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Abstract 

Subsea risers are widely used in the offshore oil and gas industry for deep-water productions 

where hydrocarbon flows of multiple phases may appear in several flow patterns. Characterized 

by the alternating liquid- and gas-dominant regions, slug flows are practically problematic due 

to a fluctuation in flow momenta and pressure potentially causing slug flow-induced vibration 

(SIV). Compared with a single-phase flow-induced vibration, fundamental understanding of 

SIV phenomena and the associated effects on the dynamics of catenary risers are still lacking.  

Therefore, the present thesis aims to investigate SIV of flexible catenary risers subject to 

external excitations by the vortex-induced vibration (VIV). The literature of multiphase flows 

(gas-liquid flow patterns, flow maps) and flow-induced vibrations (SIV, VIV) is reviewed. A 

mechanistic steady-state slug model is considered to provide the slug flow-induced loads with 

a two-dimensional continuum riser model. A numerical study for fundamental planar dynamics 

of an inclined curved flexible riser carrying slug gas-liquid flows is conducted. Results 

demonstrate several SIV features and effects of slug flow characteristics (slug unit length, 

translational velocity and fluctuation frequencies) on the riser resonant dynamics. These 

fundamental observations enable a further study with combined VIV-SIV phenomena.  

To incorporate the VIV effect, a phenomenological model based on wake oscillators is 

used and first implemented for an elastically mounted rigid cylinder in uniform flows subject 

to cross-flow/in-line VIV. The dynamical system described by coupled nonlinear cylinder-wake 

oscillators is solved by a numerical-analytical approach. Several important VIV characteristics 

are captured, highlighting abilities of this semi-empirical model in VIV prediction. By applying 

the distributed van der Pol wake-oscillators, this low-order model is then extended to the 

analysis of cross-flow-only VIV of a catenary riser under uniform flows perpendicular to its 

initial curvature plane. Some experimentally observed VIV features of flexible cylinders are 

numerically predicted. By comparing VIV-only with VIV-SIV responses, VIV is found to 

prevail in the combined external-internal excitation cases. Slug flows generally result in a 

significant multi-mode VIV, which becomes more pronounced at higher external flow 

velocities: this is attributed to the effect of softening stiffness of the pipe caused by internal slug 

flow mass and pressure leading to a higher-mode VIV.  

To validate the numerical model of SIV, a small-scale flexible pipe conveying gas-liquid 

flows has been investigated experimentally for a catenary configuration. The experiment is 

carried out in an air-water test loop with a hanging tube section made of silica gel. Both slug 
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flow-induced pipe motions and gas-liquid flow patterns are recorded simultaneously using non-

intrusive high-speed cameras. Pressure variations are also measured at the pipe inlet and outlet 

by two pressure transducers. The flow-transporting system is tested by employing different gas-

liquid flow rates. Occurrence of slug flows is captured at the relatively high ratios of the gas to 

liquid superficial velocities rendering a large-amplitude SIV of the flexible pipe. Under 

different flow conditions, slug flow characteristics are observed to vary significantly in terms 

of the travelling velocities, lengths and frequencies of different slug units. These entail the 

unsteady SIV with modulated amplitudes and frequencies. Some qualitative aspects of slug 

characteristics and SIV responses from numerical predictions are captured in the laboratory 

tests. Through comparisons of riser vibration responses and frequencies between numerical and 

experimental results, the prediction abilities of the mathematical model are recognized.        

In summary, this thesis has investigated fundamental and potential SIV effects on 

catenary risers. A significant role of the slug unit length and the slug translational velocity 

should be considered individually for determining large-amplitude SIV which is of practical 

importance from a design viewpoint. Possible amplifications of riser responses due to slug 

flows are remarked in combined VIV-SIV scenarios. This is meaningful for the riser stress, 

fatigue and failure assessment. Although the present numerical model is limited to steady-state 

slug flows, it paves a way for a future development of computationally efficient tools benefiting 

the screening analysis of subsea risers transporting gas-liquid slug flows.  
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Chapter 1. Introduction 

1.1 Background 

With the rising energy demand for modern society, oil and gas development is playing an 

important role in supplying fossil fuels. Offshore sources from shallow water, deep water and 

ultra-deep water are responsible for around one third in the total shares (Maribus, 2014). 

However, as many shallow-water source fields become exhausted, the industry has moved into 

new areas with greater water depths to exploit hydrocarbon reservoirs. The ventures into harsher 

and remoter deep-water regions result in challenges in subsea design and operation, especially 

for those facilities which may experience severe environmental conditions. Deep-water riser 

and pipelines are the key subsea production systems in the offshore oil and gas industry for 

conveying the hydrocarbon flows from the seabed wells to the ocean surface platforms. Since 

these structures are inherently long, flexible and extensible, they tend to undergo large flow-

induced motions and vibrations due to the environmental loads such as waves, currents as well 

as some internal effects from the conveyed product flows. These inevitable factors can lead to 

serious flow-induced vibration (FIV) phenomena concerning the integrity and reliability of 

subsea systems. The related fatigue failures can be catastrophic, causing personnel safety issues, 

environmental degradation and costly production downtime.  

 

 

 

 

 

 

 

 

 

 

Figure 1.1: FIV problems in offshore engineering considered in the present research work. 
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FIV may take place in various branches of offshore and subsea engineering such as platforms, 

mooring lines, subsea risers, pipelines, umbilicals and jumpers. Such a flow-related vibration 

mechanism was pioneered by Blevins in 1977, describing the dynamic behaviours due to the 

interaction between fluid and structure. The fluid and solid bodies are interrelated through the 

fluid forces, which in turn may be altered and affected by the reaction forces from the moving 

or deformed structure (Blevins, 1990). Based on different types of flows, FIV mechanisms can 

be dramatically different and generally classified into single-phase and multiphase flow-

induced vibrations (Blevins, 1990; Kaneko et al., 2013). The single-phase flow can further be 

categorized into steady and unsteady flows, in which the fluid-structure interaction and 

turbulence forces play dominant roles. On the other hand, as a flowing mixture of different 

fluids, a multiphase flow may excite structural vibrations by its time-varying characteristics in 

flow momentum and pressure. As for offshore oil and gas development, the sources of structural 

excitations may come from the internal and external flows. Further, the combined effects can 

lead to more complex and challenging FIV situations. Figure 1.1 illustrates the FIV problems 

concerned in the present study with some key physical parameters, which play significant roles 

in determining fluid loads and resultant flow-induced structural dynamics.  

Subsea risers may be subject to internal FIV due to the transported hydrocarbons. The 

product flows from the subsea well are typically multiphase flows, which are highly 

complicated in nature with features of time-space randomness and variability. Depending on 

the composition of the petroleum reservoir, such multiphase flows may consist of two leading 

gas and liquid (oil and/or water) phases which are known as the two-fluid, gas-liquid flows. 

Even without considering the dynamics of piping systems, gas-liquid flows are recognised as a 

complex phenomenon as it may appear in diverse geometrical configurations of phase interfaces, 

referred to as flow patterns, based on several flow-pipe parameters such as the pipe orientations, 

diameters, flow directions, physical fluid properties and operating conditions (Yadigaroglu and 

Hewitt, 2017). Pertaining to gas-liquid flows, some major flow patterns for a tube can be 

classified into separated (e.g. stratified flow), dispersed (e.g. bubble flow) and intermittent 

flows (e.g. slug flow). More detailed information regarding the flow characteristics in various 

flow regimes will be presented in the following chapter.   

Among different flow regimes, the slug flow is one of the most common and undesirable 

gas-liquid two-phase flows due to its unsteadiness, intermittency and high pressure drop by 

nature. In the contest of oil and gas production systems in deep water as illustrated in Figure 

1.2, the slug flow may occur in subsea jumpers, pipelines and risers and it can be induced by 

various factors such as hydrodynamic instabilities, pipe geometry and operational conditions. 
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Generally, the slug flow can be classified into hydrodynamic slugs, terrain-induced slugs and 

operation-induced slugs as described below: 

• Hydrodynamic slugs 

This type of slugging is caused by the instability of interfacial waves between the liquid and 

gas phases. Under certain flow conditions, a liquid slug is formed when the amplitude of the 

liquid wave grows and becomes large enough to bridge the whole pipe cross-section.    

• Terrain-induced slugs  

Terrain-induced slugs are initiated by the liquid accumulation at the lowest point of the pipeline, 

resulting in a growing liquid slug in the pipeline-riser system. It is then pushed out of the riser 

as the upstream gas pressure becomes larger than the hydrostatic head and expands. Such slug 

formation, growth, blowout and liquid fall-back process can be cyclic, leading to severe 

pressure variations and flow surges.  

• Operation-induced slugs 

Such type of slug flow is caused by transient operations such as a start-up process, where slugs 

are formed due to a transient liquid accumulation from a steady state. Also, other operations 

like pigging and change of flow rates may result in slugging problems. The former pushes the 

liquid inventory ahead out of the pipeline as liquid slugs, whereas the latter may lead to the 

development of slug flows from a steady flow pattern, e.g. stratified flow, when the gas flow 

rate is increased.   

 

Figure 1.2: Schematic of deep-water subsea production system potentially subject to currents 
and slug flows.  
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The slug flow pattern is characterized by an alternate distribution of liquid- and gas-

dominant sections, termed as liquid slug and gas bubble regions. Unlike some homogeneous 

flow regimes, this discontinuous two-phase flow leads to sudden changes in masses, flow 

momenta and pressure within the pipe. Consequently, fluctuating dynamic forces can be led by 

the slug flow with excitation frequencies which may potentially resonate with the structural 

natural frequencies, resulting in significant FIV. Moreover, additional time-varying loads can 

also be induced due to the change of flow direction when the slug flow is transported through 

bends, elbows or highly curved risers. Such a SIV phenomena are widely recognized by the oil 

and gas industry, being a common and problematic issue causing excessive and cyclic stresses, 

reduction of fatigue life or even catastrophic system failures. For instance, an underwater survey 

by remotely operated vehicles was conducted after the Macondo incident in 2010. It was then 

reported by Zaldivar (2014) that a section of the broken-down riser was subject to regular 

motions on the seafloor because of oil-gas slug flows, in which the riser oscillation frequency 

matches the one of slug flows. Nowadays, the dynamic effects of deep-water flexible risers due 

to the slug flow have been incorporated in the current rules and standards for riser analysis as 

stated in DNVGL-ST-F201. The standard addresses possible SIV for long and flexible risers 

with high curvature by the time-varying loading associated with slug flow weight, centrifugal 

and Coriolis forces. Besides, a large quasistatic re-configuration of riser due to additional slug 

mass and potential resonance due to slug-riser frequency coincidence should be considered 

carefully.  

As for the external FIV, one of the most major and crucial vibration sources for subsea 

structures comes from vortex-induced vibration (VIV). Such a complex fluid-structure 

interaction process may develop when flows pass a movable bluff body, shedding vortices 

behind and consequently inducing coupled periodic drag and lift forces on the body. In 

particular, the hydrodynamic forces can be significantly increased when the frequency of vortex 

shedding becomes close to the structural natural frequency, which leads to a resonance state in 

the so-called lock-in range with generating large vibration amplitudes. The complexities of VIV 

phenomena are more pronounced when considering the long-distance offshore risers, where the 

slender and flexible structures are potentially vulnerable to three-dimensional VIV in 

streamwise, transverse and longitudinal directions. Although the effects of external flows 

leading to VIV has been well studied and documented in the literature (Sarpkaya, 2004; Wu et 

al., 2012), textbooks (Blevins, 1990; Sumer and Fredsøe, 2006), and recommended practice 

(DNVGL-RP-C205; DNVGL-RP-F105; DNVGL-RP-F204), it is still a challenging topic due 

to the complex nature in the fluid-structure interaction, especially, when it refers to practical 
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deep-water applications with curved geometries such as catenary, S-shaped or lazy-wave risers.  

The non-straight configuration is observed to result in more complicated vortex wake along the 

structure due to the effects of flow incidence, which in turn renders different VIV behaviours 

from those observed in the straight ones.   

From an industrial perspective, a scenario of combined internal and external FIV brings 

greater complications and unknowns in offshore design and fatigue assessment. For a practical 

consideration of water depths greater than 1000 m, a large-diameter, long and compliant riser, 

transporting the mixed gas-liquid phases upwardly under a certain flow rate, may be 

simultaneously subject to the external current and internal multiphase flow excitations, 

resulting in both VIV and SIV of the riser. Apart from potentially amplifying overall riser 

vibrations and stresses, such complex flow-pipe interactions could lead to a flow assurance 

issue, operational interruption and greater engineering solution cost. As stated in the 

recommended practice API-RP-1111, dynamic loads both from VIV and SIV should be 

addressed for the fatigue assessment of all subsea components such as risers and flowlines. The 

internal slug flow can potentially subject subsea risers to vibration and lead to more complex 

structural dynamics when VIV is involved. Insights into interrelationships between slug flow 

characteristics and SIV as well as understanding of combined internal-external FIV phenomena 

are meaningful for a reliable design of subsea systems. Despite the practical importance of these 

phenomena in the field, investigations into SIV and combined VIV-SIV mechanism of the 

subsea structures, which fundamentally shed light on the associated stress and fatigue 

assessment, are still lacking. The presently recognized gap drives the present research. 

1.2 Aims and Objectives of the Thesis 

The present thesis aims to investigate SIV of flexible catenary risers subject to external 

excitations by VIV with focusing on the mechanical effects of slug gas-liquid flow 

characteristics, including slug unit length, translational velocity and slug frequency, on the riser 

dynamics and the roles of SIV versus (vs.) VIV in the combined internal-external flow 

situations. To achieve this, a mechanistic steady-state slug flow model is adopted, which 

distinguishes itself from other existing one-dimensional (1D) transient (e.g. slug capturing and 

tracking) models by allowing a parametric investigation of the slug characteristics. Some of the 

important SIV aspects from the numerical study, such as the individual and combined effects 

of slug length and velocity, are expected from the laboratory tests. Model validation is 

attempted by comparing the numerical prediction against and the experimental results for the 

limiting SIV cases. To incorporate VIV effects, a phenomenological model based on wake 
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oscillators is first implemented in case of rigid structures under uniform flows and then applied 

for examining the significance of planar SIV and VIV for the flexible catenary riser subject to 

slug flows and perpendicular uniform currents to the riser curvature. More specifically, the 

objectives of the present thesis are: 

• To develop a mathematical model of a catenary riser transporting slug gas-liquid flows, 

accounting for adequate slug-induced loads attributed to space-time varying internal flow 

mass, weight, centrifugal force, Coriolis force and pressure.  

• To parameterise the slug flow by translational velocity, length, void fraction, pressure loss 

and slug characteristic frequency for individual slug unit and input them into the numerical 

model for exploring potential global riser responses.  

• To carry out parametric investigations by using the developed model under various assigned 

flow conditions for identifying the individual effect of the key slug characteristics (slug unit 

length, translational velocity and frequency) on SIV responses.  

• To conduct laboratory tests of a flexible catenary riser conveying slug gas-liquid flows to 

experimentally assess the significance of SIV for various designated flow conditions with 

obtaining insights into the slug flow-riser dynamics interaction.  

• To compare numerical against experimental results of limiting cases for supporting the 

explanation of the observed SIV phenomena as well as justifying the prediction ability of 

the proposed mathematical model.      

• To predict VIV characteristics using wake oscillators in case of a rigid cylinder in uniform 

flows and extend the semi-empirical approach to model hydrodynamic forces for the 

flexible catenary risers experiencing perpendicular flows.  

• To numerically investigate the planar motion of the catenary riser subject to various 

combined internal-external flow conditions and explore the significance of SIV and VIV in 

VIV-SIV phenomena.  

1.3 Outline of the Thesis 

The thesis is structured as follows: 

Chapter 2 presents a literature review on flow patterns, empirical/semi-theoretical gas-liquid 

flow maps of different flow directions. The literature on SIV is listed and discussed with respect 

to numerical and experimental investigations. Moreover, research studies of VIV within the 

scope of catenary risers are also reviewed.   
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Chapter 3 describes a numerical study conducted for fundamental planar dynamics of an 

inclined curved flexible riser carrying slug gas-liquid flows. A two-dimensional continuum 

model describing coupled horizontal and vertical motions of the curved riser subject to time-

varying slug flow-induced loads is presented. The individual effect of slug characteristics 

including the slug unit length and the translational velocity on the slug flow properties and the 

resultant SIV behaviours of the riser are highlighted.  

Chapter 4 focuses on a numerical study of a flexibly mounted rigid cylinder in uniform flows 

subject to cross-flow/in-line (CF/IL) VIV. A semi-empirical model based on wake oscillators 

is employed for obtaining hydrodynamic lift/drag forces exerted on the cylinder. Combined 

analytical and numerical results are presented and discussed, showing fundamental VIV 

characteristics. In addition, investigations are carried out by adding linear or nonlinear damping 

to assess their efficiency in VIV mitigation.     

Chapter 5 exhibits a mathematical model of CF-only VIV aligning with planar SIV of the 

flexible catenary riser. The validity of the VIV model is justified by a good qualitative and 

quantitative agreement with the published experimental results for a straight cylinder. Dynamic 

behaviours of the catenary riser in VIV-only and combined VIV-SIV scenarios are compared.   

Chapter 6 describes an experimental study on a flexible catenary pipe conveying gas-liquid 

flows. The details of the experimental apparatus, data acquisition and post-processed results are 

presented. Slug flows are captured under various flow conditions, causing SIV of the flexible 

pipe. The correlation between the slug flow characteristics such as travelling velocities, slug 

unit lengths, slug frequencies and SIV responses is investigated. Numerical simulations and 

laboratory tests are qualitatively and quantitative compared. 

Chapter 8 summarises the key conclusions of the present thesis and provides suggestions for 

future research in the field.  

1.4 Scope of the Thesis 

 

 

 

 

Figure 1.3: Illustration of the scope in the present research.
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Chapter 2. Literature Review 

With new offshore oil and gas reservoirs being identified, an effective and economical way of 

production, such as subsea tieback development, becomes increasingly popular. However, the 

long-distance operation requires extra technical considerations since subsea production systems 

(Figure 2.1a) in far and harsh offshore fields are vulnerable to both the environmental factors 

and flow assurance issues. In particular, the multiphase hydrocarbon flow (Figure 2.1b) has 

come into sight owing to its possible appearance throughout the subsea facilities and the 

associated problems significantly concerning the front-end design, reliable analysis and 

efficient operation. Thus, investigations on the practical challenges, e.g. VIV and SIV as 

introduced in Chapter 1, could give insights into the complex fluid-structure interaction 

phenomena, and hence benefit the ongoing research and development in both academia and 

industry. Within the scope of the present work, this chapter provides a review of previous 

research related to gas-liquid flow characteristics, SIV and VIV. Three main sections are 

described in the following. Gas-liquid flow features and regime maps based on empirical and 

theoretical methods are first reviewed for various flow directions. Numerical SIV investigations 

in terms of slug flow models and experimental tests are summarized in the second section. Then, 

VIV investigations in the context of catenary risers are reviewed. 

 

Figure 2.1: Illustration of (a) typical subsea oil and gas production systems (source: 
GENESIS) (b) conveying multiphase gas-liquid flow (source: SINTEF). 

2.1 Gas-Liquid Flow Features and Maps 

2.1.1 Common flow patterns in horizontal and vertical tubes 

It is known that gas-liquid flows may result in different flow patterns. Since variables of 

engineering significance such as the heat and mass transfer, momentum loss, pressure drop and 

(a) (b) 
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pipe vibration strongly depend on flow patterns, it is important to identify a flow regime for 

accurate measurement and determination of design parameters. Over past decades, many 

experimental works have been carried out in terms of the flow regime identification for which 

several methods have been developed. They can be generally classified into a direct observation 

and indirect determination approach (Rouhani and Sohal, 1983). For instance, observing the 

flow patterns directly through visual high-speed photography (Vince et al., 1980) or X-ray 

attenuation (Hewitt and Roberts, 1969) provides a simple but subjective way of determining 

flow patterns. In contrast, indirect approaches using flow signal characterization, such as 

pressure fluctuation (Matsui, 1984), electrical impedance (Barnea et al., 1980) and ultrasound 

method (Liang et al., 2016), have been regarded as relatively objective methodologies for flow 

pattern determination. In the context of a gas-liquid horizontal co-current flow, some major 

flow patterns in a tube are schematically illustrated in Figure. 2.2.   

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Gas-liquid flow patterns in horizontal pipes adapted from Rouhani and Sohal 
(1983). 

The stratified smooth flow is formed by separated gas-liquid phases located at the top and 

bottom due to gravity effects. This type of flow is usually developed at relatively low liquid 

and gas flow rates and it can be evolved into the stratified wavy flow as the gas flow rate 

increases, where the smooth interface turns to be rippled and wavy. Instead, keeping the gas 

flow rate low, an intermittent flow pattern, known as the plug flow, will develop as the liquid 
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rate increases. For this flow pattern, liquid plugs free of gas bubble are separated by elongated 

gas pockets. By increasing the gas flow rate based on the plug flow, the liquid region will be 

aerated with small bubbles and a new regime termed slug flow develops. Compared with the 

plug flow, the slug flow shows stronger intermittency and larger gas bubbles. If the gas flow 

rate gets further increased, the annular flow will form with a thick film of liquid around the 

periphery of the channel walls with gas in the central core, where some liquid droplets may be 

entrained. As another type of dispersed flow, the bubble flow may take place when the liquid 

flow rate is relatively high alongside a low gas flow rate, in which the gas phase in the form of 

small bubbles are distributed in the continuous liquid phase. 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 : Gas-liquid flow patterns in vertical pipes adapted from Rouhani and Sohal 
(1983). 

On the other hand, some of the main vertical co-current flow regimes are depicted in 

Figure 2.3. It is noticed that several common flow regimes occur in both the vertical and 

horizontal channels including the bubble, plug, slug and annular flows, whereas the former 

exhibit more axisymmetrical patterns than the latter (see Figure 2.2). With a low gas flow rate 

and a moderate liquid flow rate, the bubble flow may take place. As the gas flow rate increases, 

the plug flow takes place when the small bubbles coalesce with constituting large bubbles. 

Further increasing the gas flow rate, the slug flow develops with larger bubbles, termed the 

Taylor bubbles. Each of these bubbles is shaped with spherical nose and relatively flat tail, 

almost occupying the whole cross-sectional area with the thin liquid film around the periphery 

                             

Bubble flow     Plug flow          Slug flow       Churn flow    Annular flow  
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of the tube walls (Fernandes et al., 1983). Following the slug flow, one may observe the churn 

flow when the flow velocity is increased, where the relatively regular liquid slugs become 

chaotic. On the contrary, annular flow exists at a relatively large gas flow rate and a low liquid 

flow rate. If the gas flow rate is sufficiently high, some portion of the liquid in the form of small 

droplets will be entrained in the continuous gas core. 

2.1.2 Gas-liquid flow maps for different flow directions 

To predict and determine the types of flow patterns, flow maps may be used as a guide. 

Typically, flow maps are constructed as two-dimensional (2D) graphs with transition lines to 

classify and separate various flow regimes. These lines are not distinctive boundaries since the 

transitions between the neighbouring flow regimes take place gradually rather than a sudden 

change. Flow maps may be generally categorized into empirical and theoretical ones, where the 

former are plotted based on the experimental observations and the latter predict the transition 

criteria by involving mechanistic models accounting for fluid and structural properties.  

 Over the past decades, a large number of flow maps based on different fluid and pipe 

conditions have been developed. According to the existed literature, Baker (1954) proposed the 

first flow map for horizontal co-current pipe flows. It was established empirically by observing 

and summarizing different regimes including stratified, plug, slug, bubble, annular, wavy and 

dispersed flow patterns. The gas-liquid mass superficial velocities were combined with two 

dimensionless parameters, which account for gas-liquid densities, surface tensions and dynamic 

viscosities, to describe the system coordinates. In the ensuing years, empirical flow maps for 

horizontal co-current flow were modified or constructed by different researchers (Hoogendoorn 

and Buitelaar, 1961; Govier and Omer, 1962; Mandhane et al., 1974). By applying 5935 

individual observations of flow patterns, Mandhane et al. (1974) constructed a flow pattern map 

for horizontal air-water flows. The gas-liquid superficial velocities (ugs-uls) were employed as 

the coordinate system to determine the transition criteria. Through the comparison with three 

horizontal flow maps from Hoogendoorn and Buitelaar (1961), Baker (1954) and Govier and 

Omer (1962), the proposed map appeared to be better agreed with the air-water data than the 

others.  

 On the other hand, two-phase flows in other orientations, such as vertical or inclined 

upward flows, are of significant relevance to the offshore oil and gas production. One of the 

leading flow maps for vertical flows is the one presented by Hewitt and Roberts (1969). They 

experimentally determined air-water flow patterns in vertical tubes and constructed a flow map 

categorized by annular, churn, slug and bubble flow regimes by using the phase superficial 
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momentum fluxes as system coordinates.  By using the volumetric ratios and the Froude number 

as the transition criteria, flow maps for various inclination angles from vertically downward to 

upward air-water flows were developed by Spedding and Nguyen (1980) for investigating 

potential orientation effects on the flow regime development. The flow regime maps for 

horizontal (0°), inclined (45°, 70°, –6.17° and –44.75°) and vertical (90°) flows are exemplified 

in Figure 2.4, where uls and ugs represent liquid and gas superficial velocities. They remarked 

that the stratified flow regime vanishes and was replaced by the slug flow regime as the pipe 

orientation varies from the horizontal to the upward ones. Such observation was also revealed 

in the experimental investigations by Barnea et al. (1980) and Weisman and Kang (1981).  

 Flow regimes and their corresponding transitions highly depend on many parameters in 

terms of fluid properties (e.g. density, surface tension and viscosity), flow rates (e.g. velocity, 

velocity ratio) and structure properties (e.g. pipe inclination, diameter). Therefore, the maps 

purely based on experimental observations may be limited to a narrow band of flow and pipe 

conditions. However, for many engineering applications, the flow conditions may be out of the 

range of the existing data, while simple extrapolation of the empirical correlations may result 

in a high level of uncertainty and inaccuracy. Moreover, it may not be adequate to represent the 

transition boundaries between various flow regimes with only some simple and arbitrary 

variables, where the generality and accuracy may be restricted by the lack of physical basis in 

the selected coordinate systems. 

Therefore, attempts and efforts were made to generalize maps for a wider range of flow 

conditions through the aid of theoretical models with dimensionless coordinate systems. Taitel 

and Dukler (1976) presented a semi-theoretical model to determine the regime transition criteria 

in horizontal and slightly-inclined gas-liquid flows. The map was developed with five different 

transition regions, including annular-dispersed, dispersed-bubble, stratified-wavy, stratified-

smooth and intermittent flows, where the lines are theoretically derived from a mechanistic 

model. For different adjacent flow regimes, various groups of dimensionless variables were 

employed as coordinates. A good agreement is found in the comparison between their 

theoretical criteria and the empirical ones of Mandhane et al. (1974). The model was then 

utilized to explore the potential influences of several design variables including pipe diameters 

and fluid densities on the transition criteria. Further, such a theory-based approach was also 

applied to predict the flow regime transition for upward vertical gas-liquid flows (Taitel et al., 

1980). 
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Figure 2.4: Flow pattern maps adapted from Spedding and Nguyen (1980) for (a) horizontal, 
(b) 45°, (c) 70°, (d) upward vertical, (e) -6.17° and (f) -44.75° flows: SL, DB, S, A, D 

represent slug, dispersed bubble, stratified, annular and droplet flow. 

 

The attempts in developing gas-liquid flow maps have been continuously made by many 

researchers during the last few decades (Lin and Hanratty, 1987; Hand and Spedding, 1993; 

Furukawa and Fukano, 2001; Omebere-Iyari and Azzopardi, 2007; Zhuang et al., 2016). A 
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References Orientation Phases d (cm) Coordinates Method 

 H Natural gas-oil 2.54-25.4 
Qg ρg/A,  Ql ρl/A 

with physical 
parameters 

Experimental 

Hoogendoorn (1959) H Air-Water/Oil 2.4-14 Qg/( Qg+ Ql), Us Experimental 

Hoogendoorn and 
Buitelaar (1961) 

H Freon 11- water 1.5 Qg/( Qg+ Ql), Us Experimental 

Govier and Omer 
(1962) 

H Air-Water 2.54 Qg ρg,  Ql ρl Experimental 

Duns Jr and Ros (1963) V Air-Oil 8 ugs( ρl/gσ)0.25, 
uls( ρl/gσ)0.25 Experimental 

Eaton et al. (1967) H Natural gas-water 5.08, 10.16 Re, We  Experimental 

Hewitt and Roberts 
(1969) 

V Air-water 3.2 uls2ρl,  ugs2ρg Experimental 

Mandhane et al. (1974) H Air-Water 1.27-16.5 uls ,  ugs Experimental 
Taitel and Dukler 

(1976) 

H/I Air-Water 1.25-30 Dimensionless 
parameters Theoretical 

Weisman et al. (1979) H Air-Water 2.54 uls ,  ugs Experimental  

Spedding and Nguyen 
(1980) 

V/I/H Air-Water 4.55 Ql/Qg, 
(Us/(gd)0.5)0.5 Experimental 

Barnea et al. (1980) H/I Air-Water 1.95, 2.55 uls ,  ugs Experimental 

Taitel et al. (1980) V Air-Water 2.5, 5 uls ,  ugs Theoretical 

Weisman and Kang 
(1981) 

V/I Freon 113 2.5 uls ,  ugs Experimental 

Spedding and Chen 
(1981) 

H Air-Water 4.55 uls ,  ugs Theoretical 

Mukherjee and Brill 
(1985) 

V/I/H Air-Kerosene 5.08   ugs( ρl/gσ)0.25, 
uls( ρl/gσ)0.25 

Empirical 
correlation 

Stanislav et al. (1986) H/I Air-Oil 2.58 uls ,  ugs Experimental 

Lin and Hanratty 
(1987) 

H Air-Water 2.54, 9.53 uls ,  ugs Experimental 

Alexeyev et al. (1991) H Helium Flow 0.79 uls ,  ugs Empirical 
correlation   

Hasan and Kabir (1992) V/I Air-water 12.7 uls ,  ugs Theoretical 

Hand and Spedding 
(1993) H Air-

Water/Glycerine 9.35 uls ,  ugs Experiment 

Filippov (1999) H Helium Flow 0.79 uls ,  ugs Empirical 
correlation 

Furukawa and Fukano 
(2001) V Air-Water/glycerol 1.92 uls ,  ugs Experimental 

Ghajar (2005) H/I Air-Water 2.54 Qg ρg,  Ql ρl  Experimental 

Rozenblit et al. (2006) V Air- water 2.5 uls ,  ugs Experimental 

Omebere-Iyari and 
Azzopardi (2007) V Nitrogen-Naphtha 18.9 uls ,  ugs Experimental 

Zhuang et al. (2016) H R170 0.4 We, Xtt 
 Experimental 

 

Table 2.1: Summary of experimental and theoretical studies characterizing gas-liquid flow 
regimes.  
 

Note: H, V, I denote horizontal, vertical and inclined flow orientations, respectively. 
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summary of experimental and theoretical studies characterizing the gas-liquid flow regimes is 

herein demonstrated chronologically in Table 2.1, reflecting the flow orientations, phase 

properties, pipe diameters, mapping coordinates and methodologies. It is noticeable in the table 

that a variety of coordinate systems have been applied for describing the flow maps. The 

common ones are based on ugs-uls, gas-liquid volumetric flow rates (Qg-Ql) and their modified 

forms accounting for some physical properties such as gas-liquid densities (ρg-ρl), viscosities, 

surface tension (σ) and pipe inner diameter (d). Besides, dimensionless parameters were 

employed in several studies. For instance, the modified Weber number (We) and the Reynolds 

number (Re) were applied  in Eaton et al. (1967),  where the former  mainly accounts for fluid  

density, velocity,  characteristic length (e.g. d) and surface tension, whereas the latter comprises 

fluid velocity, characteristic length and kinematic viscosity. Also, Zhuang et al. (2016) used a 

modified We and Lockhart-Martinelli parameter (Χtt) as the mapping coordinates, where Χtt is 

mainly defined by the combined effects of gas-liquid mass flow rates and densities. Although 

the existed maps have accommodated several aspects in terms of both fluid and pipe (see Table 

2.1) and understanding of flow pattern transitions has been improved, there remains a challenge 

of constructing the generalized flow maps (Brennen and Brennen, 2005; Cheng et al., 2008). 

Nevertheless, the valuable information, such as the flow regime transition criteria, provided by 

the flow maps has contributed to the development in mathematical multiphase (e.g. gas-liquid) 

modelling (Danielson, 2012).  

2.2 Slug Flow-Induced Vibrations 

Over past decades, SIV has been recognized as a problematic phenomenon, especially 

concerning long flexible pipelines/risers in the oil and gas industry. This drives the momentum 

of research on SIV. Miwa et al. (2015) have recently provided a comprehensive review on the 

research progress related to the two-phase FIV in rigid pipes with small diameters. Significant 

vibrations in straight horizontal/vertical pipes with bends have been experimentally reported 

under slug flows, which cause an intermittent change in a mixture momentum flux and a 

resonance between the momentum/pressure fluctuations vs. the pipe natural frequencies. In the 

following sections, the literature for both numerical and experimental SIV investigations are 

reviewed. Numerical studies can be categorized by slug flow models, including the idealized 

and mechanistic models.  

2.2.1 SIV investigation by idealized model  

By using a classic Euler’s beam theory, Hara (1973) formulated the equation of transverse 

motion of a straight pipe transporting slug flows which were modelled as a series of piston gas-
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liquid phases moving alternatively with a narrow-band characteristic frequency. Hara showed 

that, by using a pipe fundamental mode approximation, SIV is dominantly caused by a 

parametric resonance due to the space-time varying mass distributions, centrifugal and Coriolis 

forces. The parametric resonance was described through a derived Mathieu-type equation with 

periodically time-varying coefficients. By including the effects of gravity and fluid pressure 

fluctuation, Hara (1977) further compared and demonstrated a good agreement between 

theoretical and experimental results for a horizontal pipe conveying air-water slug flows. These 

preliminary works justify the potential use of a simple slug flow model for predicting SIV. 

For flexible risers with larger diameters and longer lengths, Patel and Seyed (1989) 

theoretically described key features of internal flow-induced static and dynamic forces acting 

on the pipe, including the fluid weight, curvature-induced load, centrifugal and Coriolis effects 

associated with the flow momentum. They also modelled a steady-state slug flow through a 

sinusoidal function of fluid densities having a mean component and a space-time varying 

counterpart with a harmonic representing the slug frequency, which readsEquation Section (Next)Equation Section (Next) 

                                           2( , ) sin( ) ,si f t
m s s st s k s e πψ ψ ψ θ= + +   (2.1) 

where ψ is a slug shape function depending on time (t) and arc length coordinate (s) along the 

pipe length (L), ψm and ψs the mean and amplitude values. ks, fs, θs denote the slug wave number, 

characteristic frequency and arbitrary phase angle, respectively. By performing a frequency-

domain dynamic analysis of an S-shaped riser, they remarked how SIV can amplify dynamic 

tensions at slug frequencies and modify the riser geometric stiffness. A time-domain simulation 

of a 510 m long lazy-wave riser subject to the combined effects of wave, vessel motion and 

slug flow was further conducted by Seyed and Patel (1992). The results showed amplified riser 

responses due to the slug flow and its predominant role over the environmental loading. This 

slug flow idealization has been applied by Pollio and Mossa (2009) to a catenary riser. Both 

constant and variable slug wavelength were considered, where the latter was modelled by 

further accounting for a relationship between the slug wavelength and pipe inclination 

permitting the variable slug frequency. The more irregular behaviour of riser axial stress was 

found in the unsteady case than the steady one. More recently, Meléndez and Julca (2019) 

applied a sinusoidal density function to model the slug flow in a catenary riser subject to 

external current flows without VIV. They demonstrated amplified riser top dynamic tensions 

depending on a mass flow rate and addressed an insignificant effect of Coriolis force associated 

with low fluid velocities.  
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 Alternatively, slug flow may be modelled in a form of pulse train. This approach allows 

the representation of sudden mass variation between gas and liquid slug regions, which is a 

typical slug flow feature. Also, a wide range of volumetric liquid holdup can be designated for 

a slug unit. Bordalo and Morooka (2018) modelled the steady slug flows as a series of liquid 

plugs and gas pockets travelling with a single slug unit velocity according to a given flow rate. 

