non-native species, and identifying the sources of 

pollution in groundwater aquifers. 
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7.5.3 Current availability of MST in the UK 

Currently, only two UK organisations carry out MST, the Environment Agency and the 

Scottish Environmental Protection Agency (Personal communication with Nathan 

Critchlow-Watton, April, 2018). The Environment Agency offer a commercial service, 

through their National Laboratory Service (National Laboratory Service, 2018), to detect 

some sources of faecal pollution through the detection of markers by qPCR (Figure 7.1) 

and charge an in-house rate of ~£150 per sample (Personal communication with Hannah 

Westerby, Environment Agency 23/5/18), suggesting there is some level of demand for 

MST. 

Currently, the Environment Agency and the Scottish Environmental Protection Agency 

undertake MST using qPCR based techniques. Both agencies only undertake this work 

where bathing water quality is poor. The Environment Agency take additional samples 

which are tested using MST if a sample has a high bacterial count; the Scottish 

Environmental Protection Agency target catchments, which are feeding poor quality 

bathing waters, with a wider sampling campaign. Only the latter method is likely to result 

in joint benefits to bathing river water quality. 

 

 Conclusions and recommendations 

The use of both qPCR and sequencing techniques is recommended. QPCR can identify a 

single source with a single marker and the qPCR method must be repeated if more than 

~3-4 different sources are to be used. In comparison, sequencing allows the identification 

of multiple sources simultaneously, and for the identification of sources where a suitable 

marker for using qPCR has not been identified.  

There is a range of options to incorporate qPCR and sequencing for MST into the daily 

operations of Northumbrian Water. The option to fully internalising MST techniques 

seems the most advantageous since, although this presents the largest business risk, the 

capital expenditure is <£300,000, and this option presents a range of other opportunities 

such as allowing other areas of the business to access these techniques to enhance 

innovation. Undertaking between 10 and 100 MST studies would be required to recoup 

the capital expenditure for option one through reduced operational expenditure, compared 

with option two.  
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Evaluating the benefits of MST in monetary terms is difficult. Further research into the 

monetary benefits of improving water quality from good to excellent, for example, would 

be beneficial to the water industry. Willingness to pay surveys show customers valued 

improvements in the quality of coastal bathing water over river waters used for bathing. It 

is recommended that Northumbrian Water, therefore, use a catchment-based approach, 

carrying out MST on a catchment basis, when investigating the sources of reduced 

bathing water quality. This will allow the simultaneous identification of sources 

impacting river water quality.  
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Chapter 8 General discussion 

 

The overall aim of this research was to evaluate the performance of two emerging MST 

techniques, E. coli biomarkers and community analysis, for use by the UK water industry, 

and assess the feasibility of their incorporation into workflows for Northumbrian Water 

Ltd.  

 

 E.coli biomarkers 

The Hu100 biomarker, developed using a database approach (Chapter 4), is the best 

E.coli marker for use in the North East of England since, although the absolute mean 

abundance was not significantly different to other markers, it most often had the highest 

average sensitivityisolate. The similarity in absolute abundance between the H8, Hu100, 

and H24 E.coli markers and the HF183 marker reflects previous findings (Hughes, et al., 

2017), although, the low proportion of E.coli containing H8 (8.25±2.68%, Table 4.7) does 

not support suspicions  that the high abundance is due to cross-reactivity with similar 

sequences found in Yersinia and Klebsiella spp.. The large variability in the abundance of 

markers (Figure 4.3) and proportion of E.coli containing a marker (Table 4.7) suggest that 

there is no single, ideal marker for global or national use; instead markers should be 

evaluated before use in a catchment study. This variability is likely to be exaggerated 

across small, decentralised WWTPs, which were targeted in this study. Nevertheless, this 

reflects problems likely to be encountered in catchment studies, where small communities 

contribute to WWTPs and contaminate a water body; i.e., septic tanks or overflows from 

CSOs serving sewage from small populations. The large variability is likely to be the 

reason why the Hu100 marker was around an order of magnitude less abundant than the 

HF183 marker in the Seaton Sluice catchment study (Chapter 4). The variability in the 

sensitivityisolate of the H8 marker, which has been observed at an international scale (Table 

3.1), is also evident on a local scale (Table 4.7), suggesting that all markers will exhibit a 

similar variation wherever they are used. Indeed, further studies indicate some global 

variation through the use of the Hu100 and H8 markers in Tanzania, Thailand and Nepal 

(Acharya et al., In prep; Mrozik et al., 2019). Local variability is problematic for the 

water industry if MST is to be used as a quantitative tool to prioritise catchments or areas 

for investment. In the Morland catchment, the first time that the H8, H12, H14 and H24 
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markers (Gomi et al., 2014) were used in the UK, the use of the H8 marker alone would 

have resulted in a large number (28/31) of false negative results, which meant that 

conclusions relied on the H24 and H14 markers, with the lowest specificity (93%) and the 

highest sensitivities. 

The interrogation of a database, built with 263 E.coli genomes (Chapter 4), supported the 

order of marker sensitivities determined in vitro (Chapter 3), namely, H24 > H14 > H8 > 

H12; and also suggests that the trade-off in sensitivity and specificity noted in Chapter 3 

is inherent to CDS within the E.coli genome (Figure 4.2). Interestingly, phage infecting 

Enterococcus and Bacteroides hosts exhibit similar performance characteristics to those 

observed in E.coli CDS, with an inverse relationship between the specificity and 

sensitivity (Purnell, 2011) and geographical variability in performance (Payan et al., 

2005). Interrogation of the E.coli database and the trade-off between sensitivity and 

specificity suggest that while other human-associated CDS are present in E.coli genomes, 

there are unlikely to be any significantly better MST markers; Hu100 had the highest 

sensitivity (among CDS with a specificity >95%), and sensitivity, rather than specificity, 

has been noted as limiting the efficacy of MST markers (Chapter 3) or organisms 

(Purnell, 2011) where this sensitivity-specificity trade-off exists.  

The low sensitivityisolate of E.coli markers (3 – 50%, Table 4.7) limits approaches which 

can be used for their detection. Using qPCR to quantify the abundance of marker genes 

from DNA extracted from environmental samples is, therefore, preferable to culture-

based techniques, although, molecular methods such as qPCR also have limitations. 

Using current regulatory approaches, which are culture-based, to identify E.coli 

biomarkers, such as picking cultured isolates for PCR or qPCR (Chapter 3) could lead to 

false negative results unless a range of biomarkers are used since the sensitivity of all four 

biomarkers was 69%. Although the method used in Chapter 3, culturing and picking 

E.coli isolates before qPCR, sped up the process slightly, it still proved very expensive 

(Chapter 7), and would probably be unfeasible for use in a regulatory context due to the 

labour required (Porter, 2016). For the water industry, qPCR detection of FIOs is unlikely 

to be included in the next Bathing Water Directive following advice from the WHO 

(WHO, 2018). This mismatch of techniques used for MST and regulatory monitoring may 

be a source of concern for the water industry; and the WHO reported concerns about 

discrepancies between faecal indicator counts determined with culture-based and 

molecular techniques (WHO, 2018). These discrepancies are likely to be due to the 
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difference in degradation rates of culturable organisms and DNA in environmental waters 

(Brown and Boehm 2015; Brooks and Field 2016); however, they may also be due to a 

lack of specificity or the multi-copy nature of the common gene targets (e.g., the 23S 

rRNA gene), leading to an overestimation by molecular methods (Chern et al., 2011). 

Nonetheless, several studies have observed a good relationship between culturable and 

molecular methods to quantify FIO (Noble and Weisberg, 2005; Oliver et al., 2016; 

Hassard et al., 2017). In my study, there was a good relationship (Spearman’s ρ = 0.846, 

p = <2.2x10-16) between the RodA gene and culturable E.coli, which, can increase 

confidence in the link between conclusions drawn from MST assays quantifying DNA 

targets, such as qPCR and sequencing, and sources of FIOs. Future studies are advised to 

use correlations between the concentrations of FIO determined through qPCR and 

regulatory techniques to improve confidence and acceptance of MST results. This is 

especially pertinent when the link between MST conclusions and culturable FIO is 

paramount, such as under the BWD (2006/7/EC) or epidemiological studies. 

 

 Community-based MST 

Overall, this work supports the use of community analysis as an MST technique, 

particularly for use in the UK water industry. Expected sources were consistently 

identified and differentiated from other sources. Faecal taxon libraries (FTLs) form the 

basis of community analysis with SourceTracker; assessing the ability of an FTL to detect 

and differentiate sources of pollution is paramount to improve confidence in conclusions 

drawn from community analysis, particularly where investment and management 

decisions may be based on these conclusions. Simulating microbial communities allowed 

the effect of including, excluding and combining sources within the FTL to be evaluated. 

Building an FTL for the North East of England using 14 sewage samples seems 

reasonable; however, caution is necessary when using the FTL to detect sewage. The 

dissimilarity of microbial communities from potentially similar sources, such as sewage 

(Figure 5.10), could lead to a substantial underestimation in the predicted levels of 

contamination. Previous suggestions to combine similar sources (Staley et al., 2018) 

should be approached with caution; while combining similar sources can reduce the 

likelihood of false positive results, it may also result in an underestimation of some 

sources (e.g., sheep sources, Figure 5.8). Assessment of an FTL is vital when comparing 
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sources; the differences observed in predicted values of different sources (Figure 5.10) 

should be a concern where investment and management decisions are based on findings.  

For example, a 25% predicted contribution of cow and dog sources, using the FTL in this 

study, would actually equate to an expected contribution of ~23% and 45% of dog and 

cow sources, respectively. Future MST studies are, therefore, advised to use similar 

methods to those in this study (Chapter 5), to evaluate the impact of their FTL on 

comparisons between sources. The importance of using local sources of pollution for FTL 

construction suggests that a change in the approach of MST researchers is necessary 

when using community analysis methods. While the traditional approach to library 

dependent MST, where a bigger library size is better, has been transposed to community-

based MST (Brown et al. 2017; Staley et al. 2018), this approach does not necessarily 

translate to community-based MST. A larger library should, instead, be seen as only 

necessarily where samples of the actual sources of pollution cannot be obtained. 

 

 Comparison of biomarkers and community-based MST 

The catchment studies presented here (Chapter 3 and Chapter 6) are currently two of only 

three studies which have used human-associated markers in conjunction with community 

analysis and, while more case studies are required, the good agreement between 

community analysis and biomarker MST results is encouraging.  Moreover, the high 

sensitivity and specificity of community analysis techniques (Chapter5) were essential in 

confirming the presence of human pollution, especially where conclusions would 

otherwise rely on markers with a lower specificity to human hosts (e.g., the reliance on 

the H14 and H24 markers in Chapter 3) that would otherwise miss such pollution.  

Community-based MST is limited to reporting the relative contribution of sources to the 

microbial community which is a limitation for studies assessing health risk, through 

QMRA, for example. Nevertheless, the good correlations between marker and 

community-based MST (Table 7.4) support the use of community-based MST as a 

decision support tool.  

There was a reasonable agreement between community analysis and E.coli biomarkers. 

When human sources dominated, and markers were detected through qPCR, a good and 

significant relationship was observed (ρ = 0.467, p <2.2 x 10-16, Table 7.4); where non-

human sources were dominant, and marker detection involved a culturing step, the 
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relationship was, only marginally, non-significant (ρ = 0.32, p = 0.0577, Appendix B.4). 

The non-significant relationship in the Morland catchment is also likely to be influenced 

by the differential decay rates of culturable E.coli and DNA in the environment (Brown & 

Boehm, 2015; Wanjugi et al., 2016; Korajkic et al., 2014), as biomarkers were identified 

from cultured E.coli isolates (Table 3.4). The higher sensitivity of community analysis 

compared to other markers observed in both catchment studies (Chapter 3 and Chapter 6) 

is particularly useful for the UK water industry who are likely to be dealing with 

increasingly lower levels of pollution as environmental standards are tightened in the 

future. Moreover, this improved sensitivity is essential for identifying urban diffuse 

pollution which can be challenging to detect. 

 

 Urban diffuse pollution 

The ubiquity of urban diffuse pollution in both catchment studies (Chapters 3 and 6) 

should be a concern for the water industry, environmentalists, and policymakers. Urban 

pollution was observed in all samples taken in a largely rural catchment (Morland, 

Appendix B.2, Figure B2.3), and was the dominant source of pollution (Figure 7.6 and 

Figure 7.9) in a semi-rural catchment where urban areas accounted for only 2.5% of land 

use (Table 6.1). In the Seaton Sluice catchment, this pollution was attributed to sewer 

misconnections, since combined sewer overflows (CSOs) are monitored in the catchment, 

and observations during sampling did not reveal any problems with the CSOs; however, 

the widespread sewage pollution could also be attributed to leaky sewers, or unknown and 

poor performing septic tanks. Identifying and prioritising the search area for locating 

pollution sources, particularly diffuse pollution, is valuable (Ellis & Butler, 2015), not 

least to the water industry - misconnections are estimated to cost the water industry £235 

million each year (Royal Haskoning, 2007). Modelling efforts suggest that elimination of 

misconnections from toilets and reducing misconnections from other appliances to less 

than 2% may be enough to improve the biological oxygen demand and ammonia elements 

of water quality, although, phosphorus would likely still remain a problem unless all 

misconnections could be eliminated (Ellis and Butler, 2015). However, this requires 

identification of priority areas where estimates suggest that up to one in five UK 

properties have misconnections (Environment Agency, 2007). Similar difficulties exist in 

estimating the contribution of phosphorus to freshwater resources from septic tanks.  A 
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study by Natural England (May et al., 2015) notes that while a non-negligible proportion 

of phosphorus in catchments in England arise from septic tanks, efforts to estimate the 

actual phosphorus contribution from septic tanks are hampered due to a lack of 

information on their number and location.  

The ubiquity of urban diffuse pollution observed in these studies suggest that water 

companies and catchment and beach managers need to be conscious of urban diffuse 

sources when planning water quality improvement initiatives. Some studies have 

suggested that predictive modelling may be beneficial to manage and improve bathing 

water quality (Oliver et al., 2016). While statistical modelling using long-term data to 

predict bathing water quality may be useful, the efficacy of physical-based models to 

prioritise and predict sources of pollution could be undermined by urban diffuse pollution 

sources since they are unpredictable, are difficult to map, and there is little data available 

on them.  

