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Abstract 

Dome roofs are large structures often subject to variable wind, snow and other loading 

conditions, in addition to their own weight. A wide variety of structural designs are used in 

practice, and finding the optimal arrangement of trusses or girders, along with suitable section 

properties, is a common subject for structural optimization studies. This thesis focuses on self-

supported dome roofs for fuel storage tanks, and a variety of optimization techniques are 

adapted, developed and compared. 

Various load conditions have been compared using detailed fluid and stress analysis in ANSYS. 

From results for full and empty storage tanks, with wind and/or snow external loads, the worst 

cases are for wind loading alone, i.e., snow loading counters the lift force from the wind. 

Consequently, the case of an empty fuel storage tank subject to wind loading is used as the basis 

for the structural optimization. To speed up the optimization, a simplified frame analysis was 

developed in Matlab and integrated with the optimization code. In addition, the wind loads were 

modelled in ANSYS for a range of dome radii and imported into the Matlab, and a number of 

different dome designs were used as case studies: these were ribbed, Schwedler, Lamella and 

geodesic. 

The principal method used to optimize the frame is Morphing Evolutionary Structural 

Optimization (MESO), in which an initial overdesigned frame is iteratively analysed and 

reduced in overall weight by reducing the sections of key frame members. The frame is 

progressively weakened, but without compromising the structural integrity, until it is no longer 

possible to reduce the weight. However, there are additional parameters that MESO is not suited 

to, such as dome radius and those affecting the overall structure of the dome frame (numbers 

and placements of rings, etc.), and a variety of metaheuristic optimization techniques have been 

studied: Artificial Bee Colony (ABC), Bees Algorithm (BA), Differential Evolution (DE), 

Particle Swarm Optimization (PSO) and Simulated Annealing (SA). These can be used instead 

of MESO, or in a hybrid form where MESO optimizes the frame member sections. Although 

the focus in this thesis is on minimizing the total structural weight, the importance of other 

characteristics of the design, especially structural stiffness, is considered and also integrated 

with the MESO process. The hybrid methods MESO-ABC and MESO-DE performed best 

overall. 
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 Introduction 

 General Overview 

Large-scale storage tanks are substantially used to preserve stored products prior to their 

utilization in industry whether they are liquids, oils, grains, coals, or petrochemical materials. 

Storage tanks may be classified according to the fixation nature of the roof into fixed, external 

floating, and internal floating roofs; or according to the geometrical shape of the roof into flat, 

cone, dome and umbrella (Maraveas et al., 2015). As roof supporting structures, they could be 

categorized into either column-supported or self-supported depending on the design of the roof 

and the product nature (Burgos et al., 2015). Furthermore, dome roof structures can be 

subdivided into single lattice and double lattice depending on the number of structural layers 

involved (Shirkhanghah et al., 2012). In the oil industry, especially in oil refineries and depots, 

a high degree of safety should be maintained at the sites of fuel storage tanks, as any fault might 

cause serious economic and environmental considerations (Moslemi and Kianoush, 2012). 

Wind loads are one of most significant environmental influences that impinges on space 

structures (buildings, bridges and storage tanks) and many researchers have concentrated on 

computational methods required to estimate the effect of these potential problems on cylindrical 

tanks (Portela and Godoy, 2005), (Sosa and Godoy, 2010), (Jahangiri et al., 2013), (Zhao and 

Lin, 2014), (Uematsu et al., 2015). The most severe conditions in the last decades reported by 

Flores and Godoy (1998) were those due to the devastating hurricane Marilyn that hit the 

Caribbean islands in 1995 and damaged the set of short tanks operating in this region. Another 

extraordinary typhoon called "Maemi" was also reported by Cao et al. (2015), which hit Japan, 

Miyako Island in the Okinawa governorate, on September 11, 2003. This hurricane disfigured 

all topographical features of the region with the maximum sustained wind speed (estimated 

over 10 minutes) reaching more than 60 m/s. The average gust factor, recorded over this period 

by the sonic and vane anemometers, was 1.25, which produces an effective wind speed of 

75m/s. 

Dome roof structures are the most common space frames deployed in the construction of 

industrial buildings and leisure centers due to their efficiency to cover as large an unobstructed 

area as possible with minimum utilization of material. Exhibition museums, worship places, 

swimming pools, sport stadia, and storage tanks are typical applications for the self-supported 

dome roofs due to the need to enclose a maximum space with a minimum surface. This feature 

will produce the sufficient economy in the usage of the constructional material (Sarac, 2005). 
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 Focused Case Study 

This work is intending to perform the design optimization for the self-supported dome roof 

frame needed for fixed roof storage tank. As a practical case study, a typical mid-sized 10000 

m3 capacity fuel storage tank, labeled (50-TK-16) constructed in Al-Samawa new depot project 

/ Iraq, see Figure 1.1, was used in this investigation. The tank has a fixed cylindrical shell 

diameter of (D=42 m) and fixed height for the tank of (H=8 m). Different dome roof 

configurations were considered in this optimization to choose the optimum one among them. 

The following assumptions have been made: 

1. The storage tank is subjected to harsh wind loading conditions identical to that mentioned 

by Cao et al. (2015) about the typhoon Maemi (2003) with maximum 10-min mean wind 

speed exceeding 60 m/s, so the maximum effective wind speed measured over these events 

was 75 m/s. 

2. As stated in chapter 4, section 4.3.1, Table 4-1, page 18 of the international standard 

ASCE7-10 (2010), the minimum uniformly distributed live loads for curved roofs was not 

to be less than 0.96 kN/m2 including any permissible reduction. Therefore, 1.00 kN/m2 was 

applied vertically to the projected area of the dome roof. 

3. All structural members within the roof structure are connected as rigid joints to each other, 

hence the roof structure is expected to behave as a 3D space frame, i.e. it can withstand all 

types of frame stresses, i.e. axial, shear, bending and torsional stresses (Gidófalvy, 2010). 

4. According to the ASTM-Standard, all shell elements of storage tank are manufactured as 

low carbon steel (A283 Gr C) and the structural sections are manufactured as hot rolled 

carbon steel (A36) (ASTM-A283/A283M − 13, 2013), (ASTM-A 36/A 36M − 01, 2001), 

and (API Standard 650, 2013). 

5. The linearly varying shell wall thickness is assumed to conform to the linear distribution of 

fuel hydrostatic pressure exerted on the tank cylindrical shell, so the thicknesses will be 

varied discretely as 17 mm, 14 mm, 11 mm and 8 mm for the 1st, 2nd, 3rd and 4th cylindrical 

shell courses respectively. 

6. The cylindrical shell of the tank is stiffened by 3 essential circumferential rings, these are a 

top curb angle at the upper rim of the cylindrical shell, an internal stiffener located 50 cm 

below the top curb angle internally attached to the cylindrical shell wall, and an external 

wind girder (stiffener) located 370 cm below the top curb angle (API 620, 2002). 

7. The minimum thickness for dome roof shell is 7 mm, which includes the corrosion 

allowance as per American Petroleum Institute (API) Standard (API Standard 650, 2013). 

8. The dome roof shell is joined to the roof structural members underneath. 
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9. The tank is filled with fuel to the maximum operating level (Hfuel=7.55 m) and all of gauge 

hatches, vents, maintenance manholes, breather valves, and flame arrestors are shut. Hence, 

there is no air flow inside the tank, so this will generate negligible additional internal 

pressure. 

10. Fixed support boundary conditions are assumed over the entire bottom plate, where the 

bottom plate is modelled as a circular disk with a constant thickness value of 11 mm. 

11. Due to their negligible effects, the tank accessories and other apertures (e.g. spiral stairway, 

manholes, gauge hatch, vents, inlet, draw off, and outlet nozzles) were omitted from the 

overall response modelling of the tank structure. 

12. The present study is limited to investigate the structural response of the dome roof frame 

during critical wind gust events. Hence, static structural analysis was utilized to simulate 

this critical event in order to perform the optimization study for the selected models (Kang 

et al., 2001) (PARK and KANG, 2003) (Lee and Park, 2013) (Lee and Park, 2015). 

 

 

Figure 1.1 Site picture taken at Al-Samawa new depot project showing the general 

arrangement of the typical 10,000 m3 storage tank investigated in this work. 

 

10,000 m3 fuel storage tank with 

self-supported dome roof 
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 Research Aims 

The research focuses on the following aims: 

1. A parametric study of the effect of a lift force, an overturning force, and a tipping moment 

as function of wind speed, dome roof radius, and tank height as a response to wind loading. 

2. An investigation of the effect of environmental loads on the output response of the real scale 

storage tanks with low aspect ratio. 

3. The determination, as a cost function, of the combined effect of the different aspects of the 

structural design, taking into consideration the optimal structural weight, strength, stiffness, 

buckling, bending strength, torsional strength etc. 

4. The identification of the dome roof configuration that has the optimal structural mass 

through comparing between the diverse configurations adopted in this work. 

5. To develop an appropriate optimisation strategy that can reliably provide a good dome 

design with limited resources (time, computation). 

6. The determination of the most critical load case among the set of load cases applied to the 

external shell of the tank in comparison to the design load case (pure wind). 

7. To identify the optimal structural design for each dome type considered. 
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 Thesis Outline 

This dissertation is organized in nine chapters. A general synopsis for the contents of the 

chapters following this chapter is explained below: 

❖ Chapter 2 is a literature review that includes the simulation of wind loads over the domed 

roofs, structural analysis of braced domes, viewing the recent advances in the optimization 

techniques, and the research work carried out against the structural optimization of self-

supported domed roofs. 

❖ Chapter 3 studies the wind flow over the external surface of the storage tank, the relevant 

parametric study is clarified at the end of the chapter. 

❖ Chapter 4 illustrates the modelling procedure for the adopted models. It is split into two 

tasks: simplified modelling (Matlab frame model) and integrated modelling (ANSYS full 

structural model) with justification of the main difference between them. 

❖ Chapter 5 sets out the structural optimization problem including objective function, design 

constraints, configuration of design variables and the generalized form of cost function. 

❖ Chapter 6 focuses on reviewing and discussing the results of the structural optimization for 

the simplified models. 

❖ Chapter 7 presents the results of structural optimization for the integrated models. 

❖ Chapter 8 presents case study analyses to prove the efficiency and robustness of the 

proposed optimization strategies in comparison to the classical metaheuristic techniques 

adopted in this work and those from the literature. 

❖ Chapter 9 summarizes the conclusions and the recommendations for future works. 
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 Literature Review 

This chapter will review the history of structural optimization for the braced domes, taking 

regard of the loading conditions and the optimization strategies involved. Wind loads affecting 

the storage tanks will be explored in section 2.1. Section 2.2 reviews the previous trials 

performed on the structural analysis of the braced domes. In section 2.4, previous work on 

Evolutionary Structural Optimization (ESO) will be reviewed. Section 2.4 considers diverse 

metaheuristic techniques and the comparison between them. Section 2.5 will focus on previous 

attempts to perform the structural optimization for self-supported domed roofs. 

 Simulation of Wind Loads Impinging on Storage Tanks 

Many researchers were interested in introducing a reliable paradigm that aimed to present a 

comprehensive understanding of wind action on storage tanks. The primary survey in this field 

was reported by Purdy et al. (1967) when they are modelled wind loads over flat roof tank. 

They analysed the data numerically for two extreme cases and used them to develop set of 

equations corresponding to the shell stress and deformation analyses of those cases. Followed 

by Esslinger et al. (1971) works, who are analysed air currents passing through silos tanks 

groups. They noticed that the open-topped cylindrical shaped silos are more vulnerable to 

develop axial tensile forces (due to wind loading) than their counterparts with roof-topped. 

Next, Holroyd (1983) showed the dynamic wind pressures on an open-end storage tank with 

unstable air surges and low height to diameter ratio (H/D= 0.2). He clarified the significant 

changes in the structural behaviour of the oil storage tank due to the incident air flow caused 

by the surrounding environment. In 1985, (Holroyd) verified the structural dynamic response 

experimentally and suggested  innovative wind girder design methods to determine suitable 

profile measures. 

In the same sense, Godoy–PI and Portela–GS (2005) reviewed the effective results of early 20th 

century tunnel tests. They emphasized that the positive values of wind pressure can be observed 

at windward region, whereas the maximum negative pressure is presented at the centre of the 

dome roof and the magnitude of suction pressure applied to the roof is substantially greater than 

that existing at the suction region of the wall. They considered three cases of shielding two of 

them are closely spaced silos adopted by Esslinger et al. (1971). They observed that the worst 

scenario occurs in case of the wind being perpendicular to the stacking direction of the silos. 

Portela and Godoy (2005) also dealt with buckling behaviour of domed roof steel tanks as the 

response to wind pressure by implementing numerical and experimental trials using a small-

scale tank inside the test rig of a wind tunnel. Two models with dome roof and cylindrical walls 

were considered, the first with a shallow dome, and the second with a deep dome. Later, 
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Falcinelli et al. (2011) succeeded in clarifying topographical influences on the overall 

estimation of wind forces over the tank surface using computational fluid dynamics as the 

analysis tool. They concluded that the actual pressure applied to the tank surface depends on 

the location of the tank with respect to the surround landscape. For instance, the pressure 

exerted on a tank located on the top of a hill is approximately three times that acting on an 

isolated tank on flat terrain. 

 Structural Analysis of Braced Domes 

Auld (1970) concentrated his research on stress distribution and the steadiness principles of 

radial ribbed domes. He used mathematically efficient methods to obtain the stress function 

over ribbed pin-jointed dome structure. Experimentally, Blessmann (1996) has performed a 

series of tests to show the effects of wind forces on the domes installed at the university of Rio 

Grande do Sul (UFRGS) in Brazil. Similarly, Zamanzadeh et al. (2010) investigated the 

buckling behaviour of reticulated and geodesic dome roof configurations as shown in Figure 

2.1. They observed three kinds of buckling taking place, global, local, and member buckling. 

The buckling loads were estimated using linear and nonlinear buckling analysis finite element 

software. Gidófalvy (2010) explained the nonlinearity of rotation and stiffness features for 

semi-rigid dome connections and considered the combination of beam and spring elements to 

idealize the joint parts. 

The natural period of vibration for double lattice dome roofs was the main focus of the work 

published by Jamshidi (2012). He stated that the dynamic characteristics of the structure was a 

function of the mass and stiffness matrices. As a result, the structural geometry of the dome 

frame plays a significant role in determining the dynamic characteristics of the structure as 

whole. Furthermore, Chacko et al. (2014) conducted a parametric study to show the influence 

of the rise to span ratio on the overall performance of the dome roof. A progressive degradation 

of the structural characteristics of a large-span reticulated dome was investigated using 

nonlinear buckling analysis. They remarked that there were 10 governing elements and 3 

governing nodes in the single layer structure, and that eliminating these elements or nodes 

would cause a disastrous failure. Whereas, removing these elements or nodes from a double 

layer model will not cause any failure at all. 

 

 

 

 

 



8 

 

 

Figure 2.1 Dome roof configurations adopted by Zamanzadeh et al. (2010). 

 Evolutionary Structural Optimization (ESO) 

The basic notion of ESO methods could be explained as the systematic gradual removal of 

inefficient (superfluous) material from underutilized elements in the structural system. ESO is 

applicable to both of continuous and discrete structures with slight differences in optimization 

parameters. The first implementation of layout optimization using ESO was implemented on a 

2D continuous structure when Xie and Steven (1993) executed their work on simple beam 

example to find the ideal distribution of material over the beam. 

Later, Chu et al. (1996) employed the original concept of the method to find the optimum shape 

using the hard kill method, i.e. by removing the entire element that satisfies the removal 

criterion. They performed a simple evolutionary operation supported by finite element 

technique to minimize the weight while keeping the corresponding changes in the structural 

stiffness to the lowest level. By eliminating the underutilized elements, or those elements 

having the minimal influence on the stiffness properties of the structure, the design sensitivity 

number could be reassessed at each iteration. The progression of the model towards the 

optimum point continues until reaching the global optimum configuration within prescribed 

serviceability and displacement constraints. 

Further improvement in the generalized methodology of ESO was carried out by Xie and Steven 

(1996) and Zhao et al. (1996) to include the frequency characteristics of plates and continuum 

structures, whereby the optimality function was guided by frequency constraints obtained by 

shifting  the structure toward the desired configuration. 

Nha Chu et al. (1997) and Nha et al. (1998) developed an extended version of ESO and made 

some modification to the method to optimize the sizing parameters for the first time. This work 

was implemented using partial element removal, which is termed Soft Kill Optimization (SKO). 

In the same field, Querin et al. (2000) adopted SKO for plate elements and named it Morphing 
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Evolutionary Structural Optimization (MESO), also they have conducted a Bidirectional ESO 

(BESO) for some of workbench examples. In the same aspect, they are defined additive ESO 

which is working on addition of material for initially undersized design domains. Similarly, Li 

et al. (2000) also demonstrated that the maximum stress can be minimized by regarding the 

thicknesses of plate elements as design variables. 

Improved computer speeds and the recent prevalence of finite element software have caused 

this type of optimization to become better than its counterparts. The secret behind the 

outstanding success of this method is attributed to its searching strategy, where there is no 

arbitrary search, it is moving toward the optimum in a guided and systematic manner utilizing 

a strict criterion generated by combining both the objective and constraints conditions (Özkal 

and Uysal, 2009). 

This method was further developed by Ghaffarianjam et al. (2011) who introduced a new 

concept performance index to determine the progression rate and the overall performance of 

morphed form of ESO (MESO). Thereafter, Li et al. (1999) inferred the correlation between 

strength and stiffness criteria by aid of illustrative contours. They noticed an observable 

closeness in the numerical values of the sensitivity numbers of the two functions. 

Working in the same area, Yang (1999) performed extensive studies to prove the capability of 

ESO to obtain reliable results, based on the reverse theory (addition of material) to boost the 

efficiency of the active elements in the 2D and 3D continua. The many examples presented 

attempted to incorporate stiffness optimization with single or multiple displacement constraints 

as reactions to diverse loads. Yang asserted that BESO is as feasible as ESO, but for some 

applications it might more practical than ESO. It is noteworthy to mention that ESO has the 

adequate flexibility of being able to integrate with other optimization functions in order to 

configure innovative hybrid methodology. 

 Metaheuristic Techniques 

These are nature-inspired techniques that, when effectively utilized, reduce the computational 

time and cost for complex engineering problems. They use a stochastic search mechanism to 

achieve the optimization goal. Metaheuristic techniques, in most cases, incorporate population-

based models that are needed to implement the optimization task. 

Heuristics are categorized into two groups: specific heuristics and metaheuristics. Specific 

heuristics (Borenstein and Moraglio, 2014) are designed and prepared for solving particular 

type of problems like travels salesman and other complicated functions solved by trial and error 

approach. Metaheuristics, on the other hand, are generic algorithms which have the capability 

and the sufficient flexibility to adapt for addressing almost any type of optimization problems 
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(Hasancebi et al., 2010) and (Cao et al., 2017). The terminology “metaheuristic” means the 

high-level optimization templates act as guiding strategies for the basic heuristic approaches 

used to solve a particular optimization problem. They are specialized search mechanisms which 

adopt stochastic modelling principles to solve problems which have a high degree of difficulty. 

They deal with the mathematical functions that are considered prohibitive in terms of 

computational effort and time required to attain the solution. Over the last two decades, 

Metaheuristics have developed rapidly and have gained wide popularity, especially after the 

discovery of their exceptional capabilities to address the complex optimization problems 

(Borenstein and Moraglio, 2014). This rapid development is mainly attributed to their strategies 

in performing the effective search mechanism for global optima within a relatively short time 

with low computational cost. Thus, a perfect trade-off between the computational accuracy, 

time, and memory required to obtain optimum results, can be achieved through effective 

exploitation of this class of optimization strategies. 

Metaheuristic methods can be classified into five main strategies including: 

❖ Single-solution based techniques. 

❖ Population-based techniques. 

❖ Multi-objective optimization algorithms. 

❖ Hybrid metaheuristics. 

❖ Parallel and distributed techniques. 

In general, Particle Swarm Optimization (PSO), Simulated Annealing (SA), Harmony Search 

(HS), Genetic Algorithms (GAs), Evolutionary Algorithms (EAs), Ant Colony Optimization 

(ACO), Tabu Search (TS), Artificial Bee Colony (ABC), Bees Algorithm (BA) can be classified 

as Metaheuristics regardless whether they are searching for single objective or multi-objective 

cost functions (Talbi, 2009) (Salam et al., 2015). 

 Artificial Bee Colony (ABC) 

ABC is a metaheuristic optimization technique resembling the foraging habits of honey bees to 

collect the nectar from the available food sources. The computational efficiency of the strategy 

is attributed to two main behavioural features for forager bees, self-organization and the 

allocation of work. In ABC, there are three components essential for planning the required path 

of search, employed bees, unemployed bees, and food sources. Two distinct modalities of 

behaviour can be recognized, recruitment, and abandonment of food sources (Karaboga, 2005). 

There are many factors influence the productivity (dominance) of the food source: its energy 

value, its richness, its proximity to the hive, and the simplicity to extract the energy latent in it. 



11 

 

The employed (recruited) bees are sharing the required information about their own food 

sources with other individuals in the hive. While, the main job of unemployed (scout and 

onlooker) bees is to record the information and decide the profitable food sources with different 

movement mechanisms. Thus, three types of bees have exploited to perform the task of 

maximizing the amount of the collected nectar. First, recruited bees which are assigned to seek 

for the nectar in the food sources visited before and providing the relevant information about 

those food source sites to the specialized bees (onlooker bees) waiting in the hive. Second, 

onlooker bees are seeking for the optimum food sources according to the data provided by the 

first type of bees (employed bees). The decision of selecting the good quality food sources is 

made by this kind of bees (onlooker bees). Third, scout bees are searching randomly to find 

new food source depending on pure external evidence (Karaboga and Basturk, 2008). 

The information must be exchanged between the honey bees to enhance the collective 

knowledge of the bees in the hive. Dancing activities are the most dynamic actions utilized by 

employed bees to deliver their information to other members of the hive. Thus, the specialized 

bees are communicating and exchanging the required data in the dancing region. Onlooker bees 

have the ability to read the thoughts of employed bees through watching the advertisement 

presented by recruited bees in the dancing area. They have the adequate experience to interpret 

the dancing frequencies to determine the most fertilized food sources relative to others. The 

dancing frequencies are proportional to the productivities of their respective food sources. 

The food sources are standing for all possible solutions of the structural system. In this sense, 

the nectar quantity indicates the corresponding value of cost function. The more nectar 

harvested, the fitter the cost function. 

Karaboga (2005) is the researcher who proposed the ABC technique when he introduced his 

idea about the observed behaviour of honey bees. Later, Karaboga and Basturk (2007a) and 

Karaboga and Akay (2011) adapted the method to work on constrained optimization problems. 

In addition, Akay and Karaboga (2012) modified the ABC technique to work on discrete sets 

of design variables. They concluded that standard ABC can effectively find the solution, while 

a modified ABC can also yields promising results. Karaboga and Akay (2009) and Li et al. 

(2010) claimed that the ABC technique proved its capability to perform an explorative search 

capability, when compared to the Genetic Algorithm (GA) technique, the Particle Swarm 

Optimization (PSO) technique and the Differential Evolution (DE) technique. 

In comparison with the Bees Algorithm (BA) and DE, Li et al. (2010) emphasized that ABC 

showed its ability to fulfil the best solution for unimodal problems. On the other hand, they also 

claimed that BA achieved good quality solutions for multimodal functions. ABC can be 

extended to provide the solution to other forms of optimization problems. For example, Zou et 
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al. (2011b) utilized ABC to solve multi-objective optimization problems by adjusting the Pareto 

dominance reference used to specify the flight direction of  bees to achieve the goal of 

optimization. (Sonmez, 2011) adopted an adaptive penalty function approach with ABC to 

minimize the weight of truss structure. He studied five truss examples each counting to 200 

members. The results showed considerable improvement in three aspects: independency of 

initial point and the global search capability, good exploitation to the feedback of the adaptive 

penalty function to avoid violating the design constraints in the subsequent iterations, and 

finally the proposed method does not need to evaluate the gradients of objective and constraints 

as it is relying on the stochastic search to find the optimum. 

Xiang and An (2013) concentrated on the work of Karaboga and Basturk (2007b) in order to 

overcome the weaknesses in the ABC method. They remarked that ABC is lacking in 

convergence efficiency which will influence the performance of the technique. Consequently, 

they invented a new ABC strategy called an efficient and robust artificial bee colony (ERABC) 

based on formulating an innovative search equation to accelerate the searching mechanism by 

creating a combinatorial solution. To hybridize the method, Kong et al. (2013) exploited 

orthogonal initialization to enhance the performance of ABC. They produced a new hybrid 

version by merging the explorative capability of ABC with the exploitative ability of PSO to 

create an effective hybrid strategy capable of achieving an excellent convergence while 

avoiding being trapped by a local mathematical minimum. 

 Bees Algorithm (BA) 

Swarm Intelligence (SI) algorithms including Bees Algorithm (BA) have attracted the 

researchers’ thoughts to develop innovative ideas to reduce the computational cost of complex 

mathematical problems. BA is a metaheuristic technique recently proposed by Pham et al. 

(2007) to solve diverse optimization problems. BA is derived from the foraging patterns of 

honey bees, maintains a number of active search regions, progressively refining each by 

searching within the neighborhood of the best solution within that region. The entire population 

is categorized into three groups of bees: elite, selected, and scout, which are collaborating and 

communicating together to maximize the amount of nectar stored in the hive. When the bees 

come back to the hive, they are performing dancing activity called waggle dance in the hive to 

deliver the information of the relevant food sources to other members of the hive. Upon the 

information provided during the dancing operation, more bees are sent to the locations 

recommended by the dancing bees, so as to ensure more food will be gathered and stored in the 

hive (El-Abd, 2012). 
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The BA was first proposed by Pham et al. (2005). It resembles a honeybee colony in terms of 

their cooperative teamwork and allocation of duties (Rajasekhar et al., 2017). Koc (2010) 

introduced new coefficients to improve the efficiency of BA by modifying the dynamic 

recruitment of bees to enhance the method to deal with combinatorial optimization problems. 

He compared the new method with other conventional algorithms, like GA and Simulated 

Annealing (SA) and the results were promising. Chai-ead et al. (2011) merged two 

metaheuristic strategies called BA and Firefly algorithm (FA) to generate an optimal solution 

for noisy nonlinear continuous functions. The firefly algorithm exploits the flashing features to 

determine the optimal solution. For a high noise level, FA exhibits better performance than BA, 

because FA is improving individuals’ experience needed to avoid the obstacles of the noisy 

paths. Whereas BA is better in terms of convergence rapidity. 

A new method called the multiple colony bees algorithm (MCBA) was developed by Akpinar 

and Baykasoğlu (2014) to implement a functional optimization technique. The method is 

suggesting new communication strategy to combine the waggle dance behaviour of bees and 

the pheromones laid by ants. The results obtained indicated the performance of the proposed 

method MCBA was improved. Recently, Rajasekhar et al. (2017) carried out comprehensive 

survey for the searching techniques that resembling the honey bees to present the similarities 

and dissimilarities between the diverse swarm intelligence algorithms. Also, to identify some 

open research issues incorporated with the bees-inspired computing techniques. 

 Differential Evolution (DE) 

The DE is an innovative computing algorithm. It was first proposed by Storn and Price (1995). 

It is basically belonging to Evolutionary Algorithms (EA) family, where it is subjected to same 

rules as EA, represented by mutation, crossover and selection. The new generations (trial 

vectors) are created by utilizing biological principles in mutation and crossover (Zou et al., 

2011a). In the selection process, parents will compete with their offspring for survival and the 

fittest individuals will be granted the chance to participate in the subsequent iterations (Li et 

al., 2016). 

The simplicity in use and the flexibility in implementation are the most significant merits of 

DE. Allowing for the mutation to make the required changes to the data set, performing one-

way crossover and returning back to select from the generated stochastic data, through 

employing crossover probability, will make the technique more reliable to perform the 

stochastic search (Price, 1996). There are many characteristics distinguish this strategy from 

other metaheuristic methods. First, its capability to solve non-differentiable and multimodal 

cost functions and this may be attributed to its particular manner in stochastic searching, which 



14 

 

can be applied as verification tool for any experimental minimization. Second, it makes use of 

parallelizability fundamentals, which significantly affect the computational cost of large-scale 

structures, as the computational time for such problems might be prohibitive in some of 

industrial designs. Third, it fulfils a reasonable convergence towards the minimum (Storn and 

Price, 1997). 

Price (1996) utilized the DE technique to optimize real-valued, multi-modal functions. He 

considered the parameters as floating-point variables subjected to set of statistical operations 

required to perform the necessary mutation. One-way crossover principles were employed to 

control the perturbation process of the variables involved. One year later, Storn and Price (1997) 

pulished work which showed the effectiveness of DE in minimizing nonlinear and non-

differentiable continuous functions. They asserted that DE is robust and easy to use and very 

good for parallel computation. Moreover, Fleetwood (2001) proved that DE is the best global 

optimization technique in terms of its convergence rate towards the optimum configuration. 

Considering the hybridization of DE, Zaharie (2005) proposed a hybrid form of DE called 

Multipopulation crowding DE (MCDE) and compared it with the typical form of DE to measure 

its capability to optimize multimodal functions. He defined a multimodal optimization 

technique as the method having the ability to locate all global (even local) optima of the 

problem. In the same sense, a new mutation concept was proposed by Ronkkonen and 

Lampinen (2007) to improve the random selection mechanism of DE and to enable it to deal 

with general multimodal problems. Consequently, the mutation process has subdivided into two 

levels, local and global. The main task of global mutation is to control the migration operator, 

whereas the local one is designated to drive the local search. 

On the hybridization aspect of DE, Awad et al. (2016) proposed a novel hybridization method 

to merge DE with another metaheuristic technique called stochastic fractal search algorithm 

SFSA. The basis of this fusion is to utilize the exploration capability of DE to update processes 

of SFSA needed to explore the search space efficiently by employing a success-based scheme. 

This procedure will provide a great explorative extension to the original SFSA. 

Additionally, Li et al. (2016) combined the merits of two modified DE algorithm called JADE 

and CoDE. The hybrid mode of the modification for both of JADE and CoDE is termed hybrid 

modified jointed constrained DE (HMJCDE). The efficiency of the new hybrid technique was 

tested against 30 standard problems with continuous variables. The results were improved, and 

the sensitivity analysis was implemented to show the effectiveness of the method. Motivated 

by the published modifications in the literature, Yi et al. (2016) carried out an adaptive form of 

DE based on pbest (the global best for current population) selection mechanism, i.e. performing 

the Gaussian mutation for the current individual based on the global best individual 
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“DE/current-to-pbest/1” as explained in Equation (5.40), to generate a new hybrid offspring 

suitable for exploitation whilst avoiding the lumping of individuals around pbest in order to 

diversify the population. The results obtained from this proposed method are highly favourable 

and indicate the applicability of the method to real-world applications in comparison to the 

traditional DE. 

Recently, Piotrowski (2017) introduced a new concept to correlate the population size to the 

dimensionality index "d", where "d" represents the number of dimensions (i.e. the number of 

design variables involved). He made a comprehensive survey of the previous operations and 

modifications executed on DE. He stated that for problems with dimensionality lower than 30, 

the recommended population size is 100 individuals. He emphasized that for high-

dimensionality problems, the practical range for population size extends from 3d to 5d. He 

added, guessing the appropriate population size for real-world problems with high 

dimensionality (d > 40) starts to be a serious problem. Also, he explained that many DE 

approaches need more choices to be ready for optimizing engineering applications associated 

with vast number of design variables and there is no clear relationship would be advised for this 

kind of problems, as the practical range for population size recommended for such applications 

is extending from 50 to 10d. 

 Particle Swarm Optimization (PSO) 

The PSO technique was introduced for the first time by (Kennedy and Eberhart) in 1995, when 

they are tested several computational paradigms in this field. They stated that the PSO is 

inspired by the personal and social habits of bird and fish swarms. There are common features 

between PSO and Evolutionary Algorithms (EA), where PSO population is initiating with a 

random set of positions for its particles. They continue to seek for the optimum solution through 

updating the generations. The distinct feature of PSO as compared to EA is that PSO has no 

evolutionary operators (i.e. crossover and mutation). Instead, it simulates the collaborative 

nature of the swarms and apply the principles of the swarm intelligence (Kuo and Huang, 2009). 

The particles in the system must be engaged in teamwork to execute the task, this cooperation 

entails to follow the simple rules of communication and learning. Learning the concept of better 

is the main challenge of the problem, as this is resembling the swarm intelligence, where the 

intelligent behavior is sustained by means of some agents like birds or fishes. The system 

contains a population of candidate solutions called swarm and this set of candidate solutions is 

termed as a swarm of particles (Talukder, 2010) and (Babazadeh et al., 2011). 

Zavala et al. (2005) utilized the PSO to solve single objective constrained optimization 

problems. Liang et al. (2006) claimed that the learning strategy exploited by PSO helps to avoid 
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the premature convergence of the paths of flight, and this was tested with multimodal problems. 

Jiang et al. (2007) investigated the stochastic convergence of the PSO algorithm. This was 

realized by supposing the position of each particle as a stochastic vector within the evolutionary 

levels of the test. Regarding the recent advancements in PSO, Kaveh and Talatahari (2009a) 

also developed a hybrid optimization strategy consisting of two different metaheuristic 

approaches, (PSO) and Ant Colony Optimization (ACO), where ACO is used to control the 

position of particles in PSO to obtain feasible solutions. 

On the modification trials domain, García-Villoria and Pastor (2009) introduced a new concept 

related to dynamic change in the inertia term of PSO. This modification aims to change the 

velocity magnitude of the particle to enhance the diversity of the population, where the degree 

of diversity is changing in a dynamic manner according to the heterogeneity of the population. 

Vanneschi et al. (2010) presented a new method based on creating co-evolving multiple swarms 

of GA swimming in the PSO space. They tested the method on the typical 25 CEC’05 test 

functions, which are benchmark functions showing unimodal and multimodal response surfaces 

used to test the computational performance for different optimization methods as reported by 

Suganthan et al. (2005). The results obtained indicate the improvement in the efficiency of the 

suggested method relative to the original PSO. 

Chang and Yeh (2013) proposed a global optimization tool combining the Simplified Swarm 

Optimization with the Differential Evolution (SSODE), i.e., the mutational principles of DE are 

exploited to guide the Simplified Swarm Optimization (SSO) population, which is the proposed 

form of PSO. Two experiments were conducted to verify the robustness of the proposed strategy 

and the results obtained exhibited a significant difference when compared to the original DE 

and SSO. In a practical context, Babaei and Sheidaii (2014) employed PSO to automate the 

geometry and sizing optimization for latticed space domes. Several examples were taken to 

prove the efficiency of the proposed design algorithm. 

Lately, Kulkarni et al. (2015) reviewed the past works on PSO and the relevant applications. 

They also detailed the improvements performed on this kind of stochastic techniques like 

Discrete PSO, Hybrid PSO, and Adaptive PSO. Considering the hybridization field of PSO, 

Patel et al. (2016) have hybridized ABC, which is efficient in exploratory search, with PSO, 

which has a good global search. This hybridization has merged the explorative performance of 

ABC with the exploitative capability of PSO, which enhanced the convergence speed and 

supported the technique to avoid the trapping in the local minima. 
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 Simulated Annealing (SA) 

During the last period, researchers have paid more attention to use the ideas of natural 

phenomena in their studies, as this is involved with introducing new thoughts instead of the 

classical methods used for solving optimization problems in the past. For example, Simulated 

Annealing (SA) is one of the most important strategies that mimicking the physical 

phenomenon called annealing process in Metallurgy and resembling the gradual attenuation of 

activation energy of the metallic atoms involved with the process. SA is a stochastic search 

algorithm used effectively to optimize functions with multiple variables. 

It was first introduced by (Kirkpatrick et al.) in 1983. It is well-known member of metaheuristic 

optimization techniques. As population-based algorithm, SA utilizes the biological operator 

(mutate) to create new breeding known as neighbours surrounding each parent individual in the 

original population. The explorative capability of the method is enhanced by the rules of the 

annealing process through applying the probability distribution of the metallic atoms defined 

by Steven Boltzmann. Since this metallurgical process is incorporated with minimizing 

activation energy for the material under annealing, the cost function is chosen to be analogous 

to the activation energy so as to minimize it as possible. 

Corana et al. (1987) showed that SA is a stochastic search algorithm suitable for combinatorial 

optimization. They tested the method against many multimodal functions, and their results 

proved that SA is the most reliable technique among the methods considered. Later, Rutenbar 

(1989) prepared an overview of the method and discussed its merits. He described the cost 

function versus temperature in reference to investigating the effect of temperature on the overall 

performance of SA. 

As physical phenomenon, the process of cooling the metal down is attained gradually, where 

the metal is initially possessing relatively high energy level and when the time elapsed, the 

activation energy will reach its minimum value. The mechanism of the process is involved with 

many features, initial temperature which is assumed at its highest level at the starting of the 

annealing and then reduced step by step during the optimization, activation energy level, which 

acts as cost function to be minimized as possible and the new offspring represented by the 

neighbours for each individual in the assumed population. The mutation operation is employed 

to create the set of neighbours around each individual to enhance the chance to obtain better 

solutions and avoid trapping in local minima (KLEIN and DUBES, 1989), (Hasancebi et al., 

2010) and (Du and Swamy, 2016). 

In 1992, (Goffe et al.) confirmed that SA is the suitable method for global optimization by 

comparing it with set of benchmark methods: UMPOL, UMCGF, and UMINF, which use the 

mathematical methods of Newton-Raphson and Davidon-Fletcher-Powell. 
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Henderson et al. (2008) published their book about SA strategy. They showed that SA has its 

own tools to escape the local minima through utilizing hill-climbing mechanism of motion. 

Hence, a low probability factor for the acceptance of bad solutions is used to enhance the 

explorative search of the method, and to extend the method to multi-objective optimization 

problems. Li and Landa-Silva (2011) decompose the complicated multi-objective function into 

finite number of SA subproblems in order to adapt the existing conventional multi-objective 

strategy MOEA/D to construct the new hybrid multi-objective strategy called EMOSA. The 

weight vector of each subproblem is adjusted to the lowest temperature so as to scatter the 

search directions to increase the chance to land on undiscovered points in the Pareto-optimal 

front. The method has proved its efficiency to solve the constrained knapsack function and the 

unconstrained traveling salesman function, which are the most popular multi-objective 

functions used in literature. 

 The Application of Metaheuristic Techniques to the Braced Domes 

In this field, El-Abd (2012) conducted a comprehensive survey to assess four metaheuristic 

approaches: Bacterial Foraging Optimization Algorithms (BFOA), BA, ACO, and ABC. He 

compared them with the most conventional metaheuristic strategies: PSO, DE, GA, and 

Harmony Search (HS). The test results revealed that PSO is the best algorithm to obtain the 

solution in terms of convergence rate in case of uni-modal functions, whereas for multi-modal 

functions, ABC has fulfilled the optimal results, when compared to the adopted methods. 

Furthermore, Hasancebi et al. (2010) employed seven conventional metaheuristic techniques to 

investigate the structural optimization of different pin-jointed geodesic domes. The design 

process was implemented to meet the requirements and specifications stated in the standard 

ASCE 7-98. They announced that Evolution Strategies (ESs), SA and PSO have achieved the 

optimum designs, especially, when they yielded the same result with high convergence rate, 

whereas, they observed that Tabu search (TS), ACO and HS methods are fluctuating randomly 

more than others. Consequently, they deduced that Evolution Strategies (ESs), TS and ACO 

method are the most promising strategies due to their satisfactory convergence rates. 

Kaveh and Talatahari (2008) have implemented the design optimization for the Lamella truss 

structure by employing the hybrid version of PSO and ACO. The design variables considered 

in this operation are limited to the cross-sectional area data for the dome roof members. They 

have explained the searching mechanism in their hybrid methodology, where the local search 

using the pheromone-guided movement of ACO is exploited to update the positions specified 

in earlier stage using PSO strategy. Hasancebi et al. (2010) developed a metaheuristic search 
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mechanism to reach the minimum weight of 130-member pin-jointed steel geodesic dome with 

the aid of seven reliable techniques (i.e. SA, GA, ESs, PSO, TS, ACO and HS methods). 

 Structural Optimization of Self-supported Dome Roofs 

Structural design of large-scale domed roofs has been the subject of much research, especially 

when attempting to discover new optimization approaches. In this field, Kameshki and Saka 

(2007) exploited their work to produce a reliable program to automate the topological 

optimization process for dome structure by governing the joint coordinates, number of rings 

and the height of the crown. Their paper showed the influence of axial loads on the bending 

stiffness of the 3D grid configuration. 

Another configuration study of single layer domes, called Lamella lattices, was attempted by 

Carbas (2008) using HS strategy. He considered the geometric nonlinearity in the analysis of 

the dome roof frame to calculate the output response. The results indicate that considering the 

analysis type and supposing the boundary conditions will affect the final design of the dome. 

Using HS (based on jazz improvisation), Çarbaş and Saka (2009) listed the optimal design data 

for geometrically nonlinear network domes. The design objective is limited to the structural 

weight, whereas the set of geometrical parameters for lamella and network domes are classified 

such that the number of rings stands for the topological aspect of the optimization, the height 

of the crown represents the shape part of the problem, and the designations of structural 

members are assigned to define the sizing parameters of the model. 

Kaveh and Talatahari (2010b) implemented the structural topology optimization for Schwedler 

and ribbed domes exploiting a stochastic search algorithm termed Hybrid Big Bang–Big 

Crunch (HBB–BC). Three cases were considered depending on the number of rings. The 

optimization results for the first case showed that the ribbed dome was lighter than the 

Schwedler dome. Whereas, for the third case, where the number of rings were more numerous, 

the Schwedler dome yielded better results than the ribbed one. Kaveh and Talatahari (2010a) 

proposed a new methodology pertaining to the metaheuristic type of optimization techniques 

called a charged system search to obtain the optimum design of diverse configurations of 

geodesic dome roofs. The dome roof structural members were modelled using pipe section 

profiles. The design variables were divided into three categories, size, shape, and topology in 

order to perform the optimization strategy. 

There are researchers carrying out structural optimization for double lattice dome 

configurations. For example, Babaei and Sheidaii (2013) focused their time on obtaining the 

optimal design for the scallop special dome roof using the classic genetic algorithm. The dome 

roof was governed by a set of parametric mathematical formulae to facilitate the optimization 
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process. They reduced the number of sizing parameters considerably by treating the element 

section as a single variable. The mathematical functions they used are applicable to wide range 

of double lattice domes. 

Many researchers have carried out sophisticated optimization techniques to investigate the 

optimal designs for wide range of dome roofs. Another attempts to examine GA in exploring 

the cost effective optimal designs of domed roofs was conducted by Kameshki and Saka (2007). 

They use the geometrical nonlinearity in the structural analysis of the braced domes under study 

to realize a more realistic response for them. Furthermore, a coupled genetic algorithm was 

used successfully to perform a simultaneous structural optimization by considering a set of tube 

structural sections to model the individual members of the single layer geodesic dome roof 

(Saka, 2007b). He included the number of rings, number joints and the height of the dome as 

topological and shape parameters. 

Ho-Huu et al. (2016b) suggested an adaptive elitist DE (aeDE) to find the optimal design truss 

structures using discrete variables. Three key modifications were suggested to improve DE. 

First, the mutation phase, the mutation operator is selected in a smart manner based on the 

deviation existing between the objective function of the best individual and the entire 

population for the preceding generation. Second, to enhance the convergence speed, assigning 

the elitist group is suggested by choosing the best individuals for the subsequent generation. 

Third, complementing the method by linking it to the appropriate rounding technique needed 

to qualify the method in order to address the discrete design parameters. Six design examples 

were demonstrated to show the efficiency and reliability of the proposed method; aeDE was 

shown to outperform the classic DE method in terms of the solution quality and the convergence 

rapidity. Mortazavi and Toğan (2017) have also conducted a study to test the robustness of the 

proposed integrated particle swarm optimization (iPSO) algorithm, where the iPSO was 

blended with an improved fly-back mechanism to produce a hybrid version of the two. Four 

examples were tested with multiple frequency constraints. The optimization results were seen 

to be excellent when compared to other metaheuristic algorithms mentioned in the literature. 
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 Impact of Wind Load on the Storage Tank 

Large-scale structures are the most vulnerable structural systems to the hazardous actions of 

nature including extreme weather events such as earthquakes, gusty winds, and snowy storms. 

This research considers the influence of the intensive wind loads plus the snow loads on the 

structural design procedure of the dome roof frame of the storage tank. As frequent natural 

incidences, the conditions recorded by Cao et al. (2015) about the typhoon "Maemi" is 

considered a typical example of the worst windy events occurred in the last few years. However, 

this research is focusing on the optimization process of the dome roof frame, hence there is no 

necessity to dive deeply into how to calculate the effective wind speed applied to the storage 

tank. Thus, the average effective wind speed to be used here, and inferred from the 

abovementioned events, is 75 m/s. This value is based on an average gust factor of 1.25 with a 

maximum basic wind speed of 60 m/s. 

An integrated computer program was developed using ANSYS Workbench to perform the 

structural analysis for the whole storage tank. The integrated program consists of two main 

component parts, ˝Fluent˝ is the name of the first component, whereas ˝static structural˝ is the 

name of the second one. In this chapter, the result of Fluent system (i.e. the numerical data of 

the wind pressure distributed over the external surface of the tank) will be discussed and the 

relevant parametric study will be executed at the end of this chapter. 

 Airflow Patterns and Bernoulli Equation 

The airflow diagram for the current case study, shown in Figure 3.1, indicates the existence of 

four critical regions: windward (stagnation area), leeward (wake area), low pressure area 

appearing on the two sides of the tank, and the maximum flow convergence taking place at the 

hoop region where the dome intersects the cylindrical shell. The airflow path lines, shown in 

Figure 3.1, and the pressure data, shown in Figure 3.2 and Figure 3.3, indicate that the 

stagnation point located in the front of the tank (windward) develops the maximum static 

pressure, while it preserves the minimum dynamic pressure. On the other hand, the lowest static 

pressure could be seen at the two sides of the tank and some spots on the curb angle hoop, 

especially that located on the front part of the tank, while the same regions show the highest 

dynamic pressure at all. The last two statements support the principles of Bernoulli in 

reservation of pressure, where the static and dynamic pressures are preserved a constant 

magnitude as given in Eq. (3.1). 

Eq. (3.1) can define the state of pressure for any particular point on the tank surface. For 

instance, the pressure of the points 1 and 2, illustrated in Figure 3.1, can be given in Eq. (3.2). 

Pstatic + Pdynamic = Constant  (3.1) 
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Figure 3.1 3D image for the tank showing the flow path lines (patterns) of wind defined by air 

velocity distributed around the tank. 

where, P1 and P2 are the values of static pressure for the points 1 and 2 respectively, whereas 

(
1

2
ρ𝑣1

2) and (
1

2
ρ𝑣2

2) are the values of dynamic pressure for the points 1 and 2 respectively. 

Hence, the drop in static pressure between any two points (P2 − P1)  can be obtained by 

rearranging Eq. (3.2) as given in Eq. (3.3). 

 

 Evaluation of Wind Load 

The output data of the fluid flow system are represented in terms of: static pressure, dynamic 

pressure, pressure coefficient and the turbulent kinetic energy distributed over the external 

surface of the tank. The numerical contour plots indicating static pressure, dynamic pressure, 

and turbulent kinetic energy are shown in Figure 3.2 to Figure 3.4 respectively. For integrated 

model, the numerical data of wind pressure will be exported directly to the mechanical 

application to use it as external pressure applied to the finite element model of the tank. In case 

of simplified model, a pressure file is exported to MATLAB to make use it to generate the 

relevant nodal forces corresponding to the wind loading analysed by ANSYS/FLUENT. A 
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detailed explanation of how to calculate the effective lift force, overturning force, and the 

tipping moment from the individual nodal forces can be found in Appendix A. 

According to the CFD results, many findings could be inferred in this section about the 

aerodynamic characteristics of the air flow passed over storage tank. The contour patterns of 

Figure 3.2 indicate that there are steep gradients in the static pressure over the roof surface and 

side walls and these patterns are related to the geometric shape of the storage tank. In overall, 

the maximum adverse pressure (the lowest pressure) is located at the roof surface, to be precise, 

at the peripheral rim of the dome, where the dome intersects the cylindrical shell, i.e. the top 

curb angle region, where the magnitude of static pressure amounts -14.1 kPa as depicted in 

Figure 3.2. There are also low-pressure regions at the sides of the cylindrical tank wall and the 

top region of the dome. The criticality of these regions is supported by the airflow patterns 

depicted in Figure 3.1. 

The peak pressure (maximum positive pressure) is occurring at the upwind region of the 

cylindrical shell, which is located on the anterior section of the cylindrical shell. This region 

has developed a positive static pressure of 9.31 kPa (pressure coefficient 1.52) due to stagnation 

pressure. On the other side of the tank (i.e. the leeward area), there is another positive pressure 

region with minor effect due to the influence of the wake pressure. Also, there is zero-pressure 

line can be recognized over the cylindrical shell, which is separating between the negative 

pressure zone and the positive one. Furthermore, there is a relatively weak vacuum pressure at 

the wake region resulting from the eddy air currents swirling towards the downstream quarter 

of the wind field causing a turbulent flow as illustrated in Figure 3.1. 

In relevance to the distribution nature of the static pressure and regardless of the difference in 

the absolute magnitudes of the lowest and the highest pressure values, showing clearly in the 

colour bar of Figure 3.2, the lift force generated by the pressure difference applied to the dome 

roof is significantly greater than that value of the averaged overturning force exerted on the 

frontal part of the cylindrical shell due to the projected area withstanding the pressure, as for 

low aspect ratio (
H

D
) tanks the projected area of the roof is times greater than that of the 

cylindrical shell. It exactly represents the ratio cylindrical shell radius (r) to the tank height (H), 

which is for the current study equals (
r

H
=

21

8
). The difference in negative pressure applied to 

the roof shell results in equivalent lift force of value (5.69 MN) directed upwards. While, the 

difference in positive pressure acted upon the windward region of the cylindrical shell is 

producing an averaged overturning force of value (0.936 MN) due to the direction of wind. The 

forces acting at the sides of the tank cause a slight perturbation also. 
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Figure 3.2 Distribution of static pressure over the external surface of the tank. 

The dynamic pressure for the air flow over the tank surface is shown in Figure 3.3, which 

reveals that quasi-stagnation state in air motion is happening at windward and leeward regions 

with two different styles. In other words, standing whirl is generated at upwind area causing a 

considerable stagnation in air movement, whereas negative pressure lean eddies are created at 

wake zone is the reason behind suppressing the air action in this quarter. In the same sense, 

local twisting waves of air induced at sidewalls are resulting in dramatic increase in dynamic 

pressure at these regions as explained in the areas shaded with red as shown in Figure 3.3. In 

this regard, the maximum value of dynamic pressure has developed up to value 16.5 kPa, 

whereas the minimum value is reached 11.6 Pa. 

Through investigating the state of turbulent kinetic energy distributed over the tank surface 

illustrated in Figure 3.4, two almost symmetrical distinct areas can be specified to account for 

the considerable turbulence which can give an indication to the presence of local turbulent 

boundary layers on the tank surface due to its geometrical details. These regions are clearly 

shown over the frontal part of the dome roof with approximate maximum value of 907 m2/s2. 

While, the lower part of the tank has exhibited negligible magnitudes of turbulent kinetic energy 

due to the stationary air in this region. 



25 

 

 

Figure 3.3 Distribution of the dynamic pressure over the external surface of the tank captured 

for the initial design. 

 

Figure 3.4 Distribution of the turbulent kinetic energy over the external surface of the tank 

captured for the initial design. 
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 Relevant Parametric Study 

Four output parameters, related to the physical balance of the tank, were considered in this 

investigation: the lift force, the overturning force, the perturbation side force, and the tipping 

moment. There are two complementary forces exerted on the external surface of the tank: lift 

and overturning forces, their resultant is approximately preserving a constant magnitude force 

(Fresultant) under the same wind speed, where the resultant force (Fresultant), detailed in Appendix 

A, is the effective force responsible of generating the tipping moment applied to the tank 

structure, which is trying to roll the tank over the ground. While, there is a minor effect caused 

by the perturbation forces on the two sides of the tank trying to tip the tank on transverse 

direction to the wind. 

 Investigation of Aerodynamic Forces under Variable Dome Radius 

In this section, a variable wind speed for different dome roof radii was investigated. The range 

of variation for the dome roof radius was in keeping with the range used in the structural 

optimization. Consideration of Figure 3.5a will lead to the conclusion that the lift force is 

inversely proportional to the dome radius of the tank, where the graph shows value of (7.4 MN) 

for the lift force corresponding to the dome radius (R=30 m), whereas the value (5 MN) is 

recorded against the radius (R=60 m). Knowing that, these values are computed under constant 

wind speed (v=75 m/s). Another aspect of the plot indicates that, for a given wind speed, there 

is direct proportionality between the lift force and the squared wind speed. This is also verified 

by the correlation between the static pressure difference and the wind speed stated in Eq. (3.3). 

According to Figure 3.5b, it is noticeable that, in contrary to the conduct followed by the lift 

force towards the dome radius, the absolute value of overturning force is directly proportional 

to the dome radius. For instance, the value of (-527 kN) is corresponding to the radius (R=30 

m), whereas the value (-627.8 kN) is corresponding to the radius (R=60 m), where the wind 

speed for this reading is (v=60 m/s). 

Figure 3.5c shows a detailed comparison between the different perturbation forces as function 

of wind speed. It is noticed that the unbalanced side force is proportional to the dome radius 

except for the radius (R=50 m), which exhibits odd behaviour compared to other radii. The 

maximum value obtained over the whole plot is reached (43.406 kN), recorded for the radius 

(R=60 m), whereas the minimum value ever is (0.591 kN), recorded for the radius (R=30 m). 

It is noteworthy that there is unsteadiness in the perturbation force data measured versus the 

wind speed for the small values of dome radii. 

The set of plots of the tipping moment, depicted in Figure 3.5d, illustrate the fact that this 

moment is directly proportional to the dome radius due to the high influence of the lift force on 
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this component. Accordingly, the same correlation built between the lift force and the dome 

radius can be seen in the tipping moment in relation to the dome radius. The maximum value 

found for the tipping moment over the whole curves of Figure 3.5d is (461 kN.m), which is 

measured against radius (R=30 m). 

Ultimately, the effect of wind load on the storage tank design is determined through analysing 

the tipping moment applied to the tank. This reveals that the designs associated with low dome 

radius are not recommended if the design trends are directed towards reducing the lift force or 

the tipping moment impinging on the storage tank. 

 

 

Figure 3.5 Parametric investigation for the flow generated force and moment against the wind 

speed with variable dome radius (R). 

 Investigation of Aerodynamic Forces under Variable Tank Height 

In this section, the height of the tank will be considered in the parametric investigation, so a 

range of different tank heights will be investigated to demonstrate the significance of the aspect 

ratio in the design of storage tank under wind load. Thus, the fluid flow parameters are inspected 

against the practical set of aspect ratios (0.19, 0.238, 0.285, and 0.333) under constant tank 

diameter and dome radius. Aspect ratio stands for the ratio (
H

D
), where H is the height of the 

cylindrical shell of the tank and D is the diameter of the cylindrical shell. 
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Starting with Figure 3.6a, four different heights were used in this survey. The latter figure 

indicates that, for a given wind speed, the lift force is proportionate with the tank height, i.e. 

the greater the tank height, the higher lift force. This direct proportionality can be attributed to 

the considerable geometrical changes caused by altering the aspects ratios for the tank. 

It is clear that the lift force has jumped from (10.14 MN) at height (H=8 m) to (15.65 MN) at 

height (H=14 m), which is a significant change in the state of aerodynamic forces (see Figure 

3.6a). By analysing Figure 3.6b, it is concluded that the same behaviour of lift force with the 

tank height has been conducted by the overturning force, which exhibits dramatic increase 

proportional to the rise in the tank height. This fact is verified by reading the corresponding 

output response, where (-1.63 MN) is computed under the height (H=8 m), whereas the value 

(-3.7 MN) is evaluated for the height (H=14 m). This reading is set at wind speed of (100 m/s). 

Figure 3.6c indicates that there is no regular behaviour for the perturbation forces for higher 

aspect ratios. Consequently, unpredictable side force change will be obtained for different wind 

speeds for the tanks with considerable height. For instance, the perturbation force is fluctuating 

from (0.861 kN) for wind speed (v=5 m/s), passing through the value (-15.1 kN) for wind speed 

(v=50 m/s), ending at the value (56.84 kN) for wind speed (v=100 m/s), hence it is highly 

oscillating from positive to negative then to positive. 

The tipping moment plots shown in Figure 3.6d, illustrate the fact that the tanks with high aspect 

ratio are more susceptible to the hazards of the wind loads due to developing substantial tipping 

moments which might cause detrimental effects. This is supported by the small graph fixed in 

Figure 3.6d showing the relationship between the tipping moment (TM) and the height (H). 

In the last investigation, the most hazardous reading of the tipping moment database has a steep 

jump between the initial value (1.15 kN.m) and the final value (461 kN.m). 

Though there is a considerable change in tipping moment, the comparison between the critical 

values of these parameters for the two investigations reveals that the critical value of the current 

investigation (618 kN.m) is much greater than the value for the previous investigation. In 

conclusion, it is recommended to manipulate the dome radius rather than varying the height of 

the tank as important design feature for storage tanks when the problem is associated with wind 

loads. Furthermore, the design associated with high aspect ratios are not advisable when 

aerodynamic forces are the main problem encountered. 
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Figure 3.6 Parametric investigation for the flow generated force and moment against the wind 

speed with variable tank height (H). 

 Empirical Relationship between the Lift Force and the Geometrical Parameters of 

the Tank  

It is possible to construct an empirical formula to relate the lift force to the geometrical 

parameters of the tank depending on the data viewed in the last section. Such relation discloses 

some facts about the optimization process performed in chapters 6 to 8. Through analysing the 

data provided in Figure 3.5a, where the height of the tank (H) is preserved constant at its 

nominal value (8 m), a simple statistical relationship between Flift and R could be written as in 

formula (3.4). 

