
 

 

 

Geospatial Inference and Management of 

Utility Infrastructure Networks 
 

 

Qingyuan Ji 
 

 

Thesis submitted for the Degree of  

Doctor of Philosophy 

 

 

 

School of Engineering 

Newcastle University 

 

 

January 2020 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



i 

 

 

Abstract 

 

Modern cities consist of spatially and temporally complex networks that connect urban 

infrastructure assets to the buildings they service. Critical infrastructure networks include 

transport, electricity, water supply, waste water and gas, all of which play a key role in the 

functioning of modern cities. Understanding network spatial connectivity, resource flow, 

dependencies and interdependencies is essential for infrastructure planning, management, and 

assessment of system robustness and resilience. However, there is a sparsity of fine spatial 

scale data from which such understanding can be derived or inferred. Often data is held within 

commercially sensitive organisations and may be incomplete topologically and/or spatially. 

Thus, there is an urgent need to develop new approaches to the integrated inference, 

management and analysis of the complex utility infrastructure networks. Such approaches 

should allow the highly granular representation of utility network connectivity to be 

represented in a spatially explicit manner, employing methods of data and information 

management to ensure they are scalable and generic. 

 

This thesis presents the development of such an approach, one that employs a geospatial 

ontology to formally define the key entities, attributes and relationships of fine spatial scale 

utility infrastructure networks. This ontology is used as the conceptual framework for the 

development of a suite of algorithms that allow the heuristic inference of the spatial layout of 

utility infrastructure networks for any urban conurbation within the UK. This is demonstrated 

via several case studies where the electricity feeder network between substations and 

buildings is generated for several different cities within the UK. Validation against the known 

network for the city of Newcastle upon Tyne indicates that the network can be inferred to high 

levels of accuracy (about 90%). Moreover, the algorithm is shown to be a transferable to the 

inference and integration of other utility infrastructure networks (gas, water supply, waste 

water, and new road layouts). 

 



ii 

 

The representation, management and analysis of such spatially complex and large utility 

networks is, however, a major challenge. The efficient storage, management and analysis of 

such spatial networks is explored via a comparison of a traditional RDMS approach 

(PgRouting within Postgres), spatial database (PostGIS) and a NoSQL graph-database 

(Neo4j), as well as a bespoke hybrid spatial-graph framework (combination of PostGIS and 

Neo4j). A suite of comparison tests of data writing, data reading and complex network 

analysis demonstrated that significant performance benefits in the use of the NoSQL graph 

database approach for data read (around 210% faster) and network analysis (between 420 and 

1170 % faster). However, this was at the expenses of data writing which was found to be 

between 135 and 150% slower. 
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Chapter 1. Introduction 

1.1 Urban Infrastructure Challenges 

Rapid uncontrolled urbanization has become a significant global problem which needs to be 

addressed in order to develop a sustainable biosphere (EU, 2010). Currently more than 52% 

of humans worldwide are living within urban areas (UN, 2013), and by 2050 this value is 

expected to reach 64% (UN, 2014). This irreversible process of urbanization is leading to an 

emergence of mega-cities (>10 million inhabitants) (Kourtit, et al., 2013). Such urbanization 

has in general raised living standards, with improved water supplies and sewage systems, 

residential and official buildings, education and health service, as well as public transport 

(D’Agostino, 2014; Yin, et al., 2015), but also brings issues such as pollution, crime and 

poverty (Hu, et al., 2013; Mohit, et al., 2017). 

 

Modern cities are comprised of spatially and temporally complex relationships between urban 

infrastructure systems and the buildings and residents they service (Guy et al, 2001). These 

urban infrastructure systems, including energy, water supply, waste, power and transport, 

provide the resources required to support the day-to-day functioning of cities (Murray and 

Grubesic, 2007). The integrity and reliability of these urban infrastructure assets, and the 

resources and services they provide are crucial for assuring public health, environmental 

sustainability, national security, social and economic productivity (HM Treasury and 

Infrastructure UK, 2014). 

 

Managing spatial data of fine spatial scale critical infrastructure networks is essential in many 

modern urban applications, such as smart city sensing (Gabrys, 2014; Hancke, et al., 2013; 

Perera, et al., 2014), smart neighbourhood (Lara, et al., 2016; Piotrowski, et al., 2014), digital 

twin (Mohammadi, et al., 2017; Shelton, et al., 2015), metering studies of local energy 

distributions (Albaugh, et al., 2004; Kleissel, et al., 2010; Karnouskos, et al., 2007), 
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infrastructure failure positioning and repair (Fang, et al., 2016; Hu, et al., 2016; Soltani-Sobh, 

et al., 2016), infrastructure planning and decision support (Gurung, et al., 2015; Malekpour, et 

al., 2016; Narayanaswami, 2007), and evaluating impact of spatial event on infrastructure 

networks (Borden, et al., 2007; Sokolov, et al., 2013). 

 

As city becomes more complex, the networked infrastructure systems become more 

vulnerable, as disruption can potentially cascade through individual and interdependent 

networks leading to impacts far beyond the original spatial footprint of the disturbance (Royal 

Academy of Engineering, 2011), potentially causing great disruption and loss for the society. 

For example, a power outage stroke entire country of Italy in September, 2003 which lasted 

for 19 hours (Rosato et al, 2008). The event was reported to cause an economic loss of € 

1,182 million (Schmidthaler, et al., 2016), with more than 100 trains stranded and all flights 

(from or to Italy) cancelled (Rosato, et al., 2008). The initial cause was just storm damage on 

few electricity cables serving electricity from Switzerland to Italy (Rosato, et al., 2008). 

Likewise, the North America blackout in 2003 was reported to cause $ 6 billion loss in the US 

and 18.9 million lost work hours in Canada (Bennet, et al., 2005). The blackout ended up 

shutting down oil refineries and pipes, transport systems and manufacturing industries for 

more than 24 hours, while this event was initially triggered by failure of few power 

transmission lines in Ohio (St-Pierre, et al., 2000). 

 

Therefore, it is crucial to characterise the interdependency of critical infrastructure networks 

(Holmgren, et al., 2006; Lhomme, et al., 2013; Ouyang, 2014; Rinaldi, 2001) and understand 

how these failures occur and cascade to the buildings, which require infrastructure services. 

However, at fine geospatial scale, little attention has been made on the application of 

infrastructure network data and infrastructure interdependency models. This is due to the 

absence of generic information management tool on such data. There are three major reasons. 

 

First, it is very rare that fine scale spatial data on critical infrastructure networks are easily 

available. Often data is held within commercially sensitive organisations (utility companies) 

and may be incomplete topologically and/or spatially (Bon, 2017; Fu, et al., 2008; Jaw, et al., 
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2013). If such data is not available, it is imperative to have approach that can infer plausible 

layout of infrastructure network for understanding the spatial connectivity between 

infrastructure assets and buildings (Bon, 2017; Cavallaro, et al., 2014). 

 

Secondly, geospatial infrastructure network data come from different sources, and therefore 

data can be different in terms of what information is encoded and how the information is 

encoded (Almeida, et al., 2009; Fu, et al., 2008; Hepp, 2007), and integrating data from 

different sources can be a challenge (Popovich, et al., 2014). Therefore, an ontology is needed 

to explicitly define what entities, attributes, and relationships are required to represent 

heterogeneous infrastructure networks (Fu, et al., 2008). Although there are currently some 

observations on infrastructure network ontologies, such as iCity (Katsumi, et al., 2017), 

Towntology (Berdier, 2007) and Utility Knowledge Ontology (Xu, et al., 2018), none of them 

is defined in an explicitly spatial manner, or considers the connections between critical 

infrastructure and buildings. 

 

Finally, to efficiently manage and analyse (query) such complex geospatial infrastructure 

network data, a database system is essential. Spatial relational databases such as PostGIS 

(Nguyen, 2009; Zheng, et al., 2017), and Oracle Spatial Extension (British Telecom, 2012; 

Fikjez and Řezanina, 2016) are the traditional solutions for handling coarse spatial scale 

infrastructure network such as electricity transmission grid in the UK (Barr, et al., 2016). 

However, fine scale geospatial infrastructure network is more complicated in terms of more 

nodes/edges. It is not clear whether or not traditional database approaches would be efficient 

in querying such complex networks. Recently, NoSQL database is proposed for more efficient 

management of network data, such as social network (Cattuto, et al., 2013), biology network 

(Yoon, et al., 2017), and knowledge graph (Lin, et al., 2017). However, there is no relevant 

study in applying NoSQL databases to manage geospatial infrastructure network data. 
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1.2 Aims and Objectives 

Have access to good quality geospatial data on infrastructure networks is a challenge but can 

open up opportunities in different digital urban models and applications. The research aim of 

this thesis is to develop approaches for the inference and management of fine scale geospatial 

urban utility infrastructure networks. To address this aim, four objectives have been identified: 

 

1. Review the research field pertaining geospatial urban infrastructure network models and 

identify the research gaps in the inference and management of geospatial infrastructure 

network data. 

2. Develop a geospatial ontology, to conceptually model the knowledge of the entities, 

attributes and relationships that are indispensable to represent fine scale urban 

infrastructure networks. The focus is to understand the spatial connectivity between 

infrastructure assets and buildings. 

3. Develop a generic approach to infer geospatial layout of the utility infrastructure network 

if actual data does not exist or only partially exists. The approach should be transferable 

so that it can be applied in different major utility sectors (electricity, gas, water supply and 

waste water). 

4. Develop a database approach that is able to encode, manage, and query the complex 

geospatial infrastructure network data in an efficient manner. In particular, several 

potential database approaches will be investigated, and performance benchmarking tests 

will be carried out to decide the most appropriate one. 

 

The research will investigate new approaches to the integrated inference, management and 

analysis of the complex utility infrastructure networks. Such approaches should allow the 

highly granular representation of utility network connectivity to be represented in a spatially 

explicit manner, employing methods of data and information management to ensure they are 

scalable and generic. 
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1.3 Thesis Structure 

The remainder of the thesis addresses the aims and objectives as set out above in Section 1.2 

and is split into eight chapters. Chapter 2 reviews the previous research which has been 

undertaken, in terms of critical infrastructure networks, the geospatial infrastructure network 

models, and identifies current challenges and objectives (the Objective 2, 3, and 4) in 

inference and management of the geospatial data on the fine scale infrastructure networks. 

 

Objective 2 is addressed in Chapter 3, where a geospatial ontology on fine scale infrastructure 

network is proposed. 

 

Objective 3 is addressed in Chapter 4, 5, and 6. In Chapter 4, a generic spatial heuristic 

algorithm is proposed, which can infer layout of infrastructure network, based on the layout of 

infrastructure assets, buildings, and a road network. This algorithm is applied and validated in 

generating city scale electricity distribution networks. Then Chapter 5 discusses transferability 

of the algorithm, where the algorithm is applied to infer layout of gas, water supply and sewer 

networks. Chapter 6 further proposes a road network generation algorithm, when it is even not 

possible to access road network layout. 

 

Objective 4 is addressed in Chapter 7, where database performance benchmarking tests are 

done to decide an appropriate database approach to handle such complex geospatial 

infrastructure network data.  

 

Chapter 8 discusses the results and major findings from this research and critiques the 

employed methods. Chapter 9 finally presents the conclusions of this thesis with potential 

future outlook in this research field. 
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Chapter 2. Literature Review 

2.1 The Changing Cities 

During the last decade, rapid urbanisation has triggered a series of global processes which are 

reshaping the world. One of them is the long-term trend of population movement to the cities 

(Castles, et al., 2013). Only a few centuries ago, the urban population was about 20%, while 

by 2007, more than 50% of the world’s population had settled in urban areas, resulting in 

cities gradually taking over ‘power’ from their hinterlands (Kourtit, et al., 2013). According to 

the United Nations, this value will continue to rise, and global percentage is expected to reach 

64% by 2050 (United Nations, 2014). In Europe, the urbanisation rate will be even higher, 

reaching 83% by 2050 (European Union, 2010). This long-term trend is primarily driven by 

two forces, which are the exponential growth of world population (annual growth rate at 

1.2%) and rural-urban shift (when the urban area is generally more attractive than rural 

settlement in terms of favourable opportunities and services) (Tacoli, et al., 2015). 

 

The population movement further means increasing requirement of living standards in cities 

(Nijkam, et al., 2013). These living standards can be tangible or intangible. These include 

residential and office buildings, water supply and drainage systems, public transports, energy 

supply, ICT (information and communication technology), education and health services (Yin, 

et al., 2015). Rural population migrated to the urban areas for more favourable access to 

living quantities, and this in turn also improved the regional social and economic prosperity of 

the city and created job opportunities (LeGates, et al., 2015). Due to the increasing 

population, cities are expected to evolve into urban agglomerations or megacities (inhabitants 

of more than 10 million) (Nijkamp, et al., 2013). It is believed that in this way, modern city is 

becoming a complex system, comprised of many units (physical and geographical structures, 

citizen, and ubiquitous social, economic and environmental aspects) which actively interact 

with each other (Lombardi, et al., 2012). 

 

This complex system, the modern city, which might look promising in some ways (higher 
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living quality, better education and job opportunities, etc.), is also facing new problems and 

challenges that emerged recently (Jenks, et al., 2009). Some problems, in the form of 

ecological, environmental and social issues, are caused by artificial factors, and examples are 

shown in table 2.1. 

 

Problem & Challenge Description and Example 

Air Pollution Currently cities account for 70% of global greenhouse gas emissions. This 

uncontrolled process leads to serious air quality deterioration in many cities. A 

research found that for all 18 megacities in the world, only 5 of them have ‘fair’ air 

quality while the other 13 have ‘poor’ air quality (Gurjar, et al., 2008). 

Water Pollution Water contamination can cause degradation of aquatic ecosystems or public health 

problem. Sometimes, poor decisions in selecting construction and industry sites can 

lead to water reservoir pollution. In Istanbul, Turkey, all of the 6 water reservoirs faced 

eutrophic issue due to this and clean water supply to all 10 million inhabitants in the 

city was seriously disrupted (Baykal, et al., 2000). 

Traffic Congestion A very common problem in both developing and developed countries. In 2011, traffic 

congestion in USA was so severe that urban Americans had to spend 5.5 billion more 

hours and purchase 2.9 billion extra fuel for the total congestion cost of $ 121 billion 

(Schrank, et al., 2012). 

Crime When urbanisation rate increases, so does crime (Krivo, et al., 1996). Japan is always 

viewed as a country of low crime rate. However, an increasing trend has been observed 

recently. Mean annual increase of assault and robbery rate between 1996 and 2006 

were 10.7% and 7.4%, much higher than other developed countries. The urbanisation 

process is considered as the leading factor (Halicioglu, et al., 2012). 

Table 2.1. Problems and challenges cities are facing due to artificial factors. 

 

These issues occur due to artificial factors and therefore can be relieved or tackled from 

government policies and sustainable development decisions (Jenks, et al., 2009). However 

there exist other problems which are more difficult to foresee, the climate and environment 

induced problems. As city becomes more complex (with regards to its spatial extent and 

physical configuration), it is more sensitive and vulnerable to natural hazards (Klein, et al., 

2003). Some common natural hazards threatening cities are shown in table 2.2. 

Natural Hazards Description and Example 

Flood Excessive rain fall and inefficient urban drainage system can cause this issue. In the 

UK, it is the most serious natural hazard, which has threatened 1/6 (about 5 million) 

properties. The flood also gave rise to severe economic losses, at the rate of £ 3.2 

billion in the year 2007 (Thorne, 2014). 
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Drought The contrary of flood, can directly affect freshwater resources, and further cause 

water shortage in cities. Drought is affecting cities globally, including some of the 

tropical countries such as Singapore. Between January and March, 2014, some part 

of Singapore city received less than 1 mm rain, resulting drinking water shortage for 

5.6 million residents in the city (Buurman, et al., 2016). 

Earthquake Earthquake can be already destructive by itself, and sometimes it can trigger other 

hazards such as Tsunami. In 2011, an earthquake stroke Tohoku region of Japan, 

followed by a tsunami which eventually submerged millions of properties in 

Fukushima Ken (Fujii, et al., 2011). Due to damage of Fukushima nuclear station, 

horrible nuclear pollution still exists today. 

Volcano Eruption This event is less frequent than the previous three, but can be equally devastating to 

modern cities. In 2010, the Eyjafjallajökul volcano in Iceland erupted, which was 

considered as a small eruption event. But the spreading volcanic ashes interrupted 

the major airline network in Europe. Thousands of flights were cancelled from, to, 

or within Europe, creating the highest level of air travel disruption since World War 

II (Gudmundsson, et al., 2010). 

Table 2.2. Natural hazards which can threaten cities. 

 

Being able to tackle these problems is essential for any modern city. In order to understand 

how these social, economic, or environment issues occur and affect city, different city models 

are developed and employed. They are mostly based on mathematical and computational 

approaches, and aim to analyse and simulate the dynamic evolution of modern cities (Egger, 

et al., 2006). There are various types of city models, with each focusing on a specific aspect. 

Some common types of city models are described and explained in table 2.3. 

Different Models Description and Explanation 

Population This type of model studies city population dynamics and aims to predict population 

change. A basic population growth equation, the current census data, and city growth 

scenario (how the city itself expands, does the city develop in a sustainable way or 

not, etc.) are essential for a good population model (Arnell, et al., 2011; Bettencourt, 

et al., 2007; Kc, et al., 2011; Lutz, et al., 2011). Population model can be applied at 

any city as long as necessary input data are available (such as census). But accurate 

prediction on population is difficult, since it relies on a good assumption of city 

growth scenario and model developed for one city might be not applicable for another 

one (Hoornweg, et al., 2016). 

Economy A typical urban economic model involves some input variables (for example, 

population, spatial structure of city, location of firms or household, etc.), a set of logic 

or relationships between them, and some output variables (Ueda, et al, 2013). Due to 

different application purposes, there can be different output variables that reflect 

urban economics, such as unemployment (Liu, et al., 2013), housing price (Guerrieri, 
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et al., 2013), government finance (Mesquita, et al., 2010), etc. Urban economic 

model is useful for suggesting fairer economic policies to local government (Deng, 

et al., 2010). However, this model is a branch of microeconomic model, and that 

means its result will not be very trustful when evaluating economy at macro-scope 

(Quigley, 2008). 

Pollution Urban pollution models are the numeric models which focus on the mathematic 

simulation of how a specific urban pollution material spreads (Gobiet, et al., 2000). 

They can be applied in air pollution (Berkowicz, 2000), noise pollution (Holt, et al., 

2007), and water pollution (Volk, et al., 2008), which have high impact of 

environmental degradation on public health and urban liveability (Wei, et al., 2014). 

Urban pollution model is useful in assessing long term urban environment change, 

but it must rely on accurate outputs from other models which describe physical 

structure of the city (3D building layout, topography, etc.) (Fiedler, et al., 2015). 

Natural Hazard The hazard models tackle the environment threats to the overall functionality and 

sustainability of urban areas, from almost unpredictable extreme climate and natural 

events. The typical hazards for example, are flooding (Prodanović, et al., 2009), 

extreme drought (Gober, et al., 2011), and earthquake (Carreño, et al., 2007). Hazard 

models focus on the simulation of possible damage to the urban system (buildings, 

street, etc.) and support decision making in urban pre-hazard fortification and post-

hazard reconstruction (Godshalk, 2003). However, like the pollution model, the 

physical structure of the city must be also given accurately in advance, in order to 

run any hazard model. 

Planning (Land Use) Urban land has different uses (residential, commercial, infrastructure, etc.) and being 

able to model urban land use change is essential to city planners, and resource 

managers (Rahimi, 2016). There are various methods available for modelling land 

use change. Common methods include machine learning (Samardžić, et al., 2016), 

deep learning (Varney, 2018), etc. They aim to understand the relationship between 

the input variables (land use driving forces, such as population density, slope, etc.) 

and output variables (land use change). Normally two different types of maps are 

needed: 1) land use maps at different time, and 2) maps of input variables at different 

time. Both machine learning and deep learning approaches are useful at predicting 

future land use change, but tuning parameters is difficult, and there can be a risk of 

over-fitting (Samardžić, et al., 2016; Varney, 2018). 

Behaviour This type of model aims to understand why and how, a specific behaviour such as 

crime (Malleson, et al., 2009), insurgency (Fonoberova, et al., 2018), or residential 

choice (Beneson, et al., 2004) occurs in a city. Many urban behaviour models use 

agent-based model as its backbone. The agent-based model is based on independent 

interactive units called agent (like resident in the city). Each agent can make 

decisions according to their own characteristics and can also interact with (and be 

affected by) other agents (Castle, et al., 2006). Agent-based models help to 

understand how individual behaviours create aggregating pattern in city, but models 

can be very sensitive to initial conditions and or small variations in interaction rules 

(Couclelis, 2002). 
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Sector This type of model focuses on functioning of a specific sector of city, for example, 

congestion in transport system (Jacyna, et al., 2014), failure of power grid (Wang, et 

al., 2011), etc. It helps us to understand why a system fails or how to improve its 

efficiency. But due to heterogeneous characteristics of different sectors within city, 

sector-based models are normally very specific. That means they do not have good 

transferability (model developed for one sector is almost not usable for another one). 

Table 2.3. Some common types of models applied to city. 

 

It can be seen here, due to the increasing complexity, modern cities are vulnerable to many 

problems and are facing different challenges. Different urban models are being developed and 

applied to understand city from different angles. As one essential part of the modern city, 

critical urban infrastructure plays a vital role, but it did not gain enough public awareness and 

attention until recently (Steele, et al., 2017). 

2.2 Critical Urban Infrastructures 

The term ‘critical urban infrastructures’ was first introduced by the US government in 1991, 

to refer to the infrastructures that are indispensable to the functioning of modern city 

(Murrary, et al., 2007). The reason for identifying of critical urban infrastructures is that they 

are so vital that their incapability, malfunction or destruction will have devastating impact on 

the sustainability, social and economic security of a country (D’Agostino, et al., 2014). For 

example, in the midnight of September 28, 2003, a country scale power outage stroke Italy. 

The entire country was left black in 12 hours, affecting 56 million people. More than 100 

trains were stranded and all flights from, to or within Italy were cancelled (Rosato, et al., 

2008). Damages to the societies are believed to be at least € 1.15 billion, which is about 0.1 

percent of Italy annual GDP (Schmidthaler, et al., 2016). Likewise, in the afternoon of August 

14, 2003, a serious blackout occurred in Northeastern and Midwestern of United States and 

Ontario province of Canada. More than 55 million people in the US and Canada were 

affected, with some areas spending two weeks to restore power supply (Bennet, et al., 2005). 

Moreover, this blackout also created significant chaos in other infrastructures. For example, in 

water supply system, pressure loss occurred due to pumps lacking power. Loss of pressure 

will further cause potential contamination in water supply (St-Pierre, et al., 2000). Four 

https://en.wikipedia.org/wiki/Euro_sign
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million customers in eight counties of the Detroit water system received ‘boil-water order’ for 

four days, because of this issue (Water World, 2003). The total economic loss of this blackout 

is estimated between 6 and 10 $ million (ELCON, 2004). 

 

These two examples are related to power systems, but should provide enough insight on how 

significant a critical urban infrastructure is. Despite heterogeneous configuration and 

functionalities of urban infrastructure systems in different countries, basic inventory of critical 

urban infrastructures is generally identified and agreed. They include telecommunications, 

electricity power systems, transportation, gas systems, water supply and waste water systems 

(Murray, et al., 2007). Critical urban infrastructures are complex and heterogeneous. The 

urban infrastructure models, just like other city models have introduced earlier, are developed 

to explain how the infrastructure systems work or how they fail on a simplified view. These 

modelling approaches will be discussed in the next section. 

 

2.3 Approaches of Modelling Urban Infrastructures 

Critical urban infrastructure encompasses a wide range of engineered systems (transport 

systems, cable-based electricity power systems, pipe-based water supply systems, etc.) and 

assets (electricity substations, water pumping stations, etc.). In order to understand the 

structure and functionality of such complex systems, different modelling approaches have 

been applied. Two common ones are raster-based model and space syntax. 

 

The raster-based approach is often used in modelling transport system, especially in travel-

cost or accessibility related analysis. Georeferenced vector data of the transport system (e.g. 

road network) is usually needed to generate the raster representation of the system. The 

connectivity and travel cost of the original system can be represented by the connectivity and 

attribute (e.g. travel cost) of grid cells in the raster layer (figure 2.1). For example, Delamater 

et al (2012) employed this approach to analyse the travel cost for residents to access to 

different health care centres in Michigan. The raster-based approach is relatively simple to 
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implement, and is efficient when coupling with other raster-based land simulation (Fuglsang, 

et al., 2011). However, due to its simplicity, this approach itself is not capable of performing 

more complex analysis on the infrastructure system (resilience, interdependency, e.g.) without 

coupling with other modelling approaches (such as a graph-based approach) (Schintler, et al., 

2007). Another issue with this approach is that, it is difficult to decide the optimal spatial 

resolution for the raster layer. A coarse spatial resolution is likely to cause unwanted and 

incorrect connectivity on the transport system, while computational burden of the model can 

increase tremendously if finer spatial resolution is employed (Delamater, et al., 2012). 

 

Figure 2.1. Example of converting of vector road data to raster cells (Delameter, et al., 2012).  

 

Space syntax (Hillier, et al., 1989) is a set of theories for quantitative analysis on spatial 

network instances. It uses an axial map (figure 2.2) to represent the structure and connectivity 

of the spatial network (Patterson, 2016). For a network instance, one or more network 

segments are converted to an axis (long-straight line), based on continuity (e.g. based on 

names of avenues and boulevards, or another qualitative criterion in the street network). The 

connectivity between different axes are measured based their topological connectivity in 

space. Space syntax also provides other measures, such as integration value (average shortest 

distance of an axis to all the other axes in the axial map based on connectivity, similar to the 

betweenness centrality in graph model), to predict traffic or resource flows on the spatial 

network (McCahill, et al., 2008). Space syntax focuses on the representation of connectivity 
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of space, and has been extensively applied in predicting traffic flow (e.g. pedestrians, 

vehicles, and bicycles) and planning new streets to accommodate increasing traffic, and it is 

an efficient modelling approach to be coupled with other traffic models (Duan, et al., 2008; 

Zheng et al., 2009). However, a major issue is that it over-simplifies the structure of the 

network (combine multiple segments into one axis) (Patterson, 2016) and thus can lose some 

connectivity representations in the axial map (e.g. in a street network, a large avenue made of 

several street segments becomes a single axis, and that means the axial map is unable to 

represent the connectivity among these street segments inside the axis). 

 

 

Figure 2.2. Example of converting an urban street network to an axial map  

(Source: https://transportgeography.org/?page_id=6038). 

 

Considering the limitation of raster data model and space syntax (in the context of this PhD 

research), they are not the optimal modelling approaches. As such, it is argued that the classic 

network/graph model is the most appropriate modelling approach. In spite of the 

heterogeneity with regards to the physical and engineering configurations and functionalities 

of different critical urban infrastructures, most of them exhibit a network structure, which 

allows for the transmission or distribution of material or services (Dunn, et al., 2013). The 

network theory, a rigorous mathematical tool, is applied to analyse urban infrastructures 

(Holmgren, et al., 2006; Lhomme, et al., 2013) and support infrastructure design and 
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management (Wilkinson, et al., 2012). 

 

In network theory, a network concerns itself as the representation of discrete objects (nodes) 

and relationships (edges) connecting these objects. Mathematically, a network G can be 

represented as follows: 

𝐺 = (𝑉, 𝐸, 𝑓) 

 

The network G is an ordered triplet of V, E, f, where V is the set of nodes, E is the set of 

edges, and f is a function that maps each element in E to an unordered pair of two nodes in V. 

 

Converting a real-world urban infrastructure to a network model is normally straightforward 

(Dunn, et al., 2013). The components of an infrastructure system, which generate, consume 

material or resources (electricity, water, telecom signals, etc.) are represented as nodes 

(electricity substations, water reservoirs, telecom base station, infrastructure service 

consumers, etc.). Components that simply allows material or resources to pass through are 

also represented as nodes (water pumping stations, etc.). Then network edges are generated if 

there exist flows which allow exchange of material or resources on the corresponding nodes. 

Depending on the type of infrastructure systems, network edges correspond to actual physical 

components (in electricity power systems, the cables for example). 

 

In addition to the basic definition, a network model also contains useful properties which 

allow for quantified analysis on the infrastructure system. The most common properties are 

explained in table 2.4. 

 

Property Definition and Application in Infrastructure Research 

Direction (edge) A network can be undirected or directed, depending on whether there should be 

orientation (direction) on edges. It means whether flow is allowed in both (or only one) 

directions for an edge. In a network, it is also possible that some edges are directed and 

others are not (for example, there are one-way and two-way roads in a road network). 

Any network flow-based analysis, such as traffic flow optimization in transport 

network (Chiu, et al., 2007), will be based on this important property. 
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Degree (node) A network is represented as discrete objects with connection among them. Degree 

quantifies the connection level of each node. For each node, it measures number of 

connections to other nodes. This property is used to identify important nodes (those 

with high degrees), and is useful in infrastructure vulnerability analysis (Apostolakis, 

et al., 2005), and infrastructure fortification (Matisziw, et al., 2009), for example. 

Capacity (edge/node) 

Demand (node) 

Capacity means the maximum amount of material or resources that is allowed to flow 

through a node or an edge. Some nodes in the infrastructure network model are called 

demand nodes. They represent consumers which have specific demand of 

infrastructure material or resources. The capacity and demand properties are important 

in infrastructure planning and supply / demand analysis (Lucas, et al., 2010).  

Weight (edge) Cost can occur when material or resources travels through infrastructure network. The 

cost can be for example, travel time, electricity voltage drop or supply water loss 

(Brandes, et al., 2005). A weight (a numeric value) is associated with each edge to 

indicate this cost. Weight is an important property in optimizing infrastructure flow to 

minimize infrastructure loss (Chiu, et al., 2007), or in transport route planning (Delling, 

et al., 2009), etc. 

Path (nodal pair) Path means a legal travel route from one node to another, based on the topological 

connectivity of the network. When weight is introduced, shortest path can be 

calculated, which indicates the path that corresponds to the least total weight. Path and 

shortest path are important properties in transport route planning (Delling, et al., 2009) 

and infrastructure planning (Ji, et al., 2007), etc. 

Table 2.4. Common properties of a network model. 

 

Network model introduced above is simple and straightforward, but it is an essential tool 

which allows to computationally represent complex and large-scale infrastructure systems. 

For example, it makes it possible to computationally represent national scale electricity 

transmission networks of the whole United Kingdom, which allows for further analysis such 

as identifying vulnerable nodes (transmission substations) and simulating electricity 

cascading failure at national scale (Barr, et al., 2013). Yazdani et al (2011) modelled the water 

distribution network (WDN) in the four cities of the US (East-Mersea, Colorado Springs, 

Kumasi, and Richmond), to study the network vulnerability, the efficiency of demand-supply 

structure, as well as topology optimization (e.g. where should we remove or add a pipe in the 

water distribution network). Jacyna et al (2014) developed a computational network model to 

represent public transport network in the entire of Poland in which transport infrastructures 

(road, rail, etc.), demand of public transports is characterized. This allows for modelling 

emission of exhaust gas due to travel demand of within Poland. 



16 

 

 

The network/graph model is efficient in representing not only the structure and functionality 

of infrastructure systems, but also the relationships between urban space (such as building) 

and infrastructure (such as streets). For example, Domingo et al (2019) proposed a graph 

approach for structural layout analysis on buildings, parcels (neighbourhoods), and roads. 

They defined roads as the nodes in a graph, and a parcel (modelled as a node) is connected to 

a road via a graph edge, if the parcel is externally connected to a road. A building (also 

modelled as a node) can connect to a road via a graph edge, if the parcel which contains the 

building, connects to a road. Similarly, Cavallaro et al (2014) employed graph to understand 

building-street relationship, where streets are modelled as graph edge instead of node, as it 

helps to retain street geometry to evaluate efficiency of goods and serviced delivered to the 

buildings via the street network. 

 

To summarize, these computational network/graph approaches allow representing large and 

complex infrastructure network to characterize its topological connectivity, network metric as 

well as its own dynamics. However, it is also essential to study the urban infrastructures with 

hazards and the interactions between them (Murray, et al., 2007). This will help us better 

understand why infrastructures are vulnerable to hazards and how to facilitate more stable 

infrastructures for our cities. 

 

2.4 Research Focus on Urban Infrastructure Networks 

The network theory provides us a convenient tool to convert the complex infrastructure 

systems to network models consisting of nodes and edges. This further allows us to study 

infrastructure resilience and dependencies / interdependencies (Bozza, et al., 2017), which are 

identified as the recent research focus on critical urban infrastructures (Ouyang, et al., 2012; 

Mensah, et al., 2015; Hokstad, et al., 2012; Ouyang, et al., 2014). 
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2.4.1 Resilience of Individual Infrastructure Sectors 

Resilience is a historical term and dates back to the 19th century. It has been used in many 

research domains, such as medicine, psychology, and ecology with different definitions 

(Bozza, et al., 2017). For urban infrastructures, a common definition of resilience is “the joint 

ability to resist (prevent and withstand) any possible hazards and absorb initial damage, and 

then to recover to normal operation” (Ouyang, et al., 2012). In other words, resilience is 

related to two aspects: 1) when hazards occur, how robust the infrastructure system is to still 

maintain its operation, and 2) after hazards have inflicted damage, the ability for infrastructure 

system to “bounce back” to its normal operation state. 

 

As introduced earlier, disruption of critical urban infrastructure can be devastating to the 

modern cities. Modelling resilience of urban infrastructures facilitates a better understanding 

in how infrastructures interact with hazards, and that is essential for infrastructure planning, 

management and fortification (Franchin, et al., 2015). Recently, a growing interest has been 

triggered with regards to modelling resilience in individual infrastructure sectors, each with 

different ways of quantifying resilience. A selection of related studies is introduced in table 

2.5. 

 

Authors Resilience Model of Urban Infrastructures 

Murray, 2006 Murray focused on transportation networks and proposed using four metrics to 

collaborative evaluate the resilience of transport networks. These four metrics are: 

Adaptability (e.g. vehicle switching to lanes not generally used for traffic), Safety (e.g. 

number of traffic incidents occur along a given road), Mobility (e.g. traffic capacity of a 

given road), and Recovery (e.g. amount of time required to alleviate congestion). This 

approach is related to integration, interpretation and comparison between heterogeneous 

indicators. Thus, it is considered to be methodological, and not effective to be 

implemented in real practice. 

Berche, et al., 

2009 

Resilience of public transport networks (PTN) was analysed under different attack 

scenarios. PTNs were mapped as network model, and network connectivity was used to 

define random attack scenarios (e.g. remove specific nodes). Resilience is evaluated as a 

proxy of the network characteristics (e.g. mean shortest path length). It is an easy approach 

to be implemented, but authors only consider connectivity of network, but not the 

vulnerability of the actual physical component, which is essential in evaluating the 

performance of transport network under catastrophic events. 
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Freckleton, et al., 

2012 

A method was developed to assess and quantify resilience using fuzzy inference system 

(FIS). The authors developed a framework which introduced two concepts: the resilience 

cycle (Normalcy-Breakdown-Annealing-Recovery) and system performance (resilience). 

Resilience is collaboratively assessed by multiple fuzzy indicators, such as mobility index, 

personal transport cost index, goods and material access index, etc. They proposed a 

methodology which enables integration of heterogeneous components contributing to 

resilience. However, its implementation in real practice is computationally expensive due 

to great number of variables to be calculated. 

Dorbritz, 2011 Dorbritz focused on modelling the resilience of large-scale rail transport networks, in 

different disaster scenarios. Nodes in transport network are removed from topological and 

operational perspective to simulate disasters. Resilience is measured by four dimensions: 

robustness (disaster withstand ability), resourcefulness (capacity to mobilize resource), 

redundancy (ability of alternative resource), and rapidity (capacity to contain loss in a 

timely manner). The approach is easily implemented in R packages. The main weakness 

of this approach is that resilience is only assessed based on topological characteristics, and 

there is no consideration of network dynamics. 

Leu, et al., 2010 The authors proposed an approach for quantifying resilience of transport networks using 

network theory. Using GPS data, they modelled a network consisting of three interacting 

layers: the physical structure, the service function, and the cognitive properties (citizen’s 

cognition). This approach can be further generalized to any ground transport system as 

long as GPS data is available. However, this approach does not apply agent-based models, 

and that means human behaviours are not realistically represented. 

Davis, 2014 Davis understood the resilience of a water distribution system as its ability to provide post-

earthquake services to emergency operations such as hospitals, emergency operation 

centres, and evacuation centres, so that no critical disruption of these emergency 

operations will occur. It is a novel approach which considers infrastructure resilience 

together with other critical components of the city. However, only service time lost is used 

as a matric to assess resilience of water distribution system, without the consideration of 

the damage on the actual physical system. 

Mensah, et al., 

2015 

Authors proposed a framework for quantifying resilience of electric power grids. 

Electricity power grids are modelled as minimum spanning trees (MST). Resilience is 

assessed by the fraction of customers served or not served by electricity power after 

hurricane occurs. This approach is computationally cheap due to its simplicity. However, 

the topology of network (modelled as MST) might be oversimplified, without considering 

the redundancy design in power grids. 

Cavallaro, et al., 

2014 

A hybrid social-physical network (HSPN) is proposed to access infrastructure service 

resilience to seismic catastrophe within urban space. The network consists of two types of 

nodes: service nodes (schools, shops, energy distribution station, hospitals, etc.) and social 

nodes (residential buildings). Nodes are connected using the urban street network. When 

assessing resilience with HSPN, the probability of the HSPN being disrupted is acquired 

by assessing the fragility of service nodes representing infrastructure. This is approach is 

easy to implement, although it over-simplifies how infrastructure service is connected 

from infrastructure asset to buildings. 

Table 2.5. A selection of related research of infrastructure resilience models. 
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From table 2.5, customized approaches are applied in local infrastructure sectors to quantify 

infrastructure resilience. While it is important to understand how resilient an infrastructure 

sector is, it is equally important to understand how resilient multiple urban infrastructures are, 

when seen as an integrated system within city. This is where infrastructure dependencies and 

interdependencies play a key role. 

 

2.4.2 Dependencies and Interdependencies 

Critical urban infrastructure sectors are not isolated, but instead highly connected (Rinaldi, et 

al., 2001). The connections between different urban infrastructures sectors, are termed 

“dependencies” and “interdependencies”. According to Rinaldi, et al (2001): 

 

A dependency refers to “a linkage or connection between two infrastructure assets, by 

which the state of one infrastructure asset influences or is reliant on the state of the other”. 

 

An interdependency refers to “bi-directional relationship infrastructure assets, in which 

the state of each asset influences or is reliant on the state of the other”. 

 

As an example of dependency, water pumping station relies on electricity and thus is 

dependent on electricity substation (from electricity power network). As an example of 

interdependency, water treatment plant requires communication of its SCADA system 

(supervisory control and data acquisition) and in turn, it provides water for SCADA system to 

cool down. 

 

It is considered that dependencies and interdependencies make critical urban infrastructures 

more vulnerable, as disruption can easily cascade from one infrastructure sectors to another 

(Ouyang, et al., 2014). For example, in August, 2005, the hurricane Katrina stroke southern 

Louisiana, USA. The supply of crude oil and refine petroleum products was interrupted due to 

loss of electricity power at three pumping stations at three major oil transmission lines. As a 
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result, 160 million litres per day of the gasoline production was lost, accounting for 10 

percent of the US supply (O’Rourke, 2007). 

 

Thus, modelling dependencies and interdependences between critical urban infrastructures 

has become a key research field (Min, et al., 2007). For the existing infrastructure 

dependencies and interdependencies models, it is considered that they can be broadly 

categorized into three major groups (Ouyang, et al., 2014), and they are summarized and 

explained in table 2.6. 

 

Type Description 

Empirical Empirical approaches analyse dependencies and interdependencies according to 

historical accident, disaster data and expert experience. Study with this type of approach 

aims to identify frequent and significant failure patterns, to inform decision making and 

empirically based analysis (Laefer, et al., 2016). For example, McDaniel et al (2007) 

proposed a framework for characterizing infrastructure failure interdependencies (IFI). 

Data of three kinds of events were used (2003 North America Blackout, 1998 Quebec 

Ice Storm, and 2004 Florida Hurricanes). IFIs are characterized by the sectors affected, 

and consequences for society. IFIs in different events were compared, which in the end 

serves as a basis for considering priorities of risk mitigation. Clearly the empirical 

approach is very subject to the data availability. That means this approach is not feasible 

if no hazard or infrastructure failure data is available for an area. Also, this approach is 

more at the system-level, without understanding interdependencies at component-level 

(Guikema, 2009). 

Agent Based Agent based approaches aims to understand interdependent infrastructures as CAS - 

complex adaptive system (in which a perfect understanding of individual parts does not 

covert to perfect understanding of the system behaviour) (Amin, 2000). This approach 

assumes that complex system behaviours emerge from many individual relatively simple 

interactions of autonomous agents. Most components of critical infrastructures can be 

viewed as agents (Ouyang, 2014). Using this approach, Idaho laboratory (Dudenhoeffer, 

et al., 2006) developed the agent-based CIMS (critical infrastructure model system), to 

simulate and visualize cascading effects within different infrastructure sectors (energy, 

telecom, transport, water). Agent-based approach is flexible with other modelling 

techniques to provide more comprehensive analysis. However, its main drawback is that 

quality of simulation highly depends on modeller’s assumption of agent behaviour and 

it is difficult to justify theoretically (Ouyang, 2014). 

Network Based This approach applies network theory to model the interdependent infrastructures as 

Networks of Networks (D’Agostino, et al., 2014). That is to say, any single infrastructure 

sector is modelled as network model, with nodes and edges. An interdependency is 

modelled as inter-edge connecting two nodes from two network models. Network based 
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approach aims to understand performance response of interdependent infrastructures 

under different hazards. Many metrics are used to assess the performance of each 

network, such as number of failed components, connectivity loss, and cluster related 

metrics, (Osorio, et al., 2007). Flow can also be introduced in this approach to account 

for service and flow delivered by critical infrastructures, such as the model developed 

by Wallace et al (2001). Their model enables mathematical representation of 

interdependencies and allows users to assess post-disruption impact and restoration 

process. Generally, the network-based approach can identify critical infrastructure 

components, providing more realistic description on operation mechanism of 

infrastructure. However, it can be very computationally expensive, if operation 

mechanisms are modelled in detail (Ibanez, et al., 2011). 

Table 2.6. Major types of approaches of modelling interdependent infrastructures. 

 

From table 2.6, it is found that different approaches have their own advantages and 

drawbacks. Depending on the actual modelling requirement, data availability, and 

computation capability, an appropriate one can be chosen for specific problems. 

