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Abstract 

This thesis carries out a series of empirical investigations into the nature and 

evolutionary process of asset bubbles in global stock markets. It also provides insight 

into the issue of market predictability with the consideration of price bubbles in the US, 

and how those results might inspire policymakers to prevent future bubbles.  

We start by reviewing the rational bubble theories which are used for modelling bubble 

process and discuss the rationale of the relevant testing methods for discovering 

bubbles. Overall, three main testing procedures are selected in Chapter 3 with the 

purpose of concluding whether bubbles exist in the global stock markets. Eventually, we 

confirm the presence of bubbles globally, and provide clear dates for each bubble’s 

origination and collapse.  

The bubble dates obtained provide a timeline for stock market exuberance, and their 

overlapping periods suggest that bubbles can migrate between countries. However, there 

has been very little research on this latter issue. Therefore, in Chapter 4 we undertake a 

large-scale empirical analysis to investigate the bubble transmission mechanism. Our 

vector autoregressive (VAR) and volatility results confirm that for some countries a 

contagion−effect exists, leading to bubble migration between countries.  

Finally, in Chapter 5, we are particularly interested in whether empirical results on the 

predictability of stock market data by the dividend-price ratio is affected by the 

presence of a bubble, and by borrowing Campbell-Shiller’s model but adding selected 

monetary variables, we further assess the forecasting performance of common monetary 

policy indictors in predicting the movement of price-dividend ratios in both bubble and 

non-bubble periods.  
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Chapter 1 Introduction 

The phenomenon of the stock market bubble has long been present in economic history. In the 

1720s, the South Sea Bubble occurred: the price of the British South Sea Company increased 

to its highest value of £1000 from £130 within six months, followed by an extraordinary 

collapse to its original level in only another half a year. The DotCom Bubble, which happened 

more recently in the 1990s, led to an amazing surge in all major equity indices; however, its 

subsequent collapse destroyed the public’s belief of a ‘new economy’. The remark quoted by 

Greenspan (December 5, 1996) offered a phrase ‘irrational exuberance’ to describe this 

irregular expansion in the stock market. However, it seems that history has not been learned. 

In recent years, the 2008 global financial crisis occurred, originally triggered by the real estate 

bubble in the US. It is considered to be the worst financial crisis since the Great Depression in 

the 1930s. The Dow Jones Industrial Average (DJIA) stock market index dropped by more 

than 50% over a period of 17 months, which is similar to a 54.7% fall in the Great 

Depression, but then a total drop of 89% over the following 16 months.1 The crisis rapidly 

spread into the UK, Euro Zone and a few developing countries, resulting in declines in the 

majority of stock indices. ‘Between 40 and 45 percent of the world’s wealth has been 

destroyed in little less than a year and a half’, said by Stephen Schwarzman (March 11, 2009) 

which provides a vivid image for that disaster stamped deeply in the financial history.2 The 

speed of destroying wealth within such a short period of time severely influences the stability 

of national financial system, and it is highly possible that bubbles contagiously move between 

markets to magnify their impact on global markets. Donald Kohn, the Federal Reserve Board 

Vice Chairman, has warned the policymakers that ‘they should deepen their understanding 

about how to combat speculative bubbles to reduce the chances of another financial crisis’. 

Such alert calls for the research on financial turbulence.  

The recent episodes of bubble provide new context for empirical research, and policymakers 

urgently require studies focused on fiscal, monetary, and regulatory policies in order to 

maintain financial stability within both booming and crisis periods. Potential questions 

 
1  Kawamoto, Dawn (March 2, 2009). ‘Dow Jones decline rate mimics Great Depression, Business Tech-CNET News’. 
Available at: http://www.cnet.com/news/dow-jones-decline-rate-mimics-great-depression/. 
2 Schwarzman, S. (2009). Available at: http://www.reuters.com/article/us-blackstone-idUSTRE52966Z20090311. 

http://www.cnet.com/news/dow-jones-decline-rate-mimics-great-depression/
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beyond these immediate policy issues are closely related to both discovery and analysis into 

bubbles. Therefore, understanding their nature is of fundamental importance in order to assist 

practitioners to gain deeper insight about bubbles’ origin and its evolutionary process. It is 

these issues that shape the objective of present thesis. 

1.1 Motivations and Objectives of the Thesis 

In this thesis, we address several problems in relation to stock market exuberance, particularly 

its nature and the evolutionary process of bubbles.  

We begin with the discovery of stock price bubbles in the global stock markets. Historical 

evidence shows that asset prices can exceed their fundamental values. Great examples include 

the earliest South Sea boom (known as the very first exuberance), the Japanese real estate 

market boom (in the 1980s), and the well-known Dotcom market boom (starts from 1990 to 

the early of 2000). Economic professions attribute those episodes to asset bubbles, and many 

of them believe that bubbles would have a significant impact on market performance. For 

example, Shiller (2000) seeks to discover the attitude changes in bubble expectations and 

investor confidence, and how these changes bring potential impact on the behaviour of 

markets. Furthermore, Cooper, Dimitrov, and Rau (2001) study the reaction of market 

participants in relation to any new information announced during the exuberance period, 

especially for the announcement of corporate name changes to Internet-related Dotcom 

names. Other works such as Ritter and Welch (2002), Ofek and Richardson (2002), Lamont 

and Thaler (2003), and Cunado, GilAlana, and Gracia (2005) also investigate issues about 

how bubbles affect the performance of different markets, and finally, they claim that asset 

prices will be crucially affected through different channels within the turmoil periods. Since 

that massive upward and downward price movement critically influence the market stability, 

detecting explosive behaviour becomes one of the major concerns for market surveillance. 

However, a practical issue involves the assessment of what is ‘excessive’. Many economists 

believe that task to be impossible, and it is imprudent to seek to prevent asset price bubbles. 

Then how can policymakers implement policies to offset a bubble when they are unable to 

define whether one exists in market?  

One contribution that econometric techniques can offer is to define the entire bubble 
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evolutionary process by using explicit quantitative measures. In chapters 2 and 3, we 

introduce and apply a series of econometric techniques on our unique global data to prove our 

hypothesis, that financial bubble is a general phenomenon across international markets. By 

implementing recursive testing procedures, we clearly reject conclusions reached by Diba and 

Grossman (1988) and Evans (1991), who argue that there is no bubble in the market; 

alternatively, we provide significant evidence that indeed, bubbles are widely existed. In fact, 

we confirm not only massive market bubbles in the US, but also extending findings to other 

regions such as the Europe and Asia, showing that bubbles are present in those areas, 

particularly for those periods when publics failed to recognize asset price bubbles. It is worth 

to note that Phillips, Shi and Yu (2015a, b; PSY hereafter) mechanisms have superior testing 

power as a real-time detection algorithm considering its better performance when our data are 

filled in.  

The discussion in chapter 3 is the initial step of understanding stock price bubbles. To gain a 

deeper insight, we take one step further in chapter 4, where we extensively discuss the linkage 

between bubbles and financial contagion with the purpose of analyzing the bubble 

transmission mechanism. We initially propose a series of hypotheses to answer the question of 

how bubble moves between markets; to prove them, we use the data and testing results 

obtained in chapter 3, and utilize a unique testing framework including both vector 

autoregressive (VAR) and multivariate GARCH models. On one hand, VAR models with 

bubble indicators (dummies) are estimated to see how conditional-mean linkages between 

different stock markets differ over the bubble and non-bubble periods. One important feature 

is that we employ the data on the first difference of price-dividend ratio (i.e., the price-

dividend ratio returns) rather than using the conventional price return with the consideration 

of linking the concept of bubble with contagion−effect. On the other hand, using the price-

dividend ratio returns, we also investigate the volatility spillovers across the bubble and non-

bubble periods by employing multivariate GARCH models.  

The results from our analysis are interesting and potentially important. Firstly, for those 

indices which periods of explosive behavior are identified, their starting and ending dates 

strongly suggest that bubbles do move from one to another. Secondly, our VAR results 

provide convincing evidence for bubble transmission process: the impact of bubbles on 
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financial contagion contains a characteristic of selection bias, that the bubble originated in 

some of the equity markets are more likely to have significant impact on correlations than the 

others. Finally, both of VAR and AG–DCC results show the evidence to support our 

hypothesis of contagion−effect, which helps to interpret the bubble movement. In contrast to 

Longstaff (2010) and many others, our results suggest that bubble transmission can occur 

when the bubbles are at an early stage, rather than at a later stage after the bubbles have burst. 

We envisage that our findings will be of interest to investors operating globally with 

investment horizons that span periods over which stock market bubbles might exist, and to 

central banks and financial regulators to help them identify priority countries as they attempt 

to combat the potential risk raised by exuberance.  

Chapter 4 generally analyzes the bubble based on the global perspective and addresses the 

issue of bubble transmission. Then in Chapter 5, by adopting both monthly and weekly data, 

we attempt to reach a variety of research objectives. The whole chapter has been divided into 

two parts. In the first part, we are particularly interested in whether empirical results on the 

predictability of stock market data by the dividend-price ratio is affected by the presence of a 

bubble, whilst in the second part, by borrowing Campbell-Shiller’s model but adding selected 

monetary variables, we aim to provide answers to the questions of whether monetary 

variables have the predictability to price-dividend ratio in both bubble and non-bubble 

periods.  

Our results are intriguing. The results of monthly data without considering bubbles show that 

the ‘stylized fact’ commonly accepted in the literature only works during the period starting 

from 1950 to now, while to the period up to the end of Second World War, the opposite 

predictability pattern characterizes the US stock market: returns are unpredictable but 

dividend growth is predictable by the dividend-price ratio. Furthermore, by adding bubble 

indicator in the testing regression, we provide several important remarks: (1) for the period 

from 1871 to 1949, bubbles may have a negative impact on the predictability of dividend 

yield to dividend growth, (2) for the post Second World War period, it seems that bubbles do 

have a positive impact on the predictive power of dividend-price ratio to both return and 

dividend growth. In particular, for dividend growth, the dividend-price ratio now has 

predictive power with a ‘wrong’ (positive) slope parameter in the bubble period while 
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according to the theory, the slope parameter for dividend growth should always be negative, 

not positive, and (3) government bond spread has a better performance in predicting returns 

than Baa-Aaa spread either in bubble or non-bubble periods; however, situation has reversed 

for dividend growth: corporate spread has taken over the position and now gains better 

predictability in both periods. 

In the second part of Chapter 5, we fill the gap by studying the forecasting performance of 

several financial and monetary variables. Differing from previous works, the application of 

weekly data rather than monthly, provides better understanding for causality dynamics in both 

non-bubble and bubble periods. Overall, in the non-bubble periods, we reject the Campbell-

Shiller’s model under any assumptions regarding determinants of equilibrium expected 

returns, and we find significant differences in predictive power of monetary variables to price-

dividend ratio when we split our sample into sub-samples. In the bubble period, rolling 

regressions are adopted, seeking to observe the performance of monetary policy in terms of 

dis-inflating the bubble. Our evidence empirically suggests that the higher growth rate in 

effective federal funds rate does not follow the expectation of policymakers to reduce the size 

of a bubble; alternatively, result of government bond spread, that the higher growth rate in 

spread leads to the lower growth rate in price-dividend ratio, implies that it can be adopted as 

a better target monitored by policymakers when working against bubble growth.  

Taken all together, the present thesis contributes to the literature in the following aspects. 

First, our work adds to the growing literature which are focused on detection and studying 

bubble’s nature. Previous works typically focus on just a small number of stock markets (very 

often, just the US stock market). Our analysis of bubbles is much broader, using data for 47 

stock markets. Specifically, by comparing the testing power between PWY and PSY 

strategies, we provide empirical conclusion for the selection of testing and date-stamping 

mechanisms in real-time cases. Second, by adopting a unique testing framework that consists 

of both return and volatility analyses, we find that bubbles move among global stock markets 

may due to increased linkages after the bubble emerges, which directly corresponds to the 

concept of contagion−effect. In particular, results obtained from multivariate GARCH models 

provide an opportunity of having a deeper knowledge for correlation dynamics inside the 

bubble periods; by using this information, market participants are able to react quicker 
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(maximize their portfolio return whilst reducing the relevant risk) in response to the global 

shocks. Finally, in chapter 5, we relax the condition which has been largely adopted in the 

literature when estimating the predictability of dividend yield to stock market data and 

provide convincing evidence that a price bubble does have a critical impact on forecasting 

ability of dividend yield. Moreover, by using our unique weekly monetary datasets, we further 

assess the performance of monetary policy over the past three decades but particularly within 

the period of exuberance.  

1.2 Thesis Layout 

The rest of the thesis is organized as follows. In chapters 2 and 3, we introduce the testing and 

date-stamping strategies that are applied throughout the entire work, and exhibit their 

respective results. Chapter 4 discusses the potential linkage between different equity markets 

conditional on the presence of bubbles, whilst in Chapter 5, we critically discuss the stock 

market predictability and performance of monetary policy against bubbles, and Chapter 6 

concludes. 
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Chapter 2 Literature Reviews on Bubble Testing 

2.1 Introduction 

The asset bubble is an important puzzle in financial history – important because its 

extraordinary potentials for disruption; puzzle because it rejects conventional notion of 

efficiency. The term ‘bubble’ firstly becomes popular at the time of Mississippi Bubble in 

European stock markets that came to an end in 1720, a time is often mentioned as one of 

craziness, and since the bubble has characterized many crashes, they have received substantial 

attention by academics. Theoretical studies on bubbles in the stock market include Blanchard 

and Watson (1982), Evans (1989), and Olivier (2000), among many others; and empirical 

studies include Shiller (1981), Diba and Grossman (1988), and Evans (1991), Phillips, et al 

(2011) and Phillips, et al (2015). Most of them support the view that bubble is a common 

phenomenon not only in stock market, but also in other markets such as the real-estate market 

(see West, 1987; Phillips, et al, 2011; and Engsted, Hviid and Pedersen, 2015). However, 

fewer of works believe there is no bubble in markets but only short blips. For example, Diba 

and Grossman (1988) and Dezhbakhsh and Demirgukunt (1990) obtained results supporting 

the point that stock prices do not contain bubbles. Furthermore, rather than attributing the 

deviation between stock price and fundamental to bubbles, a number of theoretical studies 

reckon that such mismatch is due to the inappropriate measurement of market fundamental so 

that they are not reflect observed asset prices. For example, Santoni (1987) has discussed the 

reason behind the appearance of bull market in 1924 and 1982, that whether it is attribute to 

speculative bubbles or economic fundamentals. He found no evidence that changes in stock 

prices are attributed to speculative bubbles; rather, the data suggests that stock prices follow a 

random walk which is consistent with efficient market hypothesis. There are other theoretical 

studies focused on the real impact of speculative bubbles on the economy. The conventional 

view is that speculation in the market reduces long-run growth and welfare. For instance, 

Grossman and Yanagawa (1993) point out that bubbles, when they exist, will lower the 

growth of the economy and reduce the welfare of all generations born after the bubble 

appears. However, more recent study by Olivier (2000) challenges this point of view while he 

shows that the real impact of bubbles crucially depends on the type of asset that is being 



8 
 

speculated on and speculative bubbles in equity markets can be growth-enhancing. Although 

bubbles have been critically discussed, the majority of works define the crisis and non-crisis 

periods mainly based on subjective judgement, while the type of mechanism, which can 

explicitly record the bubbles’ origination and collapse dates, has been lacking. 

To avoid this issue, economic professions have endeavored to develop methods that can 

reliably stamp bubble dates by adopting explicit quantitative measures. Several attempts have 

been made in the literature. Those empirical testing mechanisms are based on a common 

definition of bubbles, that bubble condition arises when asset prices significantly exceed their 

fundamental values. One important characteristic of such phenomenon is that during both run-

up and run-down periods, assets encounter high volume trading in which the direction of 

change is broadly anticipated, and it is distinct from normal market conditions where asset 

price follows a near martingale. This distinction is recognized and discussed by Blanchard 

and Watson (1982) and Diba and Grossman (1988), and it is this deviation that provides an 

econometric mechanism to recognize the bubble. Importantly, above studies mainly represent 

one type of bubble named as rational bubble, whilst there are still other strands of bubble that 

have been critically discussed in the literature, such as the irrational bubble. The rational 

bubble model is fully consistent with rational expectations and constant expected returns. 

Blanchard and Watson (1982) use a discrete-time setting with homogenous rational investors 

and infinite periods, and specify the price of an asset with two components: a fundamental 

value and a rational bubble term. The fundamental value is determined by the asset’s 

discounted cash flow and the rational bubble term is independent of the asset’s fundamental 

and fluctuates over time on its own. As long as it grows on average at the same rate as the 

discount rate, it is consistent with the rational expectation. They also allow the bubble term to 

burst with a constant probability in a period. If it does not burst, it grows at a rate higher than 

the discount rate. 

Alternatively, the irrational bubble generally stands for another type of bubble: a mean-

reverting deviation from the fundamentals of assets caused by irrational behavior of agents in 

the form of a feedback trading strategy that agents buy when the stock prices have already 

risen with a hope of further rises, and sell when the prices have started to fall for a fear that 

they will drop more. Statman (1988) identifies irrational behavior of investors as: (i) trading 
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for both cognitive and emotional reasons; (ii) trading because they reckon that they have 

information when they have nothing but noise; and (iii) trading because it brings personal 

satisfaction. Over the years, economists have developed different theories to explain how 

investor behavior will drive the asset price bubbles, the major ones consist of the behavior-

based feedback loop theory, the agency-based bubble theory, and the heterogeneous beliefs 

theory. 

The behavioral finance literature suggests that various behavioral biases, such as 

representativeness bias and self-attribution bias, can lead individual investors to positively 

feedback to past returns. For example, Barberis, Shleifer, and Vishny (1998) review the 

previous two families of pervasive regularities: (i) under-reaction of stock prices to news, 

such as earnings announcements; (ii) over-reaction of stock prices to a series of good or bad 

news. They further propose a parsimonious model of investor sentiment about how investors 

form beliefs. The model is supported by experimental evidence on both failures of individual 

judgement under uncertainty and trading patterns of investors in experimental situations. 

Particularly, their specification is also consistent with the important behavioral heuristic 

known as representativeness, which shows a tendency of experimental subjects to view events 

on a typical or representative of some specific classes and ignore the laws of probability in the 

process. Taking the stock market for instance, investors might classify some stocks as growth 

stocks based on the recent historical statistics, ignoring the likelihood that there are very few 

companies that just keep growing. Similarly, Daniel, Hirshleifer, and Subrahmanyam (1998) 

propose a theory of securities market under- and over-reactions based on two well-known 

psychological biases: investor overconfidence for the precision of private information; and 

self-attribution bias, which causes asymmetric shifts in investors’ confidence as a function of 

their investment outcomes. They show that the overconfidence implies negative long-lag 

autocorrelations, excess volatility, and when managerial actions are correlated with stock mis-

pricing, public-event-based return predictability. Biased self-attribution adds positive short-

lag autocorrelations “momentum”, short-run earning “drift”, but negative correlations 

between future returns and long-term past stock market and accounting performance. Shiller 

(2015) advocates a feedback loop theory: the initial price increases caused by certain 

precipitating factors lead to more price increases as the effects of the initial price increases 
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feedback into yet higher prices through increased investor demand. This second round of 

price increase feeds back again into a third round, and then into a fourth round, and so on. 

Therefore, the initial impact of the precipitating factors is amplified into much larger price 

increases than the factors they would have suggested. When the bubble bursts, the feedback 

loop goes into reverse, which leads to the dramatic drop in asset price. 

Furthermore, Allen and Gorton (1993) and Allen and Gale (2000) develop models to show 

that bubbles can arise from agency problems of institutions. Allen and Gorton (1993) 

demonstrate that in the presence of asymmetric information and contract frictions between 

portfolio managers and investors who hire them, managers bear limited downside risk because 

the worst that can happen to them is that they get fired. As a result, they have incentives to 

seek risk at the expense of their investors. Allen and Gale (2000) analyze the risk-shifting 

incentive of investors who use borrowed money from banks to invest in relative risky assets 

and who can avoid losses in low payoff states by defaulting on the loan. In both models, 

assets can be traded at prices that do not reflect their fundamentals and those incentive issues 

are highly relevant in understanding the recent financial crisis in 2008. 

Another theory, developed by Harrison and Kreps (1978), studies bubbles based on the 

heterogeneous beliefs. Generally, in a market where agents disagree about an asset’s 

fundamental and short sales are constrained, an asset owner is willing to pay a price higher 

than his own expectation of the asset’s fundamental since the owner expects to resell the asset 

to a future optimist at an even higher price. Such speculative behavior leads to a bubble 

component in asset prices. This approach does not require a substantial amount of aggregate 

belief distortions to generate a significant price bubble. Alternatively, the bubble term 

establishes on the fluctuations of investors’ heterogeneous beliefs. Even when investors’ 

aggregate beliefs are unbiased, intensive fluctuations of their heterogeneous beliefs can lead 

to a significant price bubble through frenzied trading. A more recent study by Scheinkman and 

Xiong (2003) proposes a model of asset trading based on the perspective of heterogeneous 

beliefs generated by agents’ overconfidence, providing explicit links between the trading cost, 

information, behavior of equilibrium prices, and trading volume. They show that, although 

Tobin’s tax can substantially reduce speculative trading when transaction costs are small, it 

has a limited impact on the size of the bubble or on price volatility.  
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Both rational and irrational bubbles would lead to asset price fluctuations, which bring the 

market with the instability and inefficiency. In general, when the asset prices diverge from 

economic fundamentals, bubbles will emerge because of the excessive optimism with the 

respect to fundamentals. In some cases, market participants may recognize an excess in asset 

prices compared with economic fundamentals, and they might find an arbitrage opportunity 

and believe that the excess will continue. However, in the long-run, it is relatively impossible 

that such rise in asset price is sustainable beyond the scale of economic fundamentals and 

thus, when asset price is inflated by a bubble, there will be an inevitable collapse. 

In this thesis, our research objective does not focus on arguments between different bubble 

types; instead, we stick to the theoretical framework of rational bubble and implements a 

series of econometric methods to confirm explosive behaviors in the global markets. In the 

following sections, we will review several theoretical and empirical studies to obtain a deeper 

understanding in our research background. 

2.2 Literature on Main Methods 

2.2.1 Theoretical Background 

A simple model normally applied to interpret movements in corporate common stock price 

indices asserts that real stock prices equal to the present value of rationally expected 

forecasted future real dividends discounted by a constant real required discount rate. This 

valuation model is often employed by economists and market analysts as a plausible model to 

evaluate the movement of aggregate market indices and is treated as providing a reasonable 

explanation to tell public what accounts for an unexpected surge in stock price indices. Shiller 

(1981) refers to this model as the ‘efficient market model’, although it should be recognized 

that this title has also been given to other models. However, it has often been claimed that 

stock price indices appear to be too ‘volatile’, that is, they could not truly be attributed to the 

release of new information since some invisible factors magnify the impact of subsequent 

events. The failure of applying the model in real case raises the question of why the 

movement of dividends is not ‘volatile’ enough to cause major change in asset prices. Shiller 

attempts to answer this question by exploring the volatility difference between real asset 

prices (market price but taking away the time effect) and rational prices (obtained through 
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dividends by applying the efficient market model). 

According to the simple efficient market model, the real price 𝑝𝑡 = 𝐸𝑡(𝑝𝑡
∗), where 𝑝𝑡 is the 

real market price and 𝑝𝑡
∗ represents the present value of actual subsequent real detrended 

dividends, expresses that 𝑝𝑡 is the optimal forecast of 𝑝𝑡
∗. One can define the forecast error 

as 𝜇𝑡 = 𝑝𝑡 − 𝑝𝑡
∗, where 𝑝𝑡 is the mathematical expectation conditional on all information 

available at time t of 𝑝𝑡
∗.A fundamental principal is that the forecast error 𝜇𝑡 should be 

uncorrelated with the forecast, which means that the covariance between 𝜇𝑡 and 𝑝𝑡 must be 

zero. If the principle from elementary statistics is used, then an easy version of inequality will 

be obtained, 

 𝜎(𝑝) ≤ 𝜎(𝑝∗) (2.1) 

This inequity is violated dramatically by the data collected by Shiller (1981) through Standard 

and Poor’s (S&P) Composite Stock Price Index and modified Dow Jones Industrial Average 

(DJIA), as the standard deviation of real price is much bigger than the standard deviation of 

rational prices 𝑝∗ from the data. To clarify some theoretical questions that arise in relation to 

inequality (2.1), the efficient market model has been developed and then, some similar 

inequalities are derived by putting limits on standard deviation of the innovation in price and 

standard deviation of the change in price. 

 (∆𝑝 + 𝑑−1 − 𝑟̅𝑝−1) ≤
𝜎(𝑑)

√𝑟2̅̅ ̅
, (2.2) 

 𝜎(∆𝑝) ≤  𝜎(𝑑)/√𝑟2̅ . (2.3) 

where 𝑝 is the real detrended stock price index, 𝑑 is the real detrended dividend, 𝑟2̅ is the 

two-period real discount rate for detrend series; 𝑟2̅ =  (1 + 𝑟̅)
2 − 1, 𝑟̅ is the real discount 

rate for detrended series. After applying S&P and DJIA datasets on inequalities (2.1), (2.2) 

and (2.3), it shows that none of the inequalities are satisfied. Therefore, final empirical 

findings conclude that over the past century, volatility appears to be far too high to be 

attributed to new information about future real dividends if uncertainty about future dividends 

is defined by the sample variance of real dividends around their long-term exponential growth 

path.  

The initial debate for bubble phenomenon concentrates on discovering empirical evidence; 
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however, without establishing a theoretical model, it is insufficient to explain those anomalies. 

Blanchard and Watson (1982) therefore study on bubble’s nature by discussing its rationality 

and further with the application of two tests (runs and tail tests) to statistically discover 

bubbles in the market. They begin with Shiller’s model: the standard ‘Efficient Market Model’ 

with no arbitrage condition, 

 𝑅𝑡 =
𝑃𝑡+1−𝑃𝑡+𝑋𝑡

𝑃𝑡
, 

with 𝐸(𝑃𝑡+1|Ω𝑡) = 𝑟, or equivalently, 

 𝐸(𝑃𝑡+1|Ω𝑡) − 𝑃𝑡 + 𝑋𝑡 = 𝑟𝑃𝑡, (2.4) 

where 𝑃𝑡 is the price of the asset; 𝑋𝑡 is the direct return and the paper referred to 𝑋𝑡 as the 

‘dividend’. 𝑅𝑡 is therefore the rate of return on holding the assets, which consists of the 

capital gain and dividend return. Ω𝑡 is the information set at time t, assumed common to all 

agents and therefore this condition states that the expected rate of return on the asset is equal 

to the interest rate r, which is assumed to be a constant. Given the assumption of rational 

expectations and that agents do not forget, equation (2.4) can be solved recursively forward. 

Thus, the following 𝑃𝑡
∗ is a solution to equation (2.4), 

 𝑃𝑡
∗ = ∑ 𝜃𝑖+1∞

𝑖=0 𝐸(𝑋𝑡+𝑖|Ω𝑡)      𝜃 ≡ (1 + 𝑟)
−1 < 1, (2.5) 

where 𝑃𝑡
∗ is the present value of expected dividends and hence can be called as market 

fundamental value for corresponding asset. However, 𝑃𝑡
∗ is not the only solution to (2.4), any 

𝑃𝑡 of the following form is a solution as well, 

 𝑃𝑡 = ∑ 𝜃𝑖+1∞
𝑖=0 𝐸(𝑋𝑡+𝑖|Ω𝑡) + 𝐶𝑡 = 𝑃𝑡

∗ + 𝐶𝑡  , 𝑤𝑖𝑡ℎ (2.6) 

 𝐸(𝐶𝑡+1|Ω𝑡) = 𝜃
−1𝐶𝑡. 

where 𝐶𝑡 represents the deviation that the difference between market price and market 

fundamental value, namely the ‘bubble’ term. Notice that such deviation appears without 

breaking the arbitrage condition. Since 𝜃−1 > 1, the deviation 𝐶𝑡 must be expected to grow 

over time. 

Blanchard and Watson (1982) is the first to provide a precise definition of ‘bubble’ through 

the traditional ‘Efficient Market Model’ without violating assumption of being rational. They 
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then define the notion of ‘bubble’ by giving several examples, which satisfy the equation 

(2.6). The simplest is that of a deterministic ‘bubble’, which follows the form of 𝐶𝑡 = 𝐶0𝜃
−𝑡. 

In this case, the higher capital gain leads to the higher price and the deviations grow 

exponentially. To be rational, such an increase in the price must continue forever, making such 

a deterministic bubble implausible. Another example absorbs the notion that bubble has a 

certain probability to burst, 

 𝐶𝑡 = (𝜋𝜃)
−1𝐶𝑡−1 + 𝜇𝑡 , 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝜋; 

 𝐶𝑡 = 𝜇𝑡 , 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝜋.  (2.7) 

 where 𝐸(𝜇𝑡  |Ω𝑡−1) = 0. 

This type of bubble will remain with probability 𝜋, or collapse, with probability 1 – 𝜋. While 

the bubble exists, the actual average is higher than r to compensate for the risk of a burst. The 

probability that the bubble collapse may well be a function of the duration of the bubble, or a 

function of the variation between price and market fundamentals. 

The second part of their study empirically investigates the possibility of discovering bubbles 

without using subjective method but econometric approach. They suggest that applying runs 

and tail tests is based on the idea that the bubble component of the price innovation appears 

likely to have both runs and fat tail distributions. To clarify, a run refers to a sequence of 

realisations of a random variable with the same sign. If bubbles grow for a period and then 

collapse, the innovation in the bubble will likely to be of the same sign when the bubble 

continues, then reverse sign when a collapse occurs. The runs for the bubble innovation seem 

to be longer than a purely random sequence, making the total number of runs over the sample 

smaller. Collapse will generate large outliers; hence the distribution of innovations will have 

fat tails. The study of Blanchard and Watson (1982) greatly contributes to the literature by 

exploring the theoretical background; however, the limits of their two empirical tests have 

also been emphasized. Testing results could not be used to interpret whether bubbles exist in 

markets since the very high coefficient of kurtosis may suggest either very leptokurtic market 

fundamentals or the existence of bubbles. 

Several studies follow the step of Blanchard and Watson (1982). Many real-world examples 

have been given to prove that their promoted process is realistic, but the lack of empirical 
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testing mechanism forces the research into a dilemma, since academics cannot precisely 

justify whether bubbles exist in the market. With such motivation, Diba and Grossman (1988) 

follow the idea of rational bubble and suggest to apply stationary and cointegration tests. They 

propose these tests initially on equity price with a model which assumes a constant discount 

rate, but allows unobservable variables to have an impact on market fundamentals and permits 

different valuations of expected capital gains and expected dividends. Their theoretical model 

is similar to the one described by Blanchard and Watson (1982), which consists a single 

equation that relates the current stock price to the present value of future expected stock price 

and dividend payments and to an unobservable variable, 

 𝑃𝑡 = (1 + 𝑟)
−1𝐸𝑡(𝑃𝑡+1 + 𝛼𝑑𝑡+1 + 𝜇𝑡+1); (2.8) 

Equation 2.8 is a first-order expectational difference equation. Since the eigenvalue, 1 + 𝑟, is 

greater than 1, the forward-looking solution for the stock price involves a convergent sum, as 

long as 𝐸𝑡(𝛼𝑑𝑡+𝑗 + 𝜇𝑡+𝑗) does not grow with 𝑗 at a geometric rate equal to or greater than 

1 + 𝑟. This forward-looking solution, denoted by 𝐹𝑡 and referred to as the market-

fundamentals component of the stock price, is  

 𝐹𝑡 = ∑ (1 + 𝑟)−𝑗𝐸𝑡(
∞
𝑗=1 𝛼𝑑𝑡+𝑗 + 𝜇𝑡+𝑗), (2.9) 

where 𝑃𝑡 represents the stock price at date t. r is a constant real interest rate that is 

appropriate for discounting rate.  𝑑𝑡+1 is the real before-tax dividend paid to the owner of the 

stock between dates 𝑡 and 𝑡 + 1. 𝜇𝑡+1 is a variable that market participants either observe 

or construct whereas the research does not observe. The general solution to equation (2.8) is, 

 𝑃𝑡 = 𝐵𝑡 + 𝐹𝑡 𝑤ℎ𝑒𝑟𝑒 𝐸𝑡𝐵𝑡+1 = (1 + 𝑟)𝐵𝑡, (2.10) 

where 𝐵𝑡 is defined as the bubble term and 𝐹𝑡 is the market fundamental component. They 

also review and extend theoretical arguments for ruling out rational stock-price bubbles on the 

basis of the non-negativity of stock prices and optimizing decisions of asset holders. All these 

theoretical analyses are complemented in the empirical analysis employed in this thesis. 

Their empirical framework considers the market fundamental component given by equation 

(2.9), and assumes that the process of generating 𝑑𝑡 is nonstationary in levels, but the first 

difference of 𝑑𝑡 and 𝜇𝑡 are stationary. Then theoretically, if bubble does not exist, stock 
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prices would be non-stationary in levels whilst stationary in first difference. However, if stock 

prices contain a bubble part, then differencing stock prices a finite number of times would not 

produce a stationary process. They apply the right-tailed Dickey-Fuller tests for unit roots in 

the autoregressive representations of real stock prices, dividends, and their first difference. 

The estimated OLS regression for each time-series 𝑥𝑡 is, 

 𝑥𝑡 = 𝜇 + 𝛾𝑡 + 𝜌𝑥𝑡−1 +∑ 𝛽𝑖
𝑘
𝑖=1 Δ𝑥𝑡−𝑖 + 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙, (2.11) 

The regression sets k equal to four and, thereby, allows Δ𝑥 to follow an AR (4) process. The 

application of cointegration test employs the similar idea of stationary test. Rearranging terms 

in equation (2.9) and substituting the resulting expression for 𝐹𝑡 into equation (2.10), 

 𝑃𝑡 − 𝛼𝑟
−1𝑑𝑡 = 𝐵𝑡 + 𝛼𝑟

−1[∑ (1 + 𝑟)1−𝑗𝐸𝑡Δ𝑑𝑡+𝑗
∞
𝑗=1 ] + ∑ (1 + 𝑟)−𝑗𝐸𝑡𝜇𝑡+𝑗

∞
𝑗=1 . (2.12) 

If the unobservable variable in market fundamentals is stationary in levels and if dividends are 

first-difference stationary, with assumption that bubble does not exist, then the sum given by 

equation (2.12) should be stationary. Thus, although 𝑃𝑡 and 𝑑𝑡 are nonstationary, their 

linear combination 𝑃𝑡 − 𝛼𝑟
−1𝑑𝑡 is stationary. 

The empirical findings report that stock prices and dividends are non-stationary before 

differencing but stationary in first difference. Cointegration tests produce somewhat mixed 

results whereas this may due to the low power in tests. Overall, Diba and Grossman (1988) 

concludes that no bubbles in equity prices. However, this approach is soon criticized by Evans 

(1991), due to its limitation in testing one specific type of bubble. Evans (1991) reviews the 

bubble process with an emphasis on the following class of rational bubble, which is always 

positive but periodically collapsing, 

 𝐵𝑡+1 = (1 + 𝑟)𝐵𝑡𝜇𝑡+1 𝑖𝑓 𝐵𝑡 ≤ 𝛼, 

 𝐵𝑡+1 = [𝛿 + 𝜋
−1(1 + 𝑟)𝜃𝑡+1 × (𝐵𝑡 − (1 + 𝑟)

−1𝛿]𝜇𝑡+1 𝑖𝑓𝐵𝑡 > 𝛼. 

where 𝛿 and 𝛼 are positive parameters with 0 < 𝛿 < (1 + 𝑟)𝛼; 𝜇𝑡+1 is an exogenous 

independently and identically distributed positive random variable with 𝐸𝑡𝜇𝑡+1 = 1; and 

𝜃𝑡+1 is an exogenous independently and identically distributed Bernoulli process which takes 

the value 1 with probability 𝜋 and 0 with probability 1 − 𝜋, where 0 < 𝜋 ≤ 1. In fact, Diba 

and Grossman (1988) already recognize the possibility of bubbles that can ‘periodically 
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shrink’ and West (1987) provides examples of strictly positive bubbles which are periodically 

collapsing. This process is straightforward that if 𝐵𝑡 ≤ 𝛼, the bubbles will grow at a rate of 

(1 + 𝑟), but if 𝐵𝑡 > 𝛼, the bubble shifts into a phase in which it will grow at a faster average 

rate of 𝜋−1(1 + 𝑟), as long as the grow continues until the bubble collapse, with probability 

1 − 𝜋 every period. When the bubble bursts, it drops to a mean value of 𝛿, then the process 

restarts. Also, by varying the value of 𝛿, 𝛼, and 𝜋, one can change the frequency with which 

bubbles shift into another phase, the average length of time before collapse, and the scale of 

the bubble. To demonstrate the failure of unit-root and cointegration tests on testing this type 

of bubble, 200 simulated non-negative bubbles have been produced using the periodically 

collapsing model. Final results confirm that the periodically collapsing bubbles are not 

detectable by implementing standard unit-root tests, because the test cannot determine 

whether price is more explosive or less stationary than dividends. There are still some studies 

discussing the possibility of applying different methods to examine the existence of bubbles in 

markets; however, no one is proved to be better than the others while widely applied in real 

world until one recent study by Phillips, Wu and Yu (2011, PWY hereafter), which introduces 

another mechanism that provides a reliable way to date-stamp the origination and collapse of 

bubbles. The testing framework is based on recursive testing procedures, involving the 

recursive implementation of a right-side unit root and a sup-test to discover the explosive 

behaviour in order to overcome the pitfalls mentioned by Evans (1991). 

2.2.2 PWY Strategy 

Philips, et al. (2011) apply the augmented Dickey-Fuller test for a unit root against the 

alternative of an explosive root. That is, for each time series 𝑥𝑡 (log stock price or log 

dividend), they estimate the following autoregressive specification by least squares, 

 𝑥𝑡 = 𝜇𝑥 + 𝛿𝑥𝑡−1 +∑ 𝜙𝐽
𝐽
𝐽=1 Δ𝑥𝑡−𝑗 + 𝜀𝑥,𝑡 , 𝜀𝑥,𝑡~𝑁𝐼𝐷(0, 𝜎𝑥

2). (2.13) 

for some given value of the lag parameter J, where NID is independent and normal 

distribution. In their empirical application, they use the significant tests to decide the lag order 

J, as suggested by Campbell and Perron (1991). The null hypothesis expresses 𝐻0: 𝛿 = 1 and 

the right-tailed alternative hypothesis is 𝐻1: 𝛿 > 1. In the PWY test, to improve the 

discriminatory power of the ADF test in detecting periodically collapsing bubbles, a recursive 
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testing procedure is employed. In the forward recursive regressions, equation (2.13) is 

estimated repeatedly forward, using subsets of the sample data with increasing number of 

observations at each pass. In particular, supposing the rolling window regression sample starts 

from the 𝑟1
𝑡ℎ  fraction of the total sample T and ends at the 𝑟2

𝑡ℎ  fraction of the sample, where 

𝑟2 = 𝑟1 + 𝑟𝑤 and 𝑟𝑤 is the (fractional) window size of the regression. In the sup-ADF 

(PWY) test, the window size 𝑟𝑤 expands from 𝑟0 to 1, so that 𝑟0 is the smallest sample 

window width fraction (initializing computation) and 1 is the largest window fraction (the 

total sample size in the recursion). The starting point of 𝑟1 is fixed at 0, so the ending point 

of each sample (𝑟2) equals 𝑟𝑤, and changes from 𝑟0 to 1. Let the corresponding t-statistic be 

denoted 𝐴𝐷𝐹𝑟, and, therefore, 𝐴𝐷𝐹1 represents the test statistic employing the full sample. 

Under the null hypothesis, 

 𝐴𝐷𝐹𝑟⟹ 
∫ 𝑊̃𝑑𝑊
𝑟
0

(∫ 𝑊̃2𝑟
0

)

1
2

, (2.14) 

and 

 𝑠𝑢𝑝𝑟∈[𝑟0 ,1] 𝐴𝐷𝐹𝑟⟹ 𝑠𝑢𝑝𝑟∈[𝑟0,1]  
∫ 𝑊̃𝑑𝑊
𝑟
0

(∫ 𝑊̃2𝑟
0

)

1
2

, (2.15) 

where 𝑊 is the standard Brownian motion and 𝑊̃(𝑟) = 𝑊(𝑟) − ∫ 𝑊
1

0
 is demeaned 

Brownian motion. Test for a unit root against explosiveness can be implemented by 

comparison of 𝑠𝑢𝑝𝑟𝐴𝐷𝐹𝑟 with the right tailed critical values from 𝑠𝑢𝑝𝑟∈[𝑟0,1] ∫ 𝑊̃
𝑟

0
𝑑𝑊/

(∫ 𝑊̌2𝑟

0
)
1/2

. To record the origin and termination of the bubble, they match the time-series of 

the recursive test statistic 𝐴𝐷𝐹𝑟, with 𝑟 ∈ [𝑟0, 1], against the right tailed critical values of the 

asymptotic distribution of the standard Dickey-Fuller t-statistic, 

𝑟̂𝑒 = 𝑖𝑛𝑓𝑟∈[𝑟0,1] {𝑟: 𝐴𝐷𝐹𝑟 > 𝑐𝑣𝑟
𝛽𝑇},   

 𝑟̂𝑓 = 𝑖𝑛𝑓𝑟∈[𝑟̂𝑒+log(𝑇) 𝑇⁄ ,1] {𝑟: 𝐴𝐷𝐹𝑟 < 𝑐𝑣𝑟
𝛽𝑇}, (2.16) 

where 𝑟̂𝑒 is the estimation of origination date and 𝑟̂𝑓 is the estimation of collapsing dates. 

𝑐𝑣𝑟
𝛽𝑇  is the right-sided critical value of 𝐴𝐷𝐹𝑟 corresponding to a significance level of 𝛽𝑛. 
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Note that the dating strategy assumes that the duration of the bubble must exceed log(𝑇), but 

here we set the condition that the duration of the bubble must exceed 2 months to exclude 

short-lived blips in the fitted autoregressive coefficient. 

They finally confirm the existence of bubbles in NASDAQ and record their origination and 

collapse dates. However, their most recent study illustrates how the testing procedures and 

dating methods are influenced by the case of multiple bubbles and may fail to be consistent; 

thus, they develop a generalized version of the sup-ADF to solve this issue and introduce a 

new strategy to date-stamp bubbles.  

2.2.3 PSY Strategy 

The generalized sup-ADF (PSY) test still borrows the idea of repeatedly running the ADF 

testing regression on a sample sequence and the number of observations in each regression is 

𝑇𝑤 = ⌊𝑇𝑟𝑤⌋, where ⌊. ⌋ is the floor function (giving the integer part of the argument). 

However, the sample sequence is broader than that of the sup-ADF test and by only varying 

the ending point of regression 𝑟2 from 𝑟0 to 1, the generalized sup-ADF test also allows the 

starting point 𝑟1 to vary within a feasible range from 0 to 𝑟2 − 𝑟0. The generalized sup-ADF 

testing statistic is defined as the largest ADF statistic over the feasible ranges of 𝑟1 and 𝑟2 

and testing statistic is denoted by 𝐺𝑆𝐴𝐷𝐹(𝑟0), 

 𝐺𝑆𝐴𝐷𝐹(𝑟0) = 𝑠𝑢𝑝 𝑟2∈[𝑟0 ,1] 

𝑟1∈[0,𝑟2−𝑟0]

{𝐴𝐷𝐹𝑟1
𝑟2}. (2.17) 

When the regression model consists an intercept and the null hypothesis a random walk with 

an asymptotically negligible drift, the limit distribution of the generalized sup-ADF testing 

statistic is, 

 𝑠𝑢𝑝 𝑟2∈[𝑟0,1] 

𝑟1∈[0,𝑟2−𝑟0]

{
1

2
𝑟𝑤[𝑊(𝑟2)

2−𝑊(𝑟1)
2−𝑟𝑤]−∫ 𝑊(𝑟)𝑑𝑟[𝑊(𝑟2)−𝑊(𝑟1)]

𝑟2
𝑟1

𝑟𝑤
1 2⁄
{𝑟𝑤 ∫ 𝑊(𝑟)2𝑑𝑟−[∫ 𝑊(𝑟)𝑑𝑟

𝑟2
𝑟1

]
2𝑟2

𝑟1
}
1 2⁄ }. (2.18) 

The proof of this proposition is similar to that of PWY and details are given in the technical 

paper PSY (2015b). The usual limit distribution of conventional ADF statistic is a special case 

of equation (2.18) with 𝑟1 = 0 and 𝑟2 = 𝑟𝑤 = 1, while the limit distribution of the sup-ADF 

statistic is another special case of equation (2.18) where 𝑟1 = 0 and 𝑟2 = 𝑟𝑤 ∈ [𝑟0, 1]. 

Besides, similar to the sup-ADF statistic, the asymptotic generalised sup-ADF distribution 
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depends on the smallest window size of 𝑟0. In our work, 𝑟0 is chosen based on the total 

number of observations and we ensure that the size of 𝑟0 is large enough to ensure adequate 

observations for initial estimation. 

Their study also suggests a new date-stamping method to record the origination and 

termination dates of bubbles. Our work performs the same dating mechanism that uses a sup-

ADF test on a backward expanding sample sequence, where the ending points of the samples 

are fixed at 𝑟2, but the starting point changes from 0 to 𝑟2 − 𝑟0. The backward sup-ADF 

statistic is defined as the sup value of the ADF statistic sequence, 

 𝐵𝑆𝐴𝐷𝐹𝑟2(𝑟0) = 𝑠𝑢𝑝𝑟1∈[0,𝑟2−𝑟0]{𝐵𝐴𝐷𝐹𝑟1
𝑟2}. (2.19) 

The origination date of a bubble is the first observation whose backward sup-ADF statistic 

exceeds its critical value and the collapsing date of a bubble is the first observation after 

⌊𝑇𝑟̂𝑒⌋ + 𝛿 log(𝑇) whose backward sup-ADF statistic falls below its critical value. It is 

assumed that the duration of the bubble exceeds 𝛿 log(𝑇), where 𝛿 is a frequency dependent 

parameter. However, in our work, we still set that the duration of the bubble must exceed 2 

months, the same with the restriction applied in our PWY (2011). The origination and 

termination points of a bubble are estimated by following equations: 

𝑟̂𝑒 = 𝑖𝑛𝑓𝑟2∈[𝑟0,1] {𝑟2: 𝐵𝑆𝐴𝐷𝐹𝑟2(𝑟0) > 𝑠𝑐𝑣𝑟2
𝛽𝑇}, 

 𝑟̂𝑓 = 𝑖𝑛𝑓𝑟2∈[𝑟̂𝑒+δlog(𝑇) 𝑇⁄ ,1] {𝑟2: 𝐵𝑆𝐴𝐷𝐹𝑟2(𝑟0) < 𝑠𝑐𝑣𝑟2
𝛽𝑇}, (2.20) 

where 𝑠𝑐𝑣𝑟2
𝛽𝑇  is the level of significance for a critical value of the sup-ADF statistic based on 

⌊𝑇𝑟2⌋ observations. Analogously, the significance level 𝛽𝑇 depends on the sample size T and 

it goes to zero as the sample size approaches infinity.  