 

 Implementation of MST into Northumbrian Water 

Currently, MST is underused in the UK water industry, potentially due to the difficulty in 

formulating a business case for its use. This difficulty stems from the fact that: 

 MST does not directly result in improvements to water quality; rather, it directs 

future projects; 

 The value of MST often comes from not investing money where it is not needed; 

 The value of improvements to water quality is difficult to determine, particularly 

over short-term periods and in monetary terms; 

 There are no studies which have attempted to value the contribution of MST to 

water quality improvements directly.  

Using economic valuations or pseudo-monetary valuation, such as perceived willingness-

to-pay or ecosystem services, may be useful for determining the potential value of, and 

building a business case for MST. For example, Southern Water could justify spending 

£14,000 annually on improving each km of river to a high standard in their area, 

according to a willingness-to-pay survey. However, using pseudo-monetary valuations 

does not overcome other factors limiting the use of MST.  A way forward for water 
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companies may be to set a percentage of the estimated value of the project as a cut-off on 

which to decide whether to use MST or not.  

Using both qPCR and sequencing is recommended due to the limitations of using each 

technique alone for MST studies, and the relatively small increase in cost in using qPCR 

in addition to sequencing. Three options for the use of MST by Northumbrian Water were 

explored. Processing >3000 samples (10 – 100 MST projects depending on scale) for 

qPCR and sequencing would make investing the ~£230k in capital costs to bring all MST 

techniques in-house the best option. While this is a large number of samples, the business 

risk remains small, and bringing these technologies in-house has several benefits, such as 

encouraging innovation by opening the use of these technologies to other areas of the 

business, development of laboratory staff and commercial opportunities.  

The areas where MST is likely to be most valuable to the UK water industry are in 

reducing pollution loads to drinking water abstraction points and identifying the correct 

pressures on a waterbody for the development of river basin management plans.  
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Chapter 9 Conclusions, recommendations and future work 

 Conclusions 

 Community-based MST, with high assay sensitivities and specificities, is more 

useful than marker-based MST to survey a waterbody or catchment for a range of 

potential pollution sources and shows potential for use in the UK water industry. 

However, since community-based MST only reports relative abundances, marker-

based MST is still necessary for further analysis such as QMRA and catchment 

modelling.  

 E.coli biomarkers may help relate MST conclusions to regulatory indicators, 

particularly in large catchments where transit times are long; however, the large 

variability in the proportion of E.coli containing a marker between different 

human communities means they are likely to be no better than other more 

abundant MST markers, or that multiple markers are required.  

 Using the culture-based techniques featured in this study, detection of human-

associated biomarkers is unfeasible for the UK water industry due to the high 

costs of labour involved. 

 An FTL for the North East gave robust and accurate results for the detection of 

sewage in this region; however, there is a need to evaluate any bias in FTLs for 

individual studies to predict the effects of including particular sources, or 

combining sources with similar microbial communities.  

 To incorporate MST techniques using qPCR and sequencing into NWL 

workflows, processing more than ~3000 samples (10 – 100 MST projects 

depending on the scale) would make investing the ~£230k in capital costs to bring 

all MST techniques in-house the best option.  

 Urban diffuse pollution is ubiquitous, even in rural and semi-rural catchments and 

tackling this pollution should be a priority for water quality stakeholders.  
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 Recommendations 

 The UK water industry should adopt community-based MST to be able to rapidly 

identify a range of pollution sources; although the use of both marker and 

community based MST, where possible, is recommended to improve confidence 

in results.  

 Northumbrian Water should invest £230k in capital to bring sequencing and qPCR 

technologies in-house is the best option for NWL to incorporate MST into their 

workflows.  While a large number of samples (>3000) is required to achieve a 

return on investment, the business risk remains small, and bringing these 

technologies in-house has several benefits such as encouraging innovation by 

opening these technologies to other areas of the business, development of 

laboratory staff and commercial opportunities. 

 If results from marker-based MST are to be used to prioritise catchments or 

regions for investment, the absolute abundance should be used and, ideally, the 

relative abundance of markers in sewage sources in each catchment should be 

determined.  

 Using faecal taxon library developed here is recommended for the detection of 

sewage in the North East of England. 

 While misconnections are the responsibility of households, it should be a priority 

for the UK water industry since it is an underlying and wide-spread source of 

pollution leading to deteriorated water quality. 
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 Further work 

 The use of the H8 and Hu100 markers in different geographic regions of the world 

(North East, Thailand, Tanzania and Nepal) provide some evidence for the more 

global nature of the localised variability observed in chapter 3. While ‘global’ 

style meta-analyses are not particularly useful for policymakers (e.g., the lack of 

use of evidence of epidemiological studies in Europe leading to contributed use of 

culture-based regulatory assays), a Europe or UK-wide evaluation of the 

variability in marker abundance may be useful in evaluating the potential of 

biomarkers to fulfil a regulatory role.  

 The trade-off between sensitivity and specificity and the low sensitivity of host-

associated CDS is interesting. Determining the functions of some of the host-

associated CDSs would be an interesting study to determine if these CDS are not 

advantageous to E.coli isolates, and their apparent distribution in isolates from a 

single host is due to chance.  

 The E.coli database suggests that there is unlikely to be any significantly better 

human-associated markers targeting coding sequences that are specific to the 

E.coli genome. Further work to identify host-specific markers should, therefore, 

focus on intergenic regions or SNP patterns in E.coli, or apply a similar, database 

approach (chapter 4) to enterococci populations. An interesting future study would 

be a genome-wide comparison between Enterococcus or Bacteroides isolates 

which are targeted by host-specific phage and those which are not; this could 

support the theory that both host-specific and cosmopolitan members of a species 

exist. 

 During this work, a range of data was collected for the Seaton Sluice catchment, 

which would facilitate hydrological modelling. Catchment modelling of pollution 

to further isolate potential sources of pollution, and quantify the faecal loading at 

each sample point would be valuable for future decision-making. Work to 

determine the degradation rate of FIO, human markers and faecal microbial 

communities, especially in the UK, would be valuable for this modelling. 
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Appendix 

Appendix A - Methods 

Appendix A.1 – SPAdes commands biomarkers SI3 

#Trim fastq files with Trimmomatic 
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java -jar ~/trimmomatic-0.36.jar PE  1.fastq.gz 2.fastq.gz  R1-p.fq R1-u.fq R2-p.fq R2-

u.fq ILLUMINACLIP:/Trimmomatic-0.36/adapters/TruSeq2-PE.fa:2:30:10 LEADING:3 

TRAILING:3 SLIDINGWINDOW:4:20 MINLEN:150 

#Combine unpaired sequences into a single fastq file. 

cat R1-u.fq R2-u.fq > unpaired.fq 

#Assemble genomes with SPAdes 

spades.py --cov-cutoff auto -m 70 -t 10 --careful -k 21,31,55,71,91,101,127 -1 R1-p.fq -2 

R2-p.fq -s unpaired.fq -o SPADES_assembled_cov_cutoff 

 

Appendix A.2 – Qiime script used for runs using Qiime 1.9.1 and SourceTracker 

Step 1 – Script preparation, file conversion 

> mkdir -p PATH:/ 

> cp " PATH:/Sequence_File.fastq" " PATH:/Sequence_File.fq" 

> convert_fastaqual_fastq.py -f " PATH:/Sequence_File.fq" -c fastq_to_fastaqual \ 

-o " PATH:/fna_quals" 

Step 2 – Assigning sample ID’s to reads 

> split_libraries.py -m " PATH:/Mapping_File.txt" \ -f " PATH:/Sequence_File.fna" \ 

-q “PATH/fna_quals/Morland.qual"  -s 20 -l 100 -M 100 -d -b golay_12 \ 

-o "PATH/split_out" 

Step 3 – OTU picking 

> pick_open_reference_otus.py -r 

"PATH/SILVA/release_119/Silva119_release/rep_set/97/Silva_119_rep_set97.fna" \ 

-i "PATH/split_out/seqs.fna" \ 

-p "PATH/parameters.txt" -o "PATH/otus" \ -a -m uclust --suppress_align_and_tree 

Step 4 – Filtering and chimera removal 

> parallel_align_seqs_pynast.py -i " PATH:rep_set.fna" \ 

-o " PATH: pynast_aligned_seqs" –t " PATH:/core _Silva119_alignment.fna" –T  
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filter_alignment.py -o " \ PATH:/pynast_aligned_seqs"  non -i " PATH:/ rep_set_aligned.fasta" 

> filter_otus_from_otu_table.py -o 

" PATH:/otu_table_mc2_w_tax_no_pynast_failures.biom" -i " PATH:/otu_table_mc2_w_tax.biom" \ -e 

“\PATH:/rep_set_failures.fasta" 

> parallel_identify_chimeric_seqs.py -i " PATH:/rep_set_aligned.fasta" \ 

-a " PATH:/SILVA/Silva119_release/core_alignment/core_Silva119_alignment.fna" -m ChimeraSlayer -O 

15 -T -o " PATH: chimeric_seqs.txt" 

> filter_fasta.py -f " PATH:/rep_set_aligned.fasta" -o " PATH:/non_chimeric_rep_set_aligned.fasta" \ 

-s " PATH:/chimeric_seqs.txt"  -n 

> filter_otus_from_otu_table.py –I " PATH:/ otu_table_mc2_w_tax_no_pynast_failures.biom" \ 

-e " PATH:/chimeric_seqs.txt" -o " PATH:/otu_table_non_chimeric.biom" 

 

Step 5 – Rebuilding the tree 

> make_phylogeny.py -i " PATH: /non_chimeric_rep_set_aligned.fasta" -o "PATH: /non_chimeric.tre" 

 
Step 6 - SourceTracker commands 

Convert otu_table from .biom to .txt 

biom convert -i out_ otu_table_non_chimeric.biom -o final_otu_table.txt --to-tsv 

 

Run sourcetracker with default settings 

R PATH:/sourcetracker_for_QIIME.r --slave --vanilla --args -i final_otu_table.txt -m mapping_file.txt -o 

Output. 

 

 

 

 

Appendix B – Morland 

Appendix B.1 – E.coli isolate and faecal samples  

Table B.1.1.Area and date of collection of E.coli isolates used in this study 

Host Sample type Area Month/ 

Year 

Number used 

in study 
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Table B.1.2. Faecal Samples Used in this study 

Human Sewage treatment works 1 

Sewage treatment works 3  

Sewage treatment works 4   

Sewage treatment works 4   

Septic Tanks 

County Durham  

County Durham 

County Durham 

County Durham 

Cumbria 

08/2015 

08/2015 

01/2017 

12/2016 

05/2016 

5 

5 

5 

10 

5 

Chicken Free range individual 

faeces 

Free range individual 

faeces 

Free range individual  

faeces 

County Durham North 

Northumberland 

South Northumberland 

04/2015 

08/2015 

04/2016 

8 

4 

8 

Cow Beef cow Slurry 

Beef cow Individual 

faeces 

Beef cow Individual 

faeces  

Cumbria 

Newcastle 

County Durham 

05/2016 

12/2016 

08/2015 

5 

9 

6 

Horse Individual  faeces 

Individual  faeces 

Individual  faeces 

North Northumberland 

County Durham 

South Northumberland 

04/2015 

05/2015 

12/2016 

8 

8 

4 

Pig Individual  faeces 

Individual  faeces 

Individual  faeces 

North Northumberland 

South Northumberland 

South Northumberland 

04/2015 

08/2015 

12/2016 

12 

5 

3 

Sheep Individual faeces 

Individual faeces 

Individual faeces  

Cumbria  

South Northumberland 

North Northumberland 

05/2016 

04/2015 

12/2016 

3 

10 

7 

Dog Individual faeces 

Individual faeces   

South Northumberland 

Individual dog owners 

from across the North 

East. 

04/2015 

12/2016 

10 

10 

Host Sample type 

 

Location Month/ 

Year 

Number of 

samples 

Human Sewage treatment works 1 

Sewage treatment works 2 

Sewage treatment works 3  

Sewage treatment works 3  

County Durham 

County Durham 

County Durham 

County Durham 

08/2015 

08/2015 

08/2015 

12/2016 

1 

1 

1 

1 



266 

 

 

 

 

 

Appendix B2 – Morland catchment report 

Out of interest, the case study is reported here, giving more background to the catchment 

and further analysis of results. This is modified from the MSc Thesis of Oliver Crudge to 

include additional analysis and figures. 

 

Sewage treatment works 4 

Sewage treatment works 4  

Sewage treatment works 5  

Septic Tank 1  

Septic Tank 2  

Newcastle 

Newcastle 

Northumberland 

Cumbria 

Cumbria 

07/2016 

12/2016 

12/2016 

05/2016 

06/2016 

1 

1 

1 

1 

1 

Chicken Free range chickens 

Free range chickens 

Free range chickens 

County Durham 

North 

Northumberland 

South 

Northumberland 

04/2015 

08/2015 

 

04/2016 

3 

3 

 

4 

Cow Slurry 

Individual faeces 

Individual faeces 

Cumbria 

Newcastle 

County Durham 

15/2016 

12/2016 

08/2015 

5 

4 

1 

Horse Individual faeces  

Individual faeces 

Individual faeces  

Individual faeces  

North 

Northumberland 

South 

Northumberland 

County Durham 

County Durham 

04/2015 

 

12/2016 

 

05/2015 

08/2015 

4 

 

4 

 

1 

1 

Pig Individual faeces 

Individual faeces  

Individual faeces 

North 

Northumberland 

South 

Northumberland 

South 

Northumberland 

04/2015 

 

08/2015 

 

12/2016 

3 

 

4 

 

3 

Sheep Individual faeces  

Individual faeces  

Individual faeces 

North 

Northumberland 

South 

Northumberland 

Cumbria 

04/2015 

 

12/2016 

 

05/2016 

4 

 

5 

 

1 

Dog Individual faeces  

Individual faeces     

South 

Northumberland 

Individual dog 

owners from across 

the North East. 

04/2015 

 

12/2016 

2 

 

8 
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1. Background 

Demonstration Test Catchments (DTC) is a research project jointly funded by the 

Department for Environment, Farming and Rural Affairs (DEFRA), the Environment 

Agency (EA) and the Welsh Assembly Government with the remit of investigating means 

to balance the need for intensive farming practices and the associated increase in diffuse 

pollution (Owen et al., 2012).  The Eden DTC is one of three test catchments in England 

studied as part of the project. The Eden DTC is located within the Solway-Tweed river 

basin and contains three focus catchments at Pow, Dacre and Newby. This research 

focused on the Newby catchment, which contains a mitigation sub-catchment and a 

control sub-catchment shown above the sampling points Dedra Banks and Sleagill 

Village (Figure B2.1). The catchment contains two small villages: the catchment outlet 

sits just below Newby Village with approximately 60 properties; Sleagill village, with 32 

properties, sits at the control sub catchment outlet. Approximately 45 additional 

properties lay scattered around the catchment. The recipient water body of the catchment 

is the Newby Beck: between 2009 and 2015 the ecological status of the beck has declined 

from Good to Moderate (Environment Agency 2016). 