 

2.5 Geospatial Urban Infrastructure Models 

Critical urban infrastructures, as seen earlier, are of grave importance to modern cities and are 

attracting increasing attention with regards to its resilience and interdependencies. However, it 

is not enough to regard critical urban infrastructure as “self-contained” systems, without 

considering its spatial relationships with city (Shepard, 2011). They are “embedded into” the 

spatial domain of the city and therefore spatially interact with the city. For example, at 

infrastructure planning or fortification stage, decision must be made to use urban space 

efficiently while causing minimum disruption on the existing urban facilities (Short, et al., 

2005). Another example is related to hazards and infrastructure failure. When natural hazards 

(such as floods) occur, they can cause failure on certain infrastructure system (such as 

electricity power supply). As a result, a number of consumers (such as individual buildings) 

will be disrupted, and spatially an infrastructure disruption area is generated (Deshmukh, et 

al., 2011). 

 

Therefore, it is imperative to develop geospatial modelling platform, by which crucial 
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information of urban infrastructure systems can be collectively gathered, analysed, and 

published to those, who need such data for their specific applications (Coutinho-Rodrigues, et 

al., 2011; Su, et al., 2011; Zygiaris, et al., 2013). As such, geospatial urban models started to 

emerge in the recent years (Hall, et al., 2016). The geospatial approach allows for spatial data 

exchange and interoperability, further analytical, simulation and visualization purposes 

(Rautenbach, et al., 2013). A number of large research initiatives have looked to develop a 

suite of infrastructure analysis and modelling tools where geospatial data and location of 

infrastructure assets and network play a key role (Barr, et al., 2013), such as the US National 

Council on sustainable critical infrastructure systems (National Research Council, 2014), the 

Dutch programmes on next generation infrastructure and knowledge for climate (Dutch 

Ministry of Infrastructure and Environment, 2014), Australia critical infrastructure protection 

and modelling analysis programme (National Security and Resilience Policy Division, 2009) 

and the UK Infrastructure Transitions Research Consortium (Barr, et al., 2013). Within such 

initiatives, it was recognised that it is a key requirement for a geospatial urban infrastructure 

modelling platform to have the ability to collect, integrate and manage a wide range of 

different infrastructure data at geospatial perspective. However, three major challenges exist 

in this field, and are discussed in the following sub-sections. 

 

2.5.1 Geospatial Infrastructure Ontology Development 

Geospatial infrastructure data can come from diverse sources, because different infrastructure 

systems are generally owned and managed by different departments, such as utility 

companies, and governments. This means data (from multiple sources) can have poor 

interoperability, because infrastructure data of one company can differ from that of another 

company, not in what is encoded but also how it is encoded in their data platforms (Fu, et al., 

2008). For example, with regards to road engineering, some governments use the term 

‘median strip’ and others use the term ‘central reservation’. They are talking about the same 

thing, which means ‘the reserved area on the road used to separate opposing traffic’. When 

there are more and more data sources, the problem of data interoperability can become more 
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apparent. That makes it very difficult to exchange and integrate information from different 

data platforms. 

 

A typical solution is to have a ‘common language’ which has a carefully designed vocabulary 

and detailed meaning of each word is given. This is very much like the situation when people 

speaking different native languages can still communicate with each other, because everybody 

also knows a common language, such as English. 

 

This ‘common language’ in this sense is the ontology. According to Gruber, an ontology is “an 

explicit specification of conceptualization” (Gruber, 1993). It is a knowledge of a specific 

domain, about what entities exist in that domain and their relationships with each other. It is a 

data model, but in a high level and in a more generalized way, which aims to capture the most 

important information within a domain. A well-designed ontology should explicitly define 

semantics on the entities and their relationships. In this way, the ontology serves as a common 

language to both relate and distinguish entities between different data platforms, and thus 

supports knowledge and information exchange (Katsumi, et al., 2018). 

 

Ontology is domain-specific, that is very much related to what we want to do with the data, 

and what information we need. When developing a geospatial urban infrastructure modelling 

platform, it is considered the topological connectivity, spatial information and attributes are 

the most vital information that must be included (Barr, et al., 2016). The topological 

connectivity allows us to model the complex urban infrastructure system using network 

model. The spatial information allows us to perform necessary spatial query on the urban 

infrastructure. The attributes (for example, the capacity of an electricity substation, or the 

resistance of an electricity cable, etc.) allows us to run basic simulation on the urban 

infrastructures. 

 

When dealing with urban infrastructure data in the geospatial perspective, the spatial scale or 

the ‘granularity’ of the data is something that must be considered, and this is essential in 

developing an ontology. For example, at electric engineer’s perspective, an electricity 
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substation (in the distribution level) generally consists of switches, protection and control 

equipment and transformers (Larkevi, et al., 1995). However, when developing ontology for 

modelling geospatial infrastructure networks, it is unnecessary to further break an electricity 

substation into these four parts. Instead, it is more appropriate to treat an electricity substation 

simply as an electricity asset, which is enough to model the electricity infrastructure as 

geospatial network instances (Barr, et al., 2013). 

 

Research on developing ontologies of urban infrastructure has attracted increasing attention in 

the recent years (Howell, et al., 2018). Industrial and academic experts have proposed many 

common infrastructure / urban data models, such as Utility Content Data Standards (Facilities 

Working Group, 2000), Utility and Pipeline Data Model (ESRI, 2015), IFC Utility Model 

(Liebich, et al., 2012), Utility Network ADE (Becker, et al., 2012), INSPIRE data 

specification on utility and transport network (INSPIRE, 2013), Towntology (Berdier, 2007), 

KM4City Model (Bellini, et al., 2014), Utility Knowledge Ontology (Xu, et al., 2018), OTN 

(Lorenz, et al., 2005), and iCity Ontology (Katsumi, et al., 2017). A comparison of these data 

models is shown in table 2.7. 

 

Name Description 

UCDS A utility data standard proposed by the US government, to support large-scale, intra-city 

applications such as engineering and life cycle maintenance of utility systems. It covers 

major utility infrastructure such as electricity, water supply, waste water, gas. However, it is 

rather shallow in representing semantic relationships, also it does not mention topology. It 

only focuses on utility and no transport infrastructure. 

UPDM A geodatabase data model template developed by ESRI, for operators of pipe networks in 

the gas and hazardous liquids industries. It represents spatial information and topological 

connectivity. However, it is shallow in representing attributes. It is rather a specific data 

schema for geodatabase, rather than a generalized data model. Also, it does not include 

transport infrastructure. 

IFC Utility A data model compatible to the IFC building model. It focuses on representing utility 

networks within buildings, which means the ‘granularity’ is too fine for us. That also means 

this model does not care about transport infrastructure. 

Utility Network 

ADE 

A network extension for the CityGML, which is a 3D city data model. The utility network 

ADE model allows to represent 3D utility components and their topological connectivity. 

However, it is shallow in representing attributes. It is more like a specific data format, rather 

than a more generalized knowledge. 
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INSPIRE Proposed by European Commission, in the INSPIRE Knowledge Base project. It is a high 

level and generalized model which covers both utility and transport infrastructures. 

Topological connectivity and spatial information are represented, although the model is not 

rich in representing semantic relationships and attributes. 

Towntology An ontology developed by two French laboratories to clarify and organise terminology used 

by French urban planners. It focuses on urban road network and urban mobility. The 

ontology is rich in representing semantics about component of road network, but it is only 

at a geospatial perspective. There is no inclusion of topology or attributes, and the 

Towntology does not deal with utility infrastructure. 

KM4City “Knowledge Model for city” is an ontology developed for smart city, which covers domains 

of weather, sensors, services, transport, event, locations, etc. It does mention the transport, 

but it focuses on the mobility rather than the transport infrastructure. There is also no 

inclusion of utility infrastructure. 

Utility Know-

ledge Ontology 

It is an ontology approach for utility knowledge exchange representation. A high-level data 

model for utility networks. It is rich in defining utility entities, their semantic relationships. 

Spatial information is also included. Although it is rather shallow in representing the 

topological connectivity and attributes. Transport infrastructures are not considered. 

OTN Ontology for transport network, as part of the Reasoning on the Web with 

Rules and Semantics (REWERSE) project. A high-level data model for transport network, 

with rich representation of connectivity and semantic relationships. However, it is not rich 

in attributes and spatial information, and there is no inclusion of utility infrastructure. 

iCity iCity is an ontology under development as a part of urban system. It focuses on the transport 

system, and is rich in representing its entities, semantic relationships and topological 

connectivity. It is also rich in representing dynamic transport flow. Topological connectivity 

is also included. However, iCity is not rich spatial information (relationships) and attributes, 

and does not model the utility infrastructure. 

Table 2.7. Comparison of related ontologies and models with regards to urban infrastructures. 

 

It can be seen that, it is difficult for a data model/ontology to both include utility and transport 

infrastructures (except for INSPIRE), and it is also difficult for a data model/ontology to be 

rich in topological connectivity, attributes, and spatial information. Moreover, at city scale, 

the buildings are regarded as consumers of infrastructure services and material, and it is 

crucial to know how buildings are connected to infrastructure networks. Therefore, building is 

an indispensable part of an urban infrastructure ontology (at this scale). However, there is no 

such ontology developed in this context until now. Finally, as introduced earlier, different 

infrastructure systems have dependencies and interdependencies, and this is something that 

must be taken into account. There do exists ontologies that represent infrastructure 

dependencies and interdependencies (McNally, et al., 2007; Sicilia, et al., 2009), but they only 
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focus on dependencies / interdependencies themselves, without integrating the actual 

representations of urban infrastructure systems. All of these call for the development of an 

integrated urban infrastructure ontology, that is rich in topological connectivity, spatial 

information, attributes, and it should present dependencies, interdependencies and the 

relationships between infrastructures and buildings. 

 

2.5.2 Geospatial Infrastructure Data Inference 

A well-designed ontology is essential when collecting and integrating infrastructure data from 

multiple data sources. However, it is under the assumption that data is present and collectable, 

which in many cases is not true. Companies and governments which own and manage the 

geospatial infrastructure data, often forbid public uses of their data due to confidential issues 

(Bon, 2017). It is also possible that some of them even do not have their data in the geospatial 

format (Fu, et al., 2008). Thus, there is an urgent need for approaches that can infer, at very 

fine spatial scales, plausible infrastructure networks from infrastructure assets to the buildings 

they service. 

 

Heuristically generating spatial network data is a complex problem, as spatial constraint is 

normally needed to indicate at which location spatial network should be (or should not be) 

generated (Heijnen, et al., 2014). A common spatial constraint is the space syntax (as 

introduced in section 2.3). For example, using measures (e.g. integration value, accessibility) 

from space syntax, it is possible to predict traffic flows and possible congestions on the urban 

road network (Duan, et al., 2008), and identify possible locations for constructing new roads 

on the existing road network to accommodate increasing traffic demand (Zheng, et al., 2009). 

However, the space-syntax based approach is more like a network expanding approach, rather 

than a network generation approach, which is not useful if network layout is completed 

unknown (this is the worst case in real scenarios, but it is possible). Therefore, observations 

are made on the generative methods for network data inference, and two most common 

methods are agent-based models and fractal geometry models. 
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Agent-based model (ABM) has been introduced in section 2.1, table 2.3 (in the Behaviour 

Model), but it is also an efficient tool to generate (design) infrastructure system layout. An 

agent is mobile and can interact with the external environment, it makes its own decision to 

achieve a required aim. For example, when designing sewer network layout, the agents 

defined by Ulrich et al (2010) operate on different landscape maps (e.g. digital terrain model, 

land use map), and agents prefer to move to lower positions or places close to rivers. The 

trajectories of the agents (act as sewer planners) can suggest plausible layout of sewer pipes. 

Likewise, Adamatzky et al (2016) employed ABM to simulate the evolution of French 

motorway network, and this is done by defining agents as small bugs for transporting food 

among different French major cities. ABM method simulates the way the human beings 

design network, which is its main strength. However, a major issue is that generation result 

highly depends on modeller’s assumption on agent’s behaviour, and such assumption is 

difficult to be justified theoretically (Ouyang, 2014) (i.e. setting up and tuning model 

parameters can be difficult, and there can be a risk of over-fitting). 

 

Fractal geometry methods employ the concept of fractals, which are geometric shapes that are 

self-similar over a wide range of scales (Ghosh, et al., 2006). Fractal tree is a class of fractal 

that can be used to represent the dendritic geometry structure of urban infrastructure networks  

(Möderl, et al., 2009). Fractal tree-based method has been applied in designing or generating 

infrastructure network layout for different sectors such as sewer (Jeffers, 2017), water supply 

(Möderl, et al., 2011), and electricity distribution (Barakou, et al., 2015). However, this 

approach suffers from the similar issue as the ABM. Spatial resolution (more preciously 

speaking, the Strahler degree) must be manually tuned to control how many branches should 

exist in the synthetic network (Jeffers, 2017). Another problem is that, fractal tree methods 

lead to non-loop network structure, and thus cannot generate redundant network structure 

(Mensah, et al., 2015). 

 

As is seen here, space syntax, ABM, and fractal geometry methods still have their limitations 

for generating infrastructure network layout. Besides they often ignore the spatial urban 

configuration (e.g. land use, building location, road layout, etc.). As pointed by Bon (2017) 



28 

 

and Cavarallo et al (2014), the layout of infrastructure network should be related to the 

building and streets. Moreover, infrastructure network layout should be related to building 

layout types (detached buildings, terraces, etc.), as this is supposed to affect how the 

infrastructure network should be constructed (Larkevi, 1995). Another thing unclear is the 

scalability and generalization of the network generation algorithm. A good algorithm should 

have a high level of generalization and does not over-fit to the area or city where it is 

developed and applied (Mao, et al., 2013). However, for all the algorithms introduced so far, 

each of them only focuses on a specific area, without considerations of scalability or 

generalization. 

 

2.5.3 Database System Implementation 

Once good quality geospatial data are collected or generated, the next step is to find a 

appropriate database system to accommodate them. Urban infrastructure network data have 

complex topology, attributes and geometry (Barr, et al., 2016). An efficient data platform is 

essential for managing such complex network data. In many countries, individual operators in 

specific infrastructure sectors (Woodhouse, 2014), as well as several large research initiatives 

(Barr, et al., 2016), have realised the importance of developing their data and information 

management platforms for better infrastructure planning and decision support. 

 

At its core, such platforms require appropriate database systems that can handle the wide 

range of disparate data and relationships required for infrastructure systems modelling and 

analysis (Barr et al, 2016). Traditionally a spatial relational approach is used, such as the 

Oracle Spatial Network Extension (British Telecom, 2012; Fikjez and Řezanina, 2016) or 

specifically developed schema for representing dependence/interdependence between 

infrastructure networks (e.g., the NISMOD-DB approach developed by the Infrastructure 

Transitions Research Consortium (Barr et al, 2013)). 

 

The spatial relational approach is naturally strong in dealing with queries involving the 
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attributes matching (such as finding all the assets with specific attribute values), and spatial 

calculations (such as finding all assets within a certain distance). However, it is somewhat 

limited in analysing large complex network topologies, such as intra-city scale electricity 

distribution networks (Ji, et al., 2018).  

 

Recently, NoSQL graph database have been proposed as a general approach for the more 

efficient storage and retrieval of network data (Have, et al., 2013).The most popular graph 

database, Neo4j has been proven for more efficient management of network data, including 

social network (Cattuto, et al., 2013), biology network (Yoon, et al., 2017), and knowledge 

graph (Lin, et al., 2017). However, there is no related research in applying NoSQL graph 

database (such as Neo4j) in the management geospatial urban infrastructure networks, and 

evaluating the performance, which is considered as a research gap, and an interesting topic to 

explore. 

 

2.6 Summary 

In this chapter, a review was done on the recent fast urbanizations of the modern cities and the 

different challenges they are facing. The city is a complex system, which has different 

components interacting with each other. Critical urban infrastructure is an indispensable 

component of the city and has great impact on the functioning of the city. Little malfunction 

and disruption on the urban infrastructures can end up into severe urban disaster, which is 

why increasing attention is being attract to understand the resilience and interdependencies of 

critical infrastructures. Accessing and managing highly granularity geospatial data on 

infrastructure network, is essential for different urban applications as well as infrastructure 

planning, modelling, simulation and fortification. Accordingly, there are still several research 

gaps that need to be filled in: 

 

A geospatial ontology must be developed with regards to the geospatial urban 

infrastructure data. The ontology must be rich in topological connectivity, spatial 
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information, and attributes. It should also include dependencies and interdependencies and 

the relationships between infrastructure and buildings. 

 

A generic heuristic algorithm must be developed in order to infer spatial layout of the 

urban infrastructure network, when accessing actual data is not possible. The algorithm 

should be responsible for generating plausible synthetic network layout spatially, and be 

scalable (regardless of city size). 

 

An appropriate database system must be developed to accommodate the complex 

geospatial urban infrastructure network data. Application of NoSQL graph database 

(compared with traditional RDMS) must be further explored. In this context, database 

benchmarking tests should be designed test database performance in different scenarios 

(different network data, different queries, etc.). Finally, based on benchmarking test, a 

most appropriate database architecture will be chosen as the generic database solution. 
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Chapter 3. An Ontology for Modelling Urban Infrastructure Networks 

3.1 Introduction 

In the last chapter, current challenges with regards to accessing and managing fine granularity 

geospatial infrastructure network data are identified, and one of them is the data heterogeneity 

issue. To address this issue, an ontology must be developed, which serves as a “common 

language” to allow data integration from different data sources, platforms or databases 

(Gruber, et al., 1993). This chapter aims to develop an infrastructure network ontology which 

fits this purpose. 

 

To develop an ontology, as suggested by Uschold and King (1995), and Uschold and 

Gruninger (1996), the key step is to identify the purpose and scope of this ontology (For what 

kind of applications it is used? What information to include and what not?). After that, it will 

be much clearer about what knowledge (entities, relationships) should be represented and how 

to represent them. 

 

Modern city consists of heterogeneous critical infrastructure networks (utility, transport) and 

the buildings they serve. Understanding the spatial connectivity between the infrastructure 

assets and buildings is the key to analyse and model flows within city (Ji, 2019). This is 

identified as the purpose of this ontology, which basically outlines the necessary knowledge to 

be represented. First, “connectivity” must be represented, and preferably in the perspective of 

network theory. That means entities like “edges” and “nodes”, as well as the relationships like 

“connect” need to be defined. Secondly, spatial information and relationships are 

indispensable, and relationships such as “this cable is above that pipe” or “the substation is 10 

meters away from that building” should be represented. Finally, necessary attributes must be 

defined to model and characterize flows within infrastructure networks, such as “diameter of a 

water supply pipe” and “number of lanes of a road”. 

 

The other thing to consider is the scope of this ontology. First, it is clear this should be an 



32 

 

integrated ontology to include all critical infrastructures, namely the utility networks 

(electricity, gas, water, and waste water) as well as the transport networks (road, rail, and 

metro). Secondly, buildings are considered as consumers of infrastructure services within 

cities (Cavallaro, et al., 2014), so they should be also properly represented. Finally, since the 

ontology aims to represent different infrastructure sectors, it is natural and vital to introduce 

knowledge of dependencies and interdependencies. 

 

While it is possible to develop an ontology from scratch, it is advised that ontology 

developers should try to re-use common knowledge (entities, relationships) from existing 

ontologies, or common data models if possible (Hendler, et al., 2001; Leung, et al., 2013; Lau, 

et al., 2016). This helps to develop the ontology in a more generalized way and allows easier 

data integration. In Chapter 2, 10 related ontologies/data models with regards to the urban 

infrastructure networks (Ji, 2019) were reviewed, and a comparison was made on them. Based 

on the comparison, it is argued that INSPIRE data model (INSPIRE, 2013), Ontology of 

Transport Network (Lorenz, et al., 2005), and the Utility Knowledge Ontology (Xu, et al., 

2018) are the three most relevant contributions. 

 

The INSPIRE data model is the only one model that covers knowledge of both utility and 

transport networks. Any other model focuses on either one of them. The INSPIRE data model 

is also rich in representing topological connectivity (using nodes and edges) and in 

representing the geometry of the objects. It also contains some attributes, but since it is not an 

ontology, it is very shallow in semantics. The OTN (Ontology of Transport Network) is rich in 

topological connectivity, and semantic relationships, but lacks enough support for attributes 

(for example, number of lanes on road, etc.) and spatial knowledge. The Utility Knowledge 

Ontology is rich in defining components within utility infrastructures, the semantic 

relationships (including spatial relationships). But it does not mention topological 

connectivity, and lacks enough attributes support. Despite the relevance of these three models, 

none of them represents the relationships between buildings and infrastructure networks 

(INSPIRE does mention building, but only focuses on geometry) and dependencies or 

interdependencies. Therefore, this is considered to be the biggest research gap currently and it 
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could be a potential contribution from the development of this ontology. 

 

For the layout of the remaining part of this chapter: Section 3.2 introduces top-level ontology; 

Section 3.3, 3.4, 3.5 introduces ontology of utility network, transport network and building; 

Section 3.6 discusses about dependency; Section 3.7 formally represents the ontology; 

Section 3.8 concludes the chapter. 

3.2 Ontology Construction 

 

Figure 3.1. Top-level entities and relationships in the ontology. 

 

The top-level entities and relationships of this ontology are shown in figure 3.1. As in any 

other ontology (Xu, et al., 2018), there are two most important semantic relationships, the “Is-

A Relationship” and “Part-of Relationship”. These two relationships help to allow class 

inheritance and represent a real-world knowledge if an object consists of several parts. 

Examples of these two relationships are given in table 3.1. 

 

Relationship Examples 

Is-A 1. A Utility Network is an Urban Infrastructure Network. 
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2. An Electricity Network is a Utility Network. 

3. Network Edge or Network Node is a Network Component. 

Part-Of 1. Network Component is part of an Urban Infrastructure Network. 

2. Edge Geometry and Edge Attribute is part of a Network Edge. 

Table 3.1. Examples of “Is-A” and “Part-of” relationships. 

 

Entities “Network Edge” and “Network Node”, and the “Connect” relationship between them 

are introduced. By doing this, each type of infrastructure network (road, electricity, etc.) can 

be easily represented by a network model mathematically. This is a common approach to 

represent knowledge of topological connectivity between infrastructure components 

(INSPIRE, 2013). It also makes it easy and straightforward to formally represent the urban 

infrastructure networks using mathematical notations (section 3.6). 

 

It is argued that geometry should be associated with Network Edge or Network Node. These 

geometry entities are called Edge Geometry and Node Geometry, respectively. They are 

subclass of Geometry (a generic geometry object). The ontology is developed at a high-level 

generalisation and therefore the Edge Geometry and Node Geometry will be defined as simple 

as possible (INSPIRE, 2013; Lorenz, 2005). The definition of these two entities are given in 

table 3.2. 

 

Entity Definition 

Node Geometry A point in the 3-dimensional space, represented by its x, y, z coordinates to 

indicate its location. A coordinate system must be given such as the British 

National Grid for the UK. 

Edge Geometry A polyline in the 3-dimensional space, which is represented by a sequence of 

points. 

Table 3.2. Definition of geometry entities. 

 

Depending on the actual application, Node Geometry and Edge Geometry can be simplified 

into 2-dimensional point and polyline (without z coordinate), if it is difficult to access 3-

dimensional data. But then some semantics in spatial relationships will be lost (such “Above” 

relationship), please see below (table 3.3). 
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It is argued that any Network Component (whether it is Network Edge or Network Node) 

should have “Spatial Relationship” with one or more Network Components, since any 

Network Component has geometry in a coordinate system. “Spatial Relationship” is 

considered to be an abstract relationship, and can be specified depending on the actual 

application where the ontology is used. For example, according to Borrmann et al (2009), 

common spatial relationships can be divided into three categories: topological, metric, and 

directional. The semantic examples are given in table 3.3, and definitions of these 

relationships are according to W3C Geospatial Ontologies (W3C, 2007). 

 

Category Spatial Relationship Semantic Examples 

Topological Touch A touches B. 

Disjoint A and B are disjoint. 

Metric Distance Distance between A and B is 100 meters. 

Closer / Nearer C is closer to B than to A. 

Directional Above / Below A is above B. 

North/South/East/West Of A is north of B. 

Table 3.3. Common spatial relationships and semantic examples. 

 

Note that “Spatial Relationship” applies to any Network Components, whether or not they 

belong to a same type of infrastructure network. For example, a Network Edge from 

Electricity Network can have “Spatial Relationship” with a Network Edge from a Road 

Network. This is how to ensure the ontology is rich in representing spatial knowledge. 

 

In the ontology, attributes are associated with Network Edge and Network Node separately, 

they are Edge Attribute and Node Attribute. They are the subclass of Attribute. It is considered 

the most common Attributes (that are sharable among different types of infrastructure 

networks) are below (INSPIRE, 2013; Xu et al., 2018), given in table 3.4. 
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Attribute Description 

Edge Length Numeric value to represent length of the Network Edge. 

Flow Direction Ordered pair of Nodes to indicate the flow direction on a Network Edge. 

Edge Status / 

Node Status 

A text to show whether the Network Edge / Network Node is “In Use”, “Out of 

Service” or “In Maintenance”. 

Edge ID / 

Node ID 

A unique number or text, which serves as an identifier of a Network Edge or 

Network Node. 

Edge Type/ 

Node Type 

A text showing the type of a Network Edge or Network Node. For example, for 

a Network Node in Electricity Network, its Node Type can be ‘Substation’. 

Table 3.4. Description of common attributes. 

 

By default, an Attribute is represented by a static value, and that means its value is fixed for a 

given Network Component it is associated with. However, attributes can be spatially and 

temporally transient on the infrastructure networks (Min, et al., 2011). In this situation, an 

Attribute can be represented by an abstract function. 

 

To represent a spatial transient attribute, a typical solution is to define a linear reference on the 

Network Edge (INSPIRE, 2013). This is represented by a sequence of Network Node pair. 

That is why two more relationships “Start” and “End” are added in figure 3.1. An example is 

given in figure 3.2, to show how to represent spatially transient speed limit on a road. For 

instance, it is plausible to say speed limit on this road (Network Edge) is 70 km/h from 0 m to 

800 m and it is 50 km/h from 800 m to 1200 m, and it is based on the sequence of Network 

Node pair (A, B). At a more generalised level, it can be represented as a function v = f (x), to 

map the location x (along the Network Edge) to a value v of that attribute. 

 

 

Figure 3.2. Use linear reference to represent spatially transient speed limit on a road. 
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For a temporal transient attribute, time reference is needed. The example of speed limit is still 

used here. In this situation (figure 3.3), the speed limit does not change spatially, but it 

depends on the time. It is plausible to say, the speed limit is 70 km/h from 8:00 to 20:00, and 

is 50 km/h from 20:00 to 8:00. At a more generalized level, it can be represented as a function 

v = f (t), to map a time t to a value v of that attribute. Figure 3.2 and figure 3.3 together show 

the flexibility of our ontology to represent any attribute whenever necessary, if it is not static. 

 

Figure 3.3. Use time reference to represent temporal transient attribute. 

 

Finally, entity Building is briefly introduced here, with its relationship “Access” with Utility 

Network and Transport Network. This is a still high-level relationship to indicate Building 

needs infrastructure service. Specifically, that means connection between Building and these 

types of networks. This will be covered into details in section 3.4 and 3.5. Before that, a good 

definition of Building is needed. 

3.3 Building 

The entities and relationships with regards to Building are defined in figure 3.4. The ontology 

mostly reused knowledge from Urban Building Ontology (Zhu, et al., 2015). First of all, a 

Building has its own geometry called Building Geometry, which is represented by a 3D body 

object (Zlatanova, 2000), a very simple and common 3D GIS data model, to indicate the 

space a building actually occupies, as suggested by Zhu et al (2005) and Katsumi (2017). 

However, if accessing 3D data is not possible, or if application only cares about 2 dimensions, 

then Building Geometry can be simplified and represented by a 2D polygon (footprint). Note 

Buildings Geometry also allows the Building to have a spatial relationship with any Network 
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Component. For example, we can say “this Building is 5 meters away from that Road”. 

 

 

Figure 3.4. Entities and relationships for Building. 

 

Building have some attributes that can be inherited by any subclass of Building. Note that 

Utility Demand is explicitly defined for any Building, in order to quantify utility service 

demand at building level. Other attributes either provide basic information of the building 

(Zhu, et al., 2015), such as Building Address, Building Name, or allow us to model utility 

service demand (Swan, et al., 2009), such as Number of Floors or Building Area. These 

attributes are explained in table 3.5. 

 

Attribute Description 

Building ID Unique number as an identifier of the Building. 

Building Name Text as the name of the Building. 

Building Address Text as the address of the Building. 

Building Age Age of the Building. Older building can be less energy conservative and 

thus demand more utility service. 

Building Area Number as the area of footprint of the Building. Larger building can 

demand more utility service. 

Number of Floors Number to show how many floors in the Building. Building with more 

floors requires higher utility demand. 
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Electricity Consumption Average daily electricity consumption, number in J. 

Water Consumption Average daily water consumption, number in m3. 

Gas Consumption Average daily gas consumption, number in m3. 

Waste Water Generation Average daily waste water generation, number in m3. 

Table 3.5. Attributes that can be inherited by subclass of Building. 

 

Buildings are first classified into Residential and Non Residential, and this is meaningful. 

Because residential buildings account for a large proportion of urban buildings (above 90% in 

the UK) and therefore a large proportion of utility service consumption (Pregnolato, et al., 

2018). They are more important with regards to localized utility demand model (Kavigic, et 

al., 2010). 

 

Residential can be further classified into Detached, Semi Detached, Terrace, and Apartment. 

This also helps to model utility demand. For example, a Semi Detached shares a wall with 

another building, so it can be more energy conservative than a Detached and therefor has 

lower utility demand (Nouvel, et al., 2015). Further, Residential has additional attributes, 

namely Number of Residents, Number of Bedrooms, Number of Kitchens, and Number of 

Bathrooms. These also help to model utility demand. For instance, more residents in a 

Building corresponds to higher utility demand (Blokker, et al., 2009).  

 

Non Residential is further classified based on functionalities, because different types of 

buildings have utility demand at different level (Nouvel, et al., 2015). For instance, a factory 

normally has a higher electricity consumption than a residential building (Yu, et al., 2010). 

Another example is that, the electricity supply disruption to a hospital is considered to be 

more fatal than to a residential building (Murray, et al., 2007). 

3.4 Utility Network 

Entities with regards to the Utility Network are identified and defined in figure 3.5. By 

convention a utility network consists of transmission and distribution level. But the purpose of 
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the ontology is to understand connectivity between infrastructure networks and buildings. 

Therefore, the focus here is the distribution level. Entities like “Electricity Generator” in the 

Electricity Network is not included, because that belongs to the electricity transmission 

network. 

 

 

Figure 3.5. Entities of Utility Network. 

 

Most of entities are Utility Assets, which are reused from INSPIRE data model (INSPIRE, 

2013), Utility Knowledge Ontology (Xu, et al., 2018) and common utility distribution 

network models for electricity (Tanyimboh, et al., 2011), water (Avi, 2014), sewer (Vickridge, 

2004), and gas (Osiadacz, 1987). Some of them are the sources where utility service enters the 

utility network at distribution level, such as Substation in the Electricity Network, Gas 

Regulator in the Gas Network or Water Treatment in the Water Network. Some of them are 

control elements in the network, such as Pump or Valve. 

 

In ontology, an Asset can be represented as a Network Node, and Pipe or Cable connecting 

Assets is a Network Edge, as suggested in common geospatial utility network models 

(Tanyimboh, et al., 2011). Pipe or Cable can have subclasses. For example, a Cable can be 
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‘Feeder’ or ‘Service Cable’, and that is because different types of Cables have different 

connectivity relationships in the Electricity Network (details in figure 3.7). 

 

Note that subclass of Network Node called Utility Junction is introduced, which refers to the 

location where Cables or Pipes connect with each other. This is used to ensure valid topology 

(every edge is connected to two nodes) when using a network model to represent a Utility 

Network. As a major innovation of my work, another subclass of Network Node called Utility 

Service Node is introduced, and it is connected to a Building. This is exactly how a Building 

“access” a Utility Network and is “connected” to it.  

 

 

Figure 3.6. Example of an Electricity Network and Buildings. 

 

In reality utility service is delivered to individual building via an “entry point”, which is 

commonly a meter (Osiadacz, et al., 1987; Avi, et al., 2014). That meter depends on the 

actually type of utility network, for example in electricity network it is an electricity meter. 

Therefore, in our ontology, Utility Service Node is used to denote that “entry point”. To be 

clear, the connection between a Utility Service Node and a Building is actually a mapping 
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(each Utility Service Node corresponds to a Building), and will be formally represented in 

section 3.7. An example is given in figure 3.6, showing the Network Edges and Network 

Nodes exist in an Electricity Network in a two dimensional space. Buildings are displayed via 

their footprints. Note in actual applications (chapter 4, 5, 6, and 7), Utility Service Node is 

simply called Building Node in a specific type of Utility Network, if no confusion is caused. 

 

It is considered necessary to display entities from all different Utility Networks in figure 3.5. 

Because many entities have rich semantic relationships with each other. For example, a Water 

Valve and a Gas Valve are both Valves. A Valve and a Substation are both Assets. That helps 

to represent the rich semantics in my ontology. If an entity only belongs to a specific type of 

Utility Network, the entity is named using a specific colour (for example, yellow for 

Electricity Network). That allows us to construct ontologies specifically for Electricity 

Network, Water Network, Sewer Network, and Gas Network (figure 3.7). 

 

 

Figure 3.7. Ontologies specific for each type of Utility Network. 
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Figure 3.7 also helps us to better understand the most vital topological connectivity within a 

specific type of Utility Network. For example, in Electricity Network, there is a “Connect” 

relationship from a Substation to a Feeder, and that means “A Substation connects to a 

Feeder”. The “Connect” relationships are identified from previous literatures in modelling 

utility distribution networks (Tanyimboh, et al., 2011; Avi, 2014; Vickridge, 2004; Osiadacz, 

1987). 

 

Finally, the attributes associated with entities of Utility Networks are displayed in figure 3.8. 

They are considered to be the most important attributes to characterize and model flow 

(electricity, supply water, waste water and gas) in the network. These attributes are described 

in table 3.6, with sources of choice given. 

 

 

Figure 3.8. Attributes related to Utility Network. 

 

Attributes Value Description Source 

Substation Capacity Number in Watt Maximum power a substation 

can supply. 

NPG, 2013 

Input Voltage / Number in Input and output voltage of a NPG, 2013 
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Output Voltage Voltage substation. 

Resistance Number in 

Ohm/m 

Resistance of cable per meter, 

used to calculate voltage drop. 

NPG, 2013 

Voltage Drop Percentage Percentage of voltage drop along 

the cable. 

NPG, 2013 

Cable Capacity Number in Watt Maximum power a cable can 

supply. 

NPG, 2013 

Input Pressure / 

Output Pressure 

Number in Bar Input and output pressure of gas, 

or water in a pipe or gas 

regulator. 

Rahal, et al., 1980; 

Osidascz, 1987 

Diameter Number in m Diameter of the pipe, used to 

compute pipe friction loss. 

Rahal, et al., 1980; 

Osidascz, 1987 

Friction Loss Number in Bar Pressure loss (gas, water) due to 

inner friction within pipe. 

Rahal, et al., 1980; 

Osidascz, 1987 

Gradient Number Gradient of pipe, affects the flow 

rate. 

Rahal, et al., 1980; 

Osidascz, 1987 

Flow Rate Number in m3/s Amount of gas or water which 

flows through a pipe in a given 

time. 

Rahal, et al., 1980; 

Osidascz, 1987 

Pressure Capacity Number in Bar Maximum pressure a pipe can 

stand. 

Osidascz, 1987 

Regulator Capacity Number in m3/s Maximum amount of gas a 

regulator can process in a given 

time. 

Osidascz, 1987 

Treatment Capacity Number in m3/s Maximum amount of supply 

water or waste water a treatment 

can process in a given time. 

Hammed, et al., 

2004; Avi, 2014 

Volume Number in m3 Maximum amount of water a 

reservoir or manhole can hold. 

Hammer, 1986; 

Avi, 2014 

Pump Head Number in m How high the water will be 

pumped. The can cause 

additional pressure gain when 

water flow through a pump. 

Hammer, 1986; 

Avi, 2014 

Valve State Boolean Indicate whether the valve is 

open or close. 

Osidascz, 1987 

Table 3.6. Attributes related to the Utility Networks. 

 

3.5 Transport Networks 

Transport Networks are either Road Network, Rail Network or Metro Network. They are 

defined in figure 3.9. All three types of networks are defined based on INSPIRE data model 
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(INSPIRE, 2013) and OTN (Lorenz, 2005). Each of them is a subclass of Urban Infrastructure 

Network, consisting of Network Edge and Network Node. 

 

 

Figure 3.9. Entities and relationships for Transport Network. 

 

Typical road network models simply use edge (some call it arc or link) and node to represent 

the network itself (Katsumi, 2018). But that is not informative enough, when it is necessary to 

represent transfer service between different transport approaches (for example, from road to 

rail). In fact, considering the purpose of our ontology, understanding connectivity is essential. 

Both INSPIRE data model (INSPIRE, 2013) and OTN (Lorenz, 2005) deal with this issue by 

introducing an additional type of node (called “connection node” in INSPIRE and “transfer 

node” in OTN). That is why in this Road Network ontology, it is advisable to further break 

Network Node into subclass “Road Junction” and “Road Transfer”. Transfer is allowed to 

exist between a Road Transfer to a Rail Station or Metro Station. 

 

 



46 

 

An example is given in figure 3.10 to show the transfer service between Road Network and 

Rail Network. It is already known a Road Transfer and Rail Station are both Network Nodes, 

therefore they have a unique Node ID as an attribute. They also have attributes of Transfer 

Type (a text showing what service a passenger transfer to) and Transfer To Node (Node ID 

corresponding to a Road Transfer, Rail Station or Metro Station). This is how to represent the 

knowledge of transfer between different Transport Networks. 

 

 

Figure 3.10. An example of transfer between Road Transfer and Rail Station. 

 

For a Road Network, a Road Junction has subclass Road Junction with Light and Road 

Junction Without Light. This classification helps model dependency between Road Network 

and Electricity Network (Ouyang, 2012). A Road has its own attributes. They are chosen in 

order to characterize and model traffic flow. They are described in table 3.7, with source given 

to the choice of the attributes. 

 

Road Attributes Value Description Source 

Number of Lanes Integers Number of lanes in both 

directions, a sequence of nodal 

pairs must be given. 

INSPIRE, 2013 

Speed Limit Number in km/h Highest allowed vehicle speed 

regardless of weather. 

INSPIRE, 2013 

Road Type Text Type of road, such as “A Road”, 

“B Road”, “Minor Road”, or 

“Motor Way” in UK. 

Department for 

Transport, 2005 

Weather Condition Text “Sunny”, “Rainy”, or “Snowy” Kyte, et al., 2001 
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to show condition on the road. 

Bad weather will lower free flow 

speed. 

Free Flow Speed Number in km/h Highest speed a motorist is 

willing to travel on the road. Free 

flow speed can change based on 

weather condition and 

congestion (flow rate). 

Banks, 1989 

Flow Rate Number in km/h The rate of how many vehicles 

travel through a road in a given 

time. Flow rate depends on 

number of lanes, and has 

negative relationship with free 

flow speed. 

Smith, et al., 2001 

Road Capacity Number in 

vehicle/h 

The maximum flow rate 

obtainable on a given road using 

all available lanes. 

Mogridge, 1997 

Table 3.7. Attributes associated with Road. 

 

 

Figure 3.11. Use sequence of Network Node to represent Number of Lanes. 

 

Number of Lanes is the most important attribute, and must be defined in a careful way. In 
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here, the linear reference, i.e. sequence of Network Node pair, is still used to define it. An 

example is given in figure 3.11. In most cases, a Road can be travelled from both directions, 

and lanes number is equal in both directions. But in some situations, lane number can be not 

equal or the road is simply a one-way road. Using the approach shown in figure 3.11, then this 

ontology can handle this situation too. 

 

The Rail Network and Metro Network are defined in the similar way, because they are both 

track based systems, and considered to be less complex than Road Network (INSPIRE, 2013; 

Lorenz, 2005). Important attributes are summarized in table 3.8. 

 

Attribute Value Description Source 

Number of Tracks Integers Number of tracks in both directions. Lorenz, 2005 

Designed Speed Number in km/h How fast the train should run on the 

track. 

INSPIRE, 2013 

Speed Limit Number in km/h Highest allowed speed of train. Tutcher, 2016 

Railway Use Text Only applies to Railway. What types 

of train can run, such as “Cargo”, 

“Passenger” or “Mixed”. 

Tutcher, 2016 

Line Number Number or 

Numbers 

Only applies to Metro Way. 

Shows what metro lines it belongs to. 

INSPIRE, 2013 

Table 3.8. Attributes associated with Rail Way or Metro Way. 

 

Finally, Building is mentioned here, and it is argued that a Building should be connected to a 

Road. This is one major contribution of this ontology, because no other similar work has done 

that. Considering the fact that goods, service can be delivered to buildings via road network, 

and the fact people can enter road network from buildings, it is feasible to represent the 

connection between them. The interesting part is how to exactly represent it. 

 

The decision was made to follow the approach developed by Cavallaro et al (2014), in which 

they use a straight line to connect the centroid of footprint of each building to its nearest road 

(figure 3.12). This is simple, straightforward, and sensible. For example, when a passenger 

from a building needs to travel to other places, he always needs to move to the nearest road 
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first and then start moving in the transport network. This is exactly the “Connect” relationship 

between Building and Road in this ontology. Semantically, that means “every Building 

connects to the nearest Road”, which is virtually a mapping from a Building to a Road. This 

connection will be formally represented in section 3.7. 

 

Figure 3.12. The connection between Building and Road. 

 

Note that Building is allowed to connect Road, but not to Rail Way or Metro Way, even if 

residents from the Building do need to access the Rail Network and Metro Network. This is 

because Rail Network and Metro Network can only be accessed at a Rail Station or Metro 

Station. Even if there is a Railway very close a resident’s house, he cannot directly “jump” to 

it to access the Rail Network. Instead, he needs to go to the nearest Road, and travel along the 

Road Network until he can reach a Rail Station (via a Road Transfer). 

3.6 Dependencies 

In infrastructure dependency related ontologies (Mcnally, et al., 2007; Sicilia, et al., 2009), a 

dependency is represented as unidirectional relationship from entity A to B, which reads as “A 

depends on B”. While in a broader sense, interdependency can be seen as special case of 

dependency (Ouyang, 2014), where there are two dependencies in the opposite directions 

between A and B, which reads as “A depends on B, and B depends on A”. Therefore, in this 

ontology, only dependencies will be explicitly represented. 
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There are two major types of infrastructure dependencies (Zimmerman, et al., 2001), which 

are functional dependency and spatial dependency. Functional dependency refers to the 

situation, where operation of A depends on the material, resource, or signal from B (for 

example, water pump requires electricity from a substation). Spatial dependency refers to the 

spatial proximity (for example, a water pipe and a gas pipe are very close with each other 

spatially, when earthquake breaks one of them, the other one can be affected as well). 