Flift =
640845

R
+11370  (3.4) 

The same procedure could be repeated, when considering the data viewed in Figure 3.6a, to 

correlate Flift to the tank height H under constant dome radius (R=45 m) as given in formula 

(3.5). 

Flift = 2260.2 × H+7079  (3.5) 

Equations (3.4) and (3.5) are based on constant wind speed (v=75 m/s), which is the design load 

for the current case study. These two formulae can be combined together to conclude an 

empirical relationship between the lift force, at that given wind speed, and both of the dome 

radius and the tank wall height as given in formula (3.6). 
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Flift = 90000 (
H

R
) +9000  (3.6) 

The lift force (Flift), therefore, is reduced by having a low structure with a flat roof, as far as 

possible within volume constraints. For a fixed volume, H is approximately inversely 

proportional to the dome roof radius R. Since the tank volume is defined by (V= πr2H), R=30, 

…, 60, suppose R=2r, then H could be expressed as: 

H = (
V

πr2
) =(

4V

πR2)  (3.7) 

Substitute Eq. (3.7) into Eq. (3.6) would lead to a new relationship between Flift and dome 

radius (R) and the volume of the tank, which is constant, as given in Eq. (3.8). 

Flift = 90000 (
4V

πR3) +9000  (3.8) 

Formula (3.8) indicates that Flift is inversely proportional to R3. 

The data used to derive the formulae (3.4) and (3.5) are illustrated in Table 3.1. 

 

Table 3.1 Empirical data used to correlate the lift force to the geometrical parameters of the 

storage tank. 

 

 Summary 

❖ The study indicates that the most peripheral rim of the dome roof (where the dome roof 

intersects the cylindrical shell of the tank) is the most critical part of the tank in terms of the 

wind pressure distribution, where this region is subjected to the maximum adverse pressure 

(the lowest pressure). 

❖ Lift force (LF) applied to the tank structure has inverse proportionality to the dome radius 

(R) and direct proportionality to the tank height (H). 

❖ Overturning force (OF) applied to the tank structure has inverse proportionality to both of 

the dome radius (R) and the tank height (H). 

❖ Tipping moment (TM) applied to the tank structure has inverse proportionality to the dome 

radius (R) and direct proportionality to the tank height (H). 

 

Conditions 

of the 

experiment 

Data used to derive Eq. (3.4), where 

v=75m/s, H=8m, and r=21m 

Data used to derive Eq.(3.5), where 

v=75m/s, R=45m, and r=21m 

Geometrical 

variables 

R=30

m 
R=40m R=50m R=60m H=8m H=10m H=12m H=14m 

Lift force 

(MN) 

7.49 6.10 5.42 5.00 5.70 6.72 7.55 8.78 
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 Geometry and Modelling of the Storage Tank 

 Synopsis 

Many international standards are devoted to set the appropriate rules used in construction and 

design of the oil storage tanks such as (API Standard 650, 2013), British Standards BS 2654, 

The European Standards, and Company standards like shell (DEP) and Petronas (PTS) (Kuan, 

2009). The real-world example for the fuel storage tank, shown in Figure 1.1 has adopted in 

this work. This chapter outlines the geometrical and structural modelling for this application. 

The current study focuses on performing the design optimization for the dome roof frame, but 

the whole storage tank consists of two main regions: non-design region and design region. The 

non-design part represents the external shell of the tank, whereas the design part is characterized 

by the set of structural components subjected to the design optimization process. Note that the 

dome roof shell is not a part of the design region, yet it is still subjected to shape change due to 

the corresponding changes in the supporting frame underneath. 

The whole tank structure is modelled using ANSYS software to perform an integrated structural 

analysis including the fluid flow analysis, as described in Chapter 3, and the structural analysis, 

which will be demonstrated in this chapter. 

Considering the design aspect of the tank, i.e. the design optimization of the self-supported 

dome roof frame, many objectives may be involved with this task, i.e. structural weight, 

strength, stiffness, etc. A set of dome roof configurations are constructed for later optimization. 

Two types of modelling were developed simplified modelling and integrated modelling. Table 

4.1 lists the main differences between the two types of modelling. 

The simplified frame modelling was implemented in MATLAB to perform the geometric 

modelling, to create the geometry, and the structural modelling, to discretize the structure into 

finite number of identified structural components specifying the set of design parameters and 

executing the required finite element mesh for the structural system to solve the problem. For 

the integrated modelling, the roof supporting frame has been modelled using the most advanced 

3D Timoshenko beam element offered by ANSYS 18.1 (BEAM189)1. 

Considering the non-design region of the tank, i.e. the external shell, represented by the list of 

structural parts mentioned in Table 4.2, it has been modelled using the most sophisticated 3D 

shell element available in ANSYS 18.1 library (SHELL281)2. 

Figure 4.1 illustrates the geometrical description of the main structural parts of the storage tank 

considering a geodesic single lattice dome roof configuration. 

 
1 Refer to https://www.sharcnet.ca/Software/Ansys/17.0/en-us/help/ans_elem/Hlp_E_BEAM189.html 

2 Refer to https://www.sharcnet.ca/Software/Ansys/16.2.3/en-us/help/ans_elem/Hlp_E_SHELL281.html 

https://www.sharcnet.ca/Software/Ansys/17.0/en-us/help/ans_elem/Hlp_E_BEAM189.html
https://www.sharcnet.ca/Software/Ansys/16.2.3/en-us/help/ans_elem/Hlp_E_SHELL281.html
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Table 4.1 The main differences between the simplified modelling and the integrated modelling. 

Simplified Frame Modelling Integrated Tank Modelling 

1. It uses a simple 3D Timoshenko straight 

beam element in the modelling process 

(Sarac, 2005) and (Kassim, 2015). 

1. It uses a sophisticated 3D Timoshenko 

curved beam element in the modelling 

process. 

2. One analysis takes on average about 30 

seconds to execute. 

2. One analysis takes on average about 30 

minutes to execute. 

3. The boundary conditions assume that the 

roof supporting frame is fixed at its edge 

vertices where it meets the cylindrical 

shell, because the structural analysis is 

performed for the dome roof frame only 

without needing to perform the structural 

analysis for the whole storage tank. 

3. The boundary conditions assume that 

the whole storage tank is fixed at its 

bottom, because the structural analysis is 

performed for the whole tank as 

integrated unit and the results of the 

dome roof frame is a part of this 

solution. 

4. Due to its swiftness in performing the 

structural analysis, it is effectively used 

to check the efficiency and the 

robustness of the optimization tools to 

achieve the optimum design under 

multiple design constraints. 

4. It cannot be the examination tool for 

testing the extent of validity for the 

proposed optimization techniques due to 

its slowness in performing the required 

structural analysis compared to the 

simplified modelling. 

5. The model is constructed and solved 

within MATLAB and numbers of 

components and joints can be varied 

with ease. 

5. Automated construction of the model 

within ANSYS is very complex, 

especially when the numbers of 

components and joints are variables. 

6. Less accuracy than the integrated 

modelling as a result of incorrect 

boundary conditions and the limitation 

of straight beams. 

6. The accuracy is acceptable due to 

considering more realistic conditions 

and treating with the storage tank as 

integrated system. 

7. It is created as integrated unit in 

MATLAB to perform the structural 

optimization and the Finite element 

analysis. 

7. It employs MATLAB as optimization 

tool, whereas ANSYS is exploited as 

structural analysis tool, hence 

interfacing methods are required to 

integrate the process and perform the 

optimization task. 
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Figure 4.1 Main geometrical parts of the storage tank (with geodesic single lattice modelling). 

 Geometric Modelling of the Storage Tank 

A simplified illustration for the general shape of the fuel storage tank is shown in Figure 4.2 to 

explain all geometrical parameters relevant to the general dimensions of the tank, where the 

diameter of the tank is maintained constant at 42 m. Thus, the curvature angles of the domed 

roof can be defined as: 

α + θ = sin−1 (
r

R
)    (4.1) 

α = sin−1 (
a

R
)    (4.2) 

where, a, r and R stand for the radii of each of the crown, the cylindrical shell of the tank, and 

the domed roof respectively. C is the centre of curvature of the dome roof, which is simply 

specified by determining the dome radius (R). 𝛼 is the angle formed by the crown, 𝜃 is the angle 

of constituted by the primary radial girder (LPG). The length of the major radial girder, LPG, is: 

LPG= Rθ 
 (4.3) 

The dome offset (𝑧𝑑𝑜𝑚𝑒_𝑜𝑓𝑓𝑠𝑒𝑡), is given by Eq. (4.4): 

zdome_offset = H − dbasic_offset  (4.4) 

External shell of 

the tank 

Roof 

supporting 

frame 
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where, H  is the tank wall height, dbasic_offset  is the basic offset of the dome, which is 

represented by the vertical distance measured from the curvature centre of the dome to the top 

of the tank wall, i.e. the cylindrical shell. 

dbasic_offset = √R2 − r2  (4.5) 

The dimensions and the thicknesses for the different parts of the external shell of the tank for 

the initial design are shown in Table 4.2. The external surface area of the tank subjected to the 

environmental loads could be easily calculated by adding the surface area of the cylindrical 

shell to that of the spherical cap overhead. 

Atank = Acylinder + Acap = 2πrH + 2πRh

= 2π(rH + R2√1 − (
r

R
)
2

) 
 (4.6) 

The derivation of surface area for spherical cap (Acap = 2πRh) is detailed in Appendix A. 

 

Figure 4.2 Simplified sketch for the tank demonstrating the geometric modelling parameters. 

 

 

 

 

 

𝛼 
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Table 4.2 List of geometrical dimensions and thicknesses (THK) for the structural parts 

constituting the external shell of the tank (Reference design). 

 

 Structural Modelling of the Non-design Region (Tank External Shell) 

The non-design part of the tank is represented by the external shell, which consists of 13 

structural components as detailed in Table 4.2. This preserves the capacity of the tank at 

constant value during the optimization process, except for the change in the dome roof shape 

affected by the relevant variation in the roof supporting frame. This significantly reduces the 

burden of the necessary fluid dynamics calculations for different tank wall heights and 

corresponding tank radii. An extra shell course would need to be added to the tank height in 

case of double lattice modelling of the gap generated between the two layers in a double lattice 

configuration. 

Shell components of the tank are modelled as surface bodies using shell element (SHELL281) 

in ANSYS by choosing the option "Quadratic" for the feature "Element Order" in the mesh 

setting to account for the geometrical nonlinearity in the structural behaviour of the tank shell. 

The storage tank is resting directly on a concrete foundation, hence in normal service 

conditions, negligible values of stresses and strains are induced in the bottom plate, the flat, the 

interior and the ground-level base of the tank. However, acceptable quality of meshing must be 

ensured at the critical positions within the tank, i.e. the intersection of the circumferential lines 

of the cylindrical shell with any of its additional structural attachments, i.e. the intersection with 

the dome roof shell, bottom plate, and the shell stiffeners. Currently, these critical spots have 

been meshed appropriately, and consistent meshing has been realized for the external shell of 

the tank as shown in Figure 4.3. The meshing configuration for the dome roof shell is 

compatible with the roof frame lattice underneath, hence the number of elements for the 

external shell will vary slightly according to the dome roof frame involved. 

 

 

 

Geometrical dimensions: Tank radius = 21 m, Tank height = 8 m, Dome radius = 45 m. 

Part 

No. 

Part Name THK. 

[mm] 

Part 

No. 

Part Name THK. 

[mm] 

1 Bottom Plate 11 8 Web of Top Curb Angle 12 

2 Bottom Outer Rim 11 9 Flange of Top Curb Angle 12 

3 Cylindrical Shell Course-1 17 10 Web of Internal Stiffener 12 

4 Cylindrical Shell Course-2 14 11 Flange of Internal Stiffener 12 

5 Cylindrical Shell Course-3 11 12 Web of External Stiffener 10 

6 Cylindrical Shell Course-4 8 13 Flange of External Stiffener 10 

7 Dome Roof Shell 7 
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 Bottom Plate 

This is the basic part of the tank, it is constructed as circular disc through arranging a group of 

standard, sketch, and annular plates with an overlap no less than 25 mm according to American 

Petroleum Institute (API Standard 650, 2013). Normally, the standard plate has rectangular 

outline with a length and breadth of 8 m and 2 m respectively. The annular plates have a constant 

thickness of 11 mm, which is 2 mm higher than the thicknesses of other bottom plates. The 

plates are erected and welded together in such manner that they finally constitute the circular 

shape of the disc, where overlap welding joints are employed to bind the bottom plates together. 

Also, the bottom plate must be protruded outside the cylindrical shell of the tank to a distance 

no less than 65 mm as per API Standard 650 (2013). For the sake of simplification, the bottom 

plate has been modelled as a circular disc with diameter equal to 42 m and constant thickness 

of 11 mm as shown in Figure 4.3. 

 Cylindrical Shell Courses 

The cylindrical shell (tank wall) consists of 4 courses each with its own constant thickness as 

given in Table 4.2. The course thickness is designed according to the pressure distribution of 

the static head of fuel. The shell course is formed by jointing a series of rolled plates with 

standard dimensions 10 m by 2 m each, where the residual space of the course is filled with 

nonstandard piece of rolled plate prepared for this purpose. The vertical joints connecting the 

plates within the single course and the horizontal joints connecting the courses within the 

cylindrical shell are implemented using a butt joint with v-shaped groove. A T-joint is used to 

bind the cylindrical shell to the bottom plate. The cylindrical shell has been modelled using a 

minimum element size of 200 mm, where mapped meshing was used to generate regular 

meshing patterns. 

 Dome Roof Shell 

The spherical cap at the top of the tank is a thin shell with thickness 7 mm supported by and 

welded to the roof frame underneath. Many additional component structures are attached to this 

part of the tank such as breather valves, gauge hatches, roof manholes, etc. Currently, these 

components are omitted to facilitate the structural analysis of the model. The minimum element 

size adopted for the dome shell is 200 mm. 

 Cylindrical Shell Stiffeners 

In extreme environmental conditions, the cylindrical shell is exposed to potential buckling 

incidents due to its weakness as a thin unsupported shell. Therefore, Burgos et al. (2015) and 

Bu and Qian (2015) recommended to stiffen this part of the tank to protect it from potential 

failure. There are three stiffeners attached to the cylindrical shell: a top curb angle, an internal 
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stiffener, and an external stiffener. Table 4.3 lists the geometrical dimensions for the set of 

cylindrical shell stiffeners used in the current tank model. According to API Standard 650 

(2013) article 5.9.3.4, shell stiffeners must be seam welded to the cylindrical shell and the 

splicing welds of the stiffeners must be located at a minimum distance apart from the vertical 

shell welds. 

Table 4.3 Geometrical dimensions for the stiffening rings of the cylindrical shell. 

Cylindrical shell appurtenances (stiffening rings) 

Part 

No. 

Part Name Web height 

[mm] 

Flange width 

[mm] 

Web thickness 

[mm] 

Flange thickness 

[mm] 

1 Top curb angle 120 120 12 12 

2 Internal stiffener 400 200 12 12 

3 External stiffener 300 200 10 10 

 

 

Figure 4.3 Finite element model for the external shell of the storage tank. 
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 Structural Modelling of the Design Region (Roof Supporting Frame) 

In this section, the structural modelling procedure for the most conventional domed roof lattices 

is described in terms of a finite set of parameters (commercial cross-sections, etc.) that will be 

used later in the optimization process. In structural modelling process, two distinct features 

need to be determined to specify the position of any component and reading its cross-sectional 

specifications within the structural system of the dome roof frame, which is the job of the 

optimization method to perform the sizing optimization of the structure. These two features are: 

➢ Component group label: This represents the structural components that have the same type 

of cross section or the same topological nature. For example, model A1 has 3 distinct 

component groups with 52 structural components as demonstrated in Table 4.5. The first 

group represented by the set of radial girders, which consists of 20 components, has 

identified by the CG template (CG-C). According to the dataset stored in the corresponding 

DM template (DM-C), CG-C selects cross sections from the list of I-beams stored in DM-

C, the list of I-beams is found in Appendix Table E.1. The second CG template (CG-D) 

stands for the group of diagonal braces, which are consisting of 13 components. This 

representative template (CG-D) is modelled using the set of RHS designations defined in 

Appendix Table E.4. The third part of the model, i.e. the circumferential rings consisting 

of 19 components, is represented by the template (CG-E). CG-E is modelled using the set 

of cross-sections existing in the corresponding DM template (DM-E), where DM-E stores 

the set of C-channels, described in Appendix Table E.2. Table 4.5 illustrates the data for 

model A1. The simple example shown in Figure 4.4 illustrates the mechanism of 

interaction between the model structural components and their corresponding dataset 

modules, where the colours have been suggested to recognize the different structural 

components of the model, where the red refers to the meridional girders, the blue refers to 

the diagonal braces, the green represents the circumferential rings, the brown represents 

the in-between braces, and the grey refers to the unutilized dataset module. 

➢ Cross section designation: This is the commercial identification of cross sections. 

Structural sections can also be enumerated in order of decreasing second moment of area, 

to simplify optimization. These designations are illustrated for each commercial category 

as shown Appendix Table E.1 to Appendix Table E.8 fixed in Appendix E. 

Ultimately, the component group templates {CG-A, CG-B, …, CG-H} and their respective 

dataset modules {DM-A, DM-B, …, DM-H} are the most substantial tools used to perform the 

structural modelling needed to perform the sizing optimization for the dome roof frame. 
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Figure 4.4 Simple example showing how the structural component groupings CGs are linked 

to their DMs counterparts in structural modelling process. 

 Simplified Modelling 

Ten simplified frame models corresponding to ten different dome configurations are 

numerically formulated in this section. Five are single layer lattices (e.g. trimmed ribbed, 

Schwedler, Lamella, hybrid Schwedler-Lamella and geodesic configurations), and five are 

double layer lattices with related configurations. For each model, the process of automating the 

generation of nodes, generation of finite elements, and the discretization of the resulting 

structure into identifiable structural components is described. The initial values and 

optimization range of the relevant design variables will be clarified for each model. For the 

current study, a rigid joint assumption is used to connect the members of the braced domes, i.e. 

each member in the roof lattice has the frame element capabilities characterised by resisting the 

axial and transverse forces, whilst accounting for the bending and torsional moments that arise 

Groups of structural components 

existing in the dome model  

Template system for component 

groups CG (after customization) 

Template system for dataset 

modules DM 
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from this assumption. Each model was characterized by its respective alphabetical designation 

for referring to it in the subsequent chapters. 

 Trimmed Ribbed Single Lattice Dome (Model A1) 

This configuration can be topologically characterized by two main entities, radial (meridional) 

girders and circumferential rings. Some extra supporting braces could be added to the original 

ribbed network to enhance the structural performance of the model. Trimming radial girders to 

a certain span is behind the difference between the standard and the trimmed ribbed models. 

Referring to section 5.1.3, there are five different shape and topological design variables 

associated with this design. Four of them are integer design variables, as defined by the vector 

DV⃑⃑⃑⃑  ⃑
int which will be defined later in Eq. (5.5), whereas the fifth one is the dome radius (R) 

characterized as continuous variable defined by the vector DV⃑⃑⃑⃑  ⃑
con mentioned in Eq. (5.5). Upon 

the mathematical classification of design variables, DV⃑⃑⃑⃑  ⃑
int for this model essentially includes the 

following variables: 

❖ Number of nodes (𝑁𝑛): which stands for the number of nodes per circumferential ring. It is 

used to determine the angular position for each node in the group of nodes belonging to the 

same circumferential ring as defined in Eq. (4.1). 

❖ Number of rings (𝑁𝑟): which represents the number of circumferential rings existing in the 

model. It is utilized to specify the radius of the circumferential ring as in Eq. (4.4). 

❖ Topological spacing factor (𝑁𝑠): which controls the diversity of the circumferential rings 

with respect to each other and with respect to the central hub of the model. It is defined 

clearly in Eqs. (4.4) & (4.5). 

❖ Topological trimming factor (𝑁𝑡): which governs the trimming space of the model. In other 

words, it decides the proportion of the trimmed space to the intact space of the model, which 

is controlling the length of the secondary meridional girders and the number of rings for the 

dense ribs’ region as demonstrated in Figure 4.6. It is mathematically illustrated in Eqs. 

(4.2) & (4.3). 

Each variable in integer set can select any integer number located within its respective design 

limits listed in Table 4.4. Appendix F lists the set of designations for optimal designs of this 

model and others in this chapter. 

Table 4.4 Optimization range for the shape and topological parameters of model A1. 

 

 

 

 

Design 

variable 

Nn (-) Nr (-) Ns (-) Nt (-) R (m) 

Initial value 40 20 24 10 30 

Lower bound 30 12 10 4 30 

Upper bound 40 20 28 16 60 
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A. Automatic Generation of Nodes 

In each optimization cycle, specifying the values for the design variables mentioned in Table 

4.4 along with the tank radius r, which is constant, is more than adequate to configure the 

governing nodes of the model. Hence, there is no need to use the classic method to create the 

dome roof nodes. Smart mathematical formulae are prepared for this purpose, where they are 

formulated in MATLAB to perform this task. The process starts with determining the angular 

position for each node located within specified circumferential ring, i.e. the angular position 𝜃𝑖 

for any node (i) belonging to circumferential ring (j) can be defined as: 

𝜃𝑖 = [
2𝜋𝑖

𝑁𝑛
] {

𝑖 = 1, 3, 5, … , 𝑁𝑛        𝑓𝑜𝑟 1 ≤  𝑗 ≤ 𝑁𝑑𝑟

 𝑖 = 1, 2, 3, … ,𝑁𝑛     𝑓𝑜𝑟  𝑁𝑑𝑟 <  𝑗 ≤ 𝑁𝑟
}  (4.1) 

where, i is an integer counter starting from 1 and extending to comprehend the group of nodes 

belonging to the circumferential ring (j), j is an integer counter beginning with 1 and extending 

over the group of circumferential rings existing in the model. 𝑁𝑑𝑟 is the number of rings for the 

dense ribs’ region as illustrated in Figure 4.6. By introducing the variable “trimming fraction” 

(𝜆𝑡), the correlation between the number of rings for the dense ribs’ region (𝑁𝑑𝑟) and the total 

number of rings (𝑁𝑟) could be posed in formula (4.2): 

𝑁𝑑𝑟 = ‖(1 − 𝜆𝑡)𝑁𝑟‖ + 1  (4.2) 

where, ‖(1 − 𝜆𝑡)𝑁𝑟‖ is a rounded integer number that reflects the number of rings for the non-

trimmed region. The topological trimming fraction (𝜆𝑡) is related to the dummy integer variable 

called topological trimming factor (𝑁𝑡) as stated in Eq. (4.3). 

𝜆𝑡 = 0.05𝑁𝑡  (4.3) 

Similarly, the radius for the jth circumferential ring (𝑟𝑗) can be expressed as: 

𝑟𝑗 = 𝑟 [
𝑗

𝑁𝑟
]
𝜆𝑠

,     j=1, 2, 3, …, 𝑁𝑟  (4.4) 

in which,  𝑟  is the tank radius, 𝜆𝑠  is the topological spacing fraction, which is inversely 

proportional to the topological spacing factor as demonstrated in Eq. (4.5). 

𝜆𝑠 = 1
(0.05𝑁𝑠)

⁄   (4.5) 

It is remarkable that the coordinates of the nodes, calculated in Eqs. (4.1) & (4.4), are describing 

the positions of nodes in terms of polar coordinates. Therefore, trigonometric relations are 

needed to transfer these coordinates to their equivalent Cartesian coordinates as stated in the 

following equations: 

𝑥𝑖,𝑗 = 𝑟𝑗 cos 𝜃𝑖  (4.6) 

𝑦𝑖,𝑗 = 𝑟𝑗 sin 𝜃𝑖   (4.7) 
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where, 𝑥𝑖,𝑗 & 𝑦𝑖,𝑗 are the Cartesian coordinates for a certain node when it is defined by the radial 

position ( 𝑟𝑗 ) and the angular position ( 𝜃𝑖 ). By introducing the parameter dome offset 

(𝑧𝑑𝑜𝑚𝑒_𝑜𝑓𝑓𝑠𝑒𝑡), the z-coordinate (𝑧𝑖,𝑗) for each node could be computed according to Eq. (4.8). 

𝑧𝑖,𝑗 = 𝑧𝑗 = 𝑧𝑑𝑜𝑚𝑒_𝑜𝑓𝑓𝑠𝑒𝑡 + √𝑅2 − 𝑟𝑗
2  (4.8) 

where, the relation (𝑧𝑖,𝑗 = 𝑧𝑗) indicates that the z-coordinate for the set of nodes located within 

certain circumferential ring (j) is not a function of angular position (𝜃𝑖) due to the axisymmetric 

nature of the dome surface. 

The set of key nodes for the initial design of model A1 is shown in Figure 4.5. The total number 

of generated nodes is 1121, created in systematic manner such that each circumferential ring, 

located within the dense ribs’ region, will have number of nodes equals to Nn, whereas the 

number of nodes constituting any circumferential ring within the trimmed region equals to the 

half of Nn. As result, the total number of nodes is (2Nr×Nn - (Nr - Ndr) ×Nn+1), where Nr is 

the number of circumferential rings for the entire model, 𝐍𝐝𝐫 is the number of rings for the 

dense ribs’ region. Wind load will be interpreted as nodal loads through manipulating the 

pressure data file exported by the CFD program, so the distribution of the wind loads is 

depending on total number of nodes existing in the dome roof frame. 

B. Automatic Generation of Connecting Elements 

Elements are created by connecting pairs of nodes. The finite element model for the initial 

design implemented with automatic numbering of elements is clearly described in Figure 4.6. 

The total number of elements counted for the initial design of model A1 equals 2720. 

 

 

Figure 4.5 Automatic numbering of nodes for the initial design of model A1. 
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Figure 4.6 Automatic numbering of elements performed for the initial design of model A1. 

C. Identification of Structural Components 

In this model, there are 52 components allocated as 20 axisymmetric components (CG-C) for 

the meridional girders, 13 axisymmetric components (CG-D) for the right-inclined braces and 

19 axisymmetric components (CG-E) for the circumferential rings (see Table 4.5). Figure 4.7 

is designed to show the ID number for each structural group using the available range of colours 

provided by the MATLAB software, starting at the primary blue, which stands for number 1, 

ending at the primary red, which represents the ID number for the final component in the 

system. 

 

Figure 4.7 Structural component number for the initial design of model A1. 

Trimmed ribs’ region  

Dense ribs’ 

region 

Dense ribs’ 

region  

CG-C coloured with 

blue and cyan 

(radial girders) 

CG-D coloured with 

green 

(diagonal braces) 

CG-E coloured with 

yellow, orange and red 

(circumferential rings) 
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Table 4.5 Data for the initial design of model A1. 

Number of Nodes 1121 

Number of Elements 2720 

Number of Structural Components 20+13+19 = 52 

S
tr

u
ct

u
ra

l 
C

o
m

p
o
n
en

ts
 CG-A (Empty) DM-A (Unutilized) 

CG-B (Empty) DM-B (Unutilized) 

CG-C (Meridional Girders) 20 comps. modelled by DM-C using 'S20x96' 

CG-D (Right-inclined Braces) 13 comps. modelled by DM-D using '8 x 4 x 5/16' 

CG-E (Circumferential Rings) 19 comps. modelled by DM-E using 'C8x18.75' 

CG-F (Empty) DM-F (Unutilized) 

CG-G (Empty) DM-G (Unutilized) 

CG-H (Empty) DM-H (Unutilized) 

 

 Schwedler Single Lattice Dome (Model B1) 

This model is characterized as ribbed dome with full diagonal braces, hence there are radial 

(meridional) girders, circumferential rings and diagonal braces as shown in Figure 4.8. 

Therefore, Equations (4.1) to (4.8) are applicable to this model with implementing minor 

changes to them. For instance, Eq. (4.1) could be rewritten as: 

𝜃𝑖 = [
2𝜋𝑖

𝑁𝑛
] , i=1, 2, 3, …, 𝑁𝑛  (4.9) 

where, there is no topological trimming factor (Nt ) existing in this model. This model is 

controlled by three topological parameters (Nn, Nr & Ns), 1 shape parameter (R) and 31 sizing 

parameters, as shown in Table 4.6 and Table 4.7. Other details about generation of nodes are 

demonstrated in Eqs. (4.3) through (4.8). Hence, the total number of nodes is (Nr×Nn+1), which 

is equal to 595 for the reference design. The automatic numbering of nodes for this model is 

shown in Appendix Figure B.1. The finite elements generated for the initial design of model 

B1 is depicted in Appendix Figure B.2, where the total number of elements recorded for this 

model is reached 1674 as listed in Table 4.7. 

Referring back to the structural discretization mechanism of model A1 and according to Table 

4.7, there are 4 main groups containing the 31 structural components of the model. As a result, 

CG-A represents the radial girders of the model, CG-C stands for the right-inclined braces, CG-

D includes the left-inclined braces, and CG-E stands for the circumferential rings. The 

abovementioned component groups are modelled by their respective dataset modules: DM-A, 

DM-C, DM-D and DM-E respectively. For instance, the group of meridional girders (CG-A) 

has modelled by DM-A using S-type I-beams defined in Appendix Table E.1, where CG-A has 

customized to consist of 5 structural components. Thus, there are 4 templates of component 

groups (CG-B, CG-F, CG-G & CG-H) left empty without any data, i.e. the number of structural 
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components for each of these templates is equal to zero. Subsequently, the corresponding 

dataset modules (DM-B, DM-F, DM-G and DM-H) are left unutilized. Figure 4.8 shows the 

numbering of structural components for model B1. 

Table 4.6 Optimization range for the shape and topological parameters of model B1. 

 

 

 

 

 

Table 4.7 Data for the initial design of model B1. 

Number of Nodes 595 

Number of Elements 1674 

Number of Structural Components 5+11+10+5 = 31 
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 CG-A (Meridional Girders) 05 components modelled by DM-A using 'S20x96' 

CG-B (Empty) DM-B (Unutilized) 

CG-C (Right-inclined Braces) 11 comps. modelled by DM-C using '9 x 5 x 1/2' 

CG-D (Left-inclined Braces) 10 comps. modelled by DM-D using '9 x 5 x 1/2' 

CG-E (Circumferential Rings) 05 components modelled by DM-E using '9 x 5 x 1/2' 

CG-F (Empty) DM-F (Unutilized) 

CG-G (Empty) DM-G (Unutilized) 

CG-H (Empty) DM-H (Unutilized) 

 

 

Figure 4.8 Structural component number for the initial design of model B1. 

Design 

variable 

Nn (-) Nr (-) Ns (-) R (m) 

Initial value 54 11 20 30 

Lower bound 36 06 10 30 

Upper bound 72 16 30 60 

CG-A coloured with blue 

(radial girders) 

CG-C coloured with cyan 

(right-inclined braces) 

CG-E coloured with red 

(circumferential rings) 

CG-D coloured with green 

(left-inclined braces) 
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 Lamella Single Lattice Dome (Model C1) 

The main difference between model C1 and model B1 is attributed to the noticeable topological 

morphing between the two models, caused by replacing the meridional girders of model B1 by 

equivalent circumferential elements in model C1. Thus, model C1 has no radial girders, instead 

it contains a dense mesh of circumferential rings with crossway diagonal braces. An identical 

configuration of nodes could be seen in the models B1 and C1, hence Eq. (4.9) can be applied 

for this model. Similarly, Eqs. (4.3) through (4.8) can be exploited to perform the structural 

modelling for model C1. The set of topological and shape variables for model A1 are listed in 

Figure 4.9. The total number of nodes counted for the initial design has reached 755, whereas 

the corresponding number of elements has amounted to 2146. 

As noted in Table 4.9, model C1 consists of 37 components allocated over three categories 

(CG-C, CG-D and CG-E). The structural sections stored in the dataset memory modules are 

represented by rectangular hollow sections (RHS) as detailed in Appendix Table E.4. Figure 

4.9 shows the different structural IDs of model C1 using wide scope of colours as a smart 

method to avoid the complexity of numbering. Accordingly, the blue refers to the right-inclined 

braces, the green refers to the left-inclined braces, whereas the yellow refers to the 

circumferential rings on the outer periphery and the red identifies the circumferential rings 

closer to the dome hub. 

Appendix Figure B.3 illustrate the numbering of nodes for reference design of model C1, 

whereas Appendix Figure B.4 shows the element numbering for the same model. 

 

 

Figure 4.9 Structural component number for the initial design of model C1. 

CG-A is empty 

(no radial girders) 

CG-C coloured with blue 

(right-inclined braces) 

CG-E coloured with 

yellow, orange and red 

(circumferential rings) 

CG-D coloured with green 

(left-inclined braces) 
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Table 4.8 Optimization range for the shape and topological parameters of model C1. 

 

 

 

 

 

Table 4.9 Data for the initial design of model C1. 

 

 Hybrid Schwedler-Lamella Single Lattice Dome (Model D1) 

This model is hybrid version of models B1 and C1, hence a hybridization parameter termed as 

topological morphing factor (Nm) will be added as design parameter to the set of integer design 

parameters defined in Table 4.6. In fact, Nm controls the process of creating meridional or 

circumferential girders in the basic rhombic grid of the dome roof lattice, i.e. it affects the 

structural configuration of the dome whether generated as Schwedler, Lamella or blend of them. 

This process could be further illustrated by introducing the dummy variable called topological 

morphing fraction (𝜆𝑚), which is directly correlated to the integer variable (Nm) as stated in Eq. 

(4.10). 

𝜆𝑚 = 0.05𝑁𝑚  (4.10) 

The fraction (𝜆𝑚) plays a significant role in deciding the appropriate morphological shape of 

dome roof lattice. The last statement can be interpreted logically in the following formula: 

{
𝑖𝑓  ( 𝜆𝑚𝐿𝑐𝑖𝑟𝑐𝑢𝑚) <  𝐿𝑚𝑒𝑟𝑖𝑑        →       𝐿𝑚𝑒𝑟𝑖𝑑 = 0 (𝐿𝑎𝑚𝑒𝑙𝑙𝑎)

𝑒𝑙𝑠𝑒𝑖𝑓 ( 𝜆𝑚𝐿𝑐𝑖𝑟𝑐𝑢𝑚) ≥  𝐿𝑚𝑒𝑟𝑖𝑑 → 𝐿𝑐𝑖𝑟𝑐𝑢𝑚 = 0 (𝑆𝑐ℎ𝑤𝑒𝑑𝑙𝑒𝑟)
}  (4.11) 

where, 𝐿𝑚𝑒𝑟𝑖𝑑  and 𝐿𝑐𝑖𝑟𝑐𝑢𝑚  are the virtual distances measured along the meridional and 

circumferential lines respectively for each rhombic cell in the basic grid of dome roof as shown 

in Figure 4.10. Thus, Eq. (4.11) specifies the appropriate morphological shape for the dome 

roof frame whether Schwedler, Lamella, or hybrid version of them. The concept is based on 

Design 

variable 

Nn (-) Nr (-) Ns (-) R (m) 

Initial value 58 13 20 30 

Lower bound 36 06 10 30 

Upper bound 80 20 30 60 

Number of Nodes 755 

Number of Elements 2146 

Number of Structural Components 13+12+12 = 37 
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CG-A (Empty) DM-A (Unutilized) 

CG-B (Empty) DM-B (Unutilized) 

CG-C (Right-inclined Braces) 13 components modelled by DM-C using '9 x 5 x 

1/2' 

CG-D (Left- inclined Braces) 12 components modelled by DM-D using '9 x 5 x 

1/2' 

CG-E (Circumferential Rings) 12 components modelled by DM-E using '9 x 5 x 1/2' 

CG-F (Empty) DM-F (Unutilized) 

CG-G (Empty) DM-G (Unutilized) 

CG-H (Empty) DM-H (Unutilized) 
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creating circumferential elements to establish for Lamella patterns or creating radial elements 

to establish for Schwedler patterns instead, where the process can be implemented locally and 

in an axisymmetric manner to enhance the possibility of creating a hybrid version of the two 

parent configurations. 

The shape and topological variables for model D1 are given in Table 4.10. The same approach, 

as used to create the geometries in models A to C, is adopted for this model. Here the total 

number of nodes stated in Appendix Figure B.5 and Table 4.11 is 529. The finite elements 

created for this model is shown in Appendix Figure B.6, which indicates that the number of 

elements is 1488 as listed in Table 4.11. 

There are 31 structural components allocated over 4 main groups CG-A, CG-B, CG-C and CG-

D. The components belonging to CG-A are modelled using the cross-sectional specifications 

found in DM-A, which are the set of universal beams 'UB 356x171x45' introduced by British 

standard fixed in Appendix Table E.7. The data of component groups for this model are given 

in Table 4.11. In this aspect, Figure 4.11 shows the ID numbers for the structural components 

of this model, where the upper numeric value of the colour bar stands for the ID number for the 

final component in the model represented by the innermost circumferential ring. 

Table 4.10 Optimization range for the shape and topological parameters of model D1. 

 

 

 

 

 

Table 4.11 Data for the initial design of model D1. 

 

 

 

Design variable Nn (-) Nr (-) Ns (-) Nm (-) R (m) 

Initial value 48 11 20 35 45 

Lower bound 32 06 10 20 30 

Upper bound 64 16 30 50 60 

Number of Nodes 529 

Number of Elements 1488 

Number of Structural Components 3+10+10+8 = 31 
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 CG-A (Meridional Girders) 03 components modelled by DM-A using 'UB 

356x171x45' 

CG-B (Right-inclined Braces) 10 components modelled by DM-B using '9 x 5 x 1/2' 

CG-C (Left- inclined Braces) 10 components modelled by DM-C using '9 x 5 x 1/2' 
CG-D (Circumferential Rings) 08 components modelled by DM-D using '9 x 5 x 1/2' 

CG-E (Empty) DM-E (Unutilized) 
CG-F (Empty) DM-F (Unutilized) 
CG-G (Empty) DM-G (Unutilized) 
CG-H (Empty) DM-H (Unutilized) 
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Figure 4.10 Graphical illustration of the morphological elements influencing the formation of 

the hybrid SL configuration (model D1). 

 

Figure 4.11 Structural component number for the initial design of model D1  

 Geodesic Single Lattice Dome (Model E1) 

This model has a completely different configuration to those for the previous models, where 

the model is recognized by presence of basic polygon with number of sides (Nn), constructed 

at the dome hub to represent the crown of the dome roof frame. Accordingly, the number of 

nodes (Nn) for previous models could be replaced by the number of sides for the basic polygon 

of this model. The number of sides for each ring is directly proportional to the ring number 

based on assuming that the counting of rings starts from the dome hub towards the periphery. 

However, the integer parameter (Nr), standing for the number of rings, is following the same 

Lcircu
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Lmerid 

CG-A coloured with blue 

(radial girders) 

CG-B coloured with cyan 

(right-inclined braces) 

CG-D coloured with 

yellow, orange and red 

(circumferential rings) 

CG-C coloured with green 

(left-inclined braces) 
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formulation as the previous models, and the topological spacing factor (Ns) is calculated in the 

same procedure as the last model. The topological parameters Nm and Nt are not in this model. 

The design is divided therefore into Nn identical segments and is symmetric under axial rotation 

of θbasic = [
2π

Nn
]. The node positions in segment k (k=1, 2, 3, …, Nn) given by Eq. (4.1) can be 

reformulated as: 

θi,j
k = (i − 1) [

θbasic

j
] + (k − 1) ∗ θbasic 

(i=1, 2, 3, …, j), (j=1, 2, 3, …, Nr), (k=1, 2, 3, …, Nn) 

 (4.12) 

where, θi,j
k  is the angular position for node located at geodesic ring radius rj within kth side of 

the basic polygon, whereas i is a counter extending from 1 to the number of the current 

circumferential ring (j), i.e. i is an integer counter ranging over the series of nodes belonging to 

the same circumferential ring (j) and existing in the same side of the basic polygon of geodesy. 

For instance, substituting i=1, j=1 and k=1 into Eq. (4.12) will result in zero value for angular 

position, i.e. (𝜃1,1
1 =0), which represents the angle of the fundamental radial line of the geodesy. 

Also, j is an integer counter for the circumferential rings, rj is the radius of the circumferential 

ring j as defined in Eq. (4.4). See the previous note. 

Hence, Eqs. (4.6) and (4.7) can be reformulated as stated in Eqs. (4.13) and (4.14) respectively. 

𝑥𝑖,𝑗
𝑘 = 𝑟𝑗 cos 𝜃𝑖,𝑗

𝑘   (4.13) 

𝑦𝑖,𝑗
𝑘 = 𝑟𝑗 sin 𝜃𝑖,𝑗

𝑘   (4.14) 

where, 𝑥𝑖,𝑗
𝑘  & 𝑦𝑖,𝑗

𝑘  are the Cartesian coordinates for certain node corresponding to the radial 

position (𝑟𝑗) and the angular position (𝜃𝑖,𝑗
𝑘 ). Eqs. (4.4) through (4.8) can be applied directly to 

this model without any change. The shape and topological variables of model E1 are shown in 

Table 4.12. The nodes depicted in Appendix Figure B.7 are used to create the geometry of the 

initial design of model E1 shown clearly in Appendix Figure B.8. The number of nodes 

developed by the initial design of model E1 is 727, whereas the number of elements used in this 

structural analysis is 1936. There are 41 structural components existing in this model 

categorized over 4 structural sets (CG-A, CG-B, CG-C and CG-D). The first group is modelled 

by DM-A using 'S15x50', whereas the other three groups are modelled by DM-B, DM-C and 

DM-D as explained in Table 4.13. Figure 4.12 shows the numbering of the structural 

components included in model E1. 
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Table 4.12 Optimization range for the shape and topological parameters of model E1. 

 

 

 

 

 

 

Table 4.13 Data for the initial design of model E1. 

Number of Nodes 727 

Number of Elements 1936 

Number of Structural Components 11+10+10+10 = 41 
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CG-A (Meridional Girders) 11 components modelled by DM-A using 'S15x50' 

CG-B (Right-inclined Braces) 10 components modelled by DM-B using '9 x 7 x 1/2' 

CG-C (Left- inclined Braces) 10 components modelled by DM-C using '9 x 7 x 1/2' 
CG-D (Circumferential Rings) 10 components modelled by DM-D using '9 x 7 x 1/2' 

CG-E (Empty) DM-E (Unutilized) 
CG-F (Empty) DM-F (Unutilized) 
CG-G (Empty) DM-G (Unutilized) 
CG-H (Empty) DM-H (Unutilized) 

 

 

 

Figure 4.12 Structural component number for the initial design of model E1. 

 

 

 

 

Design 

variable 

Nn (-) Nr (-) Ns (-) R (m) 

Initial value 11 11 20 30 

Lower bound 06 06 10 30 

Upper bound 16 16 30 60 

CG-A coloured with 

blue 

(meridional girders) 

CG-B coloured with cyan 

(right-inclined braces) 

CG-D coloured with 

yellow, orange and red 

(circumferential rings) 

CG-C coloured with green 

(left-inclined braces) 
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 Trimmed Ribbed Double Lattice Dome (Model A2) 

Double lattice models are characterized by having two layers of lattices (upper and lower) along 

with in-between connecting braces as sketched in Figure 4.13. Therefore, in addition to the 

continuous design parameters (DV⃑⃑⃑⃑  ⃑
con), considered in the single lattice models (models A1 to 

E1), two extra shape variables will be added to the vector of continuous shape variables (DV⃑⃑⃑⃑  ⃑
con) 

of the double lattice models in order to control the shape the in-between space, i.e. the space 

bounded by the primary and secondary layers of the dome. These two extra variables are: 

➢ Height Fraction (ɳ=H2/H1): this parameter calculates the vertical height (H2) with respect 

to the primary or nominal height of the tank (H1), where H2 is the vertical height measured 

from the tank bottom to a point determined by intersecting the lower lattice with the 

cylindrical shell of the tank. 

➢ Dome Radius Ratio (Ʊ=R2/R1): this parameter determines the radius of curvature for the 

lower lattice (R2) as function of curvature radius of the upper lattice (R1), where R1 is the 

primary or nominal radius of curvature for the dome. 

Figure 4.13 details the relevant shape parameters existing in the double lattice modelling of the 

dome roof. C1, C2 are the curvature centres for the upper and lower lattices respectively. ∆S is 

the gap between the upper and lower lattices along the central axis of the tank (it is a function 

of ɳ and Ʊ). 

∆S = R1 + zdome_offset1 − (R2 + zdome_offset2)  (4.15) 

zdome_offset1 = H1 − (√R12 − r2)  (4.16) 

zdome_offset2 = H2 − (√R22 − r2)  (4.17) 

By substituting Eqs. (4.16) and (4.17) into (4.15), the gap between layers at the hub region of 

the tank can be rewritten as: 

∆S = R1 + H1 − (√R12 − r2) − R2 − H2 + (√R22 − r2) 

      = R1 − R2 + H1 − H2 − (√R12 − r2) + (√R22 − r2) 

 (4.18) 

∆S cannot be negative, otherwise the design will lose its consistency and will be impractical. 

As consequence, a new design constraint has been introduced for the double lattice models, 

which ensures ∆S is positive: 

∆S ≥ 0.04  (4.19) 

Eq. (4.19) represents geometrical constraint for the double lattice modelling. If certain design 

point has dissatisfied the term in Eq. (4.19), it could be healed through adjusting one of the 

parameters mentioned in Eq. (4.18). Accordingly, it is recommended to select H2 or R2 to 

implement this task. Currently, H2 has been chosen to perform this task, where H2 must be 
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recalculated such that to achieve the lower bounds of Eq. (4.19), i.e., the inner lattice is lowered 

so that the constraint is met. 

The number of nodes for model A2 is equal to 1474 as indicated in Table 4.15. Appendix Figure 

B.9 shows the nodes of the reference design of model A2, whereas the elements of the same 

model are shown in Appendix Figure B.10. On the other hand, Figure 4.14 shows the ID number 

for the structural components involved. The data of the model are summarized in Table 4.15, 

where the overall number of elements is 4353, and the number of components is 102 subdivided 

into 7 groups, where the template CG-F is left empty. The interfacing mechanism between the 

model component groups CGs and the relevant DMs illustrated in Figure 4.4 is applicable to 

this model. 

 

 

Figure 4.13 Simple sketch for double lattice model demonstrating the extra shape variables 

added to the continuous set of design parameters. 

 

Table 4.14 Optimization range for the shape and topological parameters of model A2. 

 

 

 

Design 

variable 

Nn (-) Nr (-) Ns (-) Nt (-) R (m) ɳ (-) Ʊ (-) 

Initial value 32 15 20 10 30 0.95 1.10 

Lower bound 24 10 10 4 30 0.85 0.90 

Upper bound 40 20 30 16 60 0.95 1.10 

r R1 
R2 

Lower Lattice 

Upper Lattice 

H1 
H2 

C1 

C2 

∆S 

Intermediate 

Braces 
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Table 4.15 Data for the initial design of model A2. 

 

Figure 4.14 Structural component number for the initial design of model A2. 

 Schwedler Double Lattice Dome (Model B2) 

The difference between model B1 and model B2 is attributed to the number of lattices existing 

in the model. Thus, the characteristic design parameters of the double lattice modelling (ɳ & Ʊ) 

will be added to the set of parameters mentioned in Table 4.6 to produce the new set of design 

parameters for model B2 as shown in Table 4.16. The number of nodes noticed for this model 

(see Appendix Figure B.11) counts to 992, whereas the corresponding number of elements 

counts to 4186 as shown in Appendix Figure B.12. Model B2 consists of 94 structural 

components categorized over 7 groups as summarized in Table 4.17. These components are 

numbered in Figure 4.15. It is observed that the meridional girders are modelled using isometric 

beam section ('ISMB225') designed by Indian standard as indicated in Table E.8. 

 

 

Number of Nodes 1474 

Number of Elements 4353 

Number of Structural Components 30+14+14+28+14+2 = 102 
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CG-A (Meridional Girders) 30 comps. modelled by DM-A using '8 x 6 x 3/8' 

CG-B (Right-inclined Braces) 14 comps. modelled by DM-B using 'L4 x 4 x 3/4' 

CG-C (Left- inclined Braces) 14 comps. modelled by DM-C using 'L4 x 4 x 3/4' 
CG-D (Circumferential Rings) 28 comps. modelled by DM-D using '6 x 6 x 1/4' 

CG-E (in-between Braces) 14 comps. modelled by DM-E using '6.125 x 0.375' 
CG-F (Empty) DM-F (Unutilized) 
CG-G (Central Hub Beams) 02 comps. modelled by DM-G using '6.125 x 0.375' 
CG-H (Empty) DM-H (Unutilized) 

CG-A coloured with 

blue 

(radial girders) 

CG-B coloured with cyan 

(right-inclined braces) 
CG-D coloured with 

yellow and orange 

(circumferential rings) 

CG-C coloured with green 

(left-inclined braces) 

CG-E coloured with red 

(in-between braces) 
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Table 4.16 Optimization range for the shape and topological parameters of models B2 and C2. 

 

 

 

 

 

Table 4.17 Data for the initial design of model B2. 

Number of Nodes 992 

Number of Elements 4186 

Number of Structural Components 22+20+20+10+10+11+1 = 94 
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 CG-A (Meridional Girders) 22 comps. modelled by DM-A using 'ISMB225' 

CG-B (Right-inclined Braces) 20 comps. modelled by DM-B using '9 x 7 x 1/2' 

CG-C (Left- inclined Braces) 20 comps. modelled by DM-C using '9 x 7 x 1/2' 
CG-D (Circumferential Rings) 10 comps. modelled by DM-D using 'ISLC200' 

CG-E (Shallow Slope in-

between Braces) 

10 comps. modelled by DM-E using '5 x 5 x 1/2' 

CG-F (Deep Slope in-between 

Braces) 

11 comps. modelled by DM-F using '5 x 5 x 1/2' 

CG-G (Central Hub Beam) 01 comps. modelled by DM-G using '6.125 x 0.375' 
CG-H (Empty) DM-H (Unutilized) 

 

 

Figure 4.15 Structural component number for the initial design of model B2. 

 

 

 

 

Design 

variable 

Nn (-) Nr (-) Ns (-) R (m) ɳ (-) Ʊ (-) 

Initial value 45 11 20 30 0.95 1.10 

Lower bound 30 06 10 30 0.85 0.90 

Upper bound 60 16 30 60 0.95 1.10 

CG-A coloured with 

blue 

(radial girders) 

CG-B coloured with cyan 

(right-inclined braces) 
CG-D coloured with yellow 

(circumferential rings) 

CG-C coloured with green 

(left-inclined braces) CG-E coloured with orange 

CG-F coloured 

with red 
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 Lamella Double Lattice Dome (Model C2) 

There is a significant difference between the number of elements for models B2 and C2, i.e. the 

number of elements for model C2 is 3736 as fixed in Table 4.18, whereas the number of 

elements generated for model B2 is 4186 for the same number of nodes. The configuration of 

nodes for this model is shown in Appendix Figure B.11, i.e., the same as in the Schwedler 

double lattice, whereas the corresponding finite elements are illustrated in Appendix Figure 

B.13. 

The model is initially designed to consist of 84 components as described in Figure 4.16, they 

are incorporated with 7 component groups as demonstrated in Table 4.18. Hence, the only 

unused template is DM-H corresponding to CG-H. 

Table 4.18 Data for the initial design of model C2. 

 

 

Figure 4.16 Structural component number for the initial design of model C2. 

Number of Nodes 992 

Number of Elements 3736 

Number of Structural Components 2+20+20+20+10+11+1 = 84 
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 CG-A (Meridional Girders) 02 comps. modelled by DM-A using 'ISMB225' 

CG-B (Right-inclined Braces) 20 comps. modelled by DM-B using '9 x 7 x 1/2' 

CG-C (Left- inclined Braces) 20 comps. modelled by DM-C using '9 x 7 x 1/2' 
CG-D (Circumferential Rings) 20 comps. modelled by DM-D using 'ISLC200' 

CG-E (Shallow Slope in-

between Braces) 

10 comps. modelled by DM-E using '5 x 5 x 1/2' 

CG-F (Deep Slope in-between 

Braces) 

11 comps. modelled by DM-F using '5 x 5 x 1/2' 

CG-G (Central Hub Beam) 01 comps. modelled by DM-G using '6.125 x 0.375' 

CG-H (Empty) DM-H (Unutilized) 

CG-A coloured with blue 

(radial girders) 

CG-B coloured with blue 

(right-inclined braces) 
CG-D coloured with green 

and yellow 

(circumferential rings) 

CG-C coloured with cyan 

(left-inclined braces) CG-E coloured with orange 

CG-F coloured 
with red 
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 Hybrid Schwedler-Lamella Double Lattice Dome (Model D2) 

A hybrid version of models B2 and C2 using the topological morphing parameters in Eqs. (4.10) 

and (4.11) is used to generate the nodes and create the geometry to perform the structural 

analysis of the model. Accordingly, the program was created 1058 nodes with two layers 

arranged in staggered stacking (i.e., rotated a half interval), as shown in Appendix Figure B.14, 

which are used to generate 3985 elements as depicted in Appendix Figure B.15. The initial 

design is discretized into 84 parts controlled by 7 separated component groups as summarized 

in Table 4.20. The radial beams are modelled using American commercial sections 'S15x50'. 

Figure 4.17 illustrates the numbering of structural components for the initial design of model 

D2. The colours bar range suggests that there are 84 components managed by 7 CGs. 

Consequently, the primary blue lines stand for the radial girders, the lighter blue lines represent 

the right-inclined braces, the cyan-coloured lines represent the left-inclined braces, the green 

lines denote the circumferential rings, the yellow lines refer to the shallow slope in-between 

braces, the orange lines refer to the deep slope in-between braces, and the primary red colour 

identifies the central in-between beam of the dome. Knowing that the structural components in 

each group, except the in-between braces, are identically distributed over the two layers in 

axisymmetric form. 

Table 4.19 Optimization range for the shape and topological parameters of model D2. 

 

 

 

 

Table 4.20 Data for the initial design of model D2. 

Number of Nodes 1058 

Number of Elements 3985 

Number of Structural Components 6+20+20+16+10+11+1 = 84 
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 CG-A (Meridional Girders) 06 comps. modelled by DM-A using 'S15x50' 

CG-B (Right-inclined Braces) 20 comps. modelled by DM-B using '9 x 7 x 1/2' 

CG-C (Left- inclined Braces) 20 comps. modelled by DM-C using '9 x 7 x 1/2' 
CG-D (Circumferential Rings) 16 comps. modelled by DM-D using '9 x 7 x 1/2' 

CG-E (Shallow Slope in-

between Braces) 

10 comps. modelled by DM-E using '5 x 5 x 1/2' 

CG-F (Deep Slope in-between 

Braces) 

11 comps. modelled by DM-F using '5 x 5 x 1/2' 

CG-G (Central Hub Beam) 01 comps. modelled by DM-G using '6.125 x 0.375' 
CG-H (Empty) DM-H (Unutilized) 

 

Design 

variable 

Nn (-) Nr (-) Ns (-) Nm (-) R (m) ɳ (-) Ʊ (-) 

Initial value 48 11 20 35 30 0.90 1.00 

Lower bound 32 06 10 20 30 0.85 0.90 

Upper bound 64 16 30 50 60 0.95 1.10 
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Figure 4.17 Structural component number for the initial design of model D2. 

 

 Geodesic Double Lattice Dome (Model E2) 

This model is constructed as two geodesic lattices placed in straight stacking. Thus, Eqs. (4.12) 

through (4.14) are applicable to this model. The design parameters are listed in Table 4.21. The 

initial design of model E2 is viewed in this section, where the configuration of nodes is shown 

in Appendix Figure B.16. There are 812 nodes. The elements are shown in Appendix Figure 

B.17. The number of elements reached 2368 distributed over 75 components as reported in 

Table 4.22. They are contained in 6 structural groupings. The individual components are 

numbered in Figure 4.18. 

 

Table 4.21 Optimization range for the shape and topological parameters of model E2. 

 

 

 

 

 

 

 

 

 

 

Design 

variable 

Nn (-) Nr (-) Ns (-) R (m) ɳ (-) Ʊ (-) 

Initial value 09 09 20 30 0.95 1.10 

Lower 

bound 

06 06 10 30 0.85 0.90 

Upper 

bound 

12 12 30 60 0.95 1.10 

CG-A coloured with blue 

(radial girders) 

CG-B coloured with blue 

(right-inclined braces) CG-D coloured with green  

(circumferential rings) 

CG-C coloured with cyan 

(left-inclined braces) CG-E coloured with yellow and orange 

CG-F coloured 

with red 
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Table 4.22 Data for the initial design of model E2. 

 

 

Figure 4.18 Structural component number for the initial design of model E2. 

 

 Integrated Modelling 

In this section, 4 kinds of single lattice domed frames will be viewed, as they are modelled 

using ANSYS 18.1. They are selected to be conformable with the single lattice models 

mentioned in section 4.5, excluding model D1. Therefore, the integrated models will be labelled 

with the same sequence of letters adopted in the simplified models, suffixed by number 3 

instead of the numbers 1 and 2 adopted for the simplified models. For instance, trimmed ribbed 

integrated dome model will be labelled as model A3 in reference to its relevance to model A1 

as counterpart simplified model. 3D shear capability Timoshenko beam element, existing in 

ANSYS 18.1 (BEAM189), will be adopted in the structural analysis of the roof frame members. 