Overall, the sup-ADF test is based on repeated implementation of the ADF test for each 

testing window. The generalized sup-ADF test implements the backward sup-ADF test 

repeatedly for each testing window and makes inferences based on the sup value of the 

backward sup-ADF statistics sequence. Hence, the sup-ADF and generalized sup-ADF 

statistics can respectively be written as, 

 𝑆𝐴𝐷𝐹(𝑟0) = 𝑠𝑢𝑝𝑟2∈[𝑟0,1]{𝐴𝐷𝐹𝑟2}, 
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 𝐺𝑆𝐴𝐷𝐹(𝑟0) = 𝑠𝑢𝑝𝑟2∈[𝑟0,1]{𝐵𝑆𝐴𝐷𝐹𝑟2(𝑟0)}. 

Thus, the PWY date-stamping strategy corresponds to the sup-ADF test and the new strategy 

corresponds to the generalized sup-ADF test. The essential features of the two testing 

mechanisms are shown in the figure below, and further illustration of differences in 

hypotheses between PWY and PSY are presented in Appendix 2.1.   

 

2.3 Other Testing Mechanism 

Other statistics also have been suggested to test for a structural break in the autoregressive 

parameter, while a majority of studies focus on a change from a non-stationary regime to a 

stationary regime or vice versa. Here we consider a few of them suggested in the literature. 

All testing procedures are based on the time-varying AR (1) model, 

 𝑦𝑡 = 𝜌𝑡𝑦𝑡−1 + 𝜀𝑡, 

where 𝜀𝑡 is a white noise process with E(𝜀𝑡) = 0，E(ε𝑡
2) = 𝜎2, and 𝑦0 = 𝑐 < ∞, in real 

casese, 𝑦𝑡 can represent any time series in stock markets.  

2.3.1 The Bhargava Statistic 

To test the null hypothesis of a random walk against explosive alternatives, Bhargava (1986) 

proposed the locally most powerful invariant testing statistic, 

 𝐵0
∗ =

∑ (𝑦𝑡−𝑦𝑡−1)
2𝑇

𝑡=1

∑ (𝑦𝑡−𝑦0)
2𝑇

𝑡−1
. 

Since Bhargava’s (1986) alternative test statistic does not incorporate a structural break, 

Homm and Breitung (2012) introduce a modified version of the inverted test statistic, 
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 𝐵𝜏 =
1

𝑇−[𝜏𝑇]
(
∑ (𝑦𝑡−𝑦𝑡−1)

2𝑇
𝑡=[𝜏𝑇]+1

∑ (𝑦𝑡−𝑦[𝜏𝑇])
2𝑇

[𝜏𝑇]+1

)
−1

=
1

𝑠𝜏
2(𝑇−[𝜏𝑇])2

∑ (𝑦𝑡 − 𝑦[𝜏𝑇])
2𝑇

𝑡=[𝜏𝑇]+1 , 

where 𝑠𝜏
2(𝑇 − [𝜏𝑇])−1 ∑ (𝑦𝑡 − 𝑦[𝜏𝑇])

2𝑇
𝑡=[𝜏𝑇]+1  (𝑇 is the size of sample, 𝜏 is the fractional 

window size of the regression). To test for a change from I (1) to an explosive process in the 

interval 𝜏 ∈ [0,1 − 𝜏0], where 𝜏0 ∈ (0, 0.5), they consider the statistic, 

 𝑠𝑢𝑝𝐵(𝜏0) = 𝑆𝑢𝑝τ∈[0,1−𝜏0]𝐵𝜏. 

Note that this testing statistic is inverse to the original Bhargava (1986), thus the test rejects 

the null hypothesis for large values of 𝑠𝑢𝑝𝐵(𝜏0). 

The asymptotic distribution of the test statistic under null hypothesis is not derived in the 

literature but simply follows from the continuous mapping theorem as, 

 𝑠𝑢𝑝𝐵(𝜏0) ⇒ 𝑠𝑢𝑝τ∈[0,1−𝜏0] {(1 − 𝜏)
−2 ∫ (𝑊(𝑟) −𝑊(𝜏))2𝑑𝑟

1

𝜏
}, 

where ⇒ denotes weak convergence and W denotes standard Brownian motion on the 

interval [0, 1]. 

2.3.2 The Busetti-Taylor Statistic 

Busetti and Taylor (2004) propose a statistic for testing the hypothesis that a time series is 

stationary against the alternative that it switches from a stationary to an I (1) process at an 

unknown breakpoint. Homm and Breitung (2012) also modify the statistic to test the null 

against the alternative, 

 𝑠𝑢𝑝𝐵𝑇(𝜏0) = 𝑠𝑢𝑝τ∈[0,1−𝜏0]𝐵𝑇𝜏 , 𝑤ℎ𝑒𝑟𝑒 𝐵𝑇𝜏 =
1

𝑠0
2(𝑇−[𝜏𝑇])2

∑ (𝑦𝑇 − 𝑦𝑡−1)
2𝑇

𝑡=[𝜏𝑇]+1 . 

The asymptotic distribution of 𝑠𝑢𝑝𝐵𝑇 can be derived, 

 𝑠𝑢𝑝τ∈[0,1−𝜏0]𝐵𝑇𝜏 ⇒ 𝐵𝑇τ∈[0,1−𝜏0] {(1 − 𝜏)
−2 ∫ 𝑊(1 − 𝑟)2

1

𝜏
𝑑𝑟}. 

2.3.3 The Kim Statistic 

Another statistic for testing the I (0) null hypothesis against a change from I (0) to I (1) is 

proposed by Kim (2000). To transfer the statistic to the bubble testing framework, Homm and 

Breitung (2012) apply modifications similar to above testing procedures, which yield the 
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following statistic, 

 𝑠𝑢𝑝𝐾(𝜏0) = 𝑠𝑢𝑝τ∈[0,1−𝜏0]𝐾𝜏 𝑤𝑖𝑡ℎ 𝐾𝜏 =
(𝑇−[𝜏𝑇])−2∑ (𝑦𝑡−𝑦[𝜏𝑇])

2𝑇
𝑡=[𝜏𝑇]+1

[𝜏𝑇]−2 ∑ (𝑦𝑡−𝑦0)
2[𝜏𝑇]

𝑡=1

. 

The test rejects for large values of 𝑠𝑢𝑝𝐾(𝜏0). The statistic 𝐾𝜏 is computed over the interval 

[𝜏0, 1 − 𝜏0]. It can be interpreted as the scaled ratio of the sum of squared forecast errors. The 

predication is obtained based on the assumption that the time series follows a random walk. 

𝑦0 is used to forecast 𝑦1, … , 𝑦[𝜏𝑇]  (𝑑𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟) and 𝑦[𝜏𝑇] is the forecast of  𝑦[𝜏𝑇]+1, … ,

𝑦𝑇. The limiting distribution is obtained as, 

 𝑠𝑢𝑝τ∈[0,1−𝜏0]𝐾𝜏 ⇒ 𝑠𝑢𝑝τ∈[0,1−𝜏0] {(
𝜏

1−𝜏
)
2 ∫ (𝑊(𝑟)−𝑊(𝜏))2𝑑𝑟

1
𝜏

∫ 𝑊(𝑟)2
𝜏
0

𝑑𝑟
}. 

2.3.4 A Chow-Type Unit Root Statistic for a Structural Break 

The information that 𝑦𝑡 is a random walk for 𝑡 = 1,… , [𝜏∗𝑇] under both null hypothesis 

and alternative hypothesis can be incorporated in the test procedure by applying a Chow test 

for a structural break in the autoregressive parameter. Under the assumption that 𝜌𝑡 = 1 for 

𝑡 = 1,… , [𝜏𝑇] and 𝜌𝑡 − 1 = 𝛿 > 0 for 𝑡 = [𝜏𝑇] + 1,… , 𝑇, the model can be written as, 

 ∆𝑦𝑡 = 𝛿(𝑦𝑡−1 {𝑡 > [𝜏𝑇]}𝟙 ) + 𝜀𝑡, 

where {∙}𝟙  is an indicator function that equals 1 when the statement in braces is true and 

equals 0, otherwise. Correspondingly, the null hypothesis of interest is 𝐻0: 𝛿 = 0, which is 

tested against the alternative 𝐻0: 𝛿 > 0. It is easy to see that the regression t-statistic for this 

null hypothesis is, 

 𝐷𝐹𝐶𝜏 =
∑ ∆𝑦𝑦𝑡−1
𝑇
[𝜏𝑇]+1

𝜎𝜏̃√∑ 𝑦𝑡−1
2𝑇

𝑡=[𝜏𝑇]+1

, 

where 

 𝜎̃𝜏
2 =

1

𝑇−2
∑ (∆𝑦𝑡 − 𝛿𝜏𝑦𝑡−1 {𝑡 > [𝜏𝑇]}𝟙 )

2𝑇
𝑡=2 , 

and 𝛿𝜏 denotes the OLS estimator of 𝛿 in the equation of ∆𝑦𝑡. The Chow-type DF statistic 

to test for a change from I (1) to explosive in the interval τ ∈ [0,1 − 𝜏0] can be written as, 

 𝑠𝑢𝑝𝐷𝐹𝐶(𝜏0) = 𝑠𝑢𝑝τ∈[0,1−𝜏0]𝐷𝐹𝐶𝜏. 
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The test rejects the large values of 𝑠𝑢𝑝𝐷𝐹𝐶(𝜏0). In fact, the test corresponds to a one-sided 

version of the sup-Wald test of Andrews (1993), where the supremum is taken over a 

sequence of Wald statistics. The asymptotic limit distribution is obtained as, 

 𝑠𝑢𝑝𝐷𝐹𝐶(𝜏0) ⇒ 𝑠𝑢𝑝τ∈[0,1−𝜏0]
∫ 𝑊(𝑟)𝑑𝑊(𝑟)
1
𝜏

√∫ 𝑊(𝑟)2
1
𝜏

𝑑𝑟

. 

Note that the limiting distribution is analogous to the one of PWY (2011). In finite samples, 

the null distribution for both the sup-DFC and the sup-DF statistics are affected by the initial 

value of the time series if the series is not demeaned or detrended. To overcome this issue, 

Homm and Breitung (2012) suggest computing the test statistics by using modified series 

{𝑦𝑡̃}𝑡=1
𝑇  with 𝑦̃𝑡 = 𝑦𝑡 − 𝑦0. 

2.3.5 Real-time Monitoring 

The test statistics considered above are designed to detect speculative bubbles within a fixed 

historical dataset. As argued by Chu, Stinchcombe, and White (1996), such test may be highly 

misleading when applied to an increasing sample. This is due to the fact that structural break 

tests are constructed as a single test procedure, that is, the size of the test is controlled, 

provided that the sample is fixed, and the test procedure is applied only once to the same 

dataset but unable to discover whether the evidence for a speculative bubble has strengthened. 

To illustrate the problem involved, assume that an investor is interested to find out whether 

the stock price is subject to a speculative bubble. Applying above tests to a sample of the last 

100 trading days, he or she is not able to reject the null hypothesis of no speculative bubbles. 

If the stock price continues to increase in the subsequent days, the investor is interested to find 

out whether the evidence of a speculative bubble has strengthened. However, repeating the 

tests for structural breaks when new observations become available eventually leads to a 

severe over-rejection of the null hypothesis due to multiple application of statistical tests.  

Another practical issue is that the tests assume a single structural break from a random-walk 

regime to an explosive process. The monitoring procedures suggested below are able to 

sidestep the problems due to multiple breaks. Two typical monitoring procedures are broadly 

discussed in the literature: fluctuation monitoring procedure (FLUC) and cumulative sum 

monitoring procedure (CUSUM). As FLUC (recursive ADF strategy) has been briefly 



25 
 

introduced, then here we just present CUSUM strategy. The CUSUM detector is denoted by 

𝐶𝑟0
𝑟  and defined as, 

 𝐶𝑟0
𝑟 =

1

𝜎̂𝑟
∑ ∆𝑦𝑗
⌊𝑇𝑟⌋
𝑗=⌊𝑇𝑟0⌋+1

 𝑤𝑖𝑡ℎ 𝜎̂𝑟
2 = (⌊𝑇𝑟⌋ − 1)−1∑ (∆𝑦𝑗 − 𝜇̂𝑟)

2⌊𝑇𝑟⌋
𝑗=1 , 

where ⌊𝑇𝑟0⌋ is the training sample (𝑟0 represents the initial fraction); ⌊𝑇𝑟⌋ is the monitoring 

observation (𝑟 is the fractional size of monitoring sample); 𝜇̂𝑟 is the mean of 

{∆𝑦1, … , ∆𝑦⌊𝑇𝑟⌋}, and r > 𝑟0. Under the null hypothesis of a pure random walk, it has the 

following asymptotic property, 

 lim
𝑇→∞

𝑃 {𝐶𝑟0
𝑟 > 𝑐𝑟√⌊𝑇𝑟⌋ 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑟 ∈ (𝑟0, 1]} ≤

1

2
exp(−𝜅𝛼 2⁄ ), 

where 𝑐𝑟 = √𝜅𝛼 + log(𝑟 𝑟0⁄ ). For example, when the significance level 𝛼 = 0.05, 𝜅0.05 

equals 4.6. 

2.4 Testing Power Comparison 

The testing procedures presented so far fall into two general categories: recursive DF t-

statistics (FLUC) and tests based on scaled sum of forecast errors (CUSUM). In the literature 

on tests for a change in persistence, the varieties of Kim’s (2000) and Busetti and Taylor’s 

(2004) tests are also available to test the bubble scenario; however, Homm and Breitung 

(2012) prove that those procedures perform worse than the sup-DFC (recursive ADF test) in 

terms of power through the application of Monte Carlo simulations. They conclude that the 

PWY (2011) test is much more robust than all other tests in detecting periodically collapsing 

bubbles of the Evans (1991)’s type. Moreover, its dating strategy also works satisfactorily 

against other recursive procedures and is exclusively effective as a real-time bubble detection 

algorithm. Similarly, in the study of PSY (2015a, b), they confirm that the recursive ADF 

date-stamping strategy enjoys better power in discovering bubble episodes than the strategy of 

CUSUM. 
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Chapter 3 The Discovery of Bubbles in Global Markets 

3.1 Introduction 

It is now widely accepted that for both developed and developing countries, stock market 

bubbles have occurred in the past and it is likely that they will occur in the future. 

Furthermore, experience has shown that stock market bubbles pose a serious threat to global 

financial stability and to sustained economic growth. Formally, an asset price bubble is said to 

exist if the price of asset significantly exceeds the value that is justified by relevant 

fundamentals (its intrinsic value). The presence of stock market bubbles is characterized by 

explosive growth in the relevant stock market index. Those bubbles can be rational if they 

grow in expectation at the explosive rate 1+ r, where r is the rate of interest used by investors 

for discounting capital gains. Alternatively, a stock market bubble might exist that does not 

satisfy this criterion and is entirely driven by investors’ irrational exuberance. Empirical 

observations suggest that stock market bubbles do not continue forever and that they 

eventually burst to a lower level, before growing again at some point in the future. In recent 

years, there has been a renewed interest in statistically modeling and detecting asset price 

bubbles. Recent research in econometrics has led to the development of robust methods for 

detecting the existence of asset price bubbles and for date-stamping the periods of growth and 

collapse.  

The previous literature concentrates on the empirical discovery of bubbles in the US stock 

market but ignoring the importance of detecting bubbles in a broader context. The increasing 

interdependence of financial markets reveals the possibility that the presence of exuberance in 

one market might cause the behavioural change in another. Therefore, examination for the 

existence of the bubble is treated as the first step for investigating the nature and evolutionary 

process of the bubble in global markets. In addition, if the history has a habit of repeating 

itself, the study can be served as useful alerting mechanism for market participants as well as 

policymakers to build up counter measures to defend bubbles. The present chapter responds to 

those needs by providing the empirical examination in international markets where more than 

40 stock markets are selected. Three econometric methods are applied: the conventional ADF 

test, PWY and PSY strategies. In general, we have found significant evidence of 
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explosiveness for stock markets in Australia, Hong Kong, India, South Korea, and Thailand in 

Asia; Finland, France, Germany, Greece, Ireland, Netherlands, Spain, Sweden, Turkey, and 

the UK in Europe; Canada, the US, and Mexico in North and South America, and South 

Africa in Africa. For those indices where periods of explosive autoregressive behavior are 

identified, suggesting that asset price bubbles exist, the start and end dates obtained using the 

PWY and PSY date-stamping procedures strongly suggest that for some stock markets, 

bubbles do transfer to other stock markets. By showing those results, our study adds to the 

growing literature on the discovery of bubbles. Comparing with previous works which 

typically focus on just a small number of stock markets (very often, just the US), our analysis 

falls in to a much broader horizon, using data for 47 stock markets. Surprisingly, our results 

suggest that the contagion−effect might be functional when we observe several bubbles in the 

global markets during the same period, and such effect will be discussed further in the 

Chapter 4.  

The plan of this chapter is as follows. The next section will have a brief introduction for 

model specifications. Section 3.3 describes the data. Section 3.4 presents our results and 

Section 3.5 concludes. 

3.2 Models and Specifications 

The starting point in the analysis of financial bubble is the asset pricing model, 

 𝑃𝑡 = ∑ (
1

1+𝑟𝑓
)𝑖𝐸𝑡(

∞
𝑖=0 𝐷𝑡+𝑖 + 𝑈𝑡+𝑖) + 𝐵𝑡, (3.1) 

 with 𝐸𝑡(𝐵𝑡+1) = (1 + 𝑟𝑓)𝐵𝑡, 

where 𝑃𝑡 is the price series in stock market. 𝐷𝑡 is the payoff received from the asset (i.e. 

dividend); 𝑟𝑓 is the risk-free interest rate; 𝑈𝑡 represents the unobservable fundamentals; 𝐵𝑡 

stands for the bubble component. Here, follow Blanchard and Watson (1982), Diba and 

Grossman (1988), Phillips et al (2011) and Phillips et al (2015), we adopt the broader 

definition of bubble where it contains both run-up (boom) and run-down (crisis) periods. The 

quantity 𝑝𝑡
𝑓
= 𝑃𝑡 − 𝐵𝑡 is often called the market fundamental and 𝐵𝑡 satisfies the sub-

martingale property. In the absence of bubbles (𝐵𝑡 = 0), the degree of non-stationarity is 

controlled by the character of dividend series and unobservable fundamentals. Basically, if 
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bubble does not exist, stock prices are non-stationary in levels whilst stationary in first 

difference. However, if stock prices contain a bubble, then the process, differencing stock 

prices a finite number of times would not produce a stationary process. For example, if 𝐷𝑡 is 

an I (1) process and 𝑈𝑡 is either I (0) process, then the asset price is at most an I (1) process. 

On the other hand, given 𝐸𝑡(𝐵𝑡+1) = (1 + 𝑟𝑓)𝐵𝑡, asset prices will be explosive in the 

presence of bubbles. Therefore, when unobservable fundamentals are at most I (1) and 𝐷𝑡 is 

stationary after differencing, empirical evidence of explosive behaviour in asset prices may be 

applied to conclude the existence of bubbles. 

Equation (3.1) is not the only model used to interpret the bubble phenomena and there is 

continuing academic debate over how (or even why) to accommodate bubble term in asset 

pricing model and their relevance in empirical studies. For instance, Cochrane (2005) 

discusses an overlapping generation model that captures the interesting possibility of rational 

bubbles. Pastor and Veronesi (2006) explore the bubble phenomena in the NASDAQ market, 

arguing that the NASDAQ valuations are not necessarily irrational ex-ante as uncertainty 

about average profitability which increases the fundamental value of a firm, is abnormally 

high in the late 1990s. They reckon that the high uncertainty seems plausible because it 

matches not only the high level but also the high volatility of NASDAQ stock prices at that 

time. Although debate still exists, academics reach a great consensus that bubbles start from 

pricing errors relative to market fundamentals, or in another situation, Phillips and Yu (2011) 

show that the temporary explosiveness in asset prices could be the consequence of changes in 

discount rate. No matter what its origins are, explosive or mildly explosive behaviour in asset 

price is a primary indicator of market exuberance and this time series feature subjects to 

econometric testing. 

A common issue that arises in unit-root test is the specification of the model used for 

estimation purpose, not least because of its potential impact on appropriate asymptotic 

distribution and the critical values used in testing. Unit root testing is a well-known example 

where intercepts, deterministic trends, or trend breaks all materially impact the limit theory. 

PSY (2015b) discuss the impact of hypothesis formulation and model specification on right-

tailed unit-root test and eventually suggest a null random walk process with asymptotically 

negligible drift to capture the mild drift in price processes that are often empirically realistic 
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over long historical periods. The prototypical model of this type has the following weak 

intercept form, 

 𝑦𝑡 = 𝑑𝑇
−𝜂 + 𝜃𝑦𝑡−1 + 𝜀𝑡, 𝜀𝑡 ∼ 𝑁𝐼𝐷(0, 𝜎

2), 𝜃 = 1, (3.2) 

where 𝑦𝑡 represents a time series of stock price. d is a constant; T is the sample size; the 

parameter 𝜂 is a localizing coefficient that controls the magnitude of the intercept and drift 

as 𝑇 ⟶ ∞. Solving equation (3.2) gives 𝑦𝑡 = 𝑑
𝑡

𝑇𝜂
+∑ 𝜀𝑗

𝑡
𝑗=1 + 𝑦0 revealing the 

deterministic drift 𝑑𝑡 𝑇𝜂⁄ . When 𝜂 > 0, the drift is small relative to a linear trend; when 𝜂 >

1

2
, the standardized output 𝑇−1/2𝑦𝑡  behaves asymptotically like a Brownian motion with drift 

which suits many macroeconomic and financial time series. The null specification (3.2) 

includes the pure random walk null of PWY (2011) as a special case when 𝜂 ⟶ ∞ and the 

order of magnitude of 𝑦𝑡 is then identical to that of a pure random walk. The model is 

normally complemented with transient dynamics in order to conduct tests for exuberance, just 

as in standard ADF unit root testing against stationarity. 

Our study basically contains three testing mechanisms: (i) the right-tailed unit-root test, (ii) 

PWY Strategy, and (iii) PSY Strategy, and compares their testing power in real cases. For 

original right-tailed unit-root test, the following autoregressive specification by least squares 

is estimated, 

𝑥𝑡 = 𝜇𝑥 + 𝛿𝑥𝑡−1 +∑ 𝜙𝐽
𝐽
𝑗=1 Δ𝑥𝑡−𝑗 + 𝜀𝑥,𝑡 , 𝜀𝑥,𝑡~𝑁𝐼𝐷(0, 𝜎𝑥

2), 

for some given value of the lag J, where 𝑥𝑡 represents time series for log stock price or log 

dividend. NID denotes independent and normal distribution. The null hypothesis is 𝐻0: 𝛿 =

1 and the right-tailed alternative hypothesis is 𝐻1: 𝛿 > 1. 

The sup-ADF test follows the testing procedures discussed in PWY (2011), repeatedly 

estimating the augmented Dickey-Fuller testing regression with increasing number of 

observations at each pass. In particular, suppose that the rolling window regression sample 

starts from the 𝑟1
𝑡ℎ  fraction of the total sample (T) and ends at the 𝑟2

𝑡ℎ  fraction of the 

sample, where 𝑟2 = 𝑟1 + 𝑟𝑤 and 𝑟𝑤 is the (fractional) window size of the regression. In the 

sup-ADF test, the window size 𝑟𝑤 expands from 𝑟0 to 1, so that 𝑟0 is the smallest sample 
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window width fraction (initializing computation) and 1 is the largest window fraction (the 

total sample size in the recursion). The starting point of 𝑟1 of the sample sequence is fixed at 

0, so the ending point of each sample (𝑟2) equals 𝑟𝑤, and changes from 𝑟0 to 1. Let the 

corresponding t-statistic be denoted 𝐴𝐷𝐹𝑟, and, therefore, 𝐴𝐷𝐹1 represents the test statistic 

employing the full sample. Under the null hypothesis, 

 𝐴𝐷𝐹𝑟⟹ 
∫ 𝑊̃𝑑𝑊
𝑟
0

(∫ 𝑊̃2𝑟
0

)
1/2, 

 and 

 𝑠𝑢𝑝𝑟∈[𝑟0 ,1] 𝐴𝐷𝐹𝑟⟹ 𝑠𝑢𝑝𝑟∈[𝑟0,1]  
∫ 𝑊̃𝑑𝑊
𝑟
0

(∫ 𝑊̃2𝑟
0

)
1/2, 

where 𝑊 is the standard Brownian motion and 𝑊̃(𝑟) = 𝑊(𝑟) − ∫ 𝑊
1

0
 is demeaned 

Brownian motion. To test for a unit root against explosiveness, 𝑠𝑢𝑝𝑟  𝐴𝐷𝐹𝑟 testing statistic 

needs to compare with the right-tailed critical values from 𝑠𝑢𝑝𝑟∈[𝑟0,1] ∫ 𝑊̃
𝑟

0
𝑑𝑊/(∫ 𝑊̌2𝑟

0
)
1/2

.  

As discussed in the Introduction, regulators and policymakers concerned with practical policy 

implementation need to assess whether real time data provide evidence of financial 

exuberance – specifically whether any particular observation belongs to a bubble phase in the 

overall trajectory. The sup-ADF test provides a valid date-stamping framework by matching 

the time series of the recursive testing statistics 𝐴𝐷𝐹𝑟 (with 𝑟 ∈ [𝑟0, 1]) against the right-

tailed critical values for the asymptotic distribution of the standard ADF t-statistic (i.e. 

information embodied in 𝐼⌊𝑇𝑟⌋ = {𝑦1, 𝑦2, 𝑦3, … , 𝑦⌊𝑇𝑟⌋}). Since it is possible that the data 𝐼⌊𝑇𝑟⌋ 

may include one or more collapsing bubble episodes, the ADF test, like earlier unit 

root/cointegration-based tests for bubbles (e.g., Diba and Grossman, 1988), may result in 

finding pseudo stationary behaviour. The strategy recommended here is to perform a 

backward sup ADF test on 𝐼⌊𝑇𝑟⌋, to improve identification accuracy. Particularly, if 𝑟𝑒 is the 

origination date and 𝑟𝑓 is the termination date of bubbles in the data, the estimates of these 

dates are, 

 𝑟̂𝑒 = 𝑖𝑛𝑓𝑟∈[𝑟0,1]{𝑟: 𝐴𝐷𝐹𝑟 > 𝑐𝑣𝑟
𝛽𝑇} 𝑎𝑛𝑑 
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  𝑟̂𝑓 = 𝑖𝑛𝑓 𝑟∈[ 𝑟̂𝑒+log(𝑇) 𝑇⁄ ,1]{𝑟: 𝐴𝐷𝐹𝑟 < 𝑐𝑣𝑟
𝛽𝑇}, 

where 𝑐𝑣𝑠
𝛽𝑇  is the right-side critical value of ADF statistic corresponding to a significance 

level of 𝛽𝑇. The current work sets the significant level at 5% and the shortest duration of 

bubble should be no less than two months. 

The generalized sup-ADF test, the most recent recursive procedures for practical 

implementation of testing explosive behaviour in asset price, proposes a generalized version 

of the sup-ADF test. It allows both starting points and ending points of the testing pass to vary 

and the testing statistic is defined as the largest ADF statistic over the feasible ranges of 𝑟1 

and 𝑟2, then, 

 𝐺𝑆𝐴𝐷𝐹(𝑟0) = 𝑠𝑢𝑝 𝑟2∈[𝑟0,1] 

𝑟1∈[0,𝑟2−𝑟0]

{𝐴𝐷𝐹𝑟1
𝑟2}. 

The new date-stamping strategy makes inferences on the explosiveness of observations based 

on the backward sup-ADF statistics where 

  𝑟̂𝑒 = 𝑖𝑛𝑓𝑟2∈[𝑟0,1] {𝑟2: 𝐵𝑆𝐴𝐷𝐹𝑟2(𝑟0) > 𝑠𝑐𝑣𝑟2
𝛽𝑇} and 

 𝑟̂𝑓 = 𝑖𝑛𝑓𝑟2∈[ 𝑟̂𝑒+δlog(𝑇) 𝑇⁄ ,1] {𝑟2: 𝐵𝑆𝐴𝐷𝐹𝑟2(𝑟0) < 𝑠𝑐𝑣𝑟2
𝛽𝑇}, 

where  𝑟̂𝑒 stands for the estimation of origination date and 𝑟̂𝑓 is the estimation of collapsing 

date. The 𝑠𝑐𝑣𝑠
𝛽𝑇  is the level of significance for a critical value of the sup-ADF statistic based 

on ⌊𝑇𝑟2⌋ observations, where ⌊. ⌋ is the floor function (giving the integer part of the 

argument). Again, in the generalized sup-ADF dating strategy, all significance level is set to 

5% and all bubble periods should last at least for two months. Here we see that one advantage 

of applying PWY and PSY date-stamping strategies is that both of them clearly define not 

only boom periods where stock prices keep rising, but also crisis periods where stock prices 

keep falling down. These two strategies make it possible to study the entire bubble 

evolutionary process containing both run-up and run-down periods instead of only focusing 

on one of them.  

3.3 Data Collection 

This study collects the long historical time-series market indices in over 40 stock markets. In 
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general, the testing samples are collected from five regions on monthly basis: Asia (16, 

including 2 markets from Australasia), EU (20), the US, America excluding the US (5), and 

Africa (1). The monthly stock price and dividend data in the US consist of three major market 

indices: Dow Jones Industrial Average (DJIA), NASDAQ, and S&P 500. In particular, S&P 

500 and its dividend sequence are collected from Robert Shiller’s website, while DJIA and 

NASDAQ indices are obtained from DataStream.3 The major local stock indices in Europe 

are collected in the UK, France, Germany, Norway, Netherlands, Switzerland, Russia, and so 

on. For Russia, FTSE Russia Dollar and FTSE Russia Ruble are both included in our testing 

sample, as the former contains much more observations. In addition, this study uses FTSE 

Euro First 80E index as an indicator of the whole EU markets, since it represents the 60 

largest companies ranked by market capitalization in the FTSE Developed Europe Index and 

20 additional companies selected for their size and sector representation. The Asian market 

proxies contain a majority of the local stock market indices, such as the Chinese A-Share 

index, Hong Kong Hang Seng index, and Korea SE KOSPI 200, etc. FTSE Bura Malaysia 

and FTSE Malaysia as well as FTSE Japan and Japan Tokmacap have been chosen as market 

proxies for Japan and Malaysia, respectively. Table 3.1 shows that all market index returns 

(except for the S&P 500 index) are collected from DataStream with the same ending date of 

December 2015 but various starting dates from January 1871 to June 2000. 

 <Table 3.1> 

3.4 Empirical Application 

3.4.1 The Conventional unit-root Testing Results 

The first testing mechanism applied is the conventional right-tailed unit-root test. Instead of 

testing explosiveness in both index and dividend sequence, price-dividend ratio is employed 

to reflect asset prices in relation to fundamentals based on the pricing equation (3.1). Table 3.1 

presents the testing results for each market. From Table 3.1, we observe that no testing results 

are significant at 10 percent level except for Greece. Greek price-dividend ratio is significant 

at 1 percent level as its ADF testing statistic is approximately 3.147, exceeding its 1 percent 

right-tailed ADF critical value (3.147 > 0.524) and indicating strong evidence that speculative 

 
3 The Data link for Robert Shiller’s Website: http://www.econ.yale.edu/~shiller/data.htm.  

http://www.econ.yale.edu/~shiller/data.htm
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bubble exists in Greek stock market. However, no evidence supports the hypothesis that 

explosive behaviour is present in other equity markets, particularly for those well-known 

exuberance episodes. For example, testing results of DJIA, S&P 500, and NASDAQ are –

1.490, –1.489, and –1.734 respectively, and none of them are significant at 10 percent level. 

Similar to the US, no bubble phenomenon has been discovered in Japan, since two Japanese 

market indices have respective testing results of –1.322 (FTSE Japan) and –2.045 (Japan 

TOPIX), which are not significant at 10 percent level. 

One potential concern of our ADF test results is that they may not reflect the truth, as Evan 

(1991) proves that periodically collapsing bubbles which are very realistic in the real world, 

are not detectable by using the conventional unit-root test because they appear to be stationary 

even though they are explosive in the relevant case. Therefore, to overcome this issue, two 

additional testing procedures are carried out and testing results are presented in the following 

sections. 

3.4.2 The Sup-ADF and Generalized Sup-ADF Critical Values 

Additional empirical analysis concerns with the solution of low testing power in traditional 

method, especially when multiple bubbles with periodically collapsing behaviour are present 

overtime. In this section, sup-ADF and generalized sup-ADF tests are applied for each of our 

sample. Lag order k of zero has been chosen in our mean testing equation, because PSY 

(2015a, b) prove that this measure can avoid size distortion and further improve the power of 

both sup-ADF and generalized sup-ADF tests. Critical values for these two tests are obtained 

from Monte Carlo simulation with 1,000 replications based on actual sample size. Table 3.2 

display the critical values of sup-ADF and generalized sup-ADF critical values, where we use 

the US as an example. 

<Table 3.2> 

From Table 3.2, we can see that the critical values of generalized sup-ADF are normally 

larger than those of the sup-ADF values. As a case in point, for S&P 500, when the sample 

size T is 1,740 and window size equals 92, the 95 percent critical value of the generalized sup-

ADF is 2.42 while that of the sup-ADF critical value is 1.55. Similarly, for NASDAQ, its 

generalized sup-ADF critical value is 2.26, which is bigger than its sup-ADF critical value of 
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1.502. 

3.4.3 The Sup-ADF Testing Results 

The last two columns in Table 3.1 present the sup-ADF and the generalized sup-ADF 

statistics in each sample market. The sup-ADF statistics (PWY) developed by Phillips et al. 

(2011) provide significant evidence of explosiveness in the following sample markets: 

Australia, Hong Kong, India, South Korea and Thailand in Asia; Finland, France, Germany, 

Greece, Ireland, Netherlands, Spain, Sweden, Turkey, and the UK in Europe; Canada and 

Mexico in America excluding the US, South Africa in Africa; and the US. Note that the 

testing results of three US market indices are all significant at the 1% level with sup-ADF 

statistics of 3.84 (p-value < 0.01; DJIA), 12.48 (p-value < 0.01; NASDAQ) and 3.443 (p-

value < 0.01; S&P 500), consistently indicating strong evidence of bubble existence in the US 

stock market. However, the PWY testing statistics for Japan offer mixed results. Testing result 

obtained from the FTSE Japan is insignificant (–1.07; p-value > 0.10), suggesting no bubbles 

in the Japanese market; however, test result for the Japan TOPIX is highly significant at the 

1% level (2.463; p-value < 0.01), providing substantial evidence for the presence of bubbles. 

This discrepancy could be due to the number of observations in FTSE Japan being smaller 

compared to the Japan TOPIX, which reduces the power of the sup-ADF test (the sample of 

FTSE Japan drops the first three years data of Japan TOPIX which tends to be very volatile 

and has significant impact on the results). After we controlling the size of Japan TOPIX 

(manually setting the sample size of Japan TOPIX being equal to FTSE Japan), the significant 

testing result of Japan TOPIX is gone (see in Table 3.1). We also run our test procedures on 

the FTSE Euro First 80E, which represents the overall European market. We find statistically 

significant results at the 1% level (2.376; p-value < 0.01), again offering evidence to support 

the existence of bubbles over the time period considered. 

3.4.4 The Generalized Sup-ADF Testing Results 

To ensure the robustness of our results, we apply the generalized sup-ADF test to our data. 

For a majority of stock markets considered, samples cover long-time intervals that have high 

possibility of containing multiple bubbles. The last column of Table 3.1 provides the PSY test 

results for each market, showing that explosive behavior is a common and widespread 
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phenomenon in the global markets considered. For example, the results for all three US 

market indices are significant at the 1% level, showing strong evidence for sub-explosive 

periods in the US stock market. Similarly, for a majority of stock markets in the Europe, Asia, 

and America excluding the US, the PSY tests demonstrate the presence of bubbles. For 

instance, the generalized sup-ADF statistics of Belgium, Denmark, and Italy are 2.16 (p-value 

< 0.10), 2.119 (p-value < 0.10), and 2.037 (p-value < 0.10), respectively, significant at the 

10% level.  

Compared with the PWY, the PSY test suggests that more markets experience bubbles, 

highlighting the superior discriminatory power of this test statistic relative to the PWY when 

there are multiple bubbles. Taking Malaysia as an example, the Malaysia KLCI in Asia, its 

PSY testing statistic is significant at the 5% level (2.636; p-value < 0.05), while the PWY 

result shows statistically insignificance (0.193; p-value > 0.10). Moreover, some of the PSY 

testing statistics support bubble existence in stronger sense. For instance, the PSY statistic of 

Hong Kong is 3.522 (p-value < 0.01) is significant at the 1% level, but its PWY statistic of 

1.776 (p-value < 0.05) is only significant at the 5% level. Although the sup-ADF and 

generalized sup-ADF testing statistics provide robust findings for bubble existence, another 

potential concern raises the question of how to locate the origin and collapse dates of those 

explosive episodes. Here in this chapter, we employ date-stamping strategies proposed by 

Phillips et al. (2011) and Phillips et al. (2015a, b) to record these dates. 

3.4.5 The Sup-ADF Dating Results 

Panel A of Table 3.3 reports the PWY date-stamping results for each of our sample market. It 

shows that for many markets, bubble periods appear to persist for months, or even years. For 

example, S&P 500 index has explosive sub-periods for quite long periods, e.g., from May 

1879 to May 1880 and from July 1997 to June 2002 (Dotcom bubble). Similarly, the DJIA 

and NASDAQ indices are found to be explosive in the 1980s (e.g., 1983M03-1984M02 and 

1986M02-1987M11 for DJIA; 1983M05-1984M06 and 1984M08-1990M04 for NASDAQ) 

and in the Dotcom bubble period (e.g., 1995M06-2000M12 for DJIA and 1993M09-2001M04 

for NASDAQ). In the Europe and America excluding the US, dating results show explosive 

sub-periods in the 1980s and 1990s. For example, the UK has explosive periods from 1981 to 
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1987 and 1993 to 2002, whilst the periods for Canada is found to be explosive from 1983 to 

1987 and 1993 to 2010. Note that our analysis also focuses on discovering bubbles for the 

whole European market, and we find explosive behavior from the middle of 1997 to the end 

of 2000. In the Asian markets, we date the explosive behavior as follows: South Korea (e.g., 

1994M01-1995M01, 1999M04-1999M10, and 1999M11-2000M04), Thailand (e.g., 

1986M10-1987M11, 1988M02-1988M11, 1989M01-1990M09, and 1998M11-2000M02), 

and Japan (e.g., 1986M06-1986M11, 1986M12-1987M12, 1988M03-1988M09, and 

1988M12-1990M03). All PWY testing figures are presented in Figures 3.1.  

 <Table 3.3> 

 <Figures 3.1> 

3.4.6 The Generalized Sup-ADF Dating Results 

The Panel B of Table 3.3 provides the detailed starting and ending dates of the explosive 

regimes detected by the PSY strategy. For example, the exuberant sub-periods for the S&P 

500 index include the late 19th century (e.g., 1879M07-1880M05), the early 20th century 

(e.g., 1917M09-1918M05), the Great Depression (e.g., 1928M09-1929M11), the post-war 

bubbles in the 1950s (e.g., 1955M04-1956M08 and 1958M11-1959M09), the black Monday 

in October 1987 (e.g., 1987M01-1987M10), and the Dotcom bubble period (e.g., 1995M12-

1996M07 and 1996M09-2001M09). For the DJIA and NASDAQ indices we obtain 

approximately the same results in the 1980s and 1990s, while for the NASDAQ index, we 

also date-stamp the period of the subprime mortgage crisis in 2008 (e.g., 2008M10-

2009M03). From this point, we see that indeed, the PSY date-stamping strategy is able to 

identify more bubble periods (either run-up or run-down periods) than PWY. This is 

consistent with the limit theory provided by Phillips, et al (2015), that under the hypothesis of 

multiple bubbles (the key outcomes are revealed from the case of single bubble episode) and 

rate condition of 
1

𝑐𝑣𝛽𝑇
+

𝑐𝑣𝛽𝑇

𝑇1 2⁄ 𝛿𝑇
𝑟−𝑟𝑒 → 0, 𝑎𝑠 𝑇 → ∞ (𝑐𝑣𝛽𝑇  is the critical value T is the sample 

size, 𝑟 − 𝑟𝑒 represents the remaining dates after the first bubble occurred, 𝛿𝑇 = 1+ 𝑐𝑇
−𝛼 

with 𝑐 > 0 and 𝛼 ∈ (0,1)), the ADF detector provides consistent estimates (𝑟̂1𝑒, 𝑟̂1𝑓)

𝑝
→ (𝑟1𝑒, 𝑟1𝑓) of the origination and termination of the first bubble, but does not detect the 

second bubble when the duration of the first bubble exceeds that of the second or shorter than 
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the second bubble. Then under rate condition of 
1

𝑐𝑣𝛽𝑇
+

𝑐𝑣𝛽𝑇

𝑇1−𝛼 2⁄ → 0, 𝑎𝑠 𝑇 → ∞, the PWY still 

consistently estimates the first bubble but discovers the second bubble with a delay that 

misdates the bubble. Alternatively, for PSY strategy, under the hypothesis of multiple bubbles 

and rate condition of 
1

𝑐𝑣𝛽𝑇
+

𝑐𝑣𝛽𝑇

𝑇1 2⁄ 𝛿𝑇
𝑟−𝑟𝑒 → 0, 𝑎𝑠 𝑇 → ∞, sequential application of the ADF 

detector will provides consistent estimates (𝑟̂1𝑒, 𝑟̂1𝑓, 𝑟̂2𝑒, 𝑟̂2𝑓)
𝑝
→ (𝑟1𝑒 , 𝑟1𝑓, 𝑟2𝑒 , 𝑟2𝑓) of the 

origination and termination of the first and second bubbles. Note that for both PWY and PSY, 

the theoretical hypothesis of multiple bubbles considers either run-up and run-down periods 

for a bubble and allows the model switches between a martingale mechanism, a single mildly 

explosive episode, collapse, and subsequent renewal of martingale behaviour. Such measure 

allows the strategy to capture any collapsing period appeared in the data sequence, for 

example, in our case, the subprime mortgage crisis in 2008. For more details, please see 

Appendix 2.1.  

For America excluding the US, the PSY test results show that the index for Colombia 

experiences explosive behavior from 2004 to 2006 (e.g., 2004M11-2005M03 and 2005M06-

2006M05). In Europe, explosive behavior is detected over the following dates: the UK (e.g., 

1971M10-1972M04, 1997M06-1997M10, and 1997M11-2000M07), Germany (e.g., 

1982M12-1984M05, 1985M05-1986M07, and 1997M06-1997M10), Italy (e.g., 1993M06-

1993M10, 1994M03-1994M10, and 2008M12-2009M04), and Belgium (e.g., 2008M10-

2009M06). In particular, Panel B of Table 3.3 shows that, similar to the US, the whole Europe 

index experiences a difficult time in 2008 and 2009 (e.g., 2008M09-2009M04), due to the 

spillover of the subprime mortgage crisis from the US to Europe.  

The Asian results illustrate the impact of the Asian financial crisis occurred in the middle and 

late of 1990s. For example, the South Korea and Hong Kong stock market bubbles grow and 

collapse in the middle and late 1990s (e.g., 1994M01-1995M01, 1999M05-1999M10, 

1999M11-2000M03 for South Korea; 1987M06-1987M10 and 1993M10-1994M02 for Hong 

Kong). The indices for Japan, India, and Hong Kong also have similar behavior to the US 

indices in 2008, while the Chinese stock market experiences exuberance in 2008 and 2015 

(e.g., 2007M01-2007M06, 2008M01-2008M12, and 2015M04-2015M06). Note that for both 

the PWY and PSY tests, the duration of the exuberance episodes detected are no less than two 
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months. All PSY testing figures are presented in the Figures 3.2.  

 <Figures 3.2> 

3.4.7 Further Discussions 

This chapter attempts to support the literature from the empirical perspective by confirming 

evidence of bubble existence in a broad context without using subjective method. Here in this 

chapter, we adopt a broader definition of bubble that a bubble contains both run-up and run-

down periods which enable us to study the entire bubble evolutionary process. In early 

studies, economic professions reject the hypothesis that bubbles are present in the stock 

market, but such conclusion has been proved to be biased, as the testing method cannot 

recognize explosive sub-periods if bubbles are periodically collapsing. To overcome such 

difficulty, recent studies develop new testing procedures by implementing recursive 

procedures to generate sup- and generalized sup-testing statistics, both of which are easy to 

use in practical cases. In general, our findings reject conclusions reached by Diba and 

Grossman (1988) and Evans (1991), who have proved no bubbles in the market, while 

provide significant evidence that, indeed, such bubbles commonly exist in the global context. 

We confirm massive exuberance episodes in the US, consistent with the PWY (2011) and PSY 

(2015a, b), but we further extend findings to other regions, such as the Europe and Asia, 

offering convincing evidence for the existence of bubbles in those areas, particularly for the 

periods that publics fail to recognize bubbles. Our empirical estimates match relatively well 

with the general dateline of crisis putting forward in the public intuition about those financial 

bubble episodes. For example, our results stamp the concatenation events occurred after the 

Japanese housing bubble in the late 1980s, followed by the Dotcom bubble in the US, which 

originally began in 1995 then expanded to the UK in 1997. In the US, the bubble finally 

collapsed in March 2001 and subsequently, in July 2001, the bubble in the UK exploded as 

well. Similar transmission mechanism has been confirmed in the 2008 financial crisis, which 

is originally triggered by the collapse in subprime mortgages in the US and then quickly 

moved to the other continents, particularly to the mainland of Europe since we observe 

several market recessions followed up by the crisis in the US.  

We have observed some mixed results when we apply different market indices for a single 
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market. For instance, the PWY testing statistics for FTSE Japan is insignificant (–1.07; p-

value > 0.10), suggesting no bubbles in the Japanese market; however, test result for the Japan 

TOPIX is highly significant at the 1% level (2.463; p-value < 0.01), providing substantial 

evidence for the presence of bubbles. This discrepancy could be due to the number of 

observations in FTSE Japan being smaller compared to the Japan TOPIX, which reduces the 

power of the sup-ADF test. This hypothesis has been proved after we controlling the size of 

Japan TOPIX (manually setting the sample size of Japan TOPIX being equal to FTSE Japan), 

the significant testing result of Japan TOPIX is gone. Another example of this discrepancy is 

the market indices of United States. We can clearly observe that the date-stamping results of 

United States for PSY offer distinct dates of bubbles: Dow Jones Industrial Average (DJIA) 

fails to recognize the collapsing period in 2008 while NASDAQ index successfully stamps it. 

Despite the fact that they have different sample size, another reason behind such difference 

could be the distinct nature between market indices – the DJIA represents well-established 

and well-known firms in the US market, while the NASDAQ consists of high-tech and 

growth firms. The literature has also suggested that NASDAQ normally has higher average 

returns than DJIA and the higher returns in NASDAQ are associated with higher volatilities 

(see Chiang, Yu and Wu, 2009). Such feature may cause the NASDAQ to be more volatile 

than DJIA in recent decades since high-tech stocks have received more attention after the late 

of 20th century Therefore, the mismatch between bubble dates between DJIA and NASDAQ 

may due to the fact that NASDAQ is more sensitive and overreact to positive or negative 

shocks than DJIA.  