 

In this ontology, it is considered that only functional dependencies will be represented. 

Because spatial dependency can be implicitly inferred from the Node Geometry and Edge 

Geometry that are defined earlier. The dependencies that exist in my ontology are shown in 

figure 3.13. These are all the power requirements identified from literatures (Tanyimboh, et 

al., 2011; Avi, 2014; Vickridge, 2004; Osiadacz, 1987). Note here only the “electricity power 

requirement” relationship is represented in my ontology. Broadly speaking, there exist 

requirements of other resources between utility networks. For example, an electricity 

generator requires water from pumping station to cool down (Ouyang, 2014). But the 

ontology only focuses on fine spatial scale (infrastructure distribution level), so that electricity 

generator is not represented in our Electricity Network, and therefore the water requirement is 

not represented. The dependency in my ontology can be formally represented as a mapping 

relationship, and is explained in section 3.7. 

 

 

Figure 3.13. Relationships to represent dependency. 
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3.7 Formal Representation of Ontology 

With regards to the urban infrastructure networks and buildings, a city C can be described 

with the help of network theory: 

C = {N, B, R} 

N = {U, T} 

U = {Ge, Gg, Gw, Gs} 

T = {Gr, Gt, Gm} 

 

These notations are explained in table 3.9. Figure 3.14 helps to understand relationships of 

these notations (sets) visually. 

 

Notation Description 

C Set to denote the city. 

N Set to denote the urban infrastructure networks within the city. 

B Set to denote the buildings within the city. 

R Set to denote the relationships within city. 

U Set to denote the utility networks within city. 

T Set to denote the transport networks within city. 

Ge A network instance to denote electricity network. Ge = {Ve, Ee, fe} 

Gg A network instance to denote gas network. Gg = {Vg, Eg, fg} 

Gw A network instance to denote the water network. Gw = {Vw, Ew, fw} 

Gs A network instance to denote the sewer network. Gs = {Vs, Es, fs} 

Gr A network instance to denote the road network. Gr = {Vr, Er, fr} 

Gt A network instance to denote the rail network. Gt = {Vt, Et, ft} 

Gm A network instance to denote the metro network. Gm = {Vm, Em, fm} 

Table 3.9. Explanations for basic notations. 
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Figure 3.14. Visual representation of basic notations (sets). 

 

Note each of the Ge, Gg, Gw, Gs, Gr, Gt, Gm, is considered to be a directed network model 

mathematically. That means any of them (such as Ge) can be further defined as follows: 

Ge = {Ve, Ee, fe} 

 

In here Ve refers the set of nodes in electricity network, where Ee refers to the set of edges in 

the electricity network. The fe is a function that maps each element in Ee to an ordered pair of 

two nodes in Ve. This is represented by figure 15 visually. 

 

Figure 3.15. Visual representation of different infrastructure networks. 
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Any network edge defined here, can be further broken into two parts, to indicate the geometry 

and attributes of that edge. For example, let us use v to denote the element in Ve, then v can be 

represented as: 

v = {v_geom, v_attrs} 

 

In here, v_geom is the geometry of that edge, which is a point, and v_attrs is (key:value) pairs 

to indicate the attributes of that node. Similarly, let us use e to denote the element in Ee, then e 

can be represented as: 

e = {e_geom, e_attrs} 

 

In here, e_geom is the geometry of that edge, which is a polyline, and e_attrs is (key:value) 

pairs to indicate the attributes of that edge. This can be better understood in figure 3.16. 

 

 

Figure 3.16. Visual representation on the constitution of an edge e and a node v, in the 

electricity network Ge. 

 

Figure 3.16 shows how an edge e and a node v can be further broken down in the electricity 

network Ge. Such rules also apply to other networks, namely Gg, Gw, Gs, Gr, Gt, Gm. 

 

For the set B, it is set of buildings. Let us use b to denote the element in B, and the b is 
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virtually an individual building. It can be further broken down into two parts: 

b = {b_geom, b_attrs} 

 

The b_geom is the geometry of the building. It can be represented by either a 3D body (if data 

is available) or simply a 2D polygon as the footprint of that building. The b_attrs is the 

(key:value) pairs indicate the attributes of that building. 

 

Finally, for the set R, it can be described as follows: 

R = {Rdep, Rcon} 

Rdep = {fw_e, fg_e, fs_e, fr_e, ft_e, fm_e} 

Rcon = {fb_r, fb_e, fb_w, fb_s, fb_g} 

 

The notations are explained in table 3.10. 

Notation Description 

Rdep Set to denote the infrastructure dependencies within the city. 

Rcon Set to denote the connections between buildings and infrastructure networks within 

the city. 

fw_e A mapping to represent the dependencies from water network to electricity 

network. 

fg_e A mapping to represent the dependencies from gas network to electricity network. 

fs_e A mapping to represent the dependencies from sewer network to electricity 

network. 

fr_e A mapping to represent the dependencies from road network to electricity network. 

ft_e A mapping to represent the dependencies from rail network to electricity network. 

fm_e A mapping to represent the dependencies from metro network to electricity 

network. 

fb_r A mapping to represent the connection between building and road network. 

fb_e A mapping to represent the connection between building and electricity network. 

fb_w A mapping to represent the connection between building and water network. 

fb_s A mapping to represent the connection between building and sewer network. 

fb_g A mapping to represent the connection between building and gas network. 

Table 3.10. Description on notations with regards to R. 
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Rdep is used to represent the infrastructure dependencies via all seven mappings defined 

within it. Until now it is still not explained, from which set to which set, each of the mappings 

applies. To explain it in an easier way, several subsets will be defined first. Let v denote an 

element (a node) from Ve, and v.node_type, refers to its Node Type, then a subset of Ve can be 

defined as follows: 

Vsubstation = {v ∈ Ve | v.node_type = ‘Substation’} 

 

In here, all the nodes v from Ve are selected, which are the substation nodes and then put them 

to a set called Vsubstation. Being able to represent subsets allows us to explain the scope of the 

mappings, see table 3.11. 

 

Mapping Mapping Scope 

fw_e Vw_subset = {v ∈ Vw | v.node_type = ‘Water Pump’ ∨ v.node_type = ‘Water Treatment’} 

fw_e: Vw_subset → Vsubstation 

fg_e Vg_subset = {v ∈ Vg | v.node_type = ‘Gas Regulator’} 

fg_e: Vg_subset → Vsubstation 

fs_e Vs_subset = {v ∈ Vs | v.node_type = ‘Sewer Pump’ ∨ v.node_type = ‘Sewer Treatment’} 

fs_e: Vs_subset → Vsubstation 

fr_e Vr_subset = {v ∈ Vr | v.node_type = ‘Road Junction With Light’} 

fr_e: Vr_subset → Vsubstation 

ft_e Vt_subset = {v ∈ Vt | v.node_type = ‘Rail Station’} 

ft_e: Vt_subset → Vsubstation 

fm_e Vm_subset = {v ∈ Vm | v.node_type = ‘Metro Station’} 

fm_e: Vm_subset → Vsubstation 

Table 3.11. Scopes for mappings fw_e, fg_e, fs_e, fr_e, ft_e, fm_e. 

 

Rcon is used to represent connections between buildings and infrastructure networks, such as 

connection from a building to a road (section 3.6), or the connection between an electricity 

service node to a building (section 3.5). Five mappings are defined within Rcon. Subsets are 

also used here, to clarify the scopes for these mappings, which is shown in table 3.12. 

Mapping Mapping Scope 

fb_r fb_r: B → Er 

fb_e Ve_subset = {v ∈ Ve | v.node_type = ‘Electricity Service Node’} 

fb_e: Ve_subset → B 
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fb_w Vw_subset = {v ∈ Vw | v.node_type = ‘Water Service Node’} 

fb_w: Vw_subset → B 

fb_s Vs_subset = {v ∈ Vs | v.node_type = ‘Sewer Service Node’} 

fb_s: Vs_subset → B 

fb_g Vg_subset = {v ∈ Vs | v.node_type = ‘Gas Service Node’} 

fb_g: Vg_subset → B 

Table 3.12. Scopes of mappings fb_r, fb_e, fb_w, fb_s, fb_g. 

 

3.8 Conclusion 

In this chapter an ontology was developed to represent the urban infrastructure networks and 

buildings within the city. The major contribution of this work is, at individual building level, 

to identify the connections within infrastructure networks and the connections between 

buildings and infrastructures. Basic attributes that are associated with urban infrastructure 

networks, which allows us to model and characterize flows within infrastructure networks. 

 

Moreover, this ontology is defined in a spatially explicit manner, in which geometry and 

spatial relationships can be represented. The ontology also includes all the major utility and 

transport infrastructure networks, which are considered as major added value compared with  

existing research. The ontology will be used as a conceptual model and implemented in 

Chapter 4, 5, 6, and 7 to model different high granularity geospatial infrastructure networks. 
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Chapter 4. A heuristic spatial algorithm for generating fine-scale 

infrastructure distribution networks 

4.1 Introduction 

In Chapter 3, a formal ontology was developed for modelling fine scale geospatial urban 

infrastructure networks at building level. Spatial network model with attributes (edges and 

nodes associated with geometry and attributes) is used to represent an infrastructure network. 

The network topology helps to understand the connectivity between infrastructure assets and 

buildings they serve at fine spatial scale. The network attributes allow for running generic 

network simulation on infrastructure networks (for example, voltage drop simulation on the 

electricity network, and traffic flow simulation on the road network, etc.). The network 

geometry helps to understand how spatially infrastructure networks interact with urban 

environment (for example, if flood occurs, some electricity substations can malfunction due to 

falling within footprint of flood, etc.). 

 

As such, acquiring the spatial layout (geometry) of urban infrastructure networks which 

connect assets and buildings is considered as an essential step for modelling them. However, 

in Chapter 2, challenge of acquiring good quality geospatial data has been discussed. The 

major reason is that private utility companies restrict public use of their data (Bon, 2017) or 

that they simply do not have the data in the geospatial format (Fu, et al., 2008). That means, in 

the worst case, except the location of infrastructure assets (such as electricity substations) and 

buildings, nothing in known about geometry of the infrastructure networks (such as the layout 

of electricity cables). Therefore, when actual data is not available, it is essential to have 

approaches that can automatically infer fine scale geospatial layout of the infrastructure 

networks. 

 

At the time of conducting this PhD project, there is no existing approach or algorithm for this 

specific problem (generating spatial network connecting assets and buildings). Geospatial 
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network generation algorithms in the infrastructure domain are sparse, although there are still 

some related examples observed, which are shown in table 4.1. 

 

Author Description of network generation algorithm 

Gastner, et al., 2006 The algorithm focuses on designing large scale spatial distribution network, and in 

particular the location of facilities such as hospitals and airports. Facility locations 

are designed with a non-uninform population density, so that average distance from 

a person’s home to the nearest facilities is minimized. The algorithm is suitable for 

large scale facility planning (such as for entire US), but not useful in city (where 

population density changes slightly). Moreover, it focuses more on “assets 

location” planning, rather than “network layout” planning. 

Trifunovic´, et al., 2013 The algorithm is used for planning layout of water distribution network for 

properties. To make the algorithm work, “seed nodes” must be defined already. The 

seed nodes refer to the pipe junctions that are allowed to exist in the synthetic 

network. No other additional nodes can be created. The author also makes extra 

constrains, such as “each seed node can connect no more than 3 pipes”. Additional 

parameters must be given (diameter of pipe, demand for each property node, etc.) 

to decide the optimal layout of water distribution network. The algorithm can 

generate more plausible network (since it considers hydrology condition) but seed 

nodes (junctions) must be explicitly given, which are normally missing in our case. 

Hadas, et al., 2013 The algorithm focuses on designing an optimal spatial network in terms of 

minimizing construction cost and evacuation time (under terrorism activities). User 

needs to first explicitly define the nodes that exist in the network. Moreover, there 

will be some nodes called “origin nodes”, and some called “destination nodes”. 

Residents must move from origin nodes to destination nodes for terrorism 

evacuation. Pre-defined node location is the major disadvantage of this approach, 

like Trifunovic´ et al (2013). 

Cavallaro, et al., 2014 Strictly speaking, this approach is not a network generation or design algorithm. 

Instead, the author suggests that individual buildings and infrastructure assets 

should be connected to the nearest road network to construct a hybrid network to 

assess resilience within the city. Although it is not an actual algorithm, it suggests 

that layout of infrastructure networks is related to the road network. 

Heijnen, et al., 2014 The author developed an approach to design geometric infrastructure network 

connecting a source node and demand nodes with least construction cost. This 

problem is actually “finding an edge-weighted Steiner minimal tree that connects 

all the demand nodes to the one source node within a bounded region”. This is a 

generic algorithm can be applied for any type of infrastructure. But there are two 

drawbacks: (1) The algorithm only focuses on one source (asset) node but not 

multiple; (2) The algorithm does not consider the fact the infrastructure network is 

related to the road network. 

Dunn, et al., 2016 An algorithm was developed to generate the dynamic spatial nodal layout of large-

scale infrastructure networks (such as UK rail network, US airport network). The 
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author focuses more on the evolution of the networks rather than its current static 

layout. Several assumptions must be made to make the algorithm work (such as 

nodal cluster size will change over time, etc.). The major weakness of this 

algorithm is that it does not consider any consumer nodes, and that it does not 

generate the layout of the network edges. 

Bon, 2017 The author developed an approach for generating layout of underground utility 

networks at individual building level for Amsterdam, the Netherlands. To make the 

algorithm work, layout of main lines (cables or pipes) must be known first, then 

connections can be made from individual buildings (for example, an access point 

within the building) to the main lines. Clearly, this algorithm makes the assumption 

that layout of main lines is available, which is unfortunately not our case. But the 

author pointed out in general, main lines should follow the road network, which is a 

good suggestion to us. 

Table 4.1. Related studies in generating geospatial infrastructure network. 

 

In a more general way, automatic infrastructure network layout generation is a network design 

problem (NDP) (Magnanti, et al., 1984), which aims to construct a network with different 

constraints or objective functions. From table 4.1, although none of the approaches is directly 

related to our problem, each of them applies some constraints (for example, network 

construction cost is minimized, etc.). This is essential in generating a spatial network instance 

in a deterministic way. However, it is clear that most of these approaches need to know 

location of all the nodes within the network, which is not feasible in our case. To be clear, 

location of building nodes and asset nodes are known is our case, but not the location of all 

the network junctions. That is why, the approaches developed by Cavallaro et al (2014) and 

Bon (2017) are considered most useful to our situation, because they argue the layout of 

infrastructure network is associated with road network. Moreover, road network data is made 

public in many countries and it is easy to access them. 

 

Following this rationale, a spatial heuristic algorithm is developed based on the location of 

infrastructure assets, buildings, and road network. The output is the spatial layout of 

infrastructure networks connecting these assets and buildings. Details will be discussed in the 

following sections. Section 4.2 gives an overview of the algorithm. Section 4.3 describes the 

algorithm in a formal way. Section 4.4 introduces the computational implementation of this 

algorithm (software stack, libraries, etc.). Section 4.5 shows the pilot study, which is 
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generating city scale electricity distribution networks for the city of Newcastle upon Tyne. 

Section 4.6 is the validation on the synthetic network result. Section 4.7 is about 

transferability test of the algorithm. Section 4.8 concludes this chapter. 

4.2 Algorithm Overview 

The algorithm aims to generate fine spatial scale plausible distribution networks that connect 

assets to the dependent buildings. It might not produce 100% exact layout of the actual 

network, but it aims to be as close as possible. The algorithm is considered to be a generic 

solution to any type of infrastructure network, as long as layouts of the assets, buildings, and 

road network are known. 

 

The algorithm is built on several basic assumptions: 

 

Basic Assumption 1 – Each individual building depends on one and only one asset. 

 

Basic Assumption 2 – The cables and pipes should be paved along road network. Buildings 

are connected to assets via network cables or pipes as short as possible. 

 

Basic Assumption 3 – Spatially, individual buildings can form clusters, and buildings within 

a cluster must depend on the same asset. 

 

A diagram is shown in figure 4.1 to explain how the algorithm works in a general way. In 

here, algorithm reads three input datasets, A, B and R, which stand for the sets of assets, 

buildings and roads. After reading initial input, the algorithm will go through two major 

processes (topology generation and geometry generation) to generate spatial distribution 

networks as the result. 

 

Figure 4.2 shows an example of input data for this algorithm, and figure 4.3 shows the output 

based on figure 4.2. 
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Figure 4.1. Flow of spatial heuristic algorithm. 

 

Figure 4.2. Example of algorithm input data (Contains OS data © 2018). 
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Figure 4.3. Example of algorithm output result (Contains OS data © 2018). 

 

4.3 Algorithm Description 

The sets R = {r1, r2,…, ri}, B = {b1, b2,…, bj}, and A = {a1, a2, …ak} are used denote the 

spatial objects representing roads, buildings and assets within the spatial domain under 

consideration. In particular, a road, a building and an asset should be represented by polyline, 

polygon, and point respectively. These three sets R, B, and A are necessary input for the 

algorithm. For example, in figure 4.2, there are 8 assets, 288 buildings and 61 roads. 

 

The algorithm can be divided into two sequential major steps: topology generation and 

geometry generation. Step one (topology generation) will assign an asset to each building, and 

step two (geometry generation) will generate the spatial network instance connecting each 

asset and all its dependent buildings. 



63 

 

4.3.1 Topology Generation 

 

Listing 4.1. The pseudo code for topology generation process. 

 

Before this process starts, a spatial network instance Groad (based on R) needs to be generated 

to represent the road network. The topology generation process can be represented by the 

pseudo code shown in Listing 4.1. Necessary input includes A, B, and R, and Groad. The 

expected output is a mapping relationship: fassign:B→A, so that for every individual building b 

there is one and only one corresponding asset a to it. Sequentially, this entire process can be 

divided into small steps. 
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The first step (line 2-12 in listing 4.1) is to find clusters of the buildings, using an approach 

called “buffered cascading union” (Shapely, 2018). There is a parameter (called threshold 

distance dthresh) to control the clustering process. If distance of any two buildings is less than 

dthresh, then they belong to the same cluster. As a result, the “buffered cascading union” 

operation will generate several clusters based on the building footprints, and for any two 

clusters, the Euclidean distance between any building in the first cluster and any building in 

the second cluster, is always greater than the dthresh. A multi-polygon object is created to 

represent each cluster. 

 

 

Figure 4.4. 77 clusters generated based on the buildings from figure 4.2 (Contains OS data © 

2018). 

 

Using the building data shown in figure 4.2, and a pre-set dthresh value (10 meters in this case), 

77 clusters are generated, shown in figure 4.4, where each colour refers to a cluster of 

buildings. The “buffered cascading union” operation actually corresponds to our third 

assumption in section 4.2. Note that clustering result can change according to dthresh (a smaller 
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dthesh value result in more clusters being generated). More about parameter sensitivity will be 

discussed in section 4.6. Afterwards, for each cluster, its centroid (geometric centroid of the 

multi-polygon) is calculated and extracted for later use. 

 

 

Figure 4.5. Base network generated by connecting clusters and assets (Contains OS data © 

2018). 

 

The next step (line 13-21 in listing 4.1) connects each asset and cluster to the road network to 

generate a network called “base network” (figure 4.5). To achieve this, each asset and cluster 

(represented by centroid) will find the access point to its nearest roads. In particular, from the 

asset or cluster centroid, the project point is calculated on the nearest road and that projection 

point is the access point. The road network is then copied to another network instance called 

“base network”, to avoid being directly changed. Additional edges are created in the base 

network to connect each asset/cluster to its access point. Creation of this base network which 

connects all asset and cluster of buildings, will help fulfil our second assumption in section 

4.2. The based network is built on the road network and helps to estimate the distance from 

clusters to each asset. 
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Finally (line 22-30 in listing 4.1), the asset points are used to triangulate (by Delaunay) the 

entire space, so that each cluster centroid is within one containing triangle (figure 4.6). For 

each cluster, the three assets forming the vertices of its containing triangle are identified and 

the asset with the shortest network path distance to the cluster centroid, via the base network, 

is allocated to that cluster. For example, in figure 4.6, the highlighted cluster centroid will 

choose from the assets at points 2, 7, 8 to find the nearest one via the base network. For each 

building belonging to the corresponding cluster, the chosen asset is assigned to it, and this is 

the function fassign:B→A is generated. 

 

 

Figure 4.6. Delaunay triangulation and assigning an asset to each cluster (Contains OS data © 

2018). 

 

The reason to apply Delaunay triangulation is to speed up the algorithm. By default, no 

triangulation is done, so that each cluster will be assigned a nearest asset (from all the assets 

in the area) via the base network. This calculation can be very expensive using real city data. 

Therefore, an assumption is made that “if an asset is close to a cluster via base network, it 
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must be close in the Euclidean space”. Therefore, for each cluster, triangulation process helps 

to reduce the amount of shortest path calculations on the base network, and helps to speed up 

the algorithm. On the other hand, the reason to select “nearest” asset (via base network) to the 

cluster, is to ensure that if cables are used to connect the asset to the cluster, total length of 

cable can be kept as short as possible (basic assumption 2 of the algorithm). 

 

 

Figure 4.7. Result of topology generation process (Contains OS data © 2018). 

 

Figure 4.7 shows the final result in this topology generation process, where those buildings 

assigned the same infrastructure asset are shown in a same colour. 

 

4.3.2 Geometry Generation 

At this stage, the relationships between the infrastructure assets and individual buildings have 

been resolved, by the mapping fassign:B→A. The remaining work involves generating the 

actual spatial network instances that connect each asset and its dependent buildings. 

Necessary input includes A (assets), B (buildings), R (roads), Groad (road network), and fassign. 
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The expected output is a set N, which consists of spatial network instances. Each network 

instance connects an asset and its dependent buildings. Listing 4.2 helps to explain the 

geometry generation process. 

 

Listing 4.2. The pseudo code for topology generation process. 
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The entire geometry generation process will loop through each asset a, and generate its 

distribution network instance. To make things clear, below only the network generation 

process for a given asset a, is discussed. 

 

Firstly (line 3-4 in listing 4.2), using fassign:B→A, a subset Bsub of B is fetched, so that every 

building b in Bsub has been assigned to the given asset a. Then using buildings in Bsub, an 

operation called “cascaded union” (Shapely, 2018) is performed to group buildings into 

terraces (buildings topologically connecting one another in a row). The reason for having this 

process is to make sure better spatial layout of network can be generated (for details, please 

see figure 4.11 and 4.12). Note in this algorithm, an individual building is allowed to form a 

terrace itself, if it is not topologically connected to any other building. The set T is used to 

denote all the terraces generated, where each t is a terrace, represented by a polygon. For 

example, figure 4.8 shows the 107 terraces generated based on the layout of buildings in 

figure 4.1. 

 

 

Figure 4.8. 107 terraces generated based on buildings shown in figure 4.2 (Contains OS data 

© 2018). 
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Then (line 5-6 in listing 4.2), the nearest road rnearest, will be chosen for the asset a to generate 

an access point a.acc on the rnearest. The access point will be chosen in a way that the access 

line does not intersect with any t in T. For example, in figure 4.9, the green point can be 

chosen as the access point while the original project point (red one) cannot. 

 

Figure 4.9. Access point calculation for the asset (Contains OS data © 2018). 

 

Similarly (line 7-34 in listing 4.2), for each terrace t in T, the algorithm calculates the access 

point for each building within that terrace. The actual workload in this step depends on the 

number of buildings in that terrace. There are two situations. 

 

Situation 1 (line 8-15 in listing 4.2) is that t is a “one building terrace”. First, a check will be 

done to see if the building is close to the asset (using a threshold distance called ddirect, for 

example 100 meters), such that the asset can be connected directly to the building, without 

using a road access point (green line figure 4.10). Otherwise, the building will choose the 

nearest road to generate an appropriate access point called b.acc, which causes no intersection 

issue (using the same approach as generating an access point for an asset). The reason to 

allow direct access from a building to an asset is that this helps to further shorten the total 
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length of distribution network generated. 

 

Figure 4.10. A single-building terrace can directly access an asset if close enough (Contains 

OS data © 2018). 

 

Situation 2 (line 16-34 in listing 4.2) is that the t is a normal terrace (contains at least two 

buildings). Using a parameter search distance dsearch (for example, 100 meters), all the roads 

within the search distance to the t will be checked (starting from the nearest road), if the 

access angle is large enough (using a pre-set parameter called β, for example 45°) for the 

terrace t to access that road. The access angle is defined as the acute intersection angle 

between the access line (perpendicular access) and feature line of terrace t. The feature line is 

defined as the line connecting centroids of the two buildings in t which are most distant from 

each other. In figure 4.11, access line is the line CP-AP and the feature line is line P1-P2. The 

access angle for the 2nd nearest road is the largest, compared with the 1st and 3rd nearest road. 

If there is such a road segment within dsearch, which corresponds to an access angle large 
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enough, then all the buildings with the terrace t will access that road in a perpendicular 

approach, showed as green points in figure 4.12. If not, the nearest road to t is still chosen, 

and the access point is chosen to ensure now the access angle is at least as large as β. The 

reason to set up dsearch and β is to make sure that all buildings within the terrace can access a 

nearby road as perpendicularly as possible. 

 

 

Figure 4.11. Explanation of the access angle for a terrace (Contains OS data © 2018). 
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Figure 4.12. Pick up the access point for each building within the terrace (Contains OS data 

© 2018). 

 

 

Figure 4.13. For asset 4, calculate the shortest path from the asset to a building (Contains OS 

data © 2018). 
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Finally, using all the buildings, the assets, and all their access points, a base network is 

generated to them (using road network). Note this base network is not the same as the one in 

the topology generation process (where all assets and all clusters are connected). In here, in 

the geometry generation process, for each asset, the base network only connects this asset and 

all its dependent buildings. 

 

For each building, a shortest path is calculated via the base network to the asset (blue path 

shown in figure 4.13). A spatial network instance can be generated by merging all these paths, 

and this network is actually the specific infrastructure network connecting this asset a and all 

its dependent buildings. Moreover, each network instance is actually an acyclic graph (no 

loop inside), the flow direction can be easily resolved from the asset node to each building 

node. 

 

Within an infrastructure network, there are different types of nodes and edges, shown in figure 

4.14. The naming of different types of nodes and edges is based on topological connectivity 

and is explain in table 4.2. 

 

Figure 4.14. Different types of nodes and edges in a distribution network. 
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Type of node or edge Description 

building node A node that represents an individual building. 

asset node A node that represents an asset. 

buildingAccess node A node that directly connects a building node. 

assetAccess node A node that directly connects an asset node. 

distribution node A node that is not a building node, asset node, buildingAccess node, or 

assetAccess node. 

buildingAccess edge An edge connecting a building node and a buildingAccess node. 

assetAccess edge An edge connecting an asset node and an assetAccess node. 

distribution edge An edge that is not a buildingAccess edge or an accessAccess edge. 

Table 4.2. Description of different types and edges and nodes in a distribution network. 

 

As a result, the geometry generation process generates multiple distribution networks (one for 

each asset), and figure 4.3 shows the 8 distribution networks generated for the example area. 

 

4.4 Algorithm Implementation 

The spatial heuristic algorithm is developed and implemented in Python using the NetworkX 

package (NetworkX, 2014) for manipulation and analysis of complex networks, and the 

Shapely package for performing geometry calculation on spatial objects. The algorithm 

employs the Infrastructure Transitions Research Consortium (ITRC) PostgreSQL/PostGIS 

National Infrastructure Systems Modelling Database (NISMOD-DB), for primary data 

extraction via a Python binding, and generates network models that are written back to 

NISMOD-DB in the form of an instance of the ITRC interdependent network database 

schema reported by Barr et al.(2013). The implementation of the heuristic algorithm is shown 

in figure 4.15. 

 



76 

 

 

Figure 4.15. Computational implementation of the spatial heuristic algorithm. 

 

4.5 Pilot Study (Newcastle upon Tyne) 

To demonstrate the utility and applicability of the spatial heuristic algorithm at the city scale, 

it was applied to generate the local electricity distribution networks for Newcastle upon Tyne 

(a city of approximately 282,300 people covering an area of 112 km2, the most populous city 

in North East England). The infrastructure networks to be generated in this pilot study are 

electricity distribution networks. The assets in this case are the electricity substations, which 

send electricity to each individual building via a cable-based network. Electricity is normally 

generated from generation plants and pressurized to 400kv via the electricity transmission 

network. When electricity is transmitted to the urban areas, electricity voltage will be 

decreased by substations of different levels (132kv, 66kv, 33kv, and 11kv). The lowest level 

substations are 11kv ones, and they are connected with the 33kv substations (figure 4.16). 
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Figure 4.16. Electricity transmission networks connecting 11kv and 33kv substations in 

Newcastle upon Tyne (Robson, 2017). 

 

While in this pilot study, the focus is electricity distribution networks, and the input 

infrastructure assets comprised all 636 11kv electricity substations (lowest levels), identified 

from the Ordnance Survey Point of Interest Layer (Ordnance Survey, 2018). The road 

network was obtained using Ordnance Survey Integrated Transport Network (ITN) Layer 

(Ordnance Survey, 2018). Building footprints were obtained by filtering (select only building 

feature) the Ordnance Survey MasterMap topography Layer (Ordnance Survey, 2018). 

Initially, 142,763 buildings were extracted. Then only buildings with at least 30 m2 area were 

kept, since smaller buildings are considered to be buildings that do not require infrastructure 

services (Barr, et al., 2017). In the end, 104,855 buildings were left and used for generating 
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electricity distribution networks. 

 

Figure 4.17. Generated synthetic electricity distribution networks in Newcastle upon Tyne. 

 

Figure 4.17 shows the synthetic distribution networks that were generated for the entire 

Newcastle upon Tyne city area, separately coloured for each single distribution network. For 

the complete area, a total of 104,855 buildings were processed, creating 636 new local 

electricity distribution networks, each serving, on average 164 buildings. The total number of 

edges and nodes (of any type) generated are 209,892 and 209,886, respectively. Each 

distribution network has on average 330 edges and 330 nodes. The total length of network 

edges are 2,807,478 meters. 

 

It is important to point out, that threshold distance dthresh is an essential parameter in the 

algorithm (as mentioned in section 4.3). Different dthresh values will result in different number 

of clusters being generated, and thus can affect the characteristics of the distribution networks 

to be generated. In this pilot study, dthresh was set to be 10 meters. To justify the choice of this 

value, a parameter sensitivity test was also done, using different dthresh values (5, 10, 15, 20, 

25 meters), and result is shown in table 4.3. 
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dthesh  

(meters) 

Number of 

Cluster Generated 

Number of 

Networks Generated 

Algorithm Running 

Time (hours) 

Network Total 

Length (meters) 

5 15164 (= 196 %) 636 (= 100%) 4.04 (= 178%) 2796248 (= 99.6%) 

10 7719 (= 100%) 636 (= 100%) 2.27 (= 100%) 2807478 (= 100%) 

15 4300 (= 56 %) 631 (= 99.3%) 1.77 (= 78%) 2902932 (= 103 %) 

20 1905 (= 25%) 607 (= 96.0%) 1.45 (= 63%) 3054536 (= 108%) 

25 895 (= 11%) 514 (= 80.8%) 1.12 (= 48%) 3214562 (= 115%) 

Table 4.3. Sensitivity of parameter dthresh. 

 

In table 4.3, it is clear that as dthresh increases gradually, number of clusters generated will drop 

significantly. That will further result in fewer distribution networks generated. For example, 

when setting dthesh to be 25 meters, only 80.8% of the input substation points were used to 

generate the distribution networks. That low ratio is considered to indicate potentially 

inaccurate result, because all the 636 substation points are 11kv substations so each of them 

should connect buildings. Therefore, a good dthresh value should result in a high ratio. 

 

On the other hand, the total length of synthetic networks should be kept as small as possible 

(since that is the algorithm assumption). As dthresh increases, network total length will 

increase, because with fewer clusters being generated, each cluster contains more buildings. 

When assigning a substation to each building (in the topology generation process), each 

building is represented by the geometric centroid of the cluster (could be very far away from 

buildings within the cluster), and therefore the cable connecting a building to its dependent 

substation can be longer in this case (simple example in figure 4.18). 
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Figure 4.18. Synthetic network result may change depending on different dthresh value. 

 

Following this logic, it is considered that 5 meters and 10 meters are the good values for 

dthresh. When using 5 meters, 78% more processing time is needed. That is because with more 

clusters generated, it is computationally more expensive to connect each cluster centroid to 

the road network to generate the base network (in the topology generation process). 

Newcastle is a small city, and algorithm running time difference will be more relevant when 

processing data from much larger city (such as London). That is why 10 meters is finally 

chosen as a good value for dthresh. 

 

In the pilot study, the Delaunay triangulation process was also applied, as mentioned in 

section 4.3. Without that process, the algorithm will be much slower, as shown in table 4.4. 

Triangulation 

Process 

Number of 

Networks Generated 

Algorithm Running 

Time (hours) 

Network Total Length 

(meters) 

Not Applied 636 (= 100%) 30.86 (= 1360%) 2802985 (= 99.84%) 

Applied 636 (= 100%) 2.27 (= 100%) 2807478 (= 100 %) 

Table 4.4. Effect of applying Delaunay triangulation process. 
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In table 4.4, it is clear that if not applying the triangulation process, algorithm will be 13.6 

times slower. That is because the triangulation process greatly reduces the amount of shortest 

path calculations that need to be resolved. That can be a big problem when processing large 

city data. The triangulation process helps to save a great amount of time but does not cause 

big difference in the synthetic network result, which is why this process is applied. 

4.6 Synthetic Network Validation 

When generating synthetic networks heuristically, the biggest concern is the data quality, or 

how well the synthetic network represents the real network. Northern Power Grid (NPG) 

utility company provided the actual layout of the distribution networks in Newcastle upon 

Tyne, the best real data for validation. The actual data is a polyline shapefile file, in which the 

spatial layout of the electricity cables is stored.  

 

NPG has labelled all the cables to be either of type “service line” or “feeder” (figure 4.19). 

The “service line” refers to the cable directly connected with a building, and corresponds to 

the “buildingAccess edge” in the synthetic network model (figure 4.14). The “feeder” refers 

to any other cables, corresponding to all the other types of edge in the synthetic network. To 

avoid confusion during validation, the edges in the synthetic networks of type “assetAccess 

edge” and “distribution edge” are termed “Synthetic Feeder”, and the edges of type 

“buildingAccess edge” are termed “Synthetic Service Line”. 

 

Close observation on the NPG data reveals one issue. Network topology cannot be derived 

from spatial connectivity in the data, because cables (polylines) often disjoint or intersect 

when they should have touched each other (figure 4.20 (A)). More importantly, to date no 

information is available on its partitioning in terms of different distribution network instances. 

As NPG data is one large network data with inaccurate connectivity, it is not possible to infer 

the partition due to the lack of the expected boundary (gap) between two distribution network 

instances (figure 4.20 (B)), which can be obvious in synthetic networks (figure 4.3). There is 

also no information on the dependent substation for each actual feeder and/or service line. 
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Figure 4.19. NPG data of electricity distribution networks in Newcastle upon Tyne (Contains 

NPG data © 2018). 

 

Figure 4.20. (A). Difficulty in retrieving topology from NPG data. (B). Difficulty in 

retrieving expected network instance boundary (orange circle) (Contains NPG data © 2018). 
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Considering these limitations, it is not feasible to understand (or infer) the building-substation 

dependency from the actual data (and thus validate). However, spatial validation is still 

possible on the synthetic networks with regards to their spatial proximity to actual data. There 

will be two validations in this section: validation on the feeders, and validation on the service 

lines. The reason to do separate validations on feeders and service lines is because they have 

different topological connectivity in electricity distribution networks (a service line connects a 

building and a feeder does not). Each of the validations will be explained into details below. 

 

4.6.1 Validations on Feeders 

Level of spatial proximity should be measured when validating the synthetic feeders against 

the actual feeders. But before even defining spatial proximity in this situation, one 

measurement needs to be done first, to validate one of our basic assumptions of the algorithm. 

 

Figure 4.21. Location of actual feeders and synthetic feeders, with regards to roads (Contains 

OS and NPG data © 2018). 

 

The algorithm assumes that infrastructure networks should be paved along the road network. 
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In the pilot study (electricity distribution networks), that means the feeders should follow the 

road network. To be precise, the road network (ITN) as the input of the algorithm, is based on 

the road centrelines, and therefore the synthetic feeders always follows the road centrelines. 

But the actual data show the actual feeders normally follow one side of the road, and this 

situation is shown in figure 4.21. In figure 4.21, the road polygon layer represents the actual 

space occupied by roads. By measurement, it is found that 92% of the total length of the 

actual feeders fall within the road polygon, which means our basic assumption of the 

algorithm is generally correct. 

 

Meanwhile, figure 4.21 indicates how to validate the synthetic feeders against the actual 

feeders. In GIS data validation, errors of omission and errors of commission are the two most 

common measurements (Weng, 2010). In this validation, errors of omission refer to the error 

of this algorithm to not generate feeders where it should have, while errors of commission 

refer to the error of our algorithm to generate feeders where it should not have. These two 

errors are used to measure the spatial proximity between the synthetic and actual feeders. 

 

Figure 4.22. Errors of commissions (grey circles) (Contains OS and NPG data © 2018). 

 

For calculating the error of commissions, a buffer (buffer on both sides) is be generated for 
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the actual feeders (figure 4.22). The buffer distance is 10 meters. The reason to use this value 

is that, in the UK, a single lane width should be 3.65 meters (Newcastle City Council, 2011). 

For a dual carriage way with two lanes in each direction, the distance from centrelines to the 

side of the road should be 7.3 meters. A slightly larger value (10 meters) is used for that as it 

considers possible presence of bicycle lane and median strip. The buffer type is flat-end (note 

the cut-off at the end of the actual feeders). Similarly, to calculate the error of commissions, a 

buffer (distance is 10 meters) is generated on both sides of the synthetic feeders (figure 4.23). 

 

Figure 4.23. Error of omissions (grey circles) (Contains OS and NPG data © 2018). 

 

By measurement, it is found that, in the entire city, 86% of the actual feeders (total length) 

are within the buffer of synthetic feeders and 89% of the synthetic feeders (total length) are 

within the buffer of actual feeders. Based on these two values, it is argued consider the level 

of spatial proximity between the actual and synthetic feeders is high. 

 

4.6.2 Validation on Service Lines 

To validate the service lines, the errors of commission and omission defined above are not 



86 

 

used here. That is because the service lines do not follow the road network. Instead, the 

validation relies on a difference angle, which is defined in figure 4.24 to show the intersection 

angle in a (actual service line, synthetic service line) pair, where both lines serve the same 

building. Note that a service line is considered to be directional (direction from building), so 

that the difference angle can be between 0° and 180°. For each building in the city, the 

difference angle is calculated (where data on the actual service line exists), and a histogram is 

generated (figure 4.25). 

 

 

Figure 4.24. Definition of difference angle (Contains OS and NPG data © 2018). 

 

In total, 75,430 service lines pairs in Newcastle upon Tyne were found and used for 

validation. A histogram was draw to show the distribution of the difference angles in the 

whole city. It is found that difference angle of over 70% service line pairs (52,872 pairs) is 

less than 10°, and that of over 76% service line pairs (57,409 pairs) is less than 20°. It is 

considered that the direction of synthetic service lines generally matches the actual ones. The 

average difference angle in the entire city is 17.3°. This value is considered relatively small, 

but still there is discrepancy. It is caused by two major reasons. 

 

The first reason is the discrepancy of layout between synthetic and actual feeders (figure 

4.26). Within grey circle of figure 4.26, actual feeders do not connect with each other, while 
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the synthetic feeders do, which cause large difference angles. Despite this issue, it is found 

that actual service lines do connect actual feeders as perpendicularly as possible, which is 

exactly the way to generate the layout of service lines in our algorithm. 

 

Figure 4.25. Distribution of difference angles. 

 

 

Figure 4.26. Large difference angles caused by different feeder layout (Contains OS and NPG 

data © 2018). 
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The second reason is related to how feeders are paved along the road. Figure 4.27 shows this 

issue, where the terrace within yellow circle generates very large difference angles. 

 

Figure 4.27. Large difference angles within yellow circle (Contains OS and NPG data © 

2018). 

 

Figure 4.28. Different ways to define distance from a road to a terrace of building (Contains 

OS and NPG data © 2018). 
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In the algorithm, centrelines of roads are used to represent the road network. To generate 

service lines for a terrace or a building, the nearest road to centroid of it is chosen. According 

to the figure 4.21, that “nearest rule” also applies to actual data, but in a slightly different way. 

The actual data indicates that terrace or building should choose the nearest road (distance 

from nearer side of the road to it) to generate service lines (as actual feeders paved on road 

side instead of centrelines). Figure 4.28 gives a clearer explanation. If the distance is defined 

from road centrelines, then the terrace is closer to road No.2 than to road No.1 (i.e., red line is 

shorter than orange line). But if the distance is defined from the nearer road side, then the 

terrace is closer to road No.1 than to road No.2 (i.e., blue line is shorter than red line). 

 

Both figure 4.27 and figure 4.28 indicate potential optimization of the algorithm, which is to 

use road centreline network together with road polygon. This should help to generate more 

plausible synthetic network layout compared with the actual data. 

4.7 Algorithm Transferability Test 

Until now it has been explained how the spatial heuristic algorithm works and how to apply it 

to generate electricity distribution networks in Newcastle upon Tyne. This city is relatively a 

small city. If ranked by population, Newcastle upon Tyne is the 30th largest city in the UK 

(City Mayor, 2018). This algorithm is developed as a generic algorithm for potentially any 

city in the world. Therefore, it is essential to further test the algorithm transferability for cities 

of different sizes. In this section, seven different cities (or regions) are chosen in the UK, to 

further test this algorithm (from small city like Exeter to mega city like London). For each 

city, the algorithm is executed to generate the electricity distribution networks (based on road 

network, buildings and substations). Table 4.5 shows the basic information of the chosen 

cities or regions. Figure 4.29 shows the location of these cities or regions within the UK. 

 

City / Region No. Residents Area (km2) No. Buildings No. Substations 

Exeter 107,700 47 48,821 475 

Newcastle 282,300 112 104,855 636 
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Sheffield 530,300 368 223,159 1,512 

Leeds 726,900 552 310,546 2,461 

Birmingham 1,020,500 598 395,509 2,252 

Greater Manchester 2,798,800 1276 1,131,645 6,913 

Greater London 8,546,700 1572 2,239,213 16,839 

Table 4.5. Chosen cities or regions for test algorithm transferability. 