Number of Nodes 812 

Number of Elements 2368 

Number of Structural Components 18+16+16+16+7+2 = 75 
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 CG-A (Meridional Girders) 18 comps. modelled by DM-A using '9 x 7 x 1/2' 

CG-B (Right-inclined Braces) 16 comps. modelled by DM-B using '9 x 7 x 1/2' 

CG-C (Left- inclined Braces) 16 comps. modelled by DM-C using '9 x 7 x 1/2' 
CG-D (Circumferential Rings) 16 comps. modelled by DM-D using '9 x 7 x 1/2' 

CG-E (Braces in-between 

Layers) 

07 comps. modelled by DM-E using '6.125 x 0.375' 

CG-F (Empty) DM-F (Unutilized) 
CG-G (Empty) DM-G (Unutilized) 
CG-H (Central Hub Beams) 02 comps. modelled by DM-H using '6.125 x 0.375' 

CG-A coloured with blue 

(meridional girders) 

CG-B coloured with cyan 

(right-inclined braces) 

CG-D coloured with 

yellow and orange  

(circumferential rings) 

CG-C coloured with green 

(left-inclined braces) 

CG-F coloured with red 

(in-between braces) 



60 

 

 Trimmed Ribbed Single Lattice Dome (Model A3) 

The reference design of this model consists of 40 major meridional girders, 40 minor meridional 

girders, 10 circumferential rings and the crown structure. Table 4.23 presents the statistical data 

for the geometric and finite element modelling for the basic design of model A3, where the 

number of keypoints is 920, the number of line bodies shows 250, the number of nodes is 7145 

and the number of elements has reached 8792. 

The design variables are classified, according to their mathematical nature, into three groups: 

integer (DV⃑⃑⃑⃑  ⃑
int), discrete (DV⃑⃑⃑⃑  ⃑

dis) and continuous (DV⃑⃑⃑⃑  ⃑
con) variables. Since this model has single 

lattice, the shape variables are restricted to the dome radius (R) as stated in section 4.2. 

Table 4.23 Data of the reference design of model A3. 
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Num. of Elements 8792 
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Structural Mass 200.4 tonnes 
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CG-A (Major Meridional 

Girders) 

04 comps modelled by DM-A using 'S24x90' 

CG-B (Minor Meridional 

Girders) 

02 comps. modelled by DM-B using 

'S15x42.9' 

CG-C (Circumferential Rings) 05 comps modelled by DM-C using 'C8x18.75' 

CG-D (Crown Gussets) 01 comp. modelled by DM-D using plate 

element with dimensions '2.5 x1.05 x0.021' 
CG-E (Crown Shell) 01 comp. modelled by DM-E using plate element 

with dimensions '2𝜋*2.5 x1.05 x 0.0375' 

CG-F (Empty) DM-F (Unutilized) 
CG-G (Empty) DM-G (Unutilized) 
CG-H (Empty) DM-H (Unutilized) 

The topological variables are divided into two groups: integer (NGussets, NGirders and NRings) and 

continuous, which are listed in Table 4.24 and defined in the following set of equations: 

Seg𝐴 = Frac𝐴 ∗ LPG  (4.20) 

SegB = FracB ∗ (LPG − SegA)  (4.21) 

Seg𝐶 = FracC ∗ (LPG − (SegA + Seg𝐵))  (4.22) 

LSG = (Seg𝐸 + Seg𝐹) = (Seg𝐶 + Seg𝐷)  (4.23) 

where, the primary meridional girder with arc length LPG, defined in Eq. (4.3), is subdivided 

into four segments with meridional lengths (Seg𝐴, Seg𝐵 , Seg𝐶  and Seg𝐷). Accordingly, the 
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secondary radial girder with length LSG is subdivided into two segments (Seg𝐸 + Seg𝐹), which 

are equivalent in length to the last two segments of LPG  (Seg𝐶 + Seg𝐷) . Therefore, Frac𝐴 , 

Frac𝐵  and Frac𝐶  are dimensionless topological design parameters used to control the arc 

lengths of the local segments (Seg𝐴, Seg𝐵, Seg𝐶, and Seg𝐷) and the arc length of the secondary 

girder LSG. The nondimensional representation for the set of continuous topological design 

variables existing within these local regions (Seg𝐴, Seg𝐵, Seg𝐶, and Seg𝐷) is: 

Frac𝑖,𝑗 = 𝑑𝑖,𝑗 Seg𝑖⁄ ,   𝑖 ∈  {𝐴, 𝐵, 𝐶, 𝐷},      𝑗 ∈  {1,2}  (4.24) 

They are constrained by the geometrical constraint. 

0.35 ∗ LPG ≤ LSG ≤ 0.70 ∗ LPG  (4.25) 

where, Frac𝑖,𝑗 is the fraction of the meridional distance 𝑑𝑖,𝑗 to the meridional length of the ith 

segment (Seg𝑖), as illustrated in Figure 4.19. Table 4.24 lists the optimization range for the 

shape and topological variables of model A3. 

Considering sizing parameters of the model, model A3 has subdivided into 13 structural 

components as summarized in Table 4.23. This executed as 4 segments (A, B, C and D) for the 

primary meridional girders, 2 segments (E and F) for the secondary meridional girders, 5 groups 

(A, B, C, D and E) for the circumferential rings, and the crown itself has subdivided into two 

components, crown gussets and crown rings. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.19 Shape and topological parameters for the basic design of model A3. 

CRout LPG 

LSG 

CRin 

R 

r 
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Table 4.24 Optimization range for the shape and topological parameters of model A3. 

 

 

 

 

 

 

 

A. Finite Element Model 

The finite element form for the initial design of model A3 is illustrated in Figure 4.20. 

According to Table 4.23, the crown is modelled using plate elements for this model. Excluding 

the plate structure of the crown, the number of nodes for the roof beams is equal to 3401, 

whereas the corresponding elements has reached 4653. 

 

Figure 4.20 Finite element configuration for the basic design of model A3. 

 

Design variable Initial Value Lower Bound Upper Bound 

NGussets [-] 40 30 50 

NGirders [-] 40 32 48 

NRings [-] 10 5 10 

R [m] 45 30 60 

CRout [m] 2.5 1 3.5 

CRin [m] 1.25 0.2 3 

𝐅𝐫𝐚𝐜𝑨 [-] 0.25 0.2 0.3 

𝐅𝐫𝐚𝐜𝑩 [-] 0.33 0.3 0.4 

𝐅𝐫𝐚𝐜𝑪 [-] 0.50 0.4 0.6 

𝐅𝐫𝐚𝐜𝑨𝟏 [-] 0.4 0.4 0.6 

𝐅𝐫𝐚𝐜𝑨𝟐 [-] 0.8 0.7 0.8 

𝐅𝐫𝐚𝐜𝑩𝟏 [-] 0.2 0.2 0.3 

𝐅𝐫𝐚𝐜𝑩𝟐 [-] 0.6 0.4 0.6 

𝐅𝐫𝐚𝐜𝑪𝟏 [-] 0.4 0.4 0.6 

𝐅𝐫𝐚𝐜𝑪𝟐 [-] 0.7 0.7 0.8 

𝐅𝐫𝐚𝐜𝑫𝟏 [-] 0.4 0.4 0.6 

𝐅𝐫𝐚𝐜𝑫𝟐 [-] 0.8 0.7 0.8 
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B. Identification of Structural Components 

The different structural groups for the reference design of model A3 are shown in Figure 4.21. 

As summarized in Table 4.23, major meridional girders are managed by the component group 

CG-A and modelled by the dataset module DM-A using 'S24x90', minor meridional Girders are 

modelled by DM-B using 'S15x42.9', circumferential rings are modelled by DM-C using 

'C8x18.75', and the crown components are modelled by DM-D and DM-E for the crown gussets 

and shell respectively. The only sizing variables for the plate elements considered in the crown 

modelling are the set of thicknesses and the crown depth, which can be selected from predefined 

discrete set of values as follow: 

1.  From 0.7 m to 1.4 m with step 0.027 m assigned for the crown depth. 

2. From 0.01 m to 0.032 m with step 0.0008 m assigned for the crown gusset thickness. 

3. From 0.015 m to 0.06 m with step 0.0017 m assigned for the crown outer shell thickness. 

4. From 0.012 m to 0.045 m with step 0.0012 m assigned for the crown inner shell thickness. 

The optimal sets of sizing variables for model A3 are given in Appendix Table F.11. 

 

Figure 4.21 Identification of structural components for the basic design of model A3. 
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 Schwedler Single Lattice Dome (Model B3) 

Schwedler dome configuration is first introduced in 1863 by the German civil engineer Johann 

Wilhelm Schwedler. It is one of the common types of braced domes. It is fundamentally created 

as ribbed dome, i.e. set of meridional beams jointed together by horizontal circumferential 

rings. Thence, it is supported further by introducing a diagonal member in each trapezoid cell 

in the basic ribbed dome (Kaveh and Talatahari, 2010b). Thus, model B3 is similar to model 

A3 with observing that the secondary meridional girders are replaced by their equivalent 

diagonal braces. Moreover, the crown structure of model B3 has constructed as beam elements 

instead of the plate elements considered in model A3. Table 4.25 states the statistical facts for 

the basic design of this model, where 521 keypoints are employed to create the model. There 

are 1000 line bodies in the roof structure, the number of nodes has counted up to 2441, while 

the number of elements found in this model is 7730. 

Similar to model A3, the shape design parameter is restricted to the dome radius (R). The 

topological variables are classified into two groups: integer DV⃑⃑⃑⃑  ⃑
int  (NGirders and NRings) and 

continuous (DV⃑⃑⃑⃑  ⃑
con), which are defined in Figure 4.22. The set of topological and shape (integer 

and continuous) design parameters are listed in Table 4.26. The topological continuous 

parameters of model B3, defined in Figure 4.22, are expressed in nondimensional form as given 

in Eq. (4.26). 

Fraci = dxi r⁄ ,   i = {1, 2, 3, … , NRings}  (4.26) 

Fraci is nondimensional fraction for the ith segment, dxi is the horizontal distance measured 

from the central axis of the tank to the end of the ith segment, i = {1, 2, 3, … , NRings}, where the 

outermost end of the segment i represents the point where the circumferential ring i intersects 

the meridional girder as sketched in Figure 4.22. dxi  can be chosen arbitrarily within the 

following dynamic range. 

dxi
0 −

(

 
√r − dxi

0

10

)

 ≤ dxi ≤ dxi
0 +

(

 
√r − dxi

0

10

)

 ,   i = {1, 2, 3, … , NRings}  (4.27) 

where the initial values of dxi (dxi
0) could be estimated according to: 

dxi
0 = i ∗ (

r

NRings + 1
) , i = {1, 2, 3, … , NRings}  (4.28) 

NRings  is the number of circumferential rings existing in the braced dome. The number of 

segments depends only on NRings, i.e. the number of topological continuous variables (Fraci) 

is changing dynamically during the optimization process according to NRings. The set of shape 

and topological parameters are arranged in Table 4.26. 
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Table 4.25 Statistical data for the fundamental design of model B3. 

 

 

 

Figure 4.22 Shape and topological parameters for the basic design of model B3. 
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Num. of Elements 7730 

Num. of Structural Components 6+12+5+1+1 = 25 

Structural Mass 196.23 tonnes 
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CG-A (Meridional Girders) 06 comps. modelled by DM-A using 'S20x96' 

CG-B (Right-inclined Braces) 12 comps. modelled by DM-B using '9 x 5 x 

1/2' 

CG-C (Circumferential Rings) 05 comps. modelled by DM-C using 'C10x30' 

CG-D (Crown Beams) 01 comps. modelled by DM-D using 'S20x96' 
CG-E (Crown Hoop) 01 comps. modelled by DM-E using 'S20x96' 

CG-F (Empty) DM-F (Unutilized) 
CG-G (Empty) DM-G (Unutilized) 
CG-H (Empty) DM-H (Unutilized) 

𝐑 

𝐫 

𝐝𝐱𝟏 

𝐝𝐱𝟐 

𝐝𝐱𝟑 

𝐝𝐱𝟒 

𝐝𝐱𝟓 

𝐝𝐱𝟔 

𝐒𝐞𝐠𝟏 
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Table 4.26 Optimization range for the shape and topological parameters of model B3. 

 

 

 

 

 

 

A. Finite Element Model 

The finite element form for the basic design of model B3 is illustrated in Figure 4.23, where the 

number of elements induced from this meshing is 7730 with number of nodes equal to 2441. 

The structural mass for the initial design was determined to be 196.23 tonnes. The number of 

elements is lower than those for model A3 due to simplifying the crown structure by modelling 

it as beam elements rather than plate elements. 

 

Figure 4.23 Finite element configuration for the basic design of model B3. 

B. Identification of Structural Components 

There is a significant difference in the geometrical details of the structural components 

(compare Table 4.23 to Table 4.25). Figure 4.24 and Table 4.25 refer to existence of 25 

components in model B3. They are managed by 5 CGs, CG-A includes the meridional girders 

with 6 components, CG-B represents the right-inclined braces with 12 components, CG-C 

Design variable Initial Value Lower Bound Upper Bound 

NGirders (-) 40 32 48 

NRings (-) 6 3 8 

R (m) 45 30 60 

𝐅𝐫𝐚𝐜𝒊 (-) According to Eq. 

(4.28) 

According to Eq. 

(4.26) and (4.27) 

According to Eq. 

(4.26) and (4.27) 
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denotes the circumferential rings with 5 components, the radial beams of the crown and the 

crown hoop are included in CG-D and CG-E respectively. 

 

Figure 4.24 Identification of structural components for the basic design of model B3. 

 Lamella Single Lattice Dome (Model C3) 

Model C3 is designed to consist of similar patterns arranged in diamond or rhombic shapes, 

hence no meridional girders are involved. The shape parameter is represented by the dome 

radius (R), whereas the topological integer variables (DV⃑⃑⃑⃑  ⃑
int) are restricted to the number of 

Lamella modules (NGirders) and the number of circumferential rings (NRings). The continuous set 

of topological design parameters (DV⃑⃑⃑⃑  ⃑
con) can be calculated according to Eqs. (4.26) through 

(4.28) as demonstrated in Figure 4.25. The shape and topology design variables are given in 

Table 4.28. 

Table 4.27 summarizes the finite element formulation for the fundamental design of this model. 

The roof frame geometry is created using 1360 lines to generate 3601 nodes and 4480 elements, 

whereas there are 481 vertices utilized to create the model. The total number of nodes over the 

whole tank was 143989, the corresponding elements show 49338. Accordingly, the mass of the 

whole tank has recorded the value 530.05 tonnes, whereas for the roof frame it is estimated as 

209.27 tonnes. 
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Table 4.27 Statistical data for the fundamental design of model C3. 

 

 

Figure 4.25 Shape and topological parameters for the basic design of model C3. 
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CG-A (Right-inclined Braces) 11 comps. modelled by DM-A using '20 x 12 x 

1/2' 

CG-B (Left-inclined Braces) 11 comps. modelled by DM-B using 'L8 x 8 

x 7/8' 

CG-C (Circumferential Rings) 10 comps. modelled by DM-C using 'C15x33.9' 

CG-D (Crown Beams) 01 comp. modelled by DM-D using 'S24x100' 

CG-E (Crown Hoop) 01 comp. modelled by DM-E using 'S24x100' 

CG-F (Empty) DM-F (Unutilized) 
CG-G (Empty) DM-G (Unutilized) 
CG-H (Empty) DM-H (Unutilized) 

𝐑 

𝐫 

𝐝𝐱𝟏 

𝐝𝐱𝟐 

𝐝𝐱𝟑 

𝐝𝐱𝟒 

𝐝𝐱𝟕 

𝐝𝐱𝟖 

𝐒𝐞𝐠𝟏 

𝐝𝐱𝟓 
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𝐝𝐱𝟗 

𝐝𝐱𝟏𝟎 

𝐝𝐱𝟏𝟏 
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Table 4.28 Optimization range for the shape and topological parameters of model C3. 

 

 

 

 

 

A. Finite Element Model 

The finite element form for the initial design of model C3 is illustrated in Figure 4.26, where a 

refined mesh sizing (element size = 300 mm) has used to execute the meshing operation of the 

model. 

 

Figure 4.26 Finite element configuration for the basic design of model C3. 

B. Identification of Structural Components 

The component groups of the reference design of model C3 are shown in Figure 4.27. The 

statistical data are given in Table 4.27. There are 34 components managed by diverse range of 

database modules: DM-A with '20 x 12 x 1/2', DM-B with 'L8 x 8 x7/8', DM-C with 'C15x33.9', 

DM-D with 'S24x100', and DM-E with 'S24x100'. There are 5 CGs needed to control 34 

components in model C3. The first group is CG-A represents the right-inclined braces with 11 

components, the second is CG-B represents the left-inclined braces with 11 components, the 

third is CG-C denotes the circumferential rings with 10 components, the fifth and sixth are CG-

D and CG-E used to model the radial beams of the crown and the crown hoop respectively. 

Design Variable Initial Value Lower Bound Upper Bound 

NGirders (-) 40 30 48 

NRings (-) 11 5 15 

R (m) 45 30 60 

𝐅𝐫𝐚𝐜𝒊 (-) According to Eq. 

(4.28) 

According to Eq. 

(4.26) and (4.27) 

According to Eq. 

(4.26) and (4.27) 



70 

 

 

Figure 4.27 Identification of structural components for the basic design of model C3. 

 Geodesic Single Lattice Dome (Model E3) 

For Model E3, the integer design parameters (DV⃑⃑⃑⃑  ⃑
int) are defined as the number of sides for basic 

polygon (NSides) and the number of circumferential rings (NRings). Equations (4.26) through 

(4.28) are applicable to this model to consider the topological continuous variables of the model 

as illustrated in Figure 4.28. Accordingly, the set of design parameters for model E3 are defined 

in Table 4.30. The data recorded in Table 4.29 details that there are 50439 elements in the whole 

tank as basic design for model E3, while the number of nodes has reached 146077, which is the 

highest in comparison to the previous models due to the configuration nature of the roof frame, 

which is significantly influencing the meshing patterns of the dome roof shell. Moreover, 1450 

lines are used to create this model as illustrated in Figure 4.29 using only 551 keypoints to 

perform this task. The elements total 5160 to yield initial structural mass of 205.66 tonnes, 

while the total number of nodes are 4261. 
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Table 4.29 Statistical data for the fundamental design of model E3. 
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1/2' 

CG-D (Circumferential Rings) 09 comps. modelled by DM-D using 'C10x30' 
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CG-F (Empty) DM-F (Unutilized) 
CG-G (Empty) DM-G (Unutilized) 
CG-H (Empty) DM-H (Unutilized) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.28 Shape and topological parameters for the basic design of model E3. 
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Table 4.30 Optimization range for the shape and topological parameters of model E3. 

 

 

 

 

 

A. Finite Element Model 

The discretization of finite elements for the reference design of model E3 is shown in Figure 

4.29, where the number of main meridional girders of the model is equal to the number of sides 

for the basic polygon of the geodesic dome roof configuration. 

 

Figure 4.29 Finite element configuration for the basic design of model E3. 

B. Identification of Structural Components 

Figure 4.30 shows the different component groups of model E3, which consists of 37 

components controlled by 4 component groups, where CG-A represents the meridional girders, 

CG-B and CG-C are used to model inclined braces, whereas CG-D is used to model the 

circumferential rings– see Table 4.29 for more details. American I-beams, detailed in Appendix 

Table E.1, are used to model the group of meridional girders, RHS, fixed in Appendix Table 

E.4, model the inclined braces of the model, whereas S-type C-channels, detailed in Appendix 

Table E.2, model the circumferential rings of the model. 

Design variable Initial Value Lower Bound Upper Bound 

NSides (-) 10 4 14 

NRings (-) 9 4 14 

R (m) 45 30 60 

𝐅𝐫𝐚𝐜𝒊 (-) According to Eq. 

(4.28) 

According to Eq. 

(4.26) and (4.27) 

According to Eq. 

(4.26) and (4.27) 
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Figure 4.30 Identification of structural components for the basic design of model E3. 

 Modelling of Constructional Material 

Two types of structural materials are considered in the modelling process. First, low carbon 

steel hot rolled plates (A283 Gr C) specified to idealize shell elements of the tank which are 

recommended by (ASTM-A283/A283M − 13, 2013) and the complete schedule for their 

properties is available in the aforementioned standard. Second, low and intermediate carbon hot 

rolled structural steel sections (A36) to represent stiffeners, beams, girders, crown elements and 

other structural sections of the tank which are highly advised by (ASTM-A 36/A 36M − 01, 

2001) and (API Standard 650, 2013) for tank construction. The physical and mechanical 

characteristics for the structural materials adopted in the current model are given in Table 4.31. 

Table 4.31 Physical and mechanical properties for the constructional materials of the storage 

tank as defined by (ASTM-A 36/A 36M − 01, 2001) and (ASTM-A283/A283M − 13, 2013). 

 

 

 

 

 

 

 

 

Component Bottom plate, cylindrical shell, 

dome roof shell, crown 

components, cylindrical shell 

stiffeners (hot rolled plates) 

Dome roof supporting 

frame and top curb 

angle 

Designation A 283 Gr C A 36 

Mass Density [kg/m3] 7850 7850 

Elastic Modulus 

[GPa] 

200 200 

Poisson Ratio 0.3 0.3 

Yield Stress [MPa] 205 250 

Ultimate Tensile 

Strength [MPa] 

485 550 
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 Proposed Optimization Methodology 

 Structural Optimization Problem 

Optimization problems are often framed in terms of minimizing ‘cost’, since often the ultimate 

goal of optimization is to minimize the total financial cost of a product. Thus, the cost to be 

minimized could include material costs, assembly and maintenance costs, personnel, end-of-

life and financial overheads, and so on. In the case of a fuel storage tank, the major cost is 

related to the bulk mass of steel, and construction (and other) costs generally increase along 

with the mass of steel. Minimizing the structural mass, therefore, is also minimizing the overall 

economic cost. However, structural mass is not the only indicator of the quality of a design, and 

it can be useful to include other aspects of the design in the ‘cost’ so that the optimization leads 

to designs with low structural mass without sacrificing other structural requirements. 

Each of the fourteen dome roof designs described in the previous chapter can be specified by a 

finite set of design variables, such as dome roof radius, section numbers (within specified sets 

of commercial sections), and other numbers affecting the structure and topology. The aim of 

optimization is to determine values of the design variables that minimize one or more properties 

of the design, subject to various engineering constraints. This thesis focusses on structural mass 

of the dome roof frame, but safety, stiffness and overall manufacturing cost, for example, are 

also properties that could be minimized. 

The nature of the dome roof design and analysis is highly non-linear. Not only do the 

engineering constraints on maximum stress and maximum deflection tend to make heavier 

designs better from a safety perspective, most of the design variables are integers (e.g., number 

of rings, section number of each girder) and even a small change in one discrete variable can 

have a substantial impact on the whole design. 

The general form of cost function will be explained in section 5.1.4, where the cost function 

can includes all kinds of objectives detailed in section 5.1.1 considering the design constraints 

mentioned in section 5.1.2. However, the current study focuses on minimizing the structural 

mass of the dome roof frame in order to reduce the material cost of the tank, hence the mass 

fraction mentioned in the first part of Eq. (5.1) will be the only term used in the formulation of 

cost function. Therefore, other objectives, mentioned in the second part of Eq. (5.1), will be 

used as design functions for tracking the structural characteristics corresponding to the mass 

reduction of the model during the different stages of optimization. 
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 Objective Function 

The current study proposes the following individual design functions for the model. 

{
 

 ObjectiveW = (
W

W0
)                                                                                         

Objectivej =
1

ncomp
∑ (

j)i

j0)i
)

ncomp

i=1
, j = {SEQV, SED, FREQ, BUCK}

}
 

 

  (5.1) 

where, W0 and W are the initial and current structural masses respectively. Objectivej is the 

objective function based on jth structural response, (
j)i

j0)i
) is the ratio of the current value to the 

initial value for ith structural component under jth structural response. 

SEQV, SED, FREQ and BUCK stand for equivalent stress, strain energy density, frequency, and 

buckling index respectively. They represent the sensitivity numbers of strength, stiffness, 

frequency, and buckling respectively for certain component in the structural system. These 

design functions (SEQV, SED, FREQ and BUCK) are detailed in sections 5.4.1, 5.4.2, 5.4.3 and 

5.4.4 respectively. 

 Design Constraints 

To ensure a structurally safe and reliable design, the structural behaviour of the dome roof frame 

must be subjected to a set of design constraints. They are classified upon the requirement of the 

structural design (Jármai et al., 2006), (Saka, 2007b), (Sui and Yi, 2013), (Savsani et al., 2017). 

They are: 

• Technological or manufacturing constraints: this type of constraints is attributed to 

practical, manufacturing or fabrication limitations (Seifi et al., 2016). 

• Geometrical constraints: these impose relationships among design variables in order to 

ensure a functional, feasible, safe and stable structure. Such constraints are based on 

principles of structural reliability and strength to avoid local failure. 

• Structural performance constraints: which are subdivided into the following groups: 

❖ Stress constraints: in most ductile materials, the von-Mises equivalent stress is 

considered appropriate for determining the likelihood of plastic failure. Through 

comparing the value of maximum equivalent von-Mises stress with the limit value 

(yield stress), as expressed in Eq. (5.2) (Lagaros et al., 2004). 

❖ Displacement constraints: The higher the value of maximum displacement, the lower 

the level of overall structural stiffness. Hence, limiting the value of maximum 

displacement, as indicated in Eq. (5.3), will ensure a safe and reliable stiffness level 

(Zhou and Haftka, 1995), (Chu, 1997) and (Liang and Steven, 2002). 

❖ Buckling constraints: The buckling formula for slender beams is given in Eq. (5.27), 
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where the global buckling for compressive members is first introduced by Euler (Bai, 

2014). Other types of buckling mentioned in the literature like ‘cellular buckling’ or 

‘snaking’ (Burke and Knobloch, 2007) are not considered in this work. Hence, the 

relevant constraints are set on the global buckling calculated according to formula (5.27) 

with adopting the minimum level for safety factor, i.e. SF)buckling=1. Thus, the buckling 

indicator value for each link in the structure must not exceed the unity according to Eq. 

(5.26) (Hasancebi et al., 2010). 

𝑆𝐹 ∗ 𝜎𝑣𝑚
𝑚𝑎𝑥 ≤ 𝜎𝑦𝑝  (5.2) 

where, SF is the safety factor, 𝜎𝑣𝑚
𝑚𝑎𝑥 is the maximum value of the equivalent von Mises stress 

existing in the roof frame model, 𝜎𝑦𝑝 is the yield point (this work considers 𝜎𝑦𝑝=200 MPa for 

the default structural steel). 

𝑈𝑎𝑏𝑠
𝑚𝑎𝑥 ≤ 𝑈𝑢𝑏  (5.3) 

where, 𝑈𝑎𝑏𝑠
𝑚𝑎𝑥  is the maximum value of absolute displacement observed over the whole 

structure, 𝑈𝑢𝑏 is the upper bounds of the displacement constraint (𝑈𝑢𝑏=40 mm, used in this 

work). 

Regarding the buckling limits, the buckling index defined in Eq. (5.26), must not exceed the 

unity as expressed in Eq.  

𝜉𝑖
𝑏𝑢𝑐𝑘_𝑖𝑛𝑑 ≤ 1  (5.4) 

There are thus two generic types of constraints. There are constraints on the inputs - the design 

variables that define the structure - and typically these are expressed as a range (or set) of valid 

values, and can be treated as coordinates in a space of potential solutions. This kind of 

constraints includes the restriction applied to the dimensions and other geometrical details of 

the structure. On the other hand, there are constraints on the outputs - on the performance of the 

structure subject to loading, i.e., the above limits for stress, displacement and buckling. If a 

structure is being optimized for low mass, it must still meet the constraints, and one way to 

reflect that is by using the cost function (the quantity being minimized) is the penalty function 

approach (Ghasemishabankareh et al., 2016), (Yang et al., 2016), (Lieu et al., 2018). The 

penalty function handles the constraints in a smart manner that the cost function will have a 

value approaching to infinity when breaching the constraints. Thus, all valid points in design 

space will have an associated cost. For solutions that meet all constraints, the cost is then (for 

example) the structural mass, but for solutions that violate the constraints the cost is a value 

larger than any acceptable structural mass, and these solutions are thus quantified as non-

optimal (Gomes, 2011), (Babaei and Sheidaii, 2014) and (Pholdee and Bureerat, 2014). 
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 Configuration of Design Variables 

This section presents the characteristics of the design variables considered in this study. The set 

of variables is classified according to shape, topology, and sizing variables. The design input 

parameters are subdivided into: integer, discrete and continuous variables. The complete group 

of variables is subdivided into five subsets, as defined in Eq. (5.5). Each of them is addressed 

by one of the adopted optimization techniques. For instance, Morphing Evolutionary Structural 

Optimization (MESO) is used to handle the sizing variables which are classified as discrete 

subset of variables (DV⃑⃑⃑⃑  ⃑
dis). 

A. Geometric Categorisation 

In general, design variables can be geometrically classified into three types: shape, topology 

and sizing. 

➢ Shape design variables: this set of variables is restricted to the dome radius (R) for all single 

lattice configurations (models A1 to E1 and models A3 to E3), whereas there are two extra 

shape parameters (ɳ and Ʊ) need to be added to the double lattice configurations (models 

A2 to E2). 

➢ Topological design variables: they can be classified into types, integer (DV⃑⃑⃑⃑  ⃑
int) and real 

(continuous) parameters (DV⃑⃑⃑⃑  ⃑
con). The first kind is optimized at stage 1, as they have an 

extreme influence on the structural behaviour which results in high fluctuation at stage 1, 

these are Nn, Nr, Ns, Nt and Nm. The second kind is optimized at stage 2, as they have a 

limited influence on the structural behaviour compared to the first kind (DV⃑⃑⃑⃑  ⃑
int), they are 

related to minor changes on the structure like the positioning of the circumferential rings 

and the set of topological fractions controlling the meridional lengths of the local segments 

of the radial girders and the meridional length of the secondary girder as illustrated in Figure 

4.19 and Table 4.24. 

➢ Sizing design variables: they are mathematically classified as discrete variables. This kind 

of variables can be treated by MESO or any other methods developed to treat with discrete 

optimization problems. The optimization ranges of the discrete sizing variables are 

represented by the commercial tables of structural sections are given in Appendix E. 

B. Mathematic Categorisation 

Mathematically, design variables are categorized into: integer, discrete and continuous. In 

addition to the design variables, there are a number of dependent variables used to describe the 

current state of the optimization, needed for instance to represent the corrected integer form of 

real parameters if applicable. 
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1) Integer design variables (DV⃑⃑⃑⃑  ⃑
int): they represent the topological set of parameters, such as 

number of girders, number of nodes per ring, number of rings, topological trimming factor, 

topological spacing factor, topological morphing factor etc. They are solved at stage 1, as 

demonstrated in Figure 5.9, using the adopted list of conventional metaheuristic strategies, 

introduced in section 5.5. 

2) Continuous design variables (DV⃑⃑⃑⃑  ⃑
con): they represent the dome radius, the other two extra 

shape optimization parameters, related to the double lattice modelling and the set of 

topological fractions defined in Table 4.24, Table 4.26, Table 4.28 and Table 4.30, included 

in section 4.6. They are treated as real (continuous) variables at stage 2 using the adopted 

standard metaheuristic techniques detailed in section 5.5. 

3) Discrete design variables (DV⃑⃑⃑⃑  ⃑
dis): they stand for the sizing set of variables, which are solved 

at stage 2. They are handled by the adapted version of MESO if the hybrid optimization 

technique (MESO-Metaheuristic) is used; otherwise they are handled by the adopted 

metaheuristic techniques adapted to treat using discrete sizing optimization (DSO) if the 

conventional metaheuristic method is employed instead. 

4) Dependent design variables (DV⃑⃑⃑⃑  ⃑
dep ): these are a set of variables called dependent or 

intermediate variables like the additional intermediate variables needed to transform some 

topological variables from dimensional to nondimensional form in order to simplify the 

optimization problem by reducing (or omitting) the side constraints using these dummy 

changes in design variables involved. 

5) Load design variables (DV⃑⃑⃑⃑  ⃑
load ): the load case(s) to be applied to the model during 

optimization in Stage 1 and Stage 2, or for verification in Stage 3. 

The vector of all input design parameters (DV⃑⃑⃑⃑  ⃑) is: 

DV⃑⃑⃑⃑  ⃑ = {DV⃑⃑⃑⃑  ⃑
load, DV⃑⃑⃑⃑  ⃑

dep, DV⃑⃑⃑⃑  ⃑
int, DV⃑⃑⃑⃑  ⃑

dis, DV⃑⃑⃑⃑  ⃑
con}  (5.5) 

 General Form of the Cost Function 

The general form of Cost Function (CF) comprises different sub-objectives of structural 

optimization, these constituent functions are related to: structural weight, strength, stiffness, 

buckling etc. Thus, the general form of CF for multi-objective structural optimization problem 

can be posed as: 

CF = ∑ Cj(Objectivej)
kj

nobj

j=1
,     j = {W, SEQV, SED, FREQ, BUCK}  (5.6) 

where, nobj is the number of sub-objectives considered in the problem, Cj is a constant used to 
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determine the weighted contribution for the jth sub-objective, kj is an index used to tune the 

influence of jth sub-function on the main cost function. Objectivej  is defined in Eq. (5.1). 

However, single objective constrained optimization problem regarding the structural mass 

minimization is considered in the current work, hence, the last four terms of the formula (5.6) 

are neglected, i.e. the cost function is only then defined as the fraction of the structural weight 

divided by the initial weight (j = {W}) of the structure. 

 Morphing Evolutionary Structural Optimization (MESO) 

MESO is a modified version of ESO with more flexibility in application, it is extended to cover 

sizing optimization, as the earlier version of ESO carried out only simultaneous shape-topology 

optimization of continuous structures. MESO can be applied to optimize large scale skeletal 

structures for sizing, but it is not ideal for optimizing large scale space frame structures for 

shape or topology. MESO works by dividing the entire structure into finite number of segments 

called structural components, each defined by their own cross-sectional dimensions and other 

sizing parameters. 

The level of the inherent stresses and strains is the effective measure for the failure in structural 

design. However, if the structure shows low level of stress, then this indicates the presence of 

an inefficient distribution of material over the whole structure (an underutilized material exists). 

In this sense, a Rejection Criterion (RC) is applied to trim out the unnecessary material (i.e. 

remove the redundant material from the low stressed parts). Thus, RC is controlling the 

magnitude of the removed material in each step of optimization through investigating the local 

stress/strain level for each component in the structure. In the MESO procedure, the initial values 

of the design variables are assigned to be the maximum values over their own design domain 

(Abolbashari and Keshavarzmanesh, 2006). 

The initial value of Rejection Ratio (RR) must be assumed to initiate the process according to 

RC principles. RR is increasing progressively as function of the iteration number during the 

optimization cycles until a specified number is reached. At this stage, an Evolutionary Rate 

(ER) is introduced and added to the previous value of RR (Steven et al., 2002) and (Ansola et 

al., 2007): 

RRit = RRit−1 + ER       (it = 2, … ,MaxIt)  (5.7) 

where, (it) is a counter which stands for the iteration number incorporated with the current 

removal of material. (it − 1) is the iteration number for the preceding cycle. (MaxIt) is the 

prescribed maximum number of iterations. The new value of RR is utilized to attain more 

acceptable state of stress in the structure for the subsequent operations Thus, the optimization 

loop continues searching until it attains the new steady state point at which RR will be changed. 
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(Li et al., 1999), (Al-Taee et al., 2008) and (Hu et al., 2012). RR value can range from 0 to 1 

depending on many factors related to the structural analysis of the problem. RR represents the 

fraction of the removed material to the whole material. The reference to measure the quantities 

producing RR depends on the way in which they are eliminated. There is number basis 

elimination or addition, i.e. the number of components are subjected to a reduction or an 

increase. Also, there is quantity basis elimination, i.e. the mass to be removed or added. RR1 is 

the initial value of RR (at it=1), within the range from 0 to 1. Currently, the number basis is 

adopted to implement MESO with RR1= 0.2. 

Stopping Criterion (SC) will be satisfied and this terminates the optimization process depending 

on the conditions of the evolution process. These conditions are: first, when there is no further 

change in structural dimensions (i.e. the design variables have reached their lower limits), 

second, when the structure fulfils a uniform distribution of stress/strain energy. 

After performing the finite element analysis, the ratio of maximum equivalent stress/strain 

energy for each structural component to the maximum equivalent stress/strain energy for the 

entire structure is measured and compared with RR. First, if it meets the necessary conditions 

(see below), then a different section for that particular component will be chosen (Xie and 

Steven, 1993). 

In this research, MESO has been utilized to optimize the sizing parameters for the adopted 

models. Different design criteria have been tested under sizing optimization using the MESO 

strategy to reach the optimum design. The general procedure of MESO strategy used to solve 

the optimization problem for the sizing variables is explained in Figure 5.1. Different 

optimization criteria have been applied to the considered dome roof frame models and the 

optimization results are detailed in Chapter 6, Chapter 7 and Chapter 8. Despite its efficiency 

to perform the sizing optimization for skeletal structures, MESO cannot perform an integrated 

simultaneous shape, topology, sizing optimization for the model by itself. Meta-heuristic 

methods have proved their efficiency to deal with the shape and topology parameters of the 

model. Therefore, the proposal here is to blend MESO with one of the adopted meta-heuristic 

techniques to create an integrated hybridized version of optimization capable of performing a 

simultaneous shape, topology, and sizing optimization with less computational cost than the 

separated mode of optimization techniques. 

According to Figure 5.1, formula (5.6) is used to evaluate the cost function, where it is single 

objective function with j={W}, CW=1 and kW=1. While the optimization parameters used to 

evaluate the rejection ratio (RR) in Eq. (5.7) are RR1=0.2 and ER=0.001. Next, specify the 

optimality criterion (e.g. stress, stiffness, buckling etc.) to evaluate the corresponding 

sensitivity numbers for the structural components. Thereafter, use the general sense of Eqs. 
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(5.9) and (5.10) to judge the removal or addition of material for the considered structural 

component. After resizing process (removal and addition of material), a new geometry will be 

constructed to perform a new structural analysis to obtain the output response and the new 

design will be tested against the prescribed design constraints using Eq. (5.2), (5.3) and (5.4) 

for stress, displacement and buckling respectively. If the design is succeeded to pass the test, 

then it will be recorded in the list of candidates. If not, it will be recorded as penalized solution 

and another new analysis will be attempted. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 Flow chart demonstrating the optimization steps adopted by MESO strategy 

considered in the present work. 

Yes 

No 

Record the current solution and 

designate it as candidate design 

point 

Stop the optimization process 

and select the optimum design 

among the set of design points. 

Print the results of the 

optimum design. 

 𝐢𝐭 ≥ 𝐌𝐚𝐱𝐈𝐭𝟏 + 𝐌𝐚𝐱𝐈𝐭𝟐 

 
Does Eq. (5.2) satisfy? 

and 

Does Eq. (5.3) satisfy? 

and 

Does Eq. (5.4) satisfy? 

 

Yes 

No 

Define the cost function in the main 

computational program (MATLAB) 

 

➢ Define MESO parameters (ER, RR, RSF, COMP, SEC_NO and SEG_NO) 

➢ Define the schedules of dataset modules (CGA, CGB, …, CGH). 

Specify the initial position 

(Initial Set of Input Parameters). 

Evaluate the corresponding values of 

Cost Functions (apply Eq. (5.6)). 

A. Evaluate the corresponding sensitivity 

number for each component in the structure. 

B. Perform resizing, using MESO, for the 

structural components satisfying Eqs. (5.9) & 

(5.10) over the whole structure. 

A. Assign the desired optimization criterion for MESO 

B. Freeze (deactivate) the role of shape & topology groups of input 

parameters by simply set their magnitudes to a constant value  

C. Activate the role of sizing design parameters by indicating the 

appropriate variability range for them. 

Analyse the new set of 

output parameters and 

assess the new cost 

function 

Set the appropriate penalty for the 

cost function and write the result in 

CSV File to identify the current 

solution as failed design point due to 

violating design constraints. 

❖ Build the corresponding geometry 

❖ Perform the FE structural analysis 

2-Resizing of the structural 

components that satisfying the 

conditions of the prescribed 

design criterion 

1-Calculate the initial design 

and estimate the initial 

structural response of the mode 

3-Select the 

optimum design 

❖ Build the corresponding geometry 

❖ Perform the FE structural analysis 
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The final statement of the diagram explains how to stop the optimization process and select the 

optimum design. This is implemented by comparing the current iteration number to the 

maximum number of iterations specified for stage 2. The maximum number of iterations is 

supposed according to analysis type, i.e. it is assumed to be (MaxIt1+MaxIt2=12+24=36) for 

integrated modelling, (MaxIt1+MaxIt2=20+40=60) for simplified single lattice modelling and 

(MaxIt1+MaxIt2=20+80=100) for simplified double lattice modelling. 

 

 Bi-directional MESO (BMESO) 

BMESO is the most flexible approach in ESO family, where there is no necessity to 

suppose an oversized design domain (background structure) since BMESO can be 

adapted to include the addition and subtraction in the optimization procedure. Another 

merit of BMESO, is that it works perfectly on a wide array of engineering applications 

from large scale space frames to the small size plate samples. The general procedure for 

BMESO is detailed in the following steps (Yang, 1999) and (Querin et al., 2000): 

1. Assign the upper and lower bounds for the design variables, then choose an initial 

arbitrary set of values for the design variables, provided that the initial set is located 

within the predefined bounds mentioned above to start the optimization process. 

2. Build the corresponding geometry for the model and specify the number of structural 

components in the system. 

3. Assign the Optimality Criterion (OC) for the design, i.e. stress, stiffness etc. and set 

the design constraints. 

4. Perform the structural analysis using appropriate Finite Element (FE) software. 

5. Calculate the sensitivity number for each structural part in the system as 

demonstrated in section 5.4. 

6. If a homogenous state for the sensitivity numbers has been reached across the overall 

structural system or when there is no noticeable change in the overall cost function, 

then go to step 12. 

7. Sort the values of sensitivity numbers calculated in step 5. 

8. Reduce the dimensions for the components satisfying Eq. (5.9) by simply selecting 

the next lower set of discrete values (the cross sectional specifications) available in 

the prescribed commercial tables listed in Appendix E. 
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9. Freeze the reduction process for the components in step 8 when they reach their 

lower bounds, even though they are satisfying Eq. (5.9). 

10. Increase the dimensions for elements satisfying Eq. (5.10) by simply selecting the 

next higher set of discrete values (the cross sectional specifications) available in the 

prescribed commercial tables listed in Appendix E. 

11. Freeze the boosting process for the components in step 10 when they reach their 

upper bounds, even though they are satisfying Eq. (5.10). Return to step 4. 

12. Stop the optimization process and select the optimum trade-off model among the 

candidate design points. 

 Optimality Criteria 

The main aim of any structural optimization survey is to reduce the structural weight or 

minimize the cost function, which is a complicated form of other behavioural, operational, 

functional, constructional, manufacturing, and practical requirements of the structural design. 

The most significant design criteria that affect the design procedure is that one correlated to the 

structural safety issues of the structure, such as (Hasancebi et al., 2010),(Haftka, 2013), (Kaveh 

and Ghazaan, 2015), (Salam et al., 2015) and (Wu et al., 2017): 

1. Overall structural stiffness. 

2. Maximum equivalent stress in the structure. 

3. Maximum absolute displacement in the structure. 

4. Directional displacement at specified point within the structure. 

5. Buckling load factor. 

6. Natural frequency and compare it to the excitation frequency. 

Any of abovementioned functions could be treated as equality or inequality constraint, whereas 

the constraints that control the design variables are called side constraints (Chu, 1997) (Yang, 

1999). However, the current study considers the constraints of the cases 2, 3 and 5 of the 

abovementioned list, where the stress, displacement and buckling are constrained according to 

the relations (5.2), (5.3) and (5.4) respectively as illustrated in section 5.1.2. It is noteworthy 

that the safety factor (SF) is chosen depending on the optimization stage and the severity of the 

situation, where in stage 1 a relatively high safety extent was assumed, i.e. SF=1.6, 2 and 2 for 

stress, displacement and buckling respectively, whereas stage 2 was carried out considering 

strict safety conditions, i.e. SF=1 for each of stress, displacement and buckling constraints. 

The earliest design investigations based on rigorous rules of optimality criteria is the Fully 

Stressed Design (FSD) which is fundamentally scaling the design variables set according the 
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ratio of element stress to the allowable stress as shown below (Bendsoe, 1989) (Xie and Steven, 

1993): 

𝑥𝑖
𝑛𝑒𝑤 = 𝑥𝑖

𝑜𝑙𝑑 ∗ [
𝜎𝑖

𝜎𝑎
]  (5.8) 

Eq. (5.8) represents the iterative form of FSD optimization, 𝑥𝑖
𝑛𝑒𝑤, 𝑥𝑖

𝑜𝑙𝑑 are the values of design 

variable for the current and the last iterations respectively. 𝜎𝑖 is the element stress, 𝜎𝑎 is the 

allowable stresses of material. 

The strain energy density (SED) is a typical function exploited by optimality criteria rules to 

obtain minimum level of strain energy over the whole structure. The ideal utilization of 

optimality criteria can be achieved mathematically through discretising the structure into certain 

number of structural components as demonstrated in Chapter 4. Each component has its own 

sensitivity number and share with a weighted value in the overall cost function of the structure 

as explained in section 5.1.4 (Abolbashari and Keshavarzmanesh, 2006) (Huang and Xie, 

2007). 

The main merit of this strategy is its practicality to treat with the cost function in an engineered 

and organized manner to ensure an acceptable progression towards the optimum point. In other 

words, it is guided by a set of mathematical functions called design sensitivity numbers which 

are providing the optimization guideline for MESO to attain the optimum point in terms of cost 

function. It is generally reach the design goal with a relatively small number of analyses 

compared to MP and metaheuristics (Liang et al., 2001) (Tanskanen, 2002) (Ghaffarianjam and 

Abolbashari, 2009). In optimality criteria formulation, each objective function in Eq. (5.1) 

could be a potential participant in the cost function defined in formula (5.6). In this study, a 

single objective formulation has been implemented considering the structural weight as design 

objective (i.e. j = {W}). 

 Stress Criterion 

The earlier studies strength criterion have focused on design variables with continuous-based 

variability, i.e. the element density is assumed as design variable as adopted by Bendsøe and 

Kikuchi (1988) and Duysinx and Bendsøe (1998), followed by ESO invented by Xie and Steven 

(1993) and Xie and Steven (1994), then developed further by Ghaffarianjam et al. (2011). When 

the stress criterion applies, each structural component that satisfies Eq. (5.9) will be subjected 

to dimensional reduction (Abolbashari and Keshavarzmanesh, 2006) and (Hu et al., 2012): 

|σvm)i
max | ≤ RR ∗ |σvm

max|  (5.9) 

On the other hand, if any structural component satisfies (5.10), it will be selected for 

dimensional boost (Yang, 1999) and (Querin et al., 2000). 
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|σvm)i
max | ≥ (1 − RR) ∗ |σvm

max|  (5.10) 

where, |σvm)i
max |, |σvm

max| are the absolute values of the maximum equivalent von Mises stress for 

the ith structural component, and the whole dome roof structure respectively. RR is the Rejection 

Ratio as defined in section 5.2. 

Ultimately, Eq. (5.9) specifies the structural components eligible for material elimination, 

whereas, Eq. (5.10) selects the members that must be subjected to material boost. Therefore, 

|σvm)i
max | is termed as the stress sensitivity number for ith structural component existing in the 

structure. |σvm)i
max | is used to judge whether the involved member is underutilized or overstressed 

from stress viewpoint. When applying these principles, it is expected to attain a maximum 

reduction in structural weight corresponding to a minimum increase in the equivalent stresses 

of the dome roof structure as a whole (Özkal and Uysal, 2009) and (Hu et al., 2012). 

 Stiffness Criterion 

Strain energy (SE) level for the structure reflects the stiffness specifications of the design 

model. Thus, the strain energy density (SED) represents the inverse measure of the overall 

structural stiffness, so by minimizing SE, stiffness properties will improve. For example, 

reducing cross sectional dimensions of beam element will lead to a remarkable increase in SE, 

which will cause a degradation in stiffness properties of the entire structure. As analogous state 

to stress criterion, stiffness criterion is exactly resembling strength criterion and follow the same 

rules to reach the optimum strength with different sensitivity numbers, where Eqs. (5.9) and 

(5.10) are applicable for stiffness criterion (Li et al., 2000) (Ansola et al., 2006) (Ansola et al., 

2007). 

An iterative procedure has been adopted to achieve the stiffness criterion, as this method is 

derived by the governing design criterion formulated using recursive relationship between SED 

and the design variables. SED could be simply defined as the amount of energy per unit volume 

stored in the material as result to its deformation state. Also, the stress-strain curve, presented 

in Figure 5.2, indicates that SED is graphically equal to the area covered by the curve within 

elastic limits as expressed in Eq. (5.11). 

SED=
1

2
𝜎1𝜖1  (5.11) 

where, 𝜎1 and 𝜖1 are the stress and strain for the state of deformation explained in Figure 5.2. 

Thus, resizing the structural elements during the optimization is based on the relationships 

between the optimization parameters defined in Eqs. (5.1) and (5.6), as SE is estimated 

according to the formula (5.15). While, SED, as defined earlier, is equal to SE divided by the 



86 

 

volume measured on element-basis. This recurrence will be terminated when the convergence 

of the cost function is accomplished (Nha et al., 1998)and (Saka and Geem, 2013). 

To illustrate the sensitivity number concerning stiffness criterion, it is important to appoint the 

mathematical relationship between structural stiffness and mean compliance of the structure. It 

is evident that there is an inverse proportionality between the overall structural stiffness and 

strain energy extent existing in the structural system. The integral form of strain energy can be 

given in terms of stress and strain vectors as (Kim et al., 2008): 

SE =
1

2
∫{𝜎}𝑇{𝜀} 𝑑𝑉 (5.12) 

Referring back to Eq. (5.12), it can be reformulated in an alternative in terms load and 

displacement to express the mean compliance in the dome roof frame, where the mean 

compliance is an alternative term for strain energy and can be expressed in the following 

formula (Ghaffarianjam and Abolbashari, 2010): 

𝐶 =
1

2
{𝑃}𝑇{𝑢} (5.13) 

where, C is the overall mean compliance for the structure which represents the inverse measure 

for the overall stiffness of the structural system and this relationship is behind the fact that 

minimizing the strain energy results in maximizing the structural stiffness (Ansola et al., 2007). 

Now, The variation in mean compliance (∆𝐶) can be written as (Chu et al., 1996) (Liang and 

Steven, 2002) (Ansola et al., 2006) :  

∆𝐶 =
1

2
{𝑃}𝑇{∆𝑢} = −

1

2
{𝑃}𝑇[𝐾]−1[∆𝐾]{𝑢} =

1

2
{𝑢𝑖}

𝑇[𝐾𝑖]{𝑢𝑖} (5.14) 

where, {𝑢𝑖} is the displacement vector of ith constituent part. Finally, the sensitivity number 

can be formulated in Eq. (5.15) (Nha et al., 1998): 

 

Figure 5.2 Stress-strain curve showing the definition of SED within elastic limits. 

SED=
1

2
𝜎1𝜖1 

𝜎 

𝜖 𝜖1 

𝜎1 
Plastic region Elastic region 



87 

 

𝛼𝑖 = (
1

2
) {𝑢𝑖}

𝑇[𝐾𝑖]{𝑢𝑖}  (𝑖 = 1,… , 𝑛) (5.15) 

where, 𝛼𝑖 is the strain energy sensitivity number which reflects the change of strain energy due 

to the dimensional modifications in the structural parts and it has positive sign. It is noteworthy 

that for stiffness criterion, it is highly recommended to reduce the dimensions for components 

with lowest values of 𝛼𝑖 in order to attain a minimum increase in compliance. 

When the structure is subjected to multiple loading cases, the sensitivity number is adapted to 

encompass all those conditions effectively. The sensitivity number for ith segment concerning 

the kth load case is mathematically expressed as (Chu et al., 1996) (Ansola et al., 2006): 

𝛼𝑖𝑘 = (
1

2
) {𝑢𝑖𝑘}

𝑇[𝐾𝑖]{𝑢𝑖𝑘}  (𝑖 = 1,… , 𝑛) (5.16) 

where, k refers to the kth load case. {𝑢𝑖𝑘} is the displacement vector of ith portion corresponding 

to kth loading event. It is unusual to obtain a particular element at which its sensitivity number 

for all loading circumstances is the lowest in the structure. It is necessary to consider each 𝛼𝑖𝑘 

alone depending on the proximity of that function to the limits of corresponding strain energy. 

 Frequency Criterion 

Frequency criterion has been first introduced by (Xie and Steven, 1996) and (Zhao et al., 1996) 

and developed by (Pedersen, 2000) (Huang et al., 2010). In this criterion, it is easy to distinguish 

between the inactive components (elements with low frequency sensitivity numbers) and active 

ones (elements with high frequency sensitivity numbers). Eigenvalue investigation of the 

structure presents a good estimation for the dynamic nature of the vibrating structure. The 

dynamic equilibrium equation of motion for the dynamic system can be expressed in terms of 

stiffness and mass matrices as shown below: 

([K] − ωj
2[M]){aj} = 0 (5.17) 

where [K] is the global stiffness matrix, [M] is the global mass matrix, ωj
2 is the jth eigenvalue 

and {aj} is the jth eigenvector corresponding to ωj
2. Rayleigh quotient is an essential factor for 

correlating each of eigenvalue ωj
2  and eigenvector {aj}  through the following relationship 

(Zhao et al., 1996): 

ωj
2 =

kj

mj
 (5.18) 

For which, the modal stiffness and mass matrices kj & mj can be introduced in formulae (5.30) 

and (5.31) respectively: 

kj = {aj}
T
[K]{aj} (5.19) 
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mj = {aj}
T
[M]{aj} (5.20) 

By substituting Eqs. (5.19) and (5.20) into Eq. (5.18), then it can be rewritten in the following 

form: 

∆(ωj
2) ≈

∆kj

mj
−

kj∆mj

mj
2 ≈

1

mj
(∆kj − ωj

2∆mj) (5.21) 

To simplify the process of solving Eq. (5.21) to find the roots of the term ∆(ωj
2) mentioned 

above, a reasonable assumption for {aj} must be carried out to suppose that {aj} is preserved 

constant over any two consecutive optimization cycles, so the magnitude of change can be 

neglected between any two sequential iterations. By adopting this assumption, the difference in 

modal stiffness and mass magnitudes resulting from the reduction or increase of ith element in 

the structure can be given by: 

∆kj ≈ {aij}
T
[Ki]{aij} (5.22) 

∆mj ≈ {aij}
T
[Mi]{aij} (5.23) 

For which [Ki] and [Mi] are the stiffness and mass matrices of ith component, [K] and [M] are 

the global stiffness and mass matrices respectively. Suppose modifying element i due to 

satisfaction of the criterion condition in the jth mode, {aij} is introduced to cover all of the above 

features. Thus, from equations (5.21) to (5.23), the differential term for eigenvalue problem 

might be reformulated as: 

∆(ωj
2) ≈

1

mj
{aij}

T
([Ki] − ωj

2[Mi]){aij}    (i = 1,… , n) (5.24) 

Hence, the sensitivity number for component change that maximize the vibration frequency for 

the overall system is detailed in formula (5.25). 

βij ≈
1

mj
{aij}

T
([Ki] − ωj

2[Mi]){aij}     (i = 1,… , n) (5.25) 

The change in the value of βij indicates the variability in the value of ωj
2 of the jth mode shape 

for the vibrating structure. When only one mode is considered, the modal mass mj in formula 

(5.34) is correlated the mass properties of the component under consideration. 

It is noticeable that the values of βij are ranging from the positive (maximum) to the negative 

(minimum). Hence, the removal of material from components associated with low frequency 

sensitivity number will preserve the reduction occurring in the natural frequency of the 

structural system as low as possible, and reversely, the removal of material from the component 

with higher values of sensitivity numbers will cause a noticeable degradation in frequency 

characteristics of the structural system. 
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 Buckling Criterion 

The buckling sensitivity number (buckling index) can be simply defined as: 

𝜉𝑖
𝑏𝑢𝑐𝑘_𝑖𝑛𝑑 =

𝐹𝑖
𝑐𝑜𝑚𝑝

𝐹𝑖
𝑐𝑟𝑖𝑡_𝑏𝑢𝑐𝑘

  (5.26) 

where, 𝐹𝑖
𝑐𝑜𝑚𝑝

 is the compressive axial force in member (i). For members having tensile axial 

force, the value of 𝜉𝑖
𝑏𝑢𝑐𝑘_𝑖𝑛𝑑  is zero. The Euler critical buckling load (𝐹𝑖

𝑐𝑟𝑖𝑡_𝑏𝑢𝑐𝑘 ) must be 

calculated for each member (i) in the braced dome structure: 

𝐹𝑖
𝑐𝑟𝑖𝑡_𝑏𝑢𝑐𝑘 = �̂�𝜋2 (

𝐸 ∗ 𝐼𝑧𝑧
𝐿2

)
𝑖
  (5.27) 

where, �̂� is a coefficient represent the measure of end loading conditions, i.e. �̂�=4 for rigidly-

jointed members and �̂�=2 for pin-jointed members. E is Young's elastic modulus, Izz is the 

second moment of area for the cross section, L is the effective length of the member (i) (Varma, 

2015). 

 Single Objective Metaheuristic Techniques 

Five metaheuristic methods have been chosen to optimize the dome roof frame models 

considered in this study. These methods are: 

• Artificial Bee Colony (ABC). 

• Bees Algorithm (BA). 

• Differential Evolution (DE). 

• Particle Swarm Optimization (PSO). 

• Simulated Annealing (SA). 

Generally, most metaheuristic techniques use a stochastic search mechanism as a selection 

strategy for generating new solutions. 

 Artificial Bee Colony (ABC) 

Referring to section 2.4.1, four outstanding roles can be distinguished when describing the 

general procedure of ABC technique. 

A. Initial Population 

The initial estimation of metaheuristic variables considered in ABC strategy is performed in a 

stochastic technicality. Many factors are governing the initial position of the relevant variables. 

These are: lower bounds, upper bounds, and the population size for the associated design 

variables. Accordingly, random amounts nectar will be gathered initially by the recruited bees 

assigned for this task. Thus, the initial position vector for the metaheuristic set of variables can 
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be formulated in Eq.  (Karaboga and Akay, 2011), (Özkis and Babalik, 2013), (Xiang and An, 

2013) and (Patel et al., 2016): 

xi,j
(0)

= xi
min + rand[0,1] ∗ (xi

max − xi
min) (5.28) 

i ∈ {1, 2, 3, … , nPop}, j ∈ {1, 2, 3, … , N}. nPop is population size or the number of food sources. 