They introduced a mass distribution function depending on the slug velocity and unit length 

through the liquid and gas densities. Simulations were carried out for steel catenary and lazy-

wave risers, showing slug induced impacts on riser displacements and bending stresses. They 

concluded that large oscillations may be generated when the slug frequency nearly resonates 

with one of the riser natural frequencies. Kim and Srinil (2018) have implemented such a slug 

unit cell as an initial input velocity and volumetric fraction at the pipe inlet for a 3D 

computational fluid dynamics (CFD) simulation of a subsea M-type jumper transporting slug 

flows. The effects of multiple bends on the flow pattern modification and flow-induced force 

fluctuation were highlighted. Based on this slug unit concept, Safrendyo and Srinil (2018) 

introduced a slug length randomness into the dynamic simulation of a catenary riser carrying 

slug flows. They highlighted a chaotic feature with multiple broad-band oscillation frequencies 

in the space-time varying dynamics of the catenary riser. More importantly, greater vibration 

amplitudes were found when accounting for the combined effects of SIV and VIV. This 

observation of amplified dynamic responses has also been reported by Bossio et al. (2014) who 

considered a horizontal pipeline. By using a steady-state plug model in the form of pulse train, 

Cabrera-Miranda and Paik (2019) investigated dynamic responses of a lazy-wave riser excited 

by slug flows and then conducted a limit state assessment. It was concluded that SIV is 

significant near the riser bottom, which subsequently introduces crucial fatigue damage. The 

pulse train function has been defined as 

                                                          ( , ) ( , ),Nst s t sψ ψ= ∑  (2.2) 

                                               0,   /2 
( , ) ,

  1,    /2 
t s u s

Ns
t s u s

s U t N L L
t s

s U t N L L
ψ

 − − >=  − − ≤
 (2.3) 

where ψ accounts for slug translational velocity (Ut), slug number (Ns), slug unit length (Lu) 

and liquid slug length (Ls). Similar to Eq. (2.1), this idealized slug model is also space-time (s-

t) dependent. Nevertheless, this idealized slug function can generate a series of square pulses 

that imitate the slug flow shapes with the sudden transition between the liquid slug and gas 

pocket regions. Moreover, this model enables the adjustment in the ratio of Ls to Lu, whereas 

the sinusoidal function only allows Ls=0.5 Lu.  
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 For a better illustration of the two slug models, Figure 2.5 exemplifies three gas-liquid 

slug units created by the sinusoidal (Eq. (2.1)) and pulse train (Eqs. (2.2) and(2.3)) functions, 

where the yellow and white areas denote the liquid and gas phases. As expected, the former 

(Figure 2.5a) results in sinusoidal slug shapes with Ls=0.5Lu, which also implicitly renders the 

liquid holdup of 0.5 in each slug unit. In contrast, the square slug shapes in case of Ls=0.5Lu, 

Ls=0.25Lu, Ls=0.75Lu are produced by the latter (Figures 2.5b, c, d), corresponding to the liquid 

holdup of 0.5, 0.25, 0.75, respectively. Using the pulse train model, Dong and Shiri (2019) 

parametrically analysed SIV on a catenary riser in the touchdown zone with also including wave 

and seabed effects. The riser responses and stresses are evaluated in case of individual and 

combined effects from the slug flows and waves. They remarked the amplified responses and 

in turn the stresses owing to the coupled internal-external impacts.    

 

Figure 2.5: Illustration of slug flow shapes from (a) sinusoidal function and (b-d) pulse train 
function in case of Ls=0.5Lu, Ls=0.25Lu and Ls=0.75Lu. 

2.2.2 SIV investigation by mechanistic model 

The above idealized fluid force models overlook the detailed slug flow features with variable 

internal pressure, phase velocities and fractions. To account for more realistic two-phase flows, 

theoretical models based on continuity, momentum and energy conservation equations should 

be implemented. Modelling of one-dimensional two-phase flows, averaged over a pipe cross 
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section, may be generally classified into three main categories: homogenous (Ouyang and Aziz, 

2000; Monette and Pettigrew, 2004), drift-flux (Zuber and Findlay, 1965; Ishii, 1977) and two-

fluid models (Ishii and Hibiki, 2010); 

 For a homogeneous model, a single set of the mass-momentum-energy conservation 

equations depend on the gas-liquid mixture as a pseudo-single phase. For drift-flux models, the 

conservation of momentum depends on the relative velocities of fluid phases whilst other 

conservations may be derived for individual fluids. As a more complex model, two-fluid models 

require the full conservations of each phase, realistically accounting for different physical fluid 

properties. Montoya-Hernández et al. (2014) used the homogeneous model to demonstrate that 

natural frequencies of a vertical riser transporting the upward gas, oil and water flows decrease 

with the increasing mixture flow velocity. This agrees with a general free vibration trend of a 

tensioned straight beam with internal flows which reduce the structural stiffness but increase 

the system mass (Paidoussis, 2014). If the conservation equations are assumed to be time-

invariant, the considered two-fluid flows are steady; otherwise, they are transient, describing 

the space-time varying quantities.  

 For two-phase slug flow models, they can be mainly referred to three approaches: unit 

cell models (Taitel and Barnea, 1990; Cook and Behnia, 1997), slug tracking (Zheng et al., 

1994; Nydal and Banerjee, 1996) and slug capturing (Issa and Kempf, 2003) models. For unit 

cell models, slug flow characteristics are periodic and time-invariant within slug units of the 

same length and velocity. These models are known as steady-state slug models, where the 

conservation of mass and momentum are described in a frame of reference moving at a slug 

translational velocity. As a transient approach, slug tracking models are formulated based on 

the concept of pickup process at the liquid slug front and shedding at the liquid slug tail, solving 

for flow parameters by conservation laws on every liquid slug and gas pocket. This object-

orientated method requires an initial condition of pre-assigned slugs in the pipe by an initiation 

model, and then tracks each liquid slug individually as it propagates. For slug capturing models, 

the 1D two-fluid model is solved directly regardless of initial conditions with automatically 

capturing the formation, growth, or decay of slug flow.  

 Based on a unit cell model of Taitel and Barnea (1990), Chatjigeorgiou (2017) 

investigated the planar dynamics of a catenary riser transporting steady slug gas-oil flows and 

subject to a top-end harmonic excitation. Using a frequency domain approach, it is revealed 

that slug flows amplify axial-normal responses with increased dynamic tensions and curvatures. 
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The mechanistic model is formulated based on gas and liquid phase mass balances over the slug 

unit and momentum balances over the film zone, where the former result in 

                                            ( ) ( ) ,t b g s t g l fU U A U U Aρ α ρ α− = −             (2.4) 

                                             ( ) ( ) ,t l l s t f l fU U AR U U ARρ ρ− = −   (2.5) 

in which Ub (Ul) denotes the gas (liquid) phase velocity in the liquid slug region, Ug (Uf) the 

gas (liquid) phase velocity in the film zone, Rs (αs) the liquid holdup (void fraction) in the liquid 

slug region, Rf (αf) the liquid holdup (void fraction) in the film zone and A the inner area of the 

pipe. The gas-liquid momentum balances read 

                   
( )

( ) sin cos ,t g g g fi i
g t g g g

s s g g s

U U S hSPU U g g
z z A A z

τ τ
ρ ρ β ρ β

∂ − ∂∂
− = − + − + −

∂ ∂ ∂
 (2.6) 

                     ( )
( ) sin cos ,t f f f fi i

l t f l l
s s f f s

U U S hSPU U g g
z z A A z

τ τ
ρ ρ β ρ β

∂ − ∂∂
− = − + − + −

∂ ∂ ∂
 (2.7) 

where zs represents the local slug coordinate, P the internal fluid pressure, τf (τg) the liquid-wall 

(gas-wall) friction force, τi the gas-liquid interfacial force, Ag (Af) the cross-sectional (gas) liquid 

film area, Sg (Sf) the associated wetted perimeter, Si the interfacial width, β the pipe inclination 

and hf the film height. Further, by substituting Eqs. (2.4) and (2.5) into Eqs. (2.6) and (2.7), an 

equation describing hf can be determined, which consequently provides slug information over 

the slug film zone. Detailed results of this slug flow model can be found in Chapter 3.  

 For a floating free-hanging pipe transporting air-water flows, Vieiro et al. (2015) 

simulated the fluid-pipe coupling by using a two-fluid model and solving the transient fluid 

equations with a combined slug capturing-tracking approach (Nydal, 2012). They predicted a 

severe slugging phenomenon with space-time phase fraction variations and a slug severe cycle 

in good agreement with in-house experiments. Recently, based on a transient slug tracking 

approach, Ortega et al. (2018) studied a forced vibration of a catenary riser subject to regular 

waves and slug flows. External wave excitations influence the riser shapes which, in turn, affect 

the slug flow developments. Numerical results showed the increased static drifts caused by the 

slug flow and the amplified dynamic responses due to the interaction of external flow wave and 

internal slug flow loadings.  

 Table 2.2 summarizes some relevant studies related to SIV modelling and analysis of 

flexible pipes/risers, by distinguishing the slug modelling concepts, pipe geometries, two-phase 

parameters and observed features. 
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2.6-
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- 

•
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Patel and Seyed 
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2.2.3 Experimental investigations on SIV 

Laboratory experimental studies have also been carried out, providing some insightful 

observations and validating the analysis models. For flexible pipes with a bending rigidity, 

mostly a two-phase air-water FIV in a small-diameter tube with a short span has been tested. 

Considering a catenary riser with L ≈ 28.7 m and d ≈ 0.32 cm, Bordalo et al. (2008) carried out 

a series of tests to investigate gas-liquid flow-induced riser responses for a catenary 

configuration. Flow patterns including slug and annular flows are observed depending on 

various gas-liquid superficial velocities, in which the slug flow was found to generate greater 

vibrations than the annular flow owing to the various levels of intermittency. For a given liquid 

superficial velocity, they addressed the increased SIV and top tension with the air superficial 

velocity. The significant role of phase superficial velocities were also highlighted by Al-

Hashimy et al. (2016), who carried out an experiment of a horizontal pipe (L ≈ 8 m; d ≈ 6.8 cm) 

transporting slug flows. For a given ugs, amplified SIV with decreased oscillation frequencies 

was observed as uls increases. For a straight horizontal pipe with L ≈ 0.8-1.5 m and d ≈ 2 cm, 

Ortiz-Vidal et al. (2017) measured the pipe dynamic responses subject to a wide range of two-

phase flow regimes including bubble, dispersed and slug flows. They noticed that the pipe 

vibration increases with the increased mixture velocity and the peak oscillation frequency 

strongly depends on the void fraction as well as the flow pattern.  

For a horizontal pipe (L ≈ 3.8 m; d ≈ 5.1 cm) transporting slug flows, the experimental-

numerical studies conducted by Wang et al. (2018) revealed that the pipe vibration response is 

enhanced by the increasing slug unit velocity and the liquid slug length since these properties 

affect the rate of change of system stiffness, mass, damping and loading. For a continuous 

horizontal pipe with multiple supports (L ≈ 20 m; d ≈ 3 cm) and transporting unsteady slug 

flows, Liu and Wang (2018) experimentally and numerically examined the time-varying natural 

frequencies of the flexible pipe as a function of superficial velocities. They observed a critical 

gas velocity which may change qualitatively the trend of the average frequency depending on 

the liquid velocity, pipe stiffness and span length.  

Recently, SIV in a catenary pipe has been experimentally observed in Zhu et al. (2018b) 

for unsteady slug flows (L ≈ 0.95m; d ≈ 0.4 cm), and Zhu et al. (2018a) for severe slugging, 

unsteady and steady slug flows (L ≈ 1.34 m; d ≈ 0.8 cm). They reported pipe planar responses 

whose frequencies are associated with the pressure fluctuation frequencies, suggesting a 

resonance. The measured vibration amplitudes depend on the slug characteristics including the 

gas-liquid lengths, flow rate ratios and superficial velocities, highlighting the pipe curvature 
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effect on the pipe-slug flow interaction behaviours. More recently, Mohmmed et al. (2019) 

experimentally investigated the effects of slug flow on vibrational behaviours of a horizontal 

pipe (L ≈ 8 m; d ≈ 7.4 cm) by measuring slug frequencies and the associated stresses. They 

revealed that the slug frequency increases with uls but decreases with ugs and the slug induced 

stress is more significant near the inlet than the outlet.  

2.3 Vortex-Induced Vibrations 

Vortex induced vibration is a common phenomenon existing in many branches of engineering. 

For the offshore oil and gas industry, subsea production systems such as the cylindrical 

members of offshore platforms, free spanning pipelines and marine risers may experience VIV 

due to currents. The effects of this phenomenon have been comprehensively studied and 

published in the literature for both rigid (Sarpkaya, 2004) as well as long flexible (Wu et al., 

2012) cylinders over past decades. Compared with the rigid cylinder, a flexible one is more 

complicated due to the intrinsic feature of having an infinite number of degrees of freedom 

associated with different natural frequencies and vibration modes. The complexity becomes 

more pronounced when a flexible curved body is considered. One of the practical examples is 

the steel catenary riser, which has been widely used and considered a promising offshore 

engineering solution in deepwater oil exploitation due to its commercial efficiency and 

technical simplicity. In contrast to conventional straight risers (e.g. top-tensioned risers), the 

VIV effects on a catenary riser may be different and complicated since the angle of the incident 

flow relative to the riser axis changes along the curved span, affecting the vortex wake 

behaviour (Miliou et al., 2003; Gallardo et al., 2014; Zhu et al., 2018c) in relation to the riser 

responses. This is also true when flow directions vary with respect to the curvature plane, which 

has already been demonstrated in some works on VIV of rigid curved cylinders (Assi et al., 

2014; Seyed-Aghazadeh et al., 2015; Srinil et al., 2018a). In the following two sections, a 

selective review of experimental and numerical investigations on VIV of long flexible cylinders 

in catenary configurations is presented.      

2.3.1 Experimental studies on VIV of catenary risers 

An experimental investigation of VIV on a catenary riser was carried out and reported by Halse 

et al. (1999), where the riser was tested accounting for individual and combined effects from 

waves and currents. By setting different relative angles between the catenary plane and the 

towing direction, VIV responses were analysed based on parallel (0°) and oblique (23°) flows 

to assess the effects of current directions. For a catenary riser subject to convex currents, 

Morooka and Tsukada (2013) experimentally investigated VIV responses of the riser under 
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various current velocities. Through the post-processed results both in time and frequency 

domains, they noticed that the riser dynamic behaviours are predominated by travelling waves, 

where the dominant mode and oscillation frequency could change with time depending on the 

different power-in regions of the riser. For a catenary riser subject to concave currents, Fan et 

al. (2015) observed that the riser can experience VIV under various current velocities. Results 

including time-varying strains at different locations and their associated oscillation frequency 

spectra are shown. They concluded that both CF and IL responses increase with current 

velocities alongside multi-frequency dynamic behaviours. Such correlation between current 

velocities and VIV responses of a catenary riser was also indicated in Domala and Sharma 

(2018), where the riser was tested under various boundary conditions, geometries and concave 

current with various velocities.  

Considering a pure heave motion at the top of a steel catenary riser, Wang et al. (2015) 

reported the occurrence of out-of-plane VIV of the riser in still water. Based on various assigned 

heave amplitudes and periods, oscillation patterns including standing, travelling and end 

reflecting waves were noted. They highlighted the correlation between the Keulegan-Carpenter 

number and the time-varying features in VIV responses. A further research was carried out later 

in Wang et al. (2017), where the dominant roles of maximum Keulegan-Carpenter number and 

local riser velocity in the vessel motion-induced VIV were remarked. Such a type of VIV was 

also studied by Pesce et al. (2017), who conducted a series of tests to investigate vortex self-

induced vibration of a catenary riser in still water by imposing vertical motions on the top. Out-

of-plane motions were observed and attributed to the vortex-shedding phenomena led by the 

relative fluid-structure motions. Depending on the amplitudes and frequencies of the imposed 

forces, both single- and multi-modal riser responses corresponding to standing and travelling 

vibration patterns were revealed.  

Recently, Chaplin and King (2018) carried out a series of test to investigate VIV 

responses of a catenary riser with various mass ratios, in which both concave and convex 

currents at various velocities were assigned. They noticed that the riser behaves differently 

when the flow direction varies. It was revealed that the dominant frequency increases linearly 

with the flow velocity for the concave current, whereas the convex current results in almost 

constant dominant frequencies independent of the flow velocities. More recently, VIV of a 

catenary pipe undergoing exponential sheared concave flows were experimentally investigated 

by Zhu et al. (2019b). Through observing the pipe responses and the associated wake vortex 

patterns, they concluded that the sheared flow leads to the multi-frequency VIV and the 

dominant frequency changes along the riser span. For an increased reduced velocity, an 
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upgraded mode order was recognized with a transition from standing-dominant to travelling-

dominant wave oscillations, corresponding to a switch of wake vortex patterns. 

2.3.2 Numerical studies on VIV of catenary risers 

Dalheim (2000) conducted a CFD analysis on a steel catenary riser subject to VIV. Cross-flow 

response amplitudes, dominant modes and oscillation frequencies of the riser were predicted 

under different flow velocities and compared with both existed experimental tests (Halse et al., 

1999) and numerical simulations by SHEAR7.  It was found that VIV due to higher flow 

velocities tend to excite more significant multi-modal riser responses with greater amplitudes 

than the one at lower flow velocities.  

Some of the experimental results from the model test (Halse et al., 1999) were later used 

by Lie et al. (2001) for a numerical investigation, where the programs of RIFLEX (Fylling et 

al., 1995) and VIVANA (Larsen et al., 2001) were jointly employed for a combined time-

frequency domain VIV analysis of a catenary riser. Good qualitative agreements were realized 

between the experimental and numerical results. The effect of negative (concave to the catenary 

plane) and positive (convex to the catenary plane) flow directions on the peak oscillation 

frequencies was addressed and suspected to be associated with the local flow pattern around 

the inclined part. Such combined time-frequency domain approach was further used by Larsen 

and Passano (2006), where a numerical analysis of a catenary riser subject to flows 

perpendicular and parallel to the catenary plane was conducted to account for in-plane and out-

of-plane VIV. Through examining the riser responses and the associated bending stresses, they 

observed local stress peaks at the touchdown point of the catenary riser.  

Srinil et al. (2009) developed a semi-empirical model for investigating VIV of a catenary 

riser. In the numerical case study, a steady uniform current is assigned perpendicular to the 

curvature plane, where distributed van der pol wake oscillators were employed to model the 

hydrodynamic forces responsible for the IL and CF VIV. Maximum riser responses of uni-

modal resonance were parametrically studied in terms of both structural and fluid-structural 

parameters. They highlighted the geometrical effects of the initial curvatures on the riser 

dynamics due to VIV. As an extended work, Srinil (2010) carried out a numerical study for 

multi-modal responses of a catenary riser owing to CF VIV. The semi-empirical model was 

further modified by taking the Reynolds number (Re) effect into account. The results 

demonstrate several VIV characteristics of long flexible cylinders such as multi-modal lock-in, 

switching, sharing and interaction, addressing the meaningful role of multimodal effects and 

geometric nonlinearities in VIV predictions.  
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A CFD approach was applied by Huang et al. (2010) to simulate a catenary riser 

undergoing VIV due to a uniform concave flow. The correlation between VIV responses and 

riser tension distribution was revealed and discussed. Through comparing the numerical results 

and field measurements, it was remarked that a flexible catenary riser could experience greater 

cross-flow oscillations than a top-tensioned riser. Recently, following their in-house 

experimental test (Morooka and Tsukada, 2013), Tsukada and Morooka (2016) numerically 

analysed the cross-flow VIV responses of the catenary riser subject to a uniform convex flow. 

To model the VIV hydrodynamic forces, a semi-empirical model based on the experimental 

data of rigid cylinders was implemented. The numerical results showed a good agreement with 

the experimental observations in terms of oscillation frequencies with capturing the multi-

modal responses in travelling wave pattern. Table 2.3 summarizes the experimental and 

numerical studies of flexible catenary risers undergoing VIV, by distinguishing the flow 

conditions and riser specifications. 

Table 2.3: Summary of experimental and numerical studies of flexible catenary risers subject 
to VIV. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Studies 
Flow 

velocity 
profile 

Re Flow 
direction 

D 
(m) 

Aspect 
ratio 
(L/D) 

Other 
factor 

Static top 
tension (N) 

Experimental studies 
Halse et al. 

(1999) U - CA, CV, 
OB  (23°) 0.023 1234.8 Wave 242 

Morooka and 
Tsukada 
(2013) 

U 400-600 CV 0.008 940 - 0.385 

Fan et al. 
(2015) U 

8000-
16000 

 
CA 0.02 390 Seabed 

effects - 

Chaplin and 
King (2018) U <70000 CA, CV 0.056 95.7 - ≈12.5/62.5 

Domala and 
Sharma (2018) U 700-5400 CA 0.014 321 

Topside 
floater 
motion 

67 

Zhu et al. 
(2019b) S 165-1015 CA 0.006 108.3 - - 

Numerical studies 
Dalheim 
(2000) U 12075, 

17020 CA 0.023 1234.8 - 242 

Lie et al. 
(2001) U 460-8280 CA, CV 0.023 1234.8 - 242 

Larsen and 
Passano (2006) S <343200 CA,PP 0.429 2062.9 - 7×105 

Srinil et al. 
(2009) U 32000-

200000 PP - 2581 - - 

Srinil (2010) U <300000 PP - 2581 - - 
Huang et al. 

(2010) U 115500 CA 0.33 3300 - ≈2.25×105 

Tsukada and 
Morooka 

(2016) 
U 400-600 CV 0.008 940 - 0.385 

Note: CA, CV, PP, OB denote concave, convex, perpendicular, oblique flow directions, respectively. 
U, S denote uniform and sheared flow profiles. 
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2.4 Summary 

A literature review is performed in this chapter covering several aspects relevant to the present 

research work, including gas-liquid flow features, regime maps, SIV and VIV with respect to 

experimental and numerical studies. The investigation on two-phase flow maps provides the 

fundamental knowledge of flow regimes and transition criteria, which are strongly depending 

on several fluid-structure and operational parameters. Moreover, the maps can serve as a 

reference of initial conditions where the target flow may occur, i.e. slug flow for the present 

thesis. Modelling of SIV could be classified by structural geometries such as straight or curved 

ones, by slug flow modelling approaches such as the idealized or mechanistic models, by 

additional external excitations such as current or wave. It is realized that the state-of-art research 

reveals a lack of understanding in individual effects of slug characteristic parameters including 

slug unit length, travelling velocity and the resultant slug frequency on SIV phenomena. Thus, 

it shows the need in research for both numerical and experimental investigations of SIV, 

especially for a catenary configuration, which is evidently less-studied but leading to complex 

SIV due to the curved geometry. Moreover, although SIV and VIV are considered the main 

contributors to the fatigue of subsea risers, the studies on the combined internal and external 

excitations are rather limited in the literature. Within the scope of this thesis, VIV is considered 

and involved as an external excitation for identifying the potential role of SIV in the joint VIV-

SIV. These attempts constitute the main contribution of the present research. 

To accomplish this aim, a steady-state slug flow model is applied, accounting for the 

mass-momentum balances of gas-liquid phases as well as allowing the parametric studies of 

slug flow characteristics on SIV responses of the considered catenary riser. A semi-empirical 

model based on wake oscillators is then investigated first for a rigid body and implemented in 

combined VIV-SIV scenarios. Laboratory tests are conducted to achieve insights of SIV and 

verification of the proposed SIV numerical model.   
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Chapter 3. Planar Dynamics of Catenary Riser Carrying Slug Flows 

Flexible risers transporting hydrocarbon gas-liquid flows may be subject to internal dynamic 

fluctuations of multiphase densities, velocities and pressure changes. Previous studies have 

mostly focused on single-phase flows in oscillating pipes or multiphase flows in static pipes 

whereas understanding of multiphase flow effects on oscillating pipes with variable curvatures 

is still lacking. This chapter aims to numerically investigate fundamental planar dynamics of a 

long flexible catenary riser carrying slug gas-liquid flows and to analyse the mechanical effects 

of slug flow characteristics including slug unit length, translational velocity and fluctuation 

frequencies leading to resonances. A two-dimensional continuum model describing coupled 

horizontal and vertical motions of an inclined flexible/extensible curved riser subject to the 

space-time varying fluid weights, flow centrifugal momenta and Coriolis effects is presented. 

Steady slug flows are considered and modelled by accounting for the mass-momentum balances 

of gas-liquid phases within an elongated gas bubble (interfacing with the liquid film) and 

idealized slug unit cell comprising the slug liquid (containing small gas bubbles) parts. Several 

SIV features including the slug flow-induced transient drifts, mean and oscillatory 

displacements are highlighted. Parametric studies in terms of the slug unit length and the 

translational velocity are performed to investigate the individual effect of the slug unit length 

and the translational velocity on SIV response. 

3.1 Mechanical Model of Curved Pipe Conveying Slug Flows 

A planar dynamic model of an inclined curved bendable pipe conveying slug gas-liquid flows 

is displayed in Figure 3.1 where a fixed global Cartesian (X-Y) coordinate system is employed 

to describe the riser statics and dynamics. The slug flow along the pipe is schematically 

exemplified, which will be introduced in details in the following. The pipe is submerged in the 

water, subject to additional buoyancy and hydrostatic pressure. A local Lagrangian (s) 

coordinate system is introduced to track a series of slug flow units travelling upwardly from a 

fixed pipe bottom connection to a top stationary support. Standard pinned-pinned boundary 

conditions are considered, allowing only the end rotations of the long bendable pipe. In this 

study, the riser pipe is considered to move in two dimensions with coupled horizontal (u) and 

vertical (v) displacements from its planar (x̃, ỹ) static equilibrium, subject to the gravity (g) and 

the longitudinal momentum of internal flows. This planar response scenario is plausible since 

recent SIV experiments of a catenary flexible pipe by Zhu et al. (2018b) revealed negligible 

out-of-plane vibrations, depending on the system flow rates.  
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Figure 3.1: A planar dynamic model of an inclined curved flexible riser conveying slug gas-
liquid flows. 

To arrive at the system equations of motion governing the planar dynamics of an inclined 

bendable pipe transporting slug flows, some main assumptions and hypotheses are employed 

as follows. 

• Materials of the pipe are linearly elastic, with spatially uniform properties including the pipe 

mass per unit length (ms), outer (D) and inner (d) diameters with a smooth surface, pipe 

cross-sectional area (Ar), inner area (A), outer area (Ao), moment of inertia (I) and the 

Young’s modulus (E). Hence, the bending (EI) and axial stiffness (EA) terms are constant. 

Owing to the longitudinal internal flow loading character and the inherent slenderness of 

the bendable pipe with a high aspect (L/D) ratio (L/D≈ 102-103), shear and torsional 

rigidities are disregarded based on the Euler-Bernoulli theory. Therefore, the pipe cross 

section under loading remains circular with a plane perpendicular to its longitudinal axis. 

• Static configurations of the loaded pipe are established in two consecutive stages. In the 

first stage, the pipe forms into an inextensible sagged catenary due only to its own weight 

(msg) and buoyancy (in the case of a submerged pipe). For a specified top tension or pipe 
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length, a closed-form hyperbolic expression describing a catenary profile as a function of s 

can be simply obtained (Srinil et al., 2009). In the second stage, such a catenary geometry 

is further subject to the weights of moving slug trains which, simultaneously, induce the 

flow momenta leading to the pipe oscillations. In this condition, the riser displacements (u, 

v) comprise static and dynamic components which are physically coupled. Once a steady-

state response is achieved, the riser dynamics can be described by referring to this second 

static drift. Correspondingly, the slug flow-induced extensional static and dynamic strains 

can be evaluated through the differential infinitesimal arc lengths and the strain-

displacement relations.  

• Slug flows are assumed to be fully developed and non-homogeneous, travelling steadily as 

a series of slug units through the catenary pipe. As displayed in Figure 3.1, each slug unit 

comprises (i) a liquid-dominant phase containing very small gas bubbles (i.e. typically 

called a liquid slug) and (ii) a long non-uniform gas phase above a thin liquid film (i.e. an 

elongated bubble), travelling with a single translational unit velocity relative to the pipe (Ut). 

Slug properties including individual phase mass per unit length (mi), density (ρi), local 

velocity (Ui) and internal fluid pressure (P) may be described through a conservation of 

mass and momentum within a control fluid volume where a subscript i = 1 and 2 denotes 

the coexisting liquid and gas phase, respectively. Consequently, the pipe motions are 

subjected to these distributed parameters which vary in space and time following the 

specified and constant Ut.      

• Slug flow-induced displacements with respect to a pipe diameter are assumed to be small, 

compared with the riser length such that the effects of geometric nonlinearities and multi-

modal coupling with out-of-plane motions are negligible (Srinil et al., 2004). For steady 

flows, the catenary pipe is subject to the travelling and non-uniformly distributed 

parameters (mass inertia, weight, velocity, pressure) and the gas-liquid properties are 

assumed to be undisturbed by the pipe oscillations with small amplitudes. 

In the literature, several riser mechanical models have been derived based on a 

Hamiltonian or Newtonian formulation (Chen, 1985; Lee and Chung, 2002; Paidoussis, 2014). 

By following Chucheepsakul et al. (2003) and Srinil et al. (2007), the variational principles are 

herein applied to account for the potential or strain energy due to the static tension, axial 

dynamic stretching and bending, the work done by the weight, pipe inertia, viscous damping 

and internal flow inertia accounting for the absolute flow velocity in the Cartesian coordinate 

system. Based on the above-mentioned assumptions and by describing the pinned-pinned pipe 

motions with respect to the self-weight-based static configuration (x̃, ỹ), the linear partial-
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differential equations of coupled horizontal and vertical motions of an inclined curved pipe 

conveying steady slug flows may be expressed in a dimensional form as Equation Section (Next) 

( ) ( ) ( ) 0,
2 2

2 2

1 1
2 ( ) 2iv

t i o o r i i i i
i i

m m u cu EIu T P A PA u EA x u x y v mU x u mU uν
= =

  ′ ′ ′ ′ ′ ′ ′ ′′ ′′ ′ + + + − + − + + + + + =     
∑ ∑       (3.1)

( ) ( ) ( )
2 2 2

2 2
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i i i

m m v cv EIv T P A PA v EA x y u y v mU y v mU v m gν
= = =

  ′ ′ ′ ′ ′ ′ ′ ′′ ′′ ′ + + + − + − + + + + + =     
∑ ∑ ∑       (3.2) 

in which T(s) is the initial pipe wall tension, P(s,t) is the pressure induced by internal flows, 

varying due to the influence of wall/interfacial frictions and gravity (see Section 3.2, Eqs. (3.8) 

and (3.9)), and c is the overall linear damping coefficient which may be identified in terms of a 

modal damping ratio ξ. In the case of a submerged pipe, we further account for the external 

hydrostatic pressure Po(s), the total mass mt = ms + ma, in which ma is the still-water added mass 

equal to ρoAo, with ρo being the external water density, and the effect of Poisson’s ratio (ν) 

through the so-called apparent tension concept (Sparks, 1984). A dot (prime) denotes 

differentiation with respect to the time t (s). It is worth noting that the added mass coupling 

between X and Y directions are not considered in the present model. For an improved model, 

the coupling effect due to the different incident flow directions relative to the structure on ma 

should be accounted for, which potentially modifies the total system mass and the consequent 

resonant response frequency. In the present study, this effect is assumed to be small compared 

to the total weight of steel pipe and internal fluid and hence not considered. Therefore, the same 

ma in X and Y directions are applied in the above equations of motion. This assumption has also 

been considered in Srinil (2010) and Zanganeh and Srinil (2016). 

In this study, the internal flow-related terms may be approximated by accounting for a 

summation Σ of individual liquid and gas phase quantities, as in Monette and Pettigrew (2004), 

without a phase interaction which could be considered through a more rigorous transient two-

fluid model (Issa and Kempf, 2003). Note that Ui have a negative sign for upward flows 

(Païdoussis and Luu, 1985) because of taking the opposite direction to the s coordinate, see 

Figure 3.1. Eqs (3.1) and (3.2) contain the internal flow-induced momenta forces due to the 

gyroscopic Coriolis (miUi) effect depending on the angular velocity of the pipe element, and the 

centrifugal or centripetal miUi
2  acceleration contributing to the pipe axial tension variation and 

depending on the pipe dynamic curvatures. Moreover, a static centrifugal effect related to the 

static curvatures (x̃′′, ỹ′′) is accounted for. The space-time varying weight term in Eq. (3.2) is 

responsible for the gravity effects from the internal flow. This term has been neglected in Ma 

and Srinil (2018) who applied modal shapes as initial displacement conditions.  
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Due to lack of an analytical solution for such a gyroscopically conservative system with 

travelling and non-uniformly distributed parameters, Eqs. (3.1) and (3.2) are herein numerically 

solved by using a 2nd order finite difference discretization in space combined with a 4th order 

Runge-Kutta time integration as performed, e.g., in Cabrera-Miranda and Paik (2019). 

Convergence of numerical simulations is checked for which validation of the present riser 

model is shown in Table 3.1 based on a comparison of fundamental natural frequencies (fn1). 

To obtain the natural frequency through the proposed numerical scheme, a free vibration 

simulation is carried out by applying the riser mode shape obtained from OrcaFlex (Orcina, 

2016) as an initial displacement condition. The riser responses are analysed via Fast Fourier 

Transform (FFT) to capture fn1 subject to an internal single-phase flow at different velocities. 

Table 3.1: Validation of the present model and numerical simulations through comparison of 
natural frequencies of production riser with previously published results. 

Ui 
(m/s) 

fn1 (rad/s) 
(accounting for bending/tension effects) 

fn1 (rad/s) 
(accounting for only tension effect) 

(a) 
M. (2007) 

(b) 
This study 

100a b
a
−

×  (a) 
M. (2007) 

(b) 
This study 

100a b
a
−

×  

0 0.3001 0.2992 0.30 0.2891 0.2891 0 
5 0.2994 0.2985 0.30 0.2881 0.2882 0.03 
10 0.2972 0.2962 0.34 0.2853 0.2857 0.14 
15 0.2934 0.2923 0.37 0.2804 0.2813 0.32 
20 0.2880 0.2874 0.21 0.2731 0.2736 0.18 
25 0.2809 0.2799 0.36 0.2627 0.2652 0.95 
30 0.2717 0.2711 0.22 0.2478 0.2517 1.57 
35 0.2603 0.2592 0.42 0.2224 0.2279 2.47 
40 0.2461 0.2446 0.61 Unstable* Unstable*  
45 0.2282 0.2255 1.18  
50 0.2052 0.2021 1.51 
55 0.1738 0.1701 2.13 
60 0.1250 0.1215 2.80 
65 Unstable** Unstable**  

Note: Critical Ui ≈ 38* and 64** m/s. 

 In the context of instability analysis of the pipe transporting a single-phase flow with 

increasing velocity Ui, a vertical fully-submerged production steel riser given by Moe and 

Chucheepsakul (1988) is considered whose E = 2.07×1011, D = 0.26, d = 0.20 m, ρi = 998 kg/m3, 

L = 300 m, ν = 0.5 and T = 476.2 kN. Good agreement with less than 3% differences can be 

seen in Table 3.1 based on the present finite difference simulation and finite element method in 

Monprapussorn et al. (2007). The fundamental mode experiences a divergence instability (i.e. 
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the total axial stiffness becomes negative as Ui is increased) at the critical Ui ≈ 38 m/s in the 

case of bending-neglected riser whereas its stability is maintained to a higher Ui if the bending 

rigidity is accounted for. In the latter case, the critical Ui ≈ 64 m/s. This validation enables us 

to apply the present model and numerical approach to the SIV analysis in Section 3.4 where 

results are based on a time step ∆t = 0.001s and a pipe discretized segment ∆s = 5m ensuring 

the converged simulations of transient and steady-state responses. 

3.2 Mechanistic Model of Slug Gas-Liquid Flows  

The concept of a slug unit cell, first introduced by Wallis (1969), is herein applied to a small 

pipe segment having a local inclination angle of β, as depicted in Figure 3.1. Each slug unit cell 

has a length of Lu which is further subdivided into two main parts: a liquid slug zone of length 

Ls and a liquid film zone of length Lf.  