 

As mentioned in the first section of this chapter, accessing good quality spatial data for fine 

scale infrastructure network can be extremely difficult. Until the completion of this PhD, only 

Northern Powergrid data is available as actual data for electricity distribution networks. 

Therefore, validation for other cities or regions (other than Newcastle upon Tyne) is not 

possible. Even so, it is still possible to estimate the time complexity of the algorithm, by 

running the algorithm for these areas. 

 

 

Figure 4.29. Location of chosen cities or regions for algorithm transferability test. 
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For each city or region, all the input data were downloaded from OS MasterMap ITN layer 

(roads), OS MasterMap PoI layer (substations) and OS MasterMap Topography layer 

(buildings) (Ordnance Survey, 2018). The algorithm was run as a Python script on a desktop 

workstation, with 2 core CPUs (Intel(R) Xeon(R) Gold 6134 CPU @ 3.20 GHz), and 512 GB 

memory. 10 meters was used as dthresh and the Delaunay triangulation was applied. The 

characteristics of the algorithm result were shown in table 4.6. Table 4.6 shows that, for any 

city, the size of the synthetic networks (total number of the nodes) is almost twice the number 

of buildings (actually more than twice). That is because for each building, a “building node” 

and a “buildingAccess node” are generated in the result networks. Moreover, road network is 

used as a “back bone” to generate synthetic networks, therefore some nodes from the road 

network will also be kept in the synthetic networks. Therefore, the more buildings there are in 

the input data, the larger synthetic networks will be generated. The largest network result is 

the electricity distribution networks for Greater London, where 16,839 substations serve 

2,239,213 individual buildings (figure 4.30). The synthetic network results for Exeter, 

Sheffield, Leeds, Birmingham, and Greater Manchester are shown in Appendix C, figure C7 

to C11. 

 

Area/Region No. Buildings No. Substations No. Nodes No. Edges Processing Time (h) 

Exeter 48,821 475 99,338 99,242 1.41 

Newcastle 104,855 636 209,886 209,892 2.27 

Sheffield 223,159 1,512 446,697 446,742 7.85 

Leeds 310,546 2,461 628,234 628,079 12.7 

Birmingham 395,509 2,252 797,741 798,137 14.2 

Greater Manchester 1,131,645 6,913 2,288,186 2,289,317 87 

Greater London 2,239,213 16,839 4,528,952 4,512,779 316 

Table 4.6. Characteristics of synthetic networks generated for test cities or regions. 
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Figure 4.30. Synthetic electricity distribution networks for Greater London, where each 

colour represents a single network instance. 

 

The algorithm processing time was shown in a histogram (figure 4.31). 

 

Figure 4.31. Algorithm running time for different test areas. 
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It is argued that in this algorithm, the most computationally expensive part is the “cluster-

asset dependency calculation”. This is the process in the topology generation part (section 

4.3.1, see figure 4.6) of the algorithm, which is, for each cluster, assigning a nearest asset to it 

(via the base network). The percentage of processing time “cluster-asset dependency 

calculation” was measured and shown in table 4.7. 

 

Area/Region Algorithm running time (h) Cluster-asset dependency calculation time (h) 

Exeter 1.41 0.80 (57%) 

Newcastle 2.27 1.33 (59%) 

Sheffield 7.85 4.95 (63%) 

Leeds 11.7 7.9 (68%) 

Birmingham 14.2 9.9 (70%) 

Greater Manchester 87 64 (74%) 

Greater London 316 278 (83%) 

Table 4.7. Percentage of cluster-asset dependency calculation time. 

 

From table 4.7, it is found the cluster-asset dependency calculation accounts for a large 

percentage of algorithm total running time. This becomes more apparent when city is large 

(for example, Birmingham, Greater Manchester, and Greater London). 

 

Therefore, it is argued that the time complexity of the cluster-asset dependency calculation 

will be a good proxy for the overall algorithm (especially for large data set). From now, the 

cluster-asset dependency calculation will be termed “CADC process” until the end of this 

chapter, for easy reference. 

 

Dijkstra shortest path calculation is the essential part in the CADC process, because for each 

cluster, Dijkstra shortest path algorithm will be called to find the nearest asset (via the base 

network). The time complexity of Dijkstra path algorithm is O (E + Vlog2V) (Barbeheen, 

1998). In here E and V refer to the number of edges and nodes in the graph. To further 
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understand the complexity of CADC process, the notations shown in table 4.8 are used. For 

each different test area, the values for these notations are shown in table 4.9. 

 

Notation Description 

Nb Number of buildings 

Na Number of assets 

Nc Number of clusters 

Er Number of edges in the road network 

Vr Number of nodes in the road network 

Eb Number of edges in the base network (in the topology generation process) 

Vb Number of nodes in the base network (in the topology generation process) 

Table 4.8. Notations used to assess time complexity of CADC process. 

 

City/Area Nb Na Nc Er Vr Eb Vb 

Exeter 48,821 475 4,739 7,987 7,963 17,431 17,424 

Newcastle 104,855 636 7,719 16,963 16,776 32,370 32,347 

Sheffield 223,159 1,512 16,778 21,490 21,447 55,039 54,986 

Leeds 310,546 2,461 25,044 39,203 38,262 89,240 88,793 

Birmingham 395,509 2,252 33,236 33,495 33,294 99,656 98,858 

Greater 

Manchester 

1,131,645 6,913 89,105 143,976 142,123 320,279 318,357 

Greater 

London 

2,239,213 16,839 162,251 275,191 273,264 597,717 592,989 

Table 4.9. Values of notations for the test area. 

 

First, the time complexity to resolve Dijkstra path algorithm one time, is transformed to O (Eb 

+ Vblog2Vb) in our case. Since Delaunay triangulation is applied, each cluster will only need 

to find the nearest asset from three assets (a constant value) via the base network. Therefore, 

time complexity of the entire CADC process becomes: 

 

O (Nc (Eb + Vblog2Vb)) 
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From table 4.9, Eb is almost always equal to Vb, therefore: 

 

O (Nc (Eb + Vblog2Vb)) ≈ O (Nc (Vb + Vblog2Vb)) 

 

This is equal to: 

 

O (Nc (Vb (1 + log2Vb)) 

 

Note in table 4.9, Vb is approximately proportional to Nc, and the ratio of Vb/Nc is between 3 

and 4 regardless of city size. That is because, to construct a base network, for each cluster, its 

centroid and the project point (on the road network) with be added to the road network, that 

means: 

 

Vb ≈ Nc * 2 + Vr 

 

It is also found for any city, the size of the road network (number of nodes) is approximately 

proportional to Nc, and the ratio of Vr / Nc is between 1 and 2. This is exactly the reason that 

Nc is almost proportional to Vb. 

 

Knowing this, the CADC complexity can be simplified as follows, where r is the ratio of 

Vb/Nc, which is a number between 3 and 4: 

 

O (Nc (Vb (1 + log2Vb)) = O (Nc (Nc * r * (1 + log2 (Nc* r))) 

 

Now it is argued that, due to the log function, the value of r * (1 + log2 (Nc* r)) will be 

approximately fixed, especially for large city or area, for example for Greater Manchester and 

Greater London. Please see table 4.10 for details. 
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City/Area r Nc r * (1 + log2 (Nc* r)) 

Exeter 3.67 4,739 51.673 

Greater Manchester 3.57 89,105 68.901 

Greater London 3.65 162,251 73.365 

Table 4.10. Change of value r * (1 + log2 (Nc* r)), when area size is doubled. 

 

Table 4.10 shows that even city size (number of clusters) increases 35 times (from Exeter to 

Greater London), the value r * (1 + log2 (Nc* r)) only increases by 33%. When city size is 

almost doubled (from Greater Manchester to Greater London), the value r * (1 + log2 (Nc* r)) 

only increased by 1.5%. This increase will become less apparent when processing even larger 

city data. 

 

Due to this, for large city, the CADC complexity can be further simplified as follows: 

 

O (Nc (Nc * r * (1 + log2 (Nc* r))) ≈ O (Nc
2), (especially for large Nc value) 

 

Finally, note in table 4.9, Nb is proportional to Nc (for a fixed dthresh such as 10 meters), and 

the ratio of Nb / Nc is between 10 and 14, that means the CADC complexity can be roughly 

transformed to: 

O (Nc
2) ≈ O (Nb

2) 

Therefore, it is concluded that, by approximation, the CADC time is proportional to square of 

the number of input buildings, and would be a proxy to evaluate the running time of the entire 

algorithm. This approximation will be more accurate when city size is very large (such as 

Greater Manchester or Greater London). For example, Greater London contains twice the 

number of buildings compared with Greater Manchester, and therefore it is reasonable to 

expect the algorithm to be roughly four times slower. 
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4.8 Conclusion 

In this chapter, a generic applicable spatial heuristic algorithm was presented and explained 

for generating plausible fine-scale infrastructure networks which connect assets (of any type) 

and their dependent buildings. A pilot study was undertaken to generate all the low voltage 

electricity distribution networks in Newcastle upon Tyne. A validation was done using the 

mapped distribution network from the local power company. Validation was done to measure 

the spatial proximity between the synthetic and actual network. In the end, a transferability 

test was run to test the processing time of algorithm using different sized data. There are 

several interesting findings in this chapters which might point our potential future work. 

 

First of all, when doing the validation, it is found that at least for the electricity distribution 

networks, the feeder cables should be paved only along one side of the road, instead of the 

centrelines. That created some discrepancy between our synthetic feeders and actual ones. 

This discrepancy apparently depends on the width of the road. For a more accurate version of 

the algorithm, using the ITN road network together with the road polygon layer would be 

essential. This is considered to be an important optimization in the future. 

 

Secondly, the algorithm is a generic spatial algorithm for any type of infrastructure network. 

Therefore, no other non-spatial attributes are considered, such as capacities (the maximum 

number of buildings each asset can serve). Accuracy of the synthetic networks can be 

improved by taking this into consideration. 

 

Finally, running this algorithm can be expensive (backed by transferability test) especially for 

large city. Doubling the city size means spending four more times to complete the algorithm. 

This can be very long if we process even larger city than London (for example, Tokyo, New 

York, and Beijing, etc.). There are several potential improvements that can be made. 

 

First optimization is to have more transferability tests. Now only UK cities were chosen for 

the transferability test. Therefore, the rules found here (such as number of clusters is 
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proportional to the number of buildings, or number of roads is proportional to the number of 

buildings, etc.) might not apply to cities in other countries. Algorithm time complexity might 

not be able to be simplified as O (Nb
2) in general. Therefore, more transferability tests (using 

data from other countries) will be beneficial. 

 

Second optimization is the improvement of the graph engine. Currently, the graph engine to 

implement Dijkstra path algorithm is NetworkX library in our implementation. Therefore, if a 

faster graph engine is available, it is possible to save more time, otherwise, running the 

algorithm on even more powerful computers (such as on the cloud) would be a good idea to 

complete the algorithm within reasonable time.  

 

The third optimization is to possibly partition input data. If processing large data (all the 

buildings, all the assets, and all the roads) in one-go is expensive, then it would be a good idea 

to segment the original area into several parts. Then algorithm can run on each segment with 

reduced amount of input data, which can be computationally cheaper. However, how to 

segment the original area can be another problem, to not cause significant difference in the 

synthetic networks generated. 
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Chapter 5. Utility Network Integration 

5.1 Introduction 

In the last chapter, a geospatial heuristic algorithm that infers the spatial layout of fine scale 

urban infrastructure networks, based on the location of buildings, infrastructure assets and the 

local road network was developed. The algorithm was applied to generate the electricity 

distribution networks for Newcastle upon Tyne, and has achieved high spatial accuracy when 

validated using network data from local utility company Northern Power Grid. The algorithm 

is aimed to solve the problem, in which layout of cables or pipes of infrastructure networks is 

completely missing. 

 

In this chapter, the work of inferring fine scale infrastructure networks will continue, for other 

utility sectors for the city of Newcastle upon Tyne. The targeted utility networks are gas 

supply network (section 5.2), water supply network (section 5.3), and the sewer network 

(section 5.4). For these utility networks, layout of main pipes (those follow the layout of road 

network) is known from local utility companies (Northern Gas Networks and Northumbria 

Water Group). Therefore, it means there is no need to repeat work in the last chapter (such as 

using road network to generate geometry of main pipes / cables of the network). 

 

However, it is necessary to carry out additional data correction work, such as data completion, 

or inferring flow direction if it is missing in order to generate a complete fine spatial scale 

infrastructure network (from asset to building). Furthermore, this chapter will explore how 

dependency between different utility networks can be represented. Case studies will be 

conducted in Newcastle upon Tyne and London (section 5.6), to represent the dependency 

from gas supply, water supply and sewer networks to the electricity distribution networks. 
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5.2 Gas Network Integration 

Natural gas is exploited from gas wells or imported from external countries, and then 

pressurized and transported through regional gas transmission networks (Vianello and 

Maschio, 2014). Compressor stations are set up along the transmission networks to 

compensate the gas pressure loss due to friction occurring within the pipes. When gas is 

approaching urban areas, it is sent to the pressure regulation sites to reduce the pressure of the 

gas feed to customers (Fügenschuh et al, 2015). The gas pressure in the transmission networks 

can be between 40 and 90 bar, and the gas pressure that is suitable for customer use is around 

0.075 bar. Generally, it is not possible to use only one gas regulation site to reduce the 

pressure from transmission level to the domestic level. Instead, in the gas industry, multiple 

gas regulation sites are necessary to gradually reduce gas pressure. This situation is like the 

electricity network, where there are 132kv, 66kv, 33kv, and 11kv substations are used to 

gradually reduce the voltage of electricity from transmission level to the domestic level. For a 

gas company, only the spatial layout of gas main pipes is available. Therefore, in order to 

construct a fine scale gas distribution network to individual buildings, it is necessary to 

generate the service pipes and connect them to the gas main pipes. 

5.2.1 Gas Network Data 

With the help of the local gas provider, Northern Gas Networks (NGN), it is possible to 

access the layout of the low-pressure gas distribution networks for Newcastle upon Tyne. The 

low-pressure gas distribution networks are the lowest level of gas distribution networks within 

cities, where the gas pressure is around 0.075 bar. NGN provides data in the shapefile format 

as two files: a polyline shapefile containing the geometry the gas main pipes, and a point file 

shapefile containing the nodes which are junctions of gas main pipes and gas sources (gas 

regulation sites). Figure 5.1 shows the layout of NGN pipes and the gas regulation sites. 

Please note that these regulation sites are fed by high-pressure gas distribution pipes (between 

0.075 and 40 bar). National Grid does provide the layout of gas transmission network 

(https://www.nationalgridgas.com/land-and-assets/network-route-maps) (between 40 and 90 

bar), but currently data of high-pressure gas distribution pipes (between 0.075 and 40 bar) is 

https://www.nationalgridgas.com/land-and-assets/network-route-maps
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unavailable, which is why it is not visually displayed in figure 5.1. 

 

Figure 5.1. NGN network for Newcastle upon Tyne (Contains NGN Data © 2018). 

 

In total, the NGN network data totally contains 34,644 nodes and 37,655 edges. 105 of the 

nodes correspond to gas regulation sites. The NGN network data contains 43 sub-network 

instances (technically speaking, the sub-systems in the gas industry). Each sub-system is a 

connected network instance with one or more sources (regulation sites). Figure 5.2 shows the 

different sub-systems in the NGN network data, where each colour indicates one sub-system. 

 

NGN has labelled each node and each edge with a unique Node_ID and an Edge_ID, 

respectively. Each edge (pipe) has numeric or text attributes, such as pipe diameter and pipe 

material (steel pipe, PVC pipe, etc.). Moreover, gas flow direction is recorded across the 

entire NGN network. The flow direction is encoded on each edge, by specifying the flow 

from-to topologically connected nodes that connect an edge (using Node_ID). This makes it 

possible to integrate the buildings in order to construct a fine scale gas distribution network 

(from regulation sites to buildings) with flow direction encoded. 
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Figure 5.2. Different sub-systems within NGN network data, each in different colours 

(Contains NGN data © 2018). 

 

However, a close inspection of the supplied data revealed data incompleteness. NGN network 

data does not exist for recently new development within Newcastle upon Tyne. Thus, before a 

full directed gas distribution network could be generated, the algorithm developed in Chapter 

4 was (slightly modified and) employed to generate main pipe gas network for the areas, 

where NGN network data are absent. 

 

Figure 5.3 shows the overall work flow of gas network integration. The data is first stored in a 

PostGIS database, then the input data sets (NGN network data, buildings, and road network) 

are retrieved from the database, and processed through a gas network infer algorithm to 

produce the completed layout of the gas main pipes (completed NGN network). After that, the 

completed NGN network is then processed via a building service infer algorithm where 

service pipes are generated and connected to the completed NGN network. Finally, the fine 

scale gas distribution network is written back to the PostGIS database. Details of these 
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algorithms are presented in the next two sections. 

 

Figure 5.3. General work flow for gas network integration. 

5.2.2 NGN Network Completion 

For the city of Newcastle upon Tyne, it is noticed that there are some areas which are clearly 

not covered by NGN network (figure 5.4). As noted earlier, these problematic areas are the 

new development areas in the city, which will hinder generation of gas distribution networks 

that connect every building in the city. 

 

Despite the lack of the actual data, NGN informed that it is quite reasonable to generate the 

synthetic layout of gas main pipe network using a local road network. Therefore, based on this 

information, an algorithm called gas network infer algorithm was developed to tackle this 

issue. Details of this algorithm are shown in listing 5.1. 
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Figure 5.4. Absence of actual data in some area of the city (Contains NGN data © 2018). 

 

First (line 1-2 in listing 5.1), it is necessary to identify buildings where there are not existing 

NGN network data nearby (buildings that are too far from NGN network). The interesting part 

will be to quantify how far is “too far”. In here a parameter d (50 meters in this case) is 

defined. By setting d, it is possible to find all the buildings (Bfetched) that have lager distance 

(than d) to the existing NGN network. For all 104,855 buildings in Newcastle upon Tyne, 

4,287 of them are identified to be at least 50 meters away from NGN network, which is 

shown in Figure 5.5. 

 

After that, for each building fetched, the nearest road to this building will be selected, which 

will be stored in a set called Rfetched. These road segments will be used to infer the “missing” 

parts of the NGN network. For all 16,963 road segments in Newcastle upon Tyne, 711 of them 

are selected as Rfetched, which is shown in figure 5.6. 
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Listing 5.1. Pseudo code for the gas network infer algorithm. 

 

 

Figure 5.5. All the buildings that are too far (distance > 50 meters) from NGN network. They 

are indicated within the red circles (Contains NGN data © 2018). 
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Figure 5.6. Road segments fetched, which are nearest to the fetched buildings (Contains 

NGN data © 2018). 

 

The next step (line 3 – 4 in listing 5.1) identifies how many connected sub network instances 

can all the fetched road segments form. This is done using NetworkX library (NetworkX, 

2018). In the end, 9 connected sub network instances were found. Each sub network instance 

can be regarded as the synthetic part of the gas main pipes where NGN network data are 

missing. 

 

Then each sub network instance will find the correct “off take” location to be able to connect 

to the existing NGN network. NGN explained that, despite lacking the gas main pipe network 

data in these recently developed areas, in the existing data, there are some nodes with a 

specific type called “CSEP”. CSEP nodes are those reserved future development areas, as 

these CSEP nodes are connected with large diameter pipes. 
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Therefore, it is plausible to consider these CSEP nodes are the “off take” locations, where 

synthetic main pipes can be connected to the existing ones (NGN network). There are totally 

97 CSEP nodes in the Newcastle upon Type (figure 5.7). 

 

Figure 5.7. CSEP nodes in the NGN network data (Contains NGN Data © 2018). 

 

Figure 5.8 and 5.9 show how to exactly make the connection between a sub network instance 

and a CSEP node. Figure 5.8 shows the area that is the same as figure 5.4, where there is one 

sub network instance (synthetic layout of gas main pipes in this area). To make things clear, it 

is necessary to define the distance from a CSEP node to a sub network instance. The distance 

is defined as the Euclidean distance from the CSEP node to the nearest location (point) within 

the sub network instance. 

 

Then using this distance definition, for the sub network instance in figure 5.8, the nearest 

CSEP node will be selected, and the point A is used to calculate the aforementioned distance. 

After that, a straight line is used to connect the point A and the CSEP node (figure 5.9). By 

doing this, a sub network instance is connected to a CSEP node. 
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Figure 5.8. Before connecting a sub network instance to NGN network (Contains NGN Data 

© 2018). 

 

Figure 5.9. After connecting a sub network instance to NGN network (Contains NGN Data © 

2018). 
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Once each sub network instance has been extended to the CSEP node, there will be two final 

steps: flow direction calculation and network data merging. First, flow direction will be 

inferred on each sub network instance (line 5 in listing 5.1). To do that (figure 5.10), it is 

natural to assume the gas is first fed into the CSEP node, and from there gas will flow into the 

entire sub network instance. Therefore, for any edge in the sub network, and the two nodes 

connecting this edge (node A, and node B), the Dijkstra shortest path is calculated from the 

CSEP node to node A and to node B respectively. 

 

Flow direction on the edge A-B is inferred from the node corresponding to a shorter path to 

the node corresponding to a longer path. In this case, flow direction is from node A to node B. 

The calculation is done using NetworkX library (NetworkX, 2018) and is repeated for every 

edge on the sub network instance. 

 

 

Figure 5.10. Infer flow direction on the sub network instance (Contains NGN data © 2018). 
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The completed gas main pipe network contains 32,884 network edges, of which 32,177 

(97.8%) are from the existing data and 707 (2.2%) are synthetically generated. Total length 

for the completed gas main pipes is 1,332,971 meters, where 94.6% of them (1,261,376 

meters) is from existing data, and 5.4% of them (71,595 meters) are from synthetic pipes. The 

result is shown in figure 5.11. 

 

 

Figure 5.11. Completed gas main pipe network in Newcastle upon Tyne (Contains NGN Data 

© 2018). 

5.2.3 Gas Distribution Network Generation 

When gas main network for the whole city is available, it is possible to generate the service 

pipes that connect buildings and main pipes. By doing this, fine scale gas distribution 

networks can be generated. This process is achieved via the building service infer algorithm 

shown in listing 5.2. 
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Listing 5.2. Pseudo code for building service infer algorithm (gas). 

This algorithm applies the similar approach as Chapter 4. For each building, the nearest gas 

main pipe will be selected, and a service pipe will be used to connect the centroid of the 

building and the main pipe (in a perpendicular way). Flow direction on the service pipes will 

be calculated, which is always to the building node. Figure 5.12 shows the example of 

integrating buildings to the completed gas main pipe network. For the entire city of Newcastle 

upon Tyne, the fine scale gas distribution network contains 236,307 nodes and 239,484 edges, 

which are shown in figure 5.13. 

 

Figure 5.12. (A) Completed gas main pipe network, with flow direction, (B) Gas distribution 

network to the buildings, with flow direction encoded (Contains NGN data © 2018). 
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Figure 5.13. Gas distribution network (including service pipes) generated for Newcastle upon 

Tyne (Contains NGN Data © 2018). 

5.2.4 Parameter Sensitivity 

In section 5.2.2, an important parameter d is defined for the process of generating synthetic 

gas main pipes in the areas where NGN data is not available. This section will explore the 

parameter sensitivity of d. Three values are used to set up the parameter d, 25 meters, 50 

meters, and 100 meters. To explain how the gas distribution network can change according to 

different d values, the small area shown in figure 5.4 is used here again. This is shown in 

figure 5.14, where road network is also displayed. 

 

First, using these three values, buildings which have larger distance (than d) to the NGN 

network are selected and shown in figure 5.15, 5.16 and 5.17, respectively. 
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Figure 5.14. Area for explaining parameter sensitivity of d (Contains NGN Data © 2018). 

 

Figure 5.15. Buildings fetched (d = 100 meters) (Contains NGN Data © 2018). 
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Figure 5.16. Buildings fetched (d = 50 meters) (Contains NGN Data © 2018). 

 

 

Figure 5.17. Buildings fetched (d = 25 meters) (Contains NGN Data © 2018). 
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From figure 5.15, 5.16 and 5.17, it is easy to understand the number of buildings fetched will 

increase as d decreases. But such difference is very subtle. For example, when d is 100 

meters, 373 buildings are fetched, and this number is 377 if d is 25 meters. When different 

number of buildings are fetched, number of road segments nearest to these buildings will also 

change. This will affect the sub network instance (serves as the synthetic main pipes) 

generated. Figure 5.18, 5.19, and 5.20 shows the different sub network instances generated 

with different d values. Differences in synthetic main pipes are minor, which are highlighted 

in green circles. The length of synthetic main pipes also increases as d decreases. 

 

 

Figure 5.18. Synthetic main pipes (d = 100 meters) (Contains NGN Data © 2018). 

 



116 

 

 

Figure 5.19. Synthetic main pipes (d = 50 meters) (Contains NGN Data © 2018). 

 

 

Figure 5.20. Synthetic main pipes (d = 25 meters) (Contains NGN Data © 2018). 
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Finally, gas service pipes can be generated when gas main pipes are available (figure 5.21, 

5.22, and 5.23). Note that when d increases, service pipe length can increase (red circle in 

figure 5.21, compared with 5.22 and 5.23). 

 

Figure 5.21. Synthetic service pipes (d = 100 meters) (Contains NGN Data © 2018). 

 

 

Figure 5.22. Synthetic service pipes (d = 50 meters) (Contains NGN Data © 2018). 
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Figure 5.23. Synthetic service pipes (d = 25 meters) (Contains NGN Data © 2018). 

 

The six above figures (from figure 5.18 to figure 5.23) suggest that synthetic main pipes 

length will decrease as d increases, while the service pipes length will increase as d increases. 

As discussed in Chapter 4, when designing spatial layout of infrastructure networks, total 

length needs to be kept as small as possible, which corresponds to the length of gas main 

pipes and service pipes in this case. Therefore, these three d values are used to generate fine 

scale gas distribution networks in the entire city and measurement of pipe length is shown in 

table 5.1. To get shortest gas distribution networks in Newcastle upon Tyne, then 50 meters is 

a plausible value for d, which is the reason to use this value in this case study. 

 

d Length (main pipes) Length (service pipes) Length (total) 

100 m 1,331,734 m 1,593,969 m 2,925,703 m 

50 m 1,332,971 m 1,591,146 m 2,924,117 m 

25 m 1,334,572 m 1,590,742 m 2,925,314 m 

Table 5.1. Change of pipe total length as d changes. 
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5.2.5 Gas Network Validation 

Section 5.2.2 discussed the approach for generating synthetic gas main pipes in areas without 

NGN network data. It is important to assess how accurate this approach is. Validation is 

difficult as main pipe network data are unavailable in these areas (which is why gas network 

infer algorithm is developed). However, there is still one way for validation based on 

available data: from the existing NGN network data, remove a small part from a CSEP node, 

and then generate the synthetic main pipe network, and validate it against the actual one. 

Three small areas are chosen and shown in figure 5.24, 5.25, and 5.26. 

 

 

Figure 5.24. Validation area 1 (Contains NGN Data © 2018). 
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Figure 5.25. Validation area 2 (Contains NGN Data © 2018). 

 

 

Figure 5.26. Validation area 3 (Contains NGN Data © 2018). 

 

To validate the synthetic main pipes against the NGN network data, the error of commissions 

and error of omissions are used here (which were introduced in Chapter 4, for validating 

electricity feeders). The buffer distance is still 10 meters (same as chapter 4). The definition of 



121 

 

these two types of errors are shown in table 5.2. Validation result is shown in table 5.3. 

 

Error Description 

Error of omissions Buffer the NGN network data. The percentage of total length of synthetic main pipes 

that do not fall within the buffer. 

Error of commissions Buffer the synthetic main pipes. The percentage of total length of NGN network that 

does not fall within the buffer. 

Table 5.2. Error of omissions and commissions for validate gas main pipes. 

 

Validation Area Error of omissions Error of commissions 

Area 1 2.7 % 8.9 % 

Area 2 4.8 % 3.9 % 

Area 3 3.4 % 7.6 % 

Table 5.3. Validation result for the above three areas. 

 

From table 5.3 it can be concluded that both types of errors are small within different 

validation areas, which suggests that the gas network infer algorithm (in section 5.2.2) is a 

good way to generate gas main pipes if actual data is unavailable. There is one interesting 

thing to note in the validation, especially in validation area 3 (the area within red circle). It is 

mentioned already that synthetic main pipes are generated using ITN network (more 

preciously, road centrelines). While in the red circle area in figure 5.26, the actual NGN 

network are paved along both sides of the road. This is considered to be major limitation of 

the current gas network infer algorithm, and future optimization can be done that (e.g. if there 

are two very lone terraces along both sides of a road, then two main pipes are generated along 

the road, instead of one). 

 

5.3 Water Supply Network Integration 

Water supply network is a pipe-based network to deliver clean water from water source (such 

as treatment plant or reservoir) to individual buildings at desired pressure and quantity (Mays, 

2000). It is generally a pressurized system. Water from the water source are normally first 
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pumped to a high location, such as water tower. Then due to pump head (Ostfeld, 2014), 

water is pressurized, and can be transported through the water supply network. In some areas, 

where water must be transported against pipe gradient, additional water pumping stations 

might be necessary to help re-pressurize water locally (Walski, et al., 2001). Like many utility 

companies, the water supply company (such as Northumbria Water Group, NWG, for the city 

of Newcastle upon Tyne) normally only keeps records for their water main pipes, and that 

additional servicing pipes are necessary to be generated, in order to construct a geospatial 

water distribution network, from source to buildings. 

5.3.1 Water Supply Network Data 

 

Figure 5.27. Water supply network data for Newcastle upon Tyne (Contains NWG Data © 

2018). 

 

With the assistance of the local water supply company, Northumbria Water Group (NWG), it 

is possible to access water supply network data in Newcastle upon Tyne. The data comprises 

of two shapefiles: a polyline data-set which records the layout of water supply pipes, and a 
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point data-set which records the layout of water sources and local water pumping stations. 

The water supply network from NWG is shown in figure 5.27. There are two water sources 

(water service reservoirs) and nine water pumping stations in the NWG network. The 

northern water source is fed by Kielder natural water reservoir from the north, and the western 

water source is fed by the Hallington natural water reservoir from the west. It is worth noting 

the water sources are fed by their own water reservoirs via large diameter water transmission 

pipes, but due to data unavailability, these pipes are not visually displayed. 

 

The NWG network data does not contain nodes (junctions of pipes), only the layout of pipes. 

But it is still possible to infer the location nodes based on spatial connectivity of pipes. The 

work is done via NetworkX library (NetworkX, 2018). After the node generation process, it is 

found that NWG network data contain 36,806 nodes and 39,282 edges. 

 

Figure 5.28. General work flow of water supply network integration. 
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Before the full water supply network can be generated that includes service pipes connecting 

main pipes and individual buildings, the flow direction of the main network needs to be 

inferred, because such information is not available from the actual data. 

 

Figure 5.28 shows the general work flow of the water supply network integration. It is based 

on two major algorithms: water flow infer algorithm and building service infer algorithm. 

First input data (NWG network and building footprints) are read from PostGIS database, the 

NWG network data is processed via the water flow infer algorithm and encoded with flow 

direction. After that, water service pipes will be generated to connect buildings and NWG 

network (the main pipes). The generated fine scale water distribution network will be finally 

written back to the PostGIS database. Details of these two algorithms will be discussed in the 

next two sections. 

5.3.2 Water Flow Infer 

NWG network data is a single connected network instance with two water sources (service 

reservoirs). However, to make the water supply work function properly, a special type of 

valve called gate valve is used to shut off some pipes in order to partition the water supply 

network into several water distribution areas (WDAs) (Mays, et al., 2000). The number of 

WDA is equal to the number of water sources. For each WDA, it is served by one water 

source. Since the goal of this major section (5.3) is to generate fine scale water distribution 

networks, understanding dependency from building to infrastructure assets (water sources) is 

important. Therefore, WDAs must be identified for Newcastle upon Tyne. 

 

However, NWG does not record the spatial location of any value in their water supply 

network data (including the gate valves), which means it is not possible to deterministically 

derive the WDAs for Newcastle upon Tyne. Therefore, a heuristic approach (contained in the 

flow infer algorithm) was developed to infer WDAs in Newcastle upon Tyne. After that, flow 

direction needs to be inferred for each WDA. 
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Inferring WDAs from NWG network data is actually a graph partition problem, which aims to 

partition a single connected network instance into several sub-connected components. 

Traditional graph partition algorithms include the Label Propagation algorithm (Zhu et al, 

2002), Kernighan–Lin alorithm (Lin et al, 1973) and Fiduccia-Mattheyses algorithm (Fiduccia 

et al, 1982), which can all solve the bipartition problem where one graph is divided two sub-

graph components, based on the assumption that size (node number) in each sub-graph is 

almost equal and the total weight of edges connecting the two sub-graphs are kept as small as 

possible. However, these classic algorithms are not suitable for solving this specific WDA 

problem in Newcastle upon Tyne, since they are designed for graphs without special nodes. In 

our case, it is naturally to consider that water source nodes must belong to different partitions 

(which means it is a constraint to partition the graph). 

 

To address this specific WDA problem for the water supply network, Ferrari et al (2011) put 

forward an optimization algorithm for automatically partition water supply network into 

multiple distribution areas (can be more than 2). The optimization algorithm requires running 

a hydraulic model on the water supply network, requiring additional attributes of water source 

volumes, source pump head, pressure within the water network and water pipe diameter 

(Ferrari, et al, 2011). 

 

Currently, the NWG network data only provides geometry layout of water pipes (as 

polylines), without additional pipe information (e.g. pipe diameter). That means resolving 

hydraulic equation is not possible. However, even in such case, Ferrari et al (2011) suggested 

that it is still possible to partition a graph using Dijkstra shortest path algorithm, where the 

weight is the length of each pipe. Therefore, water flow infer algorithm is developed based on 

this idea, figure 5.29 is an example to show how the algorithm works and listing 5.3 is the 

algorithm pseudo code. 
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Figure 5.29. Simple example of the water flow infer algorithm. 

 



127 

 

 

Listing 5.3. Pseudo code for water flow infer algorithm. 
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Figure 5.29 shows a simple area with two water sources and 18 pipes. Length of each pipe is 

the same (100 meters). Water flow infer algorithm basically can be divided into two big steps: 

(1) WDA identification, and (2) flow direction infer. 

 

The first step (line 1-13 in listing 5.3): for the source 1 and 2, for each node, a calculation will 

be done to see if it is closer to source 1 and source 2 via Dijkstra path distance. The node is 

assigned a source closer to it. For example, in sub plot (A), the node A is closer to source 1 

(distance is 100 meters) than to source 2 (distance is 200 meters), and therefore node A is 

assigned to source 1. This allows for assigning a source to each node (sub plot (B)). After that, 

for an edge, if its two connecting nodes are assigned different sources, this edge (pipe) is 

considered to be a boundary pipe, in which there is gate valve to shut it off. For example, the 

edge B-C is a boundary pipe in sub plot (C), and therefore there is no water within edge B-C. 

When boundary pipes are identified, the two WDAs are naturally generated. 

 

Then algorithm will move to the second step (line 14 – 32 in listing 5.3), which is inferring 

flow direction for each pipe which is not a boundary pipe. In particular, based on the specific 

water source that pipe belongs to, Dijkstra path distance will be calculated from that water 

source to both bounding nodes of that pipe. The flow direction is defined from the node 

having a shorter distance to the node having a loner distance. For example, in figure 5.29, in 

sub plot (D), the water flow direction on the edge A-B is inferred to be from A to B, because A 

(distance is 100 meters) is closer than B (distance is 200 meters) to source 1. 

 

Following this strategy, it is possible to infer the flow direction on the entire NWG network 

data, the result is shown in figure 5.30. Of all the 39,282 pipes in the water main network, 

27,800 of them are served by water source 1 and 11,443 of them are served by water source 2. 

The other 39 pipes are considered as the boundary pipes, which are served as the boundary 

between WDA 1 and WDA 2. 
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Figure 5.30. WDA representation for Newcastle upon Tyne. (Contains NWG Data © 2018) 

 

5.3.3 Water Distribution Network Generation 

Once the flow direction on the NWG network is inferred, fine scale water distribution 

network can be generated. The building service infer algorithm (water) is developed to 

generate the service pipes connecting buildings and water main pipes (listing 5.4). This 

algorithm is similar to the building service infer algorithm (gas) in section 5.2.3. However, 

there is a small difference. A constraint is made that service pipes cannot connect boundary 

pipes, since there is no flow in them. Figure 5.31 shows an example of the final water supply 

network for a small part of Newcastle upon Tyne. 
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Listing 5.4. Building service infer algorithm (water). 

 

Figure 5.31. (A) Water main pipe network, with flow directions. (B) Water distribution 

network to the buildings, with flow direction calculated (Contains NWG Data © 2018). 

 

Figure 5.32 shows the water distribution network generated for the entire city of Newcastle 

upon Tyne. The whole distribution network contains 238,951 nodes and 241,436 edges, 

servicing 104,855 buildings in the city. Among all the edges, 156,762 of them are served by 

water source 1, and 84,635 are served by water source 2, and 39 edges are the boundary pipes. 
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Figure 5.32. Fine scale water distribution networks (including service pipes) in Newcastle 

upon Tyne (Contains NWG Data © 2018). 

 

Generally speaking, validation is needed to assess the quality of the data generated (fine scale 

water distribution networks), especially the WDAs generated and the flow direction inferred 

on the NWG network. However, until the completion of this PhD, such information is still not 

publicly accessible from NWG data portal (the only data available are the layout of NWG 

network, without additional information on the pipes). Therefore, validation is not carried out 

within the water supply network. If possible, future work will focus on trying to accessing 

actual data for water supply network validation. 

 

5.4 Sewer Network Integration 

The sewer network is a pipe-based network system to collect and transport domestic waste 

water from each individual building to the specific facilities that can treat the waste water, 

such as waste water treatment plants (Hammer, 1986). Pipes are connected with either 
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manhole (inspection chamber) or simply with a pipe junction. The entire sewer network is 

generally a gravity-based system (Halfawy, et al., 2008), and therefore without external 

pressure, the waste water can flow from upstream location to the downstream location. In 

some mountain areas, where waste water must be transported to higher places (against 

gradient), sewer pumping stations are set up to pressurize the waste water (Guisasola, et al., 

2008). 

 

The biggest difference between the sewer and other utility network (electricity, gas, and water 

supply), is the flow direction within the network. For the other three types of the network, 

buildings are the sink nodes where infrastructure service is provided to. In the sewer network, 

buildings are actually the source nodes, where flows are generated. 

 

5.4.1 Sewer Network Data 

NWG (Northumbria Water Group), the same company for managing water supply network, 

also manages sewer network for the city of Newcastle upon Tyne. Requests have been made 

to the NWG to access spatial layout of sewer network data. However, until the completion of 

this PhD, such data is not available from their spatial data portal. As an alternative solution, 

the sewer network data used in this section is sewer network model, generated from the 

CityCAT project (Bertsch, et al., 2017). 

 

The data comprise of two shapefiles, where one is the layout of the sewer main pipes, and the 

other one contains nodes connecting the main pipes. The sewer network model to date, covers 

not the entire city but only its central part. Figure 5.33 shows the covered area of sewer 

network compared with the boundary of the city Newcastle upon Tyne. 



133 

 

 

Figure 5.33. Available sewer network data (CityCAT Model) for Newcastle upon Tyne. 

 

Figure 5.34. Location of the pumps and outflow nodes in CityCAT sewer network. 
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The CityCAT sewer network contains 8132 nodes and 8306 edges. 8048 of the nodes are 

manholes, 7 are sewer pumping stations and 77 are outflow nodes (where waste water exits 

the network). The location of these special nodes is shown in figure 5.34. Each network node 

or edge has a specific ID, and flow direction on the sewer network has been given across the 

entire network, by specifying the upstream and downstream node for each edge. It is worth 

noting that in Newcastle, storm runoff and domestic waste water are both transported using 

the same sewer network system (Bertsch, et al., 2017). When the waste water exits the 

network, normally it arrives at the Tyne river, or at a major sewer treatment plant (Howdon 

STW) in the east of the city. 

 

5.4.2 Fine Scale Sewer Network Generation 

Since CityCAT sewer network only covers one part of Newcastle upon Tyne, not the entire 

city, a key question is whether it is possible to infer layout of sewer main pipes where there is 

no existing data. In section 5.2.2, work has been done to complete the NGN gas network, 

based on road network. 

 

However, such approach is not plausible in this situation. The major reason is that, layout of 

key infrastructure assets (manholes, outflow nodes) is not available across the entire city. The 

algorithm used in 5.2.2 (as well as the one discussed in Chapter 4) assumed that knowledge 

on infrastructure asset is complete, and aims to generate the layout pipes or cables connecting 

these assets. These algorithms are not able to guess the location of infrastructure assets. 

 

Therefore, with regards to CityCAT sewer network, no data generation work will be done on 

it. Only the current CityCAT sewer network is used to generate fine scale sewer network 

(connecting buildings with sewer service pipes). Figure 5.35 shows the general workflow of 

integrating buildings to the sewer network model. Data (sewer network and buildings) is read 

from a PostGIS database and processed via a building service infer (sewer) algorithm (listing 

5.5). This algorithm generates layout of sewer service pipes connecting a building and a sewer 
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main pipe. Fine scale sewer network is then generated and written back to the PostGIS 

database. 

 

Figure 5.35. General work flow for sewer network integration work. 

 

 

Listing 5.5. Pseudo code for the building service infer algorithm (sewer). 
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The building service infer algorithm (sewer) starts from applying the local search strategy, to 

find only the nearby buildings of the sewer network model. This is achieved by setting up a 

threshold distance d of 50 meters (same reason for the parameter d in section 5.2.2). In this 

case, of all the 104,855 buildings in Newcastle upon Tyne, 13,882 of them are fetched to be 

served by the sewer network. After that, remaining work is to derive service pipes which 

connect the chosen buildings to the sewer main pipes. Finally, all these building nodes, 

additional service pipes are merged to the sewer network to generate fine scale sewer 

network. Figure 5.36 shows the service pipe infer process, and note that flow direction on the 

service pipes is opposite (compared with gas and water supply servicing pipes). 

 

 

Figure 5.36. (A) Sewer main network, with flow directions. (B) Fine scale sewer network 

with buildings integrated. 

 

Figure 5.37 shows the overview of the fine scale sewer network generated (that contains 

sewer service pipes), which contains 34,225 nodes and 34,375 edges, serving 13,882 

buildings. 
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Figure 5.37. Fine scale sewer network generated, which includes sewer service pipes. 

 

5.4.3 Sewer Network Flow Infer 

The CityCAT sewer network model contains an essential attribute, which is waste water flow 

direction across the entire network. Once fine scale sewer network model is developed (figure 

5.37), this information allows for understanding how waste water flows from an individual 

building to an outflow node. However, being able to access layout of sewer network together 

with flow information is not always the case. Therefore, an interesting question is, if flow on 

the sewer network is missing, is it possible to infer such information? 