N is the number of optimization parameters (design variables). xi,j
(0)

 is the initial value of the ith 

design variable joining to the jth individual. xi
min, xi

max are the lower and upper bounds for the 

ith design parameter associated with the jth individual. rand[0,1] stands for a random variable 

distributed uniformly over the range [0,1]. Trying different seeds for this random set of points 

would affect the final result of the technique. 

B. Recruited Bees 

It is remarkable that the number of employed bees is matching exactly the number of food 

sources. As mentioned earlier in this section, the reason behind the robustness of ABC as 

optimization tool is attributed to the organizational style of work and the collaborative nature 

of the hive individuals. That means the work is allocated among the honeybee colony members 

according to the expertise of each one of them. In this sense, employed bees are designated to 

perform the primary metaheuristic search within predefined population size. In this mission, 

recruited bees are expected to obtain the maximum nectar material from the neighboring food 

sources compared to the amount of nectar collected initially. The relevant position for recruited 

bees can be posed in Eq.(5.29) (Baykasolu et al., 2007), (Karaboga and Basturk, 2007a), 

(Karaboga and Basturk, 2008), (El-Abd, 2011), (Karaboga and Akay, 2011), (Akay and 

Karaboga, 2012), (Gao and Liu, 2012), (Ozkis and Babalik, 2013) and (Yu et al., 2013). 

vi,j
it = xi,j

it−1 + ∅i,j ∗ (xi,j
it−1 − xk,j

it−1)  (5.29) 

where, vi,j
it  is the current position of recruited bee i, for the design variable j, calculated for the 

iteration No. (it). xi,j
it−1 is the previous position of recruited bee i, for the design variable j, 

calculated in the iteration No. (it-1). xk,j
it−1  is the position of a randomly selected bee (k), 

concerning the design variable j, calculated at iteration No. (it-1). j = {1, 2, 3, … , N}, N is the 

number of design variables. ∅i,j  is the acceleration coefficient for the associated mutation 

process which is a real random number ranging within the period [−1,+1] . k ∈

{1, 2, 3, … , nPop}  is an integer index selected randomly from the mutant vector 

{1, 2, 3, … , nPop}. 

The latter vector is configured as random set of integer numbers corresponding the positions of 

the previous recruited bees’ group with excluding the integer (i) that corresponds the position 
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of the ith recruited bee under consideration (i.e.vi,j
it ). The perturbation resulting from the 

difference between the preceding positions xi,j
it−1 and xk,j

it−1  is diminishing gradually each 

optimization cycle. There is some control loop to clip the values of metaheuristic variables that 

exceed their prescribed limits. Namely, if the parameter exceeds its boundary value, it will be 

reset equal to its boundary. 

C. Onlooker Bees (Roulette Wheel Selection) 

To start this stage, the fitness function (COSTi ) must be estimated for the recruited bees 

corresponding to the considered onlooker bees (Karaboga and Basturk, 2008), (Zou et al., 

2011b) and (Kong et al., 2013): 

COSTi = 1
(1 + fi)

⁄        if     fi ≥ 0 

COSTi = 1 + abs(fi)     if      fi < 0 

 (5.30) 

where, fi is the value of cost function corresponding to the position of ith recruited bee (i.e. vi,j
it). 

Greedy selection mechanism can be applied to filter out the bad solution and select the 

minimum between vi,j
it  & xi,j

it−1. The profitability of the food source is the only driving parameter 

towards the optimum point. To control this process, the counter C is set to measure the 

feasibility of the current position for the ith bee (whether recruited or onlooker). This counter is 

increasing by one each time the recruited or onlooker bee is failing to improve the nectar 

amount. As penalty, when this counter exceeds a particular limit defined as constant L (see the 

parameters C and LC in Figure 5.3), the corresponding bee will be deprived to revisit its 

respective patch (food source), which causes this failure according to the abandonment rules. 

When the abandonment condition is satisfied, the counter will be reset to 0. 

However, onlooker bees have the choice to land at any of food sources reported by their 

recruited counterparts. This choice is relying on the probability value produced by applying 

Roulette Wheel Selection (RWS) approach to the mean value of nectar quantities gathered by 

the corresponding previous set of recruited bees as given in the Eq. (5.31) (Karaboga and Akay, 

2009), (Patel et al., 2016), (Karaboga and Ozturk, 2011), and (Karaboga and Akay, 2011). 

Pi =
COSTi

∑ COSTi
nPop
i=1

  (5.31) 

where, Pi is the probability distribution value. COSTi is the value of cost function for the ith 

recruited bee. nPop is the number of food sources which is equivalent to the number of 

employed (recruited) bees. 
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Figure 5.3 Logical steps of standard ABC strategy. 

Yes 

No 

Designate the class of variables to be optimized 

according to Eq. (5.5) 

Build the corresponding 

geometry; perform the FE 

structural analysis 

Define the algorithm parameters (MaxIt, LC, A, ∅, nPop, 

nOnlooker, C, P, GlobalBest) 

Specify the position vector for 

the initial population (apply Eq. 

(5.28)) 

Evaluate the corresponding values of cost 

functions (using Eqs. (5.1) and (5.6)); Sort them 

to choose the fittest ones 

Evaluate the corresponding values of cost 

functions (using Eqs. (5.1) and (5.6)); Sort 

them to choose the fittest ones 

Create new position vector for the 

recruited bees using the function 

NewOffspring (apply Eq. (5.29)) 

Build the corresponding 

geometry; perform the FE 

structural analysis 

Evaluate the corresponding values of cost 
functions (apply Eqs. (5.1) and (5.6)); Sort 

them to choose the fittest ones 
 

Create new position vector for the 

onlooker bees using the functions 

RouletteWheelSelection & 

NewOffspring (apply Eqs.(5.30), 

(5.31) and (5.32)) 

Build the corresponding 

geometry; perform the FE 

structural analysis 

 
𝐂 ≥ 𝐋 

A. Evaluate the corresponding values of 

cost functions (using Eqs. (5.1) and 

(5.6)). 

B. Combine the three types of attempted 

bees (recruited, onlooker, & scout). 

C. Sort the corresponding values of cost 

functions for the updated population 

to choose the fittest one. 

Create new random position 

vector for the scout bees (apply 

Eq.(5.28)) 

Build the corresponding 

geometry; perform the FE 

structural analysis 

A. Combine the two types of 

attempted bees (recruited 

& onlooker) in unified 

population  

B. Sort the corresponding 

values of cost functions for 

the updated population to 

choose the fittest one 

Continue to other side 

Yes 

No 

Reduce the coefficients (∅𝒊𝒋 and ∅𝒈𝒋) 

in Eqs. (5.29) and (5.31) 

Stop the optimization process 

and select the optimum trade-

off design among the set of 

design points 

Print the results 

of the optimum 

design 

 
𝐢𝐭 ≥ 𝐌𝐚𝐱𝐈𝐭 
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Depending on Pi and RWS, the new mutant position vector for onlooker bees can be estimated 

according to the formula (5.32) (Akay and Karaboga, 2012) and (Xu et al., 2013) and (Sevim 

et al., 2016): 

vg,j
it = xg,j

it + ∅g,j ∗ (xg,j
it − xk,j

it )  (5.32) 

where, j = {1, 2, 3, … , N} , N  is the number of design variables. ∅g,j  is the acceleration 

coefficient defined in the previous section. k ∈ {1, 2, 3, … , nPop} is an integer index selected 

randomly from the mutant vector {1, 2, 3, … , nPop}. The latter vector is configured as random 

set of integer numbers corresponding the positions selected by exploiting the RWS approach 

for the previous set of recruited bees with excluding the integer (g) that corresponds the position 

of gth recruited bee under calculation (i.e. vg,j
it ). where, g is a random integer number calculated 

as a position for the relevant recruited bee as demonstrated in Eq. (5.33) (Sonmez, 2010), (Kong 

et al., 2013), (Aydoğdu et al., 2016): 

g = find(r ≤ {C}),   r= rand[0,1],   {C}={∑ Pi
nPop
i=1 }, 𝑖 = {1, 2, 3, … , nPop}  (5.33) 

where, r is a random real number ranging from 0 to 1. The probabilistic selection is performed 

to extract the corresponding value of g which is proportional to fitness values when feasible 

solution exists. While, it is inversely proportional to the set of fitness values when the solution 

is infeasible. {C} is the cumulative summation vector of the probabilistic distribution coefficient 

Pi (Özkis and Babalik, 2013). 

D. Scout Bees (Abandonment Criterion) 

The nectar collection of any artificial bee is assessed and updated through the direct comparison 

with the global ideal one called the (global best cost).  Furthermore, there is a record for each 

bee which lists all activities for that particular bee. This record is managed by the monitoring 

bees that write down the scores as a feedback for the visited food sites and the corresponding 

visitor bees. If the position of that specific bee is failed to achieve the required improvement in 

the nectar magnitude for specific number of cycles, then that position is crossed and assigned 

as abandoned site. Thus, obtaining such result necessitates the corresponding bee to renounce 

its food source and start to search for new position as scout bee. The new position (xi,j
(0)

) can be 

defined in Eq. (5.28) (Karaboga, 2005), (Alatas, 2010) and (Gao et al., 2012). 

xi,j
(0)

 is the alternative random position for the ith scout bee concerning the jth decision variable. 

The block diagram presented in Figure 5.3 demonstrates the abbreviated steps to execute the 

optimization process in ABC. The first step is to define the five subsets of design variables as 

given in Eq. (5.5). The next step is to choose the most appropriate values for the algorithm 
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parameters needed to perform a reliable and efficient optimization for the considered 

application. For example, specific values for the optimization parameters of ABC technique, 

listed in Table 5.1, are used to carry out the optimization process for the current application 

(storage tanks). The maximum number of iterations are presented in terms of the optimization 

stages. Thereafter, the position vector for the initial population, represented by Nn, Nr, Nm, Ns, 

and Nt, for stage 1 or R, ɳ and Ʊ for stage 2, needs to be specified according to Eq. (5.28). This 

position represents the initial patches for the recruited bees. Upon this, build the geometry and 

perform the analysis to obtain an initial evaluation of cost. Then, update the positions (patches) 

of recruited bees using Eq. (5.29) and estimate the corresponding cost values. Thereafter, search 

for new positions (or patches) using the information provided by the parent recruited bees as 

formulated in Eq. (5.32) by aid of fitness function COSTi, defined in Eq. (5.30), probabilistic 

distribution coefficient Pi, defined in Eq. (5.31), and the integer (g) chosen by RWS mechanism, 

defined in Eq. (5.33). The exhausted patches will be excluded according to the abandonment 

limits (L=10) to create new scout bees searching randomly in new spots within the design space. 

Finally, all types of bees are sorted according to their cost values to choose the fittest one. 

Table 5.1 Optimization parameters used to implement ABC technique. 

Name Description Value 

MaxIt1 Maximum number of iterations for stage 1 

12 (integrated single lattice) 

20 (simplified single lattice) 

20 (simplified double lattice) 

MaxIt2 Maximum number of iterations for stage 2 

24 (integrated single lattice) 

40 (simplified single lattice) 

80 (simplified double lattice) 

MaxIt3 Maximum number of iterations for stage 3 

7 (integrated single lattice) 

3 (simplified single lattice) 

3 (simplified double lattice) 

nPop Population size 10 

nOnlooker Number of onlooker bees 1 

∅ Acceleration coefficient 0.95 

L Abandonment limit parameter 10 

Pi Probabilistic distribution coefficient According to Eq. (5.31) 

g Rank of individual selected by RWS approach According to Eq. (5.33) 

 

 Bees Algorithm (BA) 

BA, like other metaheuristic techniques is starting its stochastic search through determining the 

initial set of design variables xi,j
(0)

, where foraging bees are starting to search the food sites 

randomly as given in Eq. (5.28) (Ko$, 2010), (Fahmy, 2012), (Tsai, 2014) and (Rajasekhar et 

al., 2017). 
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In which, i ∈ {1, 2, 3, … , nPop}, j ∈ {1, 2, 3, … , N}, i is a counter for population size (nPop), j 

is a counter for design parameters (N), whereas, nPop is the number of honeybees initializing 

the population. N is the number of design variables. rand[0,1] is a random number mediating 

between 0 and 1. This set of initial points is decisive for the subsequent steps as outlined in 

Figure 5.4. 

The size of neighborhood is initially large (𝜓𝑟
0 ≡ 𝜓0) and reduces gradually: 

𝜓𝑟
𝑖+1 = ∅𝜓𝑟

𝑖   (5.34) 

where, ∅ is an acceleration coefficient (cooling off factor is supposed to be between zero and 

one), and the superscript indicates the number of unsuccessful searches in that region. If after 

several attempts the search region does not lead to a better solution, it is assumed to be a local 

minimum, abandoned, and a new search begun elsewhere. 

Key to the BA is managing resources in each iteration, such as the number of new potential 

solutions selected within each active search region, 𝒩(ℎ𝑟 , 𝜓𝑟), and the number of new potential 

solutions selected from across the whole solution space, 𝒳. 

This ambiguity has an impact on the definition of local neighborhoods, i.e., identifying regions 

in solution space that are close to existing solutions. Let 𝒳 be the set of all potential solutions 

to the given optimization problem, then the neighborhood of a given solution 𝑥 ∈ 𝒳 

considering spherical search space can be defined as: 

𝒩(𝑥, 𝜓) = {𝑦 ∈ 𝒳 𝑠. 𝑡. |𝑦 − 𝑥| < 𝜓}  (5.35) 

where 𝜓 is the radius of locality, and |𝑦 − 𝑥| is the metric, i.e., a measure of the distance 

between the two solutions. However, in the above case of sections where multiple orderings are 

possible, neighborhoods can look very different depending on how the metric is defined. 

In general, let 𝑓(𝑥) be the cost function defined over all of 𝒳, and let ℋ be the subset of all 

solutions for which the cost is known, then a further subset of solutions, ℎ1, ℎ2, …, ℎ𝑛 ∈ ℋ, 

ideally with distinct neighborhoods, can be selected for further exploration, with new potential 

solutions selected randomly from the neighborhoods 𝒩(ℎ,𝜓). Reducing the neighborhood 

radius, 𝜓, restricts the search space for new solutions, which can improve convergence to an 

optimum, but can also be overly restrictive if the solution space, 𝒳, is not continuous. 

Unlike ABC, BA population is subdivided into 3 distinct groups of bees (elite, selected, and 

non-selected (random)) with Consider n food sources are available to the bees to collect the 

nectar. Each food spot represents a feasible solution with position and cost, but at the utmost 

there are set of best sites that provide the colony with a nectar more than other sites (i.e. the 

global best). 
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Figure 5.4 General procedure for the standard BA strategy. 
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In BA, three kinds of recruited bees are committed to perform the search within three types of 

patches in the lawn. The first is defined as elite sites with number (ne), as those are managed 

by elite bees with number (nep). The second, category is denoted as selected sites with number 

(ns), which are controlled by (nsp) selected bees, such that (nep > nsp). Considering cubic 

neighborhood search space, both of elite and selected bees are executing the local search 

mechanism with the square bounds [−𝜓𝑟 , +𝜓𝑟]  as defined in Eq. (5.36). The duties are 

allocated for them such that each patch will be visited by at least one recruited bee, i.e. in most 

cases specialized group of bees each are equipped to seek for the nectar within each patch in 

this field of search. Thus, the position of bees inspecting for the food in the vicinity have the 

size nep in case of ne patches and nsp in case of ns patches, is defined in formula (5.36) 

(Aghazadeh and Meybodi, 2011), (Tsai, 2014) and (Rajasekhar et al., 2017): 

𝑢𝑖,𝑗 = 𝑥𝑖,𝑗 + rand[−𝜓𝑟 , +𝜓𝑟] ∗ (x̅j
max − x̅j

min) 
 

(5.36) 

where, i ∈ {1, 2, 3, … , k} & j ∈ {1, 2, 3, … , N}, k is the population size for the current category 

of patches (i.e. nep or nsp), N is defined earlier in this section. 𝜓𝑟 is the radius of neighborhood 

search for the selected patch, where the term rand[−𝜓𝑟 , +𝜓𝑟] is a random number ranging 

from the lower bounds (−𝜓𝑟) to the upper bounds (+𝜓𝑟). The cooling out factor (∅) is working 

on constricting the radius of local search space progressively as formulated in Eq. (5.34) (Koc, 

2010) and (Akpinar and Baykasoğlu, 2014). 

Hence, the remaining sites is called non-selected spots, which have the number (nscout=nPop-

nep-nsp), their positions can be determined randomly through employing the last group of bees 

(scout bees) with number (nscoutp=nscout), as they are exactly equal to the number of non-

selected patches. Thus, the remaining population outside nep and nsp bees is specified to 

perform the role of scout bees by trying a new uniform random search to discover whether the 

new patch is a better option or not. Hence, Eq. (5.28) is applicable for the last group of bees, 

i.e. the scout bees that searching for new sites randomly to improve the quantity of the collected 

food. The same greedy strategy is applied for this method to decide which bee will continue to 

work in the colony for the next iterations. 

Table 5.2 lists the optimization parameters, with their respective values, used in BA method. 

There is no necessity to list the data concerning the number of iterations, since they are identical 

with those carried out in ABC as indicated in Table 5.1. The flow chart shown in Figure 5.4 

explains the main steps used to execute BA algorithm for the current dome roof models. These 

steps can be abbreviated in the following points: 

❖ Create an initial population according to Eq. (5.28). 
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❖ Perform a neighbourhood search within elite sites (ne) with a radius (𝜓𝑟) and population 

size (nep). 

❖ Perform a neighbourhood search within selected sites (ns) with a radius (𝜓𝑟 ) and 

population size (nsp). 

❖ Judge whether the current patch needs to be abandoned by checking its productivity for 

n times and compare it with the number of fails (LC=5) to create new scout bees to 

perform this task. The population size of scout bees is (nPop – (nep + nsp)). 

❖ Sort all types of bees to select the minimum cost among them. 

Table 5.2 Optimization parameters used to implement BA technique. 

Name Description Value 

nPop Population size 10 

ne Number of elite patches 1 

ns Number of selected patches 2 

nscout Number of scout patches 1 

nep Number of elite bees 5 

nsp Number of selected bees 2 

nscoutp Number of scout bees 1 

𝜓𝑟 Radius of neighborhood search 0.2 

∅ Cooling out factor (restriction coefficient) 0.9 

LC Number of fails needed to change the patch 5 

 

 Differential Evolution (DE) 

As detailed in section 2.4.3, the DE algorithm has its own rules to reproduce new generations 

(solutions) by utilizing three evolutionary operators (mutation, crossover and selection). The 

DE collects the required information to create the new offspring from the diverse individuals in 

the original population. Three governing coefficients are employed to perform this job: scaling 

factor (F), crossover probability coefficient (PCR), and the population size (nPop). Those 

constants are depending to some extent on the problem to be solved (Pan et al., 2011), 

(Mohamed and Sabry, 2012) and (Yang et al., 2013). 

A. Initial Population 

The standard form of probability distribution is efficiently exploited to decide the effective 

starting point for the stochastic search carried out by DE. Thus, DE begins with a random 

distribution in N-dimensional space. The initial set of solutions corresponding to this 

randomized set of variables can be evaluated. There are upper and lower limits for the design 

variables and the selection of the random set must be restricted to this range. The uniform 

random distribution function, used in section 5.5.1 given by Eq. (5.28), is exploited to create 
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the initial random set for DE (Mallipeddi et al., 2011), (Yu and Zhang, 2012), (Cai and Wang, 

2015) and (Das et al., 2016). 

B. Mutation Operation 

The group of individuals for certain generation, named “target vector”, are used to produce new 

donor (mutant) vector by technique called vector generator. Thereafter, the mutant vector is 

merged with target vector to produce a trial vector. Consider the arbitrary position vector xi , 

i=1, 2, 3, …, N, where N is the number of design variables. The target vector is mutated to 

produce the trial vector. Active comparison is accomplished for the trial vector against the target 

vector when it reaches nPop, and the principle of the survival of the fittest is applied in this 

process. This process results in updating the target vector to select the fittest values. The most 

common modes of mutation, used in the literature, can be expressed in the formulae (5.37) to 

(5.41) (Zou et al., 2011a), (Yu and Zhang, 2012), and (Cheng et al., 2016). 

x́j
it = xr1

it−1 + F ∗ (xr2
it−1 − xr3

it−1) (5.37) 

x́j
it = xbest

it−1 + F ∗ (xr1
it−1 − xr2

it−1) (5.38) 

x́j
it = xj

it−1 + F ∗ (xbest
it−1 − xj

it−1) + F ∗ (xr1
it−1 − xr2

it−1) (5.39) 

x́j
it = xbest

it−1 + F ∗ (xr1
it−1 − xr2

it−1) + F ∗ (xr3
it−1 − xr4

it−1) (5.40) 

x́j
it = xr1

it−1 + F ∗ (xr2
it−1 − xr3

it−1) + F ∗ (xr4
it−1 − xr5

it−1) (5.41) 

where F is the mutation scaling factor, it is real fraction ranging from 0 to 1, it is used to control 

the difference vectors mentioned in Eqs. (5.37) to (5.41), x́j
it is the mutant vector belonging to 

the jth individual estimated at the current iteration (it), xbest
it−1 is the best position for the preceding 

iteration (it-1), xr1
it−1  is the position vector for the individual ranked r1 calculated at the 

preceding iteration (it-1), and so on for other ranks ( r2, r3, r4 & r5 ). The ranks 

r1, r2, r3, r4 & r5 are random integer indices selected from the set of positions defining the 

individuals vector {1, 2, 3,…, nPop}, provided that those ranks (r1, r2, r3, r4 & r5) are chosen 

from the mutation vector (Vmutation), for which the current index j is excluded. It is also noticed 

that the condition (nPop ≥ 6) must be satisfied in order to allow for  r1, r2, r3, r4 & r5 to 

select their positions freely. (Storn and Price, 1997) (Mallipeddi et al., 2011). 
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C. Crossover Operation 

One of DE merits is the high degree of variance for each design variable within its range, this 

spattering of data can be realized by implementing high level of perturbation using 

approximately binomial distribution over N-dimensional space. Thus, the trial vector for any 

individual (j) could be expressed as series of mutated design parameters as formulated in Eq. 

(5.42) (Ghosh et al., 2011) and (Trivedi et al., 2016). 

p⃑ 𝑗
𝑖𝑡−1 = (p1𝑗

𝑖𝑡−1, p2𝑗
𝑖𝑡−1, … , p𝑁𝑗

𝑖𝑡−1) (5.42) 

To express Eq. (5.42) in terms of decision variables {i=1, 2, …, N}, this entails to introduce the 

crossover probability constant PCR, hence the following logical sentence could be applied 

(Storn and Price, 1997), (Mezura-Montes et al., 2010), (Pan et al., 2011) and (Cai and Wang, 

2015): 

p𝑖,𝑗
𝑖𝑡 = {

x́𝑖,𝑗
𝑖𝑡       if rand[0,1] ≤ PCR   ||    i = rnbr(i)

x𝑖,𝑗
𝑖𝑡−1                                                otherwise

 (5.43) 

According to Eq. (5.43), i={1, 2,…, N} is an integer counter over N-dimensions. rand[0,1] is 

a random fraction uniformly distributed over the range [0,1]. PCR is the crossover probability 

coefficient ranging between 0 and 1. rnbr(i) is the index of the candidate design variable to be 

chosen randomly which is an integer number located within the period {1, 2,…, N} to guarantee 

that the trial vector pi,j
it  selects at least 1 variable from the mutant vector x́i,j

it  (Zaharie, 2005), 

(Mezura-Montes et al., 2010), (Silva et al., 2011), (Elsayed et al., 2011) and (Li et al., 2016). 

A comprehensive explanation for the standard DE strategy is shown in Figure 5.5. 

D. Selection of Global Optimum 

Most of metaheuristic techniques are performing a global search mechanism by the aid of 

greedy strategy which is nominating a global component called a “global best” to compare it 

with other individuals in the population at each iteration. For DE strategy, the trial vector p𝑖,𝑗
𝑖𝑡  

is compared to the target vector x𝑖,𝑗
𝑖𝑡−1 (the original population). Now, if the cost function of the 

trial vector p𝑖,𝑗
𝑖𝑡  is less than or equal to the cost function for the original vector x𝑖,𝑗

𝑖𝑡−1  or 

mathematically [COST
p𝑖,𝑗

𝑖𝑡 ≤ COST
x𝑖,𝑗
𝑖𝑡−1] then x𝑖,𝑗

𝑖𝑡 = p𝑖,𝑗
𝑖𝑡  and if [COST

p𝑖,𝑗
𝑖𝑡 > COST

x𝑖,𝑗
𝑖𝑡−1] then x𝑖,𝑗

𝑖𝑡  

will hold its old value, namely, x𝑖,𝑗
𝑖𝑡 = x𝑖,𝑗

𝑖𝑡−1. 
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Figure 5.5 Logical steps of the conventional DE strategy. 
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The flow of the processes in DE strategy is presented in Figure 5.5, where the DE algorithm is 

used the data listed in Table 5.3 to implement the optimization for the current design models. 

There is no necessity to list the data concerning the number of iterations, since they are identical 

with those carried out in ABC as indicated in Table 5.1. Similar to the BA, the DE starts with 

initial population, hence Eq. (5.28) is used for this purpose. 12 iterations with nPop=10 are 

specified for stage 1 in case of integrated models, 20 iterations for simplified single and double 

lattice models. To find the total number of analyses, simply multiply the number of iterations 

by the population size. For example, the total number of analyses need to be implemented at 

stage 2 for the simplified double lattice model is MaxIt2×nPop = 80×10 = 800. The scaling 

factor of mutation (F) for this work is supposed to be ranging between 0.2 and 0.8. While, PCR 

adopted for the DE technique is 0.3, which is the ideal value for the coefficient to perform the 

crossover efficiently. According to Figure 5.5, updating the position for any individual in DE 

strategy needs to significant operations as follow: 

❖ Perform mutation operation based on specifically selected individuals using one of 

the approaches given in Eqs. (5.37) to (5.41) to produce trial vector. 

❖ Perform 1-way crossover using formula (5.43) and apply the principle of surviving of 

the fittest to update the target vector. 

Table 5.3 Optimization parameters used to implement DE technique. 

Name Description Value 

nPop Population size 10 

BetaMin Lower bound of scaling factor 0.2 

BetaMax Upper bound of scaling factor 0.8 

F Scaling factor of mutation [0.2, 0.8] 

PCR Probability coefficient of crossover rate 0.3 

 

 Particle Swarm Optimization (PSO) 

Section 2.4.4 states that the PSO employs a swarm of particles benefiting from their personal 

and social relations to update their positions during the movement to find the optimal path of 

flight. Thus, the population assumed to represent these particles can be expressed as: 

x⃑ j = {x1,j, x2,j, x3,j, … , xN,j}  (5.44) 

where, x⃑ j stands for the set of design variables existing in the jth voluntary particle swimming 

in the solution space, (N) is the number design variables, j={1, 2, …, nPop}. Thus, at each 

iterative step (it), there are nPop number of feasible solutions act as explorative points called 

“particles”. They are communicating, exchanging information, teaching each other to decide 

the best in terms of their solution values. The transition of position for any particle that remarked 
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in two sequential iterations is based on the social behavior of the swarm. Each particle tries to 

change its location to a better one in the next iteration by collecting the useful data related to 

the set of values of cost functions for other particles in the group (Wetter and Wright, 2004). 

It is noticeable that PSO has a fewer number of optimization parameters relative to EA. The 

general procedure for implementing PSO optimizer can be abbreviated in the following articles 

(Kuo and Huang, 2009), (Talukder, 2010), and (Rini et al., 2011): 

a. Initialize the problem by assigning the number of particles (nPop), specify the initial velocity 

(Vinitial), maximum and minimum velocity (Vmax, Vmin), assume the coefficient of inertia 

(w), and the two learning coefficients (c1 & c2) with the two random fractures (rand[0,1]), 

where[0 ≤  rand [0,1] ≤ 1]. 

b. Initialize the position for each particle randomly within the search space, specify the range 

of velocity for the set of particles. 

c. Calculate the value of cost function for each particle in the system. 

d. Update the personal best Pj
⃑⃑ (t), and the global best g⃑ (t). 

e. Generate new position xj⃑⃑⃑  (t)  by adding the three components of motion to the original 

position of the particle, velocity or inertia component ( V⃑⃑ inertia ), cognitive or personal 

component (V⃑⃑ local), global or social component (V⃑⃑ global) as illustrated in Eqs. (5.45) to (5.49). 

A. Initial Population 

Referring to section 5.5.1, the formula (5.28) is applicable to calculate the position vector for 

the initial population of PSO (Talukder, 2010) and (Chang and Yeh, 2013). It is noteworthy 

that Eq. (5.28) affect the final result of PSO as demonstrated in Figure 5.7. 

B. Inertia Component 

The search space in PSO is the set of all possible solutions for the optimization problem, and 

the task is to find the best possible solutions in the search space. The position vector of particle 

(j) is denoted by xj⃑⃑⃑  (t), it is a member of search space, where j is the index of the particle and t 

is a discrete time step. There is another important parameter for the particle which is the velocity 

denoted by the vector vj⃑⃑⃑  (t). The latter vector describes the movement of the particle in the sense 

of direction, distance, and time step. This component can be given as (Li et al., 2009): 

V⃑⃑ inertia = w ∗ vj⃑⃑⃑  (t)  (5.45) 

where, w is the inertia coefficient which reflects the contribution of particle velocity vj⃑⃑⃑  (t) in 

the new position. This component is used to reduce the diversification caused by other 

components of the particle (Rini, et al. 2011) and (Mazhoud, et al. 2013). 
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C. Personal Component 

In addition to the particle retardation component represented by V⃑⃑ inertia , every particle is 

retaining its local best position (the personal best). Commonly, this component is called the 

local best of PSO due to the considerable influence of local individuals (neighboring elements) 

on the magnitude and direction of this component. Hence, the local (best experience) 

component of the velocity can be posed as (Kuo and Huang, 2009): 

V⃑⃑ local = rand[0,1] ∗ c1 ∗ (Pj
⃑⃑ (t) − xj⃑⃑⃑  (t))  (5.46) 

for which, c1  is the personal acceleration coefficient used to control the participation of 

cognitive (personal) component Pj
⃑⃑ (t) − xj⃑⃑⃑  (t) in the new position of the particle. rand [0,1] is a 

random number in the range 0–1 introduced to preserve the swarm diversity. The graphical 

representation of particle components of movement is shown in Figure 5.6. 

D. Social Component 

PSO is originally formulated as mathematical form imitating a simplified social environment. 

The communication between the flock individuals is the secret behind the sufficient knowledge 

gained about the merits of each particle in the swarm. The aim of this is to recognize the unique 

choreography that mathematically interprets the unpredictable path of bird flock. The global 

component for each particle is oriented towards the location of the best ever particle in the 

swarm at this instant as shown in Figure 5.6. Hence, it can be expressed in (5.47) (Liang et al., 

2006) and (Talukder, 2010): 

V⃑⃑ global = rand[0,1] ∗ c2 ∗ (g⃑ (t) − xj⃑⃑⃑  (t))  (5.47) 

where, 𝑐2 is the global acceleration coefficient utilized to control the tendency towards the 

global best position g⃑ (t) − xj⃑⃑⃑  (t). 

Equations (5.45) through (5.47) can be combined to formulate the general mathematical form 

for updating the velocity vector of the particle as in (5.48): 

where,vj⃑⃑⃑  (t + 1)  is the updated form of particle velocity, whereas the new position of the 

particle is determined through adding up the update of velocity to the original position of the 

particle as formulated in (5.49). 

where, xj⃑⃑⃑  (t + 1) is the updated form of particle position as plotted clearly in Figure 5.6. 

 

vj⃑⃑⃑  (t + 1) = V⃑⃑ inertia + V⃑⃑ local + V⃑⃑ global  (5.48) 

xj⃑⃑⃑  (t + 1) = xj⃑⃑⃑  (t) + vj⃑⃑⃑  (t + 1)  
(5.49) 
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Figure 5.6 Graphical representation for the components contributed in creating the new 

position of the jth particle in PSO. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7 Logical steps of the conventional PSO strategy. 

𝑔 (𝑡) 

𝑃𝑗⃑⃑ (𝑡) 

𝑣𝑗⃑⃑⃑  (𝑡) 

𝑥𝑗⃑⃑  ⃑(𝑡) 𝑥𝑗⃑⃑  ⃑(𝑡 + 1) 

Yes 

No 
Reduce the acceleration coefficient (w) 

mentioned in Eq. (5.45) 

Stop the optimization process and select the 

optimum model among the set of design points 

Print the results of the 

optimum design 

 𝐢𝐭 ≥ 𝐌𝐚𝐱𝐈𝐭 

Designate the class of variables to be optimized 

according to Eq. (5.5) 

Build the corresponding 

geometry; perform the FE 

structural analysis 

Define the algorithm parameters (MaxIt, w, wdamp, phi, chi, 

nPop, c1, c2, kappa, GlobalBest) 

Specify the position vector for 

the initial population (apply Eq. 

(5.28)) 

❖ Evaluate the corresponding values of Cost 

Functions (apply Eq. (5.6)) 

❖ Sort them to choose the fittest ones 

❖ Evaluate the corresponding values of 

Cost Functions (apply Eq. (5.6)) 

❖ Sort them to choose the fittest ones 

Create new position vector for the 

particles using the function MOVE 

(Apply Eq. (5.49)) 

Build the corresponding 

geometry; perform the FE 

structural analysis 

Evaluate the GlobalBest value of cost 

function through the direct comparison 

with the BestParticle(i) 

Evaluate the corresponding values of 

Best Particles (BestParticle(i) = 

Particle(i)) 
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The proceeding of operations executed by PSO for the current models is demonstrated in Figure 

5.7, where the data used to implement the processes are indicated in Table 5.4. There is no 

necessity to list the data concerning the number of iterations, since they are identical with those 

carried out in ABC as indicated in Table 5.1. Similar to DE, PSO starts the journey with initial 

population by adopting Gaussian random distribution approach, as stated in Eq. (5.28). There 

are three distinct components affect the new position of the particle: inertia, cognitive and 

global component. The inertia coefficient (w) for the current application is supposed to be 0.73, 

whereas the coefficients used for both personal and social components are equal (c1=c2=1.5). 

Table 5.4 Optimization parameters used to implement PSO technique. 

Name Description Value 

nPop Population size 10 

w Acceleration coefficient for the inertia component 0.73 

c1 Acceleration coefficient for personal component 1.5 

c2 Acceleration coefficient for social component 1.5 

 

 Simulated Annealing (SA) 

A. Probability Distribution 

When piece of metal is subjected to hot rolling or hot forming, it should be heated to certain 

temperature. Thence, when the hot working is accomplished, the metal starts to recover its 

initial temperature by slow cooling. Quenching process is incorporated with certain discrete 

intervals, thereby the temperature is preserved constant, during the cooling operation. During 

that particular step, the period of temperature constancy is sufficient for attaining the thermal 

equilibrium and this implies maintaining orbital motion for its particles under appointed level 

of activation energy. At this instance of temperature steadiness, the probability of distribution 

for the microscopic configuration could be expressed in the mathematical exponential form of 

Boltzmann allocation (Corana et al., 1987) and (Mahfoud and Goldberg, 1995): 

Pconfig = B ∗ exp (
−Econfig

T
⁄ ) (5.50) 

where, Econfig is the activation energy of the current configuration of atoms. T is the annealing 

temperature. B is Boltzmann constant for probabilistic distribution. 

B. Initial Population 

In SA strategy, the first step is to investigate the initial solution for randomly selected set of 

positions for the design variables within their respective prescribed optimization ranges. As 
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consequence, Eq. (5.28) in section 5.5.1 could be applied to conclude the position vector for 

the initial population. 

C. Mutation Rate 

The second step of SA is to generate certain number of new offspring (neighbours) for each 

individual in the original population by utilizing the evolutionary operator (Mutate), which can 

be mathematically expressed as (Goffe et al., 1992) and (INGBER, 1993): 

yk = xk + sigmak ∗ randk (5.51) 

where, yk, xk are the mutated and the original position for the kth rank of the design parameter, 

sigma𝑘 is the basic scope of mutation corresponding to the design parameter with rank k. randk 

is a random fracture (within the period [0,1]), used to scale the mutated kth parameter. k is the 

rank of the design variable subjected to mutation, which is specified according to the 

probabilistic conditions defined in Eq. (5.52) using prescribed value for mutation coefficient 

(mu) (KLEIN and DUBES, 1989) and (Brown and Huntley, 1992): 

k = {
1, 2, 3, … , n  for randsetk   ≤ mu
0                     for randsetk  > mu

 
 

(5.52) 

where, randsetk is a vector of random fractures selected from the range (0 − 1) with size equal 

to the size of position vector, zero value for k implies that there is no mutation will be performed 

for the kth design variable, while the integer value for k in the upper part of Eq. (5.52) indicates 

the rank of the design variable undergoing mutation process, mu is coefficient stands for the 

mutation rate of the optimization process. 𝑛 is the number of design variables chosen to perform 

the mutation. 

D. Explorative Capability 

Referring to formula. (5.50), the acceptance of new solution is relying on many factors. First, 

the difference in activation energy between the current and the previous states. Second, the 

cooling temperature of the metal under annealing process. 

The gap in activation energy could be computed as the difference between the new solution 

( Econfig
it ) as compared to the last solution ( Econfig

it−1 ), i.e. (Econfig
it − Econfig

it−1 ) . While, the 

temperature is measured for the current iteration (Tit ). Ultimately, the acceptance of new 

solution is realized when the Boltzmann algorithm, with exponential relationship, shown in Eq. 

(5.53) is satisfied (INGBER, 1993) and (Henderson et al., 2008). 

rand[0,1] ≤ B ∗ exp(
−(Econfig

it − Econfig
it−1 )

Tit
⁄ ) (5.53) 
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Where, rand[0,1]  is a random fraction ranging within the interval (0 − 1) . While, the 

temperature Tit  itself is subjected to systematic reduction during the sequential steps of 

optimization that is to reduce the chance of accepting bad solutions because the concerns to trap 

in local optima are diminishing at the final stages of optimization. This reduction can be 

expressed in Eq. (5.54). 

Tit = �̅� ∗ Tit−1 (5.54) 

Where, Tit , Tit−1 are the temperatures for the current and the preceding iterations respectively. 

�̅� is the restriction factor which is in this case equal to 0.96. 

Similarly, sigmait  is subjected to systematic reduction during the optimization process to 

reduce the jumping peaks (causing low climbs) of the newly generated neighbours and bring 

the system to equilibrium state and stabilize the activation energy of the system as shown in the 

formula (5.55) (Henderson et al., 2008) (Li and Landa-Silva, 2011). 

sigmait = ∅ ∗ sigmait−1 (5.55) 

Where, sigmait  , sigmait−1  are the mutation coefficients for the current and the previous 

iterations respectively. ∅ is the cooling factor, which is in this case equalling to 0.95. The 

general procedure for implementing SA strategy used to optimize the current dome roof frame 

model is completely illustrated in Figure 5.8. 

The block diagram shown in Figure 5.8 illustrates the implementation steps of SA used to 

optimize the dome roof models considered in this work. Table 5.5 shows the optimization 

parameters used in SA, where the number of iterations is the same that used in ABC indicated 

in Table 5.1. Two cooling coefficients are used: one for the temperature control (�̅�=0.95), and 

the second is used to control the mutation process (∅=0.95). a mutation rate of (mu=0.5) is 

utilized to create new generations within neighbourhood radius (sigma0=0.2). While, the initial 

temperature is taken as (T0=0.1). 

Table 5.5 Optimization parameters used to implement SA technique. 

Name Description Value 

nPop Population size 9 

nMove Number of neighbours per parent individual 3 

B Boltzmann coefficient 1.0 

mu Mutation rate used to create new neighbours 0.5 

sigma0 Specified initial range of mutation process 0.2 

T0 Initial value of the temperature 0.1 

�̅� Temperature reduction rate (cooling out coefficient) 0.95 

∅ Mutation reduction rate 0.95 
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Figure 5.8 Logical steps of the standard SA strategy. 

No 

Designate the class of variables to be optimized 

according to Eq. (5.5) 

Build the corresponding geometry; 

perform the FE structural analysis 

Define the algorithm parameters (MaxIt, B, �̅�, ∅, nPop, 

nMove, mu, GlobalBest) 

Specify the position vector for 

the initial population (using Eq. 

(5.28)) 

Evaluate the corresponding values of cost 

functions (using Eqs. (5.1) and (5.6)); Sort 

them to choose the fittest ones 

Evaluate the corresponding values of cost 

functions (using Eqs. (5.1) and (5.6)); Sort 

them to choose the fittest ones 

Create new offspring (neighbours) for each 

individual using the function (SAMutate) 

(apply Eq. (5.51)) 

1) Sort the new group of individuals created by combining the accepted 

neighbours with the original individuals and choose the best cost function. 

2) Reduce the temperature (Tit) and the mutation coefficient (sigmait) according 

to Eqs. (5.54) & (5.55) Respectively. 

Refuse this particular 

offspring to join to the group 

of original parents 

Accept this particular 

offspring to join to the group 

of original parents 

(Econfig
it ≤ Econfig

it−1 )  
Yes 

 
Does Eq. (5.53) 

satisfy? 

No 

Build the corresponding geometry; 

perform the FE structural analysis 

Yes 

Yes 

No 

Stop the optimization process and select the 

optimum trade-off design among the set of 

design points 

Print the results of the 

optimum design 

 
𝐢𝐭 ≥ 𝐌𝐚𝐱𝐈𝐭 
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 Metaheuristics with Discrete and Integer Variables 

Metaheuristic techniques are originally invented to treat with continuous design variables, as 

they need to be adapted to deal design variables in integer form such as the number of girders 

and number of rings or other discrete form such as cross-sectional areas of structural members. 

Treating such variables as continuous sets results in trivial or impractical solutions (Saka et al., 

2016) and (Ho-Huu et al., 2016b). 

The fuel storage tank, considered in this investigation, has a large number of integer variables, 

and a large number of discrete variables and the latter variables can be enumerated and also 

treated as integers. In the case of sections (e.g., the structural sections fixed in Appendix E), the 

sections are ordered by second moment of area, from the largest to the smallest, although the 

sections could alternatively be ordered by cross-sectional area. However, MESO is equipped 

with specialized tool to deal with this mixed nature of variables through identifying the relevant 

component groups and their respective designations as explained in section 4.5, model A1, the 

article concerning the identification of structural components illustrated in Figure 4.4 supported 

by Table 4.5. 

On the other hand, in applications associated with discrete or integer variables, metaheuristic 

techniques need to overcome the problem that design space - the space of potential solutions - 

is no longer a continuous space and finding new valid coordinates may be non-trivial (Ho-Huu 

et al., 2015). This study proposes a novel approach to handle such variables through adapting 

metaheuristic techniques to comprehend these parameters, where the solution space, 𝒳, can be 

described therefore as an N-dimensional space where each of the N dimensions (𝒳𝑗 , 𝑗 = 1. . . 𝑁) 

is a bounded predefined subset of integers ℤ, or a bounded subspace of the real line, ℝ, with 

minimum and maximum values 𝒳𝑗
min and 𝒳𝑗

max respectively. For computational efficiency it is 

useful to redefine the neighbourhood as: 

𝒩(𝑥, Ӄ) = {𝑦 ∈ 𝒳 𝑠. 𝑡. |𝑦,𝑗 − 𝑥,𝑗| < Ӄ(𝒳𝑗
max − 𝒳𝑗

min), ∀𝑗} (5.56) 

where, Ӄ is the fraction determining the proximity scaling to the integer bounds, 𝑥,𝑗 ∈ 𝒳𝑗 is the 

jth component of the N-dimensional solution. This scales each dimension according to its 

bounds and allows each component of the solution to be changed independently. 

The space, 𝒳, is a subspace of ℝ𝑁, and indeed it’s convenient to allow the individual to behave 

as real parameter within continuous scope. Hence, metaheuristic technique is communicating 

only with the real parameter, which has authority to fly throughout the fully real space rather 

than be restricted to integer values. The cost function must then be evaluated at the nearest point 

in 𝒳, however, which is potentially not in the current neighbourhood. 
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 Proposed Optimization Strategies 

Metaheuristic techniques, defined in the last section, improve the initial solutions by trial and 

error until the design constraints are satisfied. They rely on chance even with a degree of 

intelligence they exploit. For large-scale structures, the number of iterations is strictly limited, 

since the evaluation of the cost function requires finite element analysis. With this supposition, 

there are concerns about their success to obtain an acceptable solution, even when alternative 

approaches are used.  

MESO, in contrast, starts with an acceptable but suboptimal design and incrementally improves 

the solution, and is ideally suited to optimize cross-sectional dimensions. In this work, the 

reference design is modelled as an overdesigned state and girder sections. During the 

optimization, the structure is progressively weakened, based on an evaluation of the strain 

energy density SED. This is fulfilled by maximizing the minimum SED, where the effect is to 

increase the structural stiffness, thereby reducing deflections and increasing resonant 

frequencies. The mechanism of structural modelling is illustrated in section 4.4. Depending on 

SED distribution throughout the whole structure, the structural components can be ordered 

according to their respective average SEDs, and the components with the lowest selected for 

weakening. The number of groups selected depends on the reduction ratio (RR), which is 

typically about 20%. 

developing MESO to treat the topological and shape variables is not straightforward since these 

can cause a significant impact on the state of structural modelling for the whole structure. For 

instance, changing the number of rings will add or subtract several groups of girders, which 

leads to serious problems to the application of MESO. This is a reasonable justification for 

suggesting a two-stage cascade optimization, illustrated in Figure 5.9, with stage 1 using 

metaheuristic techniques to optimize the integer variables (DV⃑⃑⃑⃑  ⃑
int), and stage 2 to optimize both 

of continuous (DV⃑⃑⃑⃑  ⃑
con) and discrete (DV⃑⃑⃑⃑  ⃑

dis) variables. 

The main notion of the proposed optimization methodology is to nominate the most specialized 

optimization tool for each category of design variables, illustrated in section 5.1.3, so as to save 

the cost and time of computation. As large-scale symmetric structure, the symmetry and the 

consistency of the geometry are requisite features to produce a feasible model during the 

optimization process. Performing the structural optimization for such large-scale structure 

entails to treat with numerous numbers of design variables, especially sizing variables. To cope 

with this, MESO has suggested to control the sizing category of variables by discretizing the 

whole structure into finite number of structural components as illustrated in Chapter 4. This 

discretization has contributed effectively in reducing the number of sizing design parameters, 

where each structural component has its own cross-sectional specifications. Also, it must satisfy 
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the symmetry conditions as the whole structure does. On the other hand, one of each of the 

adopted metaheuristic techniques is utilized to optimize the geometry for other design variables. 

A cascade optimization procedure is used in this methodology as explained by (Kaveh and 

Ghazaan, 2015), i.e. the result of stage-1 will be utilized in stage-2. And the result of stage-2 

will be considered in stage-3 and so on. According to Eq. (5.5), two categories of variables 

(DV⃑⃑⃑⃑  ⃑
dep & DV⃑⃑⃑⃑  ⃑

int) would be activated at stage-1, namely, integer parameters will be optimized 

and other design parameters (DV⃑⃑⃑⃑  ⃑
load, DV⃑⃑⃑⃑  ⃑

dis, & DV⃑⃑⃑⃑  ⃑
con) will be preserved frozen at their initial 

values. Next, at stage-2, the discrete and continuous variables (DV⃑⃑⃑⃑  ⃑
dis & DV⃑⃑⃑⃑  ⃑

con) will be treated. 

In stage 3, the optimal set of integer, discrete, and continuous variables 

(DV⃑⃑⃑⃑  ⃑
dep, DV⃑⃑⃑⃑  ⃑

int, DV⃑⃑⃑⃑  ⃑
dis, DV⃑⃑⃑⃑  ⃑

con ) would be kept constant at their optimal values. This stage is 

suggested to examine the optimal model against constraints for other load cases of the 

application. 

The structural optimization has been directed to minimize the structural weight of the adopted 

models using stiffness criterion. Five different hybrid optimization strategies, MESO-ABC, 

MESO-BA, MESO-DE, MESO-PSO and MESO-SA, have been employed to perform this task. 

These strategies are explained in the next subsections. The first section of the acronym denotes 

to MESO, which is driven by the optimality criterion detailed in section 5.4, whereas the second 

section of the abbreviation refers to the conventional metaheuristic technicality used in line 

with MESO to execute the optimization. The optimization stages for the proposed methodology 

are illustrated in the details of Figure 5.9. The simplified example, exhibited in Table 5.6, 

demonstrates how the adapted MESO is treating with the component section No. and the 

corresponding designation as discrete set of sizing design parameters. 

Table 5.6 Simple example showing the incremental progression of MESO with the relevant 

changes in cross sectional designations. 

Structural 

Component 

Number 

Previous Iteration Data 
MESO 

Manipulation 

Current Iteration Data 

Component 

Status 

Component 

Section No. 

Component 

Designation 

Component 

Section No. 

Component 

Designation 

1 Not Eligible 7 S20x86 7 7 S20x86 

2 Candidate 

Component 
8 S20x75 8+1=9 9 S20x66 

3 Not Eligible 9 S20x66 9 9 S20x66 

4 Not Eligible 10 S18x70 10 10 S18x70 

5 Candidate 

Component 
11 S18x54.7 11+1=12 12 S15x50 

6 Not Eligible 12 S15x50 12 12 S15x50 

7 Candidate 

Component 
13 S15x42.9 13+1=14 14 S12x50 
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• Metaheuristics denotes to the series of techniques (ABC, BA, DE, PSO and SA), illustrated in section 5.5 

Figure 5.9 Simplified flow chart showing the different stages of the proposed optimization 

methodology. 
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 MESO-ABC 

The hybrid optimization strategy MESO-ABC is produced by fusing the optimization features 

of MESO, mentioned in section 5.2, into the optimization characteristics of ABC, explained in 

article 5.5.1, to execute the processes in parallel so as to ensure a comprehensive 

implementation capable of performing a simultaneous shape, topology and sizing optimization. 

In accordance, MESO embraces the individuals of ABC to carry out the optimization 

concurrently with ABC at stage-2, where forage bees are communicating and searching for their 

patches inside MESO plane as illustrated in Figure 5.11. The overall optimization process is 

proceeding according to the steps illustrated in Figure 5.9. Selecting the optimization methods 

according to their specializations along with blending their characteristics in one integrated 

hybrid optimization tool have achieved a significant reduction in computational time and cost. 

The process is incorporated with dividing the design variables, allocated for stage 2, into two 

distinct categories. First, is to assign the shape and topology variables to be solved using 

conventional ABC functions. Second, the sizing design variables of the dome roof frame are 

appointed to be optimized by exploiting MESO principles. The simple sketch presented in 

Figure 5.10 demonstrates the sequence of operations implemented in the proposed MESO-ABC 

strategy. It explains the situation of variables mentioned in the general procedure of the 

proposed methodology presented in Figure 5.9. For example, in model E3, there are two integer 

variables (DV⃑⃑⃑⃑  ⃑
int={NSides, NRings}) need to be optimized at stage 1 to decide the optimal variant 

for the model using ABC technique adapted to treat this type of variables. Thereafter, the hybrid 

MESO-ABC algorithm is the responsible of treating the variables at stage 2. This is fulfilled by 

allocating MESO to deal with the 37 sizing variables (treated as discrete parameters DV⃑⃑⃑⃑  ⃑
dis) 

defined in section 4.6.4 article B (see Table 4.29 and Figure 4.30), while ABC is chosen to deal 

with the 10 shape and topological variables (treated as continuous parameters DV⃑⃑⃑⃑  ⃑
con={R, Fraci} 

i=1, 2, 3, …, 10) defined in Table 4.30 and Figure 4.28. It is noteworthy that the 37 sizing 

variables and the 10 shape and topological variables are treated in parallel sequence at stage 2. 

Subsequently, a simultaneous sizing, shape and topology optimization is realized at this stage 

using MESO-ABC. Also, there are intermediate design variables incorporated with these 

subsets represented by (DV⃑⃑⃑⃑  ⃑
dep={θrot, dxi} i=1, 2, 3, …, 10), where θrot is the angle between 

any two consecutive primary girders and dxi is the linear distance for the ith circumferential 

ring measured horizontally from the central vertical axis of the storage tank as shown in Figure 

4.28. The 4 subsets of design variables are then combined to produce the optimal geometry of 

the model. Finally, stage 3 is prepared to test the validity of the optimal design against design 

constraints considering other load cases of the application using the load subset (DV⃑⃑⃑⃑  ⃑
load). 
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Figure 5.10 Simple sketch showing the sequence of optimization adopted in MESO-ABC. 

 

Figure 5.11 Simple sketch showing the nature of connection between MESO and the 

individuals of ABC. 

Find the optimal set of integer variables 

(DV⃑⃑⃑⃑  ⃑
int={Nn, Nr, Ns, Nt, Nm}) using modified 

ABC adapted according to the proximity 

scaling given in Eq. (5.56) 

Find the optimal set of sizing variables 

(DV⃑⃑⃑⃑  ⃑
dis=set of integer numbers standing for the 

designations of CG-A, CG-B, CG-C, CG-D, 

CG-E, CG-F, CG-G, CG-H) using MESO rules 

defined in section 5.2 subjected to one of the 

optimality criteria defined in section 5.4 

Find the optimal set of continuous 

variables (DV⃑⃑⃑⃑  ⃑
con={R, ɳ, Ʊ, CRout, 

CRin, FracA, FracB, FracC, Fraci} 

i=1, 2, 3, …, Nr-1) using 

conventional ABC technique 

defined in section 5.5.1 

Combine the optimal subsets of design variables 

to specify the geometrical specifications of the 

optimal design (see Eq. (5.5)) 
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e 
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Optimal design 

Test the validity of the optimal design 

against design constraints considering other 

load cases of the application 

Stage 3 
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 MESO-BA 

The hybridization principles mentioned in section 5.6.1, for MESO-ABC, are applicable in 

MESO-BA. As consequence, the characteristics of MESO, detailed in section 5.2, will be 

merged with that for BA, described in section 5.5.2. Similar to MESO-ABC, MESO-BA has 

different kinds of bees: elite, selected and scout bees. They are hovering around their respective 

food sources (patches) within specified MESO pool as schematized in Figure 5.12. The same 

procedure illustrated in Figure 5.10, concerning MESO-ABC, is adopted in this method with 

replacing ABC by BA in stage 1 and MESO-ABC by MESO-BA in stage 2, where the logical 

steps delineated in Figure 5.9 indicate that MESO-BA is used in stage 2 to implement an 

integrated optimization process for the model. Accordingly, BA is used to optimize the 

continuous variables (DV⃑⃑⃑⃑  ⃑
con={R, ɳ, Ʊ, CRout, CRin, FracA, FracB, FracC, Fraci} i=1, 2, 3, …, Nr-

1), while in parallel MESO is used to optimize the girder sections (DV⃑⃑⃑⃑  ⃑
dis). To illustrate this 

hybridization, suppose that solution space is consisting of a finite number of MESO hyperplanes 

identified by n MESO steps (see Figure 5.12). Therefore, when MESO proceeds from the 

current step (n) to the next step (n+1), BA individuals (bees) are transferring accordingly from 

the current MESO plane (with step n) to the next MESO plane (with step n+1). This implies 

that the bees are trying a new solution (within the MESO plane n+1) for DV⃑⃑⃑⃑  ⃑
con. 

 

Figure 5.12 Simple sketch showing the relationship between MESO and BA individuals. 

Scout bee 

Elite patch 

Selected patch 

Selected patch 

Selected patch 

Selected patch Scout bee 

(candidate for step n+2) 

Scout bee Elite patch 

Elite bee 

Scout bee 

Scout 

bee 

Selected 

patch 

Selected patch 

Elite 

patch 

Selected 

bee 

Selected bee 

(candidate for step n+1) 



117 

 

 MESO-DE 

Referring to sections 5.6.1 and 5.6.2, the same hybridization manner will be adopted to produce 

this version. Obviously, MESO-DE strategy is produced by mixing the optimization steps of 

MESO, appearing in Figure 5.1 explained in section 5.2, with the logical steps of DE, mentioned 

in Figure 5.5 of section 5.5.3. As evolutionary and metaheuristic algorithm, there are two 

outstanding merits for DE strategy. First, it has the capability to escape the local minima and 

suggest alternative search paths to secure the model against the trivial solutions and determine 

the global optimum solution. Second, it is robust and reliable enough to handle the multiple 

design constraints, as it has the capability to recognize the boundary lines of the problem to 

avoid approaching them in the subsequent iterations. The mechanism of communication 

between MESO and DE is illustrated in Figure 5.13. While, Figure 5.9 presents the steps of 

optimization needed to implement the proposed optimization methodology, where MESO-DE 

is used to solve the variables assigned for stage 2. 

 

 

Figure 5.13 Simple sketch showing the relationship between MESO and DE individuals. 
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The operations demonstrated in Figure 5.10 can be applied to the method MESO-DE with 

replacing ABC by DE in stage 1 and MESO-ABC by MESO-DE in stage 2. In MESO step n, 

the trial vector (p5), resulting from the probability one-way crossover of the target vector (x5) 

with donor vector (x̍5), transfers to the next level (step n+1) to become x5. In fact, the donor 

vector (x̍5) is generated by performing the mutation of the two positions (x1) and (x8) chosen 

by the roots xr2 and xr3 respectively. The difference vector (x8-x1) is multiplied by the scaling 

factor F=[0.2, 0.8] to update the donor vector (x̍5). Different identities could be recognized for 

DE individuals in MESO plane n compared to those in MESO plane n+1 and so on. MESO in 

this case is significantly reduced the dimensionality of search in the design space by nudging 

the individuals on the most appropriate path to find the optimum point. 