The DTC project has implemented a number of managerial, structural and vegetative 

measures within the mitigation catchment, including: agricultural waste management 

plans, runoff attenuation ponds, ‘dirty’ and ‘clean’ water separation systems, improved 

agricultural silage and slurry storage, as well as fencing and tree planting along the banks 

of the water course. These aim to reduce the amount of diffuse pollutants such as 

suspended solids and attached nutrients from entering the fluvial network. Sub-stations 

and a weather station have been installed at the mitigation and control sub catchment 

outlets: at Dedra Banks and Sleagill Village (Figure B.2.1) to measure turbidity and water 

levels; at the catchment outlet nutrient data, dissolved oxygen content and chlorophyll 
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levels are also measured. It is thought that none of the dwellings in the catchment are 

connected to a sewerage system and therefore rely on septic tanks. There is a question 

over the contribution and relative proportion of various faecal sources to the fluvial 

network. One possible answer is to use microbial source tracking methods to identify and 

proportion the sources of faecal pollution within the catchment. In the sub-catchment 

above Sleagill Village there are considerably more dwellings than above Dedra Banks, 

therefore there may be a greater potential for human faecal pollution contribution, 

whereas the mitigation catchment above Dedra Banks may have reduced non-human 

faecal contamination, resulting in a higher proportion of human faecal pollution. 
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Figure B.2.1. Newby Catchment Outline 
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2. Current research in the Eden DTC 

 

The availability of high frequency data on a number of water quality parameters and 

meteorological conditions in the Eden DTC has allowed research into diffuse pollution 

dynamics within the catchment. Perks et al. (2015) assessed the dominant mechanisms for 

the delivery of phosphorus and suspended solids into the fluvial network over a period of 

one year. In general, both pollutants had a fast hydrological response to storm events, 

however analysis of hysteresis curves suggested individual pathways for each. The 

transport of suspended solids is thought to be dominated by overland flow especially 

following heavy rainfall, subsurface flow is a lesser factor but is thought to play a larger 

role at low discharge levels and in the lower areas of the catchment. At low flows, a large 

proportion of flow within the mitigation sub catchment is thought to take underground 

pathways, avoiding detection by the substation at Dedra Banks (Figure B2.1). Perks et al. 

(2015) suggested the hysteresis patterns of phosphorus concentration were attributed to a 

dominant soil water pathway, although have previously suggested that similar dynamics 

could indicate influence by sources such as septic tanks. 

 

Snell et al. (2014) used the high frequency data to assess dynamics of benthic diatoms 

against antecedent discharge and nutrient conditions over 2 years. An increasing 

correlation between ecological parameters (trophic diatomic index) and discharge, was 

found, as the antecedent period increased towards a maximum correlation at 18 days 

(Snell et al. 2014). Concluding that benthic conditions in the catchment rely on 

meteorological events occurring over the 12 preceding weeks, rather than days. Both 

Snell et al (2014) and Perks et al (2015) praised the availability of high frequency data, 

noting that low frequency sampling can often miss out on significant spikes in pollutant 

concentrations in catchments with a ‘flashy’ response to precipitation. 
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3. Objective of the study 

 To determine if human sources may contribute to the overall pollution and E.coli 

concentration in the Newby catchment. 

 To identify other sources of contribution and their relevance compared to human 

sources. 

 To direct future catchment management and research activities in the catchment. 

 

 

4. Results and discussion 

4.1 E.coli 
 

Figure B2.2 shows the concentration of total E. coli at each site on each sampling visit. 

The site at Towcett displayed surprisingly large concentrations of E. coli. Towcett sits 

within the DTC mitigation catchment and although the mitigation measures are designed 

primarily to reduce diffuse sediment and nutrient pollution, it would be expected that 

these mitigation measures would also reduce faecal contamination.  

 

 

Figure B.2.2. E.coli concentrations at each sample point on sample days 1-6 (Top). Percentage of E.coli estimated to be 

of human origin (Middle). Estimated concentration of E.coli from sewage (Bottom). Arrows denote a farm or settlement 

along the river system. Error bars show standard error. 
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Dedra Upper and Sleagill Upper both had low concentrations although below both 

settlements (Dedra Lower and Sleagill Lower, respectively) there was typically an 

increase in E.coli concentration (Figure B.2.2). Figure B.2.2 also shows the estimated 

percentage and concentration of E.coli from sewage.  

Table. B.2.1. Number of samples at each sampling location PCR positive for each E.coli marker. 

  H8 H12 H14 H24 

Outlet  0 1 3 4 

Dedra lower 1 0 5 6 

Dedra upper 0 0 2 3 

Towcett 0 0 0 5 

Sleagill lower 1 1 2 6 

Sleagill upper 1 1 2 4 

Total 3 3 14 28 

Percentage 8.3 8.3 38.9 77.8 

 

Table B.2.1 shows that the H24 marker was the most commonly detected at all sampling 

points in the catchment, followed by H14. H8 and H12 were rarely detected. The 

concentration of E.coli from sewage generally increases below Dedra and Sleagill as 

expected, and decreases at the catchment outlet. Interestingly on the fourth sample day 

(Day 4, Figure B.2.2), the proportion of E.coli coming from sewage at Sleagill decreased 

between Sleagill upper and lower; it is not clear whether prior rainfall or an event at the 

farm caused the likely increase from agricultural sources on this day.  

The total and sewage derived E.coli concentrations generally decreased between Sleagill 

and Dedra lower and the catchment outlet (Figure B2.2). This reduction could be due to 

die-off of E.coli, dilution or a combination of both. Water is added to the river network 

between Dedra, Sleagill and the catchment Outlet (Figure B.2.3) and farming continues 



273 

 

down to the catchment outlet with the largest density of dwellings at Newby sitting above 

the outlet sampling point, the die off hypothesis therefore seems unlikely. 

As the mitigation catchment contains considerably less dwellings than the control 

catchment, a hypothesis based on uniform septic tank quality would suggest Sleagill 

Village would have the highest percentage human contribution. A number of reasons 

exist as to why this may not be true. The catchment largely consists of limestone bedrock; 

underground flow pathways could therefore allow a large proportion of flow to bypass the 

sampling site. Sources of overland flow close to the sampling site would therefore have a 

larger relative contribution, than sources further away, as they will have less chance of 

entering the underground pathways. Close to the Dedra Banks sampling site a septic tank 

with obvious signs of over flowing was evident and a compacted earth track provided a 

surface pathway directly to the sampling site. At certain times of high rainfall or high 

flows into the tank, this could contribute large amounts of human sourced faecal pollution 

at this point. Whilst Figure B.2.2 shows general increases in total and human derived 

E.coli concentrations below each settlement, the loading of E.coli is much larger at 

Sleagill compared to Dedra due to the differential flows. This supports the hypothesis that 

Sleagill contributes a greater amount of E.coli than Dedra, and should be an objective for 

mitigation of pollution in the catchment. Flow data was obtained from the DTC sub-

stations at Sleagill village and Dedra Banks as well as at the catchment outlet. The 

different flows also impact the pollution levels downstream at the Catchment outlet 

differently. Dedra Banks and Sleagill village were shown to be similarly polluted, 

however, the flow at Dedra Banks is much lower than at Sleagill village, so the relative 

impact of the pollution from this site is less. This suggests that pollution above Dedra 

Banks is of little concern when considering the catchment as a whole, however further 

analysis of the discharge data is revealing. The average discharge at Dedra Banks and 
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Sleagill village, during the hours spent sampling accounts for 1.8% and 23% of the 

discharge at the catchment outlet respectively. Based on the surface area of the two sub 

catchments this would be expected to be 17% and 30% respectively. The mismatch is 

much greater at Dedra Banks than Sleagill village and gives evidence that underground 

flow pathways could be bypassing the sampling sites. The E. coli concentrations within 

the sub surface flow are unknown, thus the contribution of E. coli released in the sub 

catchment above Dedra Banks, to the whole catchment, is difficult to determine, as such a 

large proportion of flow appeared to follow this pathway. 

 

 

4.2 Community analysis and other sources of pollution 

 

The community analysis, reported human pollution more often than the human E.coli 

markers. This was not unexpected since community analyses tend towards false positives 

whereas biomarkers, with their lower sensitivity tend towards false negative results. No 

significant correlation between the percentage of E.coli estimated as human and the 

proportion of human microbial communities was found, two observations are noteworthy. 

The decrease in the abundance of human E.coli at the outlet (Figure B.2.2) and increase in 

the human bacterial community is noteworthy. This is likely to be due to the differential 

die-off rates between E.coli and other members of the human faecal community as well as 

the more rapid die-off of culturable E.coli compared with the bacterial DNA examined in 

the community analysis (Warish et al., 2015).  Both E.coli biomarkers and community 

analysis indicate a general increase in faecal pollution and slight increase in Human 

pollution following the Dedra and Sleagill settlements.  
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Figure B.2.3 Predicted contribution of source microbial communities to microbial communities in each sample using 

community analysis. 

 

It is difficult to determine the exact contribution of E.coli from sheep or other sources 

using the community analysis, however, we can make inferences using the human E.coli 

biomarker analysis (Figure B.2.2). Interestingly, at the catchment outlet, the human 

contribution appears to increase, whereas the E.coli markers decrease, which is likely 

cause by the dilution and differential decay rates as described above, but may also de due 

to the septic tanks in the immediate vicinity working well and removing a high proportion 

of the E.coli whilst the surviving bacteria leach into the water course.   

Following the settlements, sheep appear to be the most abundant source of faecal 

pollution, particularly at Dedra banks. This is supported by the E.coli biomarkers which 

indicate sewage is typically responsible for 13-50% of the E.coli concentrations. Cow 

faeces is also prevalent in the catchment, although generally less abundant than sheep 

which could be attributed to many of the cows being housed in sheds. The ubiquitous 

nature of chicken faeces in the catchment is particularly interesting and was unexpected. 
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This could be due to the use of fertilizer containing chicken faeces, although it may also 

be due to cross-reactivity between chicken faeces and other sources. This requires further 

research if the community analysis technique is going to be used to make investment and 

management decisions.  

 

4.3 Reducing FIO concentrations in the catchment 

Both Dedra and Sleagill farm settlements were highlighted by E.coli biomarker and 

community analyses to be contributors to the total E.coli concentrations in the catchment 

(Figure 2). Due to the differential flow of the fluvial network Sleagill, contributing an 

average of 35% of the E.coli loading to the catchment outlet, is likely to contribute a 

significantly greater mass of E.coli to the catchment than Dedra (3.5%).  

A combination of sheep management and septic tank improvements is likely to reduce 

FIO concentrations at Dedra as these sources appear to be the major contributors. 

Concentrating effort at Sleagill is likely to result in greater reductions in E.coli 

concentration further down the catchment. Human sources generally contribute less than 

25%, of the total E.coli concentration, although human contributions of up to 60% were 

observed (Figure B.2.2). The community analysis suggests that sheep and cow faeces 

were the major contributors following each farm. At Sleagill, both sheep and cattle 

management are likely to be required, although septic tank improvements will have a 

positive impact on FIO concentrations. At both Sleagill and Dedra, we suspect that 

livestock management is likely to reduce peak FIO concentrations whilst septic tank 

improvements, through education or regulatory maintenance, are likely to reduce the base 

concentrations of E.coli.  
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5. Conclusion 

 

This study revealed that human sources do contribute to faecal pollution in the catchment. 

A bacterial community analysis revealed that human, sheep and cattle faecal sources 

were, as expected, common in the Newby catchment. The ubiquity of chicken faeces was 

unexpected and could be a result of the use of fertilizer containing chicken faeces.  

The relative contribution of these sources increased, as expected, after Dedra Banks and 

Sleagill. Enumeration and analysis of E.coli and human E.coli biomarkers suggest that 

human sources were responsible for between 1 - 40% and 12 - 60% of the E.coli entering 

the water course following Sleagill and Dedra, respectively.  

Discharge data was combined with the estimated concentrations of E. coli to show how 

large proportions of a pollutant do not always equal a large impact on the water quality 

downstream in the network. Sleagill is likely to contribute a significantly greater mass of 

E.coli to the catchment outlet, although we cannot dismiss the possibility that 

underground flows are bypassing the Dedra sampling point. 