 

In this section, a sewer flow infer algorithm is developed to infer plausible flow direction on 

the network. This algorithm, like many other algorithms that have been discussed, is a generic 

spatial heuristic algorithm, which is built on as least amount of input data as possible. This 

algorithm requires layout of sewer network, location of outflow nodes, and a DTM layer used 

to estimate the height of each node. Listing 5.6 shows the pseudo code for the sewer flow 

infer algorithm. 
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Listing 5.6. Pseudo code for the generic sewer flow infer algorithm. 

 

This algorithm is developed using NetworkX library (NetworkX, 2018), and is based on the 

assumption that waste water should only exit the network at outflow nodes. Moreover, it takes 

gradient into consideration (since sewer is generally a gravity-based system). However, 

acquiring height of each node is almost impossible because sewer systems are buried 
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underground. But if assuming each sewer node is buried at relatively same depth 

underground, then it is possible to use a digital terrain model to estimate height of every node 

(Obermayer, et al., 2010). The DTM layer (figure 5.38) used in this research is the OS Terrain 

5 model (Ordnance Survey, 2018), which has a high spatial resolution (grid size is 5m). 

 

 

Figure 5.38. DTM layer used in the algorithm (Contains OS data © 2018). 

 

The main point of the algorithm is that it tries to infer waste water flow based on spatial 

connectivity, and this process starts from the outflow nodes. This algorithm is an iterative 

process and, in each iteration, some number of edges will be assigned directions. The key in 

this algorithm is a list of nodes called current_sinks to help identify what edges should be 

assigned what directions in each iteration. The current_sinks can change at each iteration, and 

algorithm finishes when current_sinks is empty. 

 

To explain the algorithm more clearly, a small simple example is used (figure 5.39), which 

contains a sewer network of 9 nodes and 9 edges. There are two outflow nodes. 
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Figure 5.39. A simple example to illustrate generic sewer flow infer algorithm. 

 

Two important lists visited_nodes and visited_edges are defined and to indicate which nodes 

and edges have been visited at each iteration. In each iteration, current_sinks can change and 

is initialized to be the outflow nodes [A, B] when algorithm begins. The list visited_nodes and 

visited_edges are initialized to be empty. 

 

In iteration 1, current_sinks are node A, and B. The all the unvisited edges connecting current 
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sink nodes are edge 1 and 2. These edges will be assigned direction (to the corresponding 

current sink node). Then edge 1 and 2 are visited. Node 1 and 2 are visited. The list 

current_sinks is emptied. Then node C and D (on the other side of edge 1 and 2), will be put 

into current_sinks if these nodes still connect any unvisited edges (true in this case), otherwise 

they will be marked visited as well. 

 

The iteration 2 starts with C and D being the current sink nodes. The edges 3, 4, 5, 6, 7 will be 

then assigned direction. Note edge 3 is special here, because two nodes connecting edge 3 are 

both current sink nodes (C and D). Therefore, height information (DTM layer) is used here, 

and if assuming node D is higher than node C, then it is considered more plausible to say flow 

direction is from D to C on edge 3. Finally, iteration 3 starts with G being the only current 

sink node. After assigning direction on edge 8 and 9, the algorithm finished, as there is no 

more node that can be put into current_sinks. 

 

 

Figure 5.40. Validation of flow direction, inferred by the algorithm. 
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Using this algorithm, flow is inferred on the CityCAT network, and is validated against the 

actual flow direction, which is shown in figure 5.40. Of all the 8306 edges in the CityCAT 

network, flow on 7959 edges are inferred correctly, which means an accuracy of 96%. This 

accuracy is considered high, as this result is generated without resolving hydrologic models. 

 

Now one interesting question is that, is it possible to infer flow only using height information 

(DTM layer)? That means every edge is assigned a flow direction, from a higher node to a 

lower node it connects. A test has been done for that, and result (validation) is shown in figure 

5.41. 

 

Figure 5.41. Validation of flow direction, inferred by only using the DTM layer. 

 

If only using DTM layer, then flow directions on 1556 edges are inferred incorrectly, that 

means the accuracy in this situation is only 81.2%, much lower than the accuracy achieved 

via the algorithm. True flow directions on about 20% of the edges are actually against slope 

calculated from the DTM layer. The major cause is that the DTM might not represent the 

exact height of each node. When using the DTM layer, it is assumed that each node is buried 
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for same depth underground. For any edge (pipe), if depths of two nodes it connects are 

different, then it can be no longer accurate to infer node height via the DTM layer. 

 

There is one bigger problem when inferring flow only using the DTM layer. That is 

generating false sink nodes in the network when it should not have. In figure 5.41, within red 

circle, if using the inferred flow, the node A is a sink node (mathematically a node whose out 

degree is 0, in a directed graph). This is invalid, because the waste water is only allowed to 

exit the sewer network at one of the outflow nodes. That means when inferring the flow, sink 

nodes except for the outflow nodes, should never exist. 

 

That is why the algorithm is developed this way (infer flow from outflows nodes first). Flow 

direction is inferred using spatial connectivity first, and when it is no longer possible, height 

information is then used. Since the algorithm is easy to be implemented and requires only 

sewer network layout, outflow nodes and DTM layer, it is considered to be a generic solution 

when there is not enough data to generate a more accurate flow model (via hydrologic 

approaches). 

 

5.5 Utility Network Dependency Integration 

In Chapter 3, it has been identified that dependencies exist among different types of utility 

networks (Ji, 2019). In the formal ontology (Chapter 3), dependency is represented via a 

mapping from a utility asset in gas, water supply or sewer network to a substation in the 

electricity distribution networks (Ji, 2019). Let S be the set of substations, then utility 

dependency can be represented in table 5.4. 

Utility Network Utility Asset Dependency 

Gas Regulation Sites (Rs) f : Rs → S 

Water Supply Water Pumps (Wp) 

Water Treatments (Wt) 

f : Wp → S 

f : Wt → S 

Sewer Sewer Pumps (Sp) 

Sewer Treatments (St) 

f : Sp → S 

f : St → S 

Table 5.4. Utility network dependencies. 
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The dependency is a one-to-one mapping (for example, a gas regulation site depends on 

electricity power from a substation). The knowledge of dependencies allows for representing 

utility networks as Networks of Networks (D’Agostino, et al., 2014) and it is essential in 

understanding cascading failures between different utility networks (Johnson, et al., 2007). 

 

In Chapter 4, spatial heuristic algorithm is used to generate electricity distribution networks in 

Newcastle upon Tyne, which connect substations (of 11 kv) to the buildings. According to the 

local electricity supplier NPG, utility assets are also served by substations of this level 

(Northern Power Grid, 2017). 

 

Therefore, an algorithm is developed in this section, to connect utility assets to the electricity 

distribution network, following a similar approach discussed in Chapter 4. Figure 5.42 shows 

the keys stages involved in integrating utility assets to the electricity networks. The rationale 

behind this approach is that, cables used to connect a utility asset and its dependent substation 

should be as short as possible. 

 

The algorithm starts from reading initial input (utility asset points, building footprints, roads, 

substation point) from PostGIS database. Then clusters are generated using building footprints 

and asset points. Later a base network will be generated by connecting every cluster into the 

road network. For each cluster, a substation (nearest one via path distance on the base 

network) will be assigned to each cluster. Then spatial layout of each electricity distribution 

network can be generated to connect the substation to the buildings and utility assets (if there 

is any). Finally, synthetic electricity distribution networks will be written back to the PostGIS 

database. 
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Figure 5.42. Algorithm flow of integrating utility assets to electricity distribution networks. 

 

The algorithm was applied to integrate utility assets to electricity distribution networks in 

Newcastle upon Tyne. The utility assets are 105 gas regulation sites, 9 water pumping stations 

and 7 sewer pumping stations based on available data. There are 636 substations in the entire 

city, and according to the algorithm, 551 of them serve electricity only to the buildings and 85 

of them serve electricity to both buildings and utility asset(s). These 85 substations are termed 

vital substations, and they are shown in figure 5.43. Figure 5.44 shows how an asset (gas 

regulation site in this case) is exactly integrated to an electricity distribution network. 



146 

 

 

Figure 5.43. Location of utility assets and vital substations in Newcastle upon Tyne (Contains 

OS data © 2018). 

 

Figure 5.44. Utility asset (regulate site in this case) integrated into electricity distribution 

networks (Contains OS data © 2018). 
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Representation of dependency (from utility asset to an electricity substation) makes it possible 

store utility networks as Networks of Networks in a database system. For example, a common 

approach to store interdependent geospatial network instances is to use ITRC database 

schema (figure 5.45), which is developed for modelling national scale geospatial 

infrastructure networks in the United Kingdom (Barr, et al., 2013). 

 

Figure 5.45. PostGIS ITRC database schema. 

 

With the ITRC schema, for each type of infrastructure network, a table is used to store 

network nodes. For example, a table electricity_net_Nodes and gas_net_Nodes are the tables 

to store nodes for electricity and gas networks (figure 5.46). Within each table NodeID is the 

primary key. To distinguish nodes from different types of infrastructure networks, a specific 

GraphID is given for one network (in this case, 1 for electricity and 2 for gas). To store 

network dependency, ITRC schema uses an Interdependency table, which stores the 

GraphID and NodeID for the node where the dependency is from and for the node where the 

dependency is to. For example, in figure 5.45, (GraphID, NodeID) is (2, 1096) for the gas 

regulation site in the gas network and (1, 940) for its dependent substation in the electricity 

network. Then dependency can will be stored in the Interdependency table in figure 5.46. 

This is exactly how to store infrastructure networks as NetworksOfNetworks in ITRC schema 

and makes it very easy to write simple SQL queries to select dependent node(s) for any node. 
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Figure 5.46. An example of using ITRC schema to store network dependency. 

 

 

Figure 5.47. Location of utility assets and vital substations in London. 
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The algorithm shown in figure 5.42 requires utility asset location to be the only necessary 

information from utility networks. That means this algorithm will work without knowing 

utility network layout (location of pipes, or cables). For example, for the city of London, from 

MasterMap PoI layer (Ordanance Survey, 2018), 174 gas regulation sites, 135 water supply 

pumping stations, and 27 sewer pumping stations. This information is enough to infer the 

dependency from these utility assets to 335 electricity substations (figure 5.47). 

 

5.6 Conclusion 

In the last chapter, a generic spatial heuristic algorithm was presented generate fine scale 

layout of infrastructure networks based on location of infrastructure assets, roads and 

buildings. Based on this algorithm, in this chapter, modified approaches were discussed to 

generate layout of fine scale utility networks (gas, water supply, and sewer) for the city of 

Newcastle upon Tyne. For the utility networks, part of network layout (of the main pipes) is 

known, but data incompleteness can exist in each of them. 

 

For gas network, layout of main pipes can be missing in new developing areas. A gas network 

infer algorithm was developed to infer the layout of main pipes in these areas, and has 

achieved high accuracy via validation. For water supply network, flow direction is not 

included in original data. A water flow infer algorithm was developed to first identify WDAs 

(water distribution areas) in the water supply network and then infer water flow on each pipe. 

However, validation was not able to be done, because actual water flow direction is to date 

still not available. Therefore, trying to access actual data and validating flow accuracy will be 

one of the future objectives. For the sewer network, the data covers only central part of the 

city. Currently, layout of sewer network in the entire city cannot be inferred from my 

algorithm, because the assets location (manholes, outflow nodes) is unavailable in the entire 

city. This is one of the major limitations of my algorithm (can infer layout of pipes or cables, 

but not location of assets). Sewer flow has been encoded into the sewer network data. 

However, it is considered necessary to have an approach to infer sewer flow as if it does not 
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exist. Therefore, a generic sewer flow infer algorithm was developed based on network spatial 

connectivity and DTM model, and has achieved high accuracy. 

 

Finally, work was represented to infer dependencies from utility networks to the electricity 

distribution networks. This was achieved by applying a slightly modified version of algorithm 

discussed in Chapter 4. Utility assets are inferred to be dependent on the nearest substation via 

the road network. A major achievement of this algorithm is that, it can infer utility 

dependencies without knowing utility network layout (only asset location is necessary). 

However, my approach is still a pure spatial algorithm, and that means capacity (of the 

substation) is not considered here. As is discussed at the end of Chapter 4, the number of 

buildings (and asset if any) is limited for each substation, and this needs to be taken into 

account in the future work. 
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Chapter 6 – Road Network Generation Algorithm 

6.1 Introduction 

In Chapter 4, the case study section (section 4.4) showed the automatic generation of 

plausible synthetic electricity distribution networks in the entire city of Newcastle upon Tyne, 

based on a generic spatial heuristic algorithm. The algorithm relies on a local road network, 

which serves as the backbone to help generate both the topology and geometry of the 

distribution network. The case study showed the capability of infrastructure network planning 

in the urban area, as long as the layouts of buildings, road network and infrastructure assets 

are known. 

 

However, road network layout is not always available, especially in the early urban planning 

stages (McGill University, 2008). For new developing sites, the urban planners will first 

decide use of land (decide layout of residential buildings, water bodies, factories, park, etc.), 

based on the considerations including environment conservation, prevention of land use 

conflict, minimizing residents transport cost, and reduction in exposure to pollutants (Kaiser, 

et al., 1995). After that, infrastructure networks such road, communication and distribution 

networks can be planned according to the given land use layout (Moss, et al., 2016). 

 

Therefore, for the new developing sites, generating layout of infrastructure distribution 

networks is more difficult, as layout of road network is not always present. That leads to an 

interesting question: is it possible to automatically generate layout of road network in the new 

developing urban areas, if layout of land use (at least buildings) is given? 

 

This chapter aims to develop a spatial heuristic algorithm, which allows automatic generation 

of road network layout. It can be applied together with algorithm developed in Chapter 4, to 

show much stronger capability in infrastructure network planning. 
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6.2 Automatic Network Generation 

Automatic generation of road network is a typical network design problem (NDP) (Magnanti, 

et al., 1984). It is a challenging problem, as it requires to decide the optimal configuration of 

road network elements with regards to a set of criteria (Yang et al., 1998). The road network 

elements generally refer to the network topology, geometry, capacity, and traffic signal 

configuration, etc (Cantarella, et al., 2006). Generation of road network, according to different 

requirements, if done manually by road design specialists, can be a very time-consuming task 

(Campos, et al., 2015). Several related studies have been done, in automatic planning and 

designing of road network layout, which are explained in table 6.1. 

 

Author Explanation on the approach 

Parish, et al., 2001 The author developed a procedural modelling platform for cities, to 

generate the layout of buildings and road networks in the urban areas. The 

platform requires geographical maps (DTM, land/water/vegetation maps), 

and social maps (population density, zone maps, etc.). The approach is 

based on L-system and will generate layout road network first, and then 

allocate space for buildings. The approach can be easily implemented 

computationally, but requires information such as population density, and 

does not consider buildings as the input (rather it is algorithm output). 

Cantarella, et al., 2006 A heuristic multi-criteria algorithm was developed to automatically design 

urban transport network. Both the network layout and capacity (such as 

traffic lights configuration) can be optimised. However, this is algorithm 

that can be computationally expensive (solving NDP problem under 

multi-criteria) and it is only at the theoretical stage, without any 

application or validation using real city data. 

Teoh, 2007 A platform was developed for generating realistic cities in the game 

industry. The user needs to give terrain information and some preference 

(such as desired city size) as the input, then urban centres (such as 

commercial and industrial centres, residential, and airports) can be 

generated. Roads can be then generated to connect these centres. This 

requires even less input than Parish’s approach, however, it still does not 

consider existing layout of buildings. 

Nie, et al., 2010 An algorithm of generating rectilinear Steiner tree was developed to 

generate rural network layout. Initial input is only the nodes known in the 

rural network (layout of the counties). Then a rectilinear Steiner tree will 

be built to connect these nodes and it will be further optimized as final 

output. The algorithm is computationally cheap, but it focuses on the road 
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network at rural level, not urban level. Moreover, it requires nodes (road 

junction) to be known already, which is not available in our problem. 

Rui, 2013 The author developed a platform for dynamic modelling urban growth 

and city road network evolution, where population is considered as the 

major driving force. In the author’s model, road network layout will be 

extended to accommodate increasing travel demand due to increasing 

population. The author’s model is more like a dynamic model, rather than 

a generative algorithm. Therefore, this approach must know existing 

layout of road network, which is its major drawback. 

Zhang el a., 2017 An approach was developed to acquire real-time mapping information 

and automatically produce layout of road networks. The approach relies 

on volunteered geographic information, and in particular, the GPS 

trajectories from vehicles. The main idea is that, where there is a road, it 

is always reachable for any vehicle. Therefore, the approach collects large 

amount of GPS trajectories from taxis and merges them into a directed 

graph, as digital map of road network. This approach is a generative 

algorithm, but needs to acquire a large amount of additional data (GPS 

trajectory) to be efficient, and still there is not consideration on the layout 

of buildings. 

Table 6.1. Related approaches for automatic road network generation. 

 

From table 6.1, it is found that the existing approaches can generate layout of road networks 

based on different constraints and requirements, but they do not fit this particular problem. In 

fact, none of them considers building layout as the input data (actually Rui’s approach does, 

but it is an evolution model of existing road network, not a generative algorithm). In this 

chapter, a new and automatic road network generation algorithm will be discussed to tackle 

our specific problem. The input data sets are introduced in section 6.2, and section 6.3 

describes the algorithm and explains the rationale behind it. 

 

6.3 Data Sets 

By consulting Arup Group (www.arup.com), which is a civil engineering and design company 

in Newcastle upon Tyne, an appropriate case study area (to develop this algorithm) was 

chosen. It is relatively a new and small development area at the north of the city (figure 6.1, 

and figure 6.2), covering an area of 197,326 m2. 

http://www.arup.com/
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Figure 6.1. Case study area to develop road network generation algorithm (from Google 

Maps 2018). 

 

 

Figure 6.2. Location of case study area in Newcastle upon Tyne (Contains OS data © 2018). 
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Figure 6.3. Input data sets for the case study area (Contains OS data © 2018). 

 

For the case study area, the input data sets (figure 6.3) contain layout of buildings, a 

boundary, and the entry points. The boundary is a manually digitized polygon which covers 

entire case study area, and it is assumed the exterior ring (the polyline) of the boundary should 

represent the external road network surrounding the area. The entry points refer to the points 

where the road network inside study area should be connected with the road network outside 

(on the boundary). Totally there are 536 buildings and 2 entry points in this area. 

 

6.4 Road Network Generation Algorithm 

The basic flow of road network generation algorithm is shown in figure 6.4. The algorithm 

reads entry points (points), building footprints (polygons) and the boundary (polygon). The 

algorithm consists of three major steps. Step 1 generates building clusters based on a 

minimum spanning tree (MST) partitioning algorithm. Step 2 generates geometry of road 

segments based on Delaunay Triangles. Step 3 optimizes the geometry of the roads. Details of 

these three major steps are discussed in sub section 6.4.1, 6.4.2, and 6.4.3. 
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Figure 6.4. Flow of road network generation algorithm. 

 

6.4.1 Building cluster generation using MST 

A close observation of the case study data, as well as the data in the entire city of Newcastle 

upon Tyne, indicates presence of roads is related to the layout of buildings. Geospatially, close 

buildings can form clusters and for any cluster of buildings, it is surrounded by road 

segments. Therefore, the key is to find building clusters from input data. 

 

Geospatially, each building can be represented by its centroid, and therefore, the problem can 

be generalized to a clustering problem on points in the 2D space. The most common 

clustering algorithm is the k-means algorithm (Krishna, et al., 1999). However, k-means 

algorithm requires to set up a hyper-parameter k (the number of clusters to be generated). That 

is a big problem in our situation, because it is impossible to know the correct number of 

clusters beforehand. 

 

Therefore, a clustering algorithm that does not require prior knowledge of number of clusters 
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will be more appropriate to solve this specific problem. The chosen algorithm is the clustering 

algorithm based on minimum spanning tree (Zhou, et al., 2009). A minimum spanning tree 

(will be termed MST later) is a spanning tree (a graph connecting all the nodes) whose sum of 

edge weights is as small as possible. In this clustering algorithm, an MST is first generated to 

connect all the points (edge weight is the geometry length of the edge). Then the MST will be 

partitioned to generate clusters. 

 

 

Figure 6.5. MST generation (Contains OS data © 2018). 

 

Generation of MST is achieved via the NetworkX library (NetworkX, 2018) and the result is 

shown in figure 6.5. Then this MST will be partitioned, and that means some edges will be 

removed from the MST. If one edge is removed from MST, the MST becomes two connected 

components (each is a cluster). If one more edge is removed, the MST becomes totally three 

connected components. This is the main rationale of generating clusters using MST. The most 

important part, is to decide which edges should be removed from MST. This is explained in 

listing 6.1, which is the MST partitioning operation, suggested by Zhou et al. (2009). 



158 

 

 

Listing 6.1. MST partitioning operation (Zhou et al., 2009). 

 

The MST partitioning operation is an iterative process, and in each iteration, one edge from 

MST is removed. This iteration will stop when a certain condition is satisfied. 

 

In listing 6.1, σ is the global standard deviation of edge lengths on the given network. MST0 is 

the initial MST, while MSTn is the MST after n iterations. The find_best_edge() is a function 

to check MST (in the current iteration), in order to find an edge that causes largest change in 

global standard deviation (∆σ), if this edge is removed. 

 

In this iterative process, the more edges that are removed from the initial MST, the less 

difference there will be between global standard deviations, of the MST in the current 

iteration and MST in the previous iteration (|𝜎(𝑀𝑆𝑇𝑛) −  𝜎(𝑀𝑆𝑇𝑛−1)|). Therefore, if this 

difference becomes too small, it is considered to be time to stop the iteration. Theεis the 

parameter to control when to jump out of the iteration. After iteration finishes, the MST will 

be returned, which has been modified and partitioned into several clusters. 

 

Still, there is one parameterεthat needs to be tuned. Number of clusters generated is sensitive 

to theε value. The largerε value results in later stop of the iteration, and that means more 

edges will be removed from MST, and consequently more clusters will be generated. Theε 

used in this case study is 0.0075. In the end, the MST is partitioned into 29 components 

(clusters). More about parameter sensitivity will be discussed in section 6.6. 
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Figure 6.6. MST partitioned into 29 clusters (Contains OS data © 2018). 

 

6.4.2 Road geometry generation 

The basic assumption road network generation on the basis of the partitioning of MST 

performed in section 6.4.1, is that each cluster of buildings should be fully surrounded by road 

segments. In the road network generation algorithm, the space that road segments may occupy 

can be derived by constrained Delaunay triangulations (Chew, 1989). It is a constrained 

process, as the triangle is only allowed to be generated, if all its three vertices do not belong to 

the same cluster. That means it is a Delaunay triangulation between different clusters. Entry 

points are also used in triangulation process. The result of constrained Delaunay triangulation 

is shown in figure 6.7. 
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Figure 6.7. Constrained Delaunay triangulation result (Contains OS data © 2018). 

 

The generation of road segments is done by traversing topologically touching facets within 

the Delaunay triangles, starting from any entry point. A simple example (figure 6.8) shows 

how to exactly generate road segments using triangles. In figure 6.8, there are four triangles, 

one entry point (step 0). All other points (vertices) are from two clusters. Building footprints 

will be considered during road network generation. To generate the first road segment (step 

1), part of edge No.3 that is not within building footprint is extracted (the green line in step 1), 

and a line is drawn to connect the entry point and the midpoint of green line (on edge 3). Then 

sequentially midpoint of part of edge No.5, No.7, and No.9 (depicted as green lines) will be 

used to generate road segments. 

 

The main rationale behind this process is that, only inter-cluster edge (if two vertices 

connecting this edge are from different clusters) will be used to generate road segment, 

because algorithm assumes road segments should only bypass space between different 

clusters. That is why edge No.4, No.6, and No.8 are not used, since they are all inner-cluster 

edges (if two vertices connecting this edge are from same cluster). The algorithm also 

assumes that, the road segment (paved between two clusters) should be equally distant to the 
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two vertices (buildings actually) from two clusters. To avoid collision of road segment with 

building footprints, for each inter-cluster edge, only part (green line) that is not within 

building footprint is extracted, and the midpoint of that green line is used for road generation. 

The road segment generation will finish, when all triangles are visited. A more detailed 

version of pseudo code of this process is shown in listing 6.2. Figure 6.9 shows the result of 

road segments generation in the case study area. 

 

 

Figure 6.8. Simple example about road segments. 
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Listing 6.2. Pseudo code of road segments generation. 

 

 

Figure 6.9. Generated road segments (Contains OS data © 2018). 
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6.4.3 Road geometry optimization 

One thing to note from figure 6.9 is that, the geometry of the synthetic road segments is not 

optimized. In fact, sharp corners can be observed when one road segment connects another. 

Therefore, it is considered a necessary step to smooth the road segments to be more like real 

ones. A common algorithm to remove sharp corners is the Chiakin algorithm (Chiakin, 1974), 

which actually cuts off 1/4 of each line segment at both ends. An example (figure 6.10) shows 

how Chiakin algorithm works, and figure 6.11 shows the smoothed road segments. 

 

Figure 6.10. Chiakin algorithm example. 

 

Figure 6.11. Smoothed road segments (Contains OS data © 2018). 
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After smoothing road segments, the final step is to add an exterior ring on the synthetic road 

network. That is the actually the exterior ring of the case study area boundary (figure 6.3). 

The road network generation algorithm assumes, synthetic road network needs an exterior 

ring to encapsulate all the buildings. Figure 6.12 shows the final result of synthetic road 

network. 

 

 

Figure 6.12. Final result of synthetic road network (Contains OS data © 2018). 

 

6.4.4 Road Network Validation 

The actual road network is available from the Ordnance Survey Integrated Transport Network 

(ITN) layer (Ordnance Survey, 2018), which is displayed in figure 6.13. To assess the 

accuracy of the synthetic road network, spatial comparison and topology comparison are both 

considered. 
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Figure 6.13. Synthetic and ITN road network (Contains OS data © 2018). 

 

In spatial comparison, error of commission, error of omission, network length difference, and 

IoU (Intersection over Union) are measured. The error of commission and omission are still 

based on buffer approach defined in section 4.6, and the buffer distance is 10 meters. The IoU 

is a single metric to assess the fitness of synthetic and actual data (Bates, et al., 2005), and it 

is calculated as follows, where Asyn is the buffer of the synthetic road network, Areal is the 

buffer of the ITN network, the ∩ is the intersection operation and the ∪ is the union 

operation. 

 

𝐼𝑜𝑈 =  
𝐴𝑠𝑦𝑛 ∩ 𝐴𝑟𝑒𝑎𝑙

𝐴𝑠𝑦𝑛 ∪ 𝐴𝑟𝑒𝑎𝑙
 

 

Table 6.2 shows the spatial comparison between synthetic and ITN road network, indicating a 

relatively good fitness on geometry of the two network instances. 
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Commission Error Omission Error IoU Length Difference 

5.7 % 4.6 % 92.7 % 0.6 % 

Table 6.2. Spatial comparison of synthetic and ITN road network. 

 

In topology comparison, network size (total number of nodes) are calculated. Moreover, the 

degree distribution and closeness centrality distribution are the measured as they are the most 

important indicators of network connectivity and resilience (Porta, et al., 2008). Degree 

measures how many nodes each node connects. Closeness centrality C(u) of a node u is the 

reciprocal of the average shortest path distance to u over all n-1 reachable nodes. If d(u, v) is 

denoted as the weighted path distance (weight is geometric length of each edge) from node u 

to node v, then C(u) is defined as follows: 

 

𝐶(𝑢) =  
𝑛 − 1

∑ 𝑑(𝑢, 𝑣)𝑛−1
𝑣=1

 

 

Topology comparison result is displayed in figure 6.14. Both synthetic and ITN road networks 

have the same network size (which is 60). A majority of nodes in both networks are degree-

three nodes (more than 66%). An interesting finding is that the synthetic road network does 

not have degree 4 nodes, while the ratio of degree-four nodes in ITN network is 10%. This is 

because the approach for generating road geometry using Delaunay triangles (figure 6.8 and 

listing 6.2), can only generate node whose degree is 1, 2, or 3. On the other hand, ITN 

network has more degree-one nodes (16%) than the synthetic network, this is because ITN 

network (in this area) allows road segments (e.g. arrow No.2 in figure 6.13) that are inside a 

building cluster, but it is not allowed by algorithm (and thus not allowed in the synthetic road 

network). 

 

Despite the slightly different degree patterns, both networks have similar patterns in closeness 

distribution. A majority of nodes (40 – 45 %) have closeness value between 0.0025 and 

0.0030. Then fewer nodes (26 - 28%) have closeness value between 0.0030 and 0.0035. The 

remaining nodes are split in two groups (each accounting for around 15%), with closeness 
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values of 0.0020 – 0.0025 and 0.0035 – 0.0040. Such similar closeness distribution pattern 

indicates both networks are similar in terms of resilience. 

 

Figure 6.14. Topology comparison of synthetic and ITN road network. 

 

From table 6.2 and figure 6.13, despite the high spatial accuracy, there are still errors of 

commission and omission. For example, in figure 6.13, the green arrows No.1, No.2, and 

No.3 indicate the areas where the algorithm fails to generate a road (where there should have 

been). For location No.1 and No.3, the algorithm fails to recognize there is more than one 

cluster of buildings in these locations. For location No.2, the algorithm cannot generate 

synthetic roads that insert into a cluster of buildings, as synthetic roads must fully encapsulate 

a cluster of buildings. On the contrary, the green arrows No.4 and No.5 show the algorithm 

mistakenly generates a road (when it should not). Still the clustering process is the reason, 

where the algorithm recognizes more than two clusters in these locations, but in fact should be 

only one (according to the ITN data). 
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Interestingly, it is observed that over-commission of synthetic road network also occurs at the 

location indicated by the green arrow No.6. It seems the actual road network is not completely 

closed and there is a gap. An interesting question is should the algorithm produce a closed 

synthetic road network (based on the input boundary)? The answer is yes in the author’s 

opinion. When observing the Google Map (figure 6.1), it is clear that these does exist a road 

in this location (northeast corner). But possibly this is only a small road (or this road is 

relatively new), so that ITN network data does not include it. Therefore, an external closed 

boundary of the synthetic road network is considered necessary for the algorithm. 

 

6.5 Electricity Distribution Network Generation 

6.5.1 Synthetic Electricity Network generation 

As synthetic road network is available, it is possible to generate synthetic electricity 

distribution network. Two substation points in this area are identified and downloaded from 

Ordnance Survey Point of Interest layer (Ordnance Survey, 2018). The generic spatial 

heuristic algorithm (Chapter 4), will be used to generate electricity distribution network in the 

case study area. Before generating electricity network, buildings will be filtered first, and only 

those whose areas are larger than 30 m2, are kept. 

 

That is because smaller buildings are considered to be the buildings that do not require 

infrastructure services (Barr et al., 2017). This operation is also done here, which leaves 332 

buildings (now termed residential buildings) (figure 6.15). The synthetic electricity 

distribution networks (termed synthetic network 1 and 2) generated are shown in figure 6.16. 
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Figure 6.15. Residential buildings (area > 30m2) reserved for the case study area (Contains 

OS data © 2018). 

 

To validate the synthetic network 1 and 2, the best option is to use actual electricity network 

data. But unfortunately, this case area is a relatively new developing site, and Northern Power 

Grid (local electricity supplier) does not have record on the spatial layout of electricity 

distribution network. 

 

However, it is considered feasible to use the electricity network generated based on the actual 

road network (ITN network) as the reference data for validation. This way, it is still possible 

to evaluate how the difference between synthetic and actual road layout affects generation of 

electricity network layout. The reference data are termed reference network 1 and 2. 
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Figure 6.16. Synthetic electricity network generated (based on synthetic road network) 

(Contains OS data © 2018). 

 

Figure 6.17. Reference electricity network generated (based on ITN network) (Contains OS 

data © 2018). 
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Validation (or more strictly speaking, comparison) will be done on the feeder network as well 

as building-substation dependency. For comparing feeder network, spatial and topology 

comparisons will be done (same as validating synthetic road network). The building-

substation dependency comparison will be explained later. 

 

First of all, it is worth pointing out that only feeders (the back-bone cables of the electricity 

distribution network) will be compared, and there will be no consideration on the service lines 

(cables directly connect to buildings). The inclusion of service lines, will introduce many 

degree-one and degree-three nodes in the networks, resulting a skewed degree and centrality 

distribution (i.e. makes the topology comparison not indicative). 

 

Therefore, only feeder networks of the electricity distribution networks are extracted for 

comparison (figure 6.18). Spatial and topology comparison results are shown in table 6.3, and 

figure 6.19. The sizes of reference and synthetic feeder networks are 73, and 72 respectively, 

almost the same. 

 

Commission Error Omission Error IoU Length Difference 

6.3 % 5.4 % 91.2 % 0.5 % 

Table 6.3. Spatial comparison on the reference and synthetic feeder networks. 
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Figure 6.18. Synthetic feeders and reference feeders (Contains OS data © 2018). 

 

 

Figure 6.19. Topology comparison of the synthetic and reference feeder networks. 
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From table 6.3, and figure 6.18, it is found that commission and omissions errors on synthetic 

feeders are still relatively small. The error patterns in synthetic feeders (green arrow No.1, 2 

and 3 for omission errors, No.4, 5, and 6 for commission errors) are similar as that in 

synthetic roads (figure 6.13), since the spatial heuristic algorithm (to generate electricity 

network) highly depends on roads. Moreover, from figure 6.19, despite the spatial 

discrepancy, two networks show similar topological features, as demonstrated by the degree 

and closeness centrality distributions. 

 

Although there exist some discrepancies between the synthetic and reference feeders, a more 

important thing is to compare the building-substation dependency. That is to say, does every 

building depend on the same substation, from the synthetic networks and from reference 

networks? Table 6.4 shows the validation result for building-substation dependency, and 

figure 6.20 shows the visual result. 

 

 

Figure 6.20. Visual result of building-substation dependency (Contains OS data © 2018). 
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Building type Quantity 

Type 1: The building depends on the same substation according to 

synthetic and reference networks. 

329 (99%) 

Type 2: The building depends on the different substations according to 

synthetic and reference networks. 

3 (1%) 

Table 6.4. Building-substation dependency comparison result. 

 

It is found that, 99% of buildings depend on the correct substation, according to the reference 

network data, which shows high accuracy. The error occurs on only 3 buildings. The cause is 

the omission error (green arrow No.3) on the synthetic road network (figure 6.18), which 

affects building-substation assignment in the spatial heuristic algorithm to generate electricity 

distribution networks. 

6.6 Parameter Sensitivity Test 

Until now, there is still one important thing that has not been covered in the road network 

generation algorithm. That is the choice of ε value in the MST partitioning algorithm in 

section 6.4.1. The author of this algorithm, Zhu et al. (2009) mentioned when using this 

algorithm, theε value needs be carefully chosen depending on the actual application. 

Therefore, this chapter will explore parameter sensitivity ofε in generating synthetic road 

network, and justify the choice of value 0.0075, used previously. Synthetic road networks 

generated based on five different ε values are shown in figure 6.21, and are evaluated in 

table 6.5. 

 

Value of ε Total network length (m) Error of omission Error of commission 

0.0125 4906 8.2 % 5.9 % 

0.0100 5729 6.9 % 6.3 % 

0.0075 5992 5.4 % 6.3 % 

0.0050 6516 5.2 % 7.6 % 

0.0025 7452 5.2 % 8.5 % 

Table 6.5. Evaluation of synthetic road network based on different ε values. 
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Figure 6.21. Parameter sensitivity of ε (Contains OS data © 2018). 

 

Figure 6.21 and table 6.5 indicated that, asε value decreases, the MST partitioning 

algorithm will stop later. That means more clusters will be generated, and as a result, more 

road segments will be generated, so that total length of synthetic road network also increases. 

With more synthetic road segments being generated, it is easily to prove the error of omission 

always decreases. On the other hand, error of commission always increases. 

 

That is interesting because, it is preferred that synthetic road network should have both low 

errors of commission and omission. From table 6.5, whenε decreases from 0.0075 to 0.0050 

or 0.0025, the error of omission drops from 5.4 % (already a small value) to 5.2 %, which is 

good, but improvement is not obvious. However, the error of commission has a significant 
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increase from 6.3 % to 7.6% and to 8.5%. Therefore, choosing 0.0050 and 0.0025 asε value 

is not a good idea. On the other hand, if using the value 0.0125, error of omission is too large 

(8.2 %) to be acceptable. 

 

Therefore, it is considered that the value 0.0100 and 0.0075 are appropriate to use. In fact, 

from figure 6.21, the two synthetic road networks generated from these twoε values are 

almost identical. The particular reason to choose 0.0075 in our case study, is that error of 

omission and commission from thisε value are both smaller. 

 

6.7 Transferability Test 

The road network generation algorithm was developed using the data from the small case 

study area (figure 6.1, figure 6.2), and has achieved relatively good performance. However, 

this algorithm is developed as a generic solution for generating road network in urban areas as 

long as necessary input data (buildings, entry points, and boundary) are available. The 

algorithm (and more importantly, theεvalue) should not over-fit to the case study area. That 

is to say, the algorithm should be generalized well and also has still good performance on 

input data from other areas. 

 

In this section, a test was done to generate road network (and electricity network later) in 

three more areas in Newcastle upon Tyne, to explore the transferability of the road network 

generation algorithm. 

 

6.7.1 Data Sets 

The basic information for these tests area is shown in table 6.6. The location of these three 

areas in Newcastle are shown in figure 6.22. Figure 6.23, 6.24, and 6.25 show the input data 

of these three areas. The test areas are carefully chosen in three aspects: (1) The test area size 

is close to the case study area (about 197,000 m2); (2) Major building layout in the test areas 
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are different; (3) Number of buildings in each test area is different. The choice of test areas 

helps better test the transferability of algorithm, when building layout and building density 

(number of buildings over area size) is different from the case study area. 

 

 

Figure 6.22. Location of the three test areas in Newcastle. 

 

Area No. Buildings Major Building Layout Size (m2) 

No.1 250 Detached 188,200 

No.2 703 Terrace 223,400 

No.3 553 Semi-Detached 207,900 

Table 6.6. Basic information of test area. 
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Figure 6.23. Input data for test area 1 (Contains OS data © 2018). 

 

Figure 6.24. Input data for test area 2 (Contains OS data © 2018). 
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Figure 6.25. Input data for test area 3 (Contains OS data © 2018). 

6.7.2 Results and Validation 

 

Figure 6.26. Synthetic and ITN road network in test area 1 (Contains OS data © 2018). 
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Figure 6.27. Synthetic and ITN road network in test area 2 (Contains OS data © 2018). 

 

Figure 6.28. Synthetic and ITN road network in test area 3 (Contains OS data © 2018). 

 

First synthetic road networks are generated in the three test areas (figure 6.26, 6.27, and 6.28). 

Note for each area, theεvalue is still 0.0075. Spatial and topology comparisons (table 6.7, 
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table 6.8, figure 6.29, figure 6.30) are made to assess the accuracy of synthetic road networks, 

compared with ITN networks. 

 

In all of the three areas, the spatial discrepancy on the road networks are small, and the 

difference on the network sizes is more obvious (in all three areas). In area 1, synthetic road 

network has many small segments (indicated by green arrows in figure 6.26) which 

contributes to more nodes being generated. While in area 3, it is the opposite case, as the real 

ITN network has more small segments (indicated by green arrows in figure 6.28) and thus has 

a larger size. 

 

Figure 6.29 suggests that synthetic and ITN networks in all three areas have similar degree 

distributions. Figure 6.30 shows that there is discrepancy in centrality distribution, especially 

in area 1 and area 3, which is mainly caused by network-size difference. In area 1, synthetic 

road network has more small segments, and nodes on these small segments have relatively 

low centrality values (0.002 - 0.003). While in area 3, ITN road network has more small 

segments and nodes on these small segments have relatively low centrality values (0.002 – 

0.003). 

 

Area Commission Error Omission Error IoU Length Difference 

No.1 5.1 % 5.5 % 91.7 % 7.9 % 

No.2 5.7 % 3.2 % 93.2 % 1.3 % 

No.3 3.6 % 6.5 % 91.6 % 5.5 % 

Table 6.7. Validation of synthetic road network in testing areas. 

 

Network Size (Node Count) ITN Network Synthetic Road Network 

Area 1 24 44 

Area 2 84 116 

Area 3 28 16 

Table 6.8. Network size of ITN and synthetic road networks in three areas. 
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Figure 6.29. Degree distributions of synthetic and ITN road networks in 3 test areas. 



183 

 

 

Figure 6.30. Closeness centrality distribution of synthetic and ITN networks in 3 test areas. 

 

Another interesting finding during the spatial comparison is that, there is no over-commission 

at the boundary, as real roads at boundary of the three areas are all recoded in the ITN 

network data. This is good (in terms of accuracy), but it also reveals a potential limitation of 
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the algorithm. The algorithm assumes there should exist an exterior ring on the road, but this 

exterior ring cannot be automatically generated by the algorithm, but instead it must be given 

as one input (the boundary). Constrained Delaunay triangulation process (section 6.4.2, figure 

6.7) causes this limitation. For any point A (the centroid of a building) that is already on the 

boundary of the area, there is no outside point that can make triangulation with point A, which 

means on the outside of point A, it is impossible to generate the geometry of a road segment. 

That is why a boundary must be given as an input, and if possible, this had better be the 

exterior ring that can represents the actual road network at the boundary. 

 

Regardless of this limitation, the validation result indicates that in spite of different building 

layout and different building density, the algorithm (and more importantly, theεvalue 0.0075) 

can generate plausible layout of road network in all these three areas. This is essential, 

because it shows this algorithm has been generalized and can be applied as a generic approach 

that is scalable (regardless of input area size) and transferable (regardless of the building 

layout in the area). 

 

After synthetic road networks are generated, it is possible to generate layout of electricity 

distribution networks, using layout of residential buildings (area > 30m2), and substations as 

additional input data. Figure 6.31, 6.33 and 6.35 show the synthetic electricity distribution 

networks (termed synthetic networks) generated in these areas. For validation, electricity 

distribution networks generated based on ITN network are shown in figure 6.32, 6.34, and 

6.36, and they are termed reference networks. 
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Figure 6.31. Generated electricity network in test area 1, based on synthetic road network 

(Contains OS data © 2018). 

 

 

Figure 6.32. Generated electricity network in test area 1, based on ITN road network 

(Contains OS data © 2018). 
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Figure 6.33. Generated electricity network in test area 2, based on synthetic road network 

(Contains OS data © 2018). 

 

 

Figure 6.34. Generated electricity network in test area 2, based on ITN road network 

(Contains OS data © 2018). 
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Figure 6.35. Generated electricity network in test area 3, based on synthetic road network 

(Contains OS data © 2018). 