However, we can see from Table 3.3 and Figures 3.2 that not all markets are subject to the 

bubble phenomena, that is, the bubble episode may still be an independent event in the global 

markets. Taking Spain and Switzerland as an example, we confirm the collapsing period of 

1993-2000 in Spain but fail to recognize the same period in Switzerland. Such non-

overlapping period shows that the financial crisis happened in Spain might not be present for 

the equity market of Switzerland, which refuses the hypothesis of transmission. Several 

potential interpretations may be applied to explain such mismatch. First, there might be 

explosive behavior during that period, but such an increase in the relevant stock market index 

cannot be confirmed as a bubble, based on the formal definition of an asset price bubble. 
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Recalling the definition of a bubble used is that the observed asset price significantly exceeds 

its market fundamental component, and the growth of the price is explosive. If both price and 

market fundamental are explosive during the same period, or in other words, the growth of the 

asset price is supported by a similar rise in relevant fundamentals, we cannot recognize such 

phenomenon as an asset price bubble (rational or irrational), and that might be the reason why 

we have observed bubbles in Spain but failed to confirm the same phenomenon in 

Switzerland because either there is truly no shooting up in asset prices in Switzerland when 

Spain is experiencing exuberance, or there is a surge in asset prices but such rises are 

supported by fundamentals (both price and dividend are shooting up). Therefore, technically, 

our procedures do not recognize the price surge in Switzerland as a bubble.  

We have also considered another potential explanation: market itself may not be sensitive to 

the bubble transmission since it has a market barrier to prevent the transmission, or in other 

words, the interdependence between those markets is insufficient to allow bubble 

transmission. The literature suggests that factors such as listed firms, political risk, liquidity 

risk, poor corporate governance or inefficient markets may generate implicit barriers to 

important institutional investors and lead to market barriers (see e.g., Chua, Eun and Lai, 

2007; Bekaert, Harvey, Lundblad and Siegel, 2011), and such market segmentation could 

protect markets from contamination.  

3.5 Conclusion 

In this chapter, we use a large number of datasets to discover the existence of bubbles and 

date-stamp their originations and collapses. From our testing results, we can observe that the 

conventional unit-root method fails to discover bubbles appearing to be stationary, even 

though they are explosive in the relevant case. However, such issue has been solved by 

implementing unit-root test recursively forward, and obtained results are opposite to the 

findings of Evans (1991). Overall, our results are consistent with the conclusion made by 

PWY (2011) and PSY (2015a, b), who confirm the existence of bubble in the US; but we 

further extend their research and find strong evidence in other regions outside the US, and that 

greatly supports our hypothesis in terms of university in bubble existence. Moreover, by 

comparing the testing power between selected strategies, we suggest that the generalized sup-
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ADF strategy enjoys the superior discriminatory power than the others if multiple bubbles are 

present. 

Our dates are matched against the onset dates of the great depression, the post-war bubbles, 

the subprime mortgage crisis as well as the other specific sequential bubble episodes in the 

mainland Europe and Asia. It is worth to note that, from our date-stamping results, either in 

western or eastern markets, the phenomenon originated in one market highly possibly move 

selectively into the other equity markets, creating bubbles that subsequently burst and cause 

severe impacts on the real economy. We suggest several potential interpretations to explain 

the story, but the lack of empirical evidence supports our hypotheses. 

This chapter has not attempted to identify the explicit or implicit linkage between those 

bubble episodes. Identification of such relationship will involve more accurate formulation of 

alternative models and suitable determination techniques. Therefore, the following chapter 

will concentrate on this aspect with the purpose of investigating the bubble evolutionary 

process. 
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Table 3.1: Traditional ADF, PWY and PSY testing results with detailed information about the data 

Markets Sources Starting 

dates 
No. of 

observations 
ADF PWY PSY 

Asia 

Australia (AU) FTSE Australia 1986M02 355 –2.561 1.740b 4.265a 
China (CN) China A-DS Market 1994M05 259 –2.608 0.149 4.098a 
Hong Kong (HK) Hang Seng Index 1980M10 421 –2.404 1.776b 3.522a 
India (IN) NIFTY 500 1996M01 238 –0.701 2.513a 3.425a 
Indonesia (ID) FTSE Indonesia 1996M07 233 –1.610 1.040 1.040 
Israel (IL) FTSE Israel 1993M12 264 –7.007 –2.892 0.076 
Japan (JP) FTSE Japan 1986M02 357 –1.322 –1.070 1.226 
Japan TOPIX (JP) TOPIX 1983M02 394 –2.045 2.463a 2.510b 
Japan TOPIX (Restricted) TOPIX 1986M02 357 1.187 -0.743 1.188 

Malaysia (MY) FTSE Malaysia 1993M12 263 –3.167 –0.581 0.273 
Malaysia KLCI (MY) FTSE Bursa Malaysia 1986M01 359 –3.641 0.193 2.636b 
New Zealand (NZ) FTSE New Zealand 1986M02 355 –2.291 –0.809 1.565 
Philippine (PH) Philippine SE I (PSEi) 1988M01 335 –2.868 –0.506 1.120 
Singapore (SG) FTSE Singapore 1986M02 357 –2.792 –0.428 1.063 
South Korea (KR) Korea SE KOSPI 200  1990M01 311 –2.121 2.226a 2.226b 
Taiwan (TW) Taiwan SE Weighted TAIEX 1989M07 316 –2.606 –1.398 0.462 
Thailand (TH) Bangkok S.E.T. 1976M01 479 –2.532 5.812a 7.789a 

Europe 

Belgium (BE) BEL 20 1990M02 310 –2.275 0.851 2.160c 
Czech Republic (CZ) Prague SE PX 1994M04 260 –3.634 –2.161 1.254 
Denmark (DK) FTSE Denmark 1986M02 357 –2.498 2.120a 2.119c 
Finland (FI) FTSE Finland 1988M01 335 –2.503 4.212a 5.009a 
France (FR) France CAC 40 1988M01 334 –3.010 0.441 0.898 
Germany (DE) DAX 30 1973M01 514 –2.130 3.276a 5.314a 
Greece (GR) FTSE Greece 1998M05 211 3.147a 11.610a 11.610a 
Hungary (HU) FTSE Hungary 1997M10 212 –3.309 –0.981 0.501 
Ireland (IE) FTSE Ireland 1986M02 358 –2.024 1.487b 5.263a 
Italy (IT) FTSE Italy 1986M02 359 –2.288 0.771 2.037c 
Netherlands (NL) AEX Netherlands 1983M01 394 –2.038 2.697a 3.996a 
Norway (NO) FTSE Norway 1986M02 358 –3.181 –0.095 –0.095 
Poland (PL) FTSE Poland 1994M04 260 –10.540 –5.087 0.754 
Portugal (PT) FTSE Portugal 1998M05 211 –3.943 –1.320 1.547 
Russia (RU) FTSE Russia 2003M09 147 –2.561 0.714 1.086 
Russia Dollar (RU) FTSE Dollar 2000M06 186 –2.535 –0.576 0.878 
Spain (ES) IBEX 35 1987M03 345 –2.140 3.470a 3.725a 
Sweden (SE) OMX Stockholm 30 1986M01 358 –2.046 2.667a 3.796a 
Switzerland (CH) Swiss Market (SMI) 1988M07 328 –2.199 0.685 1.574 
Turkey (TR) BIST National 100 1988M02 333 –1.544 7.199a 7.199a 
United Kingdom (UK) FTSE All Share 1965M01 610 –0.974 3.610a 3.610a 
European Area (EU) FTSE Euro First 80 E 1993M12 264 –1.730 2.376a 2.613b 

USA 

Dow Jones Dow Jones Index 1978M02 456 –1.490 3.840a 3.848a 

NASDAQ NASDAQ Index 1973M01 516 –1.734 12.48a 12.48a 

S&P 500 S&P Index 1871M01 1737 –1.489 3.443a 4.207a 

America excluding USA 

Brazil (BR) FTSE Brazil 1994M11 253 –3.206 –2.244 1.619 

Canada (CA) S&P/TSX Composite Index 1973M06 509 –1.491 3.930a 3.936a 

Chile (CL) FTSE Chile 1993M12 264 –31.757 –13.694 1.226 

Colombia (CO) FTSE Colombia 1993M12 264 –3.309 –1.715 4.076a 

Mexico (MX) Mexico IPC 1989M03 320 –2.920 5.539a 5.643a 

Africa 

South Africa (ZA) FTSE South Africa 1986M02 358 –0.721 1.347c 1.618 

This table reports the details of our data selection including markets, sources, testing periods, and number of observations contained in each sample 

market. The ending dates of all series are set to December 2015, along with various starting dates ranging from January 1871 to June 2000. This study 

employs monthly data on the index level (referred to as the price) and the associated dividend index for 47 stock market indices from over 40 countries 

in six continents/regions: Asia (14), Australasia (2), Europe (22), North and South America (8), and Africa (1). For simplicity, we category the 47 

stock markets into five groups: Asia including Australasia (16), Europe (22), the US (3), North and South America excluding the US (for brevity, 

referred to as America excluding the US) (5), and Africa (1). This data is used to compute the price-dividend ratio for each index. The sup-ADF 

statistics of PWY tests and the generalized sup-ADF statistics of PSY tests in each sample market are presented in the last two columns. a, b, and c 

represent the 1%, 5%, and 10% level of significance, respectively. Japan Tokmacap represents the TOPIX medium capitalization index from Japanese 

stock exchange. Japan TOPIX (restricted) represents the sample which we manually set the size being equal to FTSE Japan (controlling for size). 

FTSE Bursa Malaysia KLCI consists 30 largest companies in FBMEMAS (FTSE Bursa Malaysia Emas Index) by full market capitalization. The 

European Area uses the FTSEEUROFIRST 80 E Index as the dataset to testing whether speculative bubbles exist in the European region. 
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Table 3.2: Critical values of sup-ADF and generalized sup-ADF methods 

 DJIA NASDAQ S&P 500 

 T=455; window size: 43 T=516; window size: 46 T=1740; window size: 92 

 SADF GSADF SADF GSADF SADF GSADF 

90% 1.222 1.978 1.174 2.002 1.324 2.195 

95% 1.487 2.263 1.502 2.26 1.55 2.416 

99% 2.109 2.681 2.049 2.659 2.014 2.957 
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Table 3.3: PWY and PSY date-stamping results 

 Panel A: PWY  Panel B: PSY 

Asia    

Australia (AU) 1990M01-1990M05, 1993M09-1994M05  1990M01-1990M04, 1993M10-1994M05, 2003M08-2004M06 

China (CN) N/A  2007M01-2007M06, 2008M01-2008M12, 2015M04-2015M06 

Hong Kong (HK) N/A  1987M06-1987M10, 1993M10-1994M02, 2007M09-2007M12 

India (IN) 2000M01-2000M04, 2007M10-2008M02  1999M12-2000M04, 2007M10-2008M02 

Japan Tokmacap (JP) 1986M06-1986M11, 1986M12-1987M12, 1988M03-1988M09, 1988M12-1990M03  1986M06-1986M11, 1986M12-1987M12, 1989M02-1989M06, 2008M11-2009M04 

Malaysia KLCI (MY) N/A  1993M11-1994M03 

South Korea (KR) 1994M01-1995M01, 1999M04-1999M10, 1999M11-2000M04  1994M01-1995M01, 1999M05-1999M10, 1999M11-2000M03 

Thailand (TH) 1986M10-1987M11, 1988M02-1988M11, 1989M01-1990M09, 1998M11-2000M02  1983M04-1984M02, 1986M09-1987M11, 1988M03-1988M09, 1989M04-1990M08, 

1999M02-2000M02 

Europe    

Belgium (BE) N/A  2008M10-2009M06 

Denmark (DK) 1989M03-1990M04, 1993M07-1994M05  1989M03-1990M04, 1993M08-1994M04, 2000M10-2001M01 

Finland (FI) 1993M04-1994M03  1993M03-1994M03, 1999M11-2000M03, 2008M09-2009M04 

Germany (DE) 1983M01-1984M06, 1984M12-1987M01, 1997M01-1998M08, 1998M12-1999M03  1982M12-1984M05, 1985M05-1986M07, 1997M06-1997M10 

Greece (GR) 2013M04-2013M07, 2014M02-2015M12  2013M04-2013M07, 2014M03-2015M12 

Ireland (IE) 1998M02-1998M08, 2011M12-2012M07, 2013M02-2013M12  1997M12-1998M08, 1998M12-1999M05, 2008M06-2009M03, 2013M03-2013M12 

Italy (IT) 1993M06-1993M10, 1994M03-1994M10, 2008M12-2009M04  1993M06-1993M10, 1994M03-1994M10, 2008M12-2009M04 

Netherlands (NL) 1997M05-1998M09, 2000M07-2000M10  1993M11-1994M04, 1997M02-1998M09, 2008M11-2009M04 

Spain (ES) 1996M12-1998M09, 1998M12-1999M04, 1999M12-2000M06  1993M11-1994M04, 1996M12-1997M11, 1997M12-1998M09, 2000M02-2000M05 

Sweden (SE) 1993M07-1994M10, 1994M11-1995M03, 1999M12-2000M04  1993M04-1994M07, 1999M12-2000M04 

Turkey (TR) 1993M05-1994M03, 1994M11-1996M04, 1996M12-1997M05, 1997M10-1998M09, 

1999M01-1999M06, 1999M09-2000M12, 2001M12-2002M04, 2003M10-2004M05 

 1993M05-1994M03, 1994M11-1996M04, 1996M12-1997M05, 1997M10-1998M08, 

1999M11-2000M12, 2003M10-2004M05 

United Kingdom (UK) 1971M12-1973M02, 1981M04-1981M10, 1981M12-1982M07, 1982M09-1987M11, 

1993M08-1994M07, 1995M05-2002M07 

 1971M10-1972M10, 1982M11-1987M11, 1997M11-2001M07 

European Area (EU) 1997M06-1997M10, 1997M12-1998M08, 1999M10-2000M11  1997M01-1997M04, 1997M06-1997M10, 2008M10-2009M04 

U.S.    

Dow Jones 1983M03-1984M02, 1986M02-1987M11, 1995M06-2000M12  1983M02-1984M03, 1986M01-1986M10,1986M11-1987M11, 1995M12-1998M09, 1998M11-

2000M07 

Continued 
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Table 3.3 Continued Panel A: PWY  Panel B: PSY 

NASDAQ 1983M05-1984M06, 1984M08-1990M04, 1993M09-2001M04  1983M04-1984M06, 1985M11-1987M11, 1995M05-2001M03, 2008M11-2009M04 

S&P 500 1879M05-1880M05, 1997M07-2002M06  1879M07-1880M05, 1917M09-1918M05, 1928M09-1929M11, 1955M04-1956M08, 

1958M11-1959M09, 1987M01-1987M10, 1995M12-1996M07, 1996M09-2001M09 

America ex. U.S. 

Canada (CA) 1980M08-1981M02, 1981M03-1981M07, 1983M02-1984M05, 1985M01-1987M10, 

1993M03-1998M08, 1998M10-2001M03 

 1983M04-1984M02, 1985M11-1987M10, 1993M04-1994M06, 1996M03-1998M08, 

1999M03-2001M02 

Colombia (CO) N/A  2004M11-2005M03, 2005M06-2006M05 

Mexico (MX) 1993M05-1994M12  1992M02-1992M06, 1993M05-1995M01, 2006M01-2006M05 

This table provides date-stamping results for the PWY and PSY dating mechanism. The PWY date-stamping method estimates the origin and collapse date of speculative bubbles by matching the time series of the recursive 

test sequence 𝐴𝐷𝐹𝑟  against the right-tailed critical values of the asymptotic distribution of the standard Dickey-Fuller t-statistic. The origination date of a bubble is calculated as the first chronological observation whose ADF 

statistic exceeds the critical value of 𝐴𝐷𝐹𝑟 , and the estimated termination date of a bubble is the first chronological observation whose ADF statistic goes below the critical value of 𝐴𝐷𝐹𝑟 . For the PSY, the origination date of 

a bubble is the first observation whose backward sup-ADF statistic exceeds the critical value of the backward sup-ADF statistic and the collapsing date of a bubble is first observation whose backward sup-ADF statistic falls 

below the critical value of the backward sup-ADF statistic. The current paper adopts the 5% significant level in both the PWY and PSY dating mechanism. 
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Figure 3.1: Testing figures of PWY 

Figures below generally show the movement of SADF testing statistics comparing with the 95% SADF critical value sequence, 

which were obtained from Monte-Carlo simulations with 1000 replications. The figure denoted by Japan represents the FTSE Japan 

testing figure, and the figure denoted by Malaysia shows the FTSE Malaysia result. The European Area uses the FTSEEUROFIRST 

80 E Index as the dataset to demonstrate whether speculative bubbles exist in the European region. The red-line represents the 95% 

SADF critical value sequence, the green-line (right-axis) is the corresponding price-dividend ratio movement noted by the figure 

title, and the blue-line (left-axis) is the corresponding movement of SADF testing statistics.  
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Figure 3.2: Testing figures of PSY. 

Figures below generally show the movement of GSADF testing statistics comparing with the 95% GSADF critical value sequence, 

which were obtained from Monte-Carlo simulations with 1000 replications. The figure denoted by Japan represents the FTSE Japan 

testing figure, and the figure denoted by Malaysia shows the FTSE Malaysia result. The European Area uses the FTSEEUROFIRST 

80 E Index as the dataset to demonstrate whether speculative bubbles exist in the European region. The red-line represents the 95% 

GSADF critical value sequence, the green-line (right-axis) is the corresponding price-dividend ratio movement denoted by the 

figure title, and the blue-line (left-axis) is the corresponding movement of GSADF testing statistics.  
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Chapter 4 Do Bubbles migrate in the Global Markets? 

4.1 Introduction 

In recent decades, equity markets have suffered several financial crises which originated in 

one economy and then, after a short period of time, spread to the other markets. A substantial 

body of literature attributes the episode to bubbles, and focuses on the mechanisms of 

modeling, the methods of measuring their extent, and analyses on investors’ psychology 

during the periods of market bubbles. However, the history of thought in stock markets has 

shown a surprising lack of consensus about a very fundamental question: what ultimately 

causes all those fluctuations in the price of assets, such as corporate stocks, commodities, or 

real estates? One might think that so basic a question would long ago have been confidently 

answered; however, it seems that the answer is not so easily found. 

The recent financial exuberance provides a rich environment for empirical research. The most 

urgent ongoing question relates to the matters of fiscal, monetary, and regulatory policies for 

securing financial stability and buttressing real economic activity. Beyond these immediate 

policy issues are underlying questions in relation to bubble detection and evolutionary course. 

To answer those questions, we employ a unique testing framework including both return and 

volatility analyses to examine the bubble transmission mechanism across the international 

stock markets. The initial step is closely related to date-stamping method (see e.g., Phillips et 

al., 2015a, b) which extensively relies on forward recursive regressions coupled with 

sequential right-sided unit-root tests, and it aims to characterize the phenomenon, identify 

individual event, and sequence the timeline. In the following steps, we begin with developing 

several hypotheses for the bubble transmission process, and then implement two: (i) return 

(VAR tests) and (ii) volatility (AG-DCC) analyses to examine the key features. Basically, we 

believe that the transmission is due to the increased linkage between markets where the 

bubble is originated, and such concept directly corresponds to the definition of contagion. 

Indeed, our empirical results confirm the relationship between bubble movement and 

contagion at the very beginning of bubble periods and display the possibility that some equity 

markets are more sensitive to bubble transmission. We discuss the implications of our 

empirical findings in Section 4.11, but further studies are required to shed additional light on 
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transmission channels. 

The present chapter contributes to the literature in various ways. Firstly, our study greatly 

relates to the growing literature on financial bubbles and specifically for those focusing on 

bubble evolutionary process. The examination on linkage between market bubbles and 

financial contagion aims to discover the possible reason of bubble transmission with the 

purpose of assisting policymakers to gain important insight for the timing and channels of 

transmission. Secondly, we adopt a unique testing framework including both return and 

volatility analyses. Specifically, the VAR results unfold the information about which country 

is more likely to be affected if others experience market bubbles, while the results obtained 

through multivariate GARCH models enable practitioners to have deeper knowledge for the 

correlation dynamics, helping them maximize portfolio return but reducing the relevant risk. 

Finally, comparing with previous works which typically focus on just a small number of stock 

markets (very often, just the US stock market), our analysis falls into a much broader horizon, 

using data for 47 stock markets. 

The outline of this chapter is as follows. Section 4.2 outlines the steps taken in this chapter, 

whilst in Section 4.3, we introduce our hypotheses about bubble transmission mechanism 

based on global stock markets. In Sections 4.4, 4.5, and 4.6, we review the relevant literature 

for transmission, financial contagion, and testing techniques. In Sections 4.7 and 4.8, we 

provide details about our data and our empirical design. Section 4.9 reports relevant empirical 

findings and Section 4.10 shows the details of robustness analysis. Then, in Section 4.11, we 

further discuss our results and finally Section 4.12 concludes. 

4.2 Outline of Methodologies 

To discover what happens in the global markets when bubbles are present, we set up a unique 

testing framework by the following steps: 

Step 1: We borrow the PSY testing results from Chapter 3 to identify dates of bubbles and 

establish respective dummies (as bubble indicator) for each market. 

Step 2: With the purpose of identifying transmission vector, VAR models with bubble 

indicators are specified for bivariate analysis.  
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Step 3: AG-DCC model is further applied to figure out correlation dynamics in both bubble 

and non-bubble periods for selected 10 equity markets.  

4.3 Hypothesis 

The establishment of exuberance timeline provides an opportunity to observe how bubble 

originates in one market and then evolves into a global financial crisis. Table 4.1 gives a brief 

chronology of bubble episodes for three major stock markets – the US, the UK and Japan – 

from the early of 1980s to the start of 2000s based on the PSY test results.4 

 <Table 4.1> 

This timeline suggests that the potential linkage may be present among these markets when 

one or more of them experience a market bubble. More importantly, we find that, after 

aggregating global market bubbles, there are basically two types of bubble transmission 

process: (i) a bubble spills over to another market when it starts to collapse, and (ii) a bubble 

migrates to another market before that bubble bursts. Table 4.1 provides great examples in 

terms of the first and second types of bubble transmission. We can see that the Dotcom bubble 

appearing subsequently to the collapse of Japanese housing bubble can refer to the first type 

of transmission; meanwhile, the presence of the market exuberance in the United Kingdom 

before the collapse of Dotcom bubble gives another empirical example for the second type of 

transmission process.  

All these episodes show a potential timeline of market bubble phenomena that can be subject 

to empirical evaluation. To formally define the bubble expansion among the global markets, 

we borrow the theoretical framework proposed by Caballero, Farhi, and Gourinchas (2008; 

CFG model hereafter) who partially explains the spillover of bubbles between markets, and 

several hypotheses involving successive bubble creations and collapses are suggested. 

However, in this chapter, we modify their hypotheses and apply them on the global stock 

markets. Basically, the CFG model links together global financial asset scarcity, global 

imbalances, the real estate bubble, and the environment without monetary factors. The model 

assumes that the economy has two countries: U and M, and features two goods: X and Z. An 

 
4 A total of 24 markets are confirmed with exuberance phenomenon, while Table 4.1 only selects three of them to depict the timeline of 

bubble episodes. 
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important part of the CFG framework is a sequence of hypotheses relating to different stages 

of bubble evolution, which we generally review as follows. Country U is interpreted as the 

US and country M as the emerging market economies and commodity producers. Good X is a 

non-storable good, a fraction of which can be capitalized, and is produced by both countries. 

Good Z is a storable commodity produced only by country M. A presumption in the model is 

that there exists a global imbalance at 𝑡0. The imbalance can be interpreted as arising from 

continuing capital flows from emerging markets to the US since the US runs a growing trade 

deficit with emergent economies, which in turn rely more heavily on export driven growth.  

In real world, despite emerging economies’ great growth potential, their corporate and 

government sectors may not generate the financial instruments to provide residents with 

adequate store of value. Poor investor protection, means that the corporate sector is unable to 

capitalize future earnings and provide stores of value to the economy. Fiscal and sovereign-

default concerns also limit the ability of the government to issue reliable debt. These factors 

lead to the ‘financial repression’ that, for instance, McKinnon (1973) has argued to be a 

prominent aspect of emerging market’s financial systems. Finally, where possible, agents 

actively seek high-quality stores of value abroad by purchasing developed economies’ safe 

assets, leading to significant capital outflows. This process has also been critically discussed 

in the literature. For example, Caballero and Krishnamurthy (2006) has developed a simple 

overlapping generations model and discussed the consequence of inadequate quantity of high 

quality domestic financial instruments in emerging markets. Their model shows that rational 

bubbles are beneficial from the scarcity of investment opportunity because they provide extra 

stores of value.  

For CFG model, one fundamental assumption is that the bubble bursts at 𝑡 = 0, leaving 

market participants (both local and foreign) to search for alternative stores of value. In the 

first stage, a flight-to-quality reaction migrates the bubble to ‘good’ assets and therefore, the 

price of commodities (notably Z) jumps, which leads to a significant wealth transfer from U 

to M. In the second stage, under the assumption that the financial asset crisis and wealth 

transfer precipitates a severe growth slowdown, the excess demand for the good asset is 

destroyed, resulting in a decrease in inventory of good Z, and a collapse of bubble in 

commodity prices. 
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Accordingly, this model can describe events in which asset bubble merged and subsequently 

collapsed, creating a sequence of bubble effects in one market after another. For example, 

when the first bubble is crashed and the value of investment falls substantially, liquidity flows 

into other markets, creating bubbles in other financial markets (equity, commodities, or oil 

markets). The deepening financial crisis then sharply slows down economic growth, which in 

turn destroys the subsequent bubbles. Overall, the CFG model introduces the possibility of 

bubble migration under a theoretical context, interpreting the process either from one country 

to another or from a specific market (equity) to the others (commodity). One important feature 

emphasized by the model is wealth transfer when investors realize the potential exploration in 

risk when bubble bursts. This leads to the significant change in correlation, which directly 

corresponds to the concept of financial contagion, and this empirical implication can be 

directly tested through the VAR framework. 

In our study, we modify the CFG model to allow two types of transmission mechanisms: the 

transmission appears before the first bubble burst, and the transmission happens after the first 

bubble collapsed. The distinction reveals two directions of change in correlation: the positive 

increase in correlation, which corresponds to the first type of transmission mechanism, and 

the negative increase in correlation that directly belongs to the second type. We will explain 

our hypotheses in detail below. 

In our hypothesis, we recognize two types of bubble evolutionary process and describe the 

first model below. 

Hypothesis 1: A price bubble arises and grows in one equity market and then collapses as the 

bubble broke. 

Hypothesis 1: represents the first phase of bubble evolution, while in the next phase, bubble 

erupts and funds flow selectively to assets in other equity markets with lower perceived risk 

or greater opportunity (wealth transfer), leading to a significant negative increase in linkage 

between those markets. In consequence, bubble emerged in certain equity markets is due to 

the significantly negative increase in cross-market linkage after the first bubble collapsed (see 

Hypothesis 2). 

Hypothesis 2: Following the burst of first bubble, new bubble is emerged in the selected 



63 
 

equity markets. 

In the last phase, investors are aware of the high risk and associated credit crunch happened 

when the first bubble burst. The recognition of global recessionary effects triggers bubble 

collapse in the other markets. 

Hypothesis 3: Bubbles in other equity markets collapse as the global economic implications 

of the crisis become apparent. 

The first type of bubble transmission describes how the bubble emerged in one market could 

evolve within the global markets, whereas in real cases, another possibility exists that bubble 

transmission follows a different mechanism. In our second model, we introduce a different 

hypothesis to interpret the bubble transmission process. 

Hypothesis 4: The asset bubble emerged in one equity market while the bubble quickly 

migrates to the other equity markets before the first bubble collapses. 

Unlike Hypotheses 1 and 2, Hypothesis 4 assumes that the bubble migrates to the other equity 

markets before the first bubble broke, since market participants seek to balance their market 

portfolios but still, the funds withdraw from the original market are not sufficient to trigger 

the collapse of the initial bubble, or in another situation, market participants invest extra funds 

in other markets to chase the concept that generates the first bubble. However, subsequently, 

the realized risk for the initial bubble becomes extremely high, resulting in further wealth 

transfer from the market where the first bubble developed to the other markets with the lower 

risk. Finally, the first bubble collapses, forcing the investment transferring selectively to assets 

in other equity markets and boosting following bubbles’ growth rate. Hypothesis 5 

summarizes the above phenomenon: 

Hypothesis 5: The bubble originated in the first market collapses and such collapse boosts 

the growth rate of exuberance in the other equity markets. 

Eventually, market participants realize the serious impact caused by the financial exuberance 

while the recognition of global recessionary effects precipitates a collapse in the other stock 

price bubbles. 

Hypothesis 6: Bubbles in other equity markets collapsed as the global economic implications 
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of the crisis become apparent. 

Overall, Hypotheses 1 to 6 are consistent with the event timeline provided in Table 4.1. 

Furthermore, they reveal that market participants always seek to balance their investment 

portfolios during the bubble expansion period, especially when the market risk becomes high. 

Such behavior will lead to an increased linkage across markets, and we believe this is a key 

characteristic that drives the bubble transmission. We notice that this empirical implication 

directly corresponds to the concept of financial contagion, and thus, we translate our task into 

a simpler version, that is, focusing on the discovery of financial contagion during the bubble 

periods. Furthermore, it is important to target the timing and channels of contagion and it can 

offer an opportunity to have a better understanding in bubble transmission mechanism. 

Although the channels of spillover have been extensively reviewed in the literature, their 

empirical discussion on bubble transmission are still lacking. The following three sections 

provide a short review for financial contagion and its empirical implications. 

4.4 Three Major Channels 

The literature on contagion in financial markets is far too extensive to review fully in this 

section. Dornbusch, Park, and Claessens (2000), and Kaminsky, Reinhart, and Vegh (2003), 

however, provide excellent surveys. Dornbusch et al. (2000) discuss the possibility that 

shocks to an individual country may affect other countries on the regional basis and similarly, 

Kaminsky et al. (2003) provide a view that the fast and furious contagion, which represents 

that the financial events in one country have triggered an immediate adverse chain reaction in 

other countries, can lead to a subsequent surge in capital flows and involve a leveraged 

common creditor. Following Dornbusch et al. (2000), Kaminsky et al. (2003), Bae, Karolyi, 

and Stulz (2003), Longstaff (2010) and many others, the current chapter adopts a working 

definition of contagion: an episode in which a significant change (positively or negatively) in 

cross-market linkages arises after a shock occurs in one market. The literature identifies at 

least three major channels by which contagion effects can be propagated through different 

financial markets. 

The first channel can be named as the correlated-information channel. In this mechanism, a 

shock to one financial market signals economic news that is directly or indirectly relevant for 
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security prices in other markets. Note that this could be consistent with the revelation of 

information for economic factors that affect multiple markets. For instance, Dornbusch et al. 

(2000) report that weak countries’ economic fundamentals, macro-similarities and exposures 

to certain type of financial agents and associated transmission channels are found to increase 

the risk of spillovers. They adopt the idea of contagion as the spread of market disturbances, a 

process observed through co-movements in exchange rates, stock prices, sovereign spreads, 

and capital flows, while such contagion can occur for different reasons and conceptually be 

divided into two categories based on the literature. The first category focuses on cross-market 

spillover resulting from the normal interdependence among economies. The interdependence 

means that shocks, whether of a global or local nature, will be transmitted across countries 

because of their real and financial linkages and this form of crisis propagation is named as 

‘fundamentals-based contagion’ by Calvo and Reinhart (1996). The other category involves a 

financial crisis which cannot be connected to observed changes in macroeconomic or other 

fundamentals and is solely the consequence of the behavior of market participants. Under this 

definition, contagion will be present when there is co-movement that cannot be interpreted on 

the basis of fundamentals (shocks, or interdependence is not present or controlled for). 

Several testing categories are emphasized in the study: correlation of asset prices, conditional 

probabilities of currency crisis, changes in volatility, and co-movements of capital flows. 

They conclude that these empirical tests have assisted to identify the type of links and other 

macroeconomic conditions which can make a country vulnerable to contagion during the 

crisis period, although less is known on the importance of microeconomic conditions and 

institutional factors in propagating shocks. It thus helps to discover those countries which are 

at risk of contagion and the general policy interventions which can reduce risks. 

Another balance-sheet contagion described by Kiyotaki and Moore (2002) also demonstrates 

the importance of correlated-information channel by showing that the losses in one market 

could translate into declines in the equity of other firms holding the distressed assets. They 

classify the balance-sheet contagion into two branches: (i) the indirect balance-sheet 

contagion, which is caused by leverage effect (the firm’s outstanding debt obligation is the 

results of its past borrowing) and will lead to sector specific shocks to spread out across 

sectors, even when firms are not directly linked through production, and (ii) the direct 



66 
 

balance-sheet contagion that shocks to the liquidity of some firms may result in a chain 

reaction in which the other firms also get into financial difficulties if these firms are credit-

constrained. Both mechanisms emphasize that the information channel is a crucial part within 

the expansion process because market participants will normally react to the information 

received from different sources and change their trading behavior based on those shocks while 

leading to the chain effect across markets that boosts the financial contagion. Similarly, an 

earlier study by King and Wadhwanni (1990) introduces a model presenting that the similar 

drop in all equity markets occurs as a result of attempts by rational agents to infer information 

from price changes in other markets. They examine a rational expectations price equilibrium 

together with model contagion as the outcome of rational attempts to use imperfect 

information about the events relevant to equity values. Since investors have access to different 

sets of information, they can infer valuable information from price changes in other markets.  

Overall, a common implication throughout the correlated-information literature is that 

contagion occurs rapidly through the price-discovery process, and thus, this channel should 

result in immediate price effects in the markets influenced by the distress event, especially 

when these markets are more liquid than the market in which the original shock occurs. 

Importantly, this implication of the correlated-information contagion mechanism can be 

directly tested using a VAR framework, while this is the basic rationale adopted in this chapter 

to implement our empirical examination. 

The second channel can be termed the liquidity channel. In this mechanism, a shock to one 

financial market might cause a decrease in the overall liquidity of all financial markets and 

therefore, affecting market participant’s behavior and asset prices. A typical study of Allen 

and Gale (2000), which suggests the financial contagion as an equilibrium phenomenon, 

presents a model in which banks have cross holdings of deposits across regions. In their 

model, to focus on the role of one particular channel for financial contagion, they exclude 

other propagation mechanisms that may be crucial for a complete understanding of financial 

contagion. Similarly, Kodres and Pritsker (2002) introduce a model in which contagion occurs 

as losses in one market force economic agents to either liquidate leveraged positions or to 

rebalance their portfolios in response. Through their transmission channel, investors transmit 

idiosyncratic shocks from one market to others by adjusting their portfolios’ exposures to 
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shared macroeconomic risks. The pattern and severity of financial contagion depends on 

markets’ sensitivities to shared macroeconomic risk factors, and on the amount of information 

asymmetry in each market. Brunnermeier and Pedersen (2009) argue that agents who 

experience losses in one market may find their ability to obtain funding impaired, which 

would then lead to declines in the liquidity of the other financial assets in the markets. They 

suggest a model that links an asset’s market liquidity (i.e., the ease with which it is traded) 

and traders’ funding liquidity (i.e., the ease with which they can obtain funding). By showing 

under certain conditions, margins are destabilizing, and market liquidity and funding liquidity 

are mutually reinforcing, resulting in liquidity spirals.  

In sum, the key implication of the liquidity-related channel of contagion is that a distress 

event may be associated with following declines in the availability of credit and increases in 

trading behavior in other markets.  

The third channel can be designated as the risk-premium channel. In this mechanism, 

financial shocks in one market may influence the willingness of market participants to bear 

risk in any market. Therefore, asset prices in all markets may be affected as equilibrium risk 

premia adjusted in response. For example, Vayanos (2004) proposes a theoretical dynamic 

equilibrium model of a multi-asset market with stochastic volatility and transaction costs. 

Their key assumption is that investors are fund managers, subject to withdrawals when fund 

performance drops below a threshold, while such investor modeling generates a preference for 

liquidity that is time-varying and increasing with volatility. They show that during volatile 

times, the probability that performance falls below an exogenous threshold increases, and 

withdrawals become more likely. This reduces the manager’s willingness to hold illiquid 

assets and raises the liquidity premia. One of empirical implications provided by their model 

relates to the role of liquidity, both as an asset characteristic and as a risk factor, in explaining 

cross-sectional expected returns. Similarly, Acharya and Pedersen (2005) discuss this 

empirical implication based on their simple theoretical framework that illustrates several 

channels through which liquidity risk can affect asset prices. The framework in its simplest 

form reveals that the CAPM applies for returns net of illiquidity costs and implies that 

investors should worry about a security’s performance and tradability both in market 

downturns and when liquidity “dries up”. The model further shows that a positive shock to 
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illiquidity, if persistent, are associated with low contemporaneous returns and high predicted 

future returns. 

A key implication of those time variations in risk premia is that return shocks to the distressed 

security may be predictive for the following returns of other assets due to the reason that the 

change of risk premium for an asset also has an impact on the distribution of future asset 

returns. In turn, this feedback effect can induce predictability into the time series of realized 

asset returns. 

The above contagion channels all have different implications for the behavior of asset prices 

across markets when a negative shock occurs. However, it is important to be aware of the 

possibility that different channels are dependent on and affect each other since contagion is 

present. Taking financial crisis of 2007 to 2008 as an example, we can observe an obvious 

relationship between credit risk and liquidity because in fact, a significant factor during the 

period of 2007 may have been credit-risk-induced illiquidity as investors were keen to take 

positions in complex mortgage-related securities. Alternatively, an important factor in the 

global financial crisis of late 2008 may have been illiquidity-induced credit risk as major 

financial institutions confronted default, since they were unable to liquidate positions and 

collateralize their liabilities. 

4.5 VAR Framework 

Vector Autoregressive model is a widely accepted econometric model that is used to capture 

the linear interdependency among multiple time series. All variables in a VAR enter the model 

in a same way that each variable has an equation interpreting its evolution based on its own 

lags and the lags of other model variables. VAR enjoys the merit that it does not require as 

much knowledge about the forces influencing a variable as structural models with 

simultaneous equation, the only prior knowledge required is a list of variables which can be 

hypothesized to affect each other inter-temporally. 

A p-th order VAR, denoted VAR(p), is, 

 𝑦𝑡 = 𝛼 + 𝐴1𝑦𝑡−1 + 𝐴2𝑦𝑡−2 +⋯+ 𝐴𝑝𝑦𝑡−𝑝 + 𝑒𝑡, (4.1) 

where the p-periods back observation 𝑦𝑡−𝑝 is called the p-th lag of y; 𝛼 is a 𝑘 × 1 vector 
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of constants; 𝐴𝑝 is a time-invariant 𝑘 × 𝑘 matrix and 𝑒𝑡 is a 𝑘 × 1 vector of error terms 

satisfying, 

(i) 𝐸(𝑒𝑡) = 0, 

(ii) 𝐸 (𝑒𝑡𝑒𝑡
′
) = Ω The contemporaneous covariance matrix of error terms is Ω (a 𝑘 × 𝑘 

positive-semidefinite matrix), and 

(iii) 𝐸 (𝑒𝑡𝑒𝑡−𝑘
′
) = 0 for any non-zero k. 

In studying the nature of contagion in financial markets, it is helpful to have two key 

elements. First, we must be able to identify an event window for the bubble periods. Second, 

we must be able to identify a vector of contagion which can then be used to test for changes in 

linkages across markets associated with the bubble episodes. The bubble periods stamped in 

Chapter 3 provide a nearly perfect example of a potential contagion event where both of these 

elements are present. In particular, during the exuberance periods, we can initially observe the 

sharp increase in the price-dividend ratio since market participants put their investment in the 

equity market when bubble is present while subsequently, the ratio will be back to its original 

level because of the bubble collapse. Therefore, price-dividend ratio of equity market index 

can be viewed as the prime vector of contagion. 

In conclusion, to explore the empirical implications between financial contagion and bubble 

transmission, the approach will be used to test whether there is an increase in the cross-market 

linkage between one and the other stock markets when bubbles are present. This approach is 

motivated by the standard definition in the literature of contagion as a change in the linkages 

between markets is followed by distress events. The VAR framework is our primary choice 

and it allows us to discover the respective linkage between global equity markets over the 

relevant bubble periods recorded through date-stamping mechanism. 

4.6 Multivariate GARCH Model 

The majority of studies concern the contagion based on bivariate analysis, and the most 

popular approach is through studying correlations between returns among different markets. 

For instance, Longstaff (2010) conducts an empirical investigation into the pricing of 

subprime asset-backed collateralized debt obligations as well as their contagion effects with 
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other markets. He adopts the widely accepted working definition and states channels causing 

the contagion in order to pin down the reason of applying VAR framework. Their results are 

substantial, supporting the hypothesis that financial contagion is propagated primarily through 

liquidity and risk-premium channels, rather than through a correlated-information channel. 

However, a number of academic studies argue that the standard analysis of cross-market 

correlations is biased because of the issue of heteroscedasticity. One typical study is Forbes 

and Rigobon (2002), who reveal that the unadjusted correlation coefficient is conditional on 

market movements over the sample period, so that during a period of turmoil when equity 

market volatility increases, standard estimates of cross-market correlations will be biased 

upward. Other studies attempt to model the volatility transmission mechanism to avoid 

inconsistent estimation issues (see e.g., Engle and Kroner, 1995; Engle, 2002). Academics 

support the superior power of the dynamic conditional correlation approach with respect to 

the correlation coefficient of Forbes and Rigobon (2002) because with the dynamic 

conditional correlation model there is no need to explicitly and arbitrarily divide the sample 

into subsamples. Prior to giving a brief introduction in volatility transmission, we will provide 

a general review for ARCH family models. 

4.6.1 The ARCH Model 

Autoregressive conditional heteroscedasticity (ARCH) is the condition that one or more data 

points in a series for which the variance of the current error term or innovation is a function of 

the actual sizes of the previous time periods’ error terms. In the real world, uncertainty or 

randomness is commonly observed for financial time series data where the assumptions of 

normality, independence, and homoscedasticity do not always hold that limit the application 

of AR, MA, ARMA, and ARIMA models. Therefore, ARCH model is proposed by Engle 

(1982) with the volatility clustering effect in the modelling process. 

To model a time series (𝑦𝑡) using an ARCH process, considering the distribution of 𝑦𝑡 is 

normal with a mean equal to 𝑥𝑡𝛽 plus a random component ℎ𝑡. From equations below, the 

distribution of 𝑦𝑡 in the information set 𝜓𝑡−1 is a linear combination of the vector and a 

coefficient vector 𝛽 = (𝛽1, 𝛽2, … , 𝛽𝑛)
′. 

 𝑦𝑡|𝜓𝑡−1~𝑁(𝑥𝑡𝛽, ℎ𝑡), 
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 ℎ𝑡 = ℎ(𝜀𝑡−1, 𝜀𝑡−2, … , 𝜀𝑡−𝑝, 𝛼), 

 𝜀𝑡 = 𝑧𝑡√ℎ𝑡, 

 𝑦𝑡 = 𝑥𝑡𝛽 + 𝜀𝑡, 

where 𝑧𝑡 is a strong white noise process, 𝛽 is a consistent. 

The process of 𝑧𝑡 is scaled by ℎ𝑡, the conditional variance, which in turn is a function of 

past squared residual returns. In the ARCH(q) process, 

 ℎ𝑡 = 𝜔 +∑ 𝛼𝑗𝜀𝑡−𝑗
2𝑞

𝑗=1 , (4.2) 

where the condition 𝜔 > 0 and 𝛼𝑗 ≥ 0 are set to ensure strictly positive variance. 

Traditional econometric models assume a constant one-period forecast variance but 

autoregressive conditional heteroscedastic processes are designed to generalize this 

implausible assumption. These are mean zero, serially uncorrelated processes with non-

constant variances conditional on the past, but constant unconditional variances. For such 

processes, the recent past provides information in terms of the one-period forecast variance. 

The ARCH regression model has a variety of characteristics which make it attractive for 

econometric applications. The typical one is the ability to capture the effect of clustering. 

Previous literature documents that large and small errors tend to cluster together (in 

contiguous time periods) while this analysis immediately suggests the usefulness of ARCH 

model where the underlying forecast variance might change over time and is predicted by past 

forecast errors. A second example is discovered in monetary theory and the theory of finance. 

Their simplest assumptions suggest that portfolios of financial assets are held as functions of 

the expected means and variances of the rates of return. Any movement in asset demand must 

be associated with changes in expected means and variances of the return. If the mean is 

assumed to follow a standard regression or time-series model, the variance is constrained to 

be constant over time. The adoption of an exogenous variable to interpret changes in 

variances is usually not appropriate. A third interpretation is that the ARCH regression model 

is an approximation to a more complex regression which has non-ARCH disturbances. The 

ARCH specification might then be picking up the effect of variables omitted from the 

estimated model and the existence of an ARCH effect (clustering effect) would be explained 
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as evidence of misspecification, either by omitted variables or through structural change. If 

this is the case, ARCH could be a better approximation to reality than making standard 

assumptions in terms of the disturbances, but attempting to find the omitted variable or 

determine the nature of the structural change. 

4.6.2 The GARCH Model 

For high order ARCH(q) process, it is more parsimonious to model volatility as a Generalised 

ARCH model (GARCH (p, q) model) by Bollerslev (1986), where additional dependencies 

are allowed on p lags of past ℎ𝑡, 

 ℎ𝑡 = 𝜔 +∑ 𝛽𝑖ℎ𝑡−𝑖
𝑝
𝑖=1 +∑ 𝛼𝑗𝜀𝑡−𝑗

2𝑞
𝑗=1  (4.3) 

and 𝜔 > 0, 𝛽 and 𝛼 are estimated coefficients.  

The unconditional variance for higher orders of GARCH equals, 

 𝜎2 =
𝜔

1−∑ 𝛽𝑖
𝑝
𝑖=1

−∑ 𝛼𝑗
𝑞
𝑗=1

. (4.4) 

The GARCH (p, q) model is covariance stationary if and only if ∑ 𝛽𝑖
𝑝
𝑖=1 +∑ 𝛼𝑗

𝑞
𝑗=1 < 1. 

The GARCH (1,1) model is widely adopted in the literature where, 

 ℎ𝑡 = 𝜔 + 𝛼𝜀𝑡−1
2 + 𝛽ℎ𝑡−1, 

and its unconditional variance is, 

 𝜎2 =
𝜔

1−𝛼−𝛽
. (4.5) 

While conventional time series and econometric models operate under an assumption of 

constant variance, the ARCH process developed in Engle (1982) allows the conditional 

variance to change over time as a function of past information, leaving the unconditional 

variance constant. This type of moving behaviour has proven useful in modelling a couple of 

different economic phenomena. For example, the inflation rate, which has been widely 

discussed in Engle (1982), Engle (1983), as well as Engle and Kraft (1983), is recognized that 

its uncertainty tends to change over time. Models for the term structure using an estimate of 

the conditional variance as a proxy for the risk premium are given in Engle, Lilien, and 

Robins (1987). Common to most of the above applications, however, is the introduction of a 
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rather arbitrary linear declining lag structure in the conditional variance equation to take 

account of the long memory typically discovered in empirical studies, since estimating a 

completely free lag distribution often leads to violation of the non-negativity constraints. 