 

 MESO-PSO 

Referring back to sections 5.2 and 5.5.4, this version is generated by combining the logical 

based rules of MESO with the exploitative capability of PSO to produce a hybrid version of 

them. In most cases, it has excellent convergence rate due to the exploitative capability of the 

method. While, it sometimes fails to jump off the local minimum points, as its explorative 

capability is limited. In MESO-PSO, PSO particles within one iterative MESO step are allowed 

to swim within the MESO boundaries, where the movement of particles is limited to the 

predefined sizing space logically selected by MESO based on engineering intuition. Figure 5.14 

is devoted to show how the particles of PSO are behaving with respect each other in MESO 

plane and how the local and global minima for the current MESO are projected to the next 

plane. Similar to the previous methods, MESO-PSO follows exactly the same logical steps 

illustrated in Figure 5.9 to perform the overall optimization process. 

The cascade optimization procedure illustrated in Figure 5.9 along with the pertinent illustrative 

schematic shown in Figure 5.10 are applicable in MESO-PSO. The concept of dividing the 

solution space into finite number of MESO hyperplanes simplifies the understanding of how 

hybrid MESO-PSO works. The process could be interpreted as that the complete swarm decides 

to change the altitude of flight from time to time without any alternation in the habitual features 

of the group. This decision is made to avoid any obstacles result from any unforeseen 

environmental circumstances. For instance, the global best (P3ˊ) and the local best (P7ˊ) chosen 

for the group of particles in the MESO plane (n) will be projected on the plane (n+1) to guide 

the newly generated swarm of particles in that plane. The same principles will be applied 

between the MESO attitude at n+1 and that at n+2 (see Figure 5.14). 
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Figure 5.14 Illustrative sketch showing how PSO particles are flying (or swimming) in 

different MESO attitudes. 

 

 MESO-SA 

This hybrid version does not differ from its counterparts in the previous sections, where MESO 

is interacted with the existing individuals of SA to produce the new optimization tool used in 

stage-2 according to the cascade optimization process demonstrated in Figure 5.9. More details 

about the classic SA strategy could be found in section 5.5.5. This method is characterized by 

its capability to treat with multimodal functions due to its ability to climb up the hill (jumping 

off the local optima) to achieve the global optimum. The cascade optimization steps shown 

Figure 5.9 aided by the more detailed explanation drawn in Figure 5.10 are applicable to 

MESO-SA to perform a simultaneous shape, topology and sizing optimization for the dome 

roof frame. In stage 2, the communication manner between SA individuals and MESO is 

demonstrated in Figure 5.15, where the search groups are commencing their neighbourhood 

inspection with radius Rn and temperature Tn at the MESO hyperplane n. The neighbourhood 
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search radius and the cooling temperature are gradually reduced for the next MESO plane, i.e. 

Rn+2 < Rn+1 < Rn and Tn+2 < Tn+1 < Tn. The SA population consists of 3 subsets called “search 

groups”. They are searching independently with the same neighbourhood radius (Rn) in the 

same annealing temperature (Tn) in specified MESO plane n. Each group has 3 neighbours 

(identified by yj with green and cyan colours, j=1, 2, …, nPop) moving around the parent 

individual (see Figure 5.15). The chance to accept certain neighbour (identified by yj with red 

and brown colours, j=1, 2, …, nPop) to be the candidate as search group parent for the next 

MESO plane is based on the quality of that neighbour and the probability distribution of the 

gap in the cost values between the neighbour and the parent individual. More details about 

accepting the neighbours to be the leaders for the next generation is illustrated in section 5.5.5. 

It is noteworthy that the proposed optimization methodology illustrated in Figure 5.9 is a 

general procedure and could be applied to any conventional metaheuristic technique, i.e. MESO 

could be replaced by any other optimization technique chosen to tackle the discrete sizing 

variables of the problem at stage 2 (see Chapter 8 for the comparison between the standard 

metaheuristic techniques and the MESO based algorithms). 

 

Figure 5.15 Illustrative sketch showing how SA individuals are related to MESO plane. 
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 Optimization Results of the Simplified Models 

The optimization results for the simplified models (models A1 to E1 and A2 to E2), defined in 

section 4.5, will be viewed in this chapter. Five different hybrid optimization strategies, as 

clarified in section 5.6, are considered in this investigation by regarding the structural mass of 

the braced dome as objective function. The design constraints associated with this process are 

demonstrated in section 5.1.2. The design parameters are stated in section 4.5. At the end of the 

chapter, the best design will be chosen to specify the most promising model along with the most 

efficient optimization strategy used to produce that design under the prescribed set of design 

constraints. Furthermore, the merits and shortcomings of the proposed strategies along with the 

structural characteristics of their respective designs will be highlighted in this chapter. Finally, 

the statistical details of the optimization process will also be provided for each model discussed. 

The model is subjected to pure wind loading which is interpreted as nodal forces applied to the 

set of keypoints (nodes) of the dome structure. Thus, the forces applied to each node in the 

dome roof frame are obtained by summing up all forces, resulting from different influences, 

acted on the same node and in the same direction. for the simplified frame analysis, this is 

fulfilled by superposing the nodal forces of the wind load with the equivalent nodal forces of 

the dome shell weight with that result from the dead load of the structural member itself. 

Therefore, the first two stages of optimization are implemented considering pure wind as design 

load. While, the third stage of optimization is proposed to check the validity of the optimal 

design against the design constraints considering other load cases of the problem. Hence, there 

are two more load cases need to be included in stage 3, these are pure snow and combined snow 

and wind. Due to this strict test, some of models considered in this chapter are faced serious 

problem to pass this stage, for instance most of the optimal designs of models B2 and C2 are 

failed by buckling constraints when pure snow loads are imposed. For more details about the 

detrimental consequences of this test, review sections 6.5 and 6.6. 

 Topological Parametric Investigation 

 Topological Spacing Factor (Ns) 

A comprehensive parametric investigation has been implemented to show the influence of Ns, 

for the range 10 to 30, on the structural characteristics of the model E1. Figure 6.1 shows the 

set of critical points depending on the structural response of the model under Nn=6 and Nr=6. 

The graphs indicate that each of the maximum values of von-Mises stress, SED and buckling 

index become critical at the same point (Ns=18), whereas the maximum displacement shows 

slightly different critical point observed at (Ns=21). 
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Figure 6.1 Parametric Investigation of Ns implemented on model E1. 

 

In conclusions, these graphs do not show optima for structural mass, but do suggest that for 

designs with high safety factors the spacing factor, Ns, should be restricted to a narrow range 

between 18 and 21 during the optimization for structural mass. 

 

 Topological Morphing Factor (Nm) 

The effect topological morphing factor (Nm) on the structural response of the hybrid Schwedler-

Lamella configuration (model D1) is discussed here. The graphs presented in Figure 6.2 state 

that there is no morphological change could be seen for low topological spacing (Ns=10), 

whereas dramatic morphological changes are associated with higher topological spacing 

(Ns=20, 30). These morphological changes are controlled by the topological morphing factor 

(Nm), where an observable transition from Lamella to Schwedler configuration could be seen 

at Nm=31 for Ns=20 and at Nm=21 for Ns=30. Hence, there is an entangled correlation between 

Nm and Ns to determine the new morphology of the structure. In general, there is an obvious 

increase in the maximum response of the structure during its gradual morphological process 

within Schwedler zone except for the minor singularities noticed for the stress and buckling of 

Figure 6.2. 
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Figure 6.2 Parametric Investigation of Nm implemented on model D1. 

 Topological Trimming Factor (Nt) 

The structural characteristics of model A1 are considerably affected by the topological 

trimming factor (Nt). This can be seen in Figure 6.3, where there is direct proportionality 

between the state of stress, strain and deformation and the trimming factor (Nt). The study has 

been implemented over the range (Nt=4 to Nt=16) under dome radius R=45 m, number of 

girders Nn=45, number of rings Nr=9, and Ns=20. As Nt increases, the radius at which the 

secondary girders also start to increase, and the mass of the structure decreases. The reduced 

mass correlates with the higher stress and higher strain energy density SED and, perhaps more 

importantly, the higher deflection. The optimal value of Nt, therefore, is likely to depend on the 

relative importance of structural mass and maximum deflection during the optimisation. The 

higher Nt, the wider trimmed space, the lower length for secondary girder, which leads to 

significant reduction in structural weight. 
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Figure 6.3 Parametric Investigation of Nt implemented on model A1. 

 Trimmed Ribbed Single Lattice Dome (Model A1) 

The optimization results for model A1, described in section 4.5.1, using the proposed 

optimization strategies detailed in section 5.6. are given in Table 6.1 and Table 6.2. The 

minimum weight was found by MESO-DE (82.664 kg), with MESO-BA a close second, but 

these designs have been failed to meet the displacement constraints at stage 3 (for the load case 

with snow but no wind). Hence, the candidate is MESO-PSO, followed by MESO-ABC, which 

are the only two designs valid for all load cases. Table 6.1 shows that the optimization results 

from Stage 1 tend towards extreme values, i.e. Nn is set to 30, Nr is set to 12 in most cases. The 

topological trimming factor (Nt) is set to the highest value of the range (Nt=16), where the 

number of rings for the dense ribs’ region (Ndr ), defined in Eq. (4.2), has reduced to its 

minimum range. The optimal set of sizing variables for model A1 is listed in Appendix Table 

F.1. The design history of cost function for model A1, illustrated in Figure 6.4, states that the 

number of analyses has reached 210 for stage-1 and 401 for stage-2. This is achieved by 

assuming the appropriate number of iterations for each stage: MaxIt1=20 and MaxIt2=40, as 

the design optimization stages are illustrated in Figure 5.9. 

The number of design variables, to be optimized at stage-2, has been diminished from 

(4+52+1=57) to become (4+33+1=38) in total. This reduction is influenced by the significant 

elimination in Nr (from 20 to 12) implemented at stage-1. 
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The setting parameters and population size of the of the optimizer play the significant role in 

determining the number of analyses required to reach the optimum point. For instance, the 

abandonment rules adopted by ABC strategy will generate an extra explorative design points 

depending on the abandonment limits supposed for the technique. Furthermore, a considerable 

number of design points are rejected due to breaching the constraints. 

Table 6.1 Optimal set of shape and topological design parameters found for model A1. 

 

 

 

 

 

 

Table 6.2 Optimal set of cost functions evaluated for model A1. 

 

Figure 6.4 Progression history of the cost function towards the optimum for model A1. 

Optimization 

method 

Nn (-) Nr (-) Ns (-) Nt (-) R (m) 

Initial design 40 20 24 13 30.000 

MESO-ABC 31 12 27 16 54.033 

MESO-BA 30 12 23 16 59.035 

MESO-DE 30 12 23 16 59.085 

MESO-PSO 30 12 23 16 60.000 

MESO-SA 30 16 25 13 48.422 

Optimization 

method 

Minimum 

cost (
W

W0
) 

Corresponding roof 

frame mass (tonnes) 

Corresponding whole 

tank mass (tonnes) 

Initial design 1.000 250.936 579.765 

MESO-ABC 0.366 91.705 410.949 

MESO-BA* 0.331 82.922 401.625 

MESO-DE* 0.329 82.664 401.363 

MESO-PSO 0.341 85.524 404.140 

MESO-SA* 0.368 92.240 412.332 
* The design has failed by displacement constraints considering pure snow load. 

Stage-1 Stage-2 
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 Schwedler Single Lattice Dome (Model B1) 

Results for optimization of Model B1 are given in Table 6.3 and Table 6.4. MESO-DE has 

achieved the minimum of cost function (0.238) among the other designs, with roof structural 

mass of 60.11 tonnes and whole tank mass of 379 tonnes. All optimal designs obtained for 

model B1 have passed the test at stage 3. 

The sizing parameters of the model B1 are itemized in Appendix Table F.2. In stage-1, for 

MESO-DE, the number of design variables is considerably reduced from (3+31+1=35) to 

(3+22+1=26). This reduction is influenced by the reduction in Nr (from 11 to 8) at stage 1. 

The numbers of finite element analyses of the optimization process are 207 for stage-1 and 302 

for stage-2. 

The history of cost function for model B1 is shown in Figure 6.5. Figure 6.6 shows the stress 

distribution between the initial and optimal designs for model B1. 

Table 6.3 Optimal set of shape and topological design parameters found for model B1. 

 

 

 

 

 

 

 

Figure 6.5 Progression history of the cost function towards the optimum for model B1

Optimization 

method 

Nn (-) Nr (-) Ns (-) R (m) 

Initial design 54 11 20 30.000 

MESO-ABC 36 6 27 60.000 

MESO-BA 36 8 28 59.793 

MESO-DE 36 8 30 57.212 

MESO-PSO 36 8 30 60.000 

MESO-SA 36 10 16 52.667 

Stage-1 Stage-2 
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Figure 6.6 Distribution of equivalent (von-Mises) stress showing the difference between the initial and optimal designs for model B1. 
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Table 6.4 Optimal set of cost functions evaluated for model B1. 

 

 Lamella Single Lattice Dome (Model C1) 

Results for Model C1, indicated in Table 6.5 and Table 6.6, show that MESO-ABC is the 

optimal design with minimum structural mass 54.083 tonnes. Correspondingly, the optimal 

integer set of design parameters for model C1 is not different from those found by MESO-ABC 

for model B1, where Nn=36, Nr=6, which are exactly the lower limits of their respective design 

ranges. The number of design variables for MESO-ABC is appreciably reduced from 

(3+37+1=41) to (3+16+1=20). This is caused by reducing Nr (from 13 to 6). 

The convergence history of cost function, presented in Figure 6.8, shows 207 cycles at high 

perturbation (stage 1) and 405 cycles at low perturbation (stage 2). The dramatic changes 

(fluctuations) in the cost (structural weight fraction) at stage 1 are attributed to the correlation 

nature between the structural weight and the integer design variables involved (Nn, Nr, and Ns). 

while, other design variables optimized at stage 2 (sizing variables) have lesser influence on the 

structural mass compared to the topological integer variables. This behaviour could be observed 

evidently in Figure 6.5, where the fluctuations are depressed to noticeable extent compared to 

stage 1. However, MESO-SA has stopped to converge after 434 analyses due to breaching the 

stress limits at this point onwards. 

Figure 6.7 shows the stress state for the optimal designs of the model C1. The circumferential 

rings are the most significant parts influenced by the wind loads applied to the structure. The 

maximum stress could be observed in the MESO-DE, which reaches 198.5 MPa. 

Table 6.5 Optimal set of shape and topological design parameters found for model C1. 

 

 

 

 

 

 

Optimization 

method 

Minimum cost 

(
W

W0
) 

Corresponding roof 

frame mass (tonnes) 

Corresponding 

whole tank (tonnes) 

Initial design 1.000 252.150 580.979 

MESO-ABC 0.309 77.787 396.402 

MESO-BA 0.313 78.936 397.570 

MESO-DE 0.238 60.110 378.992 

MESO-PSO 0.286 71.991 390.606 

MESO-SA 0.361 91.115 410.537 

Optimization 

method 

Nn (-) Nr (-) Ns (-) R (m) 

Initial design 58 13 20 30.000 

MESO-ABC 36 6 16 60.000 

MESO-BA 36 6 11 60.000 

MESO-DE 36 6 11 59.086 

MESO-PSO 36 7 10 60.000 

MESO-SA 52 6 27 51.581 
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Figure 6.7 Distribution of equivalent (von-Mises) stress showing the difference between the initial and optimal designs of model C1.
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Table 6.6 Optimal set of cost functions evaluated for model C1. 

 

 

Figure 6.8 Progression history of the cost function towards the optimum for model C1. 

 Hybrid Schwedler-Lamella Single Lattice Dome (Model D1) 

The results for model D1 reflect the structural characteristics of its parents (models B1 and C1), 

where the common features existing in both models could be observed in this model. Table 4.11 

provides more details about the reference design of model D1. The newly suggested 

morphological design parameter (Nm) is defined in section 4.5.4. Table 6.7 show that the 

optimal integer set are chosen to be reduced to the lowest value in the range, i.e. Nn=32, Nr=6, 

Ns=10, and Nm=20 to 23, except MESO-ABC and MESO-BA for Ns. Reducing Nm to the lowest 

possible level (see the optimization range fixed in Table 4.10) and linking this change to the 

formulae (4.10) and (4.11) will lead to the conclusion that the topological morphing process 

has succeeded to minimize the structural weight via transforming the configuration of the 

considered model from Schwedler to Lamella. The latter statement suggests that the Lamella 

choice outperforms the Schwedler one to achieve the design goal since both options are 

Optimization 

method 

Minimum 

cost (
W

W0
) 

Corresponding roof 

frame mass (tonnes) 

Corresponding whole 

tank mass (tonnes) 

Initial design 1 208.900 537.729 

MESO-ABC 0.259 54.083 372.698 

MESO-BA 0.293 61.173 379.788 

MESO-DE 0.330 68.835 387.533 

MESO-PSO 0.367 76.564 395.179 

MESO-SA 0.299 62.539 382.115 

Stage-

1 

Stage-

2 
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available to execute on this model. Appendix Table F.4 shows the optimal set of the sizing 

parameters for model D1. In stage 1, the variables have been considerably decreased from 

(4+31+1=36) to (4+16+1=21) due to reducing the integer design variable Nr (from 11 to 6). 

Table 6.7 Optimal set of shape and topological design parameters found for model D1. 

 

 

 

 

 

 

 Evolution History of Cost Function 

According to Table 6.8, the optimal design obtained for model D1 is MESO-ABC through 

achieving a minimum cost of 0.204, the corresponding roof frame mass is 34.455 tonnes leading 

to total mass for the tank 353.815 tonnes. It is the lightest weight indicated for all models 

considered in this study. The convergence history of cost function is given in Figure 6.9. The 

first interval is ranging from it=1 to it=207, whereas the second is extending between it=208 

and it=618. The model is relatively stable against the design constraints, i.e. it shows a 

minimum number of violations during the evolution process. 

Utilizing lightweight yet strong cross sections (RHS) to model the members of model D1 is one 

of the reasons behind this success. Looking at stage 1 of Figure 6.9, MESO-PSO has the best 

convergence rate, which is justified by the high exploitative capability of the method, followed 

by MESO-DE. At the same time, the randomized motion of MESO-BA and MESO-ABC till 

the final cycle in stage 1 reflects the explorative capability of these methods. In this sense, the 

maximum amplitude of MESO-SA as explorative strategy is controlled by the supposed extent 

of mutation (sigmak) defined in Eqs. (5.50) and (5.54). 

Table 6.8 Optimal set of cost functions evaluated for model D1. 

 

Optimization 

method 

Nn (-) Nr (-) Ns (-) Nm (-) R (m) 

Initial design 48 11 20 35 45.000 

MESO-ABC 32 6 19 20 53.131 

MESO-BA 32 6 18 22 59.475 

MESO-DE 32 6 10 20 60.000 

MESO-PSO 32 6 10 23 60.000 

MESO-SA 32 6 10 23 54.288 

Optimization 

method 

Minimum cost 

(
W

W0
) 

Corresponding roof 

frame mass 

(tonnes) 

Corresponding 

whole tank mass 

(tonnes) 

Initial design 1 168.873 489.672 

MESO-ABC 0.204 34.455 353.815 

MESO-BA 0.224 37.902 356.565 

MESO-DE 0.243 41.009 359.624 

MESO-PSO 0.241 40.690 359.305 

MESO-SA 0.244 41.210 360.423 
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Figure 6.9 Progression history of the cost function towards the optimum for model D1. 

 

 Evolution History of Design-related Functions 

The stiffness and strength characteristics of this model resemble those for the Lamella model, 

as the latter model has outperformed the Schwedler model in many aspects. Table 6.9 lists the 

statistical data about the design characteristics of model D1, where MESO-PSO shows the 

maximum strength relative to others in terms of the lowest stress ratio (2.8) involved. Similarly, 

the minimum magnitude of SE function for MESO-PSO reflects the highest stiffness of the 

design. The further reduction in structural weight implemented on the designs (MESO-ABC 

and MESO-BA) has caused a worsening of the strength, stiffness and buckling characteristics 

of the structure, as they show the highest values of normalized stress ratios (4.089 and 3.716), 

normalized SE ratios (8.986 and 7.905) and normalized buckling ratios (12.278 and 3.697). 

Figure 6.10a shows a steep progression in the normalized stress ratio in the curves MESO-ABC 

and MESO-BA. This increase indicates that the strength features are negatively affected by the 

reduction in the structural weight. The same justification could be used when looking at the 

paths delineated by the same designs in each of the graphs in Figure 6.10b-d, where the stiffness 

characteristics and the buckling resistance are inversely influenced by the mass reduction for 

these two designs. 

 

 

Stage-1 Stage-2 
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 History of the Maximum Response (Investigation of the Design Constraints) 

The graphs in Figure 6.11 investigate the situation of the model against the design constraints 

during the optimization process. Statistically, MESO-BA and MESO-DE are the two designs 

that recorded displacement violations in stage 1, they are penalized 5 and 7 times respectively, 

whereas there are only 2 solutions discarded by the displacement limits in MESO-SA. On the 

other hand, the designs MESO-BA and MESO-ABC have missed 128 and 59 solutions due to 

overstepping the stress constraints during stage 2, whereas the displacement constraints have 

rejected only one solution as executed on MESO-ABC in stage 2. 

Table 6.9 Design data for the initial and optimal statuses executed on model D1. 

Table 6.10 The data of the maximum response induced in model D1. 

 

 Relevant Design Contours 

Figure 6.12 presents the design contours concerning the state of stress for model D1. The 

different designs in the figure evidence that the circumferential rings are the most critical parts 

of the structure. The design MESO-ABC has developed the maximum equivalent stress (194.34 

MPa) in comparison to others. This is due to the lightest weight produced for this design. Also, 

it shows the maximum absolute displacement (30.183 mm)  

 

 

 

 

Optimization 

method 

Stress function 

(Stress ratio) 

SE function 

(SE ratio) 

SED function 

(SED ratio) 

Buckling 

function 

(Buckling ratio) 

Initial design 1.000 1.000 1.000 1.000 

MESO-ABC 4.089 8.986 20.390 12.278 

MESO-BA 3.716 7.905 15.876 3.697 

MESO-DE 2.812 4.709 9.247 3.149 

MESO-PSO 2.803 4.701 8.754 3.072 

MESO-SA 2.866 4.831 9.795 3.959 

Optimization 

Method 

Maximum von-

Mises stress [MPa] 

Maximum absolute 

displacement [mm] 

Maximum buckling 

indicator [---] 

Initial design 57.471 9.055 0.0290 

MESO-ABC 194.343 30.183 0.1730 

MESO-BA 185.590 29.501 0.0460 

MESO-DE 183.739 28.616 0.0402 

MESO-PSO 181.371 28.702 0.0417 

MESO-SA 182.044 27.397 0.0421 
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Figure 6.10 Evolution history of the relevant design functions for model D1. 

 

Figure 6.11 Design history of the maximum response induced over the entire structure for 

model D1. 

 

(a) Stress evolution (b) SE evolution 

(c) SED evolution (d) Buckling evolution 

(a) Progression of 

max. stress 

(b) Progression of 

max. SE 

(c) Progression of 

max. displacement 

(d) Progression of max. 

buckling indicator 
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Figure 6.12 Distribution of equivalent (von-Mises) stress showing the difference between the initial and optimal designs for model D1.
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 Geodesic Single Lattice Dome (Model E1) 

The configuration of model E1 is completely differs from the previous models, where the 

geometry is created as basic polygon in the dome hub as described in section 4.5.5. Thus, the 

number of nodes (Nn) is replaced by the number of sides for the basic polygon, as defined in 

Table 4.12. The results are presented in Table 6.11, Nn and Nr are selected at their lower bounds, 

i.e. Nn=6 and Nr=6 are recorded as optimal values, whereas the topological spacing parameter 

(Ns) has increased to the highest level (Ns=30) as optimal value for the designs MESO-ABC, 

MESO-DE and MESO-PSO. The designs MESO-BA and MESO-SA have lower values. 

Appendix Table F.5 gives the optimal designations for model E1. The number of design 

variables is effectively reduced from (3+41+1=45) at stage-1 to (3+21+1=25) at stage 2 due to 

reducing Nr from 11 to 6. 

 Evolution History of Cost Function 

The optimal design noticed for this model is MESO-DE with weight 37.012 tonnes as fixed in 

Table 6.12. The plots in Figure 6.13 show the convergence curves of cost function. The 

evolution is characterized by two intervals: the first is ranging from it=1 to it=208, whereas the 

second is extending from it=209 to it=448. Hence, the total number of analyses executed during 

the overall optimization process is (208+240=448). 

Table 6.11 Optimal set of shape and topological design parameters found for model E1. 

 

 

 

 

 

 

Table 6.12 Optimal set of cost functions evaluated for model E1. 

 

Optimization 

Method 

Nn (-) Nr (-) Ns (-) R (m) 

Initial design 11 11 20 30.000 

MESO-ABC 6 6 30 60.000 

MESO-BA 6 6 25 57.514 

MESO-DE 6 6 30 53.141 

MESO-PSO 6 6 30 60.000 

MESO-SA 6 6 23 60.000 

Optimization 

Method 

Minimum cost 

(
W

W0
) 

Corresponding roof 

frame mass 

(tonnes) 

Corresponding 

whole tank mass 

(tonnes) 

Initial design 1.000 257.006 585.834 

MESO-ABC 0.195 50.227 368.842 

MESO-BA 0.262 67.196 386.047 

MESO-DE 0.144 37.012 356.370 

MESO-PSO 0.191 49.096 367.711 

MESO-SA 0.164 42.247 360.862 
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Figure 6.13 Progression history of the cost function towards the optimum for model E1. 

 Evolution History of Design-related Functions 

Normally, stiffness, strength and buckling characteristics for certain design are affected 

negatively to a higher degree by the reduction in structural weight, especially, when the 

optimization process is treating with sizing parameters. Simply, this is attributed to the fact that 

the weight is a linear function of sizing parameters, whereas other design functions (e.g. stress, 

strain energy and buckling), are reflecting the structural characteristics mentioned above, and 

are nonlinear functions of sizing parameters. 

Table 6.13 Design data for the initial and optimal statuses executed on model E1. 

 

 

 

 

 

 

Optimization 

Method 

Stress function 

(Stress ratio) 

SE function 

(SE ratio) 

SED function 

(SED ratio) 

Buckling 

function 

(Buckling ratio) 

Initial design 1.000 1.000 1.000 1.000 

MESO-ABC 5.662 38.338 49.756 26.232 

MESO-BA 3.464 20.867 16.542 3.003 

MESO-DE 6.834 49.932 67.318 25.298 

MESO-PSO 5.847 40.460 54.670 8.654 

MESO-SA 5.739 37.755 46.710 6.165 

Stage-1 Stage-2 
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Figure 6.14 Evolution history of the relevant design functions for model E1. 

However, the maximum values of normalized stress and SE ratios (6.834 and 49.932) observed 

in the design MESO-DE indicate the degree of dissipation in their structural characteristics 

noticed in this design. On the other hand, MESO-BA exhibits the highest buckling resistance 

as result to the lowest normalized buckling ratio developed by the design (3.003). 

Figure 6.14a shows that MESO-DE has increased its progression rate at the final steps of stage 

2. Figure 6.14b and Figure 6.14c indicate that MESO-DE is subjected to remarkable lowering 

in stiffness characteristics and MESO-BA has preserved progressing within the lowest level in 

the graph. Figure 6.14d demonstrates that MESO-ABC is progressing towards the optimum 

with extremely high levels causing the buckling characteristics to decline. 

 History of the Maximum Response (Investigation of the Design Constraints) 

Figure 6.16 shows the evolution of the maximum response within the prescribed design 

constraints. Figure 6.16a shows that model E1 is restricted and constrained by the stress limits, 

where the permissible stress is defined by two levels of safety: high level (SF=1.6), which is 

executed at stage 1, and low level (SF=1.0), which is executed at stage 2. The designs MESO-

ABC and MESO-DE are the two designs most affected by these limits, i.e. the stress limitations 

caused those two designs to lose 1008 and 975 solutions respectively. Only 94 evaluations are 

dismissed by buckling for the design MESO-BA as fixed in Table 6.15. 

(a) Stress evolution (b) SE evolution 

(c) SED evolution (d) Buckling evolution 
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Figure 6.16c shows that the displacement restrictions is the second rigorous constraint applied 

to model E1, where the designs MESO-BA and MESO-PSO have been penalized 1462 and 840 

times respectively during the optimization process as shown in Table 6.15. It is observed that 

the maximum stress is realized by MESO-DE with 199.32 MPa, whereas the corresponding 

maximum displacement is 33.744 mm as shown in Table 6.14. Though the maximum buckling 

index developed by the model jumps to high values at stage 2, as indicated in Table 6.14 and 

shown in Figure 6.16d, it is noticeable that this constraint has caused no losses during stage-1 

or stage 2 except for the MESO-BA design. 

Table 6.14 The data of the maximum response induced in the different designs of model E1. 

Table 6.15 Statistical data about the penalized solutions of model E1 (Stage 1 + Stage 2). 

 Relevant Design Contours 

The design contours of model E1, depicted in Figure 6.15, indicate that the radial girders are 

the most affected part of the model. Accordingly, MESO-SA and MESO-BA exhibit critical 

stress at the radial beams of the hub region with values 198.72 MPa and 198.498 MPa 

respectively. While, MESO-DE has developed the maximum stress of 199.32 MPa and 

maximum SE of 557.31 J. 

 

 

 

 

 

 

 

Optimization 

method 

Maximum von-

Mises stress [MPa] 

Maximum absolute 

displacement [mm] 

Maximum buckling 

indicator [unitless] 

Initial design 55.456 3.732 0.00254 

MESO-ABC 191.521 28.105 0.380 

MESO-BA 198.498 21.560 0.020 

MESO-DE 199.320 33.744 0.234 

MESO-PSO 197.902 31.103 0.057 

MESO-SA 198.72 29.663 0.105 

Optimization 

Method 

Solutions lost due 

to breaching stress 

Solutions lost due to 

breaching displacement 

Solutions lost due to 

breaching buckling 

MESO-ABC 1+1007 0+325 0+0 

MESO-BA 1+266 0+1462 0+94 

MESO-DE 1+974 0+54 0+0 

MESO-PSO 0+420 0+840 0+0 

MESO-SA 1+528 0+2 0+0 
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Figure 6.15 Distribution of equivalent (von-Mises) stress showing the difference between the initial and optimal designs for model E1.
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Figure 6.16 Design history of the maximum response induced in model E1. 

 

 Trimmed Ribbed Double Lattice Dome (Model A2) 

Model A2, defined in Figure 4.13 (Section 4.5.6), has two extra continuous shape variables: 

height fraction (ɳ=H2/H1) and dome radius ratio (Ʊ=R2/R1). Results of the optimization are 

presented in Table 6.16 and Table 6.17, Nn and Nr are lowered as much as possible. The designs 

with low dome radius, i.e. MESO-BA and MESO-DE, are valid also for the other load cases of 

the problem, whereas the designs with high dome radius fail to meet the displacement 

constraints (see Table 6.17). 

By studying the general trends, ɳ tends to increase, whereas Ʊ tends to decrease to achieve the 

minimum weight. Appendix Table F.6 gives the optimal designations of model A2. The number 

of design variables are effectively reduced from (4+102+3=109) at stage 1 to (4+69+3=76) at 

stage 2, as Nr is lowered from 15 to 10. 

The optimal design obtained for model A2 is MESO-DE with minimum cost of 0.276, roof 

frame mass 61.117 tonnes, whole tank mass 391.495 tonnes. Figure 6.17 shows the convergence 

curves of cost function on two phases: high fluctuations phase (stage 1), incorporated with 206 

evaluations, and low fluctuations phase (stage 2), which encompasses 756 cycles. This is 

produced by assuming an essential number of iterations for each stage: MaxIt1=20, MaxIt2=80 

and MaxIt3=3. Hence, the overall optimization process counts to (206+756=962) successful 

analyses. 

(a) Progression 

of max. stress 

(b) Progression of 

max. SE 

(c) Progression of 

max. displacement 

(d) Progression of max. 

buckling indicator 
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Table 6.16 Optimal set of shape and topological design parameters found for model A2. 

Table 6.17 Optimal set of cost functions evaluated for model A2. 

 

Figure 6.17 Convergence graph of the cost function towards the optimum for model A2. 

The dome stresses are shown in Figure 6.18 and it can be seen that there are two critical regions 

in model A2. First, the periphery of the dome. Second, the circular ring surrounding the trimmed 

region. Accordingly, the maximum von-Mises stress (190.7 MPa) is indicated in MESO-ABC 

at the cross girder of the lower lattice as demonstrated in Figure 6.18b.

Optimization 

Method 

Nn 

(-) 

Nr 

(-) 

Ns 

(-) 

Nt 

(-) 

R (m) ɳ (-) Ʊ (-) 

Initial design 32 15 20 10 30.000 0.950 1.100 

MESO-ABC 29 10 29 7 46.176 0.931 1.058 

MESO-BA 24 10 13 16 46.892 0.927 0.902 

MESO-DE 25 10 26 9 40.460 0.912 0.927 

MESO-PSO 24 10 22 12 56.289 0.941 0.900 

MESO-SA 25 14 28 11 52.737 0.911 0.995 

Optimization 

Method 

Minimum cost 

(
W

W0
) 

Corresponding roof 

frame mass 

(tonnes) 

Corresponding 

whole tank mass 

(tonnes) 

Initial design 1.000 221.368 558.483 

MESO-ABC* 0.338 74.868 403.689 

MESO-BA  0.280 62.058 390.729 

MESO-DE 0.276 61.117 391.495 

MESO-PSO* 0.394 87.268 414.534 

MESO-SA* 0.460 101.906 429.606 
* The design has failed by displacement constraints considering pure snow load. 

Stage-1 

Stage-2 
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Figure 6.18 Distribution of equivalent (von-Mises) stress showing the difference between the initial and optimal designs for model A2.
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The optimal design MESO-DE has developed a maximum stress of 188.8 MPa at the diagonal 

braces of lower lattice for the region where the transition from the dense rib area to the trimmed 

area of the dome. The designs produced by MESO-ABC and MESO-DE both have long radial 

girders, curved across multiple nodes. Although the risk of buckling is very low for individual 

links, i.e., for the straight girders between pairs of nodes, the cross-bracing is minimal and there 

is a potential risk of buckling at a global level. Further analysis would be required to ensure full 

design safety. 

 Schwedler Double Lattice Dome (Model B2) 

The optimal set of shape and topological variables of model B2 are listed in Table 6.18. 

According to Table 6.19, the minimum cost function is realized by MESO-BA to be 0.107 

corresponding to roof frame mass of 53.348 tonnes and tank mass of 380.495 tonnes. MESO-

BA has marginally outperformed other competitive designs MESO-ABC and MESO-SA by a 

further reduction of 193 kg and 71 kg respectively. However, all five optimal designs failed by 

buckling under the other load cases considered, highlighting the importance of optimizing for 

all relevant load cases simultaneously. The evolution of the cost function, shown in Figure 6.19, 

indicate that MESO-BA and MESO-SA are the most robust methods, as they continue to 

progress up to the end of the optimization process. 

Table 6.18 Optimal set of shape and topological design parameters found for model B2. 

 

 

 

 

 

 

Table 6.19 Optimal set of cost functions evaluated for model B2. 

 

Optimization 

method 

Nn 

(-) 

Nr 

(-) 

Ns 

(-) 

R (m) ɳ (-) Ʊ (-) 

Initial design 45 11 20 30.000 0.950 1.100 

MESO-ABC 30 6 30 56.596 0.932 1.082 

MESO-BA 30 6 29 57.424 0.921 1.069 

MESO-DE 30 6 30 60.000 0.852 0.946 

MESO-PSO 30 6 30 60.000 0.950 1.100 

MESO-SA 30 6 25 47.109 0.904 1.065 

Optimization 

method 

Minimum 

cost (
W

W0
) 

Corresponding roof 

frame mass (tonnes) 

Corresponding whole 

tank mass (tonnes) 

Initial design 1.000 499.801 836.916 

MESO-ABC* 0.107 53.541 380.774 

MESO-BA* 0.107 53.348 380.495 

MESO-DE* 0.116 57.810 384.711 

MESO-PSO* 0.138 68.815 395.716 

MESO-SA* 0.107 53.419 382.047 

* The design has failed by buckling constraints considering pure snow load. 
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Figure 6.19 Convergence graph of the cost function towards the optimum for model B2. 

 Lamella Double Lattice Dome (Model C2) 

The optimization results for Model C2 are listed in Table 6.20. During the validation test, 

implemented at stage 3 (see Figure 5.9), carried out on the optimal designs of model C2, where 

two extra load cases (pure snow and combined snow+wind) are imposed on the model, four 

designs failed to pass this test due to violating the buckling limitations under snow load, i.e. the 

only design which met all conditions is MESO-SA, which in this case was also the lowest mass 

dome with a cost of 0.106, corresponding to roof frame mass of 42.721 tonnes and tank mass 

of 369.778 tonnes (see Table 6.21). The convergence history is shown in Figure 6.20. 

Despite the minimum structural weight achieved by the design MESO-SA, it exhibits the 

highest level of overall structural performance. This is attributed to the optimal choice of shape 

parameters (ɳ and Ʊ), as they are selected to increase the gap between the two layers of the 

dome. Thus, the greater the gap between the lattices, the stronger and stiffer the design. 

The other designs of this model (except MESO-SA) have failed to satisfy the buckling 

constraints set at stage 3 when pure snow load has applied to the structure (although this was 

not a requirement of the optimization, but ideally should be). The buckling status at the failure 

point is illustrated in Figure 6.21, where they have exceeded the unity set as upper limits for 

their buckling indicators as demonstrated in section 5.1.2, Eqs (5.26) and (5.27). Accordingly, 

the radial beams of the dome hub located within the upper lattice are the most susceptible 

Stage-1 Stage-2 
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members to the local instability problems due to the combined torsional and compressive loads 

inherent in these parts of the structure. In this sense, MESO-DE, MESO-PSO and MESO-ABC 

are the most influenced designs by buckling, where they are developed a maximum buckling 

index of 0.659, 0.501 and 0.464 respectively (see Figure 6.21). 

Table 6.20 Optimal set of shape and topological design parameters found for model C2 

Table 6.21 Optimal set of cost functions evaluated for model C2 

 

 

Figure 6.20 Convergence graph of the cost function towards the optimum for model C2.

Optimization 

method 

Nn 

(-) 

Nr 

(-) 

Ns 

(-) 

R (m) ɳ (-) Ʊ (-) 

Initial design 45 11 20 30.000 0.950 1.100 

MESO-ABC 30 6 30 55.460 0.905 1.061 

MESO-BA 30 6 30 54.597 0.937 1.100 

MESO-DE 30 6 30 47.662 0.930 1.096 

MESO-PSO 30 6 30 60.000 0.950 1.100 

MESO-SA 30 6 25 58.526 0.870 1.008 

Optimization 

method 

Minimum cost 

(
W

W0
) 

Corresponding roof 

frame mass 

(tonnes) 

Corresponding 

whole tank mass 

(tonnes) 

Initial design 1.000 403.336 740.451 

MESO-ABC* 0.127 51.190 378.549 

MESO-BA* 0.121 48.684 376.145 

MESO-DE* 0.126 50.989 379.508 

MESO-PSO* 0.132 53.328 380.230 

MESO-SA 0.106 42.741 369.778 

* The design has failed by buckling constraints considering pure snow load. 

Stage-

1 

Stage-

2 
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Figure 6.21 Distribution of buckling index showing the difference between the initial and optimal designs for model C2.
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 Hybrid Schwedler-Lamella Double Lattice Dome (Model D2) 

Four integer topological variables (Nn, Nr, Ns and Nm) and three continuous shape variables (R, 

ɳ and Ʊ) are solved in Model D2. The optimization results are given in Table 6.22. The designs 

tend towards Nn=32 and Nr=6, whereas there is no consistent value for Ns. The morphological 

parameter (Nm) was reduced as far as possible to create Lamella configuration for all designs. 

MESO-PSO fails in buckling for alternative snow loading (see Table 6.23); buckling indicator 

is plotted in Figure 6.25. This failure is caused by the large dome radius along with thin layer 

thickness as indicated by the shape variables of MESO-PSO listed in Table 6.22. The optimal 

topological variables chosen by MESO-DE at phase 1, along with the specific variant selected 

at phase 2, have enhanced the design to progress rapidly. 

The data of optimal designs of model D2 are summarized in Table 6.23, where the minimum 

cost design is achieved by MESO-DE, which is 0.08, the roof frame weighs 42.598 tonnes, and 

the whole tank weighs 370.513 tonnes. The convergence plots of cost, shown in Figure 6.22, 

reveal that the best solution is obtained by MESO-DE, after about 207 evaluations at stage 1 

and 835 evaluations at stage 2. MESO-SA in Stage 2 converges more slowly at first but 

performs well later. 

Ultimately, the best design of model D2 (MESO-DE) is 30.3% lighter than best design for 

model A2, 20.15% lighter than the best design for model B2, 0.34% lighter than the optimal 

design for model C2, and 17.9% lighter than the best design reported for model E2. 

The evolution of design-related functions, shown in Figure 6.23, indicates that the structural 

characteristics of model D2 are changing dramatically due to reduction in structural weight. 

This fact is supported by the figures listed in Table 6.24, for their respective design functions. 

The stress ratio (normalized with the reference design) for MESO-DE is 11.098 obtained after 

1042 FE analyses. MESO-ABC and MESO-BA fluctuate with high amplitudes, whereas 

MESO-PSO develops the lowest values for normalized stress and SE ratios as indicated in Table 

6.24, which reflect the high quality of strength and stiffness characteristics. The buckling 

function is particularly high for the design produced by MESO-PSO. 

Table 6.22 Optimal set of shape and topological design parameters found for model D2. 

Optimization 

method 

Nn 

(-) 

Nr 

(-) 

Ns 

(-) 

Nm 

(-) 

R (m) ɳ (-) Ʊ (-) 

Initial design 48 11 20 35 30.000 0.900 1.000 

MESO-ABC 32 6 10 22 60.000 0.924 1.028 

MESO-BA 32 6 17 21 60.000 0.901 0.921 

MESO-DE 32 6 10 22 51.226 0.943 1.100 

MESO-PSO 32 6 10 20 60.000 0.945 0.900 

MESO-SA 46 6 29 26 52.794 0.940 1.032 
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Table 6.23 Optimal set of cost functions evaluated for model D2. 

Table 6.24 Design data for the initial and optimal statuses executed on model D2. 

 

Figure 6.22 Convergence curve of the cost function towards the optimum for model D2. 

 

 

 

Optimization 

method 

Minimum cost 

(
W

W0
) 

Corresponding roof 

frame mass 

(tonnes) 

Corresponding 

whole tank mass 

(tonnes) 

Initial design 1.000 532.374 869.489 

MESO-ABC 0.084 44.535 371.437 

MESO-BA 0.085 45.126 372.027 

MESO-DE 0.080 42.598 370.513 

MESO-PSO* 0.106 56.653 383.554 

MESO-SA 0.109 58.132 385.823 

* The design has failed by buckling constraints considering pure snow load. 

Optimization 

method 

Stress function 

(Stress ratio) 

SE function 

(SE ratio) 

SED function 

(SED ratio) 

Buckling 

function (ratio) 

Initial design 1.000 1.000 1.000 1.000 

MESO-ABC 9.368 39.164 145.761 44.324 

MESO-BA 9.877 47.117 134.914 42.664 

MESO-DE 11.098 63.554 240.251 46.067 

MESO-PSO 8.393 28.710 91.817 94.619 

MESO-SA 9.612 29.940 117.259 28.479 

Stage-1 Stage-2 
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Figure 6.23 Evolution history of the relevant design functions for model D2. 

 

 

Figure 6.24 Design history of the maximum response induced over the entire structure for 

model D2. 

 

(a) Stress evolution (b) SE evolution 

(c) SED evolution 
(d) Buckling evolution 

(a) Progression of 

max. stress 

(b) Progression of 

max. SE 

(c) Progression of 

max. displacement 

(d) Progression of max. 

buckling indicator 
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Table 6.25 The data of the maximum response induced in model D2. 

Table 6.26 Statistical data about the penalized solutions of model D2 (Stage 1 + Stage 2). 

 

The stress and buckling limits are the dominant constraints in this model as illustrated in Table 

6.26. The statistical data in this table indicate that MESO-DE has failed to achieve the imposed 

stress conditions about 142 times, and 540 penalties are summarized for MESO-PSO due to 

exceeding the buckling statement at stage 2. The data for the maximum response presented in 

Figure 6.24. are listed in Table 6.25. 

Ultimately, MESO-SA exhibits a moderate compromise between strength, stiffness and 

buckling characteristics, whereas MESO-ABC and MESO-BA have achieved a considerable 

saving in weight, whilst preserving an acceptable extent of structural safety against the design 

constraints. MESO-PSO is the only design that failed by buckling at stage 3. The patterns of 

these designs could be visually checked to see the colours appearing in their topologies as 

illustrated in Figure 6.25. The blue refers to the safe region, whereas the red refers to the unsafe 

region of the design. Accordingly, the in-between braces in MESO-PSO show red colour with 

colour scale exceeding unity which signifies that they have exceeded the set buckling limit. 

 

 

 

 

 

 

 

 

Optimization 

method 

Maximum von-

Mises stress [MPa] 

Maximum absolute 

displacement [mm] 

Maximum buckling 

indicator [---] 

Initial design 38.694 1.441 0.02785 

MESO-ABC 163.883 21.861 0.586 

MESO-BA 190.003 21.108 0.531 

MESO-DE 185.073 23.402 0.824 

MESO-PSO 176.343 27.960 0.972 

MESO-SA 175.891 16.277 0.309 

Optimization 

Method 

Solutions lost due 

to breaching stress 

Solutions lost due to 

breaching displacement 

Solutions lost due to 

breaching buckling 

MESO-ABC 0+5 0+0 0+9 

MESO-BA 0+66 0+0 0+0 

MESO-DE 0+142 0+0 0+28 

MESO-PSO 0+0 0+0 0+540 

MESO-SA 0+0 0+0 0+0 



152 

 

 

Figure 6.25 Distribution of buckling index showing the difference between the initial and optimal designs for model D2.
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 Geodesic Double Lattice Dome (Model E2) 

Table 6.27 shows the optimum geometrical parameters of model E2, where Nn=6 and Nr=6 as 

optimal values needed to reach the optimal weight, whereas Ns=30 except MESO-SA, which 

shows a slightly different value. The shape variables are optimized at different levels depending 

on the design. For instance, MESO-PSO is designed as a shallow dome with thick layer 

thickness tapered towards the periphery of the dome, while MESO-SA is created with moderate 

deep, and approximately uniform high thickness layer. 

MESO-DE achieved a weight fraction of 0.142, the roof frame weighs 51.896 tonnes. The tank 

mass is then 380.426 tonnes. The number of analyses required to accomplish the task is 209 at 

stage 1 and 635 analyses at stage 2. The evolution of cost function is plotted in Figure 6.26, 

where MESO-SA shows to be lagging in the first 658 solutions, but later progresses with an 

acceptable rate. MESO-BA evolves with a high convergence speed during phase 2 up to it=644, 

but then progresses no further. 

MESO-BA has recorded the greatest number of violations, as it is penalized 764 times by stress 

(3 times at stage 1 and 761 times at stage 2), 1086 by displacement and 278 by buckling. MESO-

ABC had 680 solutions penalized by stress, 476 by displacement and 56 by buckling. MESO-

SA had only 636 violations against stress. 

Table 6.27 Optimal set of shape and topological design parameters found for model E2. 

 

 

 

 

 

 

Table 6.28 Optimal set of cost functions evaluated for model E2. 

 

 

Optimization 

method 

Nn 

(-) 

Nr 

(-) 

Ns 

(-) 

R (m) ɳ (-) Ʊ (-) 

Initial design 9 9 20 30.000 0.950 1.100 

MESO-ABC 6 6 30 47.662 0.883 0.900 

MESO-BA 6 6 30 59.916 0.95 1.044 

MESO-DE 6 6 30 47.609 0.900 0.912 

MESO-PSO 6 6 30 60.000 0.950 1.100 

MESO-SA 8 6 20 47.362 0.877 0.976 

Optimization 

Method 

Minimum cost 

(
W

W0
) 

Corresponding roof 

frame mass 

(tonnes) 

Corresponding 

whole tank mass 

(tonnes) 

Initial design 1.000 364.922 702.037 

MESO-ABC 0.150 54.540 383.060 

MESO-BA 0.213 77.705 404.614 

MESO-DE 0.142 51.896 380.426 

MESO-PSO 0.168 61.428 388.330 

MESO-SA 0.150 54.884 383.462 
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Figure 6.26 Convergence graph of the cost function towards the optimum for model E2 

The design data of the model indicate that the critical stress (199.674 MPa) is found in MESO-

ABC, also it is developed the critical displacement (33.124 mm), whereas the buckling indicator 

is critically existing in MESO-DE with value 0.692. The design data also show that MESO-

PSO presents the best performance as per the lowest stress and stiffness ratios recorded for the 

design. While, MESO-SA preserves the best structural behaviour to resist the buckling 

problems compared to other designs. 

Figure 6.27 shows the stress distributions for the model E2. They show that the upper lattice is 

the key part of the dome frame. Compared to the initial state, the critical spot has transferred 

from the outermost circumferential ring to diverse spots (e.g. radial girders and diagonal braces) 

in the optimal designs. The results also suggest the possibility of eliminating the lower layer of 

the dome, as most designs have reduced the cross sectional dimensions of the lower lattice 

members to the lowest discrete values available in their respective optimization ranges (as 

identified by the dotted lines of the relevant topologies) along with minimizing the gap (between 

the two layers) to the lowest extent. 

Unlike other double lattice models, all designs of this model are passed the test at stage-3, where 

the model is characterized by its exceptional capability to resist the buckling load, especially, 

MESO-SA and MESO-PSO. Accordingly, the critical buckling region for the latter designs is 

located in the outermost circumferential ring of the lower layer.

Stage-1 Stage-2 



155 

 

 

Figure 6.27 Distribution of equivalent (von-Mises) stress showing the difference between the initial and optimal designs for model E2.
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 Consistency of Optimization Techniques 

Five independent optimization runs have been implemented for each optimization technique to 

verify consistency in relation to the number of attempts performed. The test results show an 

acceptable convergence between the adopted methods. The three most successful models are 

discussed here. 

Considering model D1, the maximum number of analyses, i.e. maximum number of iterations 

multiplied by the population size, was 620 and 602 for MESO-ABC (see Figure 6.28a) and 

MESO-DE (see Figure 6.29a) respectively. The highest structural masses recorded for this 

process were 42.177 tonnes and 43.32 tonnes for MESO-ABC and MESO-DE respectively, 

whereas the lowest structural masses were 34.455 tonnes and 41.009 tonnes for MESO-ABC 

and MESO-DE respectively. The evolution of standard deviation (X̅) of cost (based on five 

independent runs), presented in Figure 6.30a, indicates that the maximum X̅ for MESO-ABC is 

much higher than that for MESO-DE due to the significant difference between the two 

algorithms. The average values of X̅ found at stage 1 are 0.118 and 0.053 for MESO-ABC and 

MESO-DE respectively, whereas a considerable decline in average X̅ observed at stage 2 to be 

0.027 and 0.013 for MESO-ABC and MESO-DE respectively. 

Model E1 exhibits a different behaviour, where the number of analyses does not exceed 397 

and 442 for MESO-ABC and MESO-DE respectively as plotted in Figure 6.28b and Figure 

6.29b. Consequently, the worst designs have masses 66.035 tonnes and 46.06 tonnes for MESO-

ABC and MESO-DE respectively, whereas the corresponding optimal designs have masses 

50.227 tonnes and 37.012 tonnes. A noticeable gap is found in X̅ between MESO-ABC and 

MESO-DE. For instance, the average values of X̅ are 0.178 and 0.123 at stage 1, 0.013 and 

0.008 at stage 2 for MESO-ABC and MESO-DE respectively as illustrated in Figure 6.30b. 

The number of evaluations needed to reach the optimum for double layer configurations is 

higher than that for single lattice models. 

Figure 6.28c and Figure 6.29c show that the numbers of solutions required to reach the optimum 

for MESO-ABC and MESO-DE were 1034 and 1002 respectively for Model D2. The highest 

masses recorded over five optimization runs were 47.867 tonnes and 46.609 tonnes, the lowest 

mass designs were 44.535 tonnes and 42.6 tonnes for MESO-ABC and MESO-DE in sequence. 

Figure 6.30c presents the progression history of X̅ for different stages of optimization. The 

maximum X̅ reached at stage 1 are 0.459 and 0.312, at stage 2 are 0.031 and 0.052 for the 

designs MESO-ABC and MESO-DE respectively. 

 

 

 



157 

 

 

Figure 6.28 Consistency test for MESO-ABC (using 5 independent optimization runs). 

(a) Executed on model D1 

(b) Executed on model E1 

(c) Executed on model D2 
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Figure 6.29 Consistency test for MESO-DE (using 5 independent optimization runs). 

(a) Executed on model D1 

(b) Executed on model E1 

(c) Executed on model D2 
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Figure 6.30 History of standard deviation of cost based on 5 independent optimization runs. 

 

(a) Executed on model D1 

(b) Executed on model E1 

(c) Executed on model D2 
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 Selection of the Optimum Design 

In this section, the best design for the models studied in this chapter will be selected. Two 

candidates from each family of models will be chosen to discover the latent features in each 

design and its respective strategy. Thus, according to the first type of models (models A1 to E1) 

mentioned in Table 6.29, the first candidate is MESO-ABC found in model D1, where the roof 

frame weighs 34.455 tonnes corresponding to tank weight 353.815 tonnes, whereas the second 

design is MESO-DE found in model E1 with roof mass of 37.012 tonnes and tank mass of 

356.370 tonnes. For the second type of models (models A2 to E2) listed in Table 6.29, it is 

recommended to perform this selection on a tank mass basis, owing to the discrepancy caused 

by the dome radius and the extra shell mass. Hence, the first candidate is MESO-SA found in 

model C2 producing tank mass 369.778 tonnes (with roof mass 42.741 tonnes) and the second 

design is MESO-DE found in model D2 with tank mass of 370.513 tonnes (with roof mass 

42.598 tonnes). 

Ultimately, MESO-ABC and MESO-DE are the most efficient and robust optimization 

techniques for use with single lattice models. MESO-SA and MESO-DE are the most efficient 

and robust optimization tools for use with double lattice models. Though the standard SA is not 

that robust metaheuristic optimization tool, unlike DE, a good result is achieved, as its 

deficiency is compensated for by MESO (by resizing the members), although the optimization 

process continues for longer through minimizing the penalized solutions in stage 2. 

Table 6.29 The set of optimal designs obtained for the simplified models. 

 

 

 

 

 

Model No. Associated 

optimization strategy 

Optimal dome frame 

mass (tonnes) 

Optimal whole tank 

mass (tonnes) 

Model A1 MESO-PSO 85.524 404.140 

Model B1 MESO-DE 60.110 378.992 

Model C1 MESO-ABC 54.083 372.698 

Model D1 MESO-ABC 34.455 353.815 

Model E1 MESO-DE 37.012 356.370 

Model A2 MESO-DE 61.117 391.495 

Model B2* MESO-BA 53.348 380.495 

Model C2 MESO-SA 42.741 369.778 

Model D2 MESO-DE 42.598 370.513 

Model E2 MESO-DE 51.896 380.426 

* The design has failed by buckling constraints considering pure snow load. 
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 Summary 

❖ The topological spacing factor (Ns) has two contradict behaviours, e.g. reducing Ns in 

ribbed, Schwedler and Lamella models leads to an observable reduction in the structural 

mass, whereas reducing Ns in geodesic model leads to an observable increase in the 

structural mass. 

❖ For safer designs considering geodesic dome configuration, the spacing factor Ns needs 

to be adjusted between 18 and 21 during the optimization process in order to obtain the 

minimum structural mass for the model. 

❖ The morphological shape factor (Nm), proposed for the hybrid Schwedler-Lamella 

configuration (models D1 and D2), was reduced to the lowest levels to obtain Lamella 

configuration, which achieves the minimum structural mass of the model. 

❖ The maximum stress and strain energy for the models A1 and A2 have direct 

proportionality to the topological trimming factor (Nt). 

❖ Compared to single lattice models, double lattice models are more vulnerable to fail by 

buckling due to pure snow loads when they are designed according to pure wind loads. 

❖ Regardless the optimization algorithm used, models D1 and E1 exhibited the best 

structural performance compared to other models, which resulted in achieving these 

models the minimum structural masses of 34.455 tonnes and 37.012 tonnes respectively. 

❖ The proposed optimizers MESO-ABC and MESO-DE are the most efficient methods 

used to optimize the dome roof frame model. 
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 Optimization Results of the Integrated Models 

This chapter presents the optimization results for the integrated models (models A3 to E3), 

defined in section 4.6. The proposed optimization methods used in chapter 6 will be adopted in 

this chapter. The best design for the integrated models will be selected in this chapter to 

conclude the most robust and reliable optimization strategy. Hence, four models are prepared 

for this purpose and structurally analysed in ANSYS. The structural details and the degree of 

refinement for meshing of these models make them spend longer than usual in comparison to 

the simplified models viewed in the earlier chapter. However, the overall maximum response 

of the tank not simply the dome frame (as in the simplified model) is included in the results. 

This investigation is limited to stress and displacement constraints. The integrated model is 

subjected to pure wind loading when the tank is empty, where this is the design load imposed 

during stage 1 and stage 2 of the optimization. While, no optimization process noticed at stage 

3, instead it only includes 6 extra load cases used to check the optimal designs resulting from 

stages 1 and 2. These load cases are: 

1. Snow + Empty Tank. 

2. Wind + Snow + Empty Tank. 

3. Wind + Full Tank. 

4. Snow + Full Tank. 

5. Wind + Snow + Full Tank. 

6. Full Tank. 

Remarkably, stage 3 is devoted to test the validity of the optimal designs of the considered 

model against the prescribed design constraints under other load cases of the problem as 

explained in Figure 7.5 and Figure 7.6. Details of the geometry construction and automated 

updating are given in Appendix C, and integration with MATLAB is presented in Appendix D. 