In the film zone which may be treated as a stratified flow regime, a non-uniformly 

elongated gas bubble is located at the upper part of the inclined pipe with a gas void fraction 

(αf) surrounded by a bottom thin liquid film with a certain holdup (Rf). Such a long gas bubble 

and liquid film travels with a local velocity of Ug and Uf, respectively, and they are subject to 

either the gas-wall (τg), liquid-wall (τf) or gas-liquid interfacial (τi) shear stresses. As for the 

liquid slug zone separating the two consecutive films, the bubbly liquid phase fills the whole 

cross section, travelling with an average velocity of Ul, subject to τf and having a much greater 

holdup (Rs) than the associated void fraction (αs) of the small dispersed gas bubbles propagating 

with an average axial velocity of Ub. A sign of actual velocities (Ug, Uf, Ul, Ub) is meaningful 

as it is negative in the upward flow direction opposite to the s coordinate (Figure 3.1). Note that 

Ul and Ub are uniform within Ls whereas Ug and Uf are spatially varied along Lf, depending on 

the film thickness or height (hf).  

3.2.1 Governing equations  

To capture a spatial distribution of gas-liquid masses, velocities and pressure gradient which 

are the key input parameters for the inclined pipe model (Eqs. (3.1) and (3.2)), a 1D steady slug 

flow model derived by Taitel and Barnea (1990) is herein employed, by assuming the 

incompressible gas-liquid phases. This model was also considered by Chatjigeorgiou (2017) 

for a forced vibration problem of riser subject to a support motion. Based on the mass and 

momentum conservations of gas and liquid phases over a slug unit cell, the key unknown hf as 

function of the slug unit coordinate zs (from zs = 0 to zs = Lf) maybe determined through  
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where ρg (ρl) is the gas (liquid) density, Vg (Vf) the relative gas (liquid film) velocity, Ag (Af) the 

cross-sectional gas (liquid film) area, Sg (Sf) the associated wetted perimeter, and Si the 

interfacial width. Depending on Ug, Uf and Ul, one may assume that τf=ffρlUf|Uf|/2, 

τg=fgρgUg|Ug|/2 and τi=fiρg(Ug-Uf)|Ug−Uf|/2 where ff, fg and fi are the associated friction 

coefficients (Taitel and Dukler, 1976; Spedding and Hand, 1997). As displayed in Figure 3.1, 

the pipe cross section has the geometric properties φ = 2cos-1(1−2hf/d), Af = d2(φ−sinφ)/8, Ag = 

A−Af, Sf = φd/2, Si = d(2−2cosφ)1/2/2, and Sg=πd−Sf, where ϕ denotes the liquid film geometric 

angle. By specifying a translational velocity of the slug unit Ut, Vf and Vg are expressed as 

                                                  ( ) ,f t f t l s fV U U U U R R= − = −    (3.4) 

                                                  ( ) ,g t g t b s fV U U U U α α= − = −  (3.5) 

in which a geometric relationship between Rf (αf =1−Rf) and hf for a stratified film flow is 

defined by Taitel and Barnea (1990) 

                                     
22 2 21 1cos 1 1 1 1 .

h h hf f fR f d d d
π

π

 
      −      = − − + − − − 
             

 (3.6) 

 Accordingly, dRf /dhf = (4/πd)[1-(2hf /d-1)2]0.5 which can be then substituted into Eq. (3.3). 

In numerically integrating Eq. (3.3) for hf, a certain criterion is imposed to determine a suitable 

film length (Lf) for a given liquid and gas flow rate. By following Taitel and Barnea (1990), the 

liquid mass balance over a slug unit entails 

                                        ( ) ( )
0

1 ,fL

ls l s t s f u t u f su U R U R L L U L dzα= + − − ∫    (3.7) 

where uls is the superficial liquid velocity to be assigned along with the superficial gas velocity 

ugs. For a constant ρg and ρl, the volumetric flow rate through any cross section is constant such 

that the mixture velocity Us = uls + ugs = UlRs + Ubαs for the liquid slug zone or UfRf + Ugαf for 

the film zone. All Eqs. (3.4)-(3.7) are combined to evaluate the film zone features. As the liquid 

slug section may be regarded as a bubble flow, the associated properties may be estimated 

through the existing empirical correlations as described in Section 3.2. Ultimately, a pressure 

drop (dPu) over a slug unit length may be evaluated through 
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where ρu=αuρg+(1−αu)ρl is the average density and αu is the average void fraction with αu=(ugs 

−Ubαs+Utαs)/Ut = (−uls +UlRs+Utαs)/Ut (Barnea, 1990). Note that dPu consists of three main 

components associated with the gravitational contribution, frictional effects in the liquid slug 

and film zones (Taitel and Barnea, 1990). As αu is independent of the film height, bubble and 

slug lengths, the first term in Eq. (3.8) may be assessed independently of the slug structure. 

3.2.2 Slug flow variables and solution steps  

For each hydrodynamic slug unit, the present mechanistic model depends on several input and 

output variables. These may be classified into 5 groups (a-e) as follows. 

a) Specified gas-liquid flow properties: ρg, ρl, νg, νl, ugs, uls, Us, Lu,  

b) Specified pipe geometric variables: β, d, A,  

c) Fluid variables identified through empirical or ‘closure’ functions: Rs (αs), Ub, Ut, Ul, 

fg, ff, fi, Ud, U0, U∞, σ, 

d) Empirical coefficients associated with functions in c): C, B, Cfg, no, jo, 

e) Numerically predicted variables: ϕ, Ag, Af, Sg, Sf, Si, hf, Lf, αf, Rf, Ls, Ug, Uf, αu, ρu, dPu.  

 By assigning the inputs a) and b), the film zone hydrodynamics is first analysed to identify 

a spatial distribution of hf, establishing a long and nonlinear gas bubble shape. The so-called 

closure relationships or empirical functions for Rs, Ut and Ub are required, rendering an 

empirical αs and Ul since αs=1−Rs and Ul = (Us−Ubαs)/Rs. Closure functions may be correlated 

with experimental data in the literature. For vertical tubes, Fernandes et al. (1983) suggested a 

constant Rs = 0.75 (αs =0.25). However, Rs should be variable for inclined pipes as, e.g., in 

Greskovich and Shrier (1971) who reported 0.5<Rs<1. Due to a lack of Rs correlation for such 

a larger-diameter inclined pipe as offshore riser, a widely used Rs correlation of Gregory et al. 

(1978) with Rs = 1/[1+(Us/8.66)1.39] is herein considered as it has been verified and applied to 

several mechanistic fluid models (Xiao et al., 1990; Petalas and Aziz, 1998; Zhang et al., 2003) .  

As for Ut, the associated closure formula is typically a linear superimposition (Ut = CUs 

+ Ud) of the drift velocity (Ud) of the elongated bubble in stagnant liquid and the flow mixture 

contribution Us with a factor C being the ratio of the maximum and mean velocities of the liquid 

slug (i.e. C >1). For a good approximation, C=1.2 (2) for turbulent (laminar) flows are 

recommended in Taitel and Barnea (1990). Bendiksen (1984) proposed Ud = 0.54(gd)0.5cos β 

+0.35(gd)0.5sinβ, which is shown to be a good approximation for inclined pipes with 0̊ ≤ β ≤ 90̊ 
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(Xiao et al., 1990; Kaya et al., 1999).  

As for Ub, the corresponding closure may be defined in a similar manner to Ut as Ub = 

BUs + U0, in which B is the distribution parameter and U0 is the average drift velocity of 

dispersed bubbles. By following Bendiksen (1984), B(β)=B(0̊)+[B(90̊)- B(0̊)]sin2β  may be used 

where B is bounded between 1 (horizontal pipe) and 1.2 (vertical pipe). U0 may be obtained 

through the relation U0 = U∞(1−αs) jo, where the modification factor jo ≈ 0 (i.e. U0 ≈ U∞) for the 

liquid slug (Taitel and Barnea, 1990), and the bubble rising velocity U∞ = 1.54[σg(ρl − ρg)/ρl
2]0.25 

with σ being the interfacial surface tension (Harmathy, 1960). For a laminar and steady flow 

with low ugs and uls, σ may be small and the associated surface tension parameter σ/[(ρl − 

ρg)(d/2)2g] may be assumed to be equal to 0.001 (Chatjigeorgiou, 2017). Note that Ub is equal 

to the gas velocity in the liquid slug zone whereas Ut > Ug in the film zone (Taitel and Barnea, 

1990).  

For a pipe with smooth inner surface, the Blasius correlation may be used:  ff = 

Cfg(DhfUf/νl)n and fg = Cfg(DhgUg/νg)no in which Dhf = 4Af/Sf or Dhg = 4Ag/(Sg + Si) is the hydraulic 

diameter, DhfUf/νl or DhgUg/νg is the Reynolds number (Re), Cfg = 16 and no = −1 for laminar 

flow if Re < 2000, Cfg = 0.046 and no = −0.2 for turbulent flow if Re > 3000 (Taitel and Barnea, 

1990), νl (νg) the liquid (gas) kinematic viscosity. In the range 2000 < Re < 3000, a friction 

coefficient may be interpolated to avoid a discontinuity across the flow transition region (Zhang 

et al., 2003). For an inclined pipe with a stratified flow feature in the liquid film zone, it is 

assumed that fi ≈ 0.014 (Cohen and Hanratty, 1968). A random change in fi has been found to 

produce a negligible effect on the riser dynamics (Chatjigeorgiou, 2017). These coefficients 

have been widely used in both the mechanistic (Zhang et al., 2003) and transient (Bonizzi et al., 

2009) models.  

With the selected closures and empirical coefficients, the numerical solution starts by 

letting Rf = Rs as an initial condition at zs = 0 for each slug unit. This assumption is reasonable 

as a head section of the elongated bubble (zs = 0) and a tail part of the liquid slug (z = Lu) of 

consecutive slug units share the same location (Figure 3.1). With Rf = Rs, Eq. (3.6) is solved for 

the initial hf = hs which is then compared with the critical film height hc obtained from the 

zeroing denominator in Eq. (3.3). The hf value at zs = 0 is assigned to be equal to the lower one 

of hs vs. hc (Taitel and Barnea, 1990). With the deduced hf, Rf, αf, Uf, Ug, Ag, Af, Sg, Sl and Si are 

computed, respectively. Consequently, Eq. (3.3) is numerically and spatially integrated using a 

4th order Runge-Kutta scheme and a small increment ∆zs of 0.001 m, during which all related 

parameters are updated for every station to obtain the complete spatial hf profile. This process 
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is carried out until the mass balance condition in Eq. (3.7) is fulfilled so that Lf , and 

subsequently Ls, is identified: Lu = Lf +Ls. The pressure drop is then evaluated through Eq. (3.8).  

For a uniform inner cross section, Σmi = (Rsρl +αsρg)A within a liquid slug part whereas 

Σmi = (Rfρl + αfρg)A within a liquid film zone. Depending on a specified bottom or top end 

pressure, a cross-sectionally averaged or mean pressure variation Pm(s) can be identified 

through the pressure drop calculation in Eq. (3.8). For a given Ut, element spacing ∆s and time 

step ∆t, a function of the space-time varying slug flow properties (mi, Ui, P), contributing to 

Eqs. (3.1) and (3.2), may be expressed as  

     
( , ) ( , ),
( , ) ( , ),

( , ) ( ) 1 ( , ) ,

i i t

i i t

m t t

m s t m s U t t t
U s t U s U t t t

P s t P s U t kR s U t t t

= + ∆ + ∆
= + ∆ + ∆

 = + ∆ + + ∆ + ∆ 


          (3.9)

where k is the percentage of pressure fluctuation which is assumed to have a space-time varying 

profile similar to that of the liquid hold up (Hara, 1977) to account for their interdependence. 

Herein, the normalized holdup profile (R͂) with a maximum (minimum) amplitude of 1 (−1) is 

introduced so that the fluctuation occurs around Pm. In the following Section 3.3, the slug gas-

liquid flow features depending on the system flow-pipe parameters are presented prior to the 

analysis of pipe planar SIV in Section 5. 

3.3. Fundamental Pipe Properties and Slug Flow Characteristics 

Prior to investigating the planar dynamics of catenary pipe transporting slug flows and the 

effects of slug flow-pipe parameters on SIV, it is first important to gain some fundamental 

insights into the pipe statics (geometric profile, pre-tension variation) and modal (natural 

frequencies, modes) properties, and the combined gas-liquid flow features (hf, uL, uG, R, Pm) 

contributing to the mass, velocity and pressure variables in Eqs. (3.1) and (3.2). By way of 

examples applicable to a deep-water application, we consider a very long catenary riser pipe 

made of steel with E = 207 GPa, L = 2025 m, d = 0.385 m and D = 0.429 m (L/D ≈ 4720). The 

variable-inclination riser is fully submerged in a 1000 m depth of quiescent sea waters. The 

pipe materials have an effective weight of 699 N/m and initial top tension of 1860 kN, 

transporting upwardly the combined oil (ρl = 790 kg/m3) and methane gas (ρg = 0.675 kg/m3) 

flows (Chatjigeorgiou, 2017). Based on the stability analysis of Bakis and Srinil (2019), this 

considered top-tensioned and pinned-pinned riser is free from a divergence instability due to an 

internal flow which would occur at a very high flow velocity of about 80 m/s. 

A referenced static profile of a submerged catenary pipe subject to the combined effective 

weight and external hydrostatic pressure is displayed in Figure 3.2 including (a) x̃-ỹ coordinates,  
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Figure 3.2: Properties associated with initial static profile of catenary riser: (a) x͂-y͂ 
coordinates, (b) local inclination angles, (c) pre-tensions, (d) curvatures: blue and red dashed 

lines denote the results of present study and OrcaFlex (Orcina, 2016). 

(b) local inclination angles β (0 <β < 90o) measured clockwise from the X axis, (c) pre-tensions 

and (d) curvatures along s from the top (x̃ = ỹ = s = 0) to the bottom (x̃ = 1688, ỹ = 1000, s = 

2025 m). Validation of the static profile is conducted by comparing the results (blue lines) 

against the ones (red dashed lines) obtained from OrcaFlex (Orcina, 2016). In Figure 3.2a, the 

maximum sagging measured perpendicularly from the inclined chord, per the chord span 

(dashed line), is about 0.11 at s ≈ 1096 m (more than a half of L at s ≈ 1012.5 m). This signifies 

the pipe asymmetric geometry which would influence on the associated modal characteristics 

of SIV responses. In Figure 3.2b, the maximum β ≈ 51o occurs at the top whereas the minimum 

β ≈ 2o occurs at the bottom, the latter reflecting a nearly horizontal laid-down pipe. By 

averaging all nodal β (with ∆s = 1m), the mean β ≈30o is coincidentally equal to the chord 

inclination (tan-1(1000/1688)). In Figure 3.2c, the variable pre-tension experiences a 

considerable reduction (37.4%) from the top (1860 kN) to the bottom (1164 kN), caused by the 

distributed gravity and static pressure loads. Such tension and asymmetric profile changes affect 

x͂  (m) 

y͂ 
 (m

) 



40 
 

the pipe stiffness properties. In Figure 3.2d, the pipe curvatures (κ) are small (order of 10-4), 

albeit nonlinearly varying. It is worth mentioning that the maximum (minimum) κ is near the 

riser bottom (top) before the riser ends, which leads to a steep change in κ close to s=0 m and 

s=2025m. This is due to the effect of bending stiffness (Sparks, 2007) and the assumption of 

pinned-pinned boundary condition, which yield the zero values of curvature at the riser 

boundaries. Additional travelling slug flow masses would further modify such initial geometry 

and tensions along the span due to the moving weight effect and the internal pressure drop 

change. Based on the finite element method of free vibrations (Safrendyo and Srinil, 2018), 

natural frequencies (fn) of the submerged and empty pipe in Figure 3.2 are found to be in the 

range of 0.03-0.71 Hz for the first 40 planar modes, suggesting a tension-dominated flexible 

riser due to such closely spaced low frequencies (Srinil et al., 2009). 

As for slug flows consisting of a series of slug unit trains, a fixed normalized unit length 

Lu/d is herein considered so that the gas-liquid mass balances of all slug units travelling along 

the pipe span are consistent with the assumed steady-state flow model described in Section 3.1. 

As each slug unit propagates upwardly, part of the liquid film may move backwards with a 

negative Ul relative to the gas-liquid interface. Nevertheless, the amount of this part is picked 

up by the following slug liquid. This enables a constant flow rate at a fixed cross section over 

the time of the slug unit passage (Taitel and Barnea, 1990). Based on the experimental gas-

liquid flow maps of inclined pipes with 0̊< β < 90̊ (Spedding and Nguyen, 1980), a volumetric 

flow rate is chosen such that uls and ugs are associated with a slug flow regime whose likelihood 

of occurrence increases with β (Spedding and Nguyen, 1980). The main slug unit outputs may 

be described as a function of β, Lu/d, ugs and uls, where the associated slug unit velocity Ut 

depends on the mixture velocity Us = uls + ugs. For steady flows, a characteristic or primary slug 

frequency (fs) may be approximated as fs ≈ Ut/Lu (Hz), depending on the specified Lu/d. In the 

literature, the suggested Lu/d values for subsea applications are variable, depending on several 

practical and operational factors as exemplified in Table 2.2. In this study, Lu/d is assumed such 

that a unique real-valued numerical solution of the Taitel-Barnea model can be found. 

By assigning uls = 2 m/s, Table 3.2 presents case studies with specified β, Lu/d, ugs, Ut, 

and the associated fs. Note that β is based on the maximum, minimum and averaged inclinations 

from Figure 3.2b. There are two cases of parametric (Lu/d, Ut) pairs yielding a comparable fs: 

(80, 6) vs. (208, 16) and (63, 16) vs. (80, 20). These cases will be elaborated in Section 3.4 to 

verify whether there is a dependence of SIV on individual Lu/d or Ut, regardless of fs.   
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Table 3.2: Specified slug flow parameters for SIV case studies with uls = 2 m/s. 

β (o) Lu/d ugs (m/s) Ut (m/s) fs (Hz) 
30 63, 80, 120, 140, 208 2.0 6 0.25, 0.20*, 0.13, 0.11, 0.08 
2, 15, 30, 51 80 4.5 9 0.29 
30 80 7.0 12 0.39 
30 63, 80, 120, 140, 208 10.3 16 0.66**, 0.52, 0.35, 0.30, 0.20* 
30 80 14.0 20 0.66** 

Note: * and ** denote cases with similar fs. 

Table 3.3: Slug flow profile properties in cases of varying (a) Ut, (b) Lu/d and (c) β. 

(a) β = 30° and Lu/d = 80 

Ut (m/s) Lf (m) Ls (m) Lu (m) Lf/Ls Lf/Lu αvol 
6 8.96 21.84 30.8 0.41 0.29 0.393 
9 14.74 16.06 30.8 0.92 0.48 0.579 
12 17.8 13 30.8 1.37 0.58 0.676 
16 20.2 10.6 30.8 1.90 0.66 0.749 
20 21.7 9.1 30.8 2.38 0.70 0.797 

(b) β = 30° and Ut = 16 m/s 

Lu/d Lf (m) Ls (m) Lu (m) Lf/Ls Lf/Lu αvol 
63 16.73 7.37 24.1 2.27 0.69 0.749 
80 20.2 10.6 30.8 1.91 0.66 0.749 
120 27.79 18.41 46.2 1.51 0.60 0.749 
140 31.45 22.45 53.9 1.4 0.58 0.749 
208 43.49 36.56 80.05 1.18 0.54 0.749 

(c) Ut = 9 m/s and Lu/d = 80 

β (o) Lf (m) Ls (m) Lu (m) Lf/Ls Lf/Lu αvol 
2 22.61 8.19 30.8 2.76 0.73 0.598 
15 16.86 13.94 30.8 1.21 0.55 0.591 
30 14.74 16.06 30.8 0.92 0.48 0.579 
51 12.84 17.96 30.8 0.71 0.42 0.560 

 The effect of varying ugs (Ut) on slug flow features is first analyzed. By considering 

β=30̊ and Lu/d ≈ 80, and varying ugs = 2, 4.5, 7, 10.3 and 14.0 (Ut ≈ 6, 9, 12, 16 and 20) m/s, 

Figure 3.3 illustrates spatial profiles of slug flow properties in the liquid and gas zones including 

the normalized film thickness hf/d (Figure 3.3a), liquid holdup R (Figure 3.3b), liquid velocity 

uL,(Figure 3.3c) and gas velocity uG (Figure 3.3d), along Lu/d. Actual values of Lu, film length 

(Lf), liquid slug length (Ls) and Lf/Ls are reported in Table 3.3a. Note that, in Figure 3.3 (and 

subsequent Figures 3.4-3.5), the flow direction is from left to right; uG = Ub, uL = Ul and hf/d 

=1 (i.e. fully occupied with liquid) in the slug liquid zone whereas uG = Ug and uL = Uf in the 

film zone. As ugs is increased from 2 to 14 m/s, Figure 3.3a shows that hf/d decreases whereas 

Lf/d (Ls/d) elongates (shrinks), rendering a wider, longer and more uniform gas bubble shape. 
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This is justified in Table 3.3a with the increasing Lf/Ls, Lf/Lu and gas volumetric fraction per 

slug unit αvol. Correspondingly, Rf decreases from the bubble nose to its tail as in Figure 3.3b. 

A spatial variation in hf/d and Rf is more nonlinear in the lower ugs case entailing a greater liquid 

mass variation in the film zone. Hence, an assumption of a rectangular slug unit pulse employed 

in some previous studies (Table 2.2) might not be justified at a low ugs. For the highest ugs, the 

gas phase dominates the slug unit with the maximum αvol. The uL profile in Figure 3.3c 

experiences a transition from being positive at the bubble nose to negative at the tail for low ugs 

= 2.0, 4.5 and 7 m/s. Such a negative uL is influenced by low Ut and Rf (Eq. (3.4)), enabling the 

prevailing gravity effect. On the other hand, uG in Figure 3.3d is always positive because of the 

greater αf (Eq. (3.5)): this is typical for the gas buoyancy feature.  

 

Figure 3.3: Influence of Ut (6, 9, 12, 16, 20 m/s) on (a) hf /d, (b) R, (c) uL and (d) uG for a slug 
unit with Lu/d = 80, uls=2 m/s and β=30̊.   

Nevertheless, both uL and uG increase with ugs, with the maximum uL (uG) at the bubble 

nose (tail). In all cases, absolute values of uG > uL and uG profiles are relatively uniform with a 

smaller percentage change along Lu/d. There is a discontinuity (vertical dashed lines) in the 

obtained outputs, clearly distinguishing the liquid slug from the film zones. This essentially 
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emphasizes a rapid change in slug flow properties which, in turn, would influence the pipe 

distributed mass and stiffness. Based on Figure 3.3 and Table 3.3a, the pipe SIV would be 

subject to a greater flow velocity effect in the case of higher Ugs (i.e. Ut) and to a greater liquid 

mass (density) fluctuation in the case of lower Ugs. 

 

Figure 3.4: Influence of Lu/d (63, 80, 120, 140, 208) on (a) hf /d, (b) R, (c) uL and (d) uG for a 
slug unit with ugs=10.3 m/s, uls=2 m/s and β=30̊. 

The effect of varying Lu/d is next discussed through Figure 3.4 and Table 3.3b. By 

assigning β=30̊ and ugs = 10.3 (Ut ≈ 16) m/s, variations of hf/d (Figure 3.4a), R (Figure 3.4b), 

uL,(Figure 3.4c) and uG (Figure 3.4d) are displayed in the case of increasing Lu/d from 63 to 208. 

Both Lf and Ls are seen to increase such that a conservation of unit mass is satisfied for a fixed 

uls and ugs; i.e., αvol = 0.749 is constant as justified in Table 3.3b. For this fixed ugs, Lf/Ls 

decreases as Lu/d increases, contrary to the increasing Lf/Ls trend in Table 3.3a. The variable 

ranges of 0.5 < Lf/Lu < 0.7, 0.2 < hf/d < 0.4 and 0.1< R< 0.38 in the varying Lu/d case are smaller 

than those (0.25 < Lf/Lu < 0.7, 0.2 < hf/d < 0.7 and 0.1< R< 0.75) in the varying ugs case in 

Figure 3.3. This implies a greater effect of varying Ut, than varying Lu/d, on the slug profile 
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modification. As Lu/d is increased, hf/d and Rf in the film zone decrease, the latter rendering the 

decreasing and eventually negative uL (Eq. (3.4)). On the contrary, uG slightly increases owing 

to the increasing αf (Eq. (3.5)). Parameters within Ls remain unchanged since uls and ugs remain 

the same. The change in Lu affects Eq. (3.7) for determining Lf such that a greater Lu would 

result in a lower hf and Rf (Eq. (3.6)).  

Table 3.4: Pressure drop components, bottom pressure and resulting pre-tension variations in 
cases of varying (a) Ut, (b) Lu/d and (c) β. 

(a) β = 30° and Lu/d = 80 

Ut 
(m/s) 

Ns dPf 

(kPa) 
dPs 

(kPa) 
dPg 

(kPa) 
dPu 

(kPa) 
Pb 

(kPa) 
Pdrop 

(%) 
Tb  

(kN) 
Tdrop 

(%) 
6 65 0.08 4.55 72.51 77.14 5174.5 98.04 802.19 56.77 
9 65 0.39 7.68 50.30 58.37 3936.8 97.42 888.64 52.11 
12 65 1.07 10.64 38.82 50.53 3420.2 97.04 924.72 50.16 
16 65 2.62 14.19 30.14 46.95 3184.2 96.82 941.21 49.27 
20 65 5.09 17.71 24.32 47.12 3212.7 96.85 939.21 49.38 

(b) β = 30° and Ut = 16 m/s 

Lu/d Ns dPf 
(kPa) 

dPs 
(kPa) 

dPg 
(kPa) 

dPu 
(kPa) 

Pb 
(kPa) 

Pdrop 
(%) 

Tb  
(kN) 

Tdrop 
(%) 

63 84 2.60 9.87 23.53 36.00 3126.6 96.76 945.23 49.06 
80 65 2.62 14.19 30.11 46.92 3184.2 96.82 941.21 49.27 
120 43 2.62 24.65 45.12 72.39 3274.3 96.91 934.91 49.61 
140 37 2.63 30.10 52.62 85.35 3306.9 96.94 932.64 49.74 
208 25 2.65 48.94 78.24 129.83 3384.3 97.01 927.23 50.03 

(c) Ut = 9 m/s and Lu/d = 80 

β (o) Ns dPf 
(kPa) 

dPs 
(kPa) 

dPg 
(kPa) 

dPu 
(kPa) 

Pb 
(kPa) 

Pdrop 
(%) 

Tb  
(kN) 

Tdrop 
(%) 

2 65 2.31 4.17 3.36 9.84   748.4 86.46 1111.3 40.11 
15 65 0.71 6.98 25.29 32.98 2269.8 95.54 1005.1 45.83 
30 65 0.39 7.68 50.27 58.34 3936.8 97.43 888.6 52.11 
51 65 0.25 7.81 81.72 89.78 6004.0 98.31 744.2 59.89 

The slug flow features are also dependent on β which affects some empirical input 

variables (Ut, Ub). Understanding of this β effect is meaningful for a catenary pipe with variable 

inclinations. By specifying ugs = 4.5 m/s and Lu/d ≈ 80, variations of hf/d (Figure 3.5a), R (Figure 

3.5b), uL,(Figure 3.5c) and uG (Figure 3.5d) are plotted for β= 2̊, 15̊, 30̊ and 51̊, together with 

outputs in Table 3.3c. As β is increased, Figure 3.5a shows that Lf/d (Ls/d) is shortened 

(elongated), enabling the decreasing Lf/Ls, while hf/d is slightly reduced. Hence, the associated 

Rf is reduced as shown in Figure 3.5b. These indicate that the gas bubble shape becomes shorter 
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and wider, increasingly occupying the cross section as the pipe is more inclined towards a 

vertical 90o where a so-called Taylor bubble would be developed (Fernandes et al., 1983). At 

higher β, uG becomes faster due to the buoyancy effect (Figure 3.5d) whereas uL becomes 

slower (Figure 3.5c) due to the gravity effect. For such a low uls = 2 m/s and ugs = 4.5 m/s, uL < 

0 appears at a relatively large β, suggesting a falling liquid film near the tail region. Because of 

the fixed ugs and Lu/d, αvol slightly decreases as β is increased. This implies that for a system 

with variable inclination under the steady-state slug flows, the changes in the gas-liquid 

velocities predominate over a volumetric mass variation. 

 

Figure 3.5: Influence of β (2˚, 15˚, 30˚, 51˚) on (a) hf /d, (b) R, (c) uL and (d) uG for a slug unit 
with ugs=4.5 m/s, uls=2 m/s and Lu/d=80. 

For a fixed β = 30o, Tables 3.3a and 3.3b also show the slug outputs for the two parametric 

pairs (ugs, Lu/d) having a comparable fs (Table 3.3), whose slug profiles have been displayed as 

part of Figures 3.3 and 3.4. For the first pair (2, 80) vs. (10.3, 208), there is a considerable 

difference in both Lf/Ls (0.41 vs. 1.19) and αvol (0.393 vs. 0.749), apart from the noticeable 

different ranges of uL and uG in Figures 3.3 and 3.4. As for the second pair (14, 80) vs. (10.3, 
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63), Lf/Ls (2.38 vs. 2.27) and αvol (0.797 vs. 0.749) are comparable, as are uL and uG. These 

results suggest that the pipe SIV, especially for the first parametric pair case, could be somewhat 

different despite having a similarly potential resonance with the comparable fs. This point will 

be discussed again in Section 3.4.  

Once a fully-developed slug flow profile is established as in Figures 3.3-3.5, it is then 

feasible to estimate the total internal pressure variation for each slug unit (dPu). By accounting 

for all the travelling slug units fully occupying the pipe span, the resulting mean-valued tension 

in the pipe wall Tm = T-2νPmA, where Pm is the mean pressure spatially varied due to slug flows 

along the pipe. From Eq. (3.8), dPu consists of the gravitational effect (dPg), the frictional effect 

in the slug liquid zone (dPs) and the frictional effect in the film zone (dPf). By assuming that 

the top outlet mean pressure (Pt) is equivalent to the atmospheric pressure of 101.3 kPa as in 

Ortega et al. (2018), Table 3.4 summarizes dPg, dPs, dPf, dPu, the number of full slug units 

occupying the pipe (Ns ≈ L/Lu) over a constant slugging period (1/fs), the bottom mean pressure 

(Pb), the percentage of the mean pressure drop from the bottom to the top [Pdrop = 

(Pb−Pt)×100/Pb], the resulting Tm at the bottom (Tb), and the percent reduction of Tm (Tdrop) 

from the top (Tm = 1855.5 kN) to Tb. Results in the cases of varying (Table 3.4a) Ut, (Table 

3.4b) Lu/d and (Table 3.4c) β, including the cases of Ut-Lu/d pairs for a fixed fs, are presented.  

As Ut is increased for a given Lu/d = 80 and β = 30o, Table 3.4a shows that dPg decreases 

while both dPs and dPf (dPs > dPf) increase. A reduction in dPg is due to an increment of αu, 

hence, a reduction in ρu in Eq. (3.8) (i.e. having less liquid and more αvol) as ugs is increased. 

On the contrary, dPs increases due to the increasing liquid slug velocity (Figure 3.3c) where a 

squared value amplifies the shear stress τf notwithstanding the decreasing Ls (Table 3.3a). 

Likewise, dPf increases due to the increasing Lf (Table 3.3a) and amplification of τf and τg as a 

result of increasing gas-liquid velocities (Figures 3.3c and 3.3d). By summing up all the 

pressure drop components (dPu) and accumulating that along the pipe, dPu and Pb decrease as 

ugs is increased, mostly following the dPg trend. Note that, at ugs = 10.3 and 14 m/s, dPu and Pb 

in both cases are comparable with a similar Pdrop and Tdrop, regardless of the increasing 

(decreasing) trend of dPf  and dPs (dPg). For a constant Ns, the lowest ugs case experiences the 

maximum Tdrop ≈ 57%.   

As Lu/d is increased for a given ugs = 10.3 m/s and β = 30o, Table 3.4b shows that both 

dPg and dPs (dPs > dPf) increase, contributing to the increasing dPu. The increment of dPg is 

due to the increasing Lu since αvol is constant (Table 3.3b) whereas the increment of dPs is due 

to the increasing Ls since the liquid slug velocity associated with the fixed ugs is unchanged. 
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Because of a constant αvol, dPf is nearly unaltered as Lu/d is varied. The minimum Pb is 

associated with the lowest Lu/d case having the highest Ns whereas the minimum Tb is associated 

with the greatest Lu/d case. Nevertheless, both Tables 3.4a (varying ugs) and 3.4b (varying Lu/d) 

reveal similar values of nearly 97% of Pdrop and 50% of Tdrop in comparison with 37% of the T 

reduction in Figure 3.2c. This slug-induced tension variation would influence the pipe axial 

stiffness, associated natural frequencies and modal properties, which, in turn, could modify the 

pipe resonant SIV during the slug transportation.  

For a given ugs = 4.5 m/s and Lu/d ≈ 80, Table 3.4c shows that both dPg and dPs increase, 

contributing to the increasing dPu, as β is increased. This is similar to the increasing Lu/d case 

in Table 3.3b, but due to a different reason. Since ugs and Lu/d are constant and αvol is nearly 

unchanged (Table 3.3c), the increasing dPg is now due to the inclination effect (i.e. increasing 

sinβ in Eq. (3.8)). The increasing dPs is due to the increasing Ls. On the other hand, despite the 

increasing Lf, dPf tends to decrease as the pipe is more inclined. This is attributed to the 

increasing gas-liquid velocities moving in the opposite directions within the liquid film (Figures 

3.5c vs. 3.5d), enabling the sign differences of the associated shear stress terms and, hence, the 

ensuing reduction of integrated values in Eq. (3.8).  It is also interesting to remark for the pipe 

with highest β = 51o that Pb is maximum while Tb is minimum, the latter softening the pipe 

stiffness (Srinil et al., 2003), potentially increasing the pipe sagging displacement and hence 

reducing the pipe natural frequencies.    

In accordance with Table 3.3, Table 3.4 also compares the pressure change components, 

resulting Pb and Tb, Pdrop and Tdrop, for the two parametric pairs (ugs, Lu/d) having a comparable 

fs (Table 3.2). It is seen that the first pair (2, 80) vs. (10.3, 208) experiences a greater difference 

in both Pb (5174.5 vs. 3384.3 kPa) and Tb (802.19 vs. 927.23 kN) than the other pair (14, 80) 

vs. (10.3, 63) with comparable Pb (3212.7 vs. 3126.6 kPa) and Tb (939.21 vs. 945.23 kN). These 

are due to the greater differences in Lf, Ls, Lu, αvol, the associated liquid-gas velocities (Figures 

3.3 and 3.4) and the resulting shear stresses in the former case.  

Overall variations in the key input flow-pipe parameters and the associated output 

characteristics will influence the planar static (drifts) and dynamic responses (amplitudes, 

modes, oscillation frequencies, resonances) of the slug-transported pipe. These are analysed 

and discussed in the following. 

3.4. Mechanisms of Curved Flexible Pipe Transporting Slug Flows 

Mechanisms of a long inclined curved bendable pipe transporting steady slug flows are now 

investigated based on the slug flow-pipe properties in Section 3.3. In this study, multiple slug 
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unit trains travelling along the pipe have the same features according to the steady-state flow 

assumption. As the mean pipe inclination and the chord angle are both about 30o, the slug flow 

profile with β = 30o is specified, unless stated otherwise, as a representative slug unit cell. From 

Eq. (3.9), a small local fluctuation amplitude (k) of the internal pressure about a mean value is 

taken as 5%, following recent experimental and numerical works of Ortega (2015) who reported 

k ≈ 5.5%. Experimental results in the case of steady SIV in catenary pipe in Zhu et al. (2018a) 

also suggested k ≈ 5.8%. Attention is placed on investigating the effect of varying Ut and Lu/d 

primarily governing fs = Ut/Lu. The slug flow properties (Figures 3.3-3.5), pressure and tension 

variations (Tables 3.2-3.4) are incorporated as the space-time varying inputs into the pipe model 

through the slug flow-induced momentum and gravity loading terms. In the following, key 

features of slug flow-induced fluctuation frequencies, transient drifts, steady mean 

displacements, SIV and bending/axial dynamic stresses are presented and discussed. 