Therefore, Bollerslev (1986) introduces a new, more general class of processes that allows for 

a much more flexible lag structure, the generalized Autoregressive Conditional 

Heteroskedastic (GARCH), while such extension bears much resemblance to the extension of 

the standard time series AR process to the general ARMA process, and permits a more 

parsimonious description in many situations. In addition, an empirical example explaining the 

uncertainty of the inflation rate is presented in this study, aiming to show that a simple 

GARCH model provides a marginally better fit and more plausible learning mechanism than 

the ARCH model with an eighth-order linear declining lag structure. 

4.6.3 The Absolute Value GARCH(AVGARCH) Model 

Taylor (1986) proposes a GARCH model, which is not radically different from the 

conventional GARCH model but only takes the absolute value in the model specification of 

past error terms: 

 ℎ𝑡
1 2⁄ = 𝜔 + 𝛼|𝜀𝑡−1| + 𝛽ℎ𝑡−1

1 2⁄
. (4.6) 

4.6.4 The EGARCH Model 

The simple GARACH models have been applied in modelling the relation between 

conditional variance and asset risk premia but these models have at least three major 

disadvantages in asset pricing applications: (i) academics have found a negative correlation 

between current returns and future returns volatility, while GARCH models reject this by 

assumption. (ii) GARCH models impose parameter restrictions that are often violated by 

estimated coefficients and that may unduly restrict the dynamics of the conditional variance 

process. (iii) it is difficult to interpret whether shocks to conditional variance persist in 

GARCH models as the usual norms measuring persistence often do not agree. To solve above 

issues, Nelson (1991) introduces the EGARCH model which considers the threshold effects 

and specifies the asymmetry in GARCH models. 

 ln(ℎ𝑡) = 𝜔 + 𝛼
|𝜀𝑡−1|

√ℎ𝑡−1
+ 𝛾

𝜀𝑡−1

√ℎ𝑡−1
+ 𝛽ln (ℎ𝑡−1). (4.7) 
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4.6.5 The GJR-GARCH Model 

Glosten, Jagannathan, and Runkle (1993) find support for a negative relation between 

conditional expected monthly return and conditional variance of monthly return, using a GJR-

GARCH model modified by allowing seasonal patterns as well as asymmetry in volatility. 

The GJR-GARCH (1,1) model is noted as, 

 ℎ𝑡 = 𝜔 +  𝛼𝜀𝑡−1
2 +  𝛾𝐼[𝜀𝑡−1 < 0]𝜀𝑡−1

2 + 𝛽ℎ𝑡−1. (4.8) 

4.6.6 The TGARCH Model 

Zakoian (1994) introduces another GARCH model which takes threshold effects into account, 

the TGARCH model. The model is similar to the GJR model, but different only because of the 

standard deviation, instead of the variance, in the specification, 

 ℎ𝑡
1 2⁄ = 𝜔 +  𝛼|𝜀𝑡−1| + 𝛾𝐼[𝜀𝑡−1 < 0]|𝜀𝑡−1| + 𝛽ℎ𝑡−1

1 2⁄
. (4.9) 

4.6.7 The Multivariate ARCH Family Model 

The multivariate GARCH models are specified as, 

𝑟𝑡 = 𝜖𝑡 , 

𝜖𝑡|𝐼𝑡−1~𝑁(0,𝐻𝑡), 

𝐻𝑡 = 𝑔(𝐻𝑡−1, 𝐻𝑡−2, … , 𝜖𝑡−1, 𝜖𝑡−2), 

where 𝑟𝑡 is a (𝑛 × 1) vector of asset returns at time t, 𝐻𝑡 is the covariance matrix of n 

asset returns at time t. The lagged conditional covariance matrices are modelled by the 

function of 𝑔(. ) and this covariance matrices can be functioned in a variety of ways. One of 

the most popular multivariate GARCH specifications is the Baba, Engle, Kraft, and Kroner 

(BEKK) model proposed by Engle and Kroner (1995), with permitted interactions among 

variances but as it requires (
𝑛(𝑛+1)

2
) + 𝑛2(𝑞 + 𝑝) parameters to be estimated, the 

optimization process becomes extremely complex and unstable when the dimensions of the 

model increase. 

4.6.8 The CCC Model 

Bollerslev (1990) suggests a simple multivariate conditional heteroskedastic time series 



75 
 

model with time-varying conditional variances and covariance but constant conditional 

correlations. Let 𝑦𝑡 denotes the 𝑁 × 1 time-series vector of interest with time-varying 

conditional covariance matrix 𝐻𝑡, 

 𝑦𝑡 = 𝐸(𝑦𝑡|𝜓𝑡−1) + 𝜖𝑡, 

 𝑉𝑎𝑟(𝜖𝑡|𝜓𝑡−1) = 𝐻𝑡 , 

where 𝜓𝑡−1 is the 𝜎-field generated by all the available information up through time 𝑡 − 1; 

𝐻𝑡 is almost surely positive definite for all t. 

Also, let ℎ𝑖,𝑗,𝑡 denotes the 𝑖, 𝑗𝑡ℎ  element in 𝐻𝑡; 𝑦𝑖,𝑡 and 𝜖𝑖,𝑡 denote the 𝑖𝑡ℎ element in 𝑦𝑡 

and 𝜖𝑡, respectively. Then a natural scale invariant measure of the coherence between 𝑦𝑖,𝑡 

and 𝑦𝑗,𝑡 evaluated at time 𝑡 − 1 is given by the conditional correlation 𝜌𝑖,𝑗,𝑡 =

ℎ𝑖,𝑗,𝑡/√(ℎ𝑖,𝑖,𝑡ℎ𝑗,𝑗,𝑡, where −1 ≤ 𝜌𝑖,𝑗,𝑡 ≤ 1 for all t. In some applications the time-varying 

conditional covariance might be taken as proportional to the square root of the product of the 

corresponding two conditional variances, 

 ℎ𝑖,𝑗,𝑡 = 𝜌𝑖,𝑗(ℎ𝑖,𝑖,𝑡ℎ𝑗,𝑗,𝑡)
1/2,         𝑗 = 1, … ,𝑁, 𝑖 = 𝑗 + 1,… ,𝑁, 

leaving the conditional correlations constant through time. The term ℎ𝑖,𝑖,𝑡 is obtained from 

the univariate GARCH (p, q) model, 

 ℎ𝑖,𝑖,𝑡
2 = 𝜔𝑖,0 +∑ 𝛼𝑖,𝑗𝜖(𝑖,𝑖),𝑡−𝑗

2𝑞
𝑗=1 +∑ 𝛽𝑖,𝑘ℎ(𝑖,𝑖),𝑡−𝑘

2𝑝
𝑘=1 . 

The CCC model enjoys the feature of simplified estimation and inference procedures. To 

show this, each of the conditional variances is rewritten as, 

 ℎ𝑖,𝑖,𝑡 ≡ 𝜔𝑖𝜎𝑖,𝑡
2 , 𝑖 = 1,… , 𝑁, 

with 𝜔𝑖 a positive time invariant scalar and 𝜎𝑖,𝑡
2 > 0 for all t. Given ℎ𝑖,𝑗,𝑡 =

𝜌𝑖,𝑗(ℎ𝑖,𝑖,𝑡ℎ𝑗,𝑗,𝑡)
1/2 and ℎ𝑖,𝑖,𝑡 ≡ 𝜔𝑖𝜎𝑖,𝑡

2 , the full conditional covariance matrix 𝐻𝑡 can be 

portioned as, 

 𝐻𝑡 = 𝐷𝑡𝛤𝐷𝑡, (4.10) 

where 𝐷𝑡 is the 𝑁 × 𝑁 stochastic diagonal matrix with elements 𝜎1,𝑡 , … , 𝜎𝑁,𝑡 and 𝛤 is an 



76 
 

𝑁 × 𝑁 time invariant matrix with typical element 𝜌𝑖,𝑗√(𝜔𝑖𝜔𝑗. Now it follows that 𝐻𝑡 will 

be positively definite for all t if and only if each of the N conditional variances are well 

defined and 𝛤 is positively definite. These conditions are easy to impose and verify 

compared to many alternative parameterizations for the time-varying covariance matrix. 

4.6.9 The DCC Model 

Multivariate GARCH models are normally applied to estimate time-varying correlations that 

are linear in squares and cross products of the data. Engle (2002) suggests a new class of 

multivariate models called dynamic conditional correlation models which are not linear but 

can often be estimated very simply with univariate or two step methods based on the 

likelihood function. Basically, it first estimates a series of univariate GARCH models, which 

yield GARCH parameters and residuals; then it uses these residuals to estimate the 

conditional correlation. The DCC model can be formulated as the following statistical 

specification, 

 𝑟𝑡|ℑ𝑡−1~𝑁(0,𝐷𝑡𝑅𝑡𝐷𝑡), 

 𝐷𝑡
2 = 𝑑𝑖𝑎𝑔{𝜔𝑖} + 𝑑𝑖𝑎𝑔{𝐾𝑖} ∘ 𝑟𝑡−1𝑟𝑡−1

′ + 𝑑𝑖𝑎𝑔{𝜆𝑖} ∘ 𝐷𝑡−1
2 , (4.11) 

 𝜀𝑡 = 𝐷𝑡
−1𝑟𝑡, (4.12) 

 𝑄𝑡 = 𝑆 ∘ (𝜄𝜄
′ − 𝐴 − 𝐵) + 𝐴 ∘ 𝜀𝑡−1𝜀𝑡−1

′ + 𝐵 ∘ 𝑄𝑡−1, (4.13) 

 𝑅𝑡 = 𝑑𝑖𝑎𝑔{𝑄𝑡}
−1𝑄𝑡𝑑𝑖𝑎𝑔{𝑄𝑡}

−1, (4.14) 

Where 𝑟𝑡 be a 𝑘 ×  1 vector of asset returns, ℑ𝑡−1 is the time 𝑡 − 1 information set, A, 

and B are 𝑘 ×  𝑘 parameter matrices, S is the unconditional correlation matrix of epsilons, 𝜄 

is a vector of ones and ∘ is the Hadamard product of two identically sized matrices which is 

computed simply by element by element multiplication. The assumption of normality in the 

first equation gives rise to a likelihood function. Without this assumption, the estimator will 

still have the QML interpretation. The second equation simply expresses the assumption that 

each of the series follows a univariate GARCH process. Nothing would change if this were 

generalized. 

4.6.10 The Asymmetric Generalized DCC Model 
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Since the literature has provided convincing evidence that asymmetries commonly exist in 

many stock markets (see e.g., Kroner and Ng, 1998; Bekaert and Wu, 2000; Scruggs and 

Glabadanidis, 2003), Cappiello, Engle and Sheppard (2006) propose a new generalized 

autoregressive conditionally heteroskedastic process: the asymmetric generalized dynamic 

conditional correlation (AG-DCC) model. The AG-DCC model is evolved from DCC-

GARCH model of Engle (2002) by introducing two modifications: it allows for series-specific 

news impact and smoothing parameters and permits conditional asymmetries not only in 

GARCH process but also in correlation dynamics. The general idea still based on the DCC 

model let 𝑟𝑡 be a 𝑘 ×  1 vector of asset returns, which is assumed to be conditionally 

normal with mean zero and covariance matrix 𝐻𝑡, 

 𝑟𝑡|ℑ𝑡−1~𝑁(0,𝐷𝑡𝑅𝑡𝐷𝑡), (4.15) 

where ℑ𝑡−1 is the time 𝑡 − 1 information set; 𝐷𝑡 is the 𝑘 ×  𝑘 diagonal matrix of time-

varying standard deviations from univariate GARCH models with √ℎ𝑖,𝑡 on the 𝑖𝑡ℎ 

diagonal; 𝑃𝑡 is the time-varying correlation matrix. Once the univariate volatility models are 

estimated, the standardized residuals, 𝜀𝑖,𝑡 = 𝑟𝑖,𝑡 √ℎ𝑖,𝑡⁄ , are used to estimate the correlation 

parameters. The evolution of the correlation in the AG-DCC model is given by, 

𝑄𝑡 = (𝑃̅ − 𝐴
′𝑃̅𝐴 − 𝐵′𝑃̅𝐵 − 𝐺′𝑁̅𝐺) + 𝐴′𝜀𝑡−1𝜀𝑡−1

′ 𝐴 + 𝐺′𝑛𝑡−1𝑛𝑡−1
′ 𝐺 + 𝐵′𝑄𝑡−1𝐵, (4.16) 

 𝑃𝑡 = 𝑄𝑡
∗−1𝑄𝑡𝑄𝑡

∗−1, (4.17) 

where A, B, and G are 𝑘 ×  𝑘 parameter matrices; 𝑛𝑡 = 𝐼[𝜀𝑡 < 0] ∘ 𝜀𝑡 (𝐼[∙] is a 𝑘 ×  1 

indicator function which takes on value 1 if the argument is true and 0 otherwise, while ‘∘’ 

indicates the Hadamard product); 𝑁̅ = 𝐸[𝑛𝑡𝑛𝑡
′] and 𝑃̅ = 𝐸[𝜀𝑡𝜀𝑡

′]. 𝑄𝑡
∗ = [𝑞𝑖𝑖𝑡

∗ ] = ⌊√𝑞𝑖𝑖𝑡⌋ is a 

diagonal matrix with the square root of the 𝑖𝑡ℎ diagonal element of 𝑄𝑡 on its 𝑖𝑡ℎ diagonal 

position. 

4.7 Data Collection 

This chapter continually uses the datasets collected in Chapter 3. To test the hypothesis of 

whether exuberance promotes the equity market contagion, discovering the booming and 

collapsing periods should be the initial step. The main sample is collected from six regions: 
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Asia (14), Australasia (2), Europe (22), the US (3), North and South America excluding the 

US (8), and Africa (1). For simplicity, we group the stock markets into five groups: Asia 

(including Australasia) (16), Europe (22), the US (3), North and South America excluding the 

US (for brevity, referred to as America excluding the US) (5), and Africa (1). This data is used 

to compute the price/dividend ratio for each index. All datasets except The US are collected 

through DataStream on monthly basis with earliest starting date of January 1871 to latest 

starting date of June 2000, constituting observations range from 147 to 1,737. All ending 

dates are set to December 2015 to ensure all datasets up-to-date. Data sources are chosen 

based on sequence availability to guarantee that each sample has both market index and 

dividend series. 

4.8 Empirical Design 

4.8.1 The VAR Test 

In studying the nature of contagion during the bubble periods, it is important to notify two key 

elements. The first element relates to the identification of possible exuberance period which 

contains the positive or negative shocks. PSY (2015a, b) provide us with a reliable dating 

mechanism to identify exuberance episodes within a long sample period. Second, vectors of 

contagion need to be defined and then can be used to test for changes in linkage across 

markets. In this thesis, price-dividend ratios, rather than price itself, is used as a measure of 

vectors. There are two main reasons: (i) we adopt the price-dividend ratio to revel the cause-

and-effect relationship between the bubble and market contagion because it follows the logic 

to use the same variable which we have selected in Step 1, (ii) it is reasonable since the ratio 

actually reflects the asset price in relation to its fundamentals according to asset pricing 

equation of Shiller (1981), whereas market return does not reveal such relationship and cannot 

be used to define bubble phenomenon. To test whether the exuberance results in return 

spillover from one equity market to another, we estimate the following bivariate VAR 

equations: 

 𝑌𝑖,𝑡 = 𝛼 + ∑ 𝛿𝑖,𝑡−𝑘𝑌𝑖,𝑡−𝑘
4
𝑘=1 + ∑ 𝛽𝑗,𝑡−𝑘𝑌𝑗,𝑡−𝑘

4
𝑘=1 + ∑ 𝛾𝑗,𝑡−𝑘𝐷𝑗,𝑡−𝑘𝑌𝑗,𝑡−𝑘

4
𝑘=1 + 𝜀𝑖,𝑡, (4.18) 

for each of the dependent variables, where 𝑌𝑖,𝑡 and 𝑌𝑗,𝑡 are the returns of price-dividend 

ratios for major stock market indices; the four-lag structure in latter part of the equation is 
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selected based on the consideration of delay in transmission. We set the lag structure to 4 

rather than applying BIC order selection criteria because our datasets have different sample 

size and the use of BIC order selection criteria may result in different lag structures that 

distort the comparability of our testing results. 𝐷𝑗,𝑡−𝑘 is set according to the date-stamping 

results and equals to 1 when bubbles are present, and 0 otherwise. Note that we primarily use 

the PSY date-stamping results in our VAR and following testing procedures. The VAR model 

given by equation (4.18) is estimated using ordinary least squares (OLS) for all pairs of 

indices in our sample, and to correct any issues that could violate the standard assumptions of 

regression analysis, we use the Newey-West approach to provide consistent estimates. We 

primarily carry out the t-test to test null that whether 𝛽𝑘s = 0 and 𝛾𝑘𝑠 = 0 , and F-tests that 

whether 𝛽𝑘𝑠 and 𝛾𝑘𝑠 are jointly zero (𝛽1 = 𝛽2 =  𝛽3＝ 𝛽4 = 𝛾1 = 𝛾2 = 𝛾3 = 𝛾4, 𝑝1) and 

whether 𝛾𝑘𝑠 are jointly zero (𝛾1 = 𝛾2 = 𝛾3 = 𝛾4, 𝑝2). The estimated model provides useful 

information on the extent to which a bubble in stock market j influences the conditional mean 

linkage between stock market j and stock market i. 

4.8.2 The Volatility Correlation Test 

The second approach used to investigate the contagion-effect and correlation dynamics 

involves the estimation of AG-DCC models with the purpose of checking robustness and 

observing the dynamic movement for correlation within the period of bubble episodes. After 

accommodating the significant change by our VAR model, we further apply the AG-DCC 

model to disclose the movement of correlation (increase or decrease) within respective bubble 

periods. Similar to our VAR framework, we apply the return of price-dividend ratio in all of 

our AG-DCC estimation procedures. The AG-DCC model is evolved from DCC-GARCH 

model of Engle (2002) by introducing two modifications: asset-specific correlation evolution 

parameters and conditional asymmetries in correlation. To accomplish our research objective, 

we use the price dividend ratio of market indices and then calculate their returns. Let 𝑟𝑡 be a 

𝑘 ×  1 vector of asset returns, which is assumed to be conditionally normal with mean zero 

and covariance matrix 𝐻𝑡: 

 𝑟𝑡|𝜉𝑡−1 ∼ 𝑁(0,𝐻𝑡), 

where 𝜉𝑡−1 is the time 𝑡 − 1 information set. 𝐻𝑡 can be decomposed as follows: 
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 𝐻𝑡 = 𝐷𝑡𝑃𝑡𝐷𝑡, 

where 𝐷𝑡 is the 𝑘 ×  𝑘 diagonal matrix of time-varying standard deviations from univariate 

GARCH models with √ℎ𝑖,𝑡 on the 𝑖𝑡ℎ diagonal; 𝑃𝑡 is the time-varying correlation matrix.  

The DCC model is designed to allow for three-stage estimation of the conditional covariance 

matrix where any univariate GARCH process that is covariance stationary and assumes 

normally distributed errors can be used to model the variances. In the first stage, univariate 

volatility models are estimated for each of the assets while in the second stage, asset returns 

which are transformed by their estimated standard deviations are used to estimate the intercept 

parameters of the conditional correlation. The final stage conditions on the correlation 

intercept parameters to estimate the coefficients governing the dynamics of correlation. All 

results obtained through the three-stage estimation procedures assume that the univariate 

GARCH model is correctly specified. If the models are not well specified, then the correlation 

estimates will no longer be consistent. Thus, to reduce the risk that the univariate models will 

lead to inconsistent correlation estimates, we apply the model selection procedure to select the 

correct univariate models for each of our sample. In addition, Bayesian information criterion 

(BIC) are employed to select the univariate volatility specifications. Although other 

information criteria are available, the use of BIC is appropriate as it leads to the correct model 

specification (see Cappiello, et al., 2006). We include a variety of models in the specification 

search, all with one lag of the innovation and one lag of volatility.5 

The simplest models are GARCH and AVGARCH, followed by EGARCH, TGARCH and 

GJR-GARCH, which all allow for threshold effects whereas employ different powers of the 

variance in the evolution equation. Once the univariate volatility models are estimated, the 

standardized residual, 𝜀𝑖,𝑡 = 𝑟𝑖,𝑡 √ℎ𝑖,𝑡⁄ , is used to estimate the correlation parameters. The 

evolution of the correlation in the asymmetric generalized DCC model (see Cappiello, et al., 

2006) is given by, 

𝑄𝑡 = (𝑃̅ − 𝐴
′𝑃̅𝐴 − 𝐵′𝑃̅𝐵 − 𝐺′𝑁̅𝐺) + 𝐴′𝜀𝑡−1𝜀𝑡−1

′ 𝐴 + 𝐺′𝑛𝑡−1𝑛𝑡−1
′ 𝐺 + 𝐵′𝑄𝑡−1𝐵, 

 𝑃𝑡 = 𝑄𝑡
∗−1𝑄𝑡𝑄𝑡

∗−1, 

 
5 The detailed specifications for each GARCH model will be presented in Table 4.6.  
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where A, B, and G are 𝑘 ×  𝑘 parameter matrices; 𝑛𝑡 = 𝐼[𝜀𝑡 < 0] ∘ 𝜀𝑡 (𝐼[∙] is a 𝑘 ×  1 

indicator function which takes on value 1 if the argument is true and 0 otherwise; ‘∘’ indicates 

the Hadamard product); 𝑁̅ = 𝐸[𝑛𝑡𝑛𝑡
′] and 𝑃̅ = 𝐸[𝜀𝑡𝜀𝑡

′]; 𝑄𝑡
∗ = [𝑞𝑖𝑖𝑡

∗ ] = ⌊√𝑞𝑖𝑖𝑡⌋ is a diagonal 

matrix with the square root of the 𝑖𝑡ℎ diagonal element of 𝑄𝑡 on its 𝑖𝑡ℎ diagonal position. 

4.9 Empirical Findings 

4.9.1 Testing and Date-stamping Results 

We borrow testing and date-stamping results from the Chapter 3. Table 4.2 shows the testing 

results by applying PSY (2015a, b). Generally, all testing results show that explosive behavior 

is a common phenomenon in the global markets. Three US market indices (DJIA, NASDAQ 

and S&P 500) are significant at 1% level, showing strong evidence that these market indices 

have explosive sub-periods. Similarly, most of the stock markets in the Europe, Asia, and 

America excluding US evidence the presence of bubbles. For example, the generalized sup-

ADF statistics of Belgium, Denmark, Italy are 2.16, 2.119, and 2.037, respectively, all 

exceeding their respective ten percent right-tailed critical values (2.16 > 1.908, 2.119 > 1.955, 

and 2.037 > 1.955). Table 4.2 provides the detailed testing results including sources and the 

number of observations for each market in our sample. 

 <Table 4.2> 

Additionally, date-stamping results are primarily used in this chapter to set up the testing 

window for both VAR and AG-DCC models. Here, we adopt the PSY date-stamping results, 

considering the merits of this method when testing periods are relatively long with high 

possibility that contains multiple bubbles. Table 4.3 displays the PSY date-stamping results 

for each market discovered with exuberance. The exuberant sub-periods for S&P 500 include 

the late 19th century (e.g., 1879M07-1880M05), the early 20th century (e.g., 1917M09-

1918M05), the great depression episode (e.g., 1928M09-1929M11), the post-war bubbles in 

fifties (e.g., 1955M04-1956M08, and 1958M11-1959M09), the black Monday in October 

1987 (e.g., 1987M01-1987M10), and the Dotcom bubble (e.g., 1995M12-1996M07 and 

1996M09-2001M09). DJIA and NASDAQ obtain approximately the same results in eighties 

and nineties, but NASDAQ further finds the subprime mortgage crisis in 2008 (e.g., 

2008M10-2009M03). For America excluding US, the PSY test results show that the index for 
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Colombia experiences explosive behavior from 2004 to 2006 (e.g., 2004M11-2005M03 and 

2005M06-2006M05). In Europe, explosive behavior is detected over the following dates: the 

UK (e.g., 1971M10-1972M04, 1997M06-1997M10, and 1997M11-2000M07), Germany (e.g., 

1982M12-1984M05, 1985M05-1986M07, and 1997M06-1997M10), Italy (e.g., 1993M06-

1993M10, 1994M03-1994M10, and 2008M12-2009M04), and Belgium (e.g., 2008M10-

2009M06). Asian market results prove the widely influence of Asian financial crisis: The 

South Korea and Hong Kong encounter market grow and collapse in the middle and late 

1990s (e.g., 1994M01-1995M01, 1999M05-1999M10, and 1999M11-2000M03 for South 

Korea; 1987M06-1987M10 and 1993M10-1994M02 for Hong Kong). The indices for Japan, 

India, and Hong Kong also have similar behavior to the US indices in 2008, whilst the 

Chinese stock market experiences its exuberance periods in 2008 and 2015 (e.g., 2007M01-

2007M06 and 2008M01-2008M12, and 2015M04-2014M06). Note that for above results, the 

duration of the exuberance episodes detected are no less than two months. 

 <Table 4.3> 

4.9.2 The Overall VAR Results 

Table 4.4 summarizes the whole VAR estimation results (20 stock markets which are subject 

to bubble episodes confirmed by PSY date-stamping strategy in the previous section), while 

Table 4.5 reports the Newey-West t-statistics for corresponding 𝛾𝑘  coefficients in equation 

(4.18) in selected 10 major stock markets (e.g., Australia, China, Hong Kong, Japan, 

Thailand, Germany, Netherlands, the UK, the US (NASDAQ), and adding the whole EU as 

one separate market). Table 4.5 also reports the p-values for the F-tests that whether 𝛽𝑘 =

𝛾𝑘 = 0 (𝑝1) and whether 𝛾𝑘 = 0 (𝑝2). These F-tests can be viewed as a test of the 

hypothesis that returns in one market granger-cause subsequent changes in returns from the 

other markets within their relevant exuberance periods. These testing results allow us to 

determine whether there is a significant change in correlation when bubbles are present. 

Moreover, for significant estimated coefficients, we have observed that they obtain positive or 

negative in signs. For example, in Panel B (China), all of the significant coefficients for the 

Japan price-dividend ratios are negative in sign, indicating that a positive shock to the 

Japanese stock market translates into a decline in Chinese price-dividend ratio when Japanese 
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stock market experiences a bubble. In contrast, in Panel S (United States), the significant 

coefficients for price-dividend ratios of EU are positive in sign, strongly pointing out that a 

positive shock to the EU market will translates into an increase in the stock market of United 

States. Although the signs of estimated coefficients disclose information in terms of 

correlation dynamics; however, since this correlation movement is not continuous, we 

therefore utilize AG-DCC model to provide a continuous and complete picture for correlation 

dynamics within the bubble periods.   

 <Table 4.4> 

Table 4.4 shows that there is an apparent pattern of significant change in linkage within the 

exuberance period among a majority of stock markets. In particular, the t-statistics of both 𝛽𝑘  

and 𝛾𝑘  for some markets are significant, providing the sign of persistent spillovers are 

enhanced during their bubble periods. For example, in Panel T (Canada), the coefficients of 

the UK have significant 𝛽3 with t-statistics of 1.757 at 10 percent level, and 𝛾2, 𝛾3, 𝛾4 

with respective statistics of 1.798, –1.844, and –2.327, corresponding to 10 percent and 5 

percent significance level separately. Similarly, the t-statistics of 𝛽𝑘  for a number of markets 

are insignificant, but some of their corresponding 𝛾𝑘  coefficients are significant, still 

suggesting that bubbles in these markets lead to spillovers. For instance, in Panel O (Spain), 

none of the Japan’s 𝛽𝑘  coefficients are significant; however, it has significant 𝛾1 and 𝛾4 

with testing statistics of 3.956 and 5.179, all highly significant at 1 percent level. In contrast, 

few testing results in Table 4.4 exhibit a pattern where 𝛽𝑘  is significant, but none of the 𝛾𝑘  

coefficients are significant, concluding that the bubble does not promote the market 

contagion, although these markets are interdependent. Examples include Finland in Panel J 

when South Korea is experiencing bubbles; the coefficients of 𝛽2 and 𝛽3 in South Korea 

are significant at 5 percent and 10 percent, with respective testing statistics of 2.453 and 

1.958, whereas all of its 𝛾𝑘  coefficients are insignificant at 10 percent level. Finally, only a 

small number of the t-statistics for both 𝛽𝑘  and 𝛾𝑘  are insignificant in our testing results. 

4.9.3 The VAR results for 10 Major Markets 

Table 4.5 (Panels A to J) report our detailed t-statistics together with the F-test results in 10 

major markets. Panels A and B contain the respective VAR results for Australia and China. 
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For Australia, the t-statistics of Hong Kong, Japan, and Germany show that when market 

bubbles are present in these markets, returns in these markets have greater forecasting power 

to ratio returns in the Australian stock market. Their F-statistics confirm this finding since all 

of them are significant at least at the 10% level. However, we fail to reach similar conclusion 

for the UK since although its F-statistics are significant, none of its t-statistics are significant. 

For China, we find that ratio returns in Australia, Thailand, Europe, and the US have no 

forecast ability to returns in the Chinese stock market, given their insignificant F-statistics. In 

contrast, Japan, Hong Kong, Germany, and the UK have increased spillover effect among 

their respective exuberance periods, as both of their t-statistics and F-statistics are significant. 

 <Table 4.5> 

Panels C and D summarize the t-statistics and p-values of F-statistics for Hong Kong and 

Japan, respectively. Both the t-statistics and F-statistics of China show very little information 

in forecasting returns from Hong Kong. Similar patterns have also been spotted for Japan, 

Thailand, the UK, and the US. Differently, the significant F-statistics for Australia and 

Germany suggest that the increased linkages between these markets and Hong Kong exist, 

especially within their respective market bubble periods. For Japan, our t-statistics show that 

Australia, Hong Kong, and the UK have closer relationship with Japan during their sub-

explosive periods. Similarly, F-statistics of these markets are all significant, further 

supporting our findings. 

Panels E and F report the respective testing results of Thailand and Germany. Surprisingly, for 

Thailand, none of ratio returns have significant predictive power to Thailand based on their p-

values. For Germany, the insignificant F-statistics for Australia, China, Hong Kong, 

Netherlands, and the US indicate ratio returns in these markets have no causality for ratio 

returns in Germany, regardless of whether bubbles are present in those markets. In contrast, 

the causality of Japan and UK are significantly increased during their exuberance periods; 

their F-statistics for 𝑝1 and 𝑝2 are significant at the 5% level. 

Panels G and H show the VAR results for Netherlands and the UK, respectively. For 

Netherlands, Australia, Japan, Hong Kong, Thailand, Germany, the UK, and Europe are able 

to forecast stock ratio returns in Netherlands during normal times. In particular, ratio returns 
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in Japan, Thailand, Germany, the UK, and Europe become highly predictive for ratio returns 

in Netherlands when bubbles exist in these markets. Similarly, Japan, Hong Kong, Germany, 

and the UK are highly interdependent, whilst little evidence is shown within the bubble 

periods of Japan, Hong Kong, and Germany. Alternatively, bubbles in Australia, Thailand, and 

Europe have significant impacts on the UK stock market, because those bubbles lead to 

dramatic increase in correlation between those markets.  

Finally, Panels I and J show the evidence for Europe and the US, respectively. We find that 

bubbles in Japan, Hong Kong, Germany, and the UK promote a rise in linkages between those 

markets and European regional market. However, there is little evidence of any lead-lag 

relations between Australia, China, Netherlands, the US, and Europe in any periods. When 

estimating equation (4.18) for the US, we find no evidence for spillover effects of any 

substance for China and Netherlands. In contrast, both t-statistics and F-statistics for 

Australia, Japan, Germany, and the UK support the hypothesis that exuberance promotes the 

contagion between these markets and the US. Other markets, such as Hong Kong, Thailand, 

and Europe, are interdependent with the US, while these relations are not enhanced when we 

observe bubbles in those markets.  

To sum up, our VAR results provide strong support for our hypothesis that there is a 

significant change in linkage during the majority of bubble periods, and such significant 

change may lead to contagion that promotes the bubble transmission. 

4.9.4 Volatility Correlation 

To further display the correlation movement during the bubble periods which have been 

targeted by our VAR results, we now run the AG-DCC model. The first stage of establishing 

DCC model consists of building univariate GARCH specifications to each of the 10-ratio 

return series and selects the best fitting one based on the BIC. Note that there are other 

information selection criterion but here we choose to apply the BIC. Table 4.6 shows the 

specifications of the GARCH processes with detailed information about their estimated 

parameters. Six of the 10 models selected for the stock ratio returns include a significant 

asymmetric term: China, Hong Kong, Japan, Thailand, United Kingdom and United States. 

Asymmetry is introduced in the form of threshold effects, but in different powers of the 
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variance in the evolution equation. In particular, four equity-ratio return series are fitted in 

EGARCH form (China, Thailand, United Kingdom and United States) and the remaining two 

apply TGARCH parameterization (Hong Kong and Japan). 

 <Table 4.6> 

The univariate models estimated through the first stage are applied in the following stages to 

obtain the results for conditional correlation across stock markets. Empirical examples of 

these correlation estimates are presented for several interesting series. Figure 4.1 illustrates 

the estimated correlation between China, Japan, the UK, the US, and Europe, separately. The 

dynamic correlation between China and the US does not exhibit a clear increased movement 

during the Dotcom exuberance period; however, an obvious negative spike can be observed in 

the year of 2008 when the Chinese stock market experienced a shooting up whereas the US 

stock market is in a crisis period (however, it does not recognized as contagion by our VAR 

results). Alternatively, the correlation between Japan and the US has an increased tendency 

when the US experienced exuberance during the late of 1980s and 1990s (it does not 

confirmed as contagion by our VAR results), and their average correlation reveals the 

existence of interdependence because of their relatively high correlation (0.30 to 0.35, also 

confirmed by our VAR results). Similarly, the third correlation graph of Europe and the US 

supports the hypothesis that the correlation fluctuates dramatically when bubble is present. 

Obviously, from the figure, we have seen an increase in correlation starting from the middle 

of Dotcom bubble, whilst such rise soon disappears at the early of 2000 but the correlation 

rises again after the bubble collapsed. Note that, the result distinguishes two sub-periods: (i) 

the first contagion appears when the bubble in the US is growing, and (ii) the second 

contagion appears after the bubble burst. Moreover, when looking at the latter part of the 

graph (the global financial crisis in 2008), we observe a clear tendency of negative increase in 

correlation from 0.3 to –0.3 which directly proves that the collapse of the housing bubble in 

the US leads to the adverse movement between the stock markets of Europe and the US. 

Although their results show an excellent example corresponding to our hypotheses, their 

movements of correlation do not result in contagion based on our VAR results. Now turning to 

the last graph of the UK and US. It reveals the strong linkage between two markets, since we 

observe that their correlation is relatively high and stable, around 0.4 among the entire 



87 
 

sample. However, there is only one time point in exception, that is, the late of 80s when the 

US’s stock market experiences a well-known dramatic drop called Black Monday, we can see 

the correlation negatively shoots up to almost –1 within a few months, and quickly recovers to 

the normal level afterwards. 

  

  

Figure 4.1: Plots of the conditional correlation of stock returns for China, Japan, European Area, and the UK with the US. The 

shaded area represents the bubble periods in the US.  
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Figure 4.2: Plots of the conditional correlation of stock returns for China, Japan, European Area, and the UK with the US. The 

shaded area represents the bubble periods in China, Japan, European Area, and the UK.  

Similarly, Figure 4.2 shows the same graphs with the Figure 4.1 but with the stamp of 

corresponding exuberance periods in China, Japan, Europe and the UK, separately. The 

correlation between the US and China suggests a negative co-movement between these two 

stock markets during the period of 2008 financial crisis. However, the correlation between 

Japan and the US shows the opposite relationship, especially when looking at the Japanese 

exuberant period starting from 1986 to 1988, since their correlation has an obvious rise from 

0.35 to 0.50, clearly represents the first type of transmission where the contagion appears 

when the bubble is growing; alternatively, when we turning to the point of 2008 financial 

crisis, we observe a negative small spike which in turn standing for the second type of 

transmission that appears after the bubble burst. All these correlation movements are stamped 

as significant by our previous VAR results. The conclusions reached for the Europe and UK 

are similar with the ones in Figure 4.1. However, comparing with the Figure 4.1, we can see 

that in Figure 4.2, the bubble periods of Europe in the late of 90s are much shorter than those 

in the US, and the correlation movement within those periods again fluctuates dramatically. 

Furthermore, both figures illustrate that during the financial crisis in 2008, the US and Europe 

become negatively correlated. Again, the movement of correlation still does not recognize as 

contagion occurred between the European region and US since their VAR results do not show 

significant movement. For the UK, similar correlation graph has been obtained whilst the 

negative correlation spike happened in the late of 80s, directly corresponding to our second 

type of bubble transmission, now standing for contagion according to our VAR results (now 

the shaded area represents the bubble happened in the UK).  

We also report some empirical results within the regions of Europe and Asia. Figure 4.3 

illustrates the correlation dynamics between the Germany and entire European market. The 
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increased correlation has been identified when the Germany and Europe experience bubbles 

(from 0.6 to 0.8, especially for the bubble episodes in Germany, which has eben confirmed as 

contagion by VAR results), while their high average correlation (around 0.5 to 0.6) shows that 

the exuberance in the German market possibly influences the price movement in the European 

market, and vice versa.  

  

Figure 4.3: Plots the conditional correlation of stock returns between European Area and Germany. The shaded area in left graph 

represents the bubble periods in European Area, while the shaded area in right graph represents the exuberance in Germany.  

  

Figure 4.4: Plots the conditional correlation of stock returns between Japan and Hong Kong.  The shaded area in left graph 

represents the bubble periods in Japan, while the shaded area in right graph represents the exuberance in Hong Kong.  

To obtain a better understanding in correlation movement among Asian markets, we also 

study the dynamic relationship of two major Asian stock markets in Figure 4.4. We find that 

the financial bubbles in Japan normally lead to the correlation increase to a negative level, and 

the most surprising negative increase happens in the 2008 (from 0.3 to nearly –0.4) when the 

sub-prime crisis appears. In contrast, bubbles in Hong Kong cause their correlation rise 

positively, particularly during the periods of 1993 to 1994 (approximately –0.1 to 0.1) and 

2007 to 2008 (approximately 0.18 to 0.3), as illustrated in the right-hand side of Figure 4.4, 

and those rises have been proved to be significant and correspond to contagion by our VAR 

results. Similar to Figures 4.1 and 4.2, Figures 4.3 and 4.4 demonstrate that different stock 
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markets experience some identical exuberance periods in the past three decades, exhibiting 

the possibility of financial bubble expansion in the global markets.  

Overall, the results lead us to posit the following: (i) correlations among different stock 

markets are time-varying, either in turmoil or normal periods; (ii) the exuberance, in most of 

the cases, induces the correlation to fluctuate (positively or negatively); and (iii) 

interdependence are suggested among few markets, since we can clearly observe some 

relatively high average correlations from our figures. All correlation graphs are presented in 

Figures 4.5. 

 <Figures 4.5> 

4.10 Robustness Analysis 

To analyze the spillover of bubbles in levels, we consider a VAR framework in this chapter 

where bubbles’ periods are included via an index variable (the dummy variable) modifying 

the transmission parameters. The estimation might be inconsistent, since under some 

circumstances, the standard assumptions of regression analysis would be violated, especially 

for regression applied to time series data. Although we have attempted to lower the risk, 

robustness check is still required to ensure the validation of our results. Therefore, we 

establish respective testing models to examine results. Since VAR testing is the major 

framework adopted in the current chapter, we believe applying the forecasting method as a 

robustness check is relatively reasonable based on the work of Sims (1986).  

The robustness testing model applied is based on the idea of one-step ahead forecasting.  

Step 1: We establish several VAR models with the assumption that the true model may follow 

one of them.  

Step 2: We estimate these models though one-step forecast over the forecast period.  

Step 3: We apply the forecast evaluation mechanism to assess the forecast accuracy to select 

the best forecast VAR model. If the best forecast model fits the model proposed in section 

4.9.3, then we reach the conclusion that our empirical findings are robust.  

Basically, we set up three VAR forecast models: (i) Model 1, or the benchmark model, that 

forecasts with the variable of itself, where the returns of one country are explained by its own 
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lags (equation 4.19); (ii) Model 2 that forecasts with itself and another explanatory variable, 

where the returns of one country are explained by its own lags and lags from another country 

(equation 4.20); and (iii) Model 3 that forecasts with itself, another explanatory variable, and 

a dummy, where the returns of one country are explained by the above both lags and a dummy 

variable of bubble periods of another country (equation 4.21). The mathematical expressions 

of the three VAR forecasting models are as follows: 

 Model 1: 𝑌𝑖,𝑡 = 𝛼 + ∑ 𝛿𝑖,𝑡−𝑘𝑌𝑖,𝑡−𝑘
4
𝑘=0 + 𝜀𝑖,𝑡 (4.19) 

 Model 2: 𝑌𝑖,𝑡 = 𝛼 + ∑ 𝛿𝑖,𝑡−𝑘𝑌𝑖,𝑡−𝑘
4
𝑘=0 +∑ 𝛽𝑗,𝑡−𝑘𝑌𝑗,𝑡−𝑘

4
𝑘=0 + 𝜀𝑖,𝑡 (4.20) 

 Model 3: 𝑌𝑖,𝑡 = 𝛼 + ∑ 𝛿𝑖,𝑡−𝑘𝑌𝑖,𝑡−𝑘
4
𝑘=0 +∑ 𝛽𝑗,𝑡−𝑘𝑌𝑗,𝑡−𝑘

4
𝑘=0 +∑ 𝛾𝑗,𝑡−𝑘𝐷𝑗,𝑡−𝑘𝑌𝑗,𝑡−𝑘

4
𝑘=0 + 𝜀𝑖,𝑡

  (4.21) 

where 𝑌𝑖,𝑡 and 𝑌𝑗,𝑡 are the returns of price-dividend ratio for major stock market indices. 

𝐷𝑗,𝑡−𝑘 is set according to the date-stamping results in Section 4.9.1 and equals to 1 when 

bubbles are present and 0, otherwise. The lag interval sets 1 to 4, the same with that applied in 

Section 4.8.1. Specifically, we focus on 9 major equity markets: Australia, China, Germany, 

Hong Kong, Japan, Netherlands, Thailand, the UK, and the US, as well as a regional equity 

market of Europe. We examine these markets, separately, and all datasets used in the 

robustness test are the same with those employed in this chapter. 

To evaluate the forecasting accuracy, we report both Root Mean Squared Errors (RMSE) and 

Mean Absolute Errors (MAE) of Models (1–3) as the primary indicators for each stock market 

in Table 4.7. Panel A of Table 4.7 shows that there is no significant difference among the three 

VAR forecasting models for Australia. Similar conclusions can be drawn from Panels B, C, 

and E for China, Hong Kong, and Thailand, respectively. However, the remaining panels of 

Table 7 provide some distinct results, showing that the forecasting errors of Models (2) and 

(3) are relatively smaller than the benchmark Model (1). For example, in Panel G for 

Netherlands, if Germany experiences market bubbles, RMSEs are 0.0534 and 0.0539 for 

Models (2) and (3), respectively, both of them are smaller than RMSE of 0.0657 from the 

benchmark Model (1). Similarly, in Panel H for the UK, once the bubble is present in Europe, 

RMSEs of Models (2) and (3) are 0.0417 and 0.0432, respectively, which are much smaller 
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than 0.0607, the RMSE of its benchmark Model (1). For MAE, similar conclusions can be 

reached in terms of forecasting accuracy. We can see from the last three columns of Table 4.7 

that the majority of MAEs in Model (3) have the smallest numbers as shaded by green. Again, 

taking Netherlands in Panel G as an example, if bubbles are present in Germany, MAE is 

0.0385 for Model (3), which is smaller than 0.0388 of Model (2) and 0.0483 of Model (1). 

Overall, our robustness testing results suggest that the VAR forecasting Model (3) has smaller 

RMSE than Models (1) and (2), that is, the model with dummy variables has higher 

forecasting power than other models, consistent with the conclusion in Section 4.9.3, which 

recognizes that the bubble transmission is due to increased correlation between stock markets. 

 <Table 4.7> 

4.11 Further Discussions 

Taken together, PSY testing and date-stamping results prove that the exuberance is a 

widespread phenomenon which exists in a majority of global equity markets during the past 

four decades. To shed additional light on the bubble transmission mechanism, we apply the 

VAR and AG–DCC models and their test results have revealed several interesting findings. 

The combining results provide strong supports to our hypothesis of contagion–effect, that 

cross-market linkages become much stronger and significant when financial bubbles are 

present. Specially, the significant lags for causality confirms our consideration of a delay in 

the transmission, in line with Kleimeier, Lehert, and Verschoor (2008). Recall that the 

literature on contagion identifies at least three possible channels by which contagion in 

financial markets might be propagated: the correlated-information channel, the liquidity 

channel, and the risk-premium channel. The strong evidence that ratio returns in one market 

are able to forecast changes in ratio returns several months ahead from another market during 

its bubble period argues against the correlated-information channel as the contagion 

mechanism. Intuitively, the reason for this is simply that we would expect any relevant 

information found in one market to be very rapidly incorporated into the other actively traded 

markets. Therefore, we expect that there would be a nearly contemporaneous relation between 

shocks in one market, such as the US market and the other markets like Europe and UK if 

contagion is spread via the correlated-information channel. On the other hand, we suggest that 
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the causality of the contagion contains a vector that bubbles in some markets are more likely 

to have significant impact on others. The test results for the UK and Netherlands provide 

substantial evidence of this phenomenon, i.e., bubbles that emerge in the UK will lead to the 

increased correlation between and the UK and Netherlands, whilst bubbles that emerge in the 

Netherlands do not give rise to a similar significant increase in that correlation.  

Another striking finding is the impact of bubbles in the US and China. In contrast to the 

popular view that significant financial events in the US affect all global markets, our results 

demonstrate that bubbles originated in the US do not always have an impact on other stock 

markets. In fact, bubbles that emerge in few stock markets, such as the UK, Japan, Germany, 

and Australia, can have a significant impact on the US stock market. This finding is useful for 

investors to predict the financial stability of the US when market bubble appears elsewhere. In 

contrast, China seems to be a relatively ‘safe’ zone because bubbles in other markets do not 

seem to have any significant impact on the Chinese stock market. The possibility of a bubble 

transmitting from other markets to the Chinese stock market is relatively low, which is 

reflected in its overall better performance during the global financial crisis.  

The AG–DCC results support the evidence from our VAR results and further exhibit the 

correlation dynamics within the turmoil periods. Importantly, we find correlations among 

some stock markets experience significant change at the early stage of market bubbles, which 

extends previous studies that only examine the financial contagion and transmission within 

the bubble collapsing periods (see, Longstaff, 2010; Bekaert, Ehrmann, Fratzscher and Mehl, 

2014). For instance, during the period of the Dotcom bubble, the correlation between the US 

and the European indices has a slightly decrease at the beginning stage, but a subsequent 

shooting up appears when bubble continues to grow, before dropping back prior to the sudden 

collapse of the bubble, and finally, climbing up again after the bubble bursts. In general, our 

results show strong evidence that correlation experiences a dramatic fluctuation through the 

entire phase of the bubble period.  