Future catchment management activities should focus on Sleagill and to a lesser extent, 

Dedra. At Sleagill, management of sheep and cattle in relation to the local water course is 

likely to have a positive impact. Improvements to septic systems throughout the 

catchment are likely to reduce FIO concentrations in the catchment.  
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Appendix B.3 – SourceTracker outputs for Morland SI3 

 

 

 

 

Location Date Day Chicken Cow Horse Sewage Septage Sheep Unknown Chicken Cow Horse Sewage Septage Sheep Unknown Chicken Cow Horse Sewage Septage Sheep Unknown Chicken Cow Horse Sewage Septage Sheep Unknown Chicken Cow Horse Sewage Septage Sheep Unknown

Dedra lower 13/05/2016 0.0078 0.0127 0.0005 0.0151 0.0049 0.0881 0.8709 0.0144 0.0129 0.0011 0.0214 0.005 0.089 0.8562 0.0206 0.0119 0.0009 0.0185 0.0048 0.0713 0.872 0.0103 0.0118 0.0007 0.0185 0.003 0.0846 0.8711 0.0107 0.0096 0.0008 0.0171 0.0038 0.0799 0.8781

Dedra lower 19/05/2016 2 0.0203 0.0057 0.0006 0.0148 0.0043 0.0259 0.9284 0.0224 0.0052 0.0006 0.0261 0.0089 0.0285 0.9083 0.0184 0.007 0.0012 0.0117 0.0157 0.0281 0.9179 0.0227 0.0116 0.0006 0.0157 0.014 0.0178 0.9176 0.0186 0.0092 0.0007 0.0159 0.0063 0.0247 0.9246

Dedra lower 20/06/2016 3 0.0241 0.0101 0.0007 0.0434 0.0054 0.1745 0.7418 0.0175 0.0146 0.001 0.0456 0.0084 0.1787 0.7342 0.0375 0.0145 0.0009 0.0413 0.007 0.134 0.7648 0.013 0.0077 0.0011 0.0308 0.008 0.1635 0.7759 0.0328 0.0149 0.0022 0.0493 0.0043 0.1441 0.7524

Dedra lower 29/06/2016 5 0.0157 0.0195 0.0013 0.0338 0.0119 0.3016 0.6162 0.01 0.0108 0.001 0.0303 0.0089 0.2811 0.6579 0.0088 0.0202 0.0014 0.0248 0.0073 0.2187 0.7188 0.0057 0.0121 0.0011 0.0262 0.0067 0.2873 0.6609 0.009 0.0166 0.0024 0.0213 0.0065 0.2703 0.6739

Dedra lower 03/07/2016 6 0.0153 0.0101 0.0013 0.0192 0.0085 0.1072 0.8384 0.0122 0.0102 0.0014 0.0233 0.009 0.0962 0.8477 0.0102 0.0175 0.0009 0.0238 0.0163 0.1123 0.819 0.0141 0.0055 0.0006 0.0256 0.0144 0.111 0.8288 0.0204 0.021 0.0015 0.035 0.0085 0.0801 0.8335

Dedra upper 13/05/2016 1 0.0213 0.0108 0.0015 0.0229 0.0027 0.0143 0.9265 0.015 0.005 0.0006 0.011 0.0023 0.014 0.9521 0.0185 0.0056 0.0015 0.0112 0.0037 0.0115 0.948 0.0279 0.0112 0.0012 0.0136 0.0046 0.0147 0.9268 0.0111 0.009 0.001 0.0161 0.0063 0.0196 0.9369

Dedra upper 19/05/2016 2 0.0103 0.0039 0.0011 0.0067 0.0018 0.0202 0.956 0.019 0.0039 0.001 0.0071 0.0035 0.0165 0.949 0.0271 0.0049 0.0008 0.0062 0.0075 0.0178 0.9357 0.0082 0.003 0.0009 0.0044 0.0025 0.0164 0.9646 0.0138 0.0036 0.0018 0.0108 0.0039 0.0152 0.9509

Dedra upper 20/06/2016 3 0.0127 0.0395 0.002 0.0639 0.0101 0.093 0.7788 0.0228 0.023 0.0008 0.0593 0.0078 0.1141 0.7722 0.0179 0.0304 0.0023 0.0374 0.0124 0.0939 0.8057 0.0157 0.0237 0.0023 0.048 0.0131 0.1183 0.7789 0.0115 0.0208 0.0016 0.0834 0.0112 0.0908 0.7807

Dedra upper 27/06/2016 4 0.0303 0.0113 0.0019 0.0371 0.0023 0.0182 0.8989 0.03 0.0081 0.0008 0.0385 0.0026 0.0209 0.8991 0.0259 0.0063 0.0009 0.0298 0.0044 0.0115 0.9212 0.0124 0.0078 0.0009 0.0349 0.0049 0.0124 0.9267 0.0146 0.0059 0.0017 0.0302 0.0026 0.0127 0.9323

Dedra upper 29/06/2016 5 0.0254 0.0158 0.0007 0.0293 0.0051 0.036 0.8877 0.0301 0.0141 0.0008 0.0342 0.0043 0.0399 0.8766 0.0252 0.0207 0.0006 0.0266 0.0059 0.0353 0.8857 0.0163 0.0133 0.0015 0.0144 0.0085 0.0409 0.9051 0.0286 0.0178 0.0002 0.0226 0.0068 0.034 0.89

Dedra upper 03/07/2016 6 0.0269 0.0096 0.001 0.0353 0.0035 0.0175 0.9062 0.0354 0.0095 0.0008 0.0289 0.0033 0.03 0.8921 0.0246 0.0055 0.0006 0.0221 0.0043 0.0177 0.9252 0.0224 0.0083 0.0005 0.0209 0.006 0.0175 0.9244 0.0257 0.0085 0.0014 0.0402 0.0058 0.0169 0.9015

Outlet 13/05/2016 1 0.0196 0.0154 0.0007 0.0224 0.0118 0.0971 0.833 0.0102 0.0187 0.0026 0.041 0.0073 0.1151 0.8051 0.0112 0.019 0.001 0.0362 0.0215 0.0749 0.8362 0.0094 0.0221 0.0016 0.0306 0.0139 0.0876 0.8348 0.0159 0.0334 0.0014 0.0394 0.0147 0.0871 0.8081

Outlet 19/05/2016 2 0.0503 0.0045 0.0007 0.0209 0.002 0.0066 0.915 0.0249 0.0059 0.0008 0.0467 0.0026 0.0126 0.9065 0.0408 0.0046 0.0005 0.0185 0.0031 0.0089 0.9236 0.0328 0.0082 0.0011 0.0246 0.0028 0.0089 0.9216 0.0301 0.0062 0.0006 0.0313 0.0011 0.0056 0.9251

Outlet 20/06/2016 3 0.0721 0.0297 0.0005 0.0437 0.0053 0.043 0.8057 0.0406 0.0227 0.0005 0.0442 0.0067 0.0384 0.8469 0.0538 0.0171 0.0009 0.0318 0.0105 0.047 0.8389 0.0287 0.0177 0.0002 0.0419 0.0105 0.0366 0.8644 0.0613 0.0228 0.0013 0.0603 0.0082 0.033 0.8131

Outlet 27/06/2016 4 0.0373 0.0175 0.0013 0.0236 0.0124 0.0589 0.849 0.0425 0.0128 0.0011 0.0432 0.0114 0.0498 0.8392 0.044 0.0159 0.0006 0.0237 0.0197 0.0656 0.8305 0.035 0.0065 0.0015 0.0235 0.0151 0.0649 0.8535 0.0527 0.0145 0.0013 0.0306 0.0158 0.0692 0.8159

Outlet 29/06/2016 5 0.0307 0.0232 0.0006 0.043 0.0283 0.0745 0.7997 0.0317 0.0321 0.0006 0.0346 0.0162 0.088 0.7968 0.0448 0.0212 0.0014 0.0216 0.0256 0.0698 0.8156 0.0235 0.0168 0.0015 0.0342 0.0206 0.0673 0.8361 0.0425 0.0346 0.0016 0.0366 0.0092 0.0536 0.8219

Outlet 03/07/2016 6 0.0714 0.0217 0.0005 0.0223 0.0062 0.0476 0.8303 0.0262 0.0141 0.0005 0.0292 0.0041 0.0529 0.873 0.0617 0.019 0.0002 0.0294 0.0082 0.0344 0.8471 0.0177 0.0179 0.0004 0.0365 0.0134 0.0555 0.8586 0.0393 0.0178 0.0007 0.0312 0.0083 0.0435 0.8592

Sleagill lower 13/05/2016 1 0.0101 0.0285 0.0009 0.0217 0.0114 0.0585 0.8689 0.0143 0.0206 0.0023 0.0365 0.0078 0.0443 0.8742 0.022 0.0133 0.0016 0.0232 0.0153 0.0501 0.8745 0.01 0.0199 0.0017 0.0194 0.0135 0.0607 0.8748 0.0116 0.0262 0.0021 0.0208 0.005 0.0524 0.8819

Sleagill lower 19/05/2016 2 0.0049 0.1028 0.0063 0.0127 0.0065 0.0982 0.7686 0.0083 0.0998 0.0058 0.0082 0.0059 0.0968 0.7752 0.0079 0.0952 0.0096 0.0119 0.0029 0.0761 0.7964 0.0043 0.1093 0.006 0.0093 0.0038 0.0941 0.7732 0.005 0.0974 0.0046 0.0117 0.006 0.0891 0.7862

Sleagill lower 20/06/2016 3 0.0553 0.0221 0.0007 0.0516 0.0076 0.1091 0.7536 0.0307 0.0293 0.0005 0.0381 0.01 0.096 0.7954 0.0512 0.036 0.001 0.0229 0.0167 0.1005 0.7717 0.0384 0.0262 0.0005 0.0312 0.0138 0.12 0.7699 0.041 0.0348 0.0009 0.0391 0.0128 0.1116 0.7598

Sleagill lower 27/06/2016 4 0.0076 0.0783 0.002 0.0284 0.0095 0.178 0.6962 0.0095 0.0834 0.0025 0.0247 0.0106 0.204 0.6653 0.0146 0.0746 0.0025 0.0275 0.016 0.1593 0.7055 0.0125 0.0988 0.0042 0.0181 0.0147 0.1752 0.6765 0.0066 0.0659 0.0024 0.03 0.0187 0.1852 0.6912

Sleagill lower 03/07/2016 6 0.0341 0.0238 0.0015 0.0224 0.0088 0.0787 0.8307 0.0338 0.029 0.001 0.0311 0.0067 0.0477 0.8507 0.0429 0.0288 0.0014 0.0136 0.0102 0.0706 0.8325 0.0347 0.0172 0.0005 0.0244 0.0164 0.0645 0.8423 0.0353 0.0419 0.0017 0.0334 0.0096 0.065 0.8131

Sleagill upper 19/05/2016 2 0.0308 0.0048 0.0004 0.0184 0.0025 0.0112 0.9319 0.0267 0.0048 0.0009 0.0135 0.0024 0.0113 0.9404 0.0287 0.0042 0.0014 0.0103 0.0021 0.0112 0.9421 0.0292 0.0019 0.0016 0.0114 0.0027 0.0066 0.9466 0.0216 0.0061 0.0013 0.018 0.0023 0.0121 0.9386

Sleagill upper 13/05/2016 1 0.0141 0.0101 0.0009 0.0078 0.0033 0.0124 0.9514 0.0171 0.014 0.0009 0.0172 0.0033 0.0148 0.9327 0.0223 0.0128 0.0009 0.0084 0.0046 0.0065 0.9445 0.0077 0.0114 0.0018 0.0112 0.0074 0.0148 0.9457 0.01 0.0067 0.0007 0.01 0.0021 0.0135 0.957

Sleagill upper 20/06/2016 3 0.0223 0.0185 0.0012 0.021 0.0078 0.2607 0.6685 0.0218 0.0172 0.0015 0.0097 0.0035 0.1808 0.7655 0.0204 0.0132 0.0014 0.0153 0.0052 0.1204 0.8241 0.0206 0.0205 0.0015 0.0173 0.0052 0.2169 0.718 0.0083 0.0173 0.0025 0.0138 0.0044 0.2126 0.7411

Sleagill upper 29/06/2016 5 0.0166 0.0073 0.0011 0.0135 0.0046 0.175 0.7819 0.0254 0.0123 0.0019 0.025 0.0127 0.1325 0.7902 0.0211 0.0197 0.0019 0.0244 0.0057 0.1001 0.8271 0.0098 0.0137 0.001 0.0201 0.0068 0.1566 0.792 0.0104 0.0167 0.0013 0.016 0.0065 0.1353 0.8138

Sleagill upper 27/06/2016 4 0.0144 0.0075 0.0006 0.0324 0.0031 0.0166 0.9254 0.0172 0.0103 0.0021 0.0187 0.0028 0.0133 0.9356 0.0302 0.009 0.001 0.0314 0.0038 0.0086 0.916 0.0113 0.0083 0.0014 0.0123 0.003 0.0221 0.9416 0.0095 0.0128 0.0004 0.0278 0.0024 0.0105 0.9366

Sleagill upper 03/07/2016 6 0.0176 0.0106 0.0004 0.0226 0.0022 0.0274 0.9192 0.013 0.0114 0.0014 0.0206 0.0044 0.0319 0.9173 0.0147 0.0087 0.0008 0.0185 0.0035 0.0266 0.9272 0.016 0.0095 0.0012 0.0112 0.0074 0.0266 0.9281 0.0201 0.0136 0.0009 0.027 0.0072 0.0324 0.8988

Towcett 13/05/2016 1 0.0114 0.0115 0.0006 0.02 0.0011 0.0191 0.9363 0.0165 0.0043 0.0013 0.0258 0.0015 0.0178 0.9328 0.0111 0.0217 0.0015 0.0154 0.0012 0.0252 0.9239 0.0068 0.009 0.0011 0.0187 0.0027 0.0226 0.9391 0.012 0.0139 0.0012 0.0237 0.0014 0.0292 0.9186

Towcett 19/05/2016 2 0.0282 0.0091 0.0011 0.0201 0.0047 0.0115 0.9253 0.0146 0.0061 0.0008 0.0151 0.0081 0.0102 0.9451 0.0283 0.0191 0.0014 0.0084 0.0075 0.0084 0.9269 0.0209 0.0068 0.001 0.0142 0.0032 0.0103 0.9436 0.0187 0.0144 0.0007 0.0205 0.0037 0.0055 0.9365

Towcett 20/06/2016 3 0.0106 0.0057 0.0007 0.0153 0.0013 0.0034 0.963 0.0158 0.007 0.0018 0.0094 0.0015 0.0091 0.9554 0.0204 0.0072 0.0009 0.0111 0.0018 0.0039 0.9547 0.0116 0.0047 0.0008 0.008 0.0021 0.0117 0.9611 0.0145 0.0092 0.0014 0.0204 0.0025 0.0083 0.9437

Towcett 27/06/2016 4 0.0099 0.0064 0.0013 0.0236 0.0018 0.0184 0.9386 0.0163 0.0077 0.0005 0.0144 0.0024 0.0155 0.9432 0.0081 0.0199 0.0005 0.0275 0.0021 0.0127 0.9292 0.0148 0.0066 0.0012 0.0234 0.0023 0.0148 0.9369 0.0092 0.0133 0.0024 0.0253 0.0037 0.0164 0.9297

Towcett 29/06/2016 5 0.0255 0.0093 0.0011 0.0207 0.0022 0.0285 0.9127 0.0235 0.0068 0.001 0.0282 0.0011 0.0189 0.9205 0.0263 0.0114 0.001 0.0214 0.0016 0.0234 0.9149 0.0139 0.0057 0.0009 0.021 0.0016 0.0317 0.9252 0.0211 0.0087 0.002 0.0231 0.0024 0.0265 0.9162

Towcett 03/07/2016 6 0.0113 0.0103 0.0022 0.0181 0.002 0.0127 0.9434 0.0081 0.0093 0.0006 0.0111 0.0048 0.013 0.9531 0.0164 0.0083 0.0004 0.0279 0.001 0.0057 0.9403 0.0127 0.007 0.0008 0.0143 0.0042 0.0182 0.9428 0.0108 0.0089 0.0014 0.0216 0.0031 0.0079 0.9463

Dedra lower 27/06/2016 4 0.0151 0.0269 0.002 0.0346 0.0147 0.3786 0.5281 0.015 0.0263 0.0018 0.0472 0.0106 0.3562 0.5429 0.0104 0.0232 0.0009 0.0369 0.0082 0.3951 0.5253 0.0152 0.0349 0.0006 0.0296 0.0058 0.3491 0.5648 0.0169 0.011 0.0007 0.0461 0.007 0.3302 0.5881

Sleagill lower 29/06/2016 5 0.013 0.1397 0.0024 0.0138 0.0232 0.2089 0.599 0.0322 0.1082 0.0025 0.0123 0.019 0.2261 0.5997 0.0191 0.1058 0.0021 0.0197 0.0204 0.2397 0.5932 0.0176 0.1228 0.0026 0.0144 0.0254 0.2608 0.5564 0.014 0.1178 0.0029 0.0204 0.0213 0.249 0.5746

Run 2Run 1 Run 5Run 4Run 3

Table 9.3 Sourcetracker outputs for the morland catchment 
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Appendix B.4 – PCR and qPCR comparison of the individual markers H14 and H24 

These two most abundant markers, H14 and H24 appeared in 6 and 7 out of the 10 

duplicate samples tested and, 14 and 28 out of the 36 samples used in the study, 

respectively. Figure B.4.1 shows a comparison of the proportion of isolates containing 

each of the H14 and H24 markers with a single outlier removed. This outlier was 

removed because it was the only sample where no common markers were found on both 

duplicate plates. The maximum difference between duplicate plates for individual 

markers was 8%. 