3.4.1 Slug flow-induced fluctuation frequencies 

With Lu/d = 80 and Ut =16 m/s, the space-time varying profiles of the four main properties of 

slug flows are illustrated in Figure 3.6, including (a) R, (b) uL, (c) uG and (d) P, within the first 

20 s and 200 m of the pipe’s bottom part starting from the inlet (1825 < s < 2025 m). For this 

Lu/d = 80 and Ut =16 m/s, it takes about 126s (i.e. the transient period) for the pipe to be fully 

occupied by about 65 slug units. Note that, for a demonstration purpose, the incremental profiles 

in Figure 3.6 are plotted for every second, despite the actual ∆t = 0.001 s, with the flow direction 

being from right to left as in Figure 3.1. Based on Figure 3.6, time histories of input variables 

at a specific pipe location can be recorded, showing a certain periodicity. The associated 

fluctuation frequencies may be approximated using the Fast Fourier Transform (FFT). Despite 

having different profiles of R, uL, uL and P, their frequency contents are the same based on the 

unique space-time variation.  

In the case of varying Ut = 6, 9, 16 and 20 m/s, Figure 3.7 illustrates FFT plots in which 

the peaks have a normalized spectral density amplitude of unity. It can be seen that, in consistent 

with results in Table 3.2, the dominant slug frequency increases as Ut is consecutively increased, 

confirming that fs = 0.20, 0.29, 0.52 and 0.66 Hz according to the relation fs = Ut/Lu. In addition 

to fs, several secondary peaks with smaller amplitudes can be remarked whose frequencies are 

approximately about (N+1)fs, where N=1, 2, 3. Such a multi-harmonic feature is typical for a 

square-like wave, which can be can be represented as an infinite sum of sinusoidal waves 

(Brigham, 1988). Similar fs behaviour has also been reported in Safrendyo and Srinil (2018), 

where a rectangular pulse train model of slug flows was considered. Within the displayed 3 Hz 
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range, the minimum (maximum) Ut =6 m/s (20 m/s) case experiences the highest (lowest) 

number of 15 (4) frequency contents in Figure 3.7.  

 

Figure 3.6: Illustration of space-time varying profiles (a) R, (b) uL, (c) uG and (d) P  based on 
Lu/d = 80, Ut =16 m/s. Dashed lines in (d) denote Pm. 

By assigning Ut = 16 m/s, Figure 3.8 displays FFT plots in the case of varying Lu/d = 63, 

120, 140 and 208, confirming fs values reported in Table 3.2. As expected from fs = Ut/Lu and 

in contrast to the varying Ut case, the minimum (maximum) Lu/d = 63 (208) case experiences 

the lowest (highest) number of 4 (14) frequency contents within the displayed 3 Hz range. For 

a fixed Ut = 9 m/s and Lu/d = 80, FFT plots in the case of varying β = 2o, 15o, 30o and 51o are 

shown in Figure 3.9. Their frequency contents in all β cases appear to be similar with identical 

fs = 0.29 Hz. There are 9 secondary peaks with very small moderations of amplitudes and 

frequencies.  
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Figure 3.7: Frequency spectra of slug fluctuations based on Lu/d= 80 and varying Ut. 

 

Figure 3.8: Frequency spectra of slug fluctuations based on Ut = 16 m/s and varying Lu/d. 
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Figure 3.9: Frequency spectra of slug fluctuations based on Ut = 9 m/s and Lu/d = 80 with 
varying β. 

 Overall, based on the observed fluctuation frequencies, it is expected that the pipe SIV in 

the lower Ut or greater Lu/d case might be subject to a greater number of excited vibrational 

modes. These will be examined in Sections 3.4.3 and 3.4.4, by also accounting for other key 

factors related to the pipe initial static profile, fluid propagating masses, velocities and pressure 

drop changes. 

3.4.2 Slug flow-induced transient drifts  

Figure 3.10 displays the space-time variations of pipe responses in u and v directions, capturing 

the slug flow-induced initial transient (quasi-static) and steady-state (dynamic) stages, in the 

case of varying Ut (Figures 3.10a, b), Lu/d (Figures 3.10c, d) and β (Figures 3.10e, f).  

As slug flows gradually propagate into the pipe and fully occupy it, Figure 3.10 reveals 

that, during t < 250 s, the pipe experiences a considerable excursion or transient drift in all 

directions and parametric cases. Such u and v drift profiles are asymmetric with respect to the 

middle span, having an inflection point around s/L ≈ 0.6 which exhibits a sign change in the 

pipe curvatures between the bottom and top parts. This feature agrees with an observation in 

Chatjigeorgiou (2017). The u drifts in the lower part are negative and nearly zero because of a 
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small local pipe inclination (nearly horizontal) whereas those in the upper more-inclined part 

are positive with greater values. On the other hand, v drifts in the lower part are positive because 

of the dominant gravity effect in the Y direction whereas they are negative in the upper part 

through an inflection point. These features, which are triggered by a sudden entrance of 

fluctuating slug flows unbalancing the space-time varying liquid holdups in conjunction with 

the variable initial tensions and geometric profiles (Figure 3.2), make the lower and upper parts 

bend outward (i.e. far away from the curvature centre) and inward about an inflection point, 

respectively. Similar large excursions of a catenary riser owing to the instantaneous passage of 

slug flows have been reported by Ortega (2015) and Meléndez and Julca (2019). 

 

 

Figure 3.10: Space-time varying (a, c, e) u/d and (b, d, f) v/d during initial transient slug 
initiation and subsequent steady state in the case of varying (a, b) Ut, (c, d) Lu/d and (e, f) β. 
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Table 3.5: Maximum amplified mean drifts during transient and steady states in cases of 
varying (a) Ut, (b) Lu/d and (c) β. 

(a) β = 300 and Lu/d = 80 

Ut (m/s) Transient Steady 
Max um/d Max vm/d Max um/d Max vm/d 

6 47.31 56.16 0.68 1.62 
9 33.11 38.80 0.50 1.13 
12 25.46 30.76 0.37 0.90 
16 20.57 24.01 0.26 0.68 
20 16.80 21.69 0.24 0.55 

(b) β = 300 and Ut = 16 m/s 

Lu/d Transient Steady 
Max um/d Max vm/d Max um/d Max vm/d 

63 20.55 23.97 0.32 0.66 
80 20.57 24.01 0.26 0.68 
120 20.58 24.02 0.29 0.68 
140 20.58 24.01 0.29 0.68 
208 20.62 24.04 0.29 0.68 

(c) Ut = 9 m/s and Lu/d = 80 

β (o) Transient Steady 
Max um/d Max vm/d Max um/d Max vm/d 

2 30.97 36.15 0.48 1.08 
15 31.83 37.19 0.48 1.10 
30 33.11 38.78 0.50 1.13 
51 35.08 41.16 0.50 1.19 

 

In association with Figure 3.10, Table 3.5 compares the maximum u and v drifts (um, vm) 

occurring at s/L ≈ 0.3 and 0.8, respectively, in all cases. These nearly quarter-span locations 

and the associated drift profiles are reminiscent of the fundamental planar mode of a catenary 

pipe (Srinil, 2010). With increasing Ut, it is seen in Figures 3.10a and 3.10b that the excursion 

duration decreases as Ut is increased from 6 to 20 m/s. This is expected since slug flows with a 

higher Ut requires less time to reach the pipe outlet. For instance, the pipe conveying slug flows 

at Ut = 6 and 16 m/s switches to the perfectly steady states after t ≈ 337 and 126 s, respectively. 

However, the maximum (minimum) transient effect is observed at the lowest (highest) Ut, 

attaining the maximum (minimum) u drift of about 47d (17d) and v drift of about 56d (22d). 

Such considerable drifts are caused by the greater R or lower αvol (Table 3.3a), giving rise to a 

greater gravity effect which is further imbalanced between the two asymmetric pipe parts. In 

the case of varying Lu/d, results in Figures 3.10c and 3.10d reveal similar behaviours of planar 

drifts and excursion durations, with maximum u drift of about 20d and v drift of about 24d. This 
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is expected since the transient duration depends on Ut being fixed as 16 m/s whereas the 

maximum drifts are proportional to αvol which is nearly unchanged as about 0.75 (Table 3.3b). 

These rules may also be applied to the case of varying β as shown in Figures 3.10e and 3.10f. 

Although the excitation durations are comparable in all cases with the same Ut, the maximum 

u and v transient drifts increase with β. By comparing the cases of β =51° and 2°, the former 

experiences the u drift of about 35d and the v drift of about 41d, being slightly greater than 31d 

and 36d in the latter case, respectively. Again, a small increment of maximum transient drifts 

with increasing β is attributed to the associated decreasing αvol as in Table 3.3c.  

3.4.3 Slug flow-induced mean displacements  

Once the pipe is fully occupied by the slug flows, the transient responses decay and eventually 

die out due to the system damping. Consequently, a steady-state SIV response takes place after 

t > 300s and the pipe experiences an oscillation around a new stabilized static equilibrium or 

mean displacement profile. Figure 3.11 illustrates contour plots of the space-time varying 

responses in case of varying Ut for 2990 < t < 3000s. Some interesting features are noticed. Due 

to the effect of gravity and flow momenta, the total u and v responses – inclusive of mean and 

oscillatory components – decrease as Ut is increased. For the low Ut = 6 and 9 m/s, contour 

plots appear to contain considerable mean components with some moderate oscillations along 

the pipe. For the intermediate Ut = 16 m/s, larger moderating oscillations become visible. Both 

mean and oscillation components decrease at the high Ut = 20 m/s. Figure 3.12 depicts the mean 

u and v displacement envelopes associated with the case of varying Ut (Figures 3.12a, b), Lu/d 

(Figures 3.12c, d), β (Figures 3.12e, f) and for the two parametric pairs (Figures 3.12g, h). In 

addition, Table 3.5 compares the maximum u and v mean values whereas Table 3.6 compares 

the associated top and bottom mean tensions accounting for the additional axial mean stretching 

during the steady-state response.  

Different from the transient excursions reported in Section 3.4.2, the plots in Figure 3.12 

reveal that the pipe is quasi-statically forced to bend outward in both u and v directions, 

exhibiting a new asymmetric and larger-sagged catenary profile with maximum displacements 

being less than 2d and locating near s/L ≈ 0.5 for u and 0.6 for v. In the case of varying Ut 

(Figures 3.12a, b), mean values decrease from 0.68d (u) and 1.62d (v) to 0.24d (u) and 0.55d 

(v) as Ut is increased from 6 to 20 m/s, respectively. Again, such difference is attributed to the 

associated αvol (Table 3.3a) and Te (Table 3.4a) entailing the different slug weight effects. In 

the case of varying Lu/d (Figures 3.12c, d), the mean displacement profiles and their maximum 

values are slightly varied (about 0.3 for u and 0.7 for v) because of a small variation in αvol 
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Figure 3.11: Space-time varying (a, c, e, g) u and (b, d, f, h) v inclusive of mean drifts during 
steady-state SIV for Lu/d= 80 at (a, b) Ut = 6 m/s, (c, d) 9 m/s, (e, f) 16 m/s and (g, h) 20 m/s. 
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Figure 3.12: Spatial profiles of mean drifts in (a, c, e, g) X and (b, d, f, h) Y directions in the 
case of varying (a, b) Ut, (c, d) Lu/d, (e, f) β and (g, h) fs. 

(Table 3.3b) and Te (Table 3.4b). In the case of varying β (Figures 3.12e, f), the mean 

displacements generally and slightly increase with β due to the decreasing αvol (Table 3.3c) and 
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Te (Table 3.4c). In comparison with the initial pre-tension results in Figure 3.2 and Table 3.4, 

the overall end tensions in Table 3.6 are further increased due to the mean displacement 

amplifications subject to the steady static weights of the moving slugs. In the case of the two 

parametric pairs (Figures 3.12g, h), the prevailing effects from αvol (Table 3.3) and Te (Table 

3.4) are revealed regardless of fs, in which the case (6, 80) shows distinctively larger mean 

displacements than the other three cases. Overall, such modifications in the mean displacement 

profiles and associated tensions affect geometrically the pipe restoring forces and natural 

frequencies. These, in turn, influence the SIV features as discussed in the following.      

Table 3.6: Modified mean tensions associated with pipe equilibrium reconfigurations during 
steady SIV 

Ut 
(m/s) 

Tm (kN) Lu/d Tm (kN) β  
(o) 

Tm (kN) 
Top Bottom Top Bottom Top Bottom 

6 3310 1712 63 2460 1324 2 2821 1715 
9 2865 1520 80 2460 1320 15 2837 1619 
12 2635 1412 120 2460 1314 30 2865 1520 
16 2461 1320 140 2460 1312 51 2911 1040 
20 2345 1246 208 2460 1306  

 

3.4.4 Slug flow-induced planar vibrations  

By removing the mean components from the total steady-state responses (e.g. Figure 3.11), 

Figure 3.13 displays the space-time variations of coexisting u (a, c, e, g) and v (b, d, f, h) 

oscillations (units in mm) with various Ut for a given Lu/d = 80, within 2990 < t <  3000 s . 

The associated spanwise FFT plots along the pipe are shown in Figure 3.14 for the 3 Hz range 

of pipe oscillation frequencies (fo) versus the slug fluctuations in Figure 3.7. Recall that fs 

increases as Ut is increased or Lu/d is decreased. At low Ut = 6 (Figures 3.13a, b) and 9 (Figures 

3.13c, d) m/s, high modulations of response amplitudes are evidently captured. Accordingly, 

FFT plots reveal multiple harmonics in which the dominant fo (with a highest normalized 

spectral density) is about 0.20 Hz (Figures 3.14a, b) for Ut = 6 m/s and 0.29 Hz (Figure 3.14c, 

d) for Ut = 9 m/s. These dominant frequencies are the same as the reported fs (Figure 3.7a, b) 

caused by the travelling slug excitations. Higher frequency contents with smaller amplitudes 

come into play in both Ut cases, implying the increased likelihood of dynamic stresses and 

fatigue-related issue. Nevertheless, as Ut becomes higher at 16 (Figures 3.13e, f) and 20 (Figure 

3.13g, h) m/s, overall u and v responses exhibit a periodic, unimodal and standing-wave feature 

with distinctive positions of minimum, zero (at nodes) and maximum amplitudes. The 

associated FFT plots reveal a single harmonic peak whose fo is increased, due to increasing Ut, 

to 0.52 (Figures 3.14e, f) and 0.66 (Figures 3.14g, h) Hz, being the same as fs in Figures 3.7c 
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and d, respectively. In such a high Ut range, higher frequencies of the slug fluctuation play a 

negligible role. Hence, results in Figures 3.13 and 3.14 highlight the effect of increasing Ut 

leading to a transition from being multimodal to unimodal SIV.  

 

Figure 3.13: Space-time varying (a, c, e, g) u and (b, d, f, h) v in mm exclusive of mean drifts 
during steady-state SIV for Lu/d= 80 at (a, b) Ut = 6 m/s, (c, d) 9 m/s, (e, f) 16 m/s, (g, h) 20 

m/s.  



59 
 

 

Figure 3.14:. Spatial profiles of oscillation frequencies associated with responses in Figure 
3.13. 

It can be observed that the slug flow-induced responses are closely correlated with Ut, 

which directly determines the slug flow-induced modal loads such as centrifugal and Coriolis 

forces as shown in Eqs. (3.1) and (3.2). Also, the gravity force mainly attributed to the liquid 

slug plays an important role in exciting the catenary riser due to the large inner area. These 

forces altogether lead the riser to vibrate at fs depending on the flow conditions. The observed 

transition from being multimodal to unimodal SIV can be a result of the travelling speed of the 

modal loads. The riser may be less affected by the slug flow-induced forces at high Ut than the 

cases at relatively low Ut, which allows the riser to fully respond to the gravity and momentum 

forces. Such a similar trend was also reported in Huse Knudsen et al. (2016), where VIV 

responses of a riser were found to be more modulated at lower slug flow travelling velocities. 

Also, the slug frequency contents can be responsible for this mode transition. Figure 3.14 shows 
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that the dominant fo is excited by the primary fs (Figure 3.7) at different Ut. Nevertheless, the 

cases of low Ut present more intensive distribution of fs. For instance, 15 vs. 4 frequency peaks 

up to 3 Hz can be captured at Ut = 6 vs. 20 m/s in Figure 3.7, respectively. Meanwhile, a low 

Ut can result in a low primary fs, which drives the riser to be dominated by the SIV at a low 

mode. This, in turn, may strengthen the effects of modal loads when a slowly oscillating riser 

is subject to a slowly travelling slug flow. Consequently, it is expected that the riser tends to 

experience multimodal oscillation at relatively low Ut owing to the large number of multiple 

input fs as well as the enhanced effect of modal loads owing to an adequate reaction time. 

Besides, the liquid mass should be considered alongside Ut since the modal loads depend on 

the combination of them. It can be seen from Table 3.3a that Rs decreases with Ut. This trend 

implies that the modal loads on the riser may become smaller with Ut, consequently leading to 

more regular SIV responses. It is also worth noting that a linearized viscous damping is 

employed in the present study to highlight the correlation between slug characteristics and SIV. 

Also, the damping coefficient c is calculated based on fn1 of the catenary riser since SIV of a 

catenary pipe has been experimentally observed to follow a dominant 1st mode oscillation in 

some studies (Zhu et al., 2018a; Zhu et al., 2018b). Hydrodynamic damping due to the fluid 

drag is later incorporated in Chapter 5 for the combined VIV and SIV cases. The higher order 

modes observed in Figures 3.14a, b and c, d may potentially be suppressed due to the large 

damping effect from fluid drag. 

The effect of varying Lu/d is next discussed. In the case of high Ut = 16 m/s, contour plots 

of coexisting u and v oscillations (units in mm) are displayed in Figures 3.15a, b for Lu/d = 120 

and in Figures 3.15c, d for Lu/d = 208. The associated FFT plots are shown in Figures 3.16a-d. 

In comparison with Figures 3.13e, f and Figures 3.14e, f with the same Ut = 16 m/s but lower 

Lu/d = 80, the main standing-wave feature is maintained in Figure 3.14a-d with a greater Lu/d. 

With decreasing fs, a lower vibration mode is excited with the dominant fo ≈ 0.35 Hz for Lu/d = 

120 and 0.2 Hz for Lu/d = 208. These results signify the unimodal SIV feature at high Ut, 

regardless of Lu/d. By comparing Figures 3.13a, b with Figures 3.15c, d, their u and v contour 

plots are clearly distinctive, despite being subject to the same fs. These results further emphasize 

a different role played by individual Ut or Lu/d. The case with higher Lu/d = 208 and faster Ut = 

16 entails greater u and v responses potentially due to a greater flow momentum effect.   

In the case of lower Ut = 6 m/s, contour plots of u and v oscillations are displayed in 

Figures 3.15e, f for Lu/d = 120 and Figures 3.15g, h for Lu/d = 208. The associated FFT plots 

are shown in Figures 3.16e to h. These results should be compared with those in Figures 3.13a, 

b and Figures 3.14a, b with the same Ut = 6 m/s but lower Lu/d = 80. In the case of Lu/d = 120, 
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the modulation feature is still visible in Figures 3.15e, f showing two dominant lower/higher 

modes intermittently switching among themselves over time. This mode-switching occurrence 

is justified by FFT plots with two outstanding and comparable fo peaks at 0.13 and 1.31 Hz.  

 

Figure 3.15: Space-time varying (a, c, e, g) u and (b, d, f, h) v in mm exclusive of mean drifts 
during steady-state SIV for (a, b & e, f) Lu/d = 120, (c, d & g, h) Lu/d = 208 at (a, b & c, d) Ut 

= 16 m/s and (e, f & g, h) Ut = 6 m/s. 
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Figure 17 exemplifies u (a, c) and v (b, d) spatial modal profiles inclusive of mean 

displacements at different time instants where the lower (a, b) or higher (c, d) mode prevails 

the riser dynamics with large drifts and variable curvatures along the span. Some local 

modulations are observed (see the red dotted circles in Figure 3.17b), suggesting a multi-modal 

interaction between higher/lower modes during SIV. Nevertheless, as Lu/d is further increased 

to 208, contour plots of u (Figure 3.15g) and v (Figure 3.15h) responses, together with FFT 

(Figures 3.16g, h), appear to become unimodal as in the higher Ut range. This feature now 

suggests a greater effect of increasing Lu/d with respect to a multi-to-single modal transition in 

a low Ut range.  

 

Figure 3.16: Spatial profiles of oscillation frequencies associated with responses in Figure 
3.15. 
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Some selected phase plane trajectories associated with the spatially maximum root-mean-

squared (RMS) u and v oscillations are displayed in Figure 3.18 for (a, b) Lu/d = 80 and Ut = 6 

m/s, (c, d) Lu/d = 80 and Ut = 16 m/s, (e, f) Lu/d = 208 and Ut = 16 m/s, and (g, h) Lu/d = 120 

and Ut = 6 m/s. In the low Lu/d and low Ut case (a, b), trajectories appear rather complicated, 

modulated and non-repetitive for each cycle due to the multi-harmonic effect. In the low Lu/d 

but higher Ut case (c, d), trajectories become dominated by a single harmonic, yet exhibiting a 

peculiar closed-loop pattern with a high level of repetitive cycles. In the high Lu/d and high Ut 

case (e, f), a nearly perfect circular trajectory associated with a single harmonic, unimodal and 

periodic motion takes place. Finally, in the intermediate Lu/d and low Ut case (g, h) exhibiting 

a two-dominant mode response (Figures 3.15e, f, 3.16e, f and 3.17), trajectories reveal a 

switching pattern between outer and inner closed-loop orbits with some modulations as a result 

of modal transition.  

 

Figure 3.17:. Illustrative spatial modal profiles in (a, c) X and (b, d) Y directions for Lu/d = 
120 at Ut = 6 m/s dominated by lower (a, b) and higher (c, d) modes.  
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Figure 3.18: Phase plane trajectories associated with spatially maximum (a, c, e, g) urms and 
(b, d, f, h) vrms for (a, b) Lu/d = 80 and Ut = 6 m/s; (c, d) Lu/d = 80 and Ut = 16 m/s; (e, f) Lu/d 

= 208 and Ut = 16 m/s, (g, h) Lu/d= 120 and Ut = 6 m/s.  
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Figure 3.19: Variations of spatially maximum (a, c, e) urms and (b, d, f) vrms in the case of (a, 
b) varying Ut for Lu/d = 80, (c, d) varying Lu/d for Ut = 6 m/s and (e, f) varying Lu/d for Ut = 

16 m/s. 
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 In summary, SIV features are found to be dependent on the individual effect of Lu/d and 

Ut, rather than fs. In order to determine the trends and most critical responses, Figure 3.19 plots 

the spatially maximum values of the root-mean-squared u and v amplitudes (urms, vrms) in the 

case of varying Ut for a fixed (a, b) Lu/d = 80 and in the case of varying Lu/d for a fixed (c, d) 

Ut = 6 m/s and (e, f) 16 m/s. It is found that the peak u and v responses occur when Lu/d = 80 

and Ut = 16 m/s (Figures 3.19a, b), Lu/d = 120 and 200 for Ut = 6 m/s (Figures 3.19c, d), and 

Lu/d = 80, 108 and 208 for Ut = 16 m/s (Figures 3.19e, f). Such multi-peak occurrences as Ut or 

Lu/d is varied suggest a dynamic resonance condition between the travelling slug flows and the 

pipe’s dominant oscillation frequencies. Apart from the peak responses, it is also interesting to 

see generally decreasing and increasing trends with Ut and Lu. By varying Ut from 6 m/s to 24 

m/s, SIV in terms of the root-mean-squared amplitude seem to be less pronounced. This may 

be associated with the aforementioned Ut effects in terms of slug frequency distribution, mode 

transition and riser-slug flow responding time, causing less influential modal loads including 

centrifugal and gravity forces. On the other hand, the generally increased responses with Lu 

may also be explained through the modal load concept, where a longer Lu leads to more 

unbalanced modal loads and in turn enhances the riser responses. By contrast, it is reasonable 

to see that the slug flow with a short Lu would affect the riser in a more averaged way than the 

long ones. This trend was also remarked in a numerical study by Thorsen et al. (2019) and 

experimentally observed by Zhu et al. (2019a). Overall, the case of Lu/d = 208 and Ut = 16 m/s 

appears to be the worst scenario producing largest u and v amplitudes for the present parametric 

case studies.   

3.4.5 Slug flow-induced bending and axial stresses 

It is of practical importance to examine bending and axial stresses caused by SIV. For the space-

time varying maximum bending stresses in X and Y directions, σu≈ ±DEu" /2 and σv≈ ±DEv" /2, 

respectively, where + (−) denotes the tensile (compressive) stress depending on modal 

curvatures (u", v"). Correspondingly, the space-time varying axial stress can be evaluated 

through σa≈E(x̃'u' + ỹ'v') where the terms in the parenthesis are the extensional dynamic strain 

proportional to the pipe displacement gradients (Srinil et al., 2007). The total steady-state 

stresses (σt) can be finally computed based on the summation of static, dynamic bending and 

axial stresses. In the following, stress values are reported in MPa.  

Figure 3.20 presents contour plots of σu and σv inclusive of mean and oscillatory 

components along the pipe span and time (2980 < t < 3000 s) by comparing the four chosen 

cases of (a, b) Lu/d = 80 and Ut = 6 m/s, (c, d) Lu/d = 120 and Ut = 6 m/s, (e, f) Lu/d = 80 and Ut 

= 16 m/s, and (g, h) Lu/d = 208 and Ut = 16 m/s. Note that the first and fourth cases are based   
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Figure 3.20: Space-time varying (a, c, e, g) σu and (b, d, f, h) σv inclusive of mean 
components: a, b (c, d) for Lu/d = 80 (120) at Ut = 6 m/s; e, f (g, h) for Lu/d = 80 (208) at Ut = 

16 m/s. 
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Figure 3.21: Space-time varying σa (a, c, e, g) with and (b, d, f, h) exclusive of mean 
components: a, b (c, d) for Lu/d = 80 (120) at Ut = 6 m/s; e, f (g, h) for Lu/d = 80 (208) at Ut = 

16 m/s. 
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on the same fs = 0.20 Hz. For σa evaluations, the effects of mean components are certainly 

meaningful as noted in Zanganeh and Srinil (2016). For the above chosen cases, contour plots 

of σa are displayed in Figure 3.21 by comparing between the total (mean and oscillatory) σa 

(Figures 3.21a, c, e, g) and mean-free σa (Figures 3.21b, d, f, h). For the cases of fs ≈ 0.20 Hz, 

contour plots of σt are shown in Figure 3.22 in both X and Y directions. Table 3.7 summarizes 

the spatially and temporally maximum (+) and minimum (−) σu and σv associated with Figure 

3.20 and σa (σt) associated with Figure 3.21 (Figure 3.22). In all cases, maximum and minimum 

bending stresses occur in the v direction associated with the vertical moving gravity, and they 

are below the typical yield strengths of about 200-500 MPa for a standard steel pipe (e.g. API 

5L) used in oil and gas applications. 

 

Figure 3.22: Space-time varying σt in (a, c) X and (b, d) Y directions for (a, b) Lu/d = 80 and 
Ut = 6 m/s and (c, d) Lu/d = 208 at Ut = 16 m/s. 

For a low Ut = 6 m/s and Lu/d = 80, high oscillatory modulations in σu (Figure 3.20a), σv 

(Figure 3.20b) and σa (Figure 3.21b) contours are clearly observed, as in the displacement plots 

(Figures 3.13a, b), accompanied by large mean stresses (Figure 3.21a) associated with large 

mean displacements (Figures 3.12a, b). By increasing either Lu/d to 120 (Figures 3.20c, d) or 
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Ut to 16 m/s (Figure 3.20e, f), overall σu and σv contours reveal standing-wave patterns, as in 

the associated displacements, whose values are positively and negatively amplified in Table 3.7, 

with the worst scenario being associated with the former case. This highlights the important 

effect of increasing slug unit length on the pipe SIV bending stresses. Nevertheless, the 

variation of Ut plays a greater role than that of Lu/d in evaluating mean σa as shown in Figures 

3.21e vs. Figures 3.21c.  

Table 3.7: Maximum/minimum bending, axial and total stresses in MPa corresponding to (a) 
Figure 3.20, (b) Figure 3.21 and (c) Figure 3.22, respectively. 

(a) 

Ut   
(m/s) Lu/d σu σv 

Max Min  Max  Min  
6  80 3.34 -2.89 4.92 -5.68 
6 120 31.68 -30.57 49.51 -49.15 
16  80 5.42 -6.00 8.64 -8.59 
16 208 4.51 -4.38 10.70 -11.55 

(b) 

Ut  
(m/s) Lu/d 

σa  
(mean & oscillation parts) 

σa  
(oscillation part) 

Max Min  Max  Min  
6  80 52.08 32.01 0.42 -0.43 
6 120 53.62 30.75 1.96 -1.96 
16  80 22.06 12.86 0.64 -0.63 
16 208 21.94 12.76 0.73 -0.74 

(c) 

Ut  
(m/s) Lu/d 

σt  
(u direction) 

σt  
(v direction) 

Max Min  Max  Min  
6  80 119.51 60.51 119.20 55.48 
16 208 89.58 45.31 89.22 34.68 

 

As reported in Table 3.7, the mean σa values are considerably decreased with Ut = 16 m/s 

and Lu/d = 80 due to the decreased mean displacements (Figure 3.12). The trend of oscillatory 

σa behaves similarly to that of the total σu and σv according to the same excited vibration modes. 

By comparing the case of Ut = 6 m/s and Lu/d = 80 vs. Ut = 16 m/s and Lu/d = 208, both having 

similar fs, the latter exhibit greater σu, σv and oscillatory σa and whereas the former exhibits 

larger mean σa. These emphasize the individual role played by Lu/d or Ut, regardless of fs. 

Comparisons in Figure 3.22 and Table 3.7 also suggest the worst σt scenario (i.e. tensile type) 

associated with the case subject to the maximum slug gravity weight effect under Ut = 6 m/s 
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and Lu/d = 80. Nevertheless, since σt decreases from the riser top to bottom, the case with higher 

Ut = 16 m/s and Lu/d = 208 may pose a critical challenge associated with the diminishing σt 

leading to a greater likelihood dynamic buckling with a negative σt.  

3.5. Summary 

In this chapter, slug gas-liquid flow-induced planar vibrations in a long curved inclined flexible 

riser have been numerically investigated to understand the mechanical effects of slug flow 

characteristics including the slug unit length, translational velocity and fluctuation frequencies. 

A mechanistic slug flow model has been applied to arrive at the system phase fractions, local 

velocities and pressure changes of steady slug gas-liquid flows travelling upwardly through the 

flexible cylindrical pipe. Coupled horizontal and vertical motions of the bendable/extensible 

curved riser with pinned-pinned end conditions are subject to the space-time varying fluid 

weights and flow momenta associated with the uniformly travelling slug units. Depending on 

the pipe diameter and inclination, phase fractions, superficial velocities and internal pressure 

changes, parametric studies have been performed in the case of varying slug unit length, 

translational velocity and excitation frequency.  

Overall, several key slug flow features and resonant SIV mechanisms have been observed. 

For a given pipe inclination, a greater liquid mass or density fluctuation occurs in the case of 

lower gas superficial velocity. For the riser system with variable inclinations, the changes in 

the gas-liquid flow velocities predominate over a volumetric mass variation. The liquid mass 

distribution is primarily responsible for the pressure drop and associated pipe wall tension 

change which, in turn, modifies the riser axial extensibility, static equilibrium reconfiguration 

and SIV resonance condition. An intrinsic excursion in global riser displacements is noticed 

during the initial transient slug initiation leading to a pipe flexing into a new double-curvature 

configuration. After this short-period excursion, the flexible riser reconfigures itself into a new 

static equilibrium owing to the combined effects of slug gravitational weight and flow 

momentum. For steady-state SIV, riser responses comprise the amplified mean and oscillatory 

components which are dynamically coupled as a result of the space-time varying gravity 

(mostly due to the liquid holdup with a higher fluid density) and the gas-liquid flow (centrifugal 

and Coriolis) momenta depending on the combined two-phase masses and velocities. 

Depending on the slug flow conditions, multi-modal vibration of the flexible riser is revealed 

and attributed to the multiple harmonic components in slug characteristic frequencies. By 

varying Ut, a transition from a multi-mode SIV (low Ut) to a single-mode SIV (high Ut) is 

realized. By increasing Lu/d, the single-mode SIV response could appear in the low Ut range. 

Planar SIV seems not solely governed by characteristic slug excitation frequency but affected 
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by an individual effect of Ut and Lu/d. In some cases, multiple resonant SIV may take place at 

a certain Lu/d-Ut combination, where the oscillation mode switches intermittently between 

distinct lower/higher ones. Space-time varying bending, axial and total stresses associated with 

SIV have been examined to verify the material strength and identify a potential dynamic 

buckling occurrence. Both mean and oscillatory stress components have been evaluated. By 

comparing the two parametric (Lu/d-Ut) cases having an identical slug frequency, greater 

oscillatory bending and axial stresses occur in the case of higher Ut and Lu/d, whereas greater 

mean stress components occur in the lower Ut case. This emphasizes how Ut or Lu/d individually 

plays a meaningful role in riser SIV and the associated stress assessment.     

  



73 
 

Chapter 4. Two-Dimensional VIV of Rigid Cylinders 

Several SIV aspects have been observed and discussed in Chapter 3. To understand combined 

SIV and VIV phenomena, fundamental characteristics of the external counterpart is first 

investigated. In this chapter, a phenomenological model based on wake oscillators is applied 

and implemented for an elastically mounted rigid cylinder in uniform flows subject to cross-

flow/in-line VIV. The dynamical system described by coupled nonlinear cylinder-wake 

oscillators is solved by a numerical-analytical approach. Extended investigations on 2-DOF 

VIV suppression are carried out by adding damping terms in the transverse direction, which 

represent closed-loop linear and nonlinear velocity feedback controllers. Approximated 

analytical expressions are derived by using the harmonic balance to explicitly capture the 

system nonlinear dynamic features and the resonant responses. Several important VIV features 

such as a lock-in range, amplitude jump, two-to-one resonant frequency and figure-of-eight 

trajectory are revealed and captured by this semi-empirical model. In addition, parametric 

investigations are carried out to evaluate the linear versus nonlinear controller performance in 

VIV mitigation.  

4.1 Nonlinear Fluid-Structure Dynamic Model  

A structurally active controller can be represented by a mechanical device (e.g. an 

electromagnetic actuator) installed inside the cylinder to avoid disturbing the external flow 

fields (Baz and Ro, 1991). This concept is intrinsically different from the active flow control 

strategy whose aim is to disrupt or interfere with the vortex formations. Because of the 2D 

nonlinear coupling of CF (Ỹ) and IL (X͂) motions, the actuator can be activated in either Y͂ or X͂ 

direction with a control gain function imparting an adaptive damping force proportional to the 

cylinder velocity. This improvement of damping performance by the time-varying feedback 

control force proves to be the most reliable scheme for the active control (Inman, 2006).  

Attention is placed on the two degrees of freedom (2-DOF) VIV suppression in the main 

critical lock-in region. The transverse Ỹ controller is implemented due to its larger response 

than the associated in-line motion. The X͂ controller can be considered in the pure in-line VIV 

range at lower reduced velocities. Both linear control (LC) and nonlinear control (NC) are 

employed and compared in order to justify (i) whether the former is sufficient for suppressing 

the VIV fluid-structure interactions with system nonlinearities, (ii) whether the latter should be 

accounted for due to potential higher-order nonlinear effects, and (iii) whether both strategies 

can be efficiently used for the coupled 2-DOF VIV mitigation of circular cylinders with 
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different mass ratios and power requirements. 

 Figure 4.1a displays a schematic idealisation of a flexibly mounted rigid circular cylinder 

placed in uniform flow of velocity Uo. The cylinder consists of a spring-mass-damping and Y 

controller with 2-DOF of oscillations. A block diagram of the active control strategy is also 

displayed in Figure 4.1b. The nonlinear ordinary-differential equations of coupled X͂-Y͂ cylinder 

motions, which are subjected to in-line (Fx
*) and cross-flow (Fy

*) VIV excitations and control 

(Fyc
*) force per unit length, may be expressed asEquation Section (Next)  

                                     ( ) ( ) ( ) * 3  * 2  * ,s a s f x x xm m X c c X K X X XY Fα β+ + + + + + =                (4.1) 

                 ( ) ( ) ( ) * 3  * 2  *   * ,s a s f y y y ycm m Y c c Y K Y Y YX F Fα β+ + + + + + = −          (4.2)  

where an overdot denotes differentiation with respect to the dimensional time t. ms is the 

structural mass, ma the fluid added mass, ma = CaροπD2/4, with Ca being the added mass 

coefficient assumed to be unity for a circular cylinder (Sarpkaya, 2004), ρο the fluid density, D 

the cylinder diameter, K the linear elastic stiffness coefficient, cs and cf the structural viscous 

and fluid-added damping coefficient, respectively.  