Perhaps the most promising explanations for significant correlation dynamics during market 

bubbles relate to the strategic interactions between market participants. These interactions are 

strongest at the time point when investors realize the potential risk in relation to bubble 
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explosion, either before or after, leaving them to search for alternative stores of value and 

resulting in a significant wealth transfer in global markets. Then, the financial asset crisis and 

wealth transfer have precipitated a severe growth slowdown, and the excess investment in 

financial asset is destroyed, leading to a decrease in stock price that would trigger the negative 

feedback loop which causes the collapse of bubbles. Note that differing from the work of 

Caballero et al. (2008), we let bubble bursts at t = 1, allowing market participants (both local 

and foreign) to transfer their investment before or after t = 1. Such assumption is supported by 

our evidence that correlation changes either positively or negatively within the entire bubble 

evolutionary pross, and it well extends previous findings which recognize only positive or 

negative increase in correlation among crisis periods (see King and Wadhwani, 1990; Hon, 

Strauss and Yong, 2007). 

In conclusion, the combination of findings from our return and volatility analyses confirm the 

relationship between bubbles and financial contagion, highlight the relevance of bubble 

transmission and provide knowledge for market participants and policymakers to establish 

effective surveillance mechanism on the movement of bubbles among stock markets. Our 

results suggest that it would be wise for policymakers to implement policies against bubble-

migration if they have observed a significant change in correlation, especially for markets 

which are particularly sensitive to spills over, e.g., Netherlands, the US, and Europe. 

Moreover, investors can benefit from studying the contagion in relation to bubble episodes to 

guide them in attaining the optimal trade-off between risk of a portfolio and the return 

expected from it. For example, market participants who own portfolios mainly consisted of 

securities listed on the US stock market should be alerted when bubbles appeared outside of 

the US (e.g., Japan, Germany and the UK) since those bubbles could easily affect the market 

of US and take a significant impact on invested portfolios. Therefore, if investors tend to 

avoid magnificent fluctuation in stock price in the exuberant period, they can consider to re-

allocate part of their investment from the market of US to ‘safer zones’, where based on our 

results, stock markets in Thailand and China.  

4.12 Conclusion 

Recent events, such as the Dotcom bubble and 2007–2008 global financial crisis, have 
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highlighted that stock market bubbles can be a threat to global financial stability and to 

economic growth. Whilst it has been suggested that stock market bubbles can migrate 

between countries, there has been very little academic research on the transmission of stock 

market bubbles. This chapter has undertaken a large-scale empirical analysis of this issue 

using data on 47 stock market indices for over 40 countries. To detect and date-stamp bubbles, 

we have used recently developed procedures proposed by Phillips, et al. (2015a, b). Our 

empirical estimates of the bubble origination and collapse dates suggest a transmission 

mechanism from stock markets where a bubble that emerges in one stock market migrates 

selectively to stock markets in other countries before or after that bubble bursts.  

To shed further light on this issue, we use VAR models and multivariate GARCH models, 

specifically AG–DCC models. The VAR results provide strong evidence of an increase in 

cross-market linkages during bubble periods for several countries. In contrast to previous 

studies, which find that only negative large shocks tend to trigger contagion, we find that 

contagion can increase in bubble growth periods. It is important to stress that the relationship 

between bubbles and contagion is not found for all stock markets considered. For some stock 

markets we find that bubbles strongly enhance contagion, but we do not observe the same 

causality for some other stock markets. The AG–DCC results support the empirical findings 

obtained from the VAR models as we document strong co-movements in volatilities between 

equity markets when one or both have bubbles within the relevant testing period. Overall, our 

results suggest that for many stock markets, bubble transmission is due to increased linkages 

between equity markets after the first bubble emerges. Thus, we reckon that in the global 

markets, the contagion–effect plays an important role for bubble expansion, while the length 

of the forecast horizon, in many cases as long as several months, argues against the view that 

such contagion is spread via the correlated-information channel. We envisage that our 

findings will be of interest to investors operating globally with investment horizons that span 

periods over which stock market bubbles might exist, and to central banks and financial 

regulators to help them build up strategies against great risk raised by exuberance in the 

global markets. 

A key aspect of the study is that the results allow us to understand the bubble transmission 

mechanism; however, the discussion also raises significant issues for academics and 
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practitioners such as what factors will influence the bubble inflation. In addition, by 

essentially ruling out the correlated-information channel, we left with the questions that 

financial contagion might have been propagated primarily via either the liquidity channel or 

the risk-premium channel when bubbles are present. To address these issues more definitively, 

however, we need to explore in more depth with accurate formulation and model selection 

techniques.  
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Table 4.1: Timeline of the exuberance during the past four decades based on the date-stamping results. 

Timeline Market conditions 

Oct 1971 Booming discovered in United Kingdom 

Oct 1972 Bubble collapsed in United Kingdom (UK joined EEC. Source: FTSE) 

Nov 1982 Booming started again in United Kingdom (Charles & Diana marry and Falklands War begins. Source: FTSE) 

Apr 1983 Exuberance discovered in United States (Followed by the exuberance in United Kingdom) 

Jun 1984 Booming stopped in United States 

Nov 1985 Exuberance began again in United States 

Jun 1986 Bubble discovered in Japan (Beginning of the real estate bubble)  

Nov 1986 Booming slowed down in Japan 

Dec 1986 Booming accelerated again in Japan (Stock market encountered a huge increase, Nikkei 225 strengthened from 13.024 to 18,821 

in 1986. Source: Yahoo Finance. The average land prices in Tokyo residential areas recorded an increase of 45% compared to 

1985, while average land prices in Tokyo commercial districts jumped approximately 122%. Source: Ministry of Land, 

Infrastructure, Transport and Tourism) 

Oct 1987 Exuberance stopped, and a sudden drop came up in United Kingdom and United States (The collapse in Biotechnology bubbles in 

the 1980s, known as the Black Monday. Source: FTSE) 

Dec 1987 Booming slowed down in Japan 

Feb 1989 Bubble stopped growing in Japan (The peak of the exuberance in real estate) 

Jun 1989 Real Estate Bubble collapsed in Japan (Well-known as the collapse in real estate and stock market bubble in Japan. Land Prices 

crashed in Tokyo metropolis as residential land on average 1sq. meter declined by 4.2%. Source: Ministry of Land, Infrastructure, 

Transport and Tourism) 

May 1995 Booming emerged in United States (Beginning of the Dotcom Bubble. Source: BBC) 

Nov 1997 Exuberance appeared in United Kingdom followed by United States  

Mar 2000 Bubble collapsed in United States (Known as the collapse of Dotcom Bubble. On 10 March 2000, the NASDAQ index of leading 

technology shares spiked, followed by a substantial price crash. Source: BBC) 

Jul 2001 Bubble collapsed as well in United Kingdom (After the burst of Dotcom bubble in the United States. Source: FTSE)  

Oct 2007 

- Mar 2009 

Substantial drop occurred in United States and Japanese stock market (The start of the Global Financial Crisis in 2008. The eye of 

the storm. Source: BBC) 

Apr 2009 Market stabilized in United States and Japan (The end of Global financial crisis. Fighting against the recession. Source: BBC)  

This table contains three major countries: United States, United Kingdom and Japan. Various sources are used to verify the event dates. Note: 

Starting and ending dates of bubbles are based on the PSY date-stamping results. 
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Table 4.2: PSY testing results.  

Markets Sources Starting dates No. of observations Statistics 

Asia     

Australia (AU) FTSE Australia 1986M02 355 4.265a 
China (CN) China A-DS Market 1994M05 259 4.098a 
Hong Kong (HK) Hang Seng Index 1980M10 421 3.522a 
India (IN) NIFTY 500 1996M01 238 3.425a 
Indonesia (ID) FTSE Indonesia 1996M07 233 1.040 
Israel (IL) FTSE Israel 1993M12 264 0.076 
Japan (JP) FTSE Japan 1986M02 357 1.226 
Japan Tokmacap (JP) TOPIX 1983M02 394 2.510b 
Malaysia (MY) FTSE Malaysia 1993M12 263 0.273 
Malaysia KLCI (MY) FTSE Bursa Malaysia 1986M01 359 2.636b 
New Zealand (NZ) FTSE New Zealand 1986M02 355 1.565 
Philippine (PH) Philippine SE I (PSEi) 1988M01 335 1.120 
Singapore (SG) FTSE Singapore 1986M02 357 1.063 
South Korea (KR) Korea SE KOSPI 200 (KOSPI2) 1990M01 311 2.226b 
Taiwan (TW) Taiwan SE Weighted TAIEX 1989M07 316 0.462 
Thailand (TH) Bangkok S.E.T. 1976M01 479 7.789a 

Europe     

Belgium (BE) BEL 20 1990M02 310 2.160c 
Czech Republic (CZ) Prague SE PX 1994M04 260 1.254 
Denmark (DK) FTSE Denmark 1986M02 357 2.119c 
Finland (FI) FTSE Finland 1988M01 335 5.009a 
France (FR) France CAC 40 1988M01 334 0.898 
Germany (DE) DAX 30 1973M01 514 5.314a 
Greece (GR) FTSE Greece 1998M05 211 11.610a 
Hungary (HU) FTSE Hungary 1997M10 212 0.501 
Ireland (IE) FTSE Ireland 1986M02 358 5.263a 
Italy (IT) FTSE Italy 1986M02 359 2.037c 
Netherlands (NL) AEX Netherlands 1983M01 394 3.996a 
Norway (NO) FTSE Norway 1986M02 358 –0.095 
Poland (PL) FTSE Poland 1994M04 260 0.754 
Portugal (PT) FTSE Portugal 1998M05 211 1.547 
Russia (RU) FTSE Russia 2003M09 147 1.086 
Russia Dollar (RU) FTSE Dollar 2000M06 186 0.878 
Spain (ES) IBEX 35 1987M03 345 3.725a 
Sweden (SE) OMX Stockholm 30 1986M01 358 3.796a 
Switzerland (CH) Swiss Market (SMI) 1988M07 328 1.574 
Turkey (TR) BIST National 100 1988M02 333 7.199a 
United Kingdom (UK) FTSE All Share 1965M01 610 3.610a 
European Area (EU) FTSE Euro First 80 E 1993M12 264 2.613b 

USA     

Dow Jones Dow Jones Index 1978M02 456 3.848a 

NASDAQ NASDAQ Index 1973M01 516 12.48a 

S&P 500 S&P Index 1871M01 1737 4.207a 

America excluding USA     

Brazil (BR) FTSE Brazil 1994M11 253 1.619 

Canada (CA) S&P/TSX Composite Index 1973M06 509 3.936a 

Chile (CL) FTSE Chile 1993M12 264 1.226 

Colombia (CO) FTSE Colombia 1993M12 264 4.076a 

Mexico (MX) Mexico IPC 1989M03 320 5.643a 

Africa     

South Africa (ZA) FTSE South Africa 1986M02 358 1.618 

This table reports the details of our data selection including markets, sources, testing periods, and number of observations contained in each sample 

with the illustration of PSY testing results. a, b, c represent the 99%, 95%, 90% level of significance. All ending dates is set to 2015M12. Japan 

Tokmacap represents the TOPIX medium capitalization index from Japanese stock exchange. FTSE Bursa Malaysia KLCI consists 30 largest 

companies in FBMEMAS (FTSE Bursa Malaysia Emas Index) by full market capitalization. The European Area uses the FTSEEUROFIRST 80 E 

Index as the dataset to testing whether speculative bubbles exist in the European region. 
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Table 4.3: PSY date-stamping results. 

Asia  

Australia (AU) 1990M01-1990M04, 1993M10-1994M05, 2003M08-2004M06 

China (CN) 2007M01-2007M06, 2008M01-2008M12, 2015M04-2015M06 
Hong Kong (HK) 1987M06-1987M10, 1993M10-1994M02, 2007M09-2007M12 
Japan Tokmacap (JP) 1986M06-1986M11, 1986M12-1987M12, 1989M02-1989M06, 2008M11-2009M04 

India (IN) 1999M12-2000M04, 2007M10-2008M02 
Malaysia KLCI (MY) 1993M11-1994M03 

South Korea (KR) 1994M01-1995M01, 1999M05-1999M10, 1999M11-2000M03 

Thailand (TH) 1983M04-1984M02, 1986M09-1987M11, 1988M03-1988M09, 1989M04-1990M08, 1999M02-2000M02 

Europe  

Belgium (BE) 2008M10-2009M06 

Denmark (DK) 1989M03-1990M04, 1993M08-1994M04, 2000M10-2001M01 

Finland (FI) 1993M03-1994M03, 1999M11-2000M03, 2008M09-2009M04 
Germany (DE) 1982M12-1984M05, 1985M05-1986M07, 1997M06-1997M10 
Greece (GR) 2013M04-2013M07, 2014M03-2015M12 
Ireland (IE) 1997M12-1998M08, 1998M12-1999M05, 2008M06-2009M03, 2013M03-2013M12 
Italy (IT) 1993M06-1993M10, 1994M03-1994M10, 2008M12-2009M04 
Netherlands (NL) 1993M11-1994M04, 1997M02-1998M09, 2008M11-2009M04 
Spain (ES) 1993M11-1994M04, 1996M12-1997M11, 1997M12-1998M09, 2000M02-2000M05 
Sweden (SE) 1993M04-1994M07, 1999M12-2000M04 
Turkey (TR) 1993M05-1994M03, 1994M11-1996M04, 1996M12-1997M05, 1997M10-1998M08, 1999M11-2000M12, 

2003M10-2004M05 
United Kingdom (UK) 1971M10-1972M10, 1982M11-1987M11, 1997M11-2001M07 

European Area (EU) 1997M01-1997M04, 1997M06-1997M10, 2008M10-2009M04 

USA  

Dow Jones 1983M02-1984M03, 1986M01-1986M10,1986M11-1987M11, 1995M12-1998M09, 1998M11-2000M07 

NASDAQ 1983M04-1984M06, 1985M11-1987M11, 1995M05-2001M03, 2008M11-2009M04 
S&P 500 1879M07-1880M05, 1917M09-1918M05, 1928M09-1929M11, 1955M04-1956M08, 1958M11-1959M09, 

1987M01-1987M10, 1995M12-1996M07, 1996M09-2001M09 

America excluding USA  

Canada (CA) 1983M04-1984M02, 1985M11-1987M10, 1993M04-1994M06, 1996M03-1998M08, 1999M03-2001M02 

Colombia (CO) 2004M11-2005M03, 2005M06-2006M05 

Mexico (MX) 1992M02-1992M06, 1993M05-1995M01, 2006M01-2006M05 

This table provides date-stamping results for PSY dating mechanism used for our subsequent tests. The origination date of a bubble is the first 

observation whose backward sup-ADF statistic exceeds the critical value of the backward sup-ADF statistic and the collapsing date of a bubble is 

first observation after ⌊𝑇𝑟𝑒̂⌋ + 𝛿 log(𝑇) whose backward sup ADF statistic falls below the critical value of the backward sup-ADF statistic. The 

current paper adopts the 5% significant level in PSY dating mechanism, and the bubble period should be longer than two months 

 

  



100 
 

Table 4.4: VAR estimation results for the whole testing samples. 

Panel A: Australia 

 CN HK JP MY KR TH BE DK FI DE IE IT NL ES SE UK EU US CA 

β1 1.170 1.494 –0.264 0.278 3.744a 0.574 –0.671 3.950a 1.360 2.761a 2.707a 2.968a 1.035 –0.727 –0.038 –0.725 3.608a 1.492 0.796 

β2 0.687 0.107 0.929 2.029 –2.172b 2.692a –0.619 2.123b 0.622 0.911 1.066 1.042 0.116 –1.862 0.779 –1.415 –0.286 –1.013 2.128b 

β3 1.619 0.335 0.239 0.156 3.663a 1.608 –1.266 0.856 1.162 0.913 –0.269 0.966 0.314 0.725 0.152 1.286 0.578 1.440 2.450b 

β4 0.019 0.552 0.449 –0.208 –2.153b –2.242b –0.849 1.049 0.071 1.541 0.469 0.073 –0.653 –1.478 –0.242 0.265 0.585 –0.009 –0.048 

γ1 0.499 –2.084b 0.627 0.711 –0.502 –0.234 –0.954 1.549 1.547 –3.612a 2.011b 1.461 –0.010 –0.126 1.600 1.184 –0.101 –2.492b 0.176 

γ2 –0.032 0.561 –2.640a –1.144 –0.859 –0.838 1.897c 2.071b –0.540 0.714 2.791a –0.625 1.294 0.973 0.657 1.392 –0.377 0.940 –2.626a 

γ3 0.965 –1.049 2.549b –2.602a –1.028 –1.431 0.433 0.496 1.108 –0.133 2.530b 0.678 –0.130 –0.950 1.276 –1.260 0.167 –0.201 –1.607 

γ4 2.001b –2.550b –1.726c –4.747a 0.229 –0.707 –2.165b 0.018 0.471 –2.049b 4.145a 1.225 –0.999 –0.664 –0.077 –1.350 –0.007 –0.845 –0.484 

Panel B: China 

 AU HK JP MY KR TH BE DK FI DE IE IT NL ES SE UK EU US CA 

β1 0.733 1.057 –0.876 n/a 0.447 –0.147 –1.384 0.787 0.182 –0.351 1.360 0.181 –0.126 –0.123 0.074 0.456 1.655c –1.339 –0.622 

β2 –1.057 0.799 0.731 n/a 0.740 0.401 1.339 1.387 0.205 –0.599 0.307 0.299 1.509 0.840 1.635 –0.004 –0.411 0.426 –0.238 

β3 1.906c 2.155b 0.488 n/a 0.764 1.260 2.329b 2.372b 0.668 3.828a 0.270 1.107 0.728 0.070 1.808c 1.531 1.903c –0.211 1.923c 

β4 –1.404 –0.478 –0.826 n/a 0.512 –0.551 0.894 –0.958 0.958 0.687 1.569 0.547 0.874 0.165 –0.396 –0.251 0.540 0.883 –1.927 

γ1 0.440 1.427 1.262 n/a –0.980 1.624 0.321 –3.121a –0.410 –1.085 –0.738 –0.720 –0.013 1.837c 6.272a –0.028 –1.348 1.101 0.974 

γ2 1.709c –7.829c –1.932b n/a 0.017 –1.312 –1.302 3.689a 0.191 –3.286a 1.730c 0.554 –1.120 –0.543 1.493 0.776 –0.287 0.822 0.595 

γ3 –0.561 7.493c –0.077 n/a –1.160 0.826 –5.064a 0.397 1.167 –3.340a 0.898 –0.474 –0.895 0.132 1.382 –2.310b –0.608 –0.540 –1.338 

γ4 0.065 –1.527 –2.700a n/a –1.082 1.351 –1.706c –2.119b –0.941 –3.756a –0.186 –1.660c –2.845a –0.397 3.010a 1.454 –0.919 0.745 1.301 

Panel C: Hong Kong 

 AU CN JP MY KR TH BE DK FI DE IE IT NL ES SE UK EU US CA 

β1 –0.415 1.177 –0.208 0.432 2.364b 0.188 0.354 0.914 0.245 0.645 0.920 0.813 2.787a –1.155 1.232 –0.256 0.220 0.998 –0.206 

β2 –0.387 –0.556 –0.490 0.323 –0.685 0.164 1.141 1.768c 0.976 1.368 –0.739 –2.088b 1.239 1.161 0.858 –0.395 0.382 0.108 1.528 

β3 –0.292 0.122 0.513 0.506 1.107 –0.076 –0.007 1.729c 1.443 1.191 –2.555b 0.959 1.997b 1.936c –0.108 2.104b 0.946 1.756c 1.165 

β4 1.404 0.210 2.043b –0.276 –1.567 –0.476 0.836 0.354 0.326 1.931 1.261 1.193 –0.259 –0.563 0.591 0.545 1.663c –1.007 0.860 

γ1 0.285 –0.220 1.365 0.991 –1.584 1.509 1.125 –1.411 4.503a –1.693c 1.677c 1.316 –0.241 –4.807a –0.636 –0.474 –0.486 –0.230 0.737 

γ2 –0.723 0.595 –0.558 –5.691a –2.723a –0.094 0.282 0.013 –1.675c 1.420 2.678a 0.291 –1.251 0.172 0.766 1.209 0.521 –0.352 –1.429 

γ3 –0.565 1.111 1.482 –0.693 0.147 –0.039 1.340 –0.941 1.970b –1.555 3.447a –0.276 –1.266 –2.532b 0.516 –0.833 –0.369 –0.336 –1.688c 

γ4 1.319 0.588 –1.220 –0.165 –0.846 –0.487 –3.371a 0.669 –2.070b –0.701 2.001b 0.532 –2.120b –0.286 –0.300 –1.129 –2.444b 0.647 –0.085 

Panel D: Japan 

 AU CN HK MY KR TH BE DK FI DE IE IT NL ES SE UK EU US CA 

β1 3.843a 1.332 4.347a 1.345 2.138b 2.512b 1.319 3.058a 2.858a 4.326a 1.494 4.228a 2.267b 1.046 2.747a 4.544a 6.543a 2.543b 3.373a 

β2 1.053 –0.589 0.864 1.245 1.810c –1.187 –1.223 0.641 –0.364 1.129 1.900c 0.206 1.739c –0.103 0.564 0.041 0.979 1.092 3.053a 

β3 0.523 0.746 1.467 0.982 1.690c 1.999b 2.020b 1.928c –0.445 1.131 1.839c –0.951 –0.228 0.359 0.784 0.309 0.474 –0.311 2.042b 

β4 –0.995 –0.449 –0.955 0.864 1.894c 1.727c 0.188 –1.148 –0.076 –0.200 –0.610 0.506 0.046 0.538 1.013 0.671 0.286 1.977b –0.511 

γ1 –3.368a 0.254 –3.322a 1.463 –0.203 –0.051 –0.407 –0.929 1.796c –2.207b 0.159 –1.648 –1.403 –0.092 –0.582 –1.839 –0.144 –1.071 –0.589 

γ2 –0.669 1.462 0.491 0.210 1.860c 1.685c 0.884 –0.096 1.670c –0.844 1.764c 1.220 –0.795 –0.097 –0.240 1.762c –0.841 0.277 –1.513 

γ3 –0.377 0.355 0.096 –0.468 0.635 –0.661 –0.688 0.810 0.256 1.226 1.861c –1.283 –0.386 –1.508 –1.449 –0.131 –0.615 0.361 –0.561 

γ4 1.673c 1.253 –0.954 –0.220 –0.994 –0.617 –2.026b 0.177 –0.488 0.989 1.116 –1.095 0.322 1.084 0.520 –1.233 –1.471 –1.316 –0.170 

Panel E: Malaysia 

 AU CN HK JP KR TH BE DK FI DE IE IT NL ES SE UK EU US CA 

β1 4.483a 1.639 5.457a 1.678c 2.944a 4.578a 1.919b 3.875a 1.656c 5.731a 1.763b 4.638a 1.262 1.789c 0.288 3.376a 6.375a 0.360 5.265a 

Continued 
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 AU CN HK JP KR TH BE DK FI DE IE IT NL ES SE UK EU US CA 

β2 0.353 –1.250 1.312 –1.112 2.241b –0.107 –1.184 2.145b 0.598 0.061 0.551 –0.012 0.545 –0.464 0.039 0.662 –0.159 2.656a 0.564 

β3 –0.520 1.069 1.710c 0.205 –0.110 0.626 –0.192 –1.078 –0.086 0.070 0.421 0.708 –0.214 –0.475 –0.650 –0.126 0.018 0.072 1.064 

β4 –0.596 –1.107 0.599 –0.196 –0.203 –0.163 –0.695 –0.409 1.424 –0.939 –0.125 –0.206 –0.107 0.571 –0.256 0.185 1.328 –0.470 –0.710 

γ1 0.716 1.052 1.100 1.026 –1.410 1.358 –0.424 3.687a 2.128b –0.088 –0.707 0.074 –0.934 –0.055 0.488 –0.439 0.279 1.077 1.471 

γ2 –0.341 0.772 –2.232b 0.300 –0.012 0.932 0.185 –3.984a 0.769 –0.866 3.058a 0.132 –2.592a –3.574a 0.675 –0.337 0.232 –1.254 –0.258 

γ3 0.449 2.668a 0.229 0.110 –1.883c 0.135 –0.851 2.101b –0.017 –1.050 1.233 –0.640 –0.801 0.325 2.566a 0.744 –2.501b 0.201 –1.885 

γ4 –1.004 0.258 –1.143 1.274 –0.061 –1.196 2.910a –1.176 0.939 0.866 –0.762 1.485 –1.415 –3.166a –1.305 –1.241 0.767 –0.249 –0.723 

Panel F: South Korea 

 AU CN HK JP MY TH BE DK FI DE IE IT NL ES SE UK EU US CA 

β1 3.551a –0.215 3.987a –0.079 0.948 3.942a –0.490 2.190b 3.465a 5.463a –0.111 4.049a –1.590 –2.615a 0.431 0.135 6.427a 0.604 2.986a 

β2 –1.073 0.781 1.137 –1.105 –0.593 0.497 0.360 –1.779c 0.416 –0.572 0.645 –0.790 0.665 –1.923c –0.127 –0.913 –0.445 –1.624 –0.585 

β3 –0.453 –0.593 –1.601 0.071 0.704 0.469 –0.342 1.694c –0.041 –0.715 –0.948 –0.575 0.425 –0.018 –0.760 0.908 –0.051 –0.615 0.422 

β4 0.249 –1.227 –1.189 1.053 –1.890c 1.974b 0.419 0.729 0.216 –0.037 0.823 0.072 0.391 1.353 1.793c 1.241 –0.692 –0.462 0.751 

γ1 –1.066 1.311 –0.491 1.245 3.827a –0.289 0.575 1.757c 2.083b 0.463 5.981a –2.200b 1.024 0.913 –0.423 0.086 –1.442 –1.551 –0.997 

γ2 0.890 –1.696c 0.810 –1.327 0.486 0.892 –3.293a –0.019 –0.718 0.325 0.515 –1.509 –2.520b –2.549b –1.017 –0.470 –0.648 –2.294b –0.145 

γ3 0.850 2.072b 1.125 –0.269 –0.113 1.283 4.086a –0.481 0.727 –1.812c 0.514 –0.326 –0.001 0.674 –0.166 0.371 –1.922c 0.219 –3.178a 

γ4 –0.813 0.963 1.622 0.636 3.773a –2.908a –3.421a 3.955a –0.433 –1.560 0.367 1.380 –1.935c 0.380 –0.464 –0.541 0.862 0.522 –0.951 

Panel G: Thailand 

 AU CN HK JP MY KR BE DK FI DE IE IT NL ES SE UK EU US CA 

β1 0.596 –1.050 1.178 0.646 –0.793 2.879a –0.302 0.275 0.196 0.477 1.551 0.443 0.117 –0.581 0.791 1.373 1.272 2.073b 0.888 

β2 –0.573 0.307 –1.249 –1.090 –0.101 0.080 –0.314 –0.208 0.352 0.919 –1.868 –0.220 –1.464 –1.802 –3.912a –1.642 0.045 –1.350 0.836 

β3 –0.771 –1.281 –2.030b 0.347 –0.283 1.006 0.688 –1.197 –1.459 –1.892c –0.360 –1.009 1.556 –0.082 0.477 0.446 –1.217 –0.293 0.171 

β4 1.778c –0.662 –0.192 0.582 –0.428 –1.873b 0.759 1.055 1.054 0.945 1.037 1.344 –0.417 0.743 0.935 1.741c 1.354 –0.879 –0.580 

γ1 0.348 1.952c 0.061 –0.705 –0.573 –1.217 –0.315 –0.783 1.284 –1.261 1.886c 2.374b –0.139 0.207 –1.002 –0.414 –0.877 –2.126b 0.465 

γ2 –0.945 0.552 0.652 1.166 –0.195 –1.255 –1.223 0.389 –1.544 0.238 2.828a –0.388 –0.841 –0.653 1.486 1.059 0.293 0.058 –1.630 

γ3 2.110b 2.501b 0.339 1.224 –0.615 –0.067 1.435 0.470 1.118 –0.461 0.967 –0.230 –1.365 0.930 1.537 0.013 –1.235 0.380 –2.260b 

γ4 –0.328 1.285 –1.116 2.067b 1.345 0.184 –2.038b 0.158 –0.116 –0.540 0.894 1.218 –1.136 –2.302b –0.101 –1.205 –0.613 1.093 0.234 

Panel H: Belgium 

 AU CN HK JP MY KR TH DK FI DE IE IT NL ES SE UK EU US CA 

β1 4.973a 0.953 4.040a –1.323 0.800 2.510b 3.381a 3.011a 5.580a 6.225a 1.744c 5.283a –0.184 1.493 0.671 4.421a 8.164a 2.092b 4.410a 

β2 2.278b 0.517 1.513 0.028 0.592 1.535 0.823 2.382b –0.646 2.560b 0.632 2.877a 2.052b 0.352 0.279 0.987 1.760c 1.434 0.944 

β3 0.280 1.651 1.604 0.193 1.113 0.758 1.568 2.585b 1.086 0.320 –1.238 2.639a 0.104 1.140 –1.591 0.532 2.426b 1.043 1.750c 

β4 0.489 1.127 0.413 0.174 0.703 0.125 1.502 0.532 –0.854 0.284 –0.204 –0.191 0.956 0.109 0.619 0.859 –0.939 –0.080 0.702 

γ1 –2.360b –0.056 –1.498 2.945a 2.551b –2.130b –0.768 0.296 0.221 0.862 0.723 –0.752 0.454 3.203a –0.289 –1.281 0.970 –0.919 –1.320 

γ2 1.265 1.265 –0.256 –0.707 1.001 –0.237 –2.241b –0.838 0.657 –2.116b 1.264 –1.331 –1.983b –1.034 0.085 –0.322 –0.072 –0.705 –0.245 

γ3 0.781 –0.208 –1.723c 3.813a –4.034a –1.202 –0.825 0.096 –0.263 –1.978b 2.285b –2.328b 0.643 0.066 1.844c –0.860 –2.273b –0.405 –1.489 

γ4 –2.567b 1.717c –0.939 1.074 –0.672 –0.630 –0.938 –0.226 1.542 –1.072 0.139 1.741c 1.305 –3.117a –0.107 –1.602 1.839c 0.115 –0.385 

Panel I: Denmark 

 AU CN HK JP MY KR TH BE FI DE IE IT NL ES SE UK EU US CA 

β1 0.808 1.185 1.392 –1.314 –1.689c –0.195 –0.512 –0.607 1.398 1.313 0.044 1.633 0.012 –1.870c 0.904 –1.047 1.619 –0.185 0.832 

β2 –0.612 0.611 –0.904 0.717 1.359 –0.827 0.443 0.474 0.778 –0.475 1.925c –1.127 –0.703 –1.464 –0.357 –1.192 –0.916 –0.824 –0.195 

β3 –0.006 1.940c –0.407 –1.429 0.630 0.509 0.096 –1.439 –0.187 –1.185 –4.850a –0.391 –0.194 0.857 0.048 0.101 –1.491 0.193 2.083b 

β4 –0.165 0.384 1.093 2.148b –0.355 0.086 –0.250 0.136 0.519 0.563 0.722 0.517 0.879 –0.254 0.836 1.555 0.110 0.724 –1.074 

γ1 –1.709c 0.047 –0.378 1.143 0.791 0.526 –0.374 –2.468b 1.142 –4.270a 8.125a –0.044 –0.968 0.623 –0.086 0.877 0.669 –1.194 0.307 

Continued 
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 AU CN HK JP MY KR TH BE FI DE IE IT NL ES SE UK EU US CA 

γ2 0.259 –0.202 1.325 –1.874 4.766a 0.660 0.047 –1.485 –0.874 1.050 0.304 –0.988 1.030 1.152 1.394 0.835 –0.887 0.321 –0.337 

γ3 –0.366 0.315 –0.653 1.822c 0.329 –0.826 –1.188 4.997a 0.797 2.496b 2.761a –1.452 0.433 –1.123 –1.137 –1.414 –1.602 0.846 –1.063 

γ4 1.285 1.617 –0.887 0.260 –9.603a –0.443 –1.025 –4.091a –0.846 –0.252 –0.921 0.250 –1.307 –0.728 0.065 –1.939c 2.135b 0.096 0.967 

Panel J: Finland 

 AU CN HK JP MY KR TH BE DK DE IE IT NL ES SE UK EU US CA 

β1 1.379 0.470 1.266 –1.018 –0.746 –1.254 0.215 1.599 –0.230 –0.155 1.709c 0.416 –0.367 –0.823 2.191b –1.883c –0.354 –0.975 0.410 

β2 –0.791 0.970 0.531 1.215 0.832 2.453b 0.778 –1.273 –0.163 –0.192 –0.227 –0.651 0.091 0.545 –0.425 –1.240 –0.419 –0.987 –0.181 

β3 –0.397 0.349 1.071 0.301 2.176b 1.958c 1.137 –1.005 1.036 –1.625 0.173 –0.653 –0.323 –0.018 –0.003 0.416 –0.661 –0.209 2.008b 

β4 2.318b –0.932 2.528b 2.183b –0.506 0.550 1.191 1.496 1.156 1.524 –3.208a 1.523 1.872c 1.001 1.041 2.091b 0.942 2.229b 0.891 

γ1 0.353 0.192 0.979 –0.053 –1.141 0.293 1.090 –2.316b –1.084 –2.096b 4.444a 0.896 –0.082 –0.687 –0.626 0.669 0.105 0.383 –0.923 

γ2 0.047 –0.991 –1.698c –0.844 –1.856 0.381 –0.771 2.611a –0.599 3.509a 0.289 –0.871 0.954 0.143 1.306 0.469 0.332 1.579 0.446 

γ3 –1.615 1.800c –1.748c 1.208 –2.189b –0.264 –1.447 3.245a –0.803 –1.118 0.061 0.143 0.299 0.220 1.327 –0.441 –1.227 0.564 –0.039 

γ4 0.453 1.178 –0.612 –1.579 –2.451b –0.703 –0.522 –3.221a –0.979 –0.044 2.158b 1.463 –2.429b –2.290b –1.646 –1.384 1.765c –1.518 0.610 

Panel K: Germany 

 AU CN HK JP MY KR TH BE DK FI IE IT NL ES SE UK EU US CA 

β1 1.476 0.510 –0.513 –1.285 0.194 2.527b –0.610 0.405 1.858c 1.161 1.785c 1.549 0.592 –0.963 1.586 –0.865 2.652a 1.466 0.719 

β2 –0.561 0.643 0.472 1.289 1.245 –0.307 2.464b –0.119 1.747c 1.650c –0.203 1.334 1.314 1.848c –1.081 0.976 1.230 0.967 1.090 

β3 0.032 1.057 –0.412 0.031 –0.833 0.649 1.803c –1.813c 1.018 0.904 1.357 1.130 0.087 0.378 –0.432 –0.634 1.933c –0.036 2.911a 

β4 1.116 –1.126 –0.740 0.553 –0.003 0.204 –1.235 1.504 –0.230 –0.868 0.051 1.217 0.045 0.395 0.581 0.568 1.068 0.486 0.281 

γ1 0.154 0.612 –0.404 –0.927 –0.375 1.182 0.040 1.652c –0.831 1.501 2.046b 0.169 0.123 –0.078 0.409 1.910 –0.704 0.192 0.854 

γ2 0.975 –1.103 1.190 0.286 –0.618 –1.209 –0.296 0.825 0.961 –1.260 1.461 –1.055 –0.069 –0.228 2.781a 0.073 –1.359 0.353 –0.258 

γ3 –0.592 1.482 –1.027 1.293 2.051b 1.419 –1.811c 1.853c –0.100 2.565b –0.721 0.016 –0.495 –0.910 –0.719 –3.831a –0.609 –0.754 –1.698 

γ4 0.713 0.803 –1.472 –1.961c –0.272 –0.429 –1.409 –6.266a 0.338 –0.530 2.970a 0.428 –1.280 –0.939 –0.053 –1.032 –2.453b –0.170 –0.510 

Panel L: Ireland 

 AU CN HK JP MY KR TH BE DK FI DE IT NL ES SE UK EU US CA 

β1 –0.763 –0.186 –0.162 –0.565 0.828 1.581 0.784 –0.742 0.244 –0.489 0.872 0.048 0.406 –1.752 –1.552 –0.581 0.011 –0.007 –0.265 

β2 –0.139 1.857c 0.328 1.365 0.635 –0.124 0.428 0.027 0.586 0.946 –0.083 0.777 0.195 0.416 0.080 0.336 0.607 –1.602 0.818 

β3 –0.921 –1.042 –0.465 –0.606 –1.402 0.786 –0.184 –0.030 0.728 –0.723 0.026 0.875 –0.775 –1.108 –2.770a 2.453b –0.063 –0.181 –0.628 

β4 –0.533 –1.168 –0.089 0.386 –1.376 –1.256 –0.570 –0.983 –1.005 –0.937 –1.185 –0.923 –0.115 –1.104 –0.276 –0.363 –0.782 –0.756 –1.224 

γ1 0.069 2.204b –0.275 –0.615 –1.763 –1.587 –0.297 –2.341b 0.324 –0.676 –2.350b –1.148 0.816 1.406 1.528 0.336 –1.268 –0.256 1.796c 

γ2 –0.541 –1.308 –0.558 –2.021b –0.495 1.928c –1.063 5.448a –0.479 –1.133 1.026 –1.311 0.955 –0.076 2.394b –0.343 –1.480 1.163 –1.014 

γ3 –0.027 1.515 –0.643 2.630a 0.595 0.742 1.462 –4.610a 0.485 2.261b 0.035 –0.919 –1.212 –0.670 0.852 –2.649a 0.115 –0.379 0.235 

γ4 0.650 2.488b –0.998 –1.604 –0.940 0.513 –0.636 –2.919a 0.561 –0.627 0.446 0.512 –1.208 0.162 –1.621 0.372 –0.573 –0.655 0.815 

Panel M: Italy 

 AU CN HK JP MY KR TH BE DK FI DE IE NL ES SE UK EU US CA 

β1 1.104 –0.863 –0.627 0.405 –0.074 1.012 –1.409 –0.067 1.463 1.258 0.456 0.812 –0.470 –1.927c 1.264 –2.345b 1.162 –0.434 0.119 

β2 0.884 0.042 0.319 0.267 –0.031 0.478 2.935a 0.141 1.257 –0.673 0.385 2.013b 0.694 –0.645 0.857 –1.023 0.177 –0.692 1.383 

β3 –0.490 1.823c 0.058 1.738c –1.328 1.412 –0.740 –2.260 1.128 2.083b –0.320 –0.333 –0.537 –1.105 –0.220 1.437 –0.632 1.496 1.836c 

β4 2.497b –0.039 0.508 0.689 –0.771 0.333 0.806 2.504b 0.440 –1.223 1.106 –0.594 0.129 –0.586 0.894 1.107 –0.113 –0.409 1.300 

γ1 –0.298 –0.117 –1.244 1.118 0.120 –0.024 0.912 0.738 –1.139 2.280b –2.878a 6.531 1.183 –0.708 –0.208 2.925a 0.821 0.917 –0.411 

γ2 –0.810 0.130 1.097 –0.638 1.956c –0.313 –1.043 0.325 0.904 0.359 –0.634 4.478a 0.691 0.109 2.882a 0.856 1.644 0.246 –0.056 

γ3 1.414 0.250 –0.731 –0.497 3.638a –1.040 –0.819 1.360 –0.099 1.616 –1.913 4.958a 0.077 0.075 –1.549 –3.877a –0.658 –2.012b –1.960 

γ4 –1.101 1.634 –0.700 –1.510 1.488 –0.732 –0.722 –2.228b 0.368 –0.390 0.009 1.886c –0.371 –1.221 –1.000 –1.398 0.083 –0.251 –2.474b 

Panel N: Netherlands 
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 AU CN HK JP MY KR TH BE DK FI DE IE IT ES SE UK EU US CA 

β1 6.346a 0.969 6.738a 1.389 1.777c 2.041b 4.793a 1.678c 5.097a 5.719a 9.042a 2.014b 8.434a 0.892 1.572 5.007a 14.295a 2.614a 5.545a 

β2 0.727 1.084 0.869 –1.334 0.837 2.768a –0.551 0.593 1.187 –0.020 0.877 0.588 0.045 –0.701 –0.004 0.933 1.182 0.463 0.624 

β3 0.155 1.113 1.099 0.749 0.874 0.547 1.356 –0.035 0.971 –0.178 0.202 –2.397b 0.803 –0.315 –0.038 0.476 1.379 –0.167 1.037 

β4 –1.779c 1.502 0.256 0.711 2.153b 0.785 1.916 –0.535 –0.555 1.367 1.295 –1.228 1.508 –0.325 –0.179 2.300b 1.153 1.055 0.632 

γ1 –1.862c 0.130 –0.424 2.277b 1.290 –0.714 –0.478 1.206 0.942 1.145 –1.358 0.887 0.490 3.990a –1.074 –1.728c 1.537 0.411 –0.773 

γ2 –0.226 1.228 –1.151 –0.440 –1.088 –0.436 0.102 –2.027 –0.554 0.535 –1.155 3.411a –1.549 –2.067b –0.393 1.075 0.340 –0.051 0.219 

γ3 –0.798 0.230 –0.874 –1.012 –3.163a –0.742 0.083 1.178 0.654 0.689 2.700a 6.323a –1.491 3.131a 2.101b 0.588 –2.983a 0.056 0.896 

γ4 0.496 1.420 –1.247 1.776c 2.532b 0.831 –3.466a –1.547 –0.608 –0.021 0.390 –0.287 –0.348 –2.452b –0.931 –3.102a –1.150 –0.841 –0.760 

Panel O: Spain 

 AU CN HK JP MY KR TH BE DK FI DE IE IT NL SE UK EU US CA 

β1 4.558a 1.420 5.396a 0.912 1.672c 1.616 4.001a 0.971 4.026a 2.346b 5.828a 0.818 8.287a 0.493 1.804c 4.465a 10.062a 2.003b 4.617a 

β2 1.474 0.266 1.236 –1.574 –0.158 1.739c –0.412 2.369b 0.815 1.698c 1.140 1.261 1.222 0.626 –0.388 1.580 2.095b –0.940 1.486 

β3 0.350 1.005 0.775 –0.600 1.547 2.198b 1.412 –0.326 1.155 0.149 –2.041b –2.342b 0.584 –0.151 –0.425 0.113 0.424 0.050 0.365 

β4 0.650 –0.330 1.174 0.908 –0.789 0.302 1.621 –0.009 1.387 0.024 1.329 –0.554 1.513 0.147 –0.089 0.296 0.171 0.638 1.247 

γ1 –1.748c –0.191 0.606 3.956a 2.430b –0.518 –0.731 0.157 0.363 1.866c –4.594a 1.279 0.459 0.460 0.497 –1.664c –0.029 –0.049 –0.416 

γ2 –0.145 0.480 –0.094 –1.215 0.549 0.060 1.233 –1.649 0.677 1.524 –4.152a 0.861 –1.031 0.021 2.339b –0.569 –0.030 –0.203 1.917c 

γ3 –2.079b 1.452 0.325 0.964 0.290 –1.023 –0.307 4.507a –0.706 1.205 1.866c 3.128a –0.881 1.136 1.780c 0.861 –0.583 0.765 –0.480 

γ4 2.607a 0.606 –0.932 5.179a 1.297 –1.052 –2.000b 1.251 –0.004 2.820a –3.326a 0.548 1.919b 1.185 –1.336 –2.177b 1.770c 0.202 –3.177a 

Panel P: Sweden 

 AU CN HK JP MY KR TH BE DK FI DE IE IT NL ES UK EU US CA 

β1 4.551a 0.731 5.604a 0.920 1.509 1.373 2.497b 1.193 3.145a 5.030a 7.882a 1.431 6.341a 0.346 0.291 2.685a 9.734a 2.284b 3.778a 

β2 1.262 0.817 0.734 –1.940 0.041 1.134 –0.584 –0.053 2.260b 2.365b 1.195 2.844a 1.387 0.640 –1.178 0.240 0.405 –0.357 1.327 

β3 –0.292 0.448 0.460 1.849c –0.556 0.817 0.967 –0.547 –0.366 1.217 –0.458 –3.364a –0.016 –0.861 0.170 0.993 –0.010 0.155 –0.132 

β4 0.482 0.957 0.564 –0.776 0.670 1.690c 1.545 –0.279 0.221 0.920 –1.191 0.791 0.624 0.447 0.733 1.274 0.924 0.184 0.468 

γ1 –1.637 0.974 0.213 0.848 1.980b –0.192 1.009 –2.381b 0.426 1.011 –1.226 0.011 –1.195 0.143 0.403 –1.127 –1.934c 0.323 0.225 

γ2 –1.228 –1.289 –0.006 –1.418 –1.469 0.808 1.674c 1.903c –0.824 –2.036b 0.064 0.062 –0.680 –0.531 –1.095 0.311 –1.894 –0.614 0.738 

γ3 –0.996 –0.897 –0.109 –0.027 –1.931c 0.968 –1.252 –3.062a 0.420 0.395 0.476 2.320b –1.201 –0.200 1.623 –1.658 –0.136 0.181 0.040 

γ4 1.378 1.705c –1.345 –0.014 2.471b 0.349 –1.692c –0.887 –0.136 0.201 –0.530 –1.158 1.144 –0.549 –1.945 –0.056 –1.645 0.001 –1.540 

Panel Q: United Kingdom 

 AU CN HK JP MY KR TH BE DK FI DE IE IT NL ES SE EU US CA 

β1 5.019a 1.016 4.827a 0.623 –0.293 1.100 3.766a 1.154 3.707a 4.125a 4.966a 1.445 5.426a 0.402 –0.910 –0.564 8.323a –0.503 4.703a 

β2 –1.097 1.388 –1.320 –1.916c 1.077 0.007 –1.917c 2.021b 0.814 0.468 0.538 1.407 0.262 1.448 0.219 0.406 2.005b 0.791 –0.330 

β3 0.324 1.861c –0.086 0.329 1.082 0.149 1.884c –0.678 0.316 0.128 1.042 –1.229 1.341 0.490 0.110 –0.887 1.958c 1.390 1.589 

β4 0.200 1.029 1.704c 0.692 –0.405 1.053 1.170 –0.912 1.532 –0.612 0.332 –0.724 1.679c –0.018 1.731c –0.226 1.062 –0.678 1.251 

γ1 –2.513b 0.131 0.644 0.199 3.422a –2.331b 0.505 –2.621a 1.342 0.348 –1.496 –0.196 –0.087 –0.177 5.104a 0.526 –1.692c –0.209 0.599 

γ2 0.606 –0.467 –0.810 –0.478 0.271 0.541 –0.776 –2.060b 0.165 0.593 –0.598 0.917 0.368 –0.728 –2.480b 0.110 –1.136 –0.960 –0.550 

γ3 –1.454 –0.620 1.539 –0.542 –1.530 –2.020b –0.100 2.379b 0.163 –1.143 0.057 2.925a –2.964a 0.079 1.778c 2.242b –2.350b 0.168 –0.682 

γ4 0.370 0.908 –1.689c 2.305b 0.203 –0.327 –2.081b 2.313b –1.089 2.158b –0.431 –0.210 2.682a 0.497 –2.941a 0.349 1.032 1.199 –0.758 

Panel R: European Region 

 AU CN HK JP MY KR TH BE DK FI DE IE IT NL ES SE UK US CA 

β1 0.358 0.742 –0.141 –1.113 n/a 1.417 –1.694 0.675 2.028b 1.313 –1.669c 0.048 0.272 0.440 –1.777c 0.842 –0.997 0.311 0.069 

β2 –0.163 1.282 1.379 1.924c n/a 0.057 2.619a –0.179 1.849c 0.179 0.503 0.855 1.023 –0.111 0.230 0.546 –0.117 –0.383 2.584b 

β3 0.131 1.450 0.556 –0.146 n/a 2.120b 1.623 –1.356 1.462 0.043 –1.286 0.107 1.407 0.633 0.492 0.852 1.890c 0.473 1.886c 

β4 0.877 –1.235 0.208 0.146 n/a –0.295 –0.607 1.276 1.316 0.169 0.373 –0.935 0.646 –0.425 –1.252 0.775 1.036 0.768 –0.035 
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 AU CN HK JP MY KR TH BE DK FI DE IE IT NL ES SE UK US CA 

γ1 1.293 –0.644 –0.295 0.667 n/a 0.014 0.678 0.573 –7.429a 2.871a –4.880a 7.693a 1.362 0.698 –0.179 –0.609 1.338 0.395 0.649 

γ2 –0.962 –0.073 0.361 0.135 n/a –0.620 –1.047 0.831 –0.835 –0.647 0.022 4.234a –2.150b 0.768 0.468 1.080 0.057 1.073 –1.141 

γ3 1.081 1.242 –1.418 3.301a n/a –0.759 –1.799c 2.486b 2.820a 2.549b –6.111a 2.356b –0.013 –0.057 –1.582 –2.573b –2.316b –0.153 –1.952c 

γ4 –2.465b 0.832 –0.964 –1.080 n/a –0.874 1.090 –4.112a –1.656c –0.432 –6.031a 3.330a –1.204 –1.361 –0.669 –2.426b –1.651c –1.049 1.082 

Panel S: United States 

 AU CN HK JP MY KR TH BE DK FI DE IE IT NL ES SE UK EU CA 

β1 4.658a 1.445 5.185a 1.220 0.761 –0.120 4.712a –1.147 3.873a 3.928a 6.059a 1.283 6.761a –0.619 –1.181 0.690 1.381 7.040a 7.256a 

β2 0.208 1.796c –0.088 –0.758 –1.015 1.219 –1.554 1.376 –0.252 1.253 –0.809 –0.025 0.020 1.076 –0.227 0.304 –0.611 –0.260 1.155 

β3 –0.777 0.214 0.154 0.843 1.909c 1.129 1.178 –1.717c 0.311 –0.879 –0.012 –0.961 –0.652 –0.469 0.378 –1.359 –1.525 1.125 0.924 

β4 –0.974 0.606 0.356 –0.125 0.162 1.088 1.573 –0.753 0.401 –1.024 –2.355b –0.708 1.280 –0.245 0.809 –0.563 2.213b –1.542 0.729 

γ1 –3.913a –0.310 –2.444b 2.548 0.523 0.720 –1.298 0.659 0.345 0.270 –1.133 0.607 –0.125 0.566 2.464b 1.410 –0.219 –1.420 –0.200 

γ2 0.986 –0.753 –1.165 –1.576 2.287b 1.124 0.519 –2.109 –0.988 1.358 3.736a 1.970b –0.785 –0.318 –1.386 0.287 0.635 0.542 1.347 

γ3 –0.043 1.051 0.914 0.288 –3.194a –2.414b 0.169 2.670a –0.854 –0.018 2.011b 2.539b –0.239 0.131 0.451 2.589b 2.043b –1.295 –0.318 

γ4 0.028 1.108 –1.270 1.341 0.683 0.267 –1.872c 0.077 1.075 1.310 1.761c 0.053 2.481b 0.990 –1.449 –0.965 –3.096a 2.080b –0.816 

Panel T: Canada 

 AU CN HK JP MY KR TH BE DK FI DE IE IT NL ES SE UK EU US 

β1 0.909 1.343 0.555 –2.200b 0.048 1.955c –0.058 –0.350 1.992b 0.433 0.995 0.032 0.975 –0.030 –1.293 0.782 0.208 1.493 0.913 

β2 –0.033 –0.008 –2.183b –1.375 1.358 –1.006 0.475 –0.041 –0.069 –0.710 –0.508 –1.044 1.284 –0.291 –0.617 –0.338 –0.212 –0.351 –1.152 

β3 –1.522 –0.426 –0.227 –0.320 –0.616 0.728 –0.053 –0.330 0.383 0.373 –1.116 –1.983b –0.462 –0.720 0.513 –0.916 1.757c –0.630 0.561 

β4 0.632 0.288 –0.372 0.049 –1.332 –1.601 –0.784 0.057 0.046 0.554 1.185 0.460 1.802c 0.362 0.209 1.931c 1.126 1.597 0.301 

γ1 0.119 1.466 –0.855 0.641 0.204 –1.361 –0.959 –1.498 –1.203 3.259a 0.577 2.410b 0.855 0.188 –1.099 –0.118 –0.030 0.347 0.148 

γ2 –0.347 –0.225 1.038 –1.334 –0.483 –0.596 0.854 0.385 0.411 –0.673 5.470a 4.893a –0.980 0.270 –0.292 0.750 1.798c –1.066 0.089 

γ3 –0.117 1.953c –0.871 1.660c –0.119 0.382 0.330 –1.186 –0.691 0.872 –0.169 1.040 –1.600 –1.075 –0.470 0.235 –1.844c 0.067 0.547 

γ4 0.491 1.272 –1.660c –2.167b 0.634 –0.744 –1.470 –0.335 0.509 –1.344 –2.155b 0.992 0.349 –2.415b –1.030 –0.801 –2.327b –2.110b –0.442 

The table (Panels A to T) reports the Newey–West t–statistics for the indicated coefficients (𝛽𝑘s and 𝛾𝑘s) from the estimation of the VAR specification show below. The table primarily reports the t–statistics of the null 

hypothesis that whether one of 𝛽𝑘s or 𝛾𝑘s is zero. In this specification, Y denotes the growth of price–dividend ratio for each country, while D represents the dummy variable that whether in the exuberance period or not 

(bubble indicator). The dummy is set to 1 when there is an exuberance according to the previous date–stamping results and 0 otherwise. The lag number is set to 4 considering the transmission may take time to appear. a, b, c 

represents the 99%, 95%, 90% level of significance, respectively. Missing values (N/A) in the table are due to the perfectly collinear problem. 