 

 

Figure 6.36. Generated electricity network in test area 3, based on ITN road network 

(Contains OS data © 2018). 
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Then (synthetic and reference) feeder networks for the three test areas are extracted (figure 

6.37, 6.38, and 6.39) for spatial and topology comparisons. The comparison results are shown 

in table 6.9, table 6.10, figure 6.40 and figure 6.41 respectively. 

 

 

Figure 6.37. Synthetic and reference feeder networks for test area 1. 

 

 

Figure 6.38. Synthetic and reference feeder networks for test area 2. 
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Figure 6.39. Synthetic and reference feeder networks for test area 3. 

 

Area Commission Error Omission Error IoU Length Difference 

No.1 4.3 % 6.0 % 91.7 % 8.9 % 

No.2 5.2 % 4.6 % 93.6 % 4.3 % 

No.2 2.7 % 3.3 % 96.4 % 4.7 % 

Table 6.9. Spatial comparison on the reference and synthetic feeder networks for three areas. 

 

Network Size (Node Count) Reference Feeder Network Synthetic Feeder Network 

Area 1 26 36 

Area 2 64 72 

Area 3 37 30 

Table 6.10. Network size of reference and synthetic feeder network in three areas. 

 

First of all, spatial accuracy maintains high for feeder networks in all of the three areas, due to 

high spatial accuracy of road networks. More interestingly, feeder-network size differences in 
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all the three areas, are smaller than road network size differences (table 6.8). This is because 

the feeders are actually only a part of the road network (i.e. if there is something wrong with 

the input road network layer, it does not necessarily affect the infrastructure network layout 

generated based on it). That is why degree distribution also has a high level of fitness. 

 

 

Figure 6.40. Degree distributions of the reference and synthetic feeder networks for three 

areas. 

 

Figure 6.41 indicates that there is small discrepancy in centrality distribution especially in 

area 1, and area 3. The reason is the same here (i.e. road-network size difference), as 

discussed around figure 6.30. In area 1 (figure 6.37), synthetic feeder network follows the 

layout of synthetic road network, and thus has more such degree-one and degree-three nodes 
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(indicated by green circles), which has small centrality values (0.001 – 0.002). In area 3 

(figure 6.39), the reference feeder network has more such degree-one and degree-three nodes 

(indicated by green circles), and they contribute to a slightly different centrality distribution. 

 

 

Figure 6.41. Closeness centrality distribution of the reference and synthetic feeder networks 

for three areas. 
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Finally, building-substation dependency is compared between reference and synthetic 

electricity distribution networks, and result is shown in table 6.11. 

 

Area No. Type 1 Buildings No. Type 2 Buildings 

No.1 N/A N/A 

No.2 680 (98%) 16 (2%) 

No.2 537 (99%) 4 (1%) 

Table 6.11. Comparison result on building-substation dependency. 

 

In table 6.11, the type 1 and type 2 buildings, are defined in table 6.4. For area 1, there is one 

substation, and therefore it does not make much scene to measure numbers of type 1 and type 

2 buildings. From table 6.9 and 6.10, it is found that the layout of feeders between synthetic 

and reference networks highly match with each other. More importantly, even relying on the 

synthetic road network data, the generic heuristic algorithm (developed in Chapter 4) still 

achieved high accuracy in connecting the buildings to the correct substation (compared with 

the electricity networks generated based on ITN network). 

 

The comparison results on both synthetic road networks and electricity distribution networks, 

indicates that the road network generation algorithm is generalized well, and has good 

performance in other areas (other than the area where it is developed and tuned). Using such 

synthetic road network layout, it is possible to generate plausible infrastructure network 

layout, that has relatively high spatial and topology accuracy. 

 

6.8 Conclusion 

Road network layout is a necessary input for algorithm developed in Chapter 4, to generate 

layout of infrastructure networks (such as electricity distribution networks). However, in new 

developing sites, road network layout is not always available, and the only information can be 

the layout of buildings. 
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Traditional approaches for automatic generation of road network layout does not consider 

building layout as the input. Therefore, in this chapter, a novel road network generation 

algorithm developed to solve this problem. It relies on building layout, entry points and a pre-

given boundary as the input data. The algorithm is based on an MST partitioning algorithm, 

which first generates building clusters, and then generates road segments that surround each 

building cluster. 

 

This algorithm is developed and tuned using data from a small case study area in Newcastle 

upon Tyne, but it is generalized well when generating road network for other testing areas. 

That shows the algorithm can be used as general solution for generating geospatial layout of 

road network. One limitation of the algorithm though, is that it assumes an exterior ring 

should exist on the synthetic road network, and it cannot be generated by the algorithm 

(instead it should be explicitly given as a boundary). Despite this limitation, this algorithm is 

considered as a generic, scalable, and transferable approach to generate layout for road 

network, and can be applied together the algorithm discussed in Chapter 4 and 5 for 

infrastructure network inference. 
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Chapter 7 – Database Performance Benchmarking Tests 

7.1 Introduction 

Urban infrastructure network data often have complex topology, attribute and geometry (Barr 

et al., 2016). An efficient data platform is essential for managing such complex network data 

(Wang, et al., 2015). In many countries, individual operators in specific infrastructure sectors 

(Woodhouse, 2014) and several large research initiatives (Barr et al., 2016), have realised the 

importance of developing data and information management platforms for better 

infrastructure network planning and decision support. 

 

At its core, such platforms require appropriate database systems that can handle the wide 

range of disparate data and relationships required for infrastructure network modelling and 

analysis (Barr, et al., 2013; Haider, 2013). Traditionally a spatial relational approach is used, 

such as the Oracle Spatial Network Extension (British Telecom, 2012; Fikejz et al., 2016) or 

PostGIS database (Barr, et al., 2013; Zhang, et al., 2012). 

 

The spatial relational approach relies on relational models and applies tables of predefined 

schema to store large amount of data (Tang, 2016), and it is naturally strong in resolving 

relational query (e.g. return all the nodes with type ‘building’) or spatial query (e.g. return all 

the nodes that are spatially within a given footprint) (Agarwal, et al., 2017). However, when 

storing the large and complex network data (e.g. fine scale urban infrastructure network 

discussed in this PhD), this approach shows potential performance bottleneck in analysing 

network topology (Robson, et al., 2018), as this task often transforms to an expensive join 

operation among multiple tables (Vicknair, et al., 2010). 

 

Recently, NoSQL graph database, based on graph data model, has been proposed as a generic 

approach for more efficient storage and retrieval of complex network data, and it has been 

applied in different fields, such as bioinformatics (Have, et al, 2013), social network (Fan, 

2012), and recommendation system (Bagci, et al., 2016). However, very little attention has 
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been made in applying graph database in the management of geospatial infrastructure network 

data. The major reason is that, no database performance benchmarking tests have been done, 

to justify performance boost in applying graph database over the traditional approach, when 

dealing with geospatial infrastructure network data. The purpose of this chapter is to fill in 

this research gap. 

 

The objective of a performance benchmarking test, is to evaluate performance of a database 

system against a reference one (TPC-C benchmark, 1992). The performance, normally refers 

to the execution time of a database to resolve a given query (Tang, 2016; Ferro, 2018; Ray, et 

al., 2011). Database performance is often evaluated on tests of different complexities (Ray, et 

al., 2011), which is related to size of data (e.g. number of nodes for network data) to be 

processed, and the difficulty of the query (e.g. return all nodes compared with return all 

nodes with specific attribute value) that needs to be resolved (Vicknair, et al., 2010). Tests of 

different complexities help understand the strength and weakness of each database, and to 

evaluate what database to use in which situation (Jung, et al, 2015). 

 

Writing and reading data are the most basic queries that are used in almost any database 

benchmarking test for any database (McColl, et al., 2014). For spatial database, the additional 

test queries can be spatial operations (e.g. intersection calculation, within calculation, distance 

calculation) (Paton, et al., 2000). For graph database, additional test queries can be network 

search queries (e.g. neighbour search, shortest path search) (ArangoDB, 2018). These 

common queries are used for general performance evaluation for spatial and graph databases 

(Vicknair, et al., 2010; Mpinda, et al., 2015). However, as pointed out by Papadias et al 

(2003), if the database is used for a specific application or is using specific data (e.g. in our 

case, fine scale geospatial infrastructure network data), then test query must be carefully 

designed to simulate the operations that can actually occur in real applications. 

 

The aim of this chapter is to develop performance benchmarking tests, to evaluate the 

performance of graph database against the traditional approach (spatial relational database), in 

processing geospatial infrastructure network data. Section 7.2 discusses the database 
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approaches used in the tests. Section 7.3 gives an overview of the tests to be done. Section 

7.4, 7.5, and 7.6 are the tests and result interpretations. Section 7.7 concludes this chapter. 

 

7.2 Database Approaches for Tests 

Three database approaches are chosen for the performance benchmarking tests. They are the 

ITRC interdependency network schema, PgRouting, and a hybrid database based on a 

PostGIS and Neo4j database. 

 

The ITRC interdependency network schema is a database schema based on PostGIS, 

developed for the NISMOD-DB project (Barr, et al., 2013). It is proved to be an efficient and 

reliable approach in the management of national scale interdependent infrastructure networks 

in the United Kingdom. Therefore, this approach is considered to be a good benchmark, when 

processing fine scale urban infrastructure network data. 

 

The PgRouting approach is actually a PostGIS database with PgRouting extension 

(PgRouting, 2018). This extension gives PostGIS database a routing functionality (e.g. 

resolving shortest path algorithm) when storing network data. Due to routing functionality 

and PostGIS’s original strength in querying spatial data, the PgRouting has been widely 

considered as an economic (free) and efficient solution for spatial network routing 

applications, such as road network routing (Zhang, et al., 2012). Therefore, this approach is 

considered related to the management of geospatial infrastructure network data, and also 

chosen here. 

 

The final approach is a hybrid database, which is based on two databases (PostGIS and 

Neo4j) linked with each. Neo4j is the most popular graph database (DB-Engines Ranking, 

2018), which is based on a new data model called property graph, and it is suitable for storing 

and querying large and complex network data (Neo4j, 2018). Therefore, it is considered to be 

a good solution when performing network search queries on complex infrastructure network 
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data. However, currently Neo4j does not have good support for on spatial data (more details 

to be discussed in section 7.2.3), and therefore a hybrid database is used here. 

 

Section 7.2.1, 7.2.2, and 7.2.3 gives more explanation about how each database approach 

stores data and how to perform general queries (such as writing, reading, or network search). 

 

7.2.1 ITRC Interdependency Network Schema 

The ITRC Interdependency Network Schema (from now will be termed ITRC schema) is 

shown in figure 7.1. In this schema, the Graphs table (the meta-data table) is used to store the 

name of each individual network instance.  

 

For each individual network instance: a Nodes table is used to store the geometries and 

attributes of nodes, an Edges table is used to store the edges (topological connectivity of 

nodes) and their attributes, and an Edge_Geometry table is used to store the geometries of 

edges. Within a network instance, each node or edge is indexed using a Node_ID or 

Edge_ID. The topology (which edge is connected to which two nodes) is exactly represented 

by storing the Node_ID into the Edges table. 

 

There is also an Interdependencies table, which is used to store the interdependency from a 

node in a network instance to a node in another network instance. An 

interdependency_Edges is the table to store the geometry for such interdependency. 
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Figure 7.1. ITRC schema. 

 

With such schema, it is possible to store geometries and attributes (e.g. node type, edge type) 

and topology in a single PostGIS database. Moreover, additional database APIs and libraries 

exist for writing, reading data to/from the database, as well as querying the data. A generic 

pipe line for ITRC schema is shown in figure 7.2. 

 

 

Figure 7.2. General pipe line for ITRC schema. 

 



199 

 

In figure 7.2, the Python library NetworkX is the most vital part in the entire pipe line. This 

library is used for creating and manipulating complex network data in memory (NetworkX, 

2018). With NetworkX, network raw data (e.g. one ESRI shapefile file for network edges, and 

another ESRI shapefile file for network nodes) are converted to a NetworkX instance first, 

and then written to an instance of the ITRC schema, via a schema driver called nx_pgnet. 

Likewise, reading data from the database must be done also via nx_pgnet and NetworkX. To 

query the data, as long as network topology is involved (e.g. return the neighbours of a given 

node, or return a shortest path between two nodes), network data must be read into memory as 

NetworkX instance, and queried via the NetworkX function. 

 

The ITRC schema is proved to be effective when modelling national scale geospatial 

infrastructure networks (Barr, et al., 2013). However, there is no evidence to show it is still 

efficient in processing fine scale infrastructure network data that has more complex topology. 

This database approach will be used as the benchmark to evaluate performance of the other 

two database approaches. 

 

7.2.2 PgRouting 

The PgRouting approach is a PostGIS database with PgRouting extension (PgRouting, 2018). 

The way it stores network data is almost the same as the ITRC schema. The PgRouting uses 

one table to store network nodes and another table to store the network edges. With the 

PgRouting extension, additional routing functions (e.g. resolving shortest path between two 

nodes) are introduced and can be called as SQL queries. The general pipe line for the 

PgRouting approach is shown in figure 7.3, with necessary data APIs provided. 
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Figure 7.3. General pipe line for PgRouting approach. 

 

Figure 7.3 shows that when using PgRouting, the PostGIS database no longer relies on any 

external library (e.g. NetworkX), except for the data driver Psycopg2 (Psycopg, 2018). 

However, the writing process is more complicated now, and it is important to know the 

network edges and nodes are written separately into database. 

 

The major reason is that PgRouting must use a very special function (called 

pgr_createTopology) to construct network topology (PgRouting, 2018), which only accepts 

network edges as input. That actually creates barrier in writing nodes (especially the node 

attributes) into PgRouting. Figure 7.4 illustrates what exactly happens when writing network 

data into PgRouting. 
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Figure 7.4. The actual detailed flow to write network into PgRouting, supposing writing 

electricity distribution network. 

 

First (Step 1), reading Edges.shp as input, a table called edges is generated. The edges table 

contains geometry of each edge, and contain edge attributes as well. PgRouting automatically 

assign an edge_id for each edge. Then (Step 2), pgr_createTopology function needs to be 

called, so that PgRouting can infer network topology based on spatial connectivity of edges. 

The result is the generation of a table called edges_vertices_pgr, which stores the geometry 
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of each vertex (node), and each vertex (node) is assigned a v_id automatically. Note in table 

edges, two new columns v1_id and v2_id are generated, to indicate the topological 

connectivity between edges and vertices (nodes). However, vertex (node) attributes have not 

been assigned yet. That is why, finally (Step 3) Nodes.shp is read as input. To assign node 

attributes, spatial matching must be done (for each record in Nodes.shp, find the record in 

edges_vertices_pgr that has same geometry). 

 

Despite the long pipe line of writing, reading is more efficient for PgRouting, as only 

Psycopg2 is called to directly retrieve data from PostGIS. More importantly, querying data is 

easier, compared with ITRC schema. No matter what query needs to be executed (whether it 

is spatial, attribute, or network query), the query can be directly made to the PostGIS database 

via SQL (no need to read data into memory and ask NetworkX to perform the query). 

 

7.2.3 Hybrid Database 

A hybrid database normally refers to a system consisting of multiple databases, which acts as 

one single system (Maislos, 2017). A simple hybrid database can be a combination of two 

databases, for example, a relational database and a NoSQL database (Thant, et al., 2014). The 

reason to use a hybrid database is often to gain performance improvement, compared with a 

system of a single database. For example, Robson et al (2018) presented work in developing 

the NISMOD-DB ++ database, which combines the graph database Neo4j and relational 

database PostGIS to process geospatial network data. Using this approach, query can be 

executed via SQL or Cypher (Neo4j’s query language) to the PostGIS or Neo4j, in order to 

achieve better system performance. 

 

The hybrid database approach to be introduced in this sub-section is similar to NISMOD-

DB++. It is a combination of a PostGIS and Neo4j database. The reason to choose Neo4j is 

that it is currently the most popular graph database (DB-Engines Ranking, 2018). Neo4j has 

its own data model called property graph (Neo4j, 2018). A property graph consists of nodes 
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and relationships that connect nodes. Each node and relationship can have its own property, 

where each property is a (key: value) pair. An example is shown in figure 7.5. 

 

 

Figure 7.5. An example of Neo4j property graph. 

Source: https://www.sitepoint.com/introducing-the-neo4j-symfony-bundle/ 

 

The Neo4j property graph model makes it easy to store network data with attributes in Neo4j. 

Moreover, Neo4j has its special query language Cypher which allows for attribute or network 

query. However, its capability is somewhat limited in spatial operation. Neo4j does provide an 

extension neo4j-spatial for extra functionality in storing and querying spatial data. However, 

currently (late 2018), there are still two major disadvantages of neo4j-spatial in modelling 

geospatial infrastructure network data (Neo4j-Spatial, 2018). First, while geometry of the 

network nodes can be stored and indexed, the geometry of network edges cannot. That means 

it is impossible to perform spatial query on network edges. Secondly, supported spatial query 

on network node is too simple. For example, if performing a within operation using a given 

https://www.sitepoint.com/introducing-the-neo4j-symfony-bundle/
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footprint as input (e.g. return all the nodes within the given spatial footprint), that footprint 

(polygon) must be a circle, it cannot be a more complex irregular polygon. 

 

Given the above, neo4j-spatial is considered to be inappropriate for modelling fine scale 

geospatial infrastructure networks. Thus, a hybrid database is developed that employs a 

combination of Neo4j and PostGIS (figure 7.6). 

 

 

Figure 7.6. General pipe line for the hybrid database approach. 

 

In the hybrid database, network data are separately stored in PostGIS and Neo4j. PostGIS 

only stores the geometry of nodes (e.g. point) and edges (e.g. polygon), using two tables 

(nodes and edges). Neo4j only stores network topology and attribute of nodes and edges (as 

properties in the property graph model). NetworkX is still a necessary external library in the 

writing process, but no longer needed in reading. Moreover, PostGIS and Neo4j can be 

queried via SQL and Cypher, depending on the actual workload. For example, if a spatial 

calculation needs to be resolved (e.g. return all the edges within a given spatial footprint), 

SQL is called on PostGIS; if a network search needs to be resolved (e.g. return all the nodes 

connecting a given node), Cypher is called on Neo4j. 
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Due to the separate data storage, a link must be made between PostGIS and Neo4j, so that we 

know the corresponding geometry for the node and edge (relationship) in the Neo4j property 

graph. The link is achieved is via assigning each node a unique node_id and each edge a 

unique edge_id. The node_id and edge_id are stored both in Neo4j and PostGIS. 

 

For example, figure 7.7 shows how to use node_id and edge_id to link data (in this example, 

electricity network data) stored in the hybrid database. The node in red rectangle (in property 

graph) has its corresponding geometry in red rectangle (in the table nodes). The edge in 

orange rectangle (in property graph) has its corresponding geometry in orange rectangle (in 

the table edges). 

 

Figure 7.7. Linking PostGIS and Neo4j using node_id and edge_id. 
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This data reference approach is important, when the hybrid database needs to execute a query 

that needs to visit both Neo4j and PostGIS to retrieve the final result. Four common scenarios 

are shown in figure 7.8, depending on which database is visited first and whether the query is 

related to node or edge. 

 

Figure 7.8. Four common and simple scenarios of retrieving data using both databases. 

 

7.3 Performance Benchmarking Tests Overview 

The performance benchmarking tests developed in this chapter measure the query execution 

time (Tang, 2016; Ferro, 2018; Ray, et al., 2011), to evaluate performance of the three 

database approaches mentioned earlier. Three major tests (with increasing complexity) are 

designed, and performance of ITRC schema is regarded as the benchmark (i.e. 100%). 

 

The first test has the lowest complexity, which relies on infrastructure network data of 

different sizes (i.e. number of nodes). The actual workloads are simple database operations, 

including writing, reading, and network shortest path query. This test aims to generally 

evaluate database performance when processing different sized infrastructure network data. 

 



207 

 

The second test is more difficult than the first test, because it relies on two large infrastructure 

network data (the road network and electricity distribution network in Newcastle upon Tyne). 

The actual workloads are more difficult, which will be complex queries where there is spatial 

calculation. This aims to evaluate database performance when spatial query is involved in 

analysing infrastructure network at city scale. 

 

The third test is the hardest one, as it uses a massive network data set (the electricity 

distribution network in London). Workloads include simple operations (writing and reading) 

as well as complex ones (spatial calculation and network search). This test aims to 

comprehensively evaluate database performance when performing complex queries on 

massive network data. 

 

The benchmarking tests were run on a desktop workstation, with 2 core CPUs (Intel(R) 

Xeon(R) Gold 6134 CPU @ 3.20 GHz), and 512 GB memory. The versions of database 

software are: PostgreSQL 10.3 / PostGIS 9.4, PgRouting 2.2, and Neo4j 3.1.3. The versions 

for the external libraries and data drives are: NetworkX 1.11, nx_pgnet 0.9, Psycopg2 2.7.7, 

Neo4j Python Driver 1.5.1. 

 

7.4 Performance Test on Different Sized Network Data 

This test evaluates databases performance when processing different sized network data (from 

network of about 100 nodes to the one of about 200,000 nodes). It is designed to be a test of 

lowest complexity, and therefore only simple operations are considered (writing data, reading 

data, and shortest path test). Details of the data, and test results are introduced below. 
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7.4.1 Network Data 

 

Figure 7.9. Three types of data used in this test. 

 

There are 13 different network data sets used in the test, and they can be classified into three 

types (figure 7.9). Complete datasets are explained in Appendix H. 

 

For the type 1, there are 5 data sets. Each is a single instance of electricity distribution 

network in Newcastle upon Tyne. Their sizes (number of nodes) are about 100, 200, 400, 800, 

and 1600 respectively. Each network instance has one asset (electricity substation) and several 

building nodes. For example, figure 7.10 shows the network instance of size 800. 
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Figure 7.10. The network instance of size 800, in the type 1 network data. 

 

For the type 2, there are 7 data sets. Each one contains multiple instances of electricity 

distribution networks in Newcastle upon Tyne, with their sizes being 2500, 5000, 10000, 

20000, 40000, 80000, and ‘Newcastle’. The size ‘Newcastle’ corresponds to the entire city 

scale electricity distribution network in Newcastle upon Tyne (generated in Chapter 4), which 

contains totally 209,886 nodes (figure 7.11). 
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Figure 7.11. The type 2 network data, with size being ‘Newcastle’. Each colour in the figure 

refers to a single network instance. 

For the type 3, there is only one network data set (size ‘UK’), which is a single large spatial 

network instance comprising of the England and Wales national electricity transmission-

distribution network (figure 7.12), containing 170,667 nodes and 173,039 edges. 

 

Figure 7.12. The type 3 network data, with size being ‘UK’. 
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7.4.2 Writing Test 

The writing test evaluates the performance of writing network data (from ESRI shapefile 

format) into the database. The actual execution time for the writing test is shown in table I1, 

Appendix I. It is found that the execution time of any database approach is almost 

proportional to the network size. ITRC schema is the fastest one, regardless of network size, 

from 1.2 seconds (to write network of size 100) to 1936 seconds (to write network of size 

‘Newcastle’). The PgRouting approach is always slower (than the ITRC schema), which costs 

3.1 seconds (to write network of size 100) and 4859 seconds (to write network of size 

‘Newcastle’). The hybrid database is also slower than the ITRC approach, but is faster than 

PgRouting, especially in writing large network data (costs 2884 seconds to write network of 

size ‘Newcastle’). When comparing the performance of PgRouting and hybrid database 

against ITRC schema (benchmark), figure 7.13 shows the relative difference. 

 

 

Figure 7.13. Performance comparison of writing different sized network data. 

 



212 

 

Figure 7.13 shows the percentage difference of execution time of PgRouting and hybrid 

database against the ITRC schema (100%). It is interesting to see that PgRouting is always 

about 2 – 2.5 times slower than ITRC schema, even if the PgRouting approach does not rely 

on NetworkX in writing data. The major reason is that, the pipe line to write data into 

PgRouting is very expensive (explained in section 7.2.2, figure 7.4). PgRouting needs to write 

edges and nodes separately into PostGIS, and assigning node attributes can be time 

consuming. For hybrid database, it is about 2.5 times slower than benchmark, when writing 

extremely small data (e.g. size is 100), but that ratio decreases as network size increases, and 

finally stays around 150%. The reason is that, when writing very small network, the time for 

database driver to connect hybrid database can be longer than the time to do the actual 

writing. Still, hybrid database is 1.5 times slower when writing large network. The major 

reason is that, writing needs to be done to two databases, and Neo4j driver can be slower than 

the database driver of ITRC schema. 

 

7.4.3 Reading Test 

The reading test evaluates performance of database to read network data (from the database) 

to a GIS file (e.g. ESRI shapefile format). The actual execution time for the writing test is 

shown in table I2, Appendix I. It is found that, like writing network data, when reading 

network data, execution time of all databases are still almost proportional to the network size. 

ITRC schema needs to cost 1.4 seconds (to read network of size 100) and 3012 seconds (to 

read network of size ‘Newcastle’). The corresponding execution time of PgRouting and 

hybrid database, are 1.9 seconds, 1772 seconds, and 3.1 seconds, 1012 seconds, respectively. 

A percentage performance comparison is shown in figure 7.14. 
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Figure 7.14. Performance comparison of reading different size network. 

 

Figure 7.14 clearly shows that the benchmark (ITRC schema) is no longer the most effective 

approach when reading data. In fact, it is always slower than the other two. When processing 

large network (size > 10000), PgRouting can be almost 2 times faster than the benchmark. 

The hybrid database is slightly slower than PgRouting. 

 

For ITRC schema, the major reason for its poor reading performance, is that it must read data 

into NetworkX first, then output the GIS files. However, NetworkX is not needed for 

PgRouting and hybrid database, and they can directly read data from the database. Hybrid 

database is comparatively slightly slower, and that is still because it needs to read data from 

two databases, instead of one. 
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7.4.4 Shortest path test 

When evaluating database performance in handling network data, the weighted shortest path 

query is always considered to be the most important one (ArangoDB, 2018, Tang, 2016) and 

therefore it is also undertaken here. To be clear, the shortest path query on the 13 data sets are 

not exactly the same, and it is shown in table 7.1. 

 

Data Set Shortest Path Query 

Type 1 and 2 Resolve Dijkstra shortest path for each substation node to each building node 

it serves. 

Type 3 Given 50 nodal pairs (node_id, node_id), resolve Dijkstra shortest path 

between nodes in each nodal pair. 

Table 7.1. Shortest path query to be executed. 

 

For type 1 and 2 data set, the query is resolving Dijkstra shortest path from each substation 

node to each building node it serves, where the weight is the edge length. The reason to 

consider such query is that, as mentioned in this thesis, the connection between infrastructure 

asset and buildings it services is essential. However, for type 3 data (UK transmission network 

data), same shortest path query cannot be done, because there are no building nodes in it, but 

only substations of different levels. Therefore, a special shortest path query is designed for 

type 3 data, which is given several nodal pairs, resolving Dijkstra shortest path between nodes 

in each pair. The nodal pairs are manually picked up, and topological distance (how many 

nodes between them) in a nodal pair is at least 20, and this helps us evaluate how efficiently 

database can resolve shortest path between relatively distant nodes in a single large network 

instance. 

 

For type 1 and 2 data set, one thing that must be made clear is that, each electricity 

distribution network instance has a unique net_id (from input ESRI shapefile), and it is 

encoded as an attribute on each node and edge, and is stored in all of the three databases 

approaches (ITRC schema, PgRouting, and hybrid database). Since the shortest path query is 

more difficult than reading and writing data, the actual pipe lines for different database 
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approaches are shown in figure 7.15 and 7.16. 

 

 

Figure 7.15. Pipe lines for shortest path query on type 1 and type 2 network data. 

 

 

Figure 7.16. Pipe lines for shortest path query on type 3 network data. 

 

Figure 7.15 shows that to perform shortest path query on type 1 and 2 network data, the 

database needs to figure out which nodes are substation nodes first (via the attribute 
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node_type), retrieve the net_id for each substation node, and then find all the building nodes 

that have same net_id. The all the substation nodes and their dependent building nodes are 

retrieved (essentially retrieving their node_id), then Dijkstra shortest path calculation can be 

resolved on these nodes. However, when performing shortest path query on type 3 network 

data (figure 7.16), the node_id (of the nodes to be resolved Dijkstra shortest path) is given, 

and therefore pipe lines are shorter. 

 

The actual execution time of shortest path query is shown in figure I3, Appendix I. For ITRC 

schema, execution time is still proportional to the network size, from 1.8 seconds (query 

network of size 100) to 2502 seconds (query network of size ‘Newcastle’). For PgRouting and 

hybrid database, they spend 2.7 seconds and 3.1 seconds (query network of size 100) and 945 

seconds and 595 seconds (query network of size ‘Newcastle’) respectively. The percentage 

performance comparison is shown in figure 7.17. 

 

 

Figure 7.17. Performance comparison of performing shortest path query on different sized 

network data. 

 

From table 7.17, it is found that PgRouting is slower than benchmark when network size is 
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smaller than 1600, but faster when network is larger. The hybrid database follows the same 

pattern, but that threshold value (network size) is 400. Again, this is because when querying 

small network, the actual time for the database driver to connect the database, is not 

neglectable. The benchmark becomes much slower than the other two approaches when 

network is large. For example, PgRouting and hybrid database is about 2.5 times and 5 times 

faster than ITRC schema, when querying network of size ‘Newcastle’. That is because ITRC 

schema needs to read the entire network data into memory to be able to query it. If a network 

stored in ITRC schema contains 1 million nodes, and even if the network query is very easy 

(e.g. find the neighbour for only one given node), still all these 1 million nodes needs to be 

read into memory. 

 

This is the biggest problem for ITRC schema. It cannot directly perform network query on the 

database, but PgRouting and hybrid database can. That is why these two databases are about 

40 times faster when query network data of size ‘UK’, which is not an expensive operation for 

PgRouting and hybrid database (both finish within one minute). Moreover, hybrid database is 

even faster compared with PgRouting (almost regardless of network size). That shows the 

graph engine of hybrid database (Neo4j) is more efficient in resolve network query, compared 

with the routing functionality provided by PgRouting. 

 

7.5 Performance Test on City Scale Network Data from Newcastle 

In the last section, performance of three database approaches was evaluated in three sub-tests: 

writing, reading and query. The query (shortest path query) is a simple one, which is based on 

network attributes (on the nodes) and topology, and there is no geometry involved. However, 

as mentioned in Chapter 2 (literature review), geometry is an important part of geospatial 

infrastructure networks, therefore spatial query can be relevant or even frequent in the 

analysis of infrastructure networks. For example, the 2003 Italy blackout that affected the 

entire country, was only triggered by few cables that were damaged due to storm (Rosato, et 

al., 2008). Therefore, when analysing infrastructure network cascading failure triggered by 
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spatial hazards, a common operation is to first perform a spatial query to find affected 

network nodes or edges, and then perform a network query to find the affected nodes in the 

network. 

 

Therefore, being able to efficiently resolve complex query (involving spatial, attribute and 

network query) is considered to be an essential capability of the database. In this section, 

performance tests will focus on this aspect and the tests can be much harder than the ones 

done in the last section. The tests are harder here because: 1) the networks are the entire city 

scale infrastructure network in Newcastle (a network can contain more than 200,000 nodes, 

and 2) the queries to be performed are more complex (than for example, a Dijkstra shortest 

path query). The details of test data and the performance tests are introduced below. 

 

7.5.1 Test Data 

There are two network data sets to be used in this test, the integrated road network (IRN) and 

the electricity distribution network in Newcastle upon Tyne.  

 

The IRN (figure 7.18) is a synthetic network by integrating buildings into the existing road 

network (ITN) of Newcastle upon Tyne. It contains 13,698 nodes and 16,960 edges. The IRN 

is generated via the building-ITN integration algorithm (Listing 7.1), and the IRN contains 

213,897 nodes and 217,166 edges. Of all the nodes in IRN, there are 104,855 building nodes. 
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Figure 7.18. The ITN network (Contains OS data © 2018). 

 

 

Listing 7.1. The building-ITN integration algorithm. 

 

Figure 7.20 shows the IRN layout in a very fine spatial scale. The reason to generate the IRN 

(instead of using the original ITN) is that, it represents the spatial connectivity between 

buildings and roads, which is essential in modelling fine scale infrastructure networks. 
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Figure 7.19. The IRN network (Contains OS data © 2018). 

 

 

Figure 7.20. A closer view of the IRN, with regards to the building layout (Contains OS data 

© 2018). 
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The other network data used in the test, is the one we have seen in section 7.4, the type 2 

network data of size ‘Newcastle’. This is the entire city scale electricity distribution network 

data in Newcastle upon Tyne (figure 7.21), containing 209,886 nodes and 209,892 edges. 

 

Figure 7.21. Entire city scale electricity distribution network data in Newcastle upon Tyne. 

Each colour refers to a single network instance. 

 

The reason to choose these two different data sets here, is that they have relatively different 

topologies. The IRN network is a single large network instance that contains about 200,000 

nodes. While the Newcastle electricity distribution networks data is about the same size, it 

consists of 636 single network instances. These are the two common types of urban 

infrastructure networks (one of a single large connected network instance and one of multiple 

connected network instances). It is considered a good database approach should be able to 

handle both network data efficiently, and that is why both of them are used in the test. 

 

One thing to mention in this section is that tests will not be done on writing and reading these 

two network data sets, because the operations on similar sized data have been evaluated in the 

last section (7.4). Instead, the focus of this section is to query the network data, and that relies 

on another data. It is an ESRI shapefile Polygon layer (figure 7.21), which contains the spatial 
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footprint of floods in Newcastle upon Tyne, and it is generated by an urban flood model 

CityCAT (Glenis, et al., 2013). 

 

 

Figure 7.22. The CityCAT flooding footprint. 

 

The reason to use a flooding footprint is that, Newcastle upon Tyne (and in fact UK in 

general) suffered severely from flooding (Glenius, et al., 2013). The most recent flooding 

hazard in Newcastle upon Tyne occurred on June 28, 2012, when 50 mm rain fall in two hours 

(which basically should have been a month’s amount) caused £ 8m of damage to homes, roads 

and businesses, and 3000 residents were affected (BBC News, 2012). Given the above, 

flooding footprint is used as it is a spatial hazard that can actually occur in the city. The actual 

performance tests (on the IRN and electricity distribution network) are discussed as follows. 

 

7.5.2 Performance Test on querying Newcastle Integrated Road Network 

Road network routing applications often need to solve conditional shortest path problems for 

their customers (Medhi, 2017). The conditional means some edges in the road network are not 
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used when resolving shortest path (e.g. some roads are blocked due to construction work, or 

damage). This test simulates a scenario, in which roads (in the IRN) within flooding footprint 

are submerged and cannot be used. The test evaluates how the failure on IRN affects the travel 

ability of residents from their houses to a pre-defined city centre node (figure 7.23). 

 

The location of the city centre node is the Newcastle Monument Plaza (Wikipedia, 2018), 

which is considered to be the most crowded area and centre for the city. The query on the IRN 

(called IRN complex query) is shown in table 7.2. It is a long query that consists of four small 

steps. The pipe lines for each database to resolve IRN complex query is shown in figure 7.24. 

 

 

Figure 7.23. The IRN and city centre node. 

 

IRN complex query Operation 

Step 1 Find IRN’s edges that are intersecting with CityCAT flooding 

footprint, mark them as disrupted edges 

Step 2 Resolve Dijkstra path from each building node to the city centre 

Step 3 If a building’s shortest path consists of at least one disrupted 

edge, mark the building as a disrupted building 
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Step 4 Turn off the disrupted road segments, re-calculate Dijkstra 

shortest path, for each disrupted building to the city centre node, 

if there is still a path 

Table 7.2. Breakdown of IRN complex query. 

 

 

Figure 7.24. Pipe lines to resolve the IRN complex query. 

 

For any database approach, first a spatial query is resolved to find disrupted edges within 

flooding footprint. An attribute query is resolved to find the building nodes (node_type = 

‘building’). After that, there will be differences for each database approach. ITRC schema 

needs to read IRN instance into NetworkX instance and then perform shortest path query. 

While PgRouting and hybrid database can query IRN directly. Note that IRN needs to be 

queried twice (1st time is to find disrupted buildings, and 2nd time is to resolve shortest path 

from disrupted buildings to city centre).  

 

As a result, the IRN complex query found that 2397 edges from IRN are disrupted (figure 
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7.25). For all the 104,855 building nodes, 67% of them (70,120) buildings are disrupted. After 

turning off the disrupted edges, for all the disrupted building nodes, 64,841 of them still have 

new shortest paths, but the remaining 5279 are could no longer reach the city centre node 

(figure 7.26). 

 

 

Figure 7.25. 2397 disrupted edges (in Cyan) in the IRN. 

 



226 

 

 

Figure 7.26. 5279 building nodes that cannot reach city centre due to flood. 

 

The IRN complex query execution time is shown in figure I4, Appendix I. The execution time 

for ITRC schema, PgRouting and hybrid database is 24,602, 5183, and 2139 seconds 

respectively. The relative performance comparison is shown in figure 7.27. 

 

Figure 7.27. Performance comparison of executing IRN complex query. 
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It is found that the IRN complex query is so difficult for the ITRC schema that it costs more 

than 6 hours. While for PgRouting and hybrid database, they are about 5 times and 12 times 

faster. All the three approaches use PostGIS to resolved spatial query (find disrupted edges 

within flood), and therefore the performance difference is related to how the database resolves 

network query. The ITRC schema has poor performance since still it needs to read the IRN 

network into memory to be able to query it. 

 

Moreover, ITRC schema has another disadvantage, which is it only supports shortest path 

query that has a single start node and a single end node. That means when resolving Dijkstra 

path from each building node to the city centre node, it needs to iterate on every building 

node, and resolve shortest path from that building node (to city centre node). This is less 

flexible, as PgRouting and hybrid database (actually Neo4j inside) allows for shortest path 

query that has multiple start nodes or multiple end nodes. For this example, hybrid database is 

about 2.3 times faster than PgRouting, shows Neo4j’s property graph model and Cypher is 

more efficient than PgRoting’s relational tables and SQL, for querying a large network 

instance at city scale. 

 

7.5.3 Performance Test on querying Newcastle Electricity Distribution Network 

The IRN complex query in section 7.5.2 showed a typical scenario when geometry on 

network edges are queried. The IRN complex query is virtually a long query consisting of a 

spatial query and two shortest path queries. The hybrid database outperformed the other two 

due to its graph engine (Neo4j). However, it is still not clear how efficient the hybrid database 

is, suppose it is only used to perform spatial and attribute queries, but no network query. 

Therefore, this section is developed by such intention. The network data used here is entire 

city scale electricity distribution network in Newcastle upon Tyne (figure 7.21). There are 636 

network instances, and each network instance has a unique net_id, which is assigned as an 

attribute to every node and edge in this network instance. The test here is called a complex 

query on Newcastle Electricity Network, and it consists of four distinctive tasks (table 7.3). 



228 

 

Task Operation 

1 Find substation nodes within flood, and then find all the buildings served 

by these substations (has same net_id) 

2 Find building nodes within flood, and then find all the substations serving 

them (has same net_id) 

3 Find substation nodes NOT within flood, and then find building nodes 

served by these substations (has same net_id) 

4 Find network instances which contain NO flooded buildings, then find 

substations from these network instances 

Table 7.3. Four tasks for complex query on Newcastle Electricity Network. 

 

Each task in table 7.3, is designed to evaluate database performance when handling a spatial 

query plus attribute queries. For each task, a spatial query is done to find substation nodes or 

building nodes (within or out of) the flooding footprint, then attribute queries are done to find 

the dependent building nodes or substation nodes. Note task 1 and 3 are negation operations, 

so are task 2 and task 4. The reason to design the four tasks this way, is that asset nodes and 

building nodes are considered to be of top priorities when assessing impact of spatial hazard 

to infrastructure network. To resolve this complex query, the pipe lines of the ITRC schema 

and PgRouting are exactly the same, and shown in figure 7.28. The pipe lines of hybrid 

database is shown in figure 7.29. 

 

Figure 7.28. Pipe lines for ITRC schema and PgRouting, to resolve complex query on 

Newcastle Electricity Network. 
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Figure 7.29. Pipe lines for hybrid database, to resolve complex query on Newcastle 

Electricity Network. 

 

The reason for ITRC schema and PgRouting to have same pipe lines is that, they both use 

PostGIS relational table to store attributes. While for hybrid database, attributes are stored in 

property graph in Neo4j, so that pipe lines are longer. The actual retrieved number of 

buildings or substations are shown in table 7.4. The execution time of complex query on 

Newcastle Electricity Network is shown in figure I5, Appendix I. The execution time of ITRC 

schema and PgRouting are almost the same, which are about 3.7, 204, 26, and 257 seconds, 

for task 1, 2, 3 and 4 respectively. While the execution time hybrid database is longer, which 

are 5.6, 241, 37, and 314 seconds respectively. The performance comparison is shown in 

figure 7.30. 

 

Task Task Result 

1 retrieved substations: 2, retrieved buildings: 372. 

2 retrieved buildings: 586, retrieved substations: 15. 

3 retrieved substations: 634, retrieved buildings: 104,483. 

4 retrieved network instances: 621, retrieved substations: 621. 

Table 7.4. Result of complex query on Newcastle Electricity Network. 
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Figure 7.30. Performance comparison on complex query on Newcastle Electricity Network. 

 

It is not surprising to see PgRouting is almost exactly as fast as ITRC schema, since there is 

no network topology query, but only relational queries using PostGIS. Hybrid database is 

about 1.2 – 1.4 times slower. The major reason is that attributes are only stored in Neo4j, so 

the hybrid database needs to switch between Neo4j and PostGIS multiple times to get final 

result. 

 

7.6 Performance Test on Mega City Scale Network Data from London 

Section 7.5 evaluated database performance to process entire city scale infrastructure network 

for Newcastle upon Tyne. However, it is actually a small city, and if ranked by population, it 

is the 30th largest city in the UK (City Mayors, 2018). There are many mega cities in world, 

much larger than Newcastle, such as London, New York, Tokyo, and Shanghai. The purpose 

of data performance benchmarking test is to choose a database that is a generic data 

management solution for city of any size. That is the reason to develop this section 7.6, in 

which network data from a mega city London is used to test database performance. 

 

The tests to be performed in this section are considered of highest complexity (compared with 

tests in section 7.4 and 7.5) due to the data volume. Simple tests (writing, reading, and 
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shortest path query) are performed as well as complex tests (e.g. combining spatial query with 

attribute or network queries). Details of network data and tests are introduced below. 

 

7.6.1 Test Data 

The entire city scale electricity distribution network data of London (generated in chapter 4) is 

used here (figure 7.31) which comprises of totally 4,528,952 nodes and 4,512,779 edges. 

There are 16,839 network instances (substations) which serve electricity to 2,239,213 

buildings. 