 Trimmed Ribbed Single Lattice Dome (Model A3) 

The optimization results for model A3, described in section 4.6.1, will be investigated in this 

section using the proposed optimization strategies detailed in section 5.6. According to the 

proposed optimization methodology, a cascade optimization approach is adopted to obtain the 

optimum design with three stages, two of them are progressive towards the optimum, whereas 

the third is designed to check the validity of the optimum design in presence of other load cases 

of the problem. Phase-1 consists of 12 iterations with each of them involved with population 

size of 10 individuals (i.e. particles, bees etc.). Thus, stage-1 counts to 120 generations to find 

the optimal topological integer set of variables. While, 24 iterations with population size of 10 
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are allocated to phase-2 to investigate the optimal shape, topological, and sizing parameters 

specified to be variables at this stage as tabulated in Table 4.24 and illustrated in Figure 4.19. 

It is noteworthy to state that the variables in this phase are segregated into two groups: discrete 

represented by the set of cross section designations of the model members and continuous 

characterized by the shape and topology of the model allowed to change in this phase (i.e. the 

radial positions of the circumferential rings, dome radius, etc.). 

Table 7.1 shows the optimum values for shape and topology of model A3. Integer and 

continuous variables are included in this table, where the integer parameters (NGussets, NGirders 

and NRings) are solved at stage 1, whereas the continuous and discrete variables are treated at 

stage 2. The optimal set of discrete variables are tabulated in Appendix Table F.11. Two designs 

are succeeded to achieve the optimum structural mass as fixed in Table 7.2. Those are MESO-

ABC and MESO-PSO with structural weights of 121.772 and 122.393 tonnes respectively, they 

achieved a further reduction in structural weight by.9%, 6.6% and 2.5% in comparison to 

MESO-BA, MESO-SA and MESO-DE respectively. The scatter of optimization is markedly 

diminished by adopting the non-dimensional form of topological variables, as the geometrical 

constraints are eliminated by exploiting geometrical correlation between the different 

topological variables. It is important to state that the optimal topology tends to increase the 

meridional lengths of the segments A and B, shown in Figure 4.19, to minimize the arc length 

of the secondary girder, which saves a significant amount of constructional material. 

Furthermore, the radius of the crown has reduced to the lowest values and the circumferential 

rings are pushed towards the tank hub in most designs. 

The optimization tool has been constructed to relate the number of rings (NRings), optimized at 

stage 1, to the topological fractions treated at stage 2. For instance, Table 7.1 indicates that 

when NRings=5, the design will be directed to discard 4 topological positions, whereas for 

NRings=6, only 3 topological fractions will be eliminated at phase 2. Accordingly, the only 

design that preserved the original topological arrangement is MESO–PSO with NRings=10. 

Figure 7.1 illustrates the progression lines of the cost for model A3. Though MESO-DE 

outperformed other designs at the end of phase 1, MESO-ABC and MESO-PSO are dominant 

at the end of phase 2. This could be attributed to two reasons. First, the two variants (MESO-

ABC and MESO-PSO) have enabled MESO to progress into a more feasible design space due 

to their topological arrangements specified at stage 1. This feature has granted the chance to 

MESO to step further in the design space by realizing an extra reduction in structural weight 

without exceeding the design constraints. Second, the capability of the relevant metaheuristic 

techniques in certain circumstances to depart from the local minima, where ABC has succeeded 

to jump to the dome radius (R=48.7 m) instead of 60 m. 
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On the other hand, Figure 7.2 shows more clearly the sequence of MESO at phase 2. The graph 

indicates that the ratio of average SED normalized with respect to the reference design, drawn 

in Figure 7.2, is inversely proportional to the structural weight of the model. The maximum 

value of normalized SED is reached by MESO-ABC, which is equal to 2.684, due to reaching 

the minimum structural weight. While the minimum level of SED ratio (2.055) is indicated by 

MESO-BA. 

On the other hand, Figure 7.3 shows the evolution of the maximum von-Mises stress induced 

over the whole tank for different designs. The statistical data recorded for the penalties of design 

constraints indicate that MESO-DE is the worst design with the fact that 33.7% of its cost 

evaluations have been rejected due to stress. On the other hand, MESO-BA is least affected by 

the design constraints with the total number of penalized solutions reached being 33. 

Table 7.1 Optimal set for shape and topological variables of model A3. 

Design 

variable 

Reference 

design 

MESO

–ABC 

MESO

–BA 

MESO

–DE 

MESO

–PSO 

MESO

–SA 

NGussets [-] 40 36 36 30 30 37 

NGirders [-] 40 34 35 32 32 33 

NRings [-] 10 6 5 6 10 6 

R [m] 45 48.703 56.026 60 56.680 54.821 

CRout [m] 2.5 1 1.227 1 1.2333 1.293 

CRin [m] 1.25 0.4576 0.538 0.600 0.542 0.509 

𝐅𝐫𝐚𝐜𝑨 [-] 0.25 0.291 0.265 0.277 0.261 0.290 

𝐅𝐫𝐚𝐜𝑩 [-] 0.33 0.385 0.391 0.362 0.385 0.382 

𝐅𝐫𝐚𝐜𝑪 [-] 0.50 0.553 0.528 0.548 0.572 0.508 

𝐅𝐫𝐚𝐜𝑨𝟏 [-] 0.4 0.567 0.487 0.432 0.465 0.512 

𝐅𝐫𝐚𝐜𝑨𝟐 [-] 0.8 --- --- --- 0.750 --- 

𝐅𝐫𝐚𝐜𝑩𝟏 [-] 0.2 0.237 0.204 0.223 0.257 0.288 

𝐅𝐫𝐚𝐜𝑩𝟐 [-] 0.6 --- --- --- 0.546 --- 

𝐅𝐫𝐚𝐜𝑪𝟏 [-] 0.4 0.527 0.476 0.400 0.402 0.533 

𝐅𝐫𝐚𝐜𝑪𝟐 [-] 0.7 --- --- --- 0.753 --- 

𝐅𝐫𝐚𝐜𝑫𝟏 [-] 0.4 0.403 --- 0.432 0.455 0.512 

𝐅𝐫𝐚𝐜𝑫𝟐 [-] 0.8 0.730 0.704 0.712 0.724 0.798 

 

Table 7.2 Optimization results for model A3. 

Optimization 

Strategy 

Minimum 

Cost (
W

W0
) 

Corresponding Roof Frame 

Structural Mass (tonnes) 

Corresponding Whole Tank 

Structural Mass (tonnes) 

Initial design 1.000 200.398 520.680 

MESO-ABC 0.608 121.772 441.296 

MESO-BA 0.662 132.712 451.202 

MESO-DE 0.622 124.558 442.654 

MESO-PSO 0.611 122.393 440.813 

MESO-SA 0.649 130.065 448.695 
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Figure 7.1 Progression history of the cost function towards the optimum for model A3. 

 

 

Figure 7.2 Evolution history of the normalized strain energy density SED for model A3. 
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Figure 7.3 Design history of the maximum stress induced over the whole tank for model A3. 

The development in the state of SED (illustrated in Figure 7.4) shows the increase in SED for 

the relevant designs appearing in the graphs of Figure 7.2. It is indicated that the outermost ring 

is the critical part of the structure. The value 2.88 kJ/m3 for the SED of MESO-ABC is set as a 

safe reference level for the maximum SED for the considered designs. Hence, the state of SED 

for the designs of Figure 7.4 is shown to illustrate the comparative variations between the 

different designs. Accordingly, MESO-BA shows the minimum level (2.01 kJ/m3) in 

comparison to other optimal designs. 

There are two critical load cases observed in this investigation (pure wind) and (wind+Hydro) 

as detailed in Figure 7.5, where the optimal designs are about to fail in the latter case. While, 

there is a noticeable mitigation in the state of stress for the case (wind+snow) as highlighted by 

Hsaine and Franklin (2016). Also, the displacement investigation is implemented to show the 

critical cases as shown in Figure 7.6. The two investigations indicate that the snow could be 

considered as serious as wind for the displacement investigation, whereas the snow does not 

make any criticality in the stress state of the model. 
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Figure 7.4 Distribution of SED showing the difference between the initial and optimal designs for model A3.

(a)Reference design (b)MESO-ABC 

(c)MESO-BA (d)MESO-DE 

(e)MESO-PSO (f)MESO-SA 
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Figure 7.5 Validity test for model A3 executed in stage 3 against stress constraints. 

 

 

Figure 7.6 Validity test for model A3 executed in stage 3 against displacement constraints. 
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 Schwedler Single Lattice Dome (Model B3) 

Figure 4.22 through Figure 4.24 illustrate the ground structure for model B3; it is constituting 

of 40 Schwedler modules reinforced by 6 circumferential rings. Hence, the evolution process 

is commencing at 196.231 tonnes and the convergence rate is depending on the nature of the 

adopted optimization algorithm. Table 4.26 aided by Figure 4.22 is prepared to show the scopes 

of variability for the design variables. While, Appendix E lists the commercial ranges of diverse 

structural sections used in the modelling of roof frame members. The optimization results fixed 

in Table 7.3 reveal that the minimum possible number of girders for model B3 is 34, whereas 

the number of rings could be reduced to 4. The dome radius is the only parameter that control 

the structural behaviour globally at stage 2, so the relevant metaheuristic method is obviously 

manipulating this parameter to escape from the local minimum. For instance, the first three 

designs (MESO-ABC, MESO-BA and MESO-DE) outperform other designs to achieve the 

global optimum when they depart from the local minimum at R=60 m. Furthermore, the 

topological fractions fixed in Table 7.3 are chosen in most cases to compress the rings towards 

the dome hub without sacrificing the design constraints. 

The design MESO-ABC has achieved the optimum weight at 105.342 tonnes in only 54 

structural analyses at phase 1 and 160 structural analyses at phase 2, as plotted in Figure 7.7. 

The optimal solution achieved by MESO-ABC could be justified by the different topology 

efficiently chosen by ABC at stage 1 to complement with the simultaneous shape, topology, 

and size optimization implemented at stage 2. The optimal values of sizing variables for this 

model are listed in terms of their designations in Appendix Table F.12. The reference design 

consists of 25 structural components as detailed in Table 4.25. for MESO-ABC, the number of 

design variables was reduced from (2+25+7=34) to (2+17+5=24), i.e. 2 continuous topological 

variables and 8 discrete sizing variables were omitted in this process as illustrated in Table 7.3 

and Appendix Table F.12 respectively. This is only affected by the considerable elimination in 

NRings (from 6 to 4) executed at stage 1. 

The remarkable reduction in the structural weight expressed in terms of MESO steps at stage 2 

(see Figure 7.8) has caused the normalized SED to increase. For instance, SED for MESO-ABC 

has developed dramatically from 4.365 to 24.195, whereas other designs are observed to 

progress with lower extent. 194.77 MPa is the maximum stress reached in the entire 

optimization process, it is induced by MESO-PSO as illustrated in Figure 7.9. On the other 

hand, high fluctuations in the state of maximum stress could be observed in MESO-ABC, 

MESO-BA and MESO-SA. These fluctuations are dependent on many factors. For instance, in 

MESO-ABC, they depend on the population size, threshold of abandonment, space (radius) of 

the searching spot, and the fitness-based selection scheme. 
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Table 7.3 Optimal set for shape and topological variables of model B3. 

Design 

variable 

Reference 

design 

MESO

–ABC 

MESO

–BA 

MESO

–DE 

MESO

–PSO 

MESO

–SA 

NGirders [-] 40 34 34 35 35 35 

NRings [-] 6 4 5 4 4 5 

R [m] 45 47.302 50.088 44.424 48.508 52.460 

Frac1 (-) 0.0952 0.0477 0.0532 0.0512 0.0918 0.1228 

Frac2 (-) 0.286 0.407 0.343 0.389 0.383 0.342 

Frac3 (-) 0.429 0.589 0.508 0.591 0.588 0.503 

Frac4 (-) 0.571 0.799 0.675 0.791 0.802 0.660 

Frac5 (-) 0.714 - 0.839 - - 0.829 

Frac6 (-) 0.857 - - - - - 

Table 7.4 Optimization results for model B3. 

 

 

Figure 7.7 Progression history of the cost function towards the optimum for model B3. 

Optimization 

Strategy 

Minimum 

Cost (
W

W0
) 

Corresponding Roof Frame 

Structural Mass (tonnes) 

Corresponding Whole Tank 

Structural Mass (tonnes) 

Initial design 1.000 196.231 517.009 

MESO-ABC 0.537 105.342 425.626 

MESO-BA 0.540 105.911 425.696 

MESO-DE 0.537 105.374 426.292 

MESO-PSO 0.546 107.098 427.154 

MESO-SA 0.578 113.406 432.836 
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Figure 7.8 Evolution history of the normalized strain energy density SED for model B3. 

 

 

Figure 7.9 Design history of the maximum stress induced over the whole tank for model B3. 

Figure 7.10 describes the variations in the state of SED between the initial and optimal designs 

for model B3, as the design MESO-ABC exhibits the maximum value of SED (1.1629 kJ/m3). 
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It is observable that the maximum SED is located in the peripheral part of the dome roof frame, 

as the same spot shows the maximum stress of the model. The maximum strain energy reached 

in this case is 22.839 J, the maximum displacement is 19.246 mm as recorded by MESO-ABC. 

It is noteworthy to state that there are no penalties indicated in this optimization, as the 

progression of the maximum response is hovering much below the limit lines with an 

appreciable gap. The only problem with this model is belonging to the violations noticed at 

stage 3, where other load cases are applied. Accordingly, Figure 7.11 shows that MESO-PSO 

has exceeded the stress limits in the case (Wind+Hydro) with maximum stress of 204.837 MPa, 

i.e. the tank structure will fail when it is full and subjected to wind loads only for this particular 

design. 

 

Figure 7.10 Distribution of SED showing the difference between the initial and optimal 

designs for model B3. 

(a)Reference design (b)MESO-ABC 

(c)MESO-BA (d)MESO-DE 

(e)MESO-PSO (f)MESO-SA 
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Due to exceeding stress limits at stage 3, MESO-PSO will be excluded from being a candidate 

design for this model. On the other side, the deformation inspection shows the same critical 

load cases as stress: (wind + empty tank) and (wind + full tank) as shown in Figure 7.12. 

 

Figure 7.11 Validity test for model B3 executed in stage 3 against stress constraints. 

 

Figure 7.12 Validity test for model B3 executed in stage 3 against displacement constraints. 
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 Lamella Single Lattice Dome (Model C3) 

The reference design of this model is detailed in section 4.6.3. The design MESO-PSO has 

achieved the optimum weight at 113.121 tonnes after consuming 78 structural analyses at stage 

1 and 179 structural analyses at stage 2 (look at Table 7.6 and Figure 7.13). The best two 

solutions are MESO-PSO and MESO-ABC, which have the same topology at the beginning of 

stage 2. However, a significant gap could be noticed in their topologies and their girder sections 

at the end of stage 2. The sizing variables for model C3 are listed in Appendix Table F.13. The 

reference design consists of 34 structural components as detailed in Table 4.27. For MESO-

PSO, the number of design variables is reduced from (2+34+12=48) to (2+22+8=32), i.e. 4 

continuous topological variables and 12 discrete sizing variables were omitted to prepare the 

design for stage 2 as illustrated in Table 7.5 and Appendix Table F.13 respectively. This is only 

affected by the considerable elimination in NRings (from 11 to 7) implemented at stage 1. 

Despite MESO-ABC and MESO-PSO showing parallel progression in the first 100 generations 

at stage 2, the final result indicates the domination of MESO-PSO as illustrated in Figure 7.13. 

The maximum strain energy SE (18.922 N.m) is induced by MESO-PSO. Similarly, the 

maximum SED was produced by MESO-PSO to be 2.233 kJ/m3, whereas the maximum 

deformation (17.96 mm) is generated at MESO-SA. 

The evolution of normalized strain energy at stage 2 described in MESO sequence, as depicted 

in Figure 7.14, reveals that MESO-ABC is progressing rapidly at the beginning of the stage 2 

up to step 25. Thereafter, MESO-PSO will step over MESO-ABC to stabilize at the value 7.56. 

While, MESO-BA and MESO-DE are preserved their progression at the lowest level to reach 

the values at 4.53 and 4.67 respectively. 

Table 7.5 Optimal set for shape and topological variables of model C3. 

Design 

variable 

Reference 

design 

MESO

–ABC 

MESO

–BA 

MESO

–DE 

MESO

–PSO 

MESO

–SA 

NGirders [-] 40 34 34 30 34 35 

NRings [-] 11 7 8 8 7 7 

R [m] 45 52.044 50.130 47.034 53.607 55.306 

Frac1 (-) 0.0952 0.0563 0.0490 0.1265 0.0776 0.0895 

Frac2 (-) 0.1667 0.2681 0.2183 0.2331 0.2437 0.2682 

Frac3 (-) 0.25 0.3785 0.3357 0.3383 0.3683 0.3621 

Frac4 (-) 0.3333 0.4886 0.4395 0.4564 0.5139 0.4889 

Frac5 (-) 0.4167 0.6226 0.5455 0.5652 0.6116 0.6299 

Frac6 (-) 0.5 0.7431 0.6694 0.6597 0.7519 0.7552 

Frac7 (-) 0.5833 0.8714 0.7843 0.7675 0.8723 0.8693 

Frac8 (-) 0.6667 - 0.8895 0.8816 - - 

Frac9 (-) 0.75 - - - - - 

Frac10 (-) 0.8333 - - - - - 

Frac11 (-) 0.9167 - - - - - 
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Table 7.6 Optimization results for model C3. 

Optimization 

Strategy 

Minimum 

Cost (
W

W0
) 

Corresponding Roof Frame 

Structural Mass (tonnes) 

Corresponding Whole Tank 

Structural Mass (tonnes) 

Initial design 1.000 209.269 530.048 

MESO-ABC 0.5577 116.706 435.983 

MESO-BA 0.5854 122.505 442.400 

MESO-DE 0.5619 117.577 437.909 

MESO-PSO 0.5406 113.121 432.348 

MESO-SA 0.5788 121.116 440.523 

 

Figure 7.13 Progression history of the cost function towards the optimum for model C3. 

Figure 7.15 states that MESO-BA is the most design that breached the stress constraints at phase 

1, as it was penalized 14 times due to high fluctuations of cost noticed in this algorithm at phase 

1, whereas it is remarked that MESO-PSO has discarded 61 evaluations at phase 2 due to stress. 

Furthermore, Figure 7.15 indicates that the maximum stress is induced in MESO-PSO with 

value of 188.958 MPa. On the other hand, the minimum stress is recorded by MESO-BA 

(158.029 MPa). Also, statistical data state that MESO-BA and MESO-DE show no violations 

to the stress constraints, as they have different variants compared to other designs. 

The distribution of SED for model C3, depicted in Figure 7.16, indicates that the maximum 

SED (2.233 kJ/m3) is generated in MESO-PSO. Hence, this is considered as reference value for 

other designs to show the SED state for them comparatively. It can be inferred that the 

outermost ring experiences a compressive load as result of lift force applied to the model. 
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Figure 7.14 Evolution history of the normalized strain energy SE for model C3. 

 

 

Figure 7.15 Design history of the maximum stress induced over the whole tank for model C3. 
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Figure 7.16 Distribution of SED showing the difference between the initial and optimal 

designs for model C3. 

 

The validity test of the optimal designs performed against stress constraints, plotted in Figure 

7.17, shows that two designs (MESO-ABC and MESO-PSO) are breached the stress limits for 

two load cases (pure snow and snow+hydro), hence those two designs are crossed and excluded 

from being candidate designs. Thus, the next candidate design to be selected for model C3 is 

MESO-DE with weight 117.577 tonnes, as illustrated in Table 7.6. However, the displacement 

test, shown in Figure 7.18, clarifies that there are no violations to the displacement constraints. 

 

 

 

(a)Reference design (b)MESO-ABC 

(c)MESO-BA (d)MESO-DE 

(e)MESO-PSO (f)MESO-SA 
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Figure 7.17 Validity test for model C3 executed in stage 3 against stress constraints. 

 

 

Figure 7.18 Validity test for model C3 executed in stage 3 against displacement constraints. 
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 Geodesic Single Lattice Dome (Model E3) 

The main difference between this model and the previous models could be justified by the 

configuration of the braces. The number of braces is determined as multiples of ring number. 

For instance, if the number of radial girders (NGirders=6), then the number of braces for NRings=4 

will be calculated simply as (6×1+6×2+6×3+6×4=60) as illustrated in formulae (4.12) in terms 

of the circumferential nodes involved. The reference design of this model is detailed in section 

4.6.4. However, MESO-DE has achieved an exceptional optimum weight at 74.256 tonnes after 

103 structural analyses at stage 1 and 184 structural analyses at stage 2 as illustrated in Table 

7.8 and Figure 7.19. Model E3 is characterized by low number of radial girders, which are 

compensated by the radially increasing braces. 

Initially, the model has 10 radial girders and 9 circumferential rings, these are reduced to 6 by 

6 in each of MESO-ABC, MESO-DE and MESO-SA, 6 by 7 in MESO-BA and 7 by 7 in 

MESO-PSO as stated in Table 7.7. The dome radii of all designs are concentrated at the upper 

half of the optimization range. Unlike models A3 to C3, the optimizer is trying to push the 

circumferential rings radially towards the dome periphery to achieve the minimum weight 

(review the topological fractions mentioned in Table 7.7 with the radial distances of 

circumferential rings shown graphically in Figure 7.23). A parametric study has been conducted 

in Chapter 6 to highlight this relationship. A significant reduction in design variables from 

(2+37+10=49) to (2+25+7=34) was remarked in stage 2 for the designs MESO-ABC, MESO-

DE and MESO-SA due to reducing the rings from 9 to 6. 

The sizing variables for the set of optimal designs of this model are listed in Appendix Table 

F.14. While, Appendix E is devoted to list the industrial cross sections used in the modeling of 

structural members. 

Table 7.7 Optimal set for shape and topological variables of model E3. 

Design 

variable 

Reference 

design 

MESO

–ABC 

MESO

–BA 

MESO

–DE 

MESO

–PSO 

MESO

–SA 

NGirders [-] 10 6 6 6 7 6 

NRings [-] 9 6 7 6 7 6 

R [m] 45 50.339 52.326 54.943 56.812 51.325 

Frac1 (-) 0.1 0.1001 0.0943 0.1359 0.1398 0.1355 

Frac2 (-) 0.2 0.7536 0.2689 0.2931 0.2439 0.2897 

Frac3 (-) 0.3 0.4451 0.3774 0.4121 0.3888 0.4394 

Frac4 (-) 0.4 0.5603 0.4888 0.5727 0.5084 0.5857 

Frac5 (-) 0.5 0.7190 0.6371 0.7260 0.6116 0.7129 

Frac6 (-) 0.6 0.8574 0.7436 0.8619 0.7598 0.8654 

Frac7 (-) 0.7 - 0.8793 - 0.8688 - 

Frac8 (-) 0.8 - - - - - 

Frac9 (-) 0.9 - - - - - 
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The graph shown in Figure 7.19 indicate that MESO-ABC, MESO-DE and MESO-SA are 

progressing with high convergence rate to achieve the minimum at the end of stage 2. The 

evolution of normalized average strain energy density SED, appearing in Figure 7.20, states 

that the strain energy increases for any structure subjected to material removal. Subsequently, 

the stiffness characteristics will be negatively affected. The highest value for SED ratio is 23.66 

as noticed in MESO-DE, whereas the lowest value is 11.44 observed in MESO-PSO. 

Consequently, MESO-DE has developed the maximum SED (3.165 kJ/m3), and the maximum 

vertical deformation (24.618 mm). 

Table 7.8 Optimization results for model E3. 

Optimization 

Strategy 

Minimum 

Cost (
W

W0
) 

Corresponding Roof Frame 

Structural Mass (tonnes) 

Corresponding Whole Tank 

Structural Mass (tonnes) 

Initial design 1.000 209.269 530.048 

MESO-ABC 0.382 78.494 398.239 

MESO-BA 0.388 79.818 399.266 

MESO-DE 0.361 74.256 393.368 

MESO-PSO 0.426 87.661 406.563 

MESO-SA 0.376 77.261 396.854 

 

 

Figure 7.19 Progression history of the cost function towards the optimum for model E3. 
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Figure 7.20 Evolution history of the normalized strain energy density SED for model E3. 

MESO-DE is the most susceptible design to the penalties of stress limits, where it has lost 86 

solutions during this optimization task. Followed by MESO-SA with violations equal to 72, 

whereas MESO-PSO has recorded zero violations to stress. The evolution history of maximum 

von Mises stress described for different designs, as shown in Figure 7.21, reflects the state of 

satisfaction to the stress constraints. The lumping of design points for certain design around the 

limit line of certain constraint will enhance the chance to be penalized by that constraint more 

than other designs. 

The design contours for model E3, illustrated in Figure 7.23, indicate that the maximum SED 

is located on the peripheral part of the radial girders for all designs. This is the same situation 

seen in model B3, as the radial girders are the most vulnerable parts of the dome frame (look at 

Figure 7.10). On the contrary, models A3 and C3 exhibit a different situation towards the pure 

wind loads as depicted in Figure 7.4 and Figure 7.16, where the outermost circumferential ring 

is the critical part of the dome structure. 

Though the presence of other critical load case (full tank subjected to pure wind) during the test 

implemented at stage 3 against stress limits as clarified in Figure 7.22, all designs were passed 

the test without any breaching to the prescribed stress limits. Since there are no violations to 

the displacement limits, as indicated in Figure 7.24, MESO-DE is now eligible to be chosen as 

candidate for model E3 with weight 74.256 tonnes, as illustrated in Table 7.8. 
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Figure 7.21 Design history of the maximum stress induced over the whole tank for model E3. 

 

 

Figure 7.22 Validity test for model E3 executed in stage 3 against stress constraints. 
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Figure 7.23 Distribution of SED showing the difference between the initial and optimal 

designs for model E3. 

 

 

 

 

 

 

 

 

 

 

(a)Reference design (b)MESO-ABC 

(c)MESO-BA (d)MESO-DE 

(e)MESO-PSO (f)MESO-SA 
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Figure 7.24 Validity test for model E3 executed in stage 3 against displacement constraints. 

 Selection of the Optimum Design 

It is observed that MESO-ABC, MESO-DE and MESO-SA are the most efficient algorithms 

for global search associated with multiple and strict design constraints. They can treat with 

multimodal problems, where multiple paths are possible to achieve the optimum. However, the 

significant part of their success is attributed to using MESO, as it conducts a single path of 

search intelligently depending on prescribed design criterion, as detailed in section 5.4. One of 

the merits of MESO is that it produces a feasible solution acceptable to both practical and 

manufacturing perspectives, as it resizes the member dimensions systematically, whereas this 

feature does not exist in the conventional metaheuristic techniques. 

According to Table 7.2, the best candidate, for model A3, is MESO-ABC with weight 121.772 

tonnes corresponding to tank weight 441.296 tonnes. Similarly, the contribution of model B3 

is MESO-ABC, which developed a minimum weight of 105.342 tonnes, the corresponding tank 

mass was 425.626 tonnes as given in Table 7.4. The third candidate is MESO-DE to represent 

model C3, with roof mass 117.577 tonnes, and tank mass 437.909 tonnes as indicated in Table 

7.6. The last candidate is MESO-DE found in model E3, which recorded a minimum roof frame 

mass of 74.256 tonnes and a tank mass of 393.368 tonnes (see Table 7.8). The latter design is 

selected to be the best design for the set of models and algorithms evaluated in this chapter. The 

smart configuration of the model (model E3) along with the exceptional characteristics of the 

adopted optimization technique (MESO-DE) are the main two reasons behind this success. 

Table 7.9 lists the set of best optimal designs for the integrated dome roof models investigated 

in this chapter. 



185 

 

Table 7.9 The set of optimal designs obtained for the integrated models. 

 

 Summary 

❖ It is more complicated to treat the design variables in the integrated models to be easier 

to optimize compared to the simplified models. 

❖ Three more critical load cases need to be considered in the design process: a full tank 

subjected to pure wind loading (from stress perspective), and an empty and full tank 

subjected to pure snow loading (from displacement perspective). 

❖ In appreciable closeness to the results obtained for the simplified modelling, the 

integrated model E3 exhibited the best structural performance compared to other 

models, where the minimum structural mass obtained for the roof supporting frame is 

74.256 tonnes, which is corresponding to a whole tank mass of 393.368 tonnes. 

❖ Compared to other methods adopted in this work, MESO-DE showed its robustness to 

find the optimal solution for the applications involved with strict and multiple design 

constraints. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Model ID Associated 

optimization 

technique 

Optimal mass for the 

dome roof frame 

(tonnes) 

Optimal mass for the 

whole tank (tonnes) 

Model A3 MESO-ABC 121.772 441.296 

Model B3 MESO-ABC 105.342 425.626 

Model C3 MESO-DE 117.577 437.909 

Model E3 MESO-DE 74.256 393.368 
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 Efficiency and Robustness of the Proposed Strategies 

 Synopsis 

This chapter discusses the computational performance (convergence rate) of the hybrid 

optimizers proposed in this work compared to the classic metaheuristic ones used in the 

literature for the same field of optimization, i.e. large-scale structural optimization. The 

reliability and robustness of the adopted optimizers is compared to the conventional 

metaheuristic techniques based on five different models along with five different optimization 

strategies posed in two modes: the hybrid mode (MESO based algorithms) and the standard or 

conventional mode (STD based algorithms). Five different case studies are considered in this 

investigation to verify the computational efficiency and the feasibility of the proposed 

optimizers (MESO based algorithms) compared to other conventional metaheuristic techniques 

used in the literature. Two of them are taken from this research and the others are selected from 

the literature. The same conditions (objective constraints and loading cases) as the study 

performed in Chapter 6 are applicable to the first two case studies. While, the remaining case 

studies have their own specified constraints and loading condition as stated in their respective 

subsections. 

 Trimmed Ribbed Staggered Double Lattice Dome (Model A4) 

Model A4 is a variation of Model A2 in which the lower frame is staggered, i.e., rotated axially 

by half an interval (180/Nn) with respect to the upper (primary) layer. Hence, a zigzag style of 

in-between bracing is introduced for this type of modelling, where the number of structural 

components will increase by (Nr-1), i.e. the reference design is consisting of 

(30+14+14+28+14+14+2=116) components, 1474 nodes, and 5025 elements. The numbering 

of structural components for initial design is shown in Figure 8.1. 

The optimization data are listed in Table 8.1. Nn and Nr both reduce to the lowest values of 

their respective ranges, i.e. 24 and 10 respectively, while Ns ranges from 17 to 22, as seen in 

the parametric study of Ns discussed in section 6.1.1. The optimal values of Nt range from 4 to 

10, which matches with the investigation results for Nt in section 6.1.3. More details about the 

optimum dome radii and other two extra shape parameters concerning the double lattice 

modelling are shown in Table 8.1. 

As explained earlier, this investigation is directed to show the significant difference between 

the proposed MESO based algorithms and the classic or conventional metaheuristic algorithms. 

To recognize these methods, the adopted metaheuristic techniques (ABC, BA, DE, PSO, and 

SA) hybridized with MESO are prefixed by “MESO”, whereas the conventional ones are 
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prefixed by “STD”. For instance, the hybrid BA is labelled as MESO-BA, whereas the standard 

BA is referred to as STD-BA as defined in Table 8.1 and Figure 8.2. 

The evolution curves of cost function for model A4, appearing in Figure 8.2, are represented 

by 10 different optimization algorithms. Five of them are hybrid metaheuristic algorithms 

(MESO–ABC, MESO–BA, MESO–DE, MESO–PSO, and MESO–SA) with their procedure 

explained in section 5.6 and Figure 5.9. Another five algorithms are the conventional 

metaheuristic algorithms (STD–ABC, STD–BA, STD–DE, STD–PSO, and STD–SA), which 

are working on the same procedure explained in Figure 5.9, but without using MESO, i.e. they 

are using pure metaheuristic rules to treat with all variables at Stage 1 and Stage 2. 

 

 

Figure 8.1 Reference design of model A4, showing identification of the structural components. 

Table 8.1 Optimal set for shape and topological variables of model A4. 

 

Optimization 

Method 

Nn 

[-] 

Nr 

[-] 

Ns 

[-] 

Nt 

[-] 

R1 [m] ɳ [-] Ʊ [-] 

Initial design 32 15 20 10 30.000 0.9500 1.1000 

MESO-ABC 24 10 18 9 38.056 0.8666 1.0618 

MESO-BA 24 10 22 4 34.677 0.9311 1.0011 

MESO-DE 24 10 22 6 37.178 0.9216 1.1000 

MESO-PSO 24 10 18 10 39.503 0.9499 1.0578 

MESO-SA 25 10 17 10 40.471 0.9479 1.0011 

STD-ABC 24 10 18 9 36.956 0.8729 0.9123 

STD-BA 24 10 22 4 58.956 0.9216 1.0414 

STD-DE 24 10 22 6 57.225 0.9497 0.9980 

STD-PSO 24 10 18 10 37.173 0.8883 0.9054 

STD-SA 25 10 17 10 56.274 0.9457 1.0221 
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The optimal structural mass for each of the ten methods is summarized in Table 8.2. MESO–

ABC has outperformed other algorithms with MESO-DE a close second (59.2 tonnes and 60.2 

tonnes respectively). Phase 1 is identical for both MESO and STD methods (see Figure 8.2 to 

Figure 8.4) due to the fact that they are optimizing the same integer topological variables 

allocated for this phase and the MESO method itself is only introduced at Stage 2. 

As can be seen in Figure 8.2, MESO-BA and MESO-SA were trapped in local minima early 

on, as they stopped progress after 294 and 328 analyses at stage 2 respectively. STD-BA has 

lost a lot of solutions, hence after 587 successful evaluations it was given up to reach the steady 

state after 381 successful evaluations at phase 2. Only 206 successful evaluations are consumed 

to pass stage 1 for both MESO and STD techniques, while the statistical data reveal that MESO 

algorithms reached the optimum after only 512 successful solutions at stage 2. On the other 

hand, STD methods are consumed 842 successful solutions to reach the optimum. Though the 

high number of analyses remarked in STD curves, they have achieved poor results in 

comparison to the proposed MESO algorithms. 

In general, the diversity ranges of cost function (i.e. the difference between the max and min 

values of cost evaluations for the bunch of individuals found in only one iteration), plotted in 

Figure 8.3, indicate that MESO algorithms have significantly lower ranges of diversity at stage 

2 in comparison to STD algorithms. This is attributed to the engineering intuition exploited by 

MESO to follow the optimal path of evolution instead of swimming randomly in full solution 

space, as seen in STD algorithms. The corresponding evolution maximum stresses is shown in 

Figure 8.4. The data provided in Table 8.3, indicate that MESO-ABC breached the stress limits 

more than other designs, it was recorded 11 violations at stage 1 and 562 violations at stage 2. 

Table 8.2 Optimization results for model A4. 

Optimization 

Strategy 

Minimum 

Cost (
W

W0
) 

Corresponding Roof Frame 

Structural Mass [tonnes] 

Corresponding Whole 

Tank Structural Mass 

[tonnes] 

Initial Design 1.0000 227.575 564.690 

MESO-ABC 0.2603 59.228 390.538 

MESO-BA 0.3037 69.106 402.181 

MESO-DE 0.2646 60.207 391.916 

MESO-PSO 0.2800 63.717 394.440 

MESO-SA 0.3709 84.416 414.791 

STD-ABC 0.4621 105.152 436.967 

STD-BA 0.5529 125.831 452.827 

STD-DE 0.3230 73.497 400.664 

STD-PSO 0.3897 88.694 420.405 

STD-SA 0.4424 100.669 427.937 
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Figure 8.2 Progression history of the cost function towards the optimum for model A4. 

 

 

Figure 8.3 Diversity ranges of cost function for the adopted algorithms executed on model 

A4. 
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Table 8.3 also reveals that the displacement constraints are much more restrictive than the stress 

limitations for this model, as the violations recorded for displacement are many times the 

violations recorded by stress, especially for MESO designs, where MESO-SA has discarded 9 

solutions at phase 1 and 2615 solutions at phase 2 due to breaching displacement limits. 

MESO-ABC has developed the maximum value of stress 199.69 MPa, whereas the critical 

absolute displacement (39.96 mm) is found in MESO-SA. The second design affected by the 

limitations of displacement is MESO-PSO, where 39 penalties are implemented at phase 1 and 

2269 penalties are reported at stage 2. 

 

Figure 8.4 Design history of the maximum equivalent stress induced in model A4. 

Table 8.3 Data of model A4 showing the number of violations (Stage 1 + Stage 2). 

Optimization 

Method 

Solutions lost due 

to breaching stress 

Solutions lost due to 

breaching displacement 

Solutions lost due to 

breaching buckling 

MESO-ABC 11+562 12+1537 0+0 

MESO-BA 28+28 12+722 0+0 

MESO-DE 29+81 20+1902 0+0 

MESO-PSO 54+8 39+2269 0+0 

MESO-SA 38+0 9+2615 0+0 

STD-ABC 11+32 12+103 0+0 

STD-BA 28+22 12+446 0+0 

STD-DE 29+74 20+307 0+0 

STD-PSO 54+133 39+433 0+0 

STD-SA 38+7 9+249 0+0 
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Figure 8.5 Distribution of SED for model A4 (a) Reference design (b) Optimal MESO-based 

design (MESO-ABC) (c) Optimal STD-based design (STD-DE). 

 

 

 

 

(c)STD-DE 

(a)Reference design 

(b)MESO-ABC 
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Figure 8.5 shows the difference in the strain energy density SED between the reference design 

and optimal designs for both of MESO and STD algorithms. The design contours disclose the 

main merits of MESO compared to STD. First, the resizing operation in MESO based 

algorithms is implemented in a more systematic manner rather than the multi-dimensional 

random search adopted by STD based algorithms to produce more consistent geometry with a 

more homogeneous distribution of constructional material. Second, in addition to the extra 

saving in structural material, MESO based algorithms produce feasible designs with more 

conformity with the strict limitations of manufacturing and assembly through selecting more 

limited ranges for the girders sections in comparison to STD based algorithms. 

 Hybrid Schwedler-Lamella Double Lattice Dome (Model D2) 

The only difference between this model and the model discussed in section 6.7 is attributed to 

the adopted optimization ranges between the two models. Accordingly, for the current model 

the upper bounds of Nn and Nr are 80 and 20, whereas the lower bounds are 60 and 12 

respectively, the bounds of other variables are identical for the two models. The lower layer for 

model D2 is axially rotated by 180/Nn with respect to the upper (primary) layer. The reference 

design comprises of (14+40+38+24+1+19+20=156) components (see Figure 8.6), the number 

of nodes is 3202, and the number of elements is 12401. Many challenges are associated with 

this model. First, the size and the nature of the geometry require an efficient optimizer to deal 

with the situation. Second, the newly proposed topological and shape parameters (Ns, Nm, ɳ 

and Ʊ) along with the strict rules of multiple design constraints represent a significant challenge 

for the optimizer to solve the problem. 

 

Figure 8.6 Reference design of model D2, showing identification of the structural components. 
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The convergence curves for cost, plotted in Figure 8.7, highlight the exceptional convergence 

rates of MESO based methods, where a significant gap in the convergence rates could be 

recognized evidently between MESO based techniques and STD techniques after 300 analyses 

onwards at stage 2. The optimum masses for each method are summarized in Table 8.5. Once 

again, Nn and Nr reduce to the lowest possible values of their prescribed design ranges, i.e. 60 

and 12 respectively. The optimum values of Ns are set to the upper limits for the methods ABC 

and BA, but to lower limits for other designs (DE, PSO, and SA). 

The morphological factor Nm in all optimum solutions has reduced to trim out all radial girders 

in the structure to generate pure Lamella configuration. The results obtained for Nm by the 

designs DE, PSO, and SA for both modes of optimization (MESO and STD) are compatible 

with the parametric investigation performed for Nm in section 6.1.2. 

The diversity range of cost is plotted against iteration number (MESO step) as illustrated in 

Figure 8.8 to show how MESO is achieved its goal to reduce the scope of variation gradually 

during the evolution. MESO and STD are identical at stage 1 (up to it=22), whereas stage 2 

show an evident gap between the two groups of strategies (MESO and STD). Accordingly, the 

average values of diversity ranges recorded by MESO based algorithms in phase 2 are 0.0115, 

0.0136, 0.0083, 0.0016, and 0.0019, whereas the average diversity ranges remarked in their 

counterparts in STD based techniques are 0.1515, 0.1227, 0.072, 0.0531, and 0.0394, which 

exhibit a considerable gap with respect to MESO based techniques. 

 

 

Table 8.4 Optimal set for shape and topological variables of model D2. 

 

 

 

Optimization 

Method 

Nn 

[-] 

Nr 

[-] 

Ns 

[-] 

Nm 

[-] 

R1 [m] ɳ [-] Ʊ [-] 

Initial design 80 20 24 33 30.000 0.950 1.100 

MESO-ABC 60 12 26 11 56.217 0.95 0.920 

MESO-BA 60 12 28 12 60 0.95 0.957 

MESO-DE 60 12 10 11 59.655 0.947 0.904 

MESO-PSO 60 12 10 10 60 0.945 0.900 

MESO-SA 60 12 10 11 60 0.95 0.909 

STD-ABC 60 12 26 11 47.755 0.907 0.918 

STD-BA 60 12 28 11 49.940 0.913 0.999 

STD-DE 60 12 10 10 49.611 0.939 0.962 

STD-PSO 60 12 10 12 49.295 0.909 0.914 

STD-SA 60 12 10 10 54.373 0.880 0.910 
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Table 8.5 Optimization results for model D2. 

Optimization 

Strategy 

Minimum 

Cost (
W

W0
) 

Corresponding Roof Frame 

Structural Mass (tonnes) 

Corresponding Whole 

Tank Structural Mass 

(tonnes) 

Initial Design 1 491.890 829.005 

MESO-ABC 0.1759 86.543 413.818 

MESO-BA 0.1580 77.716 404.617 

MESO-DE 0.1728 84.988 411.920 

MESO-PSO 0.1742 85.700 412.602 

MESO-SA 0.1766 86.849 413.751 

STD-ABC 0.3908 192.247 520.749 

STD-BA 0.4368 214.877 542.993 

STD-DE 0.2217 109.027 437.197 

STD-PSO 0.2990 147.068 475.292 

STD-SA 0.3413 167.881 495.370 

The design history of maximum equivalent von-Mises stress, demonstrated in Figure 8.9, 

indicate that the algorithms STD-DE is the most susceptible to the penalties of stress limitations, 

as it has experienced 99 penalties during the optimization task. In the same topic, only 6 

violations are confirmed on the design MESO-BA. There are no outstanding violations to the 

displacement and buckling constraints noticed for this model. 

The design contours, presented in Figure 8.10, compare the state of stress between the reference 

and optimal results obtained for MESO and STD based algorithms. The optimal design selected 

for MESO group is MESO-BA with weight 77.716 tonnes, while the optimal design chosen for 

STD group is STD-DE with weight 109.027 tonnes. 

 

Figure 8.7 Progression history of the cost function towards the optimum for model D2. 
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Figure 8.8 Diversity ranges of cost function for the adopted algorithms executed on model 

D2. 

 

Figure 8.9 Design history of the maximum equivalent stress induced in model D2. 
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Figure 8.10 Distribution of von-Mises stress for model D2 (a) Reference design (b) Optimal 

MESO-based design (MESO-BA) (c) Optimal STD-based design (STD-DE). 

(c)STD-DE 

(a)Reference design 

(b)MESO-BA 
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 The 25-bar Spatial Transmission Tower (Fox and Schmit Model) 

The 25-bar 3D transmission tower, see Figure 8.11, is the most popular design example used 

for comparison in the literature. The optimization results for this example are viewed and 

discussed considering two different cases for the problem. First, the model is subjected to static 

design constraints (stress and deflection). Second, the model is subjected to dynamic 

(frequency) constraints. 

The mass density of the structural material is taken as 2767.990 kg/m3, the modulus of elasticity 

is 68.950 GPa. The whole structure is subdivided into eight groups modelled using circular 

cross-sections. The cross-sectional areas of the truss members are the only sizing variables of 

the problem. Thus, there are 13 design variables in total, 8 of them are sizing variables and 5 

are layout variables represented by the coordinates of the nodes 4 and 8, i.e. X4, Y4, Z4, X8 

and Y8. The cross-sectional areas are distributed over the range 0.1 in2 to 3.4 in2. The model is 

symmetric about the planes XZ and YZ and nodes 1 and 2 are fixed as shown in Figure 8.11 (at 

height 200 in and separation 75 in). Manipulating the coordinates for only two nodes (4 and 8) 

is sufficient to control the geometrical shape of the model. The side constraints imposed on the 

geometrical variables are given as: 

20 ≤ X4 = X5= −X3 = −X6 ≤ 60 in, 40 ≤ Y3 = Y4 = −Y5 = −Y6 ≤ 80 in, 

90 ≤ Z3 = Z4 = Z5 = Z6 ≤ 130 in, 40 ≤ X8 = X9 = −X7 = −X10 ≤ 80 in, 

100 ≤ Y7 = Y8 = −Y9 = −Y10 ≤ 140 in. 

 

Figure 8.11 Schematic of the 25-bar spatial transmission tower illustrating the boundary 

conditions and numbering of nodes and elements (Asl et al., 2016). 
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 Optimization Results for Stress and Displacement Constraints (Case 1) 

This section will discuss the optimization results for the 25-bar spatial truss subject to 

displacement and stress constraints. The model is constrained by stress limitations of 40 ksi 

(275.79 MPa) for tension and compression, and the displacement of all nodes in all directions 

are restricted to the scope ±0.35 in (±8.89 mm) - see Table 8.8. The model is subjected to the 

static loading specified in Table 8.7. The results are given in Table 8.9. Group numbers 1, 2, 4, 

5, 6 and 7 are inactive components in the structural system, hence their cross-sectional areas 

have been reduced to the lowest values in their optimization ranges. 

This example is used to test many metaheuristic algorithms against robustness and efficiency 

as summarized in Table 8.6. 

Table 8.6 The set of metaheuristic techniques executed on the 25-bar truss (case 1). 

Optimization method Executed by: 

JA1 

JA-DSO2 
Degertekin et al. (2018) 

HS3 Lee and Geem (2004) 

Modified HS Gholizadeh et al. (2011) 

BB-BC4 Kaveh and Talatahari (2009c) 

Hybrid HS-BB-BC Lamberti and Pappalettere (2013) 

CMLPSA5 Lamberti (2008) 

FFA6 
Degertekin and Lamberti (2013) 

Degertekin and Hayalioglu (2013) 

FFA-DSO7 
Miguel et al. (2013) 

Talatahari et al. (2014) 

TLBO-DSO8 
Cheng et al. (2013) 

Degertekin and Hayalioglu (2013) 

D-ICDE9 Ho-Huu et al. (2015) 

iPSO10 Mortazavi and Toğan (2016) 
1 Jaya Algorithm. 
2 Jaya Algorithm with discrete sizing optimization. 
3 Harmony Search. 
4 Big Bang–Big Crunch. 
5 Corrected Multi-Level and Multi-Point Simulated Annealing. 
6 Firefly Algorithm. 
7 Firefly Algorithm with discrete sizing optimization. 
8 Teaching-Learning-Based Optimization with discrete sizing optimization. 
9 Improved Constrained Differential Evolution with discrete variables. 
10 integrated Particle Swarm Optimization. 

Table 8.9 summarizes the statistical information for the most recent studies implemented on the 

25-bar spatial truss including the values of the optimized variables with the corresponding 

optimum weight, the number of structural analyses (NSA) and the percentage of constraint 

violations CVP (%) of the considered optimizers. The current optimization strategies (MESO-

ABC, MESO-BA, MESO-DE, MESO-PSO, MESO-SA) have achieved a remarkable saving in 
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computational time, i.e. they fulfilled a considerable reduction in the number of cost evaluations 

needed to reach optimal weight close to that obtained by other methods mentioned in the table. 

For instance, MESO-DE has reached the weight 52.080 kg after only 1398 analyses, whereas 

each of CMLPSA, HHS-LS, HS-BB-BC-LS, FFA-LS, JA, JA-DSO, Modified HS-DSO, iPSO, 

D-ICDE and TLBO-DSO are executed 3981, 3338, 3734, 4076, 3097, 3795, 5000, 4870, 6000, 

50007 structural analyses to reach the steady state evolution at 54.535, 54.847, 54.820, 54.305, 

53.049, 53.219, 53.243, 53.186, 53.869, 53.187 kg respectively. The only drawback noticed in 

the proposed optimization strategies is that they show a slight rise in the number of violations 

to the design constraints, for instance MESO-PSO has penalized 60 times during this 

optimization run. 

Table 8.7 Loading conditions of the 25-bar truss structure (Ho-Huu et al., 2016b). 

 

 

 

 

Table 8.8 Element group, stress, and displacement limits of the 25-bar truss (Lamberti, 2008). 

 

 

 

 

 

 

 

Figure 8.12 Convergence curves for the recent studies executed on the 25-bar truss (case 1). 

Node Fx (kips) Fy (kips) Fz (kips) 

1 1 -10 -10 

2 0 -10 -10 

3 0.5 0 0 

6 0.6 0 0 

Group 

No. 

Element No. Tension/Compression 

stress limit [MPa] 

Node 

No. 

Displacement 

limit [mm] 

1 1 275.79 1 8.89 

2 2, 3, 4, 5 275.79 2 8.89 

3 6, 7, 8, 9 275.79 3 8.89 

4 10, 11 275.79 4 8.89 

5 12, 13 275.79 5 8.89 

6 14, 15, 16, 17 275.79 6 8.89 

7 18, 19, 20, 21 275.79 - - 

8 22, 23, 24, 25 275.79 - - 
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Table 8.9 Comparison of the optimized designs for the sizing and layout optimization of the 25-bar transmission tower (case 1). 

Figure 8.12 compares diverse convergence rates for the methods used in the previous works. The graph indicates that MESO-DE is the most promising 

method used to perform a simultaneous shape, topology and sizing optimization for the adopted truss model. MESO-DE, MOSO-SA and MESO-BA 

resulted in the lowest structural masses: 52.080, 52.129 and 52.295 kg respectively. The optimal topology of the best design (MESO-DE) was compared 

to those found in the literature in Figure 8.13. 

 

 

Design 

variables 

CMLPSA1 HHS-

LS2 

HS-BB-

BC-LS3 

FFA-LS4 JA5 JA-DSO 

(2 stages)6 

Modified 

HS-DSO7 

iPSO-

DSO8 

D-ICDE9 TLBO-

DSO10 

MESO-

ABC 

MESO-

BA 
MESO-

DE 
MESO-

PSO 
MESO-

SA 

A1 (in2) 0.1246 0.1041 0.1049 0.1223 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

A2 (in2) 0.1251 0.1189 0.1274 0.1197 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

A3 (in2) 0.9462 0.9156 0.9090 0.8684 0.9374 1.0 1.0 1.0 0.9 1.0 0.7926 0.9490 1.0384 1.2432 1.0384 

A4 (in2) 0.1001 0.1028 0.1038 0.1007 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

A5 (in2) 0.1093 0.1424 0.1006 0.1009 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

A6 (in2) 0.1137 0.1192 0.1128 0.1160 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

A7 (in2) 0.1407 0.1405 0.1484 0.2392 0.1057 0.1 0.1 0.1 0.1 0.1 0.1433 0.1433 0.1 0.1 0.1 

A8 (in2) 0.9094 0.9254 0.9392 0.8280 0.9219 0.9 0.9 0.9 1.0 0.9 1.1362 1.0384 1.0384 1.2432 1.0384 

X4 (in) 33.245 34.161 33.556 31.565 37.801 37.107 37.820 37.6 36.83 37.657 20 20.109 20.526 20 20.213 

Y4 (in) 57.016 62.049 61.749 56.007 55.063 54.255 55.485 54.46 58.53 54.496 48.549 50.339 42.270 40 41.595 

Z4 (in) 125.645 119.690 119.176 129.824 129.998 129.998 128.730 130.00 122.67 130.000 108.307 99.420 90 90 90.094 

X8 (in) 44.745 44.006 42.825 41.620 51.023 52.008 52.068 51.89 49.21 51.887 48.034 44.395 40.029 40 40.994 

Y8 (in) 136.458 136.921 136.160 139.939 140.000 140.000 139.590 139.55 136.74 139.521 132.137 106.380 100.045 100 100.002 

Weight (kg) 54.535 54.847 54.820 54.305 53.049 53.219 53.243 53.186 53.869 53.187 55.486 52.295 52.080 60.586 52.129 

CVP (%) None None 0.2 None None None 0.0826 None 0.266 0.114 0.0763 0.0791 0.7439 3.3538 2.5437 

NSA 3981 3338 3734 4076 3097 3795 5000 4870 6000 50007 1311 1264 1398 1789 1486 
1 Lamberti, L. (2008). 
2 Degertekin, S. O. and Lamberti, L. (2013). 
3 Lamberti and Pappalettere (2013). 
4 Degertekin, S. O. and Lamberti L. (2013). 
5 Degertekin, Lamberti et al. (2018). 
6 Degertekin, Lamberti et al. (2018). 
7 Gholizadeh, Barzegar et al. (2011). 
8 Mortazavi and Toğan (2016). 
9 Ho-Huu, Nguyen-Thoi et al. (2015). 
10 Cheng, Liu et al. (2013). 
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Figure 8.13 Samples of the optimal topologies determined for the size, shape, and topology 

optimization of the 25-bar 3D transmission tower (case 1). 

 

(b) D-ICDE with DSO adopted by 

Ho-Huu et al. (2015). 

(c) Improved Passing Vehicle Search (IPVS) 

adopted by Tejani et al. (2018). 

(a) Multimodal optimization using FFA adopted by Miguel et al. (2013). 

(d) iPSO with DSO adopted by 

Mortazavi and Toğan (2016). 

(e) MESO-DE with DSO (current study). 
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 Optimization Results for Stress, Displacement and Buckling Constraints (Case 2) 

In addition to stress and displacement constraints defined in section 8.4.1, the model will be 

subject to buckling constraints through introducing compressive stress limits as illustrated in 

Table 8.11. The eight cross-sectional areas of the truss members are the only design variables 

of the problem, i.e. there is no shape or topology optimization in this case. Thus, MESO can be 

used to obtain the optimum solution through introducing the buckling indicator (𝜉𝑖
𝑏𝑢𝑐𝑘_𝑖𝑛𝑑) as 

given in Eq. (8.1). 

𝜉𝑖
𝑏𝑢𝑐𝑘_𝑖𝑛𝑑 =

𝐹𝑖
𝑐𝑜𝑚𝑝

σa̅̅ ̅
  (8.1) 

which is evaluated for each member (i). 𝐹𝑖
𝑐𝑜𝑚𝑝

 is the axial stress for member (i), σa̅̅ ̅ is the 

allowable compressive stress for each member (i) as explained in Table 8.11. The main purpose 

of this investigation is to show the robustness and efficiency of MESO to treat with sizing 

variables compared to the results produced by the conventional metaheuristic techniques. This 

case was considered by many researchers as detailed in Table 8.10. 

Table 8.10 The set of metaheuristic techniques executed on the 25-bar truss (case 2). 

Optimization method Executed by: 

TLBO1 Camp and Farshchin (2014) 

HGA2 Asl et al. (2016) 

aeDE3 Ho-Huu et al. (2016b) 

IFA4 Kaveh and Talatahari (2009c) 
1 Teaching-Learning-Based Optimization. 
2 Hybridized Genetic Algorithm. 
3 adaptive elitist Differential Evolution. 
4 Improved Firefly Algorithm. 

Table 8.11 Stress (tension/compression) limits for the 25-bar spatial truss (Lamberti, 2008). 

 

 

 

 

 

 

 

 

 

 

 

Group 

No. 

Elements Compression stress 

limit 𝛔𝐚̅̅ ̅ [MPa] 

Tension stress 

limit 𝝈𝒚𝒑 [MPa] 

1 1 -242.04 275.79 

2 2, 3, 4, 5 -79.939 275.79 

3 6, 7, 8, 9 -119.36 275.79 

4 10, 11 -242.04 275.79 

5 12, 13 -242.04 275.79 

6 14, 15, 16, 17 -46.619 275.79 

7 18, 19, 20, 21 -47.998 275.79 

8 22, 23, 24, 25 -76.435 275.79 
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Table 8.12 Comparison of optimization results with the recent works executed on the 25-bar 

truss problem (case 2). 

 

 

Figure 8.14 Comparison of the convergence history for the 25-bar truss subjected to combined 

stress, deflection and buckling constraints (case 2). 

The results are listed in Table 8.12. MESO has achieved promising reduction in structural 

weight (from 501.938 kg to 215.578 kg) in only 110 analyses using buckling criterion, where 

MESO removes superfluous material depending on the buckling sensitivity numbers defined in 

Eq. (5.26). The results show that the conventional metaheuristic techniques, adopted in this 

work, have gave an acceptable result after consuming much more analyses. The lightest weight 

is obtained by MESO. It also achieved a significant saving in computational time. 

Design variables TLBO1 HGA2 aeDE3 IFA4 MESO STD-

ABC 

STD-

BA 

STD-

DE 

STD-

PSO 

STD-

SA 

A1 (in2) 0.100 0.010 0.100 0 0.1 0.206 0.157 0.100 0.100 0.246 

A2 (in2) 0.300 1.986 0.300 1.687 0.1 0.522 0.100 0.100 0.100 0.100 

A3 (in2) 3.400 2.998 3.400 3.344 3.346 3.043 3.205 2.955 3.077 3.346 

A4 (in2) 0.100 0.010 0.100 0 0.1 0.462 0.100 0.100 0.225 0.143 

A5 (in2) 2.100 0.010 2.100 0 0.1 1.636 0.125 0.108 0.100 0.189 

A6 (in2) 1.000 0.681 1.000 1.004 0.246 0.725 0.108 0.100 0.100 0.100 

A7 (in2) 0.500 1.673 0.500 1.972 1.782 1.175 0.433 0.100 0.246 0.580 

A8 (in2) 3.400 2.664 3.400 2.269 3.346 3.315 2.802 2.234 2.037 3.346 

Best Weight (kg) 219.838 247.057 219.84 256.910 215.578 227.922 215.195 215.001 215.851 218.481 

NSA 2000 5000 1440 9960 110 490 1316 1035 1063 1032 
1 Camp and Farshchin (2014). 
2 Asl, Aslani et al. (2016). 
3 Ho-Huu, Nguyen-Thoi et al. (2016). 
4 Wu, Li et al. (2017). 
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 The 120-bar Spatial Dome Truss (Soh and Yang Model) 

The popular example 120-bar dome truss is considered for the comparison with other literature. 