 
Figure B.4.9.1. Comparison of the ratios of H14 or H24 genes to total E.coli determined through culture and point 

PCR or qPCR. 
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Figure B.4.3. Relationship between the percentage contributions of human E.coli to the predicted contribution of 

sewage. - Pearson’s Correlation coefficient = 0.32 P=0.0577 

 

Appendix C - Biomarkers 

Appendix C.1 – Database of genomes 

Table C.1.1 Database of E.coli genomes used in this study 

Name Organisms Name 

(NCBI) 

Host/ 

Environment 

Sequence 

completeness 

Genbank 

Ascensions 

H1 Escherichia coli 

DH1 

Human Complete 

Genome 

GCA_000023365.1 

H2 Escherichia coli 

KO11FL 

Human Complete 

Genome 

GCA_000147855.3 

H3 Escherichia coli 

O145:H28 str. 

RM13514 

Human Complete 

Genome 

GCA_000520035.1 

H4 Escherichia coli 

O145:H28 str. 

RM13516 

Human Complete 

Genome 

GCA_000520055.1 
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H5 Escherichia coli 

ST2747 

Human Complete 

Genome 

GCA_000599665.1

  

H6 Escherichia coli 

MS 198-1 

Human Scaffold GCA_000164195.1

  

H7 Escherichia coli 

MS 84-1 

Human Scaffold GCA_000164215.1 

H8 Escherichia coli 

MS 115-1 

Human Scaffold GCA_000164235.1

  

H9 Escherichia coli 

MS 182-1 

Human Scaffold GCA_000164255.1

  

H10 Escherichia coli 

MS 146-1 

Human Scaffold GCA_000164275.1

  

H11 Escherichia coli 

MS 45-1 

Human Scaffold GCA_000164295.1

  

H12 Escherichia coli 

MS 69-1 

Human Scaffold GCA_000164315.1

  

H13 Escherichia coli 

MS 187-1 

Human Scaffold GCA_000164335.1

  

H14 Escherichia coli 

O104:H4 str. 

ON2010 

Human Scaffold GCA_000258635.1

  

H15 Escherichia coli 

LCT-EC106 

Human Scaffold GCA_000259695.1

  

H16 Escherichia coli 

95JB1 

Human Scaffold GCA_000478705.1

  

H17 Escherichia coli 

2362-75 

Human Contig GCA_000183005.2

  

H18 Escherichia coli 

3431 

Human Contig GCA_000184765.2

  

H19 Escherichia coli 

E128010 

Human Contig GCA_000188775.2

  

H20 Escherichia coli 

RN587/1 

Human Contig GCA_000188875.2
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H21 Escherichia coli 

NCCP15647 

Human Contig GCA_000259385.1

  

H22 Escherichia coli 

NCCP15658 

Human Contig GCA_000260475.1

  

H23 Escherichia coli 

541-15 

Human Contig GCA_000264115.1

  

H24 Escherichia coli 

576-1 

Human Contig GCA_000264135.1

  

H25 Escherichia coli 

75 

Human Contig GCA_000264155.1

  

H26 Escherichia coli 

HM605 

Human Contig GCA_000285375.1

  

H27 Escherichia coli 

541-1 

Human Contig GCA_000264215.1

  

H28 Escherichia coli 

O104:H4 str. 

E112/10 

Human Contig GCA_000350005.1

  

H29 Escherichia coli 

ONT:H33 str. 

C48/93 

Human Contig GCA_000350025.2

  

H30 Escherichia coli 

TOP382-1 

Human Contig GCA_000350005.1

  

H31 Escherichia coli 

TOP382-2 

Human Contig GCA_000397265.1

  

H32 Escherichia coli 

TOP382-3 

Human Contig GCA_000397285.1

  

H33 Escherichia coli 

TOP550-2 

Human Contig GCA_000397445.1

  

H34 Escherichia coli 

TOP550-3 

Human Contig GCA_000397465.1

  

H35 Escherichia coli 

TOP550-4 

Human Contig GCA_000397485.1
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H36 Escherichia coli 

TOP2396-1 

Human Contig GCA_000397525.1

  

H37 Escherichia coli 

TOP2396-2 

Human Contig GCA_000397545.1

  

H38 Escherichia coli 

TOP2396-3 

Human Contig GCA_000397565.1

  

H39 Escherichia coli 

TOP2522-1 

Human Contig GCA_000397605.1

  

H40 Escherichia coli 

TOP2662-1 

Human Contig GCA_000397645.1

  

H41 Escherichia coli 

TOP2662-2 

Human Contig GCA_000397665.1

  

H42 Escherichia coli 

TOP2662-3 

Human Contig GCA_000397685.1

  

H43 Escherichia coli 

TOP2662-4 

Human Contig GCA_000397705.1

  

H44 Escherichia coli 

C639_08 

Human Contig GCA_000410655.2

  

H45 Escherichia coli 

C844_97 

Human Contig GCA_000410675.2

  

H46 Escherichia coli 

O127:H6  

Human Contig GCA_000442065.2

  

H47 Escherichia coli 

O127:H6  

Human Contig GCA_000442085.2

  

H48 Escherichia coli 

C12_92 

Human Contig GCA_000446075.2

  

H49 Escherichia coli 

C1244_91 

Human Contig GCA_000446095.2

  

H50 Escherichia coli 

C1214_90 

Human Contig GCA_000446115.2

  

H51 Escherichia coli 

C154_11 

Human Contig GCA_000446135.2
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H52 Escherichia coli 

C155_11 

Human Contig GCA_000446155.2

  

H53 Escherichia coli 

C157_11 

Human Contig GCA_000446175.2

  

H54 Escherichia coli 

C161_11 

Human Contig GCA_000446195.2

  

H55 Escherichia coli 

C213_10 

Human Contig GCA_000446225.2

  

H56 Escherichia coli 

OK1114 

Human Contig GCA_000446245.1

  

H57 Escherichia coli 

2-005-03_S4_C3 

Human Contig GCA_000627075.1

  

H58 Escherichia coli 

1-182-04_S4_C3 

Human Contig GCA_000627095.1

  

H59 Escherichia coli 

1-176-05_S4_C3 

Human Contig GCA_000627135.1

  

H60 Escherichia coli 

1-250-04_S4_C1 

Human Contig GCA_000627155.1

  

H61 Escherichia coli 

1-182-04_S4_C1 

Human Contig GCA_000627175.1

  

H62 Escherichia coli 

STEC O174:H2 

str. 02-04446 

Human Contig GCA_000647455.1

  

H63 Escherichia coli 

STEC O174:H8 

str. 02-07607 

Human Contig GCA_000647495.1

  

H65 Escherichia coli 

1-176-05_S4_C2 

Human Contig GCA_000687005.1

  

H66 Escherichia coli 

4541-1 

Human Contig GCA_000699265.1

  

H67 Escherichia coli 

4552-1 

Human Contig GCA_000699285.1
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H68 Escherichia coli 

10810 

Human Contig GCA_000699305.1

  

H69 Escherichia coli 

7996-1 

Human Contig GCA_000699365.1

  

H70 Escherichia coli 

11117 

Human Contig GCA_000699385.1

  

H71 Escherichia coli 

3-267-03_S3_C1 

Human Contig GCA_000700105.1

  

H72 Escherichia coli 

3-105-05_S1_C1 

Human Contig GCA_000700125.1

  

H73 Escherichia coli 

3-105-05_S4_C2 

Human Contig GCA_000700145.1

  

H74 Escherichia coli 

2-011-08_S1_C3 

Human Contig GCA_000700165.1

  

H75 Escherichia coli 

2-052-05_S4_C3 

Human Contig GCA_000703445.1

  

H76 Escherichia coli 

8-415-05_S4_C1 

Human Contig GCA_000711455.1

  

H77 Escherichia coli 

2-316-03_S1_C1 

Human Contig GCA_000711475.1

  

H78 Escherichia coli 

2-460-02_S1_C3 

Human Contig GCA_000711485.1

  

H79 Escherichia coli 

3-020-07_S3_C2 

Human Contig GCA_000711515.1

  

H80 Escherichia coli 

6-319-05_S4_C2 

Human Contig GCA_000713095.1

  

H81 Escherichia coli 

6-537-08_S1_C1 

Human Contig GCA_000713105.1

  

H82 Escherichia coli 

6-319-05_S4_C3 

Human Contig GCA_000713115.1

  

H83 Escherichia coli 

6-175-07_S1_C3 

Human Contig GCA_000713135.1
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H84 Escherichia coli 

6-175-07_S4_C3 

Human Contig GCA_000713175.1

  

H85 Escherichia coli 

CS03 

Human Contig GCA_000740625.1

  

H86 Escherichia coli 

TOP293-2 

Human Contig GCA_000397345.1

  

H87 Escherichia coli 

TOP293-3 

Human Contig GCA_000397365.1 

H88 Escherichia coli 

TOP293-4 

Human Contig GCA_000397385.1

  

H89 Escherichia coli 

TOP498 

Human Contig GCA_000397405.1

  

H90 Escherichia coli 

O104:H21 str. 

CFSAN002237 

Human Contig GCA_000464915.1

  

H91 Escherichia coli 

O104:H21 str. 

CFSAN002236 

Human Contig GCA_000464955.1

  

H92 Escherichia Coli 

K009 

Human Assembled DRX016668 

H93 Escherichia Coli 

K008 

Human Assembled DRX016667 

H94 Escherichia Coli 

K007 

Human Assembled DRX016666 

H95 Escherichia Coli 

K006 

Human Assembled DRX016665 

H96 Escherichia Coli 

K005 

Human Assembled DRX016664 

H97 Escherichia Coli 

K004 

Human Assembled DRX016663 

H98 Escherichia Coli 

K003 

Human Assembled DRX016662 

http://www.ebi.ac.uk/ena/data/view/DRX016668
http://www.ebi.ac.uk/ena/data/view/DRX016668
http://www.ebi.ac.uk/ena/data/view/DRX016668
http://www.ebi.ac.uk/ena/data/view/DRX016668
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H99 Escherichia Coli 

K002 

Human Assembled DRX016661 

H100 Escherichia Coli 

K001 

Human Assembled DRX016660 

H101 Hu2-2 Human Assembled   

H102 DH7 Human Assembled   

H103 DH8 Human Assembled   

H104 KB4 Human Assembled   

Ch1 Escherichia coli 

O08 

Chicken Contig GCA_000340235.1 

Ch2 Escherichia coli 

S17 

Broiler chick Contig GCA_000340255.1 

Ch3 Escherichia coli 

SEPT362 

Laying Hen Contig GCA_000340275.1 

Ch4 Escherichia coli 

APEC IMT5155 

Chicken Complete 

Genome 

GCA_000813165.1 

Ch5 Escherichia coli 

strain KCh005 

Chicken Contig DRR018455 

Ch6 Escherichia coli 

strain KCh004 

Chicken Contig DRR018454 

Ch7 Escherichia coli 

strain KCh003 

Chicken Contig DRR018453 

Ch8 Escherichia coli 

strain KCh002 

Chicken Contig DRR018452 

Ch9 Escherichia coli 

strain KCh001 

Chicken Contig DRR018451 

Ch10 Escherichia coli 

AD30 

Chicken Contig GCA_000304255.1 

Ch11 Escherichia coli 

AD30 

Chicken Contig GCA_001244915.1 

Ch12 Escherichia coli Chicken 

Faeces 

Contig GCA_001268185.1 

http://www.ebi.ac.uk/ena/data/view/DRX016668
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=1169664&lvl=3&lin=f&keep=1&srchmode=1&unlock
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=1169664&lvl=3&lin=f&keep=1&srchmode=1&unlock
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=1169664&lvl=3&lin=f&keep=1&srchmode=1&unlock
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=1169664&lvl=3&lin=f&keep=1&srchmode=1&unlock
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Ch13 Escherichia coli Chicken 

Faeces 

Contig GCA_001268205.1 

Ch14 Escherichia coli Chicken 

Faeces 

Contig GCA_001268225.1 

Ch15 Escherichia coli Chicken 

Faeces 

Contig GCA_001268425.1 

Ch16 Escherichia coli Chicken 

Faeces 

Contig GCA_001268885.1 

Ch17 Escherichia coli Chicken 

Faeces 

Contig GCA_001268965.1 

Ch18 Escherichia coli Chicken 

Faeces 

Contig GCA_001268985.1 

Ch19 Escherichia coli Chicken 

Faeces 

Contig GCA_001269085.1 

Ch20 Escherichia coli Chicken 

Faeces 

Contig GCA_001269105.1 

Ch21 Escherichia coli Chicken 

Faeces 

Contig GCA_001269285.1 

Ch22 Escherichia coli Chicken 

Faeces 

scaffold GCA_001268925.1 

Ch23 Escherichia coli Chicken 

Faeces 

scaffold GCA_001269065.1 

Ch24 Escherichia coli Chicken 

Faeces 

Complete 

Genome 

GCA_001660565.1 

Ch25 Escherichia coli 

APEC O2 

Chicken 

Faeces 

Contig GCA_001620375.1 

Ch26 E.coli Strain: 

EC2_7 

Chicken 

Intestine 

Contig GCA_000812385.1 

Ch27 Escherichia coli 

38.16 (E. coli)  

Chicken 

Caecum 

Contig GCA_000503295.1 

Ch28 Escherichia coli 

38.52 (E. coli) 