It is worth noting that in practice K, cs and cf may be dissimilar between X͂ and Y͂ directions 

(Srinil et al., 2013); however, they are herein assumed to be equal in both directions to maintain 

the symmetry of cylinder properties. Following Facchinetti et al. (2004), cf may be fixed and 

defined as cf = γωnρoD2 in which ωn is the angular natural frequency of the cylinder in still water 

and γ is the stall parameter (Skop and Balasubramanian, 1997) providing a self-limiting 

response in the absence of cs. Note also that, from a phenomenological modelling viewpoint, 

ma and cf in Eqs. (4.1) and (4.2) are assumed to be associated with the oscillating cylinder in 

still water whereas their nonlinear dynamic counterparts subject to VIV are captured through 

the wake oscillator model (Zanganeh and Srinil, 2014). Separating ma and cf from the total force 

expressions allows one to normalize Eqs. (4.1) and (4.2) into general dimensionless forms. The 

geometrically nonlinear stiffness terms with the associated parameters (αx
*, βx

* αy
*, βy

*) govern 

the physical stretching and the two-dimensional displacement coupling observed 

experimentally (Srinil et al., 2013). These cubic-type Duffing terms (Kovacic and Brennan, 

2011) are accounted for since they enable the model to capture the key hysteresis effect with a 

response jump in the large-amplitude dual resonant VIV for a low-mass cylinder (Srinil and 

Zanganeh, 2012).  
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Figure 4.1: (a) An active velocity feedback control model of an elastically mounted circular 
cylinder undergoing 2D VIV; (b) a block diagram of active control strategy. 

The LC force can be expressed as Fyc
*=QẎ whereas the NC one reads Fyc

*=GẎ3, with a 

positive control gain (Q, G) to be assigned and varied (Nayfeh, 1993). The cubic-type NC is 

considered since the cylinder nonlinearities (Eqs. (4.1) and (4.2)) and the Rayleigh wake 

oscillator (Eq. (4.5)) are theoretically of cubic type. As for the hydrodynamic excitation forces 

associated with the 2-DOF VIV of a rigid cylinder, there are a few phenomenological models 

available in the literature. Herein, the fluid physics-based model – which has been derived from 

the vortex strength principle and requires a single variable describing the fluid displacement 

circulation q – is considered. In-depth details can be found in Bai and Qin (2014) where the 

time-varying in-line and cross-flow fluid forces read Fx
*(t)=−ρoCD0D4q̇q̈/(32π3St3Uo) and 

Fy
*(t)= CL0ρoUoD2q̇/(8πSt). These force functions contain empirical quantities, namely the 

Strouhal number (St), the unsteady lift (CL0) and drag (CD0) force coefficients of the stationary 

cylinder. Note that the effect of static mean drag force and its amplification due to VIV 
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(Zanganeh and Srinil, 2016) is herein neglected since attention is placed on the active control 

of the system fluctuating dynamics, rather than the statics. 

By introducing the dimensionless time τ = tωst in which ωst is the angular vortex shedding 

frequency, and the normalized displacements x = X͂/D and y = Y͂/D, the nonlinearly coupled 

equations of cylinder IL and CF motions can be expressed, in dimensionless forms, as 

                                                     2 3 2(2 ) ) 2( ,x x xqx x x x xy qqξδ γ µ δ α β α+ + + + + = −    (4.3) 

                                                   2 3 2(2 ) ( ) ,y y yq ycy y y yx q Fyξδ γ µ δ α β α+ + + + + = −   (4.4) 

in which an overdot now denotes differentiation with respect to the dimensionless time τ. For 

LC (NC), Fyc= βKẏ (Fyc=γGẏ3). Dimensionless parameters include the damping ratio 

ξ=cs/(2mωn), frequency ratio δ=ωn/ωst, geometric coefficients (αx βx αy βy), force coefficients 

αxq=CD0/(32π2 St2μ) and αyq=CL0/(16π2St2μ), control gain βK=Q/mωst and γG=GD2ωst/m, with 

μ=m/ρoD2 and m=ms+ma. The nominal reduced velocity parameter Vr can be related to δ 

through δ =1/(StVr) since Vr = 2πUo/ωnD. For parametric studies in Section 4.3, Vr is varied 

through δ in Eqs. (4.3) and (4.4). It is important to note that the quadratic nonlinear coupling 

term as a function of fluid q̇q̈ appears in Eq. (4.3) whereas the typical linear coupling term q̇ 

appears in Eq. (4.4). Such quadratic term in the in-line equation is responsible for the 

appearance of a figure-of-eight X͂-Y͂ trajectory (Srinil and Zanganeh, 2012) associated with a 

dual 2:1 resonance (Dahl et al., 2006; Srinil et al., 2013). To describe the fluid displacement 

circulation q, a single Rayleigh (Hartlen and Currie, 1970) wake oscillator may be written as 

Bai and Qin (2014) 

                                                    ( )21 3 ,y yq q q q yε λ− − + = Λ    (4.5) 

in which εy, Λy and λ are the system empirical wake coefficients which can be specified or 

tuned by calibrating with experimental data, see Section 4.3.1. They can also be functions of 

system properties such as the mass ratio (m*=m/(ρπD2/4)) (Srinil, 2010; Srinil et al., 2013) and 

Re (Srinil, 2011). The form in Eq. (4.5) with the cylinder velocity coupling term Λyẏ is different 

from the van der Pol equation (Gabbai and Benaroya, 2005) typically employed in the literature 

with the wake damping εy (1−q2)q̇ and acceleration coupling Λyÿ terms (Facchinetti et al., 2004). 

Nevertheless, through a variable transformation by letting q̇=p, the van der Pol oscillator of p 

can be rewritten (Nayfeh, 1993). For efficient numerical computations and convenience in the 

analytical formulation, only Eq. (4.5) is considered for the 2-DOF VIV, instead of using double 

van der Pol oscillators previously considered by Srinil and Zanganeh (2012). 

Overall, the nonlinearly coupled Eqs. (4.3)-(4.5) contain several empirical parameters. 
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Through a number of parametric and sensitivity studies whose selected results will be presented 

in Section 4.3.3, we assign λ = 0.2, γ = 0.5, St = 0.19, CD0 = 0.2 and CL0 = 0.3, as in Bai and Qin 

(2014), and αx = βx = αy = βy = 0.4. Some of these parameters may be treated as random variables 

(Low and Srinil, 2016) due to variations in different sets of experimental data. Some values (St, 

CD0, CL0) are suitable for a cylinder with a smooth surface and subject to a sub-critical flow 

with Re < 2×105 (Blevins, 1990). Empirical wake-oscillator coefficients (εy, Λy) will be deduced 

in Section 4.3.1. For numerical integrations, a 4th order Runge-Kutta scheme can be used with 

initial conditions of x=y=ẋ=ẏ=q̇=0 and q = 2, and with a fixed dimensionless time step of 0.01 

providing a convergence of steady-state simulation results. Note that the present prediction 

model does not account for the Re dependence of response amplitudes as highlighted by 

Govardhan and Williamson (2006). With new and substantial experimental data of 2-DOF VIV 

in a wide range of system parameters, the Re effect could be further incorporated into the model, 

e.g., through the empirical wake coefficients which regulate the self-limiting (εy) and fluid-

cylinder coupling (Λy) terms in Eq. (4.5). The dependence of wake coefficients on Re has been 

highlighted by Srinil (2010) for the CF VIV prediction of long flexible cylinders. 

4.2 Analytical Prediction of VIV Responses 

To gain insights into the 2D VIV responses and explicitly capture the nonlinear coupling of key 

physical parameters, analytical expressions are derived which can complement numerical 

integration results. To capture the most influential effects of system nonlinearities, the first-

order harmonic balance approach is applied. Due to the natural occurrence of a periodic 2:1 

resonance of the cylinder X͂-Y͂ response in a wide range of Vr (Dahl et al., 2010; Srinil et al., 

2013), it is reasonable to assume a periodic solution of cross-flow response (y) and vortex wake 

circulation (q) with a dimensionless resonant oscillation frequency (ω) as in Facchinetti et al. 

(2004) whereas the cylinder in-line motion (x) can be treated as a harmonic motion at 2ω. 

Accordingly, the approximated motions for x, y and q may be expressed as  

  ( )0 sin 2 xyx x ωτ θ= + , (4.6) 

  0 sin( ),y y ωτ=  (4.7) 

  ( )0 sin ,qyq q ωτ θ= +  (4.8) 

in which x0, y0 and q0 are the dimensionless oscillation amplitudes and θxy (θqy) is the associated 

x-y (q-y) phase relationship. The LC system is first considered. By substituting Eqs.(4.6)-(4.8) 

into Eqs.(4.3)-(4.5) with Fyc=βKẏ, expanding and balancing the trigonometric terms in the forms 

of sin(2ωt+θxy), cos(2ωt+θxy), sin(ωt), cos(ωt), sin(ωt+θqy) and cos(ωt+θqy), and neglecting the 
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higher harmonic terms, the associated expressions can be obtained, respectively, as 

  ( )
2

2 2 2 30 0 0
0 0

3

0
3

4 cos 2 ,
4 2x x xq qy xy
x x y

x x qω δ α β α ω θ θ
 

− + + + = − 
 

          (4.9) 

  ( )32
0 02 2 sin 2 ,xq qy xyx qγξδ ω α ω θ θ

µ
 

+ = − 
 

         (4.10) 

   ( )
2

2 2 0 0 0
0 0

3

0
3

  sin ,
4 2y y yq qy
y x y

y y qω δ α β α ω θ
 

− + + = 
 

+ −           (4.11) 

   ( ) ( )0 0 02 cos ,K yq qyy y qγξδ ω αβ θ
µ

ω ω
 

+ =+ 
 

          (4.12) 

                  ( ) ( )2
0 01 sin ,y qyq yω ω θ− = Λ           (4.13) 

          ( )3
0 0

3
0

3 cos .
4 y y qyq q yε λ ω εω ω θ= Λ−                  (4.14) 

The pair of Eqs. (4.9) and (4.10), Eqs. (4.11) and (4.12), and Eqs. (4.13) and (4.14) are 

derived from Eq. (4.3), (4.4) and (4.5), respectively. By dividing Eq. (4.10) with Eq. (4.9) and 

summing the squares of them, Eqs. (4.15) and (4.16) can be obtained, respectively.  Similarly, 

the combination of Eqs. (4.11) and (4.12) gives rise to the first expression in Eq. (4.17) and to 

Eq. (4.18), whereas the combination of Eqs. (4.13) and (4.14) entails the second expression in 

Eq.(4.17) and Eq. (4.19), respectively. These are written as follows. 

      ( ) 2 2
2 2 0 0

2(2 / )tan 2 ,
34 1

4 2

qy xy

x x
x y

ξδ γ µ ωθ θ
ω δ α β

+
− =
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− + + + 
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           (4.15) 
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2 4
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          ( ) ( )
2 23 2

2 2 2 0 0 0
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3
2 (   )

4 2yq yK y
y x y

q y y y yβγα ω ξδ ω ω ω δ α β
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2
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Due to the nonlinear x-y displacement coupling term (xy2) in Eq. (4.3), the associated 

mean drift effect (Dt) is generated which can be expressed in dimensionless form as 

                     
2

0 0
2 sin( )

.
4

x xy
tD

yxδ β θ−
=              (4.20) 

This drift effect is dependent on the cylinder properties including amplitudes (x0, y0), frequency 

ratio (δ), stiffness (βx) and phase difference (θxy) associated with the figure-of-eight orbital X͂-Y͂ 

motion. From Eq. (4.20), the zero or maximum |Dt| occurs when θxy = nπ (n=0, 1, 2…) or 

(n+1)π/2 (n=0, 2,…), respectively, with a negative (positive) Dt suggesting an in-line 

downstream (upstream) drift. This Dt value should be recognized when performing numerical 

simulations and experiments (Srinil et al. 2013).  

Equations (4.17) and (4.18) can be further rearranged as 

    
( )2

2 2
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22
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2 1
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γξδ ω
µ
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    ( )
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              (4.22) 

Then, by combining Eqs. (4.21) and (4.22), we obtain 
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            (4.23) 

By substituting Eq. (4.19) for q0/y0 into Eq. (4.23), and analytically solving the resulting 

equation, the closed-form expression for the two possible values of q0 reads 

    1
2

2
0 3

2
24 2(1 1 4a a ) /

3 y

a
q

εω
ε λω

+ ± −
= ,           (4.24) 

  2
1 ,1a ω= −     

2
2 .

yy

K

q

a ξδ γ µ
α

β
ω

+ +
Λ

=   (4.25) 

It can be appreciated that the vortex force amplitude q0 is controlled through a2 with a series of 

damping terms. Once a positive real value of q0 is obtained from Eq. (4.24), that of y0 can be 

determined via Eq. (4.19). To derive a closed-form expression for x0, Eq. (4.16) can be further 

rearranged as a sixth-order polynomial equation governing x0. From numerical simulation 

checks, it is found that the x0
6 term is negligible (< 0.02) since generally x0 < 0.5; hence, by 
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considering the resulting equation accounting for the next highest order of x0
4, the unique 

solution for x0 can be derived as 

  

2 2 4
23 3 4 4

6 5 4 4 3

0
4 5

2 2
4 2 4 ,

4

a a a a a a a a a
x

a a

+ + + − −
=                  (4.26) 

      
2

2
3 2 ,4a γω ξδ

µ
 

= + 
 

   
2 2

2 2 0
4 4 ,

2x
y

a
δ
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2
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3 ,

4xa δα=       ( )22 3
6 0 .xqa qα ω=           (4.27)   

Depending on the system parameters and empirical coefficients, it can be appreciated that 

both y0 (Eq. (4.19)) and x0 (Eq. (4.26)) are nonlinear functions of q0, and the reduction of x0 is 

dependent on the suppressed y0 due to their nonlinear coupling. Subsequently, the system phase 

differences θqy and θxy can be obtained through Eqs. (4.17) and (4.15), respectively.  

For NC system, by substituting Eqs. (4.6)-(4.8) into Eqs. (4.3)-(4.5) with Fyc=γGẏ3 and 

applying the harmonic balance, Eqs. (4.9)-(4.22) from the LC system can be used with 

γG(3ω3y0
3)/4 replacing  βKωy0 in Eqs. (4.12) and (4.18), γG(3ω3y0

2)/4 replacing βKω in Eqs. 

(4.17), (4.22) and (4.23), and γG(3ω2y0
2)/4 replacing Eq. (4.21). By combining the resulting Eqs. 

(4.21) and (4.22) with the above substitutions, the following expression reads 
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        (4.28) 

Accordingly, due to the presence of nonlinear amplitudes (y0
2, y0

3), it is unfeasible to further 

derive analytical expressions. Nevertheless, for a specific Vr and ω, Eqs. (4.16), (4.19) and 

(4.28) can be simultaneously solved for the key unknown q0, y0 and x0. Both θqy and θxy can then 

be obtained from Eqs. (4.17) and (4.15), respectively. 

Next, by imposing the ideal perfect resonance or lock-in condition with ω = δ =1 for 

which Vr = 1/St (Facchinetti et al., 2004), the linearly controlled vortex force and Y response, 

based on Eqs. (4.23) and (4.24), can be predicted, respectively, by 
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Correspondingly, with Eqs. (4.26) and (4.27), the linearly controlled x response reads 
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In the NC case, based on Eqs. (4.16), (4.19) and (4.28), the nonlinearly controlled force and 

displacement amplitudes with ω = δ =1 can be simultaneously solved through  
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        (4.35) 

Above LC (Eqs. (4.29)-(4.31)) and NC (Eqs. (4.33)-(4.35)) systems can be helpful for 

parametrically investigating the effect of system parameters without performing numerical 

integrations, as demonstrated in Section 4.3.3. It is also noticed that, for this particular 

frequency ratio case (ω = δ =1), the geometrically nonlinear αy and βy terms do not affect the 

controlled responses since (1−ω2) = 0 whereas the associated αx and βx terms do. In the 

following, the parametric studies are presented and discussed.  

4.3 Parametric Investigation and Discussion 

Several aspects in LC and NC of the 2-DOF VIV of circular cylinders with geometric and 

hydrodynamic nonlinearities are discussed through the cases of varying reduced velocities 

(0<Vr<14). For the cylinder with a given m* and ξ, the control gains βK and γG are specified 

such that their terms have the same order of magnitude as other damping (ξ, γ) effects, see Eqs. 

(4.25) and (4.28). Accordingly, it is deduced that βK and γG should be of the order of unity.  

4.3.1 Model calibration and validation  

Because the three nonlinearly coupled Eqs. (4.3)-(4.5) are used for the first time as a 2-DOF 

VIV prediction model, being the extended version of the linear cylinder model proposed by Bai 

and Qin (2014) and being different from other models with typical four equations (Srinil and 
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Zanganeh, 2012), a model calibration is required to determine appropriate empirical 

coefficients (εy, Λy). This can be achieved by validating the obtained analytical and numerical 

results with experimental data. In this study, εy and Λy are tuned such that the dynamic model 

captures the main lock-in range, maximum cross-flow (Ay/D) and in-line (Ax/D) amplitudes 

associated with the upper branch, and possible response jump due to the nonlinear hysteresis 

effect. 

 

Figure 4.2: Comparisons of response amplitudes in the absence of control with numerical 
(triangles), analytical (circles) and experimental (squares) results for cylinder with m* = 2.6 

and ξ = 0.00361. 

Accordingly, the low mass-damping 2-DOF cylinder (m* = 2.6, ξ = 0.00361) tested by 

Jauvtis and Williamson (2004) is considered. Comparisons of analytical (circles), numerical 

(triangles) and experimental (squares) results are displayed in Figure 4.2 where Ax/D (Figure 

4.2a) and Ay/D (Figure 4.2b) responses are plotted versus Vr. The tuning trials are carried out 

with a criterion such that the predicted maximum cross-flow and in-line amplitudes in the upper 

branches, as well as the associated lock-in ranges, are matched satisfactorily with the associated 

experimental results. This is deemed suitable as attention is placed on the most critical response 

and excitation range for a given m* and ξ (Srinil and Zanganeh, 2012). The most satisfactory 

calibration is found in Figure 4.2 with a single set of εy = 0.058 and Λy = 12: the model predicts 

the first pure in-line VIV (1.5< Vr <3), the self-limiting maximum amplitudes (Ay/D ≈ 1.5 and 

Ax/D ≈ 0.3) in the main lock-in range (4< Vr <10), and the response jump at Vr ≈ 9. Greater 

differences in maximum Ay/D between analytical and numerical results are also noticed in 

Figure 4.2b due to the omitted higher-order harmonic contributions in the analytical solution 

(Eqs. (4.6)-(4.8)). Nevertheless, such discrepancies are reduced for smaller Ax/D as shown in 

Figure 4.2a. The effect of high-order harmonics would become negligible for the controlled 
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system with decreased responses. To also capture the maximum Ay/D in the lower branch 

(Vr >8), another set of εy  and Λy  may be introduced. In this study, we use the above unique set 

across the Vr range. If tuning with different and large set of experimental data is required, an 

optimization algorithm could also be employed for optimal calibration (Bódai and Srinil, 2015; 

Kurushina et al., 2018). Herein, we use εy = 0.058 and Λy = 12 across the Vr range.  

 

Figure 4.3: Comparisons of non-controlled and controlled amplitudes for cylinder with m* = 
2.6 and ξ = 0.00361: lines with circles (crosses) and triangles (stars) denote numerical 

(analytical) results. 

Since the proposed model can predict the 2-DOF VIV in the absence of control, both LC 

and NC are now considered. By triggering the active Y͂ control with βK = γG = 0.25 versus the 

uncontrolled case (βK = γG = 0), analytical and numerical X͂-Y͂ responses are compared in Figures 

4.3a and 4.3c (LC) and in Figures 4.3b and 4.3d (NC). It can be seen that both Ax/D and Ay/D 

are reduced with increasing βK and γG. The response jumps also disappear. Such suppression 

improves the overall analytical-numerical comparisons enabling almost identical results due to 

βK = 0 

βK = 0.25 

γG = 0 

γG = 0.25 

βK = 0 

βK = 0.25 

γG = 0 

γG = 0.25 
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the diminishing effects of high-order harmonics and nonlinearities. With the same control gain 

(βK = γG), the LC system (Figures 4.3a and 4.3b) entails a greater reduction in both X͂ and Y͂ 

responses. This trend is similar to the CFD study of Mehmood et al. (2014) who considered, 

however, a 1-DOF VIV active control of a much higher m* = 149.10 and very low Re = 106. 

They showed a greater Ay/D suppression by LC. Our focus is placed on the low-mass (m* < 6) 

cylinder undergoing 2-DOF VIV whose problems are found in a wide range of offshore 

applications. It should also be noted that the first IL VIV peak is unaffected by either LC (Figure 

4.3c) or NC (Figure 4.3d) due to the negligible Ay/D within that region. Instead, an inline control 

could be applied for 1.5< Vr <3. Based on the results in Figures 4.2 and 4.3, εy = 0.058 and Λy 

= 12 are used in the following studies. 

 

Figure 4.4: Comparison of oscillation frequency ratios (a, b) and resonant frequencies (c, d) 
for cylinder with m* = 2.6, ξ = 0.00361 and βK = γG = 0.5: lines (symbols) denote controlled 
(non-controlled) results. Higher x and lower y frequencies are shown in (a, b) with Strouhal 

rule (dotted lines). 
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4.3.2 Frequencies, motion trajectories, phases and static drifts 

With m* = 2.6 and ξ = 0.00361, Figure 4.4 presents the cylinder X͂-Y͂ oscillation frequencies 

normalized with respect to the natural frequency (fo/fn) as well as the resonant frequency 

normalized with the vortex-shedding frequency (ω), see Eqs. (4.6)-(4.8), based on LC (Figures 

4.4a and 4.4c) and NC (Figures 4.4b and 4.4d) with βK = γG = 0.5. Controlled vs. non-controlled 

frequencies are plotted with lines and symbols, respectively, with higher f0/fn values in Figures 

4.4a and 4.4b corresponding to X͂ responses. It can be seen that, in general, LC has a greater 

effect on f0/fn and ω than NC, especially with respect to the upper (4< Vr <9) and lower (Vr > 9) 

branches. With linear control, the fo/fn (Figure 4.4a) and ω (Figure 4.4c) trends remarkably 

deviate from those without a control. The fo/fn plots for the controlled X͂-Y͂ responses exhibit 

qualitatively similar features to the Strouhal-based dotted lines whose slopes represent the 

estimation of the vortex-shedding frequency for a stationary cylinder in CL (St = 0.2) and IL 

(St=0.4) directions. Accordingly, ω become close to the unity, suggesting the 

desynchronization state (Facchinetti et al., 2004). As a result, the associated responses are more 

reduced, see Figures 4.3a vs. 4.3b (Ay/D) and Figures 4.3c vs. 4.3d (Ax/D). With a higher gain, 

both LC and NC would entail a greater departure of f0/fn and ω, and subsequently greater X͂-Y͂ 

amplitude reductions. Nevertheless, the controlled X͂-Y͂ frequencies in Figures 4.4a and 4.4b still 

maintain their dual-resonant 2:1 frequency ratios across the Vr range, regardless of the control 

scheme.  

With βK = γG = 0.5 and Vr = 7, the phase plane plots of x, y and q variables are exemplified 

in Figure 4.5 for LC (Figures 4.5a, 4.5c and 4.5e) and NC (Figures. 4.5b, 4.5d and 4.5f). By 

turning on the control actuator (the dots in Figure 4.5) after initial transient oscillations, limit 

cycles of periodic motions are stabilized for overall controlled responses. These plots justify 

the assumption made in Section 4.2 for which a primary harmonic motion with ω (y, q) and 2ω 

(x) is postulated in Eqs. (4.6)-(4.8). To further visualize dual resonances in the presence of 

control, Figure 4.6 compares X͂-Y͂ motion trajectories in the case of Vr = 7 (Figures 4.6a and 

4.6b) and Vr = 4 (Figures 46c and 6d). It can be seen that, when LC (Figures 4.6a and 4.6c) or 

NC (Figures 4.6b and 4.6d) is activated, the figure-of-eight appearances are still maintained 

with appreciable repeatability in the last ten cycles shown, and with the two lobs pointing 

downstream (positive x) or upstream. Results in Figures 4.5 and 4.6 justify the negligible effect 

of higher harmonics in the controlled responses.  

 Apart from the controlled X͂-Y͂ amplitudes, frequencies and trajectories, it is also of interest 

to evaluate the associated phase differences θxy and θqy, the latter implying the fluid-cylinder 
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energy transfer (Zanganeh and Srinil, 2014). With βK = γG = 0.5, numerical results (circles) of 

θxy and θqy are plotted in Figures 4.7a and 4.7c for LC and in Figures 4.7b and 4.7d for NC, 

respectively. Experimental θxy data (squares) of Jauvtis and Williamson (2004) and numerical  

(θxy, θqy) results (solid lines) in the absence of control are also overlapped in Figures 4.7a-4.7d.  

 

Figure 4.5: Phase plane portraits for cylinder with m* = 2.6, ξ = 0.00361, βK = γG = 0.5 and 
Vr = 7: a dot represents the moment of control activation. 
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With varying Vr, numerical and experimental results reveal similarly the referenced π/2 <θxy < 

2π and π/4 < θqy < π within the main excitation range of 4<Vr<14 covering initial, upper and 

lower branches, and the observed jump in the phase responses at 8 <Vr < 10. The θxy range 

suggests a transition from the clockwise figure-eight trajectories (π/2 < θxy < 3π/2) to the anti-

clockwise ones (3π/2 < θxy < 2π) with increasing Vr whereas the θqy range suggests the fluid 

excitation (as opposed to the damping) leading to VIV responses. With LC, a jump disappears 

from Figure 4.7c, and the θqy phase change is clearly observed for Vr > 9 which gives rise to 

π/4 < θqy < 3π/4. With NC, the jump also disappears from Figure 4.7d although θqy values are 

less affected. In both control cases, the figure-of-eight patterns maintain their clockwise or anti-

clockwise shapes since θxy values in both Figures 4.7a and 4.7b slightly change. This is in 

agreement with the results in Figure 4.6. 

 

Figure 4.6: Two-dimensional X̃-Ỹ motion trajectories at Vr = 7 (a, b) and Vr = 4 (c, d) for 
cylinder with m* = 2.6, ξ = 0.00361 and βK = γG = 0.5: a dot represents the moment of control 

activation. 
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Figure 4.7: Comparisons of phase relationships (a-d) and mean drift effect (e, f) for cylinder 
with m* = 2.6, ξ = 0.00361 and βK = γG = 0.5: lines (circles) denote non-controlled 

(controlled) results; squares denote experimental free-vibration data. 

 The capability of suppressing the static drift due to the geometric nonlinear coupling is 

illustrated in Figure 4.7e (LC) and Figure 4.7f (NC) with βK = γG = 0.5. The drift, which changes 

its sign following θxy in Eq. (4.20) (Figures 4.7a and 4.7b), is almost totally eliminated with LC. 

This observation is hopeful since passive VIV control devices such as strakes generally have a 

limitation in the mitigation of in-line force including its amplified mean component. The active 

cylinder control might provide an alternative strategy to suppress the mean drag effect.  
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4.3.3 Influence of control gain, geometrically nonlinear coupling and mass ratio 

With m* = 1.2 and ξ = 0.00361, the controller performance in the reduction of 2-DOF 

amplitudes is now displayed in Figure 4.8 by varying βK or γG from 0 to 0.1, 0.2, 0.3, 0.4 and 

0.8. For LC, amplitudes are suppressed with increasing βK, leading to a large reduction up to 

about 88% and 70% for maximum Ay/D (Figure 4.8a) and Ax/D (Figure 4.8c), respectively. 

Likewise, the NC demonstrates the controlling effect on the 2-DOF VIV with about 58% (Ay/D) 

and 39% (Ax/D) maximum amplitude reductions (Figures 4.8b and 8d). However, the lock-in 

region does not shift since the mass ratio m* is fixed. Similar qualitative behaviours can be 

found through a 1-DOF wake oscillator model of Dai et al. (2015) where the control gain of a 

time-delay feedback controller was increased, yielding the decreased Ay/D. As previously 

discussed, the response suppression is attributed to the added damping effect with increasing 

gain. To achieve greater control performance, both Ay/D and Ax/D can be further reduced with 

increasing βK and γG.  

 The variation of control gain was also employed by Baz and Ro (1991) where a 1-DOF 

direct velocity feedback control was shown to suppress VIV. According to their experiments, 

the controller would achieve a maximum gain and amplitude reduction. This is also 

demonstrated in Figures 4.8a-4.8d where the increases in βK and γG lead to the minimum 

reduced responses. The histogram plots in Figures 4.8e (LC) and 4.8f (NC) illustrate the 

maximum amplitude reduction percentage (Rm) of both CF (left blue bar) and IL (right yellow 

bar) responses when increasing consecutively the gain with each 0.1 increment (i.e. from 0 to 

0.1, from 0.1 to 0.2 and so on). It can be observed that both X͂-Y͂ responses and both LC/NC 

demonstrate a gradual decreasing Rm as each gain increment is applied. This confirms the 

existence of maximum gain value, and, thus, the maximum amplitude reduction capability for 

each controller. The feedback closed-loop control will reach a maximum efficiency once the 

control gain is sufficiently large (Inman, 2006).  

     The effect of geometric displacement coupling is now highlighted in Figure 4.9 where αy 

governing y3 in Eq. (4.4) is varied for a given cylinder (m* = 1.2, ξ = 0.00361) and control gain 

(βK = γG = 0.1). Contour plots of the suppressed 2-DOF amplitudes with varying αy and Vr are 

displayed in Figures 4.9a and 4.9c for LC and in Figures 4.9b and 4.9d for NC. It can be seen 

how the increased cylinder nonlinearities affect the main lock-in responses which exhibit the 

right-bending features and widening resonance ranges due to the enhanced cubic nonlinearities 

in both Ay/D (Figures 4.9a and 4.9b) and Ax/D (Figures 4.9c and 4.9d) plots. Owing to the 

intrinsic X͂-Y͂ coupling, maximum Ay/D are slightly increased while maximum Ax/D are more 
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decreased as αy is increased for both LC/NC. As for other geometric nonlinear terms (βy, αx, 

βx), they have a lesser effect on the controlled responses due to the smaller contributions from 

the x-based (yx2, x3, xy2) terms. 

 

 

Figure 4.8: Influence of control gain on response amplitudes (a-d) and maximum amplitude 
reduction percentage Rm (e, f) for cylinder with m* = 1.2, ξ = 0.00361, βK and γG being 

increased from 0 to 0.1, 0.2, 0.3, 0.4 and 0.8, respectively. 
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Figure 4.9: Influence of geometrically nonlinear coefficient (αy) on controlled amplitudes for 

cylinder with m* = 1.2, ξ = 0.00361 and βK = γG = 0.1. 

 With βK = γG = 0.1, contour plots of the suppressed 2-DOF amplitudes (Ay/D, Ax/D) with 

varying m* and Vr are displayed in Figure 4.10. Apart from the fact that the first resonance in-

line VIV region is not affected by any Ỹ-controllers, Figure 4.10 shows how the controlled 

cylinder with lower m* has greater X͂-Y͂ responses and lock-in ranges regardless of LC or NC. 

This is expected from the m* effect viewpoint. The effect of m* on the controlled responses 

(yM, xM) is further highlighted in Figure 4.11 with the advantage of analytical expressions in 

Section 4.2 which has been derived for the referenced resonant lock-in condition (ω = δ = 1). 

Two gain values with βK = γG = 0.25 (triangles) and 0.50 (solid lines) are considered for both 

LC (Figures 4.11a and 4.11c) and NC (Figures 4.11b and 4.11d) versus the no-control (squares) 

case (βK = γG = 0). In general, both linearly and nonlinearly controlled 2-DOF responses exhibit 

similar trends of decreasing responses with increasing gain and m*. The amplitude reduction 

function appears to be more non-linear in a lower mass ratio range (m*<6). This could 

emphasize, through an active control study, the effect of 2-DOF VIV on the low-mass cylinder. 

Nevertheless, due to the limiting control performance, the amplitude reduction capability is 

reduced from βK = γG = 0 to 0.25 and from βK = γG = 0.25 to 0.5.   
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Figure 4.10: Influence of m* on controlled amplitudes for cylinder with ξ = 0.00361 and 
βK=γG =0.1. 

4.3.4 Comparison of power requirement 

Finally, it is of practical importance to examine the power requirement for each controller since 

the control performance is also dependent on the forces exerted from the controllers, besides 

the capability of amplitude reduction. Based on the numerically obtained steady-state responses, 

the dimensionless averaged power Pw for linear (βK) and nonlinear (γG) Ỹ control may be 

evaluated, respectively, from Mehmood et al. (2014) 

           2
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1 )lim (K
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w T
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T
y dβ τ τ

→∞
= ∫     or 4
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1lim ( )G
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w T
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= ∫  .           (4.36) 

 This can be evaluated for a particular period of time (Τ) and herein it is equal to 100 cycles 

of periods. The power demand would be particularly useful, e.g., for sizing the control actuators 

to handle the power requirement. Since the force is applied in the Y͂ direction, the power is 

dependent on the cylinder Y͂, rather than X͂, velocity.  
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Figure 4.11: Comparisons of response amplitudes at ideal perfect lock-in condition with 
varying m* for cylinder with ξ = 0.00361, βK and γG being increased from 0 to 0.25, 0.5, 

respectively. 

 Depending on the level of targeted controlled amplitudes, Figure 4.12 illustrates a 

comparisons of Pw based on LC (dots) versus NC (lines) for the cylinder with m* = 6.9 and ξ = 

0.00361 (Figure 4.12a), m* = 2.6 and ξ = 0.00361 (Figure 4.12b) and the limiting case of m* = 

1 and ξ = 0 (Figure 4.12c). It can be seen that both LC and NC generally require comparable 

Pw for both high (Figure 4.12a) and low (Figure 4.12b) m* as well as in both high (Ay/D >0.9) 

and low ((Ay/D <0.9) amplitude ranges, with the maximum Pw occurs at the targeted Ay/D ≈ 0.9. 

Based solely on the maximum amplitude reduction, the LC appears to be superior to NC. 

However, for the neutrally-buoyant cylinder (Figure 4.12c), the NC system is seen to require a 

lower Pw (about 5%) within the lower amplitude range as zoomed in Figure 4.12d. This 2-DOF 

control observation is similar to the CFD control results of Mehmood et al. (2014) who 

suggested a better NC performance when the targeted Ay/D < 0.2 for a very high m* = 149.1 of 

the 1-DOF circular cylinder.  

βK = 0 

βK = 0.5 
βK = 0.25 

βK = 0 

βK = 0.5 
βK = 0.25 

γG = 0 

γG = 0.5 
γG = 0.25 

γG = 0 

γG = 0.5 
γG = 0.25 
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Figure 4.12: Comparisons of averaged power requirement with the targeted reduced 
amplitudes with LC (dots) vs NC (lines): (a) m* = 2.6 and ξ = 0.00361, (b) m* = 6.9 and ξ = 

0.00361, (c) m* = 1 and ξ = 0; (d) showing the zoomed results in (c). 

4.4 Summary 

Investigation into the two-dimensionally coupled VIV of a flexibly mounted circular cylinder 

in uniform flows has been presented. In addition, the effectiveness of active linear and nonlinear 

controls by using the cylinder transverse velocity feedback for the VIV suppression is evaluated. 

The reduced-order nonlinear dynamic model simulating the structure-vortex strength 

interaction is based on the use of coupled cylinder-wake oscillators which capture basic VIV 

phenomena. Model empirical coefficients have been calibrated with free-vibration 

experimental data and then applied to the parametric studies with active controls. Combined 

analytical and numerical results are presented and discussed. At lock-in oscillation frequencies, 

some analytical expressions for response amplitudes have been derived to explicitly describe 

the resonant dynamics.  

 The phenomenological model is found capable of capturing several VIV characteristics 

LC 
NC 
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such as a lock-in range, amplitude jump, two-to-one resonant frequency and figure-of-eight 

trajectory. Typical VIV responses including response amplitudes, oscillation frequencies, phase 

relationships, orbital motions are presented and assessed in a wide range of reduced velocities. 

Moreover, the effects of control gain, mass ratio and geometric nonlinear displacement have 

also been explored. Parametric results reveal that linear and nonlinear controllers can be 

implemented for mitigating the coupled cross-flow/in-line VIV and the associated static drifts. 