The general outline of this truss structure is clearly sketched in Figure 8.15 to show the group 

number and node number. The modulus of elasticity is 210 GPa and the material density is 

7971.810 kg/m3. The structural material is steel with yield stress 400 MPa. 

 

Figure 8.15 Schematic of the 120-bar space dome truss. 

Vertical nodal loads have been applied at all unsupported joints such that 60 kN is applied at 

node 1, 30 kN at nodes 2 through 13 and 10 kN at nodes 14 through 37. There is no topological 

or shape optimization associated with this model, hence the sizing variables represented by the 

cross-sectional areas of the structural members are the only design variables of the problem. 

With discretising the model into 7 axisymmetric components, only 7 sizing variables need to 

be optimized to obtain the optimum design. The minimum cross-sectional area found in the 

discrete set circular sections is 5 cm2, whereas the maximum area is 129.032 cm2. 

Static (stress, displacement and buckling) and dynamic (frequency) constraints are considered. 

 Optimization Results for Static Analysis (Case 1) 

Three constraints are considered in this case (Kaveh and Talatahari, 2009c): 

• Stress constraints: defined by the allowable stress (σa = 0.6 ∗ σyp), where σyp is the yield 

stress of the structural material (400 MPa). 

• Displacement constraints: 5 mm is imposed on all nodes in all directions. 

• Compressive instability: a specific allowable stress (σa̅̅ ̅) for each compressively stressed 

member is introduced. 
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σa̅̅ ̅ =

{
  
 

  
 [(1 −

⅄i
2

2Cc
2) σyp]

(
5
3 +

3⅄i

8Cc
+

⅄i
3

8Cc
3)

     for ⅄i  <  Cc 

12π2E

23⅄i
2                        for ⅄i  ≥  Cc 

  (8.2) 

where, E is the elastic modulus, 𝐶𝑐  is the characteristic slenderness coefficient separating 

between the elastic and inelastic buckling regions (𝐶𝑐 = √2𝜋2𝐸/𝜎𝑦𝑝), ⅄𝑖  is the slenderness 

ratio for member (i), which is given as (kLi/κ̅i), k is the effective length factor, 𝐿𝑖 is the length 

of the member (i) and κ̅i is the radius of gyration, which is correlated to the cross section area 

(Ai) of the member (i), i.e. κ̅i=aAi
b, where a = 0.4993 and b= 0.6777 are adopted for bars with 

circular sections. 

Many optimization methods have been tested for computational efficiency using this example 

such as the methods listed in Table 8.13. 

Table 8.13 The set of metaheuristic techniques executed on the 120-bar dome truss (case 1). 

Optimization method Executed by: 

PSACO1 Kaveh and Talatahari (2008) 

HPSACO2 Kaveh and Talatahari (2009b) 

HBB-BC3 Kaveh and Talatahari (2009c) 

CMA-ES4 Kaveh et al. (2011) 

PSRO5 

PSOPC6 
Kaveh and Javadi (2013) 

ICDE7 

SORA-ICDE8 
Ho-Huu et al. (2016a) 

1 PSO and ACO. 
2 Hybrid PSO and ACO. 
3 Hybrid Big Bang–Big Crunch. 
4 Covariance Matrix Adaptation Evolution Strategy. 
5 PSO with Ray Optimization. 
6 PSO with Passive Congregation. 
7 Improved Constrained Differential Evolution. 
8 Sequential Optimization with Reliability Assessment ICDE. 
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Table 8.14 Comparison of the optimized designs for the sizing optimization of the 120-bar space dome truss (case 1). 

 

 

 

 

 

 

 

 

 

 

 

Table 8.14 presents the optimal designs for this model obtained by this work (MESO and STDs) and other algorithms from the literature. The optimum 

design found by STD-DE is the best overall. However, in terms of the lowest number of cost evaluations, MESO has occupied the first rank, since it 

announced a feasible design with weight 14693.48 kg in only 180 structural analyses. It was followed by STD-PSO with appreciably heavier weight 

(13801.876 kg) obtained after 750 successful evaluations. Thus, MESO is the ideal method used to alleviate the burden of computation, especially for 

large-scale integrated structures, where executing only one optimization cycle for such structures might consume tens of minutes or several hours. 

Ultimately, MESO has effectively reduced the computational time, to obtain approximately the same result as other techniques or (in some cases) better. 

Also, the conventional metaheuristics adopted in this work have experienced many penalties, for instance, STD-ABC, STD-BA and STD-DE have 

penalized 102, 98 and 51 times due to breaching displacement and buckling limits. Figure 8.16 compares the convergence curves recorded for the 

optimization runs of this model. A high perturbation can be seen in STD-ABC and STD-BA due to the high degree of randomization adopted by these 

methods. 

Design 

variables 

PSACO1 HPSACO2 HBB-BC3 CMA-ES4 ICDE5 SORA-ICDE6 MESO 

(current) 

STD-ABC 

(current) 

STD-BA 

(current) 
STD-DE 

(current) 
STD-PSO 

(current) 
STD-SA 

(current) 

A1 (in2) 3.026 3.095 3.037 3.025 2.4896 2.4700 4.495 4.495 3.875 2.635 9.455 2.945 

A2 (in2) 15.222 14.405 14.431 14.73 15.2608 18.6943 6.045 10.385 6.665 9.765 6.975 15.655 

A3 (in2) 4.904 5.020 5.130 5.153 5.0172 6.7604 8.525 4.805 4.495 7.905 4.495 8.525 

A4 (in2) 3.123 3.352 3.134 3.136 2.5952 2.9971 4.805 2.325 5.115 2.945 4.185 2.325 

A5 (in2) 8.341 8.631 8.591 8.437 9.0277 11.8378 4.185 4.805 3.255 2.015 2.325 2.015 

A6 (in2) 3.418 3.432 3.377 3.306 3.4898 4.2042 0.775 2.015 5.735 1.085 0.775 0.775 

A7 (in2) 2.498 2.499 2.500 2.495 2.3657 2.3672 0.775 8.215 4.495 2.325 5.735 0.775 

Weight (kg) 15082.347 15075.546 15093.229 15078.856 14678.450 17714.978 14693.480 15628.236 15285.724 12673.108 13801.876 14384.611 

CVP (%) 2.5 None 1.2 2 None None None 11.333 10.889 5.667 4.1333 3 

NSA 32600 10000 10000 10000 9030 93990 180 900 900 900 750 900 
1 Kaveh and Talatahari (2008). 
2 Kaveh and Talatahari (2009). 
3 Kaveh and Talatahari (2009). 
4 Kaveh, Kalateh-Ahani et al. (2011). 
5 Kaveh and Javadi (2013). 
6 Kaveh and Javadi (2013). 
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Figure 8.16 Convergence curves for the most recent studies implemented on the 120-bar truss 

(case 1). 

 

Figure 8.17 The state of strain energy for the optimum designs of the 120-bar truss (case 1). 

(a)MESO design. 

(b)STD-DE design. 
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A steep progression can be seen in MESO curve to achieve the optimum within 180 cost 

evaluations. However, lighter masses are achieved by STD-DE, STD-PSO and STD-SA with 

12673.108, 13801.876 and 14384.611 kg after 900, 750 and 900 evaluations respectively. 

Ultimately, MESO has achieved appreciable reduction in weight with a significant gain in the 

number of analyses compared to conventional metaheuristic methods. STD-DE has achieved 

the lowest mass in the group (12673.108 kg) after 900 analyses. The distribution of strain 

energy for the optimal designs, shown in Figure 8.17, indicates that the radial girders are the 

most influenced part of the dome frame, as they bear axial compressive loads causing buckling 

problems. 

 Optimization Results for Dynamic (Frequency) Analysis (Case 2) 

This case considers the frequency characteristics of the model. The same geometry data 

mentioned in section 8.5.1 is used, but the design constraints are restricted to the limitations set 

on the natural frequency of the system, where the first mode natural frequency (𝜔1) must be 

greater than 9 Hz and the second mode natural frequency (𝜔2) must be greater than 11 Hz. 

Lumped masses were added to the nodes with the magnitudes: 3000 kg added to node 1, 500 

kg added to nodes 2 through 13 and 100 kg added to the nodes 14 through 37. The frequency 

optimality criterion, defined in section 5.4.3, will be utilized to guide MESO technique to the 

optimum point. 

Five metaheuristic techniques (HS1, BB-BC2, FA3, CSS4, ERO5), selected from the literature 

as reported by Kaveh and Zolghadr (2014), will be compared with the current results 

represented by MESO and the five conventional metaheuristic techniques adopted in this work 

(STD-ABC, STD-BA, STD-DE, STD-PSO and STD-SA). A diversity index was first 

introduced by Kaveh and Zolghadr (2012) to measure the capability of the metaheuristic 

technique to explore/exploit the data within design space. Thence, it was modified by Kaveh 

and Zolghadr (2014) to estimate the average (normalized) distance of particles from the global 

optimum. 

𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 𝐼𝑛𝑑𝑒𝑥 =
1

𝑛𝑃𝑜𝑝
∑ √∑ (

𝐺𝐵(𝑖) − 𝑋𝑗(𝑖)

𝑋𝑖
𝑚𝑎𝑥 − 𝑋𝑖

𝑚𝑖𝑛
)

2𝑁

𝑖=1

𝑛𝑃𝑜𝑝

𝑗=1

  (8.3) 

nPop is the number of particles (population size), N is the number of design variables. 𝑋𝑗(𝑖) is 

the value of the ith variable concerning the jth particle. 𝑋𝑖
𝑚𝑎𝑥 and 𝑋𝑖

𝑚𝑖𝑛 are the upper and lower 

 
1 Harmony Search  
2 Big Bang-Big Crunch 
3 Firefly Algorithm 
4 Charged System Search 
5 Enhanced Ray Optimization 
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bounds for the ith variable. 𝐺𝐵(𝑖) is the ith variable belonging to the position vector of the 

(current) global optimum. 

The optimal results for this example are provided in Table 8.15. The data included disclose two 

merits for MESO. First, it converges rapidly compared to the metaheuristic algorithms such that 

it found the optimum in only 194 optimization cycles, while other methods are executed at least 

845 cycles (STD-ABC) to reach approximately the same result as MESO does. Some cases are 

carried out 4000 analyses to reach the optimum, such as HS adopted by Kaveh and Talatahari 

(2009b). MESO achieved the lowest mass for this model (8771.12 kg) - see Table 8.15. MESO 

chooses the appropriate optimality criterion for the case, therefore MESO will be guided to the 

optimum without the need to adopt the trial and error approach of metaheuristic techniques. 

Figure 8.18 shows the state of strain energy for the two most promising designs. It shows that 

the stiffness optimality criterion adopted for this case has directed MESO to enhance the radial 

girders and reduce the dimensions for other parts of the dome structure. 

Figure 8.19 explains the progression history of diversity index for various metaheuristic 

algorithms. The smoothest progression is observed in STD-PSO and STD-SA, whereas STD-

BA (by its nature) keeps progressing randomly with no convergence. Other methods are located 

in-between. Since this factor is set to measure the capability of the method to explore or exploit, 

it could be inferred that STD-BA has an extraordinary explorative capability, whereas STD-

PSO and STD-SA could be classified as highly exploitative tools. 

Table 8.15 Comparison of optimization results with the recent works executed on the 120-bar 

truss problem (case 2). 

 

 

 

 

 

 

Design 

variables 
HS 

(Kaveh) 

BB-BC 
(Kaveh) 

FFA 
(Kaveh) 

CSS 
(Kaveh) 

ERO 
(Kaveh) 

MESO 
(current) 

STD-

ABC 
(current) 

STD-

BA 
(current) 

STD-

DE 
(current) 

STD-

PSO 
(current) 

STD-

SA 
(current) 

A1 (in2) 3.0713 3.0214 3.0532 3.0154 3.2823 3.5650 2.6350 9.4550 0.7750 0.7750 10.3850 

A2 (in2) 6.2355 6.7197 6.4610 6.8470 5.5027 3.8750 1.7050 15.6550 1.0850 2.3250 0.7750 

A3 (in2) 1.7569 1.7422 1.7369 1.6833 1.8352 10.0750 2.0150 6.6650 1.3950 1.3950 0.7750 

A4 (in2) 3.4655 3.2997 3.3015 3.2555 3.4672 1.0850 6.0450 19.0650 3.5650 3.8750 3.8750 

A5 (in2) 1.5644 1.4730 1.4861 1.4043 1.7227 0.7750 7.9050 8.8350 2.9450 2.6350 1.3950 

A6 (in2) 2.0226 1.9882 1.9746 2.0373 1.9980 0.7750 6.0450 0.7750 4.1850 2.9450 2.9450 

A7 (in2) 2.1887 2.3393 2.3528 2.3943 2.3267 0.7750 3.8750 12.8650 3.8750 4.8050 1.0850 

Best 

Weight (kg) 
8905.37 8923.51 8890.64 8922.85 9021.27 8771.12 9007.71 9376.94 8788.5 8940 8906.15 

NSA 4000 3900 3940 2040 1320 194 845 1084 872 892 855 
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Figure 8.18 The state of stress for the best two designs of the 120-bar dome truss (case 2). 

 

 

Figure 8.19 Diversity index recorded for different algorithms executed on the 120-bar dome 

truss under frequency constraints (case 2). 

(a)MESO design. 

(b)STD-DE design. 
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 Geodesic Single Lattice Dome (Saka Model) 

The optimization results for the geodesic dome truss designed by Saka (2007a) will be viewed 

and discussed in this section. Many dome roof configurations are solved by Saka (3, 4, 5 and 6 

rings). However, the current study focuses on the last model (5 radial girders with 6 rings), 

which consists of 51 nodes and 255 elements, the outer periphery is clamped by 20 fixed 

supports, a vertical concentrated load P=1000 kN is applied at the central point of the dome as 

illustrated in Figure 8.20. The outermost ring could be discarded since it is zero stress member. 

Overall, there are 13 design variables in this problem, 12 of them are sizing represented by the 

set of section areas of the 12 element groupings of the model, whereas the last one is shape 

variable defined by the height of the crown. The structural material is steel Grade 43 with 

elasticity modulus E=205 GPa. A commercial set of 64 circular hollow sections designed and 

manufactured according to “Steelwork design guide to BS5950 (1990)” was considered as 

discrete optimization range for the sizing variables. This range starts with the designation 

PIP212.6 and ends with PIP2735.0. The crown height is extending over the range from 1 m to 

8.75 m with step 0.25 m. Displacement constraints restrict the (absolute) movement of node 1 

within the period 0 to 28 mm in Z direction, whereas the nodes 2 and 3 are restricted to the 

range 0 to 33 mm in X and Y directions and 0 to 28 mm in Z direction. 

In this example, the proposed methods MESO-ABC, MESO-BA, MESO-DE, MESO-PSO and 

MESO-SA are tested against the mixed discrete-continuous optimization problem considered 

by Saka (2007a), where the sizing variables must be selected from the predefined discrete set 

of commercial sections and the crown height is the only continuous variable of the problem. 

Table 8.16 shows results of the two investigations. MESO-BA has achieved an optimal weight 

of 1429.165 kg after 658 cost evaluations, which is lighter than the weight presented by Saka 

(1445.3 kg) for the same configuration in addition to the appreciable saving in the number of 

cost evaluations from 4500 to 658. The next best design is MESO-ABC, where it yielded 

1438.694 kg, which is 0.46% lesser than that reported by Saka, in only 609 cycles. In 

conclusion, MESO-based algorithms are able to produce further reduction in the structural 

weight along with realizing a considerable saving in computational time. 

The convergence history of this example is given in Figure 8.21, where the maximum number 

of iterations for the proposed methods is set to 1000, population size is set to equivalent to 10 

individuals, reduction ratio of MESO is set to 0.25. Some of algorithms have terminated the 

optimization process earlier than others after becoming trapped in a local minimum. For 

instance, MESO-PSO stopped after 561 solutions with an unpromising result. In MESO 

algorithms, the involved metaheuristic technique plays a significant role in escaping from the 

local minimum through manipulating the set of continuous variables involved. 
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The design contours shown in Figure 8.22 describe the state of strain energy for the optimal 

designs. The results show that the radial girders are the most susceptible part of the dome 

structure, as they are experiencing a compressive load. 

 

Figure 8.20 Boundary and load conditions with illustration of nodes and elements for the 6-

rings geodesic model adopted by Saka (2007a). 

 

Table 8.16 Comparison of optimization results obtained for Saka model (Saka, 2007a). 

 

 

 

 

Group No. 

Work implemented by Saka using HS 
Current study implemented on Saka geodesic model with 

6-rings 

3-rings 4-rings 5-rings 6-rings MESO-

ABC 

MESO-

BA 
MESO-

DE 
MESO-

PSO 
MESO-

SA 
1 PIP1393.6 PIP1393.6 PIP886.3 PIP886.3 PIP883.2 PIP767.1 PIP885.0 PIP886.3 PIP888.0 

2 PIP1143.0 PIP1143.0 PIP765.0 PIP884.0 PIP767.1 PIP762.9 PIP762.9 PIP886.3 PIP764.5 

3 PIP603.6 PIP485.0 PIP763.6 PIP763.6 PIP602.9 PIP605.6 PIP602.9 PIP762.9 PIP602.9 

4 PIP483.2 PIP483.6 PIP483.6 PIP483.6 PIP423.6 PIP422.6 PIP482.6 PIP486.3 PIP423.6 

5 PIP423.2 PIP482.5 PIP423.2 PIP483.6 PIP422.9 PIP422.9 PIP334.5 PIP602.9 PIP483.2 

6 PIP213.2 PIP333.0 PIP333.2 PIP333.6 PIP332.9 PIP332.6 PIP333.6 PIP422.9 PIP334.0 

7 NA PIP333.2 PIP333.0 PIP333.0 PIP332.6 PIP332.9 PIP334.0 PIP334.0 PIP333.2 

8 NA PIP213.2 PIP422.6 PIP263.2 PIP262.6 PIP262.6 PIP332.9 PIP332.9 PIP334.5 

9 NA NA PIP263.2 PIP263.2 PIP263.6 PIP263.2 PIP332.6 PIP422.6 PIP333.6 

10 NA NA PIP213.2 PIP263.2 PIP262.6 PIP262.6 PIP263.2 PIP332.6 PIP262.9 

11 NA NA NA PIP263.2 PIP213.2 PIP213.2 PIP212.9 PIP262.9 PIP212.9 

12 NA NA NA PIP213.2 PIP212.6 PIP212.6 PIP212.6 PIP212.6 PIP212.6 

Crown height 

(m) 
2 2 1.5 1.5 1.184 2.455 2.838 1 1.276 

Best Weight 

(kg) 
1244.42 2721.45 1477.08 1445.3 1438.694 1429.165 1521.821 1930.986 1518.117 

Max Disp. 

(mm) 
31.7 30.9 32 29.3 32.29 32.51 32.07 31.85 32.16 

NSA 4500 4500 4500 4500 609 658 652 561 552 



213 

 

 

Figure 8.21 Convergence curves of structural mass for different optimization techniques 

executed on Saka model with 6-rings. 

 

 

Figure 8.22 3D contours showing the state of strain energy for the initial and optimal designs 

(produced by different optimization algorithms) of Saka model. 
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 Summary 

❖ The cascade optimization procedure allowed MESO to guide the process with great 

efficiency to build an intelligent optimization tool by utilizing the engineering intuition. 

❖ The proposed optimizers (MESO based algorithms) have appreciably saved the 

computational cost, by enhancing the convergence rate of the relevant metaheuristic 

technique. 

❖ One of the merits of MESO based algorithms is that MESO employs a specific 

optimality criterion to solve the optimization problem without the need to exploit any 

population to perform the task. Thus, MESO has the sufficient reliability and efficiency 

to deal with any size of the optimization problem in contrary to other conventional 

metaheuristic techniques, which are significantly influenced by the problem size 

(number of design variables). 

❖ MESO based metaheuristic algorithms essentially produce consistent geometries, also 

reliable and attractive from manufacturing perspective, as a systematic distribution of 

girder sections can be ensured in contrast with the classic metaheuristic techniques. 

❖ A diversity index is a reliable measure to the capability of the metaheuristic technique 

to explore/exploit the data within design space  
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 Conclusions and Future Work 

This chapter will summarize the contributions of the proposed optimization methodology and 

will list the main conclusions drawn about the adopted MESO based metaheuristic algorithms 

implemented in the preceding chapters. Recommendations are then set forward for future 

research. 

 Conclusions 

Using a 10,000 m3 fuel storage tank as the target application, this thesis has set out to study and 

develop a methodology for optimizing dome roof frame structures subject to wind loading. The 

optimization problem is one with 30+ design variables, most of which relate to choosing 

engineering sections for the girders and are therefore discrete variables, while some variables 

relate to the overall structure of the frame. Given the engineering constraints on the structure 

(stress, deflection, buckling), the optimization aim of reducing the structural mass leads to a 

highly non-linear problem that requires a stochastic approach to its solution. 

Five metaheuristic optimization methods have been used as a basis for developing a hybrid 

approach. The MESO principles of gradual material removal are used to optimize girder 

sections, coupled with one of the metaheuristic methods for optimizing other design variables. 

A cascading approach was used to simplify the analysis, so that major variables (e.g., numbers 

of rings, number of nodes per ring) are optimized initially, and then MESO was introduced to 

further optimize girder sections. The result was a novel method that combines the stochastic 

exploration of metaheuristic methods with the high convergence rate of evolutionary 

optimization. 

Five basic designs of roof frame structure were modelled. Single and double lattice versions 

were constructed and solved using a simplified model in MATLAB, primarily for the purpose 

of studying the behaviours of the optimization methods. Full finite element (integrated) models 

were constructed also in ANSYS and optimized. For both the simplified and integrated models, 

wind loads were determined with ANSYS Fluent. 

The following conclusions can be inferred from the optimization results obtained: 

1. Implementing a cascade optimization procedure via separating the design variables into a 

'high energy' set that have a large impact on the whole structure at Stage 1 and a 'low energy' 

set for incremental optimization at Stage 2 allows MESO to be employed at Stage 2 to guide 

the optimization with great efficiency and an excellent convergence rate. Engineering 

principles can be built into MESO to make it an intelligent optimization tool, targeting the 

specific application, whereas metaheuristic methods are far more random. For the hybrid 
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model, there is still an element of randomness, but MESO can be used to guide the 

optimization towards better solutions. 

2. The proposed optimization strategies appreciably saved the computational cost, by 

enhancing the convergence rate of the relevant metaheuristic technique. 

3. MESO based metaheuristic algorithms essentially produce feasible designs with consistent 

geometries. They are also reliable and attractive from manufacturing perspective, since a 

systematic distribution of girder sections can be ensured in contrast with the other classic 

metaheuristic techniques. 

4. The single lattice Lamella and geodesic domes are the two most promising design models, 

with structural mass of the frame 34.455 tonnes and 37.012 tonnes respectively, as 

compared to other configurations adopted in this work. 

5. The peripheral section of a radial girder is the critical part of dome structure in a geodesic 

configuration, whereas the outermost circumferential ring is the key part for Lamella dome 

structure. 

6. Double lattice designs tend to be stiffer and stronger when the inner and outer layers are 

further apart at the periphery, tapering towards the hub. 

7. The higher the dome radius, the lower the lift force generated by wind loads, whereas the 

snow becomes a critical load case at higher dome radii. Dome roofs that are optimized for 

pure wind loads can fail when subjected to snow loads alone. Snow loading tends to be an 

issue especially for double layer truss dome roofs. 

8. Following on from the previous point, other load cases need to be considered during the 

optimization to achieve a safe and optimal design. In addition to the basic load case of an 

empty tank under pure wind loading, the following cases should also be considered: 

a. A full tank subjected to pure wind, is another critical load case from a stress 

perspective. 

b. An empty and full tank subjected to pure snow loading, are critical load cases from 

a displacement perspective. 

9. The approach used in the hybrid models is to have an initial reference solution that is 

acceptable, although non-optimal, and to search for better solutions while aggressively 

rejecting designs that fail to meet the imposed constraints. The consequence of this is that 

there will always be a solution, and an 'optimal' design will be achieved within an acceptable 

time frame. In addition, the MESO process focusses on improving an already acceptable 

design. 

10. Design functions have been proposed for assessing the strength and stiffness of the dome 

roof frame relative to the reference design. These functions can be used instead of, or in 
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addition to, the simple ratio of structural mass used as the cost function to be minimized 

throughout the majority of this thesis. 

 Recommendations for Future Works 

The following suggestions have been made to complement and extend this research: 

1. The hybrid method developed in this research has focussed on reducing the structural mass 

but with an intelligent approach that tries to limit the increasing strain energy. While it is 

possible and relatively simple to modify the cost function to make this an explicit target of 

the optimization, for example by including the proposed design function for strain energy, 

an alternative approach is to have multiple explicit cost functions that must be optimized 

simultaneously. This leads to a competitive scenario where there is not one unique global 

optimum but rather a set of optimal solutions (the Pareto front) that the designer must 

ultimately choose from. For example, this could lead to a set of potential dome designs of 

varying masses, each with different resonant frequencies. 

2. The current strategy can be used to optimize other operational units in oil industry where 

the thermal effects and machinery vibrations are the most two substantial design constraints 

of the optimization (e.g. oil refinement towers, piping networks, etc.). The thermal effects 

would require more load cases to be modelled and considered during the optimization, while 

a fatigue analysis would need to be included with the structural analysis. 

3. Large scale structures such as fuel storage tanks often have strict requirements in terms of 

response to seismic loads. Only wind and snow loads have been included so far, but to be 

used in practice for optimizing structures, the models need to be developed to include 

seismic response. 

4. The assumption throughout this work is that the dome roof is spherical. In the case of the 

double lattice, both inner and outer layers are assumed to be spherical. Primarily this 

assumption has been made for simplicity, especially in the wind load modelling to avoid 

having to solve fluid flow with each new shape of the dome roof. However, a set of convex 

roof designs could be investigated to study the impact on wind loading, and consequently 

on the frame design. For the double lattice designs, the inner layer can be changed without 

changing the spherical outer layer, so an investigation of non-spherical inner-layer designs 

would be relatively straight forward. 

5. The computationally intensive nature of the dome roof optimization has limited the time 

and resources available to conduct a full statistical analysis of the hybrid method. For a 

more secure comparison of the dome roofs and the optimization methods, these trials should 

be repeated multiple times (typically 20-100). This would also be interesting in terms of 
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studying the hybrid Lamella-Schwedler designs; typically, the optimizer prefers the pure 

Lamella designs, but hybrid designs can be optimized and can be visually attractive. 

6. One of the main conclusions from this research is that multiple load cases need to be 

considered during the optimization. This creates difficulties for the MESO process, since 

multiple load cases need to be solved and analysed together, and then structural changes 

proposed that lead to a solution that is at least acceptable for all load cases, and ideally 

better. 

7. Steel has been used for the fuel storage tank components in this thesis, and research 

generally into dome roofs and structures uses steel and aluminium alloys. For lightweight 

structures, there is certainly benefit in using aluminium alloys, but in practice the higher 

weight of steel can be beneficial in resisting the lifting force of the wind. But there is 

certainly scope for further study into the use of different materials - and not just aluminium 

alloys. Composite panels could be used instead of the steel shell, and pultruded GRP is used 

for industrial girders that could be used for the frame structure. Careful consideration needs 

to be given, of course, to environmental and loading conditions, and to fabrication and 

assembly costs, but there is potential for new designs that are both cheaper and safer than 

conventional heavy engineering designs. 

8. If the current optimization methodology is used to find the optimal design for a storage tank 

subjected to dynamic loads (e.g. seismic loads), then an appropriate tool needs to be 

developed to validate the structural analysis results according to the practice. 
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 CALCULATION OF FLUID-RELATED DESIGN PARAMETERS. 

In this Appendix, the design parameters concerning the fluid flow problem will be reviewed. 

In addition to the pressure data produced by CFD analysis, there are four extra output 

parameters have been calculated by CFD and exported to the grand parametric table built in 

Ansys. First, the lift force (Flift), which is applied normally to the roof structure directed 

upwards. Second, the overturning force (Foverturning), which is applied to the windward region, it 

tries to push the cylindrical shell of the tank towards the leeward quarter in horizontal direction. 

Third, the perturbation side force, it is unbalanced force exerted horizontally due to possible 

asymmetry in wind loading on the two sides of the cylindrical shell, it is fluctuating unbalanced 

force. Fourth, the tipping moment (Mtipping), which stands for the moment trying to overthrow 

the tank. In fact, this moment is generated from multiplying the resultant of lift and overturning 

forces by the orthogonal distance (d) measured from the line of action of the resultant force 

(Fresultant) to the pivot point (O) of the tank as demonstrated in Figure A.1. The suitable 

formulation for the tipping moment can be posed in the following form: 

Mtipping = Fresultant × d = √Flift
2 + Foverturning

2 × d  (A.1) 

where, 𝑀𝑡𝑖𝑝𝑝𝑖𝑛𝑔, 𝐹𝑟𝑒𝑠𝑢𝑙𝑡𝑎𝑛𝑡, 𝐹𝑙𝑖𝑓𝑡, 𝐹𝑜𝑣𝑒𝑟𝑡𝑢𝑟𝑛𝑖𝑛𝑔 & 𝑑  are graphically demonstrated in the simple 

sketch of Figure A.1, which is prepared to illustrate the most substantial aerodynamic forces 

applied to the external surface of the storage tank. Also, Portela and Godoy (2005) shows the 

numerical values for these aerodynamic forces exerted on external shell of the storage tank as 

calculated for the initial design. 

The aerodynamic model for the current case study has been built in ANSYS/FLUENT, which 

is used to calculate the wind pressure data for 10,000 m3 tank with 8m-high walls, for dome 

roof radii from 30m to 60m in 20cm intervals, for a wind speed of 75m/s. The nearest was then 

imported during the optimization. Weights and external forces are summed up locally and 

applied at nodes. ANSYS/FLUENT also provides the 3D coordinates of the nodes where the 

local forces applied. Therefore, to calculate the effective distance (d) in Eq. (A.1), it is necessary 

to know that the overturning moment is simply represents the summation of the individual 

moments caused by the local forces applied at the nodes of the external surface of the tank. 

Hence, Mtipping can be easily formulated as given in Eq. (A.2). 

In the same sense, Foverturning and Flift can be calculated as summation of the nodal forces 

acting on their respective directions as expressed in Eq. (A.3) – see Figure A.1. 

Mtipping = Fresultant × d = ∑ Fx)i × dy)i

Nnodes

i=1
+ Fy)i × dx)i  (A.2)  
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The perpendicular distance (d) can now be evaluated by substituting the values of Mtipping, 

Foverturning, and Flift into Eq. (A.1), where the nodal forces (Fx)i and Fy)i) and their respective 

nodal coordinates (dx)i and dy)i) are provided by the software (ANSYS/FLUENT)  

Table A.1 Aerodynamic forces and moments acting on storage tank. 

 

 

 

Figure A.1 Simple sketch showing the principal aerodynamic forces applied to the storage 

tank. 

 

 

 

 

 

 

 

Foverturning = ∑ Fx)i

Nnodes

i=1
    , Flift = ∑ Fy)i

Nnodes

i=1
  (A.3)  

Parameter name Lift force 

[N] 

Overturning 

force [N] 

Perturbation 

force [N] 

Tipping moment 

[N.m] 

Parameter value 5689471 -935754 25761.67 2.15E+05 

Wind Speed 

= 75 m/s 

Foverturning 

Flift 
90º 

Flift 

Foverturning 

d 

Pivot point 
(O) 

Mtipping 

90º 

Y 

X 

H=8m 

r=21m 

dx)i 

dy)i 
Node (i) 

Fx)i 

Fy)i 

+ve 

+ve 

-ve 

-ve 



221 

 

To find the surface area for the spherical cap, shown in Figure A.2, consider the geometric 

dimensions and the reference axes fixed for the sphere, hence y-coordinate represents the 

vertical distance from the origin of the sphere to the base circle of the spherical cap. While, x-

coordinate equals the radius of the base circle, where the origin of the reference frame is located 

on the sphere centroid, x-coordinate is given by formula (A.4). 

x = √R2 − y2  (A.4) 

Where, R is the sphere radius (constant), hence the derivative of x with respect to y (
dx

dy
) could 

be given in formula (A.5). 

dx

dy
= −

y

√R2 − y2
= −

y

x
  (A.5) 

According to Figure A.2, the surface area of the spherical cap is generated by revolving the red 

dotted arc about Y-axis, hence to find this surface of revolution, it is necessary to integrate the 

arc length for the infinitesimal segment (ds=Rdθ) over the distance from (R − h) to R. The 

infinitesimal arc length (ds) could be expressed in terms of Cartesian coordinates as given in 

Eq. (A.6). 

ds = Rdθ=√dx2 + dy2 = √1 + (
dx

dy
)
2

dy  (A.6) 

Substituting Eq. (A.5) into Eq. (A.6) will lead to the following formula: 

ds = √1 + (−
y

x
)
2

dy =
√x2 + y2

x
dy = (

R

x
) dy 

 (A.7) 

Hence, the surface area of the spherical cap (Asc) is obtained by integrating the horizontal slice 

(dAsc = 2π𝜅ds ) within the interval [R − h, R], where (2π𝜅 ) is the circumference of the  

horizontal circle mediating the integration slice (identified by the brown dotted curve in Figure 

A.2) and 𝜅 is the radius of this circle, which is essentially replaced by x as a variable to perform 

the integration with respect to dy, whereas ds  is the meridional length of the slice to be 

integrated from R to (R-h) as given in Eq. (A.8). 

To perform the above integration, substitute the value of ds, expressed in terms of dy as given 

in Eq. (A.7), into Eq. (A.8) to obtain Eq. (A.9). 

Where, R is the sphere radius (dome radius), which is constant, h is the height of the dome. 

Asc = ∫ dAsc
R

R−h
= 2π𝜅 ∫ ds

R

R−h
=2π∫ xds

R

R−h
  (A.8) 

Asc = 2π∫ x
R

x
dy

R

R−h
=2πR[y]R−h

R =2πR(R − (R − h)) = 2πRh  (A.9) 
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Figure A.2 Geometric parameters of spherical cap. 
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 FINITE ELEMENT MODELLING OF THE SIMPLIFIED FRAME 

ANALYSIS. 

This appendix shows the numbering of nodes and elements for the simplified frame models. 

 

Figure B.1 Automatic numbering of nodes for the initial design of model B1. 

 

Figure B.2 Automatic numbering of elements performed for the initial design of model B1. 

 

Figure B.3 Automatic numbering of nodes for the initial design of model C1. 
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Figure B.4 Automatic numbering of elements performed for the initial design of model C1. 

 

Figure B.5 Automatic numbering of nodes for the initial design of model D1. 

 

Figure B.6 Automatic numbering of elements performed for the initial design of model D1. 
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Figure B.7 Automatic numbering of nodes for the initial design of model E1. 

 

Figure B.8 Automatic numbering of elements performed for the initial design of model E1. 

 

Figure B.9 Automatic numbering of nodes for the initial design of model A2. 
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Figure B.10 Automatic numbering of elements executed on the initial design of model A2. 

 

Figure B.11 Automatic numbering of nodes for the initial design of models B2 and C2. 

 
Figure B.12 Automatic numbering of elements performed for the initial design of model B2. 
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Figure B.13 Automatic numbering of elements performed for the initial design of model C2. 

 

Figure B.14 Automatic numbering of nodes for the initial design of model D2. 

 

Figure B.15 Automatic numbering of elements performed for the initial design of model D2. 
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Figure B.16 Automatic numbering of nodes for the initial design of model E2. 

 

Figure B.17 Automatic numbering of elements performed for the initial design of model E2. 
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 THE GENERAL PROCEDURE FOR BUILDING UP THE GEOMETRY 

AND PERFORMING THE FINITE ELEMENT ANALYSIS FOR THE INTEGRATED 

MODELS. 

 

Figure C.1 Illustrative diagram showing the different features and commands needed to create 

the geometry for the analysis system. 
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Figure C.2 Illustrative diagram showing the features and commands used to control the 

structural analysis of the tank in ANSYS Mechanical system. 
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 THE SOFTWARE CODES USED TO CREATE AND MODIFY THE 

GEOMETRY, PERFORM THE STRUCTURAL ANALYSIS AND EXECUTE THE 

STRUCTURAL OPTIMIZATION PROCESS FOR SIMPLIFIED FRAME ANALYSIS. 

The executables used to modify the geometry of integrated models posted in the forum CFD-

Online, more details can be found on the following link: 

https://www.cfd-online.com/Forums/main/194966-jscript-command-used-suppressing-joint-

feature-designmodeler.html#post743572 

The files concerning the structural analysis of the simplified frame models have been uploaded 

to Mathworks website, use the following link to browse the relevant executables: 

https://uk.mathworks.com/matlabcentral/fileexchange/72635-static-structural-analysis-of-

dome-roof-structure 

The MATLAB files used to perform the structural optimization of the dome roof frame using 

Particle Swarm Optimization (PSO) have been uploaded to Mathworks website, use the 

following link to browse the relevant executables: 

https://uk.mathworks.com/matlabcentral/fileexchange/72639-optimization-code-for-pso-

strategy 
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 COMMERCIAL TABLES OF STRUCTURAL STEEL SECTIONS 

(DESIGNED ACCORDING TO AMERICAN STANDARD OF BEAM SECTIONS). 

Table E.1 Commercial S-type I-Beams sorted according to their second moment of area. 

Designation 

Web 

Height 

[mm] 

Flange 

Width [mm] 

Web 

Thickness 

[mm] 

Flange 

Thickness 

[mm] 

Second 

Moment of 

Area Iyy 

[m^4] 

Second 

Moment of 

Area Izz [m^4] 

Torsional 

Constant J 

[m^4] 

S24x121 0.6223 0.20447 0.02032 0.027686 0.0013153 3.467E-05 4.6332E-06 

S24x106 0.6223 0.199898 0.015748 0.027686 0.0012237 3.209E-05 3.6382E-06 

S24x100 0.6096 0.184023 0.018923 0.022098 0.0009948 1.985E-05 2.7007E-06 

S24x90 0.6096 0.180975 0.015875 0.022098 0.0009365 1.869E-05 2.1149E-06 

S24x80 0.6096 0.1778 0.0127 0.022098 0.0008741 1.756E-05 1.6953E-06 

S20x96 0.51562 0.18288 0.02032 0.023368 0.0006951 2.089E-05 2.9978E-06 

S20x86 0.51562 0.179324 0.016764 0.023368 0.0006576 1.948E-05 2.3352E-06 

S20x75 0.508 0.162179 0.016129 0.020193 0.0005328 1.24E-05 1.6007E-06 

S20x66 0.508 0.158877 0.012827 0.020193 0.0004953 1.153E-05 1.2295E-06 

S18x70 0.4572 0.158775 0.018059 0.017551 0.0003854 1.003E-05 1.4699E-06 

S18x54.7 0.4572 0.152425 0.011709 0.017551 0.0003347 8.658E-06 7.9408E-07 

S15x50 0.381 0.143256 0.01397 0.015799 0.0002023 6.535E-06 7.2286E-07 

S15x42.9 0.381 0.139725 0.010439 0.015799 0.0001861 5.994E-06 5.1181E-07 

S12x50 0.3048 0.139116 0.01745 0.016739 0.000127 6.535E-06 9.7478E-07 

S12x40.8 0.3048 0.133401 0.011735 0.016739 0.0001132 5.661E-06 5.8126E-07 

S12x35 0.3048 0.128981 0.010871 0.013818 9.532E-05 4.108E-06 3.5738E-07 

S12x31.8 0.3048 0.127 0.00889 0.013818 9.074E-05 3.896E-06 2.9474E-07 

S10x35 0.254 0.125578 0.015088 0.012471 6.119E-05 3.48E-06 4.5317E-07 

S10x25.4 0.254 0.118389 0.007899 0.012471 5.161E-05 2.826E-06 1.9483E-07 

S8x23 0.2032 0.105943 0.011201 0.01082 2.701E-05 1.794E-06 1.8467E-07 

S8x18.4 0.2032 0.101625 0.006883 0.01082 2.397E-05 1.553E-06 1.0792E-07 

S6x17.25 0.1524 0.090551 0.011811 0.009119 1.095E-05 9.615E-07 1.2947E-07 

S6x12.5 0.1524 0.084633 0.005893 0.009119 9.199E-06 7.575E-07 5.3174E-08 

S5x10 0.127 0.076302 0.005436 0.00828 5.12E-06 5.078E-07 3.5678E-08 

S4x9.5 0.1016 0.071018 0.00828 0.007442 2.826E-06 3.759E-07 3.8743E-08 

S4x7.7 0.1016 0.06764 0.004902 0.007442 2.531E-06 3.18E-07 2.2577E-08 

S3x7.5 0.0762 0.063729 0.008865 0.006604 1.22E-06 2.439E-07 2.993E-08 

S3x5.7 0.0762 0.059182 0.004318 0.006604 1.049E-06 1.894E-07 1.3409E-08 

Table E.2 Commercial S-type C-Beams sorted according to their second moment of area. 
Designation Web 

Height 

[mm] 

Flange 

Width [mm] 

Web 

Thickness 

[mm] 

Flange 

Thickness 

[mm] 

Second 

Moment of 

Area Iyy 

[m^4] 

Second 

Moment of 

Area Izz [m^4] 

Torsional 

Constant J 

[m^4] 

C15x50 0.381 0.0943864 0.0181864 0.01651 0.000168157 4.57855E-06 1.04708E-06 

C15x40 0.381 0.089408 0.013208 0.01651 0.000145265 3.84182E-06 5.60863E-07 

C15x33.9 0.381 0.08636 0.01016 0.01651 0.000131113 3.38396E-06 3.92287E-07 

C12x30 0.3048 0.080518 0.012954 0.0127254 6.74295E-05 2.13943E-06 3.31466E-07 

C12x25 0.3048 0.0773938 0.0098298 0.0127254 5.99373E-05 1.86055E-06 2.02822E-07 

C12x20.7 0.3048 0.0747268 0.0071628 0.0127254 5.36939E-05 1.61498E-06 1.39995E-07 

C10x30 0.254 0.0770382 0.0170942 0.0110744 4.28718E-05 1.63995E-06 4.92671E-07 

C10x25 0.254 0.0733044 0.0133604 0.0110744 3.79603E-05 1.39854E-06 2.68288E-07 

C10x20 0.254 0.0695706 0.0096266 0.0110744 3.28407E-05 1.16961E-06 1.38524E-07 

C10x15.3 0.254 0.06604 0.006096 0.0110744 2.8054E-05 9.49008E-07 7.89757E-08 

C9x20 0.2286 0.0672592 0.0113792 0.0104902 2.53485E-05 1.00728E-06 1.64037E-07 

C9x15 0.2286 0.063119 0.007239 0.0104902 2.12278E-05 8.03327E-07 7.74812E-08 

C9x13.4 0.2286 0.0617982 0.0059182 0.0104902 1.99375E-05 7.32567E-07 6.33539E-08 

C8x18.75 0.2032 0.0641858 0.0123698 0.009906 1.83142E-05 8.24138E-07 1.69794E-07 

C8x13.75 0.2032 0.0595122 0.0076962 0.009906 1.5026E-05 6.36834E-07 6.94425E-08 

C8x11.5 0.2032 0.057404 0.005588 0.009906 1.35691E-05 5.49425E-07 4.90185E-08 

C7x12.25 0.1778 0.0557276 0.0079756 0.0092964 1.00728E-05 4.86991E-07 5.99157E-08 

C7x9.8 0.1778 0.053086 0.005334 0.0092964 8.86573E-06 4.02912E-07 3.74277E-08 

C6x13 0.1524 0.0547878 0.0110998 0.0087122 7.24243E-06 4.37043E-07 9.36242E-08 

C6x10.5 0.1524 0.0516636 0.0079756 0.0087122 6.32672E-06 3.60456E-07 4.85478E-08 

C6x8.2 0.1524 0.048768 0.00508 0.0087122 5.45263E-06 2.88448E-07 2.81589E-08 

C5x9 0.127 0.047879 0.008255 0.008128 3.70446E-06 2.63058E-07 4.09534E-08 

C5x6.7 0.127 0.04445 0.004826 0.008128 3.11757E-06 1.99375E-07 2.06703E-08 

C4x7.25 0.1016 0.0437134 0.0081534 0.0075184 1.9105E-06 1.80228E-07 3.07412E-08 

C4x5.4 0.1016 0.0402336 0.0046736 0.0075184 1.60249E-06 1.32778E-07 1.48563E-08 

C3x6 0.0762 0.0405384 0.0090424 0.0069342 8.61599E-07 1.26951E-07 2.77901E-08 

C3x5 0.0762 0.0380492 0.0065532 0.0069342 7.70028E-07 1.02809E-07 1.56055E-08 

C3x4.1 0.0762 0.035814 0.004318 0.0069342 6.90944E-07 8.19976E-08 1.00055E-08 
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Table E.3 Commercial unequal angles sorted according to their second moment of area. 

Designation Web 

Height 

[mm] 

Flange 

Width 

[mm] 

Web 

Thickness 

[mm] 

Flange 

Thickness 

[mm] 

Second 

Moment of 

Area Iyy 

[m^4] 

Second 

Moment of 

Area Izz 

[m^4] 

Torsional 

Constant J 

[m^4] 

L8 x 8 x 11/8 0.2032 0.2032 0.028575 0.028575 4.08E-05 4.07907E-05 3.16073E-06 

L8 x 8 x 7/8 0.2032 0.2032 0.022225 0.022225 3.31E-05 3.3132E-05 1.48715E-06 

L8 x 8 x 5/8 0.2032 0.2032 0.015875 0.015875 2.47E-05 2.47241E-05 5.41963E-07 

L8 x 4 x 3/4 0.2032 0.1016 0.01905 0.01905 2.29E-05 3.89593E-06 7.02384E-07 

L8 x 6 x 5/8 0.2032 0.1524 0.015875 0.015875 2.25E-05 1.09469E-05 4.74217E-07 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
L6 x 31/2 x 3/8 0.1524 0.0889 0.009525 0.009525 5.36939E-06 1.39021E-06 6.95067E-08 

L5 x 31/2 x 5/8 0.127 0.0889 0.015875 0.015875 4.99478E-06 2.0104E-06 2.87918E-07 

L6 x 4 x 5/16 0.1524 0.1016 0.007938 0.007938 4.74504E-06 1.73985E-06 4.23408E-08 

L5 x 5 x 7/16 0.127 0.127 0.011113 0.011113 4.16231E-06 4.16231E-06 1.16183E-07 

L5 x 3 x 7/16 0.127 0.0762 0.011113 0.011113 3.50883E-06 9.65657E-07 9.29466E-08 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
L4 x 4 x 1/4 0.1016 0.1016 0.00635 0.00635 1.26534E-06 1.26534E-06 1.73428E-08 

L4 x 31/2 x 1/4 0.1016 0.0889 0.00635 0.00635 1.21123E-06 8.69924E-07 1.62589E-08 

L4 x 3 x 1/4 0.1016 0.0762 0.00635 0.00635 1.15296E-06 5.66075E-07 1.5175E-08 

L31/2 x 31/2 x 5/16 0.0889 0.0889 0.0079375 0.0079375 1.01977E-06 1.01977E-06 2.96386E-08 

L31/2 x 3 x 5/16 0.0889 0.0762 0.0079375 0.0079375 9.69819E-07 6.57646E-07 2.75215E-08 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
L21/2 x 21/2 x 1/4 0.0635 0.0635 0.00635 0.00635 2.92611E-07 2.92611E-07 1.08393E-08 

L21/2 x 2 x 1/4 0.0635 0.0508 0.00635 0.00635 2.72215E-07 1.54838E-07 9.75533E-09 

L2 x 2 x 3/8 0.0508 0.0508 0.009525 0.009525 1.99375E-07 1.99375E-07 2.9266E-08 

L2 x 2 x 1/4 0.0508 0.0508 0.00635 0.00635 1.44849E-07 1.44849E-07 8.6714E-09 

L2 x 2 x 1/8 0.0508 0.0508 0.003175 0.003175 7.9084E-08 7.9084E-08 1.08393E-09 

Table E.4 Commercial Rectangular Hollow Sections (RHSs) sorted according to their second 

moment of area. 

Designation Web 

Height 

[mm] 

Flange 

Width 

[mm] 

Web 

Thickness 

[mm] 

Flange 

Thickness 

[mm] 

Second Moment 

of Area Iyy 

[m^4] 

Second 

Moment of 

Area Izz 

[m^4] 

Torsional 

Constant J 

[m^4] 

32 x 24 x 1/2 0.8128 0.6096 0.0127 0.0127 0.003396448 0.0021977 0.004203937 

32 x 24 x 3/8 0.8128 0.6096 0.009525 0.009525 0.002601446 0.0016857 0.003192495 

28 x 24 x 1/2 0.7112 0.6096 0.0127 0.0127 0.002484902 0.0019688 0.003467208 

26 x 24 x 1/2 0.6604 0.6096 0.0127 0.0127 0.002089482 0.0018522 0.003105086 

22 x 20 x 5/8  0.5588 0.508 0.015875 0.015875 0.001469297 0.0012737 0.00224765 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
14 x 10 x 5/8 0.3556 0.254 0.014757 0.014757 0.000285951 0.0001694 0.000346305 

16 x 12 x 5/16 0.4064 0.3048 0.007391 0.007391 0.000247658 0.0001598 0.0003026 

16 x 8 x 3/8 0.4064 0.2032 0.008865 0.008865 0.000221019 7.534E-05 0.000181477 

14 x 6 x 1/2 0.3556 0.1524 0.011811 0.011811 0.000167325 4.37E-05 0.000116129 

12 x 10 x 5/16 0.3048 0.254 0.007391 0.007391 0.000109885 8.325E-05 0.000148178 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
8 x 6 x 3/8 0.2032 0.1524 0.008865 0.008865 3.29239E-05 2.106E-05 4.16231E-05 

10 x 2 x 3/8 0.254 0.0508 0.008865 0.008865 2.98438E-05 1.952E-06 6.61808E-06 

7 x 5 x 1/2 0.1778 0.127 0.011811 0.011811 2.52236E-05 1.482E-05 3.15503E-05 

9 x 3 x 5/16 0.2286 0.0762 0.007391 0.007391 2.40166E-05 4.112E-06 1.20291E-05 

8 x 4 x 5/16 0.2032 0.1016 0.007391 0.007391 2.12278E-05 7.159E-06 1.77315E-05 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
3 x 2 x 1/4 0.0762 0.0508 0.005918 0.005918 8.82411E-07 4.62E-07 1.0489E-06 

3 x 1 1/2 x 1/4 0.0762 0.0381 0.005918 0.005918 6.99269E-07 2.252E-07 5.99373E-07 

3 x 1 x 1/8 0.0762 0.0254 0.002946 0.002946 3.40061E-07 5.744E-08 1.69822E-07 

2 1/2 x 1 1/2 x 1/8 0.0635 0.0381 0.002946 0.002946 2.78043E-07 1.245E-07 2.85951E-07 

2 x 1 x 3/16 0.0508 0.0254 0.00442 0.00442 1.45265E-07 4.662E-08 1.25286E-07 
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Table E.5 Commercial Square Hollow Sections (SHSs) sorted according to their second 

moment of area. 

Designation Web Height 

[mm] 

Flange 

Width 

[mm] 

Web 

Thickness 

[mm] 

Flange 

Thickness 

[mm] 

Second 

Moment of 

Area Iyy 

[m^4] 

Second 

Moment of 

Area Izz 

[m^4] 

Torsional 

Constant J 

[m^4] 

32 x 32 x 5/8 0.8128 0.8128 0.015875 0.015875 0.00512 0.00512 0.0082 

30 x 30 x 1/2 0.762 0.762 0.0127 0.0127 0.003463 0.003463 0.005411 

28 x 28 x 5/8 0.7112 0.7112 0.015875 0.015875 0.003388 0.003388 0.005453 

32 x 32 x 3/8 0.8128 0.8128 0.009525 0.009525 0.003226 0.003226 0.004995 

26 x 26 x 1/2 0.6604 0.6604 0.0127 0.0127 0.002227 0.002227 0.003509 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
12 x 12 x 5/8 0.3048 0.3048 0.014757 0.014757 0.000228 0.000228 0.000368 

12 x 12 x 3/8 0.3048 0.3048 0.008865 0.008865 0.000149 0.000149 0.000234 

10 x 10 x 1/2 0.254 0.254 0.011811 0.011811 0.000107 0.000107 0.000171 

12 x 12 x 1/4 0.3048 0.3048 0.005918 0.005918 0.000103 0.000103 0.00016 

10 x 10 x 5/16 0.254 0.254 0.007391 0.007391 7.16E-05 7.16E-05 0.000113 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
4 1/2 x 4 1/2 x 1/2 0.1143 0.1143 0.011811 0.011811 7.49E-06 7.49E-06 1.3E-05 

5 1/2 x 5 1/2 x 3/16 0.1397 0.1397 0.00442 0.00442 7.08E-06 7.08E-06 1.11E-05 

6 x 6 x 1/8 0.1524 0.1524 0.002946 0.002946 6.45E-06 6.45E-06 9.95E-06 

4 1/2 x 4 1/2 x 5/16 0.1143 0.1143 0.007391 0.007391 5.62E-06 5.62E-06 9.28E-06 

5 x 5 x 3/16 0.127 0.127 0.00442 0.00442 5.24E-06 5.24E-06 8.28E-06 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
2 x 2 x 3/16 0.0508 0.0508 0.00442 0.00442 2.66E-07 2.66E-07 4.54E-07 

1 3/4 x 1 3/4 x 3/16 0.04445 0.04445 0.00442 0.00442 1.69E-07 1.69E-07 2.91E-07 

1 5/8 x 1 5/8 x 1/8 0.041275 0.041275 0.002946 0.002946 1.02E-07 1.02E-07 1.71E-07 

1 1/2 x 1 1/2 x 1/8 0.0381 0.0381 0.002946 0.002946 7.83E-08 7.83E-08 1.32E-07 

1 1/4 x 1 1/4 x 1/8 0.03175 0.03175 0.002946 0.002946 4.2E-08 4.2E-08 7.24E-08 

 

Table E.6 Commercial Circular Hollow Sections (CHSs) sorted according to their second 

moment of area. 

Designation Web Height 

[mm] 

Flange 

Width 

[mm] 

Web 

Thickness 

[mm] 

Flange 

Thickness 

[mm] 

Second Moment 

of Area Iyy 

[m^4] 

Second 

Moment of 

Area Izz 

[m^4] 

Torsional 

Constant 

J [m^4] 

20.000 x 0.500 0.508 0.508 0.011811 0.011811 0.000566075 0.000566075 0.001132 

18.000 x 0.500 0.4572 0.4572 0.011811 0.011811 0.000409988 0.000409988 0.00082 

16.000 x 0.500 0.4064 0.4064 0.011811 0.011811 0.000285119 0.000285119 0.00057 

16.000 x 0.375 0.4064 0.4064 0.008865 0.008865 0.000218938 0.000218938 0.000437 

14.000 x 0.500 0.3556 0.3556 0.011811 0.011811 0.000188553 0.000188553 0.000378 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
10.000 x 0.188 0.254 0.254 0.00442 0.00442 2.69718E-05 2.69718E-05 5.41E-05 

8.625 x 0.250 0.219075 0.219075 0.005918 0.005918 2.25181E-05 2.25181E-05 4.5E-05 

7.625 x 0.375 0.193675 0.193675 0.008865 0.008865 2.20186E-05 2.20186E-05 4.41E-05 

7.000 x 0.500 0.1778 0.1778 0.011811 0.011811 2.1311E-05 2.1311E-05 4.25E-05 

7.500 x 0.375 0.1905 0.1905 0.008865 0.008865 2.08948E-05 2.08948E-05 4.16E-05 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
6.625 x 0.125 0.168275 0.168275 0.002946 0.002946 5.24452E-06 5.24452E-06 1.04E-05 

5.000 x 0.312 0.127 0.127 0.007391 0.007391 4.99478E-06 4.99478E-06 9.99E-06 

5.000 x 0.250 0.127 0.127 0.005918 0.005918 4.13734E-06 4.13734E-06 8.28E-06 

6.000 x 0.125 0.1524 0.1524 0.002946 0.002946 3.86263E-06 3.86263E-06 7.74E-06 

5.563 x 0.134 0.1413 0.1413 0.003175 0.003175 3.28823E-06 3.28823E-06 6.58E-06 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
2.375 x 0.218 0.060325 0.060325 0.005182 0.005182 3.44223E-07 3.44223E-07 6.87E-07 

2.375 x 0.154 0.060325 0.060325 0.003632 0.003632 2.60977E-07 2.60977E-07 5.2E-07 

2.500 x 0.125 0.0635 0.0635 0.002946 0.002946 2.57647E-07 2.57647E-07 5.16E-07 

1.900 x 0.145 0.04826 0.04826 0.003429 0.003429 1.21956E-07 1.21956E-07 2.44E-07 

1.660 x 0.140 0.042164 0.042164 0.003302 0.003302 7.65866E-08 7.65866E-08 1.53E-07 
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Table E.7 Commercial I-Beams designed according to the British Standard, sorted according 

to their second moment of area. 