Chicken 

Caecum 

Contig GCA_000503675.1 

https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=1411698&lvl=3&lin=f&keep=1&srchmode=1&unlock
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=1411698&lvl=3&lin=f&keep=1&srchmode=1&unlock
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Ch29 Escherichia coli 

38.29 (E. coli) 

Chicken 

Caecum 

Contig GCA_000503355.1 

Ch30 CK4-2 Chicken 

Faeces 

Assembled   

Ch31 CK6-2 Chicken 

Faeces 

Assembled   

Ch32 CK8-2 Chicken 

Faeces 

Assembled   

Hor1 Escherichia coli 

3.2608 

Horse Contig GCA_000215205.2

  

Hor2 H1-3 Horse Assembled   

Hor3 H2-3 Horse Assembled   

Hor4 H1-1 Horse Assembled   

Hor5 Escherichia coli 

MOD1-EC5143 

Horse Assembled GCA_002516765.1 

Hor6 Escherichia coli 

MOD1-EC6554 

Horse Assembled GCA_002511685.1 

Hor7 Escherichia coli 

MOD1-EC6535 

Horse Assembled GCA_002513055.1

  

Hor8 Escherichia coli 

MOD1-EC6533 

Horse Assembled GCA_002513075.1

  

Hor9 Escherichia coli 

MOD1-EC6495 

Horse Assembled GCA_002513315.1 

Hor10 Escherichia coli 

MOD1-EC6491 

Horse Assembled GCA_002512015.1 

Hor11 Escherichia coli 

MOD1-EC6489 

Horse Assembled GCA_002513395.1 

Hor12 Escherichia coli 

MOD1-EC5108 

Horse Assembled GCA_002231925.1 

Hor13 Escherichia coli 

MOD1-EC5107 

Horse Assembled GCA_002232375.1 

Hor14 Escherichia coli 

MOD1-EC6487 

Horse Assembled GCA_002512035.1 
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Hor15 Escherichia coli 

MOD1-EC6486 

Horse Assembled GCA_002513415.1 

Hor16 Escherichia coli 

MOD1-EC6420 

Horse Assembled GCA_002510855.1 

S1 CHS3-3 Sheep Faeces Contig   

S2 E.coli O157 Sheep Faeces Contig SAMEA3635213  

S6 E.coli O157 Sheep Faeces Contig SAMEA3635214  

S7 E.coli O157 Sheep Faeces Contig SAMEA3635215  

S8 E.coli O157 Sheep Faeces Contig SAMEA3635216  

S9 E.coli O157 Sheep Faeces Contig SAMEA3635217  

S10 E.coli O157 Sheep Faeces Contig SAMEA3635218  

S11 S5-3 Sheep Faeces Assembled   

S12 CH3-2 Sheep Faeces Assembled   

S13 Eshcerichia coli 

FHI38 

Sheep Faeces Scaffold GCA_000753035.1 

S14 Eshcerichia coli 

FHI39 

Sheep Faeces Scaffold GCA_000752875.1 

S15 Eshcerichia coli 

FHI37 

Sheep Faeces Scaffold GCA_000752815.1 

D1 Eshcerichia coli 

IMT31352 

Dog Faeces Contig GCA_001282235.1

  

D2 Escherichia coli 

KD1 

Dog Faeces Contig GCA_000264095.1

  

D3 Escherichia coli 

KD2 

Dog Faeces Contig GCA_000264195.1

  

D4 Eshcerichia Coli 

Strain: IMT31359 

Dog Faeces Contig GCA_001282195.1

  

D5 Escherichia Coli 

Strain: IMT31351 

Dog Faeces Contig GCA_001282155.1 

D6 Escherichia Coli 

Strain: IMT31487 

Dog Faeces Contig GCA_001282345.1

  

D7 D1-2 Dog Faeces Assembled   

D8 D3-2 Dog Faeces Assembled   

http://www.ebi.ac.uk/ena/data/view/SAMEA3635213
http://www.ebi.ac.uk/ena/data/view/SAMEA3635213
http://www.ebi.ac.uk/ena/data/view/SAMEA3635213
http://www.ebi.ac.uk/ena/data/view/SAMEA3635213
http://www.ebi.ac.uk/ena/data/view/SAMEA3635213
http://www.ebi.ac.uk/ena/data/view/SAMEA3635213
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D9 Eshcerichia coli 

MOD1-EC6946 

Dog Faeces Contig GCA_002232275.1 

D10 Eshcerichia coli 

MOD1-EC5069 

Dog Faeces Contig GCA_002232275.1 

D11 Eshcerichia coli 

MOD1-EC5083 

Dog Faeces Contig GCA_002232865.1

  

B1 Escherichia coli 

O157:H7 str. 

SS17 

Cattle Complete 

Genome 

GCA_000730345.1

  

B2 Escherichia coli 

AA86 

Cow Scaffold GCA_000211395.2

  

B3 Escherichia coli 

EC4196 

Cattle Scaffold GCA_000267445.2

  

B4 Escherichia coli 

EC4203 

Cattle Scaffold GCA_000267465.2

  

B5 Escherichia coli 

FRIK1996 

Cattle Scaffold GCA_000267505.2

  

B6 Escherichia coli 

FRIK1985 

Cattle Scaffold GCA_000267525.2

  

B7 Escherichia coli 

93-001 

Cattle Scaffold GCA_000267945.2

  

B8 Escherichia coli 

FRIK1990 

Cattle Scaffold GCA_000267965.2

  

B9 Escherichia coli 

O157:H7 str. 

FRIK966 

Bovine Contig GCA_000175735.1

  

B10 Escherichia coli 

O157:H7 str. 

FRIK2000 

Bovine Contig GCA_000175755.1

  

B11 Escherichia coli 

1.2741 

Cow Contig GCA_000194175.2

  

B12 Escherichia coli 

97.0246 

Cow Contig GCA_000194215.2

  

http://www.ebi.ac.uk/ols/terms?iri=http%3A%2F%2Fwww.ebi.ac.uk%2Fefo%2FEFO_0005135
http://www.ebi.ac.uk/ols/terms?iri=http%3A%2F%2Fwww.ebi.ac.uk%2Fefo%2FEFO_0005135
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B13 Escherichia coli 

97.0264 

Cow Contig GCA_000194295.2

  

B14 Escherichia coli 

4.0522 

Cow Contig GCA_000194335.2

  

B15 Escherichia coli 

99.0741 

Cow Contig GCA_000194435.2

  

B16 Escherichia coli 

900105 (10e) 

Calf Contig GCA_000194725.2

  

B17 Escherichia coli 

5.0588 

Cow Contig GCA_000215145.2

  

B18 Escherichia coli 

3.3884 

Cow Contig GCA_000215285.2

  

B19 Escherichia coli 

O111:H11 str. 

CVM9534 

Cow Contig GCA_000263935.1

  

B20 Escherichia coli 

O111:H11 str. 

CVM9545 

Cow Contig GCA_000263955.1

  

B21 Escherichia coli 

O111:H8 str. 

CVM9570 

Cow Contig GCA_000263975.1

  

B22 Escherichia coli 

O26:H11 str. 

CVM9942 

Cow Contig GCA_000264015.1

  

B23 Escherichia coli 

O26:H11 str. 

CVM10026 

Cow Contig GCA_000264035.1

  

B24 Escherichia coli 

O111:H8 str. 

CVM9634 

Cow Contig GCA_000276765.1

  

B25 Escherichia coli 

O26:H11 str. 

CVM10030 

Cow Contig GCA_000276845.1
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B26 Escherichia coli 

O111:H11 str. 

CVM9553 

Cow Contig GCA_000276925.1

  

B27 Escherichia coli 

O26:H11 str. 

CVM10021 

Cow Contig GCA_000276945.1

  

B28 Escherichia coli 

O111:H11 str. 

CFSAN001630 

Cow Contig GCA_000313425.1

  

B29 Escherichia coli 

C842_97 

Cattle Contig GCA_000447025.2

  

B30 Escherichia coli 

ECC-Z 

Bovine Contig GCA_000498235.1

  

B31 Escherichia coli 

LAU-EC2 

Bovine Contig GCA_000498795.2

  

B32 Escherichia coli 

KC001 

Cattle Assembled DRR018443 

B33 Escherichia coli 

KC002 

Cattle Assembled DRR018444 

B34 C8-3   Assembled   

B35 C9-3   Assembled   

B36 C5-3   Assembled   

P1 Escherichia coli 

UMNK88 

Pig Complete 

Genome 

GCA_000212715.2

  

P2 Escherichia coli 

UMNF18 

Pig Complete 

Genome 

GCA_000220005.2

  

P3 Escherichia coli 

9.1649 

Pig Contig GCA_000194475.2

  

P4 Escherichia coli 

2.3916 

Pig Contig GCA_000194535.2 

P5 Escherichia coli 

B41 

Pig Contig GCA_000194705.2 
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P6 Escherichia coli 

AI27 

Pig Contig GCA_000259135.1 

P7 Escherichia coli 

O26:H11 str. 

CVM9952 

Pig Contig GCA_000276885.1 

P8 Escherichia coli 

IMT8073 

Pig Contig GCA_000414155.2 

P9 Escherichia coli 

C900_01 

Pig Contig GCA_000447085.2 

P10 Escherichia coli 

E455 

Pig Contig GCA_000647795.2 

P11 Escherichia coli 

77302533 

Pig Contig GCA_000754845.1 

P12 Escherichia coli 

77300132 

Pig Contig GCA_000754855.1 

P13 Escherichia coli 

77300095 

Pig Contig GCA_000754865.1 

P14 Escherichia coli 

KP001 

Pig Assembled   

P15 Escherichia coli 

KP002 

Pig Assembled   

P16 Escherichia coli 

KP003 

Pig Assembled   

P17 Escherichia coli 

KP004 

Pig Assembled   

P18 Escherichia coli 

KP005 

Pig Assembled   

P19 Escherichia coli 

KP006 

Pig Assembled   

P20 Escherichia coli 

(E. coli) Strain: 

W25K 

Pig Contig GCA_000696835.1 
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P21 Escherichia coli 

(E. coli) Strain: 

912 

Pig Scaffold GCA_000806195.1 

P22 Escherichia 

coli PCN033 (Ex

PEC) 

Pig Complete 

Genome 

GCA_000219515.3 

P23 Escherichia 

coli PCN061 (E. 

coli) 

Pig Complete 

Genome 

GCA_001029125.1 

P24 Escherichia 

coli FCP1 (E. 

coli) 

Pig Contig GCA_000511565.1 

P25 Escherichia coli 

FBP1 (E. coli) 

Pig Contig GCA_000511525.1 

P26 Escherichia coli 

FAP 2 

Pig Contig GCA_000511505.1 

P27 Escherichia coli 

FAP1 (E. coli) 

Pig Contig GCA_000511485.1 

P28 P2-2 Pig Assembled   

P29 P3-3 Pig Assembled   

P30 P5-1 Pig Assembled   

G1 G1-1 Laridae - Sea 

gull 

Assembled   

G2 G2-2 Laridae - Sea 

gull 

Assembled   

G3 Eshcerichia coli 

MOD1-EC5497 

Laridae - Sea 

gull 

Contig GCA_002229795.1

  

G4 Eshcerichia coli 

MOD1-EC5496 

Laridae - Sea 

gull 

Contig GCA_002229775.1 

G5 Eshcerichia coli 

MOD1-EC5495 

Laridae - Sea 

gull 

Assembled SRX1991313 

G6 Eshcerichia coli 

MOD1-EC5492 

Laridae - Sea 

gull 

Contig GCA_002229875.1 

https://www.ncbi.nlm.nih.gov/sra/SRX1991313%5Baccn%5D
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Env1 Escherichia sp. 

TW15838 

(enterobacteria) 

Environmental 

Clade I 

Contig GCA_000208485.2 

Env2 Escherichia sp. 

TW09231 

(enterobacteria) 

Environmental 

Clade III 

Contig GCA_000208465.2 

Env3 Escherichia 

sp. TW09276 (ent

erobacteria)  

Environmental 

Clade III 

Contig GCA_000208445.2

  

Env4 Escherichia 

sp. TW11588 (ent

erobacteria)  

Environmental 

Clade IV 

Contig GCA_000208585.2 

Env5 Escherichia 

sp. TW14182 (ent

erobacteria)  

Environmental 

Clade IV 

Contig GCA_000208525.2 

Env6 Escherichia 

sp. TW09308 (ent

erobacteria)  

Environmental 

Clade V 

Contig GCA_000208565.2 

O1 Escherichia coli 

48 

Deer Contig GCA_000736735.1 

O2 Escherichia coli 

strain:TW18710 

(STEC) 

Deer Scaffold GCA_000969495.1 

O3 Escherichia coli 

strain:117 (STEC) 

Deer Contig GCA_001902685.1 

( 

O4 Escherichia coli 

1.2264 

Goat Contig GCA_000194415.2 

O5 Escherichia coli 

CUMT8 

Mouse Contig GCA_000264235.1 

O6 Escherichia coli 

MP1 

Mouse Contig GCA_000576655.1

  

O7 Escherichia coli 

SWW33 

Mouse Scaffold GCA_000364305.1 

https://www.ncbi.nlm.nih.gov/assembly/GCA_000208485.2
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=754330&lvl=3&lin=f&keep=1&srchmode=1&unlock
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=754330&lvl=3&lin=f&keep=1&srchmode=1&unlock
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=754330&lvl=3&lin=f&keep=1&srchmode=1&unlock
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=754333&lvl=3&lin=f&keep=1&srchmode=1&unlock
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=754333&lvl=3&lin=f&keep=1&srchmode=1&unlock
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=754333&lvl=3&lin=f&keep=1&srchmode=1&unlock
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=754336&lvl=3&lin=f&keep=1&srchmode=1&unlock
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=754336&lvl=3&lin=f&keep=1&srchmode=1&unlock
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=754336&lvl=3&lin=f&keep=1&srchmode=1&unlock
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=754331&lvl=3&lin=f&keep=1&srchmode=1&unlock
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=754331&lvl=3&lin=f&keep=1&srchmode=1&unlock
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=754331&lvl=3&lin=f&keep=1&srchmode=1&unlock
https://www.ncbi.nlm.nih.gov/assembly/GCA_000969495.1
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O8 Escherichia coli 

K02 

Mouse Scaffold GCA_000607285.1 

O9 Escherichia coli 

4.0967 

Rabbit Contig GCA_000194495.2

  

O10 Escherichia coli 

C527_94 

Rabbit Contig GCA_000446625.2 

O11 Escherichia coli 

APEC O1 

Turkey Complete 

Genome 

GCA_000014845.1 

 

 

Appendix D - Chapter 5 Evaluating the Effect of Library Composition on 

Community-based MST 

Appendix D.1 – R code for mixing simulated microbial communities. 