For the limiting case of neutrally-buoyant cylinder with negligible structural damping, the 

nonlinear control requires lower power in the targeted small-amplitude range. This chapter has 

shown the capability of the semi-empirical model in predicting VIV, which serves as a 

preliminary study for the following investigations on combined SIV and VIV of a curved 

flexible riser in Chapter 5.  
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Chapter 5. Catenary Riser Responses Subject to Combined VIV and SIV 

During oil and gas development, the subsea riser carrying multiphase product flows may 

experience current simultaneously, which could result in a challenging operation condition 

because of the combined external-internal effects. In this chapter, catenary riser responses 

subject to combined VIV and SIV are investigated. Based on Chapter 3, the slug-conveying 

riser model is applied for modelling SIV. By using distributed van der Pol wake-oscillators, the 

low-order model in Chapter 4 is extended to CF-only VIV aligning with the planar SIV of the 

flexible catenary riser under a perpendicular uniform flow. Validation of the semi-empirical 

VIV model is conducted by comparing with published experimental results of a flexible riser. 

As typical VIV features of flexible risers under increased current velocities, a transition from 

low- to high-mode dominated multimode responses accompanied by standing to travelling 

oscillation wave patterns is captured through a modal analysis. By considering different current 

velocities, riser responses are assessed in case of VIV-only and VIV-SIV scenarios with respect 

to response displacement, resonant frequency, dominant mode and mode distribution, dynamic 

and total stresses. The results reveal the prevailing role of VIV in the combined external-internal 

excitations as well as the significant effects from slug flows on VIV, highlighting amplified and 

rich structural dynamics led by VIV-SIV.  

5.1 Mechanical Model and Governing Equations 

Investigation into the planar dynamics of a catenary pipe owing to both SIV and VIV is carried 

out. The slug-conveying riser model introduced in Chapter 3 is considered for SIV. On the other 

hand, a phenomenological model based on wake oscillators has revealed its abilities in 

predicting 2D VIV of an elastically mounted rigid cylinder in Chapter 4. Herein, distributed 

wake oscillators are applied for modelling the hydrodynamic forces along the flexible pipe. 

Based on the same assumptions, a planar dynamic model of an inclined curved bendable pipe 

subject to combined effects from SIV and VIV is displayed in Figure 5.1, where a steady 

uniform flow (in Z) perpendicular to the curvature plane (X-Y) is introduced while slug flows 

are transported upwardly. For a curved cylinder, a perpendicular flow was experimentally 

observed leading to more significant VIV responses than concave/convex flows (Srinil et al., 

2018a). Also, it is worth noting that the CF-only VIV is considered in the present study to focus 

on the planar pipe dynamics for investigating the coupled internal and external FIV. Following 

Chapter 3, the linear partial differential equations describing planar motion of a curved pipe 

conveying steady slug flows are presented by accounting for VIV effects, which may be 

formulated asEqua tion Section (Next)  
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Figure 5.1: (a) A planar dynamic model of an inclined curved flexible riser conveying slug 
gas-liquid flows and undergoing VIV with (b) illustration of hydrodynamic forces for a cross 

section. 
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where FX and FY denote the horizontal and vertical components of the lift force, inducing CF 

VIV (Srinil, 2010). Note that although the present study considers CF-only VIV, both lift (FL) 

and drag (FD) forces are introduced herein for the sake of better interpretation. Unlike a 

stationary pipe, where FL (FD) is aligned with the associated CF (IL) directions directly, the 

relative motions between an oscillating pipe and a steady uniform flow with a velocity of Uo 

lead to apparent FL and FD in arbitrary directions, depending on the fluid and structure velocities. 

Figure 5.1b displays the cross-sectional force components based on a local coordinate system, 

where st, sn and sb denote tangential, normal, and bi-normal directions, respectively. Note that 

w and z denote the pipe motion in sn and sb, leading to respective relative velocities of −ẇ and 

Uo − ż. Consequently, a dynamic angle of attack (α) may be recognized, which directs instant 
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FD and FL to be parallel and perpendicular to the direction of the relative velocity (Urel). 

Therefore, the projected 2D fluid forces (Fb and Fn) in sb and sn can be expressed as 

                                                             cos sin ,b D LF F Fα α= −   (5.3) 

                                                             sin cos ,n D LF F Fα α= +  (5.4) 

in which  

                                                          ( )21 ,
2D o rel D DF DU C Cρ= +  (5.5) 

                                                                  21 ,
2L o rel LF DU Cρ=   (5.6) 

                                                            
2 2

1 ,rel o
o o

z wU U
U U

   
= − +   

   

  (5.7) 

                                                                        sin ,
rel

w
U

α −
=

  (5.8) 

                                                                      cos .o

rel

U z
U

α
−

=
   (5.9) 

C̅D, CD and CL represent mean drag, fluctuating drag and lift force coefficients, respectively. 

Since the pipe is only subject to CF-only VIV in the present study, fluid forces are then 

employed by neglecting effects from IL motion while keeping C̅D remained, which accounts 

for the fluid-added damping. Thus, FD, Urel, and cos α may be reduced to 
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2D o rel DF DU Cρ=   (5.10) 
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By substituting Eqs. (5.6), (5.8), (5.10)-(5.12) into Eq. (5.4), Fn reads 
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To model Fn, wake oscillators can be used (Facchinetti et al., 2004; Srinil, 2010; 

Zanganeh and Srinil, 2016). In Chapter 4, a Rayleigh-type wake oscillator proposed by Bai and 

Qin (2014) is applied for 2-DOF VIV prediction of a rigid body. This model can be easily 

transformed into a van der Pol-type oscillator with an acceleration coupling term (Facchinetti 

et al., 2004), which is typically employed in the literature. For convenience, a van der Pol wake-
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oscillator is now considered by introducing a wake variable of qn=2CL/CL0 (Facchinetti et al., 

2004), where CL0 is the associated lift coefficient of a stationary cylinder. Furthermore, qn (in 

sn) may be projected into X and Y directions (Srinil, 2010) through the local inclination angle 

(β), yielding qx= qnsinβ and qy= qncosβ, which are governed by the following projected wake 

oscillators as 
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where ωst= 2πStUo/D denotes the vortex shedding frequency. εx, Λx, εy, Λy are empirical 

parameters, which can be determined by calibrating the model based on experimental data. 

Herein, the wake coefficients of Λx=Λy=12, εx=0.3 and a variable εy depending on Re as 

suggested in Srinil et al. (2018b) are employed, which reads 
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where SG= 8π2St2μξ is the so-called Skop-Griffin parameter (Skop and Balasubramanian, 1997), 

and αmd=(m*+Ca)ξ, where Ca=1. To obtain the hydrodynamic forces required by Eqs. (5.1) and 

(5.2), Fn  (Eq. (5.13)) and the associated Urel (Eq. (5.11)) are projected corresponding to wake 

oscillators (Eqs. (5.14) and (5.15)), where ẇ in Urel is projected into X and Y by u̇= ẇsinβ and 

v̇= ẇcosβ, respectively. Thus, FX and FY yield 
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The first term Eqs. (5.17) and (5.18) accounts for the fluid-added damping forces through 

both fluid (Uo) and structure (u̇, v̇) velocities (Srinil et al., 2018b), whereas the second term 

represents the time-space varying hydrodynamic forces coupled with the distributed wake 

oscillators (Eqs. (5.14) and (5.15)) through the wake variables (qx, qy) along the pipe. It is worth 
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mentioning that the form of FX and FY are different from those in Srinil (2010) since Urel is 

considered herein. The values of force coefficients are variable, affected by several factors, e.g. 

surface roughness and Re. Following Blevins (1990), C̅D =1.2 and CL0=0.3 are applied in the 

present study, which may be reasonable for the considered sub-critical flow in the following 

numerical cases (see Sections 5.2 and 5.3).  

In general, the partial differential Eqs. (5.1) and (5.2) coupled with spatially distributed 

Eqs. (5.14) and (5.15) may be used to investigate the planar dynamics of a flexible pipe 

conveying slug flows and undergoing CF VIV simultaneously. By specifying initial conditions 

u=v=u̇=v̇=0 for the pipe at the static equilibrium and qx=qy=2 (q̇x=q̇y=0) for wake variables, the 

system of equations can be numerically solved by using the same approach as introduced in 

Chapter 3, where a combination of 2nd order finite difference in space and 4th order Runge-

Kutta for time integration has been applied.  

5.2 Validation of VIV Model for Flexible Risers  

Prior to investigating the combined internal and external effects on a catenary pipe, it is 

important to validate the VIV prediction model for a flexible body. According to Chapter 2, 

available VIV tests of a catenary riser under perpendicular flow are rather limited in the 

literature. Herein, a straight flexible body is considered for VIV model validation. For a pipe 

subject to pure VIV, numerical and experimental results are compared based on a laboratory 

test conducted by Song et al. (2011), where a long horizontal flexible pipe of E=210 GPa, 

L=28.04 m, d=0.015 m, D=0.016 m, m*=1 was considered with various pre-tensions (T = 600N, 

700N 800N) under uniform flows of Uo ranging from 0.18 to 0.6 m/s in a subcritical flow 

regime. For a horizontal flexible cylinder subject to CF VIV, x̃'=1, ỹ'=0 and β=0° are assigned 

to Eq. (5.2) and (5.15) without effects of slug flows, i.e. neglecting internal fluid inertia, gravity, 

momenta and pressure. They are numerically solved based on a time step Δt = 0.001s and spatial 

discretized segment Δs =0.2 m, which enables the convergence of steady-state results.  

Figure 5.2 demonstrates the numerical-experimental comparison of maximum (vmax) and 

spatially maximum RMS CF responses (vrms)  vs. Uo. As for vmax (Figures 5.2a, c, e), qualitative 

and quantitative agreements are found in all pre-tensions cases (600, 700, 800N), although 

discrepancies between the numerical and experimental results are realized at relatively large Uo 

(Uo > 0.5m/s). Similar to the experimental results, vmax generally shows an increasing trend 

alongside zigzag variations with varying Uo. Such fluctuation in vmax vs. Uo is also highlighted 

in Zanganeh and Srinil (2016), suggesting a lock-in and lock-out conditions during transitions 

between different dominant modes (Chaplin et al., 2005; Srinil, 2010).  On the other hand, 
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comparisons of vrms between the numerical simulations and the tests with respect to various pre-

tensions are also presented in Figures 5.2b, d, f, where the former generally exhibit slightly 

overestimated values compared to the latter. This may be attributed to the neglected IL motion 

and uncertainties such as damping effects. Nevertheless, the predicted VIV results demonstrate 

reasonable matches with the experimental results with capturing the maximum/RMS responses. 

 

Figure 5.2: Comparison of numerical (blue squares) and experimental (red circles) results of 
(a, c, e) maximum and (b, d, f) RMS amplitudes at varying Uo in case of (a, b) T = 600 N, (c, 

d) 700 N and (e, f) 800 N. 
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To further validate the VIV model, a linear modal decomposition approach proposed by 

Lie and Kaasen (2006) and then adopted in both numerical and experimental studies (Song et 

al., 2011; Zanganeh and Srinil, 2016) is followed for identifying the modal components of 

current CF-VIV responses. By assuming approximately linear pipe oscillation with small 

amplitudes, the current space-time varying riser displacements can be decoupled into space and 

time as 

                                                         ( ) ( ) ( )
1

, ,
N

i n n i
n

v Y t W t Yφ
=

= ∑     (5.21) 

where Wn and ϕn represent modal weights and shapes corresponding to different order n = 1, 

2, … N, N the highest mode considered in the analysis, Yj the spanwise coordinates according 

to each spatial node j = 1,2, …J (0 ≤ Yj ≤ L). For a pinned-pinned straight cylinder with uniform 

tension, nth mode shapes can be described by a sinusoidal function as 

                                                                  ( ) sin j
n j

n Y
Y

L
π

φ =    (5.22) 

Further, Eq. (5.21) can be expressed in a matrix form accounting for all locations along the span, 

which reads 

                                                                      ,v W= Θ    (5.23) 

Where the J × N matrix of mode shapes arrives at Θ= [Φ1, Φ2, … ΦN] with the vector Φn=[ϕn(Y1), 

ϕn(Y2),… ϕn(YJ)]T, the weight vector W̃=[W1(t), W2(t),… WN(t)]T, the response vector ṽ=[v(Y1,t), 

v(Y2,t),… v(YJ,t)]T. For N < J, Eq. (5.23) is solved by the method of least-squares for time-

varying weights corresponding to the considered modes.  

In association with the responses in Figure 5.2, RMS values of time-varying modal 

weights (normalized by the maxima) vs. various Uo alongside numerical-experimental 

comparisons of dominant modes are exhibited in Figures 5.3a, c, e and b, d, f, separately. 

Comparing the mode distributions under different pre-tension conditions (Figures 5.3a, c, e), 

they demonstrate similar patterns of modal participation showing that higher-order modes exist 

at larger Uo. Meanwhile, the band of modes participated in the pipe responses gets wider as Uo 

increases, suggesting more pronounced multi-modal VIV at greater Uo. These phenomena are 

in a qualitative agreement with the experimental results (see Figure 9 in Song et al. (2011)). 

Moreover, it is seen in Figures 5.3b, d, f that the order of the dominant mode increases with Uo, 

which justifies the general trend in Figures 5.3a, c, e and show fairly good comparisons with 

those from the experiment although the numerical results slightly overestimate the mode order 

at higher Uo. In Figures 5.4a-c, the theoretical and experimental results regarding variations of 

the dominant fo at different Uo are compared in terms of three pre-tension conditions. Good 
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numerical-experimental matches are observed in all considered cases, showing the increasing 

dominant fo with Uo, which almost follow the Strouhal rule in CF direction.         

Overall, the current model for CF-VIV prediction is validated by showing reasonable 

abilities in capturing several important aspects of VIV both qualitatively and quantitatively. 

This allows the further application of this model for the following investigation of combined 

effects from SIV and VIV on a flexible catenary pipe.   

 

Figure 5.3: (a, c, e) Modal distribution and (b, d, f) comparison of numerical (blue squares) 
and experimental (red circles) results of dominant modes at varying Uo in case of (a, b) T = 

600 N, (c, d) 700 N and (e, f) 800 N. 
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Figure 5.4: Comparison of numerical and experimental results with dominant frequency at 
varying Uo in case of (a) T = 600 N, (b) 700 N and (c) 800 N: black line represents the 

Strouhal rule.  

5.3 Numerical Results and Discussion 

5.3.1 Dynamics responses under various current velocities: VIV vs. VIV-SIV 

To investigate combined effects of external-internal excitations on a catenary riser as displayed 

in Figure 5.1, the dynamical system of a curved pipe conveying slug flows as presented in 

Chapter 3 is herein considered alongside VIV effects due to various flow velocities. For each 

Uo, the slug flows of Ut = 6 m/s (uls=2 m/s, ugs=2 m/s) and 16 m/s (uls=2 m/s, ugs=10.3 m/s) for 

a fixed Lu/d=80 are assigned. Also, numerical simulations are carried out for VIV-only and 

VIV-SIV scenarios to identify the individual effect of SIV on the riser dynamics among 

combined FIV. To achieve that, Eqs. (5.1), (5.2), (5.14) and (5.15) with and without the effect 

of slug flows are numerically solved. 
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By removing the mean components from the total steady-state responses, Figure 5.5 

demonstrates comparison of umax, vmax (Figures 5.5a, b) and urms, vrms (Figures 5.5c, d) for Uo= 

0.1m/s - 0.8 m/s among VIV-only, VIV-SIV (Lu/d=80, Ut = 6 m/s) and VIV-SIV (Lu/d=80, Ut 

= 16 m/s). In general, the VIV-SIV cases have shown comparable maximum and RMS 

amplitudes to the ones of VIV, though some differences are recognized at several Uo. Similar 

to the results of a straight pipe, the feature of zigzag trend with Uo also appears in the catenary 

riser. Also, the responses in Y are larger than those in X, where the former seems to increase 

with Uo for the three scenarios. Such correlation between Uo and VIV responses of a catenary 

riser has been observed in several experimental studies (Fan et al., 2015; Domala and Sharma, 

2018). 

 

Figure 5.5: Comparison of (a, b) maximum and (c, d,) RMS amplitudes of (a, c) u and (b, d) 
v at varying Uo in case of VIV-only (blue squares), VIV-SIV for Lu/d=80, Ut = 6 m/s (red 

triangles) and VIV-SIV for Lu/d=80, Ut = 16 m/s (black circles).  

Further comparison among the three cases are conducted in terms of mode components. 

To obtain the riser mode shapes, OrcaFlex (Orcina, 2016) is utilized. By setting the catenary 

riser geometry (static configuration), mass per unit length, structural properties (bending and 
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axial stiffness) and environmental condition (still water) in OrcaFlex (Orcina, 2016), a modal 

analysis yielding undamped natural modes (up to 30th) is carried out with 405 spatial sections 

(Δs=5 m). The mode shapes (5th, 10th, 15th, 20th, 25th, 30th) in X and Y, i.e. ϕu (solid line) and ϕv 

(dashed line), are exemplified in Figure 5.6. Then, by following the modal decomposition   

 

Figure 5.6: Illustration of normalized riser mode shapes for mode (a) 5, (b) 10, (c) 15, (d) 20, 
(e) 25, (f) 30: solid (dashed) lines denote the shapes in X (Y), respectively.  

ϕu 
ϕv 
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method as presented in Section 5.2, a modal analysis of the above VIV and SIV-VIV responses 

can be conducted. 

Associated with the responses in Figure 5.5, mode distributions against Uo are illustrated 

in case of the VIV-only (Figures 5.7a, b), VIV-SIV of Ut = 6 m/s (Figures 5.7c, d) and VIV-

SIV of 16 m/s  (Figures 5.7e, f) for both X (Figures 5.7a, c, e) and Y (Figures 5.7b, d, f) responses, 

in which the modal contribution is calculated by the RMS values of time-varying modal weights 

(normalized by the maxima) with highlighting the dominant mode (in red markers) for each Uo. 

Thus, the magnitude of the modal weight can also represent the weight ratio of the secondary 

modes to the associated dominant one. For a clear demonstration, any mode with weight ratio 

below 0.1 is not included in Figure 5.7. As for the VIV-only scenario, it is obvious to see that 

the riser vibration is dominated by a higher order of vibration mode at a greater Uo, ranging 

from 2nd to 23rd modes. Meanwhile, the number of participated modes in both u and v gets larger 

as Uo increases. For instance, there is only one significant mode (2nd) excited by VIV at Uo=0.1 

m/s, whereas the riser responses contains six different modes (20th - 25th) at Uo=0.8 m/s. Besides, 

the weights of the secondary modes are more comparable to the dominant one, i.e. higher weight 

ratio, at relatively high Uo, which indicates strong multi-mode effects in VIV. The pronounced 

multi-mode VIV behaviours of a catenary riser with increased Uo were also experimentally 

observed by Halse et al. (1999) and numerically captured by Dalheim (2000). Such a feature of 

modal distributions vs. various Uo can also be seen in VIV-SIV scenarios (Figures 5.7c, d and 

5.7e, f). Nevertheless, compared with the VIV-only case, two VIV-SIV cases exhibit more 

significant modal contents in riser responses.   

For VIV-SIV of Ut = 6 m/s, the dominant modes get upgraded at several Uo, especially 

for the relatively high ones. For example, VIV of the riser is predominated by the 23rd mode at 

0.8 m/s, while the 26th mode prevails when slug flow is introduced inside the riser. Moreover, 

multi-mode effects are more significant in the VIV-SIV than the VIV-only case, resulting in a 

greater number of secondary modes alongside more comparable modal weights to the dominant 

one. For instance, VIV at Uo = 0.5 m/s (Figures 5.7a, b) contains three different modes (14th-

16th) and the weight ratio of the secondary mode is about 0.5, whereas there are eight modes 

(15th-22nd) excited by the combined external-internal excitations (Figures 5.7c, d) with the 

weight ratio of the secondary mode being about 0.9. Similarly, the aforementioned features can 

also be observed in VIV-SIV of Ut = 16 m/s although its mode-switching as well as multi-mode 

behaviours seem not as strong as the ones at Ut = 6 m/s. For example, at Uo=0.3 m/s, the VIV-

only case demonstrates a lower dominant vibration mode (7th) accompanied by a smaller range  
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Figure 5.7: Modal distribution in (a, c, e) u and (b, d, f) v at varying Uo in case of (a, b) VIV-
only, (c, d) VIV-SIV for Lu/d=80, Ut = 6 m/s and (e, f) VIV-SIV for Lu/d=80, Ut = 16 m/s: red 

and blue markers represent dominant and secondary modes, respectively.  

of secondary ones (6th-8th) than both the VIV-SIV cases. The slug flow at Ut = 6 m/s results in 

more pronounced VIV with 7th-12th vibration modes, dominated by the 9th mode. In contrast, a 

lower dominant mode (8th) accompanied by a relatively narrower band (7th-10th) participate in 

the VIV-SIV case at Ut = 16 m/s. The VIV-SIV cases at Ut = 6 m/s generally result in more 

pronounced multi-modal riser vibration with higher dominant mode than the ones at Ut = 16 

m/s. This is contrary to the trend of the modal loads that higher Ut potentially leads to larger 
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centrifugal force and hence enhanced dynamics. The ratio of the magnitude of centrifugal force 

at Ut = 16 m/s to the one at Ut = 6 m/s yields about 3.3. Nevertheless, it is worth mentioning 

that the ratio of internal fluid mass to the riser mass (per unit length) is 25.4 % and 10.5% for 

Ut = 6 m/s and Ut = 16 m/s, respectively. The change of eigenfrequency in the present study is 

dominated by the increased system mass. Hence, it is reasonable to see more SIV effects at Ut 

= 6 m/s than Ut = 16 m/s. The different levels of riser dynamics can also be observed in Figure 

5.5, where the cases at Ut = 6 m/s result in larger riser response than the ones at Ut = 16 m/s, 

e.g. vrms at Uo= 0.6 m/s. Apart from the aforementioned effect of internal fluid mass, this may 

be due to the relationship between the slug flow frequency and the vortex shedding frequency. 

It can be evaluated that the primary slug flow frequency (about 0.19 Hz) of the VIV-SIV case 

at Ut = 6 m/s is closer to the vortex shedding frequency (about 0.28 Hz) than the one from VIV-

SIV case at Ut = 16 m/s (about 0.52 Hz). Such a relationship may be responsible for the higher 

vrms at Uo= 0.6 m/s, where a stronger resonance between SIV and VIV occurs. Besides, based 

on the discussion on the modal load concept in Chapter 3, the modal loads travelling at Ut = 16 

m/s may be too fast so that the riser cannot fully respond to them. In contrast, it may be 

reasonable to observe the enhanced riser responses at Ut = 6 m/s, where the mass effect 

dominates over the velocity effect.  

 

Figure 5.8: Comparison of dominant fo for (a) u and (b) v at varying Uo in case of VIV-only 
(blue squares), VIV-SIV for Lu/d=80, Ut = 6 m/s (red triangles) and VIV-SIV for Lu/d=80, Ut 

= 16 m/s (black circles): black line represents the Strouhal rule.  

In Figure 5.8, comparisons of the dominant oscillation frequency (fo) for the three 

scenarios are shown at various Uo. In general, it can be seen that fo of the considered cases 

increase with Uo linearly and follows the Strouhal rule for both u (Figure 5.8a) and v (Figure 

5.8b). However, comparison of fo varies at different Uo. It is observed that the VIV-only case 

exhibits evidently higher fo than the VIV-SIV cases at Uo= 0.2 and 0.6 m/s, while this is not the 
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case for the other Uo, e.g. Uo= 0.3, 0.7 and 0.8 m/s, where at least one of the VIV-SIV cases  

results in higher fo than the one of VIV-only case. The differences of fo may be fundamentally 

related to the slug-induced changes in the structural stiffness, influencing the mode-switching 

and multi-mode behaviours in the riser responses.  

5.3.2 Influence of SIV in VIV-SIV at low and high current velocities 

Figure 5.9 displays contour plots of the variations of  coexisting u (a, c, e) and v (b, d, f) steady-

state oscillation (units in m) at a given Uo=0.2 m/s for  (a, b) VIV-only, (c, d) VIV-SIV of Ut =  

 

Figure 5.9: Space-time varying (a, c, e) u and (b, d, f) v exclusive of mean at Uo = 0.2 m/s, for 
(a, b) VIV-only, (c, d) VIV-SIV: Lu/d = 80 at Ut = 6 m/s and (e, f) VIV-SIV: Lu/d = 80 at Ut = 

16 m/s.  
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6 m/s and (e, f) VIV-SIV of Ut = 16 m/s, within 1450s < t <1500s. The associated spatial 

frequency spectra against normalized PSD are plotted in Figure 5.10 up to 1 Hz. By the 

comparisons between (Figures 5.9a, b) VIV-only and (Figures 5.9c-f)  VIV-SIV cases, it can 

be observed that the overall oscillation patterns of the three cases are similarly governed by 

standing waves, suggesting the dominant role of VIV in the combined external-internal 

excitations. Nevertheless, the planar displacements are slightly increased owing to the 

participation of slug flows. For instance, maximum u and v of the VIV-only case are 0.516 m 

and 0.854 m, whereas they are amplified to 0.557 m and 0.906 m (0.55 m and 0.937 m) after 

the slug flow at Ut = 6 m/s (16 m/s) is incorporated. Inspecting FFT plots, both VIV-only and 

VIV-SIV cases exhibit single-frequency responses with a slight involvement of higher 3rd 

harmonics. As presented in Chapter 3, slug flows are able to excite riser responses at dominant 

fs with high modulations. However, this is not the case for the combined VIV-SIV scenario. 

 

Figure 5.10: Spatial profiles of oscillation frequencies associated with responses in Figure 
5.8. 

In Figures 5.10c-f, it is evident to see the prevailing VIV effects without showing the 

frequency contents from SIV, i.e. fs = 0.2 Hz (0.52 Hz) for Ut = 6 m/s (16 m/s) as reported in 

Table 3.2. This observation has justified the dominant VIV oscillation in Figure 5.9. The 

negligible participation of SIV in the frequency domain is expected since it is not comparable  
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Figure 5.11: Space-time varying (a, c, e) u and (b, d, f) v exclusive of mean at Uo = 0.5 m/s 
for (a, b) VIV-only, (c, d) VIV-SIV: Lu/d = 80 at Ut = 6 m/s and (e, f) VIV-SIV: Lu/d = 80 at 

Ut = 16 m/s.  

with VIV with respect to the order of magnitudes. Further, comparing Figures 5.10a, b with 

Figures 5.10c-f, the dominant fo of VIV-SIV cases are generally lower than those of the VIV-

only case (fo=0.09Hz). This is expected since slug-induced tension variation would influence 

the pipe axial stiffness and consequently the associated natural frequencies as discussed in 

Chapter 3. Besides, it is worth noting that the dominant fo = 0.08 Hz at Ut = 6 m/s is slightly 

smaller than the one of fo = 0.084 Hz at Ut = 16 m/s. This may be attributed to a larger tension 

drop by lower Ut (Table 3.4). Although SIV is not comparable to the VIV in this case, slug 
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flows seem to result in softening stiffness, which may account for the slightly amplified 

maximum amplitudes as displayed in Figure 5.9.     

In case of relatively high Uo=0.5 m/s, contour plots of coexisting u and v oscillations 

(units in m) are exhibited in Figure 5.11 in case of (a, b) VIV-only, (c, d) VIV-SIV at Ut = 6 

m/s (uls=2 m/s, ugs=2 m/s) and (e, f) VIV-SIV at Ut = 16 m/s (uls=2 m/s, ugs=10.3 m/s). The 

associated spanwise FFT plots are shown in Figure 5.12. In comparison with Figures 5.9a and 

5.9b, the VIV-only case presented in Figures 5.11a and 5.11b is now governed by travelling 

waves with greater maximum responses (up to 1.052 m). These observations are in consistent 

with experimental results of Zhu et al., (2019), where VIV response patterns of a curved flexible 

free-hanging riser become more travelling with larger amplitudes as the flow velocity inceases. 

 

Figure 5.12: Spatial profiles of oscillation frequencies associated with responses in Figure 
5.10. 

By involving slug flows, the main travelling-wave feature is maintained in Figures 5.11c, 

d and 5.11e, f with slightly higher maximum u and v than the pure VIV case (Figures 5.11a, b), 

implying the dominant effects of VIV over SIV as discussed above. This is further justified by 

the response frequencies as presented in Figure 5.12, where VIV prevail in the combined FIV 

cases without the occurrence of SIV frequency contents. Besides, it is noticeable that overall 

responses are dominated by a single harmonic peak, with lower fo for VIV-SIV cases (Figures 
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5.12c, d and 5.12e, f).  However, in contrast to the cases at lower Uo=0.2 m/s, fo of Ut=16 at 

Uo=0.5 m/s is now lower than the one of Ut = 6m/s.  

 

Figure 5.13: Spatial distribution of (a, c) urms and (b, d) vrms in case of (a, b) Uo = 0.2 m/s and 
(c, d) Uo = 0.5 m/s. 

Taking a closer look into the responses with and without slug flows, comparisons of 

spatial RMS responses are depicted in Figure 5.13. In the case of Uo = 0.2 m/s (Figures 5.13a, 

b), six peaks are clearly observed spatially along the riser span, suggesting a predominant 5th 
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mode across all the scenarios. These evident single-mode-dominant profiles justify the 

observed standing-waves responses in Figure 5.9 as well as the modal analysis as shown in 

Figure 5.7. Greater amplitudes are found in the spatial distribution of RMS responses of VIV-

SIV cases than ones of the pure VIV case, which is consistent with the amplified displacements 

as shown in Figure 5.9. On the other hand, the spatial RMS responses in case of Uo=0.5 m/s are 

displayed in Figures 5.13c, d. More complex distributions appear in this case with multiple 

large peaks containing secondary small peaks along the riser span, which may reflect the 

significant participation of multiple modes in riser responses at higher Uo (Figure 5.7) and hence 

explain the travelling-wave oscillation as seen in Figure 5.11. Such a correlation between 

single-/multi-mode responses and standing-/travelling-wave oscillation patterns have been 

reported in Tognarelli et al. (2004) and Gao et al. (2017). Comparing with the RMS profiles in 

Figures 5.13c, d, the slug-free case shows relatively lower values than the VIV-SIV cases, 

which again may be due to the stiffness-softening effects from slug flows. 

Moreover, it is worth emphasizing the differences between the VIV-SIV cases at Ut= 

16m/s and 6 m/s, in which the former follows the pure VIV case with respect to the RMS profile 

and the latter, however, exhibits additional peaks along the span. This suggests a resonance 

dominated by a higher mode as confirmed in Figures 5.7c, d, implying the potential increase in 

fatigue damage. Such change of dominant mode could be owing to a weaker stiffness caused 

by the appearance of slug flow. The observed riser responses are closely related to the modal 

loads, i.e. gravity, centrifugal and Coriolis forces. The loading terms in Eqs. (5.1) and (5.2) can 

be evaluated to determine the governing effect on the transition of responses from the VIV-only 

to VIV+SIV cases. For Uo=0.2 m/s, the ratio of the magnitude of centrifugal to Coriolis term is 

14.97% (34.65%) at Ut= 6 (16 m/s), whereas the ratio becomes 6.32% (16.66%) at Ut= 6 (16 

m/s) for Uo=0.5 m/s. It is noted that the centrifugal term is generally smaller than the Coriolis 

effect. The Coriolis effect plays the role of damping force for a non-conservative system. 

Nevertheless, for the present gyroscopically conservative system with a pinned-pinned 

boundary condition, the Coriolis force mainly results in the change of the mode shapes, where 

the classical normal modes from harmonic free vibrations do not exist (Chen, 1985). Also, this 

effect is usually regarded to be negligible (Huse Knudsen et al., 2016; Bordalo and Morooka, 

2018; Meléndez and Julca, 2019), especially for relatively low Uo. On the other hand, the 

dynamic centrifugal term is equivalent to a compressive force contributing to the reduction of 

axial tension variation. Therefore, the transition of the dominant mode is partially attributed to 

this force. Also, the internal fluid mass contributes to an increase in the system mass, together 

with the reduced stiffness, causing altered eigenfrequencies. Hence, the centrifugal force is 
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considered prevailing over the Coriolis force in the present study. Consequently, a transition 

from lower to higher mode VIV takes place when the natural frequency is decreased, explaining 

the higher predominant fo of Ut=6 m/s in this case than the one of Ut=16 m/s as seen in Figure 

5.12. In contrast, the slug flow at higher Ut = 16m/s, which leads to a relatively smaller change 

of system stiffness, does not influence the order of VIV. Besides, compared with higher Uo, 

there are no mode-switching phenomena for Uo = 0.2 m/s regardless of Ut. This may be due to 

the stranding- vs. travelling-wave behaviours, where a single-mode oscillation is more robust 

than multi-mode oscillation (Chaplin et al, 2005). Similar mode changing phenomena is also 

reported in a numerical study from Yang et al. (2018), in which VIV mode order of a flexible 

riser is found increased due to the decreased natural frequencies by an internal single-phase 

flow.      

5.3.3 Stress evaluation: VIV vs. VIV-SIV 

Evaluation of stresses based on the above results is meaningful for failure assessment and 

provides a further visualization of individual effects of VIV and SIV in the combined FIV 

system. Following the same procedure of stress calculation in Section 3.4.5, bending stresses 

(σu and σv) in X and Y directions, axial stress (σa), and total steady-state stresses (σt) are 

computed.  

Corresponding to Figure 5.9, Figure 5.14 displays the contour plots of space-time σu 

(Figures 5.14a, c, e) and σv (Figures 5.14b, d, f) exclusive of mean components in case of  (a, 

b) VIV-only, (c, d) VIV-SIV of Ut = 6 m/s and (e, f) VIV-SIV of Ut = 16 m/s for a given Uo=0.2 

m/s. It is evident to see the similar patterns of σu and σv to those of u and v (Figure 5.9), showing 

variations in standing waves. Comparing the case (Figures 5.14a, b) without and (Figures 5.14c-

f) with slug flows, high modulations exist in VIV-SIV cases with significantly larger values (in 

MPa) than those of the pure VIV case. Such a discrepancy highlights the effects of SIV in 

magnifying bending stresses, causing additional curvatures in space due to the uneven slug-

induced gravity and momentum forces.  

Although SIV is insignificant in the context of response displacements and frequencies, 

it comes into play in bending stresses due to the involvement of high-order derivatives in stress 

calculations. These additional spatial curvatures together with the amplified displacements due 

to the softening stiffness are responsible for the largely amplified σu and σv in the VIV-SIV 

cases. On the other hand, bending stresses are also evaluated for higher Uo=0.5 m/s and shown 

in Figure 5.15. It is observed that travelling waves predominate in σu and σv in accordance with 

Figure 5.11, leading to moving maximum and minimum stresses along the pipe, i.e. no clear 
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nodes in variations of σu and σv. Such widely distributed stresses may signify potential critical 

damage all over the span. Besides, it is worth noting that σu and σv at higher Uo present  

 

Figure 5.14: Space-time varying (a, c, e) σu and (b, d, f) σv exclusive of mean components at 
Uo = 0.2 m/s for (a, b) VIV-only, (c, d) VIV-SIV: Lu/d = 80 at Ut = 6 m/s and (e, f) VIV-SIV: 

Lu/d = 80 at Ut = 16 m/s. 

nodes in variations of σu and σv. Such widely distributed stresses may signify potential critical 

damage all over the span. Besides, it is worth noting that σu and σv at higher Uo present 

considerably  larger values than those of lower Uo (Figure 5.14), which is associated with the 

high vs. low modal oscillations because of large vs. small curvatures. Further, by the 

comparisons between VIV-SIV cases at Uo=0.2 m/s (Figures 5.14c-f) and Uo=0.5 m/s (Figures 
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5.15c-f), the latter demonstrates less modulated stresses than the former. This may be due to 

the greater fluid-added damping effects associated with the higher Uo so that the SIV effect is 

further damped. Overall, amplified σu and σv are revealed in case of VIV-SIV compared with 

the pure VIV case, which are fundamentally related to the aforementioned stiffness-softening 

effects. This effect is more pronounced in the mode-switched case (Figures 5.15c, d), resulting 

in higher-modal VIV and hence the worst σu and σv. 