𝑌𝑖,𝑡 = 𝛼 + ∑ 𝛿𝑖,𝑡−𝑘𝑌𝑖,𝑡−𝑘
4
𝑘=1 + ∑ 𝛽𝑗,𝑡−𝑘𝑌𝑗,𝑡−𝑘

4
𝑘=1 + ∑ 𝛾𝑗,𝑡−𝑘𝐷𝑗,𝑡−𝑘𝑌𝑗,𝑡−𝑘

4
𝑘=1 + 𝜀𝑖,𝑡  
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Table 4.5: VAR estimation results for ten stock markets. 

 γ1 γ2 γ3 γ4 p1 p2   γ1 γ2 γ3 γ4 p1 p2 

Panel A: Australia  Panel B: China 

China 0.499 –0.032 0.965 2.001b 0.4063 0.3803  Australia 0.440 1.709 –0.561 0.065 0.114 0.164 

 (0.114) (0.083) (0.139) (0.151)     (0.250) (0.180) (0.266) (0.276)   

Hong Kong –2.084b 0.561 –1.049 –2.550b 0.066c 0.075c  Hong Kong 1.427 –7.829a 7.493a –1.527 0.000a 0.000a 

 (0.106) (0.090) (0.102) (0.132)     (0.163) (0.119) (0.147) (0.129)   

Japan 0.627 –2.640a 2.549b –1.726c 0.006a 0.002a  Japan 1.262 –1.932c –0.077 –2.700a 0.037b 0.036b 

 (0.172) (0.150) (0.193) (0.254)     (0.391) (0.219) (0.332) (0.292)   

Thailand –0.234 –0.838 –1.431 –0.707 0.002a 0.906  Thailand 1.624 –1.312 0.826 1.351 0.179 0.242 

 (0.107) (0.087) (0.082) (0.081)     (0.090) (0.201) (0.127) (0.114)   

Germany –3.612a 0.714 –0.133 –2.049b 0.001a 0.001a  Germany –1.085 –3.286a –3.340a 3.756a 0.000a 0.000a 

 (0.111) (0.116) (0.171) (0.215)     (0.118) (0.141) (0.132) (0.135)   

Netherlands –0.010 1.294 –0.130 –0.999 0.234 0.519  Netherlands –0.013 –1.120 –0.895 –2.843a 0.028b 0.195 

 (0.133) (0.128) (0.206) (0.214)     (0.176) (0.171) (0.209) (0.172)   

United Kingdom 1.184 1.392 –1.260 –1.350 0.088c 0.076c  United Kingdom –0.028 0.776 –2.310b 1.454 0.265 0.045b 

 (0.139) (0.133) (0.150) (0.160)     (0.249) (0.282) (0.265) (0.299)   

European Area –0.101 –0.377 0.167 –0.007 0.242 0.978  European Area –1.348 –0.287 –0.608 –0.919 0.462 0.754 

 (0.299) (0.229) (0.260) (0.252)     (0.194) (0.183) (0.272) (0.325)   

United States –2.492b 0.940 –0.201 –0.845 0.161 0.131  United States 1.101 0.822 –0.540 0.745 0.363 0.454 

 (0.088) (0.086) (0.095) (0.117)     0.440 1.709 –0.561 0.065   

Panel C: Hong Kong  Panel D: Japan 

Australia 0.285  –0.723 –0.565 1.319 0.041b 0.081c  Australia –3.368a –0.669 –0.377 1.673c 0.000a 0.001a 

 (0.204) (0.211) (0.165) (0.147)     (0.125) (0.211) (0.098) (0.132)   

China –0.220 0.595 1.111 0.588 0.924 0.759  China 0.254 1.462 0.355 1.253 0.867 0.870 

 (0.087) (0.103) (0.104) (0.150)     (0.055) (0.037) (0.049) (0.048)   

Japan 1.365 –0.558 1.482 –1.220 0.357 0.280  Hong Kong –3.322a 0.491 0.096 –0.954 0.000a 0.056b 

 (0.313) (0.476) (0.272) (0.246)     (0.068) (0.096) (0.096) (0.143)   

Thailand 1.509 –0.094 –0.039 –0.487 0.313 0.277  Thailand –0.051 1.685c –0.661 –0.617 0.426 0.417 

 (0.147) (0.136) (0.099) (0.097)     (0.080) (0.083) (0.093) (0.082)   

Germany –1.693c 1.420 –1.555 –0.701 0.142 0.100c  Germany –2.207b –0.844 1.226 0.989 0.000a 0.153 

 (0.153) (0.227) (0.231) (0.302)     (0.108) (0.115) (0.117) (0.111)   

Netherlands –0.241 –1.251 –1.266 –2.120b 0.003a 0.782  Netherlands –1.403 –0.795 –0.386 0.322 0.199 0.560 

 (0.244) (0.194) (0.236) (0.162)     (0.109) (0.083) (0.114) (0.095)   

United Kingdom –0.474 1.209 –0.833 –1.129 0.159 0.248  United Kingdom –1.839c 1.762c –0.131 –1.233 0.000a 0.051c 

 (0.175) (0.132) (0.160) (0.181)     (0.104) (0.071) (0.105) (0.120)   

European Area –0.486 0.521 –0.369 –2.444b 0.120 0.160  European Area –0.144 –0.841 –0.615 –1.471 0.000a 0.922 

 (0.381) (0.290) (0.323) (0.197)     (0.195) (0.151) (0.098) (0.107)   

United States –0.230 –0.352 –0.336 0.647 0.520 0.803  United States –1.071 0.277 0.361 –1.316 0.235 0.424 

 (0.129) (0.137) (0.120) (0.140)     (0.078) (0.065) (0.082) (0.077)   

Continued 
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Table 4.5 (Continued) 

 γ1 γ2 γ3 γ4 p1 p2   γ1 γ2 γ3 γ4 p1 p2 

Panel E: Thailand  Panel F: Germany 

Australia 0.348 –0.945 2.110b –0.328 0.200 0.206  Australia 0.154 0.975 –0.592 0.713 0.731 0.828 

 (0.173) (0.284) (0.208) (0.288)     (0.112) (0.101) (0.098) (0.128)   

China 1.952c 0.552 2.501b 1.285 0.266 0.718  China 0.612 –1.103 1.482 0.803 0.431 0.417 

 (0.076) (0.088) (0.064) (0.177)     (0.073) (0.077) (0.061) (0.095)   

Hong Kong 0.061 0.652 0.339 –1.116 0.447 0.582  Hong Kong –0.404 1.190 –1.027 –1.472 0.420 0.450 

 (0.243) (0.239) (0.165) (0.216)     (0.064) (0.079) (0.114) (0.223)   

Japan –0.705 1.166 1.224 2.067b 0.139 0.247  Japan –0.927 0.286 1.293 –1.961c 0.036b 0.042b 

 (0.215) (0.194) (0.207) (0.209)     (0.131) (0.179) (0.184) (0.118)   

Germany –1.261 0.238 –0.461 –0.540 0.273 0.738  Thailand 0.040 –0.296 –1.811c –1.409 0.015b 0.323 

 (0.213) (0.174) (0.252) (0.156)     (0.098) (0.078) (0.119) (0.089)   

Netherlands –0.139 –0.841 –1.365 –1.136 0.286 0.851  Netherlands 0.123 –0.069 –0.495 –1.280 0.409 0.707 

 (0.235) (0.197) (0.233) (0.293)     (0.125) (0.147) (0.128) (0.165)   

United Kingdom –0.414 1.059 0.013 –1.205 0.369 0.460  United Kingdom 1.910b 0.073 –3.831a –1.032 0.000a 0.000a 

 (0.195) (0.266) (0.179) (0.203)     (0.110) (0.097) (0.084) (0.121)   

European Area –0.877 0.293 –1.235 –0.613 0.385 0.711  European Area –0.704 –1.359 –0.609 –2.453b 0.010a 0.979 

 (0.273) (0.212) (0.291) (0.213)     (0.251) (0.194) (0.222) (0.095)   

United States –2.126b 0.058 0.380 1.093 0.163 0.215  United States 0.192 0.353 –0.754 –0.170 0.590 0.856 

 (0.137) (0.181) (0.137) (0.154)     (0.085) (0.088) (0.103) (0.095)   

Panel G: Netherlands  Panel H: United Kingdom 

Australia –1.862c –0.226 –0.798 0.496 0.000a 0.356  Australia –2.513b 0.606 –1.454 0.370 0.000a 0.043b 

 (0.135) (0.098) (0.078) (0.066)     (0.090) (0.110) (0.053) (0.082)   

China 0.130 1.228 0.230 1.420 0.953 0.700  China 0.131 –0.467 –0.620 0.908 0.949 0.746 

 (0.065) (0.062) (0.095) (0.087)     (0.052) (0.071) (0.055) (0.147)   

Hong Kong –0.424 –1.151 –0.874 –1.247 0.000a 0.760  Hong Kong 0.644 –0.810 1.539 –1.690 0.000a 0.305 

 (0.106) (0.155) (0.070) (0.152)     (0.102) (0.149) (0.113) (0.167)   

Japan 2.277b –0.440 –1.012 1.776c 0.014b 0.020b  Japan 0.199 –0.478 –0.542 2.305 0.034b 0.357 

 (0.183) (0.204) (0.134) (0.164)     (0.229) (0.261) (0.187) (0.211)   

Thailand –0.478 –0.102 0.083 –3.466a 0.000a 0.024b  Thailand 0.505 –0.776 –0.100 –2.081b 0.003a 0.079c 

 (0.146) (0.060) (0.054) (0.054)     (0.173) (0.074) (0.059) (0.056)   

Germany –1.358 –1.155 2.700a 0.390 0.000a 0.048b  Germany –1.496 –0.598 0.057 –0.431 0.000a 0.795 

 (0.184) (0.093) (0.086) (0.099)     (0.097) (0.074) (0.109) (0.079)   

United Kingdom –1.728c 1.075 0.588 –3.102a 0.000a 0.039b  Netherlands –0.177 –0.728 0.079 0.497 0.964 0.849 

 (0.106) (0.131) (0.121) (0.088)     (0.146) (0.090) (0.134) (0.218)   

European Area 1.537 0.340 –2.983a –1.150 0.000a 0.017b  European Area –1.692c –1.136 –2.350b 1.032 0.000a 0.054c 

 (0.094) (0.104) (0.098) (0.148)     (0.146) (0.163) (0.144) (0.129)   

United States 0.411 –0.051 0.056 –0.841 0.127 0.848  United States –0.209 –0.960 0.168 1.199 0.471 0.509 

 (0.083) (0.090) (0.090) (0.079)     (0.067) (0.082) (0.082) (0.097)   

Continued 
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Table 4.5 (Continued) 

 γ1 γ2 γ3 γ4 p1 p2   γ1 γ2 γ3 γ4 p1 p2 

Panel I: European Area  Panel J: United States 

Australia 1.293 –0.962 1.081 –2.465b 0.343 0.103  Australia –3.912a 0.986 –0.043 0.028 0.000a 0.000a 

 (0.137) (0.098) (0.088) (0.087)     (0.106) (0.283) (0.101) (0.005)   

China –0.644 –0.073 1.242 0.832 0.373 0.656  China –0.310 –0.753 1.051 1.108 0.749 0.295 

 (0.057) (0.051) (0.832) (0.098)     (0.083) (0.084) (0.061) (0.098)   

Hong Kong 0.767 –0.489 –1.349 –0.172 0.003a 0.005a  Hong Kong –2.444b –1.165 0.914 –1.270 0.000a 0.219 

 (0.075) (0.105) (0.079) (0.181)     (0.104) (0.099) (0.094) (0.153)   

Japan 0.667 0.135 3.301 –1.080 0.000a 0.000a  Japan 2.548b –1.576 0.288 1.341 0.000a 0.004a 

 (0.327) (0.300) (0.139) (0.204)     (0.145) (0.238) (0.164) (0.223)   

Thailand 0.678 –1.047 –1.799 1.090 0.049b 0.143  Thailand –1.298 0.519 0.169 –1.872 0.000a 0.643 

 (0.096) (0.054) (0.086) (0.051)     (0.129) (0.112) (0.082) (0.076)   

Germany –4.880a 0.022 –6.111a –6.031a 0.000a 0.000a  Germany –1.133 3.736a 2.011b 1.761 0.000a 0.062c 

 (0.123) (0.088) (0.079) (0.071)     (0.160) (0.010) (0.157) (0.102)   

Netherlands 0.698 0.768 –0.057 –1.361 0.390 0.206  Netherlands 0.676 –0.230 –0.173 0.787 0.904 0.818 

 (0.135) (0.147) (0.111) (0.173)     (0.135) (0.153) (0.136) (0.188)   

United Kingdom 1.338 0.057 –2.316b –1.651c 0.042b 0.019b  United Kingdom –0.219 –0.635 2.043b –3.096a 0.010a 0.024b 

 (0.155) (0.155) (0.128) (0.178)     (0.119) (0.179) (0.150) (0.131)   

United States 0.395 1.073 –0.153 –1.049 0.838 0.379  European Area –1.420 0.542 –1.295 2.080b 0.000a 0.146 

 (0.105) (0.099) (0.104) (0.104)     (0.172) (0.158) (0.219) (0.170)   

The table (Panels A to J) reports the Newey-West t-statistics for the indicated coefficients from the estimation of the VAR specification show below. Also reported is the p-values for the F-tests of the hypothesis that 𝛽1 =
𝛽2 =  𝛽3＝ 𝛽4 = 𝜸1 = 𝜸2 = 𝜸3 = 𝜸4 (𝒑𝟏) and 𝜸1 = 𝜸2 = 𝜸3 = 𝜸4  (𝒑𝟐). In this specification, Y denotes the return of price-dividend ratio for each country while D represents the dummy variable that whether in the 

exuberance period or not. The dummy is set to 1 when there is an exuberance according to the previous date-stamping results whereas 0 when bubble is not present. The lag number is set to 4 considering the transmission may 

take time to appear. a, b, c represents the 99%, 95%, 90% level of significance. 

𝑌𝑖,𝑡 = 𝛼 + ∑ 𝛿𝑖,𝑡−𝑘𝑌𝑖,𝑡−𝑘
4
𝑘=1 + ∑ 𝛽𝑗,𝑡−𝑘𝑌𝑗,𝑡−𝑘

4
𝑘=1 + ∑ 𝛾𝑗,𝑡−𝑘𝐷𝑗,𝑡−𝑘𝑌𝑗,𝑡−𝑘

4
𝑘=1 + 𝜀𝑖,𝑡. 
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Table 4.6: Univariate GARCH models. 

Country Model selected ω α γ β 

Australia GARCH 0.0003** 0.0222**  0.9417*** 

China EGARCH –0.1978*** 0.0520 0.1767*** 0.9646*** 

Hong Kong TGARCH 0.0004** 0.1760*** –0.1456*** 0.8638*** 

Japan TGARCH 0.0008*** 0.0232 0.2184*** 0.6042*** 

Thailand EGARCH –0.3552*** 0.2898*** 0.0513** 0.9716*** 

Germany GARCH 0.00004* 0.0585***  0.9353*** 

Netherlands GARCH 0.0004** 0.1158***  0.7959*** 

United Kingdom EGARCH –0.4253*** 0.2189*** –0.0653*** 0.9532*** 

European Area GARCH 0.0006* 0.1619**  0.6716*** 

United States EGARCH –0.5098*** 0.2070*** –0.0959*** 0.9327*** 

This table reports the selected specifications and parameter estimates for the univariate GARCH models used to standardize each return series. Six 

of ten models selected for the stock returns include a significant asymmetric term: China, Hong Kong, Japan, Thailand, United Kingdom and United 

States. Four stock return series are fitted in EGARCH form (China, Thailand, United Kingdom and United States) and the remaining two where the 

TGARCH parameterization is adopted ((Hong Kong and Japan). We currently employ the Bayesian information criterion (BIC) to select the 

univariate volatility specifications. Although other criteria are available, the use of BIC is appropriate as it leads to the correct model specification. 

***, **, * represent the 99%, 95%, 90% level of significance. 

GARCH: ℎ𝑡 = 𝜔 +𝛼𝜀𝑡−1
2 +𝛽ℎ𝑡−1; 

AVGARCH: ℎ𝑡
1 2⁄ = 𝜔+ 𝛼|𝜀𝑡−1| + 𝛽ℎ𝑡−1

1 2⁄
; 

EGARCH: ln(ℎ𝑡) = 𝜔 + 𝛼
|𝜀𝑡−1|

√ℎ𝑡−1
+ 𝛾

𝜀𝑡−1

√ℎ𝑡−1
+𝛽ln (ℎ𝑡−1); 

TGARCH: ℎ𝑡
1 2⁄ = 𝜔+  𝛼|𝜀𝑡−1| + 𝛾𝐼[𝜀𝑡−1 < 0]|𝜀𝑡−1| + 𝛽ℎ𝑡−1

1 2⁄
; 

GJR-GARCH: ℎ𝑡 = 𝜔 +  𝛼𝜀𝑡−1
2 +  𝛾𝐼[𝜀𝑡−1 < 0]𝜀𝑡−1

2 + 𝛽ℎ𝑡−1. 

The simplest of the models are GARCH and AVGARCH without the consideration of threshold effects. EGARCH, TGARCH and GJR-GARCH 

allow for threshold effects but use different powers of the variance in the evolution equation. Although some of the GARCH models above have 

different expressions with their original representations, their qualitative features remain unchanged. The modifications are intended to improve 

their comparability according to the Cappiello et al. (2006). 

. 
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Table 4.7: Robustness testing results. 

  
Root Mean Squared Error 

  
Mean Absolute Error 

 

 
Model 1 Model 2 Model 3 Model 1 Model 2 Model 3  

Panel A: Australia 

Australia 0.0895  
 0.0633   

Japan  0.0894 0.0885  0.0635 0.0632 

China  0.0906 0.0885  0.0641 0.0628 

Thailand  0.0881 0.0878  0.0627 0.0632 

Hong Kong  0.0893 0.0886  0.0631 0.0626 

Germany  0.0887 0.0882  0.0627 0.0625 

Netherlands  0.0892 0.0889  0.0626 0.0623 

United Kingdom  0.0893 0.0887  0.0633 0.0630 

European Area  0.0902 0.0901  0.0628 0.0627 

United States 
 

0.0892 0.0887  0.0634 0.0632 

Panel B: China 

China 0.1182   0.0817   
Australia  0.1171 0.1168  0.0804 0.0800 

Japan  0.1176 0.1169  0.0815 0.0807 

Thailand  0.1172 0.1164  0.0805 0.0806 

Hong Kong  0.1155 0.1144  0.0806 0.0789 

Germany  0.1138 0.1131  0.0806 0.0795 

Netherlands  0.1180 0.1170  0.0814 0.0802 

United Kingdom  0.1178 0.1167  0.0814 0.0811 

European Area  0.1173 0.1169  0.0811 0.0807 

United States 
 

0.1176 0.1171  0.0811 0.0816 

Panel C: Hong Kong 

Hong Kong 0.0911   0.0674   
Australia  0.0881 0.0878  0.0641 0.0638 

Japan  0.0884 0.0878  0.0649 0.0644 

China  0.0823 0.0818  0.0613 0.0606 

Thailand  0.0908 0.0902  0.0672 0.0667 

Germany  0.0905 0.0894  0.0670 0.0666 

Netherlands  0.0881 0.0873  0.0643 0.0637 

United Kingdom  0.0907 0.0903  0.0671 0.0667 

European Area  0.0822 0.0811  0.0605 0.0601 

United States 
 

0.0905 0.0905  0.0677 0.0678 

Panel D: Japan 

Japan 0.0563   0.0425   
Australia  0.0551 0.0539  0.0425 0.0422 

China  0.0508 0.0505  0.0402 0.0401 

Thailand  0.0545 0.0541  0.0418 0.0418 

Hong Kong  0.0540 0.0535  0.0415 0.0410 

Germany  0.0532 0.0529  0.0400 0.0398 

Continued 
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Root Mean Squared Error 

  
Mean Absolute Error 

 

Table 4.7 continued Model 1 Model 2 Model 3 Model 1 Model 2 Model 3  

Netherlands  0.0558 0.0557 
 

0.0421 0.0418 

United Kingdom  0.0541 0.0536  0.0409 0.0409 

European Area  0.0455 0.0452  0.0359 0.0357 

United States 
 

0.0540 0.0553  0.0415 0.0422 

Panel E: Thailand 

Thailand 0.0936   0.0649   
Australia  0.1028 0.1022  0.0745 0.0745 

Japan  0.0990 0.0985  0.0701 0.0692 

China  0.1044 0.1026  0.0728 0.0719 

Hong Kong  0.0954 0.0951  0.0679 0.0676 

Germany  0.0929 0.0926  0.0649 0.0651 

Netherlands  0.0986 0.0979  0.0695 0.0691 

United Kingdom  0.0934 0.0929  0.0651 0.0652 

European Area  0.1030 0.1024  0.0742 0.0738 

United States 
 

0.0934 0.0927  0.0648 0.0646 

Panel F: Germany 

Germany 0.0654   0.0471   
Australia  0.0711 0.0710  0.0517 0.0517 

Japan  0.0703 0.0700  0.0511 0.0512 

China  0.0732 0.0727  0.0529 0.0527 

Thailand  0.0653 0.0644  0.0469 0.0466 

Hong Kong  0.0691 0.0685  0.0505 0.0500 

Netherlands  0.0703 0.0701  0.0512 0.0511 

United Kingdom  0.0650 0.0642  0.0468 0.0461 

European Area  0.0724 0.0717  0.0524 0.0522 

United States 
 

0.0650 0.0649  0.0469 0.0469 

Panel G: Netherlands 

Netherlands 0.0657   0.0483   
Australia  0.0590 0.0587  0.0433 0.0433 

Japan  0.0651 0.0643  0.0482 0.0478 

China  0.0687 0.0681  0.0509 0.0510 

Thailand  0.0626 0.0621  0.0463 0.0461 

Hong Kong  0.0598 0.0594  0.0439 0.0441 

Germany  0.0539 0.0534  0.0388 0.0385 

United Kingdom  0.0629 0.0621  0.0460 0.0451 

European Area  0.0492 0.0483  0.0344 0.0344 

United States 
 

0.0646 0.0645  0.0479 0.0479 

Panel H: United Kingdom 

United Kingdom 0.0607   0.0412   
Australia  0.0524 0.0522  0.0370 0.0368 

Japan  0.0536 0.0528  0.0373 0.0368 

Continued 
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Root Mean Squared Error 

  
Mean Absolute Error 

 

Table 4.7 continued Model 1 Model 2 Model 3 Model 1 Model 2 Model 3  

China  0.0511 0.0506 
 

0.0377 0.0375 

Thailand  0.0529 0.0525  0.0369 0.0368 

Hong Kong  0.0508 0.0496  0.0350 0.0355 

Germany  0.0595 0.0594  0.0399 0.0398 

Netherlands  0.0539 0.0539  0.0373 0.0374 

European Area  0.0432 0.0417  0.0309 0.0311 

United States 
 

0.0625 0.0623  0.0415 0.0415 

Panel I: European Area 

European Area 0.0604   0.0465   
Australia  0.0603 0.0601  0.0464 0.0463 

Japan  0.0599 0.0594  0.0460 0.0456 

China  0.0595 0.0592  0.0458 0.0456 

Thailand  0.0589 0.0584  0.0450 0.0447 

Hong Kong  0.0602 0.0599  0.0461 0.0462 

Germany  0.0597 0.0583  0.0459 0.0445 

Netherlands  0.0600 0.0596  0.0464 0.0460 

United Kingdom  0.0602 0.0593  0.0462 0.0450 

United States 
 

0.0604 0.0601  0.0465 0.0463 

Panel J: United States 

United States 0.0797   0.0543   
Australia  0.0790 0.0783  0.0538 0.0536 

Japan  0.0803 0.0795  0.0544 0.0534 

China  0.0858 0.0855  0.0586 0.0587 

Thailand  0.0757 0.0752  0.0523 0.0648 

Hong Kong  0.0769 0.0763  0.0526 0.0523 

Germany  0.0717 0.0709  0.0497 0.0489 

Netherlands  0.0806 0.0642  0.0544 0.0542 

United Kingdom  0.0794 0.0621  0.0542 0.0534 

European Area 
 

0.0684 0.0674  0.0487 0.0482 

This table reports the forecasting results for Australia, China, Hong Kong, Japan, Thailand, Germany, Netherlands, United Kingdom, European Region, and Untied States separately in order to examine the robustness 

of VAR results. The sub-columns of Model 1 in both Root Mean Squared Error and Mean Absolute Error represent the benchmark model (𝑌𝑖,𝑡 = 𝛼 + ∑ 𝛿𝑖,𝑡−𝑘𝑌𝑖,𝑡−𝑘
4
𝑘=0 + 𝜀𝑖,𝑡) which the returns of one market are 

explained by its own lags. The sub-columns of Model 2 is the testing results obtained from the forecasting model (𝑌𝑖,𝑡 = 𝛼 + ∑ 𝛿𝑖,𝑡−𝑘𝑌𝑖,𝑡−𝑘
4
𝑘=0 + ∑ 𝛽𝑗,𝑡−𝑘𝑌𝑗,𝑡−𝑘

4
𝑘=0 + 𝜀𝑖,𝑗,𝑡) that returns of one market are explained by 

its own lags and lags from another market. Finally, the sub-columns of Model 3 show the forecasting errors estimated through the model (𝑌𝑖,𝑡 = 𝛼 + ∑ 𝛿𝑖,𝑡−𝑘𝑌𝑖,𝑡−𝑘
4
𝑘=0 + ∑ 𝛽𝑗,𝑡−𝑘𝑌𝑗,𝑡−𝑘

4
𝑘=0 + ∑ 𝛾𝑗,𝑡−𝑘𝐷𝑗,𝑡−𝑘𝑌𝑗,𝑡−𝑘

4
𝑘=0 +

𝜀𝑖,𝑗,𝑡) which contains both lags and bubble periods of another market. 𝑌𝑖,𝑡 and 𝑌𝑗,𝑡 are the returns of price-dividend ratio for major stock market indices from different markets. 𝐷𝑗,𝑡−𝑘 is set according to the date-

stamping results in Section 4.9.1 and equals to 1 when bubbles are present and 0, otherwise. The lag interval sets 0 to 4, the same with that in Section 4.8.1. The numbers highlighted by green color represent the lowest 

Root Mean Square Errors and Absolute Mean Errors.  
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Figure 4.5: Correlation Graphs. 
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Chapter 5 Stock market bubbles and stock market predictability 

5.1 Introduction 

The dividend yield, by definition, is the aggregation of discounted future expected dividend 

growth; according to the theory, its variation must reflect similar variations in expected 

returns and/or expected dividend growth. The critical question, however, is which variable 

dominates the variation. This question helps financial economists to have a better 

understanding in how the stock market works, and has profound implications for the major 

blocks of asset valuation – portfolio allocation, sources of systematic risk, risk management, 

and so on. Campbell and Shiller (1987, 1988a, b) introduce a dividend-price model that 

allows both expected dividends and discount rates to vary over time, and such an approach 

has become extremely popular in empirical research. An important feature of the model is that 

with the assumption of no price bubbles, it is consistent with the presence of stock market 

predictability and/or dividend-growth predictability. In particular, the log dividend-price ratio 

for a stock will gain forecasting power to either the stock returns and/or the dividend-growth; 

or by implication – stock returns will only be unpredictable if the dividend growth is 

predictable. There has been a large amount of empirical discussions focusing on whether 

stock market returns and dividend growth are predictable using the dividend yield and other 

macroeconomic variables; see, for example, Fama (1981), Keim and Stambaugh (1986), 

Campbell and Shiller (1988a, b), Fama and French (1988,1989), Nelson and Kim (1993), 

Stambaugh (1999), Goyal and Welch (2003), Welch and Goyal (2008), and Cochrane (2008). 

Although it has become a stylized fact that stock return predictability can be consistent with 

orthodox financial theory, several authors have argued that there are statistical reasons to 

believe the strong support for predictability obtained in earlier studies could be spurious. 

Nelson and Kim (1993) and Stambaugh (1999) show that high persistence predictors lead to 

biased coefficients in predictive regressions if the innovations driving the predictors are 

correlated with returns, as is known to be the case for many of the popular macroeconomic 

and financial variables used as predictors. Goyal and Welch (2003) exhibit that the persistence 

of dividend-based valuation ratios critically increased over the typical sample periods used in 

empirical studies of predictability and they argue that as a consequence, there is no 
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convincing connection between in-sample and out-of-sample forecasting performance 

borrowed in the literature to explain the usefulness of dividend ratios in predicting for 

investment purposes. When estimation and inference techniques are applied that take account 

of the high degree of persistence of the typical financial and macroeconomic variables used as 

predictors, the statistical evidence of short-horizon and long-horizon predictability is 

considerably weaker, and in some cases disappears completely; see, for example, Ang and 

Bekaert (2007), Boudoukh, Richardson and Whitelaw (2007), Welch and Goyal (2008) and 

Breitung and Demetrescu (2015).  

Cochrane (2008) provides an important remark on stock market predictability since it is one 

of the few recent studies that is supportive of the argument that stock returns are predictable 

using the dividend yield. To avoid statistical issues raised in the literature, Cochrane (2008) 

examines the return predictability by setting up a joint null in which returns are not 

forecastable must also specify that dividend growth is forecastable. He finds evidence on 

stock return predictability is much stronger than previously thought, that stock returns are 

predictable by the dividend yield and that dividend growth is not predictable by the dividend-

price ratio.  

One crucial assumption in the empirical literature on the Campbell-Shiller’s model and stock 

market predictability (including Cochrane, 2008) is that stock price bubbles are not present. 

However, as discussed in Chapter 3 of this thesis and demonstrated in Chapter 4, empirical 

research suggests that price bubbles are present in historical data on the US stock market and 

for stock markets in other countries. The first part of this chapter empirically investigates the 

predictive power of the log dividend-price ratio for S&P Composite index returns and the 

dividend growth. The analysis differs from previous research on this issue because we allow 

for the presence of a bubble. More specifically, we use the PSY date-stamping methodology 

to detect when a bubble exists. We then use this information to investigate the in-sample 

predictability of returns and dividend growth in the bubble and non-bubble periods and we 

compare with the results obtained if a bubble is ignored. We focus on a long sample of 

monthly data but divided into two sub-samples: 1981-1949 and 1950-2017. Furthermore, 

Campbell-Shiller’s model provides a perfect guideline to study the predictability of other 

variables to dividend-price ratios, such as the monetary variables, by using the VAR 
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framework. To add monetary variables, we are able to investigate the role of monetary policy 

in driving stock market data within both bubble and non-bubble periods. Note that in the first 

part, we only analyze the predictive power of selected two monetary variables on the monthly 

basis from 1950 to 2017 for simple illustration. Then, in the second part, we exploit their 

relationship deeper by using more and higher frequency (weekly) data through rolling regime. 

However, we are not the first to study the role of monetary policy. Patelis (1997) examines 

whether shifts in the stance of monetary policy can account for the observed predictability in 

excess stock returns. By adopting the idea of conventional dividend-price model and applying 

vector autoregressions on both monetary and financial variables, he concludes that, in the 

non-bubble period, an increase in the Federal funds rate has a significant negative impact on 

predicted stock returns in the short-run, but a positive one at longer horizons. That 

predictability works largely through the effect of Federal funds rate changes on anticipated 

excess returns down the road, rather than dividends or expected returns.  

Alternatively, Bernanke and Kuttner (2005) use an event-study approach, based on daily 

changes observed on monetary policy decision dates, to uncover the effects on stock prices of 

unanticipated changes in the federal funds rate. They find a surprise 25-basis-point reduce in 

the Federal funds rate linked with approximately 1 percent increase in stock prices. Their 

analysis largely attributes that response to a persistent decline in the equity premium, and to a 

lesser extent of the relevant cash flows. However, they do not analyze the dynamic response 

of stock prices to the monetary policy shifts. Rigobon and Sack (2004) obtain similar findings 

for the response of stock prices to the changes in interest rates using a heteroskedasticity 

based estimator that explores the increase in the volatility of interest rates on FOMC (The 

Federal Open Market Committee) meeting and Humphrey-Hawkins testimony dates. Also, 

Gurkaynak, Brian and Eric (2005) use intraday data to estimate the response for asset prices 

to two factors associated with FOMC decisions. The first factor corresponds, similar with 

Bernanke and Kuttner (2005), to the unanticipated movements in the Federal funds rate target. 

The estimated impact on stock price movement is also very similar to that uncovered by 

Bernanke and Kuttner (2005). The second factor is associated with revisions in expectations 

about future rates, given the funds rate target, and appears to be correlated to the statement 

accompanying the FOMC decisions. Furthermore, its effect on stock prices is significant, 
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whereas more muted than the first, possibly because revision in expectations on output and 

inflation which may partly offset the impact of anticipated changes in interest rates. 

Overall, the current chapter contains two parts focusing on distinct research questions. For the 

first part of this chapter, we are particularly interested in whether empirical results on the 

predictability of stock returns by the dividend-price ratio (and the absence of dividend-growth 

predictability by the dividend-price ratio) is affected by the presence of a bubble. Is the 

predictability observed in previous research because a bubble is present but it is being 

ignored? Are stock returns (and the dividend growth) found to be more or less predictable 

when we allow for the possibility that a bubble may be present for part of the sample period? 

Is the predictive power of monetary variables affected by the presence of a bubble? To answer 

these questions, we mainly fill the gap by relaxing the fundamental assumption of no bubbles 

in the literature when carrying out similar tests to examine the predictability of dividend-price 

ratio. While in the second part, we contribute to the literature by studying the explanatory 

power of monetary variables to price-dividend ratios for both bubble and non-bubble periods. 

The application of weekly datasets, rather than monthly, provides us more detailed dates when 

bubbles appeared and crashed. Our results also contribute to the empirical literature on 

exploring the causality dynamics of monetary variables within the bubble period in order to 

disclose the implications of monetary policy in relation to the bubble evolutionary process.  

The next section of this chapter outlines the Campbell-Shiller log-linear approximation. 

Section 5.3 describes the data used and sets out the methodology. Section 5.4 discusses the 

results from orthodox predictive regressions using the monthly data which act as a benchmark 

for comparison. Section 5.5 tests for the presence of a bubble and dates the bubble regimes 

using the monthly data. Section 5.6 discusses the predictive regression results allowing for the 

presence of a bubble using monthly data. Sections 5.7-5.9 run the analysis by using weekly 

data. Section 5.10 discusses results, and Section 5.11 concludes. 

5.2 The Campbell-Shiller approximation and return predictability 

5.2.1 The Campbell-Shiller Approximation 

In the rational valuation function (RVF hereafter), the ex-post one-period log real holding-

period return on a stock is  
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 ℎ1,𝑡+1 ≡ log(𝑃𝑡+1 +𝐷𝑡+1) − 𝑝𝑡,  (5.1) 

where 𝑃𝑡+1 is the real stock price at the end of period t+1, 𝐷𝑡+1 is the real dividend paid 

during period t+1 and 𝑝𝑡 is the log real stock price at time t. A first-order Taylor expansion of 

(5.1) gives the approximate one-period log real return:  

 ℎ1,𝑡+1 ≡ 𝛿𝑡 − 𝜌𝛿𝑡+1 + ∆𝑑𝑡+1 + 𝑘, (5.2) 

where k is a constant, 𝜌 is a number a little smaller than unity, 𝛿𝑡 is the log dividend price 

ratio 𝑑𝑡 − 𝑝𝑡 and ∆𝑑𝑡+1 is the real dividend growth. Now define ℎ𝑖𝑡 as the discounted i-

period log real return: 

 ℎ𝑖𝑡 ≡ ∑ 𝜌𝑗𝑖−1
𝑗=1 ℎ1,𝑡+𝑗. (5.3) 

ℎ𝑖𝑡 is the discounted sum of approximate one-period log real returns from t to 𝑡 + 𝑖 − 1. 

Combining equations (5.2) and (5.3) we can write the discounted i-period return as a linear 

function of 𝛿𝑡, 𝛿𝑡+1 and ∆𝑑𝑡+1+𝑗: 

 ℎ𝑖𝑡+1 = 𝛿𝑡 − 𝜌
𝑖𝛿𝑡+1 + ∑ 𝜌𝑗∆𝑑𝑡+1+𝑗

𝑡−1
𝑗=0 +

𝑘(1−𝜌𝑖)

1−𝜌
. (5.4) 

This equation shows the implications for the behavior of the dividend-price ratio of a 

particular model of equilibrium returns. Rearranging (5.4), using (5.3) and taking expectations 

at the end of time t, we have a log-linear version of RVF 

 𝛿𝑡 = ∑ 𝜌𝑗𝐸(ℎ1,𝑡+1−𝑗 − ∆𝑑𝑡+1+𝑗)
𝑡−1
𝑗=0 + 𝜌𝑖𝐸𝛿𝑡+1 −

𝑘(1−𝜌𝑖)

1−𝜌
. (5.5) 

Equation (5.5) states that the log dividend-price ratio is equal to the discounted present value 

of expected one-period returns in excess of real dividend growth, and the terminal dividend-

price ratio (plus a constant). Note that the condition of lim
𝑖→∞

𝜌𝑖𝛿𝑡+𝑖 = 0 rules out the presence 

of an asset price bubble. Imposing this condition, it can be seen from (5.5) that the Campbell-

Shiller’s model implies that the log dividend-price ratio must have predictive ability for 

returns and/or dividend growth when bubbles are not present in the market. 

Earlier empirical research on the empirical implications of the Campbell-Shiller’s model 

focuses on the relationship of the dividend price ratio with the discount rate and dividend 

growth, rather than on the relationship of the dividend-price ratio with stock returns and 
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dividend growth – see for example Campbell and Shiller (1988a, b) and Cuthbertson, Hayes 

and Nitzsche (1997). This is because the expected return is unobservable, but it can be 

replaced in (5.5) with the discount rate and an assumed risk premium. For example, assuming 

constant expected excess returns (i.e. a constant risk premium rp) and a time-varying discount 

rate it follows that 𝐸𝑡ℎ1,𝑡+1 = 𝐸𝑡𝑟𝑡+1 + 𝑟𝑝, where 𝑟𝑡+1 denotes the discount rate (the safe 

rate). Equation (5.5) then becomes  

 𝛿𝑡 = ∑ 𝜌𝑗𝐸(𝑟𝑡+1−𝑗 − ∆𝑑𝑡+1+𝑗)
𝑡−1
𝑗=0 + 𝜌𝑖𝐸𝛿𝑡+1 −

(𝑟𝑝−𝑘)(1−𝜌𝑖)

1−𝜌
, (5.6) 

And with the no-bubbles condition of lim
𝑖→∞

𝜌𝑖𝛿𝑡+𝑖 = 0,  

 𝛿𝑡 = ∑ 𝜌𝑗𝐸(𝑟𝑡+1−𝑗 − ∆𝑑𝑡+1+𝑗)
∞
𝑗=0 +

(𝑟𝑝−𝑘)

1−𝜌
. (5.7) 

Equation (5.7) can be interpreted as a dynamic version of the Gordon dividend growth model.  

In the first part of this chapter, we follow the more recent literature and focus on the empirical 

predictability of stock returns and dividend growth. The regression models used in this 

literature are simple bivariate regressions with the return and dividend growth as a dependent 

variable, and the lagged dividend-price ratio or lag of some other variable (monetary variables 

here) thought to be relevant as the explanatory variable. The predictive power of these models 

is typically assessed using simple t-tests and R-squared. The regression models can be written:  

𝑦𝑡 = 𝛼 + 𝛽𝑥𝑡−1 + 𝜀𝑡 

where 𝜀𝑡 is a zero mean random error term, 𝑦𝑡 is either the observed stock return 𝑟𝑡 or the 

dividend growth 𝑔𝑡, and 𝑥𝑡−1 is either the lagged dividend-price ratio or another relevant 

variable (selected monetary variables: government bonds spread and Baa-Aaa spread here) . 

We use OLS for parameter estimation and when t-statistics are calculated we use Newey-West 

standard errors (Newey and West, 1987) to allow for possible heteroskedasticity and 

autocorrelation in the fitted residuals. The empirical literature on predictability using this 

approach is discussed in more detail in the next section.  

5.2.2 The Campbell-Shiller Approximation, Stock Return Predictability and Dividend 

Growth Predictability 

The literature on stock return predictability and dividend growth predictability is far too 
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extensive to review fully here. For example, Campbell and Shiller (1988a, b), Cochrane 

(1992, 2001 2008), Pesaran and Timmermann (1995), Goyal and Welch (2003, 2008), Ang 

and Bekaert (2007), Campbell and Thompson (2008), Chen and Zhao (2008), and Chen 

(2009) provide excellent works. Generally, these studies have focused on discussing the 

ability of the dividend yield to predict returns and dividend growth. Most of them focus on 

return predictability; fewer on dividend growth predictability. Overall, in the US, it has 

become a stylized fact that stock returns are predictable by the dividend-price ratio while 

dividend growth is not. This predictability pattern is especially pronounced when returns and 

dividend growth are measured over long (multi-year) horizons, and it has been interpreted as 

implying that almost all variation in dividend yields is due to changing expectations of future 

long-term returns with changing expectations of future long-term dividend growth playing 

essentially no role (see e.g., Cochrane 2001, 2008). However, this fact has been challenged by 

Chen (2009) , who shows that for the period up to the end of the Second World War, the 

opposite predictability pattern characterizes the US stock market: Long-horizon returns are 

unpredictable while long-horizon dividend growth is predicable by the dividend yield. 