####********************Start of R-code************************#### 

#Load up the required packages 

library(phyloseq) 

library(plyr) 

 

#Pick an arbitrary number for the seed 

set.seed(100) 

#set directory 

setwd("…") 

 

####*************Load data into phyloseq object***************#### 

otu_table <- read.csv2("…", sep = ",", row.names = 1) 

otu_table <- as.matrix(otu_table) 
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#read taxonomy 

taxonomy <- read.csv2("…", sep = ",", row.names = 1) 

taxonomy <- as.matrix(taxonomy) 

 

#Read metadata 

meta <-  read.table("…", sep = "\t", header = TRUE, stringsAsFactors = TRUE) 

rownames(meta) <- meta$sample_id 

 

#read in tree 

tree <- read_tree("…") 

#get into phyloseq 

OTU <-  otu_table(otu_table, taxa_are_rows = TRUE) 

TAX <-  tax_table(taxonomy) 

META <- sample_data(meta) 

 

#Combine in phyloseq object 

all_data <- phyloseq(OTU, TAX, META, tree) 

 

#change rank names – if necessary 

colnames(tax_table(all_data)) <- c("kingdom", "phylum", "class", "order", "family",  

"genus", "species") 

rank_names(all_data) 

 

#Remove unnecessary data 

rm(META) 
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rm(meta) 

rm(otu_table) 

rm(tree) 

rm(taxonomy) 

rm(OTU) 

rm(TAX) 

 

#Filter what samples you require for mixing and to include in the faecal taxon library 

Faecal_samples <- subset_samples(all_data,  

                                 Sample.type == "Faecal") 

Faecal_samples <- prune_taxa(taxa_sums(Faecal_samples) > 0, Faecal_samples) 

 

#Display the sample data 

sample_data(Faecal_samples) 

 

#Construct OTU table to rebuild the Phyloseq object later 

otu_df <- as.data.frame(otu_table(Faecal_samples)) 

head(otu_df) 

 

#Define sample composition either manually here, or supply in a CSV file. Columns 

should be the sample names you want to sample from, and rows are the mixtures. 

#This is if you want to supply composition manually. String in “” is the sample_id.  

#s1=data.frame("cp"=0.1, "dy"=0.9) 

#s2=data.frame("dy"=0.2, "eh"=0.1, "cp"=0.7) 

#s3=data.frame("eh"=0.05, "cp"=0.1, "dy"=0.85) 
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#s4=data.frame("cp"=0.05, "dy"=0.95) 

#simlist <- list("sim1"=s1,"sim2"=s2,"sim3"=s3, "sim4"=s4) 

#mixture_df <- ldply(simlist, .id = NULL) 

#mixture_df[is.na(mixture_df)] <- 0 

#rownames(mixture_df) <- names(simlist) 

#mixture_df 

 

#Import sample composition using csv file. 

mixture_df <- read.csv("… ",row.names = 1) 

 

#Define number of reads to sample 

#numreads=mean(sample_sums(Faecal_samples)) 

#min(sample_sums(Faecal_samples)) 

numreads = 50000 

####**************************Start the 

sampling****************************#### 

 

#Subset the phyloseq object by source, and then convert to relative abundances 

relabunds <- list() 

for (m in colnames(mixture_df)){ 

  relabunds[[m]] <- 

as.data.frame(t(otu_table(transform_sample_counts(subset_samples(Faecal_samples, 

sample_id==m), function(x) x/sum(x))))) 

} 
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#Join that all together into a data.frame (for sampling) 

relative_abundance_OTUs <- t(do.call( rbind, relabunds)) 

 

#Define a "genericish" function to do the actual sampling 

runSimulation <- function(fullmat, mixture_vector){ 

#Extract the columns we want 

submat <- fullmat[,names(mixture_vector)] 

 

#Multiply each row by the corresponding composition value, and then add them together 

sampling_probs <- apply(submat, 1, function(x) sum(x[names(mixture_vector)] * 

mixture_vector)) 

   

#Sample (with replacement) from a list of 1..n OTU indices, weighted by the sampling 

probability vector                       

tvec = sample(seq_along(rownames(fullmat)), numreads, replace = T, prob = 

sampling_probs) 

#Build up a results vector, full of 0                         

result_vec <- rep(0, length(sampling_probs)) 

 

#And substitute counts for the OTUs we've "detected" 

sim_result <- table(tvec ) 

result_vec[as.numeric(names(sim_result))] <- sim_result   

result_vec 

} 
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#Run the simulation(s) 

sim_results <- apply(mixture_df, 1, function(x) 

runSimulation(relative_abundance_OTUs, x)) 

 

#### Turn it all back into a phyloseq object #### 

 

#Fixup the sample data so it includes the new simulated samples, otherwise Phyloseq 

ignores them :-(  

newsample_df <- as.data.frame(sample_data(Faecal_samples), stringsAsFactors = F) 

newsample_df$Simulated <- F 

newsample_df[rownames(mixture_df),"Simulated"] <- T 

newsample_df$sample_id <- rownames(newsample_df) 

newsample_df 

 

#Combine it all back into a phyloseq object 

everything_ps <- phyloseq(otu_table(cbind(otu_df, sim_results), taxa_are_rows = T), 

tax_table(Faecal_samples), sample_data(newsample_df)) 

everything_ps 

 

 

####******************SENSE CHECK THE RESULTS 

********************####                      

 

rel_everything_ps <- transform_sample_counts(everything_ps, function(x) x/sum(x)) 

o <- ordinate(rel_everything_ps, "NMDS", "bray") 
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plot_ordination(rel_everything_ps, o, label = "sample_id", color="Simulated") 

 

####***********************Export OTU Table for 

Sourcetracker*****************#### 

 

# Extract abundance matrix from the phyloseq object NB you need otus as rows 

mixed_OTU1 <- as(otu_table(everything_ps), "matrix") 

 

# Coerce to a data frame 

mixed_OTUdf = as.data.frame(mixed_OTU1) 

mixed_OTUdf <- cbind("#OTU ID" = rownames(mixed_OTUdf), mixed_OTUdf) 

rownames(mixed_OTUdf) <- NULL 

View(head(mixed_OTUdf)) 

 

#export OTU table for sourcetracker 

write.table(mixed_OTUdf, file=’ NAME OTU TABLE', quote=FALSE, 

sep='\t',row.names = F) 

#export mapping file for sourcetracker 

newsample_df$Simulated <- NULL 

write.table(newsample_df, file='NAME MAPPING FILE’, sep='\t', row.names = F) 

 

Appendix D.2 – Results of sewage and sea water communities with and without a 

background source included in the FTL.  
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Figure D.2.1 SourceTracker predictions for the detection of sewage in sea water, when no background source was 

used, or when sea water was included as a background source in the FTL. 
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Appendix E – Seaton Sluice Catchment Case Study 

Appendix E.1 - Environment Agency Bathing Water Sampling Regime 2016 

 

Table E.1.1 Environment Agency Bathing Water Sampling Regime 2016 

Day Date 
Sample 
Number Sampled? 

Used for 
qPCR? 

Used for 
Sequencing? 

Wednesday 04-May-16 Pre-Season Yes Yes Yes 

Tuesday 17-May-16 2 Yes Yes Yes 

Monday 23-May-16 3 Yes No No 

Thursday 02-Jun-16 4 Yes No No 

Wednesday 08-Jun-16 5 Yes No No 

Tuesday 14-Jun-16 6 Yes No No 

Wednesday 22-Jun-16 7 Yes No No 

Monday 27-Jun-16 8 Yes No No 

Saturday 09-Jul-16 9 No No No 

Thursday 14-Jul-16 10 Yes Yes No 

Tuesday 19-Jul-16 11 Yes No No 

Wednesday 27-Jul-16 12 Yes Yes Yes 

Tuesday 04-Aug-16 13 Yes Yes No 

Wednesday 10-Aug-16 14 Yes Yes No 

Tuesday 16-Aug-16 15 No No No 

Tuesday 23-Aug-16 16 Yes No No 

Saturday 03-Sep-16 17 Yes Yes No 

Thursday 08-Sep-16 18 Yes Yes No 

Wednesday 14-Sep-16 19 Yes Yes No 

Tuesday 20-Sep-16 20 Yes Yes Yes 
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Appendix E.2 E.coli concentrations across sampling days 

 

Figure E.2.1. Culturable E.coli shown by sampling date and coloured by sample location. Blue and red dotted line 

show concentrations of E.coli required to achieve excellent and good status, respectively.  
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Appendix E.3 Rainfall pattern throughout the bathing water season. 

 

Figure E.3.1. Rainfall across the bathing water season (2016). Vertical lines represent sampling days used for analysis 

of culturable E.coli (all), enumeration of genetic markers by qPCR (Blue and green), and community analysis (Green). 
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Appendix E.4 E.coli and marker concentrations and classifications or each sample under the BWD (2006/7/EC) 

 

Table E.4.1 E.coli and marker concentrations and classifications or each sample under the BWD 

Lo
ca

ti
o

n
 

In
d

ic
at

o
r 

0
4

/0
5

/2
0

16
 

1
7

/0
5

/2
0

16
 

1
4

/0
7

/2
0

16
 

2
7

/0
7

/2
0

16
 

0
4

/0
8

/2
0

16
 

1
0

/0
8

/2
0

16
 

0
3

/0
9

/2
0

16
 

0
8

/0
9

/2
0

16
 

1
4

/0
9

/2
0

16
 

2
0

/0
9

/2
0

16
 

0
7

/1
1

/2
0

16
 

2
2

/1
1

/2
0

16
 

Lo
ca

ti
o

n
 

BW 

E.coli 0.00 0.00 0.00 30.00 25.00 3.33 10.67 16.67 28.67 26.50 86.50 2850.00 

BW 
RodA 0.00 0.00 370.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 125.15 6754.72 

HF183 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 61.41 4748.84 

Hu100 0.00 0.00 34.26 0.00 0.00 0.00 0.00 0.00 0.00 0.00 15.31 681.59 

1 

E.coli 383.33 57.73 23.30 9650.00 400.00 133.33 150.00 343.44 33.33 123.33 13000.00 54666.67 

1 
RodA 140.87 102.07 125.56 14783.50 1235.51 2532.75 2355.37 853.17 167.93 335.71 15223.74 86571.97 

HF183 26.65 0.00 250.97 1103.03 0.00 0.00 154.80 36.92 0.00 0.00 1852.56 49204.73 

Hu100 0.00 0.00 0.00 234.72 0.00 0.00 26.11 0.00 0.00 54.06 1485.77 2726.65 

2 

E.coli 1500.00 275.00 260.00 9166.66 4166.66 17000.00 3150.00 606.67 2833.33 720.00 12000.00 
 

ND* 
 

2 
RodA 460.21 632.53 671.41 23110.21 4359.45 20037.90 6248.64 3973.88 4839.05 537.01 27350.92 

HF183 104.36 0.00 147.15 3311.46 0.00 11534.99 0.00 0.00 0.00 55.73 4836.89 

Hu100 273.53 0.00 0.00 550.61 49.43 976.95 65.42 0.00 0.00 31.69 382.25 

3 

E.coli 533.33 470.00 236.66 9650.00 900.00 1700.00 1550.00 1400.00 2700.00 550.00 11000.00 24666.67 

3 
RodA 166.50 770.42 758.58 17723.54 1595.77 3359.56 5039.71 2136.01 2975.22 429.38 19855.37 69573.81 

HF183 52.48 28.88 77.46 699.19 0.00 0.00 0.00 0.00 0.00 73.99 7233.97 27055.53 

Hu100 419.04 190.89 43.99 259.17 59.55 0.00 0.00 49.16 0.00 0.00 683.83 4038.17 

4 

E.coli 1020.00 135.00 100.00 10500.00 733.33 1600.00 876.67 920.00 1266.67 1433.33 5200.00 42333.33 

4 

RodA 553.05 748.25 441.81 13027.54 2476.89 

1645.842 

2917.51 2548.29 4237.55 1390.51 7845.17 

52561.53 
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HF183 384.74 298.38 476.53 2203.22 78.24 494.13 144.51 118.34 127.98 1104.03 1831.09 45244.11 

Hu100 182.14 43.06 47.46 201.71 111.59 54.86 95.95624 80.52 0.00 207.80 0.00 21221.17 

5 

E.coli 1800.00 1466.67 55.50 10750.00 1566.00 1333.33 2700.00 1500.00 2400.00 2000.00 6500.00 12333.33 

5 
RodA 597.78 1696.49 473.06 20360.00 1607.83 4976.26 4018.95 1596.06 1510.25 1142.41 12678.38 44122.40 

HF183 689.64 138.27 599.76 2904.12 105.98 0.00 0.00 0.00 0.00 107.99 1880.88 14557.46 

Hu100 229.84 106.17 266.65 1570.48 0.00 0.00 117.13 28.91 51.75 47.13 438.53 1082.32 

6 

E.coli 13.00 54.50 34.00 2333.33 366.67 2600.00 366.66 476.67 1150.00 880.00 2966.67 11333.33 

6 
RodA 0.00 124.37 406.08 4395.72 637.61 2761.35 4988.44 2641.33 2002.90 1118.16 7031.86 38342.83 

HF183 0.00 0.00 59.33 0.00 0.00 920.38 0.00 0.00 0.00 0.00 0.00 11543.96 

Hu100 0.00 0.00 54.69 0.00 0.00 108.08 26.61 0.00 50.51 0.00 0.00 4815.38 

7 

E.coli 115.47 510.00 155.00 4400.00 3400.00 1466.67 3733.33 3000.00 11200.00 2300.00 7000.00 24333.33 

7 
RodA 202.42 2732.44 1593.73 31081.72 24943.97 2596.80 11181.93 2613.37 76592.52 742.31 17010.38 50990.60 

HF183 0.00 215.10 2833.90 2481.17 425.65 95.76 1338.04 25.22 7748.68 2239.87 6141.77 16524.89 

Hu100 0.00 182.66 79.51 379.57 507.13 49.35 480.95 37.10 3558.16 259.99 299.60 4175.27 

8 

E.coli 156.66 1340.00 55.00 8000.00 2800.00 1966.67 1800.00 1733.33 1233.33 2000.00 4366.67 27000.00 

8 
RodA 86.40 6977.53 0.00 26495.01 54987.49 7579.24 14492.99 949.18 1271.52 2710.85 9335.02 57234.72 

HF183 89.76 1806.23 43.07 596.78 0.00 0.00 555.57 28.56 0.00 190.57 1807.42 19555.46 

Hu100 0.00 557.08 0.00 229.58 230.06 34.19 134.72 0.00 0.00 119.20 1044.26 5739.80 