 

Figure 7.31. Electricity distribution networks of London. Each colour refers to a network 

instance. 
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7.6.2 Writing, Reading, and Shortest Path Test 

Database performance on writing, reading and shortest path queries are evaluated using 

London electricity network data. Shortest path query is the same as the one in section 7.4.3, 

which is “resolve Dijkstra shortest path from each substation to all its dependent buildings”. 

The execution time for these tests are shown in table I6, Appendix I. To write the network, the 

ITRC schema, PgRouting and hybrid database spent 47688, 123961, and 65322 seconds. To 

read the network, these three approaches spent 64785, 23728, and 29897 seconds, 

respectively. To perform shortest path query, these three approaches spent 58980, 13716, and 

5034 seconds, respectively. Based on these values, the percentage performance is shown in 

figure 7.32. 

 

Figure 7.32. Performance comparison on performing writing, reading, and shortest path 

queries on London electricity network data. 

 

With regards to network size (number of nodes), the London electricity network data set is 

about 21 times larger than the Newcastle electricity network data set. It is interesting to see, 

that for any of the three database approaches, writing and reading execution time also increase 

almost 21 times. ITRC schema is still the fastest at writing (cost almost 13 hours), while 
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hybrid database and PgRouting are 1.35 and 2.59 times slower. For reading data, PgRouting is 

still the fastest one (around 6.6 hours), followed by hybrid database (around 8.3 hours), and 

they are 2.7 and 2.1 times faster than the benchmark. For shortest path query, ITRC schema is 

still slowest one (cost 16 hours, very unacceptable), while PgRouting and hybrid database are 

4.3 and 12 times faster. When performing shortest path query on Newcastle electricity 

network data in section 7.4.3, the PgRouting and hybrid database were 2.5 times and 5 times 

faster than ITRC schema. That means, as network data size increases, PgRouting and hybrid 

databases have better scalability (on network query such as shortest path) compared with the 

ITRC schema. The major reason is that, the graph engine ITRC schema uses (the NetworkX 

library) is less efficient compared with PgRouting and Neo4j when querying extremely large 

network data (e.g. at mega city size). 

 

7.6.3 Complex Query Test 

Two complex queries are designed (called complex query 1 and 2 as below), when database 

needs to perform a spatial query plus attribute or network topology queries. A spatial footprint 

(figure 7.33) is used for both complex queries. It is a generated synthetic data, which consists 

of 100 polygons, and each polygon is a circle of 100 meters radius.  

 

The circles are generated randomly within contour of London, and each circle simulates a 

spatial hazard that can occur in London. The reason to use only 100 circles (instead of 10,000 

for example) is to make sure every database approach can finish complex query still in almost 

acceptable time. This is the same reason to use 100 meters as circle radius, instead of 10,000 

meters for example. 



234 

 

 

Figure 7.33. Synthetic random hazards used for complex queries. 

 

Complex query 1 is almost same as the one discussed in section 7.5.3. The only difference is 

that in complex query 1, there is an iteration over every single random hazard. In each 

iteration, substation nodes (or building nodes) within (or out of random hazard) are retrieved, 

and then related building nodes or substation nodes are retrieved. The complex query 1 

consists of four tasks (table 7.5). Similarly, a unique net_id is given to every network instance 

and assigned to every node and edge. Therefore, every task in table 7.5 is actually a spatial 

query plus attribute queries. The pipe lines of database to resolve complex query 1 are the 

same as the one shown in figure 7.28 and 7.29. 

 

Task Operation 

1 For each random hazard: find the substations within, and then all the 

buildings served by these substations 

2 For each random hazard: find the buildings within, and then all the 

substations serving them 

3 For each random hazard: find the substations NOT within, and then all the 

buildings served by these substations 
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4 For each random hazard: find network instances (where no building nodes 

are within hazard), then find all the substations from these network instances 

Table 7.5. Four tasks in complex query 1 on London electricity network data. 

 

The result of complex query 1 is shown in table 7.6, in which the average numbers of building 

nodes (or substation nodes) retrieved are displayed. The query execution time is shown in 

table I7, Appendix I. The execution time of ITRC schema and PgRouting are almost same, 

and for the four tasks, it is about 2168, 2205, 2140, and 2590 seconds respectively. The 

execution time of hybrid database is slightly longer, which is 2620, 2561, 2396, and 2990, 

respectively. The percentage performance comparison on complex query 1 is shown in figure 

7.34. 

Task Result (Avg No. Data Retrieved on each Random Hazard) 

1 Substations: 0.3, Buildings: 376 

2 Buildings: 245, Substations: 1.9 

3 Substations: 16838.7, Buildings: 2238837 

4 Network Instances: 16837.1, Substations: 16837.1 

Table 7.6. Result of complex query 1 on London electricity network data. 

 

Figure 7.34. Performance comparison on performing complex query 1 on London electricity 

network data. 
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From figure 7.34, PgRouting is still as fast as ITRC schema, since they use both PostGIS to 

resolve spatial and attribute queries. The hybrid database is about 1.15 – 1.2 times slower than 

them, due to split storage of data. However, if compared with figure 7.30 (in which hybrid 

database is about 1.2 – 1.4 times slower), it is found the hybrid database (more precisely the 

Neo4j inside) shows good scalability in performing attribute query when network size 

increases. 

 

Complex query 2 is based on performing spatial query on (disrupted) network edges first, 

and then network topology query to find related building or substation nodes. The complex 

query 2 consists of 2 different tasks in which one negates the other (table 7.7). Note each 

electricity network instance is a network with direction (electricity flows from the substation 

node to building nodes), that is why complex query 2 considers flow direction. Like complex 

query 1, each task in complex query 2 is resolved on each random hazard separately. Pipe 

lines for complex query 2 are displayed in figure 7.35. Still ITRC schema has the longest pipe 

line compared with the other two, as it requires reading network data into NetworkX instance 

in the process. The result for complex query 2 is shown in table 7.8. 

 

Task Operation 

1 For each random hazard: find network edges within that hazard, and then find all the 

downstream buildings (disrupted buildings) served by these edges and all the 

upstream substations serving these edges. 

2 For each random hazard: find network edges within that hazard, and then find all 

(downstream) buildings served (disrupted buildings) by these edges. Then do the 

negation to find the undisrupted buildings. Finally find all the substations serving 

these undisrupted buildings. 

Table 7.7. Two tasks in complex query 2 on London electricity network data. 
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Figure 7.35. Pipe lines to resolve complex query 2 on London electricity network data. 

 

Task Result (Avg No. Data Retrieved on Each Random Hazard) 

1 Disrupted Buildings: 164, Substations: 2.6 

2 Undisrupted Buildings: 2239049, Substations: 16836.4 

Table 7.8. Result of complex query 2 on London electricity network data. 

 

Execution time to resolve complex query 2 is shown in table I7, Appendix I. The execution 

time for finishing task 1 for ITRC schema, PgRouting, and hybrid database are 21649, 9061, 

and 3125 seconds respectively. The execution time for finishing task 2 are 23155, 10793, and 

3507 seconds respectively. A percentage performance comparison is shown in figure 7.36. 
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Figure 7.36. Performance comparison on performing complex query 2 on London electricity 

network data. 

 

The complex query 2 (either task 1 or 2) is virtually a spatial query followed by a network 

topology query and attribute query. It is designed by intention to see how efficient each 

database approach is, when it needs to handle three completely different types of sub-queries. 

Figure 7.36 indicates that the ITRC schema is the slowest one, and the biggest reason is that it 

is very poor at performing network topology query (reading data into NetworkX is time 

consuming, and NetworkX functionality is less effective than PgRouting and Neo4j). Due to 

this, PgRouting and hybrid database are about 2 times and 7 times faster than ITRC schema. 

Hybrid database is even about 3.5 times faster than PgRouting, which is because the 

efficiency of its graph engine (Neo4j) in resolving the network topology sub-query for such 

massive network data. 

 

7.7 Conclusion 

An efficient database approach is essential in managing and analysing complex geospatial 

infrastructure network data. This chapter focused on database performance benchmarking 
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tests on three candidate database approaches: ITRC schema (the benchmark), PgRouting, and 

hybrid database (combination of a PostGIS and Neo4j). Tests of different complexities are 

designed to evaluate performance of each approach, when processing different network data, 

or performing different operations on the data. 

 

With regards to writing data, ITRC schema is always the most efficient one (regardless of 

network size). The hybrid database is about 1.5 – 2 times slower, due to its separate data 

storage system and it needs to interact with both PostGIS and Neo4j databases. The 

PgRouting is even slower, due to its long pipe line for writing and its difficulty in writing 

node attributes, and that makes PgRouting 2 – 2.5 times slower. 

 

However, with regards to reading data, ITRC schema is the slowest one, because it must read 

data into NetworkX instance first. Hybrid database is about 2 times faster, since it does not 

rely on NetworkX library. PgRouting is the even slightly faster than hybrid database, since it 

only reads data from one database, instead of two. 

 

Considering the fact that reading is a more frequent operation than writing in actual 

applications, the writing inefficiencies of PgRouting and hybrid database are totally 

acceptable as long as they read data much faster. 

 

Except for reading and writing, another simple query that can occur frequently on 

infrastructure network data, is network query, such as shortest path query. In the tests, ITRC 

schema is the most inefficient approach for that, and major reason is that it must data into 

NetworkX instance before network query. PgRouting and hybrid database can both perform 

network query directly, which is why they are about 2 times and 5 times faster. PgRouting 

allows using SQL to directly query network data, but it is virtually still a join on relational 

tables, which is why it is still less efficient than hybrid database, which relies on Neo4j and its 

own property data model. 

 

One of the potential problems of using hybrid database is its separate data storage, so that it 
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can be less efficient when only spatial or attribute query is performed. This is actually verified 

in section 7.5.2. Hybrid database can be about 1.2-1.4 times slower (than ITRC schema or 

PgRouting) when on performing spatial and attribute query on Newcastle integrated road 

network (IRN) data. However, as network size increases, hybrid database performs less 

poorly, and is about 1.15 – 1.2 times slower on London electricity network data. This is 

considered to be the better scalability of hybrid database (actually the Neo4j inside) at 

performing attribute queries. 

 

Finally, section 7.6.3 shows that when performing all of the spatial, attribute and network 

query on network data of mega city size, the hybrid database is the most efficient one, which 

is about 7 times faster than the ITRC schema and 3.5 times faster than PgRouting. That 

indicates that as long as a network topology query is involved, the hybrid database is an 

efficient approach for handling large and complex network data. 

 

Given the above, it is considered that hybrid database is the most efficient approach of the 

three, when managing and analysing geospatial infrastructure network data. Combining with 

other work from this PhD, a prototype platform (figure 7.37) is proposed for geospatial 

infrastructure network data inference and management. It consists of two major packages. 

One is the data generation package, to infer layout of infrastructure networks. The other is the 

data modelling package (based on a hybrid database) for managing and analysing 

infrastructure network data. 

 

A potential drawback for using a hybrid database though, is that there are two databases that 

can be queried instead of one. When performing a complex query (e.g. which comprises of a 

spatial query and network topology query), it is currently the user (the human) that decides 

whether to first visit PostGIS (on the spatial query) or to first visit Neo4j (on the network or 

attribute query). The system is still not automatic enough, which is why figure 7.37 is only 

called a prototype platform. This is an interesting topic to explore and should be further 

studied as the future work on top of this PhD. 
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Figure 7.37. A prototype platform for geospatial infrastructure network inference and 

management. 
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Chapter 8. Discussion 

8.1 Introduction 

Having fine granularity geospatial data on critical infrastructure networks is essential in 

different digital urban models (Albaugh, et al., 2004; Fang, et al., 2016; Gabrys, 2014; Lara, 

et al., 2016; Malekpour, et al., 2016), for example, in order to understand infrastructure 

interdependency and cascading failure from infrastructure assets to the buildings (Ouyant, 

2014; Rinaldi, 2001). However, until now relatively little attention has been paid to the 

representation and use of fine spatial scale infrastructure network data in infrastructure 

analysis, simulations and models. Chapter 2 (Literature Review) discussed the three major 

issues: the lack of an ontology when integrating data from different sources (section 2.5.1, 

page 21), the lack of a data inference approach to generate plausible spatial network layouts 

(section 2.5.2, page 26), and the lack of an efficient database to manage such complex 

geospatial network data (section 2.5.3, page 28). 

 

This thesis addressed these issues by developing generic geospatial data management tools for 

fine spatial granularity spatial infrastructure network data.  

 

8.2 Geospatial Infrastructure Network Ontology 

Data from different sources can be encoded in different ways, and to integrate such data in 

information system, a standard (ontology) is needed (Gruber, 1993). The ontology (in the 

context of this research) should conceptually define entities, attributes and relationships that 

to represent fine scale geospatial infrastructure networks. Section 2.5.1 (table 2.7, page 24) 

discussed about the related ontologies with regards to critical infrastructures. However, none 

of them meets the requirement for the management of fine scale geospatial infrastructure 

network data. 
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First, many existing ontologies only represent the infrastructure network at a topological 

level, ignoring the spatial level, such as KM4City (Bellini, et al, 2014), and Utility 

Knowledge Ontology (Xu, et al., 2018). Secondly, almost all the ontologies (except for 

INSPIRE data model) focus on a single sector of infrastructure network, such as transport 

(Lorenz, et al., 2005) or utility (Becker, et al., 2012), without considering all of them. Thirdly, 

all of the ontologies only represent infrastructures themselves, without considering the 

buildings and relationship between buildings and infrastructure; thus, that these ontologies 

cannot represent flows from assets to the buildings (D’Agostino, 2014). Finally, there is no 

ontology that considers dependencies and interdependencies within infrastructure networks. 

Some studies have developed an infrastructure interdependency ontology (McNally, et al., 

2007; Sicilia, et al., 2009), but they only focus on the dependencies / interdependencies 

themselves, without integrating it to the infrastructure networks. 

 

Identifying these major research gaps, the objective of developing a geospatial infrastructure 

network ontology is addressed in Chapter 3. The ontology (section 3.2, figure 3.1, page 33) is 

designed to cover all major types of infrastructure networks, including utility network 

(electricity, gas, water supply and waste water) as well as transport network (road, metro, 

rail). Each infrastructure network is defined as a spatial network instance, where each node or 

edge has its own geometry (section 3.2, table 3.2, page 34). By doing so, spatial relationships 

(for example, distance, north of, south of) can be represented on the infrastructure networks 

(section 3.2, table 3.3, page 35). The ontology also defines that attributes associated with 

edges and nodes. Table 3.4 (section 3.2, page 36) describes the inheritable node or edge 

attributes (such as Edge Type and Edge Length) that enable basic network analytical 

functionalities as suggested by Xu et al (2018). 

 

Except for these inheritable attributes, each type of infrastructure network also has its own 

attributes (figure 3.8 on page 43, table 3.6 on page 44, table 3.8 on page 48). By referring to 

related infrastructure literatures, these sector-specific attributes are defined, which ensures 

stronger analytical and simulation capabilities on different types of infrastructure networks 

(for example, simulating electricity voltage drops on electricity network, or simulating water 
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pressure in the water supply network) (Northern Powergrid, 2017). The completeness of 

sector-specific attributes is something that is not covered in existing infrastructure network 

ontology, and is considered as one of the added-values of this ontology. 

 

The inclusion of buildings (section 3.3, figure 3.4, page 38) and infrastructure-building 

connection (section 3.4, figure 3.5, page 40; section 3.5, figure 3.9, page 45) is considered as 

the major contribution in Chapter 3. The building ontology is mainly based on the work of 

Zhu et al (2015) and Swan et al (2009), but also proposes additional attributes for the building 

such as Utility Demand (Water Consumption, Electricity Consumption, etc.) that can 

characterise and represent the supply/demand relationship from infrastructure assets to the 

buildings. The ontology defines each Building has one and only one connection to one Utility 

Network (section 3.4, figure 3.6, page 41). While the connection between road network and 

building is represented as a many-to-one mapping relationship from a Building to a Road 

(section 3.5, figure 3.12, page 49), based on an approach proposed by Cavallaro et al (2014). 

With such representation, it is possible to represent and potentially understand how the 

resource, energy or service flows from infrastructure assets to the individual buildings occur, 

which is currently absent in existing research. 

 

The ontology also proposed the representations of infrastructure dependencies and 

interdependencies (section 3.6, figure 3.13, page 50), which is essential in understanding and 

modelling infrastructure cascading failures (Ouyang 2012; Rinaldi, et al., 2001). While the 

focus of this PhD research is at a fine spatial scale (distribution level), only the dependencies 

or interdependencies in the distribution level are covered in the ontology. Therefore, there is 

no dependency from electricity generator from pumping station (generator needs water to cool 

down) (Ouyang, 2014) for example, since the generator belongs to electricity transmission 

network. 

 

However, there is still considerable scope to further extend the ontological framework 

presented in Chapter 3. First and foremost, within this PhD research, this ontology is not fully 

implemented at a practical level. Due to the requirement of the work in Chapter 4, 5, 6, and 7, 
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infrastructure networks are only modelled as geospatial network instances with flow 

directions. Attributes discussed in section 3.4 (table 3.6, page 44) are not implemented (such 

as Resistance on Cable in Electricity Network). To implement this ontology at full practical 

level, additional data is needed to enable the full modelling capability of this ontology, which 

is beyond the scope of this PhD research. However, it is a very interesting topic to explore in 

the future. Cooperation with related infrastructure industry is needed to acquire these 

additional data, to extend the modelling capability of this ontology, and optimize it. 

 

Secondly, spatial and temporal dynamics exist on infrastructure networks, and are discussed 

in section 3.2, in figure 3.2 (page 36) and figure 3.3 (page 37), where temporally and spatially 

transient attributes are defined based on a temporal and spatial reference system proposed by 

the INSPIRE data model (INSPIRE, 2013). However, the representation of spatial and 

temporal dynamics still remains at the conceptual level, without being practically 

implemented. From Chapter 4 to Chapter 7, every attribute on the infrastructure network data 

is treated as static attribute, and it is still unclear how to represent temporal dynamics in a 

database system. Understanding the dynamics of resource flow is essential in infrastructure 

analysis and simulation (Li, et al., 2013; Puig, et al., 2017), therefore future work would focus 

on the storage and management of spatial temporal dynamics of infrastructure network in a 

data information system. 

 

Thirdly, representations with regards to building-infrastructure connection in this ontology is 

simplified. The ontology assumes a Building has one and only one connection to one Utility 

Network (for example, electricity) (section 3.4, figure 3.6, page 41), which can be inaccurate 

if the Building (such as a hospital) cannot afford to lose infrastructure service (Cimellaro, et 

al., 2010). In that case, the Building can have multiple connections to a Utility Network. 

Likewise, the ontology defines that each Building connects one and only one Road (section 

3.5, figure 3.12, page 49), and this is spatially the nearest Road to the Building. The 

assumption that residents of this Building will only choose to access the nearest Road can be 

inaccurate, as there might be multiple Roads that can be accessed by the residents from the 

Building (for example, one Road at the front door of the Building and the other at the back 
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door). In both cases, more detailed information on the type and geospatial layout of the 

Building (where the doors/entrances are) is needed in order to deliver more plausible 

building-infrastructure connection. 

 

Finally, the ontology focuses on representation of tangible infrastructure sectors (e.g. road 

network, electricity network), but there also exist infrastructure sectors that are less tangible, 

such as the wireless cellular telecommunication network, and pedestrian/cyclist traffic 

network. Due to the emerging 5G techniques, the wireless cellular network is playing a more 

crucial role in the smart city applications (Kamilaris, et al., 2018). Cellular network is special 

as the last edge in the network is wireless: a resident’s mobile phone or a wireless sensor on a 

taxi directly sends or receives data to or from a transceiver (a cellular asset). As each 

transceiver only covers a specific service area (cell), if a resident or a taxi moves from one 

cell to another, it will loss connection with the old transceiver and establish connection with a 

new one. In other words, the cellular network topology changes temporarily. In order to 

represent such network, a possible adaption of the ontology could be to add the time 

dimensionality (Whiteback, et al., 2010) to the basic graph model (just like taking snap-shots 

on cellular network topology continuously, so that its topology at different time can be 

represented and recorded). Another classic intangible network is the pedestrian or cyclist 

traffic network. Pedestrians or cyclists still use the same infrastructure (road network) as 

vehicles, but they cannot use any road segment, if there is not sidewalk or bicycle lane on that 

road. A common way to model such networks is to represent them as part of road network 

(Lorenz, et al., 2005), by adding attributes like pedestrian-access or cyclist-access to the road 

segments. Moreover, when characterizing pedestrian or cyclist flow, flow density needs to be 

clear represented, as travellers always prefer to use street that has small density or less 

congested (Bezbradica, et al., 2019). Besides, concepts like pedestrian speed and route (the 

most time-saving path from a location A to B) are also important features in many urban 

mobility models (Das, et al., 2015), and should be also included in the ontology. These 

attributes also change over time (e.g. pedestrian route could change depending on current 

pedestrian flow in the city), and should be represented as temporal transient attributes (section 

3.2, figure 3.3, page 37) in the ontology. 
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8.3 Inference of Spatial Infrastructure Network 

Accessing good quality geospatial infrastructure network data is the biggest challenge in order 

to model fine scale geospatial infrastructure networks (Bon, 2007; Fu, et al., 2008). Chapter 2 

(section 2.5.2, page 26) reviewed this issue and identified the research objective to develop a 

generic approach for inferring layout of geospatial infrastructure network. This objective is a 

complicated one, and is addressed via three pieces of work: a generic spatial heuristic 

algorithm, algorithm transferability to different utility networks, and a road network 

generation algorithm. The methodologies, results and findings are discussed in section 8.3.1, 

8.3.2, and 8.3.3, respectively. 

 

8.3.1 Generic Spatial Heuristic Algorithm 

A review was undertaken on related approaches on automatic generation of geospatial 

network layout (section 4.1, table 4.1, page 57). It is found that no approach exists in 

generating spatial layout of infrastructure network that connects assets and buildings. Most 

related approaches (Hadas, et al., 2013; Heijnen, et al., 2014) require location seed/origin 

nodes (intersection of cables/pipes) to be known. But such information is not available in our 

case. However, the studies from Bon (2017) and Cavallaro et al (2014) revealed that the 

layout of an infrastructure network is related to the layout of road network. Moreover, since it 

is an NDP (Network Design Problem), a constraint or an objective function is normally 

needed (Magnanti, et al., 1984). As suggested by Larkevi (1985), the constraint in this 

context, should be keeping the network as short as possible. 

 

Following this rationale, Chapter 4 proposed a new and a generic spatial algorithm, that can 

infer geospatial layout of infrastructure network, based on layout of assets, buildings, and 

road network (section 4.1, figure 4.1, page 61). As the major innovation of this algorithm, it 

can generate geospatial network that contains topology, geometry (of the nodes and edges), 

the node and edge type (section 4.3.2, figure 4.14, page 74), and network flow direction from 

infrastructure assets to buildings. The algorithm is also scalable (regardless of input data size). 
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The algorithm is tested and validated for generating a plausible spatial layout of electricity 

distribution networks for the city of Newcastle upon Tyne (section 4.5, page 76), a network 

consisting of more than 200,000 nodes and edges. Validation (based on Northern Powergrid 

data) revealed the high spatial accuracy on feeders (around 89%) (section 4.6.1, page 83), and 

low average difference angles on service lines (around 17.3°) (section 4.6.2, page 85). This 

indicates the algorithm can generate a feasible layout of infrastructure network that is 

relatively close to the actual data. 

 

However, currently there are several limitations in the algorithms. First, the validation on 

feeders (section 4.6.1, figure 4.21, page 83) reveals that the actual feeders follow only on one 

side of a road. But as the algorithm uses ITN network (a polyline file), the algorithm will 

produce the synthetic feeders that follow the centreline of a road. This discrepancy (between 

synthetic and actual feeders) does not affect network topology, but will become a problem if 

high geospatial accuracy on the feeders is needed for specific applications (for example, when 

electricity failure occurs, electricity provider needs to locate the problematic feeder on map, 

and send technical teams to repair it). Future work would focus on this issue, and algorithm 

would need modification so that it reads ITN network together with the road polygon layer as 

input. A possible solution would be to link each road segment in the ITN network with a road 

polygon in the road polygon layer (using spatial relationship contain), so the geometry of the 

synthetic feeder can be modified using a road polygon layer. However, there is still an 

interesting question: as a road has two sides, how to decide which side of the road should a 

feeder follow? Potentially, cooperation with electrical engineering research teams is needed, 

with regards to the feeder layout planning in the perspective of electrical engineering. 

 

Secondly, the algorithm requires the location of infrastructure node assets to work. If such 

information is not given, then it is impossible to infer the geospatial layout of infrastructure 

networks. This could be a potential problem, as it is not always possible to access layout of 

assets (at least good quality assets layout). Future work should investigate the possibility of 

inferring layout of infrastructure assets (based on layout of buildings, and road network for 

example). One possible starting point, would be using cluster approach to identify the 
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appropriate locations to plan infrastructure assets (Rui, 2013). 

 

Finally, the algorithm is proved to be scalable in section 4.7. But algorithm can be 

computationally very expensive as input data volume increases. The algorithm time 

complexity is O (Nb
2), where Nb is the number of buildings in the input data (page 96). Even 

for a good desktop workstation, it needs to spend more than 12 days to generate the Greater 

London electricity distribution network (figure 4.30, page 92). This spatial heuristic algorithm 

is designed as a generic data inference approach for any city (regardless of size), therefore the 

processing time on the Greater London data is considered too much. Future work should 

focus on improve processing speed (such as partitioning the input data and using parallel or 

distributed computing techniques). 

 

Following the current implementation of the algorithm, there are still plenty rooms of 

optimizations for the future work. These are mainly related to three aspects and are discussed 

as follows: (a) Extendibility of generic algorithm for other countries/areas outside of the UK. 

(b) Adaption of generic algorithm based on input data it can receive. (c) The general 

philosophy behind the building – infrastructure planning process. 

 

Firstly, despite the validation (section 4.6), and transferability test (section 4.7) of the generic 

algorithm, it is not clear whether such algorithm can still perform relatively well for other 

countries or areas, outside of the UK. For example, Hong Kong is a city that has 4th largest 

population density in the world (density of 6777/km2) (World Bank, 2019), even larger than 

UK’s most populated city Greater London (density of 5590/km2) (Trust for London, 2019). 

The high population density in Hong Kong, and small area, lead to a very special stacked 

building architecture, the skyscrapers. In Hong Kong, there are 341 buildings taller than 150 

meters, and an apartment building (which may have thousands of residents) can be as tall as 

2500 feet (Skyscraper Centre, 2019). That can cause issues for the generic algorithm, as it is 

currently a capacity-free algorithm. But when inferring network layout in city such as Hong 

Kong, capacity and demand is not neglectable (as a skyscraper of thousand residents 

obviously requires much more infrastructure resource than a normal residential building that 
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has two or three floors) and further develop the algorithm based on that. Another problem 

related to extendibility, is that it may not have good performance in less developed areas, such 

as the slums of Nairobi, Kenya, and Rio de Janeiro, Brazil. The algorithm requires that 

buildings have different topological features (detached, terraces, etc), and uses road geometry 

and building topology to assign to assets to buildings. But in these less developed areas, 

buildings are less formally structured (shanty town), and that may cause all the buildings to 

topologically connect with each other in an entire slum (BBC News, 2019). The current 

algorithm would not be able to assign an asset to each building in this case, and a possible 

future adaption, is that asset assignment is done directly using Euclidean distance (each 

building is assigned an asset, that is nearest in Euclidean space), without using road layout at 

all. Lastly, the algorithm can only deal with 2D network layout, and this can be inaccurate if 

network needs to couple with a 3D city model for a city with steep terrain (Becker, et al., 

2011), such as Lucerne, Switzerland, where there is around 400 meters height difference in 

the city terrain (Wikipedia, 2019). In order to generate plausible network layout in such city, 

digital terrain model needs to be considered to generate a plausible 3D network layout. 

 

Secondly, the algorithm is developed in a generic way, that only layout of buildings, assets, 

and road network are required as input. The algorithm still has potential to be further 

optimized, given more relevant input data (in other words, more constraints). For example, 

building age is an important feature to consider, when the local utility company (such as 

Norther Power Grid) plans for infrastructure layout. In fact, old buildings are more likely to 

be served by old infrastructure assets, than by the young ones (Schiller, 2007). If age data (of 

buildings and assets) becomes available, then topology generation process (that assigns each 

building an asset) (section 4.3.1, page 63) can adapt and possibly produce more accurate 

layout. To add the age constraint, a possible modification of the algorithm could be that, first 

dividing the buildings and assets to a number of age groups (For example, there are 3 groups. 

The 1st group represents buildings or assets which are younger than 20 years, the 2nd group 

represents those whose ages are between 20 and 50 years, and the 3rd group represents those 

that are older than 50 years), and apply the current algorithm to each age group. Except for 

age, adding demand / capacity constraint on the buildings and assets (as mentioned in the last 
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paragraph) is also a viable future option (Baskan, et al., 2014). These are the optimizations 

related to the topology generation process (i.e. assign the asset to buildings). There are also 

optimizations related to the geometry generation process (i.e. generate geometry of cables or 

pipes) (section 4.3.2, page 67). For example, having more geometry information on the 

buildings would be beneficial, as the front-door, back-door or the utility meter location can 

affect how the infrastructure pipe or cable connects each building (Avi, et al., 2014). Another 

example would be the adding spatial constraint (Heijnen, et al., 2014) about where the cables 

or pipes cannot cross (e.g. river, greenspace, restricted area). Additional geometry checks can 

be added in the algorithm to enforce such spatial constraint, so that cable or pipe geometry 

cannot intersect any constrained area, and if intersection occurs, cable or pipe needs to re-

route (maybe around that constrained area). 

 

Finally, the generic algorithm relies on a complete layout of buildings to produce 

infrastructure layout. It assumes that buildings exist before the infrastructure networks. Such 

assumption could be somewhat arbitrary, and it slightly simplifies the true urban planning 

process. In fact, as suggested by Parish et al (2001), Teoh (2007), and Rui (2013), planning 

the layout of buildings and infrastructure networks can be a complex and iterative process. 

When given a blank urban area, a common and ideal planning strategy would be first deciding 

the city centre areas (residential, industrial, etc) and generating major transport infrastructure 

network connecting them, then using major transport infrastructure network to constrain the 

space to generate buildings, and then using the building layout to generate finer transport 

infrastructure network, and so on. Therefore, a possible adaption of the algorithm would be to 

see the problem in the other way, that is to say, given a predefined network layout, is it 

possible to infer (or plan) a plausible building layout? It is also worth exploring the possibility 

to adapt this algorithm as an iterative process, so that it can truly reflect process for planning 

infrastructures together with the buildings. 
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8.3.2 Algorithm Transferability in Different Utility Networks 

Chapter 4 demonstrated the application of generic spatial heuristic algorithm in electricity 

utility networks. However, algorithm is designed to solve the worse scenario (completely 

missing layout of any pipes/cables). It is not clear, how the algorithm should deal with 

situation, when the network layout is already partially available. Moreover, the algorithm 

only focuses on the inference of geometry and connectivity of the network, but sometimes, 

additional attribute (especially resource flow direction) would need to be inferred as well. 

Chapter 5 investigated these two issues, and the major contribution is to improve the 

capability/transferability of the generic spatial heuristic algorithm. The improvement of 

capability/transferability is demonstrated in two aspects. 

 

First, the algorithm is now capable of generating network layout based on partially existing 

layout of infrastructure network (section 5.2, page 100). It is demonstrated by completing the 

gas main pipe network based on data provided by NGN. NGN data contains layout of gas 

main pipes, except for the new development sites (section 5.2.2, figure 5.5, page 105). By 

consulting the Northern Gas Network, a Gas Network Infer Algorithm was developed (based 

on CSEP nodes and road network) (section 5.2, listing 5.1, page 105) so that layout of 

infrastructure main pipes/cables can be inferred in new developing areas, and are integrated to 

the existing network layout. The high spatial accuracy (around 92%) from validation (section 

5.2.5, page 119) indicated the inference is plausible. This demonstrated the algorithm 

capability to infer network layout based on existing network (instead of almost nothing, in 

Chapter 4). 

 

Secondly, the algorithm now has the capability of inferring network flow and this is 

demonstrated in water-related infrastructure network (water supply network, and sewer 

network). Technically, inferring water flow on these networks requires resolving full 

hydraulic equations (Preis, et al., 2010). But this can be computationally very expensive, and 

would not work if necessary attributes are missing (for example, water pipe diameter, location 

and state of the valves, network topology, etc.) (Giustolisi, et al., 2011). To address the lack of 
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water flow in water supply and sewer network, two spatial heuristic algorithms were 

proposed. Water Flow Infer Algorithm (section 5.3.2, listing 5.3, page 127) can infer the 

WDAs (water distribution areas) and water flow on the water supply network, based on layout 

of water supply network and water sources (service reservoirs). Sewer Flow Infer Algorithm 

(section 5.4, listing 5.6, page 138) can infer waste water flow, based on layout of sewer 

network, outflow nodes, and a DTM layer, which achieved high accuracy (96%). These two 

flow-infer algorithms extend the functionality of the generic spatial heuristic algorithm, so 

that it is able to not only infer the spatial layout of utility the infrastructure network, but also 

additional plausible attribute on the network, without needing to run computationally 

expensive mathematical models. 

 

There are also potential room for optimizations and future work. First, the transferability of 

the algorithm is explored based on data from the city of Newcastle upon Tyne. To evaluate the 

algorithm transferability in terms of different cities, more case studies (using data from other 

cities) are necessary. Secondly, the algorithm can now infer additional attribute on the utility 

network (resource flow), and this capability needs to be further explored, if some other 

important attributes are missing and are required for specific applications (for example, 

pressure (of gas and water) is an important attribute to assess potential pipe failure in the 

network). In order to do so, more actual data from utility companies are required, in order to 

develop approach that can plausibly infer these attributes. 

 

8.3.3 Road Network Generation Algorithm 

One potential limitation of the algorithm developed in Chapter 4 and 5, is that it must rely on 

a road network to work. If road network layout is missing, then it is not possible to infer 

layout of infrastructure networks. This is actually an issue, in new development areas, road 

network layout is not always present during the master planning phase, where land use (layout 

of residential buildings, water bodies, factories, park, etc.) is decided (Moss, et al., 2016). 

Therefore, Chapter 6 extended the work in Chapter 4, and 5 by exploring the approach to infer 
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road network based on building layout. The major contribution of Chapter 6, is that it 

proposed a new road network generation algorithm, that can be either applied as a plausible 

tool for road network planning (for example, in new development areas), or can be applied 

together with generic spatial heuristic algorithm, in order to infer plausible utility 

infrastructure network layout, if road network layout is missing. 

 

Section 6.2 reviewed existing approaches for automatic road network generation (section 6.1, 

table 6.1, page 153). However, none of them considers the existing layout of buildings. For 

the most related approaches, the L-system based algorithms do not consider building layout 

(Parish, et al., 2001; Teoh, et al., 2007), while the rectilinear Steiner tree-based algorithm, 

proposed by Nie et al (2010) requires seed nodes (road junctions) to be known already. 

 

Chapter 6 addressed this research gap, by proposing a new generic road network generation 

algorithm, based on layout of buildings, boundary, and entry points as input (section 6.3, 

figure 6.3, page 155). By observing real data (road network and buildings), it is found that 

buildings form clusters spatially and each cluster of buildings is surrounded by roads. 

Following this rationale, the road network generation algorithm first finds clusters on the 

buildings (based on MST partitioning algorithm proposed by Zhou et al (2009)), then 

performs constrained Delaunay triangulation to indicate the space where road segments can 

be generated. 

 

This algorithm relies on an important parameterε, which controls when to stop the MST 

partitioning process (section 6.4.1, page 158). This parameterε is tuned based on the small 

case study area (contains about 550 buildings) in Newcastle upon Tyne. Through parameter 

sensitivity test (section 6.6, table 6.5, page 174), it is found 0.0075 is an appropriate value for 

ε to generate the most plausible road network in the case study area (accuracy is around 

94% compared with ITN data). The transferability test (section 6.7, page 176) shows the 

algorithm and parameterε (value 0.0075) do not over-fit to small case study area, and 

generate plausible road network (accuracy around 95%) in other areas in Newcastle with 

different building layout and building density. This justifies the application of MST 



255 

 

partitioning algorithm (and more importantly, choice ofεvalue) in generic road network 

generation problem. 

 

It is essential that the road network generation algorithm can infer plausible road network (as 

proved in table 6.7, page 181). An interesting question is that, will the usage of synthetic road 

network cause any major difference in generating utility network layout? Section 6.7 proved 

that, even using the synthetic road, the synthetic electricity distribution networks still have 

very high accuracy (95% - 99%) compared with reference networks (table 6.9, table 6.10, 

page 189). Therefore, it is considered this algorithm is not only able to infer/plan plausible 

road network layout, but also able to work together with generic spatial heuristic algorithm to 

still generate plausible utility network layout. 

 

However, two limitations are observed in the road network generation algorithm. First, 

despite the high accuracy, discrepancy still exists between the synthetic and real road network 

(section 6.4.4, figure 6.13, page 165). The main reason is that, actual road segments can 

partially surround a building cluster, but the algorithm must assume the building cluster is 

entirely surrounded by roads. Secondly, the algorithm cannot generate road segment at the 

boundary areas. Constrained Delaunay triangulation is the reason. For any point A (centroid 

of a building) that is already on the boundary area, there is no outside point that can make 

triangulation with point A, which means on the outside of point A, it is impossible to generate 

the geometry of a road segment. Therefore, the boundary (which is considered as the exterior 

ring of the road network) must be given. 

 

8.4 Database Approach for Management of Spatial Network Data 

In an infrastructure information management system, an efficient database is an essential part 

in handling wide range of disparate data and relationships required for infrastructure systems 

modelling and analysis (Robson, et al., 2018). However, little attention has been made on the 

database system for handling fine spatial scale infrastructure network data. Chapter 7 
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investigated this problem and proposed employment of a Hybrid Database approach (a 

combination of PostGIS and Neo4j), based on the result of database performance 

benchmarking tests. 

 

The tests compared three database approaches: PostGIS/ITRC, PgRouting, and Hybrid 

Database. The formal two are the traditional solutions, which are spatial relational databases. 

The last one is based on Neo4j, a popular NoSQL database that has been applied in more 

efficient management of network data (Cattuto, et al., 2013; Lin, et al., 2017; Yoon, et al., 

2017). However, as discussed in section 7.2.3 (page 202), Neo4j itself does not have enough 

capability of encoding or querying geospatial data. This is why Hybrid Database architecture 

is proposed (Neo4j for encoding non-spatial attributes and network topology, and PostGIS for 

encoding geometry). 

 

The benchmarking tests indicate the Hybrid Database is less efficient than PostGIS/ITRC at 

writing data (could be 140% to 150% slower) (figure 7.13, page 211; figure 7.32, page 232). 

This is due to different data model (property graph) and data driver used in Neo4j. However, 

the Hybrid Database is more efficient at reading network data, which is about 220% faster 

than PostGIS/ITRC (figure 7.13, figure 7.32). Considering the fact that reading data is a more 

frequent operation than writing in real life applications, the underperformance of writing for 

Hybrid Database is acceptable. 

 

As a major contribution, the benchmarking tests indicate that as long as network topology is 

involved in a query, Hybrid Database is always at least 2.4 times faster than PostGIS/ITRC 

and PgRouting (figure 7.27, page 226; figure 7.36, page 238). When performing a network 

topology query only, such performance difference will become greater: when resolving 

shortest path query, the Hybrid Database is between 5 to 12 times faster than PostGIS/ITRC 

and 2.1 to 4.3 times faster than PgRouting (figure 7.17, page 216; figure 7.32, page 232). This 

is due to Neo4j’s natural strength at querying large and complex network on topology. For 

PostGIS/ITRC, it needs to read network data into NetworkX instance to be able to perform 

topology query, which can be very time consuming when network is large (figure 7.2, page 
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198). For PgRouting, it can query network data without external library, but this operation is 

still virtually relational-joins on tables, which is still less efficient than Neo4j’s property graph 

model (figure 7.6, page 204). 

 

Due to its efficiency, especially at performing network topology query, the Hybrid Database is 

proposed as an appropriate database approach for the management of fine spatial scale 

infrastructure network data. However, there is a major limitation of applying it in actual 

applications. The split storage of data is the problem. Although figure 7.7 (section 7.2.3, page 

205) shows that it is possible to link (data) between PostGIS and Neo4j using node_id, and 

edge_id, it still becomes an issue when both databases need to be visited in a long and 

complex query (such as finding nodes within a given spatial footprint, and then resolve 

topology queries from these nodes). 

 

Recent research has started to tackle such “split storage” issue and a feasible solution would 

be to use a federated database architecture (Robson, et al., 2018), in which there is a master 

database (instead of the user) that decides how to decompose a complex query into small sub-

queries, and visit the databases accordingly. For example, a federated database framework 

NISMOD-DB++ was developed based a similar idea (split storage of geometry and topology 

data using PostGIS and Neo4j), to manage and analyse geospatial infrastructure network data, 

and it employs a PostgreSQL database as a master database (Robson, et al., 2018). Therefore, 

a possible future work of this PhD would be to continue exploring the federated database 

architecture to manage geospatial infrastructure data. 

 

8.5 Application of infrastructure data inference and management 

A prototype platform for infrastructure network data inference and management, was put 

forward at the end of Chapter 7 (page 241), as the final output of this research. While the 

previous four sections (8.1, 8.2, 8.3, and 8.4) focus on result assessments and key research 

findings, this section (8.5) discusses the possible applications of such platform in 
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infrastructure data inference and management. It is considered that this piece of work could be 

beneficial to different user groups who are concerned with geospatial infrastructure network 

data. They are (a) utility companies, (b) urban planners, (c) normal residents, and (d) 

scientific researchers and infrastructure committees, and major potential applications are 

discussed as follows. 