Alternatively, for the post war period, Chen obtains results consistent with the ‘fact’ view, 

which is predictable stock returns and unpredictable dividend growth.  

The finding that changing expectations of future dividend growth have no role to play in 

explaining movements in the dividend yield is against the standard textbook model for stock 

price determination. One possible explanation is provided by Lettau and Ludvigson (2005), 

who argue that movements in expected dividend growth are positively correlated with 

movements in expected returns and this co-movement has offsetting effects on the dividend 

yield which make it unable to uncover the time-varying nature of expected dividend growth. 

In addition, Menzly, Santos, and Veronesi (2004) provide a general equilibrium habit 

persistence interpretation for a common component in expected returns and expected dividend 

growth, and they show that changes in risk preferences eliminate the dividend-price ratio’s 

ability to predict future dividend growth. From their model, what should forecast dividend 

growth is the dividend yield scaled by a particular price-consumption ratio, and this 

implication has been proved in the post war US data. Chen, Da and Priestley (2009) argues 

that due to smoothing, manipulation, or structural shifts in firms’ corporate financial policy, 
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measured dividend may not be a good measure of true value-related cashflows and this may 

explain the lack of dividend growth predictability by the dividend yield.  

To extend findings from the US to global markets, Engsted and Pedersen (2010) run tests by 

using annual US data that many previous authors have used, and then do similar steps on long 

annual time series for aggregate stock prices and dividends in the three European countries: 

Denmark, Sweden and the UK. Surprisingly, they find that predictability patterns for returns 

and dividend growth are very sensitive to whether these variables are measured in real or 

nominal terms. They confirm Cochrane’s (2008) results for real returns and dividend growth 

using annual CRSP data in which monthly dividends are reinvested in the stock market, and 

they also confirm most of Chen’s (2009) findings for nominal returns and dividend growth 

using S&P/Cowles data with no reinvestment of dividends. However, their results show that 

many of the conclusions for nominal returns and dividend growth are turned upside down 

when these variables are measured in real terms. To understand the differences between 

nominal and real predictability, they believe the key is inflation predictability. According to 

Campbell and Shiller’s (1988a, b) dividend yield decomposition, the log dividend-price ratio 

reflects expected future long-term returns and dividend growth, and this decomposition holds 

for both nominal and real variables. The difference between the nominal and real versions of 

the decomposition is inflation. Thus, if the dividend-price ratio predicts nominal and real 

variables differently, it must be because the ratio predicts inflation.  

5.3 Data and Methodology Description 

5.3.1 Data 

The empirical analysis in this chapter focuses on the US stock market. We use two datasets: a 

monthly dataset and a weekly dataset. The monthly US stock market data has been 

downloaded from Robert Shiller’s website.6 We compute results for the full sample of data, 

1871:1-2017:12, and also for two sub-samples. Sub-sample 1 is 1871:1-1949:12; sub-sample 

2 is 1950:1-2017:12. To confirm the starting and ending dates of bubble episodes, we apply 

the PSY procedures on the monthly price-dividend ratios among both sub-samples. The 

predictive power of two monetary variables is also analyzed: the long-short interest rate 

 
6 The website is http://www.econ.yale.edu/~shiller/data.htm.  

http://www.econ.yale.edu/~shiller/data.htm


122 
 

spread for US government bonds, and the Baa-Aaa yield spread for US corporate bonds 

(details of these two will be shown later in this section). Monthly data on these variables 

(long-short interest rate spread and Baa-Aaa yield spread) is from the Federal Reserve Bank 

of St Louis (FRED) database and it covers the period of 1950:1-2017:12 (sub-sample 2). Price 

and dividend series are computed in real values using the monthly Consumer Price Index 

(CPI) as a deflator. Dividend-price ratio and dividend growth are expressed in logarithm form 

while other variables use raw values in our estimations.  

The weekly US stock market data (S&P 500 index price and dividend series) is downloaded 

from the DataStream, and the rest of monetary weekly data is collected from the FRED 

database. Similar to our monthly testing, the PSY strategy is applied to identify bubble 

periods and then we distinguish our full sample into four sub-samples: 1980:1-1996:11 (Pre-

bubble period), 1996:11-2001:2 (In-Dotcom bubble period), 2001:2-2008:9 (Post-Dotcom 

bubble period), and 2008:9-2015:9 (Post-2008 crisis period). To ensure stationarity, we 

detrend all weekly datasets by using Hodrick-Prescott Filter in non-bubble periods, while in 

the bubble period, we apply the first difference in all weekly datasets except for dividend 

growth and variance. Below we have a short list of introductions for selected weekly financial 

and monetary variables.  

A. Financial Variables 

We borrow Campbell-Shiller’s model but consider different determinants of equilibrium 

expected returns: the constant expected real return, constant expected excess returns, and 

allowing the safe rate to vary in the CAPM specifications (will be discussed further in the 

Methodology Section). Therefore, we select three financial variables: the 3-month treasury 

bills rate (safe rate), dividend growth, and return variance (squared ex-post real one-week 

stock return) to build up the basic model.  

B. Monetary Policy Indicators 

The effective federal funds rate: The federal funds rate is the interest rate at which depository 

institutions trade federal funds (balances held at Federal Reserve Banks) with each other 

overnight and the rate that the borrowing institution pays to the lending institution is 

determined between the two banks. The weighted average rate for all of these types of 
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negotiations is called the effective federal funds rate. The effective federal funds rate is 

essentially determined by the market but influenced by the Federal Reserve through open 

market operations to reach the Federal funds rate target. It influences other interest rates such 

as the prime rate, which is the rate banks charge their customers with higher credit ratings, 

and indirectly influences longer-term interest rates such as mortgages, loans, and savings, all 

of which are very important to consumer wealth and confidence. 

Long-short interest rate spread for US government bonds: is the difference between 10-year 

treasury bond yield and 3-month treasury bond yield. This spread has been largely borrowed 

as a predictor of future economic growth, inflation and recessions, and it is included in the 

Financial Stress Index published by the FRED. 

Baa-Aaa yield spread for US corporate bonds: the difference in yield between Baa and Aaa 

corporate bonds. This spread is also one widely-used default-risk indicator and many works 

use this spread to predict future economic activity.  

Small-time deposits in Commercial Banks and Thrift Institutions: here in our work, we try to 

include small-time deposits at Commercial Banks and Thrift Institutions in our VAR 

framework to find evidence to support theories which attribute the bubble burst to a 

coordinated behavioral change from market investors.  

We use logarithm form in price-dividend ratio, dividend growth and small-time deposits at 

commercial banks and thrift institutions while for the others, we use their raw values. All 

weekly variables are computed for real values by using weekly CPIs. Although weekly CPIs 

are not available, we follow the Linear-Match Last method to translate monthly CPIs 

collected through Shiller’s online database into weekly, that is, we place the monthly 

observation into the last weekly observation in the corresponding month, and in-between 

weekly observations are filled by performing a linear interpolation between the last week of 

the previous month and the last week of the current one. A statistical summary of the monthly 

and weekly data is given in Tables 5.1 and 5.2 separately.  

<Tables 5.1 and 5.2> 

5.3.2 Methodology 
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The whole chapter has been divided into two parts, with different objectives and datasets. The 

first part aims to examine the predictability of dividend yield to return and dividend growth 

by using VAR framework on monthly basis. The main tests include three steps: 

Step 1: As a benchmark, using the monthly data we compute separate orthodox predictive 

regressions for stock returns and the dividend growth using the dividend-price ratio as a 

predictor, assuming no bubble. We compute results for the full sample, 1871:1-2017:12, and 

also for two sub-samples: Sub-sample 1 is 1871:1-1949:12 and sub-sample 2 is 1950:1-

2017:12. We also compute results using two monetary variables as predictors: the long-short 

government bond spread, and the Baa-Aaa corporate bond spread. The sample period in this 

case is 1950:1-2017:12. The regression model can be expressed as: 

 𝑦𝑡 = 𝛼 + 𝛽𝑥𝑡−1 + 𝜀𝑡.  (5.8) 

where 𝑦𝑡 can be either return or dividend growth, and 𝑥𝑡 is either the lagged dividend-price 

ratio or monetary variables.  

Step 2: We test for a bubble in the full sample of data on the monthly price-dividend ratio and 

find statistically significant evidence that a bubble is present. We then generate a monthly 

dummy variable using the Phillips et al. (2015a, b) (PSY) date-stamping approach employed 

in the previous chapters. The dummy variable is defined as follows: 𝐵𝐼𝑡 = 1 if the PSY date-

stamping approach says that a bubble exists and 𝐵𝐼𝑡 = 0 if the PSY date-stamping approach 

says there is no bubble.  

Step 3: We repeat all of the regressions in step 1 but we use the dummy variable from step 2 

to allow for a bubble. The regression model can be written: 

 𝑦𝑡 = (𝛼1 + 𝛽1𝑥𝑡−1)(1 − 𝐵𝐼𝑡) + (𝛼2 + 𝛽2𝑥𝑡−1)𝐵𝐼𝑡 + 𝜀𝑡.  (5.9) 

The second part of this chapter aims to answer different research questions but still borrowing 

the idea while extending the Campbell-Shiller’s model by adding monetary variables in the 

interest of studying their predictability to price-dividend ratio to uncover the role of monetary 

policy in both bubble and non-bubble periods.7  

Step 4: Similar to Step 2, we apply the PSY strategy on our weekly price-dividend ratios to 

 
7 Unlike the first part, here in the second part we use price-dividend ratio rather than dividend-price ratio in our tests as price-dividend ratios 

will provide a better way to understand our results.   
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identify bubbles in our sample period starting from 1980 to 2015. Then we divide our sample 

into four sub-samples: 1980:1-1996:11 (Pre-Dotcom bubble), 1996:11-2001:2 (In-Dotcom 

bubble), 2001:2-2008:9 (Post-Dotcom bubble), and 2008:9-2015:9 (Post-2008 crisis). Our 

model lays on the foundation of Campbell-Shiller’s model, and we have different assumptions 

regarding the determinants of equilibrium expected returns: the constant expected real return 

(5.10), constant expected excess return (5.11), and allowing the safe rate to vary in the CAPM 

specification (5.12): 

 𝐸𝑡ℎ1,𝑡+1 = 𝑟,  (5.10) 

 𝐸𝑡ℎ1,𝑡+1 = 𝐸𝑡𝑟𝑡+1 + 𝑟𝑝,  (5.11) 

 𝐸𝑡ℎ1,𝑡+1 = 𝐸𝑡𝑟𝑡+1 + 𝛼𝐸𝑡𝑉𝑡+1.  (5.12) 

where r is a constant, rp represents the constant risk premium, and 𝑉𝑡+1 is the expected 

market variances. For each non-bubble sub-sample, we stack all variables that help measure 

or forecast price-dividend ratios into a vector 𝑧𝑡 and run the following VAR framework (lag 

length k =3):  

 𝑦𝑡 = ∑ 𝐴𝑡−𝑘𝑧𝑡−𝑘
3
𝑘=0 + 𝜀𝑡.  (5.13) 

where 𝑦𝑡 is the price-dividend ratio, A is a companion matrix of VAR and 𝜀𝑡 is the error 

vector. By assessing the Wald statistics for each vector, we are able to see which variables 

have significant predictability to the movement of price-dividend ratio. Furthermore, we 

undertake the generalized Impulse Response Functions for each significant predictor to obtain 

a clear view in terms of the exact response of price-dividend ratio to monetary and financial 

shocks. 

Step 5: To answer the question of whether movements in the stance of monetary variables can 

account for the observed predictability in the growth rate of price-dividend ratio within the 

bubble period, we repeat step 4 first and then apply bivariate rolling regime by running 

equation (5.13) repeatedly forward, using subsets of the sample data incremented by one 

observation at each pass with the initial sample size of 10. Lag length 3 is selected and to 

ensure the data stationarity, we take first difference for all data before putting into estimation 
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regressions.8 

5.4 Orthodox Predictive Regression Results: Monthly Data 

This section discusses the benchmark predictive regressions for stock return and dividend 

growth employing the monthly data. The results from estimating the predictive regression 

model given in equation (5.8) using the full sample of monthly data are provided in Table 5.3 

for the stock return and dividend growth respectively, and where one-month returns and 

dividend growth are measured in real terms. In each case we present the fitted parameters, the 

t-statistics for testing statistical significance (using robust Newey-West standard errors) and 

the orthodox R-squared (in %).  

 <Table 5.3> 

It can be seen from Table 5.3 that for the monthly data with the dividend-price ratio as an 

explanatory variable, the market return is unpredictable, with the corresponding estimated 

coefficient of 0.261 and it is not significant at 10% level; while the dividend growth is 

predictable, and its estimated coefficient is –0.445 and highly significant at 1% level. The R-

squared statistics also obtain similar conclusion, that the dividend-price ratio enjoys better 

forecasting relationship to dividend growth than return, as its R-squired is 96% bigger than 

the number of return estimation (1.803>0.078).  

Then we take step 2 to run estimation on our two sub-samples. Table 5.4 reports respective 

estimated parameters, the t-statistics for testing statistical significance (again using robust 

Newey-West standard errors) and the orthodox R-squared (in %) for sub-samples 1 and 2, 

where sub-sample 1 covers 1871:1 to 1949:12 and sub-sample 2 starts from 1950:1 to 

2017:12. From Table 5.4, we can observe that in sub-sample 1, the dividend-price ratio has no 

predictive power to market return, since its estimated coefficient is 0.466 and it is not reach 

our tolerant level to reject null hypothesis. However, dividend growth shows a completely 

different result, with highly significant negative parameter of 1.897, strongly against the null 

hypothesis that dividend-price ratio has no predictability to dividend growth. Its R-squared 

also gains similar results, as the number of dividend growth estimation is much higher than 

 
8  Here for the In-Dotcom bubble testing, although the t-statistics and p-values are useful indicators, they do not have exactly the same 

interpretation as when there is no bubble. This is because the usual distributions for the t-statistics which are fine when there is no bubble, are 

not 100% accurate when there is a bubble, even if we take differences of the data. However, we can still discuss the t-statistics and p-values.  
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the return (5.887>0.05).  

 <Table 5.4> 

The results in sub-sample 2 are completely opposite to sub-sample 1. The dividend-price ratio 

now gains predictability to return with positive coefficient of 0.56, which is significant at 10 

percent level. However, when looking at the dividend growth, the ratio now loses 

predictability, as its coefficient is –0.197 and t-statistic (–1.439) is far away from 10% 

significant level. Its R-squared also reduces dramatically, from 5.887 in sub-sample 1 to 1.379 

now.  

To take a glance at the effect of monetary policy on return and dividend growth, we report two 

monetary variables’ predictability: Long-short government bond spread and Baa-Aaa 

corporate bond spread. Tables 5.5 and 5.6 illustrate them separately. From these two tables, 

we can see that two spreads have opposite predictability pattern to market return and dividend 

growth. In sub-sample 2, government bond spread can predict the movement of return with a 

positive coefficient of 3.455 but it loses forecasting ability to dividend growth in the same 

period. In contrast, corporate bond spread enjoys highly significant predictive power to 

dividend growth with a negative coefficient of 4.671; however, it is unable to predict the 

movement of market return.  

 <Tables 5.5 and 5.6> 

Taken above results together, we can see that without considering bubbles, our full sample 

evidence (1871-2017) is well against the ‘stylized fact’ documented in asset pricing textbooks 

(e.g., see Cochrane, 2001), that US stock returns are predictable by the dividend-price ratio 

while dividend growth is not. Alternatively, our sub-sample results are highly consistent with 

conclusions made by recent works: for period up to the end of the Second World War, returns 

are unpredictable but dividend growth is predictable by the dividend-price ratio; while for the 

post war period, results are in line with the ‘stylized fact’ view, namely predicable stock 

returns and unpredictable dividend growth (see Chen, 2009). Furthermore, by adding 

monetary variables, we find that two popular monetary policy indicators have respective 

predictability to returns and dividend growth in post war period: returns are predictable by 

using long-short government bond spread while corporate bond spread can forecast the 
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movement of dividend growth. Over the past two decades there has been mounting evidence 

in the literature that points out the predictability of monetary policy indicators in relation to 

stock returns. In our work, we find significant result in government bond spared in predicting 

the movement of stock returns, which is quite consistent with the conclusion made in the 

literature (see Patelis, 1997), but failed to obtain similar findings for the corporate bond 

spread. Instead, the corporate bond spread has the ability to forecast the movement of 

dividend growth, and its negative coefficient sign speaks that the larger spread will induce the 

lower dividend growth. Such finding follows the logic that when the Baa-Aaa spread is larger, 

the likelihood of default in corporate bonds becomes higher, then investors tend to lower their 

expectations on obtaining future cash flows, for example, dividends from stocks.  

5.5 PSY test and Date-stamping Results: Monthly Data 

In this section we test for the presence of bubbles by applying monthly S&P Composite data 

(price-dividend ratio). Since we have discussed the PSY method in detail in Chapter 3, we do 

not discuss the theory here but just present and discuss the results. Table 5.7 contains the dates 

of the bubble regimes and the 𝐺𝑆𝐴𝐷𝐹(𝑟0) test statistic.  

 <Table 5.7> 

5.6 Predictive Regression Results Allowing for a Bubble: Monthly Data 

In this section we repeat the predictive regressions estimated in Section 5.4, but we allow for 

the presence of a bubble. We do this by setting a bubble indicator 𝐵𝐼𝑡 = 1 when bubble is 

present and 𝐵𝐼𝑡 = 0 otherwise. Thus, 𝐵𝐼𝑡 is a dummy variable and we use it in this way to 

fit separate parameters in the predictive regression models into bubble and no-bubble (or 

‘normal’) periods. The regression models can be written:  

 𝑦𝑡 = (𝛼1 + 𝛽1𝑥𝑡−1)(1 − 𝐵𝐼𝑡) + (𝛼2 + 𝛽2𝑥𝑡−1)𝐵𝐼𝑡 + 𝜀𝑡 

where 𝜀𝑡 is a zero mean random error term, 𝑦𝑡 is either the return 𝑟𝑡 or the dividend 

growth 𝑔𝑡, and 𝑥𝑡−1 is either the lagged dividend-price ratio or the interest rate spreads. 

OLS is used for parameter estimation and as before, Newey-West standard errors are 

computed to allow for possible heteroskedasticity and autocorrelation in the fitted residuals.  

The full sample results are given in Table 5.8. The sub-sample results are given in Tables 5.9 
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and 5.10. The results with the interest rate spreads are given in Tables 5.11 and 5.12. From the 

Table 5.8, we can clearly observe that from 1871 to 2017, in the non-bubble periods, results 

are consistent with those in Table 5.3: dividend-price ratio does not have predictive power to 

return but correctly (negatively) predicts the movement of dividend growth. However, when 

looking at bubble periods, for return, we see opposite results – dividend-price ratio gains 

highly significant predictive power to return with positive parameter of 1.887 but having 

reduced forecasting power to dividend growth with a ‘wrong’ (positive) sign in slope 

parameter.   

 <Tables 5.8, 5.9 and 5.10> 

Then we repeat our estimations and run for two sub-samples: sub-sample 1 covers 1871 to 

1949 and sub-sample 2 starts from 1950 to 2017. Table 5.9 documents the results for sub-

sample 1. From the table, in the non-bubble periods, we can see that results are also highly 

consistent with what we have seen in Table 5.4, that returns are not predictable by using 

dividend yield but dividend growth are predictable with a ‘correct’ (negative) sign. In the 

bubble periods, dividend yield still remains no predictive power to market return while its 

predictability to dividend growth has reduced dramatically and becomes insignificant. For 

sub-sample 2, the return results in non-bubble periods are clearly opposite to sub-sample 1: 

dividend-price ratio now gains significant predictive power to return, and it also has highly 

significant forecasting power in predicting the movement of dividend growth in the non-

bubble periods. When it comes to bubble period, we clearly observe a dramatic rise in 

predictability of dividend yield for both return and dividend growth. Dividend yield now 

obtains highly significant predictive power with positive slope parameter of 2.042 to return 

and it also enjoys better predictability but a reversal in sign (from negative to positive) to 

dividend growth. Overall, R-squared for dividend growth is much bigger than the R-squared 

of return, with the number of 6.839 to 1.853.  

By distinguishing bubble and non-bubble periods, it provides an opportunity to see the 

difference in predictability of monetary policy indicator for return and dividend growth. Table 

5.11 reports the results for government bond spread which covers the period from 1950 to 

2017. For return, we can observe that government bond spread is a good predictor, since in 
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both bubble and non-bubble periods, it has positive forecasting power to return. However, 

when looking at dividend growth, it now has poor performance in both periods, as we can see 

that none of the slope parameter is significant at 10% level. For results of Baa-Aaa spread in 

Table 5.12, we conclude that its forecasting power to dividend growth is reduced in the bubble 

periods compared with non-bubble periods, while for market return, no significant forecasting 

power has been discovered in both periods. In sum, it is obvious that government bond spread 

is a better policy indicator than Baa-Aaa spread in predicting movement of return in either 

periods, whilst for Baa-Aaa spread, it has succeeded its significant forecasting power from 

non-bubble periods to bubble periods with negative impact on the dividend-growth.  

 <Tables 5.11 and 12> 

Overall, in this section, we believe several interesting findings has been spotted: (1) for the 

period up to the end of the Second World War, bubbles may have a negative impact on the 

predictability of dividend yield to dividend growth, because from non-bubble to bubble 

periods, forecasting ability of dividend-price ratio to dividend growth has reduced 

dramatically, (2) for the post war period, it seems that bubbles do have a positive impact on 

the predictive power of dividend yield to both return and dividend growth. In particular, for 

dividend growth, dividend yield has predictive power with a negative slope parameter in the 

non-bubble period, whereas with a ‘wrong’ (positive) slope parameter in the bubble period. 

According to the theory, the slope parameter for dividend growth should always be negative, 

not positive, and (3) government bond spread has better performance than Baa-Aaa spread in 

predicting movement of returns in either bubble or non-bubble periods, while Baa-Aaa spread 

gains better predictability to dividend growth in both periods, but in the bubble periods, its 

forecasting ability reduces to a lower level.   

5.7 PSY test and Date-stamping results: Weekly Data 

The second part of this chapter aims to discover the role of monetary policy in the stock 

market for both bubble and non-bubble periods but with the application of higher frequency 

data. The initial step to do this is to distinguish bubble periods from our sample. We apply the 

same PSY strategy on weekly price-dividend ratio and then we demonstrate our testing 

statistics and date-stamping results in Table 5.7.  
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 <Table 5.7> 

Table 5.7 shows that the testing statistic rejects the null hypothesis of no bubble and the date-

stamping strategy captures the well-known bubble episode named Dotcom bubble from the 

year of 1996 to 2001 and the most recent financial crisis from 2008 to 2009 in the US stock 

market. In our work, since the number of observations in the crisis period of 2008 is not 

enough to carry out subsequent tests and it only contains half of the bubble evolutionary 

process, we therefore treat the result of 2008 as a short-lived blip and being ignored in the 

following tests. 

5.8 VAR Results in Non-bubble Periods: Weekly Data 

To better understand the causality−shift for each of our variable across non-bubble sub-

samples, we now run the VAR regressions (equation 5.13) based on the Campbell-Shiller’s 

model. We split our test into three, and each test corresponds to Pre-Dotcom bubble, Post-

Dotcom bubble and Post 2008 crisis period respectively. Generally, we use 4 financial 

variables (logarithm in price-dividend ratio and dividend growth, raw values of 3-month 

treasury bills rate, and market variances) and 5 monetary variables (first difference in 

logarithm form of small-time deposits at Commercial Banks and Thrift Institutions, raw 

values of effective federal funds rate, long-short government bond spread, and Baa-Aaa 

corporate bond spread) to construct our VAR model. Data stationarity are examined by 

applying the ADF test for three sub-periods. Table 5.13 reports the testing statistics with the 

null hypothesis of whether the variable contains a unit root. We confirm that all of our weekly 

series are I (0) at 10% level, which means they are stationary in the relevant case.  

 <Table 5.13> 

Testing results in Table 5.14 provide evidence for causality movement across non-bubble sub-

samples. In particular, Column (2) considers the period of Pre-Dotcom bubble, column (3) 

examines the relationship after the collapse of Dotcom bubble, and column (4) shows the 

causality performance in the period of Post 2008 financial crisis. We can clearly observe the 

poor forecasting performance of selected variables in the Post-Dotcom bubble period, since 

only one variable – market variance – gains the predictive power to price-dividend ratio. 

Surprisingly, unlike previous evidence which documents the availability of weak form 

dividend-price model and significant predictive power of market variance over dividend yield 
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(see Cuthbertson, et al., 1997), neither of them has been consistently confirmed over our sub-

sample results. We can see that the safe rate only gains significant forecasting power before 

the year of 1997, and such relationship soon disappears in the subsequent years. It is the same 

for market variance, since its forecasting ability over price-dividend ratio has only been 

spotted as significant in the post-Dotcom sub-sample, no similar results has been obtained in 

the other periods. These findings provide an alternative view that the stock market may not as 

efficient as the literature assumed, and the close relationship between the ratio and market 

volatility may not be stable over time.  

 <Table 5.14> 

Furthermore, results of momentary variables also provide important findings. It is obvious 

that in the pre-Dotcom period, using effective federal funds rate to forecast the movement of 

price-dividend ratio is much better than using government bond spread, as we can see from 

the column (2) that the predictive power of effective federal funds rate is significant at 5% 

level but no significant relationship has been stamped for government bond spread. However, 

a dramatic reversal has occurred after the 2008 financial crisis. The effective federal funds 

rate is not as efficient as what it performs as a predictor in the period of before Dotcom 

bubble and it now loses its predictive power to price-divided ratio; however, after staying 

silent for a long period of time, the government bond spread has taken over the position of 

federal funds rate and plays an important role in forecasting the movement of price-dividend 

ratio. Turning to the corporate bond spread, it somehow holds ‘stable’ predictability, as we 

can see that the spread only loses forecasting ability to price-dividend ratio in the period of 

Post-Dotcom bubble; in the other two sub-samples, it gains weakest form of significance 

(10% significant level).  

To analyse the response of variables to monetary and financial shocks, we therefore undertake 

the generalized IRFs. Figures 5.1 to 5.3 present orthogonalized IRFs obtained with our VAR 

model on the effect of financial and monetary shocks (using variables which are confirmed to 

be stationary and significant to ensure the validity of system) to price-dividend ratio with the 

asymptotic 90% error bands generated by Monte Carlo simulation (1000 repetitions). 

Particularly, Figure 5.1 presents the results for the period of Pre-Dotcom bubble, and Figures 
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5.2 and 5.3 show the respective response of shocks in Post-Dotcom bubble and Post 2008 

crisis periods. From Figure 5.1, we see that before the occurrence of Dotcom bubble, shocks 

from the safe rate lead to a negative impact on price-dividend ratio that lasts for more than 10 

weeks after the first shock occurred, and it keeps increasing. Similar movement has been 

spotted for effective federal funds rate, as we can observe from graph 3 that it has negative 

but small impact to the ratio. The graph of Baa-Aaa spread supports its VAR result in Table 

5.9 because we find it has a positive but very small impact on the movement of price-dividend 

ratio and dies out quickly after 3 weeks.9  

 <Figures 5.1 to 5.3> 

Now turning to Figures 5.2 and 5.3. Figure 5.2 shows that the impact of market variances has 

a completely different movement than the other variables. It is clear that its impact on the 

ratio becomes smaller in the first 2 weeks but quickly grows and stays large at least for 10 

weeks. Thus, we notice that there is a close positive relationship between price-dividend ratio 

and market volatility for the period of Post-Dotcom bubble and such finding can be used to 

explain the well-documented ability of the ratio in predicting stock returns while this 

explanation is only available for this period. Looking at Figure 5.3, we notice that the impact 

of Baa-Aaa spread to price-dividend ratio grows larger and keeps longer, comparing with its 

impact within the period of Pre-Dotcom bubble; however, the direction of such impact has 

reversed, from positive to negative. Furthermore, shocks from government bond spread tends 

to have positive impact on price-dividend ratio, and such impact reaches the top after 3 weeks 

when the first shock has occurred, and smoothly declines afterwards.  

In sum, the above results present a perfect illustration for predictability−shift across different 

time intervals. We now understand that there is no such a ‘perfect’ predictor for price-

dividend ratio that always remains constant and sufficiently large forecasting power over 

time. Furthermore, by using IRFs, we see that publics normally put negative expectations on 

price-dividend ratio when there is a shock from the risk-free rate and effective federal funds 

rate in the Pre-Dotcom bubble period; however, in the Post-2008 crisis period, shocks from 

 
9 Although we have selected stationary and significant variables to build up our IRFs, we still observed that a few testing 

results in Figure 5.1 are not reduced to insignificant after 10 weeks, which may indicate the stability of our VAR system is 
impaired. However, after we extending our testing length from 10 weeks to 100 weeks (almost 2 years), we have seen that 
results return to ‘normal’, that the response effect generally dies out after 15 weeks, implying our VAR system is stable. These 
testing results will be demonstrated in Appendix 5.8. 
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two interest spreads have completely opposite impact: publics put positive expectations on 

price-dividend ratio when there is a monetary policy announcement in relation to government 

bond, whilst negative expectations on price-dividend ratio when there is a credit risk exposure 

from corporate bond.  

5.9 VAR Results in Bubble Period: Weekly Data 

To obtain a detailed view for what forces driving the performance of price-dividend ratio in 

the bubble period, in this section, we repeat the VAR estimation first and then apply rolling 

regime with the purpose of observing predictability dynamics. To ensure the data stationarity, 

we take the first difference in all weekly datasets except for dividend growth and market 

variance. Newey-west estimators are also employed to correct the covariance matrix for 

possible heteroscedasticity, and lag 3 is selected for each test. Table 5.15 below provides the 

detailed Wald statistics for the In-Dotcom bubble sub-sample. 

 <Table 5.15> 

From Table 5.15, we clearly observe that any strong forecasting relationships existed in the 

non-bubble periods is disappeared in the bubble period, as none of the corresponding Wald 

statistics are significant at 10% level. However, are these insignificant relationships stay 

constant over time within bubble period? This question leads us to adopt the concept of 

bivariate rolling regime to obtain a full view. Figure 5.4 addresses the respective movement of 

p-values for indicated coefficients. We can see that the indicated financial and monetary 

coefficients fluctuates greatly through the entire bubble evolutionary process. The rolling p-

values of dividend growth (lags 1 and 2) and 3-month treasury bills rate (lags 1 and 2) 

demonstrate a U-shape movement, that is, there is no predictive power at the beginning of the 

bubble period while their p-values drop below 10% during the middle and again become 

insignificant at the end of the period. The movement of p-values for small-time deposits at 

Thrift Institutions (lag 2) exhibit similar trend; however, unlike 3-month treasury bills rate 

and dividend growth, its forecasting power is highly significant at the beginning while quickly 

dying out after the year of 1997 but regaining predictability between 1998 to 1999 and then 

losing power again afterwards. Alternatively, government bond spread (lag1) shows opposite 

movements, since its indicated coefficient is significant at the early and end of the bubble 

period (1996 to 1998 and 2000 to the early of 2001) but becoming higher than 10% 

significance in the middle. Effective federal funds rate (lag 2) has identical moving trend but 

with different time points for significance shift. It only has a short period of time starting from 
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the end of 1996 to the middle of 1997 with significant predictive power but becoming 

insignificant in the middle of 1999 and then regaining power through the remaining period. 

Furthermore, market variance shows a ‘stable’ forecasting power at the latter part of the 

bubble period, while the moving trend of small-time deposits at Commercial Banks (lag 1) is 

opposite to variance, given its great significant predictive power at the beginning of the 

exuberance, but insignificant values through the remaining period.  

 <Figure 5.4> 

To explore the impact of financial and monetary variables on the price-dividend ratios, we 

report the movement of significant rolling coefficients in Figure 5.5. From the figure, we 

observe that the majority of variables tend to have positive impact during the time points 

when those variables are stamped with significant predictability. These variables contain 

effective federal funds rate (lag 2), dividend growth (lags 1 and 2), market variance (lag 1), 

small-time deposits at Commercial Banks (lag 1) and Thrift Institutions (lag 2). Remaining 

variables exhibit a negative sign in the VAR estimation which include the 3-month treasury 

bills rate (lags 1 and 2) and government bond spread (lag 1). 

 <Figure 5.5> 

Taken together, we obtained significant findings for dynamic relationships between price-

dividend ratio and selected variables, and that may help us figure out the actual impact of 

monetary policies initiated on the market when bubble is present. 

5.10 Further Discussions 

Our work greatly benefits from the work of Philips et al. (2015a, b). By using their date-

stamping strategy, we are able to distinguish our full sample into sub-samples and further 

allow us to compare forecasting power of selected variables over bubble and non-bubble 

periods. In the first part of this chapter, we have shown a dramatic reversal of the relative 

predictability for dividend growth and return over the prewar and post war periods conditional 

on the absence of stock price bubbles. Such a result, if reliable, suggests that profound 

changes occurred in the stock market. The question is what has caused such a reversal. Chen 

(2009) offers several hypotheses: (1) a natural guess is that there are many fewer firms in the 

earlier years than in the later years, and thus the later period is much more representative of 

the market. However, he finds the conclusions still hold after controlling the size and industry 
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factors, (2) he seeks to explain the reversal by using unstable corporate policy. Again, he 

rejects this hypothesis by studying earnings predictability and he concludes that changing 

dividend policies seems unlikely to fully explain why there is a reversal of predictability, and 

(3) dividend growth rate is very volatile in the prewar period but becoming much less so in 

the post war period, while equity return remains volatile in both pre and post war periods, as 

showing below. Chen believes this could be the main reason for the predictability reversal. 

After he running the test on dividend growth volatility (controlling for dividend volatility) 

with return and dividend growth rate, he concludes that dividend growth is predictable in the 

prewar period not because it is more volatile per se, but because it moves in the direction 

predicted by the dividend yield. Reduced cash flow volatility is unlikely to be the direct 

source of the reversal of predictability.  

 

When considering bubbles, our results clearly show that bubbles do have positive/negative 

impacts on predictability. To explain those observed impacts, we raise several hypotheses. In 

the prewar period, we reckon that the explosive nature of bubble is the main reason to cause 

the dividend yield losing significant predictability in the bubble period. One important 

characteristic of bubble phenomenon is that during both run-up and run-down periods, the 

asset encounters high volume trading which will significantly increase the asset price 

volatility. In contrast, dividend received from asset remains stable as the bubble has no impact 

on the expected dividends. Therefore, the ability of dividend-price ratio to forecast the 

movement of dividend growth in the bubble period would be reduced dramatically. In the post 

war period, this mechanism still works for the predictability of dividend yield to return: the 

higher volatility in the bubble periods seems lead to a closer relationship between dividend 

yield and return; thus, we see that there is a clear rise in the forecasting power of dividend 
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yield to market return. However, the results of dividend growth show different results from 

the literature. Unlike findings confirmed by Chen (2009) that real dividend growth is 

significantly predictable but in the ‘wrong’ (positive) direction during the entire post war-

period, we only spotted such positive relationship in the period of post-war bubble, results 

from the non-bubble period still remains consistent with the statement made by the theory. We 

now have a reason to believe that the positive relationship of dividend yield to dividend 

growth from 1950 to 2005 discovered by Chen (2009) may due to the fact that its positive 

relationship in the post-war bubble periods surpasses its negative power in the remaining non-

bubble periods. To understand the puzzle of ‘wrong’ predicting sign, Engsted and Pedersen 

(2010) may provide us an interpretation. They believe the key to understanding such reversal 

is inflation predictability. In fact, if inflation is sufficiently negatively predictable by the 

dividend yield, it may generate significant predictability of real dividend growth in the 

positive direction, exactly as what we observe in the post-war bubble period for the US.  

In the second part of this chapter, we critically discuss the role of monetary policy indicators 

in forecasting the price-dividend ratio through both bubble and non-bubble periods. The 

separate granger-causality tests reveal significant differences in predictive power among 

selected variables when a bubble is not present. Particularly, the adoption of dividend growth, 

safe rate and market variances allows us to examine the availability of traditional dividend-

price model in the US stock market, and the conclusion is different from the literature which 

speaks that the weakest form of CAPM can be satisfied. Our results clearly reject the model 

under any assumptions regarding the determinants of equilibrium expected returns. 

Furthermore, we only spotted a close relationship between dividend-price ratio and market 

volatility in the sub-sample of post Dotcom bubble (2001 to 2008). Thus, unlike the others, 

we cannot recognize this evidence as a possible explanation for well-documented forecasting 

ability of dividend yield in predicting stock returns over time (see Cuthbertson, et al., 1997). 

For monetary variables, one important finding is that the effective federal funds rate, which 

has been critically discussed in the last decade, has lost its predictability in recent years, and 

interest rate spread now plays a more important role in forecasting the movement of the price-

dividend ratio.  

To closely examine the causality dynamics within the bubble period, we implement a rolling 
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VAR regime. Testing results are substantial, since they disclose that some variables have 

significant predictive power to the growth of price-dividend ratio during part of the 

exuberance. We confirmed a strong forecasting relationship between the market variances and 

the growth of price-dividend ratio. The indicated coefficients suggest that if the market 

variance becomes higher, the growth rate of price-dividend ratios will be higher, and this 

positive relationship is highly significant during the period when the bubble is sufficiently 

large. This implies that during the phase of bubble inflation, the behavior of market investors 

has challenged the conventional view; instead, they tend to seek the risk, not to avoid it. This 

finding is consistent with the bubble riding assumption (see Abreu and Brunnermeier, 2003), 

which suggests that rational arbitrageurs understand the market will eventually collapse but 

meanwhile would like to ride the bubble as it continues to grow and generate high returns. 

Ideally, they would like to exit the market just prior to the crash, but commonly market timing 

is a difficult task.  

When combing the findings of rolling results from 3-month treasury bills rate, we may 

provide a complete story. The forecasting ability of 3-month treasury bills rate is not strong at 

the beginning but gradually increasing to a significant level with a negative impact when the 

bubble growing larger (1998 to the late of 1999), while losing its predictability for a short 

period of time and regaining significant negative lead-lag relationship when the size of the 

bubble grows massively. To have a better understanding in the role of interest rate for bubble 

evolution, we divided the whole process into two phases: (1) the size of the bubble is small 

but under high growth rate (1998 to 1999), and (2) its size becomes sufficiently large (after 

2000). At the first stage, we see that the higher growth rate in the interest rate still predicts the 

lower growth rate in the price-dividend ratio like the ‘normal’ times. According to the theory, 

an increase in interest rate always reduces the ‘fundamental’ price of the asset, an effect that 

should be dominant in non-bubble periods, or in the period that the bubble component is small 

(see Gali and Gambetti, 2015). However, in the second stage where the bubble becomes 

sufficiently large and close to burst, we observe that interest rate returns to its negative impact 

on price-dividend ratio, which implies that it works normally as in the first stage. This 

phenomenon could be interpreted by two reasons: (i) an interest rate hike may end up 

lowering the observed asset price due to its negative effect on either bubble or fundamental 
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components of an asset, or (ii) its negative impact on the fundamental component more than 

offsetting the positive effect on the bubble term. Furthermore, interest rate regained negative 

impact sheds light on the change in investing preference of publics, that market participants 

tend to invest in interest rate products when the size of the bubble is large rather than it is 

small; therefore, when the bubble grows massively, the higher growth rate in interest rate 

creates high selling pressure in the stock market, which would lead to the collapse of a 

bubble. This empirical evidence supports the theoretical remarks proposed by Abreu and 

Brunnermeier (2003), who present that an asset bubble would not burst until a coordinated 

selling effort occurs. They point out the large price movement can only occur if the 

accumulated selling pressure exceeds some threshold; in other words, a permanent shift in 

price levels requires a coordinated attack. By showing the significant negative forecasting 

relationship between safe rate and price-dividend ratio, we now have a better understanding in 

the source of coordinated selling pressure. 

We also notice that the growth of small-time deposits at Commercial Banks depicts an 

interesting causality movement, that strong causality exists at the beginning but weak linkage 

through the middle and the end of bubble period. Particularly, their strong linkage tends to be 

positive, briefly suggesting that the higher growth of small-time deposits generally predicts 

the higher growth rate in price-dividend ratios. However, this result is opposite to our 

expectation on the relationship. We expect the sign of coefficient to be negative, because 

based on the Shiller’s feedback loop theory (see Shiller, 2015; Chapter 5), the past price 

increase should induce current and potential investors to continue buying and creates further 

upward pressure on prices. Initially, the increase in stock price raises the investment interest 

of market participants to buy equities rather than saving in the bank, then the increase in stock 

prices attracts other investors to enter the market and causing further upward movement that 

cannot be supported by the growth in deposits. Therefore, we would expect that there is a 

negative rather than positive sign at the beginning of Dotcom bubble. 

The remaining variables also depict some important findings. The effective federal funds rate, 

which has been argued that this is a good indicator for monetary policy actions, enjoys strong 

forecasting power to the price-dividend ratio during the late of 1999; however, such ability 

only lasts for half a year and be vanished after the year of 2000. Surprisingly, the rolling 
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coefficients have a positive sign when their relationship is significant, strongly supporting that 

the tighter monetary conditions (indicated by a higher growth in the federal funds rate) predict 

higher growth rate in the ratios. These empirical findings are well against the assumption that 

(i) monetary policy consistently has impact on stock price bubbles and (ii) that tighter 

monetary policies, in the form of higher short-term interest rates, may help dis-inflate 

bubbles. Empirically, our evidence supports the theoretical model suggested by Gali (2014), 

who briefly discusses the linkage between the monetary policy and rational bubble. Their 

model shows that the increase in the rate engineered by the central bank will lead to higher 

growth in the size of the bubble, although the objective of such a policy implementation is 

completely opposite. They point out that to cool down the market, the policy should strike a 

balance between stabilization of current aggregate demand which calls for a positive interest 

rate response to the bubble, and stabilization of the bubble itself which could warrant a 

negative interest rate. If the average size of the bubble is sufficiently large, the latter motive 

will be dominant, making it optimal for the central bank to lower interest rates in the face of 

growing bubble. However, in fact, our results find that the central bank’s rate only plays the 

role in the first part that leads to the increase in the size of the bubble, whereas the expected 

part of the policy never works in the stage where the bubble becomes sufficiently large.  

Alternatively, another monetary policy indicator – government bond spread – shows an 

opposite result, since its predictive power is significant at the growing stage of the bubble and 

tend to have a negative impact on the growth rate of price-dividend ratio: the higher change 

rate in government bond spread predicts the lower growth rate in price-dividend ratio. We can 

see that it perfectly matches the objective of policy implementation for dis-inflating the 

bubble; therefore, our results suggest that macroeconomic variables which tend to have 

impact on the movement of government bond spread (see e.g., Ang and Piazzesi, 2003, Smith 

and Taylor, 2009) would work satisfactorily against bubble inflation.10 However, we 

emphasis that this negative relationship is only present for the very beginning of the 

exuberance. Policymakers should be aware of that dis-inflating bubble based on targeting 

government bond spread works only when the bubble is small and under growing, it cannot be 

 
10 Here we notice that monetary policy focused on manipulating federal funds rate might reduce the size of bubble, not through direct 

impact, but through indirect channel over the government bond spread. 
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an effective tool when the bubble grows large.  

Overall, our findings reveal the dynamic forecasting ability of financial and monetary 

variables to price-dividend ratio, interpreting their rationale behind bubble evolutionary 

process and highlighting the importance of when and which variable should be monitored by 

regulators with the purpose of defending bubble inflation.  

5.11 Conclusion 

In this chapter, we critically assess the predictability of financial and monetary variables in 

the US stock market on the basis of Campbell-Shiller’s model by using both monthly and 

weekly datasets. The evidence we have presented in this chapter is intriguing, since we show 

the dynamic predictability on stock market data through our bubble and non-bubble sub-

periods, and further unfold the puzzle behind the bubble evolution while providing guidelines 

for policy implementation within the period of exuberance. In general, our monthly data 

results show that bubbles do have a significant impact on the predictability to stock market 

data, and our weekly results reject the traditional dividend-price model under any 

circumstances while they support the majority of theoretical works focused on analyzing 

bubble evolutionary process by showing the role of investors’ behavior. In addition, our 

results suggest a better policy indicator − government bond spread − in a role of against 

bubble growth.  

However, we also notice that some empirical evidence is well against the theoretical model. 

The negative forecasting relationship between small-time deposits at bubble growing stage is 

against one of the popular interpretations in bubble inflation – Shiller’s feedback loop theory. 

Furthermore, we also point out that the price-dividend ratio is not a perfect indicator of 

bubbles – because it has two components – the fundamental and the bubble component. The 

fundamental part is always there even when there is a bubble, but the bubble component is 

only existed during the bubble period. Therefore, our results only give approximate 

information about the relationship between monetary policy and the bubble.  

Although monetary variables can be used as predictors for stock market data either in the non-

bubble and bubble periods, arguments based only on monetary perspective cannot conclude 

the movement of stock market data, nor explaining all forces behind bubble inflating 
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mechanism. Thus, there are several alternative explanations depending on other promising 

perspectives, and more studies are required to shed light on those potential interpretations.  
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Table 5.1: Monthly Data Summary Statistics. 

 Observations Mean Median Maximum Minimum Std. Dev. Skewness Kurtosis 

Panel A: Full sample stock market data         

S&P log Dividend-Price Ratio 1763 –3.22 –3.15 –1.98 –4.50 0.43 –0.69 3.17 

Log real returns 1763 0.56  0.92  42.15  –30.36  4.06  –0.29  14.35  

Log real dividend growth 1763 0.13  0.18  7.70  –9.35  1.44  –0.59  7.72  

Panel B: Monetary Variables in sub-sample 2         

Baa-Aaa Corporate Bond Spread 816 0.08 0.07 0.28 0.03 0.04 1.83 7.74 

Long-Short Government Bond Spread 816 0.12 0.12 0.37 –0.22 0.10 –0.14 2.91 

Table 5.1 presents descriptive statistics for the monthly stock market data in full sample and two monetary variables in sub-sample 2. Panel A shows the Stock market data with real logarithm form of dividend-price ratio, 

real returns and dividend growth covering 1871 to 2017, while Panel B illustrates the two monthly monetary variables with Baa-Aaa Corporate Bond Spread and Long-Short Government Bond Spread starting from 1950 

to 2017.  
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Table 5.2: Weekly Data Summary Statistics. 