 

Figure 5.15: Space-time varying (a, c, e) σu and (b, d, f) σv exclusive of mean components at 
Uo = 0.5 m/s, for (a, b) VIV-only, (c, d) VIV-SIV: Lu/d = 80 at Ut = 6 m/s and (e, f) VIV-SIV: 

Lu/d = 80 at Ut = 16 m/s.  
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Variations of σu and σv are further discussed by spatial distributions of RMS values along 

the span as depicted in Figure 5.16. In case of low Uo=0.2 m/s, it is seen that the stresses 

generally follow the trend of u and v as plotted in Figures 5.16a, b, while obvious increases are  

 

Figure 5.16: Spatial distribution of (a, c) σu.rms and (b, d) σv.rms in case of (a, b) Uo = 0.2 m/s 
and (c, d) Uo = 0.5 m/s. 
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observed in the spatial RMS values of slug-flow-involved cases than the those of the slug-free 

case. Plus, strong local fluctuations are noticeable in VIV-SIV cases, justifying the modulated 

space-time stress variations in Figure 5.14.  In contrast, there are no clear modulated RMS 

profiles in case of Uo=0.5 m/s (Figures 5.16c, d), which confirms the observation of similar 

patterns across Figure 5.15. Although comparable RMS displacements are revealed in Figures 

5.13c, d, VIV-SIV of Ut=6 m/s results in distinctively larger RMS bending stresses than the 

other two (see Figures 5.16c, d), highlighting the significant role of slug flows in upgrading 

mode orders of  VIV at higher Uo.  

 

Figure 5.17: Space-time varying σa exclusive of mean components at (a, c, e) Uo = 0.2 and (b, 
d, f) 0.5 m/s, for (a, b) VIV-only, (c, d) VIV-SIV: Lu/d = 80 at Ut = 6 m/s and (e, f) VIV-SIV: 

Lu/d = 80 at Ut = 16 m/s.  
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Figure 5.18: Spatial distribution of σa.rms in case of (a) Uo = 0.2 m/s and (b) Uo = 0.5 m/s. 

Figure 5.17 displays the associated σa in case of (Figures 5.17a, c, e) Uo = 0.2 m/s and 

(Figures 5.17b, d, f) 0.5 m/s for (a, b) VIV, (c, d) VIV-SIV of Ut = 6m/s and (e, f) VIV-SIV of 

Ut = 16 m/s. By the comparison between the case of (Figures 5.17a, c, e) low and (Figures 5.17b, 

d, f) high Uo, the former generally illustrates less uniform variations in space than those of the 

latter, especially for VIV-SIV at low Uo (Figure 5.17c), which is subject to strong local 

modulations as presented in the bending stresses (Figures 5.14c, d). Further, the two groups 

demonstrate magnitudes of different orders, emphasizing again the effects of vibration modes. 

From the results, σa from Uo=0.5 m/s are 10 times greater than those from Uo = 0.2 m/s, 

exhibiting more comparable values with their associated bending stresses (Figures 5.15c-f). 

Such an amplification of σa with Uo is also addressed in Zanganeh and Srinil (2016), implying 

the non-negligible role of σa in stress assessments. Associated with Figure 5.17, spatial RMS 

values (σa.rms) are shown in Figure 5.18. For Uo = 0.2 m/s (Figure 5.18a), it is interesting to see 

that σa.rms of the VIV-only case predominates over those of VIV-SIV cases although the 

responses and the associated bending stresses are found to be the other way around. This 

observation may be related with reduced fn due to stiffness-softening effects, which yields fo 

(VIV-only) > fo (Ut = 16 m/s) > fo (Ut = 6 m/s) as presented in Figure 5.10. Such a correlation 

has also been reported by Yang et al., (2018), where σa is found to decrease with lower fn. 

However, this is not the case for Uo = 0.5 m/s (Figure 5.18b), where the VIV-SIV case (Ut = 6 
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m/s) causes the largest σa.rms amongst the three cases. This is owing to its larger curvatures 

associated with the higher-modal oscillation.    

 

Figure 5.19: Space-time varying σt at (a, c, e) Uo = 0.2 and (b, d, f) 0.5 m/s, for (a, b) VIV- 
only, (c, d) VIV-SIV: Lu/d = 80 at Ut = 6 m/s and (e, f) VIV-SIV: Lu/d = 80 at Ut = 16 m/s.  

The total steady-state stresses (σt) can be finally evaluated by the summation of static, 

dynamic bending and axial stresses. Figure 5.19 exhibits σt in association with the above cases 

in Figure 5.17. Following σu, σv and σa, variations of σt display standing- and travelling-wave 

patterns for (Figures 5.19a, c, e) low and (Figures 5.19b, d, f) high Uo, respectively. Further, by 

comparisons between the two groups, higher maximum σt but lower minimum σt are observed 

in the group of Uo=0.5 m/s due to the greater dynamic stresses as demonstrated above. On the 
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other hand, VIV-SIV cases reveal overall larger σt than the pure VIV case, highlighting the 

contribution from slug flow-induced dynamics and static stresses (i.e. mean σa due to drifts) as 

discussed in Section 3.4.3. In the present study, the worst σt scenario exists in the case of higher 

Uo together with slug flows of lower Ut (Figure 5.19d). Nevertheless, the pure VIV case with 

relatively more compressive σt (Figure 5.19b) may signal a dynamic global buckling issue. 

Some main outputs in SIV and VIV-SIV at Uo=0.2 vs. 0.5 m/s are summarized in Table 5.1. 

Table 5.1: Summary of main outputs in SIV vs. VIV-SIV responses for Uo=0.2 m/s and 
Uo=0.5 m/s. 

 Uo=0.2 m/s Uo=0.5 m/s 

Scenarios VIV 
VIV+SIV 

(Ut=6 
m/s) 

VIV+SIV 
(Ut=16 
m/s) 

VIV VIV+SIV 
(Ut=6 m/s) 

VIV+SIV 
(Ut=16 
m/s) 

umax, vmax (m) 0.49, 0.85 0.56,0.91 0.54, 0.9 0.42, 1.05 0.43, 1.07 0.45, 1.13 
urms, vrms (m) 0.35, 0.58 0.39,0.64 0.37, 0.63 0.3, 0.74 0.31, 0.76 0.32, 0.8 
Dominant fo 

(Hz) 0.09 0.08 0.084 0.244 0.24 0.229 

Mode 
participation 4th - 6th 4th - 6th 4th - 6th 14th - 16th 15th -22nd 13th - 19th 

Dominant 
mode 5th 5th 5th 15th 18th 15th 

Oscillation 
pattern Standing Standing Standing Travelling Travelling Travelling 

σu 
(MPa) 

Max 1.67 2.88 2.61 10.95 14.67 12.98 
Min -1.67 -2.78 -2.51 -10.95 -14.32 -12.41 

σv 
(MPa) 

Max 4.07 8.03 6.59 30.89 47.37 38.97 
Min -4.07 -7.91 -7.22 -30.89 -47.13 -40.34 

σa 
(MPa) 

Max 0.57 0.64 0.61 9.27 14.27 7.05 
Min -0.57 -0.65 -0.67 -9.27 -14.25 -7.41 

σt 
(MPa) 

Max 66.52 119.31 88.53 80.22 134.57 100.29 
Min 37.02 65.54 47.63 26.35 16.89 8.97 

 

5.4 Summary 

In this chapter, combined VIV and SIV phenomena of a long flexible catenary riser are 

investigated based on the slug-conveying model with a semi-empirical VIV model by spatially 

distributed van der Pol wake oscillators. The riser is subject to slug-induced gravity forces, 

internal fluid pressure variation, flow centrifugal and Coriolis forces as well as hydrodynamic 

forces due to VIV simultaneously. By applying 2nd order finite difference in space and 4th order 

Runge-Kutta in time, the VIV-SIV model is numerically solved for the coupled horizontal and 

vertical motions of the flexible catenary riser under various external-internal flow conditions. 

Through validating against the published experimental results, the proposed VIV model shows 

abilities in predicting qualitatively and quantitatively comparable riser responses to the tests. 
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Moreover, in case of the varying current velocities, several key VIV aspects of flexible risers 

are revealed through examining the riser response amplitude, modal distribution and oscillation 

frequency. As the current velocity increases, VIV of the riser is dominated by a high order of 

mode with enhanced multi-mode contribution, showing a tendency from standing to travelling 

oscillation patterns. The riser responses by pure external and combined external-internal 

excitations are assessed by comparing the space-time response, resonant frequency, dominant 

mode and mode distribution, dynamic and total stresses.  

Overall, VIV is found to prevail in the VIV-SIV cases, while slug flows can result in more 

complicated VIV responses than those of VIV-only cases. Although not comparable with VIV 

in terms of amplitudes, SIV is prone to introduce small additional curvatures along the riser, 

especially for relatively low external flow velocities. These SIV effects are noticeable in 

bending stresses and subsequently responsible for the amplified magnitudes. Depending on the 

current velocity and slug flow translational velocity, slug flows can result in a modified VIV 

excitation mode with enhanced multi-modal contributions. Slug flow effects on the riser VIV 

responses are more significant at a lower slug translational velocity or a higher external flow 

velocity. Greater dynamic and static stresses are observed in VIV-SIV scenarios than those of 

VIV-only scenarios, which are attributed to the slug flow-induced additional curvature, mean 

drift and enhanced multimode oscillation. 
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Chapter 6. Experimental Investigation on Slug Flow-Induced Vibration  

In the present chapter, an experimental investigation into a flexible catenary pipe conveying 

gas-liquid flows is performed to explore SIV phenomena and to validate the numerical model 

proposed in Chapter 3. The experiment is carried out in an air-water test loop with a hanging 

tube section made of silica gel. High-speed cameras are employed to simultaneously acquire 

both slug-induced pipe motions and two-phase flow regimes in a non-intrusive way. Meanwhile, 

internal fluid pressures are measured at the pipe inlet and outlet via two pressure transducers. 

A wide range of gas-liquid flow rates are tested in the flow-conveying system and slug flows 

are captured at the relatively high ratios of gas to liquid superficial velocities, leading to SIV of 

the flexible pipe. Under various flow conditions, different levels of riser responses are observed 

accompanied by significant variations in slug flow characteristics including travelling velocities, 

slug unit lengths and slug frequencies. These highlight the correlations between the intermittent 

slug flows and the unsteady SIV with modulated amplitudes. Moreover, some aspects from the 

numerical SIV investigation are qualitatively exhibited in the laboratory tests. Model 

validations are carried out through comparisons with the experimental results in terms of riser 

responses and frequencies. 

6.1 Experimental Setup 

The experiments were conducted in an air-water test loop of the State Key Laboratory of Oil 

and Gas Reservoir Geology and Exploitation at the Southwest Petroleum University, China. 

The key test facilities comprise four parts, including the test segments, fluid supplies, 

measurement devices and data acquisition instruments as shown schematically in Figure 6.1. 

The test loop consists of a 2 m long horizontal pipeline followed by a curved flexible pipe 

for a catenary configuration. In this experimental investigation, transparent silica tubes with 6 

mm outer diameter (D), 1 mm thickness (e), density of 1041.8 kg/m3 and Young’s modulus (E) 

of 7.15 MPa were employed for the pipeline-riser system, which guarantee both the pipe 

flexibility and the visualization of internal flow contents. As displayed in Figure 6.2, the riser 

section was freely hanged in air with 0.915 m in horizontal span, 0.8 m in vertical height and 

1.28 m in arc length, leading to aspect ratios of (L/D) 213 and (L/d) 320, respectively. The two 

ends of the riser are fixed axially and laterally on the floor and the support frames, respectively. 

More detailed pipe parameters are listed in Table 6.1. It is worth noting that the sag-to-span 

ratio is defined as the ratio of maximum sag (distance from the riser to its chord line) to L.  
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Figure 6.1: A schematic plot of SIV test loop. 

   

 

 

Figure 6.2: In-plane view of the riser segment. 
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Table 6.1: Key parameters of the riser segment. 

Figure 6.3 has displayed the key measurement devices along the test flowlines. As for the 

internal gas-liquid phases, air-water flows are employed in the present tests. Dry air at 1 

atmosphere pressure (101.325 kPa) and room temperature (20°C) was supplied by an air 

compressor with a maximum volumetric flow rate of 450 litre/minute (Figure 6.3a), which was 

connected to a float flowmeter (Figure 6.3b) of 3 litre/minute in maximum measurement 

capacity with an accuracy of 1%. A centrifugal pump (Figure 6.3c) with a maximum flow rate 

of 1.5 litre/minute was used to pump the liquid out from a water storage tank of 0.5 m3 capacity 

and to circulate it throughout the test loop. An electromagnetic flowmeter (Figure 6.3d) with a 

measurement range up to 1.3 litre/minute and an accuracy of 0.5% was adopted to monitor the 

water flow rate. Liquid and gas flows were initiated at the same time in the respective flowlines 

(Figure 6.3f) and mixed at the connection section through a pneumatic tee adapter followed by 

a downward curved pipe (see Figure 6.1), where the air, water and mixing flowlines have D (d) 

of 8 (6) mm. It is worth mentioning that the flow regime appeared to be a stratified flow in the 

downward part during the tests. This may be reasonable since the stratified flow takes place 

easily in a downward pipe (see Figures 2.4e, f). In fact, such a flow regime helps develop 

hydrodynamic slug flows due to the gas-liquid interface instabilities and it is typically taken as 

an initial condition for slug flow initiation in both experimental (Ansari and Nariai, 1989; Vaze 

and Banerjee, 2012) and numerical (Issa and Kempf, 2003; Carneiro and Nieckele, 2007) 

studies. Then, the inclined downward two-phase flow would enter the horizontal pipe and the 

downstream catenary pipe. According to several experimental tests for slug flows (Al-Hashimy 

et al., 2016; Ortiz-Vidal et al., 2017), an entrance length is necessary to allow the full 

development of intermittent flows. In order to have a negligible coalescence rate of liquid slugs, 

a minimum length of L/d = 60 is suggested in Van Hout et al. (2003). In the present study, the 

horizontal part (L/d ≈ 500) is considered sufficient for this purpose. 

Moreover, the two-phase flow rates were monitored by the flowmeters and adjusted by 

the respective valves according to the desired two-phase flow superficial velocities so that slug 

flow can be observed in the horizontal pipe and hence enter the following riser segment. 

Length (L) 1.28 m 
Internal diameter (d) 0.004 m 
Outer diameter (D) 0.006 m 
Elastic modulus (E) 7.15 MPa 
Density of the riser 1041.8 kg/m3 

Horizontal span 0.915 m 
Vertical height 0.8 m 

Sag-to-span ratio 0.124 
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Figure 6.3:  Key devices along flowlines: (a) air compressor, (b) float flowmeter, (c) water 
pump, (d) electromagnetic flowmeter, (e) air-water mixing point, (f) pressure transducers. 

 

At the end of the loop, the air-water flows were separated naturally by gravity with discharging 

the air into the atmosphere and recycling the water in the storage tank. Two pressure transducers 

(P1 and P2) with an accuracy of 0.1% (Figure 6.3f) were applied at the inlet and outlet of the 

riser segment, recording local pressure variations and differential pressures.  

6.2 Data Acquisition 

Compared with some widely used methods such as strain gauges (Chaplin et al., 2005; Song et 

al., 2011; Mohmmed et al., 2019) and accelerometers (Al-Hashimy et al., 2016; Ortiz-Vidal et 

al., 2017; Liu and Wang, 2018), an optical measurement leads to no changes in the system mass, 

stiffness and damping due to its non-intrusive feature, which is especially important to the light-

weight pipes with a low elasticity in this study. Laser vibrometers, as a viable way of vibration 

measurement, have also been considered in several FIV investigations (Zhang et al., 2004; 

Cheng et al., 2006; Qin et al., 2019). However, it only captures pipe dynamics without providing  

         

          

(a) (b) (c) 

(d) (f) (e) 

water 

air 

mixing 
point 
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Figure 6.4: (a) High-speed cameras, (b) record view in front of the riser segment and (c) 
operation panel for data acquisition. 

information of concerned flow contents. For understanding both pipe and flow behaviours of 

interests, a technique of digital imaging correlation and tracking was therefore employed in the 

present experiments to capture both pipe dynamics and internal flow regimes simultaneously in 

a non-contact manner (Zhu et al., 2018a; Zhu et al., 2018b). Also, detailed and comprehensive 

dynamic information can be gathered by setting a sufficient number of local tracking points 

along the concerned testing segment. Herein, such a technique was implemented through two 

Baumer HXG20 high-speed cameras (Figure 6.4). The cameras (Figure 6.4a) were turned on at 



132 
 

the same time, recording the slug-conveying riser dynamics and monitoring the upcoming slug 

flows in the horizontal section, respectively. One of them was placed right facing the testing 

segment and fully fitting the XOY view (Figure 6.4b) for capturing planar motions of the pipe, 

whereas the second one was arranged beneath the horizontal pipe looking into the real-time 

flow patterns. Also, pressures at the two ends of the riser were obtained simultaneously through 

the transducers for each considered case. This data acquisition procedure was conducted on an 

operation panel (Figure 6.4c), where cameras and pressure transducers were controlled by the 

associated software (Figure 6.5).  

 

Figure 6.5: Software interface for (a) cameras and (b) pressure transducers, respectively. 
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Since slug flow is characterized by its non-uniform flow pattern of alternative liquid and 

gas sections, it is necessary to distinguish the air and the water phases due to their similarity in 

colour and transparency. Hence, the water in the storage tank was dyed into black to get better 

visibility on liquid slugs. Also, to capture riser responses at different locations, 42 markers (M1 

to M42) were made by a black marker pen along the riser segment as illustrated in Figure 6.6. 

Each marker was 4 mm in length and arranged in a 30 mm centre-to-centre interval with the 

first and last markers 25 mm away from the associated ends of the riser. The number of markers 

is considered adequate for acquiring a comprehensive picture of pipe oscillation as well as 

guaranteeing enough space for visualizing the internal flow contents. Meanwhile, the markers 

can be regarded as reference coordinates along the arc length for statistically identifying flow 

characteristics such as the slug length, velocity and frequency.  

 

Figure 6.6: Illustrative plot of makers and image post-processing process by comparing 
different frames.  

Displacements of various locations along the riser segment were traced by the markers 

and recorded through the cameras with a resolution of 2048 × 1088 pixels at a sampling 

frequency of 100 Hz (100 images per second). Before tests, cameras and pressure transducers 
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were calibrated to ensure the best focus and zero gauge pressure, respectively. Each test was 

allowed to run for 10 minutes so that the internal two-phase flow can be fully developed and 

then followed by a data acquisition process for about 80 seconds. Thus, approximate 8000 

consecutive frames were stored after a single run, capturing successive motions of the target. 

To acquire the riser displacements, a static image (Figure 6.5a) was taken prior to tests, used 

for setting up a frame of reference for the following dynamic process. The direction of gravity 

was marked via a suspension line and the scale of pixels to actual distance was established by 

the length between any two neighbouring markers, which corresponds to an actual size of 30 

mm. Figure 6.6 also exemplifies the process of how the riser motion was captured and extracted 

from images. The markers can be identified easily from the images due to the colour difference 

between them and the pipe. Translational pixel changes between two adjacent frames of each 

marker (e.g. nth vs. (n+1)th frame for M22) can be obtained in X and Y directions. Then, the 

pixel variation was converted to the displacements as Δu and Δv. By processing all markers for 

the whole series of frames, time-varying responses of the riser were achieved.  

6.3 Free Decay Tests 

Free decay tests for the riser filled with air and water were performed to identify natural 

frequencies and damping of the pipe in both in-plane and out-of-plane directions. Giving the 

riser a certain amount of initial displacements and then release, the free damped vibration 

process was recorded. Repeated tests were conducted and the difference was found lower than 

0.5%. Figure 6.7 displays response time histories at M15 in different directions with the 

associated frequency spectra obtained via Fast Fourier Transform (FFT). For the air-filled pipe 

(Figures 6.7a-c), it is interesting to observe a common frequency (fn = 1.4 Hz) between the in-

plane (Figures 6.7a, b) and out-of-plane (Figure 6.7c) results. This is due to the fact that the 

planar disturbance imposed on the riser is not perfect which involves out-of-plane effects, and 

consequently leads to the appearance of the out-of-plane frequency in the in-plane free vibration. 

Thus, the fundamental in-plane natural frequencies should refer to the pronounced peaks, 

having fn = 2.72 Hz for both X and Y. Similarly, free decay tests have also been conducted for 

the riser fully filled with stationary water and displayed in Figures 6.7d-f. Comparing with the 

air-filled condition, the pipe filled with water presents lower natural frequencies in both in-

plane (fn = 2.52 Hz) and out-of-plane (fn = 1.33 Hz) directions. It is worth mentioning that the 

mass ratio of the internal water to the pipe per unit length under the fully-filled condition is 

0.766. Such a significant change of system mass together with the internal pressure may be 

responsible for the decreased natural frequencies, which has been discussed in the numerical 

studies in Chapters 3 and 5.  
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Further, the damping ratio (ξ) can be calculated by the logarithmic decrement based on 

the decayed riser amplitudes ξ= ln(An/An+1)/2π, where An and An+1 denotes any two consecutive 

amplitudes in the time history of riser displacements. ξ was evaluated for different pairs of 

amplitudes peaks and an averaged value was adopted. Accordingly to the above analysis, 

natural frequencies and damping ratios of the present riser are summarized in Table 6.2.  

 

Figure 6.7: Time histories and frequency spectra of free decay tests for (a-c) air-filled and (d-
f) water-filled riser in (u, v) in-plane and (z) out-of-plane directions. 
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Table 6.2: Natural frequencies and damping ratios of the riser.  

Parameters Air-filled pipe Water-filled pipe 

 In-plane Out-of-plane In-plane Out-of-plane 

Fundamental fn (Hz) 2.72 1.4 2.52 1.33 

Damping ratio (%) 0.98 0.86 0.86 0.69 

 

6.4 SIV Results and Discussion 

In the present study, 15 different cases (C1-C15) were considered for SIV tests and listed in 

Table 6.3. Each case is described by a pair of superficial velocities, which can be achieved 

through adjusting air and water volumetric flow rates by the respective valves during the tests. 

The relationship between superficial velocities and flow rates are uls= Ql/A and ugs = Qg/A, 

where Ql and Qg denote the water and air flow rates. The below test matrix (Table 6.3) is 

designed by having three different uls (0.553, 0.663, 0.774 m/s). For each uls, various ugs are 

taken so that the gas-liquid ratios (RGL) reads RGL= 1, 2, 3, 4, and 5, respectively. The effect of 

gas-liquid ratios has been discussed in Zhu et al. (2018a; 2018b) that it could lead to a variety 

of slug flows and hence different slug flow-induced behaviours. Compared with their flow 

conditions, the present tests have relatively larger uls-ugs pairs in a wider RGL range. During the 

tests, it was observed that slug flow has taken place in the majority of the test cases except for 

C1, C6, C11 (RGL = 1) and C2, C7, C12 (RGL = 2), where the liquid phase dominates over the 

gas phase showing negligible and small FIV, respectively.  

Table 6.3: Test cases with observed FIV and flow patterns.  

Case No.  uls (m/s) ugs (m/s) RGL Flow pattern FIV 
C1  

 
Set 1: 0.553 

 

0.553 1 NS NA 
C2 1.116 2 NS NA 
C3 1.659 3 US SA 
C4 2.212 4 US MA 
C5 2.765 5 US LA 
C6  

 
Set 2: 0.663 

 

0.663 1 NS NA 
C7 1.326 2 NS SA 
C8 1.989 3 US SA 
C9 2.652 4 US MA 
C10 3.315 5 US LA 
C11  

 
Set 3: 0.774 

0.774 1 NS NA 
C12 1.548 2 NS SA 
C13 2.322 3 US SA 
C14 3.096 4 US MA 
C15 3.870 5 US LA 

Note: NS, US denote no-slug and unsteady slug cases, respectively.  
NA, SA, MA and LA represent negligible-, small-, moderate- and large-amplitude FIV 
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The cases of negligible FIV reflect the fact that the riser would remain still when a single-

phase flow is transported at a low speed unless pulsation appears (Lee et al., 1995; Gorman, 

2000). This is also consistent with features of single-phase FIV problems, where a uniform 

single-phase flow would not lead to pipe instabilities before reaching critical velocities  

(Paidoussis, 2014). In this section, the measured and observed experimental results of slug flow-

induced riser dynamics as well as slug flow characteristics are reported and discussed.  

6.4.1 Riser response amplitudes and frequencies 

Converted from the pixel variations, time histories of the riser responses can be achieved at 

different locations (M1 to M42). To refine the raw data by excluding environmental effects on 

the measured signals, e.g. noises, a low-pass filter is employed to eliminate irrelevant bands of 

high frequencies. In the present study, the highest SIV frequency is observed to be less than 6 

Hz. To focus on the frequency range of interests (Figure 6.7), all the original data of riser 

responses are low-pass filtered in the frequency domain with a cutoff at 6 Hz, i.e. removing any 

frequencies higher than 6 Hz. In this section, SIV in C10 is exemplified owing to its largest 

responses among all the considered cases.  

 

Figure 6.8: Time histories of riser responses for (a) u and (b) v before and after low-pass 
filtering (case 10). 

Figure 6.8 exemplifies the data filtering process by showing riser response time histories 

at M14 for C10 before and after applying the filter. It can be seen from the comparison that the 

raw data become smoother with remaining the main vibration pattern when influences of the 

high-frequency noises are excluded, which would benefit the following analysis of SIV 

phenomena.  Figure 6.9 exhibits planar response envelopes of the riser (solid lines) with the 

associated RMS values (dashed lines) for C10. It is interesting to observe that the riser responses 
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generally follow a typical fundamental modal oscillation of a catenary riser. The slug flow leads 

to larger responses in X than the ones in Y. This is dependent on the combined effects of the 

riser geometry as well as the flow direction at the riser inlet, where the horizontal inlet flow 

potentially causes significant pipe motion in X. The riser vibrates in an asymmetric shape at 

each instantaneous moment, leading to coupled responses in X and Y. However, the oscillation 

is strongly modulated without intersection points, i.e. the location with zero responses. This 

implies co-existing modal oscillations despite the fact that the fundamental mode is 

predominant. Such a multi-mode behaviour can also be confirmed by observing the RMS of 

riser displacements along the riser span. At the location of the maximum response, the ratios of 

RMS values to the associated maximum amplitudes are 0.419 and 0.376 in X and Y, respectively. 

Compared with the ratio of 0.707 from a harmonic oscillation with a single frequency, such a 

significant difference between the maximum and the RMS values may be aroused by the 

modulated oscillation amplitudes due to a superposition of different modes. Besides, the RMS 

waveforms do not demonstrate any nodes (i.e. urms= 0, vrms= 0) in between the boundaries, 

consistent with the aforementioned high modulation at the node of intersection. All of these 

observations imply the occurrence of multi-mode responses.  

 

Figure 6.9: Time-varying spatial profiles (solid lines) with associated spatial RMS 
displacements (dashed lines) in (a) X and (b) Y for case 10. 

To further visualize SIV, the pipe vibrations of C10 in the time domain at selected 

locations (M5, M14, M20, M24, M30, M33, M38) are displayed in Figure 6.10. Regardless of 

the different amplitudes along the pipe, similar oscillation patterns are observed across all 

locations with synchronized responses between u and v. The riser experiences relatively small 

oscillations around t = 40 s but persistent large ones around t = 60 s for all the consider locations. 

For instance, the riser motion at M14 has demonstrated quite unsteady oscillations with strong 

(a) (b) 
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variations of amplitudes along time, showing maximum and minimum vibrations of 6.6d vs. 

0.05d in X and 3.9d vs. 0.03d in Y. Such chaotic vibrations along time has explained the much 

smaller RMS values than the maxima (Figure 6.9). In fact, the oscillation variability reflects the 

transient flow characteristics associated with random slug geometries, which will be discussed 

in the following sections. 

 
Figure 6.10: Time histories of (a, c, e, g, i, k, m) u and (b, d, f, h, j, l, n) v at different 

locations of riser for case 10. 
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Figure 6.11: Frequency spectra associated with the responses in Figure 6.10. 
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Frequency spectra in association with the riser oscillation (Figure 6.10) are exhibited in 

Figure 6.11 to identify the system oscillation frequency (fo). The results present a predominant 

fo of 2.58 Hz for nearly all the considered locations. It is worth noting that this fo falls between 

air-filled (2.72Hz) and water-filled fn (2.52 Hz) as listed in Table 6.2, indicating the occurrence 

of resonance at the fundamental mode as well as justifying the fundamental mode oscillation 

profiles in Figure 6.9. This in-between fo is expected since slug liquid holdup ranges from 0 to 

100%, contributing to additional system mass. Plus, the internal pressures and centrifugal forces 

would alter pipe stiffness (Sparks, 2007), giving rise to a lower resonance frequency. This 

experimental observation is in an agreement with the numerical study in Chapters 3 and 5. In 

addition to the dominant fo, a secondary peak is also noticed by some markers (M5, M20, M24, 

M30, M38), leading to a higher fo around 4.1 Hz. The higher fo ≈ 4.1 Hz may be related to the 

eigenmode next to the fundamental one. During the free decay tests, a second frequency peak 

about 4.4 Hz is observed at some locations (e.g. M32 and M35) of the riser. This value is 

checked through OrcaFlex (Orcina, 2016) by conducting a static analysis for this catenary pipe. 

The numerically obtained value of 2nd order natural frequency is about 4.6 Hz (error < 5%). 

This information justifies that fo ≈ 4.1 Hz is associated with the 2nd order eigenmode of the air-

filled riser. Based on the discussion in Chapter 3 and Chapter 5, it is reasonable to see a lower 

value of fo (4.1 Hz) than the 2nd order natural frequency of the riser (4.4 Hz) due to the combined 

effect of internal fluid mass and centrifugal forces. Hence, the higher fo in Figure 6.11h is 

associated with the 2nd order modal vibration, which may be directly attributed to fs. This aspect 

will be discussed in Section 6.4.3.  

Although the fundamental mode prevails, this higher-order fo is found more pronounced 

at intersection points. For example, the frequency contents of M30 (Figure 6.11i) and M24 

(Figure 6.11h), representing the intersection points in X and Y (Figure 6.9), show comparable 

PSD between the main fo and the secondary one, especially in Figure 6.11h, where the higher-

order fo becomes predominant. This feature may explain the strong modulation around the 

corresponding location as seen in Figure 6.9, signifying the significant participation of higher 

modes in SIV. Moreover, it is noticeable to see the neighbouring frequencies around the main 

fo. In this case, additional peaks always take place at 2.47 Hz and 2.68 Hz accompanying the 

highest one (2.58 Hz). This may account for the unsteady oscillation as displayed in the time 

histories of riser responses (Figure 6.10), where the riser vibrates unrepeatably with switching 

from one fo to another. Such an oscillation transition may be due to the flow randomness, 

suggesting strong fluid-structure interactions.  
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Figure 6.12: Phase plane trajectories associated with the responses of M14, M24, M30 and 
M33 in Figure 6.10. 
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Some selected phase plane trajectories in X and Y associated with the M14, M24, M30, 

M33 are illustrated in Figure 6.12. It is observed that all the considered trajectories show 

complex, aperiodic, and non-repetitive orbits. Strong modulation of the phase portraits are 

featured in the trajectories with inner and outer ellipses, which are mainly attributed to the 

unsteady and chaotic riser responses (Figure 6.10).  Moreover, evident non-elliptic trajectories 

within one cycle are realized in the inner area, especially for M24 and M30 (Figures 6.12c, d 

and e, f). Such peculiar orbits may be due to the multi-frequency behaviour (Figure 6.11) and 

have also been demonstrated in the numerical study (see Section 3.4.4). The above riser 

responses are directly driven by the slug flows. To further understand SIV, the slug flow 

characteristics such as translational velocities and slug lengths, which yields the excitation 

forces, shall be qualitatively and quantitatively analysed alongside the riser responses.   

6.4.2 Non-uniform slug flow characteristics 

As seen in Section 6.4.1, rather unsteady SIV is observed with a wide range of local amplitudes. 

For an FSI problem, these phenomena can indirectly reveal the flow status. In this section, 

detailed flow contents are focused on to characterize the slug flow. Some of the key flow 

parameters in a strong correlation with SIV are presented with highlighting their corresponding 

effects on the riser oscillation.        

Although different phases may have various velocities, the translational velocity, as one 

of the most important slug parameters, represents how fast the multiphase flow travels along 

the channel. Combined with the slug unit length, they could determine the slug frequency as 

investigated in Chapter 3. For the present experiment, the translational velocity is estimated by 

recording the travelling duration of a certain slug starting from the riser inlet to outlet. For 

instance, five consecutive frames (t1-t5) of a slug unit conveyed from the riser bottom to the top 

are displayed in Figure 6.13. The measurement procedure starts when the front of liquid slug 

just passes M42 (Figure 6.13a) until its arrival at M1 (Figure 6.13e). Then, Ut can be calculated 

through the recorded duration and the arc length from M42 to M1 (123.4 cm). In each case, 

such a process is repeated for five different slug units and an average value is employed. For 

instance, the estimated Ut of C10 range from 2.33 m/s to 2.47 m/s, which is lower than ugs 

(3.315 m/s) but higher than uls (0.663 m/s). This is expected since the liquid phase travels slower 

than the gas phase, resulting in an intermediate velocity of the two-phase mixture.     

As another important parameter, the slug lengths (Ls, Lf, Lu) play important roles in SIV. 

Different slug unit geometries would give rise to various distributions of slug flow-induced 

static and hydrodynamic forces along the pipe. For certain Ut, it is reported in Chapter 3 that Lu 

would become predominant in deciding fs and consequently the pipe vibrations. For C10, the 
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Ut range is rather small and the slug flow can be considered travelling at a constant speed, which 

suggests the dominating effects of slug lengths in this case. Thus, the interaction between the 

fluid and the structure could be analysed through inspecting the slug flow distribution together 

with the corresponding instant riser vibration.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.13: Illustration of Ut measurement by a slug travelling path in five consecutive 
frames (a-e) for (t1-t5) in case 10.  

 

Figure 6.14 exhibits the response time histories of M14 (30 s < t < 42 s) with snapshots 

of flow regimes, in which relatively irregular oscillations take place with modulated amplitudes. 

Based on the time-varying riser responses (Figure 6.14a), three instant moments are selected 

(A-A, B-B, C-C) corresponding to the riser displacements of 0.25d, 5.6d, 0.3d and 0.04d, 3.7d,  
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Figure 6.14: (a) Selected responses (30 s < t < 42 s) for case 10 and their associated (b-d) 
flow information at three time instants (A-A: t = 34 s, B-B: t =37.5 s, C-C: t =40.3 s): red 

arrows highlight slug units in the frames with estimated Lu, Lf, Ls. 
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Figure 6.15: (a) Selected responses (55 s < t < 70 s) for case 10 and their associated (b-d) 
flow information at three time instants (D-D: t= 56.4 s, E-E: t=61.6 s, F-F: t=65.5 s): red 

arrows highlight slug units in the frames with estimated Lu, Lf, Ls. 
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Lf/d ≈ 78.75 
Ls/d ≈ 41.25 
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0.16d at t =34 s, 37.5 s and 40.3 s in X and Y, respectively. The associated instantaneous 

moments of flow information are shown in Figures 6.14b-d. Through inspecting the 

distinguishable liquid (black) and gas phases (grey) in the frames, Lu can be approximately 

measured by counting the number of markers contained in each slug unit. As shown in Figures 

6.14b, d, three slug units can be identified at t = 34 s and 40.3 s with various Lu/d about 105, 

75, 37.5 and 82.5, 75, 37.5, respectively. In contrast, only two slug units but with longer lengths 

about Lu/d = 120 and 127.5 are observed at t = 37.5 s (Figure 6.14c). These observations indicate 

the strong flow variability in this region, which may account for the unsteady riser 

displacements. Further, it shows a clear relationship between Lu and the amplitudes that longer 

(Figure 6.14c) and shorter (Figures 6.14b, d) Lu tend to cause larger (B-B) and smaller (A-A, 

C-C) riser displacements. Similarly, the time histories of M14  from t =55 s to t =70 s with the 

flow regimes at three time instants (section D-D, E-E, F-F) are demonstrated in Figure 6.15. 

Compared with Figure 6.14a, the riser response amplitudes in this duration are relatively larger 

and less modulated. The instantaneous flow contents at t = 56.4, 61.6 and 65.5 s are exemplified 

in Figures 6.15b-d, having Lu/d longer than 120 in all considered moments. Such flow condition 

may explain the sustainable significant riser vibration shown in Figure 6.15a. For example, two 

slug units can be seen from Figure 6.15c with about Lu/d=127.5 and 120, which are generally 

larger than the ones in Figures 6.14b-d. This is consistent with the observation in Figure 6.14c 

vs. Figures 6.14b, d, justifying the responsibility of longer Lu for higher response amplitudes. 