 

For the utility owners, the platform helps to locate their infrastructure and to understand 

infrastructure demand / supply. Firstly, the platform can help them map their infrastructure 

cables or pipes, as in many cases, they themselves do not always have good quality geospatial 

data of their infrastructures (Jaw, et al., 2013). The network maps help these companies avoid 

digging unnecessary holes on the ground to repair buried infrastructures (Fu, et al., 2008). The 

generic algorithm has achieved relatively high spatial accuracy (89%) (section 4.6.1, page 

84). But its accuracy still needs to be improved to better serve such utility companies. For 

example, optimization needs to be done, so that electricity feeders no longer follow the road 

centre line, but instead follow only one side of the road (figure 4.21, page 83). Furthermore, 

the generic algorithm should adapt from 2D to 3D space, so that it can provide additional 

information (such as how deep the infrastructure is buried). Secondly, understanding demand 

and supply between infrastructure assets and residential buildings is essential in many smart 

city applications such as smart neighbourhood (Lara, et al., 2016; Piotrowski, et al., 2014), 

and metering studies of local energy distributions (Albaugh, et al., 2004; Kleissel, et al., 

2010), and this platform helps utility company model and understand such demand / supply 

relationships. By generating the geospatial layout of infrastructure network, demand / supply 

can be characterised by network topological connectivity (e.g. which asset connects which 

buildings). However, there are still some limitations to accurately represent demand / supply 

and they should be addressed in future work. The algorithm is a capacity-free algorithm (as 

explained in section 8.3.1) and introduction of capacity (of infrastructure assets) would add 

more constraint to the algorithm to improve accuracy. Similarly, different types of buildings 

have different demand level (related to number of floors of the building, the age of the 

building, etc) (Blokker, et al., 2009; Nouvel, et al., 2015), and it should be addressed in future 

work if accessing such data is possible. 
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For the urban planners, they would benefit from the capability to design automatic 

infrastructure network layout (especially the road network generation algorithm discussed in 

Chapter 6). Such road planning algorithm has achieved high accuracy (94%) in different 

validation areas in Newcastle, and it is considered such accuracy is already high enough for 

the urban planners. However, as mentioned in section 8.3.1, urban planning is a complex and 

iterative process, so that the capability (instead of accuracy) of the algorithm needs to be 

further improved (e.g. plan building layout given road layout) to better serve the urban 

planners in different application scenarios. 

 

For the urban residents, they are mostly concerned about whether or not infrastructure service 

to their houses are disrupted (Glenis, et al., 2017). The prototype platform already has the 

capability to characterize flow from infrastructure assets to individual buildings, and can 

locate (query) the affected buildings, if disruptions occur on the infrastructure networks. 

However, to better serve the urban residents, web-based visualization (or any reporting) tools 

(Sabeur, et al., 2016) would need to be developed on top of the platform, so that infrastructure 

disruption events (in terms of buildings) can be easily reported and understood by the urban 

residents. 

 

Finally, for the scientific researchers and infrastructure committees, they are mostly concerned 

about the urban infrastructures at systematic level, and there are three major types of 

applications. Firstly, such platform is a generic framework to characterize infrastructure 

resilience (Cavallaro, et al., 2014; Leu, et al., 2007) in the perspective of graph models. 

Generic graph operations (e.g. degree calculation, clustering coefficient calculation) are 

directly supported, which can be used as basic metrics to evaluate network resilience (Berche, 

et al., 2009; Murray, 2006). But these operations need to be done via Neo4j Cypher queries, 

and possible future work would be to develop APIs or UIs for the users to retrieve such 

resilience metrics more easily. Secondly, as urban infrastructure becomes more complex and 

vulnerable, having a systematic data and information approach to represent the multi-sector 

urban infrastructures is essential in understanding the infrastructure dependencies / 

interdependencies (Pant, et al., 2016; Zimmerman, et al., 2017). Such representation of 
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interdependent networks is also supported by the platform. By employing the graph database 

architectures, interdependency queries can be simply resolved as Neo4j Cypher queries. 

Moreover, the platform has the capability to infer the dependency / interdependency, as long 

as assets layout is present (figure 5.47, page 148). However, the prototype platform currently 

only focuses on distribution networks (thus only dependency / interdependency at distribution 

level), but there also exist dependencies and interdependencies at transmission level (Avi, 

2014; Vickridge, 2004). Therefore, future work would expand the platform functionality to 

transmission level and represent other dependencies and interdependencies accordingly. 

Thirdly, infrastructure network models are normally coupled with spatial hazard models to 

assess how extreme spatial events (such as flooding and earthquake) affect infrastructure 

networks and trigger failures (Glenis, et al., 2017; Pant, et al., 2014). Such capability is 

demonstrated by section 7.5 (page 217), in which flooding impact on road and electricity 

networks are analysed and evaluated. However, the efficiency (instead of capability) needs to 

be improved to reduce query time (e.g. in section 7.6.3, spending hours to evaluate flooding 

impact on electricity networks in Greater London is still too slow, even if it is a massive city). 

For example, if the same network needs to be queried in many different parallel scenarios 

(e.g. the test discussed in section 7.6.3, page 233), it would be a better approach to parallelize 

the platform so that it can be deployed on different computers or clusters to significantly 

speed up computation (Abuzalaf, et al., 2016). 

 

8.6 Summary 

This PhD contributes to the development of generic approaches for the inference and 

management of high granularity geospatial infrastructure network data. Plausible geospatial 

layout of fine spatial scale infrastructure network can be now generated via the generic spatial 

heuristic algorithm (Chapter 4, 5, and 6). Spatial connectivity between infrastructure assets 

and buildings is represented and resource flow is characterized. The Hybrid Database 

(Chapter 7) is proposed as an efficient data management tool on such complex network data. 

All of these open up opportunities in applying the fine granularity infrastructure network data 
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in different digital urban models and applications, such as smart sensing (Gabrys, 2014), 

metering studies of local energy distributions (Kleissel, et al., 2010), digital twins 

(Mohammadi, et al., 2017), and infrastructure interdependency and failure model at fine 

spatial scale (Ouyang, 2014). 
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Chapter 9. Conclusion 

9.1 Introduction 

The aim of this research is to develop generic approaches for inference and management of 

fine spatial scale geospatial infrastructure networks, which opens up opportunities for 

different digital urban models and applications at fine granularity. The following objectives 

were set out to address the aim: 

 

1. Review the research field pertaining geospatial urban infrastructure network models and 

identify the research gaps in the inference and management of complex infrastructure 

network data. 

2. Develop a geospatial ontology, to conceptually model the knowledge of the entities, 

attributes and relationships that are indispensable to represent fine scale urban 

infrastructure networks. The focus is to understand the spatial connectivity between 

infrastructure assets and buildings. 

3. Develop an approach, to infer geospatial layout of the utility infrastructure network if 

actual data does not exist or only partially exists. The approach should be transferable so 

that it can be applied in different major utility sectors (electricity, gas, water supply and 

waste water). 

4. Develop a database approach that is able to encode, manage, and query the complex 

geospatial infrastructure network data in an efficient manner. Several potential database 

approaches will be investigated, and performance benchmarking tests will be carried out 

to decide the most appropriate one. 

 

9.2 Research Summary 

Objective 1 was achieved by performing an extensive review of related literature (Chapter 2) 

in the field of geospatial infrastructure network models. Chapter 2 highlighted the importance 
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of the geospatial data in fine scale infrastructure network models, such as in smart city 

sensing (Gabrys, 2014; Hancke, et al., 2013; Perera, et al., 2014), smart metering and 

neighbourhood (Lara, et al., 2016; Piotrowski, et al., 2014), assessing impact of geospatial 

event on critical infrastructure network (Cabinet Office, 2008; Leavitt and Kiefer, 2006), and 

infrastructure planning and decision support (Gurung, et al., 2015; Malekpour, et al., 2016). 

Chapter 2 also identified the key challenges in this field: the lack of a geospatial ontology, the 

lack of generic data inference approach (when accessing real data not possible), and the lack 

of an efficient database approach for the management of complex geospatial infrastructure 

network data. These challenges lead to the development of Objectives 2, 3, and 4, which are 

addressed in Chapters 3, 4, 5, 6, and 7 respectively. 

 

Chapter 3 addressed Objective 2, by proposing a geospatial ontology that represents fine scale 

urban infrastructure networks. This ontology covers major critical infrastructure networks 

(utility and transport), and it defines an infrastructure network as spatial network instance 

where attributes are associated with nodes and edges. This ontology employed knowledge 

from INSPIRE data specification of utility and transport network (INSPIRE, 2013), OTN 

(Lorenz, et al., 2005), and Utility Knowledge Ontology (Xu, et al., 2018). However, as a 

major innovation, this ontology represents the building-infrastructure connections and 

infrastructure network dependencies and interdependencies, which are missing in any existing 

infrastructure ontology. By reviewing related literature, this ontology identifies the key 

attributes for different types of infrastructure networks. This ontology is aimed as a generic 

data modelling approach to represent, analyse and simulate the spatial connectivity and 

resource and service flow from infrastructure assets to the buildings they service. 

 

Objective 3 is addressed in Chapter 4, 5, and 6. First a generic spatial heuristic algorithm is 

proposed in Chapter 4, which infers the geospatial layout of infrastructure networks, based on 

the layout of infrastructure assets, buildings, and the road network. The algorithm is 

developed mainly based on the assumption that infrastructure network follows along or very 

close to the road network, as suggested by Bon (2017), Cavallaro et al (2014), and Larkevi 

(2005). This algorithm was demonstrated via generating the electricity distribution network 
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for the city of Newcastle upon Tyne, and validation indicated synthetic network layout is 

plausible (accuracy around 89%). The algorithm’s scalability was also investigated by 

generating electricity networks for different cities (of different sizes) in the UK, and the 

largest synthetic network is generated for Greater London, which contains more than 4 

million nodes. 

 

Chapter 5 extended the work in Chapter 4, by investigating the algorithm transferability, when 

applied in other utility sectors (gas, water supply, and waste water). For these three types of 

networks, network layout is partially available, so the algorithm is extended in a way that it 

can integrate existing network layout and infer network flow if it is not available. Both 

algorithms developed in Chapter 4 and 5 depend on a road network to function properly. 

Therefore, Chapter 6 further explored the data inference problem, by proposing a road 

network generation algorithm, if the layout of buildings is available. This algorithm is 

developed based on reviewing related literatures and observations of real road network. The 

algorithm first employs an MST partitioning approach (Zhu et al., 2009) to generate building 

clusters spatially, and algorithm generates roads that surround each cluster. It was tested and 

validated to generate plausible road network layout (commission and omission error around 

3% to 8%) in different areas for the city of Newcastle upon Tyne. As the major contribution, 

Chapter 4, 5, and 6 collectively proposed a generic data inference approach to infer fine scale 

infrastructure network layout. It is scalable (regardless of city size) and transferable 

(regardless of utility type), and can generate synthetic network that contains geometry, 

connectivity, type (on the nodes and edges), and flow direction, which delivers basic spatial 

network analytical capabilities. 

 

Objective 4 is addressed in Chapter 7, and this Chapter investigated whether or not a 

traditional database approach (spatial relational database such as PostGIS) is still efficient in 

managing and querying the complex fine scale geospatial infrastructure network, compared 

with NoSQL database (Neo4j). Database performance benchmarking tests were designed, and 

database performances were compared and evaluated. Three database approaches were 

involved, which are PostGIS/ITRC, PgRouting, and Hybrid Database (PostGIS + Neo4j). It is 
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found that, despite being relatively inefficient at writing data (about 1.5 times slower), the 

Hybrid Database is much more efficient than the other two approaches (between 4.2 to 11.7 

times faster) when performing network topology queries. The efficiency of Hybrid Database 

is due to the property graph data model employed in Neo4j, which is shown to be more 

efficient than relational tables, when encoding and querying large and complex spatial 

network data. As a result, Chapter 7 proposed the Hybrid Database for the management of 

fine spatial scale infrastructure network data, over the traditional database approaches. 

 

9.3 Future Work 

The thesis proposed a generic approach for the inference and management of fine scale 

geospatial infrastructure network data. However, limitations exist and need to be addressed in 

future work, mainly discussed in section 8.2, 8.3, and 8.4. In this section, a number of future 

research directions are also discussed and evaluated. 

 

9.3.1 Critical Infrastructure Decision Support 

A decision support framework or system is essential to stakeholders and decision makers, to 

better assess infrastructure vulnerability, analyse infrastructure failures and disruptions and 

provide suggestions for infrastructure planning and fortification in the long run (Kiel, et al., 

2016; Rosato, 2015; Wang, 2013). In general, such system is based on three-layer 

architectures, the data storage layer, the data processing (simulation) layer, and the 

presentation layer (Mascucci, 2016; Sauber, et al, 2017; Wang, 2013). For example, Figure 

9.1 shows the architecture of the integrated decision support information system developed by 

Sabeur et al (2016) for assessing impact of extreme hazards on the critical infrastructures. 
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Figure 9.1. Architecture of three layer decision support system developed by Sabeur et al 

(2016). 

 

The data storage layer consists of database systems to efficiently encode infrastructure 

network data. The data processing layer normally consists of analytical and simulation 

programmes depending on specific needs (for example, models that can evaluate impact to 

critical infrastructure from extreme natural hazard). The data presentation layer is designed to 

render and visually report model result (for example, vulnerable or disrupted infrastructure 

assets) to the users. 

 

In this PhD research, the focus is only on the data storage layer, where a Hybrid Database is 

proposed as a data management system. Moreover, as mentioned in section 8.4, issues exist 

for the two databases (PostGIS and Neo4j) to automatically talk with each other, when a 

query needs to visit both databases. Potentially a federated database architecture would 

overcome this limitation (Robson, et al., 2018), where the user only needs to visit a master 

database to perform any query. 

 

In the future, the work can be extended to develop a data processing layer and presentation 
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layer. Then the next question will be what are the necessary analytical and simulation 

programmes/scripts/APIs that needs to be developed to provide better decision support on the 

fine scale infrastructure networks. Also, it is interesting to explore how to develop the 

presentation layer. What visualisation engine should be used, how to render the complex 

infrastructure network, and how to design the user interface are considered to be the focus in 

the future (Leskens, et al., 2017). 

 

9.3.2 Understanding Dynamics of Infrastructure Networks 

There has been a growing trend of using digital city models and sensor network data to 

understand in real time (if possible) supply and demand between utility assets and buildings 

they service (Metke, et al., 2010; Rosen, et al., 2016; Tao, et al., 2018). Achieving that 

requires the representation of the spatial and temporal dynamics of the resource flows (Li, et 

al., 2013; Puig, et al., 2017). 

 

In this PhD research, in Chapter 3, representation of spatial and temporal transient attributes is 

discussed (figure 3.2, figure 3.3). However, it still remains at an abstract and theoretical level 

without be implemented in a practical manner. In fact, all the network data discussed in 

Chapter 4, 5, 6, and 7 are static, where no temporal dynamics are considered. It is not clear 

how to implement such spatial and temporal dynamics in real applications, or how to encode, 

and manage such spatial and temporal dynamic data in an information system (Sun, et al., 

2016). This is a major issue that should be addressed in the future. 

 

Related research (Gilbert, et al., 2018) has been undertaken using open source streaming 

software (such as Apache Kafka) together with NoSQL database (Neo4j) to represent and 

monitor real time dynamic resource flows within utility infrastructure networks. However, 

this research focused on an individual building, and simplified utility network. This can be a 

good starting point, and future challenge will be to represent dynamic flows across multiple 

potentially hundreds of thousands of assets simultaneously. Meanwhile, this work needs to be 
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integrated with the development of decision support system (section 9.3.1), where the key 

question is how to render and visualise the spatial and temporal dynamics in the presentation 

layer. 

 

9.3.3 Big Data Processing Capability 

Efficient processing and analysis on geospatial big data is always considered as a major 

challenge for any geospatial information system (Amirian, et al., 2014). This is also true for 

developing a decision support system described in section 9.3.1. As discussed in Chapter 4 

(section 4.7), computation time for generating electricity distribution networks for Great 

London would typically take a single desktop workstation 12 days. This is considered 

inefficient in real applications. The configuration of generic spatial heuristic algorithm is 

difficult and not-straightforward enough for the user. The user now needs to manually 

download input data from the data source (MasterMap, for example) and then run the 

algorithm to generate the result. This can be a tedious task if the user needs to generate 

electricity for every city in the UK. 

 

Likewise, the Hybrid Database approach proposed in Chapter 7, can still suffer from the same 

issue. In section 7.6.3, the complex query 2, accessing the impact from each of the 100 spatial 

hazards to the electricity distribution networks in Great London, requires almost one hour for 

Hybrid Database to return the result. That is because the Hybrid Database needs (for each 

spatial hazard) perform spatial/attribute/topology queries to assess its impact on the electricity 

distribution networks, which can be time consuming (suppose there are 1000 spatial hazards 

instead of 100, then this complex query 2 will take 10 more time). 

 

To address the current disadvantages in handling geospatial big data, future work can focus on 

the follow aspects. 

 

First, in section 4.7, time complexity of the generic spatial heuristic algorithm is O (Nb
2), 
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where Nb is number of buildings in input area. This can be computationally expensive (as Nb 

doubles, processing time increases four times). Currently, the algorithm reads input data in 

one-go, that is, it reads all the assets, all the buildings, and all the roads to generate result. 

Parallel computing can be a potential solution to accelerate the algorithm (for example, create 

an instance for each asset to generate network and later merge these networks). This can be 

done via GPU or cloud computing techniques (Xia, et al., 2011). The key challenge here is 

how to modify the algorithm so that it can be parallelized. 

 

Secondly, APIs on top of the spatial heuristic algorithm, can be developed so that the 

algorithm can retrieve input data from data sources automatically, and inference of network 

data is easier to the user side. 

 

Finally, to improve efficiency of querying data in databases, distributed computing or cloud 

computing can be a possible solution (Abuzalaf, et al., 2016). When setting up multiple 

instances of workstations, operations, such as complex query 2 in section 7.6.3, can be 

executed more efficiently in a parallel way, by running each hazard footprint separately. 

 

9.4 Key Findings and Implications 

High granularity geospatial data on infrastructure network is crucial in many digital urban 

models and applications. However, accessing such good quality data is difficult or almost 

impossible. It is also not clear, what database approach is efficient in handling such complex 

network data. The thesis aims to tackle these challenges by proposing generic approaches for 

the inference and management of fine scale geospatial infrastructure network data. 

 

A geospatial ontology is proposed which contains key entities, attributes and relationships to 

represent fine scale geospatial infrastructure network and the resource flows. The major 

contribution is the inclusion of building-infrastructure connections and infrastructure 

dependency/interdependency. This ontology serves as a general data model which facilitates 
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better information and knowledge shares in geospatial infrastructure network data. A spatial 

heuristic algorithm is developed as a scalable and transferable approach to infer layout of 

utility or road network if accessing real network layout. This algorithm is tested and validated 

to ensure the synthetic network layout is plausible, and is considered as a new and generic 

data inference approach. Finally, a Hybrid Database (PostGIS + Neo4j) is proposed for the 

efficient management and query of fine scale geospatial infrastructure network. Through 

performance benchmarking test, the Hybrid Database outperformed the traditional spatial and 

relational database, especially at resolving network topology queries. 

 

To conclude, this PhD contributes to inference of quality geospatial infrastructure network 

data, and a database system to efficiently manage such data. All of these opens up 

opportunities of the development of digital city models and applications, as well as 

management, fortification and planning of critical infrastructure at fine geospatial scale. 
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Appendix A – Basic Software Stacks used in the Thesis 

1. Python 3.5 Development Environment 

 

2. PostgresSQL 9.4.8 

https://www.postgresql.org/ 

 

3. PostGIS 2.2 

https://postgis.net/ 

 

4. Neo4j 3.1.3 

https://neo4j.com/ 

 

5. Psycopg2 2.7.7 (python driver for PostGIS) 

http://initd.org/psycopg/ 

 

6. Neo4j-driver 1.7.2 (python driver for Neo4j) 

 

7. NetworkX 1.1.1 (python library for manipulating network data) 

https://networkx.github.io/ 

 

8. Shapely 1.6.4 (python library for complex geometric operation) 

https://shapely.readthedocs.io/en/stable/manual.html 

 

9. Fiona 1.7.12 (python driver for reading and writing shapefile document) 

https://fiona.readthedocs.io/en/latest/manual.html 

 

10. PostGIS ITRC database schema 

https://github.com/BurningWish/ITRC 

https://www.postgresql.org/
https://postgis.net/
https://neo4j.com/
http://initd.org/psycopg/
https://networkx.github.io/
https://shapely.readthedocs.io/en/stable/manual.html
https://fiona.readthedocs.io/en/latest/manual.html
https://github.com/BurningWish/ITRC


272 

 

Appendix B – Installation of the ITRC schema 

In appendix A, a URL is given to download the ITRC schema 

 

1. Please first install the follow library shown in the URL: 

https://github.com/BurningWish/ITRC/blob/master/nx_pgnet-

0.9.post0.dev70%2Bngdb91640.dirty-py2.py3-none-any.whl 

 

This nx_pgnet is the python driver for reading/writing data into PostGIS in the ITRC 

schema. 

 

2. Now start the PostGIS on your computer, and create a new database. Then turn on the 

PostGIS extension for the database. 

 

3. Now restore this database, using the backup file, from this URL: 

https://github.com/BurningWish/ITRC/blob/master/nx_pgnet-

master/pg_schema/backup/network_schema_empty.backup 

 

4. A database in the ITRC schema has been created, and the document with regards to the 

nx_pgnet library is in this URL: 

https://github.com/BurningWish/ITRC/blob/master/nx_pgnet-master/doc/api.pdf 

 

 

 

 

 

 

 

 

https://github.com/BurningWish/ITRC/blob/master/nx_pgnet-0.9.post0.dev70%2Bngdb91640.dirty-py2.py3-none-any.whl
https://github.com/BurningWish/ITRC/blob/master/nx_pgnet-0.9.post0.dev70%2Bngdb91640.dirty-py2.py3-none-any.whl
https://github.com/BurningWish/ITRC/blob/master/nx_pgnet-master/pg_schema/backup/network_schema_empty.backup
https://github.com/BurningWish/ITRC/blob/master/nx_pgnet-master/pg_schema/backup/network_schema_empty.backup
https://github.com/BurningWish/ITRC/blob/master/nx_pgnet-master/doc/api.pdf
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Appendix C – Spatial heuristic algorithm 

 

This appendix shows how to generate fine scale electricity distribution networks from input 

data (substations, road network, buildings) for an example area of Newcastle upon Tyne. This 

algorithm is discussed in chapter 4. The appendix also shows city scale electricity networks 

generated for major cities in the UK. 

 

The code can be found in this URL: 

https://github.com/BurningWish/Heuristic-Algorithm 

 

The input data are downloadable from digimap: https://digimap.edina.ac.uk/. 

 

We need three layers from MasterMap: ITN – Integrated Transport Network, Topography 

(building), Point of Interest (substation). An example is given in figure C1. 

 

Figure C1. An example of input for the spatial heuristic algorithm. (A = substations, R = 

roads, and B = buildings). 

https://github.com/BurningWish/Heuristic-Algorithm
https://digimap.edina.ac.uk/
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The way the algorithm works is shown in figure C2. 

 

 

Figure C2. The way in which the algorithm works. 

 

Basically, we will first load data into PostGIS (manually) and then sequentially execute 4 

python scripts. 

 

1. Loading data into PostGIS 

 

Please open your PostGIS and create a new database (which I called “sample_hackthon” in 

this example). Please set SRID to be 27700 when loading the shapefiles. In the end, you will 

create 3 tables, which are “buildings”, “substations”, and “roads”. Please note the table names 

are all in lowercase. Please see figure C3 for details. 
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Figure C3. Loading data into PostGIS. 

 

Please note that when loading data, there is an import option. In here, please make sure that 

the box for “Generate simple geometries instead of MULTI geometries” is not ticked. 

Otherwise, algorithm will fail. See figure C4 for details. 

 

 

Figure C4. No need to tick box “Generate simple geometries instead of MULTI geometries”. 
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2. Running Scripts (Step 0 → Step 3) 

 

Now the data have been loaded, then we can just run the scripts to execute the algorithm. You 

can use any IDE (such as Pycharm or Spyder) to open the scripts and simply run them. 

 

Before running each script, there might be some parameters that you need to change. In 

general, these are parameters used to connect to your PostGIS database. For example, for the 

script Step 0 – PostGIS prepare.py, there are some parameters that you might need to 

change, see figure C5. I always put the parameters section near the top within each script, so 

they are easy to find. 

 

 

Figure C5. Parameters for Step 0 – PostGIS prepare.py. 

 

If there is nothing wrong, after running Step 3 – Heuristic Generation.py, in your current 

working directory there will be a folder called result, and within it there are two folders called 
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Edges and Nodes. I store single network instance separately. For example, the file 

Edges0.shp and Nodes0.shp are the edges and nodes for the electricity distribution network, 

where the id for the substation is 0. 

 

Figure C6 shows the result of synthetic networks, based on figure C1 as input data. 

 

 

Figure C6. The synthetic networks generated, based on figure C1. 

 

3. City scale electricity distribution networks generated for UK major cities 

 

Below are the electricity distribution networks generated for Exeter, Sheffield, Leeds, 

Birmingham, and Greater Manchester. Note each colour represents a single network instance. 
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Figure C7. Synthetic electricity distribution networks for Exeter. 

 

Figure C8. Synthetic electricity distribution networks for Sheffield. 
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Figure C9. Synthetic electricity distribution networks for Leeds. 

 

Figure C10. Synthetic electricity distribution networks for Birmingham. 
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Figure C11. Synthetic electricity distribution networks for Greater Manchster. 
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Appendix D – Gas Network Integration 

 

The appendix shows the code to generate fine scale gas distribution networks (connecting 

buildings) in Newcastle upon Tyne. The work is discussed in section 5.2 

 

The code can be found at this URL: 

https://github.com/BurningWish/Gas-Network-Integration 

 

Necessary input layers: buildings, ITN, Northern Gas Network (NGN) network. 

 

The buildings and ITN layer are available from OS MasterMap. The NGN layer cannot be 

made public due to data sensitivity. Figure D1 shows the NGN network. 

 

 

Figure D1. The NGN network data (layout of main pipes). 

 

First run the script Step 0 - Gas Main Infer.py, which will infer gas main pipes in new 

https://github.com/BurningWish/Gas-Network-Integration
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developing areas in Newcastle where there is none. The result is shown in figure D2. 

 

Figure D2. Inferred layout of gas main pipes, where there is none. 

 

Now combine synthetic Network and NGN Network into one layer, run script Step 1 - 

Preprocessing Data.py, Step 2 - Terrace Generation.py, and Step 3 - Main Script.py 

sequentially. Then fine scale gas distribution networks (connecting buildings) will be 

generated for Newcastle upon Tyne (figure D3). 

 



283 

 

 

Figure D3. Gas distribution network for Newcastle upon Tyne. 
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Appendix E – Water Supply Network Integration 

 

The appendix shows the code to generate fine scale water distribution networks (connecting 

buildings) in Newcastle upon Tyne. The work is discussed in section 5.3. 

 

The code can be found at this URL: 

https://github.com/BurningWish/Water-Network-Integration 

 

Necessary input layers: buildings, Northumbria Water Group (NWG) network. 

 

The buildings layer is available from OS MasterMap. The NWG layer cannot be made public 

due to data sensitivity. Figure E1 shows the NWG network. 

 

 

Figure E1. The NWG network data. 

 

First run the scripts Step 0 - WDA Calculation.py, and Step 1 - NWG Flow Infer.py to infer 

https://github.com/BurningWish/Water-Network-Integration
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flow direction on the NWG network (figure E2). Then run the scripts Step 2 - Preprocessing 

Data.py and Step 3 - Main Script.py to generate fine scale water distribution network 

(connecting buildings) in Newcastle upon Tyne (figure E3). 

 

Figure E2. Inferred water distribution area (WDA) based on NWG data. 

 

 

Figure E3. Fine scale water distribution networks in Newcastle upon Tyne. 
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Appendix F – Sewer Network Integration 

 

The appendix shows the code to generate fine scale sewer networks (connecting buildings) in 

Newcastle upon Tyne. The work is discussed in section 5.4. 

 

The code can be found at this URL: 

https://github.com/BurningWish/Sewer-Network-Integration 

 

Necessary input layers: buildings, CityCAT sewer network, Newcastle DTM. 

 

The buildings layer is available from OS MasterMap. The sewer network layer cannot be 

made public due to data sensitivity. Figure F1 shows the sewer network. 

 

 

Figure F1. CityCAT sewer network. 

 

 

https://github.com/BurningWish/Sewer-Network-Integration
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Run the scripts 0 - Preprocessing Data.py and 1 - Main Script.py to generate fine scale 

sewer network in Newcastle upon Tyne (figure F2). 

 

 

Figure F2. Fine scale sewer network in Newcastle (connecting buildings). 

 

Note in section 5.4.3, we discussed an algorithm to infer sewer flow direction as if there is no 

flow information. The algorithm relies on the DTM layer, and is implemented via the script 

Extra - Sewer Flow Infer.py. 
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Appendix G – Road Network Generation Algorithm 

 

This appendix shows the code to generate road network, an approach that is discussed in 

chapter 6. 

 

The code is available from the follow URL: 

https://github.com/BurningWish/Road-Network-Generation 

 

Necessary input layers: buildings, boundary, and entry points. The buildings layer is 

available from OS MasterMap. The other two layers needs to be given manually. 

 

For example, figure G1 shows an example of input data layers (for the Arup project). 

 

 

Figure G1. An example of input layers for the road network generation algorithm. 

 

 

 

https://github.com/BurningWish/Road-Network-Generation
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Then run the scripts from 0. Alter table attributes.py to 7. Smooth Road Network 

Geometry.py sequentially to generate synthetic road network (figure G2). 

 

 

Figure G2. Synthetic road network, based on input from figure G1. 
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Appendix H – Database Performance Benchmarking Test Data 

 

 

Figure H1. Type 1 data set, size 100. 

 

 

Figure H2. Type 2 data set, size 200. 
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Figure H3. Type 1 data set, size 400. 

 

 

Figure H4. Type 1 data set, size 800. 
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Figure H5. Type 1 data set, size 1600. 

 

 

Figure H6. Type 2 data set, size 2500. Each colour refers to a single network instance. 

 

 

Figure H7. Type 2 data set, size 5000. Each colour refers to a single network instance. 
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Figure H8. Type 2 data set, size 10000. Each colour refers to a single network instance. 

 

 

Figure H9. Type 2 data set, size 20000. Each colour refers to a single network instance. 
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Figure H10. Type 2 data set, size 40000. Each colour refers to a single network instance. 

 

 

Figure H11. Type 2 data set, size 80000. Each colour refers to a single network instance. 
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Figure H12. Type 2 data set, size ‘Newcastle’. Each colour refers to a single network 

instance. 

 

 

Figure H13. Type 3 data set, size ‘UK’. 
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Appendix I – Database Performance Benchmarking Test Result 

Network data Size ITRC Schema PgRouting Hybrid Database 

100 (Type 1) 1.2 2.7 3.1  

200 (Type 1) 2.2 5.2 4.3 

400 (Type 1) 4.3 9.6 8.2 

800 (Type 1) 8.8 21 15.3 

1600 (Type 1) 16 40 29.2 

2500 (Type 2) 24 58 41 

5000 (Type 2) 51 127 84 

10000 (Type 2) 105 266 171 

20000 (Type 2) 210 538 338 

40000 (Type 2) 430 1107 675 

80000 (Type 2) 853 2081 1297 

Newcastle (Type 2) 1936 4859 2884 

UK (Type 3) 1534 2920 2347 

Table I1. Execution time (in seconds) of writing different sized network data. 

 

Size ITRC Schema PgRouting Hybrid Database 

100 (Type 1) 1.4 1.9 3.1 

200 (Type 1) 2.5 3.0 3.2 

400 (Type 1) 5.2 4.3 4.5 

800 (Type 1) 12.3 8.4 10.8 

1600 (Type 1) 27 17 21 

2500 (Type 2) 37 26 33 

5000 (Type 2) 73 53 61 

10000 (Type 2) 159 102 123 

20000 (Type 2) 323 199 239 
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40000 (Type 2) 657 401 472 

80000 (Type 2) 1412 808 953 

Newcastle (Type 2) 3012 1772 1891 

UK (Type 3) 2451 1123 1202 

Table I2. Execution time (in seconds) of reading different sized network data. 

 

Size ITRC Schema PgRouting Hybrid Database 

100 (Type 1) 1.8 2.7 3.1 

200 (Type 1) 2.8 4.3 3.2 

400 (Type 1) 3.4 5.9 3.5 

800 (Type 1) 7.4 8.2 4.8 

1600 (Type 1) 19 17 8.1 

2500 (Type 2) 30 23 15 

5000 (Type 2) 67 42 28 

10000 (Type 2) 142 78 49 

20000 (Type 2) 288 151 87 

40000 (Type 2) 585 287 165 

80000 (Type 2) 1142 537 322 

Newcastle (Type 2) 2502 945 595 

UK (Type 3) 1966 54 38 

 

Table I3. Execution time (in seconds) of performing shortest path query on different sized 

data. 

 

 ITRC schema PgRouting Hybrid Database 

IRN Complex Query 24,602 5183 2139 

Table I4. Execution time (in seconds) of performing IRN complex query. 
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 ITRC schema PgRouting Hybrid Database 

Task 1 3.7 3.6 5.6 

Task 2 204 210 241 

Task 3 26 25 37 

Task 4 257 261 314 

Table I5. Execution time (in seconds) of performing complex query on Newcastle Electricity 

Network. 

 

 ITRC Schema PgRouting Hybrid Database 

Writing 47688 123961 65322 

Reading 64785 23728 29897 

Shortest path query 58980 13716 5034 

Table I6. Execution time (in seconds) of performing writing, reading and shortest path query 

on London electricity network data. 

 

 ITRC Schema PgRouting Hybrid Database 

Task 1 2168 2221 2620 

Task 2 2205 2227 2561 

Task 3 2140 2105 2524 

Task 3 2590 2623 2990 

Table I6. Execution time (in seconds) of performing complex query 1 on London electricity 

network data. 

 

 ITRC Schema PgRouting Hybrid Database 

Task 1 21649 9061 3125 

Task 2 23155 11793 3507 

Table I7. Execution time (in seconds) of performing complex query 2 on London electricity 

network data. 
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Appendix J – Scripts for database performance benchmarking tests 

 

This appendix includes the scripts for the database benchmarking tests discussed in chapter 7. 

 

1 – Performance test on different size network data (section 7.4) 

 

Writing data with ITRC schema 

https://github.com/BurningWish/Benchmarking-Scripts/blob/master/1/ITRC/ITRC_write.py 

 

Reading data with ITRC schema 

https://github.com/BurningWish/Benchmarking-Scripts/blob/master/1/ITRC/ITRC_read.py 

 

Performing network query with ITRC schema (type 1 and type 2 data) 

https://github.com/BurningWish/Benchmarking-

Scripts/blob/master/1/ITRC/ITRC_query_1_2.py 

 

Performing network query with ITRC schema (type 3 data) 

https://github.com/BurningWish/Benchmarking-

Scripts/blob/master/1/ITRC/ITRC_query_3.py 

 

Writing data with PgRouting 

https://github.com/BurningWish/Benchmarking-

Scripts/blob/master/1/PgRouting/PgRouting_write.py 

 

Reading data with PgRouting 

https://github.com/BurningWish/Benchmarking-

Scripts/blob/master/1/PgRouting/PgRouting_read.py 

Performing network query with PgRouting (type 1 and type 2 data) 

https://github.com/BurningWish/Benchmarking-Scripts/blob/master/1/ITRC/ITRC_write.py
https://github.com/BurningWish/Benchmarking-Scripts/blob/master/1/ITRC/ITRC_read.py
https://github.com/BurningWish/Benchmarking-Scripts/blob/master/1/ITRC/ITRC_query_1_2.py
https://github.com/BurningWish/Benchmarking-Scripts/blob/master/1/ITRC/ITRC_query_1_2.py
https://github.com/BurningWish/Benchmarking-Scripts/blob/master/1/ITRC/ITRC_query_3.py
https://github.com/BurningWish/Benchmarking-Scripts/blob/master/1/ITRC/ITRC_query_3.py
https://github.com/BurningWish/Benchmarking-Scripts/blob/master/1/PgRouting/PgRouting_write.py
https://github.com/BurningWish/Benchmarking-Scripts/blob/master/1/PgRouting/PgRouting_write.py
https://github.com/BurningWish/Benchmarking-Scripts/blob/master/1/PgRouting/PgRouting_read.py
https://github.com/BurningWish/Benchmarking-Scripts/blob/master/1/PgRouting/PgRouting_read.py
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https://github.com/BurningWish/Benchmarking-

Scripts/blob/master/1/PgRouting/PgRouting_query_1_2.py 

 

Performing network query with PgRouting (type 3 data) 

https://github.com/BurningWish/Benchmarking-

Scripts/blob/master/1/PgRouting/PgRouting_query_3.py 

 

Writing data with hybrid database 

https://github.com/BurningWish/Benchmarking-

Scripts/blob/master/1/Hybrid/Hybrid_write.py 

 

Reading data with hybrid database 

https://github.com/BurningWish/Benchmarking-Scripts/blob/master/1/Hybrid/Hybrid_read.py 

 

Performing network query with hybrid database (type 1 and type 2 data) 

https://github.com/BurningWish/Benchmarking-

Scripts/blob/master/1/Hybrid/Hybrid_query_1_2.py 

 

Performing network query with hybrid database (type 3 data) 

https://github.com/BurningWish/Benchmarking-

Scripts/blob/master/1/Hybrid/Hybrid_query_3.py 

 

2 – Performance test on city scale network from Newcastle (section 7.5) 

 

Complex query on IRN with ITRC schema 

https://github.com/BurningWish/Benchmarking-Scripts/tree/master/2/IRN/ITRC 

 

Complex query on IRN with PgRouting 

https://github.com/BurningWish/Benchmarking-Scripts/tree/master/2/IRN/PgRouting 

 

https://github.com/BurningWish/Benchmarking-Scripts/blob/master/1/PgRouting/PgRouting_query_1_2.py
https://github.com/BurningWish/Benchmarking-Scripts/blob/master/1/PgRouting/PgRouting_query_1_2.py
https://github.com/BurningWish/Benchmarking-Scripts/blob/master/1/PgRouting/PgRouting_query_3.py
https://github.com/BurningWish/Benchmarking-Scripts/blob/master/1/PgRouting/PgRouting_query_3.py
https://github.com/BurningWish/Benchmarking-Scripts/blob/master/1/Hybrid/Hybrid_write.py
https://github.com/BurningWish/Benchmarking-Scripts/blob/master/1/Hybrid/Hybrid_write.py
https://github.com/BurningWish/Benchmarking-Scripts/blob/master/1/Hybrid/Hybrid_read.py
https://github.com/BurningWish/Benchmarking-Scripts/blob/master/1/Hybrid/Hybrid_query_1_2.py
https://github.com/BurningWish/Benchmarking-Scripts/blob/master/1/Hybrid/Hybrid_query_1_2.py
https://github.com/BurningWish/Benchmarking-Scripts/blob/master/1/Hybrid/Hybrid_query_3.py
https://github.com/BurningWish/Benchmarking-Scripts/blob/master/1/Hybrid/Hybrid_query_3.py
https://github.com/BurningWish/Benchmarking-Scripts/tree/master/2/IRN/ITRC
https://github.com/BurningWish/Benchmarking-Scripts/tree/master/2/IRN/PgRouting
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Complex query on IRN with hybrid database 

https://github.com/BurningWish/Benchmarking-Scripts/tree/master/2/IRN/Hybrid 

 

Complex query on Newcastle electricity network with ITRC schema 

https://github.com/BurningWish/Benchmarking-Scripts/tree/master/2/Electricity/ITRC 

 

Complex query on Newcastle electricity network with PgRouting 

https://github.com/BurningWish/Benchmarking-Scripts/tree/master/2/Electricity/PgRouting 

 

Complex query on Newcastle electricity network with hybrid database 

https://github.com/BurningWish/Benchmarking-Scripts/tree/master/2/Electricity/Hybrid 

 

3 – Performance test on mega city scale network from London (section 7.6) 

 

Write/Read/Network Query on London network with ITRC schema 

https://github.com/BurningWish/Benchmarking-Scripts/tree/master/3/simple/ITRC 

 

Write/Read/Network Query on London network with PgRouting 

https://github.com/BurningWish/Benchmarking-Scripts/tree/master/3/simple/PgRouting 

 

Write/Read/Network Query on London network with hybrid database 

https://github.com/BurningWish/Benchmarking-Scripts/tree/master/3/simple/Hybrid 

 

Complex query 1 on London network with ITRC schema 

https://github.com/BurningWish/Benchmarking-

Scripts/tree/master/3/complex%20query%201/ITRC 

 

Complex query 1 on London network with PgRouting 

https://github.com/BurningWish/Benchmarking-

Scripts/tree/master/3/complex%20query%201/PgRouting 

https://github.com/BurningWish/Benchmarking-Scripts/tree/master/2/IRN/Hybrid
https://github.com/BurningWish/Benchmarking-Scripts/tree/master/2/Electricity/ITRC
https://github.com/BurningWish/Benchmarking-Scripts/tree/master/2/Electricity/PgRouting
https://github.com/BurningWish/Benchmarking-Scripts/tree/master/2/Electricity/Hybrid
https://github.com/BurningWish/Benchmarking-Scripts/tree/master/3/simple/ITRC
https://github.com/BurningWish/Benchmarking-Scripts/tree/master/3/simple/PgRouting
https://github.com/BurningWish/Benchmarking-Scripts/tree/master/3/simple/Hybrid
https://github.com/BurningWish/Benchmarking-Scripts/tree/master/3/complex%20query%201/ITRC
https://github.com/BurningWish/Benchmarking-Scripts/tree/master/3/complex%20query%201/ITRC
https://github.com/BurningWish/Benchmarking-Scripts/tree/master/3/complex%20query%201/PgRouting
https://github.com/BurningWish/Benchmarking-Scripts/tree/master/3/complex%20query%201/PgRouting
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Complex query 1 on London network with hybrid database 

https://github.com/BurningWish/Benchmarking-

Scripts/tree/master/3/complex%20query%201/Hybrid 

 

Complex query 2 on London network with ITRC schema 

https://github.com/BurningWish/Benchmarking-

Scripts/tree/master/3/complex%20query%202/ITRC 

 

Complex query 2 on London network with PgRouting 

https://github.com/BurningWish/Benchmarking-

Scripts/tree/master/3/complex%20query%202/PgRouting 

 

Complex query 2 on London network with hybrid database 

https://github.com/BurningWish/Benchmarking-

Scripts/tree/master/3/complex%20query%202/Hybrid 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://github.com/BurningWish/Benchmarking-Scripts/tree/master/3/complex%20query%201/Hybrid
https://github.com/BurningWish/Benchmarking-Scripts/tree/master/3/complex%20query%201/Hybrid
https://github.com/BurningWish/Benchmarking-Scripts/tree/master/3/complex%20query%202/ITRC
https://github.com/BurningWish/Benchmarking-Scripts/tree/master/3/complex%20query%202/ITRC
https://github.com/BurningWish/Benchmarking-Scripts/tree/master/3/complex%20query%202/PgRouting
https://github.com/BurningWish/Benchmarking-Scripts/tree/master/3/complex%20query%202/PgRouting
https://github.com/BurningWish/Benchmarking-Scripts/tree/master/3/complex%20query%202/Hybrid
https://github.com/BurningWish/Benchmarking-Scripts/tree/master/3/complex%20query%202/Hybrid
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