 Observations Mean Median Maximum Minimum Std. Dev. Skewness Kurtosis 

S&P log Price-Dividend Ratio 1864 1.61 1.66 1.97 1.18 0.19 –0.31 2.32 

Log real dividend growth 1864 0.02  0.02  1.65  –2.15  0.22  –1.41  22.54  

Variances 1864 0.0001 0.00003 0.0068 0.0001 0.0003 14.3362 275.8865 

Real 3-month Treasury Bills Rate 1864 1.05 1.05 1.17 1.00 0.04 0.72 3.43 

Real Effective Federal Funds Rate 1864 1.05 1.05 1.20 1.00 0.04 0.93 4.09 

Real Baa-Aaa Corporate Bond Spread 1864 0.01 0.01 0.03 0.01 0.00 1.81 7.01 

Real Long-Short Government Bond Spread 1864 0.02 0.02 0.05 –0.04 0.01 –0.7 3.52 

Log real Small-time Deposits at Commercial Banks 1864 5.90 5.93 6.09 5.49 0.11 –1.65 5.69 

Log real Small-time Deposits at Thrift Institutions 1820 5.72 5.70 6.10 5.08 0.27 –0.44 2.65 

Table 5.2 illustrates descriptive statistics for the weekly stock market and monetary variables starts from 1980:1 to 2015:9. Stock market data consists of real logarithm form of price-dividend ratio, real dividend growth 

and market variance, while monetary variables are real 3-month treasury bills rate, real effective federal funds rate, real Baa-Aaa corporate bond spread, real long-short government bond spread, and log small-time deposits 

at Commercial Banks and Thrift Institutions.  
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Table 5.3: Predictability by the dividend-price ratio: full sample, 1871:1-2017:12. 

 Parameters t-statistics 

Dependent variable Returns 

Constant 1.398 1.408 

Slope 0.261 0.878 

R-squared (%) 0.078  

Dependent variable Dividend Growth 

Constant –1.304 –2.545*** 

Slope –0.445 –2.976*** 

R-squared (%) 1.803  

This table reposts the testing statistics for full sample period starts from 1871 to 2017 without considering bubbles. Note. *, **, ***, indicates 

statistical significance at the 10%, 5% and 1% levels respectively using Newey-West robust standard errors.  
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Table 5.4: Predictability by the dividend-price ratio: sub-sample results. 

 Parameters t-statistics 

Panel A: Sub-sample 1: 1871:1-1949:12   

Dependent variable Returns 

Constant 1.895 0.614 

Slope 0.466 0.454 

R-squared (%) 0.06  

Dependent variable Dividend Growth 

Constant –5.531 –4.183*** 

Slope –1.897 –4.280*** 

R-squared (%) 5.887  

Panel B: Sub-sample 2: 1950:1- 2017:12   

Dependent variable Returns 

Constant 2.570 2.156** 

Slope 0.560 1.670* 

R-squared (%) 0.46  

Dependent variable Dividend Growth 

Constant –0.521 –1.068 

Slope –0.197 –1.439 

R-squared (%) 1.379  

This table reposts the testing statistics for sub-sample period without considering bubbles. Panel A covers the sub-sample 1 from 1871:1 to 

1949:12, while Panel B covers the period starts from 1950:1 to 2017:12. Note. *, **, ***, indicates statistical significance at the 10%, 5% and 

1% levels respectively using Newey-West robust standard errors.  
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Table 5.5: Predictability by the government bond spread: sub-sample 2, 1950:1-2017:12 

 Parameters t-statistics 

Dependent variable Returns 

Constant 0.178 0.725 

Slope 3.455 1.974* 

R-squared (%) 0.893  

Dependent variable Dividend Growth 

Constant 0.154 2.149*** 

Slope 0.145 0.275 

R-squared (%) 0.038  

This table reposts the testing statistics of government bond spread for sub-sample 2 starts from 1950:1 to 2017:12 without considering bubbles. 

Note. *, **, ***, indicates statistical significance at the 10%, 5% and 1% levels respectively using Newey-West robust standard errors. 
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Table 5.6: Predictability by the Baa-Aaa bond spread: sub-sample 2, 1950:1-2017:12. 

 Parameters t-statistics 

Dependent variable Returns 

Constant 0.343 0.780 

Slope 3.256 0.559 

R-squared (%) 0.116  

Dependent variable Dividend Growth 

Constant 0.544 4.342*** 

Slope –4.671 –3.035*** 

R-squared (%) 5.769  

This table reposts the testing statistics of Baa-Aaa spread for sub-sample 2 starts from 1950:1 to 2017:12 without considering bubbles. Note. *, 

**, ***, indicates statistical significance at the 10%, 5% and 1% levels respectively using Newey-West robust standard errors. 
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Table 5.7: PSY date-stamping results.  

Market Source Testing periods NO. 𝑮𝑺𝑨𝑫𝑭(𝒓𝟎) Date-stamping Result 

Panel A: Monthly 

S&P 500 S&P INDEX 1871/01 to 2017/12 1763 4.160*** 

1879/10 to1880/04 

1917/08 to 1918/04 

1928/11 to 1929/10 

1955/01 to 1956/04 

1986/06 to 1987/09 

1995/11 to 2001/08 

2009/02 to 2009/04 

Panel B: Weekly 

S&P 500 S&P INDEX 1980/1 to 2015/9 1864 2.263** 
1996/11/12 to 2001/02/20 

2008/09/26 to 2009/04/03 

In Table 5.7, we report the details of our data selection for stock market index in the US, including sources, testing periods, number of observations 

contained for price-dividend ratio, either monthly or weekly, and we also demonstrate conclusion of PSY testing statistics as well as  the date-

stamping results. The monthly S&P INDEX (in Panel A) is collected from Robert Shiller’s website: http://www.econ.yale.edu/~shiller/data.htm, 

while the weekly S&P INDEX (in Panel B) comes from the DataStream database. Note that in our testing procedures, we use the logarithmic form 

of price-dividend ratio. *** represents 99% level of significance, ** is the 95% level of significance and * is the 90% level of significance. 

http://www.econ.yale.edu/~shiller/data.htm
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Table 5.8: Predictability by the lagged dividend-price ratio allowing for a bubble: full-sample, 1871:1-

2017:12. 

 Parameters t-statistics 

Dependent variable Returns 

 No bubble 

Constant 1.760 1.552 

Slope 0.398 1.152 

 Bubble 

Constant 8.603 3.680*** 

Slope 1.887 2.953*** 

R-squared (%) 0.764  

Dependent variable Dividend Growth 

 No bubble 

Constant –1.834 –3.287*** 

Slope –0.617 –3.733*** 

 Bubble 

Constant 2.539 1.725* 

Slope 0.611 1.696* 

R-squared (%) 2.966 

This table reposts the testing statistics for full sample period starts from 1871 to 2017 with bubble and non-bubble periods. Note. *, **, ***, 

indicates statistical significance at the 10%, 5% and 1% levels respectively using Newey-West robust standard errors.  
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Table 5.9: Predictability by the lagged dividend-price ratio allowing for a bubble: sub-sample 1, 1871:1-

1949:12. 

 Parameters t-statistics 

Dependent variable Returns 

 No bubble 

Constant 2.391 0.757 

Slope 0.645 0.614 

 Bubble 

Constant 28.93 1.096 

Slope 8.16 1.020 

R-squared (%) 0.409  

Dependent variable Dividend Growth 

 No bubble 

Constant –5.515 –4.032*** 

Slope –1.893 –4.118*** 

 Bubble 

Constant –25.747 –1.114 

Slope –7.969 –1.161 

R-squared (%) 6.16 

This table reposts the testing statistics for sub-sample period starts from 1871:1 to 1949:12 with bubble and non-bubble periods. Note. *, **, 

***, indicates statistical significance at the 10%, 5% and 1% levels respectively using Newey-West robust standard errors.  
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Table 5.10: Predictability by the lagged dividend-price ratio allowing for a bubble: sub-sample 2, 1950:1-

2017:12 

 Parameters t-statistics 

Dependent variable Returns 

 No bubble 

Constant 2.885 2.151** 

Slope 0.688 1.790* 

 Bubble 

Constant 9.280 3.591*** 

Slope 2.042 2.958*** 

R-squared (%) 1.853  

Dependent variable Dividend Growth 

 No bubble 

Constant –1.267 –2.247** 

Slope –0.418 –2.615** 

 Bubble 

Constant 2.831 3.543*** 

Slope 0.687 3.427*** 

R-squared (%) 6.839 

This table reposts the testing statistics for sub-sample period starts from 1950:1 to 2017:12 with bubble and non-bubble periods. Note. *, **, 

***, indicates statistical significance at the 10%, 5% and 1% levels respectively using Newey-West robust standard errors. 
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Table 5.11: Predictability by the lagged government bond spread allowing for a bubble: sub-sample 2, 

1950:1-2017:12 

 Parameters t-statistics 

Dependent variable Returns 

 No bubble 

Constant 0.062 0.242 

Slope 3.503 1.968** 

 Bubble 

Constant 0.269 0.339 

Slope 10.949 1.656* 

R-squared (%) 1.783  

Dependent variable Dividend Growth 

 No bubble 

Constant 0.171 2.280** 

Slope 0.051 0.094 

 Bubble 

Constant –0.023 –0.095 

Slope 1.711 1.008 

R-squared (%) 0.289 

This table reposts the testing statistics of government bond spread for sub-sample period starts from 1950:1 to 2017:12 with bubble and non-

bubble periods. Note. *, **, ***, indicates statistical significance at the 10%, 5% and 1% levels respectively using Newey-West robust standard 

errors. 
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Table 5.12: Predictability by the lagged Baa-Aaa spread allowing for a bubble: sub-sample 2, 1950:1-2017:12 

 Parameters t-statistics 

Dependent variable Returns 

 No bubble 

Constant 0.137 0.294 

Slope 4.529 0.745 

 Bubble 

Constant 1.035 0.982 

Slope 3.559 0.235 

R-squared (%) 0.728  

Dependent variable Dividend Growth 

 No bubble 

Constant 0.568 4.175*** 

Slope –0.418 –2.936*** 

 Bubble 

Constant 0.591 2.142** 

Slope –7.151 –1.944* 

R-squared (%) 6.200 

This table reposts the testing statistics of Baa-Aaa spread for sub-sample period starts from 1950:1 to 2017:12 with bubble and non-bubble 

periods. Note. *, **, ***, indicates statistical significance at the 10%, 5% and 1% levels respectively using Newey-West robust standard errors. 
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Table 5.13:Augmented Dicky-Fuller test for non-bubble periods 

Financial and Monetary Variables Testing statistics 

Panel A: Pre-Dotcom bubble period  

Log (Price-dividend Ratio) –3.46*** 

Log (Dividend Growth) –29.35*** 

Variances –9.45*** 

3-month Treasury Bills rate –6.25*** 

Long-Short Government Bond Spread –3.62*** 

Effective Federal Funds Rate –9.14*** 

Baa-Aaa Spread –7.14*** 

Panel B: Post-Dotcom bubble period  

Log (Price-dividend Ratio) –1.78* 

Log (Dividend Growth) –18.47*** 

Variances –3.14*** 

3-month Treasury Bills rate –4.42*** 

Long-Short Government Bond Spread –5.27*** 

Effective Federal Funds rate –5.06*** 

Baa-Aaa Spread –4.81*** 

Panel C: Post 2008 crisis period  

Log (Price-dividend Ratio) –4.68*** 

Log (Dividend Growth) –17.97*** 

Variances –10.53*** 

3-month Treasury Bills rate –5.17*** 

Long-Short Government Bond Spread –4.01*** 

Effective Federal Funds rate –5.07*** 

Baa-Aaa Spread –5.33*** 

Table 5.13 reports the ADF values with the null hypothesis that the variables have a unit root. Panel A covers the period of Pre-Dotcom bubble, 

Panel B represents the period of Post-Dotcom bubble, and Panel C shows the testing results for Post 2008 crisis period. *** represents 99% level 

of significance, ** is the 95% level of significance and * is the 90% level of significance.  
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Table 5.14: Granger-causality test for non-bubble periods 

 
Pre-Dotcom bubble Post-Dotcom bubble Post 2008 crisis 

Financial and Monetary Variables Obs. Wald Statistics Obs. Wald Statistics Obs. Wald Statistics 

Null hypothesis: X does not Granger-cause price-dividend ratio       

3-month Treasury Bills rate (safe rate) 877 6.46*** 394 0.33 333 1.61 

Dividend Growth 877 0.67 394 0.35 333 1.34 

Variance 875 1.05 394 4.53*** 333 0.30 

Long-Short Government Bond Spread 876 0.79 394 0.39 333 9.16*** 

Baa-Aaa Spread 876 2.30* 394 1.22 333 2.34* 

Effective federal funds rate 876 2.61** 394 0.59 333 1.91 

Diff (Small-time Deposits at Commercial Banks) 876 0.61 394 0.15 333 0.07 

Diff (Small-time Deposits at Thrift Institutions) 832 0.60 394 0.59 333 0.29 

Table 5.14 generally shows the number of observations, Wald-statistics and significance for each of the corresponding Granger-causality test which are included in the Pre-Dotcom bubble, Post-Dotcom bubble and Post 

2008 crisis sub-samples, respectively. X represents the following financial and monetary variables: price-dividend ratio, dividend growth, variance, 3-month treasury bills rate (safe rate), long-short Government Bond 

spread, Baa-Aaa spread, effective federal funds rate, and first differences in small-time deposits at Commercial Banks and Thrift Institutions. All monetary variables and financial variable are weekly based and expressed 

in their real values. We use logarithm form in price-dividend ratio, dividend growth and small-time deposits at commercial banks and thrift institutions while for the others, we use their raw values. The lag interval of 1 to 

3 has been selected in the model to eliminate any residual serial correlation. Newey-West estimators are employed to correct the covariance matrix for possible heteroscedasticity. * represents the 90% significant level, 

while ** is the 95% significant level and *** shows the causality relationship is significant at 99% level. 
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Table 5.15: Granger-causality test for bubble period. 

Financial and Monetary Variables Obs. Wald Statistics 

Null hypothesis: X does not granger cause the growth of the growth of price-dividend ratio   

Diff(3-month) 221 1.02 

Dividend Growth 221 0.67 

Variance 221 1.92 

Diff (Government bond Spread) 221 0.33 

Diff (Baa-Aaa Spread) 221 1.63 

Diff (Effective federal funds rate) 221 1.55 

Diff (Small-time Deposits at Commercial Banks) 221 0.37 

Diff (Small-time Deposits at Thrift Institutions) 221 0.50 

Table 5.15 generally shows the number of observations, Wald-statistics and significance for each of the corresponding VAR test which are included in 

the bubble period. Financial and monetary variables include 3-month Treasury Bills Rate, Baa-Aaa spread, effective federal funds rate, dividend growth, 

market variance, price-dividend ratio, Long-short government bond spread, and small-time deposits at Commercial Banks and Thrift Institutions. We 

take the first difference for all variables expect for dividend growth and variances. All financial and monetary variables are weekly based and expressed 

in their real values. We use logarithm form in price-dividend ratio, dividend growth and small-time deposits at commercial banks and thrift institutions 

while for the others, we use their raw values. The lag interval of 1 to 3 has been selected in the model to eliminate any residual serial correlation. Newey-

West estimators are employed to correct the covariance matrix for possible heteroscedasticity. * represents the 90% significant level, while ** is the 

95% significant level and *** shows the causality relationship is significant at 99% level. 
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Figure 5.1: Price-dividend ratios in response to selected variables within the Pre-Dotcom bubble period. 

 

Graphs 1 to 3 represent the testing results of 3-month Treasury Bills rate (safe rate), Baa-Aaa corporate bond spread, and effective federal funds rate, respectively.   

Figure 5.2: Price-dividend ratios in response to selected variables within the Post-Dotcom bubble period. 

 

This graph represents the testing results of variance in the post-dotcom bubble period. 
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Figure 5.3: Price-dividend ratios in response to selected variables within the Post-2008 crisis period. 

 

Graphs 1 to 2 show the testing results of Long-short government bond spread and Baa-Aaa corporate bond spread in the post-2008 crisis period.  
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Figure 5.4: Rolling VAR p-values of selected variables to price-dividend ratio within the bubble period. 

Graphs below show the movement of the p-values for the indicated coefficients from the estimation of the bivariate rolling VAR specification. 

𝑦1  denotes the change of price-dividend ratio for the S&P 500, while 𝑦2 represents the financial and monetary variables of dividend growth, 

conditional market variances, 3-month Treasury Bills rates, effective federal funds rate, Baa-Aaa spread, government bond spread, and small-

time deposits at Commercial Bank and Thrift Institutions. The sample period starts from the late of 1996 and ends in the early of 2001. The 

lag number is set to 3 to eliminate any residual serial correlation.  

𝑦1,𝑡 = 𝛼 + ∑ 𝛽𝑡−𝑘𝑦1,𝑡−𝑘
3
𝑘=0 + ∑ 𝛾𝑡−𝑘𝑦2,𝑡−𝑘

3
𝑘=0 + 𝜀𝑖,𝑡. 

 

A: Plots of the rolling p-value movement for the dividend growth.  

   

B: Plots of the rolling p-value movement for the conditional market variances.  

   

C: Plots of the rolling p-value movement for the 3-month Treasury Bills rate. Diff (3-month) represents the first difference in 3-month 

Treasury Bills rate.  
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D: Plots of the rolling p-value movement for the long-short government bond spread. Diff (gov) is the first difference in government bond 

spread.  

 

E: Plots of rolling p-value movement for the Baa-Aaa spread. Diff (Baa-Aaa) is the first difference in Baa-Aaa spread.  

   

G: Plots of the rolling p-value movement for the Small-time deposits at Commercial Banks. Diff (small-time deposits at Commercial Banks) 

is the first difference in small-time deposits at Commercial Banks.  
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H: Plots of the rolling p-value movement for the Small-time deposits at Thrift Institutions. Diff (small-time deposits at Thrift Institutions) means 

the first difference in small-time deposits at Thrift Institutions.  

   

J: Plots of the rolling p-value movement for the Effective federal funds rate. Diff (effective federal funds rate) represents the first difference in 

effective federal funds rate.  

   

0.0

0.2

0.4

0.6

0.8

1.0

1996 1997 1998 1999 2000 2001

Diff(Small-time deposits at Thrift Institutions) Lag 1

Rolling P-Values

.0

.1

.2

.3

.4

.5

.6

.7

1996 1997 1998 1999 2000 2001

Diff(Small-time deposits at Thrift Institutions) Lag 2

Rolling P-Values

0.0

0.2

0.4

0.6

0.8

1.0

1996 1997 1998 1999 2000 2001

Diff(Small-time deposits at Thrift Institutions) Lag 3

Rolling P-Values

0.2

0.4

0.6

0.8

1.0

1996 1997 1998 1999 2000 2001

Diff(Effective Federal funds rate) Lag 1

Rolling P-Values

0.0

0.2

0.4

0.6

0.8

1.0

1996 1997 1998 1999 2000 2001

Diff(Effective Federal funds rate) Lag 2

Rolling P-Values

0.2

0.4

0.6

0.8

1.0

1996 1997 1998 1999 2000 2001

Diff(Effective Federal funds rate) Lag 3

Rolling P-Values



163 
 

Figure 5.5: Significant rolling VAR coefficients of financial and monetary variables to price-dividend ratio 

within the bubble period 

Graphs below show the movement of significant rolling coefficients from the estimation of the bivariate rolling VAR specification. 𝑦1  denotes 

the growth of price-dividend ratio for the S&P 500, while 𝑦2 represents the financial and monetary variables of dividend growth, conditional 

market variances, 3-month Treasury Bills rates, effective federal funds rate, Baa-Aaa spread, government bond spread, and small-time deposits at 

Commercial Bank and Thrift Institutions. The sample period starts from the late of 1996 and ends in the early of 2001. The lag number is set to 3 

to eliminate any residual serial correlation.  

𝑦1,𝑡 = 𝛼 + ∑ 𝛽𝑡−𝑘𝑦1,𝑡−𝑘
3
𝑘=0 + ∑ 𝛾𝑡−𝑘𝑦2,𝑡−𝑘

3
𝑘=0 + 𝜀𝑖,𝑡. 

 

A: Plots of the significant rolling coefficients movement for the dividend growth.  

 

B: Plots of the significant rolling coefficients movement for conditional market variances.  

 

C: Plots of the significant rolling coefficients movement for the 3-month Treasury Bills rate. Diff (3-month) represents the first difference in 3-

month Treasury Bills rate. 

 

D: Plots of the significant rolling coefficients movement for the long-short government bond spread. Diff (gov) represents the first difference in 

government bond spread. 
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F: Plots of the significant rolling coefficients movement for the Small-time deposits at Commercial Banks. Diff (small-time deposits at 

Commercial Banks) is the first difference in small-time deposits at Commercial Banks.  

  

G: Plots of the significant rolling coefficients movement for the Small-time deposits at Thrift Institutions. Diff (small-time deposits at Thrift 

Institutions) means the first difference in small-time deposits at Thrift Institutions.  

 

I: Plots of the significant rolling coefficients movement for the Effective federal funds rate. Diff (effective federal funds rate) represents the first 

difference in effective federal funds rate.  
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Chapter 6 Conclusion 

6.1 Introduction 

This chapter summarizes the thesis and provides suggestions for future academic research. 

The overall thesis aims to study the nature and evolutionary process of asset price bubbles, 

especially for bubbles emerging in the international equity markets. Primary aspects include 

discovery of asset price bubbles, bubble transmission mechanism and market predictability 

conditional on the presence of bubbles. Our expectations are that bubble phenomena, which 

has a serious impact on stock markets, should widely exist in the global markets, hence by 

discovering and examining its nature, we intend to shed some lights on the policy 

implications for defending bubbles.  

To answer the above research questions, we take a number of steps, which inevitably, 

involved making certain selections with regards to the study sample, the research design and 

methodology, but also the data analysis and interpretation. Being aware that during each step 

of any research process, the choices make possible limitations, in this chapter we evaluate the 

study outcomes and make critical discussions, as to whether our findings are significant and 

robust, but also as the limitations introduced to the findings. Furthermore, in our attempt to 

assess the practical relevance and the prescriptive value of our results, we explain our 

empirical findings to make suggestions for policymakers, regulators and market participants. 

Finally, we express our own views for the future prospects of policy making research and 

suggest some promising future directions for the professions in the field.  

6.2 Main Findings and Their Implications 

By clearly defining the bubble condition, Chapter 3 examined the existence of stock price 

bubbles globally over the past four decades. To reach our research objective, we primarily 

adopt three testing mechanisms: traditional ADF test, PWY (2011) and PSY (2015a, b). 

Testing results confirm that PWY (2011) enjoys better performance than traditional ADF test 

when bubbles are periodically collapsing, while PSY (2015a, b) has stronger testing power 

than PWY (2011) when the testing sample contains several bubbles. In addition, both PWY 

(2011) and PSY (2015a, b) provide date-stamping strategies for practitioners, assisting to 

record the bubbles’ starting and collapsing dates without using subjective but econometric 
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method. The results are substantial, recognizing not only well-known exuberance but also 

debatable explosiveness. For example, PSY date-stamping results for Chinese market prove 

the existence of exuberance in the middle of 2015, which has been questioned by many 

market analysts. Overall, this chapter provides strong evidence of bubbles across countries 

and record the origination and collapse dates of those bubbles over the past four decades. 

By briefly discussing the chronology for some of the major bubble episodes recognized in 

chapter 3, we build up a timeline and it suggests that potential linkage may be present 

between stock markets when they experience bubbles. Just as the recent financial crisis of 

2007-2009 is not an isolated event, most of the cross-border exuberant periods are closely 

related and result in severe global impact. Understanding the nature of such expansion is of 

fundamental importance to study the bubble’s evolutionary course in order to assist market 

participants and policymakers gain deeper insights when dealing with a bubble. It is this latter 

issue that shapes the research objective of chapter 4. By applying VAR and AG-DCC 

(multivariate GARCH) models, we critically discuss the causality relationship between 10 

major equity markets in order to test our bubble transmission hypothesis, that bubble moves 

from one market to another because of the contagion−effect. The VAR results provide strong 

evidence of an increase in cross-market linkages during bubble periods for several countries. 

In contrast to previous studies, which have found that only negative large shocks tend to 

trigger contagion, we confirm that the contagion can also appear in the bubble growth period. 

It is important to stress that the relationship between bubbles and contagion is not found for 

all stock markets considered. For some stock markets we find that bubbles strongly enhance 

contagion, but we do not observe the same phenomenon for other selected markets. The AG–

DCC results support the empirical findings obtained from the VAR models as we document 

strong co-movements in volatility between stock markets when one or more of them have 

bubbles within the relevant test periods. In conclusion, we find that for some stock market 

bubbles, a contagion−effect does exist, which amplifies the potential impact of that bubble on 

global financial stability. We envisage that our findings will be of interest to investors 

operating globally with investment horizons that span periods over which stock market 

bubbles may exist, and to central banks and financial regulators to help them identify priority 

targets when they attempt to lower the potential risk raised by exuberance. 
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Chapter 5 provides two main concluding remarks. By using monthly data, we find evidence 

that: (1) for the period from 1871 to 1949, bubbles may have a negative impact on the 

predictability of dividend yield to dividend growth, and (2) for the post Second World War 

period, it seems that bubbles do have a positive impact on the predictive power of dividend-

price ratio to both return and dividend growth. Therefore, our results fill the gap by relaxing 

the assumption of no bubbles when examining the predictive power of dividend yield to 

return and dividend growth, and show that bubbles have significant impact on the 

predictability.  

Alternatively, our weekly results confirm significant differences in forecasting power of 

monetary policy indicators to price-dividend ratio over time. We now understand that there is 

no such a ‘perfect’ predictor that always remains constant and sufficiently large forecasting 

power in predicting the movement of ratios over time. Specifically, in the bubble period, our 

rolling results provide empirical evidence to support previous theories which focus on 

investors’ behavior to answer the question of what forces are responsible for bubble evolution. 

We also highlight the importance of when and which variable should be monitored with the 

purpose of defending bubble inflation. Overall, we suggest to use government bond spread, 

rather than effective federal funds rate, as a target of monetary policy actions to defend bubble 

growth.  

6.3 Limitations and Further studies 

The empirical findings of the current thesis are based on the international equity market data 

and then narrow down to the US. Although these findings yield promising results, they can be 

more accurate and comprehensive if additional work is conducted. The future direction of 

each chapter is described below. 

In Chapter 3, we discover the existence of bubbles in the international markets based on a 

variety of assumptions such as the type of explosive behavior and bubble model. Relaxing 

one of those assumptions could result in diminished testing power of PWY or PSY test. 

Therefore, we believe that the future research should consider more generalized testing and 

date-stamping mechanism to discover bubbles in the market. 

Chapter 4 extensively reviews spillover effect when multiple countries experience market 
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bubbles in terms of discussing the nature and evolutionary process of stock price bubbles. The 

VAR results confirm the information channel is not the primary transmission channel; 

however, we haven’t discussed whether the other two channels play an important role in the 

bubble transmission mechanism. Therefore, further studies can examine those aspects to assist 

practitioners obtain knowledge about market bubble expansion. 

In Chapter 5, we notice that some relationships cannot be explained by the literature. The 

negative forecasting relationship between small-time deposits at the growing stage of the 

bubble is against one of the popular interpretations in bubble inflation – Shiller’s feedback 

loop theory. Thus, further evidence is needed to uncover the essence of such relationship. 

Also, the price-dividend ratio is not a perfect indicator of a bubble – because it has two 

components – the fundamental and the bubble component. The fundamental part is always 

there even when there is a bubble, but the bubble component is only existed during the bubble 

period. Therefore, our results only give approximate information about the relationship 

between monetary policy and the bubble. To obtain their true relationship, further studies are 

required for detailed formulations to separate the bubble component from the price. 

Furthermore, although monetary variables can be used as predictors for stock market data 

either in the non-bubble and bubble periods, arguments based only on monetary perspective 

cannot conclude the movement of stock market data, nor explaining all forces behind bubble 

inflating mechanism. Therefore, there are several alternative explanations depending on other 

promising perspectives, and more studies are required to shed light on those potential 

interpretations.  
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Appendix 2.1: Asymptotic Properties of the Dating Algorithms.  

The limit theory of these date-stamping strategies requires very detailed calculations which 

are provided in the Phillips, et al. (2015b) (for more details, please see Phillips, et al., 2015b). 

The main results and import of the theory for empirical practice are reviewed below. We look 

in turn at cases where there are no bubbles, a single bubble, and multiple bubbles in the data, 

and we will explain the reason that why PSY strategy has superior power than PWY when 

dealing with multiple bubbles case.  

No bubbles: under the null hypothesis of no bubble episodes in the data the asymptotic 

distributions of the ADF and sup-ADF statistics follow limit distribution in (2.18). The 

backward ADF test with observation ⌊𝑇𝑟2⌋ (T represents the entire sample) is a special case 

of the generalized sup-ADF test with 𝑟1 = 0 (𝑟1 is the 𝑟1
𝑡ℎ  fraction of the total sample T) a 

fixed 𝑟2 (𝑟2 is the 𝑟2
𝑡ℎ  fraction of the total sample) and the backward sup-ADF test is a 

special case of the generalized sup-ADF test with a fixed 𝑟2 and 𝑟1 = 𝑟1 − 𝑟𝑤. Therefore, 

from the limit theory given in (2.18), we have the following asymptotic distributions of these 

two statistics,  

 𝐹𝑟2(𝑊) ∶=
1

2
𝑟2[𝑊(𝑟2)

2−𝑟2]−∫ 𝑊(𝑟)𝑑𝑟𝑊(𝑟2)
𝑟2
0

𝑟2
1 2⁄
{𝑟2 ∫ 𝑊(𝑟)2𝑑𝑟−[∫ 𝑊(𝑟)𝑑𝑟

𝑟2
0 ]

2𝑟2
0

}
1 2⁄ , (2.21) 

 𝐹𝑟2
𝑟0(𝑊) ∶= 𝑠𝑢𝑝𝑟1∈[0,𝑟2−𝑟0] 

𝑟𝑤=𝑟2−𝑟1

{
1

2
𝑟𝑤[𝑊(𝑟2)

2−𝑊(𝑟1)
2−𝑟𝑤]−∫ 𝑊(𝑟)𝑑𝑟[𝑊(𝑟2)−𝑊(𝑟1)]

𝑟2
𝑟1

𝑟𝑤
1 2⁄
{𝑟𝑤 ∫ 𝑊(𝑟)2𝑑𝑟−[∫ 𝑊(𝑟)𝑑𝑟

𝑟2
𝑟1

]
2𝑟2

𝑟1
}
1 2⁄ }. (2.22) 

Define 𝑐𝑣𝛽𝑇  as the 100(1 − 𝛽𝑇)% quantile of 𝐹𝑟2(𝑊) and s𝑐𝑣𝛽𝑇  as the 100(1− 𝛽𝑇)% 

quantile of 𝐹𝑟2
𝑟0(𝑊) (𝑟0 is the smallest sample window width fraction). We know that 

𝑐𝑣𝛽𝑇 → ∞ and s𝑐𝑣𝛽𝑇 → ∞ as 𝛽𝑇 → 0. Given 𝑐𝑣𝛽𝑇 → ∞ and s𝑐𝑣𝛽𝑇 → ∞ under the null 

hypothesis of no bubbles, the probabilities of (false) detecting the origination of bubble 

expansion and the termination of bubble collapse using the backward ADF statistic and the 

backward sup-ADF statistic tend to zero, so that both Pr {𝑟̂𝑒 ∈ [𝑟0, 1]} → 0 and Pr {𝑟̂𝑓 ∈

[𝑟0, 1]} → 0.  

One bubble: PSY (2015b) study the consistency properties of the date estimates 𝑟̂𝑒 and 𝑟̂𝑓 

under different alternatives. The simplest is a single bubble episode, similar to the one 
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considered in PWY. The following generating process used in PWY is an effective reduced 

form mechanism that switches between a martingale mechanism, a single mildly explosive 

episode, collapse, and subsequent renewal of martingale behaviour, 

 𝑋𝑡 = 𝑋𝑡−11{𝑡 < 𝜏𝑒} + 𝛿𝑇𝑋𝑡−11{𝜏𝑒 ≤ 𝑡 ≤ 𝜏𝑓} + 

 (∑ 𝜀𝑘
𝑡
𝑘=𝜏𝑓+1

+ 𝑋𝜏𝑓
∗ ) 1{𝑡 > 𝜏𝑓} + 𝜀𝑡1{𝑗 ≤ 𝜏𝑓}. (2.23) 

In the equation (2.23), 𝛿𝑇 = 1 + 𝑐𝑇
−𝛼 with 𝑐 > 0 and 𝛼 ∈ (0,1), 𝜀𝑡

𝑖𝑖𝑑
→ (0, 𝜎2), 𝑋𝜏𝑓

∗ =

𝑋𝜏𝑒 + 𝑋
∗ with 𝑋∗ = 𝑂𝑝(1), 𝜏𝑒 = ⌊𝑇𝑟𝑒⌋ dates the origination of bubble expansion and 𝜏𝑓 =

⌊𝑇𝑟𝑓⌋ dates the termination of bubble collapse (τ = ⌊𝑇r⌋ represents a bubble phase in the 

overall trajectory). The pre-bubble period 𝑁0 = [1, 𝜏𝑒) is assumed to be a pure random walk 

process but this is not essential to the asymptotic theory. The bubble expansion period B =

[𝜏𝑒, 𝜏𝑓] is a mildly explosive process with expansion rate given by the AR coefficient 𝛿𝑇. As 

discussed in PWY, mildly explosive processes are well suited to capturing market exuberance. 

The process then collapses abruptly to 𝑋𝜏𝑓
∗ , which equals 𝑋𝜏𝑒 plus a small perturbation, and 

continues its random wandering martingale path over the subsequent period 𝑁1 = (𝜏𝑓, 𝜏]. The 

equation above captures the main features of interest when there is a single bubble episode 

and is useful in analysing test properties for a bubble alternative. 

Under the above equation and certain rate conditions both ADF and Backward sup-ADF 

detectors provide consistent estimates of the origination and termination dates of the bubble. 

Consistent estimation of the bubble dates also requires that the minimum window size 𝑟0 not 

exceed 𝑟𝑒 otherwise the recursive regressions do not include 𝑟𝑒 and the origination date is 

not identified. When the point estimates 𝑟̂𝑒 and 𝑟̂𝑓 are obtained as in PWY using the ADF 

test and the first crossing times (2.16) then (𝑟̂𝑒, 𝑟̂𝑓)
𝑝
→ (𝑟𝑒, 𝑟𝑒) as 𝑇 → ∞ provided the 

following rate conditions on the critical value 𝑐𝑣𝛽𝑇  holds, 

 
1

𝑐𝑣𝛽𝑇
+

𝑐𝑣𝛽𝑇

𝑇1 2⁄ 𝛿𝑇
𝑟−𝑟𝑒 → 0, 𝑎𝑠 𝑇 → ∞, (2.24) 

Consistency of (𝑟̂𝑒, 𝑟̂𝑓) was first proved in a working paper of Phillips and Yu (2009). When 

the point estimates 𝑟̂𝑒 and 𝑟̂𝑓 are obtained from the Backward sup-ADF detector using the 
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crossing time criteria (2.20), they again have consistency (𝑟̂𝑒, 𝑟̂𝑓)
𝑝
→ (𝑟𝑒, 𝑟𝑓) as 𝑇 → ∞ under 

the corresponding rate condition on the critical value s𝑐𝑣𝛽𝑇 , viz.,  

 
1

𝑠𝑐𝑣𝛽𝑇
+

𝑠𝑐𝑣𝛽𝑇

𝑇1 2⁄ 𝛿𝑇
𝑟−𝑟𝑒 → 0, 𝑎𝑠 𝑇 → ∞ (2.25) 

Thus, both strategies consistently estimate the origination and termination points when there 

is only a single bubble episode in the sample period. The rate conditions (2.24) and (2.25) 

require for consistency of (𝑟̂𝑒, 𝑟̂𝑓) that (𝑐𝑣𝛽𝑇 , 𝑠𝑐𝑣𝛽𝑇) pass to infinity and that their orders of 

magnitude be smaller than 𝑇1 2⁄ 𝛿𝑇
𝑟−𝑟𝑒. It is sufficient for consistency of (𝑟̂𝑒, 𝑟̂𝑓) that the 

critical values 𝑐𝑣𝛽𝑇  and 𝑠𝑐𝑣𝛽𝑇 applied in the recursions expand slowly as 𝑇 → ∞. The 

probability of false rejection of normal behaviour then goes to zero. The upper rate condition 

that delimits the rate at which (𝑐𝑣𝛽𝑇 , 𝑠𝑐𝑣𝛽𝑇) pass to infinity ensures the successful detection 

of mildly explosive behaviour under the alternative. In effect, the critical values used in the 

crossing times (2.20) must not pass to infinity too fast relative to the strength of exuberance in 

the data which is governed by the value of the localizing parameter α < 1 in the AR 

coefficient 𝛿𝑇 = 1 + 𝑐𝑇
−𝛼.  

Multiple bubbles: Multiple bubble episodes maybe analysed in a similar way using more 

complex alternative models and more detailed calculations, which are reported in PSY 

(2015b). The key results are showed in the case of two bubble cases, which are generated in 

the following system extending the model proposed in single bubble episode.  

𝑋𝑡 = 𝑋𝑡−11{𝑡 < 𝑁0} + 𝛿𝑇𝑋𝑡−11{𝑡 ∈ 𝐵1 ∪ 𝐵2} + (∑ 𝜀𝑘
𝑡
𝑘=𝜏1𝑓+1

+ 𝑋𝜏1𝑓
∗ ) 1{𝑡 ∈ 𝑁1} + 

 (∑ 𝜀𝑘
𝑡
𝑘=𝜏2𝑓+1

+ 𝑋𝜏2𝑓
∗ ) 1{𝑡 ∈ 𝑁2} + 𝜀𝑡1{𝑗 ∈ 𝑁0 ∪ 𝐵1 ∪ 𝐵2}. (2.26) 

In the new system (2.26), different notation has been used: 𝑁0 = [1, 𝜏1𝑒), 𝐵1 = [𝜏1𝑒 , 𝜏1𝑓], 

𝑁1 = (𝜏1𝑓, 𝜏1𝑒), 𝐵2 = [𝜏2𝑒, 𝜏2𝑓] and 𝑁2 = (𝜏2𝑓, 𝜏]. The observations 𝜏1𝑒 = ⌊𝑇𝑟1𝑒⌋ and 

𝜏1𝑓 = ⌊𝑇𝑟1𝑓⌋ are the origination and termination dates of the first bubble; 𝜏2𝑒 = ⌊𝑇𝑟2𝑒⌋ and 

𝜏2𝑓 = ⌊𝑇𝑟2𝑓⌋ are the origination and termination dates of the second bubbles; and 𝜏 is the 

last observation of the sample. After the collapse of the first bubble, 𝑋𝑡 resumes a martingale 

path until time 𝜏2𝑒 − 1 and a second episode of exuberance begins at 𝜏2𝑒 . The expansion 
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process lasts until 𝜏2𝑓  and collapses to a value of 𝑋𝜏2𝑓
∗ . The process then continues on a 

martingale path until the end of the sample period 𝜏. The expansion duration of the first is 

assumed to be longer than that of the second bubble, namely 𝜏1𝑓 − 𝜏1𝑒 > 𝜏2𝑓 , −𝜏2𝑒. Obvious 

extension of the system includes models where the mildly explosive coefficient δ𝑇 takes 

different values in regimes 𝐵1 and 𝐵2 and models where the transition mechanisms to 

martingale behaviour over 𝑁1 and 𝑁2 take more graduated and possibly different forms, 

thereby distinguishing the bubble mechanisms in the two cases.  

The date-stamping strategy of PWY suggests calculating 𝑟1𝑒, 𝑟1𝑓, 𝑟2𝑒, 𝑟2𝑓 and 𝑟2𝑓 from 

the following equations (based on the ADF statistic), 

𝑟̂1𝑒 = 𝑖𝑛𝑓𝑟2∈[𝑟0,1] {𝑟2: 𝐴𝐷𝐹𝑟2 > 𝑐𝑣𝑟2
𝛽𝑇} 𝑎𝑛𝑑  

 𝑟̂1𝑓 = 𝑖𝑛𝑓𝑟2∈[𝑟̂1𝑒+log(𝑇) 𝑇⁄ ,1] {𝑟2: 𝐴𝐷𝐹𝑟2 < 𝑐𝑣𝑟2
𝛽𝑇}, 

𝑟̂2𝑒 = 𝑖𝑛𝑓𝑟2∈[ 𝑟̂1𝑓,1] {𝑟2: 𝐴𝐷𝐹𝑟2 > 𝑐𝑣𝑟2
𝛽𝑇} 𝑎𝑛𝑑  

 𝑟̂2𝑓 = 𝑖𝑛𝑓𝑟2∈[𝑟̂2𝑒+log(𝑇) 𝑇⁄ ,1] {𝑟2: 𝐴𝐷𝐹𝑟2 < 𝑐𝑣𝑟2
𝛽𝑇}, 

where the duration of the bubble periods is restricted to be longer than log(𝑇). The new 

strategy recommends using the backward sup-ADF test and calculating the origination and 

termination points according to the following equations, 

𝑟̂1𝑒 = 𝑖𝑛𝑓𝑟2∈[𝑟0,1] {𝑟2: 𝐵𝑆𝐴𝐷𝐹𝑟2(𝑟0) > 𝑠𝑐𝑣𝑟2
𝛽𝑇}, 

 𝑟̂1𝑓 = 𝑖𝑛𝑓𝑟2∈[𝑟̂1𝑒+δlog(𝑇) 𝑇⁄ ,1] {𝑟2: 𝐵𝑆𝐴𝐷𝐹𝑟2(𝑟0) < 𝑠𝑐𝑣𝑟2
𝛽𝑇}, 

𝑟̂2𝑒 = 𝑖𝑛𝑓𝑟2∈[𝑟̂1𝑓,1] {𝑟2: 𝐵𝑆𝐴𝐷𝐹𝑟2(𝑟0) > 𝑠𝑐𝑣𝑟2
𝛽𝑇}, 

 𝑟̂2𝑓 = 𝑖𝑛𝑓𝑟2∈[𝑟̂2𝑒+δlog(𝑇) 𝑇⁄ ,1] {𝑟2: 𝐵𝑆𝐴𝐷𝐹𝑟2(𝑟0) < 𝑠𝑐𝑣𝑟2
𝛽𝑇}. 

An alternative implementation of the PWY procedure is to use that procedure sequentially, 

namely to detect one bubble at a time and sequentially re-apply the algorithm. The dating 

criteria for the first bubble remain the same. Conditional on the first bubble having been 

found and terminated at 𝑟̂1𝑓, the following dating criteria are used to date stamp a second 



182 
 

bubble, 

 𝑟̂2𝑒 = 𝑖𝑛𝑓𝑟2∈[ 𝑟̂1𝑓,1] {𝑟2:𝑟̂1𝑓  𝐴𝐷𝐹𝑟2 > 𝑐𝑣𝑟2
𝛽𝑇}  𝑎𝑛𝑑  

 𝑟̂2𝑓 = 𝑖𝑛𝑓𝑟2∈[𝑟̂2𝑒+log(𝑇) 𝑇⁄ ,1] {𝑟2:𝑟̂1𝑓  𝐴𝐷𝐹𝑟2 < 𝑐𝑣𝑟2
𝛽𝑇}, 

where 𝑟̂1𝑓ADF𝑟2 is the ADF statistic calculated over (𝑟̂1𝑓, 𝑟2]. This sequential application of 

the PWY procedure requires a few observations in order to re-initialize the test process after a 

bubble.  

The asymptotic behaviour of these various dating estimates is developed in PSY (2015b) and 

summarized as follows.  

(i) The PWY procedure: Under (2.26) and the rate condition (2.24), the ADF detector provides 

consistent estimates (𝑟̂1𝑒, 𝑟̂1𝑓)
𝑝
→ (𝑟1𝑒, 𝑟1𝑓) of the origination and termination of the first 

bubble, but does not discover the second bubble when the duration of the first bubble exceeds 

that of the second bubble 𝜏1𝑓 − 𝜏1𝑒 > 𝜏2𝑓, −𝜏2𝑒 . If the duration of the first bubble is shorter 

than the second bubble 𝜏1𝑓 − 𝜏1𝑒 ≤ 𝜏2𝑓, −𝜏2𝑒 , than under the rate condition 

 
1

𝑐𝑣𝛽𝑇
+

𝑐𝑣𝛽𝑇

𝑇1−𝛼 2⁄ → 0, 𝑎𝑠 𝑇 → ∞ (2.27) 

PWY consistently estimates the first bubble and detects the second bubble but with a delay 

that misdates the bubble – specifically (𝑟̂2𝑒, 𝑟̂2𝑓)
𝑝
→ (𝑟2𝑒 + 𝑟1𝑓 − 𝑟1𝑒, 𝑟2𝑓). 

(ii) The backward sup-ADF procedure: Under (2.26) and the rate condition (2.25), the 

backward sup-ADF detector provides consistent estimates (𝑟̂1𝑒, 𝑟̂1𝑓, 𝑟̂2𝑒, 𝑟̂2𝑓)

𝑝
→ (𝑟1𝑒, 𝑟1𝑓, 𝑟2𝑒, 𝑟2𝑓) of the origination and termination points of the first and second bubbles.  

(iii) The sequential PWY procedure: Under (2.26) and the rate condition (2.24), sequential 

application (with re-initialization) of the ADF detector used in PWY provides consistent 

estimates (𝑟̂1𝑒, 𝑟̂1𝑓, 𝑟̂2𝑒, 𝑟̂2𝑓)
𝑝
→ (𝑟1𝑒, 𝑟1𝑓, 𝑟2𝑒 , 𝑟2𝑓) of the origination and termination points of 

the first and second bubbles.  

When the sample period consists of successive bubble episodes the detection strategy of PWY 

consistently estimates the origination and termination of the first bubble but does not 
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consistently date stamp the second bubble when the first bubble has longer duration. The new 

backward sup-ADF procedure and repeated implementation of the PWY strategy both provide 

consistent estimates of the origination and termination dates of the two bubbles. PSY (2015b) 

also examine the consistency properties of the date-stamping strategies when the duration of 

the first bubble is shorter than the second bubble. In this case, the PWY procedure fails to 

fully consistently date-stamp the second bubble whereas the new strategy again succeeds in 

consistently estimating both the origination and termination dates of the two bubbles.  

The reason for detection failures in the original PWY procedure lies in the asymptotic 

behaviour of the recursive estimates of the autoregressive coefficient. Under data generating 

mechanisms such as (2.26), a recursive estimate 𝛿̂0,𝑡 of δ𝑇 = 1 +
𝑐

𝑇𝛼
 that is based on data 

up to observation t ∈ 𝐵2 is dominated by data over the earlier domain 𝑁0 ∪ 𝐵1 ∪ 𝑁1 and it 

turns that that 𝛿̂0,𝑡~1+
𝑐

𝑇𝛼
< 1. It follows that right sided unit root tests generally will not 

detect explosive behaviour with such asymptotic behaviour in the coefficient estimate. This 

difficulty is completely avoided by flexible rolling window methods such as the new 

backward sup-ADF test or by repeated use of the original PWY procedure with re-

initialization that eliminates the effects of earlier bubble episodes. To consistently estimate the 

second bubble using PSY and sequential PWY detectors, the minimum window size needs to 

be small enough to distinguish the different episodes. Particularly, 𝑟0 should be less than the 

distance separating the two bubbles, i.e. 𝑟0 < 𝑟2𝑒 − 𝑟1𝑓.  
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Appendix 5.8: Price-dividend ratios in response to selected variables within the Pre-Dotcom bubble period with 100 weeks. 
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