A similar trend was also reported by Wang et al. (2018) for a horizontal pipe transporting slug 

flows, showing enhanced SIV due to longer liquid slug lengths.  Moreover, by comparing 

Figures 6.15b-d with Figures 6.14b-d, the former shows relatively more steady slugs, i.e. less 

differences between consecutive slug units, than the latter, which may account for their different 

levels of steadiness in the oscillation. Overall, these results further emphasize the important role 

of slug flow characteristics in directing the riser dynamics.     

6.4.3 SIV responses under various flow conditions  

To characterize the fundamental effects from slug parameters such as uls and ugs on riser 

dynamics, SIV at different RGL will be presented and analysed in this section. Figure 6.16 

displays the space-time variations (40 s < t < 70 s) of riser responses in case of C7 (Figures 

6.16a, e), C8 (Figures 6.16b, f), C9 (Figures 6.16c, g), C10 (Figures 6.16d, h), which correspond 

to different ugs from 1.326 m/s to 3.315 m/s and hence RGL = 2, 3, 4, 5, respectively. Inspecting 

the overall responses, it is seen that the riser experiences the fundamental mode oscillation in 

all the considered cases, where the vibration patterns clearly exhibit two peaks in standing 

waves in both X (Figures 6.16a-d) and Y (Figures 6.16e-h). Despite the same fo of u and v, the  
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Figure 6.16: Space-time varying (a, b, c, d) u and (e, f, g, h) v of SIV for (a, e) case 7, (b, f) 
case 8, (c, g) case 9, (d, h) case 10. 

 
response amplitudes in X are generally higher than the ones in Y for each case. From RGL =2 to 

5, FIV become stronger as well as more regular. For instance, the maximum amplitude of C10 

(Figures 6.16d, h) is about 6.7d (in X) and 5.5d (in Y), while riser can only attain 0.2d (in X and 

Y) for C7 (Figures 6.16a, e). Also, it is interesting to observe that C7 (RGL =2) seems to oscillate 

at relatively lower frequencies than the other cases (C8-C10). Regardless of different 
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amplitudes, Figures 6.16a-h have demonstrated various levels of variability with unsteady 

responses, switching between large and small vibrations. For example, relatively evident SIV 

is only observed after t =55 s for C8 (Figures 6.16b, f), whereas C9 (Figures 6.16c, g) presents 

pronounced dynamics during about 40 s < t <50 s as well as 58 s < t < 66 s. Such intermittent 

structural behaviours are interrelated with the unsteady flow characteristics as discussed in 

Section 6.4.2. 

 

Figure 6.17: Spatial profiles of oscillation frequencies associated with responses in Figure 
6.16. 

In association with Figure 6.16, spatial frequency spectra vs. normalized PSD are 

demonstrated in Figure 6.17 for both X (Figures 6.17a, c, e, g) and Y directions (Figures 6.17b, 

d, f, h). It is noted that the main fo in all the considered cases are around 2.55 Hz, which is lower 

than fn of air-filled pipe and close to the water-filled one. Besides, the main fo increases with 

RGL from 2 to 5, yielding the frequencies at 2.5, 2.52, 2.56 and 2.58 Hz, respectively. Although 
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the fundamental mode oscillation is predominant across different cases, distinct frequency 

components can be remarked. For instance, C7 (Figures 6.17a, b) is quite distinguishable from 

the others (Figures 6.17c-h), showing a series of fo with comparable PSD at the lower frequency 

range to the predominant one (fo= 2.5 Hz). These low frequencies may be due to the imperfect 

pipe geometry, which induces out-of-plane effects. The co-existing in-plane and out-of-plane 

oscillations have accounted for the relatively low-frequency oscillation patterns as observed in 

Figures 6.16a, e. Nevertheless, such out-of-plane SIV is negligible and only observable when 

the amplitude is less than 0.2d.  

Similar to the previous analysis on C10 (Figure 6.11), some neighbouring frequencies 

around the main fo are also realized in C7-C9. Such concentrated narrowband of response 

spectra suggest the variability and intermittency of the corresponding slug flow, which induces 

the irregular oscillation as observed in Figure 6.16. Besides, non-negligible higher harmonics 

appear in C8, C9 and C10 around 4.1 Hz even though they are much less pronounced than the 

main peak. These frequency components could bring higher-order responses in SIV, causing 

additional vibrations. Observing the corresponding space-time responses in Y (Figures 6.16f-

h), it can be seen that the large response amplitudes take place around s/L = 0.32 and 0.77, 

which can be regarded as antinodes in standing waves. However, the oscillations at the node 

(around s/L=0.56) have non-zero values, which is different from a single-mode oscillation. This 

is attributed to the observed higher harmonics, indicating multi-mode behaviours. 

To further visualize SIV, the instantaneous slug distribution for C7-C10 are selected 

between 60 s < t < 65s, where the significant riser responses appear in all cases (Figure 6.16). 

Figure 6.18 displays four representative frames with showing detailed slug flow contents for 

C7-C10, respectively. It is worth noting that the flow pattern in C7 (Figure 6.18a) is distinctive, 

with only small bubbles entrained inside the liquid phase, i.e. no apparent form of slug flow. 

Such a flow pattern tends to behave like single-phase or uniform flows, hardly inducing riser 

oscillation. Thus, the small structural responses in C7 (Figures 6.16a, e) are reasonable. In 

contrast, evident slug flows are observed in C8, C9 and C10 (Figures 6.18b-d), comprising a 

series of alternative gas and liquid regions. By comparing Lu/d among those cases, it can be 

seen that the case with higher RGL generally forms longer Lu/d. As for C8-C10, the maximum 

Lu/d are about 90, 97.5 and 150, separately. In fact, the amplified SIV is led by the combined 

effects from higher Ut-Lu, which indicate the interrelationship between flow characteristics and 

structural dynamics via RGL. Furthermore, it can be seen that the liquid slug and bubble regions 

are various as well. It is true and expected to see longer Lf in case of higher RGL due to the larger 

Qg. While both Lu and Lf increases with RGL, the ratio of Lf to Ls turns to be higher, suggesting 



151 
 

the predominant role of Lf at larger Qg. For instance, as RGL decreases (C10, C9, C8), the length 

ratio (Lf/Ls) associated with the maximum Lu/d are approximately 0.26, 1.17, 1.5. This indicates 

a trend of convergence to a uniform flow and the riser is almost fully occupied by liquid 

eventually without elongated bubble sections as shown in Figure 6.18a. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.18: Representative flow information for (a) case 7, (b) case 8, (c) case 9 and (d) case 
10: red arrows highlight slug units in the frames with estimated Lu, Lf, Ls. 

For C7-C10, response time histories associated with the locations of spatially maximum 

RMS oscillations are exhibited in Figure 6.19. It is observed that unsteady oscillations take 

place in each case. As expected, the pipe in C7 demonstrate small oscillations with a lower fo 

than other scenarios (C8-C10). For the cases showing evident slug flows (C8-C10), the chaotic 

responses seem to have different levels of amplitude modulations, being more significant at 

lower RGL. This may be correlated with the variability of slug lengths as discussed and shown 
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in Figures 6.14 and 6.15. To address these intermittent FIV behaviours, the riser responses in 

C7-C10 are analysed and compared through instantaneous frequencies. By performing a 

wavelet analysis in association with Figure 6.19, the frequency contents are demonstrated as a 

function of time for 0 s < t < 70 s as shown in Figure 6.20. Overall, it can be seen in C7-C10 

that the riser responds at unsteady fo at all times, illustrating time-varying contents along the 

time span. In C7, low frequencies (around 1 Hz) with comparable weights to the main fo (around 

2.55 Hz) are captured, explaining the distinct riser responses as shown in Figures 6.19a, b. For 

C8-C10, it is true that the riser mainly oscillates around 2.55Hz, while other frequencies within 

a broad band also play roles in SIV and this is rather pronounced in C10. Inspecting Figures 

6.20g and h, an obvious deviation from the main fo can be seen at 25 s < t < 28 s, leading to a 

gradual variation of dominating fo approximately from 2.5 Hz to 3.4 Hz. Also, multiple 

dominating fo are found around t = 34.5s, where the riser vibrates at 2.4 Hz and 3 Hz 

simultaneously. 

 

Figure 6.19: Response time histories of (a, c, e, g) u and (b, d, f, h) v associated with spatially 
maximum RMS displacements for (a, b) case 7, (c, d) case 8, (e, f) case 9 and (g, h) case 10. 
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Figure 6.20: Wavelet contour plots associated with response time histories in Figure 6.19. 
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In fact, the contribution from the less significant frequencies, which neighbours the 

predominant fo, can always be observed in a wide range, e.g. from around 0.8 Hz to 5.5 Hz for 

M33 in C10 (Figure 6.20h). Besides, the main fo in C8 seems to be more scattered along the 

time span than those of C10, where the former only exhibits some beats of the main fo, while 

the latter shows continuously frequency contents around 2.55Hz. Such difference may verify 

the various levels of amplitude modulations between Figures 6.19c, d and g, h. These features 

in the frequency domain have once again supported the discussion in the above sections and 

reflected the slug flow behaviours with strong variability and intermittency that yield unsteady 

SIV under different flow conditions. The observed SIV and response frequencies are closely 

related to the modal loads exerted from slug flows. According to the numerical studies in 

Chapter 3 and Chapter 5, centrifugal and gravity forces are the main contributors to SIV, which 

depend on the slug characteristics including liquid holdup, travelling velocity and slug 

frequency. For the cases with evident slug flows (C8, C9 and C10), the increasing RGL (Table 

6.3) potentially lead to larger Ut from C8 to C10 and hence greater centrifugal effect. This can 

be partially responsible for the pronounced SIV (Figure 6.19) as ugs increases, resulting in the 

critical case with an amplitude up to 6.7d. The strong modal loads consequently lead the riser 

to vibrate at a persistent governing frequency as shown in Figures 6.20g and h. This may also 

be related to the long Lu, where the more unbalanced flow state gives rise to more pronounced 

modal loads and consequently enhanced SIV at a clear dominant fo. On the other hand, the 

slower slug flow tends to result in more modulated SIV as discussed in Chapter 3. Thus, the 

scattered frequency contents at relatively low RGL (Figures 6.20c, d) may be reasonable. A 

further analysis based on the slug flow parameters under different flow conditions is carried out 

in the following. 

Figure 6.21 has displayed the comparisons of spatial distribution of RMS responses with 

different RGL for Set 1, Set 2 and Set 3 (see Table 6.3), respectively. Note that FIV was not 

observed in C2 so that only three RGL (C3, C4, C5) are considered and displayed in Figures 

6.21a, b. For each set, the spatial RMS responses increase with RGL and are predominated by 

the fundamental mode in both X (Figures 6.21a, c, e) and Y (Figures 6.21b, d, f). This is expected 

according to the previous discussion regarding C8-C10, where the higher Ut-Lu pair is prone to 

drive more pronounced SIV. Such a consistent trend among different sets of uls has again 

confirmed the effects from RGL in SIV with reflecting the significant correlation between the 

fluid and the structure. Table 6.4 has summarized the flow information as well as the maxima 

of spatial RMS responses for all the considered cases. Apart from the increasing trend of urms 
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and vrms with RGL in each set, the variation of oscillation can also be evaluated for a fixed RGL, 

revealing the influences from various uls. For instance, it is evident to see that Set 2 has the   

 

Figure 6.21: Spatial distribution of RMS responses for (a, b) case 3-5 in Set 1, (b, d) case 7-
10 in Set 2 and (e, f) case 12-15 in Set 3. 
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largest RMS oscillation amplitudes when comparing with Set 1 and 3 for a fixed RGL, 

representing the worst SIV scenario in the present study. Nevertheless, a wider range of uls 

needs to be considered in order to determine its effects on SIV. In addition, flow information 

has been estimated and demonstrated in Table 6.4 for the cases exhibiting evident slug flow 

(Table 6.3) through inspecting a number of slug units in different frames.  

Table 6.4: Summary of key flow characteristics and maxima of riser RMS responses.  

Set Case 
RGL Ut (m/s) Lf /d Lu /d fs (Hz) urms/d vrms/d 

 Max Min Max Min Max Min Max Min   

 
 

1 

C1 1 - - - - - - - - - - 
C2 2 - - - - - - - - - - 
C3 3 1 0.97 30 7.5 71.5 30 8.21 3.46 0.286 0.224 
C4 4 1.39 1.37 56.25 15 101.25 45 7.67 3.4 0.654 0.499 
C5 5 1.97 2.05 127.5 45 195 90 5.61 2.58 2.523 1.843 

 
 

2 

C6 1 - - - - - - - - - - 
C7 2 - - - - - - - - 0.066 0.052 
C8 3 1.29 1.26 37.5 15 93.75 37.5 8.5 3.4 0.483 0.385 
C9 4 1.96 1.87 86.25 30 142.5 71.25 6.68 3.34 1.576 1.138 

C10 5 2.47 2.33 150 52.5 217.5 93.75 6.35 2.74 2.787 2.1 

 
 

3 

C11 1 - - - - - - - - - - 
C12 2 - - - - - - - - 0.094 0.079 
C13 3 1.6 1.56 30 15 90 37.5 10.52 4.38 0.389 0.281 
C14 4 2.24 2.16 90 30 150 60 9.1 3.64 1.476 1.075 
C15 5 2.32 2.2 120 37.5 191.25 71.25 7.79 2.9 2.083 1.534 

Overall, Ut is found to be relatively stable within a small range, leading to a good 

quantitative approximation of the flow speed. From the results, it reasonable to see the 

increasing Ut with RGL, e.g. C5 > C4 > C3 in terms of Ut, where higher ugs drives faster slug 

flow in the riser. On the other hand, for a specific RGL, the combination of higher uls and ugs 

generally results in higher Ut, e.g. C13 > C8 > C3 in terms of Ut, although comparable ranges 

are identified between C10 and C15. In contrast, the slug characteristics in terms of lengths are 

strongly variable. In each case, Lf /d and Lu/d are observed to have values in wide ranges, which 

account for the irregular oscillation patterns and the multi-peak frequency domains (Figures 

6.16 and 6.17). Nevertheless, the lengths have shown a positive correlation with Ut. With 

increasing Ut, Lf seems to get larger and play a predominant part in contributing to a longer Lu. 

It is worth noting that Ut and Lu of C10 are found to be more critical than the ones of other cases, 

which give rise to the most pronounced SIV in the present study (Figure 6.21). Such an 

observation also confirms the previous discussion on the modal loads related to Ut and Lu. As 

one of the most important slug parameters, the corresponding ranges of fs can also be evaluated 

by knowing Ut and Lu, where the average Ut is considered for convenience. Following Lu, a 
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wide range of fs is found in each case, which may fundamentally be responsible for the irregular 

SIV and justify the rich dynamics as shown in Figure 6.16. For instance, fs of C10 range from 

2.74 to 6.35 Hz. This may account for the multi-modal SIV observed in Figure 6.11h as well as 

the time-varying fo in Figures 6.20g and h. It is noticeable that all the cases in the present study 

are mainly subject to the vibration at a fundamental mode. However, fs in some cases do not 

coincide with the natural frequencies, especially for the ones with lower RGL. This may be due 

to the strong variation of fs in these cases, where the system is difficult to coincide with any of 

them, leading to a return at the fundamental mode oscillation. Besides, for the cases with low 

RGL, slug units with short Lf have been observed among the regular ones. The combined slugs 

may be equivalent to a long slug unit and hence lead to a lower fs that close to the fundamental 

natural frequency of the riser. For a given uls, it is seen that the estimated range of fs tends to be 

lower with higher RGL, e.g. C3 > C4 > C5 in terms of fs. A similar observation was remarked in 

Mohmmed et al. (2019), where smaller fs was found at higher RGL. 

As another key flow information, local pressures at the riser top and bottom are evaluated. 

Figure 6.22 compares the standard deviation of time-varying pressure (Pstd) and pressure drop 

(dP) between the inlet and the outlet among SIV cases of the three sets. With higher RGL, it can 

be observed that Pstd at both the riser top and bottom increase in all sets, implying more 

significant pressure fluctuation with larger ugs. The rising Pstd may be corresponding to the 

larger Lf and Lu, which contribute to the amplified riser responses for higher RGL (Figure 6.21). 

Besides, there is a noticeable change of trend in C15, where its Pstd becomes the least one at 

RGL=5. This observation may be associated with the lower Lu as shown in Table 6.4, i.e. C15 < 

C5 < C10 in terms of Lu/d. As for dP, it is noticed that Set 1 < Set 2 < Set 3 for a given RGL. As 

analysed in Chapter 3, dP can be due to the combined static and dynamic components 

corresponding to the gravitational and frictional contribution, respectively. Therefore, the 

increasing trend from Set 1 to Set 3 may be attributed to higher Ut, which is related to the 

pressure loss due to friction. Also, for larger RGL, Set 1 gets smaller dP whereas Set 2 and Set 

3 tend to have larger ones. In Set 1, the gravity may predominate over the friction due to its 

generally lower Ut, whereby longer Lf exists in higher RGL and consequently leads to less 

hydrostatic pressure loss. On the other hand, Set 2 and Set 3, whose dP may be mainly caused 

by the friction, have larger dP with larger RGL due to the increased Ut.  

SIV of a catenary pipe with similar riser scales have also been experimentally observed 

in Zhu et al. (2018a; 2018b). In Zhu et al. (2018b), the flow conditions were set with uls ranging 

from 0.436 m/s - 0.796 m/s for 0.5 < RGL< 1.826, whereas smaller uls  range of 0.06 m/s - 0.3 

m/s with a wider range of RGL up to10 was applied in Zhu et al. (2018a). In contrast, the current  
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Figure 6.22: Pstd of (a) riser top and (b) bottom and (c) dP associated for Set 1-3 at RGL = 3-5.  

study focuses on relatively larger uls than the latter and wider RGL than the former. Although 

quite different flow conditions are considered, some common SIV phenomena can be found 

between these two studies and the present experiment. For instance, they remarked that the slug 

flow mainly leads to in-plane SIV with greater vibrations in X than Y, while the out-of-plane 

pipe motion is found negligible.These observations are also true herein. Besides, regardless of 

the various flow conditions, SIV seem to be dominated by the fundamental mode with strong 

modulations of amplitudes and non-zero displacements at the nodes across all the three works, 

which indicates the participation of multiple modes in the vibrations. Similar to the observations 

in the present tests and the discussion in Figures 6.14 and 6.15, the correlation between slug 

lengths and oscillation amplitudes were also addressed in Zhu et al. (2018a; 2018b), where 

longer liquid slugs are deemed responsible for more pronounced SIV. The important roles of 

RGL were highlighted in these two studies in which a high RGL generally results in pronounced 

SIV. Similarly, such a trend has been revealed in the present study as illustrated in Figure 6.21. 

Nevertheless, it is found in this study uniquely that evident slug flows are only detected in case 



159 
 

of RGL > 2 with much longer slug lengths than those works, which in turn excite more significant 

SIV with amplitudes up to 6.7d depending on the flow conditions. Moreover, only unsteady 

slug flows are found herein rather than other slug flow types, i.e. severe slugging, as reported 

in Zhu et al. (2018a), whilst various levels of unsteadiness are observed under different RGL. In 

summary, some key aspects of those works and this study are listed in Table 6.5.  

Table 6.5: Comparison of key experimental setups and SIV aspects between different studies. 

Key aspects This study Zhu et al. (2018b) Zhu et al. (2018a) 
d (mm), D (mm), L/D 4, 6, 213 4, 6, 158 8, 10, 134 

uls (m/s) 0.553-0.774 0.436-0.796 0.06-0.3 
ugs (m/s) 0.553-3.87 0.398-0.796 0.1-0.6 

RGL 1-5 0.5-1.826 0.333-10 

Flow regime Unsteady slug flow; 
Uniform flow; Unsteady slug flow 

Severe slugging; 
Unsteady slug flow; 

Steady slug flow 
Ls/d 22.5-72.5 15-60 6.8-52.5 

Out-of-plane SIV Negligible Negligible Negligible 
Dominant mode fundamental fundamental fundamental 

In-plane maximum 
urms/d, vrms/d 2.79, 2.1 0.41, 0.27 1.1, 0.78 

 

6.5 Experimental vs. Numerical Results 

To further verify the numerical model as proposed in Chapter 3, numerical simulations are 

conducted for C5, C10, C15, corresponding to the limiting case with the most significant riser 

responses in Set 1, Set 2 and Set 3, respectively. The riser geometry is calculated based on Table 

6.1 with adopting the measured slug characteristics including the translational velocities and 

slug flow lengths as empirical inputs. Since it is revealed that the most severe SIV is 

accompanied by the greatest Lu, extreme flow conditions are considered herein by having the 

Lu/d = 195 for C5, 217.5 for C10 and 191.25 for C15. In the static analysis, the comparable riser 

static geometry, sag-to-span ratio and natural frequency to the measured ones  (Tables 6.1 and 

6.2) with differences less than 3% are yielded through adjusting the top effective tension. As 

for the dynamic simulation of the riser with fixed ends, a time step of 0.001 s and an element 

size of 0.01 m are applied for a simulation time of 100 s, which is found to provide a 

convergence of steady-state simulation results. As for the slug model, a spatial step of 0.0001m 

is considered sufficient for capturing the full information of slug profiles.  

Figures 6.23-6.25 have displayed respective comparisons between numerical and 

experimental results for C5, C10, C15 via space-time response variations and time histories of  



160 
 

 

Figure 6.23: Comparison between (a, b) simulation and (c, d) experimental results (C5) via 
space-time varying responses and time-history displacements in (a, c, e) X and (b, d, f) Y: blue 

solid and red dashed lines denote results from model and experiment, respectively. 

riser responses associated with the spatially maximum RMS oscillations. In the case of C5, 

similar vibration patterns can be found between the theoretical (Figures 6.23a, b) and 

experimental (Figures 6.23c, d) results, clearly presenting two peaks along the riser span. This 

implies that the predominant mode has been accurately predicted by the present model. Besides, 

non-zero values at the nodes as shown in the experimental results are also numerically captured, 

indicating the participation of multiple modes. Nevertheless, it is observed that numerical 

results illustrate more regular responses than the measured ones. Such a discrepancy is expected 

since the present model considers uniform slug flows, i.e. a constant slug length, which 

consequently result in relatively steady riser dynamics, while irregular SIV was observed taking 

place in the experiments due to the strong variability of the slug flow characteristics (Table 6.4). 
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Figure 6.24: Comparison between (a, b) simulation and (c, d) experimental results (C10) via 
space-time varying responses and time-history displacements in (a, c, e) X and (b, d, f) Y: blue 

solid and red dashed lines denote results from model and experiment, respectively. 

Further, SIV time histories are exhibited in Figures 6.23e, f to provide a closer inspection 

on the numerical prediction vs. experimental measurement. According to the aforementioned 

uniform vs. non-uniform slug flows, it is reasonable to see that the riser oscillates unsteadily 

with strongly modulated amplitudes during the test, whereas the predicted responses turn to be 

quite steady with time-invariant amplitudes. Nonetheless, it is true that the numerical simulation 

seems to match well with the experiment, where the modulated SIV amplitudes of the latter 

varies around those of the former. Besides, within the considered period of time (65 s < t < 70 

s), comparable oscillation cycles, i.e. 12 vs. 13 cycles, between the test and the simulation are 

revealed. In the case of C10 (Figure 6.24), similar conclusions of prediction vs. experimental 

observations to C5 can be made in terms of the mode order, oscillation pattern, response 

amplitude and frequency. However, although the time history responses are comparable  
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Figure 6.25: Comparison between (a, b) simulation and (c, d) experimental results (C15) via 
space-time varying responses and time-history displacements in (a, c, e) X and (b, d, f) Y: blue 

solid and red dashed lines denote results from model and experiment, respectively. 

between the numerical and experimental results in case of C15 (Figures 6.25e, f), evident 

differences are realized in the oscillation patterns (Figures 6.25 a, b vs. c, d), where the formeris 

dominated by travelling waves and the latter follows standing-travelling waves. Comparing the 

oscillation patterns among the considered three cases, C15 seems to be a relatively more chaotic 

case than the others. Such strong unsteadiness from experiments is challenging for the 

numerical model, which is limited to steady-state slug flows, potentially resulting in evident 

theoretical-experimental discrepancies. Moreover, differences also exist with respect to fo 

although a good agreement of the main fo is reached between the test and the theoretical model. 

The riser responses turn to be quite chaotic with high intermittent frequency contents as 

informed by the FFT (Figure 6.17) and the wavelet analysis (Figure 6.20). In contrast, the 

numerical results present more steady and harmonic oscillations with little modulations, 
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signifying single-frequency-dominated responses throughout the time span. This is expected 

due to the model limitations as discussed. Also, according to the discussions on Lu effects in 

Chapter 3, it is unsurprising to see that the large slug unit lengths (Lu/L> 0.5) applied in the 

current model tend to render a single-frequency SIV.   

 

Figure 6.26: Comparison of (a, c, e) urms and (b, d, f) vrms: red line and circles denote 
numerical and experimental results, respectively. 

In addition, as a better representation for the irregular oscillation, the associated spatial 

RMS displacements from the laboratory test and the simulation are compared and shown in 
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Figure 6.26. Though some differences are revealed between the numerical and experiment 

results, good qualitative and quantitative agreements are seen in both X (Figures 6.26a, c, e) 

and Y (Figures 6.26b, d, f), especially for C5 and C10. Numerical results demonstrate the same 

mode order as experimental observations and capture the locations of characteristic points with 

comparable magnitudes, indicating the overall satisfactory matches on RMS values. For 

instance, fairly good predictions of maxima are noted in Y, having a relative difference of only 

0.32% and 3.6% for C5 and C10, respectively. Nevertheless, it is clear in C15 that the 

simulation results are less comparable to the measured ones than the other two cases, showing 

underestimated RMS values. As seen in the oscillation patterns (Figures 6.25a, b), the riser 

responses are dominated by travelling waves, which may imply a transition between the 

fundamental and the 2nd modes. Subsequently, the slightly overestimated mode order leads to 

the additional curvatures in the special RMS profiles (Figures 6.26e, f), which in turn render 

smaller magnitudes than the laboratory observations. Overall, by performing numerical-

experimental comparisons for these limiting cases under different flow conditions, it is found 

that some important aspects are reasonably captured by the current numerical model, indicating 

its ability in predicting the slug flow-induced riser dynamics to a certain degree. 

6.6 Summary 

A small-scale laboratory test of a flexible pipe conveying gas-liquid flows has been conducted 

under various flow conditions to investigate SIV phenomena. A tube section made of silica gel 

with clamped ends was freely hanged for a catenary configuration in an air-water test loop. The 

pipe motions and the internal flow regimes were recorded at the same time by a digital imaging 

correlation and tracking technique using high-speed cameras. Meanwhile, the riser inlet and 

outlet pressures were measured through the pressure transducers. By varying gas-liquid flow 

rates, different flow regimes are observed. For relatively low ratios of gas to liquid superficial 

velocities, liquid-phase-dominated flows with small gas bubbles take place with resulting in 

negligible/small pipe motions, whereas the occurrence of slug flows is captured at high ratios, 

rendering pronounced SIV of the flexible pipe. Depending on the two-phase flow rates and the 

resultant superficial velocity ratios, slug flow characteristics are observed to vary significantly 

in terms of travelling velocities, slug unit lengths and slug frequencies, alongside unsteady SIV 

with modulated amplitudes.  

Overall, the slug flows induce only in-plane vibrations, while out-of-plane ones are found 

negligible. Although mainly dominated by the fundamental mode across the considered cases, 

SIV is prone to possess multiple and time-varying oscillation frequencies. By increasing the 

gas-liquid superficial velocity ratios, amplified SIV is revealed up to 6.7d in the present study. 
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These are attributed to the intermittent and varying slug characteristics under different flow 

conditions. Unsteady slug flows are revealed with a wide range of slug lengths in each case, 

where longer slug unit lengths tend to result in larger SIV. For a specific liquid flow rate, a 

larger gas flow rate leads to faster and longer slug flows, which are accompanied by more 

pronounced riser responses. These phenomena have revealed the strong fluid-structure 

interaction. Through comparisons with experimental results from three limiting cases, the 

numerical model proposed in Chapter 3 has been validated with showing qualitative and 

quantitative agreements in riser vibration responses and frequencies.  
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Chapter 7. Conclusions 

The present thesis has investigated SIV of curved flexible pipes carrying slug flows by also 

involving external excitations from VIV. Numerical modelling approaches have been 

implemented for the two FIV scenarios individually and jointly, while SIV has also been 

experimentally explored. Numerical investigations have highlighted several important SIV 

features for the catenary riser, including the identification of individual role of the slug 

characteristics such as the slug unit length, translational velocity and frequency. This internal 

multiphase flow excitation has also been studied by a small-scale laboratory test, which sheds 

light on some SIV phenomena related to the unsteady slug flow conditions, the excited riser 

vibrations and the slug-pipe interactions. The SIV numerical model has been validated against 

in-house experimental results, manifesting abilities and limitations in the riser response 

prediction. The VIV effect is incorporated by adopting a phenomenological model of wake 

oscillators, which simulate the time-varying hydrodynamic forces coupled with the structural 

equations of motion. For an elastically-mounted rigid circular cylinder, several VIV features 

have been captured, serving as a preliminary study for the modelling application to a flexible 

riser subject to VIV. Numerical simulations in combined VIV and SIV cases have been 

performed under different internal and external flow conditions. Several pure-VIV aspects of 

flexible risers have been observed and discussed along with comparisons of VIV-SIV 

phenomena. A significant role of SIV in amplifying riser dynamic and static stresses in the 

presence of VIV has been revealed. The main contributions and outcomes are summarized as 

follows.  

7.1 Slug Flow-Induced Vibration 

• By accounting for the slug flow-induced forces including the space-time varying fluid 

weight, flow centrifugal and Coriolis effects, a planar dynamic model of an inclined curved 

bendable pipe conveying slug gas-liquid flows has been developed. Hydrodynamic steady 

slug flows have been considered and modelled by the mass-momentum balances of gas-

liquid phases within an idealized slug unit cell. Depending on the pipe diameter, inclination, 

gas-liquid phase properties, superficial velocities and empirical functions, the 

approximation of phase fractions, local velocities and pressure variations have been 

obtained and employed as the time-varying, distributed parameters yielding SIV of a 

catenary pipe.  

• The numerical model has been utilized for investigating SIV phenomena under different 

superficial gas-liquid velocities. Several features such as the slug flow-induced transient 
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drifts due to the entering masses, the mean displacements due to the combined slug weights 

and flow momenta, the tension changes due to a reconfiguration of pipe equilibrium and the 

steady-state SIV due to resonances have been revealed.   

• Depending on the pipe inclination, slug unit length and translational velocity, the slug 

characteristic frequencies reveal several harmonic components which may trigger a multi-

modal vibration of the flexible catenary riser. It is found that the slug translational velocity 

is a primary governing parameter enabling a transition from being a multi-mode SIV at a 

low velocity to a single-mode SIV at a high velocity. In the low velocity range, the single-

mode SIV response may take place as the slug length increases.  

• Planar SIV is found to be governed by an individual effect of the slug translational velocity 

and the slug unit length, regardless of the associated slug excitation frequency. To determine 

a critical SIV with maximum amplitudes of practical importance, the slug translational 

velocity should be parametrically varied for a given slug unit length, and vice versa. In some 

cases, a certain slug velocity-length combination may lead to a multiple resonant SIV 

involving two different excited modes switching intermittently along time. 

• A small-scale experiment of a flexible pipe conveying liquid-gas flows has been conducted 

for a catenary configuration. Different flow regimes have been observed by varying the 

two-phase flow rates, which entail the dependence on the gas-liquid ratio of the slug flow 

formation. Actual physical tests reveal unsteady slug flows accompanied by a random-like 

SIV with modulated amplitudes and frequencies. Although mainly dominated by the 

fundamental planar mode, the riser responses at different locations possess multiple and 

time-varying oscillation frequencies. 

• Strong interactions between the slug flow and the riser are experienced in the laboratory 

tests, and their correlations are analysed through comparing the pipe motions against the 

associated flow distributions. Depending on the gas-liquid superficial velocities, slug flow 

characteristics in terms of the travelling phase velocities, slug unit lengths and slug 

frequencies vary significantly in space and time. By increasing the gas-liquid superficial 

velocity ratios, amplified SIV responses have been remarked. It is found that a long slug 

unit length is responsible for a large SIV amplitude. For a specific liquid flow rate, a greater 

gas flow rate leads to a faster and longer unit slug flow strengthening the two-phase flow 

momentum forces. These reveal the interrelationship among the flow conditions, slug 

characteristics and pipe dynamics.  

• Some aspects such as the individual effect of slug length and the multi-mode riser responses 

from numerical SIV investigations are qualitatively exhibited in the laboratory tests. The 

negligible out-of-plane riser vibration justifies the assumed modelling of planar SIV. Model 
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validation has been performed through comparing the numerical predictions of the three 

limiting cases for which a good agreement is justified in terms of the riser response 

displacements and frequencies.  

7.2 Combined Vortex-Induced Vibration and Slug Flow-Induced Vibration  

• A semi-empirical model based on wake oscillators has been applied and implemented for 

an elastically mounted rigid cylinder in uniform flows subject to cross-flow/in-line VIV. 

The dynamical system has been solved by a numerical-analytical approach and the results 

were compared with available experimental data. The model shows abilities in capturing 

several basic VIV features such as a lock-in range, amplitude jump, two-to-one resonant 

frequency and figure-of-eight trajectory. Additional investigation has been carried out by 

assessing the efficiency of linear and nonlinear damping in VIV active suppression. 

• By distributing the van der Pol wake-oscillators along the structural span, the VIV 

numerical model has been applied to a long flexible riser. Numerical simulations have been 

carried out for cross-flow-only VIV in the case of straight and curved risers subject to 

uniform flows at various current velocities. For a curved riser, uniform flows are assumed 

to be perpendicular to the curvature plane. Some VIV features of flexible risers have been 

revealed. The order of the dominated structural vibration mode increases with the external 

flow velocities, showing a transition from standing- to travelling-wave patterns. Also, a 

linear modal analysis reveals a more pronounced multi-modal response at higher flow 

velocities.  

• By comparing VIV-only and VIV-SIV scenarios, the prevailing role of VIV in the combined 

external-internal excitations and the significant effects from slug flows on VIV have been 

highlighted. Numerical results show that slug flows can lead to a modified VIV excitation 

mode with enhanced multimodal contributions. Through comparing the cases under various 

internal-external flow conditions, slug flows play a more significant role in the riser VIV 

response at a lower slug translational velocity or a higher external flow velocity. It is 

revealed that the combined VIV-SIV scenario results in greater dynamic and static stresses 

than those of the VIV-only scenario due to the slug flow-induced additional curvatures, 

mean drifts and enhanced multimode oscillations.  

7.3 Recommendation for Future Research 

There are several interesting research directions worthwhile for future investigations. Some 

suggestions are outlined as follows. 
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• Steady hydrodynamic slug flows have been numerically modelled and investigated in the 

present study. A further advancement of the proposed model to account for the unsteadiness 

(e.g. non-uniform slug length), intermittency (e.g. slug flow time-varying fluctuation) and 

dependence on riser dynamics (e.g. instantaneous time-space varying inclination), is 

recommended for developing towards a computationally efficient tool for a fully two-way 

coupled SIV of flexible pipes/risers. The structure model is presently limited to the linear 

riser dynamics. The importance of geometric nonlinearities has been revealed and addressed 

in some VIV studies, and therefore, it is worth investigating this aspect when considering 

SIV and three-dimensional VIV.  

• Further research can be performed for coupled CF-IL VIV subject to different current 

profiles, e.g. uniform, linear and nonlinear sheared flows. Moreover, for combined internal-

external flow excitations, it is recommended to consider other environmental factors such 

as wave, floater motion and heave-induced lateral motions, where the role of slug flow in 

riser responses may be distinctive. For numerical SIV studies, it is of interests to consider 

other structural configurations related to offshore applications, e.g. horizontal pipeline with 

free-spanning sections, M-shaped jumper and lazy-wave risers, where slug flow-induced 

forces and the resultant SIV may be different since slug flow characteristics are sensitive to 

the pipe geometry. 

• Relatively large-scale experiments with a broader range of flow conditions are suggested. 

More detailed measurement in terms of riser dynamics (e.g. top-tension variation), detailed 

flow information (slug flow visualization and tracking) as well as the statistical slug 

parameter characterization is recommended. Experimental studies into combined SIV-VIV 

of flexible catenary risers are still lacking in the literature. In particular, VIV led by various 

flow directions, i.e. concave, convex and oblique flows, with respect to the riser plane 

requires further research.  
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