Designation Web 

Height 

[mm] 

Flange 

Width [mm] 

Web 

Thickness 

[mm] 

Flange 

Thickness 

[mm] 

Second 

Moment of 

Area Iyy 

[m^4] 

Second 

Moment of 

Area Izz 

[m^4] 

Torsional 

Constant J 

[m^4] 

UB 1016x305x584 1.056 0.314 0.036 0.064 0.012461 0.00033 7.12977E-05 

UB 1016x305x494 1.036 0.309 0.031 0.054 0.01028 0.00027 4.2725E-05 

UB 1016x305x438 1.026 0.305 0.027 0.049 0.009098 0.00023 3.06532E-05 

UB 1016x305x415 1.02 0.304 0.026 0.046 0.008531 0.00022 2.57023E-05 

UB 1016x305x393 1.016 0.303 0.0244 0.0439 0.008077 0.00021 2.20096E-05 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
UB 686x254x125 0.6779 0.253 0.0117 0.0162 0.00118 4.4E-05 1.07899E-06 

UB 610x229x140 0.6172 0.2302 0.0131 0.0221 0.001118 4.5E-05 2.11898E-06 

UB 610x229x125 0.6122 0.229 0.0119 0.0196 0.000986 3.9E-05 1.49338E-06 

UB 610x229x113 0.6076 0.2282 0.0111 0.0173 0.000873 3.4E-05 1.06468E-06 

UB 533x210x122 0.5445 0.2119 0.0127 0.0213 0.00076 3.4E-05 1.73691E-06 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
UB 356x171x57 0.358 0.1722 0.0081 0.013 0.00016 1.1E-05 3.15631E-07 

UB 406x140x46 0.4032 0.1422 0.0068 0.0112 0.000157 5.4E-06 1.75445E-07 

UB 356x171x51 0.355 0.1715 0.0074 0.0115 0.000141 9.7E-06 2.21836E-07 

UB 406x140x39 0.398 0.1418 0.0064 0.0086 0.000125 4.1E-06 9.49053E-08 

UB 356x171x45 0.3514 0.1711 0.007 0.0097 0.000121 8.1E-06 1.44281E-07 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
UB 203x133x25 0.2032 0.1332 0.0057 0.0078 2.34E-05 3.1E-06 5.46834E-08 

UB 203x102x23 0.2032 0.1018 0.0054 0.0093 2.11E-05 1.6E-06 6.52539E-08 

UB 178x102x19 0.1778 0.1012 0.0048 0.0079 1.36E-05 1.4E-06 3.98177E-08 

UB 152x89x16 0.1524 0.0887 0.0045 0.0077 8.34E-06 9E-07 3.16252E-08 

UB 127x76x13 0.127 0.076 0.004 0.0076 4.73E-06 5.6E-07 2.49505E-08 

 

Table E.8 Commercial Isometric Beams (ISMB) designed according to the Indian Standard, 

sorted according to their second moment of area. 

Designation Web 

Height 

[mm] 

Flange 

Width 

[mm] 

Web 

Thickness 

[mm] 

Flange 

Thickness 

[mm] 

Second Moment 

of Area Iyy 

[m^4] 

Second Moment 

of Area Izz 

[m^4] 

Torsional 

Constant J 

[m^4] 

ISMB600 0.6 0.21 0.012 0.0203 0.000918 0.0000265 1.51674E-06 

ISLB600 0.6 0.21 0.0105 0.0155 0.000728 0.0000182 7.5286E-07 

ISMB550 0.55 0.19 0.0112 0.0193 0.000649 0.0000183 1.16817E-06 

ISLB550 0.55 0.19 0.0099 0.015 0.000532 0.0000134 6.05382E-07 

ISMB500 0.5 0.18 0.0102 0.0172 0.000452 0.0000137 7.87474E-07 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
ISMB300 0.3 0.14 0.0077 0.0131 0.0000899 0.00000486 2.55473E-07 

ISLB(P)300 0.3 0.14 0.007 0.0116 0.0000813 0.00000414 1.79982E-07 

ISLB300 0.3 0.15 0.0067 0.0094 0.0000733 0.00000376 1.13134E-07 

ISLB275 0.275 0.14 0.0064 0.0088 0.0000538 0.00000287 8.7633E-08 

ISMB250 0.25 0.125 0.0069 0.0125 0.0000513 0.00000335 1.90134E-07 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
ISJB225 0.225 0.08 0.0037 0.005 0.0000131 0.000000405 1.04655E-08 

ISMB175 0.175 0.085 0.0058 0.009 0.0000126 0.000000767 5.2691E-08 

ISLB175 0.175 0.09 0.0051 0.0069 0.000011 0.000000796 2.74482E-08 

ISLB(P)175 0.175 0.08 0.0052 0.0077 0.0000107 0.000000573 3.25502E-08 

ISJB200 0.2 0.06 0.0034 0.005 0.00000781 0.000000173 7.62019E-09 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
ISJB150 0.15 0.05 0.003 0.0046 0.00000322 0.000000092 4.59449E-09 

ISMB100 0.1 0.05 0.0047 0.007 0.00000183 0.000000129 1.4894E-08 

ISLB(P)100 0.1 0.05 0.0043 0.007 0.00000178 0.000000132 1.40834E-08 

ISLB100 0.1 0.05 0.004 0.0064 0.00000168 0.000000127 1.08714E-08 

ISLB75 0.075 0.05 0.0037 0.005 0.000000727 0.0000001 5.43294E-09 
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 THE OPTIMAL SETS OF SIZING PARAMETERS FOR THE 

CONSIDERED MODELS. 

Table F.1 Optimal sets of sizing parameters for model A1. 

Structural 

Component 

No. 

Cross Section Designation 

MESO-ABC MESO-BA MESO-DE MESO-PSO MESO-SA 

1 S20x96 S20x96 S20x96 S20x96 S20x96 

2 S20x96 S20x75 S20x96 S20x96 S20x96 

3 S6x12.5 S6x12.5 S6x12.5 S6x12.5 S20x86 

4 S15x42.9 S12x50 S15x42.9 S15x42.9 S15x42.9 

5 S12x50 S15x42.9 S15x42.9 S15x42.9 S10x35 

6 S12x35 S10x35 S12x31.8 S12x31.8 S8x23 

7 S10x25.4 S8x18.4 S10x25.4 S10x25.4 S6x12.5 

8 S8x18.4 S6x12.5 S8x18.4 S8x18.4 S15x42.9 

9 S8x18.4 S6x12.5 S6x12.5 S6x12.5 S12x35 

10 S6x12.5 S6x12.5 S6x12.5 S6x12.5 S12x31.8 

11 S12x50 S6x17.25 S12x31.8 S12x35 S8x23 

12 S20x96 S8x18.4 S12x50 S12x35 S8x18.4 

13 6 x 3 x 1/4 7 x 4 x 1/2 8 x 2 x 3/8 8 x 3 x 3/8 S6x12.5 

14 6 x 5 x 5/16 3 x 2 x 1/4 6 x 4 x 5/16 7 x 3 x 1/2 S6x12.5 

15 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 S12x40.8 

16 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 S20x66 

17 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 6 x 4 x 5/16 

18 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 6 x 5 x 5/16 

19 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 

20 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 

21 3 x 2 x 1/4 7 x 4 x 1/2 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 

22 3 x 2 x 1/4 6 x 4 x 5/16 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 

23 C8x18.75 C8x11.5 C8x18.75 C8x18.75 3 x 2 x 1/4 

24 C5x6.7 C3x5 C6x8.2 C4x7.25 3 x 2 x 1/4 

25 C3x4.1 C6x13 C8x11.5 C8x13.75 3 x 2 x 1/4 

26 C8x13.75 C6x10.5 C6x13 C6x13 3 x 2 x 1/4 

27 C8x18.75 C8x18.75 C8x18.75 C8x18.75 C8x18.75 

28 C7x12.25 C5x9 C6x10.5 C6x10.5 C6x13 

29 C8x18.75 C8x18.75 C8x18.75 C8x13.75 C3x4.1 

30 C8x18.75 C8x11.5 C8x13.75 C8x13.75 C3x4.1 

31 C8x18.75 C8x18.75 C8x18.75 C8x18.75 C3x4.1 

32 C3x4.1 C3x4.1 C3x4.1 C3x4.1 C7x12.25 

33 C3x4.1 C3x4.1 C3x4.1 C3x4.1 C5x9 

34 NA NA NA NA C7x9.8 

35 NA NA NA NA C8x18.75 

36 NA NA NA NA C8x18.75 

37 NA NA NA NA C8x18.75 

38 NA NA NA NA C8x18.75 

39 NA NA NA NA C8x18.75 

40 NA NA NA NA C3x4.1 

41 NA NA NA NA C3x4.1 

Table F.2 Optimal sets of sizing parameters for model B1. 

Structural 

Component 

No. 

Cross Section Designation 

MESO-ABC MESO-BA MESO-DE MESO-PSO MESO-SA 

1 S12x50' S6x12.5 S12x31.8' S12x35' S15x42.9' 

2 S10x35' S6x12.5 S6x17.25' S8x23' S10x35' 

3 9 x 5 x 1/2' S6x12.5 S6x12.5' S6x12.5' S6x12.5' 

4 9 x 5 x 1/2' 9 x 5 x 1/2 9 x 5 x 1/2' 9 x 5 x 1/2' S6x12.5' 

5 6 x 5 x 5/16' 9 x 5 x 1/2 8 x 6 x 3/8' 9 x 5 x 1/2' 9 x 5 x 1/2' 

6 6 x 2 x 3/16' 5 x 4 x 3/16 6 x 4 x 5/16' 9 x 3 x 5/16' 9 x 5 x 1/2' 

7 3 x 2 x 1/4' 4 x 2 1/2 x 1/4 6 x 3 x 1/4' 9 x 3 x 5/16' 9 x 3 x 5/16' 

8 9 x 5 x 1/2' 3 x 2 x 1/4 6 x 3 x 1/4' 5 x 4 x 3/16' 8 x 4 x 5/16' 

9 9 x 5 x 1/2' 3 x 2 x 1/4 6 x 3 x 1/4' 6 x 2 x 3/16' 6 x 5 x 5/16' 

10 9 x 5 x 1/2' 3 x 2 x 1/4 3 x 2 x 1/4' 5 x 3 x 1/8' 7 x 4 x 1/2' 

11 6 x 4 x 5/16' 3 x 2 x 1/4 3 x 2 x 1/4' 6 x 3 x 1/4' 3 x 2 x 1/4' 

12 6 x 5 x 5/16' 9 x 5 x 1/2 9 x 5 x 1/2' 9 x 5 x 1/2' 3 x 2 1/2 x 1/4' 

13 3 x 2 x 1/4' 9 x 5 x 1/2 9 x 5 x 1/2' 9 x 5 x 1/2' 3 x 2 x 1/4' 

14 9 x 5 x 1/2' 7 x 5 x 1/2 6 x 5 x 5/16' 9 x 3 x 5/16' 3 x 2 x 1/4' 

15 9 x 5 x 1/2' 7 x 3 x 1/2 6 x 4 x 5/16' 9 x 3 x 5/16' 9 x 5 x 1/2' 

16 3 x 2 x 1/4' 3 x 2 x 1/4 6 x 2 x 3/16' 6 x 4 x 5/16' 9 x 5 x 1/2' 

17 NA 3 x 2 x 1/4 6 x 2 x 3/16' 6 x 4 x 5/16' 9 x 3 x 5/16' 
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18 NA 3 x 2 x 1/4 3 x 2 x 1/4' 4 x 3 x 5/16' 9 x 5 x 1/2' 

19 NA 8 x 6 x 3/8 9 x 3 x 5/16' 9 x 5 x 1/2' 6 x 3 x 1/4' 

20 NA 9 x 5 x 1/2 9 x 5 x 1/2' 9 x 5 x 1/2' 6 x 4 x 5/16' 

21 NA 9 x 3 x 5/16 9 x 3 x 5/16' 9 x 5 x 1/2' 5 x 3 x 1/8' 

22 NA 5 x 3 x 1/8 8 x 2 x 3/8' 6 x 5 x 5/16' 3 1/2 x 2 1/2 x 1/4' 

23 NA NA NA NA 3 x 2 x 1/4' 

24 NA NA NA NA 9 x 5 x 1/2' 

25 NA NA NA NA 9 x 5 x 1/2' 

26 NA NA NA NA 9 x 5 x 1/2' 

27 NA NA NA NA 3 1/2 x 2 1/2 x 1/4' 

28 NA NA NA NA 3 x 2 x 1/4' 

Table F.3 Optimal sets of sizing parameters for model C1. 

Structural 

Component 

No. 

Cross Section Designation 

MESO-ABC MESO-BA MESO-DE MESO-PSO MESO-SA 

1 9 x 5 x 1/2 9 x 5 x 1/2 9 x 5 x 1/2 9 x 5 x 1/2 9 x 3 x 5/16 

2 9 x 3 x 5/16 9 x 3 x 5/16 9 x 3 x 5/16 9 x 5 x 1/2 7 x 5 x 1/2 

3 6 x 2 x 3/16 8 x 4 x 5/16 6 x 4 x 5/16 7 x 4 x 1/2 4 x 3 x 5/16 

4 4 x 2 1/2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 6 x 3 x 1/4 3 x 2 x 1/4 

5 3 x 2 x 1/4 3 1/2 x 2 1/2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 

6 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 9 x 5 x 1/2 

7 9 x 5 x 1/2 9 x 5 x 1/2 9 x 5 x 1/2 3 x 2 x 1/4 8 x 3 x 3/8 

8 9 x 3 x 5/16 9 x 3 x 5/16 9 x 5 x 1/2 9 x 5 x 1/2 6 x 2 x 3/16 

9 5 x 3 x 1/8 6 x 2 x 3/16 8 x 2 x 3/8 9 x 5 x 1/2 5 x 3 x 1/8 

10 3 x 2 1/2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 7 x 3 x 1/2 3 x 2 x 1/4 

11 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 4 x 3 x 5/16 3 x 2 x 1/4 

12 9 x 5 x 1/2 9 x 5 x 1/2 9 x 5 x 1/2 3 x 2 x 1/4 9 x 5 x 1/2 

13 9 x 5 x 1/2 9 x 5 x 1/2 9 x 5 x 1/2 3 x 2 x 1/4 9 x 3 x 5/16 

14 7 x 5 x 1/2 9 x 3 x 5/16 9 x 5 x 1/2 9 x 5 x 1/2 9 x 3 x 5/16 

15 7 x 5 x 1/2 3 x 2 x 1/4 3 x 2 x 1/4 9 x 5 x 1/2 9 x 3 x 5/16 

16 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 9 x 3 x 5/16 3 x 2 x 1/4 

17 NA NA NA 6 x 2 x 3/16 NA 

18 NA NA NA 3 x 2 x 1/4 NA 

19 NA NA NA 3 x 2 x 1/4 NA 

Table F.4 Optimal sets of sizing parameters for model D1. 

Structural 

Component 

No. 

Cross Section Designation 

MESO-ABC MESO-BA MESO-DE MESO-PSO MESO-SA 

1 UB 127x76x13 UB 127x76x13 UB 127x76x13 UB 127x76x13 UB 127x76x13 

2 8 x 2 x 3/8 8 x 4 x 5/16 9 x 3 x 5/16 9 x 3 x 5/16 9 x 3 x 5/16 

3 6 x 3 x 1/4 6 x 2 x 3/16 6 x 5 x 5/16 6 x 5 x 5/16 6 x 5 x 5/16 

4 6 x 2 x 3/16 6 x 2 x 3/16 6 x 2 x 3/16 6 x 2 x 3/16 6 x 2 x 3/16 

5 5 x 3 x 1/8 5 x 3 x 1/8 4 x 2 1/2 x 1/4 4 x 3 x 5/16 4 x 2 1/2 x 1/4 

6 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 

7 8 x 2 x 3/8 8 x 6 x 3/8 9 x 3 x 5/16 9 x 3 x 5/16 9 x 3 x 5/16 

8 6 x 3 x 1/4 6 x 3 x 1/4 6 x 5 x 5/16 6 x 4 x 5/16 6 x 5 x 5/16 

9 6 x 2 x 3/16 6 x 2 x 3/16 6 x 2 x 3/16 6 x 2 x 3/16 6 x 2 x 3/16 

10 6 x 2 x 3/16 5 x 2 x 5/16 3 1/2 x 2 1/2 x 1/4 3 x 2 x 1/4 3 1/2 x 2 1/2 x 1/4 

11 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 

12 9 x 3 x 5/16 9 x 5 x 1/2 9 x 5 x 1/2 9 x 5 x 1/2 9 x 5 x 1/2 

13 8 x 3 x 3/8 8 x 4 x 5/16 9 x 3 x 5/16 9 x 3 x 5/16 9 x 3 x 5/16 

14 7 x 5 x 1/2 8 x 2 x 3/8 9 x 3 x 5/16 9 x 3 x 5/16 9 x 3 x 5/16 

15 9 x 3 x 5/16 9 x 3 x 5/16 9 x 3 x 5/16 9 x 3 x 5/16 9 x 3 x 5/16 

16 9 x 3 x 5/16 8 x 2 x 3/8 6 x 2 x 3/16 6 x 3 x 1/4 6 x 2 x 3/16 
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Table F.5 Optimal sets of sizing parameters for model E1. 

Structural 

Component 

No. 

Cross Section Designation 

MESO-ABC MESO-BA MESO-DE MESO-PSO MESO-SA 

1 S12x40.8' S15x50 S12x40.8' S15x42.9 S10x25.4' 

2 S12x35' S15x50 S12x35' S12x35 S15x42.9' 

3 S10x25.4' S15x50 S12x31.8' S12x31.8 S12x40.8' 

4 S8x18.4' S6x12.5 S10x35' S10x35 S8x18.4' 

5 S8x23' S6x12.5 S12x35' S12x40.8 S6x12.5' 

6 S8x23' S6x12.5 S15x42.9' S12x35 S6x12.5' 

7 9 x 7 x 1/2' 3 x 2 x 1/4 9 x 3 x 5/16' 9 x 3 x 5/16' 9 x 3 x 5/16' 

8 9 x 3 x 5/16' 6 x 2 x 3/16 9 x 3 x 5/16' 9 x 3 x 5/16' 9 x 3 x 5/16' 

9 9 x 3 x 5/16' 7 x 3 x 1/2 9 x 3 x 5/16' 9 x 3 x 5/16' 8 x 3 x 3/8' 

10 9 x 3 x 5/16' 9 x 7 x 1/2 9 x 3 x 5/16' 9 x 3 x 5/16' 8 x 6 x 3/8' 

11 9 x 5 x 1/2' 9 x 5 x 1/2 8 x 2 x 3/8' 9 x 5 x 1/2' 6 x 3 x 1/4' 

12 9 x 7 x 1/2' 3 x 2 x 1/4 9 x 3 x 5/16' 9 x 5 x 1/2' 9 x 3 x 5/16' 

13 9 x 3 x 5/16' 4 x 2 1/2 x 1/4 8 x 6 x 3/8' 9 x 3 x 5/16' 9 x 3 x 5/16' 

14 9 x 3 x 5/16' 7 x 5 x 1/2 9 x 3 x 5/16' 9 x 3 x 5/16' 9 x 3 x 5/16' 

15 9 x 3 x 5/16' 9 x 7 x 1/2 9 x 3 x 5/16' 9 x 3 x 5/16' 9 x 3 x 5/16' 

16 9 x 5 x 1/2' 9 x 7 x 1/2 8 x 4 x 5/16' 9 x 3 x 5/16' 6 x 5 x 5/16' 

17 8 x 2 x 3/8' 3 x 2 x 1/4 9 x 3 x 5/16' 9 x 5 x 1/2' 9 x 7 x 1/2' 

18 8 x 4 x 5/16' 3 x 2 x 1/4 6 x 3 x 1/4' 7 x 4 x 1/2' 6 x 3 x 1/4' 

19 4 x 3 x 5/16' 3 x 2 x 1/4 6 x 2 x 3/16' 3 1/2 x 2 1/2 x 1/4' 6 x 2 x 3/16' 

20 6 x 2 x 3/16' 7 x 3 x 1/2 6 x 2 x 3/16' 5 x 2 x 5/16' 8 x 4 x 5/16' 

21 9 x 7 x 1/2' 9 x 7 x 1/2 9 x 3 x 5/16' 9 x 7 x 1/2' 9 x 3 x 5/16' 

Table F.6 Optimal sets of sizing parameters for model A2. 

Structural 

Component 

No. 

Cross Section Designation 

MESO-ABC MESO-BA MESO-DE MESO-PSO MESO-SA 

1 8 x 6 x 3/8 8 x 6 x 3/8 8 x 6 x 3/8 8 x 6 x 3/8 8 x 6 x 3/8 

2 3 x 2 1/2 x 1/4 6 x 2 x 3/16 3 x 2 1/2 x 1/4 5 x 3 x 1/8 8 x 6 x 3/8 

3 3 x 2 1/2 x 1/4 3 x 2 1/2 x 1/4 3 x 2 1/2 x 1/4 3 x 2 1/2 x 1/4 8 x 4 x 5/16 

4 3 x 2 1/2 x 1/4 3 x 2 1/2 x 1/4 3 x 2 1/2 x 1/4 3 x 2 1/2 x 1/4 5 x 3 x 1/8 

5 3 x 2 1/2 x 1/4 3 x 2 1/2 x 1/4 3 x 2 1/2 x 1/4 3 x 2 1/2 x 1/4 3 1/2 x 2 1/2 x 1/4 

6 3 x 2 1/2 x 1/4 3 x 2 1/2 x 1/4 3 x 2 1/2 x 1/4 3 x 2 1/2 x 1/4 3 x 2 1/2 x 1/4 

7 3 x 2 1/2 x 1/4 3 x 2 1/2 x 1/4 3 x 2 1/2 x 1/4 3 x 2 1/2 x 1/4 3 x 2 1/2 x 1/4 

8 3 x 2 1/2 x 1/4 3 x 2 1/2 x 1/4 3 x 2 1/2 x 1/4 3 x 2 1/2 x 1/4 6 x 3 x 1/4 

9 3 x 2 1/2 x 1/4 3 x 2 1/2 x 1/4 3 x 2 1/2 x 1/4 3 x 2 1/2 x 1/4 6 x 2 x 3/16 

10 3 x 2 1/2 x 1/4 3 x 2 1/2 x 1/4 3 x 2 1/2 x 1/4 3 x 2 1/2 x 1/4 5 x 3 x 1/8 

11 8 x 6 x 3/8 8 x 6 x 3/8 8 x 6 x 3/8 8 x 6 x 3/8 3 x 2 1/2 x 1/4 

12 8 x 6 x 3/8 8 x 6 x 3/8 8 x 6 x 3/8 8 x 6 x 3/8 3 x 2 1/2 x 1/4 

13 8 x 4 x 5/16 8 x 4 x 5/16 8 x 6 x 3/8 8 x 4 x 5/16 3 x 2 1/2 x 1/4 

14 8 x 2 x 3/8 6 x 5 x 5/16 8 x 6 x 3/8 6 x 5 x 5/16 3 x 2 1/2 x 1/4 

15 6 x 4 x 5/16 3 x 2 1/2 x 1/4 8 x 4 x 5/16 6 x 2 x 3/16 8 x 6 x 3/8 

16 7 x 4 x 1/2 3 x 2 1/2 x 1/4 5 x 3 x 1/8 6 x 4 x 5/16 8 x 6 x 3/8 

17 5 x 3 x 1/8 3 x 2 1/2 x 1/4 5 x 3 x 1/8 3 x 2 1/2 x 1/4 7 x 4 x 1/2 

18 3 x 2 1/2 x 1/4 3 x 2 1/2 x 1/4 3 x 2 1/2 x 1/4 3 x 2 1/2 x 1/4 6 x 3 x 1/4 

19 3 x 2 1/2 x 1/4 3 x 2 1/2 x 1/4 3 x 2 1/2 x 1/4 3 x 2 1/2 x 1/4 6 x 3 x 1/4 

20 6 x 3 x 1/4 3 x 2 1/2 x 1/4 5 x 3 x 1/8 3 x 2 1/2 x 1/4 6 x 2 x 3/16 

21 L3 x 2 x 5/16 L3 x 2 x 5/16 L3 x 2 x 5/16 L3 x 2 x 1/2 6 x 2 x 3/16 

22 L3 x 2 x 5/16 L3 x 2 x 5/16 L3 x 2 x 5/16 L3 x 2 x 5/16 8 x 4 x 5/16 

23 L3 x 2 x 5/16 L3 x 2 x 5/16 L3 x 2 x 5/16 L3 x 2 x 5/16 6 x 4 x 5/16 

24 L31/2 x 21/2 x 1/4 L3 x 2 x 5/16 L3 x 2 x 5/16 L3 x 2 x 5/16 6 x 3 x 1/4 

25 L3 x 2 x 5/16 L3 x 2 x 5/16 L31/2 x 3 x 1/2 L3 x 2 x 5/16 3 x 2 1/2 x 1/4 

26 L3 x 2 x 5/16 L3 x 2 x 5/16 L4 x 3 x 1/4 L31/2 x 21/2 x 1/4 3 x 2 1/2 x 1/4 

27 L3 x 2 x 5/16 L3 x 2 x 5/16 L3 x 2 x 5/16 L3 x 2 x 5/16 3 x 2 1/2 x 1/4 

28 L3 x 2 x 5/16 L4 x 4 x 3/8 L3 x 2 x 5/16 L3 x 2 x 5/16 3 x 2 1/2 x 1/4 

29 L3 x 2 x 5/16 L4 x 4 x 1/4 L3 x 2 x 5/16 L3 x 2 x 5/16 L31/2 x 21/2 x 1/2 

30 L3 x 21/2 x 1/4 L4 x 4 x 3/8 L3 x 2 x 5/16 L3 x 2 x 5/16 L3 x 2 x 5/16 

31 L3 x 2 x 5/16 L3 x 2 x 5/16 L3 x 2 x 5/16 L3 x 2 x 5/16 L3 x 2 x 5/16 

32 L3 x 2 x 5/16 L3 x 2 x 5/16 L3 x 2 x 5/16 L3 x 2 x 5/16 L3 x 2 x 5/16 

33 3 x 3 x 3/16 L3 x 2 x 5/16 L31/2 x 21/2 x 1/2 L3 x 2 x 5/16 L3 x 2 x 5/16 

34 3 x 3 x 3/16 L3 x 2 x 5/16 L31/2 x 21/2 x 1/4 L3 x 2 x 5/16 L3 x 2 x 5/16 

35 3 x 3 x 3/16 L3 x 2 x 5/16 L3 x 2 x 5/16 L3 x 2 x 5/16 L3 x 2 x 5/16 

36 3 x 3 x 3/16 L3 x 2 x 5/16 L3 x 2 x 5/16 L31/2 x 21/2 x 1/4 L4 x 31/2 x 1/4 

37 3 x 3 x 3/16 L3 x 2 x 5/16 3 x 3 x 3/16 L3 x 2 x 5/16 L3 x 2 x 5/16 

38 3 x 3 x 5/16 L3 x 2 x 5/16 3 x 3 x 3/16 L3 x 2 x 5/16 L3 x 2 x 5/16 

39 3 x 3 x 3/16 L3 x 2 x 5/16 3 x 3 x 3/16 L3 x 2 x 5/16 L3 x 2 x 5/16 

40 3 x 3 x 3/16 L3 x 2 x 5/16 3 x 3 x 3/16 L3 x 2 x 5/16 L3 x 2 x 5/16 

41 3 x 3 x 3/16 L3 x 2 x 5/16 3 x 3 x 3/16 3 x 3 x 3/16 L3 x 2 x 5/16 
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42 3 x 3 x 3/16 L4 x 4 x 3/8 3 x 3 x 3/16 3 x 3 x 3/16 L3 x 2 x 5/16 

43 3 x 3 x 3/16 L31/2 x 3 x 5/16 3 x 3 x 3/16 3 x 3 x 3/16 L31/2 x 21/2 x 1/4 

44 3 x 3 x 3/16 L4 x 4 x 3/8 3 x 3 x 3/16 3 x 3 x 3/16 L3 x 2 x 5/16 

45 3 x 3 x 3/16 L3 x 2 x 5/16 3 x 3 x 3/16 3 x 3 x 3/16 L3 x 2 x 5/16 

46 3 x 3 x 3/16 L3 x 2 x 5/16 3 x 3 x 3/16 3 x 3 x 3/16 L3 x 2 x 5/16 

47 4 x 4 x 3/16 L3 x 2 x 5/16 3 x 3 x 3/16 3 x 3 x 3/16 L3 x 2 x 5/16 

48 4 1/2 x 4 1/2 x 3/16 L3 x 2 x 5/16 3 x 3 x 3/16 3 x 3 x 3/16 L3 x 2 x 5/16 

49 5 x 5 x 3/16 3 x 3 x 3/16 3 x 3 x 3/16 3 x 3 x 3/16 L3 x 2 x 5/16 

50 3 x 3 x 3/16 5 x 5 x 5/16 6 x 6 x 1/8 3 x 3 x 3/16 L4 x 4 x 1/4 

51 3.000 x 0.134 3 x 3 x 3/16 3 x 3 x 3/16 6 x 6 x 1/4 L3 x 2 x 5/16 

52 3.000 x 0.134 3 x 3 x 3/16 4 x 4 x 3/16 3 x 3 x 3/16 L3 x 2 x 5/16 

53 3.000 x 0.134 3 x 3 x 3/16 6 x 6 x 1/8 5 x 5 x 3/16 L3 x 2 x 5/16 

54 3.000 x 0.134 3 x 3 x 3/16 3 x 3 x 3/16 3 x 3 x 3/16 L3 x 2 x 5/16 

55 3.000 x 0.134 3 x 3 x 3/16 3.000 x 0.134 3 x 3 x 3/16 L3 x 2 x 5/16 

56 3.000 x 0.134 3 x 3 x 3/16 3.000 x 0.134 3 1/2 x 3 1/2 x 1/4 L3 x 2 x 5/16 

57 3.000 x 0.134 3 x 3 x 3/16 3.000 x 0.134 5 x 5 x 3/16 3 x 3 x 3/16 

58 3.000 x 0.134 3 x 3 x 3/16 3.000 x 0.134 3 x 3 x 3/16 3 x 3 x 3/16 

59 3.000 x 0.134 6 x 6 x 1/8 3.000 x 0.134 3.000 x 0.134 3 x 3 x 3/16 

60 3.000 x 0.134 3 x 3 x 3/16 3.000 x 0.134 3.000 x 0.134 3 x 3 x 3/16 

61 3.000 x 0.134 3 x 3 x 3/16 3.000 x 0.134 3.000 x 0.134 3 x 3 x 3/16 

62 NA 5 1/2 x 5 1/2 x 3/16 3.000 x 0.134 3.000 x 0.134 3 x 3 x 3/16 

63 NA 3 x 3 x 3/16 3.000 x 0.134 3.000 x 0.134 3 x 3 x 3/16 

64 NA 3 x 3 x 3/16 3.000 x 0.134 3.000 x 0.134 3 x 3 x 3/16 

65 NA 3 x 3 x 3/16 3.000 x 0.134 3.000 x 0.134 3 x 3 x 3/16 

66 NA 3 x 3 x 3/16 NA 3.000 x 0.134 3 x 3 x 3/16 

67 NA 3.000 x 0.134 NA 3.000 x 0.134 3 x 3 x 3/16 

68 NA 3.000 x 0.134 NA 3.000 x 0.134 3 x 3 x 3/16 

69 NA 3.000 x 0.134 NA 3.000 x 0.134 3 x 3 x 3/16 

70 NA 3.000 x 0.134 NA NA 3 x 3 x 3/16 

71 NA 3.000 x 0.134 NA NA 3 x 3 x 3/16 

72 NA 3.000 x 0.134 NA NA 3 x 3 x 3/16 

73 NA 3.000 x 0.134 NA NA 3 x 3 x 3/16 

74 NA 3.000 x 0.134 NA NA 3 x 3 x 3/16 

75 NA 3.000 x 0.134 NA NA 3 x 3 x 3/16 

76 NA 3.000 x 0.134 NA NA 3 x 3 x 3/16 

77 NA 3.000 x 0.134 NA NA 3 x 3 x 3/16 

78 NA NA NA NA 3 x 3 x 3/16 

79 NA NA NA NA 3 x 3 x 3/16 

80 NA NA NA NA 3 x 3 x 3/16 

81 NA NA NA NA 3 x 3 x 3/16 

82 NA NA NA NA 3 x 3 x 3/16 

83 NA NA NA NA 3.000 x 0.134 

84 NA NA NA NA 3.000 x 0.134 

85 NA NA NA NA 3.000 x 0.134 

86 NA NA NA NA 3.000 x 0.134 

87 NA NA NA NA 3.000 x 0.134 

88 NA NA NA NA 3.000 x 0.134 

89 NA NA NA NA 3.000 x 0.134 

90 NA NA NA NA 3.000 x 0.134 

91 NA NA NA NA 3.000 x 0.134 

92 NA NA NA NA 3.000 x 0.134 

93 NA NA NA NA 3.000 x 0.134 

94 NA NA NA NA 3.000 x 0.134 

95 NA NA NA NA 3.000 x 0.134 

96 NA NA NA NA 3.000 x 0.134 

97 NA NA NA NA 3.000 x 0.134 

Table F.7 Optimal sets of sizing parameters for model B2. 

Structural 

Component 

No. 

Cross Section Designation 

MESO-ABC MESO-BA MESO-DE MESO-PSO MESO-SA 

1 ISLB75 ISLB75 ISLB75 ISLB75 ISLB75 

2 ISLB75 ISLB75 ISLB75 ISLB75 ISLB75 

3 ISLB75 ISLB75 ISLB75 ISLB75 ISLB75 

4 ISLB75 ISLB75 ISLB75 ISLB75 ISLB75 

5 ISLB75 ISLB75 ISJB225 ISLB75 ISLB75 

6 ISLB75 ISLB75 ISLB75 ISLB75 ISLB75 

7 ISLB75 ISLB75 ISLB75 ISLB75 ISLB75 

8 ISLB75 ISLB75 ISLB75 ISLB75 ISLB75 

9 ISLB75 ISLB75 ISLB75 ISLB75 ISLB75 

10 ISLB225 ISLB225 ISMB225 ISMB225 ISMB225 

11 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 8 x 4 x 5/16 3 x 2 x 1/4 
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12 8 x 4 x 5/16 9 x 3 x 5/16 3 x 2 x 1/4 9 x 3 x 5/16 5 x 2 x 5/16 

13 6 x 2 x 3/16 6 x 2 x 3/16 3 x 2 x 1/4 6 x 2 x 3/16 6 x 3 x 1/4 

14 5 x 3 x 1/8 5 x 3 x 1/8 3 1/2 x 2 1/2 x 1/4 6 x 2 x 3/16 6 x 2 x 3/16 

15 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 

16 3 x 2 x 1/4 3 x 2 x 1/4 9 x 3 x 5/16 3 x 2 x 1/4 6 x 2 x 3/16 

17 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 

18 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 

19 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 

20 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 

21 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 

22 8 x 4 x 5/16 9 x 3 x 5/16 3 x 2 x 1/4 9 x 3 x 5/16 5 x 3 x 1/8 

23 6 x 2 x 3/16 6 x 2 x 3/16 3 x 2 x 1/4 6 x 2 x 3/16 6 x 2 x 3/16 

24 6 x 2 x 3/16 5 x 3 x 1/8 3 x 2 x 1/4 5 x 4 x 3/16 6 x 2 x 3/16 

25 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 

26 3 x 2 x 1/4 3 x 2 x 1/4 9 x 3 x 5/16 3 x 2 x 1/4 5 x 3 x 1/8 

27 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 

28 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 

29 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 

30 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 

31 ISLC200 ISLC200 ISLC75 ISLC200 ISLC75 

32 ISLC75 ISLC75 ISLC75 ISLC75 ISLC75 

33 ISLC75 ISLC75 ISLC75 ISLC75 ISLC75 

34 ISLC75 ISLC75 ISLC75 ISLC75 ISLC75 

35 ISLC75 ISLC75 ISLC75 ISLC75 ISLC75 

36 ISLC75 ISLC75 ISLC75 ISLC75 ISLC75 

37 5 x 5 x 1/2 5 x 5 x 1/2 5 x 5 x 1/2 5 x 5 x 1/2 5 x 5 x 1/2 

38 1 1/2 x 1 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 5 x 5 x 3/16 1 1/2 x 1 1/2 x 1/8 3 1/2 x 3 1/2 x 1/4 

39 1 1/2 x 1 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 

40 1 1/2 x 1 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 

41 1 1/2 x 1 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 

42 1 1/2 x 1 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 

43 1 1/2 x 1 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 

44 1 1/2 x 1 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 

45 1 1/2 x 1 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 

46 3 1/2 x 3 1/2 x 1/8 2 1/2 x 2 1/2 x 3/16 1 5/8 x 1 5/8 x 1/8 3 1/2 x 3 1/2 x 1/8 3 1/2 x 3 1/2 x 1/8 

47 5 x 5 x 3/16 5 x 5 x 3/16 5 x 5 x 3/16 5 x 5 x 5/16 4 1/2 x 4 1/2 x 3/16 

48 3.000 x 0.134 3.000 x 0.134 3.000 x 0.134 3.000 x 0.134 3.000 x 0.134 

Table F.8 Optimal sets of sizing parameters for model C2. 

Structural 

Component 

No. 

Cross Section Designation 

MESO-ABC MESO-BA MESO-DE MESO-PSO MESO-SA 

1 ISLB75 ISLB75 ISLB75 ISLB75 ISJB225 

2 ISMB225 ISMB225 ISMB225 ISMB225 ISLB200 

3 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 

4 7 x 4 x 1/2 8 x 2 x 3/8 8 x 4 x 5/16 7 x 5 x 1/2 3 x 2 x 1/4 

5 6 x 3 x 1/4 6 x 3 x 1/4 6 x 4 x 5/16 6 x 2 x 3/16 6 x 2 x 3/16 

6 6 x 2 x 3/16 6 x 2 x 3/16 6 x 3 x 1/4 6 x 2 x 3/16 6 x 2 x 3/16 

7 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 

8 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 6 x 3 x 1/4 

9 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 

10 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 

11 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 

12 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 

13 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 

14 7 x 4 x 1/2 7 x 5 x 1/2 8 x 4 x 5/16 8 x 2 x 3/8 3 x 2 1/2 x 1/4 

15 6 x 2 x 3/16 6 x 2 x 3/16 6 x 3 x 1/4 6 x 2 x 3/16 6 x 2 x 3/16 

16 6 x 2 x 3/16 6 x 2 x 3/16 6 x 3 x 1/4 6 x 2 x 3/16 6 x 2 x 3/16 

17 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 1/2 x 2 1/2 x 1/4 

18 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 6 x 3 x 1/4 

19 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 

20 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 

21 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 

22 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 

23 ISLC75 ISLC75 ISLC75 ISLC75 ISLC75 

24 ISMC150 ISJC200 ISLC75 ISLC200 ISLC75 

25 ISLC75 ISLC75 ISLC75 ISLC75 ISLC75 

26 ISLC75 ISLC75 ISLC75 ISLC75 ISLC75 

27 ISLC75 ISLC75 ISLC75 ISLC75 ISLC75 

28 ISLC75 ISLC75 ISLC75 ISLC75 ISLC75 

29 ISLC75 ISLC75 ISLC75 ISLC75 ISLC75 

30 ISLC75 ISLC75 ISLC75 ISLC75 ISLC75 
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31 ISLC75 ISLC75 ISLC75 ISLC75 ISLC75 

32 ISLC75 ISLC75 ISLC75 ISLC75 ISLC75 

33 5 x 5 x 1/2 5 x 5 x 1/2 5 x 5 x 1/2 5 x 5 x 1/2 5 x 5 x 1/2 

34 1 1/2 x 1 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 3 1/2 x 3 1/2 x 1/8 

35 1 1/2 x 1 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 

36 1 1/2 x 1 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 

37 1 1/2 x 1 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 

38 1 1/2 x 1 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 

39 1 1/2 x 1 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 

40 1 1/2 x 1 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 

41 1 1/2 x 1 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 

42 1 5/8 x 1 5/8 x 1/8 2 1/4 x 2 1/4 x 1/8 2 1/4 x 2 1/4 x 1/8 2 1/4 x 2 1/4 x 1/8 1 1/2 x 1 1/2 x 1/8 

43 4 x 4 x 1/2 4 1/2 x 4 1/2 x 3/16 5 x 5 x 3/16 4 1/2 x 4 1/2 x 3/16 1 1/2 x 1 1/2 x 1/8 

44 3.000 x 0.134 3.000 x 0.134 3.000 x 0.134 3.000 x 0.134 3.000 x 0.134 

Table F.9 Optimal sets of sizing parameters for model D2. 

Structural 

Component 

No. 

Cross Section Designation 

MESO-ABC MESO-BA MESO-DE MESO-PSO MESO-SA 

1 S6x12.5 S6x12.5 S6x12.5 S6x12.5 S6x12.5 

2 S6x12.5 S6x12.5 S6x12.5 S6x12.5 S6x12.5 

3 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 

4 5 x 3 x 1/8 4 x 3 x 5/16 3 x 2 x 1/4 5 x 3 x 1/8 3 x 2 x 1/4 

5 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 4 x 3 x 5/16 5 x 3 x 1/8 

6 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 5 x 3 x 1/8 

7 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 

8 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 

9 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 

10 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 

11 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 

12 3 x 2 x 1/4 3 x 2 x 1/4 5 x 2 x 5/16 3 x 2 x 1/4 3 x 2 x 1/4 

13 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 

14 5 x 3 x 1/8 5 x 3 x 1/8 3 x 2 x 1/4 6 x 2 x 3/16 3 x 2 x 1/4 

15 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 5 x 3 x 1/8 5 x 3 x 1/8 

16 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 1/2 x 2 1/2 x 1/4 

17 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 

18 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 

19 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 

20 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 

21 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 

22 3 x 2 x 1/4 3 x 2 x 1/4 5 x 3 x 1/8 3 x 2 x 1/4 3 x 2 x 1/4 

23 8 x 4 x 5/16 5 x 3 x 1/8 6 x 2 x 3/16 9 x 3 x 5/16 3 x 2 x 1/4 

24 3 x 2 1/2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 9 x 3 x 5/16 3 x 2 x 1/4 

25 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 8 x 2 x 3/8 4 x 2 1/2 x 1/4 

26 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 

27 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 

28 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 

29 5 x 3 x 1/8 5 x 4 x 3/16 5 x 3 x 1/8 3 x 2 x 1/4 3 x 2 x 1/4 

30 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 

31 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 

32 5 x 4 x 3/16 3 x 2 x 1/4 6 x 3 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 

33 5 x 5 x 5/16 5 x 5 x 5/16 5 x 5 x 3/16 5 x 5 x 5/16 5 x 5 x 5/16 

34 2 1/4 x 2 1/4 x 1/8 2 1/4 x 2 1/4 x 1/4 2 1/4 x 2 1/4 x 1/8 1 1/2 x 1 1/2 x 1/8 2 1/4 x 2 1/4 x 1/8 

35 1 1/2 x 1 1/2 x 1/8 1 5/8 x 1 5/8 x 1/8 1 1/2 x 1 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 1 5/8 x 1 5/8 x 1/8 

36 1 1/2 x 1 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 

37 1 1/2 x 1 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 

38 1 1/2 x 1 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 

39 3 1/2 x 3 1/2 x 1/8 2 1/4 x 2 1/4 x 1/4 3 1/2 x 3 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 

40 2 1/4 x 2 1/4 x 1/8 1 5/8 x 1 5/8 x 1/8 2 1/4 x 2 1/4 x 1/8 1 1/2 x 1 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 

41 1 5/8 x 1 5/8 x 1/8 2 1/4 x 2 1/4 x 1/8 1 5/8 x 1 5/8 x 1/8 1 1/2 x 1 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 

42 1 1/2 x 1 1/2 x 1/8 1 5/8 x 1 5/8 x 1/8 1 1/2 x 1 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 2 1/4 x 2 1/4 x 1/8 

43 1 1/2 x 1 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 1 1/2 x 1 1/2 x 1/8 2 1/4 x 2 1/4 x 1/8 

44 3.000 x 0.134 3.000 x 0.134 3.000 x 0.134 3.000 x 0.134 3.000 x 0.188 
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Table F.10 Optimal sets of sizing parameters for model E2. 

Structural 

Component 

No. 

Cross Section Designation 

MESO-ABC MESO-BA MESO-DE MESO-PSO MESO-SA 

1 3 x 2 x 1/4 9 x 7 x 1/2 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 

2 3 x 2 x 1/4 9 x 7 x 1/2 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 

3 5 x 4 x 3/16 9 x 7 x 1/2 6 x 2 x 3/16 5 x 3 x 1/8 7 x 3 x 1/2 

4 6 x 3 x 1/4 3 x 2 x 1/4 6 x 3 x 1/4 6 x 3 x 1/4 9 x 3 x 5/16 

5 9 x 3 x 5/16 3 x 2 x 1/4 9 x 3 x 5/16 9 x 3 x 5/16 9 x 3 x 5/16 

6 9 x 7 x 1/2 3 x 2 x 1/4 9 x 3 x 5/16 9 x 7 x 1/2 9 x 5 x 1/2 

7 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 

8 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 

9 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 

10 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 

11 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 

12 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 

13 6 x 2 x 3/16 9 x 7 x 1/2 5 x 3 x 1/8 5 x 3 x 1/8 7 x 4 x 1/2 

14 4 x 2 1/2 x 1/4 3 x 2 x 1/4 5 x 3 x 1/8 3 1/2 x 2 1/2 x 1/4 5 x 3 x 1/8 

15 5 x 3 x 1/8 9 x 3 x 5/16 6 x 2 x 3/16 3 1/2 x 2 1/2 x 1/4 5 x 3 x 1/8 

16 6 x 2 x 3/16 8 x 6 x 3/8 6 x 2 x 3/16 5 x 3 x 1/8 3 x 2 x 1/4 

17 6 x 4 x 5/16 9 x 3 x 5/16 6 x 5 x 5/16 6 x 2 x 3/16 3 x 2 x 1/4 

18 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 

19 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 

20 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 

21 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 

22 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 

23 5 x 4 x 3/16 3 x 2 x 1/4 6 x 2 x 3/16 9 x 7 x 1/2 9 x 3 x 5/16 

24 4 x 3 x 5/16 3 x 2 x 1/4 3 1/2 x 2 1/2 x 1/4 5 x 3 x 1/8 4 x 3 x 5/16 

25 5 x 3 x 1/8 3 x 2 x 1/4 5 x 3 x 1/8 5 x 3 x 1/8 3 x 2 1/2 x 1/4 

26 6 x 2 x 3/16 8 x 6 x 3/8 6 x 2 x 3/16 6 x 2 x 3/16 3 x 2 x 1/4 

27 6 x 2 x 3/16 9 x 3 x 5/16 6 x 5 x 5/16 6 x 2 x 3/16 3 x 2 x 1/4 

28 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 

29 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 

30 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 

31 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 

32 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 

33 9 x 3 x 5/16 9 x 7 x 1/2 9 x 3 x 5/16 9 x 7 x 1/2 9 x 7 x 1/2 

34 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 4 x 2 1/2 x 1/4 6 x 2 x 3/16 

35 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 5 x 2 x 5/16 

36 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 8 x 2 x 3/8 

37 5 x 2 x 5/16 3 x 2 x 1/4 7 x 3 x 1/2 3 x 2 x 1/4 3 x 2 x 1/4 

38 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 

39 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 

40 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 

41 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 

42 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 3 x 2 x 1/4 

43 3.000 x 0.134 3.000 x 0.134 3.000 x 0.134 3.000 x 0.134 3.000 x 0.134 

44 3.000 x 0.134 3.000 x 0.134 3.000 x 0.134 3.000 x 0.134 3.000 x 0.134 

45 3.000 x 0.134 3.000 x 0.134 3.000 x 0.134 3.000 x 0.134 3.000 x 0.134 

46 3.000 x 0.134 3.000 x 0.134 3.000 x 0.134 3.000 x 0.134 3.000 x 0.134 

47 3.000 x 0.134 3.000 x 0.134 3.000 x 0.134 3.000 x 0.134 3.000 x 0.134 

48 3.000 x 0.134 3.000 x 0.134 3.000 x 0.134 3.000 x 0.134 3.000 x 0.134 

Table F.11 Optimal sets of sizing parameters for model A3. 

Structural 

Component 

No. 

Cross Section Designation 

MESO-ABC MESO-BA MESO-DE MESO-PSO MESO-SA 

1 S12x35 S18x70 S18x54.7 S18x54.7 S15x50 

2 S18x54.7 S24x80 S24x80 S24x90 S24x80 

3 S24x90 S24x90 S24x90 S24x90 S24x90 

4 S24x121 S24x121 S24x121 S24x121 S24x121 

5 S15x42.9 S12x40.8 S15x42.9 S15x42.9 S12x40.8 

6 S20x66 S20x66 S18x54.7 S20x75 S15x42.9 

7 C8x18.75 C8x18.75 C8x18.75 C8x18.75 C8x18.75 

8 C8x18.75 C8x18.75 C8x18.75 C8x18.75 C8x18.75 

9 C6x8.2 C9x13.4 C7x9.8 C9x13.4 C6x13 

10 C15x33.9 C15x33.9 C15x33.9 C15x33.9 C12x25 

11 C7x12.25 C6x10.5 C6x8.2 C8x18.75 C4x5.4 

12 CGS-21 CGS-14 CGS-26 CGS-21 CGS-14 

13 CRS-14 CRS-15 CRS-14 CRS-14 CRS-14 
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Table F.12 Optimal sets of sizing parameters for model B3. 

Structural 

Component 

No. 

Cross Section Designation 

MESO-ABC MESO-BA MESO-DE MESO-PSO MESO-SA 

1 S15x50 S18x54.7 S15x50 S15x42.9 S18x54.7 

2 S18x54.7 S15x50 S15x50 S18x70 S18x54.7 

3 S20x86 S18x54.7 S20x75 S20x75 S18x70 

4 S20x96 S20x86 S20x96 S20x96 S20x75 

5 4 x 2 1/2 x 1/4 S20x96 4 x 2 1/2 x 1/4 4 x 2 1/2 x 1/4 S20x96 

6 4 x 2 1/2 x 1/4 4 x 2 1/2 x 1/4 4 x 2 1/2 x 1/4 4 x 2 1/2 x 1/4 4 x 2 1/2 x 1/4 

7 5 x 3 x 1/8 4 x 2 1/2 x 1/4 6 x 2 x 3/16 5 x 3 x 1/8 4 x 2 1/2 x 1/4 

8 5 x 4 x 3/16 5 x 4 x 3/16 5 x 4 x 3/16 6 x 2 x 3/16 5 x 4 x 3/16 

9 6 x 3 x 1/4 6 x 2 x 3/16 7 x 3 x 1/2 7 x 4 x 1/2 6 x 2 x 3/16 

10 7 x 5 x 1/2 6 x 3 x 1/4 7 x 4 x 1/2 8 x 2 x 3/8 6 x 3 x 1/4 

11 9 x 3 x 5/16 7 x 5 x 1/2 9 x 3 x 5/16 9 x 3 x 5/16 7 x 4 x 1/2 

12 8 x 6 x 3/8 7 x 3 x 1/2 8 x 6 x 3/8 8 x 4 x 5/16 7 x 4 x 1/2 

13 C9x15 8 x 3 x 3/8 C8x13.75 C9x13.4 7 x 5 x 1/2 

14 C10x15.3 9 x 3 x 5/16 C10x15.3 C9x20 9 x 3 x 5/16 

15 C10x30 9 x 5 x 1/2 C10x30 C10x30 9 x 3 x 5/16 

16 S18x70 C9x20 S18x70 S18x54.7 C9x13.4 

17 S18x54.7 C9x13.4 S18x70 S15x50 C9x15 

18 NA C10x15.3 NA NA C10x15.3 

19 NA C10x30 NA NA C10x30 

20 NA S15x50 NA NA S18x70 

21 NA S15x42.9 NA NA S15x50 

Table F.13 Optimal sets of sizing parameters for model C3. 

Structural 

Component 

No. 

Cross Section Designation 

MESO-ABC MESO-BA MESO-DE MESO-PSO MESO-SA 

1 12 x 10 x 5/16 16 x 8 x 3/8 16 x 12 x 5/16 10 x 3 x 3/8  14 x 10 x 5/8 

2 12 x 6 x 1/4 12 x 10 x 5/16 12 x 8 x 3/8 12 x 6 x 1/4 12 x 4 x 1/4 

3 12 x 6 x 1/4 14 x 6 x 1/2 12 x 10 x 5/16 10 x 4 x 5/16 12 x 8 x 3/8 

4 16 x 8 x 3/8 10 x 6 x 1/2 12 x 4 x 1/4 14 x 6 x 1/2 16 x 8 x 3/8 

5 18 x 12 x 3/8 16 x 8 x 3/8 14 x 10 x 5/8 18 x 6 x 5/8 18 x 12 x 3/8 

6 20 x 12 x 3/8 18 x 12 x 3/8 18 x 6 x 5/8 20 x 12 x 3/8 20 x 12 x 3/8 

7 20 x 12 x 3/8 20 x 12 x 3/8 20 x 12 x 3/8 20 x 12 x 3/8 20 x 12 x 3/8 

8 L6 x 4 x 3/4 20 x 12 x 3/8 20 x 12 x 3/8 L5 x 5 x 5/16 L6 x 6 x 5/16 

9 L6 x 6 x 9/16 L6 x 4 x 3/4 L6 x 4 x 3/4 L5 x 5 x 5/16 L6 x 6 x 5/16 

10 L8 x 6 x 1/2 L6 x 4 x 3/4 L6 x 6 x 7/16 L5 x 5 x 5/16 L8 x 8 x 1/2 

11 L6 x 6 x 3/4 L8 x 6 x 1/2 L8 x 6 x 5/8 L7 x 4 x 5/8 L7 x 4 x 5/8 

12 L6 x 6 x 3/4 L8 x 6 x 1/2 L8 x 4 x 3/4 L8 x 8 x 7/8 L6 x 6 x 9/16 

13 L8 x 8 x 7/8 L6 x 6 x 7/16 L6 x 6 x 9/16 L8 x 8 x 7/8 L8 x 8 x 5/8 

14 L8 x 8 x 7/8 L7 x 4 x 7/16 L6 x 6 x 3/4 L8 x 8 x 7/8 L8 x 8 x 7/8 

15 C8x18.75 L8 x 8 x 7/8 L8 x 8 x 7/8 C7x12.25 C9x13.4 

16 C9x15 L8 x 8 x 7/8 L8 x 8 x 7/8 C7x12.25 C9x15 

17 C12x30 C7x12.25 C8x11.5 C12x30 C12x20.7 

18 C8x13.75 C9x13.4 C8x18.75 C15x33.9 C8x11.5 

19 C12x30 C12x20.7 C12x25 C15x33.9 C12x25 

20 C15x33.9 C8x13.75 C8x18.75 C15x33.9 C15x33.9 

21 S15x42.9 C9x15 C9x13.4 S12x31.8 S15x42.9 

22 S12x40.8 C15x33.9 C15x33.9 S12x31.8 S12x40.8 

23 NA C15x33.9 C15x33.9 NA NA 
24 NA S18x54.7 S18x54.7 NA NA 
25 NA S12x50 S12x40.8 NA NA 

Table F.14 Optimal sets of sizing parameters for model E3. 

Structural 

Component 

No. 

Cross Section Designation 

MESO-ABC MESO-BA MESO-DE MESO-PSO MESO-SA 

1 S20x96 S20x96 S20x86 S20x96 S20x96 

2 S20x86 S20x86 S20x66 S20x96 S20x75 

3 S18x54.7 S20x75 S18x54.7 S20x66 S15x42.9 

4 S12x50 S12x50 S12x40.8 S12x40.8 S12x50 

5 S24x90 S24x90 S24x100 S24x80 S24x100 

6 S24x100 S24x100 S24x100 S24x100 S24x100 

7 S24x100 S24x100 S24x100 S24x100 S24x100 

8 9 x 3 x 5/16 S24x100 9 x 5 x 1/2 S24x100 8 x 4 x 5/16 
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9 7 x 4 x 1/2 9 x 7 x 1/2 7 x 5 x 1/2 9 x 5 x 1/2 6 x 5 x 5/16 

10 9 x 7 x 1/2 8 x 3 x 3/8 10 x 3 x 3/8  8 x 2 x 3/8 9 x 5 x 1/2 

11 10 x 3 x 3/8  7 x 5 x 1/2 10 x 4 x 5/16 7 x 4 x 1/2 10 x 3 x 3/8  

12 10 x 5 x 3/8 10 x 3 x 3/8  10 x 5 x 3/8 9 x 5 x 1/2 10 x 6 x 1/2 

13 10 x 6 x 1/2 10 x 4 x 5/16 10 x 5 x 3/8 10 x 4 x 5/16 10 x 6 x 1/2 

14 9 x 7 x 1/2 10 x 6 x 1/2 10 x 2 x 3/8 10 x 6 x 1/2 9 x 7 x 1/2 

15 8 x 3 x 3/8 10 x 5 x 3/8 8 x 6 x 3/8 10 x 6 x 1/2 8 x 6 x 3/8 

16 9 x 3 x 5/16 9 x 5 x 1/2 10 x 2 x 3/8 9 x 5 x 1/2 10 x 2 x 3/8 

17 10 x 3 x 3/8  7 x 4 x 1/2 9 x 7 x 1/2 7 x 3 x 1/2 10 x 2 x 3/8 

18 10 x 4 x 5/16 7 x 5 x 1/2 10 x 4 x 5/16 7 x 5 x 1/2 10 x 6 x 1/2 

19 10 x 6 x 1/2 10 x 3 x 3/8  10 x 6 x 1/2 9 x 3 x 5/16 10 x 5 x 3/8 

20 C7x9.8 10 x 3 x 3/8  C6x13 10 x 3 x 3/8  C6x10.5 

21 C8x18.75 10 x 5 x 3/8 C8x13.75 10 x 5 x 3/8 C8x18.75 

22 C9x20 10 x 6 x 1/2 C9x13.4 10 x 6 x 1/2 C10x15.3 

23 C10x25 C7x9.8 C10x25 C6x10.5 C10x25 

24 C10x20 C9x15 C10x20 C9x15 C10x20 

25 C10x30 C8x18.75 C10x25 C10x25 C12x25 

26 NA C9x20 NA C12x20.7 NA 
27 NA C10x25 NA C10x30 NA 
28 NA C9x15 NA C8x18.75 NA 
29 NA C12x25 NA C12x20.7 NA 
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