9 

E.coli 130.00 42.42 62.50 10650.00 4466.67 9100.00 4100.00 2333.33 11900.00 5500.00 3033.33 8666.67 

9 
RodA 353.49 380.78 1853.85 21797.30 41289.77 2812.13 6096.16 8492.42 22028.02 2855.25 7587.26 23276.40 

HF183 160.37 165.94 0.00 576.55 24.55 220.37 0.00 0.00 120.29 0.00 0.00 6147.40 

Hu100 0.00 51.21 0.00 252.99 229.66 38.94 0.00 129.39 135.64 215.33 0.00 0.00 

10 

E.coli 60.66 82.67 30.00 3966.66 1466.66 1650.00 593.33 50.55 1600.00 1550.00 NRϯ 12666.67 

10 
RodA 475.76 184.06 1095.48 3149.06 10594.35 2931.00 3279.16 4355.13 1168.05 1520.32 5710.21 37878.21 

HF183 88.86 0.00 0.00 110.62 0.00 208.02 0.00 0.00 0.00 715.30 0.00 409.76 

Hu100 0.00 0.00 0.00 44.16 574.60 65.20 0.00 0.00 0.00 204.54 0.00 499.06 

11 

E.coli 57.73 33.00 1.00 5900.00 900.00 1433.33 233.33 83.33 600.00 146.67 4766.67 3300.00 

11 RodA 0.00 142.04 0.00 10812.49 3105.89 402.32 590.45 688.70 869.35 0.00 10120.75 2888.12 

HF183 30.16 0.00 0.00 4751.04 0.00 0.00 0.00 0.00 0.00 0.00 545.93 3841.98 
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Hu100 0.00 0.00 0.00 97.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 474.17 

12 

E.coli 1.00 12.00 0.00 0.00 233.33 66.67 33.33 11.33 20.00 130.00 1900.00 535.00 

12 
RodA 0.00 0.00 471.88 0.00 10475.96 0.00 402.32 515.59 152.35 259.46 3401.41 2301.88 

HF183 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 397.56 2924.50 

Hu100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 139.42 

13 

E.coli 150.00 3766.00 380.00 10700.00 10750.00 8800.00 4666.67 4850.00 6066.67 2633.33 14000.00 4333.33 

13 
RodA 2251.14 2499.84 3284.29 14803.49 7392.54 10885.12 1802.59 276.28 15465.20 11762.57 35714.66 23123.61 

HF183 5239.52 13251.89 972.84 8554.91 0.00 2730.56 675.48 86.31 3196.83 4593.31 7755.50 8318.99 

Hu100 51.53 0.00 28.64 144.97 37.15 352.45 31.56 39.11 204.93 81.46 97.55 679.63 

14 

E.coli 346.67 270.00 166.66 9350.00 5333.33 11000.00 1866.67 3800.00 3733.33 2050.00 1400.00 2166.67 

14 
RodA 3565.13 3135.72 542.61 477.87 33105.37 

NR** 

4101.12 14929.06 7129.01 4075.93 27500.33 24076.94 

HF183 3475.49 31649.54 983.06 9692.56 1928.13 1053.89 156.95 4087.24 5174.70 1759.59 2234.74 

Hu100 60.37 62.26 0 129.37 133.04 44.13 0.00 198.30 62.31 0.00 276.71 
Highlighted cells denote concentrations between the limit of detection and quantification. 

*ND - Not determined as sample could not be collected safely due to surface water flooding. 
ϯNR - Not reported as all replicate plates were unreadable.  
**NR - Not reported as all qPCR assays appeared inhibited and dilution resulted in the gene copies decreasing below the limit of detection.   
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Table E.4.2 Classifications of each sample according to the Bathing Water Directive (2006/7/EC) 
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Lo
ca

ti
on

E.coli Excellent Excellent Excellent Excellent Excellent Excellent Excellent Excellent Excellent Excellent Excellent Poor E.coli

RodA Excellent Excellent Good Excellent Excellent Excellent Excellent Excellent Excellent Excellent Excellent Poor RodA

E.coli Good Excellent Excellent Poor Good Excellent Excellent Good Excellent Excellent Poor Poor E.coli

RodA Excellent Excellent Excellent Poor Poor Poor Poor Poor Excellent Good Poor Poor RodA

E.coli Poor Good Good Poor Poor Poor Poor Poor Poor Poor Poor E.coli

RodA Good Poor Poor Poor Poor Poor Poor Poor Poor Poor Poor RodA

E.coli Poor Good Excellent Poor Poor Poor Poor Poor Poor Poor Poor Poor E.coli

RodA Excellent Poor Poor Poor Poor Poor Poor Poor Poor Good Poor Poor RodA

E.coli Poor Excellent Excellent Poor Poor Poor Poor Poor Poor Poor Poor Poor E.coli

RodA Poor Poor Good Poor Poor Poor Poor Poor Poor Poor Poor Poor RodA

E.coli Poor Poor Excellent Poor Poor Poor Poor Poor Poor Poor Poor Poor E.coli

RodA Poor Poor Good Poor Poor Poor Poor Poor Poor Poor Poor Poor RodA

E.coli Excellent Excellent Excellent Poor Good Poor Good Good Poor Poor Poor Poor E.coli

RodA Excellent Excellent Good Poor Poor Poor Poor Poor Poor Poor Poor Poor RodA

E.coli Excellent Poor Excellent Poor Poor Poor Poor Poor Poor Poor Poor Poor E.coli

RodA Excellent Poor Poor Poor Poor Poor Poor Poor Poor Poor Poor Poor RodA

E.coli Excellent Poor Excellent Poor Poor Poor Poor Poor Poor Poor Poor Poor E.coli

RodA Excellent Poor Excellent Poor Poor Poor Poor Poor Poor Poor Poor Poor RodA

E.coli Excellent Excellent Excellent Poor Poor Poor Poor Poor Poor Poor Poor Poor E.coli

RodA Good Good Poor Poor Poor Poor Poor Poor Poor Poor Poor Poor RodA

E.coli Excellent Excellent Excellent Poor Poor Poor Poor Excellent Poor Poor Poor E.coli

RodA Good Excellent Poor Poor Poor Poor Poor Poor Poor Poor Poor Poor RodA

E.coli Excellent Excellent Excellent Poor Poor Poor Excellent Excellent Poor Excellent Poor Poor E.coli

RodA Excellent Excellent Excellent Poor Poor Good Poor Poor Poor Excellent Poor Poor RodA

E.coli Excellent Excellent Excellent Excellent Excellent Excellent Excellent Excellent Excellent Excellent Poor Poor E.coli

RodA Excellent Excellent Good Excellent Poor Excellent Good Poor Excellent Good Poor Poor RodA

E.coli Excellent Poor Good Poor Poor Poor Poor Poor Poor Poor Poor Poor E.coli

RodA Poor Poor Poor Poor Poor Poor Poor Good Poor Poor Poor Poor RodA

E.coli Good Good Excellent Poor Poor Poor Poor Poor Poor Poor Poor Poor E.coli

RodA Poor Poor Poor Good Poor Poor Poor Poor Poor Poor Poor RodA

12 12

13 13

14 14

9 9

10 10

11 11

6 6

7 7

8 8

3 3

4 4

5 5

BW BW

1 1

2 2
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Appendix E.5 CSO spills up to 12 hours prior to sampling 

 

Table 9E.5.1. CSO spill data up to 12 hours prior to sampling. 

PLR Site name 
Spill 
duration Spill start time 

NZ30747507 05D01SEATONVALLEYCSO07 SewerLevel 00 00:15 22/11/2016 12:15 

NZ30747507 05D01SEATONVALLEYCSO07 SewerLevel 00 00:15 22/11/2016 11:00 

NZ27766901 02D02CRAMLINGTONCSO03 SewerLevel 00 00:15 22/11/2016 10:15 

NZ23724809 05D01BRUNSWICKCRESCSO SewerLevel 00 00:15 22/11/2016 09:00 

NZ23724809 05D01BRUNSWICKCRESCSO SewerLevel 00 00:15 22/11/2016 08:30 

NZ23724809 05D01BRUNSWICKCRESCSO SewerLevel 00 00:15 22/11/2016 07:30 

NZ26735701 05D01DUDLEYSCHOOLCSO SewerLevel 00 01:45 22/11/2016 07:15 

NZ26738505 05D01FORDLEYDRIVECSO SewerLevel 00 03:45 22/11/2016 07:00 

NZ23724809 05D01BRUNSWICKCRESCSO SewerLevel 00 00:30 22/11/2016 06:30 

NZ25738406 05D01SEATONVALLEYCSO23 SewerLevel 00 00:45 22/11/2016 06:30 

NZ26735701 05D01DUDLEYSCHOOLCSO SewerLevel 00 00:30 22/11/2016 06:15 

NZ23724809 05D01BRUNSWICKCRESCSO SewerLevel 00 00:15 22/11/2016 06:00 

NZ28743504 05D01SEATONVALLEYCSO16 SewerLevel 00 00:30 22/11/2016 06:00 

NZ31741610 05D01NORTHSIDEPLACECSO SewerLevel 00 00:45 22/11/2016 05:45 

NZ25738406 05D01SEATONVALLEYCSO23 SewerLevel 00 00:30 22/11/2016 05:45 

NZ27766901 02D02CRAMLINGTONCSO03 SewerLevel 00 01:45 22/11/2016 05:30 

NZ20731303 05D01DINNINGTON SewerLevel 00 07:30 22/11/2016 05:30 

NZ26735701 05D01DUDLEYSCHOOLCSO SewerLevel 00 00:45 22/11/2016 05:15 

NZ30749413 05D01SEATONVALLEYCSO09 SewerLevel 00 02:00 22/11/2016 05:15 

NZ28743504 05D01SEATONVALLEYCSO16 SewerLevel 00 00:30 22/11/2016 05:00 

NZ27766901 02D02CRAMLINGTONCSO03 SewerLevel 00 00:30 22/11/2016 04:30 

NZ30749413 05D01SEATONVALLEYCSO09 SewerLevel 00 00:15 22/11/2016 04:30 

NZ26738716 05D01SEATONVALLEYCSO31 SewerLevel 00 04:30 22/11/2016 04:30 

NZ27766901 02D02CRAMLINGTONCSO03 SewerLevel 00 00:15 22/11/2016 04:00 

NZ33758710 05D01SEATONVALLEYCSO14 SewerLevel 00 00:15 22/11/2016 03:00 

NZ26735701 05D01DUDLEYSCHOOLCSO SewerLevel 00 02:15 22/11/2016 02:45 

NZ33766703 05D01SEATONVALLEYCSO11 SewerLevel 00 00:15 22/11/2016 02:45 

NZ25738406 05D01SEATONVALLEYCSO23 SewerLevel 00 00:30 22/11/2016 02:30 

NZ33758710 05D01SEATONVALLEYCSO14 SewerLevel 00 00:15 22/11/2016 02:15 

NZ33766703 05D01SEATONVALLEYCSO11 SewerLevel 00 00:15 22/11/2016 02:00 

NZ28743504 05D01SEATONVALLEYCSO16 SewerLevel 00 00:15 22/11/2016 02:00 

NZ27766901 02D02CRAMLINGTONCSO03 SewerLevel 00 02:00 22/11/2016 01:45 

NZ30749413 05D01SEATONVALLEYCSO09 SewerLevel 00 02:45 22/11/2016 01:30 

NZ30749413 05D01SEATONVALLEYCSO09 SewerLevel 00 00:15 22/11/2016 01:00 

NZ23724809 05D01BRUNSWICKCRESCSO SewerLevel 00 03:00 22/11/2016 00:45 

NZ27766901 02D02CRAMLINGTONCSO03 SewerLevel 00 00:30 22/11/2016 00:30 

NZ25738406 05D01SEATONVALLEYCSO23 SewerLevel 00 00:30 21/11/2016 23:45 

NZ27766901 02D02CRAMLINGTONCSO03 SewerLevel 00 00:45 21/11/2016 23:30 
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NZ30749413 05D01SEATONVALLEYCSO09 SewerLevel 00 02:00 21/11/2016 22:45 

NZ25738406 05D01SEATONVALLEYCSO23 SewerLevel 00 00:30 21/11/2016 22:45 

NZ30749413 05D01SEATONVALLEYCSO09 SewerLevel 00 00:15 21/11/2016 22:15 

NZ26735701 05D01DUDLEYSCHOOLCSO SewerLevel 00 04:30 21/11/2016 22:00 

NZ30747507 05D01SEATONVALLEYCSO07 SewerLevel 00 00:15 07/11/2016 12:45 

NZ30777106 05D01SEATONVALLEYCSO30 SewerLevel 00 00:45 07/11/2016 12:45 

NZ31770604 05D01SEATONVALLEYCSO04 SewerLevel 00 08:00 07/11/2016 10:30 

NZ30747507 05D01SEATONVALLEYCSO07 SewerLevel 00 00:15 07/11/2016 10:30 

NZ30777106 05D01SEATONVALLEYCSO30 SewerLevel 00 00:30 07/11/2016 10:30 

NZ23739410 05D01SEATONVALLEYCSO27 SewerLevel 00 01:00 07/11/2016 10:15 

NZ33758710 05D01SEATONVALLEYCSO14 SewerLevel 00 00:15 07/11/2016 09:45 

NZ23739410 05D01SEATONVALLEYCSO27 SewerLevel 00 01:30 10/08/2016 23:30 

NZ27791208 02D02EASTHARTFORDCSO SewerLevel 00 01:00 27/07/2016 12:30 

NZ30747507 05D01SEATONVALLEYCSO07 SewerLevel 00 00:15 27/07/2016 04:30 

NZ30777106 05D01SEATONVALLEYCSO30 SewerLevel 00 00:30 27/07/2016 04:30 

NZ23739410 05D01SEATONVALLEYCSO27 SewerLevel 00 01:30 27/07/2016 03:45 

NZ23739410 05D01SEATONVALLEYCSO27 SewerLevel 00 00:45 27/07/2016 02:15 

NZ30747507 05D01SEATONVALLEYCSO07 SewerLevel 00 00:15 19/07/2016 10:15 

NZ29742907 05D01SEATONVALLEYCSO17 SewerLevel 00 00:30 22/05/2016 21:45 
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Appendix E.6 Hu100 concentrations in CSO impacted samples and non-CSO impacted 

samples.  

 

 

Figure E.6.1. HU100 concentrations for CSO impacted (top) and non-CSO impacted (bottom) samples. 


